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Silicon carbide (SiC) is a promising material for electronics due to its hardness, and ability to carry

high currents and high operating temperature. SiC films are currently deposited using chemical

vapor deposition (CVD) at high temperatures 1500–1600 �C. However, there is a need to deposit

SiC-based films on the surface of high aspect ratio features at low temperatures. One of the most

precise thin film deposition techniques on high-aspect-ratio surfaces that operates at low tempera-

tures is atomic layer deposition (ALD). However, there are currently no known methods for ALD

of SiC. Herein, the authors present a first-principles thermodynamic analysis so as to screen differ-

ent precursor combinations for SiC thin films. The authors do this by calculating the Gibbs energy

DG of the reaction using density functional theory and including the effects of pressure and temper-

ature. This theoretical model was validated for existing chemical reactions in CVD of SiC at

1000 �C. The precursors disilane (Si2H6), silane (SiH4), or monochlorosilane (SiH3Cl) with ethyne

(C2H2), carbontetrachloride (CCl4), or trichloromethane (CHCl3) were predicted to be the most

promising for ALD of SiC at 400 �C. VC 2016 American Vacuum Society.

[http://dx.doi.org/10.1116/1.4964890]

I. INTRODUCTION

Silicon carbide (SiC) is a promising material for elec-

tronic devices. It is harder than Si and can sustain higher vol-

tages, carry higher currents, and operate at higher

temperatures. There is a need to deposit SiC-based films on

the surface of high aspect ratio features for various applica-

tions for electronics, e.g., low-k spacers/liners and air gap

liners for interlayer dielectric, exploiting the low dielectric

constant (<5) and low wet etch rate of SiC.

SiC occurs naturally in different crystal polytypes. The

most common polytypes being developed for electronics are

3C, 4H, and 6H.1

SiC-based films are currently deposited using chemical

vapor deposition (CVD). This technique is operated at ele-

vated temperatures 1500–1600 �C and may suffer from non-

uniformity due to fast surface reactions.2 One of the most

precise thin film growth techniques is a variant of CVD

called atomic layer deposition (ALD). Thin films deposited

by ALD or plasma-enhanced ALD (PEALD) are highly con-

formal even on high-aspect-ratio surfaces and are grown at

low temperatures (e.g., <400 �C). However, there are cur-

rently no known low temperature methods for ALD of SiC.

The most commonly used precursors in SiC CVD growth

are silane (SiH4)3–5 as a silicon precursor, and propane

(C3H8)3,5–8 or ethylene (C2H4)
9,10 as a carbon precursor.11

They provide a better morphology and higher growth rate than

other precursors.12 However, many different precursors apart

from those mentioned above were used for CVD of SiC. Nine

different carbon precursors [methane (CH4), ethane (C2H6),

ethyne (C2H2), ethylene (C2H4), propane (C3H8), propene

(C3H6), propadiene (C3H4), propyne (C3H4), butane (C4H10)]

with silane (SiH4) were analyzed by Hallin et al.4 for the

CVD growth of 4H and 6H SiC epitaxial layers, in the tem-

perature range of 1550–1600 �C. The most stable growth at

high growth rates was achieved with propane (C3H8).4 For

silicon precursors besides silane (SiH4) the most commonly

used are chlorosilanes, such as dichlorosilane SiH2Cl2
(DCS),5 trichlorosilane SiHCl3 (TCS),9 methyltrichlorosilane

SiCH3Cl3 (MTS),13 and tetrachlorosilane SiCl4 (TET).14 TET

and TCS are the most common.12 A review of chloride-based

CVD growth of SiC was done by Pedersen et al.15 Single-

source precursors (containing both Si and C in the same mole-

cule) have also been used for CVD of SiC.16 These precursors

include: MTS, methylsilane (CH3–SiH3),
17 diethylmethylsilane

[(C2H5)2SiHCH3],
18 tetramethylsilane [Si(CH3)4],

19 hexame-

thyldisilane [Si2(CH3)6],
19 silacyclobutane [SiH2(CH2)3],

20 and

1,3-disilabutane (SiH3–CH2–SiH2–CH3).
16

As was mentioned above, experimentalists are facing diffi-

culties in growing SiC films by ALD or PEALD. Theoretical

modeling of ALD using density functional theory (DFT) pro-

vides a complementary view to the experimental techniques.

DFT is usually used to calculate the pathways for precursor

adsorption, ligand migration, and by-product formation on the

surface, yielding reaction energies and activation energies for

each step of the ALD cycle. A review of previous theoretical

studies of Si-based materials can be found in Ref. 21. In this

paper, we present a theoretical thermodynamic analysis of dif-

ferent precursor combinations for SiC deposition thin film by

calculating Gibbs energy DG using DFT as implemented ina)Electronic mail: ekaterina.filatova@tyndall.ie
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TURBOMOLE (Ref. 22) and VASP (Ref. 23) software. The effects

of CVD conditions (1000 �C) and ALD conditions (400 �C)

are evaluated. It is found that chemical reactions of disilane

(Si2H6), silane (SiH4), monochlorosilane (SiH3Cl), or DCS

(SiH2Cl2) precursors with all suggested carbon precursors are

thermodynamically favorable. The most negative DG are for

disilane (Si2H6), silane (SiH4), monochlorosilane (SiH3Cl),

ethyne (C2H2), carbontetrachloride (CCl4), and trichlorome-

thane (CHCl3). Hence, silane (SiH4), disilane (Si2H6), mono-

chlorosilane (SiH3Cl), ethyne (C2H2), carbontetrachloride

(CCl4), and trichloromethane (CHCl3) can be predicted to be

the most favorable precursors for ALD of SiC thin films.

II. METHODOLOGY

Atomic-scale modeling was performed to investigate

routes toward the ALD of SiC-based films using first princi-

ples calculations based on DFT. All precursors were modeled

as isolated molecules in vacuum using the TURBOMOLE soft-

ware.22 Optimized structures of the Si and C precursors are

shown in Fig. 1. The generalized gradient approximation to

DFT (Ref. 24) was implemented by using the exchange corre-

lation functional of Perdew, Burke, and Ernzerhof (PBE).24

The atom-centered basis set def2-TZVPP was used for all the

atoms25 along with an auxiliary basis set for the density within

the resolution of identity (RI) approximation.26,27

The energy for SiC-3C bulk was obtained using the

Vienna ab initio simulation package (VASP)23 also with the

PBE exchange-correlation functional. The projector aug-

mented wave method23,28 was used to describe the core elec-

trons of atoms. A plane wave basis set with a cut-off energy

400 eV was used for the valence orbitals. An 8 � 8 � 8 k-

point grid within the Monkhorst–Pack scheme in the

Brillioun zone was employed. Full geometry relaxation was

carried out using the conjugate gradient method for energy

minimization at convergence level of 0.01 eV/Å on each ion.

Reaction energetics for SiC from various silicon and car-

bon precursors were evaluated using the general formula in

Eq. (1), assuming that by-products of the reactions were

CH4, HCl, Cl2, and H2 where applicable. Competing reac-

tions to formation of SiC are not considered.

nSiaXb þ aCnYm ! anSiCþ amXY þ nb� am

2
X2

if nb > am;

nSiaXb þ aCnYm ! anSiCþ nbXY þ am� nb

2
Y2

if nb < am:

(1)

For example, for SiCl4 (X¼Cl, a¼ 1, b¼ 4) and C2H6

(Y¼H, n¼ 2, m¼ 6), Eq. (1) becomes

2SiCl4 þ C2H6 ! 2SiCþ 6HClþ Cl2: (2)

A list of all the analyzed reactions is presented in Tables I

and II in supplementary material.33

Gibbs energies DG were calculated for these reactions

using Eq. (3)

DG ¼ DE� TDSþ RTlnQ; (3)

where DE ¼
P

Eproducts �
P

Ereactants using ground state ener-

gies obtained from DFT calculations, DS are entropies at tem-

perature T obtained from DFT calculations in TURBOMOLE,

assuming that SSiC¼ 0, and reaction quotient Q ¼
Q

Pl
products=Q

Pl
reactants, where partial pressures of products are Pproducts

¼ 0.01 Torr, partial pressures of reactants Preactants¼ 1 Torr and

l are stoichiometric coefficients. Partial pressures were chosen

in correspondence with experimental ALD data. DG indicates

whether a reaction is thermodynamically favorable.

In VASP, the one-electron orbitals are expressed in plane

wave basis sets, which make it inefficient and time-

consuming for calculating gas-phase molecules, while bulk

SiC can be easily simulated with VASP. Therefore, we use a

reference gas-phase molecule to estimate energies for bulk

SiC in TURBOMOLE. We choose gas-phase tetramethylsilane

Si(CH3)4 as a reference molecule for SiC. It contains Si–C

bonds like SiC. First DE1 is computed with VASP for decom-

position of the reference molecule using Eq. (4)

SiðCH3Þ4ðgÞ ! SiCðsÞ þ 3CH4ðgÞ: (4)

Calculations for Si(CH3)4(g) and CH4(g) molecules were

done at single C-point in the Brillioun zone at convergence

level for the forces on each ion of 0.01 eV/Å. The size of the

cell was chosen as 15 � 15 � 15 Å. DE1 is calculated only

once. Then, DE2 is computed for the gas-phase reaction to the

reference molecule with TURBOMOLE for each X and Y using

nSiaXb gð Þ þ aCnYm gð Þ þ 3anCH4 gð Þ ! anSi CH3ð Þ4 gð Þ

þ amXY gð Þ þ
nb� am

2
X2 gð Þ if nb > am;

nSiaXb gð Þ þ aCnYm þ 3anCH4 gð Þ ! anSi CH3ð Þ4 gð Þ

þ nbXY gð Þ þ
am� nb

2
Y2 gð Þ if nb < am:

(5)

In the example above, Eq. (5) becomes

2SiCl4ðgÞ þ C2H6ðgÞ þ 6CH4ðgÞ ! 2SiðCH3Þ4ðgÞ
þ 6HClðgÞ þ Cl2ðgÞ: (6)

The final corrected DE3 that we use for calculating Gibbs

energy DG in Eq. (3) will be a sum of DE2 and DE1. This

approach can be represented as a Hess cycle; see Fig. 2 for

the example of 2SiCl4þC2H6 ! 2SiCþ 6HClþCl2. The

difference between DE computed in VASP and in TURBOMOLE

for this sample reaction of Eq. (6) is just 0.0002 eV, well

within the precision of the method.

Including the effects of temperature allowed us to vali-

date the approach for known precursor combinations for

CVD at 1000 �C. Furthermore, reaction energetics were cal-

culated at 400 �C to predict precursors for ALD of SiC at

around this temperature.

DG [A(g)þB(g) ! AB(s)þC(g)] reflects the actual

thermodynamics of the CVD reaction. If DG < 0, the reac-

tion is permitted and DG > 0 means that it is not permitted.

01B103-2 Filatova, Hausmann, and Elliott: Investigating routes toward ALD of silicon carbide 01B103-2
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Kinetics is less important at high T. By contrast, in an ALD

process, reactants A(g) and B(g) do not meet in the reactor,

but DG [A(g)þB(g) ! AB(s)þC(g)] is still relevant for

describing the ALD process. Our finding so far with ALD

has been that the formation of A-B bonds in the solid product

is the main driving force for the process (and that the forma-

tion of by-product C plays a secondary role). The AþB reac-

tion is thus a way of measuring this driving force.21 The actual

surface reaction steps in each ALD cycle are (1) unknown for

SiC, (2) expected to be quite complex, and (3) dependent on

kinetics of each step (because ALD is performed at lower T
than CVD). It is therefore not possible to screen a wide range

of chemicals for their actual detailed behavior in ALD.

Instead, we use the simple DG model. However, we bear in

mind that the absolute value of DG has no meaning for the

ALD reaction, i.e., DG > 0 does not necessarily mean that

ALD will not work and DG < 0 does not necessarily mean

that all the individual surface reactions take place.

Therefore, the same gas-phase reactions were used to

investigate ALD and CVD processes. In both cases, a surface

was not introduced in the model.

III. RESULTS AND DISCUSSION

Different Si and C precursors for ALD of SiC were

screened with respect to their thermodynamic reactivity

FIG. 1. (Color online) Optimized structures for the possible precursors for ALD of SiC performed in TURBOMOLE with PBE functional. (a) methane (CH4), (b)

ethane (C2H6), (c) propane (C3H8), (d) n-butane (C4H10), (e) n-hexane (C6H14), (f) ethylene (C2H4), (g) propene (C3H6), (h) -2-butene (C4H8), (i) ethyne

(C2H2), (j) propyne (C3H4), (k) carbontetrachloride (CCl4), (l) iodomethane (CH3I), (m) trichloromethane (CHCl3), (n) chloromethane (CH3Cl), (o) disilane

(Si2H6), (p) silane (SiH4), (q) monochlorosilane (SiH3Cl), (r) DCS, (s) TCS, (t) hexachlorodisilane (Si2Cl6), (u) TET, (v) tetrafluorosilane (SiF4), (w) dichloro-

silacyclobutane [SiCl2(CH2)3], (x) dimethyldichlorosilane [Si(CH3)2Cl2], (y) bis(trichlorosilyl)methane [(SiCl3)2CH2], (z) methylsilane (CH3–SiH3), (aa) 1,3-

disilabutane(SiH3–CH2–SiH2–CH3), (bb) silacyclobutane [SiH2(CH2)3], (cc) tetraethylorthosilicate Si(OEt)4, (dd) DIPAS, (ee) bis(diethylamino)silane

H2Si[N(Et)2]2, and (ff) MTS. (Et)—ethyl group –CH2
–CH3; (iPr)—iso-propyl group –CH2–CH2–CH3.

01B103-3 Filatova, Hausmann, and Elliott: Investigating routes toward ALD of silicon carbide 01B103-3
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toward forming SiC. Gibbs energies DG of chemical reac-

tions between different Si and C precursors were calculated

to investigate which chemical reactions are more thermody-

namically favorable (Figs. 3 and 4 and Tables I and II in sup-

plementary material). First, Gibbs energies were calculated

at CVD conditions T¼ 1000 �C and partial pressures

Pproducts¼ 0.01 Torr and Preactants¼ 1 Torr of products and

reactants, respectively, to validate the proposed theoretical

model for screening (see Fig. 3, Table I supplementary mate-

rial). At T¼ 1000 �C, DG is negative for reactions of disilane

(Si2H6), silane (SiH4), monochlorosilane (SiH3Cl), DCS, and

TCS with all the analyzed carbon containing precursors.

That corresponds very well with experimental results, where

silane is the most common silicon precursor for SiC

CVD.3–5 Monochlorosilane together with propane (C3H8)

gave a growth rate of SiC of 20 lm/h (Ref. 8) and, consistent

with this, the calculated DG for monochlorosilane (SiH3Cl)

and propane is negative (DG¼�3.3 eV/SiC). Besides, for

CVD of SiC using DCS with propane growth rates up to

100 lm/h were achieved at 1750 �C,5 where we estimate

DG¼�4.8 eV for DCS reacting with propane at 1750 �C.

The most positive DG are computed for reactions of TET

and tetrafluorosilane (SiF4). For tetrafluorosilane (SiF4), DG
is positive for reactions with all suggested carbon precursors

and is also positive for TET with ethylene, propene, -2-

butene, propyne, and carbon tetrachloride. In the experiment,

TET together with TCS are the most commonly used chloro-

silane precursors for CVD of SiC.15 The use of TET with

hexane (C6H14) for epitaxial growth of 6H-SiC was demon-

strated at 1850 �C with a growth rate of 3.6–7.2 lm/h.29

Propane was also used with TET at high temperatures up to

1850 �C yielding growth rates up to 200 lm/h.30 Our model

shows near-zero exothermicity for TET reacting with pro-

pane and hexane at 1000 �C (DG �0.3 and 0.0 eV, respec-

tively), but much more negative values at 1850 �C (�2.9 and

�2.6 eV, respectively, not shown in the tables), correspond-

ing very well with the experimental finding.

Experimentally, SiC films were grown by CVD using

TCS and ethylene (C2H4) precursors with a growth rate of

100 lm/h at 1600 �C.9 Our calculations found TCS reacting

with all of the carbon precursors to be thermodynamically

favorable.

The above data include the effects of pressure via the

RTlnQ term of Eq. (3). We find that this is important: in gen-

eral, including the effects of pressure makes the reactions

more thermodynamically favorable, as seen in DG becoming

more negative by an average of 0.6 eV/SiC at T¼ 1000 �C
and by 0.3 eV/SiC at T¼ 400 �C.

It is also important to include the effects of entropy. The

above data include the effects of entropy via TDS. Including

TDS makes the reactions more thermodynamically favorable

by decreasing DG by an average of 1.3 eV/SiC for

T¼ 1000 �C and 1.0 eV/SiC for T¼ 400 �C depending on the

size of the molecules. For example, for small C2H2 reacting

with different silicon precursors, including TDS decreased

DG by an average of 0.1 eV/SiC for T¼ 1000 �C and 0.2 eV/

SiC for T¼ 400 �C, while for the bigger molecule C6H14

including TDS decreased DG by an average of 1.8 eV/SiC

for T¼ 1000 �C and 1.2 eV/SiC for T¼ 400 �C.

To evaluate the viability of these precursors for ALD of

SiC, Gibbs energies DG at T¼ 400 �C and partial pressures

Pproducts¼ 0.01 Torr and Preactants¼ 1 Torr of products and

reactants, respectively, were calculated and are presented in

Fig. 4 and Table II in supplementary material. In general, we

can see that most of the reactions are less favorable at this

lower T, compared to DG at higher T presented in Fig. 3,

which may be one reason why ALD of SiC is difficult.

Nevertheless, direct chemical reactions of disilane (Si2H6),

silane (SiH4), monochlorosilane (SiH3Cl), or DCS Si precur-

sors with all suggested carbon precursors are thermodynami-

cally favorable which suggests that these precursor

combinations may give viable indirect reactions in ALD.

The most negative DG are for ethyne (C2H2), carbontetra-

chloride (CCl4), and trichloromethane (CHCl3).

FIG. 2. Hess cycle representing screening approach for calculating DE using

gas-phase cluster software (in our case TURBOMOLE) and periodic software (in

our case VASP) with tetramethylsilane [Si(CH3)4] as a reference molecule for

SiC. DE3 is the desired energy, which is used to calculate Gibbs energy in

Eq. (3).

FIG. 3. (Color online) Gibbs energies DG for reactions of various Si and C precursors at CVD temperature 1000 �C. The most favorable reactions are those

with the most negative DG. The least favorable reactions have the most positive DG.
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A quite different process for low temperature silicon car-

bide ALD was proposed by Thompson using silicontetra-

chloride and trimethylaluminium as precursors.31 We

postulated that the corresponding chemical reaction is

3SiCl4þAl(CH3)3 ! 3SiCþAlCl3þ 9HCl and found that

DG for this reaction at 400 �C is �0.54 eV per SiC. This is

of the same magnitude as DG for the other ALD processes

that we have computed to be viable and thus provides further

validation for our approach.

To assess single-source precursors, the thermodynamics of

their decomposition into SiC and by-products was calculated

at T¼ 400 �C and T¼ 1000 �C. The corresponding DG are

presented in Fig. 5 and in the supplementary material. We find

that unimolecular decomposition of most of these precursors is

thermodynamically favorable at low temperature. The most

negative DG are for decomposition of diisopropylaminosilane

[DIPAS, SiH3N(iPr)2] and silacyclobutane [SiH2(CH2)3]. The

most positive DG is for dichlorosilacyclobutane [SiCl2(CH2)3].

Experimentally, growth of SiC by CVD using single-

source precursors was shown for 1,3-disilabutane

(SiH3–CH2–SiH2–CH3) (low pressure CVD, 750 �C),16 silacy-

clobutane [SiH2(CH2)3] (T¼ 800–1200 �C),20 methylsilane

(CH3–SiH3) (T¼ 800 �C),17 and MTS (T¼ 1570 �C).32 Our

calculations show that decomposition of 1,3-disilabutane, sila-

cyclobutane, and methylsilane is thermodynamically favor-

able at T¼ 1000 �C with DG¼�3.5, �4.5, and �3.8 eV/SiC,

respectively. For decomposition of the MTS precursor, we

obtained negative DG¼�1.8 eV/SiC at 1000 �C.

Experimentally, it was shown that growth of SiC using MTS

is favorable only at 1570 �C. Indeed our theoretical estimation

of the Gibbs energy for MTS at 1570 �C gives negative

DG¼�3.4 eV/SiC. This shows that our theoretical results

correspond to experimental studies in all of the cases.

Unimolecular decomposition is undesirable as a reaction

strategy for ALD because it does not allow surface reactions

to self-limit. It is therefore important to check whether pro-

posed ALD precursors can decompose and lead to non-ALD

growth. The data in Fig. 5 show that the precursors that are

the most resistant toward decomposing at 400 �C are dichlor-

osilacyclobutane [SiCl2(CH2)3] and MTS with DG¼ 0.9 and

0.2 eV/SiC, respectively. On the other hand, the precursors

silacyclobutane [SiH2(CH2)3] and DIPAS are the most likely

to decompose at 400 �C.

In conclusion, we carried out a theoretical thermody-

namic analysis of different precursor combinations for SiC

thin film by calculating Gibbs energy DG, including

the effects of pressure and temperature (G ¼ DE� TDS
þRTlnQ). The theoretical model was validated for existing

chemical reactions in CVD of SiC process at 1000 �C and

partial pressures Pproducts¼ 0.01 Torr and Preactants¼ 1 Torr.

In all of the cases, our theoretical results correspond to

experimental studies. For ALD of SiC at 400 �C and

FIG. 4. (Color online) Gibbs energies DG for reactions of various Si and C precursors at ALD temperature 400 �C. The most favorable reactions are those with

the most negative DG. The least favorable reactions have the most positive DG. Silane (SiH4), disilane (Si2H6), monochlorosilane (SiH3Cl), ethyne (C2H2),

carbontetrachloride (CCl4), and trichloromethane (CHCl3) are predicted to be the most favorable precursors for ALD of SiC thin films.

FIG. 5. (Color online) Gibbs energies DG for decomposition reactions of single-source precursors containing both Si and C at CVD temperature 1000 �C and at

ALD temperature 400 �C. The most favorable reactions are with the most negative DG. The least favorable reaction is with the positive DG. (Et)—ethyl group
–CH2

–CH3; (iPr)—iso-propyl group –CH2
–CH2

–CH3.
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Pproducts¼ 0.01 Torr and Preactants¼ 1 Torr, the precursors dis-

ilane (Si2H6), silane (SiH4) or monochlorosilane (SiH3Cl)

with ethyne (C2H2), carbontetrachloride (CCl4), or trichloro-

methane (CHCl3) are predicted to be the most promising.
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