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ABSTRACT

 Genomic imprinting is a specialized transcriptional mechanism resulting in the 

unequal expression of alleles based on their parent-of-origin.  Imprinted genes are critical 

for embryonic and fetal development and their dysregulation is linked to a group of 

human diseases called imprinting disorders, including Beckwith-Wiedemann Syndrome, 

Angelman Syndrome and Silver-Russell Syndrome.  Two critical phases of genomic 

imprinting exist.  The acquisition phase occurs in developing germ cells, asynchronously 

for different  imprinted loci, while the maintenance phase takes place during 

preimplantation development, while the rest of the genome is undergoing demethylation.  

Increased frequencies of human imprinting disorders are observed in children following 

the use of assisted reproductive technologies (ARTs).  The timing of ARTs during the 

critical periods of imprint acquisition and maintenance provides a mechanism for their 

disruption.  At the onset  of this project, I hypothesized that superovulation alone, and 

embryo culture alone, disrupt  imprinting acquisition and maintenance mechanisms, 

respectively, and that  disruption of genomic imprinting correlates with rates of 

preimplantation embryo development.  I have determined the effects of superovulation, 

and embryo culture using five commercially available media, on the key imprinted loci 

H19, Snrpn, Peg3, Kcnq1ot1 and Peg1/Mest, and correlated rates of preimplantation 

development with loss of genomic imprinting.  Superovulation alone disrupted genomic 

imprinting, in a dose-dependent manner.  Embryo culture in all media was sub-optimal in 

maintaining genomic imprints.  Embryos developing at a moderate pace showed levels of 

imprinted methylation most similar to in vivo-derived controls.  In addition, these studies 
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suggest that superovulation does not affect the acquisition of imprinted methylation, but 

rather maintenance throughout preimplantation development.  Data presented in this 

thesis suggests that superovulation disrupts one or more key  maternal-effects genes 

necessary  for imprint maintenance, and that superovulation and embryo culture disrupt 

the same pathway.  Future studies delineating the mechanisms mediating embryonic 

adaptation to the environmental insult caused by  ARTs, and improving current techniques 

to minimize the amount of adaptation required for embryo growth and survival outside 

the female reproductive tract, will lead to a decreased incidence of disease and improve 

the long term health of children born following ARTs. 

KEYWORDS:

Genomic Imprinting, H19, Snrpn, Peg3, Peg1/Mest, Kcnq1ot1, Assisted Reproductive 

Technologies, Superovulation, Embryo Culture
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Chapter 1: Introduction

1.1 - Epigenetics

1.1.1 Early Epigenetics

 While the concept of genes and their role in development is well known, the 

concept of epigenetics is a relatively  recent idea, and as such, much remains to be 

discovered in the field.  The term “epigenetics” was originally  coined by  C. H. 

Waddington in the 1940s, resulting from a combination of the words “epigenesis”, 

referring to the theory of animal development whereby development occurs in a step-wise 

manner resulting from successive differentiation rather than enlargement of preformed 

structures, and “genetics”, the theories and information originally derived from 

Mendelian ideology (Van Speybroeck, 2002).  Waddington’s ideas brought the concepts 

of genetics into the study of embryology, suggesting that genes interact in a number of 

ways, which are not static in every individual, to create unique organisms (Waddington, 

1939).  The frequency of discordance between genotype, the genetic makeup  of the 

individual, and phenotype, the observed physical characteristics, began to demand an 

addendum to Mendel’s laws of inheritance, which could account for these disagreements.  

Waddington suggested that the genotype of an individual did not dictate the phenotype, 

but simply provided a range of possible phenotypes, governed by  some other processes 

(Waddington, 1939).  In addition, Waddington postulated that these other processes not 

only played a role in inter-individual variation, but were also responsible for regulating 

the development of different tissues within the same individual (Waddington, 1939).  
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Essentially, the phenotype was a result of interactions between genetic processes and their 

cytoplasmic and external environments (Waddington, 1939).  

1.1.2 Modern Epigenetics

 Today, this concept has evolved, and we understand the term epigenetics as a 

combination of the word “genetics” and the prefix “epi”, meaning “on top of”.  In 

essence, epigenetics encompasses the study of heritable and reversible modifications of 

chromatin that influence the accessibility of genes and regulate gene transcription 

(Rodenhiser and Mann, 2006).  The plastic nature of epigenetics recapitulates 

Waddington’s ideas of cytoplasmic and external environments modulating the genetics of 

an organism.  Over the course of the last 50 years, as our understanding of the nuclear 

microenvironment and the composition and organization of the genome rapidly expanded, 

many advancements have been made that elucidated the core epigenetic mechanisms 

modulating these nuclear components resulting in modulation of gene expression.

1.1.3 Mechanisms of Epigenetic Regulation 

   

 Epigenetic mechanisms can modulate every aspect of the genetic material, from 

the ionic microenvironment of chromatin to the sub-nuclear localization of entire 

chromosomes.  Known mechanisms include histone modifications, DNA methylation and 

long non-coding RNAs, which, along with chromatin looping and the formation of 
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chromatin territories (CT), result in changes to chromatin structure and localization within 

the nucleus (Figure 1.1).    

1.1.3.1 Histone Modifications 

 The basic unit of DNA is the nucleosome which consists of double-stranded DNA 

wrapped around octamers of histone proteins (Kornberg, 1974), two each of H2A, H2B, 

H3, and H4, with H1 linker histones establishing spacing between nucleosomes (Figure 

1.1, 1.2). These histone proteins contain specific amino acid residues that can undergo 

post-translational modifications that modulate their charge and hydrophobicity 

(Lehninger et al., 2005).  Modulation of these two factors can change the local, or the 

global structure of chromatin organization resulting in local areas of open or closed 

chromatin, or silencing of entire chromosomes.  A number of histone modifications have 

been extensively studied and are consistently associated with either open (active), or 

closed (repressed) chromatin conformations.  Acetylation of lysine tails, such as H3K9, 

and H3K14, (Turner and Fellows, 1989; Schiltz et al., 1999; Vaquero et al., 2004), and 

phosphorylation of serine and threonine residues such as H3S10 (Sassone-Corsi et  al., 

1999; Anest et al., 2003), result in a more active chromatin state.  Other modifications 

such as methylation, sumoylation, and ubiquitination have more diverse functions in 

chromatin organization, and depending on their location, can act as either repressive or 

activating marks.  Histone methylation can occur on either lysine or arginine residues, and 

can be mono-, di-, or tri-methylated.  For example, tri-methylation of H3K4 results in an 

active chromatin conformation, while tri-methylation of H3K9 and H3K27 are repressive

3



Figure 1.1:  Mechanisms of Epigenetic Regulation

Epigenetic modifications include chromatin looping, histone modifications and DNA

methylation.  Chromatin looping allows binding of transcription factors (TF) to active 

regions of chromatin, while inactive regions are more likely located in the core of the 

chromosome territories.  DNA is made up of a series of nucleosomes, which contains 

histones and DNA.  Histone can be post-translationally modified in a number of ways, a 

few of which are methylation (Me), acetylation (Ac) and phosphorylation (P).  These 

marks can be activating or repressive depending on their nature and location.  DNA can 

be methylated on the 5’ carbon of cytosine residues by DNA methyl transferase enzymes 

(DNMTs), which is most often a repressive mark.  Long non-coding RNAs mediate 

epigenetic modifications in cis and trans through interactions with chromatin complexes 

and transcription factors.  Figure adapted from: Rodenhiser and Mann, 2006, Epigenetics 

and human disease: translating basic biology into clinical applications. CMAJ; 174(3):

341-348, Luong, P. 2009. Basic Principles of Genetics., http://web.me.com/marschalf/

classes-taught/apbiology/Spry-resources.htm, and Fraser, P., and Bickmore, W., 2007, 

Nuclear organization of the genome and the potential for gene regulation, Nature 447, 

413-417
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Figure 1.2: The Nucleosome and Histone Modifications

The nucleosome consists of an octamer of dimers of H2A, H2B, H3, and H4, with the H1 

linker protein establishing the space between nucleosomes.  DNA is wrapped around each 

nucleosome twice, resulting in approximately  147 bp of DNA per nucleosome.  This 

figure indicates the most common modifications of the H3 protein resulting in activation 

or repression of gene expression.  Ac: acetylation, Me: methylation, P: phosphorylation
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(Lehninger et  al., 2005).  Importantly, all of the above histone modifications are 

reversible, and therefore allow for temporal as well as spatial control of chromatin 

structure.  It is evident that control of chromatin state by  histone modifications is a 

complex process, involves a large network of proteins and has the capacity to finely 

modulate gene expression throughout the life cycle. 

 In early embryos, the paternal genome also acquires repressive histone 

modifications, including histone 3 lysine 9 and lysine 27 methylation (H3K9me2, 

H3K27me2, and H3K27me3). By comparison, the maternal genome possesses both active 

(H4Ac, H3K4me1) and repressive histone modifications (H3K9me2, H3K9me3, and 

H4K20me3) (Adenot et al., 1997; Cowell et al., 2002; Lepikhov and Walter, 2004).  

These covalent modifications are proposed to initiate the transcriptionally repressed state 

that coincides with embryonic genomic activation.  This potential for chromatin 

bivalency, where both activating and repressive marks occupy the same stretch of 

chromatin, is likely  a major factor in establishing the correct  gene expression profile for 

embryonic development (Schultz, 2002). 

1.1.3.2 DNA Methylation

 DNA methylation is another important epigenetic mechanism regulating gene 

expression and consists of the covalent addition of a methyl group to the C5 position of 

cytosine residues within CpG dinucleotides (Figure 1.1).  DNA methylation is most often 

associated with repression of gene expression (Lehninger et al., 2005).  A family of 
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enzymes known as the DNA methyltransferases (DNMTs) is responsible for the addition 

of these methyl groups (Figure 1.3), while the mechanism of de-methylation is less clear.  

De novo DNA methyltransferases that add methyl groups to unmethylated CpGs are 

DNMT3A and DNMT3B (Okano et al., 1998; Okano et al., 1999).  As such, these 

enzymes are responsible for the establishment of DNA methylation during early 

development and differentiation, in conjunction with other enzymes such as DNMT3L, 

and other regulatory  complexes (Lehninger et al., 2005).  DNA methylation is heritable 

throughout successive rounds of DNA replication due to the action of DNMT1, the 

maintenance methyltransferase, which recognizes hemi-methylated DNA and adds a 

methyl group to the daughter strand (Figure 1.3).  With regards to DNA demethylation, 

our current understanding suggests that passive demethylation occurs through the absence 

of maintenance methylation (DNMT1) (Morgan et al., 2005), while active demethylation 

either utilized a multistep DNA repair mechanism, or converts methylated cytosines to 

different compounds to facilitate direct removal.  These modifications include DNA 

glycosylation or 5‘hydroxy  methylation through the Tet family of enzymes (Morgan et al., 

2005; Schar and Fritsch, 2011).    

 Acquisition of DNA methylation occurs in the developing gametes and is acquired 

differentially between the two parental genomes (Hajkova et al., 2002; Kageyama et al., 

2007) (Figure 1.4).  Following fertilization, there is a wave of demethylation that erases 

gamete-specific methylation patterns and ensures the totipotency of the early embryo 

(Mayer et al., 2000; Dean et al., 2001; Santos et al., 2002; Beaujean et al., 2004). The
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Figure 1.3: DNA Methylation by DNMTs

DNA methylation is performed by DNA methyltransferases. CpG dinucleotides are 

methylated de novo by DNMT3A/B in conjunction with DNMT3L.  Hemi-methylated 

DNA is fully methylated by DNMT1 following DNA replication. Me: methyl group.  

Adapted from http://images.yourdictionary.com/DNA.
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Figure 1.4: DNA Methylation Throughout Germ Cell and Preimplantation Embryo 

Development.

Acquisition of DNA methylation begins in the developing oocyte and spermatocytes, and 

is complete prior to fertilization.  At fertilization, the paternal pronucleus undergoes 

active demethylation, while the maternal pronucleus undergoes passive demethylation 

throughout the early  stages of preimplantation development.  Imprinted methylation is 

maintained throughout preimplantation development, despite the demethylation occurring 

in the rest  of the genome.  Superovulation occurs during the time of imprint acquisition, 

and embryo culture takes place during maintenance of genomic imprinting.  Figure 

adapted from Mann, M.R.W. and Bartolomei, M.S., Genome Biology. 3(2) 1003.1-1003.4 

2002.
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paternal genome is actively  demethylated within hours after fertilization, while the 

maternal genome is passively demethylated during early cleavage divisions in a 

replication-dependent manner through a lack of maintenance methylation (Rougier et al., 

1998; Oswald et al., 2000).  The end result  is that the two parental genomes undergo 

extensive changes in global methylation during preimplantation development.  Post-

implantation, de novo methylation gradually increases in accordance with cellular 

differentiation (Monk et al., 1987).

1.1.3.3 Long Non-Coding RNA

 Studies of the human genome have revealed that only  1-2% of the DNA sequences 

carry  protein-coding information, leading scientists to question the function of the other 

98% (Lee, 2010).  Recently, a class of RNAs have been discovered that are not 

transcribed into protein products, but instead play  an important  role in epigenetic 

regulation (Guttman et al., 2009; Khalil et  al., 2009).  Transcription of these long non-

coding RNAs occurs throughout the genome, overlapping with, and between other 

protein-coding genes (Carninci et al., 2005; Kapranov et al., 2007). Many long non-

coding RNAs have been identified which show significant  evolutionary conservation 

(Guttman et al., 2009) and differences in expression across tissue types indicating a 

functional role in genomic regulation (Dinger et al., 2008; Guttman et al., 2009).  Long-

non coding RNAs can affect the expression of other protein-coding genes using both cis- 

and trans-acting mechanisms.  They can associate with chromatin modifying complexes, 

resulting in the addition of activating or repressive histone marks to these areas (Bracken 
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et al., 2006; Dinger et al., 2008; Ku et al., 2008; Nagano et al., 2008; Pandey et al., 2008), 

or RNA-binding proteins and transcription factors, resulting in recruitment to specific 

areas of the genome in cis or trans (Feng et al., 2006; Rinn et al., 2007; Wang et al., 2008; 

Zhao et al., 2008; Khalil et al., 2009).  Additional evidence suggests that elongation of the 

transcript, or the act of transcription through the domain itself is important for domain 

regulation.  While the exact mechanism is unknown, silencing may occur though the 

interaction of RNA polymerase and the tethered non-coding RNA, leading to recruitment 

of repressive chromatin complexes to areas of elongation in cis (Mancini-Dinardo et  al., 

2006), or through the interaction of the transcript with mRNAs in the domain generating 

double-stranded RNA, thereby  activating RNA interference mechanisms (Dykxhoorn et 

al., 2003).  

1.1.3.4 Nuclear Territories and Chromatin Looping

 Both histone modifications and DNA methylation can result in local alterations of 

chromatin structure, but also alter gene expression on a larger scale.  Within the nucleus, 

chromosomes are organized into a number of chromosome territories (CTs) and it was 

initially postulated that active regions (euchromatin) lie in chromatin loops at the surface 

and inactive regions are located deep within the territories (heterochromatin) (Zirbel et 

al., 1993) (Figure 1.1).  This sequestration of inactive regions to the core of the territory 

presumably prevents access to the transcriptional machinery, and these heterochromatic 

regions replicated later in S phase than their euchromatin counterparts (Gilbert, 2002).  

We now know that gene-poor regions tend to localize to the core of CTs, while gene-rich 
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regions tend to cluster at the surface (Shopland et al., 2006).  Studies also suggest that 

“looping out” of specific chromatin regions is associated with activation of transcription, 

and that these active regions, on the same or on different chromosomes, interact with one 

another (Chambeyron and Bickmore, 2004; Wurtele and Chartrand, 2006).  In addition, 

regions of constitutively high activity are often found “looped out”, in regions outside 

their normal CT (Mahy et al., 2002; Brown et al., 2006).  However, not all “looped out” 

regions of chromatin are active, but  instead represent regions poised for transcription, 

with additional chromatin modifications necessary  for active transcription to occur (Heard 

and Bickmore, 2007).  

1.2 - Genomic Imprinting

1.2.1 Brief History of Genomic Imprinting

 Genomic imprinting is an epigenetic phenomenon whose investigation is still in 

its infancy.  The term “imprint” was originally coined by H. V. Crouse from experiments 

on the insect Sciara. During sperm, but not oocyte development, Sciara selectively 

eliminate the paternal X chromosome (Crouse, 1960).  After fertilization, one or both 

remaining X chromosomes are eliminated, depending on the sex of the offspring.  This 

was the first description of the ability  of a cell to distinguish between maternal and 

paternal chromosomes, and Crouse used the term “imprint” to describe the phenomenon 

that marked a given chromosome “based solely  on the sex of the germline through which 

the chromosome had been inherited” (Crouse, 1960).   
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 The field of genomic imprinting follows from experiments on mammalian 

parthenogenotes, embryos possessing maternal but not paternal genomes.  Activation of 

oocytes in non-mammalian species resulted in the production of viable offspring 

(Engelstadter, 2008).  However, mammalian parthenotes are unable to complete 

development and die (Kaufman et al., 1977), suggesting an unequal contribution of 

maternal and paternal alleles.  This was confirmed by  further experiments constructing 

uniparental embryos, either from exclusively maternal or exclusively paternal DNA.  

Work by McGrath and Solter demonstrated that mammalian embryos generated from 

either two female pronuclei (gynogenotes) or two male pronuclei (androgenotes) fail to 

complete normal embryogenesis, dying shortly after implantation, confirming that 

contributions from both maternal and paternal chromosomes are necessary to support 

mammalian development (Markert, 1982; McGrath and Solter, 1984; Surani et al., 1984).  

Since then, many imprinted genes have been identified, and while general mechanisms 

regulating this phenomenon have been elucidated, much remains to be discovered about 

the control of imprinted gene expression.

 

1.2.2 Overview of Genomic Imprinting

 Genomic imprinting is a phenomenon whereby certain genes are expressed 

exclusively  from one parental allele (Figure 1.5).  To date, there are approximately 150 

known imprinted genes ((http://www.mousebook.org/catalog.php?catalog=imprinting;

(Morison et  al., 2005)).  Imprinted genes are often found clustered together in regions 

known as imprinting domains, where multiple imprinted genes are under the control of
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Figure 1.5:  Genomic Imprinting

Expression from both the maternal and paternal alleles is characteristic of the majority of 

the genes in the genome.  A subset of genes are expressed in a parent-of-origin specific 

manner.  Some are expressed from the paternal allele, and methylated on the maternal 

allele, while other are expressed from the maternal allele and methylated on the paternal 

allele.
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one or a few regulatory  elements (Reinhart and Chaillet, 2005).  Within imprinted 

domains, genes may  be expressed from either the maternal or paternal allele, and, 

paradoxically, non-imprinted genes may be interspersed within these domains.  In 

addition, some genes within a given imprinted domain may display imprinted expression 

in certain tissues, but not in others.  Many imprinted genes play critical roles in the 

development of the embryo, or influence behaviour after birth (Varrault et al., 2006; 

Wilkinson et al., 2007; Champagne et al., 2009), and their dysregulation is linked to a 

group of human diseases called imprinting disorders.  

 The acquisition and maintenance of genomic imprinting is controlled through 

various epigenetic mechanisms.  DNA methylation, histone modifications and chromatin 

looping all play a role in imprinted gene regulation.  Imprinted domains are coordinately 

regulated in cis by  DNA elements known as imprinting centers, or imprinting control 

regions (ICR) (Rodenhiser and Mann, 2006).  These ICRs are often rich in CpG 

dinucleotides, which can be methylated on the 5’ carbon, providing binding sites for 

various proteins involved in imprinting regulation (Wan and Bartolomei, 2008) and are 

differentially methylated depending on their parent-of-origin (Reinhart and Chaillet, 

2005).

 Although the specific mechanisms controlling the acquisition and maintenance of 

genomic imprinting at each imprinting domain is not known, research into a few key 

domains has led to the discovery of two key  regulatory models, the insulator/enhancer 

model and long non-coding RNA-mediated silencing model (Wan and Bartolomei, 2008; 

Koerner et al., 2009) (Figure 1.6, Table 1.1).
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Figure 1.6:  Models of Epigenetic Regulation

(A) The H19 imprinted domain is an example of the insulator/enhancer model of genomic 

imprint regulation.  The maternal allele is unmethylated at the imprinting control center 

(ICR), allowing insulator (Ins) proteins, such as CTCF to bind.  Binding of these insulator 

proteins prevents the interaction of the enhancer elements (E) with the upstream Igf2 gene 

promoter, allowing interaction with the H19 promoter.  H19 is expressed and Igf2 is 

repressed.  On the paternal allele, methylation (Me) of the ICR represses H19 expression 

and prevents binding of insulator proteins.  This allows the downstream enhancer 

elements to interact with the Igf2 promoter, resulting in expression at this locus.  

Methylation spreads to the H19 promoter, preventing interaction with the enhancers.

(B) The Kcnq1ot1 imprinted domain is an example of the long non-coding RNA-

mediated silencing model.  On the maternal allele, the ICR is methylated, preventing 

expression of Kcnq1ot1 non-coding RNA.  Lack of expression of the long non-coding 

RNA results in an active domain, and expression of Kcnq1, Cdkn1c and other genes.  The 

paternal allele is unmethylated at the ICR, allowing expression of Kcnq1ot1, which in 

turn represses of the domain.
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Table 1.1:  Imprinted Genes, their Imprinted Domains and Associated Human 
Disorders

Gene Expression Regulatory 
Model

Imprinted 
Domain
(Human)

Human 
Syndrome

H19 Maternal Insulator/
Enhancer

11p15.5 Beckwith-
Wiedemann 
Syndrome, 

Silver-Russell 
Syndrome

Peg1/Mest Paternal Unknown 7q32 Silver-Russell 
Syndrome

Snrpn Paternal Long non-
coding RNA-

mediated 
silencing

15q11-13 Angelman 
Syndrome, 

Prader-Willi 
Syndrome

Kcnq1ot1 Paternal Long non-
coding RNA-

mediated 
silencing

11p15.5 Beckwith-
Wiedemann 
Syndrome

Peg3 Paternal Unknown 19q13.4 None
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1.2.3 Imprinted Domains of Interest, their Regulation and Associated Syndromes

1.2.3.1 H19 Imprinted Domain 1.2.3.1.1 Structure and Regulation of the Domain

 One of the first imprinting domains to be discovered, and one of the most well 

understood, is the H19 imprinted domain, which is regulated through an enhancer/ 

insulator model.  This domain contains an imprinting control region (ICR), located 2 kb 

upstream of the H19 transcription start  site, and enhancer elements located downstream of 

the H19 gene, all of which are necessary  for genomic imprinting in this domain (Figure 

1.6) (Srivastava et al., 2000).  Differential methylation is observed at the H19 ICR, as 

well as at the Igf2 DMRs on the maternal and paternal alleles.  However, only the H19 

ICR acquires gamete-derived DNA methylation.  On the maternal allele, the ICR is 

unmethylated, allowing for binding of the insulator protein CTCF (Figure 1.6).  CTCF 

binding forms a long-range intrachromosomal loop and recruits chromatin modifying 

complexes that result  in repressive histone modifications at the Igf2 promoter, 

suppressing gene expression (Li et al., 2008).  Essentially, CTCF binding acts as an 

insulator, preventing the interaction between downstream enhancer elements and the 

upstream Igf2 gene promoter, resulting in silencing of Igf2, and expression of H19 on the 

maternal allele (Hark et al., 2000).  On the paternal allele, DNA methylation of the 

upstream ICR prevents CTCF binding, allowing enhancer elements to interact with the 

Igf2 gene promoter, resulting in expression of Igf2 (Figure 1.6).  Methylation at the ICR 

also directs methylation at  the H19 promoter, resulting in silencing of the H19 gene 

(Srivastava et al., 2000; Kaffer et al., 2001).  
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 In the mouse, four CTCF binding sites exist in the H19 ICR.  Mutation of one of 

these four sites results in biallelic expression of Igf2 (Pant et al., 2004).  Abolishing all 

four sites results in a dramatic shift in histone modifications (Han et al., 2008).  On the 

maternal allele, there is loss of the activating modifications H3K9 acetylation and H3K4 

methylation at the H19 ICR and promoter, and loss of repressive H3K27 trimethylation at 

the Igf2 promoter and DMRs.  In addition, the maternal allele acquires a paternal histone 

configuration, with activating H3K9 acetylation and H3K4 methylation at the Igf2 

promoter and DMRs, and repressive H3K27 trimethylation at the H19 promoter (Han et 

al., 2008).  

 Targeted deletion of the H19 ICR results in activation of H19 and reduced 

expression of Igf2 when inherited paternally, while maternal deletion reduces H19 

expression and activates Igf2 expression (Thorvaldsen et al., 1998). Deletion of the H19 

ICR and transcription unit of the H19 gene (Leighton et al., 1995), or of the transcription 

unit alone (Ripoche et al., 1997) results in biallelic expression of Igf2.  Phenotypic 

consequences of these dysregulations result in embryonic growth restriction, or an 

overgrowth phenotype.

1.2.3.1.2 Beckwith-Wiedemann Syndrome and the H19 Domain

 The similarity of the overgrowth phenotype noted above to the human overgrowth 

disorder Beckwith-Wiedemann Syndrome (BWS; OMIM  #130650) led to the 

identification of a causative relationship  between the H19 domain and BWS.  Clinically, 

BWS is an overgrowth disorder characterized by  macroglossia, abdominal wall defects, 
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postnatal growth above the 90th percentile, neonatal hypoglycemia (Elliott et al., 1994) 

and an increased incidence of Wilm’s tumour (DeBaun and Tucker, 1998; Rump et al., 

2005), and is estimated to affect  1 in 13 700 children (Shuman et al., 1993).  A number of 

studies have linked perturbations of the H19 domain with clinical BWS in human patients 

(Gicquel et al., 2003; Arnaud and Feil, 2005; Chang et al., 2005; Doornbos et al., 2007).  

Hypermethylation of the maternal allele, microdeletions of the CTCF binding sites and 

resulting overexpression of IGF2 has been shown in BWS patients, (Brown et al., 1996; 

Sparago et al., 2004; Prawitt et  al., 2005; Cerrato et al., 2008; Riccio et al., 2009).  

Overall, 5% of BWS patients possess imprinting defects at the maternal H19 imprinting 

center (Choufani et al., 2010).

 The H19 domain has also been implicated in the development of another 

imprinting disorder, Silver-Russell syndrome, discussed below (Chou et al., 2004; 

Kagami et al., 2007; Eggermann et al., 2010).

1.2.3.2 Kcnq1ot1 Imprinted Domain

1.2.3.2.1 Structure and Regulation of the Domain

 The Kcnq1ot1 imprinted domain is regulated by long non-coding RNA-mediated 

silencing, through the non-coding RNA Kcnq1ot1.  The imprinting control region for this 

domain is located in intron 11 of the Kcnq1 gene and is oriented in the antisense direction 

(Figure 1.6).  The promoter region of Kcnq1ot1 non-coding RNA is embedded in the ICR 

(Mancini-DiNardo et al., 2003; Pandey et al., 2004).  The ICR is unmethylated on the 
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paternal allele, resulting in transcription of Kcnq1ot1 through the imprinted domain.  

Recent studies from our lab have suggested that this transcript may extend up  to 470 kb in 

length (unpublished data).  It is currently  unclear if the act of Kcnq1ot1 RNA 

transcription through the domain results in recruitment of protein complexes that then 

silence the domain, or if the non-coding RNA itself plays a role in silencing of the 

domain, similar to the mechanism of X-inactivation through Xist.  However, recent 

studies show that Kcnq1ot1 helps to move the silenced allele into a nuclear compartment 

characterized by repressive histone marks (Pandey et al., 2008; Terranova et al., 2008).  

 Methylation at the Kcnq1 ICR on the maternal allele results in repression of 

Kcnq1ot1 transcription, allowing expression of Kcnq1, Cdkn1c and other maternally 

expressed genes. Further complexity exists at this domain as a number of genes display 

differential imprinted expression between embryonic and extraembryonic tissues (Lewis 

et al., 2004).  

1.2.3.2.2 Beckwith Wiedemann Syndrome and the Kcnq1ot1 Domain

 Mutations of the KCNQ1OT1 imprinted domain are thought to account for ~50% 

of molecular defects in patients with BWS (Weksberg et  al., 2001; Cooper et al., 2005), 

most of which are epigenetic, and not genetic, in nature.  In these cases, BWS results 

from loss of methylation at the KCNQ1OT1 ICR on the maternal allele, causing biallelic 

expression of KCNQ1OT1 and biallelic repression of KCNQ1 and CDKN1C (Horike et 

al., 2000).  CDKN1C is a cyclin-dependent kinase inhibitor, and is a negative regulator of 

the cell cycle (Matsuoka et al., 1996; Tsugu et al., 2000).  Although the exact molecular 
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etiology of BWS has not yet been confirmed, CDKN1C is an attractive candidate gene, as 

~10% of patients with BWS harbour mutations of this gene (Choufani et al., 2010).  

1.2.3.3 Peg1/Mest Imprinted Domain

1.2.3.3.1 Structure and Regulation of the Domain

 The Peg1/Mest imprinted domain is located on mouse chromosome 6 and human 

chromosome 7.  A CpG island spanning from the putative promoter region to exon 1 is 

methylated in a parent-of-origin specific manner: the maternal allele is methylated, while 

the paternal allele remained unmethylated (Riesewijk et al., 1997; Nishita et al., 1999).  

The Peg1/Mest imprinted domain contains three confirmed imprinted genes, two maternal 

(Klf14 and Copg2) and one paternally expressed gene (Peg1/Mest). 

 Mechanisms regulating the Peg1/Mest imprinted domain remain largely  unknown, 

however neither YY1 nor CTCF are known to play a role.  The only study  to date 

investigating regulation specifically  at this locus showed that TIF1beta and its interaction 

with the chromatin modifier HP1 is essential for maintaining the repressed state of the 

silenced allele, characterized by DNA methylation, H4K20 trimethylation, and H3K9 

trimethylation.  Interestingly, this was only necessary at the repressed allele, and a loss of 

this interaction resulted in the silenced allele acquiring an active phenotype characterized 

by DNA hypomethylation, and loss of H3K9 trimethylation with gain of H3K27 

trimethylation (Riclet et al., 2009).
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1.2.3.3.2 Silver-Russell Syndrome and the Peg1/Mest Domain

 Misregulation of the PEG1/MEST domain has been proposed as one of the 

causative agents of Silver-Russell Syndrome (SRS) (Hannula et al., 2001; Chou et al., 

2004; Kagami et al., 2007).  SRS is a growth retardation syndrome characterized by 

intrauterine and postnatal growth restriction, low birth weight, triangular shaped face, 

pointed chin and body asymmetry (Silver et al., 1953; Russell, 1954).  Up to 44% of SRS 

cases are associated with hypomethylation of the 11p15 region (Eggermann et al., 2010), 

which harbours imprinted genes such as H19 and IGF2, while maternal uniparental 

disomy of chromosome 7 is implicated in approximately 5% of cases of SRS (Kotzot  et 

al., 1995; Eggermann et al., 2010), which harbours the PEG1/MEST gene.  Paternal 

inheritance of a null Peg1/Mest allele results in severe IUGR in the offspring, while 

maternal inheritance of the null allele does not (Lefebvre et al., 1998).  On the other hand, 

high levels of Peg1/Mest expression has been found in adipocytes from obese mice, and 

transgenic overexpression of Peg1/Mest results in enlargement of adipocytes (Takahashi 

et al., 2005).  This suggests a key role for Peg1/Mest in regulating fetal growth.

1.2.3.4 Snrpn Imprinted Domain

1.2.3.4.1 Structure and Regulation of the Domain

 The Snrpn imprinted domain contains both maternally and paternally  expressed 

genes, and is regulated by a bipartite imprinting center located within the Snrpn gene.  

The primary imprinting center (IC) for this domain, the Snrpn ICR, consists of an ~35kb 
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region within the Snrpn promoter and exon 1.  The Snrpn ICR is differentially methylated 

in oocytes and sperm, with maternal specific methylation maintained into adulthood 

(Shemer et al., 1997).  Two distinct  regions have been identified within this IC, PWS-IC 

and AS-IC, giving it a bipartite structure.  Mutations in the AS-IC result in Angelman 

Syndrome (AS; OMIM #105830), while mutations in the PWS-IC result in Prader-Willi 

Syndrome (PWS; OMIM  #176279).  The PWS-IC is necessary for a paternal epigenetic 

pattern (El-Maarri et  al., 2001), resulting in expression of MKRN3, MAGEL2, NDN, and 

SNRPN.  A maternal epigenetic pattern with expression of UBE3A and ATP10A requires 

the AS-IC, however in the absence of both PWS- and AS-ICs a maternal epigenotype is 

observed (Horsthemke and Wagstaff, 2008), indicating that a maternal epigenetic pattern 

is the default state of this domain.  The current model of regulation at the Snrpn imprinted 

domain indicates that in spermatocytes, the PWS-IC and AS-IC are unmethylated, while 

in oocytes, methylation at the PWS-IC is directed by protein complex (yet to be 

identified) binding at the AS-IC.  Following fertilization, maternal methylation of the 

PWS-IC is maintained, while the paternal allele remains unmethylated.  On the 

unmethylated paternal allele, Snrpn generates a long non-coding RNA (Snrpn-long-

transcript [Snrpnlt] also known as Ube3a-as) that  harbours a number of snoRNAs, and 

directs expression of the other paternally expressed genes (Mkrn3, Magel2, Ndn) through 

an unknown mechanism.  Expression of the Snrpnlt transcript results in silencing of the 

Ube3a gene in the brain.  Methylation at the PWS-IC on the maternal allele prevents 

activation of paternally expressed genes including the Snrpnlt transcript, allowing 

expression of Ube3a from the maternal allele (Horsthemke and Wagstaff, 2008).
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1.2.3.3.2 PWS, AS and the Snrpn Domain

 The SNRPN imprinted domain was initially discovered from studies mapping the 

chromosomal regions implicated in Prader-Willi and Angelman Syndromes to the 

15q11-13 region.  It is estimated that approximately  70% of patients harbour a deletion in 

this region (Horsthemke, 1997).  Maternally  inherited deletions of the AS-IC result in the 

AS, and paternally inherited deletions of the PWS-IC result in PWS (Knoll et al., 1989).   

Maternal and paternal uniparental disomy (Nicholls et al., 1989; Mascari et al., 1992), or 

uniparental methylation patterns (Buiting et al., 1990; Buiting et al., 1994) have also been 

reported in patients that do not harbour deletions.

 PWS is a neurological disorder characterized by  hypotonia and failure to thrive in 

the neonatal period, hyperphagia in early  childhood leading to obesity  as well as 

hypogonadism, short stature, behavioural problems and varying levels of mental 

retardation (Goldstone, 2004).  AS is a neurological disorder characterized by 

microcephaly, ataxia, severe mental retardation, absence of speech, sleep disorders, and 

seizure disorders (Williams et  al., 2006).  While no single gene has been found solely 

responsible for the development of PWS, biallelic repression of the UBE3A gene in the 

brain has been identified as the causative disruption in AS (Horsthemke and Wagstaff, 

2008).    
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1.2.3.5 Peg3 Imprinted Domain

 The Peg3 imprinted domain consists of a 500 kb region, and contains three 

maternally expressed (Zim1, Zim2, and Zim3) and 3 paternally expressed genes (Peg3, 

Usp29, and Zfp264).  The transcriptional start sites of Peg3 and Usp29 lie very  close to 

one another, with a bidirectional promoter in the intervening region, directing expression.  

A 3.8 kb region surrounding both transcriptional start sites contains a CpG island that is 

differentially methylated in sperm and oocytes, and is maintained into adulthood (Li et 

al., 2000; Huang and Kim, 2009).  Methylation of the CpG island located within the Peg3 

promoter and exon 1 on the maternal allele results in repression of Peg3 and the other 

paternally expressed genes, while the unmethylated paternal allele expresses these genes 

(Huang and Kim, 2009).  Two conserved sequence elements have been identified within 

this 3.8 kb region and have been shown to act as binding sites for the chromatin modifier 

YY1 (Kim et al., 2007; Kim and Kim, 2008).  Expression of YY1 is necessary for 

establishment of maternal methylation patterns and binding of YY1 to the maternal allele 

has been suggested to target the region for de novo methylation (Kim et al., 2009). 

 The Peg3 gene is involved in modulating growth and behaviour.  Loss of Peg3 

expression in mice results in growth retardation, an increase in total body fat, lower 

metabolic rate and lower core body temperature, and overall delayed development 

(Curley  et al., 2005).  In addition, an increase in apoptosis in the developing brain through 

p53-mediated pathways (Broad et al., 2009) and aberrant maternal behaviour 

(Champagne et al., 2009) is observed with loss of Peg3 expression.  No human imprinting 

disorders have been associated with aberrant imprinting of the Peg3 locus to date.
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1.2.4 Acquisition of Genomic Imprinting in Germ Cells

 Genomic imprints are established at different stages of development in male and 

female germ cells, and each imprinted domain acquires its mark at slightly different times 

(Figure 1.4).  In primordial germ cells, a wave of DNA demethylation occurs, and 

imprinted methylation marks on the maternal and paternal alleles are erased (Hajkova et 

al., 2002; Lee et  al., 2002; Yamazaki et al., 2003).  Parent-of-origin specific methylation 

patterns are then re-established, leading to the presence of maternal-specific methylation 

patterns in oocytes, and paternal-specific methylation patterns in spermatocytes.  

Although the exact imprinting mark is unknown, thus far, DNA methylation is the most  

well examined, and the most likely candidate, and its pattern of acquisition in developing 

germ cell is well known for a number of imprinted loci (Lucifero et al., 2002).

1.2.4.1 Acquisition in Oocytes

 Parent-of-origin specific genomic imprints must be erased in the developing fetus 

in order to establish maternal genomic imprints in the developing oocyte.  This erasure 

occurs between day 10.5 and day 11.5 in mouse primordial germ cells (Lee et al., 2002).  

Reestablishment of maternal DNA methylation occurs during the postnatal growth phase 

of oogenesis, and is complete by the MII stage (Lucifero et  al., 2002).  Maternally 

methylated ICRs acquire de novo methylation, while paternally methylated ICRs must be 

protected from methylation.  In the former case, the de novo methyltransferase DNMT3A 

functions in conjunction with DNMT3L to methylate ICRs in the developing oocyte 
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(Hata et al., 2002; Lucifero et al., 2004).  Acquisition of methylation occurs 

asynchronously for different imprinted loci (Lucifero et al., 2004), and this acquisition is 

correlated with increasing oocyte diameter (Hiura et al., 2006).  The latter process is 

thought to occur by binding of transcription factors and other unknown proteins to the 

ICRs, blocking the action of the de novo methyltransferases at these ICRs, thereby 

protecting them from DNA methylation (Brandeis et al., 1994).

1.2.4.2 Acquisition in Spermatocytes

 Acquisition of methylation imprints in the male germ line occurs during pre-natal 

development, between 15.5 and 18.5 days of gestation.  Acquisition begins in 

prospermatogonia and is completed before the end of the pachytene phase of meiosis. 

(Kafri et al., 1992; Walsh et al., 1998; Davis et al., 1999; Davis et al., 2000; Ueda et al., 

2000; Lees-Murdock et al., 2003).  De novo methylation is mediated by DNMT3A and 

3B, in conjunction with DNMT3L, similar to what is observed in oocytes (Kelly and 

Trasler, 2004).  While some overlap  in the function of DNMT3A and 3B has been 

suggested, both are required for proper imprint acquisition in the developing male germ 

cells (Okano et al., 1999).   

1.2.5 Maintenance of Genomic Imprinting

 Following fertilization, dramatic epigenetic remodeling occurs on both the 

maternal and paternal chromosomes, which is critical to the establishment of totipotency, 
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the ability of an individual embryonic cell to generate all cell types in an organism 

(Edwards and Beard, 1997) (Figure 1.4).  Immediately after fertilization, remodeling of 

the sperm chromatin begins and consists of the replacement  of protamines by acetylated 

histones, and active, genome-wide demethylation (Oswald et al., 2000).  On the other 

hand, the maternally inherited genome is passively demethylated over the course of the 

next several rounds of cell division, which is thought to be due to a lack of maintenance 

methylation (Carlson et al., 1992).  During this early stage of preimplantation 

development, methylation is lost from all areas of the genome except imprinted genes and 

retroviral sequences (Lucifero et al., 2004).  

 Maintenance of DNA methylation at imprinted loci relies on DNMT1, which 

recognized and methylates hemi-methylated DNA (Fatemi et al., 2001).  A number of 

isoforms of DNMT1 have been identified (Pradhan et al., 1997).  The longer isoform, 

DNMT1s is most predominant in somatic cells (Hermann et al., 2004), while the shorter 

DNMT1o is present in growing oocytes and during preimplantation development (Howell 

et al., 2001).  The majority of the time, DNMT1s is localized within the nucleus, 

associated with the DNA replication machinery  at replication foci during S-phase (Szyf, 

2001).  During preimplantation development, DNMT1s is excluded from the nucleus, 

allowing for passive demethylation of the maternal genome (Carlson et al., 1992).  The 

oocyte-specific isoform localizes to the nucleus at the 8-cell stage, and along with 

DNMT1s activity, is thought to be responsible for maintaining methylation at imprinted 

loci throughout preimplantation development (Ding and Chaillet, 2002).  In addition, 

disruption of number of maternal-effect genes, that are transcribed and stored in the 
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developing oocyte and are required for preimplantation development, have been shown to 

result in loss of methylation at a number of imprinted loci including Snrpn, Peg3, Peg1/

Mest and H19 (Nakamura et al., 2007; .Li et al., 2008).

 As preimplantation development proceeds, different cell lineages begin to emerge.  

As such, de novo methylation begins around the time of implantation to allow for 

differentiation of embryonic and extraembryonic lineages, and further differentiation into 

the numerous tissue types of the adult organism (Monk et al., 1987).  

1.3 - Assisted Reproductive Technologies 

1.3.1 Prevalence of ARTs and Their Sequelae

 Since the first reported birth through the use of assisted reproductive technologies 

(ART) in 1978, the use of these technologies has dramatically increased.  It is estimated 

that 1-3% of total births in developed countries result from some form of ART (Klemetti 

et al., 2002; Wright et al., 2008).  The field of assisted reproduction is broad and consists 

of a variety of techniques, from non-invasive procedures such as ovarian 

hyperstimulation, to highly  invasive interventions such as intracytoplasmic sperm 

injection (ICSI) of retrieved oocytes.  However, all involve the manipulation of human 

gametes and preimplantation embryos, and many involve embryo culture during 

preimplantation development.  As described above, germ cell and preimplantation 

development are critical periods in the erasure and maintenance of proper imprinted 

methylation patterns (Santos and Dean, 2004).  As such, the timing of ARTs during these 
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critical periods provides a mechanism for the disruption of imprinting establishment and 

maintenance through the environmental insult caused by the use of these procedures. 

 In addition to epigenetic consequences of ARTs, a number of other sequelae have 

been observed.  Couples who undergo ART carry  intrinsic subfertility, which itself is a 

risk factor for early pregnancy loss (Gray  and Wu, 2000), and are on average 5 years 

older than those who conceive naturally  (Katalinic et al., 2004).  In addition, ART carries 

a higher risk of multiple births, which itself is associated with higher rates of prematurity, 

low birth weight, neonatal mortality, congenital malformations and disability  (Koivisto et 

al., 1975; Fauser et al., 2005).  However, all of the risk associated with ARTs cannot be 

attributed to intrinsic subfertility of the couples and risk of multiple births.  Singleton 

pregnancies occurring through the use of ARTs have an increased risk of prematurity, low 

birth weight, neonatal mortality, and neonatal intensive care unit admission (Helmerhorst 

et al., 2004; Jackson et al., 2004; McDonald et al., 2005), as well as an increased risk of 

congenital malformations (Lancaster, 1985; Rimm et al., 2004; Bonduelle et  al., 2005; 

Hansen et  al., 2005; Klemetti et al., 2005; Olson et al., 2005), and cerebral palsy (Ericson 

et al., 2002; Lidegaard et al., 2005; Hvidtjorn et al., 2006) and epilepsy  (Ericson et al., 

2002; Sun et al., 2007).  Most important for the studies contained in this thesis is the 

increase in the incidence of the human imprinting disorders Angelman Syndrome (AS) 

(Cox et al., 2002; Orstavik et al., 2003) and Beckwith-Wiedemann Syndrome (BWS) 

(DeBaun et al., 2003; Gicquel et al., 2003; Maher et al., 2003) with the use of ARTs. 

 The incidence of AS in the general population is approximately  one case per 

16,000 births, with only 5% of these cases related to imprinting abnormalities (Cox et al., 
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2002; Williams, 2007).  As the prevalence of AS is low, large-scale studies containing 

sufficient numbers of patients have been difficult  to achieve.  However, seven cases of AS 

following the use of ARTs have been reported to date, 5 of which displayed imprinting 

abnormalities (71%) (Cox et al., 2002; Orstavik et al., 2003; Ludwig et al., 2005; Sutcliffe 

et al., 2006).  This is a significantly higher proportion than in the non-ART population.  

 Beckwith-Wiedemann Syndrome is a second imprinting disorder that is  

associated with ARTs and is estimated to affect  1 in 13 700 children (Shuman et al., 

1993).  As with AS, in a number of studies, parents of children with BWS were more 

likely to have undergone fertility  treatments than the general population (Chang et al., 

2005; Doornbos et al., 2007) and a higher incidence of BWS was seen in ART children 

than in the general population (Gicquel et al., 2003; Arnaud and Feil, 2005).  The link 

between BWS and ARTs has been strongly  established, and the relative risk of ART use is 

4-9 times greater for BWS patients.  Silver-Russell Syndrome has also been associated 

with the use of ARTs (Hitchins et al., 2001; Svensson et  al., 2005; Bliek et al., 2006; 

Kagami et  al., 2007; Galli-Tsinopoulou et al., 2008; Chopra et al., 2010).  Taken all 

together, ARTs may impose inherent risk for normal development.  

 Attributing any of these risks to specific forms of ART has proven difficult, and as 

procedures vary from clinic to clinic, and protocols vary  between patients, most studies 

simply  group the observed effects under the umbrella of “ARTs”.  The remainder of this 

work will focus specifically on the effects of superovulation and embryo culture on 

genomic imprinting.
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1.3.2 Superovulation and Effects on Genomic Imprinting

Superovulation, or ovarian stimulation, is the administration of exogenous 

hormones resulting in the concurrent maturation of a large number of ovarian follicles to 

produce an increased number of ovulated oocytes when compared to spontaneous 

ovulation (Hrometz and Gates, 2009)  It is commonly  used in both the treatment of 

human infertility  (Jewelewicz, 1976; Lonergan, 2007), and in the production of livestock 

(Seidel, 1981) and laboratory animals (Ozgunen et al., 2001) to obtain large numbers of 

offspring.  Ovarian stimulation regiments differ between clinics, and within clinics 

between patients, with varying doses and types of hormones (Reid et al., 1988; Edwards, 

2007).

It has been speculated that ovarian stimulation may prevent atresia of sub-optimal 

follicles, leading to ovulation of low-quality oocytes (Van der Auwera and D'Hooghe, 

2001), or may accelerate the growth rate of ovarian follicles (Baerwald et al., 2009).  

Global perturbations in DNA methylation have been observed following superovulation 

(Shi and Haaf, 2002).  In the case of genomic imprinting, shortened oocyte maturation 

time may lead to improper or incomplete acquisition of imprinting marks on the maternal 

alleles.  Loss of maternal methylation following superovulation has been observed in 

individual human oocytes (Sato et  al., 2007; Khoueiry et  al., 2008).  In addition, it has 

been suggested that both maternal and paternal alleles may be affected by  superovulation 

(Sato et al., 2007; Stouder et al., 2009), however, the frequency and severity of this 

disruption remains unknown.  Regardless, for both human imprinting disorders BWS and 

AS, children have been identified where the only form of ARTs used in the treatment of 
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their parents’ infertility was ovarian stimulation (Young et al., 1998; Chang et al., 2005; 

Ludwig et al., 2005).

1.3.3 Embryo Culture and Effects on Genomic Imprinting

 The suggestion that culture of the early embryo may lead to epigenetic 

perturbations, specifically with respect to genomic imprinting, was discovered in the 

mouse model.  A subset of cultured embryos (analyzed in pools) displayed biallelic 

expression of H19, which was maintained in extraembryonic tissues post-implantation 

(Sasaki et al., 1995).  Since then, it has been determined that preimplantation culture of 

mouse embryos results in biallelic expression of the H19 gene and loss of imprinted 

methylation at the H19, Snrpn, and Peg3 genes in blastocyst stage embryo (Doherty et al., 

2000; Khosla et al., 2001; Fernandez-Gonzalez et  al., 2004; Mann et al., 2004; Fauque et 

al., 2007).  However, the extent of this effect, measured by the percent of embryos 

affected, varied with the type of culture medium used.  This lead to the hypothesis that 

embryo culture media vary in their ability to maintain the correct epigenetic landscape of 

the early embryo (Doherty et al., 2000).  However, as with the previous study, the authors 

noted that not all embryos were affected by  culture - some differences existed between 

embryos in their ability  to compensate for the sub-optimal preimplantation environment 

to which they were subjected.  Subsequent observations of post-implantation embryos 

indicated that epigenetic alterations induced by embryo culture persist.  At day  9.5, 

following embryo culture and embryo transfer, loss of methylation and biallelic 

expression was observed for H19, Snrpn, Peg3 and Kcnq1ot1 in extraembryonic tissues, 
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indicating that imprinting perturbations are inherited through to midgestation, long after 

embryos have been removed from the culture medium (Mann et al., 2004).  It is now well 

understood that embryo culture, the act of maintaining pre-implantation embryos outside 

the female reproductive tract, as well as the components of the embryo culture medium, 

affect genomic imprinting at multiple loci. 

 Significant advancements have been made in the culture of preimplantation 

embryos to date (Bolton et al., 1991; Fischer and Bavister, 1993; Li and Foote, 1993; 

Gardner, 1994; Bavister, 1995; Gardner and Lane, 1996; Bavister, 2004; Rinaudo and 

Schultz, 2004), and many different media are currently available.  The majority  of embryo 

culture media are based on physiological saline solutions (Quinn, 1998; Summers and 

Biggers, 2003).  Early development of chemically-defined culture media was based on 

classic formulations for somatic cell culture.  For example, Whitten’s medium is a saline 

solution based on Krebs-Ringer’s solution supplemented with a carbohydrate energy 

source.  More recent formulations have adjusted concentrations of various components 

based either on optimized response by the embryo or to approximate values of known 

constituents present in the oviductal/uterine environment (Summers and Biggers, 2003). 

One example is KSOM (for K+ modified, simplex optimized medium); identification of 

amino acids in oviducts led to supplementation of culture media with amino acids (AA). 

To date, various media types are used to culture preimplantation embryos, including in 

ART clinics (Gardner, 1994; Bavister, 1995; Summers and Biggers, 2003; Pool, 2004). 

What needs to be emphasized is that preimplantation embryos survive embryo culture by 

adapting to the environment (Summers and Biggers, 2003).  The full consequences of 
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these adaptations are unknown.  The fact remains that oviductal fluid is more complex 

and subsequently  better than culture medium currently used for human and mouse 

embryos (Roberts, 2005).  Further development of culture media was based on the idea 

that media components should be altered during culture to reflect the in vivo environment 

and led to the development of  “sequential media systems”.  Culture formulations mimic 

the changing environment as embryos transverse the oviduct to the uterus/uteri.  Thus, a 

switch from high pyruvate, low glucose to high glucose, low pyruvate was implemented 

in these media systems to meet the temporal nutritional needs of the developing 

preimplantation embryo (Gardner and Lane, 1998; Cooke et al., 2002).

 Many studies have attempted to show superiority of one media or another, with 

respect to various measures of developmental competence (Leese and Barton, 1984; 

Quinn et al., 1985; Ho et al., 1995; Gardner and Lane, 1998; Roberts, 2005; Lane and 

Gardner, 2007; Biggers and Summers, 2008).  The effects of various culture media on 

genomic imprinting have been evaluated by many groups, however it  is nearly impossible 

to compare between studies due to differences in other aspects of their embryo 

manipulation techniques.  In the mouse model, M16 medium was shown to cause greater 

perturbation of H19 imprinting than G1.2/G2.2 (Fauque et al., 2007).  Human tubal fluid 

(HTF) caused loss of H19 imprinting, including aberrant histone modifications with an 

increase in H3K4 dimethylation on the paternal allele and an increase in H3K9 

trimethylation on the maternal allele (Li et al., 2005).  KSOMaa was better able to 

maintain genomic imprinting than Whitten’s medium (Doherty  et al., 2000; Mann et al., 

2004) although culture in KSOMaa also resulted in disruptions of genomic imprinting 
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(Rivera et al., 2008).  In the bovine, alterations in imprinting of Snrpn have been 

associated with the non-sequential SOF medium (Suzuki et al., 2005) as well as Sgce and 

Ata3 in the sequential Vitro Cleave/Vitro Blast medium (Tveden-Nyborg et al., 2008).  In 

humans, a recent study reported loss of methylation at the H19 locus in ~19% of a cohort 

of human embryos cultured in Cleavage Medium (Chen et al., 2010), supporting the 

translation of aberrant imprinting noted in animal models as a caution to human embryo 

culture.  However, all of the above studies employed ovarian stimulation to retrieve 

embryos prior to culture.  As such, as noted above, it is not possible to tease out the 

effects of one type of ART from another based on the current  literature.  My thesis aims to 

provide the necessary experimental protocols and analyses to begin to elucidate the 

individual effects of different forms of ART.   

 

1.5 - Rationale

As described above, germ cell and preimplantation development are critical 

periods in the erasure, establishment  and maintenance of proper imprinted methylation 

patterns (Santos and Dean, 2004).  As such, the timing of ARTs during these critical 

periods provides a mechanism for the disruption of imprinting establishment and 

maintenance through the environmental insult caused by the use of these procedures.  It is 

of critical importance to evaluate the effects of these techniques on genomic imprinting, 

and assess the safety and risks associated with each technique (Mann et al., 2004).  In 

addition, due to the stochastic nature of environmental effects on genomic imprinting, 

analysis at the individual embryo levels is necessary to gain a clear understanding of the 
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prevalence and frequency  of disruption.  Multiple analyses in the same individual embryo 

conducted in these studies also allows for correlation of multiple characteristics with the 

environmental effects of genomic imprinting.

1.6 - Hypothesis

 I hypothesize that multiple imprinted loci are disrupted by  superovulation alone or 

embryo culture alone, and that this disruption results from perturbations in the 

mechanisms regulating the acquisition and maintenance of genomic imprinting 

throughout preimplantation development.  In addition, I hypothesize that rates of 

preimplantation development correlate with loss of genomic imprinting.  

1.7 - Objectives

This thesis addresses the following objectives:

(1) To evaluate the effects of superovulation on genomic imprinting in the mouse 

embryo

(2) To determine the differential effects of embryo culture media on genomic imprinting.

(3) To determine the relationship between rates of preimplantation development and 

maintenance of genomic imprinting

All studies were performed using a technique developed during the course of my graduate 

work with which I was able to analyze multiple parameters in individual preimplantation 

embryos.
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Chapter 2: The Effects of Superovulation on Genomic Imprinting

The work in this chapter originates from the following peer-reviewed article:

Market-Velker, B.A., Zhang, L., Magri, L.S., Bonvissuto, A.C. & Mann, M.R. Dual 

effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-

dependent manner. Hum Mol Genet 19, 36-51 (2010).

 

2.1 Introduction

 The use of assisted reproductive technologies (ARTs) for the treatment of human 

subfertility  / infertility contributes 1-2% of all children born in developed countries 

(Gosden et al., 2003; Roberts, 2005). However, the safety  of these technologies has yet to 

be fully evaluated.  Children conceived through various forms of ART are at an increased 

risk of low birth weight, intrauterine growth restriction, premature birth, and have a 

higher incidence of genetic and epigenetic disorders, including genomic imprinting 

disorders such as Beckwith-Wiedemann Syndrome and Angelman Syndrome (Cox et al., 

2002; DeBaun et al., 2003; Gicquel et al., 2003; Maher et al., 2003; Orstavik et al., 2003; 

Sunderam et al., 2009).  While the absolute risk of developing a genomic imprinting 

disorder in children born through ART as a result of an epigenetic defect is low, the 

relative risk when compared to non-ART children is significantly higher (Maher, 2005; 

Bowdin et al., 2007).

 Genomic imprinting is a mechanism of transcriptional regulation that restricts 

expression to either the maternally- or paternally-inherited copy of the gene; the opposite 
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parental copy is silent (Verona et al., 2003).  Imprinting may be envisaged as a multi-

generational process that begins in parental gametes, where previous DNA modifications 

are erased, and sex-specific modifications that differentially  mark the parental alleles are 

acquired (Szabo and Mann, 1995; Kato et al., 1999; Lee et al., 2002).  Maternal imprints 

are established in the oocyte, during maturation from primordial to antral follicles. 

Imprinting marks are then stably inherited and maintained in the developing embryo, 

amidst genome-wide changes in DNA methylation, where they  are translated into 

parental-specific monoallelic expression (Pfeifer, 2000).  Disruptions in any  of these steps 

may lead to loss of parental-specific expression and the development of imprinting 

disorders.

 DNA methylation of CpG dinucleotides is the most widely  investigated epigenetic 

"mark" associated with genomic imprinting.  It has generally been linked to 

transcriptional repression, is both heritable and reversible, and has been shown to interact 

with, and recruit, chromatin-modifying complexes to silence or activate specific genes 

(Razin and Riggs, 1980; Berger, 2007; Cedar and Bergman, 2009).  DNA methylation 

occurs at regions called differentially methylated regions (DMRs) that display differential 

methylation of maternal and paternal alleles, or imprinting control regions (ICRs), if it 

has been ascertained that differential methylation is acquired during gametogenesis and 

maintained during preimplantation development.  Although the exact mechanisms of 

imprinted gene regulation have yet to be elucidated, DNA methylation at DMR/ICRs has 

been correlated with allelic expression of many imprinted genes (Verona et al., 2003).
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 Superovulation, or ovarian stimulation, is an assisted reproductive technology 

commonly used to treat subfertility in women, for basic research in animal models, and in 

the production of livestock to obtain large numbers of offspring.  Increased frequencies of 

imprinting disorders have been correlated with ARTs, and loss of imprinting is more often 

the cause of imprinting disorders in affected ART populations than in non-ART children. 

Significantly, for both Angelman and Beckwith-Wiedemann Syndromes, patients have 

been identified where the only ART procedure used was ovarian stimulation (Young et al., 

1998; Chang et al., 2005; Ludwig et al., 2005).  

 To distinguish between the effects of superovulation and other contributing factors 

on genomic imprinting, carefully controlled experiments are required on spontaneously-

ovulated, in vivo-fertilized oocytes, and their induced-ovulated counterparts, thereby 

minimizing effects of in vitro manipulations.  Additionally, effects of superovulation on 

genomic imprinting need to be evaluated in an animal model system, where subfertility is 

not a confounding issue.  

 We propose that superovulation alone increases the risk of developing imprinting 

disorders. To address this, we evaluated imprinted methylation of multiple genes from 

individual mouse preimplantation embryos.  This work represents the first comprehensive 

examination of the overall effect of ovarian stimulation on genomic DNA methylation 

imprints at four imprinted loci, Snrpn, Peg3, Kcnq1ot1 and H19, in individual blastocyst 

stage embryos, and is the first to utilize low and high doses of hormones to assess their 

effects on genomic imprinting.  We report that superovulation resulted in a loss of Snrpn, 

Peg3 and Kcnq1ot1 imprinted methylation, and a gain of imprinted H19 methylation in 
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preimplantation embryos, and that this perturbation was dose-dependent; dysregulation of 

imprinted methylation was more frequent at  the high hormone dosage.  Additionally, we 

show that maternal- as well as paternal-specific H19 methylation imprints were perturbed 

by superovulation, suggesting that superovulation disrupts acquisition of imprints in 

growing oocytes, as well as maternal-effect gene products subsequently  required for 

imprint maintenance during preimplantation development.  

 

2.2 Methods

2.2.1 Ovarian Stimulation and Embryo Collection

 Embryos were obtained from crosses of C57BL/6 (CAST7) females and C57BL/6 

(B6) males (Jackson Laboratory or Charles River).  B6(CAST7) mice contain Mus 

musculus castaneus chromosome 7 on a B6 background (Mann et al., 2003).  Two 

hormone regimens were used for ovarian stimulation, 6.25 IU (low dose) and 10 IU (high 

dose).  Low or high doses of PMSG (Pregnant Mare’s Serum Gonadotropin, Intervet 

Canada) were administered to female B6(CAST7) mice, followed by  the same dose of 

hCG (Human Serum Chorionic Gonadotropin, Intervet Canada) 40-44 hours later. 

Females were mated with B6 males, and pregnancy  was determined by the presence of a 

vaginal plug the following morning (day 0.5).  F1 hybrid embryos were flushed from the 

genital tract of females ~96 hours post-hCG to recover blastocyst stage embryos.  

Additionally, females were set up in timed-matings that allow for spontaneous ovulation 

cycles (untreated controls). B6(CAST7) females were crossed with B6 stud males.  As 
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well, B6 females were mated with Mus musculus castaneus (CAST) males (spontaneous 

ovulation).  Embryos were recovered at day 3.5 postcoitum; all analyzed embryos were 

blastocysts, except for B6(CAST7) X B6 E6 (spontaneous ovulation group), E29 (6.25 IU 

group) and E23 (10 IU group) which were late stage morulae.  Embryos were flushed in 

pre-warmed M2 media (Sigma), washed 3x in 30 µL, and individually  snap frozen in 1-5 

µL of M2.  Individual embryos were stored at -80˚C.  For each control and experimental 

group, embryo collections were performed multiple times, and embryos analyzed were 

recovered from multiple litters.  Experiments were performed in compliance with the 

guidelines set by the Canadian Council for Animal Care, and the policies and procedures 

approved by the University of Western Ontario Council on Animal Care.  

2.2.2 DNA Isolation and Bisulfite Mutagenesis for Individual Embryos

 Bisulfite Mutagenesis with agarose embedding was conducted on single embryos 

as described (58,59), with modification.  Individual embryos were lysed with 0.1% 

IGEPAL (Biochemika), and 2 mg/mL Proteinase K (Sigma) in 10 µL of lysis buffer [100 

mM Tris-HCl pH 7.5 (Bioshop), 500 mM LiCl (Sigma), 10 mM EDTA pH 8.0 (Sigma), 

1% LiDS (Bioshop), 5 mM  DTT (Sigma)] for 1 hour at  50˚C.  Lysed embryos were 

embedded in 2% low melting point agarose (Sigma) under mineral oil at 95˚C.  DNA/

agarose beads were allowed to solidify for 10 minutes on ice.  Oil was removed and 

denaturation of DNA was performed in 0.1 M NaOH (Sigma) at 37˚C for 15 minutes with 

shaking.  Agarose beads were placed in 2.5 M bisulfite solution [0.125 M hydroquinone 

(Sigma), 3.8 g sodium hydrogensulfite (Sigma), 5.5 mL water, 1 mL 3 M  NaOH] at 50˚C 
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for 3.5 hours to allow bisulfite mutagenesis to occur.  Following incubation, agarose 

beads were washed once in TE pH 7.5, and desulphonated with 0.3 M  NaOH at 37˚C for 

15 minutes with shaking.  Agarose beads were washed twice with TE pH 7.5, and twice 

with water.  Beads were incubated under oil at 65˚C and ~60 µL of pre-warmed water was 

added.  Agarose beads were mixed by pipetting and 20 µL of diluted agarose was added 

to one Ready-to-go PCR Bead (GE) containing gene-specific primers and 1 µL of 240 ng/

mL tRNA as a carrier.  PCRs were split  in half allowing two independent PCR reactions 

to be completed for each gene analyzed.  Nested primer sequences and associated 

information for each gene can be found in Table 2.1.  Negative controls (no embryo) were 

processed alongside each bisulfite reaction.

2.2.3 Allele-Specific DNA Methylation Analysis of Individual Embryos for Snrpn, 

Peg3, Kcnq1ot1, and H19

 Gene-specific primers used for nested PCR amplification of Snrpn, Peg3, 

Kcnq1ot1 and H19 as well as melting temperatures for each primer set can be found in 

Table 2.1.  Five µL of first  round product was seeded into each second round PCR 

reaction.  Second round products were digested with restriction enzymes that cleave 

methylated bisulfite converted DNA to ensure no bias in the amplification of methylated/

unmethylated products, or with restriction enzymes that cleave species-specific SNPs to 

ensure no allelic bias was introduced during PCR amplification.  PCR amplified products 

were directly cloned without intervening gel extraction steps, as we observed that column 

purification drastically decreases the variability of DNA strands recovered (data not 
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Table 2.1. Regions and Conditions for PCR Analysis Following Bisulfite 
Mutagenesis.

Gene Accession Position Primer 
Type

Primer Sequence (5'-3') Annealing 
Temp

Reference

Snrpn AF081460 2151 OF TAT GTA ATA TGA TAT AGT TTA GAA ATT 
AG

52 24; 25

-2570 OR AAT AAA CCC AAA TCT AAA ATA TTT TAA 
TC

IF AAT TTG TGT GAT GTT TGT AAT TAT TTG G 54
IR ATA AAA TAC ACT TTC ACT ACT AAA ATC 

C
Peg3 NT_039413.7 3683033 OF TTT TGA TAA GGA GGT GTT T 50 This study;

-3682588 OR ACT CTA ATA TCC ACT ATA ATA A 15
IF AGT GTG GGT GTA TTA GAT T 53
IR TAA CAA AAC TTC TAC ATC ATC

Kcnq1ot1 AJ271885 141392 OF GTG TGA TTT TAT TTG GAG AG 52 This study;
-141598 OR CCA CTC ACT ACC TTA ATA CTA ACC AC 26

IF GGT TAG AAG TAG AGG TGA TT 52
IR CAA AAC CAC CCC TAC TTC TAT

H19 U19619 1304 OF GAG TAT TTA GGA GGT ATA AGA ATT 55 25; 27 
-1726 OR ATC AAA AAC TAA CAT AAA CCT CT

IF GTA AGG AGA TTA TGT TTA TTT TTG G 50
IR CCT CAT TAA TCC CAT AAC TAT

OF Outer Forward, OR Outer Reverse, IF Inner Forward, IR Inner Reverse.
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shown).  One µL of second round PCR product was used for ligation with the pGEMT-

EASY DNA ligation kit (Promega).  Ligation was performed overnight at 4˚C and 

transformed into competent E. coli cells (Invitrogen or Zymo Research).  Blue/white 

selection (100 mg/mL IPTG, 50 mg/mL X-gal) was used to select bacterial colonies with 

ligated products.  Individual sequences were obtained by colony PCR of individual 

bacterial colonies.  The pGEMT-EASY vector contains M13 primer sites flanking the 

multiple cloning site, which were used for amplification of inserted DNA fragments.  

Approximately  2 µL of PCR product was used for agarose gel electrophoresis to verify 

amplicon size, and the remainder of the PCR reaction was sent to the Nanuq Sequencing 

Facility  located at McGill University (Montreal, QC) or BioBasic Inc (Markham, ON) for 

sequencing.  As Kcnq1ot1 was the last gene in each set to be analyzed, a proportion of 

embryos did not produce a sufficient number of DNA strands to be included in the 

analysis. 

2.2.4 Sequence Analysis

 For each sample and gene analyzed, 40-50 clones were sequenced to obtain a 

representative number of DNA strands.  Chromatograms from each sequence were 

visualized using FinchTV.  Ambiguous base pairs were manually reviewed and assigned a 

designation (where possible).  Each sequence was analyzed for total number and location 

of CpG associated cytosines, as well as location and number of converted and 

unconverted non-CpG associated cytosines to obtain conversion rates (number of 

converted non-CpG cytosines/total number of non-CpG cytosines).  Sequences with less 
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than 85% conversion rates were not included.  Identical clones (identical location and 

number of unconverted CpG associated cytosines, and identical location and number of 

unconverted non-CpG associated cytosines) were not included.  Multiple polymorphisms 

are present between B6 and CAST sequences at each gene analyzed, allowing parental 

alleles to be discriminated.  Clones possessing both B6 and CAST polymorphisms were 

determined to be due to crossover during PCR amplification, and were not included.  

Methylation levels across the region of analysis were determined by calculating the 

number of methylated CpG / total number of CpG for each individual CpG site as a 

percentage.  Total DNA methylation for each gene was calculated as a percentage of the 

total number of methylated CpG / the total number of CpG dinucleotides.

2.2.5 Statistical Analysis

 To compute the significance of nonrandom association between groups of 

embryos, we used the Fisher's exact test.  As changes in methylation status were 

anticipated to be in only  one direction (increase or decrease), a one-sided test was 

utilized.  P-values were calculated using software provided online (http://

www.langsrud.com/fisher.htm), and were considered to be significant at p < 0.05. 
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2.3 Results

2.3.1 Methylation levels of Snrpn, Peg3, Kcnq1ot1, and H19 in spontaneously 

ovulated embryos

 Prior to examining the effects of superovulation on genomic imprinting, the 

methylation status of the Snrpn, Kcnq1ot1, and H19 ICRs, and the Peg3 DMR was first 

determined in individual blastocysts derived from spontaneously ovulating females. The 

regions analyzed included 16 CpGs located in the Snrpn ICR (Lucifero et al., 2004; Mann 

et al., 2004), 24 CpGs located in the Peg3 DMR (Lucifero et al., 2004), 20 CpGs located 

in the Kcnq1ot1 ICR (26), and 17 CpGs located in the H19 ICR (25,27) (Figure 2.1).  

Methylation analyses using bisulfite mutagenesis and sequencing were performed on 

B6(CAST7) X B6 F1 individual blastocysts.  Ten individual embryos were analyzed at the 

four loci.  The Kcnq1ot1 and Snrpn ICRs, and the Peg3 DMR acquire maternal-specific 

methylation during oogenesis, while the H19 ICR acquires paternal-specific methylation 

during spermatogenesis; oocytes are unmethylated at the H19 ICR in mice (Davis et  al., 

2000; Lucifero et al., 2004).  Similar DNA methylation patterns are observed for the 

human SNRPN and H19 genes (Geuns et al., 2003; Borghol et al., 2006).  Therefore, in 

B6(CAST7) X B6 blastocyst stage embryos, the maternal (CAST) alleles of Kcnq1ot1, 

Snrpn, and Peg3 should be methylated, while the paternal (B6) allele of H19 should be 

methylated.  As anticipated from previous reports of pools of blastocysts (Tremblay et al., 

1995; Tremblay  et al., 1997; Mann et  al., 2003; Mann et al., 2004; Reese et al., 2007), the 

maternal DNA strands of Snrpn, Peg3, and Kcnq1ot1 were hypermethylated 

(Supplementary Figure 2.1-2.3), while the maternal H19 DNA strands were
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Figure 2.1. Schematic Diagram of Regions Analyzed by Bisulfite Mutagenesis and 

Sequencing Assay.  

Maternal methylated Snrpn, Peg3, and Kcnq1ot1 alleles, and the paternal methylated H19 

allele are indicated.  ICR, Imprinted Control Region. DMR, Differentially Methylated 

Region. Open circles, CpGs. Blunt arrow designates transcription start site of non-

transcribed allele.  Regions analyzed are as follows: Snrpn ICR, 16 CpGs (15 CpGs in 

CAST) located in the promoter and first exon of the Snrpn gene; Peg3 DMR, 24 CpGs 

(23 CpGs in B6) located in the promoter and first exon of the Peg3 gene; Kcnq1ot1 ICR, 

20 CpGs located in the Kcnq1ot1 ICR; and H19 ICR, 17 CpGs (16 CpGs in B6) in the 

ICR located 2-4 kb upstream of the transcriptional start site of H19.
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hypomethylated (Supplementary  Figure 2.4).  Only maternal strands are shown as 

superovulation is thought to affect genomic imprinting during oocyte development, hence 

only affecting the maternal allele (Supplementary Figures 2.1-2.4).  From the analysis of 

embryos derived from spontaneously ovulated females, baseline total CpG methylation 

levels were determined to be greater than 65%, 70% and 85% for Snrpn, Peg3 and 

Kcnq1ot1, respectively, and less than 25% for H19.

 The reciprocal B6 X CAST cross was also performed to ensure that B6(CAST7) X 

B6 F1 embryos from spontaneously ovulated females were representative of normal 

imprinted methylation.  Maternal Snrpn strands displayed baseline total CpG methylation 

levels of 65% (Supplementary  Figure 2.5).  Levels of baseline total CpG methylation on 

maternal Peg3 and Kcnq1ot1 DNA strands in B6 X CAST F1 embryos were 75% and 

75%, respectively (Supplementary  Figures 2.6, 2.7).  The maternal H19 DNA strands 

were hypomethylated (Supplementary  Figure 2.8), with less than 15% total CpG 

methylation.  As no statistical difference was observed between embryos displaying 

aberrant methylation from the two crosses as determined by the Fisher’s Exact test, these 

two spontaneously  ovulating groups were combined for statistical calculations.  We 

conservatively set the baseline total CpG methylation level to greater than 65%, 70%, and 

75% for Snrpn, Peg3, and Kcnq1ot1, respectively, and less than 25% for H19.  These 

values were used to determine loss or gain of methylation in embryos from superovulated 

females.  

 Interestingly, for all imprinted genes investigated, at least one embryo displayed a 

drastic loss of methylation at the normally methylated maternal allele.  For the 
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B6(CAST7) X B6 F1 embryos, one embryo displayed loss of methylation at the normally 

methylated maternal allele for Snrpn (E5, 60% methylation), Peg3 (E114, 55%), and 

Kcnq1ot1 (E112, 23%) (Supplementary Figures 2.1-2.3). For B6 X CAST F1 embryos, 

spontaneous loss of methylation was observed at one embryo at the Snrpn ICR (E80, 50% 

methylation), the Peg3 DMR (E79, 34%), and at the Kcnq1ot1 ICR (E74, 58%) 

(Supplementary  Figure 2.5-2.7).  None of the F1 embryos displayed spontaneous gain of 

methylation at the H19 ICR.  One embryo (E83) was observed to have reversed Kcnq1ot1 

methylation; the maternal B6 strand had acquired a paternal imprinted methylation 

pattern, while the paternal CAST strand had acquired a maternal imprinted pattern 

(Supplementary  Figure 2.7).  This is a rare event that  has been observed previously for 

H19 imprinted expression (Mann et al., 2004).

2.3.2 Superovulation results in loss of maternal Snrpn, Peg3, and Kcnq1ot1 

methylation in a dose-dependent manner

 To determine the effects of superovulation on imprinted methylation, we 

examined embryos derived following both low and high dosages of hormonal stimulation.  

Hormone dosages typically employed for superovulation in the mouse range from 2.5 to 

10 IU, with 5 IU being the recommended dose for most mouse strains (Nagy et al, 2003).  

We chose 6.25 IU to represent to the low hormone dose, as lower concentrations were not 

as ineffective at inducing superovulation in the B6(CAST7) mice, and 10 IU for the high 

hormone dose (Nagy et al, 2003).  Snrpn, Peg3 and Kcnq1ot1 are normally paternally 

expressed and maternally  methylated.  Data were obtained from 10 embryos each in the 
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6.25 and 10 IU hormone treatment groups for Snrpn, and from 9 embryos in each 

hormone treatment group for Peg3, while 5 embryos from the 6.25 IU group, and 9 

embryos from the 10 IU group were analyzed for Kcnq1ot1 imprinted methylation.  

Forty-50 clones were sequenced and analyzed for each gene.  Methylation levels were 

analyzed at individual CpG dinucleotide across each ICR/DMR, as well as for the total 

number of methylated CpGs for each gene per embryo.

 Snrpn displayed a loss of maternal methylation at both hormone dosages 

(Supplementary  Figure 2.9), with the loss more frequent at the high hormone dosage 

(Figure 2.2 and 2.3). Analysis of total CpG methylation revealed that Snrpn exhibited a 

loss of methylation at the low hormone dosage on the maternal allele for four embryos 

(E29 31%, E13 63%, E13 45%, and E33 54% total CpG methylation of DNA strands) 

(Figure 2.2), and a loss of methylation at the high hormone dosage on the maternal allele 

for nine embryos (E10 57%, E8 55%, E1 42%, E4 63%, E23 53%, E5 59%, E6 49%, E13 

63%, and E11 61% total CpG methylation) (Figure 2.3), when compared to embryos from 

spontaneously  ovulated females (baseline of 65% methylation).  This loss of methylation 

at the high dosage was significantly different from control embryos (p = 0.001) as 

calculated by the Fisher's exact test.  

 A similar pattern of loss of methylation was observed for Peg3 when compared to 

Snrpn; both hormone dosages displayed a loss of methylation on maternal DNA strands 

(Supplementary  Figure 2.10), with a greater frequency of loss in the high hormone dosage 

group (Figure 2.4 and 2.5).  Peg3 displayed a loss of maternal methylation for four 

embryos (E14 67%, E29 49%, E18 67%, and E33 66% total CpG methylation) at the low
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Figure 2.2. Methylation of the Maternal Snrpn ICR in B6(CAST7) X B6 F1 Embryos 

Derived from Low Dosage Superovulated Females. 

Methylation status of individual DNA strands in the Snrpn ICR (maternal, CAST strands 

shown) in blastocysts derived from females superovulated with a 6.25 IU hormone 

dosage.  Unmethylated CpGs are represented as empty circles while methylated CpGs are 

depicted as filled circles.  Each line denotes an individual strand of DNA.  Clones with 

identical methylation patterns and non-CpG conversion rates representing the same DNA 

strand were included once.  Each group of DNA strands represents data from a single 

embryo, with the embryo designation indicated at the top left.  Percent methylation is 

indicated above each set of DNA strands, and was calculated as the number of methylated 

CpGs / total number of CpG dinucleotides.  The region analyzed contains 15 CpGs; a 

base pair change in the maternal CAST allele eliminates CpG dinucleotide 1.
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Figure 2.3: Methylation of the Maternal Snrpn ICR in B6(CAST7) X B6 F1 Embryos 

Derived from High Dosage Superovulated Females.  

Methylation status of individual DNA strands in the Snrpn ICR (maternal, CAST strands 

shown) in blastocysts derived from females superovulated with a 10 IU hormone dosage. 

The region analyzed contains 15 CpGs; a base pair change in the maternal CAST allele 

eliminates CpG dinucleotide 1. Details are as described in Figure 2.2.
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Figure 2.4. Methylation of the Maternal Peg3 DMR in B6(CAST7) X B6 F1 Embryos 

Derived from Low Dosage Superovulated Females.  

Methylation status of individual DNA strands in the Peg3 DMR (maternal, CAST strands 

shown) in blastocysts derived from females superovulated with a 6.25 IU hormone 

dosage. The region analyzed contains 24 CpGs. Details are as described in Figure 2.2.
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Figure 2.5. Methylation of the Maternal Peg3 DMR in B6(CAST7) X B6 F1 Embryos 

Derived from High Dosage Superovulated Females.  

Methylation status of individual DNA strands in the Peg3 DMR (maternal, CAST strands 

shown) in blastocysts derived from females superovulated with a 10 IU hormone dosage. 

The region analyzed contains 24 CpGs. Details are as described in Figure 2.2.
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hormone dosage (Figure 2.4), and a loss of methylation for five embryos (E10 50%, E8 

67%, E1 64%, E4 47%, and E11 42% CpG methylation) at the high hormone dosage 

(Figure 2.5), when compared to embryos from spontaneously ovulated females (baseline 

of 70% total CpG methylation).  This loss of imprinted methylation was statistically 

significant in the higher hormone treatment group  when compared to the spontaneous 

ovulation group (p = 0.03). 

 Kcnq1ot1, a third paternally expressed gene, also exhibited a similar loss of 

methylation on maternal DNA strands at both hormone dosages (Supplementary  Figure 

2.11), with a greater frequency of loss in the high hormone dosage group (Figure 2.6 and 

2.7). Kcnq1ot1 exhibited a loss of maternal methylation for two embryos (E5 54%, and 

E33 52% CpG methylation) at the low hormone dosage (Figure 2.6), and five embryos 

(E2 64%, E8 56%, E4 43%, E5 62%, and E13 53% total CpG methylation) at the high 

hormone dosage (Figure 2.7), when compared to embryos from spontaneously ovulated 

females (baseline of 75% CpG methylation).  Loss of Kcnq1ot1 imprinted methylation 

was not statistically  significant for either hormone treatment group when compared to 

controls (p = 0.4 for the 6.25 IU treatment group and p = 0.08 for the high hormone 

dosage), although the high hormone dosage group approached statistical significance.  

Analysis of additional embryos may be required to achieve significance. 

2.3.3 Superovulation results in gain of maternal H19 methylation in a dose-

dependent manner
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Figure 2.6. Methylation of the Maternal Kcnq1ot1 ICR in B6(CAST7) X B6 F1 

Embryos Derived from Low Dosage Superovulated Females.  

Methylation status of individual DNA strands in the Kcnq1ot1 ICR (maternal, CAST 

strands shown) in blastocysts derived from females superovulated with a 6.25 IU 

hormone dosage.  Details are as described in Figure 2.2.
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Figure 2.7. Methylation of the Maternal Kcnq1ot1 ICR in B6(CAST7) X B6 F1 

Embryos Derived from High Dosage Superovulated Females.  

Methylation status of individual DNA strands in the Kcnq1ot1 ICR (maternal, CAST 

strands shown) in blastocysts derived from females superovulated with a 10 IU hormone 

dosage. Details are as described in Figure 2.2.
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The same ten embryos analyzed for imprinted methylation of the Snrpn, Peg3 and 

Kcnq1ot1 ICR/DMRs were also used for analysis of the H19 ICR.  H19 displayed a gain 

of maternal methylation at both hormone dosages, particularly for CpG dinucleotides 

8-17 (Supplementary Figure 2.12), with the loss more frequent at the high hormone 

dosage(Figure 2.8 and 2.9).  At the low hormone dose, one of ten embryos displayed a 

gain of maternal methylation, as seen by the presence of greater than 25% baseline CpG 

methylation of DNA strands (E14 32% methylation) (Figure 2.8).  At the higher hormone 

dosage (10 IU), 4 of 10 embryos displayed a gain of maternal methylation (E8 66%, E4 

43%, E13 67%, and E11 53% CpG methylation) (Figure 2.9).  This gain of methylation at 

the higher dosage was significantly different  from control embryos (p = 0.003).  These 

embryos acquired a more paternal-like pattern of methylation at the H19 ICR. 

2.3.4 Superovulation results in loss of paternal H19 methylation in a dose-dependent 

manner

 Studies of the effects of superovulation on genomic imprinting focused on the 

maternal allele, as superovulation is thought to affect  genomic imprinting during oocyte 

development.  Using our protocol, methylation data was obtained for both maternal and 

paternal of the four imprinted genes from individual preimplantation embryos. 

Surprisingly, not only  did we observe significant effects of superovulation on imprinted 

methylation of maternal alleles as described above, we also observed a loss of 

methylation on the normally methylated paternal H19 allele at both hormone dosages, 

especially for CpG dinucleotides 1-7 (Supplementary Figure 2.13), with more frequent
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Figure 2.8. Methylation of the Maternal H19 ICR in B6(CAST7) X B6 F1 Embryos 

Derived from Low Dosage Superovulated Females.  

Methylation status of individual DNA strands in the H19 upstream ICR (maternal, CAST 

strands shown) in blastocysts derived from females superovulated with a 6.25 IU 

hormone dosage.  The region of the maternal CAST H19 allele analyzed contains 17 

CpGs. Details are as described in Figure 2.2.
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Figure 2.9. Methylation of the Maternal H19 ICR in B6(CAST7) X B6 F1 Embryos 

Derived from High Dosage Superovulated Females.  

Methylation status of individual DNA strands in the H19 upstream ICR (maternal, CAST 

strands shown) in blastocysts derived from females superovulated with a 10 IU hormone 

dosage.  The region of the maternal CAST H19 allele analyzed contains 17 CpGs. Details 

are as described in Figure 2.2.
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Figure 2.10. Methylation of the Paternal H19 ICR in B6(CAST7) X B6 F1 Embryos 

Derived from Low Dosage Superovulated Females.  

Methylation status of individual DNA strands in the H19 upstream ICR (paternal, B6 

strands shown) in blastocysts derived from females superovulated with a 6.25 IU 

hormone dosage.  The region of the paternal B6 H19 allele analyzed contains 16 CpGs 

due to a polymorphism that eliminates CpG8.  Details are as described in Figure 2.2.
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Figure 2.11. Methylation of the Paternal H19 ICR in B6(CAST7) X B6 F1 Embryos 

Derived from High Dosage Superovulated Females.  

Methylation status of individual DNA strands in the H19 upstream ICR (paternal, B6 

strands shown) in blastocysts derived from females superovulated with a 10 IU hormone 

dosage.  The region of the paternal B6 H19 allele analyzed contains 16 CpGs due to a 

polymorphism that eliminates CpG8.  Details are as described in Figure 2.2.
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loss of methylation at the high hormone dosage (Figure 2.10 and 2.11).  For both 

B6(CAST7) X B6 (Supplementary  Figure 2.14), and B6 X CAST F1 embryos 

(Supplementary  Figure 2.15) from spontaneously ovulated females, H19 displayed 79% 

and 77% total CpG methylation on paternal DNA strands.  Thus, the baseline level of 

total CpG methylation on the paternal H19 allele was set at 75%. Of the above embryos 

derived from spontaneously ovulating females, two B6(CAST7) X B6 F1 embryo and two 

B6 X CAST F1 embryo displayed loss of CpG methylation on paternal DNA strands (E10 

71%, E113 50%, and E73 61%, E74 56% methylation).  By  comparison, embryos from 

induced ovulations exhibited a loss of paternal H19 methylation.  At the low hormone 

dosage, three embryos (E18 54%, E20 69%, and E33 58% methylation) displayed a loss 

of methylation on paternal DNA strands (Figure 2.10), while at the high hormone dosage, 

seven embryos (E10 71%, E2 63%, E8 57%, E23 68%, E5 61%, E6 73%, and E11 47% 

CpG methylation) showed a loss of paternal methylation (Figure 2.11).  This loss of 

imprinted methylation on the paternal H19 strand was statistically significant  in the high 

hormone treatment group (p = 0.02).

 For the other imprinted genes analyzed, low levels of total CpG methylation were 

present on the paternal alleles Snrpn, Peg3 and Kcnq1ot1 following spontaneous and 

induced ovulation (Supplementary Figures 2.16-2.27).  After taking baseline levels of 

total CpG methylation, one embryo from each dosage group  showed a gain of paternal-

specific Snrpn methylation (6.25 IU treatment E14 35%; and 10 IU treatment group E8 

36%), one embryo from each hormone treatment group displayed a gain of paternal-

specific Peg3 methylation (6.25 IU treatment E31 51%; and 10 IU treatment groups E11 
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36%), and one embryo had a gain in paternal-specific Kcnq1ot1 methylation in the 6.25 

IU treatment (E33 23%).  In contrast to paternal H19 methylation, these results were not 

statistically significant, and no effect of dosage was observed.

2.3.5 Perturbation of Imprinted Methylation for Multiple Genes

 To determine the incidence of aberrant methylation (gain or loss) in the various 

treatment groups, the number of embryos with perturbation in methylation of the maternal 

Snrpn, Peg3, Kcnq1ot1 and H19 ICR/DMRs, and the paternal H19 ICR were assessed by 

the Fisher’s exact test (Table 2.2).  At the low hormone dosage, 4 of 10 embryos (E14, 

E29, F18, and E33) showed aberrant methylation of 2 or more genes, which was 

significantly different than embryos derived from spontaneously ovulated females where 

only a single embryo (E74) displayed aberrant methylation of more than one gene (p = 

0.05).  At the high dose, 10 of 10 embryos displayed aberrant methylation for 2 or more 

genes.  When compared to control embryos, this difference was highly significant (p = 

0.00002).  When all four genes were examined, no embryos exhibited aberrant 

methylation patterns at all loci at the low hormone concentration.  However at the high 

hormone dosage, one embryo (E8) displayed perturbed methylation at the maternal allele 

of all four genes, as well as at the paternal H19 allele.  These data clearly  demonstrate the 

dose-dependent effect of superovulation on perturbation of imprinted methylation.
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Table 2.2. Comparison of Hormone Dosage and Aberrant Imprinted Methylation
Dosage

Genotype
Embryo Snrpn Mat 

Loss 
(>65%)

Peg3 Mat 
Loss

(>70%)

Kcnq1ot1 
Mat Loss
(>75%)

H19
Mat Gain
(<25%)

H19
Pat Loss
(>75%)

E2 ND
E5 60 ND
E10 71
E112 23

0 IU E114 55
CAST7XB6 E113 ND 63

E115
E400 ND
E414 ND
E6
E73 61
E74 58 56

0 IU E79 34
B6XCAST E80 60

E83 R
E84
E85
E15 ND
E14 67 32
E29 31 49
E18 63 67 54

6.25 IU E13 45
CAST7XB6 E5 54

E7 ND
E20 ND 69
E33 54 66 52 58
E6 ND ND
E10 57 50 71
E2 64 63
E8 55 67 56 66 57
E1 42 64

10 IU E4 63 47 43 43
CAST7XB6 E23 53 68

E5 59 62 61
E6 49 ND ND 73
E13 63 53 67
E11 61 42 53 47

ND Not determined; R reversal of imprinted DNA methylation. 
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2.4 Discussion

 In this study, we utilized a mouse model system to investigate the effects of 

superovulation on genomic imprinting in blastocyst stage embryos.  Blastocysts were 

examined for parental-specific methylation changes to circumvent the chance of cumulus 

cell contamination that otherwise could be an issue when analyzing oocytes and early 

cleavage stage embryos.  Furthermore, by studying embryos instead of oocytes, we 

minimized the effects of in vitro manipulations, as well as limited our analysis to those 

oocytes that  were capable of being fertilized and producing embryos.  We have 

demonstrated that superovulation perturbed genomic imprinting of both maternally and 

paternally expressed genes, and that this perturbation was dose-dependent.  Previously, 

superovulation had been postulated to function by affecting oocyte development, and 

therefore effects were expected to be restricted to the maternal allele.  In our study, we 

have demonstrated that maternal-specific methylation imprints as well as paternal-

specific methylation imprints were disrupted by superovulation.  Furthermore, we 

observed that  superovulation results in perturbation of genomic imprinting for multiple 

genes within the same embryo.  

2.4.1 Superovulation Perturbs Genomic Imprinting

 Assisted reproduction has been linked to the generation of epigenetic errors that 

result in the development of the human imprinting disorders Angelman Syndrome and 

Beckwith-Wiedemann Syndrome (Cox et al., 2002; DeBaun et al., 2003; Gicquel et al., 
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2003; Maher et al., 2003; Orstavik et al., 2003; Halliday  et al., 2004).  Commonality 

between ART-associated BWS and AS is loss of maternal-specific methylation at the 

imprinting control regions at 11p15 and 15q11-13, respectively (Cox et al., 2002; DeBaun 

et al., 2003; Gicquel et al., 2003; Maher et al., 2003; Orstavik et al., 2003).  

 Multiple studies have examined the association of ARTs and imprinting, and in all 

cases examined some type of ovarian stimulation regime was consistently  employed to 

facilitate conception (Young et al., 1998; Van der Auwera and D'Hooghe, 2001; Gicquel 

et al., 2003; Chang et al., 2005; Ludwig et al., 2005).  Significantly, in both Angelman 

and Beckwith-Wiedemann Syndrome studies, patients were identified where the only 

ART procedure used was ovarian stimulation. 

 In the current study, we assessed the effects of superovulation on the ICRs of 

Snrpn, Kcnq1ot1 and H19 genes that have a causal role in the etiology of BWS and AS. 

Following superovulation, we observed a loss of maternal methylation in blastocyst stage 

embryos at the ICRs of the paternally expressed Snrpn and Kcnq1ot1 genes in individual 

mouse preimplantation embryos. While the effects of superovulation have not previously 

been examined at the blastocyst stage for Snrpn, no effect on Snrpn imprinted 

methylation was observed following superovulation in midgestation mouse embryo and 

placentas (Fortier et al., 2008).  The effects of superovulation on Kcnq1ot1 have not been 

previously  examined at the blastocyst stage, however a decrease in hypermethylated 

Kcnq1ot1 alleles from stimulated human oocytes compared to unstimulated controls has 

been observed (Khoueiry et  al., 2008).  Together these observations show that 

superovulation is associated with loss of DNA methylation at imprinted loci known to be 
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linked to the development of AS and BWS.  This study further provides a mechanistic 

link between ARTs and imprinting disorders.

The effect of superovulation on maternal methylation of the Peg3 DMR has not 

been previously  evaluated at any stage of development.  Similar to the other paternally 

expressed genes examined, we observed a loss of maternal Peg3 methylation following 

superovulation.  Our results constitute a novel finding, and suggest that the effects of 

ARTs may not be limited to a subset  of imprinted genes but may affect multiple imprinted 

loci.  Peg3 is a zinc finger protein thought to interact with p53 and Bax to regulate 

neuronal apoptosis in response to hypoxia or DNA damage (Deng and Wu, 2000; Relaix 

et al., 2000; Johnson et al., 2002).  Loss of Peg3 expression is associated with aberrant 

maternal nurturing behaviour and an offspring’s ability to thrive (Li et al., 1999; Murphy 

et al., 2001; Curley et al., 2004), phenotypes that have been linked to increased neuronal 

apoptosis during neonatal brain development (Broad et al., 2009).  Furthermore, loss of 

methylation at the Peg3 DMR has been linked to spontaneous abortion (Liu et al., 2008).  

Our data is of interest, in light of the fact that children born through ART are at an 

increased risk of neonatal mortality and intensive care unit admission (Basatemur and 

Sutcliffe, 2008) and increased risk of low birth weight and premature delivery (Sunderam 

et al., 2009).  Our observation that superovulation results in a loss of imprinted 

methylation at the Peg3 DMR may suggest an additional mechanism contributing to the 

risks of ART.

In addition to loss of maternal methylation, we observed a gain of maternal 

methylation for the normally unmethylated maternally H19 allele in blastocyst  stage 
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embryos.  This is consistent with the report by Sato et al. (Sato et al., 2007), who 

observed a gain of maternal H19 methylation following superovulation in mouse and 

human oocytes, and by  Borghol et al. (Borghol et al., 2006) who observed methylated 

H19 alleles in oocytes obtained from women undergoing ovarian stimulation followed by 

in vitro maturation.  In contrast, our data differ from those reported by Fortier et al. 

(Fortier et al., 2008), who observed that H19 methylation in midgestation mouse embryos 

and placentas derived from superovulated mothers did not reveal a gain of maternal H19 

methylation.  This discrepancy may be explained by smaller sample size, single low 

hormone dosage, or technical difficulties with the bisulfite protocol discussed by the 

authors (Fortier et  al., 2008).  Another report cited no difference in H19 methylation 

following superovulation in individual blastocysts, however, methylation analyses were 

not done allelically; therefore, methylated maternal alleles would not  have been 

discriminated from appropriately methylated paternal alleles (Fauque et al., 2007). 

2.4.2 Superovulation Perturbs Genomic Imprinting for Multiple Genes in the Same 

Embryo

 Analysis of the incidence of imprinted methylation defects following superovulation 

revealed that many embryos harboured aberrant methylation for 2 or more genes, which 

was significantly different from embryos from spontaneously ovulated females where 

only a single embryo displayed aberrant methylation for more than one gene.  Similar 

observation were recently reported in ART-conceived children with BWS (Lim et al., 

2009); imprinting defects at multiple imprinted loci other than the Kcnq1ot1 ICR were 
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more frequently observed in BWS patients whose parents had undergone some form of 

ART than in non-ART BWS patients.  These data suggest that developmental defects or 

abnormal growth in ART children might be caused by  variable combinations of epigenetic 

perturbations at imprinted genes, perhaps offering an explanation for a postulated new 

syndrome characterized by overgrowth and severe developmental delay (Shah et  al., 

2006).  Developmental and growth abnormalities could also plausibly  result from 

combinations of ART-induced epigenetic perturbations at imprinted and non-imprinted 

genes, indicative of broad effects of ART on DNA methylation  (Katari et al., 2009).

2.4.3 Superovulation may lead to perturbation in imprint acquisition as well  as 

imprint maintenance

 Loss of imprinted methylation in embryos derived from superovulated mothers, 

but not  in control females, indicates that superovulation disrupts mechanisms that 

establish imprinting during oogenesis.  There are a number of possible explanations for 

the loss of imprinting following superovulation.  Hormonal stimulation may result in the 

“rescue” of subordinate follicles which may have entered the follicular atresia pathway 

and that otherwise would not have been ovulated resulting in ovulation of lower quality 

oocytes (Van der Auwera and D'Hooghe, 2001), it  may lead to rapid oocyte maturation 

that perturbs genomic imprints, or it may induce ovulation of immature oocytes that have 

not completely acquired their imprints (Paoloni-Giacobino and Chaillet, 2004; Ludwig et 

al., 2005).  In humans, ovarian stimulation has been shown to accelerate the growth rate 

of ovarian follicles when compared to non-stimulated controls (Baerwald et al., 2009).  In 
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the case of genomic imprinting, this shortened maturation time may lead to improper or 

incomplete acquisition of imprinting marks on the maternal alleles.  However, no change 

in the activity  or localization of DNMT1 has been noted in embryos following 

superovulation (Doherty et al., 2000). Further investigations are required to distinguish 

between these possibilities.

 As the use of exogenous hormones occurs during oogenesis, effects of 

superovulation were expected to be restricted to the maternal allele.  Surprisingly, we 

report that H19 displayed a loss of methylation on the paternal, sperm-contributed allele, 

indicating that events that occur during oocyte maturation regulate imprinting on both the 

maternal and paternal alleles.  At this point, it is not known whether this effect extends to 

other ICR that are unmethylated on the maternal allele, or if it is limited to the H19 ICR. 

However, our data support  a recent study that observed activated expression of the 

normally silent, paternal H19 allele following superovulation (Fortier et al., 2008), as well 

as, a second study that showed aberrant H19 imprinted methylation in F1 and F2 male 

offspring of superovulated female mice (Stouder et al., 2009).  Thus, we postulate that 

superovulation has dual effects during oogenesis, acting to disrupt the acquisition of 

imprints in the growing oocyte, as well as causing molecular changes that disrupt 

maternal-effect gene products subsequently  required for genomic imprint maintenance 

during preimplantation development.  

2.4.4 Dose-Dependent Effects of Superovulation
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 Dose-dependent effects of ovarian stimulation on genomic imprinting have not 

been previously reported.  To evaluate this, we performed experiments using two different 

dosages of hormones, 6.25 IU (low) and 10 IU (high).  All four imprinted genes 

investigated displayed a dose-dependent response to superovulation.  A greater number of 

embryos displayed perturbed imprinted methylation on the maternal alleles of Snrpn, 

Peg3, and Kcnq1ot1, and on both the maternal and paternal allele of H19, at  the high 

hormone dosage compared to the low hormone dosage.  Various hormone types and 

regimens are currently used for the treatment of subfertility.  A mild stimulation regimen 

was shown to decrease the incidence of aneuploidy  in resulting embryos when compared 

to the standard higher dose regimen (Baart et al., 2007), and high dosages of exogenous 

gonadotropins are associated with lower pregnancy rates (Stadtmauer et al., 1994).  Our 

study suggests that increasing hormone dosages in an effort to increase the number of 

oocytes recovered may have detrimental effects on embryo development.  These 

observations are particularly  important in light of the movement in the field towards 

single embryo transfers, where a natural cycling regime would not be detrimental to 

pregnancy outcome.

 A significant finding from these studies is that superovulation results in 

dysregulation of genomic imprinting in the absence of other confounding factors.  This is 

relevant at the clinical and community-wide level, as ovarian stimulation is currently an 

indispensable component of the ART protocol to treat human subfertility  / infertility.  As 

the genes investigated in this study play  an important role in early  development, and 

genetic and epigenetic perturbations lead to imprinting disorders, we propose that 
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superovulation may increase the risk of developing these disorders in the ART population.  

Our studies and others like it  argue for a more conservative use of assisted reproductive 

technologies, as well as more in-depth investigations of the effects of these technologies 

on human populations.
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Chapter 3: The Effects of Embryo Culture on Genomic Imprinting: Comparing 5 

Commercially Available Media

The work in this chapter originates from the following peer-reviewed article:

Market-Velker, B. A., Fernandes, A. D. and Mann, M. R. Side-by-side comparison of five 

commercial media systems in a mouse model: sub-optimal in vitro culture interferes with 

imprint maintenance. Biol Reprod 83(6): 938-50 (2010)

3.1 Introduction

Generally, assisted reproductive technologies (ARTs) are considered safe medical 

treatments.  There has been little concern that children conceived by ARTs are less 

healthy than naturally-conceived children.  However, while absolute risks remain low, 

evidence indicates that children conceived by ARTs are at  an increased risk of intrauterine 

growth restriction, premature birth, low birth weight (Schieve et al., 2002; Sunderam et 

al., 2009), as well as genomic imprinting disorders (Cox et  al., 2002; DeBaun et al., 2003; 

Gicquel et  al., 2003; Orstavik et  al., 2003; Halliday et  al., 2004; Chang et  al., 2005; 

Ludwig et al., 2005).  Thus, it  is important to monitor the consequences of manipulating 

embryos especially with the rapid evolution and increased use of ARTs.

An important protocol employed in assisted reproduction is in vitro culture.  

While steady progress in developing improved culture conditions for mammalian 

embryos has occurred over the past 50 years (Gardner, 1994; Edwards et al., 1997; Kaffer 

et al., 2001), current culture media remain suboptimal.  Cultured embryos from all species 
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have reduced pregnancy rates, reduced viability and growth, increased developmental 

abnormalities, behavioural deviations, are prone to metabolic and growth disorders, and 

display  aberrant expression patterns when compared to in vivo counterparts (Bowman and 

McLaren, 1970; Ho et al., 1995; Sasaki et al., 1995; Walker et al., 1996; Young et al., 

1998; Sinclair et  al., 1999; Barker, 2000; Doherty  et al., 2000; Khosla et  al., 2001; 

Bertolini et al., 2002; Ecker et al., 2004; Fernandez-Gonzalez et al., 2004; Rinaudo and 

Schultz, 2004).  Simply  stated, oviductal fluid is more complex than any culture medium 

currently used, containing key metabolites and/or growth factors that are either lacking or 

are present  at different concentrations in commercial media systems.  In addition, 

oviductal fluid is dynamic, changing along the length of the female reproductive tract to 

reflect altered metabolic preferences in the embryo (Roberts, 2005). 

One of the leading explanations for these culture-induced abnormalities is 

epigenetic alterations in gene expression that originate from embryo manipulation.  As 

preimplantation development is a critical period of developmental programming (Santos 

and Dean, 2004), the ability to maintain imprinting during in vitro development has been 

questioned.  Results demonstrate that  imprinting can be disrupted during mouse 

preimplantation development, pinpointing a critical period of susceptibility  to 

environmental conditions (Sasaki et al., 1995; Doherty et al., 2000; Mann et al., 2004).  In 

humans, assisted reproduction has been linked to epigenetic errors that produce the 

human imprinting disorders Angelman and Beckwith-Wiedemann Syndromes (AS and 

BWS), with loss of imprinting more often the cause of imprinting disorders in ART- 

compared to non-ART children (Cox et al., 2002; DeBaun et al., 2003; Gicquel et al., 
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2003; Orstavik et al., 2003; Halliday et al., 2004; Chang et al., 2005; Ludwig et al., 2005). 

Thus, the adverse influence of assisted reproductive technologies has significant clinical 

ramifications.

Multiple media formulations are used for culture in animal research models as 

well as human clinics (Gardner, 1994; Bavister, 1995; Gardner and Lane, 1998; Biggers 

and Summers, 2008).  Early  development of chemically-defined culture media was based 

on classic formulations for somatic cells.  For example, Whitten’s medium is a 

physiological saline based on Krebs-Ringer’s solution supplemented with a carbohydrate 

energy source (Whitten et al., 1971).  Here, we consider Whitten’s media as a “worst case 

scenario” as it produces more aberrant  non-imprinted gene expression, imprinted gene 

expression, and imprinted DNA methylation at the blastocyst stage (Doherty et al., 2000; 

Weksberg et al., 2001; Mann et al., 2004; Rinaudo and Schultz, 2004).  More recent 

formulations have adjusted concentrations of various components based on optimized-

response by embryos or approximate values of known constituents in the oviductal/

uterine environment (Leese and Barton, 1984).  Examples are potassium modified, 

simplex optimized medium (KSOM) (Lawitts and Biggers, 1993) and Human Tubal Fluid 

(Quinn et al., 1985).  Identification of amino acids in oviducts led to supplementation of 

culture media with amino acids (Ho et al., 1995; Roberts, 2005). Further development 

was based on the premise that media should be altered during culture to better represent 

the changing in vivo environment.  This resulted in development and implementation of 

“sequential media systems” (Gardner and Lane, 1998), where high pyruvate, low glucose 

medium is switched to high glucose, low pyruvate medium to reflect the embryo’s 
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changing carbohydrate preference during preimplantation development (Leese and 

Barton, 1984).  Many sequential media systems have been developed, including growth 

media, G1 and G2, and Preimplantation 1 and Multiblast media.  While two-step culture 

systems now predominate in human ART, it is unclear whether they are “superior” or 

necessary  (Leese and Barton, 1984; Quinn et al., 1985; Lawitts and Biggers, 2003; 

Biggers and Summers, 2008).

We hypothesize that imprinting maintenance mechanisms are disrupted by in vitro 

culture during mouse and human ARTs and that  media systems better able to maintain 

genomic imprinting will produce embryos that exhibit imprinting patterns more similar to 

in vivo-derived than Whitten’s cultured embryos.  In this study, we used a mouse model 

system because few studies are performed on human preimplantation embryos due to 

ethical restrictions; the effects of embryo culture need to be evaluated in a system where 

subfertility  is not  a confounding issue; and because the mouse embryo has been and is 

currently used to optimize culture conditions for human preimplantation embryos (Quinn 

and Horstman, 1998; Summers and Biggers, 2003).  We compared five commercial 

culture systems against a classic medium formulation, Whitten’s (“worst case scenario”), 

as well as in vivo-derived embryos (“best case scenario”), to determine their effects on 

genomic imprinting.  Imprinted methylation and expression were examined at H19, small 

nuclear ribonucleoprotein N (Snrpn) and paternally-expressed gene 3 (Peg3). 

3.2 Materials and Methods
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3.2.1 Embryo Collection

Embryos were obtained from naturally-mated C57BL6(CAST7) [B6(CAST7)] females 

crossed with C57BL6 (B6) males (Charles River, St Constant, Canada) as described 

(Mann et al., 2004; Market-Velker et al., 2010a). Briefly, B6(CAST7) females were 

checked for estrus and mated with B6 males.  Pregnancy  was determined (vaginal plug) 

the morning following mating (0.5 days postcoitum; dpc).  Embryos were flushed from 

isolated oviducts at 1.5 dpc to recover 2-cell stage embryos.  For hormone treatment 

groups, 6.25 IU PMSG (Pregnant Mare’s Serum Gonadotropin, Intervet Canada, Whitby, 

Canada) was administered to female B6(CAST7) mice, followed by  6.25 IU hCG 

(Human Serum Chorionic Gonadotropin, Intervet Canada, Whitby, Canada) 40-44 hours 

later (Table 3.1).  Hormone treatment was conducted using 6.25 IU dosage, as lower 

concentrations were not as effective at inducing superovulation in the B6(CAST7) mice. 

Experiments were performed in compliance with guidelines set by the Canadian Council 

for Animal Care, and the policies and procedures approved by the University of Western 

Ontario Council on Animal Care.  

3.2.2 Embryo Culture

Embryos were cultured in six different  media systems, two used for mouse embryo 

culture [Whitten’s (produced in-house) (Whitten, 1971), and KSOM  with amino acids 

(KSOMaa; Millipore, Ternecula, USA)], and four currently used in human clinics; two 

non-sequential [Human Tubal Fluid (HTF; LifeGlobal, Guelph, Canada), and Global
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Table 3.1: Timeline for Spontaneous / Induced Ovulation and Culture

15 sec, and 728C for 25 sec for 45 cycles, with melting-curve analysis of 958C
for 30 sec and 508C for 2 min, with 0.28C increments thereafter; Snrpn, 958C
for 1 sec, 528C for 15 sec, and 728C for 6 sec for 45 cycles, with melting-curve
analysis of 958C for 2 min and 458C for 2 min, with 0.28C increments
thereafter; and Peg3, 958C for 1 sec, 538C for 15 sec, and 728C for 8 sec for 45
cycles, with melting-curve analysis of 958C for 15 sec and 458C for 30 sec, with
0.28C increments thereafter. Parental allele-specific expression patterns were
calculated as percentage expression of the B6 or CAST allele relative to total
expression of both alleles. Monoallelic expression was defined as less than 10%
expression from the normally silent allele [29].

Statistical Methods

In the present analysis, we tested how readily methylation patterns
associated with each media could be distinguished from one another through
the following statistical model. Given a gene with n possible methylation sites,
the frequency of observing, for a given DNA strand, i methylated sites was
estimated as pi. Specifically, p0 denotes the probability of observing no sites
methylated, p

1
the probability of observing one methylated site, and so on for i

¼ 0, 1, . . ., n. Plots of p
i
versus media shown in Figure 8A, for example,

indicate three DNA strands from the in vivo pool had pi ’ 15/16 sites
methylated. The methylation-level frequencies pi are most easily estimated
from counts ni by setting pi ’ ni/n, where ni is the number of strands having i
sites methylated and n is the total number of sites. However, such simplistic
point estimates are well known to exhibit considerable systematic error when ni
, 3 for any i [41]. Therefore, to account for both this error and the effect of
finite sample sizes, a distribution for the set of frequencies p

i
was estimated

using standard Bayesian methods [42, 43] such that p
0
, p

1
, . . ., pnjn0, n1, . . ., nn

; Dirichlet([n
0
, n

1
, . . ., nn] þ 0.5). Therefore, if m embryos are sampled in the

future from the same media, these embryos are expected to display methylation
counts [m

0
, m

1
, . . ., mn] distributed according to a standard multinomial

distribution with frequencies [p
0
, p

1
, . . ., pn], where Ri mi ¼ n.

The combination of Dirichlet posterior and multinomial likelihood is called
the Multivariate Pólya distribution for the likelihood Pr(m

0
, m

1
, . . ., m

n
jn

0
, n

1
,

. . ., nn), and it is the natural generalization of the bivariate Beta-binomial model
[44]. Although Fisher-type P-values are often used to test if two observed data
sets are ‘‘significantly’’ different, it is possible to estimate instead the
magnitude of difference between each data set. Such estimates, when available,
are often more informative than simple P-values alone [45, 46]. Using the
expected probabilities of observing counts [m

0
, m

1
, . . ., mn], we can ask how

distinguishable the different media are among themselves and the in vivo
sample via the log-likelihood ratio

log
Prðm0;m1; . . . ;mnjn0; n1; . . . ; nnÞ
Prðm0;m1; . . . ;mnjn00; n01; . . . ; n0nÞ

! "

for two media, each with methylation-level counts [n
0
, n

1
, . . ., nn] and [n

0

0, n
0

1,
. . ., n

0

n], respectively. Because any combination of counts m
0
, m

1
, . . ., mn are

possible as long as they add to m, this log-likelihood must be summed over
every possible combination of mi counts, conditioned on one of either media

being the actual source of the new samples. Formally, such a construction is
known as the Kullback-Leibler Divergence (KLD) between two alternative
hypotheses [47, 48].

The KLD is particularly attractive for distinguishing among alternative
treatments, because it is directly interpretable as an expected (log) true-positive
versus false-negative odds ratio for correctly classifying or distinguishing a
future sample of m embryos from two alternatives, given that one of the
alternatives is correct [49, 50]. The larger the KLD between different
treatments, the larger the posterior odds ratio that the future m embryos can
be correctly classified and, hence, the more distinguishable the two treatments
are. These between-treatment comparisons appear on the off-diagonal of Figure
8. Thus, the KLD can be directly interpreted as the magnitude of treatment-
effect between different treatments. Furthermore, by using the Multivariate
Pólya likelihood, sample-size variance is automatically taken into account, and
these magnitudes are resistant to artificial inflation resulting from sampling
variance [51]. Lastly, using the given KLD framework, at no point is the
assumption of normality required or used. The KLD is also useful for
estimating statistical power through comparing two samples from the same
treatment group by estimating the ability to recognize methylation patterns for a
given treatment as having come from that treatment. These values appear on the
diagonal of Figure 8. Smaller diagonal values are indicative of higher statistical
power. If different sets of frequencies [m

0
, m

1
, . . ., mn] and [m

0

0, m
0

1, . . ., m
0

n] are
drawn given media-specific counts [n

0
, n

1
, . . ., n

n
] and [n

0

0, n
0

1, . . ., n
0

n],
respectively, the KLD is then interpreted as an expected (log) true-negative
versus false-positive odds ratio for being able to recognize methylation patterns
for a given treatment as having come from that treatment.Therefore, larger
diagonal values indicate larger posterior odds ratios that m future samples from
the same population will be erroneously distinguishable and are an indication of
lower-than-desired statistical power. Thus, for this analysis, using the diagonal
as a guide, odds ratios less than 20:1 were considered to be substantially
indistinguishable, those between 20:1 and 30:1 to be highly distinguishable,
those between 30:1 and 100:1 to be very highly distinguishable, and those
greater than 100:1 to be decisively distinguishable in approximate accordance
with standard convention [52].

With respect to the imprinted expression analysis, we used the Fisher exact
test to compute the significance of nonrandom association between embryos
cultured in different media types. Because changes in expression were
anticipated to be in only one direction (monoallelic or biallelic), a one-sided test
was utilized. P-values were calculated using software provided online (http://
www. langsrud.com/fisher.htm) and were considered to be significant at P ,
0.05.

RESULTS

In the present study, we performed a side-by-side
comparison of five commercial culture systems to determine
the susceptibility of mouse preimplantation embryos to culture-
induced epigenetic errors at three imprinted loci. The
commercial media systems that were investigated were three

TABLE 1. Timeline for spontaneous and induced superovulation and for various culture systems.

Culture system
Day %3
1600 ha

Day %1
1400–1500 ha

Day %1
.1500 hb

Day 0
900 h

Day 0
.1600 hc

Day 1
900 hc

Whittens Spont ovul Spont ovul Equilibrate mineral oil Matings Plugs Equilibrate culture drop

Whittens 6.25 IU eCG 6.25 IU hCG Equilibrate mineral oil Matings Plugs Equilibrate culture drop

KSOMaa/Global/HTF Spont ovul Spont ovul Equilibrate mineral oil Matings Plugs Equilibrate culture drop

KSOMaa/Global/HTF 6.25 IU eCG 6.25 IU hCG Equilibrate mineral oil Matings Plugs Equilibrate culture drop

P1/MB Spont ovul Spont ovul Equilibrate mineral oil Matings Plugs
Equilibrate culture drop

P1/MB 6.25 IU eCG 6.25 IU hCG Equilibrate mineral oil Matings Plugs
Equilibrate culture drop

G1.5/G2.5 Spont ovul Spont ovul Equilibrate mineral oil Matings Plugs
Equilibrate culture drop

G1.5/G2.5 6.25 IU eCG 6.25 IU hCG Equilibrate mineral oil Matings Plugs
Equilibrate culture drop

a Spont ovul, spontaneous ovulated; 6.25 IU, induced ovulated.
b Equilibrate mineral oil; filter-sterilized mineral oil in incubator for equilibration (lid loosened).
c Equilibrate culture drop; culture drops prepared, under oil, in incubator for equilibration.
d Culture embryos, culture ;one 2-cell embryo per microliter medium.
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nonrenewable, nonsequential media (KSOMaa, Global, and
HTF) and two sequential systems (P1/MB and G1.5/G2.5).
Commercial formulations were used to evaluate media
currently used in human ART. For comparison, Whitten
medium was used as the worst-case scenario and in vivo-
derived embryos as the best-case scenario.

Effects of Embryo Culture on Imprinted Methylation

For each media system, B6(CAST7)3B6 F
1
embryos were

cultured from the 2-cell stage to the blastocyst stage (72 6 1 h
after onset of culture) according to the manufacturer’s
instructions for the Mouse Embryo Assay (Table 1). For all
media, blastocyst development was supported at a rate of
greater than 90% (Whitten, 96%; KSOMaa, 98%; Global, 91%;
HTF, 97%; P1/MB, 92%; G1.5/G2.5, 100%) (Supplemental
Table S2).

To determine whether differences exist in the ability of
various culture systems to maintain genomic imprinting, DNA
methylation of the H19 and Snrpn imprinting control regions
(ICRs) and the Peg3 differentially methylated region (DMR)

were analyzed (Fig. 1). Methylation analyses using bisulfite
mutagenesis and sequencing were performed on three pools of
five cultured embryos per media system and on one pool of
five in vivo-derived blastocysts. The Snrpn ICR and the Peg3
DMR harbor maternal-specific methylation, whereas the H19
ICR possesses paternal-specific methylation [27]. Therefore, in
B6(CAST7)3B6 embryos, the paternal B6 H19 allele and the
maternal CAST7 Snrpn and Peg3 alleles should be methylated.
As anticipated from previous reports about pools of blastocysts
[29, 53–55], paternal H19 DNA strands and maternal Snrpn
and Peg3 DNA strands were hypermethylated (82%, 92%, and
100%, respectively) in the in vivo-derived embryo pool (Fig.
1).

Analysis of the H19 ICR in cultured embryos (Figs. 2–7)
showed that Whitten-cultured embryos displayed a loss of
methylation, with 54%, 67%, and 63% (mean, 61%) hyper-
methylated paternal DNA strands (Fig. 2). Embryos cultured in
all media revealed a loss of paternal-specific methylation as
follows: KSOMaa, 55%, 94%, and 75% (mean, 75%) hyper-
methylation; Global, 60%, 63%, and 72% (mean, 65%); HTF,
21%, 67%, and 67% (mean, 52%); P1/MB, 93%, 64%, and

FIG. 1. Top) Schematic diagram of regions analyzed for imprinted methylation. The paternal methylated H19 allele and the maternal methylated Snrpn
and Peg3 alleles are indicated. Open circles indicate CpGs. A blunt arrow designates the transcription start site of a nontranscribed allele. Regions
analyzed are as follows: H19 ICR, 17 CpGs (16 CpGs in paternal B6 allele) in the ICR located 2–4 kb upstream of the transcriptional start site of H19;
Snrpn ICR, 16 CpGs (15 CpGs in maternal CAST alleles) located in the promoter and first exon of the Snrpn gene; and Peg3 DMR, 24 CpGs located in the
promoter and first exon of the Peg3 gene. Bottom) Methylation of the paternal H19 ICR and the maternal Snrpn ICR and Peg3 DMR in B6(CAST7)3B6 F1
in vivo-derived embryos (pool of five blastocysts). Methylation status of individual DNA strands in blastocysts derived from spontaneously ovulated
females was determined by bisulfite mutagenesis and sequencing analysis. Unmethylated CpGs are represented as empty circles; methylated CpGs are
depicted as filled circles. Each line denotes an individual strand of DNA. The identity of clones with identical methylation patterns and non-CpG-
conversion rates representing the same DNA strand were included once. Each group of DNA strands represents data from one pool of five embryos.
Percentage methylation is indicated above each set of DNA strands and was calculated as the number of hypermethylated DNA strands divided by the
total number of DNA strands. Hypermethylated DNA strands were those displaying greater than 50% methylated CpGs.

TABLE 1. Extended.

Culture system
Day 1
1200 hd

Day 1 .
1600 hc

Day 2
900 hd

Day 4
1200 h

Whittens Flush 2-cell
Culture embryos

Collect blastocysts
Freeze

Whittens Flush 2-cell
Culture embryos

Collect blastocysts
Freeze

KSOMaa/Global/HTF Flush 2-cell
Culture embryos

Collect blastocysts
Freeze

KSOMaa/Global/HTF Flush 2-cell
Culture embryos

Collect blastocysts
Freeze

P1/MB Flush 2-cell
Culture embryos

Equilibrate 2nd culture drop Culture embryos Collect blastocysts
Freeze

P1/MB Flush 2-cell
Culture embryos

Equilibrate 2nd culture drop Culture embryos Collect blastocysts
Freeze

G1.5/G2.5 Flush 2-cell
Culture embryos

Equilibrate 2nd culture drop Wash in G-MOPSþ
Culture embryos

Collect blastocysts
Freeze

G1.5/G2.5 Flush 2-cell
Culture embryos

Equilibrate 2nd culture drop Wash in G-MOPSþ
Culture embryos

Collect blastocysts
Freeze
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15 sec, and 728C for 25 sec for 45 cycles, with melting-curve analysis of 958C
for 30 sec and 508C for 2 min, with 0.28C increments thereafter; Snrpn, 958C
for 1 sec, 528C for 15 sec, and 728C for 6 sec for 45 cycles, with melting-curve
analysis of 958C for 2 min and 458C for 2 min, with 0.28C increments
thereafter; and Peg3, 958C for 1 sec, 538C for 15 sec, and 728C for 8 sec for 45
cycles, with melting-curve analysis of 958C for 15 sec and 458C for 30 sec, with
0.28C increments thereafter. Parental allele-specific expression patterns were
calculated as percentage expression of the B6 or CAST allele relative to total
expression of both alleles. Monoallelic expression was defined as less than 10%
expression from the normally silent allele [29].

Statistical Methods

In the present analysis, we tested how readily methylation patterns
associated with each media could be distinguished from one another through
the following statistical model. Given a gene with n possible methylation sites,
the frequency of observing, for a given DNA strand, i methylated sites was
estimated as pi. Specifically, p0 denotes the probability of observing no sites
methylated, p

1
the probability of observing one methylated site, and so on for i

¼ 0, 1, . . ., n. Plots of p
i
versus media shown in Figure 8A, for example,

indicate three DNA strands from the in vivo pool had pi ’ 15/16 sites
methylated. The methylation-level frequencies pi are most easily estimated
from counts ni by setting pi ’ ni/n, where ni is the number of strands having i
sites methylated and n is the total number of sites. However, such simplistic
point estimates are well known to exhibit considerable systematic error when ni
, 3 for any i [41]. Therefore, to account for both this error and the effect of
finite sample sizes, a distribution for the set of frequencies p

i
was estimated

using standard Bayesian methods [42, 43] such that p
0
, p

1
, . . ., pnjn0, n1, . . ., nn

; Dirichlet([n
0
, n

1
, . . ., nn] þ 0.5). Therefore, if m embryos are sampled in the

future from the same media, these embryos are expected to display methylation
counts [m

0
, m

1
, . . ., mn] distributed according to a standard multinomial

distribution with frequencies [p
0
, p

1
, . . ., pn], where Ri mi ¼ n.

The combination of Dirichlet posterior and multinomial likelihood is called
the Multivariate Pólya distribution for the likelihood Pr(m

0
, m

1
, . . ., m

n
jn

0
, n

1
,

. . ., nn), and it is the natural generalization of the bivariate Beta-binomial model
[44]. Although Fisher-type P-values are often used to test if two observed data
sets are ‘‘significantly’’ different, it is possible to estimate instead the
magnitude of difference between each data set. Such estimates, when available,
are often more informative than simple P-values alone [45, 46]. Using the
expected probabilities of observing counts [m

0
, m

1
, . . ., mn], we can ask how

distinguishable the different media are among themselves and the in vivo
sample via the log-likelihood ratio

log
Prðm0;m1; . . . ;mnjn0; n1; . . . ; nnÞ
Prðm0;m1; . . . ;mnjn00; n01; . . . ; n0nÞ

! "

for two media, each with methylation-level counts [n
0
, n

1
, . . ., nn] and [n

0

0, n
0

1,
. . ., n

0

n], respectively. Because any combination of counts m
0
, m

1
, . . ., mn are

possible as long as they add to m, this log-likelihood must be summed over
every possible combination of mi counts, conditioned on one of either media

being the actual source of the new samples. Formally, such a construction is
known as the Kullback-Leibler Divergence (KLD) between two alternative
hypotheses [47, 48].

The KLD is particularly attractive for distinguishing among alternative
treatments, because it is directly interpretable as an expected (log) true-positive
versus false-negative odds ratio for correctly classifying or distinguishing a
future sample of m embryos from two alternatives, given that one of the
alternatives is correct [49, 50]. The larger the KLD between different
treatments, the larger the posterior odds ratio that the future m embryos can
be correctly classified and, hence, the more distinguishable the two treatments
are. These between-treatment comparisons appear on the off-diagonal of Figure
8. Thus, the KLD can be directly interpreted as the magnitude of treatment-
effect between different treatments. Furthermore, by using the Multivariate
Pólya likelihood, sample-size variance is automatically taken into account, and
these magnitudes are resistant to artificial inflation resulting from sampling
variance [51]. Lastly, using the given KLD framework, at no point is the
assumption of normality required or used. The KLD is also useful for
estimating statistical power through comparing two samples from the same
treatment group by estimating the ability to recognize methylation patterns for a
given treatment as having come from that treatment. These values appear on the
diagonal of Figure 8. Smaller diagonal values are indicative of higher statistical
power. If different sets of frequencies [m

0
, m

1
, . . ., mn] and [m

0

0, m
0

1, . . ., m
0

n] are
drawn given media-specific counts [n

0
, n

1
, . . ., n

n
] and [n

0

0, n
0

1, . . ., n
0

n],
respectively, the KLD is then interpreted as an expected (log) true-negative
versus false-positive odds ratio for being able to recognize methylation patterns
for a given treatment as having come from that treatment.Therefore, larger
diagonal values indicate larger posterior odds ratios that m future samples from
the same population will be erroneously distinguishable and are an indication of
lower-than-desired statistical power. Thus, for this analysis, using the diagonal
as a guide, odds ratios less than 20:1 were considered to be substantially
indistinguishable, those between 20:1 and 30:1 to be highly distinguishable,
those between 30:1 and 100:1 to be very highly distinguishable, and those
greater than 100:1 to be decisively distinguishable in approximate accordance
with standard convention [52].

With respect to the imprinted expression analysis, we used the Fisher exact
test to compute the significance of nonrandom association between embryos
cultured in different media types. Because changes in expression were
anticipated to be in only one direction (monoallelic or biallelic), a one-sided test
was utilized. P-values were calculated using software provided online (http://
www. langsrud.com/fisher.htm) and were considered to be significant at P ,
0.05.

RESULTS

In the present study, we performed a side-by-side
comparison of five commercial culture systems to determine
the susceptibility of mouse preimplantation embryos to culture-
induced epigenetic errors at three imprinted loci. The
commercial media systems that were investigated were three

TABLE 1. Timeline for spontaneous and induced superovulation and for various culture systems.

Culture system
Day %3
1600 ha

Day %1
1400–1500 ha

Day %1
.1500 hb

Day 0
900 h

Day 0
.1600 hc

Day 1
900 hc

Whittens Spont ovul Spont ovul Equilibrate mineral oil Matings Plugs Equilibrate culture drop

Whittens 6.25 IU eCG 6.25 IU hCG Equilibrate mineral oil Matings Plugs Equilibrate culture drop

KSOMaa/Global/HTF Spont ovul Spont ovul Equilibrate mineral oil Matings Plugs Equilibrate culture drop

KSOMaa/Global/HTF 6.25 IU eCG 6.25 IU hCG Equilibrate mineral oil Matings Plugs Equilibrate culture drop

P1/MB Spont ovul Spont ovul Equilibrate mineral oil Matings Plugs
Equilibrate culture drop

P1/MB 6.25 IU eCG 6.25 IU hCG Equilibrate mineral oil Matings Plugs
Equilibrate culture drop

G1.5/G2.5 Spont ovul Spont ovul Equilibrate mineral oil Matings Plugs
Equilibrate culture drop

G1.5/G2.5 6.25 IU eCG 6.25 IU hCG Equilibrate mineral oil Matings Plugs
Equilibrate culture drop

a Spont ovul, spontaneous ovulated; 6.25 IU, induced ovulated.
b Equilibrate mineral oil; filter-sterilized mineral oil in incubator for equilibration (lid loosened).
c Equilibrate culture drop; culture drops prepared, under oil, in incubator for equilibration.
d Culture embryos, culture ;one 2-cell embryo per microliter medium.

940 MARKET-VELKER ET AL.
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Medium (LifeGlobal)], and two sequential systems [Preimplantation 1/Multiblast  (P1/

MB; Somagen Diagnostics Inc, Edmonton, Canada), and G1v5PLUS/G2v5PLUS (G1.5/

G2.5; Vitrolife, Goteborg, Sweden )] (Table 3.1).  The commercial media systems were 

used according to the manufacturer’s instructions for the Mouse Embryo Assay.  Where 

indicated by the manufacturer (Global 4 mg/mL; HTF 4 mg/mL; P1/MB 0.5%), media 

were supplemented with BSA (Cat# A3311, Sigma, Oakville, Canada).  Mineral oil 

(Sigma, Oakville, Canada) was filter sterilized and equilibrated at least 48 hours prior to 

culture.  Culture drops were prepared prior to 9 AM  on the morning of collection for 

Whitten’s and KSOMaa, or after 4 PM the day prior to collection for the remaining media 

to allow for equilibration.  Embryos were cultured in drops of 20 µl containing ~20 

embryos.  Culture conditions for Whitten’s medium were 37°C, 5% CO2 in air, and 37°C, 

5 %O2, 5% CO2, 90% N2 for the others.  For sequential culture systems, the second 

medium drops (MB or G2.5) were prepared the day prior to transfer (after 4 PM), and 

equilibrated overnight.  Prior to culture in G2.5, embryos were washed 2X in pre-

equilibrated GMOPS+ (Vitrolife).  All embryos were scored for blastocyst development 

(defined by the presence of a blastocoel cavity) at noon on day 4 of culture, frozen 

individually or in pools of 5, and stored at –80°C (Table 3.1).  For each media system, 

embryos were recovered from multiple litters, and embryo culture was performed at least 

four times.

3.2.3 Imprinted Methylation Analysis 

Bisulfite mutagenesis and sequencing analysis was performed as described (Market-
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Velker et al., 2010a), with modifications for pools of 5 blastocysts.  Briefly, embryo pools 

were lysed in 25 µL lysis buffer for 1 hour at  50˚C, embedded in 2% low melting point 

agarose (Sigma, Oakville, Canada) and split into three 30 µL beads. For each PCR 

reaction, 20 µL agarose/DNA was added to one Ready-To-Go PCR Bead (RTG; GE, 

Baie-d’Urfe, Canada) containing gene specific primers (Supplementary Table 3.1) 

(Sigma, Oakville, Canada) (Market-Velker et al., 2010a) and 1 µL 240 ng/mL tRNA 

(Sigma, Oakville, Canada).  PCR reactions were split in half allowing for two 

independent PCR reactions.  Negative controls (no embryo) were processed alongside 

each bisulfite reaction.  For each sample and gene analyzed, 40-50 clones were 

sequenced.  Chromatograms from each sequence were visualized using FinchTV (Version 

1.4.0, Geospiza, Seattle, USA).  Ambiguous base pairs were manually reviewed and 

assigned a designation (where possible).  Each sequence was analyzed for total number 

and location of CpG associated cytosines, as well as location and number of converted 

and unconverted non-CpG associated cytosines to obtain conversion rates (number of 

converted non-CpG cytosines / total number of non-CpG cytosines).  Sequences with less 

than 85% conversion rates were not included.  Identical clones (identical location and 

number of unconverted CpG associated cytosines, and identical location and number of 

unconverted non-CpG associated cytosines) were not included.  Multiple polymorphisms 

are present between B6 and CAST sequences at each gene analyzed, allowing parental 

alleles to be discriminated.  Clones possessing both B6 and CAST polymorphisms were 

likely due to crossover during PCR amplification, and were not included.  

Hypermethylation of a DNA strand was defined at >50% methylated CpGs on a given 
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strand.

3.2.4 Imprinted Expression Analysis

RNA isolation, synthesis of a reusable cDNA library using individual embryos, 

and H19 and Snrpn expression analysis using the LightCycler Real Time PCR System 

(Roche Molecular Biochemicals, Mississauga, Canada) was performed as described 

(Mann et al., 2004), except HotStart RTG Beads (GE, Baie-d’Urfe, Canada) and TIB 

MolBiol hybridization probes (Adelphia, USA) were used (Supplementary  Table 3.1).  

For the Peg3 expression analysis, Peg3 primers were used to amplify a 317-bp region 

(AF038939).  Fluorescence resonance energy transfer hybridization probes were designed 

to the CAST amplicon (Supplementary Table 3.1).  The Peg3 sensor probe spans a single 

nucleotide polymorphism at nucleotide 3433 between B6 (T) and CAST (C) on the 

antisense strand.  Following denaturation at 95°C for 2 minutes, PCR reactions were as 

follows: H19 95°C 1 second, 55°C 15 seconds, 72°C 25 seconds for 45 cycles, with 

melting curve analysis of 95°C 30 seconds, 50°C 2 minutes, with 0.2°C increments 

thereafter; Snrpn 95°C 1 second, 52°C 15 seconds, 72°C 6 seconds for 45 cycles, with 

melting curve analysis of 95°C 2 minutes, 45°C 2 minutes, with 0.2°C increments 

thereafter; Peg3 95°C 1 second, 53°C 15 seconds, 72°C 8 seconds for 45 cycles, with 

melting curve analysis of 95°C 15 seconds, 45°C 30 seconds, with 0.2°C increments 

thereafter.  Parental allele-specific expression patterns were calculated as percent 

expression of the B6 or CAST allele relative to total expression of both alleles. 
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Monoallelic expression was defined as <10% expression from the normally silent allele 

(Mann et al., 2004).

3.2.5 Statistical Methods

In this analysis, we tested how readily  methylation patterns associated with each media 

could be distinguished from one another through the following statistical model.  Given a 

gene with n possible methylation sites, the frequency of observing, for a given DNA 

strand, i methylated sites was estimated as pi.  Specifically, p0 denotes the probability  of 

observing no sites methylated, p1 denotes the probability  of observing one methylated 

site, and so on for i = 0, 1, …, n.  Plots of pi versus media show in Figure 8a, for example, 

three DNA strands from the in vivo pool had pi ≈ 15/16 sites methylated.  Methylation-

level frequencies pi are most easily estimated from counts ni by setting pi ≈ ni /n, where ni 

is the number of strands having i sites methylated and n is the total number of sites. 

However, such simplistic point-estimates are well known to exhibit considerable 

systematic error when ni < 3 for any i (Sokal and Rohlf, 1994).  Therefore to account for 

both this error and the effect of finite sample sizes, a distribution for the set of frequencies 

pi was estimated using standard Bayesian methods [42,43] such that 

p0 ,p1 ,…,pn |n0 ,n1 ,…,nn Dirichlet [n0 ,n1 ,…,nn]+1 2( ) .  Therefore, if m embryos are 

sampled in the future from the same media, these embryos are expected to display 

methylation counts [m0, m1, …, mn] distributed according to a standard multinomial 

distribution with frequencies [p0, p1, …, pn], where mii∑ = n .  The combination of 
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Dirichlet posterior and multinomial likelihood is called the Multivariate Pólya distribution 

for the likelihood Pr m0 ,m1 ,…,mn |n0 ,n1 ,…,nn( ) , and it is the natural generalization of the 

bivariate Beta-binomial model [44].  Although Fisher-type p-values are often used to test 

if two observed data sets are "significantly" different, it is possible to instead estimate the 

magnitude of difference between each data set.  Such estimates, when available, are often 

more informative than simple p-values alone (Goodman, 1999; Hubbard and Bayarri, 

2003).  Using the expected probabilities of observing counts [m0, m1, …, mn], we can ask 

how distinguishable the different media are among themselves and the in vivo sample via 

log-likelihood ratio log
Pr m0 ,m1 ,…,mn |n0 ,n1 ,…,nn( )
Pr m0 ,m1 ,…,mn | ′n0 , ′n1 ,…, ′nn( )














 for two media, each with 

methylation-level counts [n0 ,n1 ,…,nn]  and [ ′n0 , ′n1 ,…, ′nn] , respectively.  Since any 

combination of counts m0 ,m1 ,…,mn  are possible as long as they add to m, this log-

likelihood must be summed over every possible combination of mi counts, conditioned on 

one of either media being the actual source of the new samples.  Formally, such a 

construction is known as the Kullback-Leibler Divergence (KLD) between two 

alternative hypotheses (Kullback and Leibler, 1951; Kullback, 1978).  The KLD is 

particularly attractive for distinguishing among alternative treatments because it is 

directly  interpretable as an expected (log) true-positive versus false-negative odds-ratio 

for correctly classifying or distinguishing a future sample of m embryos from two 

alternatives, given that one of the alternatives is correct (Neyman and Pearson, 1933; 
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Fawcett, 2006).  The larger the KLD between different treatments, the larger the posterior 

odds-ratio that the future m embryos can be correctly  classified, and hence the more 

distinguishable the two treatments are.  These between-treatment comparisons appear on 

the off-diagonal of Figure 8.  Thus the KLD can be directly interpreted as the magnitude 

of treatment-effect between different treatments.  Furthermore, by using the Multivariate 

Pólya likelihood, sample-size variance is automatically taken into account, and these 

magnitudes are resistant to artificial inflation due to sampling variance (Kass and Raftery, 

1995).  Lastly, using the given KLD framework at no point is the assumption of normality 

required or used.  The KLD is also useful for estimating statistical power by comparing 

two samples from the same treatment group by estimating the ability  to recognize 

methylation patterns for a given treatment as having come from that treatment.  These 

values appear on the diagonal of Figure 8.  Smaller diagonal values are indicative of 

higher statistical power.  If different sets of frequencies [n0 ,n1 ,…,nn]  and [ ′n0 , ′n1 ,…, ′nn]  

are drawn media-specific counts [n0 ,n1 ,…,nn]  and [ ′n0 , ′n1 ,…, ′nn] , respectively, the KLD is 

then interpreted as an expected (log) true-negative versus false-positive odds-ratio for 

being able to recognize methylation patterns for a given treatment as having come from 

that treatment.  Therefore, larger diagonal values indicate larger posterior odds ratio that 

m future samples from the same population will be erroneously distinguishable and are an 

indication of lower than desired statistical power.  Thus, for this analysis, using the 

diagonal as a guide, odds ratios below 20:1 were considered substantially 

indistinguishable, between 20:1 and 30:1 to be highly  distinguishable, between 30:1 and 
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100:1 to be very  highly distinguishable, and over 100:1 to be decisively distinguishable in 

approximate accordance with standard convention (Jeffreys, 1961).

 With respect to the imprinted expression analysis, to compute the significance of 

non-random association between embryos cultured in different media types, we used the 

Fisher’s exact test.  As changes in expression were anticipated to be in only  one direction 

(monoallelic or biallelic), a one-sided test  was utilized.  P-values were calculated using 

software provided online (http://faculty.vassar.edu/lowry/fisher.html) and were considered 

to be significant at p < 0.05. 

3.3 Results

In this study, we performed a side-by-side comparison of five commercial culture 

systems to determine the susceptibility  of mouse preimplantation embryos to culture-

induced epigenetic errors at  three imprinted loci.  The commercial media systems that 

were investigated were three nonrenewable, non-sequential media, KSOMaa, Global, and 

HTF, and two sequential systems, P1/MB and G1.5/G2.5.  Commercial formulations were 

used to evaluate media currently used in human ART.  For comparison, Whitten’s medium 

was used as the worst-case scenario, and in vivo-derived embryos as the best-case 

scenario. 

3.3.1 Effects of Embryo Culture on Imprinted Methylation
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 For each media system, B6(CAST7) X B6 F1 embryos were cultured from the 2-

cell stage to the blastocyst stage (72 +1 hours after onset of culture) according to the 

manufacturer’s instructions for the Mouse Embryo Assay (Table 3.1).  For each media, 

blastocyst development was supported at a rate >90% (Whitten’s 96%; KSOMaa 98%; 

Global 91%; HTF 97%; P1/MB 92%; G1.5/G2.5 100%) (Supplementary Table 2). 

To determine whether differences existed in the ability of various culture systems 

to maintain genomic imprinting, DNA methylation of the H19 and Snrpn imprinting 

control regions (ICRs), and the Peg3 differentially methylated region (DMR) were 

analyzed (Figure 3.1).  Methylation analyses using bisulfite mutagenesis and sequencing 

were performed on three pools of 5 cultured embryos per media system, and on one pool 

of 5 in vivo-derived blastocysts.  The Snrpn ICR and the Peg3 DMR harbour maternal-

specific methylation, while the H19 ICR possesses paternal-specific methylation (Verona 

et al., 2003). Therefore, in B6(CAST7) X B6 embryos, the paternal B6 H19 allele and the 

maternal CAST7 Snrpn and Peg3 alleles should be methylated.  As anticipated from 

previous reports of pools of blastocysts (Tremblay et al., 1997; Thorvaldsen et  al., 1998; 

Mann et al., 2004; Reese et al., 2007), paternal H19 DNA strands, and maternal Snrpn 

and Peg3 DNA strands were hypermethylated (82%, 92%, and 100%, respectively) in the 

in vivo-derived embryo pool (Figure 3.1).

Analysis of the H19 ICR in cultured embryos (Figure 3.2-3.7) showed that 

Whitten’s cultured embryos displayed a loss of methylation, with 54%, 67% and 63% 

(mean 61%) paternal DNA strands hypermethylated (Figure 3.2).  Embryos cultured in all 

media revealed a loss of paternal-specific methylation, KSOMaa (55%, 94% and 75%; 
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Figure 3.1. Schematic Diagram of Regions Analyzed for Imprinted Methylation. 

Top: The paternal methylated H19 allele and the maternal methylated Snrpn and Peg3 

alleles are indicated.  ICR, Imprinted Control Region. DMR, Differentially Methylated 

Region. Open circles, CpGs. Blunt arrow designates transcription start site of non-

transcribed allele.  Regions analyzed are as follows: H19 ICR, 17 CpGs (16 CpGs in 

paternal B6 allele) in the ICR located 2-4 kb upstream of the transcriptional start site of 

H19; Snrpn ICR, 16 CpGs (15 CpGs in maternal CAST alleles) located in the promoter 

and first exon of the Snrpn gene; and Peg3 DMR, 24 CpGs located in the promoter and 

first exon of the Peg3 gene.  Bottom.  Methylation of the paternal H19 ICR, and the 

maternal Snrpn ICR and Peg3 DMR in B6(CAST7) X B6 F1 in vivo-derived embryos 

(pool of 5 blastocysts).  Methylation status of individual DNA strands in blastocysts 

derived from spontaneously ovulated females was determined by bisulfite mutagenesis 

and sequencing analysis.  Unmethylated CpGs are represented as empty circles while 

methylated CpGs are depicted as filled circles.  Each line denotes an individual strand of 

DNA.  The identity of clones with identical methylation patterns and non-CpG 

conversion rates representing the same DNA strand were included once. Each group of 

DNA strands represents data from one pool of 5 embryos.  Percent methylation is 

indicated above each set of DNA strands, and was calculated as the number of 

hypermethylated DNA strands / total number of DNA strands.  Hypermethylated DNA 

strands were those displaying >50% methylated CpGs.
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Figure 3.2.  Methylation in Whitten’s Medium.

Methylation of the paternal H19 ICR, the maternal Snrpn ICR and the maternal Peg3 

DMR in B6(CAST7) X B6 F1 embryos derived from spontaneously ovulated females and 

cultured in non-sequential Whitten’s medium.  Each group of DNA strands represents 

data from three pools of 5 embryos (A, B and C).  See Figure 3.1 for additional details. 
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Figure 3.3.  Methylation in KSOMaa.

Methylation of the paternal H19 ICR, the maternal Snrpn ICR and the maternal Peg3 

DMR in B6(CAST7) X B6 F1 embryos derived from spontaneously ovulated females and 

cultured in non-sequential KSOMaa. Each group of DNA strands represents data from 

three pools of 5 embryos (A, B and C).  See Figure 3.1 for additional details.   
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Figure 3.4. Methylation in Global Medium.

Methylation of the paternal H19 ICR, the maternal Snrpn ICR and the maternal Peg3 

DMR in B6(CAST7) X B6 F1 embryos derived from spontaneously ovulated females and 

cultured in non-sequential Global media. Each group of DNA strands represents data 

from three pools of 5 embryos (A, B and C).  See Figure 3.1 for additional details.
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Figure 3.5. Methylation in HTF Medium.

Methylation of the paternal H19 ICR, the maternal Snrpn ICR and the maternal Peg3 

DMR in B6(CAST7) X B6 F1 embryos derived from spontaneously ovulated females and 

cultured in non-sequential HTF media.  Each group of DNA strands represents data from 

three pools of 5 embryos (A, B and C).  See Figure 3.1 for additional details.
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Figure 3.6. Methylation in P1/MB Medium.

Methylation of the paternal H19 ICR, the maternal Snrpn ICR and the maternal Peg3 

DMR in B6(CAST7) X B6 F1 embryos derived from spontaneously ovulated females and 

cultured in sequential media P1/MB.  Each group of DNA strands represents data from 

three pools of 5 embryos (A, B and C).  See Figure 3.1 for additional details.
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Figure 3.7. Methylation in G1.5/G2.5 Medium.

Methylation of the paternal H19 ICR, the maternal Snrpn ICR and the maternal Peg3 

DMR in B6(CAST7) X B6 F1 embryos derived from spontaneously ovulated females and 

cultured in sequential media G1.5/G2.5.  Each group of DNA strands represents data from 

three pools of 5 embryos (A, B and C).  See Figure 3.1 for additional details.
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mean 75% hypermethylation), Global (60%, 63% and 72%; mean 65%), HTF (21%, 67% 

and 67%; mean 52%), P1/MB (93%, 64% and 38%; mean 65%), and G1.5/G2.5 (82%, 

62% and 21%; mean 55%) (Figure 3.3-3.7).  In these analyses, we attribute inter embryo 

pool variation to composition of blastocysts within the pool; variable number of 

blastocysts that maintained and lost imprinted methylation.  This is support by our recent 

report on the effects of superovulation on genomic imprinting where we observed a 

stochastic response by  individual embryos to superovulation (Market-Velker et al., 

2010a).

To quantify these differences in H19 imprinted methylation, the ability  to 

distinguish DNA strands from embryos derived in vivo from those cultured in each media 

system were calculated as posterior odds ratios (Figure 3.8).  Higher posterior odd ratios 

indicate a greater ability  to distinguish between DNA strands obtained from embryo 

culture in one media compared to another (or to in vivo), while lower posterior odds ratios 

indicate an inability  to distinguish between culture conditions.  Using the table 

representing three samples (i.e. three groups of 5 embryos), this analysis demonstrated 

that the in vivo-derived embryo pool was highly distinguishable from Whitten’s cultured 

embryos (Figure 3.8A).  In addition, embryos cultured in KSOMaa, Global and P1/MB 

were least distinguishable from in vivo-derived embryos, but highly distinguishable from 

embryos cultured in Whitten’s. Embryos cultured in HTF and G1.5/G2.5 displayed 

methylation levels least  distinguishable from Whitten’s, but  were highly distinguishable 

from in vivo-derived embryos.  Therefore, for H19, KSOMaa, Global and P1/MB 

appeared best able to maintain imprinted methylation.  These results for embryos cultured
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Figure 3.8.  Methylation Analysis 

Methylation analysis of the paternal H19 ICR, the maternal Snrpn ICR and the maternal 

Peg3 DMR for in vivo-derived and cultured embryos.  Left, plots of the fraction of CpG 

methylation per DNA strand (black oval).  Vertical bars are mean hypermethylation of 

embryo pools.  Right, posterior odd ratios tables as calculated independently for each 

gene.  Higher posterior odd ratios (dark grey-black) indicate a greater ability to 

distinguish between DNA strands obtained from embryo culture in one media compared 

to another (or to in vivo), while lower posterior odds ratios (white to light grey) indicate 

an inability to distinguish between culture conditions.  Using the diagonal as a guide, 

odds ratios below 20:1 were considered substantially indistinguishable, between 20:1 and 

30:1 to be highly distinguishable, between 30:1 and 100:1 to be very highly 

distinguishable, and over 100:1 to be decisively distinguishable.
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 in Whitten’s medium and KSOMaa are consistent with our previous analysis, which 

showed better maintenance of H19 imprinted methylation in KSOMaa (Mann et  al., 

2004).

 The same embryo pools from the H19 analysis were examined for changes in 

imprinted methylation at Snrpn and Peg3.  For Snrpn, Whitten’s cultured embryos 

displayed a loss of methylation with 67%, 58% and 50% of maternal DNA strands 

hypermethylated (mean 58%) (Figure 3.2).  Similar to H19, methylation loss was 

observed in embryos cultured in all media, KSOMaa (60%, 89% and 69%; mean 73%), 

Global (100%, 55% and 60%; mean 72%), HTF (0%, 77% and 86%; mean 54% 

hypermethylation), P1/MB (56%, 62% and 78%; mean 65%) and G1.5/G2.5 (83%, 77% 

and 33%; mean 64%) (Figure 3.3-3.7). 

Quantification of posterior odds ratios for Snrpn revealed that the in vivo-derived 

embryos were highly  distinguishable from Whitten’s cultured embryos.  Furthermore, 

embryos cultured in KSOMaa, Global, HTF, P1/MB, and G1.5/G2.5 were highly 

distinguishable from in vivo-derived embryos.  However, embryos cultured in HTF, P1/

MB, and G1.5/G2.5 were least distinguishable from those cultured in Whitten’s medium, 

while KSOMaa and Global cultured embryos were highly  distinguishable from Whitten’s 

cultured embryos (Figure 3.8B).  Therefore, for Snrpn, KSOMaa and Global appeared 

better able to maintain imprinted methylation when compared to Whitten’s, HTF, P1/MB, 

and G1.5/G2.  Consistent with our previous study (Mann et al., 2004), we observed that 

embryos cultured in KSOMaa harbored greater Snrpn methylation than those cultured in 

Whitten’s medium.
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For the Peg3 DMR methylation analysis, Whitten’s cultured embryos displayed a 

loss of methylation with 71%, 24% and 67% maternal DNA strands hypermethylated 

(mean 54%) (Figure 3.2).  Embryos cultured in G1.5/G2.5 (44%, 50% and 56%; mean 

50% hypermethylation) (Figure 3.7) also produced a severe loss of Peg3 methylation, 

while embryos cultured in KSOMaa (80%, 100% and 100%; mean 93% 

hypermethylation), Global (70%, 89% and 73%; mean 77%), HTF (100%, 61% and 93%; 

mean 85%) and P1/MB (91%, 44% and 89%; mean 75%) harbored higher maternal Peg3 

hypermethylation levels (Figure 3.3-3.6).

Quantification of posterior odds ratios for Peg3 revealed that the in vivo-derived 

embryo pool was highly  distinguishable from Whitten’s cultured embryos (Figure 3.8C). 

Embryos cultured in KSOMaa were least distinguishable from in vivo-derived embryos 

and highly distinguishable from Whitten’s medium.  Embryos cultured in G1.5/G2.5 were 

highly  distinguishable from in vivo-derived embryos and least  distinguishable from 

Whitten’s medium.  Global, HTF and P1/MB cultured embryos displayed levels 

distinguishable from both in vivo-derived and Whitten’s cultured embryos.  Thus, for 

Peg3, KSOMaa culture appeared best able to maintain imprinted methylation,

From the imprinted methylation analysis, we conclude that all commercial media 

systems are suboptimal in their ability  to maintain genomic imprinting as none displayed 

methylation levels comparable to in vivo-derived embryos for all three genes (Figure 3.8). 

Having said this, some media systems were better able to maintain imprinted methylation; 

KSOMaa, Global and P1/MB for H19, KSOMaa and Global for Snrpn; and KSOMaa 

followed by Global, HTF and P1/MB for Peg3.  As well, there was a differential response 
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of imprinted genes to various culture systems as evidenced by  the response of the three 

loci to HTF medium where the most severe loss of H19 and Snrpn methylation was 

observed compared to other media systems, while higher methylation levels were seen for 

Peg3. 

3.3.2 Effects of Embryo Culture on Imprinted Gene Expression

 To investigate the effects of the commercial media systems on imprinted gene 

expression, individual embryos were analyzed for H19, Snrpn and Peg3 imprinted 

expression.  Approximately 20-30 individual embryos were analyzed from each media 

system as well as for in vivo-derived control embryos.  For Snrpn, in vivo-derived control 

embryos displayed paternal-specific Snrpn expression (100% Snrpn expression, 100% 

monoallelic expression) (Supplementary  Table 3.3).  For Peg3, 23 of 24 control embryos 

(96%) expressed Peg3 with all but one embryo exhibiting paternal-specific expression 

(96% monoallelic) (Supplementary  Table 3.3).  Analysis of cultured embryos 

demonstrated that Snrpn and Peg3 also maintained monoallelic expression following 

embryo culture in all media systems, similar to in vivo-derived embryos, although a small 

percentage of embryos exhibited biallelic Peg3 expression (4-11%), however this 

difference was not statistically  significant (Table 3.2).  These results are similar to our 

previous study  where monoallelic Snrpn and Peg3 expression were maintained in 

Whitten’s and KSOMaa cultured embryos at the blastocyst stage (Mann et al., 2004).

 Maintenance of Snrpn and Peg3 imprinted expression following culture contrasted 

sharply with that of H19.  Analysis of H19 imprinted expression showed that 100% of in
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Table 3.2: Expression Analysis of Cultured and Superovulation and Cultured 
EmbryosTABLE 2. Expression analysis of cultured and superovulated/cultured embryos.

Culture media

Snrpn Peg3

Analyzed Expressed Biallelic Analyzed Expressed Biallelic

Whittens 29 29 (100%) 0 23 22 (96%) 2 (9%)
KSOMaa 22 22 (100%) 0 22 18 (82%) 0
HTF 22 22 (100%) 0 28 26 (93%) 1 (4%)
Global 25 25 (100%) 0 25 24 (96%) 1 (4%)
P1/MB 24 24 (100%) 0 24 22 (92%) 0
G1.5/G2.5 19 19 (100%) 0 19 18 (95%) 0
6.25 IU/Whittens 23 23 (100%) 0 23 23 (100%) 0
6.25 IU/KSOMaa 21 21 (100%) 0 22 21 (95%) 0
6.25 IU/Global 21 21 (100%) 0 21 21 (100%) 0
6.25 IU/HTF 22 22 (100%) 0 22 21 (95%) 1 (5%)
6.25 IU/P1/MB 19 19 (100%) 1 (5%) 19 19 (100%) 2 (11%)
6.25 IU/G1.5/G2.5 13 13 (100%) 0 13 13 (100%) 0

FIG. 9. Imprinted expression of H19 in
B6(CAST7) 3 B6 embryos derived from
spontaneously ovulated females and cul-
tured in six different media systems. Embryo
designations are indicated on the x-axis;
percentage allelic expression from each
allele is indicated on the y-axis. Gray bar
height indicates percentage of maternal
expression; black bar height represents
percentage of paternal-specific expression.
Percentage expressed (% Exp) was calcu-
lated as number of embryos displaying H19
expression divided by total number of
embryos analyzed, and percentage loss of
imprinted expression (% LOI) was calculat-
ed as number of embryos displaying greater
than 10% expression from the normally
silenced allele divided by total number of
embryos expressing H19.
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 vivo-derived controls displayed maternal-specific expression (Supplementary Table 3.3), 

while 40% of Whitten’s cultured embryos displayed loss of imprinting (LOI, defined as 

biallelic / abnormal paternal H19 expression) (Figure 3.9).  Similar to Whitten’s, all five 

commercial culture systems had increased numbers of embryos with loss of imprinted 

H19 expression; KSOMaa 60%, Global 50%, HTF 47%, P1/MB 53%, and G1/G2 41% 

(Figure 3.9).  No statistically  significant difference in LOI was observed between all 

media analyzed, however there was a significant difference between all media and in 

vivo-derived embryos with respect to biallelic expression using Fisher’s exact test (p < 

0.05, Supplementary Table 3.4).  These results are discordant from our previous study 

where better maintenance of H19 imprinted expression was observed in KSOMaa 

compared to Whitten’s culture (Mann et al., 2004).  While the reason for this discordance 

is not clear, we do note that our current cultured embryos possess fewer cell numbers 

compared to those in our previous analysis.  We are currently investigating the 

relationship between cell number and loss of imprinting.

 A change in frequency of embryos expressing H19 was also observed between 

experimental and control groups.  Thirteen percent of in vivo-derived embryos expressed 

H19 (9/68 embryos) (Supplementary Table 3.3), while 69% of Whitten’s cultured 

embryos expressed H19 (Figure 3.9).  Snrpn was expressed in all these embryos, acting as 

a control for RNA isolation and cDNA synthesis.  Similar to Whitten’s, H19 expression 

was more frequent in embryos cultured in all commercial media systems compared to in 

vivo-derived embryos; KSOMaa 91%, Global 80%, HTF 54%, P1/MB 79%, and G1/G2 

89% (p < 0.05, Supplementary Table 3.5) (Figure 3.9). 
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Figure 3.9. Imprinted Expression of H19 - Spontaneous Ovulation and Culture

Imprinted expression of H19 in B6(CAST7)xB6 embryos derived from spontaneously 

ovulated females and cultured in six different media systems.  Embryo designations are 

indicated on the X-axis; percent allelic expression from each allele is indicated on the Y-

axis.  Grey bar height indicates percent of maternal expression while black bar height 

represents the percent of paternal-specific expression.  Percent expressed (% Exp) was 

calculated as number of embryos displaying H19 expression / total number of embryos 

analyzed, and percent loss of imprinted expression (% LOI) was calculated as number of 

embryos displaying >10% expression from the normally silenced allele / total number of 

embryos expressing H19.
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3.3.3 Effects of Superovulation and Embryo Culture on Imprinted Expression 

 In a recent study, we demonstrated that superovulation (without culture) perturbed 

H19, Snrpn, and Peg3 imprinted methylation (Market-Velker et al., 2010a).  To examine 

the effect of superovulation in combination with embryo culture, we examined H19, 

Snrpn and Peg3 imprinted expression in individual embryos derived from superovulated 

females and cultured in each of the five commercial media systems.  Since our primary 

goal was to determine the synergistic effects of superovulation and embryo culture, we 

used low hormone dosages; this treatment had less effect on imprinted methylation 

patterns compared to high hormone dosage (Market-Velker et al., 2010a).  Blastocyst 

development was supported at a rate >85% in the various culture systems in combination 

with superovulation (6.25 IU/Whitten’s 92%; 6.25 IU/KSOMaa 96%; 6.25 IU/Global 

97%; 6.25 IU/HTF 89%; 6.25 IU/P1/MB 86%; 6.25 IU/G1.5/G2.5 96%) (Supplementary 

Table 3.2).

Similar to non-hormone treated groups, Snrpn and Peg3 imprinted expression was 

maintained in superovulated-cultured groups (Table 3.2).  For H19, hormone treatment in 

conjunction with Whitten’s culture resulted in a dramatic increase in the number of 

embryos with loss of imprinted H19 expression from 40% to 81% (Figure 3.9-3.10).  A 

similar increase was observed in all five culture systems; KSOMaa 60% vs 81%; Global 

50% vs 71%; HTF 47% vs 76; P1/MB 53% vs 79%; and G1.5/G2.5 41% vs 67% for 

culture alone compared to combined treatment, respectively. 

An overall comparison of the three paradigms, in vivo-derived (68 embryos), 

spontaneously ovulated-cultured (147 embryos) and superovulated-cultured (120
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Figure 3.10. Imprinted Expression of H19 - Superovulation and Cultured Embryos

Imprinted expression of H19 in B6(CAST7)xB6 embryos derived from superovulated 

females and cultured in six different media systems.  Details are as described in Figure 

3.9.
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embryos) groups, revealed that loss of imprinted expression occurred more frequently in 

the superovulated-cultured treatment group (73%) compared to the spontaneously 

ovulated-cultured treatment group (47%) and to controls (0%) (p < 0.01) (Supplementary 

Table 3.6).  Furthermore, H19 was expressed in a greater percentage of embryos in the 

superovulated-culture group (94%) than in the spontaneously  ovulated-cultured group 

(75%) and in in vivo-derived embryos (13% expression) (Supplementary Table 3.6) (p < 

0.05).  These results indicated that superovulation together with embryo culture results in 

greater H19 expression perturbations.

3.4 Discussion

In this study, we performed a side-by-side comparison of five commercial culture 

systems to determine their effects on genomic imprinting.  All five culture systems had 

compromised ability  to maintain genomic imprinting compared to in vivo-derived 

embryos, although in comparison to Whitten’s culture, some media systems were better 

able to maintain imprinted methylation.  We also observed that combined treatment of 

superovulation and embryo culture resulted in increased disruption of genomic 

imprinting, as evidenced by increased loss of imprinted H19 expression.  Thus, we 

conclude that minimizing times in culture and number of ART procedures is important to 

ensure the fidelity of imprinted gene expression during preimplantation development. 

3.4.1 Comparison of Media Systems
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Many studies have been performed to evaluate culture systems with respect to 

developmental competence, epigenetic status, embryo grade (quality), development rate, 

implantation rate, and pregnancy rate in humans (Staessen et al., 1998; Mauri et al., 2001; 

Artini et al., 2004; Ben-Yosef et al., 2004; Zollner et al., 2004; Sepulveda et al., 2009; 

Xella et al., 2010) and mouse (Sasaki et al., 1995; Doherty et al., 2000; Ecker et al., 2004; 

Fernandez-Gonzalez et al., 2004; Mann et al., 2004; Li et al., 2005; Fauque et al., 2007; 

Rivera et al., 2008).  However, comparisons between studies, even those evaluating the 

same culture system, remain problematic due to variations in culture parameters including 

type of overlay, oxygen tension, culture drop  volume, serum supplement, combined 

procedures such as IVF/ICSI, and many  more.  This study is the first  to provide a 

comparative analysis of five different, commercially  available culture systems.  To allow 

reliable comparison between media systems, all embryos were cultured with the same oil 

overlay and drop  volume, and in the same incubator, under the same oxygen conditions 

(except Whitten’s medium, which requires different oxygen tension than the other media 

formulations).  Embryos were flushed from oviducts in their respective culture media, 

supplemented with the same lot of serum substitute (according to manufacturer’s 

instructions for mouse embryo assay), and were handled by the same individual.  Our 

strategy was to introduce as little variation between culture conditions as possible to 

allow true comparisons between systems.

Furthermore, confusion has arisen, as controversy  exists in the literature regarding 

the best embryo culture system (Summers and Biggers, 2003; Lane and Gardner, 2007; 

Biggers and Summers, 2008).  However, no significant advantage has been shown for one 
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system over another with respect to blastocyst development, implantation rates or 

pregnancy rates (Staessen et al., 1998; Mauri et al., 2001; Fauque et al., 2007).  While 

blastocyst formation and embryo morphology are currently the best predictors available 

for assessing embryo quality, they may  not necessarily be predictive of epigenetic health. 

Thus, understanding effects of embryo culture at the molecular level is essential.  As such, 

we set out  to determine whether one culture media system was more favourable for 

imprint maintenance during preimplantation development. 

An important finding from these experiments is that culture media actively used 

for both mice and humans generated a loss of imprinting following in vitro culture of 

mouse embryos.  Previous studies have shown aberrant imprinted methylation following 

mouse embryo culture using KSOMaa and Whitten’s media systems, with KSOMaa being 

named the better media system (Doherty et al., 2000; Mann et al., 2004).  These data 

support our results, as we demonstrate greater H19, Snrpn and Peg3 imprinted 

methylation levels in embryos cultured in KSOMaa compared to the other media system 

for which lower methylation levels were observed for at least one imprinted gene.  

However, these differences in methylation did not translate into differences in the ability 

to maintain H19, Snrpn or Peg3 imprinted expression at the blastocyst stage.  Imprinted 

expression was maintained for Snrpn and Peg3 in all media systems while H19 displayed 

similar levels of biallelic expression in all media systems when compared to control 

embryos. 

There are number of explanations for this discordance.  Firstly, H19 imprinted 

expression is restricted to the trophectoderm in blastocyst stage embryos (Poirier et al., 
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1991).  As we observed greater imprinting perturbations in the placenta compared to the 

embryo proper in midgestation embryos, it may indicate that greater methylation loss 

occurs in trophectoderm cells than in inner mass cells.  Alternatively, differences in the 

ability  to maintain imprinted expression in culture may relate to Snrpn and Peg3 being 

protein-coding genes, while H19 is a noncoding RNA.  Finally, DNA methylation is but 

one indicator of chromatin status.  As a combination of DNA methylation and histone 

modifications likely direct parental-specific expression, adverse effects of in vitro culture 

on histone modifications may also lead to greater misregulation of imprinted gene 

expression.  Combined expression and methylation analyses in single blastocyst stage 

embryos will allow direct  comparison of imprinted DNA methylation loss and loss of 

imprinted expression.  Analysis of histone modification in blastocyst stage embryos will 

also provide greater insight into the effects of embryo culture on imprinted gene 

regulation.

A second finding from this study  is that results from one gene cannot be 

generalized to all imprinted genes.  For H19, embryos cultured in KSOMaa, Global and 

P1/MB displayed levels of H19 imprinted methylation more similar to in vivo-derived 

embryos than other media systems.  Embryos cultured in HTF and G1.5/G2.5 displayed 

H19 methylation levels least distinguishable from Whitten’s, but were highly 

distinguishable from in vivo-derived embryos.  For Snrpn, while distinguishable from in 

vivo-derived embryos, KSOMaa and Global better maintained imprinted methyation than 

the other media systems.  For Peg3, levels of imprinted methylation for KSOMaa 

cultured embryos were least distinguishable from in vivo, while methylation levels for 
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G1.5/G2.5 cultured embryos were most distinguishable from in vivo and least 

distinguishable from Whitten’s.  These finding illustrate the point that certain media 

appear to support levels of imprinted methylation similar to in vivo-derived embryos at 

some but not at all loci.  

The five commercial media systems used in this study post the compounds present 

in the medium. However, specific concentrations are proprietary, preventing an in-depth 

comparison of the media systems.  Based on components, KSOMaa and Global are likely 

the most similar media.  Thus, it  is not surprising that they performed similarly. HTF is 

likely more similar to Whitten’s in that  it lacks amino acids, possibly accounting for the 

more severe loss of methylation produced by these media.  The rest of the media systems 

contain amino acids with the caveat that of the two-step systems, P1 contains no amino 

acids and G1.5 has nonessential amino acids plus methionine while both MB and G2.5 

harbor essential and nonessential amino acids.  For these two sequential systems, it is not 

readily apparent why they did not generate more similar effects on imprinted methylation 

loss, although it  may lie in their differences.  P1/MB contains the antioxidant sodium 

citrate while G1.5/G2.5 contains vitamins.  What can be concluded is that sequential 

media systems did not seem to confer an advantage with respect to maintenance of 

genomic imprinting compared to their single step counterparts, nor did medium renewal.

3.4.2 Combined effects of ART treatments

Experiments presented in Chapter 2 showed that superovulation alone can perturb 

imprint acquisition at multiple imprinted loci, in a dose-dependent manner.  Thus, we set 
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out to determine whether a combination of ART treatments would lead to greater 

perturbation of imprinting.  We observed that increased loss of H19 imprinted expression 

as a result of embryo culture was exacerbated by the use of superovulation.  A study  by 

Rivera et al. also demonstrated an increase in biallelic expression of many imprinted 

genes following superovulation with embryo transfer compared to controls, with a further 

increase in biallelic expression following embryo culture combined with superovulation 

and embryo transfer (Rivera et al., 2008).  Together, these studies demonstrate that 

combined ART procedures result in greater perturbation of genomic imprinting compared 

to single interventions.

One critical question that must be answered is how transferable these results and 

those of other studies are to human embryo culture.  The main aim of this study was to 

employ commercial formulations of various culture systems to allow for evaluation of 

media currently used in human ART.  However, the possibility remains that human 

embryos may not be as susceptible to culture-induced errors, or may display different 

sensitivities to these culture systems than the mouse.  To address the question of 

proclivity  of ART procedures to induced epigenetic errors, retrospective studies were 

performed on BWS children born after ARTs (DeBaun et al., 2003; Chang et al., 2005). 

Variable ART procedures were reported in ART-associated BWS children with no 

common factor emerging.  Differences were observed in cause of infertility, embryo 

culture media (varied in glucose, amino acid and human serum albumin content), day  of 

transfer, and ART method (IVF, ICSI, ovarian stimulation regime) employed (DeBaun et 

al., 2003; Chang et al., 2005).  These data suggest that  human embryos are susceptible to 
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ART-induced errors but that it is not a specific system that generates epigenetic errors. 

Instead, it  is multiple ART procedures, such as ovarian stimulation combined with 

embryo culture, that pose greater risks for developing imprinting disorders.  As the genes 

investigated in this study play an important role in early development, and genetic and 

epigenetic perturbations lead to imprinting disorders, we propose that culture time and 

number of ART procedures should be minimized to ensure fidelity of genomic imprint 

maintenance during development. 
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Chapter 4: Rates of Embryo Development Correlate with Loss of Genomic 

Imprinting

The work in this chapter originates from the manuscript:

Market Velker, B. A., Denomme, M. M., and Mann, M. R. Loss of Genomic Imprinting in 

Embryos with Rapid Rates of Preimplantation Development, submitted for publication in 

the journal Human Reproduction in June 2011.

4.1 Introduction

 One of the first observations of deleterious effects of embryo culture is that 

development of mouse embryos in vitro results in an 18 to 24 hour lag in reaching the 

blastocyst stage (Bowman and McLaren, 1970; Harlow and Quinn, 1982).  Since then, 

while culture conditions for preimplantation embryos have steadily improved (Biggers 

and Summers, 2008; Gardner, 2008), even the best media currently available are 

suboptimal for embryo development.  Cultured embryos from all mammalian species 

have reduced viability and reduced pregnancy rates following embryo transfer, display 

aberrant patterns and levels of gene expression, developmental abnormalities and 

deviations in behaviour, and are prone to metabolic and growth disorders (Sasaki et al., 

1995; Sinclair et al., 1999; Barker, 2000; Boerjan et al., 2000; Doherty et al., 2000; 

Khosla et al., 2001; Summers and Biggers, 2003; Ecker et al., 2004; Fernandez-Gonzalez 

et al., 2004; Rinaudo and Schultz, 2004; Morgan et al., 2005).  Preimplantation embryos 
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survive in vitro culture by adapting to the culture environment and stresses it imposes 

(Niemann and Wrenzycki, 2000).

 We and others have also demonstrated that preimplantation embryo culture 

disrupts genomic imprinting in mice (Sasaki et al., 1995; Doherty et al., 2000; Mann et 

al., 2004; Market-Velker et al., 2010b).  In vitro culture of mouse preimplantation 

embryos results in loss of imprinted gene regulation with biallelic expression of the H19 

gene and loss of H19, Snrpn and Peg3 imprinted methylation (Sasaki et al., 1995; 

Doherty et  al., 2000; Mann et al., 2004; Market-Velker et al., 2010b).  In Chapter 3, the 

comparison of six embryo culture media showed that while all were suboptimal in their 

ability  to maintain imprinting, some media systems performed better and others were 

decidedly  worse, such as Whitten’s medium, HTF Medium and G1/G2 (Market-Velker et 

al., 2010b).

 In humans, while the absolute risks remain low, assisted reproductive technologies 

have been linked to imprinting perturbations that lead to the development of Angelman 

Syndrome (AS) and Beckwith-Wiedemann Syndrome (BWS) (Cox et al., 2002; DeBaun 

et al., 2003; Maher et al., 2003; Orstavik et  al., 2003; Halliday et al., 2004; Chang et al., 

2005; Ludwig et al., 2005; Sutcliffe et al., 2006).  In AS patients conceived by assisted 

reproduction, imprinting defects at the maternal SNRPN ICR result in loss of maternal-

specific SNRPN methylation and the entire maternal imprinted domain acquires a paternal 

epigenetic identity  (Cox et al., 2002; Orstavik et al., 2003; Ludwig et al., 2005; Sutcliffe 

et al., 2006).  For BWS patients conceived by assisted reproduction, imprinting defects at 

the maternal H19 ICR (2-7% patients) result in a gain of maternal-specific H19 
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methylation and overexpression of the paternally-transcribed IGF2 gene, while imprinting 

defects at the KCNQ1OT1 ICR (50% patients) result in loss of maternal-specific 

methylation at  the KCNQ1OT1 ICR and biallelic repression of maternally expressed 

genes across the imprinting domain, including CDKN1C (DeBaun et al., 2003; Maher et 

al., 2003; Halliday et al., 2004; Chang et al., 2005).  The maternally-transcribed 

CDKN1C/Cdkn1c gene is an important inhibitor of the cell cycle through its interaction 

with cyclin-CDK complexes (Lee et al., 1995; Matsuoka et al., 1996), and its aberrant 

expression generates major pathologies present in BWS (Hatada and Mukai, 1995; 

Hatada et al., 1996; Zhang et  al., 1997; Yan et al., 1997).  Thus, this imprinted cell cycle 

regulator provides an important link between embryo development and epigenetic 

perturbations in the early embryo. 

 Imprinting marks acquired during gametogenesis must be maintained during the 

preimplantation epigenetic reprogramming period.  However, very little is known about 

the mechanisms that maintain genomic imprinting in the preimplantation embryo, and 

how dysregulation of genomic imprinting during this time period may lead to aberrant 

embryonic growth and development.  In mouse, cell divisions from the 2-cell to 

blastocyst stage occur approximately  every 10-18 hours in vivo, with development from 

fertilization to blastocyst stage taking about 3.5 days (Bowman and McLaren, 1970).  In 

contrast, embryos cultured in vitro to the blastocyst stage generally  require an extra day of 

development in culture.  This has led us to hypothesize that loss of imprinting during 

early mouse development will correlate with slower rates of embryonic development.  To 

test our hypothesis, we separated embryos based on rates of development and examined 

147



cell number, embryo volume, and embryo sex, together with imprinted methylation and 

expression at two key loci, H19 and Snrpn, that  are involved in the development of 

imprinting disorders observed in the ART population.  Given the variable response of 

individual embryos to suboptimal culture, these analyses were performed in the same 

individual embryo.  To explore the connection between rates of development and genomic 

imprinting, we also examined expression of the cell cycle inhibitor, Cdkn1c, on the 

premise that biallelic Cdkn1c expression will lead to slower rates of embryo development.  

In addition, as slower rates of development may be linked with metabolic changes, we 

evaluated the expression of three markers of embryonic metabolism, sodium/potassium 

transporting ATPase 1a1 (Atp1a1) which is critical for blastocoel formation (Kidder and 

Watson, 2005), solute carrier 2a1 (Slc2a1/Glut1), a glucose transporter expressed 

throughout preimplantation development (Pantaleon and Kaye, 1998; Augustin et al., 

2001), and mitogen-activated protein kinase 14 (Mapk14/p38 alpha) which is a signaling 

molecule involved in embryo response to suboptimal environments (Natale et al., 2004; 

Paliga et al., 2005; Fong et al., 2007) and in trophoblast differentiation (Johnstone et al., 

2005; Winger et al., 2007).   

 This study demonstrates significant differences in cell number, embryo volume, 

imprinted methylation of H19 and Snrpn, imprinted expression of H19 and Cdkn1c, and 

expression of genes related to embryo metabolism between the four groups of embryos 

separated by rates of development in culture, and when compared to in vivo-derived 

embryos.  Overall, embryos that developed the fastest contained more cells and had the 

largest embryo volume. However, they also had increased loss of methylation at both the 
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H19 and Snrpn ICRs, and aberrant H19 imprinted expression.  Embryos in the slowest 

group that developed to the blastocyst stage demonstrated more normal levels of 

imprinted methylation at the H19 and Snrpn ICRs, and imprinted expression of H19. 

However, nearly 40% embryos in this group arrested prior to the blastocyst stage (data 

not shown).  Embryos with slow to moderate rates of development were most similar to in 

vivo-derived embryos, displaying cell numbers, embryo volume, H19 and Snrpn 

methylation, H19 imprinted expression, and Atp1a1 and Slc2a1 expression most similar 

to in vivo-derived embryos.  We conclude that rates of preimplantation development in 

vitro are correlated with genomic imprinting and embryo metabolism, and that embryos 

displaying slower rates of development are likely most suitable for embryo transfer. 

4.2 Materials and Methods

4.2.1 Embryo Collection

 Embryos were obtained from naturally-mated C57BL6(CAST7partial6) 

[B6(CAST7p6)] females crossed with C57BL6 (B6) males (Charles River, St Constant, 

Canada) as described (Market-Velker et al., 2010a; Market-Velker et al., 2010b). Briefly, 

B6(CAST7p6) females were checked for estrus and mated with B6 males. Pregnancy  was 

determined (vaginal plug) the morning following mating (0.5 days postcoitum; dpc). 

Embryos were flushed from isolated oviducts at  1.5 dpc to recover 2-cell stage embryos.  

In vivo control blastocysts were recovered from uteri on day 3.5 following natural 

matings. Experiments were performed in compliance with guidelines set by  the Canadian 
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Council for Animal Care, and the policies and procedures approved by the University  of 

Western Ontario Council on Animal Care.  

4.2.2 Embryo Culture

 Embryos were flushed at the 2-cell stage, washed twice and cultured in Whitten’s 

medium (made in-house) at a concentration 1 embryo per µL of medium in either 10, 15 

or 20 µL drops with filter-sterilized mineral oil overlay (Sigma).  Embryos in the “Fast” 

group were those containing 8 or more cells and were transferred to new culture drops, 

while embryos in the “Slow” group contained less than 8 cells and were transferred to 

separate culture drops.  On day 2 of culture, embryos were again separated at 3 PM  +/- 1 

hr.  Embryos in the “Fast/Fast” (FF) group had begun cavitation, while those in the “Fast/

Slow” (FS) group  had not.  Embryos in the “Slow/Fast” (SF) group had reached the 

compacted morula stage, while those in the “Slow/Slow” (SS) group had not yet 

compacted.  All embryo groups were again transferred to new pre-equilibrated culture 

drops.  Embryos were subjected to image analysis (below) then placed in individual tubes 

in approximately 1 µL culture medium at noon on day  3 (107 hours after mid-point of 

light:dark cycle), snap frozen on dry ice and stored at -80°C.  Culture was performed at 

least 10 times, and embryos were analyzed from multiples litters.

4.2.3 Imaging and Cell Counting
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 On day 3 of embryo culture prior to freezing, embryos were transferred to culture 

drops containing Hoechst 33342.  This dye was chosen as it binds in the minor groove of 

DNA and does not intercalate between the base pairs.  Prior to experimental analysis, we 

determined that Hoechst 33342 staining had no effect on downstream methylation 

analyses of embryonic DNA (data not shown).  Embryos were incubated in Hoechst 

33342 for 7-10 minutes, and transferred to fresh drops of Whitten’s medium for imaging.  

Images were obtained using Fluoview 1000 laser scanning confocal microscope 

(Olympus Corp), using the 20x objective (Olympus superapochromat 0.75), with a band 

pass of 425-475 nm for Hoescht. Z-stacks were taken for each embryo with a distance of 

4 µm between each slice.  Bright field images were also taken of each embryo to facilitate 

downstream cell counting.

 Cell counting was performed in duplicate from the top and from the bottom of 

each Z-stack using the Fluoview V10-ASW 2.1 Software.  Embryo volume was 

calculated using 2 measurements of embryo length (µm) taken in perpendicular planes 

using the Image Pro Analyzer 6.2. Software.  These lengths were averaged and then 

divided by 2 to generate an average radius for each embryo.  Volume of a sphere 

(V=4/3π·r3) was used to calculate embryo volumes.

4.2.4 Analysis of Imprinted Methylation and Expression

 Bisulfite mutagenesis and imprinted expression analysis was performed as 

described previously (Market-Velker et al., 2010a; Market-Velker et  al., 2010b), with 
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modifications to allow the concurrent analysis of imprinted methylation and expression.  

Briefly, stored embryos were quickly thawed on ice, and 10 µL of Dynabead Lysis Buffer 

was added to each tube.  This solution was transferred to pre-equilibrated oligo-dT 

Dynabeads (Invitrogen) and incubated for 5 minutes at room temperature with shaking.  

Supernatant was transferred back to the original embryo tubes for bisulfite mutagenesis as 

previously  described (Market-Velker et al., 2010a).  mRNA-Dynabead complexes were 

processed and a cDNA library was generated as previously described (Market-Velker et 

al., 2010b).  Analysis of imprinted expression of H19 and Snrpn was performed using the 

LightCycler Real Time PCR System (Roche Molecular Biochemicals) as previously 

described (Market-Velker et al., 2010b).

 Following bisulfite mutagenesis, nested PCR, cloning and sequencing was 

performed for H19 and Snrpn ICR as previously  described (Market-Velker et al., 2010b).  

Forty-50 clones per embryo were sequenced.  Each sequence was analyzed for location 

and number of converted and unconverted non-CpG associated cytosines to obtain 

conversion rates (number of converted non-CpG cytosines/total number of non-CpG 

cytosines) as well as total number and location of CpG associated cytosines.  Sequences 

with less than 85% conversion rates were not included.  Identical clones (identical 

location and number of unconverted CpG associated cytosines, and identical location and 

number of unconverted non-CpG associated cytosines) were included only  once.  

Polymorphisms present between B6 and CAST sequences at  each gene analyzed allowed 

discrimination between parental alleles.  Hypermethylation of a DNA strand was defined 

at >50% methylated CpGs on a given strand.
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4.2.5 Sex Determination in Individual Embryos

 The cDNA library generated for each embryo was used for the analysis of embryo 

sex.  Two PCR reactions were performed for each embryo.  The first, a nested PCR for 

the Sry gene, located on the Y chromosome, and second, amplification of Xist, a gene 

located on the X chromosome (Table 4.1).  Samples were visualized with gel 

electrophoresis on a 12% acrylamide gel.  The presence of an Sry and Xist amplicon 

indicated a male embryo, while amplification of Xist alone indicated a female embryo.  

Nested PCR for Sry was performed in duplicate.

4.2.6 Cdkn1c Imprinted Expression Analysis

 The analysis of imprinted Cdkn1c expression was performed using the cDNA 

library generated for each embryo.  PCR primers and parameters can be found in Table 

4.1.  Amplification was tested using SYBR green to allow determination of the range of 

cycles located in log-phase amplification.  PCR on subsequent embryos was performed to 

ensure that amplification was log-phase upon completion of the PCR program.  Following 

amplification embryos were digested with the TaqaI restriction enzyme to determine 
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Table 4.1: Primers and PCR Protocols
Gene Primers PCR Program

Xist Forward:
5’ - TTG CGG GAT TCG CCT TGAT T - 3’
Reverse:
5’ - TGA GCA GCC CTT AAA GCC AC - 3’

95°C 2 min
95°C 15 sec
60°C 10 sec
72°C 20 sec
45 cycles
72°C 5 min

Sry First round:
Forward:
5’ - GTG TGG TCC CGT GGT GAG AG - 3’
Reverse:
5’ - TCC AGT CTT GCC TGT ATG TGA TG - 3’
Second Round:
Forward:
5’ - CCC AGC AGA ATC CCA GCA T - 3’
Reverse:
5’ - CTG TGA CAC TTT AGC CCT CCG - 3’

First round:
94°C 2 min
94°C 30 sec
60°C 30 sec
72°C 40 sec
45 cycles
72°C 5 min
Second round:
95°C 2 min
94°C 20 sec
62°C 20 sec
72°C 30 sec
40 cycles
72°C 5 min

Cdkn1c Forward: 
5’ - GCC AAT GCG AAC GAC TTC - 3’
Reverse:
5’ - TAC ACC TTG GGA CCA GCG TAC TCC - 3’

94°C 2 min
94°C 30 sec
58°C 30 sec
72°C 45 sec
40 cycles
72°C 5 min

Atp1a1 Forward: 
5’ – TTC AGC CCA GAA GGA CGA CAT G – 3’
Reverse: 
5’ – AGG GAA GCC GTA GTA TCC GCC CA – 3’

2nd Strand Synthesis:
94°C 2 min
94 °C 30 sec
56 °C/57 °C (Slc2a1) 30 
sec

72 °C 30 sec
94°C 10 min

qRT-PCR:
95°C 4 min
94°C 30 sec
56°C / 57°C (Slc2a1) 30 
sec
72°C 30 sec
45 cycles
94°C 2 min
30°C 2 min
Melting curve from 55 – 
95 °C, read every 1°C.

Slc2a1 Forward:
5’ – CCC AGA AGG TTA TTG AGG AGT T – 3’
Reverse:
5’ – ACG CTT TGG TCT CTC TCC G – 3’

2nd Strand Synthesis:
94°C 2 min
94 °C 30 sec
56 °C/57 °C (Slc2a1) 30 
sec

72 °C 30 sec
94°C 10 min

qRT-PCR:
95°C 4 min
94°C 30 sec
56°C / 57°C (Slc2a1) 30 
sec
72°C 30 sec
45 cycles
94°C 2 min
30°C 2 min
Melting curve from 55 – 
95 °C, read every 1°C.

Mapk14 Forward:
5 ‘- AGG CCA TGG TGC ATG TGT GT – 3’
Reverse:
5’ – AGT AGC TGG AGG AGG AGG AG – 3’

2nd Strand Synthesis:
94°C 2 min
94 °C 30 sec
56 °C/57 °C (Slc2a1) 30 
sec

72 °C 30 sec
94°C 10 min

qRT-PCR:
95°C 4 min
94°C 30 sec
56°C / 57°C (Slc2a1) 30 
sec
72°C 30 sec
45 cycles
94°C 2 min
30°C 2 min
Melting curve from 55 – 
95 °C, read every 1°C.

Mrpl1 Forward: 
5’ – TTG GAT ATG CCA AGT GAC CA – 3’
Reverse: 
5’ – GCT TCT GCC GTT TGA GTT TC – 3’

2nd Strand Synthesis:
94°C 2 min
94 °C 30 sec
56 °C/57 °C (Slc2a1) 30 
sec

72 °C 30 sec
94°C 10 min

qRT-PCR:
95°C 4 min
94°C 30 sec
56°C / 57°C (Slc2a1) 30 
sec
72°C 30 sec
45 cycles
94°C 2 min
30°C 2 min
Melting curve from 55 – 
95 °C, read every 1°C.
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allelic identity; only the B6 allele is cleaved.  Densitometry was performed using the 

Opticon Monitor Software (Biorad).  

4.2.7 Expression Analysis of Atp1a1, Slc2a1 and Mapk14

 The evaluation of Atp1a1, Slc2a1 and Mapk14 expression was performed using 

the cDNA library generated for each embryo, with mitochondrial ribosomal protein L1 

(Mrpl1) as the internal control.  Primers and PCR parameters can be found in Table 4.1.  

Second strand synthesis was performed using the forward primers of both Mrpl1 and the 

gene of interest, and amplification products were then split into separate reactions for RT-

PCR for Mrpl1 and the gene of interest.  Amplification was performed on biological 

replicates with SYBR green using the BioRad Opticon Monitor Real Time PCR Machine 

and Software. Analysis of RT-PCR was performed using the ΔΔCt method, with the 

GeneEx (BioRad) software.  

4.2.8 Statistical Analysis

 To compare between the four culture groups, and between cultured and in vivo-

derived embryos, a nested two-factor ANOVA was performed using R (The R Foundation 

for Statistical Computing (Team, 2011)).  The five groups of embryos were compared 

with respect to embryo volume; cell number; embryo sex; H19 and Snrpn methylation 

levels; H19, Snrpn and Cdkn1c imprinted expression; and Atp1a1, Slc2a1 and Mapk14 

expression using the “aov” (analysis of variance) command.  Expression of the three 
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metabolic marker genes was normalized for Mrpl1 expression, and analyzed both before 

and after normalization for cell numbers.  This was done to obtain additional information 

about whether the change in expression was attributed to an overall change in expression, 

or a change in levels of expression per cell, respectively.  The effect size of each 

comparison that generated a significant p-value was estimated using the “lm” (linear 

model) function, setting the intercept of the model at zero.  This was used to determine 

which groups were most similar to in vivo-derived embryos.  A p-value less than 0.05 was 

taken to be statistically significant.  

4.3 Results

4.3.1 Effects of Embryo Culture on Blastocyst Cell Number and Volume

 The aim of our study  was to determine whether any correlation existed between 

rates of preimplantation embryo development and loss of genomic imprinting.  To best 

evaluate these effects, experiments were done at the individual embryo level, as we 

previously  reported significant inter-embryo variability  in response to ARTs (Market-

Velker et al., 2010a; Market-Velker et al., 2010b) and because this is the level of 

importance in the human ART clinic.  As such, we have developed a novel method to 

evaluate both imprinted methylation and expression of multiple loci in the same 

individual blastocyst, as well as obtain data about cell numbers, embryo volume, and 

embryo sex.  This is the first study of its kind to evaluate multiple parameters to correlate 

morphological changes with epigenetic changes at the individual embryo level.
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 On the premise that individual embryos develop at different rates in culture, 

embryos were separated into four groups based on their stage of development at two pre-

determined time points during the culture time course (Figure 4.1A).  These time points 

were chosen based on the ability to reproducibly distinguish between “Fast” and “Slow” 

at each separation.  Whitten’s culture medium was used as we determined from previous 

studies that culture in Whitten’s medium produced the most significant perturbations of 

genomic imprinting (Market-Velker et al., 2010b), and it allowed us to obtain sufficient 

embryo numbers in each group for analysis.  Multiple culture time courses were 

completed and a total of 68 embryos were collected for analysis, 24 FF, 10 FS, 19 SF, and 

15 SS.  Of these embryos, 47 (16 FF, 9 FS, 10 SF and 12 SS) were analyzed for each of 

the following parameters: cell counts, embryo volume, embryo sex, imprinted 

methylation and expression of H19 and Snrpn, and imprinted expression of Cdkn1c 

(Figure 4.1B).  For the SS group nearly 40% of embryos arrested and did not reach the 

blastocyst stage (unpublished data). For all groups only embryos that developed to the 

blastocyst stage were analyzed.  

 To determine whether differences existed in the total cell numbers present in each 

of the four culture groups, embryos were stained with Hoechst 33342, Z-stacks were 

taken using confocal microscopy, and cells were counted (Figure 4.1B, 4.2A).  We 

observed that on average the FF group contained 74.3 cells, the FS group 46.8 cells, the 

SF group 33.9 cells, the SS group 25.0, and the in vivo-derived group 28.3 cells, which 

was similar to previous studies (Bowman and McLaren, 1970; Smith and McLaren, 

1977).  To evaluate whether differences in cell number were statistically different between
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Figure 4.1: Embryo Separation and Analysis

(A) Graphical representation of the embryo separation scheme.  Two-cell embryos were 

collected, cultured for 24 hours, at  which time the first separation took place.  “Fast” 

embryos were those that displayed 8 or more cells, while “Slow” embryos were those 

containing less than 8 cells.  After an additional 24 hours, the second separation was 

performed.  From the original “Fast” group, those that  showed a blastocyst cavity  were 

classified as “Fast” in the second separation, while those with no evidence of a blastocyst 

cavity were classified as “Slow”.  From the original “Slow” group, compacted morulae 

were classified as “Fast”, and those that were not  compacted were classified as “Slow”.  

After an additional 24 hours, embryos were individually frozen at -80°C.  (B) Individual 

blastocyst assay for multiple data sets.  Top left: Merge of bright field and Hoechst 33342 

staining used to count cell numbers.  Blastocyst  FF23 contained 48 cells.  Top right: Sry 

expression analysis used for embryo sex determination.  L, ladder; F, Female control; M, 

Male control; FF23, blastocyst FF23; -ve, negative control.  Blastocyst FF23 was a male 

embryo.  Bottom left: Paternal H19 methylation analysis. Filled circles represent 

methylated CpGs dinucleotides while unfilled circles represent unmethylated CpGs. Each 

row represents one DNA strand. Blastocyst FF23 displayed 70% hypermethylation at the 

H19 paternal allele.  Bottom right: LightCycler H19 imprinted expression analysis. 

Blastocyst FF23 displayed biallelic expression of H19, with 81% and 19% expression 

from the maternal and paternal alleles, respectively.
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Figure 4.2: Cell Numbers, Embryo Volume and Embryo Sex

Graphical representation of cell numbers and embryo volumes of the four groups of 

cultured embryos and in vivo-derived embryos.  (A) Left: Cell numbers separated by 

embryo group.  Each diamond represents one embryo, and black bars indicate mean cell 

number of each group.  Right: Mean cell numbers in “Fast” and “Slow” groups based on 

the first separation. * the “Fast” group  had significantly more cells than “Slow” group  and 

the in vivo-derived  group. (B) Left: Embryo volumes separated by embryo group.  Black 

bars indicate mean embryo volume of each group. Right: Mean embryo volume in “Fast” 

and “Slow” groups based on the first separation. * “Fast” embryos had significantly 

larger volumes than the “Slow” embryos and in vivo-derived embryos. ** “Slow” 

embryos displayed significantly fewer cells than in vivo-derived  embryos.  (C) Embryos 

separated by sex. White bars, male embryos; black bars, female embryos. Error bars 

represent standard errors of the mean.
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the “Fast” (FF and FS) and “Slow” (SF and SS) groups at the first separation, and 

between groups (FF versus FS, and SF versus SS) in the second separation, we used a 

nested two-factor ANOVA.  With respect to the first  separation, the number of cells 

present in the “Fast” group  was significantly  greater than those in the “Slow” group.  In 

addition, a statistically significant difference was observed at  the second separation 

(Figure 4.2A).  Therefore, not only were the “Fast” groups morphologically more 

advanced than the “Slow” groups as determined by  embryo stage at the time of 

separation, but the cell cycle progressed more quickly in embryos in the “Fast” group 

compared to those in the “Slow” group as determined by cell numbers.  In vivo-derived 

embryos contained significantly  fewer cells than the “Fast” group, but failed to show a 

difference when compared to the “Slow” group.  Therefore, from both statistical analysis 

and graphical representation (Figure 4.2A), we observed that the embryos clustered into 

three distinct groups.  The FF group contained the most cells.  The FS group contained 

fewer than the FF group.  The SF, SS and in vivo-derived groups contained fewer cells 

than the FS group, but were indistinguishable from one another.  Thus, the SF and SS 

groups most closely resembled the in vivo-derived group.

 The total volume of each embryo was also calculated using measurements of 

length in two dimensions, determining the average of these lengths and using the formula 

for the volume of a sphere for calculations.  Average volumes for the FF group was 

6.7X105 µm3, the FS group 3.8X105 µm3, the SF group 3.3X105 µm3, the SS group 

3.5X105 µm3, and in vivo-derived group 4.9X105 µm3 (Figure 4.2B).  As before, a nested 

two-factor ANOVA was performed to test for differences between embryos in the first and 
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second separations.  As with cell numbers, both groups at the first (FF and FS versus SF 

and SS) and second (FF versus FS, SF versus SS) separations displayed a significant 

difference in cell volume.  In vivo-derived embryos displayed significantly smaller total 

embryo volume than the FF group, but a significantly larger embryo volume than the 

other three groups (Figure 4.2B).  From the statistical analysis, the embryo volumes 

clustered into three separate groups.  The FF embryos displayed the largest embryo 

volume, followed by in vivo-derived embryos, with the three remaining groups displaying 

smaller embryo volumes (FS, SF, SS were not significantly different from one another).

4.3.2 Effects of Embryo Culture on Embryo Sex Ratios

 It has been suggested that male embryos develop faster than their female 

counterparts.  Bovine (Avery et al., 1992) and ovine (Bernardi and Delouis, 1996) male 

embryos reach the blastocyst stage earlier than their female counterparts, with variations 

in the embryo culture type, and protocol affecting sex ratios (Pegoraro et al., 1998; 

Gutierrez-Adan et al., 2001; Iwata et al., 2008). In the mouse, the data are more 

contradictory.  While some studies reported male to female sex ratio differences (Valdivia 

et al., 1993; Peippo and Bredbacka, 1995), another study  reported no difference in 

embryo sex ratios (Byrne et al., 2006).  For human embryos, some studies suggested that 

male embryos contain a greater number of cells than their female counterparts after IVF 

(Ray et al., 1995) while others report that this increase in cell number occurs with ICSI 

and not with IVF alone (Dumoulin et  al., 2005), or vice versa (Dean et al., 2010).  

Moreover, an increase in the number of male offspring was noted following blastocyst 
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stage transfer, (Milki et al., 2003; Luna et  al., 2007; Chang et al., 2009), while other 

groups have shown no sex differences in rates of development (Kausche et al., 2001; 

Richter et al., 2006; Csokmay et al., 2009; Weston et al., 2009).  In light  of the above 

studies, the possibility  existed that rates of development were unrelated to adverse affects 

of culture but  instead were the result  of embryo sex.  To address this potential bias, a 

nested PCR was performed for Sry, which is only present in male embryos, while Xist, 

located on the X chromosome, was used as a PCR control and was detected in both male 

and female embryos (Figure 4.1B).  While we did observe more male embryos in the 

overall FF group (10 male, 6 female), and more female embryos in the SS group (6 males, 

8 females), this result was not statistically significant (Figure 4.2C).  Thus, different 

developmental rates were unrelated to embryo sex in our study.  Furthermore, no 

correlation was found between embryo sex and the other parameters examined in this 

study.

4.3.3 Effects of Embryo Culture on H19 and Snrpn Imprinting 

 To test our hypothesis that  slower developing embryos will possess greater 

imprinting defects, we evaluated the ability  of embryos to maintain genomic imprinting 

by examining two key loci, H19 and Snrpn, in the four groups of cultured embryos.  From 

our previous study (Market-Velker et al., 2010a), we showed that imprinted 

hypermethylation on the H19 paternal ICR in in vivo-derived embryos was around 80%.  

Embryos with hypermethylation levels below 80% were therefore considered to exhibit 

“loss of methylation”.  At least five embryos from each group were analyzed.  The FF
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Figure 4.3: Imprinted Methylation of H19 in FF and FS Groups

Imprinted methylation analysis of the paternal H19 allele in “Fast/Fast” and “Fast/Slow” 

groups.  Each group of circles represents one embryo, with the embryo name indicated in 

the top  left.  Percent hypermethylation indicated in the top  middle.  Each row represents 

one DNA strand.  Filled circles represent methylated CpGs dinucleotides while unfilled 

circles represent unmethylated CpGs.
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group displayed a loss of methylation in 3 of 5 embryos (hypermethylation levels 100%, 

90%, 67%, 36% and 33%), with an average methylation of 65%, while the FS group 

displayed loss of methylation at only 2 of 5 embryos (hypermethylation levels 93%, 81%, 

80%, 70% and 53%) with an average methylation of 75% (Figure 4.3).  Two of six 

embryos in the SF group displayed loss of methylation (100%, 94%, 91%, 88%, 75%, and 

75%), and 2 of 5 embryos in the SS group displayed loss of methylation (100%, 100%, 

83%, 78%, and 75%) with an average methylation for both the SF and SS group of 87% 

(Figure 4.4).  Therefore, the overall “Fast” groups displayed an average methylation of 

71%, while the average of the “Slow” groups was much higher at 87%, a statistically 

significant difference (p < 0.05) (Figure 4.5).  In addition, while the “Fast” embryos 

displayed lower levels of methylation than in vivo-derived controls, no difference was 

observed between the “Slow” group and in vivo-derived embryos.  This indicates that the 

slower developing embryos were better able to maintain H19 imprinted methylation than 

their fast developing counterparts.

 A similar result was also observed at the Snrpn ICR.  From our previous study 

(Market-Velker et al., 2010a), we determined the threshold of methylation on the Snrpn 

maternal ICR to be 70% hypermethylation.  The FF group displayed loss of methylation 

in 5 of 6 embryos (75%, 63%, 47%, 45%, 42%, and 36%) with an average methylation of 

51%, and the FS group displayed a loss of methylation in 3 of 5 embryos (80%, 75%, 

67%, 47%, and 43%) with an average methylation of 62% (Figure 4.6).  The SF group 

displayed loss of methylation in 0 of the 5 embryos tested (100%, 90%, 88%, 78%, and 

70%) with an average methylation of 85%, while the SS group displayed a loss of 
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Figure 4.4: Imprinted Methylation of H19 in SF and SS Groups

Imprinted methylation analysis of the paternal H19 allele in “Slow/Fast” and “Slow/

Slow” groups. See Figure 4.3 for details.
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Figure 4.5:  Graphical Representation of Levels of H19 and Snrpn Hypermethylation  

Top: Paternal H19 hypermethylation levels.  Bottom: Maternal Snrpn hypermethylation 

levels.  Each diamond represents one embryo, and black bars represent mean 

hypermethylation levels in each group.
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Figure 4.6:  Imprinted Methylation of Snrpn in FF and FS Groups

Imprinted methylation of the maternal Snrpn allele in “Fast/Fast” and “Fast/Slow” 

groups. See Figure 4.3 for details.
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Figure 4.7:  Imprinted Methylation of Snrpn in SF and SS Groups

Imprinted methylation of the maternal Snrpn allele in “Slow/Fast” and “Slow/Slow” 

groups.  See Figure 4.3 for details.
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methylation at 3 of the 5 embryos (100%, 100%, 65%, 62%, and 50%) with an average 

methylation of 75% (Figure 4.7). Overall, “Slow” embryos (SF and SS) displayed higher 

levels of methylation than the “Fast” group  (FF and FS) (p < 0.05).  No difference was 

observed at the second separation.  Thus, the “Slow” group was best able to maintain 

imprinted methylation.

 Next, we analyzed H19 and Snrpn imprinted expression in the in vitro cultured 

and in vivo-derived embryos.  From our previous study, we have shown that in our mouse 

model H19 is expressed from only a small number of in vivo-derived blastocysts 

(approximately 1 in 9) (Market-Velker et al, 2010b).  For embryos displaying H19 

expression, this expression was solely  from the maternal allele.  Analysis of imprinted 

H19 expression revealed that 12 out of 16 embryos exhibited H19 expression in the FF 

group with only 4 of these embryos maintaining monoallelic H19 expression from the 

maternal CAST allele (Figure 4.8).  In addition, a significant number of embryos in the 

FF group displayed a “switched” expression pattern, where monoallelic expression 

occurred erroneously from the paternal allele.  This was improved in the FS group, where 

7 of 9 embryos exhibited H19 expression with 5 maintaining imprinted expression, and 

further improved in the SF group, where all embryos displaying H19 expression (6 of 10) 

did so exclusively from the maternal allele.  H19 expression in the SS group was most 

similar to in vivo-derived controls, with 1 of 12 embryos displaying H19 expression, with 

the sole embryo expressing H19 exclusively  from the maternal CAST allele.  Overall, 

“Fast” embryos from the first separation expressed H19 in significantly more embryos 

than the “Slow” group.  No difference was observed at the second separation for FF 
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Figure 4.8: H19, Snrpn and Cdkn1c Imprinted Expression 

Imprinted Expression in the four groups of cultured embryos.  Red bars indicate percent 

expression from the maternal allele, and blue bars indicate percent expression from the 

paternal allele.  Top: H19 imprinted expression analysis. Middle: Cdkn1c imprinted 

expression analysis. Embryo names are indicated on the X-axis.

Bottom: Developmental Cdkn1c imprinted expression in in vivo-derived embryos. 

Embryo stage indicated on the X-axis. 4-cell, n=2, 12 pooled embryos each; 8-cell, n=2, 6 

pooled embryos each; Early M, early morula, n=2, 3 pooled embryos each; Late M, late 

morula, n=2, 1 embryo each; Mid-BL, mid blastocyst; n=7, 1 embryo each; Late BL, late 

blastocyst; n=3, 1 embryo each.
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versus FS groups.  However, within the slow group, more embryos in the SF group 

expressed H19 than the SS group.  Furthermore, as with imprinted H19 methylation, the 

overall “Fast” embryos showed a significantly greater loss of imprinted H19 expression 

than “Slow” and in vivo-derived embryos. By  comparison, “Slow” embryos were more 

similar to in vivo-derived controls at maintaining imprinted H19 expression.  FF embryos 

showed significantly greater loss of imprinted H19 expression compared with the other 

groups.  Similar to previous experiments (Mann et al., 2004; Market-Velker et al., 2010b), 

no effect on Snrpn imprinted expression was observed; all embryos displayed paternal-

specific Snrpn expression (data not shown).

4.3.4 Effects of Embryo Culture on Cdkn1c Imprinted Expression

 We predicted that embryos with biallelic Cdkn1c expression would exhibit slower 

rates of preimplantation development.  To assess this, imprinted Cdkn1c expression was 

evaluated in the four groups of cultured embryos (Figure 4.8), as well as in in vivo-

derived controls.  All embryos in the FF group showed monoallelic expression, except 

one embryo, which lacked Cdkn1c expression.  Two embryos in the FS group expressed 

Cdkn1c from both the parental alleles, while no embryos exhibited biallelic expression in 

the SF group.  Two embryos in the SS group displayed biallelic expression, and three 

embryos showed Cdkn1c expression exclusively  from the normally-silent paternal allele. 

Overall, no significant difference in imprinted expression was observed at the first 

separation between “Fast” and “Slow” groups.  However, a significantly  greater number 

of “Slow” embryos from the second separation, FS and SS, displayed biallelic Cdkn1c 
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expression compared with the “Fast” FF and SF groups, which were not statistically 

different from in vivo-derived controls.  This result  appeared contradictory  to the H19 

imprinted expression pattern, leading us to question whether the observed data were 

related to developmental regulation of imprinted Cdkn1c expression rather than 

misregulation of Cdkn1c imprinting.  As the time course of Cdkn1c imprinted expression 

had not been fully elucidated in preimplantation embryo stages, we evaluated imprinted 

Cdkn1c expression in pools of 4-cell, 8-cell and early morula, as well as individual late 

morula, and blastocyst stage embryos.  Over this developmental time course, we observed 

an overall decrease in B6 expression, with 4- and 8-cell embryos displaying nearly equal 

levels of maternal and paternal expression, and late blastocysts displaying expression 

exclusively  from the maternal allele.  This data indicate that cultured embryos in the FS 

and SS groups displaying biallelic Cdkn1c expression were developmentally delayed 

compared with embryos in the FF and SF groups. 

4.3.5 Effects of Embryo Culture on Metabolic Marker Expression

 According to Leese’s “quiet embryo” theory, embryos more affected by 

suboptimal environment will compensate by increasing their metabolic activity  (Leese, 

2002).  We hypothesized that embryos that develop faster and display a more frequent 

loss of imprinting will also show an increase in metabolic activity.  To evaluate this 

hypothesis, we examined expression of three genes involved in early embryo metabolism: 

Atp1a1 encoding the alpha subunit of the Na+/K+ ATPase, Slc2a1 encoding the solute 

carrier family 2, and Mapk14 encoding p38 alpha in 11 FF, 9 FS, 10 SF and 11 SS 
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Figure 4.9: Expression of Genes Involved in Embryo Metabolism

Relative expression of genes involved in embryo metabolism in cultured and in vivo-

derived embryos.  (A): Left panel:  Relative Atp1a1 expression in the four groups of 

cultured embryos and in vivo-derived embryos.  Embryo group  is indicated on the X-axis, 

each diamond represents one embryo, and black bars represent the mean relative 

expression in each group.  Right panel: Mean relative Atp1a1 expression in “Fast” and 

“Slow” groups based on the first separation. * “Fast” embryos displayed significantly 

higher Atp1a1 expression levels than “Slow” embryos.   (B): Left panel: Relative Slc2a1 

expression corrected for cell numbers in the four groups of cultured embryos and in vivo-

derived embryos.  Black bars represent  the mean relative expression corrected for cell 

numbers in each group.  Right panel: Mean relative Slc2a1 expression, corrected for cell 

numbers, in “Fast” and “Slow” groups based on the first separation. * “Fast” embryos 

displayed significantly lower Slc2a1 expression levels than in vivo-derived and “Slow” 

embryos, and ** “Slow” embryos displayed significantly  lower Slc2a1 expression levels 

than in vivo-derived embryos. (C) Left panel: Relative Mapk14 expression in the four 

groups of cultured embryos and in vivo-derived embryos.  Black bars represent the mean 

relative Mapl14 expression in each group.  Right panel: Mean relative Mapl14 expression 

in “Fast” and “Slow” groups based on the first  separation.  No difference in mean relative 

Mapl14 expression was observed between in vivo-derived, “Fast” and “Slow” embryos. 

Error bars represent standard errors of the mean.
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blastocysts, as well as 5 in vivo-derived controls. Atp1a1 expression was significantly 

higher in the “Fast” group than the “Slow” group at  the first  separation (Figure 4.9), while 

no significant difference was observed in mean levels of expression at the second 

separation, between either the FF and FS, or SF and SS groups.  Moreover, a number of 

embryos within the FF group displayed very high expression, while a number of embryos 

within the SS group exhibited very low expression.  Differences of large magnitudes in 

the response of individual embryos to the culture environment, in addition to an overall 

shift in the mean population response supports the idea that each embryo responds 

differently to environmental insult, and that “Fast” embryos are more likely  to show 

abnormally high levels of expression than their “Slow” or in vivo counterparts. 

Comparing in vivo-derived embryos to cultured embryos revealed three distinct 

groups. The FF group displayed significantly higher Atp1a1 expression and the SS group 

significantly lower expression then the FS, SF and in vivo-derived embryos which 

displayed expression levels between the FF and SS groups.  The FS, SF and in vivo-

derived embryos were indistinguishable from one another.  Normalization to cell numbers 

did not reveal any significant differences in expression between groups. 

 Atp1a1 expression was also correlated with H19 imprinted expression.  As stated 

above, in vivo-derived embryos display one of two H19 expression patterns, maternal or 

no expression.  We compared Atp1a1 expression levels between embryos displaying an in 

vivo pattern of H19 expression (maternal CAST or no expression; 32 embryos) to those 

displaying an abnormal pattern (biallelic or abnormal B6 paternal expression; 7 embryos).  

Significantly, embryos with abnormal H19 imprinted expression possessed higher Atp1a1 
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expression levels (2.7 +/-0.4) than those displaying an in vivo pattern of H19 expression 

(1.6 +/-0.2). Thus, we observed a relationship between Atp1a1 expression levels and 

maintenance of H19 imprinted expression. 

 Slc2a1 and Mapk14 expression were also evaluated in these same embryos.  The 

“Slow” group displayed significantly higher levels of Slc2a1 expression than the “Fast” 

group at the first separation (Figure 4.9), following normalization for cell numbers.  No 

difference was observed at the second separation.  In vivo-derived embryos displayed 

significantly higher expression levels than all four cultured groups, both before and after 

correction for cell number.  Overall, the Slc2a1 expression analysis revealed three distinct 

groups, the FF group with the lowest expression, the FS, SF and SS groups with mid-level 

expression that was indistinguishable from one another, and in vivo-derived embryos with 

the highest Slc2a1 expression.  Strikingly, a difference in the dispersion of the samples in 

the five groups is noted, with a decrease in sample variability from in vivo to SS group, 

and further on to FF group, suggestive of a “dose” response.  No relationship was 

observed between Slc2a1 expression and H19 imprinted expression.  For Mapk14, while 

expression levels were higher in the FF compared with in the other culture groups and in 

vivo controls, this difference was not statistically significant.  As well, no difference 

between groups after cell number correction, and no relationship to H19 imprinted 

expression was observed.

4.4 Discussion
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  In this study, we set out to determine whether embryos with different 

developmental rates differed in their ability  to maintain genomic imprinting, with slower 

rates of embryonic development correlating with loss of imprinting.  Notably, we 

identified a subset of in vitro cultured embryos that, according to all parameters evaluated 

in this study, are very similar to in vivo-derived embryos (Figure 4.10).  However, 

contrary to our expectation, we observed that embryos with faster developmental rates 

possessed greater cell numbers and embryo volume, as well as greater perturbations in 

genomic imprinting and metabolic marker expression.  While the slowest developing 

embryos displayed lower cell numbers, smaller embryo volumes, and were better able to 

maintain genomic imprinting, a proportion of these embryos were developmentally 

delayed as determined by Cdkn1c imprinted expression and the presence of  more 

arrested embryos prior to the blastocyst stage in this group.  Instead, embryos with slow 

to moderate development rates (SF embryo group) were most similar to in vivo-derived 

embryos, displaying similar cell numbers, embryo volume, H19 and Snrpn methylation, 

H19 imprinted expression, and Atp1a1 and Slc2a1 expression. 

4.4.1 Relationship between Development Rates and Genomic Imprinting

In this study, we evaluated the differences in the maintenance of genomic 

imprinting at two imprinted loci, H19 and Snrpn, which are involved in the development 

of the imprinting disorders AS and BWS, and correlated this loss of imprinting with rates 

of preimplantation embryo development.  Our data suggests that embryos that develop 

faster do so at the expense of maintaining epigenetic regulation.  It is currently unclear 
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how embryo culture can lead to alterations in imprinting.  One possibility is that culture 

conditions interfere with epigenetic maintenance mechanisms and this in turn deregulates 

the embryo’s growth kinetics.  Interestingly, embryos with only maternal genomes 

(parthenotes) or with only paternal genomes (androgenotes) display developmental 

defects that have been attributed to alterations in cell proliferation and differentiation 

rates (reviewed in Mann, 2005).  We observed that faster developing embryos were more 

advanced morphologically, but had a shorter cell division cycle given the greater number 

of cells.  On the other hand, slow embryos maintained rates of cell division similar to in 

vivo-derived embryos, given similar cell numbers.  Given a possible relationship between 

genomic imprinting, developmental rates and cell cycle progression, we investigated the 

imprinted expression of Cdkn1c, a cell-cycle regulator that acts to inhibit cell cycle 

progression through its interaction with cyclin-CDK complexes (Lee et al., 1995).  We 

demonstrated that Cdkn1c expression is biallelic in early cleavage stages, and becomes 

maternal-specific as preimplantation development progresses.  Interestingly, we observed 

more embryos with biallelic expression in the “Slow” groups (FS and SS) at the second 

separation than those in the “Fast” groups (FF and SF), suggesting that Cdkn1c may play 

a role in regulating progression through the latter phase of preimplantation development. 

Lower levels of expression, in the form of monoallelic expression, may result in less cell 

cycle inhibition and in turn, increase the rate of cell division.  Alternatively, biallelic 

expression may result in an increase in cell cycle inhibition, resulting in increased time 

required to progress through the cell cycle.
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4.4.2 Relationship Between Development Rates and Embryo Volume

During preimplantation development, the total volume of the embryo remains 

relatively constant, while the number of cells increase as development proceeds (Aiken et 

al., 2004).  With respect to embryo volume, the effect size of the difference between FF 

and in vivo-derived embryos was larger than that between in vivo controls and the other 

three groups, again indicating that slower embryos were more similar to in vivo-derived 

controls.  This raises the question as to what mechanisms could lead to a difference in 

embryo volume for the FF group.  Two possible explanations for the differences observed 

in embryo volume between cultured and in vivo-derived controls are an increase in 

overall cell volume, or an increase in volume of the blastocoel cavity.  An increase in cell 

volume may be due to increased transcription, translation and protein processing 

necessary to support higher metabolism in response to cell stress as well as changes in the 

cell’s ability to regulate intracellular osmotic pressure (Baltz and Tartia, 2010). One 

mediator of environmental stress is MAPK14, which regulates embryonic adaptations to 

culture such as variations in culture medium osmolarity (Bradham and McClay, 2006; 

Fong et al., 2007; Bell et al., 2009).  Treatment with MAPK14 inhibitors has 

demonstrated a requirement for MAPK14 in early cleavage division embryos (Natale et 

al., 2004).  As larger FF embryos may respond to environmental stress via MAPK14 with 

the end result of producing larger cells, we investigated Mapk14 expression in the five 

embryo groups.  Our analysis showed no difference in Mapk14 expression between the 

four culture groups and in vivo controls, indicating that variations in cell volume do not 

likely account for overall variations in blastocyst volume that we observed.  MAPK14 
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levels and its posttranslationally-modified forms need to be investigated to confirm this 

observation. 

Alternatively, larger FF embryo volumes may be a result of larger cavity volumes. 

Trophectoderm (TE) cells produce a blastocoel cavity through the use of the Na+/K+ 

ATPase, which generates an ionic gradient across the trophectoderm, facilitating 

movement of water from the outside environment to the inside of the embryo (Watson 

and Barcroft, 2001; Barcroft et al., 2003).  Embryos that contain more TE cells will have 

greater levels of the Na+/K+ ATPase, resulting in a greater influx of water into the 

blastocoel cavity.  This would result in faster production of a larger cavity and therefore a 

more morphologically advanced embryo.  Our results favour the latter hypothesis, where 

an increase in TE cells generates a larger blastocoel cavity via increased Na+/K+ ATPase.  

Examination of Atp1a1 expression, the alpha subunit of the Na+/K+ ATPase, revealed 

higher levels of expression in the “Fast” group when compared to the “Slow” group.  In 

addition, as predicted by the above model, this increase in Atp1a1 expression was a 

function of cell number, as no difference in expression was observed when corrected for 

cell number.  Interestingly, we also observed that increased Atp1a1 expression levels 

correlated with loss of H19 imprinted expression.  Thus, this provides a link between 

genomic imprinting and developmental rates.

4.4.3 Relationship between Development Rates and Embryo Metabolism

 Changes in Atp1a1 expression in the faster developing embryos suggest that the 

metabolism of these embryos is altered compared to in vivo-derived controls.  To further 
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investigate this, we examined Slc2a1 expression.  SLC2A1 is one of the primary glucose 

transporters in the preimplantation embryo.  In early cleavage division embryos, SLC2A1 

is primarily localized to the nucleoli and nuclear membranes.  Post-compaction, Slc2a1 

expression increases dramatically  (Morita et al., 1994; Uechi et al., 1997) and SLC2A1 

translocates to the basolateral membrane of TE cells and the plasma membrane of ICM 

cells (Pantaleon et al., 2001), permitting shuttling of glucose from the blastocoel cavity to 

ICM cells.  This differential localization of SLC2A1 coincides with the switch of energy 

preferences in the developing embryo, from pre-compaction utilization of pyruvate to 

post-compaction utilization of glucose.  Before the switch, a transient pulse of glucose is 

required.  A complete absence of glucose during the early stages of preimplantation 

development results in delay  or impaired development to the blastocyst  stage (Martin and 

Leese, 1995; Pantaleon et al., 2008).  Importantly, multiple groups have shown that 

Slc2a1 mRNA expression and protein levels are significantly higher in in vivo-derived 

compared to in vitro cultured embryos (Morita et al., 1994; Uechi et al., 1997; Leppens-

Luisier et al., 2001; Balasubramanian et al., 2007).  In our study, we also found much 

higher levels of Slc2a1 expression in in vivo-derived compared to cultured embryos.  

Interestingly, “Slow” embryos expressed Slc2a1 at significantly  higher levels than their 

“Fast” counterparts when corrected for cell number, again demonstrating that the “Slow” 

group is more similar to controls.  No significant difference was observed at the second 

separation. 

As both Slc2a1 mRNA and protein levels increase at compaction in response to 

the increased need for glucose utilization, we hypothesize that the “Fast” embryos are 
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unable to adequately upregulate Slc2a1, while the “Slow” embryos respond appropriately 

and have levels of Slc2a1 more similar to in vivo-derived embryos.  In the “Fast” 

embryos, a lack of appropriate increase in Slc2a1 expression would result in decreased 

availability of glucose.  To maintain their intrinsic rates of development, and support 

blastocyst formation as well as all other cellular activities, these embryos would be 

required to switch their metabolism to utilize alternate means of ATP generation such as 

amino acid catabolism (for glugoneogenesis) and beta oxidation of fatty acids (Sturmey et 

al., 2009b).  Interestingly, differential uptake of glucogenic and non-glucogenic amino 

acids has been noted between developmentally competent and incompetent embryos 

cultured in vitro (Houghton et al., 2002; Stokes et al., 2007; Lehninger et al., 2005). In 

addition, a large proportion of the ATP generated in the developing blastocyst is utilized 

by the Na+/K+ ATPase, for which we demonstrated higher Atp1a1 expression levels in 

“Fast” developing embryos (Leese et al., 2007), thereby further reducing the pool of ATP 

available for other cellular activities in these embryos.  Persistent inadequate ATP 

generation, would lead to compromised cellular functions including epigenetic regulation 

of genomic imprinting (Hargreaves and Crabtree, 2011).  Perhaps this is not surprising as 

all known chromatin-remodeling complexes are powered by an ATPase subunit 

(Hargreaves and Crabtree, 2011).  Interestingly, we observed that increased Atp1a1 

expression levels correlated with loss of H19 imprinted expression, lending support to the 

attractive idea that culture-induced epigenetic effects may act at the interface of a Na+/K+ 

ATPase.  This study provides a link between genomic imprinting, developmental rates 

and metabolism, with increased metabolism of alternate energy sources representing a 
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compensation for the maladaptation of the embryo to the suboptimal culture environment. 

Thus, future studies should be directed towards the analysis of ATP-driven metabolic 

factors and epigenetic regulators in “Fast” and “Slow” developing embryos over their 

period of development in culture.

Taken all together, our data indicate that “Slow” embryos maintain a baseline 

level of metabolic activity similar to in vivo-derived embryos, while “Fast” embryos 

adapt and compensate by increasing the activity of other metabolic pathways, 

compromising cellular processes to maintain continued embryo growth and survival. 

Moreover, imprinting defects in “Fast” embryos indicate altered epigenetic 

reprogramming in response to suboptimal embryo culture, while “Slow” developing 

embryos exhibit more in vivo-like reprogramming.  Thus, our data lend support to the 

quiet embryo hypothesis espoused by Leese and colleagues.  This hypothesis suggests 

that the most viable embryos are “quiet”, exhibiting lower levels of metabolic activity, 

expending less energy repairing damage caused by the suboptimal culture environment, 

and possessing slower cell division cycles (Leese, 2002; Baumann et al., 2007; Leese et 

al., 2007; Sturmey et al., 2009a).  In contrast, embryos that actively adapt to culture will 

possess higher metabolic levels and faster cell cycle divisions.  Our study is the first to 

demonstrate a link between embryo culture, development rates, imprint maintenance and 

metabolism. 

4.4.4 The Best Embryos for Transfer
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 The term assisted reproductive technologies encompasses many techniques used 

to treat human infertility.  However, all involve the manipulation of human gametes and 

preimplantation embryos, and many involve embryo culture during preimplantation 

development.  While the optimal time and number of embryos to transfer after 

fertilization and culture has been a source of debate, all are in agreement that only the 

“best” or “healthiest” embryos should be transferred (Kallen et al., 2010; Min et al., 2010; 

Porat et al., 2010; Sills and Palermo, 2010; Wang et al., 2010).  Many algorithms have 

attempted to determine the parameters that most accurately  predict successful embryo 

transfer resulting in implantation and pregnancy (Elizur et al., 2005; Lesourd et al., 2006). 

Currently, morphological characteristics and stage of embryo development at a given time 

point are the most commonly  used criteria for identifying “healthy” embryos that should 

be transferred to patients in IVF clinics (Shoukir et al., 1997; Van Montfoort et al., 2004). 

Multiple studies have suggested that those embryos attaining the 4-cell stage (cleavage-

stage transfer) or the blastocyst stage (blastocyst transfer) the fastest are most suitable for 

embryo transfer (Claman et al., 1987; Windt et  al., 2004; Biezinova et al., 2006; Wang et 

al., 2010). However, other studies have suggested that embryos progressing at  a moderate 

pace are those that should be used, and have cautioned against the use of embryos with 

very fast or very slow development (Cummins et al., 1986; Alikani et al., 2000; Weitzman 

et al., 2010).  It  is important to know whether slower developing embryos are indeed 

suitable for transfer to patients, especially in situations where a choice between which 

embryo(s) 
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Figure 4.10: Summary of Multiple Parameter Analysis at the Individual Embryo 

Level

Dotted lines indicate significance. The FF group was most different from in vivo controls 

in all assays. Embryos in the “Slow” group (specifically SF) were more similar to in vivo-

derived embryos.
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to transfer can be made.  Previously, the relevance of these criteria to the maintenance of 

genomic imprinting was unknown.

Results from this study support the transfer of embryos displaying slow to 

moderate rates of development.  We argue that embryos in the SF group are most suitable 

for embryo transfer.  These embryos displayed imprinted methylation and expression, cell 

numbers, embryo volume, and metabolic marker expression most similar and in some 

cases indistinguishable from in vivo-derived embryos (Figure 4.10).  Our data also argue 

against transfer of the fastest developing embryos.  The FF group was most different from 

in vivo controls in all assays, and most importantly, showed the highest number of 

embryos with loss of imprinted H19 and Snrpn ICR methylation.  While the FS group 

was more similar to controls than the FF group with respect to embryo volume and H19 

imprinted expression, this group still displayed lower levels of H19 and Snrpn imprinted 

methylation, greater perturbations of Cdkn1c imprinted expression, greater expression of 

Atp1a1 and lower expression of Slc2a1 than controls.  By comparison, the slowest (SS) 

group displayed levels indistinguishable from controls with respect to cell number, 

embryo volume, and H19 imprinted expression.  However, the SS group showed levels of 

Cdkn1c imprinted expression indicative of delayed development, and lower levels of H19 

and Snrpn imprinted methylation than in vivo-derived control embryos.  In addition, 40% 

of embryos in the slowest (SS) group failed to develop to the blastocyst stage after 3 days 

of culture.  As such, the SF group is likely the most suitable for embryo transfer in the 

human clinic. 
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Our group and others have previously reported that the response of 

preimplantation embryos to in vitro culture with respect to genomic imprinting is 

stochastic (Doherty et al., 2000; Mann et al., 2004; Market-Velker et al., 2010b; Lim et 

al., 2009; Rossignol et al., 2006).  Here, we show that this can partly be attributed to a 

differential response of embryos to culture, with the fastest developing embryos acquiring 

the greatest perturbations in imprinted gene regulation and metabolic gene expression.  

We propose that embryos that undergo reprogramming to counter the stresses of 

suboptimal culture are the least healthy for embryo transfer.  Therefore, selecting embryos 

with slow rates of development is one step towards choosing a more “healthy” embryo. 

Determining the differences between slowest, slow to moderate and fast developing 

embryos, and developing non-invasive methods to more easily identify them in the 

human clinic will be critical to choosing the “best” or “healthiest” embryos for transfer, 

thereby maximizing pregnancy rates.
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Chapter 5 - The Effects of Superovulation and Embryo Culture at the Peg1/Mest 

Locus

The work in this chapter originates from the following manuscript:

Market Velker, B. A., Denomme, M. M., Mann, M. R. ‘A comprehensive evaluation of 

the effects of superovulation and embryo culture on the acquisition and maintenance of 

genomic imprinting of Peg1/Mest’ submitted for publication in the journal Biology of 

Reproduction, in June 2011.

5.1 Introduction

 Genomic imprinting is an epigenetic phenomenon where gene expression is 

regulated according to parent-of-origin; one parental allele is expressed while the other is 

repressed (Reik and Walter, 2001; Rodenhiser and Mann, 2006).  To date, approximately 

150 genes have been identified whose expression is regulated in such a manner (http://

www.har.mrc.ac.uk/research/genomic_imprinting/maps.html) (Morison et al., 2005).  

Many of these imprinted genes play critical roles in the development of the embryo and 

placenta, or influence behaviour after birth (Ono et al., 2006; Varrault et al., 2006; 

Wilkinson et al., 2007; Bressan et al., 2009; Broad et al., 2009), and their dysregulation 

has been linked to a group of human diseases called imprinting disorders.  Two important 

time periods have been identified with respect to genomic imprinting: acquisition (during 

gametogenesis) and maintenance (during preimplantation development).  Numerous 
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assisted reproductive technologies take place during these two critical periods, and as 

such have the potential to disrupt acquisition and/or maintenance of genomic imprinting.

 The development and increased use of assisted reproductive technologies (ARTs) 

for the treatment of infertility/subfertility, led to the observation that genomic imprinting 

may be affected by ex vivo manipulation of the early embryo.  In addition to BWS and 

AS, studies have suggested a relationship between Silver-Russell Syndrome (SRS), and 

dysregulation of imprinted genes by ARTs.  SRS is an imprinting disorder characterized 

by intrauterine and post-natal growth retardation (Wollmann et al., 1995).  Up to 44% of 

SRS cases are associated with hypomethylation of the H19 ICR within the 11p15 region 

(Eggermann et al., 2010), which harbours the imprinted genes H19 and Igf2, while 

maternal uniparental disomy of chromosome 7 has been implicated in approximately 5% 

of cases of SRS (Kotzot et al., 1995; Eggermann et al., 2010), a region that contains the 

Peg1/Mest gene.  

 Peg1/Mest has been proposed as one of the causative agents of SRS (Hannula et 

al., 2001; Chou et al., 2004; Kagami et al., 2007).  Paternal inheritance of a targeted Peg1/

Mest allele results in severe IUGR in the offspring, while maternal inheritance of the 

deleted allele does not (Lefebvre et al., 1998).  On the other hand, high levels of Peg1/

Mest expression has been found in adipocytes from obese mice, and transgenic 

overexpression of Peg1/Mest results in enlargement of adipocytes (Takahashi et al., 

2005).  This suggests a key role for Peg1/Mest in regulating fetal growth.  

 Genomic imprinting of Peg1/Mest, which is located on mouse chromosome 6 and 

human chromosome 7, was identified through subtractive hybridization comparing 
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normal and parthenogenetic mouse embryos (Kaneko-Ishino et al., 1995).  Paternal 

monoallelic expression of Peg1/Mest has been confirmed in adult tissues (Reule et al., 

1998), and in a number of other species including humans (Kobayashi et al., 1997; 

Riesewijk et al., 1997), tammar wallaby (Suzuki et al., 2005), and sheep (Feil et al., 

1998).  A CpG island spanning the putative promoter region and exon 1 is methylated in a 

parent-of-origin specific manner: the maternal allele is methylated while the paternal 

allele is unmethylated (Riesewijk et al., 1997; Nishita et al., 1999).  Acquisition of 

imprinted DNA methylation at the maternal differentially methylated region (DMR) 

occurs at the tertiary/early antral follicle stage, after the majority of other imprinted genes 

have already acquired their methylation (Obata and Kono, 2002; Hiura et al., 2006), and 

continues after ovulation (Imamura et al., 2005).  This has led to suggestions that the 

Peg1/Mest imprint may be more vulnerable to perturbation by environmental insult 

(Anckaert et al., 2010).  A number of studies have demonstrated differences in the 

response of Peg1/Mest to various environmental insults during oocyte development, 

including superovulation and in vitro maturation when compared to other imprinted 

genes, such as H19 and Snrpn (Khosla et al., 2001; Liang et al., 2008; Tveden-Nyborg et 

al., 2008; Anckaert et al., 2010).   

 In this study, we characterize the effects of two commonly used procedures in 

ART, superovulation and embryo culture, on the acquisition and maintenance of genomic 

imprinting at the Peg1/Mest locus.  Superovulation, also known as ovarian 

hyperstimulation, is used to recover large numbers of mature oocytes, while embryo 

culture facilitates the development of embryos through preimplantation stages.  To 
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provide a comprehensive allelic analysis of the response of the Peg1/Mest locus to these 

procedures, and to avoid confounding factors that have prevented detailed analysis in 

other studies such as intrinsic patient subfertility, and the use of pooled oocytes/embryos, 

our analysis was performed using a mouse model on individual oocytes and blastocyst 

stage embryos.  We demonstrate that DNA methylation at the maternal Peg1/Mest DMR 

is maintained in ovulated metaphase II (MII) oocytes following low or high dose 

superovulation, indicating that acquisition of Peg1/Mest imprinted methylation in the 

developing oocyte is not affected by hormonal stimulation.  However, a significant loss of 

maternal methylation at the Peg1/Mest DMR was observed at the blastocyst stage 

following superovulation or embryo culture, indicating that maintenance of genomic 

imprinting was disrupted by these interventions, although no correlation to rates of 

preimplantation development was observed.  

5.2 Methods

5.2.1 B6(CAST7p6)  Mouse Model

 Previous studies from our lab utilized a mouse model ideally suited for imprinting 

analyses, C57BL/6(CAST7) (B6(CAST7) that contain two Mus musculus casteneus 

chromosome 7s on a B6 background. Polymorphisms between B6(CAST7) and C57BL/6 

(B6) mice allow for subsequent identification of maternal and paternal alleles.  

Investigation of Peg1/Mest was not possible using this model, as Peg1/Mest is located on 

chromosome 6 in the mouse.  To identify C57BL6(CAST7partial6) [B6(CAST7p6)] 
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mice, we screened our original B6(CAST7) colony by microsatellite marker mapping and 

found a subset of mice that harboured the same partial region of M.m. castaneus 

chromosome 6. Using microsatellite markers, D6Mit140 and D6Mit34, as well as allelic 

PCR-restriction digest of published polymorphisms, crossover events were mapped to 

22.8-23.7 and 31.02-32.05 MB, a 9.25 MB region that contained the entire Peg1/Mest 

imprinted domain (Figure 5.1).  The proximal crossover was mapped to between SNP#4 

(rs3090864) and SNP #5 (rs3088527).  The PCR primers for SNP#4 were F: 5’-

GTGCCAGATTGTCTTCCC-3’, and R: 5’-ACCCTCAGGACAGTTCG-3’, and for 

SNP#5 were F: 5’-ATGCCTCATTTGGAGTCTG-3’, and R: 5’-

AGCATCCTCTGGGAGTGTA-3’.  For SNP#4, a polymorphic A/G restriction site 

between B6 (A) and CAST (G) distinguished the parental alleles, as the CAST (G) allele 

is cleaved by the HpyCH4III restriction enzyme (B6: 181 and 12 bp, CAST: 101, 80 and 

12 bp).  For SNP#5, a polymorphic A/C restriction site between B6 (C) and CAST (A) 

distinguished parental alleles, with the CAST allele cleaved by the restriction enzyme 

CviKI-1 (B6: 74, 54, and 38 bp, CAST: 112 and 54 bp).  The distal crossover was mapped 

to a region between the MapPairs D6Mit341 and D6Mit140.  To determine if the Peg1/

Mest imprinted domain was within the CAST region, another polymorphism, SNP#10 

(rs6183467), outside the domain was investigated using the following primers F: 5’-

CAGGATGGGTCTGGAGTGA-3’ and R: 5’-CTTAGTAGCAACTGGGTGGTG-3’.  A 

polymorphic T/G restriction site between B6 (T) and CAST (G) was observed, and 

restriction digest with the enzyme HincII resulted in cleavage of the CAST allele.  All 

polymorphisms were confirmed by sequencing of the PCR products.  SNP#4 was used for 
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Figure 5.1:  Crossover Sites in the B6(CAST7p6) Mouse Model

Graphical representation of chromosome 6 in our B6(CAST7p6) mouse model.  Genes in 

red are located within the known M. m. castaneus region, genes in blue are located within 

the known B6 region, and genes in purple fall within the crossover region.  Green boxes 

represent MapPairs that  were used to genotype the mice.  Yellow boxes represent sites of 

single nucleotide polymorphisms (SNPs) that were used as restriction sites to determine 

genotypes.  The Peg1/Mest imprinted domain was found to reside within the M. m. 

castaneus region.
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the allelic PCR-restriction digestion genotyping assay to identify B6(CAST7p6) mice. 

B6(CAST7p6 intercrosses were used to generate a B6(CAST7p6) mouse colony.  This 

B6(CAST7p6) mouse model was used for all subsequent experiments.

5.2.2 Oocyte and Embryo Collection and Culture

 Ovulated oocytes were collected from B6(CAST7p6)xB6 F1 females following 

superovulation, or spontaneous ovulation for controls.  F1 females have one CAST 

chromosome 7 and a partial CAST chromosome 6 on a B6 background inherited from the 

mother, and a B6 chromosome set inherited from the father, allowing for identification of 

grandparental inheritance at the Peg1/Mest locus within the oocyte following meiosis. 

 Superovulated females were injected with either 6.25 IU or 10 IU Pregnant 

Mare’s Serum Gonadotropin (PMSG, Intervet Canada) followed 40-44 hours later by the 

same dose of human Chorionic Gonadotropin (hCG, Intervet Canada).  Oocyte-cumulus 

cell complexes were flushed from the oviducts at approximately 12 PM the following day 

(22 hours post-hCG) into M2 media (Sigma). MII stage oocytes were dissociated from 

surrounding cumulus cells using 0.3 mg/ml Hyaluronidase (Sigma) and were washed 

three times in 30 µl of M2 media.  Diameter and volume measurements were recorded for 

each individual oocyte using the Olympus IX81 microscope.  Oocytes were treated with 

Acidic Tyrode’s solution (Sigma) at room temperature for removal of the zona pellucida, 

washed twice more in M2 media, and individually placed on a glass slide in minimal 

media.  Oocytes were gently mixed with a small amount of 2:1 agarose:lysis solution [20 

µl 3% low melting point agarose (Sigma)], 8 µl Dynabead lysis buffer (see below), 1µl 2 
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mg/ml proteinase K (Sigma), 1 µl 10% IPEGAL (Sigma) at 70ºC, embedded in 10 µl of 

this solution and placed in an eppendorf tube containing 300 µl of mineral oil. Following 

a 10 minute incubation on ice to allow the agarose bead to harden, mineral oil was 

removed and 500 µl of Dynabead lysis buffer was added [100 mM Tris–HCl pH 7.5 

(Bioshop), 500 mM LiCl (Sigma), 10 mM EDTA pH 8.0 (Sigma), 1% LiDS (Bioshop), 5 

mM DTT (Sigma)]. Individual samples were incubated overnight in a 50ºC waterbath.

The following morning (~20 hours later), Dynabead lysis buffer was removed and 

300 µl mineral oil was again added to the bead. Samples were incubated at 90ºC for 2.5 

minutes (Proteinase K inactivation), and were then placed on ice for 10 minutes. Bisulfite 

mutagenesis was performed as described (Market-Velker et al., 2010a) with the following 

exception: each oocyte sample was directly added as a solid agarose bead to a ready-to-go 

PCR bead (GE) containing Peg1/Mest specific primers and 1 µl of 240 ng/ml tRNA in a 

15 µl solution, with 25 µl mineral oil overlay.  Negative controls (agarose bead without 

oocyte) were processed alongside each sample.  The first round nested PCR was 

performed with an annealing temperature of 50ºC.  For the second round, 5 µl of first 

round product was added to a second 25 µl ready-to-go PCR bead, with Peg1/Mest 

specific primers but without tRNA, with 25 µl mineral oil overlay.  The second round 

nested PCR was performed using an annealing temperature of 54ºC.

 Embryos were obtained from B6(CAST7p6) females crossed with B6 males 

(Charles River, St Constant, Canada).  For in vivo-derived embryos, female 

B6(CAST7p6) mice were checked for estrus, and mated with B6 males. For the 

superovulated group, females were injected with either 6.25 or 10 IU of PMSG, followed 
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by the same dose of hCG, 40-44 hours later.  Females were mated with B6 males the 

same day as hCG injection.  In both groups, pregnancy was determined by the presence of 

a vaginal plug at 0.5 days postcoitum (dpc).  F1 hybrid 2-cell embryos were flushed from 

the oviducts of B6(CAST7p6) females at 1.5 dpc, washed twice and cultured in Whitten’s 

medium (made in-house) (Whitten, 1971).  Embryo culture drops were prepared prior to 9 

AM the morning of embryo collection or embryo separation, and allowed to equilibrate. 

Embryos were cultured in either 10, 15 of 20 µL drops, with filter-sterilized mineral oil 

overlay (Sigma), at a concentration of 1 embryo per microliter.  Embryos were separated 

into four groups based on rates of development over the course of the 3 day culture period 

as described in Chapter 4.

 Control blastocyst stage embryos were flushed from uteri of B6(CAST7p6) 

females in M2 Medium (Sigma) at 3.5 dpc (~96 hours post-hCG).  Cultured embryos and 

embryos collected at the blastocyst stage were frozen in individual tubes, snap frozen on 

dry ice and stored at -80˚C.

5.2.3 Analysis of Peg1/Mest Imprinted Methylation and Expression

 The combined analysis of imprinted methylation and expression in individual 

blastocysts was performed as previously described using the cDNA library generated for 

each embryo (Market-Velker et al., 2010b).  The following primers were used for the 

analysis of imprinted expression of Peg1/Mest (NM_008590; 1380-1920): Forward 5’-

CACATTGGTGAACAAACTACAGG-3’(1PG2), Reverse 5’-

AGAGTGCTGGGAACTGAACC-3’(1PG5).  Amplification of a 541 bp fragment 
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containing an allelic polymorphism between B6 (C) and CAST (A) (position 1679, 

NM_008590) was tested using SYBR green to allow determination of the range of cycles 

located in log-phase amplification.  PCR on subsequent embryos was performed to ensure 

that amplification was log-phase upon completion of the PCR program.  Following 

amplification using ready-to-go PCR Beads, embryos were digested with the BsiHKA1 

restriction enzyme to determine allelic identity; the B6 allele is cleaved into 270 and 271 

bp fragments, while the CAST allele is uncut.  Densitometry was performed using the 

Opticon Monitor Software.    

 For imprinted methylation, bisulfite mutagenesis, nested PCR, cloning and 

sequencing was performed as described previously (Chapter 3) (Market-Velker et al., 

2010b).  Analysis of 15 CpGs in the Peg1/Mest DMR (AF017994; 1309-1651) was 

performed using the following primers: outer primers; Peg1B 5’-

TTTTAGATTTTGAGGGTTTTAGGTTG-3’, and Peg1E 5’-

TCATTAAAAACACAAACCTCCTTTAC-3’, 50˚C annealing temperature; inner 

primers; Peg1C 5’-GGTGTTGGTATTTTTAGTGTTAGTTG-3’, and Peg1D 5’-

AATCCCTTAAAAATCATCTTTCACAC-3’, 57.5˚C annealing temperature.  Primers 

were designed within the region described by Anckaert et al (Anckaert et al., 2010).  At 

least 40 clones per embryo were sequenced, and each sequence was analyzed as described 

previously (Chapter 3) (Market-Velker et al., 2010b).  Hypermethylation of a DNA strand 

was defined as > 50% methylated CpGs on a given strand. 

 For each oocyte, 5 clones were sequenced.  Since individual oocytes are expected 

to have a single strand of DNA amplified, any samples having more than one methylation 
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pattern were excluded from analysis, due to implied cumulus cell contamination. 

Sequences with conversion rates < 85% were not included. 

5.2.4 Statistical Analysis

 Statistical analysis was performed comparing loss of methylation between in vivo-

derived embryos, superovulated embryos (6.25 IU and 10 IU) and in vitro cultured 

embryos.  The Fisher’s exact test was used to compute the significance of non-random 

association between these groups of embryos.  A one-sided test was utilized as 

methylation changes were anticipated to be only in one direction.  P-values less than 0.05 

were considered to be significant, and were calculated using the following online 

software: http://faculty.vassar.edu/lowry/fisher.html

5.3 Results

5.3.1 Effects of Superovulation on Peg1/Mest Imprinted Methylation in Oocytes

 In this study, we set out to determine the effects of superovulation on Peg1/Mest 

imprinted methylation in ovulated oocytes.  Furthermore, we wanted to determine 

whether the original maternal and paternal Peg1/Mest alleles displayed differential 

sensitivity to hormone treatment.  During oogenesis, imprinted methylation acquisition 

may occur differentially between the parental alleles as evidence indicates that 

methylation of the Snrpn grand-maternal allele is established prior to that on the 
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grandpaternal allele (Lucifero et al., 2004). By using B6(CAST7p6) F1 females, we can 

distinguish between the Peg1/Mest grandmaternal (CAST7p6) and grandpaternal (B6) 

alleles within individual oocytes.

To assess effects of superovulation on imprinted methylation, our recently 

developed single cell bisulfite mutagenesis assay was used to determine the methylation 

status of 15 CpGs located in the Peg1/Mest DMR.  Amplification was successful in 36% 

of individual oocytes (10/28) from spontaneously ovulating B6(CAST7p6) females, all of 

which displayed 100% hypermethylation (Figure 5.2). 

 To investigate the effects of superovulation on the acquisition of genomic imprints 

at the Peg1/Mest DMR, we analyzed oocytes from B6(CAST7p6)XB6 females 

superovulated with either 6.25 IU or 10 IU hormone treatment.  Following bisulfite 

mutagenesis amplification was successful for 38% of 6.25 IU individual oocytes (17/45) 

and 40% of 10 IU individual oocytes (20/50).  Following exclusion of samples with 

cumulus cell contamination (1/16 6.25 IU, 5/20 10 IU oocytes), all individual oocytes 

from hormone-treated females showed 100% Peg1/Mest DMR hypermethylation (Figure 

5.2).  Thus, we conclude that superovulation does not alter acquisition of genomic 

imprinting at the Peg1/Mest DMR, even at higher hormone treatment levels.  In addition, 

as both grandmaternal (CAST7p6) and grandpaternal (B6) alleles displayed similar 

hypermethylation patterns, our results do not demonstrate differential allelic susceptibility 

of maternal imprint acquisition to perturbations by superovulation, at this point of 

analysis.  Analysis of oocyte diameter and volume revealed no difference between 

oocytes derived from spontaneously and superovulated females (data not shown).
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Figure 5.2. Methylation of Peg1/Mest in Oocytes

Methylation of the Peg1/Mest DMR in individual oocytes derived from spontaneously 

ovulated and superovulated B6(CAST7p6)xB6 F1 females (6.25 and 10 IU).  

Unmethylated CpGs are represented as empty circles while methylated CpGs are depicted 

as filled circles.  Each line denotes an individual strand of DNA from a single oocyte.  

Oocyte designations are indicated on the left of each DNA strand, allele is indicated on 

the right of each strand (B-B6, C-CAST).  All oocytes displayed 100% hypermethylation.  

Hypermethylated DNA strands were those displaying >50% methylated CpGs.
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5.3.2 In Vivo Patterns of Imprinted Methylation at the Peg1/Mest DMR in 

Blastocysts

 Methylation patterns of in vivo-derived embryos have not been described at the 

Peg1/Mest DMR in blastocyst stage embryos.  As such, prior to our investigation of 

superovulated or cultured embryos, we set out to determine the imprinted Peg1/Mest 

DNA methylation pattern in in vivo-derived blastocyst stage embryos in our mouse 

model.  Using a modified bisulfite mutagenesis protocol to obtain information for 

individual blastocysts (Chapter 4), we determined the Peg1/Mest imprinted methylation 

patterns for 10 in vivo-derived B6(CAST7p6)xB6 embryos.  We observed that 7 of the 10 

embryos displayed high hypermethylations levels at the maternal Peg1/Mest DMR (E011 

70%; E023 100%; E010 92%; E033 86%; E076%; E090%; E031 80%) while the 

remaining three embryos displayed lower levels of hypermethylation (E018 30%; E020 

40%; E014 67%) (Figure 5.3).  Using data from these embryos, we set our threshold for 

loss of methylation at 70% (74% average hypermethylation of the maternal allele), 

similar to Snrpn (Chapter 2; Market-Velker et al., 2010a).  In our previous analysis of 

H19, Kcnq1ot1 and Peg3 methylation (Chapter 2; Market-Velker et al., 2010a), we 

observed that 10-20% of in vivo-derived blastocysts exhibited a loss of imprinted 

methylation (as evidenced by levels of methylation below our set thresholds).  Notably 

for Peg1/Mest, three embryos show this pattern of hypermethylation.  As Peg1/Mest has 

been reported to acquire methylation later in oocyte development, perhaps its methylation 

is more labile.
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Figure 5.3: Methylation of the Peg1/Mest DMR in Embryos derived from 

Spontaneously Ovulating Females.

Methylation of the paternal Peg1/Mest DMR in B6(CAST7p6)xB6 F1 embryos derived 

from spontaneously ovulated females.  Each group of DNA strands represents one 

blastocyst.  Unmethylated CpGs are represented as empty circles while methylated CpGs 

are depicted as filled circles.  Each line denotes an individual strand of DNA, and each 

group of strands denotes an individual blastocyst.  Blastocyst designations are indicated at 

the top left of each group, and % hypermethylation is indicated at the top center of each 

group.  Percentages were calculated as the number of hypermethylated DNA strands/total 

number of DNA strands.  Hypermethylated DNA strands were those displaying >50% 

methylated CpGs.
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5.3.3 Effects of Superovulation on Imprinted Methylation at the Peg1/Mest DMR in 

Blastocysts

 To determine the effects of superovulation on Peg1/Mest imprinted methylation in 

embryos, we investigated methylation at the Peg1/Mest DMR in blastocysts from 

superovulated females treated with either 6.25 IU (low dose) or 10 IU (high dose).  In the 

low dose hormone group, using 70% hypermethylation as our threshold, 5/9 embryos 

displayed loss of methylation  (E62 38%; E63 13%; E617 40%; E626 50%; E624 50%), 

with a mean maternal hypermethylation level 56% (Figure 5.4).  At the high hormone 

dosage, loss of methylation was observed in 9/11 embryos (E102 33%; E1018 0%, E1031 

63%; E1034 58%; E101 67%; E1033 70%; E1032 20%; E105 63%; E104 13%), with a 

mean maternal hypermethylation level of 51% (Figure 5.5).  Overall, an increase in the 

number of embryos displaying loss of methylation was observed in the low hormone 

treatment group compared to in vivo-derived controls, with a further increase observed in 

the high hormone treatment group, which was statistically significant (p = 0.02).  This is 

consistent with the behaviour of other imprinted loci in response to superovulation 

(Chapter 2; Market-Velker et al., 2010a).

5.3.4 Effects of Embryo Culture on Imprinted Methylation at the Peg1/Mest DMR in 

Blastocysts

 Embryo culture is another technique commonly used in the treatment of infertility.  

To evaluate the effects of embryo culture on imprinted methylation at the Peg1/Mest 
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Figure 5.4: Methylation of the Peg1/Mest DMR in Embryos derived from 

Superovulated (6.25 IU) Females

Methylation of the paternal Peg1/Mest DMR in B6(CAST7p6)xB6 F1 embryos derived 

from superovulated (6.25 IU) females.  See Figure 5.3 for additional information. 
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Saturday, April 16, 2011Figure 5.5: Methylation of the Peg1/Mest DMR in Embryos derived from 

Superovulated (10 IU) Females

Methylation of the paternal Peg1/Mest DMR in B6(CAST7p6)xB6 F1 embryos derived 

from superovulated (10 IU) females.  See Figure 5.3 for additional information.
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DMR, we analyzed 23 individual embryos cultured from the 2-cell to the blastocyst stage 

in Whitten’s medium (Figures 5.6-5.9).  Embryos were separated based on rate of 

preimplantation development, as described in Chapter 4.  In the FF group 7/8 embryos 

displayed loss of imprinting methylation (68%, 67%, 61%, 50%, 44%, 42%, 35%), 3/5 in 

the FS group (70%, 56%, 38%), 5/6 in the SF group (64%, 57%, 50%, 50%, 33%) and 3/5 

in the SS group (56%, 50%, 43%).  The average hypermethylation in each group were as 

follows: 56% FF, 63% FS, 55% SF, and 61% SS.  Overall, the “Fast” group displayed loss 

of methylation in 10/13 embryos, corresponding to an average hypermethylation of 58%, 

and the “Slow” group displayed a loss of methylation in 8/11 embryos, also 

corresponding to an average hypermethylation of 58%.  Unlike our previous study 

showing more severe loss of methylation in “Fast” developing embryos than the “Slow” 

group at the H19 and Snrpn ICRs, no statistical difference was observed between the 

embryo culture groups at the Peg1/Mest DMR.  In addition, no difference was observed 

when comparing embryos at the second separation (FF and SF vs FS and SS).  Overall, 

significantly more cultured embryos (18/24) displayed levels of imprinted methylation 

below the 70% threshold (p = 0.02), compared to the in vivo group (3/10).

5.3.5 Effects of Superovulation and Embryo Culture on Peg1/Mest Imprinted 

Expression

 We also analyzed imprinted expression of Peg1/Mest in the same in vivo-derived 

embryos used for methylation analysis, using our technique for combined imprinted 

methylation and expression analysis in individual embryos (Market-Velker et al., 2010b).
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Figure X:  Imprinted methylation for Peg1 from the Fast/Fast embryo group.  
Embryo number is indicated in the top-left of each sample, % hypermethylated strands is indicated to 
the right, imprinted expression is indicated to the right in orange.
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Figure 5.6: Methylation of the Peg1/Mest DMR in Blastocysts From the FF Group

Methylation of the paternal Peg1/Mest DMR in B6(CAST7p6)xB6 F1 embryos from the 

Fast/Fast group, cultured in Whitten’s medium.  See Figure 5.3 for additional information.  

Imprinted expression in each embryo is indicated in orange next to each group.
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Figure 5.7: Methylation of the Peg1/Mest DMR in Blastocysts From the FS Group

Methylation of the paternal Peg1/Mest DMR in B6(CAST7p6)xB6 F1 embryos from the 

Fast/Slow group, cultured in Whitten’s medium.  See Figure 5.3 and 5.6 for additional 

information.
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Figure 5.8: Methylation of the Peg1/Mest DMR in Blastocysts From the SF Group

Methylation of the paternal Peg1/Mest DMR in B6(CAST7p6)XB6 F1 embryos from the 

Slow/Fast group, cultured in Whitten’s medium.  See Figure 5.3 and 5.6 for additional 

information.  

Figure X:  Imprinted methylation for Peg1 from the Slow/Fast embryo group.  
Embryo number is indicated in the top-left of each sample, % hypermethylated strands is indicated to 
the right, imprinted expression is indicated to the right in orange.
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Figure 5.9: Methylation of the Peg1/Mest DMR in Blastocysts From the SS Group

Methylation of the paternal Peg1/Mest DMR in B6(CAST7p6) X B6 F1 embryos from the 

Slow/Slow group, cultured in Whitten’s medium.  See Figure 5.3 and 5.6 for additional 

information. 
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  Peg1/Mest was expressed in 12 of 15 (80%) of in vivo-derived embryos, all of which 

displayed monoallelic expression from the paternal B6 allele (Figure 5.10).  Similar to in 

vivo-derived embryos, both the 6.25 IU and 10 IU groups displayed paternal monoallelic 

expression, with 20/21 embryos (95%) showing expression from each of the two groups 

(Figure 5.10).

 Imprinted expression of Peg1/Mest was evaluated in 14 FF, 8 FS, 9 SF and 8 SS 

embryos.  All embryos displayed paternal monoallelic expression with the exception of 

the FF group; three embryos lacked any detectable Peg1/Mest expression (Figure 5.11).  

Expression of Snrpn was also analyzed in all samples as a control for generation of the 

cDNA library, and was monoallelically expressed in all samples.  Thus, similar to 

previous experiments with Snrpn and Peg3 (Mann et al., 2004; Market-Velker et al., 

2010b), no effect was observed on imprinted expression, even through alteration in 

imprinted methylation were present in these same embryos.

5.4 Discussion

 In this study, we present a comprehensive evaluation of the effects of 

superovulation and in vitro culture on genomic imprinting at Peg1/Mest.  Superovulation 

resulted in disruption of imprinted methylation at the blastocyst stage, in a dose-

dependent manner, similar to other loci previously examined (Chapter 2; Market-Velker et 

al., 2010a).  Our analysis of individual oocytes provides evidence that this disruption was 

not due to a failure of imprint acquisition during oogenesis, as superovulated oocytes 

displayed methylation patterns identical to their in vivo-derived counterparts.  With 
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Figure 5.10:  Imprinted Expression of Peg1/Mest in Spontaneous and Superovulated 

Blastocysts

Imprinted expression of Peg1/Mest in blastocysts derived from spontaneously ovulated 

and superovulated females.  Green represents the paternal B6 allele, and blue represents 

the maternal CAST allele.  Biallelic expression was classified as > 10% expression from 

the maternal allele.  Embryo designations and groups are indicated on the bottom.
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Figure 5.11:  Imprinted Expression of Peg1/Mest in Cultured Embryos

Imprinted expression of Peg1/Mest in blastocysts cultured in Whitten’s medium.  Green 

represents the paternal B6 allele, and blue represents the maternal CAST allele.  Biallelic 

expression was classified as > 10% expression from the maternal allele.  Embryo 

designations and groups are indicated at the bottom.
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respect to embryo culture, no difference was observed in Peg1/Mest imprinted 

methylation between “Fast” and “Slow” embryos, while a significant loss of methylation 

was observed when compared to in vivo-derived controls.  This suggests that mechanisms 

regulating maintenance of genomic imprinting during the early preimplantation stages at 

the Peg1/Mest DMR were not affected by rates of embryo development.  

5.4.1 Maintenance, Not Acquisition, is Affected by Superovulation

 We have previously shown that, at the blastocyst stage, superovulation results in 

loss of imprinted methylation on the repressed maternal allele of Snrpn, Peg3, and 

Kcnq1ot1, and a gain of methylation on the active maternal H19 allele.  Loss of 

methylation on the paternal H19 allele was also observed, which first led us to speculate 

that superovulation may disrupt maintenance of genomic imprinting, rather than, or in 

addition to, acquisition.  Here, we show that acquisition of genomic imprinting at the 

Peg1/Mest locus was not affected by superovulation, consistent with another study 

demonstrating normal imprinted methylation at the Peg1/Mest DMR in the oocyte 

following superovulation (Sato et al., 2007).  Furthermore, greater loss of methylation in 

the high hormone group compared to the low dosage group indicates a dose-dependent 

effect.

 In a previous study, imprinted methylation at the Peg1/Mest DMR was 

investigated in fully grown GV oocytes, freshly ovulated MII oocytes, and MII oocytes 

cultured for either 8 or 24 hours (22 and 42 hours after hCG, respectively), all derived 
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from superovulated females. Peg1/Mest methylation acquisition was completed in MII 

oocytes following culture for 8 hrs (22 hours post-hCG), but not in earlier stages of 

oocyte maturation, indicating that acquisition of methylation at this locus continued after 

ovulation.  Our oocytes were collected at approximately 22 hours post-hCG, and fully 

hypermethylated alleles were observed in both spontaneously and induced ovulated 

oocytes.

 Two theories concerning the effects of superovulation on acquisition of genomic 

imprints have been put forth.  First, hormonal stimulation may lead to rapid oocyte 

maturation, or it may induce ovulation of immature oocytes that have not completely 

acquired their imprints (Paoloni-Giacobino and Chaillet, 2004; Ludwig et al., 2005). As 

we observed no change in oocyte diameter or volume, nor a delay in imprint acquisition, 

our data indicate that immature oocyte were not recovered in this analysis.  Secondly, 

ovarian stimulation may accelerate oocyte maturation (Baerwald et al., 2009), resulting in 

an inability of the oocyte to synthesize and store high enough amounts of these maternal 

factors.  In this case, imprint acquisition would proceed normally but imprint maintenance 

would be compromised during preimplantation development.  Our results support the 

latter hypothesis.

 Studies of human oocytes have suggested that acquisition of imprinted 

methylation is affected by superovulation, however in all of these studies, intrinsic 

subfertility is a confounding factor.  Loss of methylation at the Peg1/Mest locus was 

observed in oocytes collected from infertile women undergoing hormonal stimulation, 

however mouse oocytes from the same study in which intrinsic subfertility is not a 
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confounding factor showed no loss of methylation (Sato et al., 2007).  Subfertility in male 

patients has also been associated with alteration at the Peg1/Mest locus.  The Peg1/Mest 

DMR is unmethylated from fetal spermatogonia to mature spermatozoa (Kerjean et al., 

2000).  Hypermethylation of this region has been associated with idiopathic male 

infertility as well as infertility due to low sperm counts (Poplinski et al., 2010).  

Therefore, although mechanisms in the sperm and in the oocyte vary, alterations of 

acquisition of genomic imprinting observed in human studies at the Peg1/Mest locus may 

be a result of intrinsic subfertility of the patient, and not only a result of hormonal 

stimulation.

 

5.4.2 In Vitro Culture, but not Rates of Early Development Affect Methylation of 

Peg1/Mest

 Embryo culture has been shown to cause perturbation of imprinted methylation 

and expression of a number of imprinted genes (Doherty et al., 2000; Mann et al., 2004; 

Rivera et al., 2008; Market-Velker et al., 2010b).  Consistent with data from the previous 

chapters, here we report loss of imprinted methylation at the Peg1/Mest DMR following 

in vitro culture to the blastocyst stage in Whitten’s medium.  This is in contrast to two 

other studies which show no loss of methylation at the 2-cell or blastocyst stage following 

in vitro culture in M16 medium (Imamura et al., 2005), or M16 medium supplemented 

with serum (Khosla et al., 2001).  However neither of these were performed allelically, or 

on individual embryos. 

226



 Moreover, we separated in vitro cultured embryos into groups based on their rates 

of preimplantation development, as previously described in Chapter 4.  Contrary to our 

previous observations, where loss of methylation was more severe in the “Fast” group at 

the H19 and Snrpn ICRs, loss of methylation at the Peg1/Mest DMR was not different 

between “Fast” and “Slow” embryos.  Therefore, unlike Snrpn and H19, methylation at 

the Peg1/Mest DMR does not correlate with rates of early cleavage.

 This difference could be due to a number of factors.  First, the regions of H19 and 

Snrpn analyzed in our previous study were known imprinting control regions (ICRs), 

while the region of Peg1/Mest analyzed in this study consisted of 15 CpGs within the 

known DMR.  Until this DMR is investigated for its ability to regulate domain 

imprinting, it is not certain whether this region represents the Peg1/Mest ICR.  Once 

identified, analysis of the Peg1/Mest ICR may show a similar association with rates of 

embryo development as do Snrpn and H19.  

 Alternatively, many other groups have described a differential response of Peg1/

Mest to environmental insult when compared to other imprinted loci (Khosla et al., 2001; 

Liang et al., 2008; Tveden-Nyborg et al., 2008; Anckaert et al., 2010), suggesting that 

slightly different mechanisms regulate genomic imprinting at this locus.  Different 

mechanisms operating at these imprinted loci during early cleavage stages would explain 

the altered susceptibility of Peg1/Mest to the differences between “Fast” and “Slow” 

embryos at early stages of preimplantation development.  

 Furthermore, the Peg1/Mest locus was not protected from the detrimental effects 

of long term in vitro culture.  We observed a significant increase in the number of cultured 
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embryos displaying loss of imprinted methylation when compared to in vivo-derived 

controls.  Due to the late acquisition of methylation in the oocyte, slow rates of 

development may not confer the same advantage to oocytes’ ability to maintain levels of 

methylation at the Peg1/Mest locus early in preimplantation development, as it had for 

H19 and Snrpn.  Thus, a persistent suboptimal culture environment, together with later 

acquisition of Peg1/Mest methylation, would result in de-regulation of factors necessary 

throughout subsequent cell cycles for maintenance of genomic imprinting.

5.4.4 Imprinted Expression of Peg1/Mest is Unaffected by Superovulation, and 

Embryo Culture

 In addition to imprinted methylation, we examined Peg1/Mest imprinted 

expression in blastocysts derived from superovulated females, as well as those subjected 

to in vitro culture.  Neither procedure affected imprinted expression of Peg1/Mest.  

Previous studies have shown disrupted imprinted expression of H19 following embryo 

manipulation (Doherty et al., 2000; Mann et al., 2004; Market-Velker et al., 2010b), 

however, no change in imprinted expression was observed for Snrpn, and Peg3 under the 

same conditions at the blastocyst stage (Doherty et al., 2000; Market-Velker et al., 

2010b).  Having said this, analysis of imprinted expression at post-implantation stages of 

these same genes revealed biallelic expression, especially in extraembryonic tissues 

(Mann et al., 2004; Rivera et al., 2008).  Thus, we predict that Peg1/Mest will behave in a 

similar manner with disruption of imprint methylation maintenance during 
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preimplantation development resulting in dysregulation of imprinted expression in post-

implantation tissues.

 To date, many groups have attempted to characterize the changes in expression 

(Wang et al., 2005; Zheng et al., 2005; Hamatani et al., 2006; Zheng et al., 2007; 

Giritharan et al., 2010), and in localization of chromatin modifiers (Doherty et al., 2000; 

Ooga et al., 2008; Kim and Ogura, 2009) throughout normal preimplantation 

development, and in response to different ARTs.  These studies, and others specifically 

targeting known regulators of epigenetic phenomena will be invaluable in pinpointing the 

specific factors involved in global maintenance of genomic imprinting during 

preimplantation development.  Our data suggest that investigation of epigenetic factors 

that are produced as maternal effect products may hold the most promise for identifying 

those factors involved in imprinted maintenance during preimplantation development.
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Chapter 6 - Discussion

 Genomic imprinting is a complex process that depends on both the proper 

acquisition and maintenance of imprinting marks throughout preimplantation 

development, and adult life.  Assisted reproductive technologies, namely superovulation 

and embryo culture, take place during the critical periods of imprint acquisition and 

maintenance, providing an window for deregulation of these processes.  To date, our 

ability  to investigate the effects of ARTs on embryos has been limited by our technical 

abilities.  To properly evaluate the effects at a level relevant to the human clinic studies 

must be performed on individual embryos, to obtain information about the degree of 

perturbation in each embryo, as well as the frequency of perturbation under each 

environmental condition.  The methodology  developed (outlined in Appendix 1) 

represents a technical advancement in the field.  Prior to the experiments in this thesis, the 

effects of ARTs were known only  for a select number of imprinted loci, from studies 

using pools of embryos, and investigations of individual embryos at post-implantation 

stages of development.  Here, I provide a comprehensive analysis of ART-induced 

imprinting errors at the single embryo level, in preimplantation embryos.  Experiments 

investigate the effects of superovulation alone and of culture alone in various 

commercially-available media, on both imprinted methylation and expression at key loci.  

In addition, as this has not been previously  investigated, I report the effects of embryo 

culture on Peg3 and Kcnq1ot1 at the blastocyst stage, and comprehensive evaluation of 

the response of the Peg1/Mest locus to ARTs.  
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 In addition, these studies aim to provide some insight into the mechanism of 

imprinting dysregulation.  Much work remains to be done before distinct molecular 

pathways are elucidated, however the work presented in this thesis narrows the search: (1) 

both maternal and paternal imprints are disrupted by superovulation, indicating that 

superovulation perturbs a maternal-effect gene product  required for imprint  maintenance 

during preimplantation development; (2) multiple imprinted loci are affected in the same 

embryo by ARTs, although the misregulated loci vary between embryos, indicating that 

the response to adverse effects of ARTs is stochastic; (3) the use of multiple procedures 

increases the number of affected embryos, suggesting that pathways disrupted by  various 

ARTs are the same, or converge at common point; and (4) faster developing embryos 

exhibited a greater loss of imprinting, greater changes in metabolic activity and are least 

similar to in vivo-derived controls, suggesting that higher metabolic levels and faster cell 

cycle divisions represent maladaptations to the culture environment.

6.1 ARTs Affect Genomic Imprinting

6.1.1  Superovulation

 The timing of superovulation coincides with the development of oocytes from MI 

to arrested MII, when the acquisition of methylation imprints occurs.  Due to this timing, 

we and others have hypothesized that superovulation disrupts the acquisition of genomic 

imprints.  Therefore, any disruption in genomic imprinting that occurred as a result  of 
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superovulation would be evident at the MII stage, and after fertilization and 

preimplantation development, would be present at  blastocyst stage.  As well, only 

maternal imprints should be affected, as the paternal imprint is acquired in developing 

spermatocytes and would not be affected by hormonal treatment used for superovulation.  

 A number of hypotheses attempt to explain how superovulation disrupts imprint 

acquisition.  The first suggests that superovulation rescues subordinate follicles that, 

under normal circumstances, would undergo atresia and not develop  into fully mature 

oocytes (Van der Auwera and D'Hooghe, 2001).  Superovulated oocytes override the 

atretic program, leading to ovulation of oocytes that have not properly  acquired their 

maternal imprints.  Variations on this hypothesis state that superovulation simply results 

in ovulation of immature oocytes that have not had enough time to acquire their genomic 

imprints (Paoloni-Giacobino and Chaillet, 2004; Ludwig et al., 2005).  In both of these 

cases, superovulation does not affect  epigenetic processes in the oocyte, it  simply allows 

continued development of oocytes with aberrant genomic imprinting, or accelerates 

development preventing completion of acquisition prior to ovulation.  The second 

hypothesis suggests that administration of exogenous hormones results in modulation of 

molecular signaling pathways.  These molecular pathways may  result in misregulation of 

genes important for acquisition of genomic imprinting (ex: DNMT and its binding 

partners), perhaps disrupting the ability of the cell to target epigenetic machinery to 

proper locations resulting in lack of de novo methylation at certain loci.  This would result 

in disruption of methylation acquisition at maternally methylated loci, and potentially, in 

a gain of methylation of paternally  methylated (maternally unmethylated) loci if 
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mechanisms blocking methylation at a given locus were also disrupted.  However, this 

hypothesis does not provide an explanation for loss of methylation at paternally-inherited 

loci, that acquire their methylation in male germ cells.  The third hypothesis states that 

superovulation accelerates the growth rate of ovarian follicles, allowing for normal 

maternal imprint acquisition, but instead disrupts one or more maternal-effect  genes or 

gene products.  This maternal-effect gene would play  a key role in maintenance of 

genomic imprinting throughout preimplantation development.  Experiments in this thesis 

support the third hypothesis, as no change in Peg1/Mest imprint acquisition was observed 

following superovulation.  In addition, superovulation resulted in loss of methylation on 

maternal alleles, gain of methylation on maternal alleles, and most  importantly, loss of 

methylation on paternal alleles, in blastocyst stage embryos.

 Further evidence has begun to support the third hypothesis.  Other groups have 

reported no adverse effects of superovulation on maternal imprinted methylation in 

oocytes; fully  methylated alleles are noted at imprinted loci (Sato et al., 2007; Anckaert et 

al., 2009).  Studies from our lab (by M. Denomme) confirm this; following 

superovulation, fully methylated maternal alleles are observed in MII oocytes.  

 Therefore, I propose that superovulation acts to disrupt genomic imprinting 

potentially through acceleration of ovarian follicle growth leading to disruption of one or 

more maternal-effect genes or gene products.  This accelerated growth may  result in a 

decrease in maternal mRNA stores, which are critical for maintenance of genomic 

imprinting.  A decrease in these stores would not affect acquisition of genomic imprinting, 

as the molecular components necessary for this transient act of de novo methylation (and 
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potentially histone modifications, etc...) would be synthesized prior to their function 

during the arrested MI to MII period, and are not required to exhibit long-term activity.  

However, the level of maternal mRNAs necessary for maintenance may  fall below a 

necessary  threshold to maintain imprinting at  certain loci.  As such, maintenance of 

maternal methylation would be affected, causing levels of maternal methylation to 

decline.  In addition, mechanisms that protect paternally  methylated loci from acquiring a 

maternal profile would also be depleted, accounting for the gain of methylation that we 

and others (Borghol et al., 2006; Sato et al., 2007) have observed following 

superovulation.  Finally, it would be expected that these same maternal mRNAs would be 

required to maintain imprinted marks during the drastic epigenetic changes undergone by 

the paternal genome following fertilization.  As such, a deficiency in these factors may 

result in disruption of paternal imprints during the active wave of demethylation after 

fertilization, consistent with our report of loss of paternal methylation at the H19 allele in 

blastocysts following superovulation.  With the model outlined above, loss of methylation 

on the maternal alleles of paternally  expressed genes, gain of methylation on the paternal 

alleles of maternally  expressed genes, as well as loss of methylation on the paternal allele 

of maternally expressed genes is expected, all of which I report  in Chapters 2-5.  

  

6.1.2 Embryo Culture

 The second ART investigated was embryo culture.  Depending on the protocol 

employed, embryo culture takes place from the 1- or 2-cell stage, up  to the 4- to 8-cell, or 

238



blastocyst stage.  Many studies have identified ARTs, of which embryo culture is an 

integral component, as a means to disrupt genomic imprinting, however the majority of 

studies did not  evaluate embryo culture alone (Doherty  et al., 2000; Khosla et al., 2001; 

Mann et al., 2004; Li et al., 2005; Fauque et al., 2007).  As such, separating out the effects 

of each individual technique using these studies is nearly  impossible.  Our studies focused 

on embryo culture alone, demonstrating a significant  effect on genomic imprint 

maintenance. 

 Comparisons of studies of embryo culture have proven difficult as type of culture 

media, type of oil overlay, culture volume, oxygen tension, and associated ARTs, to name 

only a few, vary between labs and clinics.  In Chapter 3, I aimed to accurately compare 

multiple embryo culture media currently used in the field and determine if one media was 

superior to another with respect to the maintenance of genomic imprinting.  Contrary to 

my expectations, I did not observe drastic differences between media; all media were 

suboptimal in their ability to maintain genomic imprinting.  However, genomic imprinting 

at certain loci was better maintained in some media than others.  Overall more recently 

developed media (ex: Global) appeared superior to the less optimized types (ex; HTF and 

Whitten’s).  As well, the use of sequential media showed no advantage over non-

sequential media.  These findings lead us to speculate that embryo culture, the act of 

maintaining preimplantation embryos out of the female reproductive tract, is the most 

significant factor.  In addition, as all loci were affected by all media, I speculate that the 

factor(s) that is affected by embryo culture is a universal one, and the mechanism 

underlying the dysregulation is a global mechanism rather than a locus specific binding 
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factor.  Differences in embryo culture media are then due to the degree of perturbation of 

these factors, and to the extent of compensatory mechanisms in each embryo.  

 One candidate through which global methylation may be affected is DNMT1.  

Two isoforms of DMT1 have been described in preimplantation stage embryos, the 

somatic form DNMT1s, and the oocyte-specific form DNMT1o (Ding and Chaillet, 

2002).  During preimplantation development, DNMT1s is localized predominantly to the 

cytoplasm,  (Carlson et al., 1992), while DNMT1o localizes to the nucleus at the 8-cell 

stage (Ding and Chaillet, 2002).  Disruptions in DNMT1 itself are unlikely, as a number 

of imprinted genes in the embryo and placenta do not appear to require DNMT1 for 

monoallelic expression (Li et al., 1993; Caspary et  al., 1998; Lewis et al., 2004), those 

that do vary in their response to reduced levels of DNMT1 (Weaver et al., 2010) and no 

differences in DNMT1 localization or activity have been noted following embryo culture 

(Doherty et al., 2000).  

 The passive demethylation of the maternal genome suggests that  although 

DNMT1 is present in the nucleus during preimplantation stages, its activity  is tightly 

regulated and targeted to DMRs.  Some studies have suggested that  this targeting 

mechanism may involve Zfp57, a DNA binding protein that  recruits the histone methylase 

complex SETDB1, which provides repressive histone marks (Ayyanathan et al., 2003), or 

Stella, another similar histone modification targeting factor (Nakamura et al., 2007).  

Histone methylation may provide binding sites for proteins such as HP1, which in turn 

can recruit DNMTs (Lehnertz et al., 2003).  Disruption in one or many of these targeting 
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mechanisms, or their associated protein complexes, may be cause of the loss of 

methylation that we and others have observed at the blastocyst stage.

 Imprinted loci may not be the only regions disrupted by ARTs.  Many studies have 

shown global changes in epigenetic modifications following embryo culture.  The effect 

of assisted reproduction on DNA methylation was assessed at more than 700 genes in 

placenta and cord blood from children of assisted and unassisted conceptions using a site-

specific CpG methylation assay (Katari et al., 2009).  A significant change in DNA 

methylation was observed with lower mean methylation levels in the placenta, and higher 

mean methylation levels in cord blood from children conceived in vitro when compared 

to children conceived naturally, indicating the broad effects of ART on DNA methylation.   

Global changes in genes involved in glucose metabolism, glucose transporters and insulin 

signaling (Zheng et al., 2007), and changes in genes involved in DNA repair, and cell 

cycle regulation (Zheng et al., 2005) have been shown following embryo culture, again 

indicating that embryo culture has the potential to affect many different cellular systems.

 In addition, we cannot rule out the possibility that mechanisms regulating 

individual loci are also disrupted by ARTs.  As different imprinted loci are regulated 

through different mechanisms (Wan and Bartolomei, 2008; Koerner et  al., 2009), with 

different domain specific proteins involved in their acquisition and maintenance, it is 

possible that a common factor involved in the regulation of some, but not  all, imprinted 

loci, is dysregulated by ARTs.
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6.1.3 Multiple ARTs

 The effects of multiple ARTs is additive, resulting in more embryos with 

disruptions at more imprinted loci.  Examination of different loci did not reveal gene-

specific, nor ART type-specific effects, as one locus was not more likely to show loss of 

methylation in one media type, or following one type of ART than another locus.  This 

suggests that superovulation and genomic imprinting affect the same epigenetic pathways, 

or that their effects converge on a single pathway.  While one technique may results in 

some depletion or overexpression of important factors, the use of multiple ARTs 

exacerbates this effect leading to more affected embryos.  My data indicates that 

superovulation results in depletion of maternal mRNA used for maintenance of genomic 

imprinting.  Embryo culture may result in perturbation of the same oocyte-specific 

mRNA(s) if it  persists through early cleavage division or the same gene(s) if is also 

transcribed from the embryonic genome.  

6.2 Stochastic Effects of ARTs

 The first studies to identify perturbations of genomic imprinting were performed 

on pools of embryos (Sasaki et al., 1995; Doherty et al., 2000).  While these studies were 

integral to uncovering the fact that in vitro culture caused dysregulation of genomic 

imprinting, they  were unable to provide specific information about  the frequency and 
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severity of this dysregulation.  Development and utilization of single embryo protocols 

(Appendix 1) was necessary to obtain this information.  

 One common finding from these experiments is the stochastic nature of imprint 

disruption by superovulation and embryo culture.  In the case of superovulation, some 

embryos were severely affected at a given locus, showing very low levels of imprinted 

methylation, while others showed no loss of methylation at that same locus with levels of 

imprinted methylation comparable to in vivo-derived embryos.  In addition, embryos 

displaying severe loss of imprinted methylation at one locus did not necessarily show loss 

at other imprinted loci, and no consistent patterns emerged.  This indicates that the effects 

of superovulation are not locus specific, supporting the idea that more global epigenetic 

mechanisms are disrupted.

 In the case of embryo culture, the same phenomenon was observed.  Loss of 

methylation was observed in some, but not all embryos, and at some, but not all loci.  In 

those embryos that remained unaffected at all the loci examined, further analysis of 

additional imprinted loci would likely reveal that genomic imprinting is affected in every 

embryo, while the extent of the disruption varies with different embryo manipulations.    

The question then becomes what differentiates those embryos that  better maintain 

genomic imprinting from those that do not.

 To shed light on this phenomenon, I investigated the relationship between rates of 

preimplantation development and genomic imprinting.  We attempted to determine if 

there were non-invasive characteristics that would lead us to predict which embryos 

would be more severely affected by embryo culture, and which were more similar to in 
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vivo-derived control embryos.  This question has significant importance to the selection of 

embryos for transfer in the human clinic.  Often a number of oocytes are fertilized and 

become viable embryos, but how to choose the best embryo(s) to transfer to the patient is 

often unclear.  Morphological staging and assessment are commonly used, with fast 

development most often equated with the healthiest  embryos (Claman et al., 1987; 

Shoukir et al., 1997; Van Montfoort et  al., 2004; Windt et al., 2004; Biezinova et al., 

2006).  Here, I argue against the use of the fastest developing embryos, supporting other 

studies in humans suggesting that a slow to moderate rate of development (neither too 

slow, nor too fast) is a marker of embryo health (Cummins et al., 1986; Alikani et al., 

2000; Weitzman et al., 2010).  

6.3 The Mouse Model and Application to the Human Clinic

 There are many barriers to a thorough evaluation of ARTs, including the ethical 

dilemma of using human embryos and the difficulties with long term follow up, to name a 

few.  As such, our studies were carried out using the mouse model system, as the 

protocols employed for superovulation and embryo retrieval are simple, standardized 

procedures.  In addition, the mouse embryo has been historically used to optimize culture 

conditions for the human embryo and is still used as a quality control assay for every 

batch of embryo culture media.  The mouse is still advocated as the model system of 

choice for studies of early embryo development and its molecular regulation (Quinn and 

Horstman, 1998; Summers and Biggers, 2003).  Studies using the mouse model have been 
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integral in the development and refinement of various ARTs, and in the future, thorough 

evaluation of new techniques in animal model systems such as the mouse should be 

undertaken prior to widespread acceptance and use of these new techniques in humans.  

 While the immediate applicability  of these studies to the human clinic may be 

debated, from the data presented in this thesis I am able to make a number of general 

recommendations with respect  to the manipulation of preimplantation stage embryos.  

First, the number and prolonged use of ARTs should be minimized, as I have shown that 

the effects of multiple ARTs are additive.  Avoidance of superovulation through single 

embryo transfer techniques is one way to minimize ARTs that can be put into practice 

immediately.  Secondly, if multiple embryos are available for transfer, those displaying 

moderate rates of development should be chosen over those with very  fast, or very slow 

rates of development.  Third, as we showed no advantage of sequential media over non-

sequential medium with respect to genomic imprinting, my data advocate the use of non-

sequential media to avoid additional embryo manipulation occurring with transfer of 

embryos to different culture drops.  Fourth, all embryos are affected by manipulation 

during ARTs, however some are affected more than others.  Patients undergoing ART 

should be made aware of this fact, and more patient education outlining the risks of ART 

should be instituted.  Most importantly, findings from these and other studies indicate that 

it is possible to generate blastocysts that appear morphologically normal, but are in reality 

severely epigenetically compromised.  
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6.4 Future Directions

 From these and other studies, it is evident that ARTs, in their many forms, perturb 

genomic imprinting at multiple loci.  The next step is to determine ways to prevent these 

perturbations from occurring, or develop ways to correct them.  These objectives can only 

be carried out once the mechanisms responsible for imprinting acquisition and 

maintenance are known, and how the environmental insult of ARTs affects these 

mechanisms.  Therefore, future studies in the field should focus on elucidating these 

pathways, and developing non-invasive ways to detect these mal-adaptations to 

environmental insult.  In addition, studies should focus on moving the knowledge 

obtained from animal studies to the human clinic.

6.4.1 Superovulation

 To confirm the hypothesis of disruption of the maintenance of genomic 

imprinting, imprinted methylation at  multiple loci (those that acquire methylation early as 

well as those that  acquire it later on in oocyte development) in individual embryos 

throughout the various stages of preimplantation development is required.  These studies 

will determine when loss of methylation occurs, and if the loss is progressive over the 

entire course of preimplantation development.  Pinpointing the stage of preimplantation 

development at which methylation imprints are lost will provide important insight into the 

mechanism of this disruption. 
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 Essential to future studies will be the identification of the maternal-effect gene(s) 

disrupted by superovulation.  Maternal-effect genes are transcribed and accumulate in the 

growing oocyte (Schultz, 1993), and are necessary for the early stages of preimplantation 

development prior to embryonic genome activation (Flach et al., 1982; Conover et al., 

1991; Bellier et al., 1997).  A maternal effect on early  development has been well 

described in Xenopus (Droin, 1992) and Drosophila (Akam, 1987; Morisato and 

Anderson, 1995) and many maternal-effect  genes have also been identified in the mouse, 

including Mater (Tong et al., 2000; Tong et al., 2002), Zar1 (Wu et al., 2003), Hsf1 

(Christians et al., 2000), Gdf9 (Dong et al., 1996), Ces5 (Tashiro et al., 2010) Filia 

(Zheng and Dean, 2009) and Stella (Payer et al., 2003).     

 The maternal-effect gene(s) involved in the effects of superovulation should 

exhibit a number of characteristics.  First, as with other maternal-effect genes, it should be 

transcribed and stored in the developing oocyte.  Mutation or deletion may or may not 

lead to arrest prior to embryonic genome activation, as uniparental embryos (parthenotes, 

androgenotes, gynogenotes), which lack a parental genome complement, are able to 

develop past the 2-cell stage (Markert, 1982; McGrath and Solter, 1984; Surani et  al., 

1984).  This gene should have a known role in epigenetic regulation, and levels, 

localization or post-translational modification of this gene product should be altered by 

superovulation.  

 Therefore, to identify our maternal-effect  gene(s), first, a list of genes expressed 

and stored in the developing oocyte is needed.  From this list, genes involved in 

epigenetic regulation should be identified, generating an list of epigenetic-specific 
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maternal-effect genes.  Final candidates would be those genes displaying differential 

expression, localization or post-translational modification between spontaneous and 

superovulated oocytes.  Attractive candidates are maternal-effect genes whose functions 

in epigenetic regulation are well known such as Stella (Nakamura et al., 2007), and Zpf57 

(Li et al., 2008), indicated above as potential targeting mechanisms for DNMT1 in 

preimplantation embryos (Ayyanathan et al., 2003) (Nakamura et al., 2007).

 Investigation of global levels of transcription in oocytes and preimplantation 

embryos has been performed, and a subset of genes have been identified that demonstrate 

distinct expression patterns (Hamatani et al., 2004; Wang et al., 2004; Zeng et al., 2004; 

Hamatani et al., 2006).  Following embryonic genome activation, maternal mRNAs 

expressed in the oocyte may either persist with no reactivation from the embryonic 

genome, or be degraded.  Those that show degradation of maternal mRNA may (1) be 

reactivated in the embryonic genome, or (2) maternal transcripts may be degraded 

without reactivation.  Genes transcribed in the oocyte may also (3) be degraded early in 

development but be reactivated later, creating a window where no gene product is present 

in the early  embryo.  As I hypothesize that the maternal-effect  gene(s) of interest is likely 

involved in the maintenance of genomic imprinting throughout preimplantation 

development, it is likely that it would be present in the oocyte and in the preimplantation 

embryo.  Arguments can be made as to whether expression originates from the oocyte, 

and maternal mRNAs persist throughout preimplantaion development, or whether 

maternal mRNAs are degraded and reactivated from the embryonic genome.  Both are 

plausible explanations, however as both superovulation and embryo culture appear to 
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affect the same pathway, I hypothesize the the gene(s) of interest do display degradation 

of maternal mRNA and reactivation from the embryonic genome, and therefore follow the 

first pattern of expression.  In the study by Hamatani et al, genes demonstrating 

degradation followed by an early pattern of reactivation of expression include Oct4, E-

cadherin, Dnmt1, Dnmt2, Dnmt3b, Lefty2, Spp1, Mecp2, Cbx1, Morf4l1, Tex20, Fragilis, 

Pelo and Sfrs3 (Hamatani et al., 2004).  Many  of these genes, including Dnmt1, Dnmt2, 

Dnmt3b, Mecp2, Morf4l1, and Cbx1 are known to be involved in epigenetic regulation 

(Aagaard et  al., 1999; Nakao et al., 2001; Pardo et al., 2002; Turek-Plewa and 

Jagodzinski, 2005), and therefore satisfy  two of the three criteria of our maternal-effect 

gene, as outlined above.  Demonstration of differences in the levels, localization or post-

translational modifications of these gene products in spontaneous and superovulated 

embryos would fulfill the additional criterion.  

 Alternatively, the reverse approach could be taken, using genome-wide 

comparison of expression between spontaneous and superovulated oocytes.  Candidates 

could then be narrowed by  identifying genes involved in epigenetic regulation, and 

determining the pattern of expression following fertilization.  Once a candidate list was 

assembled, involvement could be confirmed by analyzing their expression, localization 

and post-translational modifications in spontaneous and superovulated oocytes.  Levels 

more similar to spontaneously ovulated oocytes and embryos would be expected in 

superovulated oocytes and embryos with preserved imprinted methylation, while aberrant 

levels would be expected those that had lost imprinted methylation. 
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 Once the maternal-effect gene products disrupted by superovulation have been 

identified, the next  step will be to determine non-invasive ways to determine which 

oocytes display improper expression, activity or localization of these products, and 

exclude the oocytes from use in the human clinic.  One possible technique is through 

sampling of the polar body, provided that this does not have any negative developmental 

consequences for the oocyte.  Alternatively, indirect methods of evaluating the status of 

the maternal effects genes may prove useful, such as measurements of by-products of the 

pathway involving the maternal-effects gene in the medium used to culture oocytes prior 

to fertilization.

6.4.2 Embryo Culture

 While we hypothesize that maternal-effects gene products are affected by ARTs, 

further investigation of how embryo culture disrupts genomic imprinting should also 

focus on how overall epigenetic mechanisms like DNA methylation and histone 

modifications, which are the marks of genomic imprinting, may be disrupted by the 

culture environment.  For example, S-adenosyl methionine (SAM) is widely known as the 

universal methyl donor, responsible for donating methyl groups for use in DNA 

methylation, histone methylation, and a number of other important cellular processes 

(Loenen, 2006).  A complex pathway results in breakdown and regeneration of SAM, 

involving important molecules such as methionine, glutathione, homocysteine and folate 

(Chiang et al., 1996).  Altered concentrations of these components and/or altered 
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expression of enzymes responsible for their synthesis and degradation may underlie the 

epigenetic defects during embryo culture (Steele et al., 2005).  Investigation of these 

pathways should also be undertaken in cultured and in vivo-derived embryos.

 In addition, continued identification of epigenetic mechanisms, both general and 

specific to each imprinted loci will provide invaluable information.  With respect to 

specific pathways, studies such as those being conducted in our lab by Lauren Magri 

focus on determining the different epigenetic mechanisms at work in embryonic versus 

extraembryonic tissues using siRNA based screening.  Differential effects of ARTs on TE 

and ICM  cells has been observed as evidenced by loss of methylation in extraembryonic, 

but not embryonic tissues at E9.5 (Mann et al., 2004).  An understanding of the different 

regulatory molecules controlling imprint maintenance in these various cell lineages will 

provide additional insight into the identity  of the maternal-effects gene(s) disrupted by 

ARTs and their downstream effectors.  Additional investigations into the specific 

regulatory molecules at each imprinted domain are also needed.  A number of imprinted 

loci are regulated in part by DNA binding proteins such as CTCF or YY1 (Kim et al., 

2007; Kim and Kim, 2008; Li et al., 2008; Kim et al., 2009; Nativio et al., 2009). 

Identification of genes and proteins such as these, necessary for imprint maintenance 

across multiple imprinted domains provide additional candidates for the maternal-effects 

gene(s).  Knowledge of these specific mechanisms will facilitate the development of 

targeted therapies aimed at correcting those pathways disrupted by ARTs.

 With respect  to rates of embryo development and metabolism, the quiet embryo 

hypothesis states that embryos with the greatest developmental potential exhibit a lower 
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level of metabolic activity (Leese, 2002).  A more thorough investigation of the metabolic 

differences between embryos that maintain genomic imprinting and those that do not 

should be undertaken.  Studies evaluating the quiet embryo hypothesis employed a 

technique for profiling metabolic byproducts such as amino acids, pyruvate, and glucose, 

and correlated this with embryo viability.  Similar studies correlating profiles of the above 

metabolic products with genomic imprinting will help to further clarify the relationship 

reported in these studies.  

6.4.3  Application to the Human Clinic

 Strict guidelines for clinical trials, elucidating side effects, toxicity levels and 

safety  in specific patient populations have been put in place for the development of 

medications and medical techniques used to treat human disease, however a rigorous 

examination of techniques used in the treatment of infertility  is lacking.  As different 

human clinics employ a wide variety  of treatment programs including the number and 

dosage of FSH injections, gonadotropin receptor hormone agonists or antagonists, and the 

conditions used for oocyte and embryo culture and in vitro fertilization, standardized 

comparisons between centers and in turn large-scale trials remain difficult.  Significant 

advancements in the field leading to increase safety  and efficacy of ARTs will need to 

come from studies of human embryos.  While prospective studies are likely not morally 

defensible, or practically possible, more detailed record-keeping of protocols employed 
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during fertility treatments will facilitate retrospective studies which have already, and will 

continue to provide invaluable information.  

 Advanced maternal age and intrinsic subfertility  of the couples must  be taken into 

consideration when evaluating fertility  treatment outcomes, including detailed analysis of 

maternal and paternal epigenomes to clarify the role of subfertility  in adverse events 

following ARTs.  Male infertility  has begun to emerge as an important factor with respect 

to epigenetic abnormalities following ART.  Loss of imprinting at certain key loci was 

observed more frequently  in men with oligozoospermia than in those with normal semen 

(Marques et al., 2004), and for some embryos, displaying aberrant genomic imprinting 

following embryo culture, aberrant methylation was present in sperm prior to 

manipulation in culture (Kobayashi et al., 2009).  Moreover, detailed follow up of the 

health of children born through ARTs is necessary moving forward.  This will become 

especially crucial in the upcoming decades, as the first wave of ART-born children 

become older and into the age where conditions such as heart disease, diabetes and cancer 

begin to emerge.

 Since loss of genomic imprinting following embryo culture is stochastic, but not 

random, and distinct  groups of embryos are more likely than others to show severe 

imprinting defects, further investigations should focus on determining additional non-

invasive characteristics that correlate with the epigenetic health of the preimplantation 

embryo.  Correlation of other characteristics routinely  evaluated in the embryo such as 

degree of fragmentation and blastomere size (Graham et al., 2000; Scott et al., 2000; 

Nagy et al., 2003; Borini et al., 2005) with genomic imprinting in cleavage stage embryos 
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and blastocysts may  reveal additional ways to identify embryos with preserved genomic 

imprints.  

 Lastly, in the human clinic, the measure of a successful ART cycle is a clinical 

pregnancy, and correlation of imprinting status with implantation and pregnancy rates has 

not been done.  Studies such as these are necessary to solidify the importance of the 

epigenetic status of the embryo with respect to clinical practice.

6.5 Conclusions

 Assisted reproductive technologies are important medical treatments that have 

enabled previously  infertile couples to achieve successful pregnancies, and produce 

biological children.  However, while these techniques are, on the whole, very safe 

procedures, it is important to realize that the manipulation of gametes and embryos is not 

without risks and potential consequences.  Some of the consequences identified to date 

include an increased incidence of imprinting disorders, along with low birth weight and 

prematurity, and the long term effects on adult  health have yet to be fully  determined.  

The studies presented in this thesis further elucidate the effects of two of the most 

common ARTs, superovulation and embryo culture, on genomic imprinting.  We have 

determined that superovulation alone can have a significant impact on genomic 

imprinting at multiple loci, and that this effect worsens with increased dose of hormones.  

We have also demonstrated that embryo culture, in media used today in the human clinic, 

results in disruption of genomic imprinting at multiple loci.  We also show that the effects 
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of superovulation and genomic imprinting are additive; a greater number of embryos and 

imprinted loci are affected following multiple ARTs than with the use of a single 

intervention, suggesting that both techniques disrupt  the same overall mechanisms.  

Lastly, we show that embryos displaying moderate rates of development are most similar 

to in vivo-derived embryos, a finding that supports the quiet  embryo hypothesis (Leese, 

2002), and that will hopefully  prompt further exploration into correlation of non-invasive 

parameters with the epigenetic health of embryos in the human clinic.  It  will be up to 

those pursuing further research in this field to elucidate the mechanisms by  which 

environmental insult affects the epigenetic health of the embryo, to determine accurate, 

repeatable and non-invasive techniques to detect these compromised embryos, and to 

continue to improve our current techniques to minimize the amount of adaptation that 

embryos will require to survive and grow outside the female reproductive tract.  The 

ultimate goal of these studies is a decreased incidence of disease and improved long-term 

health of children born following ARTs.
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Appendices

Appendix 1: Single Embryo Methodology

Limitations of the blastocyst

 The analysis of the imprinted methylation status of individual blastocysts has proved 

challenging due to the very  small amounts of DNA present.  Mouse blastocysts on 

average contain 64 cells but we have found that this can range from 20-120 cells, Each 

cell contains approximately  6 pg of genomic DNA.  Each blastocyst will therefore contain 

120-720 pg of genomic DNA.  This amount of DNA is a barrier to DNA isolation and 

PCR amplification. Furthermore for methylation analyses, bisulfite treatment of genomic 

DNA is a relatively  harsh technique, during which DNA degradation will occur. To get  an 

accurate picture of the methylation status of an imprinting center, information from 

approximately 10 different alleles of both the maternal and paternal alleles is necessary. 

Thus, methodology for the analysis of DNA methylation in blastocyst-stage embryos 

must overcome all of these challenges. Simply stated, it must protect  the DNA from 

degradation, efficiently isolate DNA, and amplify the small amount of DNA remaining to 

a detectable level while still maintaining enough variation to recover the necessary 

number of maternal and paternal DNA strands. On top of this, our goal is to recover both 

DNA and RNA from individual blastocysts to determine both imprinted methylation and 

expression status in the same embryo.

262



Bisulfite Conversion

 The first step  in the development of the technique was to optimize the bisulfite 

conversion i.e. to ensure complete conversion of unmethylated cytosines (>85%) while 

maintaining the integrity and quantity  of DNA. We first employed a pre-released bisulfite 

conversion kit, the EZ-DNA Methylation Kit (Zymo Research), asserting to be the most 

sensitive bisulfite kit.  Multiple conversion times and temperatures were tested, and 

optimized parameters were found to be 50°C and 3.5 hours, respectively.  While 

amplification from all four genes using a nested PCR strategy was possible with this kit, it 

was inconsistent.  We concluded that this kit resulted in insufficient recovery  of DNA to 

consistently recover PCR products for multiple genes.  Our next attempt used a modified 

technique in which DNA was treated with sodium bisulfite while embedded in an agarose 

bead in an effort to protect the DNA from degradation. DNA was then isolated from the 

agarose bead using the Qiagen gel extraction buffer (Buffer QG, Qiagen) followed by 

DNA isolation using the columns provided in the EZ-DNA methylation kit.  Nested PCR 

was performed after bisulfite treatment using this method and it was determined that 

amplification of PCR product from all four genes was repeatable, although too little 

DNA was recovered to allow for amplification of multiple alleles of each imprinting 

center.  Furthermore, an insufficient number of clones were obtained for each imprinting 

center 

 While working on a separate project that used the Methyl Detector Kit (Active 

Motif) for large cell numbers, I performed multiple elutions as less than the expected 
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amount of DNA was recovered. I determined that large amounts of DNA remained in the 

column after the first, second and even the third DNA elution.  This prompted us to 

consider that  DNA recovery  from the EZ-DNA columns was suboptimal.  A new protocol 

was developed in which following bisulfite conversion in the agarose bead, the bead itself 

was split  and added to individual PCR reactions for each gene.  We determined via PCR 

followed by allele- and methylation-specific restriction digest, that this method allowed 

for sufficient DNA recovery for both parental alleles of all imprinting centers of interest 

to be PCR amplified and a sufficient number of clones to be obtained for sequence 

analysis.

PCR Optimization

 Typically following bisulfite mutagenesis, a nested PCR is performed to enrich the 

region of interest and allow for amplification of many  DNA strands of each imprinting 

center.  In the first round, primers are specific for a larger area encompassing a region 

within the imprinting center of interest.  In the second round, primers are designed within 

the enriched sequence to generate a smaller final PCR product.  As a diagnostic, 

following the nested PCR, samples are digested using restriction enzymes that cut  the 

methylated allele but not the unmethylated allele to ensure enough variability in the 

amplified sequences.  It was found that using the agarose bead method followed by 

column DNA extraction, PCR bias was observed for all genes tested; either the majority 

of alleles obtained were methylated or unmethylated.  Subsequent PCR optimization was 

performed.  Parameters that were changed include: multiplex or individual PCR, 
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annealing time, annealing temperatures, extension time, extension temperatures, number 

of cycles, volume and type of elution buffer used in EZ-DNA column, volume of starting 

material added to PCR reactions, primer concentrations, MgCl2 concentrations, presence 

or absence of DMSO, and total PCR reaction volume.  Multiple gradient PCRs were 

performed for individual genes as well as various combinations of multiplexed genes.  

The optimal state of each of the above parameters was obtained. Optimization of the 

nested PCR in combination with the agarose bead bisulfite conversion method produced a 

sufficient numbers of clones for sequencing.

Crossover Events

 Crossover events are thought to occur during PCR amplification when there is a 

high concentration of very similar sequences, and the annealing temperature of the PCR 

reaction is such that these similar sequence can bind to one another.  After receiving 

sequence data for the agarose bead protocol alone, multiple crossover events were 

observed in Snrpn, H19 and Peg3. To alleviate this problem, annealing temperatures were 

increased for first round PCR to increase stringency and prevent binding of similar 

sequences. Increasing the annealing temperature of the first round PCR of Snrpn, H19 

and Peg3 resulted in decreased crossover events and successful recovery of sufficient 

numbers of sequences.

Cloning of PCR Products
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 Once DNA is isolated and PCR amplified, we initially  employed a clean-up step 

prior to cloning.  Following second round PCR, gel extraction of the desired bands was 

performed using the Qiagen Gel Extraction Kit (Qiagen), then the extracted DNA was 

TA-cloned.  Our subsequent analysis determined that gel extraction decreased the 

variability of DNA strands recovered and introduced a bias towards the unmethylated 

alleles.  To resolve this issue, amplified DNA was cloned directly from the 2nd round PCR 

product. 

 One problem arising from the direct cloning of PCR products was a decrease in the 

number of correct inserts recovered. This is due to primer-dimer and non-specific 

amplicon insertion.  To reduce the number of unnecessary  miniplasmid preparations 

(minipreps), a strategy for screening colonies was developed. Individual colonies were 

picked, quickly dipped into the PCR reaction, and put into tubes containing LB/AMP to 

grow up overnight.  M13 forward and reverse primers that flank the insertion site were 

used to amplify the cloned insert then agarose gel analysis was used to assess the size of 

the inserted DNA. Those colonies that did not contain the appropriate size insert were 

discarded while minipreps were performed for colonies with the appropriately  sized 

insert.  This strategy worked well for all genes except Snrpn, whose recovery of correct 

amplicon sizes decreased to <30% due to the lack of gel extraction of DNA. In lieu of 

column purification, PCR reactions were electrophoresed on an agarose gel, and thin 

bands containing the amplicon of interest were excised.  Gel fragments were incubated 

overnight in TE to allow DNA to diffuse from the gel.  The DNA solution was then used 

directly  for ligation and subsequent transformation.  Nearly all clones obtained through 
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this method contained the appropriate sized insert.

 To develop a more high-throughput protocol, we bypassed the minipreps, and 

amplicons obtained from bacterial colonies using M13 primers were sent directly to be 

sequenced. No cross contamination, and good chromatogram results were observed. Thus 

this method is an equally accurate way to obtain sequence information from individual 

colonies. Minipreps are no longer performed before clones were sent for sequencing. 

Instead following nested PCR and gel electrophoresis, DNA isolated via gel diffusion was 

ligated and transformed, bacterial colonies were picked directly into a PCR reaction 

containing M13 primers, then the resulting amplicon was sent directly for sequencing.

Analysis of Methylation and Allele-Specific Expression

 After it was found that enough clones of both methylated and unmethylated alleles 

from all 4 genes could be obtained from individual blastocysts, we developed a protocol 

to analyze both expression and methylation from individual blastocysts.  The protocol 

previously  developed isolated RNA and produced a reusable cDNA-Dynabead library 

(Dynal Biotech).  To combine the protocols for DNA isolation/bisulfite conversion and 

RNA isolation/cDNA-Dynabead library synthesis, I made the following modifications. 

Individual blastocysts were lysed in Dynabead lysis buffer using a decreased volume of 

lysis buffer, an increased time for lysis and annealing of RNA to Dynabeads, and 

modified the lysis procedure by combining vortexing and mixing followed by  gentle 

centrifugation of samples.  Lastly, since the Dynal lysis buffer does not completely and 

consistently break open the nuclear membrane, after lysis and annealing of RNA to 
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Dynabeads as described above, supernatant containing cell debris and nuclei were 

removed to a new tube.  To liberated genomic DNA, Protease K and NP40 (final 

concentration of 0.1%) were added and the samples were incubated for 1 hour at 50°C.  

Bisulfite conversion and cDNA-Dynabead library  synthesis were unchanged for the rest 

of the protocol.  I have determined that there was no difference in data obtained for 

imprinted methylation and expression using this new protocol versus either protocol 

alone.

This protocol was employed for embryo analysis in Chapter 2-5.  The final protocol with 

notes can be found below.

Full Protocol: Single Embryo Analysis of Methylation and Expression 

(A) Pre-Wash Dynabeads

1. Vortex Dynabeads on medium speed to re-suspend. Change gloves.

2. Label one 0.2 mL thin walled PCR tube per sample plus an additional tube for a 

negative control.

3. Transfer 10 µl of Dynabeads to each 0.2 mL thin walled PCR tube.

4. Place into Magnetic Particle Concentrator (MPC). Remove supernatant.

5. Add 100 µl Dynabead Lysis Buffer to each sample.

6. Vortex on low for 5-10 seconds, place on MPC, then remove buffer. Repeat.

(B) Embryo Lysis
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1. Retrieve individually frozen embryos from storage at -80oC (see Note 2).

2. Centrifuge briefly to ensure embryo is at bottom of tube (~5 seconds at 

10,000-13,000 rpm).

3. Add 10 µl of Dynabead lysis buffer to each sample.

4. Prior to adding embryo, place in MPC and remove lysis buffer from pre-washed 

Dynabeads from Step 6 above.

5. Transfer entire contents of lysed embryo sample from Step 3 to pre-washed 

Dynabeads.

6. Mix gently by flicking, then centrifuge briefly at 4000 rpm.

7. Incubate with slow agitation on vortex for 5-10 min at room temperature to allow 

for hybridization of mRNA to Dynabead.

8. Centrifuge briefly at 4000 rpm.

9. Place mRNA-Dynabead tube in MPC. Remove supernatant containing DNA to 

original embryo tubes, taking care not to remove any mRNA-Dynabeads. 

10. Add 200 µL of Dynabead Wash Buffer A to mRNA-Dynabeads. Place in MPC and 

set aside until 3.3 RNA isolation.

11. Centrifuge tubes containing DNA/supernatant for 5-10 seconds at 13,000 rpm to 

remove bubbles.

12. Add 1 µl Protease K (Sigma, Oakville, Canada) and 1 µl of 10% Igepal (see Note 

3) to each DNA/supernatant tube.

13.  Centrifuge briefly at 13,000 rpm to remove any bubbles.
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14. Add 300 µl of DNAse-, RNAse- and protease-free mineral oil (Sigma, Oakville, 

Canada) to each tube (see Note 4).

15.  Lyse embryo by incubating for 1 hour in waterbath at 50oC.

(C) RNA Isolation

1. Retrieve mRNA-Dynabead tube containing 200 µL of Wash Buffer A.

2. Vortex on low speed for approximately 5 seconds. Centrifuge briefly. Place in 

MPC, then remove Wash.

3. Repeat washing step with Wash Buffer A once, and Wash Buffer B three times.

(D) Reverse Transcription and Generation of a Solid-Phase cDNA Library (see Note 5)

1. Prepare reverse transcription by  mixing 2 µl 5x First Strand Buffer, 1 µl 0.1M 

DTT, 0.5 µl 10 mM dNTP, 0.5 µl 40 units/µl RNaseOut (Invitrogen, Burlington, 

Canada), 0.25 µl Superscript II (Invitrogen, Burlington, Canada), 5.75 µl H2O, for 

a 10 µl reaction.

2. Remove all of Wash Buffer B from mRNA-Dynabead tube.

3. Add 10 µl of RT mix to each sample.

4. Mix gently by flicking.

5. Centrifuge briefly. Repeat mixing and spin.

6. Incubate for 1-2 hours at 42oC rotating in hybridization oven. 

(E) Agarose Bead Embedding of DNA
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1. Remove Protease K-treated DNA tubes from waterbath. Place in heating block at 

> 95oC.

2. Add 24 µl 2% LMP agarose (pre-warmed at >95oC) under mineral oil.

3. Mix gently by pipetting. Ensure the bead is well mixed.

4. Incubate for 3 minutes > 95oC to inactivate the Protease K.

5. Incubate for 10 minutes on ice to allow agarose bead to harden. 

(F) Denaturation of DNA

1. Remove oil from chilled, hardened agarose bead.

2. Add 1 mL 0.1 M NaOH to each tube. Invert 5-6 times (see Note 6).

3. Incubate for 15 minutes at 37oC in a waterbath, inverting every 3-4 min.

(G) Bisulfite Treatment of DNA

1. Spin gently (< 4000 rpm) (see Note 7).

2. Remove NaOH solution.

3. Add 500 µl of Bisulfite Solution.

4. Add 300 µl of mineral oil.  Ensure that agarose bead is floating in solution (see 

Note 8).

5. Incubate at 50oC in a waterbath for 3.5 hours (see Note 1).

(H) Clean-up of cDNA-Dynabead Library

1. Remove cDNA-Dynabead samples from hybridization oven.
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2.  Centrifuge briefly then place in MPC.

3. Remove all RT mix.

4. Add 10 µl of ITT Buffer, flick gently  to mix, centrifuge briefly, place in MPC, 

remove ITT Buffer. Repeat.

5. Add 10 µl of ITT Buffer, flick gently to mix, centrifuge briefly.

6. Incubate 1 minute at 95oC in block of pre-warmed PCR machine.

7. Working with one sample at a time, centrifuge briefly, place in MPC, remove ITT 

buffer.

8. Add 100 µl of ITT Buffer, flick gently  to mix, centrifuge briefly, place in MPC, 

remove ITT Buffer. Repeat.

9. Store cDNA-Dynabead Library at 4oC (see Note 9)

(I) Second strand synthesis

1.  Remove cDNA-Dynabead library from storage at 4oC, add 100 µl of ITT Buffer, 

flick gently to mix, centrifuge briefly, place in MPC, remove ITT Buffer. Repeat.

2. Prepare separate forward and reverse reactions according to protocols for your 

gene of interest.

3. Place cDNA-Dynabead library in MPC, remove ITT buffer (make sure all of 

liquid is removed).

4. Add forward reaction, flick gently to mix.  

5. Place reaction in PCR machine, run PCR program for one cycle, according to your 

gene of interest.
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6. Remove samples one at a time, spin down quickly in benchtop centrifuge, place in 

MPC and remove all of 2nd strand product to new tube.

7. Transfer an equivalent amount of forward-2nd strand mix to tubes containing pre-

aliquoted reverse Mix.

8. Run PCR as per your gene of interest.

9. Rehydrate cDNA-Dynabead library by adding 100 µl of ITT Buffer, flick gently  to 

mix, centrifuge briefly, place in MPC, remove ITT Buffer. Repeat.

10. Store cDNA-Dynabead Library at 4oC (see Note 10).

(J) Desulfonation of Bisulfite Treated DNA

1. Remove DNA-agarose tubes from 50oC waterbath.

2. Incubate on ice for 3 minutes.

3. Remove Bisulfite solution and mineral oil.

4. Centrifuge briefly (<4000 rpm).

5. Add 1 mL of TE, invert 1-2 times, centrifuge briefly then remove TE.

6. Add 1 mL 0.3 M NaOH, flick gently to mix, invert 5-6 times.

7. Incubate at 37oC in a waterbath for 15 minutes, inverting every 3-4 minutes.

8. Centrifuge briefly (<4000 rpm).

(K) Washing of Desulfonated DNA

1. Remove NaOH.

2. Add 1 mL of TE.
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3. Incubate for 5-10 minutes at room temperature with shaking.

4. Spin gently, remove TE, repeat wash once more with TE.

5. Repeat wash twice more with H2O.

6. Check pH of washes. The last H2O wash should have approximate pH 5.  If 

solution is more basic, perform two addition washes with H2O.

7. Samples are now ready for amplification of gene(s) of interest with bisulfite-

specific primers (see Note 11). 

Notes

1. BS is light sensitive. Cover Bisulfite solutions, Parts I and II, with foil until ready 

to use. Cover all samples in foil once Bisulfite mixture is added, and keep covered 

until after the 3.5 hour incubation.

2. Embryos should be stored in a minimal amount of culture medium (1-2 µL). 

3. The use of 10% Igepal is to ensure lysis of nuclear membrane as well as cell 

membrane.

4. Mineral oil is used to ensure that solutions do not evaporate and condense on the 

top of the tubes during the procedure.  

5. Generation of a solid-phase library is important as it allows for re-use of 

Dynabeads and amplification of an essentially unlimited number of genes.

6. Invert samples gently.  The agarose bead should be mixed but vigorous shaking 

can cause the agarose bead to break up into pieces.
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7. Centrifugation of the agarose bead should not exceed 4000 rpm to prevent 

breakage of agarose bead.

8. The agarose bead should be floating prior to incubation with the Bisulfite solution 

to ensure that  all sides of the agarose bead are exposed to the Bisulfite solution.  If 

the bead does not float, use a pipette tip to release it from the bottom of the tube.

9. For best results, use cDNA-Dynabead library as soon as possible.  Consistent 

amplification has been obtained for cDNA libraries stored up to 8 months.

10. Caution: Dynabeads can be easily lost  during each washing step; ensure all 

Dynabeads are localized to the magnetic side of the tube before removing any 

supernatant. Also, following repeated heating (multiple second strand syntheses), 

Dynabeads may clump. If this occurs consider performing an additional washing 

step. 

11. Set up PCR reactions. To increase PCR efficiency, add 1 µl 240 ng/ml tRNA as a 

carrier to PCR reaction. At 70oC, add to the 30 µl-agarose bead the required 

amount of water to make up 20 µl per gene(s) of interest (up to 4 genes). Mix 

agarose and water by gently pipetting. Keeping the solution at 60-70oC, mix by 

gently pipetting, then split the PCR reaction in two by  removing 12.5 µl into a 

new 0.2 mL thin walled PCR tube. Add 12.5 µl mineral oil overlay. This allows 

for two independent PCR reactions.  PCR amplification from the agarose bead 

should be performed immediately.  If this is not possible, the agarose bead can be 

stored at 4oC up  to one week. However, efficient amplification will decrease 

dramatically with each day of incubation.
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Appendix 2: Perl Program for Sequencing Analysis

 The following perl program was designed to facilitate the analysis of sequencing 

data obtained through the course of these experiments.  The initial work on the program 

was done during the Bioinformatics graduate course taught by  Dr. G. Gloor and was 

designed to read in and analyze each sequence individually.  The program was then 

expanded to all 5 genes analyzed: H19, Snrpn, Peg3, Kcnq1ot1, and Peg1/Mest.  To 

further increase the efficiency of the analysis I enlisted the help of a colleague, Mr. Robert 

Moreland, a classmate at the Schulich School of Medicine, who made some modifications 

to the program to allow for analysis of all sequences with only  one line of input code 

required, rather than one line of input per sequence.  The file entitled “Market-

Velker_Brenna_A_201106_PhD_appendix.pl”  represents the perl programming currently 

used for sequence analysis.
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Appendix 3: Supplementary Material - Chapter 2

The following figures were presented as supplemental data to the experiments presented 

in Chapter 2, published as: 

Market-Velker, B.A., Zhang, L., Magri, L.S., Bonvissuto, A.C. & Mann, M.R. Dual 

effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-

dependent manner. Hum Mol Genet 19, 36-51 (2010).
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Supplementary Figure 2.1.  Methylation of the Maternal Snrpn ICR in B6(CAST7) 
X B6 F1 Embryos Derived from Spontaneously Ovulated Females.  
Methylation status of individual DNA strands in the Snrpn ICR (maternal, CAST strands 
shown) in blastocysts derived from spontaneously ovulated females as determined by 
bisulfite mutagenesis and sequencing analysis. Unmethylated CpGs are represented as 
empty circles while methylated CpGs are depicted as filled circles.  Each line denotes an 
individual strand of DNA.  Clones with identical methylation patterns and non-CpG 
conversion rates representing the same DNA strand were included once. Each group of 
DNA strands represents data from a single embryo, with the embryo designation indicated 
at the top left.  Percent CpG methylation is indicated above each set of DNA strands, and 
was calculated as the number of methylated CpGs / total number of CpG dinucleotides. 
The region analyzed contains 15 CpGs; a base pair change in the maternal CAST allele 
eliminates CpG dinucleotide 1. 
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Supplementary Figure 2.2.  Methylation of the Maternal Peg3 DMR in B6(CAST7) 
X B6 F1 Embryos Derived from Spontaneously Ovulated Females.  
Methylation status of individual DNA strands in the Peg3 DMR (maternal, CAST strands 
shown) in blastocysts derived from spontaneously ovulated females. The region analyzed 
contains 24 CpGs. Details are as described in Supplementary Figure 2.1. 
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Supplementary Figure 2.3.  Methylation of the Maternal Kcnq1ot1 ICR in 
B6(CAST7) X B6 F1 Embryos Derived from Spontaneously Ovulated Females.  
Methylation status of individual DNA strands in the Kcnq1ot1 ICR (maternal, CAST 
strands shown) in blastocysts derived from spontaneously ovulated females.  Details are 
as described in Supplementary Figure 2.1. 
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Supplementary Figure 2.4.  Methylation of the Maternal H19 ICR in B6(CAST7) X 
B6 F1 Embryos Derived from Spontaneously Ovulated Females.  
Methylation status of individual DNA strands in the H19 ICR in blastocysts derived from 
spontaneously ovulated females. Maternal, CAST strands are shown. The region of the 
maternal CAST H19 allele analyzed contains 17 CpGs. Details are as described in 
Supplementary Figure 2.1.
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Supplementary Figure 2.5.  Methylation of the Maternal Snrpn ICR in B6 X CAST 
F1 Blastocyst Stage Embryos Derived from Spontaneously Ovulated Females.  
Methylation status of individual DNA strands in the Snrpn ICR (maternal, B6 strands 
shown) in blastocysts derived from spontaneously ovulated females. The region analyzed 
contains 16 CpGs.  Details are as described in Supplementary Figure 2.1.
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Supplementary Figure 2.6.  Methylation of the Maternal Peg3 DMR in B6 X CAST 
F1 Blastocyst Stage Embryos Derived from Spontaneously Ovulated Females.  
Methylation status of individual DNA strands in the Peg3 DMR (maternal, B6 strands 
shown) in blastocysts derived from spontaneously ovulated females. The region analyzed 
contains 23 CpGs; a polymorphism eliminates CpG 22 on the B6 allele.  Details are as 
described in Supplementary Figure 2.1. 
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Supplementary Figure 2.7.  Methylation of the Maternal Kcnq1ot1 ICR in B6 X 
CAST F1 Blastocyst Stage Embryos Derived from Spontaneously Ovulated Females.  
Methylation status of individual DNA strands in the Kcnq1ot1 ICR (maternal, B6 strands 
shown) in blastocysts derived from spontaneously ovulated females.  Details are as 
described in Supplementary Figure 2.1. E83 displayed a reverse pattern of imprinted 
methylation as indicated by the asterisk (*).  
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Supplementary Figure 2.8.  Methylation of the Maternal H19 ICR in B6 X CAST F1 

Blastocyst Stage Embryos Derived from Spontaneously Ovulated Females.  
Methylation status of individual DNA strands in the H19 upstream ICR (maternal, B6 
strands shown) in blastocysts derived from spontaneously ovulated females.  Details are 
as described in Supplementary Figure 2.1.  The region of the maternal B6 H19 allele 
analyzed contains 16 CpGs due to a polymorphism that eliminates CpG 8.
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Supplementary Figure 2.9.  Comparison of CpG Methylation Levels of the Maternal 
Snrpn ICR in Embryos Derived from Spontaneously and Induced Ovulated 
Females.  
Percent methylation at each individual CpG dinucleotide was calculated as the number of 
methylated CpGs / total number of CpG dinucleotides, and is represented graphically; top 
(yellow) embryos derived from spontaneously ovulated females; middle (green) embryos 
from low dosage superovulated females; and bottom (blue) embryos from high dosage 
superovulated females. A reduction in CpG methylation was observed in the hormone 
treatment groups. The region analyzed contains 16 CpGs. A base pair change in the 
maternal CAST allele eliminates CpG dinucleotide 1 in B6(CAST7) X B6 F1 Embryos.
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Supplementary Figure 2.10.  Comparison of CpG Methylation Levels of the 
Maternal Peg3 DMR in Embryos Derived from Spontaneously and Induced 
Ovulated Females.  
Percent methylation at each individual CpG dinucleotide was calculated as the number of 
methylated CpGs / total number of CpG dinucleotides, and is represented graphically; top 
(yellow) embryos derived from spontaneously ovulated females; middle (green) embryos 
from low dosage superovulated females; and bottom (blue) embryos from high dosage 
superovulated females. A shift in CpG methylation was observed with lower methylation 
levels in the hormone treatment groups. The region analyzed contains 23 CpGs; a 
polymorphism eliminates CpG 22 on the maternal B6 allele in B6 X CAST F1 Embryos.
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Supplementary Figure 2.11.  Comparison of CpG Methylation Levels of the 
Maternal Kcnq1ot1 ICR in Embryos Derived from Spontaneously and Induced 
Ovulated Females.  
Percent methylation at each individual CpG dinucleotide was calculated as the number of 
methylated CpGs / total number of CpG dinucleotides, and is represented graphically; top 
(yellow) embryos derived from spontaneously ovulated females; middle (green) embryos 
from low dosage superovulated females; and bottom (blue) embryos from high dosage 
superovulated females. A downward shift in CpG methylation was observed in the 
hormone treatment groups. The region analyzed contains 20 CpGs.
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Supplementary Figure 2.12.  Comparison of CpG Methylation Levels of the 
Maternal H19 ICR in Embryos Derived from Spontaneously and Induced Ovulated 
Females.  
Percent methylation at each individual CpG dinucleotide was calculated as the number of 
methylated CpGs / total number of CpG dinucleotides, and is represented graphically; top 
(yellow) embryos derived from spontaneously ovulated females; middle (green) embryos 
from low dosage superovulated females; and bottom (blue) embryos from high dosage 
superovulated females. A gain in CpG methylation was observed in the hormone 
treatment groups. The region analyzed contains 17 CpGs; a polymorphism eliminates 
CpG 8 on the maternal B6 allele in B6 X CAST F1 Embryos.
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Supplementary Figure 2.13.  Comparison of CpG Methylation Levels of the Paternal 
H19 ICR in Embryos Derived from Spontaneously and Induced Ovulated Females.  
Percent methylation at each individual CpG dinucleotide was calculated as the number of 
methylated CpGs / total number of CpG dinucleotides, and is represented graphically; top 
(yellow) embryos derived from spontaneously ovulated females; middle (green) embryos 
from low dosage superovulated females; and bottom (blue) embryos from high dosage 
superovulated females. A shift in CpG methylation was observed with lower methylation 
levels in the hormone treatment groups. The region analyzed contains 17 CpGs; a 
polymorphism eliminates CpG 8 on the paternal B6 allele in B6(CAST7) X B6 F1 
Embryos.
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Supplementary Figure 2.14.  Methylation of the Paternal H19 ICR in B6(CAST7) X 
B6 F1 Embryos Derived from Spontaneously Ovulated Females.  
Methylation status of individual DNA strands in the H19 upstream ICR (paternal, B6 
strands shown) in blastocysts derived from spontaneously ovulated females.  Details are 
as described in Supplementary Figure 2.1. The region of the paternal B6 H19 allele 
analyzed contains 16 CpGs due to a polymorphism that eliminates CpG 8.
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Supplementary Figure 2.15.  Methylation of the Paternal H19 ICR in B6 X CAST F1 
Embryos Derived from Spontaneously Ovulated Females.  
Methylation status of individual DNA strands in the H19 upstream ICR (paternal, CAST 
strands shown) in blastocysts derived from spontaneously ovulated females.  Details are 
as described in Supplementary Figure 2.1. The region of the paternal CAST H19 allele 
analyzed contains 17 CpGs.
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Supplementary Figure 2.16.  Methylation of the Paternal Snrpn ICR in B6(CAST7) 
X B6 F1 Embryos Derived from Spontaneously Ovulated Females.  
Methylation status of individual DNA strands in the Snrpn ICR (paternal, B6 strands 
shown) in blastocysts derived from spontaneously ovulated females. The region analyzed 
contains 16 CpGs. Details are as described in Supplementary Figure 2.1.
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Supplementary Figure 2.17.  Methylation of the Paternal Snrpn ICR in B6 X CAST 
F1 Embryos Derived from Spontaneously Ovulated Females.  
Methylation status of individual DNA strands in the Snrpn ICR (paternal, CAST strands 
shown) in blastocysts derived from spontaneously ovulated females. The region analyzed 
contains 15 CpGs; a base pair change in the paternal CAST allele eliminates CpG 
dinucleotide 1. Details are as described in Supplementary Figure 2.1.
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Supplementary Figure 2.18.  Methylation of the Paternal Snrpn ICR in B6(CAST7) 
X B6 F1 Embryos Derived from Low Dosage Superovulated Females.  
Methylation status of individual DNA strands in the Snrpn ICR (paternal, B6 strands 
shown) in blastocysts derived from females superovulated with a 6.25 IU hormone 
dosage. The region analyzed contains 16 CpGs. Details are as described in Supplementary 
Figure 2.1.
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Supplementary Figure 2.19.  Methylation of the Paternal Snrpn in B6(CAST7) X B6 
F1 Embryos Derived from High Dosage Superovulated Females.  
Methylation status of individual DNA strands in the Snrpn (paternal, B6 strands shown) 
in blastocysts derived from females superovulated with a 10 IU hormone dosage. The 
region analyzed contains 16 CpGs. Details are as described in Supplementary Figure 2.1.
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Supplementary Figure 2.20. Methylation of the Paternal Peg3 DMR in B6(CAST7) 
X B6 F1 Embryos Derived from Spontaneously Ovulated Females.  
Methylation status of individual DNA strands in the Peg3 DMR (paternal, B6 strands 
shown) in blastocysts derived from spontaneously ovulated females. The region analyzed 
contains 23 CpGs; a polymorphism eliminates CpG 22 on the B6 allele.  Details are as 
described in Supplementary Figure 2.1.
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Supplementary Figure 2.21. Methylation of the Paternal Peg3 DMR in B6 X CAST 
F1 Embryos Derived from Spontaneously Ovulated Females.  
Methylation status of individual DNA strands in the Peg3 DMR (paternal, CAST strands 
shown) in blastocysts derived from spontaneously ovulated females. The region analyzed 
contains 24 CpGs. Details are as described in Supplementary Figure 2.1.
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Supplementary Figure 2.22. Methylation of the Paternal Peg3 DMR in B6(CAST7) 
X B6 F1 Embryos Derived from Low Dosage Superovulated Females.  
Methylation status of individual DNA strands in the Peg3 DMR (paternal, B6 strands 
shown) in blastocysts derived from females superovulated with a 6.25 IU hormone 
dosage. The region analyzed contains 23 CpGs; a polymorphism eliminates CpG 22 on 
the B6 allele. Details are as described in Supplementary Figure 2.1.
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Supplementary Figure 2.23. Methylation of the Paternal Peg3 DMR in B6(CAST7) 
X B6 F1 Embryos Derived from High Dosage Superovulated Females.  
Methylation status of individual DNA strands in the Peg3 DMR (paternal, B6 strands 
shown) in blastocysts derived from females superovulated with a 10 IU hormone dosage. 
The region analyzed contains 23 CpGs; a polymorphism eliminates CpG 22 on the B6 
allele. Details are as described in Supplementary Figure 2.1.

300



Supplementary Figure 2.24. Methylation of the Paternal Kcnq1ot1 ICR in 
B6(CAST7) X B6 F1 Embryos Derived from Spontaneously Ovulated Females.  
Methylation status of individual DNA strands in the Kcnq1ot1ICR (paternal, B6 strands 
shown) in blastocysts derived from spontaneously ovulated females. Details are as 
described in Supplementary Figure 2.1.
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Supplementary Figure 2.25. Methylation of the Paternal Kcnq1ot1 ICR in B6 X 
CAST F1 Embryos Derived from Spontaneously Ovulated Females.  
Methylation status of individual DNA strands in the Kcnq1ot1 ICR (paternal, CAST 
strands shown) in blastocysts derived from spontaneously ovulated females. Details are as 
described in Supplementary Figure 2.1. E83 displayed a reverse pattern of imprinted 
methylation as indicated by the asterisk (*).
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Supplementary Figure 2.26. Methylation of the Paternal Kcnq1ot1 ICR in 
B6(CAST7) X B6 F1 Embryos Derived from Low Dosage Superovulated Females.  
Methylation status of individual DNA strands in the Kcnq1ot1 ICR (paternal, B6 strands 
shown) in blastocysts derived from females superovulated with a 6.25 IU hormone 
dosage. Details are as described in Supplementary Figure 2.1.
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Supplementary Figure 2.27. Methylation of the Paternal Kcnq1ot1 ICR in 
B6(CAST7) X B6 F1 Embryos Derived from High Dosage Superovulated Females. 
Methylation status of individual DNA strands in the Kcnq1ot1 ICR (paternal, B6 strands 
shown) in blastocysts derived from females superovulated with a 10 IU hormone dosage. 
Details are as described in Supplementary Figure 2.1.
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Appendix 4: Supplementary Material - Chapter 3

The following figures were presented as supplementary  data in the following peer-

reviewed article:

Market-Velker, B. A., Fernandes, A. D. and Mann, M. R. Side-by-side comparison of five 

commercial media systems in a mouse model: suboptimal in vitro culture interferes with 

imprint maintenance. Biol Reprod 83(6): 938-50 (2010)
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Supplementary Table 3.1:  Regions and Conditions for PCR Analysis for Imprinted 
Methylation and Expression
 Supplementary Table 1.  Regions and condition for PCR analyses for imprinted methylation and expression. 

Gene Accession Primer

/Probe 

Primer Sequence (5'-3') Annealing 

Temp 

Reference 

Imprinted Methylation Analysis   

H19 U19619 OF GAG TAT TTA GGA GGT ATA AGA ATT 55 Mann et al., 

  OR ATC AAA AAC TAA CAT AAA CCT CT  2004;  

  IF  GTA AGG AGA TTA TGT TTA TTT TTG G  50 Market-Velker 

  IR CCT CAT TAA TCC CAT AAC TAT  et al., 2010 

Snrpn AF081460 OF TAT GTA ATA TGA TAT AGT TTA GAA ATT AG 52 Mann et al., 

  OR AAT AAA CCC AAA TCT AAA ATA TTT TAA TC  2004; 

  IF AAT TTG TGT GAT GTT TGT AAT TAT TTG G 54 Market-Velker 

  IR ATA AAA TAC ACT TTC ACT ACT AAA ATC C  et al., 2010 

Peg3 NT_039413.7 OF TTT TGA TAA GGA GGT GTT T 50 Mann et al., 

  OR ACT CTA ATA TCC ACT ATA ATA A  2004; 

  IF AGT GTG GGT GTA TTA GAT T 53 Market-Velker 

  IR TAA CAA AAC TTC TAC ATC ATC  et al., 2010 

Imprinted Expression Analysis    

H19 AF049091 F CCT CAA GAT GAA AGA AAT GGT 55 Mann et al., 

  R AA CAC TTT ATG ATG GAA CTG C  2004 

  Sensor
a
  CCA CCT GTC GTC CAT CTC C-FL   

  Anchor  LC640-TCT GAG GGC AAC TGG GTG TGG-P   

Snrpn MMSMN F CTC CAC CAG GAA TTA GAG GC 52 Mann et al., 

  R TAT AGT TAA TGC AGT AAG AGG  2004 

  Sensor  GAA GCA TTG TAG GGG AAG AGA A-FL   

  Anchor  LC640-GGC TGA GAT TTA TCA ACT GTA TCT TAG GGT C-P   

Peg3 AF038939 F CAG GAG AAA GTT GAA GAT GCT AC 53 This study 

  R TTC GTG AAC TCT CTG GTG CT   

  Sensor
a
  CCA GAG CAC TTT TTC TCA AAT TCG-FL   

  Anchor  LC640-TGA CGG AGT GGG CAT GAA CTT CAG-P   

OF Outer Forward, OR Outer Reverse, IF Inner Forward, IR Inner Reverse, F Forward, R Reverse, 
a
Sensor and Anchor Probes were 

purchased from TIB MolBiol. 
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Supplementary Table 3.2: Ability of Media System to Support Development to the 
Blastocyst Stage

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

96 48 50 6.25 IU/KSOMaa 

98 53 54 KSOMaa 

96 54 56 Whittens 

92 49 53 P1/MB 

91 51 56 HTF 

97 70 72 Global 

100 44 44 G1.5/G2.5 

Experimental Groupa 2-Cell # Blastocystb % Blastocystc 

6.25 IU/Whittens 50 46 92 

6.25 IU/HTF 38 34 89 

6.25 IU/Global 32 31 97 

6.25 IU/P1/MB 22 19 86 

6.25 IU/G1.5/G2.5 46 44 96 

Supplementary Table 2.  Ability of media systems to support development to the blastocyst stage for 
embryos derived from spontaneously ovulated and superovulated (6.25 IU) females.   

aMultiple culture experiments were performed for each group. Data from each group were pooled.   
bDevelopment to the blastocyst stage was scored before freezing on day 4 (see Figure 1), and was 

defined as the presence of a blastocoel cavity. 
cPercent development to the blastocyst stage was calculated as # embryos developed to blastocyst 

stage / total number of embryos cultured. 
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Supplementary Table 3.3:  Gene and Imprinted Expression Analysis from Embryos 
Derived from Spontaneously Ovulated Females

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Gene 

 
# Analyzed 

 
# Expressed 

 
% Expresseda 

 
# LOI 

 
% LOIb 

 
H19 

 
68 

 
9 

 
13 

 
0 

 
0 

 
Snrpn 

 
130 

 
130 

 
100 

 
0 

 
0 

 
Peg3 

 
24 

 
23 

 
96 

 
1 

 
4 

Supplementary Table 3. Gene and imprinted expression analysis for H19, Snrpn and Peg3 from B6(CAST7) X B6 
in vivo-derived embryos from spontaneously ovulated females.   

aPercent expressed was calculated as # embryos with gene expressed / total number of embryos analyzed. 
bPercent LOI was calculated as # embryos with loss of imprinted expression / total number of embryos analyzed. 
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Supplementary Table 3.4: Statistical Analysisa of Imprinted H19 Expression 

 

 

 Superovulatedc
 

Spontaneousb
  

In Vivo Whittens KSOMaa Global HTF P1/MB G1.5/G2.5 

In Vivo  1.2 x 10-11 1.6 x 10-12 1.6 x 10-12 1.1 x 10-13 9.9 x 10-13 2.1 x 10-10 

Whittens 1.2 x 10-7  0.058 0.52 0.27 0.29 0.37 

KSOMaa 3.5 x 10-11 0.52  0.76 0.51 0.54 0.22 

Global 2.6 x 10-9 0.27 0.26  0.52 0.54 0.22 

HTF 8.0 x 10-5 0.18 0.0043 0.040  1.0 0.08 

P1/MB 6.8 x 10-9 0.30 0.25 0.61 0.049  0.09 

G1.5/G2.5 8.3 x 10-10 0.094 0.64 0.34 0.0096 0.32  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Table 4. Statistical analysis
a
 of imprinted H19 expression between in vivo-derived and cultured 

embryos for spontaneous and superovulated treatment.   

aFisher’s exact test was used to compute the significance in number of embryos with imprinted and nonimprinted H19 

expression between groups. P< 0.05 was considered statistically significant. 
bPurple, bottom left half, Spontaneously ovulated versus spontaneously ovulated treatment. 
cPink, top right half, Superovulated versus superovulated treatment. 
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Supplementary Table 3.4: Statistical Analysisa of H19 ExpressionSupplementary Table 5. Statistical analysis
a
 of imprinted H19 expression between in vivo-derived and  

cultured embryos for spontaneous and superovulated treatment.   
 

 Superovulatedc
 

Spontaneousb
  

In Vivo Whittens KSOMaa Global HTF P1/MB G1.5/G2.5 

In Vivo  0.00005 0.00005 0.0003 0.00014 0.0001 0.0008 

Whittens 0.029  0.17 0.36 0.5 0.59 0.24 

KSOMaa 0.002 0.65  0.36 0.5 0.59 0.24 

Global 0.009 0.38 0.38  0.5 0.43 0.5 

HTF 0.018 0.48 0.33 0.56  0.57 0.37 

P1/MB 0.007 0.32 0.44 0.56 0.5  0.31 

G1.5/G2.5 0.029 0.6 0.21 0.41 0.52 0.36  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

aFisher’s exact test was used to compute the significance in number of embryos with and without H19 expression 

between groups. P< 0.05 was considered statistically significant. 
bPurple, bottom left half, Spontaneously ovulated versus spontaneously ovulated treatment. 
cPink, top right half, Superovulated versus superovulated treatment. 
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Supplementary Table 3.6:  Comparison of H19 Expression and Imprinted Expression
 

 

Experimental Groups 
 

Total 
 

# Expressed 
 

% Expresseda 
 

# LOI 
 

% LOIb 

 
In Vivo 

 
68 

 
9 

 
13 

 
0 

 
0 

 

Spontaneous 
Ovulation /Culture 

 
147 

 
111 

 
75 

 
52 

 
47 

 

Superovulation/ 
Culture 

 
120 

 
113 

 
94 

 
82 

 
73 

Supplementary Table 6. Comparison of percentage of embryos with H19 expression and with loss of H19 imprinted 

expression in B6(CAST7) X B6 in vivo-derived embryos from spontaneously ovulated females, and from cultured 
embryos derived from spontaneously ovulated or superovulated females. 

aPercent expressed was calculated as # embryos with H19 expression / total number of embryos analyzed. 
bPercent LOI was calculated as # embryos with loss of H19 imprinted expression / total number of embryos analyzed. 
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