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Abstract 

Germanium was of great interest in the 1950’s when it was used for the first 

transistor device. However, due to the water soluble and unstable oxide it was 

surpassed by silicon. Today, as device dimensions are shrinking the silicon oxide is 

no longer suitable due to gate leakage and other low-κ dielectrics such as Al2O3 and 

HfO2 are being used. Germanium (Ge) is a promising material to replace or integrate 

with silicon (Si) to continue the trend of Moore’s law. Germanium has better 

intrinsic mobilities than silicon and is also silicon fab compatible so it would be an 

ideal material choice to integrate into silicon-based technologies. The progression 

towards nanoelectronics requires a lot of in depth studies.  Dynamic TEM studies 

allow observations of reactions to allow a better understanding of mechanisms and 

how an external stimulus may affect a material/structure. This thesis details in situ 

TEM experiments to investigate some essential processes for germanium nanowire 

(NW) integration into nanoelectronic devices; i.e. doping and Ohmic contact 

formation. 

Chapter 1 reviews recent advances in dynamic TEM studies on semiconductor 

(namely silicon and germanium) nanostructures. The areas included are 

nanowire/crystal growth, germanide/silicide formation, irradiation, electrical biasing, 

batteries and strain.  

Chapter 2 details the study of ion irradiation and the damage incurred in germanium 

nanowires. An experimental set-up is described to allow for concurrent observation 

in the TEM of a nanowire following sequential ion implantation steps. Grown 

nanowires were deposited on a FIB labelled SiN membrane grid which facilitated 
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HRTEM imaging and facile navigation to a specific nanowire. Cross sections of 

irradiated nanowires were also performed to evaluate the damage across the 

nanowire diameter. Experiments were conducted at 30 kV and 5 kV ion energies to 

study the effect of beam energy on nanowires of varied diameters. The results on 

nanowires were also compared to the damage profile in bulk germanium with both 

30 kV and 5 kV ion beam energies.   

Chapter 3 extends the work from chapter 2 whereby nanowires are annealed post ion 

irradiation. In situ thermal annealing experiments were conducted to observe the 

recrystallization of the nanowires. A method to promote solid phase epitaxial growth 

is investigated by irradiating only small areas of a nanowire to maintain a seed from 

which the epitaxial growth can initiate. It was also found that strain in the nanowire 

greatly effects defect formation and random nucleation and growth. To obtain full 

recovery of the crystal structure of a nanowire, a stable support which reduces strain 

in the nanowire is essential as well as containing a seed from which solid phase 

epitaxial growth can initiate.  

Chapter 4 details the study of nickel germanide formation in germanium 

nanostructures. Rows of EBL (electron beam lithography) defined Ni-capped 

germanium nanopillars were extracted in FIB cross sections and annealed in situ to 

observe the germanide formation.  

Chapter 5 summarizes the key conclusions of each chapter and discusses an outlook 

on the future of germanium nanowire studies to facilitate their future incorporation 

into nanodevices.  
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 2.1. Instrumentation 

An FEI Helios 600i NanoLab dual beam system (SEM/FIB) was used for all SEM 

imaging, ion irradiations and TEM lamellae sample preparation. The SEM is 

equipped with a FEG (field emission gun) source and the FIB with a Ga LMIS 

(liquid metal ion source). An omniprobe needle facilitates TEM lamella preparation.  

A JEOL 2100, LaB6 filament source, TEM was used for all TEM imaging. For 

HRTEM, a Gatan double tilt holder was used to allow tilt in two axes which 

facilitates tilting a crystal to a zone axis. For heating experiments, a Gatan 628 single 

tilt heating stage holder was used. The stage operates as a micro furnace and is 

capable of temperatures of 1000 °C but a maximum temperature of 500 °C was used 

in this thesis. Temperature was controlled using a Gatan Model 901 SmartSet hot 

stage controller. The temperature dispersion control is approximately 0.1−0.5 °C, as 

per the manufacturer’s specifications.  

A Raith eLine EBL system was used for all EBL exposures. The system is a 

converted SEM with a laser stage which allows for accurate movement of the stage 

for patterning.  

 

2.2. Nanowire Fabrication 

Two types of nanowires were used in this thesis; grown (bottom up) and GeOI 

lithography defined (top-down) nanowires. 
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2.2.1. Grown Nanowires 

The grown nanowires were supplied by Dr Subhajit Biswas, Dr Olan Lotty and Dr 

Colm O’Regan. A SCF (supercritical fluid) method of synthesis for the grown Ge 

NWs was used which occurs via a VLS-type (vapour-liquid-solid) mechanism.
1-4

 

The nanowires are grown on Si substrates with a dispersion of Au nanoparticles 

which act as the seed for growth. The grown nanowires appear like a forest of 

nanowires on the substrate. Typically, nanowires are removed from the substrate by 

sonication in isopropyl alcohol (IPA) to produce a suspension of nanowires. This 

introduces organic solvent contamination and which can be difficult to remove, 

leaving residue and diminishing the ability of HRTEM. To avoid this, a dry transfer 

method was used in this work. A scalpel was used to gently remove some NWs from 

the substrate and transfer to the sample platform, e.g. the SiN membrane. 

2.2.2. Lithography defined fabricated nanowires 

The lithography defined Ge NWs are fabricated from GeOI substrates using HSQ 

(hydrogen silsesquioxane) resist in a Raith eLine EBL system by Dr Anushka 

Gangnaik.
5
 All GeOI NWs were defined via EBL from a (001) GeOI wafer along the 

[100] direction. HSQ is a high resolution negative tone resist which when exposed to 

the electron beam, becomes insoluble to the developer solution, TMAH 

(tetramethylammonium hydroxide). As Ge reoxidises rapidly in ambient conditions, 

a citric acid clean was used to remove the oxide and passivate the surface prior to 

HSQ resist deposition.
6
 A 2.4% HSQ (in methyl isobutyl ketone) solution was 

deposited directly after the oxide removal step via spin coating at 2000rpm for 33s.
5
 

The resist film was baked on a hotplate at 120 °C for 3 min, to remove any solvent 

from the resist. The EBL was operated at 10 kV and exposure doses were set 
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depending on the NW diameter desired; 1000 μCcm
-2

 for 1 m diameter and 2300 

μCcm
-2

 for 20 nm diameter. Essentially, the HSQ forms a SiO2 mask which can be 

used as a hard mask for etching. After EBL exposure, the sample was immersed, 

with agitation, in 2.3% TMAH at room temperature for 70 s, followed by a 30 s rinse 

in deionised water and then dried in flowing nitrogen for 10 s. The exposed Ge was 

etched, as described by Ran et al., in a Cl2 RIE at 80W, 10mTorr, with a flow rate of 

30 sccm, for 25 s.
7 

 

2.3. Nanowire Irradiation via FIB 

2.3.1. Concurrent imaging platform for grown nanowires 

Grown NWs were transferred to a modified SiN membrane carrier chip platform for 

concurrent TEM imaging and FIB irradiation. The carrier chip platform used for 

step-wise implantation/imaging of a specific nanowire is shown in Figure 2.1. Si 

chips with silicon nitride (SiN) membrane windows were used (Ted Pella), which 

were patterned using the FIB to label and open slits in the membrane. The patterning 

is of benefit for two reasons; the slits allow high resolution imaging of sections of 

the nanowire as well as facile navigation to locate the same nanowire. The 

parameters for patterning were: 7 lines 10 µm apart, 70 µm long and 0.5 µm wide for 

a nominal depth of 300 nm with the Ga ion beam operating at 30 kV, 3 nA. 
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Figure 2.1. Overview of platform for correlative imaging of nanowire on Si3N4 membrane 

grid. 

 

2.3.2. Irradiation of grown nanowires 

The grown NWs were first imaged in the TEM where the growth direction, tilt to 

achieve a low index zone axis and any intrinsic defects were identified. Nanowires 

that required no more than 10 degrees tilting in one direction, preferably along or 

perpendicular to their long axis, and fully crossed the opening were selected. The 

mounting of the membrane chips to the TEM holder was done with the aid of an 

optical microscope, ensuring the grid is mounted with a fixed orientation. This 

allows the nanowires to be imaged in the same orientation after each exposure. This 

accurate mounting method becomes more important as the nanowire reaches a 

near/fully amorphous state. The grid was then transferred to the SEM/FIB for 

implantation. All NW irradiation was done using an FEI Helios 600i NanoLab Dual 

Beam system. The nanowire was located using the SEM and then orientated (stage 

was rotated and moved in x- and y-directions) so that the nanowire length was at 

eucentric height when the stage was tilted, i.e. the nanowire was aligned left to right 

in the SEM. The stage was tilted to 52° so the FIB is normal to the substrate surface. 
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The position of the NW was saved. The arrow keys, left or right to keep the changing 

only the y-coordinate, were used to navigate to the edge of the sample. This is to find 

a safe area away from the NW to align the SEM with the FIB. A feature was 

identified, without changing the x-coordinate, in the SEM and using beam shift for 

the ion beam (at 30 kV, 9.7 pA or 5 kV, 10 pA) the same feature was centred. 

Moving stepwise (one or two clicks of the left/right arrow) back to the NW to be 

irradiated the alignment was adjusted/checked at increasing magnification to ensure 

the alignment between SEM and FIB was accurate. Once the NW was within view in 

the SEM, imaging with the FIB was stopped. Any imaging with the FIB would 

introduce Ga
+
 ions at an unknown dose. With the SEM only, the NW was centred. 

Assuming accurate alignment with the FIB, the NW should be in the centre of the 

FIB screen also. The irradiation needs to be done “blind”. 

Most exposures were done at this tilt unless the tilt required for a nanowire in the 

TEM is <2°, in this case the stage was tilted to 45° to avoid ion channelling. The 

pattern for implantation was defined in the ion beam window as a rectangle set to Si 

mill application: 10 × 10 µm
2
 area, 125 ns dwell time, 1 pass and with a total time of 

0.316 s to achieve a dose of 1.9 × 10
13

 ions cm
-2

, operating at 30 kV (or 5 kV), 

9.7pA (10pA aperture at 5kV). For partial irradiation of a NW along its length, a 0.5 

× 5 μm
2
 box was defined, to irradiate a 0.5 μm length section of the NW. The dose 

was calculated using  

𝑑𝑜𝑠𝑒 =  
𝐼𝑖𝑜𝑛  ×  𝑡𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒

𝐴𝑝𝑎𝑡𝑡𝑒𝑟𝑛  × 1.602 × 10−15
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where Iion is the current/aperture used in pA (9.7 or 10 pA), texposure is the time of the 

exposure in seconds (0.316 s) and Apattern is the area of the pattern (100 μm
2
). Higher 

doses were achieved by increasing the number of passes.  

The carrier chip was then transferred back to the TEM in the same orientation to 

image the nanowire after doping. The concurrent implantation/imaging steps were 

repeated multiple times to build up the step-wise increase in the dose. The maximum 

implantation dose in our studies was 1.14×10
14 

ions cm
-2

 which corresponds to 6 

successive steps. Once the exposure of NWs deposited on SiN membrane grids with 

trenches was completed, the sample could be directly transferred to the TEM for 

imaging and even undergo further irradiation.  

2.3.3. Irradiation of EBL defined GeOI Nanowires 

The method of Ga
+
 ion irradiation for grown and lithography defined NWs is nearly 

identical to grown nanowires, the main difference is how we observe the irradiation 

damage post anneal and the limitation of only one irradiation event. An overview of 

the experimental procedure for the irradiation and imaging of NWs is depicted in a 

schematic in Figure 2.2. NWs deposited on silicon nitride (SiN) membranes do not 

require any additional steps for observing the damage incurred and subsequent in situ 

TEM annealing (Figure 2.2 a).
8
 The method described in this section is used for 

grown NWs deposited on a Si/SiO2 chip via dry transfer from the growth substrate or 

EBL defined NWs on GeOI (germanium on insulator). In order to observe irradiation 

damage and in situ TEM recrystallization along the NWs on substrates, the structures 

need to be extracted with the underlying substrate (Figure 2.2 b iii). This is done via 

a non-typical inline FIB lift-out technique along the NW length (Figure 2.2 b, Figure 

2.3). For all NWs imaged on SiN membranes, the direction of the ion beam (red 
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arrow) during irradiation is nearly parallel to the electron beam (purple arrow) when 

imaged in the TEM (Figure 2.2 a). However, for NWs extracted from a substrate 

(Figure 2.2 b) the direction of the ion beam is orthogonal to the direction of the 

electron beam when imaged in the TEM, i.e. we have a side view of the irradiated 

NW along its length. 

 

 

Figure 2.2. Schematic overview of sample preparation and imaging for (a) a nanowire on 

pre-patterned SiN membrane and (b) EBL defined NW from on GeOI substrate. 

 

The GeOI NWs defined by EBL have a height of approximately 50 nm, which is 

almost twice the range of interactions of the 30 kV Ga-ions in Ge. Therefore, to 

achieve amorphisation across the NW (the width of the NWs is approximately 40 

nm) and avoid ion channelling, very high ion-beam incidence angles (+/- 62°) were 

used (Figure 2.4), achieved by tilting the stage to -10°, adding to the 52° tilt of the 

FIB column. 
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Figure 2.3. Overview of use of EBID carbon for indication of NW exposure during 

thinning. Scale bar for all images is 1 μm. 

 

 

Figure 2.4. Schematic of 62° tilt ion irradiation of EBL defined Ge NW in cross sectional 

view. 
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2.4. HRTEM of irradiated nanowires 

The Gatan double tilt holder was used for high resolution TEM (HRTEM) imaging 

as tilt in two directions is nearly always required to orient a NW to a zone axis. To 

tilt to a zone axis, the convergent beam electron diffraction (CBED) pattern was used 

to navigate the orientation until a symmetric pattern was achieved. Once a zone axis 

was achieved, a selected area diffraction (SAD) pattern was acquired by inserting the 

selected area aperture and spreading the beam. To protect the CCD camera, the beam 

blank was inserted to block the direct beam.  

2.4.1. HRTEM of irradiated grown nanowires 

NWs were transferred to labeled/trenched SiN membranes via dry transfer. There 

were nine 200 × 200 μm
2
 membrane sites per grid, each was labelled (for 

identification) and patterned (to open trenches for HRTEM) with the FIB. NWs 

which lay securely across a trench and required no more than 10 degrees tilting to a 

low index zone axis for lattice resolution imaging were selected for irradiation. The 

tilt required for a specific zone axis was recorded as well as any intrinsic defects. 

Images of the position of the NW as well as lattice resolution images were acquired.  

2.4.2. HRTEM of irradiated lithography defined GeOI nanowires 

Irradiated GeOI NWs were extracted in TEM lamellae, as described in section 2.3 

Irradiation of EBL defined GeOI Nanowires. The GeOI is fabricated such that the Ge 

layer crystal is in the same orientation as the bulk Si carrier. This makes the tilt to 

zone axis easier as the bulk Si can be used for this. All of the GeOI NWs are defined 

with a “growth direction” in [100] direction and hence the zone axis imaged is [010].  
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2.5. In situ annealing of irradiated nanowires 

An in situ Gatan Model 628 single-tilt heating stage TEM holder was used for all 

anneals presented in this study. The ramp/temperature used for each NW varied. The 

sample was loaded in the same orientation in the in situ heating stage as it was for 

HRTEM imaging in the double tilt holder. The in situ heating stage is only capable 

of single tilt so the sample was tilted as close to the zone axis used for high 

resolution imaging as possible. For most samples tilting in two directions is required 

to achieve a zone axis orientation for lattice resolution imaging. The TEM was 

operated in bright field mode, isolating the direct beam with the objective aperture, 

to take advantage of the contrast between the crystalline and amorphous regions. 

Temperature was controlled using a Gatan Model 901 SmartSet hot stage controller. 

Temperatures varied from 100 – 500 °C (the temperature dispersion control is 

approximately 0.1 - 0.5 °C, as per the manufacturer’s specifications). Images were 

acquired every minute at the set temperatures. 

 

2.6 Iradina (ion range and damage in nanowires) 

Iradina was used to simulate ion beam irradiation in Ge nanowires. The material of 

the wire was defined as Ge and the surrounding material set as vacuum. For this 

experimental procedure the nanowire was defined as a cylinder with a varied 

diameter, 65 nm, 45 nm or 25nm. The accelerating voltage was set to 5 kV or 30 kV 

for the Ga ion source. A section of the nanowire was defined by the periodic 

boundary conditions (PBC), essentially defining a 2 dimensional cross section of the 

nanowire, which in turn is divided into a number of cells (defined by the user). For 

the results presented here, the PBC was set at 80 × 80 nm
2
, with the individual cells 
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set at 0.5 × 0.5 nm
2
. The ion beam direction is set orthogonal to the nanowire length 

as the crystallinity of the material is disregarded due to random phase approximation 

(RPA) of the target atoms so any ion channeling in the crystal is not accounted for.  

 

2.7 Nickel-capped germanium nanopillar fabrication 

The process flow for the fabrication of Ni-capped Ge nanopillars is illustrated in 

Figure 2.5. A method to produce nanopillars of Ge with varied diameters has been 

developed with the use of EBL. Ni-capped germanium nanopillars were fabricated 

on Ge(001) substrates. A positive tone EBL resist was used to expose desired 

circular areas on the Ge substrate as shown in Figure 2.5.  

Initially, a two layer (PMMA-copolymer) EBL resist was used to facilitate a facile 

metal lift process. However, an undesirable lip of Ni was observed for the pillars, 

which is attributed to the collapse of the upper resist during metal evaporation. As 

the metal is used as a mask for etching, this results in larger diameter pillars than 

desired. Hence, for further sample preparation the Ge substrate was patterned by 

EBL using SML-50, a high resolution positive tone EBL resist.
9
 Single pixel dot 

exposures, with 1 μm pitch, were defined in a line with large markers on either side.  

The diameters of the dots were varied with the dose (dwell time) at each spot; the 

diameter increases with increasing dose. The dose range used was 0.2 – 6.4 fC per 

single exposure and the electron beam was operated at 10kV accelerating voltage. 

After exposure, the resist was developed in 7:3 IPA/deionised water for 30 s 

followed by IPA for 15 s and dried under a flow N2 for 30 sec. A 50 nm thick Ni 

layer was evaporated, by electron beam evaporation, onto the patterned substrate 
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followed by a metal lift-off in acetone to achieve Ni dots (and markers) on the Ge 

substrate. The Ge was etched, using the Ni as the hard mask, in a Cl reactive ion etch 

(RIE) at 20 °C, 30 sccm Cl2, 10 mtorr and 80W RF.
7
  

 

Figure 2.5. Process flows of Ni-capped Ge nanopillars using SML resist. 

 

For annealing experiments, a line of pillars was extracted in a cross section and 

transferred to an omniprobe grid, as shown in Figure 2.6. To help aid in polishing the 

cross section to the region of interest, a line of EBID carbon was deposited along the 

line of dots with a total nominal height of 1 μm, similar to the method described for 

inline nanowire cross sections described previously in chapter 2.  This helps to 

ensure cut placement and aids in the final FIB polishing of the cross section because 

the EBID-C has good contrast against the platinum (Pt) protection. The EBID-C also 

acts as an insulation layer to encapsulate the Ni/Ge pillars. The next layer of 

protection with the dimensions 15 μm × 2 μm and a nominal height of 250 nm of 

EBID-Pt was deposited followed by 2 μm ion beam induced deposition (IBID) Pt. 
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During thinning, the cross section was polished only from the front side, by turning 

the grid 180° with a stage rotation to polish the other side from the front for accurate 

final polishing. 

 

Figure 2.6. Overview of extraction of Ni-capped Ge nanopillars in a TEM lamella. (a) Tilted 

view of nanopillars. (b) “Birds eye view” of nanopillars. (c) EBID-C line deposited along 

nanopillars. (d) EBID-Pt as protection of ion beam. (e) Initial IBID-Pt for lamella 

preparation. (f) Tilted view of initial IBID protection showing nanopillars are fully 

encapsulated. (g) Trenches milled (with the FIB) either side of the lamella to be extracted. 

(h) Lamella extracted using omniprobe which transfers the lamella to the omniprobe grid. (i) 

Lamella attached to the omniprobe grid at the two base points for added stability during in 

situ annealing experiments. (j) Lamella during thinning process using FIB, dark line of C-

protection observed as well as the bumps which show the topography of the nanopillars and 

hence the endpoint of thinning is close. (k) Example of TEM image of array of nanopillars 

of increasing diameters extracted in a TEM lamella.  

 

A native GeOx removal step is required before EBL resist deposition to optimise the 

surface to avoid dewetting and achieve a uniform resist. The water soluble oxide is 

removed in a 30 s dip in deionised water, followed by a re-oxidation of surface with 

a 30 s dip in 4.5 M nitric acid (HNO3) and a final oxide removal and surface 
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passivation step in 10% HCl for 10 min.
10

 No oxide removal step was performed on 

the exposed surface before metal evaporation, which could be a major factor for the 

rough Ge/Ni interface. Ideally, the sample should be placed directly in the metal 

evaporator post resist development to avoid oxidation of Ge in ambient air.
11,12 

 

2.8. TEM characterisation of Ni-capped Ge nanopillars 

2.8.1. HRTEM of Ni-capped Ge nanopillars 

Before annealing, the structures were imaged using a Gatan double tilt imaging 

holder in a JEOL 2100 HRTEM and tilted to a low index zone axis for HTREM 

imaging. The bulk substrate was used to orientate the sample into a zone axis. 

HRTEM images were acquired of the interface between Ge and Ni interface. After 

the anneal, the bulk Ge is unchanged and hence can be used to find the same zone 

axis and orientate the nanopillars as they were for HRTEM before the anneal. Lattice 

resolution images were acquired of the Ge-Ni interface. Because of the size of the 

germanide region, acquiring a SAED pattern alone is difficult without contribution 

from the Ge crystal. Lattice resolution images were required to be able to obtain fast 

Fourier transforms (FFTs) from lattice resolution images to determine germanide 

phase and orientation.  

2.8.2. In situ annealing of Ni-capped Ge nanopillars 

A Gatan 628 single tilt heating holder was used for in situ annealing. The pillars 

were imaged in bright-field mode using the smallest objective aperture during the 

anneal to enhance the contrast between the Ni and Ge. The tilt required for HRTEM 

was not achievable with the single tilt holder, also, during the anneal a lot of drift 
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occurred which would have diminished any possibility of HRTEM during the 

anneal. The initial temperature and ramp rate was varied for the anneals. After each 

temperature increase, a stabilisation time of approximately 10 s was given. Smaller 

temperature increases, for example 10 degrees vs 100 degrees, resulted in less drift. 

Images were acquired at 1 minute intervals with 1 second acquisition time. After 

annealing, the sample was imaged in the double tilt holder again for HRTEM 

imaging in the same orientation as prior to annealing. 

  

2.9 References 

1 Biswas, S., Singha, A., Morris, M. A., Holmes, J. D. Inherent control of 

growth, morphology, and defect formation in germanium nanowires. Nano 

Lett. 12, 5654-5663, doi:10.1021/nl302800u (2012). 

2 Biswas, S., O'Regan, C., Petkov, N., Morris, M. A., Holmes, J. D. 

Manipulating the growth kinetics of vapor-liquid-solid propagated Ge 

nanowires. Nano Lett. 13, 4044-4052, doi:10.1021/nl401250x (2013). 

3 O'Regan, C., Biswas, S., O’Kelly, C., Jung, S. J., Boland, J. J., Petkov, N., 

Holmes, J. D. Engineering the growth of germanium nanowires by tuning the 

supersaturation of Au/Ge binary alloy catalysts. Chem. Mater.  25, 3096-

3104, doi:10.1021/cm401281y (2013). 

4 Biswas, S., O'Regan, C., Morris, M. A., Holmes, J. D. In-situ observations of 

nanoscale effects in germanium nanowire growth with ternary eutectic alloys. 

Small 11, 103-111, doi:10.1002/smll.201401240 (2015). 

5 Gangnaik, A. S., Georgiev, Y. M., Collins, G., Holmes, J. D. Novel 

germanium surface modification for sub-10 nm patterning with electron 

beam lithography and HSQ resist. J. Vac. Sci. Technol. awaiting publication 

(2016). 

6 Collins, G., Aureau, D., Holmes, J. D., Etcheberry, A., O'Dwyer, C. 

Germanium oxide removal by citric acid and thiol passivation from citric 

acid-terminated Ge(100). Langmuir 30, 14123-14127, doi:10.1021/la503819z 

(2014). 

7 Ran, Y. Das, S., Hobbs, R., Georgiev, Y., Ferain, I., Razavi, P., Akhavan, N. 

D., Colinge, C. A., Colinge, J. Top-down process of germanium nanowires 

using EBL exposure of hydrogen silsesquioxane resist. J. Ultimate Integr. 

Silicon 145-148, doi: 10.1109/ulis.2012.6193378 (2012). 



Chapter 2. Experimental Methods 

 

 

52 

 

8 Kelly, R. A., Holmes, J. D. & Petkov, N. Visualising dicrete structural 

transformations in germanium nanowires during ion beam irradiation and 

subsequent annealing. Nanoscale 6, 12890-12897, doi:10.1039/c4nr04513k 

(2014). 

9 Gangnaik, A. , Georgiev, Y. M., McCarthy, B., Petkov, N., Djara, V., 

Holmes, J. D. Characterisation of a novel electron beam lithography resist, 

SML and its comparison to PMMA and ZEP resists. Microelectron. Eng. 

123, 126-130, doi:10.1016/j.mee.2014.06.013 (2014). 

10 Hobbs, R. G., Schmidt, M., Bolger, C. T., Georgiev, Y. M., Fleming, P., 

Morris, M. A., Petkov, N., Holmes, J. D., Xiu, F. X., Wang, K. L., Djara, V., 

Yu, R., Colinge, J. P. Resist-substrate interface tailoring for generating high-

density arrays of Ge and Bi2Se3 nanowires by electron beam lithography. J. 

Vac. Sci. Technol. B 30, doi:10.1116/1.4724302 (2012). 

11 Law, J. T., Meigs, P. S. Rates of oxidation of germanium. J. Electrochem. 

Soc. 104, 154-159, doi:10.1149/1.2428524 (1957). 

12 Prabhakaran, K., Ogino, T. Oxidation of Ge(100) and Ge(111) surfaces: an 

UPS and XPS study. Surf. Sci. 325, 263-271, doi:10.1016/0039-

6028(94)00746-2 (1995). 



Chapter 3. Investigating crystal damage in 

germanium nanowires due to ion beam irradiation 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Chapter 3 

Investigating crystal 
damage in germanium 
nanowires due to ion 

beam irradiation 



Chapter 3. Investigating crystal damage in germanium nanowires due to ion beam irradiation 

 

 

 

54 

 

3.1. Abstract 

In this chapter we detail the application of electron microscopy to visualise discrete 

structural transitions incurring in single crystalline Ge nanowires upon Ga-ion 

irradiation and subsequent thermal annealing. Sequences of images for nanowires of 

varying diameters subjected to an incremental increase of the Ga-ion dose were 

obtained. Intricate transformations dictated by a nanowire’s geometry indicate 

unusual distribution of the cascade recoils in the nanowire volume, in comparison to 

planar substrates. Following irradiation, the same nanowires were annealed in the 

TEM and corresponding crystal recovery followed in situ. Visualising the 

recrystallization process, we establish that full recovery of defect-free nanowires is 

difficult to obtain due to defect nucleation and growth.  

 

3.2. Introduction 

The irradiation of single crystal semiconductor substrates with energetic ion beams 

to introduce dopants has been developed extensively over the years, turning ion 

implantation into a standard doping technique in semiconductor manufacturing. 

Essentially, doping involves introducing an impurity into a substitutional or an 

interstitial site within the crystal which alters the electronic structure of the material. 

Ion implantation allows for accurate control of doping achieving precise dose, depth 

profile and uniformity. Single crystalline semiconductor nanowires require uniform 

and controllable doping for the creation of high performance devices such as field 

effect transistors (FETs),
1,2

 advanced sensors,
3,4

 photovoltaic
5
 and light emitter

6
 

devices. Specifically, junctionless multigate FETs
7
 require a uniform distribution and 
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high level of active dopants (>1×10
19

 atoms cm
-2

) within perfectly crystalline source, 

gate and drain regions for reliable device performance, as demonstrated by both ab-

initio simulations and experimental devices.
8
 With the aim to achieve enhanced 

control over the dopant levels and their uniform distribution, ion implantation has 

been applied to introduce dopants in Si and Ge nanowires.
9-12

 In particular, Ge is a 

potential material for logic and optoelectronic devices due to its high hole and 

electron mobilities.
13  

The processing of bulk and particularly nanostructured Ge, 

including ion implantation and subsequent crystal recovery, requires further 

understanding.
14-16

  

The interaction of the energetic ions with single crystal nanowires, in comparison to 

those in bulk substrates, can be considerably altered due to (i) ions impinging at 

different incident angles at a surface and (ii) abrupt termination of resultant atom 

recoils at nanowire surfaces.
17

 Whilst the range of ion interactions with bulk 

substrates, accumulated damage and impurity distribution are theoretically simulated 

through modelling nuclear collisions involving ions and recoiling atoms using SRIM 

(stopping and range of ions in matter) computer code
18

, the simulation of ion 

interactions in nanowires has recently been developed using an extension of the 

SRIM code; iradina (ion range and damage in nanostructures).
17,19

 Iradina is a static 

Monte Carlo simulation similar to SRIM, except the target shape can be defined 

within a nanoscale simulation volume.  

Herein, electron microscopy data demonstrating the discrete structural 

transformations within single crystalline Ge nanowires upon ion irradiation is 

presented. Using a procedure based on a correlative analysis approach,
20

 sequences 
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of TEM images following accumulated crystal damage at varying Ga-ion fluence 

and energy were acquired. A relationship between the initial nanowire geometry and 

crystal structure is identified.  

 

3.3. Experimental Procedure 

3.3.1 Instrumentation 

The instruments used were an FEI Helios 600i NanoLab Dual Beam system 

(SEM/FIB) and a JEOL 2100 HRTEM equipped with a Gatan double tilt imaging 

holder.  The dual beam FIB was used for all ion beam exposures using the Ga ion 

source.  The double tilt holder was used for all high resolution TEM imaging.  

3.3.2 Nanowires 

Two methods were used for fabrication of nanowires used in this study – bottom-up 

and top-down. The bottom-up Ge nanowires were grown from Au NP seeds via a 

supercritical fluid process on Si substrates by Dr Subhajit Biswas, Dr Olan Lotty and 

Dr Colm O’Regan.
15

 Most of the nanowires were grown in the [111] direction, a 

small fraction of the nanowires were grown in the [211] direction, some of which 

contain intrinsic longitudinal defects in the [111] direction. The top-down Ge 

nanowires were defined on 50 nm GeOI substrates using HSQ (Hydrogen 

silsesquioxane) which is a negative tone electron beam resist. The EBL system used 

is a Raith eLINE operated at 10 kV by Dr Anushka Gangnaik.  
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3.3.3. Concurrent imaging platform 

The carrier chip platform used for step-wise implantation/imaging of a specific 

nanowire is depicted schematically in Figure 3.1. Si chips with silicon nitride (SiN) 

membrane windows were used (Ted Pella), which were patterned using the FIB to 

label and open slits in the membrane. The patterning is of benefit for two reasons; 

the slits allow high resolution imaging of sections of the nanowire as well as facile 

navigation to locate the same nanowire. The parameters for patterning were: 7 lines 

10 µm apart, 70 µm long and 0.5 µm wide for a nominal thickness of 300 nm with 

the Ga ion beam operating at 30 kV, 3 nA.  

The nanowires were first imaged in the TEM where the growth direction, tilt 

required to achieve a low index zone axis and any intrinsic defects were identified. 

Nanowires that required no more than 10 degrees tilting in one direction, preferably 

along or perpendicular to their long axis, and fully crossed the opening were 

selected. The mounting of the membrane chips to the TEM holder was done with the 

aid of an optical microscope, ensuring the grid was mounted with a fixed orientation. 

This allows the nanowires to be imaged in the same orientation after each exposure. 

This accurate mounting method became more important as the nanowire reached a 

near/fully amorphous state. The grid was then transferred to the SEM/FIB for 

implantation. The nanowire was located using the SEM and then orientated (stage 

was rotated and moved in x- and y-directions) so that the nanowire length was at 

eucentric height when the stage was tilted, i.e. the nanowire was aligned left to right 

in the SEM. The eucentric height is the height where a point, here our nanowire, 

remains stationary when tilted. The coincidence point of the SEM and FIB is set at 
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the eucentric height. The stage was tilted to 52° so the FIB is normal to the substrate 

surface. Most exposures were done at this tilt unless the tilt required for a nanowire 

in the TEM is <2°, in this case the stage was tilted to 45° to avoid ion channelling. 

Ion channelling occurs if the ion beam direction is parallel to a crystal direction. The 

effect of ion channelling is a longer range of ion and hence a variation in 

implantation depth. The pattern for implantation was defined in the ion beam 

window as a Si mill rectangle: 10 × 10 µm
2
 area, 125 ns dwell time, 1 pass and with 

a total time of 0.316 s to achieve a dose of 1.9 × 10
13

 ions cm
-2

, operating at 30 kV 

(or 5 kV), 9.7pA (10pA aperture at 5kV). The carrier chip was then transferred back 

to the TEM in the same orientation to image the nanowire after doping. The 

concurrent implantation/imaging steps were repeated multiple times to build up the 

step-wise increase in the dose. The maximum implantation dose in our studies was 

1.14×10
14 

ions cm
-2

 which corresponds to 6 successive steps. 

 

Figure 3.1. Overview of platform for correlative imaging of nanowire on Si3N4 membrane 

grid. 
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3.3.4. Iradina (ion range and damage in nanostructures) 

Iradina was used to simulate ion beam irradiation in Ge nanowires. The material of 

the wire was defined as Ge and the surrounding material set as vacuum. For this 

experimental procedure the nanowire was defined as a cylinder with a varied 

diameter, 65 nm, 45 nm or 25nm. The accelerating voltage was set to 5 kV or 30 kV 

for the Ga ion source. A section of the nanowire was defined by the periodic 

boundary conditions (PBC), essentially defining a 2 dimensional cross section of the 

nanowire, which in turn is divided into a number of cells (defined by the user). For 

the results presented here, the PBC was set at 80 × 80 nm
2
, with the individual cells 

set at 0.5 × 0.5 nm
2
. The ion beam direction is set orthogonal to the nanowire length 

as the crystallinity of the material is disregarded due to random phase approximation 

(RPA) of the target atoms so any ion channeling in the crystal is not accounted for.  

 

3.4. Results and Discussion 

3.4.1. 30 kV single exposure irradiation 

In Figure 3.2 cross-sections of three different nanowires are presented, all 

approximately 45 nm in diameter, subjected to an increasing Ga-ion dose at 30 kV.  

The extent of crystal damage in the nanowires at the fixed implantation energy can 

be directly related to the dose used. At a fluence of 1.9×10
13

 ions cm
-2 

(Figure 3.2 a 

and d), the arc of crystal damage shows large contrast variations due to lattice 

distortions resulting from clustering of point defects. Small amorphous regions (3 - 5 

nm in size) were seen at the nanowire surface imaged at lattice resolution, imaged 



Chapter 3. Investigating crystal damage in germanium nanowires due to ion beam irradiation 

 

 

 

60 

 

with the electron beam perpendicular to the longitudinal direction of the nanowire 

(Figure 3.3). With the increase of the implantation fluence by 2 and 3 times (Figure 

3.2 b -and c), further increase of the top surface damage depth from approximately 

18 nm to 25 and 34 nm, respectively, in the form of full amorphisation towards the 

interior (across the diameter) of the nanowires was observed.  

Figure 3.2. Cross-sectional TEM images of different Ge nanowires of approximately 45 nm 

in diameter after irradiation at 30 kV with increasing Ga-ion doses of (a) 1.9 × 1013, (b) 3.8 × 

1013 and (c) 5.7 × 1013 ion cm−2. (d) and (e) lattice resolution TEM images taken from the 

marked areas in (a) and (b), respectively. (f ) Dark field TEM image of the same nanowire as 

in (c). In all images, the direction of the ion flux is from the top and the cross-sections were 

imaged in the [111] zone direction. Arrows in (d) mark small amorphous pockets. Scale bar 

for all images is 5 nm. 

 

Additionally, Figure 3.2 demonstrates gradual decrease in the roughness of the 

amorphous to crystalline interface as a function of increasing fluence as the 

amorphisation depth reaches the maximum range of the ion in the material. 
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Measuring from the top and centre of the nanowire in Figure 3.2 c, this depth for a 

30 kV Ga ion beam in Ge is approximately 32 nm. In comparison to the 

experimental results for ion irradiation of Ge (001) substrates, the maximum depth 

was approximately 35 nm for a dose of 1.45×1014 ions cm-2 for a 30kV ion beam. 

Intrinsic (111) stacking fault defects present in some of the Ge nanowires (Figure 3.5 

a) produced during growth showed a slight susceptibility to damage at the grain 

boundary but this was a minimal variation and cannot be fully attributed to the 

intrinsic defect present. Other nanowires presented in Figure 3.5 b-d also show a 

non-uniform crystalline-amorphous (c/a) interface. Importantly, the analysis of the 

crystal damage was done post-factum, with no account of the initial nanowire 

structure and orientation towards the incoming ion beam. Conventionally, when 

implanting planar substrates the orientation of the incoming ion beam to the crystal 

is known, set at an angle (about 7 degrees off normal direction) to minimize 

unwanted channeling effects. 
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Figure 3.3. Consecutive 30kV Ga ion irradiations of a 50 nm diameter Ge nanowire 6 

degrees off the [110] zone direction at a fluence of 1.9 × 1013 ion cm-12. (a) Dark field 

imaging taken under g, 2g with g = 220 condtions. (b) Corresponding lattice resolution 

image taken in the [110] zone direction at the nanowire side surface. After further 

irradiation; The white spots in the dark field images are due to roughness of the surface but 

could also be Ga clusters embedded in the NW. 

 

 

Figure 3.4. Cross sectional TEM of Ge(001) substrate exposed to Ga-ion implantations 7 

degrees off the normal direction at increasing fluences for 30 kV.  Doses and measured 

average thicknesses of amorphous layers are given in the insets. 
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Figure 3.5. Cross-sectional TEM images of different nanowires subjected to Ga-ion 

implantations (a-d) at 30kV with the incoming irradiation from the top. Excluding the 

nanowire in (a), all nanowires were defect free and grown in the [111] direction. (a) 64 nm 

Ge nanowire grown along the [211] direction irradiated with a fluence of 3.8 ×1013 ion cm-2, 

featuring intrinsic stacking fault defects along the (111) set of planes. (b) 74 nm diameter Ge 

nanowire irradiated with a fluence of 1.9 ×1013 ion cm-2, featuring amorphous pockets within 

a mostly crystalline structure. (c) 60 nm nanowire irradiated with a fluence of 7.6 ×1013 ion 

cm-2 featuring extended but not full amorphisation leaving crystalline domains towards the 

middle/bottom of the nanowire cross-section. (d) Lattice resolution image of the area marked 

in (c), demonstrating an uneven c/a interface. 
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3.4.2. Concurrent stepwise 30 kV irradiation  

A procedure to accurately follow the evolution of crystal damage in nanowires was 

developed based on a correlative analysis approach,
20

 using a carrier chip platform 

with markers that facilitated exchange between the TEM and FIB/SEM instruments 

(Figure 3.1). Figure 3.6 represents the evolution of damage build-up in a 38 nm Ge 

nanowire with a step-wise increase in the Ga-ion dose at 30 kV, starting at a 

minimum fluence (step) of 1.9×10
13

 ions cm
-2

.  The nanowire was first imaged in the 

TEM to obtain information about crystallinity and its orientation towards the 

incoming electron beam. Although most of the examined nanowires were defect free 

and grown along the [111] direction, in order to demonstrate the capabilities of our 

visualization methodology a [211] grown Ge nanowire with a set of stacking fault 

defects along the [111] direction was selected. A cross-section of an equivalent 

nanowire, having the same type of intrinsic defect and growth orientation (but with a 

larger diameter) is presented in Figure 3.5 a. The carrier chip was first tilted 

approximately 8 degrees (in one direction) to image the nanowire in the [110] zone 

direction. After transferring to the SEM/FIB instrument the sample was imaged first 

with the SEM to locate and orient the carrier chip.  After tilting the stage to 52 

degrees (ion beam normal to the carrier chip surface) successive ion irradiation was 

performed at a known tilt angle, i.e. 8 degrees away from the (110) zone axis.  

Following ion implantation, the nanowire sample was transferred back to the TEM 

and imaged along the same zone axis to observe sustained structural transformations. 

These sequences were repeated several times to build up the implantation dose and 

obtain images monitoring the consecutive transformations. At the lowest Ga-ion 
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fluence used (Figure 3.6 b) lattice distortions as well as amorphous regions (about 5 

nm in size) were observed in comparison to the initial single crystalline nanowire. 

By further multiplying the initial ion fluence of 1.9×10
13

 ions cm
-2

 by 2, 3 and 4 

times the volume of amorphous regions increased, breaking the stacking fault planes 

at the centre of the nanowire and transforming almost the whole volume of the 

nanowire amorphous. These transformations were unevenly distributed along the 

nanowire length. At the highest fluence used, the resultant amorphous nanowire 

contained isolated crystalline domains in the sub-10 nm range, with the same 

orientation as the initial single crystal structure, as seen from the lattice resolution 

image (Figure 3.6 f); some slightly misoriented domains were also observed. Taking 

into account the cross-sectional data (Figure 3.2 and Figure 3.5), one can envision 

that these crystalline islands would be predominantly located towards the middle and 

bottom (bottom is defined as the side opposite to the incoming ion beam) of the 

nanowire. These data collaborate very well to the simulations by iradina (Figure 3.7 

a-d), where the lowest number of atom displacements for a 45 nm nanowire is in the 

middle and bottom of the nanowire cross-section.  
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Figure 3.6. Step-wise irradiation of a 38 nm diameter Ge nanowire with a 30 kV Ga-ion 

beam. (a) Initial nanowire before irradiation imaged close to the [110] zone axis, inset 

demonstrating complex SAED due to longitudinal (111) stacking fault defect. (b-e) Images 

of the same area taken close to the same zone direction after irradiation with increasing 

fluence of (b)1.9 × 1013, (c), 3.8 × 1013 (d) 5.7 × 1013and (e) 7.6 × 1013 ion cm-2. All images 

were acquired at the same magnification. (f) Inset of (e) shows FFT of region marked. 

Lattice resolution TEM image of the marked area in (e), demonstrating crystal domains 

orientated in the same [110] direction as the initial nanowire. Scale bar for all images is 5 

nm. 
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Figure 3.7. Iradina maps of (a) cascade recoils, (b) ion paths, (c) implanted ions and (d) 

atom displacements based on a cylindrical Ge nanowire with a diameter of 45 nm irradiated 

by a 30 kV Ga ion beam orthogonal to the nanowire.  

 

The cascade recoils (Figure 3.7 a) show the resultant collisions which occur within 

the NW. The ion paths (Figure 3. b) show the path of the ions as they enter, and 

leave, the NW volume. Both the cascade recoils and ions paths illustrate how the 

ions and atoms from NW can easily be expelled and hence resulting in a lower 

concentration of implanted ions as well as sputtering events at NW surface. The 

implanted ion map (Figure 3.7 c) shows the estimated distribution of ions within the 

NW. The atom displacements map (Figure 3.7 d) shows the distribution of 

displacement of atoms within the volume, which can be used to estimate the damage 

and amorphisation in the NW. 

In comparison, a larger diameter Ge nanowire (64 nm, grown along [111] direction 

with prominent stacking fault defects along [11-1] direction) implanted with 

successive Ga-ion doses of 1.9×10
13

 to 7.6×10
13

 ions cm
-2

, imaged along the (110) 

zone axis, displayed an increase in lattice distortions and build-up of amorphous 

pockets, increasing in size from 3 to 10 nm at the side surfaces (Figure 3.8). For this 

large diameter nanowire, extended amorphisation was not observed even at a dose as 

high as 1.1×10
14

 ions cm
-2

.  
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Figure 3.8. Consecutive 30 kV Ga-ion irradiations of a 64 nm diameter Ge nanowire tilted 

approximately 3 degrees off the [110] zone axis during the exposures. (a) Initial nanowire 

before irradiation imaged in the [110] zone axis, inset SAED pattern taken at a region 

without the defect shown. Images of the same area taken in the same zone axis after 

irradiation, with an increasing fluence of (b) 1.9 × 1013, (c) 3.8 × 1013, (d) 5.7 × 1013 and (e) 

7.6 × 1013 ion cm-2. All images are at the same magnification. (f) Weak beam dark field 

image taken under g, 2g = 220 conditions highlights most of the stacking fault defects are 

still present after irradiation. Scale bar for all images is 20 nm.  

 

Using this method, the evolution of crystal damage was monitored for 10 different 

nanowires with diameters ranging between 25 and 65 nm for a step-wise increase of 

the Ga-ion dose at 30 kV from 1.9×10
13

 to 1.1×10
14

 ions cm
-2

. For the largest (>50 

nm) diameter nanowires, crystal damage scaled with Ga-ion fluence but full 

amorphisation was not observed even at the highest fluence used. For the nanowires 

in the 30-50 nm range the evolution of the crystal damage was equivalent to the 
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sequence of images in Figure 3.6. Whereas the nanowires in the 25-30 nm range 

were almost fully amorphised (with remaining <5 nm crystallites) even at the lowest 

fluence (1.9×10
13

 ions cm
-2

) used (Figure 3.9, and Figure 3.10 a and b).  

 

Figure 3.9. (a) and (b) Cross-sectional TEM images at different tilt angles of almost fully 

amorphised 25 nm nanowire that was subjected to 30 kV Ga-ion implantation at a fluence of 

1.9 ×1013 ions cm-2.   Initially the nanowire was imaged along the growth direction (image 

on the left) which was determined by using the electron diffraction of the Si carrier wafer.  

Image (b) is after 28 degrees tilt in one-direction.  Selected area electron diffraction patterns 

for both nanowires showed attenuated amorphous rings.  
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Figure 3.10. 30 kV Ga ion irradiation of a 25 nm diameter Ge nanowire with a beam tilted 

to about 3 degrees away from the [210] zone direction. (a) Before irradiation and (b) after 

irradiation at 1.9 ×1013 ion cm-2.  Lattice resolution images are taken close to the [210] zone 

direction.  5 kV Ga-ion irradiation of a 20 nm diameter Ge nanowire with the beam tilted to 

about 5 degrees away from the [110] zone direction; (c) before irradiation and (d) after 

irradiation at 7.6 ×1013 ion cm-2.  Lattice resolution images are taken close to the [110] zone 

direction. Scale bars in all images are 5 nm. 

 

3.4.3. 5 kV irradiation 

To examine the possibility of lower energy implantations and corresponding 

evolution of the crystal damage in small diameter nanowires (<25 nm), ion 

implantations at 5 kV were performed. Due to the drastically limited range of 

interactions of Ga-ions with Ge at 5 kV, the largest number of atom displacements 
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was predicted from Iradina at approximately 5 – 8 nm from the surface (Figure 3.11). 

The decreased range due to reduced accelerated voltage is shown for bulk substrates 

in Figure 3.12. Hence step-wise increase in the ion fluence can be used to build-up 

crystal damage in analogy to 30 kV implantations in Ge nanowires with diameters 

>30 nm. Figure 3.13. presents a sequence of images for a 22 nm Ge nanowire 

subjected to an increasing Ga-ion fluence at 5 kV. Although the damage build-up 

followed a similar trend as for the 30 kV implantations, i.e. amorphisation starting at 

the nanowire surface after forming defects, there are some morphological 

differences. The increase in ion fluence resulted in a reduced nanowire diameter, 

forming an undulated surface, while the remaining crystalline nanowire interior 

appeared less distorted with reduced number of domains containing crystal defects, 

in comparison to the 30 kV implantations. The amorphisation was predominantly 

localised at the nanowire surface and progressed with gradual decrease of the 

crystalline core of the nanowire from 20 to 8 nm ± 3 nm for the dose increase of 1.9 

to 5.7 ×10
13

 ions cm
-2

. A further increase in the ion fluence resulted in further 

deterioration of the nanowire due to amorphisation and subsequent knock-out 

damage from the nanowire surface (Figure 3.13 d).  

Figure 3.11. Iradina maps of (a) cascade recoils, (b) ion paths, (c) implanted ions and (d) 

atom displacements based on a cylindrical Ge nanowire with a diameter of 45 nm irradiated 

by a 5 kV Ga ion beam orthogonal to the nanowire.  
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Figure 3.12. Cross sectional TEM of Ge(001) substrate exposed to Ga-ion implantations 7 

degrees off the normal direction at increasing fluences at 5 kV.  Doses and measured average 

thicknesses of amorphous layers are given in the insets. 

 

 

Figure 3.13. Step-wise irradiation of a 22 nm diameter Ge nanowire with a 5 kV Ga-ion 

beam. (a) Initial nanowire before irradiation imaged close to the [110] zone axis. (b–e) 

Images of the same area taken in the same zone direction after irradiation with increasing 

fluence of 1.9 × 1013, 3.8 × 1013, 5.7 × 1013 and 7.6 × 1013 ion cm−2. All images were 

acquired at the same magnification. Scale bar for all images is 5 nm. The direction of the 

incoming Ga-ion beam during implantation was 5 degrees off the [110] direction. 

 

Similar to flat substrates (Figure 3.4 and Figure 3.12), the depth of crystal damage in 

the Ge nanowires scaled with the Ga-ion energy and fluence. However, in our study 

we recorded several differences that are solely related to nanowires. Firstly, the 

amount and profile of the incurred ion beam damage, at a set energy and fluence, is 

strongly dependent on nanowire size. The thickness of the damage arc is not 

conformal; it is much wider at the top of the nanowire cross-section where the ion 

(a) (b) (c) (d) 
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beam is normal to the nanowire surface and narrower where the beam is at an 

oblique or parallel direction. In contrast, flat substrates normally exhibit uniform 

crystal damage across the whole irradiated surface. This non-conformal damage 

profile, which is in agreement with the atom displacement maps obtained by iradina, 

can be understood by looking at the cascade recoils in the nanowires (Figure 3.7). 

Cascade recoils initiated by the ion beam that are normal to the nanowire surface, i.e. 

entering at the top/middle of the nanowire, terminate in the bulk of the nanowire 

after losing their energy. In comparison, the recoils that are localised near the side 

surfaces (absent in flat substrates) can exit the volume of the nanowire thus 

diminishing the probability of atom displacements. Specifically at lower energies, 

e.g. 5 kV, the range of cascade recoils is concentrated in approximately 5 - 8 nm of 

the nanowire surface. Hence, a large implantation dose will not only induce extended 

amorphisation in these regions but will also promote greater knock-out damage, as 

seen in our experiments. The unusual distribution of the cascade recoils in 

nanowires, in comparison to planar substrates, can be used to explain the observed 

uneven distribution of amorphisation pockets along the length of the nanowires. 

Iradina does not predict any variations in the ion interactions in the axial direction of 

the nanowires as the periodic boundary conditions along this direction are kept 

constant. 

On the other hand, there are aspects of the crystalline to amorphous transition in 

nanowires that are similar to planar Ge substrates. The formation of the amorphous 

phase in Si and Ge substrates due to ion bombardment has been associated with the 

formation of a large number of point defects, including local rearrangement of bonds 
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(interstitial-vacancy pair (Frenkel) defects), which when reaching a critical density 

spontaneously relax towards the amorphous phase.
21

  At low Ga-ion fluence, lattice 

distortions in the form of large numbers of clustered point defects
22

 and amorphous 

pockets which at higher fluences merged into extended amorphous regions. The 

spatial distribution of these regions is dictated by the geometry of the nanowires 

leading to an unusual, in comparison to planar substrates, distribution of the collision 

cascades. The transformation process described herein is different to the crystalline 

to amorphous transitions observed previously by in-situ TEM for single crystalline 

nanowires under incremental increase of mechanical (bending) stress. During these 

mechanical influences the formation and movement of dislocations towards the 

region that is transformed into the amorphous phase has been observed.
23

  

 

3.5.  Conclusions 

In this chapter, a method for the mechanistic understanding of ion beam induced 

damage in NWs has been presented. We have described the application of electron 

microscopy to study the crystalline-amorphous transition in single crystal Ge 

nanowires upon Ga-ion irradiation. Sequences of images for nanowires of varying 

diameters subjected to an incremental increase of the Ga-ion dose were obtained. 

Intricate transformations dictated by a nanowire’s geometry indicate an unusual 

distribution of the cascade recoils in the nanowire volume, in comparison to planar 

substrates. Our findings will have large implications in designing ion beam doping of 

Ge nanowires for electronic devices but also for other devices that use single 
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crystalline nanostructured Ge materials such as thin membranes, nanoparticles and 

nanorods. 

From the analysis of sustained structural transformations upon ion irradiation we 

establish that there are morphological differences in the Ga-ion beam damage of Ge 

nanowires suggesting that critical defect densities, corresponding critical damage 

energy, knock-out damage and dynamic annealing effects are altered as compared to 

those known for planar substrates. We postulate that the obtained ion implantation 

data using Ga-ion beams as a probe to induce structural transformations can be used 

to comprehend the final degree of damage in Ge nanowires but also in other 

nanostructured Ge materials induced by any heavy ions. Critical damage energy 

(5eV/at) in Ge substrates is found to be independent of the density of the cascades 

induced by different ions and energies.
24,25

 A critical damage energy density model 

for ion implantation in nanostructures is important to establish and compare with 

bulk but this is beyond the scope of this study. A variation in energy, dopant atom, 

temperature and also dimensions of a nanostructure would be required for a 

sufficient study.  
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4.1. Abstract 

As transistor dimensions continue to diminish, techniques for their fabrication need 

to be adapted. In particular, crystal recovery post ion implantation is required due to 

destructive ion bombardment inducing crystal damage including amorphisation. In 

this chapter, we report a study on the post-implant recrystallization in Ge nanowires 

(NWs) following gallium (Ga) ion doping.  In this work a variation of NW diameters 

and orientations were irradiated and annealed in situ to investigate the mechanism of 

recrystallization. An added complication of misorientation of crystal grains increases 

the complexity of crystal recovery for suspended NWs. We show that when the 

misorientation is prevented, by leaving a crystal link between two seeds and 

providing a rigid support, recrystallization occurs primarily via solid phase epitaxial 

growth (SPEG). Finally, we demonstrate that top-down fabricated Ge NWs on 

insulator can be recovered with no extended defects. This work highlights both 

experimentally and through molecular dynamic simulations the importance of 

engineering crystal recovery in Ge NWs which may have potential for next-

generation complementary metal-oxide semiconductor (CMOS) devices.  

 

4.2. Introduction 

Accurate control of doping is vital when fabricating NW FETs
1, 2

 and other NW 

devices such as sensors,
3,4

 photovoltaics
5
 and photonic devices.

6
 In inversion mode 

nanowire FET devices, variability issues are attributed to non-uniform dopant 

distribution.
7
 There has been a lot of research on the control of dopant depth as well 

as concentration which has seen the development of new doping techniques such as 
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molecular layer doping and single ion doping.
8-11

 Ion beam doping is currently 

common practice in industrial microprocessing, but transferring this technique to 

nanostructures is challenging. For ion beam doping the dopant atom (and resulting 

cascade recoils) can be easily lost/ejected if the path of the dopant atom leaves the 

nanowire volume and hence the energy of the ion beam needs to be selected 

depending on the desired depth of implantation. Moreover, the destructive nature of 

ion beam doping due to ion bombardment and resultant cascade recoils within the 

NW volume requires a crystal recovery step.
12

 An increase in conductivity has been  

demonstrated in grown Ge NWs irradiated with a Ga ion source up to a fluence of 

6.25 × 10
12

 cm
−2

 without an activation (annealing) step.
13

 Above this fluence, a drop 

in conductivity is observed and is attributed to amorphisation. However, higher 

implantation fluences are required to achieve the proper function of advanced 

transistors such as junctionless nanowire transistors (JNTs)
14

 and photonic 

devices.
15-16

 Unfortunately, full recovery of irradiated nanostructures is not easily 

achievable.
12, 17

 

Thermal annealing is the final step required to activate the implanted dopant atoms 

and recover the crystallinity of the nanowire. Recrystallization occurs via two 

competing mechanisms; solid phase epitaxial regrowth (SPER) and random 

nucleation and growth (RNG).
25

  It has been observed, like silicon, the germanium 

[111] direction is the least favourable for crystallization and {111} stacking faults 

are common.
29-30

 It has been predicted by molecular dynamics simulations that the 

recrystallization process in nanowires can be largely influenced by the presence of 

interfaces which propagate the formation of stacking fault defects.
31

 Simulations of 
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the defect dynamics have also shown that such defects are pinned at the nanowire 

surface and can be a result of overlapping growth fronts.  

There has been an extensive body of research investigating the recrystallization of 

bulk Ge and some progress in recent years on Si and Ge nanostructure 

recrystallization post ion irradiation.
12, 17-22

 The high surface-area to volume ratio in 

nanostructures results in a greater sensitivity to surface roughness and possible over-

layers.
23,24 

Therefore, formation of dangling bonds, and by extension stacking faults, 

are prevalent during regrowth.
12, 17

 The bulk material acts as a seed for the 

recrystallization of fin structures and nanopillars via SPEG, however, a 

polycrystalline region is observed to occur at the top of the structure (i.e. not in 

proximity to the bulk crystal seed).
20, 25

 This polycrystalline region is likely due to 

the predominance of RNG. NWs with no contact to a bulk substrate which undergo 

ion irradiation along its entire length, and hence experience full amorphisation, lack 

the seed which facilitates SPEG and hence recrystallization occurs solely via RNG. 

However, recrystallization of Ge fin structures has been shown to achieve full 

recrystallization via SPEG with high defect density at the top of the structures.
17

 

Another undesirable factor which affects the recrystallization of NWs is loss of 

rigidity (bending) with ion bombardment induced amorphisation. A misorientation 

between two crystalline fronts results in a crystal mismatch and hence defect 

formation.
26

 It has been shown that NWs can be bent in a desired direction 

depending on the energy and the direction of the incoming ion beam.
21, 27-28

 Bending 

occurs to minimize stress within the NW due to amorphisation. The stress may be 

due to formation of a crystalline/amorphous (c/a) interface,
21

 a combination of 
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compressive and tensile stress due to formation of vacancies and interstitials,
28

 or it 

may be due to densification during irradiation.
27

 Importantly, the influence of the 

topology of the c/a interface and the rigidity (bending) of the NW on high 

temperature regrowth has not been investigated. 

An understanding of the recrystallization process will aid in the engineering of 

defect-free highly doped nanostructures. Experimental data coupled with modeling 

calculations have already shown the dependence of crystal orientation for the rate of 

recrystallization.
17,32-34

 In this work, a detailed investigation into Ge NW 

recrystallization post Ga-ion irradiation by in situ TEM combined with molecular 

dynamics calculations is presented. The main aim of this study is to devise a method 

to reduce residual defects after recrystallization in Ge NWs. By minimizing the 

contribution of RNG and the role of misorientation in the recrystallization fronts due 

to NW bending, a predominately SPEG mechanism and defect-free regrowth is 

promoted. It is demonstrated that NW partial amorphisation allows for single crystal 

seed remnants which facilitate SPEG recrystallization as growth templates. For the 

investigation of the role of misorientation of crystal seeds for regrowth, NWs were 

encapsulated in an external amorphous matrix on a flat wafer support to preserve 

their rigidity during irradiation. Combining these approaches, post-anneal Ga-ion 

implanted Ge NWs (with implantation doses up to 4.8 ×10
15

 cm
-2

) with no apparent 

stacking fault defects were demonstrated on buried oxide. 
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4.3. Experimental Procedure 

4.3.1. Concurrent imaging platform and irradiation 

The method for platform preparation, concurrent imaging and doping of NWs using 

a dual beam FIB/SEM, has been described previously in Chapter 2 section 2.3.3.
12

 

For accurate selective area doping within a section of single NW it is important to 

align the electron and ion beam coincident point precisely as the exposure needs to 

be done “blind” with the aid of the electron beam for navigation. A 30 keV Ga ion 

beam, operating at a current of 9.6 pA, was used for all implantation experiments 

presented here.  A rectangle area is defined for the irradiations. The length of the 

NWs irradiated varied between 200 nm and 1 μm. The typical area irradiated was 

200 nm (along length of NW) × 5 μm. A minimum dose of 1.9 × 10
13

 ions cm
-2

 was 

used in the experiments presented here. Small areas can be accurately irradiated with 

Ga ions without introducing impurities to the surrounding structures by using a well-

aligned FIB. 

4.3.2. Irradiated EBL defined GeOI Nanowires 

An overview of the experimental procedure for the irradiation and imaging of NWs 

is depicted in a schematic in Figure 4.1. NWs deposited on silicon nitride (SiN) 

membranes do not require any additional steps for observing the damage incurred 

and subsequent in situ TEM annealing (Figure 4.1 a).
12

 For the NWs on a substrate, 

grown NWs deposited on a Si/SiO2 chip via dry transfer from the growth substrate or 

EBL defined NWs on GeOI (germanium on insulator) were used.
35-36

 In order to 

observe the in situ TEM recrystallization along the NWs on substrates, the structures 

need to be extracted with the underlying substrate 
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Figure 4.1. Schematic overview of sample preparation and imaging for (a) a nanowire on 

pre-patterned SiN membrane and (b) EBL defined NW from on GeOI substrate. 

 

(Figure 4.1 b iii). This is done via a non-typical inline FIB lift-out technique along 

the NW length (Figure 4.2). For all NWs imaged on SiN membranes, the direction of 

the ion beam (red arrow) during irradiation is nearly parallel to the electron beam 

(purple arrow) when imaged in the TEM (Figure 4.1 a). However, for NWs extracted 

from a substrate (Figure 4.1 b) the direction of the ion beam is orthogonal to the 

direction of the electron beam when imaged in the TEM, i.e. we have a side view of 

the irradiated NW along its length. The GeOI NWs defined by EBL have a height of 

approximately 50 nm, which is almost twice the range of interactions of the 30 kV 

Ga-ions in Ge. Therefore, to achieve amorphisation across the NW (the width of the 

NWs is approximately 40 nm) and avoid ion channeling, very high ion-beam 

incidence angles (+/- 62°) were used (Figure 4.3).  
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Figure 4.2. Overview of use of EBID carbon for indication of NW exposure during 

thinning. Scale bar for all images is 1 μm. 

 

Figure 4.3. Schematic of 62° tilt ion irradiation of EBL defined Ge NW in cross sectional 

view. 
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4.3.3. In situ anneal 

An in situ Gatan Model 628 single-tilt heating stage TEM holder was used for all 

anneals presented in this study. The ramp/temperature used for each NW varied. The 

sample was loaded in the same orientation in the in situ heating stage as it was for 

HRTEM imaging in the double tilt holder. The in situ heating stage is only capable 

of single tilt so the sample was tilted as close to the zone axis used for high 

resolution imaging as possible. For most samples tilting in two directions is required 

to achieve a zone axis orientation for lattice resolution imaging. The TEM was 

operated in bright field mode, isolating the direct beam with the objective aperture, 

to take advantage of the contrast between the crystalline and amorphous regions. 

Temperature was controlled using a Gatan Model 901 SmartSet hot stage controller. 

Temperatures varied from 100 – 500 °C (the temperature dispersion control is 

approximately 0.1 - 0.5 °C, as per the manufacturer’s specifications). Images were 

acquired every minute at the set temperatures. 

 

4.4. Results and Discussion 

4.4.1. Recrystallization of nanowire with extensive amorphisation 

In order to examine Ge nanowire crystal recovery, the same nanowire from Figure 

3.6 was thermally annealed in situ in the TEM at 490 °C. For the initial 20 min of the 

anneal there is no apparent crystal growth; this could be due to the resolution of our 

technique. There is likely curing of crystal fronts in the first 20 min. The remaining 

crystalline islands, identified as the dark regions in Figure 4.4 are approx. 10 nm in 
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diameter and located, at the back and middle of the nanowire with respect to the 

direction of the incoming beam as discussed before. These crystallites are the only 

remaining “seed” available for the crystal regrowth.
41

  

 
Figure 4.4. In situ anneal of nanowire after implantation at 490 °C for 45 min. There is a 

large amorphous layer around the NW which is a build-up of contamination (carbon). Green 

circle highlights an example of a crystallite growth during the anneal.  

 

As seen from the sequence of images in Figure 4.4, the crystallites grow in size after 

developing recrystallization fronts in the surrounding amorphous region an example 

is highlighted (green circles) in Figure 4.4.  Self-nucleation of crystallites in the 

amorphous regions can also not be excluded. The final image in Figure 4.4 shows 

the nanowire after 45 min at 490 °C with corresponding lattice resolution images in 

Figure 4.5. The crystallisation process resulted in a complex mixture of a large 

number of extended defects; mainly (111) stacking faults including the recovery of 
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the stacking fault sequence that existed before the irradiation (see Figure 3.6 (a) for 

comparison). Although, the majority of the newly formed (111) stacking faults were 

pinned to the nanowire surface (shown with black arrows), some are parallel to the 

side wall facets and the initial stacking fault sequence (shown with white arrows). At 

the regions where these defects overlap a complex pattern is formed (marked with 

dashed boxes), that can be understood as interference patterns due to overlapping 

twinned grains.
42

 

Interestingly, the majority of the newly formed (111) stacking faults formed an 

ordered arrangement, similar to stacking faults identified in grown nanowires 

previously.
29, 43

 The crystallisation nucleated from separate crystal islands. The 

growth results in epitaxial recovery until recrystallization fronts meet, forming a 

planar defect. Obtained recrystallization data collaborate very well with the 

molecular dynamics simulations obtained for Si nanowires.
31

 The appearance of 

newly formed defects and recovery of the parent crystal can be attributed to two 

separate processes: (i) epitaxial propagation of recrystallization fronts (fastest 

growing in the (110) and (100) directions, as predicted previously
38

) and (ii) the 

interaction of these fronts when self-intersected and with the nanowire surface. 

These two processes result in formation of (111) stacking fault defects as well as 

epitaxial recovery of the rest of the nanowire including pre-existing defects. The fact 

that the majority of the newly formed stacking faults are pinned to the nanowire 

surface suggests that the surface plays a predominant role in defect formation.  

Significantly, using developed correlative analysis platform, detailed 

recrystallization data (Figure 4.4) were recorded in the same region of the nanowire 
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that has been ion-beam damaged (Figure 3.6); hence allowing a direct correlation of 

structural transformations as result of ion beam damage and thermal annealing. 

Figure 4.5. Lattice resolution images of nanowire post recrystallization at (a) region of 

interest showing a high density of stacking fault defects as well as an increase in edge 

roughness. In another region of the same nanowire (b) a mixture of intrinsic defect curing, 

high density defect formation and retention of original crystal structure are all observed. 

Scale bar for image is 5 nm. 

 

4.4.2. Recrystallization of nanowire with partial amorphisation 

Another nanowire was irradiated within a selected region to induce amorphisation 

only within the selected section. Figure 4.6 (a) and (b) show TEM images of a 38 nm 

diameter <111> grown NW (NW1), imaged along the [2̅11] zone axis, irradiated to 

induce full amorphisation in a 200 nm section of the NW length. Note that the NW is 

suspended across an open trench of the SiN membrane. A misorientation is observed 

between the two crystalline regions, X and Y, separated by the amorphous region 

which is approximately 205 nm in length. The two crystalline regions were estimated 

to be at a relative angle (θ) of approximately 3° to each other.
44

 Although only a 



Chapter 4. Epitaxial post-implant recrystallization in germanium nanowires 

 

 

 

90 

 

small region experienced full amorphisation, damage to the NW (partial 

amorphisation) is observed extending approximately 300 nm either side of the region 

which was irradiated.  

In situ annealing of the NW was observed in the TEM at 400 °C for 83 min and 

subsequently at 450 °C for 37 min (Figure 4.6 d). An amorphous layer is observed to 

develop around the NW during the anneal; this is commonly observed during in situ 

TEM annealing experiments and it is due to carbon-based contaminants desorbed at 

high temperatures and redeposited due to EBID.  Because there was a misorientation 

of the two crystal seeds only one seed was selected for observation during the anneal 

process. Within the first 25 min of the anneal, the damaged region, which 

experienced partial amorphisation and contains many crystallites, developed a 

continuous crystal growth front (Figure 4.6 (d) at 25 min). The recrystallization 

appears to occur preferentially along the length and in the center of the NW forming 

an arrow-head type crystal front. As the crystal front approaches a fully amorphous 

region, the crystal front flattens, which is expected as growth in the <111> direction 

is least favorable.
45

 The arrow-head recrystallization front is observed again when 

the temperature is increased to 450 °C (and the rate in turn increases) until a point 

when the front meets region Z. The recrystallization rate was estimated by measuring 

the crystalline region from the images acquired during the anneal. See Figure 4.A in 

the appendix for the analytical procedure adopted to determine crystal regrowth rates 

with the TEM images acquired during the anneal.  
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Figure 4.6. NW after irradiation to only part of the length which experiences full 

amorphisation, (a) and (b). (c) Graphical representation of recrystallization. (d) Selected 

images from the in situ anneal at 400 °C for 83 min and a further 37 min at 450 °C. Focus 

issues encountered due to thickness variations and thick carbon layer which developed 

around NW. Scale bar is 5nm. Before the anneal (a, b) regions X and Y are approximately 3° 

relative to each other. After the anneal (e-g) regions X and Y maintain the misorientation 

with a relative angle of 4.2° and the third region Z is at a relative angle of 17° and 14.7° to X 

and Y, respectively. 
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A graphical representation of the calculation results is presented in Figure 4.6 (c). 

The measurements were completed at least three times to achieve a statistically 

correct overview. It can be observed that a constant rate is not observed for the 

duration of the 400 °C anneal. The initial recrystallization rate for the first 5 min was 

approximately 3405 atoms s
-1

 (Figure 4.6 (c) region A), which decreased to 700 

atoms s
-1

 for minutes 6-40 (region B) after which the rate dropped again to 280 

atoms s
-1

 (region C). The recrystallization rate after the temperature increase to 450 

°C rose again to 1600 atoms s
-1

. The initial high recrystallization rate is postulated to 

be due to the higher number of mono-oriented and connected crystalline seeds within 

the partially damaged region which act as preferential growth sites.
46

 Similar 

deviation from linear growth has been observed previously for Ge and particularly 

for short anneal times for thin amorphous layers and has been attributed to void 

formation or the introduction of oxygen during the anneal.
45

 In another study, it was 

shown that the rate of SPEG decreased as the growth front approached within 0.3 μm 

of the surface and has been attributed to H infiltration and this has a higher impact on 

Ge than Si SPEG.
47

  

Figure 4.6 (e), (f) and (g) show HRTEM images of the recrystallized NW after 

annealing. The mismatch of the two crystal planes was retained with the formation of 

a highly defective region between the two crystal grains, region Z. The relative 

angles for the crystal grains imaged were calculated; θXY = 4.2°; θYZ = 17°; θXZ = 

14.7°. The region between grains X and Y appears to be amorphous but when 

imaged in the zone axis for Z it is clear that it is in fact crystalline. The formation of 

the defective grain (Z) is highly irregular. The smallest possible angle between 
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< 211 > and < 011 > is 30°. The two original grains, X and Y, are both in the 

[2̅11] zone axis and C is in the [011] zone axis. The relative angle between < 211 > 

and < 011 > directions were calculated from 

𝑐𝑜𝑠 𝜃 =
(ℎ𝐻+𝑘𝐾+𝑙𝐿)

√(𝐻2+𝐾2+𝐿2)(ℎ2+𝑘2+𝑙2)
    

 

where the two axes are (hkl) and (HKL). A plausible explanation for this unexpected 

grain formation is RNG in the strained region. Regions X and Y have maintained the 

original crystallographic relationship with a misorientation between the two regions. 

However, region Z has no rational crystallographic relationship with either regions X 

or Y indicating a polycrystalline growth due to RNG. It has been shown that a NW 

can be bent in a desired direction upon FIB exposure and maintains the bent shape 

even after high temperature annealing.
21, 27-28

 The result for NW1 correlates well 

with results on Si NW recrystallization published by Pecora et al. in which NWs 

were irradiated and experienced bending.
21

 Some NWs, presented by Pecora et al., 

straightened during recrystallization and were single crystalline, albeit partially 

defective, but NWs which remain bent were polycrystalline. Summarizing the 

mechanism of recrystallization for the suspended Ge NW (Figure 4.6) two different 

regrowth mechanisms can be identified (single crystalline vs polycrystalline) with 

SPEG resulting in the single crystalline regrowth from regions X and Y, and RNG 

resulting in the polycrystalline regrowth in region Z.   
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Figure 4.7. NW2 (a) and (b) partially irradiated with remaining crystal in irradiated region 

imaged along the [2̅11] zone axis. (c) and (d) after annealing at 400 °C for 47 min. (e) A 

high resolution lattice image of region identified in (d). (f) Inverse of <111> reflections from 

FFT of (e). White arrows indicate misfit dislocations. (g) Graphical representation of 

recrystallization. (h) Selected images from the in situ anneal at 400 °C for 47 min.  

 

A (larger) 56 nm diameter <111> grown NW also imaged in [112̅] zone axis was 

irradiated to induce amorphisation but retain a crystalline “backbone” for a section of 

the NW across an open trench of a SiN membrane (Figure 4.7) . A cross section of 

another irradiated 50 nm <111> grown NW has been presented in Figure 3.5 (c).  

Depending on the energy of the ion beam, the range of the ions can be estimated.
48

 In 

this case, a 30kV Ga ion beam does not have enough energy to penetrate and induce 

cascade recoils through the whole diameter of the NW and hence a crystal region 
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remains along the back of the NW. This backbone provides a support for the NW, 

maintaining some rigidity by preventing misorientation and allowing a direct link 

between the two non-irradiated regions. It is observed in Figure 4.7 (a) that the NW 

experiences some bending. The only way to avoid this bending for a grown NW is to 

provide a flat and stable support, e.g. on Si3N4 or SiO2 substrate as we show below.  

The thermal anneal of NW2 was observed in situ in the TEM at 400 °C for 47 min 

(Figure 4.7 h).  An estimation of the recrystallization rate is represented graphically 

in Figure 4.7 (g). When recrystallization occurred in the NW1 in Figure 4.6 there 

was a clear interface between the crystalline and amorphous regions. In Figure 4.7 

(a) and (b), the volume of the amorphous region is difficult to quantify based on the 

images alone. Thus, the estimation of the recrystallization rate calculated for NW2 is 

an underestimation of the rate and volume of Ge recrystallized. The initial 

recrystallization rate for the first 15 min is estimated to be 3130 atoms s
-1

. HRTEM 

images post-anneal show a monocrystalline NW (Figure 4.7 c-e). No stacking fault 

defects are observed along the growth direction of the NW imaged in the [112̅] zone 

axis. From the reconstructed FFT (Figure 4.7 f), the presence of dislocations in the 

crystal can be identified (white arrows), these are likely to be stacking faults along 

the (1̅11), (11̅1) and/or (111̅) planes. To confirm these “hidden defects” it would be 

required to tilt to another zone axis such as the [011] zone axis.
49

 

In an attempt to reduce and understand the influence of strain experienced by a 

suspended NW, a NW deposited on a substrate was irradiated, encapsulated and 

recrystallized in situ (Figure 4.8) (NW3). The 64 nm diameter, <112> grown NW 

containing intrinsic (111̅) stacking faults along the NW length was imaged along the 
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[11̅0] zone axis. NW3 was irradiated on a Si/SiO2 substrate and then extracted as an 

inline FIB cross-section, i.e. along its length (Figure 4.2). In this method, the NW is 

encapsulated in EBID carbon. A section approximately 500 nm along the NW was 

defined for irradiation but a length of approximately 600 nm experienced 

amorphisation (Figure 4.8).  As observed in Figure 4.8 (a), only partial 

amorphisation across the NW diameter is achieved leaving a continuous backbone 

similarly to the NW2. The embedded NW was annealed in situ at 400 °C for 30 min 

(Figure 4.8 g). It is clear from the images taken in situ that the recrystallization 

occurs epitaxially, i.e. via a SPEG mechanism. Two major crystal fronts can be 

identified; one in the [111̅] direction orthogonal to the NW long axis, which is the 

larger growth front, and the other growth front in [112] direction, i.e. the NW growth 

direction. HRTEM images post-anneal show a mixture of defect curing, intrinsic 

defect propagation as well as the appearance of newly formed (extrinsic) defects 

(Figure 4.8 e). Some of the extrinsic defects formed are (1̅11) stacking faults in the 

same direction as the intrinsic defects (along the NW length) and the rest are {111} 

stacking faults which are pinned to the NW surface. Interestingly, the region towards 

the middle of the amorphous area recrystallized with the formation of mainly 

extrinsic stacking faults. The intrinsic defect propagation is limited to the edges of 

the damaged region. The recovery of intrinsic stacking faults from a fully amorphous 

structure, i.e. the phenomenon of crystal memory, an apparent memory of an 

amorphised material which retains some ordering and hence fully retains the crystal 

structure upon recrystallization without the assistance of an epitaxial template, has 

not been observed. 
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Figure 4.8. <112> 

grown NW3 (a) after 

irradiation and (b) after 

anneal at 400 °C for 30 

min. (c) and (d) are 

higher resolution 

images from the 

marked regions in (a) 

and (b) respectively. 

The red arrow indicates 

SF1 and the blue pin 

indicates SF2. (e) 

HRTEM of 

recrystallized NW3 

from middle of 

damaged region post-

anneal. A combination 

of {111} stacking 

faults pinned to the 

surface, stacking faults 

parallel to intrinsic 

defects and defect free 

regions are observed. 

(f) Graphical 

representation of Ge 

recrystallization rate 

during the anneal of 

NW3. (g) Selected 

images from the in situ 

anneal of NW3 at 400 

°C for 30 min. Changes 

in contrast of the NW 

are observed during the 

anneal due to drift 

moving the sample 

further away from the 

zone axis.  
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However, seeding of parallel stacking faults through defects in the Au seed and their 

propagation along the <112> grown Ge NWs has been reported.
29

 For stacking fault 

1 (SF1) (indicated with red arrows in Figure 4.8 c), there is a damaged region which 

has not experienced full amorphisation, this is due to cascade recoils being ejected 

from the NW volume.
12, 19

 A broadening is observed for SF1 grain in Figure 4.8 (d) 

post-anneal. This type of migration has been previously observed where it was 

attributed to the slower growth rate in <111> than in the <115> direction, resulting 

in a migration of the twin grain in a stepwise fashion.
50

  At stacking fault 2 (SF2) 

(indicated with blue pins in Figure 4.8) the c/a interface is sharp with little or no 

ordering present. The bulk crystal grain engulfs the stacking fault and effectively 

prevents propagation of the stacking fault in the <112> direction. This illustrates the 

importance of the roughness of the c/a interface. An initial recrystallization rate of 

39046 atoms s
-1

 was estimated for the first 15 min based on the images from the in 

situ anneal. As observed for the previous two anneals, the rate begins to level off as 

the NW recrystallizes fully.  

A Ge NW (NW4) was defined via EBL from a (001) GeOI wafer along the [100] 

direction. The etched NW4 with rectangular cross-section (width 40 nm, height 55 

nm) was irradiated and annealed in situ, imaged close to the [010] zone axis (Figure 

4.9). The irradiation was done at high incidence angles (+/-62°, i.e. -10° tilt of the 

stage) to induce amorphisation as the width of the NW is less than the height of the 

Ge (Figure 4.3). Annealing was initiated at 100 °C with incremental increases in 
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Figure 4.9. (a) In situ 

anneal of Ge[100] NW 

(NW4). The NW was 

heated incrementally 

from 100 °C to 450 °C 

in 50 °C increments 

and remaining at each 

temperature for 15 

min. (b) Graphical 

representation of 

recrystallization of 

NW4 at 400 °C and 

450 °C. (c) and (d) 

NW4 after the in situ 

anneal. (e) and (f) 

After further anneal 

with a rapid ramp 

directly to 400 °C and 

then to 500 °C for 10 

min. 
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steps of 50 °C every 15 min. Notable recrystallization was only observed from 400 

°C. Recrystallization rates were extracted from the in situ images for 400 and 450 

°C, approximately 3480 and 18570 atoms s
-1

, respectively (Figure 4.9). The initial 

heating rate affects the recrystallization temperature observed.
51

 Estimation of the 

recrystallized volume is more accurate as the cross sectional shape of GeOI NW is 

rectangular. Similar to NW3, two recrystallization fronts can be identified; 

predominantly along the [001] direction. A final anneal with a direct ramp to 400 °C 

followed by a temperature increase 500 °C was done to fully recover the crystallinity 

of the NW. Based on the HRTEM images acquired, in Figure 4.9 (f), no stacking 

fault defects were observed and this is attributed to the SPEG. 

Activation energies (Ea) in the range between 2.0 eV and 2.19 eV have been 

previously reported for Ge recrystallization.
45,52-55

 To calculate the Ea of 

recrystallization in a NW, the rate of recrystallization of two different temperatures 

for the same NW were used, the calculation is described in the Supporting 

Information. For this report, NW4 was used to calculate a crude estimation of the Ea 

of recrystallization to be approximately 1.4 eV. Only this NW was used for the Ea 

calculation due to the slow ramp rate for both temperatures (400 and 450 °C) for the 

calculation and the abundant amorphous “sink” for both anneal temperatures, i.e. less 

than 50% of the volume recrystallized at the 400 °C. The contribution of the electron 

beam was not accounted for in the calculations of activation energy. The anneal of 

NW4 was initiated at 100 °C with recrystallization only observed from 400 °C. This 

would suggest that the electron beam had little or no effect on the recrystallization. 

However the oriented attachment of crystals and further extended growth from 
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amorphous phase has been observed in systems such as suspensions of NPs
56

 and by 

us in ALD (atomic layer deposition) deposited hafnia films (unpublished results). 

The temperature distribution in an electron transparent metal sample has been 

measured by EELS to obtain nanoscale maps of the temperature distribution when 

metal circuits are electrically loaded.
57

 This is done by looking into changes in the 

plasmon band at different temperatures along the metal lines. Possibly this can be 

extended to calculating the activation energy of various thermally associated 

reactions at the nanoscale. The Ea obtained in MD simulations was 0.92 eV which 

confirms a slightly smaller value in comparison to simulations of planar 

recrystallization, where the activation energy was Ea=1.09 eV.
38

  

A notable difference between irradiated NWs and bulk substrates is the shape of the 

c/a interface. In a bulk substrate, the c/a interface may be rough but the interface is 

relatively flat so recrystallization occurs primarily in one direction. For a grown NW 

with a remaining crystal backbone the interface has two extra dimensions to consider 

– the crystal fronts created at the edge of the irradiated region and the curved cross 

sectional interface. Although the crystal backbone has proven successful in 

facilitating SPEG any strain may result in misorientation, as seen in the suspended 

NWs, and hence defect formation. With an increase in rigidity, i.e. presence of 

crystal seed (backbone), and a rectangular cross section the post-implantation anneal 

of the top-down fabricated NW4 is more comparable with a bulk substrate, resulting 

in almost defect-free SPEG. From a device perspective, patterned Ge NWs 

developed by lithography (not necessary EBL) show greater promise for large-scale 

device fabrication in comparison to grown structures.
58
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4.5 Conclusions 

Suspended Ge NWs that have experienced full amorphisation after irradiation and 

have lost their rigidity (i.e. bent NWs after irradiation), although having crystal seed 

templates, show competing action of the SPEG and RNG processes, resulting in 

highly defective and poly-crystal growth. A loss of ordering with amorphisation 

results in misorientation of crystal seeds in NWs due to deformation with decreasing 

rigidity. The effect of misorientation of the crystal grains due to ion beam induced 

bending is minimized when the amorphisation is limited to allow a crystalline 

backbone and/or with external support in a matrix. The minimized misorientation 

resulted in diminished RNG and hence SPEG was promoted.  

Recrystallization of a NW is complex due to the high surface area and hence 

sensitivity to any alteration to the surface, such as surface roughness and H 

infiltration.
47

 {111} stacking fault pinning at the surface of the NW has been directly 

observed in this study. This result highlights the contributing factor that the surface-

area to volume ratio has on NW recrystallization for both the rate and crystal 

structure.  

It has been observed that for <111> grown NWs, no defects formed in the growth 

direction of the NW, i.e. no lateral (111) stacking faults are formed.
30

 However, for 

the <112> grown NW containing intrinsic (1̅11) longitudinal defects, extrinsic (1̅11) 

defects parallel to the intrinsic defects formed as well as {111} stacking fault defects 

pinned to the surface. In other studies, a high temperature anneal has shown to cure 

extrinsic {111} stacking faults
17

 but a thermal budget for device fabrication may 

limit process temperatures. An alternative potential route for ion beam doping of 
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nanostructures is moderate heating (approximately 250 °C) during irradiation which 

promotes dynamic annealing.
59

 

In summary, crystal recovery of grown and top-down fabricated Ge NWs studied 

using in situ TEM has been presented. Using in situ TEM data supported by MD 

calculations, we demonstrate that the recrystallization of the Ge NWs is complex and 

may result in structures having polycrystalline regions, large number of extended 

crystal defects such as stacking faults, and in some cases full crystal recovery. We 

identified that factors such as the amount of initial crystal damage and associated 

rigidity of the NWs as well as the roughness of the c/a interface and the surface to 

volume ratio, i.e. proximity of the re-growth front(s) to the surface are very 

important in engineering the NW crystal recovery.   

 

4.6 References 

1 Cui, Y., Zhong, Z. H., Wang, D. L., Wang, W. U. & Lieber, C. M. High 

performance silicon nanowire field effect transistors. Nano Lett. 3, 149-152, 

doi:10.1021/nl025875l (2003). 

2 Huang, Y., Duan, X. F., Cui, Y., Lauhon, L. J., Kim, K. H., Lieber, C. M. 

Logic gates and computation from assembled nanowire building blocks. 

Science 294, 1313-1317, doi:10.1126/science.1066192 (2001). 

3 Michel, J., Liu, J. & Kimerling, L. C. High-performance Ge-on-Si 

photodetectors. Nat. Photonics 4, 527-534, doi:10.1038/nphoton.2010.157 

(2010). 

4 Cui, Y., Wei, Q. Q., Park, H. K. & Lieber, C. M. Nanowire nanosensors for 

highly sensitive and selective detection of biological and chemical species. 

Science 293, 1289-1292, doi:10.1126/science.1062711 (2001). 

5 Tian, B., Zheng, X., Kempa, T. J., Fang, Y., Yu, N., Yu, G., Huang, J., 

Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic 

power sources. Nature 449, 885-U888, doi:10.1038/nature06181 (2007). 



Chapter 4. Epitaxial post-implant recrystallization in germanium nanowires 

 

 

 

104 

 

6 Yan, R., Gargas, D. & Yang, P. Nanowire photonics. Nat. Photonics 3, 569-

576, doi:10.1038/nphoton.2009.184 (2009). 

7 Yoon, J. S., Rim, T., Kim, J., Kim, K., Baek, C. K., Jeong, Y. H. Statistical 

variability study of random dopant fluctuation on gate-all-around inversion-

mode silicon nanowire field-effect transistors. Appl. Phys. Lett. 106, 

doi:10.1063/1.4914976 (2015). 

8 Koenraad, P. M. & Flatte, M. E. Single dopants in semiconductors. Nat. 

Mater. 10, 91-100, doi:10.1038/nmat2940 (2011). 

9 Duffy, R., Shayesteh, M., Thomas, K., Pelucchi, E., Yu, R., Gangnaik, A., 

Georgiev, Y. M., Carolan, P., Petkov, N., Long, B., Holmes, J. D. Access 

resistance reduction in Ge nanowires and substrates based on non-destructive 

gas-source dopant in-diffusion. J. Mater. Chem. C 2, 9248-9257, 

doi:10.1039/c4tc02018a (2014). 

10 Long, B., Alessio Verni, G., O’Connell, J., Holmes, J. D., Shayesteh, M., 

O’Connell, D., Duffy, R. Molecular layer doping: Non-destructive doping of 

silicon and germanium. Proceedings of the 20
th

 International Conference on 

Implantation Technology.  1-4, doi:10.1109/iit.2014.6939995 (2014) 

11 O’Connell, J., Verni, G. A., Gangnaik, A., Shayesteh, M., Long, B., 

Georgiev, Y. M., Petkov, N., McGlacken, G. P., Morris, M. A., Duffy, R., 

Holmes, J. D. Organo-arsenic Molecular Layers on Silicon for High-Density 

Doping. ACS Appl. Mater. Interfaces 7, 15514-15521, 

doi:10.1021/acsami.5b03768 (2015). 

12 Kelly, R. A., Holmes, J. D. & Petkov, N. Visualising discrete structural 

transformations in germanium nanowires during ion beam irradiation and 

subsequent annealing. Nanoscale 6, 12890-12897, doi:10.1039/c4nr04513k 

(2014). 

13 Zeiner, C., Lugstein, A, Buchhart, T., Pongratz, P., Connell, J. G., Lauhon, L. 

J., Bertagnolli, E. Atypical Self-Activation of Ga Dopant for Ge Nanowire 

Devices. Nano Lett. 11, 3108-3112, doi:10.1021/nl201105k (2011). 

14 Yu, R., Georgiev, Y. M., Das, S., Hobbs, R. G., Povey, I. M., Petkov, N., 

Shayesteh, M., O’Connell, D., Holmes, J. D., Duffy, R. Junctionless 

nanowire transistor fabricated with high mobility Ge channel. Phys. Status 

Solidi RRL 8, 65-68, doi:10.1002/pssr.201300119 (2014). 

15 Guilloy, K., Pauc, N., Robin, E., Calvo, V., Gentile, P., Foubert, K., 

Rothman, J., Reboud, V., Chelnokov, A., Benevent, V., Hartmann, J. M. 

Band structure engineering of strained and doped germanium nanowires and 

2D layers. IEEE Int. Conf.IV Photonics,11
th

  233-234 

doi:10.1109/Group4.2014.6961940 (2014). 

16 Priolo, F., Gregorkiewicz, T., Galli, M. & Krauss, T. F. Silicon 

nanostructures for photonics and photovoltaics. Nat. Nanotechnol. 9, 19-32, 

doi:10.1038/nnano.2013.271 (2014). 



Chapter 4. Epitaxial post-implant recrystallization in germanium nanowires 

 

 

 

105 

 

17 Duffy, R., Shayesteh, M., McCarthy, B., Blake, A., White, M., Scully, J., Yu, 

R., Kelleher, A. M., Schmidt, M., Petkov, N., Pelaz, L., Marques, L. A. The 

curious case of thin-body Ge crystallization. Appl. Phys. Lett. 99, 

doi:10.1063/1.3643160 (2011). 

18 Duffy, R. Van Dal, M. J. H., Pawlak, B. J., Kaiser, M., Weemaes, R. G. R., 

Degroote, B., Kunnen, E., Altamirano, E. Solid phase epitaxy versus random 

nucleation and growth in sub-20nm wide fin field-effect transistors. Appl. 

Phys. Lett. 90, doi:10.1063/1.2749186 (2007). 

19 Barth, S., Boland, J. J. & Holmes, J. D. Defect transfer from nanoparticles to 

nanowires. Nano Lett. 11, 1550-1555, doi:10.1021/nl104339w (2011). 

20 Geaney, H., Dickinson, C., Weng, W. H., Kiely, C. J., Barrett, C. A., 

Gunning, R. D., Ryan, K. M. Role of Defects and growth directions in the 

formation of periodically twinned and kinked unseeded germanium 

nanowires. Cryst. Growth Des. 11, 3266-3272, doi:10.1021/cg200510y 

(2011). 

21 Marques, L. A., Pelaz, L., Santos, I., Lopez, P. & Duffy, R. Molecular 

dynamics simulation of the regrowth of nanometric multigate Si devices. J. 

Appl. Phys. 111, doi:10.1063/1.3679126 (2012). 

22 Jun, K., Joo, J. & Jacobson, J. M. Focused ion beam-assisted bending of 

silicon nanowires for complex three dimensional structures. J. Vac. Sci. 

Technol. B 27, 3043-3047, doi:10.1116/1.3259919 (2009). 

23 Ronning, C., Borschel, C., Geburt, S. & Niepelt, R. Ion beam doping of 

semiconductor nanowires. Mater. Sci. Eng., R 70, 30-43, 

doi:10.1016/j.mser.2010.07.002 (2010). 

24 Das Kanungo, P., Koegler, R., Zakharov, N., Werner, P., Scholz, R., 

Skorupa, W. Characterization of Structural Changes Associated with Doping 

Silicon Nanowires by Ion Implantation. Cryst. Growth Des. 11, 2690-2694, 

doi:10.1021/cg200108u (2011). 

25 Pecora, E., Irrera, A., Boninelli, L., Spinella, C., Priolo, F. Nanoscale 

amorphization, bending and recrystallization in silicon nanowires. Appl. 

Phys. A: Mater. Sci. Process 102, 13-19, doi:10.1007/s00339-010-6040-2 

(2011). 

26 Fukata, N., Takiguchi, R., Ishida, S., Yokono, S., Hishita, S., Murakami, K. 

Recrystallization and Reactivation of Dopant Atoms in Ion-Implanted Silicon 

Nanowires. ACS Nano 6, 3278-3283, doi:10.1021/nn300189z (2012). 

27 Zhang, Y. F., Tang, Y. H., Wang, N., Lee, C. S., Bello, I., Lee, S. T. 

Germanium nanowires sheathed with an oxide layer. Phys. Rev. B: Condens. 

Matter Mater. Phys. 61, 4518-4521 (2000). 

28 Seo, K. I., Sharma, S., Yasseri, A. A., Stewart, D. R. & Kamins, T. I. Surface 

charge density of unpassivated and passivated metal-catalyzed silicon 



Chapter 4. Epitaxial post-implant recrystallization in germanium nanowires 

 

 

 

106 

 

nanowires. Electrochem. Solid-State Lett. 9, G69-G72, 

doi:10.1149/1.2159295 (2006). 

29 Grossklaus, K. A., Banerjee, A., Jahangir, S., Bhattacharya, P. & 

Millunchick, J. M. Misorientation defects in coalesced self-catalyzed GaN 

nanowires. J. Cryst. Growth 371, 142-147, 

doi:10.1016/j.jcrysgro.2013.02.019 (2013). 

30 Romano, L., Rudawski, N. G., Holzworth, M. R., Jones, K. S., Choi, S. G., 

Picraux, S. T. Nanoscale manipulation of Ge nanowires by ion irradiation. J. 

Appl. Phys. 106, doi:10.1063/1.3267154 (2009). 

31 Borschel, C., Spindler, S., Lerose, D., Bochmann, A., Christiansen, S. H., 

Nietzsche, S., Oertel, M., Ronning, C. Permanent bending and alignment of 

ZnO nanowires. Nanotechnology 22, doi:10.1088/0957-4484/22/18/185307 

(2011). 

32 Gomez-Selles, J. L., Darby, B. L., Jones, K. S. & Martin-Bragado, I. Lattice 

kinetic Monte Carlo modeling of germanium solid phase epitaxial growth. 

Phys. Status Solidi C 11, 93-96, doi:10.1002/pssc.201300159 (2014). 

33 Darby, B. L., Yates, B. R., Martin-Bragado, I., Gomez-Selles, J. L., Elliman, 

R. G., Jones, K. S. Substrate orientation dependence on the solid phase 

epitaxial growth rate of Ge. J. Appl. Phys 113, doi:10.1063/1.4776718 

(2013). 

34 Pelaz, L., Marques, L., Aboy, M., Lopez, P., Santos, I., Duffy, R. Atomistic 

process modeling based on Kinetic Monte Carlo and Molecular Dynamics for 

optimization of advanced devices. IEEE Int. Electorn Devices Meet. 1-4, 

doi:10.1109/iedm.2009.5424309 (2009). 

35 Hobbs, R. G., Schmidt, M., Bolger, C. T., Georgiev, Y. M., Fleming, P., 

Morris, M. A., Petkov, N., Holmes, J. D., Xiu, F. X., Wang, K. L., Djara, V., 

Yu, R., Colinge, J. P. Resist-substrate interface tailoring for generating high-

density arrays of Ge and Bi2Se3 nanowires by electron beam lithography. J. 

Vac. Sci. Technol., B 30, doi:10.1116/1.4724302 (2012). 

36 Ran, Y., Das, S., Hobbs, R., Georgiev, Y., Ferain, I., Razavi, P., Akhavan, N. 

D., Colinge, C. A., Colinge, J. Top-down process of germanium nanowires 

using EBL exposure of hydrogen silsesquioxane resist. J. Ultimate Integr. 

Silicon  145-148, doi: 10.1109/ulis.2012.6193378 (2012). 

37 Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. 

Computat. Phys. 117, 1-19, doi:10.1006/jcph.1995.1039 (1995). 

38 Posselt, M. & Gabriel, A. Atomistic simulation of amorphous germanium 

and its solid phase epitaxial recrystallization. Phys. Rev. B 80, 

doi:10.1103/PhysRevB.80.045202 (2009). 

39 Luedtke, W. D. & Landman, U. Preparation, structure, dynamics, and 

energetics of amorphous silicon: A molecular-dynamics study. Phys. Rev. B: 



Chapter 4. Epitaxial post-implant recrystallization in germanium nanowires 

 

 

 

107 

 

Condens. Matter Mater. Phys. 40, 1164-1174, 

doi:10.1103/PhysRevB.40.1164 (1989). 

40 Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & 

Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. 

Phys. 81, 3684-3690, doi:10.1063/1.448118 (1984). 

41 Wang, Y., Hu, Y. Z. & Irene, E. A. Electron –cyclotron-resonance plasma 

and thermal-oxidation mechanisms of germanium. J. Vac. Sci. Technol., A 

12, 1309-1314, doi:10.1116/1.579313 (1994). 

42 Bender, H., Deveirman, A., Vanlanduyt, J. & Amelinckx, S. HREM 

investigation of twinning in very high-dose phosphorus ion-implanted 

silicon. Appl. Phys. A  39, 83-90, doi:10.1007/bf00616823 (1986). 

43 Su, Z., Dickinson, C., Wan, Y., Wang, Z., Wang, Y., Sha, J., Zhou, W. 

Crystal growth of Si nanowires and formation of longitudinal planar defects. 

CrystEngComm 12, 2793-2798, doi:10.1039/b925198g (2010). 

44 Kelly, P. M., Wauchope, C. J. & Zhang, X. Calculation of overall tilt angles 

for a double tilt holder in a TEM. Microsc. Res. Tech. 28, 448-451, 

doi:10.1002/jemt.1070280512 (1994). 

45 Csepregi, L., Küllen, R. P., Mayer, J. W. & Sigmon, T. W. Regrowth kinetics 

of amorphous Ge layers created by 
74

Ge and 
28

Si implantation of Ge crystals. 

Solid State Commun. 21, 1019-1021, doi:10.1016/0038-1098(77)90009-6 

(1977). 

46 Priolo, F., Battaglia, A., Nicotra, R. & Rimini, E.Low-temperature reordering 

in partially amorphized Si crystals. Appl. Phys. Lett. 57, 768-770, 

doi:10.1063/1.103415 (1990). 

47 Johnson, B. C., Gortmaker, P. & McCallum, J. C. Intrinsic and dopant-

enhanced solid-phase epitaxy in amorphous germanium. Phys. Rev. B 77, 

214109 doi:10.1103/PhysRevB.77.214109 (2008). 

48 Borschel, C. & Ronning, C. Ion beam irradiation of nanostructures - A 3D 

Monte Carlo simulation code. Nucl. Instrum. & Methods Phys. Res. B 269, 

2133-2138, doi:10.1016/j.nimb.2011.07.004 (2011). 

49 den Hertog, M. I., Cayron, C., Gentile, P., Dhalluin, F., Oehler, F., Baron, T., 

Rouviere, J. L.  Hidden defects in silicon nanowires. Nanotechnology 23, 

doi:10.1088/0957-4484/23/2/025701 (2012). 

50 Drosd, R. & Washburn, J. Some observations on the amorphous to crystalline 

transformation in silicon. J. Appl. Phys. 53, 397-403, doi:10.1063/1.329901 

(1982). 

51 Olson, G. L. & Roth, J. A. Kinetics of solid phase crystallization in 

amorphous silicon. Mater. Sci. Rep. 3, 1-77, doi:10.1016/S0920-

2307(88)80005-7 (1988). 

52 Donovan, E. P., Spaepen, F., Turnbull, D., Poate, J. M. & Jacobson, D. C. 

Calorimetric studies of crystallization and relaxation of amorphous Si and Ge 



Chapter 4. Epitaxial post-implant recrystallization in germanium nanowires 

 

 

 

108 

 

prepared by ion implantation. J. Appl. Phys. 57, 1795-1804, 

doi:10.1063/1.334406 (1985). 

53 Lu, G. Q., Nygren, E. & Aziz, M. J. Pressure‐enhanced crystallization 

kinetics of amorphous Si and Ge: Implications for point‐defect mechanisms. 

J. Appl. Phys. 70, 5323-5345, doi:10.1063/1.350243 (1991). 

54 Haynes, T. E., Antonell, M. J., Lee, C. A. & Jones, K. S. Composition 

dependence of solid-phase epitaxy in silicon-germanium alloys: Experiment 

and theory. Phys. Rev. B: Condens. Matter Mater. Phys. 51, 7762-7771 

doi:10.1103/PhysRevB.51.7762 (1995). 

55 Kringhøj, P. & Elliman, R. G. Solid-Phase Epitaxial Crystallization of Strain-

Relaxed Si1-xGex Alloy Layers. Phys. Rev. Lett. 73, 858-861 

doi:10.1103/PhysRevLett.73.858 (1994). 

56 Li, D., Nielsen, M. H., Lee, J. R. I., Frandsen, C., Banfield, J. F., De Yoreo, 

J. J. Direction-Specific Interactions Control Crystal Growth by Oriented 

Attachment. Science 336, 1014-1018, doi:10.1126/science.1219643 (2012). 

57 Mecklenburg, M., Hubbard, W. A., White, E. R., Dhall, R., Cronin, S. B., 

Aloni, S., Regan, B. C. Nanoscale temperature mapping in operating 

microelectronic devices. Science 347, 629-632, doi:10.1126/science.aaa2433 

(2015). 

58 Hobbs, R. G., Petkov, N. & Holmes, J. D. Semiconductor Nanowire 

Fabrication by Bottom-Up and Top-Down Paradigms. Chem. Mater. 24, 

1975-1991, doi:10.1021/cm300570n (2012). 

59 Posselt, M., Bischoff, L., Grambole, D. & Herrmann, F. Competition 

between damage buildup and dynamic annealing in ion implantation into Ge. 

Appl. Phys. Lett. 89, doi:10.1063/1.2360238 (2006). 

 

 
 



Chapter 4. Epitaxial post-implant recrystallization in germanium nanowires 

 

 

 

109 

 

4.7. Appendix 

 

Figure 4.A. Area of crystal region measured from in-situ anneal images for NW1. 

 

The method used to calculate the rates of crystallization presented in this study: 

The grown nanowire is assumed to have a circular cross section, i.e. a cylindrical 

shape nanowire. The cross sectional area of the nanowire is calculated =πr
2

. This area 

was taken and the volume was averaged to assume a square cross section, i.e. cuboid 

shape nanowire, and the square root of the circular cross section was determined as 

the effective depth of the nanowire. When an amorphous area was measured (as 

shown in Figure 4.A), this was multiplied by the effective depth to calculate an 

approximate volume in nm
3
. To convert the volume into number of atoms (to make 

the units relatable to the simulation data) this volume was multiplied by the number 

of atoms per nm
3
 which for Ge is 44.355 atoms nm

-3
. 
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Molecular dynamics simulations were contributed by Dr Bartosz Liedke, Dr 

Matthias Posselt and Mr Stefan Baldauf of Helmholtz Zentrum Dresden Rossendorf, 

Institute of Ion Beam Physics and Materials Research in Dresden. In this study the 

LAMMPS program was employed
37

 with a Stillinger-Weber-type interatomic 

potential.
38

 The simulation cell used for the calculation were cuboids with a size of 

20 x 20 x 30 a
3
 and 20 x 20 x 60 a

3
, i.e. initially with a total of 96000 and 192000 

atoms, respectively, where a = 5.657 Å is the lattice parameter of c-Ge. Simulation 

cells with long sides parallel to the <111> and the <100> crystal axes were 

considered in order to study NWs with these orientations. Periodic boundary 

conditions in three directions and a canonical ensemble (NVT) were used. The 

amorphous region was prepared by the method of Luedtke et al.
39

 via slow cooling 

from the melt at a rate of 1 K ps
-1

, analogically to the work of Posselt et al.
38

 To 

obtain a NW with free surfaces in x- and y-directions, all atoms within the distance 

of 5a from the x,y-borders of the simulation cell were removed. The resulting 

systems with 24000 (for 20 x 20 x 30a
3
 simulation cell) and 48000 atoms (for 20 x 20 

x 60a
3
 simulation cell) consist of two c/a interfaces as shown in Figure 4.B (a) and 

(c). In recrystallization calculations at 700, 750, 800, and 900 K (426.85, 476.85, 

526.85, and 626.85 °C, respectively) a Berendsen thermostat was used.
40

 Zero 

pressure (stress) was maintained at the cell boundaries in both z-directions using a 

Berendsen barostat.  

Molecular dynamics (MD) calculations are presented (by Dr Bartosz Liedke, Dr 

Matthias Posselt and Mr Stefan Baldauf of Helmholtz Zentrum Dresden Rossendorf, 

Institute of Ion Beam Physics and Materials Research in Dresden) in Figure 4.B for a 
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< 111 > grown NW. The notable comparison between the MD calculations and the 

experimental results is the trend of an initial linear growth followed by a saturation 

of the recrystallization rate (regions B and C in Figure 4.6 g and in Figure 4.7 g). 

From the MD calculations in figure 4.B (a), it can be observed that the initial average 

growth rate is approximately 1 ×10
12

 atoms s
-1

 for the first 6 ns. The observed 

average rate for the time from 6 to 16 ns is approximately 6 ×10
11

 atoms s
-1

 which is 

a drop to 60% of the initial average rate. The absolute values of simulated 

recrystallization rates are larger than the measured data.  This is related to the quality 

of the interatomic potential used in the calculations, which was designed to 

reproduce realistic properties of crystalline, amorphous and liquid Ge but does not 

describe SPEG quantitatively correct. Therefore the comparison with experimental 

results is focused on the general trends regarding the recrystallization process and 

not on the absolute values of the recrystallization rates.  

MD calculations have also been presented for a <100> grown nanowire in Figure 

4.B (c) and (d). Three different rates of SPEG are visible for each curve, except 700 

K annealing, where saturation has not yet been achieved.  Decrease of the regrowth 

rate in the first few ns of annealing for each temperature suggests a considerable 

importance of confinement effects. The rates decrease again after the two fronts of 

recrystallization meet in the middle of the supercell. The thick lines are the linear fits 

applied for the initial slopes, used to calculate activation energy of SPEG that equals 

0.92 eV. 
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Figure 4.B. These calculations were contributed to the work by Dr Bartosz Liedke, Dr 

Matthias Posselt and Mr Stefan Baldauf of Helmholtz Zentrum Dresden Rossendorf, 

Institute of Ion Beam Physics and Materials Research in Dresden. (a) Molecular 

dynamics simulation of recrystallization of a <111> grown Ge NWs at 800K. (b) 

Comparison of SPEG of NWs for two orientations <100> and <111> shows a very similar 

growth rate using MD calculations. Simulation cell size is 20×20×30a3, where a = 5.657 Å 

in both figures (a) and (b). (c) <100> growth in Ge NW at T=800K  (d) <100> growth in Ge 

NWs at varied T: 700K, 750K, 800K and 900K. Simulation cell size is 20×20×60a3, where a 

= 5.657 Å in both figures (c) and (d).  
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A disturbance in the trend of Moore’s law is becoming ever more inevitable as issues 

arise with Si processing.
1
 The advantage of the stable SiO2 is becoming obsolete due 

to gate leakage, opening the way for materials with better intrinsic electrical 

mobilities such as Ge, which had been previously overlooked due to issues with an 

unstable oxide.
2
 If semiconductor NWs are to be incorporated into future electronic 

devices we need to fully understand, at the nanoscale, the implications of altering the 

structures to achieve the desired electrical properties.
3
 The aim of this thesis was to 

explore some of the fundamental issues of Ge NW incorporation into future 

semiconductor devices. Typical fab processes have been applied, i.e. ion beam 

doping, crystal recovery post ion beam irradiation and germanide formation, to 

investigate the mechanism of the process and its effect on the NW.  

Chapter 1 introduced the role of dynamic TEM for fundamental understanding of 

semiconductor nanostructures for future nanoelectronic devices. In situ TEM 

provides stepping stones to understand the fundamental properties of semiconductor 

nanowires. No stand-alone technique can provide all the answers but dynamic TEM 

can provide large pieces to the puzzle. With state of the art double aberration 

corrected TEMs with monochromators and equipped with analytical tools such as 

EELS and EDX coupled with in situ TEM holders, dynamic processes can be studied 

with potentially atomic resolution, particularly for 1-dimensional materials such as 

graphene.
4
 This is a fascinating and broad area of research as shown by the diverse 

properties investigated in semiconductor nanowires discussed in the chapter.  

Chapter 2 focused on the damage incurred in Ge NWs post ion irradiation. 

Nanowires suspended on FIB-labelled SiN membranes were irradiated in a stepwise 
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manner to monitor the damage build up with increasing ion flux. The results 

provided an understanding of the mechanism of the damage build up in NWs. A 

dependence on the shape and diameter of a NW and the ion energy used was 

established. It would be of interest to conduct these experiments under cryogenic and 

elevated temperature conditions. An increase in the damage is expected at the 

cryogenic temperatures as dynamic annealing would be eliminated at such low 

temperatures. The elevated temperatures would promote dynamic annealing 

however. As instruments are becoming more advanced and integrated, the potential 

to observe a single ion cascade event within a nanostructure at lattice or atomic 

resolution is becoming realistically achievable.
5
 Operating conditions of the electron 

beam would need to considered as the beam could introduce energy which would 

promote dynamic annealing and produce false results. Nanostructures are ideal as 

they do not require any sample preparation techniques prior to TEM/irradiation and 

hence the samples are “pure” prior to irradiation. 

Chapter 3 extended on methods and results described in chapter 2, with a focus on 

the thermal recovery of the crystal structure post ion irradiation. The main message 

to take from this chapter is that not only is a crystal seed required but also the 

external stresses on a NW determine the quality of the recovered crystallinity, i.e. 

polycrystalline or single crystalline and with the evolution of defects or not. 

Recrystallization within a NW is complex due to many competing factors including 

the competition between RNG and SPEG. SPEG is promoted when a crystal seed 

remains whereas RNG is promoted when the NW experiences strain. The high 

surface-area to volume ratio also increases the sensitivity of NWs to surface 
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roughness and stacking fault formation at the surface has been observed. To study 

structures produced via the top-down lithography approach; NWs could be defined 

on GeOI followed by a back etch through the bulk Si. The buried oxide would act as 

an etch stop and open a window for TEM imaging. This approach would provide 

NWs on a stable support which would facilitate ion irradiation followed by 

observation within the TEM without the need to extract the structures in a FIB cross 

section. The oxide would need to be thin enough to be electron transparent but thick 

enough to be a stable support for the Ge NWs, for example 100 nm. 

Chapter 4 detailed an experimental set up for in situ observation of Ni-germanide 

formation in Ge nanopillars. The method facilitiates a range of Ge nanostructures 

with the same crystal orientation, here all substrates used were (001). An angled 

growth front was observed showing that germanide growth along the (001) 

orientation is not favourable.
6
 Size dependence was observed for the temperature at 

which the Ni migration occurs at lower temperatures for smaller diameter structures. 

The variation in germanide formation from pillar to pillar and even within a pillar is 

attributed to the polycrystalline nature of the Ni seed. To investigate further the 

effect of the crystallinity of the Ni seed it is proposed that a single crystalline Ni seed 

should be used. One possible route would entail single crystalline (and ideally 

defect-free) Ni nanoparticles as the seed/etch mask for the nanopillar. One difficulty 

would be achieving a monolayer or sparsely dispersed Ni nanoparticles on a Ge 

substrate to achieve the individual nanopillars with clean etched sidewalls.
7,8
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Certain materials and/or mechanisms may be sensitive to the beam energy during in 

situ TEM experiments. These materials/mechanisms require ultrafast TEM 

techniques which allow fast acquisition and do not rely on a long exposure to 

achieve a high resolution image. Taking into account the effect the beam energy on a 

sample is vital as has been shown for Si nanostructures at high beam energies by 

Vanhellemont et al. (2MeV) and Fedina et al. (400keV).
8,9 

To achieve high 

resolution images it should be a simple case of  increasing the energy of the electron 

beam (in the MeV range) to decrease the wavelength of the electrons and in turn 

increase the special resolution. In the ideal world this should increase linearly, 

however, it was found that the wavelength of the electrons was not the only factor 

that limited the resolution of the TEM. In fact, aberrations in the lens, namely 

spherical (Cs) and chromatic (Cc) prevent ideal spatial resolution capabilities.
10

 In 

modern commercial state-of-the-art (S)TEMs, the instrument operates within the low 

(<200 keV) and/or intermediate (200-400 keV) energy range and is equipped with 

double aberration correction and monochromators.
11

 Single atom resolution has been 

demonstrated at beam energies as low as 60 keV.
12,13

 With capabilities to achieve 

single atom resolution at such low energies opens the potential for dynamic TEM of 

beam sensitive materials/mechanisms. 

The future of dynamic TEM is fast approaching with state-of-the-art TEMs capable 

of atomic resolution (for the one-dimensional materials such as graphene), ultrafast 

TEM capable of ns time resolution and stabilized in situ stage holders. The range of 

possible dynamic TEM experiments is phenomenal as more than one stimulus can be 

applied to a sample. A sample can be immersed in a condition similar to its actual 
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working conditions so as to observe a truer representation of processes and 

mechanisms. We have so far only observed the tip of the iceberg of the capabilities 

of dynamic TEM. 
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