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Abstract

Abstract

There are finitely many GIT quotients of G(3, n) by maximal torus and between each
two there is a birational map. These GIT quotients and the flips between them form an
inverse system. This thesis describes this inverse system first and then, describes the
inverse limit of this inverse system as a moduli space.

An open set in this scheme represents the functor of arrangements of lines in planes.
We show how to enrich this functor such that it is represented by the above inverse
limit.
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Chapter 1

Introduction

In the study of moduli spaces in algebraic geometry, geometric invariant theory (GIT)
is an important tool. For various group actions, the investigation of the invariants was
one of the most active areas in mathematics in the nineteenth century. Finding explicit
invariants is not an easy task. This classical period of invariant theory ended with
the fundamental result of Hilbert which says that the ring Sym(V ∗)SL(V ) of invariant
polynomials for a linear representation V is finitely generated.

The subject of invariant theory was rediscovered by Mumford in the sixties. His work
[6] showed how to use GIT without explicitly knowing the invariants. It was well-
known, but essentially ignored that for a variety X and a group G acting on it, the
construction of a quotient X//LG, depends on the choice of a G-linearized ample line
bundle L on X . A renewal of GIT occurred in the early nineties, when Thaddeus [9]
and independently Dolgachev and Hu [3] analysed this dependence and showed that it
is well-behaved.

This creates a family of GIT quotients connected through flips. From this we can create
an inverse system of birational morphisms. We would like to describe the inverse limit
as a fine moduli space. Therefore we are interested in the universal family over it.

Alexeev in [1] introduced the notion of stable toric varieties which are constructed
from gluing toric varieties along equivariant Weil divisors. He also constructed a mod-
uli space of (C∗)n–equivariant morphisms from stable toric varieties into a variety Y .
Tevelev, Keel and Hacking in [4] constructed a moduli space of hyperplane arrange-
ments using Alexeev’s moduli space in the case when a maximal torus is acting on
Y .

In this thesis we introduce a more detailed construction of the moduli space of line ar-
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1. INTRODUCTION

rangements in rational surfaces and a detailed description of the fibers of the universal
family based on the family of GIT quotients of G(3, n). Our method of constructing
the moduli space differs from Tevelev, Keel and Hacking’s as we don’t use Alexeev’s
results. Instead we use a detailed analysis of the birational transformations between
GIT quotients.

All schemes and morphisms in this work are over C and also by a point on a scheme
the author means a closed point. This paper is organized as follows. Chapter 2 recalls
the definition of Grassmannian varieties and the natural torus action on them. Chapter
3 summarizes the definitions of different quotients of a variety and reviews a few prop-
erties of GIT quotients. Chapter 4 introduces a moment map and describes its image
in terms of chambers and walls. This is used to describe a flip of two GIT quotients as
a moduli problem in Chapter 5. Chapter 6 focuses on building up the universal family
over the inverse limit of GIT quotient of Grassmannian variety by maximal torus.
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Chapter 2

Grassmannian Varieties

Grassmannian varieties are fundamental objects in mathematics especially in algebraic
geometry. In this chapter the Grassmanninan varieties are defined as projective vari-
eties and in Chapter 5 as a moduli space.

2.1 Grassmannian Varieties

We let G(m,n) denote the set of (m)-dimensional linear subspaces of the vector space
Cn which is the same as the set of (m − 1)–planes in the corresponding projective
space Pn−1.

We describe the Grassmannian variety first as a subset of projective space. If W ⊂ Cn

is the m-dimensional linear subspace spanned by vectors e1, ..., em, we can associate
to W the multivector

w = e1 ∧ ... ∧ em ∈
m∧
Cn,

where w is determined up to scalars by W . If we chose a different basis, the corre-
sponding vector w would simply be multiplied by the determinant of the matrix of the
change of basis. So we have a well-defined map of sets

Ψ : G(m,n)→ P(
m∧
Cn).

In fact, this is an inclusion. For any [w] = Ψ(W ) in the image, we can recover the
corresponding subspace W as the space of vectors v in Cn such that v ∧ w = 0 ∈
∧m+1Cn. This inclusion is called the Plücker embedding of G(m,n).

The homogeneous coordinates on P(∧mCn) are called Plücker coordinates. We can
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2. GRASSMANNIAN VARIETIES 2.1 Grassmannian Varieties

represent the hyperplane W by the m × n matrix ΛW whose rows are the vectors
e1, ..., em; the matrix ΛW , is determined up to multiplication on the left by an invertible
m × m matrix i.e. an element in GL(m). The Plücker coordinates are then just the
maximal minors of the matrix ΛW .

We have described G(m,n) as a subset of P(∧mCn); we should now check that it is
indeed a subvariety. This amounts to characterising the subset of totally decomposable

vectors w ∈ ∧mCn, that is, as a product w = v1 ∧ ... ∧ vm of linear factors. We begin
with a basic observation: given a multivector w ∈ ∧mCn and a vector v ∈ Cn, the
vector v will divide w – that is, w will be expressible as v ∧ u for some u ∈ ∧m−1Cn –
if and only if the wedge product w ∧ v = 0. Moreover, a multivector w will be totally
decomposable if and only if the space of vectors v, dividing it, is m-dimensional. Thus
[w] will lie in the Grassmannian if and only if the rank of the map

Φ(w) : Cn → ∧m+1Cn

v 7→ w ∧ v

is n−m. Since the rank of Φ(w) is never strictly less than n−m, we can say

[w] ∈ G(m,n)⇔ rank(Φ(w)) ≤ n−m.

Now, the map ∧mCn → Hom(Cn,∧m+1Cn) sending w to Φ(w) is linear, that is, the
entries of the matrix Φ(w) ∈ Hom(Cn,∧m+1Cn) are homogeneous coordinates on
P(∧m+1Cn). W can say that G(m,n) ⊂ P(∧mCn) is the subvariety defined by the
vanishing of the (n−m+ 1)× (n−m+ 1) minors of this matrix.

This is the simplest way to see that G(m,n) is a subvariety of P(∧mCn), but the poly-
nomials we get in this way are far from the simplest possible. To find the actual gen-
erators of the ideal, we need to invoke also the natural identification of ∧mCn with the
exterior power ∧n−m(Cn)∗ of the dual space (Cn)∗ (this is natural only up to scalars,
but this is acceptable for our purpose). In particular, an element w ∈ ∧mCn corre-
sponding to w∗ ∈ ∧n−m(Cn)∗ gives rise in this way to a map

Ψ(w) : (Cn)∗ → ∧n−m+1(Cn)∗

v∗ 7→ v∗ ∧ w∗.

By the same argument w will be totally decomposable if and only if the map Ψ(w)
has rank at most m. In case w is totally decomposable, the kernel of the map Φ(w);
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2. GRASSMANNIAN VARIETIES
2.2 The Natural Torus Action on Grassmannian

Varieties

equivalently, the images of the transposed maps

Φ(w)t : ∧m+1(Cn)∗ → (Cn)∗

and
Ψ(w)t : ∧n−m+1Cn → Cn

annihilate each other. In sum, then, we see that [w] ∈ G(m,n) if and only if for every
pair α ∈ ∧m+1(Cn)∗ and β ∈ ∧n−m+1(Cn), the contraction

Ξα,β(w) = 〈Φ(w)t(α),Ψ(w)t(β)〉 = 0 (2.1)

The Ξα,β are thus quadratics whose common zero locus is the Grassmannian G(m,n).
The equations from 2.1 are called the Plücker relations, and they do in fact generate
the homogeneous ideal of G(m,n), though we will not prove that here.

2.2 The Natural Torus Action on Grassmannian Vari-
eties

The natural action of (C∗)n on Pn−1 keeps the coordinate hyperplanes invariant. This
action induces an action on G(m,n) as below. For an arbitrary t = (t1, . . . , tn) ∈
(C∗)n and an arbitrary element

[Q] =




r1,1 r1,2 . . . r1,n

r2,1 r2,2 . . . r2,n
...

... . . . ...
rm,1 rm,2 . . . rm,n



 ∈ G(m,n),

we define the action as

t.[Q] =




t1r1,1 t2r1,2 . . . tnr1,n

t1r2,1 t2r2,2 . . . tnr2,n
...

... . . . ...
t1rm,1 t2rm,2 . . . tnrm,n



 .

Note that in the rest of the thesis we consider the torus (C∗)n−1 as the quotient of (C∗)n

by C∗, the diagonal in (C∗)n.
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Chapter 3

Geometric Invariant Theory

For k a positive integer, the torus (C∗)k is the group whose action is of interest to
us. Denote orbits by O(x) or (C∗)k.x for a point x and their closures by O(x) or
(C∗)k.x, and also denote stabilizers by Stab(x). In the case k = 1, for a C∗–action on
a variety X and a point x ∈ X , we say that the orbit C∗.x goes into a fixed locus Y if
limt→∞ t.x = y ∈ Y , and it goes out of a fixed locus Y ′ if limt→0 t.x = y′ ∈ Y ′. This
section aims to give a brief overview of the standard GIT as developed by Mumford.
We also represent a few required notations from first chapter of [6].

3.1 Affine Quotients.

When (C∗)n acts on an affine variety X = SpecR a fundamental result from Hilbert
says that the ring of invariants R(C∗)n ⊂ R is a finitely generated C-algebra. Thus, it is
natural to define the quotient to be an affine variety:

X/(C∗)n := SpecR(C∗)n . (3.1)

In fact Hilbert stated this in general for an arbitrary reductive group.
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3. GEOMETRIC INVARIANT THEORY 3.2 Categorical and Geometric Quotient

3.2 Categorical and Geometric Quotient

The (C∗)n-invariant projection π : X → Y is a categorical quotient if any (C∗)n-
invariant morphism f : X → Z factors through Y :

X

f   

π // Y

∃!f̄
��
Z.

A categorical quotient π is a universal categorical quotient if it is stable under base
change: for any Y ′ → Y , π′ : X ′ = X ×Y Y ′ → Y ′ is a categorical quotient.

A categorical quotient π : X → Y is called a geometric quotient if it satisfies the
following properties:

• π is surjective and the image of the morphism

ψ : (C∗)n ×X → X ×X

(t, x) 7→ (t.x, x),

equals X ×Y X (equivalently, the geometric fibers of π are precisely the orbits
of the points of X).

• for any subset U ⊂ Y , the inverse image π−1(U) is open if and only if U is open.

• for any open subset U of Y , the natural homomorphism
π∗ : O(U) → O(π−1(U)) is an isomorphism onto the subring O(π−1(U))(C∗)n

of (C∗)n–invariant functions.

However the categorical quotient X/(C∗)n is typically not a geometric quotient. In
general, there is no one-to-one correspondence between the points of X/(C∗)n and the
orbits of (C∗)n. As a simple example, consider the action of C∗ on X = A1

C
∼= C

given by the natural multiplication (t, x) ∈ C∗ × C → t.x ∈ C. Since C[x]C∗ ∼= C
(the only invariants are the constants), the quotient X/C∗ is a point and the quotient
map π is the trivial projection C → {pt}. On the other hand, the action of C∗ on X
has two orbits: {0} = C∗.0 and C r {0} = C∗.1. The issue here is that the fibers of
π are always closed in X . In our example, the orbit 0 is closed, while the closure of
the orbit Cr {0} is the affine line, which contains the closed orbit {0}. Thus, the two
orbits map to the same point via π, showing that the orbits are not always separated by
the quotient map.

The inverse limit of GIT quotients of
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3. GEOMETRIC INVARIANT THEORY 3.3 Closed Orbits

3.3 Closed Orbits

In some sense, the failure of the categorical quotient X/(C∗)n to be a geometric quo-
tient is always of the type exemplified above. Namely, we recall the following fact
about the orbits of torus actions: each (C∗)n-orbit is smooth, locally closed in X , and
its boundary is a union of orbits of strictly lower dimension. This easily gives that each
fiber of π contains a unique closed orbit, namely, the orbit of minimal dimension in
that fiber. Furthermore, if (C∗)n.x0 is a closed orbit in X , then for all x ∈ π−1(π(x0))
we have (C∗)n.x0 ⊂ (C∗)n.x.

3.4 Projective Quotients

Mumford constructed a GIT quotient considering an ample line-bundle together with
a (C∗)n–linearisation (i.e. essentially a lift of the (C∗)n-action from X to L). This
choice gives an embedding

i : X −→ PN for some N � 0

such that (C∗)n acts linearly on PN and the embedding i is (C∗)n-equivariant. By
considering affine cones, one can reduce the case to the affine situation. Concretely
the definition of a GIT quotient in the projective case is as follows.

Definition 3.4.1 Let (C∗)n be a torus acting on a projective varietyX . ForL an ample

(C∗)n-linearized line bundle, the associated GIT quotient is the projective variety:

X//L(C∗)n := Proj ⊕i≥0 H
0(X,L⊗i)(C∗)n .

3.5 Semistable Points

The linear systems H0(X,L⊗m)(C∗)n for large enough m defines a rational map π :
X → X//L(C∗)n the domain of definition of π is precisely the set of points x ∈ X

such that there exists a (C∗)n-invariant section σ ∈ H0(X,L⊗m)(C∗)n (for some m)
with σ(x) 6= 0. We call such points semistable and denote by Xss(L) ⊂ X the
corresponding open set. The points in Xus(L) = X rXss(L) are called unstable and
are excluded from the GIT analysis.

The inverse limit of GIT quotients of
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3. GEOMETRIC INVARIANT THEORY 3.6 Stable Points

3.6 Stable Points

In moduli theory, one is particularly interested in geometric quotients. It follows that
for points x ∈ Xss(L) such that the orbit (C∗)n.x is closed in Xss and of maximal
dimension (i.e. dim((C∗)n.x) = dim(C∗)n, or equivalently the stabilizer (C∗)nx is
finite) one has π−1(π(x)) = (C∗)n.x where π is the natural quotient map above (see
Theorem 1.10 [6]). Such points are called stable points and form Xs(L) ⊂ Xss(L)
an open (C∗)n-invariant subset such that the induced quotient Xs(L)/(C∗)n is both a
geometric and a categorical quotient. If Xs(L) 6= ∅, then Xs(L)/(C∗)n is an open
dense subset of X//L(C∗)n.

3.7 Some Facts About Standard GIT

For a torus (C∗)n acting on a projective variety X and L an ample (C∗)n–linearized
line bundle on X:

• X//L(C∗)n is a projective variety.

• Each fiber of the quotient map π : Xss → X//L(C∗)n contains a unique closed
orbits in Xss. Furthermore, π(x) = π(y) iff (C∗)n.x ∩ (C∗)n.y ∩Xss 6= ∅.

• Xs(L) → Xs(L)/(C∗)n is a geometric quotient; it is an open, non-empty and
dense subset of X//L(C∗)n . In particular, Stab(x) is finite and π−1(π(x)) =
(C∗)n.x for x ∈ Xs(L).

• In cases coming from moduli problems, the most desirable case is

Xs(L) = Xss(L).

Namely, one gets that the quotient X//L(C∗)n = Xs(L)/(C∗)n is both a projec-
tive variety and a geometric quotient. Unfortunately, the natural GIT set-up for
many moduli problems gives situations withXs ( Xss. Even in those situations
the fact that X//L(C∗)n is projective can be used to one’s advantage.
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Chapter 4

The Moment Map for a Torus Action

This chapter provides a detailed description of the moment map for the action of a
torus on a projective variety. We describe the image of such a moment map as a
convex polytope divided into chambers, and separated by walls. We define the one-
parameter subgroup associated to a wall and give a concrete description of the walls
and chambers in the case of maximal torus acting on the Grassmannian variety. This
description is needed for the next chapter which is dedicated to the description of flips
as a moduli problem.

4.1 Moment Map

Suppose for t = (t1, . . . , tn) ∈ (C∗)n and x = (x1, . . . , xn) ∈ Cn,

t.x = (t1x1, . . . , tnxn).

This action induces an action of (C∗)n/∆ (where here ∆ is the diagonal) on Pn−1 =
P(Cn).

We define the moment map µ(C∗)n on Pn−1 as below:

µ(C∗)n : Pn−1 → Rn

x 7→

 |x1|2
n∑
i=1
|xi|2

, . . . ,
|xn|2
n∑
i=1
|xi|2

 .

10



4. THE MOMENT MAP FOR A TORUS ACTION 4.1 Moment Map

Note that the image of this map is the (n− 1)-dimensional simplex

∆n−1 := {(r1, ..., rn) ∈ Rn; ri ≥ 0 for all i ∈ {1, ..., n} and
n∑
i=1

ri = 1},

and the fiber over µ(C∗)n(x) is the orbit of x under the natural action of (S1)n. Hence
we can think of ∆n−1 as the topological quotient of Pn−1 by (S1)n.

Also note

µ(C∗)n(t.x) =

 | t1 |2 |x1|2
n∑
i=1
| ti |2 |xi|2

, . . . ,
| tn |2 |xn|2
n∑
i=1
| ti |2 |xi|2

 ,

so that the orbit of a generic point x ∈ Pn−1 (on which (C∗)n/∆ ∼= (C∗)n−1) is
mapped surjectively to the interior of the simplex ∆n−1, while the orbits of the points
with stabilizers are mapped to the faces of ∆n−1.

Let {v1, ..., vn} denote the standard basis in Rn. Consider a C–basis {e1, ..., en} ⊂
Re(T1,(C∗)n) for T1,(C∗)n ∼= Cn such that for i = 1, ..., n

dµ(C∗)n(ei) = vi,

where here T1,(C∗)n is the tangent space of C∗)n at 1.

Lemma 4.1.1 Consider an algebraic morphism of groups λ : (C∗)k → (C∗)n. Then

for a suitable choice of coordinates on (C∗)k and (C∗)n, the morphism λ can be written

as

λ(t1, . . . , tk) = (
k∏
j=1

t
a1
j

j , . . . ,
k∏
j=1

t
anj
j ),

where A = (aij)j∈{1,...,k},i∈{1,...,n} is a k × n– matrix with integer entries and such that

A · At = I .

This Lemma is proved in page 43 in [8].

Definition 4.1.1 Let i : X ↪→ Pn−1 and (C∗)k a subgroup of (C∗)n. The (C∗)n–action

on Pn−1 induces an action of (C∗)k on Pn−1. We assume that this restricts to an action
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4. THE MOMENT MAP FOR A TORUS ACTION 4.1 Moment Map

of (C∗)k on X . We define the moment map associated to the action of (C∗)k on X by

µ(C∗)k : X → Rk

x 7→


n∑
i=1

ai1|xi|2

n∑
i=1
|xi|2

, . . . ,

n∑
i=1

aik|xi|2

n∑
i=1
|xi|2

 ,

that is, the composition

µ(C∗)k = At ◦ µ(C∗)n |X
. (4.1)

Thus the image of µλ is At(∆n), which is a polytope in Rk ( See Theorem 8.9. [6]).
Note that

µλ(t.x) =


n∑
i=1

ai1 |
∏k
j=1 t

aij
j |2 |xi|2

n∑
i=1
| ∏k

j=1 t
aij
j |2 |xi|2

, . . . ,

n∑
i=1

aik |
∏k
j=1 t

aij
j |2 |xi|2

n∑
i=1
| ∏k

j=1 t
aij
j |2 |xi|2

 .

In particular, for a one-parameter subgroup λ : C∗ → (C∗)n for any t ∈ C∗

t.x = λ(t).x = (ta1x1 : · · · : tanxn),

we have

µλ : X → R (4.2)

x 7→

n∑
i=1

ai|xi|2

n∑
i=1
|xi|2

. (4.3)

Example 4.1.1 Let’s assume (C∗)2 acts on P2 as follows; t.x = (x0 : t1x1 : t−1
2 x2)

where t = (t1, t2) ∈ (C∗)2 and x = (x0 : x1 : x2) ∈ P2. Then the moment map

associated to this action is

µ : X → R2

x 7→ ( |x1|2
|x0|2+|x1|2+|x2|2 ,

−|x2|2
|x0|2+|x1|2+|x2|2 ).

Example 4.1.2 Suppose (C∗)3 acts on P3 as below:

∀(t1, t2, t3) ∈ (C∗)3, ∀(x0 : x1 : x2 : x3) ∈ P3

(t1, t2, t3)(x0 : x1 : x2 : x3) = (x0 : t1x1 : t2x2 : t3x3).

The inverse limit of GIT quotients of
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4. THE MOMENT MAP FOR A TORUS ACTION 4.1 Moment Map

Then the moment map is as below:

µ : P3 → R3

x 7→ ( |x1|2

|x0|2 + |x1|2 + |x2|2 + |x3|2
,

|x2|2

|x0|2 + |x1|2 + |x2|2 + |x3|2
,

|x3|2

|x0|2 + |x1|2 + |x2|2 + |x3|2
).

µ(1 : 0 : 0 : 0) = (0, 0, 0)

µ(0 : 1 : 0 : 0) = (1, 0, 0)

µ(0 : 0 : 0 : 1) = (0, 0, 1)

µ(0 : 0 : 1 : 0) = (0, 1, 0)P3
µ

The moment map for P3

R3

Proposition 4.1.2 Given an embedding i : X ↪→ Pn−1 (for n > 1) which is (C∗)n-

equivariant, and the action of C∗ on X induced by a one-parameter subgroup λ :
C∗ → (C∗)n, we have a naturally induced C∗–linearisation on i∗(OPn−1(1)) = L. For

this linearisation we have

Xss
λ = {x ∈ X : µ−1

λ (0) ∩O(x) 6= ∅}.

Proof: Suppose x ∈ X is fixed and for a one-parameter subgroup

λ : C∗ ↪→ (C∗)n

t 7→ (ta1 , . . . , tan),

there exists a point y = (y1 : · · · : yn) ∈ O(x) ∩ µ−1
λ (0). Hence µλ(y) = 0 and we

The inverse limit of GIT quotients of
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4. THE MOMENT MAP FOR A TORUS ACTION 4.1 Moment Map

have three cases:
Case I y = limt→0 λ(t).x = limt→0(ta1 .x1 : ... : tan .xn)
Case II y = limt→∞ λ(t).x
Case III y = λ(t).x for some t.

Case I. Since µλ is a continuous map

µλ(y) = µλ(lim
t→0

(ta1 .x1 : ... : tan .xn))

= lim
t→0

µλ((tai .xi)i)

= lim
t→0

n∑
i=1

ai|t2ai ||xi|2

n∑
i=1
|t2ai ||xi|2

= min{ai; xi 6= 0} = 0.

Without loss of generality let us assume a1 = min{ai : xi 6= 0}. Hence a1 = 0 and
therefore ai ≥ 0 for all i = 2, 3, . . . , n. Now consider a global section in OX(1)

F (X1, . . . , Xn) = X1.

F (x) 6= 0 and F is invariant under the C∗−action which means that x ∈ Xss
λ .

The Case II is treated similarly, but with the minimum replaced by maximum.

In Case III we have µλ(λ(t).x) = 0 hence either all ai = 0 whenever xi 6= 0, or there
exist ai > 0 and aj < 0 with xi and xj 6= 0. In this case we consider the global section
X
|ai|
j X

|aj |
i in H0(X,L|ai|+|aj |), which is C∗–equivariant and non-zero at x. Hence in

all the cases, x ∈ Xss
λ .

For the converse let x = (x1, ..., xn) ∈ Xss
λ . This means that there exists a C∗–

invariant section F in H0(X,LN)C∗ for some integer N > 0 such that F (x) 6= 0. We
can assume that F is a monomial

F (X1, . . . , Xn) = Xb1
1 X

b2
2 . . . Xbm

m ,

with bj > 0 and that xl 6= 0 for all l ≤ m. On the other hand

µλ(x) =
m∑
i=1

ai|xi|2/
m∑
i=1
|xi|2.

The inverse limit of GIT quotients of
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4. THE MOMENT MAP FOR A TORUS ACTION 4.1 Moment Map

If µλ(x) = 0 then x ∈ O(x) ∩ µ−1
λ (0) and therefore

O(x) ∩ µ−1
λ (0) 6= ∅.

Otherwise it is enough to find a solution, t′, for µλ(λ(t′).x) = 0. Note that

F (λ(t).x) = F (ta1x1 : · · · : tanxn)

= (ta1x1)b1(ta2x2)b2 . . . (tamxm)bm

= ta1b1+a2b2+···+ambmxb1
1 x

b2
2 . . . xbmm

= t

m∑
i=1

aibi

F (x)

⇒
m∑
i=1

aibi = 0 and bi > 0

⇒ min{aj; xj 6= 0} < 0 and max{aj; xj 6= 0} > 0.

Since µλ(λ(t).x), as a function of t, depends only on |t| and

lim
t→0

µλ(λ(t).x) =

n∑
i=0

ai|tai |2|xi|2

n∑
i=0
|tai |2|xi|2

= min{aj; xj 6= 0} < 0,

and

lim
t→∞

µλ(λ(t).x) =

n∑
i=0

ai|tai |2|xi|2

n∑
i=0
|tai |2|xi|2

= max{aj; xj 6= 0} > 0,

the equation µλ(λ(t).x) = 0 should have at least one solution, by the Intermediate
Value Theorem. Therefore

O(x) ∩ µ−1
λ (0) 6= ∅.

2

Theorem 4.1.3 For a one-parameter subgroup λ

λ : C∗ → (C∗)n (4.4)

t 7→ (ta1 , . . . , tan), (4.5)

where C∗ via λ acts nontrivially on X , we have Xss
λ = {x ∈ X : ∃i, j such that xi 6=

0 and ai ≤ 0 and xj 6= 0 and aj ≥ 0}.

The inverse limit of GIT quotients of
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4. THE MOMENT MAP FOR A TORUS ACTION 4.1 Moment Map

Proof: Consider the moment map associated to λ:

µλ : X → R

x 7→

n∑
i=1

ai|xi|2

n∑
i=0
|xi|2

.

Note

lim
t→∞

µλ(t.x) =

n∑
i=1

ai|tai |2|xi|2

n∑
i=1
|tai |2|xi|2

= max{ai : xi 6= 0}

and

lim
t→0

µλ(t.x) =

n∑
i=1

ai|tai |2|xi|2

n∑
i=1
|tai |2|xi|2

= min{ai : xi 6= 0}.

Assume ai > 0, for all i ∈ {1, ..., n} such that xi 6= 0. Then limt→∞ µλ(tx) > 0 and
limt→0 µλ(tx) > 0. So 0 /∈ µλ(O(x)) i.e. µ−1

λ (0) ∩ O(x) = ∅ and therefore x /∈ Xss
λ .

The same argument works for the case when all ai < 0.

Now to prove the converse, suppose there exist ai ≥ 0 and aj ≤ 0. Therefore since µλ
is continuous, so there exist t0 ∈ C∗ such that either µλ(t0x) = 0 or limt→∞ µλ(tx) =
0 or limt→0 µλ(tx) = 0. Hence

t0x ∈ µ−1
λ (0) ∩O(x) ⇒ µ−1

λ (0) ∩O(x) 6= ∅

⇒ x ∈ Xss
λ .

2

We can use the Hilbert-Mumford numerical criterion from the proof of the Proposition
4.1.2 as below:

Theorem 4.1.4 Let X ↪→ Pn and (C∗)k ⊂ (C∗)n+1 a subgroup of the maximal torus

actin on Pn. We assume that the action of (C∗)k on Pn is the restriction of its action on

X . The rational action of (C∗)n+1 on An+1 induces an action (C∗)k on L = i∗OPn(1).

With respect to this linearization on L = i∗OPn(1),

• Xss = {x;µλ(x) ≤ 0 for all 1-parameter subgroups λ}.

• Xs = {x;µλ(x) < 0 for all 1-parameter subgroups λ}.

The inverse limit of GIT quotients of
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4. THE MOMENT MAP FOR A TORUS ACTION 4.2 Description of Walls

4.2 Description of Walls

Consider the projective variety X ⊂ Pn−1 with a (C∗)n−1 acting on Pn−1 such that X
be invariant under the action of a subgroup (C∗)k of (C∗)n−1. We consider the torus
(C∗)n−1 as the quotient of (C∗)n by C∗, the diagonal in (C∗)n.

There exists a natural decomposition µ(X) = ⋃
l Fl into a union of convex polyhedra,

such that the complement of the union of the top-dimensional polyhedra is the image
of the set

{x ∈ X such that dim(Stab(x)) > 0},

where Stab(x) denotes the stabilizer of x.

The top dimensional polyhedra are called chambers, and their boundary consists of
walls.

Lemma 4.2.1 Consider the action of (C∗)k on Pn−1. Let x ∈ Pn−1 be a point which

doesn’t have infinite stabilizer. Then the image of the orbit (C∗)k·x through the moment

map µ(C∗)k is an open set in Rk.

Proof: Consider a point x ∈ Pn−1 and the map ix : (C∗)k → Pn−1 given by the
action of (C∗)k on x. Note that the image of this map is in (C∗)n−1 because x has
no infinite stabilizers. The restriction of the map µ(C∗)n : Pn−1 → Rn to (C∗)n−1 has
fibers isomorphic to (S1)n−1, and their preimages through ix are isomorphic to (S1)k.
Hence we have a commutative diagram:

(C∗)k

��

ix // (C∗)n−1

��

µ(C∗)n // Rn At // Rk

(C∗)k/(S1)k ix // (C∗)n−1/(S1)n−1
* 


j

88

,

where the quotients are smooth manifolds and the vertical maps are smooth maps. We
can think of j as identifying (C∗)n−1/(S1)n−1 with int(4n−1). Hence φ = j ◦ ix
is an embedding with dφ = A. (Recall that A · At = Ik by Lemma 4.1.1 hence
rank A = rank At = k.) Hence d(At ◦ φ) = At · A = Ik and so A ◦ φ is a local

diffeomorphism. 2

Lemma 4.2.2 The fixed point loci for any C∗–action on a smooth variety are smooth.

Proof: Let’s denote a component of the C∗–fixed locus in a variety X by Y . Every
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4. THE MOMENT MAP FOR A TORUS ACTION 4.2 Description of Walls

t ∈ C∗ induces the map

t. : X −→ X

x 7→ t.x,

which for every y ∈ Y induces dt : Ty,X → Ty,X . Thus the restriction of TX to Y
decomposes into sheaves of eigenspaces TX|Y = ⊕`i=0Ei, where E0 = TY . Since TX
is a vector bundle, its restriction to Y is also a vector bundle of constant rank.

From Theorem A.0.11, dimC(y)Eiy ⊗OX C(y) is upper semi-continuous. Since the
rank of Ty,X , is constant, therefore the rank of each summand Eiy must be constant. 2

Theorem 4.2.3 Consider an action of the torus (C∗)k on a smooth variety X ⊂ Pn−1

such that the stabilizer of the generic point of X is trivial. If Yi is an irreducible

component of maximal dimension of Y = {x ∈ X : dim(Stab(x)) > 0}, then there

exists a unique subgroup C∗ of (C∗)k such that t.y = y for any t ∈ C∗ and y ∈ Yi.

Proof: We will denote T = (C∗)k. Consider the following diagram

f−1(4) //

��

4 = {(x, y);x = y}

��
T ×X f // X ×X,

where
(t, x); tx = x � //

_

��

(tx, x); tx = x
_

��
(t, x) � // (t.x, x),

where Y = {x ∈ X; dim f−1((x, x)) > 0} i.e. Y represents the points with infinite
stabilizers. Let Y = ⋃

j Yj where Yi are the irreducible components of Y . There exists
a C∗ ⊂ (C∗)k that fixes all the points of Yi because all the C∗ that fix points of Y
should vary continuously when we move continuously on Y but all the C∗ → (C∗)n−1

are discretely distributed. So there should be one C∗ which fixes all of these points.
Let y ∈ Y be a generic point (could be smooth). We want to prove that y is fixed just
by one C∗. Suppose that there exist a bigger torus T1 such that y.T1 = y, then Ty,Y is
fixed by T1. We can find a C∗ in T1 such that it fixes some other directions (other than
Ty,Y ) in Ty,X . So T1 fixes something of dimension more than dim(Ty,Y ) = dim(Y ).

To finish the proof we only need to show that XC∗ is smooth. Let x ∈ XC∗ . There
exist a hyperplane H that doesn’t contain x. So we can reduce our argument to affine
case, X = Spec(R). Let’s assume XC∗ = Spec(R/J) where J is the smallest ideal is

The inverse limit of GIT quotients of
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4. THE MOMENT MAP FOR A TORUS ACTION 4.2 Description of Walls

R such that R/J has trivial C∗–action on it. It means that Spec(R/J) is the maximal
scheme which is fixed by C∗. The weights of the C∗–action creates a grading on
R. Lets assume mx = 〈x1, ..., xn〉 / R and J = 〈xi, ..., xn〉 is generated by all the
generators of mx which are not fixed by C∗–action. Any homogeneous element in R
that is not fixed by C∗–action has at least one component which at least one of the
generators of J is dividing it and it has to be in J . Hence dim(R/J) = i − 1 and
therefore XC∗ is smooth. 2

Definition 4.2.1 We call µ(Yi) in the previous theorem a wall.

Let C be a chamber. As a result of the Theorem 4.1.4 we have the following corre-
spondence.

Proposition 4.2.4 For any point x with finite stabilizer µ(Tx) is a polytope. A point x

is stable if and only if µ(Tx) ⊃ C.

Proof: From Theorem 4.1.4, for any 1-parameter subgroup λ we have µλ(Tx) con-
tains the projection of C on TC∗

λ
.

Theorem 4.2.5 Let m and n be natural numbers with m < n and the (C∗)n−1 acting

on the Grassmanian G(m,n) induced from natural action on Pn−1. For an arbitrary

wall Yi ⊂ G(m,n) (as in the previous definition) there exists a unique subgroup

λ : C∗ → (C∗)n−1,

where λ can be taken to act as below:

t 7→ (ta1 , . . . , tan),

and a partition I ∪ J = {1, . . . , n} with

ai =

 1 i ∈ I
−1 i ∈ J

and I and J are nonempty, such that C∗ fixes the points of Yi.

Proof: Note that the diagonal of (C∗)n acts trivially on G(m,n). The quotient of
(C∗)n by the diagonal, which is isomorphic to (C∗)n−1, satisfies the conditions in the
previous theorem. In that context we simply can work with (C∗)n considering {x ∈
G(m,n); dim(stab(x)) > 1} instead of {x ∈ G(m,n); dim(stab(x)) > 0}. Now from
the previous theorem there exists Y , an irreducible component of maximal dimension
of {x ∈ G(m,n); dim(stab(x)) > 1} and there exists a unique C∗ which fixes Y

The inverse limit of GIT quotients of
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4. THE MOMENT MAP FOR A TORUS ACTION 4.2 Description of Walls

point-wise and therefore µ(Y ) = W . Let’s assume this one parameter subgroup is as
below:

λ : C∗ → (C∗)n

t 7→ (ta1 , . . . , tan).

The action of this C∗ on G(m,n) is induced from the action of C∗ on Pn−1. More
precisely, if [Q] ∈ G(m,n) where Q is an m × n matrix, we just multiply the i–th
column by tai . Without loss of generality we can reduce the argument on an open set
Am(n−m) ⊂ G(m,n). Therefore let

[Q] =




r1,1 r1,2 . . . r1,n−m 1 0 . . . 0
r2,1 r2,2 . . . r2,n−m 0 1 . . . 0

...
... . . . ...

...
... . . . ...

rm,1 rm,2 . . . rm,n−m 0 0 . . . 1


m×n

 = [(R|Im×m)],

where R is an m × (n − m)–matrix and Im×m is the identity matrix. Then t.[Q] =
[(t.R|I)] where t acts on R by multiplying the i–th column by tai and the j–th row by
t−an−m+j .

Note that in other open sets the action looks different. The condition t.[Q] = [Q] is
equivalent to 

a1 = an−m+1, if r1,1 6= 0;
a2 = an−m+2, if r2,2 6= 0;
a1 = an−m+2, if r2,1 6= 0;

...

Therefore

ri,j 6= 0⇒ aj = an−m+i.

On the other hand, if aj = an−m+i then the projection on the ri,j-th coordinate

Y
⋂

Am(n−m) → A1,

is surjective.

Let Γ = {a1, a2, ..., an} represent the set of weights.
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4. THE MOMENT MAP FOR A TORUS ACTION 4.2 Description of Walls

First claim. There exist a, b ∈ Z such that Γ = {a, b}.

Proof of claim. Let’s assume that {a, b, c} ⊂ Γ. Then there exists a one-parameter
subgroup

λ′ : C∗ → (C∗)n

t 7→ (tb1 , . . . , tbn),

with

bi =

 a if ai = a;
b otherwise,

which also fixes Y , which is a contradiction with the uniqueness of the one dimensional
sub-torus which fixes a wall.

Second claim. We can choose the one-parameter subgroup λ such that a = −b.

Proof of claim. This is true because λ and

λ` : C∗ ↪→ (C∗)n

t 7→ (ta1+`, . . . , tan+`),

define the same action on the projective space (which contains the wall). Hence after
choosing l = −(a + b)/2 ∈ Z we obtain a′ = (a + l) = −(b + l) = −b′. Note that
if a + b is odd, one need to replace t by t2 to make this sum even and then proceed as
before.

Third claim. {a, b} = {1,−1}.

Proof of claim. Otherwise λ is not an embedding but a multiple cover of the one-
parameter subgroup for which {a, b} = {1,−1}.

2

From the proof of Theorem 4.2.5 we have the following statement.

Theorem 4.2.6 With the assumptions of the previous Theorem, for a wall W there

exist disjoint sets I, J and also disjoint sets I ′, J ′ such that I ∪ J = {1, 2, ..., n} and

I ′ ∪ J ′ = {1, 2, ...,m} and

Y = {[Q] ∈ G(m,n) : Q = (aij)1≤i≤m,1≤j≤m, aij = 0 if (i ∈ I ′ ∧ j ∈ I) ∨

(i ∈ J ′ ∧ j ∈ J)},

is fixed by the C∗ corresponding to W .
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Proof: Let [Q] ∈ G(m,n) where Q is an m×n matrix. Without loss of generality we
can reduce the argument on an open set Am(n−m) ⊂ G(m,n). Therefore let

[Q] =




r1,1 r1,2 . . . r1,n−m 1 0 . . . 0
r2,1 r2,2 . . . r2,n−m 0 1 . . . 0

...
... . . . ...

...
... . . . ...

rm,1 rm,2 . . . rm,n−m 0 0 . . . 1


m×n

 = [(R|Im×m)],

where R is an m× (n−m)–matrix and Im×m is the identity matrix. To have [Q] fixed
by C∗–action if rij 6= 0 then aj = an−m+i. Hence from the previous Theorem we are
done. 2

From this proof we have the following corollary.

Corollary 4.2.7 With the assumptions and notations of the previous Theorem, F =
(µ−1(W ))C∗ .

Note C∗ acting on G(m,n), induces an action with the same weights as its action on
G(m,n), on the universal family and Pn−1 = P(Cn).

Corollary 4.2.8 Under the same assumptions as the last theorem, the set

{x ∈ G(m,n) : lim
t→∞

λ(t).x ∈ F},

is as below:

Y + := {[Q] ∈ G(m,n) : Q = (aij)1≤i≤m,1≤j≤m, aij = 0 if i ∈ I ′ ∧ j ∈ I},

and the set

{x ∈ G(m,n) : lim
t→0

λ(t).x ∈ F},

is as follow

Y − := {[Q] ∈ G(m,n) : Q = (aij)1≤i≤m,1≤j≤n, aij = 0 if i ∈ J ′ ∧ j ∈ J}.

Example 4.2.1 In G(3, n) a wall corresponds to the following one-parameter sub-

group

λ : C∗ ↪→ (C∗)n

t 7→ (t, t, t, t−1, t−1 . . . , t−1, t, t, t−1),
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where  a1 = a2 = a3 = an−2 = an−1 = 1 ∈ Z,
a4 = a5 = · · · = an−3 = an = −1 ∈ Z,

This wall corresponds to the set of all the points [Q] ∈ A3(n−3) which are fixed by the

C∗–action above, namely

Q =


r1,1 r1,2 r1,3 0 0 . . . 0 1 0 0
r2,1 r2,2 r2,3 0 0 . . . 0 0 1 0
0 0 0 r3,4 r3,5 . . . r3,n−3 0 0 1

 .
Note that in general such a point in G(3, n) is like this

Q =


r1,1 r1,2 r1,3 0 0 . . . 0 r1,n−2 r1,n−1 0
r2,1 r2,2 r2,3 0 0 . . . 0 r2,n−2 r2,n−1 0
0 0 0 r3,4 r3,5 . . . r3,n−3 0 0 r3,n

 .

The points whose orbits are going into this fixed loci when t→∞ are like below:

Q =


r1,1 r1,2 r1,3 r1,4 r1,5 . . . r1,n−3 r1,n−2 r1,n−1 r1,n

r2,1 r2,2 r2,3 r2,4 r2,5 . . . r2,n−3 r2,n−2 r2,n−1 r2,n

0 0 0 r3,4 r3,5 . . . r3,n−3 0 0 r3,n

 ,
and the points whose orbits are coming into this fixed loci when t→ 0 are like below:

Q =


r1,1 r1,2 r1,3 0 0 . . . 0 r1,n−2 r1,n−1 0
r2,1 r2,2 r2,3 0 0 . . . 0 r2,n−2 r2,n−1 0
r3,1 r3.2 r3,3 r3,4 r3,5 . . . r3,n−3 r3,n−2 r3,n−1 r3,n

 .
In chapter 5 we will see how this wall corresponds to points in G(3, n), each param-

eterizing plane together with a set of k lines passing through a point and n − k lines

which coincide. We note that here k is the number of columns which have 0 in their

third row.
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l1 l2 l3

l4 = l5 = l6 = · · · = ln−3 = ln

ln−2
ln−1

Remark 4.2.9 From the following diagram

P(∧3V−1) //

µ

&&

R(∧3V−1)

��
Rn−1,

the image of an orbit O(x) is a polytope with vertices a subset of the vertices of the

image of Grassmannian variety under the moment map.

Each wall corresponds to a partition I ∪ J = {1, 2, ..., n} where I corresponds to
the columns with positive weights and J corresponds to the columns with negative
weights. We denote the wall correspondent to this partition by WI and the moment
map associated to the C∗ by µI .

Proposition 4.2.10 Let I1 and I2 two subsets of {1, 2, ..., n}. For two walls WI1 and

WI2 (correspondent to I1 and I2) consider the corresponding moment maps µI1 and

µI2 . If I1 ⊂ I2 then µI1(WI1) ≥ µI1(WI2) and also if J1 ⊃ J2 then µI1(WI1) ≥
µI1(WI2).

Proof: Assume I1 ⊂ I2 and also assume WI1 corresponds to the lines l1, ...lk in the
fiber that are passing through a point and u1, ..., un−k lines in the fiber coinciding. Let
(l1, li, lk) be the matrix having the coefficient of the lines l1, li and lk in the 1th, ith
and kth columns and 0 for the other columns. Note that the image of an orbit under
moment map is the convex hull(polytope) with vertices (vi, vs, vt) where vi, vs and
vt are the lines. For example (l1, li, lk) corresponds to a vertex of µI1(YI). We have
µI1(l1, li, lk) > 0 also µI1(l1, ui, lk) > 0, µI1(l1, li, lk) > 0, µI1(u1, ui, lk) < 0, etc
which gives us the result we wanted to prove. 2
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Chapter 5

Moduli Problems

To describe the GIT quotient of a Grassmannian variety by the maximal torus (the
largest torus action on the variety) as a moduli space, one needs to describe its universal
family. The first section provides a proof that a GIT quotient of a projective bundle is
a projective bundle. The next two sections focus on describing a GIT quotient of
the Grassmannian variety by the maximal torus as a moduli problem and in the final
section, on describing a flip as a moduli problem.

5.1 GIT Quotient of a Projective Bundle

We want to show that under suitable conditions, the GIT quotient of a projective bundle
over a scheme, by an equivariant torus action, is a projective bundle.

Lemma 5.1.1 Let’s assume X ⊂ Pn is a scheme and φ : P(E) → X is a projective

bundle, where E is a locally free coherent sheaf on X and a (C∗)k acts on X with

all finite stabilizers being trivial. We consider a linearization on E which induces an

action of (C∗)k on P(E). Let’s assume that for a line bundleL onX and a linearisation

on L we have Xs(L) = Xss(L). Then there exists an ample line bundle L′ on P(E)
and a linearisation of L′ such that P(E)s(L′) = φ−1(Xs(L)).

Proof: We want to show that if x ∈ Xs(L) for a line bundle L, then there exists a line
bundle L′ on P(E) such that φ−1(x) ⊂ P(E)s(L′).

Consider a 1-parameter subgroup λ : C∗ → (C∗)n. Let L′ = OP(E)(1)⊗ φ∗(L⊗N) for
a large enough positive integer N . For y ∈ φ−1(x), let z be a point in the fiber L′|y.
This fiber is isomorphic to C. Therefore we can assume that we have λ(t).z = tb+Naz

where a is the weight of the λ group on φ∗(L) and b is the weight of λ on OP(E)(1).
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Now from Hilbert-Mumford’s Criterion since x ∈ Xs(L) we have a < 0. So for large
enough positive integer N we have Na < −b which means that b + Na < 0. We can
choseN large enough so that the previous relation is true for all 1-parameter subgroups
λ, hence y ∈ P(E)s(L′) and therefore φ−1(x) ⊂ P(E)s(L′). 2

Theorem 5.1.2 . Let’s assume X ⊂ Pn is a scheme and φ : P(E)→ X is a projective

bundle where E is a locally free coherent sheaf on X and (C∗)k acts on X with no

non-trivial finite stabilizers P(E) has an equivariant Cartier divisor D ⊂ P(E) and

we fix the T–action induced on P(E) such that L(D) = OP(E)(1). Then for any GIT

quotientX//LT satisfying the conditions of the lemma, there is a GIT quotient P(E)//T
such that φ

′ : P(E)//T → X//T is a projective bundle.

Proof: First we prove that the orbits of the action on P(E) are transverse to the fibers
of φ. From the previous lemma the following map

φ : φ−1(Xs(L))/T → Xs(L)/T

[y] 7−→ [φ(y)],

satisfies φ−1(T.x)/T ∼= Prank(E)−1. Given x ∈ Xs(L) such that its stabilizer stab(x) =
{1} we can deduce that for every y ∈ φ−1(x) we have stab(y) = {1}: if for y1 and y2

in φ−1(x) there exist a nontrivial t0 ∈ T such that t0.y1 = y2, then t0.x = x which is a
contradiction. Therefore φ−1(x) ∩ T.y = {y}.

Now we want to show that Ty,T.y ∩ Ty,φ−1(x) = {0}. The torus action gives us the
following diagram

T →.y P(E)s(L′)→φ Xs(L),

where the composition of .y and φ is multiplication by x. Both x and y have no non-
trivial stabilizers. Hence both maps .x and .y are injective and therefore the restriction
of φ to T.y is an embedding. The last diagram induces the following diagram of the
tangent spaces:

Ty,T.y ∼= T1,T → Ty,P(E) →dφ Tx,X ,

where in T1,T the 1 is the identity of torus T . Since φ over φ−1(x) ⊂ P(E) is constant,
x, hence dφTy,φ−1(x)

= 0. Therefore if v ∈ Ty,φ−1(x) ∩ Ty,T.y then dφ(v) = 0 and
therefore v = 0 (since dφ is injective).

Now in the following diagram we want to show that dι = 0 where the vertical map i is
an inclusion and u and ι are quotient maps which are smooth since the torus is acting
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5. MODULI PROBLEMS 5.1 GIT Quotient of a Projective Bundle

freely (no non-trivial stabilizers) on P(E)s(L′):

φ−1(x)
i
��

ι // P(E)s(L′)//L′T

P(E)s(L′)

u
66

.

Thus the differential map has maximum rank which means that the kernel of the dif-
ferential map is equal to the tangent space to the fiber. The previous diagram induces
the following diagram at the level of tangent spaces:

Ty,φ−1(x)

j

��

dι // T[y],P(E)s(L′)//T

Ty,P(E)s(L′)

du
77

,

where the vertical map, j, is still an inclusion as Ty,φ−1(x) ia a sub space of Ty,P(E)s(L′).
Now dι being injective is equivalent to Image(j) ∩ ker(du) = {0} and this follows
from the previous part as we proved that Ty,φ−1(x) ∩Ty,T.y = {0}. Hence dι is injective
and therefore ι is an embedding.

Next we want to show that φ∗(L(D//T )) ∼= OP(E)(1) where L(D/T ) is the line bundle
associated to the divisorD/T . As the quotient map is smooth andD is a certain divisor
so is D/T . First we need to show that φ−1([x]) ∼= PrankE−1 for every x ∈ Xs. In the
following commutative diagram

P(E)s(L′) φ //

u′

��

Xs(L)
u

��
P(E)s(L′)/T φ // Xs(L)/T.

the vertical maps are the quotient maps and φ is the map induced by φ after taking
quotient by T . Since u, u′ and φ are smooth, φ is smooth too which means that the
differentiation of φ is surjective and also φ is flat. Now

φ
−1([x]) = u′φ−1(u−1[x])

u′φ−1(T.x) = u′(T.φ−1(x))

= u′(φ−1(x)),
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and since u′|φ−1(x) = i which is an embedding then

u′(φ−1(x)) ∼= φ
−1([x]) ∼= P(rankE−1).

We need a vector bundle E ′ over Xs(L)/T such that we have P(E ′) = P(E)s/T . For a
point [x] ∈ Xs(L)/T we showed that φ−1([x]) ∼= P(rankE−1). Therefore from Theorem
A.0.15, since

H1(P(rankE−1),L(D/T )) = H1(P(rankE−1),OP(rankE−1)(1)) = 0,

we have
φ∗L(D/T )[x] = H0(φ−1([x]),OP(rankE−1)(1)) ∼= C(rankE),

and
φ∗(OP(E)(1)) ∼= E ′,

is a vector bundle on Xs(L)/T of rank equal to rank(E). 2

Now we want to show that points in the Grassmaninan varieties with a torus action on
them have trivial stabilizers.

Lemma 5.1.3 . Let the torus T = (C∗)n−1 act on the Grassmannian variety G(m,n)
and x ∈ G(m,n) an arbitrary point such that the isotropy group Stab(x) is finite (x

has finite stabilizers). Then Stab(x) = {1} (Stabilizers of x are trivial).

Proof: . Let’s assume Stab(x) = {t1, ..., ts} ⊂ T . Set i = 1 for example. Since x has
finitely many stabilizers, then there exists a one-parameter subgroup

λ : C∗ → (C∗)n−1

but we work with the lift of this action to (C∗)n–action on G(m,n), hence

t 7→ (ta1 , ..., tan),

such that t1 = λ(t0) for some t0 ∈ C∗ and limt→∞ λ(t).x = y ∈ Y , where Y is a fixed
point locus of C∗. By Theorem 4.1 and the Remark before it in [2] , we can identify
x with a point x = (x1, ..., xk) in N−Y/G(m,n)y

where N−Y/G(m,n) is the sub-bundle of
the normal bundle NY/G(m,n) which corresponds to λ–orbits "coming into" Y . But
N−Y/G(m,n) decomposes into positive weights b1, ..., bk such that

t1.(x1, ..., xk) = (tb1
0 x1, ..., t

bk
0 xk).
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Hence from Theorem 4.2.5, t0 = 1 and t1 = (1, ..., 1). With the same argument for
t2, ..., ts we have Stab(x) is trivial. 2

The description of Flips for the projective bundle could be done for all weights in
general but in our case weights are only +1 or −1.

5.2 The Moduli Problem

A moduli spaceM for (equivalence classes of) geometric objects of a given type con-
sists of:

1. A setM whose points are in bijective correspondence with the objects we wish
to parameterize.

2. The notion of "good" functions toM described in terms of families of objects.

Definition 5.2.1 A Moduli Problem. A moduli functor is a contravariant functor from

the category of schemes to the category of sets that associates to a schemeB the equiv-

alence classes of families of geometric objects with certain properties parameterized

by B.

Definition 5.2.2 A Representable Moduli Problem and its Fine Moduli Space.

Given a moduli functor

G : Sch→ Set

we say that (M,U), where U ∈ G(M) (the universal family), finely represents the

moduli functor G if for any scheme B and any v ∈ G(B) there exists a unique

φ : B →M such that v = G(φ)(U).

Example 5.2.1 (The Grassmannian Functor). Let 0 < m < n be two positive inte-

gers. Let

G(m,n) : Sch → Set,

be the contravariant functor that associates to a scheme B the set of sub-vector bun-

dles of B ×Spec(C) Cn of rank m, or, equivalently, the set of projective sub-bundles of

B×Spec(C)Pn−1 with fiber Pm−1. We will work with this second interpretation through-

out this thesis.

To a morphism of schemes f : B′ → B, the functor associates their pull-back.
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5. MODULI PROBLEMS 5.2 The Moduli Problem

This functor is represented by the Grassmannian variety G(m,n). Indeed, the univer-

sal family over G(m,n) is the flag variety F = F (1,m, n) defined as follows

F (1,m, n) = {(x, L) ∈ Pn−1 ×G(m,n) : x is a point in L}.

The flag variety comes with two natural morphisms, which are the restrictions to F of

the two projections from Pn−1 ×G(m,n) to its factors:

(x, L)

��

// x

F (1,m, n)
p2
��

p1 // Pn−1

L G(m,n) .

Let Pn−1 = Proj(C[y1, ..., yn]). To represent (x, L) ∈ F = F (1,m, n) in coordinates,

we may choose (v̄, L̄) ∈ (Am \ {0})×M(m,n) where L̄ is a m×n matrix of rank m.

For i = 1, 2, ...,m letRi ∈ An be the i−th row of the matrix L̄. Let v̄ = (v1, v2, ..., vm).

Then we can define L = P(V ), as the projectivisation of the vector sub-space V =<
R1, R2, ..., Rm >⊂ Cn generated by R1, R2, ..., Rm, and x = P(< x̄ >) where x̄ =∑m
i=1 viRi ∈ V.

Alternatively, we can think of L̄ as a 1− 1 linear transformation

L̄ : Cm −→ Cn.

Then V is the image of L̄ and v̄.L̄ = x̄.

Note that (v̄, L̄) define (x, L) uniquely up to a change of basis g ∈ GL(m) for V and

multiplication by a scalar for v̄. Hence

F (1,m, n) ∼= {(v̄, L̄) ∈ (Cm \ {0})×M(m,n) : L̄ is of rank m}/(C∗ ×GL(m)),

where the C∗ ×GL(m)−action is as follow; for any (v̄, L̄) in (Cm \ {0})×M(m,n)
and for any (t, g) in C∗ ×GL(m)

(t, g).(v̄, L̄) = (t.v̄g−1, gL̄),

where t · v̄g−1 is the multiplication of the vector v̄g−1 by the scalar t and v̄g−1 is the

multiplication of matrices. Indeed, C∗×GL(m) acts freely on {(v̄, L̄) ∈ (Cm \{0})×
M(m,n) : L̄ is of rank m} hence the quotient is a smooth variety.
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5. MODULI PROBLEMS 5.2 The Moduli Problem

Definition 5.2.3 The Moduli Problem of Planes with n given lines in general posi-
tion. Consider the functor

G : Sch → Set

B 7→ [(π : P → B,D1, D2, ..., Dn)],

associating to each scheme B an isomorphism class of tuples

(π : P → B,D1, D2, ..., Dn),

consisting of a flat morphism π : P → B whose fibers Pb are projective planes P2, and

for each i ∈ {1, ..., n}, a divisor Di of P whose intersection `i,b with each fiber Pb is a

line `i,b ⊂ Pb such that

• `i,b 6= `j,b for i 6= j.

• No three lines `i,b, `j,b, `k,b intersect at the same point in Pb.

Two tuples (π : P → B,D1, D2, ..., Dn) and (π′ : P ′ → B′, D′1, D
′
2, ..., D

′
n) are

isomorphic to each other if there exists a map φ : B′ → B and an isomorphism

φ̃ : P ′ → φ∗(P )

P ′ ∼= φ∗(P )

��

P

��
B′

φ // B,

such that φ̃ restricts to an isomorphism D′i
∼= φ∗(Di) for each i ∈ {1, ..., n}.

We will prove that this functor is representable. First we need some preliminary data.
Previously we have defined the flag variety F = F (1,m, n) over G(m,n) which is
the universal family over G(m,n). F provides a Pm−1–fibration over G(m,n). Let
Di = p∗2({yi = 0}) for i = 1, 2, ..., n. Then for [Λ] ∈ G(m,n) such that Λ =
r1,1 r1,n

... . . . ...
rm,1 rm,n

 ∈ M(m,n), let `i,Λ = FΛ ∩ Di where FΛ ∼= Pm−1 is the fiber of

F over [Λ]. Now let [x1 : x2 : ... : xm] be homogeneous coordinates on FΛ. Then the
restriction of p2 to FΛ is given by
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FΛ → Pn−1

[x1 : x2 : ... : xm] 7→ [
m∑
j=1

rj,ixj]i=1,...,n,

and
∑m
j=1 rj,ixj = p∗2(yi) represents the equation of `i,Λ. Note that this equation is

unique only up to multiplication by a constant ti ∈ C∗.

In particular in the case m = 3, we get p−1
1 ([Λ]) = FΛ is a plane, and if Λ has no zero

column, we constructed n lines `1,Λ, ..., `n,Λ where

`i,Λ : r1,ix1 + r2,ix2 + r3,ix3 = 0.

(n) lines in P2

For 1 ≤ i < j < k ≤ n, the lines `i,Λ, `j,Λ coincide if and only if

rank pij([Λ]) :=


r1,i r1,j

r2,i r2,j

r3,i r3,j

 ≤ 1,

and `i,Λ, `jΛ and `kΛ meet at a point (or two coincide) if and only if

∣∣∣∣∣∣∣∣∣
r1,i r1,j r1k

r2,i r1,j r2,k

r3,i r1,j r3,k

∣∣∣∣∣∣∣∣∣ = 0.

Theorem 5.2.1 There exists an open setU ′ ⊂ G(3, n) such that the geometric quotient

U ′/(C∗)n represents the functor defined above.
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Proof: Let U ′ be the open subset in G(3, n) given by the conditions pijk([Λ]) 6= 0 for
all [Λ] ∈ U ′ and all sets of indices 1 ≤ i < j < k ≤ n. By the discussion above,
the points [Λ] ∈ U ′ represent planes FΛ ↪→ Pn−1 such that the hyperplane sections `i,Λ
satisfy the conditions in Definition 5.2.3.

Recall that for each i ∈ {1, ..., n}, the equations of `i,Λ in FΛ were defined uniquely
only up to multiplication by a constant ti ∈ C∗. Indeed, the natural action of (C∗)n

on Pn−1 keeps the coordinate hyperplanes invariant. This action induces an action on
G(3, n) as described in Section 2.2 and hence on F = F (1, 3, n) ↪→ Pn−1 ×G(3, n).

Hence each t ∈ (C∗)n gives an isomorphism of Pn−1 which by restriction induces an
isomorphism

(FΛ, `1,Λ, ..., `n,Λ)→ (Ft·Λ, `1,t·Λ, ..., `n,t·Λ).

Note that U ′ is invariant under the action of (C∗)n because

pijk(t · [Λ]) = titjtkpijk([Λ]) 6= 0,

for all [Λ] ∈ U ′, where t = (t1, ..., tn).

We will prove that U ′/(C∗)n represents our given functor.

First we note that by Theorem 4.2.5, U ′ is the set of points in G(3, n) whose (C∗)n

orbits, when mapped via moment map, contain in the boundary all the external walls
(walls which separate chambers). Therefore the points in U ′ are the stable points for
every linearisation of the action of (C∗)n on G(3, n). Hence U ′/(C∗)n is a geometric
quotient.

We claim that the family (p−1
1 (U ′)/(C∗)n → U ′/(C∗)n, `1, ..., `n) is the universal fam-

ily over U ′/(C∗)n, for the given moduli problem. Equivalently, we wish to show that
for any tuple

(p : F → B,D1, D2, ..., Dn)

satisfying the conditions in Definition 5.2.3; there is a unique map ψ : B → U ′/(C∗)n

such that
F
p

��

// p−1
1 (U ′)/(C∗)n

��
B

ψ // U ′/(C∗)n,

is a fiber product i.e.
F ∼= ψ∗(p−1

1 (U ′)/(C∗)n).
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F is a P2–family over B, whose hyperplane divisors satisfy the required properties. A
specific torus bundle T̃ → B will be constructed below so that it works. We first wish
to construct a map ι : T̃ ×B F → Pn−1 = Proj(C[y1, ..., yn]) where yi is a global
section in L(Di) for i = 1, ..., n and T̃ is a torus bundle over B.

Each Di is the zero locus of a global section in L(Di). We only want one line bundle
but we have n of them: L(D1),L(D2), ...,L(Dn) which might not all be the same.
Note that on each fiber Fb ∼= P2 we have L(Di)|Fb ∼= OFb(1) hence L(D1)⊗L(Di)−1

is trivial on the fibers Fb of p for each i = 2, 3, ..., n.

Let Li = L(D1) ⊗ L(Di)−1 for i = 2, 3, ..., n. We claim that p∗(Li) are line bundles
over B.

For b ∈ B the map φ1(b) : R1p∗(Li)⊗C(b)→ H1(Fb,Lib) ia a surjective map because

H1(Fb,Lib) = H1(P2,OP2) = 0 for i = 2, 3, ..., n. From the Cohomology and Base
Change Theorem A.0.15 the map φ1(b) is an isomorphism for i = 2, 3, ..., n which
means that R1p∗(Li) ⊗ C(b) ∼= 0. Hence from part (b) of the same theorem φ0(b) is
also surjective where φ0(b) : R0p∗(Li)⊗C(b)→ H0(Fb,Lib) = Γ(Fb,Lib) and again
from the same theorem part (a), φ0(b) is an isomorphism. So

p∗(Li)⊗ C(b) ∼= Γ(Fb,Lib) = Γ(P2,OP2),

for i = 2, 3, ..., n. Since Γ(P2,OP2) is of dimension one, we can deduce that over each
point b ∈ B the fibers p∗(Li)⊗ C(b) = p∗(Li)b have dimension equal to one.

We claim p∗p∗(Li) ∼= Li for i = 2, 3, ..., n. Indeed, as p∗ is left adjoint to p∗, we have
a morphism of line bundle p∗p∗(Li)→ Li, which is an isomorphism on the fibers of p,
hence an isomorphism (by Nakayama’s Lemma).

Now we would like to have a nowhere zero section in p∗(Li) for i = 2, 3, ..., n. This
does not necessarily happen on B but it is true for the pull-back of p∗(Li) on

f : T̃ := (p∗(L2) \ (zero section) )×B · · · ×B (p∗(Ln) \ (zero section))→ B.

Hence f ∗(p∗(Li)) has a nowhere zero section on T̃ for i = 2, 3, ..., n. In other word
f ∗(p∗(Li)) ∼= OT̃ , for i = 2, 3, ..., n.

q∗1f
∗(p∗(Li)) is trivial too where q1 : T̃ ×B F is projection on the first component. On
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the other hand from the following fiber product diagram

T̃ ×B F
q2

��

q1 // T̃

f

��
F p // B,

we have q∗1f
∗p∗Li = q∗2p

∗p∗Li, and from p∗p∗(Li) ∼= Li we have q∗2(Li) is trivial and
therefore

q∗2(L(Di)) ∼= q∗2(L(D1)),

for i = 2, 3, ..., n, and it has n global sections s1, ..., sn induced by D1, ..., Dn.

It means that we have the following map

ι : T̃ ×B F → Proj(C[s1, ..., sn]),

which maps each fiber of q1 into a linear projective subspace P2 ⊂ Pn−1. As Di

are quotient divisors for the (C∗)n− 1 action on T̃ ×B F , the map i is (C∗)n− 1-
equivariant. Now the following diagram

T̃ ×B F
q2
��

ι // Pn−1

T̃ ,

induces an equivariant map ψ : T̃ → G(3, n). (Note that the (C∗)n−1–action is induced
from the action on Pn−1 and similarly the action on T̃ ). Hence from the universal
property T̃ ×B F ∼= ψ∗F and we have the following fiber product diagram

T̃ ×B F
q1
��

// F

π

��
T̃

ψ // G(3, n),

and after taking a quotient by (C∗)n we have the following fiber product

F ∼= (T̃ ×B F)/(C∗)n−1

��

// F//T = π−1(U ′)/(C∗)n−1

��
B ∼= T̃ /(C∗)n−1 // G(3, n)//(C∗)n = U ′/(C∗)n−1,

as all the quotient maps are (C∗)n− 1-fiberation. 2
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5.3 The Moduli Problem Represented by GIT
quotients of the Grassmannian Variety G(3, n)

by the maximal torus

This moduli space U ′/(C∗)n is not compact. We would like to find a compactification
which is canonical, i.e. such that if (`1, . . . , `n) is an arrangement of lines in plane
parameterized by a point in this compactification, then for any permutation σ ∈ Sn,
the tuple (`σ(1), `σ(2), . . . , `σ(n)) is another arrangement of lines in a plane also param-
eterized by a point in this compactification.

5.3 The Moduli Problem Represented by GIT
quotients of the Grassmannian Variety G(3, n) by
the maximal torus

Dolgachev and Hu [3] and Thaddeus [9] proved that there are finitely many chambers
and walls in the image of a moment map. For the moment map associated to the
action of (C∗)n on G(m,n), let’s denote the set of chambers by {Ck}k and the set of
walls by {Wj}j , where j ∈ {1, 2, ..., q}. The image of each orbit is a convex hull.
The vertices of this convex hull correspond to the lines in general positions. From
Corollary 4.2.6, for each wall Wl there exists a partition {1, ..., n} = Il ∪ Jl and a
partition {1, ...,m} = I ′l ∪ J ′l such that

(µ−1(Wl))C
∗ = {[Q] ∈ G(m,n) : Q = (rij)m×n, with rij = 0 if (i ∈ I ′l ∧ j ∈ Il)∨

(i ∈ J ′l ∧ j ∈ Jl)},

where C∗ is the unique subtorus associated to Wl and µ is the moment map. From
Corollary 4.2.8 the set Y +

l := {x ∈ G(m,n) : limt→∞ λ(t).x ∈ (µ−1(Wl))C
∗} is as

below:

Y +
l = {[Q] ∈ G(m,n) : Q = (rij)1≤i≤m,1≤j≤n, rij = 0 if i ∈ I ′l ∧ j ∈ Il},

and the set {x ∈ G(m,n) : limt→0 λ(t).x ∈ (µ−1(Wl))C
∗} is as follow

Y −l = {[Q] ∈ G(m,n) : Q = (rij)1≤i≤m,1≤j≤n, rij = 0 if i ∈ J ′l ∧ j ∈ Jl},

and each chamber having Wl as a wall is contained in only one of µ(Y +
l ) and µ(Y −l ).

For a chamber Ck consider

A+
k = {Il : µ(Y +

l ) ⊃ Ck},
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and
A−k = {Jl′ : µ(Y −l′ ) ⊃ Ck}.

Similarly we can define A+
µ(O(x)) and A−µ(O(x)) for µ(O(x)) for a point x.

Remark 5.3.1 Consider an arbitrary orbitO(x) and a chamberCk. From Proposition

4.2.10, we have Ck ⊂ µ(O(x)) iff for every I ∈ A+
µ(O(x)) there exist I ′ ∈ A+

k such that

I ⊂ I ′ and for every J ∈ A−µ(O(x)) there exist J ′ ∈ A−k such that J ⊂ J ′.

Previously we have defined the flag variety F = F (1,m, n) over G(m,n) which is the
universal family over G(m,n).

F provides a Pm−1–fibration over G(m,n). Let Di = p∗2({yi = 0}) for i = 1, 2, ..., n.

Then for [Λ] ∈ G(m,n) such that Λ =


r1,1 r1,n

... . . . ...
rm,1 rm,n

 ∈ M(m,n), let `i,Λ =

FΛ ∩ Di where FΛ ∼= Pm−1 is the fiber of F over [Λ]. Now let [x1 : x2 : ... : xm] be
homogeneous coordinates on FΛ. Then the restriction of p2 to FΛ is given by

FΛ → Pn

[x1 : x2 : ... : xm] 7→ [
m∑
j=1

rj,ixj]i=1,...,n,

and
∑m
j=1 rj,ixj = p∗2(yi) represents the equation of `i,Λ. Note that this equation is

unique only up to multiplication by a constant ti ∈ C∗.

Note that this thesis works with G(3, n). Hence p−1
1 ([Λ]) = FΛ is a plane, and we

constructed n lines `1,Λ, ..., `n,Λ where

`i,Λ : r1,ix1 + r2,ix2 + r3,ix3 = 0.

We will exclude the cases where r1,i = r2,i = r3,i = 0 as such Λ are maped in the
boundary of µ(G(m,n) and are not relevant to our analysis. Let’s consider a wall Wl

of a fixed chamber. Without loss of generality consider I ′l = {1, 2} and J ′l = {3}. For
r, s ∈ Il and all i ∈ I ′l we have rir = ris = 0 i.e. `r,Λ : x3 = 0 and `s,Λ : x3 = 0. For
t ∈ Jl we have `t,Λ : r1tx1 + r2tx2 = 0 as r3t = 0.

In general, whenever we have a partition I ∪ J = {1, 2, 3}, we will assume |I| = 2
and |J | = 1.

Definition 5.3.1 The Moduli Problem for a Chamber. For a fixed chamber Ck con-
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sider the functor

Ck : Sch → Set

B 7→ [(π : P → B,D1, D2, ..., Dn)],

associating to each schemeB an isomorphism class of tuples (π : P → B,D1, ..., Dn)
consisting of a flat morphism π : P → B whose fibers Pb are projective planes P2, and

for each i ∈ {1, ..., n}, a divisor Di of P whose intersection `i,b with each fiber Pb is a

line `i,b ⊂ Pb such that one of the following cases holds:

• If `i1,b = `i2,b = ... = `ic,b, then {i1, i2, ..., ic} ⊆ Ih for some Ih ∈ A+
k .

• If all the lines `j1,b, `j2,b, ..., `jc,b have a point in common, then {j1, j2, ..., jc} ⊆
Jl for some Jl ∈ A−k .

Two tuples (π : P → B;D1, D2, ..., Dn) and (π′ : P ′ → B′;D′1, D′2, ..., D′n) are

isomorphic to each other if there exists a map φ : B′ → B and an isomorphism

φ̃ : P ′ → φ∗(P )

P ′ ∼= φ∗(P )

��

P

��
B′

φ // B

such that φ̃ restricts to an isomorphism D′i
∼= φ∗(Di) for each i ∈ {1, ..., n}.

Theorem 5.3.2 For every chamber Ck, there exists an open set U ′′k ⊂ G(3, n) such

that the geometric quotient U ′′k /(C∗)n represents the functor Ck defined above.

Proof: Let
U ′′k = (C∗)nµ−1(C◦k),

where C◦k is the interior of the chamber Ck. Thus U ′′k is the set of points b ∈ G(3, n)
with the property that the intersections of the divisors Di = p∗2({yi = 0}) with the
fiber Fb, for i = 1, 2, ..., n are the lines, `i,b, which satisfy the two conditions listed in
Definition 5.3.1. The rest of the proof is similar to the proof of Theorem 5.2.1. 2

Now it is time to describe a flip of the universal bundle (i.e. the flag F := F (1, 3, n))
over the Grassmannian variety G(3, n). The flip corresponds to passing through a wall
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from a chamber Ck to a chamber Cj . It corresponds to a birational map as below:

U ′′k /(C∗)n 99K U ′′j /(C∗)n.

Lemma 5.3.3 If C∗ acts with two different weights on Pn it has two fixed loci of com-

plementary dimensions.

Proof: For an arbitrary λ ∈ C∗ and x = (x0 : · · · : xn) ∈ Pn

λ.x = (λα.x0 : · · · : λα.xk : λβ.xk+1 : · · · : λβ.xn),

where α < β then the fixed loci is {x ∈ Pn;x = (x0 : · · · : xk : 0 : · · · : 0)} ∪ {x ∈
Pn;x = (0 : · · · : 0 : xk+1 : · · · : xn)}. 2

For the moment map µ associated to the action of (C∗)n on G(m,n) and a wall W , by
Theorem 4.2.3 there exists a unique one-parameter subgroup

λ : C∗ → (C∗)n

t 7→ (ta1 , . . . , tan),

such thatW is the image through µ of the locus fixed by C∗. Recall that the flag variety
over the Grassmannian is F = P(G) where G is the universal sub-bundle, which is a
rank 3 vector bundle and C∗ acts on each fiber of

G|(µ−1(W ))C∗ := GW ,

and so we can write it as decomposition of eigenspaces

GW = V1 ⊕ V2,

where V1 is a rank one and V2 is a rank two vector bundle. Note that P(V1) and P(V2)
are fixed by the C∗.

Recall that for each wall W there exists a partition {1, ..., n} = I ∪ J and a partition
{1, ...,m} = I ′ ∪ J ′ and a unique sub-torus C∗ such that

(µ−1(W ))C∗ = {[Q] ∈ G(m,n) : Q = (aij)m×n, with aij = 0 if (i ∈ I ′ ∧ j ∈ I)∨

(i ∈ J ′ ∧ j ∈ J)}.
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From Lemma 5.3.3 the fixed locus of the fiber Fx over each point x ∈ µ−1(W )C∗ is
isomorphic to the union of a point, P(V1)x, and a line P(V2)x, in the projective plane
Fx .

Consider a fixed linearisation on G(3, n). Recall that in Lemma 5.1.1 we proved that
the pre-image of stable points via π is a set F s, the set of stable points in F for a suit-
ably chosen linearisation on F = F (1, 3, n). Hence for a chamber Ci and projection
on first component p1, π−1((C∗)nµ−1(C◦i )) is the set of stable points for an induced
linearisation on F . Let’s denote by Ui the GIT quotient of F by (C∗)n corresponding
to that linearisation and by Mi, the GIT quotient of the Grassmannian variety. In the
image of moment maps to go from one chamber to a next one (which shares a bound-
ary with it) is the same as having a birational morphism between their corresponding
GIT quotients which is called a flip. Dolgachev and Hu in [3] for general case and
Taddeus [9] for an specific case showed that a flip corresponds to a blow-up followed
by a blow down. Mustata in [7] has described it in more details.

Lemma 5.3.4 Assume two chambers Ci and Cj share a wall Wl. Unlike Ci and Cj ,

in the image of moment map for F and (C∗)n, the chambers corresponding to Ui and

Uj do not share a common wall but there is a third chamber between them, whose

corresponding GIT quotient we denote by U0
ij .

Proof: Denote T = (C∗)n, X = G(3, n), Xss
i = T.µ−1(Ci), Mi = Xss

i //T , F ss
i =

π−1(T.µ−1(Ci)), Ui = F ss
i //T , with pi : Ui → Mi. Let µ′ : F → Rn denote the

moment map for F with the T–action and C̃i = ⋂
y′∈F ssi µ′(T.y′) is the chamber corre-

sponding to Ui. Apply similar notations for j instead of i.

Let Y = µ−1(Wl)C
∗ . We may assume Xss

i \ Xss
j ⊂ Y − = {y; limt→∞ t.y ∈ Y } and

Xss
j \Xss

i ⊂ Y + = {y; limt→0 t.y ∈ Y }. Indeed if µ(Tx ⊃ Ci but Cj 6⊂ µ(Tx) then
Wl is in the boundary of µ(Tx), hence limt→∞ t.x ∈ Y . We know that π−1(Y ) contains
two C∗–fixed loci P(V1) and P(V2). Define C̃ij = µ′(π−1(Y )), and W1 = µ′(P(V1))
and W2 = µ′(P(V2)).

Consider the sub-torus C∗ which fixes Y and denote by µ′C∗ the moment map for the
induced action of C∗ on the flag variety F . From Equation (4.1) we have µ′C∗ =
(dλt=1)t ◦ µ′ where λ′ : Rn → R is projection map induced by the embedding C∗ →
(C∗)n. Let λ′ = (dλt=1)t.

If Z is a locus fixed by C∗ we denote

Z− = {z; lim
t→∞

t.z ∈ Z}
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and
Z+ = {z; lim

t→0
t.z ∈ Z}.

Claims:

(a) λ′(C̃ij) = (µ′C∗(P(V1)), µ′C∗(P(V2))).

(b) λ′(C̃i) = (a, µ′C∗(P(V1))) for some a ∈ R, a < µ′C∗(P(V1)).

(c) λ′(C̃j) = (µ′C∗(P(V1)), b) for some b ∈ R, b > µ′C∗(P(V1)).

(d) λ′(C̃ij) is either a chamber in µ′(F ) or a union of chambers each having walls
contained in W1 or W2 i.e. C̃ij ⊂ µ′(T.y′) for some y′ s.t. W1 ⊂ µ′(T.y′),W2 ⊂
µ′(T.y′).

Proof of (a): Every point y′ ∈ π−1(Y ) satisfies limt→0 t.y
′ ∈ P(V1) and limt→∞ t.y

′ ∈
P(V2), for the given C∗–action on F . Claim (a) follows from the fact that µ : C∗y′ →
R factors through an embedding of C∗y′/S ′ ↪→ R.

Proof of (b): We first show ∃y′ ∈ F ss
i s.t. limt→∞ t.y

′ ∈ P(V1). Indeed asXss
i \Xss

j ⊂
Y − and π−1(Y )C∗ = P(V1) ∪ P(V2), we have

F ss
i \ F ss

j ⊂ P(V1)− ∪ P(V2)−. (5.1)

Moreover F ss
i ∩ P(V2)− = P(V2)− \ π−1(Y ).

We knew that P(V2)− \ P(V2)//C∗ is a projective bundle, compact and π−1(Y ) \
P(V2)//C∗ is a P1–bundle. Hence (P(V2)− \ π−1(Y ))//C∗ is not compact, and in con-
sequence F ss

i ∩ P(V2)− = P(V2)− \ π−1(Y ) 6= P(V2)−.

As the limt→∞ t.y ∈ P(V1) ∪ P(V2) for any y ∈ π−1(Y ) we have ∃y′ ∈ F ss
i such

that limt→∞ t.y
′ ∈ P(V1). Moreover we saw in Equation (5.1) that for all y′ ∈ F ss

i \
F ss
j , we have µ′C∗(T.y′) = (ay′ , µ′C∗(P(V1))) or µ′C∗(T.y′) = (ay′ , µ′C∗(P(V2))). As
µ′C∗(P(V1))) < µ′C∗(P(V2))), it follows that

λ′(C̃i) =
⋂

y′∈F ssi

µ′C∗(T.y′) = (a, µ′C∗(P(V1))).

Note that as the map µC∗ : C∗x → R factors through an embedding of C∗x/S1 in R
and limt→0 µ(tx) < limt→∞ µ(tx) we have µ(tx) < limtø∞ tx.

Proof of (c): It is similar to the proof of (b).

Proof of (d): Let y′ ∈ F and π(y′) = y ∈ X . If W ◦
1 ∩ µ′(T.y′) 6= ∅ and y′ /∈ F ss

i then
either T.y′ ⊂ π−1(Y ) or Cj ⊂ µ(T.y). Equivalently, y′ ∈ π−1(Y ) or T.y ⊂ Xss

j . The
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last inclusion implies T.y′ ⊂ F ss
j . In both cases, using (a), (b), (c) and the fact that W2

is the wall sent to µ′C∗(P(V2)), we have W2 ∩ µ̃′(T.y′) 6= ∅.

2

Correspondingly there is a birational map between Ui and Uj which we will shortly
show it made of two flips.

Consider an affine open set Uuvw = ({xuvw 6= 0}) which corresponds to all the ele-
ments in G(3, n) whose minor of columns (u, v, w) is non-zero. From Corollary 4.2.7
we have

(π−1(µ−1(W )C∗
⋂
Uuvw))C∗ = P(µ−1(W ))C∗

⋂
Uuvw(V1)

⊔
P(µ−1(W ))C∗

⋂
Uuvw(V2)

=((µ−1(W ))C∗
⋂
Uuvw)× (P0⊔P1) ⊂ ((µ−1(W ))C∗

⋂
Uuvw)× P2,

(5.2)

where π : F → G(3, n) is the natural projection. Hence from the description of flags
in Example 5.2.1, locally on Uuvw, we have the following

P(V1)+ ∩ π−1(Uuvw) :={y = ([Q], (v1 : v2 : v3)) ∈ A3(n−3) × P2;

[Q′] := lim
t→0

λ(t).[Q] ∈ (µ−1(W ))C∗ , lim
t→0

λ(t).y ∈ P(V1)[Q′]}

={([Q], (v1 : v2 : v3)) ∈ A3(n−3) × P2 :

v3 6= 0, Q = (aij)1≤i≤3,1≤j≤n−3, aij = 0 if i ∈ J ′ ∧ j ∈ J},
(5.3)

which are the C∗–orbits coming out of the first fixed locus P(V1), and similarly

P(V1)− ∩ π−1(Uuvw) :={y = ([Q], (v1 : v2 : v3)) ∈ A3(n−3) × P2;

[Q′] := lim
t→∞

λ(t).[Q] ∈ (µ−1(W ))C∗ , lim
t→∞

λ(t).y ∈ P(V1)[Q′]}

={([Q], (v1 : v2 : v3)) ∈ A3(n−3) × P2 : v1 = v2 = 0,

Q = (aij)1≤i≤3,1≤j≤n−3, aij = 0 if i ∈ I ′ ∧ j ∈ I},
(5.4)

which are the C∗–orbits going into the first fixed loci, P(V1). For P(V2) we have the
following
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P(V2)+ ∩ π−1(Uuvw) :={y = ([Q], (v1 : v2 : v3)) ∈ A3(n−3) × P2;

[Q′] := lim
t→0

λ(t).[Q] ∈ (µ−1(W ))C∗ , lim
t→0

λ(t).y ∈ P(V2)[Q′]}

={([Q], (v1 : v2 : v3)) ∈ A3(n−3) × P2 :

v3 = 0, Q = (aij)1≤i≤3,1≤j≤n−3, aij = 0 if i ∈ I ′ ∧ j ∈ I},
(5.5)

which are the C∗–orbits coming out of the first fixed loci, P(V1), and similarly

P(V2)− ∩ π−1(Uuvw) :={y = ([Q], (v1 : v2 : v3)) ∈ A3(n−3) × P2;

[Q′] := lim
t→∞

λ(t).[Q] ∈ (µ−1(W ))C∗ , lim
t→∞

λ(t).y ∈ P(V2)[Q′]}

={([Q], (v1 : v2 : v3)) ∈ A3(n−3) × P2 : v1 6= 0 ∨ v2 6= 0,

Q = (aij)1≤i≤3,1≤j≤n−3, aij = 0 if i ∈ I ′ ∧ j ∈ I}.
(5.6)

The following diagram illustrates the flips between the GIT quotients of G(m,n) and
between the GIT quotients of F :

Uij
fi,j

  

fj,i

~~
Ũi

f ij2

��

fi

��

Ũj
fj

��

f ij1

��
Ui

qi

��

U0
ij Uj

qj

��

Mij

pi

ww

pj

((
Mi Mj

Figure 5.1: Flip of the universal families over two GIT quotients

where
Mi = T.µ−1(C◦i )/T ,
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Mj = T.µ−1(C◦j )/T ,
Mij = BlY −/TMi = BlY +/TMj ,
Ui = π−1(T.µ−1(C◦i ))/T ,
Uj = π−1(T.µ−1(C◦j ))/T ,
Ũi = BlP(V1)−/TUi,
Ũj = BlP(V2)+/TUj , and

Uij = Bl ˜P(V1)+/T
Ũj = Bl ˜P(V2)−/T Ũi = Ũi ×U0

ij
Ũj. (5.7)

Detailed description for these type of flips can be found in first section (and also Ex-
ample 1.16) of Thaddeus [9].

Indeed,

P(V1)+ ∩ P(V2)−∩π−1(Uuvw) = {([(aij)1≤i≤m,1≤j≤(n−m)], (v1 : v2 : v3)) ∈

Am(n−m) × P2; (v1 6= 0 ∨ v2 6= 0) ∧ (v3 6= 0)∧

(aij = 0 if (i ∈ J ′ ∧ j ∈ J) ∨ (i ∈ I ′ ∧ j ∈ I))}

= π−1(Y ∩ Uuvw) \ (P(V1) ∪ P(V2)).

(5.8)

On the other hand

dim(P(V1)+) = dim(A3|I|+|I′||J | × P2) = 3|I|+ 2|J |+ 2,

dim(P(V2)−) = dim(A3|J |+|J ′||I| × P2 \ {(0 : 0 : 1)}) = 3|J |+ |I|+ 2,
(5.9)

and also

dim(P(V1)+ ∩ P(V2)−) = dim(A|J ′||J |+|J ||I′| × (P2 \ (P1 ∪ {(0 : 0 : 1)}))

=2|J |+ |I|+ 2.
(5.10)

Hence

dim(A3(n−3) × P2) = dim(P(V1)+) + dim(P(V2)−)−

dim(P(V1)+ ∩ P(V2)−) = 3(n− 3) + 2.
(5.11)

Moreover, from the local description of P(V1)+ and P(V2)− above, we see that these
intersect transversely at π−1(Y ) \ (P(V1) ∪ P(V2)). Transverseness is preserved when
taking GIT quotients by T , which explains Equation (5.7).
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Next, we construct a map qij : Uij →Mij such that pj ◦ qij = qi ◦ fi ◦ fji and pi ◦ qij =
qj ◦ fj ◦ fij . Note that Uij = Bl ˜P(V2)−/TBlP(V1)−/TUi and ˜P(V2)−/T = ˜π−1(Y −)/T
while P(V1)−/T ⊂ π−1(Y −)/T ⊂ Ui are regular embedding. It is because some of
the orbits which go into P(V2), pass through P(V1) first. Hence we may apply the
following lemma:

Lemma 5.3.5 Consider X, Y and Z smooth manifolds, with Z ⊂ Y ⊂ X regular

embeddings. Then

BlỸBlZX
∼= Blπ−1(Z)BlYX,

where π : BlYX → X is the blow-up map and Ỹ = BlZY is the strict transform of

Y in BlZX . Moreover, the exceptional divisor in Blπ−1(Z)BlYX is a Pk–bundle over

π−1(Z) where k = codimYZ.

Proof: Working locally, assume X = Spec(A), Y = V (IY ) where IY = (t1, . . . , td),
Z = V (IZ) where IZ = (t1, . . . , td, td+1, . . . , tn) and Pn−1 = Proj(C[T1, . . . , Tn]).
Then

BlZX = X̃

= V (tiTj − tjTi : i, j ∈ {1, ..., n}, i < j)

⊂ X × Pn−1 = Proj(A[T1, . . . , Tn]),

(5.12)

and

Ỹ = V (T1, ..., Td, t̄iTj − t̄jTi : d < i < j) ⊂ Y × Pn−1,

for t̄i = f(ti) where f : A → B = A/IY . Now let Uk ⊂ X̃ a standard affine cover;
(Tk 6= 0) and Tj/Tk = xj;

Uk = Spec(A[x1, . . . , x̂k, . . . , xn]/(ti − tkxi : i 6= k))

= Spec(A[ t1
tk
, ...,

t̂k
tk
, ...,

tn
tk

]).

We consider the case k ≤ d, as the other case is quite trivial. In this case, in Uk we
have

IỸ = ( t1
tk
, ...,

t̂k
tk
, ...,

td
tk

),
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if k ≤ d. Then an affine cover for
BlỸ X̃,

is as below:

Spec(A[ t1
tk
, ...,

t̂k
tk
, ...,

tn
tk

][t1
ts
, ...,

t̂s
ts
, ...,

t̂k
ts
, ...,

td
ts

]),

for some s ∈ {1, ..., d}. To describe Blπ−1(Z)BlYX we first describe BlYX locally as

Spec(A[t1
ts
, ...,

t̂s
ts
, ...,

td
ts

]).

If k ≤ d, then Iπ−1(Z) is generated by tSxi where xi = ti
ts

for i ∈ {1, ..., d} and tl for
l ∈ {d+ 1, ..., n}. When k ≤ d, an affine cover for Blπ−1(Z)BlYX is

Spec(A[t1
ts
, ...,

t̂s
ts
, ...,

tn
ts

][ t1
tk
, ...,

t̂k
tk
, ...,

t̂s
tk
, ...,

tn
tk

]),

which is the same as the affine cover of BlỸ X̃ descried above which proves the theo-
rem.

Finally, k = codimBlYX(π−1(Z))− 1 = codimXZ − codimXY + 1− 1 = codimYZ.

2

The last Lemma gives us the following Remark.

Corollary 5.3.6 The following diagram is commutative i.e.

Uij = Bl ˜P(V2)−/TBlP(V1)−/T (Ui) ∼= Blρ−1(P(V1)−/T )p
∗
iUi,

where on the left hand side the second blow-up is along the whole fibers over the pre-

image of the wall which creates the flip.
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Uij

��uu

p

''
Ũi = BlP(V1)−/TUi

xx

p∗i (Ui) = Ui ×Mi
Mij

ρ

rr

qij

��

Ũj

��
Ui

qi

''

Mij

pj

((

pi

tt

Uj

~~
Mi Mj

Figure 5.2: Flip of universal family over two GIT quotients

Indeed, we apply the previous Lemma to P(V2)−/T ⊂ π−1(Y −)/T ⊂ Ui, keeping in
mind that ˜π−1(Y −)/T = ˜P(V2)−/T in Ũi and that p∗i (Ui) = Blπ−1(Y −)/TUi. Note that

˜π−1(Y −)/T = P̃(V2)−)
T

as they coincide outside the exceptional divisor and their
intersection with the exceptional divisor is π−1(Y )/(T ×P(V1) P(V1)−)

Recall that Mij = BlY −/TMi. For a point y in the exceptional divisor Ỹ −/T , the fiber
q−1
ij (y) of the map Uij →Mij consists of 2 components;

• q̃−1
i (y) = BlpointP2 , the strict transform of q−1

i (y) = P2 under the blow-up pi.

• a fiber P2 of the exceptional divisor E of pi.

Indeed, ρ−1(P(V1)−/T ) ∩ q−1
i (y) = {point} and codimπ−1(Y −)(P(V1)−) = 2. The

two components P2 and BlpointP2 intersect along a line P1, the exceptional divisor of
BlpointP2.

In the final step we want use these facts and show that all the fibers of qij have the same
Hilbert polynomial. In other words Uij is flat over Mij .

Let L = O(∑n
i=1Di).

On a general fiber of the global sections of L⊗m|P2
on P2 = Proj(C[y1, y2, y3]) (P2 is a

fiber of the universal family) are generated by monomials yd1
1 y

d2
2 y

d3
3 where d1 + d2 +

d3 = mn. There are
(
mn+2

2

)
different global sections which means that for P2 and

m� 0
dim(H0(P2,L⊗m|P2 )) = dim Γ(P2,OP2(mn)) =

(
mn+ 2

2

)
.

The restriction of
∑
iDi to a fiber P2 of F → G(3, n) :
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n lines in P2

For P1, the global sections of L⊗m|P1 on P1 = Proj(C[y1, y2]) are generated by mono-
mials yd1

1 y
d2
2 where d1 + d2 = mn. There are

(
mn+1

1

)
different combinations. Hence

dim(H0(P1,L⊗m|P1 )) = dim Γ(P2,OP1(mn)) =
(
mn+ 1

1

)
.

Consider Li = O(
n∑
l=1

Dl), the line bundle on Ui involved in the presentation of Mi as

a moduli space. Let gij : Uij → Ui be the composition of blow-ups described above,
and Lij := g∗ijLi. We will calculate the Hilbert polynomial of the fiber q−1

ij (y) of the
family qij : Uij → Mij with respect to the ample line bundle Lij|q−1

ij (y). Consider
y in the exceptional locus of Mij and pi(y) its image in Mi. Recall that q−1

ij (y) =
BlpointP2 ∪P1 P2. With the notations introduced earlier, in the fiber g−1

i (pi(y)) = P2,
the divisor

n∑
l=1

Dl contains t lines passing through (0 : 0 : 1), where t = |J |. Recall

that (0 : 0 : 1) is the point which was blown up. Pull-back through gi ◦ gij these lines

yield t divisors F1, ..., Ft in BlpointP2, and t other lines in P2. Let F :=
t∑
l=1

Fl and

L =
n∑
l=1

D̃l−F onBlpointP2 ⊂ g−1
ij (y). Thus Lij isO(F +L) onBlpointP2 andOP2(t)

on P2, and OP1(t) on BlpointP2 ∩ P2 = P1. Hence

h0(g−1
ij (y),Lij(m)) = h0(BlpointP2,OBlpointP2(mF +mL))+

h0(P2,OP2(mt))− h0(P1,OP1(mt)).
(5.13)

Note that the pullback maps

h0(P2,OP2(mt))→ h0(P1,OP1(mt)),

and
h0(BlpointP2,OBlpointP2(mF +mL))→ h0(P1,OP1(mt)),

are surjective.
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We calculate each summand separately. Note that BlpointP2 = P(OP1 ⊕ OP1(1)) is
a projective bundle over P1 with f : P(OP1 ⊕ OP1(1)) → P1 and OBlpointP2(F ) =
f ∗(OP1(t)) while OBlpointP2(L) = ι∗OP2(k) = OBlpointP2(k) for the blow-up map
ι : BlpointP2 → P2.

Now consider k lines and t fibers in BlpointP2 which are the pull-back of lines in P2

via the blow-up map.

F1Ft F2

Lk

L1

L2

t Fibers

k lines

Exceptional Divisor

For m� 0

0→ I∪Fi ↪→ OBlpointP2 → OmF = OBlpointP2/I∪Fi → 0,

where I∪Fi = OBlpointP2(−mF ). Multiplying this short exact sequence by O(mF +
mL) we have

0→ O(mL)→ O(mF +mL)→ O∪Fi ⊗O(mF +mL)→ 0. (5.14)

Since F1, ..., Ft are fibers of the projection f : P(OP1⊕OP1(1))→ P1, we have F 2 = 0
and hence O∪Fi ⊗O(mF ) =

mt⊕OP1 .

As well,

f∗OBlpointP2(mk) = Symmmk(OP1 ⊕OP1(1))

= OP1(mk)⊕OP1(mk − 1)⊕ ...⊕OP1 ,

and Rif∗OBlpointP2(mk) = 0 for i > 0. Hence

H i(BlpointP2,OBlpointP2(mk)) = H i(P1, f∗OBlpointP2(mk)) = 0,

for i > 0 and thus the short exact sequence 5.14 yields a short exact sequence for the
spaces of global sections
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0→ H0(BlpointP2,OBlpointP2(mk))→ H0(BlpointP2,O(mF +mL))→

H0(P1,
mt⊕OP1(mk))→ 0.

Hence

dim(H0(BlpointP2,O(mF +mL))) = dim(H0(P1,
mt⊕
OP1(mk))) +

dim(H0(BlpointP2,OBlpointP2(mk)))

=
(
mk + 2

2

)
+mt

(
mk + 1

1

)
= (mk + 2)(mk + 1)/2 +mt(mk + 1).

Hence the Hilbert Polynomial of q−1
ij (y) = P2 ∪BlpointP2 with respect to Lij

PX(m) =
(
mt+ 2

2

)
+
(
mk + 2

2

)
+mt

(
mk + 1

1

)
−
(
mt+ 1

1

)
(5.15)

= m2(t
2 + k2 + 2kt

2 ) +m(3t+ 3k + 2t− 2t
2 ) + 1 (5.16)

= m2((t+ k)2

2 ) +m(3(k + t)
2 ) + 1, (5.17)

which is the same as the Hilbert Polynomial of P2 with the ample line bundleOP2(t+k)
as below:

PP2(m) =
(
m(t+ k) + 2

2

)

= m2((t+ k)2

2 ) +m(3(k + t)
2 ) + 1.

As an example the following diagram shows what happens to the fibers over a flip:
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P2 − fiberation over P1

x ∈Mi P1 ⊂Mj

a birational map

P2 BlptP2
E E′Ẽ

π = Blpt π′ = Bll̃

blow-down alongE′

and the divisors in the fibers change as below:

B2
π = Blpt π′ = Bll̃ blow down

B̃2

B̃1

b1

b2

b̃1

b̃2

C

B1

Figure 5.3: Flip of universal family over two GIT quotients

To connect these figures to Fig 6.3, π is the restriction of the blow down map Ũi → Ui,
and π′ is restriction of Uij → Ũi.

5.4 The Moduli Problem for a Flip

Definition 5.4.1 The Moduli Problem for a Flip. Consider two fixed chambers Ck
and Cj which share a wall Wl. Recall the sets Il, Jl ⊂ {1, 2, ..., n} associated to Wl in

Corollary 4.2.6 and beginning of Section 5.3. We define the functor

Ujk : Sch → Set

B 7→ [(π : P → B,D1, ..., Dn)],

associating to each scheme B an isomorphism class of tuples

(π : P → B,D1, ..., Dn),
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consisting of a flat morphism π : P → B whose fiber Pb are either P2 or P2 ∪P1

BlpointP2 ( where the gluing is done along the exceptional divisors in the blow-ups,

and along some special lines in P2s) and such that the restrictions `1,b, `2,b, ..., `n,b of

the divisors D1, D2, ..., Dn to the fiber Pb satisfy:

if Pb = P2 ∪P1 BlpointP2, then

• for each i ∈ Il, the Li := `i,b ⊂ BlpointP2 is a section of the projection φ :
BlpointP2 = P(OP1 ⊕ OP1(1)) → P1, different from the exceptional divisor (or

in other words pull-back of a line in P2),

• while for each j ∈ Jl, the restriction `j,b|BlpointP2 =: Fj is a fiber of φ, and `j,b|P2

is a line intersecting Fj at a point on the exceptional divisor E of BlpointP2,

if Pb = P2, then , `i,b is a line.

For all fibers Pb

• if `i1,b = `i2,b = ... = `ia,b then {i1, ..., ia} ⊆ Ih for some Ih ∈ A+
k ∪ A+

j , and

Ih 6= {i1, ..., ia},

• if `j1,b, `j2,b, ..., `jc,b have a point in common then {j1, j2, ..., jc} ⊆ Jh for some

Jh ∈ A−k ∪ A−j , and Jh 6= {j1, j2, ..., jc},

whereA+
k ,A−k ,A+

j andA−j are as defined in Section 5.3. Assume |Il| = s and |Jl| = t,

where s+ t = n.

Two tuples (π : P → B,D1, D2, ..., Dn) and (π′ : P ′ → B′, D′1, D
′
2, ..., D

′
n) are

isomorphic to each other if there exists a map φ : B′ → B and an isomorphism

φ̃ : P ′ → φ∗(P )

P ′ ∼= φ∗(P )

��

P

��
B′

φ // B,

such that φ̃ restricts to an isomorphism D′i
∼= φ∗(Di) for each i ∈ {1, ..., n}.

Note that the last conditions are equivalent to the fact that

• if Pb ∼= P2 the data (Pb, `1, ..., `n) corresponds to an orbit Tx in G(3, n) with
µ(Tx) ⊃ Ck ∪ Cj ,
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• if Pb ∼= P2 ∪ BlpointP2 the first P2 corresponds to Tx ⊂ G(3, n) with µ(Tx) ⊃
Ci and Ci ∩ Cj in the boundary of µ(Tx). Also the contraction of BlpointP2

corresponds to an orbit Tx with µ(Tx) ⊃ Cj and Ci ∩ Cj is in the boundary of
µ(Tx).

Theorem 5.4.1 For every two chambers Ci and Cj which share a wall Wl, the scheme

Mij defined earlier represents the functor defined above.

Proof: We will prove that the family (Uij → Mij, D1, ..., Dn) is the universal family
over Mij for the given moduli problem. First we note that any one of the special fibers
of Uij → Mij is of the form Sb = BlpointP2 ∪P1 P2. The restriction of the divisors
D1, ..., Dn to the fiber Sb determine:

• s sections L1, ..., Ls of BlpointP2 = P(OP1 ⊕OP1(1))→ P1.

• t fibers F1, ..., Ft in BlpointP2 = P(OP1 ⊕OP1(1))→ P1.

• t lines in P2, intersecting the fibers above in t points p1, ..., pt.

The line bundle OBlpointP2(F1) and OBlpointP2(L1), with sections chosen to correspond
to the above divisors determine an embedding BlpointP2 ↪→ Pt−1 × Ps−1, while the
line bundle OP2(1) with suitably chosen sections gives a map P2 → Pt−1. Note that
the composition BlpointP2 ↪→ Pt−1 × Ps−1 →π2 Ps−1 contracts the exceptional di-
visor E of BlpointP2 to a point q as [L1] = [E] + [F ] and [E]2 = −1. Thus the
embeddings BlpointP2 ↪→ Pt−1 × Ps−1 and P2 → Pt−1 × {q} glue to an embedding of
S = BlpointP2 ∪P1 P2 ↪→ Pt−1 × Ps−1, which, after the Segre embedding, has Hilbert
polynomial P (m) as calculated in Equations (5.17).

Based on the discussion above, our strategy of proof will consist in identifying Mij

with a GIT quotient of the Hilbert Scheme H = Hilb(Pt−1 × Ps−1, P (m)). We will
proceed in the following steps:

(i) For any family (P → B,D1, ..., Dn) satisfying the conditions of the moduli
problem, we construct two torus bundle T1 and T2 over B, of ranks t − 1 and
s−1 respectively, such that for T = T1×B T2, there is an embedding T ×B P →
Pt−1× Ps−1× T . This is done just like in the proof of Theorem 5.2.1 except that
we work separately with {Di}i∈Il and {Dj}j∈Jl .

(ii) Hence there is a map T → H = Hilb(Pt−1 × Ps−1, P (m)), such that T ×B P
is the pull-back of the universal family on H. In the case when P → B is
exactly the family Uij → Mij , we get a torus bundle Tij on Mij and an in-
jective map φij : Tij → H, which we claim to be an open embedding. We
check this by comparing the dimensions of the tangent spaces Tij,b andHφij(b) =
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H0(Sb,NSb/Pt−1×Ps−1), while also checking that φij(b) is a smooth point of H,
as H1(Sb,NSb/Pt−1×Ps−1) = 0. We do these calculations in the steps (numbered
from 1 to 5) following this proof.

(iii) For any other family P → B, the corresponding map T → H has image embed-
ded in φij(Tij), since this open set must parameterize all schemes Sb satisfying
the conditions of the moduli problem. Hence taking quotient by (C∗)n−2 gives

P

��

// Uij

��
B //Mij,

as described.

Let S = S1∪P1S2 with S1 = BlpointP2 and S2 = P2, let Pt−1×Ps−1 = Z. To calculate
H i(S,NS/Pt−1×Ps−1) we need a few lemmas as follows.

Lemma 5.4.2 For all i ≥ 0

H i(S1, TW |S1) ∼= H i(S1, TS1).

Proof: Embed S ⊂ W where W := BlP1×{a}(P2 × P1) →f P1 and S = f−1(a).
Indeed, NP1×{a}/P2×P1 ∼= OP1(1)⊕OP1 . Hence the exceptional divisor

P(NP1×{a}/P2×P1) ∼= P(OP1(1)⊕OP1) ∼= BlpointP2 = S1,

while ˜P2 × {a} ∼= P2 = S2. S is a fiber in the flat family f . Hence

NS/W ∼= OS. (5.18)

Since S is a normal crossing divisor in W , we have

(NS/W )|Si ∼= NSi/W ⊗OSi(D), (5.19)

where D = S1 ∩ S2 ∼= P1. Indeed, NS/W ∼= OS(S) = OS(S1 + S2) and restriction to
Si gives the Formula 5.19 above. From Formulas 5.18 and 5.19 we have

NS1/W
∼= OBlpointP2(−D) = g∗OP2(−1)⊗ φ∗OP1(−1),
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and NS2/W
∼= OP2(−D) ∼= OP2(−1), where g : S1 → P2. Hence

H i(Sj,NSj/W ) = 0,

for all i and j.

Thus the short exact sequence

0→ TS1 → TW |S1 → NS1/W → 0,

leads to
H i(S1, TW |S1) ∼= H i(S1, TS1),

for all i ≥ 0.

Lemma 5.4.3 h0(P2, TP2) = 8 and hi(P2, TP2) = 0 otherwise.

Proof: From Euler’s sequence for P2:

0→ OP2 →
3⊕
i=1
OP2(1)→ TP2 → 0,

we have:
h0(P2,OP2) = 1,
hi(P2,OP2) = 0 for i > 0,
h0(P2,OP2(1)) = 3,
hi(P2,OP2(1)) = 0 for i > 0,
h0(P2, TP2) = 3h0(P2,OP2(1))− h0(P2,OP2) = (3)(3)− 1 = 8 and
hi(P2, TP2) = 0 otherwise.

Lemma 5.4.4 h0(S1, TS1) = 6 and hi(S1, φ
∗TS1) = 0 for i > 0.

Proof: We have

S1 = BlpointP2 = P(OP1 ⊗OP1(1))→φ P1,

h0(S1,OS1) = 1 and
hi(S1,OS1) = hi(P1, φ∗OS1) = 0,

for i > 0, (as hi(φ−1(s),OS1|φ−1(s)) = hi(P1,OP1) = 0 for i > 0 hence Riφ∗OS1 = 0
for i > 0). Similarly, hi(S1,OS1(−1)) = 0 for i ≥ 0. The relative Euler’s sequence
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for S1 = BlpointP2 = P(OP1 ⊕OP1(1))→φ P1 is as follow;

0→ OS1 → φ∗(OP1 ⊕OP1(1))⊗OS1(D)→ TS1/P1 → 0. (5.20)

Hence

h0(S1, TS1/P1) = −h0(S1,OS1) + h0(S1, φ
∗(OP1 ⊕OP1(1))⊗OS1(D)), (5.21)

and
hi(S1, TS1/P1) = hi(S1, φ

∗(OP1 ⊕OP1(1))⊗OS1(D)),

for i > 0. To calculate hi(S1, φ
∗(OP1 ⊕ OP1(1)) ⊗ OS1(D)), we use the short exact

sequence
0→ OS1(−D)→ OS1 → OD → 0,

tensored with φ∗(OP1 ⊕OP1(1))⊗OS1(D), which yields:

0→ φ∗(OP1 ⊕OP1(1))→ φ∗(OP1 ⊕OP1(1))⊗OS1(D)→

(OP1 ⊕OP1(1))⊗OD(D) → 0.

As OD(D) = OP1(−1) for the exceptional divisor D, we have

(OP1 ⊕OP1(1))⊗OD(D) ∼= OP1(−1)⊕OP1 = 0.

On the other hand,

Riφ∗φ
∗(OP1 ⊕OP1(1)) = (OP1 ⊕OP1(1))⊗Riφ∗OS1 , (5.22)

for i > 0. So

hi(S1, φ
∗(OP1 ⊕OP1(1))) = hi(P1,OP1(−1)⊕OP1))

=

 3 if i = 0,
0 otherwise.

In conclusion,

hi(S1, φ
∗(OP1 ⊕OP1(1))⊗OS1(D))) = hi(S1, φ

∗(OP1(−1)⊕OP1)) +

hi(P1,OP1 ⊕OP1(1))

= 3 + 1 = 4,
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and

hi(S1, φ
∗(OP1 ⊕OP1(1))⊗OS1(D)) = hi(P1,OP1(−1)⊕OP1)

= 0 for i > 0.

Hence in the Equation (5.21),

h0(S1, TS1/P1) = 4− 1 = 3,

and
hi(S1, TS1/P1) = 0.

Finally, from the relative tangent sequence;

0→ TS1/P1 → TS1 → φ∗TP1 → 0, (5.23)

we have
h0(S1, TS1) = h0(S1, TS1/P1) + h0(S1, φ

∗TP1), (5.24)

and for i > 0 we have hi(S1, TS1) = hi(S1, φ
∗TP1). But

0→ φ∗OP1 →
2⊕
i=1

φ∗OP1(1)→ φ∗TP1 → 0, (5.25)

and Riφ∗φ
∗F = F ⊗Riφ∗OS1 = 0 for all bundles F and i > 0. Therefore

h0(S1, φ
∗OP1) = h0(P1,OP1) = 1,

h0(S1, φ
∗OP1(1)) = h0(P1,OP1(1)) = 2 and

hi(S1, φ
∗OP1) = hi(S1, φ

∗OP1(1)) = 0 for i > 0. Hence

h0(S1, φ
∗TP1) = 2h0(S1, φ

∗OP1(1))− h0(S1,OP1) = (2)(2)− 1 = 3,

and h0(S1, φ
∗TP1) = 0 otherwise. Therefore from Equation (5.24) h0(S1, TS1) = 6 and

hi(S1, TS1) = 0 for i > 0.

Lemma 5.4.5

h0(D, TW |D) = h0(D, TD) + h0(D,ND/W ) = 5,

and hi(D, TW |D) = 0 for i > 0.
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Proof: As well, for P1 = D = S1 ∩ S2 we have

0→ TD → TW |D → ND/W → 0, (5.26)

and
0→ ND/S2 → ND/W → (NS2/W )|D → 0, (5.27)

where
ND/S2 = OP1(1),

and
(NS2/W )|D = OD(−1) ∼= OP1(−1).

Since
hi(P1,OP1(1)) = 0,

for i > 0, we get hi(D,ND/W ) = 0 for i > 0 and

h0(D,ND/W ) = h0(P1,OP1(1)) = 2.

Also, TD = TP1 =
2⊕
i=1
OP1(1)/OP1 ∼= OP1(2), so h0(D, TD) = 3 and

hi(D, TD) = 0

for i > 0. Hence Short exact Sequence 5.26 yields:

h0(D, TW |D) = h0(D, TD) + h0(D,ND/W ) = 5,

and hi(D, TW |D) = 0 for i > 0.

Continuation of the proof:

Putting calculations in Lemma 5.4.3, Lemma 5.4.4 and Lemma 5.4.5 together and
using the exact sequence

0→ TW |S → i1∗TW |S1 ⊕ i2∗TW |S2 → TW |D → 0, (5.28)

(where i1 : S1 → S and i2 : S2 → S) we get:

0→ H0(S, TW |S)→
2⊕
i=1

H0(Si, TW |Si) → H0(D, TW |D)→δ

H1(S, TW |S)→ 0,
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where
2⊕
i=1

H0(Si, TW |Si) ∼= C6 × C8 and H0(D, TW |D) ∼= C5. Hence

h0(S, TW |S)− h1(S, TW |S) = 9.

Now the short exact sequence

0→ TS → TW |S → NS/W → 0, (5.29)

together with the equalities NS/W = OS , h0(S,OS) = 1 and h1(S,OS) = 0, imply

h0(S, TS)− h1(S, TS) = h0(S, TW |S)− h1(S, TW |S)− 1 = 8.

Let P = Pt−1 × Ps−1 where t+ s = n and

P

π1
��

π2 // Ps−1

Pt−1

are the projections. We have a short exact sequence of fiber bundles

0→ π∗1OPt−1 ⊕ π∗2OPs−1 → π∗1(⊕tOPt−1(1))⊕ π∗2(⊕sOPs−1(1))→ TP → 0. (5.30)

Tensoring this with OS1 and OS2 , respectively, we get

0→ OS1 ⊕OS1 → (⊕tOS1(F1))⊕ (⊕sOS1(L1))→ TP |S1 → 0,

and
0→ OS2 ⊕OS2 → (⊕tOS2(1))⊕ (⊕sOS2)→ TP |S2 → 0.

Using OS1(F1) = φ∗(OP1(1)) and OS1(L1) = g∗(OP2(1)) we get h0(S1, TP |S1) =
2t+ 3s− 2,
hi(S1, TP |S1) = 0 for i > 0,
h0(S2, TP |S2) = 3t+ s− 2,
hi(S2, TP |S2) = 0 for i > 0.
From tensoring the Short Exact Sequence 5.30 with OD for D = S1 ∩ S2 ∼= P1 we
have;

0→ OP1 ⊕OP1 → (⊕tOP1(1))⊕ (⊕sOP1)→ TP |D → 0.

So h0(D, TP |D) = 2t+ s− 2 and hi(D, TP |D) = 0 for i > 0.
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Moreover, from the short exact sequences on global sections induced by the above
presentation, we see that the short exact sequence

0→ OS → i1∗(OS1)⊕ i2∗(OS2)→ OD → 0,

tensored by TP , yields an exact sequence of global sections:

0→ H0(S, TP |S)→ H0(S, TP |S1)⊕H0(S, TP |S2)→ H0(D, TP |D)→ 0.

Hence

h0(S, TP |S) = h0(S1, TP |S1) + h0(S2, TP |S2)− h0(D, TP |D)

= 2t+ 3s− 2 + 3t+ s− 2− 2t− s+ 2

= 3n− 2,

and hi(S, TP |S) = 0 for i > 0.

Finally, the short exact sequence for i : S → Z is as folow;

0→ TS → i∗(TZ)→ NS/Z → 0.

Hence

0→ H0(S, TS)→ H0(S, i∗(TZ))→ H0(S,NS/Z)→ H1(S, TS)→

H1(S, i∗(TZ)) = 0→ H1(S,NS/Z)→ H2(S, TS) = 0,

Hence h1(S,NS/Z) = 0 and

h0(S,NS/Z) = h0(S, i∗(TZ))− h0(S, TS) + h1(S, TS)

= −8 + 3n− 2

= 3n− 10,

while the torus bundle Tij overMij has dimension (n−2)+3(n−3)−(n−1) = 3n−10.

2
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Chapter 6

Compactification of Arrangements of
Lines in Planes as Inverse Limit

In the previous chapters we have constructed various GIT quotients of G(3, n) by
(C∗)n and their flips, and we presented these as moduli problem of arrangements of
lines in planes or other rational surfaces. The universal families for these moduli spaces
exhibited lines which were allowed to coincide or intersect in special ways. We would
like to construct a compact family of planes with the property that all lines are in gen-
eral position. We do not want that in a plane three or more lines pass through a point
and also we do not want in a plane two or more lines to coincide. Hence we have to
replace planes which exhibit at least one of these problems with other surfaces which
do not have such a problem. Thus this replacement is a compactification of the space
of arrangements of lines in planes in general position constructed in Definition 5.2.3.

The first section describes the image of G(3, n)/(C∗)n−3 under moment map. This
description is necessary for understanding special loci in the inverse limit of GIT quo-
tients ofG(3, n) by maximal torus. The second section defines a functor which satisfies
the desired properties and the third section states the main result of this thesis for the
Grassmannian variety G(3, n) namely, we construct a scheme which represents the
functor.

6.1 The Moment Map of (P2)n−3

We start by considering the family of GIT quotients ofG(3, n) which are also described
as (P2)n−3/(C∗)2.
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6. COMPACTIFICATION OF ARRANGEMENTS
OF LINES IN PLANES AS INVERSE LIMIT 6.1 The Moment Map of (P2)n−3

Consider the natural torus action of T = (C∗)n on G(3, n) as described in Section 2.2
and the sub-torus T ′ = (C∗)n−3 which omits the triple ti, tj and tk for fixed 1 ≤ i <

j < k ≤ n. A natural unique GIT quotient of G(3, n) by T ′ (The linearisation coming
from the standard linearisation on G(3, n) induced by the action of torus on Pn−1) is

G(3, n)//T ′ = Ui,j,k/T
′

∼= P2 × P2 × · · · × P2︸ ︷︷ ︸
n−3

,

where Ui,j,k = {[Λ] ∈ G(3, n) ; pijk([Λ]) 6= 0; Λ has no zero column }.

The quotient of F by T ′ is a universal family over G(3, n)//T ′
F//T ′

p1
��

G(3, n)//T ′.

The induced (C∗)2–action on (P2)n−3 is given by

(u′, v′).((r1,l : r2,l : r3,l))l = ((u′−1r1,l : v′−1r2,l : r3,l))l.

for an arbitrarily chosen (u′, v′) ∈ (C∗)2. So G(3, n)//T ′ can be understood as the
moduli space parameterizing n − 3 lines in P2. The choice of the triple ti, tj and tk
count for the 3 lines. Note that for this moduli space 2 sets of n−3 lines determine the
same point in the moduli space if and only if the lines are the same (it is not enough
condition to have an automorphism of P2 sending one set of lines to the other set).

Next we will construct the moment map for the (C∗)2–action on (P2)n−3. Consider the
Segre embedding

(P2)n−3 −→ PN (6.1)

((r1l : r2,l : r3,l))l 7→ ((
n−3∏
l=1

rill); il = 1, 2, 3), (6.2)

where N = (3)n−3−1. We can construct the moment map as in Equation (4.1). Recall
that µ = At ◦µ(C∗)N |(P2)n−3

where A is the matrix given by weights of the (C∗)2–action

on PN .

Lemma 6.1.1 The image of µ after tilting the Y coordinate is as bellow and each

chamber is a triangle where sides are X = i, Y = j and Z = k.
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(0, 1)

(0, 2)

(0, 3)

(0, 4)

(0, n− 4)

(0, n− 3)

(n− 3, 0)(1, 0) (2, 0) (3, 0) (4, 0) (n− 4, 0)(0, 0)

Figure 6.1: Image of Moment Map

For each point P (i, j) in the net above let k = n− 3− i− j. We can think of (i, j, k)
as the trilinear coordinates of P .

For every point P (i, j, k) with i, j and k positive integers so that i + j + k = n − 3,
we have P = µ(x) where x = ((r1l : r2l : r3l))l∈{1,2,3,...,n−3} has i coordinates triples
of the form (1 : 0 : 0), j coordinates triples of the form (0 : 1 : 0) and k coordinates
triples of the form (0 : 0 : 1). Note that there are (n−3)!

i!j!k! such points. Hence the nodes
of the net are the images of all the

∑
i+j+k=n−3

(n− 3)!
i!j!k! = 3n−3,

(C∗)2–fixed points. Note that (C∗)2 has three important sub-tori; C∗ × {1}, {1} × C∗

and 4 = {(u, u) : u ∈ C∗}. The walls in this net are the images through µ of the
fixed point loci with respect to these sub-tori. Note that the three sub-tori naturally
correspond to three directions in the net. The net segment given by the equation X = i

is the image through µ of the loci given by (r1l : r2l : r3l) = (1 : 0 : 0) for i values of
l and (r1l : r2l : r3l) = (0 : r2l : r3l) for the remaining values of l. Note that these are
fixed loci for C∗ × {1}. Similarly for the other trilinear coordinates j and k.

Now we describe the generic point for each orbit mapped by µ to the region between
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6. COMPACTIFICATION OF ARRANGEMENTS
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X = i and X = i′. For other fixed loci the argument would be similar.

µ(x)

X = i′ X = i

x

µµµ

lim
t→0

(t, 1).x lim
t→∞

(t, 1).x

Here lim
t→0

(t, 1).x is a point in (P2)n−3 given by (n − 3) triples (r1l : r2l : r3l), among
which (1 : 0 : 0) appears i′ times and r1l = 0 for the remaining triples. As well lim

t→∞
t.x

is a point in (P2)n−3 given by (n − 3) triples (r1l : r2l : r3l), among which r1l = 0
exactly n− 3− i times and all the other triples are (1 : 0 : 0).

So we have

{x =((r1,l : r2,l : r3,l))l ∈ (P2)n−3 : µ(lim
t→0

(t, 1).x) ∈ (X = i′)} =

{x = ((r1,l : r2,l : r3,l))l : there exist a partition of {1, 2, ..., n− 3} = I ∪ J

such that r2,l = r3,l = 0 for every l ∈ I and r2,l 6= 0 and r3,l 6= 0 for every l ∈ J

where |I| = i′}.
(6.3)

Also

{x =((r1,l : r2,l : r3,l))l ∈ (P2)n−3 : µ( lim
t→∞

(t, 1).x) ∈ (X = i)} =

{x = ((r1,l : r2,l : r3,l))l : there exist a partition of {1, 2, ..., n− 3} = I ∪ J

such that r1,l 6= 0 for every l ∈ I and r1,l = 0 for every l ∈ J where

|I| = i and |J | = n− 3− i}.
(6.4)

In conclusion points x such that µ(C∗x) is the entire interval (i′, i), will have exactly
i′ triples (1 : 0 : 0) and exactly n− 3− i triples with r1,l = 0.

Using a similar argument we can describe the generic points for each (C∗)1–orbit

The inverse limit of GIT quotients of
Grassmannians by the maximal torus

64 Vahid Yazdanpanah
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mapped between two fixed loci Z = k and Z = k′ and between two fixed loci Y = j

and Y = j′. Indeed, for (Y = j) we have

{x =((r1,l : r2,l : r3,l))l ∈ (P2)n−3 : µ(lim
t→0

(1, t).x) ∈ (Y = j)} =

{x =((r1,l : r2,l : r3,l))l : there exist a partition of {1, 2, ..., n− 3} = I ∪ J

such that r1,l = r3,l = 0 for every l ∈ I and r1,l 6= 0, r3,l 6= 0 for every l ∈ J

where |I| = j and |J | = n− 3− j}.
(6.5)

Also

{x =((r1,l : r2,l : r3,l))l ∈ (P2)n−3 : µ( lim
t→∞

(1, t).x) ∈ (Y = j)} =

{x =((r1,l : r2,l : r3,l))l : there exist a partition of {1, 2, ..., n− 3} = I ∪ J

such that r2,l 6= 0 for every l ∈ I and r2,l = 0 for every l ∈ J

where |I| = j and |J | = n− 3− j}.

(6.6)

For (Z = k) we have the following:

{x =((r1,l : r2,l : r3,l))l ∈ (P2)n−3 : µ( lim
t→∞

(t, t).x) ∈ (Z = k)} =

{x =((r1,l : r2,l : r3,l))l : there exist a partition of {1, 2, ..., n− 3} = I ∪ J

such that r1,l = r2,l = 0 for every l ∈ I and r1,l 6= 0, r2,l 6= 0 for every l ∈ J

where |I| = k and |J | = n− 3− k}.
(6.7)

Also

{x =((r1,l : r2,l : r3,l))l ∈ (P2)n−3 : µ(lim
t→0

(t, t).x) ∈ (Z = k)} =

{x =((r1,l : r2,l : r3,l))l : there exist a partition of {1, 2, ..., n− 3} = I ∪ J

such that r3,l 6= 0 for every l ∈ I and r3,l = 0 for every l ∈ J

where |I| = k and |J | = n− 3− k}.

(6.8)

Now we want to describe points mapped between two different nonparallel walls. Con-
sider the points in the shaded region here:
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P (i, j, k)
Y = j

X = i Z = k

From Equations (6.6) and (6.7), the fiber of the universal family over each point x such
that µ(C∗x) is the shaded region , contains n−3−j lines with equation r1,lx+r3,lz = 0
for l ∈ J and a k–tuple line z = 0 (Since at the limit the orbits meet Y = j and Z = k)

(0 : 0 : 1)

(0 : 1 : 0) (1 : 0 : 0)

x = 0 y = 0

z = 0
the multiple line

P2

Rotating the shaded region in the hexagon above clockwise by 120 degrees and 240 de-
grees, respectively, around P , yields similar configurations for the fiber of the universal
family (but rotated counter-clockwise by 120 degrees and 240 degrees respectively).
The points mapped to the following region are described as follow.

P (i, j, k)
Y = j

X = i Z = k

From Equations (6.6) and (6.3) the fiber of the universal family over each point in the
pre-image of these points contains n − 3 − j lines with equation r1,lx + r3,lz = 0 for
l ∈ J and i–tuple line x = 0.
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(0 : 0 : 1)

(0 : 1 : 0) (1 : 0 : 0)

x = 0 y = 0
the multiple line

z = 0

P2

and similarly if we rotate by 120 degrees or 240 degrees around the center. The next
case we study is as follow:

P (i, j, k)
Y = j

X = i Z = k

From Equation (6.8) the fiber of the universal family over each point in the pre-image
of these points contains n− 3− k lines with equation r1,lx+ r2,ly = 0 for l ∈ J .

(0 : 0 : 1)

(0 : 1 : 0) (1 : 0 : 0)

x = 0 y = 0

z = 0

P2

while
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P (i, j, k)
Y = j

X = i Z = k

corresponds to a plane with k copies of the line (z = 0). Now for the following case,

P (i, j, k)
Y = j

X = i Z = k

Figure 6.2

From Equations (6.7) and (6.3) the fiber of the universal family over each point in the
pre-image of these points contains two groups of special lines. The first group is a set
of i lines with equation x = 0 (an i–tuple line) and the second is a set of k lines z = 0
(a k–tuple line).

(0 : 0 : 1)

(0 : 1 : 0) (1 : 0 : 0)

x = 0
i lines

y = 0

z = 0
k lines

Similarly the generic points whose (C∗)2–orbit maps between two fixed loci Y = j

and Z = k have an (n− 3)–tuple of coordinates where in r2,l = 0 for n− 3− j times
and r3,l = 0 n− 3− k times.

The inverse limit of GIT quotients of
Grassmannians by the maximal torus

68 Vahid Yazdanpanah
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P (i, j, k)
Y = j

X = i Z = k

Figure 6.3

In the fiber of universal family over these type of points there are n−3−j lines through
(0 : 1 : 0) and n − 3 − k lines through (0 : 0 : 1). We obtain similar structures when
we rotate the above by 120 degrees or 240 degrees.

(0 : 0 : 1)

(0 : 1 : 0) (1 : 0 : 0)

x = 0 y = 0

z = 0

In fact this tells us that there are two types of triangular chambers in Figure 6.1. The
first group is made of all the triangles with a vertex pointing upwards (same orientation
as µ((P2)n−3). For a generic point among those whose orbits are mapped by µ inside
such a chamber, the fiber of the universal family F//T ′ over x is a projective plane
with line arrangements including (x = 0), (y = 0) and (z = 0) with some multiplicity.
The second group is made of all the triangles with a vertex pointing downwards. There
are no points in X whose orbits are mapped by µ inside such a chamber. Rather, the
smallest image of orbits µ(O(x)) containing such a triangle are actually rhombuses.
For a generic point of such orbit, the fiber of the universal family F//T ′ is a projective
plane with two different sets of lines, each set passing through one of the points (1 :
0 : 0), (0 : 1 : 0) or (0 : 0 : 1).
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6.2 Moduli Problem of Compactification of the Moduli
Space of Arrangements of Lines in Plane

This sections defines a moduli problem which generalizes the moduli problem of Ar-
rangements of Lines in Plane. We will prove that this functor is represented by the
inverse limit of the GIT quotients of G(3, n) by (C∗)n−1. Denote the moment map
for this action by µ(C∗)n−1 : G(3, n) → Rn−1. The notations from the introduction of
Section 5.3 will be employed. Recall from Remark 4.2.9 that the image of an orbit
via moment map is a convex hull made of union of polytops, with the same vertices
as the vertices of the image of Grrassmannian variety via moment map. We call such
polytopes ∆–polytopes.

Definition 6.2.1 Compactification of the moduli space of Arrangements of lines in
plane

Consider the functor

C : Sch → Set

B 7→ [(π : P → B,D1, D2, ..., Dn)],

associating to each scheme B all isomorphism classes of tuples (π,D1, . . . , Dn) con-

sisting of a flat morphism π : P → B and a set of flat families over B of re-

duced curves, Di embedded in P for each b ∈ B (close point), the fiber Pb is writ-

ten as Pb = ∪j∈ASj , where each Sj is either Blr(points)P2 (where r could be 0 and

also these points are distinct) or P1 × P1, and there exists a corresponding partition

µ(C∗)n−1(G(3, n)) = ∪j∈A∆j into convex polytopes

∆j = (∩l∈Lµ(C∗)n−1(Y +
l )) ∩ (∩l′∈L′µ(C∗)n−1(Y −l′ )),

and for each j ∈ A, a rational map φj : Pb → P2 such that:

(a) For all j, j′ ∈ A,

Sj ∩ Sj′ =


P1 ⇔ ∆j ∩∆j′ is a codimension 1 face,

point ⇔ ∆j ∩∆j′ is a codimension 2 face,

∅ otherwise,

and if Sj∩Sj′ 6= ∅ then Sj∩Sj′ 6⊆ Di, and if Sj∩Sj′∩Sj′′ 6= ∅ then Sj∩Sj′∩Sj′′ 6⊆
Di for all i.
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(b) For all j ∈ A and i ∈ {1, 2, ..., n} we have φj(Di ∩ Pb) = line in P2.

(c) With the notations from the introduction of Section 5.3, the sets

{i ∈ {1, 2, ..., n};φj(Di) are all the same line },

with at least 2 elements, are exactly the sets Il with l ∈ L. The sets

{i ∈ {1, 2, ..., n};φj(Di) all intersect at the same point},

with at least 3 elements are exactly the sets Jl′ with l′ ∈ L′.

(d) Consider the set Z = (∪l∈L,i∈Ilφj(Di)) ∪ (∪l′∈L′ ∩i∈Jl′ φj(Di)). Then φj restricts

to an isomorphism Pb \ φ−1
j (Z) ∼= P2 \ Z.

(e) (1) If Sj = BlrpointsP2, with r ≥ 0, then φj |Sj : Sj → P2 describes Sj as the blow-

up of P2 along the points where 3 or more lines of the form φj(Di) intersect.

(2) If Sj = P1 × P1, then φj |Sj : P1 × P1 → P2 is the birational map given by

projection from a point in P1×P1 ⊂ P3 and when Sj∩Sj′ 6= ∅ and Sj∩Di 6= ∅,
these are only fibers of one of the two projection P1×P1 → P1, when they are

nonempty.

(f) For every wall Wl corresponding to Si ∩ Sj , there exist a partition Il ∪ Ij =
{1, 2, ..., n} such that for every k ∈ Jl we have φi(Dk) = φi(Si ∩ Sj) and for

every k ∈ Il we have φi(SI ∩ Sj) ∈ φi(Dk).

Two tuples (π : P → B,D1, D2, ..., Dn) and (π′ : P ′ → B′, D′1, D
′
2, ..., D

′
n) are

isomorphic to each other if there exists a map φ : B′ → B and an isomorphism

φ̃ : P ′ → φ∗(P )

P ′ ∼= φ∗(P )

��

P

��
B′

φ // B,

such that φ̃ restricts to an isomorphism D′i
∼= φ∗(Di) for each i ∈ {1, ..., n}.

Note that (e) implies that no 3 curves among Dis intersect at a point.

Remark 6.2.1 For each surface that satisfies the conditions of Definition 6.2.1, there
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is a natural point in the inverse limit of GIT quotients of Grassmannian variety corre-

spondent to it. Each chamber Ck is inside a polytope ∆i. The chamber corresponds to

a GIT quotient Mi. Every ∆i corresponds to a surface Si which projects to a P2 via φi
such that φi(Dj) are lines in P2. From condition (f) and Proposition 4.2.10 every ∆i

corresponds to a point in the Mk.

Two disjoint chambers which their images under moment map corresponds to two ad-

jacent polytops (∆i,∆j) corresponds to a point in the flip. Also two disjoint chambers

which their images under moment map corresponds to the same polytope, their corre-

sponding chambers are in the same polytope.

6.3 Main Theorem

In this section first we build up the inverse limit of universal families over the inverse
limit of the GIT quotients of G(3, n) with the sub-torus (C∗)n−3. We recall the defini-
tion of an inverse limit. Let {Si}i∈I be a set of schemes and φ(i1,i2) : Si1 → Si2 , a set
of morphisms for any (i1, i2) ∈ J . Let f be the morphism

f :
∏

(i1,i2)∈J
Si1 →

∏
(i1,i2)∈J

Si2 ,

where it is defined component wise by φ(i1,12). Let ∆ be the diagonal in
∏

(i1,i2)∈J Si2 .
The inverse limit defines as

lim←−Si = f−1(∆).

We will prove that the functor of compactification of arrangements of lines in planes,
that we have defined in the previous section, can be represented with the inverse limit
of GIT quotients of Grassmannians.

Theorem 6.3.1 The functor of compactification of arrangements of lines in planes can

be represented by the inverse limit of GIT quotients of Grassmannian varieties.

Now we start building up the inverse limit. Recall the following diagram
F

��

// Pn−1 = Proj(C[x1, . . . , xn])

G(3, n),

where F = F (1, 3, n) is the Flag variety. Note that each GIT quotient parameterizes
sets of n lines in plane. For instance for a point x ∈ G(3, n) and two arbitrary elements
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t and t′ in the torus acting on G(3, n) we have a class of planes with lines in them as
below:

Ft.x

t.x

Ftt′.x

tt′.x

Fx

x
t. t′.

Before going through the proof we need to explain how we construct this inverse limit.
Variation of GIT gives us birational morphisms between various GIT quotients. In
general we construct the inverse limit using fiber product of GIT quotients via such
morphisms.

We start with building up the universal family over inverse limit of GIT quotients of
Grassmannian variety. We start with the following inverse system as shown in the
following diagram. The elements in the first (lowest) row are the GIT quotients of the
Grassmannian variety. Recall that there is finite number of them. The elements in the
second row are the elements on the top of the flips which are either the blow-up of an
element of the first row or they are isomorphic to the elements on the first row which is
a blow-up along a divisor. Then the elements in the next rows are just the fiber product
of the elements below them. So we have the following diagram
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M

##zz

...

Mijk

""||

Mjkl

""||

...

}}
��

...

�� ��Mij

""}}

Mjk

""||

Mkl

!!||

...

��
��

...

�� ��Mi Mj Mk Ml ... ...

where M = lim←−Mi, Mijk = Mij ×Mj
Mjk, Mjkl = Mjk ×Mk

Mkl and etc. Note that
this diagram is not a tree and there might be loops in there if we make an abstraction
of the orientation of the arrow. For example we might have a blow up map from Mjk

to Mi.

Now we wish to construct a universal family over this limit. A first candidate would
seem to be the inverse limit of pull backs of universal families, constructed as follows:
let Ui be the universal family overMi, (enjoying the properties of Definition 5.3.1) and
Uij the universal family of Mij (enjoying the properties of Definition 5.4.1). We pull-
back the families Ui, Uij and the maps between them, to the inverse limit M = lim←−Mi.
Thus we obtain a system of maps

πij
∗Uij

$$zz

πjk
∗Ujk

%%zz

...

||
πi
∗Ui πj

∗Uj πk
∗Uk

(Where πi : M → Mi and πij : M → Mij are the natural maps). We complete this to
an inverse system by taking the fiber products of the existing maps. The inverse limit
Ũ of this inverse system has a natural map to M , and the generic fiber is a surface.
Unfortunately, some of the fibers of Ũ → M might be higher dimensional. When the
inverse system is generated by three GIT quotients Mi,Mj and Mk, consider the flips
Mij and Mjk with the universal families Uij and Ujk mapping to the universal family
Uj over Mj . We take the fiber products like in the diagram:
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q̂j
∗(Uij)×p̂k∗p∗kUj p̂k

∗(Ujk)
ψ

�� ((vv
Uij

��

((

Mij ×Mj
Mjk

q̂j

||

p̂k

""

Ujk

uu

��

Uj

��

Mij

qj

))

pi

}}

Mjk

qk

!!

pk

uu
Mi Mj Mk

Figure 6.4

In the case of taking fiber product of fibers we may need to refine our construction so
that we eventually obtain a family of surfaces U → M . In order to construct U , we
will first need to gain a detailed understanding of the special loci inM and the surfaces
parameterized by them.

Recall the image of the moment map for the (C∗)2–action on G(3, n)//T ′ ∼= (P2)n−3:

(0, 1)

(0, 2)

(0, 3)

(0, 4)

(0, n− 4)

(0, n− 3)

(n− 3, 0)(1, 0) (2, 0) (3, 0) (4, 0) (n− 4, 0)(0, 0)

Figure 6.5

For each chamber Ci in µ(C∗)2((P2)n−3), let Mi be the corresponding GIT quotient
(C∗)2µ−1(C◦i )//(C∗)2, and consider the projection πi : M → Mi from M , the inverse
limit of GIT quotients, to Mi. Note that as (P2)n−3 is the quotient of G(3, n) by
(C∗)n−3 and Mi is the quotient of (P2)n−3 by (C∗)2, Mi is also the GIT quotient of
G(3, n) by (C∗)n−1. Indeed for each (C∗)n−1 linearization of O(1) on G(3, n) we
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pick (C∗)n−3 ⊂ (C∗)n−1 such that G(3, n)ss(C∗)n−1(O(1)) ⊂ G(3, n)ss(C∗)n−3(O(1)). The
(C∗)n−1 linearizatin of O(1) induces a (C∗)2 linearization of O(1) on (P2)n−3. From
the point of view of moment map, the image of the moment map for µ(C∗)2 : (P2)n−3 →
R2 is the section of the image of the moment map µ(C∗)n−1 : (P2)n−3 → Rn−1.

Consider now a node P in Image(µ(C∗)2), that is, the image of a fixed locus of (C∗)2.
We saw that there are 6 regions in Image(µ(C∗)2) around the node which are not on the
axis:

R3

R2
R1

R4
R5

R6

P

and within each chamber Ri, a chamber Ci corresponding to a GIT quotient Mi (i ∈
{1, ..., 6}).

Definition 6.3.1 To each partition P = (∪i∈IRi)I we associate a stratum (locally

closed subset) YP of M as follows:

• For each i ∈ I ⊂ {1, 2, ..., 6}, we define Y i
I ⊂ Mi to be the locus of points

[x] ∈ Mi such that µ((C∗)2.x) ⊂ ∪i∈IRi and µ((C∗)2.x) contains the walls

bounding ∪i∈IRi (in the neighborhood of P ).

• We define YP to be the locus of points [x] ∈ M such that πi([x]) ∈ Y i
I for each

i ∈ {1, 2, ..., 6} and all I in the partition P .

The region around the point P can be partitioned into unions of regions bounded by
walls, e.g.

R3 ∪R2 R1

R4 R5 ∪R6

P

or

R3 ∪R2

R4 ∪R5

R1 ∪R6

P

etc.

Our purpose is to give a natural description of the fibers of U →M over generic points
in the locus YP for various partitions P .

Now we start studying different partitions P around the image of a locus fixed by

The inverse limit of GIT quotients of
Grassmannians by the maximal torus

76 Vahid Yazdanpanah



6. COMPACTIFICATION OF ARRANGEMENTS
OF LINES IN PLANES AS INVERSE LIMIT 6.3 Main Theorem

(C∗)2. Up to rotations by 120◦ the following are all the possible partitions which are
6 triangles (case h), 1 parallelogram and 4 triangles (case d and g) , 2 parallelograms
and 2 triangles (case a, b and f), 2 trapezoids (case e) or 3 parallelograms (case c):

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Case (h) consists of six triangles and case (i), corresponding to {1, 2, ..., 6}, consists of
the entire region around P .

(i)

Note for example that the following case can’t happen.
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A

P

There is no point in M = lim←−Mi corresponding to such a combination of orbits.
Indeed, following [7], for any [x] in the sub-locus ofM represented below, the closures
of the orbits represented by π5([x]) and π6([x]) share a common 1-dimensional orbit
fixed by C∗ × {1} ⊂ (C∗)2 (see beginning of section 1). Let y be a point on this
1-dimensional orbit such that is a limit point for the orbit represented by π5[x], then
via the action of ∆ = {(u, u);u ∈ C∗} we have µ(limu→∞ u.y) = P , while writing y
as a limit point for the orbit represented by π6[x] given µ(limu→∞ u.y) = A which is a
contradiction as A 6= P .

To construct the inverse limit of GIT quotients in each case we start with three consec-
utive chambers. Denote Mi = (C∗)2µ−1(Ri)//(C∗)2 for i = 1, 2, ..., 6. As it is shown
in the following diagram we consider the inverse system associated to the 3 regions
R3, R4 and R5:

M345

{{ ##
M34

##||

M45

""{{
M3 M4 M5

where I = {3, 4, 5} and M345 = lim←−i∈IMi = M34 ×M4 M45.

Recall that in Definition 5.4.1 we defined the moduli problem for two GIT quotients
and the flip between them. This definition applies to spaces M34 and M45 above.
Now it is time to define the moduli problem for three consecutive chambers where the
middle one is of second group (as defined at the end of Section 6.1 Figure 6.3).

In fact, there are two ways to define the moduli problem as follows.

Definition 6.3.2 The First Moduli Problem for The Partial Inverse Limit of Three
GIT Quotients Consider three fixed chambers Ck, Ch and Cj such that {k, h, j} =
{3, 4, 5} or {1, 2, 3} or {5, 6, 1} and the first two chambers share a wall Wl and the

last two chambers share the wall Wl′ . Consider Il ∪ Jl = Il′ ∪ Jl′ = {1, 2, ..., n}
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partitions associated to the walls Wl and Wl′ . With the conventions used in Section

5.3, note that Il ∩ Il′ = ∅ (as we have 2 different lines given by x = 0 and y = 0 and

the line {`i}i∈Il coincide with x = 0 and the lines {`i}i∈Il′ coincide with y = 0), hence

Il ⊂ Jl′ and Il′ ⊂ Jl. Consider the functor

Ukhj : Sch → Set

B 7→ [(π : P → B,D1, ..., Dn)],

associating to each scheme B all isomorphism classes of tuples

(π : P → B,D1, ..., Dn),

consisting of a flat morphism π : P → B whose fibers Pb are all connected and are

either P2 or P2 ∪P1 BlpointP2 or P2 ∪P1 Bl2(points)P2 ∪P1 P2 (P1 in BlpointP2 is the

exceptional divisor and two P1 in Bl2pointP2 are the different exceptional divisors) and

such that the restrictions `1,b, `2,b, ..., `n,b of the reduced curves D1, D2, ..., Dn to the

fiber Pb satisfy:

• if Pb = P2, then all `i,b are lines.

• if Pb = P2 ∪P1 BlpointP2, then either for all i ∈ Il, or for all i ∈ Il′ , we have

Li := `i,b sections of the projection on the exceptional divisor BlpointP2 → P1,

and all other `i,b are the connected unions of a fiber of φ : BlpointP2 → P1, with

a line in P2.

• if Pb = P2 ∪P1 Bl2pointsP2 ∪P1 P2, then we can denote the two planes by P2
l and

P2
l′ , and the projections to the exceptional divisors φl : Bl2pointsP2 → P 1

l and

φl′ : Bl2pointsP2 → P 1
l′ such that P 1

l ⊂ P2
l and P 1

l′ ⊂ P2
l′ are the exceptional

divisors in Bl2pointsP2. Then

– for each i ∈ Il, the restrictions `i,b are connected unions of a fiber of φl′

with a line in P2
l′ , and similarly if we swap l with l′.

– for all i ∈ Jl ∩ Jl′ , `i,b is a connected union between a line in P2
l , a line in

P2
l′ and the strict transform of the line PQ in BlP,QP2.

In general for all fibers Pb

• if `i1,b = `i2,b = ... = `ia,b then {i1, ..., ia} ⊆ I for some I ∈ A+
k ∪ A+

h ∪ A+
j ,

and Il 6= {i1, ..., ia} 6= Il′ ,

• if `j1,b, `j2,b, ..., `jc,b have a point in common then {j1, j2, ..., jc} ⊆ J for some

J ∈ A−k ∪ A−h ∪ A−j , and Jl 6= {j1, j2, ..., jc} 6= Jl′ ,
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where A+
k ,A−k ,A+

h ,A−h ,A+
j and A−j are as defined in Section 5.3.

Two tuples (π : P → B,D1, D2, ..., Dn) and (π′ : P ′ → B′, D′1, D
′
2, ..., D

′
n) are

isomorphic to each other if there exists a map φ : B′ → B and an isomorphism

φ̃ : P ′ → φ∗(P )

P ′ ∼= φ∗(P )

��

P

��
B′

φ // B,

such that φ̃ restricts to an isomorphism D′i
∼= φ∗(Di) for each i ∈ {1, ..., n}.

Remark 6.3.2 Note that the strict transform for PQ in π : BlP,QP2 → P2 is the

unique global section of O(π∗H − E1 − E2), while the fibers of BlP,QP2 → Ei for

i = 1, 2 can be thought of as the global sections of O(π∗H −Ei). (here H = OP2(1))

Theorem 6.3.3 Let’s assume the chambers Ck, Ch and Cj are as in the previous defi-

nition. Then the scheme Mkhj = Mkh ×Mh
Mhj represents the functor defined above,

where Mk,Mh and Mj are the GIT quotients corresponding to Ck, Ch and Cj , respec-

tively. Also Ukhj = p∗khUk×p∗hUh p
∗
hjUj represents the universal family overMkhj where

Uk, Uh and Uj are the universal families over Mk,Mh and Mj respectively.

Proof: Consider the following diagram:

Ukhj

$$zz
p∗khUkh

{{ $$

p∗hjUhj

zz ##
Ukh

qkh

��

p∗hUh Uhj

qhj

��

Mkhj

uu ))
Mkh

}} ))

Mhj

uu !!
Mk Mh Mj

Figure 6.6: Inverse limit of the universal families over the inverse limit of three GIT
quotients

where for T = (C∗)2,
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Mk = T.µ−1(C◦k)/T ,
Mh = T.µ−1(C◦h)/T ,
Mj = T.µ−1(C◦j )/T ,
Mkh and Mhj are the flips, Mkhj = Mkh ×Mh

Mhj , Ukh and Uhj are universal families
over Mkh and Mhj respectively, where ph : Mkhj → Mh, pkh : Mkhj → Mkh and
phj : Mkhj → Mhj are the natural contractions, and Uk, Uh and Uj are the universal
families over Mk,Mh and Mj respectively.

We claim that the family (p : Ukhj → Mkhj, `1, ..., `n) is the universal family over
Mkhj , for the given moduli problem. Note that Ukhj is obtained by gluing open sets
from p∗khUkh and p∗hjUhj . So it is flat over Mkhj . Next we want to show that for any
tuple

(f : F → B,D1, D2, ..., Dn),

satisfying the conditions in Definition 6.3.2; there is a unique map ψ : B →Mkhj such
that

F
f

��

// Ukhj

��
B

ψ //Mkhj,

is a fiber product i.e. F ∼= ψ∗(p−1
1 (U ′)/(C∗)n) and Di

∼= ψ∗(`i).

We first check that (p : Ukhj → Mkhj, `1, ..., `n) satisfies the conditions in Definition
6.2. To construct the blow-up of the projective plane in two points P and Q, two blow-
ups BlPP2 and BlQP2 can be glued together via BlPP2 \ (E1∪{̃Q}) ∼= P2 \{P,Q} ∼=
BlQP2 \ (E2 ∪ {̃P}) where E1 and E2 are the exceptional divisors. As a consequence,
P2 ∪P1 BlP,QP2 ∪P1 P2 can be regarded as the fiber product of P2 ∪P1 BlP,QP2 and
BlP,QP2 ∪P1 P2 over P2 , via the maps contracting the two planes to the points P and
Q respectively, like in the diagram.

Q̃ P̃

P Q

P2
BlP P2

P2
BlQP2
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Thus the fibers of qkhj : Ukhj → Mkhj satisfy the condition of Definition 6.3.2. In fact
if [x] ∈Mkhj is such that q−1

khj[x] is P2 ∪P1 BlP,QP2 ∪P1 P2, then the Cartesian diagram
at the top of Figure 6.6 restricts over [x] to:

P Q

P2
l ∪BlP P

2 BlQP2 ∪ P2
l′

P2
l ∪P1 BlP,QP2 ∪P1 P2

l′

Contracting along P2
l

Contraction along P2
l′

Figure 6.7

where the lines in red represent `i with i ∈ Il′ , those in blue represent `i with i ∈ Il,
and the green ones `i with i ∈ Jl ∩ Jl′ .

A flat family fkh : Fkh → B which satisfy the condition of Definition 5.4.1, is
constructed from f : F → B by contracting the fibers which are isomorphic to
P2 ∪P1 Bl2pointsP2 ∪P1 P2 along P2

l . This contraction can be defined as F = Proj ⊕n
OF(nDi) → Proj ⊕n f∗OF(nDi) for some i ∈ Il (such that Di ∩ P2

l = ∅). Hence
from Theorem 5.4.1, there exists a unique map ψkh such that

Fkh
fkh
��

// Ukh

��
B

ψkh //Mkh,

is a fiber product. Also from definition of Mkhi, the map ψkh factors through Mkhj

which provides the following diagram.
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Fkh

fkh

��

##

// Ukh

��

p∗khUkh

��

::

B
ψkh //

ψ′kh

##

Mkh

Mkhj

::

Note that the
pkh
∗Ukh

��

// Ukh

��
Mkhj

//Mkh,

is a fiber product, hence
Fkh

��

// p∗khUkh

��
B

ψ′kh //Mkhj,

is a fiber product.

Similarly we create fhj : Fhj → B of a flat family of surfaces and therefore there exist
a unique map ψ′hj such that

Fhj

��

// p∗hjUhj

��
B

ψ′hj //Mkhj,

is a fiber product. We also create the family fh : Fh → B by contracting the other P2

in the special fibers isomorphic to P2 ∪P1 Bl2pointsP2 ∪P1 P2. Thus F = Fkh ×Fh Fhj .

From the existence of ψ′hj, ψ
′
kh and ψ′h, there exist a unique ψkhj : B →Mkhj such that

F = Fkh ×Fh Fhj

��

// Ukhj

��
B

ψkhj//Mkhj = Mkh ×Mh
Mhj,

is a fiber product where ψkhj = (ψ′kh, ψ′hj) for Mkhj = Mkh ×Mh
Mhj . 2

Definition 6.3.3 The Second Moduli Problem for The Partial Inverse Limit of Three
GIT Quotients Consider three fixed chambers Ck, Ch and Cj as in Definition 6.3.2,

such that the first two chambers share a wall Wl and the last two chambers share the

wall Wl′ . Consider Il ∪ Jl = Il′ ∪ Jl′ = {1, 2, ..., n} partitions associated to the walls
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Wl and Wl′ . Consider the functor

U ′khj : Sch → Set

B 7→ [(π : P → B,D1, ..., Dn)],

associating to each scheme B the set of all isomorphism classes of tuples

(π : P → B,D1, ..., Dn),

consisting of a flat morphism π : P → B whose fibers Pb are all connected and are

either P2 or P2 ∪P1 BlpointP2 or P2 ∪P1 (P1× P1)∪P1 P2 and such that the restrictions

`1,b, `2,b, ..., `n,b of the reduced curves D1, D2, ..., Dn to the fiber Pb satisfy:

• if Pb = P2, then all `i,b are lines.

• if Pb = P2 ∪P1 BlpointP2, then either for all i ∈ Il, or for all i ∈ Il′ , we have

Li := `i,b sections of the projection on the exceptional divisor BlpointP2 → P1,

and all other `i,b are the connected unions of a fiber of φ : BlpointP2 → P1,

with a line in P2 intersecting the fiber at a point on the exceptional divisor of

BlpointP2.

• if Pb = P2 ∪P1
l

(P1 × P1) ∪P1
l′
P2, then we can denote the two planes by P2

l and

P2
l′ , and the projections φl : P1 × P1 → P1

l and φl′ : P1 × P1 → P1
l′ such that

P1
l ⊂ P2

l and P1
l′ ⊂ P2

l′ . Then

– for all i ∈ Jl∩Jl′ , then `i,b ⊂ P1×P1 are unions of two lines, one in each P2,

and intersecting at the point of intersection P1
l∩P1

l′ ⊂ (P1×P1)∩P2∩P2,

– for all i ∈ Il, then `i,bs are connected unions of a fiber of φl′ and a line in

P2
l′ , and similarly if we swap l with l′,

In general for all fibers Pb

• if `i1,b = `i2,b = ... = `ia,b then {i1, ..., ia} ⊆ I for some I ∈ A+
k ∪ A+

h ∪ A+
j ,

and Il 6= {i1, ..., ia} 6= Il′ ,

• if `j1,b, `j2,b, ..., `jc,b have a point in common then {j1, j2, ..., jc} ⊆ J for some

J ∈ A−k ∪ A−j ∪ A−j , and Jl 6= {j1, j2, ..., jc} 6= Jl′ ,

where A+
k ,A−k ,A+

h ,A−h ,A+
j and A−j are as defined in Section 5.3.

The isomorphism conditions are as in Definition 6.3.2.

Remark 6.3.4 Some of Dis might not be Cartier divisors in P as for example in the
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following case

P2 ∪P1 (P1 × P1) ∪P1 P2

To understand the transition from BlP,QP2 in Definition 6.3.2 to P1 × P1 in Definition
6.3.3 we will start with the following lemma.

Lemma 6.3.5 Given the blow-up π : Bl{P,Q}P2 → P2, the strict transform l := P̃Q

of the line PQ has self-intersection −1.

Proof: Consider the blow-up morphism π : Bl{P,Q}P2 → P2 and denote l′ := PQ

and l = P̃Q, and E = E1 + E2 =the sum of the exceptional divisors. Then

1 = (π∗(l′))2 = l2 + E2 + 2l.E = l2 − 2 + 4 = l2 + 2,

hence l2 = −1. 2

Theorem 6.3.6 Both moduli problems introduced in Definition 6.3.2 and Definition

6.3.3, are represented by the same smooth variety.

Proof: First the smoothness is a consequence of the fact that the strata of the blow-
ups M34 → M4 and M45 → M4 intersect transversally. This can be easily seen in the
preimage of M4 in G(3, n).

Now for any scheme B, suppose (f : F → B,D1, ..., Dn) is a family which satisfies
conditions of Definition 6.3.2. With the notations from Definition 6.3.2, let L :=
OF(∑i∈Il∪Il′ Di) and consider the morphism

g : Proj(⊕nL⊗n)→ Proj(⊕nf∗L⊗n).

Note thatF = Proj(⊕nL⊗n) and letF ′ := Image(g). For those b ∈ B such thatFb =
P2 or P2∪P1 BlpointP2, we can easily check that L|Fb is very ample, and therefore Fb ∼=
F ′b. Indeed let r = |Il|+|Il′ |. ThenL|P2

∼= OP2(|Il|),L|BlP P2
∼= OBlP P2(r.π∗H−|Il|E1)

or OBlQP2(r.π∗H − |Il′ |E2), and
∑
i∈Il∪Il′ Di separates points and tangent directions

on different components of Fb. As

H0(P2,L|P2 )→ H0(P2 ∩BlPP2,L|P2∩BlP P2 )→ 0,
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and
H0(BlPP2,L|BlP P2 )→ H0(P2 ∩BlPP2,L|P2∩BlP P2 )→ 0,

we deduce that L is very ample.

For those b ∈ B such that Fb = P2∪P1BlP,QP2∪P1 P2, we can prove that gb : Fb → F ′b
is the contraction of BlP,QP2 along P̃Q, (the strict transform of PQ defined in the
previous Lemma), and thus gb(BlP,QP2) ∼= P1 × P1. Indeed, in this case

L|BlP,QP2
∼= OBlP,QP2(r.π∗H − |Il|E2 − |Il′|E1),

while P̃Q = π∗H − E2 − E1, hence

deg(L|
P̃Q

) = (r.π∗H − |Il|E2 − |Il′|E1)(π∗H − E2 − E1)

= r − |Il| − |Il′ | = 0,

(as π∗H.Ei = 0, E1.E2 = 0, E2
i = −1). so P̃Q is indeed contracted by gb. On the

other hand, points and vectors outside of P̃Q are separated by sections of L|BlP,QP2

as follows from |Il| > 0 and |Il′| > 0. We have thus proven that F ′ → B satisfies
Definition 6.3.3.

To prove the inverse suppose (F ′ → B,D′1, ..., D
′
n) is a family which satisfies con-

ditions of Definition 6.3.3. Let D′ = ∑
i∈Jl∩Jl′ Di. Hence for every fiber F ′b =

P2 ∪P1 (P1 × P1) ∪P1 P2, the divisor D′ intersects P1 × P1 in only one point, Q, as we
can see in the following figure.

l

contraction l to a point

Q

D’

Hence D′ is not a Cartier divisor as D′ ∩ (P1 × P1) = {Q} is of codimension 2. After
blowing up F ′ along D′, the strict transforms of all D′is are Cartier divisors and the
blow-up F is a family of flat surfaces which satisfy the conditions in Definition 6.3.2.
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2

Remark 6.3.7 With the notations from Definition 6.3.1, we note that M345 is parti-

tioned into 4 strata Y 345
P , for (1) P = {{3}, {4, 5}}, (2) P = {{3, 4}, {5}}, (3)

P = {{3}, {4}, {5}} and (4) P = {{3, 4, 5}}. From discussion in the first section

of this chapter, the fiber of the restriction U345|
Y 345
P

in these cases is BlPP2 ∪P1 P2

(cases 1 and 2), P2∪P1 (P1×P1)∪P1 P2 (case 3) and P2 (case 4). Each stratum Y 345
P is

an inverse limit of strata in Mi and Mij with i, j ∈ {3, 4, 5}, as described in Definition

6.3.1. Similarly for M123 and M561.

After constructing the partial inverse limits of GIT quotients corresponding to a point
P in µ(∏P2), it is time to build up the whole inverse limit M123456 of the inverse
system below:

M165

''��

M345

''ww

M123

ww ��
M5 M1 M3,

In other words, M123456 is the fiber product in this Cartesian diagram:

M123456

��

//M123 ×M345 ×M561

��
M1 ×M3 ×M5 // (M1 ×M3)× (M3 ×M5)× (M5 ×M1),

where the lower horizontal map is the diagonal map and M123 ×M345 ×M561 is the
inverse limit of the inverse system above. We construct the universal family, U123456,
as inverse limit of the inductive system below:

p∗165U165

((��

p∗345U345

((vv

p∗123U123

vv ��
p∗U5 p∗U1 p∗U3,

where UI is the universal family over MI for I ⊆ {1, 2, ..., 6} and pI : M123456 → MI

the natural map and p∗ is the pull-back over M123456.

Theorem 6.3.8 Consider the partition of M123456 into strata as in Definition 6.3.1.

Then for each partition described in the cases following Definition 6.3.1, the restriction

of the morphism U123456 → M123456 to the stratum given by that partition has fibers of

the following types:

• in case (a) and (b) the fiber is made of two BlpointP2s, a P1 × P1 and a P2 glued

as follows:
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,

• in case (c) it is made of three BlpointP2:

• in case (d) it is made of a BlpointP2, two P1 × P1s and two P2s:

• in case (e) it is made of a BlpointP2 and a P2:

• in case (f) it is made of two BlpointP2s, a P1 × P1 and a P2:

• in case (g) it is made of three P1 × P1s and three P2s:

• in case (h) it is a P2:

The inverse limit of GIT quotients of
Grassmannians by the maximal torus

88 Vahid Yazdanpanah



6. COMPACTIFICATION OF ARRANGEMENTS
OF LINES IN PLANES AS INVERSE LIMIT 6.3 Main Theorem

Here each P2 is represented by a small triangle, each P1 × P1 by a rhombus and each

BlPP2 by a trapezium. Moreover, U123456 →M123456 is a flat morphism and the curves

Dis are represented as follow in the fiber in colors (each color represents a group of

curves which are intersecting the same surfaces in the fiber):

(a)

Case (b) is similar to case (a).

(c)

(d)

(e)
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(f)

(g)

and the last case consist of a P2 and n lines in general position as below:

Note that the fibers of the universal family over M123456 are obtained by gluing the
fibers of the universal families over M123,M345 and M561 along the components that
are pulled back from M1,M3 and M6. However in families over a scheme, the gluing
can also be expressed as a fiber product.

Example 6.3.1 Consider case (a) for the partition P = {{1}, {2, 3}, {4}, {5, 6}}.
Then the fibers over YP ⊂M123456 of each of the universal families in

(p∗4U4)|YP (p∗345U345)|YPoo

(p∗1U1)|YP U123456|YP
,oo

OO

are as follows:
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multiple lines

Contracting P2 to Q

Q

P2 ∪ (P1 × P1) ∪ P2

contract P1 × P1 and

BlPointP2s along fibers

contracting lcontracts the two P2s

P2
l

P2

BlPointP2 BlPointP2

P1 × P1

The correspondence between fibers of the universal family and the representation of

strata via the moment map is a follows:
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Figure 6.8: Fibers of the universal family versus strata

In each case the shaded area in hexagons show the image of orbits via moment map.

Proof: of Theorem 6.3.8 M12345 has indeed a partition into strata as described in
Definition 6.3.2. Moreover, each stratum YP inM12345 is an inverse limit of a system of
strata in M1,M3,M5 and M123,M345,M561. Thus for P = {{1}, {2, 3}, {4}, {5, 6}}
(case (a) in Definition 6.3.2), we have YP = the inverse limit of

Y 165
{1},{56}

((��

Y 345
{3},{4},{5}

((vv

Y 123
{1},{23}

vv ��
Y 5
{56} Y 1

{1} Y 3
{23},

(with the notations from Definition 6.3.2 and Remark 6.3.7). Also,

p∗345(U345|Y{3},{4},{5}345 ) = (p∗345U345)|YP ,

and similarly for the other terms in the inductive system of universal families. It fol-
lows that the fiber of U123456|YP

is the inverse limit of fibers of U1, U3, U5 and U123,

U345,U561 on the strata in the above diagram. From the argument before the start of the
proof, at the level of fibers we have the following inductive family:

P2 ∪BlptP2

yy %%

P2 ∪ P2 ∪ (P1 × P1)

ww ''

P2 ∪BlptP2

yy %%
P2 P2 P2 P2,

where the first and the last P2s in the second row are the same.

The inverse limit of GIT quotients of
Grassmannians by the maximal torus

92 Vahid Yazdanpanah



6. COMPACTIFICATION OF ARRANGEMENTS
OF LINES IN PLANES AS INVERSE LIMIT 6.3 Main Theorem

b3b5a6 a5 a3 a1

Here the maps bi contract a P2 to a point, and the maps ai contract BlpointP2, or (P1 ×
P1) ∪P1 P2 to P1 by natural projection maps.

Claim: Inverse limit of this family is the surface S = (P1×P1)∪BlPP2∪P2∪BlQP2

as below:

Figure 6.9

Proof of the claim: Note that the following diagram is commutative;
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o

a b

o

b

d

o

a

c

o

a

c

b

o

d

o

d c

d c

a b

q345 q123

q561

where q123 contracts the P2–component, q345 and q561 contract P1 × P1 to a P1 (along
the fibers) and BlpointP2 along the fibers of BlpointP2 → P1. Moreover, the diagram
above is formed by 3 Cartesian squares, and so S is the inverse limit of the system
above. Note that the moduli space M123456 is a special example of the moduli space
introduced in [7], Proposition 2.7 and Proposition 2.8. The proof for the flatness of the
universal family can be done similar to [7]. However it also can be done as follows,
directly without any use of toric varieties in an explicit way.

We will now check (by picking points and their images) that the surface S with L =
O(∑n

i=1Di) has the same Hilbert polynomial as P2 with OP2(n). We partition the set
of divisors Di into 3 subsets: s divisors of BlPP2 ∪ (P1 × P1), k divisors of BlQP2 ∪
(P1 × P1), and t divisors of BlPP2 ∪ P2 ∪BlQP2 (as in Figure 6.9). Thus on P1 × P1,
with the two projections πi : P1 × P1 → P1, we get s divisors which come from
sections in π∗1(OP1(1)), and k divisors which come from π∗2(OP1(1)). We will denote
the first ones by F1, ..., Fs and the last ones by L1, ..., Lk. Also let F = ∑s

i=1 Fi and
L = ∑k

i=1 Li.
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For m >> 0

0→ ImL ↪→ OP1×P1 → OmL = OP1×P1/ImL → 0,

where ImL = O(−mL). The tensor product of this short exact sequence with O(mL)
gives us

0→ OP1×P1 ↪→ O(mL)→ OmL(mL)→ 0,

where O(mL) is a locally free coherent sheaf on P1 × P1. The tensor product of this
short exact sequence with O(mF ) gives us

0→ O(mF ) ↪→ O(mL+mF )→ O(mF +mL)⊗OmL → 0.

Each Li for i ∈ {1, 2, . . . , k}, meets each Fj for j ∈ {1, 2, . . . , s} in 1 point.

F1F2Fs

L1

Lk

L2

k fibers

P1 × P1

s fibers

Moreover Li.Lj = 0 for every i and j. So OmL(mL) ∼= OmL and

dim(H0(P1 × P1,O(mF )⊗OmL)) = dim(H0(P1 × P1,⊕mki=1O(mF )|Li))

= mk

(
ms+ 1

1

)
= mk(ms+ 1).

Note that Li ∼= P1 and O(mF ) is a line bundle on P1 × P1 and its sections are pull-
backs from P1. Hence

dim(H0(P1 × P1,O(mF ))) = ms+ 1.
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Note that on P1 × P1 the fibers for one ruling are sections for the other.

PP1×P1(m) = dim(H0(P1 × P1,O(mL+mF )))

= (ms+ 1) +mk(ms+ 1)

= (mk + 1)(ms+ 1).

The global sections of L⊗m on S are constructed by gluing global sections of L⊗m on
the components of S. Thus the following sequence is exact for m� 0:

0→H0(S,L⊗m)→ H0(P1 × P1,L⊗m|P1×P1
)⊕H0(P2,L⊗m|P2

)⊕H0(BlPP2,L⊗m|BlP P2
)

⊕H0(BlQP2,L⊗m|BlQP2
)→F H0(P1

a,L⊗m|P1a
)⊕H0(P1

b,L⊗m|P1
b

)

⊕H0(P1
c,L⊗m|P1c

)⊕H0(P1
d,L⊗m|P1

d

)→GH0({o},L⊗m|{o})→ 0,

where F (s1, s2, s3, s4) = (s3 − s2, s4 − s2, s3 − s1, s4 − s1) and G(ta, tb, tc, td) =
(ta − tb − tc + td). Hence for m� 0:

PS(m) = h0(P1 × P1,L⊗m|P1×P1
) + h0(P2,L⊗m|P2

) + h0(BlPP2,L⊗m|BlP P2
)+

h0(BlQP2,L⊗m|BlQP2
)− h0(P1

a,L⊗m|P1a
)− h0(P1

b,L⊗m|P1
b

)− h0(P1
c,L⊗m|P1c

)−

h0(P1
d,L⊗m|P1

d

) + h0({o},L⊗m|{o})

=(mk + 1)(ms+ 1) + (ms+ 2)(ms+ 1)
2 +mt(ms+ 1)+

(mk + 2)(mk + 1)
2 +mt(mk + 1) + (mt+ 2)(mt+ 1)

2 − ((ms+ 1)+

(mt+ 1) + (mt+ 1) + (mk + 1)) + 1

=(s+ t+ k)2

2 m2 + 3(s+ t+ k)
2 m+ 1,

which is the same as the Hilbert polynomial of P2 with s+ t+ k lines in it:

The inverse limit of GIT quotients of
Grassmannians by the maximal torus

96 Vahid Yazdanpanah



6. COMPACTIFICATION OF ARRANGEMENTS
OF LINES IN PLANES AS INVERSE LIMIT 6.3 Main Theorem

PP2(m) = dim(H0(P2,O(Σs+k+t
i=1 Di)⊗m))

=
(
m(s+ t+ k) + 2

2

)

= (s+ t+ k)2

2 m2 + 3(s+ t+ k)m
2 + 1.

Similarly for the other partial inverse limits we can calculate the Hilbert polynomial
and see the same fact about them too. Note that the proof of Proposition 3.3 in [7]
implies thatM123456 is irreducible, hence for flatness of U123456 →M123456 it is enough
to check that the Hilbert Polynomial is constant on the the fibers ([5] Chapter 3 Section
9).

Case (c) corresponds to the following family on the fibers:

P2 ∪BlptP2

yy %%

P2 ∪BlptP2

yy %%

P2 ∪BlptP2

yy %%
P2 P2 P2 P2,

where the first and the last P2 in the lower row are the same and the maps to the
right are contraction along exceptional divisor in BlpointP2 and the maps to the left are
contraction of P2 to a point.

Let S = BlPP2 ∪P1 BlQP2 ∪P1 BlRP2 as below:

The following diagram is commutative;
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qa

qb
qc

a

o

b

b

o

a

c

o

c

b o

a

o

o

c

o

a

b
c

qab qac

qbc

where here each surface is denoted according to which of lines a, b, c it contains. Here
the clockwise maps are projections BlpointP2 → P1 along with the identity on P2;
the counter clockwise maps are contractions of the P2 and qac is made of the identity
on BlacpointP2, a contraction of b to o on BlbcptP2 i.e. BlbcptP2 → P2 and a contraction
BlabptP2 → P1 on BlabptP2. Similarly for qab and qbc.

This gives a morphism q : S → ←−S into the inverse limit
←−
S of the inductive family

above. To show that this is an isomorphism, let’s consider the morphisms

S
φ //

qc ��

←−
Sc

q

��
P2
c .
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We will prove that

φ|
q−1
c (P2

c\c)
: q−1

c (P2
c \ c)→ q−1(P2

c \ c) (6.9)

φ|
q−1
c (c\{o})

: q−1
c (c \ {o})→ q−1(c \ {o}) (6.10)

φ|
q−1
c ({o})

: q−1
c ({o})→ q−1({o}), (6.11)

are isomorphism. Note that qc is made ofBlbcpointP2 → P2, the contractionBlacpointP2 →
c, and the contraction BlabpointP2 → {o}. Thus q−1

c ({o}) = BlabpointP2, q−1
c (c \ {o}) =

BlacpointP2 \ a, q−1
c (P2

c \ c) = BlbcpointP2 \ b \ c.

On the other hand, the inductive system corresponding to q−1({o}) is

a

BlabpointP2

::

��

a

��

aa

P2
b {o}

P2
b

>>cc

whose limit is indeed BlabpointP2 ∼= q−1
c ({0}). The inductive system for q−1

c (c \ {o}):

(P2
a \ a) ∪ {o}

(P2
a \ a) ∪ {o}

66

��

BlacpointP2 \ a

��

hh

{o} c \ {o}

c \ {o}

66hh

which its limit is q−1
c (c \ {o}) = BlacpointP2 \ a and the inductive system for P2

c \ c:
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{o}

b \ {o}

77

��

P2
c \ c

��

gg

b \ {o} P2
c \ c

BlbcpointP2 \ b \ c

77gg

whose limit is q−1
c (P2

c \ c) = BlbcpointP2 \ b \ c.

Now similar to the previous case we want to show that the surface S, the fiber in this
case, has the same Hilbert polynomial as P2.

Thus the following sequence is exact for m� 0:

0→H0(S,L⊗m)→ H0(BlPP2,L⊗m)⊕H0(BlQP2,L⊗m)⊕H0(BlRP2,L⊗m)

→F H0(P1
a,L⊗m|P1a

)⊕H0(P1
b,L⊗m|P1

b

)⊕H0(P1
c,L⊗m|P1c

)→GH0({o},L⊗m|{o})→ 0,

where F (s1, s2, s3) = (s1− s2, s2− s3, s3− s1) and G(t1, t2, t3) = t1 + t2 + t3. Hence
for m� 0:

PS(m) =
(
mk + 2

2

)
+mt

(
mk + 1

1

)
+
(
mt+ 2

2

)
+ms

(
mt+ 1

1

)
+
(
ms+ 2

2

)
+mk(ms+ 1)− (ms+ 1)− (mt+ 1)− (mk + 1) + 1

=(mk + 2)(mk + 1)
2 +mt(mk + 1) + (mt+ 2)(mt+ 1)

2 +ms(mt+ 1)

+ (ms+ 2)(ms+ 1)
2 +mk(ms+ 1) +mk(ms+ 1)− (ms+ 1)

− (mt+ 1)− (mk + 1) + 1

=(s+ t+ k)2

2 m2 + 3(s+ t+ k)
2 m+ 1,

which is the same as the Hilbert polynomial for P2.

Case (d) consists of two P2, two P1 × P1 and a BlpointP2 which gives us the following
inverse system:
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P2 ∪ (P1 × P1) ∪ P2

ww ''

P2 ∪ (P1 × P1) ∪BlpointP2

vv ((

P2 ∪BlpointP2

yy &&
P2 P2 P2 P2,

which is similar to the previous cases. Its inverse limit is as below:

Thus the following sequence is exact for m� 0:

0→H0(S,L⊗m)→ H0(BlpointP2,L⊗m)⊕H0(P1 × P1,L⊗m)⊕H0(P2,L⊗m)

⊕H0(P2,L⊗m)⊕H0(P1 × P1,L⊗m)→F H0(P1
a,L⊗m|P1a

)⊕H0(P1
b,L⊗m|P1

b

)

⊕H0(P1
c,L⊗m|P1c

)⊕H0(P1
d,L⊗m|P1

d

)⊕H0(P1
e,L⊗m|P1e

)→GH0({0},L⊗m|{o})→ 0,

where here F (s1, s2, s3, s4, s5) = (s1 − s2, s2 − s3, s3 − s4, s4 − s5, s5 − s1) and
G(t1, t2, t3, t4, t5) = t1 + t2 + t3 + t4 + t5. Hence for m� 0:

PS(m) =(ms+ 1)(mk + 1) + (mt+ 1)(ms+ 1) +
(
ms+ 2

2

)
+
(
mt+ 2

2

)

+
(
mk + 2

2

)
+mt

(
mk + 1

1

)
+ 1− (mt+ 1)− (mt+ 1)

− (ms+ 1)− (ms+ 1)− (mk + 1)− (mk + 1)

=(mk + 2)(mk + 1)
2 +mt(mk + 1) + (mt+ 2)(mt+ 1)

2 +ms(mt+ 1)

=(s+ t+ k)2

2 m2 + 3(s+ t+ k)
2 m+ 1,

which is the same as the Hilbert polynomial for P2.

Case (e) consists of a P2 and a BlpointP2 which gives us the following inverse system:

P2 ∪BlpointP2

&&xx
P2 P2.

This inverse system has the following inverse limit:
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The proof is similar to case (c). The calculation of the Hilbert polynomial is as follow.
The following sequence is exact for m� 0:

0→H0(S,L⊗m)→ H0(BlpointP2,L⊗m)⊕H0(P2,L⊗m)

→ H0(P1
a,L⊗m|P1a

)→H0({0},L⊗m|{o})→ 0.

Hence for m� 0:

PS(m) =
(
mt+ 2

2

)
+ms

(
mt+ 1

1

)
+
(
ms+ 2

2

)
−
(
ms+ 1

1

)
+ 1

=(mt+ 2)(mk + 1)
2 +ms(mt+ 1) + (ms+ 2)(ms+ 1)

2 − (ms+ 1) + 1

=(s+ t+ k)2

2 m2 + 3(s+ t+ k)
2 m+ 1,

which is the same as the Hilbert polynomial for P2.

Case (f) consists of two P2s and two P1 × P1 and a BlpointP2 which gives us the
following inverse system:

P2 ∪ (P1 × P1) ∪BlpointP2

uu ))

P2 ∪ (P1 × P1) ∪ P2

ww ''

P2 ∪BlpointP2

xx &&
P2 P2 P2 P2.

This inverse system has the following inverse limit:
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It can be proved similar to case (c).

Case (g) consists of three P2 and three P1 × P1 whose inverse system is as below:

P2 ∪ (P1 × P1) ∪ P2

ww ''

P2 ∪ (P1 × P1) ∪ P2

ww ''

P2 ∪ (P1 × P1) ∪ P2

ww ''P2 P2 P2 P2.

Again similarly to the case (c),it can be shown that this inverse system has the following
inverse limit:

2

Proof: of the Theorem 6.3.1 Let M denote the inverse limit of all the GIT quotients
of G(3, n) by (C∗)n−1 and their flips. We will first construct a universal family U
over M . Recall that the image of the moment map µ(C∗)n−1(G(3, n)) is divided into
chambers separated by walls, and for each chamber Ci there is a moduli space Mi

described in Definition 5.3.1. Consider a wall Wl and two codimension 1 faces F1 and
F2 of Wl. Recall also that for each a, b, c ∈ {1, 2, ..., n} where a 6= b 6= c 6= a we
have an open set Uabc ⊂ G(3, n) such that Uabc/(C∗)n−3 ∼= (P2)n−3 and we have the
following commutative diagram of moment maps:

Uabc

��

µ(C∗)n−1
// Rn−1

pr

��
(P2)n−3 µ // R2,

where pr is a linear projection sending the wall Wl to a wall in µ((P2)n−3) and each
of the F1 and F2 to a vertex in the net described in Figure 6.1. This projection sends
the decomposition into chambers of µ(C∗)n−1(Uabc) into that of Imµ. The projection
pr corresponds to a choice of an inverse of (C∗)n−1 → (C∗)2.

(i) If Wl is on the boundary of just one chamber C, then for each Fi we consider the
moduli space MFi corresponding to the inverse limit of GIT quotients associated
to chambers containing Fi. Let UFi be the corresponding universal family.

(ii) If Wl the wall between two chambers then each MFi and their universal families
UFi , are as described in Theorem 6.3.8. Let pFi : M →MFi the natural morphism
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between inverse limits (of the total inductive family of GIT quotients, and the
subfamily giving MFi).

Let C be the union of the chambers adjacent to Wl, F1 and F2, and let MC denote the
corresponding moduli space, defined as in Section 5.3 for case (i) above and Section
5.4 for case (ii). Let pC : M → MC be the natural map. Within each universal family
UF1 , UF2 and UC , we consider the subspaces U ′F1 , U ′F2 and U ′C , respectively, obtained by
removing all intersections of more than 2 divisors from among (Di)i∈{1,...,n}, as well as
any codimension 1 components ofDi∩Dj from any fiber of the universal family, for all
i, j ∈ {1, ..., n}, i 6= j. Then p∗CU ′C ⊂ p∗FiU

′
Fi

for each i ∈ {1, 2}. Indeed, this follows
directly from comparing Sections 5.3 ,5.4 with Theorem 6.3.8 and Definition 6.3.2.
We can then form the universal family U by gluing p∗FiUFi along p∗CU ′C , pairwise for
all codimension 2 faces Fi in µ(C∗)n−1(G(3, n)). Successively as above from Theorem
6.3.8 there exists a rational contraction p∗FiUFi 99K p∗CUC and p∗CU

′
C is the open set

where this is in fact an isomorphism.

To prove the representability of the functor in Definition 6.2.1 it is enough to show that
any flat family of surfaces f : F → B with divisors (Di)i∈{1,...,n} which satisfy the
conditions of Definition 6.2.1, there exists a unique morphism ψ : B → M such that
ψ∗U ∼= F .

For any 3 adjacent chambers Ch, Ck and Cm as in Definition 6.3.2, separated by the
walls Wl and Wl′ , respectively, we will construct a morphism ψhkj : B → Mhkj , such
that the compositions with Mhkj → Mh do not depend on k and j (and similarly for
the other indices).

For each chamber Ch ⊂ µ(C∗)n−1(G(3, n)), and each b ∈ B, there exists a component
Sj(h),b in Fb and a corresponding polytope ∆j(h),b ⊇ Ch. Similarly for k and j.

For each b ∈ B, consider the sets of divisors Di described in part (c) of Definition
6.2.1. By eliminating some of these divisors, we can obtain A ⊂ {1, 2, ..., n} with the
properties:

1. φj(h),b(Di1) = φj(h),b(Di2) for some i1, i2 ∈ A ⇔ i1, i2 ∈ J for some J ∈
A+
k ∪ A+

h ∪ A+
m,

2. φj(h),b(Di1)∩φj(h),b(Di2)∩φj(h),b(Di3) 6= ∅ for some i1, i2, i3 ∈ A⇔ i1, i2, i3 ∈
I for some I ∈ A−k ∪ A−h ∪ A−m.

Let VA,b ⊂ B be the subscheme whose points b′ satisfy two properties above with b
replaced by b′ (i.e. VA,b = {b′ : b′satisfies 1 and 2 }).
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By the following Lemma 6.3.10, there is a contraction

FA : F → FA = Proj(⊕mπ∗L⊗mA ),

such that FA|VA,b satisfies the conditions of Definition 6.3.3 where here

LA := ω(Σj∈ADj).

Indeed after the contraction, using Lemma 6.3.9, FA|VA,b satisfies Definition 6.2.1 for
the set {Di}i∈A. In this context Definition 6.2.1 and Definition 6.3.3 become equiv-
alent. This gives a map VA,b → Mhkm such that FA|VA,b is the pull-back of Uhkm.
Moreover, by varying A and b we can cover the entire B.

To check that all FA|VA,b fit together, it is enough to note that VA,b only depends on
A and not on b and for A1 ⊂ A2 we have VA1 ⊃ VA2 for arbitrary b. Moreover
FVA2

|VA1
= FVA2

as the contraction of FVA2
on VA1

is given by LA1 which is trivial (L1|FVA2
|VA1

is relatively ample).

As all constructions are canonical this gives a map B → Mhkm and a contraction
F → Fhkm such that Fhkm is the pull-back of Uhkm.

In conclusion, all the maps B →Mhkm →Mh (where Mhkm →Mh is only projection
on Mh) give a map ψ : B → M into the inverse limit M , and F is the pull-back of
U by ψ, as it can be reconstructed from Fhkm in the same way in which U has been
constructed from Ukhm in the proof of Theorem 6.3.8 i.e. as an inverse limit of the
pull-back of universal families Fhkm and Fh. 2

Note that the morphism Mhkm → Mh can also be contracted by using the contraction
of Fhkm by an LA for a smaller ret A. So the morphism B → Mhkm → Mh only
depends on the choice of A and not on h or k.

Lemma 6.3.9 Let (F → B,D1, ..., Dn) be a flat family of surfaces satisfying the

properties from Definition 6.2.1. Let ωP denote the relative dualising sheaf of F sheaf

of F over B. Then ωF(∑n
i=1Di) is relatively ample.

Proof: From [4] for each b ∈ B there exists ωP such that,

ωP (
n∑
i=1

Di)
|Pb

= O
b
(KFb +

n∑
i=1

Di),

where KFb is the canonical divisor on the fiber. To prove that ωP (∑n
i=1Di) is ample,
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it will be enough to check it on the components as this will imply that for N � 0

H1(Sk ∩ Si, ωN(
n∑
i=1

Di)
|Sk

⊗OSk(Sk ∩ Si)) = 0,

so
H0(Sk ∩ Si, ωN(

n∑
i=1

Di)
|Sk

)→ H0(Sk ∩ Si, ωN(
n∑
i=1

Di)
|Sk∩Si

)→ 0.

We will apply the Nakai-Moishezon criteria of ampleness, namely we check L :=
KPb +∑n

i=1Di is nef and has self-intersection positive. Let Pb = ∪jSj . Then

KFb |Sj
= KSj +

∑
k

(Sj ∩ Sk), (6.12)

where the sum is taken after all k s.t. Sj ∩ Sk ∼= P1.

Case 1. If φj |Sj : Sj = Blr(points)P2 → P2 then

KSj = φ∗jKP2 +
∑
a

Ea = −3φ∗jH +
∑
a

Ea, (6.13)

where H =the hyperplane divisor in P2 and Ea ⊂ Sj are the exceptional divisors of
φj |Sj

. Note that by condition (a) in Definition 6.2.1, Ea are among the intersections
Sj ∩ Sk. We’ll denote by k′ the indices for which Sj ∩ Sk′ = P1 is not an exceptional
divisor in Sj . Then we can rewrite Equations (6.12) and (6.13) as :

L|Sj = KFb |Sj
+

n∑
i=1

Di|Sj
= −3φ∗jH + 2

∑
a

Ea +
∑
k′

(Sj ∩Sk′) +
n∑
i=1

Di ∩ Sj. (6.14)

Step 1. By condition (b), (d) and (e) in Definition 6.2.1, both Sj ∩Sk′ and Sj ∩Di are
strict transforms of lines in P2 (because it is not exceptional divisor), through the map
φj : Sj → P2. Define

Γ := {Sj ∩ Sk′ 6= exceptional divisor } ∪ {Di;Di ∩ Sj 6= ∅}.

Let m = |Γ| and da = the number of lines of the form φj(D) with D ∈ Γ, containing
the blow-up point φj(Ea). Then using H̃ = φ∗jH −

∑
a∈H Ea for any line H in P2. We

can rewrite 6.14 as:

L|Sj = (m− 3)φ∗jH +
∑
a

(2− da)Ea. (6.15)
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Hence for each a, L.Ea = da − 2 > 0. (due to (e) in Definition 6.2.1)

Step 2. We can also use the equation φ∗jHl = H̃l +∑
a∈Hl Ea for all line Hl but those

four fixes lines of the form φj(D) with D ∈ Γ to write Equation (6.14) as

L|Sj = φ∗jH + C, (6.16)

where C is an effective divisor, SuppC ⊂ (∪aEa) ∪ (∪k′(Sj ∩ Sk′)) ∪ (∪ni=1Di).
(Indeed, it is sufficient to choose the 4 lines Hl such that no 3 of them intersect at
the same pointbecause φj(Di) are the date associated to an orbit in G(3, n), Tx with
µ(Tx) = Pb. We could pick 4 such lines, other wise dimTx < (C∗)n−1.

Equation 6.16 implies C.C ′ > 0 for any irreducible curve C ′ in Sj which is not among
the exceptional divisors. Indeed, φ∗jH.C

′ > 0 and we will prove that φj(C ′).φj(C) >
0, and hence C.C ′ ≥ 0:

(a) If C ′ 6⊂ SuppC, then it is enough to note that φj(C) contains at least 1 line (by (b)
and (d) in Definition 6.2.1), and φj(C ′) is still an irreducible curve.

(b) If C ′ = Sj ∩Sk′ or Di for some i, then we can choose one of the lines Hl above to
be φj(C ′), and then C ′ 6⊂ SuppC for C thus constructed.

Step 3. We will prove (L|Sj )
2 > 0. Indeed, by Equation (6.15)

(L|Sj )
2 = (m− 3)2 −

∑
a

(da − 2)2 > 0.

It can be proved by induction on m. Let {H1, ..., Hm+1} be a set of lines in plane
and for the moment we will assume that line Hm+1 (without loss of generality) con-
tains the intersection of at least 2 other pairs of lines H1, ..., Hm. Let V = {Hi ∩
Hk; for any i and k in {1, ...,m}} and B = {x ∈ V : x ∈ Hm+1}. We want to check
that

(m+ 1− 3)2 −
∑

a∈V \B
(da − 2)2 −

∑
a∈B

(da + 1− 2)2 > 0.

By induction
(m− 3)2 −

∑
a∈V

(da − 2)2 > 0.

So it is enough to prove that

2(m− 3)−
∑
a∈B

(2(da − 2) + 1) > 0.

Note that Hm+1 6∈ {H1, ..., Hm}. None of H1, ...Hm contains more than 1 points of B.
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So
∑
da ≤ m. Together with |B| ≥ 2 this ends the proof. If noHi for (i = 1, ...,m+1)

contains 2 or more points at which two other Hj meet, then

(
∑
a∈v

da − 3)2 >
∑
a∈V

(da − 2)2,

for da ≥ 3 and |V | ≥ 2, which can be checked.

Case 2. Sj = P1 × P1, with the two projection πi : P1 × P1 → P1, then KSj =
−2(π∗1H1 + π∗2H2), where Hi = the class of a point in P1. Thus

L|Sj = −2π∗1H1 − 2π∗2H2 +
n∑
i=1

Di,

and using (e), Definition 6.2.1, we obtain that L|Sj is ample if and only if for each
i ∈ {1, 2} at least 3 of the divisors D1, D2, ...Dn are fibers for πi : P1 × P1 → P1,
otherwise dimDj < n− 1 which is a contradiction. 2

Lemma 6.3.10 Let (F → B,D1, ..., Dn) be a flat family of surfaces with divisors as

in Definition 6.2.1. Let I ⊂ {1, ..., n} where |I| ≥ 4 and consider

LI := ωF(
∑
j∈I

Dj).

Then there is a morphism

FI : F = Proj(⊕mL⊗mI )→ Proj(⊕mπ∗L⊗mI ),

such that (FI = ImFI → B, (FI(Dj))j∈I), satisfies Definition 6.2.1 with n replaced

by |I|.

Proof: Working inductively, it is enough to consider the case n − |I| = 1. We adapt
the steps in the proof of Lemma 6.3.9 for ωF(∑i∈I Di) = O(LI):

Case 1. Sj = Blr(points)P2. Then

LI |Sj = −3φ∗jH + 2
∑
a

Ea +
∑
k′

(Sj ∩ Sk′) +
∑
i∈I

Di ∩ Sj.

ΓI is defined similarly to Γ in the proof of Lemma 6.3.9, but with I instead of {1, ..., n}.
Step 1. We get LI |Sj .Ea = dIa − 2 > 0 as there are always 2 lines in ΓI containing
φj(Ea). The intersection number is 0 if and only if dIa = 2.

Step 2. Works as in Lemma 6.3.9 with the exception of the case when
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(a) Sj = BlaP2 and all φj(Di)i∈I pass through the same point. In this case, we can
only find 3 lines Hl as in the proof of Lemma 6.3.9, so LI = C with SuppC ⊆
Ea∪(∪k′(Sj∩Sk′))∪(∪i∈IDi). Due to condition (d) in Definition 6.2.1 LI .Di ≥ 0
and LI .(Sj ∩ Sk′) ≥ 0.

(b) Sj = P2, |ΓI | = 3 (i.e. Di ∩ Sj 6= 0⇔ i ∈ {1, ..., n} \ I).

Case 2. If Sj = P1 × P1, then FI |Sj is an isomorphism with the exception when
(Di)i∈I contains only 2 lines in the fibers of one of the projection πi : P1 × P1 → P1.
In conclusion, FI : Fb → F Ib is an isomorphism every where except at the P I

b is an
isomorphism every where except at the loci C where LI|C

∼= OC . Moreover, since
for Sj = Blr(points)P2, the only types of curves contracted by FI |Sj are exceptional
divisors the map φj induces a map φ′j such that

Fb
FI |Fb

��

φj // P2

F Ib ,

φ′j

>>

is commutative, and φ′j satisfies conditions (b), (d) and (e) in Definition 6.2.1.

Corresponding to I ⊆ {1, 2, ..., n}, |I| = n−1, we have an inclusion i : G(3, n−1) ↪→
G(3, n) compatible with the actions of the maximal tori such that µ(C∗)n−1 ◦ i gives the
map µ(C∗)n−2 : G(3, n − 1) → Rn−2 ⊆ Rn−1. Thus every fiber F Ib corresponds to a
partition of µ(C∗)n−2(G(3, n − 1)) into polytopes, obtained by cutting the partition of
µ(C∗)n−1(G(3, n)) induced by Fb with the hyperplane Rn−2. All the incidence condi-
tions in Definition 6.2.1 are preserved, when {1, 2, ..., n} is replaces by I . 2
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Appendix A

A Few Facts

The following definitions and theorems are from Algebraic Geometry by Hartshorne
[5].

Definition A.0.4 Let Y be a topological space. A function φ : Y → Z is upper

semicontinuous if for each y ∈ Y , there is an open neighborhood U of y, such that for

all y′ ∈ U , φ(y′) ≤ φ(y). Intuitively it means that φ may get bigger at special points.

Now we have the following results.

Theorem A.0.11 (Hartshorne, Exercise II.5.8) Let X be a noetherian scheme, and

F a coherent sheaf on X . We will consider the function

φ(x) = dimC(x)Fx ⊗Ox C(x),

where C(x) = Ox/mx is the residue field at the point x. Using Nakayama’s lemma it

can be shown that the function φ is upper semi-continuous.

Theorem A.0.12 . Let A be a ring and X be a scheme over A. If L is an invertible

sheaf on X , and if s1, ..., sn ∈ Γ(X,L) are global sections which generate L, then

there exists a unique A–morphism φ : X → Pn−1
A such that L ∼= φ∗(O(1)) and

si = φ∗(xi) under this isomorphism.

Proposition A.0.13 Let X be a noetherian scheme, E a locally free coherent sheaf on

X and P(E) the associated projective space bundle. Let g : Y → X be any morphism.

Then to give a morphism of Y to P(E) over X , it is equivalent to give an invertible

sheaf L on Y and a surjective map of sheaves on Y , ψ : g∗E → L.

Proposition A.0.14 Let X be a projective scheme, and φ : X → Pn be a morphism

corresponding to a line bundle L and s0, s1, ..., sn ∈ Γ(X,L), global sections which
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generate L. Let V ⊆ Γ(X,L) be the subspace spanned by the si. Then φ is a closed

immersion if and only if

1. elements of V separate points, i.e., for any two distinct closed points P,Q ∈ X ,

there is an s ∈ V such that s ∈ mpLP but s 6∈ mQLQ, or vice versa, and

2. elements of V separate tangent vectors, i.e., for each closed point P ∈ X , the

set {s ∈ V : sP ∈ mPLP} spans the C–vector space mPLP/m2
PLP .

The next theorem is called Cohomology and Base Change Theorem from the same
book.

Theorem A.0.15 . Let π : P → X be a projective morphism of noetherian schemes

and let F be a coherent sheaf on P , flat over X . Let x be a point of X then:

(a) If the natural map

φi(x) : Riπ∗(F )⊗ C(x)→ H i(Px, Fx),

is surjective then it is an isomorphism, and the same is true for all x′ in a suitable

neighborhood of x.

(b) Assuming that φi(x) is surjective then the following conditions are equivalent;

(i) φi−1(x) is also surjective.

(ii) Riπ∗(F ) is locally free in a neighborhood of x.
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