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Abstract 

High-shear wet granulation is a size enlargement process commonly used by the 

pharmaceutical industry to improve powder properties for downstream processes, such 

as tabletting.  Granule growth however, is difficult to predict because the final product is 

sensitive to raw material properties and processing conditions.  Development of process 

analytical technologies (PATs) is recommended by regulators to improve process 

understanding and monitor quality online.  

This work investigates the robustness of AAEs as PAT for high-shear granulation.  

Condenser microphones suspended in the air exhaust were used to collect AAEs from 

granulation.  Applying power spectral density (PSD) analysis, trends related to wetting 

and end-point were identified between 20 and 250 Hz.  A consistent decrease in PSD 

was observed with end-point, independent of formulation, material properties and 

process parameters.  A design of experiment (DOE) showed the decrease results from 

increases in granule size and density, two critical quality attributes.  Multivariate 

analysis confirmed AAEs could be used to monitor changes in size and density online.  

AAEs were also sensitive to changes in impeller speed, spray rate and total binder 

volume, suggesting these parameters could be used to adjust processes in real-time and 

achieve desired product attributes.  The source of granulation AAEs was investigated by 

rotating spheres and wet granules of known size in stainless steel beakers.  The results 

confirmed a relationship to particle size, and revealed AAEs are generated by particle-

particle interactions.  Overall, the research supports adoption of AAEs as a PAT for high-

shear granulation to increase process knowledge and improve product quality. 
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Chapter 1   

 

1. Introduction 

High-shear wet granulation is the process by which primary powder particles are 

incorporated into larger agglomerates to facilitate downstream processing and improve 

product attributes.  The process is complex and product quality can be affected by 

variability in raw material inputs or processing parameters.  To improve process 

flexibility and product consistency, regulatory bodies are recommending the 

development of technologies for online monitoring.  This work explores the use of 

audible acoustic emissions to monitor high-shear wet granulation and detect end-point, 

where end-point is defined as the achievement of desired quality attributes.  The 

following section provides an introduction to the high-shear granulation process, 

process monitoring, audible acoustic emissions, and signal analysis.   

1.1. High-shear wet granulation 

Wet granulation is a process for size enlargement, where small primary particles are 

joined together using agitation and a liquid binder.  The purpose is to improve the 

properties of very fine cohesive powders used in products such as, pharmaceuticals, 

ceramics, detergents and fertilizers [1].  Granulation is commonly used in the 

pharmaceutical industry to prepare powders for tablet manufacturing.  Fine powders 

are granulated to improve flow during tabletting and reduce the potential for dusting.  
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The formation of granules also helps to reduce segregation and improve the content 

uniformity of the final product [2]. 

1.1.1. Granulation equipment           

There are three main types of granulators used in pharmaceutical manufacturing: 

tumbling granulators, mixer granulators and fluidized-bed granulators.  In tumbling 

granulators, such as drum and disc granulators, particles are agglomerated by a 

tumbling motion resulting from the combination of gravity and centrifugal forces.  

Tumbling granulators are able to accommodate large batch-sizes but cannot be used to 

manufacture granules smaller than 1 mm.  In mixer granulators, agglomerates are 

formed by mixing a bed of powder with an agitator while adding a liquid binder.  The 

intensity of the motion produces granules that are smaller and denser than granules 

from tumbling or fluidized-bed granulators but less spherical.  The added intensity 

reduces the amount of liquid required, leading to shorter drying times.  Examples 

include low-speed mixers, planetary mixers and high-speed mixers.  In fluidized-bed 

granulators, air is used to agitate the particles while spraying binder through a nozzle 

located above, inside, or below the powder bed.  The agitation is less aggressive than 

mechanical mixing and the granules are typically more porous [3]. 

The focus for this thesis is granulation in high-speed mixer granulators, also known as 

high-shear granulators.  High-shear granulators are used extensively in the 

pharmaceutical industry because they are capable of producing granules that are small 
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(typically less than 1 mm) and dense, making them ideal for blending and tabletting.  In 

addition, a wide range of materials can be accommodated, including cohesive or sticky 

powders, and viscous binder solutions.  High-shear granulators are available for both 

continuous and batch operation with either vertical or horizontal mixing shafts.  Figure 

1.1 shows a schematic representation of a typical high-shear granulator.  Characteristic 

features of the equipment design include a stainless steel granulator bowl and a central 

impeller blade, used to agitate the powder and promote densification.  The speed of 

rotation is typically between 60 and 800 rpm, depending on the equipment scale and 

corresponds to tip speeds of approximately 10 m/s [1].  A chopper blade may also be 

located off center to help break apart large agglomerates or promote growth of smaller 

particles.  The speed of rotation for the chopper is typically between 500 and 3500 rpm 

[1, 4].   

 

Figure 1.1 Schematic for high-shear granulator.  
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1.1.2. Powder flow in high-shear granulators 

In high-shear granulators, powder flow is initiated by the transfer of momentum from 

the impeller to the powder and propagated by a series of particle-particle and particle-

equipment collisions [5].  The flow of fine, unfluidized powder is poorly understood and 

as a result there are no generally accepted models for predicting flow patterns during 

granulation [1].  A study by Litster et al. [6] using a high-speed camera and imaging 

software, defined two flow regimes for dry powder in vertical shaft mixers, bumping and 

roping (Figure 1.2).  Bumping occurs at low impeller speeds and is characterized by 

movement of the powder bed up and down as the impeller blades pass underneath.  

The bed of powder rotates slowly but little vertical turnover is observed.  Roping occurs 

at higher impeller speeds and is characterized by a toroidal motion, where material is 

forced up the vessel wall and then collapses back down towards the centre.   

 

Figure 1.2  Flow regimes for fine, cohesive powder in a vertical-shaft mixer.  Adapted from [6]. 

Studies of flow behaviour during granulation show particle velocities and the forces 

acting on particles vary with axial, radial and tangential location, as well as binder 

volume [5, 7-9].  Saito et al. [7] used positron emission tracking to show particle velocity 
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is proportional to the speed of rotation near the impeller and significantly less near the 

surface.  They also showed there are different regions of size-dependent flow within the 

granulator.  Plank et al. [8] studied the velocity of particles at the surface using a high-

speed camera and found the velocity increases when the particles first become cohesive 

and again at the transition to dense agglomerates.  Darelius et al. [9] used a high-speed 

camera to show friction is inversely related to cohesion.  When water is added the liquid 

acts as a lubricant and friction between the powder and the wall is reduced.  As a result, 

the introduction of binder is thought to add additional complexity to granule flow 

behaviour.    

1.1.3. Granulation mechanisms 

Granulation takes place according to three different rate processes: wetting and 

nucleation, consolidation and growth, attrition and breakage (Figure 1.3).  Wetting 

refers to the initial introduction of liquid and the attempt to evenly distribute it 

throughout the blend.  Nucleation occurs when the liquid joins together nearby primary 

particles in weak structures known as nuclei.  The nuclei form the basis for granule 

growth, which occurs when particles and/or nuclei collide and stick together.  Whether 

a collision results in coalescence depends on a number of factors, including the 

mechanical properties of the granules and the availability of liquid at the granule surface 

[3, 10].  Studies show granule growth increases exponentially when the pore saturation 

reaches between 80 and 100 percent [1].  As granules grow, they also consolidate due 

to the agitation forces present with mixing.  Consolidation increases the granule 
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strength and forces excess liquid to the surface.  Agitation can also cause breakage in 

granules that are weak or poorly formed.  In addition, dried granules may undergo 

attrition or breakage during downstream processing or handling [3, 10]. 

 

Figure 1.3  Schematic of granulation rate processes.  Adapted from [10].  

1.1.4. Granule growth stages 

Given the above mentioned rate processes, granulation proceeds according to a series 

of stages.  The system starts out as a mixture of dry powder and nucleation begins once 

the liquid binder is introduced.  Nucleation is followed by granule growth, which 

typically proceeds according to either a steady growth or induction mechanism (Figure 

1.4).  Steady growth is characterized by a linear increase in granule size and has been 

observed in systems where the granules are weak and deformable.  The elastic nature of 

the granules results in large contact areas during collisions, promoting coalescence.  If 

saturation exceeds a critical level, steady growth will transition to rapid growth.  

Induction growth is characterized by a delay period, where there is relatively little 

change in granule size.  The granules are not as deformable and must consolidate until a 

sufficient amount of liquid is present on the granule surface, at which point rapid 

growth occurs.  From rapid growth, both steady and induction systems can become over 
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wet masses or slurries if saturation is continued [10, 11].  The transition from steady or 

induction growth to rapid growth and over wetting is often rapid and can be affected by 

minor changes in material inputs or process parameters.  As a result, maintaining 

consistent product attributes is often a challenge [1, 3].  Factors shown to affect granule 

growth include the initial particle size distribution, binder content, binder surface 

tension and impeller speed [10].  Development of an online system to monitor granule 

growth would help accommodate minor process variability and improve control.   

 

Figure 1.4  Comparison of steady and induction growth with increasing liquid content.  Adapted from [11].  

1.2.   Process analytical technologies 

The complexity of the high-shear granulation process makes it difficult to measure 

product quality during processing.  As a result, current pharmaceutical development and 

manufacturing practices rely on a series of offline tests to determine whether a final 

product meets quality requirements.  The FDA and other regulatory organizations, 
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however, are encouraging the development of process analytical technologies (PATs) to 

acquire process data online and build quality assurance into the manufacturing process.  

The objective is to promote increased understanding of pharmaceutical processes and 

sources of variability.  By increasing understanding it would be possible to design more 

robust manufacturing practices, where instead of placing tight controls on process 

inputs, operating parameters could be adjusted to accommodate variability and achieve 

consistent product quality [12].    

Development of PATs requires an understanding of the physical and chemical properties 

affecting product quality, as well as how these properties are influenced by changes in 

process parameters, such as impeller speed or binder volume.  A design space approach 

is recommended to understand the interaction of various input variables and process 

parameters in relation to product quality [12].  The design space is a subset of the 

knowledge space, where the knowledge space represents what is known about the 

process, including failure regions, and the design space refers to the set of operating 

situations where the final product is acceptable.  The process may be further optimized 

to define a target range for normal operation, known as the control space, but 

operation anywhere within the design space is considered acceptable from a regulatory 

standpoint (Figure 1.5) [12].  The design space is useful for understanding how a product 

performs under a variety of operating conditions, and developing a robust process 

where variability in materials, process parameters and equipment can be 

accommodated.   
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Figure 1.5  Schematic representation of the design space approach.  

A statistical approach known as Design of Experiment (DOE) is often used in conjunction 

with a design space to understand complex interactions between variables [13].  DOE 

uses statistical principles to develop objective investigations, where a number of factors 

are varied simultaneously in a controlled manner [14].  The investigations are designed 

to approximate real processes, where a number of variables are involved and individual 

effects may not be linear or additive.  The incorporation of statistics enables distinctions 

to be made between significant effects and experimental error, as well as correlative 

and causal relationships.  As a result, it is possible to identify the root cause of variability 

and how it affects the process as a whole [13]. 

A number of technologies are being developed as PAT tools for granulation, including 

power consumption, near-infrared spectroscopy (NIR), imaging, focused beam 

reflectance measurement (FBRM), stress, vibration, and acoustics.  Chapter 2 will 

provide a more detailed discussion of the application and development of these tools.  
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1.3.   Acoustic emissions 

The focus for this thesis is the development of audible acoustic emissions (AAEs) as a 

technology for monitoring high-shear wet granulation.  The term acoustics refers to the 

generation, transmission and reception of energy in the form of vibrational waves in 

matter [15].  Particle vibration can be parallel or perpendicular to the wave direction, 

classifying the wave as longitudinal or transverse, respectively.  Longitudinal waves can 

exist in any phase, but transverse waves can only propagate through solids.  Both types 

of waves can be described by the following relationship:   

c = λf  (1) 

Where c is the speed, f is the frequency and λ is the wavelength.  The speed depends on 

the elasticity and density of the matter the wave propagates through and the frequency 

is the reciprocal of the time required for one cycle of a sinusoidal tone.  Frequencies in 

the audible range, between 20 and 20,000 Hz, are known as sound waves and can be 

detected by the human ear.  Frequencies below 20 Hz are infrasonic waves and 

frequencies above 20,000 Hz are ultrasonic waves [16].  Frequencies in the audible 

range were examined in this work, based on reports from operators that they could 

hear a change in sound when granulation batches were complete.     

Acoustic emissions for granulation processes are believed to result from particle-particle 

and particle-equipment collisions, as well as the friction generated by contact and flow 
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[17-20].  Leach and Rubin [17, 18] studied ultrasonic acoustic emissions generated by 

the rotation of glass and metallic spheres between 50 µm and 3 cm in size.  The 

frequency of the ultrasonic waves was found to vary inversely with particle size and 

could be used to characterize the shape and width of the size distribution.  The 

relationship was later extended to include particles of irregular shape using gravel [19].  

Hidaka and Shimosaka [20] studied the acoustic emissions from particle flow for a group 

of steel spheres moving down an incline to show a positive correlation between the 

acoustic pressure and the macroscopic velocity of flowing particles.  The results suggest 

particle size is a primary factor in the acoustic emissions generated from granulation but 

further research is required for a complete understanding of the relationship.   

1.3.1. Acoustic sensors 

In this work, acoustic emissions from the granulation process were collected using ICP® 

(integrated circuit piezoelectric) condenser microphones.  Condenser microphones 

operate on the principles of transduction to transform sound pressure fluctuations into 

capacitance variations, which are then converted to electrical voltages.  Inside the 

sensor, a thin diaphragm is located a short distance away from a backplate, where a 

voltage is applied.  The sound waves cause the diaphragm to oscillate, changing the 

distance between the diaphragm and the backplate and generating an oscillating 

voltage that is proportional to the original pressure fluctuations.  In ICP microphones, 

the backplate is pre-polarized by an electret layer of charged particles [21].   
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The positioning of the microphone depends on the frequency of the waves being 

collected.  Ultrasonic waves attenuate significantly in air and therefore the microphone 

must be placed in contact with the equipment [22].  As a result, the detected signals are 

thought to correspond to particle-equipment collisions in the vicinity of the sensor.  

AAEs, however, propagate through air with minimal attenuation and have been 

detected using a microphone suspended in the granulator air exhaust [23].  The air 

exhaust location is advantageous because it does not require equipment contact and 

the detected signals are thought to be more representative of the overall process.   

1.3.2. Sampling 

The voltage signal acquired during granulation is a continuous analog signal.  For 

computer processing, the signal must be converted to a digital format by sampling at 

discrete time intervals.  According to the Nyquist theorem, the minimum sampling 

frequency must be at least twice the maximum frequency of the signal being acquired.  

For example, a sampling rate of at least 40,000 Hz must be used to represent data in the 

audible range, where the maximum frequency is 20,000 Hz.  The maximum frequency is 

sometimes referred to as the Nyquist frequency.  The purpose of using the Nyquist 

frequency is to prevent aliasing, or signal distortion that can occur when a continuous 

signal is reconstructed in a digit format.  Figure 1.6 shows an example of an aliased 

signal and an adequately sampled signal.  It can be seen that the frequency of the 

original signal will be misrepresented if there are any fewer than two samples per cycle 

[24].     
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Figure 1.6  Aliasing when a signal is under sampled compared to adequate sampling.  Adapted from [24].   

1.4.   Signal analysis 

Figure 1.7 shows a sample of a raw acoustic signal collected during high-shear 

granulation.  The magnitude of the signal is observed to change over time but further 

analysis is required to identify distinct features related to process behaviours.  In this 

research, a variety of signal analysis techniques were examined; however, the best 

results were achieved using a combination of the discrete Fourier transform (DFT) 

analysis and multivariate data analysis.     

 

Figure 1.7  Sample of a raw acoustic signal from a high-shear granulation process. 
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1.4.1. DFT 

Any signal can be represented in either the time-domain or the frequency-domain.  The 

time-domain representation provides information on the amplitude of the signal over 

time.  For information on the frequency content, the signal must be transformed to the 

frequency-domain using the discrete Fourier transform (DFT).  The DFT is based on 

Fourier’s theorem, which states that any waveform in the time domain can be 

reconstructed as a weighted sum of sine waves, each with a particular amplitude and 

phase.  From the DFT, it is possible to identify the individual frequency components in 

the original signal and the relative contribution of each [24].  The DFT is a complex 

number comprised of a real part, the magnitude and a complex part, the phase.  

Squaring the magnitude of each frequency component provides a measure of power, 

also known as the power spectral density (PSD).  To investigate how the PSD changes 

with time, the time-domain signal is divided into intervals of fixed length and the PSD is 

computed for each interval.  This procedure, known as windowing is useful for process 

monitoring applications because it provides information on how the acoustic signal 

changes throughout the process [25].               

1.4.2. Multivariate data analysis 

Multivariate data analysis is used to extract meaningful information from large, noisy 

datasets comprised of variables that are highly correlated.  There are two common 

types of multivariate analysis, principal component analysis (PCA) and projection to 

latent structures by means of partial least squares (PLS).  Both PCA and PLS apply the 
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principles of projection to represent multidimensional data more simply.  In PCA, the 

first step is plotting the data in a multidimensional space, such that each row in the 

initial dataset is represented by a single point (Figure 1.8, A).  The data are usually 

preprocessed by mean centering and scaling, to create a symmetrical distribution with 

similar variance.  Figure 1.8 shows an example using three variables, but the same 

approach is applicable for a higher number of variables.  When all the data has been 

plotted, the points form a cluster (Figure 1.8, B) and a straight line, known as a principal 

component can be used to approximate the data according to least squares.  The 

original data are projected onto the line and the new coordinates are known as the 

scores (Figure 1.8, C).  The weights applied to the original observations to form the 

scores are known as loadings.  The final equation for the transformation is as follows: 

X = 1x’ + TP’ + E (2) 

Where 1x’ represents the variable averages after preprocessing, T represents the scores, 

P represents the loadings, and E represents the residuals.  Additional principal 

components may be added to represent any remaining variability in the data, in which 

case the data will be projected onto a plane or hyper-plane formed by the principal 

components (Figure 1.8, D) [26].     
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Figure 1.8  Representation of multivariate projection principles.  Adapted from [26]. 

PLS is similar to PCA, except there are two datasets, X and Y.  Each dataset is plotted in a 

separate space and principal components are simultaneously fit to each.  The objective 

when fitting the principal components is to represent the data in X and Y, while also 

describing the relationship between X and Y.  As a result, there are two sets of 

equations, one for X and one for Y: 

X = 1x’ + TP’ + E  (3) 

Y = 1y’ + UC’ + F  (4) 
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Where, 1x’ and 1y’represent the variable averages after pre-processing, T and U 

represent the scores matrices, P’ and C’ represent the transposed loadings matrices, and 

E and F represent the residuals, for X and Y respectively.  PLS differs from PCA because it 

is possible to investigate the ability to predict changes in Y using the variables in X.  This 

is useful for PAT development because an online measurement, such as acoustic 

emissions can be related to process outputs, such as particle size distribution or tablet 

hardness [26].   

1.5.   Thesis objectives   

The objective of this thesis was to develop AAEs as a technology for monitoring high-

shear granulation, in accordance with the regulatory guidance objectives for PATs.  The 

objective was to not only demonstrate a relationship between changes in AAEs and the 

granulation process but also to investigate the origin of such relationships and build 

process knowledge.  In addition, it was desired to understand the robustness of the 

technology in terms of detecting changes in critical quality attributes and process 

parameters.  These objectives are addressed over the subsequent chapters, as follows: 

Chapter 2:  Provides a summary of PAT technology development for granulation.      

Chapter 3: Uses AAEs to develop process signatures for granulations with three 

formulations, using physical property measurements to confirm granulation end-point.  

A multivariate method is also developed to identify the frequency groups most relevant 
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to the granulation processes.  From the AAE profiles a consistent decrease in intensity is 

observed to coincide with granulation end-point, independent of formulation.   

Chapter 4:  Investigates the relationship between the intensity of the AAEs and particle 

size suggested in Chapter 3, by isolating emissions from particle-particle and particle-

equipment interactions.  This is accomplished by rotating spheres and granules of 

known size in stainless steel beakers, removing the potential influence of the impeller 

and water addition.  

Chapter 5:  Applies a DOE methodology to investigate the effect of changes in size and 

density on the decrease in AAEs identified in Chapter 3. In addition, multivariate 

techniques are used to assess the ability to monitor changes in size and density online 

via the AAEs. 

Chapter 6: Expands on the development of AAEs for online use by investigating the 

sensitivity of AAEs to changes in three process conditions: impeller speed, water 

addition rate, and total binder volume.   

Chapter 7: Summarizes the progress made in the development of AAEs as a PAT 

technology and discusses potential applications as well as opportunities for future work.  
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Chapter 2   

 

2. PAT development for granulation processes 

A number of technologies have been investigated for monitoring granulation online.  

The technologies range from those that monitor granule growth directly by measuring 

changes in particle size, to indirect techniques such as vibration or acoustic emission 

monitoring.  A variety of intrusive and non-intrusive sensors have been developed and 

various degrees of signal processing have been employed.  The following chapter 

summarizes the primary technologies developed for granulation monitoring: power 

consumption, near-infrared spectroscopy, imaging and focused beam reflectance 

measurements, stress and vibration, as well as acoustic emissions.   

2.1.  Power consumption 

Power consumption was one of the earliest PAT tools developed for monitoring high-

shear granulation.  Early research shows the power exerted by the impeller changes as 

the granules grow and consolidate, and the overall trend can be related to the stages of 

granulation [1-2].  Power consumption can be determined by measuring the electrical 

power consumed with a wattmeter, or by measuring the torque of the agitator.  

Measuring the electrical power is the preferred method because it is more 

straightforward and can be applied to mixers of any size or scale [1].  Comparisons of 

the two methods show there is no significant difference between the techniques [1, 3].  
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A representative power consumption profile is shown in Figure 2.1 along with the 

associated granulation stages, as defined by Leuenberger et al. [2].  The profile was 

divided by drawing tangents to the curves and identifying the points where they 

intersect.  Stage I corresponds to the start of wetting, where there is little growth and as 

a result the power consumption remains relatively constant; stage II corresponds to the 

start of agglomeration and an increase in power consumption; stage III represents the 

achievement of useful granules and a plateau in power consumption; stage IV 

corresponds to over wetting and fluctuations in power consumption; and stage V 

represents the transition to a suspension and a decrease in power consumption.  The 

primary feature of interest is the plateau in stage III, which was shown to correspond to 

granulation end-point and the achievement of ideal granule properties, as defined by 

measurements of size distribution, bulk and tap density, flow properties and friability.  

In addition, the resulting tablets were shown to have optimal hardness, disintegration, 

friability and weight characteristics [1].  Bier et al. [1] demonstrated the scalability of the 

technique by acquiring measurements for five different types of granulators.  Some 

differences were noted in the power consumption profiles but the ratio of granulating 

liquid to batch size was constant at the transitions points for stages II, III and IV [1].   
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Figure 2.1  Sample power consumption profile.  Adapted from [2].    

As research expanded, it was found that a plateau did not correspond to end-point for 

all formulations [4] and signal analysis techniques were applied to extract more 

information from the power consumption measurements.  Terashita et al. [5] showed 

the minimum standard deviation between 420 and 540 s and the minimum intensity at 

5.4 Hz corresponded to granulation end-point.  Similarly, Watano et al. [6] showed the 

minimum coefficient of variation corresponded to granulation end-point and was 

consistent with a narrower size distribution.  In work by Laicher et al. [7] and Holm et al. 

[8] the derivative was computed, generating a peak in the region where the plateau is 

usually observed.  The peak was found to be more precise for identifying end-point and 

corresponded to more homogenous particle size distributions.  However, when applying 

the peak detection method to formulations with varying ratios of lactose and corn 

starch, Holm et al. [8] found it was only possible to identify the beginning of the peak for 

formulations with low starch content.  As a result, it was preferable to use a 

predetermined level of power consumption for online end-point detection.   
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Online end-point detection was further developed in research by Betz et al. [9].  Using a 

third order polynomial approximation and the Simplex method, the turning point of the 

S-shaped increase in power consumption during stage II (Figure 2.1) was calculated.  

Through online computation it was possible to identify the turning point for 

granulations in Loedige M5 and Dionsa P10 high-shear mixers, but the approach failed 

when granulating in a Loepthien P5 planetary mixer.  For all three mixers, the maximum 

power consumption was found to correspond to 100% saturation and the maximum 

tensile strength corresponded to 90% saturation, providing a guide for monitoring 

mixture cohesiveness.  In later work, Betz et al. [10] defined a new parameter, TPR, 

which is equal to the amount of water required to reach the maximum temperature at 

130% saturation, divided by the amount of water required to reach the maximum power 

consumption at 100% saturation.  Temperature was selected to reflect interparticle 

contact and the frictional forces that arise during granulation.  The TPR was found to be 

independent of process fill and could be used to distinguish between two actives of 

different solubility.   

Temperature was also incorporated in research by Holm et al. [11] and Belohlav et al. 

[12].  Holm et al. [11] identified a non-linear relationship between heat development 

and power consumption.  The relationship was found to be relatively insensitive to 

formulation and provided an explanation for the relationship between granulation and 

power consumption.  Stress-strain measurements on moist agglomerates suggest that 

as granules become more saturated they also become more plastic and capable of 
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absorbing more energy during agitation.  The energy absorbed appears in the form of 

heat due to friction between particles, and corresponds to increases in power 

consumption and temperature.  Belohlav et al. [12] showed power consumption and 

temperature could be used to detect differences in particle size and shape for 

granulations using an active ingredient sourced from different suppliers.  In addition, it 

was possible to detect differences in granulations with the same active drawn from 

different levels of the storage container.   

Ritala et al. [13] and Knight et al. [14] both demonstrated an inverse relationship 

between power consumption and porosity.  Knight et al. [14] showed the relationship is 

due to an increase in surface wetness with decreasing porosity, as more energy is 

required to overcome the viscous and capillary forces present with wetting.  The results 

agree with findings by Bouwman et al. [15], where torque was shown to increase 

significantly with size for wet MCC granules, while for dry granules the increase was 

insignificant.  In addition, the increase in torque was shown to decrease when the wet 

granules were coated with talc, suggesting granule stickiness contributes to the change 

in torque during granulation.   

The effects of binder viscosity and surface tension have been investigated by a number 

of researchers.  Rowe and Sadeghnejad [16] showed power consumption increases with 

binder viscosity for granulations with microcrystalline cellulose and Ritala et al. [13] 

showed power consumption was greater for granulations with higher surface tension 
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binders.  These results are in contrast to findings by Pepin et al. [17], demonstrating the 

effect of binder viscosity is negligible up to 250 mPa·s and power consumption increases 

with decreasing surface tension due to more deformable granules and consequently 

increased interparticle friction.   

Pepin et al. [18] also developed a method to estimate the over wetting point by relating 

the spreading energy of a liquid binder to power consumption.  The liquid requirement 

was calculated using the difference between the maximum power consumption at over 

wetting and the minimum power consumption during dry mixing.  A decrease in power 

consumption was observed with increasing liquid requirement.  The decrease was 

thought to result from a reduction in interparticle friction with increased lubrication 

because a greater decrease was measured for granulations with smaller particles, where 

interparticle friction is expected to be greater.   

In summary, power consumption monitoring is a relatively simple technique to 

implement; however, the relationship between power consumption measurements and 

granulation behaviour is not straightforward and depends on a number of interrelated 

variables, including formulation properties and liquid addition.   

2.2.    Near-infrared spectroscopy (NIR) 

The near-infrared spectrum results from the absorbance of light with the molecular 

vibration of hydrogen bonds.  Water absorbs strongly in the NIR region, particularly 
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between 1400 and 1450 nm, where the first overtone of the OH stretching band is 

found and between 1900 and 2000 nm, where a combination of OH stretching and OH 

bending bands are found.  The wavelength is not exact because the bands are 

influenced by the chemical and physical state of the water as well as the temperature 

[19, 20].  In addition, particle size, density and surface texture can affect the amount of 

back-reflected light [21].   

Frake et al. [22] monitored fluidized-bed granulations using a spectrophotometer with a 

fiber-optic probe positioned in the downward flow of the bed to collect spectra 

between 1100 and 2500 nm.  A peak corresponding to the OH bonds in water was 

isolated and the second derivative could be used to determine granulation end-point.  

The relationship was supported by measurements of moisture using loss on drying and 

Karl Fischer titration.  Han [23] also demonstrated a relationship between NIR spectra 

and Karl Fischer moisture for a fluidized-bed granulation.  Measurements were collected 

through a glass window, however the probe position was found to be problematic in 

cases where the powder stuck to the window.  Rantanen et al. [21, 24] showed NIR can 

be used to distinguish between dry mixing, spraying and drying for three formulations.  

They were also able to monitor differences in granule moisture content and detect 

changes in the rate of granule moistening due to variations in the humidity of the 

process air.  Miwa et al. [25] used offline NIR measurements to predict the amount of 

water required during granulation.  In a later study, the relationship was tested online, 

using the NIR measurements to stop the fluidized-bed granulation when the predicted 
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amount of water was reached.  The results showed the predicted values corresponded 

well to achievement of desired granule properties [26].  

Jorgensen et al. [27] investigated the potential for using NIR to monitor high-shear 

granulations by comparing the baseline-corrected water absorbance to measurements 

of impeller torque.  Samples were withdrawn during granulation and NIR measurements 

were collected at-line.  At the optimal liquid volume, a decrease in the slope of the NIR 

measurements was found to coincide with a plateau in the measured torque, for masses 

requiring relatively high volumes of binder liquid.  In addition, for a granulation with 

hydrate formation, an increase in the slope of the NIR measurements was found to 

correspond to an increase in the impeller torque.   The NIR features were found to occur 

slightly before the torque features and could be used online to control granule growth.  

Rantanen et al. [24] also applied NIR to high-shear granulation, using multivariate 

analysis techniques to identify three phases: mixing, spraying and wet massing from NIR 

measurements between 1120 and 1800 nm.  Modeling each phase individually, it was 

possible to determine the extent of mixing, as well as the percentage of water during 

spraying.      

The slope of the NIR spectra is thought to reflect changes in the physical properties of 

the granules, such as particle size [27].  As particle size increases, the NIR radiation can 

penetrate deeper into the material, resulting in less back-reflected light and increased 

absorption.  It is difficult to isolate this effect however, because water addition also 
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affects granule optical properties.  For example, water on the granule surface will 

absorb NIR radiation, reducing the contribution from the granule material at the water 

wavelengths [28, 29].  Rantanen et al. [28] used multivariate analysis with orthogonal 

signal correction to remove the effect of water so that information on mean granule size 

could be extracted from the NIR signal.  Luukkonen et al. [29] showed an upward 

displacement of the absorbance spectra for a high-shear granulation with increasing 

binder volume that was attributed to an increase in particle size and/or an increase in 

the amount of liquid at the granule surface.  The change in the 1460 nm absorption 

band over wetting was shown to correlate to bulk density, tablet hardness and median 

particle size, where the results for bulk density and tablet size were independent of 

impeller speed.   

NIR is a promising technique for granulation monitoring because the measurements are 

non-destructive and can be collected rapidly online [19].  In addition, the measurements 

appear to be minimally affected by equipment variables, such as impeller speed 

[27, 29].  The disadvantages of NIR are the extensive calibrations required prior to use 

and the complex analysis necessary to isolate features of interest.  In addition, the 

spectra are sensitive to the physical conditions of the sample and the measuring 

environment [19].  As a result, development is not straightforward and requires some 

degree of expertise.  
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2.3.   Imaging and focused beam reflectance measurement (FBRM) 

Technologies have been also been developed to measure changes in particle size online, 

as a means of monitoring granule growth.  The two main methods that have been 

developed are imaging and FBRM.  

2.3.1. Imaging 

Watano and Watano et al. [30-32] used an image processing system to detect end-point 

for laboratory scale fluidized-bed and high-shear granulations.  For the fluidized-bed 

granulations, images were collected by a CCD camera contained in a stainless steel 

cylinder along with optical fibers for lighting, a telephoto lens and an air purge unit to 

prevent powder adhesion.  The probe was inserted into the fluidized-bed chamber, 

above the powder and slit lighting was used to minimize granule overlapping.  The 

collected images were transformed into binary and circle pattern matching was used to 

segregate any overlapping granules before size and shape were calculated.  The particle 

size measurements were found to agree well with traditional measurements by sieve 

analysis and it was possible to detect an improvement in granule shape by computing 

circularity and the aspect ratio.  A fuzzy logic control system was also developed using 

image analysis to determine the amount of power supplied to the pump and 

consequently increasing or decreasing granule growth.  With the control system, 

granules of the desired size were produced for batches with varying ratios of lactose 

[30].   
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For the high-shear granulations, an image probe was installed in the sidewall of the 

vessel, 19.5 cm from the base, to collect images of granules displaced upwards by the 

high-speed rotation of the chopper.  Comparison with offline measurements confirmed 

the image probe was able to detect both fine particles and larger granules, as well as 

detect slow and rapid growth rates.  Measurements of granule shape were not accurate 

at the start of wetting but were shown to agree with offline measurements once 

significant granule growth began.  Online end-point control was attempted using an on-

off switch to stop the liquid feed pump based on the image processing data; however, 

the 10 s lag time for data processing led to over granulation.  Instead a fuzzy logic 

control system was implemented to stop the granulation based on the difference 

between the current and desired granule size, as well as the rate of change.  The revised 

controller was tested using four target granule sizes [31], two different actives, and 

various liquid flow rates [32].  More spherical granules were detected at lower spray 

rates, suggesting the image system could be expanded to also control granule shape 

[32].     

2.3.2. FBRM 

An FBRM measurement device consists of a laser beam coupled to the tip of an 

immersible probe by an optical fiber.  The optical fiber is rotated, moving the laser beam 

in a circular pattern focused on the granular medium [33].  When the beam intersects a 

particle, the light is scattered and some light is reflected back to a detector.  The 

tangential velocity of the beam is known and can be multiplied by the duration of the 
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reflected light pulse to determine the particle chord length.  It is unlikely the beam will 

pass directly through the centre of the particle, which is why the measurements are 

referred to as chord lengths rather than diameters [34].  Thousands of chord lengths can 

be measured per second to generate a chord length distribution and measure the 

change in particle count and size during processing [35].  

Hu et al. [36] developed an at-line technique where powder samples were withdrawn 

during fluidized-bed granulation and placed in an oil solution for measurement of the 

chord-length distribution.  The trends in the d10, d50 and d90 size profiles showed good 

agreement with the trend in wet granule size measured with a laser diffractometer, 

even though the measurement values were quantitatively different.  In addition, the 

square weighted mean particle size of the dry granules agreed well with the d50 particle 

size measurements by sieve analysis.  As a result, the at-line FBRM method was applied 

to study granule growth for a new formulation.  Measurements of chord length 

distribution were shown to detect differences in granule growth for a DOE study of 

binder concentration, spray rate and the ratio of MCC.   

For high-shear granulation, Huang et al. [35] used an FBRM probe to collect 

measurements for nine development batches and eight clinical sub-lots.  The FBRM 

probe was immersed vertically into the bed, 3 to 5 cm above the impeller, through an 

existing port in the granulator lid and a scraper attached to the probe kept the face clear 

during granulation.  After smoothing, the median moving average of the chord length 
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distribution showed distinct regions that could be used to characterize the change in 

particle size during wetting and potentially identify granulation end-point.  Further 

development is required to investigate the relationship between features in the FBRM 

profile and physical property requirements at granulation end-point and in downstream 

processes.   

One of the main challenges of using FBRM is the positioning of the probe relative to the 

flow of material.  The probe cannot measure anything further than 2 mm away and 

must be inserted into the material.  At greater distances, the laser beam is too wide and 

particle boundaries cannot be detected as precisely [37].  When Huang et al. [35] 

adjusted the depth of the probe during high-shear granulation, variability was observed 

in the wet massing profiles.  In addition, material build-up along the wall was found to 

reduce flow past the probe and resulted in misrepresentative measurements.  Huang et 

al. [35] also identified an increase in measurement noise during the wetting phase and 

emphasized the need to optimize probe position.  The increased noise may be due to 

the dependence of FBRM measurements on the optical properties of the powder and 

the surrounding medium.  When water is added to a system the index of refraction 

between the particles and the medium is lessened and the particles may not show up as 

well [37]. 

In summary, control of fluidized-bed and high-shear granulations was demonstrated 

using imaging probes.  The disadvantage of imaging is that the probe is large, 20 cm in 
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length, and equipment modification is required to position the probe inside the vessel.  

In addition, considerable expertise is required to develop a robust control system.  

FBRM measurements did not provide an accurate measurement of particle size but 

were found to represent process changes.  The primary limitation appears to be 

positioning the probe in a location where reliable measurements can be obtained.  In 

addition, further development is required to understand the relationship between the 

profile trends and physical process behaviour.   

2.4.   Stress and vibration  

A combination of intrusive and non-intrusive stress and vibration sensors have been 

investigated for monitoring changes in the forces exerted by particles as they are 

incorporated into granules.   

2.4.1. Stress 

Ohike et al. [38] inserted a probe with a spherical end into the bed of a high-shear 

granulator, 10 mm above the impeller blade.  A strain gauge was attached to the probe 

to measure the vibrations during granulation.   FFT analysis was performed on the 

vibration signal, and the change in the elemental strength of the wave at the impeller 

blade frequency (ESWF) was shown to correspond to the stages of granulation.  The 

change in ESWF was shown to be proportional to changes in the mass median particle 
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diameter for granulations with raw materials of different size, varying amounts of 

binder, and different methods of binder addition.   

Talu et al. [39] measured stress fluctuations imposed by particles during granulation in a 

Fluidized Couette Device (FCD).  The FCD consisted of two concentric cylinders, where 

the particles occupied the annulus and the inner cylinder rotated to create shearing.  

Two stress sensors were mounted in the walls of the vessel, a tangential stress sensor 

that could only detect impacts from particles larger than 1 mm and a force transducer 

that measured stresses in the normal direction for particles larger than 500 µm.  

Preliminary experiments were performed using 500 µm and 4 mm glass beads, followed 

by granulations with Loctite-495 and PEG binders.  The stress fluctuation spectra from 0 

to 6 Hz showed an increase in magnitude with increasing granule concentration that 

was confirmed using a statistical measure known as the S-statistic.  The stress 

measurements were found to be sensitive to particle size, granule concentration and 

granule strengthening and were independent of changes in bed height and shear rate.  

Stress sensors provide a direct measure of granule growth; however they are invasive 

and require equipment modification.  In addition, the size of the sensing element must 

be large enough to detect an appropriate number of granules at the largest size to avoid 

bias in the results [39].   
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2.4.2. Vibration 

Early research into vibration as a process monitoring tool was conducted by Staniforth 

et al. [40] and Staniforth and Quincey [41].  The vibration probe used by Staniforth et al. 

[40] consisted of an accelerometer positioned behind a slightly concave target plate.  

The probe was positioned on the inside of the lid of a high-shear granulator and the 

connection cables were fed in through the fluid addition port.  A specific root mean 

square (RMS) acceleration was associated with ideal granule conditions and could be 

used to detect end-point for fluid volumes between 14.8 and 16%, as well as 

accommodate changes in the impeller and chopper speeds.  Staniforth and Quincey [41] 

used a vibration probe to collect measurements for granulations in a planetary mixer.  

The probe was inserted through the side of the mixing bowl, towards the bottom of the 

vessel.  Peak velocity and peak-to-peak displacement measurements were shown to 

correspond to changes in size distribution and density during granulation but further 

development is required for precise process monitoring or end-point control.   

More recently, Daniher et al. [42] and Briens et al. [43] measured vibration non-

intrusively for granulations in 10 and 25 L high-shear granulators, using an 

accelerometer positioned on the outside of the bowl wall.  For the 10 L granulations, the 

mean frequency of the vibrations showed sensitivity to the process but with a high level 

of variability between runs [42].  At the 25 L scale, one-third octave band analysis 

identified a trend in the 140-180 Hz frequency band.  The profile showed an increase in 

the vibration intensity with binder addition and a transition to a plateau at the 
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granulation end-point [43].  The difference between the two scales was thought to be 

due to the mass of material, as greater mass would have a larger impact on the motor 

and the vibration of the bowl [42]. 

In general, non-intrusive methods are advantageous because it is easier to consistently 

position the probe and acquire reproducible measurements without the chance of 

fowling or disruption of batch flow.  With non-intrusive measurements there is an 

opportunity to further optimize the sensor position, in order to maximize the 

information in the signal and develop relationships to physical property changes during 

granulation.  

2.5. Acoustic emissions 

Acoustic emissions in the ultrasonic and audible ranges have been investigated for non-

intrusive monitoring of fluidized-bed and high-shear granulations.  For fluidized-bed 

granulations, acoustic emissions are thought to result from particle-particle and particle-

equipment collisions, friction, and fluid turbulence [44].  For high-shear granulation, 

acoustic emissions have been attributed to particle-particle and particle-equipment 

collisions, as well as friction [45]. 
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2.5.1. Fluidized-bed granulation 

Tsujimoto et al. [44] measured ultrasonic waves for fluidized-bed granulations using an 

acoustic emissions sensor with a piezoelectric transducer.  The sensor was positioned on 

the outer wall of the lower chamber, 50 mm above the distributor.  Microcrystalline 

cellulose spheres were used to calibrate the sensor at various fluidization conditions and 

a method was developed for detecting unstable fluidization conditions.  Similarly, 

Matero et al. [46] attached an ultrasonic transducer to the outside of a granulation 

chamber using silicone grease to optimize contact.  A multivariate PCA model suggested 

a relationship between the acoustic emissions and particle size and PLS models 

demonstrated an ability to predict granule water content and granule size in most cases. 

Briongos et al. [47] measured audible and infrasonic acoustic emissions for fluidized-

beds of glass ballotini beads using two condenser microphones positioned on the 

outside of the vessel chamber, at an angle of 30 degrees from the wall.  The first 

microphone was located just above the distributor and the second was located at the 

height of the bed surface.  The energy in the signal was found to be concentrated below 

200 Hz, and focusing on infrasonic frequencies between 0 and 20 Hz was found to 

minimize the effect of background noise and harmonics.  Time, frequency and state 

space analysis techniques were tested but only state space techniques were able to 

characterize the full range of fluidized-bed dynamics, including identification of the 

slugging regime.   



40 
 

 
 

2.5.2. High-shear granulation 

For high-shear granulations, Whitaker et al. [48], Papp et al. [49] and Gamble et al. [50] 

collected ultrasonic acoustic emissions using piezoelectric sensors attached to the 

bottom outer wall of granulator bowl.  Whitaker et al. [48] tested 30, 70 and 150 kHz 

sensors and found the 30 kHz sensor provided the strongest correlations to the physical 

properties of the granulation.  A multivariate PLS model showed the acoustic emissions 

were correlated to particle size and flow properties, as well as the maximum crushing 

strength of the final tablets.  The quality of the size and flow correlations however, was 

not maintained after dry screening, restricting the ability to evaluate the final properties 

of the blend prior to compression.  Papp et al. [49] showed the RMS profiles for two 

laboratory scale granulators were sensitive to changes in the acoustic emissions during 

water addition and granule growth.  Frequency analysis showed new frequencies did 

not appear with granulation but rather the intensity of the existing peaks changed.  In 

addition, multivariate PLS models demonstrated the acoustic emissions could be used to 

predict changes in moisture content, as well as the fines, midsized and coarse particle 

size fractions over granulation.  Lastly, Gamble et al. [50] attached two 650 kHz sensors 

to a laboratory scale high-shear granulator using a silicone sealant.  Acoustic emissions 

were collected for an eleven batch DOE where liquid dose rate, batch size, impeller 

speed and chopper speed were varied.  The results showed it was possible to predict the 

end-point for nine of the eleven batches, using a multivariate model developed from the 

acoustic emissions collected for a set of placebo batches.  The two batches that failed 



41 
 

 
 

corresponded to granulations at different impeller speeds, suggesting a change in 

granule velocity altered the acoustic frequencies associated with the granulations.   

In the audible range, Daniher et al. [42], Briens et al. [43] and Hansuld et al. [Chapter 3] 

collected acoustic emissions using a condenser microphone suspended at the top of the 

granulator air exhaust.  Daniher et al. [42] compared the signals collected from the air 

exhaust to signals from microphones attached to the outside of the granulator bowl and 

the motor.  The signals collected from the air exhaust were shown to contain the most 

relevant information for monitoring granulation.  From profiles of mean frequency and 

the sound pressure level for the 112 to 140 Hz octave band, it was possible to identify 

the dry mixing, wetting and end-point stages.  Briens et al. [43] examined the effect of 

scale by comparing the 10 L results to acoustic emissions from the air exhaust of a 25 L 

granulator.  The mean frequency profile for the 25 L granulations contained additional 

features that were thought to represent different mechanisms of granule growth, such 

as nucleation, growth, and breakage.  In addition, the sound pressure level for the 140 

to 180 Hz octave band was found to be the most sensitive to granulation, compared to 

the 112 to 140 Hz range identified for the 10 L granulator.  Hansuld et al. [Chapter 3] 

showed AAEs from the air exhaust can be used to monitor granulations with three 

different formulations.  Physical property measurements were used to define an end-

point range and 10 Hz total power spectral density profiles showed a distinct peak and 

transition to a decline with the achievement of ideal end-point properties.    
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The primary advantage of acoustic emission monitoring is that the measurements can 

be acquired without product contact or equipment modification.  In addition, the 

systems are relatively inexpensive to setup [48].  The main challenge is relating the 

information to relevant physical properties, as the acoustic emissions are not directly 

related to granulation attributes of interest. 
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Chapter 3   

3. Audible acoustics in high-shear granulation: Application of 

frequency filtering1 

3.1. Introduction 

Regulatory guidance on process analytical technologies (PATs) encourages the 

pharmaceutical industry to develop innovative tools for monitoring product quality and 

improving process understanding [1].  High-shear wet granulation is an integral 

pharmaceutical operation used to reduce segregation, enhance flowability and improve 

tabletting performance of powders [2, 3].  This is achieved through coalescence of 

primary particles into larger agglomerates, or granules, by spraying a liquid binder while 

applying shearing and compaction forces [2, 4].  The process is complex with a large 

number of critical variables that interact dynamically to influence final product quality, 

including: binder content, surface tension, viscosity, particle size, humidity, temperature 

and mixing speed [3, 5].  As a result, process monitoring and control are not 

straightforward, and to ensure quality there is a need to develop PATs.  To date, the 

following PATs have been investigated for granulation: power consumption/torque 

monitoring, near-infrared spectroscopy, imaging and vibration sensors [6-8]; however, 

none of these methods have been adopted in day-to-day pharmaceutical operations.  

 

                                                           
1
 A version of this chapter has been published, Int. J. Pharm., 378, 37-44 (see Appendix A for details). 
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3.1.1. Granulation monitoring using acoustic sensors 

Recent work with ultrasonic (greater than 20,000 Hz) and audible (20-20,000 Hz) 

acoustic emission sensors supports their development as PAT tools for granulation 

monitoring and control [9-12].  Whitaker et al. [9] and Papp et al. [10] attached 

ultrasonic sensors to the bottom of granulator bowls to detect acoustic emissions from 

granules contacting the bowl wall near the sensors.  Resulting profiles showed acoustic 

emissions were related to granule size distribution and powder flowability.  Audible 

acoustic emissions (AAEs) differ significantly from ultrasonic because they propagate 

through air with minimal attenuation [13] and therefore equipment contact is not 

required for detection.  Briens et al. [11] and Daniher et al. [12] showed microphones 

suspended at the top of PMA-10 and PMA-25 granulator air exhausts were sensitive to 

granulation of a lactose based placebo formulation, while microphones on the side and 

bottom of the bowl were unresponsive.  The mean frequency profile and root mean 

square sound pressure levels for one-third octave bands were found to be effective for 

identifying granulation end-point [11, 12].     

3.1.2. Multivariate analysis 

Partial least squares discriminant analysis (PLS-DA) is a form of multivariate analysis 

introduced in this work to assess the frequency content of the AAEs.  Multivariate 

analysis has been recognized in other research for its ability to handle large, noisy and 

highly correlated datasets without ill-conditioning [14].  In PLS-DA, a response matrix (Y) 

is used to classify each observation in a variable matrix (X) using pre-existing knowledge.  
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The model then seeks to simultaneously describe the structure of the X and Y matrices, 

while also explaining the relationship between X and Y.  This is accomplished by 

projecting each observation into a reduced dimensional space using linear combinations 

of the original variables.  The resulting model can be used to distinguish between the 

defined classes, such as wetting and end-point [15, 16].  The influence of each X variable 

on the model can be assessed using variable importance to projection (VIP), where a VIP 

value greater than one indicates above average significance [14, 17].  Work by Chong et 

al. [17] identified VIP as the preferred method for selecting relevant predictors and 

suggested the method is relatively insensitive to noise.  VIP has mainly been applied in 

bioinformatics to identify key variables for prediction [18-20] or classification [21, 22].    

3.1.3. Objective 

The objective was to investigate the use of AAEs for detecting granulation end-point 

with three different formulations, incorporating physical analysis to explain changes in 

the resulting profiles.  PLS-DA was examined as a method for simplifying the 

identification of key frequency groups related to granulation stage, i.e. wetting, end-

point and over-wetting. 
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3.2. Materials and methods 

3.2.1. Formulation 

The platform granule formulation consisted of mannitol (Pearlitol® 160C, Roquette), 

microcrystalline cellulose (Avicel® PH 101, FMC Biopolymer), hypromellose 2910 

(Pharmacoat® 603, Shin-Etsu Chemical Co.) and croscarmellose sodium (AcDiSol®, FMC 

Biopolymer).  Two additional formulations were prepared by replacing 71% of the 

mannitol with maize starch (Maize Starch B, Roquette) or dextrose anhydrous 

(Roquette).  The purpose of the substitutions was to vary the properties of the 

formulation by choosing starch to simulate an insoluble active and dextrose to simulate 

a soluble active.  To achieve a 60% bowl fill, the batch sizes were 2.85 kg for mannitol 

and dextrose and 2.56 kg for starch.  Magnesium stearate (HyQual®, Mallinckrodt Inc.) 

and additional croscarmellose sodium were added prior to tabletting. 

3.2.2. Granulation method 

Materials for each batch were passed through an 850 µm sieve and granulated in a Niro-

Fielder PMA-10 high-shear granulator.  The impeller (360 rpm) and chopper (3000 rpm) 

speeds were constant throughout dry mixing (5 min) and water addition (12.5 – 17 min).  

Water was added at 80 mL/min (20 psi) through a spray nozzle positioned left-of-center.  
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3.2.3. Granule analysis 

Formulator end-point 

The granulation end-point range was determined in duplicate for each formulation by 

stopping the granulation in 50-100 mL increments and analyzing the granules to 

determine if end-point had been reached.  

Particle size 

Granulations were stopped at different extents of binder addition and samples 

(approximately 20 g) were withdrawn opposite the nozzle and chopper.  Samples were 

tray dried to less than 2% loss on drying (LOD) using a GCA convection oven (80 °C).  LOD 

was determined using a Mettler Toledo Moisture Analyzer and approximately 2 g of 

sample.  Particle size distribution was measured using an ATM Sonic Sifter with a pulse 

amplitude of 9 and a 5 min sift/pulse setting.  The sieve set consisted of 150, 180, 250, 

355, 600 and 850 µm sieves and a fines collector. 

Flowability 

Granulations were stopped at different extents of binder addition and discharged from 

the granulator.  The material was divided in half by weight and one half was dried using 

a Glatt GPCG-3 fluid-bed dryer (60 °C).  Mannitol and starch granules were dried to less 

than 2% LOD and dextrose granules were dried to less than 3% LOD.  The dried granules 

were passed through a screen with round, 190 µm perforations using a Quadro 197 

comil (1500 rpm).  A 50 g sample of comilled granules was withdrawn for flowability 

analysis.  Flowability refers to the ease at which a powder flows and was measured by 
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the avalanche method using a Mercury Scientific Revolution Powder Analyzer.  The 

comilled granules (83 mL) were placed in a disk (25% fill) and rotated at 0.3 rpm.  After 

30 s of preparation time, images of the avalanching powder were taken at 10 frames per 

second until a total of 128 avalanches occurred.  The change in power (potential energy) 

for each avalanche and the avalanche time were determined from the digital images 

and used to assess granule flowability.  

Tablet compression for break load testing 

Co-milled material was blended with croscarmellose sodium and magnesium stearate in 

a 10 L bin using a Pharmatech blender.  Materials were added separately by first sieving 

through a 600 µm sieve and then blending for 18 and 3 min, respectively.  A Korsch 

XL100 tablet press, fitted with a B-turret and four alternating oval punches 

(8.73 by 17.49 mm) was used.  The press was operated at 40 rpm and a compression 

force of 28 kN.  For each compression force, a number of tablets were compressed to 

establish proper operating conditions and then 50 tablets were collected for analysis.  

Break load was measured across the face of 10 randomly selected tablets using a 

Holland C50 hardness tester.  

3.2.4. Microphone setup and data acquisition 

AAEs were collected from five different locations on the granulator, as shown in Figure 

3.1.  AAEs were acquired at 40,000 Hz using PCB Piezotronics condenser microphones 

(model 130D20) and conditioned using ICP sensor signal conditioners (PCB Piezotronics).  
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The data was logged using a National Instruments 16-bit data acquisition system and 

LabVIEW software.  40,000 Hz was selected to permit full reconstruction of the audible 

frequency range (20-20,000 Hz) without aliasing (Nyquist sampling theorem) [23].   

 

Figure 3.1  Equipment setup and microphone locations (M1-M5) for high-shear granulator. 

3.2.5. Signal processing 

Fast Fourier transform 

All data transformations and calculations were performed using Matlab 6.5.  Power 

spectral density (PSD) was computed by applying fast Fourier transform analysis to 10 s 

consecutive data segments using the PSD function (Welch’s averaged, modified 

periodogram method).   Total power spectral density (TPSD) was determined by 

summing the PSDs for each time segment over the desired frequency range between 20 

and 20,000 Hz.  Trend lines were generated in SigmaPlot by aggregating data from five 

(starch) or six (mannitol and dextrose) runs and applying Loess smoothing.  All results 

shown are for the microphone inside the air exhaust (Figure 3.1).     
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Multivariate analysis 

PLS-DA was used to analyze the frequency content of the acoustic signals using Umetrics 

SIMCA-P + 11.5 software.  The X matrix was comprised of TPSDs for 10 Hz increments 

from 20-20,000 Hz computed over 10 s time segments and the Y matrix was formed 

using ones and zeros to classify each observation as wetting, end-point or over-wet.  

Classification was based on the formulator end-point range and supporting size, 

flowability and tablet analyses.  The VIP analysis function in SIMCA-P was used to 

determine which frequency groups were most significant for describing the stages of 

granulation.   

3.3. Results 

3.3.1. Definition of end-point range  

Table 3.1 summarizes the end-point range defined for each formulation based on 

formulator, size, flowability and compression analyses.   
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Table 3.1  End-point range summary  

  Mannitol Starch Dextrose 

Technique 

Lower 
Limit 
(mL) 

Upper 
Limit 
(mL) 

Lower 
Limit 
(mL) 

Upper 
Limit 
(mL) 

Lower 
Limit 
(mL) 

Upper 
Limit 
(mL) 

Formulator 800 900 950 1150 900 1000 

Size Distribution
a
 700 1000 950 1250 900 1050 

Flowability
a
 700 - 850 1350 850 - 

Tablet Hardness
a
 - 1000 950 1250 - 1000 

End-point Range 800 900 950 1150 900 1000 

Abbreviations: (-) no value 

a
 Lower limits were assumed to be greater than the volume reported, and upper limits were assumed to 

be less than the volume reported. 

3.3.2. Size distribution 

Granule size distributions were divided into fines (less than 180 μm), midsized (180-

600 μm), and large (greater than 600 μm) fractions.  Each group was plotted versus 

binder addition and is shown in Figure 3.2 (A).  Lower and upper end-point limits were 

defined by binder volumes corresponding to between 40 and 10% fines, respectively.    

3.3.3. Flowability 

Change in flow behaviour with binder content was determined using the avalanche 

method (Figure 3.2, B).  When comparing powders, changes in avalanche power and 

time define a change in flow properties.  For each formulation, Figure 3.2 (B) shows a 

distinct change in flow properties consistent with the beginning of the formulator 

defined end-point range (Table 3.1).  For starch, an additional change was observed with 
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over-wetting, between 1250 and 1350 mL, where binder addition exceeded the upper 

formulator end-point limit.   

3.3.4. Tablet break load testing 

Tablets were compressed at 28 kN, from granules manufactured with different binder 

volumes.  The resulting break loads are plotted in Figure 3.2 (C).  For mannitol, binder 

volumes up to 950 mL yielded tablets with similar break loads.  At 1000 mL, break load 

decreased significantly indicating weaker tablets and defining 1000 mL as the upper 

end-point limit.  For starch, the break load reached a maximum between 1050 and 

1150 mL, consistent with the formulator defined end-point range.  For dextrose, the 

break load reached a maximum at 950 mL and decreased rapidly at higher binder 

volumes, supporting an upper end-point limit of less than 1000 mL.   
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Figure 3.2  A – Size fraction versus solution volume for fines (▲), midsized (▼), and large fractions (■), B – 

Cumulative total avalanche power versus avalanche time, C – Break load versus solution volume at 28 kN 

compression force.  Formulations: mannitol, starch and dextrose (left to right). 
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3.3.5. Acoustic results 

Microphone location 

Microphones were attached to the granulator at five different locations (Figure 3.1) to 

investigate different sources of sound.  The bowl wall targeted particle-equipment 

contacts, similar to previous ultrasonic work [9, 10]; the motor location was based on 

research showing impeller power consumption and torque are sensitive to granulation 

[6]; and the air exhaust targeted AAEs from the mixing and wetting process, in 

continuation of audible acoustic work by Briens et al. [11] and Daniher et al. [12].  AAEs 

collected with the microphones on the bowl and motor did not change significantly 

during granulation (Appendix B).  Both air exhaust microphones showed sensitivity to 

granulation, with profiles for the inside microphone (Figure 3.1, M2) showing higher 

magnitudes due to closer proximity to granulation AAEs and decreased interference 

from external AAEs (Appendix B).   

TPSD profiles (20-20,000 Hz) 

The 20-20,000 Hz TPSD profiles were unique for each formulation and all demonstrated 

sensitivity to granulation (Figure 3.3).  In each case, variability between runs was 

observed at the start of wetting, likely due to different particle arrangements after dry 

mixing.  Following approximately 600 mL of binder addition, run variability was reduced 

and TPSD decreased gradually through the respective end-point region for each 

formulation. 
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Figure 3.3  Total power versus solution volume from 20-20,000 Hz.  Runs defined as Run 1 (●), Run 2 (▼), 

Run 3 (■), Run 4 (), Run 5 (▲), Run 6 ( ) (mannitol and dextrose only).  End-point range defined by 

dashed vertical lines (---). 
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Frequency filtering of the 20-20,000 Hz TPSD profiles  

The full frequency TPSD profiles were divided into 50 Hz groups and information 

relevant to granulation was observed to be concentrated below 250 Hz.  The 20 to 

250 Hz region was then divided into 10 Hz groups and each TPSD profile was manually 

examined for (1) reproducibility between runs and (2) distinct maxima and minima; 

Table 3.2 summarizes the 10 Hz groups that satisfied these criteria and TPSD profiles for 

select ranges are shown in Figure 3.4.   

Table 3.2  Frequency ranges identified manually and by PLS-DA 

Mannitol Starch Dextrose 

Manual 
(Hz) 

PLS-DA 
(Hz) 

Manual 
(Hz) 

PLS-DA 
 (Hz) 

Manual 
(Hz) 

PLS-DA 
 (Hz) 

100-110* 100-110
a,

* - 30-40
b
 - 60-70

b
 

110-120 110-120
a
 80-90 80-90

a
  80-90* 80-90

a,
* 

- 130-140
b
 100-110* 100-110

a,
* 100-110* 100-110

a,
* 

- 150-160
b
 110-120* 110-120

a,
* 110-120 110-120

a
 

200-210* 200-210
a,

* - 130-140
b
 130-140 130-140

a
 

- 210-220
b
 - 150-160

b
 210-220 210-220

a
 

- 270-280
b
 - 160-170

b
 - 230-240

b
 

- 370-380
c
 200-210 200-210

a
 - 250-260

b
 

- 450-460
c
 210-220 210-220

a
 - 260-270

b
 

  - 250-260
b
 - 270-280

b
 

  - 270-280
b
 - 290-300

c
 

  - 1370-1380
c
 - 300-310

c
 

      - 310-320
c
 

     - 2970-2980
c
 

Abbreviation: (-) no value 
a
 Clear profile. 

b 
Noisy trend.  

c
 Random noise. 

*Total PSD profile shown in Figure 3.4. 
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Figure 3.4  Total power versus solution volume.  Runs defined as Run 1 (●), Run 2 (▼), Run 3 (■), Run 4 

(), Run 5 (▲), Run 6 ( ) (mannitol and dextrose only).  End-point range defined by dashed vertical lines 

(---). 
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Frequency filtering using VIP analysis of the PLS-DA models  

For each formulation, TPSD data for 10 Hz frequency groups from 20-20,000 Hz was 

used to generate a PLS-DA model for each run and VIP analysis was performed.  If the 

VIP value for a particular frequency group was greater than one for all runs, it was 

retained in the PLS-DA model.  VIP analysis was then repeated on the refined models to 

further reduce the total number of 10 Hz frequency groups (Figure 3.5).   

 

Figure 3.5  PLS-DA method for selection of key frequencies. 

The first iteration of the VIP analysis was found to reduce the number of relevant 

frequency groups by an average of 94 ± 2%, across the three formulations.  The second 

iteration provided an additional 90 ± 2% reduction, for an overall decrease of 99% for 

each formulation.  The final frequency groups are summarized in Table 3.2 and samples 

of the types of profiles observed for each formulation are shown for dextrose in Figure 

3.6.  The types of profiles are: clear profiles, with low variability between runs and 

significant detail throughout binder addition (80-90 Hz); profiles with visible trends but 
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higher run variability (230-240 Hz); and profiles with no visible relationship to 

granulation (310-320 Hz).  Since not all profile types are ideal for granulation monitoring 

and control, relevant frequency groups were identified by applying the manual selection 

criteria outlined previously (Table 3.2).   
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Figure 3.6  Total power versus solution volume for dextrose.  Runs defined as Run 1 (●), Run 2 (▼), Run 3 

(■), Run 4 (), Run 5 (▲), Run 6 ( ).  End-point range defined by dashed vertical lines (---). 
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3.4. Discussion 

Analysis of the AAEs from the three formulations builds on earlier research using a 

lactose based placebo formulation [11, 12].  Together these works demonstrate that 

AAEs collected in granulator air exhausts can be used for end-point detection with 

multiple formulations.  The 10 Hz frequency groups identified for granulation 

monitoring and control were different for each formulation; VIP analysis showed proof 

of concept as a rapid approach for identifying significant frequency groups that will 

facilitate future work with new formulations.   

3.4.1. Interpretation of acoustic results using physical property data 

The physical property data used to define granulation end-point provided a means of 

interpreting changes in the AAE profiles.  For mannitol and starch, the peaks in the end-

point region corresponded to loss of fines and growth in midsized and large granules, a 

change in flow properties, and ideal tablet properties (Figure 3.2-Figure 3.4).  For 

mannitol, wetting resulted in a predominant increase in midsized granules compared to 

large (Figure 3.2, A); suggesting large granules formed by granule-granule agglomeration 

were weak and prone to breakage.  For starch, wetting formed large and midsized 

granules at similar rates, until the material was over-wet and large granules became 

dominant (Figure 3.2, A).  Comparing the TPSD profiles (Figure 3.4) showed the peak in 

the end-point region was significantly smaller and less pronounced for mannitol than 

starch, suggesting its intensity is driven by the formation of large granules.   
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For dextrose, the final peaks occurred prior to end-point and corresponded to dominant 

fines, flow properties inconsistent with end-point flowability, and suboptimal tablet 

properties (Figure 3.2-Figure 3.4).  The reason for the disparity between dextrose and 

the other two formulations is unclear but could be the result of a different response to 

wetting.  The reduction in TPSD throughout the end-point region for all formulations is 

consistent with observations at similar frequencies for fluidized sand grains, where 

excess moisture is cited as inhibiting sound [24-27].  For dextrose, a different response 

to wetting could have resulted in AAEs becoming damped before the peak related to 

growth in large granules was reached.  Further studies are required to fully explain these 

observed differences in TPSD with formulation.   

3.4.2. Important features in the 10 Hz TPSD profiles 

Physical analysis defined three stages of granulation: 1. wetting, where binder was 

added to reach end-point; 2. end-point, where binder volumes produced optimal 

granules; and 3. over-wet, where binder volumes exceeded end-point requirements.  

Features related to both wetting and end-point stages are critical to the development of 

AAEs for online use.  The 20-20,000 Hz profiles (Figure 3.3) would not be suitable for 

monitoring the wetting stage, because variability between runs was significant.  

Breaking the profiles into 10 Hz groups however, was effective for improving run 

reproducibility and isolating distinct maxima and minima related to granulation stage 

(Table 3.2, Figure 3.4).  Peaks related to end-point would be useful for determining 
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when to stop a batch, and peaks during wetting would be useful for monitoring batch 

progress and anticipating end-point.     

Mannitol 

For mannitol, 10 Hz profiles showed the following early warning signals for end-point 

control: a local minimum 75 mL prior to end-point (100-110 Hz) and a local maximum 

100 mL prior to end-point (200-210 Hz) (Figure 3.4).  In addition, monitoring of the 

wetting stage is supported by distinct and reproducible peaks during the first 500 mL of 

binder addition in both 10 Hz profiles (Figure 3.4).   

Starch  

For identifying end-point, the 100-110 Hz and 110-120 Hz profiles (Figure 3.4) 

accentuated two features in the full frequency profile (Figure 3.3): a local minimum, 

approximately 150 mL before the end-point and a distinct peak in the end-point region.  

The minimum could be used to gauge end-point, by signaling the amount of binder 

remaining.  The peak supports online end-point detection, by providing a signal to stop 

binder addition.  Both 10 Hz profiles (Figure 3.4) also show additional local maxima and 

minima preceding the end-point region that would be suitable for assessing granulation 

progress.       

Dextrose  

For dextrose, end-point consistently coincided with the final decrease in TPSD (Figure 

3.3, Figure 3.4).  The peak preceding the decrease is accentuated in the 10 Hz TPSD 
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profiles and supports use as an early warning signal (Figure 3.4).  The 10 Hz profiles also 

support monitoring of the wetting stage, using the gradual increase to a maximum (80-

90 Hz) or the plateau followed by a gradual increase (100-110 Hz).   

Summary 

The selected 10 Hz frequency groups (Table 3.2) were different for each formulation, as 

were the corresponding TPSD profiles (Figure 3.4).  Only the starch profiles showed 

distinct peaks within the defined end-point region; however, early warning peaks 50-

100 mL prior to end-point are equally, if not more useful because they would allow time 

for response with less risk of over-wetting.  The profiles were all shown to contain 

information related to both the wetting and end-point phases, in support of ultrasonic 

work suggesting granulation does not produce new frequencies but rather alters the 

acoustic intensity of existing frequencies [10].   

3.4.3. Assessment of the PLS-DA method for identification of key frequency groups 

The formulation dependence of the key frequency groups poses a challenge for further 

development of audible acoustics as a PAT tool, since each new formulation would 

require generation and analysis of nearly 2000 new graphs.  The PLS-DA method (Figure 

3.5) was developed to simplify the review of all 10 Hz TPSD profiles (Table 3.2).  The 

ability of VIP analysis to identify frequency groups satisfying the manual selection 

criteria outlined in section 3.3.5. supports the use of the PLS-DA method for rapid 

frequency selection.  VIP analysis also identified frequency groups that did not satisfy 



69 
 

 
 

the manual selection criteria, due to the nature of the PLS-DA algorithm.  For example, 

the 230-240 Hz profiles contain features similar to 80-90 Hz (Figure 3.6) but with less 

defined peaks and higher variability between runs; therefore 230-240 Hz was likely 

identified because of a correlation with 80-90 Hz.  The 310-320 Hz profiles shows no 

apparent relationship to granulation stage and 310-320 Hz was likely selected for its 

ability to explain differences between frequency groups, rather than differences 

between granulation stages.  While profiles such as 310-320 Hz still necessitate 

application of manual selection criteria, the number of frequency groups to assess is 

considerably less and the method can be easily applied to large datasets.   

3.5. Conclusions 

Building on proof of concept work by Briens et al. [11] and Daniher et al. [12], AAEs 

collected from the granulator air exhaust were shown to contain features related to 

end-point for three different formulations.  For each formulation, formulator defined 

end-point ranges were supported by physical property analysis, allowing for objective 

interpretation of the acoustic results.  A consistent decrease in the TPSD profiles was 

found to coincide with end-point for each formulation and frequency filtering was used 

to reduce variability between runs and accentuate features that would be useful for 

online end-point detection and process monitoring.  In addition, PLS-DA demonstrated 

proof of concept as an objective method for identifying key frequency groups and may 
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be useful for the development of new formulations or scale-up activities.  Overall, the 

findings support further development of AAEs as a PAT tool.  
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Chapter 4   

4. An investigation of the relationship between audible acoustic 

emissions and particle size  

4.1. Introduction  

Acoustic emission monitoring is a non-invasive means of collecting information about a 

process.  It has been applied in the chemical, biochemical and food industries to monitor 

a diverse range of operations, including gas-liquid mixing and powder flow [1].  An 

advantage of acoustic emission monitoring is the ability to collect information in real-

time and without product contact.  In the pharmaceutical industry, acoustic emissions 

have been investigated as a process analytical technology (PAT) for monitoring batch 

operations, such as granulation.  Granulation processes are complex and depend on a 

large number of interrelated variables.  Acoustic emissions have shown potential to 

increase process understanding and provide a basis for online monitoring and control 

[2-6].  For fluidized-bed granulation, Tsujimoto et al. [2] calibrated an acoustic emissions 

sensor at various fluidization conditions using microcrystalline cellulose spheres of 

uniform size.  The results led to the development of a method for detecting the onset of 

unstable fluidization conditions.  Briongos et al. [3] identified different flow regimes for 

glass ballotini beads in a fluidized-bed granulator, by applying time, frequency and state 

space analysis to acoustic emissions.  For high-shear granulation, Briens et al. [4] 

demonstrated the potential for end-point detection using mean frequency and one-

third octave band techniques to analyze acoustic emissions collected from 10 and 25 L 
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PMA granulators.  The findings were further developed by Hansuld et al. [5] to show the 

total power spectral density (TPSD) for 10 Hz frequency groups could be used to develop 

detailed process signatures for monitoring and control.  In addition, Gamble et al. [6] 

developed a multivariate model for detecting end-point in a small-scale granulator using 

online data collected from a GranuMet XP acoustic emissions system.  

The applications for acoustic emissions are evident but little research has been done to 

understand the source of generation and why the technology is effective.  Early work by 

researchers such as Leach and Rubin [7-10] and Hidaka and Shimosaka [11] has led to 

the theory that acoustic emissions are generated by particle-particle and particle-

equipment collisions, as well as the friction produced upon contact.  Leach and Rubin 

showed the acoustic frequency is inversely related to particle size and can be used to 

characterize the shape and width of size distributions for beds of particles [7, 9].  The 

relationship was initially developed using glass and metallic spheres between 50 µm and 

3 cm, and was later extended to rigid particles of irregular shape using gravel [10].  

Hidaka and Shimosaka [11] studied acoustic emissions from particle flow, by measuring 

the impact sound from two spheres colliding on a plate and the flow noise from a group 

of steel balls moving down an incline.  A positive correlation was developed between 

the acoustic pressure and the macroscopic velocity of the flowing particles.  The works 

support a relationship between acoustic emissions and particle size but further 

investigation is required to extend the findings to the granulation process.     
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For fluidized-bed granulation, Tsujimoto et al. [2] showed the mean amplitude of the 

acoustic emissions is directly proportional to the d50 particle size and Matero et al. [12] 

utilized multivariate models to demonstrate a predictive relationship between acoustic 

emissions and particle size.  For high-shear granulation, multivariate work by Whitaker 

et al. [13] showed a positive correlation between the frequency spectrum from the last 

20 s of granulation and the mass mean particle size of the granules before dry screening.  

Similarly, Papp et al. [14] used multivariate techniques to compare final granule 

properties to the average frequency spectra and waveform data from the last 10 s of 

granulation.  A positive relationship was observed between the acoustic emissions and 

mean particle size for two pilot-scale granulators.  In addition, previous work by Hansuld 

et al. [5] suggested a correlation between the acoustic intensity and particle size, where 

an increase in particle size was shown to correspond to a higher TPSD maximum.  In all 

cases, the relationship between acoustic emissions and size is evident but there is an 

absence of studies to understand the process behaviours responsible for the observed 

results.  

In general, there is considerable research supporting a relationship between granulation 

acoustic emissions and changes in particle size but further work is required to better 

understand the origin of the correlation.  The following article focuses on understanding 

the relationship between audible acoustic emissions (AAEs) from granule shearing and 

particle size.  AAEs were generated by rotating dry MCC and sugar spheres in stainless 
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steel beakers and the effect of particle size was isolated by eliminating other potential 

sources of AAEs, such as the impeller, moisture content, and changes in density.     

4.2. Materials and methods  

4.2.1. Materials 

Four sizes of MCC spheres (Celphere), 106-212, 150-300, 500-710 and 710-850 µm, and 

seven sizes of sugar spheres (Paulaur), 177-250, 250-354, 400-500, 500-595, 595-707, 

841-1000, 1000-1190 µm were used.  The sugar spheres were a generous donation from 

L.V. Lomas Limited (Brampton).   

Wet granules were manufactured from a placebo formulation consisting of dextrose 

anhydrous (Roquette), mannitol (Pearlitol® 160C, Roquette), microcrystalline cellulose 

(Avicel® PH 101, FMC Biopolymer), hypromellose 2910 (Pharmacoat® 603, Shin-Etsu 

Chemical Co.) and croscarmellose sodium (AcDiSol®, FMC Biopolymer), for a total batch 

size of 1.8 kg.     

4.2.2. Shearing MCC and sugar spheres in stainless steel beakers 

A Lab-line orbital shaker operating at 350 rpm was used to generate a shearing motion 

for 0.15 and 1.5 kg of spheres in 1.2 and 12 L Polar Ware beakers, respectively (Figure 

4.1).  Stainless steel beakers were selected to best match the granulator bowl; however, 

the beaker surface texture was coarser and the walls were not as thick.  To reduce 
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background noise, the beakers were insulated with foam and sealed with a lid made 

from 2.5 cm polystyrene insulation.  A microphone was positioned above the spheres, 

secured by a hole in the lid, and a windscreen was used to protect the microphone face 

from dust (Dalimar Instruments Inc., Richmond Hill).  AAEs were collected in triplicate 

for each sphere size over an acquisition period of three minutes.  Attrition was shown to 

be negligible in these experiments. 

 

Figure 4.1  Equipment setup for shearing in stainless steel beakers.  Arrow indicates direction of platform 

rotation to induce shearing. 

4.2.3. Shearing MCC spheres in a granulator   

Three 2.5 kg samples of each MCC sphere size were rotated for three minutes in a Niro-

Fielder PMA-10 high-shear granulator at an impeller speed of 350 rpm.  AAEs were 

collected using a microphone positioned inside the air exhaust, 20 cm from the exhaust 

base.  

beaker wall

insulated lid

AAE sensor

spheres

foam insulation
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4.2.4. Shearing wet granules in a stainless steel beaker 

Wet granules prepared in a Niro-Fielder PMA-10 granulator were rotated in a 12 L 

beaker, following the methodology described in section 4.2.2.  The granules were 

prepared by passing the materials through an 850 µm sieve and dry mixing for 5 min at 

an impeller speed of 350 rpm and chopper setting II.  Water was added at 55 mL/min 

through a spray nozzle positioned right-of-center.  Granule size was varied by stopping 

the batches at different total binder volumes.  The total binder was varied between 250 

and 750 mL, incrementing by 100 mL per batch.  A 20 g sample was withdrawn for each 

batch and tray dried to less than 2% loss on drying using a GCA convection oven (80 °C).  

The size distribution of the dry granules was measured using an ATM Sonic Sifter with a 

pulse amplitude of 9 and a 5 min sift/pulse setting.  The sieve set consisted of 150, 180, 

250, 355, 600 and 850 µm ATM U.S. standard sieves and a fines collector.   

4.2.5. Signal collection  

AAEs were collected at 40,000 Hz using a PCB Piezotronics condenser microphone 

(model 130D20) and conditioned using an ICP sensor signal conditioner (PCB 

Piezotronics).  The signal range was optimized to ±0.5 V for the beaker experiments and 

±10 V for the granulator experiments, equating to gains of 10 and 0.5 respectively.  A 

National Instruments data acquisition system and LabVIEW 8.5 software were used for 

signal collection. 
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4.2.6.  Signal analysis 

Total power spectral density (TPSD)  

Initial data processing was performed using Matlab 6.5.  The AAE data was divided into 

10 s segments and the power spectral density was computed to convert each time 

series into a frequency spectrum.  TPSD was determined for each segment by summing 

the resulting frequency data into 10 Hz groups from 20 to 20,000 Hz.   

Multivariate analysis  

Principal component analysis (PCA) and orthogonal projection to latent structures by 

means of partial least squares (OPLS) were used to model the processed AAEs.  In PCA, a 

multidimensional dataset, X is represented by a small number of linear relationships, 

known as principal components.  The principal components are orthogonal to each 

other and together form a plane or hyper-plane.  The original data is projected onto the 

principal components to provide a representation of the systematic variation in the data 

matrix over a reduced number of dimensions.  When the observations are projected 

into the reduced dimensional space the new coordinates are known as scores and are 

represented by t.  The loadings, p describe how the original X variables are combined to 

form the new projection coordinates [15].   

The difference between PCA and OPLS is the addition of a Y variable for OPLS.  As a 

result, the principal components not only describe the relationship between the X 

variables, but also represent the relationship between X and Y.  The first principal 

component is known as the predictive component and describes the ability to predict Y 
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from X.  Additional components are known as orthogonal components and describe 

variability unrelated to Y.  The scores for X are represented by a vector, t and the scores 

for Y are represented by a vector, u.  The weights, w and c, are used to convert the 

original variables to the new projection coordinates for the X and Y matrices, 

respectively [15].  In this work, PCA and OPLS models were constructed in SIMCA-P+ 

11.5 using the 10 Hz TPSDs from 20-20,000 Hz as X and mean size as Y.  The number of 

principal components was determined by cross validation and unit variance scaling was 

used for data preprocessing, according to the default approach in SIMCA.  In addition, 

the auto-transformation function was used to achieve a normal distribution in the 

residuals.   

4.3. Results  

The relationship between the AAEs and size was explored using PCA and OPLS 

multivariate models to analyze the 10 Hz TPSDs.  AAEs were compared for two types of 

dry spheres, MCC and sugar, in two vessel sizes.  The scores, t and u, were used to 

determine whether the 10 Hz TPSDs were predictive of size and the weights, w and c, 

were used to determine whether the correlations were positive or negative.  The results 

were compared to OPLS models for MCC spheres in the granulator and wet granules in 

the 12 L beaker. 

 



81 
 

 
 

4.3.1. MCC and sugar spheres in the 1.2 and 12 L beakers 

PCA modeling of AAE data 

The PCA scores plots provided a summary of the variation in the original 10 Hz TPSDs 

using the projection coordinates for the first (t[1]) and second (t[2]) principal 

components.  For MCC and sugar spheres in the 1.2 and 12 L beakers, the observations 

separated into groups based on sphere size.  Figure 4.2 shows a representative example 

for MCC spheres in the 1.2 L beaker.  The scores plot shows the observations arranged 

in four groups, one for each sphere size.  Observations located close to one another 

have similar properties; therefore, the PCA scores show the 10 Hz TPSDs were similar for 

spheres of the same size.   

 

Figure 4.2  PCA scores plot for MCC spheres in the 1.2 L beaker, where t[1] and t[2] represent the 

projection coordinates for the first and second principal components, respectively.  

OPLS modeling of AAE and size data 

Multivariate OPLS models were used to assess the predictive relationship between the 

10 Hz TPSDs and size.  Figure 4.3 shows the projection coordinates for the 10 Hz TPSDs 
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(t[1]) versus size (u[1]), for MCC and sugar spheres in the 1.2 and 12 L beakers.   The 

observations are located along the diagonal and separated into groups based on sphere 

size, confirming the relationship between size and TPSD proposed in the PCA models.  

The proximity of the data to the diagonal indicates the relationships are linear and there 

is a strong ability to predict size from TPSD.  The relationship holds for the two different 

sphere materials and the two vessel sizes. 

 

Figure 4.3  Projection coordinates for the TPSDs (t[1]) versus projection coordinates for sphere size (u[1]), 

for MCC and sugar spheres in the 1.2 and 12 L beakers.  The observations are labeled based on sphere 

size.       

Figure 4.4 summarizes the OPLS weights used to generate the projection coordinates, t 

and u.  The weights associated with the 10 Hz TPSDs are represented by w and the 

weights associated with size are represented by c.  The combination, w*c allows the 
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weights for both types of variables to be viewed together, providing information on the 

correlation structure between the 10 Hz TPSDs and size.  Figure 4.4 shows the w*c 

values for the four experiments in a line plot.  The w*c values for the 10 Hz TPSDs from 

20 to 250 Hz are shown first (grey triangles), followed by the single w*c value for size 

(black square).  The w*c values for the 10 Hz TPSDs are mostly positive.   Since the w*c 

value for size is also positive, the majority of the 10 Hz TPSDs are positively correlated to 

size.  The 10 Hz TPSDs that are not positively correlated with size are associated with 

low frequency groups.  The low frequency groups are negatively correlated with size and 

suggest a difference in sound source compared to the frequency groups that are 

positively correlated.  

 

Figure 4.4  OPLS weights (w*c) for each 10 Hz TPSD variable () and size (), where the 10 Hz TPSDs are 

listed in kHz by starting frequency i.e. 1000-1010 Hz corresponds to 1 kHz.            
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4.3.2. MCC in the granulator 

The relationship observed between the 10 Hz TPSDs and size was extended to the 

granulator using the MCC spheres.  Figure 4.5 summarizes the projection coordinates 

and associated weights for the resulting OPLS model.  The projection coordinates, t[1] 

and u[1], show the 10 Hz TPSDs were good predictors of size when the MCC spheres 

were rotated in the granulator.  The relationship is linear, as all observations are located 

on the diagonal.  The weights, summarized in the w*c line plot, show the 10 Hz TPSDs 

were primarily positively correlated with size, except at low frequencies where negative 

correlations were observed.  The correlations are similar to those identified for the 

spheres in the 1.2 and 12 L beakers (Figure 4.3, Figure 4.4).  Additional variability was 

observed in the w*c values for frequency groups below approximately 3.5 kHz, likely 

due to additional noise from the motor and impeller for the granulator experiments.  

Overall, the agreement between the OPLS models for the beakers and the granulator 

suggests the beakers are a good approximation of the shearing motion in the 

granulator.   
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Figure 4.5  Top – Projection coordinates for the TPSDs (t[1]) versus projection coordinates for sphere size 

(u[1]), for MCC spheres in the granulator.   Bottom – OPLS weights (w*c) for each 10 Hz TPSD variable () 

and size (), where the 10 Hz TPSDs are listed in kHz by starting frequency i.e. 1000-1010 Hz corresponds 

to 1 kHz.            

4.3.3. Wet granules in the 12 L beaker 

The OPLS results in Figure 4.6 examine the relationship between AAEs and size for wet 

granules in the 12 L beaker.  The mean size for the wet granules was approximated from 

the sieve analysis of the dry granules.  The projection coordinates, t[1] and u[1], show 

the 10 Hz TPSDs  from the wet granules were good predictors of size.  The relationship is 

linear, even though the growth of granules often starts slowly and increases more 

rapidly once a critical binder volume has been reached [16].  In the OPLS model, 

nonlinearities can be identified from the spacing of the observations along the diagonal.  
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The spacing between samples is tighter towards the start of wetting, where growth was 

slow, and increases as the binder content increased and granule growth accelerated.  

The linear relationship suggests multivariate analysis can be used to simplify the 

expression of complex, nonlinear processes.  

The w*c values corresponding to the 10 Hz TPSDs are more variable for the wet granules 

than the spheres (Figure 4.6, Figure 4.4).  Strong positive correlations are observed for 

frequency groups near 0.5, 4 and 7 kHz, and the low frequency groups show negative 

correlations that are consistent with the results for the dry spheres (Figure 4.4).  The 

w*c values associated with the negative frequency groups are closest in magnitude to 

the w*c value for the size variable, indicating a significant negative correlation between 

the low frequency groups and size.  The increased variability in the high frequency 

weights may be a result of increased heterogeneity in the properties of the wet granules 

compared to the dry spheres, or frequency damping with the addition of moisture.   
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Figure 4.6  Top – Projection coordinates for the TPSDs (t[1]) versus projection coordinates for sphere size 

(u[1]), from wet granules in the 12 L beaker.  The sizes of the wet granules were approximated using the 

interpolated d50 sieve size of the dry granules.  Bottom – OPLS weights (w*c) for each 10 Hz TPSD variable 

() and size (), where the 10 Hz TPSDs are listed in kHz by starting frequency i.e. 1000-1010 Hz 

corresponds to 1 kHz.            

4.3.4. Average scores comparison for the low frequency range 

The average projection coordinates were compared based on vessel size and fill 

material, using the low frequency groups that were consistent with negative 

correlations to size.  The range was defined as 20-250 Hz, to encompass the frequency 

groups previously identified as the most relevant for granulation [5].  The top of Figure 

4.7 compares the average OPLS scores for MCC in the 1.2 L beaker, 12 L beaker and 

granulator.  The average scores show an increasing trend with size, independent of 
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vessel type.  The agreement between the scores from the different vessel types suggests 

the AAEs from particle-equipment interactions were not as significant as the AAEs from 

particle-particle interactions.  The bottom of Figure 4.7 compares the average OPLS 

scores for MCC spheres, sugar spheres and wet granules in the 12 L beaker versus size.  

The scores for all three materials show an increasing trend with size.  The scores for 

MCC are parallel to sugar and higher in magnitude.  The scores for the wet granules 

have the highest magnitude and increase at a faster rate.  This is likely a reflection of the 

higher absolute w*c weights associated with the low frequency groups for the wet 

granules compared to the dry spheres.  The maximum w*c value was approximately 0.1 

for the wet granules (Figure 4.6) and 0.02 for the dry spheres (Figure 4.4).   
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Figure 4.7  Top – Comparison of the average projection coordinates versus size for MCC spheres in the 

1.2 L beaker, 12 L beaker and granulator.  Bottom – Comparison of the average projection coordinates 

versus size for MCC spheres, sugar spheres and wet granules in the 12 L beaker.  The frequency range for 

the 10 Hz TPSDs was 20-250 Hz and the size for the wet granules was based on the dry granule sieve size.  

4.4. Discussion 

The initial PCA modeling of the 10 Hz TPSDs proposed a relationship between AAEs and 

size, based on the grouping of the observations in the scores plots.  OPLS modeling 

further elucidated the relationship by showing the 10 Hz TPSDs could be used to predict 
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the size of dry MCC and sugar spheres rotated in 1.2 and 12 L beakers.  The majority of 

the 10 Hz TPSDs were positively correlated with size and some of the low frequency 

groups were negatively correlated.  When the approach was extended to include MCC 

spheres in the granulator and wet granules in the 12 L beaker, the predictive 

relationship between AAEs and size was maintained, along with the positive and 

negative correlations for the various frequency groups.   

4.4.1. Positive correlations between AAEs and size  

The positive correlations identified between the 10 Hz TPSDs and size support the 

hypothesis that an increase in particle size contributes to an increase in acoustic 

intensity.  The increase in AAE intensity is believed to be a result of easier flow for 

surface spheres with increasing size, where the motion of the surface layer primarily 

results from the transfer of momentum from the vessel wall to the particles and 

between particles [17].  Momentum transfer is expected to be greater for larger sphere 

sizes because the mass of the individual spheres is greater.  In addition, there would be 

less contact between large spheres, and consequently lower resistance to motion from 

interparticle and inertial forces.  As a result, the spheres would flow more easily as size 

increases, with higher flow velocities contributing to greater AAE intensities.  The results 

agree with the theoretical investigation by Hidaka and Shimosaka [11], where acoustic 

intensity was shown to increase with the macroscopic velocity of the flowing particles.       
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The positive correlations between the 10 Hz TPSDs and size for the dry spheres suggest 

AAEs could be used to monitor size for applications with dry powder, such as roller 

compaction and dry granulation.  For both processes, granule size determines whether 

output is recycled as feed or advanced to downstream operations [18].  By using AAEs to 

assess particle size in real-time, process efficiency and product quality could be 

optimized.  In addition, the positive correlations provide support for relationships 

between size and acoustic emissions developed using process data.  For example, the 

positive relationship between the intensity of the maximum TPSD and size observed in 

an earlier study of high-shear granulation [5]; the positive correlation between final 

granule size and acoustic emissions identified by Whitaker et al. [13] and Papp et al. 

[14]; and the increase in the mean amplitude of the acoustic emissions with bed holdup 

and particle size reported by Tsujimoto et al. [2].  In all three cases, the correlations 

between size and acoustic emissions were developed using data from granulation 

processes, where a number of variables were changing simultaneously.  Since the 

variables in the investigations were uncontrolled, there exists the possibility an 

unmeasured variable was responsible for the observed change in both size and acoustic 

emissions.  The beaker experiments were designed to reduce the potential for an 

unknown variable and provide insight into one aspect of the AAEs from granulation.  As 

such, the findings demonstrate the sensitivity of AAEs to changes in particle size and 

provide support for correlations developed using process data.   
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4.4.2. Negative correlations between AAEs and size 

Considering the entire 20-20,000 Hz range, there are relatively few frequency groups 

with negative correlations to size for the dry spheres.  Although the number of negative 

correlations is small, the associated w*c values indicate the negative correlations are as 

significant as the positive correlations (Figure 4.4).  Extraction of meaningful information 

from noise is a primary capability of multivariate analysis [15]; therefore the source of 

the negative correlations was considered important for a complete understanding of the 

AAEs generated during rotation.   

The negative correlations identified for the low frequency groups are thought to 

correspond to a different sound source than the flow of surface particles previously 

discussed.  For the low frequency groups, the decrease in AAE intensity with particle size 

is believed to result from a reduction in interparticle friction near the base of the vessel, 

where particle motion is primarily due to the driving force exerted by the impeller [17].  

As sphere size increases there would be less contact between larger spheres, and a 

reduction in interparticle friction would lead to a decrease in AAEs.  Interparticle friction 

is expected to be more significant near the bottom of the vessel due to higher velocities 

of rotation and the additional weight imposed by particles resting on top of the bottom 

layer.  Research by Saito et al. [19] showed particle velocity is approximately 

proportional to rotation speed near the source of agitation and significantly less at the 

surface.  The frequencies associated with motors and equipment are typically lower; 
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therefore, it follows that the frequencies describing the interactions of particles heavily 

influenced by the equipment would also be lower.   

Negative correlations between acoustic emissions and particle size do not appear to be 

as common in literature, likely because the primary focus of investigations has been on 

higher frequencies, consistent with the positive correlations identified in the previous 

section (4.4.1).  The low frequency correlations explore a different aspect of the acoustic 

emissions and may explain the common decrease that has been observed in the 10 Hz 

TPSD profiles with end-point and over wetting [5].   Towards end-point, moisture on the 

outside of the granule surface would lead to a decrease in interparticle friction with 

increasing granule size, resulting in the observed decrease in AAEs.  The results suggest 

different mechanisms of AAE generation dominate at different times throughout the 

granulation process and provide evidence that AAEs are sensitive to the physical 

transitions that occur during granulation.   

4.4.3. Scale independence for MCC spheres in the 1.2 L beaker, 12 L beaker and 

granulator 

An unexpected result of the OPLS analysis was the similarity in the projection 

coordinates between the beakers and the granulator (Figure 4.7).  The results for the 1.2 

and 12 L beakers were expected to be similar because the mass of the spheres was 

scaled with volume; however, differences in wall thickness and surface texture between 

the beakers and the granulator were expected to impact AAEs from particle-equipment 

contacts.  Since no major differences were detected, the findings suggest the AAEs were 
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primarily generated by interactions between particles, rather than the particles and the 

equipment.  As such, the combination of AAEs and multivariate analysis may be useful 

for applications where the vessel surface or scale changes.  In pharmaceutical 

operations, it is often desired to maintain consistent physical properties when batches 

are scaled-up during development and again from development to production.  A model 

relating AAEs to particle size could be used to help reduce the time required to achieve 

a consistent product at a new scale.  

4.4.4. Interpretation of average OPLS scores for dry spheres versus wet granules 

A comparison of the average OPLS scores showed a greater increase in the projection 

coordinates with particle size for the wet granules compared to the dry spheres (Figure 

4.7).  The average OPLS scores correspond to the 20-250 Hz region and therefore 

represent negative correlations between the 10 Hz TPSDs and size.  The difference is 

thought to be a result of a greater reduction in interparticle friction with increasing size 

for wet granules.  The increase in size coincides with an increase in moisture content 

and consequently granule cohesion.  Cohesion has been observed to lubricate granules 

and decrease friction between particles [20].  Therefore, as particle size increases for 

wet granules, interparticle friction would be reduced by two factors: reduced contact 

between particles and lubrication from water addition.  As a result, the AAEs arising 

from friction would decrease at a faster rate, reflected by the increased magnitude of 

the average projection coordinates.  
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The linear relationship shown for the wet granule projection coordinates suggests the 

potential to use multivariate techniques to simplify the interpretation of complex, non-

linear processes (Figure 4.6).  Particle size is a critical variable to monitor in granulation 

because excess fines can affect flow in downstream processes and too many oversized 

granules may lead to weak tablets with poor uniformity.  By developing an OPLS model 

with AAEs from granulation, it may be possible to track granule growth online.  This 

would provide the opportunity to monitor a critical variable in high-shear wet 

granulation and introduce an online quality control measure to a process with high 

variability.     

4.5. Conclusions 

In this work, a series of controlled experiments were performed to investigate the 

relationship between particle size and AAEs from granule shearing.  Multivariate PCA 

and OPLS models showed a strong ability to predict size from the 10 Hz TPSDs of the 

AAEs, for MCC and sugar spheres rotated in 1.2 and 12 L beakers.   The relationship was 

extended to granulation by rotating MCC spheres in a high-shear granulator and wet 

granules in the 12 L beaker.  In both cases, the predictive ability of the AAEs was 

maintained.  The results showed the correlation to size was positive for the majority of 

the 10 Hz frequency groups, with some negative correlations for low frequency groups.  

The positive correlations were thought to relate to the motion of granules near the 

surface and the negative correlations were associated with interparticle friction from 
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particles rotating at high velocities near the base of the vessel.  The findings provide 

support for the empirical correlations developed using complex process data, and 

demonstrate potential for monitoring dry and wet processes that depend on size.  

Future work should involve similar controlled experiments to investigate other critical 

process variables that may influence AAEs, such as density and moisture content. 
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Chapter 5   

5. Monitoring quality attributes for high-shear wet granulation with 

audible acoustic emissions 

5.1. Introduction 

Granulation is a complex process and product quality depends on the consistency of the 

raw material inputs, process conditions, and equipment operation.  Quality attributes 

are interrelated and minor variations during processing can lead to a suboptimal 

product.  As a result, product quality is difficult to determine online and a series of 

offline tests are typically used.  This process is expected to change however, as recent 

regulatory guidance documents recommend an upstream shift in quality testing [1].  The 

ICH Q8 guidance document encourages the development of online measurement 

systems for monitoring critical attributes related to product quality and process end-

point.  The intent is to increase process knowledge such that adjustments can be made 

during operation to overcome variability and manufacture a product of consistent 

quality.   

Technologies for collecting online measurements are known as process analytical 

technologies, or PATs.  Impeller torque [2-4], near-infrared spectroscopy (NIR) [5], 

acoustics and vibration [6-9], focused-beam reflectance measurement (FBRM) [10], and 

imaging [11] are some of the PATs currently being explored for monitoring high-shear 

granulation.  The following work focuses on audible acoustic emissions (AAEs). In 
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comparison to other techniques, AAE systems are inexpensive to set up and the signals 

contain a high volume of information that can be related to the granulation process 

[6, 9].  In addition, data collection is non-invasive and does not require contact between 

the sensor and the equipment.  The current equipment setup uses the granulator air 

exhaust to suspend the sensor, eliminating the challenge of maintaining consistent 

contact between the sensor and the vessel with a couplant or adhesive.  Furthermore, 

by positioning the sensor inside the exhaust, AAE detection is not limited to localized 

contacts between the particles and the equipment but instead reflects a variety of 

particle interactions within the granulator [Chapter 4]. 

In order to use PATs to improve product quality and increase process knowledge, it is 

necessary to relate the online measurements to critical quality attributes.  According to 

Pottmann et al. [12], particle size distribution and bulk density form the basis of all 

quality attributes for granulation.  In high-shear granulation, correlations have been 

developed between acoustic emissions and particle size but there do not appear to be 

any correlations for bulk density.  Papp et al. [8] demonstrated a positive relationship to 

particle size using the average frequency spectra and waveform data from the last 10 s 

of granulation.  Similarly, Whitaker et al. [7] showed the frequency spectrum from the 

last 20 s of granulation was related to the mass mean particle size of the granules before 

dry screening.  Whitaker et al. also mentioned a relationship between acoustic 

emissions and density but did not provide any experimental investigation.  The 

correlations developed by Papp et al. [8] and Whitaker et al. [7] suggest an opportunity 
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to further investigate the origin of the relationship between acoustic emissions and 

changes in size and density. 

Acoustic emissions from granulation are thought to be the result of particle-particle and 

particle-equipment collisions, as well as friction [13-15].  Leach and Rubin [13, 14] 

showed the acoustic frequency from rotating glass and metallic spheres can be used to 

characterize the shape and width of the particle size distribution and Hidaka and 

Shimosaka [15] demonstrated a positive relationship between the acoustic pressure and 

the macroscopic velocity of flowing particles.  More recently, a relationship between 

AAEs and particle size was identified by rotating MCC spheres, sugar spheres and wet 

granules of specific sizes in stainless steel beakers [Chapter 4].  The following work 

expands on existing research to demonstrate a relationship between AAEs and changes 

in particle size and density during high-shear wet granulation for use in online 

monitoring of product quality.  

5.2. Materials and methods 

5.2.1. Materials 

The base formulation for the granulations consisted of mannitol (Pearlitol® 160C, 

Roquette), cornstarch (NF, National Starch and Chemical Co.), microcrystalline cellulose 

(Avicel® PH 101, FMC Biopolymer), hypromellose 2910 (Pharmacoat® 603, Shin-Etsu 

Chemical Co.) and croscarmellose sodium (AcDiSol®, FMC Biopolymer) for a total batch 
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size of 1.8 kg.  Three additional formulations were created by replacing Avicel PH101 

with three alternate grades, donated by FMC Biopolymer.  The properties of the four 

Avicel grades are summarized in Table 5.1. 

Table 5.1  Summary of Avicel grades 

Avicel 
Grade 

Particle Size 
(μm) 

Bulk Density 
(g/cc) 

PH101 50 0.26-0.31 
PH102 100 0.28-0.33 
PH301 50 0.34-0.45 
PH302 100 0.35-0.46 

 

5.2.2. Methods 

High-shear wet granulation  

For each granulation, the materials were passed through an 850 µm sieve and added to 

a Niro-Fielder PMA-10 high-shear granulator for 5 min of dry mixing at an impeller 

speed of 350 rpm and chopper setting II.  Water was introduced at 55 mL/min through a 

spray nozzle positioned right-of-center until approximately 800 mL were added and the 

batch was considered over wet.   

Collection of AAEs  

AAEs were collected at 40,000 Hz using two PCB Piezotronics condenser microphones 

(model 130D20).   The microphones were positioned at the top of the air exhaust and on 

the inside, 20 cm from the exhaust base (Figure 5.1).  The signals were conditioned 

using ICP sensor signal conditioners (PCB Piezotronics) and acquired using a National 
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Instruments data acquisition system and LabVIEW 8.5.  The signal range was optimized 

to ±10 V, equating to a gain of 0.5.  

 

Figure 5.1  Equipment configuration for granulations. 

DOE investigation and granulations for multivariate analysis 

Eight batches were granulated in random order according to a full two factor DOE with 

replicates (Table 5.2).  The two factors, size (A) and density (B), were varied by changing 

the grade of Avicel used in the formulation.  In addition, three granulations were 

completed outside of the DOE framework using the base formulation, to provide 

additional AAEs for multivariate analysis.  Granulation and acoustic collection followed 

the procedures outlined in the previous two sections.       
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Table 5.2  DOE summary 

DOE Size (A) Density (B) 

1 – Avicel PH102 100 Low 
2 – Avicel PH302 100 High 
3 – Avicel PH301 50 High 
4 – Avicel PH302 100 High 
5 – Avicel PH101 50 Low 
6 – Avicel PH301 50 High 
7 – Avicel PH102 100 Low 
8 – Avicel PH101 50 Low 

 

Granulation with density and particle size measurement 

For each formulation, four additional batches were granulated according to the 

procedure outlined previously, stopping every 100 mL to measure the tap and bulk 

densities of the wet granules and withdraw a sample (approximately 20 g) for particle 

size analysis.  The starting sample point was incremented by 25 mL for each batch, to 

increase the data resolution from 100 to 25 mL.  Tap and bulk density were measured by 

filling a graduated cylinder to 100 mL with powder, recording the mass and tapping the 

cylinder 500 times using a Vankel tap density machine.  The powder volume was 

measured before and after tapping to compute the bulk and tap densities, respectively.  

The densities were measured in triplicate, returning the powder to the granulator bowl 

after measurement.  The samples removed for size analysis were tray dried to less than 

2% loss on drying at the end of each batch, using a GCA Convection oven (80 °C).  The 

particle size distributions of the dried granules were measured using an ATM Sonic Sifter 

with a pulse amplitude of 9 and a 5 min sift/pulse setting.  The sieve set consisted of 

150, 180, 250, 355, 600 and 850 µm ATM U.S. standard sieves and a fines collector.  
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Three size fractions were defined: fines – less than 180 µm, midsized – 180-600 µm, and 

large – greater than 600 µm.  

Particle size data was also acquired online using an FBRM D600 Lasentec® probe 

(Mettler-Toledo) and FBRM Control Interface software (Mettler-Toledo, version 6.7.0).  

The probe was positioned using a stainless steel holder, manufactured to fit the 

granulator viewport.  The face of the probe was submerged near the chopper, where 

there was good batch movement and the powder was less likely to stick (Figure 5.1).  

The FBRM provided a measure of particle size known as a chord length distribution.  The 

chord length distribution is based on the backscattering of light that occurs when a 

focused laser beam intersects a particle.  The duration of the reflection is multiplied by 

the velocity of the scanning beam to determine the chord length.  For this work, a scan 

speed of 4 m/s was used with a 2 s sampling period and the electronics were configured 

for “coarse” particle sizes.  The measurements were divided into fines (<150 µm) and 

large (>150 µm) fractions and the number of counts per second were computed based 

on a square weight distribution.  

Signal analysis 

The AAEs were divided into 10 s segments and the time series data was transformed 

into frequency data by computing the power spectral density for each segment in 

Matlab 6.5.  The TPSD was determined by summing the transformed data for each 

segment into 10 Hz groups from 20 to 20,000 Hz.  The matrix was later reduced to 20 to 
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250 Hz, based on previous results identifying this range as the most relevant for high-

shear wet granulation [9].  

The 10 Hz TPSDs were sampled every minute to form the responses for the DOE analysis 

(Stat-Ease Design Expert 6).  DOE analysis relates experimental factors (size and density) 

to measured responses (10 Hz TPSDs), using a regression approach to fit coefficients to a 

polynomial model.  The importance of each factor is determined from the regression 

coefficients and an analysis of variance (ANOVA).  The analysis considers each factor 

individually and in combination, based on a 5% level of significance.  If the effect of a 

factor is shown to depend on the level of another factor then it is known as an 

interaction.  Interaction effects override main effects and factors involved in an 

interaction can no longer be considered individually.    

The 10 Hz TPSDs from the three batches completed outside of the DOE were analyzed in 

Umetrics SIMCA P+ 11.5, using multivariate projection to latent structures by means of 

partial least squares (PLS) and orthogonal projection to latent structures by means of 

partial least squares (OPLS).  PLS is a method for relating two spaces of information, X 

and Y.  The X space was comprised of the 10 Hz TPSD measurements from 20 to 250 Hz 

and the Y space consisted of the following physical property measurements: tap and 

bulk density; the fraction of fines, midsized and large granules measured by sieving; and 

the distribution of fines and large granules measured by FBRM.  Both sieve and FBRM 

size measurements were included to capture the dry and wet granule size distributions.  
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The procedure followed by SIMCA to develop the models involves simultaneously fitting 

a straight line, known as a principal component, to each space and projecting the 

original data points onto the lines.  The projection coordinates are linear combinations 

of the original data, known as scores and are formed using the weights w and c, for the 

X and Y spaces respectively.  The components are oriented such that the scores 

approximate the data in X and Y, and provide an understanding of the correlation 

between the two.  Additional components may be added but the most significant 

variability is captured in the first component [16].   

OPLS is a method for relating information in a matrix, X to a single variable, Y.  The X 

space consisted of the 10 Hz TPSD measurements from 20 to 250 Hz and the Y space 

consisted of a single size or density measurement.  As a result, several models were 

required to represent all of the physical property measurements.  The procedure 

followed by SIMCA involves fitting a single principal component to the X space with the 

objective of describing the predictive relationship between X and a single Y.  Additional 

components may be added to describe other sources of variability that are not related 

to the predictive relationship [16].  For both PLS and OPLS, the data was pre-processed 

by centering and scaling to unit variance, according to the standard procedure in SIMCA.  

In addition, the auto-transformation function was used to achieve a normal distribution 

in the variables.    
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5.3. Results  

The capability of AAEs as a PAT tool for monitoring changes in critical physical properties 

during granulation was evaluated.  A DOE was used to determine whether changes in 

size and density had a significant effect on granulation AAEs, and multivariate PLS and 

OPLS models were used to assess the potential for monitoring changes in size and 

density online.  Size and density were selected based on their importance to granule 

quality and because they could be varied according to a DOE methodology.   

5.3.1. DOE investigation of the effect of size and density on AAEs 

The DOE varied size and density in a controlled manner using four grades of Avicel.  The 

investigation showed size and density had a significant effect on the 10 Hz TPSDs 

computed from the AAEs.  The significance primarily corresponded to a consistent 

decrease in the 10 Hz TPSD profiles during the latter half of wetting.  In previous work, 

the decrease was shown to relate to the achievement of ideal granule properties and 

the transition to over wetting [9].   In the following section, the results for the 100-

110 Hz frequency group are presented as a representative example.  Measurements of 

density and particle size distribution throughout granulation are also included to 

validate the experimental approach.   
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5.3.2.   100-110 Hz TPSDs 

Figure 5.2 shows the average 100-110 Hz TPSD profiles for granulations with each Avicel 

grade.  The profiles all follow the same trend, a gradual increase to a maximum followed 

by a steady decrease.  The magnitudes are similar until the decrease begins, at which 

point the profiles are observed to separate based on size and density.  The largest 

separation is related to density, with the two high density blends corresponding to 

greater TPSD magnitudes than the two low density blends.  The profiles are further 

separated based on size, with higher magnitudes observed for blends with smaller sized 

Avicel.  The decrease appears to start sooner for the high density blends and towards 

the end of wetting the profiles become aligned, whereas the profiles for the low density 

blends show an increase in separation.  Earlier work showed end-point corresponds to 

the peak and the beginning of the decrease [9]; therefore, the results suggest the high 

density blends granulated faster and the alignment may represent similar over wet 

states.  In general, the findings suggest the AAEs were sensitive to changes in size and 

density during the latter half of wetting, where different magnitudes were observed for 

the decrease in the 100-110 Hz TPSD.    
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Figure 5.2  100-110 Hz TPSD versus time and water volume, for DOE granulations with four grades of 

Avicel.  Each profile represents the average 100-110 Hz TPSD from two runs.  The granulation conditions 

are summarized in the legend as follows: Avicel grade – density, particle size.   

5.3.3.   DOE analysis of the 100-110 Hz TPSDs 

The DOE analysis of the 100-110 Hz TPSDs confirmed the decrease during the latter half 

of wetting was significantly affected by changes in size and density.  Figure 5.3 shows 

the DOE plots for minutes 9 to 14, illustrating the effect of changing the levels of size (A) 

and density (B) on the 100-110 Hz TPSD.  For minutes 9 to 12, size and density were 

observed to be independent effects.  The DOE plots show that increasing size or 

increasing density caused a decrease in the 100-110 Hz TPSD.  The effect of density was 

more significant, as it was identified consistently for minutes 9 through 12, whereas size 

was not identified for minutes 10 or 11.  In addition, the decrease in TPSD was observed 
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to be greater when density was increased, compared to size.  The results agree with the 

100-110 Hz TPSD profiles, where greater separation was observed based on density 

(Figure 5.2).  For minutes 13 and 14, the DOE analysis identified a significant interaction 

between size and density.  The DOE plots show the change in TPSD with increasing size 

was more significant for granulations with low density Avicel grades.  The results agree 

with the 100-110 Hz TPSD profile, where separation was only observed between the low 

density profiles at the end of wetting (Figure 5.2). 
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Figure 5.3  DOE plots showing the significant factors and interactions affecting the decrease in the 100-

110 Hz TPSD from minutes 9 to 14.  The two factors are size (A) and density (B).     
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5.3.4.   Density and particle size measurements 

Density and particle size measurements were collected for granulations with each Avicel 

grade.  Figure 5.4 summarizes the changes in tap and bulk density, as well as the fines, 

midsized and large size fractions throughout wetting.  The trend in each physical 

property is observed to be the same for all four Avicel grades and the separation 

between datasets confirms it was possible to alter the size and density of the 

granulations by varying the raw material properties.  The profiles show an increase in 

bulk and tap density, a decrease in fines, and an increase in the fraction of midsized 

granules when the Avicel density was increased from low to high, and when size was 

increased from 50 to 100 µm.  The changes support the DOE findings, showing increases 

in size and density contributed to a statistically significant decrease in TPSD magnitude 

(Figure 5.2, Figure 5.3).  For the large size fraction, the trend is not as clear and higher 

fractions appear to correspond to granulations with small sized Avicel rather than large 

sized Avicel.  The difference between the large size fraction and the fines and midsized 

fractions suggests layering may have taken place during granulations with the small 

sized Avicel blends.  Layering is a mechanism of granule growth that occurs when fine 

particles adhere to the surface of large pre-existing granules, increasing their overall size 

[17].  Thus, a layering mechanism would explain the higher fraction of large granules 

observed with small sized Avicel.  Overall, the measurements validate the experimental 

approach, by showing it was possible to introduce controlled changes to the size and 

density of the granulation by altering the properties of the raw material.     
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Figure 5.4  Changes in density (tap and bulk) and size (fines, midsized and large fractions) over binder 

volume (mL).  The granulation conditions are summarized in the legend as follows: Avicel grade – density, 

particle size.   

5.3.5. Multivariate analysis of the 10 Hz TPSDs 

After establishing that the AAEs were in fact sensitive to changes in size and density 

during granulation, multivariate analysis was investigated as an approach for monitoring 

these changes online.  A PLS model was generated initially to examine the overall 

relationship between the 10 Hz TPSDs and measurements of size and density.  OPLS 

models were then used to examine the predictive relationships between the 10 Hz 

TPSDs and each physical property measurement, on an individual basis.   
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Figure 5.5 shows the correlation structure between the 10 Hz TPSDs and measurements 

of size and density using a w*c plot of the first two principal components from the PLS 

model; where, w represents the weights associated with the 10 Hz TPSDs and c 

represents the weights associated with the physical properties.  The representation of 

each physical property measurement by the 10 Hz TPSDs can be visualized by drawing 

an imaginary line from the measurement through the origin, and then projecting each 

10 Hz TPSD onto the line.  The positions of the projected variables relative to the origin 

represent the strength and direction of the correlations, where the groups furthest from 

the origin correspond to the strongest correlations [16].  Figure 5.5 (A) shows an 

example for the midsized sieve fraction (SM).  The frequency groups located on the 

same side of the origin as the midsized sieve fraction represent positive correlations, 

such as 150-160 Hz and 210-220 Hz, and the frequency groups on the opposite side 

represent negative correlations, such as 100-110 Hz and 40-50 Hz.  The overall 

arrangement of the variables shows different combinations of 10 Hz TPSDs are needed 

to represent different physical properties.  For example, if an imaginary line was drawn 

through tap density (TD) instead of the midsized sieve fraction (SM), the frequency 

groups associated with the strongest positive and negative correlations would change.  

Figure 5.5 (B) shows the frequency groups in the bottom left quadrant have a strong 

negative correlation to tap density, whereas for the midsized sieve fraction the 

strongest negative correlations were observed for frequency groups in the top left 

quadrant.   
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Figure 5.5  PLS weights (w*c) for the first and second principal components, where w represents the 
weights associated with the 10 Hz TPSDs and c represents the weights associated with the measurements 
of size and density.  The 10 Hz TPSDs are listed by starting frequency, i.e. 100 corresponds to 100-110 Hz.     

The arrangement of the variables in the PLS model suggests the physical property 

measurements can be described using different combinations of 10 Hz frequency 

groups.  To further examine the predictive relationships between the 10 Hz TPSDs and 
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each physical property measurement, OPLS models were developed.  The OPLS scores 

summarize the information in the 10 Hz TPSDs that is relevant for predicting each 

property.  In Figure 5.6, the OPLS scores are compared to the original size and density 

measurements.  The profiles for the OPLS scores are observed to be unique based on 

the measured physical property and the trends agree with the original measurements.  

As such, the results support the use of OPLS scores to follow changes in size and density 

online.  The scores representing the sieve size measurements are similar to the scores 

for the FBRM measurements, suggesting either method could be used to measure 

changes in particle size.  The OPLS scores for bulk density and the large sieve fraction do 

not agree as well with the original data, and it is thought that the linear projection 

method used by OPLS may have smoothed out some of the more abrupt transitions in 

the original data.   
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Figure 5.6  OPLS scores and physical property measurements versus binder volume (mL).  

5.4. Discussion  

The DOE analysis showed changes in size and density have a significant effect on the 

AAEs generated during high-shear wet granulation.  More specifically, increases in 

density and particle size during wetting contribute to the decrease in the 10 Hz TPSDs 

consistently observed with end-point and over wetting [9].  The results support the 

development of AAEs for online prediction of size and density.  As such, multivariate 
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models were developed using the 10 Hz TPSDs, and the resulting OPLS scores were 

shown to represent changes in size and density throughout wetting.  The following 

discussion explores the relationship of the AAEs to changes in size and density, as well 

as potential applications for the multivariate results. 

5.4.1. Relating AAEs to size and density 

While correlations between AAEs and physical properties can be used to develop 

models for online prediction, they do not prove the existence of causal relationships 

between properties.  In other words, a correlation does not provide evidence that a 

change in factor A caused a change in response Y, or a change in size caused a change in 

TPSD.  As such, an error term is always included to account for the possibility that an 

unmeasured variable was truly responsible for the observed relationship [18].  By 

applying a DOE methodology, however, it was possible to design a rigorous investigation 

where size and density were systematically varied, such that a distinction could be made 

between significant effects and measurement error.  As a result, it was possible to 

quantify the influence of each factor on the measured responses and therefore establish 

that the AAEs generated by the granulations were directly affected by changes in size 

and density.   

The decrease in the 100-110 Hz TPSD began at approximately 500 mL and coincided 

with an increase in tap and bulk density, a decrease in fines, and an increase in the 

fractions of midsized and large granules (Figure 5.2, Figure 5.4).  The results suggest the 
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decrease in TPSD coincides with the onset of granule growth and densification.  Granule 

growth requires a critical amount of liquid to be present at the surface [17] and the 

liquid is thought to create a lubrication effect that reduces interparticle friction, a 

primary source of acoustic emissions [13, 19].  As the granules grow and become 

denser, more liquid would be squeezed to the surface and the decrease in interparticle 

friction would result in a decrease in TPSD.  Therefore, the decrease in TPSD is believed 

to result from the increased presence of liquid on the granule surface with growth and 

densification.  The results are consistent with earlier work, where a negative 

relationship was identified between AAEs and size for wet granules rotated in a stainless 

steel beaker [Chapter 4].  The results are also similar to those for shearing sand grains, 

where AAEs generated by interparticle friction were thought to be reduced when 

humidity increased and liquid coated the grain surface [20].  In addition, findings for 

fluidized-bed granulation showed a decrease in acoustic emissions coincided with the 

presence of additional moisture among particles during agglomeration [21].  The 

moisture was thought to reduce interparticle friction from particle-particle and particle-

wall collisions, resulting in lower acoustic intensity.   

The multivariate PLS model showed the 10 Hz TPSDs were correlated differently to 

measurements of size versus density.  The frequency groups that were the most 

significant in relation to size were not the same as the ones that were the most 

significant in relation to density.  The results are expected because granule growth and 

densification do not occur uniformly throughout the granulator, and therefore shear 
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rate and particle velocity depend on axial and radial location [22, 23].  As a result, a 

specific frequency group may be more representative of granule densification or granule 

growth, depending on the location in the granulator where the corresponding sound 

was generated.  For example, AAEs resulting from interactions close to the surface, 

where the liquid is first introduced and coalescence begins, would more likely be related 

to changes in size.  Alternatively, AAEs from interactions near the base of the granulator, 

where the impeller is located and densification is more pronounced, would be more 

representative of changes in density.  The results require further investigation, as 

granule behaviour at different locations in the mixer is complex and not completely 

understood.   

5.4.2. Applications 

Establishing relationships between online measurements and physical property changes 

is a critical step in PAT development, as the ICH Q8 guidance encourages the use of PAT 

tools to monitor attributes related to product quality [1].  For complex processes, such 

as granulation the relationship between online measurements and physical properties is 

not always obvious and additional effort is required to verify the effectiveness of PAT 

tools.  Research using both audible [6, 9] and ultrasonic [8, 24] acoustics has identified a 

decrease in acoustic intensity with increasing binder volume; however, there has been 

little attempt to understand the reason for the decrease.  The DOE analysis presented in 

this work (Figure 5.2-Figure 5.4) shows the decrease in AAEs is affected by increases in 

size and density with binder addition.  Size and density are both critical variables that 
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affect downstream processing and product quality in high-shear granulation [12].  

Particle size distribution and density impact granule flowability and compaction 

properties during tabletting, as well as the uniformity and disintegration of the final 

product [25].  As a result, a PAT tool capable of monitoring changes in size and density is 

highly desirable.  AAEs were shown to measure both properties, offering an advantage 

over other PAT technologies that are only capable of measuring one or the other.         

The trends in the OPLS scores show how AAEs could be used to monitor changes in size 

and density online during granulation (Figure 5.6).  An online monitoring system would 

reduce product development times because a process could be adjusted in real-time to 

achieve the desired product attributes, rather than relying on a multi-batch trial and 

error procedure using offline measurements.  Online monitoring would also increase 

process flexibility because parameters could be adjusted during operation to account for 

minor variations in process inputs and achieve consistent product quality.  In addition, it 

may be possible to use AAEs to assist in scale-up and product transfers, as the sensors 

are small and can be easily transferred from one piece of equipment to another.  The 

portability of the equipment offers an advantage over other techniques where the 

probe is inserted directly into the granulation, such as FBRM.  In these cases, the probe 

would need to be repositioned at each scale and the larger size would be difficult to 

accommodate in smaller units.   
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5.5. Conclusions 

PAT technologies should demonstrate an ability to monitor changes in critical attributes 

related to product quality.  For complex processes, such as high-shear granulation it can 

be difficult to demonstrate a relationship between online measurements and quality 

attributes because there are a high number of interrelated variables.  AAEs have shown 

potential for monitoring the high-shear granulation process but the relationship 

between the AAEs and product quality attributes is not fully understood.  The results 

from this work further develop the capabilities of AAEs as a PAT tool.  DOE analysis 

showed increases in size and density contribute significantly to the decrease in acoustic 

TPSD observed with end-point and over wetting, demonstrating a relationship between 

the AAEs and product quality attributes.  In addition, multivariate OPLS scores were 

shown to predict changes in size and density using the 10 Hz TPSDs from 20 to 250 Hz, in 

support of online monitoring.  Future work should involve the development the OPLS 

scores for online use to assist in new product development and achievement of 

consistent product quality.   
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Chapter 6   

6. The effect of process parameters on audible acoustic emissions 

from high-shear granulation 

6.1. Introduction 

The complexity and lack of understanding surrounding pharmaceutical processes has 

lead to an industry-wide reliance on offline testing to determine whether a product 

satisfies quality requirements.  The recent ICH Q8 regulatory guidance document 

recommends an upstream shift in quality testing, where in-process analysis and controls 

are utilized to improve product consistency and reduce the need for end product testing 

[1].  Adoption necessitates increased knowledge of the process and the product, as well 

as an in-depth understanding of the associated sources of variability.  It is 

recommended to use a design space approach to study the interaction of input variables 

and process parameters in relation to product quality.  The design space is a subset of 

the knowledge space, which represents all that is known about the process, including 

failure conditions.  It refers to the set of operating situations that lead to a final product 

with acceptable quality attributes.  From a regulatory standpoint, operation is 

acceptable anywhere within the design space but a process can be further optimized to 

define a target range for normal operation, known as the control space.  The design 

space is useful for identifying process variables that need to be controlled and 

optimizing process parameters.  The ultimate goal is to generate knowledge of product 

performance under a variety of operating conditions and develop a robust process 



126 
 

 
 

where variability in materials, process parameters and equipment can be 

accommodated.   

The ICH Q8 guidance recommends the use of process analytical technology (PAT) tools 

to acquire information on product quality throughout manufacturing [1].  In previous 

work, audible acoustic emissions (AAEs) were demonstrated as a PAT tool for 

monitoring high-shear wet granulation and detecting end-point with three different 

formulations [2].  The method of detection was non-intrusive and involved suspending a 

microphone inside the granulator air exhaust.  The air exhaust location was later shown 

to be sensitive to a variety of particle interactions generated by granule shearing 

[Chapter 4].  The results are in contrast to work by other researchers, where acoustic 

sensors were placed in contact with the granulator bowl and only local granule-

equipment collisions were detected [3, 4].  The AAEs detected in the air exhaust were 

also shown to reflect changes in size distribution and density during granulation and 

could be related to final properties, such as granule flow and tablet hardness [2, 

Chapter 5].  As such, AAEs provide a means of measuring the combined effect of several 

variables that is consistent with a design space approach.   

In design space development, systematic methods such as design of experiment (DOE) 

and multivariate analysis are encouraged to simplify the interpretation of a large 

number of variable interactions [1].  DOE allows the maximum amount of information to 

be extracted in the fewest number of experiments and utilizes statistical measures to 
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increase the likelihood of separating important effects from measurement error.  The 

rigorous approach allows a distinction to be made between correlative and causal 

relationships, and permits assessment of complex relationships such as variable 

interactions and nonlinear effects [5].  Multivariate analysis is advantageous for 

extracting meaningful relationships from a large number of collinear variables and can 

also accommodate missing data points.  For a review of multivariate applications in the 

pharmaceutical industry see Gabrielsson et al. [6].  DOE and multivariate analysis can be 

combined to take advantage of the DOE experimental design structure and the rigorous 

data analysis possible with multivariate techniques.  In their review, Gabrielsson et al. 

[6] cited the combination of DOE and multivariate analysis as the preferred approach for 

advancing the robustness of pharmaceutical processing.  In practice, Huang et al. [7] 

combined the two approaches to evaluate the effects of water volume, wet massing 

time and lubrication time on blend flow, compressibility and tablet dissolution for a 

high-shear wet granulation process.  The results were used to develop a design space 

for the process and optimize blend flow.  Multivariate and DOE analysis were also 

combined by Gamble et al. [8] to develop a model for identifying end-point using 

acoustic emissions from granulation.  The acoustic signals were acquired for an eleven 

batch DOE varying liquid dose rate, impeller speed, chopper speed and batch size.  End-

point was successfully identified for all but two batches, where a change in impeller 

speed appeared to alter the final granule properties.   
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The following article develops AAEs as a PAT tool for monitoring granulation progress 

towards acceptable product quality.  A DOE approach was used to systematically 

introduce minor variations in three process variables: impeller speed, total binder 

volume and spray rate, and the results were analyzed using both DOE and multivariate 

approaches.  

6.2. Materials and methods 

6.2.1. Formulation 

The formulation for the granulations consisted of cornstarch (NF, National Starch and 

Chemical Co.), mannitol (Pearlitol® 160C, Roquette), microcrystalline cellulose (Avicel® 

PH 101, FMC Biopolymer), hypromellose 2910 (Pharmacoat® 603, Shin-Etsu Chemical 

Co.) and croscarmellose sodium (AcDiSol®, FMC Biopolymer) for a total batch size of 

1.8 kg. 

6.2.2. Methods 

 High-shear wet granulation 

Ten batches were granulated in random order according to a full three factor DOE with 

two center point replicates (Table 6.1).  The three factors were: impeller speed, total 

binder volume and spray rate.  Each factor was varied between a high level and a low 

level based on the established end-point range for the formulation and typical operating 
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conditions for the granulator.  The two center points were included to check for 

significant curvature in the responses. 

Table 6.1  DOE summary 

DOE Impeller Speed 
(rpm) 

Total Binder Volume 
(mL) 

Spray Rate 
(mL/min) 

1 300 650 45 
2 420 650 45 
3 300 700 45 
4 420 700 45 
5 300 650 65 
6 420 650 65 
7 300 700 65 
8 420 700 65 
9 360 675 55 

10 360 675 55 

The materials for each batch were passed through an 850 µm sieve and added to a Niro-

Fielder PMA-10 high-shear granulator for 5 minutes of dry mixing.  The material was 

granulated according to the DOE specifications (Table 6.1) using a chopper speed of 

3000 rpm and 30 s of wet massing.  AAEs were collected at 40,000 Hz, using a PCB 

Piezotronics condenser microphone located at the top of the air exhaust (model 

130D20).  The signals were conditioned using ICP sensor signal conditioners (PCB 

Piezotronics) and acquired using a National Instruments data acquisition system and 

LabVIEW 8.5 software.  The signal range was optimized to ±10 V, equating to a gain of 

0.5.  At the end of wetting, the bulk and tap densities of the granules were measured 

three times by filling a 100 mL graduated cylinder with powder, determining the mass, 

and tapping 500 times with a Vankel tap density machine.  The mass was divided by the 

volume before and after tapping to determine the bulk and tap densities, respectively.        
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Drying and blending 

A 100 g sample of granules was tray dried in a GCA convection oven (80°C) and the 

remainder of the batch was dried in a Glatt GPCG-3 fluid-bed drier (60°C) to less than 2% 

loss on drying.  The size distributions of the tray and fluid-bed dried granules were 

measured three times using an ATM Sonic Sifter with 150, 180, 250, 355, 600 and 

850 µm ATM U.S. standard sieves and a fines collector.  The remaining fluid-bed dried 

granules were passed through an 850 µm sieve and added to a 10 L Pharmatech bin 

blender.  Croscarmellose sodium and magnesium stearate were passed through a 

600 µm sieve and blended with the granules for 18 min and 3 min, respectively.  

Flowability was measured according to the avalanche method for three 100 cc samples.  

Each sample was placed in a disk and rotated at 0.6 rpm using a Mercury Scientific 

Revolution Powder Analyzer.  Images were collected at 10 fps for 200 avalanches, based 

on a 65% avalanche threshold.  The change in power (potential energy) for each 

avalanche and the avalanche time were computed from the images and used to assess 

granule flowability. 

Tabletting 

A Korsch XL100 tablet press, fitted with a B-turret and four oval alternating punches 

(8.73 by 17.49 mm) was operated at 20 rpm and 100 tablets were collected at 

compression forces of 10, 15, 20 and 25 kN.  Break load was measured across the face of 

10 randomly selected tablets from each compression force, using a Holland C50 

hardness tester.  Friability was measured in triplicate by rotating ten tablets at 25 rpm 
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for 4 min in a SOTAX FT-1 Friabilator and measuring the change in total weight.  

Additionally, disintegration was measured for 6 tablets using a SOTAX DT-2 

disintegration tester.  Contact sensor discs were placed on top of each tablet to detect 

when the tablet had completely disintegrated.   

Signal analysis 

The AAEs were divided into 10 s segments and the time series data was transformed 

into frequency data by computing the power spectral density for each segment using 

Matlab 6.5.  TPSD was determined by summing the transformed data for each segment 

into 10 Hz groups from 20 to 20,000 Hz.  Based on previous findings, the range was 

reduced to 20 to 250 Hz to focus on the most relevant content for high-shear wet 

granulation [2]. 

Stat-Ease Design-Expert 6 software was used to analyze the DOE results.  The 

experimental factors consisted of the three process variables (Table 6.1), and the 

responses consisted of the final physical property measurements for size, density, 

flowability, tablet hardness, friability and disintegration, as well as the 10 Hz TPSDs 

sampled every minute from minute 1 to 9, and every 100 mL from 100 to 600 mL.  It was 

not possible to sample any further because there would have been data missing for the 

DOE runs completed the fastest i.e. runs with high spray rate or low total binder 

volume.  Where necessary, the responses were transformed using a mathematical 

function such as a logarithm or inverse, to maintain a normal distribution in the 

residuals.  DOE analysis uses a regression approach to relate experimental factors to 
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measured responses by fitting coefficients to a polynomial model.  The regression 

coefficients represent the importance of each factor to the model and an analysis of 

variance (ANOVA) is used identify significant effects, based on a 5% level of significance.  

The analysis considers each factor individually and in combination with the other 

factors.  If the effect of a factor is found to depend on the level of one or more of the 

other factors it is known as an interaction.  An interaction effect overrides a main effect, 

such that a factor involved in an interaction can no longer be considered individually.    

The 10 Hz TPSD responses were also analyzed in Umetrics SIMCA P+ 11.5, using 

multivariate projection to latent structures by means of partial least squares (PLS).  PLS 

is a method for relating two matrices of information, X and Y.  In this case, the X matrix 

consisted of the three process factors (Table 6.1) and the Y matrix consisted of the 10 Hz 

TPSD responses for each DOE run.  The PLS procedure followed by SIMCA involves first 

pre-processing the data by centering and scaling to unit variance.  The X and Y 

observations are then plotted in two separate spaces of dimensions N and M, where N 

and M correspond to the number of variables in each matrix (Figure 6.1, A).  When 

plotted, the observations form two clusters, one in the X space and another in the Y 

space (Figure 6.1, B).  A straight line, known as a principal component, is fit to each 

cluster and the original data points are projected onto the lines.  The projection 

coordinates are known as scores and are represented by a vector, t for the X space and 

u for the Y space.  The lines are oriented to approximate the shape of each cluster and 

maximize the correlation between t and u.  The first component describes the most 
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significant variability but additional components may be added to further represent the 

relationship between X and Y.  For two or more components, the observations are 

projected onto a plane or hyper-plane formed by the principal components, instead of a 

straight line (Figure 6.1, C).  In SIMCA, a cross validation procedure is used to determine 

the optimal number of components.  The final relationship between the original data 

points and the new projection coordinates can be described using the following 

equations: 

X = 1x’ + TP’ + E  (1) 

Y = 1y’ + UC’ + F  (2) 

Where 1x’ and 1y’ represent the variable averages after pre-processing, T and U are the 

scores matrices, P’ and C’ are the transposed loadings matrices, and E and F are the 

residuals. The correlation structure between X and Y can be visualized by plotting the 

score vectors, t and u, for each principal component (Figure 6.1, D).  The score vectors 

are connected by the relationship ui = ti + hi, where hi is a residual.  When there is 

perfect matching between X and Y the points will all be located on the 45° line passing 

through the origin [9].    
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Figure 6.1  Description of the multivariate PLS analysis procedure.  A – Describes how the observations for 

X and Y are each represented in a multivariate space with one axis for each variable.  B – Describes the 

fitting of the first principal components to the X and Y data and the projection of the original data onto 

the lines to form the scores for the X-space, t1 and the scores for the Y-space, u1.  C – Describes the 

projection of the data onto a plane when two principal components are used.  D – Provides a visualization 

of the correlation between X and Y based on the respective scores, t and u.  Adapted from [9].          

6.3. Results 

The DOE investigation looked at the effect of minor variations in three process variables 

believed to be important for controlling granule quality: impeller speed, total binder 

volume and spray rate.  The impact on quality was assessed by measuring the physical 

properties of intermediate products as well as the final tablets.  The measured 

properties were based on a previous granulation study using the same formulation [2] 

and attributes commonly measured during product development.       
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6.3.1. Summary of physical property responses 

The quality of the final tablets was acceptable for all DOE runs, satisfying the criteria for 

a design space.  Table 6.2 shows the measured physical properties for the wet granules, 

dry granules and tablets; tablet measurements are only shown for the compression 

force where the largest difference was observed between runs.  The percent relative 

standard deviation (%RSD) was computed for each physical property to show the degree 

of variation across ten batches.  Tablet friability, break load, disintegration, and the 

fractions of midsized and large granules exhibited the greatest %RSD; while the fraction 

of fines by fluid-bed drying, density and flow differed by less than 5%.  A comparison of 

the 10 DOE runs suggests the process conditions for DOE 3 and DOE 7 were the most 

favourable.  The resulting tablets exhibited high break loads at 25 kN and the lowest 

number of friability failures at 15 kN.  In addition, the size factions for the dried granules 

were consistent with the desired distribution for this formulation: low fines, high 

midsized granules and an average number of large granules.  Both granulations were 

manufactured at low impeller speed and high binder volume but a low spray rate was 

used for DOE 3 and a high spray rate was used for DOE 7.  This suggests impeller speed 

and binder volume were the most important conditions for achieving optimal physical 

properties and the effect of spray rate was relatively insignificant.       
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Table 6.2  Summary of physical property measurements for the granules and tablets 

DOE 1 2 3 4 5 6 7 8 9 10 %RSD 

Fines tray 
dried 

0.56 0.58 0.52 0.56 0.65 0.6 0.57 0.56 0.59 0.59 6 

Midsized tray 
dried 

0.31 0.28 0.34 0.29 0.25 0.24 0.31 0.30 0.29 0.26 11 

Large  tray 
dried 

0.12 0.14 0.14 0.14 0.10 0.16 0.13 0.14 0.12 0.14 12 

Fines fluid-
bed dried 

0.82 0.84 0.77 0.80 0.80 0.83 0.76 0.79 0.81 0.80 3 

Midsized 
fluid-bed 

dried 
0.16 0.09 0.15 0.12 0.16 0.10 0.17 0.13 0.13 0.13 20 

Large fluid-
bed dried 

0.02 0.07 0.08 0.09 0.05 0.07 0.06 0.08 0.06 0.07 30 

Bulk density 
(g/cc) 

0.32 0.33 0.33 0.34 0.31 0.31 0.32 0.33 0.32 0.32 3 

Tap density 
(g/cc) 

0.54 0.55 0.56 0.57 0.53 0.53 0.55 0.55 0.54 0.53 2 

Flow 
avalanche 

time (s) 
4 4 3.7 3.9 4.5 4.2 3.9 4 3.9 4 5 

Flow break 
energy (Pa) 

156 159 155 164 157 152 150 159 156 157 2 

Friability 
failures 

3 3 0 3 3 3 1 3 2 2 46 

Break load at 
15 kN (kg) 

11.09 11.61 13.45 12.30 11.05 11.87 13.58 13.53 12.79 13.42 8 

Disintegration 
at 25 kN 

(min) 
4:34 4:51 5:02 5:06 5:07 4:58 5:15 5:33 5:40 5:44 7 

 

6.3.2. DOE analysis of the AAE responses 

DOE analysis of the 10 Hz TPSDs showed that both the time and volume-based 

responses were significantly affected by changes in the three process variables.  The 

following sub-sections present examples for two frequency ranges, 110-120 Hz and 130-

140 Hz, respectively selected for their relevance to granulation monitoring and end-

point detection.  
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110-120 Hz 

The 110-120 Hz TPSD profiles for each DOE run are shown in Figure 6.2 versus time and 

binder volume.  The profiles all follow the same general trend: a sudden decrease, 

followed by a steady increase to a plateau (or a more gradual increase), a second steady 

increase to a maximum, and a final decrease.  The features in the time-based profiles 

appear extended or compressed in the horizontal direction, depending on whether the 

spray rate was high or low.  When the data is plotted by volume instead of time, the 

features are aligned and the only difference is the TPSD magnitude.  The magnitude 

appears to depend on impeller speed, with higher intensities corresponding to runs at 

lower impeller speed.  Some vertical separation is also observed based on spray rate, 

particularly for the time-based profiles.  In general, the profiles are grouped in pairs 

according to impeller speed and spray rate, and the length of each profile varies with 

the amount of total binder volume.  The one exception is DOE 7, where the TPSD 

magnitude is higher than that of its proposed pair, DOE 5.   
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Figure 6.2  110-120 Hz TPSD versus time (top) and versus binder volume (bottom) for each DOE run.  Run 

conditions are listed in the legend as follows: DOE # - impeller speed (rpm), total binder volume (mL), 

spray rate (mL/min).  The dashed lines define the region where the process factors show significant linear 

relationships to the TPSD response.      

The DOE analysis identified significant linear relationships between minutes 3 and 8 and 

volumes 200 and 400 mL for the 110-120 Hz TPSD responses.  For the time-based 

responses, the analysis showed impeller speed and spray rate were linearly related to 

TPSD between minutes 3 and 6.  Figure 6.3 provides a representative description of the 

two independent relationships using the DOE plots for minute 6.  DOE plots show the 

linear effect of changing the level of a factor from low to high.  The two dots represent 
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the center points and describe how closely the linear approximation represents the 

data.  For single factor plots the centre points should be close to the linear 

approximation and for interactions they should be centrally located between the two 

linear approximations.  The DOE plots for minute 6 show that increasing the impeller 

speed caused a decrease in TPSD and increasing the spray rate caused an increase in 

TPSD.  The relationships establish that the differences in TPSD magnitude observed in 

Figure 6.2 are statistically significant and a direct result of changes in impeller speed and 

spray rate.  For minutes 7 and 8, a significant interaction was identified between 

impeller speed and spray rate in relation to TPSD.  The DOE plots show the TPSD did not 

change with spray rate for runs at low impeller speed, but at high impeller speed there 

was a significant decrease in TPSD for runs at low spray rate (Figure 6.3).  This agrees 

with the separation in the TPSD profiles for runs at 420 rpm, compared to the overlap 

observed for runs at 300 rpm between minutes 7 and 8 (Figure 6.2) and suggests the 

TPSD is sensitive to differences in granulation rate. 

The results for the volume-based responses were similar from 200 to 400 mL.  Figure 6.3 

provides a representative description of the relationship using the DOE plots for 300 mL.  

The plots show that increasing the impeller speed caused a decrease in TPSD and 

increasing the spray rate caused an increase in TPSD.  The relationships agree with the 

time-based results for minute 6 and correspond to approximately the same point in 

processing.  There were no interactions observed, likely because the profile trends were 

more aligned when the results were considered based on binder volume.  In general, 
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the DOE analysis showed the increase in TPSD during wetting was affected by impeller 

speed and spray rate, with the highest TPSD corresponding to runs at low impeller 

speed and high spray rate.        

 

Figure 6.3  DOE plots for significant factors and interactions affecting the 110-120 Hz TPSD throughout 

granulation.  The three factors are the effect of impeller speed (A), total binder volume (B) and spray rate 

(C).  For the results at 6 min and 300 mL, logarithm and inverse transforms were used to achieve a normal 

distribution in the residuals.   

130-140 Hz 

Figure 6.4 shows the progression of the 130-140 Hz TPSD over time (top) and binder 

addition (bottom).  Similar to the 110-120 Hz range (Figure 6.2), all profiles show a sharp 

decrease at the initial onset of wetting.  The profiles then exhibit a delay, followed by a 

rapid increase in TPSD.  Depending on the extent of granulation, the increase is followed 
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by a plateau and a decrease.  The magnitude of the rapid increase appears to depend on 

impeller speed, with runs at high impeller speed corresponding to greater intensities.  

Similar to 110-120 Hz, the profiles align when the results are plotted versus binder 

volume.  Arranged this way, the relationship between intensity and impeller speed is 

more apparent and additional separation is observed based on spray rate.  For the low 

impeller speed, runs at low spray rate correspond to higher magnitudes than runs at 

high spray rate and for the high impeller speed, a relatively flat local maximum is 

observed between 300 and 400 mL. 
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Figure 6.4  130-140 Hz TPSD versus binder volume for each DOE run.  Run conditions are listed in the 

legend as follows: DOE # - impeller speed (rpm), total binder volume (mL), spray rate (mL/min).  

For the 130-140 Hz range, the DOE analysis was the most relevant towards the end of 

wetting, where the TPSD increased (Figure 6.4).  Figure 6.5 shows the significant process 

effects and interactions identified for the TPSD responses 50 mL and 30 s prior to the 

end of wetting, and at the end of wetting.  The DOE plots show the significant effects 

were impeller speed and the interaction between impeller speed and total binder 

volume.  The general trend was an increase in TPSD with increasing impeller speed.  The 
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interactions indicate the increase in TPSD with impeller speed was more significant for 

runs at low binder volume, due to differences in granulation rate.  Runs at low binder 

volume granulated the slowest and were still increasing in TPSD during the final stages 

of wetting, while runs at high binder volume were reaching a plateau or showing a 

decrease in TPSD that is consistent with over wetting (Figure 6.4).     

 

Figure 6.5  DOE plots for significant factors affecting the 130-140 Hz TPSD at 50 mL to the end of wetting, 

30 s to the end of wetting and the end of wetting. The three factors are the effect of impeller speed (A), 

total binder volume (B) and spray rate (C).  

6.3.3. Multivariate PLS analysis of AAE responses 

Multivariate PLS modeling allowed for the simultaneous analysis of the relationships 

between the three process variables and the 10 Hz TPSDs, rather than considering each 

10 Hz response separately.  Figure 6.6 shows how well the 10 Hz TPSDs correlated to the 

process variables by comparing their respective projection coordinates, t and u.  For the 

first principal component, the location of the projection coordinates t[1] and u[1] close 

to the 45° line demonstrates good matching between the process variables and the 

10 Hz TPSD data.  The R2 value indicates 99% of the variability in the 10 Hz TPSDs 
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described by the first principal component can be explained by changes to the process 

parameters.  The observations are separated into three groups according to impeller 

speed, indicating impeller speed was the primary source of variability in the 10 Hz 

TPSDs.  Figure 6.6 also shows the relationship between the projection coordinates for 

the second principal component, t[2] and u[2].  Again the observations are located close 

to the 45° line and the R2 value indicates 97% of the change in TPSD described by the 

second principal component can be explained by changes in the process variables.  The 

data is separated into three groups according to spray rate; therefore spray rate is the 

second most significant source of variability.    

 

Figure 6.6  Correlation between the observations projected onto the first [1] and second [2] principal 

components, where t represents the projection coordinates for the process variables (X) and u represents 

the projection coordinates for the 10 Hz TPSDs (Y). 
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6.4. Discussion 

The results show the DOE successfully varied three process parameters in a manner 

consistent with design space development.  The quality of the final product was 

acceptable in all cases and the process could be optimized by moving in the direction of 

low impeller speed and high total binder volume.  The changes in process conditions 

were detectable by AAEs and demonstrated to be statistically significant.  The results 

support the use of acoustics to optimize operating conditions and monitor batch 

progress towards target final properties, thereby reducing the need for offline analysis 

and testing.  The following discussion will further explore the application of AAEs to 

process monitoring and end-point control.   

6.4.1. Summary of DOE physical properties analysis 

The results from the DOE analysis of the physical property responses can be used for 

process optimization and knowledge building.  Figure 6.7 summarizes the results 

according to a series of common process objectives, such as decreasing the fraction of 

fines or increasing tablet break load.  Tablet disintegration was not included because 

there were either large amounts of curvature or no significant effects.  This was not a 

concern, since the tablets all dissolved rapidly, in under 6 minutes (Table 6.2).  For each 

process objective, an asterisk was used to identify the most significant effect or 

interaction, except in cases where two effects were similar.  As an example, reading 

across, the first row shows the fines fraction was reduced by operating at low impeller 
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speed or high total binder volume, and the effect of total binder volume was more 

significant than the effect of impeller speed.  The results are logical because at low 

impeller speed there would be less attrition and at high binder volume a greater 

number of fines would be incorporated into agglomerates.   As another example, the 

second last row shows tablet friability was reduced by operating at high total binder 

volume and low spray rate, or low impeller speed and low spray rate.  Since there is no 

asterisk, both combinations had similar effects on friability.   

The summary provides statistical evidence of the importance of impeller speed and total 

binder volume to product quality.  In agreement with Table 6.2, the chart suggests low 

impeller speed and high total binder volume were the preferred run conditions, and the 

effect of spray rate was relatively insignificant.  Low impeller speed satisfied the process 

objectives for all three size fractions, and high total binder volume was the most 

significant factor for three of the seven objectives, including increasing break load for 

tablets compressed at 25 kN.  In addition, the combination of low impeller speed and 

high binder volume produced tablets with optimal break loads for compression forces of 

10, 15 and 20 kN.   The opposing factor levels, high impeller speed and low binder 

volume, were identified less frequently and coincided with objectives that varied 

minimally across the ten batches, such as density and flow.   

The summary also provided statistical support for the relative unimportance of spray 

rate in achieving the desired product attributes.  Spray rate was only significant for 
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increasing granule density and flow, two properties with low %RSD (Table 6.2), and was 

never the most significant factor.  As such, the results statistically confirm the 

hypothesis that low impeller speed and high total binder volume were favourable and 

spray rate was relatively insignificant, in terms of the measured physical properties.  The 

chart format was useful for assessing the overall impact on product quality from 

changes made during granulation and identifying the most significant sources of 

variability.  In the future, it would be possible to use the chart to decide which process 

conditions to use based on the desired product attributes. 

 

Figure 6.7  Sample of how DOE results can be used to achieve various process objectives.  The + and - 

symbols refer to the high and low levels for each process variable, and the most significant effect is 

identified by an asterisk.  If no asterisk is shown then both actions are of similar significance.  The size 

fractions correspond to the fluid-bed dried samples and density encompasses the results for both tap and 

bulk measurements.   
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6.4.2. Detection of process changes from AAEs 

The AAEs detected by the air exhaust microphone were sensitive to changes in all three 

process conditions: impeller speed, total binder volume and spray rate.  The position of 

the microphone allowed for collection of AAEs that were representative of the complete 

granulation process and therefore effective for detecting changes in process conditions.  

Impeller speed and spray rate were found to be significant in relation to wetting, while 

impeller speed and total binder volume were significant in terms of end-point.  

Statistical significance does not necessarily imply process significance, and the physical 

property measurements (Table 6.2) were used to assess the impact of the process 

changes in terms of product usability.  The following section further investigates the 

relationship between the changes in process conditions and the 10 Hz TPSD responses. 

Impeller speed 

The importance of changes in impeller speed to final product quality was demonstrated 

by the physical property measurements.  The results show impeller speed has a 

significant effect on the granule size distribution and density (Figure 6.7), which is 

expected since impeller rotation is known to affect the rate of granule growth and 

consolidation [10].  AAEs were shown to be an effective method for monitoring changes 

in impeller speed and would therefore be useful for optimizing particle size distribution 

and density.  Vertical separation in the 110-120 and 130-140 Hz TPSDs profiles was 

greatest between runs at different impeller speeds (Figure 6.2, Figure 6.4) and the DOE 
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and PLS analyses both identified impeller speed as the most significant process factor 

affecting TPSD (Figure 6.3, Figure 6.5, Figure 6.6).   

The impeller speed corresponding to the highest TPSD magnitude was observed to 

depend on frequency.  For 110-120 Hz, the DOE runs at 300 rpm corresponded to the 

highest TPSD, whereas for 130-140 Hz the highest magnitude was observed for runs at 

420 rpm (Figure 6.2, Figure 6.4).  Similar discrepancies were also observed for other 

10 Hz frequency groups (Appendix C).  The change in magnitude with impeller speed is 

thought to reflect a change in the granule shearing motion, resulting in a different 

dominant frequency and harmonics.  The results are consistent with findings for sheared 

sand grains, where the sound frequency was observed to increase with increased 

shearing velocity due to a change in the relative motion of the moving grains [11].   The 

AAEs from shearing sand grains are harmonic in nature, consisting of one dominant 

frequency and several higher harmonics [12], and are believed to be similar to AAEs 

generated during high-shear granulation [2].   

The direct relationship between AAEs and granule shearing explains why impeller speed 

was repeatedly identified as the most significant process variable.  The velocity profile 

for shear flow has been shown to vary with impeller speed, particularly near the bottom 

of the vessel, in close proximity to the agitation source [13, 14].  A change in impeller 

speed is therefore thought to affect the frequency and velocity of particle collisions, 

resulting in a change in the AAEs.  The results agree with a DOE study by Gamble et al. 
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[8], where a model for detecting granulation end-point from acoustic emissions failed 

when the impeller speed was changed.  The failure was attributed to a change in the 

granule velocity with impeller speed that affected the acoustic frequency of the 

granules.  The results enforce the need to monitor a number of frequencies, rather than 

focusing on a single range as some researchers have done.  A model with complete 

frequency information will be more robust and better equipped to accommodate 

necessary changes in process parameters during the development process.  A robust 

model would also satisfy the ICH Q8 objectives, which emphasize movement towards 

flexible operation, where parameters can be adjusted in-process to accommodate 

variability that may affect product quality. 

Spray Rate 

Spray rate was shown to have the next most significant effect on the AAEs, after 

impeller speed.  The DOE analysis of the 110-120 Hz range identified spray rate as a 

significant variable (Figure 6.3) and the PLS model showed separation based on spray 

rate in the second principal component (Figure 6.6).  The results suggest spray rate 

affected the AAEs generated during wetting.  This is likely because the introduction of 

binder increased granule cohesiveness, which has been shown to increase the 

momentum transfer to particles and consequently particle surface velocity [15, 16].  The 

results suggest the increase in granule cohesiveness had an effect on granule shearing 

and consequently the generation of AAEs.  The relationship between surface velocity 

and spray rate is expected because the surface particles would be the first affected by 
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the water droplets, just as granules close to the impeller would be the first affected by a 

change in impeller speed.  

The effect of spray rate was relatively insignificant in relation to the final stages of 

granulation.  The measured physical properties were not significantly affected by spray 

rate and neither were the 10 Hz TPSDs from the end of wetting.  This could be because 

the AAEs associated with spray rate became damped towards the end of wetting, due to 

the lubrication effect created by liquid at the granule surface.  When granules become 

dense, liquid from the pores is squeezed to the surface and a film develops on the 

outside of the granules.  In previous work, the presence of liquid on the granule surface 

was shown to contribute to a decrease in AAEs during the latter half of wetting [2, 

Chapter 4, Chapter 5] and for shearing sand grains AAEs were observed to decrease with 

an increase in humidity [17].   

The difference between volume and time-based sampling was the most evident in 

relation to spray rate (Figure 6.2, Figure 6.4).  The horizontal separation in the time 

based profiles with spray rate agrees with results by Briens et al. [18].  The alignment 

observed when the data was plotted versus volume instead of time demonstrates the 

majority of the spray rate effect was due to differences in the amount of binder added, 

rather than the rate of binder addition.   The results suggest the total amount of binder 

is more important to granule growth than the rate of addition and are consistent with a 

DOE study of high-shear granulation by He et al. [19], where total water was shown to 
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be more important than fluid addition rate and wet massing time.  In addition, the 

findings suggest it may not be necessary to control the rate of water addition during 

granulation, as long as the total volume requirement is met.   

Total binder volume 

Differences in total binder volume only affected the AAEs related to the end of wetting.  

The DOE results showed total binder volume was significant in relation to the final 

granule properties (Figure 6.7) and the increase in the 130-140 Hz TPSD profile towards 

the end of wetting (Figure 6.4).  The increase in the 130-140 Hz TPSD occurred 500 mL 

into binder addition and coincided with a decrease in the 110-120 Hz TPSD profile 

(Figure 6.2).  As such, the increase is thought to correspond to granule densification and 

the presence of liquid on the granule surface.  Surface liquid increases granule cohesion 

and stickiness and is believed to reduce granule shearing, resulting in a more collective 

bulk motion.  The collective motion differs from the surface motion detected in the 110-

120 Hz range and is therefore represented by a different acoustic frequency.  It is not 

present until the granules reach a dense, agglomerated state, and is therefore 

consistent with the relative absence of AAEs in the 130-140 Hz range prior to 500 mL.  

Overall, the results suggest the 10 Hz frequencies respond to changes in the granular 

motion with wetting in addition to changes in process conditions.   

The significance of binder volume towards the end of wetting illustrates its critical effect 

on the granulation process, in relation to AAEs and final granule properties.  The percent 

variation between the center point and the high and low extremes was only ±4%, in 
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comparison to ±17% and ±18% for impeller speed and spray rate, respectively.  The 

range for total binder volume was purposely reduced because results from an earlier 

study of granulation end-point showed changes in total binder volume rapidly affected 

critical final properties, such as particle size and tablet hardness [2].  Introducing greater 

variability would have resulted in failed batches, which is inconsistent with the design 

space approach.  Instead, the results reinforce the critical sensitivity of the granulation 

process to binder volume and the opportunity to significantly alter the granulation 

outcome through its control.   

6.4.3. Application to pharmaceutical development and process control 

The dynamic features of the TPSD profiles support online monitoring of AAEs to 

determine whether an adjustment in process conditions is needed to achieve the 

desired physical properties.   The features in the 110-120 and 130-140 Hz TPSD profiles 

support both process monitoring and end-point detection (Figure 6.2, Figure 6.4).  The 

horizontal shift in the time-based profiles was consistent with the rate of binder 

addition and the vertical shift in the volume-based profiles was primarily related to 

impeller power.  For 130-140 Hz, the plateau towards the end of wetting was consistent 

with end-point and acceptable product quality.  The results support the development of 

a process signature using the AAEs that would become the target for future batches [2].  

For each granulation, the AAEs could be compared to the target profile to facilitate the 

achievement of optimal product quality.  This interactive approach would reduce 
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development times for new products and result in more flexible processes capable of 

accommodating variability in raw material properties and processing conditions.  

The results from the multivariate PLS model support use in online process control.  The 

first component scores are suitable for monitoring impeller speed and the second 

component scores are suitable for monitoring binder volume through the control of 

spray rate.  The scores can be used to define the design space, by establishing upper and 

lower limits for operation.  By computing the scores online at regular intervals 

throughout granulation, a feedback control system could be implemented where 

impeller speed and spray rate are adjusted to achieve consistent product quality.  Such a 

system would reduce development times for new products and help achieve consistent 

quality when a process is scaled-up from development to manufacturing.  Further runs 

are necessary to define the scores associated with failure conditions outside the design 

space and to increase the number of observations used to construct the model, as ten 

runs are insufficient for online prediction.   

6.5. Conclusions 

The complexity of the high-shear granulation process makes it unpredictable in the 

sense that minor changes in raw material inputs or processing conditions can affect 

product quality.  Rather than follow a set manufacturing procedure that does not allow 

for these variations, it is desirable to design a more robust process where a range of 

operating conditions are acceptable.  The result is a more flexible operation, where 
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minor variations can be accommodated by adjusting the process parameters.  In order 

for this technique to work, a method is required for monitoring batch quality 

throughout granulation.   

The findings presented here support the development of AAEs as a PAT technology for 

monitoring changes in process conditions to achieve a desired product quality.  DOE and 

multivariate PLS analyses showed AAEs from high-shear wet granulation were sensitive 

to changes in impeller speed, spray rate and total binder volume.  Impeller speed and 

spray rate were significant in relation to granulation wetting, and impeller speed and 

total binder were the most relevant approaching granulation end-point.  Future work 

should involve integration of a classification system for new data points and adaptation 

into an online system using either the TPSD profiles or the multivariate scores.  Such a 

system would provide a quantitative method for process optimization that would 

reduce development times and help build process knowledge to benefit development 

activities as well as scale-up and product transfers.     
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Chapter 7   

7. General discussion and conclusions 

Granulation is a common step in the manufacture of pharmaceutical solid dosage forms.  

The objective of granulation is to improve the properties of fine powders through size 

enlargement to facilitate downstream unit operations, such as tabletting.  Granule 

growth is complex, depending on a number of mechanisms and the transition to rapid 

growth and over wetting often occurs quickly [1].  As a result, granulation behaviour is 

difficult to predict, for both new and existing formulations, and variations in raw 

material properties, process conditions, or equipment can lead to changes in product 

quality.  This is a concern for the pharmaceutical industry, as product quality is essential 

for drug safety and effectiveness.  During development, batches are scaled from bench-

top to manufacturing units, and production changes hands from scientists to plant 

operators.  As a result, it is important to completely understand each product and how it 

behaves under different conditions.  The development of quantitative systems for 

process monitoring and end-point detection would help control product quality and 

reduce the time and effort required for product development and scale-up.  A variety of 

technologies have been investigated, however a disconnect between the tools 

developed and regulatory objectives appears to be hindering widespread adoption of 

any one technique.  
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The objective of this work was to develop AAEs as a PAT for high-shear granulation, with 

attention to the recommendations provided by the FDA and other regulatory bodies [2].  

The ICH Q8 guidance document emphasizes the importance of developing technologies 

that improve process understanding and increase manufacturing flexibility.  As a result, 

demonstration of a correlation between online measurements and granulation end-

point is only the first step in PAT development.  The work presented in this thesis 

demonstrates the robustness of AAEs as a technology for monitoring granulation and 

detecting end-point by 1) relating the AAEs to critical quality attributes, such as particle 

size and density 2) investigating the effect of process parameters, such as impeller 

speed, spray rate, and total binder volume on the AAEs and 3) using controlled 

experiments to better understand the source of the AAEs and why the technology is 

effective.  The incorporation of DOE and multivariate analysis techniques provided an 

effective means of extracting relevant information from the AAEs and understanding 

relationships to the granulation process and final product quality.   

This thesis builds on proof-of-concept work by Daniher et al. [3] and Briens et al. [4], 

demonstrating AAEs collected from the air exhaust of a high-shear granulator can be 

related to process end-point.  The air exhaust location is unique to AAE collection and 

cannot be applied to ultrasonic acoustic emissions, as ultrasonic waves attenuate 

significantly in air [5].  The findings presented in this work suggest the air exhaust 

location is favourable because the information collected is directly related to particle 

interactions and reflects the collective granulation process (Chapter 4).  The relationship 
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between AAEs and particle-particle interactions was demonstrated by rotating MCC and 

sugar spheres of known size in stainless steel beakers, and rotating MCC spheres in a 

high-shear granulator.  The beaker experiments made it possible to isolate AAEs from 

particle-particle and particle-equipment interactions, by removing the effects of the 

impeller and binder addition.  Using multivariate PCA and PLS models, it was possible to 

establish a relationship between AAEs and sphere size, confirming that AAEs are related 

to particle behaviour.  In addition, the similarity between the AAEs for MCC in the 

beaker and the granulator suggested the dominate source of AAEs is particle-particle 

interactions, rather than particle-equipment interactions.  Multivariate analysis of the 

AAEs showed the sound from the spheres was generated by two different sources 

(Chapter 4).  Low frequency emissions, negatively correlated with size, were thought to 

result from interactions between particles near the base of the vessel, and high 

frequency emissions, positively correlated with size, were thought to reflect particle 

interactions at the surface.  The results for the low frequencies support the observed 

decrease in AAEs with granulation end-point and over wetting [6], while the positive 

relationships for high frequencies support correlations developed in the ultrasonic range 

[7, 8].    

The results from the beaker experiments suggest AAEs are sensitive to different types of 

particle interactions.  Granulation depends on a number of complex interactions; 

therefore, the ability to detect different behaviours would be useful for understanding 

the complete process.  TPSD analysis of AAEs from high-shear granulation showed 
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unique trends could be identified when the profiles were divided into 10 Hz groups 

(Chapter 3) and multivariate analysis confirmed a relationship to physical property 

changes (Chapter 5).  A PLS model showed different combinations of 10 Hz TPSDs were 

predictive of changes in size versus changes in density during granulation, suggesting 

densification and growth do not occur uniformly throughout the granulator.  In a 

separate study, a PLS model was generated using the 10 Hz TPSDs from granulations 

completed under different process conditions (Chapter 6).  The resulting model showed 

the variability in the 10 Hz TPSDs represented by the first principal component was 

related to changes in impeller speed, while the variability represented by the second 

principal component was related to changes in spray rate.  The results suggest the AAEs 

are information-rich and reflect the complexity of particle behaviour during granulation.  

The findings are in contrast to other PATs, where measurements reflect a localized area 

in front of the probe and may not be representative of the complete process.  

In addition to the unique features identified in the 10 Hz TPSD profiles, a common 

decrease in acoustic intensity was shown to coincide with granulation end-point and 

over wetting (Chapter 3).  The decrease was consistently observed, independent of 

changes in formulation, raw material properties and process parameters and agrees 

with ultrasonic acoustic emissions profiles for fluidized-bed [9] and high-shear 

granulations [8, 10].  Despite its common occurrence, there has been relatively little 

research into the source of the decrease.  In this work, a DOE approach was used to 

investigate the effect of changes in size and density on the granulation AAEs (Chapter 5).  
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The results from the DOE analysis showed increases in size and density contribute 

significantly to the decrease.  The relationship to size was also identified in the beaker 

experiments, where low frequency groups were shown to be negatively correlated to 

size for sugar spheres, MCC spheres and wet granules (Chapter 4).  The findings confirm 

AAEs are useful for understanding physical changes that occur during granulation and 

offer an explanation for the consistent decrease during the latter half of wetting.     

Multivariate analysis was used throughout this work to extract meaningful information 

from large amounts of data and simplify understanding of a complex process.  A routine 

was developed utilizing the VIP parameter to identify frequencies with relevant 

information for monitoring granulation (Chapter 3).  The combined results for three 

formulations showed the most relevant information was concentrated below 250 Hz.  

The findings are similar to the range identified by Daniher et al. [3] for high-shear 

granulation and Briongos et al. [11] for fluidized-bed granulation.  The VIP routine 

greatly simplified subsequent analysis of the AAEs by reducing the number of frequency 

groups considered from 1998 to 23.  In later work, multivariate analysis was used to 

simplify understanding of the AAEs by establishing relationships to quality attributes and 

process parameters (Chapter 5, Chapter 6).  Predictive relationships were identified 

between the OPLS scores and measurements of particle size distribution, bulk density 

and tap density (Chapter 5).  The scores profiles were shown to be unique for each 

measurement and online computation would provide a means of evaluating changes in 

real-time using AAEs.  Measurements of size and density are valuable because both 
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variables have been identified as critical to granule quality [12], yet they are difficult to 

measure online.  There are currently no technologies capable of isolating changes in 

density, and existing PATs for measuring particle size require equipment modification or 

product contact.  AAEs provide a method for measuring both properties non-intrusively, 

using a single sensor.  Multivariate scores were also shown to be sensitive to changes in 

impeller speed, spray rate and total binder volume (Chapter 6).  The results suggest 

impeller speed and spray rate could be adjusted online to achieve target granule 

properties, using multivariate scores plots to monitor the changes.   

In summary, the findings provide support for the adoption of AAEs as a PAT technology 

for high-shear granulation.  The demonstrated relationship of AAEs to particle-particle 

interactions and changes in size and density confirm the information acquired is 

relevant to the granulation process.  As a result, AAEs can be used with confidence to 

understand and accommodate process variability during product development and 

manufacturing.  The results support the initiatives outlined in the ICH Q8 guidance to 

build process knowledge and increase manufacturing flexibility using PATs [2].  With 

improved process knowledge, it would be possible to adjust operating parameters in 

real-time to achieve the desired product quality, rather than relying on offline testing.  

In addition, AAEs could be used to reduce development times for new products.  AAEs 

were demonstrated to be sensitive to impeller speed and spray rate; therefore, these 

parameters could be adjusted during granulation to achieve target profiles for critical 

properties such as particle size and density.  Having quantitative, real-time information 
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would reduce the dependence on offline measurements, such that processes could be 

optimized in fewer iterations.  It would also be easier to identify the root cause of 

product issues because it would not be necessary to trace offline measurements back 

through each stage of processing.  Quantitative measurements may also be valuable for 

assisting scale-up operations and product transfers, where it is desirable to maintain 

consistent product attributes.  Since AAE sensors are small and portable they would be 

easy to move from one unit to another to compare information on quality attributes.  

Overall, the work demonstrates AAEs provide a robust measure of the complex 

interactions known to occur during granulation and with the use of multivariate analysis 

techniques it is possible to extract relevant information to increase process 

understanding and assist in optimization and control.  Future work should focus on the 

development of online systems for measuring changes in critical quality attributes and 

detecting end-point at both development and manufacturing scales.     
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Appendices 

Appendix A: Copyright permissions for Chapter 3. 

For an article published with Elsevier the author retains the right to publish the 

manuscript, in full or in part, in a thesis or dissertation.  The version of the article 

included in this thesis differs from the published article in some of the language and 

wording but the overall content is the same.     
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Appendix B: TPSD profiles for other microphone positions. 

Top – The TPSD profiles for the microphones attached to the bowl wall and the motor 

show minimal change throughout water addition and would be difficult to use for 

precise process monitoring and control. 

Bottom – The TPSD profiles for the microphones suspended at the top and inside of the 

air exhaust are more detailed and distinct maxima and minima features can be 

identified for process monitoring and control.  The trend in TPSD over wetting for the 

microphone inside the air exhaust matches the trend for the microphone at the top of 

the air exhaust, differing only in magnitude.   
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Appendix C: Supplementary 10 Hz profiles in support of impeller speed dependence. 

The following three plots are further examples of how the maximum TPSD magnitude 

corresponds to different impeller speeds depending on the frequency range examined.  

In the top plot, for 130-140 Hz, runs at 420 rpm exhibit the highest magnitude; in the 

middle plot, for 200-210 Hz, runs at 360 rpm exhibit the highest magnitude; and in the 

bottom plot, for 220-230 Hz, runs at 300 rpm exhibit the highest magnitude.   



170 
 

 
 

  



171 
 

 
 

Curriculum Vitae 

Erin M. Hansuld 

EDUCATION  

PhD, Chemical Engineering  2011 
The University of Western Ontario & GlaxoSmithKline Inc.  

Bachelor of Engineering Science, Honors Chemical Engineering  2007 

The University of Western Ontario                                             

Bachelor of Arts, Honors Business Administration 2007 

The Richard Ivey School of Business 

SCHOLARSHIPS AND AWARDS  

NSERC CGS-D 2009-2011 

Policy Conference Award, WISE/OCEPP 2010 

Claudette MacKay-Lassonde Ph.D. Scholarship, CEMF 2009-2010 

NSERC PGS-D 2008-2009 

NSERC CGS-M 2007-2008 

NSERC USRA summer 2006 

Doreen M. Dinsdale Award, The University of Western Ontario 2007-2008 

Ontario Professional Engineers’ Scholarship, The University of Western Ontario 2006-2007 

RELATED WORK EXPERIENCE 

GlaxoSmithKline Inc., Pharmaceutical Development, Internship Student  2007 – 2011  

The University of Western Ontario, Chemical Engineering, Teaching Assistant 2007 – 2011 

The University of Western Ontario, Chemical Engineering, Research Assistant Summer 2006 

PUBLICATIONS  

Hansuld, E. M., Briens, L., McCann, J. & Sayani, A. (2009). Int. J. Pharm. 378, p. 37-44. 

Hansuld, E., Briens, C. & Briens, L. (2008). Chem. Eng. Process. 47 (5), p. 871-878. 
 

CONFERENCES  

Hansuld, E., Briens, L., McCann, J. & Sayani, A. (2009). CSPS Symposium. Toronto, ON. 



172 
 

 
 

Hansuld, E., McCann, J., Arp, Z., Briens, L. & Sayani, A. (2008). AAPS Annual Meeting. Atlanta, 
GA.  

Hansuld, E., McCann, J., Briens, L., Arp, Z. & Sayani, A. (2008). ECI: Particulate Processes in the 
Pharmaceutical Industry II. Rio Grande, Puerto Rico. 

Hansuld, E., Downey, J., Briens, C. & Briens, L. (2006). AIChE Annual Conference. San Francisco, 
CA.    


	Audible Acoustic Emissions for Monitoring High-Shear Granulation
	Recommended Citation

	CERTIFICATE OF EXAMINATION
	Abstract
	Co-Authorship Statement
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Appendices
	List of Abbreviations
	Chapter 1
	1. Introduction
	1.1. High-shear wet granulation
	1.1.1. Granulation equipment
	1.1.2. Powder flow in high-shear granulators
	1.1.3. Granulation mechanisms
	1.1.4. Granule growth stages

	1.2.   Process analytical technologies
	1.3.   Acoustic emissions
	1.3.1. Acoustic sensors
	1.3.2. Sampling

	1.4.   Signal analysis
	1.4.1. DFT
	1.4.2. Multivariate data analysis

	1.5.   Thesis objectives
	1.6.   References

	Chapter 2
	2. PAT development for granulation processes
	2.1.  Power consumption
	2.2.    Near-infrared spectroscopy (NIR)
	2.3.   Imaging and focused beam reflectance measurement (FBRM)
	2.3.1. Imaging
	2.3.2. FBRM

	2.4.   Stress and vibration
	2.4.1. Stress
	2.4.2. Vibration

	2.5. Acoustic emissions
	2.5.1. Fluidized-bed granulation
	2.5.2. High-shear granulation

	2.6.   References

	Chapter 3
	3. Audible acoustics in high-shear granulation: Application of frequency filtering
	3.1. Introduction
	3.1.1. Granulation monitoring using acoustic sensors
	3.1.2. Multivariate analysis
	3.1.3. Objective

	3.2. Materials and methods
	3.2.1. Formulation
	3.2.2. Granulation method
	3.2.3. Granule analysis
	3.2.4. Microphone setup and data acquisition
	3.2.5. Signal processing

	3.3. Results
	3.3.1. Definition of end-point range
	3.3.2. Size distribution
	3.3.3. Flowability
	3.3.4. Tablet break load testing
	3.3.5. Acoustic results

	3.4. Discussion
	3.4.1. Interpretation of acoustic results using physical property data
	3.4.2. Important features in the 10 Hz TPSD profiles
	3.4.3. Assessment of the PLS-DA method for identification of key frequency groups

	3.5. Conclusions
	3.6. References

	Chapter 4
	4. An investigation of the relationship between audible acoustic emissions and particle size
	4.1. Introduction
	4.2. Materials and methods
	4.2.1. Materials
	4.2.2. Shearing MCC and sugar spheres in stainless steel beakers
	4.2.3. Shearing MCC spheres in a granulator
	4.2.4. Shearing wet granules in a stainless steel beaker
	4.2.5. Signal collection
	4.2.6.  Signal analysis

	4.3. Results
	4.3.1. MCC and sugar spheres in the 1.2 and 12 L beakers
	4.3.2. MCC in the granulator
	4.3.3. Wet granules in the 12 L beaker
	4.3.4. Average scores comparison for the low frequency range

	4.4. Discussion
	4.4.1. Positive correlations between AAEs and size
	4.4.2. Negative correlations between AAEs and size
	4.4.3. Scale independence for MCC spheres in the 1.2 L beaker, 12 L beaker and granulator
	4.4.4. Interpretation of average OPLS scores for dry spheres versus wet granules

	4.5. Conclusions
	4.6. References

	Chapter 5
	5. Monitoring quality attributes for high-shear wet granulation with audible acoustic emissions
	5.1. Introduction
	5.2. Materials and methods
	5.2.1. Materials
	5.2.2. Methods

	5.3. Results
	5.3.1. DOE investigation of the effect of size and density on AAEs
	5.3.2.   100-110 Hz TPSDs
	5.3.3.   DOE analysis of the 100-110 Hz TPSDs
	5.3.4.   Density and particle size measurements
	5.3.5. Multivariate analysis of the 10 Hz TPSDs

	5.4. Discussion
	5.4.1. Relating AAEs to size and density
	5.4.2. Applications

	5.5. Conclusions
	5.6. References

	Chapter 6
	6. The effect of process parameters on audible acoustic emissions from high-shear granulation
	6.1. Introduction
	6.2. Materials and methods
	6.2.1. Formulation
	6.2.2. Methods

	6.3. Results
	6.3.1. Summary of physical property responses
	6.3.2. DOE analysis of the AAE responses
	6.3.3. Multivariate PLS analysis of AAE responses

	6.4. Discussion
	6.4.1. Summary of DOE physical properties analysis
	6.4.2. Detection of process changes from AAEs
	6.4.3. Application to pharmaceutical development and process control

	6.5. Conclusions
	6.6. References

	Chapter 7
	7. General discussion and conclusions
	7.1. References

	Appendices
	Curriculum Vitae

