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Abstract

Abstract

This thesis deals with the evaporation of non-ideal liquid mixtures using a multicompo-
nent mass transfer approach. It develops the concept of evaporation maps as a conve-
nient way of representing the dynamic composition changes of ternary mixtures during
an evaporation process. Evaporation maps represent the residual composition of evapo-
rating ternary non-ideal mixtures over the full range of composition, and are analogous
to the commonly-used residue curve maps of simple distillation processes.

The evaporation process initially considered in this work involves gas-phase limited
evaporation from a liquid or wetted-solid surface, over which a gas flows at known
conditions. Evaporation may occur into a pure inert gas, or into one pre-loaded with
a known fraction of one of the ternary components. To explore multicomponent mass-
transfer effects, a model is developed that uses an exact solution to the Maxwell-Stefan
equations for mass transfer in the gas film, with a lumped approach applied to the liquid
phase. Solutions to the evaporation model take the form of trajectories in temperature-
composition space, which are then projected onto a ternary diagram to form the map.

Novel algorithms are developed for computation of “pseudo”-azeotropes in the evapo-
rating mixture, and for calculation of the multicomponent wet-bulb temperature at a
given liquid composition. A numerical continuation method is used to track the bifurca-
tions which occur in the evaporation maps, where the composition of one component of
the pre-loaded gas is the bifurcation parameter. The bifurcation diagrams can in prin-
ciple be used to determine the required gas composition to produce a specific terminal
composition in the liquid.

A simple homotopy method is developed to track the locations of the various possible
pseudo- azeotropes in the mixture. The stability of pseudo-azeotropes in the gas-phase
limited case is examined using a linearized analysis of the governing equations.

Algorithms for the calculation of separation boundaries in the evaporation maps are
developed using an optimization-based method, as well as a method employing eigen-
vectors derived from the linearized analysis. The flexure of the wet-bulb temperature
surface is explored, and it is shown how evaporation trajectories cross ridges and val-
leys, so that ridges and valleys of the surface do not coincide with separation bound-

aries.

Finally, the assumption of gas-phase limited mass transfer is relaxed, by employing
a model that includes diffusion in the liquid phase. A finite-volume method is used
to solve the system of partial differential equations that results. The evaporation tra-
jectories for the distributed model reduce to those of the lumped (gas-phase limited)
model as the diffusivity in the liquid increases; under the same gas-phase conditions
the permissible terminal compositions of the distributed and lumped models are the

same.
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Chapter 1

Introduction

The evaporation of organic solvent mixtures, and the drying of solids containing such
solvents are common operations in the process industries, spanning technologies from
spray-drying of pharmaceutical products to fuel combustion. In many manufacturing
processes, the use of solvent mixtures may offer desirable features. In the pharma-
ceutical industry for example, some 90% of all compounds in modern pharmaceutical
drug delivery pipelines are reported to be poorly soluble in water (Reintjes 2011); the
use of solvent mixtures enhances the solubility of many active pharmaceutical ingre-
dients (APIs), allowing reaction steps to occur in liquid phase, and allowing the final
active ingredient to be spray-dried to a solid, and ultimately processed to the required
final dosage form. As a motivational example, figure 1.1 shows a practical case of a
tray dryer used to dry pharmaceutical solids; the wetted solids, often from a preceding
granulation step using a solvent mixture, are loaded into trays and stacked on mobile
trolleys. When placed within the tray dryer, the flow of heated air across the tray sur-
face causes heat transfer from the gas phase to the wetted solid and mass transfer from
the wetted solid into the gas. A portion of the solvent-laden air may be recirculated,
and the balance is discharged for further treatment. After a pre-defined time period,
the trays are removed from the dryer and move to the next step such as encapsula-
tion or tabletting (Parikh 1997). Various solvent mixtures, together with examples of
poorly water-soluble APIs and polymeric carriers commonly used to manufacture solid
dispersions suitable for spray drying have been compiled (Paudel et al. 2013). Since
the drying process rarely runs to completion, there is inevitably some residual solvent
in the final product, the identity and quantity of which may be critical to product qual-
ity. In the case of spray dried powders, physiochemical properties like permeability and
crystallinity, as well as glass transition temperature are affected by residual solvents
(Witschi & Doelder 1997). In addition, residual organic solvent represent a potential
risk to human health due to the toxicity and undesirable side affects. Indeed, limits for
residual solvent content are set by various national bodies such as US and European
Pharmacopoeia, as well as ICH guidelines ICH (2011).



1. INTRODUCTION

Recirculated »‘:
Air s

Damper for
flow control Exhaust
Air
%j Air heater
Q —
| 0]
aA(iar up A @ [ 1] I ]
o 1 1 1L 1 Solvent
blower Air inlet
L ] I 1| laden air
[ 1] (L ]
[ 1| (L ] Iﬁ
&> [ 1| (L ]
Access door L 1) | ] I:ﬁ
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mobile trolleys Convective air flow
over tray surface
Heat flux Solvent evaporation
into surface from surface

Wetted solids

Figure 1.1: Schematic of tray dryer used for production of pharmaceutical granulates;
magnified portion shows heat and mass transfer at surface on an
individual tray

Industrially significant examples involving evaporation and drying of solvent mixtures
include the preparation of thin polymer coatings during production of adhesives and
varnishes, and the casting of asymmetric membranes for reverse osmosis applications.
A further example is the prediction of evaporation rates from liquid spills which is
relevant for hazard analysis and emergency response systems (van den Bosch 1997,
Khajehnajafi & Pourdarvish 2011, Galeev et al. 2015).

In some industrial applications, selective drying is desirable, where one component is
removed preferentially. In drying of foodstuffs for example, water should be removed
but the aroma retained. In some cases, the solvents removed are flammable and certain
concentrations in the dryer circulation or exhaust air must not be exceeded (Thurner
& Schlunder 1986). For drying or evaporation of single component systems e.g. water,
the final liquid content after drying is determined by the operating conditions and the
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1.1 Aims and Objectives

process kinetics. However, when the moisture content of a process consists of a mix-
ture (specifically, a non-ideal mixture in this thesis), the final state of the evaporation
or drying process depends also on the initial composition. For non-ideal, multicom-
ponent mixtures the number of possible final compositions increases as the number of
components in the mixture; the ability to predict process paths and terminal composi-
tions of multicomponent mixtures is therefore of practical importance. The problem is
not straightforward due to the complex interactions of external (gas-phase) heat and
mass transfer, mass and heat transfer within the liquid (and solid, in case of drying)
and phase equilibria. This thesis attempts to shed some additional light on this area of
chemical engineering.

1.1 Aims and Objectives

This work is focused on the modeling of the dynamic heat and mass transfer processes
that occur during evaporation of non-ideal liquid mixtures. The specific objectives of
this thesis are:

* Develop a multicomponent heat and mass transfer model for evaporating non-
ideal ternary liquid mixtures. These models should not be limited to conven-
tional Fickian diffusion, but should be capable of describing multicomponent
mass transfer effects, and of quantifying the multicomponent interactions that
occur.

* Develop numerical methods to depict the composition dynamics of ternary liquid
mixtures on ternary diagrams in the form of evaporation maps, and demonstrate
key features of the maps for various common ternary mixtures of varying com-
plexity. In the first instance, consider heat and mass transfer in the gas phase,
assuming a lumped character for the liquid phase. Use the analogy with the well-
understood residue-curve maps concept as a guide.

* As part of the evaporation map concept, develop numerical models and solution
methods to calculate pseudo-azeotropes for binary and ternary mixtures undergo-
ing evaporation. Develop a related model and numerical method to allow multi-
component wet-bulb temperatures to be computed.

* Develop a numerical method for determination of separation boundaries that oc-
cur for some mixtures, and show how this approach also applies to residue-curve
maps. Explore the relationship between separation boundaries and minima in the
wet-bulb surface for ternary mixtures.

* Extend the gas-phase limited model to also include diffusion within the liquid
phase, using a multicomponent description of the fluxes in the liquid. Develop
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a mathematical model of multicomponent diffusive mass fluxes within the no-
tional liquid film. Couple this with the evaporation fluxes from the gas-phase
limited model to provide a comprehensive model for evaporation of multicompo-
nent mixtures.

1.2 Novel Contributions

The contributions of this work can be summarized as follows:

1. The novel concept of a ternary evaporation map is presented and developed.
Evaporation maps show the residual composition of a ternary liquid undergoing
evaporation into a gas phase of specified composition, temperature and velocity
relative to the liquid surface; a planar geometry is assumed for the bulk of this
work. These maps are shown to be analogous to the residue curve maps com-
monly used in the analysis of equilibrium-based separations. A multicomponent
mass transfer model is employed for the gas phase, using an analytic solution to
the Maxwell-Stefan equations. The maps apply to liquids and to wetted solids,
where the assumption of gas-phase limited mass transfer applies.

2. A novel application of a numerical continuation method is employed to analyze
the bifucations that occur in ternary evaporation maps as the composition of the
bulk gas phase is varied. Simply homotopy methods are used to track solution
branches of the governing equations for pseudo-azeotropes; these are motivated
by previously published work on conventional azeotropes, and demonstrate how
the pseudo-azeotropes originate from pure component branches as the degree of
non-ideality of a mixture is increased via the homotopy parameter.

3. Multicomponent mass-transfer models are developed for calculation of compo-
sition binary and ternary pseudo-azeotropes, and for the calculation of multi-
component wet-bulb temperature of ternary mixtures. Algorithms are developed
for the computation of pseudo-azeotropes and wet-bulb temperature, using a
Newton-method apporach with analytic forms of the Jacobian in each case.

4. A stability analysis of the fixed points of evaporation maps is presented. A nu-
merical finite-difference method to analyse the mathematical stability in terms of
the eigenvalues at the fixed points, from which the stability characteristics are
determined. The method is demonstrated for various ternary mixtures.

5. Two approaches are presented for the location of separation boundaries in evap-
oration maps; for consistency and for pedagogical reasons, these are developed
in parallel with analogous approaches for residue curve maps. The first approach
involes a maximum-area method which avoids a limitation of previous maximum-
arclength methods that are not globally optimal. A second approach uses the

Evaporation Maps for 4
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eigenvectors from the preceding stability analysis to approximately compute the
separation boundaries in both residue curve maps and evaporation maps.

6. A multicomponent model of diffusion in the liquid phase is developed, involving
partial differential equations for the component balances, coupled with the an-
alytic solution of the Maxwell-Stefan equations for the gas phase. The model is
solved numerically using a modified finite volume technique. The effect of liquid-
phase diffusion on the evaporation maps is examined for a number of ternary
mixtures.

1.3 Thesis Outline

The work in this thesis is organised into eight chapters. In chapter 2, the background
theory of multicomponent mass transfer is developed, including a derivation of the
Maxwell-Stefan equations from first-principles. The literature on evaporation of multi-
component mixtures is reviewed. The theory behind residue curve maps is presented as
they are a motivating factor for the development of the evaporation maps in subsequent
chapters.

In chapter 3 the theory and implementation of evaporation maps under gas-phase lim-
ited conditions is presented. The calculation of multicomponent fluxes in the vapour
phase at the interface using an exact solution to the Maxwell-Stefan equations is out-
lined, and applied to evaporation of multicomponent droplets and stationary planar
films. Algorithms for computation of binary and ternary pseudo-azeotropes are given
using efficient Newton-based solution methods. An optimization-based technique for
computing evaporation trajectories is presented, leading to the construction of evapo-
ration maps for a number of example non-ideal mixtures.

Chapter 4 deals with the bifurcations that may occur in evaporation maps as the com-
position of the gas-phase changes. As a prelude, homotopy methods for calculation of
azeotropes and pseudo-azeotropes are developed. A numerical continuation method is
used to conduct the bifurcation analysis, in which the composition of the surrounding
gas as a continuation parameter.

In chapter 5, a linearized stability approach is used to analyse the stability of the fixed
points for both residue curve and evaporation maps. A method for computing the
eigen-directions of the fixed points based on analytical derivatives is demonstrated.

In chapter 6 a simple maximum-area optimization method is presented which facilitates
computation of the separation boundaries for residue curve maps, and for evaporation
maps (gas-phase limited). The concept of a "most-difficult" separation, drawn from the
theory of residue curve maps, is extended to evaporation maps.

5 Paul Dillon



1. INTRODUCTION

In chapter 7 the restriction of gas-phase limited heat and mass transfer is relaxed,
and the effect of diffusion in the liquid phase is examined. The governing equations
for mass transfer in the liquid phase are presented as partial differential equations,
requiring a numerical solution. A finite-volume method solution method is derived,
where the off-diagonal terms in the diffusion fluxes are explicitly included in the spatial
discretization. A method-of-lines approach is used to integrate the equations forward in

time.

Chapter 8 summarizes the work and the conclusions that can be drawn. It also outlines
directions for further work than can be used to extend this research.
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1.4 Publications

1.4 Publications

The following peer-reviewed papers have been produced as part of this work to date:

1. Dillon P., Cronin K., Byrne E.P., Evaporation maps for non-ideal ternary
mixtures, Chemical Engineering Science 126 (2015) 641-659

The above paper consists of material from chapter 3, as well as sections 4.3 and 4.4 of

chapter 4.
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Chapter 2

Background and Literature Review

In this chapter relevant background material is presented and the existing literature is
surveyed. An outline of some relevant aspects of the theory of multicomponent mass
transfer is given in section 2.1, including limitations of the conventional Fick’s-law
description of mass transfer in section 2.1.1, and an outline of the alternative Maxwell-
Stefan approach in section 2.1.2 (with more detailed derivations given in appendix
A.3). These form the basis for the multicomponent mass transfer model used in subse-
quent chapters.

The theory and application of residue curve maps is reviewed in section 2.2; the anal-
ogy between evaporation maps and residue curve maps is used in chapter 3 where the
topology of residue curve maps (where equilibrium applies) motivates the development
of evaporation maps (which are non-equilibrium or rate-based). Previous attempts to
adapt the theory of residue curve maps for non-equilibrium processes are also dis-
cussed.

A review of literature related to evaporation and drying of multicomponent non-ideal
liquid mixtures is given in section 2.3.1. This is primarily relevant to chapters 3-6 of
this work which focuses on gas-phase limited evaporation/drying. Chapter 7 relaxes
the gas-phase limited restriction by considering diffusion effects in the liquid phase;
under certain conditions, drying of wetted solids may behave as though limited by
gas-phase conditions, such as where diffusion in liquid phase (e.g. in capillaries of
the wetted-solid) is rapid relative to mass transfer in the gas phase. Consequently, a
review of relevant literature for evaporation from solids wetted with multicomponent
non-ideal liquids is given in section 2.3.2.



2. BACKGROUND AND LITERATURE REVIEW

2.1 Multicomponent Mass Transfer

Mass transfer may occur by diffusion and convection, and mass transfer fluxes are
defined relative to various averaged velocities. In this section the fluxes in multicom-
ponent mixtures are first outlined, before an outline of the governing equations for
momentum, energy and mass is presented. The governing equations are then used in
the derivation of the Maxwell-Stefan equations which follow. An understanding of the
conventions for total and diffusive fluxes is relevant to the gas-phase limited model of
evaporation employed in chapter 3 and to the distributed model of multicomponent

mass transfer in chapter 7.

2.1.1 Multicomponent Effects and Limitations of Fick’s law

Traditional procedures for design and analysis of mass transfer processes have used
Fick’s constitutive diffusion equation (or Fick’s "law") which postulates a linear depen-
dence of the diffusive flux J; (for component ¢) on its composition gradient Vz; and
diffusion coefficient D; :

Ji = —¢;D;Vx; (2.1

Fick’s law works satisfactorily for binary mixtures, for diffusion of a dilute species in a
multicomponent mixture, and when external forces (electrostatic, centrifugal) are not
present. When applied to multicomponent mixtures, the form of the diffusion coeffi-
cient in the Fickian relation often shows complex, unpredictable behaviour (Krishna &
Wesselingh 1997). Phenomena such as osmotic diffusion (diffusion of a component in
the absence of a concentration driving force), reverse diffusion (diffusion of a compo-
nent in the direction opposite to its concentration driving force), and diffusion barrier
(zero flux of a component despite a concentration driving force), identified by Toor
(1957), have all been experimentally demonstrated (Duncan & Toor 1962), but are not
well represented by a Fickian approach. The classical experiment by Duncan & Toor
(1962) examined diffusion in an ideal ternary gas mixture of hydrogen(1)-nitrogen(2)
and carbon dioxide(3) (depicted in figure 2.1), is used as a motivational example of the
need for a multicomponent mass transfer model. The experiment involved two bulbs,
one with an equimolar nitrogen/carbon-dioxide mixture and one with an equimolar ni-
trogen/hydrogen mixture, that were initially isolated by a stopcock. When the stopcock
was opened the three species diffused, resulting in the measured concentration-time
profiles shown in figure 2.1b.

The profiles for hygrogen and for carbon-dioxide follow expected Fick-like behaviour;
hydrogen diffuses from bulb 2 to bulb 1 and the two concentrations equalise. Simi-
larly, carbon dioxide diffuses from bulb 1 to bulb 2. Nitrogen however shows unusual

behaviour; despite the fact that the initial concentrations of nitrogen in the two bulbs
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2.1 Multicomponent Mass Transfer

are near identical (allowing for experimental measuring error), nitrogen diffuses from
bulb 1 to bulb 2. This seems counter-intuitive as it occurs despite there being no con-
centration gradient for nitrogen. Diffusion of nitrogen against a concentration gradient
(reverse diffusion) continues until a peak is reached at ¢;. As nitrogen diffuses to the
right prior to ¢, a non-zero concentration gradient between the bulbs is established;
at t1, this gradient is sufficiently large to counter the reverse diffusion effect. At ¢;
therefore, there is zero flux of nitrogen, despite a finite concentration gradient (diffu-
sion barrier). At zero time, diffusion in the absence of a driving force occurs (osmotic
diffusion).

Fick’s law cannot adequately describe the multicomponent phenomena described by
the experiments of Duncan & Toor. To do so on the basis of equation 2.1 would require
the following of the diffusion coefficient for nitrogen (Krishna & Wesselingh 1997):

1. Dy, — oo at the initial osmotic diffusion point
2. Dy, < 0 where reverse diffusion occurs (¢ < ¢;), and
3. Dy, = 0 at the diffusion barrier (¢t = t1)

The phenomena described above can however be explained using the Maxwell-Stefan
approach, with fluxes described by a generalized (multicomponent) version of Fick’s
law

(J) = —c[D](Va)

(see equation 2.15) the basis for which is given section A.3 below. In this case [D] is
a matrix of diffusion coefficients; for the ternary system of Duncan & Toor (1962), the
generalized form expands to

<J1> _ . (Dn Dm) <V$1>

Jo Doy Do) \Vxo

where J3 = —(J; +.J2) by conservation of mass (i.e. the diffusive fluxes are not all inde-
pendent). The diagonal terms D;; and Do represent conventional Fick-like diffusion;
the off-diagonal terms D5 and D,; represent non-Fickian interaction terms where a
concentration gradient of x; affects the diffusive flux J5, and a gradient of x5 similarly
affects the diffusive flux J;. The solid and dashe lines in figure 2.1b were obtained us-
ing an analytic solution to the two-bulb problem using the generalized Fick’s law form
(Taylor & Krisha 1993). The basis for the generalized form is detailed in section A.3.

The generalized form is used in the development of the gas-phase limited evaporation
maps in chapter 3, and in the treatment of diffusion effect in the liquid in chapter 7.

The review article by Wesselingh & Krishna (2000) discusses the shortcomings of the
traditional Fickian description of mass transfer, and outlines the basis for the Maxwell-
Stefan approach in more detail. The theory of multicomponent diffusion in fluids (gas,
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2. BACKGROUND AND LITERATURE REVIEW

Mole fraction

liquid, electrolyte, polymer etc.) is described in the books by Taylor & Krisha (1993),
Cussler (2009) and Bird et al. (2002). The texts of Hirschfelder et al. (1964) and
Jakobsen (2008) give rather detailed treatments of the kinetic theory of gases including
its extension to multicomponent gas mixtures. while the book by Lightfoot (1974) gives
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Figure 2.1: Experimental configuration of Duncan & Toor (1962)

(b) Experimental data and prediction of Maxwell-Stefan equations

interesting applications of multicomponent mass transfer to biological systems.

2.1.2 Maxwell-Stefan Equations and Generalized Fick’s Law

A derivation of the Maxwell-Stefan equations based on principles of irreversible ther-
modynamics is given in Appendix A.3. For ideal gas mixtures in the absence of pressure

gradients and external forces, the Maxwell-Stefan equation of (see equation A.80) can
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2.1 Multicomponent Mass Transfer

expressed in terms of molar fluxes N; and J; as

d‘:*i.%iNi_xij:*i.xit]i_xj.]j (2'2)
Z i=1 Blj i=1 CDij
i#] i#]

where IN; and N, are the total and diffusive fluxes of component i respectively, c is
the concentration, and D;; are binary Maxwell-Stefan diffusion coefficients. This is
the form of the Maxwell-Stefan equations that is used as a basis for the calculation of

vapour phase molar fluxes in the generation of evaporation maps in chapter 3.

The generalized driving force equation A.72 has n(n — 1)/2 transport parameters b;;,
since the diffusivities are symmetric so that B;; = b;;, and D;; is not defined (Curtiss &
Bird 1999). Where pressure and external forces can be ignored, the driving force given
by equation A.72 reduces to

di = 5 Vrpp (2.3)
The gradient of chemical potential can be expanded using the chain rule, noting that

pi = (T, Py xj):
n—1 8/1,1
Vrppi = 9p, TV (2.4)
. Zj
7=1
The chemical potential y; can be expressed in terms of the activity of species i by
wi = pi + RTIna; = pi + RT Inv;x;

where 1 is the chemical potential at a standard state, a; is the activity of species ¢, and
~; is the activity coefficient, so that equation 2.3 becomes (Taylor & Krisha 1993)

T T O
RT Y TPH = BT = D, "1V @)
n—1
x; Jln~;z;
=—-> RT \7 (2.6)
RT j=1 al‘j T.P%
n—1
In z; In ;
S 88” +88M Vaz; 2.7)
j=1 T T lrps
n—1
In~;
=3 (4o, + aam Vz, (2.8)
j=1 i lrpyx
n—1
j=1
where
Oln~;
T = 0, 2.10
;= 0ij + 825 |1 (2.10)
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In this way, equation 2.9 allows the driving force d; to be expressed in terms of the more
accessible mole-fraction gradients. The subscripts on the evaluation of the derivative
in equation 2.10 imply that temperature and pressure are constant, while the differen-
tiation of In~; is carried out while keeping constant the mole fractions of each species
apart from the nth. For liquids, the activity coefficient may be represented by a suitable
model such as the NRTL or UNIQUAC models (Poling et al. 2001). See appendix B.1
for details of the NRTL model used in this work. The Maxwell-Stefan equations can
be cast in a Fick-like form suitable for use in matrix calculations. Equation 2.2 can be
written as

—c(d) = [B|(J) (2.11)

d; J1

ds Ja

d— J = .
dnfl Jnfl

B = 2.12

bin ; Diy (2.122)
1#]
1 1
Bji=x; | — — 2.12b
= (Dij Bm) ( )
Writing equation 2.9 in n — 1 dimensional matrix form gives

(d) = [I](Va] (2.13)

which, when combined with equation 2.11 gives an expression for the matrix of diffu-
sive fluxes
(J) = —c[B] IV (2.14)

This can be written as a generalized Ficks’ law:
(J) = —¢c[D](Vx] (2.15)

where
[D] = [B] YT (2.16)

where [D] is the Fick matrix, [B] has terms terms given by equation 2.12, and I' has
terms given by equation 2.10. Equation 2.16 shows how the Maxwell-Stefan approach
allows the thermodynamic and "drag" effects of diffusion to be essentially decoupled.
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Equations 2.15 with 2.16 are the form of the driving forces that are used in chapter 7
for diffusion in the liquid phase, using the NRTL model (see appendix B.2, following
Poling et al. (2001)) to compute values of I';;.

2.2 Residue Curve Maps

Many processes in the chemical industries rely on evaporation and condensation steps,
the basis for which are that the vapour phase is richer in the more volatile compounds
than the liquid. Mixtures with components that are nearly ideal are relatively straight-
forward to rank in order of volatility, or equivalently, in order of their normal boiling
points (Kiva et al. 2003). A distillation sequence, for example, can then in princi-
ple be designed to separate each component. In industrial practice however, many
mixtures display azeotropic behaviour, where the composition space is divided into re-
gions where the order of volatility varies from region to region. At an agzeotrope, the
vapour and liquid compositions of a mixture are equal for a given pressure. Mixtures
at azeotropic compositions cannot be separated by conventional distillation, as no en-
richment of the vapour phase is possible at that composition; alternative means of
separation such as ageotropic-distillation (where an additional component or entrainer
is added to the mixture), or pressure-swing distillation are often used. To aid in the
qualitative analysis of such mixtures, and the feasibility of their separation, a graphical
tool known as the residue curve map is used. This thesis develops the Evaporation Map
concept which applies to mixtures governed by rate-based processes (such as evapora-
tion and drying), and therefore are not at equilibrium (except at a vapour-liquid inter-
face); evaporation maps can therefore be considered as non-equilibrium analogues to
residue curve maps. The background theory of residue curve maps is considered in the
following sections.

2.2.1 Construction of Residue Curve maps

Residue curve maps (RCMs) are one of number of types of phase equilibrium diagram
which represent the composition of liquid mixtures undergoing evaporation or conden-
sation processes. The review article by Kiva et al. (2003) details the historical origins of
azeotrope phase equilibrium diagrams, including residue curve maps. Schreinemakers
(1901b,a) established the idea of residue curves relating the concentrations of vapour
and liquid in an isobaric open evaporation process. In that conceptual process, the
vapour formed is continuously removed (no reflux) so that the vapour at any instant
is in equilibrium with the liquid residue (also known as simple distillation, or Rayleigh
distillation). Tracing the change in residual liquid composition over time until the last
drop is evaporated, and plotting composition on a Gibbs (ternary) diagram gives the
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residue curve (Fien & Liu 1994, Doherty & Malone 2001). The edges of the RCM
represent binary mixures, while the vertices represent pure components.

In general, the vapour-liquid equilbrium of a homogeneous mixture at a specified pres-
sure are characterized by relationships between the liquid and vapour compositions
x = {x1,x9,---xn} and y = {y1,y2, - - yn}, together with a temperature representing
the bubble point of liquid «, and dew point of vapour y (Rev 1992). The evolution of
liquid molefraction in the mixture during evaporation can be determined by integrating
a set of ordinary differential equations:

d
—% =y(x)—=x (2.17)
where 7 is a dimensionless warped time that incorporates molar liquid holdup (Doherty

& Malone 2001): =
=In(-— 2.18
= () (2.18)
where H° and H are the initial molar hold-up, and molar hold-up at a subsequent time

respectively. The liquid and vapour mole-fractions are subject to the condition that
n n
dzi=10 > =10 (i=12...n—1) (2.19)
i=1 i=1

In practice, the residue curves can be found by integrating equation 2.17 forwards
and/or backwards from a given initial composition in the warped time variable, using
a vapour-liquid relationship between « and y. For mixtures that are relatively ideal in
the liquid phase, a simple phase equilibrium relationship such as

yy=Kz; i=1,2...n (2.20)

suffices, where K represents the so-called K-value or equilibrium ratio. Where there
is non-ideality in the liquid phase, an expression involving an activity coefficient is

generally more accurate:
_ TiiPi
Yi P

p; is the vapour pressure of component i, P is the total pressure, and where ~; is the

i=1,2...n (2.21)

activity coefficient. A wide variety of activity coefficient models are available, including
Wilson, NRTL, UNIQUAC and UNIFAC (Prausnitz et al. 1986). Non-ideality in the
vapour phase can be incorporated in principle through use of a suitable vapour phase
fugacity expression such as a Poynting correction factor (Poling et al. 2001). The total
pressure P is a constant for a given residue curve map. Some mixtures exhibit strong
sensitivity to operating pressure, a fact which is exploited in pressure-swing distillation
processes.

In principle there is no limit to the number of components in the integration of equation
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Table 2.1: Example ternary mixtures used in this work

Components Azeotropes
1 1IPA Ethanol Methanol 0
2 Water Ethanol Methanol 1
3 IPA Water Ethanol 2
4 Ethanol MEK Toluene 2
5 Dichloromethane Methanol Ethyl Acetate 2
6 Acetone Chloroform Methanol 4

2.17; however, for graphical presentation the practical limit is that of a ternary mixture.
More complicated visualization techniques for higher-dimensional systems have only
limited application (Wibowo & Ng 2002, Harjo et al. 2004). Other approaches such
as lumping of components (Jaksland et al. 1995) or simplification of the boundary
geometry (Rooks et al. 1998) have also been developed, but apply in rather specific
conditions (Bruggemann & Marquardt 2011).

A number of residue curve maps for examples of homogeneous! ternary azeotropic
and non-azeotropic mixtures are shown in figure 2.2. The mixtures are listed in table
2.1, and represent commonly used solvents in industrial practice. The degree of non-
ideality increases as one moves down the table, indicated by the increasing number of
azeotropes (binary and ternary). Taken as a group, these mixtures therefore represent
the key features of non-ideality (azeotropic behaviour) present in a ternary mixture;
the same group of mixtures will be used in the development and anlysis of evaporation
maps in subsequent chapters, where the similarities to residue curve maps will also be
highlighted.

The residue curve maps in figure 2.2 were obtained by numerical integration of equa-
tion 2.17 together with equation 2.21 with NRTL parameters obtained from AspenProp-
erties (AspenTech 2014); details of the NRTL model and binary interaction parameters
are shown in appendix B.1. Figure 2.2a shows a non-azeotropic mixture where the
residue curves run from the methanol unstable node to the IPA stable node, passing the
pure ethanol node. The water-ethanol-methanol mixture in figure 2.2b has a single bi-
nary azeotrope (a saddle azeotrope) on the water-ethanol axis. Figures 2.2c, 2.2d and
2.2e each have two binary azeotropes, one being an unstable node, the other a sad-
dle. The acetone-chloroform-methanol mixture (figure 2.2f) shows the most complex
behaviour, with 3 binary azeotropes (one stable, two unstable) and a ternary saddle
azeotrope.

RCMs are used extensively in the qualitative analysis of equilibrium separation pro-
cesses for ternary mixtures as they provide an intuitive graphical means of visualizing
separation possibilities, and the constraints imposed by binary or ternary azeotropes
(Villiers et al. 2002). The dynamics of simple distillation processes have been exten-

!Containing only a single liquid phase
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2.2 Residue Curve Maps

sively studied (Doherty & Perkins 1978a,b), and have been applied in the design and
analysis of packed and staged distillation columns, where residue curves approximate
the composition profiles of packed distillation columns at infinite reflux (van Dongen &
Doherty 1985). Wahnschafft et al. (1992) extended the application of RCMs to columns
at finite reflux. They developed a pinch-point curve for a column, consisting of the locus
of points on residue curves at which the tangent passes through a product composition.
A similar approach was used by Fidkowski et al. (1993b) who use the term distillation

limit to refer to the pinch-point curve.

Residue curve maps also have been constructed for heterogeneous mixtures by Mat-
suyama (1978) and Pham & Doherty (1990a), who demonstrated that equation 2.17
applies also to heterogenous systems. In that case, the liquid mole fractions are re-
placed by the overall liquid mole-fractions z¢, and and additional equilibrium expres-
sions between the liquid phases also apply:

w2 =arl+(1—-a)zll i=1,2...n (2.22)
ol = KMl i=1,2...n (2.23)

n n
daf=10 > z/'=10 (2.24)

i=1 i=1
where « is the fraction of liquid phase I in the total liquid, and K" is an equilibrium
ratio between liquid phases. The superscripts I and I/ denote the two liquid phases.
A further restriction applies to heterogenous azeotropes in that they cannot be stable
nodes i.e. they cannot be maximum-boiling. Also, the compositions of the two lig-
uid phases (at either end of a liquid-liquid tie-line) lie in different distillation regions;
this feature is used in the operation of azeotropic distillation systems for separation of
ethanol and water using a cyclohexane entrainer, where the presence of cyclohexane
induces a phase split in the column decanter (Doherty & Malone 2001).

Studies of the use of residue curve maps in the design and optimization of distillation
columns and separation sequences include those of Ryan & Doherty (1989) and Pham
& Doherty (1990a,b). The details of the topology of a residue curve map allows de-
velopment of flow-sheets for proposed separations, including the placement of recycle
streams (Bruggemann & Marquardt 2011). Stichlmair & Herguijeula (1992) consider
standardized column configurations for some prototypical RCM topologies, and show
application to several industrial mixtures. Doherty & Perkins (1978a,b, 1979) pre-
sented a thorough study of the topology of residue curve maps, including methods
for checking the topological consistency. Refer also to Doherty & Cardorola (1985),
Foucher et al. (1991), Laroche et al. (1992) and Wahnschafft et al. (1992) for further
discussion of the features of residue curve maps. The residue curves described above
find application in the design of continuous (packed) distillation columns. An analo-
gous development for staged (trayed) distillation columns is that of distillation lines.
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These are essentially iterated maps of the vapour-liquid relationship, repeated over the
number of theoretical stages of a trayed column (Castillo & Towler 1998). The article
by Widagdo & Seider (1996) reviews developments in residue curve maps as applied
to azeotropic distillation processes. The textbooks by Stichlmair & Fair (1998) and
Doherty & Malone (2001) (and the references therein) offer detailed examples of the
use of topological information from residue curve maps in the design of distillation

sequences.

The RCM defining equation (2.17) represents a dynamical system, the fixed points (or
singular points or stationary points) of which are the pure components and azeotropes
of the residue curve map (Fien & Liu 1994). Thus, the right-hand side of equation 2.17
equals zero at pure components and azeotropes only, and the system has no other fixed
points. Also, using the stability theory of non-linear ordinary differential equations, the
signs of the eigenvalues of equation 2.17 in the vicinity of the fixed points dictate the
type of the fixed points (Varma & Morbidelli 1997). Recalling that the mixture is at its
bubble point throughout, the temperature derivatives in the vicinity of the fixed point
can also be used to infer the signs of the eigen-values; if 97'/0x; is negative (positive),
the liquid bubble point decreases (increases) as we progress in the eigen-direction away
from the fixed point (Kiva et al. 2003). Note that for a ternary mixture, equation 2.17
has two eigenvalues at each fixed point. Three types of fixed points can be distinguised
(Blagov & Hasse 2002):

* If all eigenvalues are negative, the fixed point is a stable node [sn], so that tem-
perature decreases in all directions

* Conversely, if all eigenvalues are positive, the fixed point is an unstable node
[un], so that temperature increases in all directions

* If eigenvalues have different signs, the fixed point is a saddle [s], so that temper-
ature increases in some directions, and decreases in others

Note that residue curves also lie along the edges of the ternary composition space. In
addition, two features of residue curves are relevant:

¢ Residue curves cannot intersect

* Residue curves always move along the bubble point surface in the direction of
increasing temperature

Thus, the behaviour of the residue curves in the neighbourhood of a fixed point there-
fore depends on the shape of the bubble point surface near the point. The stable and
unstable nodes are known in a mathematical setting as attractor and repellor respec-

tively.
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2.2.2 Computation of Azeotropes

Locating all the azeotropes of a given mixture is a fundamental but surprisingly difficult
step (Fidkowski et al. 1993a). One approach is to simply plot residue curve maps
as in figure 2.2. The existence of an azeotrope can be implied from the flow of the
residue curves such as figure 2.2d where existence of an ethanol-MEK minimum-boiling
azeotrope is implied from the fact that residue curves move away from it, towards
either the pure ethanol or pure toluene nodes. Similarly, the existance of a maximum-
boiling acetone-chloroform azeotrope is implied in figure 2.2f by the fact that residue
curves track towards it.

The definition of the condition for an azeotrope to exist is given by:
fle)=y"(x)—x=0 (2.25)

where y*(x) represents the vapour molefraction in thermodynamic equilibrium with
liquid molefraction x. The vector notation in equation 2.25 implies that the azeotrope
condition applies to each component. An accurate phase equilibrium model is required
to allow the azeotropes to be computed. This becomes more difficult for heteroge-
neous systems where both vapour-liquid and liquid-liquid equilibria are involved as it
is difficult to find a model capable of representing both types of equilibria accurately
(Gmehling et al. 2012). Fidkowski et al. (1993a) developed a homotopy-based method
that efficiently locates all of the azeotropic compositions of a mixture. Tolsma & Bar-
ton (2000a) extended this approach to include heterogeneous mixtures. Alsam & Sunol
(2006) further extended the homotopy approach to include non-ideal behaviour in both
liquid and vapour, and analysed sensitivity of azeotropic composition to parameters of
the NRTL activity coefficient model. A Newton method-based homotopy approach for
calculation of azeotropes, using analytic form of Jacobian is presented in chapter 4. A
method for computation of pseudo-azeotropes is also discussed in chapters 3 and 4.

2.2.3 Residue Curve Maps under non-equilbrium conditions

Implicit in the definition of residue curves in equations 2.17-2.21 is that thermody-
namic equilibrium is assumed to apply to the vapour-liquid mixture. This reflects the
common practice of assuming that vapour and liquid phases are in equilibrium when
designing distillation and related processes, combined with a tray efficiency for trays, or
a Height Equivalent to a Theoretical Plate (HETP) for packing. However, real separation
processes normally operate at conditions other than equilibrium, so that the separation
achieved depends on the rate of mass transfer between phases (Taylor & Krisha 1993),
or the degree to which phases are not at equilibrium. Non-equilibrium or rate-based
models have been developed in recent decades that employ correlations of heat and
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mass-transfer coefficients to describe mass transfer processes in specific apparatus such
as distillation packings and trays (Taylor et al. 2003). Of course, the conventional
residue curve analysis does not apply when the assumption of equilibrium between
phases does not hold. To adress this a number of workers have developed approaches
to account for non-equilibrium effects, while maintaining the general framework of
residue curves. Taylor et al. (2004) developed the notion of a Composition Trajectory
Map (CTM) that includes multicomponent mass transfer effects (via Maxwell-Stefan
equations) for both packed and trayed columns at total reflux. Using vapour-phase
component mass balances expressed in a matrix form (see section 12.3.1 and 13.3.1
of Taylor & Krisha (1993)), they expressed the differential liquid composition changes
over a dimensionless height in terms of the matrix of overall number of transfer units
for mass transfer, for both packed and trayed distillation columns. By integrating the
differential composition over the dimensionless height, individual composition trajec-
tories and the overall CTM for a given mixture can be computed. A unified model was
presented that accounted for both trays and packing, as well as for residue curves in
the limiting case that the binary mass transfer coefficients are all equal (equal facility
for mass transfer), and assuming no resistance to mass transfer in the liquid phase.
The vapour and liquid remain at their dew and bubble points respectively with this ap-
proach; the impact of mass transfer resistance due to non-condensibles (which would
alter the vapour-liquid interface temperature) is not included. Latent heats for the vari-
ous components are assumed to be equal, implying constant molar flows in the column.
Sensible heating contributions to the energy balance are also excluded. A key feature
of the model of Taylor et al. (2004) is that the fixed points of the CTM are the same
as those of the corresponding RCM i.e. pure components and azeotropes; however the
boundaries computed using the non-equilibrium CTM approach are not in general the
same as those of an RCM. Experimental verification of non-equlibrium trajectories in
distillation has been provided by a number of workers (Springer, Baur & Krisha 2002,
Springer, Buttinger, Baur & Krishna 2002, Springer et al. 2003).

Baur et al. (2005) studied mass transfer effects in column design, showing that while
pinch-point curves and pitchfork distillation boundaries in RCMs are unchanged by
mass transfer effects, composition trajectories may cross the pinch-point curves. Fur-
ther, minimum reflux is affected for less than very sharp separations. Baur et al. (2005)
recommended that mass transfer effects be accounted for when trace components are
a concern in a distillation process.

The model of Taylor et al. (2004) described above distinguishes specifically between
RCMs (where phase equilibrium applies) and CTMs (where phase equilibrium does not
apply). Conversely, a number of workers have attempted to include non-equilibrium
mass transfer effects directly into the calculation of RCMs themselves. Sidhar et al.
(2002) used a form of the component material balance for the vapour phase that is
inconsistent in that it implies all Ay; = 0 when the binary mass transfer coefficients
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are equal (an unlikely but not infeasible situation), which implies that the total molar
flux, and the individual molar fluxes are zero in that situation (Taylor et al. 2004). The
model of Sidhar et al. (2002) also imples that 3~ N;AH} = 0, which implies that the
molar fluxes have mixed signs, given that the heats of vapourization are all of the same
sign. This would imply that some components would be condensing while some are
evaporating; what is unclear is from where the components would condense, since the
basis assumption of residue curve analysis is that the liquid which evaporates is imme-
diately removed (Doherty & Malone 2001). Consequently, as outlined in the critque
by Taylor et al. (2004), the model proposed by Sidhar et al. (2002) is fundamentally
flawed.

Silva et al. (2003) presented a model which gives the molar flux in the vapour film
in terms of a difference in partial pressures at the vapour-liquid interface and in the
bulk vapour. The partial pressures were expressed in terms of vapour molefractions
at interface and in bulk, and the total pressures at interface and bulk, resulting in a
single parameter for each component that encapsulates the mass transfer rate. In this
model the interface partial pressure is computed from a conventional bubble-point cal-
culation; the partial pressure is determined from an expression involving mass transfer
coefficients and total pressures at interface and in bulk. However, having a different
total pressures at vapour-liquid interface and in bulk is not a realistic situation except
in cases where bulk flow of material occurs; this is not applicable to cases involving
mass transfer due to diffusion only. This model was also used by Teixeira et al. (2009),
in an analysis of boundaries in non-equilibrium batch distillation, who justified the use
of different pressures by stating that the vapour removal rate in an residue curve map
analysis occurs at infinite velocity, thereby requiring a very high pressure drop across
the film at the vapour-liquid interface. However, standard practice in mass transfer
models (and in this thesis) is to assume that pressure is constant in the film adjacent to
the phase boundary (Taylor et al. 2004). Further, the procedure of Silva et al. (2003)
requires numerical values for mass transfer coefficients for all n species, when in fact
only n — 1 mass transfer rate expressions can be used in a consistent mass transfer
model, since the fluxes must sum to zero (Taylor & Krisha 1993). Given these short-
comings, the example calculations for ternary mixtures presented by Silva et al. (2003)
and Teixeira et al. (2009) and are therefore likely to be inaccurate.

Castillo & Towler (1998) developed non-equilibrium versions of both residue curves
and distillation lines, by employing a Murphree type efficiency to describe the modi-
fied equilibrium between liquid and vapour on a distillation tray, using the following
expression:

yi = (1 +EMVEK, - E{”V) i

where K; = y;/z;, and EMV is the Murphree efficiency for component i. While this
approach is perfectly valid for distillation lines (which apply to staged separations),
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it is not appropriate for the open evaporation process upon which residue curves are
based (Taylor et al. 2004). The Murphree efficiency was developed for continuous
staged distillation processes, not the unsteady evaporation process which is the basis for
residue curves. Consequently, in the context of residue curves, the use of a Murphree
efficiency can be considered as a kind of non-equilibrium parameter, rather than a true

efficiency relationship.

Residue curve maps have also been applied to reactive distillation systems (Barbosa
& Doherty 1988, Doherty & Malone 2001, Huang et al. 2004). It is known that
reactions in the liquid phase can lead to both the appearance and disapperance of
azeotropes, and that reactive azeotropes may exist in mixtures that are otherwise
thermodynamically ideal (Taylor et al. 2006). Residue curve maps have been ex-
tended to consider melt crystallisation by replacing vapour-liquid equilibria with solid-
liquid equilibria (Slaughter & Doherty 1995). The analysis of membrane and hybrid
membrane-distillation systems is another area where residue curve maps have been
applied (Aiouache & Goto 2003, Peters et al. 2008, 2011).

The analogy between residue curve maps and the evaporation maps of this work is
developed in chapter 3. The bubble point temperature of the residue curve maps de-
scribed above is analogous to the mixture wet-bulb temperature in the case of evapo-
ration maps.

2.3 Evaporation and Drying of Multicomponent Mixtures

The drying of mixtures containing multicomponent solvents has numerous industrial
applications including manufacture of pharmaceuticals, juice concentrates, coated lam-
inates, magnetic storage media, and removal of solvent from varnish layers. In this
work drying is distinguised from evaporation in that the drying application leaves be-
hind a solid component. Evaporation of multicomponent liquids occurs in fuel combus-
tion applications. In the following sections, relevant research is reviewed firstly in the
area of evaporation, and secondly for drying involving multicomponent mixtures. The
development of evaporation maps in chapter 3 uses an assumption of gas-phase limited
heat and mass transfer; consequently, section 2.3.1 is relevant to studies of evaporation
of liquid mixtures in that regime. This assumption is relaxed in the model developed
in chapter 7 where diffusion effects are considered. The initial drying phase of wet-
ted solids can behave as though gas-phase limited; consequently, section 2.3.2 focuses
on studies of multi-component drying that examine transitions between gas-phase lim-
ited, and diffusion-limited processes. The literature on solids drying is not the focus of
this work; rather, the emphasis in section 2.3.2 is on studies of multicomponent dry-
ing that examine conditions where the gas-phase limited assumption applies (in which

case the evaporation maps of chapter 3 would apply to solids drying), and where that
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assumption does not apply.

2.3.1 Evaporation of Multicomponent Liquids

Studies of evaporation of multicomponent mixtures have been conducted for various
geometries including films and droplets. For clarity of presentation, previous work
published is grouped into the type of application involved in the papers reviewed. In
chapter 3 a single multicomponent mass transfer model is developed that may be ap-
plied to different geometries by use of appropriate forms for heat and mass transfer
coefficients; consequently, the model of chapter 3 is general in nature, and not limited
to a specific geometry.

Evaporation of mixtures from planar surface: In gas-phase limited drying, the dry-
ing rate is controlled by external conditions only; this is often the case in low-intensity
drying (Luna & Martinez 1998), so that the gas-phase controlled approach may be ap-
plied there also. Martinez & Setterwall (1991) studied isothermal, convective drying of
a number of non-ideal mixtures under conditions of gas-phase-limited heat and mass
transfer. Evaporation fluxes were calculated using a generalized Fick’s law and the lin-
earized theory of Toor (1964) and Stewart & Prober (1954). An evaporation process
may be considered gas-phase controlled if the resistance to mass transfer lies in the gas
phase only. Experiments included a Teflon-substrate wetted with ethanol-MEK-water
(see also chapter 3 for comparison of their data with model produced in this work).
Calculations by Martinez & Setterwall showed that liquid composition, liquid temper-
ature, gas composition and diffusional interactions had a significant impact on selec-
tivity, while the effect of gas temperature and flow-rate was less significant. They also
concluded that any desired selectivity may be achieved by appropriate manipulation
of the gas composition (gas pre-loading). Martinez & Setterwall also analyzed data of
Riede & Schlunder (1988) who examined evaporation of IPA(isopropyl-alcohol) /water
mixtures and found that IPA selectivity was enhanced by higher humidity (water con-
tent) in the gase phase; they (Martinez & Setterwall) showed by calculation that the
higher IPA selectivity was likely to be due to a negative cross-coefficient in the gen-
eralized Fick matrix, which is an insightful example of multicomponent mass transfer
effects.

Riede & Schlunder (1988, 1990) studied the selectivity of a simple evaporation pro-
cess containing a ternary mixture of IPA (isopropyl alcohol)-water-glycerol, where the
glycerol is effectively a non-volatile component. A theoretical analysis of the prob-
lem suggested that the selectivity of the evaporation depended on three mechanisms:
vapour-liquid equilibrium, mass transfer in the gas-phase, and mass-transfer in the lig-
uid phase. The selectivity was also affected by air flow rate and composition, and by the
temperature of the liquid. Experiments indicated that the selectivity could be adjusted
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in any direction by an appropriate selection of evaporation conditions, in particular the
humidity (water content) of the air stream. They found for example that by increasing
the humidity, the selectivity was shifted to a preferential evaporation of IPA.

The evaporation of binary and ternary liquid mixtures containing azeotropes was exa-
mined by Pakowski (1992). For binary mixtures, selectivity curves for evaporation
under different conditions of gas pre-loading were developed; these were obtained
by solving a condition for existence of a pseudo-azeotrope (or dynamic azeotrope or
arheotrope (Sundmacher et al. 2005)) under gas-phase limited conditions. For a num-
ber of ternary mixtures, a multicomponent mass-transfer model was used to generate
concentration paths on ternary diagrams; these paths do not cover the entire compo-
sition space (a topic covered in detail in chapter 3). Pakowski identified the problem
of finding the particular composition that yields a specific terminal composition in the
liquid as a complex matter; in chapter 4 of this work, a bifurcation analysis is used to
identify just these gas compositions (for case of pre-loading with a single gas).

Pakowski (1992) also suggested that minima in the normalised total flux, or in the
entropy generation rate could be used to identify stable pseudo-azeotropes, and that
minima of each correspond to separatrices on the composition ternary map. Location
of minima in evaporation maps is the subject of chapter 6 of this thesis.

The evaporation of ternary mixtures in batch and continuous modes has been investi-
gated by Luna & Martinez (1998, 1999). Using a gas-phase limited model for evapo-
ration of multicomponent liquid films, they analysed the governing system of ordinary
differential equations to determine their mathematical stability in terms of the eigen-
values of the Jacobian matrices evaluated at the fixed points of the mixture (pure com-
ponents and pseudo-azeotropes). They demonstrated bifurcations in the batch mode
as the concentration of the gas phase with one of the ternary components increased
(a topic which is expanded upon in chapter 4 of this work). They found that binary
pseudo-azeotropes are stable when the combination of selectivities of the binary com-
ponents is negative, and that ternary pseudo-azeotropes were either unstable or saddle
points. For the continuous case, fixed points represent dynamic equilibria dependent
on the inlet gas/liquid ratio; as the ratio approaches infinity, the behaviour approached
that of a batch process.

Evaporation of polymer/solvent films: The drying of polymeric films has been an
active area of research; many lacquer, paint and varnish coatings are obtained by a pro-
cess of solvent evaporation from an initially dilute solution (Vrentas & Vrentas 1994).
These films are often considered as either binary mixtures of solvent and polymer, or
ternary mixtures consisting of solvent, non-solvent and polymer components. Choice
of a particular mixture is based on various goals including the solubilization of one or
more polymeric components, control of the rate of drying and development of desired
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surface tension versus relative volatility required for defect minimization (Dabral et al.
2002).

Guerrier et al. (1998) studied the drying kinetics of polymer films cast from a polymer-
solvent solution, including diffusion of solvent through the varnish layer, moving in-
terface, and coupled heat and mass transfer between the interface and the drying air.
Drying operations of this type are characterised by two regimes: a "fast" regime where
evaporation flux from the surface is similar to that of the evaporation of pure solvent,
follwed by a "slow" regime where both diffusion with the film and evaporation rate
decline significantly.

Dabral et al. (2002) considered the composition paths of ternary polymer solutions.
An isothermal model was used, in which a solvent and non-solvent evaporated from
the surface, but the polymer component was non-evaporating. The phase separation
of solvent/polymer solutions (or "blush") was explained in terms of the drying process-
paths and the two-phase immiscible region. Non-Fickian transport occurs during the
drying of some polymers which can develop stress during drying and have high shear
modulus; non-Fickian drying was analyzed by Vinjamur & Cairncross (2002, 2003)
who developed a model to include solvent transport due to stress gradients. Numerical
modeling of non-isothermal drying of film coatings has been carried out by Arya (2013)
and Arya & Bhargava (2015) using a finite-element method. The model developed in
chapter 7 of this work employs a finite volume technique to solve a related system of
equations.

Luna et al. (2005) and Gamero et al. (2006) developed an analytic solution to the
problem of isothermal drying of a liquid film assuming constant physical properties;
variation in liquid diffusion coefficients along the process path was accounted for by a
piecewise application of the solution using averaged coefficients from preceding time
steps.

Evaporation of droplet mixtures: There have been numerous studies on evapora-
tion of droplets, both droplets of pure liquid, and of multicomponent mixtures. March-
ese & Dryer (1996) studied the effect of liquid mass transport on the combustion and
extinction of bicomponent droplets of methanol and water. Abramson & Sirignano
(1989) developed an extended film theory of heat and mass transfer for droplets that
is widely used in other studies of droplet vapourisation. This model includes effect of
variable thermophsyical properties, the effect of Stefan flow on heat and mass trans-
fer between droplet and gas, and the effect of roplet internal circulation and transient
liquid heating; a simplified effective thermal conductivity is used to account for tran-
sient heating of the droplet, as an alternative to the classical Hill’s vortex model (Clift
et al. 1978). Daif et al. (1998) conducted an experimental study of multicomponent
fuel vaporisation for heptane-decane mixtures and modelled the vaporisation rate suc-
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cessfully using the model of Abramson & Sirignano (1989) for both natural and forced
convection. In that work, the droplets were suspended on filaments in the flowing gas
stream. In contrast, Maqua et al. (2008) used a laser-induced fluorescence technique
to measure internal temperatures of evaporating binary droplets (acetone/ethanol) in
falling droplets at high gas temperature. Bader et al. (2013) investigated ideal and
non-deal behaviour of ethanol/iso-octane droplets via a parametric study over a range
of ambient pressures and temperatures. The employed binary and ternary diagrams to
analyse the transient droplet behaviour and used a separation factor as a quantitative
means to measure the effective relative volatility of each component.

Other work on droplets includes that of Pakowski (1990, 1992, 1994) who studied
evaporation of droplets of binary (IPA/water, methanol/water) and ternary (ethanol/
chloroform/hexane, acetone/chloroform/methanol) mixtures using a Maxwell-Stefan
model, and plotted computed droplet composition profiles on a ternary diagram. In
that work, droplets were suspended on a glass fibre and exposed to a gas flow of
known velocity, temperature and humidity. A lumped model was used to model the
evaporation process (ignoring diffusion effects within the liquid). Pakowski (1990)
found that that by modification of the concentration of the drying air, the location of
stable pseudo-azeotropes could be affected. This work in particular has motivated the
calculation and presentation of composition profiles on ternary diagrams that is the
focus of chapter 3 of this thesis.

The vapourisation of fuels during combustion processes is an example of a common
application of multicomponent evaporation. Typically the liquid fuel is sprayed un-
der pressure into a combustion chamber. The rate of vapourisation is critcal as the
vapourisation is generally the rate-determining step in the overall burning rate (Sirig-
nano 2010). The overall combustion process involves heat- and mass-transport as well
as fluid-dynamics (within an engine cylinder for example) and chemical kinetics (de-
scribing the combustion reaction). Turbulence in the vapour-phase, as described by the
Reynolds number is an important indicator of the flow-regime; this is in turn based
on droplet diameter, droplet-gas relative velocity and gas phase properties such as vis-
cosity and density. In addition to the vapour-phase, there may be internal circulation
within the droplet itself driven by shear forces at the interface (Sirignano 2010).

Extensive effort has been invested in the development of computational fluid dynamics
(CFD) codes for the simulation of fuel droplet heating, vapourisation and combustion
in internal combustion engines. In addition to the solution of the momentum (Navier-
Stokes) equations during combustion cycles, a model of droplet vapourisation is re-
quired. Simplified models for radiative heating are generally employed. For combus-
tion of real (multicomponent) fuels, Sazhin (2006) concludes that the distillation curve
model is a reasonable compromise between accuracy and CPU efficiency. Commerical
codes (FLUENT, VECTIS, STAR-CD, PHOENICS) and public domain (KIVA) codes are
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available for modelling or droplet vapourisation and combustion. Sazhin (2006) pro-
vides a comprehensive review of advanced models of fuel droplet heating evaporation
and combustion characteristics.

Real fuels contain a large number of hydrocarbon components, so that models based on
distillation curves or pseudo-compoents are often used. Burger et al. (2003) modeled
fuel droplet evaporation using physical properties derived from a ASTM D-86 distilla-
tion curve model of the fuel.

Kneer et al. (1993) studied the effect of variable liquid properties on diffusion- con-
trolled evaporation of multicomponent droplet. Bader et al. (2013) performed a para-
metric study of the influence of non-ideal VLE on the evaporation of droplets contain-
ing a range of ethanol/iso-octane mixtures, using a lumped model for the droplet and
adopting the approach of Abramson & Sirignano (1989) for evaporation rate. Randolph
et al. (1986) examined the importance of liquid phase diffusional resistance in multi-
component droplet gasification using theory and falling-drop experiments. They found
the gasification mechanism to be intermediate to those of a batch distillation (i.e. a
residue-curve) and a liquid-phase diffusion limited steady state. Kim et al. (1990) stud-
ied the gasification of non-azeotropic and azeotropic (1-propanol/tetrachloroethene)
droplets finding that the "gasification azeotropic" composition was different from the
azeotropic point and was determined by the specific combustion parameters (similar
to a pseudo-azeotrope). By adding a third component (n-hexadecane) they also found
that the azeotropic character could be broken (similar to an extractive distillation pro-
cess). The books by Sirignano (2010) and Kuo (2005) discuss the fluid dynamics of
droplets for combustion processes in detail.

Evaporation of solvent spills: The evaporation characteristics of pools of multicom-
ponent liquid are also relevant for models of the combustion of fuel spills. Accurate
predictions of the amount of vapour released and estimates of vapour concentration re-
sulting from spills are also important for hazardous-area rating of industrial plant (Lee
2002). Okamoto et al. (2010) measured evaporation rates by loss-in-weight from pools
of a number of hydrocarbons (n-pentane, n-hexane, n-heptane, toluene, p-xylene) un-
der stagnant conditions. Results were compared against a simple model incorporating
vapour pressure and activity coefficients for the fuels. The same workers also developed
a model to predicted flash-point of the mixtures during evaporation.

2.3.2 Drying of Solids Containing Multicomponent Liquids
The drying of materials wetted with water has been the subject of innumerable theo-

retical and experimental studies which have yielded qualitative understanding of the
mechanisms involved. The development of mathematical predictive models is compli-
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cated by the hysteretic and difficult-to-quantify transport phenomena in porous mate-
rials (Keey 1972). Thus, in spite of the extensive work on the topic, it is not gener-
ally possible to reliably predict drying curves for all but the most simple applications
(Pakowski & Mujumdar 2006). Many industrial processes involve drying of products
which contain not only water, but also solvents or other volatiles; drying of foodstuffs
and pharmaceutical products are but two examples. In many cases the quality of a
product can be altered by the drying conditions; in particular, drying conditions may di-
cate that the selectivity of a volatile component is affected, so that a component may be
removed preferentially to a greater or lesser extent. For aroma-retention in foodstuffs,
steep drying conditions may lead to greater retention of aromatics, even though they
may be more volatile (have higher vapour pressure) than other components present.
This effect is due to selective diffusive effect in the liquid which retards the diffusion
of the aromatic compounds (Coumans et al. 1993). By contrast, the drying of pharma-
ceutical compounds may target the removal of toxic organic solvents while retaining
moisture to aid subsequent tabletting steps. Paudel et al. (2013) considered effects
of solvent type and concentration on the formation of amorphous solid suspensions
of API (active pharmaceutical ingredients) for spray-drying. For API formulations, the
selection criteria selection for a suitable solvent mixture include:

* high solubility of the API and other additives

* generation of a solution with acceptably low viscosity

* low toxicity; see also ICH guidelines on residual solvent (ICH 2011)

* high volatility for ease of evaporation during drying

* non-combustibility (e.g. in a spray-drying environment) (Miller 2012)

The drying of solids wetted with multicomponent mixtures has characteristics that are
common to those of conventional single-component drying. At high moisture content,
a period of constant-rate drying occurs (constant rate period); the temperature is also
constant during this period. The porous solid reaches the wet-bulb temperature of the
mixture during this time. In this period, mass transport from within the solid to the
surface is equivalent to evaporation rate of a free-liquid surface of the same geometry
and drying conditions (Steinbeck 1999), so that capillaries transport as much material
to the surface as can be evaporated. If material cannot be transported to the surface
at a sufficient rate, the wet core in the porous material shrinks and the drying rate
declines; this is the falling rate period.

While the research into drying of water-wet materials is extensive, the work done on
drying of solvent-laden (solvents other than water) is less complete. Thijssen & Rulkens
(1968) and Thijssen (1971) studied aroma retention during the drying of foodstuffs, by
spray-drying solutions of water, ethanol and sugar. As the drying progressed the sugar
formed a membrane-like coating on the droplet surface. The smaller, less volatile water
molecules were apparently able to diffuse more rapidly through the coating than the
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2.3 Evaporation and Drying of Multicomponent Mixtures

larger, more volatile ethanol species; put another way, the water had a higher effective
diffusion coefficient in the coating than the ethanol, and the process was consequently
selective in favour of water.

Thurner & Schlunder (1986) and Heimann et al. (1986) studied the evaporation of
binary IPA-water mixtures from both a free-surface, and from porous materials wetted
with [PA-water. At low drying rates they found the selectivity to be governed by the rel-
ative volatility of the components in the mixture. At high drying rates they found drying
to be non-selective due to diffusion effects in the liquid side (mass transfer resistance).
Non-selective drying also occurred when a pseudo-azeotrope formed in the liquid; in
that situation, the less volatile compound can be preferentially removed provided the
solvent/water composition is above the pseudo-azeotrope, a situation analogous with
conventional azeotropes in distillation processes.

Schwarzbach & Schlunder (1993) studied evaporation of IPA-water mixture through
sintered materials of various porosity floating on the liquid surface. At concentrations
above the azeotropic composition they found non-selective evaporation at all pore sizes
tested. Below the azeotrope point however, they found selective behaviour that reduced
in effect as the pore size reduced. They attributed this phenomenon to differences in
the bulk density and surface tension leading to both Bénard and Marangoni convection,
and a very large enhancement of mass transfer through the plate which was no-longer
diffusion-controlled.

Schwarzbach (1986) and Schwarzbach & Schlunder (1993) examined porous particles
wetted with a binary mixture and dried in a fluidized bed. They found that there
was a transition from an initial state of equilibrium to a phase of diffusion-controlled
mass transfer during the drying process. With increasing particle Biot number (ratio
of external to internal mass-transfer resistance) the transition to a diffusion-controlled
regime occurred earlier in the process. For small Biot numbers the drying remained
in an equilibrium-controlled state throughout. The models of Schwarzbach (1986)
and Schwarzbach & Schlunder (1993) employ a modifed version of the shrinking-core
approach for drying of spherical particles wetted with one component (i.e. water);
the solid particle is divided into a partially saturated core and a dry outer shell, and a
sharp evaporation front is assumed. An effective diffusivity was employed to account
for the combined effects of gas and liquid diffusion. The model was successfully used
to describe fluidized bed drying of alumina particles wetted with an IPA-water mixture.
Application of a shrinking core model to fluidized bed drying Schwarzbach & Schlunder
(1993) suggests that in the early stages, when the air at the surface is close to saturated,
the evaporation flux from the wet core is controlled by equilibrium, and composition
changes are limited by azeotropic conditions. In the later stages, as the process becomes
gas-phase controlled the composition changes become limited by a pseudo-azeotrope
(Pakowski 1994).
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Viduarre & Martinez (1997) examined the continuous, non-isothermal drying of solids
wetted with ternary mixtures, and studied the influence of process variables using a
gas-phase-limited model. They found that gas composition had the most pronounced
effect on the computed composition trajectories; the extent of these effects depended
on the gas/liquid flow rate ratio (both liquid and solid move continuously through the
notional dryer as it operates in a continuous mode). Viduarre & Martinez also found
that the temperature of the solid material affected the location of positive/negative
selectivity areas on a ternary composition space. They analysed the effect of addition
by conduction during the process, a practice that occurs by contact heating in some
manufacturing processes; for the acetone-ethanol-water ternary mixture they found
that additional heat addition was unfavourable for the evaporation of the more volatile
components (acetone, ethanol) as the higher temperature increases the selectivity for

water.

Pakowski (1994) gave an overview of research on drying of solids containing multicom-
ponent mixtures, include impact of liquid-side controlled evaporation, and evaporation
from porous solids. Pakowski (1990) identified two cases for liquid-side diffusion con-
trol: evaporation from a stationary liquid surface supplied by bulk flow from a reservoir
of constant composition, and evaporation from a receding liquid surface. For the first
case, the liquid side separation factor K, (Thurner & Schlunder 1986) can be used to
distinguish situations where liquid side resistance will dominate:

e ()

where £ is a liquid-side mass transfer coefficient, and 7, is evaporation rate. When
K1 — 0, gas-phase control applies, no concentration gradients exist in the liquid phase,
the evaporating flux has constant composition, and the process is non-selective. For the
other liming case (receding liquid with diffusion through capillary to surface, capillary
sealed at one end), Pakowski (1990) showed by simulation for an IPA-water mixture
that selectivity for the more volatile component initially falls before rising again at the
end of the process due to diffusion effects in the capillary.

Steinbeck & Schlunder (1997) and Steinbeck (1999) tested the drying of mixtures of
IPA/water/1-butanol in a bed of glass beads. This mixture forms a two-phase region at
lower IPA concentrations. Composition trajectories that passed through the two-phase
region were tested experimentally but no significant alteration in the drying rate was
observed. Steinbeck experimentally detected the presence of a pseudo-azeotrope by
virtue of composition trajectories that tended to pure water or pure 1-butanol depend-
ing on the initial composition, and on the drying conditions. The pore size of the solid
had a noticeable impact on selectivity within the two-phase region, but that effect was
not present for composition paths in the single-phase region. This was attributed to
differences in density and wettability of the two-phase mixture.
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Gamero & Martinez (2005) conducted an experimental and theoretical study of drying
of a porous solid (sand) wetted with ternary mixtures (water/methanol/ethanol and
2-propanol/methanol/ethanol). A mathematical model involving isothermal capillary
movement of the liquid and diffusion in gas and liquid phases was developed. Beyhaghi
et al. (2011) conducted experiments on the transport of multicomponent hydrocar-
bons (decane, dodecane and hexadecane) in synthetic wicks made of sintered polymer
beads. These wicks are representative of consumer products such as air-fresheners.
They used a volume-averaged form of the transport equations to describe the limiting
process of capillary-pressure-driven transport in the wick, and found the evaporation
rate to be a strong function of the tortuosity of the wick itself, and of the gas-phase film
thickness at the wick-air interface. Berggren & Alderborn (2001a,b) investigated effect
of ratio of ethanol/water content on the porosity and tabletting behaviour of cellulose
pellets, finding higher drying rates at higher ethanol content and that higher ethanol
content increased the porosity of the solid product.

2.4 Chapter Summary and Conclusions

This chapter summarises the status of a number of areas that form the basis for the
work of this thesis. The governing equations of mass and heat, and the theory of
the Maxwell-Stefan equations of multicomponent mass transfer described above are
used to develop the models for evaporation maps in the next chapter. The background
material on properties of residue curve maps (RCMs) sets the scene for the development
of evaporation maps which can be viewed as an analogy of RCMs for non-equilibrium,
gas-phase mass transfer-limited conditions. The review of evaporation and drying of
multicomponent mixtures serves as background to the intended purpose of evaporation
maps and helps to place them in a proper context.
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Chapter 3

Evaporation Maps for Gas Phase
Limited Conditions

In this chapter, the idea of evaporation maps is developed. Evaporation maps are seen
to be a convenient way of representing the dynamic composition of evaporating liquid
mixtures. Specifically, these maps represent the residual composition of evaporating
ternary non-ideal mixtures over the full range of composition. The maps consist of
evaporation trajectories that are selected to portray graphically the "flow" of residual
composition over the entire composition space (i.e. the ternary diagram). The map
then gives a straightforward representation of the direction of composition changes in
the mixture as the evaporation progresses. A number of ternary mixtures of varying
levels of non-ideality are used as examples, including a number of common solvents of
industrial importance (e.g. ethanol, methanol, water, MEK, toluene, acetone). A planar
geometry, as shown in figure 3.1, is used as a basis for the development. Evaporation
maps for the various mixtures show how the residual liquid composition is in many
cases sensitive to the initial composition, so that an appropriate selection of the initial
composition can be made if there is a particular undesirable solvent to be avoided in
the final product. The liquid mixture is at its wet-bulb temperature throughout the

evaporation/drying process.

Evaporation may occur into a pure inert gas, or into one pre-loaded with a known
fraction of one or more of the ternary components. The model developed here uses an
exact solution to the Maxwell-Stefan equations for mass transfer in the gas film, with a
lumped approach applied to the liquid phase. Solutions to the evaporation model take
the form of trajectories in temperature-composition space, which are then projected
onto a ternary diagram to form the map. The evaporation process considered here
involves gas-phase limited heat & mass transfer from a liquid or wetted-solid surface,
over which a gas flows at known conditions.

The evaporation maps are analogous to residue curve maps (RCMs) which are used ex-
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tensively in the analysis of equilibrium separation processes for ternary mixtures. The
similarities between RCMs and the residual composition of evaporating liquid mixtures,
under conditions of gas-phase controlled mass transfer, was highlighted by Luna & Mar-
tinez (1999). As noted in section 2.2, the singular points or fixed points of the RCMs
are the pure components and azeotropes of the mixture (Fien & Liu 1994). In the case
of evaporation maps developed here, the pure components are also fixed points of the
maps, as are the binary and ternary pseudo-azeotropes of the mixture (where they exist).
To compute the evaporation maps, these pseudo-azeotropes under the given evapora-
tion conditions must first be located. As with RCMs, the fixed points may be stable or
unstable nodes, or saddles. For evaporation into a pure inert gas, trajectories originate
from a neighbourhood of each unstable node, terminating at a stable node. In addition
to the component mass balances and phase equilibrium relationships, an overall energy
balance for the liquid phase is required for computation of the evaporation maps; the
energy and component mass balances are coupled through the multicomponent fluxes.

The topics covered in this chapter are as follows:

* The theory section 3.1 deals with the calculation of multicomponent fluxes using
an analytic solution to the Maxwell-Stefan equations, the development of heat
and material balance for an evaporating mixture, a model for calculation of mul-
ticomponent wet-bulb temperature, and a model for calculation of binary and
ternary pseudo-azeotropes

* The numerical methods section 3.2 covers a Newton-method approaches for cal-
culation of the multicomponent fluxes. The Newton-method is combined with
the heat and material balances and integrated to form the evaporation trajecto-
ries. Newton-based methods are also developed for the multicomponent wet-bulb
temperature and pseudo-azeotropes using analytic forms of the Jacobian matrix
in each case. An optimization method for location of evaporation trajectories
to cover the ternary composition space is also developed. The pseudo-azeotrope
method is seen to be is an augmented form of the wet-bulb method. The forms for
the analytic derivative terms used in Jacobian for the Newton-method calculation
are also discussed.

* Section 3.3 covers model validation (for droplets and planar geometery), some
numerical results on wet-bulb temperature and ultimately, generation of the evap-
oration maps for specified gas-phase conditions (air temperature and velocity).

* Finally, in section 3.4 the multicomponent wet-bulb temperature model is shown
to reduce to a simpler, well-known form for single component fluids, where mul-
ticomponent effects can be neglected.
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3.1 Theory

The development of the theory required to compute the evaporation maps is outlined in
the following sections. The computation of multicomponent mass transfer coefficient
matrix using an analytic solution to the Maxwell-Stefan equations is first presented;
this matrix is then combined with mass transfer coefficients for the planar geometry. It
is then shown how the fluxes are used in the calculation of evaporation trajectories. The
computation of multicomponent wet-bulb temperature at given liquid composition is
then presented. This is then further extended to the calculation of binary and ternary
pseudo-azeotropes. Each of these steps is required to compute the evaporation maps.

To set the scene, figure 3.1a shows the configuration used to develop the theory for
this work; this would be representative of a horizontal liquid film (in case of drying
of polymer sheets), or a solid saturated with liquid (e.g. tray dryer for pharmaceutical
prodution), or perhaps an evaporating pool of spilled solvent mixture. A cross-sectional
view of the evaporation process is shown in figure 3.1b. A steady stream of gas of
known temperature T¢ and composition y flows over the planar surface. A notional
film of thickness ¢ is assumed to exist at the vapour liquid interface; temperature and
composition gradients exist within this film only, reaching the values of the flowing gas
stream at the outer edge of the film. Using an [PA/ethanol/methanol liquid mixture as
an example, the individual diffusive fluxes of the evaporating components are denoted
by Jipa, Jeron and Jyron. A corresponding diffusive flux of air occurs in the opposite
direction. For evaporation of liquid mixtures, a heat flux ¢; occurs from the liquid to
the vapour phase due to evaporative cooling. The liquid composition is z; for each

component 4, while the corresponding gas-phase composition at the interface is y;.

3.1.1 Analytic Solution to Maxwell-Stefan Equations

The theory leading to the Maxwell-Stefan equations was given in section A.3. Driv-
ing forces for mass transfer other than concentration differences have been ignored
in this work. From equation 2.2, the Maxwell-Stefan equations for an n-component
isothermal, isobaric, ideal gas system are given by:

dyi = vilNj —y;N;
et ARG i 3.1
dz ]z:l C Dz’j ( )

for gas phase molefractions y; and molar fluxes N;. The driving force on the left hand
side is the gradient of composition from equation A.74. The D;; are the Maxwell-Stefan
diffusivities. An evaluation of various film models for multicomponent mass transfer
is given by Smith & Taylor (1983); in this chapter we employ the analytic solution
due to Krishna & Standart (1976) to model mass transfer in the vapour film at the
vapour-liquid interface. For mass transfer through a notional film thickness ¢, we use a
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(b) Cross-section of liquid surface with heat flux ¢¢ into liquid phase, and molar fluxes N; into
vapour phase; ¢ is notional film thickness at vapour-liquid interface; diffusive fluxes Jipa
etc. are shown for an example IPA/ethanol/methanol liquid mixture

Figure 3.1: Evaporation from surface of ternary liquid mixture.
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normalised dimension n = z/¢, so that

3.1 Theory

Tdy, & uiNj —y;N;
23 AR/ i (3.2)
¢ dn szl c Dj;
i#]
n N, N, =lo.N.
=y~ _y’;)l_ yJD’ (3.3)
i#] i#]
where, in order to eliminate y,, from equation 3.2 we write y,, as
n—1 n—1
yn=1=> yi=1—yi— > y; (3.4
j=1 J=1
i#£]
Equation 3.2 then becomes:
1 dyz n Nj N; n n—1 yj N;
- = — 1—2; — zi | — (3.5)
£ dn sz::chij cb;p ! Jz::l J jz:;cDij
1#] i#£] 1#]
N, "N N; (N, N,
| N N D{+z< A )x 3.6
C D j=1 C iy C Dy j=1 C Din C Dy
i#] i#]
so that (moving ¢ to right hand side):
—_— = + i + — T — 3.7)
d77 CD”L/E ;CDU/E ’ ]z_:l CDZn/f CDU/Z J CDln/f
i#] i#] o, b
Dy
We can therefore re-cast equation 3.7 as:
q, = Lurit > Qi+ (3.8)
" j=1j#i
or, in matrix form
d(y)
— = [® 3.9
= (0@ + (@) 3.9)
The analytic solution to equation 3.9 is given by Krishna & Standart (1976):
(y = o) = [exp[[@]n] — [1))fexp[®] — [1]] 7" (ye — vo) (3.10)

where exp[®] represents the matrix exponential. Thus, given the total fluxes N;, the

composition profile can be obtained analytically. Using Ay for the concentration differ-
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ence across the film, the generalized form of Fick’s law can be written in matrix form
as:

(J) = —"’[D]déz) — c[k*)(Ay) (3.11)
where [D] is the matrix of multicomponent diffusion coefficients. The matrix of mass-
transfer coefficients [k®] is introduced as an alternative approach to calculating the
diffusive fluxes, given that the value of £ is not accessible. At n = 0 (corresponding to
vapour-liquid interface for this work), inserting equation 3.10 into 3.11 and differenti-
ating gives an expression for the diffusive fluxes at the interface:

(Jo) = =5 Dol @] [expl@] - [2]] () (3.12)
With the definition of [k°] from equation 3.11, we have:

5] = 2(ellesle] - (1] = (= (3.13)

where [=y] is a correction factor. The exponential matrix term involving exp[®| can be
evaluated using Sylvester’s theorem (Greenberg 1978). In the limit as N; — 0 this gives
the zero-flux mass transfer coefficients as [kg] = [Do]/¢. To formulate in terms of low-
flux binary mass transfer coefficients «;; (which can be evaluated using correlations for
specific geometries), we replace the b;;/¢ terms in the rate factor matrices ¢ and ¢
above with the x;;. The matrix [Ry] is defined with terms:

_ ik
k=1 (3.14)

where the y{ are calculated at the interface (n = 0). The matrix of low-flux multicom-
ponent mass transfer coefficients is then:

[ko] = [Ro] (3.15)

so that the matrix of corrected mass transfer coefficients used in the calculation of the
diffusive fluxes at the interface .Jj is finally given by:

(ko] = [ko] [Zo] (3.16)

The subscript 0 is dropped in subsequent use.
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3.1.2 Application of Analytic Solution to Fluxes in Gas Phase

Section 2.1.1 presented a motivational example of multicomponent diffusion effect
from the classic experiments of Toor (1957, 1964). Evaporation and drying of multi-
component solvent mixtures can entail diffusive interactions not present in drying of
single solvents. Consequently, in this work the Maxwell-Stefan approach is used to
model mass transfer in the gas phase. A lumped description applies to the liquid phase.
For evaporation of a ternary liquid mixture into an inert gas (air), the presence of non-
condensible air implies a quaternary system (n = 4) in the "film". There are 3 flux
expressions (F; — F3) in 3 of the 4 unknown total fluxes N; — N3. The total flux of air
(IVy4) is zero, as air is assumed to be insoluble in the liquid (Stefan diffusion). Following
Taylor & Krisha (1993), discrepancy or residual functions for the total fluxes are defined
as:
3
F=Ji+yCS Nj—N;=0 for =123 (3.17)
j=1

where J; are the diffusive fluxes. Using a pseudo steady-state approach for the notional
film at the gas-liquid interface, the mole-fractions at either side of the film are specified
at each moment in time using known liquid composition, and known composition of
the surrounding gas phase. The fluxes defined at the interface are selected to solve the

system of equations. The n — 1 diffusive fluxes J; are given by

3
Ji=c> k§iAy;  for  i=1,2,3 (3.18)
j=1

where Ay; = y/ — yf’, and kf; is the mass transfer coefficient corrected for non-zero

mass flux from equation 3.16. The diffusive flux of air is given by the summation

3
Jy = — 3 J;. The gas-phase molefraction at the vapour-liquid interface is y/ while
i=1
that in the bulk gas is y*. To calculate the &g,

mass transfer coefficients x;; using correlations. For evaporation from a flat geometry

we firstly calculate the zero-flux binary

and from a droplet (the geometries of interest), the relevant correlations are (Bird et al.
2002):
dl‘iij

Shij = D
ij

= (0.65Re"2Sc;; ") (3.19)

for mass transfer to/from a planar surface, and

Shij = (2.0 + 0.6ReSe; ) (3.20)
for mass transfer to a droplet. Sc¢;; = p%ﬁ, and Sh;; = %{j are the Schmidt and

Sherwood numbers for pair ij, and d is the characteristic length scale. The correla-
tion for the flat geometry is valid for Re < 3 x 10° and Schmidt numbers in range
0.6 < Sc < 2500 (Bird et al. 2002). Physical properties are calculated at the average
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film temperature (average of liquid and bulk-gas temperatures). In the dynamic analy-
sis that follows (section 3.1.3), a quasi-steady state approach is used, with properties
evaluated at the average conditions applying at each time interval.

For given gas-phase concentrations at the interface and in the bulk, the total fluxes
N; can be found by using a Newton’s-method solution to the discrepancy functions
Fy — F3, as described in section 3.2.1 . The N; are coupled with a dynamic heat- and
mass balance to calculate specific liquid trajectories as outlined next.

3.1.3 Conservation Equations for Liquid Phase

The evaporation of a quantity of liquid (total molar holdup h%) is shown schematically
in figure 3.2, in a planar geometry. This is a "batch" process in the sense that the liquid
hold-up and composition change over time. The following assumptions apply:

1. Gas temperature (7¢) and composition (in) in the bulk do not change as it
passes over the exposed surface

2. Liquid is well mixed so can be treated in a "lumped" manner, with no diffusional
limitations in the liquid phase

3. All resistance to heat and mass transfer is in the gas film at the interface

4. Equilibrium applies at the gas-liquid interface with non-ideality in the liquid
phase captured by an activity coefficient model. The liquid is also assumed to
be non-ionic.

5. The gas phase behaves ideally, and air is insoluble in the liquid so there is no net
flow of air towards the interface (Stefan flow)

6. Apart from the area exposed to the gas flow, the evaporating liquid is assumed to
be isolated from its surroundings, so that heat transfer to liquid is via convective
flow only (not radiation or conduction)

7. The effect of the regression of the vapour-liquid interface is neglected

Assumption (1) reflects the situation that commonly occurs in experimental situations,
where a large excess of gas flow relative to the flow of evaporating vapours is used,
and where the sample size is small (Martinez & Setterwall 1991). The assumption is
that the rate of evaporation and the characteristic dimension (length in direction of
gas flow) of the sample are small so that the bulk gas composition and temperature
do not change along the sample length due to effects of evaporating liquid. Where
those assumptions do not hold, such as with a long characteristic length typical of
an industrial dryer, then bulk gas composition and temperature would be functions of
length. This variation would be addressed by discretizing overall heat and material
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balances over the exposed length, using a lumped parameter model for liquid/solid
mixture and for gas phase in each increment (Pakowski & Mujumdar 2006).

Assumption (2) states that no diffusive effects are accounted for in the liquid phase; in
practice this may be due to mixing effects within the liquid that occur due to flow of
gas phase over the gas-liquid interface, or due to natural convection effects within the
liquid. In general, the analysis would also apply to a liquid containing a solid phase
provided the solids present do not affect the assumption of a well-mixed liquid phase -
see also assumption (6).

Assumption (3) implies that the evaporation rate is governed by conditions in the gas
phase. The controlling steps for evaporation of a binary liquid mixtures, and drying of
porous materials containing binary mixtures were investigated by Thurner & Schlunder
(1986) and by Steinbeck (1999). The controlling steps were found to be determined
by drying intensity, so that at moderate conditions of gas temperature and velocity the
process is controlled by gas-side heat and mass transfer or thermodynamic equilibrium.
Under intensive conditions, heat and mass transfer in the liquid (or wetted-solid) phase
becomes significant. A characteristic number for liquid-side mass transfer is given by
(Thurner & Schlunder 1986)

K = exp (— Mo ) (3.21)
krpr

where k£, is a liquid-side mass transfer coefficient, and 72, can be found from equation
3.30. At low gas velocities, and when K; — 1, no concentration profiles exist in the
liquid phase, and the selectivity depends on gas-side mass transfer and thermodynamic
equilibrium. At high evaporation rates and/or low liquid-side mass transfer coefficients,
K; — 0, and liquid-side resistance is the limiting step. For the simulations in this
work the evaporation rates are such that K; — 1 (using typical values of kj, for free
gas-liquid interface from (Thurner & Schlunder 1986) so the assumption of gas-side
controlling resistance is applicable.

Assumption (6) indicates that the thermal mass of any solids is ignored. In a practical
dryer, solids would of course be present, however it is assumed here that solids do not
exert a vapour pressure or otherwise interact with the liquid and therefore do not affect
the residual composition during the process.

The final assumption (7) says that the rate of movement of the vapour-liquid interface
is negligible with respect to the flux of material away from the surface. The rate of
interface regression is however included in the distributed model of chapter 7.

A differential mass balance for the hold-up Al of component i yields

dhk
dt

= —AN; (3.22)
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where N; is the molar evaporation flux of component . The multicomponent fluxes at
required time intervals are found using the approach discussed in the previous section.

The equilibrium which is assumed to exist at the vapour-liquid interface (assumption
4) is expressed mathematically by equations for equality of the chemical potentials of
each component in the vapour and liquid phases:

w =pF i=1...n (3.23)

where the chemical potential (or partial molar Gibbs energy) is given by

oG
Wi =0; = ((9 ) (3.24)
Ni ) T,Pn;

This is equivalent to an expression of equal fugacities in each phase:
V= i=1...n (3.25)

For practical computations, the fugacities are given by (DeNevers 2012)

£ =P and fF=~yap; (3.26)
so that
ZiYiPi
. = Zii (3.27)
"7 Pg,

where ~; are the (NRTL) activity coefficients representing non-ideality in the liquid
phase, p; is the vapour pressure of component ¢ and P is the total pressure. $ is the
vapour fugacity coefficient. Refer to appendix B.1 for details of the NRTL model used
in this work. It is assumed in equation 3.27 that the gas phase is ideal, so that ¢ = 1.0.
This is a standard assumption for gas mixtures at low pressure in the absence of such
effects as dimerization in the vapour phase; if a pressure-explicit equation of state is
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known to describe the vapour phase, ¢ can be conveniently calculated (Poling et al.
2001, p. 145).

Thus, by coupling the mass fluxes with an overall heat- and material-balance, the com-
position and temperature of the residual liquid over time may be found. The area for
heat and mass transfer A is defined appropriately for the geometry in question (droplet,
film etc.) To track the composition changes in the liquid, » — 1 component balances

3
are required - the summation of mole-fractions in the liquid phase > z; = 1 gives the
i=1
remaining nth mole fraction. Expressing the component material balance in terms of

mole fraction gives

d.i?l' A
=t = _ " (N; — ;N 3.2
dt hL ( zilVe) (3.28)
where
hp =Y hi (3.29)
i=1

An overall balance gives the rate of evaporation as

aMf
dt

—1y (3.30)

where MF is the total liquid mass, 7, is the instantaneous mass rate of evaporation.
The energy balance for the system may be written in terms of liquid temperature 7%
as the independent variable (liquid is at interface temperature throughout). Using
equation A.33:

3 _ _
Alga— ¥ Ni (HE - HLﬂ
_ = (3.31)
> hiM;CpF
=1

dTt
dt

where H” and H} are the partial molar vapour and liquid molar enthalpies respectively
of component i. The convective heat flux term is given by

@ = h&(T¢ -T1h) (3.32)

h¢, is the heat-transfer coefficient corrected for finite mass transfer. Expanding the
enthalpy terms HY and HY, and the heat flux term gives

3 3
hy(TY —TF) — > N;AH™P — by N;iM;Cp&(T% —TF)
_ S = (3.33)
> hi MiCpy
i=1

dTt
dt
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where M, is the molecular weight of component i. The fluxes are summed from ¢ = 1—3
only, as the flux of the inert gas (air) is zero. The heat-transfer coefficient corrected for
finite mass transfer is in turn given by

(IJG
he=heZ2y =hg | ——2—— 3.3
¢ = hcEn = ha L:vp(@%)—l] (3.34)

where =y is known as the Ackermann correction (Taylor & Krisha 1993), and @fl is
the heat transfer rate factor, given by

nz'CpiG

G = T (3.35)

3
=1

for mass transfer flux n;. The zero-flux heat transfer coefficient h¢ for film and droplet
and geometries can be found from heat-transfer analogies to equations 3.19 and 3.20:

Nu = hgd — 0.65Re2Pr'/? (3.36)
Nu = 2.0+ 0.6Re”2Pr"/3 (3.37)

The term within the square brackets in equation 3.33 can be recognised as equation
3.44 derived below for the multicomponent wet-bulb temperature. Thus, in the limit
as temperature changes tend to zero, the square-bracket term becomes zero, and the
liquid temperature becomes that of its wet-bulb temperature at that composition.

3.1.4 Multicomponent Wet-bulb Temperature

The wet-bulb temperature is the equilibrium temperature reached by a liquid evapo-
rating from a surface when a small amount of liquid is taken up by a large amount
of gas partially saturated with the vapour (Thurner & Schlunder 1985). In the case
of mixture with more than one component, a steady temperature will strictly only be
reached in the limit when remaining liquid contains a single component, or when a
pseudo-azeotrope has been reached (refer to section 3.1.5). Nevertheless, an "equilib-
rium" or wet-bulb temperature for a notional evaporating multicomponent mixture of
given (steady) composition can be calculated as discussed below. This equilibrium or
multicomponent wet-bulb temperature is the temperature which an evaporating liquid
approaches over time. In certain cases, this temperature is approached rather rapidly,
as comparison with experimental data for droplet evaporation in section 3.2.1 demon-
strates.

A model for the calculation of wet-bulb temperature for drying of a porous solid wetted
with binary mixtures was presented by Thurner & Schlunder (1985); a criteria for non-
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selective drying within the porous solid based on a penetration depth was developed,
and the wet-bulb temperature was found by solving heat and mass balances together
with an expression for phase equilibrium assuming gas-phase control. A simplified
picture of the mass transfer was used, employing binary mass transfer coefficients.
Pakowski (1989) presented a simple model for binary wet-bulb calculations using a
mass transfer model derived by Newbald & Amundson (1973) which accounts for the
cross-effects of one component on another using an effective diffusivity concept. The
model presented in this work incorporates mass transfer fluxes solved using the explicit
solution of the Maxwell-Stefan equations for mass transfer, outlined in section 3.1.1.

Equilibrium at the vapour-liquid interface is assumed to apply. Thus, for a ternary
liquid mixture, there is an equilibrium expression for each component:

F4 = lel - y{ =0 (338)
Fs =Koz —yt =0 (3.39)
F6 = Kgl‘g — y?{ =0 (340)
where
K; = vip;/ P (3.41)

The activity coefficients +; are found from the NRTL equation (see appendix B.1). The
requirement that the summation of vapour mole-fractions is unity is expressed by:

Fr=> "yl -1 (3.42)

The rate of heat transfer at the interface of a liquid undergoing heat and mass transfer
with its surroundings is the sum of that due to the temperature gradient, and that due

to enthalpy transferred by the shift of material from the interface:

n
a = qo+ Y N (BS - AY) (3.43)
i=1
Implicit in the definition of wet-bulb temperature is that the heat transfer to the evap-
orating liquid is used for evaporation of the liquid, thus the ¢; term is zero.

To compute the wet-bulb temperature for a ternary mixture, the discrepancy functions
Fy — F; for the mass transfer fluxes N7 — N3 (section 3.1.2) can be augmented with the
heat balance Fj:

3 3
Fs=h&(TY-T") — N NAHP =Y NM;Cpd(TY —T") =0 (3.44)
=1 =1
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The right-hand side of the heat balance also appears in the differential heat balance in
equation 3.33.

Thus, for a ternary liquid, the wet-bulb model has 8 equations (£} — Fg) in 8 unknowns
(N1, N, N3, yl, yd, ok, yl, T*). A Newton-method approach to solving I} — Fy is used
in section 3.2.

3.1.5 Pseudoazeotrope Compositions

To complete a residue curve map for a given mixture, the nature of all azeotropes in the
mixture must be known a priori (the residue curves themselves can be computed with-
out knowledge of the azeotropes); each azeotrope in the mixture can be characterised
as a stable node, an unstable node or a saddle (Widagdo & Seider 1996). For evapo-
ration maps, similar logic applies, except that the corresponding fixed points are now
pseudo-azeotropes, which are determined using the concept of selectivity. The selectivity
of a component i is defined (Riede & Schlunder 1990) as the difference between the
relative molar evaporation flux of component i, and the mole fraction of component ¢
in the liquid:
5=, (3.45)
> N
i=1

For values of S; > 0, component i is preferentially removed and its concentration in the
liquid phase decreases, while for S; < 0 the reverse occurs. At S; = 0, evaporation is
non-selective for component ¢, which is analogous to the distillation of a liquid mixture
at its azeotropic composition. For gas phase controlled evaporation, a non-selective
process may occur at liquid compositions that are different to those of the thermody-
namic azeotrope due to the fact that the process depends both on vapour-liquid equilib-
ria and on diffusion in the gas phase (Viduarre & Martinez 1997). These non-selective
liquid compositions are known as pseudo-azeotropes or dynamic azeotropes (Schlunder
1989a,b). Just as thermodynamic azeotropes represent the fixed points of a simple
distillation process (Doherty & Malone 2001), the pseudo-azeotropes represent the sin-
gular or fixed-points for the gas-phase limited system. For a ternary mixture, each of
the binary pseudo-azeotropes (where they exist) are found by equating the selectivity
for the relevant pair, i.e. S; = So, or S; = S3 or Sy = S3. The ternary azeotrope (where
it exists) is found by solving two equal-selectivity equations simultaneously, S; = S5
and S; = Ss3 for example. For the calculation of binary pseudo-azeotropes, in which
case the liquid composition is not specified a priori, the problem statement for the
wet-bulb temperature (F'1 — F'8) is augmented by 3 additional equations for the liquid
mole-fractions. In the case where the binary is the pair 1-2, the discrepancy function
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for equal selectivity (S; = Ss) is

FQE[M x]_{NQ

SN >SN

For a binary pseudo-azeotrope, the third component in the mixture is obviously zero:

— $2:| =0 (3.46)

F10 = T3 = 0 (347)

Similar expressions apply for the 1-3 and 2-3 pairs. Where the composition of a ternary
pseudo-azeotrope to be computed, replace Fyy with:

F10 =

Ny ] { N3

SN zm‘“}—“

for pair 1-3 or, for pair 2-3:

The summation of the liquid mole-fractions completes the model:
Fu=> 21-1=0 (3.48)

For a ternary liquid, the pseudo-component model has 11 equations (F; — F31) in 11
unknowns: Ny, No, N3, i, v, vt yi, TF, x1, 2 and z3). A Newton-method approach

to solving F; — Fy; is presented in section 3.2.3.

3.2 Numerical Methods

3.2.1 Evaporation Trajectories

The system of equations describing total evaporation fluxes in the gas phase is sum-
marised by equations F(Z) = 0 given by 3.17. To solve this set of nonlinear equations,
we use Newton’s (or Newton-Raphson) method, which requires both the evaluation
of F(z) and the derivative of F(Z). This method provides a very efficient means of
converging to a root if a sufficiently good guess is provided (Press et al. 1992). The
Newton-Raphson method is based on a Taylor series expansion of F'(Z) in the neigh-

bour hood of Z:
N op
Fi(z T) = F}(Z) = v

(T + o) (T) jEZl 7z,

+ O(6z?)
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The matrix of partial derivatives is the Jacobian matrix J:

J(z) = [azﬂ

8@-
By neglecting terms of order 2 and higher, a set of linear equations for 4z is obtained:
J oz =—-F

which can be solved by the so-called LU (lower-upper) decomposition (Kelley 1995).
The corrections are then added to the solution vector

Tpew = Told + 0T

and iterated until satisfactory convergence is reached. For the discrepancy functions
F, — F3 (equation 3.17), the Jacobian can be found analytically:

P I ek T S
J=5==1 ¢ -1 o (3.49)
L a a G
Ys Ys yz —1

It is assumed that the mass transfer coefficients in calculation of the Jacobian can be
considered constant. Following Taylor & Krisha (1993), the algorithm for calculation of
the mass transfer fluxes in the film is shown in table 3.1. This is detailed here as it forms
the basis for algorithms to determine the wet-bulb temperature, and pseudo-azeotrope
compositions which follow.

By numerically integrating the governing equations for the multicomponent evapo-
ration model (equations 3.28, 3.30 and 3.33), coupled with fluxes calculated from
table 3.1 at each time step, together with suitable initial conditions, the composition-
temperature trajectory (evolution of concentration and temperature over time) can
be found. A simulation code was written in "C" using the LAPACK package of rou-
tines for matrix manipulation. These were incorporated via "mex" files into the Matlab
programming environment. Numerical integration was performed using the ode15s
routine within Matlab. Physical properties for the components as a function of temper-
ature were generated from AspenPlus, with liquid-phase non-ideality represented by
the NRTL model.

The initial conditions for the integration are compositions in the neighbourhood of
unstable nodes of the evaporation maps. Similarly, the termination criteria are compo-
sitions in the neighbourhood of stable nodes. This is detailed in section 3.2.4.
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Table 3.1: Calculation of multicomponent fluxes using Newton method

Given: y!,y¢,TF,T% u",D;;
1. Using y! and y{", calculate mean vapour film properties

Calculate c (from ideal gas), and «;; from correlations

Estimate the NV;

Calculate @, =, k3 and J;

Evaluate the vector of discrepancy functions (residuals)

F = [F\F,F3)

Compute the Jacobian matrix J

Update the estimates of N;: {NNEW} =N+ J\F

8. If err < tolerance, stop, else return to step 4

kWb

N o

3.2.2 Multicomponent Wet-bulb Temperature

To compute the wet-bulb temperature, a Newton-method solution to the discrepancy
functions F; — Fy, outlined in table 3.2 is used. As with the case for the calculation of
mass fluxes, the Jacobian (J,,;) for the wet-bulb computation can be found analytically
and is given in table 3.4 (shaded terms).

All the terms in J,;, are straightforward with the exception of those involving partial
derivatives with respect to liquid temperature (0F5/0T" - OF;/0T"). For these, J,;

includes terms with:
0K; dlnp;

ar ~ Niqr

where K is given by equation 3.41. To determine the partial derivatives of vapour pres-

(3.50)

sure with respect to temperature, an expression of the following form is used (Prausnitz
et al. 1986):

1.5
: ! AT A
pizﬂe"p{l—uw(“‘«l ) o1 7)
6
T
D; <1_Tf> )} (3.51)

where the A;, B;, C; and D; are constants for each component, and 7 is critical
temperature. Differentiating equation 3.51 with respect to temperature gives
dIn (p; Tf 1
d,}pl) = [Aizi + Byl + Ci2f — Dizf| - - A = 15B;20% + 3Ci27 - 6D;2]
(3.52)

where z; = T/T¢ — 1, from which the numerical values of the required derivatives in
equation 3.50, and thence the required terms in Jywg can be found. The algorithm for
the Newton-method solution for multicomponent wet-bulb temperature (with analytic
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Table 3.2: Algorithm for computation of wet-bulb temperature

TWB = (NlaN23N3)y{’y£)y§7yivTL)

Given: yl-G, TG, UG, Dij, Z;

1.

—_
e

W reNxbhwD

Establish initial values for vector of unknowns

For given (estimated) =;, calculate !

Using y! and 3¢, calculate mean vapour film properties

Calculate ¢, @, Z, k7; and J; (as for calculation of fluxes in table 3.1)
Calculate by, = hy =g

Evaluate Fypg the vector of discrepancy functions Fj...Fg

Compute the Jacobian matrix Jwp for F}...Fg from table 3.4

Calculate Azwg = _JWB\FWB
Update the estimates of solution: [i{X,EW} = Twp + Azws
If Azwp < tolerance, stop, else return to step 2

Table 3.3: Algorithm for computation of pseudo-azeotrope composition (and

temperature)- TAZ = (NlaN27N37y{ay£ay?{7yiaTLamlax27$3)

Given: y¢, TY, u®, Dy;

[

O XN AW

—_
e

1
Establish initial values for vector of unknowns
For given (estimated) z;, calculate y{
Using y/ and 3¢, calculate mean vapour film properties
Calculate ¢, @, =, k3 and J; (as for calculation of fluxes in table 3.1)
Calculate by, = hyEg
Evaluate Fuz the vector of discrepancy functions Fj...Fi;
Compute the Jacobian matrix Jaz for F...Fy; from table 3.4
Calculate Azpaz = —Jaz\Faz
Update the estimates of solution: [:EXEW} = Zaz + Azaz
If Azpz < tolerance, stop, else return to step 2

Jacobian) is given in table 3.2.

3.2.3 Computation of Pseudo-Azeotrope Compositions

To compute the pseudo-azeotrope compositions, a Newton-method solution to F; — F1,
outlined in table 3.3 is employed. Note that the wet-bulb temperature at the pseudo-
azeotropic composition is an additional output of the pseudo-azeotrope algorithm. As
with the case for the calculation of mass fluxes and wet-bulb temperature, the Jacobian
for the functions F} — F1; can be found analytically and is given in table 3.4. Just as the
discrepancy functions F; — Fy for the wet-bulb temperature are augmented with Fy—Fy;
for calculation of pseudo-azeotrope composition, the Jacobian Jaz is an augmented
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form of the wet-bulb Jacobian Jwg. The shaded portion of table 3.4 represents the
common part of the Jacobians. The new terms involve 0K;/0x; which are given by

0K; dIn~; .
=K; +x; n fOI'Z:]

OK; dln~; o '
=x; n fori # j

a.%'j o dxj

The derivative term for In~; is a lengthy expression involving the terms of the NRTL
expression for ~; (see appendix B.2). The derivatives of the equal-selectivity function
Fy with respect to the fluxes for the 1-2 pair are given by

OFy  Np— N 1
ON1 (T N;)? + S N;
OFy  Np— N 1
ON2 (N2 XN
OFy  Np— N

ONs S N;

(3.54)

Similar expressions apply for the 1-3 and 2-3 pairs. In the case where a ternary pseudo-
azeotrope is sought, the derivatives for the second equal-selectivity function F} are

0F1g B N3 — Ny 1
N ENE N,
0Fyg B No — Ny 1
ON2 (N2 XN
0Fo  Na— Ny

ON3 Y N;

(3.55)

3.2.4 Construction of Evaporation Maps

To obtain a spread of trajectories over the evaporation map, points z° are defined
through which the trajectories are desired to pass (within a pre-defined tolerance e3).
Figure 3.3 outlines the construction of an evaporation map schematically. Two scenar-
ios are considered. In the first (figure 3.3(a)), trajectories run from a ¢;-neighbourhood
of an unstable node (on chloroform-methanol axis) to a e;-neighbourhood of a stable
node (on acetone-chloroform axis). In the second scenario (figure 3.3(b)), pre-loading
of the gas phase changes the topology so that unstable node does not exist along the
binary axis as before. In that case, trajectories are initiated from a e;-neighbourhood
of the axis (chloroform-methanol).

Note that while figure 3.3(a) shows trajectories initiating at an unstable binary node,
and terminating at a stable binary node, trajectories may also initiate and terminate at
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Ny Ny Ny yi Y3 y3 yi T T T2 T3
xuw Y — 1 Y1 Y1 Q\aHH Q\amw O\ﬁmw 0 0 0 0 0
£ Y2 Y2 —1 Y2 ck3y ck3o ck3s 0 0 0 0 0
I3 Y3 Y3 ys — 1 ck$y ck3o ck3s 0 0 0 0 0
Fy AH)™P + AHZ™ + AHZ™ + 0 0 0 0 %| 0 0 0
G(TG _ L G(TG_ L G(7G _ L -
CpP(TC—T") | Cp§(TC~TT) | Cp§(TE-TE) S NCHEM,
Bl o : o | o | o o | af | nEe| agm | o
Ky
B0 0 0 o | 1| 0 | 0| @ | el |afes| ol
Ko
F ¢ 0 0 0 0 1l 0 23 %5 r3gar | waQf | st
K3
Fy 0 0 0 1 1 1 1 0 0 0 0
Zm\ZH Zm\ZH Zm\ZH
Fy | =N D M 0 0 0 0 0 -1 1 0
vEw (2 %)’ (=)’
2N 2 Ni
Fyp 0 0 0 0 0 0 0 0 0 0 1
iy 0 0 0 0 0 0 0 0 1 1 1

Table 3.4: Jacobian J4z (11x11) for binary pseudo-azeotrope procedure (pair 1-2); shaded cells are the Jacobian Jy 5 (8x8) for Newton-

method wet-bulb computation.
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Table 3.5: Algorithm for generation of evaporation maps

1. Locate binary and ternary pseudo-azeotropes for the given mixture
(see table 3.2, and the continuation procedure of section 4.2.4).

2. For a given unstable node specify the radius ¢; around the node
which defines the locus of possible initial concentrations

3. Specify the point 2 = (zf,z3) through which the desired trajec-
tory should pass

4. Initialize value for # (via optimization routine); set constraints for
0: Opin < 0 < Oy €.8. 0° < 6 < 90°

5. Calculate initial composition z¢ = ¢ + ¢;Cos(6), and 2§ = x§ +
e15in(0); x¢ and x9 are the compositions of the starting unstable
node (either a pure component, or a binary pseudo-azeotrope)

6. Generate the evaporation trajectory by numerically integrating the
system of governing equations 3.28, 3.30 & 3.33, coupled with the
multicomponent flux calculation from table 3.1; the integration is
terminated when z approaches a stable node z/ within a certain
distance es.

7. From computed trajectory, find point of intersection z4? with the
line AB

8. Find approach to z°: Asp = ||[z° — =

9. Adjust value of # (via optimization routine) until A 45 < €3

10. For optimal value of 6, project the solution in 7' — z space onto the
ternary diagram
11. Repeat from step 3 as required

AB”

pure component nodes. The angle 6 governs the starting composition xy; by finding the
intersection point x4 g, the value of # that minimises length A 4p can be determined
by numerical optimization. The approach used to generate the trajectories is outlined
in table 3.5. The Matlab optimization function fminbnd was used in this work for
numerical optimization of 6.

For each ternary mixture, the stable and unstable nodes must be identified prior to
generation of an evaporation map, as they form the starting and end-points respectively
of evaporation trajectories. This procedure involves calculating all binary and ternary
pseudo-azeotropes by the methods of section 3.2.3, and their corresponding wet-bulb
temperatures. The wet-bulb temperatures of the pure components in the mixture must
also be found, by the method of section 3.2.2. The unstable nodes for the mixture are
those whose wet-bulb temperature is a local minimum, while the stable nodes are those
whose wet-bulb temperature is a local maximum.
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Figure 3.3: Geometric construction of evaporation map
3.3 Simulation Results and Discussion

3.3.1 Validation of Evaporation Model

The multicomponent evaporation model may be compared to data available for evap-
oration of binary and ternary mixtures. While the evaporation maps of subsequent
sections are generated for a planar geometry only, the evaporation model is applicable
to other geometries such as droplets, provided the appropriate forms of the heat and
mass transfer correlations are used. Thus, data for both droplets and planar films are
used for model validation purposes.

Multicomponent Droplets Figure 3.4 shows a comparison of model predictions to
data (Pakowski 1994) for evaporation of droplets of a binary IPA/water mixture, un-
der two different conditions of surrounding gas flow and relative humidity. There is
reasonably good agreement with the experimental data for droplet temperature and
diameter (plotted as d2). Note that there are no adjustable parameters in this model.
As noted in section 3.2.1, the model predictions are found by numerically integrating
the governing equations for the multicomponent evaporation model (equations 3.28,
3.30 and 3.33), coupled with fluxes calculated from table 3.1 at each time step, to-
gether with suitable initial conditions. For data set 2, there is some variation in the
agreement of the model with the data at smaller values of d?; this may be due to larger
relative heat losses in the filament supporting the droplet at smaller droplet sizes. The
droplet temperature falls rapidly in the initial seconds due to evaporative cooling, fol-
lowed by a gradual rise as time progresses, and the droplet becomes depleted of IPA.
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For the case of IPA-water droplet evaporation, the computed values of wet-bulb tem-
perature, calculated using concentrations at specific time points are shown in figure
3.4, indicating good agreement with experiment. As droplet evaporation progresses,
the simulated droplet temperature and computed wet-bulb temperatures converge as
expected. The simulated temperature and droplet diameter (d?) have been extended
in time for data set 1 in order to show how the droplet diameter tends to zero as the
evaporation progresses.

Multicomponent Films The evaporation of a ternary ethanol/MEK/toluene mixture
from a planar film was studied by Martinez & Setterwall (1991). Comparison of model
predictions with their work is shown in figure 3.5-3.7, showing generally good agree-
ment with the data. The fit is less good for figure 3.6. This may be due to the fact the
initial concentration therein has a higher percentage of the most volatile component
(ethanol) than in figures 3.5 and 3.7 so that the rate of evaporation is more rapid;
consequently, the liquid film recedes below the edge of the container holding the liquid
which may effect the gas flow conditions and the heat and mass transfer coefficients at
the vapour-liquid interface. Also, as the most volatile component is eliminated, the vis-
cosity of the residual liquid may increase (being mostly MEK and toluene which have
higher viscosities) which might lead to a gradients in concentration due to reduced
level of natural circulation. In that case the assumption of gas-phase limited heat and
mass transfer may not be strictly valid.

Note from figure 3.8 that pure toluene forms the stable node for mixtures (a) and (b),
while pure ethanol is the stable node for mixture (c). This behaviour is consistent with
the evaporation map in figure 3.21. Note also from figures 3.6 in particular that a
significant portion of the total mass is evaporated before the final composition (pure
toluene) is approached.

3.3.2 Binary and Ternary Pseudo-Azeotropes

Pseudo-azeotropes for the various ternary mixtures are shown (as filled circles) on
the ternary diagrams of figures 3.19-3.23. Table 3.6 below summarises the pseudo-
azeotropic compositions and temperatures for each of these cases. The pure compo-
nents and pseudo-azeotropes are denoted as stable/unstable nodes or saddles as ap-
propriate; the unstable nodes form the starting point for the evaporation trajectories in
each of the maps, while the stable nodes are the terminal points.
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Figure 3.4: IPA-water droplet evaporation (Pakowski 1990); A: computed wet-bulb
temperature; o: data set 1 (T¢ = 20C, u® = 0.324m/s; RHipas = 0%;
RHpy,0 = 5.6%); O: data set 2 (T¢ = 20C, u® = 0.19m/s); RHips =
15.3%; RHp,0 = 15.3%
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Figure 3.5: Evaporation of ethanol(1)-MEK(2)-toluene(3) mixture; comparison of
model with experimental data (Martinez & Setterwall (1991),
r1 = 0.33, 29 = 0.33, 23 = 0.34; T = 298K, T* = 298K, u® = 0.1m/s;
d = 0.03m). Horizontal axis represents progress of the evaporation
from right to left; (I: ethanol, o: MEK, A: toluene
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Figure 3.6: Evaporation of ethanol(1)-MEK(2)-toluene(3) mixture; comparison of
model with experimental data (Martinez & Setterwall (1991);
21 =0.6,12 =0.1,23 = 0.3; T¢ = 298K, T" = 298K, u® = 0.1m/s; O:
ethanol, o: MEK, A: toluene
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Figure 3.7: Evaporation of ethanol(1)-MEK(2)-toluene(3) mixture; comparison of
model with experimental data (Martinez & Setterwall (1991);
r1 = 0.8,19 = 0.05,23 = 0.15; T¢ = 296 K, T" = 294K, u“ = 0.07m/s;
O: ethanol, o: MEK, A: toluene
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Figure 3.8: Figures 3.5-3.7 on ternary co-ordinates

3.3.3 Multicomponent Wet-Bulb Temperature

Using the algorithm of table 3.2, the wet-bulb temperature can be computed for bi-
nary and ternary mixtures. Figure 3.9a shows wet-bulb temperatures for the three bi-
nary mixtures in the acetone/chloroform/methanol ternary mixture, together with the
pseudo-azeotropic composition found from the algorithm of table 3.3. The wet-bulb
temperature lies near a minimum or maximum at the pseudo-azeotropic composition
in each case.

Figure 3.9b shows the corresponding binary selectivities as defined by equation 3.45.
As required by the definition of a pseudo-azeotrope, the selectivities are zero at the
pseudo-azeotropic compositions.

Whereas binary azeotropes lie at the maximum or minimum bubble-point for a given
binary mixture (Prausnitz et al. 1986), the minimum or maximum wet-bulb temper-
ature is not constrained to coincide with the pseduo-azeotropic composition. Figure
3.10 shows a magnified portion of the plots in figure 3.9a for the acetone/chloroform/
methanol mixture, showing this effect. This can be explained by the fact that con-
ventional azeotrope composition is a function of pressure only (assuming an accurate
model of the vapour-liquid equilbria), while the pseudo-azeotrope composition is a
function also of mass transfer rates in the gas phase.

Figure 3.11 shows multicomponent wet-bulb temperature lines computed by table 3.2
for binary IPA/water mixtures for four different relative humidity levels. These show
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Figure 3.9: Wet-bulb temperature and selectivities for binary mixtures in
acetone/chloroform/ methanol mixture; evaporation into pure
air; open circles denote pseudo-azeotrope compositions; T¢ =
40°C, u® = 0.5m/s, d = 0.03m
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Table 3.6: Results of pseudo-azeotrope calculations; 7¢ = 20°C,
u® = 0.5m/s, d = 0.03m; SN=stable node, UN=unstable node,
S=saddle

Pseudo-azeotrope
Components & P

pseudo-azeotropes E;)ar(r:ltpl?(c))rs,list)ion (mole Twp Type Figure
(1) IPA - 12.58°C SN

(2) Ethanol - 8.00°C S 3.18
(3) Methanol - —-2.81°C  UN

(1) Water - 15.86°C SN

(2) Ethanol - 8.00°C SN 319
(3) Methanol - —-2.81°C UN )
Water/Ethanol 0.15,0.85 7.81°C S

(1) IPA - 20°C SN

(2) Water - 12.58°C SN

(3) Ethanol - 15.86°C SN 3.20
IPA/Water 0.53,0.47 10.65°C S
Water/Ethanol 0.16,0.85 7.81°C UN

(1) Ethanol - 8.00°C SN

(2) MEK - 7.92°C S

(3) Toluene - 20.86°C SN 3.21
Ethanol/MEK 0.35,0.65 5.57°C UN
Ethanol/Toluene 0.75,0.25 6.83°C S

(1) DCM - —16.67°C S

(2) Methanol - —2.81°C SN

(3) Ethyl Acetate - 4.19°C SN 3.22
DCM/Methanol 0.89,0.11 —18.08°C'  UN
Methanol/Ethyl-acetate 0.74,0.26 -3.99°C S

(1) Acetone - —9.52°C S

(2) Chloroform - —5.64°C S

(3) Methanol - —2.81°C SN
Acetone/Chlorofrom 0.30,0.70 -3.56°C SN 3.23
Chloroform/Methanol 0.71,0.29 —-9.21°C  UN
Methanol/Acetone 0.94,0.06 —-9.63°C UN
Acetone/ Chloroform/ 0.27,0.35,0.38 —742°C S
methanol

the same qualitative behaviour as those computed by Pakowski (1989) for IPA/water
droplets, using the effective diffusivity approach of Newbald & Amundson (1973). The
gas phase molefraction is found from the specified relative humidity using

¢ _ pivi RH
Yo = 7P 100

The plot for 50%:50% relative humidity also shows a temperature of non-selective
drying, Ts (Pakowski 1989); non-selective process implies drying occurs at constant
composition. Ty g is found by computing the pseudo-azeotropic composition (at which
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Figure 3.10: Magnified portion of figure 3.9a; open circles denote pseudo-
azeotrope compositions; pseudo-azeotropes are not constrained to lie
at extrema of wet-bulb temperature curves

selectvity S; = 0), and the corresponding wet-bulb temperature at increasing values of
the air (dry-bulb) temperature.

Note from the plot of RHgihanot = 100% that the wet-bulb temperature exceeds the
dry-bulb temperature (20°C") at lower ethanol concentration; this is due to condensa-
tion of ethanol at the vapour-liquid interface when the gas-phase concentration is high,
and the liquid-phase concentration is low.

Figures 3.12-3.14 show wet-bulb temperature surfaces for three ternary mixtures. Note
that these are temperature surfaces for mixtures undergoing a rate-based (mass trans-
fer limited) evaporation/drying; bubble-point surfaces are the analogous surfaces for
mixtures at thermodynamic equilibrium. The ethyl acetate/dichloromethane/methanol
surface in figure 3.12 shows peaks at pure methanol —2.8°C and pure ethyl acetate
4.2°C, with a minimum at dichloromethane —16.7°C. A minimum in the wet-bulb sur-
face can be seen along the methanol/ethyl acetate edge at —4.0°C, while another min-
imum lies along the methanol/dichloromethane edge at 18.1°C. The ethanol/MEK/
toluene surface in figure 3.13 shows a peak at pure toluene at 20.9°C, and a smal-
ler peak at pure ethanol at 8.0°C. Note that minima in the surface occur along the
toluene-ethanol and the ethanol-MEK edges; these minima correspond approximately
to minimum-temperature pseudo-azeotropes. The acetone/chloroform/methanol sur-
face in figure 3.14 has a minimum at pure acetone at —9.5°C' and a maximum at pure
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Figure 3.11: Ethanol/water multicomponent wet-bulb lines; 7¢ = 20°C,
u® = 0.5m/s, d = 0.03m
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Figure 3.12: Wet-bulb temperature (deg C') surface for ethyl acetate/
dichloromethane/methanol; T¢ = 20°C, v = 0.5m/s, d = 0.03m

methanol at —2.8°C; a further maximum occurs along the acetone-chloroform edge,

corresponding to a maximum temperature pseudo-azeotrope at —3.5°C'.

The peaks and troughs in the wet-bulb temperature surface are explored in more detail
in section 6.3. Visualisation of wet-bulb temperature surfaces (or manifolds) in for
mixtures with more than three components is not feasible, although the algorithms
described here may be directly extended to higher dimensions.

3.3.4 Evaporation Trajectories - IPA/Ethanol/Water Example

To demonstrate the general features of evaporation trajectories, an example trajectory
for IPA/ethanol/water is considered here. For a given ternary mixture, with an assumed
planar geometry (i.e. evaporation from a flat surface such as a film), an evaporation
trajectory may be found by numerically integrating the governing equations for gas-
phase limited evaporation. Equation 3.28 describes the molar hold-up, while equation
3.33 describes the energy balance. By coupling these equations with the multicompo-
nent flux calculation from table 3.1, the system of equations may be integrated forward
in time from any desired initial composition until the composition approaches a stable
node within a certain pre-specified tolerance.
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Toluene

Ethanol

Figure 3.13: Wet-bulb temperature (deg C') surface for ethanol/MEK/toluene;
TG =20°C, u® = 0.5m/s, d = 0.03m

Figure 3.15 shows such an example evaporation trajectory for the IPA/ethanol/water
mixture. For this example, the initial composition is in the neighbourhood of pure
methanol (most volatile component). The trajectory becomes richer in ethanol and
leaner in methanol as it moves through point A towards point B; after point B, it
becomes leaner in ethanol and richer in IPA, all the while becoming also leaner in
methanol. The trajectory is terminated when it approaches pure IPA (least volatile
component).

Also shown at each of three points A, B and C in figure 3.15 are matrices which in-
dicate the degree of multicomponent interaction between the diffusing species in the
gas phase. Multicomponent interaction effects (the degree to which the process is non-
Fickian) can be assessed by considering the relative magnitude of the off-diagonal con-
tributions to the diffusive fluxes. Recall from 3.18 that the diffusive flux for component
i is given by:

3
Ji=cY kjiNy;  for =123
j=1
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Figure 3.14: Wet-bulb temperature (deg C') surface for
acetone/chloroform/methanol; T7¢ = 20°C, v = 0.5m/s, d = 0.03m

A measure of the contribution of an off-diagonal (multicomponent) terms is given by:

k;jij

ki.i AT,

(3.56)

The ij term refers to the off-diagonal contribution, while the ii term is the diagonal, or

Fickian term. The interaction effect is notable when the ratio of the interaction term

(denominator) to the Fickian term (numerator) is significant. For the ternary liquid

mixture, diffusing in air, the matrix of relative interaction terms shown in figure 3.15

is simply:
_ k12 Ayo k13 Ays
k$ Ay kS Ay
k31 Ay . k33Ays
k35 Aya k3o Ays
k3181 k32 Ayo _
k3sAys  k33Ays

(3.57)

where 1=IPA, 2=ethanol, 3=methanol. So, for example, the second term in the first

row indicates the ratio of diffusive flux of component 1 (IPA) caused by concentra-
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Figure 3.15: Example evaporation trajectory for IPA/ethanol/water; T¢ = 80°C,
u® = 0.5m/s, d = 0.03m

tion difference of component 2 (ethanol), to simple Fickian diffusion of component
1 (caused by its own concentration gradient). For the conditions of figure 3.15, the
largest off-diagonal term at point A is 0.0545 (5.4%), for point B the largest terms
is 0.0306 (3.6%), while for point C the largest off-diagonal term is 0.0402 (4.02%).
These figures suggest that the interaction terms are not very significant under the cho-
sen conditions. Under other circumstances however, the interaction terms may be an
important factor; section 4.4 examines interaction effects where the gas-phase is pre-
loaded with one component of the ternary mixture, in which cases the interaction terms
may be significant.

Figure 3.16 shows composition profiles in the notional film at the vapour-liquid in-
terface at each of the highlighted points of interest A, B, and C of figure 3.15. The
composition profiles are found from equation 3.10 and are linear in the dimensionless
film thickness n (n = 0 is the vapour-liquid interface, while n = 1 is the edge of the
notional film, at which point the gas phase concentration is that of the bulk gas phase).
For IPA, which increases in concentration from A to B to C, the profiles likewise in-
crease from A to B to C. For ethanol, the liquid concentration increases from A to B,
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Figure 3.16: Example film contentration profiles (mole-fractions) for
IPA/ethanol/water; the profiles A, B, C correspond to the points A, B
and C on figure 3.15; T¢ = 80°C, u“ = 0.5m/s, d = 0.03m; gas-phase
is pure air

then decreases to C; this pattern is evident in the profiles of figure 3.16 also. Finally,
the methanol concentration decreases from A to B to C, which pattern is also replicated
in the composition profiles.

The component fluxes along the evaporation trajectory of figure 3.15 are represented
by the curves in figure 3.17, where the fluxes are plotted against a dimensionless path
length ¢ for the evaporation trajectory. The arrows in the figure indicate the relative
directions of the diffusive fluxes; air diffuses in the direction opposite to the compo-
nents of the ternary mixture. The flux for methanol is initially high then falls as the
liquid becomes leaner in methanol over the course of the trajectory. The ethanol flux is
initially small, then rises as trajectory moves from point A to B on figure 3.15, before
falling again as the trajectory tends towards pure IPA. The IPA flux is initially near zero
as there is almost no IPA in starting composition, before rising as the residual liquid
becomes steadily richer in IPA.
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Figure 3.17: Component fluxes along trajectory of figure 3.15 for
IPA/ethanol/water; x-axis is dimensionless path length; T¢ = 80°C,
u® = 0.5m/s, d = 0.03m

3.3.5 Ternary Evaporation Maps

Using the algorithm for generation of evaporation maps in table 3.5, evaporation maps
have been computed for 6 example ternary mixtures listed in table 2.1, and are shown
in figures 3.18-3.23. Each of these maps involve evaporation into pure air; the effect of
pre-loading the gas phase with one of the ternary components is considered in section
4.3. Note that the evaporation trajectories in the various maps are computed using the
same model used to compute composition trajectories of experimental data in figures
3.5-3.8. The solvents employed in the following maps are commonly used (apart from
chloroform) in various mixtures, in the pharmaceutical industry (Paudel et al. 2013). A
number of the mixtures exhibit separation boundaries which are the subject of chapter
6.

IPA-ethanol-methanol Figure 3.15 showed a single evaporation trajectory; when a
complete set of trajectories is developed, the map shown in figure 3.18 results, where
the trajectories run from the (unstable) methanol node to the (stable) IPA node; pure
ethanol is a saddle in this case. This represents a relatively simple topology, contain-
ing no pseudo-azeotropes. The corresponding residue curve map in figure 2.2a shows
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qualitatively similar behaviour, with no azeotropes. The pure component nodes have
been annotated with the calculated wet-bulb temperatures from table 3.6. The unsta-
ble methanol node has the lowest Ty g of the components in the mixture (—2.8°C),
while the stable IPA node has the highest (12.6°C), with an intermediate value for
ethanol (8.0°C"). This follows the same pattern as the normal boiling points for these
components (as would be required for the map evaporation map to be qualitatively
similar to the residue curve map for the mixture). In this mixture, and all those that
follow, unstable nodes correspond to locally lowest values of Ty, g, while stable nodes
correspond to locally highest values. All evaporation trajectories in this case (evapo-
ration into pure air) end at pure IPA; in other words, the final (differentially small)
drop of mixture will be pure IPA, regardless of the initial composition. The trajectories
tend to hug the IPA/ethanol edge rather closely when methanol is eliminated from the
mixture, so that the final stage of evaporation/drying will be of an essentially binary
IPA/ethanol mixture. Note that the final composition is not dependent on the initial
composition, as this mixture does not contain any separation boundaries.

Water-ethanol-methanol The water-ethanol-methanol map in figure 3.19 has a sin-
gle binary pseudo-azeotrope on the IPA-water axis. For this mixture, the trajectories
run from the pure methanol node to either the pure ethanol or pure water nodes. The
ethanol-water pseudo-azeotrope is a saddle in this mixture. The wet-bulb tempera-
tures shown on figure 3.19 show how trajectories flow from a low value of Ty to a
high value, e.g. from methanol (—2.8°C) to ethanol (8.0°C"). Just as in the distillation
boundaries that occur in residue-curve maps, there is a separation boundary running
from the pure methanol (unstable) node to the water-ethanol saddle. This boundary
divides the ternary diagram into two regions, one for which all initial compositions ter-
minate at the ethanol node, and one for which all compositions terminate at the water
node. Thus, the final drop of liquid will be pure water in some cases, and pure ethanol
otherwise, depending on the initial composition. Note that the wet-bulb temperature
of the water/ethanol saddle node is intermediate in value to the Ty, g of ethanol and
water, so that one would expect it to be a saddle (Chapter 5 demonstrates numerical
method for determining stability of the various nodes in evaporation maps). Trajec-
tories that initiate on one side of the boundary remain on that side; thus, a relatively
small difference in the initial composition can lead to a large difference in the residual
composition (either pure ethanol or pure water). The corresponding residue curve map
in figure 2.2b shows qualitatively similar behaviour, with a single azeotrope between
water and ethanol.

IPA-water-ethanol The IPA-water-ethanol mixture in figure 3.20 has two pseudo-
azeotropes, one on the IPA-water axis and on on the ethanol-water axis. In this case,
the map consists of trajectories running from the ethanol-water binary (unstable) node,
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to either the pure water or pure IPA node. The wet-bulb temperature of the unstable
ethanol-water node (7.8°C) is the lowest of the fixed points of the mixture; trajectories
between it and the stable IPA node (T g = 20.0°C) pass by the saddles at pure ethanol
(Twp = 15.9°C) and IPA/water (T = 10.7°C), which is consistent in that each of
these saddles has a wet-bulb temperature between those of pure IPA and water. A sepa-
ration boundary runs from the ethanol-water binary pseudo-azeotrope to the IPA-water
pseudo-azeotrope. Thus, the terminal composition of the evaporating mixture will be
pure IPA in some cases and pure water otherwise, depending on the initial composition.
Figure 2.2c shows the equivalent residue curve map, which displays qualitiatively sim-
ilar features - an unstable binary azeotrope between water and ethanol, and a saddle
azeotrope between IPA and water.

Ethanol-MEK-toluene The ethanol-MEK-toluene mixture in figure 3.21 has topol-
ogy similar to the IPA-water-ethanol mixture in terms of number and type of un-
stable/stable/saddle nodes. Trajectories flow from the unstable ethanol/MEK node
(Tw g = 5.6°C) to either the stable ethanol node (T g = 8.0°C) or the stable toluene
node (Tywp = 20.9°C). Pure MEK (T g = 7.9°C) and the ethanol/toluene node (Ty g
= 6.8°C) are saddles in this mixture. As with the IPA-water-ethanol mixture, a sep-
aration boundary runs between the binary pseudo-azeotropes. In the region of low
ethanol concentration, the evaporation trajectories tend to hug the MEK/toluene edge,
so that the residual liquid is essentially a binary MEK/toluene mixture during the final
stages of evaporation. The residue curve map of figure 2.2d displays similar features,
with two binary azeotropes: ethanol/MEK and ethanol/toluene.

Dichloromethane/methanol/ ethyl acetate The topology for DCM/methanol/ethyl
acetate in figure figure 3.22 is similar to those of IPA/ethanol/water and ethanol/MEK/
toluene, one with one unstable node at the DCM-methanol pseudo-azeotrope, and one
saddle at the ethanol/toluene azeotrope. Trajectories run from the DCM/methanol
unstable node (T = —18.1°C) to either the methanol node (Tyyg = —2.8°C) or
the ethyl-acetate node (Tyyp = 4.2°C). Pure DCM (T = —16.7°C) and the ethyl-
acetate/methanol binary pseudo-azeotrope (Tyyp = —4.0°C) are saddles in this mix-
ture. A separation boundary runs between the binary pseudo-azeotropes, separating
the composition space into a region where the terminal composition is pure methanol,
and one where the terminal composition is pure ethyl-acetate.

As with the preceding mixtures, the qualitative features of the corresponding residue
curve map, shown in figure 2.2e, are similar.

Acetone-chloroform-methanol Figure 3.23 shows the evaporation map for acetone/
chloroform/methanol, which has 3 binary pseudo-azeotropes, and a single ternary
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pseudo-azeotrope. Trajectories run from the acetone-methanol stable node (Tyy g =-
9.2°C) to either the acetone-chloroform binary node (T g = —3.6°C), or to the pure
methanol node (Tyy g = —2.8°C"). Similarly, trajectories from the chloroform-methanol
binary node (T = —9.6°C) run to either the acetone-chloroform binary node, or to
pure methanol. In this mixture, pure acetone (T = —9.5°C) and pure methanol
are saddles. The ternary pseudo-azeotrope is also a saddle. Separation boundaries run
from the acetone-methanol binary to the chloroform-methanol binary, and from the
pure methanol node to the acetone chloroform node. The final composition of an evap-
orating mixture will thus either be pure methanol or that of the acetone/chloroform bi-
nary pseudo-azeotrope, depending on the initial liquid composition. Figure 2.2f shows
the equivalent residue curve map which shows qualitatively similar characteristics.

As noted for each of the mixtures above, the topology of the evaporation maps are
similar to those of the corresponding RCMs; the topology is also consistent in the sense
of Guirikov (1958) who showed that for ternary simple distillation the combination of
the singular points of different types satisfies the rule:

2N3 + No + N1 = 253 + Sy + 2 (3.58)

where N3(S3) is the number of ternary nodes (saddles), N2(S2) is the number of bi-
nary nodes (saddles), and N; is the number of pure component nodes (Kiva et al.
2003). This consistency does not hold when the gas phase is loaded with a compo-
nent as section 4.3 demonstrates. The qualitative similarity of residue curve maps and
evaporation maps is not surprising when one considers the fixed points of each type
of map. For residue curve maps the topology in terms of the location of azeotropes is
governed by consideration of vapour-liquid equilibria (VLE) only - see section 2.2. So,
at a given pressure, the location of the azeotropes is dictated by the VLE model only.
For evaporation maps, the topology in terms of pseudo-azeotropes is due to both VLE
and mass transfer considerations in the film at the vapour-liquid interface - see section
3.1. It is the solution of the combination of factors that causes the azeotrope (RCM)
and pseudo-azeotrope (Evaporation Maps) to have different compositions. Computed
values of azeotroeps and pseudo-azeotropes can be compared by examining table 4.2
(for azeotropes) and table 3.6 (for pseudo-azeotropes).
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Figure 3.18: Evaporation map for IPA-ethanol-methanol; closed circles denote
fixed points; open circles denote pre-specified points for trajectories;
arrows indicate direction of composition changes; annotations are
wet-bulb temperatures; T¢ = 20°C, v = 0.5m/s, d = 0.03m
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Figure 3.19: Evaporation map for water-ethanol-methanol; annotations are
wet-bulb temperatures; T¢ = 20°C, v = 0.5m/s, d = 0.03m
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Ethanol IPA

Figure 3.20: Evaporation map for IPA-water-ethanol; annotations are wet-bulb
temperatures; 7¢ = 20°C, u® = 0.5m/s, d = 0.03m

MEK

Toluene 6.8C Ethanol

Figure 3.21: Evaporation map for Ethanol-MEK-Toluene; annotations are wet-bulb
temperatures; 7 = 20°C, u® = 0.5m/s, d = 0.03m
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Methanol
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Figure 3.22: Evaporation map for Dichloromethane/methanol/ethyl acetate;
annotations are wet-bulb temperatures; 7¢ = 20°C, u“ = 0.5m /s,
d =0.03m

Chloroform

L . B B S S B B B

0 0.2 0.4 0.6 o8/ 1
Methanol -9.6 C Acetone

Figure 3.23: Evaporation map for Acetone/chloroform/methanol; annotations are
wet-bulb temperatures; T¢ = 20°C, v = 0.5m/s, d = 0.03m
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3.4 Reduction of Multicomponent Wet-Bulb Model to Single
Component Case

The formulation of the multicomponent wet-bulb model in section 3.1.4 can be reduced
to a more familiar form for a single liquid component in an inert gas (e.g. air-water) as
follows. The multicomponent form of the heat balance in equation 3.44 is implicit in
the multicompoment mass fluxes /V;. When the explicit solution to the Maxwell-Stefan
equations for the film is used, the expressions for the fluxes must be solved together
with the equilibrium expressions for each of the ternary components (equations 3.38,
3.39, 3.40) and the summation of vapour mole-fractions in 3.42. However, for a single
liquid component A and pure air as the gas phase, equation 3.44 (recalling that g7 is
zero), reduces to:

qv =BT = T') = Na {HS - B} = NaAHL"-
NAMsCps(TC —T1) (3.59)

We may neglect the last term above as it is small relative to the latent heat term,
allowing an expression for the wet-bulb temperature 7' to be found. Expanding =,
and solving for N4 gives

LG o

Na= AHvap pr(@) -1

} (1% — 1) (3.60)

The mass-transfer and heat-transfer factors ¢ and ¢% are given by (Taylor & Krisha

1993): N
4

kg

N
and ng = ’ng A

where k4 is a binary mass transfer coefficient, so that eliminating N 4 gives:

R O
Cpaka

(3.61)

For the film theory of mass transfer (Bird et al. 2002) we can write ¢ and ¢g as

I G G I
Ya —Ya G Cpa(T™ —T")
=Ilnl1+24 24 d =ln|l4+ ————F7—
¢ n + 1 _ yﬁ ‘| an ¢H n + AHZap
so that , G . G ;
Ya —Ya h Cpa(T” —T")
In |1 = In|l4+ ———5—= 3.62
. [ + 1-— yg ] Cpaka o L AHXAP ( )

which is the equation for wet-bulb temperature of a pure component (corrected for
mass transfer rate) derived in Bird et al. (2002)!. Solving for T gives the wet-bulb

IRef. equation 22.8-34 of Bird et al. (2002)
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Figure 3.24: Comparison of multicomponent algorithm (solid lines) with
prediction from equation 3.63 (dashed lines); gas phase is pure air,
u® = 0.5m/s, d = 0.03m

temperature for pure component A:

Cpaka
g1 AHZY | CpaTC 1wk — o ( he ) 1 (3.63)
T Opa | AET TG ’ '

This equation is actually implicit in 77 due to the dependence of 3/, on T via the
partial pressure at the wet-bulb temperature: y, = pa(T?)/P. Equation 3.63 (or
equation 3.62) may be solved numerically for 7/ when yg and TC are given (using
fsolve method in Matlab (Matlab 2010)). The pure-component wet-bulb tempera-
tures, obtained from numerical solution to equation 3.63, can be compared with the
calculated values from the full multicomponent formulation. Figure 3.24 shows such
a comparison for water, IPA and ethanol in pure air, as a function of the dry-bulb (air)
temperature. The values obtained by both methods are in close agreement, considering
that the method of equation 3.63 ignores sensible heat terms.
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3.5 Chapter Summary and Conclusions

A scheme for computation of evaporation maps for non-ideal ternary liquid mixtures
was developed, for conditions of gas-phase limited heat and mass-transfer. These maps
are analogous to residue curve maps employed in the analysis of distillation processes,
but include non-equilibrium effects caused by diffusion in the gas film at the vapour-
liquid interface. In order to construct the maps, it is firstly necessary to (1) determine
the location of the pseudo-azeotropes that are fixed points of the maps, and (2) deter-
mine the wet-bulb temperature of mixtures in a neighbourhood of the unstable nodes
in the mixture. Related algorithms were developed for calculating (1) and (2) using a
Newton’s-method approach with analytic forms for the Jacobian matrices. A multicom-
ponent Maxwell-Stefan mass transfer model has been used throughout. The use of the
same basis for the calculation of fluxes, wet-bulb temperature and pseudo-azeotropes
ensures that there is consistency between the pseudo-azeotrope locations and the com-
puted evaporation trajectories.

The calculated evaporation trajectories are at the equivalent mixture wet-bulb temper-
ature at every point on the map and therefore follow a wet-bulb temperature surface
for a given set of conditions; it is the projection of the compositions of the trajecto-
ries onto the ternary diagram that forms the evaporation map. For a given geometry
and evaporation conditions (y“, T, u©), it is possible in principle to determine the
composition of the residual solvent composition for any particular initial composition
(provided the assumption of gas-phase limited mass transfer applies).

This analysis of this chapter has used a planar geometry as a basis. The evaporation
maps track composition changes that occur in ternary mixtures in such situations as
horizontal liquid films, or trays of solvent-wet material in a tray dryer, where the resis-
tance to heat and mass transfer lies in the gas phase, and where the gas concentration
does not vary significantly with length in the direction of gas flow. In the next several
chapters, certain features of evaporation maps are developed and analysed.
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Chapter 4

Bifurcations in Evaporation Maps

4.1 Introduction

In this chapter there are two areas of focus related to the topology of evaporation maps.
Firstly, a method to calculate all pseudo-azeotropes in a ternary mixture is addressed
and secondly, bifurcations which occur in evaporation maps with varying concentra-
tions in the gas phase are studied. From the viewpoint of practical application of a
drying or evaporation process, gas composition, temperature and velocity are normally
available as design variables. We focus in this work on the effect of gas composition
only in the bifurcation analysis of the maps. Where the gas is pre-loaded with a com-
ponent of the ternary mixture, bifurcations are shown to occur in the maps and the
topology of the map changes, with the appearance and disappearance of various nodes
and saddles. By appropriate selection of the gas pre-loading concentration, the compo-
sition of a pseudo-azeotrope (where it exists) can be manipulated, up to a point where
the pseudo-azeotrope disappears, leaving a pure component as the residue.

In chapter 3 a Newton-based method for the computation of pseudo-azeotropes under
specified conditions of gas-phase composition, velocity and temperature was devel-
oped. For pure gas phase, the Newton method described therein (see table 3.2) may
be used to determine the pseudo-azeotrope composition (and wet-bulb temperature),
provided a reasonable initial estimate of the variables is provided. The location of all
pseudo-azeotropes for a given mixture is more problematic, since the Newton-method
approach will only converge to a single (local) solution if one exists; consequently,
it may converge to a pure component, rather than the actual required solution if the
initial estimate is not appropriate, and will not identify multiple solutions.

For the analogous problem of thermodyamic azeotropes, the computation of all such
azeotropes is a surprisingly difficult task. Fidkowski et al. (1993a) developed a method
based on a simple homotopy process to calculate all azeotropes in a homogeneous
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mixture (single liquid phase); this method can also locate multiple solutions, although
cases of multiple azeotropy are fortunately rare (Gaw & Swinton 1966). The method
of Fidkowski et al. was extended to heterogeneous mixtures by Tolsma & Barton
(2000a,b). Refer to section 2.2 for introductory material on azeotropy. In section 4.2.3
a method to track the various azeotropes in a ternary mixture is presented based on a
separate tracking of each possible azeotrope (excluding multiple azeotropy). In section
4.2.4 a homotopy method is applied to track the various pseudo-azeotropes for ternary
mixtures, under specified conditions of gas velocity, temperature and composition.

The maps generated were in chapter 3 were for a pure gas phase (pure air). In practice,
the gas phase in a real evaporation or drying process will often be partially laden (pre-
loaded) with one or more components of the liquid mixture, so it is of interest to know
how the vapour phase concentration affects the topology of evaporation maps. Luna
& Martinez (1998, 1999) analysed evaporation of batch and continuous processes and
demonstrated by simulation how changes in the gas composition affected the location
and existence of pseudo-azeotropes in ternary mixtures. Motivated by that work, in
section 4.3 an approach is developed for quantifying the changes in topology of the
evaporation maps as the gas phase concentration is varied. The acetone-chloroform-
methanol mixture is used as an example, as it has the most complex topology of the
ternary mixtures considered so far. The loading of the gas phase with each of the three
components in the mixture is considered separately. Ultimately, there is a qualitative
change in the evaporation map known as a bifurcation as the concentration parame-
ter increases. In section 4.3 a numerical continuation method is developed to show
systematically how the topology of evaporation maps is affected by gas composition.
Bifurcation diagrams for the various pseudo-azeotropes show how the topology of the
maps changes with pre-loading of the gas phase.

Finally, in section 4.4 an analysis of interaction effects due to multicomponent mass
transfer in the gas phase is presented. In particular, interaction effects due to the phase

pre-loading is considered.

4.2 Azeotropes and Pseudo-Azeotropes via Homotopy

In this section the homotopy method for computation of azeotropes is presented, and
a method for location of pseudo-azeotropes is developed by analogy. Firstly, in section
4.2.1, a method for computation of azeotropes using a Newton-method approach is
discussed; this uses an analytic form of the Jacobian of the governing equations which
is an approach that, to the author’s knowledge, has not been previously published.
Computed results are compared with azeotropic compositions of a number of mixtures
from AspenPlus. This approach has parallels with the Newton-method approach for
location of pseudo-azeotropes from section 3.2.3.
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4.2.1 Computation of Azeotropes By Newton’s Method
The definition of the condition for an azeotrope to exist is given by:
fl®)=y(x) -z =0 (4.1)

where y*(x) represents the vapour in thermodynamic equilibrium with liquid of com-
position x. For an n-component mixture there are n — 1 independent compositions
(mole fractions) in each phase with the additional constraints that

Z.I‘Z' =1 (4.23)
i=1
Syi=1 (4.2b)
i=1

30 i=1,2,---,n (4.2¢)

The elements of the equilibrium vapour composition y* can be expressed in terms of

the liquid composition by
o Zivi(@, T)pi
vi=——p

where the non-ideality in the liquid phase is captured by the activity coefficient ~;,

(4.3)

which in this work is described by the NRTL equation (Prausnitz et al. 1986). Equations
4.1-4.3 is a system of 2c¢+1 equations in 2¢+1 unknowns: z7---xp, y1, -, Y, and
temperature 7'. This reduces to a problem of ¢ + 1 unknowns in ¢ + 1 variables (z =
x1---xn,T) by relating the yf and x; using equation 4.3 directly, so that for a ternary
mixture an equivalent statement to the azeotrope condition of equation 2.25 is

Y1P1

il P -1
Y2P2
I
F(z) = L (e =0 (4.4)
P
3
Z T — 1
L =1 J
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The Jacobian for the set of equations 4.4 is

OF;
J(x) = 1 =
89@ P
L i Nl Nl . om
P Y9 ''P oy ''P Oz P oT
o P20 P2 ()L, 01 o P20 . p20p
>P oy P * Oy > P dus P oT
2 P30 2,30 P?»(Hx@%)_l 3 0ps
5P Oz *P 9z, P O *Por
1 1 1 0
(4.5)

To calculate the terms in equation 4.5 involving composition derivatives 9vi/oz;, the
form derived by Taylor & Kooijman (1991) for ?Invi/az; is used, summarised in ap-
pendix B.2. This is then converted to the form required using the following relation-
ship:

0vi Olnvy;

89@ o 8:1,‘]'

(4.6)

The derivatives of vapour pressure with respect to temperature in the Jacobian of equa-
tion 4.5 are found from the Antoine equation given by equation 3.52 and the fact that

Opi Olnp;

or ~Piar

4.7)

The method for the computation of the azeotropes is summarised in table 4.1. The
solution of the linearised set of equations in step 4 is accomplished using lower/upper
(LU) decomposition by the "backslash" operator in Matlab (Matlab 2010).

Table 4.2 shows computed values of the azeotropes that appear in figures 2.2b-2.2f. The
table also shows comparison with values generated using AspenPlus (AspenTech 2014),
indicating reasonably good agreement between both sets of values. The vapour pres-
sures used in these calculations are based on correlation from Prausnitz et al. (1986)
(see appendix B.3), whereas AspenPlus uses its own internal database; consequently,
some disparity would not be unexpected.

4.2.2 Overview of Homotopy Methods

In chapter 3 a method for computation of binary and ternary pseudo-azeotropes was
outlined. In essence, the solution scheme (see table 3.3) solves for the roots of a sys-
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Table 4.1: Calculation of azeotropes using Newton’s method (with ana-
lytic Jacobian)

Given: operating pressure P

1. Initial estimate of compositions « and temperature 7’;
T=x1 " Tp, 1

2. Evaluate the residuals F'(x) = 0 (equation 4.4)

3. Compute the Jacobian matrix J (equation 4.5) using analytic
form of 0v;/0z; (equation 4.6) and appendix B.2

4. Compute 6% = J\F

Update the estimates of Z: {ENEW} =Z+ 0%

6. If err < tolerance, stop, else return to step 1

o

tem of coupled non-linear (algebraic) equations (for a ternary system) using Newton’s
method with an analytic Jacobian. In section 4.2.1, a method for computation of binary
and ternary azeotropes was presented, again using a Newton-method approach. How-
ever, Newton’s (or Newton-Raphson) method suffers from certain well-known short-
comings (Kuno & Seader 1988):

* the starting point must be in the vicinity of a root (i.e. the method is only locally
convergent)

* Newton’s method can locate (at best) a single root even though multiple solutions
may exist

While certain other approaches, such as the global terrain method of Lucia & Feng
(2002) are able to avoid these deficiencies, conventional root-finders cannot be used to
robustly locate all of the solutions to equation 4.4 for a multicomponent mixture since
in general it is a nonlinear constrained problem with multiple solutions (Fidkowski
et al. 1993b). A homotopy procedure is an approach to solving a "difficult" problem
D(x) = 0 by firstly solving an "easy" problem E(x) = 0 that has a similar structure
and the same number of variables (Bausa & Marquardt 2000). The homotopy function
is defined by

H(x,\) =AD(x)+ (1 — \)E(x) (4.8)

which involves both the easy and hard problems and the homotopy parameter A. The
solution of H (x) for 0 < A < 1 is found by solving the "easy" problem H(x, A = 0) =
E(z) = 0 and then gradually moved to the "difficult" problem H (z, A =1) = D(x) =0
by increasing value of the parameter A from zero to 1.

In the following sections, a homotopy method is outlined that tracks all azeotropes in
a given mixture starting from a pure component (at A\ = 0) to the actual value (at
A = 1). This approach is based on the method of Fidkowski et al. (1993a). A similar
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Azeotropes MMH_MW”MMMD WMWMW“MQH Calculated T'(°C) AspenPlus T(°C') Type Figure
(1) Water 0.0837 0.0864

(2) Ethanol 0.9163 0.9136 78.16 78.22 S,UN 2.2b, 2.2¢
(1) IPA 0.6712 0.6728

(3) Water 0.3288 0.3227 80.21 80.18 S 2.2¢
(1) Ethanol 0.4908 0.4794

(3) MEK 0.5092 0.5206 74.10 73.96 UN 994
(1) Ethanol 0.7993 0.7985 )
(3) Toluene 0.2007 0.2015 76.21 76.27 S

(1) bDCM 0.8641 0.8613

(2) Methanol 0.1359 0.1387 37.73 37.60 UN 9%
(2) Methanol 0.7008 0.7035 62.16 62.25 S )
(3) Ethyl-acetate 0.2992 0.2965 ’ )

(1) Acetone 0.3513 0.3534

(2) Chloroform 0.6487 0.6466 65.08 65.05 SN

(2) Chloroform 0.6560 0.6575

(3) Methanol 0.3440 0.3425 53.77 >3.74 UN 5 of
(3) Methanol 0.2220 0.2225 UN )
(1) Acetone 0.7780 0.7775 55.20 55.24

(1) Acetone 0.3249 0.3272

(2) Chloroform 0.2333 0.2322 57.30 57.31 S

(3) Methanol 0.4418 0.4406

Table 4.2: Azeotrope computation by Newton’s method using analytic Jacobian, and comparison with values generated
by AspenPlus; compositions in mole-fractions; P = 1.013bar; SN=stable node, UN=unstable node, S=saddle
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4.2 Azeotropes and Pseudo-Azeotropes via Homotopy

approach is then used in section 4.2.4 to compute the pseudo-azeotropes of a mixture,
given known gas-phase conditions.

4.2.3 Computation of Azeotropes by Homotopy Method

In this section a simple homotopy method is given to track the azeotropes in a given
mixture. For this problem the component terms in E(x) and D(x) are given by
TiPi LiPi7i

so that the homotopy is given by

LiPi

TiPi%i
Hi(zi,\) = A
(:1; ) P

(11— ) (4.10)

The expression for F;(x;) above is simply Raoult’s law, which applies to ideal mix-
tures. By gradually increasing A\ from zero to 1, the effect of non-ideality in the liquid
mixture is gradually introduced. Figure 4.1 shows the effect of the homotopy param-
eter on two binary mixtures. The acetone-chloroform mixture in figure 4.1a shows a
maximum-boiling azeotrope, while the chloroform-methanol mixture in figure 4.1b has
a minimum-boiling azeotrope. The degree of non-ideality increases as A\ — 1, as evi-
denced by the shape of the bubble-point curve which deviates more significantly from
the near-straight line behaviour at A = 0 (Raoult’s law). At some value of ), the binary
azeotrope "appears", indicated by an intersection between the y —x curve and the y = =
line; the binary azeotrope is a "bifurcation" of equation 4.10. The homotopy map of
equation 4.10 can be expressed in the following form:

(1= A) + M) L;ﬁ’l 1) -y
(1= \) + Ay2) Lﬁ” 1) — 2y
H(z) = aps -0 (4.11)
(L=N+Ma) (5 —1) —=
i T — 1
L =1 _
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The Jacobian of the homotopy function can be written as (Tolsma & Barton 2000a):

o1 —Ar1 K11 —Ar1Kqa —Ax1 K73 —x11
—Awo Ko  as—AraKa  —AxaKo3 —T2/32
4.12)
—Ar3K31 —Ar3K32  az—AraKog —x3/33
1 1 1 0
where
aizl—()\Ki—i—(l—)\))%
0K, 1-dp;
fi=A or P dr
K; = %‘%

K (M>
N Oz, 2:(j),T,P

and where the subscript z;(j) denotes that all mole fractions are held constant except
x;. In this work ~; is assumed not to be a function of temperature, so that j; is given

by
_\pidpi | 1= Adp;
BZ_APdT+ P 4T

where the derivative of vapour pressure with respect to temperature is computed using

equation 4.7. The K;; when expanded are

_pidyi
Pdl‘j

Ky

in which equation 4.6 is used for the derivative term, with the composition derivatives
9In~i/ge; from appendix B.2.

The homotopy procedure adopted here is to gradually increase the value of A in in-
crements from 0 to 1, and to track the solutions to equation 4.11 for each possible
azeotrope (namely three binary and a ternary azeotrope). The procedure is summa-
rized in table 4.3.

Figure 4.2 shows the computed branches for the azeotropes of the acetone-chloroform-
methanol mixture. For the binary pairs (AC,AM,CM) azeotropes are "born" at a certain
value of )\ from a solution on the branch corresponding to a pure component. The

Evaporation Maps for 88
Ternary Non-Ideal Liquid Mixtures



4.2 Azeotropes and Pseudo-Azeotropes via Homotopy

1 v b b by by 66 v e b by by
] I | a=1 I
i =1 L 1 L
0.8 N\ - 64 | -
- w0 [ ] [
S 0.6 - O 62 -
o J L = J L
= o
@ E + =] . F
o =2
€ -5 »
5 B - Q. 4 L
o B | € .5 |
=3 0.4 g 60
g J L J L
J L J 2=0 L
0.2 ~ 58 — -
0 P T R
0 02 04 06 08 1 0 02 04 06 08 1
Chloroform Acetone Chloroform Acetone
(a) Acetone-chloroform mixture
1 1111 1111 1111 1111 1111 66 1111 1111 1111 1111 1111
] [ 64 -
0.8 - 1 F
§ L 62 - L
5 1 A=1 P~ ] i
B 0.6 &4 & -
= : o 60 C
Q@ B S =] i L
[e} = -
£ 10 - i
5 i L Q. 58 | [
5] B | £ ] i
804 K i
XS J + i L
. L 56 -
0.2- - ] i
| I 54 -
0 52~
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Methanol Chloroform Methanol Chloroform

(b) Chloroform-methanol mixture
Figure 4.1: Hypothetical y — = composition and bubble-point at various values of
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chloroform-methanol (CM) azeotrope appears at A ~ 0.05, ending with a composition
of xconioro = 0.66, xpe0m = 0.34 at A = 1. For acetone-chloroform (AC) the azeotrope
first appears at A\ ~ 0.25, ending with an azeotropic composition of z 4. = 0.35,
Tonioro = 0.65 at A = 1. Figure 4.2 also shows how the computed ternary azeotrope
forms from a branch on the CM-binary branch at A ~ 0.21, ending with x 4., = 0.33,
Tohioro = 0.23, xpreom = 0.44 at A = 1. These values at A = 1 compare well with the
azeotropic compositions computed directly in table 4.2. The azeotrope temperatures
for each branch are also shown in figure 4.2; the temperatures at A = 1 correspond to
those computed directly in table 4.2.

Table 4.3: Homotopy method for tracking location of azeotropes in
ternary mixture

1. Initialise homotopy parameter A = 0

Initialize z; for the AC (acetone-chloroform, 1-2) branch,
initialise with = [0.5, 0.5, 0.0, 60.0]

Compute the values of H(Z) (equation 4.11)

Compute the Jacobian matrix J 5 (Z) (equation 4.12)
Compute 6z = J gy (Z)\H (Z)

Update the estimates of Z: {:EN EW} =Z+ 0%

If err < tolerance, stop, else return to step 3

Increment A\ and repeat from step 2 using updated z
Repeat for CM, AM and ACM (ternary) branches, using
appropriate initialisation

o

e A A

4.2.4 Computation of Pseudo-Azeotropes by Homotopy Method

In this section, a similar homotopy approach to that adopted in the previous section
is combined with the algorithm for pseudo-azeotrope computation developed in sec-
tion 3.1.5. This allows the branches of the various pseudo-azeotropes to be tracked
individually as the homotopy parameter A is varied from 0 to 1. This homotopy proce-
dure addresses the effect of increasing liquid-phase non-ideality on the location of the
pseudo-azeotropes; it does not address mass-transfer effects in the gas phase directly.

The effects of the homotopy procedure on the location of the pseudo-azeotropes can
be seen in the selectivity and wet-bulb temperature plots in figure 4.3. The acetone-
chloroform mixture (4.3a) has a maximum wet-bulb temperature, while the chloro-
form/methanol mixture (4.3b) has a minimum wet-bulb temperature; the correspond-
ing mixtures have maximum-boiling and minimum boiling azeotropes respectively. The
degree of non-ideality incorporated in the problem increases as A — 1; the shape
of the wet-bulb temperature curve deviates more strongly from the near straight-line
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Figure 4.2: Location of azeotropes in acetone(A)-chloroform(C)-methanol(M) mixture
by homotopy method; solid=acetone, dotted=chloroform, dashed=
methanol

behaviour at A = 0. The pseudo-azeotropic compositions correspond to selectivities
S; = 0 (see equation 3.45 for definition). Note that the pseudo-azeotropes do not in
general correspond to minima or maxima in the wet-bulb temperature surface, unlike
conventional azeotropes which do correspond to extrema in bubble-point temperature
(see section 3.3.3 for discussion).

The pseudo-azeotropy homotopy map for the ternary mixture (which is analogous to
the azeotropy map of equation 4.11) can be summarised by:
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where

a_szZ — (Nla N27 N3a y{a yéa yé—)yz{)Tval)nyx?)) (414)

is the array of variables to be solved. The formula for the F} - - - F}; are derived in sec-
tion 3.1.5. Similar forms apply for each of the binary pairs in the mixture, as described
in section 3.1.5. The Jacobian for this set of equations is similar in form to that shown
in table 3.4; the key difference being the definition of K; in terms of the homotopy
parameter A:

K; = A%% +(1- )\)% (4.15)

Table 4.4 summarises the procedure for pseudo-azeotrope location by homotopy.

Figure 4.4 shows the computed branches for the pseudo-azeotropes of the acetone-
chloroform-methanol mixture, which has evident similarities to that for the azeotropes
of figure 4.2. As with conventional azeotropes, the pseudo-azeotropes of the binary
pairs (AC,AM,CM) are "born" at a certain value of A\ from a solution on the branch
corresponding to a pure component. The chloroform-methanol (CM) pseudo-azeotrope
appears at A ~ 0.05, ending with a composition of zcpioro = 0.71, zrpeon = 0.29 at
A = 1. For acetone-chloroform (AC) the pseudo-azeotrope first appears at A ~ 0.40,
ending with a pseudo-azeotropic composition of x .. = 0.30, xcpioro = 0.70 at A = 1.
For acetone-methanol (AM) the pseudo-azeotrope first appears at A =~ 0.40, with a
pseudo-azeotropic composition of 4. = 0.94, Tchioro = 0.06 at A = 1.

Figure 4.4 also shows how the computed ternary pseudo-azeotrope forms from a branch
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Table 4.4: Homotopy method for location of pseudo-azeotropes

=

. Initialise homotopy parameter A\ = 0

2. Initialze Z,47; for the AC (acetone-chloroform, 1-2) branch,
initialise with 1 = 0.5, 25 = 0.5, plus suitable values for other
terms.

3. Calculate homotopy map H (Z) (equation 4.13);

Compute the Jacobian matrix J gp4z from table 3.4, using

modified definition of K; from equation 4.15

Compute 0Zpaz = J paz\H

»

Update the estimates of Z,4z: [iéVAEZW} =Zpaz + 0Tpaz
If err < tolerance, stop, else return to step 3

Increment A\ and repeat from step 2 using updated &
Repeat for CM, AM and ACM (ternary) branches, using
appropriate initialisation

O RN oG

on the CM-binary A\ = 0.21, ending with z4.. = 0.33, Zcpioro = 0.23, Zpreon = 0.44
at A = 1. These values at A = 1 compare well with the pseudo-azeotropic composi-
tions computed directly in table 3.6. The pseudo-azeotrope (wet-bulb) temperatures
for each branch are also shown in figure 4.4; the temperatures at A = 1 correspond to
those computed directly in table 3.6.

4.3 Bifurcations in Evaporation Maps

In this section the background to bifurcation analysis is presented, and some applica-
tions are reviewed. An analysis of the bifurcations that occur in evaporation maps with
varying gas-phase concentration is then presented.

4.3.1 Overview of Bifurcations and Numerical Continuation

The study of bifurcation theory is aimed at mapping different regions of parameter
space that have qualitatively different behaviour. The existence of multiple steady
states in CSTRs (continuous stirred tank reactors) or in distillation columns are ex-
amples of such nonlinear behaviour in real systems (Bekiaris et al. 1995, Kohout et al.
2002). Nonlinear phenomena such as those just described can often be usefully repre-
sented (Seydel 2010) as a system of nonlinear ODEs (ordinary differential equations)

dy _

praP A2 (4.16)
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Figure 4.3: Hypothetical selectivity and wet-bulb temperature at various values of
homotopy parameter \ for binary mixtures; filled circles denote
hypothetical pseudo-azeotropic compositions; T = 40°C, u® = 0.5m/s
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Figure 4.4: Location of pseudo-azeotropes in acetone(A)-chloroform(C)-methanol (M)
mixture by homotopy method

or, as solutions to a system of nonlinear algebraic equations.
0= f(y,\) (4.17)

for a set of states y, and parameter \. For some nonlinear processes, the qualitative
structure of the flow ! can change as the parameter ) is varied. These qualitative
changes in the flow are called bifurcations, and the parameter values at which the
changes occur are called bifurcation points or branch points (Strogatz 1994). More
strictly, a bifurcation point (with respect to \) is a solution (y,, \o) of equation 4.16 or
4.17 where the number of solutions changes when ) passes \q (Seydel 2010). Several
types of bifurcation are possible, depending on the physics of the system (Strogatz
1994); in this work the saddle-node bifurcation is of interest. Figure 4.5 shows a proto-
typical example given by the first-order function

%:FH;& (4.18)
As the parameter ) is varied, two fixed points move towards each other, collide and

mutually annihilate. Equation 4.18 represents a vector field; the velocity vector # is
sketched on the horizontal axis in figure 4.5; arrows point right when # > 0 and

!Loosely speaking the flow is the set of solutions to 4.16 or 4.17 (Hale & Kocak 1991)
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_Zx , X | X
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Figure 4.5: Saddle-node bifurcation (Strogatz 1994)

left when & < 0. The filled circle denotes a stable node while the open circle is an
unstable node. When )\ < 0 there are two fixed points, one stable and one unstable.
As )\ reaches zero from below the solution curve moves up and the two fixed points
approach each other. When A = 0 a half-stable fixed point exists, while at A > 0
the fixed points have disappeared. Section 4.3.2 demonstrates the analogous type of
saddle-node bifurcations that occur in evaporation maps as the gas-phase concentration
is varied.

The fundamentals and mathematical background of numerical continuation methods
are described in detail by Govaerts (2000), Seydel (2010), and Kuznetsov (1998).
Many of the analyses presented in the literature are developed using bifurcation soft-
ware such as AUTO (Doedel et al. 1997), and MATCONT (Dhooge et al. 2003). Bekiaris
et al. (1993, 1995) investigated multiple steady states in numerical models of homoge-
neous and heterogeneous azeotropic distillation using the AUTO package, with the dis-
tillate flow rate as a bifurcation parameter. Experimental evidence for multiple steady
states was subsequently provided for the case of homogeneous azeotropic distillation by
Guttinger et al. (1997) and for heterogeneous azeotropic distillation by Muller & Mar-
quardt (1997). Knapp & Doherty (1994) analysed bifurcations in extractive distillation
processes with reflux ratio and entrainer:feed ratio as bifurcation parameters using the
AUTO package; they found maximum reflux ratios and minumum entrainer:feed ratios
beyond which separation via extractive distillation was not feasible. Garhyan et al.
(2003) explored the oscillatory behaviour of an ethanol fermentor using AUTO, while
Zavala-Tejeda et al. (2006) used MATCONT to study a continuous polyurethane reac-
tor, focusing on impact of conventional feed-back control, and on disturbance variables
such as cooling water flow. Other examples include that of Kohout et al. (2002) who
developed a fortran-based tool (CONT) for bifurcation analysis of chemical engineering
problems and demonstrated examples for stirred and tubular reactors.

Software for bifurcation analysis has also been coupled to commercial flowsheeting
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software (Chokshi 2006, Ramzan et al. 2010). Vadapalli & Seader (2001) presented a
general framework for computation of bifurcation diagrams using Aspen Plus (Aspen-
Tech 2014), and demonstrated examples for an adiabatic CSTR, as well as azeotropic
and reactive distillation columns. Restrepo et al. (2014) developed a method to per-
form bifurcation and eigenvalue analysis using dynamic models generated using As-
pen Dynamics and Aspen Custom Modeler (AspenTech 2014). Other researchers have
developed customised software packges to directly incorporate bifurcation-tracking ca-
pabilities in a dynamic simulation environment. Mangold et al. (2000) developed the
DIVA flowsheeting software package and presented examples of a circulation-loop re-
actor for abatement of VOC (volatile organic compounds), and a reactive distillation
process for production of fuel ethers. Radichkov et al. (2006) used the DIVA package
for a numerical study or nonlinear oscillations in a continuous fluidized bed spray gran-
ulator, using a simple population-balance model. The book by Strogatz (1994) gives an
introductory exposition of nonlinear dynamics (including bifurcations). Hirsch et al.
(2004) offer a more technical but accessible approach, while the the texts of Wiggins
(1990), Guckenheimer & Holmes (1985) and Hale & Kocak (1991) provide a more
advanced treatment.

In this section, the focus is on bifurcations of the evaporation maps. The governing
equations are the discrepancy functions F; — Fy; of chapter 3. One can attempt to
track the branches of fixed points by stating the problem analagous to the system of
equations 4.17 as

Fi(z,y9) =0 (4.19)

where T is vector of variables, F is the vector of the discrepancy functions F; — Fiy,
and y¢ (bulk gas phase concentration of component i) acts as the continuation (or
bifurcation) parameter. A naive approach would be to attempt to simply follow the
branch by gradually increasing the value of 3§, using the most recently calculated value
of T as an initial guess for a new point on the branch. However, this approach fails when
the Jacobian of F' becomes singular which happens at a limit or turning point (Seydel
2010). In addition, as the limit point is approached, the steps in ¢ must be modified
to properly track the branch. To address this problem, the path of the branches can be
followed numerically by using a numerical continuation procedure (Kuznetsov 1998).
The continuation process is initialized by locating the pseudo-azeotrope composition
at zero gas pre-loading (y& = 0, for i = 1,2, 3) using the algorithm of table 3.2. The
analytic Jacobian used in the continuation method is given in table 3.4.

In this work the CL-Matcont toolbox (Govaerts 2011) is used to track the branches
of the fixed points of equation 4.19. This involves using a Moore-Penrose adaptation
of the "pseudo arclength" continuation method (Dhooge et al. 2003, Seydel 2010). A
convergence-dependent step-size control to negotiate limit points. Such bifurcations

caused by varying a single parameter are called codimension-one.
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4.3.2 Bifurcation Analysis of Evaporation Maps

To demonstrate the saddle-node bifurcations that may occur, the ternary acetone/ chlo-
roform/methanol mixture has been selected for study; this is the most complex of the
mixtures originally selected in table 2.1, and is therefore likely to yield the most inter-
esting behaviour.

This section focuses only on bifurcations due to gas-phase pre-loading. As the concen-
tration difference between the bulk gas and the interface provides the driving force
for mass transfer, gas-phase pre-loading has a pronounced influence on the dynam-
ics of the evaporative process (Luna & Martinez 1999). Other bifurcation parameters

G, However, it is not

could be used, such as gas-phase temperature 7 or velocity u
expected that variations in gas velocity or temperature would lead to bifurcations in
evaporation maps as changes in gas velocity and temperature affect each component
in a broadly similar way via their effect on Nusselt and Schmidt numbers; these di-
mensionless numbers in turn lead to heat transfer coefficient and binary mass transfer
coefficients respectively (see equations 3.19 and 3.36). There may be a possible tem-
perature effect if temperature variations were to affect binary gas diffusion coefficients
for the various components to differing extents, but this has not been explored in this

work.

Bifurcation diagrams for each of the 3 binary pseudo-azeotropes in the acetone/ chlo-
roform/methanol mixture are shown in figure 4.6. For each binary pair, the locus of
the pseudo-azeotrope (fixed point) may be tracked using the gas-phase concentration
of each of the components in the pair as a bifurcation parameter as discussed below.

Acetone/chloroform pseudo-azeotrope:

Figure 4.6all shows how the acetone- chloroform pseudo-azeotrope composition
tends towards pure acetone as the loading of acetone in the gas phase increases,
and disappears when y5..;,,. > 0.085. In other words, increasing the composition
of acetone in the vapour phase causes the composition of the pseudo-azeotrope in
liquid phase to also increase in acetone content. This is intuitively correct in that the
driving force for evaporation of acetone declines as the difference in concentration
between liquid and gas phases diminishes, whereas the driving forces for evapora-
tion of chloroform and methanol are less affected (in fact, for a non-multicomponent
mass transfer model, they would be completely unaffected). The liquid phase there-
fore becomes enriched in acetone as the tendency for acetone to evaporate is re-
duced, relative to that of chloroform and methanol. Qualitatively similar behaviour
of the acetone-chloroform mixture was observed by Luna & Martinez (1999) in a
study of isothermal batch evaporation. The arrowed lines on figure 4.6(a)-(c) in-
dicate qualitatively the direction of the vector field of liquid concentration which is

Evaporation Maps for 98
Ternary Non-Ideal Liquid Mixtures



4.3 Bifurcations in Evaporation Maps

directed towards the stable branch and away from the unstable.

The behaviour of the acetone-chloforoform pseudo-azeotrope can also be analyzed
in terms of evaporative fluxes of acetone and chloroform as shown in figure 4.7.
As the acetone pre-loading increases, the normalized flux of acetone increases to
1.0, while that of chloroform decreases to zero as figure 4.7all indicates. This is
evidence of the enrichment of the liquid phase with acetone due to decreasing flux
of chloroform. Note however that the selectivity of each component remains at
zero at each point on the curves of figure 4.7 (as required by definition of pseudo-
azeotrope, see section 3.1.5). The normalized fluxes have the same numerical values
as the pseudo-azeotrope composition by virtue of the definition of selectivity (from
equation 3.45):

As the selctivity S; is by definition zero along the pseudo-azeotrope branches, the ra-
tio of fluxes therfore equals the liquid (pseudo-azeotrope) composition. In a similar
way, the pseudo-azeotrope composition tends towards pure chloroform as the load-
ing of chloroform increases (part I of figure), and disappears when y&,,,.. form >
0.075 approximately. In this case, the driving force for chloroform evaporation de-
clines as the gas phase pre-loading of chloroform increases, while the driving forces
for acetone and methanol evaporation are largely unaffected (or completely unaf-
fected in the case of a non-multicomponent mass transfer model). As the chloroform
pre-loading increases, the chloroform normalized flux increases to 1.0, while that of
acetone declines to zero as shown in figure 4.7al; this is caused by the relative de-
cline in chloroform flux relative to acetone, due to lower concentration difference
between liquid and gas phase for chloroform.

Beyond ¢.jon. > 0.085 (for acetone loading), or y&,;0.0r0rm > 0-075 (for chlo-
roform loading) the pseudo-azeotrope no longer exists; the effect this has on the
evaporation maps is shown in figures 4.9 and 4.10 and discussed in section 4.3.3.

Acetone/methanol pseudo-azeotrope:

For the acetone-methanol binary, figure 4.6b shows the stable (solid line) and unsta-
ble (dotted line) branches of the acetone-methanol pair. As the acetone gas concen-
tration increases above zero (part II) of figure), a stable branch originates at pure
methanol. Ultimately, the branches coalesce at the limit point (LP) at approximately
YG cione = 0.023. This coalescence and disappearance of two fixed points constitutes
what is termed a saddle-node bifurcation, although in the binary case it involves
branches of two nodes, one stable, and one unstable. Increasing the acetone con-
tent in the vapour phase therefore pushes the location of the 4,.,.,,. = 0 pseudo-
azeotrope to a more acetone-lean composition (points 1B, 2B etc.) as y§..;,n. iD-
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creases, while also giving rise to an additional (unstable) pseudo-azeotrope at pure
methanol that becomes richer in acetone (points 1A, 2A etc). The physical explana-
tion for the appearance of a second binary pseudo-azeotrope branch at 5 .;,,. > 0
is not straightforward, but is due to the combination of non-linearity of the vapour-
liquid equilibria in the liquid phase and multicomponent mass transfer in the vapour
phase. Qualitatively similar beha<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>