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Abstract

In this thesis, we study complex structures of quantum projective spaces that was initiated
in [19] for the quantum projective line, (Cqu. In Chapters 2/ and |3 which are the main parts
of this thesis, we generalize the the results of [19] to the spaces CPq2 and (CPqZ. We consider
a natural holomorphic structure on the quantum projective space already presented in
[111 9], and define holomorphic structures on its canonical quantum line bundles. The space
of holomorphic sections of these line bundles then will determine the quantum homogeneous
coordinate ring of the quantum projective space as the space of twisted polynomials.

We also introduce a twisted positive Hochschild 2¢-cocycle on (CP;, by using the
complex structure of (CPqZ , and show that it is cohomologous to its fundamental class which
is represented by a twisted cyclic cocycle. This fits with the point of view of holomorphic
structures in noncommutative geometry advocated in [4, [5], that holomorphic structures
in noncommutative geometry are represented by (extremal) positive Hochschild cocycles
within the fundamental class.

In Chapter [d] we directly verify that the main statements of Riemann-Roch formula
and Serre duality theorem hold true for (Cqu and CPqQ.

In Chapter |5, a quantum version of the Borel-Weil theorem for SU,(3) is proved and
is generalized to the case of SUy(n).

Finally, in the last chapter the noncommutative complex structure of finite spaces is
investigated. The space of holomorphic functions are determined and it is also proved that
there is no holomorphic structure on the nontrivial vector bundle &, & &, over the space of
two points X = {a, b}, where dim &, = 2 and dim &, = 1.

Keywords: Noncommutative geometry, noncommutative complex geometry, positive

Hochschild cocycle.
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Preface

The correspondence between geometry and algebra is not a new idea in mathematics. Classi-
cally, it amounts to a correspondence or duality between commutative algebras and classical
spaces. The classical space appears as the spectrum of the commutative algebra. For ex-
ample, the celebrated theorem of Gelfand and Naimark states that the category of locally
compact Hausdorff spaces is equivalent to the dual of the category of commutative C*-
algebras. Hence one can regard not necessarily commutative C*-algebras as representing
noncommutative spaces. In general one seeks an algebraic formulation of geometric notions
based on which one can then try to find their analogues in the noncommutative world.

Tools of (differential) topology such as K-theory, de Rham cohomology and Chern-
Weil theory of characteristic classes have been extended to noncommutative algebras. A
major discovery of Alain Connes, namely cyclic cohomology, can be regarded as the non-
commutative analogue of de Rham homology [6].

During the past thirty years, different aspects of noncommutative differential and
Riemannian geometry have been developed. For instance now it is a well known fact that
the metric information of a Riemannian (spin) manifold can be encoded by a triple of algebra
of smooth functions on the manifold, the Hilbert space of spinors and the associated Dirac
operator. More precisely a spectral triple over a noncommutative unital *-algebra A is a
triple (A, H, D) where A is represented by bounded operators in a Hilbert space H and
D is a self-adjoint unbounded operator on H with the following properties. First of all,
the commutator [D,a] must be bounded for any element a € A. Moreover, the resolvent
(D — )\)~! is a compact operator for any A ¢ R. To any Riemannian spin manifold M,
a spectral triple is associated canonically with A = C*(M), H = L?*(M, S) the space of
L?-sections of the spin bundle over M and D is the associated Dirac operator on H. The

geodesic distance can be recovered by a formula of Connes

d(p,q) = sup{|f(p) — f(Q: I [D, flI <1, f € A}.
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There also exists an analogue of volume form and even Yang-Mills action in this set up. A
theorem of Connes assures that every Riemannian spin® manifold can be reconstructed in
this way from a commutative spectral triple satisfying some natural axioms [7].

While there has been much progress in noncommutative geometry, the progress in
noncommutative complex geometry has been very slow and much remains to be done in
this area. A beginning step in this direction was made by Alain Connes, who pointed out
that positive Hochschild 2-cocycles on the algebra A = C°°(M), on the two dimensional
closed oriented surface M, can encode the information needed to define a conformal (or
equivalently, complex) structure on the surface M. More precisely, let ¢ : A®3 — C,

defined by
0 p1 g2y, L 044l 2
O e L X8
M

be the cyclic 2-cocycle representing the fundamental class of the 2-dimensional manifold M.

If M carries a conformal structure g, one can define a functional ¢, : A®3 - C by

i _
ool 1157 =L [ foor nag
M
The 2-cocycle ¢ is a cyclic 2-cocycle while ¢, is just a Hochschild 2-cocycle in the same
Hochschild cohomology class of ¢. The cocycle ¢, has another property which is called

positivity. To be more explicit, the following gives a positive sequilinear form on A%2.
<a0 ®ai, by ® bl> = go(béao, ai, bil()

The 2-cocycle ¢4 is the unique point in the convex cone Zi N[e] with an extremal property.
Here Z_2~_ is the space of positive Hochschild 2-cocycles and extremality is with respect to

the following functional. First let

d
G = Zgw dzt(dz¥)* € Q%(A),
1



now define

(G 0) = DG, (2¥)7).

This functional takes its minimum in a unique point in Zi N[p] which is ¢4. Conversely the
complex structure can also be recovered by ¢,. This strategy has been applied by Connes
himself to the case of noncommutative two torus Tg and the positive Hochschild 2-cocycle
representing the noncommutative complex structure is given explicitly[4, VI, lemma 9]. On
the other hand Polishchuk and Schwarz have considered the holomorphic vector bundles on
TZ and gave a classification of noncommutative holomorphic vector bundles [29, 30]. In [19]
M. Khalkhali, G. Landi and W. van Suijlekom proposed a definition for a holomorphic vector
bundle on an involutive algebra as a finitely generated projective module that admits a flat
O-connection. They applied the appropriate techniques to the case of quantum projective
line and its canonical quantum line bundles to derive quantum version of some well known
classical results.

To deal with complex structure of some noncommutative spaces, such as quantum
projective spaces, the correspondence of complex structure and positivity must be extended
to twisted positivity of Hochschild cocyles and twisted cyclic cocycles. Here twist is defined
via the modular automorphism of the Haar state on the quantum group SU,(n). So authors
in [I9] also defined the notion of twisted positivity and gave an example of twisted posi-
tive Hochschild 2-cocycle in the same cohomology class of fundamental class of quantum
projective line. The paper [19] by itself has given rise to several questions. Among them,
two that took our attention are as following. First, what can we say about higher dimen-
sional quantum projective spaces? The second question is: could we give a classification
of all holomorphic vector bundles on (Cqu? In particular, how to formulate and prove a
Grothendieck type theorem for holomorphic vector bundles on CP! in our noncommutative
setting.

The complex projective spaces CP™ are among the most important complex manifolds
so it is totally natural to work with the noncommutative version of these spaces if we are

willing to investigate the noncommutative complex geometry. The quantum group version of



4

the fibration S* — 5"t — CP", gives the A(CP}') as the invariant elements of A(S2"*1)
under the action of S'. Here A(CPq") denotes the algebra of functions on the quantum space
CP}. The canonical quantum line bundles Ly then is defined by characters of U(1). Each
Ly is a A(CP})-bimodule. A classical result in complex geometry states that the space
of holomorphic sections of canonical line bundles is isomorphic to homogeneous polynomial
space as a vector space. The homogeneous coordinate ring of these line bundles which is
defined by R := €D,,>¢ HY(CP™,O(m)) is isomorphic to the ring of polynomials in n + 1
variables.

To have a noncommutative complex geometry on A := A(CF') in the sense of [19],
we need a bigraded differential algebra Q("')(A) together with two differentials 9 and 0
with some appropriate properties. The space of forms and differential maps for quantum
projective spaces have been worked out in [9, [12] and in more general case of quantum flag
manifolds in [I7].

This thesis is structured as follows. In Chapter I} we review basic concepts of quantum
groups that will be needed in forthcoming chapters. The notion of noncommutative complex
geometry in the sense of [I9] is recalled and the main problem that chapters [2[ and [3] are
devoted to is stated.

In Chapter [2| the holomorphic structures on canonical quantum line bundles on the
quantum projective plane are investigated. It is shown that these line bundles admit a flat
O-connection and the compatibility of this with bimodule structure of line bundles is also
established. This compatibility together with the determination of the space of holomorphic
sections, led us to derive the structure of the quantum homogeneous coordinate ring of (CPq2
as a twisted polynomial algebra in three variables. We also extended our results from
polynomial holomorphic sections to continuous and L?-sections. In addition we prove the
existence of a positive twisted Hochschild 4-cocycle that represents the fundamental class of
the quantum projective plane. The question of the relation between positivity and complex
structure in complex dimension > 2, even in the classical case, is still open.

Chapter [3] is an extension of our results to higher dimensional quantum projective

spaces where the quantum homogeneous coordinate ring of a projective space is determined



as a space of twisted polynomials. This result has a perfect analogue in the classical case
as q approaches 1.

In Chapter 4 we determine the Dolbeault cohomology of (Cqu and (CPq2 as the first
step of seeking an analogue of the Riemann-Roch theorem for quantum projective spaces.

In Chapter |5 we prove a quantum version of the Borel-Weil theorem for SU,(3) and
generalize it to the case of SUy(n). Classically the Borel-Weil theorem gives a concrete
geometric realization of irreducible representations of a compact Lie group as the space of
holomorphic sections of the line bundles on the associated flag manifold.

In the last chapter, we investigate the noncommutative complex structure of finite
spaces and determine the space holomorphic functions of these spaces. We also prove that

there is no nontrivial holomorphic vector bundle on the space of two points.



Chapter 1
A review on quantum groups and noncommutative
complex geometry
1.1 Quantum groups

In this section we review some basic notions of quantum groups following [23].

1.1.1 Hopf algebras

In this thesis, by an algebra we mean an associative algebra over C with unit. More precisely,
an algebra is a vector space A over C with two linear maps m : A ® A — A, called the

product and 1 : C — A called the unit such that
mo(m®id) =mo (id®m), mo(n®id)=1id=mo (id®n). (1.1)
On the elements of A, equations can be written as:
a(be) = (ab)e, al =la=a, Va,bce€ A

A coalgebra is a vector space over C with two maps A: A - A® A and ¢ : A — C such

that

(A®id)o A= (id® A)o A,

(e®id)o A=id= (id®¢e)oA. (1.2)

The maps A and € are called coproduct and counit respectively. A bialgebra is a tuple
(A,m,n, A, ¢e) such that A is simultaneously an algebra and a coalgebra and also £ and A

are morphisms of algebras.
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Definition 1.1.1. A Hopf algebra is a bialgebra (A,m,n, A, &) with a linear map S : A —

A, called the antipode, such that
mo(S®id)oA=noe=mo(id®S)oA. (1.3)
In Sweedler’s notation (i.e. Aa =) a) ® a(g)), formula can be written as
>_Slag)ag) = (@)1= awS(ap).
The map S has the following properties:

S(1) =1, S(ab)=S(b)S(a), VYa,be A,

AoS=70(S®S5)oA, coS=c¢.
Here 7: A® A — AR Ais the flip 7(a ® b)) = b® a.

1.1.2 Dual pairing of Hopf algebras

Definition 1.1.2. A dual pairing of Hopf algebras U and A is a bilinear pairing
(,):U®A— C such that

(A(X),a®b) = (X,ab), (XY,a)=(X®Y,Aa)) (1.4)

(X,1) =¢(X), (1,a)=c¢(a) (1.5)

for all X, Y €U and for all a,b € A. The pairing is called nondegenerate if (X,a) =0 for
all a € A implies X =0 and if (X,a) =0 for all X € U implies a = 0.

For a pairing of Hopf algebras (,), we have
(S(X),a) =(X,S(a)) VX €elU,Vace A

Definition 1.1.3. A Hopf x-algebra is a Hopf algebra A over C with an involution * on A
such that (ab)* = b*a* and A(a*) = A(a)*.



Note that in any Hopf x-algebra we have 1* = 1, g(a*) = (a) and S~! = * 0 S o *.

Definition 1.1.4. A dual pairing between Hopf x-algebras U and A is a dual Hopf pairing
such that

(X7, 0) = (X,5(a%)), (X,a") = (5(X*),a).

1.1.2.1 Examples of Hopf algebras

e The universal enveloping algebra U(g).

For a Lie algebra g over C, the universal enveloping algebra U(g) is defined to be the
quotient of the tensor algebra T'(g) by the two sided ideal I generated by elements

xRy —yQz—[z,y] for z,y € g. It has the following universal property:

Given a linear map ¢ : g — A to an algebra A satisfying

e[z, y]) = p(2)e(y) — e(y)e(r), Vo,ycg,

there is a unique algebra homomorphism ® : U(g) — A such that ®(x) = p(z), z € g.

There exists a unique Hopf algebra structure on U(g) satisfying

Alz)=1®z+z®1, ex)=0, S()=-z, Vreg.

In some cases, for example when A(G) is the Hopf algebra of a matrix Lie group G
with Lie algebra g, the elements of U(g) act as left invariant differential operators on
G. For X; €g,i=1,2,---n, the element X = X;X5--- X, acts on f € C°(G) as

an

t1 X1 tnXn
e — 6 DY e .
Oty -+ Oty ti:()f(g )

Xflg) =

The pairing (, ) between U(g) and A(G) given by (X, f) := X f(e) is a nondegenerate
dual pairing of Hopf algebras. Here e is the identity element of G.
e The group algebra CG.

Let G be a discrete group. The group algebra CG as a vector space has a basis given

by G. The product of G extends linearly to this space and the unit element is the



unit of G. There is a unique Hopf algebra structure on CG such that
Alg)=g®g, elg)=1, Slg)=g" Vgeq.

The Drinfield-Jimbo algebras.

In this example g is a complex semisimple Lie algebra. The following theorem by

Serre, characterizes U(g) in terms of generators and relations.

Theorem 1.1.1. Let g be a complex semisimple Lie algebra with Cartan matric A =
(aij) and simple roots oy, ,--- ,ap with | =rank g, then E; = E,,, F; = E_,, and
H;,=[E;,F],i=1,2,--- 1, can be chosen in such a way that the universal enveloping

algebra U(g) is generated by E;, F;, H;, subject to the relations

[Hi,H;] =0, [E;,F;]=H; [E,F;]=0, i#j,

[H;, Ej] = a;;Ej,  [H;, Fj] = —ai; Fj
1,%],

1—a;; g
(adE;)' " E; = > (—1)’“( ka”>E2.1 “REEF =0, i+,
k=0
l—aij

1—a;; i
k=0

We recall that for a complex semisimple Lie algebra, the Cartan matrix A = (a;;) is
defined by a;; := 2(, a;)/{cj, ;). Here a;’s are simple roots and (,) is the Killing
form. This matrix which is a square integer matrix has the following properties:

— a5 € {—3,-2,-1,0,2}

— a; = 2.

—ai; <0ifi#j

—ay; =0iff aj; =0

— There exists a diagonal matrix D such that DAD™! gives a symmetric and

positive definite quadratic form.
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Note. The elements E;, F;, H; produce a PBW basis for U(g).

Let ¢ be a nonzero complex number and let ¢; = ¢% where d; := (o, a;)/2 such that
q2-2 #1fori=1,2,---,l. Let Uy(g) be the associative unital algebra with generators

Ei,Fi,Ki,Ki_l for 1 <1 <[ subject to the relations

K.K; = K;K;, KK;'=K 'K,

KiEj = ;" E;K;, KFj=gq; "FK,

K;— K !
EiFj — FjE; = 60—,
qi — q;
1—a;; i 7
1 — Qi o
S -1k YN ETTNEE =0, i# ),
k=0 | k]
lf(lij i 7]
1 — Qs o
k=0 k]
where,
el R — Y q—qt

Proposition 1.1.1. There is a unique Hopf algebra structure on the algebra Uy(g)

with product A, counit € and antipode S such that

AK) =K ®K, AK?HY=K'eK/
AE)=E®K +19E, AF)=Fol+K '®F,
e(Ki) =1, e(E;) =e(F;) =0,

S(K;) =K;*, S(E)=-EK,' S(F)=-KF.

Definition 1.1.5. The Hopf algebra of the proposition 1s called the Drinfeld-

Jimbo algebra corresponding to the Lie algebra g and the complex number q.

There exists another Hopf algebra associated to g, denoted by Uq(g) which we will use

in forthcoming chapters. The algebra Uq(g) is the algebra generated by E;, F;, K;, K, !



11

for 1 <4 <[ subject to the relations

K,K; = K;K;, KK, '=K 'K,

K;E; = qf”/QEjKi, KiF; = qi_aij/ZFjKiv

K2 _ K2
EiFj — FjE; = bij———1,
qi — g,
l—aij i ]
1—a;; i
S (-t YN B TR EEF =0, 4,
k=0 k]
1—ay; _1 — N
ot IR RE =0, A
k=0 k]

The Hopf algebra structure on the algebra U,(g) is given by

AK) =K ®K;, AK')=K"'eK"

AB)=E®K +K '®F, AF)=FK+K 'oF,

One advantage of this Hopf algebra is the fact that comultiplications of generators
FE; and F; are given by the same formula. There is a Hopf algebra homomorphism

¢ : Uy(g) — Uy(g) given on generators by
o(B) = EiK;,  o(F) =K 'F,  ¢(K)=K.

The map ¢ is injective so U, (g) can be considered as a Hopf subalgebra of U,(g). Since
these two Hopf algebra have different number of one dimensional representations, they

are not isomorphic.

In this thesis, we are interested in Ug(sl,), its compact real form U,(su,) and its
irreducible representations. The generators and relations are given in forthcoming

chapters.



12

1.1.3 The Haar functional

A linear functional h on A is called invariant if
(id®@h)o A =h=(h®id)oA. (1.6)
Definition 1.1.6. A linear functional h on A which is invariant in the sense of @ 18

called a Haar functional of A.

We will see in our case of interest i.e. SU,(n) such a map h exists and is unique with
properties h(a*a) > 0 and h(1) = 1. Because of these properties h is also called the Haar
state of SU,(n).

Definition 1.1.7. [35] A Hopf x-algebra A is called a compact quantum group (CQG), if

there exists a linear functional h on A such that

(id® h) o A(a) = h(a)l, Vae€ A.

1.2 Noncommutative complex geometry

In this section we review the general setup of a noncommutative complex structure on a
given *-algebra as introduced in [19].

Let A be a x-algebra over C. A differential x-calculus for A is a pair (2°(A), d), where
Q*(A) = B,,50 V" (A) is a graded differential *-algebra with Q°(A) = A. The differential
map d: Q*(A) — Q*T1(A) satisfies the graded Leibniz rule,

d(LL)1LL)2) = (dwl)wg + (71)deg(w1)wl(dw2)

and d? = 0. The differential also commutes with the *-structure: d(a*) = (da)*.

Definition 1.2.1. A complex structure on an algebra A, equipped with a differential cal-

culus (Q°(A), d), is a bigraded differential x-algebra Q(**)(A) and two differential maps
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9 : QPD(A) - QPTLD(A) and 9 : QPD(A) — QP+ (A) such that:

(A = P aP?(A), 0a* =@a)*, d=0+0. (1.7)

p+q=n

Also, the involution * maps QPO (A) to Q4P (A).

We will use the simple notation (A, d) for a complex structure on A.

Definition 1.2.2. Let (A,d) be an algebra with a complex structure. The space of holo-

morphic elements of A is defined as
O(A) := Ker{d : A — QO (A)}.
By the Leibniz rule one can see that O(A) is an algebra over C.

1.2.1 Holomorphic connections

Suppose we are given a differential calculus (2°(.A), d). We recall that a connection on a
left A-module € for the differential calculus (2°(A), d) is a linear map V : £ — QY (A) @4 E

with left Leibniz property:

V(a§) =aVEi+ da®a &, Vae A V€. (1.8)
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By the graded Leibniz rule, i.e.
V(weE) = (—1)"wVE+ dw®@a &, Yw e Q"(A),VE € QA)R4E, (1.9)

this connection can be uniquely extended to a map, which will be denoted again by V,
V:QA) @4E — QT A) @4 E.
The curvature of such a connection is defined by Fy = V o V. One can show that,

Fy is an element of Hom 4 (€, Q%(A) @4 ).

Definition 1.2.3. Suppose (A, 9) is an algebra with a complex structure. A holomorphic
structure on a left A-module £ with respect to this complex structure is given by a linear

map AR [(RY ®4 & such that

V(ag) = aVP€+da @€, Vae A VEEE, (1.10)

and such that Fgg = (V)2 =0.

Such a connection will be called a flat J-connection. In the case which & is a finitely
generated A-module, (&, Vg) will be called a holomorphic vector bundle.

The motivation for this definition comes from the classical case.

Theorem 1.2.1. [16]. Let E be a complex vector bundle on a complex manifold X. A
holomorphic structure on E is uniquely determined by a C-linear operator g : A°(E) —

A(O’l)(E) satisfying the Leibniz rule and the integrability condition 52E =0.

In fact there is a one to one correspondence between holomorphic structures on a
complex vector bundle E and flat J-connections on E up the gauge equivalence. Two
connections V; and Vj are said to be gauge equivalent if there exists an invertible element
g € End4(E) such that Vi = g~ 1Vag.

Associated to a flat g—connection, there exists a complex of vector spaces

000 e, 8500Dg,8 .. (1.11)
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Here V9 is extended to Q09 @ A € by the graded Leibniz rule. The zeroth cohomology
group of this complex is called the space of holomorphic sections of £ and will be denoted

by HO(&,V9).

1.2.2 Holomorphic structures on bimodules

Definition 1.2.4. Let A be an algebra with a differential calculus (Q°(A), d). A bimodule
connection on an A-bimodule £ is given by a connection V which satisfies a left Leibniz
rule as in formula (@ and a right o-twisted Leibniz property with respect to a bimodule

isomorphism o : € @ 4 QH(A) = QY A) @4 E. i.e.
V(a) = (V&a+o({® da), V&€&, Vac A (1.12)

The tensor product connection of two bimodule connections Vi and V5 on two A-
bimodules & and & with respect to the bimodule isomorphisms o1 and o9 is a map V :

E1 @4 E — QA) ®4E @4 & defined by
Vi=Vi®1l+ (61 ®1)(1® V).

It can be checked that, V has the right o-twisted property with o : & ® & ® Q1(A) —

QA ®E ®E given by 0 = (01 ®1) o (1R 0a9).

Definition 1.2.5. A holomorphic structure on a A-bimodule £ is a given by a flat O-

bimodule connection.

It is worth mentioning that the tensor product of two flat connection is not a flat
connection in general, even in the case of finite dimensional vector spaces [19]. Therefore,
in general we cannot expect that the tensor product of two holomorphic structures (&1, V?)
and (&, V?) gives a holomorphic structure on & ® &;.

Let us recall the results of [19] that in chapters [2| and [3| of this thesis we generalize
them. In [I9], beside the general setup of noncommutative complex (NCC) structure on
an algebra and its holomorphic vector bundles, the authors considered the case of (Cqu as

the quotient space of S = SU,(2) by the action of U(1). The canonical quantum line
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bundles Ly are defined by the characters of U(1). For the standard complex structure on
(Cqu which is induced by the left invariant first order differential calculus (in the sense of
Woronowicz) on SU,4(2), they showed that the space of holomorphic sections of line bundles

Ly is described as follows. (cf. [19] theorems 4.4, 4.5 and the proposition 5.2)
Theorem 1.2.2. [19] Let N be a positive integer. Then

e H'(Ly,V) =0,

e HY(L_y,V)~CN+L

These results continue to hold when considering continuous sections I'(Ly) as modules over

C*-algebra C(CF}).

Theorem 1.2.3. [19] The space R = @y~ H(L_n,V) carries a ring structure and is

isomorphic to the quantum plane:
R ~ C{a,c)/(ac — qca).

The following proposition shows the existence of a twisted positive Hochschild co-
cycle which is cohomologous to the fundamental twisted cyclic cocycle defined via smooth

structure of the space (Cqu.

Proposition 1.2.1. [19] The cochain ¢ € C*(A(CF})) defined by

o(ag, a1, a2) = /a06a18a2
h

is a twisted Hochschild 2-cocycle on A((Cqu), that is to say by = 0 and A3 = ¢, it is also

positive, with positivity expressed as:

/agaal(aoaal)* Z 0
h

for all ag,ay € A(CP).



Chapter 2

Noncommutative complex structure of CPq2

2.1 The quantum projective plane CPq2

In this section, we recall the definition of the quantum enveloping algebra U,(su(3)), the
quantum group A(SU,(3)) and the pairing between them. We also recall the definition of

the quantum projective plane CPq2 and its canonical quantum line bundles [12].

2.1.1 The quantum enveloping algebra U, (su(3))

Let 0 < g < 1. We use the following notation

z —Zz n [
la,bly = ab— q ‘ba, [2] = -9 — q—1 , = 7[ ]'[[n]_ ik
q—q m m]!n —m)]!

(htki+i) I+ + 1!

bkl =a” G

The Hopf *-algebra U, (su(3)) as a *-algebra is generated by K;, K; ', E;, Fy, i = 1,2

with K = K;, E = F; subject to the relations

[Ki,K;] =0, KB =qEK; [E,F]=(q—-q") YK —K7?),

K.E; = ¢ 'Y?E;K;, [Ei,Fj]=0, i#j,

and

E!E;j + EjE? = (g + ¢ WEE;E i#j.

17
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Its coproduct, counit and antipode are defined on generators as

AB)=EeK+K, '®F, AF)=FK+K '®F,
A(K;) = K;® K, e(K;) =1, €(E;)=¢(F;) =0,

S(K;) =K', S(E)=—qE;, S(F)=-q'F.

Let V(n1,n2) be the irreducible finite dimensional *-representation of U, (su(3)) [23]

with the orthonormal basis |ni,na, j1, j2, m), where indices are restricted by

. L.
7i =0,1,2,....n, 5(]1 —|—_]2)— |m\ e N. (21)

The generators of Uy (su(3)) act on this basis as

Ki|ni,n2,j1, jo,m) = ¢ |n1, na, ji1, j2, m),

3(x . 1
.. 3 —go)+ L i — ..
K2|n1)n27]17]27m> _q4(]1 72) 2(n2 " m)‘n17n27jl7327m>7

L. 1 . . 1 . .
Eilni,na, ji, jo, m) = \/[(Jl + jo) — m][5 (1 + j2) + m + 1]

2 2
‘n1>n27j1>j21m+ 1>7
. 1, . . . . 1
Es|ny,ng, j1, jo,m) = \/[2(]1 +j2) —m 4 1A, j,n1,n2, 51 + 1, jo, m — §>
1,. ) o 1
+ [5(31 + j2) + m|Bj, j,|n1,n2,j1,j2 — 1,m — §>7 (2.2)
where
A = allne 4 g1+ 2+ ] 5
J1,J2 = . . - - ) ( '3)
(1 + g2 + 1[j1 + j2 + 2]
[matje+llno—jat1][ja] ;¢ :
Tl J1+j2 #0,
thjz — [71+72][71+72+1] (2'4)

1 if j; 4 jo = 0.
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2.1.2 The quantum group A(SU,(3))

As a x-algebra, A(SU,(3)) is generated by u;-, i, = 1,2,3, satisfying the following commu-

tation relations

29 R k ok _ ok, k C
Uy, = qui Uy, uiu; = quiug Vi <j,

[uf, uj] = 0, [wh,u] = (¢ — ¢ ujuy, Vi <j, k<1,
and a cubic relation

> () Duggyudpyud s = 1.
o€Ss3

In the last equation, sum is taken over all permutations o on three letters and I(o) is the

length of 0. The involution * is defined as

i\ * i—1 0, k1, k k1, k
(u;) = (—q)’ Z(ulllul; - qU121U112)> (2.5)

where as an ordered set, {ki,ko} = {1,2,3}\ {i} and {l1,lo} = {1,2,3} \ {j}. The Hopf

algebra structure is given by
Kk

There exists a non-degenerate pairing between Hopf algebras A(SU,(3)) and Uy (su(3)),
which allows us to define a left and a right action of Uy(su(3)) on A(SU,(3)). These actions
make A(SU4(3)) an Ugy(su(3))-bimodule x-algebra.

The actions are defined as
hoa=a@y(h,a@), a<h=(h,an))ae).

Here we used Sweedler’s notation. Left and right actions on generators are given by (see
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‘ N ‘ . . . .
Ls. 5.
K> u?@ = q2( i1k “k)ui, E;> ui = 5¢7kug+1, F;> ui = 5i+17kug,

. s s . . . .
U‘IZ: < KZ = q2(5l+1’] 67”])’[1‘]7{:, U‘]Z: < EZ = 5i+17ju2, ’Ufly€ < Fz = 5i7ju2+1. (26)

A linear basis of A(SU,(3)) corresponding to the Peter-Weyl decomposition is given
by (see [9, [12])

l 7l 7k Pyp— 2 )
t(na,me) 2, = X500 o {(u) "} ()™ < (X" (2.7)

where X% is defined as
J1,J2,m

ni,n2 _ ni,n2
Xj17j2,m . Nj17j2,m

i+ +k+10 |

F11/2(j1+j2)—m+k[F2’ Fl]gl—jl—kF2J'2+k_

k=0

The coefficients N''""? are defined by

Ji,J2,m

Ji+jo 1lme — 351113, 11 i ! ] !
i , , + m|![n HWiltna + jo + 1jling + 71 + 1!
Ny, = G| L e — gl £ + Wea 1 + 10
(252 = ml[ng — ju]! G2l ]! [ne]t[ng + ng + 1]!
The Peter-Weyl isomorphism @ : A(SU4(3)) = Dy np) V(n1,12) @ V(n1,n2) has
the following property for all h € U,(su(3)):
Q(het(ny, o)L '2" ) = hlny, g, i1, jo,m) ® |n1,na, . la, k),

Q(t(n1,n2) M™% ah) = |n1, na, j1, j2, m) ® O(h)|n1,na,11,la, k), (2.8)

J1,52,m

where 6 : Uy(su(3)) — U,(su(3))° is the Hopf x-algebra isomorphism which is defined on

generators as

0(K;) = K;, 0(E;) = F;, 0(F;) = E;,

and satisfying 6% = id.

We define the quantum projective plane CPq2 as a quotient of the 5-dimensional
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quantum sphere ([12]). By definition
A(SD) == {a € A(SU,4(3))|a<h = e(h)a, Vh € Uy(su(2))}.

As a x-algebra, A(S5) is generated by elements z; = u?, Jj=1,2,30f A(SU4(3)). Abstractly,
this algebra is the algebra with generators z;, 2] i = 1,2,3 and subject to the following

relations

zizj = qzjz; Vi< j, zizj = qzjz;, Yi#7J,
[21, 1] = 0, (25, 22] = (1 = ¢*) =124,
(23, 23] = (1 — ¢*) (212} + 2223), z12] + 2225 + 2325 = 1.

Now we define the algebra A((Cqu) of the quantum projective plane as a x-subalgebra
of A(S5).
.A((CPqQ) ={a € A(SS)| a<1K K3 =a}.

One can show that [12], A(S?) ~ @D (11 no)enz V (11, n2) with the basis t(nl,ng)jg-, where n;

and ng are non-negative integers. Also A(CPqQ) ~ P,cn V(n,n) with the basis t(n,n)jg-.

Here we have used the multi index notation j = j1, j2, m and indices ji, j2, m are restricted

by .

For any integer IV, we define the space of the canonical quantum line bundle Ly on
2
CF; by
Ly:={a€A(S)):aaK K5 = Va}.

These spaces are A(CP7)-bimodules. One can see that [12],

Lv=@V(n,n+N) if N>0, and Ly =@ V(n—N,n) if N<0.
neN neN

The basis elements are given by t(n,n + N)S*- for N >0 and t(n — N, n)]Q for N < 0.
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2.2 The complex structure of CP;

There is a complex structure on (CPq2 defined in [9 12]. For future use, we give an explicit

description of the spaces Q09 QO and QO-2).
Q00 = Ly = A(CP?), Q0 =L,

and as a subspace of A(SU,(3))?, Q1) contains all pairs (vy,v_) such that the following

conditions hold

3 1 _1
(v4,0-) <]K1K22 = q2(v4,v-), (v4,0-) < K1 = (q2v4,q 2v-),

(v4,v_) < Fy = (0,v4), (v4,v-) < By = (v_,0). (2.9)

The complex structure on CP; is given by the maps 9 : A(CP?) — Q(10) (CP?) and O :
.A((Cqu) — Q(O’l)((CPqQ), which (up to multiplicative constants) are da = (a<E2,a< EaE1 )Y,
Ja = (a< FoFy,a< )t

In this section we identify the space of holomorphic functions on (CPq2 and holomorphic

sections of Ly.

2.2.1 Holomorphic functions

Proposition 2.2.1. There are no non-trivial holomorphic polynomials on (CPqQ.

Proof. Let a = Znyj /\nit(n,n)]g-. Then da = 0 implies that a < F» =0 and a< Fo F; = 0. A

_1
L0, ?, where v, = Agpo = %

J

This can be obtained by (2.8)), (2.2]) and (2.3) because
Es[n,n,0,0,0) = Ago|n,n,1,0,—3).

simple computation shows that a<Fy = Y A, jynt(n,n)

Since v, = 0 iff n = 0, all coefficients need to be zero except cgo. Note that the action of

F1 does not put more restrictions on the coefficients. This demonstrates that

Ker{d : A(CP2) — QOD(CP?)} = (¢(0,0)5) = C.
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This preposition, has already been proved in [I2] as a result of a Hodge decomposition.

2.2.2 Canonical line bundles

Like [9], we define the connection Vy on Ly by Vy = q_N\IJ}LV dV, where ¥y is the

column vector with components 7,/} ;i given by

gk;l =/[J 212223, iftN >0 and withj+k+1=N

%kl =/J z122z3 , ifN <0 and withi+j+k=—-N

Notice that we put an extra coefficient ¢~ . This is needed for compatibility with the twist
map in section ([2.2.3)).
The anti holomorphic part of this connection will be Ve = ¢ N \I/R,E\I/ ~. The curva-

ture of V?\, can be computed as follows
(VR)? = ¢ 2N Ul (9PN OPN) U,

where Py = \IIN\IJ}LV is a projection map due to the fact that \Il}rV\IlN =1.
Proposition 2.2.2. The connection V?\, is flat.

Proof. We will prove this for N > 0 and a similar discussion will cover the case N < 0.

It suffices to show that
U\ OPy = Ul (Py a FFy, Py < Fy)' = 0.
The second component

Ul (Py a By) = Ul (Unl) a )
= W {(Ux A F) (T < Ko) + (U 0 Ky (Tl @ F))

=0.
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and this last equality is obtained by ( see [9], section 6)
vioam=0, vl (UyaFR)=0. (2.10)

Similar computation shows that \I/}rV(PNngFl) also vanishes. For this the following identity
is needed.

Ul (Uy <« FyFy) = 0. (2.11)

Hence (V%)% = 0. O

Alternatively, as it was kindly pointed out to us by Francesco D’Andrea, using Lemma
6.1 in [9], the full connection (holomorphic + antiholomorphic part) has curvature of type
(1,1). This implies that the square of the holomorphic and antiholomorphic part is zero.

Proposition 1) verifies that the operator V?\, satisfies the condition of holomorphic
structure as given in the definition .

Flatness of ngv gives the following complex of vector spaces

(0,1) (0,2)

0—=Ly—Q ®A((CP§)LN—>Q ®A((CPq2)LN_>O'

The zeroth cohomology group H?(Ly, V]gv) of this complex is called the space of holomorphic
sections of Ly. The structure of this space is best described by the following theorem.
Theorem 2.2.1. Let N be a positive integer. Then

9 ( )( )

(1) HO(Ly, V%) ~Co

(2) H(L_n,V2 ) =0.
Proof. First we recall that

Ve = ¢ NULaU N = ¢ VUL (UnE) < BRFy, (UnE) < ),
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Using (2.10)), (2.11)) and the following identities
UnaF =0, Un<aKi=Uy, Uy<aKy=q N0y, (2.12)

we prove that v?vg = 0 is equivalent to the equations £ < F» = 0 and £ < FoFp = 0.

First we compute the second component of V%{ .

g NN (N ) = ¢ VUL {(Uy <) (§ 9 Ky) + (Un < K5 ') (€< Fo)}

=g N2%aF,,

In addition to d2.10|) and (]2.12[), here we have used \I/;V\I/N = 1. In a similar manner, one

can show that the first component is

¢ VUl (N )
— ¢ VU {(UNaB)(E<aKy) + (Un <Ky ) (EaR)} < Fy
= ¢ MU (N aR)E+ ¢V PUN(EaR) Py
= N {(Uy <R R) (€K + (Oy < BTN (E<FY)
+(UNaF)(EaRK) + (Iya K D) (Ea )}

=q M aRF.

0
J

computation to the proof of proposition using (2.8)), (2.2) and (2.3), shows that
_1
t(n,n—l—N)JQ-ng = Ynt(n,n +N)Jl-’o’ 2, where v, = Agp = (W)l/? If € € Ly, then

Let N > 0. In this case, a basis element of Ly is of the form ¢(n,n + N);. Similar

¢ can be written as »_, ; Anjt(n,n + N)JQ.. So 4 Fy =3 Anjynt(n,n + N)Jl-’o’_l/2. Since
v =0iff n =0, £ < F» = 0 implies that the set {¢(0, N);l.} will form a basis for the space of
KerV]gV. Remembering that by , the indices are restricted by j; = 0,72 =0, ..., N, and
j2/2 — Im| € N, we will find that dim Ker V]gv = w

which is nonzero. So dim

When N is a negative integer, -, will be (%)1/2

Ker V?\, =0.
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2.2.3 Bimodule connections

There exists a .A((CP(?)—bimodules isomorphism o : Q0:1) ®acpz) Ly = Ly ® acp) Q.1

which acts as
cweld) =gV euw,

such that both elements w ® ¢ and & ® W' in A(SU,(3))?, after multiplication are the same.
We try to illustrate this in the case of N = 1. More precisely let us define the maps ¢; and

¢9 as follows:

o1 : QO ®A(<CP;) L — A(SUq(3))2,

$1((v1,0-)' @ €) = g2 (v3.€,0_8)",

and

¢2 1 L1 ® acp2) QO — A(SU,(3))%,

$2(€ @ (v, 0_)") = ¢~ 7 (Ev, Ev ).

We will prove that Im ¢1=Im ¢». Therefore o = gbflqﬁg gives an isomorphism from

Ly ®A(CP2) QO 5 OO ®ACP2) L1 which is coming from the multiplication map. Let us

first recall that as a x-algebra A(CP;) is generated by elements p;j, = Zieg = (u?)*u%

Lemma 2.2.1. With above notation I'm ¢1 = I'm ¢o.

Proof. casel. a € Im ¢9 is a basis element.

0 5 ~1/2 0 —q73/2(u})* 3

a = ¢a(t(n,n + 1); ® prsOpjx) = ¢/ “t(n,n + 1);prs 12y )
i

_ 1/2(_‘1_3/2“"7“1>?prs<u;>*

a ¢~ 12t(n, n+ 1) s (u2)*

)ui ) (T @ 1),
J

where

Tirsj = (—q_3/2t(n, n+ 1)2prs(u})*, q_1/2pmt(n, n+ 1)2(u§)*)t
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(0,1)

Since ui € L1, it is enough to prove that Tj,s; € 2 . In order to do so, we need to show

that the pair (v;,v_) defined as below, satisfies the properties given in ([2.9)).
(vg,v_) = (—¢ 3%t (n,n + 1)gprs(u]1-)*, a (n,n+ l)gprs(u?)*)t.
We will check (vy,v-) < Ey = (v-,0).

v 9B = —q 3 Pt(n,n + 1)iprs(ul)* < By
= —¢ *{(t(n,n+ 1)7 < E1)((prs(u))*) < K1)
+ (tn,n+ DF SKT) (prs(u))?) < B}
= —¢~*t(n,n + 1)FH{(prs < E1)((u))* < K1)
+ (prs < K7 )((u))" < )}
= —q ¥t (n,n + 1) prs(—q) (ud)*
= ¢ 2t(n,n + 1){prs(ud)*

= v_.

Here we have used the following identities which are obtained from (2.2)), (2.6) and ([2.8]).

t(n,n + l)gdKl =t(n,n+1)

ISTo

- t(n,n+1)g<1E1:O
pij<lE1 =0, (u]l)*ﬂKl :ql/z(u})*,

pij 4 K1 = pij, (Ugl)* <QE; = (—qx“?)*
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Similarly

v_ B =q Pt n+ 1)ipns(ud)* < By
= g 2{(t(n,n 4+ 1)F B (prs(u)7) 9 K1)
+ (t(n,n + 1) < K7 (prs(u3)*) < E1)}
= ¢ 2t(n,n + D)H{(prs < B1)((u)" 0 K1)
+ (prs KT )((u3)" < B}

= 0.
Two more identities which have been used above, are
(W3)* 9Ky = q 2 (u))", (uf)* 9By = 0.
The case (v4,v_) < F; = (0,v4) is similar and the other two cases (v4,v_) < Kj =

vy, g Y20 ) and (vg,v_ )< K1 K2 = ¢3/2 vy, v_) are straightforward, but the followin
+ + 2 &

relations are needed.

t(n,n + 1)£Q<1 Ky = ¢"*t(n,n + 1)2*, t(n,n + 1)£Q<1 F =0,
(u)) < K2 = ()", (uf)” < Ko = ¢"*(uf)",
(uj)* < F1 =0, (uf)* < F1 = (—q) " (u)",

pij A Ko = pij, pij <Fy = 0.
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Case2. a € Im ¢ is a general element.

o = ¢2(Z Cng't(na n—+ 1)2 ® Z drsjkprsgpjk)

’I’L,z’ T737j7k

_—3/2¢,, 1\x
_—1/2 ‘ 0, q (Uj) 3
=q cmt(n, n 4+ 1)idrs kprs< Uy,
3 auttonn s Dt L )

n)z’r7s7j7k
_—3/2(,,1\x*
1 0 q (u ) 3
=q ¢1(Z{ Z Cidrsjkt(na n + 1)1197"3 ( q71/2(u2.])* > } ® uk)
k  i,7s,] J

=q "0 (Y Areu}),
k

where

A, — Z Cnildysikt(n,n + 1)Q q_g/Q(u;)* e QO
k= nilrsjk ) iprs q*1/2(u2-)* ’
n,i,7,8,J J

The proof for Im ¢o C Im ¢; is similar.

In general the maps ¢ and ¢o will be defined as

o1 : QO ®A((Cpql) Ly — A(SUq(3))27

é1((v1,v_ ) ®E) = ¢ (v, v_8),

and

¢2: Ly ®acry) QO — A(SU,(3))%,

$o(€® (v4,0-)) = ¢ 2 (vg, E0_),

Now, we prove that V]gv has the right o-twisted Leibniz property with respect to the

map o = qﬁl_1¢2.

Proposition 2.2.3. Taking o as above, the following holds

V2 (€a) = (V3€)a+o(6 ®a), Va e A(CP?), V¢ € Ly. (2.13)
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Proof. By 1) 1’ and the fact that £<Ky = ¢™V/2¢, we compute the second component
of the left hand side as follows

e NUL (U nEa) A )
= ¢ VUL{(Ty < ) ((€a) A Ka) + (T < K5 1) ((€a) < Fo)}

= q_N/Q(f a4 Fy)a+ q_Nﬁ(aq F).

(Note that this actually is ¢1V]5V.) For the second component of the right hand side we will

get

g N EaR)a+o(E@aaFy).

The previous lemma says that ¢=V

will appear after acting o on the second term. It can
be seen that ¢; of both sides coincides. Computation for the second component will be

similar. O
Now we will come up to the analogue of proposition 3.8 of ([19]).

Proposition 2.2.4. The tensor product connection V]gv 1+l V%) coincides

with the holomorphic structure on Ly ®A(Cpq2) Lys when identified with L.

Proof.

V5N+M(51§2)

=q VMW Uy (66)

_ D ((‘I’N+M§1€2) < F2F1>
NAMA (O n g m&i&) < F

(VMg ({(‘I’N+M<1F2)((§152) <'K2)}<1F1>
NEM (Unim < B)((6162) < K)

g (VD <{(‘I’N+M4K{1)((€1§2)<1F2)}<1F1>
N+ (Uninm <Ky ) ((61&2) < Fy)

_ o <(€1§2) < F2F1>

(§162) A Fy
_ Y <{(§1 ) + (N M2 (& a o)} < Fl)
e (&1 9 )& + g N=M/28 (& 4 Fy) '
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Besides (2.10)) and (2.11]), we also applied the identities § < K7 =0, & < F; = 0.
On the other hand

(VoD +(el)(1e Vi) (E &) =

q—N/2 <§1 <1F2F1> &+ (@) (6 ® q—M/2<

&2 <1F2F1>
§1 45 '

&2 < Fy

Interpreting this expression as an element of QO Ly, after applying the map o,

N

which gives us ¢~*' on the second summand, we will get the same result.

O]

Thanks to proposition 1' the space R := @ H°(Ly, V]gv) has a ring structure
under the natural tensor product of bimodules. In the following, we identify the quantum

homogeneous coordinate ring R with a twisted polynomial algebra in three variables

Theorem 2.2.2. We have the algebra isomorphism

C<21,22,23>
(zizj —qzjzi 1 <i<j<3)

R:=H (Ly, V) ~

NZ>0
Proof. The ring structure on R is coming from the tensor product Ly, ® 4 P2) Ly, ~
LN, +N,. The following discussion shows that H°(Ly, V?) = Cz @® Czy ® Cz3. The explicit
formula for the basis elements of H%(Ly, V]gv), ie. t(0, N)? is given by Proposition 3.3 and

Proposition 3.4 of [9] as following

1|2 N = Gol! 17250 i
o_ L e tmlIN =il pajaiem e, (2.14)
LTI [B - )

We just mention that up to a multiplicative constant this equals to

zi/zh_mz;/%#mzé\[_ﬁ. In the case N =1, ¢(0, 1)%1 4 =21, t(0, 1)%1 , =z and t(0,1)y =
1 2 b 72

(=g

z3. Now the isomorphism follows from the identities z; ® 4(c P2) Zj — 4% ACP?) Zi = 0i

=

Lo, which can easily be seen.
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2.3 The C*-algebras C(SU,(3)) and C(CFP?)

In this section we extend the results of Proposition and Theorem which
are stated for polynomial functions and polynomial sections to L?-functions and sections,
respectively.

Let C'(SU4(3)) denotes the C* completion of A(SU,(3)), i.e. the universal C*-algebra
generated by the elements u; subject to the relations given in section m This is a
compact quantum group in the sense of Woronowicz [23]. There exists a unique left invariant
normalized Haar state on this compact quantum group denoted by h. The functional h is
faithful and it also has a twisted tracial property which will be considered in the next
section. We denote the C*-norm completion of A(CP;)) inside C(SU,4(3)) by C(CFZ)) and
regard it as the space of continuous functions on the quantum projective plane. Similarly,
we denote the C*-norm completion of Ly inside C(SU,(3)) by I'(Ln).

We denote the Hilbert space completion of A(SU,(3)) with respect to the inner
product (a, b) := h(a*b) by L?(SU,(3)). Since the Haar state on the C*-algebra C(SU,(3))
is faithful [28], the GNS map 1 : C(SU,(3)) — L?(SU,(3)) will be injective. An orthogonal
basis of L?(SU,(3)) is given by n(t(n1,n2)t). Similarly, we denote the L2-completion of

J
['(Ly) inside L?(SU,(3)) by L?(Ly), and we have

L*(Ly) = Span{t(n,n + N)]g| n €N, jsatisfies 1) Jelosure,

Note that the last equality is for N > 0. For N < 0, basis elements are of the form
t(n — N, n)]g

The operator Z = <(FyF, Fy), in its original definition, is a densely defined un-
bounded operator on L?(SU,(3)). There is however a natural extension of this operator to
a larger domain that we specify now. First note that the action of Z on basis elements is
given by:

U !

I 1
, , 05 t(ny,no);t , 02 t(n1,ng);?
t(n,n2); 92 = oy ( o . > + 85 < e ’ >

ni,n2 t(n1’n2)§1 ni,n2 t(n17n2)§2
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where

11:(i1+1,i2,m—1/2), IQZ(il,iQ—l,m—l/Q),
I = (i1 + 1,i9,m + 1/2), I} = (i1,io — 1,m +1/2),
ol o= [1/2(0 +d2) —m+ 1)2 45 4,

L =1/2(i1 + i2) + m]Y? By,

ni,n2 21,12

0%y = [1/2(i1 + i2) — m]2[1/2(iy +d2) +m + 1]1/2.

The coefficients A;, ;, and B;, ;, are given by 1} Suppose that (af{%m) denote the coef-
ficients of a € L?(SU,(3)) in the given basis, i.e., a = Zaf{?mt(nl,ng)é. Now the second

component of a < Z is

z :z : 3 11 § § 9 I
an17n2 ’I'L1 ,no n17n2 + anl7n2/8n1 ,no n17n2)

ni,ng 171 ni,n2 Z,l
,7.] t I
{an17n2an1 ne + an17n2/8n1 ng} <n17 TLQ)] +
ni,n2 171
Bhy mat(n1,m2)
an1,n2 ni,ng ny, N2 j
ni,n2 i,j

where
i = (il + 1,49 + 1,m).

Note that all sums are subject to admissibility of I; and Is. Moreover, the last sum is taken
over all indices such that Iy # I». With a similar computation for the first component, we

can now define a € Dom(Z7) if

.3 ; 2 i,j
Z Z |ant nocx ;zl ny T am,nzﬁm,m’ + Z Z ‘am,nzﬁnl n2

n1,n2 1,j n1,n2 1,j
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and

. ' 11
E E ’an17n2 n1 no n1 ;M2 + anl,ng,ﬁnl no 9n1,n2|

n1,n2 i,j

2
Z Z’anl,n?ﬁmmz ni, n2| < 0.

ni,n2 4,j

Here the last summation is over the set of indices such that I; # Is. This can be denoted,

with some abuse of notation perhaps, by
Dom(Z) := {a € L*(SU,(3))| (a <« FoF1,a < Fy) € L*(SU,(3)?)}.

Now Proposition can easily be generalized to the following proposition.
Proposition 2.3.1. The Kernel of the map Z restricted to L2((Cqu) is C.

Proof. Since any element of L?(CP?) is a L*-linear combination of the elements t(n,n)jg,

proof is exactly like Proposition ]
Corollary 2.3.1. There is no non-constant holomorphic function in C(CPqZ).

With a similar discussion, the analogue of continues to hold if we work with
L?-sections of Ly. We give the statement of the theorem and leave its similar proof to the

reader.
Theorem 2.3.1. Let N be a positive integer. Then

(N+1)(N+2)

(1) HY(L*(Ly), V) =C =,

(2) HYL*(L_y), V2 ) = 0.

We note that our approach here as well as in [19], is somehow the opposite of the
approach adopted in [I 2] to noncommutative projective spaces. We started with a C*-
algebra defined as the quantum homogeneous space of the quantum group SU,(3) and
its natural line bundles, and endowed them with holomorphic structures. The quantum

homogeneous coordinate ring is then defined as the algebra of holomorphic sections of these
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line bundles. This ring coincides with the twisted homogeneous ring associated in [I}, 2] to

the line bundle O(1) under a suitable twist.

2.4 Existence of a twisted positive Hochschild 4-cocycle on
2
CP;

In [4], Section VI.2, Connes shows that extremal positive Hochschild cocycles on the algebra
of smooth functions on a compact oriented 2-dimensional manifold encode the information
needed to define a holomorphic structure on the surface. There is a similar result for
holomorphic structures on the noncommutative two torus (cf. Loc cit.). In particular the
positive Hochschild cocycle is defined via the holomorphic structure and represents the
fundamental cyclic cocycle. In [19] a notion of twisted positive Hochschild cocycle is in-
troduced and a similar result is proved for the holomorphic structure of (Cqu. Although
the corresponding problem of characterizing holomorphic structures on higher dimensional
(commutative or noncommutative) manifolds via positive Hochschild cocycles is still open,
nevertheless these results suggest regarding (twisted) positive Hochschild cocycles as a pos-
sible framework for holomorphic noncommutative structures. In this section we prove an
analogous result for CPq2.

First we recall the notion of twisted Hochschild and cyclic cohomologies. Let A be
an algebra and ¢ an automorphism of A. For each n > 0, C"(A) := Hom(A®("+1D ()
is the space of n-cochains on A. Define the space of twisted Hochschild n-cochains as
C(A) :==Ker{(1 — A2*1) : C"(A) — C™(A)}, where the twisted cyclic map A\, : C"(A) —
C"(A) is defined as

(Ao®)(ap,at, ...;an) = (=1)"¢(o(ay), ag, a1, ..., an-1).

The twisted Hochschild coboundary map b, : C"(A) — C"F1(A) is given by

n

bg¢(a0, Ay enny an+1) = Z(—l)i¢(a0, ey Qg Qg1y eeey an_H)
=0

+ (=1)""p(0(an+1)ao, ..., an).
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The cohomology of the complex (C%(A),by) is called the twisted Hochschild cohomology
of A. We also need the notion of twisted cyclic cohomology of A. It is by definition the

cohomology of the complex (C7 ,(A),b,), where

ag

Coyri=Ker{(1-X\):C7(A) — CoH (AL

Now we come back to the case of our interest, that is (Cqu. Let 7 be the fundamental

class on CP; defined as in [9] by

7(ao, a1, az,as,ayq) = —/ao dai das dasday, Vag,ai,...,a4 € .A((CP(?). (2.15)
h

Here h stands for the Haar state functional of the quantum group A(SU,(3)) which has a

twisted tracial property h(zy) = h(o(y)z). Here the algebra automorphism o is defined by
o: A(SU4(3)) — A(SU,4(3)), o(z)=Kraz<K.

where K = (K1K3)~*. The map o, restricted to the algebra A(CP?) is given by o(z) =
K > z. Non-triviality of 7 has been shown in [9]. Now we recall the definition of a twisted

positive Hochschild cocycle as given in [19].

Definition 2.4.1. A twisted Hochschild 2n-cocycle ¢ on a x-algebra A is said to be twisted

positive if the following map defines a positive sesquilinear form on the vector space A2(+1)
(ag ® a1 ® ... ® ap, by b1 & ... @ by) = d(a(by))ag, ar, ..., an, by, ..., b7).

We would like to define a twisted Hochschild cocycle ¢ which is cohomologous to 7

and it is positive. For simplicity, we introduce first the maps ¢;, for i = 1,2 as follows

@1(‘107 ai, az, as, a4) =-3 / a08a18a23a38a4,
h

wa(ag, ay,as,as, aq) = 3/a08a18a28a38a4. (2.16)
h
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Now we define ¢ € C*(A(CP})) by

Q=1+ . (2.17)

We will need the following simple lemma for future computations.

Lemma 2.4.1. For any ag, a1, ao, as, s, as € A(CPqQ) the following identities hold:

/a0(8a18a28a38a4)a5 = /0’(&5)(108@18@280,38&4,

h h
/a0(8a18a28a38a4)a5 = /a(a5)a08a18a28a33a4.
h h

Proof. We give the proof of the first one. The proof for the second equality will be similar.
The space of Q(>2) is a rank one free .A((CPqZ)—module. Let w be the central basis element

for the space of 022) and let Oa10a20a30a4 = xw. Then

/ao(3a16a28a38a4)a5 — /0(&5)a08a18a28a38a4 = /(agazwag, — o(as)aprw)
h h h

= /(aomag,w —o(as)agzw)

h
= h(apras — o(as)apx) = 0.
The last equality comes from the twisted property of the Haar state. ]

Proposition 2.4.1. The functional ¢ defined by formula , 15 a twisted positive
Hochschild 4-cocycle.

Proof. We first verify the twisted cocycle property. In order to do so, we consider this
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property for each ;. We will prove the statement for ¢;. The proof for s is similar.

p1(o(ao),o(ar),0(az),o(as), o(as))

= —3/U(ao)aa(al)aU(GZ)aa(GS)ag(a4)

h

= —3/(K>a0)(KD@al)(KDGag)(KD8&3)(K>8a4)
h

= —S/K > (apda10az0a30a,) = —3 €(K) /a06a16a28a38a4
h h

= (pl(a()a ai,az,as, CL4).

Now let us prove that by = 0. Again we just prove for ¢ and leave the similar

proof of the other one.

bop1(ao, a1, a2, a3, a1, as) = p1(apai, az, az, as, as) — 1(ag, a1az, as, as, as)
+ <p1(a0, ai,az0a3, a4, a5) - 901(610, ai,az,asa4, (15)

+ ¢1(ao, a1, a2, a3, asas) — p1(o(as)ag, ar, az, as, as)

Using (2.16]), this equals to

—3/a0a18a28a38a48a5+3/a08(a1a2)8a38a48a5
h h

—3/aoaa18(a2a3)8a43a5+3/a08a18a28(a3a4)8a5
h h

3/@08@18&26&38(&4@5) +3/0(a5)a08a18a25)a38a4.
h h

Using the Leibniz property we get

bg(pl(ao, ai,az,as, a4, a5) = -3 /(a0a18a28a38a46a5 — U(a5)a08a18a25a35a4),
h

which is zero by the previous lemma.
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Now we will show that all ¢; and o are positive.

Positivity of ¢g:

o1(o(ay)ao, ar,az,as,al) = =3 [ o(af)agdadazdasdal

=-3

— T —

apdaiOazdaydaiag

h
=3 (a08a16a2)(a08a18a2)*.
h

One can take da; = (v1,v2) and day = (wy,wse), then using the multiplication rule of type
(1,0) forms (c.f. [9] Proposition A.1), we find that

(apda10as)(apdardaz)* = c3[2] Luu*, where pu = ¢ 2agviws — ¢ 2aguew;. Hence

p1(o(af)ao, a1, az, a3, aj) = h(3ci[2] " pp*) > 0.

Positivity of ¢s:

wa(o(ap)ao, ar,az, a3, ay) = —S/U(QS)ao(‘?alaagaa;aa’f
h

= —3/aoaa18a28a§6a’{a8

>

= 3/(&06&16&2)(&0@&18&2)*.
h

Similar to the above discussion, one can take da; = (vi,v2) and das = (w1, ws) and

use the multiplication of type (0,1) forms to find that

(702(0-((16)&0’ ai, az, a;, CL){) = h(3C(2)[2]_11/l/*) > 0’

where v = ql/ 2apviwe — qil/ 2aovaw;. Here ¢y and ¢4 are two real constants. This concludes

the positivity of .
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O]

Now we want to show that the twisted Hochschild cocycle ¢ as defined by formula
and the twisted cyclic cocycle 7 as in formula are cohomologous. To this end,
we need an appropriate twisted Hochschild cocycle ¢ such that 7 — ¢ = b,1. Let v; for ,
i1=1,2,3,4 be defined by

V1(ao, a1, az,a3) = —/a08a18a288a3,
h

Ya(ag, ar,az,as) = 2/@08a188a28a3,
h

Y3(ao, a1, az, az) = 2/a06a186a28a3,
h

Ya(ao, a1, az,a3) = —/aoﬁalaagaaag.
h

and let ¥ = Z?:l 1;. Then we will have the following result.
Proposition 2.4.2. The twisted Hochschild cocycles 7 and ¢ are cohomologous.

Proof.

bot)1(ag, a1, az, as, as) = 1(apar, az, az, as) — P1(ao, araz, as, as)
+ ¥1(ao, a1, a2as, as) — ¥1(ao, ar, az, azas)

+1(o(as)ao, a1, az,az3)
which equals to
— /{aoa18a28a388a4 — ag0(a1az2)0a300ay + agdai0(azas)00ay
h
— apda10a200(azay) + o(ag)agda;dazddas}.

Applying the Leibniz rule, one can see that in the expanded form, all but two terms
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will cancel. That is

by = /a0(0a18a28a30a4 — da10az0a30ay).
h

Similar computation for v;, ¢ = 2,3 and 4 shows that

b,ﬂﬁg =2 / a0(8a18a25a35a4 — 8a15a28a35a4),

h
bgl/)g =2 / a0(5a15a28a38a4 - 50,18(125@38&4),
h
bythy = /ao (0a10a20a30a4 — Oa10azdazday).
h
Therefore
bglb =2 a0(8a18a25a35a4 + 5&15@280,38&4)

h
- / ao(Da10asdazday + Oa1dazdazday)
h
/a() (5@18&25@38@4 + 8@15@28@35&4). (2.18)
h

Now from (3.15)), (3.17) and (2.18]), we can easily find that 7 — ¢ = by). O



Chapter 3

Noncommutative complex structure of (CP(f

In this chapter we continue the study of complex structures on quantum projective spaces.

In Section we review the preliminaries on irreducible representations of quantum
groups Uy (su(f + 1)) and the Gelfand-Tsetlin basis for these representations. We refer to
Chapter [1] for the the definition of a complex structure, holomorphic line bundles and bi-
module connections. In Section we recall the definition of the quantum projective space
Cqu , and endow its canonical line bundles with holomorphic connections. We also identify
the space of holomorphic sections of these line bundles. In Section we define bimodule
connections on canonical line bundles. This enables us to define the quantum homogeneous
coordinate ring of (Cqu and identify this ring with the ring of twisted polynomials. In Sec-
tion we introduce a twisted positive Hochschild cocycle 2¢-cocycle on CP;, by using
the complex structure of (CPq[ , and show that it is cohomologous to its fundamental class
which is represented by a twisted cyclic cocycle. This certainly provides further evidence
for the belief, advocated by Alain Connes [4] [5], that holomorphic structures in noncom-
mutative geometry should be represented by (extremal) positive Hochschild cocycles within

the fundamental class.

3.1 Preliminaries on U (su(¢{+ 1)) and A(SU,({ + 1))

3.1.1 The quantum enveloping algebra Uy (su({+ 1))
Let 0 < g < 1. We use the following notation

[a,blg = ab—q 'ba, [z] = f__qq_lz, ]! = [n)[n —1]---[1],
Do Jris [j1+ g2+ + Jji]!
Gl el Gl

= — [jlaj?a"' 7]k]':q_

42
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The quantum enveloping algebra Uy(su(¢ 4 1)), as a x-algebra, is generated by elements
Ki,Kfl,Ei,Fi, t = 1,2,--- ¢, with K = K; and E = F;, subject to the following

relations for 0 <, < ¢ [23],

K,K; = K;K;, EK,=q'KFE;

EK;=q¢?K;E;  if Ji—j| =1

EK;=K;E; if |i—j|>1 (3.1)
E;Fj — FjE; = 5ijff__qK§_2

E,E; = E;E; if |i—j]>1,
and the Serre relation
E}E; — (¢+q )EEE;+ E;E} =0 if |i—j| =1
The coproduct, counit and antipode of this Hopf algebra is given by

AK) =K oK, AE)=E®K +K '®E,

e((K) =1, eE)=0, S(K;)=K;', S(E)=—qE;.

3.1.2 The quantum group A(SU;({ + 1))

As a x-algebra, A(SU,(¢+1)) is generated by (¢+1)? elements ué, where i,j =1,2,....,0+1

subject to the following commutation relations

ugu, = quiuy, u

[u},ui] =0, [uﬁg,u{] =(q— q_l)uéui Vi<jg, k<l

and

||, ,1 2 /+1
Z (_q)H ||u7r(1)u7r(2) e UWJ(FK—&-l) = ]"
WES[...l
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where the sum is taken over all permutations of the ¢ + 1 elements and ||7|| is the number

of simple inversions of the permutation 7m. The involution is given by

= z; R
TESY

with {k1,--- ,ke} = {1,2,--- £+ 1} \ {i} and {ny,--- ,ne} = {1,2,--- £+ 1} \ {j} as
ordered sets, and the sum is over all permutations 7 of the set {ni,---,ns}. The Hopf

algebra structure is given by
Aluh) = up @ub,  e(uf) =05, S(ul) = (u))*.
k
3.1.3 Irreducible representations of Uy(su(¢ + 1)) and the related

Gelfand-Tsetlin tableaux

The finite dimensional irreducible *-representations of U, (su(¢+1)) are indexed by ¢—tuples
of non-negative integers n := (ni,na,...,ng). We denote this representation by V,,. A basis

for V,, is given by Gelfand-Tsetlin (GT) tableaux that we denote it here by

mig+1 M2e+1 oo Myl M4l 041
mie may My
im) :=
mi2 ma2
L m1 1 -

where n; = mjer1 — Mit1 41 and mip1 i1 < my; < my g for @ = 1,2,.., 4. Fixing n;
fixes m; 41 up to an additive constant. It is also known that two tableaux |m) and |m')
correspond to the same basis vector if there is a constant ¢ (independent of ¢ and j) such

that m;; —m;; = c. The action of generators on this basis is given by (see [23]),

ag
Ki|lm) = q= |m),
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where
k k—1 kt1 k
ak = Z Mk — Zmi,k—l - Zmz‘,k—f—l + Zmi,k (3.2)
i=1 i=1 i=1 i=1

k+1

k k—1
=2 E mg g — § M1 — E M k41,
i—1 i—1 i=1

and the action of Fj is given by

k
Eglm) = > Af|m]), (3.3)
j=1

where ]m@ is obtained from |m) when m; is replaced by m; + 1 and

T G pss — LT Ly — Uik — 1])1/2

Al —( — 3.4
k ( Wigillie — Liglllie — Lig — 1] B4

Here l; ; = m; j — i, and the positive square root is taken. For the inner product (m’|m) :=
O’ m this will be a s-representation and the matrix coefficients of p™ : Ug(su(¢ + 1)) —
End(Vy,) will be pj, ,,(h) = (m/|h|m). Note that the basic representation of Uy(su(f + 1))
is given by o : Uy(su(f+ 1)) — My4+1(C) where

oK) = 8jq2 D) ol (Ey) = 84,6,

and the Hopf pairing (,) : Uy(su(¢+1)) x A(SU,(¢+1)) — C is defined by (h, ué) = oi(h).

Therefore

(Kr,ul) = oh(K,) = 5;iq%(5r+w§r,i)7

T ¥l
(Ep,ul) = 05(Ey) = 614105 (3.5)

Using the Peter-Weyl decomposition theorem, we have A(SU,(¢+1)) ~ P,, Vi, @ V},, where
the sum is over all irreducible representations of Uy (su(¢+ 1)). For any basis elements |m')

and |m) of V;,, m) ® |m) corresponds to a basis element ¢,, .. The action of Uy(su(f+1))
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on t;, under the Peter-Weyl isomorphism is given by
ho by = BI) @ |m), -ty 9= m) @ O(h)|m),

where 6 : Ug(su({+1)) — Uy (su(€+1))°P is the Hopf *-algebra isomorphism which is defined

on generators as

and satisfying #% = id. The basis {th m ) for A(SUy(€+1)) is implicitly given by (h, ¢}, ) =

m/7m>

prs . (h). For later use it is worth mentioning here that for n = (0,0, ...,0,1) these basis

t are just generators u’. In order to show this, it is enough to compute p”m,ﬂ(h) for

n 7
m’,m J

generators of Uy(su(¢ + 1)). Indeed for n = (0,0,...,0,1) a basis element |m) takes the

following form

_m mo... m m m—l_
m m m my
im) =
m Mo
_ml .

where each of the m;’s is either m or m — 1 such that m; > mg > ... > m;. So |m) can be
parametrized just by one integer i. Let us denote |m) by |i) when m; = m for j <i—1

and m; =m — 1 for j > 4.
P () = (i1 Kelg) = q 2 (ilj) = a7 6i5.

where
r—+1

r r—1
ar =2 E me.r — 5 mrgr—1 — E megr+1-
k=1 k=1 k=1

So for our case we will end up with

pri(Ky) = (i|K,|5) = q*/(ilj) = ¢*/?6; 5,
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where

;

0 if >4 or r<j5j—2
=91 if r=45-1

-1 if r=j.

One can easily see that av = 0,41 ; — d,; and we get the same answer as . Also we have
P (Br) = (B |j) = 0 (ilr + 1) = 016} = (B, uf),
which can be obtained from and since
Erlr) = Allr +1)

and

AT — (_ 72 (lirr = b T2 (L1 — b — 1])1/ 2
" Hz;éj [li,r - lr,r] [li,r - lr,r - 1]

The fact that only Al contributes in the summation (3.3) is simply because of the form of |r).
We also have E,|j) = 0 if j # r. The value of this fraction is one since both the numerator
1

and the denominator are equal to [r]![r — 1]!. In particular we have ¢}/, ; . = utt

i =% the

generators of the quantum sphere .A(Sg“l) to be defined in the next section.

3.2 The complex structure of CPj

In this section we shall define a complex structure on (Cqu and its canonical line bundles
following closely [I1]. For a review on general setup of noncommutative complex geometry,

we refer the reader to the first chapter.
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3.3 Noncommutative complex geometry of (Cqu

In this section we recall the definition of the quantum projective space CPqe as the quantum
homogeneous space of the quantum group SU,(¢+ 1) and its quantum subgroup U, (¢) from

[11].

3.3.1 (CP(f and the associated quantum line bundles

Let K := (K1 K3- K92 and Lya := a<S7(h). Then we define the quantum 2¢ + 1

sphere as
A(S2HY) 1= {a € A(SU,(C+ 1)) Ln(a) = €(h)a, Vh € Uy(su(l))}.

The invariant elements of this space under the action of K will provide the coordinate

functions of the quantum projective space

A(CPY) := {a € A(S*Y)|Lga = a}.
The space of sections of the canonical line bundles Ly, N € Z, are defined by

Ly == {a € A(S2)|Lga = gFiia). (3.6)
Let

M, = [Ej, [Ejs1, -, [Er—1, Eglg..]Jqlq forl <j <k <Y,
and
Njt = (KjKjy1. . Kp) (Kpi1 Kgyoo Kp). K8 forl <j <k </

Let X; := N;yM;, for i = 1,...,£. We will also use a right black action defined by h » a :=
a<0(h).
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For any r-dimensional *-representation of U,(u(¢)) like o, we define the A((CPqE)—
bimodule M(o) := {v € A(SU,(L+ 1)) |v<h = o(h)v, Vh € Uy(u(¥))} [1I, 12]. Suppose
that o}’ is obtained from the basic representation oy : Uy(su(f)) — End(CY) lifted to a
representation of U,(u(¢)) by iV (K) = ql_f’%l dce. Then the space of anti-holomorphic
1-forms is given by Q@1 := M(oy). Hence, any anti-holomorphic 1-form is a (-tuple

v := (v1,...,09) such that v<h = ¢{(h)v. The complex structure of (CPqE is given by

0= Z,CKXZ_ & eé.

Here e;’s are elements of the standard basis and eﬁi is the left exterior product by e;. We

show that on A(CP}) we have

da = — (a QFFy 1 Fy,a<FyFy .. Py, .a<d FFy 1, a4 Fg). (3.7)
In fact,

.CXia —a<871 (IA(KZKE,1 AR Kif(vfl[...[[Fg, Fgfl]q, Fgfg]q, ey Fl]q>

= (—¢ O (~q) e FF_y - KKK KL KR

= (-1 a KK K, K K Py L

= —ad FgFgfl...Fi

Here we used the commutation relations . The only order of F}’s in the commu-
tators that takes part in computation is FyFy_y...F; and others vanish because a < F; = 0
for j < ¥, a€ A(Cqu). Note that, all elements of A((CPqZ) are fixed under the of action of
all K;’s.

We would like to find a basis for the space of sections of the canonical quantum line

bundles Ly. Note that Ly = A(CPqZ). By 1) the conditions that must hold are as follows

Kiwa=a, E;,pa=F,p»pa=0, 1=1,2..,0-1,

KIK2. Kl w»a=q N, (3.8)
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Proposition 3.3.1. Let N be an integer. The set equations (@ forces the tableauz |m),

be of the form of

corresponding to the element a = t"

m',m’

Migr1r M ... m 2m—mypp + N -214:—{—]\7 kK ... KO
or
m m k k
L™ i |k i

Proof. K1 » a = a and E; » a = 0 give the equality for mi1 = mi2 = maa. We know
that K » a = q%ka, where ay, is given by 1} For instance a1 = 2mi1 — mi2 — mog and

as = 2(TTL12 + m22) —mi1 — (m13 —+ mo3 + m33) and so on. By " and ‘) we have

Ei|lm) = (— [m11 — maa][mi — ma2 + 1]>1/2\m%>

[m13 — maa][mas — mig — 1|[ms3 — mia — 2][mi2 — my1 + 1] ) 3 im)
my

Eylm) = (
2lm) [mi2 — mag + 1|[m12 — mag + 2]

+ ([m13 — Mmoo + 1] [m23 - m22][m33 — M2 — 1] [mn - m22] ) % |m2>
[mi2 — maa + 1][mi2 — mag] 2

and

[m13 — miz + 1][maz — miz][ms3 — miz — 1][mi1 — miz — 1] > 3 ’m,1>

F2|m> = ( [m12 — m22][m12 — ma2 + 1]

n ([m13 — mag + 2|[mag — maa + 1][m33 — maz][mi1 — maz — 2] )é _2>
[mi2 — mag + 1|[mi2 — maa + 2] '

Now it is not difficult to see that Kq|m) = |m) and E;|m) = 0, imposing

2myp — myg — mog = 0,

mi1 — Mg = 0.
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So m1; = mi2 = maog. In the same manner Ks|lm) = |m), E2|lm) = 0 and Fy|m) = 0 give

2mag + 2mog — mq1 — mi3 — me3 — m3z = 0,
miz — my3 = 0,

Mmooy — mg33 = 0.

So we have mi1 = mio = moos = mi3 = mae3 = magz. Suppose that rows 1 to k with
k+1 < ¢+ 1, have been found equal to m. Let us prove that Ex|lm) = 0 and Fj|m) = 0

will make the equality of all elements up to and including row k£ + 1. First note that in row

k4 1, we have mg 41 = ... = my+1 = m. Let us look at A}.
A= (- I Wiy — Lo g1 — g — 1]>l/2
Wizillige — bl — lig — 1]

_ (_ D1 = D)o [l o1 — L) lie—1 — b — Lo [le—1p—1 — lip — 1]>1/2
Wiz (i — Lip) i — L — 1] '

It is not hard to see that A} = 0if [l j+1—l14] = [M1gr1—m1 k] =0. SO My g1 =My =m
and by a similar observation the action of Fj, gives the equality my 141 = mzr = m. But to

get to the very top row we need to use the action of Ky. We have

{41

¢ -1
ag =2 Zmi,£ - Zmi,£—1 - Zmi,€+l
i=1 i=1 i=1

=20m — ({ = 1)m —my 1 — (€ — 1)m — myp1,041

=2m —my i1 — Mey1041-

Since la;/2 = —N{/2, we see that mj 41 = 2m — myyq1 041 + N.

So we will find a Peter-Weyl basis for line bundles Ly as (t3,,), where

n=(n1+ N,0,...,0,n;)
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and
[om - mer1ee1+N mo...om m£+1,e+1-
0) = (3.9)
m m
L m n

Assuming k = m — myy1 ¢41, this tableaux is equivalent to the following tableaux already

presented in [§].

2%+N k ... k 0]
(3.10)
k k
. k -
]
Therefore we have
@Vk+NO, 0k N >0, Ly~ @ Vik+No,...0k); NV < 0.
k>0 k>—N

Theorem 3.3.1. Let N be an integer. Then

N
dimKerEg‘ = <| |+£> if N <0,
Ly 14

MmKw&‘ -0 if N>0.

Ly

n
A~ where,

:’Ymm

Proof. First, one can see that Ey » t”m,ﬂ

n [k + N[k + (]
Tt 4
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Indeed,
Eglm) =Y Aj|m)) = Aj|my)

Other A? vanish because of the existence of the factor Hfi% (lig+1—1j]. Foreachj =2,--- ¢,

one of the brackets would be zero. For the coeflicient A}, we have

Al = (_ I (len — LT (e — L — 1}>1/2
izjllie — lelllie — e — 1]
_ ( e = heller e — belle—r —le = 1) flemne—1 — lie — 1]>1/2
i1 [lie — Ligl[lie — e — 1]

C EANE -2k + 4 [k + Nk + 0
- o — 1]t N 14

Now, let £ =" ¢,

m tnm/ ELN,

puts I

— n n _ n n n
Eg =F E Cm/’mtm/7m = Cm’,mym’,mtm’,m”‘

Here, |m/) = |0), as given by |D or . For N >0, ~], . is never zero, but for N <0,
W = 0iff k= —N. This implies that

-N -N ... =N 0 -N -N ... =N 0
Tig Top ... Tyy -N —-N ... xy
m/) = =
T12 T22 —N  x
| Z1,1 | | 1 |

with z; = x;;. The question turns into a simple combinatorial problem of counting the

number of non-decreasing sequences —NN > x1 > 9 > ... > xp > 0, which is (‘N;H). L]
Corollary 3.3.1. There are no non-constant holomorphic polynomaials in A(CP;).

Proof. By (3.7) it is obvious that da = 0 iff E; » a = 0. Now the previous lemma for N = 0

gives the result. O
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3.3.2 Holomorphic line bundles

An anti-holomorphic connection on the line bundle Ly is given by

V,g\, Ly — Q(O’l) ®.A((CP§) Ly

V(&) = vl oy,

where Wy is a column vector [I1], given by Wy := ( ﬁ---d’eﬂ) with

UN dens = U e P2 Vi e = N, for N >0,

which are a generating family of Ly for N > 0 as one-sided and as bimodule [I0]. For

N <0 a generating family of Ly is given by
. . L+l j . .
wﬁ,--.,jeﬂ = [j1, ...,]Hl]!l/zqzml””z{?..zﬁff, Vii+..+ji1=—N, for N<O.

This is a flat connection as can be verified directly with a computation as previous

chapter. This gives us the following Dolbeault complex
0— Ly — Q(O’l) ®A((CP§) Ly — - — Q(O’e) ®A((CP§) Ly —0.
The structure of the zeroth cohomology group H(Ly, V?\,) of this complex which is called

the space of holomorphic sections of Ly, is best described by the following theorem.

Corollary 3.3.2. For any integer N, the space of holomorphic sections of the canonical

line bundles of (CPqe 18

\N\+€)

HO(Ly, V) ~c(™) ) if N <o

H(Ly, V%) =0, if N>0

Proof. 1t is not difficult to see that the kernel of V?V coincides with the kernel of E; » (.).

Now the result is an obvious consequence of theorem ([3.3.1)). O
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Alternative proof of the Corollary[3.3.3 without Theorem [3.3.1].

By Lemma 6.1. [11], we know that V?V = 5]9%, where Q% = Ly. From [12] Prop.

6.4 and ET‘Q?\I = 0, we have:
HO(LN,V%) = kerﬁgb%.

Lemma 6.3 and 6.5 of [I1] gives:

N={[N] — g7+t [ AL ][0 + 1]

' —q ’

= 2N q
qZ+18T|Q9\I _ qe+1cq +
where C, is the Casimir. Prop. 5.5 of [L1] gives the following decomposition for QY;.

Q(])V = @ ‘/(m+N,O,...,O,m); N > 07 Q?V = @ ‘/(erN,O,...,O,m); N < 0.

m>0 m>—N
The operator ETE is constant on each subspace V(;, 4 n0,....0,m) and its value can be obtained

from Prop. 3.3 [1I] or Lemma 3.4 ( for £ = 1, n; = m + N and ny = m in the formula

(3.17)). For example, if ¢ = 1 we have
71-7
0 a|V(m-~-N,o,...,o,m) = (m + 6)(]\[ + m),

This vanishes if and only if m = —N, which holds ony if N < 0. If ¢ # 1 the formula is

more complicated but the same result holds. Therefore

_ 0 if N >0,
dimH®(Ly, V%) =

dim‘/(o’ojn.’(),,]\]) = (_]\2—’_() if N S 0.

Here we would like to establish the fact that for any integers N and M we have a bimodule
isomorphism Ly ® 4 Pt Ly >~ Lyyp- The multiplication map from left to right is an

injective A((CP;)—bilinear map. Indeed, it is enough to show that Ly ®r, L1 ~ Ly for
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all N € Z and L1 ®r, L_1 ~ Lg. Let

¢: Ly = Ly © L1, é(n) =Y nm® 2,
k

X:Lo—Li®L_1, x(a)= Zqﬁ‘”“az;; ® 2
k

Now one can see that,

mog(n) =m(Yy na @) =ny w2 =1,
k k

mo x(a) = m(z " *azi @ z) = G’Z ¢z = a.
k k

Elements z; (resp. z;) are generating family of Ly (resp. L_1), so any element n € Ly ® Ly
can be written as Y 7; ® 27 with n; € Ly, and any element £ € Ly ®r,, L_; can be written

as £ =Y & ® z;, with & € Ly.

pom(n) =D mz) =D mrm@zp =Y m®ziuz=Y n@z=n,

xom(§) = X(Z §izi) = Z ¢ iz @ 2 = Z ¢° 7 @ zizfa = Z £ @z =&

ik ik i
Here we used the fact that z;z; and zj 2z, belong to Lo and also
szz}: =1, Zqﬁi*%z;:zk =1
k k

Alternatively, using generating elements ¢; and 7 one can define

¢:LN+M—>LN®LM

o(n) =Y )y @up, M >0, ki + ...+ ke = M.
k

Here, one uses Z@(¢£4)*¢£4 = 1. The same idea works for M < 0 and k;+...+ k41 = —M.

To see that the map m is a surjection, we use a PBW-basis for .A(Sg”l) generated
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{2y 2t () () o ()™ Ay () (#3)™ - (20)" ),

for non-negative integers s; and t¢;. Since

Kiwzi=z, Kjwz =z,j</l

and
Kow zi=q" %z, Kpw 2 =q %27,
we have
KIK2  Kf{w Z =g/ Xt g,
where
Z =2zt () (25) o (2
or

Z = D ) ()

It is obvious that Z € Ly iff Y s; — > t; = —N.

Now suppose that Z = 277257 -+ 2, (27)" (23)" -+ (2j_,)"* € Ly4+m and suppose

k is the first positive integer such that Zle s; > N. Then take a partition of N as

Zle r; = N, such that s; — r; > 0. Now the following is a preimage of Z.
R(_T1 T2 Tk §1—T1 82712 Sk—Tk Tk+1 Sp ¢ x\t1 [ *\t2 * to_
q (Zl Zo" 2yt @2 29 TR Zpy1 "Ry (21)"(22)" -+ (27-1)™ 1)’
where

R = T‘k{(sk_l—?“k_l)—l-' . '+(81 —T1)}+Tk_1{(5k_2—7”k_2)+' . '+(81—T1)}+' . '+T2(81 —7‘1).

By the above discussion it is obvious that Z; := 2]'25? - -+ z;* € Ly and

Zyim 2 TR BT ) ()1 (50 € Ly,
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The result is obtained by noting that the product Z;Z, = ¢ % Z.

For later use we would like to mention here that Q(%-¢) D acpy LN = L1 @)
Ly ~ Ly_s—1. In order to see this we recall the definition of Q0 = M(oy), where o
is obtained from the representation oy : Uy(su(¢)) — End(W}) lifted to a representation
of Uy(u(l)) by ag(ff) = ¢"Idw, [I1]. We define the .A((CPQZ)—bimodule M(o) == {v €
A(SU,(L+1))" |vah = a(h)v, Vh € Ug(u(€))}, where o is an r-dimensional *-representation
of Uy(u(¢)). So in our case o will be a 1-dimensional *-representation of Uy(su(¢)). Hence,

any anti-holomorphic ¢-form is an element like v such that v <h = o0 (h)v. The conditions

that must hold are:

Kiya=a, Ewa=Fw»a=0, i=1,2,...,0—1.

K1K22...Kf > a = ¢ (D2,

This gives us Q09 ~ L_, ;.

3.4 Bimodule connections

In this section we would like to show that line bundles Ly accept a bimodule connection in
the sense of [19]. This means that there exists an isomorphism Ay : Ly ® 4 PY) QO

Q.1 ®acpy) LN such that
Vi(€a) = (Vi&a+ An(E @ a).

Let us define

QY = {w = (w1, ,w)}t | wah=of (h)w, Yh € Uy(u(®)},

where U,(u(£)) and of¥ are introduced in Section One can prove that the multiplication

)

map my : QO ®rL, LN — Qg\(;’l , where my((v1, -+ ,v7) ® ) = (1€, -+ ,ve€), gives an

isomorphism of A((CP,f)—bimodules. The same is true for m/y : Ly @z, QY — Qgg’l) given

by m/y(§ ® (v1,---,v)) = (§ui,---,&ve). We just give the proof of the former case for
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N > 0. One can easily check that the map
ON : QS\?’I) - 0OV @ Ly,

defined as
on(wr o w) = O W) @y, Y wilwd) @ up)
k k

is the inverse of my. Now we define the map Ay : Ly ®A(CP§) Q0.1 5 O.1) ®A(<CP§) Ly
as follows:

A = ¢V glymn,

where, ¢/y is the inverse of multiplication map m/y. In fact

AN(E®v) = ¢V (€v) = ¢V Y (o) (W) @1y

k

Let us mention that why we put the factor ¢V in the definition of Ay. A simple computation

shows that

Vi€ = _\Il;[\r((\IINf) QFp--- Py, (WNE) <1Fe>

:7qN/2(€<]F€...F1’... ,§<1F£>,
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which is the left Leibniz property. On the other hand

Vzgv(fa)Z—QN/Q{(ﬁqu“'Fl,"' ,§<F£)G+QN/25<G<‘FK--~F1,--- ,aqu)}
:—{qN/Q(gng---Fl,--- ,qug)a+qN<a<1Fg---F1,--~ ,a<1Fg>§}

= V%(&)a + ¢~ dat, (3.11)
Indeed for the ¢ th component we have

ol (Wnga) a F) = Wi {(On 9 F)((€0) 9 Ko) + (U < K1) () < ) }
= ¢"*(¢a) < F, (3.12)

="} (€ aF)a+q" 0 F)].

Here we used £<K; = ¢ V/2¢ and Uy <Ky = ¢~ N/2W . Other components can be obtained

as follows:

U (UnEa) A FFyy - F)
- \Ifjv{(\lfN aF)((€a) < Kp) + (U a K; ) ((€a) < Ff)}pe_l F,
= qN/2{(£ A Fp)a+ qN/Qg(a g Fe)}Fz_1 o F

=" EaF F)at qNE(aaFy - F).

In fact 1} says that V9 does not satisfy a right Leibniz rule, instead it enjoys a An-

twisted right Leibniz property.

Proposition 3.4.1. Taking Ay as above, the following holds
V& (€a) = (V&)a+ An(€ ® Da), Vae A(CP!), V¢e Ly,

i.e. VEN is a bimodule connection on Ly.
Proof. By the above discussion, the proof is obvious. O

Now we can prove that the two holomorphic structures on Ly ® A(CPY) Ly and Lyypr
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are identical after the canonical isomorphism of these two spaces.

Proposition 3.4.2. The tensor product connection V]gv 1+Ave1)(1e V]gw) coincides

with the holomorphic structure on Ly ®A(cpy) Ly when identified with Ly .

Proof. We will look at the last component first.

{V?V—&-M(flf?.) }e —¢ (§162) < Fy

N
2

= q2 (& A F)& + VM2 (& a Fy). (3.13)

On the other hand

{(Ren+ovenaei)@es),
=" aF, @ &+ (v @ 1)(6 @ ¢M/26 a Fy)

="PLaF,® &+ NV 251(52 SE)WE) @y (3.14)
&

Interpreting the expression (3.14]) as an element of Qg\?ﬂw one can see that ((3.14)) coincides

with left hand side. The same argument as previous proposition gives the result for other

components. [

Now the quantum homogeneous coordinate ring R := ®N§0 HO(LN,V?\,) of the
quantum projective space can be described as follows. This result was first obtained for
¢ =1,2 in [19] and the previous chapter where its relation with the work in [1l 2] is also

explained.

Theorem 3.4.1. We have the algebra isomorphism

) (C<Zl 29y ... Zg+1>
HO (LNa va ) ~ ) 25 7. .
zg?o N (zizj —qzjzi 1 <i<j<Ul+1)
Proof. The ring structure on R is coming from the tensor product Ly, ® 4 Py Ly, ~
LN, 4nN,. Since the basis elements t(()O}...,O,l) of H(L, V?), as shown in section 2 are z; for
j=1,2,...,0+ 1, one can easily see that HO(Ll,V?) =Cz1®Cz® - ® Czpy1. Now the

isomorphism follows from the identities z; ® 4(¢ P % — 4% @ APy % = 0 in L9, which is
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obvious.

3.5 Existence of a twisted positive Hochschild cocycle for
¢
CP,

We refer to section for a review on twisted Hochschild and cyclic cohomology. In [4],
Section VI.2, Connes shows that extremal positive Hochschild cocycles in the sense of [5]
on the algebra of smooth functions on a compact oriented 2-dimensional manifold encode
the information needed to define a holomorphic structure on the surface. In [I9] a notion
of twisted positive Hochschild cocycle is introduced and a similar result is proved for the
holomorphic structure of Cqu and CPq2 in [19] and chapter |2l Although the corresponding
problem of characterizing holomorphic structures on higher dimensional (commutative or
noncommutative) manifolds via positive Hochschild cocycles is still open, nevertheless these
results suggest regarding (twisted) positive Hochschild cocycles as a possible framework for
holomorphic noncommutative structures. In this section we prove an analogous result for
CPqE for all .

Now we come back to the case of our interest, that is CPqZ . Let 7 be the fundamental

class on CPf defined as in [9] by a twisted cyclic cocycle

T(ag, a1, az, - -ag) = /ao dajdas--- dagy, Va; € .A((CPqZ). (3.15)
h
Here h stands for the Haar state functional of the quantum group A(SU, (¢ + 1)) which has
a twisted tracial property h(xy) = h(yo(z)). Here the algebra automorphism o is defined
by
o A(SUL(L+1)) — A(SU,(£+1)), o(x)=K 'pazaK L

where K = (KfKQQ(E_l) e K;<£—j+1) .-+ K})?, see[l1]. The map o, restricted to the algebra
A((Cqu) is given by o(r) = K~! > 2. Non-triviality of 7 has been shown in [9]. Now we

recall the definition of a twisted positive Hochschild cocycle as given in [19].
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Definition 3.5.1. A twisted Hochschild 2n-cocycle ¢ on a x-algebra A is said to be twisted

positive if the following map defines a positive sesquilinear form on the vector space A1) :
(apg ® a1 ® ... ® ap,bp b1 ® ... @ by) = d(a(b),)ag, ar, ..., an, by, ..., b]).

3.5.1 A twisted positive Hochschild cocycle on (CP(f.

We recall that the set of (¢,¢)-shuffles (denoted by Spy) is set of all permutations 7 € Sy
such that 7(1) < m(2) < -+ <7w(f) and 7({ + 1) < w(£ + 2) < --- < 7(2¢). Here we would

like to look at a shuffle 7 as an increasing function from {£+1,--- 20} to {1,2,---2¢}. Let

us define 07 : {1,2,---,20} — {£} by 0™|;mr = — and 07|, r)e = +. For any m € Sy
define
or(ao,an, - age) = /ao(aefal)(aegw)'“(39&@2@)- (3.16)
h

Here 07 =9, 9~ = 0 and 6T = 07 (i). Now suppose that 7 and 7’ are two shuffles that are
just different in their values on a single value ¢ such that |7’(i) — w(i)| = 1. We define a

cochain 9 »» by

Yr (G0, a1, a2, ,ag0—1) = /610(36?04)(36’%2)"'(36}?59;r aj) (8% 2a;41) - - (0%tagy).
3

Here j = min{n(i),n'(i)}. It is then easy to prove that b,1r = £(¢r — @x/). The proof is

based on the following easy observation.
90 (ab) = addb + Hadb — Jadb + (0da)b.

The term 8% 9% is either 90 or 9 simply because of our choice of 7 and 7.

Now we recall an easy combinatorial fact. The number of permutations of 2¢ letters

including /¢ letter A and ¢ letter B is (2;) = %. All permutations can be grouped in two

groups and in each group there exists an order on permutations {1, ..., 7.} and {r],..., 7.}

with r = %(2;), such that m; 1 (respectively 7;, ), can be obtained from ; (resp. ;) just

with replacing the two letters in the spots j and j 4+ 1 where 1 < 57 < r — 1. In addition we
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can always choose m; = AA---ABB---B and n} = BB---BAA---A. The permutation
7 has the above mentioned property with respect to one of 7.’s.

Now we come back to the case (CPqe. We consider a complex structure (Q(**)(A),d,d)
on the x-algebra A((CP;) with * : QP9 — Q@) such that da* = (da)*. We have seen that
QO = M(sO1), where %! restricted to U, (su(f)) is the fundamental representation of
Uy(su(f)) in C* and o™ (K K2+ Kf) = qe%ll. The representation o'¥ can be obtained

from %! by conjugation. Define
da := Q(Eg,EgEg_l, s ,Eg s EgEl), 5@ = <1(Fg s F2F1, s FgFg_l, Fg).

For an anti-holomorphic 1-form w = (wy,wa, -+ ,wy) we define

*

w = (_qua q2wz<—17 R (_Q)Z_lwza (_q)fwf)
The property da* = (da)* holds simply because
(a*9FFy_y - F)* =a<S(FFp_y-- F) = (—q) " VaaEE,, - E;.

One can define * on anti-holomorphic forms such that (wA,w')* = (—1)9e9@)deg(W) 1 A
then extend it to all holomorphic and anti-holomorphic forms with da* = (9a)*. Note that

we can extend A, to holomorphic forms as [I1]. One can see that

day0az - - - Da,daj - - - Dasdaf = daiday - - - Dag(Day)* - - - (Daz)*(dar)*

= —8@18@2 ce 8@4(8&16&2 ce 8&4)*.

We will need the following simple lemma for future computations.

Lemma 3.5.1. For any ag,a1,a2, - ,a0+1 € A(CPf) the following identities hold:

/a0(6a1 -~ 0agOapyy - - - Oagy)agpy, = /U(aggﬂ)ao@al -~ 0apOapsy - - - Oagy.
h h

Proof. The space of Q%9 is a rank one free A((CP(f)—module. Let w be the central basis
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element for the space of QED and let day - - - dagOayy, - - - Oagy = zw. Then

/ {a0(8a1 - 0apaypyy - - Oagy)ageyr — o(ageyr)apday - - - Oagdayy - - -5&25}
h

= /(aowwazeﬂ — o(age41)aprw)
3

= /(aomazeﬂw — o(azey1)aorw)
h

= h(apzages1 — o(ages1)agzr) = 0.

The last equality comes from the twisted property of the Haar state. O

Using d = 0 + 9, we have

T = Z Py

TE€Sp e

where ¢, is given by (3.16)). Let m; = id, i.e. m is the shuffle that keeps every letter at the

same spot. Define the Hochschild cocycle

0 = —=2ron, (3.17)

where r = %(Zf).

Theorem 3.5.1. The 2¢-cocycle ¢ defined by , 1s a twisted positive Hochschild cocycle

and it is cohomologous to the fundamental twisted cyclic cocycle T.

Proof. We first verify the twisted cocycle property.

¢(o(ag),o(ar),o(az), - ,o(az))

o(ag)do(ay) - 0o(ag)0o(aps) - Oo(ag)

2r

S T —

2r

K»> (a08a1 s 8@35@“ cee 5@2{)

=2r E(K) /aoaal ce 8&45@54.1 ce gazg
h

- SD(CL[‘_), ap,ag, - - 7a2€)'
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For positivity one can see that

o(o(ap)ao, a1, az, -+ ,ap,a;, -+ ,a3,a]) = —QT/U(aS)aoaalﬁag -+ agday - - - Daydal
h

= —27“/(106(118(12 -~ Oaydaj - - - Daydaiaf
h

=2r /(aoaalaag e 80,@)(@0(9@18@2 ... 8a,g)*.
h

One can take da; = (v, vd, - ,vé), then using the multiplication rule of type (1,0) forms

(for (0,1) forms c.f. [I1]), we find that (agdaidas - - - Oag)(apdaidasy - - - Das)* = pu*, where

B = ag Z (_q_1)||7r||v71r(1)v72r(2) T Uf;(zy
71'65'4

Hence

o(o(ag)ag, a1, ag, - ,ag,ap, -+ ,a3,a)) = 2rh(up*) > 0.

Here we used the positivity of the Haar functional h.

Now we would like to find the coefficients m, k such that mr — ko, = by for
a suitable (2¢ — 1)-cocycle 9. Here we order all ¢,’s as explained at the beginning of the
section, i.e. we use the order for permutations of 9 and 9 to make two sets {Pr,, Prys s Pry b

and {go,rll, Prls oo ©xr }, where r = %(25). For instance we give the formula for one choice of

Pra-

Oy (0, a1, ..., Agp) = /aoamaaz'"3a£—18a43a£+15aé+2"'3a2z-
h
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One can show that there exist 2r — 1 twisted cochains 1, » such that

bo’¢ﬂ'1,ﬂ'2 = Pr; — Pras

bO’¢7T2,7T3 = Py — Prg,

bo¥r, 1 = Prey — Prps
bawﬂr,ﬂé = P, — (Pﬂfca
bO’¢7Ti,ﬂ'é = Pri — Pl

ba¢7ré,7ré = Prt, = Prls

ba¢w;,717r; = 907r7’071 - Prl. (318)

For instance vz, r, (up to a =+ sign) is defined by

Yy o (@0, Q14 .y A1) = /a08a1...ﬁag_l(88@@)0(1”1...8(12@_1.
h

Define
r—1 r—1
1/} = § xi¢m,ﬂ'¢+1 + x?“wmﬂr; + E x?“+i¢7r§,7r§+17

i=1 i=1

with constants x;’s i = 1,2, -+ ,2r — 1 have to be determined. We find the following linear
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system of equations for mr — kgr, = by1).

m—k—x1=0

m—+ T — X2

m+x—1—x,=0
m+T,41 =0

m—+ Zry1 — Tpp2 =0

m~+ Tpygp—1 — Trpk =0

m—+ Ty — Tppg—1— Trpp =0

M+ Tk = Trihr1 = 0

m+ xap—2 — Tor—1 =0

(7 + 221 =0

This system has the one parameter family of solutions given by
zi=—2r—im for ie{l,2,---,2r—1} —{r+1}, x4 =-m, k=2rm.
For m = 1, we have 7 — 2rp; = b,1. Note that 1;’s are defined up to sign. O

3.5.2 A positive cocycle ¢ on (CP;

In this subsection we would like to delve into the case of (CPq3 in details. We consider the
complex structure on (Q*°*(A),d,) on the x-algebra A. There exists * : QP9 — Q(r)
such that da* = —(9a)*.

We have seen that Q1) = 9(a(:1), where the representation o(®!) on U, (su(3)) is

the fundamental representation of U, (su(3)) in C* and on the generator of U(1) is given by



oOD(KK3K3) = ¢*I. Here the representation on the basis is given by

010 000
Er=10 0 0, E2=10 0 1f,
000 000

7% 0 0 1 0 0
Ki=1]0 ¢ o], Ka=1]0 ¢/2 0

0 0 1 0 0 g¢1/2

The representation o(1:?) can be obtained from ¢(®!) by conjugation. Define
da := <1(E3, E3E2, EgEQEl), 5(1 = <1(F3F2F1, F3F2, Fg)

For w = (w1, ws,ws) € QO et define

* 1 *

w* 1= ¢*(qw, —w*, ¢~ wi).
One can see that
(a* < F3F2F1, a* < F3F2, a* <« Fg)*
= ¢*(q¢ la< S(F3FRF)*, —a< S(F3F)*, qa < S(F3)")

=¢*(—¢" Pa<B3E2E1, —q *a< B3By, —q~ " la < Es)

= —(a<1E3E2E1, a<1E3E2, a<1E3).

Hence

Oa* = —(0a)*.
For n = (n1,n2,m3) € 002 we define

*

n* = q*(ans, —me. g 0p).

69
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One can prove that for anti-holomorphic 1-forms we have
(w Aq w/)* _ (_1)deg(w)deg(w’)w/* Aq w*’

Then one can extend * to all holomorphic and anti-holomorphic forms with da* = —(da)*.

Note that we can extend A, to holomorphic forms as [I1]. One can see that
day0az0a30a30a30a; = —0a10az0a3(daz)*(daz)*(dar)* = daidazdasz(daidazdasz)*.

We will need the following simple lemma for future computations.

Lemma 3.5.2. For any ag,a1,as, -+ ,a7 € A((CP;’) the following identity hold:
/a0(8a18a28a38a48a58a6)a7 = /a(a7)a08a18a28a38a48a58a6,
h h

Proof. The space of Q) is a rank one free A(CP?)-module. Let w be the central basis

element for the space of Q33) and let da;dasdazdasdasdag = xw. Then

/ ao(da10asdazdasdasdag)ar — / o(ar)apdaydaz0azdasdasdag (3.19)
h h
= /(aoxwow — o(ar)aprw)
h
= /(aoaccww — o(ay)apzw)
h

= h(apzar — o(ar)apx) = 0.

The last equality comes from the twisted property of the Haar state. ]

Theorem 3.5.2. The 6-cocycle ¢ defined by

v(ag, a1, az, a3, aq, as,ag) := 20/@06a18a28a38a48a58a6
h

s a twisted positive Hochschild cocycle on A((CP;) and is cohomologous to 7.
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Proof. We will give ¢’s and v’s explicitly for this case, i.e. (CP(?. We first introduce cocycles
i, t=1,---,20

v1(ao, a1, az, as, as, as, ag) := /aoaalaa28a38a4aa5aa67
b

2 (a[)a ai, az,as, a4, as, aﬁ) = /a08a18a28a38a48a58a6a
h

p3(aog, ay,az, a3, as, as, ag) := /a03a15a23a33a45a53a6,
3

w4(ag, ar,az, a3, as, as, ag) := /a03a13a2aa36043a53a67
b

ps5(aog, a,az, a3, as, as, ag) := /@03a13a25a33a43a53a67
b

we(ao, a1, az, a3, as, as, ag) := /a08a18a28a36a48a58a6,
h

v7(ao, a1, az, as, as, as, ag) := /a03a13a23a33a43a53a67
3

8 (CL(), ai, az,as, a4, as, aﬁ) = /a08a18a28a38a48a58a67
h

w9(ap, a1, az,as,as, as, ag) := /a03a15a25a33a45a53a6,
b

v10(ao, a1, az,az, as, as, ag) 1= /%3&13@3&30@43@53&6,
h



v11(ag, a1, az,as, a4, as,a6) = [ apdaidagdazdasdasOag,

p12(ag, ar, az, a3, as, as,a6) := [ agdaidazdazdasdasOag,

p13(ao, a1, a2, a3, as, as, ae) ;= [ agdaidazdazdasdasOag,

14(ao, a1, a2, a3, aq,as,a6) ;= [ apdaidazdazdasdasOag,

[
[
/
[

@15(@0, ai, az,as, a4, as, aﬁ) = /a08a18a28a38a48a58a6a
h

v16(ag, a1, az,as, as, as, ag) = /a03a15a23a33a43a53a6,
b

e17(ao, a1, az, az, as, as, ag) 1= /a03a13a23a36043a53a67
b

©18(ao, a1, az, as, as, as, ag) 1= /a03a13a25a33a43a53a67
b

p19(ag, ar, az,as, as, as, ag) = /a08a18a28a36a48a58a6,
h

va20(ag, a1, az,as, aq,as, ag) == /a08a18a28a38a48a58a6.
h

72
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We also define twisted cochains ;’s as follows

Y1(aog, a1, az, a3, as, as) = —/a08a18a288a38a48a5,

h
Ya(ag, ar,az, a3, as, as) = /a08a18a26a386a46a5,
h
Y3(ag, a,az, a3, as, as) = —/a08a18a28a38a488a5,
h
1@1(&0,&1,&2,&3,@4,@5) = /a08a188a28a38a48a5,
h
Ys(ao, a1, az, az, as, as) == —/a06a18a28a38a488a5,
h
Ye(ag, ar,az, as, aq,as) := /a08a18a288a33a48a5,
h
Y7(ag, a1, ag,as, aq,as) := —/a08a18a28a38a438a5,
h
Yg(ag, ar,az, a3, as, as) = /%3013&28@336@40&57
h
Yg(aog, a,az, a3, as, as) = —/a088a18a28a38a48a5,
h
o(ao, a1, az, as, as, as) := /a06a188a28a38a48a5,
h
YP11(ap, a1, az, a3, a4, as) := —/a06a18a288a38a48a5,
h
P12(ao, a1, az, az, as, as) == /a03a13a25a333a43a5,
h
Yn3(ag, a1, a2, a3, as,as) := —/a03013a23a33a433a5,
h
1/114(&0,&1,&2,&3,&4,&5) = /a08a168a23a36a46a5,
h
Y1s(ag, a1, a2, as, as, as) = —/a08a18a28a38a488a5,
h
Yne(ao, at, az,as, as, as) ;= /a08a18a288a38a48a5,
h
P17(ao, a1, a2, a3, as, as) == —/a06a18a28a38a488a5,
h

ig(ao, a1, az, az, as, as) == /a03a13a233a35a4305,

h
r
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Now let us define the map 1 = Zgl xiY; and ¢ := —kpi. One can check that for

alli=1,2---,19 except ¢ = 10,11, we have

boi = Qi — Pit1,

and

bo10 = @10 — P12,  botP11 = P12 — P11.

We only show the computation for b,1¢1 = ¢1 — 2 and the rest can be proven in a similar

way.

botp1(ao, a1, a2, asg, as,as, ag) = YP1(aoai, az, as, as, as, as)
— 1 (ao, arag, as, aq, as, ag) + ¥1(ag, a1, azas, as, as, ag)
— ¢1(ag, a1, az, azaq, as, as) + V¥1(ao, a1, az, a3, asas, ag)

— ¢1(ag, a1, az, as, as, asags) + Y1(o(as)ag, ai, az, as, as, as)
Hence

botp1(ao, a1, a2,a3, as, as, ag) =

—/a0a18a28a388a48a58a6+/a08(a1a2)8a386a48a58a6

h h
— /aoaala(a2a3)88a48a58a6 +/a08a18a288(a3a4)8a58a6
h h

— /a08a18a286a38(a4a5)6a6 +/a08a18a288a38a46(a5a6)

h h

- /a(aﬁ)a08a18a288a38a48a5
h

= / agdaidasdasdasdasOag — / apda10azs0azdardasOag,
h h

= @1(&0,&1,&2,@3,&4,&5,&6) - @2(&0,&1,a2,(13,(l4,(l5,a6)-

Here we applied Leibniz rule several times. Solving the equation 7 — ¢ = b, with respect



to coefficients is equivalent to the following system.

,

m+k—x1=0
m-+x; —x9 =0

m+x2—23=0

m—+xg —x9g =0
m—+x9 —x190 =0
m+x1; =0
m+x19— 211 — 12 =20

m-+x12 —x13=20

m-+x18—T19 =20

\m—{—xlg =0.

This system has the following solution

xi=—(20—49)m for ie{1,2,---,19} — {11}, x11=-m, k=—-20m.

For m =1, we have 7 — 20¢1 = b,1. For positivity, one can see that

e(o(agy)ag, a1, az,as,as, ay,ay) = 20/U(@S)aoaal8a26a38a§8a§8a>{
h
=20 / agﬁalaagaaggaggazga]kaé
h
= 20/(aof)al@agaag)(aoaalaagaag)*.
h
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One can take da; = (vi, v}, vs), then using the multiplication rule of type (1,0) forms (for
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(0,1) forms c.f. [11]), we find that (apda;Oazdas)(agda;daz0as)* = pu*, where

1,2, 3 1,1,2. 3 1,1

B - - 2,1
1= ag(viv3v3 — ¢ VUiV — ¢ vy

el + g uboded + g el — g Sududed

1
V3V1V9 — g "V3VyV7.

Hence

p(o(ag)ao, ar, asz, as, al,as, ay) = 20 h(pp*) > 0.

Here we used the positivity of the Haar functional h. O



Chapter 4
The Riemann-Roch theorem for CP(f, (=1,2

First recall that, for classical projective space CP", its sheaf (or equivalently Dolbeault)

cohomology with coefficients in the sheaf of holomorphic sections of line bundles O(m) are

given by
.
Clz0, 215 --» Zn)m if ¢=0,m>0,
1=0,m<0
HY(CP",0(m))=<{0 f{o<i<n

t=n,m>-n—1
\

HY(CP",O(-m —n—1))* if i=n,m<-n-—1

Therefore for the holomorphic Euler characteristic of O(m), we get

x(CP', O(m)) : = dim H°(CP', O(m)) — dim H(CP',O(m)) = m + 1.

4.0.3 The case of (Cqu

This last formula has an analogue in the case of (Cqu. The zeroth cohomology has been
computed in [19], but for completeness we recall it here again. First let us recall that finite
dimensional irreducible representations of U,(su(2)) are given by vector spaces V;, where

2] € N with basis |I,m), m € {—[,...,I}. The action on generators are given by

Kl|l,m) = q"|l,m),

E|l,m) = /[l —m+ 1[I+ m]|l,m — 1),

Fll,m) = /[ +m+1[ —m]|l,m + 1).

7
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We will have the isomorphism A(SU,(2)) = @ V;®V;* and under this isomorphism the space

of canonical quantum line bundle Ly := {a € A(SU4(2))| h>a= gV/?

a} corresponds to
{lIl,N/2) @ [l,m)| | > |N/2|, m = —2I,...,2]}. From now on we will use the notation
|l,n,m) =|l,n)® |l,m).

The anti-holomorphic part of the connection on Ly is given by V5|l, %, n) := E|l, ¥ n).

Consider the Dolbeault complex of Cqu
0= Ly — Q%@ Ly —o0,

or equivalently

0—>LN—>LN_2—>O.

One can casily sce that V¢ = Bl Jom) = \/[l — T+ 1+ 511, 5 —1,m). To find

the holomorphic Euler characteristic X((Cqu, Ly), we will consider the following three cases.
o N > 2.

In this case, the kernel of V9 is zero, simply because [ + % cannot be zero and [ — % +1
is zero only if [ = % — 1, which is impossible in this case, since by assumption [ > % The
Image of V7 will be generated by the basis elements |l % —1,m) with [ > % But it dif-

fers from basis of L _g by elements |% -1, % —1,m) which can be counted as N —1 elements.

Here we have V¢ = \/[l — 2+ 11+ 3,3 —1,m). So E|l,5,m) = [l + 3]/, —3,m) and
it is not hard to see that ImV? = L N—2. The same argument as case N > 2 shows that

KerV? = 0. Hence x(CP;,Ly) = 0.
o NV <0.

IfN <0, l+% =0when! = —% and this gives the set {]—%, %,m)]m
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as a basis for the space of holomorphic sections of Ly. So dim Ker V7 = IN|+1. Ina
similar manner to case N = 1 one can show that the map Vo is surjective. Therefore we

will come to the following result
X(CPy,Ly)=—-N +1.
Note that there is a switch between N and —N with respect to the classical case.

4.0.4 Serre duality for CP?

There exists a non-degenerate pairing (,) : Ly x L_ny — C, given by

(&, m) :==h(&n), VY&e€Ly, VnelL_y. (4.1)

Here h is the Haar state of the quantum group A(SU,(3)). The map is obviously bilinear
and the nondegeneracy comes from the facts that L}, C L_y and h is faithful. Now consider

the (0, g)-Dolbeault complex of CP?
0= Ly =0 oLy -0 gLy —o. (4.2)

We would like to state an analogue of Serre duality theorem for this complex as

Proposition 4.0.1. There exists a non-degenerate pairing defined by

(,):H*(V,Ly)x H'(V,L_y_3) = C

(€], [n]) == h(&n), V€€ Lnys, Vn€L_n_s.

Proof. First note that H?(V, Ly) is a quotient of Ly, 3 and H°(V,L_y_3) is a subspace
of L_pn_3. We show that this map is well defined. For this, suppose that £ and £ are in the
same cohomology class. Hence h(&n)—h(€'n) = h((€—&")n) = h(dan) = h(d(an)—adn) = 0,
by noting that n € Kerd and h has invariance property with respect to the map 0. Now

non-degeneracy is obvious by the above discussion.
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The above result easily can be lifted to the general case of CP; in the following way.
The pairing
<§7 77> = h(&?)a V€€ Ly, Vne L _y. (43)

is a nondegenerate pairing and hold true passing to the cohomology

(,):HYV,Ly) x H(V,L_n_¢_1) = C

([€],[n]) == h(&n), V&€ Lniey1, Yn€L_n_g .

In the following we will compute the (0, ¢)-Dolbeault cohomology of (CPq2 . The result

is analogue of the classical case. i.e.

Theorem 4.0.3. With the above notations

C(z1, 22, 23)N if i=0,N>0,

i=0,N <0

H(V?, Ly) =40 ifSi=1,N=0
i=2,N>-3
Clz1,20,23)% y_3 if i=2, N <=3,

Proof. The zeroth-cohomology has been computed in Chapter [2]and the second cohomology
comes from the Serre duality. So we just have to prove that the triviality of the first
cohomology. In order to do so, we will calculate the Im d; and the Ker do and show the

equality.

O1(t(n,n + N)?) = (E1Ey » t(n,n + N)?, Es » t(n,n + N)?)

= (t(n,n+ N2 b0, n 4+ N) PO

For Ker 02 we will use the ds(vy,v_) = —FEy » vy — EyEy +2[2] 1 E1Ey » v_ . Applying



81

vy =t(n,n+ 3)1 12 and v = t(n,n+ 3)11.’0’71/2 we will have

—E2>tnn+31°1/2
n—|—3+2 110 n+2 TL+3 Q
\/ \/ 1
—E2E1>tnn—|—3 —1/2 Egbtnn—l—3101/2
n+3—|—2 110 n+2 n—|-3 Q
\/ \/ 1
2[2] LB By » t(n,n +3) 077 =
- [n][n + 3 + 2] 1,1,-1 [n][n + 5] 1,1,0
22 By w (V] [ S g gyt g IR DL gy
(2][3] z 2][3] Z
Hence
_ _ 2 3
Ba(t(n,n + )20V tn,n + 3101 = o, [LF []2[1n+ Lin,n+3)2
This shows that le@:()in the case of NV = 0. O

Im oy

By a similar but lengthier calculation, one can prove that H O(Vg, Ly) = 0 for all

N #£0.



Chapter 5
A g-analogue of the Borel-Weil theorem

5.1 The Borel-Weil theorem

Let G be a compact matrix Lie group with Lie algebra g. Suppose that gc = g ® C is the

complexification of g and G is the corresponding Lie group. The Cartan decomposition is
gc=tc®n" @n",
where

nt = @gcw no= @ga-

a€Rt a€ER™
Here R™ and R~ are the space of positive and negative roots. The Borel subalgebra of gc
is defined by b = tc @ n*. Let B be its associated Lie group, which is called the Borel
subgroup. Then one can see that G/T = G¢/B. The right one is a complex manifold. It is
known that associated to a weight A\ on G (i.e. an irreducible representation of a maximal

torus T inside G), there exists a line bundle Ly on G/T defined by
Ly:={(g,¢) € G x C: (g,¢) ~ (gh,h~ ')}, (5.1)
and the space of sections of this line bundle is given by
D(Lx) = {f: G = C|f(gh) = Mh™")f(9), VheT, VgeG} (5.2)
The holomorphic sections are defined by

Thot(Ly) = {f : G = C| f(gh) = A(h™")f(g). Vhe B,Vge G}

={f:Go>CIX®»f=0 VXen}
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The last equality is because for any X € n™, [34]

X f= gt

dt t=0"

The group G acts on I'(Ly) by (g, f)(¢') = f(g~1g’), for all g and ¢ in G.
The classical Borel-Weil theorem gives a geometric characterization of all irreducible

representations of G.

Theorem 5.1.1. For a dominant weight X of G, the space T'po(Ly) is a non trivial irre-
ducible representation of G with the highest weight X\ and all irreducible representations can

be obtained in this way.

In the case of G = SU(2), the maximal torus is U(1) and all weights are indexed by
integers n € Z. The space of sections of line bundle L,, on the projective line SU(2)/U(1) =

CP! can be also given by
I(L,)={f:SU12)—C| Hw» f=nf}. (5.3)
The holomorphic sections are

Thot(Ln) = {f : SU(2) = C|  f(gh) = A(h™")f(9), Vhe B,VgeG}

={f:SU(2)>C| Hw» f=nf, Ew» f=0}

Let us look at the case SU(3). In this case weights are indexed by a pair of integers A =
(m1, ma) € Z? and the associated line bundles on the flag manifold FI(3) := SU(3)/S(U(1)x

U(1)) are given by
F(L/\) = {f : SU(?)) — (C| Hi» f=mf, i= 1,2}. (5.4)
and the holomorphic sections are

Fhol(L)\) = {f : SU(?)) — C| H,» f=m;f, E;» f=0, i= 1,2}. (5.5)
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In the quantum case this definition changes to
Thot(Ly) := {f € A(SU,(3)) = C|K; » f = ¢™/2f, E;p f=0, i=1,2}. (5.6)

Now suppose that X is a dominant weight for SU,(3), that is a pair of non-negative integers,
then we want to show that the space of holomorphic sections I'o; (L, ms)) is an irreducible

representation of SU,(3) of dimension 3(my + 1)(mga + 1)(my + ma + 2).

Lemma 5.1.1. With the above notation dimInoi(Lm, ms)) = $(m1+1)(ma+1)(m1 +ma+
2).

Proof. Taking a basis element |m’) ® |m) where |m) is a GT-basis element of Uy(su(3)).

These set of four conditions gives the following restrictions on

mi3z MM23 M33
|m) = mi2 122

miy
mi1 = Mi2 = M3 (=M, M2 =M — M1, M3+ m33=2m —2m1 — ma.

A combinatorial argument then will complete the proof. We must have m —m; —mgy/2 <
mao3 < m, but among these values just ma3 = m — m; and ms3 = m — m; — mg are
acceptable. For the obvious reason of restriction on weights. Now we find the possibilities
for the following matrix

m  m-—mip m—mp—mo

mia ma2

mi

The number of possible values for the mq1, mi2 and mgs is
mi1 mao+1

Z Z (i+7)= %(ml + 1)(mg + 2)(my +my + 2).

Case mi12 = m: In this case we will have the total (m; + 1)+ (m1 +2)---+ (m1 +ma+1)

solutions. If mia =m —1:my3+ (mq+1)--- 4 (mq + mg) and so on until mis =m —my :
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0+ 142+ -+ (mg+1).
O

Let us show the case (0,1) and (1,0). In case (1,0) the only possibility for ma3 is

m — 1 and then we will have the following options

m m-—1 m-—1 m m—1 m-—1
|m/>®|m> = |mi2 Mo X Im m-—1
mi m

which there exists exactly 3 solutions for this case. The same argument shows options for

the case (0,1) are of the form of

m m m-—1 m m m-—1
‘m,> ® |m> = m mao X |m m
mi1 m

which again just gives us dim= 3.

Theorem 5.1.2. (The g-analogue of the Borel- Weil theorem) If A = (m1, ma) is a dominant
weight for SU,(3), the space of holomorphic sections I'noi(Ly) of the associated line bundle
over the quantum flag manifold Fly(3) is an irreducible representation of SUy(3) of the
highest weight \. If X is not dominant U'yo(Ly) = 0. All the irreducible representations of

SU,(3) will be obtained in this way.

Proof. 1t is shown that for a dominant A, the space I';,,;(L)) is finite dimensional. It is easy
to see that SU,(3) coacts on I'y(Ly) since Uy(su(3)) acts on I'ye(Ly). The fact that this

is an irreducible representation can be seen by the existence of the highest weight vector v

given by
mo o m—mip M —1mM1] — My m m—ma m — 1mip — 1My
v=1m m—m & m—mq m—mp — My

m m—mi1 — M9
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It is not hard to see that F; » v = 0 and K; » v = ¢™/2v. Using the highest weight

theorem one can see this is the only irreducible representation of SU,(3). O
This theorem can be generalized to the following case.

Theorem 5.1.3. If A = (m1,ma, -+ ,my) is a dominant weight for SU,(l+1), the space of
holomorphic sections Ty (L)) of the associated line bundle over the quantum flag manifold
Fl,(1+1) is an irreducible representation of SU,(l 4 1) of the highest weight X. If X is not
dominant T'pe(Ly) = 0. All the irreducible representations of SUq(I + 1) will be obtained in

this way.



Chapter 6
Noncommutative complex structures of finite

spaces

6.1 Complex structures on @le M,

Let (A, H, D) be the spectral triple associated to X = {a,b} by A = C®C acting diagonaly
f(a)

on Hq & Hyp ie. f — [
0

. The Dirac operator is given by the matrix D =
f(b)

-m 0

|:O m] |: 0 m] .
. So df :==[D, f] = (f(b) — f(a)) . We would like to define a complex
m 0

_ 0 0
structure on A by df := [DMO f] and 9f := [DOY, f] where D10 .= { ] and
m 0

0 m _ _ _
DO .— |: ] It is easy to see that d = 0+ 0, 9f* = (0f)* and Of = 0 iff f is
0 0

constant.

The next case that we consider is A = M3(C) @ C. In this case

Lo _ |00  pon _ 0 m
0 0

m 0
where m is a column vector. Define 0 and 0 as above. An element f € A has the form
A0

0 A

] , where A is a 2 X 2 matrix and A is an scalar. Let ya(z) = A — z1.

Proposition 6.1.1. With the above notation f is holomorphic iff rows of x a(\) are orthog-

onal to the vector m. In particular if f is holomorphic then X is an eigenvalue of A.
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. . —~ mi (A — a11) — maai2 _
Proof. A direct calculation shows that 9f = . So f is holomor-

0 ma(A —a) —miax
phic if and only if

mi(A —ai1) —maaiz =0
—myaz; +ma(A —ag) =0

Hence two vectors (A — a11, —aj2) and (—ag1, A — age) are orthogonal to the vector m, since
) A—an  —ap
they must be colinear and det = 0. ]
—az A —a
This result could be generalized easily to the following.

A0
Proposition 6.1.2. If A = M,(C)® C, f= is holomorphic iff rows of xa(\) are
0 A

orthogonal to the vector m. In particular, if f is holomorphic then X is an eigenvalue of A.
Here A is a n x n matrix and m is column vector in C™.

Proof. With the same argument we end up with the following system

.
ml()\ — a11) — moai2 — ... — Mpain =0
—miag] + mg()\ — (I22) — . — Mpaop =0
—M1ap1 — M2apy — ... + Mp(A — apy) = 0.

The result is obvious now. ]

If A= M,(C) & M(C), we can formulate the following.



Proposition 6.1.3. If f=
0

xB(a11)
a1l
det 2

anll

Proof. Easy.

Notation. We say det(xp(A)) = 0 if (6.1) holds.

1s holomorphic then

a12[

xB(az)

ap—1,11

alnI

QQnI

XB(ann)

On the space of k points if we take the A = @le M,,(C) and we define

0
0

where M; ; is of order n; x n;.

M >
0

M 3

)

Ms 3
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Proposition 6.1.4. With the above notation if an element f=diag(Ai, Ag,--- , A) € A is

holomorphic, then the conditions det(xa,(A;)) =0 for 1 < j < i <k must hold.

Proof. Easy.

6.2 Holomorphic vector bundles on the space of two points

Let &€ = &, ® &, be a nontrivial vector bundle on the space X = {a,b} with dimension 2

and 1 respectively as in [4]. We have & = fA2 where f =

0

. The Grassmannian

(&
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connection is given by
Voo = fdo = f(0o + o),

Any other connection will be V = Vo + p where p € Ma(Q4(A)) []. To have a holomorphic

structure on &, we must have (V(©1)2 =0,

V2= (fd+p)?=fdfd+ fdp+pfd+p?

= fdfdf + fdp+p* (6.2)
In fact, since d§ = df¢ = (df)E + fdE, then
fa(fdg) = fd(f(df)§+ fd) = fdfdfE— fdfd§+ fdfde,

which gives the first term in[6.2] We also have fd(p€) + pf d¢ = fd(p)é — fpdé+ fpdé =
f dp&, which gives the second term.

We recall from ([4], chapter 6) that p* = p and fp = pf = p, which implies:
pi1 = —Prede+ ®1(1 —e)de, pa1 = Poede p1a=p3, pr=0.
Suppose that p = (p;;), then the curvature F' is given by

0 0 N dp11 (dp12)e N p%1+p12/)21 P11pP12

0 edede e(dpa1) 0 p21P11 p21P12

Now it is not hard to find the (0,2) part of the curvature. Let F(®?) = (a;;), then

a1; = (—®1 — @1 — |®1]*)0ede — |Bo|*(1 — €)dede,
aip = ®2(1 + @1)edede,
az1 = Po(1 + ®1)edede,

agy = (1 — |®3|?)edede
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One can easily see that there are no complex numbers ®; and ®; such that the entries a;;

vanish. Therefore,

Theorem 6.2.1. With the above notation there is no holomorphic structure on E, B .
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