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ABSTRACT 

 

Assessment of climate change impacts on hydrology at watershed scale incorporates (a) 

downscaling of global scale climatic variables into local scale hydrologic variables and 

(b) assessment of future hydrologic extremes. Atmosphere-Ocean Global Climate Models 

(AOGCM) are designed to simulate time series of future climate responses accounting for 

human induced greenhouse gas emissions. The present study addresses the following 

limitations of climate change impact research: (i) limited availability of observed 

historical information; (ii) limited research on the detection of changes in hydrologic 

extremes; and (iii) coarse spatio-temporal resolution of AOGCMs for use at regional or 

local scale. Downscaled output from a single AOGCM with a single emission scenario 

represents only a single trajectory of all possible future climate realizations and cannot be 

representative of the full extent of climate change. Present research, therefore addresses 

the following questions: (i) how should the AOGCM outputs be selected to assess the 

severity of extreme climate events?; (ii) should climate research adopt equal weights 

from AOGCM outputs to generate future climate?; and (iii) what is the probability of the 

future extreme events to be more severe? Assessment of regional reanalysis hydro-

climatic data has shown promising potential as an addition to the observed data in data 

scarce regions. A new approach using statistical downscaling based nonparametric data-

driven kernel estimator is developed for quantifying uncertainties from multiple 

AOGCMs and emission scenarios. The results are compared with a Bayesian reliability 
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ensemble average method. The generated future climate scenarios represent the nature 

and progression of uncertainties from several global climate models and their emission 

scenarios. Treating the extreme precipitation indices as independent realization at every 

time step, the kernel estimator provides variable weights to the multi-model 

quantification of uncertainties. The probabilities of the extreme indices have added useful 

insight into future climate conditions. Finally, the current method of developing future 

rainfall intensity-duration-frequency curves is extended by introducing a probabilistic 

weighted curve to include AOGCM and emission scenario uncertainties using the plug-in 

kernel. Present research has thus expanded the existing knowledge of dealing with the 

uncertainties of extreme events. 

 

Keywords: Climate change, Continuous hydrologic modeling, Reanalysis project, 

Extreme precipitation indices, Uncertainty estimation, K nearest neighbor weather 

generator, Principal component analysis, Annual maximum series, Kernel density 

estimation, Bayesian reliability ensemble average, Plug in kernel, Least square cross 

validation, Intensity-duration-frequency curve. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Climate Change  

   Climate is a complex and interactive system comprising of the atmosphere, land, 

snow and ice, oceans, other water bodies and living objects. Two factors such as, Earth‟s 

internal dynamics and changes by the external factors (forcing) mainly influence 

climate‟s variation over time. External forcing can be natural phenomena such as 

volcanic eruptions, solar variations or it can also be changes in the atmospheric 

compositions due to human activities. From the period of industrial revolution since 200 

years ago human activities have increased the concentration of greenhouse gases (GHG) 

in the atmosphere. This enhanced GHG effect is the result of anthropogenic emissions of 

greenhouse gases which has been trapping heat in the atmosphere and has increased the 

absorption of infrared radiation. Of many greenhouse gases, such as carbon dioxide 

(CO2) and water vapor, methane (CH4), nitrous oxide (N2O) and some halocarbons such 

as perfluorocarbons (PFCs), hydroflourocarbons (HFCs) and sulphur hexafluoride (SF6), 

etc, carbon dioxide has caused the most severe threat by releasing 60% of manmade 

emissions since late 18
th

 century. Global warming is nothing but the progressive gradual 

increase of the Earth‟s surface temperature resulting from these greenhouse gases and 

responsible for the changes in climatic patterns.  
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The consequences of global warming are reflected in global as well as regional climate 

in terms of changes in the key climate variables such as temperature, precipitation, 

humidity, snow cover, extent of land and sea ice, sea level and atmospheric and oceanic 

circulation patterns. Continuous increase of global temperature is expected to raise the 

sea level by melting glaciers and thermal expansion. Significant changes in precipitation 

include shifting global precipitation patterns, intensity and frequency of extreme events 

such as, floods and droughts. The Intergovernmental Panel on Climate Change (IPCC) 

has reported 0.74
0
±0.18

0
C increase of global mean temperature in the 20

th
 century. It is 

observed that eleven of the twelve years between 1995-2006 ranked among the twelve 

warmest years in the instrumental record of global surface temperature (since 1850) 

(IPCC, 2007). There is evidence of the changes in the precipitation pattern in the mid and 

high latitudes of the Northern Hemisphere (Figure 1.1). 

 

1.2 Climate Change Impact on Hydrology 

 

Water is the most vulnerable resource to climate change (Minville et al., 2008; 

Srikanthan and McMohan, 2001; Xu and Singh, 2004) resulting in an increased 

evaporation due to higher temperatures, changes in the amount, variability, and frequency 

of regional precipitation. Studies related to the impact of climate change on water 

resources have shown significant changes in the mean annual discharge with any 

modification in the intensity and frequency of precipitation (Whitfield and Cannon, 2000; 

Muzik, 2001), larger changes in reservoir storage because of a modest shift in the natural 
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inflow or even a changed effect in the energy production and flood control measure due 

to any effect in the hydrologic cycle (Xu and Singh, 2004).  

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Trend of Annual Land Precipitation Amounts for 1901 to 2005 (Top, % per 

Century) and 1979 to 2005 (Bottom, % per Decade (IPCC, 2007)) 

 

Hydrologic research and modeling is largely dependent on climatological inputs due to 

the inextricable link of water with climate. Climate modeling studies involving 

anthropogenic increase in the concentration of greenhouse gases have suggested an 

increase in the frequency and intensity of climatic extremes in a warmer world (Pall, 

2011; Cubasch et al., 2001). The evidence of an altered climate has already become 
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noticeable. Recent studies related to the Canadian climate have indicated a 12% increase 

of precipitation in southern Canada during the twentieth century (Min et al., 2011; Zhang 

et al., 2000; Vincent and Mekis, 2006). Such changes can play a major role in water 

resources planning and management. The most significant impact of climate change on 

water resources is expected to be on local (basin) scale. The increase in precipitation and 

extreme events in the form of floods or droughts will demand revision of current safety 

standards and protection measures designed for extreme conditions as well as 

development and implementation of new water resources planning, design and 

management strategies. 

 

1.3 Climate Change Research Tools 

1.3.1 Atmosphere Ocean Global Climate Model 

Assessment of climate change impacts on hydrology incorporates projection of climate 

variables into a global scale, downscaling of global scale climatic variables into local 

scale hydrologic variables and computations of risk of future hydrologic extremes for 

purposes of water resources planning and management. Global scale climate variables are 

commonly projected by coupled Atmosphere-Ocean Global Climate Models (AOGCMs), 

which provide a numerical representation of  climate systems based on the physical, 

chemical and biological properties of their components and feedback interactions 

between them  (IPCC, 2007). These models are currently the most reliable tools available 

for obtaining the physics and chemistry of the atmosphere and oceans and for deriving 

projections of meteorological variables (temperature, precipitation, wind speed, solar 
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radiation, humidity, pressure, etc). They are based on various assumptions about the 

effects of the concentration of greenhouse gases in the atmosphere coupled with 

projections of CO2 emission rates (Smith et al., 2009). More information about the 

AOGCMs are presented in Appendix A. 

Extraction of climatological inputs from any global climate model can be performed by 

two simple approaches, namely (i) using the grid box information at original model 

resolution, and (ii) using interpolation to a finer resolution.  Using AOGCM values from 

the nearest grid box to the study area provides the simplest mean of extracting climate 

information. However, this method suffers from many drawbacks. Firstly, lack of 

confidence in regional estimates of climate change has led to the suggestions that the 

minimum effective spatial resolution should be defined by at least four grid boxes. 

Secondly, sites within close proximity but falling in different grid boxes while having a 

very similar baseline climate may be assigned a quite different scenario climate. 

Furthermore, a site on land may be located in a grid box defined as ocean. For these 

reasons, change fields from nearby grid boxes are interpolated to the site or the region of 

interest. This method overcomes the problems of discontinuities in change between 

adjacent sites in different grid boxes.  

The accuracy of AOGCMs decreases at finer spatial and temporal scales; a typical 

resolution of AOGCMs ranges from 250 km to 600 km, but the need for impact studies 

conversely increases at finer scales (Figure 1.2). The representation of regional 

precipitation is distorted due to this coarse resolution and thus it cannot capture the 

subgrid-scale processes required for the formation of site-specific precipitation 

conditions. While some models are parameterized, details of the land-water distribution 
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or topography in others are not represented at all (Widmann et al., 2003). Studies have 

found that the models failed to predict the high variability in daily precipitation and could 

not accurately simulate present-day monthly precipitation amounts (Trigo and Palutikof, 

2001; Brissette et al., 2006). 

A number of techniques have been developed to enhance the information from 

AOGCMs in order to bridge the gap between the climate model outputs from global to 

local scale. Downscaling, in the water resources context, is a method used to predict 

hydrologic variables at a smaller scale based on large scale climatological variables 

simulated by the AOGCMs. Poor performances of AOGCMs at local scales have led to 

the development of two basic downscaling approaches: dynamic and statistical 

downscaling. 

Dynamic downscaling approach incorporates limited area models (LAMs) where a fine 

computational grid over a limited domain is nested within the coarse grid of any 

AOGCM (Jones et al, 1995). The complicated design, inflexibility due to need of area 

specific experiments and higher computational time has restricted its use in the climate 

change impact assessment studies (Crane and Hewitson, 1998; Ghosh and Mujumder, 

2007). The statistical downscaling, on the other hand, derives regional and local 

information by determining a statistical model to relate with large scale climate variables 

to regional or local scale hydrologic variables. Further details of the downscaling 

methods are presented in Chapter 2. 
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Figure 1.2: Spatial Downscaling  

(Source: CCCSN Website; Retrieved from http://cccsn.ca/downscaling, on 3/01/2011) 

 

 1.3.2 Reanalysis Project 

The reanalysis are essentially diagnostic atmospheric models, which are used „in 

concert with observations via data assimilation‟ (Pielke, 2002). The reanalysis data are 

advantageous because they are based on the AOGCMs with a fixed dynamical core, 

physical parameterizations and data assimilation system (Castro et al., 2007). A 

reanalysis is generally a model-run constrained by observations. The space and time 

http://cccsn.ca/downscaling
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resolution of the data generated through these reanalysis projects are independent of the 

number of observations, since the areas void of observations are filled with dynamically 

and physically consistent model-generated information. Although they provide datasets 

for any period of time, it is evident that their usefulness crucially depends on the quality 

and distribution of the observations in time and space. At the same time, it is important to 

note that to date this is the most accurate way of interpolating data in time and space as 

well as a superior way to obtain dynamical consistency between different atmospheric 

variables. It is also more representative because it provides an opportunity to examine 

local effects, such as those caused by urbanization and agricultural effects (Kalnay and 

Cai, 2003).  

For any specific region if only few observations are available, the constraints to set for 

the model is considered weak and the model produces datasets based on its own 

variability. When enough observations are available, the model is more forced to follow 

the observed variability rather than its own built-in variability. Assuming that different 

datasets have their own variability, there may be instances where at least one of the 

reanalyses products does not represent the correct scenario. Comparing results from at 

least two reanalyses may offer a more correct evaluation of their performances. If the 

results agree, the observational constraint can be considered large enough to force the 

models to follow the real variability of the atmosphere. Conversely, a difference in the 

results indicates weak constraints set for that spatio-temporal domain and at least one of 

the products does not represent the correct variability (Sterl, 2004). 

With a satisfactory presentation of any region‟s variability, these gridded daily datasets 

can often be used to initialize climatic, ecological or hydrological models (Jolly et al., 
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2005; Kittel et al., 2004; Ensor and Robeson, 2008). More information on the Global and 

Regional Reanalysis project can be found in Kalnay et al. (1996) and Mesinger et al. 

(2006). 

 

1.4 Definition and Types of Uncertainties 

A proper understanding of the uncertainties resulting from human induced climate 

change will help decision makers to interpret different projected hydrologic impacts with 

confidence. Three broad areas of uncertainties have been identified by Colglazier (1991):   

 Predicting future climate 

 Predicting future impacts 

 Assessing costs and benefits of policy responses 

The first two areas, related to the present research, are described here. 

Predictions of the timing and magnitude of any future global warming are associated 

with  (i) uncertainties in estimating future anthropogenic emissions of greenhouse gases; 

(ii) understanding the resulting changes in the carbon cycle, especially the uptake of 

carbon by the oceans; (iii) understanding the dynamic climatic response with all the 

relevant feedback mechanisms, such as those from clouds and ocean currents;  (iv) 

projecting regional variations; and (v) estimating the frequency of severe events such as, 

hurricanes and droughts (Colglazier, 1991). Although the basic theory of the enhanced 

greenhouse gas effect is now well established, and the rise in carbon dioxide 

concentrations since the industrial revolution has also been well documented, there is still 

much debate regarding the timing and quantity of warming. For decades AOGCMs have 
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been used to predict these values; however there is continued uncertainty even with the 

improvements of the resolution of AOGCMs. 

The interpretation of uncertainties from climate models can be described from five 

sources. „Forcing uncertainty‟ consists of using the future elements/aspects that are not a 

part of the climate system, but have the potential to affect it. One possible form of forcing 

uncertainty arises from using climate model simulations based on different scenarios of 

future concentrations of atmospheric GHGs, which depend entirely on the actions taken 

to control the GHG emissions (Cubasch et al., 2001).  

„Initial condition uncertainty‟ involves uncertainty arising from an initial state or 

ensemble of states (Stainforth et al., 2007) applied to the climate models. It can be 

„macroscopic‟ and found in state variables with relatively large slowly mixing scales, 

such that the predicted distribution is affected by the imprecise knowledge of the current 

state of the system. „Microscopic‟ uncertainty, on the other hand, has no significant effect 

on the targeted climate distribution; the effects are only identified during weather 

forecast.   

„Model imperfection‟ describes the uncertainty that results from a limited 

understanding and ability to simulate the Earth‟s climate. It is sub-divided into two types: 

„uncertainty‟ and „inadequacy‟. „Model uncertainty‟ describes uncertainties in the most 

relevant parameter values to be used in the model (Murphy et al., 2004). It characterizes 

the impact of known uncertainties and can be large at regional scales. Climate models, in 

this respect, are considered rather complicated. Extending this from parameter values to 

parameterizations enables an improved representation of various processes within the 
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model and makes model uncertainty an extended form of the „parameter 

uncertainty‟(Kennedy and O‟Hagan, 2001). „Model inadequacy‟ results from the limited 

ability of the climate models to represent natural systems. These models provide no 

information on important processes related to climate change on decadal to centennial 

time scales, such as the carbon cycle, atmospheric and oceanic chemistry and 

stratospheric circulation. They further suffer from limited spatial resolution, inadequate 

representation of hurricanes, the diurnal cycle of tropical precipitation, characteristics of 

El Nino Southern Oscillation (ENSO) and the inter tropical convergence zone (Trenberth 

et al., 2003).  

Present research focuses on uncertainties due to inter-model variability (AOGCM 

uncertainty) and inter-scenario variability (Scenario uncertainty) arising from different 

climate experiments. 

 

1.5 Intensity-Duration-Frequency Analysis 

Reliable rainfall intensity estimates are necessary for hydrologic analyses, planning and 

design problems. The rainfall intensity-duration-frequency (IDF) curve is one of the most 

common tools for urban drainage designer. Information from IDF curves are used to 

describe the frequency of extreme rainfall events of various intensity and durations. 

According to the guideline for „Development, Interpretation and Use of Rainfall 

Intensity-Duration-Frequency (IDF) Information: A Guideline for Canadian Water 

Resources Practitioners” developed by Canadian Standards Association (CSA, 2010), 

there is a major increase in demand for rainfall IDF information: 
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 Due to increased understanding and documentation of the special heterogeneity 

of extreme rainfall patterns, the demand for “locally relevant” IDF information has 

increased  

 Expansions of urban areas have converted watersheds less permeable to rainfall 

and runoff. As a result of this, many older water systems are facing deficit and failing to 

deliver the services according to their designed capacity. For a complete understanding 

of the full magnitude of this deficit, information on the maximum inputs (extreme rainfall 

events) must be known  

 Climate change is expected to result in an increase in the intensity and frequency 

of extreme precipitation events in most regions in future. As a result, IDF values will 

optimally need to be updated more frequently than in the past and climate change 

scenarios might eventually be drawn upon in order to inform IDF calculations. 

The establishment of rainfall IDF curves typically involves three steps. First, a 

probability density function (PDF) or cumulative distribution function (CDF) is fitted to 

each group comprised of the data value for any specific duration. The maximum rainfall 

intensity for each time interval is related to the corresponding return period from the 

cumulative distribution function. For a given return period  , the cumulative frequency   

can be expressed as: 

    
 

 
                                                                                                                        

or,      
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If the cumulative frequency is known, the maximum rainfall intensity can be 

determined using an appropriate theoretical distribution function (such as Generalized 

Extreme Value (GEV), Gumbel, Pearson Type III, etc). In the presence of climate 

change, the theoretical distribution based on historical observations is expected to be 

different for the future conditions. The issue gets further complicated due to the presence 

of various uncertainties from global climate models and emission scenarios. 

 

1.6 Research Contribution 

Climate change impact studies related to hydrology suffer from the following 

limitations: 

 Limited availability of observed historical information from weather stations 

 Decade long history of the climate change impact assessment focuses on studying the 

changes of means, although extremes usually have the greatest and the most direct impact 

on our everyday lives, communities and the environment. Study on the detection of 

changes in extremes is limited and needs further investigation. 

 There is a high level of confidence that AOGCMs are able to capture large scale 

circulation patterns and correctly model smoothly varying fields, such as surface 

pressure, especially at continental or larger scales. However, it is extremely unlikely that 

these models can properly reproduce highly variable fields, such as precipitation (IPCC, 

2007; Hughes and Guttorp, 1994), on a regional scale, let alone for small to medium 

watersheds. Although confidence has increased in the ability of AOGCMs to simulate 
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extreme events, such as hot and cold spells, the frequency and the amount of 

precipitation during intense events are still underestimated.  

 In the presence of human induced warming trends added to Earth‟s natural variability, 

it is unlikely that the future distribution of climate extremes will be the same as in the 

past. 

 Downscaled outputs from a single AOGCM with a single climate change emissions 

scenario characterizes only a single trajectory of all possible realizations derived from 

different AOGCMs and scenarios and cannot be representative of future climate change. 

 Consideration of equal weights for multi-model ensemble of climate experiments 

 No quantified probability is provided with the derived results. 

Present research addresses the following important questions related to the studies of 

climate extremes: (i) how should the AOGCM outputs from different global climate 

models and scenarios be selected to assess the severity of extreme climate events? (ii) 

should climate change studies adopt equal weights from the global climate model 

information while modeling uncertainty?; (iii) what are the chances for the future extreme 

precipitation events to be more severe?. This has a huge impact in climate science, 

especially due to the differences in the structure, initialization and parameterization of the 

future climatic responses from the global climate models.  

Specific objectives of the study include:  
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 To assess the performances of the global and regional reanalysis data (stated in 

section 1.3.2)  as an addition/ alternate for (a) climate change and (b) hydrologic 

modelling studies 

 To develop a classification scheme for determining the severity of extreme 

precipitation events from the downscaled AOGCM outputs; 

 To quantify uncertainties associated with different AOGCMs and scenarios; 

 To model AOGCM and scenario uncertainties using nonparametric methods; 

 To develop intensity-duration-frequency design curves under different climates; 

and 

 To develop a probabilistic approach for future intensity-duration-frequency 

analysis. 

With a view to achieve the above goals, several methods are applied. Firstly, the 

performance of global and regional reanalysis outputs is interpolated to basin scale and 

compared with the historical observed information for their potential use in climate 

change impact studies. Next, a continuous hydrologic model is used to test the reanalysis 

outputs for hydrologic modeling.  

Secondly, AOGCM and scenario uncertainties in modeling climate change impacts are 

analyzed by two different methods. First, the Bayesian Reliability Ensemble Average 

(BA-REA) is applied to estimate uncertainties from AOGCM outputs directly. In the next 

step, a nonparametric approach is developed. It includes statistical downscaling method 

(i.e. the weather generator) for generating long series of precipitation containing future 
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climate information. To reduce the dimensionality and multi-collinearity of the 

predictors, the principal component analysis (PCA) is integrated into the weather 

generator. The non-parametric kernel density estimators are finally used to quantify 

uncertainties of the downscaled outputs. Non-parametric approach has proved to be 

competitive to the parametric methods that involve a specific distribution fit for the data 

sample. Non-parametric approaches such as, Monte Carlo simulations (Adamowski, 

1985, 1996), kernel estimators (Guo et al., 1996; Moon and Lall, 1994) are found to 

provide more accurate results when compared to log-Pearson (III) distribution and 

several tail estimators for estimating flood-frequency and low-flow quantiles. The bias 

and root-mean-square error are found to be less in the above studies, thereby suggesting 

the non-parametric methods as a viable alternative to its parametric counterparts. 

Three extreme precipitation indices are used to derive extreme precipitation 

information from the downscaled outputs. A percentile based classification scheme is 

next developed to assess the severity of the extreme precipitation events. By treating the 

annual values of each extreme precipitation indices as random in every time step, 

methodology based on data-driven kernel density estimator is used to derive the non-

parametric probability density function information for different categories of indices. 

Finally, downscaled outputs are used to design rainfall intensity-duration-frequency 

design curves for different climates. The daily outputs are disaggregated into hourly 

intervals using a disaggregation scheme and then applied in derivation of rainfall 

intensity frequency information. The generated IDF information from different climate 

model outputs are next used to derive weighted IDF curves in a probabilistic manner.  
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Recommendations for revising existing water resources management standards and 

guidelines are included.  

 

1.7 Structure of the Thesis 

This thesis is composed of six chapters, including introduction in Chapter 1. Chapter 2 

covers literature reviewed for the purpose of this research. A brief review of different 

downscaling methods, uncertainty estimation methods, their advantages and limitations, 

and approaches for developing IDF curves for assessment of climate change impact on 

hydrology have been presented. 

Chapter 3 describes the methodology along with different model parameters, used to 

develop the theoretical framework for assessment of climate change impacts. Schematics 

of the framework for each stage of the work are also presented.  

Chapter 4 emphasizes the details related to the applications of the methodology in the 

Upper Thames River basin. Technical details focusing on different databases, selection of 

appropriate inputs, parameter values, and model set-up process are explained.  

Chapter 5 summarizes the results obtained from the application of the methodologies 

for the Upper Thames River basin. First, the comparative performances of the reanalysis 

datasets are presented. Performance of multi-model uncertainty estimation method based 

on the Bayesian Reliability Ensemble Average technique is analyzed. Performance of the 

PCA integrated weather generator is next evaluated for deriving future climate signals. A 

total of 15 different scenarios are derived. They are used to estimate uncertainties using 
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non-parametric kernel estimators. The results are compared with results obtained from 

the BA-REA method. Selection of appropriate kernel method is further tested for 

examining extreme precipitation events. The results are presented in terms of probability 

density estimates. Finally, input for the development of a probability based rainfall 

intensity-duration-frequency (IDF) curves using 27 different climate signals are 

presented. 

Finally, the concluding remarks based on the major findings and recommendations for 

future works are presented in Chapter 6.  
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 CHAPTER 2  

LITERATURE REVIEW 

 

This chapter presents the literature related to climate change impact assessment studies 

in hydrology. Use of reanalysis data for water resources studies are presented in next 

section. Different downscaling techniques in terms of their application, comparative 

advantages and limitations are discussed next. Implications of different uncertainty 

estimation techniques for assessment of hydrologic variables under climate change are 

presented in the subsequent sections. Methodologies adopted for developing IDF curves 

under future climate are presented at the end.  

 

2.1 Reanalysis Hydro-Climatic Data 

Reanalysis data from different sources have shown promising potential in global 

climate research studies. In this section literature relevant to the National Center for 

Environmental Prediction and National Center for Atmospheric Research (NCEP/ 

NCAR) global reanalysis - NNGR (Kalnay et al., 1996) and the North American 

Regional Reanalysis - NARR (Mesinger et al., 2006) data is discussed. Several studies 

have compared the global reanalysis precipitation and temperature data with other 

available databases at different locations. Neito et al. (2004) compared the NNGR data 

with ECHAM4/OPYC3 and HadCAM3 models to analyze the correspondences and/or 

the discrepancies within the observed winter precipitation data during 1949-2000 for the 
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Iberian Peninsula. NNGR precipitation data effectively captured the spatial and temporal 

variability and showed a good agreement with the observed precipitation.  

Ruiz-Barradas and Nigam (2006) found a correlation coefficient of 0.99 when the 

NNGR data were compared with the observed summer precipitation to analyze the inter-

annual precipitation variability over the Great Plains, United States.  

However, while Tolika et al. (2006) found an inferior agreement between NNGR and 

observations, they also found a closer inter-annual variability when NNGR was compared 

with the GCMHadAM3P data for examining the suitability of the averaged distributions 

and the spatial and temporal variability of the winter precipitation in Greece.  

In many applications, the NNGR resolution appeared to be less satisfactory than the 

observed temperature and precipitation, especially in regions with complex topographies, 

(Choi et al 2009; Tolika et al, 2006; Rusticucci and Kousky, 2002; Haberlandt and Kite, 

1998) due to coarse resolution (250 km X 250 km) and physical parameterizations 

(Castro et al 2007).  

The recently released North American Regional Reanalysis (NARR) dataset, developed 

by Mesinger et al. (2006), designed to be “a long term, dynamically consistent, high-

resolution, high frequency, atmospheric and land surface hydrology dataset for the North 

American domain”, is a major improvement upon the global reanalysis datasets in both 

resolution and accuracy. However, due to the fact that the NARR is a recent product, it 

has not been widely evaluated.  

Nigam and Ruiz-Barradas (2006) have made an inter-comparison between two global 

[40 yr- ECMWF Re-Analysis (ERA 40) and NCEP] and regional (NARR) datasets to 
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analyze the hydro-climatic variability over the Eastern United States and found that the 

NARR data provided a realistic spatial variation of summer and winter precipitation.  

Most of the studies focused on the spatial distributions of the seasonal and/or inter-

annual variability of hydro-meteorological data. There have been only a few studies 

relevant to hydrologic modeling. Woo and Thorne (2006) used temperature and 

precipitation data from the ERA 40, NNGR and NARR as input to a macro-scale 

hydrologic model for estimating the contribution of snowmelt to discharge in the Liard 

basin in the Subarctic Canada. They found (i) a cold bias resulting in later snowmelt 

peaks and (ii) that NARR provides a better representation of the relative flow 

contribution from different sections of the basin.  

Thorne and Woo (2006) also applied three sets of climate data: (i) in-situ data from 

weather stations, (ii) NCEP/NCAR Global reanalysis data, and (iii) weather forecast data 

produced by the Canadian Meteorological Centre (CMC) as inputs to a Semi-distributed 

Land Use-Based Runoff Processes (SLURP) model. It was used to both simulate stream 

flow and to examine how the simulated flow for different parts of the basin relates to the 

measured discharge available for several sub-basins within the Liard sub-catchment.  

Choi et al. (2007, 2009) evaluated the monthly and daily reanalysis datasets to examine 

their potential as an alternative data source for hydrologic modeling in Manitoba. Their 

study revealed a satisfactory performance of the temperature data; but a weaker 

performance of the precipitation data was noticed. The study also found a superior 

performance of the NARR precipitation values when compared to that of their NNGR 

counterparts.  
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Castro et al. (2007) applied 53 years of NNGR data with dynamic downscaling using 

the Regional Atmospheric Modeling System (RAMS) to generate regional climate model 

(RCM) climatology of the contiguous US and Mexico. They compared the RAMS 

simulated data with that of the NARR, the observed precipitation and temperature data, 

and found a good agreement of the NARR data in some parts of the Great Plains. The 

literature cited above clearly indicates the potential of the reanalysis dataset for use in 

hydrologic modeling and/or climate change for studies to replicate the current climate 

regime.  

2.2 Downscaling AOGCM Outputs 

The global climate models are generally designed to simulate present climate and 

predict future climate change with forcing by greenhouse gases and aerosols. Estimation 

of hydrological processes at a regional or watershed scale based on these global scale 

models does not provide satisfactory outputs. Limitations of the AOGCMs in regional 

studies include the following: 

 Accuracy of the AOGCMs decreases at finer spatial and temporal scales; typical 

resolution of a global climate model varies between 250 km to 600 km which is still 

coarse for any watershed impact studies. 

 Accuracy of AOGCMs decrease from large scale climate variables (wind, 

temperature, humidity, sea level pressure) to the smaller scale hydrologic variables 

(precipitation, evaporation, evapotranspiration, soil moisture, discharge) due to 

simplified approximation of radiant-energy transfer and sub-grid scale 

parameterizations,  such as cloud formations and dissipation, cumulous convections 
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(thunderstorms and fair-weather cumulous clouds) and turbulence and sub-grid scale 

mixing processes. 

Outputs from climate models are, thus scaled down to a suitable level for developing 

future climate scenarios. Statistical and dynamic downscaling represent two common 

methods used for this purpose. The dynamic downscaling approaches involve (i) running 

a regional scale limited area model with coarse GCM data as geographical or spectral 

boundary conditions, (ii) performing global-scale experiments with high resolution 

Atmosphere-GCM (AGCM), with coarse GCM data as initial (as partially and boundary) 

conditions; and (iii) the use of a variable-resolution global model with the highest 

resolution over the area of interest (Rummukainen, 1997). The most common technique 

for dynamic downscaling involves utilizing Regional Climate Models (RCMs), at a much 

higher resolution (Brissette et al., 2006). AOGCM output variables are used as boundary 

inputs for the RCMs, and provide a more accurate representation of the local climate than 

the coarsely gridded AOGCM data alone. The works of Vidal and Wade (2008), Wood et 

al. (2004) and Schmidli et al. (2006) compared dynamic downscaling to other methods. A 

limitation of the dynamic approach is the scale of RCM‟s (approximately 40 km x 40 km 

according to Brissette et al., 2006), which is still too coarse for application to smaller 

basins. The computational effort required for the dynamic approach makes it impractical 

where several AOGCMs and emissions scenarios are used (Maurer, 2007). Furthermore, 

RCMs have only been produced for selected areas; moving to a slightly different region 

requires repeating the experiment (Kay and Davies, 2008). 

The second approach, namely statistical downscaling, is more popular in climate 

change impact assessments due to its computational ease and its ability to produce 
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synthetic datasets of any desired length. In this approach statistical relationships are 

developed to transfer large-scale features of the predictors (AOGCM) to regional scale 

predictands (variables). Hewitson and Crane (1992) pointed out to three underlying 

assumptions related to statistical downscaling: (i) the predictors are variables of relevance 

and are realistically modeled by the host AOGCM; (ii) the empirical relationship is also 

valid under altered climate conditions; and (iii) the predictors employed fully represent 

the climate change signal. 

Several methods of statistical downscaling can be broadly divided into three categories: 

transfer function, weather typing and weather generator. Transfer functions rely on the 

direct quantitative relationship between the global large scale and local small scale 

variables obtained from different choices of mathematical transfer functions, predictors 

or statistical fitting processes. Applications of neural networks, regression based 

methods, least square methods, support vector machines, empirical orthogonal functions 

(Zorita and von Storch, 1999), etc., fall in this category. Von Storch (1999) and Burger 

(1996), however, have indicated the issue of under-prediction of the variance related to 

regression methods for daily precipitation downscaling because of relatively low 

predictability of local amounts by large-scale forcing alone. 

Weather typing involves grouping local meteorological variables with respect to 

different classes of atmospheric circulation. Future regional climate scenarios are 

constructed either by resampling from the observed variable distribution or by first 

generating synthetic sequences of weather patterns using Monte Carlo techniques and 

resampling from the generated data. The relative frequencies of the weather classes are 

weighted to derive the mean or frequency distribution of the local climate. Climate 
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change is then determined from the changes of the frequency of the weather classes. 

Weather states are defined by applying cluster analysis to atmospheric fields (Heweitson 

and Crane, 1992; Huth, 2000, Kidson, 2000) or using subjective circulation classification 

schemes (Bardossy and Caspary, 1990; Jones et al, 1995). The similar weather patterns 

are grouped according to their nearest neighbours or a reference set (Wilby et al, 2004). 

The predictand is then assigned to the prevailing weather state and replicated under 

changed climate conditions by resampling or regression functions (Wilby et al, 2004; 

Corte-Real et al, 1995). 

Stochastic weather generators simulate weather data to assist in the formulation of 

water resource management policies. They are essentially complex random number 

generators, which can be used to produce a synthetic series of data. This allows the 

researcher to account for natural variability when predicting the effects of climate 

change. Table 2.1 presents a summary of the relative advantages and limitations of 

different statistical downscaling models. Weather generators have an advantage over 

other downscaling methods because by producing long duration rainfall series, it is 

possible to examine rare events and extremes in the river basin (Brissette et al., 2007; 

Diaz-Nieto and Wilby, 2005; Wilks and Wilby, 1999). The underlying assumption of 

weather generator is that the past (control experiment) would be a representative of the 

future. It is, however, difficult to guarantee that the statistical relationship derived from 

current climate will remain same for future in the presence of climate change (Hewitson 

and Crane, 1996; Schulze, 1997; Joubert and Hewitson, 1997). Weather generators are 

believed to have difficulty in representing low frequency variances; however, this issue 

can be alleviated to some extent by conditioning the parameters on the large –scale state.   
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Table 2.1: Summary of Statistical Downscaling Approaches (Wilby et al., 2004) 

Method Advantages Limitations 

Transfer 

function 

 Straightforward to apply 

 Employs full range of available 

predictor variables 

 Availability of software and solutions 

 Poor representation of 

observed variance 

 May assume linearity 

and/or normality of data 

Weather 

typing 

 Provides physically interpretable link 

to the surface climate 

 Versatility 

 Composite for analysis of extreme 

events 

 

 Requires additional task 

of weather classification 

 Circulation-based 

schemes can be insensitive 

to future climate forcing 

 May not capture intra-

type variations in surface 

climate 

Weather 

generator 

 Production of large ensembles for 

uncertainty analysis or long simulations 

for extremes 

 Spatial interpolation of model 

parameters using landscape in regions 

with sparse data 

 Capability of generating sub-daily 

information 

 Ability to alter the parameters in 

accordance with scenarios of future 

climate changes- changes in variability as 

well as mean changes 

 Arbitrary adjustment of 

parameters for future 

climate 

 Unanticipated effects to 

secondary variables of 

changing precipitation 

parameters 

 Most are designed for use 

independently at individual 

locations and few of them 

account for the spatial 

correlation of climate  

 

Parametric, empirical or semi-parametric, and non-parametric (Brissette et al., 2007) 

weather generators are commonly used by the scientific community. In most parametric 

weather generators, a Markov chain is used to determine the probability of a wet or dry 

day and a probability distribution is assumed to determine the amount of precipitation 

(Kuchar, 2004; Hanson and Johnson, 1998). Most of the parametric weather generators 

are extensions of Richardson‟s WGEN, which was developed in 1981 (Richardson, 
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1981). Some examples of the parametric weather generators successfully employed using 

the Richardson approach are CLIGEN, WGENK, GEM, WXGEN, and SIMMENTO 

(Kuchar, 2004; Schoof et al., 2005; Hanson and Johnson, 1998; Soltani and 

Hoogenboom, 2003). Hanson and Johnson (1998) compared outputs from GEM to 

historical data using the means and standard deviations. Results showed that simulated 

total precipitation values were significantly underestimated for some months, and annual 

precipitation values were considerably smaller than the historical record (Hanson and 

Johnson, 1998). A study employing the SIMMENTO weather generator found that the 

variability (standard deviations) of wet fractions and amounts were significantly 

overestimated by the synthetic historical series (Elshamy et al., 2006). A major drawback 

of the parametric approach is that the Markov chain takes into account only the previous 

days‟ weather, not the subsequent past observations. As a result of this, the rare events, 

such as droughts or wet spells are not adequately produced (Sharif and Burn, 2007; 

Semenov and Barrow, 1997; Dibike and Coulibaly, 2005). Another limitation of the 

parametric weather generators is that an assumption must be made about the probability 

distribution of precipitation amounts, and different distributions do not give similar 

results (Sharif and Burn, 2007). Furthermore, the weather generators cannot be easily 

transferred to other basins as their underlying probability assumptions would change 

(Sharif and Burn, 2006). The computational effort is also significantly higher than other 

methods since many parameters must be estimated and statistically verified (Mehrotra et 

al., 2006). Parametric weather generators are less easily applied to multiple sites as 

simulations occur independently and thus spatial correlations would have to be assumed. 
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Semi-Parametric or Empirical weather generators include LARS-WG and the Wilks 

model, SDSM (Semenov and Barrow, 1997; Wilks and Wilby, 1999). LARS-WG differs 

from the parametric approaches described above because it employs a series-approach in 

which the wet and dry spells are determined by taking into account the observed values 

and assuming mixed-exponential distributions for dry/wet series as well as precipitation 

amounts (Semenov and Barrow, 1997). The wet/dry day status is first chosen, and then 

the amount is chosen conditional on the status. As such, the LARS-WG is able to 

satisfactorily reproduce wet and dry spells, unlike the parametric weather generators 

(Dibike and Coulibaly, 2005). Wilks (1998) improved the parametric models of 

Richardson (1981) by introducing Markov-chains of higher order that have a better 

“memory” of the preceding weather. The Richardson (1981) model was further extended 

for multi-site applications by using a collection of single site models in which a 

conditional probability distribution is specified and thus spatially correlated random 

numbers can be generated (Mehrotra, 2006; Wilks, 1998). A drawback to these empirical 

approaches is that there is still a subjective assumption about the type of probability 

distribution for precipitation amounts and spell lengths, and the spatial correlation 

structure is empirically estimated for use with multiple sites. 

Non-parametric weather generators are computationally simple and do not require any 

statistical assumptions to be made. They work by using a nearest-neighbor resampling 

procedure known as the K-NN approach (Sharif and Burn, 2007; Brandsma and 

Buishand, 1998; Beersma et al., 2002; Yates et al., 2003). The nearest neighbor algorithm 

works by searching the days in the historical record that  have similar characteristics to 

those of the previously simulated day, and then randomly selecting one of these as the 
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simulated value for the next day (Beersma et al., 2002). This approach is easily used in 

multi-site studies because the values are simulated concurrently, thus spatial correlation is 

preserved (Mehrotra et al. 2006). The K-NN algorithm has been successfully used for 

multi-site hydrological impact assessments in the Rhine Basin, accurately preserving 

spatial correlation and climatic variability (Beersma et al., 2002; Brandsma and 

Buishand, 1998). Apipattanavis et al. (2007) compared a K-NN to a semi-parametric 

weather generator. Box plots of wet-spell lengths showed that for some months the semi-

parametric model could not reproduce maximum wet spell lengths, and average spell 

lengths were underestimated for the traditional K-NN model. A major limitation to the K-

NN approach is that the values are merely reshuffled, thus no new values are produced 

(Sharif and Burn, 2007). Climatic extremes are essential in predicting flooding events in 

response to climate change, thus Sharif and Burn (2007) modified the K-NN algorithm to 

produce unprecedented precipitation amounts by introducing a perturbation component in 

which a random component is added to the resampled data points (Sharif and Burn, 

2007). Monthly total precipitation and total monthly wet day box plots were used to 

evaluate the performance of the Modified K-NN algorithm. The algorithm was able to 

satisfactorily reproduce the statistics of the original dataset while adding variability, 

which is crucial in hydrologic impact assessments (Sharif and Burn, 2007). Prodanovic 

and Simonovic (2006) altered the modified K-NN algorithm of Sharif and Burn (2007) to 

account for the leap year. In order to allow for more variables for an improved selection 

of nearest neighbor, principal components are added in the weather generator (WG-PCA) 

(Eum et al., 2009). With the inclusion of more variables and perturbations, the updated 
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model is expected to more accurately define both present day climate conditions and also 

to produce estimates of future climate scenarios. 

  However, studies have indicated that the task of downscaling can sometimes become 

challenging due to the absence of proper station measurements. Gridded databases, such 

as the National Center for Environmental Prediction – National Center for Atmospheric 

Research (NCEP-NCAR) Global Reanalysis – NNGR (Kalnay et al., 1996) and the North 

American Regional Reanalysis – NARR (Mesinger et al., 2006) can be viable alternatives 

for alleviating these limitations of missing data and spatial bias resulting from uneven 

and unrepresentative spatial modelling (Robeson and Ensor, 2006; Ensor and Robeson, 

2008). The reanalysis data are advantageous in impact studies because they are based on 

the AOGCMs with a fixed dynamic core, physical parameterizations and data 

assimilation systems (Castro et al., 2007).  

Global (NNGR) and regional (NARR) reanalysis databases are also gaining use in 

uncertainty assessment studies. In many of their applications, however, the NNGR 

resolution (250 km × 250 km) is not satisfactory, especially in regions with a complex 

topography (Choi et al., 2009; Tolika et al, 2006; Rusticucci and Kousky, 2002; 

Haberlandt and Kite, 1998; Castro et al., 2007). The NARR dataset (Mesinger et al., 

2006) is a major improvement upon the global reanalysis datasets in both resolution and 

accuracy. Literature related to an inter-comparison between the global and regional 

datasets (Nigam and Ruiz-Barradas, 2006; Woo and Thorne, 2006; Castro et al., 2007; 

Choi et al., 2007 and 2009) shows better agreement of NARR data.  
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2.3 Multi-Model Ensembles in Uncertainty Research 

In recent years, quantifying uncertainties from AOGCM choice and scenario selections 

used for impact assessments has been identified as critical for climate change and 

adaptation research. Climate change impact studies derived from AOGCM outputs are 

associated with uncertainties due to „incomplete‟ knowledge originating from insufficient 

information or understanding of the relevant biophysical processes, or a lack of analytical 

resources. Examples of uncertainty include the simplification of complex processes 

involved in atmospheric and oceanographic transfers, inaccurate assumptions about 

climatic processes, limited spatial and temporal resolution resulting in a disagreement 

between AOGCMs over regional climate change, etc. Uncertainties also emerge due to 

„unknowable‟ knowledge, which arises from the inherent complexity of the Earth system 

and from our inability to forecast future socio-economic and human behavioral patterns 

in a deterministic manner (New and Hulme, 2000; Allan and Ingram, 2002; Proudhomme 

et al., 2003; Wilby and Harris, 2006; Stainforth et al., 2007; IPCC, 2007, Buytaert et al, 

2009). Selection of the most appropriate AOGCM for the realization of future climate 

depends on user‟s ability to assess the model‟s strengths and weaknesses, the inability of 

which is recognized as one of the major sources of uncertainty (Wilby and Harris, 2006, 

Ghosh and Mujumdar, 2007; Tebaldi and Smith, 2010). 

In most of the climate change impact assessment studies, single AOGCMs have been 

used for predicting future climate. It is well understood that in the current context of huge 

uncertainties, the utilization of a single AOGCM may only represent a single realization 

out of a multiplicity of possible realizations, and therefore cannot be representative of the 

future. So, for a comprehensive assessment of future changes in climate conditions, it is 
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important to use collective information by utilizing all available models and by 

synthesizing the projections and uncertainties in a probabilistic manner. 

Studies that used multiple climate model information, however, cannot be found in 

abundance. Of the literatures available, one of the common approaches is the use of 

reliability estimates to multi-model ensembles. New and Hulme (2000) presented 

quantified uncertainties associated with climate change within a probabilistic framework. 

A hierarchical impact model based on Bayesian Monte Carlo simulations was developed 

to define posterior probability distributions for addressing uncertainty about future 

greenhouse gas emissions, the climate sensitivity and limitations and unpredictability in 

global climate models.  

Raisanen and Palmer (2001) treated the AOGCM outputs as equally probable 

realizations and determined probabilities of climate change by computing the fraction of 

ensemble members in which the differential properties of models, such as bias and rate of 

convergence was disregarded. Probabilities of temperature and precipitation related to 

events defined for 20 year seasonal means of climate were studied. A cross verification 

exercise was used to obtain an upper estimate of the quality of the probability forcing in 

terms of skill score, reliability diagram and potential economic value.  

Giorgi and Mearns (2003) confronted the approach undertaken in Raisanen and Palmer 

by introducing the „Reliability Ensemble Averaging (REA)‟ technique, which considered 

the reliability-based likelihood of realization by models to calculate the probability of 

regional temperature and precipitation change. The method was applied to a set of 

transient experiments for the A2 and B2 IPCC emission scenarios with nine different 
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AOGCMs. Probabilities of surface air temperatures and precipitation were calculated for 

10 regions on a sub-continental scale. REA was proved to be more flexible in assessment 

of risk and cost in regional climate change studies.  

Tebaldi et al., (2004, 2005) used Bayesian statistics to estimate a distribution of future 

climates through the combination of past observational data and the corresponding 

AOGCM simulated climates. This technique was motivated by the assumption that an 

AOGCM ensemble represents a „sample of the full potential climate model space 

compatible with the observed climate using probability distributions (PDFs)‟ at a regional 

scale. The method used two major criteria: bias and convergence that the REA method of 

Giorgi and Mearns (2003) quantified to assess model reliability. The ensembles of 

AOGCMs thus combined by their performances based on current climate and a measure 

of each model‟s agreement with the majority of ensemble. Tebaldi et al. (2005) further 

applied the same method using surface mean temperatures from nine AOGCMs, each run 

under A2 scenario aggregated over 22 regions and two 30 year average corresponding to 

current and future climate conditions to account for seasonal variations. Probabilistic 

approach thus appeared to be an important platform for estimating uncertainties from 

multi-model outputs.   

Recently, Smith et al. (2009) extended the work of Tebaldi et al. by introducing the 

univariate approach to consider one region at a time. They are still using a multivariate 

approach, including cross validation, to confirm the resemblance of the Bayesian 

predictive distributions. Other literature on Bayesian methods in multi-model ensembles 

includes work from Allan et al. (2000), Benestad (2004), Stone and Allan (2005), and 

Jackson et al. (2004).  
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Another class of new but promising uncertainty estimation methods incorporates the 

downscaling of AOGCM scenarios and quantifying uncertainties by separately weighting 

outputs from different AOGCMs at every time step based on their performances. The 

results can be presented in a probabilistic framework. Wilby and Harris (2006) developed 

a probabilistic framework to combine information from four AOGCMs, two greenhouse 

scenarios where the AOGCMs were weighted to an index of reliability for downscaled 

effective rainfall. A Monte Carlo approach was adopted to explore components of 

uncertainty affecting projections for the river Thames for 2080s. The resulting cumulative 

distribution functions appeared to be most sensitive to uncertainty in (i) the selection of 

climate change scenarios, and (ii) the downscaling of different AOGCMs. Ghosh and 

Mujumdar (2007) used NNGR to develop a methodology to assess AOGCM uncertainty 

for examining future drought scenarios in a nonparametric manner using orthonormal 

method. The results showed promising aspects in comparison to other parametric/semi-

parametric methods. 

 

2.4 Intensity-Duration-Frequency Analysis 

Literature related to intensity-duration-frequency (IDF) curves concentrates on 

developing appropriate distribution of fit, comparison of sampling techniques and 

generation of IDF information under climate change. 

Interesting research is emerging on the development of alternative methods, other than 

the distribution fit, for developing IDF values. Huard et al. (2010) applied a Bayesian 

analysis to the estimation of IDF curves. Comparison of the Bayesian and classical 

approach using GEV distribution using peak over threshold (POT) method indicated the 
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extent of uncertainties in the IDF curves. Svensson et al. (2007) made an experimental 

comparison of methods for estimating rainfall IDF from fragmented records for 

Eskdalemuir, Scotland. Three different methods were applied to cope with the missing 

data in the annual and monthly series: (i) using only years/months with complete records; 

(ii) using only years/months with complete records with not more than 20% missing data; 

and (iii) using censored data from months where records are incomplete. The result 

recommends the use of monthly maxima for calculating return period rainfall allowing up 

to 20% of missing data in each month. Despite the fact that over a decade long research 

have been investigating for alternate methods for IDF development, studies related to 

developing IDF curves incorporating climate change are limited.  

Estimations of future modifications in rainfall due to increase in greenhouse gas 

concentrations depend on response from global climate models. Studies have related 

statistical downscaling with outputs from global and regional climate model outputs. 

Nguyen et al. (2007a, b) and Desramaut (2008) presented a spatial-temporal downscaling 

method based on scale invariance technique for constructing IDF relations using outputs 

from two GCMs (HadCM3 A2 and CGCM2 A2) for future climate. The spatial 

downscaling methodology based on SDSM was used to generate daily precipitation data. 

The temporal scaling was performed for extreme value distribution factors based on 

current historical rainfall distribution. The studies found large differences in future IDF 

values between two the models.  

Prodanovic and Simonovic (2007) developed IDF curves for current and future climate 

for city of London using a K-NN based weather generator. Future rainfall derived for the 

wet (CCSRNIES B21) scenario projected 30% increase in rainfall magnitude for a range 
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of durations and return periods. More recently Simonovic and Peck (2009) used all the 

available rainfall data for different durations for developing IDF information under the 

wet climate change scenario. The 24 hr duration rainfall was modified by applying 

moving window procedure to recreate maximum 24 hour rainfall events crossing the 

calendar day boundary. Their study indicated 10.7% to 34.9% change in IDF information 

for 2050s.   

Coulibaly and Shi (2005) used outputs from CGCM2 B2 to develop IDF curves for 

Grand River and Kenora Rainy River regions in Ontario using statistical SDSM 

downscaling methodology. Their study found an increase in the range of 24-35% in the 

rainfall intensity for 24 hour and sub-daily durations for all stations of interest for 2050s 

and 2080s with decreases in 2020s. 

Mailhot et al. (2006, 2007) used outputs from Regional Climate Models (RCMs) 

(CRCM A2) for developing IDF for different durations for May-October over Southern 

Quebec using regional frequency analysis. The results were obtained for the RCM grid-

box scale ranging over 45 km distances in between the two grids. Projected rainfall 

showed 50% decrease by 2050s for 2 and 6 hour durations and 32% decrease for 12 and 

24 hour durations than the base climate (1961-1990). The results indicated limitation of 

using grid box scale and acknowledged that the results may be improved by using point 

estimates.  

Onof and Arnbjeg-Nielsen (2009) used an hourly weather generator approach with 

disaggregation to derive IDF values from hourly rainfall data. Future hourly data was 

obtained from RCM A2 scenario with a 10 KM x 10 KM resolution for 2050s. The 
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limitation of the study includes the stationarity assumption that the ratio of areal to the 

point estimates will remain unchanged with any changes in the climate.  

Literature related to developing IDF values incorporating climate change from 

AOGCM models suffers from: 

(i) Limitations of statistical downscaling approaches: Downscaling approaches such as 

SDSM or most of the weather generators assumed to have stationary climate. One 

possible way to overcome such issue is to perturb the model to generate values to achieve 

outputs beyond the range of inputs, which can be easily included in the weather 

generator. 

(ii) Application of sub-daily scaling factors to daily precipitation data and 

uncertainties: Use of historical hourly data can prevent this issue.    

(iii) Use of single AOGCM response: In all the literature listed above, single AOGCMs 

have been used for predicting future climate. It is well understood that in the presence of 

significant uncertainties, utilization of a single AOGCM may represent one of all possible 

outcomes and cannot be representative of the future. So, for a comprehensive assessment 

of the future changes, it is important to use collective information by utilizing all 

available AOGCM models, synthesizing the projections and uncertainties in a 

probabilistic manner. 

(iv) Appropriate distribution fit for the future: In presence of human induced warming 

trends added to Earth‟s natural variability, it is unlikely that the present precipitation or 

rainfall pattern will comply with the future. Differences in the initializations and 

parameterizations of different climate model responses make it more complex to assume 

a specific distribution for all possible outcomes.  
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CHAPTER THREE  

METHODOLOGY 

 

This chapter details with theoretical frameworks for developing the models and 

algorithms used in the study. They are divided into three major sections: (i) assessment of  

hydro-climatic reanalysis data for climate change and hydrologic modeling; (ii) 

estimations of AOGCM and scenario uncertainties using fixed weight (Bayesian 

reliability ensemble average) and variable weight (weather generator, kernel density 

estimator, extended kernel density estimators) methods; and (iii) development of 

probability based intensity-duration-frequency curves under climate change (weather 

generator, disaggregation algorithms, weighted kernel estimator). 

 

3.1 Assessment of Reanalysis Data  

In mountainous, remote regions, or even at stations with large amounts of missing data, 

the task of hydrologic modeling is a major challenge due to the lack of observed 

information. Hydrologic impact studies dealing with climate change also require a data 

base long enough to be used as a supplement or addition with the historical data. With 

their more refined spatial and temporal coverage, the NCEP reanalysis data may be used 

effectively in data scarce regions (Reid et al., 2001).  

Hydrologic models are conceptual representations of a part of the hydrologic cycle used 

for prediction and understanding of hydrologic processes operating within a basin. Detail 
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analysis of hydrologic exposure requires use of a calibrated hydrologic model to 

transform meteorological input (temperature, precipitation) into hydrological input 

(stream flow). Hydro-climate data from NCEP are thus applied as input to a continuous 

hydrologic model to generate stream flow for selected locations within the study area of 

interest. The following section explains different modules of the hydrologic model 

considered in this study. 

3.1.1 Hydrologic Modeling 

The continuous based hydrologic model captures land based physical processes of the 

hydrologic cycle (Bennett, 1988). It takes the soil moisture balance into consideration 

over a long term period and is useful mostly for simulating the daily, monthly and 

seasonal rainfall runoff processes for the basins with a large amount of pervious lands 

(Ponce, 1989). The continuous model needs detailed information of long term moisture 

losses due to evaporation and evapotranspiration. A typical continuous hydrologic model 

constitutes a combination of methods to describe conversion of excess rainfall into direct 

runoff, baseflow, channel/reservoir routing, together with losses due to movement of 

water through vegetation, surface, soil and ground water (Ponce, 1989). The continuous 

hydrologic model component used in this study is based on the United States Army Corps 

of Engineers, Hydrologic Engineering Center‟s Hydrologic Modeling System (HEC-

HMS).  

The HEC-HMS is designed for rainfall-runoff modeling for solving a wide range of 

problems at diverse geographic locations, although most of its applications have been 

limited to the North American basins. HEC-HMS has been successfully used for around 
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three decades and is recognized by the hydrologic community (Prodanovic, 2008). The 

model consists of three modules (Figure 3.1): (i) meteorologic module (which includes 

methods describing precipitation and/or evaporation); (ii) basin module (consisting of 

methods describing the physical properties of a catchment); and (iii) control module 

(where start and end times of a simulation are specified). The meteorologic and basin 

modules consist of a collection of methods allowing the user to specify and describe 

climatic and physical properties of the basin. For example, different loss methods (i.e., 

representing evaporation and/or evapotranspiration) are available depending on whether  

the user wishes to study the short (event) or long (continuous) term hydrologic 

characteristics of the basin. Detailed information about the structure of the model is 

available in USACE (2006). 

The snow module: Precipitation and temperature from various sources are used as 

inputs in the hydrologic model. The regularly spaced reanalysis database is interpolated 

to the irregularly spaced sub-catchments within the basin that take precipitation as input. 

In this study, the Inverse Distance Weighting (IDW) method has been used for 

interpolating precipitation and temperature reanalysis data from their respective grids to 

sub-catchment grids. This method is widely used and recommended by the United States 

Army Corps of Engineers (Prodanovic and Simonovic 2007). For estimating the variable 

of interest using observed data, input for each weather station is separately considered 

with its coordinates (latitudes and longitudes). A search algorithm finds four closest 

stations containing data for each sub-catchment. In order to calculate the value at any 

location i, the distance is calculated between station i and its four nearest neighbors 

(denoted by d1, d2, d3, d4). 
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Figure 3.1: Flow Chart of Continuous Hydrologic Modeling using Reanalyses Data 
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Next, weights are computed for each of the closest neighbors and are assigned in 

inverse proportion to the square distance from i. Thus the closer the neighbor to the node 

j, the greater the weight it gets in the calculation. The weight of the closest station in the 

first quadrant is calculated by the following equation: 

   

 
  

 

 
  

  
 
  

  
 
  

  
 
  

 

                                                                                                            

where, 

    is the weight for neighbour in the first quadrant in relation to station  . 

Similar calculations are performed for all other quadrants. After all weights are 

obtained, the values at station i for each time step are estimated by:  

      ∑       

 

   

                                                                                                                     

where, 

   represents each node in a quadrant around station  ; and 

  represents the data value being interpolated.  

At the time of the development of current continuous hydrologic model by Cunderlik 

and Simonovic (2004), the snow module was not included in the original HEC-HMS 

model structure. So, the interpolated precipitation and temperature data were integrated 

into the snow module outside the HEC-HMS model to separate the solid (snow) and 

liquid (rainfall) forms of precipitation. The same approach is used in this study. The snow 

module uses the meteorological data to compute snow accumulation and melt by degree-



43 

 

day method (Cunderlik and Simonovic, 2004). The interpolated sub-basin precipitation 

and temperature values are separated into their solid and liquid forms of precipitation in 

the snow module. The snowfall is subjected to an accumulation and melt algorithm and 

produces snowmelt. It is then added to the liquid precipitation (or rainfall) and thus 

produces a new variable: „adjusted precipitation‟. The following sets of equations are 

used in this process:  

Precipitation (mm/day)    is categorized as rain and snow by the following equations:  

     

    
}                                                                                                                                                                                                

      *
         

          
+

        

}                                                                                                                        

    
     

}                                                                                                                                                                                     

where, 

          represent the measured amount of snow and rain, respectively (mm/day); 

             represents number of days with precipitation; 

          and           refer to the minimum and maximum temperature for 

below and above which snowfall and snowmelt will occur, respectively. 

The solid precipitation is then subjected to an accumulation and melt algorithm and is 

eventually converted into snowmelt. The daily amount of snow melt is calculated as: 

                                                                                                                                                                                  

where, 

   represents a parameter for snowmelt rate (mm/
0
C/day) set to 4.0; and 
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    is a critical temperature for which snowmelt process can occur and is set to zero.  

Previously obtained snowmelt is then accumulated with the converted snowmelt by the 

following equation: 

                                                                                                                                                                                                      

If snowmelt occurs (i.e. if       ) and if the accumulated snowmelt       , 

implying that only a portion of the accumulated snow is melted. It is represented by: 

                                                                                                                                                                                                                          

                                                                                                                                                                                                                     

where, 

    represents adjusted precipitation (mm/day).  

If all accumulated snow melts,  

                                                                                                                                                                                                                         

Lastly, if no snowmelt takes place, 

                                                                                                                                                                                                                                             

 

The loss module: The adjusted precipitation is further used as input into the 

precipitation loss module to obtain losses. Among the different methods of calculating 

losses available in HEC-HMS, the five layer soil moisture accounting (SMA) algorithm, 

developed by Leavesley et al. (1983), is chosen for continuous modeling of complex 

infiltration and evapotranspiration environments. The loss module is the most 



45 

 

complicated component as it simultaneously takes a large number of processes into 

consideration.  

The losses module (Figure 3.1) implements several conceptual reservoirs to represent 

the storage and movement of water in each sub-catchment of the basin. The storage 

reservoirs include: (i) canopy interception; (ii) surface interception; (iii) soil profile; and 

(iv) a number of ground water layers. The amount of water stored in each conceptual 

reservoir is regulated by the inflow and outflow rates between the reservoirs. These 

include evapotranspiration, infiltration, percolation, surface runoff and ground water 

flow. The canopy storage layer consists of precipitation captured by vegetation such as 

trees, shrubs, bushes, grasses, etc; Precipitation is the only inflow that can fill this storage 

volume. The storage layer is filled first until it reaches to the maximum capacity. 

Moisture from this layer can only be removed by evapotranspiration. Once the canopy 

layer is filled, precipitation begins to fill the surface storage, and/or to infiltrate into the 

soil. The surface storage layer corresponds to the volume of water held by shallow 

depressions and cracks on the ground surface. The storage of water infiltrates into the 

soil, as long as the soil is unsaturated. The inflow to the surface storage layer is a 

combination of the precipitation excess from the canopy layer, and its own volume that is 

left over after infiltration. 

 

The outflow from this layer consists of evaporation and surface runoff. Surface runoff 

refers to the flow produced when the surface storage layer exceeds its capacity, and 

cannot absorb water that has not already been infiltrated. During large precipitation 

events, the canopy and surface storage layer fill quickly and produce high amounts of 
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surface excess (as infiltration alone is not usually sufficient for absorbing all surplus 

precipitation). The soil profile storage refers to the top layer of the soil. Infiltrated water 

is the only inflow to this layer. Outflows represent percolation to the lower ground water 

layer and evapotranspiration. The soil storage is further divided into two zones: the upper 

zone and the tension zone. The upper zone can lose water to both percolation and 

evapotranspiration, while the tension zone loses water only through evaporation, but not 

percolation (Bennett, 1998). This is because the upper zone represents water held in the 

pores of the soil (which can freely percolate and/or evaporate), while the tension zone 

constitutes water held by capillary tension, thus making it difficult to flow and move but 

can evaporate. It should be mentioned that evapotranspiration rates from the soil vary, as 

it is more difficult to remove water held by capillary tension than water held between the 

pores of the soil. Evapotranspiration removes moisture from canopy, surface, and soil 

profile storage. In the Soil Moisture Accounting algorithm, evapotranspiration can only 

occur during periods free of precipitation. Potential evapotranspiration is calculated based 

on maximum regional monthly evapotranspiration rates, multiplied by a pan coefficient. 

Actual evapotranspiration rates are realized through a loss of moisture, first from the 

canopy, second from the surface, and lastly from the soil storage. However, actual 

evapotranspiration rates can never exceed their potential value. The water that percolates 

from the soil profile storage is used as an input to the ground water layer immediately 

beneath it. The outflows from this layer represent the ground water flow (one that is 

returned to the stream channel as baseflow), and a further percolation to either another 

ground water layer or as deep percolation representing water entering a deep aquifer. 
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The equations for the Soil Moisture Algorithm are well documented and can be found 

in Bennett (1998). 

 

Transform and Routing Modules: The transform module uses Clark‟s Method 

(USACE 2006) to convert the surface excess obtained from the SMA algorithm into the 

direct runoff. The resultant surface runoff is joined with the baseflow to produce direct 

runoff. The direct runoff is then added into the flood routing module to calculate the 

generation of a flood wave by using modified puls method ultimately producing channel 

stream flow (USACE 2006). A series of linear reservoir method is used to transform 

lateral ground water flow (obtained from SMA algorithm) into baseflow.  

 

3.2 Uncertainty Estimation Methods 

Two approaches based on fundamentally different assumptions are applied to estimate 

uncertainty in climate model projections of future precipitation under different forcing 

scenarios. First, a Bayesian based reliability ensemble average (BA-REA) approach is 

used to estimate a distribution of future climates from the combination of past observed 

and corresponding AOGCM-simulated data. Next, a methodology combining statistical 

downscaling using a principal component analysis (PCA) based weather generator 

approach and nonparametric kernel density estimation technique is developed to quantify 

the uncertainties from AOGCMs. The difference between these two approaches lies in 

the fact that the BA-REA method combines uncertainties from different AOGCMs based 

on its mean bias, so a single weight for different models is present; whereas the 
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nonparametric kernel estimator is capable of providing weights for each time step based 

on the performance of different AOGCMs.  

3.2.1 Fixed Weight Method 

Bayesian Reliability Ensemble Average 

The methodology developed by Tebaldi et al. (2004; 2005) consists of a formal 

Bayesian implementation and extension of the reliability ensemble averaging (REA) 

approach of Giorgi and Mearns (2002; 2003). It combines observed historical data and a 

multi-model ensemble of AOGCMs to compute probability density functions (PDFs) of 

future temperature and precipitation change over large regions under different forcing 

scenarios. Three components constitute the model structure: prior, likelihood, and 

posterior. The assumption is that the variability of present and future climate from 

different AOGCMs are random quantities and have different variances which are priori 

unknown. Although uninformative prior distribution has been chosen, both model-

generated and observational data are applied for calculating meaningful posterior 

distributions. The choice of an uninformative prior distribution has the advantage of 

selecting parameter estimates similar to non-Bayesian approaches, such as maximum 

likelihood. In cases where there is lack of sufficient agreement between experts to 

determine a specific prior and no data from previous studies could be incorporated, (a 

situation similar to wide range of future climate scenarios), selection of an uninformative 

prior is justified. The choice of the likelihood or distribution of the data as a function of 

any random parameters constitutes the second parameter. The AOGCM responses are 

assumed to have a symmetric distribution whose center is the „true value‟ of the variable 
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of interest, but maintains an individual variability to be a measure of how well each 

AOGCM depicts the natural variability. The prior and posterior distributions are 

combined into a joint posterior distribution using the Bayes‟ theorem. The empirical 

estimate of the posterior distribution is obtained using the Markov Chain Monte Carlo 

(MCMC) simulation by simulating samples from the posterior distribution.   

Likelihoods 

 The likelihoods for the observations of current mean precipitation     , simulations of 

present      and future      mean precipitation by the i
th

 model can be written as: 

    [      
  ]   , the likelihood of the observations of current climate 

or alternately, 

         

        [      
  ]                                                                                                                            

or alternately, 

         (assuming a common Gaussian distribution for the error terms)      

     [       
  ] 

or alternately, 

               
  

√ 
⁄    (assuming a common Gaussian distribution for the 

error terms) 
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where,  

  and   are random variables presenting the (unknown) true present and future mean 

precipitations respectively; 

     
   and     

   are considered as a measure of i
th 

AOGCM precision, and the 

estimates of natural observed variability which depends on the season, region and time 

average of the observation.  

The parameter    is fixed as the reciprocal of the squared value of the standard 

deviation of the observations.  

Random variable  , also known as the inflation/deflation parameter allows for the 

possibility of the future and the present precipitation having different variances by a 

multiplicative factor and is common to all AOGCMs.  

The alternate forms of equation 3.12 links    and    through a linear regression 

equation equivalent to assuming that         are jointly normal when parameter values 

are given and the correlation coefficient is relaxed to vary between -1 and + 1. For 

      the modified equation for    will create a direct (if positive) or inverse (if 

negative) relation between      and     . The value of    is also significant for 

representing the correlation: a value of 1 denotes the conditional independence of the 

signal of precipitation change produced by any AOGCM and     , the model bias for 

current precipitation. Values greater or smaller than 1 imply positive or negative 

correlation between them.  
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Prior Distribution 

The prior distributions are chosen for the following precision parameters: 

             have Gamma prior densities          :  

  

    
  
                                                                                                                                    

where, 

  and   are known.  

Similarly for            are assumed to be known. For the model,         

      are chosen. The true climate means μ and ν for present and future precipitation 

have uniform prior densities so that even in the case of improper priors (do not integrate 

to one) they are assumed  to have a proper posterior density function.  

Posterior Distribution 

Bayes‟ theorem is applied to the likelihood and priors. The resulting joint posterior 

distribution is given by: 

∏ *  
           

 
 ⁄    , 

  

 
                -+              , 

  

 
     

   

   -                                                                                                                                                

The above distribution does not represent any specific known parameter family. The 

posterior distribution fixes the parameters and considers a conditional posterior for others 
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to synthesize the data and the prior assumptions. For example, the distribution of µ for 

fixing all other parameters is Gaussian with:  

Mean:          

 ̃  
 ∑     

 
    

(∑   
  
   )

⁄                                                                                                             

Variance:          

(∑  

 

   

)

  

                                                                                                                                        

Similarly, the conditional distribution of   is Gaussian with 

Mean:         

 ̃  
 ∑     

 
    

(∑   
  
   )

⁄                                                                                                           

Variance:              

( ∑  

 

   

)

  

                                                                                                                                  

Equations 3.15 and 3.17 are comparable to the REA results as the weighted means of 

the 15 different AOGCMs with their scenarios and the observation with weights 

             respectively. These weights are derived by assuming parameters with 

random quantities and hence can be used for uncertainty estimation. This uncertainty will 

inflate the width of the posterior distributions of     and also the precipitation change, 

  .  

The mean of the posterior distribution of     for           is approximated as: 



53 

 

    |{                    }  
   

  
 
 
      ̃         ̃   

                      

Equation 3.19 expresses how the bias and convergence criteria are built into the model 

implicitly since the precision parameter or the weights    for each AOGCM are large 

provided that both |    | and |    | are small. |    | measures the distance of the 

i
th

 model future response from the overall average response. So the results are strictly 

constrained by their convergence into future projections determined by the weighted 

ensemble of mean. For this study,           is chosen as per Tebaldi et al. (2004, 

2005) to ensure that the contribution of the prior assumption to equation 3.19 is 

negligible.  

Using the approximation similar to equation 3.19 the posterior mean can be written as: 

    |{                    } 

 
   

  
 
 (     ̃    (    ̃         ̃ )

 
)
                                    

Next, the marginal posterior distribution is derived next using the MCMC approach. A 

large number of sample values are generated by applying the Gibbs Sampler using 

equation 3.14 for all parameters.   

 

MCMC Approach: The Gibbs Sampler  

The joint posterior distribution derived from assuming different distributions such as 

Gaussian, Uniform and Gamma in different stages does not represent any known 
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parametric family of distributions. Because they are conjugate, they allow for a closed-

form deviation of all full conditional distributions.  

Auxiliary randomization parameters    and                 are used to ensure an 

efficient simulation from student‟s t distribution within the Gibbs sampler. Fixing 

            , returns the full conditionals to the prior parameters. 

  |           (      
  
 
        

   
 

{             } )                

  |              .
   

 
 
           

 
/                                                              

  |            .
   

 
 
     {             } 

 
/                                      

 |          ( ̃ (∑        
 ∑       )

  

)                                                

 |          ( ̃ ( ∑    )
  

)                                                                                  

  |          (  ̃ ( ∑            )
  

)                                                      

 |              
 

 
   

 

 
∑    {             }                               

Simplifying, 

 ̃  
∑           ∑                    

∑        
 ∑       

                                                                

 

 ̃  
∑     {           }

∑     
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 ̂  
∑                 

∑            
                                                                                                       

From this sequence of full conditional distributions, the Gibbs sampler is coded to 

simulate iteratively. After a series of iterations, the MCMC process ignores the arbitrary 

set of initial values for parameters. Values sampled at each iteration represent a draw 

from the joint posterior distribution of interest, and any summary statistic can be 

computed to a degree of approximation that is a direct function of the number of the 

sampled values available, and an inverse function of the correlation between successive 

samples.   

The reliability of any AOGCM is measured by two criteria to form the shape of the 

posterior distribution as a consequence of assumptions formulated in the statistical 

model: mean bias of present climate and rate of convergence of the future climate models 

to weighted ensemble mean. 

 

3.2.2 Variable Weight Method 

The variable weight method is developed by combining the principal component 

analysis based k-nearest neighbor weather generator and non parametric kernel 

estimators. An overview of the methodology proposed in the work is presented in Figure 

3.2.   

Downscaling 

Stochastic weather generators simulate weather data to assist in the formulation of 

water resource management policies. The basic assumption for producing synthetic 
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sequences is that the past would be representative of the future. These sequences are 

essentially complex random number generators, which can be used to produce a synthetic 

series of data. This allows the researcher to account for natural variability when 

predicting the effects of climate change. The K-nearest neighbor based weather generator 

used in this study is developed based on Sharif and Burn (2007) and Yates et al. (2003). 

Nearest neighbor algorithms are capable of modeling non-linear dynamics of geophysical 

processes. They do not require any previous knowledge on the probability distribution of 

the input to be used. Furthermore, the temporal and spatial correlations of the input are 

preserved well in the generated data. In addition to preserving the correlation structure of 

the input data, perturbation mechanism is included to generate climate information 

beyond the limit of the historical information.  

In order to reduce multi-dimensionality and collinearity associated with the large 

number of input variables, a principal component analysis (Appendix B) has been 

integrated within the weather generator. The process requires selecting the appropriate 

principal components (PCs) that will adequately represent most of the information of the 

original dataset.  
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 Figure 3.2: Flow Chart of Uncertainty Estimation using Nonparametric Method 
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The WG-PCA algorithm with   variables and   stations works through the following 

steps (Sharif and Burn, 2007): 

1) Regional means of   variables for all   stations are calculated for each day of the 

observed data:  

 ̅   ⌊ ̅     ̅        ̅   ⌋                 {        }                                                          

     Where,  

 ̅    
 

 
∑    

 

 

   

                       {        }                                                       

                                       

2)  The user-set parameters are as follows: potential neighbors,   days long where  

            for each of   individual variable with   years of historic record, 

and a temporal window of size  . The days within the given window are all potential 

neighbors to the feature vector.   data which correspond to the current day are deleted 

from the potential neighbors so the value of the current day is not repeated. 

3)   Regional means of the potential neighbors are calculated for each day at all   

stations. 

4)   A covariance matrix,    of size     is computed for day  . 

5)  The first time step value is randomly selected for each of   variables from all 

current day values in the historic record. 

6) Next, using the variance explained by the first principal component, Mahalanobis 

distance is calculated with equation 3.33. 
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   √
          

       ⁄              {        }                                                 

      
̅̅ ̅            

̅̅ ̅   

      where, 

    is the value of the current day; 

    is the nearest neighbor transferred by the Eigen vector; 

  is the eigen vector related to the largest eigen value. 

        is the variance of the first principle component for all  nearest neighbors.  

7) The selection of the number of nearest neighbors,  , out of   potential values using 

  √ . 

8) The Mahalanobis distance    is put in order of smallest to largest, and the first K 

neighbors in the sorted list are selected (the K Nearest Neighbors). A discrete probability 

distribution is used that weights closer neighbors highest in order to resample out the set 

of K neighbors. Using equations 3.34 and 3.35, the weights  , are calculated for each of 

these   neighbor. 

   

 
 

∑
 
 

 
   

                                     {         }                                                          

Cumulative probabilities,   , are given by: 
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   ∑  

 

   

                                                                                                                                 

 9) A random number        is generated and compared to the cumulative probability 

calculated above in order to select the current day‟s nearest neighbor. If         , 

the day   for which   is closest to    is selected. However, if     , then the day that 

corresponds to   , is chosen. For     , the day that corresponds to day    is selected. 

Upon selecting the nearest neighbor, the K-NN algorithm chooses the weather of the 

selected day for all stations in order to preserve spatial correlation in the data (Eum et al, 

2009). 

10) In order to generate values outside the observed range, perturbation is used. A 

conditional standard deviation    of variable   for   station from   nearest neighbors is 

estimated. For choosing the optimal bandwidth of a Gaussian distribution function that 

minimizes the asymptotic mean integrated square error (AMISE), Sharma et al. (1997) 

reduced Silverman‟s (Silverman 1986, pp. 86-87) equation of optimal bandwidth into the 

following form for a univariate case: 

         
 
                                                                                                                           

Using the mean value of the weather variable     
 

 
obtained in step 9 and 

variance    
 
  , a new value     

 
 can be achieved through perturbation (Sharma et al. 

1997). 
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where, 

   
 
is a random variable, distributed normally (zero mean, unit variance) for day  . 

Negative values are prevented from being produced for precipitation by employing a 

largest acceptable bandwidth (Sharma and O‟Neil, 2002): 

    
    

 

      
 ⁄                                                                                                                 

where, 

 * refers to precipitation.  

If again a negative value is returned, a new value for    is generated (Sharif and Burn, 

2006). 

Nonparametric Kernel Estimators 

A practical approach to deal with AOGCM and scenario uncertainties originating from 

inadequate information and incomplete knowledge should: (1) be robust with respect to 

model choice; (2) be statistically consistent in a uniform application across different area 

scales such as global, regional or local/watershed scales; (3) be flexible enough to deal 

with the variety of data; (4) obtain the maximum information from the sample; and (5) 

lead to consistent results.  Most parametric methods do not meet all these requirements. 

The Probability Density Function (PDF) is commonly used to describe the nature of 

data (Figure 3.3). In applications an estimate of the unknown          based on 

random sample             from      is calculated in the form of    ̂   ̂   . 
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Probability density functions estimated by any nonparametric method without prior 

assumptions are suitable for quantifying AOGCM and scenario uncertainties. Several 

approaches, such as kernel methods, orthogonal series methods, penalized-likelihood 

methods, k-nearest neighbor methods, Bayesian-spline methods, and maximum-

likelihood or histogram like methods, are used throughout the relevant literature 

(Adamowski, 1985).  

 

 

 

Figure 3.3: Non-parametric Density Estimation  

(Source: http://research.cs.tamu.edu/prism/lectures/pr/pr_l7.pdf, Retrieved on 3/16/2011) 

 

A Kernel density estimation method has been widely used as a viable and flexible 

alternative to parametric methods in hydrology (Sharma et al., 1997; Lall, 1995), flood 

frequency analysis (Lall et al., 1996; Adamowski, 1985), and precipitation resampling 

(Lall et al., 1996) for estimating a probability density function.  

A kernel density estimate is formed through the convolution of kernels or weight 

functions centered at the empirical frequency distribution of the data (Figure 3.4). A 

kernel density estimator involves the use of the kernel function        defined by: 

∫         
 

  

                                                                                                                            

http://research.cs.tamu.edu/prism/lectures/pr/pr_l7.pdf
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     A PDF can thus be used as a kernel function. The Parzen-Rosenbalt kernel density 

estimate       at  , from a sample of {               } of sample size   is given by: 

  ̂    
 

 
∑

 

 
  (

    

 
)

 

   

                                                                                                         

where, 

   (
    

 
) and       is a weight or kernel function required to satisfy criteria such as 

symmetry, finite variance, and integrates to unity.  

 

 

 

 

 

  

Figure 3.4: Kernel Density Estimate based on Observations (Wand and Jones, 1995) 

 

Successful application of any kernel density estimation depends more on the choice of 

the smoothing parameter or bandwidth     and the type of kernel function     , to a 

lesser extent. 
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The bandwidth for kernel estimation may be evaluated by minimizing the deviation of 

the estimated PDF from the actual one. Assuming a normal distribution for the bandwidth 

estimation, the optimal bandwidth for a normal kernel can be given by (Polansky and 

Baker, 2000): 

           ̂  
 
                                                                                                                           

where, 

 ̂ is the sample standard deviation measured by Silverman (1986): 

 ̂     {  
   

     ⁄ }                                                                                                              

 where, 

   is the sample standard deviation; and 

    is the interquartile range. 

This methodology is applied to derive the PDF of the mean monthly precipitation at 

different time steps. 

 

3.2.3 Extreme Precipitation Indices 

Simulation of extreme precipitation is dependent on resolution, parameterization and 

the selected thresholds. Sun et al. (2006) found that most AOGCM models tend to 

produce light precipitation (<10mm day
-1

) more often than observed, too few heavy 

precipitation events and much less precipitation during heavy events (>10 mm day
-1

) 

(Randall et al., 2007). The situation gets worse in the absence of any extreme 
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precipitation indices. In the IPCC (2007), several indices explaining extreme temperature 

and precipitation are proposed but most reports in the literature investigate percent 

change in the occurrence of such indices without previously accepted definition of their 

severity level.   

Three precipitation indices have been used in this study for comparing the performance 

of the AOGCMs in generating extreme precipitation amounts. These indices describe 

precipitation frequency, intensity and extremes. The highest five day precipitation, the 

number of very wet days and the number of heavy precipitation days express extreme 

features of precipitation. For very wet days, the 95
th

 percentile reference value has been 

obtained from all non-zero total precipitation events for the base climate. Heavy 

precipitation days are those days that experience more than 10 mm of precipitation. 

For Canada, due to large variation of precipitation intensities in various regions, a fixed 

threshold may not be good to assess the severity level (Vincent and Mekis, 2006). 

Accordingly, in this study the severity of these indices is classified based on percentile 

values. A percentile indicates the relative standing of data value when data are sorted into 

a numerical order, from smallest to largest. Low percentiles always correspond to the 

lower data values while higher percentiles refer to higher data values. Classification by 

percentile method offer several advantages: it is simple and computationally inexpensive; 

and it is completely data driven (does not follow any specific distribution), therefore can 

be used at any location with different precipitation patterns.  



66 

 

3.2.4 Extended Kernel Estimators 

The kernel estimator explained in section 3.2.2 is assumed to follow a normal 

distribution. This section provides an extensive evaluation of the extended kernel 

estimators based on the various methods of bandwidths selection.  

Nonparametric estimators are erroneously considered to be less accurate with small 

sample sizes (Lall et al., 1993). With the increase in sample size, the choice of estimator 

selection (parametric or nonparametric) can only be made more accurately.  

Nonparametric kernel estimators based on (i) normal kernel estimator (Silverman, 1986), 

and (ii) the orthonormal method (Efromovich, 1999) have been applied by Ghosh and 

Mujumder (2007) for assessing AOGCM and scenario uncertainties of future droughts. In 

the present study, the application of a normal kernel estimator is extended with the 

commonly used bandwidth selection methods for estimating densities and addressing 

model choice and scenario choice uncertainties. 

 Definition 

The nonparametric kernel density estimation described in section 3.2.2 is based on the 

conventional method of assuming a normal distribution function for unknown PDFs. 

Because of an uncertain future climate, it is not justifiable to assume a normal 

distribution of the PDFs. Allowing an extension for the kernel estimator by replacing the 

normal bandwidth for a data-driven procedure can better quantify the inherent 

uncertainties arising from different AOGCMs.  

The behavior of the estimator (equation 3.40) may be analyzed mathematically under 

the assumption that the data sets represent independent realizations from a probability 
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density     ). The basic methodology of the theoretical treatment aims to discuss the 

closeness of estimator  ̂ to the true density,  . Successful application of the estimator 

depends mostly on the choice of a kernel and a smoothing parameter or bandwidth.  

Figure 3.5 presents a comparison of the degree of smoothing based on a specific 

bandwidth value. A change in kernel bandwidth can dramatically change the shape of the 

kernel estimate (Efromovich, 1999).   

 

 

 

 

 

 

Figure 3.5: Kernel Smoothing 

(Source: userwww.service.emory.edu/~cmagnan/.../Kuruwita.ppt, Accessed on: 3/16/2011) 

 

For each x,  ̂    can be thought as a random variable because of it‟s dependence on 

           .  Except otherwise stated, ∑ will refer to a sum for          and ∫ to an 

integral over the range       . 

The discrepancy of the density estimator  ̂ from it‟s true density   can be measured by 

mean square error (MSE): 
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    ( ̂)   [  ̂        ]                                                                                                                                                                       

By standard elementary properties of mean and variance, equation 3.44 presents the 

mean square error as a sum of the squared bias and the variance at  . 

    ( ̂)  { [  ̂        ] }       ̂                                                                                                                                                         

In many applications a trade-off is applied between the bias and the variance; the bias 

can be reduced by increasing the variance and vice versa by adjusting the degree of 

smoothing. It can be obtained by minimizing the mean integrated squared error (MISE), a 

widely used measure of global accuracy of  ̂ as an estimator of   (Rosenblatt, 1956; 

Adamowski, 1985; Scott et al., 1981, Jones et al., 1996) and defined as:  

     ( ̂)   ∫[  ̂        ]                                                                                                                                                          

Or in alternative form, 

    ( ̂)  ∫      ̂    

                    ∫[  ̂        ]    ∫      ̂                                                                

                                                             

which gives the      as the sum of the integrated square bias and the integrated 

variance. 

Asymptotic analysis provides a simple way of quantifying how the bandwidth   works 

as a smoothing parameter. Under standard assumptions, MISE is approximated by the 

asymptotic mean integrated squared error (AMISE) (Jones et al., 1996): 
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                       (  ) (∫   
 ⁄ )

 

                                                            

where, 

      ∫       ; 

∫    ∫        ; 

  is sample size;  

  is bandwidth.  

The first term (integrated variance) is large when   is too small, and the second term 

(integrated squared bias) is large when   is too large. 

The minimizer of          is calculated as: 

         0
    

       ∫     
1

 
 

                                                                                             

Methods for Bandwidth Selection 

Data driven estimation methods are broadly classified as first generation and second 

generation methods by Jones et al (1996).  

First Generation Methods 

First generation methods used for the selection of smoothing parameter include those 

proposed before 1990. These include the rule of thumbs, least square cross validation and 

biased cross validation methods. 
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The most basic method is the „rule of thumb‟ used by Silverman (1986). The idea 

involves replacing the unknown part of       ,   (  ) in equation 3.48 with an estimated 

value based on a parametric family such as a normal distribution        . However, this 

method is known to provide an over-smoothed function (Terrell and Scott, 1985; Terrell, 

1990) and has been proven to be unrealistic in many applications. In the present study, 

     is used to denote the bandwidth based on the standard deviation in Silverman 

(1986).  

The idea of „least squared cross validation‟, first used by Bowman (1984) and Rudemo 

(1982) incorporates integrated squared error (ISE) as  

        ∫   ̂       ∫  ̂ 
   ∫  ̂   ∫                                                                 

                        

The minimizer of the ISE is the same as the minimizer of the first two terms of the final 

form. The first term is known while the second term can be estimated by 

    ∑  ̂     
 
   , where  ̂  is the leave-out kernel density estimator with    removed. 

The largest minimizer is denoted by     (Hall and Marron, 1991).  

The biased cross validation (BLCV) proposed by Scott and Terrell (1987) seeks to 

directly minimize the AMISE by estimating the unknown       in equation 3.48. It 

proceeds by selecting another bandwidth treated as the dummy variable of minimization. 

The smallest local minimizer of 

                      0 . ̂ 
 
 

     

  
/1 (∫   

 ⁄ )
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is denoted by     . 

Second Generation Method 

Second generation methods comply with those developed after 1990 such as the solve-

the-equation-plug-in approach, the smoothed bootstrap approach, etc. In this study only 

the solve-the-equation-plug-in approach is used, and hence it is described below. 

The main thought behind the „solve the equation plug in‟ approach is to plug an 

estimate of the unknown       in the equation 3.48. The major challenge is to estimate a 

pilot bandwidth. The „solve the equation‟ approach proposed by Hall (1980), Sheather 

(1983, 1986) and later refined by Sheather and Jones (1991) is used in this study. The 

smallest bandwidth,       is considered as the solution of the fixed point equation 

  [
    

  ( ̂    
 ) ∫      

]

 
 

                                                                                                           

                                                                         

The major difference between the BLCV and SJPI approaches lies in the expression of 

the form      which provides a better representation of      . It is done by estimating 

an analogue of         for estimating       by  ( ̂ 
 ). 

The minimizer of the asymptotic mean squared error (AMSE) is expressed as:  

        {       }       
 
                                                                                                    

                                             

for suitable functional    and   . The expression of   in terms of   comes from solving 

the representation of        for   and substituting to get 
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       {              }      
 
                                                                                         

                                                       

for appropriate functionals   ,   . The unknowns        and         are estimated by 

   ̂    and    ̂    , with bandwidths chosen by reference to a parametric family, as for 

    .  

While many variations have been tested for the treatment of     ̂    and    ̂    , the 

major literature contribution has been to try to reduce the influence of the normal 

parametric family even further by using pilot kernel estimates instead of normal 

interference (Jones et al., 1996). Park and Marron (1990) has shown the improvements in 

terms of the asymptotic rate of convergence up to a certain point.  

Figure 3.6 presents a comparison of mean square error (MISE) and density estimates 

using different types of bandwidths on a      scale taken from randomly generated 500 

Monte Carlo replications of samples of size from two different distributions: (a)        

and (b)     (     ⁄ )           ⁄  . It is seen that although the cross validation      

is capable of providing the least MISE, it has a tendency of providing substantial 

skewness at the tail and      suffers oversmoothing problem. The plug-in (PI) estimate 

      accounts for an acceptable error and adequate density estimates of the sample. 

Furthermore, unlike the cross validation bandwidths, the plug in estimate does not 

provide the minimizer value outside of the acceptable range [
     

 ⁄        ] and is 

free of generating multiple local minima (Park and Marron, 1990). 
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Figure 3.6: MISE(h) and Kernel Density Estimates of the Various Bandwidths (Park and 

Marron, 1990) 

 

3.3 Intensity-Duration-Frequency Analysis under Climate Change 

Intensity duration frequency analysis provides a convenient tool to summarize regional 

rainfall information by capturing essential characteristics of point rainfall for shorter 

durations. The methodology of developing of IDF curves for future (Figure 3.7) 

combines the use of long sequences of rainfall data from the weather generator, 

disaggregation of the daily climate data into hourly values and development of annual 

maximum precipitation using Annual Maxima Series method and fitting them into an 

appropriate distribution to calculate annual extremes for different returns periods.   
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3.3.1 Bias Correction of Downscaled Outputs 

 

The weather generator developed in section 3.2.2 is used to generate long sequences of 

daily rainfall for different climate signals. The downscaling process scales down coarse 

grid outputs of AOGCMs into the scale of interest. However, significant simulation bias 

still may exist from the initializations of atmospheric-oceanic processes. Hence, 

employing coarse resolution global model output for regional and local climate studies 

requires an additional bias correction step based on the ability of the AOGCMs to 

reproduce the past climate. In this study, bias from the downscaled outputs is corrected 

by the following equations: 

Bias in the AOGCMs is calculated by: 

  

   
     

  
                                                                                                                               

                                                      

where, 

    is the bias from different AOGCMs; 

   is the monthly mean of observed precipitation for 1965-1990; and 

   is the monthly mean from different AOGCMs for 1965-1990. 

 

The correction factor for the AOGCMs is then calculated using, 
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Figure 3.7: Schematic Diagram of Developing IDF Curve 

Change Field 

Analysis 

Linear 

Interpolation 

Quantifying 

Uncertainty 
Plug-in 

Kernel 

Gridded AOGCM 

Outputs (27 Scenarios) 

AOGCM Outputs on 

Station Scale 

Modified Daily Output 

(27 Scenarios) 

Daily Outputs 2080s 

(27 Scenarios) 

Hourly Output 2080s 

(27 Scenarios) 

Max. Rainfall for Diff. 

Durations 2080s  

(27 Scenarios) 

IDF Curves for 2080s 

(27 Scenarios) 

IDF Curve 2080s 

(Resultant Scenario) 

Perturbed 

Unperturbed 

Disaggregation 

AMS 

Weather 

Generator 

Cross-Correlation Analysis 

Regression Analysis 

Station 

Selection 

Observed Rainfall 

(Daily) 

 

Selected Observed 

Rainfall (Daily) 

Simulated Output 

(Present) 

Simulated Hourly 

Output (Present) 

Maximum Rainfall 

for Different 

Durations (Present) 

IDF Curve for 

Present 



76 

 

 So, the treated downscaled rainfall for 2080s becomes: 

 

                                                                                                                                               

                            

where, 

   is the untreated daily downscaled rainfall for 2080s. 

 

3.3.2 Hourly Disaggregation 

 

The weather generator used in this work is set to produce climate variable on a daily 

time scale. However, examination of short duration rainfall extremes requires the input 

data to be on a finer temporal scale such as, hourly or even smaller intervals. The 

disaggregation mechanism is thus developed to produce time series of hourly rainfall data 

which will be next used for frequency analysis and generating IDF information.    

The disaggregation scheme works by extracting rainfall event records from the hourly 

observed data. A rainfall event can be defined as a period of non-zero rainfall for two or 

more days where the total amount of rainfall during the consecutive days is considered as 

the event rainfall value. Once the rainfall events are extracted from the historic record, 

they are disaggregated by a K-nearest neighbor approach. The algorithm considers daily 

rainfall produced by the weather generator for day  , for each station. A set of potential 

events are selected from the observed record. Once such event is chosen, the daily output 

is disaggregated into hourly values. 

The selection of neighboring events from the observed record follows a simple rule: 

only events within a moving window of    days are selected to account for the 
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seasonally varied temporal distribution of rainfall. Events are selected from the 

prescribed moving window from all years in the historic record of events as a potential 

set of neighbors. The daily totals from downscaled outputs are compared with the set of 

neighboring event totals to assure that only disaggregation of similar events is 

considered.  

Observed hourly data is used as a template on how the hourly values of the generated 

outputs would look like. A specific number of days are considered to compare with the 

present day value. The best match is determined by (Mansour and Burn, 2010): 

 

   √                                                                                                     

 

where,    is the daily rainfall output from weather generator,    is the historical 

observed daily rainfall,     and    are the events calculated from WG outputs and 

historical (observed) data respectively. The weights       are used to identify the best 

historical hourly ratio for the data.  

The combination of the weights, which provide the lowest    for each value within the 

window, is considered as the daily ratio of historical hourly values used to disaggregate 

the WG‟s daily data into hourly values. The ratio of the hourly values found within the 

chosen day is applied to the daily value to create a plausible hourly set-up for the given 

daily data. This is done based on the methods of fragments (Svanidze, 1977; Sharif et al., 

2007). The fragments represent the fraction of daily rainfall that occur during each hour 

of the day summing to unity and can be expressed as: 
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∑   
 
   

                                                                                                                                      

 

where, 

    represents the fragments calculated for hour  ;  

   is the chosen hourly data from observations; and 

  is the number of hours in a day equal to 24.  

The fragments are then multiplied with the daily data to produce data for each hour: 

 

  
                                                                                                                                           

                                                                                

where, 

   is the daily rainfall (mm).  

 

This program has been sent daily data that already had known hourly values and the 

results have been compared in an attempt to verify that the model works correctly. 

This approach utilizes locally observed data using a non-parametric method avoiding 

the chance of errors that might occur from the parametric methods due to theoretical 

distribution fits, parameter estimations and calibration. Additionally, there is high 

possibility that the statistical characteristics of the disaggregated rainfall are stored by 

applying the resampling algorithm.    
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3.3.3 Intensity-Duration-Frequency Analysis 

Sampling of rainfall data for estimating rainfall extremes is commonly done using one 

of the two approaches: the annual maximam series (AMS) or block maxima and peak 

over threshold (POT), or partial duration series (PDS) (Coles, 2001). Literature identifies 

limitations and advantages of both methods. Madsen et al. (1997), Buishand et al. (1990), 

and Rasmussen et al. (1994) found POT to be a better approach than AMS. While Kartz 

et al. (2002), Smith (2003), de Michele and Salvadori (2005) suggested use of both 

methods. By definition, AMS approach includes the yearly peaks in the observational 

period while the POT involves all the peak events that exceed a given threshold value. 

The AMS method is more straightforward. If the number of annual maxima is small 

(<100), the obtained estimates may be sensitive to outliers. It is an asymptotic method 

that works well if the number of inputs from which a maximum is considered, is large. 

Jeruskova et al. (2006) showed that convergence to limit any distribution fit can be slow. 

For determining annual maxima, the maxima of 365 daily values are considered. The 

seasonal effect may also play a role. Application of POT is somewhat difficult than the 

AMS because of its selection of an appropriate threshold. For a satisfactory stability of 

the obtained results, testing of several threshold values such as 90%, 95% and 98% is 

recommended. Jeruskova et al. (2006) have shown that the POT method may work well 

for short memory series only. For longer data series, the series should be split into several 

more homogeneous groups. Both methods however, have their own disadvantages too; 

the AMS may neglect certain high values, while the POT may suffer from serial 

correlation problem (Jervis et al., 1936; Langbein, 1949; Taesombat and Yevjevich, 

1978).  
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Rainfall intensity-duration-frequency (IDF) curves are derived from the statistical 

analysis of rainfall events for a period over time and used to capture important 

characteristics of point rainfall for shorter durations. It is considered as a convenient tool 

for gathering regional rainfall information required for municipal storm water 

management works. Site specific curves represent intensity-time relationship for a 

specific return period from a series of storms.  Information is summarized by plotting the 

durations on the horizontal axis, the rate of rainfall (intensity in depth per unit of time) on 

the vertical axis and the curves for each design storm return period. Frequency is 

expressed in terms of return period, T, the average length of time between rainfall events 

that equals or exceed any given magnitude. For each selected duration, annual maximum 

rainfall is extracted from the rainfall data and frequency analysis is performed to the 

annual maximum rainfall to fit a probability distribution for standardizing the 

characteristics of rainfall for each station with varying rainfall record.  

In Canada, Environment Canada is responsible (a) for collection and quality control of 

rainfall data and (b) for providing the rainfall extreme information in the form of IDF 

curves. Gumbel Extreme Value distribution is normally used to fit the annual extremes of 

rainfall using AMS method. It is acknowledged here that due to changes in future 

precipitation extremes the future rainfall may not follow the conventionally used Gumbel 

distribution. It would be adequate to consider a generalized extreme value (GEV) 

distribution. But the inherent uncertainties in the responses of AOGCM outputs do not 

guarantee GEV as the best fit for all AOGCMs. For simplicity, and compliance with 

Environment Canada‟s procedure, use of Extreme Value (EV) type 1 which is Gumbel 

distribution is adopted in this study.  
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The Gumbel probability distribution is expressed (Watt et al., 1989): 

 

                                                                                                                                          

 where, 

        represents the magnitude of the   year event; 

     is the mean of the annual maximum series;  

    is the standard deviation of the annual maximum series; and 

     is a frequency factor depending on the return period  .  

The frequency factor     is obtained using the following equation: 

 

   
 √ 

 
[         (  (

 

   
))]                                                                                     

  Meteorological Service of Canada (MSC) uses the above method to calculate rainfall 

frequency for durations of 5, 10, 30 minutes and 1, 2, 6, 12, 24 hours. Since most of the 

stations do not have observed sub-hourly data, the calculation of the frequencies for 

periods shorter than 1 hour may be based on the ratios provided by the World 

Meteorological Organization (Ministry of Transport of Ontario, 1997): 

Duration (min) 5 10 15 30 

Ratio (n-min to 60-min) 0.29 0.45 0.57 0.79 

  

However, in the present study, durations shorter than 1 hour are not considered.  
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The IDF data is next fitted to a continuous function in order to make the process of IDF 

data interpolation more efficient i.e. if the ratio of any duration is not available, the IDF 

data is fitted to the following three parameter function: 

  
 

       
                                                                                                                                   

where, 

   presents the rainfall intensity in mm/hr; 

   is the duration of rainfall in minute; 

           are the constants.  

To obtain optimal values for these three parameters, a reasonable value of   is assumed 

and the values of   and    are estimated by the least square method. The process is 

repeated to achieve the closest fit of the data (MTO, 1997). Plots of rainfall intensity vs. 

duration for each return period is then produced from the fitted IDF data to equation 3.60.  
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CHAPTER FOUR 

APPLICATION OF METHODOLOGY 

 

4.1 Study Area: Upper Thames River Basin 

The Upper Thames River (UTR) basin (Figure 4.1) (42
0
35‟24‟‟N, 81

0
8‟24‟‟W), located 

in Southwestern Ontario, Canada, is a 3,500 km
2
 area nested between the Great Lakes 

Huron and Erie. The basin often experiences major hydrologic hazards, such as floods 

and droughts.  

 

 

 

 

 

 

 

 

 

Figure 4.1: Map of the Upper Thames River Basin 
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The population of the basin is 450,000 (2006), of which 350,000 are the residents of the 

City of London. The length of the Thames River is 273 km (from Tavistock to its mouth 

at Lake St. Clair) and average annual discharge is about 36 m
3
/sec. The basin consists of 

two majors tributaries of the river Thames: the North Branch (1,750 km
2
), flowing 

southward through Mitchell, St. Mary‟s, and eventually into London, and the South 

Branch (1,360 km
2
), flowing through Woodstock, Ingersoll, and east London. The Upper 

Thames River basin receives about 1,000 mm of annual precipitation, 60% of which is 

lost through evaporation and/or evapotranspiration, stored in ponds and wetlands, or 

recharged as groundwater (Prodanovic and Simonovic, 2006). Several weather stations 

around the basin provide point measurements of weather variables including daily 

temperature and precipitation. The basin has a well documented history of flooding 

events dating back to the 1700s (Prodanovic and Simonovic, 2006). High flows occur 

mostly in early March after snowmelt, and then again in July and August as a result of 

summer storms. Khaliq et al. (2008) reported that in the Canadian regime, low flow 

conditions show a seasonal behaviour: summer low flow from June to November and 

winter low flow from December to May. The UTR basin experiences frequent low flow 

conditions between June and September (Prodanovic and Simonovic, 2006). 

 

4.2 Assessment of Reanalysis Data  

 

 As part of the present research, Solaiman and Simonovic (2010) performed a rigorous 

comparison of the two different reanalysis datasets for climate change impact studies and 

hydrologic modeling in the Upper Thames River basin. The data description, the 
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hydrologic model setup process and criteria used for evaluating model performances are 

presented next. 

 

4.2.1 Data Description 

For comparison, the following data sources were taken into account: 

 Observation 

Daily observed precipitation and temperature data covering the UTR basin (Table 4.1 

and Figure 4.2) for the period of 1980 – 2005 is collected from Environment Canada 

(http://climate.weatheroffice.ec.gc.ca/climateData/canada_e.html).  

Table 4.1: Weather Stations in Upper Thames River Basin 

Serial 
Station 

Name 

Location  

Variables Latitude 

(
0
N) 

Longitude 

(
0
W) 

Elevation 

(m) 

1 Blyth 43.72 81.38 350.50 Prec, Tmax, Tmin, Tmean 

2 Dorchester 43.00 81.03 271.30 Prec 

3 Exeter 43.35 81.50 262.10 Prec, Tmax, Tmin, Tmean 

4 Folden 43.02 80.78 328.00 Prec, Tmax, Tmin, Tmean 

5 Glen Allan 43.68 80.71 400.00 Prec, Tmax, Tmin, Tmean 

6 London A 43.03 80.15 278.00 Prec 

7 St. Thomas 42.78 81.17 209.10 Prec, Tmin, Tmean 

8 Stratford 43.37 81.00 345.00 Prec, Tmax, Tmin, Tmean 

9 Waterloo A 43.46 81.38 317.00 Prec, Tmax, Tmean 

10 Woodstock 43.14 80.77 281.90 Prec, Tmax, Tmin, Tmean 

11 Wroxeter 43.86 81.15 335.00 Prec 

(Data source: National Climate Data and Information Archive of Environment Canada                              

http://climate.weatheroffice.ec.gc.ca/climateData/canada_e.html, Retrieved on 14/11/2007) 

 

 

http://climate.weatheroffice.ec.gc.ca/climateData/canada_e.html
http://climate.weatheroffice.ec.gc.ca/climateData/canada_e.html
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Unfortunately, over the years only a few studies have been conducted for the purpose of 

making a reliable database and providing an adequate spatial coverage of variable 

climatic conditions within the basin. The spatial distribution of the weather stations is 

also sparse, especially in the west side of the basin, and does not cover the entire basin 

(Figure 4.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Location of the Observations and Grid Points 

 

NCEP-NCAR Global Reanalysis (NNGR) 

 The NCEP-NCAR Global Reanalysis (NNGR) is „an assimilated dataset using a state-

of-the-art analysis/forecast system and past data since 1948‟ (Kalnay et al. 1996). One 
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interesting feature of the data set is that there are no precipitation estimates of sufficient 

spatial resolution or length, and hence no station precipitation data are assimilated 

directly into the model (Reid et al. 2001). It is provided 4 times daily at 6 hour interval, 

daily and monthly values of over 80 climatic variables on 2.5° × 2.5° grid. The global 

reanalysis data for this project is made available through the Physical Sciences Division 

of the Earth System Research Laboratory of the National Oceanic and Atmospheric 

Administration (NOAA) (More information can be found from the NOAA website  

( http://www.cdc.noaa.gov/cdc/data.ncep.reanalysis.html, Retrieved on 4/7/2008). 

 

North American Regional Reanalysis (NARR) 

The NARR is an extension of the global reanalysis, that uses a very high resolution Eta 

model (0.3° × 0.3°, 32 km grid spacing, 45 layers spatially) with the Regional Data 

Assimilation System (RDAS). Most of the variables are collected 8 times daily; daily and 

monthly means are also available at 29 pressure levels. Unlike its global counterpart, the 

NARR dataset has been developed by assimilating high quality and detailed precipitation 

observations into the atmospheric analysis, which consequently made the forcing to the 

land surface model component of the system more accurate. As such, a much improved 

analysis of land hydrology and land-atmosphere interaction has become possible (Nigam 

and Ruiz-Barradas, 2006). However, one significant weakness of the NARR data when 

applied in the Canadian regions is that the daily gauge-based data it uses for assimilation 

is sparse (1 degree grid), which may be insufficient for the model to perform as expected 

(NCEP website: www.emc.ncep.noaa.gov/mmb/rreanl/narr.ppt, Retrieved on 9/11/2009). 

NARR data for this study has been made available through the Data Access Integration of 

http://www.cdc.noaa.gov/cdc/data.ncep.reanalysis.html
http://www.emc.ncep.noaa.gov/mmb/rreanl/narr.ppt
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the Canadian Climate Change Scenarios Network of Environment Canada. In order to 

assess the reanalysis data, the daily accumulated precipitation rate and the daily 

maximum, minimum and mean temperatures are considered. Data for each variable is 

collected for the period 1980–2005. The NNGR and NARR precipitation rate (kg m
-2

 s
-1

) 

data is converted to the daily total (mm day
-1

). As suggested by Reid et al. (2001) and 

Choi et al. (2007), precipitation values less than 0.5 mm/day
-1

 is considered zero in order 

to comply with the observed precipitation. Figure 4.2 and Table 4.1 present the details of 

11 stations located within and around the Upper Thames river basin. Some parts of the 

basin are poorly covered due to the lack of weather stations in those areas. In some cases, 

stations are missing records over several months of the entire study period. For any 

station with more than 15% of missing records for a specific month, that month has been 

eliminated from both station and reanalysis datasets in order to maintain consistency.  

 

4.2.2 Hydrologic Model Setup 

 

 

The hydrologic model applied to the Upper Thames River basin is described in 

Cunderlik and Simonovic (2004, 2005). The model has been properly calibrated and 

verified with sensitivity analyses. The model consists of thirty-two special units, twenty 

one river reaches and three flood control reservoirs (Wildwood, Fanshawe and Pittock) 

(Figure 4.3). Each sub-basin is represented by rectangles and is provided with 

interpolated reanalysis data. The outputs of each sub basin are flow hydrographs joined 

by junctions (circles) where the flows are added together. River reaches represent the 

major rivers and streams in the basin and are shown as thick lines connected between two 
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junctions. The routing module described in section 3.1.1 is applied to each river reach, 

and thus acts as a passage of a flood wave as it moves through the river system. 

Reservoirs are depicted as triangles and the same routing rules are applied here. The 

model is seasonal in nature with different set of parameters for the summer and winter 

seasons. The parameter sets for the summer and winter seasons are presented in 

Cunderlik and Simonovic (2004) and Prodanovic and Simonovic (2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: HEC-HMS Continuous Hydrologic Model at Upper Thames River Basin 
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4.2.3 Performance Evaluation and Error Estimation of Simulated Stream 

Flow 

Quantitative assessments of the degree to which the simulated data match the observed 

data are used to provide an evaluation of the model‟s predictive abilities. It utilizes 

numerous statistics (t and F test statistic) and techniques. Goodness–of-fit (correlation 

coefficient, r and coefficient of determination, R
2
) or relative error measurements are 

mostly used to assess the ability of the model. Unfortunately, they only describe the 

degree of collinearity between the observed and predicted values and provide a biased 

presentation of the efficiency of the model (Willmott 1981; Willmott et al. 1985; Kessler 

and Neas 1994; Legates and Davis 1997). Furthermore, they are oversensitive to extreme 

values and insensitive to additive and proportional differences between predicted and 

observed values (Legates and McCabe 1999). As a result, other statistics such as absolute 

error measures (root mean square, RMSE or mean absolute error, MAE) in terms of the 

units of the variables are developed to examine the association between observed and 

simulated data. In order for a complete assessment of the model performance, it is 

important to include at least one goodness-of-fit measure (r or R
2
) and at least one 

absolute error measures (RMSE or MAE) along with additional supplemental information 

such as a comparison between the observed and simulated mean and standard deviations 

(Legates and McCabe 1999; Willmott et al. 1985). In this study, apart from RMSE, MAE 

and r, normalized mean square (NMSE) and relative bias have also been used to assess 

the accuracy of the estimates. The NMSE measures the average magnitude of the errors 

in the predicted dataset without considering their direction, whereas the relative bias 

provides the deviation of the simulations from observations.  
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Because of the existing model and data errors, it is necessary to use appropriate criteria 

for estimating the relevant uncertainties (Sorooshian et al. 1993). In this study, only data 

uncertainty arising from the (i) inconsistency and non-homogeneity and (ii) inadequate 

representation of the reanalysis data due to space and time limitations, are assessed. The 

probability density function (PDF) provides the most complete and ideal description of 

uncertainty. However, in most practical problems such a probability function cannot be 

derived precisely (Tung 1996). Another well known approach to characterize 

uncertainties is to express it in terms of a reliability domain, such as the confidence 

interval or quartile plot with some specific level of probabilistic confidence. The 

estimation of uncertainties in terms of the model errors and quartiles around the mean and 

variances has been conducted by several authors for the purpose of analysis (Khan et al. 

2006). However, the confidence interval has inherent limitation due to it‟s inability to 

directly combine the confidence intervals of individual contributing random components 

to provide an overall confidence interval of the system (Tung 1996). Hence, an 

alternative is used by calculating the variance and mean, as a measure of  the dispersion 

of the variable of interest. In this study, the uncertainty in the simulated discharges is 

assessed in terms of model errors and percentile plots in the estimates of mean and 

variances. The process consists of several steps. Twenty six years of daily discharge 

during May-November obtained from the observed, NNGR and NARR hydro-climatic 

data are taken into consideration. At first, the presentation of the uncertainties is plotted 

using box and whisker plots where the bottom and top end of the box indicate the 1
st
 

quartile (25
th

 percentile) and 3
rd

 quartile (75
th

 percentile) of the dataset for the low flows 

during May-November, with their median in between. This is a common approach for 
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assessing the data quality and model capability and has been used by Prodanovic (2008) 

and Sharif and Burn (2006). Next, errors in the estimates of means and variances of low 

flows have been evaluated using a non-parametric statistical hypothesis test at a 95% 

confidence interval. The following sections provide the equations used to calculate the 

performance statistics and statistical tests conducted. 

Performance Evaluation Criteria 

Many model performance statistics are available in order to assess the accuracy of the 

estimates. For this particular work, the model performance and forecasting results are 

compared by a set of five statistics. A brief description of these statistics is given below. 

The Root mean square error (RMSE) which is the square root of the differences 

between the observations    and predicted values   : 

     (
 

 
∑(   
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where, 

 N is the number of observations; 

   
and    

 are observed and predicted values respectively.  

The mean square errors provide a general illustration of the relevancy of the simulated 

values by giving a global goodness to fit by including errors and biases in the calculation. 

The lower the RMSE value, the better the model. RMSE, however, doesn't necessarily 

reflect whether the two sets of data move in the same direction. For instance, by simply 



93 

 

scaling the network output, we can change the MSE without changing the directionality 

of the data. This limitation can be overcome by introducing a second index, correlation 

coefficient, r.  

The correlation coefficient (r) between an observed value    
 and a desired model 

output    
 is defined by: 
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where, 

N is the number of observations; and  

  ̅ 
 and    

 are the mean observed and predicted values respectively.  

This statistic provides a measure of the prediction ability of a model and it is an 

important tool for comparing two models as it is independent of the scale of data. The r 

value can range from -1 (perfect negative correlation) to 1 (perfect positive correlation) 

through 0 where 0 means no correlation. An r value of 0.9 and above is very satisfactory, 

0.8 to 0.9 presents a fairly good model but below 0.7 is considered unsatisfactory.  

The normalized mean squared error (NMSE) is another version of the mean square 

error which is normalized to provide for comparisons among different models (Agirre-

Basurko et al, 2006).  
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The mean absolute error (MAE) is a linear score which means that all the individual 

differences are weighted equally in the average. In short, it measures the average 

magnitude of the errors in predicted dataset without considering their direction. It can be 

expressed as: 
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For a perfect fit,    
 should be equal to    

 so that MAE becomes zero.  

The relative bias (RB) provides a measure of the magnitude of bias between the 

observed and target data. It can be expressed as: 

   

 
 

∑ (   
    

) 
   

  ̅

                                                                                                                

t and F Test Statistics 

The statistical t test is performed for investigating the means of two samples. If the test 

indicates a rejection of the null hypothesis at the        level, then the means or 

variances are considered to be statistically different. This procedure uses the null 

hypothesis that the difference between two population means is equal to a hypothesized 

value              . 

For the purpose of the test, the following hypotheses are established: 

             (the mean of the two samples are same) 

             (the mean of the two samples are different) 
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The t test performed assumes equal variances for all datasets to be tested. It is more 

powerful than the unequal variance assumptions, but can result in serious errors if the 

variances are not equal. Therefore, it is important to test whether the variances of all 

datasets are equal. Accordingly F tests are subsequently performed to determine whether 

the variances of two different datasets are significantly different. This procedure uses the 

null hypothesis that the two variances are equal, i.e.  

      
    

  

   The following hypotheses are thus established: 

      
      

 
 (the observations and the NNGR (G) or NARR (R) have equal 

variances ) 

      
      

 
 (the observations have variances smaller than the NNGR (G) or NARR 

(R)) 

The t and F test statistics for this research are calculated using Minitab statistical 

software (Minitab Inc., 2007).  

Wilcoxon Rank Sum Test and Levene’s Test 

One of the best non-parametric methods for constructing a hypothesis test p value for 

the difference of two population means is the Wilcoxon rank-sum test (Khan et al. 2006). 

It is used to check the differences of mean from two sets of samples. For hypothesis 

testing, both samples are combined into a single ordered sample and ranks are then 

assigned to the sample values from smallest to the largest, irrespective of the source of 

the samples. The test statistic can be the sum of the ranks assigned to those values from 

one of the populations. 
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Given two random samples            and          , the Wilcoxon rank 

sum statistic is defined by computing the ranks   ,          for the combined sample 

{                  }, where      . Then  

   ∑  

 

   

                                                                                                                                       

A smaller sum of the samples provides the indication that the values of that specific 

population tend to be smaller than the other population and hence, the null hypothesis of 

no differences between populations may be rejected (Conover, 1980). In terms of the 

hypothesis testing, the   value corresponds to the level of significance for which the 

observed test statistic lies on the boundary between acceptance and rejection of the null 

hypothesis (Khan et al, 2006). Detail description of method can be found in Conover 

(1980). The Wilcoxon rank sum test for this research is performed using statistical 

software S-plus (TIBCO, 2008). 

The second test to be applied is the modified version of Levene‟s test (Levene 1980) for 

testing the equality of two sample population variances as proposed by Brown and 

Forsythe (1974). This method considers the distances of the observations from their 

sample median rather than their sample mean, which makes the test more robust with 

data following a skewed distribution. For performing the test, a variable   with sample 

size   is divided into   subgroups,     is the sample size of the     subgroup. Using the 

above definitions, the Levene‟s test statistic is expressed as: 

  
     ∑           

   

     ∑ ∑          
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where, 

     is defined by: 

    |      ̃|                                                                                                                                  

where, 

   ̃ is the median of the     subgroup; 

    is the value of the j
th

 sample from the i
th

 group; 

   
 

 
∑ ∑    

  
   

 
     is the group mean of all    ; and 

    
 

 
∑    

  
    is the overall mean of     for group   . 

The Levene‟s test rejects the hypothesis that the variances are equal if 

                                                                                                                             

where, 

               is the upper critical value of the   distribution with     and 

    degrees of freedom at a significance level of  .  

The Levene‟s test has been performed using the statistical software (Minitab Inc, 2007). 
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4.3 Uncertainty Estimation Methods 

4.3.1 Data and Model Setup: Fixed Weight Approach 

The fixed weight approach involves Bayesian reliability ensemble average (BA-REA) 

method described in section 3.2.1. For this study, area averaged precipitation response 

from all 15 AOGCMs and scenarios (Table 4.2), averaged for the London station is 

considered to compare with the PDFs generated by the methodology presented in Section 

3.2.2.  

Table 4.2: AOGCM Models and Emission Scenarios used for Uncertainty Estimation 

GCM Models Sponsors, Country 
SRES 

Scenarios 

Atmospheric 

Resolution 

Lat Long 

CGCM3T47, 

2005 Canadian Centre for Climate Modelling 

and Analysis, Canada 

A1B, A2, B1 3.75° 3.75° 

CGCM3T63, 

2005 
A1B, A2, B1 2.81° 2.81° 

CSIROMK3.5, 

2001 

Commonwealth Scientific and Industrial 

Research Organization (CISRO) 

Atmospheric Research, Australia 

A2, B1 1.875° 1.875° 

GISSAOM, 

2004 

National Aeronautics and Space 

Administration (NASA)/ Goddard 

Institute for Space Studies (GISS), USA 

A1B, B1 3° 4° 

MIROC3.2HIR

ES, 2004 

Centre for Climate System Research 

(University of Tokyo), National Institute 

for Environmental Studies, and Frontier 

Research Centre for Global Change 

(JAMSTEC), Japan 

A1B, B1 1.125° 1.125° 

MIROC3.2ME

DRES, 2004 
A1B, A2, B1 2.8° 2.8° 

Data source: Canadian Climate Change Scenario Network Website, (http://cccsn.ca/?page=dd-

gcm, Retrieved 9/20/2008) 

To generate PDF of precipitation affected by the climate change, simulated present 

http://cccsn.ca/?page=dd-gcm
http://cccsn.ca/?page=dd-gcm
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(1961-1990) and future (2041-2070) precipitation (Xi, Yi) are considered for winter 

(December-January-February) and summer (June-July-August) seasons. The outputs 

from 15 different sets of experiments from six AOGCMs for the two time slices, (1961-

1990, 2041-2070) are extracted for the 22 stations and averaged for the London station 

using inverse distance approach. The natural variability is expressed as the inverse of the 

variance of observed precipitation for 1961-1990 (X0). It is calculated as the inter-annual 

variance on the basis of the observed record (X0). The computer codes for developing the 

BA-REA method used in this study can be downloaded from National Centre for 

Atmospheric Research website (http://www.image.ucar.edu/~nychka/REA/, Retrieved on 

8/04/2010). 

 

4.3.2 Application of Variable Weight Approach 

Data Description and Selection of Predictors 

Daily precipitation and temperature are the most important atmospheric forcing 

parameters required for any hydrologic impact study for a larger river basin (Salathe Jr., 

2003). Climate models, however, suffer from missing important mesoscale and surface 

features that control precipitation. Sole use of precipitation data from such models 

directly into climate change impact studies may not reflect the proper spatial and 

temporal characteristics of the area‟s original precipitation pattern. Additional climate 

variables from large scale atmospheric circulation pattern are commonly used to predict 

precipitation in an area. The choice of appropriate predictors is thus one of the most 

important steps in downscaling process. Rainfall can be related to air mass transport and 

thus related to atmospheric circulation, which is a consequence of pressure differences 

http://www.image.ucar.edu/~nychka/REA/
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and anomalies (Bardossy, 1997). Mean sea level pressure is the basis of derived variables 

such as surface vorticity, airflow strength, meridional and zonal flow components and 

divergence (Wilby and Wigley, 2000). Specific humidity is reported to have significance 

to AOGCM precipitation schemes (Hennessy et al., 1997). Considering all the above 

factors, predictor variables mentioned in Table 4.3 are initially chosen to generate 

precipitation in this study.  

Table 4.3: Definition of Predictor Variables 

Predictors Abbreviations 

Precipitation (mm/day) P 

Maximum temperature (
0
C) Tmax 

Minimum temperature (
0
C) Tmin 

Mean sea level pressure (Pa) PRMSL 

Specific humidity (Kg/ Kg) SPFH 

Zonal (eastward) wind velocity component (m/s) at 10 m UGRD 

Meridional (northward) wind velocity component (m/s) at 10 m VGRD 

 

Daily observed precipitation (precip), maximum and minimum temperature (Tmax and 

Tmin) data from 22 stations covering the UTR basin for the period of 1979-2005 is 

collected from the Environment Canada (Table 4.4). The rest of the atmospheric variables 

are collected from NARR reanalysis dataset for a period of 1979 – 2005. Precipitation 

values less than 0.5 mm day
-1

 are considered zero as suggested by Reid et al. (2001) and 

Choi et al. (2007).  NARR data for this study has been made available through the Data 

Access Integration of Environment Canada (DAI, 2009).  
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Table 4.4: Weather Stations used for Uncertainty Estimation 

 

Serial Station Name 

Location 

Correlation Latitude 

(
0
N) 

Longitude 

(
0
W) 

Elevation 

(m) 

1 Blyth 43.72 81.38 350.50 0.42 

2 Brantford 43.72 81.38 196.00 0.65 

3 Chatham 42.38 82.20 180.00 0.49 

4 Delhi 42.87 80.55 231.70 0.66 

5 Dorchester 43.00 81.03 271.30 0.79 

6 Embro 43.25 80.93 358.10 0.70 

7 Exeter 43.35 81.50 262.10 0.57 

8 Fergus 43.73 80.33 417.60 0.56 

9 Foldens 43.02 80.78 328.00 0.73 

10 Glen Allan 43.68 80.71 400.00 0.57 

11 Hamilton A 43.17 79.93 237.70 0.67 

12 Ilderton 43.05 81.43 266.70 0.70 

13 London A 43.03 80.15 278.00 0.56 

14 Petrolia Town 42.86 82.17 201.20 0.52 

15 Ridge Town 42.45 81.88 205.70 0.68 

16 Sarnia 43.00 82.32 180.60 0.63 

17 Stratford 43.37 81.00 345.00 0.61 

18 St. Thomas 42.78 81.17 209.10 0.68 

19 Tilsonburg 42.86 80.72 213.40 0.73 

20 Waterloo A 43.46 81.38 317.00 0.72 

21 Woodstock 43.14 80.77 281.90 0.49 

22 Wroxeter 43.86 81.15 335.00 0.42 

Data source: National Climate Data and Information Archive of Environment Canada                              

(http://climate.weatheroffice.ec.gc.ca/climateData/canada_e.html, Retrieved 14/11/2007) 

 

While the direct downscaling of minimum and maximum temperature has produced 

good results, precipitation values are not well reproduced directly from AOGCM data 

http://climate.weatheroffice.ec.gc.ca/climateData/canada_e.html
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(Brissette et al., 2006). For selection of appropriate conditioning variables, several 

combinations of predictors are used to generate synthetic versions of the historic dataset. 

A multi-objective compromise programming tool (Simonovic, 2009) is then used to find 

an optimal set of predictors. Assessment of trade-offs between different combinations of 

variables (considered as alternatives) is done according to four variability measures 

(considered as criteria): mean, standard deviation, maximum and minimum values for 

each month. The rank of each combination is measured by the compromise programming 

distance metric which is calculated as the distance from the ideal solution for each 

alternative. More Information about the compromise programming method can be found 

in Appendix C. Table 4.5 presents the ranks obtained for each combination of predictors. 

It is clearly seen that a combination of all seven predictors is the closest to the ideal 

solution in most months and hence, is selected for further analysis. 

Table 4.5: Rank Table of Different Combinations of Predictors 

Cases 
Months 

1 2 3 4 5 6 7 8 9 10 11 12 

P, Tmax, Tmin, PRMSL 7 6 5 6 3 1 1 5 7 4 6 1 

P, Tmax, Tmin, PRMSL, SPFH 4 1 7 5 4 2 7 7 6 1 3 7 

P, Tmax, Tmin, PRMSL, SPFH, 

UGRD, VGRD 
5 2 2 4 2 4 3 3 1 6 4 2 

P,Tmax,Tmin,PRMSL,UGRD,VGRD 6 4 1 7 7 5 2 1 4 2 5 6 

P, Tmax, Tmin, SPFH 3 7 4 1 5 3 6 2 5 3 7 4 

P, Tmax, Tmin, SPFH, UGRD, VGRD 2 3 6 3 1 7 5 6 3 5 2 5 

P, Tmax, Tmin, UGRD, VGRD 1 5 3 2 6 6 4 4 2 7 1 3 

* P: Precipitation, Tmax: Maximum temperature, Tmin: Minimum temperature, PRMSL: Mean sea level 

pressure, SPFH: Specific humidity, UGRD: Eastward wind component, VGRD: Northward wind 

component 
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Generation of Future Climate Change Scenarios 

For developing future climate change scenarios, climate outputs from 15 different 

AOGCM models and scenarios (Table 4.2) are extracted from CCCSN website. Four 

time slices: 1960-1990 (baseline), 2011-2040 (2020‟s), 2041-2070 (2050s) and 2071-

2100 (2080s) are selected for extracting data for seven variables (minimum temperature, 

maximum temperature, precipitation, specific humidity, northward wind component, 

southward wind component and mean sea level pressure). 

Six AOGCM models are collected, each with two to three emissions scenarios, as 

specified by the IPCC‟s Special Report on Emissions Scenarios (Nakicenovic et al, 

2000). Full descriptions of the AOGCMs and emissions scenarios used in the study can 

be found in Appendices D and E. Both NARR and the AOGCM datasets are processed to 

conform to the station‟s grid points.  

Monthly information from each of the AOGCM emission scenarios is collected for four 

time slices: 1961-1990, 2011-2040 (2020s), 2041-2070 (2050s) and 2071-2100 (2080s). 

Because of the limited quality and unavailability of daily inputs from many AOGCMs, 

monthly inputs should be used. Climate variables from nearest grid points are 

interpolated to provide a dataset for each of the stations of interest in the same way as the 

NARRs. In order to generate future climate data, the difference between the base climate 

and the AOGCM outputs (2020s, 2050s, 2080s) are computed for all predictors. The 

change factors are then used to modify the historic datasets collected for each station to 

create future datasets. The differences between current and future climate are used to 

calculate monthly change factor and added with the predictors to generate a modified 
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time series. These modified datasets are used as input into the weather generator to 

produce synthetic datasets of any length for the time period of interest.  

Weather Generator Performance Evaluation 

In order to reduce multi-dimensionality and collinearity associated with the large 

number of input variables, principal component analysis is integrated with the weather 

generator. The process requires selection of appropriate principal components (PCs) that 

will adequately represent most information in the original dataset. It is found that the first 

PC is able to explain over 95% of the variations associated with the inputs. Hence, only 

first PC is considered for the weather generator. 

The weather generator model described in section 3.2.2 is used to simulate climatic 

input for different climate scenarios. This study uses 22 stations for the period of 1979-

2005 (N=27) to simulate precipitation scenarios using seven meteorological variables. 

Employing the temporal window of 14 days (w=14) and 27 years of historic data (N=27), 

404 days are considered as potential neighbors (L=(w+1) x N-1=404) for each variable. 

12 different runs, each comprising of 27 years of daily precipitation are generated. Errors 

in the estimates of mean and variance of generated precipitation are evaluated using 

statistical hypothesis test at 95% confidence level. The performances of the weather 

generator outputs are evaluated using Wilcoxon Rank test and Levene‟s test described in 

section 4.2.3. Frequency distributions of the wet and dry spells are compared to examine 

its ability to reproduce the historic information. Downscaled outputs from AOGCM may 

still contain bias from the initialization of different climate models. So the monthly mean 

of the AOGCM outputs are replaced with the historical observed mean in the downscaled 
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outputs. Using the kernel density estimators described in section 3.2.2 bandwidths are 

calculated for each time step. Density functions derived for the summer and winter 

seasons are compared. The generated daily data downscaled using WG-PCA are averaged 

to monthly value to draw PDF for the comparison with the BA-REA approach. The 

average monthly total values for winter (DJF) and summer (JJA) for each scenario are 

considered. Values from each AOGCM for any specific year are considered as an 

independent set of realization and are used to draw PDFs.  

 

4.3.3 Uncertainty Estimation of Extreme Precipitation Indices 

Most efforts related to climate change impact on precipitation are focused on studying 

the changes in means, although extremes usually have the greatest and most direct impact 

on the environment. Study on the detection of changes in extremes is limited and hence 

needs further investigation. For investigating the severity of extreme precipitation events, 

the indices described in section 3.2.3 are divided into five different categories. Table 4.6 

presents the classification scheme of the severity level.  

Table 4.6: Classification of Extreme Precipitation Indices based on Percentile Approach 

Serial Description 

1 <= 25th percentile of 1961-1990 observed  precipitation 

2 25th – 50th percentile of 1961-1990 observed precipitation 

3 50th –75th percentile of 1961-1990 observed precipitation 

4 75th – 95th percentile of 1961-1990 observed precipitation 

5 >95th percentile of 1961-1990 observed precipitation 
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Performance Evaluation 

In presence of uncertainties from different AOGCMs and scenarios, it is possible that 

the future distribution of extremes will be different than historical extremes. Furthermore, 

because each model provides different realizations of future climate, it is also possible 

that their distribution will differ in between different scenarios of the same model. The 

extreme indices data calculated from the downscaled AOGCM outputs are compared 

using different distributions to search for an optimal distribution of fit. The performances 

of the distribution fits are ranked using three goodness-of-fit test results: Kolmogorov-

Smirnov test, Anderson-Darling Estimate and Chi-Squared Test. 

 

Kolmogorov-Smirnov Test 

 The Kolmogorov-Smirnov test is used to decide whether the sample comes from a 

hypothesized continuous distribution. The samples             are assumed to be 

random, originating from some distribution with Cumulative Distribution Function 

(CDF)     . The Kolmogorov-Smirnov statistic (D) is based on the largest vertical 

difference between the theoretical and the empirical CDF: 

     
     

(      
   

 
 
 

 
      )                                                                                       

Anderson-Darling Estimate 

  The Anderson-Darling procedure compares the fit of an observed CDF to an expected 

CDF. The method provides greater weight to the tail distribution than the Kolmogorov-

Smirnov test. The Anderson-Darling statistic    is expressed as: 
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Chi Squared Test 

 

The Chi–squared test is used to determine if a sample comes from a specific 

distribution. The test statistic is expressed as: 

   ∑
       

 

  

 

   

                                                                                                                    

where, 

    is the observed frequency; 

    is the expected frequency calculated by: 

               

Where, 

   is the CDF of the probability distribution being tested; and 

           are the limits of the     bin.  

In terms of hypothesis tests, the distributional form is rejected at the chosen 

significance level α if the test statistic is greater than the critical value defined as: 

  
       , representing the Chi-squared inverse CDF with     degrees of freedom 

and a significant level of α.  

Selection of Bandwidths 

Several bandwidth selection methods are applied on the precipitation indices for 

investigating an appropriate bandwidth to be used in the kernel estimation process. To 

measure how well the bandwidth selection methods perform, this section proceeds with 
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the comparison of various bandwidth selectors by applying them in the assessment of 

extreme precipitation indices. Figure 4.4 present kernel density estimates with statistics 

constructed using several bandwidth selectors:  (i) the rule of thumb (ROT; by Silverman, 

1986) as explained in section 3.2.2), (ii) Least square cross validation (LCV) which 

searches for bandwidth based on likelihood (by Terrell and Hall, 1990, as explained in 

section 3.2.4) and (iii) the plug in estimator that selects the bandwidth using the pilot 

estimator of the derivatives refined by Sheather and Jones, 1991 (SJPI; named after 

Sheather-Jones plug in estimator (section 3.2.4)). The choice of kernel is strictly limited 

to examining two of the most widely used types: Gaussian and Epanechnikov kernels, the 

functions of which are expressed as: 

Gaussian:                            
 

√  
  

 

 
  

 

Epanechnikov:                   
 

 
       

 The „original‟ estimate is created by mixing the inputs and 1000 samples are generated 

from the mixtures without any estimation of bandwidth. This estimate is created for 

assessing how different techniques respond to the original data type. By comparing the 

generated estimators it can be seen that the density estimate using ROT is highly over-

smoothed which may have missed important features of the generated data. For both 

kernel types, it failed to capture the multimodality. In the case of LCVs, there are 

suggestions of multiple modes in the density curve. However, it is still severely under-

smoothed; the small bumps occurring from the uncertainties of different AOGCM types 

make it harder to understand the structure of real data. The bandwidth by 
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Figure 4.4: Comparison of Various Bandwidths of Extreme Precipitation Indices 
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 SJPI seems to be in a better agreement with the „original‟ estimate and provides a strong 

indication of multimodal distribution. From Figure 4.4, it is also evident that the choice 

of kernel merely plays a role in the estimation of density. So for the present study, the 

Gaussian kernel with a Sheather-Jones plug in (SJPI) estimator is used to calculate the 

bandwidth for estimating density of the extreme precipitation indices.  

 

4.4 Intensity-Duration-Frequency Analysis 

The major focus of the development of intensity-duration-frequency design curves for 

future climate involves analyzing changes in extreme rainfall at local level. Any change 

in the rainfall pattern may demand revision of design standards or new regulations in 

storm water management strategies, guidelines and design practices. Most of the design 

standards used for the municipal water management infrastructure depends on rainfall. 

Present research thus uses rainfall as input to examine the changes in the annual extreme 

rainfall with the expected changes in climate. This section describes the selection and 

processing of rainfall data and methods applied for generating IDF curves for the city of 

London. 

 

4.4.1 Data Selections 

Hourly rainfall data covering stations around London for the period of 1965-2003 

(Figure 4.5) has been extracted from the Data Access Integration Network (DAI, 2009). 

Daily rainfall data for the same stations and same time period is obtained from 
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Environment Canada (http://climate.weatheroffice.ec.gc.ca/climateData/canada_e.html, 

Retrieved on 10/08/2010).  

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Meteorological Stations used for IDF Analysis 

 

The station selection process is highly dependent on the availability of hourly data of 

adequate length. This is an important step in running nearest neighbor based weather 

generator used in the present study. The number of stations used in the K-NN algorithm 

influences computation of regional means and the Mahalanobis distance (see section 

3.2.2 for details), which affects the choice of the nearest neighbor. Data of shorter 

durations are available only for a handful of stations. So stations closer to London but 

with shorter record have not been considered in this study. At first, all hourly stations 

within 200 km radius of London are considered. Next, stations with data going back to 

1965 with a record till 2003 are selected. Figure 4.5 and Table 4.7 present the details of 

stations used initially for IDF analysis. 

http://climate.weatheroffice.ec.gc.ca/climateData/canada_e.html
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Table 4.7: Rain Gauge Station Details 

Climate 

ID 
Station Name 

Latitude 

(deg) 

Longitude 

(deg) 

Elevation  

(m) 

Distance 

from London 

(km) 

6110557 Barrie WPCC 44.3758 -79.6897 221 190 

6140954 Brantford MOE 43.1333 -80.2333 196 75 

6131415/6 Chatham WPCP 42.39 -82.2153 180 113 

6131982/3 Delhi 42.8667 -80.55 232 52 

6142285/6 Elora 43.65 -80.4167 376 91 

6142400 Fergus 43.7347 -80.3303 418 102 

6153194 Hamilton A 43.1717 -79.9342 238 100 

6153300/1 Hamilton RBG 43.2833 -79.8833 102 106 

6144475/8 London Int'l A 43.0331 -81.1511 278 0 

6116132 
Owen Sound 

MOE 
44.5833 -80.9333 179 173 

6127519 Sarnia 43 -82.3 181 93 

6137361/2 St. Thomas 42.7833 -81.1667 236 28 

6148105 Stratford MOE 43.3689 -81.0047 345 39 

6158350 Toronto 43.6667 -79.4 113 158 

6158733 Toronto Int'l A 43.6772 -79.6306 173 142 

6149387 Waterloo A 43.45 -80.3833 317 78 

6119500 Wiarton A 44.7458 -81.1072 222 190 

6149625 Woodstock 43.1361 -80.7706 282 33 

 

The number of stations used to generate long sequence of rainfall series influence outputs 

of weather generator. Stations surrounding the station of interest help to capture the 

spatial and temporal characteristics in the region. In cases where only limited data are 

available, surrounding stations may help to add spatial and temporal characteristics of the 

rainfall values. Conversely, use of too many stations can be computationally expensive 

and unnecessary; especially for short duration rainfall where convective storms are highly 
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localized weather patterns, operating on relatively small spatial scales. Stations located 

too far may affect the performance of the weather generator. So regression and cross 

correlation analysis are performed for identifying important stations for London. For 

regression analysis, the stations are grouped based on selected distances from London 

(Table 4.8). Regression results for each group are provided in the Appendix F. The 

results are expressed in terms of t-test statistics, p values and the coefficient of 

determination.   

Table 4.8: Groups for Regression Analysis based on Distances 

Stations 
Groups based on Distances (km) 

0-200 0-175 0-150 0-125 0-100 0-75 0-50 

Barrie WPCC √ 
      

Brantford MOE √ √ √ √ √ √ 
 

Chatham WPCP √ √ √ √ 
   

Delhi √ √ √ √ √ √ 
 

Elora √ √ √ √ √ 
  

Fergus √ √ √ √ 
   

Hamilton A √ √ √ √ √ 
  

Hamilton RBG √ √ √ √ 
   

London Int‟l A √ √ √ √ √ √ √ 

Owen Sound MOE √ √ 
     

Sarnia  √ √ √ √ √ 
  

St. Thomas WPCP √ √ √ √ √ √ √ 

Stratford MOE √ √ √ √ √ √ √ 

Toronto √ √ 
     

Toronto Int‟l  A √ √ √ 
    

Waterloo A √ √ √ √ √ 
  

Wiarton A √ 
      

Woodstock √ √ √ √ √ √ √ 

Total 18 16 14 13 10 6 4 

 

Results from the Appendix F show significant t-test statistic for all predictors reducing 

the possibility of over-fitting by an insignificant predictor. The term „probability value‟ 

(p) denotes the results of the testing of hypothesis that the regression coefficient is equal 
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to zero which in turn quantifies the importance of the regressor. The null hypothesis says 

that the coefficient of the predictor is equal to zero and the alternate hypothesis says the 

coefficient of predictor is different than zero. So the p value below the cut off level (0.05) 

denotes that the coefficient of that particular predictor is not zero and can be an important 

addition to the model. Low or near zero value is desirable as it is inversely related to the 

importance of a predictor (Minitab Inc., 2007). The t-statistics for the independent 

variables are equal to their coefficient estimates divided by their respective standard 

errors. In theory, the t-statistic of any one variable may be used to test the hypothesis that 

the true value of the coefficient is zero (which is to say, the variable should not be 

included in the model). In a standard normal distribution, only 5% of the values fall 

outside the range plus-or-minus 2. Low t-statistic (or equivalently, a moderate-to-large 

exceedance probability) of a variable suggests that the standard error would not be 

adversely affected by its removal. The rule-of-thumb in this regard is to remove the least 

important variable if its t-statistic is less than 2 in absolute value, and/or the exceedance 

probability is greater than .05 (Minitab Inc, 2007). From the t-statistic results it is seen 

that stations within 100 km distance appear to be the best option for London. This can 

also be clearly seen from the coefficient of determination plot in Figure 4.6  

 

 

 

 

 

 

Figure 4.6: Performances of Stations based on Distance 
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where addition of more stations, beyond 100 km distance apparently cannot improve 

the model performance.  

Next, the cross correlation analysis is performed to identify the correlation between the 

stations (Table 4.9). Results show that stations within 100 km radius are correlated well, 

with correlation greater than 60% for all stations but Elora. However, the regression test 

shows that inclusion of Elora may provide important information to the spatial and 

temporal pattern for London and therefore it is included in the IDF analysis. Finally, nine 

stations with hourly and daily rainfall data from 1965-2003, located within 100 km radius 

of London station have been selected for further analysis.  

Table 4.9: Cross-Correlation Results for Stations Within 200 km Distance from London 

Stations 

Distance 

(km) 
  

Lag 
  

-2 -1 0 1 2 

London A 0 -0.004 0.094 1.000 0.094 -0.004 

Waterloo A 78 -0.004 0.063 0.729 0.097 0.000 

Woodstock 33 0.003 0.273 0.723 0.022 -0.012 

Sarnia 93 0.018 0.131 0.676 0.054 -0.014 

Hamilton A 100 0.003 0.050 0.670 0.136 -0.008 

Delhi CS 52 -0.004 0.236 0.657 0.020 -0.014 

Brantford MOE 75 0.000 0.249 0.645 0.026 -0.019 

Stratford MOE 39 -0.005 0.263 0.633 0.028 -0.004 

Hamilton RBG 106 0.002 0.214 0.618 0.037 -0.008 

Toronto Int‟l A 142 -0.002 0.043 0.610 0.125 0.000 

St. Thomas WPCP 28 -0.009 0.344 0.609 0.030 -0.008 

Fergus 102 -0.005 0.203 0.564 0.033 -0.009 

Toronto 158 -0.005 0.158 0.564 0.028 -0.012 

Elora 91 -0.002 0.199 0.550 0.066 0.002 

Chatham WPCP 113 -0.006 0.278 0.488 0.008 -0.013 

Barrie 190 -0.010 0.122 0.461 0.062 -0.007 
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Wiarton A 190 -0.021 0.049 0.454 0.101 -0.009 

Owen Sound 173 -0.024 0.146 0.373 0.047 -0.005 

Both historical daily and hourly data contains missing values. Inverse distance 

weighted method is applied to the daily data to fill the missing values.  

  

4.4.2 Development of Climate Change Scenarios 

For this study, precipitation data for two time slices: 1960-1990 (baseline) and 2071-

2100 (2080s) are collected. It is important to note here that the AOGCMs provide only 

precipitation data which includes both snow and rainfall, especially during winter. They 

do not count for rainfall change information. Hence for this study, change in the 

precipitation between different AOGCM scenarios and historical observed precipitation 

are used to calculate the change fields and are applied to the historical daily rainfall data 

to develop modified rainfall series for input in the weather generator. A total of 27 

scenarios from 11 AOGCMs, each with two to three emission scenarios (Nakicenovic et 

al, 2000) are selected for developing future scenarios. Full descriptions of the emissions 

scenarios and AOGCMs can be found in Appendices D and E. Table 4.10 provides a 

complete list of the details of the AOGCM scenarios used in this study.  

Climate change scenarios from AOGCM outputs are used to condition the input data 

using the weather generator. Outputs from AOGCMs for 1961-1990 represent baseline 

climate against which the future climate change scenarios for 2071-2099 (2080s) are 

computed. Based on the AOGCM data, change fields for each scenario are calculated as 

the difference between the monthly mean precipitation from their 1961-1990 mean. This 
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difference is then multiplied with the locally observed station data to generate climate 

change scenarios appropriate for the City of London at a daily time scale.  

Table 4.10: List of AOGCM Models and Emission Scenarios 

GCM models Sponsors, Country 
SRES 

scenarios 

Atmospheric 

resolution 

Lat Long 

CGCM3T47, 2005 
Canadian Centre for Climate 

Modelling and Analysis, Canada 

A1B, A2, 

B1 
3.75° 3.75° 

CGCM3T63, 2005 
A1B, A2, 

B1 
2.81° 2.81° 

CSIROMK3.5, 2001 

Commonwealth Scientific and 

Industrial Research Organization 

(CISRO) Atmospheric Research, 

Australia 

A1B, A2, 

B1 
1.875° 1.875° 

ECHAM5AOM, 

2005 

Max Planck Institute for Meteorology, 

Germany 

A1B, B1, 

A2 
1.875° 1.875° 

ECHO-G, 1999 

Meteorological Institute of the 

University of Bonn, Meteorological 

Research Institute of the Korea 

Meteorological Administration 

(KMA), and Model and Data Group, 

Germany/Korea 

A1B, B1, 

A2 
3.9° 3.9° 

GFDLCM2.1, 2005  

U.S. Department of Commerce/ 

National Oceanic and Atmospheric 

Administration (NOAA)/Geophysical 

Fluid Dynamics Laboratory (GFDL), 

USA 

A1B, B1, 

A2 
2° 2.5° 

GISSAOM, 2004 

National Aeronautics and Space 

Administration (NASA)/ Goddard 

Institute for Space Studies (GISS), 

USA 

A1B, B1 3° 4° 

MIROC3.2HIRES, 

2004 

Centre for Climate System Research 

(University of Tokyo), National 

Institute for Environmental Studies, 

and Frontier Research Centre for 

Global Change (JAMSTEC), Japan 

A1B, B1 1.125° 1.125° 

MIROC3.2MEDRES, 

2004 

A1B, A2, 

B1 
2.8° 2.8° 

CCSR/NIES B21, 

1999 

Centre for Climate System Research, 

University of Tokyo and National 

Institute for Environmental Studies, 

Japan 

B21 5.6° 5.6° 

CSIROMK2b, 1997 

Commonwealth Scientific and 

Industrial Research Organization 

(CISRO) Atmospheric Research, 

Australia 

B11 5.6° 3.2° 
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As an example, if the change field for the month of July and August are 10% and -5%, 

all daily July and August rainfall values are multiplied by a factor of 1.05 and 0.95, 

respectively. This newly modified data is then used with the weather generator to 

generate daily time series of any preferred length for different scenarios. For this study, 

27 different climate scenarios are developed which represent different realizations of 

future.  

4.4.3 Development of Methodology 

Once preparation of data is complete, daily weather generator described in section 3.2.2 

is used to simulate a sequence of rainfall for all stations. For the verification purpose, the 

perturbation of the weather generator is kept off in order to replicate the exact scenario as 

the historical observed one. This study uses 10 stations for the period of 1965-2003 

(N=39) to simulate different rainfall scenarios. Employing the temporal window of 14 

days (w=14) and 39 years of historic data (N=39), 584 days are considered as potential 

neighbors (L=(w+1) x N-1=584). Each case is simulated three times thus generating 117 

years of output sequences. It is expected that such length of output is sufficient enough to 

estimate event with return period of 100 years. Following this, the hourly disaggregation 

algorithm is applied to the generated data on an hourly time scale. Important parameters 

for the disaggregation model include:  

 Events: Any event for which rainfall continued for two or more days are considered as 

events. 

Moving window: Any specific number of days in which the current daily rainfall will 

be compared to search for similar (nearest neighbour) events is called moving window 

which is fixed as 50 days here.  
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Weights: Weights used in the process determine which historical hourly ratio would be 

the best for the data. Comparison of different combinations of weights have projected that 

the value of        and        in equation 3.57 provides the closest fit and are 

selected in this research. 

For analyzing the performance of the methodology combining the daily weather 

generation and hourly disaggregation method, one additional scenario called „historical 

unperturbed‟ is created by keeping the perturbation module off in the weather generator. 

This scenario just reproduces the historical daily information and the results are used in 

the disaggregation model to generate hourly values. The performance of the weather 

generator and disaggregation model to reproduce historical data is evaluated using box-

whiskers plot and the frequency plots, respectively.  

The perturbation process inside the weather generator is next applied to generate IDF 

information using the historical observed rainfall. This scenario called „historical 

perturbed‟ assumes that the future climate will remain the same ignoring any change in 

the future climate due to enhanced green house gas emissions. The daily downscaled 

outputs from different climate scenarios, prior to disaggregation are tested for bias 

correction. Comparison of 1961-1990 mean historical observed rainfall with those 

developed from different scenarios for base climate reveal that significant bias still exit in 

the base climate which is used to initialize the future climate; which means the bias might 

be carried out in the downscaled output.  

The IDF curves generated using the „historical unperturbed‟ scenario is compared with 

the IDF information available from Environment Canada. The relative differences 

between the two cases are compared by the following relation: 
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The IDF values generated from different climate scenarios represent wide range of 

uncertainties. The kernel estimator based plug-in approach is thus applied to combine 

information at each yearly time step. Weights are produced from the intensities of 

different durations of rainfalls for different return periods. Once the weighted plot is 

derived, probabilities for the IDF values at 1, 2, 6, 12 and 24 hours durations are 

presented for 2, 5, 10, 25, 50 and 100 year return periods in terms of cumulative 

distribution plots.  
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CHAPTER FIVE 

RESULTS AND DISCUSSION 

This chapter presents simulated results for the models, methods and algorithms 

developed in Chapter 3 and 4 and applied for the Upper Thames River basin. The results 

are divided into the following categories: First, the comparative performances of the 

reanalysis datasets are presented. Performances of the PCA integrated weather generator 

are next evaluated for deriving future climate signals. A total of 15 different scenarios are 

developed. They are used to estimate uncertainties using non-parametric kernel 

estimators. The results obtained are compared with Bayesian based reliability ensemble 

average (BA-REA), a second multi-model uncertainty estimation method. Selection of 

appropriate kernel method is further examined for extreme precipitation events. The 

results are presented in terms of probability density estimates. Finally, results for 

developing a probability based rainfall intensity-duration-frequency (IDF) curves using 

27 different climate signals are presented. 

 

5.1 Assessment of Reanalysis Data  

 

The analyses of the results are evaluated for climate change and hydrologic modeling 

studies. First, the performance of the temperature and precipitation from NNGR and 

NARR datasets, interpolated to the stations around the Upper Thames River basin are 

examined. A trend analysis is performed to see whether the reanalysis dataset is capable 
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of capturing the yearly temperature trend in the observations. Student‟s t and F tests are 

performed to check for the similarity of the means and variances for both data types with 

respect to observations. Next, changes in temperature anomalies over the years are 

compared. For precipitation, the performance of both datasets is analyzed in terms of 

goodness-of-fit measure. The cumulative precipitation of selected stations during the year 

of 2000 is computed. The second part of the analysis contains an evaluation and 

comparison of the daily discharge generated by the HEC-HMS model. The results for 

three stream gauges within the basin: Byron, Ingersoll and St. Mary‟s are presented. 

Performances of the NNGR and NARR generated discharges are compared with the 

historical simulated flow using statistical goodness-of-fit measure: the root mean square 

error (RMSE), correlation coefficient (r), normalized mean squared error (NMSE), mean 

absolute error (MAE) and relative bias (RB). The output (daily discharge) is assessed by 

comparison graphs, scatter plots and confidence interval plots. Because of the existing 

model and data errors, it is necessary to use appropriate criteria for estimating the 

relevant uncertainties (Sorooshian, 1993). In this study, only data uncertainty arising 

from (i) the inconsistency and non-homogeneity, and (ii) the inadequate representation of 

the reanalysis data due to space and time limitations, are assessed. The error arising from 

the data source is evaluated by estimating the mean and variance. 

 

5.1.1 Reanalysis Data Performance Results 

The abilities of the NNGR and NARR to capture the inter-annual variability of 

temperature and precipitation are presented in this section on a station-by-station basis. 

These stations are situated within and around the Upper Thames River basin.  
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Temperature 

Table 5.1 presents the quality of daily temperature data from NNGR and NARR with 

respect to the observations in terms of bias and correlation. Correlations are above 0.95 in 

the case of both datasets, which indicates that the values are closer to the observations in 

terms of goodness-of-fit. For all stations, the biases between the datasets are within 25%.  

 

Table 5.1: Comparison of Mean Daily Temperature during 1980-2005 

  

Figure 5.1 presents mean monthly temperature at selected stations in the basin. Both 

reanalysis datasets demonstrate a tendency to over-estimate the observed values, 

especially during summer. NNGR has repeatedly under-predicted temperature during 

early spring and winter, thereby indicating higher biases. Except spring and summer, they 

seem to be in fairly close agreement with observed temperature. NNGR shows a 

comparatively higher degree of consistency during late spring and fall. Although NARR 

overestimates throughout the year, it has been able to capture the monthly trend for all 

stations within 20% bias, except for March where the deviation is very high. Except for 

Stations 
Mean Mean Bias Correlation 

Observed NNGR NARR NNGR NARR NNGR NARR 

Exeter 7.76 8.18 9.25 5.46 19.25 0.98 0.97 

Foldens 7.93 8.43 9.21 6.42 16.15 0.98 0.98 

Glen Allan 6.70 7.97 7.72 19.00 15.31 0.98 0.98 

St. Thomas WPCP 8.60 8.59 9.32 -0.18 8.33 0.98 0.97 

Stratford MOE 7.42 8.26 8.48 11.39 14.30 0.98 0.98 

Waterloo A 6.96 8.13 8.62 16.87 23.81 0.98 0.98 

Woodstock 7.77 8.37 8.70 7.69 11.96 0.98 0.98 
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Figure 5.1: Mean Monthly Temperature between Observed (EC) and NNGR/NARR 
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the above discrepancies, the agreement confirms the findings from previous studies and 

shows that both NNGR and NARR satisfactorily capture the observed intra-seasonal and 

annual fluctuations (Kalnay and Cai, 2003, Kalnay et al., 2006, Pielke et al., 2007). 

Next, statistical tests are performed on the monthly temperature to determine whether 

the reanalysis data produces monthly climatological data that are representative of the 

true climatology. To test the null hypothesis that the reanalysis and observations render 

consistent monthly means and variances, student‟s t test and the F test are performed. 

Table 5.2 (a) presents the student‟s t test static results for the similarity of means, 

assuming equal variances for all three datasets. 

Table 5.2 (a): t -Test Statistic for Mean Monthly Temperature during 1980-2005 

Station 

Modified t-Test Static 

Diff. 
95% CI 

Diff. 
t p Diff. 

95% CI  

Diff. 
t        p 

NNGR NARR 

Woodstock -0.59 (-2.15, 0.96) -0.75 0.45 -0.59 (-2.15,0.96) -0.75 0.45 

St. Thomas 0.02 (-1.51, 1.54) 0.02 0.98 -0.71 (-2.23, 0.81) -0.92 0.36 

Folden -0.51 (-2.07, 1.05) -0.64 0.52 -1.27 (-2.85, 0.30) -1.59 0.11 

Exeter -0.42 (-1.99, 1.14) -0.53 0.59 -1.48 (-3.07, 0.11) -1.83 0.07 

Glen Allan -1.27 (-2.86, 0.31) -1.58 0.11 -1.02 (-2.62, 0.58) -1.25 0.21 

Stratford -0.84 (-2.4, 0.71) -1.07 0.28 -1.05 (-2.64, 0.53) -1.3 0.19 

Waterloo A -1.17 (-2.74, 0.39) -1.47 0.14 -1.65 (-3.24, -0.1) -2.03 0.04 

 

The results are presented in terms of the estimates of differences between the 

observed and NNGR/NARR means, the 95% confidence interval for the differences and 

the hypothesis results (t and p values). Confidence intervals are calculated for the selected 

stations. The range includes 0 values suggesting that there are no differences in means. 

The probability (p) values for all cases are greater than the chosen α level (0.05), which 



126 

 

indicates that there is no evidence of a different mean in the three datasets, except for 

Waterloo A. Table 5.2 (b) presents the hypothesis test results of the F test for both 

reanalysis datasets. The p values for the F test also appear to be greater than 0.05, which 

fails to reject the null hypothesis of the variances being equal. Thus, it is reasonable to 

assume that the observations and NNGR/NARR have equal variances in F test. 

Table 5.2 (b): F Test Static Results for Mean Monthly Temperature during 1980-2005 

Station 

F test static 

Test static P value Test static P value 

NNGR NARR 

Woodstock 1.71 0.191 2.74 0.099 

St. Thomas 3.49 0.062 3.36 0.067 

Folden 1.05 0.437 2.01 0.157 

Exeter 2.54 0.112 4.17 0.052 

Glen Allan 1.45 0.23 1.63 0.203 

Stratford 2.85 0.092 4.98 0.06 

Waterloo A 2.97 0.085 4.97 0.06 

 

A trend analysis has also been tested to determine whether the reanalysis database is 

consistent with the true trend based on the observations. It is important to note that the 

reanalysis trends cannot provide reliable estimates of the true atmospheric trends. 

However, it can be used to check whether the distribution of the reanalysis trends provide 

a reasonable representation of the expected range of atmospheric trends. Comparison of 

yearly temperature trends in Table 5.3 shows that in case of NNGR, for all stations but 

Exeter, a weak negatively inclined trend per year (-0.0085 to -0.1577) is prominent. It 

suggests a slow cooling drift whereas the observed trend shows a warming trend. NARR, 
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on other hand, has been able to capture the increased temperature trend with less than 

25% error except for Exeter. 

Table 5.3: Comparison of Trend Analysis Results during1980-2005 

Station 
Trends 

Observed NNGR NARR % Bias NNGR % Bias NARR 

Folden 0.0452 -0.0085 0.0525 -118.81 16.15 

Glen Allan 0.0356 -0.0059 0.0443 -116.78 24.44 

Exeter 0.0543 0.0011 0.0334 -97.97 -38.49 

Stratford 0.0611 -0.0070 0.0495 -111.54 -18.99 

St. Thomas 0.0456 -0.0063 0.0556 -113.92 21.93 

Waterloo A 0.0341 -0.0035 0.0361 -110.40 5.87 

Woodstock 0.0428 -0.0157 0.0407 -136.85 -4.91 

 

Next, temperature anomaly charts are compared in Figures 5.2 (a) through (c) for the 

summer (June-July-August) and winter (December-January-February) months to check 

the yearly differences during the period of 1980-2005. The values below 0 represent the 

years when the mean temperature was underestimated by the reanalysis data; whereas the 

values above 0 represent the years in which the temperatures were over-estimated. 

Anomaly charts are particularly useful to assess the magnitudes of temperature changes. 

The results from different stations are consistent with the evaluated performance of an 

over-prediction during summer months and variable predictions during winter.  
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Figure 5.2 (a): Changes in Temperature Anomalies over Woodstock during June-August and December-February (1980-2005) 
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Figure 5.2 (b): Changes in Temperature Anomalies over St. Thomas during June-August and December-February during 1980-2005 
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Figure 5.2 (c): Changes in Temperature Anomalies over Folden during June-August and December-February during 1980-2005
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Precipitation 

Precipitation, generally have higher variances than temperature and is more difficult to 

simulate. Table 5.4 presents the statistics of mean daily precipitation calculated for 

selected stations around the basin. The variance within the observed precipitation ranges 

from 64.48 to 78.03, while the variance of NNGR varies from 24.67 to 45.79. The mean 

bias from NNGR varies between -15.81% and -32.10% with respect to observations, 

suggesting that it is not able to capture the variability of the precipitation in the region. 

For NARR, the variance is much higher with values ranging between 29.47 and 71.33 

and a mean bias of -5.75 to -31.64%. 

Table 5.4: Comparison of Mean Daily Precipitation during 1980-2005 

 

The correlation values are much lower than the temperature, and they also show greater 

variability by station. The correlation values between observation and NNGR are also 

below 0.4 except for London station. While for NARR, the correlation appeared higher 

than the NNGR which implies a higher station-to-station correlation around the grid 

Station 

  

 Variance ((mm/day)
2
) 

Mean Bias 

(mm/day) 
Correlation 

Obs NNGR NARR NNGR NARR NNGR NARR 

Dorchester 75.00 30.00 67.68 -15.81 -7.64 0.36 0.48 

Blyth 73.91 24.67 43.43 -32.10 -31.64 0.33 0.40 

London A 78.03 45.79 29.47 -24.52 -18.71 0.50 0.50 

Exeter 65.60 25.73 46.17 -23.25 -21.73 0.35 0.42 

Foldens 75.28 31.83 62.92 -16.28 -13.22 0.36 0.51 

Glen Allan 64.48 25.54 56.06 -16.07 -6.11 0.37 0.46 

St. Thomas 77.21 29.68 44.33 -21.89 -27.23 0.32 0.48 

Stratford 59.81 27.35 71.33 -18.98 -5.75 0.37 0.45 

Woodstock 76.65 31.03 68.13 -19.22 -12.78 0.37 0.51 
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points in terms of the goodness-of-fit measure. The inter-station variability in the mean 

bias and correlation may be related to the individual station locations with respect to local 

geographic features.  

Figure 5.3 (a), (b), and Appendix G present the cumulative daily precipitation graphs of 

NARR and NNGR at different stations for the year 2000. In Stratford, Woodstock and 

Waterloo-Wellington, NARR is fairly close to the observed precipitation. In London, 

however, NNGR data perform slightly better. Interestingly, the gap between the observed 

and estimated data widens from summer for London, Stratford, St. Thomas, Wroxeter 

while for Folden, Waterloo-Wellington and Woodstock the datasets followed the 

observed values closely throughout the year. 
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Figure 5.3: Comparison of Cumulative Daily Precipitation in 2000

12
/1

6/2
000

1
2/1

/2
000

1 1
/1

6 / 2
000

1
1 /1

/2
000

10
/1

6 /2
00 0

1
0/ 1

/2
00 0

9
/1

6 /2
00 0

9 /1
/2

0 00

8
/ 1

6/2
0 00

8/1
/2

0 00

7
/1

6/2
000

7/1
/2

000

6
/1

6 / 2
000

6/1
/2

000

5
/1

6 /2
00 0

5/1
/2

00 0

4
/1

6 /2
00 0

4 /1
/2

00 0

3
/ 1

6 /2
0 00

3/1
/2

0 00

2
/1

6 /2
0 00

2/1
/2

000

1
/1

6 /2
000

1/1
/ 2

000

1200

1000

800

600

400

200

0

T ime

C
u

m
u

la
ti

v
e

 P
r
e

c
ip

it
a

ti
o

n
 (

m
m

)

Ob s erv ed

NNGR

NA RR

L o ndo nA

12
/1

6/2
000

1
2/1

/2
000

1 1
/1

6 / 2
000

1
1 /1

/2
000

10
/1

6 /2
00 0

1
0/ 1

/2
00 0

9
/1

6 /2
00 0

9 /1
/2

0 00

8
/ 1

6/2
0 00

8/1
/2

0 00

7
/1

6/2
000

7/1
/2

000

6
/1

6 / 2
000

6/1
/2

000

5
/1

6 /2
00 0

5/1
/2

00 0

4
/1

6 /2
00 0

4 /1
/2

00 0

3
/ 1

6 /2
0 00

3/1
/2

0 00

2
/1

6 /2
0 00

2/1
/2

000

1
/1

6 /2
000

1/1
/ 2

000

1000

800

600

400

200

0

C
u

m
u

la
ti

v
e

 P
re

c
ip

it
a

ti
o

n
 (

m
m

)

Ob s erv ed

NNGR

NA RR

Fo lde n

12/1
6/2

000

12/1
/2

0 00

11 /1
6/2

00 0

1 1/1
/2

000

10/1
6 /2

000

10/1
/2

000

9/1
6/2

0 00

9/1
/2

00 0

8 /1
6/2

00 0

8 /1
/2

000

7/1
6 /2

000

7/1
/2

000

6/1
6/2

0 00

6/1
/2

00 0

5 /1
6/2

000

5 /1
/2

000

4/1
6 /2

000

4/1
/2

0 00

3/1
6/2

0 00

3/1
/2

000

2/1
6/2

000

2/1
/2

000

1/1
6/2

0 00

1/1
/2

0 00

900

800

700

600

500

400

300

200

100

0

T ime

C
u

m
u

la
ti

v
e

 P
re

c
ip

it
a

ti
o

n
 (

m
m

)

Ob s erv ed

NNGR

NA RR

Wate rlo o  A

1 2/1
6/2

00 0

12/1
/2

0 00

11/1
6/2

0 00

11/1
/2

0 00

10/1
6/2

000

10/1
/2

000

9/1
6 /2

000

9 /1
/2

000

8 /1
6/2

000

8/1
/2

000

7 /1
6/2

000

7/1
/2

00 0

6/1
6/2

000

6/1
/2

0 00

5/1
6/2

0 00

5/1
/2

000

4/1
6 /2

000

4 /1
/2

000

3/1
6 /2

000

3 /1
/2

000

2/1
6/2

000

2/1
/2

000

1 /1
6/2

00 0

1/1
/2

00 0

1000

800

600

400

200

0

C
u

m
u

la
ti

v
e

 P
re

c
ip

it
a

ti
o

n
 (

m
m

) Ob s erv ed

NNGR

NA RR

Wo o ds to ck



134 

 

5.1.2 Hydrologic Model Results 

Performance Evaluation 

Table 5.5 compares the statistical performance measures of the daily flow obtained 

during January 1980 - December 2005 for evaluating the performance of the reanalysis 

data. The root-mean-square-error for both NNGR and NARR varies considerably, from 

4.00 m
3
/s (NNGR) and 3.44 m

3
/s (NARR) at Ingersoll to 28.1 m

3
/s (NNGR) and 24.37 

m
3
/s (NARR) at Byron. .  

Table 5.5: Comparison of Performance Statistics at Selected Locations within the Basin 

Location 

NNGR NARR 

RMSE 

(m
3
/s) 

r 
NMSE 

 

MAE 

(m
3
/s) 

RBias 

(%) 

RMSE 

(m
3
/s) 

r 
NMSE 

 

MAE 

(m
3
/s) 

RBias 

(%) 

Byron 28.09 0.44 1.03 15.73 31 24.37 0.65 0.77 9.95 -12 

Ingersoll 4.29 0.41 1.25 2.62 45 3.44 0.63 0.80 1.57 -7 

St. 

Marys 
10.08 0.44 0.97 5.23 26 10.04 0.59 0.97 3.72 -9 

 

The correlation coefficients produced by NARR (0.59-0.65) are significantly higher 

than those produced by NNGR (0.41-0.44). The normalized mean square error is also 

slightly higher in the case of NNGR. The absolute mean error is differentiable both in 

terms of the data types and locations. NNGR produces higher errors. It also appears that 

the MAE measure is lowest at locations where more than one sub-basin is contributing to 

the total runoff. The values of the relative bias differ greatly at the selected locations, 

with the NARR, unlike NNGR, producing a negative bias. The bias produced by the 
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NNGR data is much higher, ranging from 26% to 45% to that of -12% to -7% from 

NARR. At Byron, the outlet of the basin, with a contributing area of 3,110 km
2
 

(Cunderlik and Simonovic, 2004) and with 32 sub-basins the model results are poor. 

Such performance at Byron can be attributed to the fact that this suffers from inadequate 

meteorological data, which may have restricted a more satisfactory representation of the 

daily flow.  

Flow Comparison Plots 

Figures 5.4 and 5.5 present flow comparison graphs during June-August, 2001-2005. 

The modeled hydrograph from the reanalysis data does not provide a good fit to the 

observed simulated data. Peaks are not captured by either NNGR or NARR; moreover, 

some biased peaks are generated by NNGR during the low flow periods.  

 

 

 

 

 

 

 

 Figure 5.4: Daily Hydrographs at Byron during June-August, 2001-2005 
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Figure 5.5: Daily Hydrographs at St. Marys during June-August, 2001-2005 

The hydrographs generated by the NARR data for the low flows are better than the 

NNGR data. The model performance for low flow improves with the increase of 

contributing area. NNGR has systematically overestimated the peaks during summer; 

NARR has not shown systematic bias in most of the periods except for the year 2002.  

Figures 5.6 (a), (b), and Appendix H present a comparison of the scatter plots between 

precipitation and associated flows during May-August, 1980-2005 at Byron, Ingersoll 

and St. Mary‟s. The higher flows show significantly scattered patterns; low flows are in 

better agreement with precipitation because the low flows are more directly linked with 

the deficit of precipitation. NNGR generated flows, however, show relatively less 

concurrence than NARR. This may be explained by the level of bias present in the 

dataset. 
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Figure 5.6 (a): Scatter Plots of Precipitation and Flow (May-August, 1980-2005) at Byron 
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Figure 5.6 (b): Scatter Plots of Precipitation and Flow (May-August, 1980-2005) at St. 

Marys 
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Error Evaluation in terms of Box and Whiskers Plot 

Figures 5.7 (a) and (b) present the box plots of the monthly flow at Byron and St. 

Mary‟s during May-November, 1980-2005. Although the model is applied on daily data, 

the statistics from the daily data are aggregated into a monthly scale to facilitate the 

presentation of results. Summer values show variability in the estimated means. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 (a): Box Plots of Monthly Flow during May-November, 1980-2005 at Byron 
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Figure 5.7 (b): Box Plots of Monthly Flow during May-November, 1980-2005 at St. 

Marys 

The bottom and top ends of the box indicate the 1
st
 quartile (25

th
 percentile) and 3

rd
 

quartile (75
th

 percentile) of the flows, with their median in between. From the plots for 
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Byron, it can be seen that the historical mean of the simulated stream flow deviates 

significantly from the mean for NNGR except for the month of October. While NARR is 

consistent and is able to adequately present the observed simulated discharge. NNGR, 

however, has suffered from a significant overestimation during most of the months 

considered in the study (excluding October and November). Some values during 

September through November are above the top whiskers, i.e., considered as outliers. In 

most months, the monthly average discharge from the observed simulated dataset falls 

below the 25
th

 percentile value of NNGR flows. The performance of NARR is, however, 

very satisfactory and suffers from only minor underestimations. In most cases, the mean 

observed simulated discharge is close to the NARR median (except in October). 

Although in few years the NARR discharge appeared outside the top whisker‟s range 

(outliers), those are, however, very few compared to the entire dataset.    

Error Evaluation in terms of Mean and Variance 

Table 5.6 presents the results of the non-parametric Wilcoxon rank-sum test performed 

for evaluating errors in the estimation of the mean daily flow values for May-November, 

1980-2005. The statistical significance test results (p values) reveal that at a 95% 

confidence level, errors at the Byron location are higher in NNGR for all months 

(p<0.05) except October, and in NARR the errors are significant during only three 

months. Similar results can be seen at St. Mary‟s as well, where NARR produced higher 

errors in three months while NNGR errors were high in all seven months.  
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Table 5.6: Test Results (p values) of the Wilcoxon Rank Test at 95% Confidence Level 

 

Month 
Byron St. Marys 

NARR NNGR NARR NNGR 

May 0.08 0.00 0.76 0.00 

Jun 0.87 0.00 0.23 0.00 

Jul 0.53 0.00 0.13 0.00 

Aug 0.00 0.00 0.02 0.00 

Sep 0.76 0.00 0.31 0.00 

Oct 0.01 0.95 0.00 0.00 

Nov 0.00 0.00 0.00 0.00 

 

Next, Levene‟s test is used at Byron and St. Mary‟s to evaluate the quality of the 

variance of the simulated flows at a 95% confidence level. The results are presented in 

Table 5.7. In the case of Byron, the variance test results of NNGR reveal that for all 

months except two, all the p values  fall  below 0.05; the case is even worse at St. Mary‟s, 

with only one month above the threshold p level (>0.05), suggesting that  the observed 

simulated and NNGR generated flow variance is statistically different. 

Table 5.7: Test Results (p values) of the Levene‟s Test at 95% Confidence Level 

 

Month 
Byron St. Marys 

NARR NNGR NARR NNGR 

May 0.04 0.77 0.04 0.09 

Jun 0.10 0.00 0.02 0.00 

Jul 0.44 0.00 0.47 0.00 

Aug 0.65 0.00 0.10 0.00 

Sep 0.08 0.91 0.02 0.02 

Oct 0.00 0.00 0.00 0.00 

Nov 0.99 0.00 0.91 0.00 
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For NARR, however, the p values for five months are found to be above 0.05, 

indicating the equality of variance for those months. These test results confirm that the 

variability of the NARR generated flows can be considered equal to the observed 

simulated flows in general, but NNGR generated flows cannot be considered equal at the 

95% confidence level. 

 

5.2 Quantifying AOGCM and Emission Scenario Uncertainties  

 

The performance of all methods and comparison results for estimating uncertainties 

are presented here. First, the BA-REA method and non-parametric weather generator are 

evaluated. The indices for estimating the severity of extreme precipitation events are 

developed and compared with the future climate. Finally, the probabilities of extreme 

precipitation events are assessed with associated AOGCM and scenario uncertainties. 

Results are presented for London station. 

 

5.2.1 Fixed Weight (BA-REA) Method  

The performance of the Bayesian reliability method can be assessed by model bias 

and convergence. Table 5.8 presents bias from six different AOGCMs during the summer 

(June-July-August) and winter (December-January-February) months. Bias is calculated 

as the difference of each AOGCM‟s response,    (1961-1990) from the mean of the 

posterior distribution, µ generated from the analysis.  
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Table 5.8: Biases from AOGCM Responses to Present Climate (1961-1990) in London 

Figure 5.8 presents posterior distribution of precipitation change    for London during 

the winter and summer seasons. The solid line shows the fitted curve. The points along 

the base of the densities mark predicted precipitation change from the 15 AOGCM 

scenarios for 2050s. 

 

 

 

  

 

  

 

 

 

Figure 5.8: Posterior Distributions of ΔP= ν – μ in London for Winter and Summer 
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Winter -2.18 1.68 -11.46 0.04 26.24 5.64 
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The triangle indicates the REA estimate of the changes in mean precipitation. The 

change in precipitation (climate response) [      , for            ] computed from  

15 models and the scenarios‟ are plotted along the x axis (dots). The triangles represent 

the REA estimate of the mean change. A measure of convergence can be assessed using 

the relative position of the individual responses. The relative position is used to identify 

the outlier models and the models that reinforce each other. The comparison of multi-

model densities in Figure 5.8 and the bias measure in Table 5.8 identify the models with 

higher biases (Table 5.8) and the models that act as outliers (Figure 5.8). The models with 

smaller biases receive larger weights. The cases that respect both criteria are the ones 

where the probability density is concentrated.  

Figures 5.9 (a) and (b) summarize the posterior distributions for the precision 

parameters λi.  

  

 

 

 

 

 

 

Figure 5.9 (a): Posterior Distributions of Model Specific Precision Parameter, λi during 

Winter  

 

M IRO C3.2M ED RES _A2

M IRO C3.2M ED RES _B1

M IRO C3.2M ED RES _A1B

M IRO C3.2HIRES _B1

M IRO C3.2HIRES _A1B

G IS S AO M _B1

G IS S AO M _A1B

CS IRO M K3.5_A2

CS IRO M K3.5_B1

CG CM 3T 63_B1

CG CM 3T 63_A2

CG CM 3T 63_A1B

CG CM 3T 47_B1

CG CM 3T 47_A2

CG CM 3T 47_A1B

10010-1-10

A
O

G
C

M
s

lam bda



146 

 

 

 

 

 

 

 

 

Figure 5.9 (b): Posterior Distribution of λi , the Precision Parameter for Summer 

 

The scoring of the AOGCM scenarios should be evaluated through the relative position 

of the boxplots with respect to each other, rather than by comparing point estimates. 

Large λi values indicate that the distributions of the AOGCM responses are more 

concentrated to the true climate response. The posterior distributions, shifted towards 

right indicate AOGCM‟s better performances than those shifted to the left. Overlaps 

among these distributions indicate uncertainty in the relative weighting of the models. 

Table 5.9 presents an overall measure of reliability for the AOGCMs by summing up the 

weights from each model through relative weighting. The values are computed as  

        
   ∑    

    
 where   

  are the means of the posterior distributions derived from 

MCMC simulation of AOGCM outputs. The results are ranked based on performances 

for summer (June, July and August) and winter (December, January and February) 

seasons separately.  
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Table 5.9: Relative Weighting of the 15 AOGCM Scenarios (2050s) for London  

Models/Scenarios DJF JJA 

CGCMT47_A1B 2.22 4.07 

CGCMT47_A2 1.11 1.09 

CGCMT47_B1 7.76 2.80 

CGCMT63_A1B 4.30 31.83 

CGCMT63_A2 11.06 36.56 

CGCMT63_B1 1.32 0.41 

CSIROMK35_B1 2.46 1.10 

CSIROMK35_A2 3.37 2.77 

GISSAOM_A1B 18.21 2.66 

GISSAOM_B1 24.25 4.10 

MIROC32HIRES_A1B 0.07 4.28 

MIROC32HIRES_B1 0.09 4.51 

MIROC32MEDRES_A1B 8.75 1.26 

MIROC32MEDRES_B1 8.44 0.69 

MIROC32MEDRES_A2 6.57 1.86 

The Tables 5.8 and 5.9 clearly indicate the varying degree of the model performances 

for different seasons thereby suggesting a deviating skill in reproducing present day 

climate and a different level of agreement among the models for different signals of 

precipitation change.  Next, the posterior distribution of the inflation/deflation parameter 

θ is shown to compare the simulations of the present day to future climate scenarios. 

Figure 5.10 presents the posterior distribution of θ, the inflation/deflation parameter for 

comparing present climate to the future, common to all six AOGCMs for both summer 

and winter seasons. A θ value less than 1 indicates the deterioration in the degree of 

precision (Tebaldi et al., 2004). 
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Figure 5.10: Posterior Distribution of θ, the Inflation/Deflation Parameter 

 

The figure provides an overall degree of performance for the REA method, by 

considering a common value for all AOGCMs. For summer and winter, the models 

overall show improved performances, however with varying degree. Agreements are 

better represented during summer than winter.   

 

5.2.2 Variable Weight (Kernel Estimator) Method 

The variable weight method involves downscaling of AOGCM responses for future 

climate scenarios and estimating the uncertainties using nonparametric density estimator 
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period of 1979-2005 (N=27) to simulate precipitation scenarios using seven 
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years of historic data (N=27), 404 days are considered as potential neighbors (L=(w+1) x 

N-1=404) for each variable. 12 different runs, each comprising 27 years of daily 

precipitation are generated. Errors in the estimates of mean and variance of generated 

precipitation are evaluated using a statistical hypothesis test at 95% confidence level. The 

performance of WG in representing the present climate is tested by using the 

nonparametric Wilcoxon-rank test and Levene‟s test (Levene, 1980). Table 5.10 presents 

statistical significance test results (p values) for the differences of means and equality of 

variances of the observed and simulated daily precipitation for summer and winter for 

London. The p values at 95% confidence level for all runs are above the threshold (0.05) 

which clearly indicates that there is no evidence of different means between the observed 

and generated precipitations. The results of the Levene‟s test for the equality of variances 

of observed and simulated precipitation at 95% confidence level are presented next.  

Table 5.10: Test Results (p values) of the Wilcoxon Rank Test and Levene‟s Test  

Runs 
Wilcoxon Rank Test Levene’s Test 

Summer Winter Summer Winter 

1 0.46 0.48 0.61 0.55 

2 0.76 0.61 0.72 0.58 

3 0.64 0.67 0.56 0.99 

4 0.93 0.37 0.98 0.18 

5 0.60 0.98 0.87 0.59 

6 0.59 0.53 0.96 0.99 

7 0.91 0.95 0.64 0.20 

8 0.91 0.95 0.64 0.20 

9 0.76 0.67 0.98 0.84 

10 0.48 0.63 0.91 0.19 

11 0.77 0.80 0.41 0.66 

12 0.76 0.29 0.76 0.30 
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The p values appear above 0.05 thresholds, indicating similar variability of the 

simulated precipitation with the observed precipitation. So, the observed and the 

simulated precipitation can be assumed to have equal variances. 

Frequency distributions of wet-spell lengths for winter and summer months are 

plotted in Figure 5.11. A comparison of observed and simulated values for wet-spell 

lengths shows very close agreement between the frequency distributions.  

 

 

 

 

 

Figure 5.11 (a): Frequency Plots of Wet Spell Lengths for Summer 

 

 

 

 

 

Figure 5.11 (b): Frequency Plots of Wet Spell Lengths for Winter 
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identical to the observed values, except for the one day lengths where the simulated data 

show a slight overestimation. The same is the case for the winter months. The 

performance of the weather generator in reproducing wet-spell lengths is very good. 

The modified data for generating climate change scenarios from 15 different 

AOGCMs and emission scenarios contain 27 years of daily data created using the 

monthly change fields. By running each model 12 times, 324 (12x27=324) years of 

synthetic data are generated.  In order to investigate the intensity of wet spells for future 

climate, bar charts are made showing the percent change in wet spell intensity from the 

historical values to the future values. Intensities are calculated using the total amount of 

precipitation that fell during the spell over the length of the spell. The percent changes in 

wet spell intensities are determined for 3, 5 and 7 day wet spells. The plots are made for 

summer (June, July, August) and winter (December, January February) in both time 

periods. Figures 5.12 (a) through (c) show the bar charts for the summer months of the 

2050s.  

 

 

 

 

 

 

Figure 5.12 (a): Change in 3-Day-Spell Intensities for Summer, 2041-2070 
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Figure 5.12 (b): Change in 5-Day-Spell Intensities for Summer, 2041-2070 
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as predicted by several AOGCM‟s suggests that precipitation intensities for shorter spells 

will increase with a decrease in longer wet-spells intensities.  

 

 

 

 

 

 

Figure 5.12 (c): Change in 7-Day-Spell Intensities for Summer, 2041-2070 
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obtained from the WG combined kernel density estimates and the BA-REA method for 

London station using 2050s (2041-2070) time slice. The density estimate of the posterior 

distribution of the precipitation change from BA-REA method provides an under-

smoothed curve during summer. Many spurious bumps, especially at the tails, for both 

winter and summer can be seen which make it harder to understand the structure of the 

data. The estimates using a kernel estimator show evidence of a smoothed structure.  

 

 

 

 

 

Figure 5.13 (a): Density Estimate of the Mean Precipitation Change in London using BA-

REA Method for Winter and Summer 

 

The extended benefit of the kernel estimators is that unlike BA-REA, the generated 

outputs can be processed further and converted to the indices of interest. The probabilities 

can then be calculated for any frequency of data, either monthly, or daily, or yearly, while 

the BA-REA method provides the mean change by combining the AOGCM scenarios. 

Moreover, the weight/kernel function (K(.), in equation 3.40 can be calculated at any 

point of interest within the range of data. 
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Figure 5.12 (b): Density Estimate of the Mean Precipitation Change using Kernel 

Estimator for Winter (top) and Summer (bottom) 

 

5.2.4 Uncertainty Estimation of Extreme Precipitation Events 

Changes in Future Extreme Precipitation Events 

Changes in the precipitation indices compared to the historic observed 1979-2005 values 

are computed from the downscaled precipitation for three time slices (2020s, 2050s, and 

2080s) and presented in Table 5.11. Both summer and winter show different changing 

patterns. For summer, half of the scenarios show a decrease in number of heavy 

precipitation and very wet days for all three time slices, while most models show an 

increase in 5 day maximum precipitation amount. This clearly indicates a higher intensity 
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of precipitation during extreme precipitation events. However, ranges of change are very 

high, indicating higher uncertainties in model projections during summer. For winter, 

most of the models are in agreement over the increasing trend of extreme precipitation 

indices for three time slices. In this case also, the uncertainty range is high.  

 Distribution Fitting 

In the presence of uncertainties in AOGCM models, there is still concern over the 

choice of a unique distribution for the future climate responses. The comparison of the 

optimal distribution of different AOGCM data based on probability plots and goodness of 

fit test provides an insight into the level of inherent uncertainties. The performances of 

different distributions during summer and winter are evaluated using three goodness-of –

fit-tests: Kolmogorov-Smirnov test, Anderson-Darling estimate, and Chi-Squared test. 

The performance of any specific distribution is ranked based on the goodness of fit 

values. The optimum parameters for the best fitted distribution function are summarized 

in Appendix I. From the tabulated results it can be observed that for extreme precipitation 

events, most models are fitted with the Generalized Extreme Value distribution with 

varying value of the shape (k), location (µ) and scale (σ) parameters. However, the 

distribution of wet days with >95
th

 percentile precipitation during the summer season fits 

a well defined Frechet distribution, indicating a distribution different than the historical 

perturbed/no change scenario.  



157 

 

Table 5.11: Percent Changes in Extreme Precipitation Events for 2020s, 2050s and 2080s 

Models/Scenarios Models/Scenarios 
Heavy Precip Days Very Wet Days 5 Day Precip 

2020 2050 2080 2020 2050 2080 2020 2050 2080 

Summer 

CGCM3T47_A1B 3.89 2.86 1.37 8.19 5.96 1.87 5.64 0.75 2.49 

CGCM3T47_A2 1.87 3.45 -2.51 5.34 5.07 -1.33 5.88 3.03 -0.55 

CGCM3T47_B1 7.26 -2.93 -1.56 13.97 0.44 5.87 8.27 1.96 2.45 

CGCM3T63_A1B -2.38 -6.56 -1.18 6.23 -3.91 2.05 12.17 -2.54 1.16 

CGCM3T63_A2 -10.78 3.30 -1.56 -11.57 9.70 -0.71 -4.73 6.70 5.25 

CGCM3T63_B1 -7.51 -6.85 -7.50 -5.60 -6.85 -7.12 -2.80 2.83 -4.70 

CSIROMK3.5_A2 18.44 29.73 26.84 39.68 57.92 52.05 26.98 37.51 35.18 

CSIROMK3.5_B1 5.61 19.57 16.37 14.77 39.68 29.00 9.81 30.38 18.45 

GISSAOM_A1B 1.03 6.38 15.91 3.56 14.59 32.38 3.64 9.59 20.15 

GISSAOM_B1 5.06 5.57 8.15 11.92 16.01 22.42 8.76 9.19 16.53 

MIROC3HIRES_A1B -25.84 -24.38 -26.72 -35.32 -38.26 -39.59 -19.41 -23.08 -26.93 

MIROC3HIRES_B1 -14.55 -25.70 -16.82 -18.68 -31.94 -24.82 -11.64 -19.30 -15.91 

MIROC3MEDRES_A1B -13.31 -23.24 -33.12 -16.28 -31.58 -41.28 -12.08 -20.45 -27.70 

MIROC3MEDRES_A2 -13.09 -12.50 -40.01 -15.75 -16.81 -56.41 -14.01 -9.18 -38.89 

MIROC3MEDRES_B1 -14.85 -20.38 -15.57 -17.53 -27.05 -20.82 -10.23 -17.58 -13.58 

Winter 

CGCM3T47_A1B 26.15 38.60 47.13 40.00 59.88 76.66 19.40 27.09 29.02 

CGCM3T47_A2 28.88 32.80 60.11 43.08 48.13 91.86 23.07 20.54 38.96 

CGCM3T47_B1 25.31 48.85 45.16 33.38 73.36 66.94 21.49 27.87 25.75 

CGCM3T63_A1B 19.57 23.31 35.05 22.77 26.50 54.55 10.54 9.52 20.76 

CGCM3T63_A2 10.07 26.04 33.66 12.77 40.45 47.66 9.82 15.14 20.14 

CGCM3T63_B1 20.32 7.21 19.52 16.62 5.65 29.00 11.21 1.30 10.26 

CSIROMK3.5_A2 22.44 31.12 38.55 30.00 40.45 62.55 12.24 24.71 26.66 

CSIROMK3.5_B1 20.04 39.51 21.30 23.54 60.51 21.17 12.65 25.41 12.75 

GISSAOM_A1B 6.87 10.70 27.38 6.31 4.08 41.54 5.80 -0.94 15.45 

GISSAOM_B1 17.03 11.66 18.71 19.23 16.62 23.05 12.55 5.30 6.26 

MIROC3HIRES_A1B -4.80 6.73 6.10 -9.38 7.22 11.76 -0.15 2.02 -2.13 

MIROC3HIRES_B1 -4.09 -2.91 18.66 -18.92 -5.64 18.97 -7.27 -7.47 2.61 

MIROC3MEDRES_A1B -7.67 0.64 -0.41 -14.77 -11.12 -2.35 -9.68 -7.52 -1.02 

MIROC3MEDRES_A2 -6.26 -1.61 5.58 -12.31 -7.67 10.35 -8.40 -5.01 -0.84 

MIROC3MEDRES_B1 -9.64 -2.95 6.63 -16.92 -11.91 -0.15 -5.64 -10.02 -3.02 
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The GEV distribution unites the type I, type II and type III extreme value distributions 

into a single family, thereby allowing a continuous range of possible shapes. For k < 0, 

the GEV is equivalent to the type III extreme value (reversed Weibull). For k > 0, the 

GEV is equivalent to type II distribution (Frechet). As k approaches 0, the GEV becomes 

the type I (Gumbel). Although most of the models and scenarios show the best fit with 

extreme value distributions, to be more precise, with the Type II (Frechet) and Type III 

(reversed Weibull) distributions with shape parameters greater and smaller than 0 

respectively, the shape parameter values (k) appear close to 0. However, the differences 

in the k values show extent of the variations among the distributions for each index. The 

tables further point out the limitations of the parametric methods for quantification of 

uncertainties assuming any specific distribution and parameter values.  

Non-parametric Uncertainty Estimation by Plug-in Estimate 

To examine uncertainties in future extreme precipitation events, the yearly values of the 

indices from each AOGCMs and emission scenario are considered as random and as a set 

of independent realizations. This set is then used at each time step to establish a PDF by 

applying the bandwidth values presented in section 3.2.4. The cumulative distribution 

function (CDF) values at the upper and lower ranges of each severity class are calculated 

by numerical integration. The difference between the upper and lower value can thus be 

considered as the probability of that specific class of extreme precipitation indices for 

future. Figures 5.14 through 5.16 present the probability of the heavy precipitation days, 

the very wet days, and 5 day precipitation for three time slices.  Both indices show 

somewhat similar results for the summer and winter seasons. For <25
th

 percentile values, 

heavy precipitation days show an increase in probability for the later part of the century. 
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For the 25
th

-50
th

 and 50-75
th

 percentile ranges, probabilities decrease slightly while 

approaching 2100. However, the higher probability of precipitation days over the time is 

observed for >75
th

 and >90
th

 percentile range. This trend is supported by the probabilities 

of very wet day and 5 day precipitation for the summer season. In summary, the 

increased probability of the high end extreme precipitation events indicates larger chance 

of high intensity events during the later part of the century. 
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Figure 5.14 (a): Probability of Heavy Precipitation Days during Summer  
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 Figure 5.14 (b): Probability of Heavy Precipitation Days during Winter  
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Figure 5.15 (a): Probability of Very Wet Days during Summer  
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Figure 5.15 (b): Probability of Very Wet Days during Winter  
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Figure 5.16 (a): Probability of 5 Day Precipitation during Summer  
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Figure 5.16 (b): Probability of 5 Day Precipitation during Winter  
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The method explained in this section can be seen as a major improvement over the 

„normal‟ kernel (Silverman, 1986) method applied in other AOGCM and scenario 

uncertainty studies. The Sheather-Jones plug-in (SJPI) kernel estimation method 

proposed here overcomes the limitations associated with the assumptions of normality in 

the case of unknown densities/distributions. It is completely data driven; hence, more 

robust, flexible, and independent. The methodology has also been extensively revised by 

the statisticians.  

The orthomornal method (Efromovich, 1999) used by Ghosh and Mujumdar (2007) to 

estimate uncertainties of future droughts provides another important step in the 

development of nonparametric uncertainty estimation techniques. However, one major 

limitation of the orthonormal method is the use of a subset of the Fourier series which 

consists of cosine functions without proper justification.  

The additional benefit of kernel density estimators for the assessment of  AOGCM 

and scenario uncertainties derives from the fact that the scientific community is now 

highly confident that the trends in the precipitation over future periods are not going to 

follow the same distribution as in the past. It still remains true, for any statistical method, 

that larger sample provides better estimate of data distribution. It is our expectation that 

with the advance of more sophisticated global climate models, the kernel method will be 

applied with more confidence for uncertainty estimation problems. 
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5.3 Developing Intensity-Duration-Frequency Curves under Climate 

Change 

This section presents the results of the methodology introduced in section 3.3 for the 

development of IDF curves for 2080s. Results are presented for the City of London. 

  

5.3.1 Verification of the IDF Generation Methods 

As described in section 4.4.3, the daily weather generator is used to simulate a sequence 

of rainfall for all stations in the Upper Thames River basin. For the verification purpose, 

the perturbation functionality of the weather generator (section 3.2.2, step 10) is kept off 

in order to replicate the exact scenario as the historical observed one. In order to test the 

output of the weather generator, the box and whisker plots for monthly historical 

simulated rainfall are developed and presented in Figure 5.17. 

 

 

 

 

 

 

 

 

 

Figure 5.17: Box and Whiskers Plot of Simulated Monthly Rainfall in London  
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The boxes show the 25
th

 percentile, 50 percentile and 75
th

 percentile of data while the 

whiskers are plotted with 1.5 times the inter-quartile range from the boxes. Black line 

denotes the monthly mean rainfall from observations. For all cases the historic observed 

means are shown in terms of line plot to assess the ability of the weather generator to 

reproduce the temporal and spatial character of rainfall for the City of London. From the 

Figure 5.17, it is seen that the model has been able to replicate the historic observed 

pattern adequately. 

Next, the daily rainfall is disaggregated into hourly values using the method described 

in section 3.3.2. The comparison of the performance of the historic simulated hourly 

values with the observed hourly data is presented in terms of frequency plots (Figure 

5.18). The frequency of small range rainfall is slightly over-estimated and the mid range 

rainfall is slightly under-estimated by the disaggregation model. Overall, the frequency of 

the extreme rainfall is captured well. 

 

 

 

 

 

 

 

 

 

Figure 5.18: Frequency Plots of Observed (Obs) and Simulated (Sim) Hourly Rainfall 
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Finally, the annual maximum rainfall for 1, 2, 6, 12 and 24 hour durations is 

generated to fit Gumbel distribution for calculating return periods. These are then 

compared with the IDF information obtained from Environment Canada (EC) (Table 

5.12).  

Table 5.12 (a): Comparison of Extreme Rainfall in London in terms of Depth (mm)  

Historic Unperturbed (1965-2003) Return Period, T years 

Duration, hrs 2 5 10 25 50 100 

1 21.80 30.38 36.06 43.24 48.56 53.85 

2 28.05 40.11 48.09 58.18 65.66 73.09 

6 36.41 49.90 58.83 70.11 78.49 86.80 

12 42.61 56.33 65.41 76.89 85.40 93.86 

24 49.70 64.63 74.52 87.01 96.28 105.48 

EC (1943-2003) Return Period, T years 

Duration, hrs 2 5 10 25 50 100 

1 24.40 35.30 42.50 51.60 58.30 65.00 

2 29.60 41.60 49.50 59.60 67.00 74.40 

6 36.70 48.20 55.80 65.40 72.50 79.60 

12 43.00 54.70 62.50 72.40 79.70 87.00 

24 51.30 66.80 77.10 90.00 99.60 109.20 

 

Table 5.12 (b): Relative Difference between EC IDF Information and Historic 

Unperturbed Scenario 

Duration, min 
Return Period, T years 

2 5 10 25 50 100 

60 11.25 14.98 16.39 17.63 18.22 18.76 

120 5.38 3.66 2.89 2.42 2.02 1.78 

360 0.80 3.46 5.29 6.96 7.93 8.65 

720 0.91 2.94 4.56 6.02 6.91 7.58 

1440 3.18 3.30 3.40 3.37 3.39 3.46 
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It should be noted that the Environment Canada uses rainfall data from 1943-2003 to 

develop IDF curves for London. However, hourly data is available only from 1961; data 

prior to 1961 may exist in paper form and are not available. For the present study, the 

hourly rainfall data for London is further reduced down to 1965 for matching rainfall data 

from other nearby stations to be used for multi-site weather generator. Table 5.12 (a) 

presents the intensity-duration-frequency data obtained from the historic unperturbed 

scenario together with the IDF data generated by EC. The results obtained are compared 

in terms of the relative differences (Equation 4.13).  

 Table 5.12 (b) presents the relative difference of rainfall intensity between the 

historic unperturbed and the EC data. The short duration rainfall (1 hr) is underestimated 

by the historic unperturbed scenario, while the intermediate (2, 6, 12 hrs) and longer (24 

hrs) duration rainfalls are able to closely replicate the EC generated intensities for all 

return periods.  

 

5.3.2 IDF Results for Future Climate 

The perturbation process inside the weather generator is added to generate IDF 

information using the historical observed rainfall. This scenario called „historical 

perturbed‟ assumes that the future climate will continue to change as the consequence of 

already altered green house gas concentrations in the atmosphere, ignoring any future 

change in green house gas emissions. Table 5.13 presents comparison between the 

monthly mean precipitation from different AOGCM scenarios and historical observed 

values. Mean monthly precipitation vary significantly between months for all models.  
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Table 5.13: Monthly Mean Precipitation (mm) from AOGCMs for 1965-1990 

Scenarios/month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Observed 2.28 2.21 2.51 2.65 2.48 2.80 2.46 2.79 3.04 2.66 3.17 3.16 

CGCM3T47 1.99 1.95 2.25 2.71 2.88 2.66 2.12 2.11 2.35 2.29 2.88 2.73 

CGCM3T63 2.14 1.80 2.45 2.84 3.69 3.42 3.00 2.40 2.30 2.87 2.67 2.93 

CSIROMK3 1.94 2.16 2.44 2.97 3.28 2.64 2.42 1.80 1.72 2.31 2.42 2.21 

ECHAM5OM 3.01 3.63 3.62 4.11 4.33 4.41 3.58 3.47 3.32 2.47 2.99 3.09 

ECHO-G 2.08 2.10 2.49 3.43 4.45 3.66 3.82 3.18 2.59 2.67 2.92 2.21 

GFDLCM2.1 2.46 2.83 2.86 2.90 3.54 3.19 3.23 3.04 3.36 2.29 2.83 2.62 

GISSAOM 2.04 2.22 2.51 2.79 2.54 2.21 2.59 2.91 3.18 3.04 2.57 2.56 

MIROC3.2 HIRES 2.88 2.56 2.97 3.32 3.01 3.23 3.76 3.34 3.40 2.90 3.28 3.14 

MIROC3.2 MEDRES 2.21 2.57 2.64 2.86 2.92 3.49 3.71 3.00 2.96 2.47 2.52 2.40 

CCSRNIES B21 1.84 2.24 2.86 3.25 3.63 4.18 4.77 3.52 2.07 1.40 1.73 2.05 

CSIROMk2b B11 1.51 1.53 1.74 2.34 2.50 3.21 3.26 2.20 1.71 1.88 1.79 1.64 
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So using the methods described in section 3.3.1 downscaled outputs are corrected for 

the bias from AOGCMs to contain same mean as the observed climate. The daily weather 

generator output, after being disaggregated into hourly rainfall, is next used to generate 

intensity duration frequency data for 27 different scenarios presented in Table 4.10 to 

create different realizations of future climate using different AOGCM responses. Figure 

5.19 presents the IDF data obtained using climate scenarios in terms of depth. The 

ECHAM5AOM A1B and MIROC3MEDRES A2 models appear to be the wettest and the 

driest amongst all. The summarized results of the percent differences in the rainfall 

intensity between the wettest, the driest scenarios (Figure 5.19) and the historic perturbed 

scenarios are presented in Table 5.14.  

Table 5.14: Percent Differences between Historic Perturbed, Wet and Dry Scenarios 

ECHAM5AOM_A1B (Wet Scenario) and Historic Perturbed 

Duration, min 

Return Period, T years 

2 5 10 25 50 100 

60 62.68 69.56 72.42 75.00 76.44 77.60 

120 60.64 65.84 67.98 69.91 70.99 71.86 

360 65.13 77.09 82.29 87.12 89.88 92.13 

720 66.03 77.77 83.09 88.17 91.13 93.57 

1440 63.22 72.99 77.42 81.63 84.07 86.09 

MIROC3MEDRES_A2 (Dry Scenario) and Historic Perturbed 

Duration, min 

Return Periods, T years 

2 5 10 25 50 100 

60 -6.79 -2.90 -1.28 0.18 0.99 1.65 

120 -12.70 -15.09 -16.07 -16.96 -17.45 -17.85 

360 -7.06 -6.60 -6.40 -6.21 -6.10 -6.02 

720 -0.68 1.66 2.72 3.73 4.32 4.81 

1440 -0.44 -0.10 0.05 0.20 0.28 0.35 
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Figure 5.19: IDF Plots of AOGCM Scenarios for Different Durations 
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The wettest ECHAM5AOM A1B model shows an average of 80% increase in rainfall 

compared to the historic perturbed scenario. While the driest MIROC3.2 MEDRES A2 

scenario shows slight decrease in precipitation intensity than the historic perturbed 

scenario.  

 

5.3.3 Uncertainty Quantification of IDF Results 

Because of the inherent uncertainties, the newly developed IDF curves from different 

AOGCMs are unable to provide an accurate estimate of future extreme rainfall, but they 

establish a significant fact: the future climate will not be the same as the historic one. 

Previous studies (Simonovic and Peck, 2009; Prodanovic and Simonovic, 2007) have 

generated updated IDF information for the City of London for 2050s (2041-2070) based 

on a single scenario (CCSRNIES B21) selected from the upper range of all scenarios 

presented in this study. In presence of uncertainties presented in section 5.3.2, adoption 

of one single scenario may suffer from under/over-estimation of the risks, which may 

have significant implications for the storm water management and design practice. So, a 

kernel estimator based on the data driven plug-in approach described in section 3.2.4 is 

applied next to quantify the uncertainty arising from different AOGCM scenarios.  Due to 

the fact that unlike other uncertainty estimation methods, kernel estimator provides 

variable weights at each point of interest, weights are calculated from the mean of all 

AOGCM data for presentation purpose.  The weight function is calculated by modifying 

Equation 3.40 as follows: 

 (      )  

    
 

∑
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where,   

   represents any data point within the range of generated data for time period    for 

which kernel estimator is applied; 

    is the AOGCM simulated data; 

    is the plug-in bandwidth; and   

             is the number of AOGCM models and scenarios. 

The mean of the total sample size     is considered as the data point from which the 

distance will be measured, where               years of simulated IDF data.  

Figure 5.20 and Appendix J present the IDF curves incorporating extreme rainfall 

information from the AOGCM scenarios. In this case, four scenarios are selected: the 

„historical perturbed‟ scenario as future state ignoring climate change, „ECHAM5AOM 

A1B‟ scenario as the wettest scenario, „MIROC3MEDRES A2‟ as the driest and the 

„resultant‟ scenario as the weighted scenario incorporating multi-model information. The 

IDF curves of these selected scenarios for all durations are presented in Appendix J.  

Table 5.15 presents the percent difference between the historical perturbed and resultant 

scenarios for 2080s. From the Table 5.15 it is seen that due to the changing climate, the 

intensity of rainfall is expected to increase by 20-40 % in 2071-2099.  
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Figure 5.20: Comparison of IDF Plots for Different Scenarios 
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Table 5.15: Percentage Difference between Historical Perturbed and the „Resultant‟ 

Scenario for 2080s 

Duration, min 
Return Period, T years 

2  5  10  25  50  100  

60 21.76 25.29 26.76 28.08 28.82 29.42 

120 17.40 21.41 23.06 24.55 25.38 26.04 

360 20.85 27.32 30.14 32.75 34.25 35.47 

720 22.20 28.94 31.99 34.91 36.61 38.01 

1440 20.63 25.77 28.10 30.32 31.60 32.67 

 

Finally, the probabilities of extreme rainfall for all return periods are presented in 

terms of cumulative distribution plots. First, IDF plot of the resultant scenario is created 

(Figure 5.21). The cumulative distribution plots using the IDF from the AOGCM 

scenarios are plotted for all return periods and are presented in Figures 5.22 (a) through 

(e).  

 

 

 

 

 

 

 

 

 

Figure 5.21: IDF Plot for Resultant Scenario 
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Information from Figures 5.21 and 5.22 are combined to gather probabilities for any 

specific storm for any specific return period. For example, if the depth of 6 hour (360 

min) storm for 5 year return period is 75 mm (Figure 5.21), the maximum probability of 

this specific storm from Figure 5.22 (b) is obtained to be 0.66. This additional probability 

information will allow to the use of the updated IDF information with more confidence.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.22 (a): Probability based IDF Curve of 1 and 2 Hour Duration 
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Figure 5.22 (b): Probability based IDF Curve of 6, 12, 24 Hour Duration 
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CHAPTER SIX 

CONCLUSIONS 

The work presented in this thesis has introduced three important questions related to the 

studies of climate extremes: (i) how should the AOGCM outputs from different global 

climate models and scenarios be selected to assess the severity of extreme climate 

events?; (ii) should climate change studies adopt equal weights from the global climate 

model information while modeling uncertainty?; and (iii) what are the chances for the 

future extreme precipitation events to be more severe?. In an attempt to answer these 

questions, the major findings of the three major themes of works are presented in the 

following sections. First, the applicability of reanalysis data for climate change and 

hydrological modeling studies are outlined. Second, remarks regarding parametric and 

nonparametric uncertainty estimation techniques for estimating multiple AOGCM and 

scenario uncertainties for extreme precipitation events are presented. Finally, the results 

for developing a probability based intensity-duration-frequency curves are summarized.  

6.1 Major Findings 

6.1.1 Assessment of Reanalysis Data 

In mountainous, remote regions, or even for stations with large amount of missing data, 

the task of hydrologic modeling continues to be a major challenge due to the overall lack 

of information. In a rapidly changing climate, this is becoming a major concern. In order 

to investigate the hydrologic impacts of climate change it is important to model the 

present climate accurately. The global and regional reanalysis data from the National 
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Centre for Environmental Prediction (NCEP) with their more refined spatial and temporal 

coverage have the potential to be used effectively in data scarce regions. To take 

advantage of these synthetic data, there is, however, a need for accurate synopsis of the 

climate conditions. Because the reanalysis dataset is produced by assimilating observed 

weather information, including surface temperature into a numerical weather forecast 

system, it can be thought of as the product of an advanced interpolation scheme 

(numerical weather model) which takes into account important factors, such as 

topography and land cover (Choi et al. 2009). In this study, the performance of the NCEP 

global and regional reanalysis data under present climate conditions for precipitation and 

temperature are verified with selected stations around the Upper Thames River basin in 

the South-western Ontario, Canada. NARR dataset has been able to interpret a real 

scenario by capturing the temperature trends during 1980-2005, with some over-

estimation during the summer months. The means and the variances of both datasets do 

appear to be similar when evaluated by t and F tests. The results for computing 

precipitation at several stations show variable results. While for some stations the 

reanalysis datasets performed well, for a couple of stations both of them appeared to 

suffer from under-estimation and over-estimation, thereby necessitating a careful check 

before their application. The overall goodness of fit results indicate better performance by 

NARR when compared to NNGR.  

The present study has demonstrated that the NARR data can be a feasible substitute to 

the observed weather stations data. It is, however, important to keep in mind the 

limitation of NARR data: (i) the daily gauged data that is used for the assimilation of 

NARR, comes in 1 degree grid for the Canadian domain which may be insufficient for 
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the assimilating model to perform well; and (ii) the weather station data represent point 

information while NARR provides areal averages in 32 km x 32 km grid. A considerable 

variation of climate within the NARR grid cells is possible, which can be more prominent 

in complex topographies. The latter is, however, not considered a major drawback as in 

hydrologic modeling the areal representation of precipitation is more important than the 

point precipitation (Choi et al, 2009).   

For this study, the meteorological inputs from the NCEP data sources are used with 

the semi-distributed continuous hydrologic model developed based on the computational 

engine of HEC-HMS for the period 1980-2005. The differences between the two datasets 

appear to be more prominent from the following analysis. First, the comparison of their 

relative bias shows that NNGR is associated with a more significant bias than its NARR 

counterpart. The NARR produced an insignificant negative bias at all locations, which 

may be due to insufficient meteorological inputs that have restricted the representation of 

the real basin conditions. Second, the flow hydrographs show that NNGR is associated 

with some biases that lead to time shifts of the peaks. This can be the result of (a) the 

continuous model calibration for low flow conditions, and/or (b) the sparse grid points, 

especially from NNGR. In the case of NARR, the model performance for low flow 

improves at downstream locations with the increase of the contributing basin area. 

Although there are under- and over-estimations, NARR has not shown any systematic 

bias. The comparisons of the precipitation and flow scatter plots support the above 

explanation: higher flows are scattered from their fitted lines while the precipitation and 

low flows appeared to be in better agreement. Third, the box plots present a clear 

distinction between the two reanalysis datasets: the NARR data have successfully 
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followed the trend, while the performance of NNGR data has been inferior. The errors 

associated with the generated flows that are derived from estimating means and variances 

have been further tested using the non-parametric Wilcoxon rank sum test and Levene‟s 

test. Both tests indicate that NARR dataset leads to smaller error. Its variability is also 

shown to be closer to the observed variability for most of the months at the 95% 

confidence level.  

Based on the following observations, it can be concluded that the differences in 

simulating discharge using NARR and NNGR data sets lie in their inherent process of 

generating precipitation. The NARR data are produced by assimilating high quality and 

detailed precipitation observations into the atmospheric analysis. Therefore, they are 

making the forcing into the land surface model component of the system more accurate 

by enabling the interaction of the land hydrology and land-atmosphere. This interaction 

has not been considered in the NNGR. The coarser grid of NNGR may also have limited 

its performance. Considering the satisfactory performance of NARR, and also the 

drawbacks of NARR data over some parts of the Canadian landscape, it is suggested that 

a thorough investigation should be carried out for its application in both climate and 

hydrologic impact studies.  

 

6.1.2 Uncertainty Estimation 

This part of the thesis dealt with the approaches for quantifying AOGCM and 

scenario uncertainties from the modeled outputs of extreme precipitation events for 

London, Ontario, Canada. The work is strictly limited to the uncertainties of the outputs 
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from several AOGCMs and scenarios and does not consider the uncertainties due to 

parameterization or structure of the models. Two very different multi-model ensemble 

methods namely, the Bayesian reliability ensemble average (BA-REA) and the 

downscaling based kernel density estimator are used for uncertainty estimation. A 

comparison of these two methods reveals that while the BA-REA method can be a good 

alternative for predicting mean changes in precipitation in any region, it cannot be used in 

estimating uncertainties of different extreme events occurring at a daily time scale. The 

capability of the BA-REA method to analyze the climate responses is fairly limited; 

whereas the downscaled outputs can be obtained in any frequency according to the need 

of the user. The data-driven kernel estimator is capable of assuming data values at each 

time step as an independent realization, instead of calculating weights based on the 

means. It has a significant implication for estimating uncertainties of extreme 

precipitation events; calculating weights based on the mean can ignore the higher or 

lower values which may cause an unrealistic representation of climate extremes, such as 

floods, droughts, etc. However, the kernel estimator has its limitations too, from the 

extended chance of over or under-smoothing resulting from wrong selection of 

bandwidth. The comparison of the best fit curves for different AOGCM scenarios for 

extreme precipitation indices shows varying agreement and thereby the limited benefits 

of parametric distribution approach.  

 The choice of an appropriate bandwidth selection method is a significant step for 

kernel estimation. The shape of the distribution function is important in determining the 

performance of the bandwidth. The comparative results of different bandwidth selectors 

show that the rule of thumb (ROT) method assuming normal kernel suffers from over-
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smoothing for both indices while the least square cross validation (LCV) method results 

in under-smoothed distributions. The Sheather Jones plug in (SJPI) estimator offered a 

useful compromise between the ROT and the LCV methods. This trade-off between the 

distributions of the bandwidths seems to be an intrinsic criterion for assessing the 

performance of data-driven bandwidth selectors. Using the SJPI bandwidths, the CDFs 

for different severity classes are calculated for the extreme precipitation indices. The 

analyses are based on the assumption that the outputs from different AOGCMs are 

independent realizations; hence, indices have a different PDF at each time step and are 

not limited to any specific type of distribution. The nonparametric methods can be seen 

as a major improvement over the parametric methods which assume specific distributions 

for estimating uncertainties. Considering the probabilities obtained, it can be said that the 

probability of severe and extreme events are going to increase for both summer and 

winter, due to the changes in climate over next century. 

 

6.1.3 Intensity-Duration-Frequency Analysis 

 

The methodology for updating of rainfall IDF curves for the City of London 

incorporating uncertainties associated with the use of different AOGCMs are presented in 

the final section. The analysis of the annual maximum rainfall for developing intensity-

duration-frequency plots for the City of London under climate change has resulted in 

important findings. Overall, two objectives have been achieved by this study. First, an 

extensive investigation of the possible realizations of future climate from 29 scenarios 
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developed from AOGCM models and scenarios are performed using a downscaling based 

disaggregation approach. A nonparametric K-Nearest Neighbor (K-NN) multi-site 

weather generator operating on a daily time step is used to produce long sequence of 

rainfall data. The use of perturbation scheme eliminates the assumptions of data 

stationarity to some extent by generating data beyond the range of the input. The 

selection of appropriate stations using cross correlation and statistical regression analysis 

has strengthened the justification of using multi-site weather generator. Multiple stations 

better capture the surrounding spatial and temporal characteristics of rainfall for the 

station of interest. This has important implication for generating rainfall extremes for 

future due to the widely suspected inability of AOGCMs to simulate good quality 

precipitation data.   

 The disaggregation scheme used in this study is developed based on nonparametric 

K-NN algorithm. Since the scheme does not require any parameterization, it can be 

transferred to any area of interest with minimal adjustment. The downscaled daily outputs 

are disaggregated into hourly values. Annual maximum series of rainfall are fitted to 

Gumbel distribution to develop IDF curves for 1, 2, 6, 12 and 24 hour durations for 2, 5, 

10, 25, 50 and 100 years return periods. The associated uncertainties are estimated using 

non-parametric kernel estimation approach and the resultant IDF curve is developed 

based on a probabilistic way.  

The basic findings from the study are presented as follows: 

 The rainfall patterns in the City of London will most certainly change in future 

due to climate change. 
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 Generation of future IDF information based on single site is limited. 

Incorporating a multi-site weather generator to produce sequences of future 

rainfall offers a more reliable approach for providing better spatial and temporal 

characteristics of rainfall patterns. 

 Adoption of a single scenario for developing IDF information only provides a 

single realization of the future; application of a multi-model approach can 

provide more realistic information about the future climate. 

 Use of the wettest or the driest scenario may be useful to capture the upper and 

lower bound scenario of the future climate change; however, single use of any of 

these scenarios may suffer from over/underestimation of the rainfall extremes 

with serious implications on storm water management practice and the 

development of design standards. 

 Although the results derived from different scenarios indicate large uncertainty 

associated with the global climate models, all of them indicate increase in 

intensity of future rainfall with a varying degree. 

 A kernel based plug-in estimation approach is able to incorporate the 

uncertainties arising from different AOGCM models and to provide a more 

acceptable change in future rainfall extremes. The resultant scenario combining 

information from all AOGCMs and emission scenario responses indicates 

approximately 20-40% change in different duration rainfall for all return periods. 

 Use of a probability based intensity-duration-frequency curve is encouraged in 

order to apply the updated IDF information with higher level of confidence. 
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6.2 Conclusion 

 

The research findings presented in section 6.1 has added important information to the 

studies of extreme events. Assessment of regional reanalysis hydro-climatic has shown a 

promising potential as an addition or alternate to the observed data in the mountainous, 

data scarce regions or even regions with higher missing values. The generated future 

climate scenarios represent the nature and progression of uncertainties from several 

global climate models and their emission scenarios. The comparison of two different 

multi-model uncertainty ensemble models has provided useful information. The variable 

weight method combining downscaling based on a principal component integrated 

weather generator and data driven kernel density estimator is capable of considering the 

AOGCM outputs as individual realization at each time step, rather than depending on 

their performances based on the mean or bias values. The prevalent conception of the  

increased intensity of extreme precipitation indices resulting from climate change are 

quantified with probability information. Classifying these indices based on their severity 

level has added useful insight to the occurrence of those extreme rare events (events with 

>75
th

 percentile values). The intensity-duration-frequency curves for future climate are 

also integrated with probability information. Overall, the presented research is expected 

to broaden our existing knowledge on the nature of the extreme precipitation events and 

the propagation and quantification of uncertainties arising from the global climate models 

and emission scenarios.  
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6.3 Recommendations for Future Research 

 

Present work offers a framework for estimating uncertainties from the modeled outputs of 

multiple AOGCMs and scenarios. This section provides some recommendations for 

further research:  

 

 In the first section of the study, only global and regional reanalysis data are 

investigated for their application in the climate change and hydrologic modeling studies. 

Based on the analysis, the NARR data is further used as additional input with the 

observed data in the statistical downscaling method based weather generator for 

generating long sequences of climate data. As stated earlier, the NARR suffers from 

limitation due to its relatively coarse grid. A comparison of its performances with the 

recently developed finer grid data (10 km), such as the Canadian daily dataset (Hutchison 

et al, 2009) may help towards the search for a more accurate source of alternative 

database. 

 The uncertainty estimation methodology introduced in this research does not 

consider uncertainties arising from the use of different downscaling approaches. It is 

possible that uncertainty may also arise from the use different parameters within the same 

downscaling approach. Future research thus may include uncertainty investigation of the 

downscaling approaches. The Principal Component based K- Nearest Neighbour weather 

generator used for downscaling purpose considers only the first principal component for 

calculating Mahalanobis distance. Addition of more principal components is expected to 

improve the downscaling results. The weather generator used in the study is set that it can 
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be applied to daily data only. Modification of the algorithm for a finer temporal scale is 

recommended. 

 The yearly maximum rainfall generated for developing the probability based 

intensity-duration-frequency curve in this work considers utilization of the annual 

maximum series (AMS) method only. A comparison of peak over threshold (POT) and 

AMS may help to provide more accurate IDF curves. The disaggregation scheme used in 

this study does not consider inter-station characteristics which may miss some important 

information from the neighbouring stations. In this study only duration over 1 hour is 

considered. Sub-hourly durations can have significant impact on the municipal storm 

water management practice. The generated IDF curves are based on yearly maximum 

values. Seasonal analysis of extremes and developing seasonal IDFs will be an interesting 

extension of the current research. Use of more comprehensive inputs other than daily 

rainfall is encouraged. Finally, application of the probable maximum precipitation (PMP) 

method should be carried out too. 
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APPENDIX A: Atmosphere-Ocean Global Climate Models 

 

Criteria for Selecting Climate Scenarios 

Five criteria that should be met by climate scenarios if they are to be useful for impact 

researchers and policy makers are suggested by IPCC (2007) and are quoted here: 

 Criterion 1: Consistency with global projections. They should be consistent with a 

broad range of global warming projections based on increased concentrations of 

greenhouse gases. This range is variously cited as 1.4°C to 5.8°C by 2100, or 1.5°C to 

4.5°C for a doubling of atmospheric CO2 concentration (otherwise known as the 

"equilibrium climate sensitivity").  

 Criterion 2: Physical plausibility. They should be physically plausible; that is, 

they should not violate the basic laws of physics. Hence, changes in one region should be 

physically consistent with those in another region and globally. In addition, the 

combination of changes in different variables (which are often correlated with each 

other) should be physically consistent.  

 Criterion 3: Applicability in impact assessments. They should describe changes in 

a sufficient number of variables on a spatial and temporal scale that allows for impact 

assessment. For example, impact models may require input data on variables such as 

precipitation, solar radiation, temperature, humidity and wind speed at spatial scales 

ranging from global to site and at temporal scales ranging from annual means to daily or 

hourly values.  
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 Criterion 4: Representative. They should be representative of the potential range 

of future regional climate change. Only in this way can a realistic range of possible 

impacts be estimated.  

 Criterion 5: Accessibility. They should be straightforward to obtain, interpret and 

apply for impact assessment. Many impact assessment projects include a separate 

scenario development component which specifically aims to address this last point. The 

DDC and this guidance document are also designed to help meet this need.  

 

Challenges in using AOGCMs 

GCMs depict the climate using a three dimensional grid over the globe (Figure), 

typically having a horizontal resolution of between 250 and 600 km, 10 to 20 vertical 

layers in the atmosphere and sometimes as many as 30 layers in the oceans. Their 

resolution is thus quite coarse relative to the scale of exposure units in most impact 

assessments, hence only partially fulfilling criterion 3. Moreover, many physical 

processes, such as those related to clouds, also occur at smaller scales and cannot be 

properly modeled. Instead, their known properties must be averaged over the larger scale 

in a technique known as parameterization. This is one source of uncertainty in GCM-

based simulations of future climate. Others relate to the simulation of various feedback 

mechanisms in models concerning, for example, water vapor and warming, clouds and 

radiation, ocean circulation and ice and snow albedo. For this reason, GCMs may 

simulate quite different responses to the same forcing, simply because of the way certain 

processes and feedbacks are modeled. 

However, while these differences in response are usually consistent with the climate 



216 

 

sensitivity range described in criterion 1, they are unlikely to satisfy criterion 4 

concerning the uncertainty range of regional projections. Even the selection of all the 

available GCM experiments would not guarantee a representative range, due to other 

uncertainties that GCMs do not fully address, especially the range in estimates of future 

atmospheric composition. 

 

 

 

 

 

 

 

 

 

 

 

Figure: 3-Dimensional Representation of Climate Models  (Climate Research Unit, 2011) 

(from http://www.cru.uea.ac.uk/cru/info/modelcc/ retrieved on 3/01/2011) 

http://www.cru.uea.ac.uk/cru/info/modelcc/
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APPENDIX B: COMPROMISE PROGRAMMING 

 

Multi-objective analysis is the methodology for assessing trade-offs between set of 

alternative solutions based on using one or more objectives. First step of multi-objective 

analysis consists of identifying the set of non-dominated solutions (the subset of 

solutions, worthy of further consideration to determine the best solution) within the 

feasible region,  . So instead of seeking a single optimal solution, a set of non-dominated 

solutions is sought. For each solution outside the set of non-dominated ones, it is 

considered that there is a non-dominated solution for which all objective functions remain 

unchanged or improved and at least one is strictly improved (Simonovic, 2009).  

 

 

 

 

 

 

 

 

Figure B-1: Feasible region of a multi-objective problem presented in the objective space 

(Simonovic, 2009) 

 

 

The preferred design for any problem is chosen from one of the non-dominated solutions. 

The non dominated solutions are grouped into two categories: the major alternatives and 
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the compromises. A compromise group lies somewhere in between the major alternatives 

(Figure X-2).  

The remainder of the feasible region of solutions is categorized into dominated and 

excluded solutions. Dominated solutions are those that are inferior in all essential aspects 

to the other solutions. They can thus set aside for further consideration. Excluded solution 

re those that perform so badly on one or more objectives that they lie beneath the 

acceptability threshold. Thus they may be dropped from further consideration. There are 

many decision situations in which the decision maker must choose among a finite number 

of alternatives which are evaluated on a common set of non-commensurable multiple 

objectives or criteria.  

 

 

 

 

 

 

 

 

Figure B-2: Classification of feasible multi-objective alternative solutions (Simonovic, 

2009) 

 

The multi-objective analysis used in this study constitutes compromise programming 

which is a method for reducing the set of non-dominated solutions according to their 
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distance from the ideal solution. The distance from the ideal solution for each alternative 

is measured by a distance metric. 

Compromise programming identifies solutions closest to the ideal solution, as determined 

by the distant metric. Due to it‟s simplicity, transparency and easy adaptation to both 

continuous and discrete settings, a compromise programming is recommended as the 

multi-objective analysis method of choice for application to water resources systems 

management. The process of evaluating the set of non-dominates solutions to measure 

how close the points come to the ideal solution.  

 

 

 

 

 

 

 

Figure B-3: Illustration of compromise solutions (Simonovic, 2009) 

 

The case of input selection in the present study can be thought of as a four objective (or 

criteria) problem. The solution for which all objectives            are maximized is 

point   which is the solution obtained by maximizing the objectives,  . It is clear from 

Figure X-3, that the ideal solution represents the set of infeasible solutions. For this 

particular study, seven different combinations of inputs represent seven discrete solutions 
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of the problem. The solution identified as being the closest to the ideal solution are called 

compromise solution and constitute the compromise set.  

 

For determining the closeness, assuming the decision maker views all alternatives as 

equally important, the distant matric   , is calculated as 

   {      [∑2  
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   is a scaling function defined as 

          

  
     

   
                                                         

  
      

   
                                                         

Where, 

  is the distance parameter  

   is the weight  

The choice of the value of   depends on the type of the problem and the desired solution. 

The larger the value of  , the greater the concern. For this study,   is assumed to be 2. 

Introducing    allows the expression of the decision maker‟s feelings concerning the 

relative importance of the various objectives. In this study all four alternatives, the mean, 

standard deviation, maximum and minimum values from the seven different alternative 

combinations of the inputs are given equal weights assuming all alternatives to be equally 

important.  
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By introducing   and   , the compromise programming considers double weighting 

scheme. The parameter   reflects the importance of the maximal deviation and the 

parameter     reflects the relative importance of the     objective. 

Once the distance metric   is calculated for each alternative, they are sorted in an 

ascending order.The sorted values are then ranked based on their values; the lower the 

distance metric, the higher the rank or the best compromise set. 
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APPENDIX C: PRINCIPAL COMPONENT ANALYSIS 

The principal component analysis (PCA) is performed to reduce the dimensionality of 

any dataset of inter-related variables while preserving as much variation of the present 

data as possible. 

The principal component analysis allows to compute a linear transformation that maps 

data from a high dimensional space to a lower one.  

The best low-dimensional space can be determined by the best eigenvectors of the 

covariance matrix of   (i.e. the eigenvectors correcponding to the largest eigenvalues, 

also called the principal components). 

If             |   are     vectors, The principal components are calculated as: 

 

Step 1: Calculate the the mean:  ̅  
 

 
∑   

 
    

Step 2: subtract the mean:        ̅ 

Step 3: for the matrix                          matrix, then compute the 

covariance matrix: 

  
 

 
∑    

 

 

   

     

Step 4: compute the eigenvalues of               

Step 5: compute the eigenvectors of               

Since   is symmetric,           form a basis (i.e. aby vector   or actually     ̅  can 

be written as a linear combination of the eigenvectors: 

   ̅                   ∑    

 

   

 

Step 6: The dimensionality reduction step: keep only terms corresponding to the   

nearest eigenvalues: 
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 ̂   ̅  ∑    

 

   

           

 

The representation of  ̂   ̅ into the basis               is this 

[

  

  

  
  

] 

 

In the PCA, it is assumed that the new variables (i.e.     ) are uncorrelated. 

The covariance of       is: 
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The covariance matrix presents only second order statistics among the vector 

values. Since the new values are linear combinations of the original variables, it is 

difficult to interpret their meaning. 

A principal component is defined as a linear combination of optimally-weighted 

observed varianles. In  

In order to choose the principal components ( ), the following criterion is used: 

∑   
 
   

∑   
 
   

                             

 

 Source: http://www.cse.unr.edu/~bebis/MathMethods/PCA/lecture.pdf 
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APPENDIX D: Atmosphere-Ocean Global Climate Models Used  

 

Canadian Coupled Global Climate Model 

The third generation Coupled Global Climate Model (CGCM3) was created in 2005 by 

the Canadian Centre for Climate Modelling and Analysis (CCCma) in Victoria, BC for 

use in the IPCC 4
th

 assessment report to run complex mathematical equations which 

describe the earth‟s atmospheric and oceanic processes. The CGCM3 climate model 

includes four major components: an atmospheric global climate model, an ocean global 

climate model, a thermodynamic sea-ice model, and a land surface model (Hengeveld, 

2000) and consists of two resolutions, T47 and T63. The T47 version has a surface grid 

whose spatial resolution is roughly 3.75 degrees lat/lon and 31 levels in the vertical. The 

ocean grid shares the same land mask as the atmosphere, but has four ocean grid cells 

underlying every atmospheric grid cell. The ocean resolution in this case is roughly 1.85 

degrees, with 29 levels in the vertical. 

The T63 version has a surface grid whose spatial resolution is roughly 2.8 degrees 

latitude/longitude and 31 levels in the vertical. As before the ocean grid shares the same 

land mask as the atmosphere, but in this case there are 6 ocean grids underlying every 

atmospheric grid cell. The ocean resolution is therefore approximately 1.4 degrees in 

longitude and 0.94 degrees in latitude. This provides slightly better resolution of zonal 

currents in the Tropics, more nearly isotropic resolution at mid latitudes, and somewhat 

reduced problems with converging meridians in the Arctic. (Compiled from 

http://www.ec.gc.ca/ccmac-cccma/default.asp?lang=En&n=1299529F-1) 
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Commonwealth Scientific and Industrial Research Organization’s Mk3.5 Climate 

Systems Model  

 Australia‟s Commonwealth Scientific and Industrial Research Organization created 

the AOGCM CSIROMK3.5, which is an improved version of the MK climate systems 

model. The model consists of several components: atmosphere, land surface, ocean and 

polar ice. The dynamic framework of the atmospheric model is based upon the spectral 

method with the equations cast in the flux form that conservs predicted variables. The 

atmospheric moisture variables (vapour, water and ice) are advected by a Semi-

Lagrangian Transport (SLT) algorithm (McGregor, 1993). The most recent version 

(MK3.5) has included a representation of the Great Lakes and changes in land surface 

scheme and it‟s representation of surface albedo under freezing than it‟s previous 

versions. The MK3.5 version provides improved information by including the spatially 

varying eddy transfer coefficients (Visbeck et al, 1997) and the Kraus-Turner mixed layer 

(1967) scheme. Improvements have also been done in it‟s oceanic behavior in the high 

latitude Southern ocean, where the stratification and circulation are generally more 

realistic than the prior models. The spatial resolution of the model is 1.875 × 1.875.  

 Compiled from (http://www.cawcr.gov.au/publications/technicalreports/CTR_021.pdf) 

Max Planck Institute for Meteorology’s ECHAM5AOM Model 

ECHAM5 is the 5th generation of the ECHAM global climate model. Depending on 

the configuration the model resolves the atmosphere up to 10 hPa for tropospheric 

studies, or up to 0.01 hPa for middle atmosphere studies. The current version differ in the 

vertical extent of the atmosphere as well as the relevant processes than it‟s earlier 
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versions. It is capable of hosting sub-models (chemistry, aerosol and vegetation) going 

beyond the meteorological processes of a AOGCM. The model can be used as a part of a 

coupled ocean GCM, in assimilation by linear relaxation and as a standalone column 

model. 

For integrations to start, the model requires several files. These file contain 

information for the description of the initial or re-start state of the atmosphere (boundary 

conditions at the surface, the ozone distribution and tables of constants of LW radiation 

schemes), the description of assumed conditions during the integration, e.g. sea surface 

temperature, or the initialization of parameterizations. 

(Compiled from http://www.mpimet.mpg.de/en/science/models/echam/echam5.html) 

 

Meteorological Institute, University of Bonn Meteorological Research Institute of 

KMA Model and Data Groupe at MPI-M’s ECHO-G Model 

 

The climate model ECHO-G (Legutke and Voss, 1999) is a coupled climate model 

consisting of the atmospheric model ECHAM4 (Roeckner et al., 1996) and the ocean 

model HOPE (Wolff et al., 1997).  

The ECHAM4-model is based on primitive equations. The prognostic variables are 

vorticity, divergence, logarithm of surface pressure, temperature, specific humidity, 

mixing ratio of total cloud water and optionally a number of trace gases and aerosols.The 

vertical extension is up to a pressure level of 10 hPa, which corresponds to a height of 

approximately 30km. A hybrid sigma-pressure coordinate system is used with 19 

irregularly ordered levels and with highest resolution in the atmospheric boundary layer. 

http://www.meteo.uni-bonn.de/
http://www.meteo.uni-bonn.de/
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The bottom level is placed at a height of about 30m above the surface corresponding 

approximately to the surface layer. In this study the ECHAM4 model has a horizontal 

resolution of about 3.75lat x 3.75lon. 

The ocean model HOPE (Hamburg Ocean Primitive Equation) is an ocean global 

climate model (OGCM) based on primitive equations with the representation of 

thermodynamic processes. It is a non-eddy resolving circulation model. HOPE-G has a 

horizontal resolution of approximately 2.8lat x 2.8lon with a grid refinement in the 

tropical regions over a band from 10N to 10S. This meridional grid refinement reaches a 

value of 0.5 at the equator allowing for a more realistic representation of ENSO 

variability in the tropical Pacific Ocean . The ocean model has 20 vertical, irregularly 

ordered layers. 

The coupling as well as the interpolation between the atmosphere and the ocean model is 

controlled by the coupling software OASIS (Terray et al., 1998). Concerning the 

coupling dynamics, at a distinct frequency the atmospheric component of the model 

passes heat, fresh water and momentum to the ocean and gets information about surface 

conditions of the ocean. This frequency is equal for all exchange fields and describes a 

'coupled time step'. The fields that are exchanged are averaged over the last coupled time 

step. Further aspects of the exchange processes are flux corrections due to the interactive 

coupling between ocean and atmosphere in order to prevent climate drift. These heat- and 

freshwater fluxes were diagnosed in a coupled spin-up integration. Accordingly, the sea-

surface-temperature and sea-surface salinity were restored to their climatological 

observed values. This flux adjustment is constant in time and its global average vanishes. 

Quoted from (http://coast.gkss.de/staff/wagner/midhol/model/model_des.html) 
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Goddard Institute for Space Studies’ Atmospheric Ocean Model 

 The North American Space Association and the Goddard Institute for Space Studies 

developed the GISS-AOM climate model, first in 1995 and then a revised version was 

created with smaller grids in 2004 for the IPCC 4
th

 assessment report. The model requires 

two kinds of input, specified parameters and prognostic variables, and generates two 

kinds of output, climate diagnostics and prognostic variables. The specified input 

parameters include physical constants, the Earth's orbital parameters, the Earth's 

atmospheric constituents, the Earth's topography, the Earth's surface distribution of 

ocean, glacial ice, or vegetation, and many others. The time varying prognostic variables 

include fluid mass, horizontal velocity, heat, water vapor, salt, and subsurface mass and 

energy fields. The resolution for the model is 4 longitude by 3 latitude (PCMDI, 2005). 

The atmospheric grid has 12 vertical layers (PCMDI, 2005).  

Model for Interdisciplinary Research on Climate version 3.2 

The Japanese Model for Interdisciplinary Research on Climate version 3.2 (MIROC3.2) 

was developed in two resolutions: the high resolution (MIROC3.2HIRES) in 1.125 × 

1.125 grid and the medium resolution (MIROC3.2MEDRES) in 2.8 × 2.8 grid. For 

present study, two emissions scenarios from MIROC3.2HIRES (A1B and B1) and three 

scenarios (A1B, A2 and B1) from MIROC3.2MEDRES were used. 
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APPENDIX E: SRES Emission Scenarios 

 

 

 

 

 

 

 

 

Figure A1: SRES Emission Scenarios (Nakicenovic et al, 2000)  

A1B: In scenario A1B, the storyline includes rapid economic expansion and 

globalization, a population peaking at 9 billion in 2050, and a balanced emphasis on 

a wide range of energy sources (Nakicenovic et al, 2000).  

B1: The storyline for the B1 scenario is much like A1B in terms of population and 

globalization; however there are changes toward a service and information 

economy with more resource efficient and clean technologies. Emphasis is put on 

finding global solutions for sustainability (Nakicenovic et al, 2000).  

A2: For scenario A2, the storyline consists of a world of independently operating nations 

with a constantly increasing population and economic development on a regional 
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level. Technological advances in this storyline occur more slowly due to the 

divisions between nations (Nakicenovic et al, 2000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



231 

 

APPENDIX F: Regression Test Results 

 

Regression Results for Stations Within 0-200 km Radius Distance 

Predictor t-Statistic Probability (p) 

Hamilton RBG -8.52 0.000 

Hamilton A 20.54 0.000 

Fergus -3.91 0.000 

Elora -4.17 0.000 

Delhi 10.71 0.000 

Chatham WPCP 0.27 0.791 

Brantford MOE -6.15 0.000 

Woodstock 26.58 0.000 

Waterloo A 28.64 0.000 

St. Thomas WPCP 10.53 0.000 

Stratford MOE 8.06 0.000 

Sarnia 25.15 0.000 

Barrie 3.92 0.000 

Owensound -2.82 0.005 

Wiarton 7.49 0.000 

Toronto City -4.75 0.000 

Toronto Int‟l A 4.69 0.000 
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Regression Results for Stations Within 0-175 km Radius Distance 

 

 

 

 

 

 

 

 

 

 

 

 

Regression Results for Stations Within 0-150 km Radius Distance 

Predictor t-Statistic Probability (p) 

Woodstock 26.36 0.000 

St. Thomas WPCP 9.96 0.000 

Stratford MOE 8.92 0.000 

Delhi 10.83 0.000 

Brantford MOE -6.50 0.000 

Waterloo A 29.82 0.000 

Sarnia 25.97 0.000 

Elora -4.01 0.000 

Hamilton A  21.43 0.000 

Hamilton RBG -11.26 0.000 

Fergus -3.62 0.000 

Chatham WPCP 0.33 0.743 

Toronto Int‟l A 4.36 0.000 

 

Predictor t-Statistic Probability (p) 

Woodstock 26.43 0.000 

St. Thomas WPCP 9.97 0.000 

Stratford MOE 8.34 0.000 

Delhi 10.81 0.000 

Brantford MOE -6.42 0.000 

Waterloo A 29.85 0.000 

Sarnia 25.80 0.000 

Elora -4.05 0.000 

Hamilton A 21.40 0.000 

Hamilton RBG -11.24 0.000 

Fergus -3.96 0.000 

Chatham WPCP 0.22 0.829 

Toronto Int‟l A 4.29 0.000 

Owensound 2.38 0.017 
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Regression Results for Stations Within 0-125 km Radius Distance 

Predictor t-Statistic Probability (p) 

Woodstock 26.30 0.000 

St. Thomas WPCP 9.86 0.000 

Stratford MOE 8.77 0.000 

Delhi 10.63 0.000 

Brantford MOE -6.76 0.000 

Waterloo A 34.25 0.000 

Sarnia 26.30 0.000 

Elora -3.68 0.000 

Hamilton A 23.70 0.000 

Hamilton RBG -10.81 0.000 

Fergus -3.30 0.001 

Chatham WPCP 0.19 0.853 

 

 

 

Regression Results for Stations Within 0-100 km Radius Distance 

Predictor t-Statistic Probability (p) 

Woodstock 25.76 0.000 

St. Thomas WPCP 10.17 0.000 

Stratford MOE 7.79 0.000 

Delhi 9.41 0.000 

Brantford MOE -10.98 0.000 

Waterloo A 34.39 0.000 

Sarnia 25.85 0.000 

Elora -8.26 0.000 

Hamilton A 21.60 0.000 

 

 

 



234 

 

Regression Results for Stations Within 0-75 km Radius Distance 

Predictor t-Statistic Probability (p) 

Woodstock 30.19 0.000 

St. Thomas WPCP 10.22 0.000 

Stratford MOE 13.99 0.000 

Delhi 15.71 0.000 

Brantford MOE 2.27 0.023 

 

 

Regression Results for Stations Within 0-50 km Radius Distance 

 

Predictor t-Statistic Probability (p) 

Woodstock 40.28 0.000 

St. Thomas WPCP 19.86 0.000 

Stratford MOE 16.68 0.000 
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APPENDIX G: Cumulative Precipitation for 2000 
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APPENDIX H: Scatter plots of Precipitation and Flow (May-August, 

1980-2005) at Ingersoll 
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APPENDIX I: Distribution Fit of Extreme Precipitation Indices 

 

Table I-1: Heavy Precipitation Days for 2050s Summer 

AOGCM Models/Scenarios Distribution Fit 
Parameters 

k σ µ α β γ 

Historical Perturbed GEV III 0.14  2.48 7.511 - - - 

CGCM3T47 A1B GEV III 0.15  2.58 7.34 - - - 

CGCM3T47 A2 GEV III 0.30 2.81 7.72 - - - 

CGCM3T47 B1 GEV III 0.16 2.75 6.99 - - - 

CGCM3T63 A1B Gamma 3P - - - 24.78  0.52  -4.94 

CGCM3T63 A2 GEV III 0.32 2.84 7.75 - - - 

CGCM3T63 B1 GEV III  -0.20 2.37 6.88 - - - 

CSIROMK3.5 A2 Gamma - - - 11.68 0.92 11.68 

CSIROMK3.5 B1 GEV III 0.26 2.75 9.13 - - - 

GISSAOM A1B Gamma 3P - - - 58.56 0.38 -13.51 

GISSAOM B1 Log-Pearson 3 - - - 9.27 0.11 3.18 

MIROC3HIRES A1B GEV III 0.21  2.26 5.53  - - - 

MIROC3HIRES B1 GEV III 0.24 2.23   5.41 - - - 

MIROC3MEDRES A1B Log-Pearson 3 - - - 8.72  0.14 2.97 

MIROC3MEDRES A2 Gamma 3P - - -  36.94  0.39  7.32 

MIROC3MEDRES B1 GEV III 0.23 2.46 5.75 - - - 
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Table I-2: Heavy Precipitation Days for Winter 

AOGCM Models/Scenarios Distribution Fit 
Parameters 

k σ µ 

Historical Perturbed Normal - 2.64 6.68 

CGCM3T47 A1B GEV Type II 0.62 4.46 8.19 

CGCM3T47 A2 GEV Type II 0.59 4.58 7.85 

CGCM3T47 B1 GEV Type II 0.60 4.81 8.86 

CGCM3T63 A1B GEV Type II 0.61 4.35 7.27 

CGCM3T63 A2 GEV Type II 0.63 4.41 7.43 

CGCM3T63 B1 GEV Type II 0.64 4.26 6.36 

CSIROMK3.5 A2 GEV Type II 0.66 5.13 7.95 

CSIROMK3.5 B1 GEV Type II 0.66 5.09 8.38 

GISSAOM A1B GEV Type II 0.64 4.40 6.58 

GISSAOM B1 GEV Type II 0.67 4.58  6.59 

MIROC3HIRES A1B GEV Type II 0.60 3.84 6.06 

MIROC3HIRES B1 GEV Type II 0.65 3.76 5.64 

MIROC3MEDRES A1B GEV Type II 0.58 3.91 5.71 

MIROC3MEDRES A2 GEV Type II 0.63 3.83 5.68 

MIROC3MEDRES B1 GEV Type II 0.62 3.63 5.64 
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Table I-3: Very Wet Days for Summer 

AOGCM Models/Scenarios Distribution Fit 
Parameters 

α Β k σ µ 

Historical Perturbed GEV III   0.06 1.24 1.40 

CGCM3T47 A1B Frechet 0.99 2.57 - - - 

CGCM3T47 A2 Frechet 0.92 2.14 - - - 

CGCM3T47 B1 Frechet 0.99   2.74 - - - 

CGCM3T63 A1B Frechet 0.89   1.80 - - - 

CGCM3T63 A2 Frechet 0.90  2.02 - - - 

CGCM3T63 B1 Frechet 0.82   1.43 - - - 

CSIROMK3.5 A2 Frechet 0.83  1.98 - - - 

CSIROMK3.5 B1 Frechet 0.90 2.45 - - - 

GISSAOM A1B Frechet 0.81 1.43 - - - 

GISSAOM B1 Frechet 0.84  1.66 - - - 

MIROC3HIRES A1B Gen. Pareto - - 0.63 3.52  -0.15 

MIROC3HIRES B1 Gen. Pareto - - 0.68 3.41 -0.29 

MIROC3MEDRES A1B Gen. Pareto - - 0.64 3.33 -0.33 

MIROC3MEDRES A2 Frechet 0.83   1.29 - - - 

MIROC3MEDRES B1 Gen. Pateto - - 0.65 0.85 0.25 
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Table I-4: Very Wet Days for Winter 

AOGCM Models/Scenarios Distribution Fit 
Parameters 

K σ µ α β 

Historical Perturbed GEV II -0.070  1.52 2.59 - - 

CGCM3T47 A1B Gumbel Max - 2.17 3.40 - - 

CGCM3T47 A2 GEV II 0.10 2.04 3.34 - - 

CGCM3T47 B1 Gamma - - - 2.61 1.81 

CGCM3T63 A1B GEV III -0.14 1.58 2.61 - - 

CGCM3T63 A2 GEV III 0.14 1.72 2.99 - - 

CGCM3T63 B1 GEV III 0.15 1.53 2.55 - - 

CSIROMK3.5 A2 Weibull - - - 2.57 6.09 

CSIROMK3.5 B1 GEV III -0.16 1.98 3.98 - - 

GISSAOM A1B GEV III -0.17 1.77 3.20 - - 

GISSAOM B1 GEV III -0.22 1.82 3.32 - - 

MIROC3HIRES A1B GEV III -0.03 1.18 1.5 - - 

MIROC3HIRES B1 Gumbel Max - 1.16 1.69 - - 

MIROC3MEDRES A1B Gumbel Max - 1.15 1.68 - - 

MIROC3MEDRES A2 GEV III -0.20 1.46 2.30 - - 

MIROC3MEDRES B1 GEV III -0.09 1.30 1.88 - - 
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Table I-5: Maximum 5 Day Precipitation for Summer 

 

AOGCM Models/Scenarios Distribution Fit 
Parameters 

k σ µ 

Historical Perturbed GEV II 0.026 23.30 54.71 

CGCM3T47 A1B Gumbel Max - 23.14  55.98 

CGCM3T47 A2 GEV II 0.11 21.71 55.99 

CGCM3T47 B1 GEV II 0.038 23.40 57.89 

CGCM3T63 A1B GEV II 0.036 21.57 54.43 

CGCM3T63 A2 GEV II 0.07 24.55 57.71 

CGCM3T63 B1 GEV II 0.061 21.66 57.58 

CSIROMK3.5 A2 GEV II 0.093 30.01 75.01 

CSIROMK3.5 B1 GEV II 0.097 27.75 70.83 

GISSAOM A1B GEV II 0.20 21.75 58.17 

GISSAOM B1 GEV II 0.044 24.6 60.57 

MIROC3HIRES A1B GEV II 0.10 16.78 41.65 

MIROC3HIRES B1 GEV II 0.09 19.07 42.95 

MIROC3MEDRES A1B GEV II 0.02 18.77 43.61 

MIROC3MEDRES A2 GEV II 0.061 20.83 49.79 

MIROC3MEDRES B1 GEV II 0.09 17.3 45.12 
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Table I-6: Maximum 5 Day Precipitation for Winter 

AOGCM Models/Scenarios Distribution Fit 
Parameters 

K σ µ α β γ 

Historical Perturbed GEV II 0.07 15.85 42.45 - - - 

CGCM3T47 A1B GEV II 0.07 18.93 54.03 - - - 

CGCM3T47 A2 GEV II 0.08 18.64 50.48 - - - 

CGCM3T47 B1 GEV II 0.09 18.14 54.38 - - - 

CGCM3T63 A1B GEV II 0.04 17.46 46.26 - - - 

CGCM3T63 A2 GEV II 0.05 18.58 48.35 - - - 

CGCM3T63 B1 GEV II 0.05 15.65 43.05 - - - 

CSIROMK3.5 A2 GEVII 0.098 21.17 50.56 - - - 

CSIROMK3.5 B1 GEV II 0.13 18.57 52.01 - - - 

GISSAOM A1B GEV II 0.07 15.24 41.70 - - - 

GISSAOM B1 Frechet 3P - - - 6.25 97.63 -54.53 

MIROC3HIRES A1B Gamma 3P - - - 3.01 13.28 13.23 

MIROC3HIRES B1 GEV II 0.1 13.83 38.85 - - - 

MIROC3MEDRES A1B Gamma 3P - - - 2.27 13.45 17.68 

MIROC3MEDRES A2 Gamma 3P - - - 3.26 10.843 14.15 

MIROC3MEDRES B1 Gumbel Max - 14.12 38.78 - - - 
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APEPNDIX J: IDF Plots of Selected Scenarios 
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Appendix K: Steps of Research 

 

This section provides the technical details necessary for reproducing the results 

developed in the study. 

 

K-1: Assessment of Reanalysis-Hydro-climatic Data for Climate Change Studies 

 

1) Data Description and Pre-processing 

Data Type Data Source Data 

Format 

Variables 

Observed 

data 

National Climate Data and Information 

Archive, Environment Canada 

(http://climate.weatheroffice.gc.ca/climateDat

a/canada_e.html) 

.txt Precipitation, 

Maximum 

Temperature, 

Minimum 

Temperature 

Global 

Reanalysis 

(NNGR) 

data 

National Center for Environmental 

Protection/ National Center for Atmospheric 

Research (NCEP/NCAR) Reanalysis Project, 

Earth System Research Laboratory, National 

Oceanic and Atmospheric Administration, 

USA, 

(http://climate.weatheroffice.gc.ca/climateDat

a/canada_e.html) 

.netCDF Precipitation 

Rate, 

Maximum 

Temperature, 

Minimum 

Temperature 

Regional 

Reanalysis 

(NARR) 

data 

National Center for Environmental 

Protection/ National Center for Atmospheric 

Research (NCEP/NCAR) Reanalysis Project, 

Earth System Research Laboratory, National 

Oceanic and Atmospheric Administration, 

USA, 

(http://climate.weatheroffice.gc.ca/climateDat

a/canada_e.html) 

 

Processed data collected from Data Access 

Integration Portal of Global Environmental 

and Climate Change Center (GEC3), 

Environment Canada and the Drought 

Research Initiative (DRI) 

(http://loki.qc.ec.gc.ca/DAI/login-e.php) 

.txt Precipitation 

Rate, 

Maximum 

Temperature, 

Minimum 

Temperature 

 

http://climate.weatheroffice.gc.ca/climateData/canada_e.html
http://climate.weatheroffice.gc.ca/climateData/canada_e.html
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Preprocessing of NNGR: 

 The NNGR data obtained in .netCDF extension which is a binary format and needs an 

extraction tool to convert the data into any readable format. In this study, the Grid 

Analysis and Display System (GrADS), [developed by Brian E. Doty of the Center for 

Ocean-Land-Atmosphere Studies, USA] is programming tool is used to convert the data 

into .txt. format. 

 The variable „precipitation rate‟ (kg/m2
/sec) is converted into precipitation (mm/day) 

2) Interpolation of the Gridded data into Station Scale 

Both NNGR and NARR are gridded data. So an inverse distance weighted method is 

used to convert them into the stations grid using the nearest grid points. 

3) Hydrologic Modeling 

The continuous hydrologic model used in this work is developed and modified by 

Cunderlik and Simonovic (2004) and Prodaovic and Simonovic (2006). The current 

program runs in Java program (Prodanovic and Simonovic, 2006) to add for more 

flexibility of the input variables. The necessary codes for developing the model can be 

downloaded from the FIDs website at 

(http://www.eng.uwo.ca/research/iclr/fids/publications/products/ContinuousModelReport

2.pdf, retrieved on 3/17/2011). 

4) Performance Check of Reanalysis Data 

The interpolated NNGR, NARR data and the observed station data and the hydrologic 

model results are analyzed using the methods mentioned in sections 4.2.1 and 4.2.3. 

 

 

 

http://www.eng.uwo.ca/research/iclr/fids/publications/products/ContinuousModelReport2.pdf
http://www.eng.uwo.ca/research/iclr/fids/publications/products/ContinuousModelReport2.pdf


246 

 

K-2: Estimating Uncertainties in the Modelled Estimates of Extreme Precipitation 

Events 

 

1) Data Description 

Data Type Data Source Data 

Format 

Variables 

Observed 

data 

National Climate Data and Information 

Archive, Environment Canada 

(http://climate.weatheroffice.gc.ca/climateDat

a/canada_e.html) 

.txt Precipitation, 

Maximum 

Temperature, 

Minimum 

Temperature 

Regional 

Reanalysis 

(NARR) 

data 

National Center for Environmental 

Protection/ National Center for Atmospheric 

Research (NCEP/NCAR) Reanalysis Project, 

Earth System Research Laboratory, National 

Oceanic and Atmospheric Administration, 

USA, 

(http://climate.weatheroffice.gc.ca/climateDat

a/canada_e.html) 

 

Processed data collected from Data Access 

Integration Portal of Global Environmental 

and Climate Change Center (GEC3), 

Environment Canada and the Drought 

Research Initiative (DRI) 

(http://loki.qc.ec.gc.ca/DAI/login-e.php) 

.txt Mean Sea 

Level 

Pressure, 

Relative 

Humidity, 

Wind Speeds 

at Northward 

and Eastward 

directions 

 

2) Selection of appropriate predictor variables 

For selecting appropriate set of predictor variables, several combinations of inputs are 

considered and run into weather generator to search for an optimal set of predictors. 

Monthly outputs from those different combinations are then evaluated using their mean, 

variance, maximum and minimum values. A compromise programming tool called 

“compro” is used to rank the combinations using the above four criteria and provide the 

best combination. 

 

http://climate.weatheroffice.gc.ca/climateData/canada_e.html
http://climate.weatheroffice.gc.ca/climateData/canada_e.html
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3) Future Climate Scenarios 

 For generating future climate scenarios, 15 different climate models and 

scenarios, described in Table 4.2 are used. These are downloaded in .csv format from the 

CCCSN website (CCCSN, 2011).  

 Like the reanalysis fata, AOGCMs also provide gridded data. So, an inverse 

distance weighted method is used to convert them into the stations grid using the nearest 

grid points. 

 The interpolated station data are then used to calculate change change fields to 

generate synthetic climate data for input into the weather generator. 

4) Weather Generator 

The weather generator used in this study is originally developed by Sharif and Burn 

(2006) in C+ programming language. The model is further re-written in to a java 

program and modified to account for leap year (Prodanovic and Simonovic, 2008) and 

incorporate principal component analysis to calculate the mahalanobis distance using the 

principal components (Eum et al., 2009). These versions of weather generator were set 

to run using use three inputs and same number of outputs. In the present work, codes are 

modified to add additional inputs. The previous versions provided the same number of 

inputs and outputs. In the present version, only the output of interest is set to produce.  

 

5) Bayesian Reliability Enssemble Average (BA-REA) 

The Bayesian reliability ensemble average method is developed in r programming 

language by Tebaldi et al., (2004; 2005). The necessary codes to run the program can be 

downloaded from NCAR (2010).  
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6) Kernel Density Estimator 

The kernel density estimator method used in this program is calculated using two step 

procedure. 

First, specific bandwidths for each year time step are calculated by writing simple codes 

in r program. 

The bandwidths are then input into the matlab program to develop a cumulative 

distribution function using the kernel estimator program called “@KDE”, developed by 

Alex Ihler and Mile Mandel (2003). The program is a general matlab class for k-

dimensional kernel density. It is written in a mix of matlab „.m‟ files and MEX/C++ 

code. Thus in order to use it, the user needs to compile the  C++ code in Matlab. The 

program is available to download from (http://www.ics.uci.edu/~ihler/code/kde.html, 

Retrieved, 3/18/2011). 

 

7) Probabilities of Extreme Precipitation Indices 

The parametric distribution of the extreme precipitation indices are compared for a 

handful of 7 different distributions for each scenarios for summer and winter seasons. 

The performances of the distributions are assessed in terms of three goodness-of-fit tests. 

A sample table for comparing 5 day maximum precipitation for winter using CGCM3T63 

A1B model is included next: 

 

 

 

 

http://www.ics.uci.edu/~ihler/code/kde.html
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5 day Maximum Precipitation for Winter 2050s 

CGCM3T63 A1B 

 

 

8) Probabilities of Extreme Precipitation Indices 

Probabilities of extreme precipitation indices are calculated in matlab using the codes 

written by author. This works by calculating a cumulative distribution function of using 

the „ksdensity‟ function. The cumulative distribution functions for the specific ranges of 

indices are deducted to calculate probability of that specific class of index. 
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K-3: Developing Probabilistic Intensity-Duration-Frequency (IDF) Curves for 

Future  

1) Data Description 

Data Type Data Source Data 

Format 

Variables 

Observed 

data 

National Climate Data and Information 

Archive, Environment Canada 

(http://climate.weatheroffice.gc.ca/climateDat

a/canada_e.html) 

.txt Daily and 

Hourly 

Rainfall 

 

2 ) Selection of Appropriate Number of Stations 

For selecting appropriate number of stations regression analysis and cross-correlation 

analysis is performed using Minitab statistical software (Minitab, 2007).  

 

3 ) Generation of Future Climate Scenario 

 For generating future climate scenarios, 27 different climate models and 

scenarios, described in Table 4.10 are used. The choice of AOGCMs is entirely based on 

the availability of AOGCM data into an easily readable format. These are downloaded in 

.csv format from the CCCSN website (CCCSN, 2011).  

 The gridded AOGCMs are interpolated to station grid using the IDW method. 

 The interpolated station data are then used to calculate change fields to generate 

synthetic climate data for input into the weather generator. 

4) Weather Generator 

The weather generator used for this section is based on the same model described in H 

2.4. 
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5) Hourly Disaggregation Scheme 

The daily downscaled outputs are disaggregated into an hourly interval using the codes 

developed in Matlab by Mansour and Burn (2010). 

6) Frequency Analysis 

7) Kernel Density Estimator 

The kernel density estimator described in H-2.5 is used to combine the IDF information 

of different durations. The weights are calculated based on equation 5.1. 

The probabilities of different duration and return periods of storm are presented in terms 

of cumulative distribution functions with codes written in Matlab. 
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