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Abstract 

Since identification of the CFTR gene over 25 years ago, gene therapy for cystic fibrosis (CF) has been actively developed. More recently gene 

therapy has been joined by other forms of “genetic medicines” including mRNA delivery, as well as genome editing and mRNA repair-based 

strategies. Proof-of-concept that gene therapy can stabilise the progression of CF lung disease has recently been established in a Phase IIb trial. 

An early phase study to assess the safety and explore efficacy of CFTR mRNA repair is ongoing, whilst mRNA delivery and genome editing-

based strategies are currently at the pre-clinical phase of development. This review has been written jointly by some of those involved in the 

various CF “genetic medicine” fields and will summarize the current state-of-the-art, as well as discuss future developments. Where applicable, 

it highlights common problems faced by each of the strategies, and also tries to highlight where a specific strategy may have an advantage on the 

pathway to clinical translation. We hope that this review will contribute to the ongoing discussion about the hype versus reality of genetic 

medicine-based treatment approaches in CF. 

 

  



 

Introduction 

The improved understanding of CF pharmacogenetics has led to licensing of drugs that begin to address the molecular defect caused by certain 

cystic fibrosis transmembrane conductance regulator (CFTR) mutations 1; these advances provide the first proof-of-concept that the molecular 

defect in CF can be targeted and functionally corrected.  In parallel ’genetic medicines’, defined as the delivery of DNA or RNA nucleic acids 

encoding the CFTR protein and the repair of the CFTR gene (genome editing) or the CFTR mRNA (mRNA editing), (Figure 1) have been 

developed over the last two decades and will be reviewed in this article. The strategies currently focus on restoring CFTR function in the lung, 

given the role of this organ in morbidity and mortality in CF patients.  

 

Several hypotheses have been postulated to explain how mutations in the CFTR gene might cause cystic fibrosis (CF). The ‘low-volume’ 

hypothesis postulates that, in addition to a reduction in chloride transport, the lack of functional CFTR also leads to sodium hyperabsorption 

through disinhibition of ENaC, and subsequent increased water absorption into the tissue, leading to reduced airway surface liquid and impaired 

mucociliary clearance 2. More recently it has been suggested that reduced bicarbonate secretion through CFTR alters the pH on the airway 

surface which may affect airway defense mechanisms 3 and alter mucus properties 4. The development of genetic medicines does not require the 

cause of disease pathophysiology to be conclusively understood.  

 

Approximately 2000 mutations/genetic variants have been described in the CFTR gene (http://www.genet.sickkids.on.ca/app), but a link to 

http://www.genet.sickkids.on.ca/app


disease causation has only been proven for a small proportion (~10%) 5.  The valuable “Clinical and Functional Translation of CFTR (CFTR2)” 

initiative is focused on understanding and grouping mutations based on their effects on the protein, although to date this information is  only 

available for a small proportion of putative disease-causing genetic variants (http://www.cftr2.org).  Again, gene and mRNA-based therapies 

should be agnostic regarding the patient’s genotype or which of the six mutation classes these might belong to, and should be suitable for the 

treatment of patients with any mutation. Although both mRNA- and genome editing approaches do require more detailed information about the 

genetic alteration, and not all mutations may be amenable to these repair strategies, these techniques are also not mutation class dependent.  

 

Gene Therapy 

Historical overview 

Gene therapy is currently the most advanced form of CF genetic medicine. Since cloning of the CFTR gene in 1989 extensive pre-clinical 

research led to approximately 27 clinical trials involving about 600 patients being completed (see Table 1 for key publications). The older 

literature related to CF gene therapy has been reviewed in many publications (see for example 6), and so this review is restricted to a brief 

description and discussion of the key findings, rather focusing on more recent progress in the field. Over the last 20 years we have learnt that: 

 

1. Gene transfer into the lung is a difficult task  

Potent intra- and extracellular barriers that have evolved to protect us from viruses, bacteria and other inhaled particles also “protect” against 

inhalation and uptake of inhaled gene transfer agents (GTAs) and the accompanying DNA or RNA. Amongst the intracellular barriers, the 

http://www.cftr2.org/


nuclear membrane presents a particularly significant hurdle for non-viral gene transfer agents. Strategies based on mRNA delivery, or the repair 

of CFTR mRNA, which both act in the cytoplasm, have the potential advantage of bypassing the nuclear membrane. Further, there are 

extracellular barriers including airway mucus, mucociliary clearance, CF mucopurulent sputum 7-9, as well as humoral and cellular immune 

responses (see 10 for more detailed discussion). Crucially, many of these barriers will also affect the other types of CF genetic medicines, 

including many editing approaches.  

 

2. Identification of gene transfer agents suitable for clinical translation is challenging 

Vectors that carry nucleic acids into cells fall broadly into two categories; viral and non-viral vectors. In general viral vectors are more efficient, 

because they have evolved to infect cells and, therefore, carry suitable proteins to overcome at least some of the barriers described above. 

Adenoviruses and adenoassociated viruses (AAV) have a natural tropism for the lungs and seemed obvious choices for early CF gene therapy 

trials (reviewed in 6). However, pre-existing and induced immune responses to the viral vector which effect efficacy and duration of expression, 

limit their usefulness for the treatment of a life-long disease such as CF. To date, we have not seen convincing evidence in either pre-clinical 

models or clinical trials to demonstrate that repeated administration (three or more times) of adenoviral or AAV vectors to immune-competent 

lungs is feasible without loss of efficacy (reviewed in 6).  

 

In contrast to viral vectors, the simpler structure of non-viral formulations, which generally do not contain proteins, make them less likely to 

induce immune responses. Between 1999 and 2004 nine CF gene therapy trials used non-viral gene transfer agents (GTAs) (reviewed in 6. 



Combined, these studies presented a mixed picture with some studies detecting vector-specific mRNA and some partial correction of the 

chloride transport defect, whereas others did not. Proof-of-concept for efficacy (based on detection of mRNA and partial correction of chloride 

transport) of repeated administration (three doses delivered to the nasal epithelium) of a non-viral vector was only assessed in one study 11.  

 

More recent developments 

The UK CF Gene Therapy Consortium (GTC) was founded in 2001, consisting of the three groups in Edinburgh, London and Oxford who had 

previously conducted CF gene therapy trials. The explicit aim was to share expertise and knowledge in a translational programme to assess 

whether gene therapy can change the progression of CF lung disease. The GTC is currently the only group conducting CF gene therapy trials and 

recently completed a Phase IIb multi-dose trial; key data are briefly summarised below: 

a. Following an extensive screening programme,  determined that the cationic lipid formulation GL67A, first used in the 1990s, remained the 

most potent GTA for airway gene transfer some two decades later 12. 

b. First generation plasmids used in previous trials contained a large number of immune-stimulatory CpG dinucleotides, which may have 

contributed to the mild flu-like symptoms noted in  previous  single dose lung trials 13;14. The first generation plasmid (termed pGM169) was 

improved by removing the CpG islands, codon-optimising the CFTR cDNA and incorporation of the novel regulatory element, hCEFI, 

consisting of the elongation factor 1 promoter coupled to the human CMV enhancer 15. 

c. Regulatory-compliant multi-dose toxicology studies in mice 16 and sheep 17 supporting progression into a multi-dose clinical trial were 

undertaken. Interestingly, repeated aerosolisation of pGM169/GL67A to mice led to cumulative dose-related expression on repeat dosing, 



reaching 94±19% of endogenous murine Cftr levels after 12 deliveries. These data further supported progression into a multi-dose clinical trial.  

d. A single  administration, dose-escalation (5, 10 and 20 ml of pGM169/GL67A) Phase I/IIa safety trial  showed that despite CpG-depletion of 

the plasmid, patients receiving the 10 and 20 ml dose still developed mild flu-like symptoms including a fever 18. The likely explanation is that 

both the volume administered to the lung, and the lipid, also contribute to the inflammatory response (in addition to CpG sequences). The 5 ml 

dose (containing ~12.5 mg plasmid DNA) was chosen for the multi-dose trial. 

e. A double-blinded, placebo-controlled Multi-dose Trial was undertaken. Patients (12 years or older with moderate or mild lung disease) 

received 5 ml of nebulised pGM169/GL67A or 5 ml 0.9% saline every month for 12 months. The primary endpoint was a change in lung 

function measured as a relative change of % predicted forced expiratory volume in one second (FEV1). Data from 116 patients (who received 

nine or more doses) were analysed 19. The treatment was well tolerated and the trial met its primary endpoint showing a significant, albeit 

modest, treatment effect in the pGM169/GL67A group versus placebo at 12 months’ follow-up (3·7%, 95% CI 0·1–7·3; p=0·046) (Figure 2a). 

Pre-specified subgroup analysis showed that patients with more severe lung disease at the start of treatment responded better than patients with 

milder lung disease at the start of treatment (Figure 2b+c). The reasons for this are currently unknown and various hypotheses have to be tested. 

One simple explanation may relate to the amount of material deposited in the proximal airways, which is likely higher in patients with more 

severe lung diseases due to mucopurulent mucus globule restricted deposition distally into the smaller airways. 

The significant effect on lung function shown for the first time in this trial was paralleled by only minimal changes in the ion transport assays 

and no detectable vector-specific mRNA. This discordance may relate to the timing and sensitivity of the assays, the site of measurement and/or 

the relatively small area of airways assessed when using molecular assays and further questions the use of these assays as go/no-go decision 



points in the development of CF gene therapy. It also raises the possibility of non-specific effects of the gene transfer complex on airway 

function, although this is difficult to rationalise with current knowledge of airway biology. 

 

The outcome of the trial raises a number of questions. 

a. Could the dose be increased?  

The 5 ml dose was well tolerated when administered repeatedly and a follow-on trial might include a higher dose, supported by preliminary data 

from our single administration Pilot Study. 

b. Was the right dosing-interval chosen? 

Although animal studies have shown that gene expression persists for more than a month, it is conceivable that more frequent administration 

may further increase efficacy. However, moving from monthly to fortnightly or weekly dosing will clearly increase the treatment burden.  

c. Was the appropriate  placebo used?  

The GTC, and others, have extensively deliberated the use of saline as placebo. It is important to first consider the alternatives. The use of lipid 

alone as a placebo is a poor choice because charge, pH, tonicity and chemical composition are very different compared to lipid/DNA complexes. 

The alternative could have been to use an empty plasmid or a plasmid carrying a mutant CFTR sequence. However, both these strategies are 

risky as it would not have be able to rule out expression of an immunologically active peptide or novel non-coding RNA molecules with 

deleterious biological functions. Thus, 0.9% saline, which has not been shown to negatively affect lung function, is likely the optimal placebo 

from a range of non-ideal options. 



 

d. What is the best primary endpoint? 

Spirometry is a variable and effort-dependent measurement and, therefore, is less than ideal. However, we spent approximately 2 years studying 

the longitudinal progression of numerous validated and more novel markers of disease severity in about 200 patients (“Run-in” Study, 

manuscript in preparation) and were unable to identify a more appropriate, regulatory-compliant  endpoint.  

 

Alternative gene transfer agents suitable for CF gene therapy 

Lentiviral vectors, which integrate into the genome, are able to transduce dividing and non-dividing cells and might, therefore, be suitable for 

targeting differentiated cells in the lung. Several groups have investigated lentiviral vectors for airway gene transfer. Although integrating 

vectors have an inherent risk of inducing insertional mutagenesis, it is important to discriminate between the early γ-retroviral vectors that have 

been shown to cause leukaemia in some patients when used for bone marrow transduction 20, from the more advanced lentiviral vectors that have 

not shown evidence of insertional mutagenesis in clinical trials 21-23. 

 

Lentiviral vectors have no natural lung tropism and, therefore, require pseudotyping with appropriate envelope proteins to facilitate lung gene 

transfer. The vesicular stomatitis virus G (VSV-G) protein is commonly used for this purpose and works well for bone marrow transduction ex 

vivo. However, for transduction of airway epithelium it is necessary to pre-condition the tissue with detergents which damage the epithelium and 

allow access to the basolateral membrane via intercellular spaces 24. This raises safety concerns for translation into clinical trials, particularly in 



CF patients with chronic lung infections. As a result, several groups, including our own, have investigated the use of other envelope proteins 

including the baculovirus protein GP64 25, proteins from Ebola or Marburg filoviruses 26, the HA protein from influenza virus 27 and the F and 

HN protein from Sendai virus 28-30,  (Figure 3), which are viruses that either have a broad tissue tropism (baculovirus), or a natural tropism for 

the lung (influenza and Sendai virus). It has been shown that a single dose of lentivirus leads to life-long stable gene expression in the murine 

lung (~ 2 years) and that repeated administration of the vector (10 daily doses, or three  administrations at monthly intervals) is feasible 25;29-31 

(Figure 4). To date there has been no report of insertional mutagenesis or other untoward toxicity in lungs of mice. A direct comparison between 

the lead non-viral vector GL67A which was used in the recently completed Phase IIb CF gene therapy trial (see above) and the F/HN-

pseudotyped lentiviral vector, indicates that the virus is several log orders more efficient in transducing airway epithelial cells, which are the 

target cells for CF gene therapy.  

In addition to the envelope proteins, promoter/enhancer elements that drive recombinant protein expression also require  optimisation. The hCEF 

regulatory element, consisting of the elongation factor 1 promoter, coupled to the human CMV enhancer, leads to maximal  levels of gene 

expression in murine lungs and human air liquid interface cultures (manuscript submitted). The efficiency, duration of expression, lack of 

toxicity and, uniquely, efficacy on repeated administration, support progression of the F/HN-pseudotyped lentivirus into a first-in-man phase 

I/IIa CF clinical trial which will start at the end of  2017.  

 

Messenger RNA Therapy 

Messenger RNA (mRNA) as a template for CFTR gene supplementation has long been appealing as an alternative to DNA-based gene delivery, 



as it avoids the rate-limiting step of nuclear entry into non-dividing airway epithelial cells, being translated rapidly and efficiently directly in the 

cytoplasm32.   

 

Unfortunately, for many years researchers were unable to use in vitro transcribed (IVT) mRNAs to upregulate protein expression in vivo, as 

these transcripts were immediately recognized and destroyed by the immune system following injection33. Various nucleoside substitutions 

including incorporation of pseudouridine, N1-methyl-pseudouridine, thio-uridine and 5-methyl-cytidine have been made in IVT mRNA to 

improve stability and high performance liquid chromatography (HPLC) which removes residual double-stranded (ds)RNA has reduced 

immunogenicity 34.  

 

With the above noted modifications, both single and multiple administrations of therapeutic mRNA transcripts become possible, overcoming 

issues of re-administration and representing a possibly  safer alternative to the  viral gene therapy approaches described above 33;34. Proof-of-

concept for the efficacy of repeated pulmonary delivery of chemically modified mRNA has been established in a murine model of Surfactant-

Protein B deficiency 35. In contrast, utilization of CFTR mRNA in CF knock-out animal models is still under investigation. Due to the 

comparatively long transcript, the development of CFTR mRNA therapy is more complex. As for gene therapy noted above, efficient delivery 

remains a key bottle-neck and more efficient, but non-immunogenic methods have to be found to deliver chemically-modified CFTR mRNA to 

the airways. Optimized chemical modification, assembly into nanoparticles, different administration routes and the possibility of linking CFTR 

mRNA to cell-specific aptamers are all being investigated 36;37. Challenges related to regulation of protein expression and expression of CFTR in 



non-target cells may have to be addressed. As a further extension of this technology, modified mRNAs can be utilized to encode CFTR site-

specific endonucleases that might may be of use in the gene editing strategies discussed below 38  

 

Gene Editing 

Gene editing exploits the ability of cellular DNA repair pathways to use a donor DNA molecules as a template to precisely alter the genomic 

DNA sequence in ~1 in 1,000 treated cells 39;40. 

 

Rather than trying to increase editing efficiency, the focus of early studies was to develop strategies to isolate and enrich correctly edited cells by 

incorporation of selectable marker genes into the targeted locus. This approach led to the first gene edited animals 41. These paved the way for 

the generation of a number of different CF animal models which are significantly increasing our understanding of CF pathophysiology 42-45.  

 

The first attempts at increasing the efficiency of editing to potentially therapeutic levels, deliberately avoided the use of selectable markers on the 

basis that a donor molecule with a higher degree of homology would thermodynamically favour homologous pairing and thereby increase the 

probability for homologous exchange. This short fragment homologous replacement (SFHR) strategy was shown to precisely modify the human 

CFTR gene in ~1% of airway epithelial cells in vitro 46;47. 

 

The next breakthrough showed that efficiency of donor-dependent gene editing increased by three orders of magnitude when cells were co-



treated with a DNA endonuclease capable of making a double stranded break (DSB) in the target gene 48. However, the challenge was to develop 

DNA endonucleases which would create a DSB in a defined position (on-target), and prevent off-target breaks. The first “programmable” DNA 

endonucleases, successfully used to edit human cells, were zinc finger nucleases (ZFNs, Figure 5) with up to  20% of treated cells showing 

precise and permanent changes in the genome 49. Murine studies with ZFNs provided proof-of principle for in vivo gene editing as a therapeutic 

approach for genetic disorders 50, and ZFNs were also used to successfully correct the F508del mutation in a human cell line 51. A second class 

of programmable DNA endonucleases, the TAL-Effector Nucleases (TALENs), are easy to design and have very high specificity 52. Human cells 

which have undergone ex vivo editing with ZFNs and TALENs have been administered to a small number of patients to successfully treat 

diseases affecting the haematopoietic system 53;54.  

 

A radically different way to create a DSB and edit cells is the RNA-guided DNA-specific nuclease CRISPR/Cas9 editing system 55, which was 

used to demonstrate that correction of the F508del mutation resulted in restoration of CFTR function in human gut stem cells 56. All three 

systems have subsequently been used to successfully edit the CFTR gene in human inducible pluripotent stem cells, which when differentiated 

into lung cells, provide new tools to model CF disease, identify novel drug targets and screen for lead compounds for clinical evaluation 57-60. 

These models also raise the possibility of a gene-edited cell-based therapy for CF 61. 

  

Another therapeutic option is direct editing of cells in the lungs in vivo. Proof-of-principle for this approach was established using SFHR in the 

lungs of normal mice 62, though no data are available with respect to editing efficiency. Neither programmable nor RNA-guided endonuclease 



editing in CF lung in vivo has yet been reported. However, a combination of triplex-forming peptide nucleic acids and donor DNA delivered by 

nanoparticles has been shown to correct F508del in ~1% of mouse lung cells in vivo 63. Direct editing has raised some concerns about off-target 

effects of the nuclease editing systems, but TALENs have an inherently high level of specificity as demonstrated by their ability to discern 

between two closely related human genes, CCR2 and CCR5, at a site which differs only by a single base pair 64, and recent modifications to 

Cas9 have reduced off-target effects to almost undetectable levels 65;66. The use of donor DNA containing asymmetric homology arms 67, and 

careful choice of target regions 68, have both improved on-target editing. 

  

The barriers to increasing the efficiency of gene editing in vivo are similar to those affecting gene transfer vectors described above. One might 

argue that gene editing should target airway progenitor cells, but these are buried beneath the surface epithelium and difficult to access with 

currently available vectors. However, the availability of efficient non-viral delivery methods to deliver cDNA/gene editing systems to the lung 

69, robust systems to express ZFNs, TALENs and Cas9 with virus vectors 70;71, or directly as proteins (or ribonucleoprotein complexes) with 

modified lentivirus vectors 72;73 offers many opportunities to address these challenges. The use of modified mRNA that encodes CFTR site-

specific endonucleases might also offer an opportunity to by-pass the barrier presented by the nuclear membrane.   

 

The gene editing strategies described herein are dependent on DNA repair pathways that are most active in dividing cells, so in terminally 

differentiated, or slowly dividing cells, alternative editing techniques such as Obligare may have to be used 74. This type of editing enables the 

direct insertion of DNA sequences to repair or replace mutant sequences using the non-homologous end joining (NHEJ) repair pathway, which is 



independent of the cell cycle, and exploits the DNA overhangs created by ZFNs and TALENs (Figure 5). Whilst this approach could be difficult 

to adapt for use with Cas9 (which creates a blunt-end DSB), it may be possible to use Obligare in conjunction with the newly described RNA-

guided nucleases such as Cpf1 75.  

 

Finally, in contrast to gene therapy, which in principle can genetically complement any CF-causing mutation, gene editing will require mutation-

specific reagents, but in principle may be suitable to correct any mutation. Although there are ≥127 CF-causing mutations 5, 20 of these 

mutations (which account for 80% of CF alleles) are clustered in ten discrete locations each spanning ≤35 bp 76. The small size suggests that all 

mutations in such a cluster could potentially repaired with a single Cas9/gRNA donor combination. As gene editing is permanent for the life 

time of the cell, and restores the gene under the control of its endogenous regulatory sequences, this may also be advantageous. 

 

mRNA Repair 

Over the last 20 years, there has been a marked increase in our knowledge of the role of RNA and how to manipulate RNA towards a therapeutic 

goal.  For CF, repair of mutated mRNA is a viable therapeutic option and proof-of-concept was first established by Zamecnik et al 77. Editing of 

RNA may be achieved through a number of different mechanisms including direct repair, exon exclusion and splice site changes and this 

approach has some attractive attributes.  Repair of RNA can be achieved by oligonucleotides, short sequences of single- or double stranded 

RNA, usually 15-40 bases in length, which are modified for stability and to improve uptake into cells.  Vectors or envelopes can be used, but are 

not necessary to achieve uptake into the cells.  The RNA oligonucleotides are mutation-specific and targeting RNA for repair, potentially 



removes the underlying cause of genetic diseases, but does not permanently alter cells. However, the effect only takes place in cells that express 

the gene that is causing the disease, obviating concerns about regulation or insertion into promoter regions.   

 

There are two RNA oligonucleotides for the treatment of CF that have undergone extensive preclinical evaluation.  One approach is based on 

targeting the CFTR splicing mutation 3849+10kb C-to-T mutation which results in the inclusion of an 84 base-pair (bp) cryptic exon containing 

a premature termination codon between exons 22 and 23. It has been shown that expression of splicing factors can modulate the splicing of the 

84bp cryptic exon and lead to restored CFTR channel activity in a patient-derived cell line in vitro 78. Subsequently, oligonucleotides were 

designed that target splicing motifs in the cryptic exon or at the exon-intron junctions which significantly increased translation of wild-type 

CFTR leading to increased CFTR channel function in human nasal epithelial cells when treated ex vivo 79.  It is likely that these oligonucleotides 

need to enter the nucleus to target the splicing motifs. 

   

QR-010, developed by ProQR Therapeutics, targets the F508del mutation. The 33 mer oligonucleotide is chemically modified to enhance 

stability and cellular uptake (Figure 6).  In contrast to the above, QR-010 likely acts in the cytoplasm and, therefore, bypasses the nuclear 

membrane barrier. The molecule has been shown to increase CFTR-specific chloride currents in CF PAC-1 cells and in primary human 

bronchial epithelial cells homozygous for the F508del mutation.  More convincingly, QR-010 administered topically in the nares to F508del CF 

mice led to restoration of a normal nasal potential difference 80 (Figure 7).  In addition, QR-010 administered intratracheally to F508del mice led 

to increased saliva secretion, which is reduced in CF mice.  Importantly, this latter study also demonstrated that QR-010, administered via the 



lungs, can be absorbed systemically and have extra-pulmonary effects. QR-010 is currently being studied in two clinical studies of individuals 

with CF. Study PQ-010-001 is a Phase Ib study of QR-010 administered via inhalation to adults homozygous for the F508del mutation to 

evaluate safety and tolerability, pharmacokinetics, and exploratory efficacy endpoints. [NCT02532764: 

https://clinicaltrials.gov/ct2/show/NCT02532764?term=ProQR&rank=1]. Study PQ-010-002 is a proof-of-concept study to evaluate the effect of 

QR-010 on nasal potential difference in adults with CF, either homozygous or compound heterozygous for the F508del mutation, with the QR-

010 administered intranasally.   

 

Outstanding questions relevant to all genetic medicines 

How much CFTR expression do we need?  

Patients with certain “mild” CF mutations, who retain approximately 10% of residual CFTR expression per cell do not suffer from lung disease, 

although other organs may be affected 81. In vitro cell mixing experiments have shown that ~10% of non-CF cells restore CFTR-mediated 

chloride secretion when mixed with 90% of CF cells in a monolayer 82.  In a separate study it was shown that CFTR has to be expressed in at 

least 25% of cells grown in a monolayer to restore mucus transport 83.  However, these studies do not address whether complete correction of 

CFTR expression in 10% cells is equivalent to a low level (~10%) of CFTR expression in all cells. We currently also do not know whether the 

various forms of genetic medicines are more likely to achieve the former, or the latter.  

 

 

https://clinicaltrials.gov/ct2/show/NCT02532764?term=ProQR&rank=1


Which cells do we need to target? 

CFTR is expressed in various cell types in the lung including submucosal glands, ciliated epithelial cells and goblet cells. It is currently unknown 

which cells express the CFTR transgene following gene transfer.  However, in order to transfect submucosal glands, 

gene transfer vectors and other oligonucleotides, when applied topically to the airways, will needs to negotiate ducts filled with mucus. It has 

been postulated that CFTR is also expressed in macrophages and neutrophils. Whether this leads to an intrinsic defect in host defence in the CF 

lung is still widely debated 3 and needs to be resolved before deciding whether gene replacement or gene editing targeted at inflammatory cells 

may lead to therapeutic benefit.   

 

What are the risks of long-term CFTR expression and repeated administration of gene transfer agents? 

The recently completed Multi-dose non-viral gene therapy trial described above, begins to address these important questions. Monthly repeat 

administration of pGM169/GL67A was safe and well tolerated, although we currently do not know whether these findings will translate into 

longer-term/life-long use of the formulation. Similarly, pre-clinical models have not raised concerns related to repeat administration of lentiviral 

vectors, but relevant human data will only be generated in clinical trials.  

 

Should studies in CF models form a go-no-go decision point before progression into clinical trials? 

CF mice do not acquire spontaneous airway infections or develop CF lung disease, but the nasal epithelium shows the characteristic CF chloride 

and sodium transport defects 84. However,  the relevance of measurement of CFTR function in the murine nose (via in vivo potential difference) 



has been called into question by Ostrowski et al who showed that expression of human CFTR under the transcriptional control of a cilia-specific 

promoter did not correct ion transport in CF knockout mice 85. In addition Grubb et al have suggested that the olfactory, rather than the 

respiratory, nasal epithelium mainly contributes to the ion transport defect in CF mice 86. The CF mouse has been of limited value as a stepping-

stone to human gene therapy trials 87 and we suggest should not be used as a go-no-go decision point for progression into gene therapy clinical 

trials. However, it remains to be seen whether CF mice prove useful in the context of other genetic medicine-based approaches.  Whether 

correction of lung disease in CF knockout pigs or ferret is a better model to predict clinical success remains to be seen. Currently, these animals 

die shortly after birth due to intestinal disease and, therefore, are not yet available in large enough numbers to conduct clinically- predictive 

powered studies. Gut-corrected CF pigs have been generated 88 and, in time, these may be available in large enough numbers to assess the effects 

of gene therapy on disease pathophysiology. In addition, it is currently unclear whether the CF-like pathology is a close enough mimic of human 

disease to be used as a critical decision point for therapeutic development. Species-specific differences in CFTR nucleotide sequences also 

complicate gene and mRNA repair strategies.  

 

Conclusions 

Gene therapy for CF has been pursued since the cloning of the CFTR gene in 1989 and it is, therefore, not surprising that it is the most advanced 

of the genetic medicines discussed in this review, with ~27 clinical trials in ~600 patients having been completed. Most recently, the completion 

of a non-viral Phase IIb Multi-dose trial showed, for the first time, that gene therapy was able to alter the progression of CF lung disease. 

Approaches based on mRNA delivery and mRNA repair are making progress, with both strategies having the potential advantage of not needing 



to negotiate the nuclear membrane barrier. To date, the strength of gene editing in the context of CF clearly lies in the development of pre-

clinical animal and human ex vivo models to further advance all areas of CF research. It remains to be seen if these technologies are suited to in 

vivo pulmonary gene editing. The drug development path for mutation-specific gene editing or mRNA repair molecules may be challenging. The 

efficient delivery of the various nucleotide sequences to lung airway epithelial cells remains the common problem for all approaches.  Given the 

data summarised above, we believe that genetic medicines will become a reality for CF patients, but continue to discourage the hype that 

typically accompanies any proposed novel treatment. Further, it is important to recognise the extended time lines that the development of these 

genetic medicines require, in comparison with small molecules. 
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Figure legends 

Figure 1: Schematic presentation of “genetic medicine” strategies that are currently being developed for CF 

The basic concepts of gene therapy (A) and mRNA therapy (B), as well as gene editing (C) and mRNA repair (D) are outlined. In addition to 

chloride (Cl-) ions, CFTR also conducts a number of other anions, including bicarbonate. For simplicity these molecules are not shown in the 

Figure. 

 

Figure 2: Stabilisation of lung function after repeated administration of the non-viral formulation pGM169/GL67A 

Cystic fibrosis patients were treated monthly for 12 months with either active drug or the placebo.  Lung function (FEV1=forced expiratory 

volume in 1 second) was measured at each treatment visit before administration of study drugs. Data are expressed as relative change from 

baseline in % predicted FEV1. Error bars show the standard error of the mean. (A) All patients. There was a significant, albeit modest, treatment 

effect in the pGM169/GL67A group versus placebo at 12 months’ follow-up (3·7%, p=0·046). (B) Patients with more severe lung function at 

start of treatment (Baseline FEV1 = 50-70%), (C) Patients with less severe lung function at start of treatment (Baseline FEV1=70-90%). The 

figure is adapted from 89 as part of a CCBY license. 

 

Figure 3: Generation of F/HN-pseudotyped lentiviral vector  

Molecular techniques enable the replacement of the gp120 envelope glycoprotein, which supports lentivirus entry into T-cells but is not suitable 



for entry into airway epithelial cells, with the F (Fusion) and HN (Hemagglutinin-Neuraminidase) proteins from Sendai virus which support 

efficient entry into airway epithelial cells. This process of pseudotyping leads to the generation of a chimeric pseudotyped F/HN lentiviral 

vector. The Sendai virus F and HN proteins were chosen because they are, in part, responsible for the high transduction efficiency of Sendai 

virus in lungs 8.  

 

Figure 4: F/HN-pseudotyped lentivirus transduction leads to persistent gene expression in mouse airways 

Mice were transduced with F/HN-pseudotyped lentivirus expressing a luciferease reporter gene by nasal sniffing (or received PBS (negative 

controls). Luciferase expression was visualised using bioluminescence imaging, 2 to 22 months after transduction.  

 

Figure 5: Programmable and RNA-guided DNA endonucleases 

Schematic representation of the four most commonly used programmable and RNA-guided DNA endonucleases. ZNF= Zinc finger nucleases, 

ZF= Zinc finger, TALEN= TAL-Effector Nucleases, PAM= protospacer adjacent motif, RVD= repeat variable di-residue 

 

Figure 6: Structure of the chemically modified QR-010 oligonucleotide used for mRNA repair 

QR-010 is a single stranded, RNA oligonucleotide (33 nucleotides) with 2’O methyl base modifications and a phosphorothioate (PS) backbone 

to facilitate intracellular delivery and stability. QR-010 is designed to bind to sequences adjacent to the deleted F508 region in the CFTR mRNA 

resulting in the production of fully functional CFTR protein. 



 

Figure 7: Restoration of ion transport in nasal epithelium of F508del mice after treatment with QR-010  

F508del mice were treated with six doses of QR-010, or remained untreated, and nasal potential difference (NPD) was measured. Representative 

NPD traces of wild-type, untreated and QP-010 treated F508del mice are shown. 

   



 

Tables 

Table 1: Gene therapy milestone studies  

• Three years after cloning of CFTR, Rosenfeld et al provided evidence of successful  CFTR mRNA and protein expression after 

adenovirus-mediated CFTR cDNA transfer  into cotton rats 90. 

• Four years after cloning of CFTR Hyde et al showed that non-viral CFTR cDNA  transfer was able to partially correct the chloride 

transport in tracheal epithelium of CF  knockout mice 91. 

• In the same year, Zabner et al performed the first, albeit small and not placebo- controlled, CF gene therapy trial in 3 patients. A first 

generation adenoviral vector  carrying the CFTR cDNA was administered to the nasal epithelium and shown to  partially restore cAMP-

mediated chloride transport 92. 

• Five years after cloning, of CFTR Crystal et al performed the first Phase I dose- escalation CF gene therapy study. This was first and 

foremost a safety study and  showed transient inflammatory responses only at the highest dose (5x1e9 plaque  forming units (PFU)/patient) 93. 

• Six years after cloning of CFTR, Caplen et al provided first evidence that a non-viral  gene transfer agent (DC-Chol:DOPE) 

complexed with CFTR cDNA could partially  correct cAMP-mediated chloride transport in the nasal epithelium of CF patients 94. 

• Ten years after cloning of CFTR, the first of six AAV2 trials was published 95. These trials initially looked encouraging 96, but ultimately 

were discontinued due to  lack of efficacy  



• The same year, Alton et al demonstrated that a non-viral gene transfer agent (GL67A)  complexed with a plasmid DNA carrying the 

CFTR cDNA could  partially correct  cAMP-mediated chloride transport in the lungs of CF patients13.  

• 26 years after cloning of CFTR, Alton et al demonstrated that repeated administration  of GL67A complexed with a plasmid DNA 

carrying the CFTR cDNA significantly,  albeit modestly, stabilised lung function in CF patients 19. 

 

 

 
  



 



 





  



 





 


