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ABSTRACT 

L-type Ca2+ channels (dihydropyridine receptors, DHPRs) in the sarcolemma are 

essential to cardiac excitation-contraction (E-C) coupling.  Thus, Ca2+ influx through 

DHPRs upon cardiomyocyte excitation triggers Ca2+ release from the sarcoplasmic 

reticulum (SR) through ryanodine receptors (RyRs) to initiate myofilament activation and 

muscle contraction.  Muscle relaxation occurs upon sequestration of Ca2+ back into the 

SR lumen by sarco/endoplasmic reticulum calcium-ATPase (SERCA) in the SR.  As a 

treatment option for hypertension, long-term use of DHPR blockers is associated with 

increased risk of heart failure, but the underlying mechanisms are unknown.  This 

research used male Wistar rats treated with verapamil (subcutaneously, 625 µg/h/kg for 4 

weeks) to determine the impact of chronic DHPR blockade in vivo, on E-C coupling 

events and heart function at all levels ranging from molecules to whole organism.  The 

results presented in chapter 2 demonstrate that chronic DHPR blockade caused functional 

remodeling of RyRs and spatio-temporal dyssynchrony of E-C coupling events, resulting 

in systolic dysfunction and enhanced susceptibility to arrhythmia.  Findings in chapter 3 

reveal that chronic DHPR blockade was accompanied by depressed SERCA function, 

abnormal cardiomyocyte Ca2+ handling, and diastolic dysfunction.  Results in chapter 4 

reveal adaptational changes in protein phosphorylation-dependent regulation of 

SR/cardiomyocyte Ca2+ cycling due to chronic DHPR blockade.  These include over-

expression of Ca2+/calmodulin-dependent protein kinases II (CaMKII), hyper-

phosphorylation of SR Ca2+ cycling proteins by CaMKII and cAMP-dependent protein 

kinase (PKA), paradoxically diminished SR Ca2+ content and contractile reserve, and 

blunted inotropic response to β−adrenergic stimulation.  The above adaptations to chronic 
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DHPR blockade occurred in the absence of cardiac hypertrophy or fibrosis.  Thus, 

molecular remodeling may invoke cardiac pathology and heart failure without 

microscopic structural changes in cardiomyocytes.  The findings from this thesis reveal, 

for the first time, integrated mechanisms underlying the increased risk of heart failure 

associated with chronic DHPR blockade.  In addition to urging caution in the 

conventional clinical use of DHPR blockers, the novel mechanistic events and molecular 

remodeling revealed here imply that manipulation of the stoichiometry of molecular 

players in E-C coupling demand critical attention and careful scrutiny in the design and 

deployment of therapeutic approaches for heart diseases.   

 

Keywords—sarcoplasmic reticulum; excitation-contraction coupling; verapamil; calcium 

channel blockers; Ca2+ sparks; Ca2+-ATPase; ryanodine receptors; dihydropyridine 

receptor; Ca2+ transient; fura-2; Ca2+/calmodulin-dependent protein kinase II; cAMP-

dependent protein kinase; cardiac functional reserve; protein phosphorylation 
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τ: time constant of decay of [Ca2+]i 

Tau: time constant of relaxation  

transient 

Vmax : maximum velocity of SR Ca2+

VPL: verapamil-treated group 

 pumping  

VT: ventricular tachycardia 

WCL: Wenckebach cycle length  

 



Chapter 1 Ji Zhou  1 

 

 

 

 

 

 

 

CHAPTER ONE 

 

INTRODUCTION 



Chapter 1 Ji Zhou  2 

1.1. Chapter Summary 

Known as dihydropyridine receptors (DHPRs), voltage-gated, L-type Ca2+ 

channels in the sarcolemma convert the electrical signal into the Ca2+ signal thereby 

enabling the cardiac excitation-contraction coupling (E-C coupling) and consequently the 

heart beat 1-5.  During cardiac E-C coupling, the action potential causes the sarcolemma to 

depolarize which activates the voltage-gated DHPRs.  This opening of DHPRs permits a 

small amount of Ca2+ to enter the cardiomyocyte and triggers a large amount of Ca2+ 

release from the sarcoplasmic reticulum (SR) through ion channels known as ryanodine 

receptors (RyRs).  The resulting rise in cytoplasmic Ca2+ activates myofilaments to 

produce a muscle contraction 3-6.  Subsequent muscle relaxation occurs upon lowering of 

cytoplasmic Ca2+ through sequestration of Ca2+ back into the SR lumen by a Ca2+- 

pumping ATPase (SERCA) 4, 7, 8 and extrusion of Ca2+ out of the cell via Na2+/Ca2+ 

exchanger 4, 9-12

The DHPR is vital for the cardiac cycle since complete blockade of DHPRs turns 

off E-C coupling and causes immediate cessation of the heart beat 

. 

4, 13.  Intriguingly, 

DHPR blockers are frequently prescribed for long-term treatment of cardiovascular 

disease such as hypertension and angina pectoris 14, 15.  Presumably, DHPRs are only 

partially blocked by DHPR blockers at doses routinely employed clinically.  However, 

the long-term effects of partial blockade of DHPR on cardiac E-C coupling events and 

contractile function are not yet understood.  Moreover, recent large scale clinical trials 

have suggested that long-term use of DHPR blockers increases the risk of heart failure, 
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cardiac arrhythmias and myocardial infarction. However, the underlying mechanisms are 

not known14, 16-18

The SR Ca

.   

2+ cycling apparatus is immediately downstream of the DHPR in the E-

C coupling process, and pivotal to enable the contraction-relaxation cycle.  The crosstalk 

between the DHPR and SR Ca2+ cycling proteins is central to the maintenance of cellular 

Ca2+ homeostasis, cardiac contraction, and heart rhythm 4.  During cardiac E-C coupling, 

the magnitude and duration of Ca2+ influx via DHPR tightly controls the rate and amount 

of Ca2+ release from SR.  On the other hand, Ca2+ release from the SR feeds back to alter 

DHPR function 19-21.  Close spatial proximity between the DHPR and the RyR (~10 nm) 

is a critical factor that ensures the stability and fidelity of intermolecular Ca2+ signaling 

between the DHPR and its molecular partners (RyR, SERCA) in the SR Ca2+ cycling 

apparatus 2, 3.  Little is known about the impact of chronic inhibition of DHPRs on the 

expression and function of SR Ca2+ cycling proteins and the molecular events governing 

cardiac E-C coupling.  In this thesis, I provide a comprehensive assessment of the cardiac 

E-C coupling adaption to chronic, partial DHPR blockade.  This chapter provides a brief 

review of the pertinent literature and outlines the rationale, objectives and hypotheses of 

the research. 
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1.2. Cardiac E-C coupling. 

1.2.1 Ca2+

Cardiac excitation–contraction coupling (E-C coupling) is the process from 

electrical excitation of the cardiomyocyte to contraction.  The calcium ion (Ca

 Cycling During E-C Coupling 

2+) is 

crucial to this process and Ca2+ cycling during E-C coupling has been well established 4 

(Fig.1-1).  During the cardiac 

action potential, L-type Ca2+ 

channels (DHPRs) in the 

sarcolemma are activated and Ca2+ 

enters the cell as inward Ca2+ 

current (DHPR Ca2+ current, ICa).  

This DHPR Ca2+ influx triggers 

Ca2+ release from the sarcoplasmic 

reticulum (SR) through ion 

channels known as ryanodine receptors (RyRs) by the mechanism known as "Ca2+ 

induced Ca2+ release" (CICR) 4, 22.  The consequent rise in cytosolic free Ca2+ causes 

myofilament activation and contraction by Ca2+ binding to the thin-filament protein 

troponin C.  For relaxation and diastolic filling of cardiac chambers to occur, the added 

Ca2+ must be removed from the cytosol such that Ca2+ dissociates from troponin C to turn 

off the contractile machinery.  This requires Ca2+ transport out of the cytosol by four 

pathways involving SR Ca2+-ATPase (SERCA), sarcolemmal Na+/Ca2+ exchanger (NCX), 

sarcolemmal Ca2+-ATPase and mitochondrial Ca2+ uniport.  The relative contributions of 

Figure 1.1 Schematic of cardiac excitation contraction coupling. 
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these four Ca2+ transport pathways dependent on the species.  In rats, 92% of the Ca2+ is 

taken up (and released) by the SR, and only 7% is extruded by NCX (most of which 

enters via DHPR), showing that E-C coupling is highly SR-dependent 4, 23.  In rabbits and 

humans, ~70% of the cytosolic Ca2+ is taken up by the SR, whereas 28% is transported 

through NCX 4.  Ca2+ that is recycled to the SR lumen is stored as a complex 

predominantly with an abundant resident Ca2+

1.2.2    Local Control Mechanism of E-C Coupling  

 binding protein, calsequestrin (CSQ). 

The understanding of E-C coupling has changed dramatically over the past few 

years from the old, "common-pool" theories to a new "local-control" mechanism of E-C 

coupling 24.  The essence of this mechanism is that: 1) Ca2+ entry via DHPRs in the 

sarcolemma is the predominant stimulus for CICR and initiates E-C coupling, and 2) the 

rate and amount of Ca2+ released from the SR is tightly and locally controlled by the 

magnitude and duration of the DHPR Ca2+ current 25.  The co-localization and functional 

coupling of DHPRs and RyRs are the cornerstones of the modern local control theory of 

cardiac E-C coupling 26.  Immunolabeling with specific antibodies and ultrastructural 

analysis using transmission electron microscopy have established that DHPRs and RyRs 

are co-localized at cardiac intracellular junctions called dyads, where SR terminal 

cisternae are apposed to the plasmalemmal T tubules 27.  At dyads, dozens of DHPRs co-

localize with hundreds of RyRs and functionally group as a local SR Ca2+-release unit 

called a couplon 26.  In a dyadic junction or “a couplon” of the cardiomyocytes, DHPRs 

open and close stochastically upon depolarization, delivering a train of local Ca2+ pulses 

(Ca2+ sparklets) to RyRs in the abutting SR terminal cisternae 28.  The stochastic 
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activation of a cluster of RyRs from different couplons discharges Ca2+ sparks which are 

the fundamental units of SR Ca2+ release produced at a couplon and reflect the concerted 

activation of a cluster of RyRs 4.  During cardiac myoctyte E-C coupling, thousands of 

Ca2+ sparks from ~10,000 discrete couplons in a ventricular myocyte are synchronized by 

the opening of DHPRs upon action potential activation and summate into a whole-cell 

Ca2+ transient that evokes contraction 4, 19, 28

The stability and fidelity of intermolecular Ca

.   

2+ signaling between DHPRs and 

RyRs in a couplon are essential for the maintenance of normal heart rhythm and 

contractile function 27.  The discovery of structure and disposition of couplons by electron 

micrographs provides a structural base for the local control mechanism 29.  In a couplon, 

DHPRs and RyRs are juxtaposed across a dyadic cleft of ~10 nm 2, 3, 27 30.  This restricted 

cytoplasmic space and close proximity facilitates the stability and fidelity of Ca2+

It is estimated that a dyad has over 100 RyRs arranged in large organized arrays 

up to 200 nm in diameter 

 

signaling between DHPRs and RyRs. 

27 and every DHPR couples 5-10 RyRs 27.  A Ca2+ spark 

reflects the nearly synchronous activation of a cluster of about 6–20 RyRs at a dyad 3, 27.  

The space between dyads ensures Ca2+ sparks are recruited under the tight control of the 

DHPR Ca2+current (Ica).  Resting Ca2+ sparks are normally rare and isolated by the space 

between couplons.  But when cellular and SR Ca2+ load rise, the exclusively local 

stochastic cluster behavior is overcome and Ca2+ released at one couplon can activate a 

neighbouring couplon (partially owing to higher SR content and [Ca2+]i) and generate 

propagated Ca2+ waves and oscillations 4, 31.  
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1.3. DHPRs 

1.3.1    Structure and Function of DHPRs 

DHPRs participate in a wide range of functions, but their central role in the heart 

is to provide the Ca2+ trigger for E-C coupling.  DHPR Ca2+ influx (Ica) is essential to 

excitability as it shapes the long plateau phase of the cardiac action potential that is 

unique to cardiac ventricular myocytes.  Most of the Ca2+ for cross-bridge formation and 

myocyte contraction comes from the SR intracellular Ca2+ store, and ICa serves to trigger 

release of this Ca2+
 by activating the RyR 4, 32

DHPRs are heterotetrameric polypeptide complexes comprised of α

.  

1, α2/δ, β, and 

γ subunits that allow depolarization-induced Ca2+ influx into the cytosol.  The α1 subunit 

forms the ion conducting pore while the accessory subunits (α2/δ, β, and γ) are tightly 

bound to the α1 subunit and modulate biophysical properties of the α1 subunit 33.  In all 

excitable tissues, Ca2+ channels invariably contain α1, α2/δ, and β subunits.  These are 

considered the functional minimum core for Ca2+

α

 channel assembly.  Since the γ subunit 

does not appear to be expressed in heart, it is not discussed further here.   

1 subunit The L-type Ca2+ channel α1 subunit (170–240 kDa) consists of 4 

homologous motifs (I–IV), each composed of 6 membrane-spanning α-helices (termed S1 

to S6) linked by variable cytoplasmic loops between the S5 and S6 segments.  To date, 10 

α1 subunit genes have been identified and separated into 4 classes: Cav1.1 , 1.2, 1.3 , and 

1.4 .  Only the Cav1.2 subunit is expressed in high levels in cardiac muscle.  The Cav1.2 

gene encodes for the typical ICa in ventricular myocytes 5.  Cav1.3 is mainly expressed in 

atrioventricular and sinus nodes.  No function for Cav1.1 and 1.4 has yet been reported in 
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the heart 1.  The α1 subunit harbors the ion-selective pore, voltage sensor, gating 

machinery, and the binding sites for channel-modulating drugs 1 and is autoregulatory.  

The pore is asymmetric, with conserved glutamate residues (EEEE) comprising the ion-

selectivity filter(s) 1.  The cytoplasmic C terminus is a region richly endowed with motifs 

and consensus sites for cell membrane targeting, phosphorylation, and Ca2+-dependent 

signal transduction 34

α

. 

2/δ subunits The α2/δ subunits are closely associated with the α1 subunit by 

surface interaction. The α2 subunit is entirely extracellular, and the δ subunit has a single 

transmembrane region with a very short intracellular part.  The α2/δ subunit affects α1 

function by increasing channel density, charge movement, and Bmax of drug binding (e.g., 

isradipine, a DHPR blocker) 1.  The α2/δ1 subunit possesses a high-affinity binding site 

for certain GABA-antagonists which are used to treat paroxysmal neurological conditions 

such as epilepsy and pain disorders 35.   The α2/δ2 subunit also binds gabapentin, but at 

low affinity.  Mice deficient in α2/δ2 exhibit enhanced seizure susceptibility and a 

tendency to develop bradycardia 36

β subunits  Together with α

.   

2/δ, β subunits modulate the biophysical properties of 

the DHPR α1 subunit and are an essential part of functional DHPRs.  β subunits are 

reported to initiate trafficking α1 subunits from the endoplasmic reticulum to the plasma 

membrane 37.  As shown in β subunit knock-out mice, the β subunit is crucial to maintain 

normal E-C coupling.  β subunit knock-out mice suffer from impaired E-C coupling and 

early lethality 38.  The exact mechanism for the defect of E-C coupling is not known, but 

it is possible that the deficiency in β subunits results in the degradation of the α1 subunit.  
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Moreover, with unchanged α1 subunit levels, reduction in β subunit expression paralleled 

a reduction in ICa 1

1.3.2     Regulations of DHPRs 

.   

β1-adrenergic stimulation is one of the best-characterized signaling pathways that 

modulate ICa 5.   β-adrenergic stimulation increases peak ICa, slows channel inactivation, 

and augments the channel's open probability (Po).   Th e effects o f β1-adrenergic 

stimulation on ICa are important in the mammalian heart which leads to an increase in 

contractility.  This stimulation of ICa is through PKA−mediated phosphorylation of 

DHPRs.  PKA catalyzes phosphorylation of amino acid Ser 1928 on the α-subunit and 

two amino acids on the β subunit that cause increased channel openings 1, 5, 39

Similar to PKA, activation of CaMKII also promotes I

. 

Ca facilitation (i.e. 

activation of CaMKII augments peak ICa and slows channel inactivation)1, 39.  Like PKA, 

CaMKII can also phosphorylate DHPR α subunits.  However, in contrast to PKA, the 

critical amino acid for CaMKII action is not yet identified1, 39.  CaMKII is primarily 

activated by Ca2+ released from intracellular SR Ca2+ stores, rather than by ICa.  ICa does 

not occur when SR Ca2+ release is eliminated 40.  Moreover, CaMKII is most effective for 

increasing ICa during the cardiomyocyte action potential plateau 41.  Thus SR Ca2+ release 

is essential for CaMKII-mediated ICa

Besides PKA and CaMKII, I

 facilitation.  Excessive CaMKII activity has the 

potential to trigger arrhythmias by further enhancing DHPR reopening during the action 

potential plateau (further discussed in section of “ DHPRs and heart diseases”). 

Ca is also regulated by many other factors, such as 

calmodulin (CaM), cytoskeleton, sorcin, protein phosphatases etc. 1, 5, 39.  For example, 
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the Ca2+-binding protein CaM is a critical sensor in mediating Ca2+-dependent 

inactivation of DHPRs.  The cardiac DHPRs display long-lasting openings and minor 

voltage-dependent inactivation components.  In the heart, Ca2+-dependent inactivation is 

compatible with the length of the Ca2+-mediated plateau phase in the action potential.  

Therefore, Ca2+-induced inhibition of the DHPRs plays a critical role in controlling Ca2+ 

entry and downstream signal transduction.  In the C terminal tail of the α1 subunit, there 

is a Ca2+-dependent CaM-binding motif that has been implicated in autoregulation. It is 

suggested that α1 binding to CaM is essential to promote Ca2+-dependent inactivation 5. 

1.3.3     DHPRs and Heart Diseases 

There is overwhelming evidence that cardiac E-C coupling depends on DHPR 

function 1-5.  Because ICa constitutes the main trigger for E-C coupling, it has drawn a lot 

of attention in human and experimental heart failure.  Most investigators found that the 

expression of DHPRs is up-regulated in hypertrophied hearts 42, but unchanged or down-

regulated in the end-stage of heart failure 1, 5, 39, 43.  In allografts from hearts with diastolic 

heart failure, the transcript and protein expression levels of the β subunit were decreased 

while the expression levels of other subunits were unchanged 44.  At the functional level, 

most of the analyses have shown that the density and activity of whole-cell ICa were 

unchanged in the failing heart 1, 45, 46 but open probability (Po) and availability were 

paradoxically enhanced at single channel level  1, 45, 47.  Such a paradox might be 

explained by the hypothesis that the cardiomyocytes from these failing hearts expressed 

fewer but more active DHPRs than normal.  This hypothesis would be consistent with the 

finding of a decrease in T-tubule density in human and experimental heart failure 48, and 
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could account for the observed decrease in E-C coupling gain or CICR efficiency 49, 50.  

Moreover, the increased single channel Po has been suggested to result from an increase 

in PKA-dependent phosphorylation of the α1 unit in the failing heart 46.  CaMKII may 

also play a role because CaMKII-mediated hyperphosphorylation of DHPRs was found in 

a mice model of pressure-overload heart failure 51.  Another possibility to account for the 

increased single channel activity is an overexpression of β  subunits 47.  In fact, human 

failing heart samples have shown increased levels of β subunits 47

DHPRs also play a role in the pathogenesis of arrhythmias.  In chronic human 

atrial fibrillation, I

. 

Ca was down-regulated accompanied by reduced protein expression of 

the α1 subunit and increased Po 52.  The Timothy syndrome is a rare, variant of the long 

QT syndrome characterized by severe arrhythmic profiles, structural heart anomalies, 

syncope, and sudden death.  Now the pathogenesis of the Timothy syndrome has been 

identified as a mutation of α1 subunit of DHPRs 5, 39.  ICa is suggested to be a major 

determinant of the QT interval 5.  Although QT prolongation has long been known to 

increase the risk of sudden cardiac death and overall cardiac mortality among patients 

with a variety of underlying etiologies, a shorter than normal QT interval could also be 

detrimental, leading to the concept of a new clinical entity, the short QT syndrome 53.  

Recently, novel mutations of DHPRs were reported to reduce ICa amplitude, shorten the 

QT interval, and lead to sudden cardiac death, atrial fibrillation and a Brugada type I 

ECG pattern 54

Long-term enhancement of DHPR Ca

.   

2+ signaling by over-expressing DHPR in 

transgenic mice triggers Ca2+ imbalance and induces cardiac hypertrophy and dilatory 

remodeling 55.  The chronic inhibition of DHPR Ca2+ signals either by DHPR blockers 14, 
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17, 18, 56 or by DHPR mutation 54 is reported to increase the risk of heart failure, promote 

sudden death, and lead to arrhythmia (short QT syndrome, artial fibrillation, and Brugada 

syndrome) 54. 
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1.4. SR Ca2+

Downstream of the DHPR, the SR Ca

 Cycling Apparatus In Cardiac E-C Coupling  

2+ cycling apparatus plays a pivotal role in 

the E-C coupling to enable the cardiac cycle 57.  The major proteins of the SR Ca2+-

cycling apparatus include RyRs and SERCA which maintain the basic SR function of 

release and uptake of Ca2+ respectively 57.  Alterations in the expression and function of 

SR Ca2+

1.4.1    Structure and Function of RyRs. 

 transport proteins significantly affect cardiac performance. 

RyRs were first observed in the 1970s in electron micrographs of striated 

muscle 58 and subsequently were isolated as integral SR membrane proteins and their role 

as the Ca2+ release channel demonstrated 59.  The complementary DNA encoding three 

distinct RyR channels was cloned and the corresponding gene sequences obtained for 

three isoforms: RyR1, RyR2, and RyR3. RyR2 is the predominant isoform present in the 

cardiac muscle 60, 61.  As one of the largest proteins identified to date, RyR2 is a tetramer 

with each monomer being 565 KD 60, 61.  RyR2 channels are organized in regular arrays 

such that neighboring channels are in physical contact with each other.  Physical and 

functional association among RyR2 channels results in coordinated gating behavior 

termed coupled gating that allows clusters of channels to function as "Ca2+ release 

units" 61

 

.  
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1.4.2    Regulation of RyRs 

RyR2 does not exist in isolation, but is coupled to other proteins which can 

modulate its Po 62.  These endogenous regulatory proteins include FK-506 binding 

protein 12.6 (FKBP 12.6), calmodulin, junctin, triadin and CSQ etc. 60, 62, 63.  Among 

them, the modulation of RyR2 Ca2+ release property by FKBP 12.6 is well established 64, 

65 63.  Each single FKBP12.6 molecule binds to a monomer of RyR2 and keeps the 

channel in a stable closed state at rest, thereby preventing diastolic Ca2+ leak 65, 66.  It has 

been suggested that phosphorylation of RyR2 dissociates FKBP12.6 from RyR2, 

resulting in increased channel activity (i.e., Po) 65-67.  Dissociation of FKBP12.6 from 

RyR2 channels also results in functional but not physical uncoupling of adjacent RyR2 

channels 68.   Coupled gating of RyR2 channels describes the simultaneous opening and 

closing of groups of channels as opposed to stochastic and independent gating of 

individual channels.  Functional uncoupling of adjacent RyR2 channels can decrease E-C 

coupling gain and destabilize single RyR2 channels, thereby promoting diastolic Ca2+ 

leak 61

In addition to FKBP12.6, Ca

.   

2+ concentration in the SR lumen ([Ca2+]SR) and CSQ 

also play important roles in influencing the functional activity of RyR2 69.  RyR2 Po 

changes as a monotonic function of [Ca2+]SR with an EC50 around1 mM 70.  Since resting 

[Ca2+]SR is ∼1 mM, a decline in [Ca2+]SR reduces RyR2 activity and forces CICR to 

terminate upon reaching a critical level of [Ca2+]SR.  This mechanism, termed luminal 

Ca2+−dependent deactivation 71 leaves the Ca2+ store in a temporarily unresponsive, 

refractory state, preventing untimely SR Ca2+ release before the next cardiac cycle.  

Mechanistically, luminal Ca2+ seems to act on RyR2 by allosterically affecting RyR2’s 
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sensitivity to cytosolic Ca2+.  Consequently, lowering [Ca2+]SR reduces the sensitivity of 

RyR2 to activation by cytosolic Ca2+ whereas increasing [Ca2+]SR sensitizes the RyR2 69.  

Thus, the functional status of RyR2 at any time is determined by combined inputs from 

cytosolic and luminal Ca2+

Being Ca

. 

2+ dependent and strategically localized at the points of SR Ca2+ release, 

CSQ presents itself as a putative luminal Ca2+ sensor for the RyR2.  As suggested by 

crosslinking studies, CSQ exists in the junctional SR as a mixture of monomers, dimers 

and multimers 72.  While the multimeric form of CSQ functions as a Ca2+ buffer, the 

monomers appear to be responsible for the regulatory function of the protein.  Consistent 

with its regulatory role, CSQ inhibits RyR2 activity at low [Ca2+]SR and this inhibition is 

relieved at elevated [Ca2+]SR in reconstitution studies 70.  Although direct effects of CSQ 

on RyR2 have been described, according to most reports, Ca2+-dependent interactions of 

CSQ2 with RyR2 are mediated by the integral membrane proteins triadin and/or junctin.  

CSQ is thought to modulate RyR2 function in the following manner: when [Ca2+]SR is 

low, CSQ2 is bound to triadin and/or junctin and inhibits the activity of RyR2; with SR 

Ca2+ load restored, increased [Ca2+] inhibits binding of CSQ to triadin and/or junctin, 

thereby relieving the inhibitory action of CSQ on the RyR2 channel activity.  This Ca2+-

dependent modulation of RyR2 by CSQ has been suggested as the molecular basis for 

deactivation of RyR2 and store refractoriness following SR Ca2+ release 70

1.4.3     Structure and Function of SERCA 

.  

The cardiac SR vesicles were first identified as “Relaxing Factor” in 1960s since 

preparations of cardiac SR vesicles prevented contraction of native actomyosin 
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(containing myosin, actin, and the troponin complex) upon addition of ATP 73.  It was 

soon established that this effect was produced by ATP−dependent sequestration of Ca2+ 

by the vesicles due to the Ca2+ activated SERCA.  In humans, 3 genes (ATP2A1-3) 

generate multiple isoforms (SERCAla,b, SERCA2a-c, SERCA3a-f) by developmental or 

tissue-specific alternative splicing with SERCA2 the dominant isoform in the heart 74.  

SERCA2 is a single polypeptide with 993 amino acids of 110kDa 63 and is one of the P-

type ion motive ATPases, as it transfers phosphate from ATP to an aspartate residue 

during its catalytic cycle 63, 74.  A substantial portion of the ATPase molecule is on the 

cytoplasmic side of the SR membrane where it has the ATP binding and phosphorylation 

domains.  The Ca2+-binding sites are located within the ion channel formed by the 

transmembrane segments M4, M5, M6 and M8 7, 63, 74.  Activated by Ca2+, SERCA2 

pumps Ca2+ from the cytosol to the SR lumen against a concentration gradient at the 

expense of ATP hydrolysis 7, 63.  In the Ca2+ transport cycle, the SERCA2 alternates 

between two major conformational states, E1 and E2, in heart muscle by cytosolic 

proteins and calmodulin.  The cycle begins with the binding of two moles of Ca2+ and 

one mole of ATP to the E1 conformation to form an enzyme-Ca2+-ATP complex. The 

binding of Ca2+ and ATP induces a conformational change in the ATPase resulting in 

translocation of Ca2+ to the inside and the simultaneous formation of a phosphorylated 

intermediate with Ca2+ still bound to the complex. The final step involves release of Ca2+ 

into the lumen of the SR and the simultaneous decomposition of the phosphorylated 

intermediate into ADP and inorganic phosphates both of which are released into the 

cytoplasm 7, 75 (Fig.1.2).  SERCA2 accounts for 70–80% of Ca2+ removal from the 

cytoplasm during cardiac muscle relaxation in higher mammalian species and human 
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myocardium 4, 76, 77.  Therefore, the rate of muscle relaxation is largely determined by the 

reuptake of Ca2+ into the SR by SERCA2 78.  

 

Figure 1.2 Ca2+ transport by SERCA.  Powered by ATP hydrolysis, massive 
conformational changes of SERCA drives Ca2+ transport and are induced as discrete steps 
by Ca2+ binding  (part a), phosphoenzyme formation (part b), Ca2+

 

 release (part c) and 
dephosphorylation (part d). 

1.4.4    Regulation of SERCA 

A physiological mechanism for the regulation of cardiac SERCA involves 

phosphorylation of the intrinsic SR protein, phospholamban (PLN) 7, 63, 79, 80.  PLN is a 

52-amino-acid transmembrane protein of the SR and is expressed mainly in cardiac but 

also in smooth and slow-twitch skeletal muscles 81.  PLN is proposed to have a 

pentameric tertiary structure 7.  Detailed cross-linking and site-directed mutagenesis 

studies have demonstrated that residues in PLN can interact directly with SERCA2 82.  In 

its dephosphorylated state, PLN interacts with the SERCA2 and exerts an inhibitory 

effect manifested as a decrease in SERCA’s affinity for Ca2+.  Phosphorylation of PLN 

by cAMP-dependent protein kinase (PKA) or Ca2+/calmodulin-dependent protein kinase 

(CaMK) leads to a removal of the inhibition of PLN on SERCA2, resulting in enhanced 

affinity of the SERCA2 for Ca2+ and increased Ca2+ transport to the SR lumen 7 (Fig.1.3).   
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Figure 1.3 Role of PLN-SERCA interactions in physiological cardiac function.  
Under basal conditions, dephosphorylated PLN interacts with SERCA and decreases Ca2+ 
pump activity.  Phosphorylation of PLN leads to functional dissociation of the PLN-
SERCA complex and an increase in Ca2+ transport into the SR lumen.  As more Ca2+ is 
accumulated in the SR lumen, a greater SR Ca2+

As the classic mechanistic concept, phosphorylation of PLN is thought to 

dissociate the inhibited PLN–SERCA2 complex 

 store is available for release in a 
subsequent beat, resulting in enhanced contractile force. (This figure is adapted from 
MacLennan DH & Kranias EG.  Phospholamban: a crucial regulator of cardiac 
contractility. Nat Rev Mol Cell Biol 4, 566-577, 2003) 

7.  However, this long-standing view has 

been questioned by a study from Dr. MacLennan group which reported that 

phosphorylation of PLN does not cause the disruption of the physical interaction between 

the SERCA and PLN but Ca2+ ions does 83.  Interestingly, the recent findings from our 

laboratory showed that the SR-associated CaM mediates the disruption of SERCA-PLN 

interaction in a Ca2+-dependent manner, and triggers Ca2+ pumping 84,85.  Moreover, 

increasing evidence rising from our laboratory suggests that it is the Ca2+-dependent CaM 

that controls the PLN-SERCA2 interaction as well as SERCA2 phosphorylation by 

CaMKII.  Our laboratory discovered that cardiac SR contains tightly-bound CaM 84 and 
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demonstrated a critical role for CaM in controlling SERCA2 Ca2+ pump function and 

cardiac muscle relaxation 84, 86, 87.  A synthetic CaM-binding peptide (CaM BP) strongly 

inhibits SR Ca2+ uptake by SERCA, promotes SR Ca2+
 
release, and lowers CaMK-

mediated protein phosphorylation in cardiac SR 84, 86, 87.  These effects of CaM BP are 

prevented and reversed by exogenous CaM 84, 86, 87.  Furthermore, endogenous CaM 

triggers SR Ca2+ pump function by dissociating SERCA2 from PLN with accelerating 

phosphoenzyme decomposition 84 and CaM BP inhibition of SERCA2 is observed only in 

the presence of PLN in the SR 88.  These demonstrate that Ca2+

Three naturally occurring PLN mutations (L39stop, R9C, R14Del) have been 

identified in humans and all of them were associated with lethal heart failure 

-dependent CaM plays a 

critical role in the PLN-SERCA2 interaction and SERCA2 phosphorylation by CaMKII.   

89-91.  Down-

regulation of SERCA2 and PLN are observed in animal models of heart failure 78, 92, 93.  

These observations reinforce the essential role of PLN in the regulation of physiological 

and diseased cardiac function. 
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1.5. Phosphorylation-dependent Regulation of SR Function by Protein Kinases 

The physiological regulation of SR function is achieved mainly through 

phosphorylation of SR Ca2+ cycling proteins 7.  In addition, the interactions among 

molecular partners (e.g. 

SERCA-PLN, SERCA-

CaM, RyR-FKBP12.6) are 

phosphorylation status 

dependent and likely 

govern the conformation 

and function of both the 

RyR and SERCA 94

Present in the cytosol, nucleus and SR 

.   

95-98, CaMKII plays a central role in 

controlling RyR and SERCA function by its ability to phosphorylate the RyR, SERCA 

and PLN (Fig.1.4).  CaMKII has four different isoforms (α, β, δ, and γ) which are 

expressed in a tissue-specific manner 96, 99.  In cardiac tissue, the predominant isoform is 

CaMKIIδ 96, 99.  Experimental evidence obtained from our laboratory suggested that the 

“open state” but not the “closed state”, of cardiac RyR undergoes phosphorylation by 

CaMKII 98.  The RyR and PLN (but not SERCA) are also regulated by cytosolic PKA 

through the phosphorylation 100 (Fig. 1.4).  Clearly, CaMKII and PKA are two major 

protein kinase pathways that regulate the phosphorylation status of SR proteins, the 

intermolecular interactions and intramolecular events that govern SR Ca2+

Phosphorylation of RyR2 is a key mechanism for regulating channel Ca

 cycling.  

2+ release 

function 62, 101.  RyR2 can be phosphorylated by CamKII and PKA 65, 66, 102, 103.  So far 

Figure 1.4 The phosphorylation targets of CaMKII and PKA in 
regulation of RyR/SERCA function . 
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three phosphorylation sites have been identified.  In human and rodents, they are serine-

(S) 2808 (S2809 in rabbit), S2814 (S2815 in rabbit), and S2030 (S2031 in rabbit) 104.  

RyR2 S2808/S2809 can be phosphorylated by both CaMKII and PKA 104; whereas 

S2814/S2815 has been implicated only being phosphorylated by CaMKII 100 and 

S2030/S2031 only by PKA 105.  Phosphorylation of the channel is generally regarded as 

an important regulatory mechanism, but the exact effects on channel function remain 

controversial as both stimulatory and inhibitory effects have been reported 102, 103, 106 104.  

Differences in opinion have arisen over the importance assigned to specific 

phosphorylation sites on RyR2 but it has been speculated that different phosphorylation 

sites distinctly modify RyR2 function 101, 104

Hyperphosphorylation of RyR by PKA and CaMK has been implicated in RyR 

dysfunction and heart failure 

.  

26, 66, 107.  However, several studies have questioned RyR 

hyperphosphorylation in heart failure 108, 109, and the functional consequence of RyR 

phosphorylation remains controversial 110.  But more and more  evidence supports the 

suggestion that RyR phosphorylation by CaMKII results in increased RyR Po and SR 

Ca2+ leak 66 101, 111, 112 which can lead to heart failure 66 and arrhythmias 111.  The PKA-

mediated enhancement in SR Ca2+ leak is CaMKII-dependent 101.  This increased 

“leakiness” of the SR could underlie the increased propensity for arrhythmias in heart 

failure and eventually contribute to decreased contractility by reducing SR Ca2+

PLN phosphorylation has been suggested as the primary mechanism for β-

adrenergic stimulation in the heart 

 load.  

80.  The phosphorylation of PLN is thought to release 

the inhibition of PLN on SERCA2 and restore SERCA2 affinity for Ca2+ 4, 6, 7.  On the 

other hand, dephosphorylated PLN inhibits Vmax of Ca2+ transport and lower the affinity 
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of SERCA2 for calcium 7.  Studies have shown that dephosphorylation of PLN acts as a 

brake on the SERCA2 pump whereas phosphorylation releases the “brake” and 

substantially increases Ca2+ transport activity and relaxation rate 81.  The PLN can be 

phosphorylated at serine 16 by PKA and threonine 17 by CaMKII 6, 80, 113.  A recent study 

from Dr. Tuana group suggested that CaMKII-medicated phosphorylation of PLN at 

threonine 17 is modulated by α kinase anchoring protein (αKAP) 96.  As a membrane 

protein, αKAP is found to interact with SERCA2 on the one hand and CaMKII on the 

other at the SR.  In the presence of αKAP, CaMKII−medicated phosphorylation of PLN 

was markedly inhibited by the presence of αKAP 96.  Thus, a model of a CaMKII-αKAP-

SERCA2-PLN complex at the SR membrane is proposed, where αKAP acts as a scaffold 

and an adaptor to promote the spatial positioning among these proteins to modulate PLN 

phosphorylation by CaMKII at the SR 96

Our laboratory discovered a direct phosphorylation of SERCA2 at serine 38 by 

CaMKII, and consequent activation of Ca

. 

2+ transport through an increase in Vmax 114.  

This phenomenon, unique to the SERCA2 isoform of the Ca2+ pump expressed in the 

heart and slow-twitch skeletal muscle, has been confirmed by studies in other 

laboratories 88, 115.  All together these studies demonstrate that the CaM/CaMK/PLN 

pathway plays a central role in regulation of SR function. 
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1.6 DHPR Blockers 

1.6.1 DHPR Blocker Treatment is Associated With Increased Risk of Heart 

Failure 

Although chemically diverse, calcium channel blockers (DHPR blockers) share a 

common property of blocking ICa through DHPRs in the sarcolemma.  Since their 

introduction nearly two decades ago, DHPR blockers have been shown to be effective in 

controlling blood pressure and anginal symptoms 14.  They were the most frequently 

prescribed antihypertensive drugs in the United States as recently as 1993 116.  In the past 

a few years, however, the long-term safety of DHPR blockers has been questioned, owing 

to an association with development of cardiovascular events.  Recent large clinical 

studies report that the use of DHPR blockers, particularly in high doses, was associated 

with an increased risk of adverse cardiovascular events, especially myocardial infarction 

and heart failure 14.  In 1995, a population-based case-control study of 2655 patients on 

anti-hypertensive treatment found that the use of short-acting DHPR blockers were 

associated with a 58% increased risk of myocardial infarction compared to the use of 

diuretics 17.  In 2000, a large meta-analysis, which included nine published trials, eight 

calcium channel blockers, and a total of 27,743 patients, found that the use of DHPR 

blockers was associated with a significantly higher risk of myocardial infarction, heart 

failure, and other major cardiovascular events 56.  In 2002, the ALLHAT Trial 

(Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial), a 

randomized double-blind trial involved 33,357 subjects aged 55 years or older, also found 

the patients on long-term treatment with amlodipine (a DHPR blocker) had a 38% higher 
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risk of heart failure and a 35% higher risk of hospitalization/fatal heart failure as 

compared to patients on chlorthalidone (a diuretic) 117.  Similarly, in 2003, the 

CONVINCE trial (the Controlled Onset Verapamil Investigation of Cardiovascular End 

Points Trial), which enrolled 16,602 patients, reports long-term using of extended-release 

verapamil was associated with an increased risk of heart failure compared with atenolol 

(a β-adrenergic blocker) or hydrochlorothiazide (a diuretic) 18

1.6.2    Deferent Classes of DHPR Blockers Exert Different Pharmacological Effects 

on Hearts 

.  Not known are the 

mechanisms that underlie the increased risk of heart failure associated with chronic 

treatment with DHPR blockers.  

DHPR blockers are categorized into five classes according to their chemical 

structure: phenylalkylamines, dihydropyridines, benzothiazepines, diphenylpiperazines, 

and diarylaminopropylamines 14, 118.  Although all five classes work by blocking DHPRs, 

each structurally different class binds at a unique location on DHPRs and varies in tissue 

selectivity 14, 118, 119.  Among them, phenylalkylamines are the most cardiac selective as 

they preferentially block DHPRs in the myocardium 118, 120.  In contrast, dihydropyridines 

preferentially bind vascular smooth muscle L-type channels and produce the most potent 

vasodilatory effects of the DHPR blockers thereby indirectly affecting cardiac function 

by the sympathetic reflex (Table 1.1) 118-120.  Verapamil and nifedipine are the prototypes 

of phenylalkylamines and dihydropyridines respectively.  Their tissue selectivity, 

pharmacological effects and clinical applications are discussed further below.  
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Table 1.1 Comparison of cardiovascular effects of nifedipine and verapamil in 

vivo 118, 120

 

 

Nifedipine 
(vascular selective) 

Verapamil 
(cardiac selective) 

Heart   
1. suppression of cardiac contractility 

0/+ +++ 

2. suppression of conduction (AV node) 0 +++ 
3. suppression of automaticity (SA node)  0 +++ 
4. suppression of heart rate 0 ++ 
5. cause reflex tachycardia Yes No 
6. prescribed for ventricular tachycardia  

No Yes 

Vessel   
1.vasodilatation of peripheral vessel  +++ + 
2.vasodilatation of coronary vessel +++ ++ 
0, no effect; +, mild; ++, moderate; +++, pronounced.  

 

Compared to nifedipine, verapamil preferentially blocks DHPRs in cardiac cells.  

At clinically used doses, nifedipine does not block DHPRs in the myocardium but 

verapamil does and produces inotropic and chronotropic effects on the heart in vivo 118, 

120.  In contrast, the negative inotropic effect is rarely, if ever, seen in intact animals or 

patients with nifedipine treatment.  Probably because of sympathetic reflex responses to 

its potent vasodilating effects, hemodynamic studies of the immediate release nifedipine 

formulation in patients with normal ventricular function have generally found a small 

increase in cardiac index without major effects on ejection fraction, left ventricular end-

diastolic pressure or volume (From Drug Information issued by US Food and Drug 

Administration; available at http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?id=726). 

Verapamil is an antiarrhythmic drug which is the treatment of choice for 

idiopathic left ventricular tachycardia (also known as verapamil-sensitive VT) 121, and the 

http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?id=726�
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next treatment of choice for terminating sinus node, atrioventricular (AV) node reentry 

tachycardia after simple vagal maneuvers and adenosine 15.  The antiarrhythmic effect is 

partially due to the ability of verapamil to prolong the effective refractory period within 

the AV node and slow AV nodal conduction in a rate-related manner in vivo 118.  In 

contrast, nifedipine is not an antiarrhythmic drug 120.  In patients with normal conduction 

systems, nifedipine administered as the immediate release capsule had no tendency to 

prolong AV nodal conduction or sinus node recovery time, or to slow sinus rate 118

Verapamil is thought to access cardiac DHPRs from the intracellular side and 

bind to open, depolarized channels 

.  

Nifedipine is commonly prescribed to control high blood pressure and angina symptoms 

due to its preferential blockade of DHPRs in vascular smooth muscle.   

122.  One planar bilayer study reported that verapamil 

also can directly bind to RyRs in vitro and inhibit the Ca2+ release from the cardiac SR 123.  

As verapamil is one of the most cardiac selective DHPR blockers 118.  Thus treatment 

with verapamil, but not nifedipine, provides an approach to build up an animal model for 

chronic and partial blockade of cardiac DHPRs in vivo. 
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1.7 Rationale, hypotheses, objectives, and significance of the research 

1.7.1    Rationale and Hypothesis 

As shown in Figure 1.1, the DHPR initiates cardiac E-C coupling and locally 

controls SR Ca2+ cycling through CICR.  The close proximity of the SR and T-tubules 

facilitates the fidelity and stability of communication between the DHPR and SR Ca2+ 

cycling apparatus to ensure Ca2+ homeostasis and proper contraction.  However, the 

impact of chronic, partial DHPR blockade on cardiac SR Ca2+ cycling function is not 

clear.  Though used to control high blood pressure in patients 15,  the long-term safety of 

DHPR blockers has been questioned as recent large scale clinical trials suggested long-

term use of DHPR blockers increases the risk of heart failure and incidence of cardiac 

arrhythmias 14.  The mechanisms underlying this pathological phenomenon are not well 

known.  Given the essential interplay of DHPR-RyR signaling in E-C coupling, I chose to 

address the impact of chronic DHPR blockade on heart function by investigating the 

following hypothesis.  Chronic, partial blockade of DHPRs in vivo will provoke 

remodeling of the SR Ca2+ cycling apparatus, leading to impaired cardiomyocyte 

Ca2+ homeostasis and heart dysfunction.  The investigation of this hypothesis can 

provide insights of the mechanistic basis for cardiac adaptation, and help clinicians to 

better understand and manage the risk of long-term treatment with DHPR blockers.  
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1.7.2    Objectives, Experimental Approaches, and Significance 

The overall objective of this research is to determine the mechanisms of cardiac 

adaptation to chronic and partial DHPR blockade in vivo.  Specific aims of these studies 

are identified as below.  

Aim 1:  To determine whether chronic DHPR blockade alters the expression and 

function of RyRs and DHPRs.  

Aim 2:  To determine whether chronic DHPR blockade alters the expression and 

function of cardiac SR Ca2+

Aim 3: To determine whether chronic DHPR blockade alters protein 

phosphorylation-dependent regulation of SR/cardiomyocyte Ca

 pump. 

2+

Figure 1.5 shows the conceptual frame work of my research aims.  

 cycling  

 

 

 

 

 

 

 

 

 

Figure 1.5 The conceptual framework of research aims. Question marks “?” indentify 
the target E-C coupling events or molecular players whose changes after chronic DHPR 
inhibition are not known and therefore are explored in this thesis. 
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Experimental approaches involve administration of verapamil (DHPR blocker) 

to adult rats at a rate of 625 ug/h/kg for 4 weeks via subcutaneously implanted osmotic 

mini pumps and assessment of: 1) expression and function of SR Ca2+ cycling proteins 

and the DHPR; 2) the kinetics of myocyte Ca2+ sparks, Ca2+waves, and Ca2+ transients; 3) 

phosphorylation-dependent regulation of SR Ca2+ cycling; and 4) contractile function in 

isolated cardiomyocytes, perfused hearts and in whole animals. All procedures, 

assessment parameters and criteria for these studies are similar to those reported 

previously from this laboratory 84, 114, 124 .  These experimental approaches enable 

assessment of SR/cardiomyocyte Ca2+

The significance of the proposed studies are: 1) to increase our understanding of 

the molecular mechanisms for the delicate communication among Ca

 cycling and heart function in response to chronic 

DHPR blockade at all levels of organizations from intramolecular, intermolecular, 

molecular, cellular, organ, to the whole animal levels.  

2+ cycling proteins 

in cardiac E-C coupling, and 2) to identify the long-term risks of DHPR blockers by 

unraveling their underlying mechanisms. 
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2.1 Chapter Summary 

Ca2+ influx into cardiomyocytes via L-type, dihydropyridine receptor (DHPR)-

Ca2+ channels, is crucial for ryanodine receptor (RyR2)-mediated sarcoplasmic reticulum 

(SR) Ca2+ release and muscle contraction.  DHPR blockers are frequently prescribed for 

cardiovascular disorders.  However, patients on chronic DHPR blockade with verapamil 

have increased heart failure risk and the underlying mechanism is unknown.  We 

investigated whether chronic DHPR blockade-induced changes in the expression and 

function of cardiac RyR2 and excitation-contraction (E-C) coupling contribute to cardiac 

pathogenesis.  Adult rats received verapamil, 625 μg/h/kg, or vehicle for 4 weeks via 

implanted osmotic mini-pumps.  Western blots of SR/heart homogenates showed 

significantly increased DHPR (~45%) and diminished RyR2 (~50%) protein levels in the 

verapamil-treated (VPL) group versus control (P<0.05).  Cardiomyocyte Ca2+ imaging 

revealed >2-fold higher diastolic Ca2+ spark frequency, Ca2+ spark sites/cell, and diastolic 

Ca2+ wave incidence in VPL group.  Depolarization-induced ICa was unchanged whereas 

the speeds of contraction and relaxation were diminished 30%-45% in cardiomyocytes 

from VPL rats. P-R intervals were prolonged and extra-systoles were more frequent in 

VPL rats.  Ventricular arrhythmia thresholds were 15 times lower in perfused hearts and 

arrhythmias were inducible in 50% of VPL group versus 0% in control.  Chronic 

verapamil treatment elicits DHPR and RyR2 remodeling with impaired Ca2+signalling, 

diastolic SR Ca2+ leak, breakdown of spatiotemporal synchrony and fidelity of E-C 

coupling, arrhythmogenesis and abnormal contractility.  These findings reveal, for the 

first time, integrated mechanisms underlying cardiac abnormalities and heart failure due 

to chronic DHPR blockade. 
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2.2 Introduction 

In the heart, L-type Ca2+ channels in the sarcolemma, known as “dihydropyridine 

receptors” (DHPRs), play a central role in initiating the molecular events underlying 

excitation-contraction (E-C) coupling giving rise to the heart beat.  Cardiac E-C coupling 

begins with voltage activation and opening of DHPRs permitting the entry of small 

amount of Ca2+ into the cardiomyocytes.  This Ca2+  entry triggers a large amount of 

Ca2+ release from sarcoplasmic reticulum (SR) through ryanodine receptors (RyRs) by a 

process known as “Ca2+-induced Ca2+ release” (CICR).  The consequent rise in 

cytoplasmic Ca2+  activates the myofilaments and evokes  muscle contraction 1.  Recent 

advances have provided great insights into the mechanistic framework and molecular 

events underlying Ca2+ signaling between the DHPR and RyR.  The RyR is the crucial 

downstream Ca2+ signaling molecule most proximal to the DHPR in the cardiac E-C 

coupling process.  In the heart, RyR activation is tightly controlled by DHPRs, where SR 

Ca2+ release is graded by the magnitude and duration of the DHPR current 2.  This RyR 

functional coupling to the DHPR via CICR is the cornerstone of the modern local control 

theory of cardiac E-C coupling 3.  In a dyadic junction or “a couplon” of the 

cardiomyocytes, DHPRs open and close stochastically upon depolarization, delivering a 

train of local Ca2+ pulses (Ca2+ sparklets) to the RyRs in the abutting SR terminal 

cisternae.  The stochastic activation of a cluster of RyRs from different couplons 

discharges Ca2+ sparks which represent the elementary Ca2+ release events.  The Ca2+ 

sparks summate into a whole-cell Ca2+ transient that evokes contraction 1,4-6.  The fidelity 
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of intermolecular Ca2+ signaling between DHPRs and RyRs is essential for the 

maintenance of normal heart rhythm and contractile function 7, 8

Given the crucial importance of DHPR-RyR communication in the cardiac E-C 

coupling process, it is not surprising that complete DHPR blockade is accompanied by 

immediate cessation of the heart beat

. 

9.  Intriguingly, DHPR blockers are frequently 

prescribed for long-term treatment of cardiovascular disease such as hypertension, angina 

pectoris and arrhythmias 10-12.  Presumably, the DHPR current is only partially blocked 

by DHPR blockers in clinically used dose, which may cause an acute decrease in cardiac 

contractility by reducing the amount of CICR and Ca2+ transient.  However, the long-term 

effects of partial blockade of DHPR Ca2+ signals on cardiac E-C coupling and contractile 

function are not yet understood.  Moreover, recent large-scale clinical trials have 

suggested long-term treatment with DHPR blockers increases the risk of heart failure and 

incidence of cardiac arrhythmias 10.  The mechanisms underlying these pathogenic 

phenomena are not known.  The present study was undertaken to investigate the impact 

of chronic, yet partial DHPR blockade using the cardiac selective DHPR blocker, 

verapamil, on E-C coupling events in the rat heart.  Our findings show that derangement 

of RyR/DHPR stoichiometry and ensuing alterations in intermolecular Ca2+ signaling and 

functional properties of the RyR underlie the increased risk of heart failure and 

arrhythmia observed following long-term verapamil treatment. 
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2.3 Methods 

An expanded methods section is available at appendix B.   

2.3.1 Animals 

Male Wistar rats weighing 190 to 210 g were randomly assigned to control and 

verapamil-treated (VPL) groups.  Verapamil was dissolved in distilled water and 

administrated at a rate of 625 µg/h/kg for 4 weeks via subcutaneously implanted osmotic 

mini-pumps (Model 2ML4; ALZET, Cupertino, CA).  Control rats received vehicle 

solution in similar manner.  Following 4-week verapamil treatment, the animals were 

sacrificed and the ventricular myocardium was used for experiments.  All procedures 

were approved by the Animal Use and Care Committee of The University of Western 

Ontario and followed the Guidelines for the Care and Use of Experimental Animals of 

the Canadian Council on Animal Care. 

2.3.2 Western Immunoblotting and [3

The protein levels of DHPR (α1 subunit), RyR2, and its accessory protein 

FKBP12.6, as well as calsequestrin (SR Ca

H] Ryanodine Binding Assay  

2+ storage protein) were determined by 

western immunoblotting utilizing specific antibodies as described previously 13, 14.  The 

Ca2+-dependent, high-affinity [3H] ryanodine binding assay was performed as described 

by Jiang et al. 13
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2.3.3 Imaging of Ca2+

Ventricluar myocytes from control and VPL rats were isolated as previously 

described 

 Sparks and Assessment of Contractile Function in 

Cardiomyocytes  

15.  Isolated cardiomyocytes were loaded with the Ca2+ indicator dye, fluo-4-

AM and a wide-field digital fluorescence imaging system was used to image Ca2+ sparks 

following procedures described previously 16.  Steady-state Ca2+ transients were 

established by field stimulation of cardiomyocytes at 0.5 Hz. Subsequently, the 

stimulation was stopped to observe Ca2+ sparks and waves.  The acquired images were 

Gaussian filtered using three-by-three pixels and baseline Ca2+

2.3.4 Measurement of L-type Ca

 images were subtracted 

pixel by pixel using the equation ∆F/Fo (%) = 100 x [F(x,y,t) - Fo(x,y)]/ Fo(x,y), where 

F(x,y,t) was the fluorescence at each pixel in the time series and Fo was an image of the 

“baseline” level given by the average of ~50 consecutive images of the cell at rest in the 

absence of sparks.  To assess contraction, bright field images of cardiomyocytes were 

acquired at 67 frames/s (Cascade Photometrics 650 CCD camera, Roper Scientific Inc., 

Tucson, Arizona).  Off line analysis was used to determine cell length and the rate of 

contraction and relaxation (ImageMaster Software, version 5; Photon Technology 

International, New Jersey). 

2+ Current (ICa

L-type Ca

) 

2+ current was recorded in isolated ventricular myocytes using the 

nystatin (300 µg/ml) perforated patch configuration.  Patch pipettes were prepared on a 

Sutter Instrument Co. puller (Model P-87, CA) with an initial resistance of 2-3 MΩ.  

Currents were recorded at room temperature (21-24°C) using an Axopatch 200A 
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amplifier, with data filtered at 1 kHz and sampled at 5 kHz using pCLAMP 6.0.4 

software.  Cells were held at -40 mV to inactivate voltage-dependent Na+ channels. 

Voltage-dependent Ca2+

2.3.5 Cardiac Electrophysiological Studies 

 currents were corrected assuming linear leak.  Capacitance was 

determined for each cell by integrating the current elicited by a 10-mV hyperpolarizing 

command, and currents were normalized to cell capacitance (pA/pF).  Test potentials 

were adjusted to account for series resistance error.  

Standard six limb lead ECG recordings were obtained from anesthetized rats for a 

10-minute period.  Subsequently, the hearts were removed and mounted on a Langendorff 

apparatus and perfused with Tyrodes solution at 35±1°C.  A fluid-filled, balloon-tipped 

catheter was inserted through the left atrium into the left ventricle to measure pressure.  

Bipolar silver electrodes were placed on the right atrial appendage and ventricular apex to 

record epicardial electrocardiograms.  The atrioventricular (AV) interval, Wenckebach 

cycle length (WCL) and stimulation threshold to induce ventricular arrhythmias were 

determined, as described previously 17.  WCL was defined as the minimum cycle length 

that failed to conduct 1:1 through the AV node.  Ventricular arrhythmias were identified 

as premature, wide QRS complexes 

2.3.6 Data Analysis 

with concomitant decreases in ventricular pressure.   

Data are presented as means ± SEM.  Statistical significance was evaluated by the 

Student's t-test and Chi square test with P<0.05 indicating a significant difference. 
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2.4 Results 

2.4.1 Chronic Verapamil Treatment of Rats Alters DHPR/RyR2 Stoichiometry in 

the Heart 

Western blotting experiments using heart ventricular homogenates as well as 

isolated SR vesicles showed ~50% decrease in RyR2 protein levels in VPL rats, 

compared to control (Fig. 2.1A and Fig.2.1B).  A similar decrease (~ 45%) in FKBP 12.6 

protein level, an accessory protein of RyR2, in VPL compared to control rats was also 

observed (Fig. 2.1C).  In contrast, DHPR protein level was increased significantly by 

~45% in VPL compared to control rats (Fig.2.1D).  A recent report also showed a similar 

increase in DHPR protein level in the mouse heart following verapamil treatment 18.  The 

relative amount of SR Ca2+ binding protein, calsequestrin, did not differ significantly 

between VPL rats (89±6 arbitrary units, n=9) versus control rats (76±7 arbitrary units, 

n=9).  Therefore, calsequestrin served as an internal protein loading control in western 

blotting experiments.  The above findings reflect a dramatic ~3 fold increase in the 

DHPR: RyR2 stoichiometry in the VPL group.  No significant change was evident in the 

RyR2: FKBP 12.6 stoichiometry following VPL treatment.  
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Fig. 2.1 Chronic verapamil treatment leads to alterations in the protein levels of 
cardiac RyR2, FKBP12.6 and DHPR.  Identical amounts of ventricular homogenates 
(25 µg protein) and SR vesicles (25 µg protein) derived from control and verapamil-
treated (VPL) rats were subjected to Western immunoblotting analysis.  Bar graphs 
depict the relative amount of immunoreactive protein as determined by densitometry of 
Western blots, with n indicating the number of independent preparations.  Representative 
immunoblots from three separate preparations each from control and VPL groups are 
shown at the bottom of the panels. Also shown are Western blots obtained by stripping 
and reprobing the same membrane for calsequestrin (CSQ), which served as an internal 
standard for equivalent protein loading.  A, B, Immunoblotting for RyR2 of both purified 
SR vesicles and heart homogenate revealed that verapamil treatment caused significant 
decrease in RyR2.  C, D, Levels of FKBP 12.6 were significantly decreased in VPL rats 
(C), whereas levels of DHPR were increased (D). Data represent means ± SEM. 
*P<0.05;**P<0.01 VPL vs. control.  Note that the relative amount of CSQ did not differ 
between control and VPL rats (89±6 vs. 76±7 arbitrary unit, n=9 rats/group ), validating 
this as an internal standard for equivalent protein loading. 
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2.4.2 Chronic Verapamil Treatment Alters [3H]-Ryanodine Binding to RyR2 in 

Cardiac SR Vesicles but Not Voltage-activated ICa

The plant alkaloid, ryanodine, binds preferentially to RyRs that are open, and 

changes in [

 in Cardiomyocytes  

3H]-ryanodine binding are thought to reflect changes in gating properties of 

RyRs 6, 12, 19, 20. We examined the impact of altered DHPR:RyR2 stoichiometry on the 

gating properties of RyR2 at the subcellular level by determining Ca2+-dependent, high 

affinity [3H]-ryanodine binding to RyR2 in isolated cardiac SR vesicles from VPL and 

control rats.  Fig. 2.2A shows [3H]-ryanodine binding to RyR2 in SR vesicles from 

control and VPL rats as function of varying concentrations of ryanodine measured at 

saturating concentration of free Ca2+ (6.1 µmol/L).  The level of specific [3H]-ryanodine 

binding was lower in VPL, compared with control.  Scatchard plots of the data showed a 

homogenous population of binding sites; the maximum binding sites were significantly 

lower by ~35% in VPL group [Bmax (fmol/mg protein): control 1284±128, VPL 846±80; 

P<0.05; n=7 rats /group].  This is consistent with the diminished RyR2 protein level 

observed (Fig. 2.1A and Fig. 2.1B).  The dissociation constant (Kd) for [3H]-ryanodine 

binding was reduced significantly from 12.8±1.4 nmol/L in control to 7.7±1.3 nmol/L in 

the VPL group (n=7 rats /group, P<0.01).  Thus, ryanodine binds to RyRs with 

apparently higher affinity in the VPL rats, suggesting increased RyR channel open 

probability.  Analysis of Ca2+ dependence of [3H]-ryanodine binding to RyR2 at a 

saturating ryanodine concentration (25 nmol/L) showed no significant difference in the 

Ca2+ sensitivity of RyR2 in the control verses VPL [Fig. 2.2B; EC50 (µmol/L): control 

0.22±0.03, VPL 0.27±0.05; n=8 rats /group]. 
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Since chronic DHPR blockade in VPL rats was accompanied by increased DHPR 

protein expression in the heart, we directly measured L-type Ca2+ current (ICa) in 

cardiomyoctes isolated from VPL and control rats using the nystatin perforated 

configuration of patch clamp.  Cells were held at -40 mV to inactvate Na+ currents and 

stepped to various potentials.  Depolarization initiated transient inward ICa that exhibited 

similar amplitudes and time courses in control and VPL myocytes (Fig. 2.2C).  When 

peak current amplitude was corrected for cell capacitance to reveal current density, the 

current–voltage relationships of ICa were similar in control and VPL myocytes (Fig. 

2.2D).  Currents were corrected off-line for series resistance, accounting for the range of 

voltages within groups of cells.  There was no significant difference in the peak inward 

current between the two groups.  We confirmed that the voltage-activated currents were 

blocked in a concentration dependent manner by verapamil (not shown).  Thus, the 

depolarization-induced ICa was not significantly altered in cardiomyocytes following 

chronic verapamil treatment of rats. 
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Fig.2.2 Chronic verapamil treatment alters high-affinity [3H]-ryanodine binding to 
cardiac RyRs but does not change DHPR Ca2+ currents.  [3H]-ryanodine binding was 
evaluated in cardiac SR from control and VPL rats.  DHPR Ca2+ currents (ICa) were 
examined in cardiomyocytes isolated from control and VPL rats using voltage-clamp in 
the perforated patch configuration.  A, Saturation binding curves were generated in the 
presence of 6 µmol/L free Ca2+ at varying concentrations of [3H]-ryanodine.  The data 
represent mean ± SEM with 7 separate SR preparations each from control and VPL rats.  
The decrease in Bmax in VPL rats is consistent with down-regulation of RyR.  Inset: 
Linear scatchard plots of data indicate a homogenous population of binding sites 
(correlation coefficient: control, 0.99; VPL, 0.96) and increased binding affinity in VPL 
rats.  B, Saturation binding curves generated in the presence of 25 nmol/L [3H]-ryanodine 
at varying free Ca2+ concentrations.  There was a decrease in Bmax but no change 
apparent in EC50.  Data are means ± SEM of experiments using 8 separate SR 
preparations each from control and VPL rats.  Smooth lines represent best fit using 
GraphPad Prism 4.0 software.  C, Cells were held at -40 mV to inactivate Na+ currents.  
Depolarization initiated transient inward current that was similar in myocytes from 
control and VPL rats.  D, Peak current amplitude was corrected for cell capacitance to 
reveal current density.  The current-voltage relationships of calcium current in control 
cardiomyocytes (9 cells from 3 different preparations) and cardiomyocytes from VPL rats 
(9 cells from 2 different preparations) were similar.  Currents were corrected off-line for 
series resistance, accounting for the range of voltages for groups of cells. There was no 
significant difference in the peak inward current between the two groups.  
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2.4.3 Chronic Verapamil Treatment Enhances Diastolic Ca2+

The ryanodine binding studies indicated altered RyR2 gating properties.  To 

investigate the manifestation of these at the cellular level, we examined Ca

 Spark Activity.   

2+ sparks by 

high speed fluorescence imaging of freshly isolated cardiomyocytes.  Ca2+ sparks are the 

fundamental Ca2+ release events of RyRs and reveal Ca2+ release properties in situ 4-6.  

Myocytes were field stimulated at 0.5 Hz until evoked Ca2+ transients had reached a 

steady state, which was evident as large, uniform changes in fluorescence intensity, 

illustrated as ∆F/Fo (%) (Fig. 2.3A,B, at left).  Field stimulation was then stopped and 

Ca2+ levels were monitored for the next 20 to 23 s to reveal resting (diastolic) Ca2+ 

sparks, which are more apparent in the expanded traces at right (Fig. 2.3A, B).  Ca2+ 

sparks in myocytes from control rats are infrequent, but did occur in spatially restricted 

regions as random, transient elevations of Ca2+ concentration.  These are shown for three 

distinct spark sites in each cell, indicated in the bright field images of the myocytes at 

right for areas of interest of 10×10 pixels, 3.6 µm2. Ca2+ sparks were defined as increases 

in ∆F/Fo (%) of greater than 5 % and duration of at least 5 frames (79 ms). The solitary 

nature of the Ca2+

 However, when this same protocol was applied to cardiomyocytes isolated from 

VPL rats, the number and amplitude of Ca

 sparks in control myocytes is evident in supplemental movie 1 in 

appendix C.  

2+ sparks during the rest period was markedly 

increased (Fig. 2.3B).  The expanded traces illustrate three spark-active sites that show 

spontaneous Ca2+ sparks.  Moreover, in the cell illustrated, a spontaneous Ca2+ wave 

arose (arrow in Fig. 2.3B, left; Ca2+ waves are considered in more detail in Fig. 6 below). 
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The marked increase in spark sites and spark frequency in myocytes of VPL rats is 

evident in supplemental movie 2 in appendix D.  Ca2+

In addition to increased frequency, changes in the amplitude and kinetics of Ca

 spark incidence was quantified 

from multiple cells from 3 rats in each group. The results summarized in Fig. 2.3C 

demonstrate that the number of spark sites per cell and the frequency of sparks per site 

per cell were significantly increased in VPL myocytes (Fig. 2.3C). Thus, live-cell 

imaging confirms the ryanodine binding data shown above, and provides complementary 

evidence for increased RyR open probability in VPL rats.   

2+ 

sparks were apparent in myocytes from VPL rats (Fig. 2.4). A typical spark observed in a 

control myocyte (Fig. 2.4A top) was brief and of relatively low amplitude. In contrast, the 

typical spark in a myocyte from a VPL rat (Fig. 2.4B top) was of longer duration and 

greater amplitude.  Ca2+ fluorescence surface plots of whole cell (Fig. 2.4 bottom) show 

that sparks were spatially restricted and independent of each another.  The typical spark 

of VPL rats spread further than that in control myocytes (Fig. 2.4, A2, B2).  For the cell 

from the VPL rat illustrated, 4 sparks were observed during just one second of recording 

(panel 4B), whereas only 1 spark was ever detected in the control cell (Fig. 2.4A).  We 

quantified these kinetic features from analyses of multiple cells from 3 rats from each 

group, and the mean values are summarized in Fig. 2.5.  Spark amplitude was 

significantly higher in myocytes from VPL rats compared to control.  In addition, the rate 

of rise and the time constant of decay were both increased in myocytes from VPL rats 

compared to control.  Taking these features together, we determined the area under the 

curve (AUC) for diastolic Ca2+ sparks and found an increase of 380% in myocytes from 

VPL compared to those of control rats, indicating increased diastolic Ca2+ leak per spark.  
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While the mean data describing kinetic parameters showed significant changes, these 

parameters also markedly differed in their frequency distributions, with sparks of VPL 

rats exhibiting a broader distribution than sparks from control myocytes (supplemental 

Fig. 2.1).  This indicates greater heterogeneity of RyR Ca2+ signaling in myocytes from 

VPL rats.  
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Fig. 2.3 Chronic verapamil treatment increases the frequency of Ca2+ sparks in 
resting cardiomyocytes.  Myocytes were loaded with fluo-4 dye and observed using 
high-speed digital fluorescence imaging (Methods).  A, B, Myocytes were stimulated at 
0.5 Hz to elicit steady-state global Ca2+ transients (arrows below traces). Upon cessation 
of stimulation, Ca2+ sparks and waves were monitored.  Fluorescence images of entire 
cells were collected at 67 frames per second.  At left, the time course of fluorescence 
intensity of 3 active Ca2+ spark-sites, each shown in a different color, from a 
representative myocyte, each from a control (A) and a VPL rat (B). Spark sites (areas of 
interest of 10×10 pixels, 3.6 µm2) are shown at right for each myocyte with bright field 
images. The recording areas were 127 x 24 µm.  Ca2+ traces indicated by dashed 
rectangles are expanded at right, revealing the Ca2+ sparks that were spatially restricted.  
Control myocytes typically showed infrequent and small Ca2+ sparks, rising from stable 
baselines of Ca2+.  In contrast, myocytes from VPL rats exhibited greater spark frequency 
and amplitude, often accompanied by gradual rise in basal Ca2+ levels at spark sites.  Ca2+ 
waves were also more frequently observed in myocytes of VPL rats compared to control 
(B, see right side of trace). C, Quantification of the number of spark-sites per myocyte, 
spark frequency corrected for number of spark sites, and spark frequency per myocyte in 
control and verapamil-treated (VPL) rats.  Data are means ± SEM for 18 cells from 3 
control rats, and 36 cells from 3 VPL rats. **P<0.01 VPL vs. control. 
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Fig. 2.4 High speed imaging of myocytes reveals the life time and spread of Ca2+ 
sparks.  Typical Ca2+ sparks recorded from cardiomyocytes of control (A) and VPL (B) 
rats. Top: time course of fluorescence intensity of a typical spark. The Ca2+ spark is 
defined as an increase in ∆F /Fo of greater than 5% with duration at least 5 frames (79 
ms). Labeled points in time course plot correspond to the images below.  Each time is 
represented by two images: at top, pseudo-color image of cell with one spark site 
indicated by the box.  At bottom: surface plots of the same cells show that spark-sites 
were spatially restricted and independent of each another. When sparks were peaked, the 
typical spark of VPL rats spread much wider than the typical spark in control cell (panel 
A2 and B2).  During a spark period, 4 spark-sites were observed (panel B4) in this 
myocyte of a VPL rat, while only 1 spark-site was ever detected in the control myocyte.  
Insets are the expanded views of spark sites indicated by white boxes. The recording 
areas were 127 x 24 µm. 



Chapter 2 Ji Zhou  63 

 

 

 

 

 

 

 

 

 

Fig. 2.5 Chronic verapamil treatment alters the kinetics of Ca2+ sparks in rat 
cardiomyocytes.  Bar graphs show that Ca2+ spark amplitude, the area under the curve 
(AUC), rate of rise, and time constant of decay were all significantly increased in 
myocytes from VPL rats.  Data presented are means ± SEM for 109 sparks each from 3 
control rats and 3 VPL rats. **P<0.01 VPL vs. control. 
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Suppl. Fig. 2.1 Increased heterogeneity of Ca2+ sparks kinetics in myocytes from 
verapamil treated rats.  The frequency distribution of spark rising rate (A), time 
constant of decay (B), area under the curve (AUC, C), and amplitude (D) of Ca2+ sparks 
in myocytes isolated from the control and verapamil-treated (VPL) rats.  Numbers of 
Ca2+ sparks were plotted as a function of the various spark parameters.  Data are from 
109 sparks each from 3 control rats and 3 VPL rats. Sparks monitored in myocytes from 
VPL rats exhibited a much broader distribution of kinetics compared to myocytes from 
control animals.  
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2.4.4 Chronic Verapamil Treatment Increases the Incidence of Ca2+

Ca

 Waves in 

Resting Cardiomyocytes.   

2+ waves were apparent during the post-stimulus period in a fraction of the 

myocytes studied, often propagated along the entire cell (Fig. 2.6A, surface plot).  Given 

that Ca2+ sparks underlie the propagation of Ca2+ waves 6 4, 5, 21, we considered that the 

faster and greater Ca2+ release per spark in myocytes from VPL rats, might result in 

greater Ca2+ wave velocity.  However, the average velocity of Ca2+ waves in the VPL 

group was not significantly different from that of control (Fig. 2.6B inset).  Nevertheless, 

the incidence of Ca2+ waves in myocytes from VPL rats was significantly greater than 

those in cells from control rats (Fig. 2.6C).  We examined whether the increased 

incidence of waves was associated with a greater frequency of sparks by separating cells 

from VPL rats into groups with or without waves. Indeed, spark frequency was 

significantly greater in those myocytes exhibiting Ca2+ waves compared to myocytes 

without waves (Fig. 2.6D), supporting the notion that increased spark frequency 

contributes to the increased incidence of Ca2+ waves. 
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Fig. 2.6 Chronic verapamil treatment increases the incidence of Ca2+ waves in 
cardiomyocytes.  A, Surface plots from a myocyte from a VPL rat show the initiation 
and propagation of Ca2+ waves.  One wave started at site 1 and propagated to site 2 (a 
distance of 17.8 µm) over the course of 210 ms.  B, Time course of changes of 
fluorescence intensity for sites 1 and 2 are plotted, clearly displaying the propagation of a 
Ca2+ wave. Inset: Ca2+ wave velocity was comparable in myocytes of control and VPL 
group (data are means ± SEM, n=21 waves from control and n=51 waves from VPL rats). 
C, However, there was an increased incidence of Ca2+ waves in myocytes from VPL rats 
compared to control (n=40 cells for control n=36 cells for VPL group, * P<0.05, χ2-test). 
D, Myocytes that exhibited Ca2+ waves also had an increased spark frequency.  Data 
presented are means ± SEM. **P<0.01 myocytes isolated from VPL rats with waves 
(n=17 cells) vs. myocytes isolated from VPL rats without waves (n=19 cells). 
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2.4.5 Chronic Verapamil Treatment Reduces Speed of Cardiomyocyte 

Contraction and Relaxation. 

To determine whether contractile properties of cardiomyocytes were altered 

following chronic verapamil treatment, isolated myocytes were stimulated at 0.5 Hz and 

contraction was monitored using high speed bright field imaging.  Edge detection 

routines were applied to monitor changes of cell length during the contraction-relaxation 

cycle (Fig. 2.7A, left). A reduction in the instantaneous rate of contraction and relaxation 

was most apparent in VPL myocytes compared to control (Fig. 2.7A, right).  Traces of 

contraction were normalized and overlapped to reveal slower rates of contraction and 

relaxation in myocytes from VPL rats (Fig. 2.7B).  Normalized and superimposed traces 

of contraction reveal the slower rates of contraction in myocytes from VPL rats (Fig. 

2.7B).  When quantified from multiple preparations, the maximum instantaneous velocity 

(-dL/dtmax) and the average velocity of contraction were significantly reduced in 

myocytes from VPL rats (Fig. 2.7C).  Although the maximum instantaneous velocity of 

relaxation (+dL/dtmax) did not change, the average relaxation velocity of myocytes from 

VPL rats was significantly reduced by ~20%, compared to control. 



Chapter 2 Ji Zhou  68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.7 Chronic verapamil treatment reduces the rate of contraction and relaxation 
of cardiomyocytes.  A, Left: representative tracings of cell length (L) from ventricular 
myocytes of control and VPL rats, with contraction initiated using electrical field 
stimulation (0.5 Hz). Rate of change of length (dL/dt) is shown at right, representing the 
instantaneous velocity of the myocyte contracting and relaxing. B, normalized and 
superimposed traces reveal the slower contraction and relaxation speed in myocytes of 
VPL rats compared to control.  At right, video frames illustrate images of a representative 
cardiomyocyte during one cycle, showing one typical contraction. C, Bar graphs show 
maximum instantaneous velocity of contraction (-dL/dt), maximum instantaneous 
velocity of relaxation (+dL/dt), average velocity of contraction, and average velocity of 
relaxation of myocytes from control and VPL rats. Each bar represents means ± SEM for 
15 cells from 3 control rats, and 17 cells from 3 VPL rats. *P<0.05;**P<0.01 VPL vs. 
control. 
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2.4.6 Chronic verapamil treatment enhances susceptibility to ventricular 

arrhythmias 

The findings described thus far have demonstrated the physiological 

consequences of chronic verapamil treatment at the molecular, subcellular and cellular 

levels manifested as divergent changes in DHPR/RyR2 protein expression and imbalance 

in macromolecular stoichiometry, pronounced diastolic SR Ca2+ leak and myocyte 

contractile dysfunction. To determine whether RyR2 remodeling caused functional 

changes manifested at higher levels, we examined cardiac function in isolated hearts and 

whole animals.  ECG recordings of anaesthetized rats revealed premature ventricular 

contractions (PVCs) in 2 of 6 VPL rats, during a 10 minute observation period, whereas 

no PVCs were detected in any of 6 control rats (Fig. 2.8A).  To rule out the possibility 

that circulating verapamil caused the higher incidence of PVC in vivo, we also recorded 

epicardial electrograms in isolated, perfused hearts.  Notably, PVCs were observed in 2 

of 6 isolated, spontaneously beating hearts from VPL rats, but none of 6 isolated control 

hearts (Fig. 2.8B).  These observations indicate that chronic verapamil treatment 

increased the susceptibility to arrhythmia.  To further verify this, we induced ventricular 

arrhythmia by electrical stimulation of isolated hearts.  The stimulation threshold to 

induce arrhythmia in hearts from VPL rats was 36±7 µA, which was 15 times lower than 

that required for control hearts (553±112 µA; ** P<0.01, n=6 hearts per group) (Fig. 

2.8C).  The Wenckebach cycle length (WCL) was significantly prolonged (Fig. 2.8D), 

indicating reduced rate of atrioventricular (AV) nodal conduction 17.  This was confirmed 

by analysis of ECG traces, where P-R interval was found to be significantly increased in 
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VPL rats, compared to control (Fig. 2.8E).  These data from the isolated heart and the 

whole animal indicate intrinsic electrophysiological remodeling following chronic 

verapamil treatment. 
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Fig. 2.8 Chronic verapamil treatment increases the susceptibility to ventricular 
arrhythmias in whole animals and isolated hearts.  A, Original tracing of the surface 
limb lead II electrocardiogram (EKG, LLII) of a control and a VPL rat showing frequent 
premature ventricular contractions (PVCs, indicated by arrows) only in the VPL rat.  
Indicated regions are shown on an expanded scale below. Two of six VPL rats had PVCs 
within the 10 min baseline observation period after anaesthetization, whereas none of six 
control rats had PVCs using the same protocol. B, Typical recording of epicardial 
electrogram of isolated hearts from control and VPL rats, with upper sweeps atrial and 
lower sweeps ventricular cardiograms.  Arrows indicate PVCs. C, Bar graph shows the 
electrical stimulation threshold to induce ventricular arrhythmias of control hearts was 
significantly reduced in hearts of VPL rats.  D, The Wenckebach cycle length (WCL) was 
~80% longer in hearts of VPL rats than in control. E, P-R intervals from surface EKG 
recordings was prolonged significantly in VPL rats compared to that of control. Values 
are means ± SEM. n=6 rats/group * P<0.05, **P<0.01 VPL vs. control. 
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2.5 Discussion 

The results from the present study provide the first major insights into the impact 

of long-term verapamil treatment of rats, at a dose comparable to that used clinically in 

humans, on EC coupling events and heart function at various levels of organization, 

ranging from molecule to the whole organism. As discussed below, our findings have 

revealed an integrated framework of mechanistic events which likely underlie the 

predisposition to arrhythmia and heart failure upon chronic verapamil treatment. 

2.5.1 Chronic Verapamil Treatment causes RyR Remodeling and Abnormal 

Gating Properties, Despite Uncompromised I

Divergent changes in the density of DHPR and RyR in cardiomyocytes, and the 

striking alterations in the intrinsic functional properties of RyR are the primary 

physiological consequences observed at the molecular level, ensuing chronic verapamil 

treatment of rats. The ~50% increase in DHPR density seen in the VPL group likely 

marks a physiological adaptation to compensate for the partial loss of functional DHPRs 

due to chronic verapamil blockade, thus ensuring the availability of an adequate number 

of functional trigger Ca

Ca  

2+ entry gates to initiate EC coupling.  Indeed, this view is 

supported by our finding that voltage activation-induced peak ICa in cardiomyocytes is 

not compromised significantly due to verapamil treatment. Surprisingly, however, the 

compensatory up-regulation of DHPR density in cardiomyocytes of the VPL group was 

accompanied by a nearly similar magnitude (~ 45%) of down-regulation of RyR density. 

Such divergent changes in density of these two key molecular partners governing EC 

coupling would result in ~ 3-fold increase in the DHPR/RyR stoichiometry. Assuming 
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that the 45% increase in DHPR density matches the fraction of DHPRs rendered non-

functional by verapamil treatment (an assumption supported by unaltered peak ICa), an ~ 

2-fold increase in the ratio of functional DHPRs:RyRs can be discerned in the VPL 

group, compared to control.  Tight local control of RyRs by DHPRs is central to the 

stability, fidelity and efficiency of E-C coupling in the heart.  Local control is achieved 

mainly by co-localization of DHPRs and RyRs in a dyadic junction (“couplon”) where 

single DHPR in the sarcolemma controls clusters of RyRs in the abutting SR terminal 

cisternae 22.  Individual units operate independently by virtue of spatial separation and of 

sheer Ca2+ gradients around channel pores generated upon channel opening 23.  Other 

factors acting in synergy to promote local control and stability include low intrinsic Ca2+ 

sensitivity of RyRs, high co-operativity of Ca2+-dependent activation and use-dependent 

RyR inactivation 6, 24, 25

2.5.2 Evolution of Pathogenic RyRs, Hyperactive Spark Sites and Impaired Local 

Control 

.  Clearly, distortion in spatial coupling due to disarray in 

intermolecular spacing and misalignment of DHPRs and RyRs resulting from their 

stoichiometric imbalance would have predictable functional consequences, and these 

were evidenced by altered intrinsic properties of RyR and intermolecular DHPR-RyR 

signaling. 

Diastolic Ca2+ sparks, although independent of DHPR current, are analogous to 

the Ca2+ sparks elicited by the ICa trigger 6, 24. Therefore, the incidence and spatio-

temporal characteristics of diastolic Ca2+ sparks in cardiomyocytes served as reliable 

indices in the assessment of alterations in intrinsic properties of RyR upon verapamil 
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treatment.  Paradoxically, despite a 45% decrease in the number of RyRs, 

cardiomyocytes from the VPL group exhibited significantly greater number of Ca2+ spark 

sites per cell as well as increased frequency of spark generation per site, when compared 

with cardiomyocytes from the control group.  In addition, striking differences were 

evident in the kinetics of Ca2+ sparks elicited by cardiomyocytes of the VPL group, 

compared with control.  The sparks in cardiomyocytes of the control group (Fig. 2.4A) 

consisted of a rapid rising phase reflecting RyR opening, followed by a slow decay phase 

reflecting channel closure, features which conform to the typical Ca2+ spark pattern in 

normal cardiomyocytes 6, 24.  In contrast, sparks in cardiomyocytes of the VPL group 

(Fig. 2.4B) had a normal brief opening (rising phase) followed by a sub-conducting 

opening of longer duration, prolonging the spark decay phase.  Also, typical Ca2+ sparks 

in cardiomyocytes of the VPL group had greater amplitudes suggesting recruitment of a 

relatively larger number of RyRs for each spark generated.  In the normal cardiomyocyte, 

a single DHPR current triggers the opening of only a minor fraction of RyRs in a cluster 

of RyRs aligned in close proximity to that DHPR. Such local control of RyRs, coupled 

with the low intrinsic Ca2+ sensitivity and Ca2+-dependent activation and use-dependent 

inactivation of RyRs 6, 24, 25 ensures the spatio-temporal confinement of Ca2+ sparks 

necessary for the efficient and orderly execution of E-C coupling.  Our findings 

demonstrating the incidence of high-frequency, high amplitude, long-lasting Ca2+ sparks, 

and relative abundance of hyperactive spark sites in cardiomyocytes of the VPL group, 

point to a pathogenic evolution of RyRs and dramatic weakening of the local control 

mechanism central to the fidelity, stability and efficiency of the E-C coupling process.  

Multiple factors may underlie this pathogenic evolution of RyRs.  
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(i) Distortion in spatial coupling: The striking ~ 3-fold increase in 

DHPR/RyR ratio observed in cardiomyocytes of the VPL group clearly implies potential 

distortion in the spatial alignment and hence, spatial coupling, of these two molecular 

partners in E-C coupling. On the one hand, increased number of in DHPRs in 

cardiomyocytes in the VPL group necessitates diminished intermolecular spacing of 

DHPRs in the sarcolemma and T-tubules.  On the other hand, decreased number of RyRs 

with concurrent paradoxical increase in hyperactive spark sites demands diminution in 

RyR cluster size coupled with greater intercluster distance and cluster dispersion in the 

junctional SR. Such disarray in intermolecular spacing and misalignment of DHPRs and 

RyRs would result in loss of local control leading to impaired E-C coupling, Ca2+ 

instability and heart failure.  Indeed, loss of local control and dyssynchronous Ca2+ 

release due to structural abnormalities in the junctional SR Ca2+cycling apparatus have 

been reported recently in studies using heart failure models. Thus, in the spontaneously 

hypertensive rat, increased spatial dispersion of T-tubules and orphaned ryanodine 

receptors were found to lead to a loss of local control and Ca2+ instability in heart 

failure 26.  Also, regional loss of T-tubules has been implicated in impaired Ca2+cycling 

and cardiac dysfunction in tachycardia-induced heart failure 27. Simultaneous imaging of 

T-tubules and Ca2+ sparks has also provided evidence supporting the derangement of T-

tubule/RyR cluster spatial disposition in heart failure 28.  Furthermore, Ca2+ entry via 

routes other than DHPR, such as reverse mode Na+/Ca2+ exchange 29 and T-type Ca2+ 

current 30, were found to be very inefficient in triggering Ca2+ release in cardiomyocytes 

exemplifying the importance of stringent DHPR-RyR proximity and spatial alignment for 

effective E-C coupling.  It is noteworthy here that our morphological and histological 
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studies using cardiomyocytes and cardiac tissue sections from control and VPL groups 

showed no evidence of cardiac hypertrophy or fibrosis due to chronic verapamil 

treatment (see chapter 4).  Therefore, the molecular remodeling of RyRs in the VPL 

group is not secondary to activation of hypertrophic signaling pathways, and change in 

myocyte size does not serve to compensate for divergent alterations in the population of 

DHPRs and RyRs in the VPL group to sustain their normal spatial alignment and 

functional integrity.   

(ii) Orphaned DHPRs and altered trigger Ca2+
 intensity: The more dense 

packing of DHPRs in the sarcolemma and T-tubules, coupled with the greater dispersion 

of fewer RyR clusters of diminished cluster size in junctional SR, implies that a 

significant portion of DHPRs in the VPL group lacks spatially coupled RyR clusters, and 

thus becomes “orphaned”.  Since the peak trigger Ca2+ is not compromised in the VPL 

group, and given the diminished RyR cluster size, the intensity of DHPR current 

impacting on RyRs in the DHPR-coupled clusters can be seen to be of greater magnitude; 

this, in turn, should favor recruitment and activation of more RyRs resulting in the high 

amplitude Ca2+ sparks observed in the VPL group. The trigger Ca2+ emanating from 

orphaned DHPRs may cause untimely activation of RyRs in RyR clusters most proximal 

to them, and/or serve to prolong the open duration of RyRs by delaying Ca2+-dependent 

inactivation. These phenomena may underlie the extended life-span of Ca2+ 

(iii) RyR phosphorylation status: Cardiac RyRs harbor multiple 

phosphorylation sites that undergo phosphorylation by PKA and CaMK 

sparks and 

predisposition to arrhythmia observed in the VPL group.  

3, 20, 31-

35. Enhanced RyR phosphorylation by PKA has been proposed as a major impairment that 
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contributes to SR Ca2+ leak and diminished contractility in heart failure 31, 34, 36, this view, 

however, remains controversial 32, 37-39.  Growing evidence from several recent studies, on 

the other hand, implicates increased CaMK activity and hyper-phosphorylation of RyR in 

the pathogenesis of SR Ca2+ store depletion, contractile dysfunction and heart failure 40-43.  

In this regard, our studies have revealed that chronic verapamil treatment results in 

significantly enhanced CaMK protein expression in the heart and this is accompanied by 

increased level of hyperactive, autophosphorylated CaMK as well as hyper-

phosphorylated RyRs in the SR (see chapter 4).  RyR phosphorylation by CaMK is 

known to result in increased RyR open probability augmenting Ca2+ leak 43, 44 , and the 

PKA-mediated enhancement in SR Ca2+ leak is CaMK-dependent 35, 42, 43, 45

(iv) Disruption of intermolecular interactions: In addition to phosphorylation 

by protein kinases, RyR function is influenced by its association with other proteins such 

as calmodulin and FKBP 12.6.  Calmodulin serves to inhibit RyR Ca

.  Therefore, 

CaMK mediated hyperphosphorylation of RyRs may contribute, in part, to alterations in 

intrinsic functional properties of RyR reported here.  

2+ release 46, 47 and 

RyR interaction with FKBP 12.6 serves to stabilize the channel in a subconductance state 

to minimize Ca2+ leak during diastole 48-50.  Conceivably, diminished RyR cluster size and 

increased RyR cluster dispersion (see ii above) as well as the down regulation of FKBP 

12.6 (Fig. 2.1C) observed in the VPL group, may also impact adversely on RyR 

interactions with calmodulin and FKBP 12.6 leading to channel instability and enhanced 

diastolic Ca2+ leak.  It is noteworthy that RyR phosphorylation has been shown to cause 

dissociation of FKBP 12.6 from RyR in some studies 31, 33, 34, 36 but not others 32, 38.  If 

such effect of phosphorylation is valid, the hyper-phosphorylation of RyR observed in the 
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VPL group would result in impaired FKBP association with RyR, consequent channel 

instability and enhanced Ca2+ leak.  The co-ordinate down regulation of both RyR and 

FKBP 12.6 seen in the VPL group, however, may help to minimize such adverse impact 

on channel stability.  It should be noted that FKBP interaction with RyRs is also 

implicated in maintaining normal intermolecular interactions between RyRs within the 

RyR cluster as well as between adjacent RyR clusters, and such intracluster and 

intercluster molecular signaling is considered vital to ensuring the stability of tight local 

control of E-C coupling 2, 24, 51

2.5.3 Diminished SR Ca

.  

2+

The persistence of high-frequency, high amplitude diastolic Ca

 Content and Increased Spark-Leak Paradox 

2+ sparks in 

cardiomyocytes of the VPL group can lead to diminished SR Ca2+ store, unless Ca2+ 

reuptake by the SR Ca2+pump (SERCA2a) is concurrently enhanced to replenish the 

store.  Results from our studies in this regard, have revealed significantly diminished 

SERCA2a activity (35%) and SERCA2a protein level (30%), as well as ~ 35% reduction 

in SR Ca2+ content in cardiomyocytes of the VPL group (see chapter 3) 52.  Dynamic 

decline in local Ca2+ in the SR is thought to aid in terminating Ca2+ sparks 53, 54 and 

excessive SR Ca2+ is thought to cause increased Ca2+ sparks incidence leading to 

regenerative Ca2+ release and arrhythmias 24, 51.  Thus, it appears paradoxical that chronic 

verapamil treatment results in increased Ca2+sparks-leak incidence concomitant with 

diminished SR Ca2+ content.  However, as reviewed and discussed elsewhere 5, 24, the 

influence of SR Ca2+ load on Ca2+  sparks-leak incidence and the underlying mechanisms 

remain controversial and uncertain.  While multiple factors outlined in the preceding 
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discussion can contribute to the increased “spark-leak phenomenon” in cardiomyocytes 

of the VPL group, the mechanisms which permit the maintenance and operation of 

hyperactive spark sites in cardiomyocytes on a chronic basis in the phase of diminished 

SR Ca2+ content is perplexing.  Increased Ca2+ spark frequency with decreased SR Ca2+ 

content in cardiomyocytes has also been observed by Song et al. 55 in severe but 

compensated canine left ventricular hypertrophy; and spatial heterogeneity in SR Ca2+ 

was suggested as a potential basis for this paradox.  An analogous situation may prevail 

in cardiomyocytes of the VPL rats exhibiting increased “spark-leak phenomenon” 

concomitant with diminished SR Ca2+ content.  Conceptually, the evolution of pathogenic 

RyRs and hyperactive spark sites in cardiomyocytes of VPL rats (noted earlier) can be 

seen to serve not only in generating a new steady state with diminished global SR Ca2+ 

content but also in the establishment of spatial heterogeneity of Ca2+ concentrations 

within the SR as well as in the on-going chronic operation of the hyperactive spark sites.  

For example, hyper activity of the pathogenic RyRs in the hyperactive spark sites while 

promoting excessive Ca2+ leak will also serve to set up concurrently an intralumenal Ca2+ 

gradient directed towards the hyperactive spark sites where a transient fall in Ca2+ 

concentration ensues from each burst of Ca2+ spark-leak.  Thus, the hyperactive spark 

sites and the spark-leak phenomenon become self-sustaining.  Noteworthy in this context 

is the recently reported experimental evidence showing that SR and nuclear envelope 

lumen are extensively interconnected in the cardiomyocyte forming a large Ca2+ store, 

and intrastore Ca2+ diffusion does occur 56.  Such expanded, interconnected spatial 

dimension of Ca2+ store and intrastore Ca2+ diffusion potential may serve to combat, 

albeit partially, SR Ca2+ store depletion and in turn, facilitate the establishment of a new 
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steady state with less than normal global SR Ca2+

2.5.4 Predisposition to Arrhythmia and Heart Failure Ensues From Chronic 

Verapamil Treatment  

 content that still permits the occurrence 

of chronic and self-sustaining spark-leak phenomenon. 

Our findings with respect to the impact of chronic verapamil treatment at the 

organ and organism levels revealed predisposition to heart failure in the VPL group, 

characterized by greatly enhanced vulnerability to arrhythmias, prolonged PR interval, 

frequent incidence of PVCs and contractile dysfunction (Fig. 2.8).  These manifestations 

of cardiac pathogenesis can be linked to the molecular remodeling embracing 

DHPR/RyR and consequent alterations in intermolecular Ca2+ signaling discussed earlier. 

For example, frequent occurrence of high amplitude diastolic Ca2+ sparks and consequent 

rise in cytosolic Ca2+ at resting membrane potential in the VPL group can activate inward 

Na+/Ca2+ exchanger current in exchange for excess Ca2+, which in turn can trigger 

delayed after depolarization leading to arrhythmias 24, 57.  This view is consistent with the 

incidence of Ca2+ waves and PVCs in cardiomyocytes of the VPL group (Fig. 2.8).  

Further, the spatial and temporal dyssynchrony of Ca2+ release events associated with 

DHPR/RyR remodeling as well as hyperphosphorylation of RyR likely serve to promote 

the occurrence of arrhythmia in the VPL group as noted earlier. It is noteworthy here that 

we have observed approximately 9% mortality of rats in the VPL group, but none in the 

control group.  Fig. 2.9 illustrates the above findings and conceptual framework.
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Fig 2.9 Conceptual framework of ryanodine receptor remodeling and spark-leak 
paradox in verapamil-treated rats.  A, illustrates the normal condition where 1) the 
spatial alignment/coupling of DHPR-RyR ensures the fidelity and efficiency of 
intermolecular Ca2+ signalling and E-C coupling , 2) the SR and nuclear envelope lumen 
are extensively interconnected forming a large Ca2+ store to allow intrastore Ca2+ 
diffusion. B, illustrates  that chronic verapamil treatment leads to: 1) a striking increase in 
DHPR/RyR ratio; 2) distorted DHPR-RyR spatial alignment/coupling; 3) emergence of 
orphaned DHPRs that lack spatially coupled RyR clusters; 4) increased RyR 
phosphorylation would result in impaired FKBP association with RyR; 5) altered 
functional properties of RyR (hyperactive spark sites, increased spark frequency and 
prolonged spark decay phase; and 6) diminished SR Ca2+ content and increased spark-
leak paradox (Dynamic decreases in local Ca2+ in the SR is thought to aid in terminating 
Ca2+ sparks, and excessive SR Ca2+ hyper-activity of the pathogenic RyRs in the 
hyperactive spark sites while promoting excessive Ca2+ leak will also serve to set up 
concurrently an intralumenal Ca2+ gradient directed towards the hyperactive spark sites 
where a transient fall in the Ca2+ concentration ensues from each burst of Ca2+ spark-leak.  
Thus, the hyperactive spark sites and the spark-leak phenomenon become self-sustaining.  
Morever, intrastore Ca2+ diffusion from the nuclear envelope to the SR may serve to 
combat, albeit partially, SR Ca2+ store depletion.). 
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2.5.5 Conclusions and Clinical Implications 

The results presented here demonstrate that long-term treatment of rats with the 

DHPR blocker, verapamil, causes divergent changes in cardiac DHPR/RyR protein 

expression and remodeling of RyR functional properties leading to impaired DHPR/RyR 

Ca2+ signaling, and high diastolic Ca2+ spark frequency and wave incidence in 

cardiomyocytes, culminating in predisposition to arrhythmias and heart failure. 

Surprisingly, this pathogenic remodeling of RyRs occurred in the absence of myocyte 

hypertrophy or fibrosis, and in the face of up-regulated DHPR density, uncompromised 

depolarization-induced ICa, and decrements in RyR density as well as SR Ca2+ content. 

Tight local control of RyR function via DHPR-triggered Ca2+ signaling is central to the 

spatio-temporal confinement of RyR Ca2+ release events (Ca2+ spark incidence) and 

orderly execution of E-C coupling 2, 4, 5, 24.  Several factors including (a) derangements in 

DHPR/RyR spatial alignment and functional coupling, (b) adverse impact of RyR cluster 

dispersion and diminished RyR cluster size on the temporal integrity and efficiency of E-

C coupling, (c) RyR hyper-phosphorylation and disruption of intermolecular interactions 

between RyRs and their regulatory proteins (e.g. FKBP 12.6, calmodulin), and (d) 

regional inhomogeneity of Ca2+ within the SR lumen and occurrence of self-sustaining 

hyperactive spark sites in the SR, may underlie the impaired local control and cardiac 

pathogenesis observed following chronic verapamil treatment. These findings have 

important physiological, patho-physiological and therapeutic implications. In the 

physiological context, our findings imply that normal DHPR/RyR stoichiometry and 

precise spatial alignment and juxtapositioning of these macromolecules are stringent 
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requirements for ensuring tight local control of intermolecular Ca2+ signaling, spatio-

temporal synchrony of Ca2+ release events, and the integrity and fidelity of E-C coupling, 

and therefore, maintenance of normal heart rhythm.  Consequently, deviation from 

normal DHPR/RyR stoichiometry will lead to disarray in spatial alignment of these 

macromolecules and impaired local control of intermolecular Ca2+ signaling, thus 

marking the onset of RyR remodeling and cardiac pathogenesis.  The pathophysiological 

consequences of RyR remodeling, and ensuing impairments in DHPR/RyR Ca2+ 

signaling and E-C coupling, are manifested at the organ and organism levels as the 

enhanced vulnerability to arrhythmias and heart failure observed in the VPL group.  

Interestingly, evidence from large scale clinical trials has also revealed increased risk of 

heart failure and incidence of cardiac arrhythmias in patients following long-term 

treatment with DHPR blockers 10.  Thus, verapamil, a cardiac-selective DHPR blocker, 

used clinically as an anti-arrhythmic drug 12, turns out to be pro-arrhythmic over the long-

term in both humans and animals.  The findings reported in the present study provide the 

first major insights into an integrated frame-work of mechanistic events underlying 

cardiac pathogenesis due to chronic verapamil treatment.  Since the present study 

examined the effects of chronic verapamil treatment in rats having no cardiovascular 

disease, it is uncertain whether a pre-existing disease background will alter the effects of 

verapamil.  However, manifestation of same pathological outcome (arrhythmia and heart 

failure) following verapamil treatment in humans with disease background and in rats 

without disease background, suggests that underlying pathogenic mechanisms are likely 

similar.  Additional studies using animal models with disease background (e.g. 

spontaneously hypertensive rat) may help to further corroborate this.  However, multiple 
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etiological factors underlying cardiovascular disease may impact on observations and 

conclusions in studies using disease models.  Moreover, assessment of the effects of 

verapamil in the absence of disease is essential to understand its influence on normal 

cardiac physiology and mechanisms of cardiac adaptation to drug intervention.  Finally, 

in addition to urging caution in the conventional clinical use of DHPR blockers, our 

findings demonstrate that perturbations in DHPR/RyR communications by knock-out, 

knock-down, over-expression or under-expression of molecular players demand scrutiny 

in the design and deployment of therapeutic approaches for heart diseases.  
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CHAPTER THREE 

 

REMODELING OF CARDIAC SARCOPLASMIC RETICULUM CALCIUM 

PUMP AND DIASTOLIC DYSFUNCTION ENSUED FROM CHRONIC L-

TYPE CALCIUM CHANNEL BLOCKADE WITH VERAPAMIL IN THE 

RAT 
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3.1 Chapter Summary 

Depolarization-induced Ca2+ influx into cardiomyocytes via L-type Ca2+ channels 

(dihydropyridine receptor, DHPR) results in Ca2+-induced Ca2+ release from 

sarcoplasmic reticulum (SR) via ryanodine receptors (RyRs) and promotes muscle 

contraction.  Chronic DHPR blockade by verapamil is clinically beneficial to treat 

hypertension.  Recent clinical trials, however, revealed increased risk of heart failure in 

patients undergoing chronic treatment with DHPR blockers.  Our studies in a rat model 

showed RyR remodeling and systolic dysfunction as part of the underlining mechanism.  

Here we investigated whether chronic DHPR blockade impacts on diastolic function by 

influencing cardiac SR Ca2+-ATPase (SERCA2) function responsible for Ca2+ 

sequestration and muscle relaxation.  Adult rats received verapamil (625 μg/h/kg) or 

vehicle for 4 weeks via implanted osmotic mini-pumps.  Western immunoblotting 

analysis showed diminished (~30%) SERCA2 level and increased (~25%) level of 

SERCA2 inhibitor, phospholamban in verapamil-treated (VPL) rats, compared with 

control.  The rates of Ca2+ sequestration by SERCA2 also diminished significantly 

(~35%) in VPL rats without altering K0.5 for Ca2+.  Intracellular Ca2+ imaging revealed 

several alterations in myocyte Ca2+ cycling in VPL rats compared to control: (a) 

prolonged twitch [Ca2+]i decay; (b) elevated diastolic [Ca2+]i at > 0.5 Hz stimulation 

frequency; (c) increased time to restore steady-state SR Ca2+ upon store depletion; (d) 

decreased SR Ca2+ content.  Left ventricular function examined in isolated hearts and in 

vivo was compromised, with developed pressure reduced by ~30% and peak dP/dt 

reduced by 40-50% in VPL rats compared to control.  In conclusion, SERCA remodelling 

and diastolic dysfunction ensue from chronic DHPR blockade.  
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3.2 Introduction 

In cardiac excitation-contraction coupling (E-C coupling), the voltage-gated L-

type Ca2+ channel (dihydropyridine receptor, DHPR) in the sarcolemma initiates the 

cardiac contraction-relaxation cycle by conversion of electrical signals into Ca2+ signals.  

The opening of DHPRs by depolarization of cardiomyocyte permits the influx of a small 

amount of Ca2+
 into the cell to activate the ryanodine receptors (RyRs), resulting in a 

large amount of Ca2+ release from the sarcoplasmic reticulum (SR) by a process termed 

“Ca2+-induced Ca2+ release” (CICR) 1.  The resulting Ca2+ transient activates the 

myofilaments and generates contraction.  The subsequent return of cytosolic Ca2+ 

concentration to basal levels signals the beginning of diastole.  Ca2+ sequestration back to 

the SR by sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) accounts for 70 to 92% of 

cytosolic Ca2+ removal for relaxation and refills the SR for next contraction 1-3

The DHPR Ca

.  

Therefore, the activity of SERCA is a major determinant for both cardiac diastolic and 

systolic function.   

2+ signals are finely controlled to ensure intracellular Ca2+ 

homeostasis and proper cell contraction.  Long-term enhancement of DHPR Ca2+ 

signaling by over-expressing DHPR in transgenic mice triggers Ca2+ imbalances and 

induces cardiac hypertrophy and dilatory remodeling 4.  However, the impact of chronic 

inhibition of DHPR Ca2+ signals on the heart is not clear.  Long-term DHPR blocker 

treatment in patients represents a model of chronic inhibition of DHPR Ca2+ signals in the 

clinical setting.  Recent large scale clinical trials have suggested long-term use of DHPR 

blockers increases the risk of heart failure and incidence of cardiac arrhythmias 5.  

However, the mechanisms underlying this pathogenic phenomenon are not fully 
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explored.  Therefore, it is imperative to investigate the impact of chronic inhibition of 

DHPR Ca2+

As DHPR Ca

 signals on cardiac E-C coupling to fill the important gaps of knowledge in 

physiology and clinical practice.   

2+ signals orchestrate the RyR and the SERCA performance in E-C 

coupling, we speculate that perturbations of DHPR Ca2+ signals will cause functional 

adaptation of RyRs and SERCAs.  Indeed, we have found that chronic inhibition of 

DHPRs by cardiac selective DHPR blocker, verapamil, leads to molecular and functional 

remodeling of RyRs and predisposes to arrhythmia.  The present study investigated the 

impact of chronic, yet partial DHPR blockade using verapamil on SERCA-related cardiac 

E-C coupling events in rats.  We demonstrate for the first time that remodeling of 

SERCA and depression of heart function ensue from chronic, yet partial blockade of 

DHPRs.  
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3.3 Methods 

An expanded methods section is available at appendix B.  

3.3.1 Animals.  

Male Wistar rats weighing 190 to 210 g were randomly assigned to control and 

verapamil-treated (VPL) groups.  Verapamil was dissolved in distilled water and 

administrated at a rate of 625 µg/h/kg for 4 weeks via subcutaneously implanted osmotic 

mini pumps (Model 2ML4; ALZET, Cupertino, CA).  Control rats received vehicle 

solution in similar manner.  All procedures were approved by the Animal Use and Care 

Committee of The University of Western Ontario and followed the Guidelines of the 

Canadian Council on Animal Care. 

3.3.2 Western Immunoblotting And Ca2+

The protein levels of SERCA and its accessory protein PLN as well as 

calsequestrin (SR Ca

 Uptake By SR Vesicles. 

2+ storage protein) were determined by western immunoblotting of 

isolated cardiac SR vesicles utilizing antibodies as described previously 6, 7.  ATP-

dependent, oxalate-faciliated Ca2+ uptake by isolated cardiac SR vesicles was determined 

using Millipore filtration technique as described previously 8

3.3.3  Cytosolic free Ca

.  

2+ Concentration ([Ca2+]i

Myocytes were isolated from myocardium of control and VPL rats, and single cell 

twitch [Ca

). 

2+]i transients were monitored at room temperature (25°C) during field 

stimulation of fura-2-loaded myocytes according to procedures described previously 8.  

For some experiments, 10 mM caffeine was applied by pressure ejection from a 

micropipette to monitor SR Ca2+

 

 fluxes.   
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3.3.4 Hemodynamic Studies in Langendorff Perfused

The procedures were followed essentially as described previously 

 Hearts and in vivo.  

9, 10.  Isolated 

hearts from control and VPL rats were perfused with normal Tyrodes solution at 10 ml 

min−1 at 35±1°C.  A water-filled latex balloon, connected to a pressure transducer 

(COBE, Lakewood, CO, USA), was inserted into the left ventricle to continuously 

monitor isovolumic contractions.  A pair of electrodes from a Grass S88 

For in vivo assessment, a pressure-volume catheter (Scisense Inc., London, ON, 

Canada) was introduced into the left ventricles through the right carotid artery to record 

the hemodynamic parameters in anesthetized rats (Ketamine 70 mg/kg and Xylazine 5 

mg/kg) from control and VPL groups.  The catheter was connected to a pressure-volume 

control unit (Scisense Inc., London, ON, Canada) then to a strain-gauge amplifier 

(EMKA Technologies, France).  Data were processed and analyzed by IOX Data 

Acquisition software (EMKA Technologies, France). 

stimulator (Grass 

Instrument Inc., Quincy, MA, USA) was placed on the right atrial appendage to deliver 

trains of pulses for atrial pacing.   

3.3.5 Statistical Analysis. 

Results are presented as means ± SEM.  Statistical significance was evaluated by 

the Student's t-test with P<0.05 indicating a significant difference. 
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3.4 Results 

3.4.1 Chronic verapamil treatment down-regulates SERCA expression.  

We started from the molecular level to examine whether chronic DHPR blockade 

affects the protein level of SERCA.  Western blotting experiments using isolated cardiac 

SR vesicles revealed that SERCA2, the cardiac isoform, was significantly reduced by 

~30% in VPL rats compared to control (Fig. 3.1A).  We also probed for PLN, which in 

its unphosphorylated state inhibits SERCA function 11.  In contrast to the change of the 

SERCA, the level of PLN was significantly increased by ~25% in VPL rats compared to 

control (Fig. 3.1B).  Taken together, the protein ratio of SERCA2: PLN in VPL rats was 

reduced by ~ 40% compared to control (Fig.3.1C).  
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Fig. 3.1 Chronic verapamil treatment alters levels of cardiac SERCA2 and PLN.  
Cardiac SR vesicles were purified by density gradient centrifugation were obtained from 
control and verapamil-treated (VPL) rats then subjected to Western immunoblotting 
analysis.  Bar graphs depict the relative amount of immunoreactive protein as determined 
by densitometry of Western blots, with n indicating the number of independent 
preparations.  Representative immunoblots from four separate preparations are shown at 
the bottom of panels.  Identical amounts of SR (25 µg protein) were applied in each lane.  
A, B, Immunoblotting for SERCA2 and PLN revealed that verapamil treatment caused 
significant decrease in SERCA2 and increase in PLN.  To demonstrate equivalent loading 
conditions, membranes were stripped and reprobed for the SR protein calsequestrin 
(CSQ).  C, Normalization of PLN immunoreactive protein level to SERCA2 
immunoreactive protein level (SERCA2:PLN).  Data represent means ± SEM.  * P <0.05 
VPL vs. control.   
Note: CSQ was used as an internal protein-loading control as the relative amount of CSQ 
did not differ in control and VPL rats12. 
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3.4.2 Chronic verapamil treatment reduces the rate of ATP-dependent Ca2+

We next examined SERCA function at the subcellular level by studying ATP-

dependent Ca

 

uptake by cardiac SR vesicles. 

2+ uptake by cardiac SR vesicles.  Compared to control, we observed 

reduced SR Ca2+ uptake from a saturating 8.2 µM free Ca2+ medium in VPL group (Fig. 

3.2A).  This depression of SR Ca2+ uptake activity was further reflected as reduced SR 

Ca2+ uptake rate over a wide range of Ca2+ concentrations (0.01 – 8.2 µM) (Fig. 3.2B).  

Quantification of the kinetic parameters from the data in Fig. 3.2B revealed that the 

maximum velocity of SR Ca2+ pumping (Vmax) was significantly diminished by ~35% in 

the VPL rats compared to control, indicating reduced SR Ca2+ pump function (Fig. 3.2, 

Table 3.1).  We did not observe significant changes in the apparent affinity of the Ca2+ 

pump for Ca2+ (K 0.5) between control and VPL rats.  
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Fig. 3.2 Chronic verapamil treatment reduces the rate of ATP-dependent Ca2+ 
uptake by cardiac SR vesicles.  A, Time course of ATP-dependent Ca2+ uptake by 
cardiac SR vesicles from control and VPL rats.  Ca2+ uptake rates were examined at a 
saturating free Ca2+ concentration of 8.2 µM.  Values represents mean ± SEM, 
n=10/group.  *P < 0.05 vs. control.  B, Effects of varying Ca2+ concentration of the 
incubation medium on ATP-dependent Ca2+ uptake by cardiac SR vesicles from control 
and VPL rats. The data represent means ± SEM, n=13/group. Kinetic parameters of Ca2+

 

 
transport derived from these data (B) are summarized in Table 3.1. 

Table 3.1 Kinetic parameters of Ca2+

 

 transport by cardiac SR from control and 
verapamil-treated rats. 

 Control Verapamil 
Vmax              
(nmol Ca2+

129 ± 10 
/mg protein/min) 

84 ± 11 * 

K0.5
Control 

 (µM) 1.3 ± 0.2 1.4 ± 0.3 

nH 1.4 ± 0.1   1.5 ± 0.3 

 
Values are means ± SEM.; n=13/group.  Vmax, maximum velocity of Ca2+ uptake; K0.5, 
Ca2+ concentration giving one-half of Vmax ; nH, Hill coefficient.  *P < 0.05 vs. control. 
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3.4.3 Chronic verapamil treatment reduces the decay rate of twitch [Ca2+]i

In rat cardiomyocytes, it is estimated that SERCA accounts for 92% of the removal of 

cytosolic Ca

 

transients in cardiomyocytes  

2+, contributing to the decline of twitch [Ca2+]i transients 2.  Therefore, we 

examined the decay kinetics of twitch [Ca2+]i transients, by stimulating isolated myocytes 

at 0.5 Hz (Fig. 3.3A).  When transients were normalized to same height and 

superimposed, slower decline of twitch [Ca2+]i transients was evident in myocytes 

isolated from VPL rats (VPL myocytes) compared to control (Fig. 3.3B).  To quantify 

this, we fitted the decline of twitch [Ca2+]i transients with a single exponential decay 

equation.  Quantification of 45 cells each from 8 control and 8 VPL rats revealed that the 

time constant (τ) of decay in the VPL group was significantly longer than that of control 

(Fig. 3.3C). 
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Fig. 3.3 Chronic verapamil treatment slows twitch [Ca2+]i

Cytosolic free Ca

 transient decline in 
cardiomyocytes.  

2+ concentration ([Ca2+]i) was monitored by microspectrofluorimetry of 
fura-2-loaded cardiomyocytes.  A, Representative steady-state twitch [Ca2+]i transients of 
myocytes from VPL rats (VPL myocytes) and control rats (control myocytes) under field-
stimulation of 0.5 Hz.  B, Normalized and superimposed twitch [Ca2+]i transients from A 
reveal apparent slower decay in VPL group.  C, The decay of twitch [Ca2+]i 

 

transient was 
well fit into a single exponential decline equation.  The time constant of decay (τ) was 
significantly prolonged in VPL myocytes compared to control.  Data represent means ± 
SEM for 45 cells each from 8 control and 8 VPL rats. 
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3.4.4 Chronic verapamil treatment elevates diastolic [Ca2+]i and reduces twitch 

[Ca2+]i

Prolongation of twitch [Ca

 transients.  

2+]i transients reflects altered Ca2+ handling.  We also 

noted that the amplitude of transients (∆[Ca2+]i, the difference between the systolic and 

diastolic [Ca2+]i) was changed.  To further characterize this change, we examined twitch 

[Ca2+]i transients in myocytes under a range of stimulation frequencies (Fig. 3.4A).  

∆[Ca2+]i of VPL myocytes was generally smaller than that in control myocytes (Fig. 

3.4B, left panel).  During stimulation, the diastolic [Ca2+]i in control rats effectively 

recovered to resting levels, reflecting efficient SERCA function. In contrast, during 

stimulation of VPL myocytes, the diastolic levels remained above resting levels at all 

frequencies (Fig. 3.4A).  Diastolic levels of VPL myocytes were significantly greater 

than those of control myocytes at 0.5 Hz and higher frequencies (Fig. 3.4B, middle 

panel).  When steady-state systolic [Ca2+]i was measured, the levels were reduced in VPL 

myocytes at 0.25 Hz, unchanged at 0.5, 0.75, 1 Hz, but significantly higher at 2 Hz 

compared to those of control myocytes (Fig. 3.4B, right panel). 
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Fig. 3.4 Chronic verapamil treatment alters frequency-dependent changes of twitch 
[Ca2+]i transients in cardiomyocytes.  A, Typical recordings of twitch [Ca2+]i transients 
from control and VPL myocytes show the experimental protocol for studying frequency-
dependent alterations of twitch [Ca2+]i transients.  Myocytes were field-stimulated at 
frequencies from 0.25 Hz to 2 Hz.  Stimulation lasted for ~ 60 s at one frequency then 
stopped for 30 s before being resumed at the next higher frequency.  B, Quantification of 
diastolic, systolic [Ca2+]i and the size of twitch [Ca2+]i transient (∆[Ca2+]i).  Data 
represent means ± SEM. n=18 cells from 4 control rats and 17 cells from 4 VPL rats.  * P 
< 0.05, ** P < 0.01vs. control.  
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3.4.5 Time-course of recovery from caffeine-induced SR Ca2+

The time to restore steady-state twitch [Ca

 depletion in 

cardiomyocytes. 

2+]i transients following caffeine-

induced depletion of SR Ca2+ stores was used to evaluate the orchestration of SR Ca2+ 

cycling proteins to recover SR Ca2+ content.  With continuous field stimulation to elicit 

twitch [Ca2+]i transients, myocytes were treated with caffeine (10 mM) to empty the SR 

Ca2+ stores.  VPL myocytes took strikingly longer time to restore steady-state twitch 

[Ca2+]i transients than control cells (Fig. 3.5A).  When quantified in 48 cells from 9 

control and 60 cells from 9 VPL rats, the time to recover was ~50% longer in VPL 

compared to control myocytes (Fig. 3.5B).  
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Fig.3.5 Chronic verapamil treatment slows recovery of twitch [Ca2+]i transients 
following caffeine-induced depletion of Ca2+ store in cardiomyocytes.  A, Typical 
recordings of twitch [Ca2+]i transients from control and VPL myocytes illustrate the 
experimental protocol used to investigate the time to restore the steady state of twitch 
[Ca2+]i transients after SR Ca2+ store depletion by caffeine (recovery time).  Myocytes 
were field-stimulated at 0.5 Hz.  When twitch [Ca2+]i transients reached a steady state, 
caffeine (10 mM) was applied for 30 s to deplete SR Ca2+ store as indicated.  B, Bar 
graphs show significantly prolonged recovery time in VPL group compared to control.  
Data represent means ± SEM for 48 cells from 9 control rats and 60 cells from 9 VPL 
rats.  ** P < 0.01 vs. control. 
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3.4.6 Chronic verapamil treatment reduces SR Ca2+ content and increases the 

fractional SR Ca2+

Caffeine releases all the SR Ca

 release.  

2+ and is often used to assess SR Ca2+ content and 

transport 13.  Myocytes were field stimulated to elicit twitches, and after reaching a steady 

state, 10 mM caffeine was applied to empty the SR Ca2+ store (Fig. 3.6A).  Caffeine-

induced [Ca2+]i transients were consistently smaller in VPL myocytes compared to 

control (Fig. 3.6A).  The amplitude of caffeine-induced transients was significantly 

reduced in VPL myocytes compared to control (Fig. 3.6B).  When we took the time-

course into account, the area under the curve (AUC) of the caffeine-induced Ca2+ 

transient was also significantly reduced in VPL myocytes (Fig. 3.6C).  These 

characteristics indicate diminished SR Ca2+ content.  The ratio of twitch/caffeine-induced 

[Ca2+]i is an index of SR fractional Ca2+ release reflecting Ca2+ released during a twitch 

compared to total Ca2+ stored in the SR 14.  This ratio was significantly increased by 29% 

in VPL group versus control (Fig. 3.6D).  Thus, whereas SR Ca2+ content is reduced, the 

fraction of SR Ca2+

When tracings of caffeine-induced [Ca

 released during a twitch is greater in VPL myocytes, reflecting 

reduced SR functional reserve. 

2+]i transients were normalized and 

superimposed, VPL myocytes showed slower rising and decline of caffeine-induced 

[Ca2+]i transients compared to control (Supplemental Fig. 3.1A,B).  When quantified in 

20 myocytes from 5 control rats and 38 myocytes from VPL rats, caffeine-induced 

[Ca2+]i transient rising rate was reduced by 48% in VPL myocytes compared to control 

(Supplemental Fig. 3.1C), consistent with the down-regulation of RyRs we have 

previously shown in VPL rats (see chapter 2) 12.  The decline of the caffeine-induced 
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[Ca2+]i transient was prolonged, with the time constant of decay ~24% greater in VPL 

myocytes compared to control (Supplemental Fig. 3.1D), further reflecting reduced 

SERCA2 Ca2+ uptake function.  
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Fig.3.6 Chronic verapamil treatment reduces caffeine-induced [Ca2+]i transient in 
cardiomyocytes.  A, Representative time course recording shows the experimental 
protocol to study caffeine-induced [Ca2+]i transient in control and VPL cardiomyocytes.  
Myocytes were field stimulated at 0.25 Hz. When a steady state of twitch [Ca2+]i 
transient was reached, stimulation was stop and 20 s later caffeine 10 mM was applied for 
30 s.  B, C, Bar graphs revealed significant decrease in amplitude (∆[Ca2+]i) and area 
under the curve (AUC) of caffeine-induced [Ca2+]i transient in VPL myocytes.  D, Bar 
graphs revealed the amplitude ratio of twitch [Ca2+]i transients to caffeine-induced 
[Ca2+]i transient (Twitch ∆ [Ca2+]i / Caffeine-induced ∆ [Ca2+]i) was significantly higher 
in VPL group.  Data represent means ± SEM for 20 cells from 4 control rats and 24 cells 
from 4 VPL rats. ** P < 0.01 vs. control. 
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Supplemental Fig. 3.1 Chronic verapamil treatment slows caffeine-induced [Ca2+]i 
transients of cardiomyocytes.  A, Superimposed representative caffeine-induced [Ca2+]i 
transient traces of a control and a VPL myocyte reveal slower rising rate of the caffeine-
induced [Ca2+]i transient in VPL myocyte compared to control.  B, Normalized and 
superimposed same traces in A reveal slower decline of caffeine-induced [Ca2+]i transient 
in the VPL myocyte than the control myocyte.  C, D, Quantification of 20 myocytes from 
5 control rats and 38 myocytes from 5 VPL rats reveals significant decrease in rising rate 
and increase in time constant of decline (τ) of caffeine-induced [Ca2+]i transients in VPL 
group.  Data represent means ± SEM.  * P < 0.05, ** P < 0.01 vs. control.  
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3.4.7 Chronic verapamil treatment depresses left ventricular function in isolated 

hearts and in whole animals.  

Up to now we have demonstrated that chronic verapamil treatment depresses 

SERCA function at the molecular, subcellular and cellular levels.  We next considered 

the impact of reduced SERCA function on contractile function in vivo and in isolated 

hearts.  Catheters were inserted into the left ventricle of anaesthetized rats to monitor 

pressure without any cardiac pacing.  VPL rats showed markedly reduced developed 

pressure accompanied by slower heart rate compared to control rats (Fig. 3.7A, top 

panel).  We also noted that the end diastolic pressure was greater in VPL rats compared 

to control (arrows, Fig. 3.7A, top panel).  When these parameters were quantified, 

developed pressure and heart rate were significantly reduced in VPL rats compared to 

those of control (Fig. 3.7B,C), whereas end diastolic pressure was increased ~8 fold (Fig. 

3.7D).  The instantaneous rate of change of pressure reflects the speed of the contraction-

relaxation cycle, and showed marked changes between the two groups (Fig. 3.7A, lower 

panels).  The maximum rates of change, both positive and negative peak values (dP/dt 

Max, -dP/dt Min

To exclude the effects of circulating verapamil and varying heart rate on diastolic 

and systolic function, we further examined cardiac contractile function in isolated, 

perfused hearts using atrial pacing at 3Hz.  Compared to control, the isolated hearts from 

VPL rats consistently showed reduced developed pressure and rate of change (Fig. 3.8A). 

When representative traces were normalized and overlapped, the slower contraction and 

), were reduced in VPL rats (Fig. 3.7E,F).  The time constant tau of 

relaxation was also significantly longer in VPL rats, demonstrating slower recovery in 

vivo (Fig. 3.7G).   
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relaxation was apparent in VPL hearts (Fig. 3.8B).  When these functional parameters 

were quantified, VPL hearts exhibited significantly reduced developed pressure and peak 

+/- dP/dt (Fig. 3.8C), reflecting intrinsically depressed heart function. 
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Fig. 3.7 Chronic verapamil treatment leads to reduced cardiac contractile function 
in rats.   
Pressure-volume catheter was inserted into left ventricles of anaesthetized control and 
VPL rats to monitor cardiac functions.  A, Representative recordings of left 
intraventricular pressure reveal higher end diastolic pressure (EDP) and slower heart rate 
in a VPL rat than those of a control rat.  Arrows indicate EDP, the pressure at the end 
diastolic point.  A bottom, instantaneous rate of intraventricular pressure change (dP/dt) 
derived from above data show the VPL rat had smaller peak dP/dt values than those of 
the control rat.  B,  Quantification of 6 control and 6 VPL rats reveal significant changes 
in EDP, developed pressure (DP), maximum rate of pressure rise during contraction (Max 
+dP/dt), maximum rate of pressure decrease during relaxation (Min -dP/dt), heart rate, 
and time constant of relaxation (tau).  Tau was calculated from the peak of systolic 
pressure to the beginning of diastolic pressure.  Data represent means ± SEM, * P < 0.05, 
** P < 0.01 vs. control. 
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Fig.3.8 Chronic verapamil treatment leads to reduced left ventricular function in 
isolated hearts.  A, representative contraction recordings of atrial-paced, perfused hearts 
from a control and a VPL rat show the time courses of the atrial pacing stimulus voltage 
(top), left ventricular pressure (middle), and rate of change of left ventricular pressure 
(dP/dt, bottom).  Note the clear reduction in developed pressure (DP) and peak dP/dt 
(Max +dP/dt, Min –dP/dt) in the VPL group.  B, Normalized and superimposed traces 
from left ventricular pressure in middle panel of A reveal a slower contraction and 
relaxation speed in VPL hearts compared to control.  C, Bar graphs show that DP, Max 
+dP/dt, and Min –dP/dt were significantly reduced in VPL group compared to control.  
Each bar represents means ± SEM with “n” indicating the number of independent 
preparations.  * P < 0.05, vs. control. 
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3.5 Discussion 

In this study, we made the following key observations in long-term verapamil-

treated rats: 1) reduced SERCA and increased PLN protein levels; 2) reduced rate of 

ATP-dependent Ca2+ uptake by cardiac SR vesicles; 3) altered myocyte [Ca2+]i
 handling 

with slower and smaller Ca2+ transients, increased diastolic [Ca2+]i, and decreased SR 

Ca2+

3.5.1 Chronic DHPR Inhibition Alters the Levels of SR Ca

 content, and 4) reduced cardiac contractility in vivo and in isolated, perfused hearts.  

Revealed at molecular, subcellular, cellular, organ and whole animal levels, these 

abnormalities demonstrate depressed heart function incurred from chronic DHPR 

inhibition, providing a novel explanation for increased risk of heart failure in patients 

receiving long-term treatment with DHPR blockers. 

2+

Our research revealed for the first time that inhibition of DHPR Ca

 Cycling Proteins.  

2+ signals by 

chronic, partial DHPR blockade down-regulates SERCA and up-regulates PLN in the 

heart.  In line with our previous finding of down-regulation of the RyR and the 

FKBP12.6 resulted from DHPR inhibition 12, these observations suggest that DHPR Ca2+ 

signals influence the levels of SR Ca2+ cycling proteins.  Ca2+ is a critical regulator of 

gene transcription and expression 15.  Through various classes of Ca2+-regulated enzymes, 

long-term (hours/days) alterations of Ca2+ signaling can activate gene expression to 

modulate cardiac function in a process named as excitation–transcription (E-T) 

coupling 15, 16.  Chronically reduced DHPR Ca2+ signals resulted from DHPR blockade 

may regulate the SR Ca2+ cycling protein level though E-T coupling mechanism. 
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SERCA protein levels have been found to be regulated in a number of conditions.  

SERCA is down-regulated in aging, heart failure, and hypothyroid condition 17-19

Interestingly, under conditions where heart function is enhanced, such as during 

ontogenic development, exercise training, or in hyperthyroid conditions, SERCA 

expression is up-regulated 

.  Our 

studies have shown that pharmacologic intervention can also result in depression of 

SERCA expression and function, which is associated with depressed heart function. 

17-19. Thus, it appears that basal heart contractility is closely 

linked to SERCA protein levels and Ca2+ transport function. Adrenergic stimulation of 

the heart up-regulates SERCA2 through the calcineurin/NFAT (nuclear factor of 

activated T cells) pathway 20.  While sustained increases in cytosolic free Ca2+ 

concentrations are usually associated with activation of NFAT and subsequent regulation 

of gene expression, it is now recognized that beat-to-beat elevation of Ca2+ in 

cardiomyocytes influences this transcription factor 21.  Our studies now reveal that 

chronic inhibition of DHPR Ca2+ signaling down-regulates SERCA protein levels, 

indicating that DHPR Ca2+ signals carry information both for contraction and gene 

transcription of SR Ca2+

3.5.2 Chronic DHPR Inhibition Attenuates SERCA Ca

 cycling proteins.  

2+

Consistent with down-regulation of SERCA and up-regulation of PLN, we also 

found chronic DHPR blockade causes a depression of SERCA Ca

 Transport Activity. 

2+ uptake function.  

Depressed Ca2+ sequestration rate of isolated SR from VPL rats was evident over a wide 

range of Ca2+ concentrations compared to control (Fig. 3.1).  This depressed SERCA 

Ca2+ function was also evident at the cellular level.  Compared to control, marked 
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slowing of the decay phase of contractile [Ca2+]i transients in VPL myocytes was evident 

at a wider range of stimulation frequency (Fig. 3.4).  It is estimated that SERCA 

transports 92% of Ca2+ for the contractile [Ca2+]i transient decline in rat 

cardiomyocytes 2.  Therefore, this prolonged Ca2+ transient decline corroborates the 

attenuation of SERCA Ca2+

SERCA expression and functional changes seem to be, at least initially, a 

homeostatic mechanism to prevent SR Ca

 transport activities on a cell beat-to-beat basis.   

2+ overload.  By the mechanism of CICR, the 

inhibition of DHPR Ca2+ signals by DHPR blockade reduces the steady-state contractile 

[Ca2+]i transients and the amount of SR Ca2+ cycling on a beat to beat basis.  As a result, 

basal SERCA activity before the DHPR blockade becomes relatively enhanced and can 

cause SR Ca2+ overload if not proportionally reduce to a new lower SR Ca2+ cycling 

workload as reset by DHPR blockade.  Since the SR Ca2+ overload causes cardiomyoctye 

apoptosis and can be lethal and 22, the down-regulation of SERCA and up-regulation of 

PLN to restrain basal SERCA activity seem to be an adaptive response to the reduced 

basal DHPR Ca2+ current.  Therefore, at least initially, this stoichiometry change between 

SERCA and PLN prevents SR Ca2+ overload and intracellular Ca2+

3.5.3 Chronic DHPR Inhibition Causes Abnormal Myocyte Ca

 imbalance. 

2+

Is cardiac adaptation to chronic DHPR inhibition physiologically benign, or 

pathologically lethal?  In order to investigate this question, we further examined Ca

 Handling. 

2+ 

handling at the cellular level and found chronic DHPR blockade attenuated myocyte Ca2+ 

handling. 
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The attenuated myocyte Ca2+ handling was first revealed at increased diastolic 

[Ca2+]i levels at high myocyte beating rates.  Compared to control, VPL myocytes 

displayed markedly higher diastolic [Ca2+]i levels at high stimulation frequencies (0.5 Hz 

and above) but no difference at low stimulation frequencies (0, 0.25 Hz) (Fig. 3.4).  

Moreover, the faster the stimulation frequency, the higher the diastolic [Ca2+]i levels of 

VPL myocytes than those of control cells (Fig. 3.4).  As SERCA is the dominant Ca2+ 

transporter for keeping diastolic [Ca2+]i low and stable, the elevation of diastolic [Ca2+]i 

at high stimulation frequencies indicates the inability of the SERCA to maintain 

intracellular Ca2+ homeostasis at high beating rates.  In response to stress and exercise, 

heart rate increases and so does the speed of SR Ca2+ sequestration.  When the SERCA 

no longer efficiently counterbalances increasing [Ca2+]i, the resulting [Ca2+]i overload 

can introduce arrhythmia and heart failure.  Thus, the elevation of diastolic [Ca2+]i

The observation of reduced myocyte ability to reach a steady state of [Ca

 at high 

stimulation frequencies reveals a predisposition to diastolic dysfunction at high heart rate, 

though the heart may work normally at the basal heart rate with chronic DHPR blockade.  

2+]i 

transients solidifies the finding that Ca2+ handling of VPL myocytes is attenuated.  As 

shown in Fig. 3.5, VPL myocytes took a much longer time to restore a steady state of 

contractile [Ca2+]i transients upon depletion of SR Ca2+ stores by caffeine compared to 

control.  The steady state of contractile [Ca2+]i transients reflects a steady state of SR 

Ca2+ content where a dynamic balance has been established between SR Ca2+ release and 

SR Ca2+ uptake.  When Ca2+ in the SR is depleted by caffeine, the SERCA is the only 

source to refill the SR Ca2+ and recover contractile [Ca2+]i transients.  Thus the markedly 

prolonged time to restore the steady state [Ca2+]i transients further reflect an attenuation 
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of SERCA Ca2+ uptake function at the cellular level.  In addition, we have reported 

previously that chronic DHPR blockade promotes RyR Ca2+ leak 12, which can contribute 

to the prolongation to reach steady state as well.  This prolongation reveals an attenuated 

orchestration and efficiency of SR Ca2+ cycling proteins in keeping Ca2+

Reduced SR Ca

 homeostasis, a 

harbinger of heart dysfunction when the heart rate and contractility need to change 

frequently. 

2+ content and increased SR fractional release in VPL myocytes 

further substantiates the finding of the attenuated VPL myocyte Ca2+ cycling in 

maintaining Ca2+ homeostasis (Fig. 3.6).  SR Ca2+ content reflects two transmembrane 

Ca2+ cycling balances: 1) the balance across the SR membrane between Ca2+ release via 

RyRs and Ca2+ uptake via SERCA, and 2) transsarcolemmal balance between Ca2+ 

ingress via DHPR and Ca2+ extrusion via Na+-Ca2+ exchanger 23.  Thus, there may be 3 

known factors contributing to reduce SR Ca2+ content with chronic DHPR blockade: 1) 

reduced SERCA function, 2) increased diastolic SR Ca2+ leak (see chapter 2) 12, and 3) 

reduced ICa by DHPR blockade.  Depression of SR Ca2+ content can reduce SR Ca2+ 

release and contractility 23, explaining the reduced twitch [Ca2+]i

Intriguingly, fractional SR Ca

 transient amplitude of 

VPL myocytes at certain stimulation frequencies (0.25 Hz,0.5 Hz, and 2 Hz) (Fig. 3.4B).   

2+ release in each beat of a VPL myocyte was 

increased in the face of reduced SR Ca2+ content (Fig.3.6D).  This paradoxical result is in 

contrast to a previous report that reduced SR Ca2+ content reduces fractional SR Ca2+ 

release 24.  The likely explanation for this paradox is the up-regulation of DHPR induced 

by chronic DHPR blockade (see chapter 2) 12.  Since the fractional SR Ca2+ release was 

measured in perfused, isolated myocytes where verapamil is absent, up-regulated DHPRs 
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increases trigger Ca2+ and recruits additional Ca2+ sparks via CICR and offsets the 

reduced systolic SR Ca2+ release resulting from reduced SR Ca2+ load.  This increased 

trigger DHPR Ca2+ ingress explains the observation that the [Ca2+]i transient amplitude of 

VPL myocytes was significantly reduced under low frequency stimulation at 0.25Hz and 

0.5 Hz (incompletely offsets by increased DHPRs) but became no difference at higher 

frequencies of 0.75Hz and 1 Hz (completely offsets) (Fig. 3.4B).  The [Ca2+]i transient 

amplitude of VPL myocytes became significantly reduced again at 2Hz (Fig. 3.4B).  This 

can be explained by significantly increased diastolic [Ca2+]i at 2 Hz, which further 

reduces the Ca2+ gradient across the SR membrane and reduces systolic SR Ca2+ release 

(Fig. 3.4B).  Reduced SR Ca2+ content along with the increased SR fractional release 

indicates a reduced reserve for SR Ca2+

Altered intracellular Ca

 release, a predisposition to cardiac dysfunction 

when the demand on the heart increases.   

2+ handling plays an important role in the pathogenesis of 

heart diseases with changes in Ca2+ cycling preceding cardiac dysfunction.  Compelling 

evidence has demonstrated that altered function of SERCA 11, 19, 25-30 and the RyR 31-

37contributes to intracellular Ca2+ mishandling and cardiac dysfunction in heart failure 

and arrhythmias.  The above abnormalities of myocyte Ca2+ handling indicate that the 

heart becomes pathologically adapted to chronic DHPR Ca2+

 

 inhibition and is subject to 

deteriorating function. 

 

 



Chapter 3 Ji Zhou  123 

3.5.4 Cardiac Contractile Function Becomes Intrinsically Reduced with Chronic 

DHPR Inhibition. 

SERCA removes about 92% of cytosolic Ca2+ in rats 1, 38.  Thereby, the Ca2+ 

uptake activity of SERCA determines the rate of relaxation of the heart, and influences 

cardiac contractility by determining the size of SR Ca2+ load that is available for release 

for the next beat 1

When isolated, perfused hearts were paced at the same frequency to eliminate the 

inherent heart rate effects on cardiac contraction, we observed significantly reduced 

developed pressure and peak dP/dt of left ventricle in VPL group compared to control.  

When examined in vivo, these hemodynamic parameters were reduced as well.  These 

observations both at organ and whole animal levels suggest that chronic DHPR blockade 

reduces cardiac contractile function.  These observations are consistent with the 

observations at molecular, subcellular, and cellular levels.  Specifically, the depressed 

SERCA expression and function, reduced SR Ca

.  Thus we studied whether the depressed SERCA function incurred 

from the chronic DHPR blockade would affect cardiac contractile function at the organ 

and whole animal levels.  

2+ content, decreased the amplitude of 

twitch [Ca2+]i transients can be responsible for reduced heart basal contraction and 

developed pressure.  It could argue that reduced contraction may be a direct effect of 

verapamil as verapamil acutely modulates the E-C coupling and reduces the contraction 

by inhibiting CICR.  However, verapamil was absent in the perfused, isolated cells and 

hearts.  Thus this supports an intrinsic reduction of contractile ability of heart occurred 

from the chronic DHPR blockade, which was independent of the direct pharmacological 

effects of verapamil on inhibition of CICR. 



Chapter 3 Ji Zhou  124 

3.5.5 Clinical Relevance 

DHPR blockers are frequently prescribed for long-term treatment of 

cardiovascular diseases such as hypertension and angina pectoris 5, 39.  Given complete 

DHPR blockade is accompanied by immediate cessation of the heat beat 40, the DHPR 

Ca2+ current is only partially blocked by DHPR blockers in clinically used doses, which 

cause an acute decrease in cardiac contractility by reducing the amount of CICR and 

contractile Ca2+ transient.  Although several large clinical trials have reported an 

increased risk of heart failure among patients with long-term treatment of DHPR 

blockers, systematic studies to examine the underlying mechanisms and cardiac 

functional changes from animals following chronic DHPR blockade are lacking 5

3.5.6 Conclusions 

.  The 

present study is the first to provide evidence from molecular to whole animal levels of 

depressed SERCA function and predisposition to heart dysfunctions ensued from chronic 

DHPR blockade in rats.  Thus this study provides insights into the mechanisms for the 

increased risk of heart failure encountered following long-term verapamil treatment. 

Both DHPR and SERCA play central roles in the orchestration of Ca2+ cycling 

during E-C coupling to ensure the Ca2+ homeostasis and proper contraction.  In 

agreement with our previous results in Chapter 2, the results presented here demonstrate 

that DHPR Ca2+ signaling is physiologically important both in regulation of cardiac 

contraction and Ca2+ cycling protein levels in E-C coupling.  Here we provide novel 

evidence that artificial depression of DHPR Ca2+ signaling by DHPR blockade leads to 

expression and functional depression of SERCA, impaired myocyte Ca2+ handling, and 
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intrinsically reduced cardiac contractility.  These findings suggest cardiac adaptation to 

chronic inhibition of DHPR is potentially pathological and harbingers cardiac 

dysfunction, which may underlie the increased risk of heart failure encountered following 

long-term verapamil treatment. 
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IMPACT OF CHRONIC L-TYPE CALCIUM CHANNEL BLOCKADE ON 

PHOSPHORYLATION-DEPENDENT REGULATION OF CARDIAC 

SARCOPLASMIC RETICULUM FUNCTION IN THE RAT 
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4.1 Chapter Summary 

The voltage-gated, L-type Ca2+ channel (dihydropyridine receptor, DHPR) in the 

sarcolemma is the main portal for Ca2+ entry into cardiomyocytes and thus crucial to 

excitation-contraction coupling.  Chronic DHPR blockade causes functional remodeling 

of cardiac sarcoplasmic reticulum (SR).  We report here the impact of chronic 

verapamil treatment on protein phosphorylation-dependent regulation of SR function and 

cardiac contractile reserve by CaM kinase II (CaMKII) and cAMP-dependent protein 

kinase (PKA) in rats.  Adult rats received verapamil (625 µg/h/kg) or vehicle for 4 weeks 

through subcutaneously implanted osmotic mini-pumps.  Western immunoblotting 

analysis revealed up-regulated CaMKII expression, and hyper-phosphorylated cardiac 

ryanodine receptor (RyR), phospholamban, and CaMKII in verapamil-treated (VPL) rats 

compared to control.  CaMKII in isolated SR vesicles of VPL rats displayed increased 

ability to phosphorylate sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) by ~ 

60%, compared to control.  Cardiac SR vesicles from VPL rats exhibited diminished 

maximum rates of ATP-energized Ca2+ uptake under CaMKII− and PKA−stimulation 

compared to control.  Cardiomyocytes isolated from VPL rats displayed preserved the 

frequency dependent acceleration of relaxation but prolonged decline of Ca2+ transients.  

In vivo, VPL rats exhibited depressed inotropic response to isoproterenol stimulation 

compared to control.  Macroscopic and microscopic morphological studies revealed that 

pathogenic abnormalities described above occurred in the absence of ventricular 

hypertrophy.  The above findings, ranging from molecules to the organism, demonstrate 

that chronic DHPR blockade attenuates cardiac contractile reserve with up-regulation of 

CaMKII− and PKA− dependent phosphorylation.  
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4.2 Introduction 

In the heart, the voltage-gated, L-type Ca2+ channel (dihydropyridine receptor, 

DHPR) in the sarcolemma is the molecule that converts the electrical stimulus into the 

Ca2+ signal to initiate excitation-contraction coupling (E-C coupling).  When a 

cardiomyocyte is depolarized by an action potential, DHPRs open to let a small amount 

of Ca2+
 enter the cell.  This DHPR Ca2+ influx triggers a large amount of Ca2+ release 

from the sarcoplasmic reticulum (SR) via ryanodine receptors (RyRs), a process termed 

as “Ca2+ induced Ca2+ release” (CICR) 1.  The resulting rise in cytosolic free Ca2+ 

concentration ([Ca2+]i) activates the myofilaments and generates contraction.  The 

subsequent return of [Ca2+]i to basal levels signals the beginning of diastole.  The 

majority of cytosolic Ca2+ is removed by the sarco/endoplasmic reticulum Ca2+

Studies described in preceding chapters have provided novel insights into the 

impact of chronic DHPR blockade on the expression and function of molecular partners 

governing E-C coupling events.  Given the close communication among DHPRs and SR 

Ca

 ATPase 

(SERCA), which is negatively regulated by phospholamban (PLN). 

2+ cycling proteins (namely, RyR, SERCA, and PLN) in cardiac E-C coupling, it is not 

surprising that chronic inhibition of DHPRs causes functional remodeling of SR (see 

chapter 2 and 3).  We have shown that chronic inhibition of DHPRs by verapamil causes 

imbalanced stoichiometry of the DHPR and RyR, altered functional properties of cardiac 

RyRs, and increased diastolic Ca2+ leak from the SR in the rat (see chapter 2).  

Furthermore, chronic verapamil treatment depresses the intrinsic ability of SR to uptake 

Ca2+, contributing to altered myocyte [Ca2+]i
 handling, prolonged Ca2+ transients, and 
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decreased SR Ca2+ content (see chapter 3).  This functional remodeling of the SR is 

accompanied by depressed basal contractility and increased susceptibility to arrhythmia 

in isolated hearts and in vivo (see chapter 2 and 3) 2-5.  This finding of functional 

remodeling of SR provides major insights into the molecular mechanisms for the 

increased risk of heart failure in patients with chronic DHPR blocker treatment 2, 5-7

Considering the pathophysiological impact of functional remodeling of SR, it is 

logical to explore how chronic inhibition of DHPRs affects the physiological mechanisms 

that regulate SR function.  The physiological regulation of SR function is achieved 

mainly through phosphorylation of SR Ca

. 

2+ cycling proteins 8.  Phosphorylation of RyRs 

is generally regarded as an important regulatory mechanism, though the exact effects on 

channel function remain controversial as both stimulatory and inhibitory effects have 

been reported 9, 10 11 12, 13.  Phosphorylation of PLN is thought to relieve PLN inhibition 

on SERCA and restore SERCA affinity for Ca2+ 1, 8, 14.  A direct phosphorylation of 

SERCA at serine 38 is associated with activation of SR Ca2+ transport 15.  In addition, the 

interactions among molecular partners (e.g. SERCA-PLN, SERCA-Calmodulin, RyR-

FKBP12.6) are phosphorylation status dependent and likely govern the conformation and 

function of the RyR and SERCA 16, 17

Ca

.  

2+/calmodulin-dependent protein kinase II (CaMKII) and cAMP-

dependent protein kinase (PKA) are two major protein kinases that regulate the 

phosphorylation status of SR proteins in the heart.  Present in the SR and cytosol, 

CaMKII plays a central role in controlling the SR function by its ability to phosphorylate 

the RyR, SERCA and PLN 10, 18, 19.  On the other hand, PKA regulates SR function by its 

ability to phosphorylate the RyR and PLN (but not the SERCA) 20. 
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To decipher the mechanism(s) underlying functional remodeling of cardiac SR by 

chronic inhibition of DHPRs, the present study investigated the impact of chronic 

verapamil-treatment on proteinphosphorylation-dependent regulation of SR function by 

CaMKII and PKA in the rat.  
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4.3 Methods 

An expanded methods section is provided in appendix B.  

4.3.1 Animals.   

Male Wistar rats weighing 190 to 210 g were randomly assigned to control and 

verapamil-treated (VPL) groups.  Verapamil was dissolved in distilled water and 

administrated at a rate of 625 µg/h/kg for 4 weeks via subcutaneously implanted osmotic 

mini pumps (Model 2ML4; ALZET, Cupertino, CA).  Control rats received vehicle 

solution in similar manner.  All procedures were approved by the Animal Use and Care 

Committee of The University of Western Ontario and followed the Guidelines of the 

Canadian Council on Animal Care. 

4.3.2 Western Immunoblotting and Ca2+

Protein levels of CaMKII and calsequestrin (Ca

 Uptake by SR Vesicles. 

2+ storage protein) in isolated 

cardiac SR vesicles were determined by Western immunoblotting analysis; 

phosphorylation site-specific antibodies were used for the detection and estimation of 

pre-existing phosphorylation level of CaMKII, RyR and PLN 21, 22.  ATP-dependent, 

oxalate-faciliated Ca2+ uptake by isolated cardiac SR vesicles was determined using 

Millipore filtration technique as described previously 23.  To evaluate the effect of 

endogenous CaMKII on Ca2+ uptake, assays were performed in the absence of exogenous 

calmodulin (CaM) and in the presence of 3 µM exogenous CaM.  The Ca2+ uptake 
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reaction was initiated by either the addition of SR or ATP to the rest 

4.3.3 Measurement of SR Protein Phosphorylation by PKA.   

of the assay 

components pre-incubated for 3 min at 37°C.  

Phosphorylation of SR proteins by PKA was determined as described 

previously 24, 25.  PKA catalytic subunit was purchased from Sigma.  Aliquots containing 

250 units of the lyophilized protein were dissolved in 10 mM DTT and stored on ice until 

used, usually within 2 h.  Cardiac SR vesicles were resuspended in a solution of 50 mM 

Tris-HCl (pH 6.8), and 10 mM MgCl2.  In each phosphorylation assay, 25 units of the 

catalytic subunit of PKA were used per 100 µg of SR protein.  The salt from the 

lyophilized powder was carried over so that the PKA phosphorylation reaction mixture, 

in a total volume of 100 µl, contained 50 mM Tris-HCl (pH 6.8), 10 mM MgCl2, 1mM 

ATP, and the components from lyophilized PKA: 1 mM DTT, 1.2 mM 2-

mercaptoethanol, 16.5 mM potassium phosphate, 0.8 µM EDTA, and 35 mM sucrose.  

Following pre-incubation of the assay components for 2 min at 37 °C, the reaction was 

initiated by the addition of SR and was allowed to proceed for 3 min.  The reactions were 

terminated by addition of 15 µl of SDS sample buffer and the samples were subjected to 

SDS-polyacrylamide gradient gel (4-18%) electrophoresis and autoradiography.  The 

phosphorylation of substrate proteins was quantified using standard procedures as 

reported previously 24

 

.  
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4.3.4 Measurement of SR Protein Phosphorylation by Endogenous CaMKII 

Phosphorylation of SR proteins by endogenous CaMKII was determined as 

described previously 26. The phosphorylation assay medium (total volume 50 µl) 

contained 50 mM HEPES (pH = 7.4), 10 mM MgCl2, 0.1 mM CaCl2, 0.1 mM EGTA, 1 

µM CaM, 0.8 mM [γ-32P] ATP (specific activity 200-300 cpm/pmol), and SR (25 µg of 

protein).  The phosphorylation reaction was carried out for 2 min at 37°C.  The samples 

were subjected to SDS-polyacrylamide gradient gel (4-18%) electrophoresis and 

autoradiography and phosphorylation of substrate proteins was quantified using standard 

procedures as reported previously 26, 27

4.3.5 Cytosolic Free Ca

. 

2+

Myocytes were isolated from myocardium of control and VPL rats, and single cell 

twitch [Ca

 Concentration 

2+]i transients were monitored at room temperature (22-25°C) during field 

stimulation of fura-2-loaded myocytes according to procedures described previously 23

4.3.6 Histology 

.  

To examine the frequency-dependent acceleration of relaxation (FDAR), myocytes were 

stimulated at frequencies from 0.25 Hz to 2 Hz.  Cells were stimulated at each frequency 

for 60 s and then were given 30 s resting interval before stimulation resumed at the next 

higher frequency.  

Chambers of the heart were slit open, any excess blood was removed using paper 

towels, and then the heart was weighed.  The atria and large blood vessels were then 

removed.  The ventricular myocardium was separated into the right ventricular (RV) free 
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wall and left ventricular (LV) free wall including the septum, and weighed separately.  

Then myocardial tissues were fixed in 10% buffered formalin, paraffin-embedded and 

sectioned.  Five-micrometer sections stained with hematoxylin and eosin as well as 

Mason's trichrome stains were used for light microscopic examination and assessment of 

histology.  Cell volume was determined in myocytes isolated from RV and LV using the 

formula v = (πlwd)/4, where l and w are the measured cell length and width, 

respectively 28.  The cell depth (d) was calculated by assuming the cell to be an elliptical 

cylinder with a minor-to-major axis ratio of 1:3 28

4.3.7 Statistical Analysis  

. 

The data on Ca2+ concentration-dependent Ca2+ uptake were analyzed by 

nonlinear regression (SigmaPlot) as described earlier 23.  The time constant of [Ca2+]i 

decline (τ) was determined by a single exponential decay equation.  Results are means ± 

SEM with significance (P<0.05) determined using Student’s t test or one-way ANOVA. 
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4.4 Results 

4.4.1 Enhanced CaMKII Protein Expression and Autophosphorylation in Cardiac 

SR of VPL Rats.  

CaMKII is known to play an important role in regulating the Ca2+ uptake function 

of cardiac SR through phosphorylation of PLN 14, 29 and SERCA 26, 27, 30-34.  We first 

carried out immunoblotting analysis to assess the potential impact of chronic DHPR 

blockade on protein expression of CaMKII and its autophosphorylation status in isolated 

cardiac SR vesicles.  We found a significant increase by ~ 35% in protein levels of 

CaMKII in cardiac SR vesicles isolated from VPL rats, compared to control (Fig. 4.1A).  

Since the autophosphorylation level at threonine 286 influences the CaMKII activity 35, 

we further probed phospho-threonine 286 of CaMKII (PT286-CaMKII) using 

phosphorylation site-specific antibodies.  Western blotting revealed that PT286-CaMKII in 

VPL rats was increased by ~ 100% compared to control (Fig. 4.1B), indicating 

enhancement of CaMKII activity.  However, the ratio of PT286-CaMKII: CaMKII 

immunoreactive protein level was not significantly different between control and VPL 

rats (Fig. 4.1C). 
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Fig. 4.1 The protein and autophosphorylation levels of CaMKII are up-regulated in 
VPL rats.  CaMKII and the phospho-Threonine 286 (PT286) in CaMKII were detected 
using the CaMKII specific and phosphorylation site-specific antibodies. Identical 
amounts of SR (25 µg protein) from control and verapamil-treated (VPL) rats were 
subjected to Western immunoblotting analysis of CaMKII (A, n=12/group) and PT286-
CaMKII (B, n=7/group).  Representative immunoblots obtained using 2 separate SR 
preparations each from control and VPL rats are shown at the bottom.  Also shown are 
immunoblots of calsequestrin (CSQ) generated by stripping and re-probing of the same 
blots; the CSQ blots served as an internal protein loading control as CSQ protein level 
did not differ between control and VPL rats.  The amount of PT286-CaMKII was further 
normalized to immunoreactive protein content of CaMKII and expressed as the ratio of 
PT286-CaMKII to CaMKII (C, n=7/group).  Values are means ± SEM. * P<0.05, 
**P<0.01 VPL vs. control. 
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4.4.2 RyR and PLN Become Hyper-phosphorylated in Cardiac SR of VPL Rats.  

Both CaMKII and PKA regulate SR Ca2+ cycling by virtue of their ability to 

phosphorylate RyR 1, 36, 37 20, 38 and PLN 1, 39, 40 20.  We utilized phosphorylation site-

specific antibodies to evaluate pre-existing phosphorylation levels of RyR and PLN in 

cardiac SR vesicles isolated from control and VPL rats.  Compared to control, phospho-

serine2809 of RyR (PS2809-RyR) was significantly increased by ~70% in VPL rats (Fig. 

4.2A).  Since RyR-PS2809 is a substrate both for CaMKII and PKA 11, the hyper-

phosphorylation of RyR-PS2809 indicates an increase of activity of either or both of 

CaMKII and PKA.  Assessment of the phosphorylation status of PLN revealed strikingly 

increased levels of phospho-threonine17 (PT17-PLN) by 300% and phospho-serine16 

(PS16-PLN) by 200% in VPL rats (Fig. 4.2B,C).  Since PT17-PLN is specific for 

CaMKII 41 and PS16-PLN is specific for PKA 41, the hyper-phosphorylation of PT17-PLN 

and PS16-PLN further indicate that the activity of both CaMKII and PKA were enhanced.  

Considering the amount of protein levels can influence the pre-existing phosphorylation 

levels, we normalized phosphorylation to the unit amount of each substrate as previously 

reported 2, 5.  Even with this normalization, we found consistently higher ratios of 

phosphorylation of each substrate in VPL rats compared to control (Suppl. Fig. 4.1).  This 

suggests increased endogenous CaMKII and PKA activity most likely contributes to the 

hyper-phosphorylation of substrates in vivo.   
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Fig. 4.2 RyR and PLN become hyper-phosphorylated in VPL rats.  The phospho-
serine2809 (PS2809) in RyR, phospho-threonine17 (PT17), and phosphor-serine16 (PS16) in 
PLN were detected using the phosphorylation site-specific antibodies.  Identical amounts 
of SR (25 µg protein) from control and verapamil-treated (VPL) rats were subjected to 
Western immunoblotting analysis of PS2809-RyR (A, n=10/group), PT17-PLN (B, 
n=9/group), PS16-PLN (C,n=8/group).  Representative immunoblots obtained using 2 
separated SR preparations each from control and VPL rats are shown at the bottom. Also 
shown are Western blots of calsequestrin (CSQ) used as protein loading control.  Values 
are means ± SEM. * P<0.05, **P<0.01 VPL vs. control. 
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Suppl. Fig. 4.1 In vivo phosphorylation status of RyR and PLN normalized to 
immunoreactive substrate proteins.  The relative amounts of PS2809-RyR, PT17-PLN 
and PS16-PLN were quantified by computer-assisted scanning densitometry of Western 
blots. The amount of PS2809-RyR, PT17-PLN and PS16-PLN were further normalized to 
immunoreactive protein content of RyR and PLN respectively. The relative amount of 
RyR and PLN were determined by scanning densitometry of Western immunoblots. The 
normalized amount of PS2809-RyR, PT17-PLN and PS16-PLN were expressed as the 
ratio of PS2809-RyR:RyR (n=6/group), PT17-PLN:PLN(n=4/group) and PS16-PLN:PLN 
(n=4/group).  Values are means ± SEM. * P<0.05 vs. control. 
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4.4.3 The Activity of SR-associated CaMKII is Enhanced in VPL Rats. 

Endogenous CaMKII is associated with the SR and present in the cytosol 23, 42.  

Given the hyper-phosphorylation of SR substrates in vivo in VPL rats, we next examined 

the activity of SR-associated CaMKII by using SR vesicles isolated from control and 

VPL rats.  The results are presented in Fig. 4.3.  This study utilized [γ-32P]ATP for 

CaMKII reaction and equal amount of SR (25 µg of protein) from control and VPL rats.  

The SDS-PAGE protein profiles from control and VPL rats were similar (Fig. 4.3A, left 

panel), indicating the relative purity of SR vesicles did not differ between the 

experimental groups.  The corresponding autoradiogram of the gel reveals selective 

phosphorylation of RyR, SERCA and PLN only in the presence of Ca2+

To quantify 

 and CaM, (Fig. 

4.3A, right panel), providing direct evidence of activation of endogenous, SR-associated 

CaMKII.  A striking increase in phosphorylation of SERCA was apparent, whereas 

phosphorylation of PLN was decreased in VPL rats.  

32P incorporation, we excised bands from the gel for scintillation 

counting.  No significant differences in RyR or PLN phosphorylation were apparent 

when comparing equivalent amounts of SR protein (Fig. 4.3B).  However, there was 

significantly greater phosphorylation of SERCA in the VPL group compared to control 

(Fig. 4.3B).  This could be due to altered levels of proteins.  Accordingly, we normalized 

phosphorylation to the unit amount of each substrate protein (Fig. 4.3C).  Such analysis 

consistently showed that the phosphorylation of RyR (Fig. 4.3C, top) and SERCA (Fig. 

4.3C, middle) was increased in the VPL group compared to control, confirming the 

increased activity of SR-associated CaMKII.  However, phosphorylation of PLN was 
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lower in VPL group compared to control (Fig. 4.3C, bottom).  This is likely due to the 

pre-existing hyper-phosphorylation of PLN in VPL rats (Fig. 4.2), which reduces the 

availability of PLN for CaMKII-mediated phosphorylation.  
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Fig. 4.3. The activity of SR-associated CaMKII is enhanced in VPL rats.  The 
phosphorylation reaction was conducted for 2 min in the absence (−) and presence (+) of 
Ca2+/calmodulin (CaM) as indicated.  A, coomassie blue-stained gel showing protein 
profiles (left panel) of SR from control and VPL rats and autoradiogram of the same gel 
depicting protein phosphorylation (right panel).  PLN(H) and PLN(L) denote high and 
low molecular weight forms of PLN.  B, phosphorylation of individual substrates 
quantified and expressed as per unit amount of total SR protein.  C, phosphorylation of 
individual substrates quantified and normalized as per unit amount of immunoreactive 
protein.  The relative amount of each immunoreactive substrate was determined by 
scanning densitometry of Western immunoblots. Values are means ± SEM.  * P<0.05, 
**P<0.01 VPL vs. control. 
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4.4.4 Exogenous PKA-catalyzed Phosphorylation of PLN in Control and VPL Rats. 

PKA-mediated phosphorylation of PLN is a major mechanism for the heart to 

mobilize its contractile reserve in response to stress and exercise 40, 43.  The previous 

results showed that VPL rats had hyper-phosphorylation of PLN at the PKA 

phosphorylation site serine16 in vivo (Fig. 4.2 C).  Unlike CaMKII that is present both in 

the cytosol and in the SR, PKA is present in the cytosol but not in the SR.  Therefore, we 

utilized exogenous PKA (catalytic subunit) to test further phosphorylation of PLN in 

vitro in cardiac SR vesicles derived from control and VPL rats.  The phosphorylation 

reaction was carried out in the presence of [γ-32P]ATP as substrate for 2 minutes under 

the standard assay conditions.  The results are presented in Fig. 4.4.  The autoradiogram 

showed diminished phosphorylation of PLN by PKA in the VPL compared to control SR 

vesicles (Fig. 4.4 A, right panel).  To quantify phosphorylation, bands were excised from 

the gel for scintillation counting.  A decrease in PLN phosphorylation was apparent, but 

non-significant when comparing equivalent amounts of SR protein (Fig. 4.4B).  When the 

data were normalized to unit amount of immunoreactive PLN protein, there were 

significantly lower levels of phosphorylation in VPL rats compared to control (Fig. 4.4C).  

A similar finding was noted earlier when the PLN phosphorylation in vitro by CAMKII 

was lower in VPL compared to control SR vesicles (Fig. 4.3 C).  Thus, the reduced PLN 

phosphorylation in vitro in VPL group is likely due to the pre-existing hyper-

phosphorylation of PLN by both PKA and CaMKII in vivo.  Together, these data suggest 

that the preexisting hyper-phosphorylation of PLN reduces further PKA− and 

CaMKII−mediated PLN phosphorylation, which may cause depletion of cardiac 

contractile reserve in VPL rats. 
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Fig. 4.4  Exogenous PKA−catalyzed phosphorylation of PLN in control and VPL 
rats.  The phosphorylation reaction was conducted for 2 min in the absence (−) and 
presence (+) of catalytic subunit of PKA as indicated.  A, coomassie blue-stained gel 
showing protein profiles (left panel) of SR from control and VPL rats and autoradiogram 
of the same gel depicting protein phosphorylation (right panel).  PLN(H) and PLN(L) 
denote high and low molecular weight forms of PLN.  B, phosphorylation of PLN 
quantified and expressed as per unit amount of total SR protein.  C, phosphorylation of 
PLN is normalized and expressed as per unit amount of PLN immunoreactive protein 
content.  The relative amount of each immunoreactive substrate was determined by 
scanning densitometry of Western immunoblots.  Values are means ± SEM. * P<0.05, vs. 
control. 
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4.4.5 CaMKII−mediated Regulation of SR Calcium Pump Activity. 

We next examined the functional consequence of CaMKII-mediated 

phosphorylation of SR calcium pumps.  For this, ATP−dependent, oxalate−facilitated 

Ca2+ uptake by SR vesicle was measured in the absence or presence of CaM (3 µM).  The 

latter condition promotes CaMKII activation and substrate phosphorylation.  In the 

absence CaM, the Ca2+ uptake rate by SR vesicles both from control and VPL rats was 

increased at a wide range of free Ca2+ concentrations (0.01−8.2 µM) (Fig. 4.5A), 

confirming the widely known functional regulation of SERCA activity by 

CaMKII−mediated phosphorylation.  Quantification of the kinetic parameters from the 

data in Fig. 4.5A revealed significantly increased maximum velocity of SR Ca2+ pumping 

(Vmax) by addition of CaM in both groups (Fig. 4.5B, Table 4.1).  The maximum 

stimulatory effect by CaM was significantly reduced by ~30% in VPL rats, indicating 

impairment in the CaM-dependent process for SERCA activation (Fig. 4.5B, Table 4.1).  

The relative stimulation of Vmax by CaM was comparable in both groups (Fig. 4.5C).  

Considering SERCA protein levels are decreased in VPL rats 5

In another parallel series of experiments, we performed the Ca

, we normalized CaM-

stimulating effect to SERCA protein levels.  We found that the percentage of CaM-

induced increase in Vmax in VPL rats was significantly increased compared to control (Fig. 

4.5D).  Consistent with our previous findings, this suggests that SR-associated, 

endogenous CaMKII activity was enhanced in VPL rats.  

2+ uptake assay by 

initiating the reaction by the addition of SR vesicles (instead of ATP as described above) 

following pre-incubation of the rest of the assay components.  The observed Ca2+ uptake 

profiles as a function of Ca2+ concentrations were similar to those seen previously when 
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reaction was initiated by ATP (Fig. 4.5A vs. Suppl. Fig. 4.2A).  However, the stimulatory 

effect of exogenous CaM was less pronounced (Fig. 4.5B vs. Suppl. Fig. 4.2B).  In those 

experiments where exogenous CaM was absent, the Vmax of SR Ca2+ uptake was 

significantly greater when the reaction was initiated by SR than that when the reaction 

was initiated by ATP (Fig. 4.5 B and Suppl. Fig. 4.2 B).  Previous studies have 

documented that Ca2+ uptake activity of cardiac SR was enhanced when the Ca2+ 

transport cycle is initiated by the addition of SR, instead of ATP 44.  Such differences in 

Ca2+ transport activity apparently result from qualitatively different conformations of 

SERCA2 due to differences in the order in which SERCA2 encounters Ca2+ and ATP 44. 

Table 4.1. Kinetic parameters of Ca2+ transport by cardiac SR from control and 

verapamil-treated rats in the absence or presence of calmodulin (CaM).  

 
 
 
 
 
 
 
 

Ca2+ uptake reaction was started with ATP .  Values are means ± SEM; n=7/group.  Vmax, 
maximum velocity of Ca2+ uptake; K0.5, Ca2+ concentration giving one-half of Vmax ; nH, 
Hill coefficient. ** P<0.01 vs. control – CaM; ## P<0.01 vs. VPL – CaM; ! P<0.05 vs. 
Control + CaM.  

 Vmax 
(nmol Ca2+/mg protein/min) 

K0.5  

(M) nH 

Control – CaM 159 ± 10 1.8 ± 0.1 1.3 ± 0.1 
Control + CaM 256 ± 14** 1.9 ± 0.2 1.2 ± 0.1 
VPL – CaM 103 ± 21** 1.9 ± 0.2 1.2 ± 0.1 
VPL + CaM 174 ± 29##;! 2.0 ± 0.3 1.3 ±0.1 
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Fig. 4.5 CaMKII−mediated regulation of SR calcium pump activity.  Calmodulin 
(CaM, 3 µmol/L) stimulation of SR Ca2+ uptake was examined by starting the Ca2+ 
uptake reaction with ATP.  A, the Ca2+ uptake reaction was conducted for 1 min in the 
standard assay medium with varying free Ca2+ concentrations as indicated. B, Bar graphs 
represent the maximum velocity of SR Ca2+ uptake (Vmax) derived from the data shown in 
panel A.  C, Bar graphs represent the percentage of CaM-induced Vmax increase.  D, the 
percentage of CaM-induced Vmax was normalized and expressed as per unit amount of 
immunoreactive SERCA protein content.  The relative amount of SERCA in SR was 
determined by scanning densitometry of western blots.  n=7 preparations/group.  Values 
are means ± SEM.  ** P<0.01; ## P<0.01; ! P<0.05. 
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Suppl. Fig. 4.2 Endogenous CaMKII−mediated stimulation of SR Ca2+ sequestration 
when reaction is started by SR vesicles.   A, CaM (3 µmol/L) stimulation of SR Ca2+ 
uptake at varying Ca2+ concentrations was repeated by starting Ca2+ sequestration with 
SR vesicles.  B, bar graphs represent the maximum velocity of SR Ca2+ uptake (Vmax) 
derived from A.  n=4 preparations/ group.  Values are means ± SEM.  * P<0.05 vs. 
control – CaM; # P<0.05 vs. VPL – CaM.  
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4.4.6 Effects of exogenous PKA on SR Calcium Pump Activity. 

Since SR membrane lacks PKA, the influence of PKA on SR Ca2+ pump function 

was examined using exogenous catalytic subunits of PKA.  For this, Ca2+ uptake assays 

were performed at saturating and sub-saturating free Ca2+ assay medium in the absence or 

presence of PKA (catalytic subunits).  At sub-saturating Ca2+ (1 µM free Ca2+), PKA 

significantly increased the rate of Ca2+ uptake in both control and VPL groups (Fig. 4.6, 

left panel), showing the expected stimulatory effect of PKA on SR Ca2+ transport.  

However, PKA-mediated Vmax for SR Ca2+ transport at saturating Ca2+ (11 µM free Ca2+) 

was significantly increased in control, but not in the VPL group (Fig. 4.6, right panel).  

Moreover, the Ca2+ uptake rate was reduced in VPL rats compared to control.  These 

findings reveal reduced responsiveness of SR calcium pump to PKA in VPL rats.  The 

diminished responsiveness may be explained in part by the pre-existing hyper-

phosphorylation (Figs. 4.2 and 4.4). 
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Fig. 4.6 Effects of exogenous PKA on cardiac SR Ca2+ pump function in control and 
VPL rats.  The Ca2+ uptake was measured in the absence or presence of catalytic subunit 
of PKA in the standard assay medium with 1 mol/L free Ca2+ and 11 mol/L free Ca2+.  
Our previous experiments demonstrated that 1 mol/L free Ca2+ gives rise to half of 
maximum velocity (Vmax) of Ca2+ uptake and 11 mol/L free Ca2+ gives rise to Vmax of 
Ca2+ uptake.  n=5 preparations/ group.  Values are means ± SEM.  & P<0.05, !P<0.05, 
**P<0.01, ##P<0.01. 
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4.4.7 Frequency-dependent Acceleration of Relaxation (FDAR). 

So far we demonstrated that chronic DHPR blockade leads to alterations in 

phosphorylation of key calcium cycling proteins, involving CaMKII and PKA, at the 

molecular and subcellular levels.  We extended these studies to examine SR Ca2+ pump 

function at the cellular level.  Since CaMKII is implicated to mediate FDAR 45-47, we 

investigated the characteristics of FDAR in myocytes isolated from control and VPL rats.  

Freshly isolated ventricular myocytes were loaded with the Ca2+ indicator dye fura-2, 

field-stimulated over a range of frequencies, and [Ca2+]i transients were monitored.  

When [Ca2+]i transients were normalized to same height and superimposed, we noticed 

that increased frequency of stimulation gave rise to faster recovery times of the calcium 

transients in control and VPL myocytes (Fig. 4.7A and B).  Thus the FDAR phenomenon 

37, 48 was apparent in both control and VPL myocytes.  However, the rate of recovery of 

calcium was slower at all frequencies in VPL myocytes compared to control (compare 

Fig. 4.7A and B), consistent with previous findings 5.  To quantify this, we fitted the 

decline of twitch [Ca2+]i transients with a single exponential decay.  The τ of [Ca2+]i 

decline was longer in VPL myocytes compared to control (Fig. 4.7C), reflecting 

depressed SR Ca2+ transport activity, possibly accounted for by diminished SR pump 

quantity in VPL myocytes 5.  Analysis of the ratio of τ at 2 Hz / 0.25 Hz (Fig. 4.7D) 

showed no significant difference between the two groups, indicating that FDAR is 

preserved in VPL rats.   
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Fig. 4.7 Frequency-dependent acceleration of relaxation (FDAR).  A, B [Ca2+]i 
transients of a control (A) and VPL myocyte (B) at stimulation frequencies of 0.25, 1, 2 
Hz were normalized to same height and superimposed, showing evident FDAR in both 
control and VPL myocytes.  C, the decline of twitch [Ca2+]i transients were fitted with a 
single exponential decay equation and τ of [Ca2+]i decline at different frequencies was 
plotted to show FDAR in both control and VPL myocytes (Fig.4.7C).  τ of [Ca2+]i decline 
of VPL myocytes was apparently longer than that of control myocytes at all stimulation 
frequencies, indicating depressed SR Ca2+ transport function in VPL rats.  D, Bar graphs 
represent the extent of FDAR at the extremes of the frequencies tested as ratio of τ 2Hz 
versus 0.25 Hz(τ 2Hz/τ0.25 Hz).  n=26 cells / group.  Values are means ± SEM. * P<0.05, 
**P<0.01 VPL vs. control. 
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4.4.8 Cardiac Response to the β-adrenergic Stimulation is Compromised in VPL 

Rats. 

The present studies have demonstrated that chronic verapamil treatment leads to 

altered phosphorylation status of Ca2+ cycling proteins, with functional changes apparent 

in isolated SR vesicles and intact cardiomyocytes.  To establish whether these adaptive 

changes are manifested at the whole animal level, we examined cardiac contractile 

response to β-adrenergic stimulation in vivo.  Catheters were inserted into the left 

ventricle of anaesthetized rats to monitor intraventricular pressure, and isoproterenol (Iso, 

0.3 to 3 µg/kg body weight) was administered intravenously.  In control rats, Iso elicited 

marked, dose-dependent stimulation of developed pressure, reflecting activation of PKA 

signaling pathways (Fig. 4.8A, left panel).  Developed pressure was markedly reduced 

and end-diastolic pressure was elevated at all doses of Iso in VPL compared to control 

rats.  In contrast to control rats, Iso did not elicit any change in developed pressure in 

VPL rats (Fig. 4.8A, right panel).  To quantify this functional response, we analysed 

developed pressure, heart rate and peak rates of pressure change (+dP/dt Max and -dP/dt 

Min).  All of these functional indices were depressed over the range of concentrations of 

Iso in VPL rats compared to control (Fig. 4.8B), consistent with the depressed heart 

function reported previously 5.  We note that the chronotropic response of Iso was 

preserved, whereas the inotropic response to Iso was impaired.  

We found that VPL rats exhibit significantly reduced +dP/dt Max and -dP/dt Min 

and percentage increase at peak Iso dose compared to control (Suppl. Fig.4.3), further 

suggesting reduced contractile reserve and attenuated reserve recruitment by β-adrenergic 

stimulation. 
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Fig. 4.8 Cardiac response to the -adrenergic stimulation is compromised in VPL 
rats.  Catheters were inserted into the left ventricle of anaesthetized rats to monitor 
pressure and 0.3 to 3 g/kg isoproterenol (Iso) was given intravenously.  A, 
Representative recordings of left intraventricular pressure reveal markedly reduced 
developed pressure, heart rate and blunted dose-dependent Iso stimulatory effect on 
developed pressure in VPL rats compared to control.  B, Quantification of developed 
pressure, heart rate, and the maximum rates of intraventricular pressure change (dP/dt 
Max, -dP/dt Min).  n=5 rats/ group.  Values are means ± SEM. * P<0.05, **P<0.01 VPL 
vs. control. 
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Suppl. Fig. 4.3 Isoproterenol-mediated stimulation of cardiac contraction in vivo.  
Supplemental to figure 4.8, the maximum rates of intraventricular pressure change 
(+dP/dt Max, -dP/dt Min), the developed pressure and the heart rate under isoproterenol 
stimulation were quantified as percentage change from the resting state.  n=5 rats/ group.  
Values are means ± SEM. * P<0.05, **P<0.01 VPL vs. control. 
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4.4.9 Chronic Verapamil Treatment Does Not Lead to Ventricular Hypertrophy. 

Cardiac hypertrophy is the natural response of the myocardium to various 

stressors, including neurohormonal stimuli, hemodynamic overload, and injury 49.  

Depression of the myocardium’s intrinsic contractility is an important mechanism 

underlying the transition from hypertrophy to heart failure 50.  We have observed that 

myocardium’s intrinsic contractile properties are compromised in response to chronic, yet 

partial blockade of DHPRs.  Thus it is imperative to explore whether cardiac adaptation 

to the chronic stressor of DHPR blockade is associated with hypertrophy.  To address this 

we examined a number of different hypertrophic indices.  Measurement of cell 

dimensions of isolated ventricular myocytes enabled us to calculate cell volume, which 

was not different between the two groups of rats (Fig. 4.9A).  Histological analysis of 

whole heart tissue stained with Masson's trichrome showed no apparent change of cell 

size (Fig. 4.9B) or ventricular wall thickness (Fig. 4.9C).  Quantification of these 

parameters revealed no significant difference between VPL and control rats (Fig. 4.9D).  

We took the analysis even further by comparing heart and lung weights, normalized to 

whole body weight. We found no significant difference in the ratio of left ventricle (LV) 

to body weight, the right ventricle (RV) to body weight, suggesting there was no cardiac 

hypertrophy in VPL rats (Fig. 4.9E).  Moreover, the ratio of lung to body weight in VPL 

rats did not differ from control (Fig. 4.9E), showing no evidence for pulmonary edema.   
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Fig. 4.9 Chronic verapamil treatment does not lead to ventricular hypertrophy.  
Macroscopic and microscopic morphological parameters indicate no cardiac hypertrophy 
in the verapamil-treated (VPL) rats compared to control.  A, typical ventricular 
cardiomyocytes isolated from control and VPL rats. B, Typical Masson's trichrome-
stained histological sections show the cell size of left ventricles (LV) from control and 
VPL rats (Magnification, 60).  C, Typical Masson's trichrome-stained histological 
sections show wall thickness of right ventricles (RV) from control and VPL rats 
(Magnification, 10).  D, Bar graphs represent cell volume (n=15 cells for control and 17 
cells for VPL from 3 preparations of each group), thickness of RV free wall ( n=3 rats / 
group), thickness of LV free wall (n = 3 rats /group). E, Bar graphs represent weight ratio 
of LV :body weight (n =15 rats /group), weight ratio of RV :body weight ( n =15 rats 
/group), and lung to body weight (n = 15 rats /group). 
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4.5 Discussion 

In this study, we made the following key observations in long-term verapamil-

treated rats: 1) hyper-phosphorylation of SR Ca2+ cycling proteins, 2) up-regulation of 

CaMKII and PKA activities, 3) reduced substrate reserve in the SR for CaMKII− and 

PKA−medicated protein phosphorylation, and 4) decreased cardiac contractile reserve.  

These observations, ranging from molecular, subcellular, cellular, organ to whole animal 

level, provide mechanisms for the functional remodeling of SR and a predisposition to 

heart dysfunction incurred from chronic DHPR blockade. 

4.5.1 Hyper-phosphorylation of SR Ca2+ Cycling Proteins Remodels RyR Function 

and Predisposes Heart to Contractile Dysfunction and Arrhythmias. 

Phosphorylation-dependent regulation of SR activity is physiologically and 

pathologically important, as it underlies the mobilization of cardiac functional reserve 

during exercise and it is implicated in cardiac diseases such as heart failure and atrial 

fibrillation 51, 52.  Phosphorylation of RyR is generally regarded as an important 

mechanism for modulating the channel’s gating properties 11 and regulating channel Ca2+ 

release function 12, 13.  RyR can be phosphorylated by CAMKII and PKA 10, 19, 51, 53.  So 

far, three phosphorylation sites have been identified.  In humans and rodents, they are 

serine (S) 2808 (S2809 in rabbit), S2814 (S2815 in rabbit), and S2030 (S2031 in rabbit) 

11.  RyR S2808/S2809 is suggested to be phosphorylated by both PKA and CAMKII 11; 

whereas S2814/S2815 is suggested only by CaMKII 20 and S2030/S2031 only by PKA 54.  

The exact effects of phosphorylation on channel function remain controversial as both 

stimulatory and inhibitory effects have been reported 9, 10, 53.  However, recent evidence 
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supports that RyR phosphorylation leads to increased RyR open probability and SR Ca2+ 

leak 13, 13, 51, 55, 56, which can lead to heart failure 51 and arrhythmias 55.  The PKA-

mediated enhancement in SR Ca2+ leak is CaMKII-dependent 13.  Hyper-phosphorylation 

of RyR has been implicated in RyR dysfunction and heart failure 36, 51, 57.  This increased 

“leakiness” of the SR could underlie the increased propensity for arrhythmia in heart 

failure and eventually contribute to decreased contractility by reducing SR Ca2+ load.  

However, several studies have questioned RyR hyper-phosphorylation in heart failure 58, 

59, and the functional consequence of RyR phosphorylation remains controversial 60.  

Considering chronic verapamil treatment leads to abnormal gating properties of cardiac 

RyRs and hyperactive spark sites (see chapter 2), the current finding of hyper-

phosphorylation of RyR supports the notion that phosphorylation of RyRs increases SR 

Ca2+ leak from SR that can lead to arrhythmia and heart failure. 

4.5.2 The Paradox of PLN Hyper-phosphorylation and Reduced SERCA Function. 

The phosphorylation of PLN is thought to release the inhibition of PLN on 

SERCA2 and restore SERCA2 affinity for Ca2+ 1, 8, 14.  On the other hand, 

dephosphorylated PLN inhibits Vmax of Ca2+ transport and lowers the affinity of SERCA2 

for calcium 8.  Studies have shown that dephosphorylation of PLN acts as a brake on the 

SERCA2 pump whereas phosphorylation releases the “brake” and substantially increases 

Ca2+ transport activity and relaxation rate 40.  Our study has shown the PLN was hyper-

phosphorylated but basal SERCA Ca2+ uptake activity was paradoxically reduced after 

chronic DHPR blockade.  Since the PLN can be phosphorylated at threonine 17 by 

CaMKII 14, 43, 61, the hyper-phosphorylation of PLN can be partially explained by the 
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observed up-regulation of CaMKII expression and activity in VPL rats.  This paradoxical 

phenomenon of up-regulated CaMKII, hyper-phosphorylated PLN with reduced SERCA 

function is also observed in many animal models of heart failure 37, 62, 63.  This paradox 

can be partially explained by the reduced SERCA and increased PLN protein levels in 

VPL rats (see chapter 3).  However, the phosphorylation of PLN at serine 17 was 

increased by 300% while SERCA protein level is only reduced by ~30% and PLN up-

regulated ~20% in VPL rats (see chapter 3).  As the phosphorylation change is 

disproportional to protein level change, the alteration of protein levels cannot fully 

explain why PLN hyper-phosphorylation fails to increase the basal SERCA activity.  

Thus this paradox indicates that the phosphorylation alone is not enough to release PLN 

inhibition on SERCA, and an event down-stream of PLN phosphorylation likely controls 

SERCA function.  Such event could be the CaM-SERCA interaction and consequent 

PLN-SERCA dissociation to stimulate SR Ca2+ transport.  As the classic mechanistic 

concept, phosphorylation of PLN is thought to dissociate the inhibited PLN–SERCA2 

complex 8.  However, this long-standing view has been questioned by a study from Dr. 

MacLennan’s group which reported that PLN phosphorylation does not cause 

dissociation of PLN-SERCA complex, but Ca2+ does 64.  However, recent work from our 

laboratory has shown that the dissociation of PLN-SERCA complex is not an 

autonomous function of Ca2+; it is a Ca2+-dependent function of calmodulin 33,16.  Thus, it 

appears that a CaM-dependent process, in addition to or independent of PLN 

phosphorylation, is required for relief from PLN inhibition of SERCA.  It is likely that 

the reduced SERCA function despite PLN hyper phosphorylation in the VPL rats reflects 

impairment of a CaM-dependent process that is obligatory for SERCA activation. 
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4.5.3 Hyper-phosphorylation of SR Ca2+ Cycling Proteins Reduces Cardiac 

Contractile Reserve.  

In response to stress and exercise, the reserve of heart contractility is utilized to 

meet the body’s increased demand for blood flow.  Cardiac contractile reserve is defined 

as the difference between the basal and maximum cardiac work 65.  Reduced contractile 

reserve can be reflected as either reduced maximal performance that the heart can achieve 

or increased basal activity.  Both the magnitude of this reserve and its responsiveness to 

recruitment are determinants of the risk of heart failure and prognosis in patients with 

cardiovascular diseases 65 66.  In theory, how good the heart is as a pump can be best 

represented by the maximum cardiac work achieved by the heart during maximal 

stimulation, and this value is termed the cardiac pumping capability 67.  Cardiac 

contractile reserve assessed by pharmacological stimulation has been shown to correlate 

with that assessed by physiological stimulation via exercise testing 67, 68.  Thus cardiac 

reserve as estimated by isoproterenol challenge can be taken to represent the functional 

capacity of the heart 68.  Administration of isoproterenol revealed that chronic verapamil 

treatment attenuates cardiac response to the β-adrenergic stimulation in vivo.  This 

strongly indicates chronic inhibition of DHPRs reduces cardiac contractile reserve.  In 

response to stress and exercise, the fall in contractile reserve can lead to heart failure and 

provides an explanation for the increased risk encountered by the patients receiving long-

term DHPR blocker treatment 6, 7.  

The mobilization of cardiac reserve is mainly achieved by recruiting SR 

functional reserve (i.e. reserve for faster, stronger SR Ca2+ release and reuptake) through 

phosphorylation of Ca2+ cycling proteins in E-C coupling 8 17.  CaMKII and PKA are the 
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major protein kinases that mediate phosphorylation of these proteins and thus regulate the 

SR functional reserve 8, 20.  Unphosphorylated PLN preserves SR function by inhibiting 

SR Ca2+ pump activity 8.  When PLN is phosphorylated at threonine 17 by CaMKII or at 

serine 16 by PKA, the PLN inhibition of SERCA is relieved and the SR functional 

reserve is mobilized for faster cardiac relaxation 14.  In addition, CaMKII can mobilize 

SR functional reserve through direct phosphorylation of SERCA as well 15, 32, 69, 70.  Our 

laboratory discovered a direct phosphorylation of SERCA2 at serine 38 by CaMKII, and 

consequent activation of Ca2+ transport through an increase in Vmax 15.  This phenomenon 

has been confirmed by studies in other laboratories 69, 70.  Finally, as RyR 

phosphorylation by CaMKII and/or PKA increases the propensity of RyRs to open and 

accelerates SR Ca2+ release 51, 55, 71-74, CaMKII−, PKA−dependent phosphorylation of 

RyRs potentially could be another intrinsic mechanism to mobilize SR functional reserve 

for stronger, faster contractions in response to stress and exercise.  

In present study, SR functional reserve was apparently reduced in VPL rats 

because of a) increased preexisting phosphorylation levels of SR Ca2+ cycling proteins; b) 

reduced availability of substrates for PKA− and CaMKII−mediated phosphorylation; and 

c) reduced stimulatory effects of CaMKII and PKA on SR Ca2+ transport.  Furthermore, 

we have reported previously that SR Ca2+ content is reduced after chronic verapamil 

treatment (see chapter 2 and 3), which can further depress SR functional reserve by 

reducing the availability of Ca2+ in the SR lumen to be released for stronger contraction.  

Therefore, reduced SR functional reserve provides a subcellular mechanism for reduced 

contractile reserve in VPL rats.  
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4.5.4 Myocardial Intrinsic Contractile Properties Can Be Compromised Without 

Passing Through a Compensated Stage of Hypertrophy. 

Following a pathological stress, the heart can adapt by cardiac hypertrophy, which 

improves contractile force to meet the new body demands 49, 75.  Cardiac hypertrophy 

may be considered as a mechanism for compensation as in “physiologic” cardiac 

hypertrophy in response to exercise, pregnancy, etc.  When the stimulus is prolonged, 

cardiac hypertrophy can decompensate toward heart failure, with compromised pump 

function 49, 75.  However, this general pattern may not always be consistent.  Indeed, some 

experimental models of heart failure have been reported to lack a compensated period 

before the full-blown stage of heart failure 76.  In the present study, ventricular 

hypertrophy did not develop and cellular morphology was normal following chronic 

verapamil treatment.  However, the compromised cardiac intrinsic functions in VPL rats 

are evident at molecular, subcellular, cellular, organ, and whole animal levels.  

Considering depression of myocardial intrinsic contractility is an important mechanism 

for developing heart failure 50, our animal model supports that a compensated period of 

hypertrophy is not necessary in the progression to heart failure. 

4.5.5 Conclusions  

The present study further explored the impact of chronic DHPR blockade on 

protein phosphorylation-dependent regulation of SR function by CaMKII and PKA.  It is 

reasonable to speculate that DHPR blockade depresses basal contractility by reducing 

CICR that would have preserved more SR and cardiac contractile reserve.  Surprisingly, 

the results reported here show chronic, yet partial blockade of DHPRs by verapamil 
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attenuates cardiac contractile reserve.  Since the cardiac functional reserve determines the 

risk of heart failure and prognosis in patients with cardiovascular diseases 65 66, our 

finding provides mechanistic insights for the risk associated with long-term treatment 

with DHPR blockers in patients.   

In conclusion, chronic, partial DHPR blockade hyper-phosphorylates SR Ca2+ 

cycling proteins, increases activities of CaMKII and PKA, reduces SR functional 

capacity, and consequently attenuates contractile reserve of the heart.  These pathogenic 

abnormalities occur in the absence of cardiac hypertrophy and contribute to the SR 

functional remodeling ensued from long-term verapamil treatment.  
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5.1. Summary of Major Findings 

My thesis had 3 specific aims.  Here I will summarize the findings arising from 

my studies. 

Aim 1 To determine whether chronic DHPR blockade alters expression and function of 

RyRs and DHPRs.  

This part of my research demonstrated that chronic VPL treatment leads to the 

following changes. 

1) Altered DHPR/RyR stoichiometry, with down-regulation of RyRs, down-

regulation of FKBP12, and up-regulation of DHPRs.  This divergent change in 

DHPR and RyR expression indicates a disarray of the molecular arrangement of 

DHPRs and RyRs. 

2) Uncompromised ICa, but remodeled intrinsic gating properties of RyR channels 

that manifests as high frequency, long duration and large amplitude of diastolic 

Ca2+ sparks, abundant hyperactive spark sites, and increased incidence of Ca2+

3) Remodeled cardiac electrophysiological properties which manifested as an 

increased incidence of premature ventricular contraction, susceptibility to 

arrhythmia, and prolonged nodal conduction.  These electrophysiological 

alterations observed at organ and whole animal levels agree with impaired 

intermolecular signaling and local control mechanism between DHPR and RyR 

observed at molecular and cellular levels.  

 

waves .  
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Conclusion —  Chronic, yet partial blockade of DHPRs deranges DHPR/RyR 

stoichiometry, remodels intrinsic functional properties of RyR despite uncompromised 

ICa

Aim 2 To determine whether chronic DHPR blockade alters expression and function of 

cardiac SR Ca

, and consequently leads to impaired intermolecular signaling and spatio-temporal 

dyssynchrony of E-C coupling events culminating in predisposition to arrhythmias and 

heart failure.   

2+

This part of my research demonstrated that chronic VPL treatment leads to the 

following changes. 

 pump (SERCA2a). 

1) Down-regulated SERCA2a and up-regulated PLN.  These protein level alterations 

indicate DHPR Ca2+ signals can regulate Ca2+ cycling through changing Ca2+

2) Depressed SERCA2 function manifested as reduced rate of ATP-dependent Ca

 

cycling proteins levels. 

2+ 

uptake by cardiac SR vesicles, altered myocyte [Ca2+]i handling, with slower and 

smaller Ca2+ transients, increased diastolic [Ca2+]i, and decreased SR Ca2+

3) Depressed both cardiac systolic and diastolic functions in vivo and in isolated, 

perfused hearts and cardiomyocytes.  Though verapamil inhibits cardiac 

contractility by reducing CICR, we observed the depression of cardiac 

contractility when verapamil was absent in isolated, purfused hearts and cells.  

 content.  

These changes provide molecular and cellular mechanisms for cardiac diastolic as 

well as systolic dysfunction. 
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This observation demonstrates that an intrinsic suppression of basal heart 

contractility is part of adaptation to chronic, partial DHPR blockade.  

Conclusion — Chronic, yet partial blockade of DHPRs depresses the expression and 

function of cardiac SERCA2, leading to diastolic and systolic dysfunction culminating in 

heart dysfunction. 

Aim 3  To determine whether chronic DHPR blockade alters physiological mechanisms 

for protein phosphorylation-dependent regulation of SR/cardiomyocyte Ca2+

This part of my research demonstrated that chronic VPL treatment leads to the 

following changes. 

 cycling.  

1) Hyper-phosphorylated SR Ca2+

2) Increased activity of CaMKII and PKA, but reduced stimulatory effects of 

CaMKII and PKA on SR Ca

 cycling proteins paradoxically associated with 

reduced contractility and relaxation. 

2+ 

3) Attenuated inotropic but not chronotropic effect of β-adrenergic stimulation, 

owing to molecular remodeling. 

transport. 

4) Myocardial intrinsic contractile properties are compromised in the absence of 

ventricular hypertrophy. 

Conclusion — Chronic, yet partial blockade of DHPRs causes hyper-phosphorylation of 

cardiac RyR and PLN, increased CaMKII and PKA activity, and paradoxically reduced 

basal contractile function and inotropic response to β-adrenergic stimulation of the heart.   
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Overall conclusions —  The heart adapts to chronic, partial DHPR blockade with 

molecular and functional remodelling of the RyR, SERCA, and protein phosphorylation-

dependent regulation of SR/cardiomyocyte Ca2+ cycling.  Consequent spatio-temporal 

dyssynchrony of E-C coupling events, depletion of SR Ca2+

 

 store, contractile dysfunction, 

and blunted inotropic response to β-adrenergic stimulation underlie the increased risk of 

heart failure associated with long-term verapamil treatment. 

Figure 5.1 summarizes the cardiac adaptation to chronic, yet partial DHPR blockade at 

molecular and cellular levels.  
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A. Normal cardiomyocyte E-C coupling. 

 
 
 

 

 

 

 

B. Effects of chronic,yet partial blockade of DHPRs on cardiac E-C coupling. 

 

 

 

 

 

 

 

Figure 5.1 Normal cardiomyocyte E-C coupling and effects of chronic, yet partial 
blockade of DHPRs on cardiac E-C coupling. A, Ca2+ transport and key molecular 
players of Ca2+ handling in normal cardiac E-C coupling.  B, The consequences of 
chronic, yet partial blockade of DHPRs in E-C coupling: impaired local control 
mechanism between DHPRs and RyRs, aberrant Ca2+ signaling from RyR, depressed 
SERCA function, reduced SR Ca2+ content, and activated CaMKII & PKA system.  
Arrows indicate the direction of quantitative changes in either expression of protein, level 
of phosphorylation, volume of Ca2+ movement, or intensity of contractility. 
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5.2.  Significance of the Study 

Physiological and pharmacological significance — My studies are the first to 

study the cardiac SR adaptation to the chronic, partial DHPR blockade.  These adaptive 

changes reveal a novel mechanism where DHPR Ca2+ signal regulates cardiac E-C 

coupling through alterations of the expression and function of SR Ca2+ cycling proteins.  

Furthermore, these adaptive changes also provide insights for the highly coordinated 

communication among Ca2+

Clinical relevance —  The dosage regimen in our animal model is calculated as a 

equivalent to a four-year course of verapamil for human at 7−24 mg/d⋅kg, p.o.  The 

calculation process is as follows.  The maximal oral dose of verapamil used clinically in 

humans is 480 mg/day 

 cycling proteins in cardiac E-C coupling.  

1.  According to the guidelines for human equivalent calculation 

from US Food and Drug Administration (http://www.fda.gov/cber/gdlns/dose.htm) and 

bioavailability of verapamil (10−35%) 1, the rat dose (625 μg/h/kg subcutaneously) in our 

study is equivalent to a human dose of 7−24 mg/d⋅kg, p.o that is 1~3 times of maximal 

dose for a 60 kg person.  The average life span of pet rat is 21.6 months and average 

human lifespan is 77.1 years.  Thus roughly, each rat month is equivalent to 4 human 

years (http://www.ratbehavior.org/RatYears.htm).  Therefore, the findings from this 

animal model can relate to similar clinical setting. 

Though not the first-line drug choice, verapamil can be prescribed for long-term 

management of mild to moderate essential hypertension 1, 2.  Verapamil hydrochloride 

immediate release tablets have been studied in 4826 patients in controlled and 

uncontrolled trials.  The most serious adverse reactions reported with verapamil 

http://www.fda.gov/cber/gdlns/dose.htm�
http://www.ratbehavior.org/RatYears.htm�
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treatment are sudden death, heart failure, A-V block, hypotension and rapid ventricular 

response 3.  Though above unwanted cardiovascular events can be partially explained by 

reduced nodal conduction and short QT syndrome caused by ICa inhibition 4, 5

Experimental design — The assessment of an animal model has often focused on 

a limited number of physiological variables, providing piecemeal aspects of 

functionalities or mechanisms of the model.  Our experiments assessed the cardiac 

adaptation at a wide range of levels, ranging from intramolecular, intermolecular, 

molecular, cellular, organ, to entire animal levels.  This approach enables logical 

integration of microscopic mechanisms into macroscopic functional changes, and 

provides a comprehensive, mechanistic perspective of the impact of chronic DHPR 

blockade on the heart. 

, the 

discovery of SR functional remodeling from this research work provides a novel 

mechanism for these adverse effects.  My in-depth mechanistic study of DHRP blockade 

will help clinicians to better understand and manage the risk of long-term treatment with 

DHPR blockers.   
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5.3.  Limitations of the Research and Suggestions for Future Studies 

Animal model—It is possible that in this model, the heart would not only adapt to 

the cardiac DHPRs blockade, but also other organ’s DHPR blockade.  It is possible that 

the verapamil dose in our model blocked DHPRs of peripheral blood vessels, resulting in 

hypotension and reflex sympathetic activation.  To examine this possibility, future 

studies could monitor the blood pressure on day1 and day 28 in control and VPL rats.  

However, we do not think this is a major concern, because verapamil preferentially 

blocks DHPRs at the myocardium and does not produce reflex tachycardia and 

hypotension at clinically used doses 4

Study of Ca

.  The dose in our animal model was estimated to be 

equivalent to the clinically used dose in humans.  Thus, theoretically it will not lead to 

reflex sympathetic activation due to DHPRs blockade in peripheral blood vessels.  

Besides, even if a reflex sympathetic activation did occur in our model, it would not 

affect the significance of this study which focuses on mechanisms for long-term risk of 

verapamil treatment.  In preliminary studies, we have investigated the effect of chronic 

nifedipine treatment on the heart.  On the 15th day and 30th day, the nifedipine group did 

not show any significant change in RyRs density, whereas the verapamil group did show 

down-regulation of RyRs.  This may be due to the fact that nifedipine preferentially 

blocks DHPRs in blood vessels but not in the myocardium at the clinically used dose.  

Our results with nifedipine also indicate that the changes of RyRs in the verapamil model 

are most likely due to direct cardiac DHPR blockade. 

2+ sparks—We showed that diastolic Ca2+ sparks in control 

ventricular myocytes are more rapid and less frequent (1−2 sparks/second/cell) than those 

of VPL cells.  It is possible our fast imaging system did not detect some brief, small 
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sparks from the control group and undervalued Ca2+ spark frequency in control rats.  In 

future studies, we can trigger sparks to make the control sparks more evident with 

physiological or pharmacological interventions, such as gradually increasing extracellular 

Ca2+ or applying ryanodine to myocytes.  The control and VPL group then could be 

compared under same interventional conditions.  In addition, the temporal resolution for 

imaging Ca2+

Sympathetic activities in VPL rats —  We did not assess the changes of 

sympathetic activity in response to VPL treatment.  A compensatory increase in 

sympathetic activity may occur, depending on the extent of cardiac functional reduction.  

During full-blown heart failure, circulating catecholamine levels are markedly elevated 

 sparks was 56 frames/second in the present study.  Considering control 

sparks are brief with low amplitude, the rising phase of control sparks often finished 

within 3−5 sampling point time.  This temporal resolution makes it a challenge to 

calculate the rising rate of sparks.   

6.  

Thus circulating catecholamine levels reflect the degree of cardiac dysfunction and 

systemic risks for adverse cardiovascular events 7.  In future studies, arterial plasma 

catecholamine concentrations on  day 28 in control and VPL rats can be examined using 

HPLC method as described previously 8.  However, sympathetic nerve activity is not 

uniformly regulated among organs, and the largest compensatory increase in sympathetic 

nerve activity occurs in the target organ 9.  Thus the measurement of circulating 

hormones may not reflect the regional changes of sympathetic tone in the heart.  

Therefore, sympathetic activity shall include measurements of arterial plasma 

catecholamines as well as heart tissue catecholamine measurement in our future studies. 
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Functional stage in development of heart dysfunction — Our results convincingly 

reveal that depression of heart contractile function ensued from chronic, yet partial 

DHPR blockade.  However, the lack of pulmonary edema indicated that VPL rats were 

not in a decompensated stage of heart failure.  Therefore, we need further evidence to 

assess heart functional stage and explore whether VPL rats can progress into a full-blown 

(decompensated stage) heart failure.  Heart failure arises from the inability of ventricles 

to efficiently pump blood throughout the circulation 10, 11.  As heart failure evolves, 

neurohumoral mechanisms are activated to help maintain the cardiac output to meet the 

body’s demand.  These compensatory changes include increased sympathetic activity, 

reduced cardiac vagal activity, and activation of angiotensin-aldosterone system, 

vasopressin, catecholamines, and B-Type Natriuretic Peptide (BNP) 12 13.  Thus in the 

future, we could further explore the neurohumoral changes to assess cardiac functional 

stage in VPL rats.  For example, BNP and N-terminal pro-BNP (NT-proBNP) are 

established biomarkers for heart failure diagnosis and estimating prognosis 14-16.  A future 

study could also examine BNP and NT-proBNP levels in blood in VPL rats according to 

methods described previously 14-16

We could also use microCT scan to record cardiac cycle in vivo in the future.  

This technique could provide visual, diagnostic data in assessing heart functional stage 

(ejection fraction, the size of ventricular wall and cavities, dynamic changes of 

ventricular wall and cavity, etc.).  Depressed heart contractile function in VPL rats can 

reduce coronary supply and consequently lead to ischemic heart diseases, arrhythmias, 

and heart failure.   

.   
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Intermolecular interactions and intramolecular events in E-C coupling — The 

present research examined adaptive changes in regulation of RyR and SERCA2 by 

protein kinases.  Future studies could address the potential impact of chronic DHPR 

blockade on intermolecular interactions between the molecular players controlling 

SERCA and RyR function as outlined below.  Where possible, the ensuing 

intramolecular events from intermolecular interactions could also be monitored. 

1) PLN-SERCA2 interaction. Given the down-regulation of SERCA and up-

regulation of PLN in the VPL rats, there exists the distinct possibility that a quasi-

irreversible PLN-SERCA interaction contributes significantly to the diastolic dysfunction 

observed in VPL rats.  To explore this possibility, SR vesicles and cardiac homogenates 

from control and VPL rats could be used to determine the relative size of PLN-associated 

and PLN-free SERCA pools according to the co-immunoprecipitation protocols we have 

used previously 17.  In addition, this protocol could also address the relative effectiveness 

of Ca2+

2) CaM-SERCA2 interaction.  Studies from our laboratory demonstrated that 

cardiac SR contains appreciable amounts of firmly bound CaM and this SR-associated 

CaM is essential for SERCA2 function 

, CaM, PLN/SERCA phosphorylation to dissociate PLN-SERCA complexes, 

which are physiologically relevant. 

18.  Functional inactivation of SR-bound CaM 

using a CaM-binding peptide (CaM BP) results in complete suppression of SERCA2 

function which is readily reversed by exogenous CaM 18.  Currently ongoing studies 

suggest that the mechanism for CaM regulation of SERCA2 involves direct interaction of 

CaM with SERCA2 resulting in activation of the rate-limiting step (phosphoenzyme 

decomposition) in the SERCA2 catalytic cycle.  Furthermore, this CaM regulation of 
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SERCA2 is seen in the presence but not in the absence of PLN in the SR.  It appears that 

Ca2+-bound CaM serves as a molecular trigger that activates SERCA2 by disrupting 

PLN-SERCA interaction.  This novel mechanism for the CaM regulation of SERCA 

function provides an exciting new dimension to our understanding of the molecular 

events underlying E-C coupling and cardiac muscle physiology.  Impairments in this 

CaM control of SERCA2 function could result in diastolic and systolic dysfunction 

leading to heart failure.  In view of this, studies outlined below could be carried out to 

investigate potential impact of chronic DHPR blockade on CaM-SERCA2 interaction 

and its functional consequences.  Cardiac SR vesicles from control and VPL rats could be 

used to determine the effects of CaM BP, Ca2+ and CaM on SERCA2-CaM interaction, 

SERCA2 Ca2+ pump function as well as on the evolution of SERCA2 conformational 

states during the catalytic and Ca2+

3) RyR-FKBP interaction.  We have observed nearly similar degree of 

diminished protein levels for both RyR and FKBP 12 in hearts from the VPL compared 

to control rats.  Native SR vesicles as well as cardiac homogenates from control and VPL 

rats could be used to determine the relative amounts of FKBP-RyR complexes in control 

vs. VPL rats.  In addition, the influence of RyR phosphorylation status on FKBP-RyR 

interaction could be monitored.  The experimental procedures for these studies would be 

similar to those outlined for PLN-SERCA interaction.  FKBP association with RyR is 

thought to stabilize RyR in a sub-conductance state and thereby minimize diastolic Ca

 transport cycle.   

2+ 

leak.  Therefore, diminished FKBP-RyR interaction in VPL, if encountered, could 

constitute a molecular lesion giving rise to the higher incidence of arrhythmias observed 

in the VPL rats. 



Chapter 5 Ji Zhou  193 

    

Phosphatases and dephosphorylation of SR Ca2+ cycling protein — We observed 

that SR Ca2+ cycling protein became hyper-phosphorylated.  This hyper-phosphorylation 

is interpreted as a result of increased activity of protein kinases (PKA and CaMKII) in 

the present study; but hyper-phosphorylation also can result from decreased activity of 

phosphatases and reduced dephosphorylation.  Thus, the status of protein phosphatases 

and dephosphorylation of SR Ca2+ cycling proteins need to be clarified in our future 

studies. 
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Chemicals. Reagents for electrophoresis were obtained from Bio-Rad Laboratories 

(Mississauga, ON); [3H] ryanodine was obtained from PerkinElmer (Boston, MA); 

Monoclonal antibodies against RyR-CRC, DHPR, FKBP12, and calsequestrin were 

obtained from Affinity BioReagents (Golden, CO).  Polyclonal antiphosphoserine-2809 

RyR, antiphosphoserine-16 PLN, and antiphosphothreonine-17 PLN antibodies were 

obtained from Badrilla (Leeds, UK).  Polyclonal antiphosphothreonine-286 CaM kinase 

II was purchased from Cell Signaling Technology (Danvers, MA).  Anti-CaMK II 

polyclonal antibody was a generous gift from Dr. H. A. Singer (Weis Center for 

Research, Danville, PA).   [32P] was purchased from Amersham (Oakville, ON), 45CaCl2

 

 

was from New England Nuclear (Mississauga, ON).  All other chemicals were purchased 

from Sigma Chemical (St. Louis, MO) or BDH Chemicals (Toronto, ON). 

Preparation of SR Membranes and Muscle Homogenates. SR membrane vesicles 

were isolated from the myocardium of VPL and control rats according to the procedure 

described previously1.Briefly, ventricular tissue was minced, and homogenized (Polytron, 

Brinkman Instruments, Westbury, NY, USA) with three 15-s bursts at 30-s intervals at a 

setting of 5.5 in 6 volumes (based on tissue weight) of ice-cold buffer (10 mmol/L 

NaHCO3, pH=6.8). The homogenate was centrifuged at 1,000 g for 10 min at 4°C. The 

supernatant was decanted and kept on an ice slurry. The pellet was resuspended in 4 

volumes of ice-cold buffer and centrifuged as described above. The supernatant was 

decanted and combined with the first supernatant, and the pellet was discarded. The 

combined supernatant was centrifuged at 8,000 g for 20 min at 4°C. The supernatant was 

collected, and the pellet was discarded. KCl was added to the supernatant (44 mg/ml, 0.6 
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mol/L final concentration), swirled until dissolved, left on ice for 25 min, and then 

centrifuged at 40,000 g for 1 h at 4°C. After isolation, the SR vesicles were suspended in 

10 mmol/L Tris maleate (pH 6.8) containing 100 mmol/L KCl and stored at –80°C after 

quickly freezing in liquid nitrogen. Protein concentration was determined by the method 

of Lowry et al. 2

 

 with bovine serum albumin used as the standard. The relative purity of 

myocardial SR vesicles from control and VPL rats did not differ as judged from 

essentially similar protein profiles revealed by SDS-PAGE. In addition to SR 

membranes, whole ventricular muscle homogenates from control and VPL rats were used 

in some experiments. For these experiments, the muscle tissue was homogenized 

(Polytron) with three 15-s bursts at 30-s intervals at a setting of 5.5 in 10 volumes (based 

on tissue weight) of buffer (10 mmol/L Tris HCl, 100 mmol/L KCl, pH 6.8). The 

homogenates were filtered through four layers of cheese cloth. 

Immunoblotting. Western immunobloting techniques were used for detection and 

estimation of the relative amounts of RyR in SR membrane vesicles, and RyR, DHPR, 

FKBP12 in cardiac muscle homogenates from control and VPL rats. The SR vesicles (25 

µg protein/lane) were first subjected to SDS-PAGE using 6% (for RyR), 10% (for DHPR, 

SERCA2, CaMKII), or 15% (for FKBP12, PLN) gels.  The fractionated proteins were 

transblotted to nitrocellulose membranes.  The membranes were probed with antibodies 

specific for cardiac RyR (monoclonal, dilution 1:2,500), DHPR α subunit (monoclonal, 

dilution 1:1,000), FKBP12 (polyclonal, 1µg/ml), calsequestrin (polyclonal, dilution 

1:1000), SERCA2 (anti-87, polycolonal, dilution 1:1,000), δ-CaMKII (polyclonal, 

dilution 1:1000), phosphothreonine-286 CaMKII (polyclonal, dilution 1:2000), 
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phosphoserine-2809 RyR (polyclonal, dilution 1:5000), phosphoserine-16 PLN 

(polyclonal, dilution 1:5000), and phosphothreonine-17 PLN (polyclonal, dilution 

1:5000)..  A peroxidase-linked goat anti-rabbit IgG or goat anti-mouse IgG at a dilution of 

1:5,000 was used as the secondary antibody.  Protein bands were visualized using the 

enhanced chemiluminescence detection system (Amersham ECLTM, Buckinghamshire, 

UK).  The images of the protein bands were optimized, captured, and analyzed by a video 

documentation system (ImageMaster, Pharmacia Biotech, San Francisco, CA).  The 

western blotting detection system was determined to be linear with respect to the amount 

of SR/homogenate protein in the range 10-40 µg using this camera-based densitometry 

 

system. 

Measurement of High-Affinity [3H] Ryanodine Binding. High-affinity ryanodine 

binding was assayed as described by Jiang et al.3. In brief, SR vesicles (25 µg) isolated 

from control and VPL rats  were incubated at 37°C for 60 min in a buffered medium 

(total volume 100 µl) containing 150 mmol/L KCl, 200 mmol/L HEPES (adjusted to pH 

7 with KOH), 1.25-80 nmol/L of [3H]ryanodine, 0.1 mmol/L EGTA, and variable 

amounts of CaCl2 to obtain free [Ca2+] ranging from 0.05 to 6.1 µmol/L as calculated by 

the computer program of Fabiato 4. The binding reaction was terminated by filtration 

through 0.22 µm GS Millipore filters and washed sequentially with 4 ml of washing 

buffer [150 mmol/L KCl, 200 mmol/L HEPES (adjusted to pH 7 with KOH)] and then 

twice with 4 ml each of ice-cold 10% ethanol. Specific binding of ryanodine was 

determined as the difference between total counts and nonspecific counts (measured in 

the presence of 10 µmol/L of unlabeled ryanodine). 



Appendices Ji Zhou  203 
 
Determination of Ca2+ uptake.  SR membrane vesicles were isolated from control and 

VPL rats according to the procedure described previously 1.  Following isolation, the SR 

vesicles were suspended in 10 mM Tris-maleate (pH= 6.8) containing 100 mM KCl.  

Protein concentration was determined by the method of Lowry et al. 2 using bovine serum 

albumin as a standard.  The relative purity of the SR vesicles from RV and LV 

myocardium of control and VPL-treated rats did not differ as judged from essentially 

similar protein profiles revealed by SDS-polyacrylamide gel electrophoresis (SDS-

PAGE).  ATP-dependent, oxalate-facilitated Ca2+ uptake by cardiac SR vesicles was 

determined using the Millipore filtration technique as described previously 5.  The 

standard incubation medium for Ca2+ uptake (total volume 250 µl) contained 50 mM Tris-

maleate (pH 6.8), 5 mM MgCl2, 5 mM NaN3, 120 mM KCl, 0.1 mM EGTA, 5 mM 

potassium oxalate, 5 mM ATP and 0.1 mM 45CaCl2 (~8,000 cpm/nmol, 8.2 µM free 

Ca2+), 0.025 mM ruthenium red and cardiac SR vesicles (7.5 µg protein). In experiments 

where Ca2+ concentration was varied, the EGTA concentration was held constant at 0.1 

mM and the amount of total 45CaCl2 added was varied to yield the desired free Ca2+ 

according to the computer program of  Fabiato 4.  The Ca2+-uptake reaction was initiated 

by the addition of SR to the rest of the assay components, preincubated for 3 min at 37°C.  

The data on Ca2+ concentration-dependence of Ca2+

   v = V

 uptake were analyzed by nonlinear 

regression analysis (SigmaPlot) and fitted to the equation 

max[Ca2+]n/(Kn
0.5 +[Ca2+]n

where v is the measured Ca

) 

2+ uptake activity at a given Ca2+ concentration, Vmax 

the maximum activity, K0.5 the Ca2+ concentration giving half Vmax, and n is equivalent 

to the Hill coefficient. 
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To evaluate the effect of SR-associated, endogenous CaMKII on Ca2+ uptake, 

assays were performed in the absence of CaM and in the presence of 3 µM CaM.  The 

Ca2+ uptake reaction was initiated by either the addition of SR or ATP to the rest 

 

of the 

assay components preincubated for 3 min at 37°C.  

Cardiomyocyte Isolation. Myocytes from control and VPL rats were isolated as 

previously described 6. Briefly, hearts were mounted on a Langendorff apparatus and 

perfused with Ca2+-free Tyrode solution containing (in mmol/L) 120 NaCl, 5.4 KCl, 1 

MgCl2, 0.33 NaH2PO4, 10 HEPES, and 10 glucose at pH 7.4. After a brief equilibration 

period, 1.16 mg/ml type II collagenase (Worthington Biochemical, Lakewood, NJ) and 

0.1 mg/ml protease type XIV were added to the buffer, and the heart was perfused for 10 

min in a recirculating manner. Collagenase was washed out with buffer containing 0.2 

mmol/L Ca2+, and the left ventricle of the heart was anatomically separated and diced 

with scissors. After incubation at 37°C, tissues were filtered through a nylon mesh and 

allowed to settle. The cells were exposed to a series of sedimentation and resuspension 

steps in buffer containing increasing concentrations of Ca2+ (0.2–1.8 mmol/L). Cell yield 

was assessed microscopically, and the density was diluted to ~105 cells/ml; 50–60% of 

 

isolated cells were healthy and rod-shaped. 

Imaging and Measurement of Ca2+ Sparks. A custom-built wide-field digital 

fluorescence imaging system (Photon Technology International Inc; PTI Inc, NJ, USA) 

with a Cascade Photometrics 650 cooled charge-coupled (CCD) camera (653 x 492 

pixels; Roper Scientific Inc., Tucson, AZ) and ImageMaster Software (version 5; PTI 
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Inc., London, ON) was used to acquire images of isolated cardiomyocytes from control 

and VPL rats at 67 Hz (67frames/s). To optimize the speed of acquisition, the region 

acquired was limited to that surrounding only a single cell. With the X60 lens, each pixel 

represented an area of 196 x 196 nm. Cells were loaded with the Ca2+ indicator dye fluo-

4-AM (5 µmol/L, with 0.05% pluronic acid) for 40 min at room temperature. Cells were 

then allowed to settle for 10 min on a 1 ml glass-bottomed perfusion chamber mounted 

on a Nikon inverted microscope (Nikon Eclipse TE2000-U) equipped with a plan 

apochromatic X60 water immersion lens (NA 1.2) and a blue excitation filter cube with 

an emission bandpass of 535 ± 40 nm. Cells were perfused with normal Tyrodes solution 

containing (in mmol/L) 1.8 CaCl2, 120 NaCl, 5.4 KCl, 1 MgCl2, 0.33 NaH2PO4, 10 

HEPES, and 10 glucose at pH 7.4 at a rate of 1 to 3 ml per min. Then, cells were field-

stimulated at 0.5 Hz via platinum electrodes until the Ca2+ transient reached a steady 

state. Subsequently, the stimulation was stopped to observe resting Ca2+ sparks and 

waves within ~23s. Excitation of fluo-4 was provided by the 488 nm line of a multi-line 

argon laser and cell exposure to the laser was controlled by a shutter. Image processing 

was performed off-line using ImageMaster 5. The acquired images were Gaussian filtered 

using three-by-three pixels and baseline Ca2+ images were subtracted pixel by pixel using 

the equation ∆F/Fo  (%) = 1 0 0 x [F(x,y, t) - Fo(x,y)]/ Fo(x,y), where F(x,y,t) was the 

fluorescence at each pixel in the time series and Fo was an image of the “baseline” level 

given by the average of ~50 consecutive images of the cell at rest and in the absence of 

sparks.  The change in fluorescence, ∆F/Fo (%) is  a relative measure of free intracellular 

Ca2+ concentration. To create the plots of ∆F/Fo with time, areas of interest of 10 x 10 

pixels (3.6 µm2) were located at the centre of each spark site. The size of the area of 
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interest was chosen since, on average, it surrounded the entire event at the time at which 

each spark event was initiated. The root mean square (rms) noise of the image was less 

than 2%, and an increase in fluorescence was considered to be Ca2+ spark when it was 

equal to or greater than 5% and lasted for at least 5 frames (79 ms), as described earlier 7. 

The frequency of sparks was measured from the change in fluorescence (∆F/Fo (%)) with 

time plots using the threshold detection routine in pClamp (version 9.0, Axon 

Instruments). Images immediately preceding the beginning of sparks were used as the 

baseline level, Fo. The beginning of the spark was identified as that image having a 

change in fluorescence > 5% above baseline.  

 

Measurement of free intracellular Ca2+ concentration ([Ca2+]i). Isolated 

cardiomyocytes were loaded by incubation with 1 µM fura-2 acetoxymethyl ester for 30 

min at 35°C and then allowed to settle onto a glass coverslip that comprised the bottom of 

a perfusion chamber (~0.75 ml vol).  The chamber was mounted on a Nikon inverted 

microscope and continuously perfused with bathing solution at 2-3 ml/min at room 

temperature.  Cells were considered viable if they demonstrated a characteristic rod shape 

without blebbing and contracted reversibly after electrical pacing with a pair of platinum 

electrodes.  Cells were illuminated with alternating 345- and 380-nm light using a 

Deltascan system (Photon Technology International), with the 510-nm emission detected 

using a photometer, as previously described 8.  [Ca2+]i was calibrated according to the 

methods of Grynkiewicz et al 9, with [Ca2+]i = (Kd(R-Rmin)/(Rmax-R)) Sf2/Sb2, where Rmin 

and Rmax are the ratio of fluorescence intensity at 345/380, and Rmin and Rmax are the 

ratios with Ca2+-free and saturated conditions, respectively.  Sf2/Sb2 is the ratio of 
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fluorescence values for Ca2+-free/Ca2+-bound indicator measured at 380 nm.  We used a 

dissociation constant (Kd) of 225 nM for binding of Ca2+ to fura-2 9 and a viscosity factor 

of 0.6.  Data were corrected for background fluorescence.  The calculation of [Ca2+]i 

involves a number of assumptions, and factors such as inhomogeneity of Ca2+ within 

cells introduce uncertainty in the values.  However, the time-course of [Ca2+]i

To examine the frequency-dependent changes of twitch [Ca

 transients 

is not influenced by the calibration. 

2+]i

To study the time to restore the steady-state of twitch [Ca

 transients, 

myocytes were stimulated at frequencies from 0.25 Hz to 2 Hz.  The cell stimulation at 

any frequency lasted for 60 s was then stopped for 30 s before resumed to next higher 

frequency. 

2+]i transients following 

caffeine-induced depletion of SR Ca2+

The SR Ca

 store, myocytes were continuously stimulated at 

0.5 Hz and 10 mM caffeine was applied for 30 s by pressure ejection from a micropipette 

(10 mm) when myocyte twitches had reached steady state. 

2+ load in myocytes was assessed by rapid application of 10 mM 

caffeine to induce SR Ca2+ release.   

 

Cells were first stimulated at 0.25 Hz.  When cell 

twitches stabilized, the stimulation stopped and 20 s later 10 mM caffeine was applied for 

30 s. 

Measurement of Contractile Performance of the Isolated Cardiomyocytes. Isolated 

cardiac myocytes from control and VPL rats were transferred to a continuously perfused 

glass-bottomed chamber mounted on a Nikon inverted microscope (Nikon Eclipse 

TE2000-U) equipped with a plan apochromatic X60 water immersion lens (NA 1.2). The 
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chamber was perfused with normal Tyrodes solution at 1 to 3 ml per min. Myocyte 

contraction was induced once per two second (0.5 Hz) by platinum field electrodes 

placed in the cell chamber. Bright field images of a single cell were continuously 

acquired at 67 frames/s with a Cascade Photometrics 650 CCD camera (653 x 492 pixels; 

Roper Scientific Inc., Tucson, Arizona, USA). Myocyte dimensions were calibrated with 

a hemocytometer grid placed on the microscope stage. Myocyte length was measured 

using ImageMaster Software (versions 5, PTI Inc.) Myocytes were selected for study 

according to the following criteria: a rod-shaped appearance with clear striations and no 

membrane blebs, no spontaneous contractions.  

 

Langendorff heart perfusion for hemodynamic studies.  Hearts were rapidly excised 

and rinsed in ice-cold normal Tyrodes solution.  The aorta was then cannulated and 

connected with the Langendorff apparatus to start perfusion with normal Tyrodes 

solution at a constant flow rate of 10 ml min−1 at 35±1°C. A water-filled latex balloon, 

connected to a pressure transducer (COBE, Lakewood, CO, USA), was inserted through 

the mitral valve into the left ventricle to allow isovolumic contractions and to 

continuously record mechanical parameters.  The balloon was progressively filled with 

water up to 80 μL to obtain an initial left ventricular end diastolic pressure of 5–8 mmHg 

10.  The normal Tyrodes solution for perfusion consisted of s (in mM) 1.8 CaCl2, 120 

NaCl, 5.4 KCl, 1 MgCl2, 0.33 NaH2PO4, 10 HEPES, and 10 glucose and was adjusted to 

pH 7.4 with NaOH and the solution was equilibrated at 37°C by 100% O2.  

Haemodynamic parameters were assessed using a BioPAC M1000 data acquisition 
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system and analysed using AcqKnowledge® Ver.3.7 software (BioPAC Systems, Goleta, 

CA, USA). 

 

Cardiac Electrophysiological Study of Isolated Hearts and Whole Animals.  Rats 

from control and VPL groups were anesthetized with a mixture of Ketamine (70mg/kg) 

and Xylazine (3.5 mg/kg) and then had standard limb lead ECG recordings for a baseline 

observation of 10 minutes. Subsequently, the hearts were quickly removed, were 

mounted on a Langendorff apparatus and perfused at 35±1°C with normal Tyrodes buffer 

containing (in mmol/L) 1.8 CaCl2, 120 NaCl, 5.4 KCl, 1 MgCl2, 0.33 NaH2PO4, 10 

HEPES, and 10 glucose at pH 7.4. Pair of electrodes were placed on the right atrial 

appendage and ventricular apex to record bipolar epicardial electrocardiograms. Next, the 

atrioventricular (AV) interval, sinus cycle length, sinus node recovery time (SNRT), 

SNRT corrected for spontaneous sinus cycle length (cSNRT), Wenckebach cycle length 

(WCL), and electrical stimulation threshold to induce ventricular arrhythmias were 

determined as described previously11. The AV interval was measured as the time from the 

last paced stimulus to the onset of the QRS complex. The SNRT was measured as the 

time from the last paced stimulus to the onset of the next spontaneous P wave. To control 

for differences in sinus rate, SNRT was normalized to resting heart rate by subtracting the 

sinus cycle length from the SNRT (cSNRT = SNRT – sinus cycle length). Sinus cycle 

length was determined from at least 60 consecutive cycles after the pacing period when 

normal sinus rhythm resumed. A 60-s period was allowed to elapse between each 

successive pacing bouts.  The WCL was determined using 10 ms incremental decreases 

in atrial pacing cycle length. The WCL was defined as the minimum cycle length that 
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failed to conduct through the AV node as indicated by the absence of the QRS. Missed 

ventricular contractions were detected by both the ECG and the arterial pressure 

waveform. The electrical stimulation threshold to induce ventricular arrhythmias was 

determined as previously described11. A Grass S88 stimulator (Grass Instrument Inc., 

Quincy, Mass) delivered trains of pulses through the ventricular stimulating electrodes 

(50 Hz; 10 ms pulse duration). The intensity of the trains was increased in 10 µA 

increments every 10 s. The electrical stimulation threshold to induce ventricular 

arrhythmias was determined as the minimum current that caused ventricular arrhythmias. 

Ventricular arrhythmias were identified on the ECG as rapid, wide QRS complexes with 

concomitant decreases in arterial pressure. Normal sinus rhythm appeared on termination 

of the stimulation without the 

 

use of defibrillation shocks. 
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APPENDIX C 

Movie 1. Ca2+ sparks in myocyte isolated from control rat 
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Movie 1 is available online at the following webpage link.  

http://ir.lib.uwo.ca/cgi/preview_article.cgi?article=1113&context=etd 

 

Movie 1.  Ca2+ sparks in myocyte isolated from control rat.  Ventricular myocytes 

were isolated and with fluo-4 dye and monitored using a high-speed digital fluorescence 

imaging system.  This movie was acquired at 67 frames per second and plays in real time.  

Cell was stimulated by field electrodes at 0.5 Hz, initiating global rise of Ca2+ 

accompanied by contraction.  When Ca2+ transients reached a steady state, stimulation 

was stopped (only last three transients are illustrated).  After several seconds delay some 

brief, highly localized Ca2+ sparks were evident in the myocyte and no Ca2+ waves were 

evident. The image is 127 x 24 µm. 
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APPENDIX D 

Movie 2. Increased incidence of Ca2+ sparks in myocyte from verapamil-treated rat 
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Movie 2 is available online at the following webpage link.  

http://ir.lib.uwo.ca/cgi/preview_article.cgi?article=1113&context=etd 

 

Movie 2.  Increased incidence of Ca2+ sparks in myocyte from verapamil-treated rat.  

Ventricular myocytes were isolated from rat chronically treated with verapamil, then 

loaded with fluo-4 dye and monitored using fluorescence imaging.  This movie was 

acquired at 67 frames per second and plays in real time.  Cell was stimulated by field 

electrodes at 0.5 Hz, initiating global rise of Ca2+ accompanied by contraction.  When 

Ca2+ transients reached a steady state, stimulation was stopped (only last three transients 

are illustrated).  Many Ca2+ spark sites were apparent, with frequent events, and the 

sparks were larger and of longer duration.  In this cell a Ca2+ wave was also generated at 

the peak of Ca2+ spark activity.  The image is 127 x 24 µm. 
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