
Title Diffusible Signal Factor (DSF)-dependent quorum sensing in pathogenic
bacteria and its exploitation for disease control

Author(s) Dow, J. Maxwell

Publication date 2016-09-29

Original citation Dow, J. M. (2016) 'Diffusible Signal Factor (DSF)-dependent quorum
sensing in pathogenic bacteria and its exploitation for disease control',
Journal of Applied Microbiology. doi:10.1111/jam.13307

Type of publication Article (peer-reviewed)

Link to publisher's
version

http://dx.doi.org/10.1111/jam.13307
Access to the full text of the published version may require a
subscription.

Rights © 2016, John Wiley & Sons, Inc. This is the peer reviewed version of
the following article: Dow, J. M. (2016) 'Diffusible Signal Factor
(DSF)-dependent quorum sensing in pathogenic bacteria and its
exploitation for disease control', Journal of Applied Microbiology,
which has been published in final form at
http://onlinelibrary.wiley.com/doi/10.1111/jam.13307/full. This
article may be used for non-commercial purposes in accordance
with Wiley Terms and Conditions for Self-Archiving.

Embargo information Access to this article is restricted until 12 months after publication by
request of the publisher.

Embargo lift date 2017-09-29

Item downloaded
from

http://hdl.handle.net/10468/3193

Downloaded on 2018-08-23T18:47:05Z

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cork Open Research Archive

https://core.ac.uk/display/61582343?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1111/jam.13307
http://hdl.handle.net/10468/3193


A
cc

ep
te

d
 A

rt
ic

le

This article has been accepted for publication and undergone full peer review but has not 
been through the copyediting, typesetting, pagination and proofreading process, which may 
lead to differences between this version and the Version of Record. Please cite this article as 
doi: 10.1111/jam.13307 
This article is protected by copyright. All rights reserved. 

Received Date : 08-Aug-2016 
Revised Date   : 16-Sep-2016 
Accepted Date : 23-Sep-2016 
Article type      : Review Article 
 
 

Diffusible Signal Factor (DSF)-dependent quorum sensing in 

pathogenic bacteria and its exploitation for disease control 

 

J. Maxwell Dow 

School of Microbiology, University College Cork, Cork, Ireland. 

Tel: (+353) 21-4901316  

Fax: (+353) 21-4903101  

E-mail. m.dow@ucc.ie 

 

RUNNING HEADLINE: DSF signalling in bacteria 

 

Summary 

Cell-to-cell signals of the Diffusible Signal Factor (DSF) family are cis-2-unsaturated fatty 

acids of differing chain length and branching pattern. DSF signalling has been described in 

diverse bacteria to include plant and human pathogens where it acts to regulate functions such 

as biofilm formation, antibiotic tolerance and the production of virulence factors. DSF family 

signals can also participate in interspecies signalling with other bacteria and interkingdom 

signaling such as with the yeast Candida albicans. Interference with DSF signalling may 

afford new opportunities for the control of bacterial disease. Such strategies will depend in 

part on detailed knowledge of the molecular mechanisms underlying the processes of signal 
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synthesis, perception and turnover. Here, I review both recent progress in understanding DSF 

signalling at the molecular level and prospects for translating this knowledge into approaches 

for disease control. 

 

Keywords: Virulence; signalling; plant pathology; pseudomonads; microbial physiology. 

 

Introduction 

Many bacteria use cell-to-cell signalling, often called quorum sensing (QS), to modulate their 

activities in response to aspects of their environment such as population density or 

confinement to niches. Such communication depends upon the synthesis and release of 

diffusible signal molecules to the milieu, their perception by different sensors and signal 

transduction that leads to alteration in bacterial gene expression and behaviour. Cell-to-cell 

signalling regulates diverse processes that include the formation of biofilms and the 

production of virulence factors in pathogenic bacteria. Bacteria within biofilms are often 

much more tolerant to antibiotics than their planktonic counterparts, hence interference with 

signalling may afford routes to disease control, by reducing virulence and through 

improvement of efficacy of existing antibiotic therapies. The development of such strategies 

will depend in part upon a detailed knowledge of the molecular mechanisms of signal 

synthesis, perception and transduction.     

 

Bacterial signal molecules belong to a wide range of chemical classes. The DSF family of 

signals comprises cis-2-unsaturated fatty acids of differing chain length and branching pattern 

(reviewed by Deng et al. 2011; Ryan et al. 2015)(Fig. 1). The first family member described 

was cis-11-methyl-2-dodecenoic acid (designated DSF) from the phytopathogen 

Xanthomonas campestris pv. campestris (Xcc)(Barber et al., 1997; Wang et al., 2004). 
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Further family members have been described in Burkholderia cenocepacia (cis-2-dodecenoic 

acid; BDSF), Xylella fastidiosa (cis-2-tetradecenoic acid; XfDSF; cis-2-hexadecenoic acid; 

XfDSF2), Xanthomonas oryzae (cis,cis-11 methyldodeca-2,5-dienoic acid; CDSF) and 

Pseudomonas aeruginosa (cis-2-decenoic acid)(Boon et al. 2008; Beaulieu et al., 2013; 

Ionescu et al. 2016; He et al. 2010; Davies and Marques, 2009). The cis unsaturated double 

bond at the 2-position is regarded as the signature for DSF family signals and is a key 

structural feature for activity (Wang et al., 2004); where tested, trans derivatives have little or 

no signalling activity. With the exception of P. aeruginosa, many of these bacteria produce 

multiple DSF family signals, although each genus seems to be most responsive to the major 

signal that it produces (Ionescu et al. 2013; 2016). However, although Pseudomonas 

aeruginosa does not synthesize cis-11-methyl-2-dodecenoic acid (DSF) or cis-2-dodecenoic 

acid (BDSF), it is capable of sensing these molecules with consequences for bacterial 

behavior, including altered biofilm architecture and increased antibiotic tolerance (Ryan et al. 

2008). It should be noted that Burkholderia cenocepacia and Pseudomonas aeruginosa have 

additional QS systems mediated by N-acyl homoserine lactones and alkyl quinolones, and 

there is evidence of regulatory interplay between these different systems (Schmid et al. 2012; 

Udine et al. 2013). 

 

Signalling by the DSF family of signals positively influences the virulence of a number of 

plant and human pathogenic bacteria to include Xanthomonas spp., Stenotrophomonas 

maltophilia, Burkholderia cenocepacia and Pseudomonas aeruginosa (reviewed in Ryan et 

al. 2015).  By way of contrast, signal-deficient mutants of Xylella fastidiosa show enhanced 

virulence to plants but a reduced capacity to colonize their insect vector and hence poor 

transmission to uninfected plants (Newman et al. 2004; Chatterjee et al. 2008 a,b).  A role for 
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DSF family signalling in biofilm formation in a number of bacteria has also been described 

(Dow et al. 2003; Newman et al. 2004; Torres et al. 2007; Tao et al. 2010; Deng et al. 2012).  

 

DSF family signals are also implicated in inter-species and inter-kingdom signalling. Cis-2-

decenoic acid induces biofilm dispersal in a range of Gram-negative and Gram-positive 

bacteria that do not produce DSF family signals (reviewed by Marques et al. 2015), and also 

improves the efficacy of antibiotic action in a number of organisms (see below). BDSF can 

modulate the yeast-hyphal transition in the dimorphic fungus Candida albicans responds to 

(Boon et al. 2008) and DSF has been shown to induce defence-related responses in plants 

(Kakkar et al. 2015).   

 

Here I briefly review the current understanding of DSF signalling in bacteria before going on 

to focus on prospects for translating the knowledge gained into methods for disease control 

through inhibition of signal synthesis, enhancement of signal turnover or interference with 

signal perception. 

 

The two ‘core’ pathways of DSF signal transduction   

The rpf gene cluster (for regulation of pathogenicity factors) encodes the components of the 

DSF signalling system in Xanthomonas spp. (reviewed in Ryan et al. 2015). The synthesis of 

DSF is totally dependent on RpfF, an enzyme of the crotonase superfamily that has amino 

acid sequence relatedness to enoyl CoA hydratase. Although rpfF has its own promoter, it is 

also transcribed as part of an operon with the upstream rpfB gene, which encodes a long 

chain fatty acyl CoA ligase. DSF sensing and signal transduction involves a two-component 

system comprising the sensor kinase RpfC and regulator RpfG, encoded by an adjacent 

operon. RpfC is a complex sensory kinase with a transmembrane sensory input domain, 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

histidine kinase, CheY-like receiver (REC) and HPt domains, whereas RpfG has receiver 

domain attached an HD-GYP domain, which is a cyclic di-GMP phosphodiesterase.  

Perception of DSF by RpfC is linked to an alteration in the cellular level of the second 

messenger cyclic di-GMP probably through auto-phosphorylation and subsequent phospho-

transfer to RpfG, which activates this protein for cyclic di-GMP degradation (Fig.2). RpfC 

acts not only as a sensor for DSF but also in repression of DSF biosynthesis (Slater et al. 

2000). Several mechanisms for this regulation of signal synthesis have been proposed. These 

include an influence of RpfC on rpfF expression (An et al. 2013) and repression of signal 

synthesis via a physical interaction of RpfF with RpfC (He et al. 2006). Bioinformatic 

analysis reveals that the key elements rpfF-rpfC-rpfG are widely conserved in bacteria from 

the genera Xanthomonas and Xylella that are plant pathogens, in the human pathogen 

Stenotrophomonas maltophilia, as well as in unrelated bacteria such as Thiobacillus and 

Leptospirillum species.  

 

The second core pathway for DSF family signalling was first identified in Burkholderia. As 

for DSF in Xanthomonas, BDSF synthesis in Burkholderia depends on a homolog of RpfF 

(Boon et al. 2008). However BDSF perception depends upon RpfR, a protein with PAS, 

GGDEF and EAL domains (Deng et al. 2012)(Fig. 2). GGDEF and EAL domains are 

implicated in the synthesis and degradation respectively of the second messenger cyclic di-

GMP (reviewed in Römling et al. 2013). In vitro, RpfR exhibits cyclic di-GMP 

phosphodiesterase activity that is modulated by binding of BDSF to the N-terminal PAS 

domain (Deng et al. 2012). The rpfF and rpfR genes are adjacent and convergently 

transcribed and are widely conserved not only in Burkholderia species but also in bacteria 

from related genera such as Achromobacter, and unrelated Enterobacteriacaeae including 

Yersinia, Serratia, Cronobacter and Enterobacter.  Accordingly, the production of DSF 
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family signals has been shown to be widespread in Burkholderia spp. (Suppinger et al. 

2016a).  Moreover, a role for RpfR/RpfF in regulation of biofilm formation, colony 

morphology and virulence to zebrafish embryos of Cronobacter turicensis has been recently 

described (Suppinger et al. 2016b). 

 

Additional DSF family signal transduction pathways have been described in Xanthomonas 

and Burkholderia (Ryan et al. 2015). The soluble histidine kinase RpfS of Xcc, binds DSF 

through the N-terminal PAS_4 domain to influence the expression of a sub-set of DSF-

regulated genes. Likewise the complex sensor kinase BCAM0227 in B. cenocepacia 

involves, which is not a homolog of RpfC of Xcc, is involved in regulation of a subset of 

BDSF-dependent factors. Bioinformatic analysis suggests that these sensors should be 

considered as accessory as RpfS is not fully conserved in Xanthomonas species and, unlike 

RpfR, BCAM0227 is restricted to B. cenocepacia (Ryan et al. 2015).  

 

The two “core” pathways both link sensing of a DSF family signal to cyclic di-GMP 

turnover, but by different mechanisms (Fig. 2). Cyclic di-GMP can exert a regulatory action 

at transcriptional, post-transcriptional and post-translational levels within the cell and is 

known to have key role in regulation of biofilm formation and virulence factor synthesis in a 

wide range of organisms (Römling et al. 2013). As a consequence, modulation of cyclic di-

GMP signalling per se may allow control of these bacterial processes and a number of 

approaches to achieve these aims have been proposed. These will not be considered here but 

the reader is directed to several recent reviews (Sintim et al. 2010; Römling and Balsalobre 

2012; Caly et al. 2015).  
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Cis-2-decenoic acid signalling in Pseudomonas aeruginosa  

P. aeruginosa does not have an rpfF-rpfC-rpfG or rpfF-rpfR gene cluster but produces cis-2-

decenoic acid through the RpfF homolog DspI (Davies and Marques, 2009; Amari et al. 

2013). The dspI gene is located in a cluster of genes encoding enzymes implicated in fatty 

acid metabolism. The identity of the sensor for this signal and the transduction mechanism 

are not known however.  

 

RpfF and signal biosynthesis 

The RpfF proteins that are synthases for DSF signals are members of the crotonase 

superfamily of enzymes and have amino acid sequence similarity to enoyl CoA hydratases 

(Barber et al. 1997; Boon et al. 2008; Amari et al. 2013).  In vitro studies have identified that 

the immediate substrate for BDSF synthesis by the RpfF homolog of B. cenocepacia is the 3-

hydroxylated fatty acyl-ACP (acyl carrier protein), an intermediate in fatty acid biosynthesis 

(Bi et al. 2012).  Generation of BDSF requires that the enzyme work initially as a 

dehydratase to convert 3-hydroxydodecanoyl-ACP to cis-2-dodecenoyl-ACP and then as a 

thioesterase to release free BDSF (cis-2-dodecenoic acid). RpfF from B. cenocepacia (or Xcc) 

can also generate free saturated fatty acids from any fatty acyl ACP substrate through its 

thioesterase activity (Bi et al. 2012; Zhou et al. 2015a). Indeed, the in vitro synthesis of 

BDSF requires the addition of an exogenous acyl-ACP synthetase to reverse this thioesterase 

reaction (Bi et al. 2012). RpfF is the only member of the crotonase superfamily with both 

dehydratase/desaturase and thioesterase activity. Mutation of rpfF in different bacteria affects 

the appearance in culture supernatants not only of unsaturated fatty acids of the DSF family 

but also of saturated fatty acids (see for example Beaulieu et al. 2013; Huang and Lee Wong 

2007). This suggests that even in vivo the desaturase and thioesterase actions are not tightly 

co-ordinated to allow only DSF family signal production. Individual Xanthomonas, Xylella, 
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Stenotrophomonas and Burkholderia species can produce multiple DSF family signals that 

are all dependent on RpfF for their synthesis (Huang and Lee Wong 2007; He et al. 2010; 

Deng et al. 2010; Beaulieu et al. 2013). These observations suggest that the enzyme does not 

have a strict specificity for a particular substrate. The pattern of DSF family signals produced 

can depend upon the medium and growth conditions (He et al. 2010; Ionescu et al. 2016). 

Nevertheless, although P. aeruginosa produces cis-2-decenoic acid (via the action of the 

RpfF homolog DspI), detection of the longer chain derivatives such as BDSF or DSF has not 

been reported.  

 

Crystal Structures of DSF synthases 

Crystal structures of RpfF from Xcc and B. cenocepacia have been determined and have 

allowed insights into the molecular mechanisms of substrate binding, the different actions of 

the enzyme, and interactions with other Rpf proteins as well as providing a guide for the 

rational design of effective inhibitory molecules (Cheng et al. 2010; Spadaro et al. 2016). 

The structure of RpfF of Xcc (Cheng et al. 2010) showed the occurrence of two glutamate 

residues that are predicted to be involved in catalysis; alanine substitution of these residues 

completely abolished DSF production. In addition the structure showed that a number of 

residues that are highly conserved across different RpfF homologs form a hydrophobic 

pocket similar to the substrate binding pockets in E. coli methyl malonyl decarboxylase and 

rat enoyl CoA hydratase. However because of steric hindrance this cavity is too small to 

accommodate the fatty acyl chain of DSF (11-methyl cis-2-dodecenoic acid), leading to the 

suggestion that RpfF may need to undergo conformational change to bind its substrate. The 

crystal structure of RpfF from B. cenocepacia (BCAM0581 which was designated DfsA) 

showed the unexpected presence of dodecanoic acid in the catalytic site of the enzyme 

(Spadaro et al. 2016)(Fig.3). This is likely to have been generated as a product of the 
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thioesterase activity of DfsA on a dodecanoyl-ACP substrate. The very slow release of this 

reaction product from the DfsA active site means that it acts as an inhibitor. Furthermore, 

exogenous dodecanoic acid can effectively inhibit the thioesterase activity of DfsA on 

dodecanoyl-ACP, although dodecenoic acid was only inhibitory at much higher 

concentrations. In the crystal, the fatty acid molecule adopts an unusual elongated structure 

(Fig. 3), indicating how DSF family signal synthases can recognize their relatively long chain 

hydrophobic substrates without large conformational changes. Of the eleven substrate-

contacting residues in DfsA, nine are identical in RpfF from Xcc (with two strongly 

conservative changes)(Fig. 4). In contrast in DspI, only three of these residues are identical, 

three showed strongly conservative changes and five were either not conserved or absent 

from the alignment (Fig. 4). Whether these differences are related to substrate specificity is as 

yet unknown. The elucidation of the substrate-binding mode in DfsA provides a starting point 

for structure-based drug discovery studies targeting BDSF signal generation and hence the 

control of synthesis of B. cenocepacia virulence factors. 

 

Interaction between RpfF and RpfC 

As outlined above, RpfC in Xcc acts not only as a sensor for DSF but also in repression of 

DSF biosynthesis. This action of RpfC may be mediated in part by protein-protein interaction 

between the REC domain of RpfC and RpfF, which sequesters RpfF to restrict synthesis of 

DSF (He et al. 2006). Conformational changes in RpfC upon DSF binding may allow rapid 

auto-induction of DSF synthesis as a result of release of RpfF. Structures of the co-crystal 

complex of the RpfC REC domain with RpfF have revealed the nature of the interaction and 

the participating residues (Cheng et al. 2010). These observations may also provide some 

molecular insight into the role of RpfF-RpfC interactions in Xylella fastidiosa, which appear 

to be key for XfDSF signal transduction (Ionescu et al. 2013).  In Xylella, addition of the 
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DSF family signal does not restore the phenotype of the rpfF mutant to wild type (as it does 

in Xanthomonas). Instead signal transduction in Xylella requires both RpfC and RpfF. 

Moreover, enzymatically inactive variants of RpfF can also support XfDSF signal 

transduction, indicating that RpfF in Xylella is multifunctional (Ionescu et al. 2013). Whether 

RpfF interacts with other proteins as a part of the signal transduction mechanism is currently 

unknown. It remains to be seen whether the available structural information will allow the 

design of molecules that could interfere with these key RpfF-RpfC interactions.    

 

Signal degradation and the role of RpfB  

RpfB, which is a predicted fatty acid CoA ligase, was originally thought to be involved in 

signal synthesis in Xanthomonas but is now known to act in the mobilization of saturated 

fatty acids generated by the thioesterase action of RpfF (Bi et al. 2014). This action allows 

their recovery and use in phospholipid biosynthesis. In addition there are several reports that 

RpfB has a role in DSF degradation, although in vitro RpfB has little activity against BDSF 

or DSF (Almeida et al. 2012; Zhou et al. 2015b). These findings have led to the suggestion 

that the in vivo activity is modulated by additional factors or by an alteration in conformation 

perhaps driven by interactions with other proteins (Zhou et al. 2015b). Orthologs of RpfB 

occur widely in many bacteria suggesting that the ability to degrade DSF family signals may 

be widespread. In Burkholderia spp., the encoding genes are not linked to rpfF however, in 

contrast to what is seen in most xanthomonads. 

 

A functional screen showed that many bacteria have the ability to degrade DSF, with some 

strains belonging to genera Bacillus, Paenibacillus, Microbacterium, Staphylococcus, and 

Pseudomonas capable of particularly rapid degradation (Newman et al. 2008; Caicedo et al. 

2016). A mutational analysis in Pseudomonas species strain G indicated a role for carAB in 
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rapid DSF inactivation/degradation (Newman et al. 2008). The carAB genes encode enzymes 

responsible for the synthesis of carbamoylphosphate, which is a precursor in biosynthesis of 

pyrimidines and arginine. This may suggest an involvement of UDP-sugars in signal 

turnover. Whether orthologs of RpfB also contribute to DSF degradation in these bacteria is 

not yet known however.  

 

The identification of environmental or plant-associated organisms capable of DSF 

degradation has allowed their assessment as potential biocontrol agents for particular plant 

diseases. Inoculation of bacteria able to degrade DSF can reduce virulence and symptom 

production by Xylella fastidiosa in grape, Xcc in brassica and Xanthomonas citri in citrus 

(Newman et al. 2008; Caicedo et al. 2016). Taken together, these findings suggest that it 

should be possible to select further strains for improved biocontrol of plant diseases, 

particularly those caused by xanthomonads.    

 

Control of bacterial phytopathogenesis by over-expression of RpfF in 

plants  

Work in both Xylella and Xanthomonas has indicated that DSF family signalling is normally 

finely balanced during the plant disease (Torres et al. 2007; Chatteerjee et al. 2008a,b) so that 

disruption of the balance by over-production of the signal may be a strategy for disease 

control. This process, which has been termed ‘pathogen confusion’ (Lindow et al. 2014), may 

be achieved by plant transgenic approaches. The expression of RpfF from Xylella fastidiosa 

in grape and citrus reduces the virulence of Xylella fastidiosa and Xanthomonas citri 

respectively (Lindow et al. 2014; Caserta et al. 2014) although the underlying mechanisms 

are not fully understood. RpfF expression in grape directs the production of cis-2-

tetradecenoic acid (XfDSF) as well as cis-2-hexadecenoic acid (XfDSF2) (Lindow et al. 
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2014). The latter of these unsaturated fatty acids is only produced by Xylella fastidiosa grown 

on agar and was not previously detected in culture medium (Ionescu et al. 2016). It is 

plausible that expression of RpfF may generate further structural analogs that directly 

influence cell-cell signalling in a negative fashion. Equally the presence of DSF signals may 

activate the premature production of virulence factors, triggering plant defences which can 

overwhelm the smaller number of producing bacteria.  

Recent work suggests that DSF per se may activate plant defence responses that could lead to 

impaired bacterial growth and virulence gene expression. DSF (but not the trans derivative of 

DSF) has been shown to trigger callose deposition, the induction of the PR1 gene and plant 

cell death in leaves of Arabidopsis and Nicotiana benthamiana and roots of rice (Kakkar et 

al. 2015). Treatment with DSF leads to a decrease in Xcc virulence and disease severity. The 

concentrations of exogenous DSF required to induce these effects are quite high (> 20 μM). 

However at lower concentrations, DSF can act to prime plant cells so that they respond more 

rapidly and/or to a greater extent to the flagellin peptide flg22, a model Microbial Associated 

Molecular Pattern (MAMP). During pathogenesis by Xcc, the triggering of plant defences by 

DSF may be countered by different mechanisms, to include the action of the extracellular 

polysaccharide xanthan (Yun et al. 2006; Aslam et al. 2008). This polyanionic polymer 

chelates divalent calcium ions, preventing their influx from the apoplast to the cytosol, an 

event that normally triggers defence (Yun et al. 2006; Aslam et al. 2008). In RpfF-transgenic 

plants however, priming or direct elicitation may lead to more rapid induction and/or 

enhanced levels of defence-related responses that may overwhelm any pathogen 

countermeasures.   
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Structural analogues of DSF that block signal sensing  

In addition to blocking signal synthesis, small molecule modulation of signal sensing or 

downstream transduction steps could afford a route to influence disease severity and improve 

therapy (Njoroge and Sperandio 2009). Relatively small libraries of structural signal 

analogues or very large random libraries of chemical compounds can be screened for 

interesting lead compounds using high throughput methods. This strategy has been 

successfully used to target the sensor kinase QseC, a receptor for host signals as well as the 

bacterial AI-3 signal that is located in the cytoplasmic membrane of a range of Gram-

negative pathogens (Rasko et al. 2008; Curtis et al. 2014). Sensory proteins located at the cell 

surface or in the cytoplasmic membrane are attractive as targets for interference since the 

inhibitory molecules do not need to enter the bacterial cytoplasm to exert an effect.   

  

Recent unpublished work has examined the effect of a panel of structural analogues of DSF 

on the action of PA1396 of P. aeruginosa, a sensor kinase whose input domain has five 

predicted transmembrane helices and is related to that of RpfC of Xanthomonas PA1396 is 

involved in interspecies signalling with bacteria that produce BDSF or DSF. As outlined 

above, although P. aeruginosa does not synthesise DSF or BDSF, it is capable of sensing 

these molecules (through PA1396) to activate changes in gene expression, alter biofilm 

formation and increase antibiotic tolerance (Ryan et al. 2008). Interspecies signalling of this 

nature may occur in polymicrobial infections such as those associated with cystic fibrosis 

(CF) where P. aeruginosa is present together with S. maltophilia and Burkholderia species, 

which produce DSF and BDSF. PA1396 does not however respond to cis-2-decenoic acid, 

the intra-species signal of the DSF family found in P. aeruginosa. Particular structural 

analogs of DSF have been shown to reduce biofilm formation and antibiotic tolerance of P. 

aeruginosa both in vitro and in murine infection models (S.Q. An and R.P. Ryan personal 
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communication). These effects depend largely on the interaction of the molecules with 

PA1396. The analogs may thus represent lead compounds for novel antibiotic adjuvants. It 

remains to be seen whether the same compounds affect virulence gene expression in bacteria 

with the RpfC-RpfG two-component system or influence the action of RpfR.  In the context 

of RpfR, determination of the crystal structures of the PAS domain in the presence or absence 

of the signal may aid the rational design of further inhibitory molecules.  

  

DSF family molecules as potential therapeutics 

A body of work has shown that the signal molecules themselves may also have applications 

in promoting antibiotic efficacy and biofilm dispersal in non-producing organisms. DSF and 

BDSF have been shown to enhance the antimicrobial efficacy of antibiotics against a range of 

bacteria to include Bacillus cereus, Staphylococcus aureus, Mycobacterium smegmatis, 

Neisseria subflava and Pseudomonas aeruginosa (Tian et al. 2013; Deng et al. 2014).  BDSF 

inhibits the formation and causes the dispersion of biofilms of Francisella novicida, a model 

organism for Francisella tularensis, the causal agent of tularemia in humans and animals 

(Dean et al. 2015). Cis-2-decenoic acid has also been shown to inhibit growth and biofilm 

formation by S. aureus (Davies and Marques 2009; Jennings et al. 2012).  In addition, it can 

revert antimicrobial-insensitive persister cells of Escherichia coli and P. aeruginosa to a 

susceptible state (Marques et al. 2010) and in combination with antibiotics or antiseptics can 

eradicate pre-established bacterial or dual species fungal-bacterial biofilms (Rahmani-Badi et 

al. 2014; Sepehr et al. 2014; Rahmani-Badi et al. 2015).  

DSF, BDSF and CDSF can all act to inhibit the yeast-to-hyphal morphological transition in 

Candida albicans (Boon et al. 2008; He et al. 2010; de Rossi et al. 2014). The ability to 

switch between yeast and hyphal forms is an important facet of C. albicans virulence, with 

the hyphal form having key roles in the infection process. Hence inhibition of this process by 
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DSF and derivatives could potentially have a role in therapy. It has also been reported that 

BDSF can inhibit C. albicans adherence to catheters, which is related to modulation of the 

yeast-hyphal morphological transition (Tian et al. 2013).  Notably both BDSF and its trans 

derivative are able to block adherence and germ tube formation; the underlying signal 

transduction mechanisms are not yet known.  

In addition to the practical applications, these observations also indicate the possibility that 

interspecies or interkingdom signalling between DSF-producing bacteria and non-producing 

microbes occurs in environments where they are present together. For example, interactions 

between DSF-producing bacteria and C. albicans may be important in polymicrobial 

communities, such as occur in the airway of cystic fibrosis (CF) sufferers. One caveat is that 

the concentrations of the signal molecules required for particular effects seen in vitro may not 

be within a physiologically range attained in vivo. 

 

Conclusions 

It is now evident that signal molecules of the DSF family play a significant role in regulation 

of diverse functions in a wide range of bacteria to include the virulence of pathogens of plants 

and animals. The targeting of these DSF-mediated pathways by the use of small molecule 

inhibitors of signal generation or sensing, use of biocontrol bacteria that degrade the signal or 

generation of transgenic plants that express signal synthases all have potential as new 

strategies for disease control. Furthermore, the action of these cis-2-unsaturated fatty acids in 

promotion of biofilm dispersal and improvement of the efficacy of existing antibiotics may 

be of considerable importance given the widespread problem of burgeoning antimicrobial 

resistance coupled with the limited development of new antibiotics.  

In addition to these translational considerations, our expanding knowledge of DSF-mediated 

signalling poses new sets of basic research questions.  What are the molecular details of DSF 
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signal recognition by different sensor kinases and the PAS domains?  What are the molecular 

components of the P. aeruginosa signal-response network involving cis-2-decenoic? By what 

mechanism does cis-decenoic acid cause biofilm dispersal in a range of bacteria? Further 

work is clearly needed to address both fundamental and translational aspects of bacterial 

signalling mediated by members of the DSF family.   
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Figure legends 

Figure 1. The DSF family of signals comprises cis-2-unsaturated fatty acids of different 

chain lengths and branching pattern. The first family member described was cis-11-methyl–

dodecenoic acid in Xanthomonas campestris. Other family members include BDSF (cis-2-

dodecenoic acid) from Burkholderia cenocepacia, cis-2-decenoic acid from Pseudomonas 

aeruginosa and the recently described XfDSF2 (cis-2-hexadecenoic acid) from Xylella 

fastidiosa (see text for details).  

Figure 2. Two ‘core’ pathways of signalling involving DSF family signals are exemplified 

by Xanthomonas and Burkholderia species (A and B respectively). In both cases, the DSF 

signal molecules (hexagons) are synthesised by an RpfF homolog and signal tranduction is 

linked to the turnover of the second messenger cyclic di-GMP.  In Xanthomonas (A), signal 

perception and transduction involves the sensor kinase RpfC and two component regulator 

RpfG, which is an HD-GYP domain cyclic di-GMP phosphodiesterase. In Burkholderia (B), 

signal sensing involves RpfR, a cytoplasmic GGDEF-EAL domain protein implicated in 

cyclic di-GMP degradation (see text for details). 
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Figure 3. The structure of DfsA (BCAM0581) with bound lauric acid reveals the potential 

substrate-binding pocket for the hydroxylated fatty acyl-ACP substrates of RpfF DSF 

synthases. The left-hand panel represents an overview showing the presence of the elongated 

fatty acid molecule in the substrate-binding cavity, surrounded by hydrophobic amino acid 

residues. (The catalytic glutamate residues are Glu138 and Glu158). The right-hand panel is a 

schematic of the amino acid environment surrounding the lipid molecule, here indicated as 

DAO.  Adapted with permission from: The Crystal Structure of Burkholderia cenocepacia 

DfsA Provides Insights into Substrate Recognition and Quorum Sensing Fatty Acid 

Biosynthesis by Francesca Spadaro, Viola C. Scoffone, Laurent R. Chiarelli, Marco 

Fumagalli, Silvia Buroni, Giovanna Riccardi, and Federico Forneris Biochemistry, 2016, 55 

(23), pp 3241–3250. Copyright 2016 American Chemical Society. 

Figure 4. Primary sequence alignment of RpfF proteins for which a role in synthesis of DSF 

family signals has been demonstrated, indicating key residues involved in catalysis and in 

creating the substrate binding pocket. The sequences (aligned by ClustalW) are of DspI from 

Pseudomonas aeruginosa (PA0745; Uniprot Q9I5I4_PSEAE); RpfF from Xylella fastidiosa ( 

Uniprot Q87EB0_XYLFT), RpfF from Xanthomonas campestris (XC_2332; Uniprot 

A0A0H2X7S0_XANC8); RpfF from Cronobacter turicensis (CTU_23310; Uniprot 

C9XTL6_CROTZ); RpfF from Stenotrophomonas maltophilia (Uniprot   B2FQ87_STRMK) 

and DfsA from Burkholderia cenocepacia (BCAM0581; Uniprot B4EKM5_BURCJ).  The 

key residues involved in catalysis are two glutamate residues, indicated by red triangles and 

the oxyanion hole residues indicated by blue triangles. Residues that form the substrate-

binding pocket and contact the substrate in DsfA (see Fig.3) are indicated in red in the DsfA 

sequence and in the other sequences where these are conserved. Substitutions at these 

positions by amino acids with similar properties are indicated in yellow.  
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