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Abstract— Transcribed exons in genes are joined together at 

donor and acceptor splice sites precisely and efficiently to 
generate mRNAs capa1ble of being translated into proteins. The 
sequence variability in individual splice sites can be modeled 
using Shannon information theory. In the laboratory, the degree 
of individual splice site use is inferred from the structures of 
mRNAs and their relative abundance.  These structures can be 
predicted using a bipartite information theory framework that is 
guided by current knowledge of biological mechanisms for exon 
recognition.  We present the results of this analysis for the 
complete dataset of all expressed human exons.  

Index Terms—Biological System Modeling, Genetics, 
Information Theory, Monte Carlo Methods  
 

I.  INTRODUCTION 

Transcribed coding sequences are processed in mRNA by 
coordinately recognizing acceptor and donor splice sites 
across an exon, according to the exon definition hypothesis1,2. 
The selection of splicing signal sequences is complex, 
involving exon and intron sequences, complementarity with 
small nuclear (sn) RNAs, RNA secondary structure and 
competition between splicesomal binding sites3,4,5. The major 
splicesomes contain snRNAs to guide recognition to 
constitutive donor and acceptor sites, which define exons6,7,8 
(U1, U2 and U4-U6). U1 ribonuclear protein (snRNP) 
interacts with the donor (or 5’) splice site9,10, and U2 (and U6) 
snRNP with the acceptor (or 3’) and lariat pre-mRNA 
branchpoint sites10,11. Although both U1 and U2 base pair to 
mRNA, the complexes formed with human splice donors and 
acceptors vary in their stability because the duplexes are often 
mismatched12. 
     The intrinsic stability of these interactions can be analyzed 
using information theory, which comprehensively and 
quantitatively models the thermodynamics of functional 
sequence variation13,14. Information theory-based methods are 
based solely on experimentally validated sites, in contrast with 
training models using both true binding sites and non-binding 
sites15. The average information, Rsequence, connotes the overall 
conservation of a set of sites bound by the same recognizing 
protein(s), whereas particular binding sites that are members 
of this set are ranked by their individual information contents 
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(Ri)17,20. Information theory-based models achieve very high 
sensitivity and specificity for detection of human donor and 
acceptor sites26 (>98%). Further, changes in the affinity of a 
protein or protein complex for its cognate binding site can be 
estimated from differences in individual information contents 
between sites17. From the second law of thermodynamics, a 1 
bit change in information corresponds to at least a 2-fold 
change in binding strength. Strong binding sites have Ri 
values > Rsequence, and weak sites are those with Ri < Rsequence.  
The zero coordinate on the Ri distribution can be understood 
from a thermodynamic viewpoint. In theory, Ri values > 0 
correspond to true binding sites, since as entropy increases, 
energy is dissipated upon binding to the nucleic acid 
sequence. Selection of the most frequent base at each position 
of the information weight matrix [Ri(b,l)] produces the 
consensus sequence, which is the upper bound of the 
distribution of Ri values.  
     In the present study, we model exon definition by 
minimizing entropy of a bipartite sequence pattern contained 
within human exon and flanking intron sequences. Our goal is 
to determine whether donor and acceptor  splice sites may be 
concommitantly identified with this algorithm, analogous to 
the in vivo mechanism. Unlike other bioinformatic approaches 
for exon recognition18, this model does not require any of the 
hallmarks of protein translation in order to define the exon. A 
bipartite module consists of left- and right- motifs separated 
by an unspecified sequence that is recognized as a functional 
unit. We optimize the parameters  that result in the maximum 
number of left and right motifs being defined as the acceptor 
and donor splice sites of a set of known exons.  
      

II.  METHODS 

A.  Algorithm 
    The bipartite cis-regulatory module is found by minimizing 
Shannon entropy over a set of unaligned sequences containing 
the two motifs separated by a gap of unspecified sequence 
(H)19,20. This determines the total information content of the 
exon (Ri,total) for left and right motifs of different lengths for 
the gap lengths, d, which separate them. Each motif is 
represented by a different position weight matrix. The 
objective function (total information content, Ri,total) is:  
 
          )()|()|(, dgdrightRdleftRR iitotali −+= ,  
where 

( ) },{,)()()|(
1

rightleftmlHHEdmR
mJ

l
mnbi ∈−=∑

=

    and 

Peter K. Rogan, Ph.D. 

Ab initio exon definition using an information 
theory-based approach 

progan
43rd Annual IEEE Conference on Information Sciences and Systems: Workshop on Biological and Bio-inspired Information Theory



PAPER #279 
 

 

2

},,,{,)(log)( 2 TGCADneDHE nb =−= . Jm is 
the width of motif m and e(n) is a sample correction, Hm(l) is 
the entropy for motif m at position l14.  The gap surprisal 
function, g(d), is defined as –log(n(d)/n), and n(d) is the 
number of sites with length d.  g(d) increases uncertainty, 
since it decreases the overall information content. Details of 
the Monte-carlo-based entropy minimization procedure 
used, comparisons with other methods, simulations and 
model performance have been presented previously19. The 
algorithms have been implemented and successfully applied to 
determine single block and bipartite motifs of a variety of 
prokaryotic and eukaryotic bifurcated binding sites20.We have 
developed, Partite, a C++ program that implements the 
algorithm (available from the author). This software permits 
analysis of either one or both strands, either a single block or 
bipartite model, selection of either a uniform or non-uniform 
background distribution, either zero or one site per sequence, 
and an option to apply or exclude the gap surprisal penalty. 
Other parameters that can be specified include the minimum 
and maximum gap lengths, the method used to determine the 
minimum entropy alignment (eg. Monte Carlo estimation, 
Gibbs sampling, simulated annealing, or a genetic algorithm), 
the width of the left and right (or single block) motifs, the 
nucleotide length of sequences flanking the respective motifs, 
the number of pseudocounts, a temperature and/or cooling 
factor, and the number of Monte Carlo cycles performed. The 
program takes a single concatenated set of raw sequences as 
input, each designated with a separate header line.  

B.  Data 
Models of internal exons containing both acceptor and donor 
sites were derived from human exon sequences extracted from  
NCBI Build 36.122. Data were limited to validated, expressed 
genes in the manually-annotated, human Vega database23. 
153,506 interstitial exon sequences, each  flanked  by adjacent 
100 nucleotide upstream and downstream intronic intervals, 
were downloaded with the Ensembl Biomart tool24. Initial and 
terminal exons of genes lacking both donor and acceptor 
splice sites were excluded.  

C.  Analysis 
We varied the lengths of sequences separating bipartite 
patterns, the respective motif lengths,  the inclusion of the gap 
surprisal term, and the number of Monte Carlo cyles in each 
entropy minimization.  The number of sequences used to 
derive each model was also varied, such that 20 randomly 
sampled datasets were assessed for each quantity of sequences 
analyzed.   Phylogenetic trees of information weight matrices 
were produced using the UPGMA method for each of datasets 
comprising the same number of sequences, as a means of  
detecting potential sampling bias.  The left and right motifs of 
the bipartite motifs for each model were ranked according to 
their Pearson’s correlation E-values, ie. expected number of 
times that a similarity this strong would be observed by 
chance in a target database of random motifs25 relative to to a 
validated set of aligned, single site donor and acceptor Ri(b,l) 
matrices12.  
 

III. RESULTS 
Predicted bipartite information theory-based models for exon 
definition were compared with models of validated splice 
sites. The accuracy of these models was determined from the 
predicted locations of left and right motifs in known exons.     
Published models of acceptor and donor sites are 28 and 10 
nucleotides in length, respectively12,26. Previously, residual 
information above background levels was detected 3 
nucleotides further upstream and 5 nucleotides further 
downstream of the coordinates defined by these matrices.  The 
average length of internal exons is 97 nucleotides, and 99.6% 
of all exon lengths are below  than 500 nucleotides. We 
therefore specified 500 nucleotides as the maximum gap size 
separating the bipartite motifs. The average information of 
models based on individual, validated splice acceptors 
(n=108,079) and donors (n=111,772) are 7.5±3.4 bits and 
6.7±2.3 bits.  
     The bipartite model based on the most comprehensive 
dataset (153.506 exons), unexpectedly, did not produce high 
sensitivity or specificity for detection of acceptor and donor 
splice sites. While the motifs found are related to known 
splice sites and contain sequence elements found in those 
sites, the locations of these sequences often do not coincide 
with exon boundaries, although they usually overlap splice 
donor and acceptor sites. The polypyrimidine tract 
immediately upstream of the majority of U2-associated splice 
acceptor junctions is a conserved feature of nearly all of the 
models derived. The comprehensive exon set and several 
other models exhibit a preference for TG dinucleotide motif 
far upstream of the polypyrimidine tract at a level of 
conservation which significantly exceeds the bit content of 
these positions in true acceptors. This presence of this 
conserved sequence is not consistent with any previously 
described motif, including the branchpoint recognition site27.   
The generally conserved AG dinucleotide that defines the 
exon-intron junction is absent from this model, indicating the 
the TG combined with the polypyrimidine submotifs together 
exhibit lower entropy than the natural splice site motif. The 
TG-submotif is separated from the polypyrimidine tract  by 11 
nucleotides. This suggested that the detection true positive 
acceptor sites might be enhanced by truncating the motif 
length, as other workers have done28. This did not 
significantly improve either the accuracy of acceptor splice 
junction detection, but in some instances, the Ri(b,l) matrices 
of these motifs exhibited greater similarity to natural acceptor 
sites.    
     Bipartite models based on fewer exons were found to be 
more accurate and were more highly correlated with the 
Ri(b,l) matrices derived from known splice sites (Table 1). 
The best models were obtained by bootstrapping random sets 
of either 2000 or 4000 exons from the comprehensive dataset. 
Increasing the numbers of exons (6000,8000,10000,15000) 
produced models with left motifs that abrogated recognition of 
the conserved AG dinucleotide at the acceptor splice junction, 
even though this sequence is essentially invariant in all U2-
associated splice sites (which comprise more than 99% of 
genomic exons; Fig 1). Models based on 1000 sites (or fewer) 
resembled natural splice sites, but generally did not detect 
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both donor and acceptor sites.   The optimum minimal exon 
length was found to be 60 nucleotides, which corresponds 
closely to shortest natural exon lengths in these datasets. 
Regardless of the number exons aligned, models with longer 
minimal exon lengths (ie. 75-100 nucleotides) could 
accurately detect either acceptor or donor splice sites, but not 
both types of sites as an ensemble. Specifying longer intersite 
distances seemed to decrease Type I errors at the expense of 
an increase in Type II errors through the elimination of short 
exons. Inclusion of the gap surprisal term in the model, did 
consistently improve accuracy, however improvements were 
generally modest. Nevertheless, it was necessary to specifiy 
minimum threshold lengths in order to avoid detection of 
other sequence signals within transcripts unrelated to splicing 
(Fig. 2). As expected, very short inter-motif minimum 
distances produced accurate models of either acceptor or 
donor sites, but not both. The motifs detected adjacent to the 
constitutive splice site motifs were generally 6 to 8 
nucleotides in length, had Rsequence values ranging from 4 to 8 
bits, and tended to be uniformly distributed within an ~200 
nucleotide interval  circumscribing either natural donor or 
acceptor splice sites. Several of these short motifs appear to be 
similar to Ri(b,l) matrices of binding sites recognized by 
highly expressed splicing regulatory proteins29.   
 

IV. DISCUSSION 
     The optimal bipartite model produced by entropy 
minimization accurately detected 90% of known exons and 
was derived from either 2000 or 4000 exon and intron 
sequences. While this level of accuracy is comparable or 
better than other available approaches30,31,32, even higher 
sensitivities and specificities will be required to predict the 
structures of mRNA splice forms from primary genomic 
sequences.  Constitutive splice site recognition can be 
modulated by the effects of adjacent splicing regulatory 
sequences33. Incorporation of additional  motifs derived from 
these sequences (exon and intron enhancer and silencer 
elements) may boost the accuracy of the bipartite models 
derived in this study.  Because of their shorter length and 
lower levels of conservation, these regulatory sequences have 
lower overall information content and have higher multiplicity 
than constitutive splice sites. The combinatorial effects of 
individual regulatory sequences may be addititive. Gap 
surprisal terms will be required to correct for the distances 
between these sequence elements and neighboring constitutive 
splice sites. More complex models containing these features 
will be required to accurately describe the multitude of 
abnormal splice forms produced by mutations that affect 
normal mRNA splicing.  
    The minimal entropy models based on larger numbers of 
sites often do not include the highly conserved nucleotides 
proximate to the acceptor splice junction.  A common 
characteristic of the models based on >4000 sites is the 
increased conservation of the polypyrimidine tract. These 
tracts can vary considerably in length among different splice 
acceptor sites. The left motif probably represents a major 
subset of strong splice sites that is selected for by the model 

which cumulatively contains more information than the highly 
conserved nucleotides close to the splice junction. 
Furthermore, variation in the distance beween the conserved 
polypyrimidine elements and the  conserved nucleotides 
proximate to the splice junction cannot be detected by the 
entropy minimization algorithm, such the the conservation at 
the acceptor splice junction is not preserved in the model. The 
failure to detect the conserved submotif adjacent to the 
junction cannot be mitigated by decreasing the motif length, 
which tends to find other conserved patterns among large sets 
of exon sequences.   
    Splice site recognition is a multistep process, coordinated 
by the action of both small RNAs and numerous proteins. This 
aspect of the biological mechanism raises the possibility the 
current ab initio approaches  may be inadequate to catalog and 
quantify the strengths of multiple nucleotide motifs that are 
recognized in all exons. Assuming the goal is to develop 
models that can be applied for all interstitial exons, 
multipartite models which allow for variable length gaps both 
within individual splice sites as well as between them may be 
necessary to model exon definition.    
  

V. CONCLUSION 
Bipartite methods based on entropy minimization can 
frequently identify donor and acceptor splice sites at exon 
boundaries without prior alignment.  Reasonably accurate 
models for exon definition can be obtained:  (a) by limiting 
the number of exons aligned, (b) setting motif lengths to be 
comparable to those of known splicing signals, and (c) by 
specifying a minimum distances separating the motifs that is 
consistent with the distribution of known exon lengths.   
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  Motifs:                          Left                                                                              Right                                 No.  of sequences 

                  Acceptors: 108,079; 
                                                                                                                                                                      Donors: 111,772  

…          153,506 (All exons) 

                   1,000 exons 

                2,000 exons 

 4,000 exons 

                      6,000 exons 

                8,000 exons 

                   10,000 exons 

     15,000 exons 
Figure 1. Representative sequence logos for exon definition models. The initial set of logos was derived by iterative refinement of 
acceptor (left motif) and donor (right motif) recognition sites from a genome-wide set (where all sites have Ri >0 bits).  All other 
sequence logos were derived as bipartite patterns with minimum and maximum intersite distances of 60 and 500 nucleotides, 
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respectively. The left and right motifs depicted here were specified to be 31 and  15 nucleotides in length, however other lengths 
and intersite distances were also evaluated (but are not shown). 

   
Figure 2. Predicted bipartite vs. natural exon lengths. Left and middle panels are the gap distribution of left and right motifs from 
2000 and 4000 exons with flanking intron sequences. The right panel indicates the actual exon length distribution of the exons 
used to derive the predicted distribution in the middle panel.  
 
         Table 1. Properties of predicted bipartite models for exon definition 
No.exons Min Gap 

Length  
Surprisal 
Applied 

Left  
Length 

Rseq 
(bits) 

Accuracy E-valuea Right  
Length 

Rseq  
(bits) 

Accurac
y 

E-valueb   H 
(bits) 

1000 60 - 31 10.7 0.88 5.8e-5 15 7.3 0.0 7.3e-1 73.9 
2000 60 - 31 10.3 0.89 3.1e-7 15 7.9 0.86 3.5e-5 73.8 
2000 60 + 31 10.3 0.90 3.0e-7 15 8.0 0.92 3.8e-5 73.7 
2000 5 - 31 10.5 0.82 2.4e-5 10 7.6 0.0 6.6e-1 63.9 
2000 5 - 10 8.1 0.0 7.4e-6 15 8.9 0.0 8.2e-1 33.1 
4000 60 - 31 9.7 0.69 3.6e-7 15 8.1 0.70 3.2e-5 74.1 
4000 60 + 31 9.7 0.90 3.6e-7 15 8.1 0.99 3.2e-5 74.2 
4000 100 - 31 9.7 0.90 3.5e-7 15 6.5 0.31 6.9e-3 75.0 
4000 1 - 31 10.0 0.88 2.1e-5 10 7.6 0.08 7.8e-1 64.4 
4000 1 - 10 8.1 0.0 1.9e-1 15 8.4 0.99 3.2e-5 33.0 
6000 60 - 31 10.0 0.0 2.9e-3 15 7.3 0.36 2.0e-2 75.1 
6000 100 - 31 10.1 0.0 1.7e-1 15 6.9 0.99 2.9e-5 75.0 
8000 60 - 31 9.3 0.71 1.3e-2 15 7.8 0.73 3.1e-5 74.9 
8000 60 + 31 9.3 0.0 1.6e-3 15 7.8 0.93 4.0e-5 73.7 
8000 100 - 31 9.3 0.0 1.8e-3 15 6.6 0.43 2.5e-1 76.1 
8000 5 - 31 10.3 0.92 2.6e-7 10 7.3 0.0 7.1e-1 64.3 
8000 1 - 31 10.3 0.87 2.7e-5 10 7.4 0.0 8.5e-1 64.3 
8000 1 - 10 8.2 0.0 9.6e-6 15 8.4 0.0 7.3e-1 33.4 
10000 60 - 31 9.4 0.0 2.2e-3 15 8.0 0.88 4.4e-5 74.8 
10000 100 - 31 10.1 0.75 2.0e-7 15 6.4 0.21 4.4e-1 74.5 
10000 100 + 31 9.5 0.66 1.3e-2 15 7.8 0.55 3.3e-5 74.5 
10000 5 - 31 10.4 0.61 3.1e-7 10 7.4 0.0 6.4e-1 74.1 
10000 1 - 10 7.9 0.66 1.7e-9 15 8.7 0.0 6.0e-1 33.1 
15000 60 - 31 8.9 0.0 2.0e-2 15 8.1 0.95 3.0e-5 75.0 
15000 100 - 31 9.3 0.0 1.7e-3 15 7.1 0.58 5.0e-5 75.9 
153,506 60 - 31 8.7 0.0 1.1e-2 15 7.9 0.80 4.8e-5 75.5 
153,506 100 - 31 8.7 0.0 1.4e-2 15 6.5 0.67 1.0e-4 76.9 
Each row represents model parameters and averaged results for a randomized sample of datasets. Not all models are shown.  The 
best fitting models are italicized. Comparisons are with validated  acceptora and donor siteb models.  No.exons: number of exons 
sampled from complete exon set; Min Gap Length: shortest distances between motifs. Surprisal applied: gap surprisal corrected; 
Left length: nucleotides in left motif; Right length: nucleotides in right motif; Rseq: Rsequence; Accuracy: proportion of motifs 
which define true splice acceptor or donor site; E-value: chance probability, that there is another alignment with the splice site  
Ri(b,l) with a similarity greater than the Pearson correlation coefficient; H: minimum entropy value for the alignment. 
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