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Abstract
A continuous process strategy has been developed for the preparation of α-thio-β-chloroacrylamides, a class of highly versatile syn-

thetic intermediates. Flow platforms to generate the α-chloroamide and α-thioamide precursors were successfully adopted,

progressing from the previously employed batch chemistry, and in both instances afford a readily scalable methodology. The imple-

mentation of the key α-thio-β-chloroacrylamide casade as a continuous flow reaction on a multi-gram scale is described, while the

tuneable nature of the cascade, facilitated by continuous processing, is highlighted by selective generation of established intermedi-

ates and byproducts.
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Introduction
Since the efficient and highly stereoselective transformation of

α-thioamides to the corresponding α-thio-β-chloroacrylamides

derivatives was first reported [1,2], the considerable synthetic

utility of these heavily functionalized acrylamide compounds

has been well documented [3]. The predominant site of reactivi-

ty is at the electrophilic β-carbon, which results from the

combined influence of the amide and chloro substituents, miti-

gating the electron-donating effect of the sulfide moiety.

Nucleophilic substitution [4], Diels–Alder reactions [5] and 1,3-

dipolar cycloadditions [6-9], and oxidation of the sulfide group

[10-12] are among a wide array of transformations which have

been successfully applied to these compounds (Scheme 1).

http://www.beilstein-journals.org/bjoc/about/openAccess.htm
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Scheme 2: Typical three-step batch preparation of α-thio-β-chloroacrylamide.

Scheme 1: Reaction pathways of α-thio-β-chloroacrylamides.

In order to fully exploit the synthetic potential of these

β-chloroacrylamides, however, a means of ready access to

appreciable quantities of material is required. Preparation of

α-thio-β-chloroacrylamides typically results from a three-step

synthetic route, culminating in a final cascade/domino reaction

[13] where a toluene solution of α-thioamide and NCS is sub-

jected to a ‘hot plunge’ by placing it into an oil bath at 90 °C

(Scheme 2). While this route has consistently provided a robust

means of generating the desired β-chloroacrylamides at scales

of 1–10 g, it suffers from several disadvantages which impact

on the ease of scale-up.

The preparation of the α-chloroamide 1 is exothermic and

requires significant external cooling, an undesirable feature for

scale-up. The synthesis of the α-thioamide 2 involves prior gen-

eration of fresh sodium ethoxide from sodium metal. Further-

more, this α-thioamide protocol, at high pH, ordinarily does not

go to completion, leaving unreacted starting material and

forming impurities which are subsequently removed by chro-

matographic purification. Finally, the optimized conditions for

the final cascade transformation employ rapid heating via ‘hot-

plunge’ in order to minimize the formation of process impuri-

ties during the initial heating phase [1]. This efficient rapid

heating poses practical difficulties for scale-up and, further-

more, chromatographic separation is required to remove prod-

uct impurities.

The nature of the aforementioned difficulties outlined are, how-

ever, largely specific to the scale-up of batch chemistry. A con-

tinuous processing approach frequently possesses advantages

over the batch equivalent, as has been extensively documented

[14-22]. When combined with automated operation, it allows

for enhanced reproducibility and access to extreme conditions,

which, along with improved heat and mass transfer, all facili-

tate significant ease of scale-up. The reaction control afforded

by use of high surface-area-to-volume ratio tubular reactors,

specifically with respect to dissipation of heat, offers a safety

profile unique to flow chemistry. Continuous processing also

provides the capacity to continuously generate hazardous

reagents and intermediates in small quantities, in situ, and trans-

ferred directly into a reaction stage without operator handling

[21-26]. As rapid heat transfer (steps 1 and 3) and greater reac-

tion control (steps 2 and 3) were identified as the key chal-

lenges to be overcome, we envisaged that continuous process-

ing could facilitate the preparation of large quantities of α-thio-

β-chloroacrylamide with reduced purification requirements. The

goal of this study was to develop an optimized process for the

synthesis of α-thio-β-chloroacrylamides, employing a model

system with N-4′-methylphenyl-(Z)-3-chloro-2-(phenyl-

thio)propenamide (Z-3) as the target product. This optimized

process would utilise flow chemistry as a key enabling technol-

ogy to overcome the aforementioned challenges.

Results and Discussion
Preparation of α-chloroamide
The synthesis of α-chloroamide 1 is highly exothermic, due to

the neutralisation of HCl – a byproduct – with triethylamine,

and the need for effective heat removal imposes limitations on
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the batch scale-up of this step. It was envisaged that the effi-

cient heat transfer properties of a high surface area tubular flow

reactor would remove the need for external cooling of the reac-

tion. To facilitate safe scale-up of this reaction we initially in-

vestigated a direct transfer of the batch process (Scheme 3) to

continuous mode.

Scheme 3: Batch process for preparation of α-chloroamide 1.

Although initial investigations involving small throughput had

shown promise, the practicalities of employing dichloro-

methane at process scales caused us to consider alternative

‘greener’ solvent systems [27]. A screen of alternative solvents

in batch test reactions revealed that, while the amide formation

was tolerant to most solvents, rapid precipitation of triethyl-

amine hydrochloride would be problematic in a continuous

process. Indeed, trial runs of a continuous process in ethyl

acetate resulted in immediate blockage of the flow reactor at the

point of reagent mixing. To prevent blockages due to salt for-

mation we investigated replacements for triethylamine that

would produce a more soluble HCl salt. Diisopropylethylamine

(DIPEA) was found to be a suitable base that allowed the con-

tinuous process to be carried out in ethyl acetate without any

observed precipitation of the HCl salt. The ‘greener’ continu-

ous amide formation (Scheme 4) was carried out on a large

scale, producing 91 g (92% yield) of the α-chloroamide 1 over

5 hours of continuous operation, as a white crystalline solid

after aqueous work-up and recrystallization.

Synthesis of α-thioamide
Driving the reaction to completion and avoiding the use of sodi-

um metal were the key aims in transferring α-thioamide prepa-

ration from batch to flow. Although yields of 80–90% can be

obtained under batch conditions, incomplete conversion to

α-thioamide 2 necessitates a difficult, and often laborious, chro-

matographic separation, as starting material 1 and product 2 are

poorly resolved. Indeed, high-purity batches of α-thioamide 2

are often not achieved by chromatography, with the resulting

product typically ca. 94% pure by HPLC. It was also envisaged

that the facility to superheat the solvent in a pressurised contin-

uous platform could enable sodium ethoxide to be replaced by a

weaker base, obviating the need for sodium metal.

At an early stage of process development, the possibility of tele-

scoping the amide formation and thiolation steps was consid-

Scheme 4: Process for the conversion of 2-chloropropionyl chloride
and p-toluidine to α-chloroamide 1 under optimized flow conditions.

ered. Attempts were made to use triethylamine as the base in a

continuous thiolation reaction, however, the reaction was found

to progress slowly and a maximum conversion of 39% was ob-

served by 1H NMR spectroscopy. Elevating the temperature to

90 °C and employing DBU, as a more basic alternative to tri-

ethylamine, did not increase the reactivity. Hence, the focus was

instead directed on converting the existing batch process

(Scheme 2), with sodium ethoxide as base, into a stand-alone

continuous process.

Initially, however, the sodium chloride byproduct was found to

precipitate from ethanol causing blockages at the back-pressure

regulator. As sodium chloride possesses a relatively low solu-

bility in ethanol (ca. 0.055 g in 100 g of ethanol at 20 °C) com-

pared to methanol (1.375 g in 100 g) [28], methanol was pro-

posed as an alternative solvent. As 1H NMR analysis indicated

that the crude reaction product from batch tests (using metha-

nol as solvent) consisted of 98% α-thioamide 2, the process

was subsequently transferred to a continuous flow system

(Scheme 5).

A variety of temperatures (60–120 °C), bases (NaOMe, NaOH,

Na2CO3) and concentrations (0.1–0.3 M) were investigated

using methanol as solvent (see Supporting Information File 1),

however, unreacted α-chloroamide 1 and diphenyl disulfide

were detected as product components in all experiments. Direct

sampling of the reaction mixture (system effluents) also showed



Beilstein J. Org. Chem. 2016, 12, 2511–2522.

2514

Scheme 5: Conversion of 1 to 2 in continuous mode using MeOH as
solvent.

additional component peaks by HPLC analysis, which were not

observed in material isolated after the reaction work-up. While

temperatures above 100 °C or α-chloroamide 1 concentrations

above 0.1 M were not found to be advantageous, sodium

hydroxide demonstrated promising results when used as base.

With use of sodium hydroxide in mind, replacement of metha-

nol with an ethanol/water mixture as solvent was subsequently

examined. This solvent change was investigated in conjunction

with further refinements to the stoichiometry of sodium hydrox-

ide and thiophenol used, along with optimization of process

temperature and residence time (Table 1).

Initially, when using 10 equivalents of sodium hydroxide, the

best conversion to product 2 was obtained at a reaction tempera-

ture of 120 °C (entry 2, Table 1), with no unreacted

α-chloroamide 1 detected by HPLC. Employing just 5 equiva-

lents of hydroxide also provided an acceptable yield of

α-thioamide 2 in all instances (entries 4–13, Table 1). The use

of an excess of sodium hydroxide as base had removed the

difficulty with unreacted starting material, presumably by

hydrolysis of unreacted α-chloroamide 1 to more water soluble

byproducts. In order to minimize the presence of diphenyl disul-

fide in the isolated product, the stoichiometry of thiophenol was

also examined. Interestingly, a reduction in the excess of thio-

phenol to 1.05 equivalents was found to give a greater propor-

tion of α-thioamide 2 and significantly reduced level of

diphenyl disulfide (entries 7–13, Table 1).

After an improved stoichiometry of reagents had been estab-

lished, lowering the residence time was investigated to facili-

tate efficient large scale synthesis by a continuous flow process.

Ultimately, a residence time of 5 min at 120 °C, using a 0.25 M

concentration of α-chloroacrylamide, was found to give an

acceptable quality of product 2, with no detectable quantities of

starting material 1 or diphenyl disulfide by HPLC analysis

(entry 13, Table 1).

The optimized continuous process (Scheme 6) was then run on

a 5 g scale with no observed loss of yield or purity. The

α-thioamide 2, which crystallized directly from the output of the

flow process, was obtained in 71% yield and found to be >99%

pure by HPLC analysis, compared to 94% purity for a typical

batch preparation following chromatography.

Scheme 6: Optimized process for the conversion of α-chloroamide 1
to α-thioamide 2 under flow conditions.

As transferring the α-thioamide preparation to a continuous

platform had involved a number of important changes to the

reaction conditions, it was decided to evaluate the optimized

flow conditions (entry 13, Table 1) when applied to a batch

process for comparison: 1.05 equivalents of thiophenol in

ethanol mixed with an aqueous solution containing 5 equiva-

lents of sodium hydroxide followed by heating to reflux for

1 hour. Initially on a 500 mg scale, a 97% yield of α-thioamide

2 was obtained, while operating at a higher concentration (in-

creased from 0.25 M α-chloroamide 1 to 0.4 M α-chloroamide

1) a yield of 94% was achieved on a 5 g scale, with the isolated

product determined to be 99% pure by HPLC analysis. This

process was ultimately carried out at a 20 g scale achieving

88% yield, again with 99% purity; the decrease in yield was

offset by the increase in both productivity at this scale and prod-

uct purity. The ability to operate effectively at higher concentra-

tions in batch than in flow, in this case, made this batch process

the optimum method of α-thioamide preparation, with a consid-

erable reduction in reaction time from 10 hours to just 1 hour
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Table 1: Optimization of temperature, thiophenol concentration, residence time and stoichiometry of base for conversion of 1 to 2 in continuous
modea using EtOH/H2O as solvent.

Entry Residence
time
(min)

Temp.
(°C)

PhSH
(equiv)

NaOH
(equiv)

Product ratio
2

(%)b
1

(%)b
PhSSPh

(%)b
Otherc
(%)b

1 30 100 1.4 10 73.2 0 2.4 24.4
2 30 120 1.4 10 82.2 0 6.1 11.7
3 30 140 1.4 10 54.5 0 1.3 44.2
4 30 100 1.4 5 75.9 0 2.6 21.5
5 30 100 1.2 5 78.8 3.6 3.5 14.2
6 30 100 1.1 5 81.0 0.4 0.6 18.0
7 30 100 1.05 5 85.4 0 1.1 13.5
8 10 100 1.05 5 67.4 8.5 0.4 23.7
9 10 120 1.05 5 77.3 0 0.9 21.8

10 5 120 1.05 5 81.0 2.1 1.2 15.7
11 2 120 1.05 5 72.8 4.5 1.1 21.6
12 2 140 1.05 5 71.3 0 1.3 27.4
13d 5 120 1.05 5 74.1 0 0 25.9

aGeneral conditions: 1 equiv α-chloroamide 1 (2 mL of a 0.1 M solution in EtOH) was reacted with PhSH (as a solution in EtOH) and NaOH (as a solu-
tion in H2O). bDetermined by HPLC analysis (peak area: see Supporting Information File 1) of samples taken directly from flow reactor as effluent
solutions and diluted in MeCN prior to analysis. cUnisolated components, not present after work-up. dReaction was run using 2 mL 0.25 M solution of
α-chloroamide 1 in EtOH.

(for 20 g of 2) and with a reduction of approximately one third

in the required solvent volume, compared to the flow process.

By comparison, the original batch process was typically run for

20 hours on scales up to 10 g.

As with the optimized flow process, direct crystallisation of the

α-thioamide product 2 from this improved batch process was

achieved by cooling and adding water as anti-solvent. This

method of product isolation obviated the need for the arduous

work-up – involving extraction into dichloromethane and

several aqueous washes – associated with the original batch

version, and gave material which was 99% purity or greater by

HPLC analysis.

The stoichiometry of sodium hydroxide required for reaction

completion was also considered as part of the batch comparison.

Here, a reduction from 5 equivalents to 3 and subsequently to

just 2 equivalents was found to be possible, with no discernible

negative impact on the product formation. In the latter case, in

batch the α-thioamide 2 was recovered in 92% yield and >99%

purity by HPLC, when the reaction was performed on a 5 g

scale. A subsequent batch run on a 20 g afforded an 89% yield,

with the same level of product purity. It is, perhaps, worth

noting that the high isolated yields obtained from the scaled-up

reactions strongly suggest that the substantial quantities of

‘other’ components observed by HPLC analysis, but removed

during work-up, are overestimated by detection at 250 nm
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Scheme 7: Mechanism of the β-chloroacrylamide cascade process [29].

(Table 1). Such an overestimation is consistent with the pres-

ence of additional chromophores, when compared to the desired

product, and would indicate that these observed components

may contain an α,β-unsaturated carbonyl motif in their struc-

tures.

The value of exploring flow methodology, ultimately leading to

an improved batch process, is keenly highlighted in this

instance. The optimized batch process, developed through

examining the use of continuous processing, can produce 20 g

of pure material, with direct product precipitation/crystalliza-

tion from the reaction solution (>99% pure by HPLC analysis),

which has removed the requirements for isolation by extraction

and subsequent chromatographic purification. HPLC analysis of

the current process – in either batch or flow – indicated com-

plete consumption of the α-chloroamide 1, without diphenyl

disulfide formation, while an increase in yield from 80–90% to

consistently over 90% has been achieved. Furthermore, the use

of an inert atmosphere is no longer necessary as the decrease in

reaction time has essentially eliminated the opportunity for

aerobic oxidation of the thiophenolate anion to diphenyl disul-

fide, while sodium metal is no longer used as part of the

process.

α-Thio-β-chloroacrylamide cascade in flow
Successful conversion of the β-chloroacrylamide cascade step

from batch to flow posed a number of challenges. The reaction

mechanism (Scheme 7) involves a complex cascade which also
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Table 2: Initial flow process for conversion of 2 to Z-3 using toluene as solvent.

Entry Ratio
2:NCSa

Residence Time
(min)

Product ratio
2

(%)b
4

(%)b
5

(%)b
Z-3
(%)b

1 1:2 20 19 15 18 47
2 1:2 50 21 19 0 60
3 1:2.3 20 22 8 20 46
4 1:3 20 25 1 12 62
5 1:1 20 21 77 <1 2

aStoichiometric ratio of α-thioamide 2:NCS controlled by manipulating the relative flow rates. bMolar ratio determined by HPLC analysis (peak area
weighted for relative response factors of each component: see Supporting Information File 1) of samples taken directly from flow reactor as effluent
solutions and diluted in MeCN prior to analysis.

gives rise to several known impurities, including acrylamide 4,

dichloride 5, trichloride 6 and dichloroacrylamide 7.

In the optimized batch synthesis of α-thio-β-chloroacrylamide

Z-3 from the corresponding α-thioamide 2, N-chlorosuccin-

imide (NCS) is added in one portion to a solution of 2 in tolu-

ene and the reaction mixture is immediately immersed in an oil

bath at 90 °C (Scheme 2). Although this protocol performs well,

giving 91% yield on a ca. 5 g scale [1], the practical challenges

of achieving efficient rapid heating on a larger scale in batch

made continuous processing an attractive alternative for scale-

up due to its capacity for excellent temperature control. Effi-

cient heat transfer due to the high surface, low volume geome-

try of tubular flow reactors makes it possible to achieve

extremely rapid temperature transitions. It was envisaged that

flowing the reaction through a heated section of tubing would

be analogous to the batch ‘hot plunge’ method but with the

capacity for faster heating of the reaction.

Given the superior performance of α-thioamide 2 synthesis in

batch, the potential telescoping of the thiolation process with

the β-chloroacrylamide cascade was not investigated. Further-

more, the potential vulnerability of α-thio-β-chloroacrylamides

towards nucleophilic substitution by an aqueous ethanol compo-

nent of the reactant stream (from α-thioamide 2 preparation),

particularly at elevated temperatures, strongly mitigated against

integrating these steps.

For the batch process, the solubility of NCS in toluene has

notable benefits: NCS is soluble in toluene at high temperatures,

while the succinimide byproduct readily precipitates from tolu-

ene on cooling, allowing its convenient removal by filtration. In

a continuous flow process, however, succinimide precipitation

would cause blockage of the system.

Attempts at transferring the cascade reaction to a continuous

platform began with direct adaptation of the existing batch

process (Table 2). The solubility of NCS in toluene was found

to be variable and often unsuitably low. Only batches of NCS

which readily gave complete solutions were used and these

batches were always either freshly recrystallized or commercial

batches which were ‘newly’ opened prior to use. The reduced

solubility of other batches was attributed to the partial hydroly-

sis of NCS upon intermittent exposure to ambient conditions

over prolonged periods, also generating HCl.

Initial investigations using our prototype flow process em-

ployed 0.01 M solutions of NCS and starting material 2 in tolu-
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Table 3: Solvent screen for conversion of 2 to Z-3 in continuous mode.

Entry [α-Thioamide 2]
(mM)

[NCS]
(mM)

Solvent
A/B

Product ratio
2

(%)a
4

(%)a
5

(%)a
Z-3
(%)a

E-3
(%)a

1 25 50 Tol/Tol 0 9.9 9.9 78.7 1.5
2 25 50 Tol/MeCN 0 4.3 0 81.4 14.3
3 25 50 MeCN/MeCN 0 0 0 86.9 13.1
4 200 400 Tol/MeCN 0 7.3 0 83.5 9.2
5 200 400 MeCN/MeCN 0 0 0 87.8 12.2

aDetermined by 1H NMR spectroscopy.

ene. The equivalent of a ‘hot-plunge’ method was achieved by

passing the reaction solution through a coiled tube reactor at

120 °C. The high surface area–volume ratio of tubular flow

reactors is ideal for such rapid temperature transitions. It was

noted that a relatively short residence time of only 20 min could

be used, with a longer time of 50 min offering only a modest

improvement on the reaction outcome (entries 1 and 2, Table 2).

Indeed, the conversion of starting material 2 to acrylamide 4

was found to be closely comparable, indicating almost identical

reaction progress, given the instability of dichloride 5, which

easily converts to the final product Z-3.

Increasing the amounts of NCS used was found to lead to a

better conversion of acrylamide 4 to dichloride 5 or α-thio-β-

chloroacrylamide Z-3 (entries 3 and 4, Table 2), with only 1%

of acrylamide 4 left unreacted with three equivalents of NCS

used. When only an exact stoichiometric ratio (1:1) of NCS was

used, the reaction stopped after the first chlorination step,

leading to a reaction mixture which contained acrylamide 4 as

the main product formed (entry 5, Table 2). This ability to halt

the cascade at the acrylamide intermediate 4 or push through to

the α-thio-β-chloroacrylamide Z-3 highlights the enhanced

control of reaction stoichiometry afforded by a continuous plat-

form and offers the possibility to isolate selected intermediates

in the cascade reaction using a continuous process, more effec-

tively than in batch and with greater flexibility.

Optimization of the cascade process using
flow chemistry
In all the aforementioned cases (Table 2), around 20% of the

starting material was consistently found to be unreacted. The

key limitation to overcome was proposed to be the low solu-

bility of NCS in toluene, and the consequent limitations to

reactor throughput. To offset this difficulty, the use of alterna-

tive solvents was investigated. Acetonitrile was considered as a

possible alternative solvent due to the high solubility of NCS it

offers. Hence, preliminary experiments were carried out in

order to compare its performance to toluene (Table 3), with the

α-thioamide 2:NCS ratio again adjusted by manipulating the

concentration of the reagent solutions. In these experiments, the

reaction conversions were determined using 1H NMR analysis

of the crude product material obtained, with characteristic

proton signals of the β-carbon of the starting material 2, inter-

mediates 4 and 5, and the desired product Z-3 being easily iden-

tifiable.

Using toluene as a solvent for both reagents (α-thioamide 2 and

NCS) leads to 10% unreacted acrylamide 4 (entry 1, Table 3).
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Table 4: Optimization of flow rates, residence time and temperature for conversion of 2 to Z-3 in continuous modea.

Entry Residence
time
(min)

Flow rate
(mL/min)

Temp
(°C)

Product ratiob

Z-3
(%)c

E-3
(%)c

4
(%)c

5
(%)c

1 25 0.2 120 88.2 11.8 0.0 0.0
2 15 0.3 120 87.6 12.4 0.0 0.0
3 10 0.5 120 86.9 13.1 0.0 0.0
4 5 1.0 120 85.5 14.5 0.0 0.0
5 2 2.5 120 72.8 13.7 0.0 13.5
6 2 2.5 80 4.9 2.3 0.0 92.7
7 2 2.5 90 9.5 3.1 0.0 87.4
8 2 2.5 100 17.3 4.4 0.0 78.3
9 2 2.5 130 84.0 16.0 0.0 0.0

a1 Equiv of α-thioamide 2 (4 mL of a 0.2 M solution in MeCN) was reacted with 2 equiv of NCS (4 mL of a 0.4 M solution in MeCN). bUnisolated com-
ponents, not present after work-up were not included, but ranged from 5–10% by peak area. cMolar ratio determined by HPLC analysis (peak area
weighted for relative response factors of each component: see Supporting Information File 1) of samples taken directly from flow reactor as effluent
solutions and diluted in MeCN prior to analysis.

When a solution of 2 in toluene and a solution of NCS in aceto-

nitrile were employed as the reactant streams, similar results

were observed at either low or high concentration, in terms of

residual acrylamide intermediate detected (entries 2 and 4,

Table 3). However when acetonitrile was used as solvent for

both reagents (α-thioamide 2 and NCS), full conversion to the

final product Z-3 was observed, at both high and low concentra-

tion of reagents (entries 3 and 5, Table 3). Use of high concen-

trations has the advantage of increasing process productivity. In

this case (entry 5, Table 3), the production could be increased

eight-fold for the same reaction time as entry 3 (25 min resi-

dence time). Furthermore, higher concentration of reagents

enables greener synthesis by reducing solvent use.

Interestingly, during development studies on the conversion of

α-thioamide 2 to α-thio-β-chloroacrylamide Z-3 in acetonitrile,

by flow or in batch, a new component of the cascade reaction

was observed, which was identified as the (E)-α-thio-β-

chloroacrylamide E-3.

An important feature of the experiments conducted on the

β-chloroacrylamide cascade as a continuous process was the

complete absence of the over-chlorinated products 6 and 7,

which were not observed by HPLC analysis or 1H NMR spec-

troscopy. In contrast, when similar conditions were employed in

batch, significant formation of these byproducts was often

in evidence [1]. The flow process for the conversion of

α-thioamide 2 to α-thio-β-chloroacrylamide 3 which employed

acetonitrile as solvent was therefore taken forward for optimiza-

tion and scale-up (Table 4).

The residence time of the flow process was investigated to de-

termine the completion time of the reaction, principally to mini-

mize the extent of impurity formation due to over-reaction. The

shortest possible effective residence time would be also prefer-

able for larger scale operation in order to maximize the reactor

throughput. The dichloride intermediate 5 was still present after

a 2 min residence time (entry 5, Table 4), implying the reaction

had not yet reached completion, while minor impurities re-

mained at similar levels throughout all of the experiments. The

succinimide byproduct was removed in the product work-up.

At lower reaction temperatures, large quantities of the dichlo-

ride 5 were observed (entries 6–8, Table 4), with correspond-
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Table 5: Optimization of NCS stoichiometry for conversion of α-thioamide 2 to α-thio-β-chloroacrylamide Z-3 in continuous modea.

Entry NCS
equiv

Product ratiob

Z-3
(%)c

E-3
(%)c

4
(%)c

5
(%)c

6
(%)c

1 1.7 68.8 13.1 18.1 0.0 0.0
2 1.9 73.8 14.1 12.1 0.0 0.0
3 1.95 76.5 14.8 8.6 0.0 0.0
4 2 82.9 15.8 1.3 0.0 0.0
5 2.05 81.6 15.9 1.4 0.0 1.1
6 2.1 81.3 15.3 1.7 0.0 1.7
7 2.2 69.4 11.9 0.0 0.0 18.7

a1 Equiv of α-thioamide 2 (4 mL of 0.2 M solution in MeCN) was reacted with NCS (4 mL of solution in MeCN) at 130 °C for 2 min, using a flow rate of
2.5 mL/min. bMolar ratio determined by HPLC analysis (peak area weighted for relative response factors of each component: see Supporting Informa-
tion File 1) of samples taken directly from flow reactor as effluent solutions and diluted in MeCN prior to analysis. cUnisolated components, not
present after work-up were not included, but ranged from 2–14% by peak area.

ingly low quantities of product Z-3. This finding is consistent

with previous work showing that rapid heating resulted in a

more efficient reaction cascade to the desired product Z-3, while

slower heating leads to substantial quantities of reaction inter-

mediates 4 and 5 as product impurities [3].

The stoichiometry of NCS used for the continuous process was

also further optimized (Table 5). It was found that, at 130 °C,

2 equivalents of NCS resulted in the lowest levels of the impuri-

ties arising from reaction intermediates and over-chlorination

byproducts while also achieving one of the highest conversions

to the desired α-thio-β-chloroacrylamide Z-3 (82.9%, entry 4,

Table 5).

This process was then operated on a 30 g scale (Scheme 8) to

produce 19.3 g (57% yield, >99% pure by HPLC analysis and
1H NMR spectroscopy) of isolated α-thio-β-chloroacrylamide

Z-3 in less than 4 hours. The crude material was found to

consist only of a mixture of the Z- and E-isomers by 1H NMR

spectroscopy, with pure Z-3 selectively recovered after recrys-

tallization, albeit with a loss of isolated yield from this process.

This is the first instance in which multi-gram quantities of the

product Z-3 have been isolated without the need for chromatog-

raphy and on more than 3 times the scale which can be ob-

tained in batch with the same reaction time [1]; the increase in

quantity and the ease of purification compensates for the reduc-

tion in yield to 57%. The material obtained by concentration of

the liquors recovered from recrystallization were found to

consist mainly of Z-3 and E-3 by 1H NMR spectroscopy. Purifi-

cation of this material by chromatography gave an additional

11% yield of pure Z-3 (3.7 g).

Conclusion
An efficient continuous flow methodology has been developed

for the three-step synthesis of α-thio-β-chloroacrylamide Z-3,

which has overcome the challenges to scale-up posed by the
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Scheme 8: Optimized flow process for conversion of α-thioamide 2 to
α-thio-β-chloroacrylamide Z-3.

conventional batch preparation. This approach has yielded

improvements in process safety, significantly reduced reaction

times and increased product purity, obviating the need for chro-

matography. One process, preparation of α-thioamide 2 ulti-

mately proved most efficient in batch, though the investigations

performed in flow were critical to achieving the optimization.

The easy access to synthetically useful amounts, afforded by a

transfer to continuous processing, is expected to significantly

increase the attractiveness of harnessing the enormous potential

utility of α-thio-β-chloroacrylamides on a more widespread

basis. Perhaps the most powerful outcome is the ability to

control the β-chloroacrylamide cascade through continuous pro-

cessing, leading to selective recovery of individual components

of the reaction.

Supporting Information
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