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ABSTRACT  

As -carboxy nucleoside phosphonates (-CNPs) have demonstrated a novel mode of action of 

HIV-1 reverse transcriptase inhibition, structurally related derivatives were synthesized, namely 

the malonate 2, the unsaturated and saturated bisphosphonates 3 and 4, respectively and the 

amide 5. These compounds were evaluated for inhibition of HIV-1 reverse transcriptase in cell-

free assays. The importance of the -carboxy phosphonoacetic acid moiety for achieving reverse 

transcriptase inhibition, without the need for prior phosphorylation, was confirmed. The 

malonate derivative 2 was less active by two orders of magnitude than the original -CNPs, 

while displaying the same pattern of kinetic behavior; interestingly the activity resides in the 

“L”-enantiomer of 2, as seen with the earlier series of -CNPs. A crystal structure with an 

RT/DNA complex at 2.95 Å resolution revealed the binding of the “L”-enantiomer of 2, at the 

polymerase active site with a weaker metal ion chelation environment compared to 1a (T--

CNP) which may explain the lower inhibitory activity of 2. 
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INTRODUCTION 

World Health Organization statistics state that 2.1 million people were infected with the human 

immunodeficiency virus (HIV) in 2013, bringing the number of people now living with the virus 

to approximately 35 million.1 While a recent study claims that the retrovirus is slowly becoming 

milder in its virulence due to a number of factors (i.e. mutations, increased drug resistance),2 

other work has predicted increasing rates of disease transmission.3 Thus, the quest for novel 

drugs that possess anti-HIV properties (in terms of mechanism of action, resistance profile, 

inhibition potency, side effects profile, etc.) is of utmost importance. 

Recently, we disclosed the synthesis and evaluation of a novel class of -carboxy nucleoside 

phosphonates (-CNPs) 1 which exhibit potent HIV-1 reverse transcriptase (RT) inhibitory 

properties in cell free assays (Figure 1).4,5 Most importantly, these compounds unlike nucleoside-

analog drugs do not require intracellular activation (i.e. phosphorylation) in order to display 

activity against the virus-encoded RT. Interestingly, the -carboxy phosphonate moiety is acting 

as a triphosphate mimic as demonstrated by crystallographic analysis. In fact, the carboxylate 

oxygen mimics the interaction of a nucleotide α-phosphate with a Mg2+ ion, while the two 

phosphonate oxygens of the α-CNPs mirror the interaction of - and -phosphate oxygens of 

nucleotides with the same Mg2+ ion.5  

 

Figure 1. -carboxynucleoside phosphonate (-CNP) 
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Intrigued by this novel mode of action, we decided to investigate the influence of altering the 

carboxy phosphonate group on HIV-1 RT inhibition while keeping the remainder of the α-CNP 

structure intact. Accordingly, the malonate 2, bisphosphonates 3 and 4 and the amide 5 were 

chosen as potential targets. In addition, previously synthesized esters4 6 and 7 were also included 

in the evaluation (Figure 2). The key aspect we wish to investigate is whether the activity of the 

-carboxy phosphonate could be mimicked through the diacid 2 or the bisphosphonates, or 

indeed whether the carboxylic acid could be replaced by a primary amide in 5 or an ester in 6 

and 7, thereby determining whether the ionizable acid is essential, or whether the metal ion 

coordinating ability of a primary amide is sufficient to maintain the inhibitory activity of the -

CNPs against HIV-1 RT. 

 

Figure 2. Targets selected for HIV-RT inhibition 

Compound 2 possesses a diacid moiety which is related to the diketoacid (DKA) structural 

feature which has been implicated in the activity of HIV-1 integrase (IN) inhibitors,6 namely 

raltegravir 8,7,8 elvitegravir9 9 and the recently approved dolutegravir 10.10 The planar geometry 

of the DKA moiety is believed to facilitate chelation of two Mg2+ ions in the active site. 11,12 
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Compound 11 exhibits moderate inhibition of wild-type HIV-1 RT polymerase.13 The 

bisphosphonate moiety of 3 and 4 is a key structural motif in compounds such as pamidronic 

acid 12 which is used in the treatment of bone-related diseases.14 Recently, advocacy for their 

use in the treatment of HIV-related osteoporosis has increased.15 Inorganic pyrophosphate (PPi) 

13 is formed during the catalytic cycle of nucleotide monophosphate incorporation into a 

growing nucleotide copolymer and it can induce a conformational change in polymerases from 

an open to a closed conformation by binding to the active site.16 Investigations have centered on 

the ability of bioisosteres of PPi to inhibit HIV-1 RT. Foscarnet (phosphonoformic acid)17-19 14 

acts by trapping the pre-translocational state of HIV-1 RT, and while phosphonoacetic acid 

(PAA) 15 is a potent anti-herpetic agent, it is virtually ineffective against HIV.20-22 

Oxophosphonoacetate 16 is an inhibitor of some nucleic acid polymerases.22,23 

Carbonylbisphosphonate (COBP) 17, first isolated by Quimby24 and further investigated by 

McKenna, is efficient at inhibiting HIV-1 RT.23,25,26 Compound 18 is non-inhibitory towards 

HIV-1 RT, however, and despite extensive efforts having been devoted to the synthesis of small 

molecule substituted derivatives of 15 and 18, these efforts have usually resulted in less effective 

HIV-1 RT inhibitors than foscarnet.26 The preparation and characterization of AZT 5´-COBP 19 

has been described, but no biological data has been reported.27 More recently, purine-like 

bisphosphonates 20 and 21 have been shown to inhibit HIV-1 RT-catalyzed synthesis.28 Finally, 

the amide 5 is reminiscent of anti-HIV pronucleosides 22 and 23 documented by Shirokova, with 

22 inhibiting virus replication by 90% at significantly lower concentrations than AZT.29 
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In this context, evaluation of the properties of the malonate 2, bisphosphonates 3 and 4 and the 

amide 5 was warranted. 

 



7 

 

 7 

RESULTS AND DISCUSSION 

Scheme 1. Synthesis of malonate derivative 2.a 

 

aConditions: (a) ABSA, K2CO3, MeCN, 48 h; (b) 26, Rh2(OAc)4, C6H6, 80 °C, 12 h; (c) 

thymine, Pd(dba)2, dppb, Na2CO3, aq. MeCN, Microwave (MW) 50 °C; (d) H2, Pd/C 1 atm, 

MeOH, 15 h. 

The synthesis of 2 was accomplished in four steps from commercially available dibenzyl 

malonate (Scheme 1). Diazo transfer to 24 was achieved in the presence of 4-

acetamidobenzenesulfonyl azide (ABSA) to give the novel dibenzyl 2-diazomalonate 25. 

Building upon our previous work with rhodium insertion reactions,30,31 rhodium (II)-catalyzed 

OH insertion of 25 with the allylic alcohol 2632-34 furnished 27 in 48% yield.  Thymine base 

insertion of 27 in a palladium-catalyzed Tsuji-Trost reaction35 was carried out under microwave 

conditions to afford 28. Finally, simultaneous hydrogenation of the cyclopentyl alkene and 

hydrogenolysis of the benzyl esters of 28 was achieved under atmospheric pressure of hydrogen 

in the presence of Pd/C to provide the target malonate 2 in racemic form (57% yield). Despite 

our initial concerns that 2 may undergo decarboxylation during isolation or upon standing, a 

solution of 2 in MeOH-d4 was found to be stable at room temperature for up to 6 months. We 
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have already described the synthesis and characterization of the decarboxylated compound 294 

and were unable to detect its presence by NMR in the solution of 2 after 6 months. Furthermore, 

storage of malonate 2 in solid state proved easier than anticipated, with little or no evidence of 

decarboxylation on storage for several months.  

The malonates were also synthesized in both enantiopure forms 2a and 2b. This was achieved 

using the same sequence of reactions described for the racemic series starting from the 

commercially available enantiomers of the acetoxy alcohol 26a and 26b (Scheme 2). Yields were 

consistent with those obtained for the racemic series. 

Scheme 2. Synthesis of enantiopure forms of 2.a 

 

aConditions: (a) 25, Rh2(OAc)4, C6H6, 80 °C; (b) thymine, Pd(dba)2, dppb, Na2CO3, aq. 

MeCN, MW 50 °C; (c) H2, Pd/C 1 atm, MeOH. 
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Scheme 3. Synthesis of bisphosphonates 3 and 4.a 

 

aConditions: (a) 26, Rh2(tfacam)4, C6H6, 80 °C; (b) thymine, Pd(dba)2, dppb, Na2CO3, aq. 

MeCN, 50 °C MW; (c) (i) TMSBr, lutidine, MeCN, MW 50 °C, (ii) MeOH/H2O 1 h, (iii) 

charcoal chromatography; (d) H2, Pd/C 1 atm, MeOH, 15 h; (e) (i) TMSBr, MeCN, MW 50 °C, 

(ii) MeOH/H2O 1 h, (iii) charcoal chromatography. 

A similar strategy was employed for the preparation of the racemic bisphosphonates 3 and 4 

(Scheme 3).  It was envisaged that O-H insertion of tetraethyl diazomethylenebisphosphonate 

3036 with alcohol 26 would require more forcing conditions than the analogous reaction with 

diazomalonate 25. Therefore, in this case, the more active rhodium trifluoroacetamide was 

employed as catalyst and it was added portionwise over the course of the reaction.  Gratifyingly, 

under these conditions, the O-H insertion product 31 was obtained in 87% yield after correction 

for the recovered starting material 26.  Introduction of thymine under Tsuji-Trost conditions 

proceeded efficiently in the microwave to afford bisphosphonate 32 in 48% yield.   Finally, 

cleavage of the phosphonate ethyl esters of 32 was achieved using bromotrimethylsilane 

(TMSBr) in the presence of lutidine and the desired unsaturated bisphosphonate 3 was isolated as 

its ammonium salt in 84% yield following charcoal chromatography. Interestingly both the O-H 

insertion and base insertion steps were effective despite the alteration from the phosphonoacetic 
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acid moiety to the malonate and bisphosphonate confirming the generality of the synthetic route 

developed for the α-CNPs. Palladium mediated hydrogenation of 32 afforded 33 and subsequent 

hydrolysis of the phosphonate esters of 33 followed by charcoal chromatography gave 4 as the 

ammonium salt. 

Scheme 4. Synthesis of amide 5.a 

 

aConditions: (a) 7N NH3 in MeOH, 65 h; (b) (i) TMSBr, MeCN, MW 50 °C, (ii) MeOH/H2O 

30 min, (iii) charcoal chromatography. 

The synthesis of the amide (Scheme 4) derivative 5 commenced with the methyl ester 34, which 

was also a key intermediate in the synthesis of -CNPs which we described earlier.4 Aminolysis 

of the carboxy methyl ester was achieved by stirring 34 for 65 h in a 7N solution of ammonia in 

methanol to afford 35 in 35% yield.  The low yield may be explained by the fact that attack at the 

phosphonate ester groups is also possible under the reaction conditions. Following isolation of 35 

by chromatography, the phosphonate esters were hydrolyzed and 5 was isolated as the 

ammonium salt in 70% yield. 

The eight structurally related compounds (malonates 2, 2a, 2b, bisphosphonates 3 and 4, amide 5 

and esters 6 and 7) were evaluated for their inhibitory activity using a cell-free HIV-1-RT assay 

and the results compared with those obtained for the parent -CNPs (1, 1a, 1b and 36).4,5 Poly 

rA.oligo dT was used as the homopolymeric template/primer, and [3H]dTTP as the radiolabeled 
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substrate. The IC50 (50% inhibitory concentration) was determined as the compound 

concentration required to inhibit RT-catalysed dTTP incorporation into the growing DNA strain. 

For the parent α-CNPs, our research has already shown that the “L”-enantiomer 1a is the more 

active of the two enantiomeric compounds (Table 1, Entry 2 vs. 3). The effect of unsaturation of 

the racemic α-CNPs (i.e. compound 36 compared to 1) is to decrease the activity by ~ 5-fold 

(Table 1, Entry 4 vs. 1).4 

Importantly, the presence of a methyl ester in place of the carboxylic acid effectively shuts down 

activity as evidenced by results obtained for 6 and 7. This effect is further highlighted by the 

amide 5 which shows poor, if any, relevant inhibitory activity against HIV-1 RT (Table 1, Entry 

12). The lack of significant activity of the amide and esters 6 and 7 confirms that two ionizable 

moieties are required to efficiently coordinate the magnesium ions to display efficient RT 

inhibition. 

The unsaturated bisphosphonate 3 is poorly active (IC50: 204 µM) (Table 1, Entry 10), while the 

saturated analog 4 is similarly ineffective to inhibit HIV-1 RT. 

The racemic malonate 2 (Table 1, Entry 7) displays an activity approximately 100-fold less than 

observed for racemic α-CNP 1 (Table 1, Entry 1). However, the results obtained for the 

enantiopure malonates are interesting in terms of mirroring the behavior observed for the α-

CNPs. The malonate 2a (“L”-enantiomer) is 2-fold more active (IC50: 20 µM) than the racemic 

mixture 2 (IC50: 42 µM) [Table 1, Entry 8 vs. Entry 7], while the “D”-enantiomer lacked any 

relevant inhibitory activity against HIV-1 RT (IC50: > 640 µM) [Table 1, Entry 9]. Such a 

selective activity profile (predominant activity by the “L”-enantiomer) has also been observed 

for the prototype α-CNPs as mentioned above. Also, it should be noticed that the malonate 2a, as 
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also found for the α-CNPs, does not need metabolic conversion to a higher phosphate metabolite 

to exert anti-HIV-1 RT activity. 

Table 1. Inhibitory activity of the compounds against HIV-1 RT 

 

aBase = Thymine. bFifty percent inhibitory concentration, or compound concentration required 

to inhibit HIV-RT-catalyzed incorporation of [3H]dNTP in the homopolymeric template/primer. 

Data are the mean  SD of at least 3 to 4 independent experiments. cSynthesis (1, 1a, 1b, 36, 6 

and 7) and IC50 data (1, 1a, 1b, 36) see Ref 4. 
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Finally, when the active malonate enantiomer 2a was investigated for its kinetic interaction with 

HIV-1 RT, reciprocal velocity versus substrate Lineweaver-Burk plots revealed a competitive 

inhibition of the enzyme by 2a with respect to the natural substrate dTTP (Fig. 3). The inhibitory 

constant Ki of 2a was 6.6 µM. The Km of dTTP was 5.9 µM. This kinetic behavior was also 

earlier observed for the prototype α-CNP compound 1.5 

 

Figure 3. Lineweaver-Burk plots for the inhibition of HIV-1 RT by compound 2a. 

A crystal structure of 2a was determined in complex with HIV-1 RT/38-mer DNA aptamer;37 the 

38-mer DNA template-primer aptamer mimics the binding of a double-stranded (ds) DNA at the 

polymerase active site, and contains a single-stranded (ss) DNA template overhang.37  The pre-

formed crystals were soaked in a 2mM solution of 2a for the formation of RT/DNA/2a ternary 

complex, and the crystal structure revealed the binding of 2a at the polymerase active site (Fig. 

4).  The structure contains two copies of RT/DNA, and only the first one has ordered electron 

density for 2a. The general mode of binding of 2a is similar to that of 1a (T--CNP).5 The 

thymine base of 2a is base-paired with the adenine base of 1st overhang nucleotide, and the 
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cyclopentyl ring is positioned over the aromatic side chain of Tyr115; both interactions of 2a are 

analogous to those observed with the binding of 1a (T--CNP) to RT.  However, metal chelation 

at the polymerase active site differs for the two inhibitors.  One oxygen from each of the 

carboxyl groups of 2a chelate with a Mg2+ ion (metal B) at the polymerase active site, and the 

ion also chelates to the main-chain carbonyl oxygen of V111 and a side-chain oxygen of the 

catalytic aspartate Asp185.  Interestingly, the catalytic residue Asp110 is switched away from the 

active site, and does not participate in the Mg2+ chelation in the structure of the 2a complex.  

Presumably, the chelation of the malonate group of 2a is not compatible with the chelation of all 

three catalytic aspartates (Asp110, Asp185, and Asp186), which is observed for the binding of a 

dNTP and for 1a (T--CNP).5 The binding of 2a involves only 4 observed chelations for the 

Mg2+ ion B in contrast to a complete octahedral coordination environment when T--CNP 1a 

was bound.  We expect that two water molecules might be involved to complete the coordination 

environment for the Mg2+ ion when 2a is bound, however, no clear electron density was 

observed for any potentially chelating ordered water molecule in the crystal structure of 

RT/DNA/2a complex.  In summary, the structure suggests that the significantly perturbed 

coordination environment due to the malonate group is a primary contributor to the lower RT 

inhibition by 2a compared to the inhibition by 1a (T--CNP). Thereby, a potent CNP class of 

nucleoside competing RT inhibitor (NcRTI) should chelate the catalytic Mg2+ ions in a mode 

analogous to that observed in the chelation of a dNTP substrate. 
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Figure 4. Structure of 2a in complex with HIV-1 RT/DNA. (a) 2.95 Å resolution electron 

density map defines the binding of 2a (green) at the polymerase active site of RT.  The inhibitor 

binding affinity has contributions from the base pairing (gray dotted lines) and base stacking, 

hydrophobic stacking of the cyclopentyl ring with the aromatic side chain of Tyr115, and the 

chelation with a Mg2+ ion at the polymerase active site (black dotted lines).  The chelation 

environment for 2a is significantly different from the octahedral coordination environment 

observed for 1a (T--CNP) (b). 

When evaluated for their anti-HIV activity in cell culture, the compounds were found to be 

antivirally inactive at concentrations up to 100 µM. Also, they were devoid of any significant 

cytotoxicity. Presumably, the compounds might be too polar to be efficiently taken up by intact 

cells. Therefore, a prodrug approach should be considered to deliver the active molecules 

directly into the intact virus-infected cells. The design and synthesis of such prodrug derivatives 

are currently under investigation. 
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CONCLUSION 

We designed and synthesized structurally related analogues of -CNPs and investigated their 

ability to inhibit HIV-1 RT in cell-free enzyme assays. The amide derivative 5 was virtually 

inactive while the bisphosphonates 3 and 4 also exhibited poor inhibition of HIV-1 RT. The 

requirement for two ionizable functional groups to be present in order to exhibit inhibition was 

demonstrated through the lack of activity of both esters 6 and 7 and also the amide 5.  The 

malonate 2 was the most active of the compounds albeit significantly less active that the original 

-CNPs. Enantiopure forms of the malonate behaved in a similar fashion to the parent -CNP in 

that the activity resides in the “L”-enantiomer. The crystal structure together with the RT 

inhibition data confirms the significance of the α-carboxy phosphonoacetic acid moiety in 

affording efficient RT inhibition without need for any further phosphorylation. 

EXPERIMENTAL SECTION 

General Information 

Solvents were distilled prior to use as follows: dichloromethane was distilled from phosphorus 

pentoxide; ethyl acetate was distilled from potassium carbonate. Benzene was dried before use 

with activated 4Å molecular sieves. For O-H and base insertion reactions, solvents were 

degassed by purging with nitrogen for 5 min. Organic phases were dried using anhydrous 

magnesium sulfate. All commercial reagents were used without further purification. Microwave 

reactions were carried out using a CEM Discover in conjunction with Synergy software, reaction 

temperatures were measured by IR sensor. 1H, 13C, and 31P spectra were recorded at 20 °C on 
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300 or 400 MHz spectrometers. Chemical shifts are given in ppm relative to tetramethylsilane 

(TMS) as an internal standard. 31P chemical shifts are referenced to H3PO4 (external standard). 

Coupling constants (J) are given in hertz (Hz). In some cases the signal for the PCH was not 

observed in the carbon-13 NMR spectrum. Infrared spectra were recorded neat on a PerkinElmer 

Spectrum Two; operating in Universal Attenuated Total Reflectance (UATR) mode. Melting 

points were measured using a capillary melting point apparatus and are not corrected. Optical 

rotations were measured at 20 °C at 589 nm in a 10 cm cell; concentrations (c) are expressed in 

g/100 ml, [α] is expressed in units of 10−1 deg cm2 g−1. Low resolution mass spectra were 

recorded in electrospray ionization (ESI) mode, high resolution mass spectra (HRMS) were 

recorded on a Time of Flight spectrometer in electrospray ionization (ESI) mode. Column 

chromatography was performed using silica gel 60. Thin layer chromatography (TLC) was 

carried out on precoated silica gel plates (60 PF254). Visualization was achieved by UV (254 

nm) detection and/or staining with vanillin or permanganate. Compounds 6,4 7,4 2632-34 and 3036 

were prepared by literature methods. 

Reverse transcription assays 

HIV-I RT assays were carried out in the presence of homopolymeric template/primers. Poly(A) 

and dT12-18 were from Pharmacia (Uppsala, Sweden). To prepare the template/primers for the 

RT experiments, 0.15 mM poly(A) was mixed with an equal volume of 0.0375 mM oligo(dT). 

The reaction mixture (50 µl) contained 50 mM Tris.HC1 pH 7.8, 5 mM dithiothreitol, 300 mM 

glutathione, 500 µM EDTA, 150 mM KCl, 5 mM MgCl2, 1.25 µg of bovine serum albumin, an 

appropriate concentration of the tritium-labeled substrate [CH3-3H]dTTP (1 µCi/assay; 60 

Ci/mmole), a fixed concentration of the template/primer poly(A).oligo(dT) (0.015 mM), 0.06% 

Triton X-100, 10 µl of -CNP inhibitor solution (containing various concentrations of the 
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compounds), and 1 µl (being equivalent to 1 pmole (0.13 ng) enzyme or 20 pM final 

concentration) of the HIV-1 RT preparation. The reaction mixtures were incubated at 37°C for 

30 minutes, at which time 100 µl of calf thymus DNA (150 µg/ml), 2 ml of Na4P2O7 (0.1 M in 1 

M HCl), and 2 ml of trichloroacetic acid (10% v/v) were added. The solutions were kept on ice 

for 30 minutes, after which the acid-insoluble material was washed and analyzed for 

radioactivity. For the experiments in which the 50% inhibitory concentration (IC50) of the test 

compounds was determined, a fixed concentration of 1.25 µM [3H]dTTP was used. For the 

experiments in which the kinetic nature of the malonate derivative 2a was determined, different 

[3H]dTTP concentrations (3, 4, 6, 10, 20 and 40 µM) were used in the presence of different 

inhibitor concentrations (75, 30 and 15 µM). The activity values were plotted in a reciprocal 

velocity versus substrate Lineweaver-Burk diagram. It should be emphasized that under the 

experimental conditions, the RT reaction was linear for up to 30 min, and at the end of the 

incubation period, less than 5% of the available dTTP substrate was consumed (incorporated). 

X-ray crystallography 

The crystals of RT/38-mer DNA aptamer complex were obtained using a previously defined 

protocol.37 A crystal soaked in a solution containing 2.5mM of 2 and 20mM MgCl2 for 15 

minutes diffracted the best up to 2.95Å resolution (Supplementary Information Table-1). X-ray 

data were collected at APS 23ID-D beam line.  Due to anisotropy diffractions and radiation 

sensitivity of the crystal, the collected data is only 84.8% complete with 87.5% in the highest 

resolution cell.  The dataset was processed using Mosflm38 and the RT/38-mer DNA aptamer 

binary complex structure (PDB Id. 5D3G) was used as the starting model for obtaining the 

molecular replacement solution.  There are two copies of RT/DNA complex in the asymmetric 

unit. The difference (|Fo| - |Fc|) electron density map clearly revealed the binding of the 
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compound 2 at the polymerase active site of one of two RT/DNA copies in the asymmetric unit.  

The crystallography software Phenix39 and Coot40 were used for structure refinement and model 

building, respectively.  Final refinement statistics are listed in Supplementary Information Table-

1, and the coordinates and structure factors are deposited in PDB with the accession number 

5HLF. 

Synthesis 

Dibenzyl 2-diazomalonate (25) 

Potassium carbonate (3.34 g, 0.024 mol) was added to a solution of dibenzyl malonate (3.19 g, 

0.011 mol) and 4-acetamidobenzenesulfonyl azide (2.65 g, 0.011 mol) in MeCN (50 mL). The 

resulting suspension was stirred for 24 h at room temperature, filtered and concentrated in vacuo. 

The residue was taken up in DCM (50 mL), and the solution was washed with aqueous NaOH 

(50 mL, 1M), water (50 mL) and brine (50 mL), dried (MgSO4) and concentrated in vacuo. The 

residue was purified by chromatography (SiO2, ether) to afford the title compound as a white 

solid (2.21 g, 64%): m.p. = 56-57 °C; max/cm-1: 3407, 2940, 2145, 2129, 1758, 1708, 1690; 1H 

NMR (300 MHz, CDCl3) δ: 5.27 (s, 2H), 7.29-7.39 (m, 5H); 13C NMR (75.5 MHz, CDCl3) δ: 

67.1, 128.2, 128.4, 128.6, 135.3, 160.8; signal for CN2 not seen; Anal. calcd for C17H14N2O4: C. 

65.80; H, 4.55; N, 9.03. Found: C, 65.82; H, 4.62; N, 8.83; HRMS (ES+): calcd for C17H15N2O4 

(M+H)+ 311.1032, found 311.1021; MS (ES+) m/z: 311 (M + H)+. 

(−)-(1S, 4R)-Dibenzyl 2-[(1-acetoxycyclopent-2-en-4-yl)oxy]malonate (27a) 

Rhodium(II) acetate (15 mg, 0.033 mmol, 1 mol%) was added to a degassed solution of (1S,4R)-

cis-4-hydroxy-2-cyclopentenyl acetate 26a (0.50 g, 3.52 mmol) and 25 (1.20 g, 3.87 mmol) in 

benzene (25 mL). The reaction mixture was stirred while heating under reflux for 24 h under a 

nitrogen atmosphere. The mixture was filtered, concentrated and the residue purified by 
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chromatography (SiO2, 20% ethyl acetate/hexane) to give (−)-(1S, 4R)-27a as a pale yellow oil 

(0.82 g, 56%): max/cm-1: 2925, 1730, 1608, 1587, 1235; [α]
20
D

  - 24.38 (c 0.08, CHCl3);
 1H NMR 

(300 MHz, CDCl3) δ: 1.73-1.84 (m, 1H), 1.99 (s, 3H), 2.67-2.81 (m, 1H), 4.62-4.72 (m, 2H), 

5.19 (s, 4H), 5.39-5.47 (m, 1H), 5.94-6.16 (m, 2H), 7.19-7.41 (m, 10H); 13C NMR (75.5 MHz, 

CDCl3) δ: 21.0, 37.1, 67.6, 76.2, 76.8, 82.9, 128.3, 128.53, 128.59, 134.3, 134.8, 135.0, 166.6, 

170.6; HRMS (ES+): calcd for C24H24NaO7 (M+Na)+ 447.1420, found 447.1426. 

(+)-(1R, 4S)-Dibenzyl 2-[(1-acetoxycyclopent-2-en-4-yl)oxy]malonate (27b) 

Synthesized following the procedure described for 27a using: rhodium(II) acetate (15 mg, 0.033 

mmol, 1 mol%), (1R,4S)-cis-4-hydroxy-2-cyclopentenyl acetate 26b (0.50 g, 3.52 mmol) and 25 

(1.20 g, 3.87 mmol). Purification by chromatography (SiO2, 20% ethyl acetate/hexane) afforded 

(+)-(1R, 4S)-27b as a colorless oil (0.65 g, 43%): [α]
20
D

  + 20.00 (c 0.05, CHCl3). 

cis-Dibenzyl 2-[(1-acetoxycyclopent-2-en-4-yl)oxy]malonate (27) 

Synthesized following the procedure described for 27a using: rhodium(II) acetate (15 mg, 0.033 

mmol, 0.8 mol%) , cis-4-hydroxy-2-cyclopentenyl acetate 26 (0.58 g, 4.08 mmol) and 25 (1.40 g, 

4.51 mmol). Purification by chromatography (SiO2, 20% ethyl acetate/hexane) gave 27 as a pale 

yellow oil (0.56 g, 32%, 48% when corrected for recovered alcohol 26). 

 (−)-(1S, 4R)-Dibenzyl 2-[(1-thymin-1-yl-cyclopent-2-en-4-yl)oxy]malonate (28a) 

A microwave vial containing a degassed suspension of thymine (190 mg, 1.51 mmol) and 

sodium carbonate (115 mg, 1.07 mmol) in water (1 mL) and acetonitrile (1 mL) was heated 

under microwave conditions (50°C, 200 W) for 30 min. A degassed solution of (−)-(1S, 4R)-27a 

(420 mg, 0.99 mmol) in acetonitrile (1 mL), bis(dibenzylideneacetone)palladium(0) Pd(dba)2 (30 
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mg, 5 mol%) and 1,4-bis(diphenylphosphino)butane (dppb) (40 mg, 9 mol%) was added to the 

vial. The resulting solution was irradiated (50°C, 200 W) for 30 min whereupon a second portion 

of Pd(dba)2 (30 mg) and dppb (40 mg) was added followed by irradiation (50°C, 200 W) for a 

further 30 min. The reaction mixture was cooled to room temperature, gravity filtered and 

concentrated under vacuum to give a purple residue which was purified by chromatography 

(SiO2, 3% methanol/dichloromethane) to afford compound (−)-(1S, 4R)-28a as an oil (52 mg, 

11%): max/cm-1: 3177, 3034, 2924, 1762, 1742, 1686; 1H NMR (300 MHz, CDCl3) δ: 1.63-1.78 

(m, 1H), 2.64-2.86 (m, 1H), 4.56-4.67 (m, 1H), 4.71 (s, 1H), 5.06-5.32 (m, 4H), 5.55-5.75 (m, 

1H), 5.80-5.96 [m, 1H), 6.15-6.29 (m, 1H), 7.21-7.39 (m, 11H), 9.31-9.52 (bs, 1H); 13C NMR 

(75.5 MHz, CDCl3) δ: 12.3, 37.2, 57.7, 67.8, 77.9, 83.4, 111.6, 128.41, 128.44, 128.63, 128.64, 

128.69, 134.4, 134.65, 134.69, 135.9, 137.1, 151.1, 164.0, 166.1, 166.3; HRMS (ES+): calcd for 

C27H27N2O7 (M+H)+ 491.1818, found 491.1829; MS (ES+) m/z: 491 (M + H)+. 

(+)-(1R, 4S)-Dibenzyl 2-[(1-thymin-1-yl-cyclopent-2-en-4-yl)oxy]malonate (28b) 

Prepared following the procedure described for 28a using: thymine (190 mg, 1.51 mmol), 

sodium carbonate (115 mg, 1.07 mmol), (+)-(1R, 4S)-27b (420 mg, 0.99 mmol), Pd(dba)2 (30 

mg, 5 mol%) and dppb (40 mg, 9 mol%). Purification by chromatography (SiO2, 3% 

methanol/dichloromethane) gave (+)-(1R, 4S)-28b as an oil (18 mg, 4%). 

cis-Dibenzyl 2-[(1-thymin-1-yl-cyclopent-2-en-4-yl)oxy]malonate (28) 

Prepared following the procedure described for 28a using: thymine (160 mg, 1.27 mmol), 

sodium carbonate (97 mg, 0.92 mmol), 27 (355 mg, 0.84 mmol), Pd(dba)2 (25 mg, 5 mol%) and 

dppb (35 mg, 10 mol%). Purification by chromatography afforded compound 28 as an oil (25 

mg, 6%). 
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(+)-(1R, 4S)- 2-[(1-thymin-1-yl-cyclopentan-4-yl)oxy]malonic acid (2a) 

A mixture of (−)-(1S, 4R)-28a (30 mg, 0.061 mmol) and palladium on carbon (10 mg, 10%) in 

methanol (10 mL) was stirred under a balloon of hydrogen at atmospheric pressure for 24 h at 

room temperature. The mixture was filtered on Celite and the cake was rinsed with methanol. 

The filtrate was concentrated to give (+)-(1R, 4S)-2a (12 mg, 63%): [α]
20
D

  + 4.17 (c 0.24, 

MeOH); 1H NMR (300 MHz, MeOH-D4) δ: 1.48-2.15 (m, 8H), 2.19-2.36 (m, 1H), 4.02-4.17 (m, 

1H), 4.55 (s, 1H), 5.01-5.18 (m, 1H), 7.88 (s, 1H); 13C NMR (75.5 MHz, MeOH-d4) δ: 10.8, 

29.7, 30.7, 37.8, 53.6, 76.5, 80.5, 110.7, 139.2, 151.8, 165.1, 169.0; HRMS (ES+): calcd for 

C13H17N2O7 (M+H)+ 313.1036, found 313.1030; MS (ES+) m/z: 313 (M + H)+. 

 

 

(−)-(1S, 4R)- 2-((1-thymin-1-yl-cyclopentan-4-yl)oxy)malonic acid (2b) 

Synthesized using procedure described for 2a using: (+)-(1R, 4S)-28b (25 mg, 0.051 mmol) and 

palladium on carbon (10 mg, 10%) to give (−)-(1S, 4R)-2b (13 mg, 82%): [α]
20
D

  - 6.67 (c 0.06, 

MeOH). 

cis-2-[(1-thymin-1-yl-cyclopentan-4-yl)oxy]malonic acid (2) 

Synthesized using procedure described for 2a using: 28 (25 mg, 0.051 mmol) and palladium on 

carbon (10 mg, 10%) to give 2 (9 mg, 57%). 

cis-1-[bis(Diethylphosphono)methoxy]-4-acetoxycyclopent-2-ene (31) 
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cis-4-Hydroxy-2-cyclopentenyl acetate 26 (0.69 g, 4.7 mmol) and tetraethyl 

diazomethylenebisphosphonate 30 (2.95 g, 9.4 mmol) were dissolved in degassed benzene (15 

mL).  Rhodium (II) trifluoroacetamide (30 mg, 1 mol %) was added and the reaction mixture was 

refluxed for 18 h, after which time a second portion (30 mg, 1 mol %) of catalyst was added and 

reflux was continued for a further 24 h and then a third portion (30 mg, 1 mol %) was added and 

reflux was continued for a further 28 h.  After removal of benzene under reduced pressure the 

residue was subjected to flash chromatography (EtOAc to 5% MeOH:95% EtOAc) to afford 

starting material (0.20 g, 29%) then the title bisphosphonate 31 as an oil (1.25 g, 62%); max/cm-1 

2984, 1733, 1237, 1013; 1H NMR (300 MHz, CDCl3) δ: 1.36 (t, J = 7.1, 12H), 1.90 (dt, J = 14.5, 

4.2, 1H), 2.04 (s, 3H), 2.79 (overlapping dt, J = 14.5, 7.4, 1H), 4.11 (t, JPH = 17.6, 1H), 4.13-4.33 

(m, 8H), 4.76-4.85 (m, 1H), 5.44-5.53 (m, 1H), 5.99-6.06 (m, 1H), 6.16-6.23 (m, 1H); 13C NMR 

(75.5 MHz, CDCl3) δ: (75.5 MHz, CDCl3) 16.2-16.5 (m), 21.0, 37.0, 63.2-63.7 (m), 71.8 (t, JPC 

= 157.8), 76.4, 85.6 (t, JPC = 4.7), 133.6, 135.3, 170.6; 31P NMR (121.5 MHz, CDCl3) δ: 15.65, 

15.80 (q, J = 31.7); HRMS (ES+) Exact mass calculated for C16H31O9P2 [M+H]+ 429.1443; 

found 429.1448. 

cis-1-{4-[bis(Diethylphosphono)methoxy]cyclopent-2-en-1-yl}thymine (32) 

Thymine (95 mg, 0.75 mmol) and sodium carbonate (80 mg, 0.75 mmol) were suspended in 

degassed water (0.8 mL) and degassed acetonitrile (0.8 mL) in a microwave vial and the mixture 

was subjected to microwave irradiation at 50 °C for 30 mins.  Bisphosphonate 31 (270 mg, 0.63 

mmol), Pd(dba)2 (18 mg, 5 mol %) and dppb (27 mg, 10 mol %) were suspended in degassed 

acetonitrile (1 mL), transferred to the microwave vial and the resultant mixture was irradiated at 

50 °C for 30 mins.  TLC analysis showed residual starting material, so a second portion of 

catalysts was added together with more acetonitrile (1 mL) and the reaction mixture was 
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irradiated for a further 30 mins at 50 °C.  After cooling, dichloromethane (5 mL) was added and 

the mixture was filtered through Celite, washed with dichloromethane (20 mL) and the filtrate 

was concentrated under reduced pressure to give a residue which was purified by flash 

chromatography (5-10% MeOH in EtOAc) to afford 32 as a foamy solid (148 mg, 48 %); 

max/cm-1 3169, 2983,  1683, 1251, 1015; 1H NMR (400 MHz, CDCl3) δ: 1.28-1.45 (m, 12H), 

1.86 (dt, J = 15.2, 2.8, 1H), 1.92 (s, 3H), 2.81 (overlapping dt, J = 15.6, 7.9, 1H), 4.14 (t, JPH = 

17.8, 1H), 4.17-4.36 (m, 8H), 4.85-4.93 (m, 1H), 5.63-5.73 (m, 1H), 5.87-5.95 (m, 1H), 6.29-

6.38 (m, 1H), 7.23 (s, 1H), 9.79 (s, 1H); 13C NMR (100.6 MHz, CDCl3) δ: 12.3, 16.0-16.7 (m), 

36.7, 57.8, 63.1-63.6 (m), 72.0 (t, JPC = 158.1), 86.1 (t, JPC = 4.5), 111.2, 134.0, 136.1, 137.2, 

151.2, 164.1;31P NMR (162.0 MHz, CDCl3) δ: 15.72, 15.92 (ABq, JAB = 31.1); HRMS (ES+) 

Exact mass calculated for C19H33N2O9P2 [M+H]+ 495.1661; found 495.1660. 

 

cis-1-{4-[(Diphosphono)methoxy]cyclopent-2-en-1-yl}thymine (3) 

Bisphosphonate 32 (32 mg, 0.065 mmol) was suspended in acetonitrile (1.5 mL) in a microwave 

vial and 2,6-lutidine (75 µL, 0.64 mmol ) then TMSBr (85 µL, 0.64 mmol) were added.  The 

reaction mixture was irradiated at 50 °C for 30 mins then methanol (1.5 mL) and water (100 µL) 

were added and stirring was continued for 1 h.  Solvents were removed under reduced pressure 

and the residue was subjected to charcoal chromatography, eluting with water then 20% aqueous 

ammonia, to give the title compound as the ammonium salt (22 mg, 84%); 1H NMR (400 MHz, 

D2O) δ: 1.64-1.78 (m, 1H), 1.83 (s, 3H), 2.81-3.02 (m, 1H), 3.67-3.98 (m, 1H), 4.85-4.95 (m, 

1H), 5.36-5.46 (m, 1H), 5.80-5.90 (m, 1H), 6.31-6.42 (m, 1H), 7.49 (s, 1H); 13C NMR (100.6 

MHz, D2O) δ: 11.3, 37.2, 59.1, 84.9-85.1 (m), 111.3, 131.9, 137.3, 140.0, 152.4, 166.8, (PCH 



25 

 

 25 

not seen); 31P NMR (162.0 MHz, D2O) δ: 13.4; HRMS (ES-) Exact mass calculated for 

C11H15N2O9P2 [M-H]- 381.0253; found 381.0240. 

cis-1-{4-[bis(Diethylphosphono)methoxy]cyclopentan-1-yl}thymine (33) 

cis-1-{4-[bis(Diethylphosphono)methoxy]cyclopent-2-en-1-yl}thymine (123 mg, 0.25 mmol) 

was dissolved in methanol (10 mL), 5% palladium on carbon (40 mg) was added and the mixture 

was stirred under hydrogen for 17 h then filtered through Celite.  After washing with MeOH ( 2 

x 10 mL) then dichloromethane ( 2 x 10 mL) the filtrate was concentrated under reduced 

pressure and the residue subjected to flash chromatography (1:9, MeOH:EtOAc) to afford the 

title product (106 mg, 86%); max/cm-13171, 2982, 1667, 1240, 1011; 1H NMR (400 MHz, 

CDCl3) δ: 1.31-1.45 (12H, m), 1.49-1.65 (1H, m), 1.77-1.92 (2H, m), 1.98 (3H, s), 2.10-2.23 

(2H, m), 2.33-2.46 (1H, m), 4.04 (t, JPH = 17.6, 1H), 4.15-4.36 (8H, m), 4.41-4.50 (1H, m), 5.15-

5.28 (1H, m), 7.65 (1H, s), 8.81 (1H, s); 13C NMR (100.6 MHz, CDCl3) δ: 12.3, 16.3-16.6 (m), 

30.2, 30.8, 38.3, 53.5, 63.1-63.7 (m), 70.8 (t, JPC = 158.6), 83.4 (t, JPC = 4.2), 111.5, 138.0, 

151.3, 163.7; 31P NMR (162.0 MHz, CDCl3) δ: 16.25, 16.31 (ABq, JAB = 31.2); HRMS (ES+) 

Exact mass calculated for C19H35N2O9P2 [M+H]+ 497.1818; found 497.1821. 

cis-1-{4-[(Diphosphono)methoxy]cyclopentan-1-yl}thymine (4) 

cis-1-{4-[bis(Diethylphosphono)methoxy]cyclopentan-1-yl}thymine (106 mg, 0.21 mmol) was 

suspended in acetonitrile (2 mL) in a microwave vial and TMSBr (420 µL, 0.64 mmol, 15 eq) 

was added.  The reaction mixture was irradiated at 50 °C for 1 h then methanol (2 mL) and water 

(0.5 mL) were added and stirring was continued for 1 h.  Solvents were removed under reduced 

pressure and the residue was subjected to charcoal chromatography, eluting with water then 20% 

aqueous ammonia, to give the ammonium salt of the title compound as a cream solid (24 mg, 
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29%); max/cm-1 2948, 1655, 1272, 1041; 1H NMR (400 MHz, D2O) δ:  1.62-2.11 (m, 8H), 2.31-

2.51 (1H, m), 3.72 (t, JPH = 13, 1H), 4.31-4.51 (1H, m), 4.80-4.95 (1H, m), 7.84 (1H, s); 13C 

NMR (100.6 MHz, D2O) δ: 11.5, 29.1, 30.0, 37.3, 54.8, 81.1-81.3 (m), 111.3, 140.6, 152.6, 

166.7; 31P NMR (162.0 MHz, D2O) δ: 13.76, 13.96; MS (ES+) m/z: 407 (M + Na)+; HRMS (ES-

) Exact mass calculated for C11H17N2O9P2 [M-H]- 383.0409; found 383.0402. 

cis-1-{4-[(Aminocarbonyl)dimethylphosphonomethoxy]cyclopentan-1-yl}thymine (35) 

cis-1-{4-[(Methoxycarbonyl)dimethylphosphonomethoxy]cyclopentan-1-yl}thymine 34 (155 

mg, 0.40 mmol) was dissolved in 7N ammonia in methanol (20 mL, 140 mmol).  The flask was 

tightly stoppered and the solution stirred at RT for 65 h.  After concentration under reduced 

pressure, flash chromatography (1:9, MeOH:CH2Cl2) afforded 35 as a white solid as an 

essentially equimolar mixture of two diastereomers (52 mg, 35%); max/cm-1 3188, 2958, 1661, 

1247, 1026, 727; 1H NMR (400 MHz, CDCl3) δ: 1.56-2.24 (m, 8H), 2.35-2.50 (m, 1H), 3.80-

3.93 (m, 6H), 4.18-4.26 (m, 1H), 4.32 (2 overlapping d which appear as a t, JPH = 18.8), 5.00-

5.22 (m, 1H), 6.67-6.78 (br s, 1H), 6.94 (br s, 0.5H), 7.06 (br s, 0.5H), 7.55 (s, 0.5H), 7.57 (s, 

0.5H), 9.95 (br s, 1H); 13C NMR (100.6 MHz, CDCl3) δ: 12.29, 12.33, 29.6, 30.4, 31.6, 37.4, 

38.5,  53.5, 54.39,  53.8 (d, JPC = 6.8), 54.0 (d, JPC = 6.8), 54.2 (d, JPC = 6.8), 54.3 (d, JPC = 6.9), 

74.1 (d, JPC = 158.1), 75.3 (d, JPC = 157.3), 81.8 (d, JPC = 10.8), 82.7 (d, JPC = 8.8), 111.4, 111.5, 

137.91, 137.93, 151.49, 151.55, 164.2, 169.07 (d, JPC = 3.0), 169.35 (d, JPC = 3.3); 31P NMR 

(162.0 MHz, CDCl3) δ: 18.47, 18.65; HRMS (ES+) Exact mass calculated for C14H23N3O7P 

[M+H]+ 376.1274; found 376.1265. 

cis-1-{4-[(Aminocarbonyl)phosphonomethoxy]cyclopentan-1-yl}thymine (5) 
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cis-1-{4-[(Aminocarbonyl)dimethylphosphonomethoxy]cyclopentan-1-yl}thymine 35 (66 mg, 

0.17 mmol) was suspended in acetonitrile (2 mL) in a microwave vial and TMSBr (93 µL, 0.70 

mmol) was added.  The reaction mixture was irradiated at 50 °C for 10 mins then methanol (1.9 

mL) and water (100 µL) were added and stirring was continued for 10 minutes. Solvents were 

removed under reduced pressure and the residue was subjected to charcoal chromatography, 

eluting with water then 10:10:3, H2O:MeOH:20% aq NH3 to afford the ammonium salt of 5 as a 

fawn solid (45 mg, 70%); max/cm-1 3186, 2957, 1561, 1270, 1055, 765; 1H NMR (400 MHz, 

D2O) δ: 1.52-2.01 (m, 8H), 2.19-2.39 (m, 1H), 3.91 (2 overlapping d which appear as a t, JPH = 

17.2), 4.01 (br s, 1H), 4.66-4.85 (m, 1H), 7.61 (s, 0.5H), 7.64 (s, 0.5H); 13C NMR (100.6 MHz, 

D2O) δ: 11.46, 11.49, 28.7, 28.9, 29.7, 30.5, 36.5, 37.4, 54.7, 55.0, 77.4 (d, JPC = 138.3), 78.0 (d, 

JPC = 138.7), 80.6 (d, JPC = 9.2), 81.1 (d, JPC = 8.8), 111.2, 111.3, 140.1, 140.2, 152.49, 152.51, 

166.49, 166.52, 175.8, 176.0; 31P NMR (162.0 MHz, D2O) δ: 9.7 br; HRMS (ES+) Exact mass 

calculated for C12H19N3O7P [M+H]+ 348.0961; found 348.0953. 
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