
Title Evaporation maps for ternary non-ideal liquid mixtures

Author(s) Dillon, Paul

Publication date 2016

Original citation Dillon, P. 2016. Evaporation maps for ternary non-ideal liquid mixtures.
PhD Thesis, University College Cork.

Type of publication Doctoral thesis

Rights © 2016, Paul Dillon.
http://creativecommons.org/licenses/by-nc-nd/3.0/

Embargo information No embargo required

Item downloaded
from

http://hdl.handle.net/10468/2239

Downloaded on 2017-02-12T06:58:29Z

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://hdl.handle.net/10468/2239


Evaporation Maps for
Ternary Non-Ideal Liquid

Mixtures

Paul Dillon
BE, MSC

97111660

Thesis submitted for the degree of
Doctor of Philosophy

�
NATIONAL UNIVERSITY OF IRELAND, CORK

SCHOOL OF ENGINEERING

DEPARTMENT OF PROCESS AND CHEMICAL ENGINEERING

February 2016

Supervisors: Dr Kevin Cronin
Dr. Edmond Byrne





Contents

Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1 Introduction 1
1.1 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Novel Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background and Literature Review 9
2.1 Multicomponent Mass Transfer . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Multicomponent Effects and Limitations of Fick’s law . . . . . . 10
2.1.2 Maxwell-Stefan Equations and Generalized Fick’s Law . . . . . 12

2.2 Residue Curve Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Construction of Residue Curve maps . . . . . . . . . . . . . . . 15
2.2.2 Computation of Azeotropes . . . . . . . . . . . . . . . . . . . . 21
2.2.3 Residue Curve Maps under non-equilbrium conditions . . . . . 21

2.3 Evaporation and Drying of Multicomponent Mixtures . . . . . . . . . . 24
2.3.1 Evaporation of Multicomponent Liquids . . . . . . . . . . . . . 25
2.3.2 Drying of Solids Containing Multicomponent Liquids . . . . . . 29

2.4 Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . 33

3 Evaporation Maps for Gas Phase Limited Conditions 35
3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Analytic Solution to Maxwell-Stefan Equations . . . . . . . . . 37
3.1.2 Application of Analytic Solution to Fluxes in Gas Phase . . . . . 41
3.1.3 Conservation Equations for Liquid Phase . . . . . . . . . . . . . 42
3.1.4 Multicomponent Wet-bulb Temperature . . . . . . . . . . . . . 46
3.1.5 Pseudoazeotrope Compositions . . . . . . . . . . . . . . . . . . 48

3.2 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.1 Evaporation Trajectories . . . . . . . . . . . . . . . . . . . . . . 49
3.2.2 Multicomponent Wet-bulb Temperature . . . . . . . . . . . . . 51
3.2.3 Computation of Pseudo-Azeotrope Compositions . . . . . . . . 52
3.2.4 Construction of Evaporation Maps . . . . . . . . . . . . . . . . 53

3.3 Simulation Results and Discussion . . . . . . . . . . . . . . . . . . . . 56
3.3.1 Validation of Evaporation Model . . . . . . . . . . . . . . . . . 56
3.3.2 Binary and Ternary Pseudo-Azeotropes . . . . . . . . . . . . . . 57
3.3.3 Multicomponent Wet-Bulb Temperature . . . . . . . . . . . . . 60
3.3.4 Evaporation Trajectories - IPA/Ethanol/Water Example . . . . . 65
3.3.5 Ternary Evaporation Maps . . . . . . . . . . . . . . . . . . . . . 70

3.4 Reduction of Multicomponent Wet-Bulb Model to Single Component Case 77
3.5 Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . 79

4 Bifurcations in Evaporation Maps 81
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

i Paul Dillon



4.2 Azeotropes and Pseudo-Azeotropes via Homotopy . . . . . . . . . . . . 82
4.2.1 Computation of Azeotropes By Newton’s Method . . . . . . . . 83
4.2.2 Overview of Homotopy Methods . . . . . . . . . . . . . . . . . 84
4.2.3 Computation of Azeotropes by Homotopy Method . . . . . . . . 87
4.2.4 Computation of Pseudo-Azeotropes by Homotopy Method . . . 90

4.3 Bifurcations in Evaporation Maps . . . . . . . . . . . . . . . . . . . . . 93
4.3.1 Overview of Bifurcations and Numerical Continuation . . . . . 93
4.3.2 Bifurcation Analysis of Evaporation Maps . . . . . . . . . . . . 98
4.3.3 Effect of Gas Pre-Loading on Evaporation Maps . . . . . . . . . 105

4.4 Interaction Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.5 Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . 113

5 Stability Analysis 115
5.1 Stability of Fixed Points in Residue Curve Maps . . . . . . . . . . . . . 115
5.2 Stability of Fixed Points in Evaporation Maps . . . . . . . . . . . . . . 120
5.3 Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . 125

6 Separation Boundaries 129
6.1 Separation boundaries from linearized analysis . . . . . . . . . . . . . 131
6.2 Separation boundaries by optimization . . . . . . . . . . . . . . . . . . 132

6.2.1 Optimization of integral trajectory length . . . . . . . . . . . . 135
6.2.2 Optimization of integral area . . . . . . . . . . . . . . . . . . . 138
6.2.3 Computed Separation Boundaries . . . . . . . . . . . . . . . . . 140

6.3 Flexure of the wet-bulb temperature surface . . . . . . . . . . . . . . . 141
6.3.1 Location of ridges and valleys in wet-bulb surface by optimization 143
6.3.2 Location of ridges and valleys by finite difference method . . . 144

6.4 Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . 145

7 Evaporation maps including diffusion effects in liquid 151
7.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.1.1 Mass and Heat Transfer in Gas Phase . . . . . . . . . . . . . . . 152
7.1.2 Mass Transfer in Liquid Phase . . . . . . . . . . . . . . . . . . . 152
7.1.3 Boundary Conditions for Mass Transfer . . . . . . . . . . . . . . 157
7.1.4 Heat Transfer in Liquid Phase . . . . . . . . . . . . . . . . . . . 158
7.1.5 Vapour-Liquid Equilibria and Physical Properties . . . . . . . . 158
7.1.6 Liquid Diffusion Coefficients . . . . . . . . . . . . . . . . . . . . 159
7.1.7 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.2 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.2.1 Finite Volume Formulation for Mass Transport in Liquid Phase . 160
7.2.2 Component Material Balances . . . . . . . . . . . . . . . . . . . 160
7.2.3 Spatial Discretization . . . . . . . . . . . . . . . . . . . . . . . . 161
7.2.4 Treatment of Boundary Conditions . . . . . . . . . . . . . . . . 166
7.2.5 Time Discretization . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.3 Simulation Results and Discussion . . . . . . . . . . . . . . . . . . . . 169
7.3.1 Comparison with Experimental Data . . . . . . . . . . . . . . . 170
7.3.2 Evaporation Paths for Selected Ternary Mixtures . . . . . . . . 176

7.4 Chapter Summary and Conclusions . . . . . . . . . . . . . . . . . . . . 180

8 Conclusions and Further Work 185
8.1 Summary and Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Evaporation Maps for
Ternary Non-Ideal Liquid Mixtures

ii



Contents

8.2 Suggestions for Further Work . . . . . . . . . . . . . . . . . . . . . . . 189

A Governing Equations 209
A.1 Multicomponent Fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . 209
A.2 Conservation Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 211
A.3 Maxwell-Stefan Equations . . . . . . . . . . . . . . . . . . . . . . . . . 215

A.3.1 Maxwell-Stefan Equations from Momentum Balance . . . . . . 216
A.3.2 Generalized Maxwell-Stefan Equations from IRT . . . . . . . . 219

B Physical Property Modelling 227
B.1 Vapour-Liquid Equilbria . . . . . . . . . . . . . . . . . . . . . . . . . . 227
B.2 Composition Derivatives of NRTL model . . . . . . . . . . . . . . . . . 230
B.3 Vapour Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
B.4 Diffusivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

B.4.1 Gas/Vapour Diffusivity . . . . . . . . . . . . . . . . . . . . . . . 232
B.4.2 Liquid Diffusivity . . . . . . . . . . . . . . . . . . . . . . . . . . 234

iii Paul Dillon





List of Figures

List of Figures

1.1 Schematic of tray dryer . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Experiment of Duncan & Toor (1962) . . . . . . . . . . . . . . . . . . . 12
2.2 Residue curve maps for example ternary mixtures . . . . . . . . . . . . 18

3.1 Evaporation from surface of ternary liquid mixture. . . . . . . . . . . . 38
3.2 Schematic of evaporation from planar surface . . . . . . . . . . . . . . 44
3.3 Construction of evaporation map . . . . . . . . . . . . . . . . . . . . . 56
3.4 IPA-water droplet evaporation comparison . . . . . . . . . . . . . . . . 58
3.5 Evaporation of ethanol-MEK-toluene mixture (x1 = 0.33, x2 = 0.33, x3 =

0.34) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.6 Evaporation of ethanol-MEK-toluene mixture (x1 = 0.6, x2 = 0.1, x3 =

0.3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.7 Evaporation of ethanol-MEK-toluene mixture (x1 = 0.8, x2 = 0.05, x3 =

0.15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.8 Figures 3.5-3.7 on ternary co-ordinates . . . . . . . . . . . . . . . . . . 60
3.9 Wet-bulb temperature and selectivities . . . . . . . . . . . . . . . . . . 61
3.10 Magnified portion of figure 3.9a . . . . . . . . . . . . . . . . . . . . . . 63
3.11 Ethanol/water multicomponent wet-bulb lines . . . . . . . . . . . . . . 64
3.12 Wet-bulb temperature surface for ethyl acetate/DCM/methanol . . . . 65
3.13 Wet-bulb temperature surface for ethanol/MEK/toluene . . . . . . . . 66
3.14 Wet-bulb temperature surface for acetone/chloroform/methanol . . . . 67
3.15 Example evaporation trajectory for IPA/ethanol/water . . . . . . . . . 68
3.16 Example film contentration profiles for IPA/ethanol/water . . . . . . . 69
3.17 Component fluxes for IPA/ethanol/water . . . . . . . . . . . . . . . . . 70
3.18 Evaporation map for IPA-ethanol-methanol . . . . . . . . . . . . . . . . 74
3.19 Evaporation map for water-ethanol-methanol . . . . . . . . . . . . . . 74
3.20 Evaporation map for IPA-water-ethanol . . . . . . . . . . . . . . . . . . 75
3.21 Evaporation map for ethanol-MEK-toluene . . . . . . . . . . . . . . . . 75
3.22 Evaporation map for dichloromethane/methanol/ethyl acetate . . . . . 76
3.23 Evaporation map for acetone/chloroform/methanol . . . . . . . . . . . 76
3.24 Multicomponent wet-bulb for single component case . . . . . . . . . . 78

4.1 Hypothetical composition and bubble-points at various values of homo-
topy parameter for binary mixtures . . . . . . . . . . . . . . . . . . . . 89

4.2 Location of azeotropes in acetone-chloroform-methanol mixture by ho-
motopy method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Hypothetical selectivity and wet-bulb temperature at various values of
homotopy parameter for binary mixtures . . . . . . . . . . . . . . . . . 94

4.4 Location of pseudo-azeotropes in acetone-chloroform-methanol mixture
by homotopy method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5 Saddle-node bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.6 Bifurcation diagrams for acetone-chloroform-methanol; TG = 40◦C,

uG = 0.5m/s, d = 0.03m . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.7 Normalized evaporative fluxes for acetone-chloroform- methanol; TG =

40◦C, uG = 0.5m/s, d = 0.03m . . . . . . . . . . . . . . . . . . . . . . 103

v Paul Dillon



4.8 Bifurcation diagrams for ternary acetone-chloroform-methanol pseudo-
azeotrope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.9 Evaporation maps for gas phase pre-loaded with acetone . . . . . . . . 108
4.10 Evaporation maps for gas phase pre-loaded with chloroform . . . . . . 109
4.11 Evaporation maps for gas phase pre-loaded with methanol . . . . . . . 110
4.12 Tracking of ternary pseudo-azeotrope bifurcation . . . . . . . . . . . . 111
4.13 Off-diagonal contributions to diffusive fluxes . . . . . . . . . . . . . . . 112

5.1 Eigen-values for residue curve map of benzene-acetone-chloroform . . 121
5.2 Eigen-values for residue curve map of example mixtures . . . . . . . . 122
5.3 Surface plots of fluxes (normalized) in acetone/chloroform/methanol

mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.4 Eigen-values for evaporation map of example mixtures . . . . . . . . . 127

6.1 Schematic for determination of separation boundaries . . . . . . . . . 131
6.2 Trajectory-lengths and separation boundaries for example residue curve

maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.3 Trajectory-lengths and separation boundaries for example evaporation

maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.4 Trajectory-lengths and areas for acetone-methanol-chloroform mixture 139
6.5 Area and residue curve length for acetone-chloroform-methanol mixture 142
6.6 Valleys and ridges in wet-bulb temperature surfaces . . . . . . . . . . . 150

7.1 Schematic of heat and mass transfer from liquid flim surface, and finite-
volume discretization within film . . . . . . . . . . . . . . . . . . . . . 154

7.2 Control volumes for general 2-D finite-volume method . . . . . . . . . 162
7.3 Control volumes for 1-D finite-volume method . . . . . . . . . . . . . . 163
7.4 Composition profiles for ethanol-MEK-toluene mixture; x1 = 0.33, x2 =

0.33, x3 = 0.34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.5 Composition profiles for ethanol-MEK-toluene mixture; x1 = 0.6, x2 =

0.1, x3 = 0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.6 Composition profiles for ethanol-MEK-toluene mixture; x1 = 0.8, x2 =

0.05, x3 = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.7 Diffusivity values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.8 Composition profiles for ethanol-MEK-toluene mixture . . . . . . . . . 175
7.9 Evaporation paths of IPA-ethanol-methanol . . . . . . . . . . . . . . . 178
7.10 Composition profiles and Biot numbers . . . . . . . . . . . . . . . . . . 179
7.11 Evaporation paths of ethanol-MEK-toluene . . . . . . . . . . . . . . . . 181
7.12 Comparison of lumped and distribute model trajectories . . . . . . . . 182

A.1 Control volume for derivation of conservation equations . . . . . . . . 211
A.2 Species Interaction for binary and ternary mixtures . . . . . . . . . . . 219

B.1 Txy and activity coefficients for IPA-water-ethanol . . . . . . . . . . . . 231
B.2 Txy and activity coefficients for water-ethanol-methanol . . . . . . . . 232
B.3 Txy and activity coefficients for acetone-chloroform-methanol . . . . . 233

Evaporation Maps for
Ternary Non-Ideal Liquid Mixtures

vi



List of Tables

List of Tables

2.1 Example ternary mixtures used in this work . . . . . . . . . . . . . . . 17

3.1 Calculation of multicomponent fluxes using Newton method . . . . . . 51
3.2 Algorithm for computation of wet-bulb temperature . . . . . . . . . . . 52
3.3 Algorithm for computation of pseudo-azeotrope composition . . . . . . 52
3.4 Jacobian for pseudo-azeotrope calculation . . . . . . . . . . . . . . . . 54
3.5 Algorithm for generation of evaporation maps . . . . . . . . . . . . . . 55
3.6 Results of pseudo-azeotrope calculations . . . . . . . . . . . . . . . . . 62

4.1 Calculation of azeotropes using Newton’s method . . . . . . . . . . . . 85
4.2 Azeotrope computation by Newton’s method . . . . . . . . . . . . . . . 86
4.3 Homotopy method for azeotrope determination . . . . . . . . . . . . . 90
4.4 Homotopy method for azeotrope determination . . . . . . . . . . . . . 93

5.1 Procedure for calculation of eigenvalues and eigenvectors (with analytic
Jacobian) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2 Computed eigenvalues for benzene-acetone-chloform mixture . . . . . 120
5.3 Algorithm for calculation of eigenvalues and eigenvectors of evaporation

maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.1 Algorithm for generation of separation boundaries in residue curve maps
using eigenvector calculated at saddle node . . . . . . . . . . . . . . . 132

6.2 Algorithm for generation of separation boundaries in evaporation maps
using eigenvector calculated at saddle node . . . . . . . . . . . . . . . 133

6.3 Optimum angle, line integral and area integrals for residue curve map
of acetone-chloform-methanol mixture . . . . . . . . . . . . . . . . . . 140

6.4 Optimum angle, line integral and area integrals for evaporation map of
acetone-chloform-methanol mixture . . . . . . . . . . . . . . . . . . . 141

6.5 Algorithm for generation of separation boundaries in residue curve map 147
6.6 Algorithm for generation of separation boundaries in evaporation map 148
6.7 Optimization algorithm for location of valleys and ridges in wet-bulb

temperature surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.8 Gradient algorithm for location of valleys and ridges in wet-bulb tem-

perature surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.1 Summary of gas-phase heat and mass transfer . . . . . . . . . . . . . . 153

8.1 Comparison of some key features of residue curve maps and evaporation
maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

A.1 Contributions to entropy production rate . . . . . . . . . . . . . . . . . 224
A.2 Forces and fluxes in entropy production . . . . . . . . . . . . . . . . . 224
A.3 Possible dependencies from third postulate of IRT . . . . . . . . . . . . 225

B.1 NRTL parameters for IPA-ethanol-methanol . . . . . . . . . . . . . . . 228
B.2 NRTL parameters for water-ethanol-methanol . . . . . . . . . . . . . . 228
B.3 NRTL parameters for IPA-water-ethanol . . . . . . . . . . . . . . . . . 228
B.4 NRTL parameters for ethanol-MEK-toluene . . . . . . . . . . . . . . . . 229
B.5 NRTL parameters for DCM-methanol-ethyl acetate . . . . . . . . . . . 229

vii Paul Dillon



B.6 NRTL parameters for benzene-acetone-chloroform . . . . . . . . . . . . 229
B.7 NRTL parameters for acetone-chloroform-methanol . . . . . . . . . . . 230
B.8 Parameters for Antoine vapour pressure correlation . . . . . . . . . . . 234
B.9 Lennard Jones potentials . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Evaporation Maps for
Ternary Non-Ideal Liquid Mixtures

viii



Nomenclature

Nomenclature

H̄G
i Vapour enthalpy of component i [J mol−1]

H̄L
i Liquid enthalpy of component i [J mol−1]

4Hvap
i Enthalpy of vaporization of component i [J mol−1]
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Abstract

Abstract

This thesis deals with the evaporation of non-ideal liquid mixtures using a multicompo-

nent mass transfer approach. It develops the concept of evaporation maps as a conve-

nient way of representing the dynamic composition changes of ternary mixtures during

an evaporation process. Evaporation maps represent the residual composition of evapo-

rating ternary non-ideal mixtures over the full range of composition, and are analogous

to the commonly-used residue curve maps of simple distillation processes.

The evaporation process initially considered in this work involves gas-phase limited

evaporation from a liquid or wetted-solid surface, over which a gas flows at known

conditions. Evaporation may occur into a pure inert gas, or into one pre-loaded with

a known fraction of one of the ternary components. To explore multicomponent mass-

transfer effects, a model is developed that uses an exact solution to the Maxwell-Stefan

equations for mass transfer in the gas film, with a lumped approach applied to the liquid

phase. Solutions to the evaporation model take the form of trajectories in temperature-

composition space, which are then projected onto a ternary diagram to form the map.

Novel algorithms are developed for computation of “pseudo”-azeotropes in the evapo-

rating mixture, and for calculation of the multicomponent wet-bulb temperature at a

given liquid composition. A numerical continuation method is used to track the bifurca-

tions which occur in the evaporation maps, where the composition of one component of

the pre-loaded gas is the bifurcation parameter. The bifurcation diagrams can in prin-

ciple be used to determine the required gas composition to produce a specific terminal

composition in the liquid.

A simple homotopy method is developed to track the locations of the various possible

pseudo- azeotropes in the mixture. The stability of pseudo-azeotropes in the gas-phase

limited case is examined using a linearized analysis of the governing equations.

Algorithms for the calculation of separation boundaries in the evaporation maps are

developed using an optimization-based method, as well as a method employing eigen-

vectors derived from the linearized analysis. The flexure of the wet-bulb temperature

surface is explored, and it is shown how evaporation trajectories cross ridges and val-

leys, so that ridges and valleys of the surface do not coincide with separation bound-

aries.

Finally, the assumption of gas-phase limited mass transfer is relaxed, by employing

a model that includes diffusion in the liquid phase. A finite-volume method is used

to solve the system of partial differential equations that results. The evaporation tra-

jectories for the distributed model reduce to those of the lumped (gas-phase limited)

model as the diffusivity in the liquid increases; under the same gas-phase conditions

the permissible terminal compositions of the distributed and lumped models are the

same.
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Chapter 1

Introduction

The evaporation of organic solvent mixtures, and the drying of solids containing such

solvents are common operations in the process industries, spanning technologies from

spray-drying of pharmaceutical products to fuel combustion. In many manufacturing

processes, the use of solvent mixtures may offer desirable features. In the pharma-

ceutical industry for example, some 90% of all compounds in modern pharmaceutical

drug delivery pipelines are reported to be poorly soluble in water (Reintjes 2011); the

use of solvent mixtures enhances the solubility of many active pharmaceutical ingre-

dients (APIs), allowing reaction steps to occur in liquid phase, and allowing the final

active ingredient to be spray-dried to a solid, and ultimately processed to the required

final dosage form. As a motivational example, figure 1.1 shows a practical case of a

tray dryer used to dry pharmaceutical solids; the wetted solids, often from a preceding

granulation step using a solvent mixture, are loaded into trays and stacked on mobile

trolleys. When placed within the tray dryer, the flow of heated air across the tray sur-

face causes heat transfer from the gas phase to the wetted solid and mass transfer from

the wetted solid into the gas. A portion of the solvent-laden air may be recirculated,

and the balance is discharged for further treatment. After a pre-defined time period,

the trays are removed from the dryer and move to the next step such as encapsula-

tion or tabletting (Parikh 1997). Various solvent mixtures, together with examples of

poorly water-soluble APIs and polymeric carriers commonly used to manufacture solid

dispersions suitable for spray drying have been compiled (Paudel et al. 2013). Since

the drying process rarely runs to completion, there is inevitably some residual solvent

in the final product, the identity and quantity of which may be critical to product qual-

ity. In the case of spray dried powders, physiochemical properties like permeability and

crystallinity, as well as glass transition temperature are affected by residual solvents

(Witschi & Doelder 1997). In addition, residual organic solvent represent a potential

risk to human health due to the toxicity and undesirable side affects. Indeed, limits for

residual solvent content are set by various national bodies such as US and European

Pharmacopoeia, as well as ICH guidelines ICH (2011).

1



1. INTRODUCTION

Figure 1.1: Schematic of tray dryer used for production of pharmaceutical granulates;
magnified portion shows heat and mass transfer at surface on an
individual tray

Industrially significant examples involving evaporation and drying of solvent mixtures

include the preparation of thin polymer coatings during production of adhesives and

varnishes, and the casting of asymmetric membranes for reverse osmosis applications.

A further example is the prediction of evaporation rates from liquid spills which is

relevant for hazard analysis and emergency response systems (van den Bosch 1997,

Khajehnajafi & Pourdarvish 2011, Galeev et al. 2015).

In some industrial applications, selective drying is desirable, where one component is

removed preferentially. In drying of foodstuffs for example, water should be removed

but the aroma retained. In some cases, the solvents removed are flammable and certain

concentrations in the dryer circulation or exhaust air must not be exceeded (Thurner

& Schlunder 1986). For drying or evaporation of single component systems e.g. water,

the final liquid content after drying is determined by the operating conditions and the

Evaporation Maps for
Ternary Non-Ideal Liquid Mixtures
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1.1 Aims and Objectives

process kinetics. However, when the moisture content of a process consists of a mix-
ture (specifically, a non-ideal mixture in this thesis), the final state of the evaporation

or drying process depends also on the initial composition. For non-ideal, multicom-

ponent mixtures the number of possible final compositions increases as the number of

components in the mixture; the ability to predict process paths and terminal composi-

tions of multicomponent mixtures is therefore of practical importance. The problem is

not straightforward due to the complex interactions of external (gas-phase) heat and

mass transfer, mass and heat transfer within the liquid (and solid, in case of drying)

and phase equilibria. This thesis attempts to shed some additional light on this area of

chemical engineering.

1.1 Aims and Objectives

This work is focused on the modeling of the dynamic heat and mass transfer processes

that occur during evaporation of non-ideal liquid mixtures. The specific objectives of

this thesis are:

• Develop a multicomponent heat and mass transfer model for evaporating non-

ideal ternary liquid mixtures. These models should not be limited to conven-

tional Fickian diffusion, but should be capable of describing multicomponent

mass transfer effects, and of quantifying the multicomponent interactions that

occur.

• Develop numerical methods to depict the composition dynamics of ternary liquid

mixtures on ternary diagrams in the form of evaporation maps, and demonstrate

key features of the maps for various common ternary mixtures of varying com-

plexity. In the first instance, consider heat and mass transfer in the gas phase,

assuming a lumped character for the liquid phase. Use the analogy with the well-

understood residue-curve maps concept as a guide.

• As part of the evaporation map concept, develop numerical models and solution

methods to calculate pseudo-azeotropes for binary and ternary mixtures undergo-

ing evaporation. Develop a related model and numerical method to allow multi-
component wet-bulb temperatures to be computed.

• Develop a numerical method for determination of separation boundaries that oc-

cur for some mixtures, and show how this approach also applies to residue-curve

maps. Explore the relationship between separation boundaries and minima in the

wet-bulb surface for ternary mixtures.

• Extend the gas-phase limited model to also include diffusion within the liquid

phase, using a multicomponent description of the fluxes in the liquid. Develop

3 Paul Dillon



1. INTRODUCTION

a mathematical model of multicomponent diffusive mass fluxes within the no-

tional liquid film. Couple this with the evaporation fluxes from the gas-phase

limited model to provide a comprehensive model for evaporation of multicompo-

nent mixtures.

1.2 Novel Contributions

The contributions of this work can be summarized as follows:

1. The novel concept of a ternary evaporation map is presented and developed.

Evaporation maps show the residual composition of a ternary liquid undergoing

evaporation into a gas phase of specified composition, temperature and velocity

relative to the liquid surface; a planar geometry is assumed for the bulk of this

work. These maps are shown to be analogous to the residue curve maps com-

monly used in the analysis of equilibrium-based separations. A multicomponent

mass transfer model is employed for the gas phase, using an analytic solution to

the Maxwell-Stefan equations. The maps apply to liquids and to wetted solids,

where the assumption of gas-phase limited mass transfer applies.

2. A novel application of a numerical continuation method is employed to analyze

the bifucations that occur in ternary evaporation maps as the composition of the

bulk gas phase is varied. Simply homotopy methods are used to track solution

branches of the governing equations for pseudo-azeotropes; these are motivated

by previously published work on conventional azeotropes, and demonstrate how

the pseudo-azeotropes originate from pure component branches as the degree of

non-ideality of a mixture is increased via the homotopy parameter.

3. Multicomponent mass-transfer models are developed for calculation of compo-

sition binary and ternary pseudo-azeotropes, and for the calculation of multi-

component wet-bulb temperature of ternary mixtures. Algorithms are developed

for the computation of pseudo-azeotropes and wet-bulb temperature, using a

Newton-method apporach with analytic forms of the Jacobian in each case.

4. A stability analysis of the fixed points of evaporation maps is presented. A nu-

merical finite-difference method to analyse the mathematical stability in terms of

the eigenvalues at the fixed points, from which the stability characteristics are

determined. The method is demonstrated for various ternary mixtures.

5. Two approaches are presented for the location of separation boundaries in evap-

oration maps; for consistency and for pedagogical reasons, these are developed

in parallel with analogous approaches for residue curve maps. The first approach

involes a maximum-area method which avoids a limitation of previous maximum-

arclength methods that are not globally optimal. A second approach uses the

Evaporation Maps for
Ternary Non-Ideal Liquid Mixtures
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1.3 Thesis Outline

eigenvectors from the preceding stability analysis to approximately compute the

separation boundaries in both residue curve maps and evaporation maps.

6. A multicomponent model of diffusion in the liquid phase is developed, involving

partial differential equations for the component balances, coupled with the an-

alytic solution of the Maxwell-Stefan equations for the gas phase. The model is

solved numerically using a modified finite volume technique. The effect of liquid-

phase diffusion on the evaporation maps is examined for a number of ternary

mixtures.

1.3 Thesis Outline

The work in this thesis is organised into eight chapters. In chapter 2, the background

theory of multicomponent mass transfer is developed, including a derivation of the

Maxwell-Stefan equations from first-principles. The literature on evaporation of multi-

component mixtures is reviewed. The theory behind residue curve maps is presented as

they are a motivating factor for the development of the evaporation maps in subsequent

chapters.

In chapter 3 the theory and implementation of evaporation maps under gas-phase lim-

ited conditions is presented. The calculation of multicomponent fluxes in the vapour

phase at the interface using an exact solution to the Maxwell-Stefan equations is out-

lined, and applied to evaporation of multicomponent droplets and stationary planar

films. Algorithms for computation of binary and ternary pseudo-azeotropes are given

using efficient Newton-based solution methods. An optimization-based technique for

computing evaporation trajectories is presented, leading to the construction of evapo-

ration maps for a number of example non-ideal mixtures.

Chapter 4 deals with the bifurcations that may occur in evaporation maps as the com-

position of the gas-phase changes. As a prelude, homotopy methods for calculation of

azeotropes and pseudo-azeotropes are developed. A numerical continuation method is

used to conduct the bifurcation analysis, in which the composition of the surrounding

gas as a continuation parameter.

In chapter 5, a linearized stability approach is used to analyse the stability of the fixed

points for both residue curve and evaporation maps. A method for computing the

eigen-directions of the fixed points based on analytical derivatives is demonstrated.

In chapter 6 a simple maximum-area optimization method is presented which facilitates

computation of the separation boundaries for residue curve maps, and for evaporation

maps (gas-phase limited). The concept of a "most-difficult" separation, drawn from the

theory of residue curve maps, is extended to evaporation maps.
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1. INTRODUCTION

In chapter 7 the restriction of gas-phase limited heat and mass transfer is relaxed,

and the effect of diffusion in the liquid phase is examined. The governing equations

for mass transfer in the liquid phase are presented as partial differential equations,

requiring a numerical solution. A finite-volume method solution method is derived,

where the off-diagonal terms in the diffusion fluxes are explicitly included in the spatial

discretization. A method-of-lines approach is used to integrate the equations forward in

time.

Chapter 8 summarizes the work and the conclusions that can be drawn. It also outlines

directions for further work than can be used to extend this research.

Evaporation Maps for
Ternary Non-Ideal Liquid Mixtures
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1.4 Publications

1.4 Publications

The following peer-reviewed papers have been produced as part of this work to date:

1. Dillon P., Cronin K., Byrne E.P., Evaporation maps for non-ideal ternary

mixtures, Chemical Engineering Science 126 (2015) 641-659

The above paper consists of material from chapter 3, as well as sections 4.3 and 4.4 of

chapter 4.
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Chapter 2

Background and Literature Review

In this chapter relevant background material is presented and the existing literature is

surveyed. An outline of some relevant aspects of the theory of multicomponent mass

transfer is given in section 2.1, including limitations of the conventional Fick’s-law

description of mass transfer in section 2.1.1, and an outline of the alternative Maxwell-

Stefan approach in section 2.1.2 (with more detailed derivations given in appendix

A.3). These form the basis for the multicomponent mass transfer model used in subse-

quent chapters.

The theory and application of residue curve maps is reviewed in section 2.2; the anal-

ogy between evaporation maps and residue curve maps is used in chapter 3 where the

topology of residue curve maps (where equilibrium applies) motivates the development

of evaporation maps (which are non-equilibrium or rate-based). Previous attempts to

adapt the theory of residue curve maps for non-equilibrium processes are also dis-

cussed.

A review of literature related to evaporation and drying of multicomponent non-ideal

liquid mixtures is given in section 2.3.1. This is primarily relevant to chapters 3-6 of

this work which focuses on gas-phase limited evaporation/drying. Chapter 7 relaxes

the gas-phase limited restriction by considering diffusion effects in the liquid phase;

under certain conditions, drying of wetted solids may behave as though limited by

gas-phase conditions, such as where diffusion in liquid phase (e.g. in capillaries of

the wetted-solid) is rapid relative to mass transfer in the gas phase. Consequently, a

review of relevant literature for evaporation from solids wetted with multicomponent

non-ideal liquids is given in section 2.3.2.
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2. BACKGROUND AND LITERATURE REVIEW

2.1 Multicomponent Mass Transfer

Mass transfer may occur by diffusion and convection, and mass transfer fluxes are

defined relative to various averaged velocities. In this section the fluxes in multicom-

ponent mixtures are first outlined, before an outline of the governing equations for

momentum, energy and mass is presented. The governing equations are then used in

the derivation of the Maxwell-Stefan equations which follow. An understanding of the

conventions for total and diffusive fluxes is relevant to the gas-phase limited model of

evaporation employed in chapter 3 and to the distributed model of multicomponent

mass transfer in chapter 7.

2.1.1 Multicomponent Effects and Limitations of Fick’s law

Traditional procedures for design and analysis of mass transfer processes have used

Fick’s constitutive diffusion equation (or Fick’s "law") which postulates a linear depen-

dence of the diffusive flux Ji (for component i) on its composition gradient ∇xi and

diffusion coefficient Di :

Ji = −ciDi∇xi (2.1)

Fick’s law works satisfactorily for binary mixtures, for diffusion of a dilute species in a

multicomponent mixture, and when external forces (electrostatic, centrifugal) are not

present. When applied to multicomponent mixtures, the form of the diffusion coeffi-

cient in the Fickian relation often shows complex, unpredictable behaviour (Krishna &

Wesselingh 1997). Phenomena such as osmotic diffusion (diffusion of a component in

the absence of a concentration driving force), reverse diffusion (diffusion of a compo-

nent in the direction opposite to its concentration driving force), and diffusion barrier
(zero flux of a component despite a concentration driving force), identified by Toor

(1957), have all been experimentally demonstrated (Duncan & Toor 1962), but are not

well represented by a Fickian approach. The classical experiment by Duncan & Toor

(1962) examined diffusion in an ideal ternary gas mixture of hydrogen(1)-nitrogen(2)

and carbon dioxide(3) (depicted in figure 2.1), is used as a motivational example of the

need for a multicomponent mass transfer model. The experiment involved two bulbs,

one with an equimolar nitrogen/carbon-dioxide mixture and one with an equimolar ni-

trogen/hydrogen mixture, that were initially isolated by a stopcock. When the stopcock

was opened the three species diffused, resulting in the measured concentration-time

profiles shown in figure 2.1b.

The profiles for hygrogen and for carbon-dioxide follow expected Fick-like behaviour;

hydrogen diffuses from bulb 2 to bulb 1 and the two concentrations equalise. Simi-

larly, carbon dioxide diffuses from bulb 1 to bulb 2. Nitrogen however shows unusual

behaviour; despite the fact that the initial concentrations of nitrogen in the two bulbs

Evaporation Maps for
Ternary Non-Ideal Liquid Mixtures
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2.1 Multicomponent Mass Transfer

are near identical (allowing for experimental measuring error), nitrogen diffuses from

bulb 1 to bulb 2. This seems counter-intuitive as it occurs despite there being no con-

centration gradient for nitrogen. Diffusion of nitrogen against a concentration gradient

(reverse diffusion) continues until a peak is reached at t1. As nitrogen diffuses to the

right prior to t1, a non-zero concentration gradient between the bulbs is established;

at t1, this gradient is sufficiently large to counter the reverse diffusion effect. At t1
therefore, there is zero flux of nitrogen, despite a finite concentration gradient (diffu-

sion barrier). At zero time, diffusion in the absence of a driving force occurs (osmotic

diffusion).

Fick’s law cannot adequately describe the multicomponent phenomena described by

the experiments of Duncan & Toor. To do so on the basis of equation 2.1 would require

the following of the diffusion coefficient for nitrogen (Krishna & Wesselingh 1997):

1. DN2 →∞ at the initial osmotic diffusion point

2. DN2 < 0 where reverse diffusion occurs (t < t1), and

3. DN2 = 0 at the diffusion barrier (t = t1)

The phenomena described above can however be explained using the Maxwell-Stefan

approach, with fluxes described by a generalized (multicomponent) version of Fick’s

law

(J) = −c[D](∇x)

(see equation 2.15) the basis for which is given section A.3 below. In this case [D] is

a matrix of diffusion coefficients; for the ternary system of Duncan & Toor (1962), the

generalized form expands to(
J1

J2

)
= −c

(
D11 D12

D21 D22

)(
∇x1

∇x2

)

where J3 = −(J1+J2) by conservation of mass (i.e. the diffusive fluxes are not all inde-

pendent). The diagonal terms D11 and D22 represent conventional Fick-like diffusion;

the off-diagonal terms D12 and D21 represent non-Fickian interaction terms where a

concentration gradient of x1 affects the diffusive flux J2, and a gradient of x2 similarly

affects the diffusive flux J1. The solid and dashe lines in figure 2.1b were obtained us-

ing an analytic solution to the two-bulb problem using the generalized Fick’s law form

(Taylor & Krisha 1993). The basis for the generalized form is detailed in section A.3.

The generalized form is used in the development of the gas-phase limited evaporation

maps in chapter 3, and in the treatment of diffusion effect in the liquid in chapter 7.

The review article by Wesselingh & Krishna (2000) discusses the shortcomings of the

traditional Fickian description of mass transfer, and outlines the basis for the Maxwell-

Stefan approach in more detail. The theory of multicomponent diffusion in fluids (gas,
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2. BACKGROUND AND LITERATURE REVIEW

(a) Two-bulb configuration

(b) Experimental data and prediction of Maxwell-Stefan equations

Figure 2.1: Experimental configuration of Duncan & Toor (1962)

liquid, electrolyte, polymer etc.) is described in the books by Taylor & Krisha (1993),

Cussler (2009) and Bird et al. (2002). The texts of Hirschfelder et al. (1964) and

Jakobsen (2008) give rather detailed treatments of the kinetic theory of gases including

its extension to multicomponent gas mixtures. while the book by Lightfoot (1974) gives

interesting applications of multicomponent mass transfer to biological systems.

2.1.2 Maxwell-Stefan Equations and Generalized Fick’s Law

A derivation of the Maxwell-Stefan equations based on principles of irreversible ther-

modynamics is given in Appendix A.3. For ideal gas mixtures in the absence of pressure

gradients and external forces, the Maxwell-Stefan equation of (see equation A.80) can

Evaporation Maps for
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2.1 Multicomponent Mass Transfer

expressed in terms of molar fluxes N i and J i as

di = −
n∑
i=1
i 6=j

xiN i − xjN j

cÐij
= −

n∑
i=1
i 6=j

xiJ i − xjJ j
cÐij

(2.2)

where N i and N i are the total and diffusive fluxes of component i respectively, c is

the concentration, and Ðij are binary Maxwell-Stefan diffusion coefficients. This is

the form of the Maxwell-Stefan equations that is used as a basis for the calculation of

vapour phase molar fluxes in the generation of evaporation maps in chapter 3.

The generalized driving force equation A.72 has n(n − 1)/2 transport parameters Ðij ,

since the diffusivities are symmetric so that Ðij = Ðij , and Ðii is not defined (Curtiss &

Bird 1999). Where pressure and external forces can be ignored, the driving force given

by equation A.72 reduces to

di ≡
xi
RT
∇T,Pµi (2.3)

The gradient of chemical potential can be expanded using the chain rule, noting that

µi = µi(T, P, xj):

∇T,Pµi =
n−1∑
j=1

∂µi
∂xj

xi∇xj (2.4)

The chemical potential µi can be expressed in terms of the activity of species i by

µi = µoi +RT ln ai = µoi +RT ln γixi

where µoi is the chemical potential at a standard state, ai is the activity of species i, and

γi is the activity coefficient, so that equation 2.3 becomes (Taylor & Krisha 1993)

di ≡
xi
RT
∇T,Pµi = xi

RT

n−1∑
j=1

∂µi
∂xj

xi∇xj (2.5)

= xi
RT

n−1∑
j=1

RT
∂ ln γixi
∂xj

∣∣∣∣∣
T,P,Σ

∇xj (2.6)

= xi

n−1∑
j=1

∂ ln xi
∂xj

+ ∂ ln γi
∂xj

∣∣∣∣∣
T,P,Σ

∇xj (2.7)

=
n−1∑
j=1

δij + ∂ ln γi
∂xj

∣∣∣∣∣
T,P,Σ

∇xj (2.8)

=
n−1∑
j=1

Γij∇xj (2.9)

where

Γij = δij + ∂ ln γi
∂xj

∣∣∣∣∣
T,P,Σ

(2.10)
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2. BACKGROUND AND LITERATURE REVIEW

In this way, equation 2.9 allows the driving force di to be expressed in terms of the more

accessible mole-fraction gradients. The subscripts on the evaluation of the derivative

in equation 2.10 imply that temperature and pressure are constant, while the differen-

tiation of ln γi is carried out while keeping constant the mole fractions of each species

apart from the nth. For liquids, the activity coefficient may be represented by a suitable

model such as the NRTL or UNIQUAC models (Poling et al. 2001). See appendix B.1

for details of the NRTL model used in this work. The Maxwell-Stefan equations can

be cast in a Fick-like form suitable for use in matrix calculations. Equation 2.2 can be

written as

−c(d) = [B](J) (2.11)

where the column matrices d and J have elements

d =


d1

d2
...

dn−1

 J =


J1

J2
...

Jn−1


and where the [B] matrix has elements given by

Bii = xi
Ðin

+
n∑
i=1
i 6=j

xk
Ðik

(2.12a)

Bij = xi

(
1

Ðij
− 1

Ðin

)
(2.12b)

Writing equation 2.9 in n− 1 dimensional matrix form gives

(d) = [Γ](∇x] (2.13)

which, when combined with equation 2.11 gives an expression for the matrix of diffu-

sive fluxes

(J) = −c[B]−1[Γ](∇x] (2.14)

This can be written as a generalized Ficks’ law:

(J) = −c[D](∇x] (2.15)

where

[D] ≡ [B]−1[Γ] (2.16)

where [D] is the Fick matrix, [B] has terms terms given by equation 2.12, and Γ has

terms given by equation 2.10. Equation 2.16 shows how the Maxwell-Stefan approach

allows the thermodynamic and "drag" effects of diffusion to be essentially decoupled.

Evaporation Maps for
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2.2 Residue Curve Maps

Equations 2.15 with 2.16 are the form of the driving forces that are used in chapter 7

for diffusion in the liquid phase, using the NRTL model (see appendix B.2, following

Poling et al. (2001)) to compute values of Γij .

2.2 Residue Curve Maps

Many processes in the chemical industries rely on evaporation and condensation steps,

the basis for which are that the vapour phase is richer in the more volatile compounds

than the liquid. Mixtures with components that are nearly ideal are relatively straight-

forward to rank in order of volatility, or equivalently, in order of their normal boiling

points (Kiva et al. 2003). A distillation sequence, for example, can then in princi-

ple be designed to separate each component. In industrial practice however, many

mixtures display azeotropic behaviour, where the composition space is divided into re-

gions where the order of volatility varies from region to region. At an azeotrope, the

vapour and liquid compositions of a mixture are equal for a given pressure. Mixtures

at azeotropic compositions cannot be separated by conventional distillation, as no en-

richment of the vapour phase is possible at that composition; alternative means of

separation such as azeotropic-distillation (where an additional component or entrainer
is added to the mixture), or pressure-swing distillation are often used. To aid in the

qualitative analysis of such mixtures, and the feasibility of their separation, a graphical

tool known as the residue curve map is used. This thesis develops the Evaporation Map

concept which applies to mixtures governed by rate-based processes (such as evapora-

tion and drying), and therefore are not at equilibrium (except at a vapour-liquid inter-

face); evaporation maps can therefore be considered as non-equilibrium analogues to

residue curve maps. The background theory of residue curve maps is considered in the

following sections.

2.2.1 Construction of Residue Curve maps

Residue curve maps (RCMs) are one of number of types of phase equilibrium diagram

which represent the composition of liquid mixtures undergoing evaporation or conden-

sation processes. The review article by Kiva et al. (2003) details the historical origins of

azeotrope phase equilibrium diagrams, including residue curve maps. Schreinemakers

(1901b,a) established the idea of residue curves relating the concentrations of vapour

and liquid in an isobaric open evaporation process. In that conceptual process, the

vapour formed is continuously removed (no reflux) so that the vapour at any instant

is in equilibrium with the liquid residue (also known as simple distillation, or Rayleigh
distillation). Tracing the change in residual liquid composition over time until the last

drop is evaporated, and plotting composition on a Gibbs (ternary) diagram gives the
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2. BACKGROUND AND LITERATURE REVIEW

residue curve (Fien & Liu 1994, Doherty & Malone 2001). The edges of the RCM

represent binary mixures, while the vertices represent pure components.

In general, the vapour-liquid equilbrium of a homogeneous mixture at a specified pres-

sure are characterized by relationships between the liquid and vapour compositions

x = {x1, x2, · · ·xn} and y = {y1, y2, · · · yn}, together with a temperature representing

the bubble point of liquid x, and dew point of vapour y (Rev 1992). The evolution of

liquid molefraction in the mixture during evaporation can be determined by integrating

a set of ordinary differential equations:

−dx
dτ

= y(x)− x (2.17)

where τ is a dimensionless warped time that incorporates molar liquid holdup (Doherty

& Malone 2001):

τ = ln
(
H

Ho

)
(2.18)

where Ho and H are the initial molar hold-up, and molar hold-up at a subsequent time

respectively. The liquid and vapour mole-fractions are subject to the condition that

n∑
i=1

xi = 1.0
n∑
i=1

yi = 1.0 (i = 1, 2 . . . n− 1) (2.19)

In practice, the residue curves can be found by integrating equation 2.17 forwards

and/or backwards from a given initial composition in the warped time variable, using

a vapour-liquid relationship between x and y. For mixtures that are relatively ideal in

the liquid phase, a simple phase equilibrium relationship such as

yi = Kxi i = 1, 2 . . . n (2.20)

suffices, where K represents the so-called K-value or equilibrium ratio. Where there

is non-ideality in the liquid phase, an expression involving an activity coefficient is

generally more accurate:

yi = xiγipi
P

i = 1, 2 . . . n (2.21)

pi is the vapour pressure of component i, P is the total pressure, and where γi is the

activity coefficient. A wide variety of activity coefficient models are available, including

Wilson, NRTL, UNIQUAC and UNIFAC (Prausnitz et al. 1986). Non-ideality in the

vapour phase can be incorporated in principle through use of a suitable vapour phase

fugacity expression such as a Poynting correction factor (Poling et al. 2001). The total

pressure P is a constant for a given residue curve map. Some mixtures exhibit strong

sensitivity to operating pressure, a fact which is exploited in pressure-swing distillation

processes.

In principle there is no limit to the number of components in the integration of equation
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2.2 Residue Curve Maps

Table 2.1: Example ternary mixtures used in this work

Components Azeotropes
1 IPA Ethanol Methanol 0
2 Water Ethanol Methanol 1
3 IPA Water Ethanol 2
4 Ethanol MEK Toluene 2
5 Dichloromethane Methanol Ethyl Acetate 2
6 Acetone Chloroform Methanol 4

2.17; however, for graphical presentation the practical limit is that of a ternary mixture.

More complicated visualization techniques for higher-dimensional systems have only

limited application (Wibowo & Ng 2002, Harjo et al. 2004). Other approaches such

as lumping of components (Jaksland et al. 1995) or simplification of the boundary

geometry (Rooks et al. 1998) have also been developed, but apply in rather specific

conditions (Bruggemann & Marquardt 2011).

A number of residue curve maps for examples of homogeneous1 ternary azeotropic

and non-azeotropic mixtures are shown in figure 2.2. The mixtures are listed in table

2.1, and represent commonly used solvents in industrial practice. The degree of non-

ideality increases as one moves down the table, indicated by the increasing number of

azeotropes (binary and ternary). Taken as a group, these mixtures therefore represent

the key features of non-ideality (azeotropic behaviour) present in a ternary mixture;

the same group of mixtures will be used in the development and anlysis of evaporation

maps in subsequent chapters, where the similarities to residue curve maps will also be

highlighted.

The residue curve maps in figure 2.2 were obtained by numerical integration of equa-

tion 2.17 together with equation 2.21 with NRTL parameters obtained from AspenProp-

erties (AspenTech 2014); details of the NRTL model and binary interaction parameters

are shown in appendix B.1. Figure 2.2a shows a non-azeotropic mixture where the

residue curves run from the methanol unstable node to the IPA stable node, passing the

pure ethanol node. The water-ethanol-methanol mixture in figure 2.2b has a single bi-

nary azeotrope (a saddle azeotrope) on the water-ethanol axis. Figures 2.2c, 2.2d and

2.2e each have two binary azeotropes, one being an unstable node, the other a sad-

dle. The acetone-chloroform-methanol mixture (figure 2.2f) shows the most complex

behaviour, with 3 binary azeotropes (one stable, two unstable) and a ternary saddle

azeotrope.

RCMs are used extensively in the qualitative analysis of equilibrium separation pro-

cesses for ternary mixtures as they provide an intuitive graphical means of visualizing

separation possibilities, and the constraints imposed by binary or ternary azeotropes

(Villiers et al. 2002). The dynamics of simple distillation processes have been exten-

1Containing only a single liquid phase
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2. BACKGROUND AND LITERATURE REVIEW

(a) IPA-ethanol-methanol (b) Water-ethanol-methanol

(c) IPA-water-ethanol (d) Ethanol-MEK-toluene

(e) DCM-methanol-ethyl acetate (f) Acetone-chloroform-methanol

Figure 2.2: Residue curve maps for ternary mixtures; solid circles denote azeotropes;
arrows show increasing temperature; [s] = saddle; [sn] = stable node; [un] = unstable
node
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sively studied (Doherty & Perkins 1978a,b), and have been applied in the design and

analysis of packed and staged distillation columns, where residue curves approximate

the composition profiles of packed distillation columns at infinite reflux (van Dongen &

Doherty 1985). Wahnschafft et al. (1992) extended the application of RCMs to columns

at finite reflux. They developed a pinch-point curve for a column, consisting of the locus

of points on residue curves at which the tangent passes through a product composition.

A similar approach was used by Fidkowski et al. (1993b) who use the term distillation
limit to refer to the pinch-point curve.

Residue curve maps also have been constructed for heterogeneous mixtures by Mat-

suyama (1978) and Pham & Doherty (1990a), who demonstrated that equation 2.17

applies also to heterogenous systems. In that case, the liquid mole fractions are re-

placed by the overall liquid mole-fractions xoi , and and additional equilibrium expres-

sions between the liquid phases also apply:

xoi = αxIi + (1− α)xIIi i = 1, 2 . . . n (2.22)

xIIi = KLLxIi i = 1, 2 . . . n (2.23)
n∑
i=1

xIi = 1.0
n∑
i=1

xIIi = 1.0 (2.24)

where α is the fraction of liquid phase I in the total liquid, and KLL is an equilibrium

ratio between liquid phases. The superscripts I and II denote the two liquid phases.

A further restriction applies to heterogenous azeotropes in that they cannot be stable

nodes i.e. they cannot be maximum-boiling. Also, the compositions of the two liq-

uid phases (at either end of a liquid-liquid tie-line) lie in different distillation regions;

this feature is used in the operation of azeotropic distillation systems for separation of

ethanol and water using a cyclohexane entrainer, where the presence of cyclohexane

induces a phase split in the column decanter (Doherty & Malone 2001).

Studies of the use of residue curve maps in the design and optimization of distillation

columns and separation sequences include those of Ryan & Doherty (1989) and Pham

& Doherty (1990a,b). The details of the topology of a residue curve map allows de-

velopment of flow-sheets for proposed separations, including the placement of recycle

streams (Bruggemann & Marquardt 2011). Stichlmair & Herguijeula (1992) consider

standardized column configurations for some prototypical RCM topologies, and show

application to several industrial mixtures. Doherty & Perkins (1978a,b, 1979) pre-

sented a thorough study of the topology of residue curve maps, including methods

for checking the topological consistency. Refer also to Doherty & Cardorola (1985),

Foucher et al. (1991), Laroche et al. (1992) and Wahnschafft et al. (1992) for further

discussion of the features of residue curve maps. The residue curves described above

find application in the design of continuous (packed) distillation columns. An analo-

gous development for staged (trayed) distillation columns is that of distillation lines.
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These are essentially iterated maps of the vapour-liquid relationship, repeated over the

number of theoretical stages of a trayed column (Castillo & Towler 1998). The article

by Widagdo & Seider (1996) reviews developments in residue curve maps as applied

to azeotropic distillation processes. The textbooks by Stichlmair & Fair (1998) and

Doherty & Malone (2001) (and the references therein) offer detailed examples of the

use of topological information from residue curve maps in the design of distillation

sequences.

The RCM defining equation (2.17) represents a dynamical system, the fixed points (or

singular points or stationary points) of which are the pure components and azeotropes

of the residue curve map (Fien & Liu 1994). Thus, the right-hand side of equation 2.17

equals zero at pure components and azeotropes only, and the system has no other fixed

points. Also, using the stability theory of non-linear ordinary differential equations, the

signs of the eigenvalues of equation 2.17 in the vicinity of the fixed points dictate the

type of the fixed points (Varma & Morbidelli 1997). Recalling that the mixture is at its

bubble point throughout, the temperature derivatives in the vicinity of the fixed point

can also be used to infer the signs of the eigen-values; if ∂T/∂xi is negative (positive),

the liquid bubble point decreases (increases) as we progress in the eigen-direction away

from the fixed point (Kiva et al. 2003). Note that for a ternary mixture, equation 2.17

has two eigenvalues at each fixed point. Three types of fixed points can be distinguised

(Blagov & Hasse 2002):

• If all eigenvalues are negative, the fixed point is a stable node [sn], so that tem-

perature decreases in all directions

• Conversely, if all eigenvalues are positive, the fixed point is an unstable node

[un], so that temperature increases in all directions

• If eigenvalues have different signs, the fixed point is a saddle [s], so that temper-

ature increases in some directions, and decreases in others

Note that residue curves also lie along the edges of the ternary composition space. In

addition, two features of residue curves are relevant:

• Residue curves cannot intersect

• Residue curves always move along the bubble point surface in the direction of

increasing temperature

Thus, the behaviour of the residue curves in the neighbourhood of a fixed point there-

fore depends on the shape of the bubble point surface near the point. The stable and

unstable nodes are known in a mathematical setting as attractor and repellor respec-

tively.
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2.2.2 Computation of Azeotropes

Locating all the azeotropes of a given mixture is a fundamental but surprisingly difficult

step (Fidkowski et al. 1993a). One approach is to simply plot residue curve maps

as in figure 2.2. The existence of an azeotrope can be implied from the flow of the

residue curves such as figure 2.2d where existence of an ethanol-MEK minimum-boiling

azeotrope is implied from the fact that residue curves move away from it, towards

either the pure ethanol or pure toluene nodes. Similarly, the existance of a maximum-

boiling acetone-chloroform azeotrope is implied in figure 2.2f by the fact that residue

curves track towards it.

The definition of the condition for an azeotrope to exist is given by:

f(x) ≡ y∗(x)− x = 0 (2.25)

where y∗(x) represents the vapour molefraction in thermodynamic equilibrium with

liquid molefraction x. The vector notation in equation 2.25 implies that the azeotrope

condition applies to each component. An accurate phase equilibrium model is required

to allow the azeotropes to be computed. This becomes more difficult for heteroge-

neous systems where both vapour-liquid and liquid-liquid equilibria are involved as it

is difficult to find a model capable of representing both types of equilibria accurately

(Gmehling et al. 2012). Fidkowski et al. (1993a) developed a homotopy-based method

that efficiently locates all of the azeotropic compositions of a mixture. Tolsma & Bar-

ton (2000a) extended this approach to include heterogeneous mixtures. Alsam & Sunol

(2006) further extended the homotopy approach to include non-ideal behaviour in both

liquid and vapour, and analysed sensitivity of azeotropic composition to parameters of

the NRTL activity coefficient model. A Newton method-based homotopy approach for

calculation of azeotropes, using analytic form of Jacobian is presented in chapter 4. A

method for computation of pseudo-azeotropes is also discussed in chapters 3 and 4.

2.2.3 Residue Curve Maps under non-equilbrium conditions

Implicit in the definition of residue curves in equations 2.17-2.21 is that thermody-

namic equilibrium is assumed to apply to the vapour-liquid mixture. This reflects the

common practice of assuming that vapour and liquid phases are in equilibrium when

designing distillation and related processes, combined with a tray efficiency for trays, or

a Height Equivalent to a Theoretical Plate (HETP) for packing. However, real separation

processes normally operate at conditions other than equilibrium, so that the separation

achieved depends on the rate of mass transfer between phases (Taylor & Krisha 1993),

or the degree to which phases are not at equilibrium. Non-equilibrium or rate-based
models have been developed in recent decades that employ correlations of heat and
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mass-transfer coefficients to describe mass transfer processes in specific apparatus such

as distillation packings and trays (Taylor et al. 2003). Of course, the conventional

residue curve analysis does not apply when the assumption of equilibrium between

phases does not hold. To adress this a number of workers have developed approaches

to account for non-equilibrium effects, while maintaining the general framework of

residue curves. Taylor et al. (2004) developed the notion of a Composition Trajectory
Map (CTM) that includes multicomponent mass transfer effects (via Maxwell-Stefan

equations) for both packed and trayed columns at total reflux. Using vapour-phase

component mass balances expressed in a matrix form (see section 12.3.1 and 13.3.1

of Taylor & Krisha (1993)), they expressed the differential liquid composition changes

over a dimensionless height in terms of the matrix of overall number of transfer units

for mass transfer, for both packed and trayed distillation columns. By integrating the

differential composition over the dimensionless height, individual composition trajec-

tories and the overall CTM for a given mixture can be computed. A unified model was

presented that accounted for both trays and packing, as well as for residue curves in

the limiting case that the binary mass transfer coefficients are all equal (equal facility

for mass transfer), and assuming no resistance to mass transfer in the liquid phase.

The vapour and liquid remain at their dew and bubble points respectively with this ap-

proach; the impact of mass transfer resistance due to non-condensibles (which would

alter the vapour-liquid interface temperature) is not included. Latent heats for the vari-

ous components are assumed to be equal, implying constant molar flows in the column.

Sensible heating contributions to the energy balance are also excluded. A key feature

of the model of Taylor et al. (2004) is that the fixed points of the CTM are the same

as those of the corresponding RCM i.e. pure components and azeotropes; however the

boundaries computed using the non-equilibrium CTM approach are not in general the

same as those of an RCM. Experimental verification of non-equlibrium trajectories in

distillation has been provided by a number of workers (Springer, Baur & Krisha 2002,

Springer, Buttinger, Baur & Krishna 2002, Springer et al. 2003).

Baur et al. (2005) studied mass transfer effects in column design, showing that while

pinch-point curves and pitchfork distillation boundaries in RCMs are unchanged by

mass transfer effects, composition trajectories may cross the pinch-point curves. Fur-

ther, minimum reflux is affected for less than very sharp separations. Baur et al. (2005)

recommended that mass transfer effects be accounted for when trace components are

a concern in a distillation process.

The model of Taylor et al. (2004) described above distinguishes specifically between

RCMs (where phase equilibrium applies) and CTMs (where phase equilibrium does not

apply). Conversely, a number of workers have attempted to include non-equilibrium

mass transfer effects directly into the calculation of RCMs themselves. Sidhar et al.

(2002) used a form of the component material balance for the vapour phase that is

inconsistent in that it implies all ∆yi = 0 when the binary mass transfer coefficients
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are equal (an unlikely but not infeasible situation), which implies that the total molar

flux, and the individual molar fluxes are zero in that situation (Taylor et al. 2004). The

model of Sidhar et al. (2002) also imples that
∑
Ni∆HV

i = 0, which implies that the

molar fluxes have mixed signs, given that the heats of vapourization are all of the same

sign. This would imply that some components would be condensing while some are

evaporating; what is unclear is from where the components would condense, since the

basis assumption of residue curve analysis is that the liquid which evaporates is imme-

diately removed (Doherty & Malone 2001). Consequently, as outlined in the critque

by Taylor et al. (2004), the model proposed by Sidhar et al. (2002) is fundamentally

flawed.

Silva et al. (2003) presented a model which gives the molar flux in the vapour film

in terms of a difference in partial pressures at the vapour-liquid interface and in the

bulk vapour. The partial pressures were expressed in terms of vapour molefractions

at interface and in bulk, and the total pressures at interface and bulk, resulting in a

single parameter for each component that encapsulates the mass transfer rate. In this

model the interface partial pressure is computed from a conventional bubble-point cal-

culation; the partial pressure is determined from an expression involving mass transfer

coefficients and total pressures at interface and in bulk. However, having a different

total pressures at vapour-liquid interface and in bulk is not a realistic situation except

in cases where bulk flow of material occurs; this is not applicable to cases involving

mass transfer due to diffusion only. This model was also used by Teixeira et al. (2009),

in an analysis of boundaries in non-equilibrium batch distillation, who justified the use

of different pressures by stating that the vapour removal rate in an residue curve map

analysis occurs at infinite velocity, thereby requiring a very high pressure drop across

the film at the vapour-liquid interface. However, standard practice in mass transfer

models (and in this thesis) is to assume that pressure is constant in the film adjacent to

the phase boundary (Taylor et al. 2004). Further, the procedure of Silva et al. (2003)

requires numerical values for mass transfer coefficients for all n species, when in fact

only n − 1 mass transfer rate expressions can be used in a consistent mass transfer

model, since the fluxes must sum to zero (Taylor & Krisha 1993). Given these short-

comings, the example calculations for ternary mixtures presented by Silva et al. (2003)

and Teixeira et al. (2009) and are therefore likely to be inaccurate.

Castillo & Towler (1998) developed non-equilibrium versions of both residue curves

and distillation lines, by employing a Murphree type efficiency to describe the modi-

fied equilibrium between liquid and vapour on a distillation tray, using the following

expression:

yi =
(
1 + EMV

i Ki − EMV
i

)
xi

where Ki = yi/xi, and EMV
i is the Murphree efficiency for component i. While this

approach is perfectly valid for distillation lines (which apply to staged separations),
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it is not appropriate for the open evaporation process upon which residue curves are

based (Taylor et al. 2004). The Murphree efficiency was developed for continuous

staged distillation processes, not the unsteady evaporation process which is the basis for

residue curves. Consequently, in the context of residue curves, the use of a Murphree

efficiency can be considered as a kind of non-equilibrium parameter, rather than a true

efficiency relationship.

Residue curve maps have also been applied to reactive distillation systems (Barbosa

& Doherty 1988, Doherty & Malone 2001, Huang et al. 2004). It is known that

reactions in the liquid phase can lead to both the appearance and disapperance of

azeotropes, and that reactive azeotropes may exist in mixtures that are otherwise

thermodynamically ideal (Taylor et al. 2006). Residue curve maps have been ex-

tended to consider melt crystallisation by replacing vapour-liquid equilibria with solid-

liquid equilibria (Slaughter & Doherty 1995). The analysis of membrane and hybrid

membrane-distillation systems is another area where residue curve maps have been

applied (Aiouache & Goto 2003, Peters et al. 2008, 2011).

The analogy between residue curve maps and the evaporation maps of this work is

developed in chapter 3. The bubble point temperature of the residue curve maps de-

scribed above is analogous to the mixture wet-bulb temperature in the case of evapo-

ration maps.

2.3 Evaporation and Drying of Multicomponent Mixtures

The drying of mixtures containing multicomponent solvents has numerous industrial

applications including manufacture of pharmaceuticals, juice concentrates, coated lam-

inates, magnetic storage media, and removal of solvent from varnish layers. In this

work drying is distinguised from evaporation in that the drying application leaves be-

hind a solid component. Evaporation of multicomponent liquids occurs in fuel combus-

tion applications. In the following sections, relevant research is reviewed firstly in the

area of evaporation, and secondly for drying involving multicomponent mixtures. The

development of evaporation maps in chapter 3 uses an assumption of gas-phase limited

heat and mass transfer; consequently, section 2.3.1 is relevant to studies of evaporation

of liquid mixtures in that regime. This assumption is relaxed in the model developed

in chapter 7 where diffusion effects are considered. The initial drying phase of wet-

ted solids can behave as though gas-phase limited; consequently, section 2.3.2 focuses

on studies of multi-component drying that examine transitions between gas-phase lim-

ited, and diffusion-limited processes. The literature on solids drying is not the focus of

this work; rather, the emphasis in section 2.3.2 is on studies of multicomponent dry-

ing that examine conditions where the gas-phase limited assumption applies (in which

case the evaporation maps of chapter 3 would apply to solids drying), and where that
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assumption does not apply.

2.3.1 Evaporation of Multicomponent Liquids

Studies of evaporation of multicomponent mixtures have been conducted for various

geometries including films and droplets. For clarity of presentation, previous work

published is grouped into the type of application involved in the papers reviewed. In

chapter 3 a single multicomponent mass transfer model is developed that may be ap-

plied to different geometries by use of appropriate forms for heat and mass transfer

coefficients; consequently, the model of chapter 3 is general in nature, and not limited

to a specific geometry.

Evaporation of mixtures from planar surface: In gas-phase limited drying, the dry-

ing rate is controlled by external conditions only; this is often the case in low-intensity

drying (Luna & Martinez 1998), so that the gas-phase controlled approach may be ap-

plied there also. Martinez & Setterwall (1991) studied isothermal, convective drying of

a number of non-ideal mixtures under conditions of gas-phase-limited heat and mass

transfer. Evaporation fluxes were calculated using a generalized Fick’s law and the lin-

earized theory of Toor (1964) and Stewart & Prober (1954). An evaporation process

may be considered gas-phase controlled if the resistance to mass transfer lies in the gas

phase only. Experiments included a Teflon-substrate wetted with ethanol-MEK-water

(see also chapter 3 for comparison of their data with model produced in this work).

Calculations by Martinez & Setterwall showed that liquid composition, liquid temper-

ature, gas composition and diffusional interactions had a significant impact on selec-

tivity, while the effect of gas temperature and flow-rate was less significant. They also

concluded that any desired selectivity may be achieved by appropriate manipulation

of the gas composition (gas pre-loading). Martinez & Setterwall also analyzed data of

Riede & Schlunder (1988) who examined evaporation of IPA(isopropyl-alcohol)/water

mixtures and found that IPA selectivity was enhanced by higher humidity (water con-

tent) in the gase phase; they (Martinez & Setterwall) showed by calculation that the

higher IPA selectivity was likely to be due to a negative cross-coefficient in the gen-

eralized Fick matrix, which is an insightful example of multicomponent mass transfer

effects.

Riede & Schlunder (1988, 1990) studied the selectivity of a simple evaporation pro-

cess containing a ternary mixture of IPA (isopropyl alcohol)-water-glycerol, where the

glycerol is effectively a non-volatile component. A theoretical analysis of the prob-

lem suggested that the selectivity of the evaporation depended on three mechanisms:

vapour-liquid equilibrium, mass transfer in the gas-phase, and mass-transfer in the liq-

uid phase. The selectivity was also affected by air flow rate and composition, and by the

temperature of the liquid. Experiments indicated that the selectivity could be adjusted
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in any direction by an appropriate selection of evaporation conditions, in particular the

humidity (water content) of the air stream. They found for example that by increasing

the humidity, the selectivity was shifted to a preferential evaporation of IPA.

The evaporation of binary and ternary liquid mixtures containing azeotropes was exa-

mined by Pakowski (1992). For binary mixtures, selectivity curves for evaporation

under different conditions of gas pre-loading were developed; these were obtained

by solving a condition for existence of a pseudo-azeotrope (or dynamic azeotrope or

arheotrope (Sundmacher et al. 2005)) under gas-phase limited conditions. For a num-

ber of ternary mixtures, a multicomponent mass-transfer model was used to generate

concentration paths on ternary diagrams; these paths do not cover the entire compo-

sition space (a topic covered in detail in chapter 3). Pakowski identified the problem

of finding the particular composition that yields a specific terminal composition in the

liquid as a complex matter; in chapter 4 of this work, a bifurcation analysis is used to

identify just these gas compositions (for case of pre-loading with a single gas).

Pakowski (1992) also suggested that minima in the normalised total flux, or in the

entropy generation rate could be used to identify stable pseudo-azeotropes, and that

minima of each correspond to separatrices on the composition ternary map. Location

of minima in evaporation maps is the subject of chapter 6 of this thesis.

The evaporation of ternary mixtures in batch and continuous modes has been investi-

gated by Luna & Martinez (1998, 1999). Using a gas-phase limited model for evapo-

ration of multicomponent liquid films, they analysed the governing system of ordinary

differential equations to determine their mathematical stability in terms of the eigen-

values of the Jacobian matrices evaluated at the fixed points of the mixture (pure com-

ponents and pseudo-azeotropes). They demonstrated bifurcations in the batch mode

as the concentration of the gas phase with one of the ternary components increased

(a topic which is expanded upon in chapter 4 of this work). They found that binary

pseudo-azeotropes are stable when the combination of selectivities of the binary com-

ponents is negative, and that ternary pseudo-azeotropes were either unstable or saddle

points. For the continuous case, fixed points represent dynamic equilibria dependent

on the inlet gas/liquid ratio; as the ratio approaches infinity, the behaviour approached

that of a batch process.

Evaporation of polymer/solvent films: The drying of polymeric films has been an

active area of research; many lacquer, paint and varnish coatings are obtained by a pro-

cess of solvent evaporation from an initially dilute solution (Vrentas & Vrentas 1994).

These films are often considered as either binary mixtures of solvent and polymer, or

ternary mixtures consisting of solvent, non-solvent and polymer components. Choice

of a particular mixture is based on various goals including the solubilization of one or

more polymeric components, control of the rate of drying and development of desired
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surface tension versus relative volatility required for defect minimization (Dabral et al.

2002).

Guerrier et al. (1998) studied the drying kinetics of polymer films cast from a polymer-

solvent solution, including diffusion of solvent through the varnish layer, moving in-

terface, and coupled heat and mass transfer between the interface and the drying air.

Drying operations of this type are characterised by two regimes: a "fast" regime where

evaporation flux from the surface is similar to that of the evaporation of pure solvent,

follwed by a "slow" regime where both diffusion with the film and evaporation rate

decline significantly.

Dabral et al. (2002) considered the composition paths of ternary polymer solutions.

An isothermal model was used, in which a solvent and non-solvent evaporated from

the surface, but the polymer component was non-evaporating. The phase separation

of solvent/polymer solutions (or "blush") was explained in terms of the drying process-

paths and the two-phase immiscible region. Non-Fickian transport occurs during the

drying of some polymers which can develop stress during drying and have high shear

modulus; non-Fickian drying was analyzed by Vinjamur & Cairncross (2002, 2003)

who developed a model to include solvent transport due to stress gradients. Numerical

modeling of non-isothermal drying of film coatings has been carried out by Arya (2013)

and Arya & Bhargava (2015) using a finite-element method. The model developed in

chapter 7 of this work employs a finite volume technique to solve a related system of

equations.

Luna et al. (2005) and Gamero et al. (2006) developed an analytic solution to the

problem of isothermal drying of a liquid film assuming constant physical properties;

variation in liquid diffusion coefficients along the process path was accounted for by a

piecewise application of the solution using averaged coefficients from preceding time

steps.

Evaporation of droplet mixtures: There have been numerous studies on evapora-

tion of droplets, both droplets of pure liquid, and of multicomponent mixtures. March-

ese & Dryer (1996) studied the effect of liquid mass transport on the combustion and

extinction of bicomponent droplets of methanol and water. Abramson & Sirignano

(1989) developed an extended film theory of heat and mass transfer for droplets that

is widely used in other studies of droplet vapourisation. This model includes effect of

variable thermophsyical properties, the effect of Stefan flow on heat and mass trans-

fer between droplet and gas, and the effect of roplet internal circulation and transient

liquid heating; a simplified effective thermal conductivity is used to account for tran-

sient heating of the droplet, as an alternative to the classical Hill’s vortex model (Clift

et al. 1978). Daif et al. (1998) conducted an experimental study of multicomponent

fuel vaporisation for heptane-decane mixtures and modelled the vaporisation rate suc-
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cessfully using the model of Abramson & Sirignano (1989) for both natural and forced

convection. In that work, the droplets were suspended on filaments in the flowing gas

stream. In contrast, Maqua et al. (2008) used a laser-induced fluorescence technique

to measure internal temperatures of evaporating binary droplets (acetone/ethanol) in

falling droplets at high gas temperature. Bader et al. (2013) investigated ideal and

non-deal behaviour of ethanol/iso-octane droplets via a parametric study over a range

of ambient pressures and temperatures. The employed binary and ternary diagrams to

analyse the transient droplet behaviour and used a separation factor as a quantitative

means to measure the effective relative volatility of each component.

Other work on droplets includes that of Pakowski (1990, 1992, 1994) who studied

evaporation of droplets of binary (IPA/water, methanol/water) and ternary (ethanol/

chloroform/hexane, acetone/chloroform/methanol) mixtures using a Maxwell-Stefan

model, and plotted computed droplet composition profiles on a ternary diagram. In

that work, droplets were suspended on a glass fibre and exposed to a gas flow of

known velocity, temperature and humidity. A lumped model was used to model the

evaporation process (ignoring diffusion effects within the liquid). Pakowski (1990)

found that that by modification of the concentration of the drying air, the location of

stable pseudo-azeotropes could be affected. This work in particular has motivated the

calculation and presentation of composition profiles on ternary diagrams that is the

focus of chapter 3 of this thesis.

The vapourisation of fuels during combustion processes is an example of a common

application of multicomponent evaporation. Typically the liquid fuel is sprayed un-

der pressure into a combustion chamber. The rate of vapourisation is critcal as the

vapourisation is generally the rate-determining step in the overall burning rate (Sirig-

nano 2010). The overall combustion process involves heat- and mass-transport as well

as fluid-dynamics (within an engine cylinder for example) and chemical kinetics (de-

scribing the combustion reaction). Turbulence in the vapour-phase, as described by the

Reynolds number is an important indicator of the flow-regime; this is in turn based

on droplet diameter, droplet-gas relative velocity and gas phase properties such as vis-

cosity and density. In addition to the vapour-phase, there may be internal circulation

within the droplet itself driven by shear forces at the interface (Sirignano 2010).

Extensive effort has been invested in the development of computational fluid dynamics

(CFD) codes for the simulation of fuel droplet heating, vapourisation and combustion

in internal combustion engines. In addition to the solution of the momentum (Navier-

Stokes) equations during combustion cycles, a model of droplet vapourisation is re-

quired. Simplified models for radiative heating are generally employed. For combus-

tion of real (multicomponent) fuels, Sazhin (2006) concludes that the distillation curve

model is a reasonable compromise between accuracy and CPU efficiency. Commerical

codes (FLUENT, VECTIS, STAR-CD, PHOENICS) and public domain (KIVA) codes are
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available for modelling or droplet vapourisation and combustion. Sazhin (2006) pro-

vides a comprehensive review of advanced models of fuel droplet heating evaporation

and combustion characteristics.

Real fuels contain a large number of hydrocarbon components, so that models based on

distillation curves or pseudo-compoents are often used. Burger et al. (2003) modeled

fuel droplet evaporation using physical properties derived from a ASTM D-86 distilla-

tion curve model of the fuel.

Kneer et al. (1993) studied the effect of variable liquid properties on diffusion- con-

trolled evaporation of multicomponent droplet. Bader et al. (2013) performed a para-

metric study of the influence of non-ideal VLE on the evaporation of droplets contain-

ing a range of ethanol/iso-octane mixtures, using a lumped model for the droplet and

adopting the approach of Abramson & Sirignano (1989) for evaporation rate. Randolph

et al. (1986) examined the importance of liquid phase diffusional resistance in multi-

component droplet gasification using theory and falling-drop experiments. They found

the gasification mechanism to be intermediate to those of a batch distillation (i.e. a

residue-curve) and a liquid-phase diffusion limited steady state. Kim et al. (1990) stud-

ied the gasification of non-azeotropic and azeotropic (1-propanol/tetrachloroethene)

droplets finding that the "gasification azeotropic" composition was different from the

azeotropic point and was determined by the specific combustion parameters (similar

to a pseudo-azeotrope). By adding a third component (n-hexadecane) they also found

that the azeotropic character could be broken (similar to an extractive distillation pro-

cess). The books by Sirignano (2010) and Kuo (2005) discuss the fluid dynamics of

droplets for combustion processes in detail.

Evaporation of solvent spills: The evaporation characteristics of pools of multicom-

ponent liquid are also relevant for models of the combustion of fuel spills. Accurate

predictions of the amount of vapour released and estimates of vapour concentration re-

sulting from spills are also important for hazardous-area rating of industrial plant (Lee

2002). Okamoto et al. (2010) measured evaporation rates by loss-in-weight from pools

of a number of hydrocarbons (n-pentane, n-hexane, n-heptane, toluene, p-xylene) un-

der stagnant conditions. Results were compared against a simple model incorporating

vapour pressure and activity coefficients for the fuels. The same workers also developed

a model to predicted flash-point of the mixtures during evaporation.

2.3.2 Drying of Solids Containing Multicomponent Liquids

The drying of materials wetted with water has been the subject of innumerable theo-

retical and experimental studies which have yielded qualitative understanding of the

mechanisms involved. The development of mathematical predictive models is compli-
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cated by the hysteretic and difficult-to-quantify transport phenomena in porous mate-

rials (Keey 1972). Thus, in spite of the extensive work on the topic, it is not gener-

ally possible to reliably predict drying curves for all but the most simple applications

(Pakowski & Mujumdar 2006). Many industrial processes involve drying of products

which contain not only water, but also solvents or other volatiles; drying of foodstuffs

and pharmaceutical products are but two examples. In many cases the quality of a

product can be altered by the drying conditions; in particular, drying conditions may di-

cate that the selectivity of a volatile component is affected, so that a component may be

removed preferentially to a greater or lesser extent. For aroma-retention in foodstuffs,

steep drying conditions may lead to greater retention of aromatics, even though they

may be more volatile (have higher vapour pressure) than other components present.

This effect is due to selective diffusive effect in the liquid which retards the diffusion

of the aromatic compounds (Coumans et al. 1993). By contrast, the drying of pharma-

ceutical compounds may target the removal of toxic organic solvents while retaining

moisture to aid subsequent tabletting steps. Paudel et al. (2013) considered effects

of solvent type and concentration on the formation of amorphous solid suspensions

of API (active pharmaceutical ingredients) for spray-drying. For API formulations, the

selection criteria selection for a suitable solvent mixture include:

• high solubility of the API and other additives

• generation of a solution with acceptably low viscosity

• low toxicity; see also ICH guidelines on residual solvent (ICH 2011)

• high volatility for ease of evaporation during drying

• non-combustibility (e.g. in a spray-drying environment) (Miller 2012)

The drying of solids wetted with multicomponent mixtures has characteristics that are

common to those of conventional single-component drying. At high moisture content,

a period of constant-rate drying occurs (constant rate period); the temperature is also

constant during this period. The porous solid reaches the wet-bulb temperature of the

mixture during this time. In this period, mass transport from within the solid to the

surface is equivalent to evaporation rate of a free-liquid surface of the same geometry

and drying conditions (Steinbeck 1999), so that capillaries transport as much material

to the surface as can be evaporated. If material cannot be transported to the surface

at a sufficient rate, the wet core in the porous material shrinks and the drying rate

declines; this is the falling rate period.

While the research into drying of water-wet materials is extensive, the work done on

drying of solvent-laden (solvents other than water) is less complete. Thijssen & Rulkens

(1968) and Thijssen (1971) studied aroma retention during the drying of foodstuffs, by

spray-drying solutions of water, ethanol and sugar. As the drying progressed the sugar

formed a membrane-like coating on the droplet surface. The smaller, less volatile water

molecules were apparently able to diffuse more rapidly through the coating than the
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larger, more volatile ethanol species; put another way, the water had a higher effective

diffusion coefficient in the coating than the ethanol, and the process was consequently

selective in favour of water.

Thurner & Schlunder (1986) and Heimann et al. (1986) studied the evaporation of

binary IPA-water mixtures from both a free-surface, and from porous materials wetted

with IPA-water. At low drying rates they found the selectivity to be governed by the rel-

ative volatility of the components in the mixture. At high drying rates they found drying

to be non-selective due to diffusion effects in the liquid side (mass transfer resistance).

Non-selective drying also occurred when a pseudo-azeotrope formed in the liquid; in

that situation, the less volatile compound can be preferentially removed provided the

solvent/water composition is above the pseudo-azeotrope, a situation analogous with

conventional azeotropes in distillation processes.

Schwarzbach & Schlunder (1993) studied evaporation of IPA-water mixture through

sintered materials of various porosity floating on the liquid surface. At concentrations

above the azeotropic composition they found non-selective evaporation at all pore sizes

tested. Below the azeotrope point however, they found selective behaviour that reduced

in effect as the pore size reduced. They attributed this phenomenon to differences in

the bulk density and surface tension leading to both Bénard and Marangoni convection,

and a very large enhancement of mass transfer through the plate which was no-longer

diffusion-controlled.

Schwarzbach (1986) and Schwarzbach & Schlunder (1993) examined porous particles

wetted with a binary mixture and dried in a fluidized bed. They found that there

was a transition from an initial state of equilibrium to a phase of diffusion-controlled

mass transfer during the drying process. With increasing particle Biot number (ratio

of external to internal mass-transfer resistance) the transition to a diffusion-controlled

regime occurred earlier in the process. For small Biot numbers the drying remained

in an equilibrium-controlled state throughout. The models of Schwarzbach (1986)

and Schwarzbach & Schlunder (1993) employ a modifed version of the shrinking-core

approach for drying of spherical particles wetted with one component (i.e. water);

the solid particle is divided into a partially saturated core and a dry outer shell, and a

sharp evaporation front is assumed. An effective diffusivity was employed to account

for the combined effects of gas and liquid diffusion. The model was successfully used

to describe fluidized bed drying of alumina particles wetted with an IPA-water mixture.

Application of a shrinking core model to fluidized bed drying Schwarzbach & Schlunder

(1993) suggests that in the early stages, when the air at the surface is close to saturated,

the evaporation flux from the wet core is controlled by equilibrium, and composition

changes are limited by azeotropic conditions. In the later stages, as the process becomes

gas-phase controlled the composition changes become limited by a pseudo-azeotrope

(Pakowski 1994).
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Viduarre & Martinez (1997) examined the continuous, non-isothermal drying of solids

wetted with ternary mixtures, and studied the influence of process variables using a

gas-phase-limited model. They found that gas composition had the most pronounced

effect on the computed composition trajectories; the extent of these effects depended

on the gas/liquid flow rate ratio (both liquid and solid move continuously through the

notional dryer as it operates in a continuous mode). Viduarre & Martinez also found

that the temperature of the solid material affected the location of positive/negative

selectivity areas on a ternary composition space. They analysed the effect of addition

by conduction during the process, a practice that occurs by contact heating in some

manufacturing processes; for the acetone-ethanol-water ternary mixture they found

that additional heat addition was unfavourable for the evaporation of the more volatile

components (acetone, ethanol) as the higher temperature increases the selectivity for

water.

Pakowski (1994) gave an overview of research on drying of solids containing multicom-

ponent mixtures, include impact of liquid-side controlled evaporation, and evaporation

from porous solids. Pakowski (1990) identified two cases for liquid-side diffusion con-

trol: evaporation from a stationary liquid surface supplied by bulk flow from a reservoir

of constant composition, and evaporation from a receding liquid surface. For the first

case, the liquid side separation factor KL (Thurner & Schlunder 1986) can be used to

distinguish situations where liquid side resistance will dominate:

KL = exp
(
− ṁv

kLρL

)
where kL is a liquid-side mass transfer coefficient, and ṁv is evaporation rate. When

KL → 0, gas-phase control applies, no concentration gradients exist in the liquid phase,

the evaporating flux has constant composition, and the process is non-selective. For the

other liming case (receding liquid with diffusion through capillary to surface, capillary

sealed at one end), Pakowski (1990) showed by simulation for an IPA-water mixture

that selectivity for the more volatile component initially falls before rising again at the

end of the process due to diffusion effects in the capillary.

Steinbeck & Schlunder (1997) and Steinbeck (1999) tested the drying of mixtures of

IPA/water/1-butanol in a bed of glass beads. This mixture forms a two-phase region at

lower IPA concentrations. Composition trajectories that passed through the two-phase

region were tested experimentally but no significant alteration in the drying rate was

observed. Steinbeck experimentally detected the presence of a pseudo-azeotrope by

virtue of composition trajectories that tended to pure water or pure 1-butanol depend-

ing on the initial composition, and on the drying conditions. The pore size of the solid

had a noticeable impact on selectivity within the two-phase region, but that effect was

not present for composition paths in the single-phase region. This was attributed to

differences in density and wettability of the two-phase mixture.
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Gamero & Martinez (2005) conducted an experimental and theoretical study of drying

of a porous solid (sand) wetted with ternary mixtures (water/methanol/ethanol and

2-propanol/methanol/ethanol). A mathematical model involving isothermal capillary

movement of the liquid and diffusion in gas and liquid phases was developed. Beyhaghi

et al. (2011) conducted experiments on the transport of multicomponent hydrocar-

bons (decane, dodecane and hexadecane) in synthetic wicks made of sintered polymer

beads. These wicks are representative of consumer products such as air-fresheners.

They used a volume-averaged form of the transport equations to describe the limiting

process of capillary-pressure-driven transport in the wick, and found the evaporation

rate to be a strong function of the tortuosity of the wick itself, and of the gas-phase film

thickness at the wick-air interface. Berggren & Alderborn (2001a,b) investigated effect

of ratio of ethanol/water content on the porosity and tabletting behaviour of cellulose

pellets, finding higher drying rates at higher ethanol content and that higher ethanol

content increased the porosity of the solid product.

2.4 Chapter Summary and Conclusions

This chapter summarises the status of a number of areas that form the basis for the

work of this thesis. The governing equations of mass and heat, and the theory of

the Maxwell-Stefan equations of multicomponent mass transfer described above are

used to develop the models for evaporation maps in the next chapter. The background

material on properties of residue curve maps (RCMs) sets the scene for the development

of evaporation maps which can be viewed as an analogy of RCMs for non-equilibrium,

gas-phase mass transfer-limited conditions. The review of evaporation and drying of

multicomponent mixtures serves as background to the intended purpose of evaporation

maps and helps to place them in a proper context.
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Chapter 3

Evaporation Maps for Gas Phase
Limited Conditions

In this chapter, the idea of evaporation maps is developed. Evaporation maps are seen

to be a convenient way of representing the dynamic composition of evaporating liquid

mixtures. Specifically, these maps represent the residual composition of evaporating

ternary non-ideal mixtures over the full range of composition. The maps consist of

evaporation trajectories that are selected to portray graphically the "flow" of residual

composition over the entire composition space (i.e. the ternary diagram). The map

then gives a straightforward representation of the direction of composition changes in

the mixture as the evaporation progresses. A number of ternary mixtures of varying

levels of non-ideality are used as examples, including a number of common solvents of

industrial importance (e.g. ethanol, methanol, water, MEK, toluene, acetone). A planar

geometry, as shown in figure 3.1, is used as a basis for the development. Evaporation

maps for the various mixtures show how the residual liquid composition is in many

cases sensitive to the initial composition, so that an appropriate selection of the initial

composition can be made if there is a particular undesirable solvent to be avoided in

the final product. The liquid mixture is at its wet-bulb temperature throughout the

evaporation/drying process.

Evaporation may occur into a pure inert gas, or into one pre-loaded with a known

fraction of one or more of the ternary components. The model developed here uses an

exact solution to the Maxwell-Stefan equations for mass transfer in the gas film, with a

lumped approach applied to the liquid phase. Solutions to the evaporation model take

the form of trajectories in temperature-composition space, which are then projected

onto a ternary diagram to form the map. The evaporation process considered here

involves gas-phase limited heat & mass transfer from a liquid or wetted-solid surface,

over which a gas flows at known conditions.

The evaporation maps are analogous to residue curve maps (RCMs) which are used ex-

35



3. EVAPORATION MAPS FOR GAS PHASE LIMITED CONDITIONS

tensively in the analysis of equilibrium separation processes for ternary mixtures. The

similarities between RCMs and the residual composition of evaporating liquid mixtures,

under conditions of gas-phase controlled mass transfer, was highlighted by Luna & Mar-

tinez (1999). As noted in section 2.2, the singular points or fixed points of the RCMs

are the pure components and azeotropes of the mixture (Fien & Liu 1994). In the case

of evaporation maps developed here, the pure components are also fixed points of the

maps, as are the binary and ternary pseudo-azeotropes of the mixture (where they exist).

To compute the evaporation maps, these pseudo-azeotropes under the given evapora-

tion conditions must first be located. As with RCMs, the fixed points may be stable or

unstable nodes, or saddles. For evaporation into a pure inert gas, trajectories originate

from a neighbourhood of each unstable node, terminating at a stable node. In addition

to the component mass balances and phase equilibrium relationships, an overall energy

balance for the liquid phase is required for computation of the evaporation maps; the

energy and component mass balances are coupled through the multicomponent fluxes.

The topics covered in this chapter are as follows:

• The theory section 3.1 deals with the calculation of multicomponent fluxes using

an analytic solution to the Maxwell-Stefan equations, the development of heat

and material balance for an evaporating mixture, a model for calculation of mul-

ticomponent wet-bulb temperature, and a model for calculation of binary and

ternary pseudo-azeotropes

• The numerical methods section 3.2 covers a Newton-method approaches for cal-

culation of the multicomponent fluxes. The Newton-method is combined with

the heat and material balances and integrated to form the evaporation trajecto-

ries. Newton-based methods are also developed for the multicomponent wet-bulb

temperature and pseudo-azeotropes using analytic forms of the Jacobian matrix

in each case. An optimization method for location of evaporation trajectories

to cover the ternary composition space is also developed. The pseudo-azeotrope

method is seen to be is an augmented form of the wet-bulb method. The forms for

the analytic derivative terms used in Jacobian for the Newton-method calculation

are also discussed.

• Section 3.3 covers model validation (for droplets and planar geometery), some

numerical results on wet-bulb temperature and ultimately, generation of the evap-

oration maps for specified gas-phase conditions (air temperature and velocity).

• Finally, in section 3.4 the multicomponent wet-bulb temperature model is shown

to reduce to a simpler, well-known form for single component fluids, where mul-

ticomponent effects can be neglected.
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3.1 Theory

The development of the theory required to compute the evaporation maps is outlined in

the following sections. The computation of multicomponent mass transfer coefficient

matrix using an analytic solution to the Maxwell-Stefan equations is first presented;

this matrix is then combined with mass transfer coefficients for the planar geometry. It

is then shown how the fluxes are used in the calculation of evaporation trajectories. The

computation of multicomponent wet-bulb temperature at given liquid composition is

then presented. This is then further extended to the calculation of binary and ternary

pseudo-azeotropes. Each of these steps is required to compute the evaporation maps.

To set the scene, figure 3.1a shows the configuration used to develop the theory for

this work; this would be representative of a horizontal liquid film (in case of drying

of polymer sheets), or a solid saturated with liquid (e.g. tray dryer for pharmaceutical

prodution), or perhaps an evaporating pool of spilled solvent mixture. A cross-sectional

view of the evaporation process is shown in figure 3.1b. A steady stream of gas of

known temperature TG and composition yGi flows over the planar surface. A notional

film of thickness ` is assumed to exist at the vapour liquid interface; temperature and

composition gradients exist within this film only, reaching the values of the flowing gas

stream at the outer edge of the film. Using an IPA/ethanol/methanol liquid mixture as

an example, the individual diffusive fluxes of the evaporating components are denoted

by JIPA, JETOH and JMEOH. A corresponding diffusive flux of air occurs in the opposite

direction. For evaporation of liquid mixtures, a heat flux qG occurs from the liquid to

the vapour phase due to evaporative cooling. The liquid composition is xi for each

component i, while the corresponding gas-phase composition at the interface is ySi .

3.1.1 Analytic Solution to Maxwell-Stefan Equations

The theory leading to the Maxwell-Stefan equations was given in section A.3. Driv-

ing forces for mass transfer other than concentration differences have been ignored

in this work. From equation 2.2, the Maxwell-Stefan equations for an n-component

isothermal, isobaric, ideal gas system are given by:

dyi
dz =

n∑
j=1

yiNj − yjNi

c Ðij
(3.1)

for gas phase molefractions yi and molar fluxes Ni. The driving force on the left hand

side is the gradient of composition from equation A.74. The Ðij are the Maxwell-Stefan

diffusivities. An evaluation of various film models for multicomponent mass transfer

is given by Smith & Taylor (1983); in this chapter we employ the analytic solution

due to Krishna & Standart (1976) to model mass transfer in the vapour film at the

vapour-liquid interface. For mass transfer through a notional film thickness `, we use a
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(a) Characteristic length d is the length of the exposed surface in direction of gas flow at
velocity uG.

(b) Cross-section of liquid surface with heat flux qG into liquid phase, and molar fluxes Ni into
vapour phase; δ is notional film thickness at vapour-liquid interface; diffusive fluxes JIPA

etc. are shown for an example IPA/ethanol/methanol liquid mixture

.

Figure 3.1: Evaporation from surface of ternary liquid mixture.
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normalised dimension η = z/`, so that

1
`

dyi
dη =

n∑
j=1
i 6=j

yiNj − yjNi

c Ðij
(3.2)

= yi

n∑
j=1
i 6=j

− Nj

c Ðij
− ynNi

c Ðin
−
n−1∑
j=1
i 6=j

yjNi

c Ðij
(3.3)

where, in order to eliminate yn from equation 3.2 we write yn as

yn = 1−
n−1∑
j=1

yj = 1− yi −
n−1∑
j=1
i 6=j

yj (3.4)

Equation 3.2 then becomes:

1
`

dyi
dη = xi

n∑
j=1
i 6=j

Nj

c Ðij
− Ni

c Ðin

1− xi −
n∑
j=1
i 6=j

xj

− n−1∑
j=1
i 6=j

yjNi

c Ðij
(3.5)

= yi

 Ni

c Ðij
+

n∑
j=1
i 6=j

Nj

c Ðij

− Ni

c Ðij
+
n−1∑
j=1
i 6=j

(
Ni

c Ðin
− Ni

c Ðij

)
xj (3.6)

so that (moving ` to right hand side):

dyi
dη =

 Ni

c Ðin/`
+

n∑
j=1
i 6=j

Nj

c Ðij/`


︸ ︷︷ ︸

Φii

xi +
n∑
j=1
i 6=j

(
Ni

c Ðin/`
− Ni

c Ðij/`

)
︸ ︷︷ ︸

Φij

xj −
Ni

c Ðin/`︸ ︷︷ ︸
φi

(3.7)

We can therefore re-cast equation 3.7 as:

dyi
dη = Φiixi +

n−1∑
j=1,j 6=i

Φijxj + φi (3.8)

or, in matrix form
d(y)
dη = [Φ](x) + (φ) (3.9)

The analytic solution to equation 3.9 is given by Krishna & Standart (1976):

(y − yo) = [exp[[φ]η]− [I]][exp[Φ]− [I]]−1(y` − yo) (3.10)

where exp[Φ] represents the matrix exponential. Thus, given the total fluxes Ni, the

composition profile can be obtained analytically. Using ∆y for the concentration differ-
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ence across the film, the generalized form of Fick’s law can be written in matrix form

as:

(J) = −c
`
[D]d(y)

dη = c[k•](∆y) (3.11)

where [D] is the matrix of multicomponent diffusion coefficients. The matrix of mass-

transfer coefficients [k•] is introduced as an alternative approach to calculating the

diffusive fluxes, given that the value of ` is not accessible. At η = 0 (corresponding to

vapour-liquid interface for this work), inserting equation 3.10 into 3.11 and differenti-

ating gives an expression for the diffusive fluxes at the interface:

(J0) = −c
`
[D0][Φ][exp[Φ]− [I]]−1(∆y) (3.12)

With the definition of [k•] from equation 3.11, we have:

[k•0] = D0
`

[Φ][exp[Φ]− [I]]−1 = D0
`

[Ξ0] (3.13)

where [Ξ0] is a correction factor. The exponential matrix term involving exp[Φ] can be

evaluated using Sylvester’s theorem (Greenberg 1978). In the limit asNi → 0 this gives

the zero-flux mass transfer coefficients as [k0] = [D0]/`. To formulate in terms of low-

flux binary mass transfer coefficients κij (which can be evaluated using correlations for

specific geometries), we replace the Ðij/` terms in the rate factor matrices Φ and φ

above with the κij . The matrix [R0] is defined with terms:

R0ii = yIi
κin

+
n∑
k=1

yIk
κik

R0ij = −yIi

(
1
κij
− 1
κin

) (3.14)

where the yIi are calculated at the interface (η = 0). The matrix of low-flux multicom-

ponent mass transfer coefficients is then:

[k0] = [R0]−1 (3.15)

so that the matrix of corrected mass transfer coefficients used in the calculation of the

diffusive fluxes at the interface J0 is finally given by:

[k•0] = [k0] [Ξ0] (3.16)

The subscript 0 is dropped in subsequent use.

Evaporation Maps for
Ternary Non-Ideal Liquid Mixtures

40



3.1 Theory

3.1.2 Application of Analytic Solution to Fluxes in Gas Phase

Section 2.1.1 presented a motivational example of multicomponent diffusion effect

from the classic experiments of Toor (1957, 1964). Evaporation and drying of multi-

component solvent mixtures can entail diffusive interactions not present in drying of

single solvents. Consequently, in this work the Maxwell-Stefan approach is used to

model mass transfer in the gas phase. A lumped description applies to the liquid phase.

For evaporation of a ternary liquid mixture into an inert gas (air), the presence of non-

condensible air implies a quaternary system (n = 4) in the "film". There are 3 flux

expressions (F1 − F3) in 3 of the 4 unknown total fluxes N1 −N3. The total flux of air

(N4) is zero, as air is assumed to be insoluble in the liquid (Stefan diffusion). Following

Taylor & Krisha (1993), discrepancy or residual functions for the total fluxes are defined

as:

Fi ≡ Ji + yGi

3∑
j=1

Nj −Ni = 0 for i = 1, 2, 3 (3.17)

where Ji are the diffusive fluxes. Using a pseudo steady-state approach for the notional

film at the gas-liquid interface, the mole-fractions at either side of the film are specified

at each moment in time using known liquid composition, and known composition of

the surrounding gas phase. The fluxes defined at the interface are selected to solve the

system of equations. The n− 1 diffusive fluxes Ji are given by

Ji = c
3∑
j=1

k•ij4yi for i = 1, 2, 3 (3.18)

where 4yi = yIi − yGi , and k•ij is the mass transfer coefficient corrected for non-zero

mass flux from equation 3.16. The diffusive flux of air is given by the summation

J4 = −
3∑
i=1

Ji. The gas-phase molefraction at the vapour-liquid interface is yIi while

that in the bulk gas is yGi . To calculate the k•ij , we firstly calculate the zero-flux binary

mass transfer coefficients κij using correlations. For evaporation from a flat geometry

and from a droplet (the geometries of interest), the relevant correlations are (Bird et al.

2002):

Shij = dκij
Dij

=
(
0.65Re1/2Scij

1/3
)

(3.19)

for mass transfer to/from a planar surface, and

Shij =
(
2.0 + 0.6Re1/2Scij

1/3
)

(3.20)

for mass transfer to a droplet. Scij = µ
ρDij

, and Shij = κijd
Dij

are the Schmidt and

Sherwood numbers for pair ij, and d is the characteristic length scale. The correla-

tion for the flat geometry is valid for Re < 3 × 105 and Schmidt numbers in range

0.6 < Sc < 2500 (Bird et al. 2002). Physical properties are calculated at the average
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film temperature (average of liquid and bulk-gas temperatures). In the dynamic analy-

sis that follows (section 3.1.3), a quasi-steady state approach is used, with properties

evaluated at the average conditions applying at each time interval.

For given gas-phase concentrations at the interface and in the bulk, the total fluxes

Ni can be found by using a Newton’s-method solution to the discrepancy functions

F1 − F3, as described in section 3.2.1 . The Ni are coupled with a dynamic heat- and

mass balance to calculate specific liquid trajectories as outlined next.

3.1.3 Conservation Equations for Liquid Phase

The evaporation of a quantity of liquid (total molar holdup hLT ) is shown schematically

in figure 3.2, in a planar geometry. This is a "batch" process in the sense that the liquid

hold-up and composition change over time. The following assumptions apply:

1. Gas temperature (TG) and composition (yGi ) in the bulk do not change as it

passes over the exposed surface

2. Liquid is well mixed so can be treated in a "lumped" manner, with no diffusional

limitations in the liquid phase

3. All resistance to heat and mass transfer is in the gas film at the interface

4. Equilibrium applies at the gas-liquid interface with non-ideality in the liquid

phase captured by an activity coefficient model. The liquid is also assumed to

be non-ionic.

5. The gas phase behaves ideally, and air is insoluble in the liquid so there is no net

flow of air towards the interface (Stefan flow)

6. Apart from the area exposed to the gas flow, the evaporating liquid is assumed to

be isolated from its surroundings, so that heat transfer to liquid is via convective

flow only (not radiation or conduction)

7. The effect of the regression of the vapour-liquid interface is neglected

Assumption (1) reflects the situation that commonly occurs in experimental situations,

where a large excess of gas flow relative to the flow of evaporating vapours is used,

and where the sample size is small (Martinez & Setterwall 1991). The assumption is

that the rate of evaporation and the characteristic dimension (length in direction of

gas flow) of the sample are small so that the bulk gas composition and temperature

do not change along the sample length due to effects of evaporating liquid. Where

those assumptions do not hold, such as with a long characteristic length typical of

an industrial dryer, then bulk gas composition and temperature would be functions of

length. This variation would be addressed by discretizing overall heat and material
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balances over the exposed length, using a lumped parameter model for liquid/solid

mixture and for gas phase in each increment (Pakowski & Mujumdar 2006).

Assumption (2) states that no diffusive effects are accounted for in the liquid phase; in

practice this may be due to mixing effects within the liquid that occur due to flow of

gas phase over the gas-liquid interface, or due to natural convection effects within the

liquid. In general, the analysis would also apply to a liquid containing a solid phase

provided the solids present do not affect the assumption of a well-mixed liquid phase -

see also assumption (6).

Assumption (3) implies that the evaporation rate is governed by conditions in the gas

phase. The controlling steps for evaporation of a binary liquid mixtures, and drying of

porous materials containing binary mixtures were investigated by Thurner & Schlunder

(1986) and by Steinbeck (1999). The controlling steps were found to be determined

by drying intensity, so that at moderate conditions of gas temperature and velocity the

process is controlled by gas-side heat and mass transfer or thermodynamic equilibrium.

Under intensive conditions, heat and mass transfer in the liquid (or wetted-solid) phase

becomes significant. A characteristic number for liquid-side mass transfer is given by

(Thurner & Schlunder 1986)

KL = exp
(
− ṁv

kLρL

)
(3.21)

where kL is a liquid-side mass transfer coefficient, and ṁv can be found from equation

3.30. At low gas velocities, and when KL → 1, no concentration profiles exist in the

liquid phase, and the selectivity depends on gas-side mass transfer and thermodynamic

equilibrium. At high evaporation rates and/or low liquid-side mass transfer coefficients,

KL → 0, and liquid-side resistance is the limiting step. For the simulations in this

work the evaporation rates are such that KL → 1 (using typical values of kL for free

gas-liquid interface from (Thurner & Schlunder 1986) so the assumption of gas-side

controlling resistance is applicable.

Assumption (6) indicates that the thermal mass of any solids is ignored. In a practical

dryer, solids would of course be present, however it is assumed here that solids do not

exert a vapour pressure or otherwise interact with the liquid and therefore do not affect

the residual composition during the process.

The final assumption (7) says that the rate of movement of the vapour-liquid interface

is negligible with respect to the flux of material away from the surface. The rate of

interface regression is however included in the distributed model of chapter 7.

A differential mass balance for the hold-up hLi of component i yields

dhLi
dt

= −ANi (3.22)
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Figure 3.2: Schematic of evaporation of liquid at temperature TL, and composition xi
into gas at temperature TG and composition yGi , with heat flux q into liquid.

where Ni is the molar evaporation flux of component i. The multicomponent fluxes at

required time intervals are found using the approach discussed in the previous section.

The equilibrium which is assumed to exist at the vapour-liquid interface (assumption

4) is expressed mathematically by equations for equality of the chemical potentials of

each component in the vapour and liquid phases:

µVi = µLi i = 1 . . . n (3.23)

where the chemical potential (or partial molar Gibbs energy) is given by

µi = gi =
(
∂G

∂ni

)
T,P,ni

(3.24)

This is equivalent to an expression of equal fugacities in each phase:

fVi = fLi i = 1 . . . n (3.25)

For practical computations, the fugacities are given by (DeNevers 2012)

fVi = φ̂iyiP and fLi = γixipi (3.26)

so that

yi = xiγipi

Pφ̂i
(3.27)

where γi are the (NRTL) activity coefficients representing non-ideality in the liquid

phase, pi is the vapour pressure of component i and P is the total pressure. φ̂ is the

vapour fugacity coefficient. Refer to appendix B.1 for details of the NRTL model used

in this work. It is assumed in equation 3.27 that the gas phase is ideal, so that φ̂ = 1.0.

This is a standard assumption for gas mixtures at low pressure in the absence of such

effects as dimerization in the vapour phase; if a pressure-explicit equation of state is
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known to describe the vapour phase, φ̂ can be conveniently calculated (Poling et al.

2001, p. 145).

Thus, by coupling the mass fluxes with an overall heat- and material-balance, the com-

position and temperature of the residual liquid over time may be found. The area for

heat and mass transfer A is defined appropriately for the geometry in question (droplet,

film etc.) To track the composition changes in the liquid, n − 1 component balances

are required - the summation of mole-fractions in the liquid phase
3∑
i=1

xi = 1 gives the

remaining nth mole fraction. Expressing the component material balance in terms of

mole fraction gives

dxi
dt

= − A

hLT
(Ni − xiNt) (3.28)

where

hLT =
n∑
i=1

hLi (3.29)

An overall balance gives the rate of evaporation as

dML
T

dt
= −ṁv (3.30)

where ML
T is the total liquid mass, ṁv is the instantaneous mass rate of evaporation.

The energy balance for the system may be written in terms of liquid temperature TL

as the independent variable (liquid is at interface temperature throughout). Using

equation A.33:

dTL

dt
=
A

[
qG −

3∑
i=1

Ni

(
H̄G
i − H̄L

i

)]
3∑
i=1

hiMiCpLi

(3.31)

where H̄G
i and H̄L

i are the partial molar vapour and liquid molar enthalpies respectively

of component i. The convective heat flux term is given by

qG = h•G(TG − TL) (3.32)

h•G is the heat-transfer coefficient corrected for finite mass transfer. Expanding the

enthalpy terms H̄G
i and H̄L

i , and the heat flux term gives

dTL

dt
=

[
h•V (TG − TL)−

3∑
i=1

Ni4Hvap
i −

3∑
i=1

NiMiCp
G
i (TG − TL)

]
3∑
i=1

hLi MiCpLi

(3.33)
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whereMi is the molecular weight of component i. The fluxes are summed from i = 1−3
only, as the flux of the inert gas (air) is zero. The heat-transfer coefficient corrected for

finite mass transfer is in turn given by

h•G = hGΞH = hG

[
ΦG
H

exp(ΦG
H)− 1

]
(3.34)

where ΞH is known as the Ackermann correction (Taylor & Krisha 1993), and ΦG
H is

the heat transfer rate factor, given by

ΦG
H =

3∑
i=1

niCp
G
i

hG
(3.35)

for mass transfer flux ni. The zero-flux heat transfer coefficient hG for film and droplet

and geometries can be found from heat-transfer analogies to equations 3.19 and 3.20:

Nu = hGd

k
= 0.65Re1/2Pr

1/3 (3.36)

Nu = 2.0 + 0.6Re1/2Pr
1/3 (3.37)

The term within the square brackets in equation 3.33 can be recognised as equation

3.44 derived below for the multicomponent wet-bulb temperature. Thus, in the limit

as temperature changes tend to zero, the square-bracket term becomes zero, and the

liquid temperature becomes that of its wet-bulb temperature at that composition.

3.1.4 Multicomponent Wet-bulb Temperature

The wet-bulb temperature is the equilibrium temperature reached by a liquid evapo-

rating from a surface when a small amount of liquid is taken up by a large amount

of gas partially saturated with the vapour (Thurner & Schlunder 1985). In the case

of mixture with more than one component, a steady temperature will strictly only be

reached in the limit when remaining liquid contains a single component, or when a

pseudo-azeotrope has been reached (refer to section 3.1.5). Nevertheless, an "equilib-

rium" or wet-bulb temperature for a notional evaporating multicomponent mixture of

given (steady) composition can be calculated as discussed below. This equilibrium or

multicomponent wet-bulb temperature is the temperature which an evaporating liquid

approaches over time. In certain cases, this temperature is approached rather rapidly,

as comparison with experimental data for droplet evaporation in section 3.2.1 demon-

strates.

A model for the calculation of wet-bulb temperature for drying of a porous solid wetted

with binary mixtures was presented by Thurner & Schlunder (1985); a criteria for non-
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selective drying within the porous solid based on a penetration depth was developed,

and the wet-bulb temperature was found by solving heat and mass balances together

with an expression for phase equilibrium assuming gas-phase control. A simplified

picture of the mass transfer was used, employing binary mass transfer coefficients.

Pakowski (1989) presented a simple model for binary wet-bulb calculations using a

mass transfer model derived by Newbald & Amundson (1973) which accounts for the

cross-effects of one component on another using an effective diffusivity concept. The

model presented in this work incorporates mass transfer fluxes solved using the explicit

solution of the Maxwell-Stefan equations for mass transfer, outlined in section 3.1.1.

Equilibrium at the vapour-liquid interface is assumed to apply. Thus, for a ternary

liquid mixture, there is an equilibrium expression for each component:

F4 ≡ K1x1 − yI1 = 0 (3.38)

F5 ≡ K2x2 − yI2 = 0 (3.39)

F6 ≡ K3x3 − yI3 = 0 (3.40)

where

Ki = γipi/P (3.41)

The activity coefficients γi are found from the NRTL equation (see appendix B.1). The

requirement that the summation of vapour mole-fractions is unity is expressed by:

F7 ≡
∑

yIi − 1 (3.42)

The rate of heat transfer at the interface of a liquid undergoing heat and mass transfer

with its surroundings is the sum of that due to the temperature gradient, and that due

to enthalpy transferred by the shift of material from the interface:

qI = qG +
n∑
i=1

Ni

(
H̄G
i − H̄L

i

)
(3.43)

Implicit in the definition of wet-bulb temperature is that the heat transfer to the evap-

orating liquid is used for evaporation of the liquid, thus the qI term is zero.

To compute the wet-bulb temperature for a ternary mixture, the discrepancy functions

F1−F3 for the mass transfer fluxes N1−N3 (section 3.1.2) can be augmented with the

heat balance F8:

F8 ≡ h•G(TG − TL) −
3∑
i=1

Ni4Hvap
i −

3∑
i=1

NiMiCp
G
i (TG − TL) = 0 (3.44)
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The right-hand side of the heat balance also appears in the differential heat balance in

equation 3.33.

Thus, for a ternary liquid, the wet-bulb model has 8 equations (F1−F8) in 8 unknowns

(N1, N2, N3, yI1 , yI2 , yI3 , yI4 , TL). A Newton-method approach to solving F1−F8 is used

in section 3.2.

3.1.5 Pseudoazeotrope Compositions

To complete a residue curve map for a given mixture, the nature of all azeotropes in the

mixture must be known a priori (the residue curves themselves can be computed with-

out knowledge of the azeotropes); each azeotrope in the mixture can be characterised

as a stable node, an unstable node or a saddle (Widagdo & Seider 1996). For evapo-

ration maps, similar logic applies, except that the corresponding fixed points are now

pseudo-azeotropes, which are determined using the concept of selectivity. The selectivity

of a component i is defined (Riede & Schlunder 1990) as the difference between the

relative molar evaporation flux of component i, and the mole fraction of component i

in the liquid:

Si = Ni
n∑
i=1

Ni

− xi (3.45)

For values of Si > 0, component i is preferentially removed and its concentration in the

liquid phase decreases, while for Si < 0 the reverse occurs. At Si = 0, evaporation is

non-selective for component i, which is analogous to the distillation of a liquid mixture

at its azeotropic composition. For gas phase controlled evaporation, a non-selective

process may occur at liquid compositions that are different to those of the thermody-

namic azeotrope due to the fact that the process depends both on vapour-liquid equilib-

ria and on diffusion in the gas phase (Viduarre & Martinez 1997). These non-selective

liquid compositions are known as pseudo-azeotropes or dynamic azeotropes (Schlunder

1989a,b). Just as thermodynamic azeotropes represent the fixed points of a simple

distillation process (Doherty & Malone 2001), the pseudo-azeotropes represent the sin-

gular or fixed-points for the gas-phase limited system. For a ternary mixture, each of

the binary pseudo-azeotropes (where they exist) are found by equating the selectivity

for the relevant pair, i.e. S1 = S2, or S1 = S3 or S2 = S3. The ternary azeotrope (where

it exists) is found by solving two equal-selectivity equations simultaneously, S1 = S2

and S1 = S3 for example. For the calculation of binary pseudo-azeotropes, in which

case the liquid composition is not specified a priori, the problem statement for the

wet-bulb temperature (F1−F8) is augmented by 3 additional equations for the liquid

mole-fractions. In the case where the binary is the pair 1-2, the discrepancy function
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for equal selectivity (S1 = S2) is

F9 ≡
[
N1∑
Ni
− x1

]
−
[
N2∑
Ni
− x2

]
= 0 (3.46)

For a binary pseudo-azeotrope, the third component in the mixture is obviously zero:

F10 ≡ x3 = 0 (3.47)

Similar expressions apply for the 1-3 and 2-3 pairs. Where the composition of a ternary

pseudo-azeotrope to be computed, replace F10 with:

F10 ≡
[
N1∑
Ni
− x1

]
−
[
N3∑
Ni
− x3

]
= 0

for pair 1-3 or, for pair 2-3:

F10 ≡
[
N2∑
Ni
− x2

]
−
[
N3∑
Ni
− x3

]
= 0

The summation of the liquid mole-fractions completes the model:

F11 ≡
∑

x1 − 1 = 0 (3.48)

For a ternary liquid, the pseudo-component model has 11 equations (F1 − F11) in 11

unknowns: N1, N2, N3, yI1 , yI2 , yI3 , yI4 , TL, x1, x2 and x3). A Newton-method approach

to solving F1 − F11 is presented in section 3.2.3.

3.2 Numerical Methods

3.2.1 Evaporation Trajectories

The system of equations describing total evaporation fluxes in the gas phase is sum-

marised by equations F (x) = 0 given by 3.17. To solve this set of nonlinear equations,

we use Newton’s (or Newton-Raphson) method, which requires both the evaluation

of F (x) and the derivative of F (x). This method provides a very efficient means of

converging to a root if a sufficiently good guess is provided (Press et al. 1992). The

Newton-Raphson method is based on a Taylor series expansion of F (x) in the neigh-

bour hood of x:

Fi(x+ δx) = Fi(x) =
N∑
j=1

∂Fi
∂xj

+O(δx2)
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The matrix of partial derivatives is the Jacobian matrix J :

J(x) =
[
∂Fi
∂xj

]

By neglecting terms of order δx2 and higher, a set of linear equations for δx is obtained:

J · δx = −F

which can be solved by the so-called LU (lower-upper) decomposition (Kelley 1995).

The corrections are then added to the solution vector

xnew = xold + δx

and iterated until satisfactory convergence is reached. For the discrepancy functions

F1 − F3 (equation 3.17), the Jacobian can be found analytically:

J = ∂Fi
∂xj

=


yG1 − 1 yG1 yG1
yG2 yG2 − 1 yG2
yG3 yG3 yG3 − 1

 (3.49)

It is assumed that the mass transfer coefficients in calculation of the Jacobian can be

considered constant. Following Taylor & Krisha (1993), the algorithm for calculation of

the mass transfer fluxes in the film is shown in table 3.1. This is detailed here as it forms

the basis for algorithms to determine the wet-bulb temperature, and pseudo-azeotrope

compositions which follow.

By numerically integrating the governing equations for the multicomponent evapo-

ration model (equations 3.28, 3.30 and 3.33), coupled with fluxes calculated from

table 3.1 at each time step, together with suitable initial conditions, the composition-

temperature trajectory (evolution of concentration and temperature over time) can

be found. A simulation code was written in "C" using the LAPACK package of rou-

tines for matrix manipulation. These were incorporated via "mex" files into the Matlab

programming environment. Numerical integration was performed using the ode15s

routine within Matlab. Physical properties for the components as a function of temper-

ature were generated from AspenPlus, with liquid-phase non-ideality represented by

the NRTL model.

The initial conditions for the integration are compositions in the neighbourhood of

unstable nodes of the evaporation maps. Similarly, the termination criteria are compo-

sitions in the neighbourhood of stable nodes. This is detailed in section 3.2.4.
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Table 3.1: Calculation of multicomponent fluxes using Newton method

Given: yIi ,yGi ,TL,TG,uG,Dij

1. Using yIi and yGi , calculate mean vapour film properties
2. Calculate c (from ideal gas), and κij from correlations
3. Estimate the Ni

4. Calculate Φ, Ξ, k•ij and Ji
5. Evaluate the vector of discrepancy functions (residuals)
F = [F1F2F3]

6. Compute the Jacobian matrix J
7. Update the estimates of Ni:

[
NNEW

]
= N + J\F

8. If err < tolerance, stop, else return to step 4

3.2.2 Multicomponent Wet-bulb Temperature

To compute the wet-bulb temperature, a Newton-method solution to the discrepancy

functions F1 − F8, outlined in table 3.2 is used. As with the case for the calculation of

mass fluxes, the Jacobian (Jwb) for the wet-bulb computation can be found analytically

and is given in table 3.4 (shaded terms).

All the terms in Jwb are straightforward with the exception of those involving partial

derivatives with respect to liquid temperature (∂F5/∂T
L - ∂F7/∂T

L). For these, Jwb
includes terms with:

∂Ki

∂T
= Ki

d ln pi
dT (3.50)

whereKi is given by equation 3.41. To determine the partial derivatives of vapour pres-

sure with respect to temperature, an expression of the following form is used (Prausnitz

et al. 1986):

pi = P ci exp

 1
1− (1− T/T ci )

Ai
(

1− T

T ci

)
+Bi

(
1− T

T ci

)1.5

−

Di

(
1− T

T ci

)6
 (3.51)

where the Ai, Bi, Ci and Di are constants for each component, and T ci is critical

temperature. Differentiating equation 3.51 with respect to temperature gives

d ln (pi)
dT = T ci

T 2

[
Aizi +Biz

1.5
i + Ciz

3
i −Diz

6
i

]
− 1
T

[
Ai − 1.5Biz0.5

i + 3Ciz2
i − 6Diz

2
i

]
(3.52)

where zi = T/T ci − 1, from which the numerical values of the required derivatives in

equation 3.50, and thence the required terms in JWB can be found. The algorithm for

the Newton-method solution for multicomponent wet-bulb temperature (with analytic
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Table 3.2: Algorithm for computation of wet-bulb temperature
x̄WB = (N1, N2, N3, y

I
1 , y

I
2 , y

I
3 , y

I
4 , T

L)

Given: yGi , TG, uG, Dij , xi
1. Establish initial values for vector of unknowns x̄wb
2. For given (estimated) xi, calculate yIi
3. Using yIi and yGi , calculate mean vapour film properties
4. Calculate c, Φ, Ξ, k•ij and Ji (as for calculation of fluxes in table 3.1)
5. Calculate h•V = hV ΞH
6. Evaluate FWB the vector of discrepancy functions F1...F8
7. Compute the Jacobian matrix JWB for F1...F8 from table 3.4
8. Calculate ∆xWB = −JWB\FWB

9. Update the estimates of solution:
[
x̄NEWWB

]
= x̄WB + ∆xWB

10. If ∆xWB < tolerance, stop, else return to step 2

Table 3.3: Algorithm for computation of pseudo-azeotrope composition (and
temperature). x̄AZ = (N1, N2, N3, y

I
1 , y

I
2 , y

I
3 , y

I
4 , T

L, x1, x2, x3)

Given: yGi , TG, uG, Dij

1. Establish initial values for vector of unknowns x̄az
2. For given (estimated) xi, calculate yIi
3. Using yIi and yGi , calculate mean vapour film properties
4. Calculate c, Φ, Ξ, k•ij and Ji (as for calculation of fluxes in table 3.1)
5. Calculate h•V = hV ΞH
6. Evaluate FAZ the vector of discrepancy functions F1...F11
7. Compute the Jacobian matrix JAZ for F1...F11 from table 3.4
8. Calculate ∆xAZ = −JAZ\FAZ

9. Update the estimates of solution:
[
x̄NEWAZ

]
= x̄AZ + ∆xAZ

10. If ∆xAZ < tolerance, stop, else return to step 2

Jacobian) is given in table 3.2.

3.2.3 Computation of Pseudo-Azeotrope Compositions

To compute the pseudo-azeotrope compositions, a Newton-method solution to F1−F11,

outlined in table 3.3 is employed. Note that the wet-bulb temperature at the pseudo-

azeotropic composition is an additional output of the pseudo-azeotrope algorithm. As

with the case for the calculation of mass fluxes and wet-bulb temperature, the Jacobian

for the functions F1−F11 can be found analytically and is given in table 3.4. Just as the

discrepancy functions F1−F8 for the wet-bulb temperature are augmented with F9−F11

for calculation of pseudo-azeotrope composition, the Jacobian JAZ is an augmented
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form of the wet-bulb Jacobian JWB. The shaded portion of table 3.4 represents the

common part of the Jacobians. The new terms involve ∂Ki/∂xj which are given by

∂Ki

∂xi
= Ki + xi

d ln γi
dxi

for i = j

∂Ki

∂xj
= xi

d ln γi
dxj

for i 6= j
(3.53)

The derivative term for ln γi is a lengthy expression involving the terms of the NRTL

expression for γi (see appendix B.2). The derivatives of the equal-selectivity function

F9 with respect to the fluxes for the 1-2 pair are given by

∂F9
∂N1

= N2 −N1

(
∑
Ni)2 + 1∑

Ni

∂F9
∂N2

= N2 −N1

(
∑
Ni)2 −

1∑
Ni

∂F9
∂N3

= N2 −N1∑
Ni

(3.54)

Similar expressions apply for the 1-3 and 2-3 pairs. In the case where a ternary pseudo-

azeotrope is sought, the derivatives for the second equal-selectivity function F10 are

∂F10
∂N1

= N3 −N1

(
∑
Ni)2 + 1∑

Ni

∂F10
∂N2

= N2 −N1

(
∑
Ni)2 −

1∑
Ni

∂F10
∂N3

= N2 −N1∑
Ni

(3.55)

3.2.4 Construction of Evaporation Maps

To obtain a spread of trajectories over the evaporation map, points xs are defined

through which the trajectories are desired to pass (within a pre-defined tolerance ε3).

Figure 3.3 outlines the construction of an evaporation map schematically. Two scenar-

ios are considered. In the first (figure 3.3(a)), trajectories run from a ε1-neighbourhood

of an unstable node (on chloroform-methanol axis) to a ε2-neighbourhood of a stable

node (on acetone-chloroform axis). In the second scenario (figure 3.3(b)), pre-loading

of the gas phase changes the topology so that unstable node does not exist along the

binary axis as before. In that case, trajectories are initiated from a ε4-neighbourhood

of the axis (chloroform-methanol).

Note that while figure 3.3(a) shows trajectories initiating at an unstable binary node,

and terminating at a stable binary node, trajectories may also initiate and terminate at
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3.2 Numerical Methods

Table 3.5: Algorithm for generation of evaporation maps

1. Locate binary and ternary pseudo-azeotropes for the given mixture
(see table 3.2, and the continuation procedure of section 4.2.4).

2. For a given unstable node specify the radius ε1 around the node
which defines the locus of possible initial concentrations

3. Specify the point xs = (xs1, xs2) through which the desired trajec-
tory should pass

4. Initialize value for θ (via optimization routine); set constraints for
θ: θmin < θ < θmax e.g. 0o < θ < 90o

5. Calculate initial composition xθ1 = xo1 + ε1Cos(θ), and xθ2 = xo2 +
ε1Sin(θ); xo1 and xo2 are the compositions of the starting unstable
node (either a pure component, or a binary pseudo-azeotrope)

6. Generate the evaporation trajectory by numerically integrating the
system of governing equations 3.28, 3.30 & 3.33, coupled with the
multicomponent flux calculation from table 3.1; the integration is
terminated when x approaches a stable node xf within a certain
distance ε2.

7. From computed trajectory, find point of intersection xAB with the
line AB

8. Find approach to xs: ∆AB = ‖xs − xAB‖
9. Adjust value of θ (via optimization routine) until ∆AB < ε3

10. For optimal value of θ, project the solution in T −x space onto the
ternary diagram

11. Repeat from step 3 as required

pure component nodes. The angle θ governs the starting composition xθ; by finding the

intersection point xAB, the value of θ that minimises length ∆AB can be determined

by numerical optimization. The approach used to generate the trajectories is outlined

in table 3.5. The Matlab optimization function fminbnd was used in this work for

numerical optimization of θ.

For each ternary mixture, the stable and unstable nodes must be identified prior to

generation of an evaporation map, as they form the starting and end-points respectively

of evaporation trajectories. This procedure involves calculating all binary and ternary

pseudo-azeotropes by the methods of section 3.2.3, and their corresponding wet-bulb

temperatures. The wet-bulb temperatures of the pure components in the mixture must

also be found, by the method of section 3.2.2. The unstable nodes for the mixture are

those whose wet-bulb temperature is a local minimum, while the stable nodes are those

whose wet-bulb temperature is a local maximum.

55 Paul Dillon
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Figure 3.3: Geometric construction of evaporation map

3.3 Simulation Results and Discussion

3.3.1 Validation of Evaporation Model

The multicomponent evaporation model may be compared to data available for evap-

oration of binary and ternary mixtures. While the evaporation maps of subsequent

sections are generated for a planar geometry only, the evaporation model is applicable

to other geometries such as droplets, provided the appropriate forms of the heat and

mass transfer correlations are used. Thus, data for both droplets and planar films are

used for model validation purposes.

Multicomponent Droplets Figure 3.4 shows a comparison of model predictions to

data (Pakowski 1994) for evaporation of droplets of a binary IPA/water mixture, un-

der two different conditions of surrounding gas flow and relative humidity. There is

reasonably good agreement with the experimental data for droplet temperature and

diameter (plotted as d2). Note that there are no adjustable parameters in this model.

As noted in section 3.2.1, the model predictions are found by numerically integrating

the governing equations for the multicomponent evaporation model (equations 3.28,

3.30 and 3.33), coupled with fluxes calculated from table 3.1 at each time step, to-

gether with suitable initial conditions. For data set 2, there is some variation in the

agreement of the model with the data at smaller values of d2; this may be due to larger

relative heat losses in the filament supporting the droplet at smaller droplet sizes. The

droplet temperature falls rapidly in the initial seconds due to evaporative cooling, fol-

lowed by a gradual rise as time progresses, and the droplet becomes depleted of IPA.
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3.3 Simulation Results and Discussion

For the case of IPA-water droplet evaporation, the computed values of wet-bulb tem-

perature, calculated using concentrations at specific time points are shown in figure

3.4, indicating good agreement with experiment. As droplet evaporation progresses,

the simulated droplet temperature and computed wet-bulb temperatures converge as

expected. The simulated temperature and droplet diameter (d2) have been extended

in time for data set 1 in order to show how the droplet diameter tends to zero as the

evaporation progresses.

Multicomponent Films The evaporation of a ternary ethanol/MEK/toluene mixture

from a planar film was studied by Martinez & Setterwall (1991). Comparison of model

predictions with their work is shown in figure 3.5-3.7, showing generally good agree-

ment with the data. The fit is less good for figure 3.6. This may be due to the fact the

initial concentration therein has a higher percentage of the most volatile component

(ethanol) than in figures 3.5 and 3.7 so that the rate of evaporation is more rapid;

consequently, the liquid film recedes below the edge of the container holding the liquid

which may effect the gas flow conditions and the heat and mass transfer coefficients at

the vapour-liquid interface. Also, as the most volatile component is eliminated, the vis-

cosity of the residual liquid may increase (being mostly MEK and toluene which have

higher viscosities) which might lead to a gradients in concentration due to reduced

level of natural circulation. In that case the assumption of gas-phase limited heat and

mass transfer may not be strictly valid.

Note from figure 3.8 that pure toluene forms the stable node for mixtures (a) and (b),

while pure ethanol is the stable node for mixture (c). This behaviour is consistent with

the evaporation map in figure 3.21. Note also from figures 3.6 in particular that a

significant portion of the total mass is evaporated before the final composition (pure

toluene) is approached.

3.3.2 Binary and Ternary Pseudo-Azeotropes

Pseudo-azeotropes for the various ternary mixtures are shown (as filled circles) on

the ternary diagrams of figures 3.19-3.23. Table 3.6 below summarises the pseudo-

azeotropic compositions and temperatures for each of these cases. The pure compo-

nents and pseudo-azeotropes are denoted as stable/unstable nodes or saddles as ap-

propriate; the unstable nodes form the starting point for the evaporation trajectories in

each of the maps, while the stable nodes are the terminal points.
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Figure 3.4: IPA-water droplet evaporation (Pakowski 1990); N: computed wet-bulb
temperature; ◦: data set 1 (TG = 20C, uG = 0.324m/s; RHIPA = 0%;
RHH2O = 5.6%); �: data set 2 (TG = 20C, uG = 0.19m/s); RHIPA =
15.3%; RHH2O = 15.3%

Figure 3.5: Evaporation of ethanol(1)-MEK(2)-toluene(3) mixture; comparison of
model with experimental data (Martinez & Setterwall (1991),
x1 = 0.33, x2 = 0.33, x3 = 0.34; TG = 298K, TL = 298K, uG = 0.1m/s;
d = 0.03m). Horizontal axis represents progress of the evaporation
from right to left; �: ethanol, ◦: MEK, N: toluene
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3.3 Simulation Results and Discussion

Figure 3.6: Evaporation of ethanol(1)-MEK(2)-toluene(3) mixture; comparison of
model with experimental data (Martinez & Setterwall (1991);
x1 = 0.6, x2 = 0.1, x3 = 0.3; TG = 298K, TL = 298K, uG = 0.1m/s; �:
ethanol, ◦: MEK, N: toluene

Figure 3.7: Evaporation of ethanol(1)-MEK(2)-toluene(3) mixture; comparison of
model with experimental data (Martinez & Setterwall (1991);
x1 = 0.8, x2 = 0.05, x3 = 0.15; TG = 296K, TL = 294K, uG = 0.07m/s;
�: ethanol, ◦: MEK, N: toluene
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Figure 3.8: Figures 3.5-3.7 on ternary co-ordinates

3.3.3 Multicomponent Wet-Bulb Temperature

Using the algorithm of table 3.2, the wet-bulb temperature can be computed for bi-

nary and ternary mixtures. Figure 3.9a shows wet-bulb temperatures for the three bi-

nary mixtures in the acetone/chloroform/methanol ternary mixture, together with the

pseudo-azeotropic composition found from the algorithm of table 3.3. The wet-bulb

temperature lies near a minimum or maximum at the pseudo-azeotropic composition

in each case.

Figure 3.9b shows the corresponding binary selectivities as defined by equation 3.45.

As required by the definition of a pseudo-azeotrope, the selectivities are zero at the

pseudo-azeotropic compositions.

Whereas binary azeotropes lie at the maximum or minimum bubble-point for a given

binary mixture (Prausnitz et al. 1986), the minimum or maximum wet-bulb temper-

ature is not constrained to coincide with the pseduo-azeotropic composition. Figure

3.10 shows a magnified portion of the plots in figure 3.9a for the acetone/chloroform/

methanol mixture, showing this effect. This can be explained by the fact that con-

ventional azeotrope composition is a function of pressure only (assuming an accurate

model of the vapour-liquid equilbria), while the pseudo-azeotrope composition is a

function also of mass transfer rates in the gas phase.

Figure 3.11 shows multicomponent wet-bulb temperature lines computed by table 3.2

for binary IPA/water mixtures for four different relative humidity levels. These show
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3.3 Simulation Results and Discussion

(a) Wet-bulb temperature for binary mixtures

(b) Selectivity for binary mixtures

.

Figure 3.9: Wet-bulb temperature and selectivities for binary mixtures in
acetone/chloroform/ methanol mixture; evaporation into pure
air; open circles denote pseudo-azeotrope compositions; TG =
40◦C, uG = 0.5m/s, d = 0.03m
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Table 3.6: Results of pseudo-azeotrope calculations; TG = 20◦C,
uG = 0.5m/s, d = 0.03m; SN=stable node, UN=unstable node,
S=saddle

Components &
pseudo-azeotropes

Pseudo-azeotrope
composition (mole
fractions)

TWB Type Figure

(1) IPA - 12.58◦C SN
3.18(2) Ethanol - 8.00◦C S

(3) Methanol - −2.81◦C UN
(1) Water - 15.86◦C SN

3.19
(2) Ethanol - 8.00◦C SN
(3) Methanol - −2.81◦C UN
Water/Ethanol 0.15, 0.85 7.81◦C S
(1) IPA - 20◦C SN

3.20
(2) Water - 12.58◦C SN
(3) Ethanol - 15.86◦C SN
IPA/Water 0.53, 0.47 10.65◦C S
Water/Ethanol 0.16, 0.85 7.81◦C UN
(1) Ethanol - 8.00◦C SN

3.21
(2) MEK - 7.92◦C S
(3) Toluene - 20.86◦C SN
Ethanol/MEK 0.35, 0.65 5.57◦C UN
Ethanol/Toluene 0.75, 0.25 6.83◦C S
(1) DCM - −16.67◦C S

3.22
(2) Methanol - −2.81◦C SN
(3) Ethyl Acetate - 4.19◦C SN
DCM/Methanol 0.89, 0.11 −18.08◦C UN
Methanol/Ethyl-acetate 0.74, 0.26 −3.99◦C S
(1) Acetone - −9.52◦C S

3.23

(2) Chloroform - −5.64◦C S
(3) Methanol - −2.81◦C SN
Acetone/Chlorofrom 0.30, 0.70 −3.56◦C SN
Chloroform/Methanol 0.71, 0.29 −9.21◦C UN
Methanol/Acetone 0.94, 0.06 −9.63◦C UN
Acetone/Chloroform/
methanol

0.27, 0.35, 0.38 −7.42◦C S

the same qualitative behaviour as those computed by Pakowski (1989) for IPA/water

droplets, using the effective diffusivity approach of Newbald & Amundson (1973). The

gas phase molefraction is found from the specified relative humidity using

yGi = piγi
P

RH

100

The plot for 50%:50% relative humidity also shows a temperature of non-selective

drying, TNS (Pakowski 1989); non-selective process implies drying occurs at constant

composition. TNS is found by computing the pseudo-azeotropic composition (at which
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3.3 Simulation Results and Discussion

Figure 3.10: Magnified portion of figure 3.9a; open circles denote pseudo-
azeotrope compositions; pseudo-azeotropes are not constrained to lie
at extrema of wet-bulb temperature curves

selectvity Si = 0), and the corresponding wet-bulb temperature at increasing values of

the air (dry-bulb) temperature.

Note from the plot of RHEthanol = 100% that the wet-bulb temperature exceeds the

dry-bulb temperature (20◦C) at lower ethanol concentration; this is due to condensa-

tion of ethanol at the vapour-liquid interface when the gas-phase concentration is high,

and the liquid-phase concentration is low.

Figures 3.12-3.14 show wet-bulb temperature surfaces for three ternary mixtures. Note

that these are temperature surfaces for mixtures undergoing a rate-based (mass trans-

fer limited) evaporation/drying; bubble-point surfaces are the analogous surfaces for

mixtures at thermodynamic equilibrium. The ethyl acetate/dichloromethane/methanol

surface in figure 3.12 shows peaks at pure methanol −2.8◦C and pure ethyl acetate

4.2◦C, with a minimum at dichloromethane −16.7◦C. A minimum in the wet-bulb sur-

face can be seen along the methanol/ethyl acetate edge at −4.0◦C, while another min-

imum lies along the methanol/dichloromethane edge at 18.1◦C. The ethanol/MEK/

toluene surface in figure 3.13 shows a peak at pure toluene at 20.9◦C, and a smal-

ler peak at pure ethanol at 8.0◦C. Note that minima in the surface occur along the

toluene-ethanol and the ethanol-MEK edges; these minima correspond approximately

to minimum-temperature pseudo-azeotropes. The acetone/chloroform/methanol sur-

face in figure 3.14 has a minimum at pure acetone at −9.5◦C and a maximum at pure
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Figure 3.11: Ethanol/water multicomponent wet-bulb lines; TG = 20◦C,
uG = 0.5m/s, d = 0.03m
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3.3 Simulation Results and Discussion

Figure 3.12: Wet-bulb temperature (degC) surface for ethyl acetate/
dichloromethane/methanol; TG = 20◦C, uG = 0.5m/s, d = 0.03m

methanol at −2.8◦C; a further maximum occurs along the acetone-chloroform edge,

corresponding to a maximum temperature pseudo-azeotrope at −3.5◦C.

The peaks and troughs in the wet-bulb temperature surface are explored in more detail

in section 6.3. Visualisation of wet-bulb temperature surfaces (or manifolds) in for

mixtures with more than three components is not feasible, although the algorithms

described here may be directly extended to higher dimensions.

3.3.4 Evaporation Trajectories - IPA/Ethanol/Water Example

To demonstrate the general features of evaporation trajectories, an example trajectory

for IPA/ethanol/water is considered here. For a given ternary mixture, with an assumed

planar geometry (i.e. evaporation from a flat surface such as a film), an evaporation

trajectory may be found by numerically integrating the governing equations for gas-

phase limited evaporation. Equation 3.28 describes the molar hold-up, while equation

3.33 describes the energy balance. By coupling these equations with the multicompo-

nent flux calculation from table 3.1, the system of equations may be integrated forward

in time from any desired initial composition until the composition approaches a stable

node within a certain pre-specified tolerance.
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Figure 3.13: Wet-bulb temperature (degC) surface for ethanol/MEK/toluene;
TG = 20◦C, uG = 0.5m/s, d = 0.03m

Figure 3.15 shows such an example evaporation trajectory for the IPA/ethanol/water

mixture. For this example, the initial composition is in the neighbourhood of pure

methanol (most volatile component). The trajectory becomes richer in ethanol and

leaner in methanol as it moves through point A towards point B; after point B, it

becomes leaner in ethanol and richer in IPA, all the while becoming also leaner in

methanol. The trajectory is terminated when it approaches pure IPA (least volatile

component).

Also shown at each of three points A, B and C in figure 3.15 are matrices which in-

dicate the degree of multicomponent interaction between the diffusing species in the

gas phase. Multicomponent interaction effects (the degree to which the process is non-

Fickian) can be assessed by considering the relative magnitude of the off-diagonal con-

tributions to the diffusive fluxes. Recall from 3.18 that the diffusive flux for component

i is given by:

Ji = c
3∑
j=1

k•ij4yi for i = 1, 2, 3
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3.3 Simulation Results and Discussion

Figure 3.14: Wet-bulb temperature (degC) surface for
acetone/chloroform/methanol; TG = 20◦C, uG = 0.5m/s, d = 0.03m

A measure of the contribution of an off-diagonal (multicomponent) terms is given by:∣∣∣∣∣k
•
ij 4 yj

k•ii 4 yi

∣∣∣∣∣ (3.56)

The ij term refers to the off-diagonal contribution, while the ii term is the diagonal, or

Fickian term. The interaction effect is notable when the ratio of the interaction term

(denominator) to the Fickian term (numerator) is significant. For the ternary liquid

mixture, diffusing in air, the matrix of relative interaction terms shown in figure 3.15

is simply: 

− k•12∆y2
k•11∆y1

k•13∆y3
k•11∆y1

k•21∆y1
k•22∆y2

− k•23∆y3
k•22∆y2

k•31∆y1
k•33∆y3

k•32∆y2
k•33∆y3

−


(3.57)

where 1=IPA, 2=ethanol, 3=methanol. So, for example, the second term in the first

row indicates the ratio of diffusive flux of component 1 (IPA) caused by concentra-
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Figure 3.15: Example evaporation trajectory for IPA/ethanol/water; TG = 80◦C,
uG = 0.5m/s, d = 0.03m

tion difference of component 2 (ethanol), to simple Fickian diffusion of component

1 (caused by its own concentration gradient). For the conditions of figure 3.15, the

largest off-diagonal term at point A is 0.0545 (5.4%), for point B the largest terms

is 0.0306 (3.6%), while for point C the largest off-diagonal term is 0.0402 (4.02%).

These figures suggest that the interaction terms are not very significant under the cho-

sen conditions. Under other circumstances however, the interaction terms may be an

important factor; section 4.4 examines interaction effects where the gas-phase is pre-

loaded with one component of the ternary mixture, in which cases the interaction terms

may be significant.

Figure 3.16 shows composition profiles in the notional film at the vapour-liquid in-

terface at each of the highlighted points of interest A, B, and C of figure 3.15. The

composition profiles are found from equation 3.10 and are linear in the dimensionless

film thickness η (η = 0 is the vapour-liquid interface, while η = 1 is the edge of the

notional film, at which point the gas phase concentration is that of the bulk gas phase).

For IPA, which increases in concentration from A to B to C, the profiles likewise in-

crease from A to B to C. For ethanol, the liquid concentration increases from A to B,
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3.3 Simulation Results and Discussion

Figure 3.16: Example film contentration profiles (mole-fractions) for
IPA/ethanol/water; the profiles A, B, C correspond to the points A, B
and C on figure 3.15; TG = 80◦C, uG = 0.5m/s, d = 0.03m; gas-phase
is pure air

then decreases to C; this pattern is evident in the profiles of figure 3.16 also. Finally,

the methanol concentration decreases from A to B to C, which pattern is also replicated

in the composition profiles.

The component fluxes along the evaporation trajectory of figure 3.15 are represented

by the curves in figure 3.17, where the fluxes are plotted against a dimensionless path

length ζ for the evaporation trajectory. The arrows in the figure indicate the relative

directions of the diffusive fluxes; air diffuses in the direction opposite to the compo-

nents of the ternary mixture. The flux for methanol is initially high then falls as the

liquid becomes leaner in methanol over the course of the trajectory. The ethanol flux is

initially small, then rises as trajectory moves from point A to B on figure 3.15, before

falling again as the trajectory tends towards pure IPA. The IPA flux is initially near zero

as there is almost no IPA in starting composition, before rising as the residual liquid

becomes steadily richer in IPA.
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Figure 3.17: Component fluxes along trajectory of figure 3.15 for
IPA/ethanol/water; x-axis is dimensionless path length; TG = 80◦C,
uG = 0.5m/s, d = 0.03m

3.3.5 Ternary Evaporation Maps

Using the algorithm for generation of evaporation maps in table 3.5, evaporation maps

have been computed for 6 example ternary mixtures listed in table 2.1, and are shown

in figures 3.18-3.23. Each of these maps involve evaporation into pure air; the effect of

pre-loading the gas phase with one of the ternary components is considered in section

4.3. Note that the evaporation trajectories in the various maps are computed using the

same model used to compute composition trajectories of experimental data in figures

3.5-3.8. The solvents employed in the following maps are commonly used (apart from

chloroform) in various mixtures, in the pharmaceutical industry (Paudel et al. 2013). A

number of the mixtures exhibit separation boundaries which are the subject of chapter

6.

IPA-ethanol-methanol Figure 3.15 showed a single evaporation trajectory; when a

complete set of trajectories is developed, the map shown in figure 3.18 results, where

the trajectories run from the (unstable) methanol node to the (stable) IPA node; pure

ethanol is a saddle in this case. This represents a relatively simple topology, contain-

ing no pseudo-azeotropes. The corresponding residue curve map in figure 2.2a shows
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qualitatively similar behaviour, with no azeotropes. The pure component nodes have

been annotated with the calculated wet-bulb temperatures from table 3.6. The unsta-

ble methanol node has the lowest TWB of the components in the mixture (−2.8oC),

while the stable IPA node has the highest (12.6oC), with an intermediate value for

ethanol (8.0oC). This follows the same pattern as the normal boiling points for these

components (as would be required for the map evaporation map to be qualitatively

similar to the residue curve map for the mixture). In this mixture, and all those that

follow, unstable nodes correspond to locally lowest values of TWB, while stable nodes

correspond to locally highest values. All evaporation trajectories in this case (evapo-

ration into pure air) end at pure IPA; in other words, the final (differentially small)

drop of mixture will be pure IPA, regardless of the initial composition. The trajectories

tend to hug the IPA/ethanol edge rather closely when methanol is eliminated from the

mixture, so that the final stage of evaporation/drying will be of an essentially binary

IPA/ethanol mixture. Note that the final composition is not dependent on the initial

composition, as this mixture does not contain any separation boundaries.

Water-ethanol-methanol The water-ethanol-methanol map in figure 3.19 has a sin-

gle binary pseudo-azeotrope on the IPA-water axis. For this mixture, the trajectories

run from the pure methanol node to either the pure ethanol or pure water nodes. The

ethanol-water pseudo-azeotrope is a saddle in this mixture. The wet-bulb tempera-

tures shown on figure 3.19 show how trajectories flow from a low value of TWB to a

high value, e.g. from methanol (−2.8oC) to ethanol (8.0oC). Just as in the distillation
boundaries that occur in residue-curve maps, there is a separation boundary running

from the pure methanol (unstable) node to the water-ethanol saddle. This boundary

divides the ternary diagram into two regions, one for which all initial compositions ter-

minate at the ethanol node, and one for which all compositions terminate at the water

node. Thus, the final drop of liquid will be pure water in some cases, and pure ethanol

otherwise, depending on the initial composition. Note that the wet-bulb temperature

of the water/ethanol saddle node is intermediate in value to the TWB of ethanol and

water, so that one would expect it to be a saddle (Chapter 5 demonstrates numerical

method for determining stability of the various nodes in evaporation maps). Trajec-

tories that initiate on one side of the boundary remain on that side; thus, a relatively

small difference in the initial composition can lead to a large difference in the residual

composition (either pure ethanol or pure water). The corresponding residue curve map

in figure 2.2b shows qualitatively similar behaviour, with a single azeotrope between

water and ethanol.

IPA-water-ethanol The IPA-water-ethanol mixture in figure 3.20 has two pseudo-

azeotropes, one on the IPA-water axis and on on the ethanol-water axis. In this case,

the map consists of trajectories running from the ethanol-water binary (unstable) node,
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to either the pure water or pure IPA node. The wet-bulb temperature of the unstable

ethanol-water node (7.8oC) is the lowest of the fixed points of the mixture; trajectories

between it and the stable IPA node (TWB = 20.0oC) pass by the saddles at pure ethanol

(TWB = 15.9oC) and IPA/water (TWB = 10.7oC), which is consistent in that each of

these saddles has a wet-bulb temperature between those of pure IPA and water. A sepa-

ration boundary runs from the ethanol-water binary pseudo-azeotrope to the IPA-water

pseudo-azeotrope. Thus, the terminal composition of the evaporating mixture will be

pure IPA in some cases and pure water otherwise, depending on the initial composition.

Figure 2.2c shows the equivalent residue curve map, which displays qualitiatively sim-

ilar features - an unstable binary azeotrope between water and ethanol, and a saddle

azeotrope between IPA and water.

Ethanol-MEK-toluene The ethanol-MEK-toluene mixture in figure 3.21 has topol-

ogy similar to the IPA-water-ethanol mixture in terms of number and type of un-

stable/stable/saddle nodes. Trajectories flow from the unstable ethanol/MEK node

(TWB = 5.6oC) to either the stable ethanol node (TWB = 8.0oC) or the stable toluene

node (TWB = 20.9oC). Pure MEK (TWB = 7.9oC) and the ethanol/toluene node (TWB

= 6.8oC) are saddles in this mixture. As with the IPA-water-ethanol mixture, a sep-

aration boundary runs between the binary pseudo-azeotropes. In the region of low

ethanol concentration, the evaporation trajectories tend to hug the MEK/toluene edge,

so that the residual liquid is essentially a binary MEK/toluene mixture during the final

stages of evaporation. The residue curve map of figure 2.2d displays similar features,

with two binary azeotropes: ethanol/MEK and ethanol/toluene.

Dichloromethane/methanol/ ethyl acetate The topology for DCM/methanol/ethyl

acetate in figure figure 3.22 is similar to those of IPA/ethanol/water and ethanol/MEK/

toluene, one with one unstable node at the DCM-methanol pseudo-azeotrope, and one

saddle at the ethanol/toluene azeotrope. Trajectories run from the DCM/methanol

unstable node (TWB = −18.1oC) to either the methanol node (TWB = −2.8oC) or

the ethyl-acetate node (TWB = 4.2oC). Pure DCM (TWB = −16.7oC) and the ethyl-

acetate/methanol binary pseudo-azeotrope (TWB = −4.0oC) are saddles in this mix-

ture. A separation boundary runs between the binary pseudo-azeotropes, separating

the composition space into a region where the terminal composition is pure methanol,

and one where the terminal composition is pure ethyl-acetate.

As with the preceding mixtures, the qualitative features of the corresponding residue

curve map, shown in figure 2.2e, are similar.

Acetone-chloroform-methanol Figure 3.23 shows the evaporation map for acetone/

chloroform/methanol, which has 3 binary pseudo-azeotropes, and a single ternary
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pseudo-azeotrope. Trajectories run from the acetone-methanol stable node (TWB =-

9.2oC) to either the acetone-chloroform binary node (TWB = −3.6oC), or to the pure

methanol node (TWB = −2.8oC). Similarly, trajectories from the chloroform-methanol

binary node (TWB = −9.6oC) run to either the acetone-chloroform binary node, or to

pure methanol. In this mixture, pure acetone (TWB = −9.5oC) and pure methanol

are saddles. The ternary pseudo-azeotrope is also a saddle. Separation boundaries run

from the acetone-methanol binary to the chloroform-methanol binary, and from the

pure methanol node to the acetone chloroform node. The final composition of an evap-

orating mixture will thus either be pure methanol or that of the acetone/chloroform bi-

nary pseudo-azeotrope, depending on the initial liquid composition. Figure 2.2f shows

the equivalent residue curve map which shows qualitatively similar characteristics.

As noted for each of the mixtures above, the topology of the evaporation maps are

similar to those of the corresponding RCMs; the topology is also consistent in the sense

of Guirikov (1958) who showed that for ternary simple distillation the combination of

the singular points of different types satisfies the rule:

2N3 +N2 +N1 = 2S3 + S2 + 2 (3.58)

where N3(S3) is the number of ternary nodes (saddles), N2(S2) is the number of bi-

nary nodes (saddles), and N1 is the number of pure component nodes (Kiva et al.

2003). This consistency does not hold when the gas phase is loaded with a compo-

nent as section 4.3 demonstrates. The qualitative similarity of residue curve maps and

evaporation maps is not surprising when one considers the fixed points of each type

of map. For residue curve maps the topology in terms of the location of azeotropes is

governed by consideration of vapour-liquid equilibria (VLE) only - see section 2.2. So,

at a given pressure, the location of the azeotropes is dictated by the VLE model only.

For evaporation maps, the topology in terms of pseudo-azeotropes is due to both VLE

and mass transfer considerations in the film at the vapour-liquid interface - see section

3.1. It is the solution of the combination of factors that causes the azeotrope (RCM)

and pseudo-azeotrope (Evaporation Maps) to have different compositions. Computed

values of azeotroeps and pseudo-azeotropes can be compared by examining table 4.2

(for azeotropes) and table 3.6 (for pseudo-azeotropes).
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Figure 3.18: Evaporation map for IPA-ethanol-methanol; closed circles denote
fixed points; open circles denote pre-specified points for trajectories;
arrows indicate direction of composition changes; annotations are
wet-bulb temperatures; TG = 20◦C, uG = 0.5m/s, d = 0.03m

Figure 3.19: Evaporation map for water-ethanol-methanol; annotations are
wet-bulb temperatures; TG = 20◦C, uG = 0.5m/s, d = 0.03m
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Figure 3.20: Evaporation map for IPA-water-ethanol; annotations are wet-bulb
temperatures; TG = 20◦C, uG = 0.5m/s, d = 0.03m

Figure 3.21: Evaporation map for Ethanol-MEK-Toluene; annotations are wet-bulb
temperatures; TG = 20◦C, uG = 0.5m/s, d = 0.03m
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Figure 3.22: Evaporation map for Dichloromethane/methanol/ethyl acetate;
annotations are wet-bulb temperatures; TG = 20◦C, uG = 0.5m/s,
d = 0.03m

Figure 3.23: Evaporation map for Acetone/chloroform/methanol; annotations are
wet-bulb temperatures; TG = 20◦C, uG = 0.5m/s, d = 0.03m
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3.4 Reduction of Multicomponent Wet-Bulb Model to Single

Component Case

The formulation of the multicomponent wet-bulb model in section 3.1.4 can be reduced

to a more familiar form for a single liquid component in an inert gas (e.g. air-water) as

follows. The multicomponent form of the heat balance in equation 3.44 is implicit in

the multicompoment mass fluxes Ni. When the explicit solution to the Maxwell-Stefan

equations for the film is used, the expressions for the fluxes must be solved together

with the equilibrium expressions for each of the ternary components (equations 3.38,

3.39, 3.40) and the summation of vapour mole-fractions in 3.42. However, for a single

liquid component A and pure air as the gas phase, equation 3.44 (recalling that qI is

zero), reduces to:

qV = hV Ξ(TG − T I) = NA

{
H̄G
A − H̄L

A

}
= NA∆Hvap

A −

NAMACpA(TG − T I) (3.59)

We may neglect the last term above as it is small relative to the latent heat term,

allowing an expression for the wet-bulb temperature T I to be found. Expanding Ξ,

and solving for NA gives

NA = hG

∆Hvap

[ Φ
exp(Φ)− 1

]
(TG − T I) (3.60)

The mass-transfer and heat-transfer factors φ and φGH are given by (Taylor & Krisha

1993):

φ = NA

ckA
and φGH = NACpA

hG

where kA is a binary mass transfer coefficient, so that eliminating NA gives:

φ = φGH
hG

CpAkA
(3.61)

For the film theory of mass transfer (Bird et al. 2002) we can write φ and φGH as

φ = ln
[
1 + yIA − yGA

1− yGA

]
and φGH = ln

[
1 + CpA(TG − T I)

∆Hvap
A

]

so that

ln
[
1 + yIA − yGA

1− yGA

]
= hG

CpAkA
ln
[
1 + CpA(TG − T I)

∆HV AP
A

]
(3.62)

which is the equation for wet-bulb temperature of a pure component (corrected for

mass transfer rate) derived in Bird et al. (2002)1. Solving for T I gives the wet-bulb

1Ref. equation 22.8-34 of Bird et al. (2002)
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Figure 3.24: Comparison of multicomponent algorithm (solid lines) with
prediction from equation 3.63 (dashed lines); gas phase is pure air,
uG = 0.5m/s, d = 0.03m

temperature for pure component A:

T I = ∆Hvap
A

CpA

CpATG∆Hvap
A

−
[
1 + yIA − yGA

1− yGA

](CpAkA
hG

)
+ 1

 (3.63)

This equation is actually implicit in T I due to the dependence of yIA on T I via the

partial pressure at the wet-bulb temperature: yIA = pA(T I)/P . Equation 3.63 (or

equation 3.62) may be solved numerically for T I when yG and TG are given (using

fsolve method in Matlab (Matlab 2010)). The pure-component wet-bulb tempera-

tures, obtained from numerical solution to equation 3.63, can be compared with the

calculated values from the full multicomponent formulation. Figure 3.24 shows such

a comparison for water, IPA and ethanol in pure air, as a function of the dry-bulb (air)

temperature. The values obtained by both methods are in close agreement, considering

that the method of equation 3.63 ignores sensible heat terms.
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3.5 Chapter Summary and Conclusions

A scheme for computation of evaporation maps for non-ideal ternary liquid mixtures

was developed, for conditions of gas-phase limited heat and mass-transfer. These maps

are analogous to residue curve maps employed in the analysis of distillation processes,

but include non-equilibrium effects caused by diffusion in the gas film at the vapour-

liquid interface. In order to construct the maps, it is firstly necessary to (1) determine

the location of the pseudo-azeotropes that are fixed points of the maps, and (2) deter-

mine the wet-bulb temperature of mixtures in a neighbourhood of the unstable nodes

in the mixture. Related algorithms were developed for calculating (1) and (2) using a

Newton’s-method approach with analytic forms for the Jacobian matrices. A multicom-

ponent Maxwell-Stefan mass transfer model has been used throughout. The use of the

same basis for the calculation of fluxes, wet-bulb temperature and pseudo-azeotropes

ensures that there is consistency between the pseudo-azeotrope locations and the com-

puted evaporation trajectories.

The calculated evaporation trajectories are at the equivalent mixture wet-bulb temper-

ature at every point on the map and therefore follow a wet-bulb temperature surface

for a given set of conditions; it is the projection of the compositions of the trajecto-

ries onto the ternary diagram that forms the evaporation map. For a given geometry

and evaporation conditions (yG, TG, uG), it is possible in principle to determine the

composition of the residual solvent composition for any particular initial composition

(provided the assumption of gas-phase limited mass transfer applies).

This analysis of this chapter has used a planar geometry as a basis. The evaporation

maps track composition changes that occur in ternary mixtures in such situations as

horizontal liquid films, or trays of solvent-wet material in a tray dryer, where the resis-

tance to heat and mass transfer lies in the gas phase, and where the gas concentration

does not vary significantly with length in the direction of gas flow. In the next several

chapters, certain features of evaporation maps are developed and analysed.
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Chapter 4

Bifurcations in Evaporation Maps

4.1 Introduction

In this chapter there are two areas of focus related to the topology of evaporation maps.

Firstly, a method to calculate all pseudo-azeotropes in a ternary mixture is addressed

and secondly, bifurcations which occur in evaporation maps with varying concentra-

tions in the gas phase are studied. From the viewpoint of practical application of a

drying or evaporation process, gas composition, temperature and velocity are normally

available as design variables. We focus in this work on the effect of gas composition

only in the bifurcation analysis of the maps. Where the gas is pre-loaded with a com-

ponent of the ternary mixture, bifurcations are shown to occur in the maps and the

topology of the map changes, with the appearance and disappearance of various nodes

and saddles. By appropriate selection of the gas pre-loading concentration, the compo-

sition of a pseudo-azeotrope (where it exists) can be manipulated, up to a point where

the pseudo-azeotrope disappears, leaving a pure component as the residue.

In chapter 3 a Newton-based method for the computation of pseudo-azeotropes under

specified conditions of gas-phase composition, velocity and temperature was devel-

oped. For pure gas phase, the Newton method described therein (see table 3.2) may

be used to determine the pseudo-azeotrope composition (and wet-bulb temperature),

provided a reasonable initial estimate of the variables is provided. The location of all
pseudo-azeotropes for a given mixture is more problematic, since the Newton-method

approach will only converge to a single (local) solution if one exists; consequently,

it may converge to a pure component, rather than the actual required solution if the

initial estimate is not appropriate, and will not identify multiple solutions.

For the analogous problem of thermodyamic azeotropes, the computation of all such

azeotropes is a surprisingly difficult task. Fidkowski et al. (1993a) developed a method

based on a simple homotopy process to calculate all azeotropes in a homogeneous
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mixture (single liquid phase); this method can also locate multiple solutions, although

cases of multiple azeotropy are fortunately rare (Gaw & Swinton 1966). The method

of Fidkowski et al. was extended to heterogeneous mixtures by Tolsma & Barton

(2000a,b). Refer to section 2.2 for introductory material on azeotropy. In section 4.2.3

a method to track the various azeotropes in a ternary mixture is presented based on a

separate tracking of each possible azeotrope (excluding multiple azeotropy). In section

4.2.4 a homotopy method is applied to track the various pseudo-azeotropes for ternary

mixtures, under specified conditions of gas velocity, temperature and composition.

The maps generated were in chapter 3 were for a pure gas phase (pure air). In practice,

the gas phase in a real evaporation or drying process will often be partially laden (pre-

loaded) with one or more components of the liquid mixture, so it is of interest to know

how the vapour phase concentration affects the topology of evaporation maps. Luna

& Martinez (1998, 1999) analysed evaporation of batch and continuous processes and

demonstrated by simulation how changes in the gas composition affected the location

and existence of pseudo-azeotropes in ternary mixtures. Motivated by that work, in

section 4.3 an approach is developed for quantifying the changes in topology of the

evaporation maps as the gas phase concentration is varied. The acetone-chloroform-

methanol mixture is used as an example, as it has the most complex topology of the

ternary mixtures considered so far. The loading of the gas phase with each of the three

components in the mixture is considered separately. Ultimately, there is a qualitative

change in the evaporation map known as a bifurcation as the concentration parame-

ter increases. In section 4.3 a numerical continuation method is developed to show

systematically how the topology of evaporation maps is affected by gas composition.

Bifurcation diagrams for the various pseudo-azeotropes show how the topology of the

maps changes with pre-loading of the gas phase.

Finally, in section 4.4 an analysis of interaction effects due to multicomponent mass

transfer in the gas phase is presented. In particular, interaction effects due to the phase

pre-loading is considered.

4.2 Azeotropes and Pseudo-Azeotropes via Homotopy

In this section the homotopy method for computation of azeotropes is presented, and

a method for location of pseudo-azeotropes is developed by analogy. Firstly, in section

4.2.1, a method for computation of azeotropes using a Newton-method approach is

discussed; this uses an analytic form of the Jacobian of the governing equations which

is an approach that, to the author’s knowledge, has not been previously published.

Computed results are compared with azeotropic compositions of a number of mixtures

from AspenPlus. This approach has parallels with the Newton-method approach for

location of pseudo-azeotropes from section 3.2.3.
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4.2.1 Computation of Azeotropes By Newton’s Method

The definition of the condition for an azeotrope to exist is given by:

f(x) ≡ y∗(x)− x = 0 (4.1)

where y∗(x) represents the vapour in thermodynamic equilibrium with liquid of com-

position x. For an n-component mixture there are n − 1 independent compositions

(mole fractions) in each phase with the additional constraints that

n∑
i=1

xi = 1 (4.2a)

n∑
i=1

yi = 1 (4.2b)

xi 1 0 i = 1, 2, · · · , n (4.2c)

The elements of the equilibrium vapour composition y∗ can be expressed in terms of

the liquid composition by

y∗i = xiγi(xi, T )pi
P

(4.3)

where the non-ideality in the liquid phase is captured by the activity coefficient γi,

which in this work is described by the NRTL equation (Prausnitz et al. 1986). Equations

4.1-4.3 is a system of 2c+1 equations in 2c+1 unknowns: x1 · · ·xn, y1, · · · , yn and

temperature T . This reduces to a problem of c + 1 unknowns in c + 1 variables (x =
x1 · · ·xn, T ) by relating the y∗i and xi using equation 4.3 directly, so that for a ternary

mixture an equivalent statement to the azeotrope condition of equation 2.25 is

F (x) =



x1

(
γ1p1
P
− 1

)
x2

(
γ2p2
P
− 1

)
x3

(
γ3p3
P
− 1

)
3∑
i=1

xi − 1


= 0 (4.4)
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The Jacobian for the set of equations 4.4 is

J(x) =
[
∂Fi
∂xj

]
x=xs

=



p1
P

(
1 + x1

∂γ1
∂x1

)
− 1 x1

p1
P

∂γ1
∂x1

x1
p1
P

∂γ1
∂x3

−x1
p1
P

∂p1
∂T

x2
p2
P

∂γ2
∂x1

p2
P

(
1 + x2

∂γ2
∂x2

)
− 1 x2

p2
P

∂γ2
∂x3

−x2
p2
P

∂p2
∂T

x3
p3
P

∂γ3
∂x1

x2
p3
P

∂γ3
∂x2

p3
P

(
1 + x3

∂γ3
∂x3

)
− 1 −x3

p3
P

∂p3
∂T

1 1 1 0


(4.5)

To calculate the terms in equation 4.5 involving composition derivatives ∂γi/∂xj, the

form derived by Taylor & Kooijman (1991) for ∂ ln γi/∂xj is used, summarised in ap-

pendix B.2. This is then converted to the form required using the following relation-

ship:
∂γi
∂xj

= γi
∂ ln γi
∂xj

(4.6)

The derivatives of vapour pressure with respect to temperature in the Jacobian of equa-

tion 4.5 are found from the Antoine equation given by equation 3.52 and the fact that

∂pi
∂T

= pi
∂ ln pi
∂T

(4.7)

The method for the computation of the azeotropes is summarised in table 4.1. The

solution of the linearised set of equations in step 4 is accomplished using lower/upper

(LU) decomposition by the "backslash" operator in Matlab (Matlab 2010).

Table 4.2 shows computed values of the azeotropes that appear in figures 2.2b-2.2f. The

table also shows comparison with values generated using AspenPlus (AspenTech 2014),

indicating reasonably good agreement between both sets of values. The vapour pres-

sures used in these calculations are based on correlation from Prausnitz et al. (1986)

(see appendix B.3), whereas AspenPlus uses its own internal database; consequently,

some disparity would not be unexpected.

4.2.2 Overview of Homotopy Methods

In chapter 3 a method for computation of binary and ternary pseudo-azeotropes was

outlined. In essence, the solution scheme (see table 3.3) solves for the roots of a sys-
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Table 4.1: Calculation of azeotropes using Newton’s method (with ana-
lytic Jacobian)

Given: operating pressure P

1. Initial estimate of compositions x and temperature T ;
x = x1 · · ·xn, T

2. Evaluate the residuals F (x) = 0 (equation 4.4)
3. Compute the Jacobian matrix J (equation 4.5) using analytic

form of ∂γi/∂xj (equation 4.6) and appendix B.2
4. Compute δx = J\F
5. Update the estimates of x:

[
xNEW

]
= x+ δx

6. If err < tolerance, stop, else return to step 1

tem of coupled non-linear (algebraic) equations (for a ternary system) using Newton’s

method with an analytic Jacobian. In section 4.2.1, a method for computation of binary

and ternary azeotropes was presented, again using a Newton-method approach. How-

ever, Newton’s (or Newton-Raphson) method suffers from certain well-known short-

comings (Kuno & Seader 1988):

• the starting point must be in the vicinity of a root (i.e. the method is only locally

convergent)

• Newton’s method can locate (at best) a single root even though multiple solutions

may exist

While certain other approaches, such as the global terrain method of Lucia & Feng

(2002) are able to avoid these deficiencies, conventional root-finders cannot be used to

robustly locate all of the solutions to equation 4.4 for a multicomponent mixture since

in general it is a nonlinear constrained problem with multiple solutions (Fidkowski

et al. 1993b). A homotopy procedure is an approach to solving a "difficult" problem

D(x) = 0 by firstly solving an "easy" problem E(x) = 0 that has a similar structure

and the same number of variables (Bausa & Marquardt 2000). The homotopy function

is defined by

H(x, λ) = λD(x) + (1− λ)E(x) (4.8)

which involves both the easy and hard problems and the homotopy parameter λ. The

solution of H(x) for 0 ≤ λ ≤ 1 is found by solving the "easy" problem H(x, λ = 0) =
E(x) = 0 and then gradually moved to the "difficult" problemH(x, λ = 1) = D(x) = 0
by increasing value of the parameter λ from zero to 1.

In the following sections, a homotopy method is outlined that tracks all azeotropes in

a given mixture starting from a pure component (at λ = 0) to the actual value (at

λ = 1). This approach is based on the method of Fidkowski et al. (1993a). A similar
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approach is then used in section 4.2.4 to compute the pseudo-azeotropes of a mixture,

given known gas-phase conditions.

4.2.3 Computation of Azeotropes by Homotopy Method

In this section a simple homotopy method is given to track the azeotropes in a given

mixture. For this problem the component terms in E(x) and D(x) are given by

Ei(xi) = xipi
P

and Di(xi) = xipiγi
P

(4.9)

so that the homotopy is given by

Hi(xi, λ) = λ
xipi
P

+ (1− λ)xipiγi
P

(4.10)

The expression for Ei(xi) above is simply Raoult’s law, which applies to ideal mix-

tures. By gradually increasing λ from zero to 1, the effect of non-ideality in the liquid

mixture is gradually introduced. Figure 4.1 shows the effect of the homotopy param-

eter on two binary mixtures. The acetone-chloroform mixture in figure 4.1a shows a

maximum-boiling azeotrope, while the chloroform-methanol mixture in figure 4.1b has

a minimum-boiling azeotrope. The degree of non-ideality increases as λ → 1, as evi-

denced by the shape of the bubble-point curve which deviates more significantly from

the near-straight line behaviour at λ = 0 (Raoult’s law). At some value of λ, the binary

azeotrope "appears", indicated by an intersection between the y−x curve and the y = x

line; the binary azeotrope is a "bifurcation" of equation 4.10. The homotopy map of

equation 4.10 can be expressed in the following form:

H(x) =



((1− λ) + λγ1)
(
x1p1
P
− 1

)
− x1

((1− λ) + λγ2)
(
x2p2
P
− 1

)
− x2

((1− λ) + λγ3)
(
x3p3
P
− 1

)
− x3

n∑
i=1

xi − 1


= 0 (4.11)
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The Jacobian of the homotopy function can be written as (Tolsma & Barton 2000a):

JH(x) =
[
∂Hi

∂xj

]
x=xs

=



α1−λx1K11 −λx1K12 −λx1K13 −x1β1

−λx2K21 α2−λx2K22 −λx2K23 −x2β2

−λx3K31 −λx3K32 α3−λx2K23 −x3β3

1 1 1 0


(4.12)

where

αi = 1− (λKi + (1− λ)) pi
P

βi = λ
∂Ki

∂T
+ 1− λ

P

dpi
dT

Ki = γi
pi
P

Kij =
(
∂Ki

∂xj

)
xi(j),T,P

and where the subscript xi(j) denotes that all mole fractions are held constant except

xj . In this work γi is assumed not to be a function of temperature, so that βi is given

by

βi = λ
pi
P

dpi
dT + 1− λ

P

dpi
dT

where the derivative of vapour pressure with respect to temperature is computed using

equation 4.7. The Kij when expanded are

Kij = pi
P

dγi
dxj

in which equation 4.6 is used for the derivative term, with the composition derivatives
∂ ln γi/∂xj from appendix B.2.

The homotopy procedure adopted here is to gradually increase the value of λ in in-

crements from 0 to 1, and to track the solutions to equation 4.11 for each possible

azeotrope (namely three binary and a ternary azeotrope). The procedure is summa-

rized in table 4.3.

Figure 4.2 shows the computed branches for the azeotropes of the acetone-chloroform-

methanol mixture. For the binary pairs (AC,AM,CM) azeotropes are "born" at a certain

value of λ from a solution on the branch corresponding to a pure component. The
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4.2 Azeotropes and Pseudo-Azeotropes via Homotopy

(a) Acetone-chloroform mixture

.

(b) Chloroform-methanol mixture

Figure 4.1: Hypothetical y − x composition and bubble-point at various values of
homotopy parameter λ for binary mixtures; filled circles denote
hypothetical azeotropic compositions
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chloroform-methanol (CM) azeotrope appears at λ ≈ 0.05, ending with a composition

of xChloro = 0.66, xMeOH = 0.34 at λ = 1. For acetone-chloroform (AC) the azeotrope

first appears at λ ≈ 0.25, ending with an azeotropic composition of xAce = 0.35,

xChloro = 0.65 at λ = 1. Figure 4.2 also shows how the computed ternary azeotrope

forms from a branch on the CM-binary branch at λ ≈ 0.21, ending with xAce = 0.33,

xChloro = 0.23, xMeOH = 0.44 at λ = 1. These values at λ = 1 compare well with the

azeotropic compositions computed directly in table 4.2. The azeotrope temperatures

for each branch are also shown in figure 4.2; the temperatures at λ = 1 correspond to

those computed directly in table 4.2.

Table 4.3: Homotopy method for tracking location of azeotropes in
ternary mixture

1. Initialise homotopy parameter λ = 0
2. Initialize x; for the AC (acetone-chloroform, 1-2) branch,

initialise with x = [0.5, 0.5, 0.0, 60.0]
3. Compute the values of H(x) (equation 4.11)
4. Compute the Jacobian matrix JH(x) (equation 4.12)
5. Compute δx = JH(x)\H(x)
6. Update the estimates of x:

[
xNEW

]
= x+ δx

7. If err < tolerance, stop, else return to step 3
8. Increment λ and repeat from step 2 using updated x
9. Repeat for CM, AM and ACM (ternary) branches, using

appropriate initialisation

4.2.4 Computation of Pseudo-Azeotropes by Homotopy Method

In this section, a similar homotopy approach to that adopted in the previous section

is combined with the algorithm for pseudo-azeotrope computation developed in sec-

tion 3.1.5. This allows the branches of the various pseudo-azeotropes to be tracked

individually as the homotopy parameter λ is varied from 0 to 1. This homotopy proce-

dure addresses the effect of increasing liquid-phase non-ideality on the location of the

pseudo-azeotropes; it does not address mass-transfer effects in the gas phase directly.

The effects of the homotopy procedure on the location of the pseudo-azeotropes can

be seen in the selectivity and wet-bulb temperature plots in figure 4.3. The acetone-

chloroform mixture (4.3a) has a maximum wet-bulb temperature, while the chloro-

form/methanol mixture (4.3b) has a minimum wet-bulb temperature; the correspond-

ing mixtures have maximum-boiling and minimum boiling azeotropes respectively. The

degree of non-ideality incorporated in the problem increases as λ → 1; the shape

of the wet-bulb temperature curve deviates more strongly from the near straight-line
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4.2 Azeotropes and Pseudo-Azeotropes via Homotopy

Figure 4.2: Location of azeotropes in acetone(A)-chloroform(C)-methanol(M) mixture
by homotopy method; solid=acetone, dotted=chloroform, dashed=
methanol

behaviour at λ = 0. The pseudo-azeotropic compositions correspond to selectivities

Si = 0 (see equation 3.45 for definition). Note that the pseudo-azeotropes do not in

general correspond to minima or maxima in the wet-bulb temperature surface, unlike

conventional azeotropes which do correspond to extrema in bubble-point temperature

(see section 3.3.3 for discussion).

The pseudo-azeotropy homotopy map for the ternary mixture (which is analogous to

the azeotropy map of equation 4.11) can be summarised by:
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4. BIFURCATIONS IN EVAPORATION MAPS

H(xpAZ) =



F1 ≡ J1 + yG1
3∑
j=1

Nj −N1

F2 ≡ J2 + yG2
3∑
j=1

Nj −N2

F3 ≡ J3 + yG3
3∑
j=1

Nj −N3

F4 ≡ K1x1 − yI1
F5 ≡ K2x2 − yI2
F6 ≡ K3x3 − yI3
F7 ≡

n∑
i=1

yi − 1

F8 ≡ h•G(TG − TL)−
3∑
i=1

Ni4Hvap
i −

3∑
i=1

NiMiCp
G
i (TG − TL)

F9 ≡
[
N1∑
Ni
− x1

]
−
[
N2∑
Ni
− x2

]
F10 ≡

[
N1∑
Ni
− x1

]
−
[
N3∑
Ni
− x3

]
F11 ≡

n∑
i=1

xi − 1



= 0

(4.13)

where

x̄pAZ = (N1, N2, N3, y
I
1 , y

I
2 , y

I
3 , y

I
4 , T

L, x1, x2, x3) (4.14)

is the array of variables to be solved. The formula for the F1 · · ·F11 are derived in sec-

tion 3.1.5. Similar forms apply for each of the binary pairs in the mixture, as described

in section 3.1.5. The Jacobian for this set of equations is similar in form to that shown

in table 3.4; the key difference being the definition of Ki in terms of the homotopy

parameter λ:

Ki = λγi
pi
P

+ (1− λ)pi
P

(4.15)

Table 4.4 summarises the procedure for pseudo-azeotrope location by homotopy.

Figure 4.4 shows the computed branches for the pseudo-azeotropes of the acetone-

chloroform-methanol mixture, which has evident similarities to that for the azeotropes

of figure 4.2. As with conventional azeotropes, the pseudo-azeotropes of the binary

pairs (AC,AM,CM) are "born" at a certain value of λ from a solution on the branch

corresponding to a pure component. The chloroform-methanol (CM) pseudo-azeotrope

appears at λ ≈ 0.05, ending with a composition of xChloro = 0.71, xMeOH = 0.29 at

λ = 1. For acetone-chloroform (AC) the pseudo-azeotrope first appears at λ ≈ 0.40,

ending with a pseudo-azeotropic composition of xAce = 0.30, xChloro = 0.70 at λ = 1.

For acetone-methanol (AM) the pseudo-azeotrope first appears at λ ≈ 0.40, with a

pseudo-azeotropic composition of xAce = 0.94, xChloro = 0.06 at λ = 1.

Figure 4.4 also shows how the computed ternary pseudo-azeotrope forms from a branch
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4.3 Bifurcations in Evaporation Maps

Table 4.4: Homotopy method for location of pseudo-azeotropes

1. Initialise homotopy parameter λ = 0
2. Initialze xpAZ ; for the AC (acetone-chloroform, 1-2) branch,

initialise with x1 = 0.5, x2 = 0.5, plus suitable values for other
terms.

3. Calculate homotopy map H(x) (equation 4.13);
4. Compute the Jacobian matrix JHpAZ from table 3.4, using

modified definition of Ki from equation 4.15
5. Compute δxpAZ = JHpAZ\H
6. Update the estimates of xpAZ :

[
xNEWpAZ

]
= xpAZ + δxpAZ

7. If err < tolerance, stop, else return to step 3
8. Increment λ and repeat from step 2 using updated x
9. Repeat for CM, AM and ACM (ternary) branches, using

appropriate initialisation

on the CM-binary λ ≈ 0.21, ending with xAce = 0.33, xChloro = 0.23, xMeOH = 0.44
at λ = 1. These values at λ = 1 compare well with the pseudo-azeotropic composi-

tions computed directly in table 3.6. The pseudo-azeotrope (wet-bulb) temperatures

for each branch are also shown in figure 4.4; the temperatures at λ = 1 correspond to

those computed directly in table 3.6.

4.3 Bifurcations in Evaporation Maps

In this section the background to bifurcation analysis is presented, and some applica-

tions are reviewed. An analysis of the bifurcations that occur in evaporation maps with

varying gas-phase concentration is then presented.

4.3.1 Overview of Bifurcations and Numerical Continuation

The study of bifurcation theory is aimed at mapping different regions of parameter

space that have qualitatively different behaviour. The existence of multiple steady

states in CSTRs (continuous stirred tank reactors) or in distillation columns are ex-

amples of such nonlinear behaviour in real systems (Bekiaris et al. 1995, Kohout et al.

2002). Nonlinear phenomena such as those just described can often be usefully repre-

sented (Seydel 2010) as a system of nonlinear ODEs (ordinary differential equations)

dy
dt

= f(y, λ) (4.16)
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(a) Acetone-chloroform; for selectivity plot: solid=acetone, dashed=chloroform

.

(b) Chloroform-methanol; for selectivity plot: solid=chloroform, dashed=methanol

Figure 4.3: Hypothetical selectivity and wet-bulb temperature at various values of
homotopy parameter λ for binary mixtures; filled circles denote
hypothetical pseudo-azeotropic compositions;TG = 40◦C, uG = 0.5m/s
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4.3 Bifurcations in Evaporation Maps

Figure 4.4: Location of pseudo-azeotropes in acetone(A)-chloroform(C)-methanol(M)
mixture by homotopy method

or, as solutions to a system of nonlinear algebraic equations.

0 = f(y, λ) (4.17)

for a set of states y, and parameter λ. For some nonlinear processes, the qualitative

structure of the flow 1 can change as the parameter λ is varied. These qualitative

changes in the flow are called bifurcations, and the parameter values at which the

changes occur are called bifurcation points or branch points (Strogatz 1994). More

strictly, a bifurcation point (with respect to λ) is a solution (y0, λ0) of equation 4.16 or

4.17 where the number of solutions changes when λ passes λ0 (Seydel 2010). Several

types of bifurcation are possible, depending on the physics of the system (Strogatz

1994); in this work the saddle-node bifurcation is of interest. Figure 4.5 shows a proto-

typical example given by the first-order function

dx
dt

= ẋ = λ+ x2 (4.18)

As the parameter λ is varied, two fixed points move towards each other, collide and

mutually annihilate. Equation 4.18 represents a vector field; the velocity vector ẋ is

sketched on the horizontal axis in figure 4.5; arrows point right when ẋ > 0 and

1Loosely speaking the flow is the set of solutions to 4.16 or 4.17 (Hale & Kocak 1991)
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Figure 4.5: Saddle-node bifurcation (Strogatz 1994)

left when ẋ < 0. The filled circle denotes a stable node while the open circle is an

unstable node. When λ < 0 there are two fixed points, one stable and one unstable.

As λ reaches zero from below the solution curve moves up and the two fixed points

approach each other. When λ = 0 a half-stable fixed point exists, while at λ > 0
the fixed points have disappeared. Section 4.3.2 demonstrates the analogous type of

saddle-node bifurcations that occur in evaporation maps as the gas-phase concentration

is varied.

The fundamentals and mathematical background of numerical continuation methods

are described in detail by Govaerts (2000), Seydel (2010), and Kuznetsov (1998).

Many of the analyses presented in the literature are developed using bifurcation soft-

ware such as AUTO (Doedel et al. 1997), and MATCONT (Dhooge et al. 2003). Bekiaris

et al. (1993, 1995) investigated multiple steady states in numerical models of homoge-

neous and heterogeneous azeotropic distillation using the AUTO package, with the dis-

tillate flow rate as a bifurcation parameter. Experimental evidence for multiple steady

states was subsequently provided for the case of homogeneous azeotropic distillation by

Guttinger et al. (1997) and for heterogeneous azeotropic distillation by Muller & Mar-

quardt (1997). Knapp & Doherty (1994) analysed bifurcations in extractive distillation

processes with reflux ratio and entrainer:feed ratio as bifurcation parameters using the

AUTO package; they found maximum reflux ratios and minumum entrainer:feed ratios

beyond which separation via extractive distillation was not feasible. Garhyan et al.

(2003) explored the oscillatory behaviour of an ethanol fermentor using AUTO, while

Zavala-Tejeda et al. (2006) used MATCONT to study a continuous polyurethane reac-

tor, focusing on impact of conventional feed-back control, and on disturbance variables

such as cooling water flow. Other examples include that of Kohout et al. (2002) who

developed a fortran-based tool (CONT) for bifurcation analysis of chemical engineering

problems and demonstrated examples for stirred and tubular reactors.

Software for bifurcation analysis has also been coupled to commercial flowsheeting
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software (Chokshi 2006, Ramzan et al. 2010). Vadapalli & Seader (2001) presented a

general framework for computation of bifurcation diagrams using Aspen Plus (Aspen-

Tech 2014), and demonstrated examples for an adiabatic CSTR, as well as azeotropic

and reactive distillation columns. Restrepo et al. (2014) developed a method to per-

form bifurcation and eigenvalue analysis using dynamic models generated using As-

pen Dynamics and Aspen Custom Modeler (AspenTech 2014). Other researchers have

developed customised software packges to directly incorporate bifurcation-tracking ca-

pabilities in a dynamic simulation environment. Mangold et al. (2000) developed the

DIVA flowsheeting software package and presented examples of a circulation-loop re-

actor for abatement of VOC (volatile organic compounds), and a reactive distillation

process for production of fuel ethers. Radichkov et al. (2006) used the DIVA package

for a numerical study or nonlinear oscillations in a continuous fluidized bed spray gran-

ulator, using a simple population-balance model. The book by Strogatz (1994) gives an

introductory exposition of nonlinear dynamics (including bifurcations). Hirsch et al.

(2004) offer a more technical but accessible approach, while the the texts of Wiggins

(1990), Guckenheimer & Holmes (1985) and Hale & Kocak (1991) provide a more

advanced treatment.

In this section, the focus is on bifurcations of the evaporation maps. The governing

equations are the discrepancy functions F1 − F11 of chapter 3. One can attempt to

track the branches of fixed points by stating the problem analagous to the system of

equations 4.17 as

Fi(x, yGi ) = 0 (4.19)

where x is vector of variables, F is the vector of the discrepancy functions F1 − F11,

and yGi (bulk gas phase concentration of component i) acts as the continuation (or

bifurcation) parameter. A naive approach would be to attempt to simply follow the

branch by gradually increasing the value of yGi , using the most recently calculated value

of x as an initial guess for a new point on the branch. However, this approach fails when

the Jacobian of F becomes singular which happens at a limit or turning point (Seydel

2010). In addition, as the limit point is approached, the steps in yGi must be modified

to properly track the branch. To address this problem, the path of the branches can be

followed numerically by using a numerical continuation procedure (Kuznetsov 1998).

The continuation process is initialized by locating the pseudo-azeotrope composition

at zero gas pre-loading (yGi = 0, for i = 1, 2, 3) using the algorithm of table 3.2. The

analytic Jacobian used in the continuation method is given in table 3.4.

In this work the CL-Matcont toolbox (Govaerts 2011) is used to track the branches

of the fixed points of equation 4.19. This involves using a Moore-Penrose adaptation

of the "pseudo arclength" continuation method (Dhooge et al. 2003, Seydel 2010). A

convergence-dependent step-size control to negotiate limit points. Such bifurcations

caused by varying a single parameter are called codimension-one.

97 Paul Dillon



4. BIFURCATIONS IN EVAPORATION MAPS

4.3.2 Bifurcation Analysis of Evaporation Maps

To demonstrate the saddle-node bifurcations that may occur, the ternary acetone/ chlo-

roform/methanol mixture has been selected for study; this is the most complex of the

mixtures originally selected in table 2.1, and is therefore likely to yield the most inter-

esting behaviour.

This section focuses only on bifurcations due to gas-phase pre-loading. As the concen-

tration difference between the bulk gas and the interface provides the driving force

for mass transfer, gas-phase pre-loading has a pronounced influence on the dynam-

ics of the evaporative process (Luna & Martinez 1999). Other bifurcation parameters

could be used, such as gas-phase temperature TG or velocity uG. However, it is not

expected that variations in gas velocity or temperature would lead to bifurcations in

evaporation maps as changes in gas velocity and temperature affect each component

in a broadly similar way via their effect on Nusselt and Schmidt numbers; these di-

mensionless numbers in turn lead to heat transfer coefficient and binary mass transfer

coefficients respectively (see equations 3.19 and 3.36). There may be a possible tem-

perature effect if temperature variations were to affect binary gas diffusion coefficients

for the various components to differing extents, but this has not been explored in this

work.

Bifurcation diagrams for each of the 3 binary pseudo-azeotropes in the acetone/ chlo-

roform/methanol mixture are shown in figure 4.6. For each binary pair, the locus of

the pseudo-azeotrope (fixed point) may be tracked using the gas-phase concentration

of each of the components in the pair as a bifurcation parameter as discussed below.

Acetone/chloroform pseudo-azeotrope:

Figure 4.6aII shows how the acetone- chloroform pseudo-azeotrope composition

tends towards pure acetone as the loading of acetone in the gas phase increases,

and disappears when yGAcetone > 0.085. In other words, increasing the composition

of acetone in the vapour phase causes the composition of the pseudo-azeotrope in

liquid phase to also increase in acetone content. This is intuitively correct in that the

driving force for evaporation of acetone declines as the difference in concentration

between liquid and gas phases diminishes, whereas the driving forces for evapora-

tion of chloroform and methanol are less affected (in fact, for a non-multicomponent

mass transfer model, they would be completely unaffected). The liquid phase there-

fore becomes enriched in acetone as the tendency for acetone to evaporate is re-

duced, relative to that of chloroform and methanol. Qualitatively similar behaviour

of the acetone-chloroform mixture was observed by Luna & Martinez (1999) in a

study of isothermal batch evaporation. The arrowed lines on figure 4.6(a)-(c) in-

dicate qualitatively the direction of the vector field of liquid concentration which is
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4.3 Bifurcations in Evaporation Maps

directed towards the stable branch and away from the unstable.

The behaviour of the acetone-chloforoform pseudo-azeotrope can also be analyzed

in terms of evaporative fluxes of acetone and chloroform as shown in figure 4.7.

As the acetone pre-loading increases, the normalized flux of acetone increases to

1.0, while that of chloroform decreases to zero as figure 4.7aII indicates. This is

evidence of the enrichment of the liquid phase with acetone due to decreasing flux

of chloroform. Note however that the selectivity of each component remains at

zero at each point on the curves of figure 4.7 (as required by definition of pseudo-

azeotrope, see section 3.1.5). The normalized fluxes have the same numerical values

as the pseudo-azeotrope composition by virtue of the definition of selectivity (from

equation 3.45):

Si = Ni
n∑
i=1

Ni

− xi

As the selctivity Si is by definition zero along the pseudo-azeotrope branches, the ra-

tio of fluxes therfore equals the liquid (pseudo-azeotrope) composition. In a similar

way, the pseudo-azeotrope composition tends towards pure chloroform as the load-

ing of chloroform increases (part I of figure), and disappears when yGChloroform >

0.075 approximately. In this case, the driving force for chloroform evaporation de-

clines as the gas phase pre-loading of chloroform increases, while the driving forces

for acetone and methanol evaporation are largely unaffected (or completely unaf-

fected in the case of a non-multicomponent mass transfer model). As the chloroform

pre-loading increases, the chloroform normalized flux increases to 1.0, while that of

acetone declines to zero as shown in figure 4.7aI; this is caused by the relative de-

cline in chloroform flux relative to acetone, due to lower concentration difference

between liquid and gas phase for chloroform.

Beyond yGAcetone > 0.085 (for acetone loading), or yGChloroform > 0.075 (for chlo-

roform loading) the pseudo-azeotrope no longer exists; the effect this has on the

evaporation maps is shown in figures 4.9 and 4.10 and discussed in section 4.3.3.

Acetone/methanol pseudo-azeotrope:

For the acetone-methanol binary, figure 4.6b shows the stable (solid line) and unsta-

ble (dotted line) branches of the acetone-methanol pair. As the acetone gas concen-

tration increases above zero (part II) of figure), a stable branch originates at pure

methanol. Ultimately, the branches coalesce at the limit point (LP) at approximately

yGAcetone = 0.023. This coalescence and disappearance of two fixed points constitutes

what is termed a saddle-node bifurcation, although in the binary case it involves

branches of two nodes, one stable, and one unstable. Increasing the acetone con-

tent in the vapour phase therefore pushes the location of the yGAcetone = 0 pseudo-

azeotrope to a more acetone-lean composition (points 1B, 2B etc.) as yGAcetone in-
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4. BIFURCATIONS IN EVAPORATION MAPS

creases, while also giving rise to an additional (unstable) pseudo-azeotrope at pure

methanol that becomes richer in acetone (points 1A, 2A etc). The physical explana-

tion for the appearance of a second binary pseudo-azeotrope branch at yGAcetone > 0
is not straightforward, but is due to the combination of non-linearity of the vapour-

liquid equilibria in the liquid phase and multicomponent mass transfer in the vapour

phase. Qualitatively similar behaviour for the acetone-methanol binary was also

found by Luna & Martinez (1999) in a study of isothermal batch evaporation.

Comparing the component evaporative fluxes along the solution branches (see figure

4.7bII), it can be seen that the normalized fluxes show a similar pattern to the

bifurcation diagrams of figure 4.6b, i.e. a convex shape that turns at the limit-point

concentration of yGAcetone = 0.023. The maximum in normalized acetone flux tends

to a maximum value of 1.0 as the pseudo-azeotrope tends to pure acetone, while the

maximum in methanol flux occurs as it tends to pure methanol.

A similar situation occurs when the gas-phase is pre-loaded with methanol (fig-

ure 4.7bI). Increasing the methanol content of the yGMeOH moves the (unstable)

pseudo-azeotrope to a more methanol-rich composition, and gives rise to a stable

pseudo-azeotrope at pure acetone. The stable and unstable branches coalesce and

disappear at the limit point (LP) of yGMeOH = 6× 10−5 as the methanol pre-loading

increases. Luna & Martinez (1999) also found that the acetone-methanol disap-

peared as methanol pre-loading increased, although they did not track the pseudo-

azeotrope composition over its full range as is done in this work.

The corresponding evaporative fluxes (figure 4.7bI) along the solution branches

shows analagous behaviour to that for acetone pre-loading; the convex shapes mir-

ror the shape of the bifurcation diagram of figure 4.6bI. The normalized methanol

flux tends to a maximum value of 0.0 (i.e. NAcetone/ΣNi = 0 so NChloroform/ΣNi =
1.0) as the pseudo-azeotrope tends to pure methanol.

Chloroform/methanol pseudo-azeotrope:

The chloroform- methanol pseudo-azeotrope (figure 4.6c) shows similar behaviour

to the acetone-methanol azeotrope discussed above. As pre-loading with methanol

increases from zero (part II of figure), a stable branch originates at pure methanol.

Ultimately, the stable and unstable branches coalesce at the limit point yGChloroform =
0.027 approximately. Increasing the gas phase content of chloroform moves the po-

sition of the yGChloroform = 0.0 pseudo-azeotrope to a more chloroform-lean compo-

sition (points 1A, 2A etc.) while also introducing an additional pseudo-azeotrope at

pure methanol that becomes richer in chloroform as the pre-loading with chloroform

increase (points 1B, 2B etc.)

As the gas-phase is pre-loaded with methanol (part I of figure 4.6c) a stable branch
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4.3 Bifurcations in Evaporation Maps

appears at pure chloroform, leading ultimately to a saddle-node bifurcation at the

limit point. Beyond the limit point, the pseudo-azeotrope no longer exists; the effect

this has on the evaporation maps is shown in figure 4.11 and discussed in section

4.3.3.

Qualitatively similar behaviour for the chloroform-methanol binary was also found

by Luna & Martinez (1999) who found a second pseudo-azeotrope appeared at fi-

nite gas pre-loading, which then disappeared above a certain concentration. That

work did not involve tracking the pseudo-azeotrope location over the full range of

composition however.

The corresponding evaporative fluxes for chloroform loading (figure 4.7cII) along

the solution branches show the convex shapes that mirror the shape of the bifurca-

tion diagram of figure 4.6cII. The normalized chloroform flux tends to a maximum

value of 1.0 as the pseudo-azeotrope tends to pure chloroform.

The binary bifurcation diagrams in figure 4.6 show in principle how to select a gas-

phase concentration that yields a desired point on a stable branch, noting that each

point on a stable branch represents a terminal concentration of an evaporating binary

liquid mixture (at given gas-phase conditions uG and TG). Taking figure 4.6aII as

an example, the use of a gas phase mole-fraction of yGAcetone = 0.04 (point (3) on

diagram) will yield a terminal composition xAcetone = 0.7; the evaporation map in

figure 4.9c shows liquid composition trajectories converging to this composition (the

binary composition trajectories lie along the acetone-chloroform edge of the diagram).

Ternary acetone/chloroform/methanol pseudo-azeotrope:

Bifurcation diagrams may also be developed for ternary pseudo-azeotropes, as de-

picted in figure 4.8. As acetone pre-loading increases (figure 4.8a), the ternary

azeotrope shifts towards the acetone-methanol axis. The continuation path for

the ternary ultimately meets that of the binary acetone-methanol pseudo-azeotrope

(shown on the horizontal plane) at which point the ternary disappears. As the

gas-phase is loaded with chloroform (figure 4.8b), the continuation path for the

ternary pseudo-azeotrope approaches and meets the chloroform-methanol binary

(shown on the horizontal plane). In figure 4.8c, showing methanol pre-loading, the

ternary exhibits a turning point, so that for methanol concentrations between zero

and the limit point concentration there are 2 ternary pseudo-azeotropes, one stable

node and one saddle. This bifurcation of a ternary pseudo-azeotrope is a higher

dimensional example of the saddle-node bifurcations seen in figure 4.6a and 4.6b

for binary pseudo-azeotropes.
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4. BIFURCATIONS IN EVAPORATION MAPS

(a) Acetone-chloroform pseudo-azeotrope: (I) chloroform (II) acetone loading

(b) Acetone-methanol pseudo-azeotrope: (I) methanol (II) acetone loading

(c) Chloroform-methanol pseudo-azeotrope: (I) methanol (II) chloroform loading

.

Figure 4.6: Bifurcation diagrams for acetone-chloroform-methanol;
TG = 40◦C, uG = 0.5m/s, d = 0.03m
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4.3 Bifurcations in Evaporation Maps

(a) Acetone-chloroform pseudo-azeotrope: (I) chloroform (II) acetone loading

(b) Acetone-methanol pseudo-azeotrope: (I) methanol (II) acetone loading

(c) Chloroform-methanol pseudo-azeotrope: (I) methanol (II) chloroform loading
.

Figure 4.7: Normalized evaporative fluxes for acetone-chloroform-
methanol; TG = 40◦C, uG = 0.5m/s, d = 0.03m
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4. BIFURCATIONS IN EVAPORATION MAPS

(a) Acetone pre-loading; horizontal plane corresponds to figure 4.6bII; points
(1)-(2) correspond to composition of ternary in figure 4.9a-b

(b) Chloroform pre-loading; horizontal plane corresponds to figure 4.6cII; points
(1)-(2) correspond to composition of ternary in figure 4.10a-b

(c) Methanol pre-loading; horizontal plane corresponds to figure 4.6aII; points
(1A)/(1B)-(2A)/(2B) correspond to figure 4.11a-b

Figure 4.8: Bifurcation diagrams for ternary azeotrope; numbered points correspond
to gas-phase concentrations in maps of figure 4.9, 4.10 and 4.11.
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4.3.3 Effect of Gas Pre-Loading on Evaporation Maps

The effect of pre-loading the gas phase on the evaporation maps can be related to the

bifurcation diagrams. Figure 4.9, 4.10 and 4.11 show how the topology of the evapora-

tion maps for the acetone-chloroform-methanol mixture are affected by the pre-loading

of the gas phase with each component in turn. As the gas-phase concentration chan-

ges, there are significant changes in the numbers of fixed points (binary and ternary

pseudo-azeotropes), as well as in the flow of evaporation trajectories, as detailed in the

following paragraphs.

Acetone Pre-Loading

In figure 4.9, as yGAcetone increases, the acetone-chloroform binary moves towards

the pure acetone corner, the ternary moves towards the acetone-methanol axis, and

the two pseudo-azeotropes on the acetone-methanol vertex approach each other

before coalescing and disappearing. In figure 4.9c, the ternary has disappeared,

leaving the acetone-chloroform pseudo-azeotrope as the terminal point. At higher

acetone concentrations (figure 4.9d), this pseudo-azeotrope also disappears. These

behaviours are consistent with the bifurcations in figures 4.6aII (which shows ef-

fect of acetone loading on acetone-chloroform binary), 4.6bII (which shows effect

of acetone loading on acetone-methanol binary), and 4.8a which shows effect of

acetone loading on the ternary pseudo-azeotrope. The overall effect of increasing

acetone content in the vapour phase is to eventually eliminate the various binary

and ternary pseudo-azeotrope fixed points in favour of a single end-point at pure

acetone. This is physically reasonable in that an increasing acetone gas phase con-

centration reduces the driving force for acetone evaporation, while not significantly

affecting the evaporation of chloroform and methanol.

Luna & Martinez (1999) studied isothermal batch drying of the acetone/chloroform

mixture and found qualitatively similar behaviour to that described above:

• binary acetone-chlofororm azeotrope increased in acetone content as yGAcetone
increased

• new acetone-methanol pseudo-azeotrope appeared for yGAcetone > 0

• chloroform-methanol pseudo-azeotrope disappeared for yGAcetone > 0

• ternary pseudo-azeotrope moved toward acetone-methanol edge as yGAcetone
increased, disappearing at a finite value

Chloroform Pre-Loading

In figure 4.10, as yGChloroform increases, the acetone- chloroform binary moves to-

wards the pure chloroform corner, the ternary pseudo-azeotrope moves towards the
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chloroform- methanol axis and the two binary pseudo-azeotropes on the acetone-

methanol axis move towards each other before coalescing and disappearing. In fig-

ure 4.10c, the ternary has disappeared, while in (figure 4.10d chloroform remains

as the terminal composition. These phenomena are consistent with the bifurcations

in figures 4.6aI (which shows effect of chloroform loading on acetone-chloroform

binary), 4.6cII (which shows effect of chloroform loading on chloroform-methanol

binary), and 4.8b which shows effect of chloroform loading on the ternary pseudo-

azeotrope. Analogous to the case of acetone pre-loading, the net effect of increasing

chloroform content in the vapour phase is to eliminate the pseudo-azeotropes to

give a single evaporation end-point at pure chloroform. This is physically reason-

able in that an increasing chloroform gas phase loading reduces the driving force for

chloroform evaporation, while not significantly affecting the evaporation of acetone

and methanol.

Methanol Pre-Loading

For methanol pre-loading, increasing concentration causes the two ternary pseudo-

azeotropes to converge before ultimately converging at their limit point. The bi-

nary pseudo-azeotropes on the chloroform-methanol axis also converge as yGMeOH

increases. Ultimately, the pseudo-azeotropes all disappear, leaving methanol as

the stable node in figure 4.11d. The bifurcations in figures 4.6bI (for effect of

methanol loading on acetone-chloroform binary), 4.6cI (for effect of chloroform

loading on chloroform-methanol binary), and 4.8c (for effect of methanol loading

on the ternary pseudo-azeotrope) show behaviour consistent with that of the evapo-

ration maps of figure 4.11. As methanol concentration in the gas-phase is increased,

the binary and ternary pseudo-azeotropes are eventually eliminated to yield a sin-

gle end-point at pure methanol. This is intuitively correct in that the driving force

for methanol evaporation is reduced as the methanol gas-phase concentration in-

creases, whereas the driving forces for acetone and chloroform are not significantly

affected.

Work by Luna & Martinez (1999) found qualitatively similar behaviour to that de-

scribed above for methanol pre-loading:

• binary acetone-chloroform azeotrope increased in acetone content as yGAcetone
increased

• new chloroform-methanol pseudo-azeotrope appeared for yGMeOH > 0

• acetone-methanol pseudo-azeotrope disappeared for yGMeOH > 0

• acetone-chloroform pseudo-azeotrope disappeared for yGMeOH > 0

• new ternary pseudo-azeotrope formed for yGMeOH > 0, and moved in

direction of pure methanol as the methanol pre-loading increased

Evaporation Maps for
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• the pair of ternary pseudo-azeotropes moved closer together with increasing

yGMeOH , before ultimately coalescing and disappearing

The evaporation maps in figures 4.11-4.9 show the changing locations of the pseudo-

azeotropes as the gas phase concentration is varied; this movement can be tracked

continuously on a ternary diagram as shown in figure 4.12, which replicates the infor-

mation shown in figure 4.8 in an alternate form. The ternary pseudo-azeotrope moves

towards the acetone-methanol edge before disappearing as the pre-loading of acteone

increases, and towards the methanol-chloroform edge as the chloroform pre-loading in-

creases, again disappearing at the edge. With methanol pre-loading, the ternary moves

towards a limit point, while a secondary ternary appears on the acetone-chloroform

edge and moves towards the same limint point. Both branches meet at the limit point,

after which the ternary disappears. The binary limit points from figures 4.6b and 4.6c

are also shown on the ternary in figure 4.12.

4.4 Interaction Effects

In a similar approached to that adopted in section 3.3.4, multicomponent interaction

effects (the degree to which the process is non-Fickian) can be assessed by consider-

ing the relative magnitude of the off-diagonal contributions to the diffusive fluxes. A

measure of the contribution of an off-diagonal (multicomponent) term is given by:∣∣∣∣∣k
•
ij 4 yj

k•ii 4 yi

∣∣∣∣∣ (4.20)

The interaction effect is notable when the ratio of the interaction term (denomina-

tor) to the Fickian term (numerator) is significant. As an example of this approach,

values of the ratios along the branches of the binary pseudo-azeotropes in the acetone-

chloroform-methanol mixture are shown in figure 4.13. These correspond to the bi-

furcation diagrams in figure 4.6. For the acetone-chloroform pair (figure 4.13a), the

term with denominator k•12∆y2 represents the contribution of a chloroform concentra-

tion gradient to the diffusive flux of acetone. This term tends to zero with increasing

yGAcetone as the composition of the binary pseudo-azeotrope in figure 4.6a approaches

pure acetone (in which case x2 = 0, so that ∆y2 = 0). As the liquid composition tends

to that of a pure acetone, the gas-phase diffusion is purely binary (air + acetone),

in which case multicomponent effects do not exist. The size of the term involving

k•12∆y2 in figure 4.6a is 0-0.1 over the region of interest, so that while not the domi-

nant term, it is not generally negligible. Similarly, the term with denominator k•21∆y1

represents the contribution of an acetone concentration gradient to the diffusive flux

of chloroform. This tends to zero with increasing yGChloroform, as the pseudo-azeotrope

composition tends to pure chloroform (in which case x1 = 0, so that ∆y1 = 0). This

107 Paul Dillon



4. BIFURCATIONS IN EVAPORATION MAPS

(a) yG
Acetone = 0.005 (b) yG

Acetone = 0.01

(c) yG
Acetone = 0.04 (d) yG

Acetone = 0.1

Figure 4.9: Evaporation maps for acetone-chloroform-methanol, gas phase pre-loaded
with acetone, TG = 40◦C, uG = 0.5m/s, d = 0.03m; closed circles denote
fixed points; annotations correspond to pseudo-azeotrope compositions in
figure 4.6 a(II) and 4.6 b(II)
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4.4 Interaction Effects

(a) yG
Chloroform = 0.005 (b) yG

Chloroform = 0.015

(c) yG
Chloroform = 0.035 (d) yG

Chloroform = 0.1

Figure 4.10: Evaporation maps for acetone-chloroform-methanol, gas phase
pre-loaded with chloroform; TG = 40◦C, uG = 0.5m/s, d = 0.03m;
closed circles denote fixed points; annotations correspond to
pseudo-azeotrope compositions in figure 4.6 a(I) and 4.6 c(II)
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(a) yG
MeOH = 0.002 (b) yG

MeOH = 0.004

(c) yG
MeOH = 0.006 (d) yG

MeOH = 0.01

Figure 4.11: Evaporation maps for acetone-chloroform-methanol, gas phase
pre-loaded with methanol; TG = 20◦C, uG = 0.5m/s; annotations
correspond to pseudo-azeotrope compositions in figure 4.6b(II) and 4.6
c(I)
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Figure 4.12: Path of ternary pseudo-azeotrope of acetone-chloroform-methanol
mixture during continuation procedure; limit points shown as open
circles, pseudo-azeotropes at pure gas phase (non pre-loaded) are
filled circles. Paths correspond to those shown in figure 4.8

term is 0-0.07 over the range of interest. For other process conditions involving higher

component fluxes, such as at higher bulk gas temperatures and velocities, the inter-

action effects may be more significant. Figures 4.13b and 4.13c, show the interaction

effects for the other binary pairs; most notable is the term involving k•32∆y2 in figure

4.13c, where the ratio is O(1) along part of the stable branch as the azeotrope compo-

sition tends to pure chloroform, indicating significant interaction. In this region, the

pseudo-azeotrope composition approaches pure chloroform, so that the concentration

difference for methanol (∆y3) approaches zero, even as that for chloroform (∆y2) re-

mains significant; thus, although the actual flux of methanol approaches zero in this

area, because the flux of chloroform is relatively large, the effect of the chloroform

concentration gradient on the methanol flux is significant, indicated by the large value

of the ratio. The ratio in equation 4.20 is not evaluated where the ∆yi term in the

denominator is zero.
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(a) Acetone-chloroform pseudo-azeotrope: (I) chloroform loading (II) acetone loading.

(b) Acetone-methanol binary pseudo-azeotrope: (I) acetone loading (II) methanol loading

(c) Chloroform-methanol binary pseudo-azeotrope: (I) chloroform loading (II) methanol
loading

Figure 4.13: Off-diagonal contributions to diffusive fluxes for binary
pseudo-azeotropes of acetone(1)-chloroform(2)-methanol(3) mixture;
� = pseudo-azeotrope location for evaporation into pure gas; • = limit
point; solid lines are stable branches, dashed lines are unstable,
corresponding to figure 4.6. Arrows show direction of continuation
procedure.
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4.5 Chapter Summary and Conclusions

The initial portion of this chapter focused on calculation methods for azeotropes and

pseudo-azeotropes. A Newton’s method approach to calculation of azeotropes using

an analytic form of the Jacobian was presented, and compared with results from a

commercial simulation package. While there is nothing novel in the calculation of

azeotropes per se, an approach employing Newton’s method with an analytic form

of the Jacobian matrix has not been previously published, to the best of the author’s

knowledge. Homotopy methods were then used to assess how azeotropes and pseudo-

azeotropes form as functions of a homotopy parameter which described the degree of

non-ideality in the liquid phase. These methods were able to successfully identify the

various solution branches in a complex ternary mixture.

The second development of this chapter has been the numerical continuation proce-

dure used to track the pseudo-azeotrope fixed points for ternary evaporation maps. A

numerical continuation procedure was used to analyse the bifurcations that occur in

the maps, using the gas-phase concentration as a bifurcation parameter. This analysis,

and the bifurcation diagrams generated, allow one to find the required gas-phase com-

position that results in a desired terminal composition for the evaporation of a ternary

mixture.

Finally, the extent of multicomponent interaction along the binary azeotrope branches

was investigated; the ratio of diagonal to non-diagonal diffusive flux terms was used

a measure of the extent of interaction. For the acetone/chloroform/methanol mixture

considered, the off-diagonal (interaction) terms were generally < 10% of the diagonal

(Fickian) terms, although in the case of methanol loading of the chloroform-methanol

azeotrope there is significant interaction along the stable branch in the neighbourhood

of pure chloroform.
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Chapter 5

Stability Analysis

The stability of the fixed points (pure components and azeotropes) of residue curve

maps can be evaluated by linearizing the dynamic behaviour in the vicinity of the fixed

points. A similar approach is adopted in this chapter for evaporation maps, by lineariz-

ing the governing equations for the gas-phase limited process.

In the following sections the linearization and stability analysis approach for residue

curve maps is firstly addressed; an analytic form of the Jacobian is derived that uses the

NRTL equation to describe vapour-liquid non-ideality. However, an analytic form for

the Jacobian cannot be found for evaporation maps. For that reason, a finite-difference

method is used to compute the required gradients of the Jacobian at the fixed points

of evaporation maps. The linearization process allows the fixed points of both residue

curve maps and evaporation maps to be characterised in terms of the eigenvalues of

the Jacobian matrices evaluated at their respective fixed points. In tandem with the

eigenvalues, the corresponding eigenvectors may also be found at the fixed points. The

eigenvalues are useful for analysing the stability of the fixed points (pure components

and azeotropes or pseudo-azeotropes), while the eigenvectors show the asymptotic

behaviour of residue curves and of evaporation trajectories in the vicinity of the fixed

points. The eigenvectors are also used in the location of separation boundaries in

chapter 6.

5.1 Stability of Fixed Points in Residue Curve Maps

While the stability of a particular node (pure component or azeotrope) can be pre-

dicted based on the behaviour of trajectories in the vicinity of that node, a more exact

direct approach is desirable. Doherty & Perkins (1978a,b) analysed the dynamics of

simple distillation processes, elaborating many of the mathematical features of residue

curve maps. They also showed how to determine the stability of fixed points of residue

115



5. STABILITY ANALYSIS

curve maps using the well-known theory of ordinary differential equations. Theorems

due to Liapunov and Hartman-Grobmann (Varma & Morbidelli 1997) imply that an

autonomous, non-linear system f(x) is asymptotically stable if the corresponding lin-

earized system is stable, and unstable if the linearized system is unstable (no conclusion

can be drawn if linearized system is marginally stable). Thus, the nature of an isolated

singular point is topologically similar to the singular point of the linearized equations

at that point. Recall that residue curves are described mathematically by (see also

equation 2.18)

−dx
dτ

= f(x) = y(x)− x (5.1)

where x is a vector of liquid mole fractions, y(x) is a relationship for vapour-liquid

equilibria, and τ is a dimensionless warped time that incorporates molar liquid holdup

(Doherty & Malone 2001). By linearizing the system described by equation 5.1 at

fixed points (pure components and azeotropes), the stability characteristics at the fixed

points can be assessed using the eigenvalues computed at those fixed points. For the

residue curve described by equation 5.1 we have (Doherty & Perkins 1978a)

−du
dτ

= [J(xs)](u)

u = x− xs

J(xs) =
[
∂fi
∂xj

]
x=xs

provided that det(J(xs) 6= 0

(5.2)

where J(xs) is the Jacobian matrix at the fixed point xs, and u = x − xs represents

a deviation from the fixed point. Solutions to the system of linear ordinary differential

equations given by equation 5.2 are of the form

u(t) =
n∑
i=1

cie
βt · v (5.3)

where β are the eigenvalues of J(xs), and v are the corresponding eigenvectors. For

the ternary systems considered here, there are two eigenvalues and two corresponding

eigenvectors solution, and the solution form is

u1(t) = c1e
β1τv1(1) + c2e

β2τv2(1) (5.4a)

u2(t) = c1e
β1τv1(2) + c2e

β2τv2(2) (5.4b)

with the summation of molefractions
∑
ui = 0 providing the closure of the problem,

and where v1(1) and v1(2) represent the first and second elements of the column eigen-

vector v1. The fixed points of residue curve maps can be stable or unstable nodes, or

saddle nodes depending on the eigenvalues βi of the Jacobian in equation 5.2 (Hirsch

et al. 2004):
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5.1 Stability of Fixed Points in Residue Curve Maps

• Eigenvalues real and both positive - unstable node

• Eigenvalues real and both negative - stable node

• Eigenvalues real and opposite sign - saddle

See figures 5.1 and 5.2b below for example residue curve map displaying these char-

acteristics. Doherty & Perkins (1978a) also showed that complex and pure imaginary

eigenvalues do not occur for the simple distillation described by equation 5.1.

If the deviation u is small, so that the composition x differs only slightly from the

composition of the fixed point (at which x = y(x)), then an alternate form of the

Jacobian is given by Pollmann et al. (1996):

J ′(xS) =


∂y1
∂x1
− ∂y1
∂xn

· · · ∂y1
∂xn−1

− ∂y1
∂xn

...
...

∂yn−1
∂x1

− ∂yn−1
∂xn

· · · ∂yn−1
∂xn−1

− ∂yn−1
∂xn

 (5.5)

which has eigenvalues denoted by λi. The subtraction of the partial derivative with

respect to the nth components arises from the fact that the sum of the mole fractions

sums to unity. The partial derivatives with respect to mole fractions are calculated (an-

alytically in this work) as if all mole fractions are independent (Salomone & Espinosa

2001), and the choice of the nth component is arbitrary. The eigenvectors for J(xs)
and J ′(xs) are the same, but the eigenvalues are related by βi = 1−λi (Pollmann et al.

1996).

For a ternary mixture (selecting 1 and 2 as the primary components and component 3

as the nth), equation 5.5 reduces to

J ′(xS) =


∂y1
∂x1
− ∂y1
∂x3

∂y1
∂x2
− ∂y1
∂x3

∂y2
∂x1
− ∂y2
∂x3

∂y2
∂x2
− ∂y2
∂x3

 (5.6)

For an isobaric system the vapour compositions are given by an equation of the form

(see also equation 3.27):

yi = piT (x)
P

γi(T (x),x)xi (5.7)

and the composition derivatives are given by (Doherty & Perkins 1978b) as

∂yi
∂xj

= δij

(
pi
P

)
+ xi

(
p1
P

) dγi
dxj

+ 1
P

dpi
dT

(
∂T

∂xj

)
xiγi (5.8)

The partial derivative of temperature with respect to composition (underlined terms

above) is zero at an azeotrope, so that equation 5.6 becomes (at an azeotropic fixed
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Table 5.1: Procedure for calculation of eigenvalues and eigenvectors
(with analytic Jacobian); optionally, compute linearized tra-
jectories around a fixed point.

Given: operating pressure P

1. For pure component, calculate bubble/dew point (Smith & vanNess
1987)

2. For binary/ternary azeotrope, calculate azeotropic composition and
temperature via continuation algorithm (section 4.2.3)

3. Calculate activity coefficients γi (appendix B.1) and derivatives of
activity coefficients (appendix B.2) at the known compositions and
temperature

4. Compute Jacobian J ′(xS) using equation 5.9 and the eig function
(similar forms apply for the 1-3 and 2-3 pairs in a ternary mixture)

5. Calculate eigenvalues and eigenvectors from J ′ (using standard linear
algebra techniques)

6. To solve for linearized trajectories:
6.1. Pick a start point (x0

1, x
0
2) linearized trajectory

6.2. Using the computed eigenvalues and eigenvectors, solve equations
5.4 simultaneously for the constants c1 and c2 (e.g. using Matlab
fsolve function) for u1(0) = x0

1 − xs1 and u2(0) = x0
2 − xs2

6.3. With the calculated values of c1 and c2, project equations 5.4
forward and backwards in dimensionless time τ in a vicinity of xs

point)

J ′(xS) =


p1
P

(
x1

[
∂γ1
∂x1
− ∂γ1
∂x3

]
+ γ1

)
x1
p1
P

[
∂γ1
∂x2
− ∂γ1
∂x3

]

x2
p2
P

[
∂γ2
∂x1
− ∂γ2
∂x3

]
p2
P

(
x2

[
∂γ2
∂x2
− ∂γ2
∂x3

]
+ γ2

)
 (5.9)

The derivatives in equation 5.9 are constrained by the fact that the xi sum to unity.

The constrained derivatives (denoted by subscript Σ) are given in terms of the uncon-

strained derivatives by (Taylor & Kooijman 1991)

∂ ln γi
∂xj

∣∣∣∣
Σ

= ∂ ln γi
∂xj

− ∂ ln γi
∂xn

(5.10)

The Jacobian thus requires evaluation of composition derivatives of the NRTL activity

coefficients. Appendix B.2 gives the form of the unconstrained derivatives of ln xi;
these can be used in equation 5.9 by employing the relationship

∂γi
∂xj

= γi
∂ ln γi
∂xj
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5.1 Stability of Fixed Points in Residue Curve Maps

The eigenvalues and eigenvectors of the Jacobians of equations 5.9 can be found di-

rectly using standard formulas of linear algebra (Lay 2006), or conveniently using the

eig function in Matlab. Table 5.1 summarises the procedure.

Figure 5.1a shows a residue curve map for the benzene-acetone-chloroform mixture

overlaid with linearized trajectories and eigen-directions, and annotated with eigen-

values at the fixed points. A portion of figure 5.1a is shown magnified in figure 5.1b.

The stable node at pure benzene is characterised by negative eigenvalues (βi), while the

unstable nodes at pure acetone and pure chloroform have positive βi. The saddle at the

acetone-chloroform azeotrope has one positive and one negative eigenvalue. At each

fixed point two intersecting eigen-directed lines are shown; these lines indicate the di-

rection of influence of the exponential parts of equation 5.4. At pure chloroform, both

eigenvalues β1 and β2 are of similar size so that the residue curves departing the pure

vertex does not favour either the choroform-benzene or the chloforform-acetone side.

At pure benzene one eigenvalue (β1) is significantly more negative than the other (β2),

so that the residue curve favours an approach along the chloroform-benzene side asso-

ciated with the more negative value. A similar but less pronounced situation exists at

the pure acetone vertex, with the residue curves approaching via the acetone-benzene

side. For the pure component vertices, the eigen-directions point along the edges of the

composition diagram; these represent the direction of changes of binary mixtures.

At the acetone-chloroform saddle azeotrope in figure 5.1b and one eigenvector passes

along the acetone-chloroform edge, while the other is directed towards the interior. A

number of linearized trajectories (solutions to equation 5.4) are shown adjacent to the

saddle, generally following the direction of the residue curves from either of the two

unstable nodes (acetone and chloroform) towards the stable node (benzene). Note

that the linearized trajectories are only valid in the neighbourhood of the fixed point

at which they were computed, and so do not follow the path of the residue curves very

well at a distance from the fixed point.

The eigenvalues calculated using the approach of table 5.1 are compared with values

found by Pollmann et al. (1996) in table 5.2, showing reasonably good agreement

between the two approaches, considering that different activity coefficient models are

used (Wilson model for Pollmann et al., NRTL model for this work).

Also shown in table 5.1 are the eigenvalues βi for the form of the linearized residue

curve in equation 5.2. The type of node (stable, unstable, saddle) is consistent with the

sign of the βi obtained in this way, so that the pure benzene stable node as two negative

eigenvalues, the pure acetone and pure chloroform unstable nodes have two positive

eigenvalues, while the saddle azeotrope of acetone-chloroform has one positive and

one negative eigenvalue.

The residue curve map for ethanol/MEK/toluene in figure 5.2a has an unstable mode

at the ethanol/MEK azeotrope (positive βi), and stable nodes at pure ethanol and pure
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5. STABILITY ANALYSIS

Table 5.2: Comparison of computed eigenvalues of equation 5.9 (NRTL
model) with calculations of Pollmann et al. (1996) (Wilson model);
also shown are eigenvalues βi for open evaporation (equation 5.2;
SN = stable node, UN = unstable node, S = saddle; P = 1.0 bar

Pure components &
azeotropes

Calculated
Eigenvalues

Eigenvalues
(Pollmann et al.
1996)

Eigenvalues
(Open
Evaporation)

Benzene (SN)
λ1 = 1.50 λ1 = 1.6 β1 = −0.50
λ2 = 3.56 λ1 = 3.4 β2 = −2.56

Acetone (UN)
λ1 = 0.43 λ1 = 0.46 β1 = 0.57
λ2 = 0.65 λ1 = 0.62 β2 = 0.35

Chloroform (UN)
λ1 = 0.43 λ1 = 0.44 β1 = 0.57
λ2 = 0.46 λ1 = 0.49 β2 = 0.54

Acetone/Chloroform (S)
λ1 = 1.40 λ1 = 1.4 β1 = −0.4
λ2 = 0.76 λ1 = 0.73 β2 = 0.24

toluene (negative βi). The saddles at pure MEK and the ethanol/toluene azeotrope

have βi of opposite sign. There is a large disparity in size of the eigenvalues at pure

toluene, so that the residue curves track toward the node along one particular eigen-

direction, the MEK/toluene edge.

As a more complex example, figure 5.2b shows the residue curve map for acetone/

chloroform/methanol, including eigenvalues and eigen-directed lines at each of the

fixed points. The stable nodes of this mixture are pure methanol and the maximum-

boiling acetone/chloroform azeotrope, which have two negative eigenvalues (βi). The

acetone/methanol and chloroform/methanol minimum-boiling azeotropes are unsta-

ble nodes, characterized by two positive eigenvalues each. Pure acetone and pure

chloroform are binary saddles, having one positive and one negative eigenvalue. Fi-

nally, the ternary azeotrope is a saddle, with one positive and one negative azeotrope.

At the ternary azeotrope, it can be seen that the eigen-directed lines are oriented in the

direction of the residue curves at that point.

5.2 Stability of Fixed Points in Evaporation Maps

The previous section demonstrated the approach for assessing the stability of residue

curve maps via calculation of eigen-values and eigen-vectors at the fixed points. In

this section an analogous approach is adopted for evaporation maps. Luna & Martinez

(1998, 1999) developed criteria for stability of pseudo-azeotropes in gas-phase con-

trolled drying of liquid mixtures. They posited that the stability of the non-isothermal

system could be derived from an analysis of the equivalent isothermal system, us-

ing arguments based on a continuously rising temperature profile during evaporation.

However, as section 6.3 demonstrates, temperature does not rise monotonously dur-
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5.2 Stability of Fixed Points in Evaporation Maps

(a) Benzene-acetone-chloroform

.

(b) Magnified portion around azeotrope showing linearized approximations

Figure 5.1: Eigen-values and eigen-directions for residue curve map of
benzene-acetone-chloroform.; dashed lines are eigen-directions.
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5. STABILITY ANALYSIS

(a) Ethanol-MEK-toluene

(b) Acetone-chloroform-methanol

Figure 5.2: Eigen-values and eigen-directions for RCM example mixture; P = 1.0 bar.
Heavy dashed lines are eigen-directions at the fixed points.
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5.2 Stability of Fixed Points in Evaporation Maps

ing evaporation of a multicomponent mixture, and ridges and valleys in the wet-bulb

temperature surface are crossed during the multicomponent evaporation process. Rev

(1992) reached a similar conclusion in a study of residue curve maps, finding that

temperature does not rise monotonously during open evaporation (simple distillation)

processes. Nevertheless, we may use the assumption that in the neighbourhood of the
stable fixed points the wet-bulb temperature does continuously rise; this is evident in

the wet-bulb temperature surfaces of figures 3.12-3.14, so that the approach of Luna &

Martinez (1998, 1999) is valid in those neighbourhoods.

Recall that the component balance for gas-phase limited drying (equation 3.28) is given

by:

dxi
dt

= − A

hLT

(
xi
Nt
−Ni

)
(5.11)

and the corresponding energy balance is given by equation 3.33. For the isothermal

case, the energy balance is not required, and at a fixed point (pure component or

pseudo-azeotrope) xsi , the right-hand side of equation 5.11 will be zero:

F (xsi ) = 0 = A

hLT
(xiNt −Ni) (5.12)

As the term involving A/hLT will always be 1 0, the stability characteristics can be anal-

ysed by taking calculating the eigen-values of the Jacobian of the term in brackets at

the fixed point:

J(xs) =
[
∂Fi
∂xj

]
x=xs

(5.13)

=


x1
∂Nt

∂x1
−∂N1
∂x1

+Nt x1
∂Nt

∂x2
− ∂N1
∂x2

x2
∂Nt

∂x1
− ∂N2
∂x1

x2
∂Nt

∂x2
−∂N2
∂x2

+Nt

 (5.14)

The Jacobian includes terms for i = 1 · · ·n − 1 with the nth mole-fraction given by∑
xi = 1. Calculation of the Jacobian involves firstly finding the component and total

fluxes at points over the entire composition space, using the multicomponent fluxes

algorithm of table 3.1. A finite-difference approximation is then used to to compute the

flux gradients over the x1-x2 composition space, represented by indices k, j below. For

points on the edge of the composition triangle, a 3-point asymmetric forward difference

approximation is used. For gradients in the x1 direction, this gives:

∂Ni

∂x1
(k, j) = −3Ni(j, k) + 4Ni(j, k + 1)− 3Ni(j, k + 2)

2∆x1
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Table 5.3: Algorithm for calculation of eigenvalues and eigenvectors of evaporation
maps

1. Establish a grid of np × np points over the ternary composition
space

2. At each composition point x(j), j = 1 · · ·np, calculate the compo-
nent fluxes Ni(j) and the wet-bulb temperature TWB(x(j))

3. Normalize the fluxes for each component i (by dividing by the
largest flux of each component)

4. Locate binary and ternary pseudo-azeotropes for the mixture (see
chapters 3 and 4.

5. At each fixed point (pure components + pseudo-azeotropes), cal-
culate flux gradients using forward-difference or centered differ-
ence formula

6. Assemble Jacobian at each fixed point from calculated flux gradi-
ents (equation 5.14)

7. Compute eigen-values and eigen-vectors from Jacobian at each
fixed point

which is O(∆x2) accurate (Selebi & Schiesser 1992). Similar formulations are used

for gradients in the x2 and x3 directions. For points in the interior of the composition

space, a 5-point centered difference approximation which is O(∆x4) accurate (Selebi

& Schiesser 1992) is used:

∂Ni

∂x1
(k, j) = −Ni(j, k + 2) + 8Ni(j, k + 1)− 8Ni(j, k − 1)−Ni(j, k − 2)

12∆x1

Table 5.3 summarises the numerical procedure for calculation of eigenvalues and eigen-

vectors for evaporation maps. Figure 5.3 shows computed component and total fluxes

for the acetone-chloroform-methanol mixture calculated at points over the composition

space; it is from such composition data the the flux gradients ∂Ni/∂xj are determined.

Figure 5.4 shows evaporation maps for two example mixtures, over-laid with eigen-

directions at the fixed points, and annotated with the eigenvalues of equation 5.14. As

with residue curve maps, the stability of the fixed points can be assessed in terms of the

eigenvalues. For the ethanol-MEK-toluene mixture in figure 5.4a, the eigenvalues are

both negative at the pure ethanol and pure toluene stable nodes (where evaporation

trajectories terminate). Similarly, the eigenvalues are both positive at the ethanol-

MEK pseudo-azeotrope which is an unstable node, while the ethanol-toluene saddle

has eigenvalues with mixed sign.

In figure 5.4b, the unstable nodes at the acetone-methanol and chloroform-methanol

pseudo-azeotropes have eigenvalues with postive sign, while the stable nodes at the
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5.3 Chapter Summary and Conclusions

acetone-chloroform pseudo-azeotrope and at pure methanol have negative signs. The

saddle at pure chloroform and that at the ternary azeotrope have eigenvalues with

mixed signs.

Recalling that the eigenvalues represent a linearized approximation in the vicinity of

the fixed points, the eigenvalues of the stable toluene node in figure 5.4a can be com-

pared with those of the stable methanol node in figure 5.4a to examine the significance

of the relative sizes of the eigenvalues. For the methanol node, the eigenvalues are sim-

ilar in size, so that trajectories approach the node without tending to favour either the

acetone-methanol or the chloroform-methanol edge. By contrast, for the toluene node

the disparity in size of the eigenvalues is indicative of trajectories to hug one particular

edge. This is borne out by the trajectories in the neighbourhood of the toluene node

which hug the chloroform-methanol edge.

5.3 Chapter Summary and Conclusions

The stability of an evaporation or drying process can be characterized by the eigenval-

ues of the linearized process at the fixed points of the system. The stability in this case

refers to the mathematical stability of the system of non-linear ordineary differential

equations (ODEs) that are used to model the process. The eigen-directions at the fixed

points show the asymptotic behaviour of trajectories in the neighbourhood of the fixed

points. In this chapter, methods for calculation of eigenvalues and eigen-directions for

residue curve maps and evaporation maps have been developed. The method used for

residue curve maps is motivated by existing work by Doherty & Perkins (1978a,b) and

Pollmann et al. (1996), and uses an analytic form of the Jacobian matrix at the fixed

points to calculate the eigenvalues. The method used for evaporation maps is guided

by work of Luna & Martinez (1998, 1999) for batch drying of multicomponent mix-

ture, and locates eigenvalues and eigen-directions by firstly calculating derivatives of

component fluxes at the fixed points using a numerical finite difference method.

The characteristics of a number of non-ideal ternary mixtures have been evaluated

in terms of the eigenvalues of the fixed points, and have been shown to qualitatively

describe the stability; nodes with two negative eigenvalues are stable, nodes with two

positive eigenvalues are unstable, while nodes with eigenvalues of opposing sign are

saddles. In addition to indicating the asymptotic flow of residue curve and evaporation

trajectories, the eigen-directions are used in chapter 6 in a method for location of

separation boundaries.
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(a) Component fluxes (normalised)

(b) Total flux

.

Figure 5.3: Surface plots of component and total fluxes (normalized) in ace-
tone/chloroform/methanol mixture ; TG = 20◦C, uG = 0.5m/s,
d = 0.03m
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5.3 Chapter Summary and Conclusions

(a) Ethanol-MEK-toluene

(b) Acetone-chloroform-methanol

Figure 5.4: Eigen-values and eigen-directions for evaporation map example mixtures;
heavy dashed lines are eigen-directions at the fixed points.
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Chapter 6

Separation Boundaries

The location of separation boundaries is an important issue in practice, as boundaries

separate the composition space into regions where different product compositions are

obtained during distillation (for residue curve maps) or evaporation/drying (for evap-

oration maps). In this chapter numerical methods for the location of separation bound-

aries in both types of maps are investigated. For evaporation maps, a method employ-

ing eigenvectors derived from the linearized analysis is firstly developed by analogy

with existing methods for residue curve maps. For both types of maps, a novel approach

for calculation of separation boundaries using an optimization-based maximum-area

method is presented. The flexure of the wet-bulb temperature surface (ridges and val-

leys) is explored, and it is shown how evaporation trajectories cross ridges and valleys,

so that ridges and valleys do not coincide with separation boundaries.

An analysis of the residue curve maps shown in figure 2.2 suggests the existence of

limiting residue curves that connect saddle azeotropes to other fixed points (pure com-

ponents, or other azeotropes). In figure 2.2b, the limiting curve is between the water-

ethanol saddle azeotrope and pure methanol. In figure 2.2b, the limiting curve is be-

tween the IPA-water azeotrope and the ethanol-water azeotrope. Figure 2.2f suggests

a limiting curves connecting the acetone-chloroform azeotrope to pure methanol via

the ternary saddle azeotrope, and a further limiting curve connecting the chloroform-

methanol azeotrope to the acetone-methanol azeotrope via the ternary saddle. Residue

curve map boundaries for two example ternary mixtures are shown more explicitly in

figure 6.2.

Such boundaries based on limiting residue curves are termed simple distillation bound-
aries (SDB). For higher dimensional systems (n > 3), the boundaries form multidi-

mensional hypersurfaces (Bruggemann & Marquardt 2011). A separation boundary is

a separatrix or invariant manifold in a mathematical context; each ternary saddle is

characterized by two such manifolds, one unstable and one stable, so that the saddle

is an attractor for its stable manifold and a repellor for its unstable manifold (Blagov
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& Hasse 2002). A distillation region is defined as a subset of the composition space in

which all residue curves originate from the same locally minimum-boiling fixed point,

and terminate at the same local maximum boiling fixed point. Mathematically, a distil-

lation region is a basin of attraction for the governing system of equations expressed by

2.17 (Strogatz 1994).

The evaporation maps shown in figures 3.18-3.23 show analogous behaviour to that of

the residue curve maps. In this case, the fixed points are pure components and pseudo-

azeotropes; separation boundaries connect saddles and fixed points as with residue

curve maps. Boundaries are also present in the evaporation maps with pre-loaded

gas phase shown in figures 4.9-4.11, with the location of the boundary changing (and

ultimately disappearing) as the concentration of pre-loaded gas increases.

Despite the extensive literature on residue curve maps, there exist few methods for

exact calculation of separation boundaries. Approximate numerical approaches in-

clude those of Foucher et al. (1991), Peterson & Partin (1997), Rooks et al. (1998)

and Popken & Gmehling (2004). Each of these methods finds approximate separation

boundaries of equation 2.17. In industrial practice, the most common approach to com-

putation of separation boundaries for a residue curve map involves firstly determining

the eigen-directions of the ternary saddle azeotropes of the mixture, if one exists (see

section 5.1). The integration of equation 2.17 is then initiated from a point a small

distance along each of the eigen-directions, and proceeds forwards or backwards in di-

mensionless time τ until a fixed point (stable or unstable node) is reached (AspenTech

2015).

Reyes-Labarta et al. (2010) proposed a method for approximate location of boundaries

based on opimtizing the location of a spline-fit to a set of points joining two azeotropic

points. The method of Lucia & Taylor (2006) involves maximizing line integrals derived

from individual residue curves. This approach however requires a global optimization

over the line integrals (trajectory-lengths), as the integrals do not necessarily display a

single, global optimum within a given separation region. The method of Lucia & Taylor

locates an initial local maximum, then employs a terrain optimization method to verify

that the computed trajectory is optimal within that region.

In section 6.1 the linearized analyses of chapter 5 is used as a means to initiate the

computation of separation boundaries for both residue curve and evaporation maps. In

section 6.2 a "maximium-area" method for computation of boundaries in both types of

maps is developed. In section 6.3 the flexure of the wet-bulb temperature is explored.
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6.1 Separation boundaries from linearized analysis

6.1 Separation boundaries from linearized analysis

For residue curve maps, separation boundaries may be calculated by integrating the

ordinary differential equations that describe the residue curves from a point adjacent

to a saddle azeotrope up to a stable or unstable node. This is done by firstly calculating

the eigenvectors/eigen-directions at the saddle, then taking a small step in the direction

of the eigenvector towards the node. The basis for calculating eigen-vectors at fixed

points of residue curve maps was discussed In section 5.1.

For residue curve maps, having determined the initial composition on the eigenvector,

the differential equations are then integrated forward in dimensionless time τ until

a stable node is reached, or backwards in τ until an unstable node is reached. For

evaporation maps a similar forward or backwards integration can be used.

Figure 6.1 shows the procedure for calculating boundaries using eigenvectors to ini-

tialize the integration procedure. The approach is summarised for residue curve maps

is summarised in table 6.1, and for evaporation maps in table 6.2. The approaches

for residue curve maps and evaporation maps are analagous, although the fixed points

are different, and the generation of the eigenvectors is achieved in different ways as

discussed in detail in chapter 5.

Figure 6.1: Schematic for determination of separation boundaries in
ternary mixture (acetone-chloroform-methanol)

Computed Boundaries in Residue Curve Maps Figure 6.2a shows calculated sep-

aration boundary for the residue curve map for benzene-acetone-chloroform mixture;

the corresponding eigen-directed lines for this mixture are shown in figure 5.1a. The

separation boundary connects the binary saddle on the acetone-chloroform edge to the

pure benzene vertex.
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Table 6.1: Algorithm for generation of separation boundaries in residue curve maps
using eigenvector calculated at saddle node

1. Locate binary and ternary azeotropes for the mixture
2. For a given saddle node specify the radius ε1 around the node

which defines the locus of possible initial concentrations as
B(xo) = {x : ‖x− xo‖= ε1} (see figure 6.1)

3. Calculate the eigenvectors at the saddle node by the methods out-
lined in section 5.1

4. Calculate the composition a small distance ε1 along the eigenvec-
tor in the direction of a node (see figure 6.1)

5. Generate the boundary (limiting residue curve) by numerically in-
tegrating equation 2.17 forwards in τ to a stable node, or back-
wards in τ to an unstable node; the integration is terminated when
x approaches a node within a certain distance ε2

6. If no ternary saddle exist, apply the procedure above to any binary
saddles in the mixture

Figure 6.2b shows the computed residue curve map separation boundaries for acetone/

chloroform/methanol mixture; the eigen-directed lines for this mixture are shown in

figure 5.2b. In this case the separation boundary runs from the unstable chloforom-

methanol node through the ternary saddle to the stable acetone-chloroform node, and

from the unstable acetone-methanol node through the ternary to the stable methanol

node.

Computed Boundaries in Evaporation Maps Figure 6.3a shows calculated separa-

tion boundary for the evaporation map for benzene-acetone-chloroform mixture. Fig-

ure 6.3b shows the separation boundaries for the acetone-chloroform evaporation map.

Refer to figure 5.4b for the corresponding analysis of eigenvalues and eigen-vectors.

6.2 Separation boundaries by optimization

Lucia & Taylor (2006) presented a geometric characterization of separation boundaries

in residue curve maps for homogeneous mixtures. Their key observation was that the

line integral (or trajectory-lengths along residue curve) from an unstable node to a

reachable stable node is a local extremum along a boundary. In their formulation, a

residue curve between an unstable and a stable node can be represented as a param-

eterized trajectory x(α) for α ∈ [0, T ], where x(0) and x(T ) are the beginning and

end-points of the residue curve (Lucia & Taylor 2006). This approach was extended to

reactive systems by Taylor et al. (2006).
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6.2 Separation boundaries by optimization

Table 6.2: Algorithm for generation of separation boundaries in evaporation maps us-
ing eigenvector calculated at saddle node

1. Locate binary and ternary pseudo-azeotropes for the mixture
2. For a given unstable node specify the radius ε1 around the

node which defines the locus of possible initial concentrations as
B(xo) = {x : ‖x− xo‖= ε1}.

3. Calculate the eigenvectors at the unstable node by the methods
outlined in section 5.2

4. Calculate the composition a small distance ε1 along the eigenvec-
tor in the direction of a stable node (see figure 6.1)

5. Generate the boundary (limiting evaporation trajectory) by nu-
merically integrating the system of governing equations 3.28, 3.30
& 3.33, coupled with the multicomponent flux calculation from ta-
ble 3.1; the integration is terminated when x approaches a stable
node within a certain distance ε2

6. Repeat from step 2 for any further unstable nodes in the mixture

Figure 6.2 shows example residue curve maps for two ternary mixtures, with computed

arc lengths shown for a number of residue curves. Consider firstly the benzene-acetone-

chloroform mixture in figure 6.2a, which has a single distillation boundary that runs

between pure benzene and the acetone-chloroform saddle azeotrope. It can be seen

from the figure that the arc length increases for the curves denoted A1-A6, as they

progress from the benzene-acetone edge towards a maximum value along the separa-

tion boundary. Similarly, the arc length also increases for the curves denoted B1-B3,

as they approach the separation boundary from the benzene-chloroform edge. A more

complex example is that of figure 6.2b, which has three binary azeotropes and one

ternary azeotrope. The acetone-methanol and chloroform-methanol azeotropes are

unstable nodes, while pure methanol and the acetone-chloroform azeotrope are stable

nodes. As with the preceding example, when any residue curve from either of the un-

stable nodes to a reachable stable node is considered, the integral length (arc length)

along the separation boundary is greater than any other trajectory in the same region.

However, considering the progression from A1-A4, it can be seen that there is more

than one maximum in the integral length as the length of curve A2 is shorter than A1

or A3. A similar situation exists for the progression from B1-B4, where B2 is shorter

than B1 or B3. This demonstrates that when using maximum integral length as an

optimization variable, it is necessary to find all the line integrals of maximum length in

all separation regions to define separation boundaries with certainty.

A similar situation exists with the evaporation maps shown in figure 6.3. Arc lengths

in figure 6.3a become increasingly longer as they progress from the edges towards the
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(a) Benzene/chloroform/methanol

(b) Acetone/chloroform/methanol

Figure 6.2: Trajectory-lengths and separation boundaries for example residue curve
maps; filled circles represent pure components and azeotropes;
P = 1.0 bar
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6.2 Separation boundaries by optimization

separation boundary, while for 6.3b this does not hold.

In this section an approach for determining the separation boundaries in residue curve

maps and evaporation maps based on a maximum circumscribed area is developed; this

method is based on the intuitive observation that separation boundaries are lines which

circumscribe a maximum area in a separation region. This approach is an alternative

to the maximum trajectory-length approach of Lucia & Taylor (2006), and obviates the

requirement for an additional step to ensure that the trajectory-length is in fact optimal

in the separation region. In the following discussion, the approach by optimization of

trajectory length is first considered for each type of map, followed by the maximum-

area approach.

6.2.1 Optimization of integral trajectory length

Residue Curve Maps Recall that the governing equation for residue curve map (see

equation 2.17) is

−dx
dτ

= y(x)− x (6.1)

In the method of Lucia & Taylor (2006) the separation boundary for a residue curve

map is the trajectory associated with the solution to the following optimization problem

for the line integral D:

max
xθ

D =
T∫

0

∥∥∥∥dx(α)
dτ

∥∥∥∥dα ≈
N∑
k=0
‖∆xk‖

−dx(α)
dτ = y (x (α))− x(α)

x(T ) = xT

(6.2)

where ‖·‖ denotes the two-norm, xθ = (xθ1, xθ2) is a feasible set of initial conditions on

the circle of radius ε surrounding the unstable node xo (depending only on θ), α is a

dummy length variable and xT is a stable node. The line integral D represents the line

integral or distance along a solution curve obtained from the numerical integration

of dx(α)/dτ . The integral is in turn approximated by the summation of the norm

between successive points on the solution for x between 0 and T . Note that x is an

n− 1 dimension array, with the n− th mole-fraction obtained from
∑
xi = 1.0.

Evaporation Maps The analagous optimization expression for an evaporation map in

this work uses the governing equations that describe the gas-phase limited evaporation

process. Using the component material balance from equation 3.28 and the energy
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(a) Benzene/chloroform/methanol

(b) Acetone/chloroform/methanol

Figure 6.3: Trajectory-lengths and separation boundaries for example evaporation
maps; filled circles represent pure components and pseudo-azeotropes;
TG = 20C, uG = 0.5m/s, d = 0.03m
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6.2 Separation boundaries by optimization

balance from equation 3.33 gives the optimization problem as:

max
xθ

D =
T∫

0

∥∥∥∥dx(α)
dt

∥∥∥∥dα ≈
N∑
k=0
‖∆xk‖

dxi
dt = − A

hLT
(Ni − xiNt)

dTL

dt =

[
h•V (TG − TL)−

3∑
i=1

Ni∆Hvap
i −

3∑
i=1

NiMiCp
G
i (TG − TL)

]
3∑
i=1

hLi MiCpLi

x(T ) = xT

(6.3)

where, at each time increment of integration, the fluxes Ni are determined using the

algorithm of table 3.1. Note that in the formulation of equation 6.3, the heat & mass-

transfer area A and hold-up hLT could be subsumed into a dimensionless time as was

implicitly done for liquid hold-up in the residue curve optimization (time τ) of equation

6.2.

To ensure that the integral length is optimal for a given unstable node, Lucia & Taylor

(2006) used the terrain methodology of Lucia & Feng (2002) to explore the range of

feasible rotation angles, θmin ≤ θ ≤ θmax; for the benzene vertex in figure 6.2a, the

range of feasible angles is 0 ≤ θ ≤ 45°, as the ternary map is presented on a right-angle

triangle. Similarly, for the acetone/methanol unstable node in figure 6.2b, the range of

feasible angles is 0 ≤ θ ≤ 180°. The idea in the method of Lucia & Taylor (2006) is to

firstly determine the optimal angle θ∗ and corresponding separation boundary x∗(α),
and then search over the feasible rotation angles θmin ≤ θ ≤ θmax using the terrain

method to either verify that θ∗ is optimal, or to locate the actual optimal value.

Figure 6.4 shows schematically how the optimization procedure for maximising the in-

tegral length is performed, for either type of map. Starting from a point xθj which is

located a distance ε1 from an unstable node, the integration progresses until a neigh-

bourhood ε2 of a stable node is reached. In the case of figure 6.4a, the integration

may terminate in an ε2 neighbourhood of either the acetone/chloroform node or the

methanol node. At each value of θj , the governing differential equations are integrated

forward in time (τ or t) until a termination criterion is met, and the line length is

computed from the integrated trajectory x. Two trajectories of maximum length cor-

respond to the separation boundaries that run (1) from acetone/methanol node to the

acetone/chloroform node or (2) from acetone/methanol node to the pure methanol

node. In the case of figure 6.4b, the integration starts at the chloroform/methanol

node, but terminates at the same stable nodes as before. In the implementation of

the maximum trajectory length approach used here, the selection of feasible angles is

done using ad-hoc approach; the range is sub-divided into a number of sub-ranges over

which the optimization is performed. The optimal length is then found by taking the
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maximum over the sub-ranges. This does not definitively ensure that the maximum

length is located, but is adequate to demonstrate the method for comparison purposes

with the maximum-area approach.

Note that trajectories the lie along the edges of the composition simplex are also fea-

sible. Table 6.5 summarises the algorithm for residue curve map boundaries, for both

the maximum trajectory length and maximum area approaches.

6.2.2 Optimization of integral area

Residue Curve Maps The integral length approach involves a parameterisation along

the trajectory length (arc-length) α. The area circumscribed by the trajectory is the

primary concern with the alternative approach described here. The optimization is

based on the area circumscribed by a trajectory; the curve under which the area is

to be calculated is the output of the numerical integration of dx(α)/dτ , which is a

function of θ (see figure 6.4):

max
xθ

A =
T∫

0

∫
A(α)

dx(α)
dτ da dα ≈ 1

2

N∑
k=0

(xk+1 − xk1)

dx(xk1)
dτ − dx(xk+1)

dτ


−dx(α)

dτ = y (x)− x

x(T ) = xT

(6.4)

A trapezoidal approximation to the area integral is used above, and the derivative terms

underlined represent computed values from the numerical integration of dx(α)/dτ .

The shaded areas in figure 6.4 depict the areas from a typical integration; the ar-

eas may be bounded by any of the edges of the ternary diagram depending on the

starting point (unstable node) and the termination point (stable node). Where the

trajectory begins and terminates on a single edge of the ternary diagram, the indepen-

dent variable for area integration is the mole-fraction along that edge; for example the

acetone/methanol edge in the case of the A(θj) shown in figure 6.4a. A slightly more

complex integration is required where the trajectory begins and ends on different edges

of the ternary diagram, such as the case of the A(θj) shown in figure 6.4b. In that case,

the area is subdivided into areas that can be integrated separately.

The maximum-area method has the advantage of being able to locate the globally opti-

mal (maximum) residue curve in a residue curve map without the additional optimiza-

tion step required by the method of Lucia & Taylor (2006).
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6.2 Separation boundaries by optimization

(a) Integration from chloroform/methanol unstable node

(b) Integration from acetone/methanol unstable node

Figure 6.4: Trajectory-lengths D(θj) and areas A(θj) for acetone-methanol-chloroform
mixture

Evaporation Maps Similarly, the optimization expression for an evaporation trajec-

tory is given by:

max
xθ

A =
T∫

0

∫
A(α)

dx(α)
dt dadα ≈ 1

2

N∑
k=0

(xk+1 − xk1)
(

dx(xk1)
dt − dx(xk+1)

dt

)

dxi
dt = − A

hLT
(Ni − xiNt)

dTL

dt =

[
h•V (TG − TL)−

3∑
i=1

Ni4Hvap
i −

3∑
i=1

NiMiCp
G
i (TG − TL)

]
3∑
i=1

hLi MiCpLi

x(T ) = xT

(6.5)
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The Matlab function fminbnd was used to obtain the optimum values of θ in this work

for the optimization problems 6.2-6.5; fminbnd uses golden section search and parabolic

interpolation to find minima for single-variable functions on fixed intervals (Matlab

2010); consequently, to find the maxima, the negative of the objective functions in

6.2-6.5 were actually used.

6.2.3 Computed Separation Boundaries

Residue Curve Maps Figure 6.5 shows computed values of integral trajectory lengths

and areas for the residue curve map of the homogeneous acetone-chloroform-methanol

mixture (see figure 6.2 for the map with some trajectory lengths indicated). While the

integral lengths and areas are smooth within each region, they show a discontinuity at

the maximum values where D(θ) and A(θ) are shaped like a one-sided cusp in each

region. This is due to the different line lengths and areas that occur on either side of

a boundary - evidence for this can also be seen in figure 6.2. The open and closed

circles on the plots represent either end of the smooth portions which lie either side

of the separation boundary; in figure 6.5a and 6.5b, angles to the left of the cusp

(open circle) converge to the pure methanol node, while angles to the right converge

to the acetone-chloroform node, while in figure 6.5c and 6.5d angles to the left of the

cusp (closed circle) converge to the acetone-chloroform node, while angles to the right

converge to pure methanol. Table 6.3 summarises the optimum values of θ and the

corresponding values of line-integral and area for the residue curve map of figure 6.2b,

corresponding to the peak values in figure 6.5. For all the computations, a high degree

of precision is required for the values of the optimization angle θ; both the arc length

(trajectory length) and the integral area are very sensitive to θ, as can be seen from the

very sharp peaks that occur in figure 6.5.

The key feature to note here is that the computed area shows a single maximum value

over the range of θ, whereas the trajectory length may have in general more than

one maximum, and requires additional measures to determine which local maximum

corresponds to the separation boundary. The separation boundaries determined using

the optimization method are shown in figure 6.2, and essentially overlie the boundaries

obtained via the eigenvector approach of section 6.1.

Table 6.3: Maximum line integral and maximum areas for location of sep-
aration boundary in residue curve map of acetone-chloroform-
methanol mixture in figure 6.2b; angles measured with respect to
horizontal axis; P = 1.0 bar

Unstable Node
Optimum Angle
θ∗

Maximum
Line Integral

Maximum
Area

Acetone-chloroform 179.3866° 1.0044 0.1463
Chloroform-methanol −71.6557° 1.0414 0.1788
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6.3 Flexure of the wet-bulb temperature surface

Evaporation Maps Figure 6.3 shows the separation boundaries for the evaporation

maps of the same mixtures shown in 6.2, computed using the optimization algorithm of

table 6.6. The boundaries run between stable and unstable nodes, passing through the

ternary saddle. The optimimum rotation angles for these conditions are summarised in

table 6.4.

Table 6.4: Maximum line integral and maximum areas for location of separa-
tion boundary in evaporation map of acetone-chloroform-methanol
mixture in figure 6.3b; angles measured with respect to horizontal
axis; TG = 20C, uG = 0.5m/s, d = 0.03m

Unstable Node
Optimum Angle
θ∗

Maximum
Line Integral

Maximum
Area

Acetone-chloroform 179.9075° 1.0685 0.1584
Chloroform-methanol −59.6298° 0.8604 0.1645

The discussion here has been limited to ternary mixtures in which case the boundary is

a curve which is found by optimizing an area. In principle the method should be exten-

sible to higher dimensions so that for example for quaternary mixtures, the separation

boundary would be a surface determined by optimizing (maximizing) a volume.

6.3 Flexure of the wet-bulb temperature surface

The temperature T (x) of the simple distillation process that is the basis of the residue

curve map increases monotonically with dimensionless time τ ; the temperature in this

case is the bubble point temperature of the mixture. This phenomenon is captured

in the theorem that T (x) is a Liapunov surface for the ordinary differential equations

in 2.17 (Doherty & Perkins 1978a). Indeed, azeotropic compositions can be found by

experimentally examining the T (x) surface as the temperature is either a minimum or

a maximum at the azeotropic composition for binary mixtures. The topology of the

residue curve map (RCM) diagram and the boiling point surface for a ternary mixture

coincide, which is to say that their stable nodes (peaks), unstable nodes (pits) and sad-

dle points are the same (Kiva et al. 2003). Early research in the field concluded that

ridges and valleys in the temperature surface also coincided with distillation bound-

aries for the mixture (Doherty & Perkins 1978a). This is an important practical issue

in the analysis of distillation systems; to assume that material balance lines joining dis-

tillate, feed and bottoms compositions in a continuous distillation column cannot cross

distillation region boundaries potentially excludes some separation schemes (Laroche

et al. 1992). However, as demonstrated by van Dongen & Doherty (1984) and Rev

(1992), the flexures (ridges and valleys) in the boiling point surface do not in gen-

eral coincide with the separatrices (separation boundaries) of residue curve maps. The

reason for the confusion is that while the temperature surface is a naturally-occuring
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(a) Area vs. θ (b) Length vs. θ

(c) Area vs. θ (d) Length vs. θ

Figure 6.5: Area and residue curve length for acetone-chloforform-methanol mixture;
(a) and (b) originating at chloroform-methanol azeotrope, (c) and (d) orig-
inate at acetone-methanol azeotrope; closed and open circles represent
sides of "cusp"

Liapunov surface of equation 2.17 (Doherty & Perkins 1978a), it is not necessarily a

scalar potential function over the vector field of vapour-liquid tie lines, as shown by

Rev (1992).

In this section, some features of the wet-bulb temperature surface TWB(x) that are

analogous to the bubble-point T (x) surface of residue curve maps are explored. In

particular, the relationship between ridges and valleys in the wet-bulb surface and the

separation boundaries in evaporation maps is investigated. An optimization method

for location of minima and maxima in the wet-bulb temperature is first discussed, fol-
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6.3 Flexure of the wet-bulb temperature surface

lowed by an approximate finite difference based on directly-calculated gradients of the

surface.

6.3.1 Location of ridges and valleys in wet-bulb surface by optimization

An algorithm for calculation of the wet-bulb temperature for a multicomponent mix-

ture was presented in chapter 3. In figure 3.9a, a number of wet-bulb/composition

diagrams for binary mixtures were shown. For the binary mixtures considered, the

pseudo-azeotropic temperature was located near (but not coincident with) either a

minimum or a maximum (in case of acetone-chloroform) of the wet-bulb temperature

over the composition range. Wet-bulb surfaces for a number of ternary mixtures were

presented (see figures 3.12-3.14) displaying ridges and valleys of varying complexity.

In this section we analyze a number of ternary systems as follows:

1. The TWB(x) surface is scanned in each of the three composition directions (x1,

x2, x3), along sections parallel to the edges, and the minimum or maximum wet-

bulb temperature is located using a numerical optimization algorithm along each

direction; this approach is is summarised in table 6.7

2. Several evaporation trajectories are plotted, in the same manner as that used to

generate the evaporation maps, to demonstrate the extent of crossing of separa-

tion boundaries by the trajectories

Taking the x1 (i.e. xEtOH) valley in the ethanol-MEK-toluene mixture in figure 6.6a as

an example, the wet-bulb search begins on the ethanol-toluene edge at x2(j) = 0 (i.e.

xMEK = 0, and increments until x2(j) = 1. At each increment of x2(j) the minimum

wet-bulb is determined from the following optimization problem:

min
x1

TWB = TWB(x, uG, TG, d, P )

x2 = x2(j)
n∑
i

xi = 1.0

(6.6)

where TWB(x, uG, TG, d, P ) is found from the algorithm of table 3.2. In this case the

optimization is a function of a single variable x1 and so a suitable optimization routine

such as fminbnd (Matlab 2010) can be used to locate the optimum (minimum value).

The algorithm is summarised in table 6.7.

The computed flexures (ridges and valleys) are shown in figure 6.6a for the ethanol/

MEK/toluene mixture. Three valleys are shown in the figure:

1. A valley runs in the x1 search direction from the ethanol-MEK edge to a point

around 0.95 molefraction ethanol on the ethanol-toluene edge.
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2. A valley runs in the x2 search direction from a point near the minimum temper-

ature ethanol/toluene pseudo-azeotrope to a point on the ethanol-toluene edge.

The minimum wet-bulb temperature (with respect to the valley in the x2 direc-

tion) then lies along the ethanol-toluene edge thereafter.

3. A further valley runs in the x3 direction from near the mid-point on the ethanol-

MEK edge to a point on the ethanol-toluene edge

In this case valleys are perceptible in each of the possible search directions. The dashed

lines in figure 6.6a represent evaporation trajectories; it can be seen that there is no

restriction to the crossing of valleys by the trajectories. A further example is shown in

figure 6.6b for the acetone/chloroform/methanol mixture. Two valleys and a ridge are

shown for this mixture:

1. A valley runs from a point on the acetone-methanol edge near the acetone-

methanol pseudo-azeotrope to a point on the chloroform-methanol edge.

2. A valley also runs from the vicinity of the chloroform-methanol pseudo-azeotrope

to the methanol-acetone edge

3. A ridge runs from near the acetone-chloroform pseudo-azeotrope to the chloro-

form/ methanol edge, near pure methanol.

As with the the previous example, there is no restriction to the crossing of valleys

by the evaporation trajectories. The three computed paths intersect at the saddle of

the wet-bulb surface near (but not coincident with) the ternary pseudo-azeotrope. A

comparison with the separation boundaries in figure 6.3b shows that the valleys and

ridges in the ternary mixture do not coincide with the separation boundaries.

6.3.2 Location of ridges and valleys by finite difference method

An alternative approximate method for calculation of the ridges and valleys involves

direct calculation of of gradients (first derivatives) of the TWB(x) surface. The surface

is firstly calculated at discrete points over the composition space. Gradients are then

calculated using a finite difference method in each of the x1, x2 and x2 directions over

the surface. For edge points (x = 0 and x = 1.0) one-sided differences are used. For

gradients in x1 this gives:

∂TWB

∂x1

∣∣∣∣
x1=0

≈ T j+1
WB − T

j
WB

∆x1
and

∂TWB

∂x1

∣∣∣∣
x1=1

≈ T jWB − T
j−1
WB

∆x1

For interior points central differences are used:

∂TWB

∂x1
≈ T j+1

WB − T
j−1
WB

2∆x1
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Similar expressions apply for gradients in x1 and x2. Second derivatives are used to

distinguish minima (valleys) from maxima (ridges). At edge points this gives

∂2TWB

∂x2
1

∣∣∣∣
x1=0

≈ T j+2
WB − 2T j+1

WB + T jWB

∆x2
1

and
∂2TWB

∂x2
1

∣∣∣∣
x1=1

≈ T jWB − 2T j−1
WB + T j−2

WB

∆x2
1

while the interior points are given by:

∂2TWB

∂x2
1
≈ T j+1

WB − 2T jWB + T j−1
WB

2∆x2
1

The contours are calculated at points where each of the first-derivatives are zero using

the contour function in Matlab (Matlab 2010); points where zero-contours of each

derivative cross is a saddle point or a local extremum; if second-derivatives are same

sign and positive, the extremum is a minimum, if second-derivatives are same sign

and negative, the extremum is a maximum, if opposite signs, a saddle. The algorithm

is summarised in table 6.8. When a sufficiently fine grid is used the results of the

gradient approach are similar to the optimization approach above; figure 6.6a shows

the valleys in the x1 and x2 search directions for the acetone/chloroform/methanol

mixture. For each valley, the computed results for the two approaches agree well in the

region between the starting point for the optimization algorithm (the unstable node)

and the ternary saddle. Thereafter there is some divergence in the location of the

valleys. This is due to the nature of the wet-bulb temperature optimization (table 6.7

which can only locate a single minimum parallel to each edge; thus, as the search

increment passes the ternary saddle the algorithm can only locate minima along the

line of the current increment i.e. cannot double-back on itself.

Algorithm 6.8 is more efficient than 6.7 if the grid of TWB(x) has already been com-

puted i.e. in the case where flux-plots over the ternary composition space are being

calculated (see figure 5.3), especially if the grid of points is not too fine. Algorithm 6.7

requires that an optimization problem be solved at each increment along the valley or

ridge path, and so the time required for computation is dependent on the number of

points selected to represent the path.

6.4 Chapter Summary and Conclusions

In this chapter numerical methods for location of separation boundaries in evaporation

maps have been developed. A method using eigen-vectors obtained from the linearized

analysis in chapter 5 was firstly used, and demonstrated for both residue curve maps

and evaporation maps.

Optimization methods using maximum trajectory length (based on work of Lucia &

Taylor (2006)), and a novel maximum area approach were also developed. The max-
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imum area method does not require an additional optimization step required in the

method of Lucia & Taylor. A high degree of numerical precision is required with both

optimization methods, due to extreme sensitivity of the trajectory length and integral

area to the optimization angle θ. For a number of ternary mixtures considered, the

same boundaries were obtained by each method.

The flexure of the wet-bulb temperature surface, which is the temperature at each

point on an evaporation map, was also investigated. Numerical methods for location of

ridges and valleys in wet-bulb surfaces were presented, one involving an optimization

(minimization) of the wet-bulb temperature in each of three search directions, and a

further approach based on a finite difference method applied directly to the wet-bulb

surface. Computations for a number of ternary mixtures show that ridges and valleys

do not correspond to separation boundaries in evaporation maps.
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Table 6.5: Algorithm for generation of separation boundaries in residue curve map

1. Locate binary and ternary azeotropes for the given mixture
2. For a given unstable node specify the radius ε1 around the

node which defines the locus of possible initial concentrations as
B(xo) = {x : ‖x− xo‖= ε1}.

3. Define θmin and θmax for the given unstable node
4. Maximization of trajectory length:

(a) Subdivide feasible range of θmin and θmax into nθ sub-ranges;
let θ1 and θ2 be the lower and upper end of a particular sub-
range

(b) Initialize value for θ between θ1 and θ2 (via optimization rou-
tine)

(c) Calculate initial composition xθ1 = xo1 + ε1 cos(θ), and xθ2 =
xo2 + ε1 sin(θ); xo1 and xo2 are the compositions of the starting
unstable node (either a pure component, or a binary pseudo-
azeotrope)

(d) Generate the residue curve by numerically integrating equa-
tion 2.17; the integration is terminated when x approaches a
stable node within a certain distance ε2

(e) Accumulate D(θj) =
∑
‖∆xk‖ where the summation is over

the output of the ODE solver
(f) Check for a maximum value in D, such that ‖D(θk) −

D(θk−1)‖< δ, where δ is a tolerance for successive iterations.
If the tolerance is satisfied stop, otherwise adjust value of θ
within θ1 and θ2 (via optimization routine)

(g) Repeat for each sub-range within θmin and θmax
(h) Determine optimum value (θ∗) over the sub-ranges

5. Maximization of circumscribed area:
(a) Initialize value for θ within θmin and θmax (via optimization

routine)
(b) Calculate initial composition xθ1 = xo1 + ε1 cos(θ), and xθ2 =

xo2 + ε1 sin(θ)
(c) Generate the residue curve by numerically integrating equa-

tion 2.17; the integration is terminated when x approaches a
stable node within a certain distance ε2

(d) Accumulate A(θj) using numerical integration
(e) Check for a maximum value in A, such that ‖A(θk) −

A(θk−1)‖< δ. If the tolerance is satisfied stop, otherwise ad-
just value of θ (via optimization routine) and repeat from step
5a

6. For optimal value (θ∗), project the solution in T − x space onto
the ternary diagram; the projected curve lies on the separation
boundary.

7. Repeat from step 2 for any further unstable nodes in the mixture
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Table 6.6: Algorithm for generation of separation boundaries in evaporation map

1. Locate binary and ternary azeotropes for the given mixture
2. For a given unstable node specify the radius ε1 around the node which

defines the locus of possible initial concentrations as B(xo) = {x : ‖x −
xo‖= ε1}.

3. Define θmin and θmax for the given unstable node
4. Maximization of trajectory length:

(a) Subdivide feasible range of θmin and θmax into nθ sub-ranges; let
θ1 and θ2 be the lower and upper end of a particular sub-range

(b) Initialize value for θ between θ1 and θ2 (via optimization routine)
(c) Calculate initial composition xθ1 = xo1 + ε1 cos(θ), and xθ2 = xo2 +

ε1 sin(θ); xo1 and xo2 are the compositions of the starting unstable
node

(d) Calculate wet-bulb temperature from algorithm table 3.2
(e) Generate the evaporation trajectory by numerically integrating the

system of governing equations 3.28, 3.30 & 3.33, coupled with the
multicomponent flux calculation from table 3.1; the integration is
terminated when x approaches a stable node within a certain dis-
tance ε2

(f) Accumulate D(θj) =
∑
‖∆xk‖ where the summation is over the

output of the ODE solver
(g) Check for a maximum value in D, such that ‖D(θk)−D(θk−1)‖< δ,

where δ is a tolerance for successive iterations. If the tolerance
is satisfied stop, otherwise adjust value of θ within θ1 and θ2 (via
optimization routine)

(h) Repeat for each sub-range within θmin and θmax
(i) Determine optimum value (θ∗) over the sub-ranges

5. Maximization of circumscribed area:
(a) Initialize value for θ within θmin and θmax
(b) Calculate initial composition xθ1 = xo1 + ε1 cos(θ), and xθ2 = xo2 +

ε1 sin(θ)
(c) Generate the evaporation trajectory by numerically integrating the

system of governing equations 3.28, 3.30 & 3.33, coupled with the
multicomponent flux calculation from table 3.1; the integration is
terminated when x approaches a stable node within a certain dis-
tance ε2

(d) Accumulate A(θj) using numerical integration
(e) Check for a maximum value in A, such that ‖A(θk)−A(θk−1)‖< δ.

If the tolerance is satisfied stop, otherwise adjust value of θ (via
optimization routine) and repeat from step 5a

6. For optimal value (θ∗), project the solution in T − x space onto the
ternary diagram; the projected curve lies on the separation boundary.

7. Repeat from step 2 for any further unstable nodes in the mixture
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6.4 Chapter Summary and Conclusions

Table 6.7: Algorithm for location of valleys and ridges in wet-bulb temperature surface
via optimization

1. Initialize x1 = 0 (or x1 = 0 or x1 = 0 depending on required
direction of movement)

2. At each increment of x1, solve optimization problem of equation
6.6 to find minTWB(x2) along line of constant x1, with x3 = 1 −
x1 − x2; to locate a ridge, solve for max TWB(x2)

3. Iterate with increasing value of x1 until a boundary (edge of com-
position triangle) is reached

4. Repeat in x2 and x3 search directions

Table 6.8: Algorithm for location of valleys & ridges in wet-bulb temperature surface
via gradients

1. Calculate TWB(x) over ternary composition space x using a
discrete grid of points

2. Calculate gradient (first derivatives) ∂TWB/∂x1 in x1 direction
using finite difference method; at edges (x1 = 0 and x1 = 1.0),
use single-sided differences, at interior points use central difference
approximation. Repeat gradient calculations for ∂TWB/∂x2 in x2
direction, and ∂TWB/∂x3 in x3 direction

3. Calculate zero-contours for gradients in each direction (using
contour function in Matlab)

4. Valleys in TWB(x) surface in x1 direction are identified by
∂2TWB/∂x

2
1 < 0, and ridges by ∂2TWB/∂x

2
1 > 0; similarly for x2

and x3 directions
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6. SEPARATION BOUNDARIES

(a) ethanol/MEK/ toluene

(b) Acetone/chloroform/methanol

Figure 6.6: Valleys and ridges in wet-bulb temperature surfaces, obtained by
optimization method of table 6.7; FD denotes valleys obtained by gradient
method of table 6.8; TG = 40C, uG = 0.5m/s, d = 0.03m
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Chapter 7

Evaporation maps including
diffusion effects in liquid

The model developed in chapter 3 addressed evaporation from a liquid surface, con-

sidering only heat and mass transfer limitations in the gas phase; a lumped model was

applied to the liquid. In this chapter the lumped model is extended to include diffu-

sion within the liquid phase giving a distributed model, described by partial differential

equations (PDEs); a lumped model is however retained for the purposes of heat trans-

fer in the liquid. The goal of this chapter is to examine how diffusion in the liquid phase

affects the evaporation paths of the non-ideal mixtures, in particular with respect to the

terminal compositions which in some cases may be pseudo-azeotropes.

To numerically solve the equations of mass transfer in the liquid phase, a finite volume
method is employed. The finite volume method is used extensively in the field of com-

putational fluid dynamics (CFD) to reduce the governing equations to a form suitable

for linear solvers (Guyer et al. 2009). Further details of the origin and derivation of

the method can be found in Ferziger & Peric (1999) and Patankar (1980). The finite

volume technique is mass conservative regardless of the number of nodes in the spa-

tial discretization, or the number of time steps (Botte et al. 2000). In this chapter, a

specific formulation of the method is derived to account for multicomponent diffusion

effects in the liquid phase. Stockie et al. (2003) and Kermani & Stockie (2004) used

a related approach for the modeling of multicomponent gas transport in porous fuel

cell electrodes. Finite volume methods for coupled mass transfer are also discussed by

Kumar & Mazumder (2009), Peerenboom et al. (2011) and Padoin et al. (2014).

The model developed in this chapter uses an exact solution to the Maxwell-Stefan equa-

tions for mass transfer developed in chapter 3 to calculate mass (and heat) fluxes in

the gas film at the vapour-liquid interface. Diffusion gradients in the quiescent liq-

uid phase are included by employing a generalized multicomponent Fickian model for

the diffusive fluxes in the liquid, based on a Maxell-Stefan approach. The gas-phase

151
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and liquid phase models are coupled at the receding vapour-liquid interface in the nu-

merical scheme as the evaporation progresses. For the liquid phase, a one-dimensional

(1-D) finite volume method is used to discretize the governing partial differential equa-

tions in space, while a method-of-lines approach is used for the temporal integration.

The calculated gas-phase fluxes act as Neumann-type boundary conditions for the dis-

tributed model in the liquid. Solutions to the overall model take the form of trajectories

in temperature-composition space, which are then projected onto a ternary diagram.

The fixed points (including pseudo-azeotropes) computed from the gas-phase-limited

model (chapter 3) apply also to the distributed model developed here. The composition

profiles from the distributed model are shown to reduce to those of a the gas-phase-

limited model as an effective diffusivity parameter in the liquid increases.

7.1 Governing Equations

The equations that describe the heat and mass transfer in the gas and liquid phases

are developed in the following sections, and follow from the conservation equations

outlined in section 2.1. The coupling between transfer processes in the liquid and gas

is captured by the boundary conditions for the liquid phase.

7.1.1 Mass and Heat Transfer in Gas Phase

The model for heat and mass transfer in the gas phase was developed in chapter 3, and

is summarised in table 7.1. At each time increment, the multicomponent fluxes Ni are

solved using an analytical method due to Krishna & Standart (1976), which is detailed

in section 3.1.1. The heat flux is coupled to the mass fluxes through equation 7.4.

7.1.2 Mass Transfer in Liquid Phase

Whereas for the gas phase heat and mass transfer coefficients are employed to deter-

mine the fluxes, in the liquid phase the composition profiles can be resolved directly by

solving the partial differential equations that govern the mass transfer process. Figure

7.1 shows the situation schematically. The conservation equations for mass, heat and

momentum were outlined briefly in section A.2; the conservation of a species i in a

multicomponent mixture is given by equation A.15 which (neglecting reaction terms)

is
∂ρLωi
∂t

= −∇ · ni = −∇ · (ρLωiv)−∇ · ji i = 1, 2, 3 (7.5)

where ni and ji are total and diffusive mass fluxes respectively, ρL is the total mass

density of liquid phase, ωi is mass fraction of component i, and v is the mass-averaged
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7.1 Governing Equations

Table 7.1: Summary of gas-phase heat and mass transfer; see chapter 3 for derivations

Mass Transfer The n− 1 diffusive fluxes Ji are given by

Ji = c
3∑
j=1

k•ij∆yi for i = 1, 2, 3 (7.1)

where k•ij are the multicomponent mass transfer coefficients corrected
for finite mass transfer rates given by equation 3.16, which is based on
analytic solution to mass transfer in the notional film at the vapour-
liquid interface. The form of the binary mass transfer coefficients
required to find k•ij for flat geometry is:

Shij = dκij
Dij

=
(
0.65Re1/2Scij

1/3
)

(7.2)

Discrepancy functions for the total fluxes Ni are written as:

Fi ≡ Ji + yGi

3∑
j=1

Nj −Ni = 0 for i = 1, 2, 3 (7.3)

and are solved for the Ni using a Newton method as described in
section 3.2.1, for specified yGi , TL, TG, uG and Dij .

Heat Transfer Heat flux at the vapour-liquid interface is given by:

qI = h•G(TG − TL)−
3∑
i=1

Ni∆Hvap
i −

3∑
i=1

NiMiCp
G
i (TG − TL) (7.4)

where

h•G = hGΞH = hG

[
ΦG
H

exp(ΦG
H)− 1

]
and ΦG

H =

3∑
i=1

niCp
G
i

hG

The form of the heat transfer coefficient used for flat geometry is

Nu = hGd

k
=
(
0.65Re1/2Pr

1/3
)
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7. EVAPORATION MAPS INCLUDING DIFFUSION EFFECTS IN LIQUID

(a) Schematic of heat and mass transfer fluxes

(b) Finite-volume discretization within film

.

Figure 7.1: Schematic of heat and mass transfer from liquid film surface,
and finite-volume discretization within film

velocity.

To calculate the diffusive fluxes ji in the liquid phase, the generalised Fick equations

are is used. As outlined in section A.3, Maxwell and Stefan developed a theory of

diffusion based on equilibrium of molecular friction and thermodynamic interaction

that is physically more consistent than Fick’s law (Krishna & Wesselingh 1997). The

generalised driving force for diffusion, di is related to the relative species velocities

(ui − uj) and is given by equation 2.9 (Taylor & Krisha 1993):

di = xi
RT
· ∇T,Pµi =

n−1∑
j=1

xixj
Ðij

(ui − uj) =
n−1∑
j=1

Γij∇ijxj (7.6)
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7.1 Governing Equations

where ∇T,Pµi is the chemical potential gradient, and n is the number of components.

Here Ðij are the liquid-phase Maxwell-Stefan diffusivities which can be viewed as in-

verse drag coefficients between components i and j. The thermodynamic correction

factor Γij is found from the activity coefficients Γi which are in turn calculated from an

appropriate model of vapour-liquid equilibrium (NRTL equation in this work):

Γij = δij +xi
∂ ln γi
∂xj

∣∣∣∣
T,P

with δij = 1 for i = j and δij = 0 for i 6= j (7.7)

Taylor & Kooijman (1991) present details of the calculation of ∂ ln γi
∂xj

which are also

employed here, and are detailed in appendix B.2. It should be noted that liquid diffu-

sion coefficients can be quite sensitive to the model use to compute Γ, in part because

Γ requires the first derivative of the activity coefficient with respect to composition.

Model parameters (binary interaction parameters) for activity coefficient modes are

determined by curve-fitting to experimental VLE data; although different models may

provide estimates of ln γi that fit the experimental data equally well, the derivatives of

ln γi (and, therefore Γ) may differ significantly (Taylor & Kooijman 1991).

The generalized form of Fick’s law for molar and mass diffusive fluxes Ji and ji was

developed in section A.3 and is given by equation 2.15 (Taylor & Krisha 1993):

(J) = −c[B]−1[Γ](∇x) = −c[D](∇x) (7.8a)

(j) = −ρL[Do](∇ω) (7.8b)

where the normal brackets indicate a column vector of terms, and the square brackets

a two-dimensional matrix. The terms in the n-1 dimensional [B] matrix are given by

equation 2.12:

Bii = xi
Ðin

+
n∑
k=1
i 6=k

xk
Ðik

(7.9a)

Bij = −xi

(
1

Ðij
+ 1

Ðin

)
(7.9b)

To convert from a molar-averaged velocity frame to a mass-averaged velocity frame,

the following expression (Taylor & Krisha 1993) is employed:

[Do] = [Buo]−1 [ω] [x]−1 [D][x][ω]−1[Buo] where [D] = [B]−1[Γ] (7.10)

and where [ω] and [x] are diagonal matrices whose non-zero elements are the mass-

fractions and mole-fractions respectively. The elements of [Buo] and [Buo] are in turn
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given by

Buo
ik = δik − ωi

(
xk
ωk
− xn
ωn

)
(7.11a)

Bou
ik = δik − ωi

(
1− ωnxk

xnωk

)
(7.11b)

where ωi is the mass-fraction of component i and δij is the Kronecker delta. Writing

equation 7.5 explicitly for components 1 and 2 in one-dimensional form, and inserting

the expanded form of equation 7.8(b) for the diffusive mass fluxes gives:

∂ρLω1
∂t

= − ∂

∂z

[
ρLvω1 −

(
ρLDo

11
∂ω1
∂z

+ ρLDo
12
∂ω2
∂z

)]
(7.12a)

∂ρLω2
∂t

= − ∂

∂z

[
ρLvω2 −

(
ρLDo

21
∂ω1
∂z

+ ρLDo
22
∂ω2
∂z

)]
(7.12b)

where z is the depth co-ordinate in the liquid phase. By solving for ω1 and ω2, the

concentration of the final component is found from a summation of the mass fractions:

n∑
i=1

ωi = 1 (7.13)

In addition to the component balances above, an overall material balance (continuity

equation) can be expressed in one-dimensional form as:

∂ρL

∂t
= −∇ · (ρLv) = −

∂
(
ρLv

)
∂z

(7.14)

This equation is used to calculate the mass-averaged velocity during the evolution of

composition profiles in the liquid, following the approach of Torres et al. (2003). An

overall balance on the liquid also yields the following equation for the interface velocity

(Pakowski 1992):
dz

dt
= 1
ρL

(
n−1∑
i=1

nGi + z
dρL

dt

)
(7.15)

where ρL is the average liquid density of the liquid phase, and nGi is the vapour phase

mass flux of component i. This equation allows the rate of regression of the interface

to be tracked over time. The finite-volume mesh is re-calculated at each time point and

integrated forward in time using an ODE solver as described below.
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7.1 Governing Equations

7.1.3 Boundary Conditions for Mass Transfer

At the vapour-liquid interface, the receding interface is accounted for in the boundary

conditions. Taking a balance on a differential volume enclosing the interface gives

(Pakowski 1990):

nLi − ρLωIiL
dz

dt
= nGi − ρGωIiV

dz

dt
(7.16)

where nLi and nGi are total molar fluxes on the liquid and vapour side of the interface

respectively, ρL and ρV are the total mass concentrations, and dz/dt is the velocity

of the receding interface. The gas-phase flux terms nGi provide the coupling between

the explicit form of the Maxwell-Stefan equations for the gas phase and the numerical

solution required for the liquid phase. Summing the i components gives the total liquid-

phase flux at the interface:

nLt = nGt +
(
ρL − ρV

) dz
dt

(7.17)

In mass units, the boundary conditions at the interface are:

ρLD11
∂ω1
∂z

+ ρLD12
∂ω2
∂z

= nLT

(
ωI1 −

nL1
nt

)
(7.18a)

ρLD21
∂ω1
∂z

+ ρLD22
∂ω2
∂z

= nLT

(
ωI2 −

nL2
nt

)
(7.18b)

while at the bottom of the liquid film, the boundary conditions are simply

ρLDo
11
∂ω1
∂z

+ ρLDo
12
∂ω2
∂z

= 0 (7.19a)

ρLDo
21
∂ω1
∂z

+ ρLDo
22
∂ω2
∂z

= 0 (7.19b)

Due to the coupled nature of the mass transfer, the composition derivatives at the

vapour-liquid interface (∂ω1/∂z and ∂ω2/∂z) must be found numerically at each time

step. The boundary conditions in equations 7.18 are a system of two equations in two

unknowns (the derivatives). Values for the derivatives are found by solving equations

7.18 simultaneously at each time increment; the Matlab fsolve solver was used in this

work. The composition derivatives at the bottom are identically zero as there is no flux

through the bottom boundary.

The mass-averaged velocity v in is determined implicitly from equations equations 7.12

and 7.14, together with a correlation for the temperature-dependence of component

densities ρi. The validity of assuming that pure component densities are functions of

temperature only was examined by Torres et al. (2003) for fuel mixtures using a van

der Waals equation of state. They found it to be a good assumption for pressures < 10
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bar.

7.1.4 Heat Transfer in Liquid Phase

Whereas a distributed model is used for composition in the liquid phase, a lumped

model is employed for the energy balance, following the derivation in chapter 3. The

energy balance for the liquid may be written in terms of liquid temperature TL as the

independent variable:

dTL

dt
=
A

[
qG −

3∑
i=1

Ni

(
H̄G
i − H̄L

i

)]
3∑
i=1

NiMiCpLi

(7.20)

where H̄G
i and H̄L

i are the partial molar vapour and liquid molar enthalpies respectively

of component i. Expanding the enthalpy terms H̄G
i and H̄L

i , and the heat flux term

gives

dTL

dt
=

[
h•G(TG − TL)−

3∑
i=1

Ni∆Hvap
i −

3∑
i=1

NiMiCp
G
i (TG − TL)

]
3∑
i=1

hLi MiCpLi

(7.21)

The fluxes are summed from i = 1 − 3 only, as the flux of the inert gas (air) is zero.

Table 7.1 summarises the form of the heat transfer coefficient h•G.

7.1.5 Vapour-Liquid Equilibria and Physical Properties

Using a pseudo steady-state assumption, the gas-phase and liquid phase concentrations

at the interface are linked by a vapour-liquid equilibrium expression:

yIi = xIi γipi/P (7.22)

where γi are the activity coefficients representing non-ideality in the liquid phase, pi
is the vapour pressure of component i and P is the total pressure. See equation 3.24

et seq. for background to this expression. The liquid interface concentration xIi differs

from that in the bulk liquid, due to diffusion effects, while the vapour concentration yIi
differs from that of the bulk gas yGi into which the evaporation occurs. The NRTL equa-

tion (Prausnitz et al. 1986) is used to represent the activity coefficients in this work,

using binary interaction parameters from the Aspen Properties data-base (AspenTech

2014). It is assumed in equation 7.22 that the gas phase is ideal; non-ideal behaviour

could be included by incorporating an appropriate expression for fugacity coefficients

of the gas-phase components. Physical properties for the gas and liquid phases (den-
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sity, viscosity, thermal conductivity etc.) are correlated with temperature using data

extracted from Aspen Properties (AspenTech 2014).

7.1.6 Liquid Diffusion Coefficients

Taylor & Krisha (1993) suggest the following expression for the binary Maxwell-Stefan

diffusivities in a multicomponent system:

Ðij =
(

Ðoij
)(1+xj−xi)/2 (

Ðoji
)(1+xi−xj)/2

(7.23)

where the Ðoij are the infinite dilution diffusion coefficients. The Wilke-Chang corre-

lation (Prausnitz et al. 1986) is used to estimate the infinite dilution coefficients; see

appendix B.4 for details.

7.1.7 Initial Conditions

The evaporation trajectories computed under gas-phase limited conditions in chapter 3

originated in the vicinity of unstable nodes, and terminated at stable nodes. The nodes

may be either pure components or pseudo-azeotropes. In this chapter the gas-phase

limited model has been extended to allow for diffusion gradients in the liquid phase

which evolve over time. To initialize the numerical solution scheme, it is assumed that

the liquid phase is at a uniform concentration (typically that of the initial composition

near an unstable node) and at a uniform temperature (the wet-bulb temperature at

that uniform composition). The method for calculating the wet-bulb temperature for

known liquid composition is detailed in section 3.2.2.

7.2 Numerical Methods

The partial differential equations 7.12 and 7.14, with boundary conditions 7.18 and

7.19, together with interface regression equation 7.15 and the energy balance equa-

tion 7.21 and the scheme for the gas phase multicomponent mass fluxes in table 7.1

constitute the system of equations to be solved. By numerically integrating the govern-

ing equations the composition-temperature trajectory (evolution of concentration and

temperature over time) can be found. In this work, a finite-volume technique is used

to obtain the desired numerical solution. The liquid and gas phases are coupled via the

mass-flux boundary conditions; the fluxes in turn are obtained from the explicit solu-

tion to the Maxwell-Stefan equations in the vapour film adjacent to the vapour-liquid

interface, evaluated at each time-step of the integration. In the following sections, the

form of the finite-volume technique used to solve the system of equations is outlined.
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7.2.1 Finite Volume Formulation for Mass Transport in Liquid Phase

The development of the finite volume method used in this work is outlined below. This

treatment differs from the conventional approach to be found for example in Patankar

(1980) and Versteeg & Malalasekera (2007) in that multicomponent diffusion terms

are included so that coupling occurs between species diffusive fluxes in the liquid.

For finite difference methods the solution domain is discretized into a finite number of

points, and the equations are solved at each point. With the finite volume technique,

the domain is divided into a finite number of control volumes, with the centre of each

control volume (or cell) representing the value of the variables over that volume. In-

tegration of the PDEs over the control volume ensures that the discretized equation is

cast in a form that ensures conservation of mass. The key steps in the finite volume

approach are (Schafer 2006):

1. Decompose problem domain into control volumes

2. Develop integral balance equations

3. Incorporate boundary conditions (Dirichlet, Neumann, Robin etc).

4. Approximate integrals by numerical integration

5. Approximate function values and derivatives by interpolation of values at neigh-

bouring cells

6. For method-of-lines approach, solve system of ODEs at nodes (using a standard

ODE solver)

7.2.2 Component Material Balances

The finite difference method use the strong or differential form of the governing equa-

tions. The finite element and finite volume method use the weak or integral form. The

integral form has the advantage of providing a more intuitive treatment of Neumann

boundary conditions; finite volume methods are better suited to complex geometries

as the integral forms do not require a specific mesh structure (Schafer 2006).

The starting point for the finite volume method is the integral (weak) form of the

balance or transport equation, where each term applies to a control volume (Jakobsen

2008). Taking the species conservation equation for species i from equation 7.5 and

Evaporation Maps for
Ternary Non-Ideal Liquid Mixtures

160



7.2 Numerical Methods

integrating over a control volume V and time t gives:∫
t

∫
V

∂ρωi
∂t

dv dt

︸ ︷︷ ︸
rate of increase

of mass of i

+
∫
t

∫
A

ρωiv · n̂ da dt

︸ ︷︷ ︸
net rate of addition of

mass of i by convection

=
∫
t

∫
A

ji · n̂ da dt︸ ︷︷ ︸
net rate of addition of

mass of i by diffusion

+
∫
t

∫
V

Si dv dt

︸ ︷︷ ︸
net rate of addition

of mass of i by

source terms

(7.24)

where n̂ is a unit normal and Si represents a source term for i, neglected hereafter.

Considering only the spatial integration, and neglecting source terms, we can group

terms in equation 7.24 to yield:∫
V

∂ρωi
∂t

=
∫
A

(ρωiv − ji) · n̂ da (7.25)

A Maxwell-Stefan description of diffusion in the liquid is used here, so the diffusive

mass fluxes ji are coupled (see equation 7.8):

(
j1

j2

)
= −ρDo

(
∇ω1

∇ω2

)
(7.26)

The terms of the 2x2 diffusivity matrix D are given by

Do =
(
Do

11 Do
12

Do
21 Do

22

)
(7.27)

where the Do
ij are the multicomponent diffusion coefficients. The off-diagonal terms

Do
12 and Do

21 represent the interaction terms; when these are zero, the diffusion process

is Fickian.

Finite volume methods ensure that the discretization is conservative so that mass is

explicitly conserved for each control volume. The spatial discretization of the transport

equation 7.25 is considered next.

7.2.3 Spatial Discretization

Figure 7.2 shows a schematic finite-volume cell arrangement for the two-dimensional

case (Patankar 1980, Versteeg & Malalasekera 2007). Using the conventional notation,

each cell center (grid node) is indentified by "P", with neighbouring east "E", west

"W", south "S" and north "N" nodes. Cell faces are located at "e", "w", "s" and "n"

respectively. Grids may be in general be non-orthogonal (figure 7.2(b)) or orthogonal

(figure 7.2(c)). Unit normals from each cell face are identified by ne, nw, ns and nn.

For the orthogonal grid, the cell dimensions are yn − ys and xe −ww. Figure 7.3 shows
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Figure 7.2: Control volumes for general 2-D finite-volume method (Schafer 2006)
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Figure 7.3: Control volumes for 1-D finite-volume method

a schematic cell arrangement for the one-dimensional case. In this work, the focus is

on diffusion in a single direction, normal to the vapour-liquid interface; consequently

the following development uses figure 7.3 as a basis.

The surface integral in equation 7.25 may be split into the sum of the 2 surface integrals

at opposing cell faces: ∫
V

∂ρωi
∂t

=
∑
c

∫
Ac

(ρωiv − ji) · n̂c dac (7.28)

where c represents each of the cell faces e, w (east and west). Assuming the cell volume

∆V is constant over time, and has unit cross-sectional area (so that ∆V = ∆z ×m2)

gives the following balance equation for each control volume:

∂ρωi
∂t

= 1
∆z

 ∑
c

∫
Ac

(ρωiv − ji) · n̂c dac

 (7.29)

The surface integrals (fluxes) in equation 7.29 may be computed by firstly approxi-

mating the fluxes by values on the control-volume faces ("e" and "w") and then by

approximating values of variables at the control faces by values at adjacent nodes. A

simple mid-point rule is employed here in which case the summation in brackets in

equation 7.29 is simply ∑
c

(
(ρωi)c v −

∑
c

jic

)
∆z (7.30)

summed over east and west faces, where ∆S is the (unit) width. To perform the re-

quired spatial discretization, a first order-accurate upwind differencing scheme (UDS)

is employed for the convective fluxes, and a second order-accurate central-difference

scheme (CDS) for the diffusive fluxes. Recall that the diffusive flux term ji includes

two terms for a ternary system to capture the multicomponent or interaction effects.

Using the generalised Ficks law from equation 7.8 for the ji, and neglecting the time-
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dependence for the moment, the following expressions for the spatial discretization of

equation 7.30 (see also equation 7.12) are obtained:

Component 1:

ρvω1P − ρ̂Do
11
ω1E − ω1P
zE − zP

− ρ̂Do
12
ω2E − ω2P
zE − zP︸ ︷︷ ︸

off-diagonal term

∆z

−

ρvω1W − ρ̂Do
11
ω1P − ω1W
zP − zW

− ρ̂Do
12
ω2P − ω2W
zP − zW︸ ︷︷ ︸

off-diagonal term

∆z = 0

(7.31a)

Component 2:

ρvω2P − ρ̂Do
21
ω1E − ω1P
zE − zP︸ ︷︷ ︸

off-diagonal term

−ρ̂Do
22
ω2E − ω2P
zE − zP

∆z

−

ρvω2W − ρ̂Do
21
ω1P − ω1W
zP − zW︸ ︷︷ ︸

off-diagonal term

−ρ̂Do
22
ω2P − ω2W
zP − zW

∆z = 0

(7.31b)

where ρ̂ is the value of ρ at the cell face of interest and ∆z is the control volume length.

The mass-averaged velocity v is assumed to be constant through the control volume

in the direction W to E. The under-lined terms in equation 7.31 indicate the off-

diagonal terms which represent the non-Fickian contribution to diffusive mass transfer.

Re-arranging the component balance equation 7.31 gives the following relationships

between nodal (cell-centre) values:

Component 1 : aP1 ω
P
1 + aP2 ω

P
1 + aE1 ω

E
1 + aE2 ω

E
2 + aW1 ωW1 + aW2 ωW2 = aBC (7.32a)

Component 2 : bP1 ω
P
1 + bP2 ω

P
1 + bE1 ω

E
1 + bE2 ω

E
2 + bW1 ωW1 + bW2 ωW2 = bBC (7.32b)

where aBC and aBC are coefficients that incorporate source terms for component 1

and 2 respectively. The terms in the coefficient relationships of equation 7.32 are:

aP1 = ρv

(ze − zw) + ρDo
11 (zE − zW )

(zE − zP ) (ze − zw) (zP − zW )

= ρv

∆z + 2ρDo
11

∆z2

aP2 = ρDo
12 (zE − zP )

(zE − zP ) (ze − zw) (zP − zW )

= 2ρDo
12

∆z2

aE1 = − ρDo
11

(zE − zW ) (ze − zw)
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= −ρD
o
11

∆z2

aE2 = − ρDo
12

(zP − zW ) (ze − zw)

= −ρD
o
12

∆z2

aW1 = − ρv

(ze − zw) −
ρDo

11
(zP − zW ) (ze − zw)

= − ρv∆z −
ρDo

11
∆z2

aW2 = − ρDo
12

(zP − zW ) (ze − zw)

= −ρD
o
12

∆z2

bP1 = ρDo
21 (zE − zP )

(zP − zW ) (ze − zw) (zE − zP )

= 2ρDo
21

∆z2

bP2 = ρv

(ze − zw) + ρDo
22 (zE − zW )

(zE − zP ) (ze − zw) (zP − zW )

= ρv

∆z + ρDo
22

∆z2

bE1 = − ρDo
21

(zE − zP ) (ze − zw)

= ρDo
21

∆z2

bE2 = − ρDo
22

(zE − zP ) (ze − zw)

= −ρD
o
22

∆z2

bW1 = − ρDo
21

(zP − zW ) (ze − zw)

= ρDo
21

∆z2
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bW2 = − ρv

(ze − zw) −
ρDo

22
(zP − zW ) (ze − zw)

= − ρv∆z −
ρDo

22
∆z2

aBC = 0

bBC = 0

The simplifications involving ∆z above apply only when the grid is equally spaced, with

grid spacing ∆z. In this work, an non-evenly spaced grid was used so that grid-spacing

was smaller near the vapour-liquid interface. As concentration changes are expected

to be more pronounced near the interface, this allows more accurate representation of

the composition profile, without incurring the computational cost of a uniformly dense

spacing. The grid spacing zp(i) for a total length z with nr cell volumes is given by:

zp(i) = z

(
i− 1
nr

)f
(7.33)

where f is a factor used to adjust the spacing. In this work f = 2.

7.2.4 Treatment of Boundary Conditions

The development outlined above applies to interior cells in a one-dimensional domain.

To account for evaporation from the liquid to the vapour phase at the vapour-liquid

interface, the mass fluxes must be accounted for at the domain boundaries. The treat-

ment of gas-phase mass transfer in section 7.1.1 yields component mass fluxes nGi at

the vapour-liquid interface; these fluxes can be considered Neumann-type boundary

conditions for the partial differential equations for mass transfer in the liquid phase.

The Neumann boundary conditions are implemented by applying the flux condition

from right-hand side of 7.18 and 7.19 at the east and west faces of boundary cells (at

i = 1 and i = nr), representing the vapour-liquid interface and the base of the liquid

film respectively (see figure 7.1b).

A prescribed flux boundary condition for the "west" boundary of figure 7.3 yields the

similar component relationships to those of the non-boundary nodes of equation 7.32,

but with the specified mass fluxes at the interface (nG1 and nG2 ) explicitly included:

Component 1 : aP1 ω
P
1 + aP2 ω

P
1 + aE1 ω

E
1 + aE2 ω

E
2 + aW1 ωW1 + aW2 ωW2 = −nG1 (7.34)

Component 2 : bP1 ω
P
1 + bP2 ω

P
1 + bE1 ω

E
1 + bE2 ω

E
2 + bW1 ωW1 + bW2 ωW2 = −nG2 (7.35)

The fluxes at the base of the liquid film (i = 1 in figure 7.1b) are zero. The coefficients
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for the interface boundary node are then given by:

aP1 = ρv

(ze − zw) + ρDo
11

(zE − zP ) (ze − zw)

= ρv

∆z + 2ρDo
11

∆z2

aP2 = ρDo
12

(zE − zP ) (ze − zw)

= ρDo
12

∆z2

aE1 = − ρDo
11

(zE − zP ) (ze − zw)

= 2ρDo
11

∆z2

aE2 = − ρDo
12

(zE − zP ) (ze − zw)

= ρDo
12

∆z2

aW1 = 0

aW2 = 0

bP1 = ρDo
21

(zE − zP ) (ze − zw)

= ρv

∆z + 2ρDo
11

∆z2

bP2 = ρv

(ze − zw) + ρDo
22

(zE − zP ) (ze − zw)

= ρDo
12

∆z2

bE1 = − ρDo
21

(zE − zP ) (ze − zw)

= 2ρDo
21

∆z2

bE2 = − ρDo
22

(zE − zP ) (ze − zw)

= ρDo
22

∆z2
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bW1 = 0

bW2 = 0

aBC = −nG1

bBC = −nG2

The key feature here is the incorporation of the component mass fluxes from the bound-

ary conditions into the source terms aBC and bBC . Similar equations apply for the base

of the liquid film, with aBC = 0 and bBC = 0.

7.2.5 Time Discretization

In order to solve the time-dependent problem, the spatial discretization of the previous

section, when combined with the transport equation 7.29 results in a system of ordinary

differential equations (ODEs) with respect to time for each 1-D control volume:

dρω1
dt = 1

∆z

(
−aP1 (t)ωP1 +−aP2 (t)ωP2 +

∑
c

aE1 (t)ωE1 +
∑
c

aE2 (t)ωE2 +

∑
c

aW1 (t)ωW1 +
∑
c

aW2 (t)ωW2 + aBC1 (t)
)

(7.36a)

dρω1
dt = 1

∆z

(
−bP1 (t)ωP1 +−bP2 (t)ωP2 +

∑
c

bE1 (t)ωE1 +
∑
c

bE2 (t)ωE2 +

∑
c

bW1 (t)ωW1 +
∑
c

bW2 (t)ωW2 + bBC1 (t)
)

(7.36b)

These can be re-cast in a matrix-like form suitable for solution by an ODE-solver:
d (ρω1)

dt
d (ρω2)

dt

 =

 A 0

0 B




(ω1)

(ω2)

−

(
aBC

)
(
bBC

)
 (7.37)

where (ρω1) and (ρω2) are the nr × 1 arrays of mass density of components 1 and 2 at

each of the nr cells depicted in the schematic of figure 7.1b. The Matlab ODE15s solver

for numerically stiff systems was used in this work. In a finite difference setting, this

approach is referred to as the method of lines (Schafer 2006). The A and B matrices in

equation 7.37 are given by
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A =

1
∆z



a
P (1)
1 + a

P (1)
2 a

E(1)
1 + a

E(1)
2 0 · · · 0

a
W (2)
1 + a

W (2)
2 a

P (2)
1 + a

P (2)
2 a

E(2)
1 + a

E(2)
2 0 0

0 0 . . . . . . 0

0 · · · . . . . . . a
E(nr−1)
1 + a

E(nr−1)
2

0 · · · 0 a
W (nr)
1 + a

W (nr)
2 a

P (nr)
1 + a

P (nr)
2


(7.38a)

B =

1
∆z



b
P (1)
1 + b

P (1)
2 b

E(1)
1 + a

E(1)
2 0 · · · 0

b
W (2)
1 + b

W (2)
2 b

P (2)
1 + b

P (2)
2 b

E(2)
1 + b

E(2)
2 0 0

0 0 . . . . . . 0

0 · · · . . . . . . b
E(nr−1)
1 + b

E(nr−1)
2

0 · · · 0 b
W (nr)
1 + b

W (nr)
2 b

P (nr)
1 + b

P (nr)
2


(7.38b)

where the bracketed superscript is the cell-centre index, and the subscript refers to the

component.

In the following simulations, the time integration for the distributed model was con-

tinued forward in time until the averaged film concentration approached a stable node

to within a pre-specified tolerance, typically 0.01 mole-fraction. The nodes for each

mixture are known a priore, and include pure components and pseudo-azeotropes as

described in chapter 3 and 4.

7.3 Simulation Results and Discussion

A Matlab code was written for the distributed model described in the previous sec-

tion. In the following sections a comparison with some experimental data is presented,

followed by a study of evaporation paths for a number of ternary mixtures.
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7.3.1 Comparison with Experimental Data

The evaporation of ternary ethanol/methyl-ethyl-ketone(MEK)/toluene mixtures from

a flat geometry was studied by Martinez & Setterwall (1991). Data from that work was

used in chapter 3 to compare predictions of the gas-phase-limited evaporation model.

In this section, computed results from the distributed model are compared with those of

the gas-phase-limited model. Figure 7.4, 7.5 and 7.6 show computed results compared

to the data of Martinez & Setterwall (1991).

Figure 7.4 shows computed ternary compositions for the gas-phase-limited model (dot-

ted lines) and the distributed model (solid lines), for an initial liquid composition of

xEtOH = 0.33, xMEK = 0.33, xToluene = 0.34. It has already been established in chapter

3 that the gas-phase limited model agrees well with the experimental data of for this

mixture. Consequently, a model directly incorporating the effects of liquid diffusion

might not be expected to agree well with the same data. This is borne out by the solid

lines in figure 7.4; although the composition paths terminate at the correct node (pure

toluene), the distributed model does not accurately match the experimental composi-

tion profile during the course of the evaporation process. This is probably due to some

mixing and natural circulation within the liquid phase caused by the effect of the gas

stream moving over the liquid surface, which in turn causes concentration gradients

within the liquid to be wiped out. However, by employing an effective diffusivity with

a nominal value of De = 1.5 × 10−10m2/s (an adjustable parameter essentially), the

agreement is better, as indicated by the dashed lines in the figure; in that case the

generalized Fick matrix D is simply

Do =


De 0

0 De


so that multicomponent effects (normally captured in the off-diagonal terms) are zero.

Figure 7.5 and 7.6 shows similar composition profiles for two different initial liquid

compositions, where the solids lines are obtained using the same value forDo as above.

In each case the gas-phase limited model provides better agreement, indicating that the

assumption of a quiescent liquid phase is not valid.

Each of the figures 7.4-7.6 also shows a plot of the characteristic number for liquid-side
mass transfer KL suggested by Thurner & Schlunder (1986) as an indicator of mass

transfer resistance.

KL = exp

(−vL
kL

)
(7.39)

where kL is a liquid mass transfer coefficient, and vL is the bulk liquid phase velocity

towards the interface. In this work we use a form for kL based on the computed film
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thickness z(t) and the total liquid concentration:

kL = c
De

z
(7.40)

The characteristic number can then be expressed in terms of the molar evaporation rate

NG
t :

KL = exp

−NG
t

cDe

z

 (7.41)

In the development outlined by Thurner & Schlunder (1986), as KL → 1 no concen-

tration profiles exist in the liquid phase, and the selectivity depends on gas-side mass

transfer and thermodynamic equilibrium. At high evaporation rates and/or low liquid-

side mass transfer coefficients, KL → 0, and liquid-side resistance is the limiting step.

In figures 7.4-7.6, KL is initially near zero, implying significant mass transfer resistance

in the liquid phase. As the evaporation progresses and the film becomes thinner KL

increases, implying minimal liquid phase resistance. Consequently, there is a predicted

change in the controlling mechanism from liquid side to gas side as the evaporation

progresses.

The terms of the generalized Fickian diffusivity matrix Do during the course of the

evaporation of figure 7.4 (calculated using equations 7.9, 7.10 7.11 and 7.23) are

shown in figure 7.7. The diagonal terms ofDo have values that are reasonably constant

over most of the process: D11 ≈ 2.0× 10−11 and D22 ≈ 5.0× 10−11As the process tends

towards pure toluene (ξ → 0), the off-diagonal contributions D12 and D21 tend to zero;

this is intuitively correct, as no interaction effects occur with pure components. There is

an increase in diffusivity also due the increase in liquid (wet-bulb) temperature as pure

toluene is approached; this is to be expected based on the form of the Wilke-Chang

correlation used to predict binary diffusivities, see appendix B.4. Note that the off-

diagonal diffusivity D21 is negative throughout the process, indicating that a positive

ethanol(1) gradient ∆x1 acts against the diffusion of ethanol(1). Conversely, D12 is

negative throughout the process indicating that a positive MEK gradient ∆x2 enhances

the diffusion of ethanol.

It can be seen from figures 7.4-7.6 that by using an effective diffusivity De = 1.5 ×
10−10m2/s, the computed profiles more closely match the gas-phase-limited model;

this higher effective diffusivity accounts for the fact that the liquid is presumably not

quiescent during the evaporation process, due to the natural circulation and surface

agitation effects noted above. Note that pure toluene forms the stable node for the

mixtures in figure 7.4 and 7.5, while pure ethanol is the stable node for the mixture in

figure 7.6.

Composition gradients as function of relative time τ are shown in figure 7.8. The effect

of the film thinning due to evaporation is evident as the dimensionless film thickness
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η declines with increasing τ . Figure 7.8a shows how the surface of the liquid becomes

rapidly leaner in the more volatile ethanol and MEK components, while become richer

in less volatile toluene. The different diffusivity values for ethanol and MEK (in par-

ticular D11 and D22, see figure 7.7) give rise to different gradients in the composition

profiles; thus the changes in MEK composition propagate more deeply into the liquid

than those for ethanol because D22 > D11. The use of a single effective diffusivity De

in figures 7.8b and 7.8c causes the composition profiles to display the same rates of

change within the liquid for each component, so the curvature in the profiles in figures

7.8b and 7.8c is similar.

In addition to the characteristic number KL described above, the Biot number is con-

ventionally used to describe the ratio of diffusive resistance within a phase (solid or

liquid) to the convective resistance outside (liquid or gas phase respectively). The Biot

numbers for mass and heat transfer are given by (Pakowski & Mujumdar 2006):

BiM = z/DL

1/kG
= zkG

DL
and BiH = zhG

kL
(7.42)

For heat transfer a lumped-parameter analysis suggests that if Bi � 0.1 (typically

Bi < 0.1 is sufficient) a lumped parameter model can be used, whereas for Bi > 0.1
a more complex distributed parameter model should be used (Krieth et al. 2010,

Bergman et al. 2011). For heat-transfer applications, equilibrium between a vapour and

liquid phase generally implies equal temperature at the interface i.e. there is generally

no contact resistance between phases. For mass transfer applications however, there is

a contact resistance in the form of the distribution coefficient for components between

vapour and liquid phases. Thus, using the definition of BiM and BiH as written above,

equality of the Biot numbers does not imply similarity between a heat-transfer and a

mass-transfer application at a vapour-liquid interface. In addition, because of the mul-

ticomponent mass transfer model employed here, involving a mass transfer coefficient

matrix k•ij in the vapour phase and a diffusivity matrix D in the liquid phase, single

values of kG and DL in the Biot number definition are not accessible. The appropriate

definition that implies similarity is given by (Parti 1994):

Bi
′
Mi = miBiM = xIi − xBi

yIi − yVi
(7.43)

where m = piγi/P is a distribution coefficient for component i (Benitez 2009), and

a Biot number is defined for each component. Values of Bi
′
Mi may be determined

as the evaporation process proceeds using computed values of the concentration and

equation 7.43. Note that this is not a computation directly involving mass-transfer

coefficients and diffusivities; rather it is a method of "back"-calculating a Biot number

from computed values of the vapour and liquid molefractions, and the distribution

coefficient m. An example of this calculation is shown in the next section.
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Figure 7.4: Composition profiles for ethanol(1)-MEK(2)-toluene(3) mixture; initial
conditions: x1 = 0.33, x2 = 0.33, x3 = 0.34; TG = 298K, TL = 298K,
uG = 0.1m/s; �: ethanol, ◦: MEK, N: toluene. Solid line is distributed
(PDE) model, dashed line is model with effective diffusivity, short dashed
line is gas-phase-limited model

Figure 7.5: Composition profiles for ethanol(1)-MEK(2)-toluene(3) mixture; initial
conditions: x1 = 0.6, x2 = 0.1, x3 = 0.3; TG = 298K, TL = 298K,
uG = 0.1m/s; �: ethanol, ◦: MEK, N: toluene. Solid line is distributed
(PDE) model, dashed line is model with effective diffusivity, short dashed
line is gas-phase-limited model
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Figure 7.6: Composition profiles for ethanol(1)-MEK(2)-toluene(3) mixture; initial
conditions: x1 = 0.8, x2 = 0.05, x3 = 0.1; TG = 295K, TL = 298K,
uG = 0.07m/s; �: ethanol, ◦: MEK, N: toluene. Solid line is distributed
(PDE) model, dashed line is model with effective diffusivity, short dashed
line is gas-phase-limited model

Figure 7.7: Elements of generalized Fick diffusivity matrix for ethanol-MEK-toluene
mixture in figure 7.5

Evaporation Maps for
Ternary Non-Ideal Liquid Mixtures

174



7.3 Simulation Results and Discussion

(a) Composition profiles corresponding to figure 7.4; multicomponent liquid diffusivity

(b) Composition profiles corresponding to figure 7.5; effective liquid diffusivity

(c) Composition profiles corresponding to figure 7.6; effective liquid diffusivity
.

Figure 7.8: Composition profiles for ethanol(1)-MEK(2)-toluene(3); y-axis is η (dimen-
sionless thickness); composition profiles annotated with τ (dimensionless time)
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7.3.2 Evaporation Paths for Selected Ternary Mixtures

Computed trajectories for a number of ternary mixtures are discussed in this section.

A number of features that distinguish the results of the distributed model from the

lumped model of evaporation are discussed.

IPA-ethanol-methanol Figure 7.9 show trajectories for two initial compositions of

the IPA-ethanol-methanol mixture in the vicinity of the unstable methanol node. Lines

of constant τ (relative time) and η (relative distance) are also shown. When the dry-

ing/evaporating rate is slow or the film is thin, the drying/evaporation is controlled by

the resistance in the gas film at the interface. This is equivalent to Biot numbers that are

much less than unity, in which case concentration profiles do not vary significantly with

depth in the film. In the case of the mixtures in figure 7.9, the concentration profile

is initially flat due to the initial condition of uniform concentration; the initial concen-

tration profile is represented by a point on the diagram. The lines of composition at

constant relative time τ collapse onto a single path approximately when τ > 0.83, after

which composition does not vary significantly with depth in the film. In the distributed

model, the surface of the film is depleted of the volatile components more rapidly than

the base, in particular at larger values of BiMi. Consequently, the profiles at constant

relative depth η are fanned out from the initial point; closer to the the film surface, the

composition profiles are leaner in the more volatile methanol component.

The composition profiles and component Biot numbers (from definition of equation

7.43) corresponding to the IPA-ethanol-methanol mixture of figure 7.9b are shown in

figure 7.10. The Biot numbers are initially zero at τ = 0 as there is no composition

profile in the liquid phase (so numerator is zero), then rise during the evaporation pro-

cess before declining again as the mixture composition approaches a pure component,

at which point the liquid composition gradients diminish to zero. It can be seen from

figure 7.10b that the Biot numbers are large enough over most of the time period for a

distributed parameter model to be required. Note that the Biot number for ethanol has

a secondary small peak near τ = 1; this is associated with the averaged liquid composi-

tion that becomes initially richer in ethanol, as evident in the ternary diagram of figure

7.9b), before finally becoming lean in ethanol as the final liquid concentration tends to

pure IPA.

Composition paths for the lumped model of chapter 3 are also shown in figure 7.9.

The average compositions of the distributed model in general follow a path that tends

more directly from the initial composition to the IPA node than the path of the lumped

model. Early in the process, the surface (η = 0) concentration approximately tracks

the path of the lumped model; this occurs because the concentration profile is initially

uniform, which is by definition also the case with the lumped model. Late in the

process, both the distributed and lumped-model paths coincide along the IPA-ethanol
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edge. At large values of BiMi the rate of mass transfer from the depths of the film is

controlled largely by the component diffusivities (i.e. by diffusion in the liquid phase),

whereas for the lumped model, the gas-phase component diffusivities, partial pressures

and activity coefficients dictate the relative changes in composition. At large values of

BiMi, the average composition would therefore tend to follow a path directly towards

the final composition with the shape of the path affected only by the relative values

of the diffusivities. At intermediate Biot numbers (e.g. BiMi ≈ O(1), as in much of

the duration of figure 7.10b), the mass transfer resistances within the gas and liquid

phases are comparable. Consequently, the paths followed by the average composition

(distributed model) of the mixtures in figure 7.9 are curved as both the diffusivity in

the liquid and the volatility of the components affect the behaviour of the mixture.

Ethanol-MEK-toluene Figure 7.11a for the ethanol-MEK-toluene mixture has an ini-

tial composition of {xEtOH = 0.3, xMEK = 0.6, xToluene = 0.1}. The composition

throughout the liquid is initially uniform (at τ = 0) , after which the compositions at

different values of η start to fan out, with the most rapid changes at the liquid surface

(η = 0). When relative time τ ≈ 0.62, the composition profiles have been substantially

wiped out, and the bulk of the liquid follows the distributed (PDE) model average com-

position. The lumped model average composition tends towards the MEK-toluene edge,

whereas the distributed model tends more directly towards the pure toluene node. In

the distributed model the surface becomes rapidly depleted of ethanol, then gradu-

ally more depleted of MEK; consequently, the profile for η = 0 tends initially towards

the MEK-Toluene edge (becoming lean in ethanol), before turning towards the pure

toluene node (becoming lean in MEK). As the residual liquid is relatively richer in MEK

and toluene, the rate at which they diffuse to the liquid surface dictates the composi-

tion profile; in this case the diffusivities are equal, so the average concentration profile

follows a near direct path to the pure toluene node.

A slightly different picture emerges from figure 7.11b, where the initial composition is

{xEtOH = 0.5, xMEK = 0.4, xToluene = 0.1}. Contrary to the previous example, the

surface of the liquid initially becomes slightly enriched with ethanol and leaner in MEK,

reaching a peak around τ = 0.26; in that period the selectivity for ethanol is greater

than for MEK. Thereafter, selectivity for ethanol and MEK is reversed, the surface be-

comes rapidly leaner in ethanol, while the MEK concentration remains nearly constant

(evidenced by the flat portion of the η = 0 profile between ethanol concentration of

0.5 and 0.2). The lines of composition at constant relative time τ collapse onto a single

path approximately when τ > 0.75, after which composition does not vary significantly

with depth in film.

Acetone-chloroform-methanol A ternary diagram for the more complex acetone-

chloroform-methanol mixture is shown in figure 7.12. Composition paths are compared
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(a) Initial conditions: x1 = 0.05, x2 = 0.1, x3 = 0.85; TG = 40oC, uG = 0.5m/s

(b) Initial conditions: x1 = 0.02, x2 = 0.1, x3 = 0.88; TG = 40oC, uG = 0.5m/s
.

Figure 7.9: Evaporation paths of IPA-ethanol-methanol film into pure air stream; lines
of constant τ are composition profiles at relative times; lines of constant η are compo-
sitions at the same relative depth in the film (η = 0 is liquid surface)
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(a) Composition profiles for IPA-ethanol-methanol

(b) Biot numbers for IPA-ethanol-methanol

.

Figure 7.10: Composition profiles and component Biot numbers (BiMi) for
IPA-ethanol-methanol mixture (see ternary diagram in figure 7.9b)
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for the lumped and the distributed models for a variety of initial compositions. From

the figure it can be seen how trajectories 1-8 converge (for both lumped and distributed

models) on a common terminal composition, namely the acetone-chloroform pseudo-

azeotrope. Similarly, trajectories 9-12 converge on the pure methanol node. A sep-

aratrix, or separation boundary, running between pseudo-azeotropes on the acetone-

methanol and chloroform-methanol edges divides the two areas of the ternary diagram

(see chapter 6 for location of boundaries by numerical means).

Recall from chapter 3 that a pseudo-azeotrope composition is a function of vapour-

liquid equilibria and gas-phase conditions, and does not depend on diffusion within

the liquid. This implies that a specific desired terminal composition for an evaporation

or drying process can be controlled solely by conditions in the gas phase, and that re-

sistance to mass transfer in the liquid phase does not have a bearing on the end-point

composition. The model for computation of pseudo-azeotropic composition (section

3.1.5) is based on fluxes in the gas phase rather than the liquid; liquid composition is

computed as an output, based on the requirement of equal selectivity for each com-

ponent (2 components, in case of binary mixture, 3 for a ternary mixture). Liquid

diffusivities affect the evaporation process to the extent that individual components

are supplied to the interface at different rates, and so affects the dynamic behaviour of

the process; the pseudo-azeotropes are steady-state values of the evaporation process –

consequently, liquid diffusivity is not a parameter of the pseudo-azeotrope model, and

the end-points for both cases are the same.

7.4 Chapter Summary and Conclusions

In this chapter the gas-phase limited (lumped) model of chapter 3 was extended to

include effects of diffusion in the liquid phase on evaporation trajectories. The con-

servation equations for individual components in the liquid were cast as partial dif-

ferential equations, while a lumped model was retained for the energy balance. A

generalized Fickian approach was used to calculate diffusive fluxes in the liquid, while

an overal material balance was used to determine the movement of the vapour-liquid

interface due to evaporation. Due to the multicomponent interaction effets, the PDEs

are coupled. The rates of evaporation of the individual components (calculated with

the gas-phase model in chapter 3) were used as boundary conditions. A modified finite

volume method was developed to perform the spatial discretization, and the overall

system was solved using the method of lines and a Matlab ODE solver. Composition

profiles were computed for a number of example mixtures and profiles resulting from a

rigorous multicomponent diffusion model were compared with an effective diffusivity

approach. Composition paths for the lumped model and the distributed model were

compared for a number of ternary mixtures, and from an analysis of the governing
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7.4 Chapter Summary and Conclusions

(a) Initial conditions: x1 = 0.3, x2 = 0.6, x3 = 0.1; TG = 40oC, uG = 0.5m/s

(b) Initial conditions: x1 = 0.5, x2 = 0.4, x3 = 0.1; TG = 40oC, uG = 0.5m/s
.

Figure 7.11: Evaporation paths of ethanol-MEK-toluene film into pure air stream; lines
of constant τ are composition profiles at relative times; lines of constant η are compo-
sitions at the same relative depth in the film (η = 0 is liquid surface)
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Figure 7.12: Comparison of trajectories for lumped and distributed models for
acetone-chloroform-methanol mixture; solid lines are distributed (PDE)
model, dashed line is gas-phase-limited model
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equations, and simulations of a complex ternary mixture it was concluded that the

end-points for the gas-phase limited process were the same as those for which liquid

diffusion played a role.
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Chapter 8

Conclusions and Further Work

8.1 Summary and Outcomes

The primary aim of this thesis has been the development of the concept of evapora-
tion maps for non-ideal, ternary liquid mixtures, using principles of multicomponent

mass transfer. The purpose of these maps is to allow composition changes in the liq-

uid phase during a gas-phase limited evaporation or drying process to be simply and

clearly depicted on a ternary diagram. The evaporation map concept is motivated by

residue curve maps, which are commonly used in the design of distillation separation

processes. Chapter 2 presented background material on the governing equations of

multicomponent mass transfer, on residue-curve maps, and on evaporation and dry-

ing of multicomponent mixtures. In particular, section 2.2.3 reviewed some attempts

at accounting for non-equilibrium effects directly into residue curve maps, and high-

lighted various deficiencies; typically the assumptions used in previous works are not

consistent with the fundamental basis upon which residue curve maps are based.

In chapter 3, a comprehensive model for gas-phase limited evaporation maps was

developed. This model employed an analytic solution to the Maxwell-Stefan equa-

tions for mass transfer in the notional film at the gas-liquid interface, and a lumped,

non-isothermal model for the residual liquid phase. The evaporation model was vali-

dated against data for evaporation of binary liquid droplets, and a ternary liquid film.

For speed of execution, the evaporation model was implemented in the "C" program-

ming language, linked to Matlab via "mex" files. For a given ternary mixture, T − x
(temperature-composition) solutions of the model, when projected onto the ternary di-

agram, form evaporation trajectories; a number of such trajectories combined together

shows the overall flow of an evaporation process at specified gas-phase conditions (ve-

locity, temperature, composition), and constitutes an evaporation map. An optimiza-

tion method was used to ensure an even spread of trajectories over the ternary diagram

for each mixture.
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A numerical method for computation of binary and ternary pseudo-azeotropes was also

developed in chapter 3; together with the pure components, pseudo-azeotropes are

fixed points of the system of equations describing the evaporation maps. The pseudo-

azeotropes of a mixture must be determined prior to generation of an evaporation

map, as they may form a starting or an end-point for the evaporation trajectories. A

related model for the multicomponent wet-bulb temperature of a liquid mixture was

also developed. It was also shown how the multicomponent wet-bulb model reduces

to a simpler version in the case of evaporation of a single component.

Chapter 4 deals with changes in the topology of evaporation maps with changes in the

composition in the gas phase. Separate homotopy methods were developed to enable

tracking the location of (1) binary and ternary azeotropes and (2) binary and ternary

pseudo-azeotropes. In each case, the homotopy parameter was used to gradually intro-

duce non-ideality in the liquid phase as the parameter was varied from 0 → 1. Binary

azeotropes and pseudo-azeotropes appeared as branches from pure-component solu-

tions. Ternary azeotropes and pseudo-azeotropes appeared as branches from binary

azeotropes and pseudo-azeotropes respectively. Bifurcations in evaporation maps were

examined using a numerical continuation procedure. In this approach, the gas phase

was gradually pre-loaded with one of the ternary components in turn; the extent of pre-

loading acted as the continuation parameter, and the pseudo-azeotropes were tracked

as the parameter increases. Bifurcation diagrams for the pseudo-azeotropes show how

additional pseudo-azetropes appear and disappear as the continuation parameter is

varied. The existence of limit points in both binary and ternary azeotropes was demon-

strated for the acetone-chloforom-methanol mixture. Use of the bifurcation diagrams

in principle allows one to determine the required amount of gas-phase pre-loading that

leads to a particular terminal composition in the liquid phase.

A measure of the extent of multicomponent effects (due to interaction between species)

was also used in chapter 4. The interaction terms computed along the branches of the

binary pseudo-azeotropes in an acetone chloroform-methanol mixture were generally

non-negligible; typically the off-diagonal terms were ≈ 10% of the diagonal (Fickian)

terms in the diffusive fluxes, for a particular gas phase temperature and velocity.

In chapter 5 the mathematical stability of residue curve maps and of evaporation maps

was investigated. By linearizing the governing equations, the stability of residue curve

maps and evaporation maps can be characterized by the eigenvalues at the fixed points

of the system. The eigen-directions at the fixed points show the asymptotic behaviour

of trajectories in the neighbourhood of the fixed points. A method for calculation of

eigenvalues and eigen-directions for was developed for residue curve maps based on

existing work by Doherty & Perkins (1978a,b) and Pollmann et al. (1996). The method

developed here is novel in that it uses an analytic form of the Jacobian matrix at the

fixed points to calculate the eigenvalues.
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The method develped for eigenvalues and eigenvectors of evaporation maps was guided

by work of Luna & Martinez (1998, 1999) for batch drying of multicomponent mixture,

and locates eigenvalues and eigen-directions by firstly calculating derivatives of com-

ponent fluxes at the fixed points using a numerical finite difference method.

The characteristics of a number of non-ideal ternary mixtures were evaluated in terms

of the eigenvalues of the fixed points, and have been shown to qualitatively describe

the stability; nodes with two negative eigenvalues are stable, nodes with two positive

eigenvalues are unstable, while nodes with eigenvalues of opposing sign are saddles.

Chapter 6 focused on methods for location of separation boundaries in ternary mix-

tures, both for residue curve maps and evaporation maps. A procedure utilizing the

eigen-vectors determined from methods in chapter 5 was firstly described. This method

computes separation boundaries by firstly locating the saddle azeotropes (for residue

curve maps), or pseudo-azeotropes (for evaporation maps). The separation boundary

can be found by moving a small distance from the saddle along the eigen-direction,

then integrating forward or backward in time until a stable node is reached.

The second method for location of separation boundaries involved a numerical opti-

mization procedure using (1) a trajectory length approach (based on Lucia & Taylor

(2006)) and (2) a novel integrated area approach. The trajectory length method is not

in general globally optimal, so requires an additional optimization step; the integral

area method does not.

Chapter 6 also examined the flexure of the wet-bulb temperature surface. A numerical

search procedure, in each of three search directions (for a ternary mixture) was used to

locate ridges and valleys in the wet-bulb temperature surface. An alternative approach

used a finite difference method applied directly to the wet-bulb surface; both results

were generally equivalent. Computations for a number of ternary mixtures show that

ridges and valleys do not correspond to separation boundaries in evaporation maps.

Chapter 7 addressed the effects of diffusion in the liquid phase on evaporation trajec-

tories for non-ideal ternary mixtures. Mass conservation equations in the liquid were

cast as partial differential equations, while a lumped model was retained for the en-

ergy balance. Diffusive fluxes in the liquid were modeled using a generalized Fickian

approach, and the rate of interface regression (due to evaporation) was tracked using

an overall mass balance. Due to the multicomponent interaction effets, the PDEs are

coupled. The rates of evaporation of the individual components (calculated with the

gas-phase model in chapter 3) were used as boundary conditions. A modified finite

volume method was developed to perform the spatial discretization, and the overall

system was solved using the method of lines and an ODE solver. Composition profiles

were computed for a number of example ternary mixtures and profiles resulting from

a rigorous multicomponent diffusion model were compared with an effective diffusiv-

ity approach. Some shortcomings in the assumption of of one-dimensional diffusion
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(quiescent liquid) were identified.

Composition paths for the distributed model were compared with comparable results

for the gas-phase limited (lumped) model on ternary diagrams, and the behaviour of

the paths was explained in terms of component diffusivities and volatilities.

As several of the features of evaporation maps in this work are motivated by residue

curve maps, table 8.1 compares key features of each, and notes where key topics are

addressed in the various chapters of this thesis.

Table 8.1: Comparison of some key features of residue curve maps and evaporation
maps with references to thesis chapters

Feature Residue curve map Evaporation map

Variables
(liquid phase)

Composition and bubble
point temperature

Composition and wet-bulb
temperature

Vapour-liquid
relationship

Equilibrium applies between
vapour and liquid

Rate-based process, equilibrium
applies at interface only; mass
transfer described by
Maxwell-Stefan theory

Fixed points
Pure components &
azeotropes

Pure components &
pseudo-azeotropes

Min/max
temperature

Binary azeotropes lie at
min/max of bubble point
temperature

Binary pseudo-azeotropes lie in
vicinity, but not at min/max of
wet-bulb temperature (see
section 3.3.3)

Fixed point
location

Newton’s method (section
4.2.1); homotopy method
(section 4.2.3)

Newton’s method (section
3.2.3); homotopy method
(section 4.2.4)

Stability
characteristics
of fixed points

Linearized analysis of
analytic Jacobian (section
5.1)

Linearized analysis of numerical
Jacobian (section 5.2)

Topology
For a given mixture, function
of pressure only

Function of pressure, gas phase
conditions (uG, TG, yG); see
section 4.3 for analysis of
bifurcations in map

Boundaries
Simple distillation
boundaries

Evaporation map boundaries
(see sections 6.1 and 6.2)

Ridges &
valleys

Ridges & valleys can be
crossed by residue curves

Ridges & valleys can be crossed
by evaporation trajectories
(section 6.3)
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8.2 Suggestions for Further Work

A number of extensions to the numerical modeling work of this thesis could be under-

taken:

1. Although the gas-phase limited evaporation model was validated against some

experimental data, the maps generated in this work have all been for a planar

geometry, and used heat and mass-transfer coefficients for that purpose. Evap-

oration maps could also be generated for other geometries e.g. droplets, falling

films. A complication arises for droplets however, in that the nature of the heat

and mass transfer coefficients means that the pseudo-azeotrope composition is a

function of diameter, and would require further investigation.

2. The mixtures covered in this work have all been homogeneous (single phase);

adapting the evaporation model to heterogeneous ternary mixtures would require

a number of extensions to the theory. An adapted model would have to account

for the additional liquid-liquid phase equilibrium that occurs in the two-phase

region, and a check on whether the total composition at any point is actually

within a two phase region (e.g. using tangent plane stability test of Michelsen &

Mollerup (2007)). Some work on composition trajectories for two-phase mixtures

has been done by Dabral et al. (2002), but this did not include a model that

directly accounts for phase splitting. When phase splitting occurs, there may be a

layering effect due to differences in density; the less-dense layer is then exposed

to the gas stream and may be preferentially removed. Such behaviour has been

seen in the evaporation of immiscible droplets (Ray et al. 1992).

3. In this work, the NRTL model has been used to describe non-ideality in the liquid

phase. Alternative physical property models such as UNIQUAC, Wilson, UNI-

FAC (Poling et al. 2001) may also be implemented. These should generally yield

equivalent results, subject to their ability to accurately predict azeotropes. The

UNIFAC, or other group contribution method, could be used where the binary

interaction parameters normally required are unavailable or have not been mea-

sured.

4. The models developed in this work use the Maxwell-Stefan equations to ad-

dress multicomponent effects; the extent of interaction between species in the

gas phase was considered during the analysis of bifurcations as the gas phase

pre-loading was varied. Additional work can be done to characterise when mul-

ticomponent effects are significant, including sensitivity analysis for pre-loading

of more than one component, sensitivity to gas temperature and velocity etc.

5. The model developed in this work was based on evaporation from a liquid (or

liquid-saturated) surface, and explicitly did not account for presence of solids.

An extension of the distributed model (chapter 7) to include mass transfer effects
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in porous media could be undertaken. In its simplest form, the liquid diffusion

coefficients could be modified in a tortuosity factor. Alternatives would include an

effective diffusivity approach. Extending further, diffusion of both liquid and gas

phases within the pores (capillaries) of porous media might require solution of

separate continuity equations for each species in each phase, and for each phase

overall (Pakowski 1992).

6. A practical application of the gas-phase limited evaporation model would be the

drying solvent from a mixture in a tray dryer or polymer film coating system. In

that case, the heat & mass-transfer area would be discretized over the exposed

length using separate lumped parameter models for solvent/polyer mixture and

for gas phase in each length increment (Pakowski & Mujumdar 2006).

7. The gas-phase model (chapter 3) used a lumped approach for the liquid phase,

while the distributed model (chapter 7) used partial differential equations in one-

dimension (normal to the liquid surface) to describe diffusion in the liquid phase.

The distributed model could be extended to two dimensions to account for nat-

ural circulation effects in the liquid, or heating of film from below. This would

include a distributed description of heat transfer in the liquid phase. A further

extension could involve the momentum equation (Navier-Stokes equation) by ac-

counting for shear effects at the gas-liquid interface. A suitable approach would

be to use a customisable computational-fluid-dynamics (CFD) package using fi-

nite volume method to resolve the concentration and velocity profiles in the liq-

uid, while embedding the gas-phase flux as a boundary condition in a user rou-

tine. The OpenFOAM software package (Weller et al. 1998) which is open-source

and allows the user to customize the governing and boundary equations would

be suitable.

8. This work has considered the case of finite gas-phase diffusional resistance with

no liquid phase diffusion resistance (chapter 3), and finite diffusion in both gas

and liquid phases (chap 7). For the additioanl case of negligible resistance in both

phases, the system would be governed by VLE only, which would likely reduce to

the case of a residue curve map. Finite liquid phase resistance, with negligible

gas phase resistance would suggest that the composition changes would be unaf-

fected only by VLE and liquid diffusion coefficients. This could be simulated by

solving the diffusion equations of chapter 7, assuming gas-phase fluxes are the

same (coupled) as those of diffusive fluxes that arise in the liquid phase.

9. In terms of practical application, evaporation maps would be a useful adjunct to

a process simulation software package. Currently available industrial software

for convective drying such as AspenPlus and Simprosys can handle multiple

moisture components (Kemp 2004, 2007, Gong & Mujumdar 2010) but do not

provide conceptual design tools similar to the residue curve map tools used in
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the synthesis of distillation separation sequences. The addition of a tool to gener-

ate evaporation maps could allow rapid determination of the feasible end-points

for a convective drying process under given conditions of drying air flow-rate

and temperature. Process simulation systems such as AspenPlus, AspenHysys

and SimSci PRO-II do generally provide facility for generation of residue curve

maps, so the provision of a tool to generate evaporation maps could be done us-

ing similar interfaces; the evaporation maps generated in this work were written

in the C programming language for speed of execution - a similar programming

approach could be adopted for industrial use.
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Appendix A

Governing Equations

A.1 Multicomponent Fluxes

The treatment of fluxes in multicomponent mixtures is treated in detail in Cussler

(2009), Bird et al. (2002) and especially in Taylor & Krisha (1993). For a mixture

of i components, where ui denotes the velocity of component i defined relative to a

stationary reference frame, the mass flux ni of species i is given by

ni = ρiui = ωiρu (A.1)

where ρi is the mass concentration (density) of component i, ωi is the mass fraction of

component i and ρ is the total mixture density. The total mass flux of the mixture is

then given by

nt =
n∑
i=1
ni = ρv (A.2)

where v is the mass-averaged velocity, and n is the number of components. In equation

A.2 we have used the definition of mass flux as a product of mixture density ρ and mass

average velocity v, which is

ρv =
n∑
i=1

ρiui (A.3)

This can be divided on both sides by ρ, giving the mass-averaged velocity as

v =
n∑
i=1

ρi
ρ
ui =

n∑
i=1

ωiui (A.4)

In a similar way, the molar flux N i of component i is defined by

N i = ciui = xicui (A.5)
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where c is the total molar concentration and ci is the molar concentration of i. The

total molar flux is then the sum of the component fluxes:

N t =
n∑
i=1
N i = cu (A.6)

where u is the molar-averaged velocity, defined in a similar way to the mass average

velocity:

u =
n∑
i=1

ci
c
ui =

n∑
i=1

xiui (A.7)

where xi is the mole fraction. The total flux of a component may be partioned into

convective and diffusive parts. The convective flux is defined in terms of an average

velocity, while the diffusive flux is defined as the difference between the total and

convective fluxes. Thus, diffusive fluxes cannot be defined independently of both the

total and convective fluxes; the movement of the mixture (i.e. the reference velocity)

has to be defined before the movement relative to the mixture (i.e. diffusion) can be

known. The mass diffusive flux is then simply:

ji︸ ︷︷ ︸
mass diffusive flux

of i relative to

mass-averaged

velocity v

= ni︸ ︷︷ ︸
total mass flux of i

− ρiv︸ ︷︷ ︸
convective mass flux of

i due to mass-averaged

velocity v

(A.8)

To see how the diffusive flux depends on the difference in velocities, the above can be

re-written as

ji = ρi (ui − v) = ρωi (ui − v) (A.9)

Similarly, the molar diffusive flux is simply:

J i︸ ︷︷ ︸
molar diffusive flux

of i relative to a

molar-averaged

velocity u

= N i︸ ︷︷ ︸
total molar flux of i

− ciu︸ ︷︷ ︸
convective molar flux

of i due to

molar-averaged

velocity u

(A.10)

or, in terms of a velocity difference

J i = ci (ui − u) (A.11)

The relationship between diffusive and convective fluxes can be summarised as follows:
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Diffusive Flux Total Flux Convective Flux Description

ji ni ρivi
Mass diffusive flux relative to

a mass-averaged velocity

J i N i ciui
Molar diffusive flux relative
to a molar-averaged velocity

Figure A.1: Arbitrary control volume V fixed in space; mass-averaged velocity v, unit
normal n̂; dS is a differential area on the surface

A.2 Conservation Equations

Conservation equations for species mass and total mass, for momentum and for energy

are summarised in this section. These are used in the development of the Maxwell-

Stefan equations subsequently. The derivation is based on application of conservation

principles to an arbitrary control volume fixed in space. Figure A.1 shows a control

volume V , with a differential portion of the surface denoted dS which has a unit normal

n̂. The mass-averaged velocity of the fluid volume is v, while ji is the the flux of

component i through dS.

Continuity Equation The continuity equation (overall mass conservation) for species

i is obtained by applying the principle of conservation of mass to the control volume.

This simply states that the accumulation of mass of component i within V is the sum

of the mass of i entering V by convection and diffusion, plus that generated due to

reaction(s) (Bird et al. 2002, Bird 1998). The mass flow-rate of component i leaving

the volume via the differential area dS by convection is ρi(n̂ · v)dS, while that due to
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diffusion is (n̂ · ji)dS (Bird 1998). The mathematical form is:

dρ
dt

∫
V
ρi dV = −

∫
S

(n̂ · ρiv) dS −
∫
S

(n̂ · ρiji) dS +
∫
V
ri dV (A.12)

where ri represents rate of production of species i by reaction. Since the volume is

fixed, the time derivative may be brought within the integral. The Gauss divergence

theorem (Kreyszig 2010) allows surface integrals to be expressed as volume integrals:

d
dt

∫
V (t)

(∇ · F ) =
∫
S(t)

(n · F ) dS (A.13)

where F is any vector function, and in which V (t) and S(t) may depend on time. This

allows equation A.12 to be written as:∫
V

∂

∂t
ρωi dV = −

∫
V

(∇ · ρωiv) dS −
∫
V

(∇ · ρωiji) dS +
∫
V
ri dV (A.14)

As the volume V is arbitrary, the integrands can be equated, which yields (using ni =
ji + ρωiv):

∂ρωi
∂t

= −∇ · ρωiv︸ ︷︷ ︸
convection

− ∇ · ji︸ ︷︷ ︸
diffusion

+ ri︸︷︷︸
reaction

(A.15)

= −∇ · ni + ri (A.16)

By adding each of the n component equations, and noting that
∑
i ρωi = ρ, that

∑
ji =

0, and that
∑
i ri = 0 we obtain:

∂ρ

∂t
= −∇ · ρv (Strong Form) (A.17)

which is the equation of continuity for the mixture in the so-called strong or conservative
form. The material (or substantial) derivative is defined by (Bird et al. 2002):

D()
Dt ≡

∂()
∂t

+ v · ∇()

where v is the mass-averaged velocity. The material derivative describes the change in

space and time of a quantity; it represents the time rate of change that would be mea-

sured by an observer moving at the mass-averaged velocity (Slattery 1999). Expanding

the derivative term in equation A.15 and substituting in the continuity equation al-

lows equation A.15 to be written in so-called weak or non-conservative form using the

material derivative:
Dρωi
Dt = −∇ji + ri (Weak Form) (A.18)
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and equation A.17 to be written as:

Dρ
Dt = −ρ∇ · v (Weak Form) (A.19)

Momentum Equation The conservation equation for momentum can be applied in

a similar way to the control volume in figure A.1. This simply implies that linear mo-

mentum of the mass in the interior of V changes with time due to momentum crossing

the control volume boundary by convection and molecular diffusion, and because of

external forces acting on the surface area. The force exerted at dS is (n̂ · π)dS where

π is the momentum flux tensor (Bird 1998). The governing equation can be written as

d
dt

∫
V
ρv dV = −

∫
S

(n̂ · ρvv) dS −
∫
S

(n · π) dS +
∫
V

n∑
i=1

ρωif i dV (A.20)

where f i represents the external forces acting on species i. The momentum flux π is

defined as

π = pδ − µ
(
∇v + (∇v)T

)
+
(2

3µ− κ
)

(∇ · v) δ (A.21)

= pδ + τ (A.22)

and includes pressure p and the viscous stress tensor τ (Bird et al. 2002). Applying

the Gauss divergence theorem and moving the time derivative outside the integral as

before gives

∂ρv

∂t
= −∇ · ρvv −∇ · π −

n∑
i=1

ρf i (A.23a)

= −∇ · ρvv −∇ · τ −∇p+
n∑
i=1

ρf i (A.23b)

also known as the equation of motion for the mixture. The last term reduces to ρg

if the same force per unit mass acts on each species e.g. gravity. Using the material

derivative gives the "weak" forms of equation A.23:

ρ
Dv
Dt = −∇ · π +

n∑
i=1

ρif i (A.24a)

= −∇ · τ −∇p+
n∑
i=1

ρif i (A.24b)

Energy Equation Applying convervation of energy to the volume V is essentially an

instance of the first law of thermodynamics. The rate of energy change is the net inflow

of kinetic 1/2ρv2 and internal Û energy due to conduction through the surface S, work

done at the surface by the fluid as it moves across the surface, and because of work
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done against external forces. Expressing this in mathematical terms gives

d
dt

∫
V

(
1/2ρv2 + ρÛ

)
dV = −

∫
S
n̂ ·
(

1/2ρv2 + ρÛ
)
v dS−∫

S
(n̂ · q) dS +

∫
S

(n̂ · (π · v) dS +
∫
V

n∑
i=1

(ji + ρωiv) · f i dV (A.25)

where q is a heat flux which may consist of a number of contributing factors:

q = k∇T +
n∑
i=1

hiji + radiation, Dufour effect, etc. (A.26)

where k is a thermal conductivity, and hi is enthalpy of species i. The flux is therefore

a sum of a conventional Fourier term, the transport of energy by diffusion via ji, and

additional terms which are often ignored. The Dufour effect will be addressed in section

A.3. By bringing the time-derivative in equation A.25 inside the integral, converting

the surface integrals to volume integrals and equating the integrands which result, we

obtain

∂

∂t

(
1/2ρv2 + ρÛ

)
= −∇ ·

(
1/2ρv2 + ρÛ

)
v −∇ · q −∇ · (π · v) +

n∑
i=1

(ji + ρωiv) · f i (A.27)

which is the (total) energy equation. The last term reduces to v · ρg if the external

forces acting on the chemical species are the same. Using the material derivative gives

the "weak" form

ρ
D
Dt
(

1/2ρv2 + ρÛ
)

= −∇ · q −∇ · (π · v) +
n∑
i=1

(ji + ρωiv) · f i (A.28)

= ∇ · q −∇ · (π · v) +
n∑
i=1
ni · f i (A.29)

Neglecting kinetic energy terms, and noting that the momentum flux π = pδ + τ , we

can write the energy equation in terms of internal energy only as

ρ
DÛ
Dt = −∇ · q − τ ..∇v − p∇ · v +

n∑
i=1
f i · ji (A.30)

which is the form of the energy equation used in the formulation of the Maxwell Stefan

equations in section A.3. To put the energy equation in terms of temperature, note that

the energy conservation equation can be written in terms of enthalpy h, so that

ρ
Dh
Dt = Dp

Dt −∇ · q − τ
..∇v +

n∑
i=1
f i · ji (A.31)
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since h = U + p/ρ. Choosing T , p and ωi as independent variables, the enthalpy

differential for a multicomponent mixture can be written as

dh =
n∑
i=1

(
∂h

∂ωi

)
T,p

dωi +
(
∂h

∂T

)
p,ωi

dT +
(
∂h

∂p

)
T,ωi

dp

From thermodynamics (Smith & vanNess 1987) we can write:

hi ≡
(
∂h

∂ωi

)
T,p

CP =
(
∂h

∂T

)
ωi,p

(
∂h

∂p

)
ωi,p

= V̂ − T
(
∂V̂

∂T

)
ωi,p

and substituting into equation A.31 eventually yields an energy equation in terms of

temperature:

ρCP
DT
Dt = −∇ · q︸ ︷︷ ︸

1©
− τ ..∇v︸ ︷︷ ︸

2©
−
(
∂ ln V̂
∂ lnT

)
p,ω

Dp
Dt︸ ︷︷ ︸

3©

+
n∑
i=1

hi∇ · ji︸ ︷︷ ︸
4©

+
n∑
i=1
f i · ji︸ ︷︷ ︸
5©

(A.32)

The use of the material derivative of temperature DT
Dt essentially gives the change in

temperature of a fluid element that is moving at the mass-averaged velocity. Term 1© is

the conventional heat flux due to thermal conduction, species diffusion and radiation

from equation A.26. Term 2© is due to viscous heating in the fluid. Terms 3© represents

the change in pressure associated with the change in temperature; for ideal gases,
∂ ln V̂
∂ lnT = 1. Term 4© represents energy changes due to gradients in diffusive fluxes, and

term 5© accounts for enthalpy changes caused by body forces.

Using equation A.32, the simplified form of the energy equation that is used in the

development of the multicomponent evaporation models in chapter 3 and 7 neglects all

but the first term on the right-hand side; using the form of the heat flux from equation

A.26 yields

ρCP
dT
dt = −∇ · q = k∇T +

n∑
i=1

hiji (A.33)

where the material derivative reduces to the derivative with respect to time only when

the mass-averaged velocity is zero. Conservation equations for other quantities such as

mechanical energy, or angular momentum may be derived but are not relevant for this

work.

A.3 Maxwell-Stefan Equations

The development of modern approaches to modeling multicomponent mass transport

is based on the work of Fick (1855) who developed a mathematical framework for

diffusion using experimental work by Graham (1833, 1850). Maxwell (1860, 1866,
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1868) developed a theory for diffusion in binary gas mixtures, which was then ex-

tended by Stefan (1871) to the multicomponent case. The conventional derivation of

multicomponent diffusion is based on irreversible thermodynamics (IRT) (Bird et al.

2002, Curtiss & Bird 1999) or on the kinetic theory of gases (Hirschfelder et al. 1964).

The theory of IRT (Onsager 1931a,b) allows the developments of Maxwell and Stefan

to be generalized to include thermal, pressure and forced diffusion effects, and to al-

low a general description of macroscopic mass transport for a multicomponent system

(Curtiss & Bird 1999, Standart et al. 1979, DeGroot & Mazur 1984, Hirschfelder et al.

1964). Datta & Vilekar (2010) presented an alternative derivation based on principles

of linear momentum conservation involving balance of diffusion "drag" and diffusion

driving forces. In the next section, an intuitive description of the multicomponent ef-

fects and the Maxwell-Stefan equations accounting for pressure forces only is briefly

discussed; the section thereafter provides a more rigorous derivation of the Maxwell-

Stefan equations suitable for generalized driving forces (in addition to pressure forces).

A.3.1 Maxwell-Stefan Equations from Momentum Balance

Figure A.2a shows schematically the interactions between molecules in binary and

ternary mixtures. For the binary case, species 1 has mass m1 and velocity u1, while

species 2 has mass m2 and velocity u2. A simple statement of conservation of momen-

tum in an elastic collision between a molecule of 1 and 2 is simply:

m1(u1 − uf1) +m2(u2 − uf2) = 0 (A.34)

where uf1 and uf2 are the post-collision velocities. Similarly, conservation of kinetic

energy gives:

m1(u2
1 − u2

f1) +m2(u2
2 − u2

f2) = 0 (A.35)

Solving for the final velocities gives:

uf1 = u1(m1 −m2) + 2m2u2
m1 +m2

(A.36a)

uf2 = u2(m2 −m1) + 2m1u1
m1 +m2

(A.36b)

Knowing uf1 and uf2, we can write the momentum exchanged in a collision between

1 and 2 as:

m1(u1 − uf1) = m1u1 −
m1

m1 +m2
(u1(m1 −m2) + 2m2u2) (A.37)

= 2m1m2(u1 − u2)
m1 +m2

(A.38)
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so that the momentum exchange is directly proportional to the difference in velocities.

The rate at which collisions occur between molecules of the two species depends on

the concentrations of each:

Number of 1-2 collisions per

unit volume per unit time
∝ x1x2 (A.39)

A concise statement of the forces acting on the species can be written as (Taylor &

Krisha 1993):

Sum of forces

acting on

particles of type

"1" per unit

volume

∝

Rate of change of

momentum of

particles of type

"1" per unit

volume

∝

Momentum

exchanged per

collision between

"1" and "2"

×
Rate of 1-2

collisions per unit

volume

(A.40)

Considering the control volume in figure A.2b, the motion of molecules across the

boundary walls (shaded) causes momentum to exit and enter the volume. If the con-

trol volume moves with the molar average velocity of the mixture u, then the flow of

molecules in is balanced by the flow out, so there is no net momentum change due

to movement through the walls. The force acting on species 1 at the left plane of the

control volume is Ap1
∣∣∣
z

where p is the (isobaric) pressure and p1 = px1 is the partial

pressure for component 1. Similarly, the force on the right plane is Ap1
∣∣∣
z+dz

. Dividing

by the volume Adz and taking limit as dz → 0 gives:

Net force acting on type 1 per

unit volume in z direction
= lim

dz→0

Ap1
∣∣∣
z
−Ap1

∣∣∣
z+dz

dz
(A.41)

= −dp1
dz

(A.42)

Combining these ideas, and including the other two dimensions, the force (momentum)

balance becomes:

−∇p1 = −p∇x1 ∝ x1x2(u1 − u2) (A.43)

= f12x1x2(u1 − u2) (A.44)

where f12 is a constant of proportionality, similar to a type of "drag" coefficient between

species 1 and 2 (Wesselingh & Krishna 2000). A binary diffusion coefficient can be

defined as:

Ð12 = p

f12
(A.45)
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so that the momemtum balance can be written as:

∇x1︸︷︷︸
diffusion driving force

for species 1

= −x1x2(u1 − u2)
Ð12︸ ︷︷ ︸

drag force on species 1

(A.46)

which is the Maxwell-Stefan equation for a binary, ideal mixture. A similar analysis for

component 2 gives:

∇x2︸︷︷︸
diffusion driving force

for species 2

= −x1x2(u2 − u1)
Ð21︸ ︷︷ ︸

drag force on species 2

(A.47)

Since∇x1+∇x2 = 0, it follows that the Maxwell-Stefan binary diffusion coefficients are

symmetric (Taylor & Krisha 1993): Ð12 = Ð21. For the ternary case (figure A.2a) inter-

actions between each of the species must be considered. The Maxwell-Stefan equations

for components 1 and 2 in a ternary system can be written by extension of equations

A.46 and A.47:

∇x1︸︷︷︸
diffusion driving force

for species 1

= − x1x2(u1 − u2)
Ð12︸ ︷︷ ︸

drag force on species 1

due to species 2

− x1x3(u1 − u3)
Ð13︸ ︷︷ ︸

drag force on species 1

due to species 3
(A.48)

∇x2︸︷︷︸
diffusion driving force

for species 2

= − x1x2(u2 − u1)
Ð21︸ ︷︷ ︸

drag force on species 2

due to species 1

− x2x3(u2 − u3)
Ð23︸ ︷︷ ︸

drag force on species 2

due to species 3
(A.49)

Generalizing to an n-component system, where all ij interactions must be considered

gives the Maxwell-Stefan equations in general form for ideal system at constant pres-

sure:

∇xi =
n∑
j=1
i 6=j

xixj(ui − uj)
Ðij

(A.50)

Only n-1 of equations A.50 are independent because the ∇xi sum to zero, so that the

n-th composition gradient is simply:

∇xn = −
n∑
i=1
∇xi (A.51)
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(a) "Drag" forces in binary and ternary mixtures

(b) Control volume for forces balance

Figure A.2: Species Interaction for binary and ternary mixtures

A.3.2 Generalized Maxwell-Stefan Equations from IRT

In this section, a derivation of the generalized driving force for diffusion is presented

based on principles of IRT. This includes forces such as pressure and temperature gra-

dients, electromagnetic fields, gravity etc. Most literature references present the genar-

alized driving force without derivation, however given its central importance to this

work, and for sake of completeness, it is presented here in full. This is largely based on

material in Lightfoot (1974) and Taylor & Krisha (1993). In chapter 3 an analytic solu-

tion to the Maxwell-Stefan equations in the gas film at the gas-liquid interface is used

as a basis for the generation of evaporation maps for ternary mixtures. The starting

point is a conservation equation for entropy (Lightfoot 1974):

ρ
DŜ

Dt
= − (∇ · js) + σs (A.52)

where ρ is total density, Ŝ is specific entropy (per unit mass), js is the entropy flux

relative to a mass average velocity, and σs is entropy generation rate per unit volume.
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For a multicomponent system we can write an entropy differential (Smith & vanNess

1987):

dÛ = T ds− p dv +
n∑
i=1

µi
Mi

dωi (A.53)

where µi/Mi is the chemical potential per unit mass, Mi is the molecular weight, and

v is the specific volume. Applying the material derivative operator to equation A.53,

multiplying by ρ and noting that ρ = 1/v gives

Tρ
Ds
Dt = ρ

DÛ
Dt︸ ︷︷ ︸
1©

+ p

ρ

Dρ
Dt︸ ︷︷ ︸
2©

−
n∑
i=1

µi
Mi

ρ
Dωi
Dt︸ ︷︷ ︸

3©

(A.54)

The underlined terms above can be replaced by terms derived in section 2.1; substitute

equation A.30 for term 1©, equation A.17 for the derivative in term 2©, and equation

A.18 for the derivative in term 3©. Substituting in this way for the right-hand side of

equation A.54 gives an entropy balance equation:

Tρ
Ds
Dt =

(
∇ · q − τ ..∇v − p∇ · v +

n∑
i=1
f i · ji

)
+

(
p

ρ
ρ∇ · v

)
+
(

n∑
i=1

µi
Mi

(−∇ji + σi)
)

(A.55)

Collecting terms and re-arranging equation A.55 gives

Tρ
Ds
Dt = ∇ · q︸ ︷︷ ︸

1©
−τ ..∇v +

n∑
i=1
f i · ji +

n∑
i=1

µi
Mi
∇ji︸ ︷︷ ︸

2©

−
n∑
i=1

µi
Mi

σi (A.56)

The temperature T can be brought to the right-hand side, and the chain rule applied to

terms 1© and 2© so that

∇
( 1
T
q

)
= 1
T
∇q︸︷︷︸
1©

+q∇
( 1
T

)
(A.57a)

∇
(

n∑
i=1

1
T

µi
Mi
ji

)
= 1
T

n∑
i=1

µi
Mi
∇ji︸ ︷︷ ︸

2©

+
n∑
i=1
ji∇

( 1
T

µi
Mi

)
(A.57b)

where the terms from equation A.56 are again numbered. Substituting these forms into

equation A.56 gives
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A.3 Maxwell-Stefan Equations

ρ
Ds
Dt = −∇ ·

[
1
T

(
q −

n∑
i=1

µi
Mi
ji

)]
︸ ︷︷ ︸

Entropy transport by

diffusion

+

q · ∇
( 1
T

)
−

n∑
i=1
ji ·

( 1
T

µi
Mi

)
− 1
T
τ ..∇v + 1

T

n∑
i=1
f i · ji −

1
T

n∑
i=1

µi
Mi

σi︸ ︷︷ ︸
Entropy production

(A.58)

The convective flux of entropy lies in the material derivative of entropy on the left

hand side, with transport and production terms on the right-hand side. The diffusive

transport term includes a contribution from mass diffusion ji for each component, as

well as a contribution from diffusion of energy q.

The entropy production term includes a number of terms; apart from the last, which is

a source term, the other contributions can be cast as products of a flux and a driving

force:

q · ∇
( 1
T

)
= (heat flux) · (temperature driving force)

n∑
i=1
ji ·

( 1
T

µi
Mi

)
= (mass flux) · (chemical potential driving force)

1
T
τ ..∇v = (momentum diffusive flux) ..

(
driving force for

momentum flux

)
1
T

n∑
i=1
f i · ji = (body force) · (species diffusive flux)

n∑
i=1

µi
Mi

σi = entropy generation due to source terms e.g. reaction)

The implication is that entropy is produced whenever each individual term is in A.58 is

non-zero, for example in the case where there is a heat flux and a temperature driving

force, or where a mass flux and a chemical potential gradient exists. Comparing equa-

tion A.58 with equation A.52, we can express the diffusive and transport contributions

as:

js = ∇ ·
[

1
T

(
q −

n∑
i=1

µi
Mi
ji

)]
(A.59)

and

σs = q · ∇
( 1
T

)
−

n∑
i=1
ji ·

( 1
T

µi
Mi

)
− 1
T
τ ..∇v + 1

T

n∑
i=1
f i · ji −

1
T

n∑
i=1

µi
Mi

σi (A.60)

= − q
T
∇ lnT −

n∑
i=1
ji ·

∇
( 1
T

µi
Mi

)
︸ ︷︷ ︸

1©

− 1
T
f i

− 1
T
τ ..∇v −

1
T

n∑
i=1

µi
Mi

σi (A.61)
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A. GOVERNING EQUATIONS

For a general quantity φ(T, P, xi), the chain rule can be used to break out the depen-

dencies of variables explicitly:

∇φ(T, P, xi) = ∂φ

∂T
∇T + ∂φ

∂p
∇p+

n∑
i=1

∂φ

∂xi
∇xi

Applying the chain rule in this way to term 1© of equation A.61 gives:

∇
( 1
T

µi
Mi

)
= ∂ (µi/Mi)

∂T
∇T
T

+ 1
T

(µi/Mi)
p

∇p+ 1
T
∇T,p

µi
Mi

(A.62)

= 1
T

( 1
Mi

∂µi
∂p
∇p+∇T,p

µi
Mi

)
(A.63)

= 1
T

(
V i

Mi
∇p+∇T,p

µi
Mi

)
(A.64)

where V i = ∂µi/∂p is the partial molar volume of component i. In equation A.64, the

temperature and pressure dependencies have been explicitly dealt with, but the final

term has not yet been expanded. Inserting A.64 into equation A.61 gives:

Tσs = −q∇ lnT −
n∑
i=1
ji ·

[
∇T,p

µi
Mi

+ V i

Mi
∇p− f i

]
︸ ︷︷ ︸

Λi

−τ ..∇v −
n∑
i=1

µi
Mi

σi (A.65)

The term denoted Λi in equation A.65 can be expanded by adding a vanishing term as

follows (Lightfoot 1974):

n∑
i=1
ji ·
[
∇T,p

µi
Mi

+ V i

Mi
∇p− f i

]
=

n∑
i=1
ji ·Λi =

n∑
i=1
ji ·

Λi −
1
ρ
∇p+

n∑
k=1

ωkfk

 (A.66)

To see that the underlined vanishes and does not affect the result, note firstly that it

does not depend on i. Then, denoting the underlined term by c in the following:

n∑
i=1
ji · (Λi − c) =

n∑
i=1
ji · Λi + c

n∑
i=1
ji (A.67)

the last term is zero because the sum of the diffusive fluxes is zero:

n∑
i=1
ji = 0

In the same way, the underlined term has no effect on the summation in equation A.66.

The physical significance of the underlined portion is that it consists of the last two

terms in the momentum equation A.23 (divided by ρ) and represents how pressure

gradients and body forces affect changes in momentum. Now, from equation A.66,
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A.3 Maxwell-Stefan Equations

replacing ji with ρωi(ui − v) from equation A.9:

n∑
i=1
ji · Λi =

n∑
i=1

(
ρωi (ui − v) ·

[
∇T,p

µi
Mi

+
(
V i

Mi
− 1
ρ

)
∇p− f i +

n∑
k=1

ωkfk

])
(A.68)

=
n∑
i=1

(
(ui − v) ·

[
ci∇T,pµi + (φi − ωi)∇p− ρωi

(
f i −

n∑
k=1

ωkfk

)])
(A.69)

= cRT
n∑
i=1
di · (ui − v) (A.70)

= cRT
n∑
i=1

1
ρωi

di · ji (A.71)

where φ = ci/V i is a volume fraction, and c is the total molar concentration. The

generalised driving force for diffusion di is here defined by:

cRTdi ≡ ci∇T,pµi︸ ︷︷ ︸
1©

+ (φi − ωi)∇p︸ ︷︷ ︸
2©

− ρωi

(
f i −

n∑
k=1

ωkfk

)
︸ ︷︷ ︸

3©

(A.72)

The physical interpretation of cRTdi is that it represents the force acting on species

i per unit volume of mixture tending to move component i relative to the solution

(Taylor & Krisha 1993). Term 1© accounts for concentration diffusion due to gradients

in chemical potential (or concentration, in a practical application). Term 2© accounts

for pressure diffusion, which shows how a pressure gradient can affect separation in a

mixture where there is a difference between volume and mass fractions (φi − ωi), such

as in the separation of uranium isotopes for fuel enrichment in gaseous centrifuges.

Term 3© is a forced diffusion term (Bird et al. 2002), and is relevant to processes where

external forces act differently on individual species. For ideal gas mixtures, equation

A.72 reduces to (Taylor & Krisha 1993):

di ≡ ∇xi + (xi − ωi)
∇p
p
− ρωi

p

(
f i −

n∑
k=1

ωkfk

)
(A.73)

or simply:

di ≡
dxi
dz

(A.74)

when terms involving pressure difference ∇p and body forces f can be neglected. It

can also be shown from the Gibbs-Duhem equation that (Lightfoot 1974):

n∑
i=1
di = 0
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A. GOVERNING EQUATIONS

Table A.1: Contributions to entropy production rate (terms in equation A.75)

Term Significance

1
Entropy production due to heat flux in presence of
temperature gradient

2
Entropy production due to species diffusion in presence of
a generalised diffusive gradient di

3
Entropy production due to momentum diffusive fluxes in
presence of velocity gradients

4
Entropy production due to source terms (e.g. chemical
reaction)

Table A.2: Forces and fluxes in entropy production (terms in equation A.75)

Flux Force

ji
−cRT
ρωi

di

q −∇ lnT

τ −∇v

Now, inserting the form for di from equation A.72 into equation A.65 gives:

Tσs = −q∇ lnT︸ ︷︷ ︸
1©

− cRT
n∑
i=1

1
ρωi

di · ji︸ ︷︷ ︸
2©

− τ ..∇v︸ ︷︷ ︸
3©

−
n∑
i=1

µi
Mi

σi︸ ︷︷ ︸
4©

(A.75)

representing four contributors to the production of entropy for a multicomponent mix-

ture. The significance of each of the terms in equation A.75 is summarised in table A.1.

The second postulate of irreversible thermodynamics (linearity postulate) states that

the fluxes are directly proportional to the driving forces (Bird et al. 2002):

jα =
n∑
j=1

Lijxj (A.76)

where j is any flux (mass, momemtum, or energy), and xj is an corresponding driving

force; these are listed in table A.2. The Lij are known as the Onsager phenomenological

coefficients (constants of proportionality). The fourth postulate of irreversible thermo-

dynamics states that the Lij are symmetric, so that Lij = Lji (Onsager 1931a,b). The

third postulate (Curie’s postulate) stipulates that fluxes are functions of forces only if

the fluxes and forces are of the same tensorial order. The possible dependencies for ji
and q are shown in table A.3 and considered in detail below.

Species Diffusive Flux ji: As a result of Curie’s postulate the species diffusive flux

for component i may be written as a linear combination of two driving forces, denoting
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A.3 Maxwell-Stefan Equations

Table A.3: Possible dependencies from third postulate of irreversible thermodynamics

Flux Tensorial Order Dependencies

ji 1 −∇ lnT , −cRTρωi
di

q 1 −∇ lnT , −cRTρωi
di

τ 2 −∇v

the Onsager coefficients as Lij and Liq for the diffusive and temperature driving forces

respectively (Curtiss & Bird 1999):

ji = −
n−1∑
j=1

Lij
cRT

ρωi
di − Liq∇ lnT (A.77)

= −
n−1∑
j=1

Do
ijdi −DT

ij∇ lnT︸ ︷︷ ︸
Soret effect

(A.78)

where Do
ij is the Fickian diffusivity, and DT

ij are the multicomponent thermal diffusion

coefficients. Equation A.78 is a generalised Fick’s law, where the additional term in-

volving ∇ lnT is the contribution of a temperature gradient to diffusion of component

i, called the Soret effect (Bird et al. 2002). The Soret effect is generally not significant

except in cases for large temperature gradients.

Inverting equation A.78 in order to express the driving force in terms of the fluxes

(Curtiss & Bird 1999) gives the generalised Maxwell-Stefan equations

di = −
n∑
i=1
i 6=j

xixj
ρÐij

(
ji
ωi
−
jj
ωj

)
−∇ lnT

n∑
i=1
i 6=j

xixj
Ðij

(
DT
i

ρωi
− DT

i

ρωj

)
(A.79)

Ðij is the Maxwell-Stefan diffusivity for the ij pair and has the physical significance of

an inverse drag coefficient. For ideal gas mixtures in the absence of pressure gradients

and external forces, the underlined term A.79 can be ignored, and the Maxwell-Stefan

equation expressed in terms of molar fluxes N i and J i is

di = −
n∑
i=1
i 6=j

xiN i − xjN j

cÐij
= −

n∑
i=1
i 6=j

xiJ i − xjJ j
cÐij

(A.80)

Heat Flux q: In a similar way, Curie’s postulate allows the heat flux to be written as

the sum of two contributions from table A.3:

q = −Lqq∇ lnT −
n∑
i=1

Lqi
cRT

ρωi
di︸ ︷︷ ︸

Dufour effect

(A.81)
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so that the heat flux q is a function of a temperature gradient but also of the mass

driving forces inherent in the definition of di. The Dufour effect describes the flow of

heat caused by concentration gradients. By choosing Lqq = kT , where k is the thermal

conductivity, Fourier’s law (or constitutive relationship) is recovered.

Substituting the expression for di from equation A.79 into the the right-hand side of

equation A.81 gives

q = −k∇T︸ ︷︷ ︸
Fourier’s law

−
n∑
i=1

hiji︸ ︷︷ ︸
Species diffusion

+
n∑
i=1

n∑
i=1
i 6=j

cRTxixj
ρωiÐij

(
ji
ρωi
−
jj
ρωj

)
︸ ︷︷ ︸

Dufour effect

(A.82)

which shows how the heat flux consists of a conventional Fourier contribution, and

contributions written in terms of species diffusive fluxes ji. The second term does not

arise due to irreversible thermodynamics, but arises due to the addition of enthalpy

due to species fluxes. Similarly, a radiative heat flux term can be included if required.

Most often, the Dufour contribution is neglected. In this work, the heat flux q uses

the first two terms from equation A.82, incorporated into the energy equation given by

A.33, and is used to derive the heat balance for evaporating mixtures in chapters 3 and

7, as well as expression for multicomponent wet-bulb temperature in chapter 3.
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Appendix B

Physical Property Modelling

B.1 Vapour-Liquid Equilbria

The NRTL (Non-Random Two Liquid) model (Prausnitz et al. 1986) is used to represent

the activity coefficients for the non-ideal liquid phase. The molar excess Gibbs energy

is represented by

gE

RT
= −

n∑
i=1

xi

n∑
j=1

τjiGjixj

n∑
k=1

Gkixk

(B.1)

The binary interaction parameters were obtained from Aspen Properties Plus (Aspen-

Tech 2014), wherein the activity coefficient for component i in a n-component mixture

is given by:

ln γi =

n∑
j=1

τijGjixj

n∑
k=1

Gkixk

+
n∑
j=1

xjGij
n∑
j=1

Gkjxk

τij −
n∑
j=1

τijGjixj

n∑
k=1

Gkixk

 (B.2)

Gij = exp (−αijτij) (B.3)

τij = Aij + Bij
T

+ Eij lnT + Fij (B.4)

αij = Cij +Dij (T − 273.15) (B.5)

τii = 0 (B.6)

Gij = 1 (B.7)

where T is in Kelvin. The Aij-Fij are the binary interaction parameters of the NRTL

model. For the mixtures used in this work, the Dij , Eij and Fij are all zero. To verify
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B. PHYSICAL PROPERTY MODELLING

the accuracty of the input parameters, dew-point and bubble-point temperatures were

calculated for a selection of the binary pairs of the various ternary mixtures used in

this work. Calculated values for dew-point and bubble point are shown in figures B.1-

B.3 for the various mixtures used in this work. As the figures indicate, agreement

between the computed temperatures and values extracted from AspenPlus data-based

is generally good.

Table B.1: NRTL parameters for IPA-ethanol-methanol

Constants IPA Ethanol Methanol

A
IPA - 0.0 0.0

Ethanol 0.0 - 0.0
Methanol 0.0 0.0 -

B
IPA - -266.377 -407.2343

Ethanol 347.2905 - 6.408
Methanol 603.0983 -13.0821 -

C
IPA - 0.3125 0.3012

Ethanol 0.3125 - 0.3356
Methanol 0.3012 0.3356 -

Table B.2: NRTL parameters for water-ethanol-methanol

Constants Water Ethanol Methanol

A
Water - 0.0 0.0

Ethanol 0.0 - 0.0
Methanol 0.0 0.0 -

B
Water - 670.4442 423.323

Ethanol -55.1698 - 6.408
Methanol -127.7571 -13.0821 -

C
Water - 0.3031 0.2994

Ethanol 0.3031 - 0.3356
Methanol 0.2994 0.3556 -

Table B.3: NRTL parameters for IPA-water-ethanol

Constants IPA Water Ethanol

A
IPA - 1.3115 0.0

Water 6.8284 - 0.0
Methanol 0.0 0.0 -

B
IPA - 426.398 -266.377

Water -1483.46 - 670.4442
Ethanol 347.2905 -55.7571 -

C
IPA - 0.3 0.3125

Water 0.3 - 0.3031
Ethanol 0.3125 0.3031 -
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B.1 Vapour-Liquid Equilbria

Table B.4: NRTL parameters for ethanol-MEK-toluene

Constants Ethanol MEK Toluenel

A
Ethanol - 0.0 0.0

MEK 0.0 - 0.0
Toluene 0.0 0.0 -

B
Ethanol - 32.4554 414.7047

MEK 233.0871 - 253.1558
Toluene 289.1683 -91.3609 -

C
Ethanol - 0.301 0.3

MEK 0.301 - 0.2996
Toluene 0.3 0.2996 -

Table B.5: NRTL parameters for DCM-methanol-ethyl acetate

Constants DCM Methanol Ethyl Acetate

A
DCM - 0.0 0.0

Methanol 0.0 - 0.0
Ethyl Acetate 0.0 0.0 -

B
DCM - 763.5569 41.1924

Methanol 37.3076 - 173.8828
Ethyl Acetate -282.9557 211.7217 -

C
DCM - 0.483 0.3

Methanol 0.483 - 0.2962
Ethyl Acetate 0.3 0.2962 -

Table B.6: NRTL parameters for benzene-acetone-chloroform

Constants Acetone Chloroform Methanol

A
Acetone - 0.0 0.0

Chloroform 0.0 - 0.0
Methanol 0.0 0.0 -

B
Acetone - -323.708 101.8559

Chloroform 114.9639 - 690.066
Methanol 114.1347 -71.9029 -

C
Acetone - 0.3043 0.3084

Chloroform 0.3043 - 0.3
Methanol 0.3084 0.3 -
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Table B.7: NRTL parameters for acetone-chloroform-methanol

Constants Benzene Acetone Chloroform

A
Benzene - 0.0 0.0
Acetone 0.0 - 0.0

Chloroform 0.0 0.0 -

B
Benzene - 286.7998 -145.0343
Acetone -97.2924 - -323.708

Chloroform 89.088 114.9639 -

C
Benzene - 0.3007 0.3061
Acetone 0.3007 - 0.3043

Chloroform 0.3061 0.3043 -

B.2 Composition Derivatives of NRTL model

In the calculation of pseudo-azeotropes (section 3.2.3, 4.2.1 and 4.2.4), numerical

values of the composition derivatives of the activity coefficients are required. These are

given by the following fomula (Taylor & Krisha 1993), where the Aij and Bij refer to

values in tables B.1-B.7:

∂ ln γi
∂xj

= εij + εji −
n∑
k=1

xk
Sj

(Gikεjk +Gjkεik)

where

εij = Gij
Sj

(
τij −

Cj
Sj

)

Gij = exp (−αijτij)

τij = Aij + Bij
T

Si =
n∑
i=1

xjGji

Ci =
n∑
i=1

xjGjiτji

τii = 0 Gii = 1

B.3 Vapour Pressure

To determine the partial derivatives, a vapour pressure expression of the following form

is used (Prausnitz et al. (1986)):

Evaporation Maps for
Ternary Non-Ideal Liquid Mixtures

230



B.3 Vapour Pressure

Figure B.1: Txy and activity coefficient predictions for binary pairs in
IPA-water-ethanol mixture; • = bubble-point (AspenPlus), ◦ = dew-point
(AspenPlus). Solid lines are predictions using NRTL parameters from table
B.3.

pi = P ci exp

 1
1− (1− T

T ci
)

Ai
(

1− T

T ci

)
+Bi

(
1− T

T ci

)1.5

−

Di

(
1− T

T ci

)6
 (B.8)

Parameters for each of the pure components used in this work are given in table B.8.
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Figure B.2: Txy and activity coefficient predictions for binary pairs in
water-ethanol-methanol mixture; • = bubble-point (AspenPlus), ◦ =
dew-point (AspenPlus). Solid lines are predictions using NRTL parameters
from table B.2.

B.4 Diffusivity

B.4.1 Gas/Vapour Diffusivity

Binary gas phase diffusion coefficients were estimated using an expression developed

by Chapman and Enskog potentials (Cussler 2009):

DAB =
0.0018583

(
T 3/2

(
1
MA
− 1

MB

)1/2
)

pσ2
ABΩ

(B.9)
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B.4 Diffusivity

Figure B.3: Txy and activity coefficient predictions for binary pairs in acetone-
chloroform-methanol mixture; • = bubble-point (AspenPlus), ◦ =
dew-point (AspenPlus). Solid lines are predictions using NRTL parameters
from table B.6.

where σAB and ΩAB are characteristic molecular properties given by:

ΩAB = 1.0636
(T ∗)0.1561 + 0.19399

exp (0.47635T ∗) + 1.03587
exp (1.52996T ∗) + 1.7646

exp (3.89411T ∗) (B.10)

σAB = σA + σB
2 (B.11)

(B.12)

where

T ∗ = kT

εAB
(B.13)

εAB = (εA + εB)1/2 (B.14)
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Table B.8: Parameters for Antoine vapour pressure correlation

Constants IPA Ethanol Methanol Water MEK
A -8.16927 -8.51838 -8.54796 -8.58138 -7.71476
B -0.094312 0.34163 0.76982 0.34163 1.71061
C -8.10 -5.73683 -3.1085 -5.73683 -3.6877
D 7.85 8.32581 1.54481 8.32581 -0.75169

Constants Toluene DCM Ethyl Acetate Acetone Chloroform
A -7.28607 -7.35739 -7.68521 -7.45514 -6.95546
B 1.38091 2.17546 1.36511 1.202 1.16625
C -2.83433 -4.07038 -4.0898 -2.43926 -2.1397
D -2.79168 3.50707 -1.75342 -3.559 3.44421

(B.15)

and T is in Kelvin. The Lennard-Jones potentials σ and ε/k, as determined from viscos-

ity data, are given in table B.9 for the various pure components .

Table B.9: Lennard Jones potentials (Prausnitz et al. 1986)

Constants IPA Ethanol Methanol Water MEK
σ 4.53 4.53 3.626 2.641 5.92
ε/k 362.6 362.6 481.8 809.1 410.0

Constants Toluene DCM Ethyl Acetate Acetone Chloroform
σ 5.92 4.89 5.205 4.6 5.389
ε/k 410.0 356.3 521.3 560.2 340.2

B.4.2 Liquid Diffusivity

The method of Wilke-Chang (Prausnitz et al. 1986) was used to calculate diffusion co-

efficients in the liquid phase. The diffusivity coefficient of species A (solute) in infinitely

low concentration in species B (solvent) is given by [cm2/s]:

Ðo
AB = 7.4× 10−8 (φMB)1/2 T

µ2V 0.6
1

(B.16)

where MB is the molecular weight of the solvent [g/mol], µ is the liquid viscosity

[cP], V1 is the molar volume of solute, and T is the liquid temperature [Kelvin]. φ

is an association factor (2.26 for water, 1.9 for methanol, 1.5 for ethanol and 1.0 for

unassociated solvents).
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