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Highlights

 Food waste lacks essential trace elements (TE) for single and multi-stage digestion

 Two-stage digestion did not show any better resilience to TE deficiency

 Failure occurred at loading rates in excess of 2 g VS L-1 d-1 at 16 days retention

 Addition of Co, Fe, Mo, Ni and Se enabled stable digestion at increased loading

 No additional gain in SMY was noted with trace element addition
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1 Role of trace elements in single and two-stage digestion of food waste at high 

2 organic loading rates

3 M. A. Voelklein1, 2, R. O’ Shea1, 2, A. Jacob1, 2, J. D Murphy 1, 2 *

4 1MaREI Centre, Environmental Research Institute (ERI), University College Cork (UCC), Ireland
5 2School of Engineering, UCC, Ireland
6 Abstract

7 This study investigated trace element deficiency and supplementation in mono-

8 digestion of food waste. A single-stage system was contrasted to a two-stage system 

9 (hydrolysis followed by methanogenisis). Initial hydrolysis is beneficial as it releases 

10 hydrogen sulphide (H2S), while the prevailing pH prevents an associated H2S induced 

11 precipitation of trace elements (TE). Stable digestion took place without TE 

12 supplementation until an organic loading rate (OLR) of 2.0 g VS L-1 d-1; this was 

13 followed by severe instability at an OLR of 2.5 g VS L-1 d-1 in both systems. A major 

14 accumulation of volatile fatty acids (VFA) inhibited methanogenic activity. A gradual 

15 deterioration of pH, VFA/TIC (ratio of VFA to alkalinity) and specific methane yields 

16 provoked reactor failure. The benefit of enhanced TE availability in the two-stage 

17 system was not apparent due to the complete absence of essential TE in the feed 

18 stock. Supplementation of deficient TE Co, Fe, Mo, Ni and Se induced recovery, 

19 reflected by an immediate improvement of VFA/TIC and VFA concentrations in both 

20 systems. Specific methane yields were restored and maintained at initial levels. At a 16 

21 day retention time, elevated loading rates as high as 5 g VS L-1 d-1 allowed stable 

22 digestion with TE supplementation. 

23

24 Keywords: biogas; two-stage digestion; food waste; trace elements; high performance.

25  Corresponding author at: School of Engineering, University College Cork, Cork, Ireland. 

26 Tel.: +353 21 490 2286. E-mail address: jerry.murphy@ucc.ie (Jerry D. Murphy).
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27 1 Introduction

28 Anaerobic digestion (AD) has become one of the dominant treatment technologies for 

29 all kinds of wet organic wastes. In particular, source segregated food waste is a very 

30 suitable substrate for AD due to its high biodegradability and volatile solids (VS) 

31 content (Browne et al., 2014). A sufficient level of all macro- and micro-nutrients is a 

32 vital prerequisite for key enzymes and microbes associated with stable 

33 methanogenesis (Demirel & Scherer, 2011; Drosg, 2013; Kida et al., 2001). All essential 

34 macro-nutrients, such as calcium (Ca), magnesium (Mg), nitrogen (N), phosphorus (P), 

35 potassium (K), sodium (Na) and sulphur (S), are available in food waste. However, 

36 mono digestion of food waste is challenging due to a lack of a sufficient level of micro-

37 nutrients (or trace elements) such as cobalt (Co), iron (Fe), nickel (Ni), molybdenum 

38 (Mo) and selenium (Se) (Banks et al., 2012; Moestedt et al., 2015; Nges et al., 2012). 

39 Recent studies have reported a deficiency in trace elements in single-stage digestion of 

40 crop and waste based substrates (Banks et al., 2012; Karlsson et al., 2012; Wall et al., 

41 2014; Zhang & Jahng, 2012). If the substrate is deficient in nutrients, the process 

42 performance diminishes or even fails (Drosg, 2013; Gustavsson et al., 2011; Schmidt et 

43 al., 2014; Zhang & Jahng, 2012).  

44 In an analysis of full scale biogas plants Lemmer et al. (2010) attributed a 10-50% 

45 performance reduction per unit reactor volume to digester systems with insufficient 

46 trace elements. The accessibility of trace elements is constrained by its bioavailability 

47 (Karlsson et al., 2012; Ortner et al., 2015). In order to be available for methanogenic 

48 archaea, trace elements have to be soluble and neither be fixed in precipitated 

49 compounds (such as sulphates, sulphides, or carbonates) nor adsorbed. Ortner et al. 
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50 (2014) established that 30-70% of present trace elements were not bioavailable to the 

51 microbial community. 

52 The advantages of two-stage digestion systems potentially facilitate an increased 

53 resilience towards a deficiency of trace elements. The spatial separation with different 

54 pH in the two stages provides optimum conditions for individual anaerobic digestion 

55 phases. The substrate is initially broken down into macro-molecules and liquid 

56 fermentation products in the first reactor (Voelklein et al., 2016). Firstly, this is 

57 associated with superior performances in terms of methane yields and process stability 

58 as compared to the single stage system (Chen et al., 2015; Luo et al., 2011; Voelklein et 

59 al., 2016). Secondly, the high degree of initial substrate acidification and degradation 

60 (Voelklein et al., 2016) releases major sulphur contents as hydrogen sulphide (H2S) into 

61 the first reactor. The pKa for the first dissociation of H2S is 6.99 (Waechter, 2012). The 

62 low pH of approx. 5 causes the hydrogen sulphide to be mainly present in its very 

63 volatile state of H2S, rather than in its more soluble conjugate base, the bisulfide ion 

64 HS- at more neutral pH (Waechter, 2012). As hydrogen sulphide is known to precipitate 

65 trace metals (Gustavsson et al., 2011; Karlsson et al., 2012), the upstream release 

66 potentially improves the bioavailability of these decisive elements. In addition, the 

67 actual load of sulphur entering the downstream methane reactor at neutral pH is 

68 diminished and limits the associated precipitation of trace elements. In contrast, in a 

69 single stage reactor at neutral pH (without upstream treatment), approximately 50% of 

70 hydrogen sulphide is available as bisulfide ion HS- (pKa 6.99) to potentially precipitate 

71 trace elements (Waechter, 2012).

72
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73 A general recommendation on optimal nutrient concentrations remains challenging. 

74 The microbial community involved in the biogas process is composed of a huge variety 

75 of microorganisms with differing nutrient requirements. In addition, bioavailability and 

76 feedstock concentration of trace metals, temperature, loading and associated growth 

77 rate of microbes determine the demand of nutrient supplementation (Ortner et al., 

78 2014; Uemura, 2010; Zhang et al., 2003). However, addition of deficient elements 

79 proved to be vital in stabilizing the digestion process and overcoming biological 

80 limitations (Demirel & Scherer, 2011; Karlsson et al., 2012; Nges et al., 2012; Pobeheim 

81 et al., 2011; Qiang et al., 2012; Ward et al., 2008). Banks et al. (2012) established a 

82 minimum trace element level for Co (0.22 mg L-1) and Se (0.16 mg L-1) in digestion of 

83 food waste from the UK. In their study of trace element requirements for stable food 

84 waste digestion at elevated ammonia concentrations, supplementation at levels of Co 

85 (1.0 mg L-1), Fe (5.0 mg L-1), Mo (0.2 mg L-1), Ni (1.0 mg L-1), Se (0.2 mg L-1) and tungsten 

86 (W) (0.2 mg L-1) were required (Banks et al., 2012). Zhang and Jahng (2012) reported 

87 addition of Co (2 mg L-1), Ni (10 mg L-1), Mo (5 mg L-1) and Fe (100 mg L-1) in digestion 

88 of food waste in Korea. A study by Zhang et al. (2015) described stable fermentation of 

89 food waste at loading rates as high as 5.0 g VS L-1 d-1 while supplementing Co (1 mg L-

90 1), Ni (1 mg L-1), Se (0.2 mg L-1) and Fe (5 mg L-1). Gustavsson et al. (2011) suggested 

91 supplementation of Co (0.5 mg L-1), Ni (0.3 mg L-1) and Fe (0.5 g L-1) for digestion of 

92 wheat stillage; addition of Se and W produced no effect. Sole supplementation of Ni, 

93 Mo or Co proved to be insufficient (Moestedt et al., 2015; Zhang & Jahng, 2012). 

94 The addition of trace elements to sustain stable fermentation ranged between 0.05-10 

95 mg L-1 for Co, 5-500 mg L-1 for Fe, 0.0272-5 mg L-1 for Mo, 0.035-10 mg L-1 for Ni and 

96 0.056-0.2 mg L-1 for Se (Banks et al., 2012; Gustavsson et al., 2011; Lemmer et al., 
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97 2010; Moestedt et al., 2015; Nordell et al., 2015; Pobeheim et al., 2011; Qiang et al., 

98 2012; Zhang & Jahng, 2012; Zhang et al., 2012; Zhang et al., 2015). Further trace 

99 metals such as manganese (Mn), tungsten and zinc (Zn) are rarely supplemented and 

100 usually not considered to be deficient for digestion. Overdosing of trace metals 

101 reduces enzyme and microbial activity (Lemmer et al., 2010).

102 The key role of trace element addition and its microbiological impact in anaerobic 

103 digestion has been of major interest in recent studies. Long-term studies have 

104 assessed conditions provoking reactor failure and subsequent reactor recovery after 

105 trace element supplementation. However, research evaluating the implications of 

106 trace element deficiency in two-stage systems is not to be found. This study expands 

107 upon previous work on increasing loading rates in mono-digestion of food waste in 

108 two-stage digestion (Voelklein et al., 2016). The objective in this work is to assess the 

109 effect of trace elements on mono-digestion of source segregated food waste in single 

110 and two-stage systems. The emphasis is not to analyse optimal concentrations of trace 

111 elements, but to determine the impact of trace element deficiency and its response 

112 after supplementation. 

113

114 2 Materials and Methods

115 2.1 Design of experiment 

116 The experiment investigated the impact of trace element depletion and subsequent 

117 supplementation in different reactor configurations; a duplicate two-stage system (M1 

118 & M2) and a conventional single-stage reactor (M3). The reactors were tested with the 

119 same substrate (source segregated food waste) with stepwise increasing organic 

120 loading rates. The reactors were fed once per day. The input substrate of the first 
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121 stage displaced a certain amount of effluent being introduced into the second stage. 

122 Samples for analysis were obtained on a weekly basis from substrate, effluent stage 

123 one and stage two. Biological parameters such as pH, VFA, VFA/TIC (ratio of volatile 

124 fatty acids and total inorganic carbon) and specific methane yield (SMY) were assessed 

125 as indicators of reactor stability and performance. The single- and two stage 

126 experiments were performed at mesophilic conditions (38 °C) using 5 L continuous 

127 stirred tank reactors (CSTRs) with vertically mounted stirrers. The actual working 

128 volume for the first stage hydrolysis reactors was 1.35 L. The working volume was 4 L 

129 for the subsequent methane reactors. The reactor volume of the single stage system 

130 corresponded to the 4 L methane reactor volume of the two-stage system. 

131

132 The hydraulic retention time (HRT) in the two-stage system was fixed at 4 days in the 

133 upstream hydrolysis reactor and 12 days in the downstream methane reactor. This 

134 matched the 16 day retention time of the single-stage reactor M3. The retention time 

135 was achieved by diluting the substrate with specified amounts of water. The 

136 experiment was commenced with an initial acclimatisation phase of 20 days. After 

137 reaching steady state conditions (after at least 3 HRTs) the organic loading rate of M1 

138 and M2 was increased gradually from 2 to 5 g VS L-1 d-1. The loading rate for the single-

139 stage reactor (M3) was increased from 2 to 4 g VS L-1 d-1. 

140

141 2.2 Inoculum and substrate 

142 The inoculum was obtained from a single-stage digester fed grass silage and food 

143 waste. The source segregated food waste was obtained from a local waste 

144 management company collecting food waste from major catering premises. 
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145 Approximately 80 kg of food waste was first manually screened and non-biodegradable 

146 contaminants like bones and plastics were removed. The residual food waste was 

147 subsequently shredded in a mechanical meat mincer to a pasty consistence with 

148 particle size between 0.5 to 5mm. It was stored at a temperature of -20 °C until fed to 

149 the anaerobic reactors. A total solids (TS) content of 24.63 ± 0.72% with a share of 

150 94.29 ± 0.64% present as volatile was determined. The pH yielded in 5.1 ± 0.05 with a 

151 C:N ratio of 14.86. The physical and chemical characteristics of the substrate were 

152 analysed and are further described in Voelklein et al. (2016).

153

154 2.3 Analytical methods

155 VFA/TIC was measured using the Nordmann-method (Nordmann, 1977). This 

156 parameter indicates the ratio of volatile fatty acids to buffering capacity. The 

157 concentrations of individual volatile fatty acids were analysed with gas 

158 chromatography (Hewlett Packard HP6890) using a NukolTM fused silica capillary 

159 column (30 m × 0.25 mm × 0.25 μm) and a flame ionization detector (FID). Hydrogen 

160 was used as a carrier gas. All metal elements except selenium were analysed according 

161 to DIN EN ISO 11885 with inductively coupled plasma optical emission spectrometry 

162 (ICP-OES); selenium was determined according to DIN EN ISO 17294-2 (E29) with 

163 inductively coupled plasma mass spectrometry (ICP-MS). Biogas composition was 

164 analysed for CH4, CO2, H2, O2 and N2 using a Hewlett Packard HP6890 gas 

165 chromatograph equipped with a Hayesep R packed GC column (3 m x 2 mm, mesh 

166 range of 80-100) and a thermal conductivity detector (TCD). Argon was used as carrier 

167 gas. Certified gas standards were employed for the standardization of hydrogen, 
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168 methane and carbon dioxide. The utilised analytical methods are further described in 

169 Voelklein et al. (2016).

170

171 2.4 Recognising reactor failure and corrective measures  

172 The reason for reactor failure can be found mainly in organic overload, inadequate 

173 mixing, enhanced dry solids content of digestate in the reactor, temperature changes, 

174 ammonia inhibition, inhibitory substances in the feed stock or undersupply of trace 

175 elements (Drosg, 2013). Close process monitoring allows identification of changes in 

176 parameters such as pH, VFA/TIC, VFA, hydrogen concentration, biogas quality and 

177 quantity. The reactor specific interpretation and comparison of those parameters 

178 allows establishment of a characteristic baseline and immediate recognition when 

179 deviating from the norm. Strategies to counteract depend on the initial circumstances 

180 causing reactor failure. Pathways to recovery include for a reduction/cessation of 

181 feedstock, elevation of pH, dilution with water or digestate, supplementation of 

182 deficient nutrients and are always accompanied with close process monitoring.

183

184 3 Results

185 3.1 Nutrient supplementation

186 The food waste contained trace element metals Cu, Fe, Ni, Mn and Zn in the range of 

187 0.42-31.5 mg L-1 (Table 1). Some of the key trace elements for anaerobic digestion 

188 (such as Co, Mo, Ni and Se) were undersupplied and partly below the detection limit. A 

189 similar trace element spectrum in food waste was also found in other studies (Banks et 

190 al., 2012; Qiang et al., 2012; Zhang & Jahng, 2012). The low concentrations in the 
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191 substrate were further reflected by the decreased values found in the effluent of the 

192 reactors once they became critically unstable (Table 1). 

193

194 Table 1 Trace element levels in food waste, in digestate at reactor failure, reported 

195 range of nutrients added in literature and nutrients added to feed stock.

196

197 The experiment commenced at a low OLR of 2 g VS L-1 d-1 without any nutrient 

198 addition. Once the experiment became critically unstable, trace element 

199 supplementation commenced. The trace elements added to the feedstock of the 

200 methane reactors were designed to contain the deficient elements Co, Fe, Mo, Ni and 

201 Se according to Table 1. The level of trace elements in the feedstock and trace element 

202 solution consequently determines the concentration of trace elements in the 

203 digestate, with a minor increase due to conversion of solid matter into gas. The 

204 selected concentrations for supplementation in this experiment followed levels most 

205 frequently applied and recommended in literature (Banks et al., 2012; Gustavsson et 

206 al., 2011; Zhang & Jahng, 2012; Zhang et al., 2015). Thus 1 mg L-1 Co, 160 mg L-1 Fe, 0.2 

207 mg L-1 Mo, 1 mg L-1 Ni and 0.2 mg L-1 Se were added to the feedstock (Table 1). In the 

208 present study Co was added in the form of CoCl2·6H2O, Fe as FeCL3·6H2O, Mo as 

209 H24Mo7N6O24·4H2O, Ni as Cl2Ni·6H2O and Se as Na2SeO3. Trace elements were 

210 introduced in the single stage reactor and the methane reactor of the two-stage 

211 system. Adequate amounts of Fe were added to precipitate emerging hydrogen 

212 sulphate to iron sulphur compounds. The bioavailability of supplemented trace 

213 elements in dissolved form was sufficient for the methanogenic archaea (Gustavsson 

214 et al., 2013; Ortner et al., 2015).
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215 3.2 Single-stage reactor performance

216 3.2.1 Process performance until reactor failure

217 Figure 1 shows the performance of the single-stage reactor M3 during the 360 day 

218 operation period. After an initial commissioning period of two hydraulic retention 

219 times (equivalent to 32 days), the reactor was set at an OLR of 2 g VS L-1 d-1 and the 

220 SMY stabilised at 324.5 ±25.5 L CH4 kg VS-1. The pH and VFA/TIC values showed a minor 

221 deterioration towards the end of OLR 2 g VS L-1 d-1. This phenomenon was explained 

222 with a decrease in measured TIC values, provoking reduced buffer capacity, raising the 

223 ratio of VFA/TIC and lowering the pH values. However, low VFA/TIC values of on 

224 average 0.21 indicated stable conditions during the overall steady state period at OLR 

225 2 g VS L-1 d-1 (Table 2), as VFA/TIC ratios below 0.4 are associated with stable reactor 

226 performance (Drosg, 2013). Low VFA levels of 0.3 g L-1 (Table 2), and constant SMY, 

227 further strengthened the conclusion of stable reactor conditions. A further increase in 

228 loading rate to an OLR of 2.5 g VS L-1 d-1 was immediately accompanied by a subtle 

229 increase of VFA/TIC, enhanced VFA and declining pH. However, a decrease of the key 

230 reactor performance SMY was only gradually observed. After a continuous drop in gas 

231 production over the period of 3 HRTs, a significant deterioration of process parameters 

232 (pH, VFA/TIC, VFA) caused a distinct drop in SMY (Figure 1). After 3.5 HRTs at an OLR of 

233 2.5 g VS L-1 d-1 the methane content decreased to 30.5 vol.-% and the pH dropped by 1 

234 unit to 5.4 in only 5 days, emphasising the dynamic development in the final stage of 

235 failure. The acid consuming acetoclastic methanogens could not keep pace with the 

236 rising levels of total VFA (4.32 g L-1) and were further inhibited by this accumulation. At 

237 the peak of reactor failure (day 133) SMY fell to levels as low as 82.7 L CH4 kg VS-1 and 

238 a VFA/TIC value of 1.57 clearly emphasised the irreversible state, exceeding stable 
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239 VFA/TIC levels of below 0.4 (Drosg, 2013). This development was attributed to major 

240 trace element depletion as confirmed by laboratory analysis in Table 1. 

241

242 Fig. 1. Single-stage reactor performance before and after trace element 

243 supplementation.

244

245 3.2.2 Recovery after trace element addition

246 After severe reactor failure on day 133, it was decided to stop feeding (Figure 1). In 

247 order to facilitate microbiological recovery, on day 140 the pH was adjusted to neutral 

248 levels with sodium hydroxide and trace element supplementation was initiated (Table 

249 1). After VFA/TIC levels dropped and a distinct improvement in gas quality and 

250 production were observed (day 147), it was decided to recommence feeding. The OLR 

251 of 2.5 g VS L-1 d-1 was further maintained for 4 HRTs. Neither an increase in VFA/TIC, 

252 nor a significant reduction in pH was determined. The SMY reached a plateau of 319.3 

253 ± 9.1 L CH4 kg VS-1 and regained the levels achieved before reactor failure. The 

254 experiment continued with trace element addition for another 160 days with elevating 

255 OLRs. The SMY remained at 326.6 ± 26.2 and 316.4 ± 17.9 L CH4 kg VS-1 at an OLR of 3 

256 and 4 g VS L-1 d-1 respectively. The reactor performed at healthy conditions with only a 

257 minor rise in VFA and VFA/TIC. However, pH never reached the initial values of 7 again 

258 which was attributed to the gradually enhanced OLR. Table 2 summarises the 

259 performance characteristics of each steady state. 

260

261 Table 2 Performance characteristics of single-stage reactor M3 at each steady state.

262
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263 3.3 Two-stage reactor performance

264 3.3.1 Process performance until reactor failure

265 Figure 2 & 3 show the reactor performances of methane reactors (M1 & M2) deployed 

266 in a two-stage system. The experiments commenced with a 3 HRT starting period to 

267 acclimatise the microorganisms to food waste digestion. Thereafter, the OLR was 

268 brought to 2 g VS L-1 d-1 until a steady state was reached after 3 HRTs. The SMY for M1 

269 and M2 settled at 392 ± 12.6 and 419 ± 23.2 L CH4 kg VS-1 respectively. Low levels of 

270 VFA/TIC and pH indicated stable biological conditions. As the OLR was increased in M1 

271 and M2 to 2.5 g VS L-1 d-1, the SMY dropped acclimatising to the higher load. This was 

272 to be expected and from day 84 onwards the reactors temporarily appeared to 

273 recover, indicated by lower VFA/TIC and pH improvements after the initial 

274 deterioration. However, the advance of the experiment revealed a massive VFA/TIC 

275 increase and pH drop. A SMY reduction to levels as low as one third (M1) and a half 

276 (M2) of SMY as compared to that at an OLR of 2 g VS L-1 d-1 was identified. The 

277 magnitude and the dynamic change of process parameters exceeded previous 

278 observations significantly. As a consequence, the initial performance of M1 could not 

279 be re-obtained. M2 remained at unsteady levels (VFA/TIC, pH) for longer whilst 

280 showing a temporary gain in SMY, before ultimately being unable to cope with the 

281 loading. The higher level of Ni and Mo in the digestate of M2 as compared to M1 

282 (Table 1) might have initially mitigated and delayed the final break down. In the final 

283 stage of reactor failure M1 (day 96-108) and M2 (day 132-144) pH values dropped as 

284 far as 6.69 (M1) and 6.92 (M2) whilst VFA/TIC analysis ultimately peaked at 1.42 and 

285 1.34 respectively. A major accumulation of VFA in the range of 4.98 (M1) and 3.44 g L-1 

286 (M2), dominated by acetic and propionic acid, reinforced the theory of an inhibition of 
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287 the acetoclastic pathway in methanogenesis. Subsequent reactor failure was 

288 attributed to major trace element depletion as confirmed by laboratory analysis in 

289 Table 1. 

290

291 Fig. 2. Two-stage reactor performance (M1) before and after trace element 

292 supplementation.

293

294 Fig. 3. Two-stage reactor performance (M2) before and after trace element 

295 supplementation.

296

297 3.3.2 Recovery after trace element addition

298 After the reactors failed, trace element supplementation as recorded in Table 1 was 

299 started for M1 and M2 on day 108 and 144 respectively. As the reactor failure of M1 

300 was more severe than M2, feeding was suspended for 3 days and pH was raised with 

301 sodium hydroxide to levels before failure. After 6 days (0.5 HRT) pH and VFA/TIC in M1 

302 indicated stable fermentation and matched the results at OLR 2 g VS L-1 d-1 again. The 

303 SMY quickly reached 371.1 ± 5.5 L CH4 kg VS-1 and corresponded with results before 

304 supplementation of trace elements. M2 neither received an alkaline solution for pH 

305 stabilisation nor a feeding stop. Therefore, the pH only gradually increased over time 

306 and VFA/TIC recovery to levels below 0.5 experienced a minor delay of 12 days. The 

307 OLR of M1 and M2 was further increased until an OLR of 5 g VS L-1 d-1 was reached 

308 whilst maintaining an HRT over the two stages of 16 days. Constant low VFA/TIC and 

309 VFA levels were observed with a gradual increase corresponding to rising OLR. The 
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310 SMY ranged between 373.9 ± 10.9 and 413.9 ± 22.6 L CH4 kg VS-1 corresponding with 

311 values achieved before trace element addition. Stable fermentation conditions were 

312 restored and maintained after trace element supplementation, confirming the failure 

313 was induced by a deficiency of essential trace elements. Table 3 summarises the 

314 performance characteristics of each steady state.

315

316 Table 3 Performance characteristics of second stage of two-stage reactors, M2 & M3 

317 at each steady state.

318

319 3.4 Impact and comparison of trace element supplementation on single and 

320 two-stage digestion

321 All reactors were subjected to the same overall conditions in terms of loading rate, 

322 retention time and temperature. Figure 4 illustrates and compares the steady state key 

323 performance parameters VFA, VFA/TIC and SMY of the second stage of the two-stage 

324 systems (M1 & M2) with the one-stage reactor (M3). Without any addition of trace 

325 elements an elevated SMY of 392 ± 12.6 and 419 ± 23.2 L CH4 kg VS-1 was obtained at 

326 an initial OLR of 2 g VS L-1 d-1 in the two-stage reactors M1 & M2 respectively, as 

327 opposed to 324 ±25.5 L CH4 kg VS-1 for M3. The superior gas yields in the two-stage 

328 digestion is a result of the upstream hydrolysis and is further described in Voelklein et 

329 al. (2016).

330

331 After increasing the OLR to 2.5 g VS L-1 d-1 the VFA/TIC level in all reactors (M1, M2 & 

332 M3) severely deteriorated by up to one order of magnitude to levels of 1.34-1.57. The 

333 reactors failed and significantly exceeded levels of fermentation considered stable 
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334 (Drosg, 2013). Similar observations of unstable reactor behaviour at low OLR have 

335 been reported by Climenhaga and Banks (2008), Gustavsson et al. (2011), Nordell et al. 

336 (2015) and Zhang et al. (2015). The VFA spectrum of M1 and M2 was dominated by 

337 acetic (3.59 g L-1 and 2.67 g L-1 respectively) and propionic acid (0.52 g L-1 and 0.31 g L-1 

338 respectively) with minor shares of longer chained fatty acids (C4-C6). In contrast the 

339 share of 1.88 g L-1 of propionic acid exceeded the share of 1.25 g L-1 of acetic acid in 

340 the single-stage reactor M3. The accumulation of VFA is an associated consequence of 

341 trace element deficiency (Banks et al., 2012; Nordell et al., 2015; Pobeheim et al., 

342 2011).

343 The severe drop in SMY caused by reactor failure ultimately affected all reactors to the 

344 same extend regardless of the reactor configuration. The initial acidification and break 

345 down of substrate in the upstream reactor of the two-stage system resulted in a 

346 prevailing pH of approx. 5 (Voelklein et al., 2016). This allowed part of the hydrogen 

347 sulphide to be released and present as H2S (gas), not resulting in precipitation and 

348 potential deficiency of trace elements. A more robust and beneficial behaviour of the 

349 two-stage process in respect of its upstream hydrolytic pre-treatment was not 

350 observed, due to the complete lack of some trace elements in the feedstock (Table 1). 

351 Therefore, the two-stage system did not show any better resilience to nutrient 

352 deficiency in general, neither towards the potential advantage of reduced precipitation 

353 nor to enhanced availability of trace elements. 

354

355 However, the hypothesis of increased bioavailability in a two-stage system remains, as 

356 an absence of trace element Co, Mb and Se can not be compensated by increased 

357 bioavailability. The trace element supplementation after failure stimulated 
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358 methanogenic activity in all reactors, triggering a reduction in VFA and subsequently 

359 sustained low VFA/TIC values. This is in line with observations made in studies 

360 assessing the long term effects of trace element supplementation (Karlsson et al., 

361 2012; Nges et al., 2012; Pobeheim et al., 2011). The dynamic response in both reactor 

362 configurations restored and enabled SMY levels comparable to the experimental 

363 period before failure. Immediate beneficial effects after addition of deficient nutrients 

364 were also obtained by Moestedt et al. (2015), Nordell et al. (2015), Qiang et al. (2012) 

365 and Zhang et al. (2015).

366 The gap in SMY between the one and two-stage remained after stabilizing the reactors 

367 with trace elements. The 16 day BMP performance of 471.94 L CH4 kg VS-1 was never 

368 reached regardless of the elimination of nutrient deficiency. This is a result of fully 

369 mixed continuous stirred tank reactors causing fresh matter to leave the reactor prior 

370 to complete digestion. The shorter the retention time the more significant this effect 

371 becomes. The gas yields further confirmed the observed conclusion that trace element 

372 addition had negligible impact on SMY (at a fixed HRT of 16 days), yet is essential for a 

373 stable fermentation with low VFA levels after exceeding a threshold OLR of 2.0 g VS L-1 

374 d-1. The positive effects of trace element addition are in line with studies conducted by 

375 Banks et al. (2012); Gustavsson et al. (2011); Nges et al. (2012); Qiang et al. (2012); 

376 Zhang and Jahng (2012); Zhang et al. (2015).

377

378 Fig. 4. Performance comparison of single and two-stage digestion at steady state with 

379 and without trace element supplementation.

380
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381 4 Conclusion

382 Food waste lacked essential nutrients causing instable single and two-stage reactor 

383 performance after exceeding a threshold OLR of 2.0 g VS L-1 d-1. The break down was 

384 characterised by pH, VFA/TIC, VFA and CH4 concentrations far beyond stable limits and 

385 a reduction in SMY. TE addition of Co, Fe, Mo, Ni and Se restored a stable process and 

386 allowed increased loading rates. TE addition did not increase SMY beyond levels at 

387 initial stable digestion. The two-stage system incorporating hydrolytic pre-treatment 

388 showed improved SMY than the single-stage system but did not show any better 

389 resilience to nutrient deficiency.

390
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527 Gas yields at OLR 2.5 no TE without error bars as values only represent the final state of reactor failure.
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529 Fig. 4. Performance comparison of single and two-stage digestion at steady state with and without trace element supplementation. 
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530 Table 1 
531 Trace element levels in food waste, in digestate at reactor failure, reported range of nutrients added in literature and nutrients added to feed 
532 stock.

Element Unit Food waste M1b M2b M3b Nutrients added in 
literature 

Nutrients added 
to feed stock

Iron (Fe) mg L-1 ww 31.5 21.6 25.6 19.7 5-500 160
Manganese (Mn) mg L-1 ww 6.9 0.87 0.86 1.6 - -
Zinc (Zn) mg L-1 ww 7.3 0.83 0.84 1.6 - -
Copper (Cu) mg L-1 ww 1.3 0.78 1.0 1.2 - -
Nickel (Ni) mg L-1 ww 0.42 0.039 0.32 0.75 0.035-10 1
Molybdenum (Mo) mg L-1 ww < LDa 0.028 0.043 0.092 0.0272-5 0.2
Cobalt (Co) mg L-1 ww < LDa 0.019 < LDa 0.019 0.05-10 1
Selenium (Se) mg L-1 ww < LDa < LDa < LDa < LDa 0.056-0.2 0.2
Cadmium (Cd) mg L-1 ww < LDa < LDa < LDa < LDa - -

533 a <LD, lower than detection limit of 0.5 mg kg-1 dry solids; b at OLR 2.5 g VS L-1 d-1 after reactor failure; mg L-1 corresponds to mg kg-1 (density neglected for comparison 
534 reasons); ww: wet weight.
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535 Table 2
536 Performance characteristics of single-stage reactor M3 at each steady state.

  M3  M3a  M3  M3  M3  
Trace element addition no no yes yes yes
OLR g VS L-1 d-1 2 2.5 2.5 3 4
HRT days 16 16 16 16 16
pH 7 ±0.1 5.4 6.6 ±0.1 6.5 ±0.3 6.6 ±0.3
VFA/TIC 0.21 ±0.02 1.57 0.38 ±0.04 0.45 ±0.11 0.49 ±0.03
Acetate g L-1 0.16 ±0.07 1.25 0.18 ±0.02 0.31 ±0.11 0.42 ±0.04
Propionate g L-1 0.08 ±0.04 1.88 0.06 ±0.01 0.15 ±0.09 0.26 ±0.01
Iso-Butyrate g L-1 0.03 ±0.03 0.35 0.03 ±0.01 0.03 ±0.01 0.02 ±0.01
Butyrate g L-1 0.01 ±0.01 0.14 0.07 ±0.01 0.08 ±0.02 0.04 ±0.01
Iso-Valerate g L-1 0.02 ±0.04 0.33 0.02 ±0.01 0.03 ±0.01 0.02 ±0.01
Valerate g L-1 0.01 ±0.01 0.23 0.03 ±0.01 0.03 ±0.01 0.01 ±0.01
Iso-Caproate g L-1 0.01 ±0.01 0.04 0.01 ±0.01 0.01 ±0.01 0.01 ±0.01
Caproate g L-1 0.01 ±0.01 0.09 0.07 ±0.01 0.03 ±0.02 0.02 ±0.01
Total VFA g L-1 0.3 ±0.18 4.32 0.46 ±0.01 0.64 ±0.23 0.78 ±0.05
Methane concentration Vol.-% 55.3 ±1.8 30.5 55 ±0.8 54.9 ±1 55.8 ±1
Methane yield L CH4 kg VS-1 324.5 ±25.5 82.7  319.3 ±9.1 326.6 ±26.2 316.4 ±17.9

537 a no standard deviation applied as values only represent the final state of reactor failure.

538
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Table 3 
Performance characteristics of second stage of two-stage reactors, M1 & M2 at each steady state.
  M1  M2  M1a  M2a  M1  M2  M1  M1  M2  M1  M2  

Trace element addition no no no no yes yes yes yes yes yes yes

OLR g VS L-1 d-1 2.0 2.0 2.5 2.5 2.5 2.5 3.0 4.0 4.0 5.0 5.0

HRT days 12 12 12 12 12 12 12 12 12 12 12

pH 7.5 ±0.1 7.5 ±0.1 6.69 6.92 7.5 ±0.1 7.5 ±0.1 7.6 ±0.1 7.7 ±0.1 7.7 ±0.1 7.9 ±0.1 7.9 ±0.1

VFA/TIC 0.17 ±0.03 0.16 ±0.01 1.42 1.34 0.15 ±0.01 0.22 ±0.04 0.17 ±0.04 0.13 ±0.03 0.17 ±0.03 0.15 ±0.06 0.34 ±0.02

Acetate g L-1 0.45 ±0.1 0.11 ±0.09 3.59 2.67 0.12 ±0.03 0.08 ±0.02 0.09 ±0.01 0.15 ±0.09 0.38 ±0.33 0.33 ±0.1 1.33 ±0.2

Propionate g L-1 0.09 ±0.01 0.01 ±0.02 0.52 0.31 0.04 ±0.01 0.01 ±0.01 0.04 ±0.01 0.01 ±0.01 0.04 ±0.01 0.05 ±0.01 0.05 ±0.02

Iso-Butyrate g L-1 0.04 ±0.01 0.01 ±0.01 0.14 0.13 0.01 ±0.01 0.01 ±0.01 0.01 ±0.01 0.01 ±0.01 0.01 ±0.01 0.01 ±0.01 0.01 ±0.01

Butyrate g L-1 0.02 ±0.01 0.01 ±0.01 0.31 0.10 0.04 ±0.01 0.03 ±0.01 0.03 ±0.01 0.03 ±0.01 0.04 ±0.01 0.4 ±0.09 0.09 ±0.07

Iso-Valerate g L-1 0.01 ±0.01 0.01 ±0.01 0.15 0.12 0.01 ±0.01 0.01 ±0.01 0.01 ±0.01 0.01 ±0.01 0.01 ±0.01 0.01 ±0.01 0.01 ±0.02

Valerate g L-1 0.01 ±0.01 0.01 ±0.01 0.07 0.04 0.02 ±0.02 0.01 ±0.01 0.02 ±0.02 0.01 ±0.01 0.03 ±0.01 0.03 ±0.01 0.01 ±0.02

Iso-Caproate g L-1 0.01 ±0.01 0.01 ±0.01 0.02 0.02 0.01 ±0.01 0.01 ±0.01 0.02 ±0.01 0.01 ±0.01 0.01 ±0.01 0.01 ±0.01 0.01 ±0.01

Caproate g L-1 0.01 ±0.01 0.02 ±0.01 0.17 0.06 0.06 ±0.05 0.05 ±0.01 0.06 ±0.03 0.06 ±0.01 0.07 ±0.01 0.05 ±0.02 0.02 ±0.03

Total VFA g L-1 0.6 ±0.1 0.16 ±0.14 4.98 3.44 0.3 ±0.17 0.16 ±0.03 0.29 ±0.11 0.25 ±0.1 0.55 ±0.36 0.87 ±0.23 1.52 ±0.29

Methane concentration Vol.-% 68.6 ±2.5 69.5 ±1.9 55.40 61.20 74.3 ±1.5 68.5 ±1.1 72.8 ±0.3 69.2 ±1.1 66.7 ±1.5 70.2 ±0.8 67.6 ±2.9

Methane yield L CH4 kg VS-1 392 ±12.6 419 ±23.2 112.60  172.40  371.1 ±5.5 391.2 ±16.7 391.4 ±7.2 373.9 ±10.9 413.9 ±22.6 381.7 ±15.5 389.2 ±31.8

a no standard deviation applied as values only represent the final state of reactor failure.


