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ABSTRACT : A surface sensitivity study was performed on different transition-metal 

dichalcogenides (TMDs) under ambient conditions in order to understand which material is 

the most suitable for future device applications. Initially, an Atomic Force Microscopy 

(AFM) and Scanning Electron Microscopy (SEM) study was carried out over a period of 27 

days on mechanically exfoliated flakes of 5 different TMDs, namely MoS2, MoSe2, MoTe2, 

HfS2 and HfSe2. The most reactive were MoTe2 and HfSe2. HfSe2 in particular showed 

surface protrusions after ambient exposure reaching a height and width of approximately 60 

nm after a single day. This study was later supplemented by Transmission Electron 

Microscopy (TEM) cross-sectional analysis, which showed hemispeherical-shaped surface 

blisters that are amorphous in nature approximately 180-240 nm tall and 420-540 nm wide, 

after 5 months of air exposure, as well as surface deformation in regions between these 

structures, related to surface oxidation. An X-ray photoelectron spectroscopy (XPS) study of 

atmosphere exposed HfSe2 was conducted over various time scales which indicated the Hf 

undergoes preferential reaction with oxygen as compared to the Se. Energy-Dispersive X-

Ray Spectroscopy (EDX) showed that the blisters are Se-rich, thus it is theorised that HfO2 

forms when the HfSe2 reacts in ambient, which in turn causes the Se atoms to be aggregated 

at the surface in the form of blisters. Overall it is evident that air contact drastically affects 

the structural properties of TMD materials. This issue poses one of the biggest challenges for 

future TMD-based devices and technologies.  
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INTRODUCTION 

 Silicon is a relatively stable material, mechanically strong, with a reliable thermal 

oxide. These reasons have contributed to the popularity of silicon for advanced 

semiconductor integrated circuits over the past number of decades. However, for many 

reasons alternate semiconductors with high carrier mobilities, are being considered as 

channel materials for future electronic devices.  

 As well as electronic or optoelectronic properties, the ease of handling, fabrication, 

and manufacturability of semiconductor materials are key issues in order for a material to 

progress from the research lab to the large-scale production environment. Transition metal 

dichalcogenides (TMDs) have shown potential, but their practicality remains an open 

question. Can they be fabricated reliably over large areas? Can they be integrated to the same 

levels of complexity as silicon has been to date? One of these open issues is the air sensitivity 

of TMD materials. How quickly do they degrade and what form do the resulting species  

take? Do these features limit practical future use? In this study we explore surface stability of 

MoS2, MoSe2, MoTe2, HfS2 and HfSe2 in terms of surface roughness, surface terminations, 

oxide homogeneity, and we highlight possible future integration schemes. 

The sensitivity of TMDs to oxygen and water molecules after air exposure has been 

reported before, showing a reduction of the on-state current in Field Effect Transistor (FET) 

devices by up to 2 orders of magnitude, 1 work function changes, 2 an instability of the Fermi 

level position,3 and an increase in material resistivity.4 In many cases an annealing cycle 

resulted in the desorption of surface molecules and therefore improved the device 

characteristics. The drastic change in the electrical performance of TMD devices was also 

studied by Park et al.,5 where the electrical current dropped significantly after air exposure. In 

order to limit such effects a resist-based passivation of the surface was applied. Thus, even if 

deterioration due to air exposure was shown in some publications, 6,7 to our knowledge a 
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systematic experimental study on the effects and reactions of the surface of TMDs when 

exposed to the ambient is lacking. 

 In this article we report a systematic study of MoS2, MoSe2, MoTe2, HfS2 and HfSe2 

surfaces in air. First an AFM study over a period of 27 days was carried out to understand the 

main differences between each TMD in terms of sensitivity upon air exposure. The results of 

this study were then confirmed by SEM measurements. An XRD study of HfSe2, the most 

reactive TMD in this study, was performed to provide a quantitative insight on the reactions 

of the material. XPS measurements were used to determine the surface chemical composition 

and to investigate changes in the chemical state of the surface with ambient exposure. By 

observing the binding energy shifts and broadening of the core level peaks the extent of 

surface oxidation can be inferred. Furthermore, TEM cross-sections and EDX analysis give a 

better understanding of the structure of the surface features.  

 

EXPERIMENTAL 

 All of the TMD considered were synthetic, except for MoS2 which was natural. For 

each of them, flakes were mechanically exfoliated from their bulk crystal counterpart using 

the classic Scotch tape technique. 8 Then, the flakes on the tape were gently pressed on a 

substrate composed of 85 nm of SiO2 on a highly-doped Si handle wafer. Immediately after 

the exfoliation, without applying any method to clean the TMD surface, the samples were 

examined by AFM for an initial comparison of the materials under study. The AFM was 

operated in Tapping-Mode in order to avoid any alteration of the surface due to the contact 

between the AFM tip and the surface itself. For each sample, every effort was made to 

repeatedly measure the same flake at approximately the same location, over an area of 5×5 

μm2. In the AFM study, the same analysis was systematically carried out periodically on each 

material over a 27 day period.  Root-mean-square (RMS) roughness evolution of the surfaces 
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gave an important comparison to understand the main differences between the TMDs studied, 

considering both a change of the metal (Mo or Hf) and/or a change of the chalcogen element 

(S, Se or Te).  

 The morphologies of the TMD sample surfaces were investigated using a FEI Quanta 

650 SEM in high-vacuum. In order to improve the imaging of the samples gold was sputtered 

using an Agar sputter-coater. For structural analysis, cross-section samples were obtained by 

using the Dual Beam Helios Nanolab 600i system from FEI, using a Ga ion beam. Layers of 

protective material were used consisting of electron beam deposited C, Pt, and ion beam 

deposited C. Lamellas were thinned and polished at 30 kV 100 pA and 5 kV 47 pA, 

respectively. Cross-sectional Transmission Electron Microscopy (XTEM) imaging was 

carried out using a JEOL 2100 HRTEM operated at 200 kV in bright field mode using a 

Gatan Double Tilt holder. EDX analysis was performed using STEM-EDX on a FEI Titan 

80-300kV S/TEM. Analytical STEM provides a sub-nanometre, high current probe (~0.5 nm, 

0.56 nA) allowing for site specific EDX analysis on the nanometre scale. 

 For the XPS analysis flakes were mounted and held on an XPS sample holder using 

an adhesive carbon pad. Flakes were then cleaved using the Scotch tape method and placed 

into a vacuum chamber in less than 30 seconds to minimise atmospheric contamination for 

the base, freshly cleaved, measurement. Once the freshly cleaved flake was measured the 

sample was removed and exposed to ambient atmospheric conditions for a period of 1 hour 

and reloaded for XPS measurement. The process of exposing the sample was repeated for a 3 

hour and a 48 hour exposure. Following the 48 hour measurement the flake was re-cleaved 

using Scotch tape. For HfSe2 the XPS spectra were taken of the Hf 4f and the Se 3d core 

level peaks following the different exposure times to observe how the peaks shapes change 

and more importantly the relationship of the ratio of the area under each peak which directly 

reflects the relative concentrations of the elements present within the XPS sampling depth 
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which is typically 5-7 nm. The XPS system used an aluminium anode to generate X-ray 

photons of 1486 eV and had an operating base pressure of approximately 2.0×10-9 mbar with 

the analysis area of the order of 0.5 cm2. 

 

RESULTS 

 In Figs. 1 and 2 are representative AFM images of MoS2 and HfSe2 surfaces 24 hours 

after exfoliation. These two materials were the most stable and least stable extremes 

respectively, of the TMDs studied. Twenty four hours after exfoliation, HfSe2 showed clear 

signs of degradation. Its surface, as shown in Fig. 2, is characterised by several protrusions  

randomly located across the surface. The tallest of these was found to be 57.4 nm high after 1 

day, as is clear from the cross-section in the inset of Fig. 2. This ambient exposure behaviour 

is in clear contrast to that observed  for MoS2. The 2D AFM image in Fig. 1 shows a darker 

z-shaped region. A cross-sections analysis shows this feature to be approximately 0.65 nm 

deep , which suggests a missing single-layer of MoS2, which is known to be ~0.65 nm thick. 

This might be related to the stress induced on the surface through the mechanical exfoliation 

process. The same feature was located in later AFM measurements and there were no signs of 

any deterioration, meaning that even 27 days after  exfoliation the material is relatively stable 

upon air exposure. 

 The overall results of the AFM study can be summarised by the RMS roughness 

trends of the surfaces shown in Fig. 3, for both the Mo-based and Hf-based TMDs. As 

previously stated, the MoS2 surface showed the best stability and it is the only TMD that did 

not show any noticeable additional visible features or surface change during the period of 

study, implying that it is the most suitable TMD for electronic applications from a material 

point of view. The RMS roughness values for MoS2 are comparatively low (~0.2-0.4 nm) and 

approximately constant throughout the 27 days. MoSe2 showed one peak related to air 
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exposure, similar to those found on HfSe2 surface, of ~27 nm height on the 9th day after 

exfoliation. Subsequently, on the 27th day, the surface was quite degraded, but without any 

other tall protrusions. MoTe2 surface features were detectable after 3 days and were spread 

almost uniformly across the surface. These studies indicate a general trend in decreasing 

ambient stability for a given metal in the TMD as the chalcogen element changes from S to 

Se and finally Te. For example, from Fig. 3(a) it is seen that the RMS roughness of HfS2 is 

significantly lower than that of HfSe2 during the period studied. The degradation of HfSe2 is 

visible 1 day after exfoliation, while signs of degradation are only visible 9 days after 

exfoliation for HfS2.   

  

Figure 1 : Representative MoS2 AFM image 

taken 24 hours after exfoliation.  

Figure 2 : Representative HfSe2 AFM image 

taken 24 hours after exfoliation. The insets 

show cross-section of the tallest protrusion 

found on HfSe2 of approximately 60 nm, and a 

3D representation of the data. 
 

 Some variation is noted in the RMS data shown in Fig. 3 which may be attributed to a 

number of factors; while it was attempted to return to the exact same 5 µm × 5 µm area on 

each flake, there may have been some misalignment due to handling or variation caused by 

changing AFM tip over the period of study. Furthermore, for the HfSe2 it was noted that 

some of the surface features disappeared from one measurement to the next, which may 

indicate that these features are not tightly bound to the surface. Despite this “noise” in the 

MoS2
HfSe2

60 nm
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data in Fig. 3, the overall trends observed are reliable, namely a general surface roughening 

with time, with observable differences between the five TMDs under study. 

 

 

Figure 3 : RMS surface roughness trends for (a) Hf-based and (b) Mo-based TMDs. Note the 

difference in the y-axis scales. 
 

In order to analyse the results of the AFM study more thoroughly, all TMDs were 

examined by SEM, and HfSe2 was further studied by STEM, XTEM, EDX, and XPS, since it 

showed the highest reactivity on contact with air. By analysing the behaviour of the most 

reactive TMD we hoped to address the most volatile material system.  

(a) 

(b) 
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 Fig. 4(a) shows an SEM measurement of the HfSe2 surface five months after 

exfoliation. The measurement was delayed for this period of time in order to get a clear 

picture of the surface blisters. The inset shows the surface 1 day after exfoliation, which 

shows the same kind of blister like protrusions in terms of form and shape, only smaller. 

Furthermore, it is clear from the images that the blisters have a higher density at the step-

edges. The step-edges of the top-surface, related to the mechanical exfoliation method, are 

characterised by dangling bonds that may be optimal nucleation sites for the growth of the 

features.  

 Also, it is important to compare the density of protrusions found during the AFM 

study. The blister density in the AFM image in Fig. 2, is approximately 8×107 cm-2, while the 

SEM image in Fig. 4(a) has a blister density of approximately 4.3×107 cm-2. The difference in 

defect density is attributed to the fact that a different area was scanned in AFM and SEM. 

Note, the same type of terrace edges were found on MoS2 (Fig. 1), but they were not 

decorated with growths of blister-like features during the period of study. Other TMDs were 

studied by SEM in a similar way, but no obvious surface features were observed. For 

example, Fig. 4(b) shows the HfS2 surface after 5 months of air exposure. The terraced nature 

of the material is obvious, and is related to the layered structure of the material itself, and the 

mechanical exfoliation process. The surface appears to be uniform with no blisters present, at 

least under this magnification. A similar lack of obvious surface features was characteristic in 

the SEM images of MoS2, MoSe2, and MoTe2.  
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Figure 4 : (a) Representative SEM image of HfSe2 5 months from exfoliation; the inset shows 

the surface 1 day from exfoliation, which shows the same kind of protrusions in terms of form 

and shape, only smaller. (b) Representative image of HfS2 after 5 months from exfoliation. The 

terracing is related to the mechanical exfoliation and the layered nature of the material. No 

blister features appear to be evident. 
 

  TEM cross-section analysis was carried out in order to understand the detailed 

structure of the features on HfSe2, and their chemical composition, through EDX analysis. 

Fig. 5 shows representative images of HfSe2 after 5 months of air exposure. In the following 

Figures (Figs. 5-7) the surface features look like hemispherical shaped blisters which are 

approximately 180-240 nm tall and 420-540 nm wide. Fig. 5(a) shows a HfSe2 flake which is 

approximately 280 nm thick, while Fig. 5(b) is a thinner flake which is approximately 40 nm 

thick. Blisters appear on both thick and thin flakes with approximately the same dimensional 

HfSe2 

(5 months)

HfSe2 

(1 day)

(a)

HfS2 

(5 months)

(b)
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size. The material within the blister appears to be amorphous in nature. The blister on the 

right side of Fig. 5(a) is partially cut and is not entirely contained within the TEM lamella. 

Note the blisters are surface features, and are not formed throughout the bulk of the material. 

A delamination crack is evident in the same figure within the HfSe2, highlighting that these 

TMDs are layered materials that may have mechanical weaknesses between the layers. It 

should be noted that the crack is likely to have occurred during TEM sample preparation.  

 In terms of area coverage, assuming a circular blister with average width of 480 nm, 

and a density of 4.3×107 cm-2,  the area covered by these features is approximately 8% of the 

HfSe2 surface. 

 

Figure 5 : Representative TEM images of HfSe2 after 5 months of air exposure. Hemispherical 

shaped surface features appear to be amorphous in nature and are of similar dimensional size 

on both the (a) thick and (b) thin flakes.  

 

 Fig. 6 shows a higher magnification image of the thicker flake, as in Fig. 5(a), which 

shows more detail of the surface features. It appears that the surface region of the HfSe2 

beneath the blister is highly disordered. Also the top surface of the HfSe2, between the 

blisters, appears to be degraded as it is non-uniform and less homogeneous than the bulk 

portion of the flake. Thus the surface reactions resulting from ambient exposure of HfSe2 

(a)

(b)

Thin HfSe2

SiO2

C

Pt

Thick HfSe2

SiO2

C

Pt

Crack

Blister

Blister

250 nm

250 nm
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could be considered to consist of two distinct features, namely localised blisters and planar 

surface modification.   

 Fig. 7 provides extra insight into the structural makeup of the blisters, as the thinner 

flake, seen in Fig. 5(b) was examined further. A surface blister was magnified, and initially 

appeared homogeneous. However with prolonged electron irradiation over several minutes, a 

void appeared in the middle of the feature, as shown in Fig. 7(b). The void is likely formed 

by beam induced knock-on damage causing a small void to appear and proliferate to a large 

hole.. It may be coupled with beam induced heating causing a melting type effect. This may 

indicate that the middle of these features are structurally less stable, much like a bubble. Also 

note that the Au, deposited to enable the SEM imaging as indicated earlier, is visible on the 

outer surfaces of these features.  

  

Figure 6 : Representative TEM image of the 

surface blisters on the thick HfSe2 flake. 

Figure 7 : TEM imaging of the blisters on the 

thin HfSe2 flake shows that (a) during initial 

imaging the blister is continuous and that (b) 

after a few minutes of electron irradiation a 

void is formed in the middle..  

 

 Fig. 8 shows compositional analysis performed on the surface blisters via STEM 

based EDX. Fig. 8(a) shows a STEM image across which the EDX analysis was performed. 

HfSe2

SiO2

C

Pt

Blister eating into HfSe2

HfSe2 surface appears 

degraded

50 nm

50 nm

Thin coat of Au 

(from SEM imaging)

Void

(a)

(b)

With prolonged imaging

Initial imaging
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In the STEM image the contrast is reversed compared to bright field TEM. The structural 

non-uniformity is again evident in regions below the blister, and to the left and right of it. 

Figs. 8(b) and 8(c) show the EDX maps for Hf and Se respectively recorded across the STEM 

image in shown in Fig. 8(a). Notice that the blister is primarily composed of Se, with only 

trace amounts of Hf. There are patches within the HfSe2 layer that show increased 

concentrations of Hf accompanied by a Se deficit in the same region. These Hf/Se 

concentration changes are only present at the top of the layer. The bulk region of the HfSe2 is 

uniform. 

 

Figure 8 : EDX data showing (a) the region mapped, (b) the Hf map, and (c) the Se map within 

the HfSe2 flake and surface blister.  The blister is Se-rich with little or no Hf present. The 

regions below the blister are depleted of Se. 

 

(a)

(b)

(c)
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 The XPS study data for HfSe2 as a function of ambient exposure are displayed in 

Figs. 9-11. The change in the elemental stoichiometry with ambient exposure time is 

displayed in Figure 9 and clearly shows the progressive loss of Se from within the XPS 

sampling depth (5-7 nm) over the 48 hr monitoring period with the Se:Hf ratio reducing from 

the initial 2:1 to 1.4:1. Note a similar study on MoS2 showed no changes in the elemental 

composition under an equivalent ambient exposure again confirming relative surface 

stability.  

 

Fig 9: Plot of the change in Se/Hf elemental ratio following ambient exposure of the freshly 

cleaved surface. The re-cleaving process restores the surface to the original elemental 

composition by removal of the oxidised surface. 
 

 Analysis of the changes in the profile of the Hf 4f peak over the time span of this 

ambient exposure study shown in Fig. 10 indicates increasing evidence for Hf oxidation. The 

Hf 4f peaks from a freshly cleaved sample in Fig.10(a) have a binding energy of 14.3 eV and 

16 eV for the Hf7/2 and Hf5/2 component peaks respectively, 9 which are indicative of a Hf 

signal in the HfSe2 crystal. The appearance and subsequent increase in intensity of 

component peaks, at binding energies of 15.4 eV and 17.1 eV in Fig. 10 (b, c, and d), are 

indicative of the progressive oxidation of the Hf as the higher electronegativity of oxygen 

compared to selenium results in this core level shift. 10 The corresponding curve fitted Se 3d 
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spectra, 11 displayed in Fig. 11 show a broadening of the peak profile without any evidence of 

higher Se oxidation states. This can be interpreted in terms of the preferential formation of Hf 

oxides following ambient exposure with the consequential release of Se, some of which 

desorbs from the surface and some of which gets trapped in the blister structures. The fact 

that these blisters are predominantly found along step edges is consistent with the Hf 

oxidation process initiating along the step edges where ideal surface termination is absent.     

Further evidence for the preferential oxidation of Hf over Se comes from the binding 

energy and FWHM of the O1s peaks. In Fig. 12, the FWHM of the 48 hrs exposed sample is 

2.9 eV at 530.9 eV binding energy in agreement with Liu et al.12 who reports a HfO2 peak on 

a Si substrate to have a FWHM of 2.6 eV at a binding energy of 530.8 eV. Combined with 

the lack of evidence for SeO2 in the Se3d spectra it can be concluded that the oxide is due to 

HfO2.   

 Considering the surface area contributing to the XPS spectra is of the order of 0.5 

cm2, it is reasonable to conclude that the photoemission spectra are dominated by the areas 

between the blisters, which remain largely unchanged, as the surface coverage of these 

feature was estimated to be approximately 8%.  

 A remaining question is why the Se atoms produced by the preferential Hf oxidation 

coalesce into hemispherical features, as opposed to aligning parallel to the surface. The 

presence of a hemispherical shape suggests a construction to minimise surface tension. One 

possible explanation is that, as a result of the high temperature vapour phase growth process 

for the HfSe2, gases are trapped between the 2D layers of the crystal, and the surface features 

contain a gas. This is currently being investigated using scanning Auger with a spot size 

resolution less than the typical diameter of the hemispherical features. 
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Figure  10 : Hf 4f peaks ; (a) Freshly cleaved 

HfSe2 surface shows the Hf 4f5/2 and Hf 4f7/2 

component peaks at  binding energies of 14.3 

eV and 16 eV, respectively.  The peak profiles 

following ambient exposure of 1 hr (b), 3 hrs 

(c) and 48 hrs (d) clearly display the growth of 

higher binding energy oxide component peaks 

at 15.4 eV and 17.1 eV. The unoxidised Hf 

signal  is regained after re-cleaving of the top 

surface, removing the surface oxide. 

 

(a) 

(b) 

(c) 

(d) 

(e) 
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Figure 11 : Se 3d peaks ; (a) Freshly cleaved 

Se3d peak is curve fitted with an unresolved 

doublet with binding energy of Se 3d5/2=55.4 

eV and Se 3d3/ = 56.4eV. Curve fits of the 1 

hr (b), 3 hrs (c) and 48 Hrs (d) air exposed 

samples show no significant change to the 

peak profile with no evidence of higher 

oxidation states of selenium (e.g.  SeO2 which 

has a binding energy of  59.4eV). Recleaving 

the sample as shown in (e) leaves the peak 

profile unchanged.  

 

 

(a) (d) 

(c) 

(b) 

(e) 
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Figure 12: The O1s core level spectra as a function of exposure time 
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DISCUSSION 

Even though HfSe2 was the most reactive among the TMDs studied here, HfSe2-based 

FETs are found in literature, with Ion-Ioff ratio exceeding 7.5106 reported by Kang et al.13 

These devices were quickly passivated with the resist PMMA, which can limit the effects of 

surface deterioration due to air exposure. In the supporting information of that work two 

AFM images of un-passivated HfSe2 surface 1 and 8 days after exfoliation are reported, 

showing similar features to those presented in Fig. 2 in this work.  

Also, a study of air exposure stability of HfSe2 films grown by Molecular Beam 

Epitaxy (MBE) is reported by Yue et al.14 The oxidation reactions are reported to be related 

to the top surface of the film, which is less prone to oxidation when the crystalline quality of 

the film is improved. A higher quality might also mean fewer discontinuities on the surface, 

like step-edges, which this study would suggest are the optimal sites for HfSe2 surface 

degradation. 

Very recently Gao et al. 15 showed that Chemical Vapour Deposition (CVD) grown 

monolayers of MoS2 and WS2 were very air sensitive. X-ray photoelectron and Auger 

electron spectroscopy performed in that work showed that gradual oxidation proceeded along 

grain boundaries along with the adsorption of organic contaminants. Degradation of CVD 

WS2 was also reported by He et al.16 Another promising 2D-material is Black Phosphorus, 

whose surface shows similar features 17 ,18 , 19  to that found for HfSe2 here. The so-called 

bubbles grow in density and height after air exposure, regardless of the actual thickness of the 

Black Phosphorus flake, meaning that these effects are top-surface related. The density of 

these features on Black Phosphorus eventually decreases with air exposure since they become 

wider, merging together, but this behaviour was not in the current HfSe2 study. In a 

subsequent study, Kim et al. reported the successful preparation of air stable multilayer 
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phosphorene thin-films and transistors.20 In that work a double layer capping of Al2O3 and 

hydrophobic fluoropolymer was used to produce air stability of the material. 

The surface roughness trends observed in our AFM data are in accordance with the 

DFT calculations carried out by Liu et al.21  In that paper it was stated that a TMD is more 

easily converted to oxide as the chalcogen is varied from S, to Se, to Te, i.e. descending the 

periodic table. This can be due to the decrease in the electronegativity of the chalcogen from 

S to Te, resulting in the metal-chalcogen bond being more susceptible to oxidation. 

Moreover, that work restricts the interaction between oxygen and TMDs to single chalcogen 

vacancies. These defects are more likely to occur in more reactive TMDs, so, considering that 

the S vacancy density for MoS2 is reported 22,23 to be in the order of 1013 cm-2, the Se vacancy 

density would be expected to be higher in HfSe2. Considering that defect density related to 

air exposure in this work is found to be in the order of 107 cm-2 from both the AFM and the 

SEM analysis, it is possible that these kind of features are not related to chalcogen vacancies 

alone. These defects could play a role in the overall process, 24, ,25 but not all of them appear 

to be optimal sites for the growth of the blister shaped protrusions.  

 It is clear that some of the TMD materials of interest from a device perspective are 

remarkably air sensitive.26,27 Many other groups have reported material or electrical data 

indicating this, while the systematic study in this work gives more insight into the relative 

reactivity of the TMDs and form of the surface features. To think that these materials are 

purely 2D in nature is probably misleading, as this implies that top surface is totally 

unreactive in the perpendicular plane as there are no available covalent bonds in that plane. 

Unfortunately it is not that simple, as it is clear that molecules present in air react with the 

TMD surfaces. As stated above a surface encapsulation using resists, insulators, or dielectrics 

have been demonstrated elsewhere as being effective protection layers. 
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 Other solutions may lie in the area of chemical functionalisation of surfaces. For 

example one might think of graphene as a perfectly 2D material with no free bonds available 

for surface reactions or functionalisation, however Long et al. found that graphene bonds 

non-covalently with alkane-amine groups,28  providing a pathway for solution-phase self-

assembly. Furthermore O’Connell et al. 29  discovered recently that molecular monolayer 

doping via chemisorption of organic molecules on Si surfaces actually supressed oxidation of 

the Si surface. In terms of surface protection of TMDs, non-covalent surface reactions or 

functionalisation may prove important to improving their air stability. Whatever the method, 

it is evident that air contact affects the structural and electrical properties of these TMD 

materials by various degrees. Tackling this issue is perhaps one of the biggest challenges for 

future TMD-based devices and technologies. 

 

CONCLUSIONS 

 In this work we compared and contrasted the reactivity of MoS2, MoSe2, MoTe2, HfS2 

and HfSe2 in air. AFM, SEM, EDX, S-TEM, and XPS data were collected. Overall, surface 

roughening occurs for all TMDs over a period of time which indicates a formation of oxides 

or molecular adsorption on the surfaces. HfSe2 and MoTe2 were the most reactive of the 

TMDs studied. HfSe2 in particular was characterised by the growth of Se-rich surface 

blisters, that form within one day of air exposure. It is theorised that the Hf is oxidising into 

HfO2, which breaks down the HfSe2 and excludes the Se at the surface. The Se atoms 

coalesce into blisters which continue to grow as more HfSe2 is consumed and more HfO2 is 

formed. 
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