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Abstract 

 

Prostate Cancer is a disease that primarily affects elderly men.  The incidence of prostate 

cancer has been progressively increasing in the western world over the last two decades.  

Life expectancy and diet are believed to be the main factors contributing to this increase 

in prevalence.  Prostate cancer is a slowly progressing disorder and patients often live for 

over 10 years after initially being diagnosed with prostate cancer.  However, patients with 

hormone refractory prostate cancer have a poor prognosis and generally do not survive 

for longer than 2 or 3 years.  Hormone refractory prostate cancer is responsible for over 

200,000 deaths each year and current chemotherapeutic regimens are only useful as 

palliative agents.  The long-term survival rate is poor and chemotherapy does not 

significantly increase this.  Cell lines derived from hormone refractory tumours usually 

display elevated resistance to many cytotoxic drugs.   

 

The Fas receptor is a membrane bound protein capable of binding to a ligand called Fas 

ligand.  Engagement of Fas receptor with Fas ligand results in clustering of Fas receptor 

on the plasma membrane of cells.  A number of proteins responsible for initiating 

apoptosis are recruited to the plasma membrane and are activated in response to elevated 

local concentrations.  This series of events initiates a proteolysis cascade and that 

culminates in the degradation of structural and enzymatic processes and the repackaging 

of cellular constituents within membrane bound vesicles that can be endocytosed and 

recycled by surrounding phagocytic cells.  The Fas receptor is believed to be a key 

mechanism by which immune cells can destroy damaged cells.  Consequently, resistance 
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to Fas receptor mediated apoptosis often correlates with tumour progression.  It has been 

reported that prostate cancer cell lines display elevated resistance to Fas receptor 

mediated apoptosis and this correlates with the stage of tumour from which the cell lines 

were isolated.   

 

JNK, a stress-activated protein kinase, has been implicated both with increased survival 

and increased apoptosis in prostate cancer.  Elevated endogenous JNK activity has been 

demonstrated to correlate with prostate cancer progression.  It has been shown that 

endogenous JNK activity increases the expression of anti-apoptotic proteins and can 

increase the resistance of prostate cancer cell lines to chemotherapy.  In addition, 

elevated endogenous JNK activity is required for improved proliferation and 

transformation of a number of epithelial tumours.  However, prolonged JNK activation in 

response to cytotoxic stimuli can increase the sensitivity of cells to apoptosis.  Prolonged 

JNK activity appears to induce the expression of a separate set of genes responsible for 

promoting apoptosis.   

 

Our group has recently shown that activation of JNK by chemotherapeutic drugs can 

sensitise DU 145 prostate carcinoma cells to Fas receptor mediated apoptosis.  In order to 

identify novel targets for treating hormone refractory prostate cancer we have 

investigated the role of JNK in Fas receptor mediated apoptosis.  We have demonstrated 

that prolonged JNK activation is defective in DU 145 cells in response to Fas receptor 

activation alone.  Co-administering anisomycin, a JNK agonist, greatly enhances the 

ability of DU 145 cells to undergo apoptosis by increasing the rate of Caspase 8 cleavage.  

We also investigated the role of endogenous JNK activity in Fas receptor mediated 



 

 v

apoptosis.  We found that endogenous JNK activity increased the expression of a kinase 

HIPK3 that in turn can phosphorylate FADD.  Abrogation of JNK activity or HIPK3 was 

found to restore the interaction between FADD and Caspase 8 and increased the 

sensitivity of DU 145 cells to Fas receptor mediated apoptosis.  Therefore, it appears that 

JNK can direct both anti-apoptotic and pro-apoptotic signals during early stages of Fas 

receptor mediated apoptosis in prostate cancer.  Although endogenous JNK activity in 

response to growth factors is elevated, prolonged JNK activation in response to Fas 

receptor appears to be inhibited in DU 145 cells.  It is hoped that by restoring this 

defective pathway, chemotherapeutic agents will be more effective in treating patients 

with hormone refractory prostate cancer. 
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Chapter 1 

Human judges can show mercy.
But against the laws of nature there is no appeal.

Arthur C. Clarke

Part of this introduction was accepted for publication as a review article in
Cellular Signalling (2003) 
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Overview of Fas mediated apoptosis 

Apoptosis 

Apoptosis or programmed cell death is defined by morphological changes including cell 

shrinkage, chromatin condensation, nuclear fragmentation, membrane blebbing, and 

apoptotic body formation.  More recently, central signalling pathways responsible for 

apoptosis initiation and progression have been identified.  Integral to many forms of 

apoptosis are a family of at least 14 different cysteine proteases called caspases.  

Caspases are synthesised as inactive precursors called procaspases.  Cleavage and 

activation of procaspases can occur following a variety of stimuli including DNA damage 

and death receptor activation (Herr & Debatin, 2001; Joza et al., 2002).  Caspases can be 

classified as initiator or effector in function depending on the role they play in apoptosis.  

Initiator caspases are responsible for detecting and transducing various apoptotic stimuli 

by cleaving and activating effector caspases.  The preferred cleavage site for caspases is 

after a four amino acid motif Asp-X-X-Asp where X can be any amino acid.  Effector 

caspases cleave downstream targets that include DNA repair enzymes, cytoskeletal 

proteins and proteins involved in cell cycle progression (Nicholson, 1999).  These targets 

are responsible for implementing the downstream pathways that culminate in 

morphological changes associated with apoptosis and loss of cell viability (Wolf & 

Green, 1999).   

 

Death Receptors 

Death receptors belong to a superfamily of receptors involved in proliferation, 

differentiation and apoptosis called the Tumour Necrosis Factor (TNF) superfamily 
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(Krammer, 1999).  Death receptors are type I integral receptors with a conserved 

extracellular domain containing 2 to 4 cysteine-rich pseudo-repeats, a single 

transmembrane region and a conserved intracellular death domain about 80 amino acids 

in length that binds to adaptor proteins and initiates apoptosis (Golstein, 1997; Griffith & 

Lynch, 1998; Idriss & Naismith, 2000; Schulze-Osthoff et al., 1998).  Each receptor can 

bind with one or more than one type of ligand expressed on adjacent cells.  Binding of 

ligand to receptor induces receptor trimerisation and clustering on the plasma membrane 

that is required to initiate apoptosis in cells.  At least 6 death receptors have been 

identified and described to date from homology and by loss of function studies.  These 

are TNFR1 (Gray et al., 1990; Loetscher et al., 1990; Nophar et al., 1990; Schall et al., 

1990; Smith et al., 1990), Fas (CD95/Apo1) (Itoh et al., 1991), DR3 (TRAMP/Apo3) 

(Marsters et al., 1996), DR4 (TRAILR1/Apo2) (Pan et al., 1997), DR5 

(TRAILR2/TRICK2) (Screaton et al., 1997; Walczak et al., 1997; Wu et al., 1997), and 

DR6 (Pan et al., 1998).   

 

In addition to death receptors, 3 decoy receptors (DcR) have been identified.  DcR1 

(TRAILR3) (Pan et al., 1997) and DcR2 (TRAILR4) (Marsters et al., 1997) are 

membrane bound receptors that bind with TRAIL.  DcR3 (Pitti et al., 1998) is a soluble 

receptor secreted by cells and binds with Fas ligand.  Decoy receptors possess functional 

extracellular ligand binding domains but do not contain intracellular death domains and 

cannot recruit adaptor proteins required for apoptosis.  The principle function of decoy 

receptors is modulating the sensitivity to death receptor mediated apoptosis in vivo 

(Ashkenazi & Dixit, 1999).   
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A number of proteins involved in apoptosis can be recruited to death receptors through 

intermediate adapter proteins that bind with the death receptors or other components of 

death inducing signalling complex (DISC).  Fas associated death domain (FADD) 

(Boldin et al., 1995; Chinnaiyan et al., 1995), TNF receptor associated death domain 

(TRADD) (Hsu et al., 1995), receptor interacting protein kinase 1 (RIP1) (Stanger et al., 

1995) and death-associated protein (DAXX) (Yang et al., 1997) contain death domains 

(DD) that recognise and bind with the corresponding DD on the intracellular surface of 

death receptors.  These proteins function as adaptor proteins and it is believed that they 

create a scaffold to aid recruitment and binding of various other components of the DISC.  

The initiator caspases Caspase 8 and Caspase 10 interact with FADD through death 

effector domains (DED) present on both the Caspase 8 and 10 and also FADD.  TRADD 

can recruit a number of adaptor proteins death receptors including FADD, TNF receptor 

associated Factor (TRAF) and RIP1.  RIP1 interacts with caspase 2 and RIP associated 

protein with death domain (RAIDD) and DAXX can recruit the Mitogen activated protein 

kinase kinase kinase ASK1 (Ashkenazi & Dixit, 1999; Sheikh & Fornace, 2000).  The 

interactions between death receptors, their known ligands and intracellular adaptor 

proteins are summarised in Figure 1.   

 

Role of Fas receptor  

Fas mediated apoptosis can be regulated by a variety of signalling pathways in cells and 

is required for normal cell function.  One of the principle roles of Fas receptor is 

regulating the immune response and this is the most clearly characterised function of Fas 
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receptor.  However, Fas receptor is expressed on most tissues and also plays an important 

role in regulating the function of many different tissues.  A number of studies have 

illuminated the multiple modes by which Fas receptor signalling can regulate T cell and 

B cell development, maturation and deletion (Bras et al., 1997; Newton et al., 2000; 

Rathmell et al., 1996).  For example, activation of mature T cells occurs during an 

adaptive immune response to an infection. Clonal expansion and subsequently deletion of 

activated T cells results by a process called activation induced cell death (AICD).  

Increased Fas ligand expression is observed following T cell activation.  However, cells 

are initially resistant to Fas mediated apoptosis.  During the course of the infection 

activated T cells become progressively more sensitive to Fas mediated apoptosis and this 

is ultimately required for AICD and for regulating the response of the immune system to 

a pathogen (Van Parijs et al., 1999).  In addition, Fas mediated apoptosis regulates other 

cells involved in adaptive immunity such as natural killer cells (Bjorck et al., 1997; 

Oshimi et al., 1996) and is a principle mechanism by which cytotoxic T lymphocytes 

(CTL) induce apoptosis in cells expressing foreign antigens (Medema et al., 1997).  

Dysfunction of Fas receptor is the underlying cause of autoimmune lymphoproliferative 

syndrome in humans (Fisher et al., 1995; Rieux-Laucat et al., 1995).  Fas receptor 

mediated apoptosis has been implicated in a number of diseases including post-ischemic 

neuronal degeneration (Herdegen et al., 1998; Martin-Villalba et al., 1999), during 

traumatic brain injury (Qiu et al., 2002) and may participate in inflammatory bowel 

disease (Ueyama et al., 1998) and fulminant hepatitis (Song et al., 2003).  Fas receptor 

may also play a role during developmental apoptosis of various cells including embryonic 

motor neurons (Raoul et al., 2000) and osteoclast formation (Kitaura et al., 2002).  
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Progression and metastasis of tumours is associated with resistance to Fas receptor 

mediated apoptosis (French & Tschopp, 2002).  In addition, upregulation of Fas ligand 

often occurs in tumour cells following chemotherapy and may play a key role in immune 

evasion by eliminating infiltrating lymphocytes (O'Connell et al., 1996; Pinkoski & 

Green, 2000; Strand et al., 1996).   

 

Formation of the Fas DISC 

Activation of Fas receptor by Fas ligand initiates a caspase cascade culminating in 

apoptosis in sensitive cells.  Effective formation of a protease complex called DISC is 

required in Fas mediate apoptosis.  At least 4 individual steps have been identified in Fas 

sensitive cells following activation of Fas receptor with Fas ligand.  Immediately 

following Fas receptor ligation with Fas ligand microaggregates of Fas receptor form on 

the cell surface independent of caspase activity (Algeciras-Schimnich et al., 2002).  It has 

been demonstrated that trimerisation of Fas receptor is the minimal event required for 

FADD recruitment and effective DISC formation (Schneider et al., 1998).  However 

significant DISC formation requires the presence of a Fas hexamer, consisting of two 

adjacent trimers (Holler et al., 2003).  Subsequent DISC assembly occurs in type I cells 

and is dependent on reorganisation of cytoskeletal actin filaments.  Activation of Caspase 

8 occurs following DISC formation and directly regulates the formation of large Fas 

receptor aggregates on the plasma membrane of cells and increased DISC activity.  

Finally these large clusters of Fas receptor are endocytosed and recycled (Algeciras-

Schimnich et al., 2002).  Type II cells have impaired DISC formation and ceramide 
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production is a necessary step for generation of large receptor aggregates and capping in 

lipid rafts (von Reyher et al., 1998).   

 

Assembly of the components of the Fas DISC is a highly organised event and involves 

sequential clustering of adapter and effector proteins at Fas receptor aggregates.  FADD 

is recruited to and binds to the intracellular DD of Fas receptor in response to two 

adjacent Fas receptor trimers (Holler et al., 2003).  Caspase 8 and Caspase 10 bound to 

FADD are recruited to the plasma membrane and the increased local concentration of 

these proteases induces autocleavage and activation of Caspase 8 and Caspase 10 in 

trans.  Caspase 8 appears to be the principle initiator during apoptosis because cells that 

were deficient in Caspase 10 expression underwent normal apoptosis while resistance to 

Fas mediated apoptosis was observed in Caspase 8 deficient cells even when Caspase 10 

was overexpressed (Sprick et al., 2002).  DAXX can also bind to the intracellular DD of 

Fas receptor and recruits ASK1.  Activation of ASK1 was found to occur following 

recruitment to the DISC and subsequent JNK activation is believed to promote apoptosis 

in cells (Chang et al., 1998; Tobiume et al., 2001).  In addition, the interaction between 

DAXX and ASK1 was found to regulate caspase independent cell death and was not 

dependent on ASK1 kinase activity (Charette et al., 2001; Ko et al., 2001).  The DD of 

RIP1 can also bind to Fas receptor and recruits RAIDD and Caspase 2 to Fas receptor 

aggregates.  Cleavage and activation of Caspase 2 was found to promote the cleavage of 

effector caspases and regulate apoptosis (Ahmad et al., 1997). 
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Active Caspase 8 can directly cleave and activate effector caspases in type I cells.  

However, very little Caspase 8 is activated in type II cells and amplification of apoptosis 

is required.  Cleavage of the Bcl-2 family member BID by Caspase 8 produces the pro-

apoptotic tBID fragment that induces cytochrome c release from mitochondria and 

Caspase 9 activation (Gross et al., 1999; Wang et al., 1996).  Expression of anti-apoptotic 

Bcl-2 family members can regulate the sensitivity of mitochondria to tBID and in turn the 

sensitivity of type II cells to Fas mediated apoptosis (Scaffidi et al., 1999b).  Figure 2 

illustrates the principle steps in DISC formation and activation of the caspase cascade. 
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Modulators of DISC formation 

A soluble decoy receptor called DcR3 was identified and shown to bind with Fas ligand 

(Pitti et al., 1998) and LIGHT (Wroblewski et al., 2003) but not with the other death 

ligands TNF, TRAIL or TWEAK.  The gene coding for DcR3 is located on chromosome 

20 and this locus is often amplified in colon cancer (Pitti et al., 1998).  About half of all 

gastrointestinal tract carcinomas and lung cancers overexpress DcR3 suggesting that 

DcR3 amplification can promote tumour survival (Bai et al., 2000; Pitti et al., 1998; 

Takahama et al., 2002).  DcR3 sequesters and inactivates membrane bound Fas ligand on 

adjacent cells and infiltrating tumour cells and prevents activation of Fas receptor.  

Patients with gastrointestinal tract carcinomas that overexpress DcR3 have a significantly 

shortened mean duration of survival than patients with tumours expressing normal levels 

of DcR3 (Takahama et al., 2002).  Human keratinocytes overexpress DcR3 and 

expression is rapidly decreased in cells following ultraviolet B irradiation (Maeda et al., 

2001).  The signalling pathways responsible for DcR3 expression have not been 

identified yet and understanding the pathways responsible for decreasing expression of 

DcR3 in response to UVB irradiation may identify novel therapeutic targets against 

gastrointestinal tract carcinomas. 

 

Expression of FADD can also regulate the sensitivity of cells to Fas mediated apoptosis 

by altering the levels of effector caspases cleaved in response to Fas receptor activation.  

Even though FADD is a key component of Fas receptor signalling expression it is rarely 

decreased in tumour cells because expression of FADD is also required for cell cycle 

progression (Hueber et al., 2000; Zornig et al., 1998).  However, a number of cellular 
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insults including actinomycin D, UV irradiation and heat shock have been shown to 

increase expression of FADD in hepatocytes (Kim et al., 2002).  

 

Post-translational modification of FADD by PKC has also been shown to regulate Fas 

receptor mediated apoptosis in cells by inhibiting complete DISC formation following 

Fas receptor activation (Gomez-Angelats & Cidlowski, 2001; Mueller & Scott, 2000; 

Ruiz-Ruiz et al., 1997).  The atypical Protein Kinase C zeta (PKCξ) appears to play a 

central role in this process.  Phosphorylation of FADD by PKCξ reduced DISC formation 

in cells following Fas receptor oligomerisation.  Inhibition of Fas receptor mediated 

apoptosis was reversed by overexpressing the PKCξ inhibiting protein prostate apoptosis 

responsive 4 (PAR-4) (de Thonel et al., 2001).  PAR-4 overexpression was also found to 

enhance the trafficking and activation of Fas receptor and Fas ligand in prostate cancer 

cells.  This suggests that PKCξ may inhibit Fas receptor mediated apoptosis at several 

stages in the pathway upstream of Caspase 8 activation (Chakraborty et al., 2001).  PKCξ 

activity is implicated in tumour progression within a number of cancers by increasing 

proliferation and increasing resistance to apoptosis.  PKCξ activity was increased in Ras 

transformed fibroblasts as a direct result of decreased PAR-4 expression (Barradas et al., 

1999) and has been implicated as a mediator of a number of mitogenic signals associated 

with Ras transformation (Bjorkoy et al., 1997; Diaz-Meco et al., 1994).  In addition an 

increase in the activity of PKCξ has been identified in a number of tumours including 

prostate cancer (Cornford et al., 1999) and hepatocellular carcinomas (Tsai et al., 2000) 

and expression correlates with invasion in patients with bladder cancer (Langzam et al., 

2001).   
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Another FADD interacting kinase called homeodomain interacting protein kinase 3/ 

FADD interacting Serine/Threonine Kinase (HIPK3/FIST) has also been implicated in 

regulating DISC formation in vivo.  HIPK3 belongs to a family of nuclear kinases with at 

least two other members, HIPK1 and HIPK2.  HIPK3 has been shown to interact with 

and phosphorylate FADD in cells (Rochat-Steiner et al., 2000) while HIPK2 can 

associate with TRADD (Li et al., 2000a).  This suggests a role for these kinases in 

regulating death receptor mediated apoptosis.  HIPK3 overexpression was shown to 

inhibit Fas mediated JNK activation but did not affect apoptosis in 293T cells (Rochat-

Steiner et al., 2000).  Although JNK activation is not required for Fas mediated apoptosis 

in some cell lines (Abreu-Martin et al., 1999; Herr et al., 1999; Low et al., 1999), the 

sensitivity to Fas mediated apoptosis increases in other cell lines following JNK 

activation (Costa-Pereira et al., 2000; Curtin & Cotter, 2002; Le-Niculescu et al., 1999; 

Zhang et al., 2000).  Therefore, overexpression of HIPK3 may inhibit activation of JNK 

and subsequently decrease the sensitivity to Fas mediated apoptosis in some cell lines.  

Interestingly, several multi-drug resistant cell lines display increased HIPK3 activity 

(Begley et al., 1997; Sampson et al., 1993).  

 

In contrast with FADD, the expression of Caspase 8 is often decreased in cells resistant to 

Fas mediated apoptosis.  Hyper-methylation of the caspase 8 gene is frequently 

accompanied by loss of Caspase 8 expression in a number of tumours including 

retinoblastomas and neuroblastomas.  It is believed that by methylating key residues in 

the caspase 8 gene that cells can negatively regulate transcription (Harada et al., 2002).  
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However, while associated with regulating gene expression it is also possible that DNA 

methylation is just a side effect of decreased transcription.  Alternative splicing of 

Caspase 8 has also been shown to inhibit Fas mediated apoptosis.  The splice variant 

Caspase 8L contains a functional DED but is missing key residues in the catalytic site 

and is catalytically inactive.  Overexpression of Caspase 8L was found to increase 

resistance of Jurkat cells to Fas mediated apoptosis by interfering with Caspase 8 binding 

to FADD and functional DISC assembly (Himeji et al., 2002).   

 

Caspase 8L functions in a similar fashion to another inhibitor of Fas mediated apoptosis 

called FLICE inhibitory protein (FLIP).  FLIP was first identified as a viral protein 

(vFLIP) and was found to inhibit Fas mediated apoptosis when overexpressed in cells 

(Thome et al., 1997).  Cellular homologues were quickly identified and two major 

isoforms have been characterised, a short (FLIPS) and a long (FLIPL) isoform (Irmler et 

al., 1997).  Although coded by separate genes, FLIP share sequence homology with 

Caspase 8 and possesses a functional DED that can bind to the DED on FADD in 

competition with Caspase 8.  Like Caspase 8L, FLIPL and FLIPS are catalytically inactive 

and can inhibit Procaspase 8 processing and activation at the DISC when overexpressed 

in vivo (Scaffidi et al., 1999a).  Activation of a key transcription factor involved in cell 

survival called NF-κB can upregulate FLIP expression (Kreuz et al., 2001) and inhibit 

Fas mediated apoptosis (Chang et al., 2002).  Endogenous FLIPL is expressed at only 1% 

that of endogenous Procaspase 8 in many cell lines (Scaffidi et al., 1999a) and at low 

levels of expression FLIPL appears to enhance and not inhibit Fas mediated apoptosis by 

enhancing Caspase 8 recruitment and DISC formation (Chang et al., 2002).  Procaspase 8 
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bound to FLIPL can be partially processed and hetero-dimers of FLIPL and Caspase 8 

have been found to retain some protease activity (Micheau et al., 2002).  The preferred 

substrate for hetero-dimers of FLIPL and Caspase 8 is a protein kinase called RIP.   

 

RIP1 was initially identified as a death domain containing, Fas receptor interacting 

protein in two hybrid protein assays.  Transient overexpression of RIP1 caused 

transfected cells to undergo apoptosis (Stanger et al., 1995) and activation of RIP1 may 

explain in part why endogenous FLIPL expression enhances Fas mediated apoptosis.  

RIP1 has been shown to initiate a caspase independent mechanism for Fas mediated cell 

death in T cells when co-expressed with FADD (Holler et al., 2000).  In addition, 

Caspase 8 mediated cleavage of RIP1 produces a C-terminal fragment that appears to 

enhance apoptosis through enhanced DISC formation (Kim et al., 2000).  RIP1 belongs to 

a family with at least 3 other members that include RIP2 (Inohara et al., 1998; McCarthy 

et al., 1998; Thome et al., 1998), RIP3 (Sun et al., 1999; Yu et al., 1999) and RIP4 

(Meylan et al., 2002).  All 4 members of RIP contain a conserved N-terminal kinase 

domain and each member contains a unique C-terminal sequence responsible for 

subcellular localisation and function.  A caspase activation and recruitment domain 

(CARD) is located at the C-terminus of RIP2 and is required for the apoptotic activity of 

RIP2.  RIP2 is recruited to TNFR1 through the family of TRAF adapter proteins and may 

also be involved in DISC formation of other death receptors (McCarthy et al., 1998).  

However, recent reports suggest that the principle function of RIP2 in vivo is the 

activation of Caspase 1 and IL-1β production during an innate immune response (Chin et 

al., 2002; Druilhe et al., 2001; Kobayashi et al., 2002). RIP 3 is also recruited to the 



 

 14

TNFR1 receptor through its unique C-terminus that binds with RIP1.  RIP3 inhibits RIP1 

mediated NF-κB activation following TNFR1 activation and regulates RIP1 pro-

apoptotic function (Sun et al., 2002; Yu et al., 1999).  The recently identified RIP4 

contains 11 C-terminal ankyrin repeats.  The ankyrin repeat domain is believed to 

regulate the activity of RIP4 and cleavage by caspases during Fas mediated apoptosis has 

been shown to prevent the activation of the NF-κB survival pathway (Meylan et al., 

2002).   

 

Another Fas interacting protein that was identified by two-hybrid screening is DAXX.  

Transient expression of DAXX increases Fas mediated apoptosis in 293, HeLa, L929 and 

HT1080 cell lines (Torii et al., 1999; Yang et al., 1997) while a truncated, dominant 

negative form of DAXX was found to inhibit Fas mediated apoptosis (Charette et al., 

2000; Torii et al., 1999).  DAXX binds to the death domain of the Fas receptor and can 

activate the JNK kinase cascade independent of Caspase 8 activation by recruiting and 

activating the upstream kinase ASK1 (Chang et al., 1998; Ko et al., 2001).  Activation of 

JNK was found to accelerate Fas mediated apoptosis in various cell lines (Costa-Pereira 

et al., 2000; Curtin & Cotter, 2002; Le-Niculescu et al., 1999; Zhang et al., 2000).  

Overexpression of the small heat shock protein HSP27 was found to abrogate the 

interaction between ASK1 and DAXX.  Furthermore HSP27 expression can inhibit JNK 

activation following Fas receptor activation and protects against Fas mediated apoptosis 

(Charette et al., 2000).  Neither DAXX or RIP were found to be necessary for Fas 

mediated apoptosis in lymphoma cell lines (Villunger et al., 2000).  This suggests that 

both proteins can modulate sensitivity to Fas mediated apoptosis but are not essential 
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components of Fas mediated apoptosis in all cell lines.  By enhancing DISC formation 

and propagating apoptotic signals these proteins appear to enhance the sensitivity of some 

cell lines with resistance to Fas mediated apoptosis. 

 

DAXX can bind with and undergo covalent modification by SUMO-1, a ubiquitin-like 

protein that was found to associate with the death domain of Fas receptor.  

Overexpression of SUMO-1 can protect against Fas mediated apoptosis in BJAB cells 

(Okura et al., 1996).  Modification of proteins by SUMO-1 can have a variety of effects 

including changes in stability and subcellular localisation (Hay, 2001).  However, 

modification with SUMO-1 was not found to alter the stability or subcellular localisation 

of DAXX (Jang et al., 2002; Ryu et al., 2000).  Instead modification of PML by SUMO-1 

sequesters DAXX in nuclear domains (ND-10 domains) and may inhibit the pro-

apoptotic function associated with cytoplasmic DAXX.  SUMO-1 can also modify the 

TRADD binding kinase HIPK2 (Kim et al., 1999).  Identification of other proteins 

modified by SUMO-1 should help explain the mechanism by which SUMO-1 can protect 

cells from Fas mediated apoptosis. 

 

Like RIP and DAXX, mouse Fas-associated factor 1 (FAF1) was first identified using 

Fas receptor as bait in a two hybrid screening assay (Chu et al., 1995).  Different methods 

were used in identifying human and quail homologues and these were also found to 

interact with the intracellular domain of Fas receptor both in vitro and in vivo (Frohlich et 

al., 1998; Ryu & Kim, 2001).  Overexpression of FAF1 was not found to induce 

apoptosis in transfected L-cells.  Instead the sensitivity of cells to Fas ligand was found to 
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be enhanced in cells overexpressing FAF1 (Chu et al., 1995).  FAF1 has a ubiquitin-like 

domain but in contrast with SUMO-1 this domain is pro-apoptotic in vivo (Ryu & Kim, 

2001).  Casein kinase 2 can phosphorylate FAF1 at several residues in vitro and in vivo 

but the function of this has not yet been identified (Jensen et al., 2001). 
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Modulators of Fas receptor and Fas ligand expression 

A common mechanism employed by cells to increase or decrease the sensitivity to Fas 

mediated apoptosis is the regulated cell surface expression of Fas receptor and Fas ligand.  

Alternative splicing, protease-mediated cleavage, gene expression and sequestering of 

Fas receptor and Fas ligand have been found to regulate Fas mediated apoptosis and are 

described below and outlined in Figure 3. 

 

Fas receptor is expressed at a single locus on chromosome 10 in human cells and 

chromosome 19 in mouse cells.  At least 8 splice variants and 7 distinct isoforms of Fas 

receptor have been identified in human cells and arise from alternative splicing of Fas 

receptor RNA.  Only isoform 1 encodes the functional, full-length protein and is 335 

amino acids in length.  It consists of 3 cysteine-rich pseudo-repeats, a transmembrane 

domain and an intracellular death domain.  Isoform 2 is 314 amino acids in length and 

encodes 3 cysteine-rich regions, a death domain but is missing a transmembrane region.  

Isoforms 4 through 7 are also missing a transmembrane region and these soluble isoforms 

of Fas receptor may sequester and inactivate Fas ligand on adjacent cells and infiltrating 

cytotoxic T lymphocytes (Cheng et al., 1994).  Overexpression of soluble Fas receptor 

has been implicated with the progression of prostate cancer (Furuya et al., 2001), 

Melanoma (Ugurel et al., 2001), bladder cancer (Mizutani et al., 1998) breast cancer 

(Sheen-Chen et al., 2003) and leukaemia (Wood et al., 2003) and is known to antagonise 

Fas receptor mediated apoptosis in vitro (Cheng et al., 1994).  Isoform 3 is 220 amino 

acids long and contains 3 cysteine-rich pseudorepeats, a transmembrane region but the 

cytoplasmic domain is truncated and does not contain a functional death domain.  



 

 18

Overexpression of this isoform occurs in fetal thymocytes and may account for the high 

resistance in these cells to apoptosis following Fas receptor aggregation (Jenkins et al., 

2000).  The mechanisms employed by cells to alter Fas RNA splicing and thus alter the 

sensitivity to Fas mediated apoptosis appears to be an important process in vivo but 

remain to be characterised.   

 

In contrast with Fas receptor, soluble Fas ligand is not generated by alternative splicing 

but is instead generated by post-translational modification of membrane bound Fas ligand 

at the cell surface.  Matrix metalloproteinases are external serine proteases that cleave a 

wide range of extracellular substrates.  Membrane bound Fas ligand can be cleaved at a 

conserved cleavage site by Matrix Metalloproteinase-7 (MMP-7) into a less active 

soluble form (Powell et al., 1999; Tanaka et al., 1998).  MMP-7 expression has been 

implicated in tumour initiation (Rudolph-Owen et al., 1998; Shigemasa et al., 2000) and 

invasion (Yamamoto et al., 1999).  Expression of MMP-7 in well differentiated tumour 

cells promotes resistance to Fas mediated apoptosis (Fingleton et al., 2001).  In addition, 

overexpression of MMP-7 is believed to promote mammary tumour initiation and 

progression in mice by selecting for tumour cells resistant to Fas mediated apoptosis 

(Vargo-Gogola et al., 2002).  Cells expressing low levels of a non-cleavable variant of 

Fas ligand or inhibition of matrix metalloproteinases increases the sensitivity to Fas 

mediated apoptosis (Knox et al., 2003).  Thus MMP-7 can control the expression of Fas 

ligand on the surface of adjacent cells and infiltrating lymphocytes by cleaving 

membrane bound Fas ligand.  This appears to be a major mechanism by which MMP-7 
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regulates the sensitivity of cells to Fas mediated apoptosis.  Increased resistance to Fas 

mediated apoptosis by MMP-7 may also play a role in tumour progression.   

 

Regulation of soluble Fas receptor and Fas ligand expression has been implicated in 

modulating sensitivity of cells to Fas mediated apoptosis.  Transcription of the fas 

receptor and fas ligand genes can also be regulated by a number of signal pathways and 

this in turn can regulate the extent of cell surface Fas receptor and Fas ligand expression.  

Natural killer cells (NK cells) possess the ability to kill by Fas mediated apoptosis and 

this is an important defence mechanism against tumour growth.  By directly increasing 

Fas receptor expression NK cells have been shown to increase the sensitivity of target 

cells to Fas mediated apoptosis (Screpanti et al., 2001).  Cytotoxic T lymphocytes (CTL) 

can also promote transcription of fas receptor in target cells through an Interferon-γ (IFN-

γ) dependent mechanism (Mullbacher et al., 2002).  Signal transducer and activator of 

transcription 1 (STAT1) is required for both IFN-γ mediated upregulation of Fas receptor 

and Fas ligand expression and also for IFN-γ dependent apoptosis in human tumour cells 

(Xu et al., 1998).  Pretreatment of prostate cancer cells with IFN-γ sensitises these cells to 

Fas mediated apoptosis (Selleck et al., 2003).  Another member of the STAT family 

STAT3 can negatively regulate transcription of fas receptor.  Expression of both STAT3 

and another transcription factor c-Jun is required to inhibit fas receptor transcription.  

Overexpression of either dominant negative STAT3 or dominant negative c-Jun was 

shown to increase the expression of Fas receptor (Ivanov et al., 2002).  Conversely, 

binding of c-Jun and activation transcription factor 2 (ATF2) to the fas ligand promoter 

induces fas ligand expression (Faris et al., 1998b).  Upregulation of Fas ligand expression 
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is associated with tumour progression and is believed to act as a defence against 

infiltrating lymphocytes (Belluco et al., 2002; Cefai et al., 2001; Strand et al., 1996) and 

overexpression of either dominant negative or dominant active MAP/Erk kinase kinase 1 

(MEKK1) demonstrated the role played by the c-Jun N terminal kinase (JNK) cascade in 

this process (Faris et al., 1998a; Faris et al., 1998b).  Activation of JNK has been 

demonstrated to upregulate Fas ligand expression and promote apoptosis during β-

Amyloid induced neuronal apoptosis (Morishima et al., 2001), during AICD after T cell 

receptor stimulation (Zhang et al., 2000) and following survival factor withdrawal in 

neurons (Le-Niculescu et al., 1999).   

 

Given the importance of the Fas apoptotic pathway in controlling tumour growth it is not 

surprising to discover that tumour suppressing proteins and onco-proteins can directly 

regulate fas receptor expression.  Fas receptor can be upregulated following DNA 

damage by ionising radiation and genotoxic drugs in a P53 dependent manner (Ruiz-Ruiz 

& Lopez-Rivas, 1999; Sheard et al., 1997).  A P53-responsive element was identified 

within the first intron of the fas receptor gene in subsequent studies and wild type P53 

expression was found to be required for Fas receptor upregulation in response to anti-

cancer drugs (Muller et al., 1998).  Basal expression of Fas receptor is also regulated by 

the onco-protein Ras.  Overexpression of Ras was shown to decrease Fas receptor 

expression in vitro and in vivo (Fenton et al., 1998).  Inhibition of Ras using 

Farnesyltransferase inhibitors was found to upregulate Fas receptor expression in ras-

transformed cells (Zhang et al., 2002). 
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In addition to modulating the transcription and alternative splicing of Fas receptor 

mRNA, the expression of cell surface Fas receptor can be regulated by altering 

intracellular trafficking of Fas receptor.  Fas receptor is a membrane bound protein and 

subcellular trafficking is an important mechanism for regenerating and recycling Fas 

receptor.  In addition intracellular stores of Fas receptor may translocate to the plasma 

membrane in response to apoptotic stimuli (Bennett et al., 1998; Sodeman et al., 2000).  

FAP-1 is also known as Protein-tyrosine phosphatase, nonreceptor-type, 13 (PTNP13) 

and was found to associate with the carboxy terminal 15 amino acids of human Fas 

receptor (Sato et al., 1995).  In vitro inhibition of the interaction between FAP-1 and Fas 

using synthetic peptides demonstrated that the amino acid motif SLV found at the 

carboxy terminus of the Fas receptor was both sufficient and necessary for binding to 

FAP-1 (Yanagisawa et al., 1997).  Mouse Fas receptor does not contain this c-terminal 

motif and does not interact with either mouse FAP-1 (PTP-BL) or human FAP-1 when 

overexpressed in cells (Cuppen et al., 1997).  Overexpression of FAP-1 increased the 

resistance of Fas sensitive human cell lines to Fas-mediated apoptosis (Li et al., 2000b; 

Sato et al., 1995; Ungefroren et al., 2001).  In addition, Fas resistant memory T cells were 

found to express higher levels of FAP-1 mRNA than Fas sensitive naïve T cells and 

resting T cells expressed higher levels of FAP-1 mRNA than activated T cells suggesting 

that FAP-1 expression regulates the sensitivity of cells to Fas mediated apoptosis (Zhou 

et al., 1998).  FAP-1 was found to sequester Fas receptor in the Golgi complex when 

overexpressed in pancreatic cancer cells and this prevents the translocation Fas receptor 

from intracellular stores to the plasma membrane following stimulation with Fas ligand.  

FAP-1 was not detected at the DISC of Fas stimulated cells suggesting that the 
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sequestration of Fas receptor and ineffective DISC formation due to low surface 

expression of Fas receptor is the principle mechanism by which FAP-1 interferes with 

Fas mediated apoptosis (Ungefroren et al., 2001).   
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Prostate Cancer 

Epidemiology of prostate cancer 

Prostate cancer is a slowly progressing disease that primarily affects elderly men.  In the 

late 1980’s and early 1990’s a sharp rise in the incidence of prostate cancer was observed 

first in the USA and shortly afterwards in northern European countries.  This was due to 

increases in screening for prostate cancer and public awareness of the disease due to 

media coverage of prostate cancer.  In addition, more accurate biomarkers were identified 

for prostate cancer including prostate specific antigen (PSA) and these markers allowed 

prostate cancer to be detected before symptoms became evident.  This facilitated the 

screening process for prostate cancer by identifying “at risk” individuals (Potosky et al., 

1995). 

 

Prostate cancer is now the third most common cancer identified in men behind lung 

cancer and stomach cancer with 543,000 new cases identified worldwide in 2000 alone.  

This accounts for over 10% of the total new cancers identified in males and 5.4% of all 

cancers detected globally in 2,000.  Approximately 204,000 global deaths were directly 

related to prostate cancer in the same year (Parkin et al., 2001).  Prostate cancer is a slow 

progressing disease and men diagnosed with prostate cancer often are alive for longer 

than those diagnosed with other cancers.  As a result, the global prevalence of prostate 

cancer is very high and over 1.5 million people are currently alive with prostate cancer at 

least 5 years after diagnosis.  The high incidence combined with the slow progression of 

the disease makes prostate cancer the most prevalent cancer in men today and the third 
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most prevalent cancer in both sexes behind breast cancer and colorectal cancer (3.8 

million and 2.4 million alive 5 years after diagnosis respectively) (Parkin et al., 2001). 

 

The incidence of prostate cancer is much greater in developed countries such as North 

America, EU and Australia than in developing countries including South America and 

Southern Asia.  About 400,000 new cases are identified each year in developed countries 

(75%) while only 150,000 new cases are reported each year in developing countries 

(25%).  Whilst screening methods in developed countries may account for some of this 

difference, life expectancy in developing countries also plays a role.  Prostate cancer is a 

disease that primarily affects elderly men and the global incidence of prostate cancer is 

expected to rise to 1 million new cases annually by 2015.  This is due primarily to 

increasing life expectancies in many developing countries (Parkin et al., 2001).  Obesity 

and the adoption of a “western diet” that is high in fats, dairy products and meat has also 

been implicated in increasing the risk of prostate cancer (Schulman et al., 2001).   

 

Progression and diagnosis of prostate cancer 

More than 100 distinct types of cancer have been described in virtually every tissue in the 

body.  Although cancer is a highly heterogenous disease with distinct genetic alterations 

and mutations all cancer cells can be described as cells that have developed defects in the 

normal regulatory circuits controlling cell proliferation and location.  At least 6 distinct 

cellular alterations are required during tumorigenesis and progression: 1) self sufficiency 

for growth signals, 2) insensitivity to growth-inhibitory signals, 3) limitless potential for 

replication, 4) sustained angiogenesis, 5) metastasis and 6) resistance to apoptosis 
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(Hanahan & Weinberg, 2000).  In prostate cancer each of these barriers between normal 

and malignant cell growth must be breached before or during disease progression.  Figure 

4 summarises the principle alterations identified in prostate cancer progression and 

tumorigenesis. 

 

The earliest genetic alterations detected in prostate cancer to date are chromosomal 

deletions in normal prostate epithelial cells (Dong, 2001).  Subsequent cumulative 

genetic aberrations transform prostate epithelial cells from a pre-neoplastic state to 

intraepithelial neoplasia (i.e neoplasia in situ) and ultimately to prostate carcinoma.  

Androgen independence also occurs during prostate cancer progression and this event 

promotes the successful establishment and proliferation of prostate cancer cells at distal 

sites (Lara et al., 1999).  Progression of prostate cancer from androgen dependence to 

androgen refractory is an indicator of the severity of the disease and is a major factor 

when estimating the life expectancy of the patient.  Prostate cancer is a slow proliferating 

disease and the life expectancy for patients diagnosed with localised androgen dependent 

disease can be up to 10 years (Siemens, 2003).  However, patients diagnosed with 

metastatic, androgen independent prostate cancer have a median life expectancy of only 

15 to 20 months (Knox & Moore, 2001).  The bone is the principle site of metastases in 

prostate cancer and skeletal metastases are present in 90% of patients dying from prostate 

cancer (Bubendorf et al., 2000).  As a result, bone pain is the most common symptom 

associated with advanced prostate cancer.  Spinal cord compression, anaemia and edema 

are other common symptoms displayed by patients with advanced disease (Smith et al., 

1999). 
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The most reliable and commonly used markers for risk definition in prostate cancer are 

stage (endorectal magnetic resonance imaging), Gleason score (morphology), and serum 

PSA levels (Oesterling et al., 1997; Partin et al., 1993).  In addition, serum PSA levels are 

widely used to screen for prostate cancer in asymptomatic men over the age of 50.  

However, elevated PSA may also occur in non-malignant conditions including benign 

prostate hyperplasia (BPH) (Catalona et al., 1998) and expression of PSA has even been 

reported in some non-prostatic tissues (Smith et al., 1995; Waheed & Van Etten, 2001).  

Doubt exists over the accuracy of this test in detecting prostate cancer and studies using 

microarrays have identified other potential biomarkers for screening prostate cancer 

(Dhanasekaran et al., 2001).   

 

The clinical value in screening asymptomatic males for prostate cancer is controversial.  

Although prostate cancer can be detected using serum PSA levels many years before 

symptoms become evident (Gann et al., 1995), recent studies have not identified any 

association between PSA screening and decreases in PC mortality (Coldman et al., 2003; 

Iscoe, 1998).  This is most likely because no therapy to date has been demonstrated to 

significantly prolong patient survival with advanced prostate cancer.  In fact palliative 

care is the principle consideration when dealing with hormone refractory metastatic 

prostate cancer. 
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Current treatment of prostate cancer 

Treatment of prostate cancer varies depending on the grade (morphology) of the tumour 

(Repetto et al., 1998).  Usually androgen ablation is used to control androgen sensitive 

tumours.  This results in tumour regression and a period of temporary relief in 90% of 

patients.  However, androgen independent prostate cancer invariably develops with a 

mean time of 12 to 18 months.  Androgen independent tumours are usually more 

aggressive and less responsive to chemotherapy than androgen sensitive tumours.  

Intermittent androgen ablation can slow but does not prevent the progression of prostate 

cancer to androgen independence (Akakura et al., 1993).   

 

Radical prosectomy or radical radiotherapy may be administered to patients presenting 

with localised prostate cancer and both surgery and radiotherapy are believed to increase 

the mean survival rate after 5 years (Hanks & Lanciano, 1996; Siemens, 2003).  

However, lymph node metastases are often overlooked before surgery.  In patients 

presenting with metastatic prostate cancer conventional chemotherapeutic agents are only 

useful as palliative treatments and do not significantly improve long-term survival 

(Sternberg, 2001).  Some new drugs have been identified that slow the progression of 

prostate cancer including atrasentan (van der Boon, 2002) and epirubicin (Petrioli et al., 

2002).  However, the ability to control prostate cancer at any stage with 

chemotherapeutic agents is severely limited and further research is needed to understand 

the mechanisms by which prostate cancer evades apoptosis.   
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JNK is a protein with “Jekyll and Hyde” properties in prostate cancer 

One protein implicated in prostate cancer progression is c-Jun N-terminal Kinase (JNK) 

and has been shown to regulate both cell survival and cell death pathways in vivo.  The 

threshold of JNK activation appears to be important in determining the fate of the cell.  

While transient, low levels of JNK activity have been often associated with cell survival, 

prolonged higher levels of JNK activity are often necessary for proapoptotic effects 

associated with JNK (Davis, 2000).  JNK is usually activated following phosphorylation 

at both Thr183 and Tyr185 residues by either Mitogen activated protein kinase kinase 4 

(MKK4) or MKK7 in response to upstream kinase signals (Figure 5).  JNK is activated in 

response to a number of stress signals including ultraviolet (UV) irradiation, cytotoxic 

drugs and cytokines (Ip & Davis, 1998; Kyriakis & Avruch, 2001).  Various growth 

factors may also stimulate JNK activity including EGF and IL-1 (Rosette & Karin, 1996).   

 

Translocation of active JNK can occur from the cytoplasm to nuclear extracts where it 

has been reported to phosphorylate and modulate the activities of numerous transcription 

factors (Cavigelli et al., 1995; Kyriakis et al., 1994; Mizukami et al., 1997).  This in turn 

alters the expression of genes including transcription factors, growth factors and IFN-γ 

responsive genes (Han et al., 2002).  JNK can also participate directly in signal 

transduction pathways when it phosphorylates a number of cytoplasmic targets including 

Bcl-2 (Park et al., 1997) and Bcl-XL (Kharbanda et al., 2000).   JNK interacting protein 1 

(JIP-1) acts as a scaffold protein in the JNK kinase cascade and sequesters JNK in the 

cytoplasm when overexpressed in cells.  This prevents phosphorylation of nuclear targets 

and enhances the phosphorylation of cytoplasmic targets by JNK (Dickens et al., 1997).  
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JIP-1 is not believed to be involved in regulating survival and death pathways because 

targets of JNK in the cytoplasm may be either pro-apoptotic or anti-apoptotic and nuclear 

targets of JNK may also enhance either cell survival or cell death.  Instead it is believed 

to direct JNK between faster acting signal transduction responses and longer lasting gene 

transcription responses.  Interestingly, inactivation of JNK by MAPK phosphatase-2 

(MKP-2) was dependent on JNK translocation to the nucleus.  In addition, different stress 

stimuli have been shown to preferentially induce predominantly cytoplasmic or nuclear 

JNK localisation and presumably different targets for JNK are activated in response to 

different stimuli in vivo (Robinson et al., 2001). 

 

The exact mechanisms utilised by JNK to regulate both cell survival and cell death is 

poorly understood.  However, recent studies have illuminated the novel mechanisms by 

which JNK can promote either cell survival or apoptosis by targeting different members 

of the Bcl-2 family.  The anti-apoptotic protein Bcl-2 is normally associated with 

mitochondrial membranes (Gotow et al., 2000) and can be phosphorylated at Ser70 by 

JNK in vitro.  This residue resides in a non-structural loop of the Bcl-2 protein.  

Phosphorylation of Ser70 has been found to stabilise the interaction between Bcl-2 and 

it’s pro-apoptotic partner BAX and has been associated with increased cell survival in 

vivo (Deng et al., 2001).  However, prolonged JNK activation has been associated with 

upregulating the transcription of the BH3-only Bcl-2 family members Bim and Dp5.  

BH3-only Bcl-2 family members are pro-apoptotic but the expression of either BAX or 

BAK is required to induce apoptosis in cells.  It is believed that Bim and Dp5 bind 

preferentially with Bcl-2 in place of BAX and cause homodimerisation of BAX and 
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insertion into mitochondrial membranes.  Subsequent pore formation induces cytochrome 

c release and caspase activation (Harris & Johnson, 2001).  In contrast with Bcl-2, 

phosphorylation of the anti-apoptotic Bcl-2 family members Bcl-XL (Kharbanda et al., 

2000) and Mcl-1 (Inoshita et al., 2002) by JNK is believed to reduce the anti-apoptotic 

activities and point mutation analysis has shown that cells expressing non-

phosphorylatable Bcl-XL and Mcl-1 mutants are less sensitive to apoptosis following 

JNK activation (Inoshita et al., 2002; Kharbanda et al., 2000).  Thus by altering the 

expression of various anti-apoptotic Bcl-2 family members cells can increase or decrease 

their sensitivity to stress induced JNK activation. 

 

Increased basal JNK activity has been implicated in tumour progression and correlates 

with stage in some tumours and leukaemias.  JNK activity is required for the invasion of 

peripheral organs by BCR-Abl expressing lymphomas and contributes to enhanced 

disease progression in mouse models of CML.  This is primarily due to increasing the 

resistance of transformed B-lymphocytes to apoptosis (Hess et al., 2002).  Many brain 

tumours display elevated JNK activity in response to EGF receptor overexpression.  

Elevated JNK activity in brain tumours contributes to anchorage independent cell growth, 

increased resistance of cells to serum starvation and cytotoxic drugs and also promoted 

cell growth to a lesser degree (Antonyak et al., 2002).  Overexpression of JNK in 

NIH3T3 fibroblasts conferred some aspects of transformation including increased 

survival, increased proliferation and anchorage independent cell growth (Rennefahrt et 

al., 2002).  JNK increases the expression of telomerase a key protein in tumour 

progression (Alfonso-De Matte et al., 2002). 
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In prostate cancer increased JNK activity and in particular JNK2 has been implicated in 

promoting proliferation both in vitro and in vivo.  Administering anti-sense directed 

against JNK1 and JNK2 inhibited prostate tumour growth significantly by increasing the 

susceptibility of cells to apoptosis (Yang et al., 2003) and was found to sensitise prostate 

cancer cells to cytotoxic drugs (Potapova et al., 1997).  Tumour growth of PC cells was 

strongly inhibited in mice receiving therapeutic doses of anti-sense JNK oligonucleotides 

(Gjerset et al., 2001).  SAGE analysis of PC3 prostate cancer cells demonstrated that 

JNK2 increased expression of DNA repair enzymes and drug resistant genes, while it 

decreased various apoptotic genes (Potapova et al., 2002). 
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Fas receptor and prostate cancer 

Net growth in any tissue is dependent on two opposing factors, the rate of cell 

proliferation and the rate of apoptosis and normal tissue homeostasis in adults requires 

that these rates are equal.  The regulation of cell proliferation and apoptosis is defective 

in tumour cells and cell proliferation exceeds apoptosis during tumour progression (Evan 

& Vousden, 2001; Hardy & Stark, 2002).  Inhibition of apoptosis is significant as is 

increased cellular proliferation in the development of prostate cancer (Tu et al., 1996) and 

the expression of many proteins implicated in apoptosis may be altered during prostate 

cancer progression (Figure 4) (Gurumurthy et al., 2001). 

 

One of the key pathways in apoptosis is the Fas receptor mediated pathway and many 

chemotherapeutic drugs appear to elicit their cytotoxic function by activating various 

components of the Fas receptor pathway (de Souza et al., 1997; Micheau et al., 1999).  In 

addition, radiotherapy upregulates Fas receptor expression in tumour cells in a P53 

independent fashion (Owen-Schaub et al., 1995).  Tumour cells develop resistance to Fas 

receptor mediated apoptosis as a defence against immune surveillance and in response to 

chemotherapy (O'Connell et al., 1996).  However, early stages of prostate cancer display 

decreased sensitivity to Fas mediated apoptosis even prior to clinical intervention.  This is 

probably due to the reliance of prostate cancer progression on developing resistance to 

apoptosis above increasing rates of cell proliferation.  In addition, cell lines derived from 

metastatic prostate cancer display increased resistance to Fas mediated apoptosis when 

compared with cell lines derived from primary tumours and the degree of resistance to 
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Fas mediated apoptosis has been correlated with clinical progression of prostate cancer 

(Hedlund et al., 1998). 

 

Chemosensitising prostate cancer cell lines to Fas 

A number of groups have studied the ability of various chemotherapeutic drugs to 

sensitise prostate cancer cell lines to Fas mediated apoptosis.  Although resistance to Fas 

receptor mediated apoptosis correlates with progression of prostate cancer, combined 

therapy using cytotoxic drugs and Fas receptor agonists is not feasible in patients 

suffering from cancer because of the severe systemic toxicity associated with anti-Fas 

antibodies in murine models (Ogasawara et al., 1993).  However, it was hoped that the 

mechanisms by which sublethal doses of chemotherapeutic drugs sensitise cells to would 

be determined.  Such information is vital for developing chemotherapeutic regimens that 

are effective against prostate cancer and in particular androgen independent, metastatic 

prostate cancer. 

 

Preliminary studies indicated that prostate cancer cells were resistant to Fas mediated 

apoptosis even though Fas receptor was expressed on the surface of these cells.  

Treatment with various cytotoxic drugs sensitised prostate cancer cell lines to apoptosis 

by both anti-Fas antibodies and cytotoxic T lymphocyte co-cultures (Rokhlin et al., 1997; 

Uslu et al., 1997).  This trend appeared to be independent on the cellular targets of the 

various chemotherapeutic agents.  The Topoisomerase I inhibitor camptothecin was 

identified as being the most effective drug in sensitising DU 145 prostate cancer cells to 

Fas mediated apoptosis (Costa-Pereira & Cotter, 1999).  Subsequent anti-sense studies 
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implicated JNK activation by camptothecin as being both necessary and sufficient for 

sensitising DU 145 cells to Fas mediated apoptosis (Costa-Pereira et al., 2000). 

 

Ligation of Fas receptor with Fas ligand is generally accompanied by a prolonged 

increase in activity of JNK (Latinis & Koretzky, 1996; Wilson et al., 1996).  JNK 

activation following low levels of Fas receptor crosslinking is dependent on caspase 

activity (Lenczowski et al., 1997).  Cleavage of two upstream kinases in the JNK 

cascade, Mst1 (Graves et al., 2001) and MEKK1 (Deak et al., 1998) following Fas 

receptor activation were found to be involved in caspase-dependent JNK activation.  

Meanwhile caspase-independent JNK activation occurs following higher levels of Fas 

receptor crosslinking.  This requires the recruitment of ASK1 to the DISC through it’s 

association with the Fas binding adapter protein DAXX (Chang et al., 1998; Tobiume et 

al., 2001).  While JNK activity has no effect on Fas mediated apoptosis in some cell lines 

(Abreu-Martin et al., 1999; Hofmann et al., 2001; Low et al., 1999) others have reported 

that JNK is required for apoptosis following Fas receptor activation (Costa-Pereira et al., 

2000; Le-Niculescu et al., 1999; Zhang et al., 2000).  However, the mechanism by which 

JNK accelerates Fas mediated apoptosis in vivo has not been determined yet. 
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Aims of Project 

In light of the recent work highlighting the importance of JNK both in survival and 

apoptosis in prostate cancer we decided to study the effects of JNK on Fas receptor 

mediated apoptosis.  Although a number of animal models for prostate cancer have been 

developed including TRAMP mouse model and Dunning rat model (Bostwick et al., 

2000) these have not been well characterised yet.  We chose to conduct this research 

using a cell culture based model because of the versatility of these models and also 

because prostate cancer cell lines have been well characterised in the literature (Hsieh & 

Chung, 2001).   
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Figure 1:  Schematic diagram depicting the death receptors Fas, TNF-R1, DR3, TRAIL-R1, TRAIL-R2 and 
DR6 and the decoy receptors DcR1, DcR2 and DcR3.  The number of Cysteine-rich pseudorepeats present is 
indicated by the number of extracellular domains for each receptor. Ligands that are known to bind to these 
receptors are all shown and are predominantly membrane bound.  Some death receptors can bind with more 
than one ligand and some ligands bind to more than one receptor as indicated.  Important adapter proteins 
that are recruited to each receptor and that are involved in signal transduction are also indicated.
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Figure 2: Illustration depicting the major events during DISC formation. Microaggregates of Fas receptor are formed after 
binding with Fas ligand.   Caspase 8 is activated and is required for the formation of large clusters.  ASK1 and RIP activation 
during DISC formation promote apoptosis.  Mitochondria serve as an amplification step in type II cells.  Finally, receptor 
clusters are endocytosed and may be recycled.
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Figure 3: Schematic diagram identifying the major regulatory mechanisms of Fas receptor and Fas ligand expression and 
activation.  Fas receptor is alternatively spliced producing inhibitory isoforms including membrane bound isoform 3 and soluble 
Fas receptor isoforms that interfere with Fas receptor activation by Fas ligand.  The extracellular protease MMP-7 can cleave Fas 
ligand at a conserved site.  Soluble Fas ligand binds with Fas receptor but inhibits DISC formation .  Stress stimuli include DNA 
damage and immune responses and can activate the JNK kinase cascade .  JNK phosphorylates and activates c-Jun, P53 and 
ATF2 and increases the expression of Fas receptor and Fas ligand , . IFN-γ is secreted by CTL and activates the transcription 
factor STAT1 .  STAT1 upregulates Fas receptor expression and sensitises cells to CTL mediated cell death.
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Figure 4; At least 6 independent stages are required for progression of normal 
prostate epithelial cells into malignant invasive carcinoma cells.  This figure 
summarises these key stages and also highlights the effector proteins required during 
prostate cancer progression.
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Figure 5; Kinases upstream of JNK in the JNK cascade display a hierarchal 
structure and mediate JNK activation in response to numerous signals.  MKK4 and 
MKK7 are immediately upstream of JNK and are called MAP kinase kinases 
(MAPKK), kinases that phosphorylate MAPKK are called MAPKK kinases 
(MAPKKK) and so on.  The MAPKKK and MAPKKKK are responsible for detecting 
the various stress stimuli.  For example, ASK1 activates JNK in response to death 
receptor activation and UV irradiation while HPK1 promotes JNK activity in response 
to the onco-protein Ras.  The different scaffold proteins required by each MAPKKK 
or MAPKKKK for JNK activation may determine the substrate specificity of JNK in 
vivo.



Anisomycin activates JNK and sensitises DU 145 prostate
carcinoma cells to Fas mediated apoptosis

JF Curtin1 and TG Cotter*,1

1Department of Biochemistry, University College Cork, Lee Maltings, Prospect Row, Cork, Ireland

Treatment of the hormone refractory prostate cancer cell line DU 145 with sublethal concentrations of chemotherapeutic
drugs has been reported to sensitise these cells to Fas mediated apoptosis. However, the mechanism by which this occurs has
not been determined. Our group has shown that inhibition of JNK activity completely abrogates the effects of
chemotherapeutic drugs. Using anisomycin, a potent JNK agonist, we have demonstrated a role for JNK in Fas mediated
apoptosis in DU 145 cells. Inhibition of Caspase 8 and Caspase 9 completely inhibits this process which suggests that DU 145
cells require mitochondrial amplification of the Fas apoptotic signal. Furthermore, we have shown that inhibition of Fas
mediated apoptosis is an early event in DU 145 cells, occurring upstream of Caspase 8 cleavage. It is hoped that identifying
the target of JNK will allow novel therapies to be developed for the treatment of hormone refractory prostate cancer. Such
therapies are especially important because no single or combined treatment to date has significantly prolonged survival in
patients with hormone refractory prostate cancer.
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Prostate cancer is the second most prevalent malignancy in the
EU after lung cancer with about 200 000 new cases diagnosed
and over 35 000 deaths each year. In England and Wales,
15 000 new cases and 8000 deaths are registered each year
(Parkin et al, 2001). Although the prognosis is good for indivi-
duals with localised tumours, 10 – 20% of patients are diagnosed
with metastatic prostate cancer (Crawford et al, 1999). These
patients are usually treated with hormone ablation therapy which
results in immediate tumour regression and temporary relief for
the patient. However, hormone refractory prostate cancer invari-
ably develops within 2 – 3 years of hormone ablation (Petrylak,
1999). This slowly proliferating cancer is extremely difficult to
treat and the prognosis for the patient is generally poor. Over
the past 5 years, chemotherapy has been used to improve the
quality of life in patients with metastatic, hormone-refractory
prostate cancer. No treatment has yet been found that cures
the disease or even significantly prolongs survival (Petrylak,
1999).

Apoptosis, or programmed cell death (PCD), is characterised
by morphological features including chromatin condensation,
nuclear fragmentation, cell shrinkage, membrane blebbing and
apoptotic body formation (Kerr et al, 1972). Although a variety
of different environmental insults and signalling pathways can
stimulate apoptosis in cells, most of these signals converge at a
family of cysteine proteases called the caspases. Like many
proteases, they are synthesised in an inactive form and cleavage
into active caspases is essential for the proliferation of the apop-
totic signal. Caspases can be divided into two main subfamilies,
initiator caspases and effector caspases (Wolf and Green, 1999).
The Fas receptor is a member of the Tumour Necrosis Factor

receptor superfamily and is expressed at the plasma membrane
in a variety of tissues. Ligation of Fas ligand or a cross-linking
antibody to the Fas receptor induces apoptosis in susceptible cells.
Fas receptor clustering results in the recruitment and auto-clea-
vage of the initiator caspase, Procaspase 8, at the plasma
membrane. Active Caspase 8 proceeds to cleave downstream cellu-
lar targets including the effector Caspases 3 and 7, and the Bcl-2
family member Bid (Peter and Krammer, 1998). Often an ampli-
fication step is required for Caspase 3 cleavage and morphological
apoptosis. Caspase 8 cleaves Bid into tBid, a pro-apoptotic Bcl-2
family member that induces cytochrome c release and apoptosome
formation. This amplification loop through the mitochondrion
drives the apoptotic programme in type II cells (Scaffidi et al,
1999b).

DU 145 cells, a hormone refractory prostate adenocarcinoma,
are highly resistant to Fas mediated apoptosis in vitro. In a study
performed using cell lines derived from prostate tumours with
different pathological stages including DU 145, it was observed that
ALVA-31 and PPC-1 were sensitive to Fas mediated apoptosis.
These were reported to be isolated from primary prostatic
tumours. In contrast, the cell lines LNCaP, DU 145 and PC-3 were
resistant. These cell lines were reported to be derived from distant
metastases. The authors correlated prostate cancer disease progres-
sion with resistance to Fas. Furthermore they suggest that this
phenomenon may explain, at least in part, the inability to treat
hormone refractory prostate cancer (Hedlund et al, 1998). The
two other cell lines used in this study, JCA-1 and TSU-Pr1 have
since been reclassified as bladder cancer cell lines (van Bokhoven
et al, 2001).

In order to study the resistance of hormone refractory prostate
cancer to chemotherapy, the effects of chemotherapeutic drugs on
DU 145 cells was explored (Uslu et al, 1997; Costa-Pereira and
Cotter, 1999). Our group discovered that sublethal concentrations
of camptothecin, a novel topoisomerase I inhibitor, sensitised DU
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145 cells to Fas mediated apoptosis by 20-fold (Costa-Pereira and
Cotter, 1999). Activation of the stress kinase JNK was found to be
essential in potentiating Fas mediated apoptosis (Costa-Pereira et
al, 2000). In this study, we use anisomycin, a potent activator of
JNK, to underscore the role played by JNK in Fas mediated apop-
tosis in DU 145 cells.

MATERIALS AND METHODS

Cell lines and reagents

DU 145 and Jurkat T cells were obtained from American Type
Culture Collection (ATCC, Rockville, MD, USA). Cell culture
reagents were purchased from Gibco BRL (UK) with the excep-
tion of foetal calf serum (FCS) (Sigma, UK). Anisomycin was
purchased from Sigma (UK) and was dissolved in DMSO at
a concentration of 5 mg ml71. A working stock at 10 mg ml71

in RPMI was prepared from the original stock. A FACScan
(Beckton Dickinson, BD Biosciences, Germany) and Cell Quest
software Version 3.3 (Beckton Dickinson) were used for all flow
cytometry assays. Annexin V-FITC was purchased from Bender
MedSystems (Germany) and propidium iodide (PI) from Sigma
(UK). TUNEL reagents were obtained from Roche (UK) and
JC-1 was purchased from Molecular Probes (Netherlands). The
antibodies used in this study were mouse anti-Fas IgM clone
CH11, mouse anti-Fas IgG for flow cytometry (Bender MedSys-
tems, Germany), phospho-JNK (Thr183/Tyr185) clone G9 and
rabbit anti-Caspase 3 (Cell Signalling Technology, New England
Biolabs UK), rabbit anti-JNK1 and rabbit anti-Fas ligand (Santa
Cruz, USA), rabbit anti-Bid (BioSource International, USA),
rabbit anti-human caspase 8 (R&D Systems, UK) and mouse
anti-b Actin clone AC-15 (Sigma, UK). All FITC and R-
Phycoerythrin conjugated secondary antibodies were purchased
from Sigma (UK) and HRP conjugated secondary antibodies
from DAKO (Denmark). The Caspase inhibitors z-IETD-fmk
and z-LEHD-fmk were obtained from Calbiochem (CN Bios-
ciences UK). Enhanced Chemiluminescence Reagent (ECL) was
purchased from Amersham Biosciences (UK).

Cell culture and treatment

DU 145 cells were cultured in RPMI 1640 medium supplemented
with 5% FCS, 2 mM L-Glutamine in the presence of 10 IU ml71

penicillin-streptomycin. Jurkat cells were cultured in RPMI 1640
medium containing 10% FCS, 2 mM L-Glutamine and 10 IU ml71

penicillin-streptomycin. Cells were cultured at 378C in a humidi-
fied atmosphere with 5% CO2 and were routinely subcultured
every 2 – 3 days. Prior to every experiment DU 145 cells were
grown to 75% confluency and Jurkats were resuspended at 0.5
million ml71. DU 145 cells were pretreated with 250 ng ml71

anisomycin for 10 min before addition of 200 ng ml71 anti-Fas
IgM.

Annexin V binding and propidium iodide uptake assay

DU 145 and Jurkat cells were incubated with 250 ng ml71 aniso-
mycin and 200 ng ml71 anti-Fas IgM for 8 h. The cells were
subsequently harvested, washed once in PBS and resuspended in
Annexin V binding buffer (150 mM NaCl, 18 mM CaCl2, 10 mM

HEPES, 5 mM KCl, 1 mM MgCl2). FITC conjugated Annexin V
(1 mg ml71), which binds specifically to apoptotic cells, was added
to each sample and incubated at ambient temperature for 5 min.
Propidium iodide (50 mg ml71), excluded from viable cells, was
added immediately prior to reading the samples on the FACScan.
Where indicated the Caspase 8 and Caspase 9 inhibitors were incu-
bated for 10 min at 50 mM prior to treating the cells with
anisomycin or Fas.

DNA fragmentation assay

TUNEL measures DNA fragmentation using the enzyme Terminal
deoxynucleotide Transferase (TdT) to transfer multiple biotin
labelled nucleotides to the 3’ hydroxyl groups of DNA. FITC
conjugated Avidin can be used to stain this modified label. Using
flow cytometry, cells with fragmented DNA in their nuclei display
an increased fluorescent signal in the FL-1 channel relative to
untreated cells.

DU 145 and Jurkat cells were harvested, washed twice in PBS
and fixed slowly in 1% paraformaldehyde (PFA) on ice for
15 min. The cells were washed twice in PBS and resuspended in
25 ml reaction mixture (TdT buffer, 2.5 mM CoCl2, Bio-16-dUTP
and TdT enzyme). The DNA labelling reaction was allowed to
proceed for 30 min at 378C. The cells were washed twice in PBS
and resuspended in 50 ml staining buffer (56SSC, 5% w v71 dry
milk, 16Avidin-FITC and 1/10006Triton X-100). The cells were
stained for 30 min at room temperature in the dark and washed
twice in PBS. Flow cytometry and Cell Quest were used to collect
and analyse the data.

Fas receptor expression

0.56106 cells were harvested per sample and washed twice in PBS.
They were stained for 1 h at 48C with 20 mg ml71 of the primary
antibody mouse anti-Fas IgG. After another two washes with PBS,
the cells were stained with the FITC conjugated secondary antibody
sheep anti-mouse IgG for 1 h at 48C in the dark. Cells stained with
secondary antibody alone were used to compensate for intrinsic
fluorescence and non-specific binding of the secondary antibody.
The cells were washed twice in PBS and the presence of Fas R
was detected in FL-1 using a FACScan flow cytometer.

Fas ligand expression

0.56106 cells were harvested per sample and were fixed slowly in
ice cold 1% PFA for 15 min. The cells were permeabilised over-
night in 70% ethanol (7208C) and stained with 2 mg ml71

rabbit anti-Fas ligand or 2 mg ml71 rabbit irrelevant IgG in IFATX

(4% FCS, 150 mM NaCl, 10 mM HEPES, 0.1% sodium azide, 0.1%
Triton X-100) for 1 h at 48C. Subsequently, the cells were stained
for 1 h with 12 mg ml71 FITC-conjugated anti-rabbit IgG in the
dark at 48C. Fas ligand expression was analysed on the FACScan
using Cell Quest software.

Mitochondrial membrane depolarisation

The lipophilic cation called JC-1 is cell permeable and selectively
accumulates in the mitochondria of live cells. When depolarisation
of the mitochondria occurs, the emission spectrum of JC-1 changes
from 590 nm (its aggregated form) to 530 nm (its monomeric
form) and this can be analysed using flow cytometry. Depolarisa-
tion of mitochondria results in an increase in fluorescence in the
FL-1 channel, and a concurrent decrease in the FL-2 channel in
flow cytometers.

DU 145 cells were harvested, resuspended in RPMI+10% FCS
and 2.5 mg ml71 JC-1 was added. The samples were incubated at
room temperature for 20 min in the dark, washed twice in PBS
and read on the FACScan. Analysis was carried out using Cell
Quest software.

SDS – PAGE and Western blot

Protein extracts were prepared from cells using RIPA lysis buffer
(50 mM Tris, pH 7.4; 150 mM NaCl; 1 mM each of NaF, NaVO4

and EGTA; 1% NP40; 0.25% sodium deoxycholate; 0.2 mM

phenylmethylsulphonyl fluoride; 1 mg ml71 each of antipain, apro-
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tinin and chymostatin; 0.1 mg ml71 leupeptin; 4.0 mg ml71 pepsta-
tin) and 30 mg of protein was loaded in each lane of an SDS
polyacrylamide gel. Electrophoresis and Western blotting was
subsequently carried out. Non-specific protein binding sites on
the membrane were blocked using 5% dry milk in TBS+0.1%
Tween-20 for 1 h at room temperature. The membrane was stained
with primary and peroxidase conjugated secondary antibodies
according to the manufacturer’s recommended protocol and
labelled protein was detected using ECL.

RESULTS

Anisomycin activates JNK and sensitises DU 145 cells to
Fas mediated apoptosis

The hormone refractory cell line DU 145 is highly resistant to Fas
mediated apoptosis. This appears to be a common event during
prostate cancer progression. Cell lines isolated from early stages
of prostate cancer are usually sensitive to the Fas activating anti-
body anti-Fas IgM. Those cell lines derived from secondary
tumours after hormone ablation therapy are generally resistant to
Fas (Hedlund et al, 1998). Our group has previously shown that
camptothecin, a Topoisomerase I inhibitor, sensitises DU 145 cells
to Fas mediated apoptosis (Costa-Pereira and Cotter, 1999). Addi-
tional analysis identified activation of the stress kinase JNK as an
integral event in this process (Costa-Pereira et al, 2000). In order
to understand the mechanisms behind this sensitisation process
we have used anisomycin, an agonist of the JNK pathway in
mammalian cells, which is often used in studies involving JNK
because of its specificity and potency in activating the JNK path-
way. As expected, we found that anisomycin can act in synergy
with Fas to induce apoptosis in DU 145 cells. Phosphatidylserine
flipping, an early event during apoptosis was detected with
FITC-conjugated Annexin-V using flow cytometry. Propidium
iodide was used as a counter stain to distinguish between early
and late apoptosis (Figure 1A). Flow cytometry was also used to
detect DNA fragmentation, another hallmark of apoptosis, in
TUNEL labelled DU 145 cells following incubation with anisomy-
cin (250 ng ml71) and anti-Fas IgM (200 ng ml71) (Figure 1B).
This rapid onset of DNA fragmentation in our system is indicative
of a stronger apoptotic stimulus when anisomycin is used to sensi-
tise DU 145 cells to anti-Fas IgM in comparison with other
cytotoxic drugs. Extensive DNA fragmentation was only observed
after 48 h when CPDD and CHX were used (Rokhlin et al, 1997;
Uslu et al, 1997). Numerous reports have been described in the
literature of both Caspase 8 dependent and Caspase 8 independent
JNK activation during Fas mediated apoptosis. We used an anti-
body specific to phosphorylated JNK to assess the status of JNK
activation in DU 145 cells after 1 and 8 h incubation with aniso-
mycin (250 ng ml71) and anti-Fas IgM (200 ng ml71). We
verified that JNK is not activated either transiently (1 h) or
prolonged (8 h) with anti-Fas IgM (Figure 1c). As expected, aniso-
mycin was found to stimulate prolonged JNK activation in DU 145
cells. An in vitro kinase assay using radiolabelled 32P was used to
verify the activity of JNK (data not shown).

Fas receptor and Fas ligand are not up-regulated by
anisomycin in DU 145 cells

Various reports have shown that down-regulation of Fas receptor
or Fas ligand expression occurs in some cancer cells. In addition,
expression of Fas ligand has been reported to increase following
JNK activation in Jurkat cells (Herr et al, 2000). This increase in
Fas ligand expression caused an increase in the kinetics of Fas
mediated apoptosis. We assessed the expression of both Fas recep-
tor and Fas ligand over an 8 h period (1,2,4 and 8 h) following
incubation with anisomycin (250 ng ml71) or anti-Fas IgM

E
xp

erim
en

tal
T

h
erap

eu
tics

Time
(hours)

Phospho
JNK

JNK

1        8       1        8         1       8        1        8        

Untreated Anisomycin
Anti-Fas

IgM
Anisomycin and

anti-Fas IgM

P54
P46

P54
P46

C

70%

60%

50%

40%

30%

20%

10%

0%

T
U

N
E

L 
po

si
tiv

e

Untreated Anisomycin Anti-Fas IgM Anisomycin
and anti-Fas

IgM

B

70%

60%

50%

40%

30%

20%

10%

0%

A
po

pt
os

is

Untreated Anisomycin Anti-Fas IgM Anisomycin
and anti-Fas

IgM

A

Figure 1 Anisomycin sensitised the androgen independent cell line DU
145 to Fas mediated apoptosis. DU 145 cells were pre-treated with aniso-
mycin (250 ng ml71) for 10 min before the addition of anti-Fas IgM
(200 ng ml71). Cells were stained with Annexin V and PI (A) or TUNEL
(B) after 8 h incubation as described in the Materials and Methods section.
Flow cytometry was used to visualise the extent of apoptosis. Data are re-
presentative of at least three independent experiments. (C) Anisomycin,
not anti-Fas IgM, stimulates prolonged JNK activation in DU 145 cells. Wes-
tern blot analysis was used to detect active JNK in untreated DU 145 cells,
or cells treated with anisomycin (250 ng ml71), anti-Fas IgM
(200 ng ml71) or both anisomycin and anti-Fas IgM for 1 and 8 h. Total
JNK expression was determined to ensure equal protein loading.
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(250 ng ml71). Cell surface Fas receptor was expressed on 95% of
DU 145 cells and its expression was not found to change following
treatment with anisomycin or anti-Fas IgM (Figure 2A). Similarly,
Fas ligand was expressed in 90% of DU 145 cells and expression
was not increased in DU 145 cells following incubation with aniso-
mycin or anti-Fas IgM (Figure 2B). Western blot analysis
confirmed that the expression of Fas receptor and Fas ligand was
not upregulated following drug treatment (data not shown).

Activation of Caspase 3 during Fas mediated apoptosis

In order to delineate the mechanisms by which DU 145 cells are
sensitised to Fas mediated apoptosis we analysed the major events
during Fas mediated apoptosis. Most apoptotic stimuli converge on
Caspase 3, a cysteine protease and the main effecter caspase during
Fas mediated apoptosis. Once activated, Caspase 3 cleaves a variety
of substrates responsible for the morphological and biochemical
changes observed during apoptosis (Nicholson, 1999). We found
that both anisomycin and anti-Fas IgM treatment alone were insuf-
ficient for Caspase 3 activation in DU 145 cells. However, co-
incubation of cells with both anisomycin and anti-Fas IgM clearly
potentiates the activation of Caspase 3 in DU 145 cells (Figure 3A).
Anti-Fas IgM treated Jurkats are used as a positive control for

Caspase 3 activation. Flow cytometric analysis confirmed that
70% of DU 145 cells expressed the active form of Caspase 3 follow-
ing treatment with both anisomycin and anti-Fas IgM (data not
shown).

Mitochondrial membrane depolarisation

It has been shown that Fas receptor activation is often not suffi-
cient for direct activation of Caspase 3. These cells, known as
type II cells, require an amplification signal through the mitochon-
drion. Caspase 8 cleaves and activates Bid, a pro-apoptotic Bcl-2
family member. This results in mitochondrial membrane depolar-
isation, cytochrome c release and amplification of the Fas
apoptotic signal through Caspase 9 (Kim et al, 2000). Here we used
the voltage sensitive, lipophilic fluorescent probe JC-1 to analyse
the extent of mitochondrial membrane depolarisation in DU 145
cells. Depolarisation of the mitochondrion causes an increase in
FL-1 fluorescence and a concomitant decrease in FL-2 fluorescence
when analysed by flow cytometry (Cossarizza et al, 1993). We
found that stimulation of DU 145 cells for 8 h with anisomycin
(250 ng ml71) or anti-Fas IgM (200 ng ml71) alone did not result
in permeability transition of the mitochondria (Figure 3B). This
suggested that Fas mediated apoptosis is inhibited up-stream of
mitochondrial depolarisation in DU 145 cells. Incubation of DU
145 cells with both anisomycin (250 ng ml71) and anti-Fas IgM
(200 ng ml71) resulted in mitochondrial depolarisation. We found
that incubation of DU 145 cells with 50 mM z-LEHD-fmk (a
Caspase 9 specific inhibitor) completely abrogated apoptosis when
incubated with anisomycin (250 ng ml71) and anti-Fas IgM
(200 ng ml71) (Figure 3C). This suggested that mitochondrial
membrane depolarisation and cytochrome c release are essential
events for Fas mediated apoptosis in DU 145 cells.

Caspase 8 activation in DU 145 cells

The proximal caspase in the Fas apoptotic pathway is Caspase 8.
Recruitment and auto-cleavage of Procaspase 8 occurs following
Fas receptor activation in sensitive cells. Active Caspase 8 is tetra-
meric, consisting of two P14 and two P10 subunits. Using Western
blot analysis, we found that Caspase 8 is not cleaved in DU 145
cells following treatment with anti-Fas IgM (200 ng ml71) (Figure
4A). Therefore, we concluded that inhibition of Fas mediated
apoptosis occurred upstream of Caspase 8 activation in DU 145
cells. Caspase 8 cleavage products were only evident following
incubation with both anisomycin (250 ng ml71) and anti-Fas
IgM (200 ng ml71). This was also true for the Caspase 8 substrate
Bid (Figure 4B). Z-IETD-fmk (50 mM), an irreversible inhibitor
specific to Caspase 8, was found to completely protect against
apoptosis induced by anisomycin (250 ng ml71) and anti-Fas
IgM (200 ng ml71) (Figure 4C). Interestingly, this inhibitor also
abolishes apoptosis associated with anisomycin alone. This suggests
that low levels of Caspase 8 activation occur in DU 145 cells
following incubation with anisomycin alone. A dose titration of
z-IETD-fmk confirmed that this inhibitor specifically inhibits
Caspase 8 at 50 mM (data not shown). FLIP is a family of proteins
structurally related to Caspase 8 that inhibit Fas mediated apopto-
sis when overexpressed in cells (Scaffidi et al, 1999a). Two main
isoforms of FLIP are expressed in cells, a long splice variant
(FLIPL) and a short splice variant (FLIPS). Using Western blot
analysis we found that DU 145 cells express FLIPS. However,
expression of this caspase 8 inhibitor does not appear to decrease
following incubation with anisomycin (data not shown).

DISCUSSION

The sensitivity of prostate cancer cell lines to Fas mediated apop-
tosis has been shown to correlate with tumour stage, grade and
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(4) were stained for Caspase 3 cleavage. Jurkats treated with anti-Fas
IgM (200 ng ml71) for 4 h were used as a positive control (5). (B) Mito-
chondrial membrane depolarisation (DC) was detected in DU 145 cells
using the lipophilic JC-1 probe, as described previously. DC was only ob-
served in DU 145 cells treated for 8 h with both anisomycin
(250 ng ml71) and anti-Fas IgM (200 ng ml71). (C) DU 145 cells were
pre-treated with 50 mM z-LEHD-fmk (white columns) or a DMSO control
(black columns) for 10 min before treating with anisomycin (250 ng ml71)

and anti-Fas IgM (200 ng ml71) for 8 h. Apoptosis was assessed by staining
the cells with Annexin V-FITC and PI. The error bars represent standard
deviation after three independent experiments.
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Figure 4 Inhibition of Fas mediated apoptosis occurs upstream of Cas-
pase 8 cleavage in DU 145 cells. (A) Western blot analysis of Caspase 8
in untreated DU 145 cells (1) or following incubation with anisomycin
(250 ng ml71) (2), anti-Fas IgM (200 ng ml71) (3) or both (4) for 8 h. Un-
treated (5) and anti-Fas IgM treated (200 ng ml71 anti-Fas IgM, 4 h) (6)
Jurkat cells were used as a positive control for the P14 and P10 Caspase
8 cleavage products. b-Actin was also probed to ensure equal protein load-
ing. (B) Bid expression and cleavage was analysed by Western blot in un-
treated DU 145 cells (1) or in cells incubated with anisomycin
(250 ng ml71) (2), anti-Fas IgM (200 ng ml71) (3) or both (4) for 8 h. Jur-
kats untreated (5) or treated with anti-Fas IgM (200 ng ml71) for 4 h (6)
are used as a positive control. (C) DU 145 cells were pre-treated with
50 mM z-IETD-fmk (white columns) or a DMSO control (black columns)
for 10 min before treating with anisomycin and anti-Fas IgM as before.
Apoptosis was determined by staining with both Annexin V and PI after
8 h. Data is representative of three independent experiments.
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resistance to chemotherapeutic drugs (Hedlund et al, 1998). Our
group and others have shown that DU 145 cells are highly resistant
to Fas mediated apoptosis. Co-treatment with sublethal concentra-
tions of chemotherapeutic drugs including cyclohexamide (CHX),
cisplatin (CPDD), etoposide (VP16) and camptothecin was found
to sensitise these cells to Fas mediated apoptosis (Uslu et al,
1997; Rokhlin et al, 1998; Costa-Pereira and Cotter, 1999) indepen-
dently of new protein synthesis (Frost et al, 1999). Our group
subsequently identified a key role for JNK in this process. DU
145 cells were co-treated with camptothecin and anti-Fas IgM
and were completely protected from apoptosis by anti-sense oligo-
nucleotides specific for JNK (Costa-Pereira et al, 2000). In
addition, camptothecin is a potent activator of JNK and sensitises
DU 145 cells to Fas mediated apoptosis to a much greater extent
than CHX, CPDD and VP16 (Costa-Pereira and Cotter, 1999).
We have shown that anisomycin, a potent activator of JNK in
mammalian cells, sensitises DU 145 cells to Fas mediated apoptosis
to a similar extent as camptothecin. We felt that because camp-
tothecin is also a topoisomerase I inhibitor and the mechanisms
by which it activates JNK are unclear, anisomycin would present
a better option for delineating the effects of JNK during Fas
induced apoptosis.

Binding of Fas ligand, or Fas activating antibodies, to Fas receptor
results in DISC formation and prolonged JNK activation by either
Caspase 8 dependent or Caspase 8 independent mechanisms (Chang
et al, 1998; Rudel et al, 1998; Charette et al, 2001; Graves et al,
2001). We have shown that stimulating Fas R with anti-Fas IgM
alone does not result in JNK activation in DU 145 cells. We found
that mitochondrial membrane depolarisation only occurs in DU 145
cells co-stimulated with anisomycin and anti-Fas IgM. In addition
Caspase 8 and Bid were only cleaved following incubation with both
anisomycin and anti-Fas IgM. This suggests that anisomycin sensi-
tises DU 145 cells to Fas mediated apoptosis at a point upstream
of Caspase 8 cleavage, probably during DISC formation.

There are some reports of caspase independent cell death follow-
ing Fas R activation. These are mediated through kinases such as RIP
and ASK1 (Holler et al, 2000; Charette et al, 2001). However, we
have shown that both Caspase 8 and Caspase 9 inhibitors completely
abrogate apoptosis induced by anisomycin and anti-Fas IgM in DU
145 cells. Therefore, anisomycin sensitised DU 145 cells to apoptosis
mediated by Fas that is dependent on both Caspase 8 activity to
initiate the pathway and Caspase 9 activity as an amplification step
required for Caspase 3 activation and apoptosis.

The principal apoptotic pathway activated by many anti-cancer
drugs is the Fas apoptotic pathway. DU 145 cells incubated with
toxic concentrations of 9-amino camptothecin were found to
increase Fas receptor and Fas ligand expression and decrease c-
FLIPS. Apoptosis could be inhibited by transient overexpression
of c-FLIPS, suggesting that 9-amino camptothecin induces apopto-
sis through the Fas apoptotic pathway (Chatterjee et al, 2001).
However, we found no evidence for increased Fas receptor or
Fas ligand expression following incubation with anisomycin. We
did observe a decrease in Fas ligand expression after apoptotic
body formation in cells incubated with both anisomycin and
anti-Fas IgM. This is most probably due to the shedding of
membrane bound Fas ligand and is irrelevant to the initiation of
apoptosis in these cells. We also analysed FLIPS expression but
no changes were observed following treatment with anisomycin.
Chemotherapeutic drugs have also been reported to activate the
Fas apoptotic pathway without upregulation of Fas ligand or Fas
receptor. Apoptosis induced by CPDD, VP16 and vinblastine
(VB) was shown involve Fas receptor clustering and Caspase 8 acti-
vation and was independent of Fas ligand in various colon cancer
cells and leukaemia cells (Micheau et al, 1999). It is possible that
anisomycin is inducing Fas receptor aggregation independently of
anti-Fas IgM but this is highly unlikely in light of our results. It
seems more probable that JNK activation enhances Fas receptor
aggregation and DISC formation through its interaction with some
key regulator of DISC formation in DU 145 cells.

Conventional chemotherapy has been unsuccessful in treating
prostate cancer. No single or combined chemotherapy regime has
been identified that significantly enhances long term survival. This
may be due, at least in part, to the resistance developed to Fas
mediated apoptosis in hormone refractory prostate cancer. We
have sensitised DU 145 cells to Fas mediated apoptosis using the
JNK agonist anisomycin. In addition we have traced the effects
of JNK to a point upstream of Caspase 8 cleavage. It is hoped that
by understanding this process novel drug targets may be identified
that improve the treatment of hormone refractory prostate cancer.
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Abstract 

Androgen independent prostate carcinomas are resistant to chemotherapy and cell lines 

derived from androgen independent prostate carcinomas such as DU 145 cells are highly 

resistant to Fas mediated apoptosis.  Incubation of DU 145 cells with anti-Fas IgM 

agonistic antibody of Fas receptor fails to activate JNK, a stress kinase involved in 

regulating apoptosis.  We have previously shown that JNK activation is sufficient and 

necessary to promote Fas mediated apoptosis in DU 145 cells.  We investigate the 

mechanisms by which JNK activation and apoptosis are abrogated.  HSP27 is 

overexpressed in DU 145 cells and has previously been reported to sequester DAXX and 

prevent JNK activation in cells treated with anti-Fas IgM.  However, we find no evidence 

that HSP27 interacts with DAXX in DU 145 cells.  Instead we find that FADD does not 

interact with Caspase 8 and this results in defective death inducing signalling complex 

(DISC) formation following Fas receptor activation. 
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Introduction 

Prostate cancer is the second most common malignancy in the EU with about 200,000 

new cases diagnosed each year.  It is a disease that affects primarily elderly men and is 

responsible for over 35,000 deaths each year (Parkin et al., 2001).  Androgen dependent 

prostate cancer is generally a slowly progressing tumour and treatment with androgen 

ablation therapy results in tumour regression and an improvement in the quality of life for 

most patients.  However, androgen refractory tumours subsequently develop with a 

median asymptomatic period of 18 months following androgen ablation (Petrylak, 1999).  

Androgen independent tumours are generally more aggressive than androgen dependent 

tumours and chemotherapy is only used as a palliative agent (Sternberg, 2001).  No single 

or combined chemotherapeutic regimen has been shown to significantly enhanced long-

term survival in patients presenting with invasive, hormone refractory prostate cancer 

(Petrylak, 1999). 

 

The Fas apoptotic pathway has been extensively studied in a variety of tissues and cell 

types.  Tumour cells often develop resistance to Fas receptor mediated apoptosis as a 

defense mechanism against the immune system and also against conventional 

chemotherapeutic agents (Micheau et al., 1999; O'Connell et al., 2001).  Engagement of 

Fas receptor with Fas ligand or Fas activating antibodies causes recruitment of 

Procaspase 8 to the DISC through the adapter protein FADD in cell lines sensitive to Fas 

receptor mediated apoptosis.  Auto-cleavage and activation of Caspase 8 occurs in the 

DISC and this in turn cleaves a variety of cellular targets, culminating in Caspase 3 

cleavage and apoptosis (Boldin et al., 1996; Muzio et al., 1996).   
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Engagement of Fas receptor with Fas ligand also results in the recruitment of a variety of 

proteins not directly involved in Caspase 8 recruitment and cleavage.  These proteins are 

responsible for initiating other signal transduction pathways from Fas receptor.  One 

protein recruited to the DISC following Fas receptor activation is DAXX, normally 

present in the nucleus of cells.  DAXX binds to Fas receptor at a different site to FADD 

and is responsible for the recruitment and activation of the kinase ASK1.  ASK1 in turn 

activates the MAPK cascade resulting in JNK activation (Chang et al., 1998; Tobiume et 

al., 2001).  JNK can also be activated by a Caspase 8 dependent mechanism involving 

cleavage of Mst1 (Graves et al., 2001) or MEKK1 (Deak et al., 1998) and JNK activation 

has been reported to enhance Fas receptor mediated apoptosis in some cell lines (Brenner 

et al., 1997; Costa-Pereira et al., 2000; Le-Niculescu et al., 1999; Yang et al., 1997; 

Zhang et al., 2000). 

 

Upregulation of Heat Shock Transcription Factor-1 (HSF1) was reported to occur in 

metastatic prostate cancer cell lines.  This results in increased expression of HSP27 

(Hoang et al., 2000) and is invariably associated with poor clinical outcome in patients 

with advanced prostate cancer (Cornford et al., 2000).  HSP27 can protect cells from a 

variety of apoptotic insults including Fas mediated apoptosis and various 

chemotherapeutic drugs (Mehlen et al., 1996; Samali & Cotter, 1996) by sequestering 

cytochrome c after it is released from the mitochondria and preventing Caspase 9 

activation (Garrido et al., 1999).  It can also prevent cytochrome c release by inhibiting 

Bid translocation to the mitochondrion (Paul et al., 2002).  HSP27 can bind to and 
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prevent the translocation of DAXX to the plasma membrane following Fas receptor 

activation, thus inhibiting JNK activation and the pro-apoptotic function associated with 

DAXX (Charette et al., 2000). 

 

DU 145 prostate carcinoma cell lines are highly resistant to Fas mediated apoptosis.  This 

resistance can be overcome by co-administering sub-lethal concentrations of various 

chemotherapeutic drugs (Costa-Pereira & Cotter, 1999; Rokhlin et al., 1997).  Our group 

has previously demonstrated that JNK activation is sufficient to sensitise DU 145 cells to 

Fas receptor mediated apoptosis (Costa-Pereira et al., 2000; Curtin & Cotter, 2002).  

However, we found that engagement of Fas receptor with Fas activating antibodies could 

not activate JNK in DU 145 cells.  In order to understand the mechanism by which DU 

145 cells are resistant to Fas we explored the events inhibiting JNK activation.  We found 

that DAXX did not translocate from the nucleus to the cytoplasm following stimulation 

of Fas.  Although HSP27 was highly overexpressed it did not appear to play a role in this 

process by sequestering DAXX.  Procaspase 8 was not cleaved following Fas receptor 

activation and further investigation demonstrated that defective DISC formation was the 

underlying cause by which Fas receptor activation failed to activate either JNK or 

Caspase 8.   
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Materials and Methods 

Cell Lines and Reagents 

DU 145 and Jurkat T cells were obtained from American Type Culture Collection 

(ATCC, Rockville, MD, USA).  Cell culture reagents were purchased from Sigma (UK).  

The fluorescent probes used to detect apoptosis were FITC conjugated Annexin V (IQ 

Products, The Netherlands) and propidium iodide (PI) (Sigma, UK).  SB203580 and 

ZVAD-fmk were purchased from Calbiochem (UK).  The antibodies used in this study 

were Fas activating mouse anti-Fas IgM clone CH-11 and rabbit anti-FADD (Upstate 

Biotechnology, UK), mouse anti-Fas IgG (Bender Med Systems), phospho-JNK 

(Thr183/Tyr185) clone G9 and mouse anti-Caspase 8 (Cell Signalling Technology, UK), 

rabbit anti-JNK1 and rabbit anti-DAXX (Santa Cruz, USA), mouse anti-PARP 

(PharMingen, BD Biosciences, UK), mouse anti-HSP27 (Stressgen, UK) and mouse anti-

Actin (Sigma, UK). The HRP labelled anti-rabbit IgG and anti-mouse IgG antibodies 

were obtained from DAKO (Denmark) while FITC conjugated anti-rabbit IgG was 

purchased from Sigma (UK).  Protein G agarose slurry was obtained from Peirce (UK) 

and all other reagents were from Sigma (UK).   

 

Cell Culture  

DU 145 cells were cultured in RPMI 1640 medium supplemented with 5% FCS, 2mM L-

Glutamine and 10 IU ml-1 penicillin-streptomycin.  Jurkat cells were cultured in RPMI 

1640 medium containing 10% FCS, 2mM L-Glutamine and 10 IU ml-1 penicillin-

streptomycin.  Cells were cultured at 37°C in a humidified atmosphere with 5% CO2 and 

were routinely subcultured every 2-3 days.  DU 145 cells were grown to 75% confluency 
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and Jurkat cells were resuspended in fresh media at 0.5 x 106 per ml on the day of each 

experiment.  Cells were incubated with 200 ng ml-1 anti-Fas IgM for 1 h, 4 h or 24 h as 

indicated in the figure legends and pretreated for 1 h with 25 µM z-VAD-fmk or 5 µM 

SB203580 where used. 

 

Fas Receptor Expression 

0.5 x 106 cells per sample were harvested and washed twice in PBS.  They were stained 

for 1 h at 4 °C with 20 µg ml-1 of mouse anti-Fas IgG.  After another two washes with 

PBS, the cells were stained with the FITC conjugated sheep anti-mouse IgG for 1 h at 4 

°C in the dark.  Cells stained with secondary antibody alone were used to compensate for 

intrinsic fluorescence and non-specific binding of the secondary antibody.  The samples 

were read on a FACScan flow cytometer and the data was analysed using Cell Quest 

software (Beckton Dickenson, UK). 

 

Annexin V binding and PI uptake assay 

DU 145 and Jurkat cells were incubated with 200 ng ml-1 anti-Fas IgM for 4 h and 24 h 

as indicated.  The cells were subsequently harvested, washed once in PBS and 

resuspended in Annexin V binding buffer (150 mM NaCl, 18 mM CaCl2, 10 mM 

HEPES, 5 mM KCl, 1 mM MgCl2).  1 µg ml-1 FITC conjugated Annexin V, which binds 

specifically to external phosphatidyl serine on apoptotic cells, was added to each sample 

and incubated at room temperature for 5 minutes.  50 µg ml-1 PI was added immediately 

prior to reading the samples on the FACScan.  Viable cells exclude PI and stain negative 
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on FL-2.  Apoptotic cells are labelled with annexin V and stain positive on FL-1.  

Analysis was carried out using Cell Quest Software. 

 

SDS-PAGE and Western Blot 

Protein extracts were prepared from cells using RIPA lysis buffer (50 mM Tris, pH 7.4, 

150 mM NaCl, 1 mM each of NaF, NaVO4 and EGTA, 1% NP40, 0.25% sodium 

deoxycholate, 0.2 mM phenylmethylsulphonyl fluoride, 1 µg ml-1 each of antipain, 

aprotinin and chymostatin, 0.1 µg ml-1 leupeptin, 4.0 µg ml-1 pepstatin) and 30 µg of 

protein was loaded in each lane of an SDS polyacrylamide gel.  Electrophoresis and 

western blotting was subsequently carried out.  Non-specific protein binding sites were 

blocked and the membrane was stained with primary and peroxidase-conjugated 

secondary antibodies according to the manufacturer’s recommended protocol.  Labelled 

protein was detected using ECL (Amarsham, UK). 

 

Immunofluorescent staining of DAXX 

DU 145 cells were seeded on glass coverslips and grown to confluency over 48 hours.  

They were incubated with 200 ng ml-1 anti-Fas IgM for 4 h or left untreated.  The media 

was aspirated and the coverslips were washed in PBS.  The cells were fixed for 15 

minutes at room temperature in 3% PFA in PBS.  They were washed in PBS and 

incubated for 15 minutes at room temperature in quenching buffer (50 mM NH4CL in 

PBS).  Cells were permeabalised with 0.1% Triton X-100 in PBS for 5 minutes at room 

temperature and washed in PBS before incubating with primary antibody (1:100 in PBS) 

with 5% FCS for 1 h at room temperature.  The primary antibody was aspirated off and 
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cells were washed in PBS before incubating for 1 h at room temperature in FITC-

conjugated secondary antibody (1:80 in PBS) with DAPI and 5% FCS.  Cells were then 

washed in PBS and mounted on glass slides. 

 

Isolation of Nuclear and Cytoplasmic Enriched Fractions 

A minimum of 5 x 106 cells were incubated with 200 ng ml-1 anti-Fas IgM for 4 h.  The 

cells were harvested and resuspended in 250µl homogenising buffer (210 mM Mannitol, 

70 mM Sucrose, 5 mM HEPES, 1 mM EGTA, 0.5% BSA, 1 mM DTT, 0.2 mM PMSF, 5 

µg ml-1 each of antipain, aprotinin and chymostatin, 0.5 µg ml-1 leupeptin, 20 µg ml-1 

pepstatin).  The sample was then transferred to a 2 ml tissue grinding tube (Kontes Glass 

Company, New Jersey) and homogenised with 100 strokes of the low clearance pestle.  

The homogenate was centrifuged at 3000 xg for 5 minutes.  The supernatent (cytoplasmic 

fraction) was washed 3 times at 3000 xg. The pellet (nuclear fraction) washed 3 times in 

PBS, and the protein extract was prepared using RIPA lysis buffer.  SDS-PAGE and 

western blotting was performed as described previously.   

 

Immunoprecipitation  

A minimum of 500 µg of protein was used per sample.  DU 145 cells were treated and 

harvested as described in the figure legends.  The cells were gently lysed on ice in lysis 

buffer (10 mM Tris pH 7.5, 50 mM NaCl, 10 mM Sodium Pyrophosphate, 50 mM NaF, 1 

mM NaVO4, 1% NP40, 0.2 mM PMSF, 5 µg ml-1 each of antipain, aprotinin and 

chymostatin, 0.5 µg ml-1 leupeptin, 20 µg ml-1 pepstatin) and centrifuged at 20000 xg for 

15 min to remove insoluble material.  Total cell protein was quantitated and diluted to 1 
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µg ml-1 in PBS.  Protease inhibitors were added (1 µg ml-1 each of antipain, aprotinin and 

chymostatin, 0.1 µg ml-1 leupeptin, 4 µg ml-1 pepstatin) and samples were incubated with 

10 µg ml-1 rabbit anti-DAXX or 10 µg ml-1 rabbit anti-FADD overnight at 4 °C.  Protein 

G-agarose conjugated beads were prepared according to the manufacturers recommended 

instructions and incubated with the samples for a further 1 h at 4°C.  DAXX was 

immunoprecipitated from total protein by centrifugation at 1000 xg for 3 min.  The beads 

were washed 4 times in PBS and boiled in SDS-PAGE loading buffer for 5 min.  The 

agarose beads were precipitated out of solution by centrifugation at 20000 xg for 2 min 

and the supernatent was loaded onto an SDS-polyacrylamide gel and analysed by western 

blot as described previously. 
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Results 

DU 145 prostate carcinoma cells are resistant to Fas mediated apoptosis. 

Flow cytometry was used to determine the expression of cell surface Fas receptor in DU 

145 cells and Jurkat T cells.  We found that the expression of Fas Receptor was 

comparable between the two cell lines (Figure 1a).  However, the sensitivity of these two 

cell lines to Fas mediated apoptosis was found to be markedly different.  Using Annexin 

V-FITC to detect cells at early stages in apoptosis, Jurkat cells were found to undergo 

extensive apoptosis in less than 4 h following incubation with 200 ng ml-1 anti-Fas IgM.  

By contrast, no increase in apoptosis was observed in DU 145 cells treated with 200 ng 

ml-1 anti-Fas IgM even for 24 h (Figure 1b).  Morphological assessment of apoptosis was 

used to confirm this observation (data not shown).  JNK activation has been reported to 

accompany Fas receptor activation.  Some studies found that JNK was not required for 

Fas receptor mediated apoptosis (Abreu-Martin et al., 1999; Hofmann et al., 2001; Low 

et al., 1999) but others have shown that JNK activation accelerates Fas mediated 

apoptosis in a number of cell lines (Brenner et al., 1997; Le-Niculescu et al., 1999; Yang 

et al., 1997; Zhang et al., 2000).  Our group has previously identified JNK activation as 

necessary for Fas mediated apoptosis in DU 145 cells (Costa-Pereira et al., 2000; Curtin 

& Cotter, 2002).  As a result we determined the extent of JNK activation in DU 145 cells 

and Jurkat cells following incubation with 200 ng ml-1 anti-Fas IgM for 1 h and 4 h.  We 

found that JNK was only extensively phosphorylated in Jurkat cells treated for 4 h with 

anti-Fas IgM (Figure 1c).  No increase in JNK phosphorylation was observed in DU 145 

cells even after 24 h (data not shown). 
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DAXX is expressed in the nucleus of DU 145 cells. 

Fas receptor is believed to activate JNK by caspase dependent and independent 

mechanisms.  Activation of Fas receptor can recruit DAXX, a nuclear protein, to the 

plasma membrane during DISC formation.  DAXX subsequently binds to and activates 

ASK1, an upstream kinase in the JNK signalling pathway (Chang et al., 1998; Tobiume 

et al., 2001).  Immunofluorescence was used to determine DAXX subcellular localisation 

in DU 145 cells.  We found that DAXX was predominately located in the nucleus of DU 

145 cells and the staining pattern appeared to be punctated.  This is in agreement with 

other reports that localized DAXX to ND-10 domains in the nucleus (Charette et al., 

2000; Torii et al., 1999).  No change in DAXX subcellular localization was observed 

following incubation for 4 h with 200 ng ml-1 anti-Fas IgM (Figure 2a).  Expression of 

DAXX was also determined in nuclear and cytoplasmic enriched fractions by western 

blot.  No increase in cytoplasmic DAXX was identified in cells incubated with 200 ng ml-

1 anti-Fas IgM for 4 h confirming the immunofluorescence data (Figure 2b).  We also 

assessed the extent of DAXX translocation after 8 h and 24 h incubation with anti-Fas 

IgM and did not observe any increase in the cytoplasmic fraction of DAXX (data not 

shown). 

 

HSP27 is overexpressed in DU 145 cells but does not interact with DAXX. 

HSP27 has previously been found to bind and inhibit DAXX translocation and apoptosis 

in response to Fas receptor activation (Charette et al., 2000).  In addition, overexpression 

of HSP27 correlates with prostate cancer progression (Cornford et al., 2000).  Therefore 

we analysed whether HSP27 inhibited JNK activation following Fas receptor activation 
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in DU 145 cells.  HSP27 expression was determined in nuclear and cytoplasmic enriched 

fractions from DU 145 cells and Jurkat cells.  We found that HSP27 was highly 

overexpressed in DU 145 cells and was predominantly located in cytoplasmic enriched 

fractions.  No change in subcellular expression was observed following treatment with 

200 ng ml-1 anti-Fas IgM for 4 h (Figure 3a).  Although HSP27 is expressed mainly in the 

cytoplasm and DAXX is present primarily in the nucleus it is possible that the 

cytoplasmic DAXX is important for binding Fas receptor or that HSP27 prevents 

recruitment of nuclear DAXX to the Fas DISC.  As a result we immunoprecipitated 

DAXX from cell lysates of DU 145 cells incubated for 4 h with 200 ng ml-1 anti-Fas IgM 

or left untreated.  We could not detect any HSP27 expressed in the immunoprecipitate 

suggesting that either HSP27 and DAXX do not interact in DU 145 cells or the 

percentage HSP27 that interacts with DAXX is extremely small in comparison with total 

HSP27 expression in these cells (Figure 3b).  It was reported that endogenous P38 

activity maintained HSP27 in active dimers.  Inhibition of P38 resulted in multimeric 

complexes of HSP27 and this abrogated the interaction between HSP27 and DAXX.  In 

addition, SB203580 sensitised cells to Fas receptor mediated apoptosis by allowing 

DAXX translocation from nucleus to cytoplasm (Charette et al., 2000).  We did not 

observe any increase in cytoplasmic DAXX (data not shown) or increase in apoptosis in 

cells pre-incubated with SB203580 (Figure 3c).  This supports our conclusion that HSP27 

does not prevent DAXX translocation and JNK activation in DU 145 cells. 

 

Fas mediated caspase activation is required for JNK activation in Jurkat cells but is 

defective in DU 145 cells. 



 58

In order to study caspase dependent JNK activation, we incubated DU 145 cells and 

Jurkat cells with 200 ng ml-1 anti-Fas IgM in the presence and absence of the general 

caspase inhibitor z-VAD-fmk for 4 h.  Cleavage of Procaspase 8 was subsequently 

assessed by western blot analysis.  We found that Procaspase 8 was extensively cleaved 

into the intermediate P41/P43 products and active P18 subunit only in Jurkat cells 

following incubation with 200 ng ml-1 anti-Fas IgM.  Z-VAD-fmk was found to 

completely abrogate the cleavage of Caspase 8.  Procaspase 8 was not cleaved following 

treatment of DU 145 cells with 200 ng ml-1 anti-Fas IgM.  This indicates that inhibition 

of Fas mediated apoptosis is an early event in these cells, possibly during DISC 

formation (Figure 4a).  The effect of caspase inhibition on JNK activation was also 

assessed in Jurkat cells.  Z-VAD-fmk was found to completely abrogate JNK activation 

in Jurkat cells following incubation with 200 ng ml-1 anti-Fas IgM.  This suggests that in 

this cell line the principle mechanism of JNK activation is caspase dependent (Figure 4b). 

 

DISC formation following Fas receptor activation is defective in DU 145 cells. 

Although cell surface Fas receptor expression is similar in DU 145 cells and Jurkat cells 

we found that neither JNK or Caspase 8 are activated in DU 145 cells.  This may be due 

to defective DISC formation following Fas receptor activation in DU 145 cells.  We 

immunoprecipitated FADD from cells before and after incubation with 200 ng ml-1 anti-

Fas IgM for 1 h.  Expression of Caspase 8 was assessed in these immunoprecipitates to 

determine the extent of FADD-Caspase 8 aggregation in the DISC.  While FADD was 

found to associate with Caspase 8 in Jurkat cells incubated with anti-Fas IgM, no 

interaction was evident in DU 145 cells (Figure 5).  These data suggest that the 
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interaction between Caspase 8 and FADD is defective and prevents DISC formation 

following Fas receptor activation in DU 145 cells.  This appears to be the principle 

mechanism by which DU 145 cells are resistant to anti-Fas IgM and also why JNK is not 

activated in these cells. 
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Discussion 

Activation of the Fas receptor in cells by Fas ligand results in Caspase activation and 

morphological apoptosis in a variety of cell lines.  Fas receptor plays a critical role in the 

homeostasis of the immune system and may be involved in immune surveillance and 

clearance of defective cells (O'Connell et al., 2001; Pinkoski & Green, 2000).  Although 

the events initiated by Fas receptor culminating in Caspase activation and apoptosis are 

well understood, the mechanisms by which tumour cells alter signalling pathways and 

become resistant to Fas mediated apoptosis are not.  DU 145 cells are androgen 

independent prostate carcinoma cells and are resistant to a variety of chemotherapeutic 

drugs in vitro.  We found that while cell surface expression of Fas receptor was 

comparable to Jurkat cells, DU 145 cells were highly resistant to Fas mediated apoptosis.  

Activation of JNK using chemotherapeutic drugs or anisomycin was sufficient to 

sensitise these cells to Fas (Costa-Pereira & Cotter, 1999; Costa-Pereira et al., 2000; 

Curtin & Cotter, 2002).   

 

JNK activation has been reported to accompany Fas receptor activation and appears to be 

involved in regulating Fas mediated apoptosis in various cell lines.  While JNK is not 

pro-apoptotic in every cell line, it appears that certain cell lines resistant to Fas mediated 

apoptosis require JNK activation to promote apoptosis.  We found that treatment of DU 

145 cells with anti-Fas IgM alone did not stimulate JNK activation.  In order to better 

understand the resistance of DU 145 cells to Fas mediated apoptosis, we investigated 

JNK activation following Fas receptor stimulation in DU 145 cells.  JNK activation 

following Fas receptor activation may be Caspase 8 dependent or Caspase 8 independent.  
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During Caspase 8 independent JNK activation DAXX is recruited to the plasma 

membrane and binds to the intracellular C-terminus of Fas receptor independent of 

FADD.  ASK1, a JNK kinase kinase is recruited to the plasma membrane and binds to 

DAXX.  Activation of ASK1 in trans results in MKK4/JNKK1 phosphorylation and 

ultimately JNK phosphorylation at Thr183/Tyr185 and activation (Tobiume et al., 2001).  

DU 145 cells were found to express DAXX predominantly in ND-10 domains in the 

nucleus and this is consistent with previous reports (Charette et al., 2000; Torii et al., 

1999).  We found that a small fraction of DAXX was present in the cytoplasmic fraction, 

although the levels of cytoplasmic DAXX were not found to increase following Fas 

receptor activation.  In addition, no clustering of DAXX at the plasma membrane was 

evident in cells treated with anti-Fas IgM. 

 

HSP27 overexpression has been associated with prostate cancer progression and can 

independently predict the clinical outcome of prostate cancer, suggesting it plays an 

important role in the resistance of prostate cancer to chemotherapy (Cornford et al., 2000; 

Thomas et al., 1996).  HSP27 inhibits apoptosis by a variety of mechanisms including 

sequestering cytosolic pro-apoptotic Cytochrome c, inhibiting pro-apoptotic tBID 

translocation from cytosol to the mitochondrion and preventing DAXX association with 

Fas receptor and subsequent JNK activation (Concannon et al., 2003).  We found that DU 

145 cells overexpress HSP27 and is predominantly found in the cytoplasmic fraction.  A 

small fraction present in the nucleus was also evident.  However, we could not identify 

any physical interaction between HSP27 and DAXX in DU 145 cells either before or 

after Fas receptor activation.  This suggests that is not involved in regulating DISC 
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formation and JNK activation in DU 145 cells.  It is likely that HSP27 regulates 

sensitivity of mitochondria to apoptosis signals and can prevent cytochrome c release in 

response to cytotoxic drugs because HSP27 overexpression correlates with poor clinical 

outcome (Cornford et al., 2000).  However, another mechanism inhibits Fas receptor 

mediated apoptosis and JNK activation in DU 145 cells. 

 

Caspase 8 activation results in cleavage and constitutive activation of MEKK1 and Mst1, 

kinases that can phosphorylate and activate JNK.  We found that Caspase 8 is expressed 

at similar levels in DU 145 cells and Jurkat cells but Fas receptor engagement with Fas 

activating antibodies was only found to cleave Procaspase 8 into active fragments in 

Jurkat cells.  This cleavage could be completely abrogated using ZVAD-fmk, an 

irreversible Caspase inhibitor.  JNK phosphorylation was also completely inhibited in 

cells lacking Caspase 8 active fragments suggesting that Caspase 8 mediated JNK 

activation was the predominant pathway in Jurkat cells, at least after 4 h.  It is possible 

that Caspase 8 independent JNK activation can also occur here, but progresses more 

slowly. 

 

In light of our data, defective DISC formation following Fas receptor activation appeared 

to be the mechanism by which DU 145 cells were resistant to Fas mediated apoptosis.  

We immunoprecipitated FADD, the adaptor protein required for Caspase 8 recruitment to 

Fas receptor, to determine the extent of interactions between FADD and Caspase 8 in DU 

145 cells and Jurkat cells before and after Fas stimulation.  Although DU 145 cells appear 

to express higher levels of FADD than Jurkat cells, no interaction between FADD and 
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caspase 8 was evident before or after Fas receptor stimulation.  By contrast, Caspase 8 

was found to immunoprecipitate with FADD in both untreated and anti-Fas IgM treated 

Jurkat cells.  Increased Caspase 8 in anti-Fas IgM treated Jurkat cell immunoprecipitates 

was consistently observed and this is probably due to stable interactions between FADD 

and Caspase 8 in Fas receptor aggregates. 

 

Numerous Fas receptor and FADD interacting proteins have been identified and a 

number of these have been shown to regulate DISC formation following Fas receptor 

engagement with Fas ligand and Fas activating antibodies.  These include FAP-1, FAF-1, 

FLASH, HIPK3 and PKCξ (Peter & Krammer, 2003).  It is likely that one or more of 

these proteins are differentially regulated in prostate cancer and as a result increase the 

treshold required for Fas receptor activation and apoptosis following engagement of Fas 

receptor with Fas ligand.  Further studies are ongoing with the aim of identifying these 

components.  It is hoped that by identifying the dysfunctional elements in Fas receptor 

mediated apoptosis in DU 145 cells that novel therapeutic targets may be identified for 

prostate cancer. 
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Figure 1: DU 145 cells express Fas receptor at the plasma membrane but are
highly resistant to Fas induced apoptosis.  (A) Cell surface expression of Fas receptor 
() was assessed in DU 145 cells and Jurkat cells as described in the materials and 
methods section.  Intrinsic fluorescence of cells labelled with secondary antibody alone 
(▬) is also shown.  Data are representative of three independent experiments.  (B) 
Jurkat cells were incubated for 4 h and DU 145 cells were incubated for 4 h and 24 h 
with 200 ng ml-1 anti-Fas IgM.  Apoptosis was subsequently determined by staining 
with Annexin V-FITC and Propidium Iodide.  The percentage of apoptotic cells is
shown in the bottom right quadrant of each plot.  Data are representative of 3 
independent experiments.  (C) Phosphorylation of JNK at residues Thr 183 and Tyr 185 
was assessed in DU 145 cells and Jurkat cells following treatment with 200 ng ml-1 anti-
Fas IgM for 1 h and 4 h where indicated.  Total JNK expression was also determined to 
demonstrate equal protein loading.
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Figure 2: DAXX expression and subcellular localisation in DU 145 cells.  (A)
Immunofluorescent analysis of DAXX was performed on DU 145 cells incubated for 4 
h with 200 ng ml-1 anti-Fas IgM.  Samples were counterstained with DAPI to visualise 
the nuclei of cells.  (B) Western blot analysis of DAXX expression in nuclear and 
cytoplasmic enriched fractions obtained from DU 145 cells incubated for 4 h with 200
ng ml-1 anti-Fas IgM or without.  PARP was also stained to assess the purity of the 
fractions.
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Figure 3: HSP27 is overexpressed in DU 145 cells but is localised predominantly 
in the cytoplasm and does not co-immunoprecipitate with DAXX.  (A) Expression of 
HSP27 was analysed in nuclear-enriched and cytoplasmic-enriched fractions isolated 
from DU 145 cells and Jurkat cells before and after incubation with 200 ng ml-1 anti-
Fas IgM for 4 h.  PARP was also probed to determine the purity of the fractions.  (B) 
DU 145 cells were treated for 4 h with 200 ng ml-1 anti-Fas IgM or left untreated.  
Cells were lysed gently and DAXX was immunoprecipitated as described in the 
materials and methods.  Immunoprecipitated complexes and 5% whole cell extract 
from untreated DU 145 cells were subsequently analysed for HSP27 expression by 
western blot.  DAXX was probed to determine equal protein loading.  (C) DU 145 
cells were stained with Annexin V-FITC and PI to determine the extent of apoptosis 
following incubation for 24 h with 5 µM SB203580 and 200 ng ml-1 anti-Fas IgM.  
Error bars represent the standard deviation from the mean for 3 independent 
experiments.
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Figure 4: Inhibition of Caspase activity with z-VAD-fmk completely abrogates JNK 
activation in Jurkat cells.  (A) DU 145 cells and Jurkat cells were incubated with 25 
µM z-VAD-fmk and 200 ng ml-1 anti-Fas IgM for 4 h as outlined above.  Cell lysates 
were subsequently probed for Caspase 8 expression and cleavage. Cleavage of 
Procaspase 8 into intermediary P41/P43 and active P18 Caspase 8 subunits was only 
evident in Jurkat cells incubated with 200 ng ml-1 anti-Fas IgM alone.  Actin was also 
probed to assess equal protein loading.  (B) DU 145 cells and Jurkat cells were 
incubated with 25 µM z-VAD-fmk and 200 ng ml-1 anti-Fas IgM for 4 h.  
Phosphorylation of JNK was assessed in cell lysates by western blot.  Total JNK 
expression was also assessed to demonstrate equal protein loading.
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Figure 5: The interaction between FADD and Caspase 8 is defective in DU 145 cells.  
FADD was immunoprecipitated from DU 145 and Jurkat cells before and after 
incubation with 200 ng ml-1 anti-Fas IgM.  The samples were probed for Caspase 8 and 
FADD expression by western blot. The endogenous expression of FADD and Caspase 8 
in 5% whole cell extracts was also determined.
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Abstract 

Elevated endogenous JNK activity has recently been implicated in prostate cancer 

tumourigenesis and can promote resistance to apoptosis in response to chemotherapeutic 

drugs.  In addition, JNK has been demonstrated to promote transformation of epithelial 

cells by increasing proliferation and survival.  In this study we examine the effects of 

endogenous JNK activity on Fas receptor mediated apoptosis in DU 145 prostate 

carcinoma cells.  Inhibiting JNK activity with SP600125 abrogates FADD 

phosphorylation and increases the sensitivity of DU 145 cells to Fas receptor mediated 

apoptosis.  This event was found to occur at an early stage in the Fas receptor signalling 

pathway, upstream of Caspase 8 cleavage.  Subsequent analysis identified an increase in 

the interaction between FADD and Caspase 8 in response to incubation with SP600125.  

We find that the expression of HIPK3 is elevated in DU 145 cells and we found that 

FADD phosphorylation was dependent on HIPK3 expression using RNA interference.  In 

conclusion elevated JNK activity was found to promote the expression of HIPK3 and 

intefere with effective DISC formation by reducing the interaction between FADD and 

Caspase 8 in DU 145 cells.    
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Introduction 

Apoptosis was first defined in 1972 as a morphologically distinct form of cell death and 

is characterised by changes in cell morphology including cell shrinkage, plasma 

membrane blebbing, nuclear condensation, nuclear fragmentation and apoptotic body 

formation (Kerr et al., 1972).  Within the last decade the central biochemical pathways in 

apoptosis have been elucidated and perhaps the most extensively studied pathway is Fas 

mediated apoptosis.  The Fas receptor is a member of the Tumour Necrosis Factor 

superfamily of receptors and is expressed in many tissues (Nagata, 1997).  Ligation of 

Fas receptor with Fas ligand or Fas activating antibodies results in Fas receptor clustering 

at the plasma membrane, recruitment and activation of Caspase 8 via the adapter protein 

FADD and subsequent cleavage of a number of downstream targets, culminating in 

apoptosis (Chinnaiyan et al., 1995; Muzio et al., 1996).  Fas mediated apoptosis is 

believed to be a mechanism by which the immune system destroys defective cells or cells 

expressing abnormal surface proteins (O'Connell et al., 2001).  In addition, various anti-

cancer drugs are dependent on Fas receptor activation in order to induce apoptosis (de 

Souza et al., 1997; Micheau et al., 1999).  As a result there is a selective pressure on 

tumour cells to inhibit the Fas pathway and resistance to Fas is a common event during 

cancer progression. 

 

One of the most prevalent cancers in the world today is prostate cancer (Parkin et al., 

2001) and progression from localised tumours to metastatic, hormone-refractory prostate 

cancer correlates with an increase in resistance to Fas receptor mediated apoptosis 

(Hedlund et al., 1998).  Although hormone sensitive tumours respond well initially to 
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androgen ablation and chemotherapy, hormone-refractory tumours invariably develop 

within a median of 12 to 18 months (Petrylak, 1999).  Hormone-refractory prostate 

cancer usually displays increased malignancy, proliferation and metastatic potential over 

androgen-sensitive tumours and can survive in the absence of androgen.  Transformation 

of prostate epithelial cells from a pre-neoplastic state into an intra-epithelial neoplasm 

requires a number of sequential genetic alterations that have not been fully characterised 

yet (Dong, 2001).  Some of these aberrations in protein function increase the resistance of 

prostate cancer cells to apoptosis while others decrease the dependence of prostate cancer 

cells on growth factors for survival and proliferation.  One protein that has been 

implicated in transformation and progression in numerous tumours including prostate 

cancer (Potapova et al., 2002), breast cancer (O'Hagan & Hassell, 1998) and lung cancer 

(Bost et al., 1997) is a stress activated protein kinase called JNK.  Overexpression of JNK 

conferred a partially transformed phenotype on fibroblasts by regulating the response of 

these cells to survival and proliferative signals (Rennefahrt et al., 2002).  It also greatly 

enhanced the transformation potential of Ras (Pruitt et al., 2002) and BCR-Abl (Raitano 

et al., 1995).   

 

Endogenous JNK activity in response to growth factors and other signalling molecules 

generally bestows survival and proliferative advantages on cells.  However, prolonged 

and excessive stimulation of JNK often accompanies stress signals in cells and is pro-

apoptotic.  Prolonged JNK activation has been reported to accompany the engagement of 

Fas receptor with Fas ligand during Fas receptor mediated apoptosis (Cahill et al., 1996; 

Yang et al., 1997) and excessive stimulation of JNK can accelerate Fas receptor mediated 
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apoptosis (Brenner et al., 1997; Costa-Pereira et al., 2000; Le-Niculescu et al., 1999; 

Yang et al., 1997; Zhang et al., 2000).  In prostate cancer, our group has previously 

demonstrated that activation of JNK is defective following engagement of Fas receptor 

with anti-Fas IgM.  In addition, we have shown that prolonged activation of JNK using 

camptothecin or anisomycin sensitises DU 145 prostate cancer cells to Fas mediated 

apoptosis (Costa-Pereira et al., 2000; Curtin & Cotter, 2002). 

 

In this study we investigate the role of endogenous JNK activity in Fas receptor mediated 

apoptosis in prostate cancer using the specific JNK inhibitor SP600125.  In contrast with 

our recent publications where we show that prolonged overactivation of JNK is pro-

apoptotic in prostate cancer cells, we demonstrate here that endogenous JNK activity can 

promote survival in DU 145 prostate cancer cells.  We show that inhibition of 

endogenous JNK activity decreases the expression of the FADD associated kinase HIPK3 

(FIST/PKY/DYRK6).  The interaction between FADD and Caspase 8 is defective in DU 

145 cells but incubation with SP600125 restores the affinity of FADD for Caspase 8 and 

increases the sensitivity of DU 145 cells to anti-Fas IgM.  Finally, we propose a 

mechanism through which endogenous JNK activity is anti-apoptotic and prolonged 

overactivation of JNK is pro-apoptotic in DU 145 cells. 
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Materials and Methods 

Cell Lines and Reagents 

DU 145, PC-3, HL-60 and Jurkat T cells were obtained from American Type Culture 

Collection (ATCC, Rockville MD, USA).  PPC-1 and ALVA 31 cells were a gift of Gary 

and Heidi Miller (University of Colorado, USA).  DU 145 cells were cultured in DMEM 

(Life Technologies, UK) supplemented with 5% foetal calf serum (FCS) and 4 mM L-

Glutamine (all from Sigma, UK).  PC-3, PPC-1 and ALVA 31 cells were grown in 

DMEM supplemented with 10% foetal calf serum (FCS) and 4 mM L-Glutamine.  Jurkat 

T cells and HL-60 cells were cultured in RPMI 1640 supplemented with 10% FCS, 4 mM 

L-Glutamine and 10 IU ml-1 penicillin/streptomycin.  Cells were cultured in a humidified 

atmosphere with 5% CO2 at 37°C and routinely subcultured every 2 to 3 days.  Unless 

otherwise stated, cells were grown to 75% confluency before treating with various drugs 

and inhibitors.   

 

The probes used for the apoptosis assays were Annexin V-FITC (IQ Products, The 

Netherlands), Propidium Iodide (Sigma, UK), and JC-1 (Molecular Probes, The 

Netherlands).  The primary antibodies used in this study were rabbit anti-cJun 

(Calbiochem, CN Biosciences, UK), mouse anti-Actin clone AC-15 (Sigma, UK), mouse 

anti-phosphoJNK (Thr183/Tyr185) clone G9, mouse anti-Caspase 8 clone IC12 and 

rabbit anti-Caspase 3 (Cell Signalling Technology), rabbit anti-JNK and rabbit anti-PKCζ 

(Santa Cruz, CA, USA), rabbit anti-BID (BioSource International, CA, USA), mouse 

anti-PARP (PharMingen, UK), mouse anti-FADD clone IF7 and rabbit anti-ERK2 

(Upstate Biotechnology, UK) and rabbit anti-rat HIPK3 (a gift of Jorma Palvimo, 
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University of Helsinki, Finland).  All Peroxidase-conjugated secondary antibodies were 

from DAKO (Denmark).  Rabbit anti-FADD (Upstate Biotechnology, UK) was used for 

immunoprecipitations and Protein G-Agarose slurry was purchased from Peirce (UK).  

The Fas activating mouse anti-Fas IgM (clone CH11) was obtained from Upstate 

Biotechnology (UK).  The JNK inhibitor SP600125, the PKCζ pseudosubstrate inhibitor 

and the caspase inhibitors z-IETD-fmk and z-LEHD-fmk were from Calbiochem (UK).  

Small interfering RNA oligonucleotides against HIPK3 and control oligonucleotides 

were purchased from Dharmacon (USA) and oligofectamine was purchased from Life 

Technologies (UK).  Primers used to amplify target sequences in HIPK3 and GAPDH by 

RT-PCR were designed using GeneFisher software and were purchased from MWG 

(UK).  Other reagents required for RT-PCR were bought from Promega (UK) and all 

other chemicals were purchased from Sigma (UK). 

 

Apoptosis Assays 

Annexin V-FITC and Propidium Iodide were used to detect apoptosis in DU 145 cells by 

flow cytometry.  Phosphatidylserine is exposed early during apoptosis in cells and binds 

specifically to Annexin V-FITC.  This causes an increase in FL-1 fluorescence in cells 

undergoing apoptosis when compared with normal viable cells.  Counterstaining with 

propidium iodide is used to assess plasma membrane integrity.  Loss of the plasma 

membrane integrity results in an increased FL-2 fluorescence and occurs later in 

apoptosis (Vermes et al., 1995).  Unless otherwise indicated DU 145 cells were incubated 

with 200 ng ml-1 anti-Fas IgM for 24 h.  Cells were preincubated for 1 h with 0.5% 

DMSO in the presence or absence of 50 µM SP600125.  Caspase inhibitors were added 
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to cells 10 min prior to treating with anti-Fas IgM.  After incubation with anti-Fas IgM 

the cells were then harvested with Trypsin and incubated with 1 µg ml-1 Annexin V-FITC 

for 5 min at room temperature in Annexin V binding buffer (150 mM NaCl, 18 mM 

CaCl2, 10 mM HEPES, 5 mM KCl, 1 mM MgCl2).  Cells were incubated with 50 µg ml-1 

propidium iodide for a further 5 min before reading the sample on a FACScan flow 

cytometer (Beckton Dickenson, BD Biosciences, Germany).  Cell Quest software 

(Beckton Dickenson) was used to analyse the data.   

 

Mitochondrial membrane depolarisation can be measured in intact cells using the 

fluorescent cationic cell permeable probe JC-1 (Salvioli et al., 1997).  DU 145 cells were 

incubated for 24 h with SP600125 and anti-Fas IgM as described above.  The cells were 

harvested and resuspended in RPMI supplemented with 10% FCS and 2.5 µg ml-1 JC-1.  

The cells were incubated for 20 min at room temperature in the dark, washed once in 

PBS and analysed by flow cytometry.  A decrease in FL-2 fluorescence is indicative of 

mitochondrial membrane depolarisation. 

 

SDS-PAGE and Western Blot Analysis 

Cells were treated as described in the figure legends.  The cells were then harvested and 

lysed in RIPA buffer (50 mM Tris, pH 7.4; 150 mM NaCl; 1 mM each of NaF, NaVO4 

and EGTA; 1% NP40; 0.25% sodium deoxycholate; 0.2 mM AEBSF; 1 µg ml-1 each of 

antipain, aprotinin and chymostatin; 0.1 µg ml-1 leupeptin; 4 µg ml-1 pepstatin) for 20 min 

on ice.  The lysates were centrifuged at 20,000 xg for 15 min to remove insoluble debris 

and protein concentrations were determined.  At least 30 µg protein was loaded into each 
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lane of an SDS-polyacrylamide gel.  Electrophoresis of the samples and transfer to a 

nitrocellulose membrane was carried out.  Staining of the membrane with the various 

antibodies was performed using the manufacturers recommended protocol. 

 

Cell Cycle analysis 

DU 145 cells were treated with 50 µM SP600125, 8 mM hydroxyurea and 2 µg ml-1 

nocodazole for 24 h.  At least 200,000 DU 145 cells were washed in PBS-EDTA and 

fixed in ice-cold 70% ethanol overnight at –20 °C.  Cells were resuspended in PBS-

EDTA with 40 µg ml-1 Propidium iodide and 200 µg ml-1 DNase free RNase A (Sigma, 

UK) in dark for 30 min and DNA content of cells was analysed on FACScan flow 

cytometer. 

 

RNA interference 

Cells were transfected with HIPK3 siRNA (5’-AAU ACU UAC GAA GUC CUU CAU-

3’) or control siRNA (5’-AAA AAU UUC CAC CCC CCG GGC-3’) using 

oligofectamine following the manufacturers protocol exactly.  Expression of HIPK3 was 

determined every day after transfection and 4 to 5 days post transfection was found to be 

optimal for silencing HIPK3 in DU 145 cells.  RNA and protein were extracted taken on 

day 4 and apoptosis assays were begun on day 4 and completed by day 5. 

 

Reverse transcriptase - PCR 

RNA was extracted from 100,000 DU 145 cells using Triazol reagent and 0.5 µg was 

converted to cDNA using MMLV reverse transcriptase.  Primers were subsequently used 
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to amplify up target sequences on HIPK3 cDNA (forward 5’-ACA TTG GAA GAG CAT 

GAG GCA GAG A-3’, reverse 5’-CTG CTG AAA AGC ATC ACC ACA ACC A-3’) 

and GAPDH (forward 5’-ACC ACA GTC CAT GCC ATC AC-3’, reverse 5’-TCC ACC 

ACC CTG TTG CTG TA-3’) cDNA using PCR and DNA bands were visualised using 

agarose gel electrophoresis. 

 

Immunoprecipitation of FADD 

A minimum of 500 µg of protein was used per sample.  DU 145 cells were treated and 

harvested as described in the figure legends.  The cells were lysed gently using lysis 

buffer (10 mM Tris pH 7.5, 50 mM NaCl, 10 mM Sodium Pyrophosphate, 50 mM NaF, 1 

mM NaVO4, 1% NP40, 0.2 mM PMSF, 5 µg ml-1 each of antipain, aprotinin and 

chymostatin, 0.5 µg ml-1 leupeptin, 20 µg ml-1 pepstatin) and centrifuged at 20,000 xg for 

15 min to remove insoluble material.  Total cell protein was diluted to 1 µg ml-1 in PBS 

and incubated with 10 µg ml-1 rabbit anti-FADD overnight at 4°C.  Protein G-agarose 

conjugated beads (Peirce) were prepared according to the manufacturers recommended 

instructions and incubated with the samples for a further 2 h at 4°C.  FADD was 

immunoprecipitated by centrifugation at 1,000 xg for 3 min.  The beads were washed 4 

times in PBS and boiled in SDS-PAGE loading buffer for 5 min.  The agarose beads were 

precipitated out of solution by centrigugation at 20,000 xg for 2 min and the sample was 

loaded onto an SDS-polyacrylamide gel and analysed by western blot. 
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Results 

SP600125 inhibits endogenous JNK activity in DU 145 prostate carcinoma cells 

JNK can activate the transcription factor c-Jun by phosphorylating two key residues, 

Ser63 and Ser73.  Once phosphorylated, active c-Jun can alter the expression of a number 

of genes, including itself.  We analysed the extent of normal c-Jun expression and 

phosphorylation in DU 145 cells incubated with and without 50 µM SP600125, a recently 

described anthrapyrazole inhibitor of JNK that has been demonstrated to specifically 

inhibit JNK activity both in vitro and in vivo (Bennett et al., 2001).   In addition, the 

effects of SP600125 on the high levels of JNK activity that accompanies incubation with 

anisomycin were also analysed.  We found that c-Jun expression was reduced when 

incubated with 50 µM SP600125 for 4 h.  Furthermore, anisomycin mediated 

phosphorylation of c-Jun was partially inhibited in cells pre-treated with 50 µM 

SP600125 for 4 h.  These data suggested that 50 µM SP600125 inhibits endogenous JNK 

activity in resting DU 145 cells and can also reduce the activity of JNK following 

treatment with anisomycin (Figure 1a).  The upstream JNK kinase MKK4 can be 

inhibited when high concentrations of SP600125 are used (Bennett et al., 2001).  We 

investigated if MKK4 was significantly inhibited in DU 145 cells using 50 µM SP600125 

and found that phosphorylation of JNK at Thr183 and Tyr185 by anisomycin was not 

affected in cells co-incubated with 50 µM SP600125.  This suggests that inhibition of 

JNK signalling pathway by SP600125 in DU 145 cells is due entirely to inhibition of 

JNK activity and not through inhibiting other upstream kinases in the JNK cascade 

(Figure 1b).   
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SP600125 sensitises DU 145 prostate carcinoma cells to Fas mediated apoptosis. 

Therefore, we used 50 µM SP600125 to decrease the endogenous activity of JNK and 

observed a concomitant increase in the sensitivity of DU 145 cells to Fas mediated 

apoptosis.  Treatment with the Caspase 8 specific inhibitor z-IETD-fmk completely 

abrogated apoptosis demonstrating that apoptosis in response to SP600125 and anti-Fas 

IgM was entirely dependent on Caspase 8 activity (Figure 1c).  This result agrees with the 

current theory that Caspase 8 is the apical caspase in the Fas receptor pathway and is 

absolutely required for the subsequent caspase cascade and apoptosis following Fas 

receptor engagement with Fas ligand.  In contrast, inhibition of Caspase 9 activity with 

the specific inhibitor z-LEHD-fmk did not completely abrogate apoptosis in response to 

treatment with SP600125 and anti-Fas IgM.  Therefore, mitochondrial amplification of 

Caspase 9 activity may accelerate but is not absolutely required for apoptosis in response 

to SP600125 and anti-Fas IgM (Figure 1c).  We also decreased the endogenous activity 

of ERK and P38 using U0126 and SB203580 but we did not detect any increase in the 

sensitivity of DU 145 cells to anti-Fas IgM (data not shown).  Consequently, we 

hypothesized that a target specifically regulated by JNK may be responsible for the 

observed increase in sensitivity to Fas receptor engagement.  

 

Endogenous JNK activity increases the resistance of DU 145 cells to Fas mediated 

apoptosis by inhibiting Caspase 8 activation by Fas receptor. 

We analysed the major events that occur during Fas mediated apoptosis in order to gain 

some insight into the anti-apoptotic potential of endogenous JNK activity in DU 145 

cells.  Caspase 8 is only cleaved and activated when FADD and Caspase 8 are recruited 
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together to the death inducing signalling complex (DISC) following Fas receptor 

engagement with anti-Fas IgM.  Detectable cleavage products of Caspase 8 were only 

evident in cells co-incubated with both SP600125 and anti-Fas IgM (Figure 2a).  As a 

result the recruitment and cleavage of Caspase 8 in the death inducing signalling complex 

(DISC) is defective in resting DU 145 cells and inhibition of JNK activity can increase 

the cleavage of Caspase 8 in response to anti-Fas IgM.  We also analysed downstream 

events during Fas mediated apoptosis and observed cleavage and activation of Bid only 

in DU 145 cells incubated with both SP600125 and anti-Fas IgM (Figure 2b).  In 

addition, we only detected mitochondrial membrane depolarisation and Caspase 3 

cleavage products in response to anti-Fas IgM when endogenous JNK activity had been 

decreased (Figure 2c and 2d).  These results supported out hypothesis that inhibition of 

JNK using SP600125 facilitated DU 145 cells to undergo Fas mediated apoptosis 

primarily by enhancing either recruitment of or subsequent cleavage of Caspase 8 at the 

DISC.   

 

FADD phosphorylation is regulated by endogenous JNK in DU 145 cells. 

SP600125 appears to decrease the treshold required for Fas mediated apoptosis in DU 

145 cells.  In order to understand the mechanisms, we analysed the expression of the 

major components of Fas DISC.  We did not observe any significant alterations in 

expression of Fas receptor, Fas ligand, FADD, Caspase 8 or FLIP in response to 

SP600125 treatment (data not shown).  However, we did observe a decrease in FADD 

phosphorylation after incubating DU 145 cells with SP600125.  No change in FADD 

phosphorylation was evident following treatment with anti-Fas IgM alone (Figure 3a).  
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FADD phosphorylation has previously been described and correlates with cell cycle 

progression.  Cells arrested in G1 phase of the cell cycle display predominantly 

unphosphorylated FADD whereas cells arrested during mitosis display predominantly 

phosphorylated FADD (Scaffidi et al., 2000).  We confirmed that phosphorylation of 

FADD is regulated by cell cycle progression in DU 145 cells using 8 mM hydroxyurea to 

arrest cells during G1 phase and 2 µg ml-1 nocodazole to arrest cells during mitosis 

(Figure 3b).  Although JNK has previously been implicated in cell cycle progression 

during DNA synthesis (Potapova et al., 2000), incubation with SP600125 did not arrest 

DU 145 cells in the S phase of the cell cycle (Figure 3c and 3d).  In addition, the rate of 

proliferation of cells incubated with SP600125 was not significantly altered compared 

with untreated DU 145 cells (data not shown).  These data suggest that JNK does not 

indirectly regulate FADD phosphorylation in DU 145 cells by regulating cell cycle 

progression.  

 

Protein kinase C zeta (PKCζζζζ) is not responsible for FADD phosphorylation in DU 

145 cells. 

We hypothesised that JNK directly regulates the activity of a FADD kinase in DU 145 

cells.  A number of FADD interacting kinases have been identified (Kennedy & Budd, 

1998) and one kinase that has been shown to associate with and phosphorylate FADD in 

vivo is PKCζ, an atypical member of the PKC family (de Thonel et al., 2001).  We found 

that PKCζ is more highly expressed in the Fas resistant prostate cancer cell lines DU 145 

and PC-3 when compared with the Fas sensitive PPC-1 and ALVA 31 prostate cancer 

cell lines (Figure 4a).  Moreover we noted that FADD phosphorylation was more 
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extensive in DU 145 cells and PC-3 cells than in PPC-1 and ALVA 31 cells (data not 

shown).  However, the extent of FADD phosphorylation was not found to change when a 

pseudosubstrate inhibitor of PKCζ was incubated in DU 145 cells (Figure 4b).  

Phosphorylation of ERK in response to PKCζ activity was significantly decreased using 

15 µM and 20 µM PKCζ pseudosubstrate inhibitor (Figure 4c) and this confirmed that 

PKCζ was not the kinase responsible for FADD phosphorylation in DU 145 cells. 

 

HIPK3 phosphorylates FADD and increases the resistance of DU 145 cells to Fas 

mediated apoptosis. 

Another protein kinase known to interact with FADD is HIPK3, a 170kDa kinase that can 

regulate DISC formation in vivo (Rochat-Steiner et al., 2000).  The expression of HIPK3 

was found to be elevated in Fas resistant DU 145 and PC-3 cells in comparison with more 

sensitive PPC-1 and ALVA 31 prostate carcinoma cells (Figure 5a).  Little is known 

about the function of HIPK3 in cells and we used RNA interference to reduce the 

expression of HIPK3 in DU 145 cells as outlined in the materials and methods section.  

We found that incubation with anti-HIPK3 RNA oligonucleotides for 4 days was 

sufficient to reduce the expression of HIPK3 mRNA (Figure 5b).  Next we analysed the 

extent of FADD phosphorylation in DU 145 cells after incubation with HIPK3 RNA 

oligonucleotides and that FADD phosphorylation was significantly reduced after 4 days 

(Figure 5c).  The sensitivity of DU 145 cells to Fas receptor mediated apoptosis was 

found to increase in cells with reduced levels of HIPK3 expression in comparison with 

control oligonucleotides (Figure 5d). 

 



 83

SP600125 decreases transcription of HIPK3 and regulates the interaction between 

FADD and Caspase 8 in DU 145 cells. 

We found that incubation of DU 145 cells with 50 µM SP600125 decreased the 

expression of HIPK3 mRNA (Figure 6a) and also decreased the expression of HIPK3 

protein (Figure 6b).  These data strongly indicate that JNK can regulate the activity of 

HIPK3 by altering the rate of transcription at the HIPK3 gene locus.  We 

immunoprecipitated FADD from DU 145 cell lysates and probed for Caspase 8 

expression.  Although Caspase 8 is believed to associate with FADD in unstimulated 

cells, we did not detect any interaction between FADD and Caspase 8 in resting DU 145 

cells.  No interaction between FADD and Caspase 8 was evident even after 24 h 

stimulation with 200 ng ml-1 anti-Fas IgM and co-incubation with SP600125 and anti-Fas 

IgM for 24 h was required for Caspase 8 association with FADD (Figure 6c).  Thus it 

appears that JNK interferes with FADD and Caspase 8 binding in DU 145 cells by 

upregulating the expression of HIPK3.  Reducing the expression of HIPK3 using RNAi 

or SP600125 increases the sensitivity of DU 145 cells to Fas mediated apoptosis by 

increasing the affinity of FADD for Caspase 8. 
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Discussion 

The role of JNK in both survival and apoptosis has been well documented (Harper & 

LoGrasso, 2001; Lin, 2003).  However, much work is required to identify the exact 

mechanisms employed by JNK during these very different responses.  We have 

previously highlighted the requirement of JNK activity for promoting apoptosis in 

prostate cancer cells in response to treatment with anti-Fas IgM.  We noted that the 

targets of JNK appeared to be upstream of Caspase 8 activation in these cells and were 

independent of alterations in Fas receptor, Fas ligand and FLIP expression (Curtin & 

Cotter, 2002).  In this study we focus on the relationship between endogenous JNK 

activity and Fas receptor mediated apoptosis for 2 principle reasons.  Firstly very little 

work has been done on the role of endogenous JNK activity in Fas mediated apoptosis 

and secondly there is a growing consensus that elevated JNK activity is important in 

prostate cancer development and progression (Potapova et al., 2002).   

 

We found that endogenous JNK signalling confers survival advantages against Fas 

mediated apoptosis in DU 145 cells and inhibition of JNK augments Fas mediated 

apoptosis by a mechanism upstream of Caspase 8 activation.  Consequently, we analysed 

the expression of various components of the Fas receptor DISC and discovered that the 

inhibition of JNK activity reduces the levels of FADD phosphorylation.  A number of 

kinases have been reported that phosphorylate FADD in vitro and in vivo.  Two of these 

kinases that have been demonstrated to inhibit the effective formation of the DISC in 

cells are PKCξ and HIPK3.   
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PKCξ interacts with and phosphorylates FADD in haematopoietic cells and it has been 

found that overexpression of PKCξ abrogates Fas receptor mediated apoptosis by 

interfering with effective DISC formation (de Thonel et al., 2001).  Overexpression of 

PAR-4, the cellular inhibitor of PKCξ activity, has been shown to sensitise prostate 

cancer cell lines to Fas mediated apoptosis and this may implicate PKCξ in the resistance 

of DU 145 cells to treatment with anti-Fas IgM (Chakraborty et al., 2001).  JNK1 activity 

has been reported to decrease the expression of PAR-4 in epithelial cells (Han et al., 

2002) and this may lead to an increase in the activity of PKCξ.  In addition, increases in 

PKCξ expression have been reported during prostate cancer progression (Cornford et al., 

1999).  Although we confirmed that the expression of PKCξ is elevated in DU 145 cells 

we did not observe any decrease in the phosphorylation of FADD when we incubated 

cells with the PKCξ pseudo-substrate inhibitor.  In addition, no increase in the sensitivity 

of cells to anti-Fas IgM was detected and these data suggest that PKCξ may not be the 

principle kinase of FADD in DU 145 cells. 

 

A second FADD interacting kinase called HIPK3 was first identified as a putative multi-

drug resistant protein from studies of cancer cells (Begley et al., 1997; Sampson et al., 

1993).  Further studies demonstrated that HIPK3/FIST can interact with FADD and has 

been shown to phosphorylate FADD when overexpressed in cells (Rochat-Steiner et al., 

2000).  Although HIPK3 did not interfere with apoptosis in these cells, it did prevent 

JNK activation and this suggests that HIPK3 can interfere with DISC formation.  We 

found that HIPK3 was expressed at higher levels in the Fas resistant prostate cancer cell 

lines DU 145 and PC-3.  RNA interference reduced the expression of HIPK3 in DU 145 
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cells and this was accompanied with a decrease in the extent of FADD phosphorylation.  

In addition, an increase in the sensitivity of cells to Fas mediated apoptosis was observed 

in cells with reduced expression of HIPK3.  We found that HIPK3 was significantly 

reduced in cells treated with SP600125.  This suggests that increases in endogenous JNK 

activity during prostate cancer progression may increase the expression of HIPK3 and 

this in turn may increase the resistance of prostate cancer cells to Fas mediated apoptosis.  

Inhibition of JNK activity using SP600125 was also found to correlate with an increase in 

the interaction between FADD and Caspase 8.  The association of FADD and Caspase 8 

was found to be defective in normal DU 145 cells and interaction between these two 

proteins was only restored after co-incubation with SP600125 and anti-Fas IgM.  

Therefore, elevated JNK activity and HIPK3 expression can affect the interaction 

between FADD and Caspase 8.  This may explain, at least in part, the association 

between multi-drug resistance in cancer cells and HIPK3 activity. 

 

The duration of JNK activation in individual cells and not the intensity of activation is 

believed to be the deciding factor between survival and apoptosis signalling (Bagowski et 

al., 2003; Chen et al., 1996).  Targets of JNK have been identified that either promote or 

inhibit Fas mediated apoptosis at two key stages (Figure 7).  JNK can phosphorylate and 

alter the activity of a number of Bcl-2 family members and this in turn modulates the 

sensitivity of the mitochondrion to apoptotic signals.  JNK may also modulate early 

events during Fas mediated apoptosis such as decreasing PAR-4 expression (Chakraborty 

et al., 2001; Han et al., 2002) and enhancing the clustering of Fas receptor in response to 

Fas ligand (Reinehr et al., 2003).  Our results have illuminated another target of JNK in 
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Fas receptor mediated apoptosis.  By regulating HIPK3 expression and FADD 

phosphorylation, JNK appears to regulate the interaction between FADD and Caspase 8 

and increases the treshold of Fas receptor activation required to promote apoptosis in 

prostate cancer cells.  However, HIPK3 is not the sole mechanism that increases 

resistance of DU 145 cells to Fas mediated apoptosis.  Bcl-2 family members and HSP27 

may regulate other components of the Fas apoptotic pathway.  These mechanisms are 

semi-redundant and act independently to increase the treshold of Fas receptor activation 

required for apoptosis induction.  As a consequence, it is likely that any therapy directed 

against Fas receptor for prostate cancer will target multiple inhibitory effects in order to 

maximise apoptosis and reduce the tumour burder in patients. 
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Figure 1: Inhibition of endogenous JNK activity with SP600125 sensitises DU 
145 prostate carcinoma cells to Fas mediated apoptosis. (A) JNK was activated with 
250 ng ml-1 anisomycin in the presence or absence of 50 µM SP600125.  Western 
blotting was used to determine the expression and phosphorylation of c-Jun in DU 145 
cell lysates after 4 h treatment.  β-Actin was also probed to demonstrate equal protein 
loading in the lanes.  (C) JNK phosphorylation at Thr183 and Tyr185 was assessed by 
western blot in cells incubated with 250 ng ml-1 anisomycin in the presence and absence 
of 50 µM SP600125 for 4 h.  Total JNK expression was also analysed to determine 
equal protein loading.  (C) DU 145 cells were incubated for 1 h with 50 µM SP600125 
as outlined in the materials and methods section before addition of 200 ng ml-1 α-Fas
IgM agonistic antibody.  Cells were stained 24 h after adding α-Fas IgM with Annexin 
V-FITC and Propidium iodide to visualise the extent of apoptosis. 25 µM Caspase 8 
inhibitor z-IETD-fmk and Caspase 9 inhibitor z-LEHD-fmk were added 10 min before 
α-Fas IgM where indicated and error bars represent the standard deviation of 3 
independent experiments. 
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Figure 2: SP600125 sensitises DU 145 cells to Fas induced apoptosis upstream of 
Caspase 8 activation. (A) Expression of Procaspase 8 (55/57 kDa) and the large Caspase 
8 active subunit (18 kDa) were analysed by western blot in lysates from DU 145 cells 
treated with 50 µM SP600125 and 200 ng ml-1 anti-Fas IgM for 24 h.  Untreated and Fas 
treated Jurkats were used as a positive control for Caspase 8 cleavage products and actin
was also probed to demonstrate equal protein loading.  (B) The cleavage of BID (22 kDa) 
into the pro-apoptotic tBID (15 kDa) was analysed in DU 145 cells treated with 50 µM 
SP600125 and 200 ng ml-1 anti-Fas IgM for 24 h.  Untreated and Fas treated Jurkat T cells 
were used as a positive control for BID cleavage following Fas R activation.  β-Actin was 
probed for equal protein loading.  (C) Mitochondrial membrane depolarisation was 
assessed in DU 145 cells treated for 24 h with 50 µM SP600125 and 200 ng ml-1 anti-Fas
IgM using the cationic probe JC-1.  A decrease in FL-2 fluorescence indicates 
depolarisation of the mitochondrial membrane in the cells.  Data are representative of three 
independent experiments.  (D) Western blot analysis of Procaspase 3 expression and 
cleavage in DU 145 cells treated for 24 h with 50 µM SP600125 and 200 ng ml-1 anti-Fas
IgM.  UV irradiated HL-60 cells were used as a positive control for Procaspase 3 cleavage.  
Procaspase 3 (35 kDa) and various cleavage products including active caspase subunits are 
evident.  β-Actin was also probed to ensure equal protein loading.  
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Figure 3: SP600125 inhibits FADD phosphorylation in DU 145 cells.  (A) Western 
blot analysis of FADD in DU 145 cell lysates following treatment for 24 h with 
SP600125 and anti-Fas IgM as described earlier.  The doublet band present in untreated 
and anti-Fas IgM treated cells represents unphosphorylated and Ser 194 phosphorylated 
FADD.  Actin was also probed to ensure equal protein loading.  (B) Effects of the cell 
cycle inhibitors Hydroxyurea and Nocodazole on FADD phosphorylation are 
investigated in DU 145 cells.  Actin was probed to verify equal protein loading.  (C) 
Cell cycle analysis in DU 145 cells incubated with 50 µM SP600125, 8 mM 
Hydroxyurea and 2 µg ml-1 Nocodazole for 24 h.  Propidium iodide was used to assess 
the DNA content of cells by flow cytometry as described in the materials and methods 
section.  (D) Bar chart representing DNA content and cell cycle phase for DU 145 cells 
incubated with SP600125, hydroxyurea and nocodazole.  Error bars represent the 
standard deviation from the mean after 3 independent experiments.
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Figure 4: PKCζ does not phosphorylate FADD in DU 145 cells.  (A) Total 
expression of PKCζ is investigated in 4 prostate cancer cell lines by western blot.  Equal 
loading was verified by probing for PARP.  (B) DU 145 cells were incubated with 20 
µM, 15 µM and 10 µM PKCζ pseudo-substrate inhibitor for 24 hours and the extent of 
FADD phosphorylation was subsequently determined by western blot.  Cells were also 
incubated with 50 µM SP600125 for comparative purposes and actin demonstrated 
equal protein loading.  (C) Expression of phosphorylated ERK was determined for the 
cell lysates used above to verify that effective concentrations of PKCζ pseudo-substrate 
inhibitor were used.  Equal protein loading was verified by determining total expression 
of ERK2.
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Figure 5: HIPK3 phosphorylates FADD and increases the resistance of DU 145
cells to Fas mediated apoptosis. (A) Total expression of HIPK3 was determined in 
the 4 prostate cancer cell lines.  Expression of HIPK3 was found to be highest in DU 
145 cells. Actin was also probed to verify equal protein loading.  RNA interference 
was used to decrease the expression of HIPK3 mRNA over 4 days (B) and a decrease 
in FADD phosphorylation was also observed in DU 145 cells in comparison with 
control oligonucleotides (C).  GAPDH (B) and Actin (C) were also probed to 
demonstrate equal loading.  (D) DU 145 cells were incubated with control or HIPK3 
small interfering RNA for 4 days and subsequently treated with 200ng ml-1 anti-Fas
IgM for 24 h.  Apoptosis was measured using Annexin V-FITC and Propidium iodide 
staining as described in the materials and methods section.  Error bars represent the 
standard deviation from the mean for 3 independent experiments.
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Figure 6: SP600125 decreases expression of HIPK3 in DU 145 cells and 
increases the affinity of FADD for Caspase 8.  (A) RT-PCR analysis of HIPK3 
expression in DU 145 cells incubated with or without 50 µM SP600125 for 24 h.  
Expression of GAPDH was also determined to demonstrate equal loading of cDNA.  
(B) Western blot analysis of HIPK3 expression in DU 145 cells following 24 h 
incubation with SP600125.  Actin was also probed for equal protein loading.  (C) 
Immunoprecipitation of FADD from DU 145 cell lysates incubated with 50 µM 
SP600125 for 24 h and 200 ng ml-1 for 1 h, 6 h and 24 h where indicated.  Co-
precipitation of Caspase 8 is evident in cells incubated with both SP600125 and anti-
Fas IgM for 24 h.  FADD was also probed to demonstrate equal protein loading. 
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Figure 7: Targets of JNK during Fas receptor mediated apoptosis.  (A) Endogenous 
JNK activation promotes survival by phosphorylation of Bcl-2 family members and 
altering the activity of PKCξ and HIPK3.  (B) Stress signals induce prolonged JNK 
activation and pro-apoptotic targets of JNK include increased processing of Bid, 
increased expression of Bim, DP5, Fas receptor and Fas ligand and tyrosine 
phosphorylation of Fas receptor by EGF receptor.



 

 

DISCUSSION 

There are many hypotheses in science which are wrong. That's
perfectly all right; they're the aperture to finding out what's right.

Science is a self-correcting process.  To be accepted, new ideas 
must survive the most rigorous standards of evidence and scrutiny.

Carl Sagan
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Discussion 

Prolonged JNK activation sensitises DU 145 cells to Fas receptor mediated 

apoptosis. 

Jun N-terminal kinase (JNK) is a member of the mitogen activated protein kinase 

(MAPK) family that also includes extracellular signal-regulated kinase (ERK) and P38.  

JNK is activated in response to environmental and cellular stresses, growth factors, 

inflammatory cytokines and G protein coupled receptor agonists (Davis, 2000; Kyriakis 

& Avruch, 2001).  Prolonged JNK activation has been observed following engagement of 

Fas receptor with Fas ligand or with agonistic antibodies that can cross-link Fas receptor 

(Latinis & Koretzky, 1996; Wilson et al., 1996).  Further studies demonstrated that Fas 

receptor activates JNK by either caspase dependent or caspase independent mechanisms.  

Cleavage of caspase 8 has been shown to correlate with cleavage of two upstream kinases 

in the JNK cascade called Mst1 (Graves et al., 2001) and MEKK1 (Deak et al., 1998).  

The kinase fragments relocate to soluble cellular fractions and induce prolonged JNK 

activation.  Caspase independent JNK activation has also been reported and requires the 

translocation of DAXX from the nucleus to the cytoplasm where it associates with the 

intracellular surface of Fas receptor.  DAXX can bind with Fas receptor independently of 

FADD and Caspase 8 (Yang et al., 1997).  ASK1 is another upstream kinase of JNK and 

associates with DAXX in the cytoplasm.  When ASK1 is recruited to Fas receptor 

aggregates local elevated concentrations of ASK 1 induce auto-phosphorylation and 

activation in trans.  Active ASK1 can subsequently activate both JNK and P38 by 

phosphorylating and activating MKK4 and MKK6 (Chang et al., 1998; Tobiume et al., 

2001). 



 

 93

 

JNK activation has been demonstrated to promote Fas mediated apoptosis in a number of 

cell lines (Costa-Pereira et al., 2000; Le-Niculescu et al., 1999; Zhang et al., 2000).  It is 

not believed to be required for apoptosis in every cell line (Abreu-Martin et al., 1999; 

Hofmann et al., 2001; Low et al., 1999) and may instead serve to lower the treshold 

required for activation of Fas receptor.  JNK can phosphorylate a wide variety of cellular 

targets and many of these promote apoptosis.  Perhaps the most widely studied targets of 

JNK are the Bcl-2 family of proteins that play an integral role in regulating the sensitivity 

of mitochondria to cellular insults.  The anti-apoptotic Bcl-2 family members Bcl-2, Bcl-

XL and Mcl-1 can all be phosphorylated by JNK (Deng et al., 2001; Inoshita et al., 2002; 

Kharbanda et al., 2000; Yamamoto et al., 1999).  JNK can regulate the expression of pro-

apoptotic Bcl-2 family members including Bim and Dp5 and these proteins are believed 

to displace Bax from Bcl-2 causing Bax homo-dimerisation and cytochrome c release 

from mitochondria (Harris & Johnson, 2001).  JNK activity can also promote the 

cleavage and activation of another pro-apoptotic Bcl-2 family member called Bid by 

Caspase 8 (Gabai et al., 2002).   

 

JNK can also regulate early events in Fas receptor mediated apoptosis.  Previous reports 

have demonstrated that Fas ligand expression increases following JNK activation and 

promotes Fas mediated apoptosis in Jurkat cells (Herr et al., 2000).  The promoter region 

of the Fas ligand gene is positively regulated by the transcription factors c-Jun and ATF-2 

that are in turn regulated by JNK (Faris et al., 1998b).  JNK can increase Fas receptor 

expression through increasing the stability of the transcription factor P53.  A P53 



 

 94

responsive element is present in the first intron of Fas receptor gene that positively 

regulates Fas receptor expression (Muller et al., 1998).   

 

In this study, we discovered that JNK was not activated following Fas receptor 

engagement with anti-Fas IgM in DU 145 cells.  In addition, DU 145 cells were 

completely resistant to anti-Fas IgM at relevant physiological concentrations that can 

induce apoptosis in a wide variety of Fas sensitive cell lines.  We found that stimulation 

of JNK using anisomycin was not toxic alone but significantly enhanced the rate of 

apoptosis in DU 145 cells when co-administered with anti-Fas IgM antibodies.  We also 

found that Caspase 3 was not cleaved in response to anti-Fas IgM or anisomycin alone, 

but extensive cleavage was observed in cells co-incubated with anisomycin and anti-Fas 

IgM.  Similarly, depolarisation of mitochondrial membranes was only evident in cells 

treated with both anti-Fas IgM and anisomycin.  We did not observe any cleavage 

products of Caspase 8 or Bid in cells incubated with anti-Fas IgM or anisomycin alone.  

These data indicate that JNK affects Fas receptor mediated apoptosis upstream of 

Caspase 8 activation.  Therefore, modulation of the Bcl-2 family members does not 

appear to be necessary for Fas receptor mediated apoptosis in DU 145 cells (Chapter 2). 

 

We analysed the expression of Fas ligand and Fas receptor and we did not observe any 

increase in expression following JNK activation (Chapter 2).  Other chemotherapeutic 

drugs have also been used to sensitise DU 145 cells to Fas receptor mediated apoptosis.  

Our group demonstrated that camptothecin, a topoisomerase I inhibitor, sensitised DU 

145 cells to anti-Fas IgM mediated apoptosis by a JNK dependent mechanism (Costa-
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Pereira & Cotter, 1999; Costa-Pereira et al., 2000).  An analogue of camptothecin called 

9-nitrocamptothecin was also found to sensitise prostate cancer cells to Fas mediated 

apoptosis over a longer time period (48 h and 72 h) (Chatterjee et al., 2001).  The authors 

established that an increase in Fas receptor and Fas ligand expression and a decrease in 

the expression of the apoptosis inhibitor c-FLIP were responsible for the increase in 

apoptosis observed.  Induction of apoptosis in our system is rapid and usually occurs 

within 8 h.  We did not observe any increase in either Fas receptor or Fas ligand 

expression when using camptothecin or anisomycin.  We also studied the expression of c-

FLIP in DU 145 cells and did not observe any decrease in either FLIPS or FLIPL 

following incubation with anisomycin.  Therefore, anisomycin and 9-nitrocamptothecin 

appear to sensitise DU 145 cells to Fas mediated apoptosis by different mechanisms.  In 

fact, the short incubation required to induce apoptosis in our system suggests that de novo 

gene and protein expression may not be the principle effector of anisomycin in DU 145 

cells (Chapter 2). 

 

We can use the observations made already to narrow down the list of potential targets of 

JNK in DU 145 cells.  We know that this target is involved in early events in Fas 

mediated apoptosis somewhere downstream of Fas receptor engagement with anti-Fas 

IgM and upstream of Caspase 8 activation.  We can also speculate that a direct 

phosphorylation event is more likely the mediator than altered gene expression in light of 

the short time period before apoptosis is evident.  Finally, no post translational 

modification of Fas receptor, Fas ligand, FADD, Caspase 8, FLIP or DAXX was noted.   
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This leaves us with a number of possible targets of JNK.  Perhaps the most obvious is the 

ability of cytotoxic drugs to activate the Fas receptor pathway independent of Fas ligand.  

This is believed to be a principle mechanism employed by cytotoxic drugs to induce 

apoptosis in cancer cells (Micheau et al., 1999).  A more recent report has described a 

caspase-independent, serine protease-dependent pathway that is regulated by FADD in 

prostate epithelial cells.  Activation of a serine protease by FADD was found to occur in 

normal prostate epithelial cells but not in DU 145 prostate cancer cells.  This serine 

protease induced cell death is independent of Caspase activation (Thorburn et al., 2003).  

Recently it has also emerged that the Fas receptor can associate with EGF receptor under 

conditions of cellular stress including hypo-osmolarity.  EGF receptor phosphorylates Fas 

receptor at tyrosine residues and this was found to significantly enhance Fas receptor 

oligomerisation in response to Fas ligand engagement.  The authors demonstrated that 

while JNK activity did not alter the interaction between EGF receptor and Fas receptor, it 

was absolutely required for phosphorylation of Fas receptor by EGF receptor (Reinehr et 

al., 2003).  Therefore JNK can promote the trimerisation of Fas receptor and subsequent 

DISC formation in response to anti-Fas IgM.   

 

Our results argue against the first two of these three possibilities.  The low cytotoxicity of 

anisomycin and the synergy observed between anisomycin and anti-Fas IgM suggests 

that anisomycin does not activate Fas receptor.  Instead, our data suggest that components 

required for Fas mediated apoptosis are defective in DU 145 cells and JNK activity either 

restores or bypasses these early events.  We have shown that Caspase 8 activity is 

absolutely required for apoptosis in response to anisomycin and anti-Fas IgM using the 
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specific inhibitor z-IETD-fmk.  In addition, we have observed DNA fragmentation and 

membrane blebbing after 8 h treatment, which do not occur in response to the serine 

protease induced cell death.  Therefore, we can assume that Caspase 8 and not a serine 

protease is the central mediator of apoptosis when DU 145 cells are co-incubated with 

anti-Fas IgM and anisomycin.  The third hypothesis is more promising.  We believe that 

either Fas receptor clustering or DISC formation may be defective in DU 145 cells.  In 

addition, JNK is not activated in response to anti-Fas IgM alone.  Consequently, we 

chose to study the events preventing Fas receptor mediated JNK activation in more detail. 
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Prolonged JNK activation in response to Fas receptor activation is inhibited in DU 

145 cells. 

JNK can be activated by either DAXX or Caspase 8 dependent pathways in response to 

Fas receptor engagement with Fas ligand and anti-Fas IgM antibodies but both of these 

pathways are defective in DU 145 cells.  Our data suggested that restoring DAXX 

dependent JNK activation would be sufficient to activate Caspase 8 and initiate apoptosis 

in response to anti-Fas IgM.  Consequently, we studied the mechanisms inhibiting JNK 

activation in order to further comprehend the inhibition of Fas receptor mediated 

apoptosis in prostate carcinoma cells.   

 

The absence of Caspase 8 independent JNK activation suggested that a fundamental 

defect exists in DISC formation following Fas receptor activation in DU 145 cells.  A 

number of possibilities may explain this.  Firstly, Fas receptor must form trimers at the 

cell surface following engagement of Fas ligand or anti-Fas IgM antibodies in order to 

recruit functional DISC components (Holler et al., 2003; Schneider et al., 1998).  

Inefficient clustering of Fas receptor may help explain both the absence of JNK and 

Caspase 8 activation in DU 145 cells following treatment with anti-Fas IgM antibodies.  

Alternatively, FADD and DAXX might be sequestered within DU 145 cells and unable to 

bind with Fas receptor even after engagement of Fas receptor with Fas ligand.  HSP27 

has been reported to sequester DAXX in nuclei and overexpression of HSP27 prevents 

DAXX translocation from the nucleus to the cytoplasm in response to anti-Fas IgM.  In 

addition, the authors discovered that only HSP27 dimers could bind with DAXX.  

Inhibition of MAPKAP2 activity using the P38 inhibitor SB203580 prevents HSP27 
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dimer formation from larger oligomers.  This abrogated the interaction between DAXX 

and HSP27 and in turn sensitised cells to Fas receptor mediated apoptosis (Charette et al., 

2000).  HSP27 overexpression is associated with poor clinical outcome in prostate cancer 

(Cornford et al., 2000) 

 

We did not observe translocation of DAXX from nuclear to cytoplasmic fractions. This 

suggested that either DAXX is sequestered in the nucleus or Fas receptor aggregation is 

defective and prevents DAXX translocation.  We also found that HSP27 is overexpressed 

in DU 145 cells.  However, we could not co-immunoprecipitate DAXX and HSP27 from 

DU 145 cell lysates.  We did not observe any translocation of DAXX from nuclear to 

cytoplasmic extracts when cells were co-incubated with SB203580 and anti-Fas IgM and 

no increase in the sensitivity of cells to anti-Fas IgM was observed following incubation 

with SB203580.  These data strongly suggest that HSP27 is not involved in sequestering 

DAXX in DU 145 cells (Chapter 3).   

 

DAXX has also been reported to associate with PML at PML oncogenic domains 

(POD’s/ND-10) in the nuclei of cells.  Modification of PML by the small ubiquitin-like 

protein (SUMO-1) has been reported to sequester DAXX in ND-10 domains.  This may 

prevent DAXX translocation from nuclear to cytoplasmic fractions in response to 

engagement of Fas receptor with anti-Fas IgM or Fas ligand (Li et al., 2000a).  

Overexpression of SUMO-1 can protect cells from Fas receptor mediated apoptosis 

(Okura et al., 1996).  SUMO-1 appears to be a likely candidate for sequestering DAXX in 

DU 145 cells. 
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Next, we analysed the Caspase dependent pathway that mediates JNK activation in DU 

145 cells.  We had already discovered that Caspase 8 was not activated in DU 145 cells 

following Fas receptor engagement with anti-Fas IgM (Chapter 2).  After further analysis, 

we demonstrated that the interaction between Caspase 8 and FADD was defective in DU 

145 cells (Chapter 3).  This would prevent Caspases 8 recruitment to Fas receptor clusters 

on the plasma membrane, which is a necessary event for cleavage and activation of 

Caspase 8 (Donepudi et al., 2003).  Consequently, DISC formation and activation of 

Caspase 8 and JNK in response to Fas receptor mediated apoptosis would not occur.   

 

Binding of Caspase 8 with FADD occurs in untreated cells and is mediated by 

homophyllic interactions between 2 death effector domains (DED) on FADD and on 

Caspase 8.  Disruption of the interaction between FADD and Caspase 8 has been reported 

by a number of authors and this can abrogate Fas receptor mediated apoptosis.  Early 

studies suggested that Caspase 8 resides primarily in mitochondria of resting cells and 

translocates into the cytosol in response to Fas receptor engagement with Fas ligand.  

Inhibition of the permeability transition pore was found to prevent release of Caspase 8 

and prevent apoptosis (Qin et al., 2001).  However, more recent reports that have 

disputed this claim and it is now believed that Caspase 8 resides predominantly in the 

cytosol in untreated cells where it is free to interact with FADD (van Loo et al., 2002).   

 

FLIP is a cellular homologue of Caspase 8 that contains two DED and is capable of 

binding to FADD in place of Caspase 8.  Although endogenous FLIP expression is 
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usually only 1% of endogenous Caspase 8 expression, overexpression of FLIP can 

protect cells from Fas receptor mediated apoptosis by preventing Caspase 8 binding with 

FADD (Scaffidi et al., 1999a).  We analysed the expression of FLIP in Fas resistant DU 

145 cells and Fas sensitive Jurkat cells.  DU 145 cells were found to express FLIPL at 

similar levels to Jurkats and did not express FLIPS.  Expression of FLIP was not found to 

change following incubation with anisomycin or anti-Fas IgM.  Caspase 8 was found to 

co-immunoprecipitate with FADD in untreated Jurkat cells demonstrating that FLIP 

expression alone is not responsible for abrogating the homophyllic binding between 

FADD and Caspase 8 in DU 145 cells (Chapter 3). 

 

PKCξ overexpression and activation has been shown to phosphorylate FADD at Ser194 

and prevents the interaction between FADD and Caspase 8 in the haematopoietic cell line 

KG1a.  Treating cells with anti-Fas IgM was found to induce Fas receptor clustering on 

the plasma membrane and recruitment of FADD to Fas receptor.  However, Caspase 8 

was absent from these DISC immunoprecipitates when compared with Jurkat cells.  

Inhibition of PKCξ restored the interaction between FADD and Caspase 8 and promoted 

Fas receptor mediated apoptosis (de Thonel et al., 2001).  Interestingly, we found that DU 

145 cells express high levels of phosphorylated FADD (Chapter 4) and PKCξ expression 

has been shown to increase during prostate cancer tumorigenesis (Cornford et al., 1999).  
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Endogenous JNK activity inhibits Fas receptor mediated apoptosis. 

As our work to understand the defects in Fas receptor signalling that inhibit prolonged 

JNK activation in response to Fas receptor activation progressed, we attempted to inhibit 

JNK activity in response to anisomycin using a newly synthesised inhibitor SP600125.  

Although we could not fully inhibit JNK activation in response to anisomycin using 

SP600125, we did abrogate endogenous and transient JNK activity and observed a 

significant increase in the sensitivity of these cells to Fas mediated apoptosis (Chapter 4).  

This was completely unexpected because we had already demonstrated that JNK activity 

promotes Fas receptor mediated apoptosis in DU 145 cells.  However, while prolonged 

JNK activity is associated with events that induce or promote apoptosis, transient JNK 

activity is implicated with increased cell survival.  In fact, elevated JNK activity has been 

reported during prostate cancer progression and inhibiting JNK expression using anti-

sense oligonucleotides reduced tumour growth and sensitised prostate cancer cells to 

cytotoxic drugs in vitro and in vivo (Gjerset et al., 2001; Potapova et al., 1997; Yang et 

al., 2003).  In addition, JNK is the major effector of Ras and BCR-Abl transformation in 

vitro (Hess et al., 2002; Pruitt et al., 2002) and overexpression of JNK confers a partially 

transformed phenotype on fibroblasts (Rennefahrt et al., 2002).   

 

In order to comprehend how JNK activation can elicit both survival and apoptosis 

inducing signals, it is important to understand the kinetics of JNK activation in cells.  

Recent studies have demonstrated that JNK activation in cells is usually an “all or none” 

response to initial signals.  In contrast, when analysing JNK activation in a population of 

cells such as by western blot a graded response is usually observed.  This simply 
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represents the percentage of cells expressing active JNK at the time of lysis and it appears 

that the length of time that JNK is activated in a particular cell is the most important 

factor that determines the fate of that cell (Bagowski et al., 2003; Bagowski & Ferrell, 

2001).  Anisomycin induces prolonged JNK activation and promotes apoptosis.  

However, transient JNK activation in response to survival factors may only activate JNK 

for short periods at a time and is generally associated with cell survival.  Because the 

time that JNK is active in each cell is much shorter, fewer cells express active JNK at any 

given time and the activity of JNK in that population of cells is substantially lower when 

analysed by western blot. 

 

In many instances, JNK activity can mediate both pro-apoptotic and anti-apoptotic 

signals at the same cellular targets.  This is best characterised in the Bcl-2 family of 

proteins where transient JNK activity can phosphorylate and alter the anti-apoptotic 

activity of Bcl-2 and Mcl-1 (Deng et al., 2001; Inoshita et al., 2002).  It has been 

suggested that the regulation of pro-apoptotic Bcl-2 family members is more important in 

determining the response of cells to JNK (Lei et al., 2002).  Sustained activation of JNK 

in a cell induces the expression of pro-apoptotic Bcl-2 family members such as Bim and 

DP5 and thus overcomes the previous anti-apoptotic signals (Harris & Johnson, 2001).  

Another well-characterised example is the modulation of gene expression by altering 

activity of transcription factors.  Transient JNK activity is associated with expression of a 

number of genes involved in cell growth, proliferation and tumour progression (Alfonso-

De Matte et al., 2002; Potapova et al., 2002).  In contrast, sustained JNK activity alters 
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the expression of many apoptosis related genes including Fas ligand and PAR-4 (Han et 

al., 2002; Zhang et al., 2000).  

 

There is a paucity in the literature regarding endogenous JNK activity and Fas mediated 

apoptosis.  As a result we decided to study the mechanism by which transient JNK 

activity inhibited Fas receptor mediated apoptosis in DU 145 cells and discovered that 

endogenous JNK activity was required for FADD phosphorylation.  A number of FADD 

interacting kinases have been identified and two of these, PKCξ and HIPK3 have been 

shown to inhibit DISC formation during Fas receptor mediated apoptosis (de Thonel et 

al., 2001; Rochat-Steiner et al., 2000).   

 

JNK has been reported to decrease the expression of PAR-4, a negative regulator of the 

FADD interacting kinase PKCζ (Han et al., 2002).  In addition, PKCζ expression 

increases during prostate cancer progression (Cornford et al., 1999).  We used a pseudo-

substrate inhibitor of PKCζ to inhibit the activity in DU 145 cells but we did not observe 

any change in the extent of FADD phosphorylation.  This suggests that PKCζ is not the 

dominant FADD kinase in DU 145 cells.  Next, we abrogated the expression of HIPK3 

using RNA interference and observed a decrease in the phosphorylation of FADD.  In 

addition, cells incubated with HIPK3 siRNA but not with control oligonucleotides were 

sensitive to anti-Fas IgM mediated apoptosis.  Inhibition of JNK using SP600125 was 

found to reduce the expression of both HIPK3 mRNA and protein.  This suggested that 

endogenous JNK activity promotes HIPK3 expression in prostate cancer.  We also found 

that interaction between FADD and Caspase 8 was restored in cells incubated with 
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SP600125 and anti-Fas IgM, suggesting that HIPK3 plays a role in inhibiting the 

interaction between FADD and Caspase 8 (Chapter 4).   

 

HIPK3 was first identified in tumour cells where increased expression and activity was 

implicated with tumorigenesis (Begley et al., 1997; Sampson et al., 1993).  Subsequently, 

it was demonstrated that HIPK3 interacts with and phosphorylates FADD and prevents 

caspase dependent and independent JNK activation (Rochat-Steiner et al., 2000).  We 

found that endogenous JNK activity increases the expression of HIPK3 (Chapter 4), an 

event that can prevent prolonged activation of JNK in response to Fas receptor (Rochat-

Steiner et al., 2000).  Such negative feedback loops are common in biochemical pathways 

and one such loop has been described previously during anisomycin-mediated JNK 

activation.  However, the exact cause of this negative feedback loop was never identified 

in this study (Hazzalin et al., 1998). 

 

HIPK2, another member of the homeodomain interacting protein kinase family, has been 

reported to interact with TRADD, and adapter protein similar to FADD that binds to 

TNFR1 and DR6 (Li et al., 2000b).  In addition, HIPK2 has been shown to phosphorylate 

P53 in response to UV irradiation and enhances the transcription of P53 inducible genes.  

Unlike HIPK3, however, overexpression of HIPK2 promotes apoptosis and 

administration of anti-sense oligonucleotides against HIPK2 abrogates UV-induced 

apoptosis (D'Orazi et al., 2002; Hofmann et al., 2002).  The third member of this family 

is called HIPK1 and phosphorylation of DAXX by HIPK1 promotes DAXX 

redistribution within nuclei by disrupting the interaction between PML and DAXX 
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(Ecsedy et al., 2003).  Although this may promote DAXX translocation into the 

cytoplasm in response to Fas receptor oligomerisation and therefore counteract the effects 

of HIPK3, the role of HIPK1 in apoptosis has not yet been determined.  Little is known 

about the role of the HIPK family of protein kinases in Fas mediated apoptosis.  

However, each member of the family has been found to interact with and phosphorylate 

targets involved in death receptor mediated apoptosis.  This suggests that these protein 

kinases may play a key role in regulating death receptor mediated apoptosis.   
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Future Perspective 

As life expectancy increases and the incidence of prostate cancer and mortality from 

prostate cancer increase globally, it is worth remembering that no chemotherapeutic 

regimen to date has been demonstrated to significantly improve long-term survival.  This 

failure must be addressed and identifying novel chemotherapeutic targets in prostate 

cancer is paramount to this.  Our studies have demonstrated that inhibition of Fas 

receptor mediated apoptosis occurs at multiple, semi-redundant stages in the Fas 

apoptotic pathway.  The next stage in this study should be to determine the efficacy of 

various chemotherapeutic agents on in vivo models of prostate cancer.  In particular, new 

technologies including gene therapy and RNA interference could be utilised to evaluate 

the role of various anti-apoptotic proteins on prostate cancer survival and proliferation in 

vivo.  These studies should give a clearer insight into the mechanisms employed by 

prostate cancer cells to evade apoptosis.  Identifying these inhibitory alterations in Fas 

receptor signalling and developing therapeutic drugs that target these components should 

enhance the efficacy of chemotherapy and increase the life expectancy of patients with 

hormone refractory prostate cancer. 
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In my end is my beginning.  
 

T. S. Eliot 
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