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Abstract 20 

Bifidobacteria constitute a specific group of commensal bacteria, typically found in the 21 

gastrointestinal tract (GIT) of humans and other mammals. Bifidobacterium breve strains are 22 

numerically prevalent among the gut microbiota of many healthy breast-fed infants. In the 23 

current study, we investigated glycosulfatase activity in a bacterial nursling stool isolate, B. 24 

breve UCC2003. Two putative sulfatases were identified on the genome of B. breve 25 

UCC2003. The sulfated monosaccharide N-acetylglucosamine-6-sulfate (GlcNAc-6-S) was 26 

shown to support growth of B. breve UCC2003, while, N-acetylglucosamine-3-sulfate, N-27 

acetylgalactosamine-3-sulfate and N-acetylgalactosamine-6-sulfate, did not support 28 

appreciable growth. Using a combination of transcriptomic and functional genomic 29 

approaches, a gene cluster, designated ats2, was shown to be specifically required for 30 

GlcNAc-6-S metabolism. Transcription of the ats2 cluster is regulated by a ROK-family 31 

transcriptional repressor. This study represents the first description of glycosulfatase activity 32 

within the Bifidobacterium genus. 33 

 34 

Importance 35 

Bifidobacteria are saccharolytic organisms naturally found in the digestive tract of mammals 36 

and insects. Bifidobacterium breve strains utilize a variety of plant and host-derived 37 

carbohydrates which allow them to be present as prominent members of the infant gut 38 

microbiota as well as being present in the gastrointestinal tract of adults. In this study, we 39 

introduce a previously unexplored area of carbohydrate metabolism in bifidobacteria, namely 40 

the metabolism of sulfated carbohydrates. B. breve UCC2003 was shown to metabolize N-41 

acetylglucosamine-6-sulfate (GlcNAc-6-S) through one of two sulfatase-encoding gene 42 

clusters identified on its genome. GlcNAc-6-S can be found in terminal or branched positions 43 
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of mucin oligosaccharides, the glycoprotein component of the mucous layer that covers the 44 

digestive tract. The results of this study provide further evidence of this species’ ability to 45 

utilize mucin-derived sugars, a trait which may provide a competitive advantage in both the 46 

infant and adult gut. 47 

48 
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 Introduction 49 

The Bifidobacterium genus represents one of the major components of the intestinal 50 

microbiota of breast-fed infants (1-5), while also typically constituting between 2 % and 10 51 

% of the adult intestinal microbiota (6-11). Bifidobacteria are saccharolytic microorganisms 52 

whose ability to colonize and survive in the large intestine is presumed to depend on the 53 

ability to metabolize complex carbohydrates present in this environment (12, 13). Certain 54 

bifidobacterial species including Bifidobacterium longum subsp. longum, Bifidobacterium 55 

adolescentis and Bifidobacterium breve utilize a range of plant/diet-derived oligosaccharides 56 

such as raffinose, arabinoxylan, galactan and cellodextrins (14-20). Bifidobacterial 57 

metabolism of human milk oligosaccharides (HMOs) is also well-described, with the 58 

typically infant-derived species B. longum subsp. infantis and Bifidobacterium bifidum 59 

particularly well-adapted to utilize these carbon sources in the infant gut (21-23). However, 60 

the ability to utilize mucin, the glycoprotein component of the mucous layer that covers the 61 

epithelial cells of the gastrointestinal tract, is limited to members of the B. bifidum species 62 

(21, 24). Approximately 60 % of the predicted glycosyl hydrolases encoded by B. bifidum 63 

PRL2010 are predicted to be involved in mucin degradation, most of which are conserved 64 

exclusively within the B. bifidum species (21). 65 

Host-derived glycoproteins such as mucin and proteoglycans (e.g. chondroitin sulfate and 66 

heparan sulfate), which are found in the colonic mucosa and/or human milk, are often highly 67 

sulfated (25-29). Human colonic mucin is heavily sulfated, which is in contrast to mucin from 68 

the stomach or small intestine, the presumed purpose of which is to protect mucin against 69 

degradation by bacterial glycosidases (30-32). Despite this apparent protective measure, 70 

glycosulfatase activity has been identified in various members of the gut microbiota, e.g. 71 

Bacteroides thetaiotaomicron, Bacteroides ovatus and Prevotella strain RS2 (33-38). 72 
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Prokaryotic and eukaryotic sulfatases uniquely require a 3-oxoalanine (typically called Cα-73 

formylglycine or FGly) residue at their active site (39-41). Prokaryotic sulfatases carry either 74 

a conserved cysteine (Cys) or a serine (Ser) residue, which requires post-translational 75 

conversion to FGly in the cytosol in order to convert the enzyme to an active state (42-44). In 76 

bacteria, two distinct systems have been described for the post-translational modification of 77 

sulfatase enzymes. In Mycobacterium tuberculosis, the conversion of the Cys58 residue to 78 

FGly is catalyzed by an FGly-generating enzyme (FGE) which requires oxygen as a co-factor 79 

(45). In Klebsiella pneumoniae, the conversion of the Ser72 residue of the atsA-encoded 80 

sulfatase is catalysed by the AtsB enzyme, which is a member of the S-adenosyl-L-81 

methionine (AdoMet)-dependent family of radical enzymes (43, 46). Similar enzymes have 82 

also been characterized from Clostridium perfringens and Ba. thetaiotaomicron which are 83 

active on both Cys and Ser-type sulfatases (37, 38, 47). Crucially, these enzymes are active 84 

under anaerobic conditions and were thus designated anaerobic sulfatase maturing enzymes 85 

(anSME) (38). Sulfatase activity has yet to be described in bifidobacteria. In the current 86 

study, we identify two predicted sulfatase and anSME-encoding gene clusters in B. breve 87 

UCC2003 (and other B. breve strains), and demonstrate that one such cluster is required for 88 

the metabolism of the sulfated monosaccharide N-acetylglucosamine-6-sulfate (GlcNAc-6-S).89 
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Materials and methods 90 

Bacterial strains, plasmids, media and culture conditions. Bacterial strains and plasmids 91 

used in this study are listed in Table 1. B. breve UCC2003 was routinely cultured in 92 

Reinforced Clostridial Medium (RCM; Oxoid Ltd., Basingstoke, Hampshire, United 93 

Kingdom). Carbohydrate utilization by bifidobacteria was examined in modified deMan 94 

Rogosa Sharpe (mMRS) medium made from first principles (48), excluding a carbohydrate 95 

source, supplemented with 0.05 % (wt/vol) L-cysteine HCl (Sigma Aldrich, Steinheim, 96 

Germany) and a particular carbohydrate source (0.5 % wt/vol). The carbohydrates used were 97 

lactose (Sigma Aldrich), GlcNAc-6-S (Dextra Laboratories, Reading, United Kingdom; see 98 

below), N-acetylglucosamine-3-sulfate (GlcNAc-3-S), N-acetylgalactosamine-3-sulfate 99 

(GalNAc-3-S) and N-acetylgalactosamine-6-sulfate (GalNAc-6-S) (see below). In order to 100 

determine bacterial growth profiles and final optical densities, 10 ml of a freshly prepared 101 

mMRS medium, supplemented with a particular carbohydrate, was inoculated with 100 µl (1 102 

%) of a stationary-phase culture of a particular strain. Un-inoculated mMRS was used as a 103 

negative control. Cultures were incubated anaerobically for 24 h and the optical density 104 

(OD600nm) was recorded. Bifidobacterial cultures were incubated under anaerobic conditions 105 

in a modular atmosphere-controlled system (Davidson and Hardy, Belfast, Ireland) at 37°C. 106 

Escherichia coli was cultured in Luria Bertani broth (LB) at 37°C with agitation (49). 107 

Lactococcus lactis strains were grown in M17 medium supplemented with 0.5 % (wt/vol) 108 

glucose at 30°C (50). Where appropriate, growth media contained tetracycline (Tet; 10 µg ml-109 

1), chloramphenicol (Cm; 5 µg ml-1 for E. coli and L. lactis, 2.5 µg ml-1 for B. breve), 110 

erythromycin (Em; 100 µg ml-1) or kanamycin (Kan; 50 µg ml-1). Recombinant E. coli cells 111 

containing pORI19 were selected on LB agar containing Em and Kan, and supplemented with 112 

X-gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside) (40 µg ml-1) and 1 mM IPTG 113 

(isopropyl-β-D-galactopyranoside). 114 
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 115 

Chemical synthesis of sulfated monosaccharides. In brief, the 6-O-sulfated GlcNAc 116 

structure (Fig. 1A, structure 1) was synthesized in four steps from GlcNAc in an overall 40 % 117 

yield while the other three target structures, 3-O-sulfated GlcNAc (Fig. 1A, 2), 3-O-sulfated 118 

GalNAc and 6-O-sulfated GalNAc (Fig. 1B, 3 and 4, respectively), were synthesized from 119 

their corresponding benzyl β-glycoside, (Fig. 1A, 8 and Fig. 1B, 12), in three or four steps 120 

with an overall yield of about 60 %. The benzyl glycoside was obtained either by direct 121 

alkylation of a hemiacetal (Fig. 1A, 8, GlcNAc) or by glycosylation of a peracetylated 122 

precursor (Fig. 1B, 12, GalNAc). Sulfations were performed using a SO3
.NEt3 complex in 123 

pyridine or DMF (yields 86-96 %). Direct regioselective 6-O-tritylation of GlcNAc followed 124 

by in situ acetylation afforded compound 5 from which the trityl group was removed using 125 

aqueous acetic acid, without any acetyl migration detected, to yield the 6-OH derivative 6, 126 

sulfation of which gave compound 7 which was subsequently deacetylated using Zemplen 127 

conditions to afford target structure 1 (Fig. 1A). Benzylidenation of compounds 8 and 12 128 

gave 3-OH compounds 9 and 13, respectively. Sulfation (→10 and 14) followed by 129 

deprotection through catalytic hydrogenolysis yielded target structures 2 and 3. 130 

Isopropylidenation of compound 12 gave the 6-OH compound 15, which was sulfated (→16) 131 

and then deprotected through acetal hydrolysis (→17) followed by catalytic hydrogenolysis 132 

to afford target structure 4 (Fig. 1). The experimental methods are described in further detail 133 

in the supplementary material. 134 

 135 

Nucleotide sequence analysis. Sequence data were obtained from the Artemis-mediated 136 

genome annotations of B. breve UCC2003 (51, 52). Database searches were performed using 137 

the non-redundant sequence database accessible at the National Centre for Biotechnology 138 
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Information website (http://www.ncbi.nlm.nih.gov) using BLAST (53). Sequence analysis 139 

was performed using the Seqbuilder and Seqman programs of the DNASTAR software 140 

package (DNASTAR, Madison, WI, USA). Inverted repeats were identified using the 141 

PrimerSelect program of the DNASTAR software package and a graphical representation of 142 

the identified motifs was obtained using WebLogo software (54).  143 

 144 

DNA manipulations. Chromosomal DNA was isolated from B. breve UCC2003 as 145 

previously described (55). Plasmid DNA was isolated from E. coli, L. lactis and B. breve 146 

using the Roche High Pure plasmid isolation kit (Roche Diagnostics, Basel, Switzerland). An 147 

initial lysis step was performed using 30 mg ml-1 of lysozyme for 30 min at 37°C prior to 148 

plasmid isolation from L. lactis or B. breve (56). Single stranded oligonucleotide primers 149 

used in this study were synthesized by Eurofins (Ebersberg, Germany) (Table 2). Standard 150 

PCRs were performed using Taq PCR master mix (Qiagen GmBH, Hilden, Germany). B. 151 

breve colony PCRs were carried out as described previously (57). PCR fragments were 152 

purified using the Roche High Pure PCR purification kit (Roche Diagnostics). 153 

Electroporation of plasmid DNA into E. coli, L. lactis or B. breve was performed as 154 

previously described (49, 58, 59). 155 

 156 

Construction of B. breve UCC2003 insertion mutants. Internal fragments of Bbr_0849, 157 

designated here as atsR2 (fragment encompasses 408 bp, representing codon numbers 134 158 

through to 271 of the 395 codons of this gene), Bbr_0851, designated atsT (fragment 159 

encompasses 416 bp, representing codon numbers 149 through to 288 of the 476 codons of 160 

this gene) and Bbr_0852, designated atsA2 (fragment encompasses 402 bp, representing 161 

codon numbers 148 through to 281 of the 509 codons of this gene) were amplified by PCR 162 
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using B. breve UCC2003 chromosomal DNA as a template and primer pairs atsR2F and 163 

atsR2R, atsTF and atsTR, and atsA2F and atsA2R, respectively (Table 2). The insertion 164 

mutants were constructed as described previously (57). Site-specific recombination of 165 

potential Tet-resistant mutants was confirmed by colony PCR using primer combinations 166 

TetWF and TetWR to verify tetW gene integration, and the primers atsR2confirm, 167 

atsTconfirm and atsA2confirm (positioned upstream of the selected internal fragments of 168 

atsR2, atsT and atsA2, respectively) in combination with primer TetWF to confirm 169 

integration at the correct chromosomal location.  170 

 171 

Analysis of global gene expression using B. breve DNA microarrays. Global gene 172 

expression was determined during log-phase growth (OD600nm of ~0.5) of B. breve UCC2003 173 

in mMRS supplemented with 0.5 % GlcNAc-6-S and the obtained transcriptome was 174 

compared to that obtained from B. breve UCC2003 grown in mMRS supplemented with 0.5 175 

% ribose. Similarly, global gene expression of the insertion mutant B. breve UCC2003-atsR2 176 

was determined during log-phase (OD600nm of ~0.5) growth of the mutant in mMRS 177 

supplemented with 0.5 % ribose and the transcriptome was also compared to that from B. 178 

breve UCC2003 grown in 0.5 % ribose. DNA microarrays containing oligonucleotide primers 179 

representing each of the 1864 identified open reading frames on the genome of B. breve 180 

UCC2003 were designed and obtained from Agilent Technologies (Palo Alto, Ca., USA). 181 

RNA was isolated and purified from bifidobacterial cells using a combination of the 182 

“Macaloid” method and the Roche High Pure RNA isolation kit, as previously described 183 

(60). RNA was quantified spectrophotometrically as described by Sambrook et al. (49). 184 

Methods for complementary DNA synthesis and labelling were performed as described 185 

previously (61). Hybridization, washing of the slides and processing of the DNA-microarray 186 

data was also performed as previously described (62). 187 
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 188 

Plasmid Constructions. For the construction of plasmid pNZ-atsR2, a DNA fragment 189 

encompassing the complete coding region of the predicted transcriptional regulator atsR2 190 

(Bbr_0849) was generated by PCR amplification from chromosomal DNA of B. breve 191 

UCC2003 using PfuUltra II DNA polymerase (Agilent Technologies) and the primer 192 

combination atsR2FOR and atsR2REV (Table 2). The generated amplicon was digested with 193 

NcoI and XbaI, and ligated into the similarly digested, nisin-inducible translational fusion 194 

plasmid pNZ8048 (63). The ligation mixture was introduced into L. lactis NZ9000 by 195 

electrotransformation and transformants were selected based on Cm resistance. The plasmid 196 

content of a number of Cmr transformants was screened by restriction analysis and the 197 

integrity of positively identified clones was verified by sequencing. 198 

To clone the Bbr_0849 promoter region, a DNA fragment encompassing the intergenic 199 

region between the Bbr_0849 and Bbr_0850 genes was generated by PCR amplification 200 

employing B. breve UCC2003 chromosomal DNA as a template, and using PfuUltra II DNA 201 

polymerase in combination with primer pair atsRPromF and atsRPromR (Table 2). The PCR 202 

product was digested with HindIII and XbaI, and ligated to the similarly digested pBC1.2 203 

(64). The ligation mixture was introduced into E. coli XL1-blue by electrotransformation and 204 

transformants were selected based on Tet and Cm resistance. Transformants were checked for 205 

plasmid content by restriction analysis and the integrity of several positively identified 206 

recombinant plasmids was verified by sequencing. One of these verified recombinant 207 

plasmids, designated pBC1.2-atsProm, was introduced into B. breve UCC2003-atsR2 by 208 

electrotransformation and transformants were selected based on Tet and Cm resistance. 209 

  210 
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Heterologous protein production. For the heterologous expression of AtsR2, 25 ml of M17 211 

broth supplemented with 0.5 % (wt/vol) glucose was inoculated with a 2 % inoculum of an 212 

overnight culture grown for 16 h of L. lactis NZ9000 harbouring either pNZ-atsR2 or the 213 

empty vector pNZ8048 (used as a negative control), followed by incubation at 30°C until an 214 

OD600nm of ~0.5 was reached, at which point protein expression was induced by addition of 215 

cell-free supernatant of a nisin-producing strain (65), followed by continued incubation for a 216 

further 2 h. Cells were harvested by centrifugation, resuspended in 10 mM Tris-HCl (pH 8.0), 217 

and disrupted with glass beads in a mini-bead beater (BioSpec Products, Bartlesville, OK). 218 

Cellular debris was removed by centrifugation to produce an AtsR2-containing crude cell 219 

extract. 220 

 221 

Electrophoretic mobility shift assays (EMSA). DNA fragments representing different 222 

portions of each of the promoter regions upstream of the atsR2 and atsT genes were prepared 223 

by PCR using IRD-labelled primer pairs synthesized by Integrated DNA Technologies 224 

(Coralville, IA) (Table 2). EMSAs were essentially performed as described previously (66). 225 

In all cases, the binding reactions were performed in a final reaction volume of 20 μl in the 226 

presence of poly (dI-dC) in binding buffer (20 mM Tris-HCl, 5 mM MgCl2, 0.5 mM 227 

dithiothreitol [DTT], 1 mM EDTA, 50 mM KCl, 10 % glycerol at pH 7.0). Various amounts 228 

of L. lactis NZ9000 crude cell extract containing pNZ-atsR2 or pNZ8048 were mixed on ice 229 

with a fixed amount of DNA probe (0.1 pmol) and subsequently incubated for 30 min at 230 

37°C. Samples were loaded on a 6 % non-denaturing polyacrylamide (PAA) gel prepared in 231 

TAE buffer (40 mM Tris acetate (pH 8.0), 2 mM EDTA) and run in a 0.5 to 2.0 x gradient of 232 

TAE at 100 V for 120 min in an Atto Mini PAGE system (Atto Bioscience and 233 

Biotechnology, Tokyo, Japan). Signals were detected using an Odyssey Infrared Imaging 234 

System (Li-Cor Biosciences, United Kingdom Ltd., Cambridge, United Kingdom) and 235 
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images were captured using the supplied Odyssey software v3.0. To identify the effector 236 

molecule of AtsR2, either GlcNAc or GlcNAc-6-S was added to the binding reaction in 237 

concentrations ranging from 2.5 mM to 20 mM.  238 

 239 

Primer extension analysis. Total RNA was isolated from exponentially growing cells of B. 240 

breve UCC2003-atsR2 or B. breve UCC2003-atsR2-pBC1.2-atsRProm in mMRS 241 

supplemented with 0.5 % ribose, as previously described (61). Primer extension was 242 

performed by annealing 1 pmol of an IRD-labelled synthetic oligonucleotide to 20 µg of 243 

RNA as previously described (67), using primers AtsR2R1F or AtsR2T1R (Table 2). 244 

Sequence ladders of the presumed atsR2 and atsT promoter regions were produced using the 245 

same primer as in the primer extension reaction and a DNA cycle-sequencing kit (Jena 246 

Bioscience, Germany) and were run alongside the primer extension products to allow precise 247 

alignment of the transcriptional start site with the corresponding DNA sequence. Separation 248 

was achieved on a 6.5 % Li-Cor Matrix KB Plus acrylamide gel. Signal detection and image 249 

capture were performed with a Li-Cor sequencing instrument (Li-Cor Biosciences). 250 

 251 

Microarray data accession number. The microarray data obtained in this study have been 252 

deposited in NCBI’s Gene Expression Omnibus database and are accessible through GEO 253 

series accession number GSE81240.  254 
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Results 255 

Genetic organisation of the sulfatase gene clusters in B. breve UCC2003. Based on the 256 

presence of a sulfatase-associated PFAM domain PF00884 and the previously described N-257 

terminally located sulfatase signature (CxPxR) (68, 69), two putative Cys-type sulfatase-258 

encoding genes were identified on the genome of B. breve UCC2003. The first, represented 259 

by the gene with the associated locus tag Bbr_0352 (and designated here as atsA1), is located 260 

in a cluster of four genes, designated the ats1 cluster, which also includes a gene encoding a 261 

predicted hypothetical membrane spanning protein (Bbr_0349), a gene (Bbr_0350, 262 

designated here as atsB1) specifying a putative anSME which contains the signature motif 263 

CxxxCxxC characteristic of the radical AdoMet-dependent superfamily (70), and a gene 264 

specifying a predicted LacI-type transcriptional regulator (Bbr_0351, designated atsR1). 265 

Adjacent to these four genes, but oppositely oriented, three genes are present that encode a 266 

predicted ABC-type transport system (corresponding to locus tags Bbr_0353 through to 267 

Bbr_0355) (Fig. 2).  268 

The second predicted sulfatase-encoding gene, Bbr _0852 (designated here as atsA2), is 269 

located in a cluster of four genes (Bbr_0851 through to Bbr_0854, designated here as ats2). 270 

Bbr_0851, designated atsT, encodes a predicted transporter from the major facilitator 271 

superfamily. Bbr_0853 (designated atsB2) encodes a putative anSME, which contains the 272 

signature CxxxCxxC motif. Bbr_0854 encodes a predicted membrane spanning protein, 273 

which shares 75 % amino acid identity with the deduced protein encoded by Bbr_0349 of the 274 

ats1 gene cluster (Fig. 2). The AtsA1 and AtsA2 proteins share 28 % amino acid identity, 275 

while the AtsB1 and AtsB2 proteins exhibit 74 % identity between each other. Interestingly, 276 

the ats2 gene cluster has a notably different GC content (63.96 %) compared to the B. breve 277 

UCC2003 genome average (58.73 %), whereas the GC content of the ats1 cluster (57.6 %) is 278 

comparable to that of the genome. 279 
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Based on the comparative genome analysis presented in Figure 2, we found that the putative 280 

sulfatase clusters are well conserved among the B. breve strains whose genomes were 281 

recently published (71). Of the currently available complete B. breve genomes, B. breve 282 

NCFB2258, B. breve 689B, B. breve 12L and B. breve S27 encode clear homologues of both 283 

identified putative sulfatase gene clusters described above. In contrast, the genomes of B. 284 

breve JCM7017, B. breve JCM7019 and B. breve ACS-071-V-Sch8b contain just a single, 285 

but variable putative sulfatase cluster (Fig. 2). A clear homologue of the ats1 gene cluster 286 

was also identified in the recently published genome of B. longum subsp. infantis BT1 287 

(Accession number CP010411). No other homologues of either sulfatase-encoding gene 288 

clusters were identified by BLASTP analysis within the available bifidobacterial genome 289 

sequences. 290 

 291 

Growth of B. breve UCC2003 on sulfated monosaccharides. The presence of two putative 292 

sulfatase-encoding clusters on the genome of B. breve UCC2003 suggests that this gut 293 

commensal is capable of removing a sulfate ester from a sulfated compound, possibly a 294 

sulfated carbohydrate. In mMRS supplemented with 0.5 % GlcNAc-6-S as the sole carbon 295 

source, the strain was capable of substantial growth (final OD600nm values following overnight 296 

growth varied between 0.6 and 0.8). However, no appreciable growth was observed on 297 

GlcNAc-3-S, GalNAc-3-S or GalNAc-6-S. On the positive control, 0.5 % lactose, the strain 298 

reached an OD600nm of almost 2, which is comparable to previous studies with this strain (17, 299 

72, 73) (Fig. 3A). 300 

 301 

Genome response of B. breve UCC2003 to growth on GlcNAc-6-S. In order to investigate 302 

which genes are responsible for GlcNAc-6-S metabolism in B. breve UCC2003, global gene 303 
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expression was determined by microarray analysis during growth of the strain in mMRS 304 

supplemented with GlcNAc-6-S and compared with gene expression when grown in mMRS 305 

supplemented with ribose. Ribose was considered an appropriate carbohydrate for 306 

comparative transcriptome analysis because the genes involved in ribose metabolism are 307 

known, while it has furthermore successfully been used in a number of transcriptome studies 308 

in this strain (17, 18, 72-74). Of the two predicted sulfatase and anSME-encoding gene 309 

clusters of B. breve UCC2003 (see above), transcription of the ats2 gene cluster was 310 

significantly up-regulated (fold change >3.0, P-value <0.001) during growth on GlcNAc-6-S, 311 

while no (significant) difference in the level of transcription was observed for the ats1 gene 312 

cluster (Table 3). Interestingly, three other gene clusters were also significantly up-regulated 313 

(corresponding to locus tags Bbr_0846 through to Bbr_0849, Bbr_1585 through to Bbr_1590, 314 

and Bbr_1247 through to Bbr_1249; see Fig. 4 and Table 3). 315 

Within the Bbr_0846-0849 gene cluster, which is separated from the ats2 cluster by a single 316 

gene (Fig. 3), Bbr_0846 (nagA1) and Bbr_0847 (nagB2) are predicted to encode an N-317 

acetylglucosamine-6-phosphate deacetylase and a glucosamine-6-phosphate deaminase, 318 

respectively. Bbr_0848 (designated here as nagK) encodes a predicted ROK-family kinase, 319 

which contains the characteristic DxGxT motif at its N-terminal end (75). The B. breve 320 

UCC2003-encoded NagK protein exhibits 42 % similarity at protein level with the previously 321 

characterized E. coli K-12-encoded, ROK-family NagK protein, which phosphorylates 322 

GlcNAc to produce N-acetylglucosamine-6-phosphate (GlcNAc-6-P) (76). Therefore this 323 

cluster is predicted to encode enzymes for the complete GlcNAc catabolic pathway as 324 

previously described in E. coli, whereby GlcNAc is first phosphorylated by NagK, producing 325 

GlcNAc-6-P, followed by NagA-mediated deacetylation to produce glucosamine-6-326 

phosphate, and the NagB-mediated deamination and isomerisation to produce fructose-6-327 
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phosphate (76, 77). Bbr_0849 encodes a predicted transcriptional regulator from the ROK 328 

family (designated here as atsR2).  329 

The Bbr_1585-1590 cluster includes a predicted UDP-glucose-4-epimerase (Bbr_1585, 330 

galE), a predicted N-acetylhexosamine-1-kinase (Bbr_1586, nahK) and a predicted lacto-N-331 

biose phosphorylase (Bbr_1586, lnbP), representing three of the four enzymes required for 332 

the degradation of galacto-N-biose (Galβ1-3GalNAc; GNB), which is found in mucin, or 333 

lacto-N-biose (Galβ1-3GlcNAc; LNB), a known HMO (78, 79). The other three genes of this 334 

cluster, Bbr_1588-1590, encode a predicted ABC transport system, including two predicted 335 

permease proteins and a solute binding protein, respectively (Fig. 4). This gene cluster was 336 

previously shown to be transcriptionally up-regulated when B. breve UCC2003 was grown in 337 

co-culture with B. bifidum PRL2010 in mucin (80).  338 

Finally, the Bbr_1247-1249 cluster contains a gene specifying an N-acetylglucosamine-6-339 

phosphate deacetylase (Bbr_1247) and a glucosamine-6-phosphate deaminase (Bbr_1248)-340 

encoding gene, designated nagA2 and nagB3, respectively. These genes were previously 341 

shown to be up-regulated during B. breve UCC2003 growth on sialic acid (72). The NagA1 342 

protein shares a 74 % identity with NagA2, while the NagB2 protein shares 84 % identity 343 

with NagB1 of the nan/nag cluster for sialic acid metabolism (72) and 84 % identity with 344 

NagB3. Bbr_1249 encodes a predicted transcriptional ROK family regulator (Fig. 4). 345 

  346 

Disruption of the atsT and atsA2 genes. In order to investigate if disruption of individual 347 

genes from the ats2 gene cluster would affect the ability of B. breve UCC2003 to utilize 348 

GlcNAc-6-S, insertion mutants were constructed in the atsT and atsA2 genes, resulting in 349 

strains B. breve UCC2003-atsT and B. breve UCC2003-atsA2, respectively (see Materials 350 

and Methods). The insertion mutants were analyzed for their ability to grow in mMRS 351 
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supplemented with GlcNAc-6-S as compared to B. breve UCC2003. As expected, and in 352 

contrast to the wild type, there was a complete lack of growth of B. breve UCC2003-atsT and 353 

B. breve UCC2003-atsA2 in media containing GlcNAc-6-S as the sole carbon source (Fig. 354 

3B), thus demonstrating the involvement of the disrupted genes in GlcNAc-6-S metabolism. 355 

Growth of the insertion mutants was not impaired on lactose, where all strains reached final 356 

OD600nm levels comparable to that reached by the wild type strain (Fig. 3B). 357 

 358 

Transcriptome of B. breve UCC2003-atsR2. The Bbr_0846-0849 gene cluster, which is up-359 

regulated when B. breve UCC2003 is grown on GlcNAc-6-S, and the ats2 gene cluster are 360 

separated by just a single gene (Fig. 2). An insertion mutant was constructed in the predicted 361 

ROK-type transcriptional regulator-encoding Bbr_0849 gene (atsR2). It was hypothesized 362 

that if this gene encoded a repressor, mutation of the gene would lead to increased 363 

transcription of the genes it controls even in the absence of the inducing carbohydrate. 364 

Microarray data revealed that in comparison to B. breve UCC2003, the genes of the ats2 365 

cluster were indeed significantly up-regulated (>3.0 fold change; P <0.001) in the mutant 366 

strain, thus identifying atsR2 as a transcriptional repressor (Table 4). Transcription of the 367 

Bbr_0846-0849 gene cluster was down-regulated in the mutant strain as compared to the wild 368 

type, when both strains were grown on ribose. It is speculated that, since atsR2 represents the 369 

first gene of this presumed operon (Fig. 2), the insertion mutation caused a (negative) polar 370 

effect on the transcription of the downstream located genes.  371 

  372 

Electrophoretic mobility shift assays. In order to determine if the AtsR2 protein directly 373 

interacts with promoter regions of the ats2 gene cluster, crude cell extracts of L. lactis 374 

NZ9000-pNZ-atsR2 were used to perform EMSAs, with crude cell extracts of L. lactis 375 
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NZ9000-pNZ8048 (empty vector) used as a negative control. As expected, the negative 376 

control did not alter the electrophoretic behaviour of any of the tested DNA fragments (Fig. 377 

5B). The results obtained with crude cell extract expressing AtsR2 demonstrate that this 378 

presumed regulator specifically binds to DNA fragments encompassing the upstream regions 379 

of atsR2 and atsT (Fig. 5A and 5B). Dissection of the promoter region of atsR2 showed that 380 

AtsR2 binding required a 184 bp region within which a 21 bp imperfect inverted repeat was 381 

identified. Similarly, dissection of the atsT promoter region revealed that AtsR2 binding 382 

required a 192 bp region which also includes a 21 bp imperfect repeat, similar to that 383 

identified upstream of atsR2. When either of the inverted repeats were excluded, binding of 384 

AtsR2 to such DNA fragments was abolished, suggesting that these inverted repeats 385 

contained the operator sequence of AtsR2 (Fig. 5A and 5B).  386 

To demonstrate if AtsR2 binding to its DNA target is affected by the presence of a 387 

carbohydrate effector molecule, GlcNAc and GlcNAc-6-S were tested for their effects on the 388 

formation of the AtsR2-DNA complex. The ability of AtsR2 to bind to the promoter regions 389 

of atsR2 or atsT was eliminated in the presence of 2.5 mM GlcNAc-6-S, the lowest 390 

concentration used in this assay. The presence of GlcNAc was shown to inhibit binding of 391 

AtsR2 to the atsR2 and atsT promoter regions, yet only at GlcNAc concentrations above 5 392 

mM (Fig. 5C). This suggests that while GlcNAc-6-S has the highest affinity for the regulator 393 

and is therefore the most likely effector of this repressor protein, the structurally similar 394 

GlcNAc is also able to bind this regulator, yet at concentrations that are probably not 395 

physiologically relevant. 396 

  397 

Identification of the transcription start sites of atsR2 and atsT. Based on the EMSA 398 

results and the transcriptome of B. breve UCC2003-atsR2, it was deduced that an AtsR2-399 
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dependent promoter is located upstream of both atsR2 and atsT (Fig. 1). In order to determine 400 

the transcriptional start site of these presumed promoters, primer extension analysis was 401 

performed using RNA extracted from B. breve UCC2003-atsR2 grown in mMRS 402 

supplemented with 0.5 % ribose. Microarray analysis had shown that the expression levels of 403 

atsT were high when the B. breve UCC2003-atsR2 strain was grown on ribose (Table 4). For 404 

this reason, the mutant strain was considered most suitable for primer extension analyis. For 405 

the atsR2 promoter region, initial attempts to attain a primer extension product from mRNA 406 

isolated from B. breve UCC2003-atsR2 cells were unsuccessful. In an attempt to increase the 407 

amount of mRNA transcripts of this promoter region, a DNA fragment encompassing the 408 

deduced promoter region was cloned into pBC1.2 and introduced into B. breve UCC2003-409 

atsR2, generating strain B. breve UCC2003-atsR2-pBC1.2-atsRProm. A primer extension 410 

product was obtained for the atsT promoter region using mRNA isolated from B. breve 411 

UCC2003-atsR2, therefore it was not necessary to clone this promoter. Single extension 412 

products were identified upstream of atsR2 and atsT (Fig. 6). Potential promoter recognition 413 

sequences resembling consensus -10 and -35 hexamers were identified upstream of each of 414 

the transcription start sites (Fig. 6). The deduced operator sequences of AtsR2 overlap with 415 

the respective -35 or -10 sequences, consistent with our findings that AtsR2 acts as a 416 

transcriptional repressor. 417 

  418 
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Discussion   419 

A large-scale metagenomic analysis of fecal samples from 13 individuals of various ages has 420 

revealed that genes predicted to encode anSMEs are enriched in the gut microbiomes of 421 

humans as compared to non-gut microbial communities (81). Interestingly, in the same study 422 

it was found that such genes are more commonly found in members of the gut microbiota of 423 

adults and weaned children, as compared to unweaned infants. The current study describes 424 

two gene clusters in an infant-isolated bacterium, namely B. breve UCC2003, each encoding 425 

a (predicted) sulfatase and accompanying anSME, as well as an associated transport system 426 

and transcriptional regulator. The ats2 gene cluster was shown to be required for the 427 

metabolism of GlcNAc-6-S, while GlcNAc-3-S, GalNAc-3-S and GalNAc-6-S did not 428 

support growth of B. breve UCC2003. The substrate(s) for the sulfatase encoded by the ats1 429 

gene cluster is as yet unknown. However, as recently shown in a study of sulfatases from Ba. 430 

thetaiotaomicron, these enzymes can vary quite significantly in their substrate specificity. It 431 

is therefore possible that, similar to the BT_3349 and BT_1596 enzymes recently 432 

characterised from Ba. thetaiotaomicron, the AtsA1 sulfatase might be active on sulfated di- 433 

or oligosaccharides rather than monosaccharides (35) or that the transport system encoded by 434 

the ats1 cluster is specific for an as yet unknown sulfated substrate. However, at the current 435 

time this is mere speculation and further study is required to expand this premise. 436 

Interestingly, the two gene clusters, ats1 and ats2, are quite dissimilar in terms of their 437 

genetic organization. The gene order and composition of the ats1 cluster resembles that of a 438 

typical bifidobacterial carbohydrate utilization cluster as it includes genes encoding a 439 

predicted ABC-type transport system, a LacI-type repressor (atsR1) and the carbohydrate-440 

active atsA1-encoded sulfatase and atsB-encoded anSME, which in this case replace the 441 

typical glycosyl hydrolase-encoding gene(s) (16, 82). In the ats2 cluster, the atsT gene 442 

encodes a predicted transporter of the major facilitator superfamily, while the atsA2 and 443 
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atsB2 genes are adjacent, as is also the case for their homologous genes in K. pneumoniae 444 

and Prevotella strain RS2 (83, 84). We obtained compelling evidence that the ats2 cluster is 445 

co-regulated with the Bbr_0846-0849 cluster by the ROK-family transcriptional repressor 446 

AtsR2. The only previously characterised bifidobacterial ROK-family transcriptional 447 

regulator is RafA, the transcriptional activator of the raffinose utilisation cluster in B. breve 448 

UCC2003 (73). The Bbr_0846-0848 genes are presumed to be involved in the metabolism of 449 

GlcNAc following the removal of the sulfate residue from GlcNAc-6-S. The fructose-6-450 

phosphate produced from GlcNAc by the combined activities of NagK, NagA and NagB is 451 

expected to enter the fructose-6-phosphate phosphoketolase pathway or bifid shunt, the 452 

central metabolic pathway of bifidobacteria (85). It is interesting that B. breve UCC2003 is 453 

capable of growth on GlcNAc-6-S as a sole carbon source, but apparently not on GlcNAc 454 

(16). Since the B. breve UCC2003 genome seems to encode the enzymes required to 455 

metabolise GlcNAc, it suggests that the atsT transporter has (high) affinity for only the 456 

sulfated form of this N-acetylated carbohydrate.  457 

A novel method of desulfating mucin which does not require a sulfatase enzyme has been 458 

characterised from Prevotella strain RS2, whereby a sulfoglycosidase removes GlcNAc-6-S 459 

from purified porcine gastric mucin (86). The presence of a signal sequence on this 460 

glycosulfatase (86), thus indicating extracellular activity, is interesting in relation to the 461 

current study, as it presents a source of GlcNAc-6-S to B. breve strains, suggestive of a cross-462 

feeding opportunity for members of this species. This is particularly noteworthy when it is 463 

considered that the sulfatase enzymes produced by B. breve UCC2003 are intracellular, 464 

implying that B. breve UCC2003 is reliant on the extracellular glycosyl hydrolase activity of 465 

other members of the gut microbiota in order to gain access to mucin-derived sulfated 466 

monosaccharides. Recent studies have shown that B. breve UCC2003 employs a cross-467 

feeding strategy to great effect, as it can utilize components of 3’ sialyllactose (a HMO) and 468 
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mucin following the degradation of these sugars by B. bifidum PRL2010, whereas in the 469 

absence of B. bifidum PRL2010, it is not capable of utilising either of these sugars as a sole 470 

carbon source (72, 80). A recent study has further provided transcriptomic evidence for 471 

carbohydrate cross-feeding between bifidobacterial species. Four bifidobacterial strains, 472 

namely B. bifidum PRL2010, B. breve 12L, B. adolescentis 22L and B. longum subsp. 473 

infantis ATCC25697, were cultivated either in pairs (bi-association) or a combination of all 474 

four strains (multi-association), under in vivo conditions in a murine model. In all strains, 475 

transcription of predicted glycosyl hydrolase-encoding genes, particularly those involved in 476 

xylose or starch utilization, were affected by co- or multi-association. In relation to xylose 477 

metabolism, the authors speculated that in co- or multi-association, the combined glycosyl 478 

hydrolase activities of the strains may allow them to degrade xylose-containing 479 

polysaccharides which would otherwise be inaccessible (87).  480 

 481 

In Ba. thetaiotaomicron, the in vivo contribution of sulfatase activity towards bacterial fitness 482 

has been well-established. In previous studies of chondroitin sulfate and heparan sulfate 483 

metabolism by this species, mutagenesis of a gene designated chuR, which was first predicted 484 

to encode a regulatory protein but then later identified as an anSME, resulted in the inability 485 

to compete with wild type Ba. thetaiotaomicron in germ-free mice (37, 88). In a recent study, 486 

28 predicted sulfatase-encoding genes were identified on the genome of Ba. 487 

thetaiotaomicron, 20 of which are predicted extracellular enzymes, yet the previously 488 

described chuR gene is the sole anSME-encoding gene (36, 89, 90). Recently, this anSME 489 

was shown to be of significant importance in this strain’s ability to colonize the gut, as an 490 

isogenic derivative of this strain (designated ∆anSME) carrying a deletion in the anSME-491 

encoding gene displayed reduced fitness in vivo (36). The authors have speculated that 492 

anSME activity and associated sulfatase activities are important as the bacterium adapts to 493 
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the gut environment (36). Given that sulfatase activity within the Bifidobacterium genus is (at 494 

least based on currently available genome sequences) limited to the B. breve species and a 495 

single member of the B. longum subsp. infantis subspecies, it is interesting to speculate on the 496 

effect this activity may have on bacterial fitness in the large intestine. It is intriguing to note 497 

that human intestinal mucins increase in acidity along the intestinal tract, with more than half 498 

of mucin oligosaccharide structures in the distal colon containing either sialic and/or sulfate 499 

residues (91). We recently showed that 11 of 14 strains of B. breve tested were capable of 500 

growth on sialic acid, while sialic acid utilization genes can also be found on the genomes of 501 

B. longum subsp. infantis strains (20, 22, 72). The ability of B. breve strains and possibly 502 

certain B. longum subsp. infantis strains, to utilise both sialic acid and sulfated GlcNAc-6-S 503 

may provide them with a competitive advantage over other members of the Bifidobacterium 504 

genus and other members of the gut microbiota, thus contributing to their successful 505 

colonization ability in this highly competitive environment. 506 

 507 
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Figure 1: (A) Synthesis of 6-O- and 3-O-sulfate-2-acetamido-2-deoxy-D-glucose 1 and 2 (i): 800 

BnBr, NaH, LiBr, DMF; (ii): Ac2O, Py; (iii): NaOMe, MeOH; (iv): PhCH(OMe)2, HCOOH; 801 

(v): SO3
.NEt3, Py, 85℃; (vi): 10% Pd/C, EtOH, 15 bar H2 ;  (vii): (1) TrCl, CaSO4, Py, 100 802 ℃, (2) Ac2O; (viii): AcOH, HBr; (ix): SO3

.NEt3, DMF, 55 ℃; (x): NaOMe, MeOH. (B) 803 

Synthesis of 3-O- and 6-O-sulfate-2-acetamido-2-deoxy-D-galactose 3 and 4. Key (i): Ac2O, 804 

Py; (ii): BnOH, BF3
.OEt2, CH2Cl2, 3 A MS; (iii): NaOMe, MeOH; (iv): PhCH(OMe)2, 805 

HCOOH; (v) SO3
.NEt3, DMF, 55 ℃; (vi): 10% Pd/C, EtOH, 15 bar H2; (vii): NaOMe, 806 

MeOH; (viii): Me2C(OMe)2, p-TSA, DMF, 65℃; (xi): SO3
.NEt3, DMF, 55℃; (x): 807 

CF3COOH, H2O; (xi): 10% Pd/C, EtOH, 10 bar H2.   808 

  809 

Figure 2: Comparison of the sulfatase and anSME-encoding gene clusters of B. breve 810 

UCC2003 with corresponding loci in the currently available complete B. breve genome 811 

sequences and B. longum subsp. infantis BT1. Each solid arrow represents an open reading 812 

frame. The length of the arrows (which contain the locus tag number) is proportional to the 813 

size of the open reading frame. The corresponding gene name, which is indicative of putative 814 

function, is given above relevant arrows at the top of the figure. Orthologs are marked with 815 

the same colour. The amino acid identity of each predicted protein to its equivalent protein 816 

encoded by B. breve UCC2003, expressed as a percentage, is given above each arrow.  817 

 818 

Figure 3: (A) Final OD600nm values obtained following 24 h growth of B. breve UCC2003 on 819 

mMRS without supplementation with a carbon source (negative control) or containing 0.5 % 820 

(wt/vol) lactose, GlcNAc-6-S, GlcNAc-3-S, GalNAc-6-S or GalNAc-3-S as the sole carbon 821 

source. (B) Final OD600nm values obtained following 24 h growth of B. breve UCC2003, B. 822 

breve UCC2003-atsT and B. breve UCC2003-atsA2 in modified MRS without 823 
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supplementation with a carbon source(negative control, horizontally striped bars) or 824 

containing 0.5 % (wt/vol) lactose (diagonally striped bars) or GlcNAc-6-S (solid grey filled 825 

bars) as the sole carbon source. The results are the mean values obtained from two separate 826 

experiments. Error bars represent the standard deviation. 827 

 828 

Figure 4: Schematic representation of the four B. breve UCC2003 gene clusters up-regulated 829 

during growth on GlcNAc-6-S as the sole carbon source. The length of the arrows (which 830 

contain the locus tag number) is proportional to the size of the open reading frame and the 831 

gene locus name, which is indicative of its putative function, is given at the top. Genes are 832 

grouped by colour based on their predicted function in carbohydrate metabolism.  833 

 834 

Figure 5: (A) Schematic representation of the ats2 gene cluster of B. breve UCC2003 and 835 

DNA fragments used in EMSAs for the atsR2 and atsT promoter regions, together with 836 

Weblogo representation of the predicted operator of AtsR2. Plus or minus signs indicate 837 

ability or inability of AtsR2 to bind to the DNA fragment. The bent arrows represent the 838 

position and direction of the proven promoter sequences (see Fig. 6). (B) EMSAs showing 839 

the interactions of (I) crude cell extract containing pNZ-AtsR2 with the DNA fragments R1, 840 

R2, R3,T1, T2 and T3 and (II) crude cell extract containing pNZ8048 (empty vector) with the 841 

DNA fragments R1 and T1. The minus symbol indicates reactions to which no crude cell 842 

extract was added, while the remaining lanes represent binding reactions with the respective 843 

DNA probes incubated with increasing amounts of crude cell extract. Each successive lane 844 

from right to left represents a doubling of the amount of crude cell extract. (C) EMSAs 845 

showing AtsR2 interaction with the DNA fragments R1 and T1 with the addition of GlcNAc 846 

or GlcNAc-6-S in concentrations ranging from 2.5 mM to 20 mM. 847 
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 848 

Figure 6: Schematic representation of the atsR2 (panel A), atsT (panel B), promoter regions. 849 

Boldface type and underlining indicate -10 and -35 hexamers (as deduced from the primer 850 

extension results) and ribosomal binding site (RBS); the transcriptional start site is indicated 851 

by an asterisk. The arrows underneath the indicated DNA sequences indicate the inverted 852 

repeats that represent the presumed AtsR2 binding site. The arrows in the right panels 853 

indicate the primer extension products. 854 

 855 

 856 

 857 

 on S
eptem

ber 7, 2016 by U
N

IV
 C

O
LLE

G
E

 C
O

R
K

http://aem
.asm

.org/
D

ow
nloaded from

 

http://aem.asm.org/


1 
 

Table 1: Bacterial strains and plasmids used in this study. 

Strains and plasmids Relevant features Reference or source 
Strains 
Escherichia coli strains   

E.coli EC101 Cloning host; repA+ kmr (92) 
E.coli EC101-pNZ-M.Bbrll+Bbr1 EC101 harboring a pNZ8048 derivative containing bbrllM and bbrlllM (57)
E. coli XL1-blue (supE44 hsdR17 recA1 gyrA96 thi relA1 lac F′ [proAB+ laclq lacZΔM15 Tn10(Tetr)]) Stratagene 
E. coli XL1-blue-pBC1.2-atsProm XL1-blue harboring pBC1.2-atsProm This study 

L. lactis strains 
               L. lactis NZ9000 MG1363, pepN::nisRK, nisin inducible overexpression host (65) 
               L. lactis NZ9000-pNZ8048 NZ9000 containing pNZ8048 This study 
               L. lactis NZ9000-pNZ-atsR2 NZ9000 containing pNZ-atsR2 This study 
               L. lactis NZ97000 Nisin-A producing strain (65) 
Bifidobacterium sp. strains   

B. breve UCC2003 Isolate from a nursling stool (58) 
B. breve UCC2003-atsR2 pORI19-tetW-atsR2 insertion mutant of B. breve UCC2003 This study 
B. breve UCC2003-atsT pORI19-tetW-atsT insertion mutant of B. breve UCC2003 This study 
B. breve UCC2003-atsA2 pORI19-tetW-atsA2 insertion mutant of B. breve UCC2003 This study 
B. breve UCC2003-atsR2-pBC1.2-atsProm pORI19-tetW-atsR2 insertion mutant of UCC2003 containing pBC1.2-atsProm This study 

Plasmids   
pAM5 pBC1-pUC19-Tcr (64) 
pNZ8048 Cmr, nisin-inducible translational fusion vector (65) 
pNZ-atsR2 Cmr, pNZ8048 derivative containing translational fusion of atsR2 encoding DNA 

fragment to nisin-inducible promoter 
This study 

pORI19 Emr, repA-, ori+, cloning vector (92) 
pORI19-tetW-atsR2 Internal 408 bp fragment of atsR2 and tetW cloned in pORI19 This study 
pORI19-tetW-atsT Internal 416 bp fragment of atsT and tetW cloned in pORI19 This study 
pORI19-tetW-atsA2 Internal 402 bp fragment of atsA2 and tetW cloned in pORI19 This study
pBC1.2 pBC1-pSC101-Cmr (64) 
pBC1.2-atsProm AtsR2 promoter region cloned in pBC1.2  This study 

 

 on S
eptem

ber 7, 2016 by U
N

IV
 C

O
LLE

G
E

 C
O

R
K

http://aem
.asm

.org/
D

ow
nloaded from

 

http://aem.asm.org/


2 
 

Table 2: Oligonucleotide primers used in this study. 

Purpose Primer Sequence 
Cloning of 408 bp fragment of atsR2 in pORI19 AtsR2F GACTAGAAGCTTGCCATCACGATCGACGACG
 AtsR2R TAGCATTCTAGAGCATCCCGGACGTCCACAG 
Cloning of 416 bp fragment of atsT in pORI19 AtsTF GACTAGAAGCTTGATCTCCTTCCGCCAGCTC 
 AtsTR TAGCATTCTAGACGTTGGTGCCGGTCAGCTG
Cloning of 402 bp fragment of atsA2 in pORI19 AtsA2F GACTAGAAGCTTGAATACGTCGCCTGGCTCAAG 
 AtsA2R TAGCATTCTAGACCTCCACTGGTCGTTGTCG 
Amplification of tetW TetWF TCAGCTGTCGACATGCTCATGTACGGTAAG
 TetWR GCGACGGTCGACCATTACCTTCTGAAACATA 
Confirmation of site-specific homologous recombination AtsR2confirm CATCGACACGGCATACTGG 
 AtsTconfirm CATCTTCGGCGCGTTATG 
 AtsA2confirm GGAAACCGACTGGACCTACAC 
Cloning of atsR2 in pNZ8048 AtsR2FOR TACGTACCATGGTGCATTTCGCATCGG 
 AtsR2REV GCTAGCTCTAGAGTGGAATATGCGGTGCGTG 
Cloning of atsR2 promoter in pBC1.2 AtsRPromF GTACTAAAGCTTCCAGTATGCCGTGTCGATG 
 AtsRPromR TAGCTATCTAGACGCAATGCCAGAAACTCAGC 
IRD-labelled primers AtsR2R1F CATCGTGTTATTGGCGCGG 
 AtsR2R1R GACGCCATATCACAGAGGGTTG 
 AtsR2R2F GCATGCGGCGTGAACTCC 
 AtsR2R2R CGCAATGCCAGAAACTCAGC 
 AtsR2R3F GATGTTGCCTTGCGGTATG 
 AtsR2R3R CAACGGCTGCCCACTGG 
 AtsR2T1F GGTCCTCCTTCGTCTGTGTGG 
 AtsR2T1R GTCGTGGCATATCGTTCGG 
 AtsR2T2F GGGCCGACGAAGTTGTTG 
 AtsR2T2R CGATGAGACCGCCGATG 
 AtsR2T3F CTAGCGGCATTCAGTATCGAG 
 AtsR2T3R GCGGCAGAACAGCAGGAAC 
Restriction sites incorporated into oligonucleotide primer sequences are indicated in italics. 
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Table 3: Effect of GlcNAc-6-S on the transcriptome of B. breve UCC2003 

Locus tag  
(gene name) 

Predicted Function Level of 
up-

regulation 
Bbr_0846 
(nagA1) 

N-acetylglucosamine-6-phosphate deacetylase  12.63 

Bbr_0847 
(nagB2) 

Glucosamine-6-phosphate isomerase  6.17 

Bbr_0848 (nagK) Sugar kinase, ROK family  9.85 
Bbr_0849 (atsR2) Transcriptional regulator, ROK family 8.58 
Bbr_0851 (atsT) Carbohydrate transport protein  96.75 
Bbr_0852 (atsA2) Sulfatase 35.36 
Bbr_0853 (atsB2) anSME  31.25 
Bbr_0854 Hypothetical membrane spanning protein  4.175 
Bbr_1247 
(nagA2) 

N-acetylglucosamine-6-phosphate deacetylase  10.84 

Bbr_1248 
(nagB3) 

Glucosamine-6-phosphate isomerase  11.88 

Bbr_1249 Transcriptional regulator, ROK family  3.07 
Bbr_1585 (galE) UDP-glucose 4-epimerase  3.09 
Bbr_1586 (nahK) N-acetylhexosamine kinase 4.96 
Bbr_1587 (lnbP) lacto-N-biose phosphorylase  6.58 
Bbr_1588 Permease protein of ABC transporter system 6.24 
Bbr_1589 Permease protein of ABC transporter system 8.27 
Bbr_1590 Solute-binding protein of ABC transporter 

system  
23.97 

The cutoff point is 3- fold with a P-value of <0.001. 
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Table 4: Transcriptome analysis of B. breve UCC2003-atsR2 as compared to B. breve 

UCC2003 grown on 0.5 % (wt/vol) ribose. 

Locus tag  
(gene name) 

Predicted Function Fold up-
regulation 

Fold 
down-

regulation 
Bbr_0846 (nagA1) N-acetylglucosamine-6-

phosphate deacetylase  
- 3.77 

Bbr_0847 (nagB2) Glucosamine-6-phosphate 
isomerase  

- 3.35 

Bbr_0848 (nagK) Sugar kinase, ROK family  - 4.45 
Bbr_0850 Aldose-1-epimerase 4.58 - 
Bbr_0851 (atsT) Carbohydrate transport protein  106.28 - 
Bbr_0852 (atsA2) Sulfatase 59.58 - 
Bbr_0853 (atsB2) anSME  15.57 - 
Bbr_0854 Hypothetical membrane 

spanning protein  
9.09 - 

 

The cutoff point is 3- fold with a P-value of <0.001; values below the cutoff are indicated by 
a minus. 
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