
Western University
Scholarship@Western

Computer Science Publications Computer Science Department

10-2006

Verifiable Electronic Voting System: An Open
Source Solution
Halina Kaminski
University of Western Ontario, hkaminski@csd.uwo.ca

Mark Perry
University of Western Ontario, mperry@uwo.ca

Follow this and additional works at: https://ir.lib.uwo.ca/csdpub

Part of the Computer Sciences Commons, and the Constitutional Law Commons

Citation of this paper:
Kaminski, Halina and Perry, Mark, "Verifiable Electronic Voting System: An Open Source Solution" (2006). Computer Science
Publications. 11.
https://ir.lib.uwo.ca/csdpub/11

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Western

https://core.ac.uk/display/61615102?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/csdpub?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/csd?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/csdpub?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/589?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/csdpub/11?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages

VERIFIABLE ELECTRONIC VOTING SYSTEM:

AN OPEN SOURCE SOLUTION
Halina Kaminski* and Mark Perry**

*Dept. Computer Science / **Faculty of Law and Dept. Computer Science

University of Western Ontario, London, Ontario, CANADA

{hkaminski | markp}@csd.uwo.ca

ABSTRACT
Elections, referenda and polls are vital processes for the

operation of a modern democracy. They form the

mechanism for transferring power from citizens to their

representatives. Although some commentators claim that

the pencil-and-paper systems used in countries such as

Canada and UK are still the best method of avoiding vote-

rigging, recent election problems, and the need for faster,

better, cheaper vote counting, have stimulated great

interest in managing the election process through the use

of electronic voting systems. While computer scientists,

for the most part, have been warning of the possible perils

of such action, vendors have forged ahead with their

products, claiming increased security and reliability.

Many democracies have adopted electronic systems, and

the number of deployed systems is rising. Although the

electronic voting process has gained popularity and users,

it is a great challenge to provide a reliable system. The

existing systems available to perform the election tasks

are far from trustworthy. In this paper we describe VEV

(Verifiable E-Voting), an electronic voting system which

is opne, but also provides for secret and secure voting, and

can be used and verified over existing network system.

KEY WORDS

Free Libre Open Source Software; Electronic Voting;

Security; Trust

1. Introduction

It is clearly desirable that the operation of our

governments be transparent: we need to have trust in the

work of our Nation State. In this paper we suggest that the

adoption of Free/Libre and Open Source Software

(FLOSS) as the primary software resource for key

government responsibilities to ensure transparency and

trust in such systems, in particular the electoral system,. In

this paper we present a Verifiable Electronic Voting

system that we have developed and released as FLOSS.

[9]

Today, nearly every government in the world wants to

know more about free software and how the model works,

and the private sector is not far behind. Some

governments have already begun the task of migrating to

the use of free software in the public sector. The free

GNU/Linux operating system now rivals the dominance

of Microsoft Windows in controlling how our computers

and networks run, at least at an institutional level. For

example, the Australian Government Information

Management Office’s (AGIMO) recognises that the use of

open source software is “particularly widespread in areas

such as network infrastructure, single-purpose computer

servers, security, Internet and intranet applications and

network communications” in both the private and public

sectors. [10]

In Europe there has been a flurry of projects that are

addressing the possibility of widespread adoption of Free

Software. The FLOSS project (Free/Libre and Open

Source Software) [1] ran from June 2001 for 16 months. It

had European Commission funding to gather data on

FLOSS use and development. The project was looking to

find hard economic data on the effects of FLOSS

contributions as a “non-monetary economic network”, the

distribution patterns of such software, measuring

contribution and use, business models, particularly change

management.[2] The project was remarkable as the first of

its kind to collect such empirical data on a large scale on

FLOSS. Following FLOSS’s success at making an inroad

into providing data on FLOSS, further EU projects have

followed. FLOSS-POLS (Free/Libre/Open Source

Software: Policy Support) [3] is a current project funded

by the European Commission to analyse “government

policy towards open source; gender issues in open source;

and the efficiency of open source as a system for

collaborative problem-solving…. [and] focus on studying

the impact of policy and providing policy

recommendations.”[4] By March 2005, FLOSS-POLS had

surveyed 4,138 public authority IT administrators in 13

European member states (excluding Hungary). The key

outcomes of this survey are that they found 79% of those

surveyed used some FLOSS, and that there is a desire for

increased use amongst them. Also notable is the different
countries showed different profiles.

An electronic voting system provides the means for the

election authorities to carry out the election process using

computer-based technology. Although it brings ease to the

voters and election candidates, computer scientists argue

that voting on line is not safe, because the network,

operating system, access, ore even hardware may have

security flaws. [5] There has been very little in the way of

workable voting system code release as FLOSS.

Many voters already use some sort of computerized voting

system. [6] Punch cards, like the ones used in USA

presidential elections in 2000, are tallied by a

computerized counting machine that detects the punched

holes in a ballot. This form of voting has been used since

the 1960’s [7]. Optical scanners are used for those voting

systems that use paper and pen, to detect pen marks made

on a ballot. Optical scan vote counters are not as old as

punch card technology, but they seem somewhat archaic

compared to other technologies that we use everyday. For

many people, an electronic voting is the next logical step

for elections.

In Brazil and the Netherlands, many voters already use

ATM-like machines to cast their vote. Using these

machines, voters gather at their traditional voting precinct

and cast their ballots in a kiosk, just like the one they have

always used. This kiosk retains the privacy that voters

want. Voters carry in a cartridge and place it in the e-

voting computer, which displays the candidates on a

touch-screen, liquid-crystal display. Unlike paper ballots,

these machines display information about each candidate

aside from their party affiliation, and might even display

the candidate's photo so that there is less confusion over

identity. A voter makes his choice by touching the screen.

Once the voter has completed the ballot, the computer

allows the voter to review his or her choice before

returning the cartridge to an election official.

In an electronic voting process voters can simply point

and click on the candidate they support. This type of

voting has the potential to significantly increase voter

turnout. In 1998, only 44.9 percent of Americans of voting

age took the time to vote. According to [3] many non-

voters say that the inconvenience of registering or voting

is the main reason they did not cast a ballot.

Dill in [2] points out that unless the voting process is

verifiable, it can not be trusted. In most of existing Direct

Recording Electronic (DRE) voting machines the internal

mechanics of voting are hidden from the voter. It is

possible that a computer can easily display one set of

votes to the voter while recording entirely different votes

in electronic memory. This can be caused by a

programming error or by a malicious design of the system.

Almost all of DRE machines currently used in USA

require official certification, but the election officers are

powerless to prevent programming errors in recording of

the votes. DRE code is usually protected by code secrecy

agreements, so no one but the manufacturer has access to

it. Dill et al. says that the only way to have a trusted

electronic voting system is to include a voter-verifiable

paper audit trail in all DRE voting machines. The voting

system that is described in this report provides a secure

way to count and to verify the votes.

While computer scientists and critics in North America

are concerned with the insecurity of electronic voting

machines, Australians designed a voting system five years

ago, and they made most of the source code of the

underlying software available to the public [8].The system

had to be implemented over a secure network (using

independent connections). This requirement alone

provides enormous difficulty to the election authorities in

Australia. The state was able to test only 80 machines

distributed among 8 polling stations in their 2002 election.

2. The Task

The design of a “good” voting system, whether electronic

or using traditional paper ballots or mechanical devices

must be robust against a wide variety of potentially

fraudulent behavior. The following voting system

requirements were born out of the desire to create a

product that would allow modern computer-based

technology to truly emulate the secure properties as

valued in the public voting. The purpose of this project is

to make it impossible for voting authorities to engage in a

fraudulent behaviour, and at the same time the system will

provide the secrecy for the voters. VEV has been an

attempt to provide a voting system that would be:

1. anonymous - no one should be able to determine how

any individual voted

2. secret - all cast votes should be unknown until the

election ends

3. correct - It should not be possible for a vote to be

altered, or for a valid vote to be eliminated from the

final tally, or for an invalid vote to be counted in the

final tally

4. honest - no one should be able to vote twice or

change the vote of another voter

5. public - after an election all results should

publicly known, but the connection between votes and

the voters should be both unprovable and unknown

Critics of the electronic voting systems say that the voters

who use them have no way to verify that their votes are

being recorded and counted accurately. In case of an

electronic system the only known solution to this problem

is to introduce a “voter-verifiable audit trail”. Most

commonly, this is achieved by adding a printer to the

voting terminal. When the voter finishes selecting

candidates, a ballot is printed on paper and presented to

the voter. If the printed ballot reflects the voter’s intent,

the ballot is saved for future reference [2].

The design of a VEV helps to overcome these difficulties.

In part, the system uses the idea introduced in [9]. It

provides a significant improvement to the process of

electronic voting by publishing the voting results to the

screen. The system does not involve printers or paper

receipts. Every user will be able to see the number of

votes that were cast and the final results for each

candidate, but only the particular user will know if his/her

vote was counted and if it was counted correctly.

3. The protocol

There have been a number of conditions that have to be

met in order to provide voters with a secure electronic

voting system. This paper includes the description of the

general steps that needed to be taken in the design of the

system to provide the user with voting security. The

requirements for the system are the following:

1. Voting takes place over a computer network

The electronic voting system is designed to be

implemented and used over an existing computer network.

The system includes three major parts: server’s side

program, client’s (voter) side application and

administrator’s (administrative user) side software. The

server-application should be stored and executed on the

main network computer. The client-application could be

located either on the main computer or on every network’s

terminal. It is recommended that, for the security reasons,

the administrator’s application should be stored on the

removable storage device (such as floppy, CD), kept

secure, and run only when changes are being made to the

voting procedure. The administrator’s software should be

used with extra caution.

2. Only authorized voters can vote

Every voter will be assigned a user’s name and a unique

password. The administrator will be responsible for

choosing the appropriate values for the name and

password, since it depends on the election importance as

well as the election settings, (e.g. students at the Computer

Science Department might be assigned departmental

user’s names and their students numbers as passwords; the

secret service workers can use randomly generated

numbers as their identification). The administrator has to

deliver the user’s names and passwords to each eligible

voter. It is up to the election administrators to decide what

means of delivery will be chosen (e-mail, regular mail, in

person). It is assumed that this is done in a very secure

way.

3. The voter can cast only one vote

It is important for the system that it allows each voter to

cast one and only one vote. It is required by the

democratic election process that there can not be more

votes cast than there are voters. This system will provide

the option of a re-vote to each user. Therefore it becomes

of great importance that the previous vote cast by the

particular voter will be erased when that user votes again.

4. Only the voter can know his/her vote

In democratic elections only the voter can know his voting

strategy: This is the secrecy requirement. There can not be

a trace left between the voter and the vote and all the links

should disappear. No one should be able to recognize the

voter by looking at the ballot.

5. Each voter can check if his/her vote was counted

There is a great improvement to the electronic voting

process in VEV. Every user can check if his/her vote is in

the ballot (which means it has been counted). The system

will provide the option to check the votes (check the

ballot), and the voting strategy identification (discussed

below) will be displayed. Each user can count the votes

that were cast. He can recognize his vote among the

displayed votes.

6. Each voter can change his mind

When the election process progresses, the voter can

become aware that he did not vote for the candidate he

wanted. VEV provides the option to re-vote. It is assumed

the re-vote is available before the final voting date. The

user can change his mind multiple times. The system

supports a multiple re-vote function. Every time the new

vote is cast the existing vote from that user is erased.

The voting system that is described in this paper uses the

public-private key paradigm to encrypt information. In

VEV, the user’s identification number (id) and the voting

strategy number (v) (which is a numeral representation of

the candidate’s name) are the two prime numbers that are

being used. There are three different algorithms designed

to do calculations with these two prime numbers and

returning one large number as a result. It is randomly

chosen in the program which of the three algorithms is

used when the voting is performed.

4. The algorithms

Function 1:

First function uses multiplication function as the

underlying calculation. As a result, the product of two

prime numbers is returned.

Function 2:

This function calculates the product of two prime

numbers. It swaps the values of the individual bytes

within the binary representation of the product (namely

copies the value of last byte into the byte before the last,

and the value of the second last byte into the last byte. The

same swapping operation is done to the third and fourth

last byte of the product).

Function 3:

This function calculates the product of two prime

numbers. It flips (replaces with the complementary value)

the values of the individual bits within the binary

representation of the product. The algorithm changes the

values of bit positions: 3,6,7,12,15.

The fact that both of the prime numbers are randomly

generated for each user and for each voting strategy

provides enormous security for the system. The standard

RSA cryptosystem uses the same p and q throughout its

lifetime where in the voting system presented here the

probability that the same two numbers will be used twice

is very close to zero. The major part of the private key

constitutes the fact that there exists a system defined index

that uniquely identifies each candidate. Even if the

intruder is able to factor the voting strategy function

result, having two prime numbers would not give him any

reasonable answer. The secret lies in the knowledge of

indexing the candidates and having the function inverses.

For this particular reason the usage of 25-bit long prime

numbers provides sufficient security to the voting system.

The prime numbers are being generated using the

constructor for BigInteger class from the Java

programming language library. The method returns a

randomly chosen, 25-bit long positive integer which is a

prime number. The probability that the newly generated

number represents a prime number will exceed (1 -

1/2
100

). The execution time of this constructor is

proportional to the value of the probability parameter

(which in this case is 100). In addition, each newly created

number is checked once again by isPrime() function from

the Java class library.

In the remainder of this paper, the word user will be used

interchangeably with the word voter to describe the person

who is casting the vote. The word server will be used to

describe the software implemented and executed on the

network’s main computer and the word client constitutes

to the computer program that provides the graphical

interface to the user, and allows for communication

between the server and the voter.

Phase 1: Preparation

VEV (hereafter called system) publishes the number of

eligible voters and the deadline for the response. In order

to be able to vote, each voter has to confirm his intention

to vote and only those who respond will be allowed to cast

the vote later. There will be a specified period of time

when the voters can respond.

Phase 2: Voting Scenario

When the date for the user’s response passes, the system

enters the phase of the main voting process. The voting

system running on the server is constantly waiting for the

user to connect. The voter starts using the system by

entering his user name and the password which he

previously obtained from the system’s administrator. Then

the system authenticates the user. If the system recognizes

the user it makes all functionality available to this person

(such as vote, re-vote or view the existing votes). If the

voter is not a recognized person (either the user’s name or

the password does not match the records) he is treated as a

guest to the system and the only thing that he is able to

view are the existing votes. If the recognized user chooses

to cast the vote for the first time the system creates the

identification number for that user. When the eligible user

wants to cast a vote for the first time the client software

will randomly generate a 25-bit long prime number (id)

which will be used to uniquely identify that particular user

(that number has to be checked against existing

identification tags that have been stored already in the

server’s database; if such a number exists already, a new

identification tag is generated).

In the next step of casting a vote the user chooses the

candidate that he wants to vote for. The system displays

the names of the election candidates and the user chooses

one of them. The numerical encoding for every voting

strategy (e.g. name of candidate) is a large prime number.

VEV is able to handle as many as 24 candidates to be

voted for. The number 24 provides the opportunity for the

unique encryption of each voting strategy. First, all

numbers that end with 1,3,7,9 between 10 and 100 are

selected (the underlying reason for that is the fact that the

prime numbers end with 1, 3, 7, 9). This way a set of two

digit numbers has been created (hereafter called indexes).

For every index from the set, an election candidate is

assigned. When the user chooses to cast a vote for a

particular candidate, a random 25-bit prime number (v) is

generated such that the first digit is equal to the first digit

of the index and the last digit of v is the same as the last

digit of an index. E.g.: Say we have an election candidate

Anna S. Initially the system had assigned an index

identification number to her that is 51. If the voter decides

to cast the vote for Anna S. the client’s program will

randomly generate the prime number 5…..1 (first and last

digit match the index).

Next, the user sends the pair of integers (id, f (id, v)) to the

system where f is a randomly chosen encryption function

(one of three algorithms that are explained above); id is

the identification tag generated for the user, and v is the

candidate’s name represented in the number; f (id, v) is

the result of the encrypting method that takes id and v as

its parameters. The system does not know the connection

between the user’s name and the id tag (or the voting

strategy). The only association that is known to the system

is the connection between the id tag and the vote function

f (id, v). The user is asked to write down his identification

number (id) and the result of the voting strategy function.

He is also informed by the system to keep these numbers

secret. When the server’s side receives the numbers it

publishes the voting function result to the screen. The user

can easily check by choosing the Check Votes option if his

vote was counted.

For each election candidate the system displays f(id,v) to

the screen. This way the user can check the correctness of

his vote and the distribution of all votes. Publishing the

voting strategy will serve an additional function. Every

election candidate will be able to check if the votes were

counted correctly. It might be of a great importance for

the candidates, because it is known that the elections have

been won by a difference of several votes.

5. Implementation

The primary advantage of public-key cryptography is

increased security and convenience. The private key never

needs to be transmitted or revealed to anyone. This section

explains the major steps that have to be taken in order to

implement this voting system whose security is based on

the usage of public-private key paradigm. It has been

assumed that the server is running on the main computer

and is constantly waiting for a client to connect. It is also

anticipated that every user possesses the knowledge of his

user’s name and password. The italic type characters will

be used to indicate the processes occurring on the server’s

side of the voting system.

6. Main server’s functionality

Pseudo code:

//second phase: user can vote and re-vote
The system recognizes the user and chooses the

correct response depending on user’s input:

 …
 switch (state) {
case VOTE:// user wants to vote
 create new Vote object
 outLine = "User wants to vote";
 os.println(outLine);
 //check once more if the user can vote

 while(true){
 read the input from the client
 get the id (prime) from the client’s system;
 }
 inString=is.readLine();
 BigInteger t = new BigInteger(inString);
 hash_function = (HashFunc)Oin.readObject();
 //set Vote object variables:
 current.setId(prime);
 current.setVoteFunction(t1);
 current.setHash(hash_function);
 voteStructures.addElement(current);
 //update the users parameters
 writeVoteFile();
 found.setVotedOnce(true);
 writeUsersFile();
 outLine ="Voting done successfully.";
 }
 case PRINTRESULTS:
 // user wants to print results
 outLine = "The following are the voting results:";
 os.println(outLine);
 readVoteFile();
…
 case VOTEAGAIN:
 // User wants to re-vote
 Create new Vote object
 readVoteFile();
 toChange = this.findPrimeVote(id);//find an
existing vote
//change the voting strategy
 …
 toChange.setVoteFunction(hash_vote);
 toChange.setHash(hash_function);

Step 1: Authentication

1. Voter starts the execution of the client’s side

program.

2. Client asks the user to enter his name.

3. Server’s side application checks if the name exists on

the list of users that are eligible to vote.

4. If the name exists, the user is asked to enter his

password; otherwise the user is considered to be

system’s guest.

5. In case that the user’s name exists, the server checks

if the password matches the user’s name (if the

password does not match, the user is considered to be

the guest).

Step 2: User’s operations

Phase 1 (the time allocated to acknowledge users’

responses with the willingness to vote)

1. Client displays the names of the users that are eligible

to cast a vote.

2. User chooses the option to confirm voting or the

option to exit.

3. If user chooses to confirm voting the server records

user’s willingness to vote.

4. Client displays the “Thank you” message and informs

the user about voting dates.

Phase 2 (the time allocated for the actual voting)

User chooses to vote

1. Server checks (using user’s name and password) if the

user has voted already.

• If the user did not cast his vote yet, the client

randomly generates 25-bit long prime number and

assigns it as an identification number to that

particular voter.

• The message is displayed on the screen asking the

user to take a note of this number and not to reveal it

to anyone.

• Client displays the names of the election candidates,

and asks the user to choose one of them.

• User types in the number of the candidate for whom

he wants to cast the vote.

• Client randomly generates 25-bit long prime number

called voting strategy, such that it meets the

specification to match the first and the last digit with

candidate’s index number (private key requirement).

• Client performs one of the encrypting functions

(called also a voting function; there is a random

choice made to use one of the three available

encrypting methods) on the user’s identification ta g

and the voting strategy number.

• Client displays the voting function to the user. The

user is asked to write the number down and to keep it

confidential.

• Client sends the pair (identification tag, voting

function result) to the server.

• Server stores the vote information in its database

• Server records that the user voted already. It is done

to prevent the user from casting multiple votes.

• When the user chooses to exit, client disconnects and

the link between user’s name and his vote disappears.

2. If the user previously cast the vote, he is asked to

choose the re-vote option

User chooses to re-vote

1. Client asks the user for his identification tag number.

2. Client asks the user for his voting function.

3. Server checks if the vote exists.

• Client displays the names of the election

candidates, and asks the user to choose one of

them.

• User types in the number of the candidate for

whom he wants to cast the new vote.

Client randomly generates 25-bit long voting strategy

number, such that it meets the specification to match the

first and the last digit with the candidate’s index number

(private key requirement).

• Client performs one of the encrypting functions

(there is a random choice made to use one of the

three available encrypting methods) on the user’s

identification tag and the voting strategy number.

• Client displays the result of voting function to the

user. The user is asked to write the number down

and to keep it confidential.

• Client sends the pair (identification tag, voting

function result) to the server.

• Server stores new vote in its database and erases

the old vote.

User chooses to check the votes

1. Client displays the voting functions for all votes that

were cast. To make it easier for the user to find his

vote, the list of votes is displayed in an ascending

order.

2. User can check if his vote is in the ballot, which

means it was counted.

User chooses to exit

1. Client displays the “Goodbye” message

2. Client disconnects from the server

Phase 3 (after voting deadline)

1. Client displays all the voting functions to the screen.

The votes are displayed in such a way (see below),

that for every candidate the voting function numbers

are displayed in an ascending order. The user can

check if his vote was counted correctly, and the

election candidates can verify the voting results.

7. Conclusions

Voting software cannot be treated in the same way as a

word processor or other applications, as we have even less

reason to blindly trust the vendor – especially when the

whole country’s future is at stake. Most of the recent news

about harnessing electronics for the election process has

been bad.[8] While much work in the USA is aimed at

strengthening the ever-tight security around the software

source code (it has been suggested that the voting

application source code could not be reviewed even if

challenged in court), there is a contrary approach whereby

the voting code is made public, ie released as FLOSS. It is

often argued [e.g. 10], that the only way to have a

trustworthy system is to open the source code of

cryptographic functions to the public. The algorithm can

really be considered secure when is examined by many

experts. “… [t]he only way to have any confidence in an

algorithm's security is to have experts examine it.”[11]

refuse connection
[user not recognized]

record the vote

display candidates
check dates [valid for a
chosen action]

authenticate

 return/display result

Users Candidates Votes Time/Date

return

Sequence Diagram for Voting Scenario

Australian officials believe that elections can benefit from

involving the voters in the software development process.

Perhaps a truly open system can alleviate some of these

issues.[9]The voters can dictate the requirements

including security and functionality of the voting system.

No matter how many election flaws are found, and despite

their severity, electronic voting systems are here to stay

and serve us all. The only question remains: “How much,

or little, trust can we afford?”

8. Acknowledgements

This research was funded by Natural Science and

Engineering Research Council. Thanks to Shiva Mohan

for coding support, and Professor Lila Kari for algorithm

development.

1. References

1 < http:// http://flossproject.org/ >. The project refers

throughout to OS/F software as in “open source/free’.

2 ibid.

3 General description of project at < http://flosspols.org/ >

4 The survey report is at <

http://flosspols.org/deliverables/FLOSSPOLS-

D03%20local%20governments%20survey%20reportFIN

AL.pdf > and was completed on 14 July 2005.

[5] Dill, David, Schneider Bruce, Simons Barbara Voting

and Technology: Who Gets to Count Your Vote?

Communications of the ACM, August 2003.

[6] Kohno, Tadayoshi; Stubblefield, Adam; Rubin, Aviel

D.; Dan S. Wallach. Analysis of an electronic Voting

System, IEEE Computer Society Press, Johns Hopkins

University Information Security Institute Technical

Report TR-2003-19, 2003.

[7] Neumann Peter, Mercuri Rebecca, Weinstein Lauren.

Internet and Electronic Voting, The Risks Digest, ACM

Committee on Computers and Public Policy, Volume 21,

Issue 14, December 12, 2000.

[8] Zetter, Kim. Aussies Do It Right: E-Voting, Wired

News Magazine (online), November 03, 2003.

[9] H.Nurmi, A.Salomaa, L.Santean. Secret ballot

elections in computer networks. Computers and Security,

nr.10, 1991, pp.553-560.

[10] Bruce Schneier is an internationally renowned

security technologist and author. Schneier is best known

as a security critic and commentator. His books include:

Applied Cryptography, Secrets and Lies, and Beyond Fair.

[11] Schneier, B. Crypto-Gram Newsletter, September 15,

1999, Retrieved on August 26, 2004 from: <

http://www.schneier.com/crypto-gram-9909.html >.

[12] See Brennan Center Task Force on Voting System

Report The Machinery of Democracy: Protecting

Elections in an Electronic World 27 June 2006

[13]The VEV software is open: <

http://sourceforge.net/projects/vev >.

[14] AGIMO, A Guide to Open Source Software (2005),

p.10.

User Screens

Authentication

User Choice

Results display

	Western University
	Scholarship@Western
	10-2006

	Verifiable Electronic Voting System: An Open Source Solution
	Halina Kaminski
	Mark Perry
	Citation of this paper:

	Microsoft Word - HK_MP_lawtech-F.doc

