
Title Improved kinematic sensing for motion control applications

Author(s) Boggarpu, Naveen Kumar

Publication date 2015

Original citation Boggarpu, N. K. 2015. Improved kinematic sensing for motion control
applications. PhD Thesis, University College Cork.

Type of publication Doctoral thesis

Rights © 2015, Naveen Kumar Boggarpu.
http://creativecommons.org/licenses/by-nc-nd/3.0/

Embargo information No embargo required

Item downloaded
from

http://hdl.handle.net/10468/2145

Downloaded on 2017-02-12T08:10:53Z

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Cork Open Research Archive

https://core.ac.uk/display/61580624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://hdl.handle.net/10468/2145

UNIVERSITY COLLEGE CORK

Improved Kinematic Sensing for

Motion Control Applications

by

Naveen Kumar Boggarpu

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

School of Engineering

September 2015

http://www.ucc.ie/en/
nboggarpu@pei.ucc.ie
http://www.ucc.ie/en/engfac/

Declaration of Authorship

I, NAVEEN KUMAR BOGGARPU, declare that this thesis titled, ‘IMPROVED

KINEMATIC SENSING FOR MOTION CONTROL APPLICTIONS’ and the

work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research

degree at this University.

� Where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has

been clearly stated.

� Where I have consulted the published work of others, this is always clearly

attributed.

� Where I have quoted from the work of others, the source is always given and

I have acknowledged all main sources of help. With the exception of such

quotations, this thesis is entirely my own work.

� Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself.

Signed:

Date:

i

Abstract

New compensation methods are presented that can greatly reduce the slit errors

(i.e. transition location errors) and interval errors induced due to non-idealities in

optical incremental encoders (square-wave). An M/T-type, constant sample-time

digital tachometer (CSDT) is selected for measuring the velocity of the sensor

drives. Using this data, three encoder compensation techniques (two pseudoin-

verse based methods and an iterative method) are presented that improve velocity

measurement accuracy. The methods do not require precise knowledge of shaft

velocity. During the initial learning stage of the compensation algorithm (possibly

performed in-situ), slit errors/interval errors are calculated through pseudoinverse-

based solutions of simple approximate linear equations, which can provide fast

solutions, or an iterative method that requires very little memory storage. Sub-

sequent operation of the motion system utilizes adjusted slit positions for more

accurate velocity calculation.

In the theoretical analysis of the compensation of encoder errors, encoder error

sources such as random electrical noise and error in estimated reference velocity

are considered. Initially, the proposed learning compensation techniques are val-

idated by implementing the algorithms in MATLAB software, showing a 95% to

99% improvement in velocity measurement. However, it is also observed that the

efficiency of the algorithm decreases with the higher presence of non-repetitive

random noise and/or with the errors in reference velocity calculations.

The performance improvement in velocity measurement is also demonstrated ex-

perimentally using motor-drive systems, each of which includes a field-programmable

gate array (FPGA) for CSDT counting/timing purposes, and a digital-signal-

processor (DSP). Results from open-loop velocity measurement and closed-loop

servocontrol applications, on three optical incremental square-wave encoders and

two motor drives, are compiled. While implementing these algorithms experi-

mentally on different drives (with and without a flywheel) and on encoders of

different resolutions, slit error reductions of 60% to 86% are obtained (typically

approximately 80%).

 Extended Abstract

New compensation methods are presented that can greatly reduce the slit errors

(i.e. transition location errors) and interval errors induced due to non-idealities in

optical incremental encoders (square-wave) caused by manufacturing limitations in

the code wheel, optical components and analog circuitry. An M/T-type, constant

sample-time digital tachometer (CSDT) is selected for measuring the velocity of

the sensor drives. This CSDT measurement technique, involving pulse-count and

high-frequency timer measurement, effectively time-stamps the encoder transi-

tions, in turn almost eliminating the quantization error. Using CSDT-based data,

three encoder compensation techniques (two pseudoinverse based methods and

an iterative method) are presented that improve velocity measurement accuracy.

One of the main advantages of these methods is that they do not require precise

knowledge of shaft velocity, thereby eliminating the need for high-accuracy refer-

ence equipment. Instead, this work adopts three different mathematical solutions

(mean velocity calculation, interpolation and zero-phase filter techniques) to cal-

culate the reference velocity. During the initial learning stage of the compensation

algorithm (possibly performed in-situ), slit errors/interval errors are calculated

through pseudoinverse-based solutions of simple approximate linear equations -

which can provide fast solutions, or an iterative method that requires very little

memory storage. Subsequent operation of the motion system utilizes adjusted slit

positions for more accurate velocity calculation.

In the theoretical analysis of the compensation of encoder errors, encoder error

sources such as random electrical noise and error in estimated reference velocity

iv

are considered. The inability to distinguish between small repetitive physical ve-

locity changes over a mechanical cycle and the alteration in the transition errors

over the same mechanical cycle, which correlates with velocity changes, is shown

to lead to a remaining error, even after compensation.

Initially, the proposed learning compensation techniques are validated by imple-

menting the algorithms in MATLAB software. For simulation analysis, an encoder

containing all the non-idealities discussed in the theoretical analysis is simulated.

Using this simulated encoder, for a known velocity profile, the required raw data

obtained from the CSDT method is calculated. The required reference velocity

profiles are generated from CSDT data by using either a zero-phase filter, interpo-

lation, or an averaging technique. These MATLAB implementations show a 95%

to 99% improvement in velocity measurement. However, it is also observed that

the efficiency of the algorithm decreases with the higher presence of non-repetitive

random noise and/or with the errors in reference velocity calculations.

The performance improvement in velocity measurement is also demonstrated ex-

perimentally using motor-drive systems, each of which includes a field-programmable

gate array (FPGA), for implementing the velocity measurement technique, and a

digital-signal processor (DSP), for implementing the learning algorithm and con-

trol loop. Results from open-loop velocity measurement and closed-loop servo

control applications on three optical incremental square-wave encoders and two

motor drives are compiled. The performances of the three compensation algo-

rithms are also compared for different reference velocity estimation techniques,

v

where the zero-phase filter technique is shown to provide the best possible refer-

ence velocity estimation. It is observed that a reasonably good estimate of slit/in-

terval errors can be performed with less than 2000 samples, using two similar

pseudoinverse-based methods. The experimental results obtained are consistent

with those expected from a theoretically modeled encoder. While implementing

these algorithms experimentally on different drives (with and without a flywheel)

and on encoders of different resolutions, slit error reductions of 60% to 86% are

obtained (typically approximately 80%) with a similar improvement in velocity

measurement is also observed. Reasons for the variation in the error reduction

between simulations and experimental results are discussed.

Acknowledgements

First of all I would like to express my deepest appreciation to my Supervisor,

Senior Lecturer Richard C Kavanagh, for continually encouraging and guiding me

during the research work and especially during the final stages of the dissertation.

Without his guidance and persistent help, this dissertation would not have been

possible.

I would like to thank my mother, Rukmani Guptha Boggarapu, and my father,

Sathya Narayana Guptha Boggarapu for the love and affection, and for their care

and sacrifice they made to put my career and future ahead of their comfort.I

would like to thank My brother Nagendra Prasad Boggarapu and sister Padmaja

Boggarapu for their support, especially at the critical stage of my career, My

wife, Suchitra Mogili, who has provided me with constant help and motivation,

especially during the final stages of this dissertation, and my son, Vivek, for several

exciting and very happy moments.

In addition, I would like to thank the Gojanur family for their care during my stay

in Ireland and for considering me a part of their family.

Fellow researchers at the Power Electronics lab and administration staff had been

a great help, it helped me to settle down into a new environment and culture very

easily and to be feel comfortable and ’one of them’. This period of four years was

one of the most memorable periods of my life.

vi

Contents

Declaration of Authorship i

Abstract ii

Extended Abstract iii

Acknowledgements vi

List of Figures x

List of Tables xiv

Abbreviations xv

Symbols xvii

1 Introduction 1

1.1 Background of the Project . 1

1.2 Encoder Types and Common Errors 4

1.2.1 Square-wave encoders . 5

1.2.2 Sinusoidal encoders . 6

1.3 Description of the Error Sources of Optical (Square Wave) Incre-
mental Encoders . 7

1.3.1 Quantization error . 11

1.4 Basic Speed Measuring Methodologies 12

1.4.1 Elapsed-time method . 14

1.4.2 Pulse-count tachometer - PCT 15

1.4.2.1 Quadrature decoding 16

1.5 Advanced Velocity Measurement Techniques 17

1.5.1 M/T method . 18

1.5.2 Method of accurate time-interval measurement 19

1.5.3 CSDT method . 21

1.5.3.1 Low-speed CSDT 24

vii

Contents viii

1.5.3.2 Oversampled constant sample-time digital tachome-
ter (OCSDT) . 25

1.6 Previous and Proposed Work on Compensation of Encoder Outputs 26

1.7 Hardware Implementation . 30

1.7.1 Optical encoders used in experimental work 31

1.7.2 Field Programmable Gate Array 32

1.7.2.1 The Xilinx XC4000 FPGA 33

1.7.3 dSPACE DS1104 . 36

1.7.4 Electrical drives used in experimental work 37

1.8 Aim and Objectives . 39

1.8.1 Objectives . 39

1.9 Outline of the Thesis . 40

2 Description of the Learning Algorithm 42

2.1 Introduction . 42

2.2 Code-wheel Error - Description and Nomenclature 47

2.3 Description of the Pseudoinverse-Based Learning Algorithms 49

2.3.1 Description of Pseudoinverse-A method 49

2.3.2 Description of Pseudoinverse-B method 54

2.4 Iterative Solution of the Error Equations 58

2.5 Conclusions . 62

3 Error Modeling and Analysis 64

3.1 Introduction . 64

3.2 Error Modeling with Random Noise Included 65

3.2.1 Error modeling considering slit error, δP (i) 67

3.3 Effect of sinusoidally distributed error on shaft velocity 71

3.4 Simulation of Encoder, Tachometer and Iterative Learning 74

3.4.1 Investigation of various means of calculating the reference
velocity . 80

3.4.2 Behaviour of slit and interval errors 81

3.4.3 Use of real encoder data in tachometer simulation 83

3.5 Conclusions . 85

4 Implementation and Evaluation of Learning Algorithms 87

4.1 Introduction . 87

4.2 Implementation and Experimental Evaluation of Learning Tech-
niques in Open-Loop Measurement Applications 88

4.2.1 Implementation of learning technique in open-loop 93

4.2.2 Performance analysis of the proposed algorithms in an open-
loop implementation . 95

4.2.2.1 Improvements in velocity estimates 96

4.2.2.2 Performance and output of the learning algorithm . 100

4.2.3 Investigation of alternative means of calculating the refer-
ence velocity . 104

Contents ix

4.2.4 Experimental evaluation of the noise and errors associated
with an encoder . 106

4.3 Experimental Results for a Closed-Loop Servosystem 110

4.3.1 Design of the closed-loop controller 111

4.3.2 Comparative results to verify utility of the learning algo-
rithm in a closed-loop system 112

5 Conclusions 115

5.1 Conclusions . 115

A Architecture of DS1104 dSPACE R & D Controller Board 119

Bibliography 121

List of Figures

1.1 Basic block diagram of a digital drive setup. 3

1.2 A typical square-wave incremental encoder code-wheel. 5

1.3 Output waveforms of a typical 3 channel incremental square-wave en-

coder, with Channel-A leading Channel-B. 6

1.4 Output waveforms of a typical incremental sinusoidal encoder, where

Channel-A is leading Channel-B. 7

1.5 Output waveforms of two nominally quadrature Incremental Encoder

channels (reproduced from [1]). 8

1.6 Time-diagram shown (a) with, and (b) without, a codewheel window

covered with dust. 11

1.7 Plots showing effects of numerical rounding of signal x in (a), with cor-

responding error in (b), and truncation in (c), with corresponding error

plot (d). 13

1.8 Elapsed-time digital tachometer timing diagram (considering positive-

going transitions of one channel only). 14

1.9 Pulse count digital tachometer timing diagram. 15

1.10 Time diagram showing the generation of an ideal quadrature decoded

pulse from encoder channels A and B. 17

1.11 M/T digital tachometer timing diagram. 18

1.12 Time-stamping concept used in Nutt’s Digital Time Intervalometer [2]. . 20

1.13 Timing diagram of CSDT method for measurement interval T (i) (as-

suming measurement based on positive-going transitions only of encoder

channel A or B); the digital positions at samples i-1 and i (marked as

si−1 and si) are denoted by P (i− 1) and P (i), respectively. 22

1.14 Timing diagram of low-speed CSDT method for measurement interval

T (i) (assuming measurement based on positive-going transitions only

of encoder channel A or B); the digital positions at samples i-6 and i

(marked as si−6 and si) are denoted by P (i− 1) and P (i), respectively.

Note, n = 6 is assumed in this example. 24

1.15 Time diagram showing the sub-sampling during one sampling interval. . 25

1.16 Concept of time-stamping used by Merry to calculate the quantized time

at a sample instant to determine actual physical position(unquantized). . 29

1.17 Timing diagram of SR method showing the time determination for calcu-

lating average shaft velocity (times displayed are based on measurement

of positions 1 and 2. 30

1.18 Block diagram of a typical FPGA/DSP-based servosystem controller. . . 31

x

List of Figures xi

1.19 Block diagram of a basic FPGA (Extracted from Xilinx data book). . . 34

1.20 Simplified logic diagram of Configurable Logic Block (CLB) (slightly

modified extract from Xilinx data book). 35

2.1 A graph showing the calculated residual in a system against the number

of iterations (reproduced from [3]). 44

2.2 Non-ideal code wheel with eight counts per revolution showing ideal

(integer) and actual transition positions, where position 0 (which corre-

sponds to the encoder’s zero marker) provides the reference. 48

2.3 Comparison of CSDT velocity and the reference velocity generated using

a zero-phase filter. (Example from a MATLAB-generated, simulated

CSDT/encoder) . 52

3.1 Actual and calculated slit errors for nominal encoder transition posi-

tions of 100 to 150, with the learning algorithm incorporated into the

simulation program. 77

3.2 Simulation outputs comparing actual shaft velocity with CSDT veloci-

ties, before and after compensation, (for Ts = 1 ms). 77

3.3 Performance of iterative algorithm for varied amounts of random noise,

using simulated encoder data . 78

3.4 Performance of iterative algorithm with different proportions of added

low-frequency noise, using real encoder data 79

3.5 Slit error profiles generated from a MATLAB-simulated incremental en-

coder . 82

3.6 Interval error profile generated by a MATLAB-simulated incremental

encoder . 82

3.7 Probability density function of slit and interval errors generated from a

MATLAB simulated incremental encoder 84

3.8 Performance of iterative algorithm with different proportions of added

high-frequency noise . 85

3.9 Comparing the effect of position independent error, δn(i), on the figure

of merit for a simulated encoder of 360 ppr (where magniture of position-

independent error is of the order Case 3 < Case 1 < Case 2). 86

4.1 Block diagram of a typical FPGA/DSP-based servosystem controller. . . 88

4.2 Block diagram of a FPGA/DSP-based CSDT implementation (repro-

duced for convenience). 89

4.3 Block diagram showing the overall setup of the implementation. 91

4.4 Block diagram of a typical FPGA/DSP-based servosystem controller (re-

produced for convenience). 92

4.5 Estimated shaft velocity for Omron encoder (360 ppr) connected to high-

inertia load, with MATLAB-based implementation of iterative learning

algorithm. 95

4.6 Estimated shaft velocity for OVW encoder (360 ppr), using DSP-based

implementation of iterative learning algorithm. 96

List of Figures xii

4.7 Velocities derived from flywheel-mounted quadrature decoded HP en-

coder signals; (MATLAB-based learning implementation). (Note: Two

counts per sample time equates to 0.5 counts per sample interval without

quadrature decoding). 97

4.8 Estimated error reduction for high inertia system (using Omron and

OVW encoders) at different velocities when using iterative and Pseudoin-

verse B algorithms, with look-up tables calculated at the same speeds

at which the compensation is performed, with the exception of the trace

marked with ’♦’, for which the look-up table is calculated using a ramp-

down traverse from 460 rpm to 310 rpm. 98

4.9 Estimated error reduction for low inertia system (using HP encoder) at

different velocities, with look-up tables calculated at same velocities at

which the compensation is performed, with the exception of the trace

marked ’*’, where the look-up table is calculated during a ramp-up tra-

verse from 2040 rpm to 2310 rpm. 99

4.10 Estimated error reduction for high inertia system (using Omron and

OVW encoders) at different velocities when using iterative (Ite), Pseu-

doinverse B (Psu B) and Merry’s [4, 5] algorithms (Mer), with look-up

tables calculated at the same speeds at which the compensation is per-

formed . 100

4.11 Calculation of estimated error reduction (using Omron encoder with 360

ppr) at 170 rpm, for various sample lengths, Ns. 101

4.12 Calculation of estimated error reduction (using OVW encoder with 360

ppr) at 170 rpm, for various sample lengths, Ns. 101

4.13 Calculation of estimated error reduction at 1700 rpm for HP encoder

(200 ppr), without flywheel, as Ns varies. 102

4.14 Slit errors of OVW encoder’s transition positions 100 to 150 for positive-

going edge of channel B in clockwise, and negative-going edge in anti-

clockwise, directions, at 170 rpm. 103

4.15 Convergence of interval error estimates using the iterative learning algo-

rithm, to steady-state values, for a few randomly selected interval errors

at 170 rpm, using an Omron encoder, with 360 ppr. 103

4.16 Estimated error reduction, using Pseudoinverse B method with Omron

encoder (360 ppr), for variously calculated reference velocities. 105

4.17 Root-mean square of high-frequency error in the compensated shaft

velocity at three different band-widths obtained by implementing the

Pseudoinverse-A learning algorithm on the Omron encoder. 106

4.18 Probability density function of interval and slit errors of the Omron 360

ppr incremental encoder, calculated using the iterative learning algorithm.108

4.19 Probability density function of interval error for Omron incremental en-

coder, and comparison with some mathematical models (with resolution

of 360 ppr, calculated using iterative learning algorithm). 109

4.20 Block diagram of a typical FPGA/DSP-based servosystem controller (re-

produced for convenience from Section 1.7). 110

List of Figures xiii

4.21 Torque ripple, showing effect of switching velocity feedback source from

uncompensated CSDT, to compensated CSDT and, finally, to PCT,

when using 200 ppr HP encoder rotating at 2000 rpm, (the d.c. mo-

tor torque is 0.0294 Nm approximately). 112

A.1 DS1104 R & D Controller Board Block Diagram. 120

List of Tables

1.1 List of selected encoders that are utilized for experimental analysis . 32

1.2 Electrical drives selected to build the servo system 39

2.1 Sequence of operations performed to implement the Pseudoinverse-
A learning algorithm . 55

2.2 Sequence of operations performed to implement Pseudoinverse-B
learning algorithm . 58

2.3 Sequence of operations performed to implement Iterative learning
algorithm, assuming positive shaft velocity 63

4.1 Incremental encoder selected for experimental testing 93

4.2 Comparative study of observed experimental characteristics and ju-
diciously selected mathematical models performance 109

4.3 Servosystem Parameters used for Experimental Implementation . . 111

4.4 Normalized RMS Value of High-Frequency Torque Ripple in Ser-
vosystem . 113

5.1 Normalized RMS Value of High-Frequency Torque Ripple in Ser-
vosystem . 117

xiv

Abbreviations

ADC Analog to Digital Converter

ASIC Application Specfic Integrated Circuits

cps counts per second

CLK High speed Clock

CLB Configurable Logic Block

CSDT Constant Sample-time Digital Tachometer

DAC Digital to Analog Converter

DSP Digital Signal Processor

EPROM Erasable Programmable Read Only Memory

EPA Embedded Polygons Algorithm

ETT Elapsed-Time Tachometer

FG Function Generator

FPGA Field Programmable Gate Array

IOB Input Output Block

ISA Industry Standrad Architecture

LED Light Emitting Diode

LUT Look Up Table

xv

Abbreviations xvi

OSC Oscillator

OSE Overlapping Subgraph Estimator

p.d.f probability density function

ppr pulses per revolution

pps pulses per sample

PCT Pulse Count Tachometer

PI Proportional Integral

PLD Programmable Logic Device

PPC PowerPC

PWM Pulse Width Modulation

rpm revolutions per minute

Rop Optical Radius

RAM Random Access Memory

RDBK ReadBack

SSI Small Scale Integration

VHDL VHSIC Hardware Description Language

ZM Zero Marker

Symbols

as Constant representing a simple sinusoidally distributed error

A Sparse coefficient matrix relating e and ∆A

A+ Pseudoinverse of matrix A

B Sparse coefficient matrix relating e and ∆B

B+ Pseudoinverse of matrix B

c Cycle - length of time or electrical angle between two consecutive raising

edges on either Channel-A or Channel-B

Ca(i) Auxiliary count at ith sample instant

Ch Number of high-speed clock counts

d Deviation of mis-aligned detector of an encoder from the nominal location

e(i) Estimated differential slit-error at ith sample

e Estimated differential slit-error vector

f Frequency of FPGA clock (Hz)

fa Frequency of digital timer (Hz)

fc Frequency of high-frequency clock

J Inertia of permanent magnet synchronous motor

k Constant to produce OCLK signal

xvii

Symbols xviii

K Constant to scale the shaft velocity to a physical unit

Kenc Encoder gain

Kt Torque constant

Ka Amplifier gain

Kdac DAC gain

Kvp PI controller’s proportional gain

Kvi PI controller’s integral gain

Kpl Plant gain

L Resolution of a square-wave incremental encoder

m Figure of merit, as a percentage, for the error reduction in shaft

velocity using learning algorithms

ḿ Apparent figure of merit, is the percentage of error reduction in shaft

velocity using learning algorithms

m1 Number of encoder counts generated during detection time Td

m2 Number of high-frequency clock pulses generated during detection

time Td

M(i) Digital count change over a sample i

M o Average pulse count over a sampling interval

n Number of time samples since the previous position change

Ns Total number of samples

p1/p2 Pulse width - electrical angle over which a channel output is high

during a cycle, nominally 180 electrical degrees

Pi Ideal transition positions of an encoder

Symbols xix

P̄i Actual transition positions of an encoder

P (i) Integer (digital) position at ith sample

¯P (i) Actual encoder position at ith sample

q Represents signal quantization

r Residual value

s1/s2 State width - Electrical angle between transitions on Channel A or B and

the adjacent Channel B or A, norminally 90 electrical degrees

Si ith sample instant

ti Time instant i

Ta(i) Auxiliary time for first pulse in a sample interval used in

time-stamping or CSDT-based technique, at ith sample

Tb(i) Auxiliary time for most recent pulse in a sample interval used in

time-stamping or CSDT-based technique

Tc Nominal measurement time in M/T method

Td Detection time in M/T method

Tdi Time between the present ith and immediately previous encoder

transition position

T oa Average auxiliary time over a sampling interval

Ts Sample time at which the encoder information, position and auxilary

time, are calculated

V (i) Average shaft velocity using CSDT method over ith sample interval (pps)

Vact(i) Average actual shaft velocity, Vact, at ith sample interval (pps)

Vc(i) Calculated average shaft velocity after compensation using CSDT

Symbols xx

method (pps)

V̄err(i) Average actual velocity error before compensation over ith sample

interval (pps)

V̄err−c(i) Average actual velocity error after compensation over ith sample

interval (pps)

V̂err(i) Apparent velocity error in shaft velocity before compensation over

ith sample interval (pps)

V̂err−c(i) Apparent velocity error in shaft velocity after compensation over

ith sample interval (pps)

VI(i) Apparent shaft velocity using CSDT method over ith sample interval

(pps)

VM/T Average shaft velocity calculated using M/T method (rpm)

Vmean(i) Mean shaft velocity, at ith sample interval (pps)

Vnoise(i) Average shaft velocity at ith sample, including slit/interval

error disturbance due to random noise (pps)

vOC Oversampled CSDT velocity

Vr(i) Average reference shaft velocity, Vr, at ith sample interval (pps)

xi Encoder position at sample i

xq Quantized output of signal q

y Index variable used iterative method

α Variable gain term in iterative method

∆A Transpose matrix of line position errors

∆B Transpose matrix of interval width errors

Symbols xxi

∆c Cycle error

δk Slit error of kth transition location

δ́k Transition error estimate at kth transition location

δk,j Interval error between kth and jth transition locations

δ−k,j Uncompensated component of interval error between kth and jth

transition locations

δn Random noise which is independent of encoder line position

δnP (i) Position-dependent random noise at encoder transition position P (i)

δlfP (i) Low-frequency error induced at position P (i) due to code-wheel

eccentricity

δrP (i) Position error at transition position P (i), due to

the estimation of reference velocity

∆p Pulse width error

∆s State error

∆φ Phase error

ε Quantized error occured due to quantization of signal q

φ Number of electrical degrees between the middle of the high state

outputs of two channels

φ Phase - number of electrical degrees between the middle of the high state

outputs of two channel (A and B), nominally 90 electrical degrees

Dedicated to my mother and my father

xxii

Chapter 1

Introduction

1.1 Background of the Project

With the emergence of a highly competitive market, the industrial sector has

evolved from manual to automated industrial processes. This change has lead to

the development of various electrical drives, operating in open- and closed-loop

systems. For the accurate measurement of position/velocity and stable servosys-

tems, different feedback sensors (low-power transducers) such as analog tachome-

ters, digital tachometers, encoders and resolvers have been used in these drives.

Initially, resolvers and analog tachometers were widely-used sensor devices in ser-

vosystems. With the advent of digital control techniques, digital tachometers,

which are more efficient and require less maintenance, have emerged as a viable

alternative for providing feedback signals. Though low-power, d.c. permanent

magnet tachogenerators are still widely used for shaft speed measurement, addi-

tional analog-to-digital converters are needed when these are included in digital

1

Chapter 1 Introduction 2

control systems. In many modern servo systems, the concept of velocity feedback

has been eliminated in order to decrease the parts count of control hardware, and

hence, production cost. However, for very high-bandwidth applications such as

very-low-speed servo controllers and NC machines, very fast and accurate shaft

speed measurement is required for stable control of the system.

The optical encoder or other sensor (which feedbacks the position/velocity of the

shaft in a digital control system) is a major component of the digital tachometer.

However, the accuracy of an optical encoder is influenced by the optical, mechani-

cal and electrical parts of the sensor, including their corresponding manufacturing

limitations [1]. Non-idealities in these parts lead to different types of errors, which

can be broadly classified into low-frequency and high-frequency errors. However,

low-frequency position error components are inconsequential for the accuracy of

a velocity servosystem, due to the negligible associated measured velocity error

caused by the differentiation of the position error. Having identified the high-

frequency non-idealities in the encoder as a principle error source, the research

reported in this thesis involves the provision of a software solution that is capable

of analyzing the raw data from the encoder and predicting and compensating for

the high-frequency encoder error, without any additional measurement equipment.

A basic schematic of a closed-loop digital servo system is shown in Fig. 1.1, where

an encoder that is connected to a motor provides position/velocity information.

This information will be used as feedback for the control that is implemented in

a digital processor. Based of the error between a reference signal and the feed-

back from an encoder, new torque command signals typically provide current-loop

Chapter 1 Introduction 3

Drive

Motor Encoder

Digital
Processor

Servosystem

Fe
ed

ba
ck

 &
 C

on
tr

ol
 sy

st
em

Figure 1.1: Basic block diagram of a digital drive setup.

inputs for the drive which, in turn, supplies the pulse-width-modulated (PWM)

voltages applied to the motor under control.

In order to implement this closed-loop servosystem, a selection of various hardware

and software components and a speed measuring algorithm, are required. As a

matter of relevance, different types of typical encoder are discussed first in Section

1.2, and some suitable encoders that fulfil the requirements are selected for testing.

Various possible speed measuring techniques are discussed in Sections 1.4 and 1.5.

A technique which allows the measurement of the shaft speed with high precision,

and which is easy to implement, with minimal equipment requirement, is selected.

Additionally, a detailed description of the hardware utilized for the project, such

as encoders, electrical drives, motors, and a digital control system, is presented in

Section 1.7.

Chapter 1 Introduction 4

1.2 Encoder Types and Common Errors

The rotary, or shaft, encoder is one of the most commonly used types of devices

to measure the speed of servo systems, with optical encoders being predominantly

used. These optical encoders can be classified as incremental and absolute encoders

[6–8]. An absolute encoder, which is usually optically-based, (though capacitive

and magnetic encoders are occasionally used) has a code-wheel that generates a

binary code [8–10]. Mechanical encoders are no longer used due to their require-

ment for debouncing circuitry. The binary code generated can be either a standard

binary code or a Gray code. The code-wheel etched with a binary code has many

concentric circular tracks depending on resolution; (resolution of a L track encoder

will be 2L). As the cost of the absolute encoder is very high due to the complex-

ity involved in manufacturing, the absolute encoder is usually not an attractive

proposition for high-volume usage. The proposed learning algorithms described in

this thesis for incremental-encoder-based systems could equally be applied to an

absolute encoder-based system, with very minor modifications.

Because the incremental encoder has two output channels at (normally) 90 electri-

cal to each other, they are also known as quadrature encoders [11]. Depending on

their outputs, optical incremental encoders are classified into two types: square-

wave encoders and sinusoidal encoders.

Chapter 1 Introduction 5

Figure 1.2: A typical square-wave incremental encoder code-wheel.

1.2.1 Square-wave encoders

Square-wave incremental encoders, whose output waveforms are nominally square

in shape, are very commonly used, due to the inherent simplicity and noise immu-

nity of digital signals. These square-wave incremental encoders can be either two

or three channel devices, where two of these channels/output waveforms, typically

labelled as Channel-A and Channel-B, are square-wave outputs which appear in

quadrature. Typical output waveforms of a square-wave encoder are shown in Fig.

1.3. If Channel-A leads Channel-B in one direction, Channel-B will lead Channel-

A in the opposite direction. This quadrature arrangement can be used to detect

the direction to the shaft rotation and also serves to increase the resolution of

the encoder by implementing the quadrature-decoding technique, as described in

detail in Section 1.4.2.1. The third channel is a zero-marker (ZM), which typically

resets a pulse position counter once per revolution.

Though the basic signals generated by the photodetectors of an optical incremental

Chapter 1 Introduction 6

square-wave encoder are pseudo-sinusoidal in shape, these sinusoidal signals are

converted to square-wave signals via of Schmitt triggers, or a similar squaring

technique. Clearly, the resolution, L, of a square-wave encoder is based on the

Encoder
Channel-A

Encoder
Channel-B

L - counts

Encoder
Zero-Marker

Figure 1.3: Output waveforms of a typical 3 channel incremental square-wave
encoder, with Channel-A leading Channel-B.

number of tracks/notches on the code-wheel.

1.2.2 Sinusoidal encoders

Sinusoidal encoders are another type of incremental encoder, where the output

waveforms are nominally sinusoidal in shape (though this shape is sometimes closer

to triangular for a low resolution encoder) [12]. Though most of the sinusoidal

encoder setup is similar to that of a square-wave encoder, the major difference

between them is the absence of squaring circuitry in the former encoder. Sinusoidal

encoders have two sinusoidal outputs in quadrature with each other, as shown in

Fig. 1.4. As most digital tachometers based on square encoders are fundamentally

limited at low velocity by the low frequency of positional information provided by

the digital encoder, a sinusoidal encoder which can provide ultra-high-resolution

position information, and thereby improve the accuracy and transient response of

Chapter 1 Introduction 7

the sensor, is widely used. The raw electrical signals emitting from the photo-

detectors which convert the light transmitted through the code wheel (usually

quasi sinusoidal waves) provide the basis for sinusoidal encoders.

90 o

Channel-B
Channel-ASinusoidal

Encoder
Channels

time (t)

Figure 1.4: Output waveforms of a typical incremental sinusoidal encoder,
where Channel-A is leading Channel-B.

Given that the optical, incremental square-wave encoder is simple, economical,

easily used and can be adapted easily in digital systems, it was decided to use this

type of encoder for testing. As the compensation of the high-frequency repetitive

errors is the main objective of this thesis, it is essential to analyse the various

sources of these errors. A detailed description of the different errors associated

with the various parts of an incremental square-wave encoder is presented in the

next section.

1.3 Description of the Error Sources of Optical

(Square Wave) Incremental Encoders

While optical incremental encoders can be an inexpensive option to measure shaft

velocity and position, their capability of providing accurate and reliable measure-

ment prompted their widespread usage. Optical incremental encoders are widely

Chapter 1 Introduction 8

used in the fields of medical equipment, industrial robotics, computer peripherals,

etc. Mechanical, electrical, and optical non-idealities determine the accuracy of

an encoder. A detailed study by Yien [1] classified the incremental encoder errors

as being due to pulse width error, cycle error, state width error, and phase error.

These are typically derivatives of the parameters listed below.

c

ø

s2 s3s1

Channel -A

Channel -B

p1
p2

time

Figure 1.5: Output waveforms of two nominally quadrature Incremental En-
coder channels (reproduced from [1]).

Encoder parameters:

• Cycle, c: Length of time or electrical angle between two consecutive rising

edges of either Channel A or Channel B, nominally 360 electrical degrees.

• Counts Per Revolution, n: The number of electrical cycles per revolution.

• Pulse width, p1/p2: Electrical angle over which a channel output is high

during a cycle, nominally 180 electrical degrees.

• State width, s1/s2/s3: Electrical angle between transitions on Channel A or

B and the adjacent Channel B or A, nominally 90 electrical degrees.

Chapter 1 Introduction 9

• Phase, φ: Number of electrical degrees between the middle of the high state

outputs of two channels (A and B), nominally 90 electrical degrees.

• Optical Radius (Rop): The distance between the centre of the code-wheel

and optical centre of the encoder.

The errors in some of these parameters are defined as follows:

Cycle error, ∆c, is the number of electrical degrees variation from one complete

(nominal) cycle, .i.e. 360 electrical degrees. Pulse width error, ∆p, is the differ-

ence between the actual and ideal high state during a cycle (in electrical degrees).

Similarly, the error in the state width, s, is termed the state width error, ∆s

and the error in phase is phase error, ∆φ. The major causes of errors in optical

incremental encoders are due to eccentricity, axial play, variation in light level,

mounting misalignment, code-wheel point defects, and mechanical linkage errors

Some errors deserve particular attention:

1. Code-wheel Point Defects: The code-wheel is the most critical part in an

encoder, as any imperfection in a code-wheel can affect encoder performance

significantly. In general, code-wheel point defects can be caused by manu-

facturing imperfections in window/bar edges, or the presence of dust on the

code-wheel, as shown in Fig. 1.6. By using more than one LED per channel,

the output can be averaged out, thereby reducing the error due to defects in

the window/bar edges.

Chapter 1 Introduction 10

2. Variation in Light Level: The variation in the light level due to degradation of

an LED source or other components, opto-electronic temperature variation,

or light transmission path variation, can affect the duty cycle of the channel

outputs. With the help of push-pull or differential circuitry, this effect can

be minimized [13].

3. Mounting mis-alignment of photo-detectors and code-wheel (in the radial

direction) will result in an output phase error. The amount of phase error

can be calculated as (from [14])

∆φ =
d · s · n · 360

Rop2 · 2π
(1.1)

where, s is the distance between two detectors (one per channel), and d is

the deviation of a mis-aligned detector from the nominal location. Hence,

the phase error can be reduced by having smaller distances between the

detectors.

4. Shaft radial play and eccentricity cause low-frequency distortion, with a

fundamental frequency corresponding to the mechanical speed of the shaft.

This can be represented as an integral non-linearity. This error leads to phase

or duty cycle error, and is caused when there is a mis-alignment between the

axes of the code-wheel and stationary electronics, or where the axial play

of the code-wheel is perpendicular to the optical path between the LEDs

and photo-detectors. In addition to manufacturing defects, mis-alignment

Chapter 1 Introduction 11

can also occur due to stresses on the encoder shaft caused by imperfect

mechanical linkage with the driving inertia.

5. Due to unequal rise and fall times of digital signals and the dependency of

the digitization circuitry on the incident light intensity, the non-ideality of

the electronic circuitry can cause significant errors at very high rotational

speeds.

Most of these errors can be minimized, as explained in detail in [1]. However,

errors due to manufacturing limitations, or to dust or dirt, cannot be removed

completely. To compensate for many of the non-idealities described in this section,

new learning algorithms are presented in this work.

Defective
Encoder output

(a)

Non-defective
Encoder output

(b)

Figure 1.6: Time-diagram shown (a) with, and (b) without, a codewheel
window covered with dust.

1.3.1 Quantization error

In additional to the various encoder errors discussed earlier, it is also necessary

to consider the effects of quantization error on the accuracy of the velocity mea-

surement. Quantization error, induced by the quantization process that arises

Chapter 1 Introduction 12

during analog-to-digital conversation (ADC), is defined as the difference between

the analog input value and the quantized digital value. This error is a result

of round-off and truncation processes in an ADC. Despite its simplicity in de-

scription and construction, the non-linear nature of the error makes it hard to

analyze. Quantization noise or error is one of the major sources of errors that can

restrict the resolution of data acquisition and control systems [15, 16]. The ef-

fect of quantization in communication systems, control applications, digital filters,

and computational algorithms has been extensively analyzed [17–19]. The knowl-

edge of the rate of change of digital position is very important, especially when a

digital differentiator is used to estimate a velocity from sampled digital position

values. The quantization function and its associated errors can be represented in

a number of equivalent ways, two of which are illustrated in Fig. 1.7. In the case

of Fig. 1.7(a) xq = q
⌊
x
q

+ 1
2

⌋
, where the error ε is defined as x − xq. For Fig.

1.7(c), xq = q
⌊
x
q

⌋
. The corresponding errors are shown in Fig. 1.7(b) and Fig. 1.7

(d). It should be noted that the error measures of the velocity estimates which

result from the difference of two quantized position estimates are identical for the

different choices of quantizer. It is essential to consider a velocity measurement

technique that can minimize the effects of the position quantization inherent in

the encoder.

1.4 Basic Speed Measuring Methodologies

Research has been going on in the field of digital tachometry for more then five

decades, and several speed measuring techniques have been proposed. However, it

Chapter 1 Introduction 13

x

xq

2

q

2

3q

2

5q

2

7q

2

q

2

3q

2

5q

2

7q

x

ᵋ

2

q

2

q

(a) (b)

x

xq

q q2 q3 q4

qq2q3q4

x

ᵋ

q

(c) (d)

Figure 1.7: Plots showing effects of numerical rounding of signal x in (a), with
corresponding error in (b), and truncation in (c), with corresponding error plot

(d).

can be said that these methods are evolved from two basic methods: the elapsed

time method and the pulse counting method [20].

Chapter 1 Introduction 14

Encoder
Channel

High frequency
counter

P(i-1) P(i)

SiSi-1

Ts

Figure 1.8: Elapsed-time digital tachometer timing diagram (considering
positive-going transitions of one channel only).

1.4.1 Elapsed-time method

The elapsed-time method typically involves a digital time measurement over a

single digital position change. This is based on an inverse function calculation, i.e.

it produces a count that is inversely proportional to the shaft speed. As shown in

Fig.1.8, a high-frequency clock is used to measure the time between two successive

changes in digital position. The high-frequency clock starts at a given rising (or

falling) edge and stops at the next rising (or falling) edge. The average shaft

velocity, in r.p.m., using the elapsed-time method is

Vrpm ≈ 60
fa
ChL

(1.2)

where, Ch is the number of high-speed clock counts (frequency of fa Hz). As

the average velocity between the consecutive edges is calculated, the transient

behaviour of the system is easily evaluated. However, this also makes the method

highly sensitive to the transition noise (errors in edge locations) inherent in the

Chapter 1 Introduction 15

encoder output. The resolution of the elapsed-time tachometer is determined by

the frequency (fa) of the high-speed counter and the encoder resolution. The

accuracy at very high speeds may not be good, i.e. if few (or no) counts occur

per measurement, and hence the influence of quantization error will be significant.

The problem is minimized by increasing fa.

1.4.2 Pulse-count tachometer - PCT

Sampling Instants

Encoder

Channel

M(i) - Counts

T
s

s
i-1 s

i

P(i-1) P(i)

Figure 1.9: Pulse count digital tachometer timing diagram.

Due to its less complex and easily implemented nature, the pulse-count method is

the most commonly used speed measurement technique. In this method, a fixed

sample time, Ts, is used to measure the shaft speed by counting the number of

counts/edges, M(i), that occur over a sample interval.

V ≈ M(i)

Ts
(1.3)

where V is the average shaft velocity, in counts per sample interval, Ts, (i.e. the

units are encoder pulses per sample interval). Similarly, the average velocity in

Chapter 1 Introduction 16

r.p.m. can be expressed as

Vrpm ≈ 60 · M(i)

Ts · L
, (1.4)

where L is the encoder resolution. This method is suitable for medium and high

speed measurements. Though this method is widely used for its simplicity, quan-

tization restricts its use at very-low speeds, and resolution can be unsatisfactory

even at high-speed for demanding applications. The resolution issue at low veloc-

ities can be partly addressed by implementing quadrature decoding, as explained

below. Additionally the problem can also be addressed, at the expense of poorer

transition response, by using a longer sampling time, Ts.

The pulse-count method is similar to standard digital differentiation of quantized

signals and is well documented in [19]. It is also worth noting that it is the most

common method used in servo systems to calculate a digital velocity estimate.

This involves the subtraction of successive digital velocity estimates, which gives

identical results to the PCT.

1.4.2.1 Quadrature decoding

The process of increasing the resolution of a square-wave encoder by a factor of

four, through consideration of both high-to-low (falling edge) and low-to-high (rais-

ing edge) transitions of both encoder channels A and B, is known as quadrature

decoding. Quadrature decoding is achieved by means of suitable digital circuitry.

The output signal after multiplexing will be as shown in Fig. 1.10. The shaft veloc-

ity (using the PCT method) of the servo system when using quadrature decoding

Chapter 1 Introduction 17

T(i)

Encoder
Channel-A

Encoder
Channel-B

Quadrature
Decoded O/P

T(i)
4

Figure 1.10: Time diagram showing the generation of an ideal quadrature
decoded pulse from encoder channels A and B.

can be measured as

V (i) =
K ·M(i)

T (i)
=
P (i)− P (i− 1)

4Ts
(1.5)

where, M(i) is number of quadrature pulses generated during the sample interval

Ts. K is, a conversion constant, equal to 1/4, and the average velocity, V (i), is

measured in units of encoder cycles per sample interval.

1.5 Advanced Velocity Measurement Techniques

Based on the pulse-count tachometer method and elapsed-time method, various

improved velocity measuring techniques have been derived over time. Some of

the more significant of these are presented in this section. A suitable velocity

Chapter 1 Introduction 18

measurement method will be selected for implementation, after analysis of these

methods.

1.5.1 M/T method

In order to provide high accuracy and fast measurement over a wide speed range,

Ohmae et.al. proposed the M/T method [21]. This method is a fusion of the

two basic speed measuring techniques: (the ‘M ’ corresponds to the pulse count

method and ‘T ’ stands for the elapsed time). This M/T method overcomes the

problems in the M -method (resolution and accuracy are not so high at low-speeds)

and the T -method (poor accuracy and resolution at high-speeds) and can realize

high resolution and accuracy with improved bandwidth.

m1 - counts
P(i-1) P(i)

Td

Si-1 Si

Encoder
Channel

Clock
Pulse

m2 - counts

Tc ¢T

Figure 1.11: M/T digital tachometer timing diagram.

In Fig. 1.11, the detection time, Td(s), is determined by synchronizing the first

encoder output pulse edge after the nominal sample time Tc(s). It is assumed

that m1 pulses are generated during time interval Td(s) from an encoder with

Chapter 1 Introduction 19

a resolution of L pulses per revolution and m2 is equivalent to the number of

high-frequency counts generated, when the detection time, Td, is digitized using

a high-frequency clock of frequency fc, (Hertz). Then, the average shaft velocity,

VM/T , (rpm) is given by,

VM/T = 60 · fc ·m1

L ·m2

. (1.6)

1.5.2 Method of accurate time-interval measurement

The concept of interval measurement using time-stamping is common in many

velocity measurement techniques [2, 4, 5, 22, 23], though the word ’time-stamping’

is often not used. For precise time measurement, in [2], Nutt described an interval

measurement technique that uses delay lines to measure the time between the

rising edges of an oscillator and falling and raising edges of the start and end

pulses. The start/stop pulse is routed through the delay line, the phase delay

of which is known, and compared with an oscillator’s phase to obtain the phase

difference. The delay time that just exceeds the phase difference is used as the

correct phase difference. By using a number of such delay lines in the system, the

resolution of the measurement can be increased. This is shown in Fig. 1.12, where

time-stamping is implemented to calculate auxiliary times Ta(i) and Tb(i) at the

ith sample, and the event duration time T (i) can be calculated as

T (i) = Ts + Ta(i)− Tb(i) (1.7)

Chapter 1 Introduction 20

Start Pulse

End Pulse

Ta(i)

Tb(i)Ts

T(i)

Figure 1.12: Time-stamping concept used in Nutt’s Digital Time Interval-
ometer [2].

where Ta(i) is time between the start pulse and the next oscillator pulse. Similarly,

Tb(i) is the time between the stop pulse and next oscillator pulse, and Ts is the

fixed nominal time interval. In [24–26], Kalisz et al. digitized and extended Nutt’s

work, by implementing it on a micro-controller. Kalisz et al., in [24], discussed

many errors, such as non-linearity and jitter in time stretchers, input signal noise

error, timing error, clock reference error, and the quantization process, related to

Nutt’s intervalometer, and proposed a model of total measurement uncertainty.

In addition, for more accurate position/velocity measurement, it is shown in [24]

that time-intervals can be measured with a resolution of down to 1ps. Based on

this principle, many tachometry techniques for precision position/velocity/accel-

eration measurement have evolved [22, 23, 27]. They have also been used for the

calibration of encoders in [4, 5, 28].

Chapter 1 Introduction 21

1.5.3 CSDT method

The Constant Sample-time Digital Tachometer (CSDT) method, proposed by Ka-

vanagh [22], is used for the calculation of motor shaft velocity with high preci-

sion. It is similar to the M/T method [21] and even bears similarities to the

work of Nutt on precision time measurement [2]. Similar to the CSDT method,

a double-buffered method proposed by Prokin [29–31], is designed to ensure that

the time-difference between the encoder edges occurring prior to successive sam-

ples is measured accurately. For this, registers and counter/timers interfaced to a

PC AT bus, are utilized. A double-buffer method is further extended to measure

low shaft speeds, when the number of encoder transitions per sample time is less

than one. The desire for synchronous sampling increases the complexity of the

method, though the effects of asynchronous sampling can be minimized via soft-

ware modification. In [23], Mayrhofer et.al., implemented a CSDT-like velocity

measurement and motor controller system using a FPGA. Precise time measure-

ment is obtained by implementing a time-stamping technique on encoder outputs.

Bucchi and Landi [32] proposed a method that is similar to that of Ohmae et al.,

applied to a linear encoder, and implemented using a micro-controller. Similar

application of an auxiliary counter, if performed to estimate the shaft position

at a given time (which does not necessarily correspond to a transition edge), as

explained by Jian-Zhong Tang et al. in [33].

Both the CSDT and M/T techniques rely on an accurate timer to remove the

quantization velocity error associated with the pulse count method. The CSDT

Chapter 1 Introduction 22

method has been shown to provide excellent average velocity information over a

sample interval, along with good transient response and a wide velocity range.

Sampling Instants

Encoder
Channel

M(i)- Counts

T(i)

Ts
Ta(i-1) Ta(i)

P(i-1) P(i)

Auxiliary Count

si-1 si

Figure 1.13: Timing diagram of CSDT method for measurement interval
T (i) (assuming measurement based on positive-going transitions only of en-
coder channel A or B); the digital positions at samples i-1 and i (marked as

si−1 and si) are denoted by P (i− 1) and P (i), respectively.

A typical measurement interval is illustrated in Fig. 1.13. The average absolute

shaft velocity in counts per sample-interval over the measurement interval, T (i),

is calculated using

Vi =
K ·M(i)

T (i)
(1.8)

where M(i) = P (i) − P (i − 1), is the number of counts between transition posi-

tions P (i − 1) and P (i), K is a constant to scale the shaft velocity to physically

meaningful units, and T (i) is given by

T (i) = Ts + Ta(i− 1)− Ta(i) (1.9)

Chapter 1 Introduction 23

where the sample interval, Ts, is constant and set by a microprocessor- or DSP-

based controller. The auxiliary time Ta(i), at the ith sampling instant, is the

elapsed time between this sampling instant and the most recent actual encoder

transition position. The auxiliary time is measured by a high-frequency counter

that is reset on each encoder transition position. Hence (1.8) can be rewritten as

V (i) =
K ·M(i)

T (i)
=

P (i)− P (i− 1)

Ts + Ta(i− 1)− Ta(i)
(1.10)

where K = 1 when the velocity is measured in counts per sample interval.

Note that the value M(i) is often termed the PCT output. It is also essential

to note that the exact value of an actual encoder transition position is unknown

prior to compensation, but it is approximated by the (integer) digital position

P (i). While implementing the quadrature decoding technique, (1.10) is modified

as

V (i) =
K ·M(i)

T (i)
=

P (i)− P (i− 1)

4[Ts + Ta(i− 1)− Ta(i)]
(1.11)

where K = 1
4
. These features ensure that the CSDT method provides a viable

economical solution to high-accuracy velocity measurement in open-loop measure-

ment systems [22]. Its closed-loop performance, which was previously consid-

ered by Kavanagh in [34] will be extended in Chapter. 4. Other FPGA- and

microprocessor-based digital tachometers are described in [23, 35–39].

Chapter 1 Introduction 24

1.5.3.1 Low-speed CSDT

For the measurement of a shaft speed that corresponds to less than one code

change per sample interval, a modified velocity measuring technique is possible, as

explained in detail by Kavanagh in [22]. In this case, as exemplified in Fig. 1.14,

when the auxiliary time at the ith sample Ta(i) is known and Ta(i−1) is unknown,

T (i) is calculated using the last valid count Ta(i − n), where n is the number of

samples since the previous position change occurred. The modified average shaft

velocity, at low speeds, can be written as,

T(i)

6Ts
Ta(i)

Ta(i-6)

sisi-1si-2si-3si-4si-5si-6si-7

Encoder
Channel

Sampling
Instants

P(i-1) P(i)

Figure 1.14: Timing diagram of low-speed CSDT method for measurement
interval T (i) (assuming measurement based on positive-going transitions only
of encoder channel A or B); the digital positions at samples i-6 and i (marked
as si−6 and si) are denoted by P (i − 1) and P (i), respectively. Note, n = 6 is

assumed in this example.

V (i) =
K ·M(i)

T (i)
=

K(P (i)− P (i− 1))

nTs + Ta(i− n)− Ta(i)
(1.12)

where, as before, K is a constant to scale the shaft velocity to physical units.

Chapter 1 Introduction 25

1.5.3.2 Oversampled constant sample-time digital tachometer (OCSDT)

In [40], Kavanagh proposed a new velocity measuring technique, the OCSDT. This

technique is similar to the Oversampled Digital Differentiator (ODD) proposed

in [34]. In the CSDT method, quantized position (pulse-count) and auxiliary

counter/timer information is retrieved at the end of a sampling interval. However,

in the OCSDT this information is obtained at a much higher rate (oversampled)

during a given sample interval.

V (i) =
K ·M o(i)

T (i)
=

K ·M o(i)

nTs + T oa (i− n)− T oa (i)
(1.13)

ithi-1th

Ts

k/f k/2f

Figure 1.15: Time diagram showing the sub-sampling during one sampling
interval.

where M o and T oa are average pulse count and auxiliary time over a sub-sampling

interval. Fig. 1.15 shows the sub-sampling of OCLK signals during one sampling

interval, with FPGA clock frequency and k a proportional constant. As the number

of encoder transitions per sampling interval is small at low-speeds, the advantages

of oversampling are relatively low. At very low-speeds, where the shaft rotates

at less than one pulse per sample (pps), the effectiveness of the OCSDT will be

Chapter 1 Introduction 26

similar to that of the CSDT, as both methods make use of the same amount of

updated information from the position sensor.

As the CSDT method can provide excellent average velocity information over a

sample interval, along with good transient response and a wide velocity range, this

technique is selected for measuring the shaft speed in this project. The compen-

sation information that is used to improve the performance of the CSDT could

also be used to improve the OCSDT, but the advantage to be gained from the

oversampling is likely to be small, so that the greater complexity involved with

combining the two techniques would be hard to justify.

1.6 Previous and Proposed Work on Compensa-

tion of Encoder Outputs

Over the years, many different methods have been proposed to compensate for the

position sensor non-linearities used in different applications. In order to compen-

sate for the non-idealities in raw photodetector signals of a sinusoidal encoder, Kahl

[41] proposed that precision measurement equipment be incorporated with some

complex software and a learning mode. In the ‘learning mode’, the motor shaft is

rotated at near constant speed, and the digital encoder data is stored. Using an in-

terpolation technique, an inverse transmission characteristic is derived to generate

a look-up table. This look-up table helps in measuring average shaft velocity with

shorter sample time, hence giving good transient performance and compensating

for the errors due to encoder non-idealities. Significant improvements are observed

Chapter 1 Introduction 27

in the velocity measurements, at the cost of additional hardware. Though the sta-

bility range of a modified servosystem is improved, no guarantee of stability (at

lower speeds) is observed in a closed-loop configuration. Due to the very short

sample-time required for this method, the neccessary high-speed microprocessor

can increase the cost of the digital tachometer.

In work on the calibration of low-cost, resolver-based absolute shaft encoders, Kaul

et al. [42] utilized a precision indexing table, so that the actual sensor position

is known with high accuracy. They confirmed that the encoder inaccuracies are

predominantly systematic in nature, and so can be reduced through compensa-

tion. They reported a fourfold reduction in sensor position error. This highlights

a crucial assumption on which the work of this thesis is based: that a significant

proportion of each encoder line error is fixed, or little changing, so that the ac-

tual encoder transition errors can be directly related to the consequent apparent

velocity error.

It is also possible to derive a compensation table by coupling the incremental

encoder-under-test with a high-resolution reference device, as described by Merry

et al. in [4]. That paper describes a time-stamping technique using a high-

resolution clock for accurate measurement of encoder events. These events relate to

the pulse counter values and the corresponding encoder transition instants. These

are used to determine the encoder non-idealities via a low-order least-squares poly-

nomial fit (extrapolated to the desired (sample) time instant). Though it showed

an 87% improvement in position measurement, it is necessary to run the shaft at

constant speed during the learning mode and the additional high-resolution sensor

Chapter 1 Introduction 28

used will increase the cost of the setup.

Similarly, Merry et al. have described the same concept in [5] in order to compen-

sate for errors in the calculated shaft velocity and acceleration. Improvements of

57% in velocity measurement and 92% in acceleration measurement are reported.

Mancini et al. [43] have made the assumption that the apparent high-frequency

components of position error in an encoder-based system within a large telescope

cannot have a physical basis, and must be due to encoder error. The work re-

ported in Mancini’s paper concentrates on higher-frequency effects as being the

ones most responsible for resultant system errors. That is particularly true in a

velocity servosystem where accurate velocity-, rather than position-control, is of

principal interest.

The assumption of constant, or at least smooth, shaft velocity has been intrinsic

to all learning modes used in the compensation of sinusoidal, [44–47], or square

encoders. A probabilistic learning technique is proposed by Kavanagh in [44] to

compensate for non-idealities in a sinusoidal encoder. During the learning mode, a

code-density array is obtained, which can be utilized to compose a compensation

function. Using this compensation function, unsegmented, and segmented com-

pensations are performed (i.e. using different compensation functions over different

parts of the mechanical revolution).

In general, it has been shown by the researchers cited above that the line code

error is the predominant form of error related to the encoder (except in crude PCT-

based systems). The systems described by Merry et al. [4, 5], where compensation

is shown to lead to a position error reduction of approximately 80%, is closest in

Chapter 1 Introduction 29

E
nc
od
er

St
ep

Ts ti

Real
Quantized
Encoder event

Figure 1.16: Concept of time-stamping used by Merry to calculate the
quantized time at a sample instant to determine actual physical posi-

tion(unquantized).

aim and method to that of this thesis. The time-stamping concept employed to

estimate the shaft position from quantized position information is shown in Fig.

1.16. However, there are significant differences in the implementations: the work

in this thesis involves calculation of a velocity reference from the time-stamped

data, rather than using a reference sensor to generate a position reference. In

this thesis, the data availability is limited to that obtained from the CSDT, which

can be implemented on a simple micro-controller, rather than employing more

specialized time-stamping hardware. Additionally, in this work consideration is

given to learning over variable velocities, and for stand-alone operation.

In [48], another shaft velocity measuring technique, called the SR method, is

proposed by Hachiya and Ohmae to avoid the inherent slit-error problem. This

method involves calculation of the average speed of a shaft by considering the

time difference between the arrival of the present encoder position and the same

position of the previous revolution, as shown in Fig.1.17, where Td1 is the time be-

tween the present and immediately previous encoder transition positions (Position

Chapter 1 Introduction 30

1). Similarly, for position i, time differential will be Tdi. Though this technique

compensates for the influence of the slit error, the output shaft velocity is delayed

by one revolution, leading to a very slow response. This drawback makes the

solution less attractive.

0 1 2 …….. 0 1 2

Encoder
Pulse

Td1

Td2

Figure 1.17: Timing diagram of SR method showing the time determination
for calculating average shaft velocity (times displayed are based on measurement

of positions 1 and 2.

Similar work on sinusoidal encoders was performed by Tan et al. using neural

networks to derive a look-up table of encoder errors [49].

1.7 Hardware Implementation

Fig. 1.18 shows a typical block diagram of a closed-loop electrical drive system

which includes a CSDT-based digital tachometer. The digital tachometer utilized

in this work consists of an incremental square-wave encoder, coupled to an elec-

trical motor, to detect the position information of the shaft, and an FPGA to

process the data obtained from the encoder and to measure time and position

information for the DSP. Using this processed data obtained from the FPGA, the

DSP implements the compensation and closed-/open-loop control algorithms.

Chapter 1 Introduction 31

Drive

Motor Encoder FPGA

Encoder Output

2

3

DC Power

DSP

8
2D

AT
A

Sa
m

pl
e

&
 R

ea
d

3

CH A

CH B

ZM

Figure 1.18: Block diagram of a typical FPGA/DSP-based servosystem con-
troller.

1.7.1 Optical encoders used in experimental work

For this work, three different optical incremental square-wave encoders, with dif-

ferent resolutions and from different manufacturers, are tested. Encoders with a

resolution of 200 ppr from HP [50], 300 ppr from OVW [51], and 360 ppr from

Omron [52], are selected. The use of encoders of different quality/price and type

(two of the encoders are coupled to the motor shaft, while the third is of the hollow

shaft type whereby the codewheel slips onto the motor shaft) facilitates testing,

as it indicates the generic nature of the algorithms proposed. The details of these

encoders are shown in Table 1.1

Chapter 1 Introduction 32

Table 1.1: List of selected encoders that are utilized for experimental analysis

Factors Encoder A Encoder B Encoder C

Type Incremental Incremental Incremental
Manufracturer Omron OVW HP

Resolution 360 300 200
No of Channels 3 3 3
Shaft Mounting Coupling Coupling Hollow

1.7.2 Field Programmable Gate Array

A field-programmable gate array (FPGA) is an economical way of implementing

complex custom hardware on a single chip. The FPGA has evolved from a wide

variety of programmable logic devices (PLDs) which were employed principally

as replacements for ‘glue logic’, small-scale-integration (SSI) parts. The need for

application-specific integrated circuits (ASICs) [53] led to the development of the

gate array in which connections between an array of pre-configured logic blocks

can be implemented in silicon through use of an application-specific interconnect

layer. In the next generation, a re-programmable set of interconnects replaced

the pre-configured logic blocks to permit very fast design cycles, with particular

advantages in a prototyping environment [54, 55]. Typically, FPGA logic blocks

can be as simple as a transistor or as complex as a microprocessor, and are well

capable of implementing different sequential and combinational logic functions.

A low-cost Xilinx FPGA device was selected. Xilinx, currently the world’s largest

FPGA manufacturers, were the first to introduce these devices in the mid-1980s.

The Xilinx logic blocks are more complex than those of their competitors and have

great flexibility, but there is a possibility of under utilizing on-chip resources. The

Chapter 1 Introduction 33

FPGAs produced by Xilinx Inc. are broadly classified into two families: Spartan

and Virtex. The Spartan-FPGAs are designed for high-volume production, where

low-cost and easy implementations are major constraints, while Virtex FPGAs are

aimed at high-performance systems.

1.7.2.1 The Xilinx XC4000 FPGA

A simple (and effectively old-fashioned relative to the present Spartan-6 series)

Spartan Xilinx XC4000 series FPGAs [56–58] is selected for this work. This proved

capable of implementing designs of the complexity required for the task being

described. The product introduced in 1990, was available for US $10 (in large

quantity) and slightly scaled-down versions of these devices [59] increased the usage

of FPGAs in wide-spread applications, due to the XC4000’s cost-effectiveness and

flexibility in implementation.

The configurable logic block (CLB) is the principal element in an FPGA, deter-

mining its processing capability. The easily programmable CLBs are arranged in

a two-dimensional array form. They are interconnected by a powerful hierarchy of

versatile routing channels. The selected FPGA, XSC10, is built with a 14 by 14

CLB matrix, as shown in Fig. 1.19. A simplified block diagram of a CLB, adopted

from the Xilinx data book, is shown in Fig. 1.20. Each CLB contains three Look

Up Tables (LUT) or Function Generators (FG), where FG4s can implement any

logic functions of four variables, two flip-flops and two groups of signal-controlling

multiplexers. Using the optional modes in CLBs, functional generators (F-LUT

and G-LUT) can also be used as random access memory (RAM), because read and

Chapter 1 Introduction 34

IOB
IOB

IOB

IOB

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IOB

IOB

IOB

IOB

CLB

CLB CLB

CLB

B-
SCAN

RDBK START
-UP

OSC

IO
B

IO
B

CLB

IO
B

IO
B

CLB

IOB

IOB
CLB

IOB

IOB
CLB

IO
B

IO
B

CLB

IO
B

IO
B

CLB

IOB

IOB
CLB

IOB

IOB
CLB

CLB

CLB CLB

CLB

Routing Channels

 VersaRing Routing Channels

Figure 1.19: Block diagram of a basic FPGA (Extracted from Xilinx data
book).

write operations can be performed significantly faster than off-chip implementa-

tions. The presence of the other function generators allows more complex logic

functions to be performed, with outputs from FG4s and an external input. In ad-

dition to external input signals, the outputs from FGs are connected to flip-flops.

A detailed description of CLBs is available in [56–58]. Additional features of the

XC4000 series include:

• Input/Output Block (IOB): The Input/Output Blocks, which are user con-

figurable, provides the interface between the FPGA and external logic sig-

nals. Each IOB can be configured for input, output, or bidirectional signals.

Chapter 1 Introduction 35

FG4

FG4

FG

G

F

H

D1

G1
G2
G3
G4

H1

F1
F2
F3
F4

D

Flip-flop

Flip-flop

G
F

H
D

G
F

H
D

H

H

G

F

MUX

MUX

Function Generator

Clock
Enable

Reset

Figure 1.20: Simplified logic diagram of Configurable Logic Block (CLB)
(slightly modified extract from Xilinx data book).

These high speed IOBs are capable of a number of programmable features

such as optional pull-up or pull-down, low speed or high-speed, possibility

of registered input and/or output, etc.

• Routing and programming : The CLBs, which are used for most of the logic

implementation in FPGAs, are encircled by the routing channels providing

the connection between inputs and outputs of the CLBs and IOBs. Though

direct interconnections between adjacent CLBs are possible, many connec-

tions are provided via routing channels and controlled by routing switches.

In complex designs, the latter option is subjected to considerable propaga-

tion delays, so that dedicated high-load lines with high-drive clock buffers

are available for clock signals, ensuring the existence of minimal skew from

such signals.

Chapter 1 Introduction 36

Distributed static-RAM cells situated adjacent to the programmable re-

sources of the device are used to configure the FPGA. By application of

a serial configuration bit-stream, clocked into the FPGA from an EPROM

or another data bus, these cells can be programmed.

• Software Tools : The FPGA-based design process consists of many stages.

The designed circuits can be implemented either using a schematic approach

or VHDL tools. In this project, Viewlogic schematic capture software is

adopted for circuit design purposes. The desired schematic model can be

built with the help of a library of pre-designed logic elements such as coun-

ters, arithmetic-logic-units, etc. The software provided by Xilinx facilitates

routing, placement, translation, and design-rule checking of the required cir-

cuit.

1.7.3 dSPACE DS1104

The dSPACE (ds1104 board produced by dSPACE GmbH, Paderborn, Germany,)

is a data-acquisition system combined with an independent processing system to

implement digital control models. It is intended to be a complete real-time con-

trol system based on a PowerPC (PPC) 603e fixed-point processor [60]. In this

project, the DS1104 is used for learning the slit error associated with a particu-

lar encoder and for implementation of the sensor compensation and servosystem

measurements and/or control required in this project. In addition to the PPC

(the master processor), the DS1104 R&D Controller board, shown in Fig. A.1 of

Appendix A, includes a slave DSP, interrupt controller, memory, host interface,

Chapter 1 Introduction 37

and timers. The master PPC runs at 250 MHz. It controls two ADC units (a four

channel 16-bit analog-to-digital Converter (ADC) unit and a four channel 12-bit

ADC unit), a 16-bit digital-to-analog Converter (DAC) unit, incremental encoder

interface, 20-bit digital I/O and a serial interface (RS-232). The incremental en-

coder interface can take inputs from two digital incremental encoders and has

24-bit position counters. Both digital incremental encoder channels can handle

encoder signal frequencies of up to 1.65 MHz. Note, however that the DS1104’s

encoder interface circuitry is not used in this work, being replaced by the more

flexible and powerful FPGA-based circuitry.

The slave-DSP subsystem is based on a TMS320F240 DSP micro-controller which

can be used for advanced I/O purposes. The ControlDesk software provided with

the DS1104 is used to design the system implementation and interface for the

DS1104 board. The software interface also provides various useful features, includ-

ing linkages with MATLAB and an oscilloscope-like variable tracing capability. An

I/O breakout box is used to provide connectivity between the FPGA board and

the dSPACE card for transmitting raw encoder position and time data.

1.7.4 Electrical drives used in experimental work

Two different experimental setups are considered to test and analyze the encoder

behaviour and its influence on the outputs. One electrical drive is mounted with

a very heavy fly-wheel which will assist in providing very smooth velocity out-

put. A BRU-200 brushless electrical drive [61] from Electrocraft is coupled with a

heavy inertia (fly-wheel) to provide smooth velocity. The BRU-200 was sold as a

Chapter 1 Introduction 38

high-performance sinusoidal brushless industrial drive. The drive module provides

control and power to S-series permanent magnet synchronous motor (S-3007). The

control circuit of the BRU-200 drive includes a 16-bit microprocessor and personal-

ity module which allows matching with the motor, thereby facilitating tuning and

setup. A standard RS-232/RS-422 serial interface is used to connect a PC to the

drive, to modify tuning, change limit values, or to monitor variables/status in the

servosystem. A standard decimal line count encoder, which is factory installed on

the motor, is used for commutation purposes. However, with the drive controller

in current-loop mode, velocity feedback utilizes the digital tachometers described

in this thesis when implementing closed-loop control.

The second experimental setup is lightly loaded, enabling the motor to run at

high speeds and to implement closed-loop control. An Aerotech 4020 linear servo

amplifier is used to analyze encoder performance and test the learning algorithm

at medium and high speeds. The power output stage of this servoamplifier consists

of NPN power transistors which operate in the linear mode. The servo controller

includes a 741-type pre-amplifier with position and rate compensation, driving a

power amplifier configured in a current feedback mode. This pre-amplifier features

three adjustable scale factors for the inverting input: balance adjustment, a non-

inverting input and a gain adjustment for lag-lead compensation. The Aerotech

4020 servosystem powers and controls an Aerotech 1050DC (a 1000 series) brush-

type rotary DC servomotor [62] which features a dynamically-balanced skewed

rotor and tachometer for analogue velocity feedback. However, in-built encoders

(in both drives) are not used for testing.

Chapter 1 Introduction 39

Table 1.2: Electrical drives selected to build the servo system

Specifications Aerotech1050 BRU 200 (S-Series)

Maximum Speed (rpm) 5000 5000
Continuous Stall Torque (N-m) 0.35 0.79

Peak Torque (N-m) 2.52 -
Rated Power (W) 146 -

Bus Voltage (VDC) 40 125-375
Torque Constant (N-m/Amp) 0.07 0.28

Encoder resolution (counts/rev) - 2000

1.8 Aim and Objectives

The fundamental goal of this research is to improve the performance of high-

bandwidth open-loop angular velocity measurement systems, or closed-loop servo

systems, using the constant sample-time digital tachometer (CSDT) method, and

particularly to design a new improved technique to compensate for high-frequency

sensor errors.

1.8.1 Objectives

The primary objective of the thesis is therefore to propose new techniques to

obtain improved tachometer output with no, or minimal, additional hardware and

cost, by compensating for the high-frequency error due to non-idealities in the

code-wheel of an encoder.

The augmentation of a drive system by encoder compensation can be divided into

a number of linked sub-problems:

Chapter 1 Introduction 40

• Calculation of an uncompensated velocity estimate from the time-stamped

data associated with the CSDT.

• Generation of ‘reference’ (i.e. improved) velocity or position estimates through

filtering or curve-fitting techniques, which when compared with the initially

calculated velocity, provides some information on the encoder error.

• Processing this data over many samples to generate a look-up compensation

table of code errors (transition location errors), and

• Use of this table during the subsequent operational phase of the motion

system.

• Development and analysis of a mathematical and MATLAB-based model for

the proposed technique.

• The proposed compensation algorithms are implemented experimentally in

both open-loop and closed-loop systems.

• The results obtained on systems employing different encoders and drives

are designed to verify the benefit to be obtained by implementing the new

algorithms.

1.9 Outline of the Thesis

Chapter 2 : The chapter introduces three proposed learning techniques, and presents

details of how the algorithms work.

Chapter 3 : The chapter contains an analysis of the error sources associated with

Chapter 1 Introduction 41

encoders and digital tachometers, and of the error reduction due to the use of

compensation algorithms.

Chapter 4 : The proposed learning techniques are simulated using MATLAB and

the results are presented and discussed. This chapter also consists of a detailed de-

scription of the experimental implementation of the learning methods in open-loop

and closed-loop systems. Results obtained from different encoders are compared

and analyzed.

Chapter 5 : Finally, conclusions are drawn, based on simulation and experimen-

tal results. Future work and limitations of the proposed method are also presented.

Chapter 2

Description of the Learning

Algorithm

2.1 Introduction

This chapter is dedicated to the determination of a suitable statistical method

to determine the slit errors. The methodologies and the optimal usage of these

selected procedures are explained. It is necessary to determine the unknown slit

errors, δi, and interval errors, δi,i+1, of the encoder code-wheel. Approximate linear

equations can be formulated which are dependent on the line errors of a partic-

ular encoder. Solution of these equations should allow estimation of the encoder

errors. However, these mathematical models cannot usually be solved explicitly,

and numerical methods to obtain approximate solutions are needed. Depending

on the number of constraints, such as the required accuracy, the errors involved,

42

Chapter 2 Description of the Learning Algorithm 43

the speed and time of convergence, and the memory consumption required, suit-

able numerical methods can be adopted. These numerical methods can be broadly

classified as direct and iterative (indirect) methods.

Direct methods, such as Gaussian eliminations, QR factorization, etc., are primar-

ily adopted to determine the exact solution after a finite number of operations for

a linear system. However, these methods only lead to a theoretically exact solution

in a finite number of steps. In practice, there are errors in the computed value due

to rounding errors in the computation, arising from the finite length of numbers in

standard computer arithmetic. In contrast, the iterative methods, first introduced

probably by Gauss, provide solutions for both linear and non-linear equations.

These indirect methods are simple and require less computer storage. They can

also provide solutions in a simpler way for special structures like sparse matrices

(for which memory storage requirements can be significantly reduced) and are suit-

able if there are many unknown variables. As against the determination of exact

solutions, these methods tend to calculate approximate solutions, with successive

approximations of increasing accuracy, within acceptable boundaries.

The main disadvantages of iterative methods are their relative slow convergence

and, at times, their undesirable divergent behaviour [63, 64]. It can be observed

from the graph in Fig 2.1, reproduced from [3], that solutions for a problem can

typically be determined more quickly with iterative methods than with direct

methods. The number of iterations required to attain the required residual value

depends on many constraints including: type of the iterative method selected,

errors in the data, etc. Due to their limitations, direct-method type techniques

Chapter 2 Description of the Learning Algorithm 44

are not considered for the algorithms which are designed to learn the slit errors.

The iterative methods are typically classified as

Direct Method

Iterative Method

R
es

id
ua

l (
r)

10
-1

5
10

-1
0

10
-5

10
0

0 5 2510 15 20 30
Iteration

Figure 2.1: A graph showing the calculated residual in a system against the
number of iterations (reproduced from [3]).

• Stationary, or classical, iterative methods, and

• Non-stationary iterative, or Krylov subspace, methods.

The Jacobi, Gauss-Seidel, and successive over-relaxation techniques are some ex-

amples of stationary methods, while conjugate gradient, generalized minimal resid-

ual, bi-conjugate gradients, etc., are Krylov subspace type methods. In the field

of sensor networks, numerical analysis is widely used to determine the exact/true

value of an acquired signal that is affected by noise. Down the years, many new

analytical methods have been derived from the primary methods. In [65], Barooah

et.al., proposed two optimal estimate algorithms, based on the Jacobi method, to

compute the vector-value variables at the nodes in a sensor network affected by un-

correlated zero-mean noise. One algorithm is aimed at a situation without failures,

Chapter 2 Description of the Learning Algorithm 45

while the other is chosen to deliver robust performance even with temporary com-

munication failures. Though these iterative algorithms are simple and robust, the

convergence to correct values is slow. Later in [66, 67], the same authors proposed

a new algorithm, the overlapping subgraph estimator algorithm (OSE), which is

distributed and robust to temporary communication faults, and is executed asyn-

chronously. A new Embedded Polygons Algorithm (EPA) as proposed by Delouille

et.al., in [68] is a combination of the Jacobi and embedded tree methods, which

is essentially a block-Jacobi iterative method, for obtaining least-mean-squares

error estimation of node variables in a distributed manner. In [66, 67], a compar-

ative study is performed between Jacobi, modified EPA (adapted from EPA in

[68]), and OSE methods to evaluate average energy consumption and the speed

of convergence. It is observed that OSE needed relatively far fewer iterations to

converge then other methods, and consumes much less energy. However, these

methods are relatively complex to implement. For overdetermined systems, as in

this thesis, the least-squares approximation method is widely used because of its

simplicity, effectiveness and completeness [3]. Nonetheless, its main disadvantages

are its sensitivity to outliers and possibly its poor extrapolation property over

long ranges. Though most of these methods can be adopted to the problem under

consideration, consideration of the limitation imposed by time- and memory-based

constraints and the desire for an easily coded algorithm, the following three meth-

ods are considered for developing the learning algorithm to compute position/slit

errors in encoder code-wheels:

1. Pseudoinverse-A (based on calculation of slit errors)

Chapter 2 Description of the Learning Algorithm 46

2. Pseudoinverse-B (based on estimation of interval errors), and

3. An iterative method

The final algorithm is based on a simple novel and intuitive iterative methodol-

ogy, while the remaining two methods (Pseudoinverse-A and Pseudoinverse-B) are

based on the least-squares solution of linear equations. The different algorithms

are recommended to facilitate different types of implementation, based on mem-

ory space and convergence speed requirements. These algorithms utilize the raw

position and time data from an incremental encoder and should be capable of

predicting these position/slit errors in the code-wheel, without any prior knowl-

edge of the velocity profile, or any reference encoder/hardware. Hence, additional

hardware, and maintenance costs will be avoided.

Because no reference encoder is used in the work reported, some small velocity vari-

ations that are correlated to shaft position are inevitable. One consequence of this

is that a low-frequency component of the code wheel error over the circumference,

or a non-orthogonality in the code wheel setup [1], may not be easily distinguished

from a position-related velocity variation. However, very-low-frequency position

error components are inconsequential for the accuracy of a velocity servosystem,

due to the negligible measured velocity error caused by the differentiation of the

position error. Such integral-type position errors can be measured (e.g. as by

Merry et al.[4]) if necessary, through use of a huge inertial load, or a reference sen-

sor. The effect of these very-low-frequency positions errors are studied later when

considering the simulation model of the encoder described in Section. 3.4. Other

low-frequency effects such as friction do not greatly influence the learning process.

Chapter 2 Description of the Learning Algorithm 47

The techniques described in this thesis, which automatically estimate any uncor-

related line position errors, are intended to provide the required improvement in

velocity control. In the next section, a detailed description of the code-wheel error

and nomenclature is presented. In subsequent sections, two pseudoinverse-based

methods: Pseudomethod-A and Pseudomethod-B, intended for off-line implemen-

tation, are proposed for determining the slit error and the interval error. For

on-line implementation, an iterative method, which consumes less memory space,

is presented in Section 2.4.

2.2 Code-wheel Error - Description and Nomen-

clature

Before proposing the adopted learning algorithms, it is essential to understand the

nomenclature of a typical incremental shaft encoder. For illustrative purposes, a

non-ideal code wheel with eight counts per revolution, L = 8, is shown in Fig. 2.2,

where Pi, i = 1, . . . , 8, are the ideal encoder transition positions over the disk

circumference (P0 coincides with P8), the corresponding actual positions are P̄i,

and their slit errors are denoted by δi, so that P̄i = Pi + δi. For convenience, disk

rotation in the clock-wise direction is considered as a positive velocity. The slit

errors are considered negative when the actual transition position is less than the

ideal transition position, and positive otherwise. For example, if P12 represents

the distance between ideal encoder transition positions P1 and P2, the distance

Chapter 2 Description of the Learning Algorithm 48

0 = 8 = 0

0 8 P0,1

1

2

3
4

5

6

7

3

Ideal transition

position

Actual transition

position

2,12,1 1P

2P

1P

_
P8,1

(b)

_
P1

_
P0

_
P7

_
P6

_
P5

_
P4

_
P3

_
P2

_
P1

_
P0

1δ080 == δδ

Figure 2.2: Non-ideal code wheel with eight counts per revolution showing
ideal (integer) and actual transition positions, where position 0 (which corre-

sponds to the encoder’s zero marker) provides the reference.

between non-ideal encoder transition positions 1 and 2 is given by

P̄1,2 = δ2 + P1,2 − δ1 = P12 + δ1,2 (2.1)

where δ1,2 is the corresponding interval error. Because of these non-uniform pulse

widths over the circumference of the code wheel (which exist in all encoders),

the shaft velocity estimated by the CSDT will contain high-frequency errors, i.e.

the ability of the CSDT to measure the velocity with extremely high accuracy

is compromised. Given the smoothness in actual shaft velocity that is physically

imposed by the combined inertia of rotor and load, an assumption can be made

Chapter 2 Description of the Learning Algorithm 49

that much of the apparent high-frequency content in the CSDT output is due to

the aforementioned encoder error. By isolating this high-frequency content and

using it to derive estimates of the errors in encoder transition locations, the ability

to accurately measure the kinematic parameters of the system is greatly enhanced.

2.3 Description of the Pseudoinverse-Based Learn-

ing Algorithms

The compensation for slit error in an encoder code-wheel can be provided either

by calculating slit error or interval error. For this, two algorithms (Pseudoinverse-

A to determine slit error and Pseudoinverse-B, a slightly modified version of

Pseudoinverse-A, for calculating interval error), based on pseudoinverse/least-

square principles, are proposed.

2.3.1 Description of Pseudoinverse-A method

It is assumed that Ns samples of the CSDT data (digital positions, P , and aux-

iliary times, Ta, from which CSDT velocity can be calculated, as required), are

stored prior to compensation, where Ns > L, the number of encoder lines. At sam-

ple i, the CSDT velocity estimate, V (i), will be noisy due to transition location

error. Therefore, one cannot assume that the actual velocity is precisely known,

though inertial considerations imply some smoothness in the shaft velocity. An

improved (‘reference’) velocity estimate, Vr(i), can be calculated (off-line) by use

Chapter 2 Description of the Learning Algorithm 50

of a high-order, zero-phase, Butterworth filter [69] that more accurately estimates

the average velocity over measurement interval i. (When velocity is changing

predictably, e.g. approximately following a smooth curve, preprocessing via curve

fitting can also assist in the calculation of Vr). In addition, the reference velocity

can also be estimated using other simple techniques like averaging a number of

previous velocity samples, or implementing interpolation or extrapolation algo-

rithms using curve-fitting techniques of different degrees. Consideration is given

in Section 4.2.3 to the choice of methods for the computation of reference velocity

estimates that facilitate real-time implementation, the methods being described

in detail in that section. The generation of Vr is intrinsic to the operation of the

learning algorithm because the difference between the CSDT-derived velocity and

Vr allows estimation of the encoder line errors. For generating a reference velocity

using a filtering technique, the CSDT velocity output, which is computed using

raw position, P , and time, Ta, data is used as an input to the filter. A low-pass

filter of suitable bandwidth can be selected to separate high-frequency noise from

the CSDT velocity. In order to avoid any lag in the output reference velocity, Vr,

a zero-phase filter can be utilized when the process is not being implemented in

real-time, i.e. for off-line operation. Hence, Vr contains much lower high-frequency

error than that associated with the raw CSDT output.

If the actual locations used in the CSDT calculation are P (i) + δP (i) and P (i −

1) + δP (i−1), where, in general, δk represents the line position error at code k, so

that δP (i) is the encoder line error associated with the digital position at sample

i. The reference average velocity Vr(i), which will be close to the actual velocity

Chapter 2 Description of the Learning Algorithm 51

over measurement interval T (i), is

Vr(i) =
(P (i) + δP (i))− (P (i− 1) + δP (i−1))

T (i)
(2.2)

when the reference velocity estimate, Vr(i), is indeed correct. For positive velocity,

one can write

δP (i) − δP (i−1) ≈ Vr(i)T (i)− P (i) + P (i− 1) = e(i) (2.3)

where the equality has been replaced by an approximation in recognition of the

fact that the differential line error, e(i), the difference in the errors associated

with two (not necessarily adjacent) encoder transition errors is noisy because of

unmodelled encoder non-idealities, and because of any error in Vr.

When the position moves through the zero marker in a given sample interval, (2.3)

is replaced by

δP (i) − δP (i−1) ≈ Vr(i)T (i)− P (i)− L+ P (i− 1) = e(i) (2.4)

However, because the zero marker provides the position reference, one can assume

that δ0 = 0, giving a linear equation in only one variable when P (i) = 0 or

P (i− 1) = 0.

Chapter 2 Description of the Learning Algorithm 52

Similarly, in the case of negative velocity, when the shaft direction is anti-clockwise,

(2.2) is re-written as

Vr(i) =
(P (i− 1) + δP (i−1))− (P (i) + δP (i))

T (i)
. (2.5)

1.47 1.475 1.48 1.485
2.5

2.52

2.54

2.56

2.58

time / s

ve
lo

ci
ty

/ c
ou

nt
sp

er
 sa

m
pl

e
tim

e Reference velocity
CSDT velocity

1 | Add Title and Date via 'View/Header and Footer'. E.g.: Corporate Presentation, 12 November 2008Figure 2.3: Comparison of CSDT velocity and the reference velocity gener-
ated using a zero-phase filter. (Example from a MATLAB-generated, simulated

CSDT/encoder)

Then, the differential line error, e(i), is determined as

δP (i) − δP (i−1) ≈ P (i− 1)− P (i)− Vr(i)T (i) = e(i), (2.6)

and Eq. 2.4 remains valid for negative velocity when the position passes through

the zero marker.

Chapter 2 Description of the Learning Algorithm 53

By storing Ns samples, a simple Ns by L − 1 coefficient matrix equation can be

established based on the matrix equation

A∆A ≈ e (2.7)

where the L − 1 × 1 column matrix ∆A, and an Ns × 1 column matrix e,

differential line error matrix, are

∆A = [δ1, δ2, . . . , δL−1]T (2.8)

e = [e(1), e(2), . . . , e(i), . . . , e(Ns)]T (2.9)

and A is a sparse coefficient matrix, the rows of which are mostly exemplified by

A =

0 0 . . . −1 0 · · · 0 0 1 0 0 0 0 . . .

0 0 . . . 0 0 0 0 0 −1 . . . 0 1 0 . . .

...

 . (2.10)

When the sensor output detects negative velocity, the matrix A will typically be

of the form,

A =

0 0 . . . 1 0 · · · 0 0 −1 0 0 0 0 . . .

0 0 . . . 0 0 0 0 0 1 . . . 0 −1 0 . . .

...

 . (2.11)

Chapter 2 Description of the Learning Algorithm 54

An estimate of ∆A that is optimum in the least-squares sense can be obtained by

∆A = A+e (2.12)

where A+ is the pseudoinverse of A. The errors in the encoder circuitry have

been found to be well approximated by the deterministic line error at each encoder

position, plus a smaller white noise component. The latter is effectively removed

by (2.12). To aid understanding, a summary of the Pseudoinverse-A algorithm is

listed in sequential steps in Table 2.1.

2.3.2 Description of Pseudoinverse-B method

For calculating interval errors, δi,i+1, of a code-wheel, the Pseudoinverse-A method

can be adopted, with slight modifications. The determination of interval error,

δi,i+1, is relevant as it has been observed that the condition number relating to

the coefficient matrix can be improved if the encoder error estimation problem is

reformulated in terms of the interval width errors, i.e. the errors in the distance

between adjacent transition positions (as will be demonstrated in Chapter 4).

Using δj,(j+1) = δj+1 − δj so that δk − δj = δj,(j+1) + δ(j+1),(j+2) + · · ·+ δ(k−1),k, one

can replace (2.2) by

Vr(i) =
P (i)− P (i− 1) + δP (i−1),P (i)

T (i)
(2.13)

where δP (i−1),P (i) is the summation of interval errors between P (i−1) and P (i)−1.

Chapter 2 Description of the Learning Algorithm 55

Table 2.1: Sequence of operations performed to implement the Pseudoinverse-
A learning algorithm

Pseudoinverse-A method
Initialization : δi = 0; where i is an integer in the range 0 ≤ i < L

1. Encoder digital position P (i) and auxiliary time Ta(i) are obtained over Ns

samples.

2. Average velocity over a sample interval, V (i), is calculated from raw
encoder data using the CSDT method.

3. The reference average velocity Vr(i) is predicted by performing either
zero-phase filtering or curve fitting on V (i).

4. Using Vr(i) and V (i), the differential line error (between the ith

and i− 1th samples), e(i), is calculated. For positive rotation where the
position is not through zero (2.3) is used, positive rotation through zero
uses (2.4), while negative velocity requires use of (2.4) or (2.6), as outlined in
the text.

5. Each row of the sparse co-efficient matrix A, (of size Ns × L− 1),
is compiled by inserting -1 and 1 in the P (i)th and P (i+ 1)th columns
and filling the reminder of the rows with 0s.

6. The pseudoinverse of A, A+, is computed.

7. A+ is postmultiplied by the differential line error matrix, e,
to determine the slit error δi, where 0 ≤ i < L.

Comparing this positive reference velocity, Vr(i), with the CSDT velocity, V (i),

the position error can be calculated as,

e(i) = Vr(i)T (i)− P (i) + P (i− 1) ≈
P (i)−1∑

k=P (i−1)

δk,(k+1) . (2.14)

This formula assumes positive rotation and that the position does not pass through

zero (i.e. the zero marker, ZM, is not activated over the sample. Similarly to (2.4),

Chapter 2 Description of the Learning Algorithm 56

when the sensor output passes through the zero marker in the clockwise direction,

(2.14) can be replaced by,

e(i) = Vr(i)T (i)− P (i)− L+ P (i− 1) ≈
L−1∑

k=P (i−1)

δk,(k+1) +

P (i)−1∑
k=0

δk,(k+1) . (2.15)

When the shaft rotates in anti-clockwise direction (negative direction), Vr(i) and

e(i) are calculated as,

Vr(i) =
P (i− 1)− P (i) + δP (i−1),P (i)

T (i)
, (2.16)

and

e(i) = Vr(i)T (i) + P (i)− P (i− 1) ≈
P (i−1)−1∑
k=P (i)

δk,(k+1) . (2.17)

Finally, when the shaft crosses the zero-marker during the sample interval, e can

be re-written using

e(i) = Vr(i)T (i)− P (i)− L+ P (i− 1) ≈
L−1∑

k=P (i)−1

δk,(k+1) +

P (i−1)∑
k=0

δk,(k+1) . (2.18)

The corresponding matrix equation is

∆B = B+e (2.19)

where

∆B = [δ0,1, δ1,2, . . . , δ(L−2),(L−1)]
T . (2.20)

Chapter 2 Description of the Learning Algorithm 57

The elements of B are binary (i.e. 0 or 1), with structure of the form exemplified

by

B =

0 0 . . . 1 1 · · · 1 1 0 0 0 0 0 . . .

0 0 . . . 0 0 0 0 0 1 . . . 1 0 0 . . .

...

 . (2.21)

While there are L lines (and L line differences), the rank of B, like that of A, will

be L− 1, because
L−2∑
j=0

δj,(j+1) + δ(L−1),0 = 0. (2.22)

Therefore, for any sampling interval in which the encoder passes through the zero

marker, (2.14) is replaced by e(i) = −
∑P (i−1)−1

k=P (i) δk,(k+1) for positive rotation. As

before, similar equations are used when the velocity is negative.

In a typical implementation, the condition numbers of A and B (the correspond-

ing methods of estimating the encoder errors being termed ‘Pseudoinverse A’ and

‘Pseudoinverse B’ henceforth) were found to be of the order of 100 and five, respec-

tively, (when the system velocity during the learning phase varied from approxi-

mately two to four codes per sample interval). Also, by using (2.19), and (2.12),

the performance of these two methods will be analyzed in later chapters based

on various criteria, such as convergence speed, memory required, and percentage

error reduction, along with the performance when using different reference velocity

generation techniques. A brief listing of the Pseudoinverse B learning algorithm

is presented in Table. 2.2.

Chapter 2 Description of the Learning Algorithm 58

Table 2.2: Sequence of operations performed to implement Pseudoinverse-B
learning algorithm

Pseudoinverse-B method
Initialization : δi,i+1 = 0; where i is an integer in the range 0 ≤ i < L− 1.

1. Encoder digital position, P (i), and auxiliary time, Ta(i), are obtained
over Ns samples.

2. Average velocity over a sample interval, V (i), is calculated from raw
encoder data using the CSDT method.

3. The reference velocity Vr(i) which is required to calculate interval error is
predicted either using the high frequency zero phase filter, or by implementing
curve-fitting on CSDT velocity V (i).

4. The position error between the (i-1)th and ith samples, e(i), is calculated.
Use is made of (2.14), (2.15), (2.16) or (2.18), as appropriate, depending on
direction of rotation and whether an interval involves rotation through the
zero marker.

5. Matrix B is generated. This consists of Ns rows, where each row
represents a single sample , and L− 1 columns (L is the resolution of the
encoder). Each of the rows in this matrix is compiled by setting the P (i)th

to the P (i+ 1)th columns to 1, and filling the remainder of the rows with 0’s.

6. The pseudoinverse of B, B+ is computed.

7. B+ is postmultiplied by the position error matrix e, to determine the
interval error δP (i−1),P (i), where 0 ≤ i < L− 1.

2.4 Iterative Solution of the Error Equations

A straight computation of the pseudoinverse-based solution is very memory in-

tensive when L, and consequently Ns, are large. To facilitate the implementation

of a stand-alone compensation algorithm, a version of the learning algorithm that

requires minimum memory storage is sought. A simple stochastic gradient descent

method is chosen, for implementation on a sample-by-sample basis. This is one

Chapter 2 Description of the Learning Algorithm 59

of the best known and oldest non-stationary methods. In spite of having large

sequence lengths and slower convergent rate, the gradient descent method needs

much less memory, as only a small number of vectors must be stored [70]. It is pos-

sible (and simpler) to implement a similar algorithm based on (2.3) in which only

δP (i) and δP (i−1) are adjusted in any iteration of the learning algorithm, but con-

vergence to correct line positions is slower and less smooth than with the proposed

algorithm for velocities of greater than one code change per sample interval.

The CSDT velocity output at sample i of the velocity control system gives an

estimate for the sum of the line width errors from the encoder lines P (i − 1)

to P (i). An initially zero vector is set up to represent the vector of slit width

errors. Therefore, it is required to update the interval error values in a convergent

manner. As described in (2.14), e(i) is an updated estimate for
∑P (i)−1

k=P (i−1) δk,(k+1).

When the velocity is positive and the sensor output does not pass through the

zero marker during an interval, so that P (i) > P (i− 1),

δk,(k+1)(i) = δk,(k+1)(i− 1) +

e(i)−
P (i)−1∑
y=P (i−1)

δy,(y+1)

M(i)
· α(i),

∀k ∈ [P (i− 1), P (i)− 1], i ∈ [1, Ns] (2.23)

whereM(i) = P (i)−P (i−1), α(i) is a variable gain term and y is an index variable.

Effectively, the residual error in slit widths, e(i), is assumed to be equally divided

between all relevant line intervals. As the sum of all slit/interval errors should

be zero over the circumference of the disk, −e(i) can be distributed among the

Chapter 2 Description of the Learning Algorithm 60

remaining intervals using

δk,(k+1)(i) = δk,(k+1)(i− 1) +

e(i)−
P (i)−1∑
y=P (i−1)

δy,(y+1)

L−M(i)
· α(i),

∀k 6∈ [P (i− 1), P (i)− 1], i ∈ [1, Ns], (2.24)

though this has proved unnecessary in practice when M(i) is much smaller than

L, because of the inconsequential influence of an application of (2.24) on each

interval width, particularly when the update gain, α(i), decreases with time, as

described below. Obvious modifications are made to (2.23) and (2.24) when the

digital position value rolls through zero during the interval, where P (i) < P (i−1),

so that,

δk,(k+1)(i) = δk,(k+1)(i− 1) +

e(i)−
L−1∑

y=P (i−1)

δy,(y+1) −
P (i)−1∑
y=0

δy,(y+1)

M(i)
· α(i),

∀k ∈ [P (i− 1), P (i)− 1], i ∈ [1, Ns] (2.25)

and,

δk,(k+1)(i) = δk,(k+1)(i− 1) +

e(i)−
L−1∑

y=P (i−1)

δy,(y+1) −
P (i)−1∑
y=0

δy,(y+1)

L−M(i)
· α(i),

∀k 6∈ [P (i− 1), P (i)− 1], i ∈ [1, Ns] (2.26)

respectively. Similarly when the velocity is negative and the sensor output does

not pass through the zero marker, where P (i) < P (i − 1), (2.23) and (2.24) are

Chapter 2 Description of the Learning Algorithm 61

re-written respectively as,

δk,(k+1)(i) = δk,(k+1)(i− 1) +

e(i)−
P (i−1)∑
y=P (i)−1

δy,(y+1)

M(i)
· α(i),

∀k ∈ [P (i)− 1, P (i− 1)], i ∈ [1, Ns] (2.27)

and,

δk,(k+1)(i) = δk,(k+1)(i− 1) +

e(i)−
P (i−1)∑
y=P (i)−1

δy,(y+1)

L−M(i)
· α(i),

∀k 6∈ [P (i)− 1, P (i− 1)], i ∈ [1, Ns], (2.28)

When the sensor output passes though the zero marker with negative velocity, so

that P (i) > P (i− 1), (2.25) and (2.26) are modified as,

δk,(k+1)(i) = δk,(k+1)(i− 1) +

e(i)−
L−1∑

y=P (i)−1

δy,(y+1) −
P (i−1)∑
y=0

δy,(y+1)

M(i)
· α(i),

∀k ∈ [P (i)− 1, P (i− 1)], i ∈ [1, Ns] (2.29)

and,

δk,(k+1)(i) = δk,(k+1)(i− 1) +

e(i)−
L−1∑

y=P (i)−1

δy,(y+1) −
P (i−1)∑
y=0

δy,(y+1)

L−M(i)
· α(i),

∀k 6∈ [P (i)− 1, P (i− 1)], i ∈ [1, Ns] (2.30)

respectively.

Chapter 2 Description of the Learning Algorithm 62

The choice of gain term α(i) was based on the fact that the actual slit width

errors, δk,(k+1), do not change dynamically during the learning phase. Therefore,

the compensation table seeks to determine the average of each line error, so that

α(i) should be inversely proportional to the number of estimates made, based on

particular P (i) or P (i− 1) positions. The simple update formula,

α(i) =
1

d i
L
e

(2.31)

where dxe is the smallest integer that exceeds x, has been found to result in fast

convergence, while minimizing the effect of a corrupted data point at the end of

the data set. Given that the error e is nominally white in nature, and assuming

that the reference velocity has little error, the relevant variances are given by

var(e) < 2 var(∆A), the precise ratio depending on the correlation between δP (i)

and δP (i−1). A further safeguard against outliers can be implemented by omitting

data for which |e(i)| is found to be excessive. Assuming positive rotation, Table

2.3, below, details the sequential learning algorithm. For negative rotation, (2.23)

to (2.26) are replaced by (2.27) to (2.30).

2.5 Conclusions

This chapter presents three different learning algorithms: Pseudoinverse-A, Pseud-

oinverse-B and a simple iterative method. The proposed Pseudoinverse-based

algorithms are based on the least-mean-squares concept to calculate slit error, δi,

and interval error, δi,i+1, respectively. Pseudoinverse-based methods might need

Chapter 2 Description of the Learning Algorithm 63

Table 2.3: Sequence of operations performed to implement Iterative learning
algorithm, assuming positive shaft velocity

Iterative learning algorithm
Initialization : δi = 0; where i is an integer in the range 0 ≤ i < L.

1. Ns number of encoder events, P (i) and Ta(i), are obtained from the
FPGA.

2. The average velocity over the interval, V (i), is calculated using the CSDT
method.

3. The reference velocity, Vr(i), is estimated by various techniques like
curve-fitting, or by filtering the high-frequency components from V (i).

4. Using Vr(i) and V (i), the differential line error, e(i), is calculated.

5. This differential line error, e(i), is proportionally divided among the
positions between P (i− 1) and P (i)− 1 using (2.23) or when the shaft
passes through the ZM during a cycle, (2.25) is used.

6. As the summation of interval errors should be zero, −e(i) is proportionally
distributed, using (2.24) or when the shaft passes through the ZM using
(2.26), among the remaining encoder positions.

7. Repeating the process from Step 2 to Step 6, for all Ns

samples, will lead to the convergence of all interval errors of the encoder.

8. Using the calculated interval errors, slit errors of the encoder can be
determined, using δ0 = 0.

more memory, but the computation speed is faster than an iterative method. Such

an iterative method inspired by the stochastic gradient descent method, for on-line

implementation, was also proposed to determine the interval errors of an encoder.

It was observed in several studies that the pseudoinverse methods are capable

of performing very accurate calculation of the slit error with far fewer samples

than the iterative one. However, for on-line implementation, where availability of

memory storage is limited, the iterative method is a viable option.

Chapter 3

Error Modeling and Analysis

3.1 Introduction

The traditionally-quoted sources of error in the encoder were described in Section

1.2. In Chapter 2, where the learning algorithm was proposed under the assump-

tion that a reference velocity signal could be estimated, it was assumed that the

error in transition location, δP (i), was a fixed quantity. A more detailed description

of the possible sources of error in the CSDT, and the manner in which these errors

can be included in a model of the encoder/CSDT, is presented in this Chapter. As

with any model of a system with a multi-factorial set of error sources, the model

will give a realistic and typical, as opposed to definitive, indication of the exact

influence of each error source.

When a very high-inertia wheel is connected rigidly to the sensor, one can expect

that the actual motor velocity will vary smoothly, so that the reference velocity,

64

Chapter 3 Error Modeling and Analysis 65

Vr, used in the learning algorithm will approximate very closely to the actual shaft

velocity. However, even in the case that the drive inverter is unpowered (during a

run-down test) a small residual difference is likely between the reference velocity

and a compensated CSDT output velocity estimate. This is analyzed further

below. It is worth noting that the errors in the compensated CSDT velocity

are very small, so that second-order effects which would not be detected in many

velocity estimation systems, become significant. Even the small changes in friction

in the mechanical system as the motor rotates, due for example to imperfect

bearings, may have an effect.

In this chapter, attention is not paid to which of the learning algorithms described

in the previous chapter is used to implement the compensation. The pseudoinverse-

based algorithms require more memory for implementation, but the computation

time is short. The results and discussion on the various learning algorithms is

delayed until Chapter 4 when results for real encoder data informs the comparison

and discussion.

3.2 Error Modeling with Random Noise Included

The accuracy of the average shaft velocity, V , calculated over a sample period

using the CSDT method, is affected by errors from various sources. A realistic

mathematical model of the CSDT velocity error is developed for analyzing the

effects of these errors. In this analysis, slit error, δP (i), or interval error, δi−1,i,

are assumed to occur due to manufacturing non-idealities in the code-wheel, while

Chapter 3 Error Modeling and Analysis 66

the low-frequency error (δlfP (i)) is assumed to be due to code-wheel eccentricity,

radial play, and mis-alignment between shaft and encoder. Additionally, random

noise errors, δnP (i) (related to position P (i)), and δn(i), which are independent

of position, are assumed to occur due to quantization of the auxiliary timing

circuitry and variations in the shaft velocity. However, the quantization error,

which is commonplace in velocity measurement, is relatively very small due to

the time-stamping employed in the CSDT method. As the actual velocity, Vact(i),

of the shaft is not known, the reference velocity, Vr(i), which can be generated

by using several techniques, as described in Section 3.4, will not equal the actual

shaft velocity, so a reference velocity error, δrP (i), must be added to any model of

the system. An apparent shaft velocity, VI , calculated at the ith sampling instant

using the CSDT method, can be written as,

VI(i) =
P (i)− P (i− 1)

T (i)
, (3.1)

where P (i) and P (i − 1) are the digital positions of the encoder at the ith and

(i− 1)th sampling instants and T (i) is the time taken by the shaft to rotate from

digital position P (i − 1) to P (i). This gives the correct velocity only in an ideal

system with perfect transition locations. The above equation can also be expressed

in terms of interval counts or pulse counts, as

VI(i) =
M(i)

T (i)
, (3.2)

where M(i) is the number of pulse counts over time interval T (i). The error

Chapter 3 Error Modeling and Analysis 67

modeling can be performed by considering either slit error, δP (i), or interval error,

δi−1,i. In the initial case study, the analysis will be performed by considering slit

errors and, later, similar studies where performed for interval errors, but these

are not included in the thesis, as they did not show any further insite into the

operation of the encoder compensation.

3.2.1 Error modeling considering slit error, δP (i)

If the error in this estimate were due entirely to transition location error (δP (i−1)

and δP (i) are slit errors at the P (i− 1)th and P (i)th edge positions, respectively),

the actual average velocity over the measurement interval would be

Vact(i) =
[P (i) + δP (i)]− [P (i− 1) + δP (i−1)]

T (i)
(3.3)

There will be electrical noise associated with the photo detector outputs, and the

combination of the analogue filtering and the hysteresis built into the comparator

circuitry will lead to a change in the actual transition location seen at a partic-

ular nominal sample. This will occur to some extent despite the probable use

of a scanning reticule with multiple light paths, and of the associated analogue

and/or digital filtering intended to minimize the noise. While the data used in

the learning algorithm is effectively averaged over many thousand samples, so that

the aforementioned noise need not be considered when analyzing the learning al-

gorithm, no such averaging is present when computing figures of merit for the

Chapter 3 Error Modeling and Analysis 68

CSDT output, compensated or otherwise, as in that case it is a single CSDT out-

put and a single velocity reference estimate that are used. Similarly, when both

slit error and additional random noise, δnP (i−1) and δnP (i) (random noise induced at

P (i − 1)th and P (i)th edge positions respectively) are considered, shaft velocity

can be approximated by

Vact(i) =
[P (i) + δP (i) + δnP (i) + δn(i)]− [P (i− 1) + δP (i−1) + δnP (i−1) + δn(i− 1)]

T (i)

(3.4)

where δn(i) is a random error which is not dependent on P (i), while δnP (i) is that

portion of the random or variable error that varies with P (i). It is assumed

that the three proposed learning methodologies provide a very good estimate of

the fixed error δP (i), in the shaft velocity, so that the δP (i) should converge to

the correct value despite the presence of errors in the reference velocity values.

The simulation of the learning algorithms verifies the fact that the estimates of

any constant errors in the transition locations converge to zero as the number of

samples taken increases. However, in practice, some high-frequency components

are found in the compensated velocity output, and this random noise will create an

upper limit on the improvement that can be obtained by a compensation method

when the system is operating in a noisy environment; i.e. some sources of error

remain. The resultant compensated shaft velocity, Vc(i), obtained from these

methods, can be expressed as

Vc(i) =
[P (i) + δ́P (i)]− [P (i− 1) + δ́P (i−1)]

T (i)
(3.5)

Chapter 3 Error Modeling and Analysis 69

where δ́P (i) is the transition error estimate obtained from the learning algorithm.

The corresponding nett error in the transition location used in the CSDT is

δP (i) + δnP (i) + δn(i)− δ́P (i)

A good compensation algorithm will therefore eliminate δP (i), and leave the other

residual sources of velocity error estimation unaltered. This scenario will be in-

cluded in a simulation platform for cross-checking the effectiveness of the proposed

algorithm. Using the above error assumptions

T (i) · Verr = [δP (i) + δnP (i) + δn(i)]− [δP (i−1) + δnP (i−1) + δn(i− 1)] (3.6)

before compensation. Similarly,

T (i) · Verr−c = [δnP (i) + δ́P (i)]− [δnP (i−1) + δ́P (i−1)] (3.7)

will be valid after the compensation.

Even if the effect of reference velocity error can be greatly reduced in the learning

algorithm when estimating δP (i), it can still be a major component of the error

obtained when estimating the error in any particular velocity estimate, either with

or without compensation. The error is calculated using V̂err = Vr(i)− V (i) before

compensation, and V̂err−c = Vr(i)− Vc(i) after compensation.

Chapter 3 Error Modeling and Analysis 70

The actual root-mean-squared improvement in the CSDT performance due to

compensation is given by the figure of merit, m,

m =

√
V̄ 2
err−c

V̄ 2
err

, (3.8)

where V̄err and V̄err−c are actual velocity errors in shaft velocity before and after

compensation, respectively. Similarly, the calculated (apparent) improvement is

obtained by

ḿ =

√
V̂ 2
err−c

V̂ 2
err

(3.9)

where V̂err and V̂err−c are the apparent velocity errors in shaft velocity before, and

after, compensation, respectively.

Similar to the analysis performed when considering slit errors δi, an alternative

and equivalent analysis can be performed by considering the interval error δi−1,i.

The average shaft velocity, Vact, in terms of number of pulse counts, M(i), can be

expressed as

Vact(i) =
M(i) + δi−1,i + δnM(i) + δn(i)

T (i)
(3.10)

while M(i) and δi−1,i are the number of encoder transitions that occur between the

ith and (i−1)th samples and interval errors. δnM(i) and δn(i) are random noises which

are dependent and independent of encoder position, respectively. The reference

velocity, Vr, predicted using the zero-phase low-pass filter or a similar technique,

can be expressed as

Vr(i) =
M(i) + δacti−1,i

T (i)
(3.11)

Chapter 3 Error Modeling and Analysis 71

where, δacti−1,i is the position difference between actual and ideal positions. Similarly,

shaft velocity after the compensation, Vc, can be expressed as,

Vc(i) =
M(i) + ¯δi−1,i

T (i)
(3.12)

where, ¯δi−1,i is the uncompensated component of the error in shaft velocity. The

amount of error reduction, m, in the

m =

√
(Vc(i)− Vr(i))2

(Vact(i)− Vr(i))2
. (3.13)

A similar analysis was undertaken using interval errors, rather than slit errors.

The resulting equations did not provide any additional insight into the errors

associated with the encoder non-idealities, and so are not included in this thesis.

3.3 Effect of sinusoidally distributed error on shaft

velocity

The lack of an ultra-high-accuracy reference tachometer and the probability of

a small low-frequency (once-per-revolution) variation in the shaft velocity due

to gravitational effects, lead to a fundamental problem: one cannot distinguish

between a small steady-state velocity variation that is correlated to the shaft

position and a variation in the transition location errors over the circumference

Chapter 3 Error Modeling and Analysis 72

of the code-wheel which could give the same tachometer output in the absence of

such a velocity variation.

The issue is illustrated by a small once-per revolution sinusoidal variation in the

transition location errors for a motor rotating at a uniform speed. For simplicity,

it is assumed that the transition locations are perfect except for this sinusoidal

variation.

If the intervals between transition locations vary, the corresponding apparent

CSDT velocity outputs will also vary. It is assumed that the transition location

error varies over the circumference of the code-wheel, as follows:

δP (i) = as · sin
[

2πP (i)

L

]
(3.14)

where, as is a small constant, i.e. a simple sinusoidally distributed error. The

corresponding CSDT output is,

VI(i) =
P (i)− P (i− 1)

T
(3.15)

which gives the apparent velocity output, while the actual velocity is given by

Vact(i) =
(P (i) + δP (i))− (P (i− 1) + δP (i−1))

T

=
(P (i) + as · sin(2πP (i)

L
))− (P (i− 1) + as · sin(2πP (i−1)

L
))

T
(3.16)

Chapter 3 Error Modeling and Analysis 73

From the above equation, the ratio of CSDT velocity V to actual velocity Vact can

be calculated as

VI
Vact

=
1

1 +
as[sin(

2πP (i)
L

)−sin(
2πP (i−1)

L
)]

P (i)−P (i−1)

. (3.17)

If it is assumed that Vact is constant, and if it is desired to consider the apparent

velocity output, in the limit, when the position change per sample interval is a

very small part of a full rotation,

sin(2πP (i)
L

)− sin(2πP (i−1)
L

)

P (i)− P (i− 1)

≈
2 cos(2π

L
P (i)+P (i−1)

2
) sin(2π

L
P (i)−P (i−1)

2
)

P (i)− P (i− 1)

≈ 2π

L
cos(

2π

L
P (i))

sin(π
L

(P (i)− P (i− 1)))
π
L

(P (i)− P (i− 1))

≈ 2π

L
cos(

2π

L
P (i)) (3.18)

as sin(x)/x ≈ 1 for small x. From the above, equation (3.17) can be re-written as,

VI
Vact

≈ 1

1 + as
2π
L

cos(2π
L
P (i))

≈ 1− as
2π

L
cos(

2π

L
P (i)) , (3.19)

Chapter 3 Error Modeling and Analysis 74

the mean CSDT velocity output being Vmean = Vact. If the encoder were perfect,

and the actual shaft velocity was given by

Vact = Vmean(1− as
2π

L
cos(

2π

L
P (i))), (3.20)

the CSDT output would match that of the previous case with the imperfect en-

coder.

This demonstrates that apparent velocity changes due to low-frequency code-wheel

errors or code-wheel non-orthogonality can appear as correlated velocity changes

over the shaft revolution. These effects are very small. Equivalently, as previously

mentioned, the velocity error due to the differentiation of small low-frequency

position errors will be small1, something easily verified with a simulation model.

3.4 Simulation of Encoder, Tachometer and It-

erative Learning

A MATLAB-based simulation is used to implement the algorithms. For analysing

the effects of these encoder errors, a quasi-real-time incremental encoder with a

resolution of L ppr, consisting of low-frequency error (which can be due to the

1It is fortuitous that the encoder non-ideality which cannot be distinguished from a once-per-
revolution velocity variation is very small. Therefore, such once-per-revolution apparent velocity
changes are filtered out in the learning algorithm. If one wished to distinguish the effects of
correlated velocity and code-wheel errors over the mechanical cycle, a multi-test arrangement,
in which the encoder shaft was rotated relative to the motor shaft between tests, would allow
measurement of the real low-frequency transition error variation to be isolated. However, as the
primary focus of the work being reported relies on the ability to perform in-situ learning, such
a method is not attractive.

Chapter 3 Error Modeling and Analysis 75

inaccuracies like interval error, axial play, and eccentricity), and high-frequency

error (caused by slit error and random noise - where some random error is position

dependent and some is position independent), was simulated. At each sample in-

stant, a search-type algorithm is utilized to determine the last encoder transition

encountered, and consequently the appropriate pulse-count and quantized auxil-

iary time data obtained at each sample instant for any given shaft velocity profile.

To demonstrate its ability to perform learning at variable speeds, data obtained

from a simulated ramp-down velocity profile is given as input to the simulation

model. The iterative learning algorithm is implemented as explained in Table. 2.3.

The generation of Vr is intrinsic to the operation of all the learning algorithms,

because the difference between the CSDT-derived velocity and Vr allows the esti-

mation of the encoder line errors. This is performed using MATLAB lsqcurvefit,

butter & filtfilt functions. The non-linear curve-fitting function, lsqcurvefit,

using least-square solutions, performs a curvefit for the CSDT velocity when the

profile is known to be predictable. By utilizing the butter and filtfilt functions,

a zero-phase filtering of the CSDT velocity array can be performed to obtain the

reference velocity array. In addition to this filtering method, other techniques such

as: averaging the velocity over the previous few samples, or extrapolation tech-

niques, can also be utilized to calculate Vr (as will be detailed in the next chapter).

Using the calculated reference velocity, Vr, the inaccuracies, δk,(k+1), are calculated

at each sample. Implementing (2.23) and (2.24) during an interval without a zero

crossing, i.e. when the zero-marker is not active, the error is distributed among all

intervals, as explained in Section 2.4. Similarly, (2.25) and (2.26) are implemented

when a zero crossing occurs. Repeating (2.23)-(2.26) over Ns samples is found to

Chapter 3 Error Modeling and Analysis 76

allow all the interval errors to converge towards their true values. The interval

errors can be obtained and then used to recalculate the actual slit positions.

Because the actual transition positions of the simulated encoder are known, it

is possible to calculate the exact distance between two transition positions. The

nature of the simulated encoder errors was explained in Section 2.2. The output

of this simulated encoder can be calculated for a required velocity profile. (Ob-

viously, a prior knowledge of the actual encoder position errors is not assumed in

the simulation of the CSDT, to match the reality that no precise measurement

equipment is used). The calculated position error is used to compute the slit and

interval errors using (2.23) and (2.24), as proposed previously. The calculated (es-

timated) slit errors are compared to the (pre-chosen) slit errors of the simulated

encoder. It is clear from Fig. 3.1 that the learning algorithm accurately determines

the slit errors corresponding to the non-ideal encoder transition positions P̄i

P̄i = Pi + δi + as · sin
[

2πP (i)

L

]
+ δnP (i) (3.21)

consisting of both low and high frequencies, as explained earlier in this chapter.

The performance improvement of the CSDT velocity error (above 90 %), when

taking advantage of the revised encoder transition positions, using the iterative

learning method, is seen in Fig. 3.2, which shows the simulated estimated and

actual shaft velocities before, and after, compensation.

The effect of the position-independent, random noise error, δn(i), component can

be analyzed by adding the error values to the auxiliary time of a CSDT sampling

Chapter 3 Error Modeling and Analysis 77

100 110 120 130 140 150

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

encoder transition position

sl
it

er
ro

rs
 /

co
un

ts
Calculated slit error
Actual slit error

Figure 3.1: Actual and calculated slit errors for nominal encoder transition
positions of 100 to 150, with the learning algorithm incorporated into the sim-

ulation program.

1.9886 1.9888 1.989 1.9892 1.9894 1.9896 1.9898
x 104

2.48

2.5

2.52

2.54

2.56

2.58

time / ms

ve
lo

ci
ty

 /
co

un
ts

pe
r s

am
pl

e
tim

e

CSDT velocity after compensation
CSDT velocity before compensation
Ideal velocity

Figure 3.2: Simulation outputs comparing actual shaft velocity with CSDT
velocities, before and after compensation, (for Ts = 1 ms).

Chapter 3 Error Modeling and Analysis 78

event. Fig. 3.3 shows the performance of the iterative learning algorithm versus

different quantities of random noise at the sampling instants. It can be seen that

the performance (figure of merit, m) of the iterative learning algorithm decreases

almost linearly with an increase in the mean rms value of random noise per encoder

position. In the absence of a random error, it can be observed from Fig. 3.3 that

the algorithm almost eliminates the effect of δP (i), with a figure of merit, m, of

approximately 99.43%.

0 5 10 15 20 25 30 35 40 45 50
40

50

60

70

80

90

100

Percentage of random noise at a sample instant to r.m.s value of slit error

F
ig

ur
e

of
 M

er
it

Figure 3.3: Performance of iterative algorithm for varied amounts of random
noise, using simulated encoder data

Similarly, the performance of the iterative learning algorithm is analyzed by vary-

ing the magnitude of the low-frequency velocity error. The results obtained are

plotted in Fig. 3.4, where it can be seen that the figure of merit does not vary

significantly as the magnitude of the added low-noise is changed. Therefore, it

can be surmised that low-frequency transition location is effectively removed by a

Chapter 3 Error Modeling and Analysis 79

zero-phase Butterworth filter with a bandwidth of 100 Hz, thereby minimizing the

effect of this error source on the performance of the learning algorithm. Equiv-

alently, it is clear that the low-frequency position error does not have a large or

systematically varying effect on tachometer error.

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
84.2

84.4

84.6

84.8

85.0

85.2

85.4

85.6

85.8

86.0

Amplitude of low-frequency sine wave in p.u. with encoder interval as base

F
ig

u
re

 o
f

M
er

it
 /

 %

Figure 3.4: Performance of iterative algorithm with different proportions of
added low-frequency noise, using real encoder data

Little extra insight is gained by simulating the pseudoinverse-based learning al-

gorithms. Instead, the comparisons are performed experimentally on physical

systems. These are described in Chapter 4.

Chapter 3 Error Modeling and Analysis 80

3.4.1 Investigation of various means of calculating the ref-

erence velocity

In order to minimize the cost of the actual implementation of the system, no ad-

ditional reference encoder or equipment are used. Therefore, the generation of a

reference velocity that closely matches the actual shaft velocity, is of vital impor-

tance. Some of the methods proposed to obtain the reference velocity are: use of

a zero-phase filter, averaging of previous samples, and interpolation techniques.

1. Zero-phase filter : Use of a zero-phase filter is a good method for gen-

erating the reference velocity, Vr, where the zero-phase filter will perform

filtering in both forward and reverse directions. Using this technique, the

output filter signal will not see any lag or lead due to filtering, so that zero-

phase distortion is observed in the output signal. However, the order of

the zero-phase filter will be twice the order of the specified filter type. It

is important to state that the zero-phase filter cannot operate in real-time,

but that there is little difficulty in applying the filter to stored data. When

implementing this in MATLAB, the filtfilt function can be used. For exper-

imental implementation, the CSDT velocity data need to be filtered once in

the forward direction and once in the reverse direction.

2. Mean velocity : This is the simplest of the three methods considered,

where the reference velocity at the ith sample, Vr(i), is the mean of the

last n samples. This technique can be implemented on any kind of velocity

profile, and the time lag will not be long if n is not large, so that it will

Chapter 3 Error Modeling and Analysis 81

often be suitable for real-time implementation of the learning algorithm.

The expression to calculate the reference velocity is simply

Vr(i) =
V (i) ++ V (i− n+ 1)

n
(3.22)

3. Interpolation : Another possibility is to use a variant of the polynomial-

fit method of Merry et al. [4, 5], whereby interpolation is performed on a

second-order polynomial fitted to a number of time-stamped data points, as

exemplified by the point (i Ts − Ta(i), P (i)). For off-line applications, the

fitted data points correspond to times that are both before and after sample i,

and the resulting velocity estimate at the centre of the measurement interval

T (i) is used as a reference estimate. Similar to the technique based on the

calculation of mean velocity, it can also be used in real-time implementation

of learning algorithms when only previous data points are used.

3.4.2 Behaviour of slit and interval errors

As a first-order approximation for the purpose of simulation, the slit errors can

be considered independent and random, and to be uniformly distributed. The

interval error of the encoder usually has a low frequency, approximately sinusoidal,

component, with a fundamental frequency of one per revolution [19]. These errors,

as in Figs 3.5 and 3.6, for a simulated encoder with 100 counts per revolution, can

be produced by the addition of a sinusoidal component and random noise in a

Chapter 3 Error Modeling and Analysis 82

MATLAB-based simulation. Additionally, other errors can also be included, as

previously discussed.

20 40 60 80 100

-0.035

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

encoder transition position

sl
it

er
ro

r/
 c

ou
nt

s

1 | Add Title and Date via 'View/Header and Footer'. E.g.: Corporate Presentation, 12 November 2008Figure 3.5: Slit error profiles generated from a MATLAB-simulated incremen-
tal encoder

10 20 30 40 50 60 70 80 90

-0.08

-0.06

-0.04

-0.02

0

0.02

encoder transition position

in
te

rv
al

 e
rr

or
/ c

ou
nt

s

1 | Add Title and Date via 'View/Header and Footer'. E.g.: Corporate Presentation, 12 November 2008Figure 3.6: Interval error profile generated by a MATLAB-simulated incre-
mental encoder

Chapter 3 Error Modeling and Analysis 83

As has been analysed by Kavanagh in [22], a uniform distribution of encoder tran-

sition position errors can lead to a triangularly distributed differential (velocity)

errors, depending on the correlation between nearby encoder transition errors. It

is the differential error that is significant in terms of the velocity errors inherent in

a tachometer. The probability density function (p.d.f.) relating to the differential

errors associated with a non-ideal simulated encoder has been found to be closer

to that due to a truncated Gaussian distribution, than to a uniform, distribution,

as described by Kavanagh in [71]. Both models predict very similar velocity error

characteristics. Therefore, the simpler uniform distribution can be employed for

tachometer analysis. Fig. 3.7 shows that the proposition that the interval error

and slit error have approximately triangularly and uniformly distributed natures,

respectively, is reasonable.

It should be noted that the apparently skewed error distribution associated with

the slit error is due to the assumption in the simulation that encoder line zero is

defined to be at position zero, so that a once-per-revolution integral error around

the circumference of the disk will usually lead to slit errors which are not centred

about zero, on average. Specifically, the slit error is defined as zero at encoder tran-

sition position zero. When the array of errors is calculated using the appropriate

formula and distribution, all values are shifted to ensure this zero value.

3.4.3 Use of real encoder data in tachometer simulation

The artificial encoder used in the simulation is replaced with real encoder interval

errors (calculated using one of the learning algorithms) to analyze the variation

Chapter 3 Error Modeling and Analysis 84

-0.1 -0.05 0 0.05
0

5

10

15

20

25

interval error and slit error / counts

p
.d

.f
.

Interval error

Slit error

Figure 3.7: Probability density function of slit and interval errors generated
from a MATLAB simulated incremental encoder

in the performance of learning algorithms due to random errors induced at the

sampling instants. This performance analysis can be done by calculating the

figure of merit, m, for different amplitudes of added random noise. Obtained

results from this analysis are plotted in Fig. 3.8, where it can be observed that

the learning algorithm can predict the interval/slit errors of the encoder almost

perfectly when there is no random error. The ability of the algorithm to calculate

the interval/slit error decreases with an increase in the magnitude of the random

error, as might be expected.

For evaluating the influence of the position dependent(δnP (i)) and independent

(δn(i)) noise on the effectiveness of the learning algorithm, simulations with differ-

ent δnP (i) and δn(i) values are performed. The results obtained, with three different

r.m.s. position-dependent noise values, using a 360 ppr resolution, simulated en-

coder and the iterative algorithm are shown in Fig. 3.9. It can be seen from the

Chapter 3 Error Modeling and Analysis 85

0 5 10 15 20 25 30 35 40 45
55

60

65

70

75

80

85

90

95

100

Percentage of additional noise related to sample instant when compared to r.m.s value of slit error

F
ig

u
re

 o
f

M
er

it

Figure 3.8: Performance of iterative algorithm with different proportions of
added high-frequency noise

plot that the figure of merit, m, varies with the amount of position-dependent

noise. Specifically, the ability of a learning algorithm, such as the iterative al-

gorithm, to calculate the exact position of the encoder edge decreases when the

non-position-dependent noise increases.

3.5 Conclusions

Three sources of a real or apparent CSDT error, even after compensation, have

been identified as: random error due to electrical noise, errors in the reference

velocity estimate used, and the inability of the algorithm to discriminate between

small, repetitive physical velocity changes over the mechanical cycle and any alter-

ations in the transition errors over the mechanical cycle that are correlated with

Chapter 3 Error Modeling and Analysis 86

0 0.5 1 1.5 2 2.5 3
x 10!4

0

10

20

30

40

50

60

70

80

90

Average position independent noise / count

Fi
gu

re
 o

f m
er

it
Case 1
Case 2
Case 3

Figure 3.9: Comparing the effect of position independent error, δn(i), on the
figure of merit for a simulated encoder of 360 ppr (where magniture of position-

independent error is of the order Case 3 < Case 1 < Case 2).

the velocity changes. The latter error corresponds to once per-revolution veloc-

ity changes due to gravitational effects and changes to the encoder characteristics

over the circumference (e.g. due to a non-orthogonal code-wheel or to a non-

ideality in the code-wheel pattern at the fundamental frequency of the pattern).

A theoretical analysis of these different error types was performed. Later in this

chapter, the implementation of the learning algorithm on a simulation platform

was presented. The results obtained from the simulations effectively support the

theoretical analysis.

Chapter 4

Implementation and Evaluation of

Learning Algorithms

4.1 Introduction

This chapter is dedicated to a description and analysis of the experimental im-

plementation and analysis of proposed compensation techniques on incremental

square-wave encoders. Initially, in Section. 4.2, the performance of learning tech-

niques in an open-loop environment is analyzed. The FPGA implementation of

the CSDT-based velocity measurement technique and an overview of the exper-

imental hardware setup are discussed in Section. 4.2, and subsections 4.2.1 and

4.2.2 are dedicated to the presentation of the open-loop implementation of learning

algorithms and a performance analysis of the results. In order to evaluate the con-

sistency and repeatability of the proposed algorithms, several tests are performed

87

Chapter 4 Implementation and Evaluation of Learning Algorithms 88

on incremental encoders of different quality and cost, with different resolutions,

and from different manufacturers. In addition to testing the performance of the

proposed learning algorithms, various filtering techniques to generate the refer-

ence velocity from the CSDT velocity are also implemented and compared for

best performance. Finally, in Section. 4.3, the design of the learning algorithm in

a closed-loop control application is presented.

4.2 Implementation and Experimental Evalua-

tion of Learning Techniques in Open-Loop

Measurement Applications

Drive

Motor Encoder FPGA

Encoder Output

2

3

DC Power

DSP

8
2D

AT
A

Sa
m

pl
e

&
 R

ea
d

CH A

CH B

ZM

Figure 4.1: Block diagram of a typical FPGA/DSP-based servosystem con-
troller.

Chapter 4 Implementation and Evaluation of Learning Algorithms 89

ADDRi

ADDRi+1
ADDRi+2
ADDRi+3

CLR

16-bit
Up/Down
Counter

U/D

CLR

16-bit
Counter

O/P
Buffer

O/P
Buffer

O/P
Buffer

O/P
Buffer

16

[0:7]

[8:15]

16

[0:7]

[8:15]

CH

DIR

SAMPLE

ZM

 CLK
(20 MHz)

8

8

8

8

8
DATA

OE

OE

OE

OE

Pulse

Pulse Count

Auxiliary Counter

Figure 4.2: Block diagram of a FPGA/DSP-based CSDT implementation
(reproduced for convenience).

The block diagram showing the experimental setup corresponding to an open-

loop measurement implementation was depicted in Fig. 1.18. It is reproduced in

Fig. 4.1, for convenience, where it can be seen that the pulse data from the outputs

of three encoder channels are fed to a FPGA board that includes a basic Xilinx

XC4025-series FPGA, operating with a clock speed of 20 MHz. Using this hard-

ware, the necessary basic inputs to measure the CSDT velocity: digital position,

P (i), and auxiliary time, Ta(i), can be calculated. Various logic circuits and clocks

Chapter 4 Implementation and Evaluation of Learning Algorithms 90

are implemented on a Xilinx FPGA platform for these parameter calculations, as

shown in Fig. 4.2, where a rising or falling edge of a channel A or B and a zero

marker, ZM, can be used as raw input data to the FPGA. If necessary, the res-

olution of the velocity can be increased by a factor of two by considering both

the rising and falling edges of a single A or B channel, and doubled again by con-

sidering the raising and falling edges of both channels A and B, which is termed

quadrature decoding, as already described in Section 1.5.3. The implementation

of quadrature decoding in the FPGA is performed in the BIPUL1 subsystem in

Fig. 4.3, (where the output signals QUAD and QPLS DIR are the quadrature sig-

nal and its direction, respectively). The logic circuitry to calculate the pulse count

and auxiliary time are designed in the CSDTBL D block in Fig. 4.3. Filtering of

the input encoder signals to this block is performed in INQPLUS.

Some of the other important signals shown in Figs. 4.2 and 4.3 are as follows:

ADDR Address bus for selecting FPGA output register.

CH Filtered output of shaft encoder channel, where the signal can

contain positive and/or negative edges of CH-A and/or CH-B.

DATA 8-bit FPGA data bus, sent to DSP.

DIR Direction signal which provides the rotating direction of the shaft encoder.

SAMPLE Filtered sampling pulse used for latching the FPGA counter outputs.

ZM Zero-marker signal.

In order to facilitate the data transfer between the FPGA and DSP, Cyclic Ad-

dressing circuitry is implemented in the FPGA, as shown in Fig. 4.4. A simple

register addressing technique can be used because the data transfer between FPGA

and DSP is performed in a predefined format for every sample interval, i.e. the

Chapter 4 Implementation and Evaluation of Learning Algorithms 91

L
O

C
=

P4
9

C
H

B
N

O
B

U
F

O
PA

D

 C

H
B

P

 O
B

U
F

L

O
C

=
P5

0

 O

PA
D

D
[7

:0
]

O
B

U
F8

B
D

[7
:0

]

B
D

7

B
D

6

B
D

5

B
D

4

B
D

3

B
D

2

B
D

1

B
D

0
O

PA
D

O
PA

D

O
PA

D

O
PA

D

O
PA

D

O
PA

D

O
PA

D

O
PA

D

L
O

C
=

P3
9

L
O

C
=

P4
0

L
O

C
=

P3
8

L
O

C
=

P2
8

L
O

C
=

P2
6

L
O

C
=

P2
7

L
O

C
=

P2
5

L
O

C
=

P2
4

C
SD

T
B

L
_D

FZ
E

R
O

SA
M

PC
L

K

C
S1

Z
M

D
IR

C
H

_I
N

 D

A
T

A

A
D

D
R

[3
:0

]

 [
7:

0]

D
IR

C
L

K

C
H

B
P

A
D

R
[3

:0
]

IN
V

Z
E

R
O

IN
V

Z
E

R
O

SA
M

PL
E

SA
M

PC
L

K

Q
PL

S
Q

PL
S

FZ
E

R
O

FZ
E

R
O

D
IR

D
IR

C
L

K
B

C
L

K

C
H

B
P1

C
H

B
P1

C
H

B
P

C
H

B
P

C
H

B
N

1
C

H
B

N
1

C
H

B
N

C
H

B
N

 C
H

A
P

1
C

H
A

P1

C
H

A
P

C
H

A
P

C
H

A
N

1
C

H
A

N
1

C
H

A
N

C
H

A
N

IN
1

IN
Q

PL
U

S

A
D

R
[2

3:
0]

A
U

1

SA
M

P

R
D

C
L

K
A

D
R

[2
3:

0]

A
U

T
O

R
D

24

B
IP

U
L

1

C
L

K

C
H

B
P

C
H

A
P

C
H

A
N

D
IR

Q
O

_P
L

S
Q

U
A

D

Q
PL

S_
D

IR

L
O

C
=

P4
8

IB
U

F

U
R

D
IP

A
D

SA
M

PC
L

K

C

L
K

C
H

B
P1

C
H

A
P1

C
H

A
N

1

C
L

K

SA
M

PE

C
H

B
N

1
C

H
B

N
1

Figure 4.3: Block diagram showing the overall setup of the implementation.

Chapter 4 Implementation and Evaluation of Learning Algorithms 92

RD

SAMPLE

2

CLR

2-bit
Counter

ADDR0

ADDR1

ADDR2

2 to
 4

Demux

ADDR3

Figure 4.4: Block diagram of a typical FPGA/DSP-based servosystem con-
troller (reproduced for convenience).

sequence of reading the FPGA register is the same after every sample instant. For

convenience, a dSPACE DS1104 DSP card incorporating a 250 MHz 603 PowerPC

floating-point processor is used to implement the learning and compensation al-

gorithms, though a processor of significantly lesser power would often suffice. To

investigate the implementation of tachometer-based closed-loop servosystems, the

dSPACE software interface is used to implement a simple digital PI controller with

a sample time, Ts, of 1 ms.

Three three-channel, optical incremental encoders were alternately mounted on

two different permanent magnet synchronous motors of different sizes. One of

the motor drives is connected to a flywheel load which ensures a smooth output

velocity. As listed earlier in Section. 1.7.1, three distinct encoders are used. For

convenience, Table 1.1 is repeated here as Table. 4.1.

To emphasize that the slit/interval errors exist in all kinds of encoders, encoder

modules of different quality (and hence price) are selected for testing, with the Om-

ron encoder being the most expensive of the three encoders, and the HP encoder

Chapter 4 Implementation and Evaluation of Learning Algorithms 93

Table 4.1: Incremental encoder selected for experimental testing

Manufacturer Resolution No. of Channels

Omron 360 3
OVW 360 3
HP 200 3

being the cheapest.

4.2.1 Implementation of learning technique in open-loop

The implementation of the learning algorithm follows the multistage approach

described in Chapter 2, where the encoder data (Pulse A, Pulse B and Zero-

marker pulse) are captured, the encoder compensation table with transition posi-

tion errors (easily derived from the interval width errors using δj = δj−1 + δ(j−1),j,

j ∈ [1, L − 1], with δ0 = 0), being computed off-line, for later use during normal

operation. Several tens of thousands of data samples are acquired1 (i.e. approxi-

mately over one minute) for the learning algorithm, though it is shown later that

fewer samples will suffice. The learning time will be longer for higher-resolution

encoders, as it then requires more samples to compute slit/interval errors. The al-

gorithm can be implemented using MATLAB, or similar, in which case the stored

CSDT data is passed to a computer and a fifth-order, zero-phase, low-pass But-

terworth filter, with a cutoff-frequency chosen as 0.1 times the Nyquist frequency

of the digital measurement system used to generate the reference velocity. When

1It was observed that the calculated shaft velocity contained error spikes due to the very
occasional data mismatching caused by the asynchronous sampling of count/timing data within
the FPGA. A simple procedure, similar to the double buffered method of Prokin [29, 30], is
implemented to detect and remove such errors during both learning and normal operation.

Chapter 4 Implementation and Evaluation of Learning Algorithms 94

using a zero-phase filter to remove the low-frequency oscillation from the CDST

data, it is important to note that the x-axis corresponds to the encoder posi-

tion, in place of the usual temporal axis, and the y-axis provides the line error,

i.e. using position-based, rather than temporal units). A stand-alone DSP-based

implementation, as shown in Fig. 4.1, was also tested. In comparison to the MAT-

LAB implementation, where the encoder data is transfered and the compensation

calculations performed off-line, the compensation calculations (in the DSP-based

implementation using an iterative method) can be run as a background opera-

tion, while the servosystem continues to operate, without any interruptions, with

pre-compensated velocity data. Given that the compensation algorithm (iterative

method) can be implemented on-line, the memory requirement must also be much

less than that for the MATLAB implementation. In this case, a third-order zero-

phase filter, is used with a cut-off frequency similar to that used in the MATLAB

implementation. While this is done for reasons of computational efficiency; it was

found to result in minimal performance change relative to the fifth-order filter.

In general, system performance was found to be insensitive to the precise cutoff

frequency chosen, as highlighted by the fact that simple interpolation or averaging

techniques were shown to give reasonable reference velocity waveforms, as will be

described in more detail in Section 4.2.3.

Chapter 4 Implementation and Evaluation of Learning Algorithms 95

4.2.2 Performance analysis of the proposed algorithms in

an open-loop implementation

In [28] and Section. 3.4, results were presented of a comprehensive simulation of the

encoder-based system in which the non-idealities of a typical encoder are modeled

and then estimated using the iterative learning algorithm described in Chapter 2.

The algorithm was shown to very accurately estimate the encoder errors. The

results presented in this section are all based on experimental findings obtained

while the motor drive is operated in open-loop.

4000 4010 4020 4030 4040 4050 4060 4070 4080 4090 4100

169.05

169.1

169.15

169.2

169.25

169.3

169.35

169.4

v
el

o
ci

ty
 /

 c
o

u
n

ts
 p

er
 s

am
p

le

sample number

4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.1

1.0175

1.018

1.0185

1.019

time / s

v
el

o
ci

ty
 /

 r
p

m

Shaft velocity before compensation

Shaft velocity after compensation

4

Figure 4.5: Estimated shaft velocity for Omron encoder (360 ppr) connected
to high-inertia load, with MATLAB-based implementation of iterative learning

algorithm.

Chapter 4 Implementation and Evaluation of Learning Algorithms 96

2000 2050 2100 2150

184.9

184.95

185

185.05

185.1

185.15

185.2

185.25

185.3
v

el
o

ci
ty

 /
 c

o
u

n
ts

 p
er

 s
am

p
le

sample number

2 2.05 2.1 2.15

1.1125

1.113

1.1135

1.114

1.1145

1.115

time / s

v
el

o
ci

ty
 /

 r
p

m

Shaft velocity before compensation

Shaft velocity after compensation

Figure 4.6: Estimated shaft velocity for OVW encoder (360 ppr), using DSP-
based implementation of iterative learning algorithm.

4.2.2.1 Improvements in velocity estimates

The error reduction in CSDT velocity due to compensation is estimated by calcu-

lating the figure of merit, m, using (3.13). While the reference velocity, Vr, used

in the calculation of m will not exactly match the actual average velocity over

the measurement interval, it is essential that it provides a very good estimate; if

anything, an error in Vr will tend to reduce the apparent benefit of compensation.

From Fig. 4.5, where the comparison of encoder shaft velocities before and after

the compensation are shown, the improvement in tachometer performance is clear

for the Omron encoder that is tested. In order to validate the performance of

the learning algorithms, similar tests are performed on the other types of chosen

encoder (OVW and HP encoders). Performances obtained from the tests on these

encoders, as shown in Figs 4.6 and 4.7, are similar to the performance with the

Chapter 4 Implementation and Evaluation of Learning Algorithms 97

2000 2010 2020 2030 2040 2050

145

150

155

160

165

v
el

o
ci

ty
 /

 c
o

u
n

ts
 p

er
 s

am
p

le

sample number

2 2.01 2.02 2.03 2.04 2.05
1.90

1.95

2.00

2.05

2.10

2.15

2.20

2.25

time / s

v
el

o
ci

ty
 /

 r
p

m

Shaft velocity before compensation

Shaft velocity after compensation

Figure 4.7: Velocities derived from flywheel-mounted quadrature decoded
HP encoder signals; (MATLAB-based learning implementation). (Note: Two
counts per sample time equates to 0.5 counts per sample interval without

quadrature decoding).

Omron encoder. When the compensation routines are performed on quadrature-

decoded signals, as in Fig. 4.7, it was found that the effect of compensation varies.

For example, at speeds close to multiples of four transitions per sample interval,

it is limited to that which would be expected if quadrature decoding had not been

implemented. This is not a defect of the method, but reflects the fact that the

edges being measured correspond to a particular transition (e.g. positive going

transition of channel A) over many samples [71] and highlights the benefits of

choosing judicious (preferably variable) shaft speeds during the learning phase.

In steady-state tests with approximately constant shaft velocity, the estimation

errors were found to be reduced by over 80% in many tests. A subset of the

generated data for the Omron and OVW encoders (connected to the high-inertia

Chapter 4 Implementation and Evaluation of Learning Algorithms 98

200 250 300 350 400
70

72

74

76

78

80

82

84

86

velocity / rpm

es
ti

m
at

ed
 e

rr
o

r
re

d
u

ct
io

n
 /

 %

Omron (Iterative Method)

Omron (Pseudoinverse B)

OVW (Iterative Method)

OVW (Pseudoinverse B)

Omron (Pseudoinverse B) - different velocity

Figure 4.8: Estimated error reduction for high inertia system (using Omron
and OVW encoders) at different velocities when using iterative and Pseudoin-
verse B algorithms, with look-up tables calculated at the same speeds at which
the compensation is performed, with the exception of the trace marked with
’♦’, for which the look-up table is calculated using a ramp-down traverse from

460 rpm to 310 rpm.

load, which also limits the maximum speed) is presented in Fig. 4.8. The proposed

algorithm is also tested using the low cost, modular Hewlett Packard encoder con-

nected to a low-inertia shaft (so that the velocity will not be so smooth). The

compensation algorithm is found to work almost equally well; see Fig. 4.9. Some

of the traces in these figures refer to tests in which the data used was acquired at

a similar velocity to that being measured. However, two traces in Figs. 4.8 and 4.9

refer to data obtained at different velocities to those used for the tests. These are

intended to investigate the effects of the inevitable changes in the encoder char-

acteristics as shaft velocity varies, due to the changing lags and transfer functions

of analog circuitry within the encoder [72]. While the variation may be small,

Chapter 4 Implementation and Evaluation of Learning Algorithms 99

500 1000 1500 2000 2500

60

65

70

75

80

85

velocity / rpm

es
ti

m
at

ed
 e

rr
o

r
re

d
u

ct
io

n
 /

 %

HP (Iterative method)

HP (Pseudoinverse B)

HP (Pseudoinverse B)-different velocity

Figure 4.9: Estimated error reduction for low inertia system (using HP en-
coder) at different velocities, with look-up tables calculated at same velocities
at which the compensation is performed, with the exception of the trace marked
’*’, where the look-up table is calculated during a ramp-up traverse from 2040

rpm to 2310 rpm.

it could conceivably have a significant effect on the benefits of compensation be-

cause any change directly affects the encoder line positions, unlike other, perhaps

large, noise components in the system. This points to the advisability of storing a

number of compensation tables (which should be generated, preferably, when the

shaft velocity is varying). The relevant trace in Fig. 4.9 represents a worst-case

scenario, as high-speed compensation data is used for low-velocity compensation,

but significant benefit still accrues from compensation. It is more logical to obtain

data at lower velocity, where measurement accuracy is usually most crucial.

In order to evaluate the performance of the method proposed in this thesis against

a similar method, that proposed by Merry et. al. [4, 5] (presented in Chapter 1),

Chapter 4 Implementation and Evaluation of Learning Algorithms 100

200 250 300 350 400 450 500

50

55

60

65

70

75

80

85

velocity / rpm

es
tim

at
ed

 e
rro

r r
ed

uc
tio

n
/ %

Omron!Ite
Omron!Psu B
Omron!Mer
OVW!Ite
OVW!Psu B
OVW!Mer

Figure 4.10: Estimated error reduction for high inertia system (using Omron
and OVW encoders) at different velocities when using iterative (Ite), Pseu-
doinverse B (Psu B) and Merry’s [4, 5] algorithms (Mer), with look-up tables

calculated at the same speeds at which the compensation is performed

is selected. The comparison between the proposed Iterative and Pseudo-inverse B

methods and a method based on Merry’s is shown in Fig. 4.10. It is clear that the

new methods significantly out-perform that of Merry.

4.2.2.2 Performance and output of the learning algorithm

It is clear from Figs. 4.8 and 4.9 that the iterative algorithm works almost as

well as the mathematically more complex pseudoinverse solution to line errors.

Comparisons between the three solution techniques described in Chapter 2, as

a function of sample length, Ns, are shown in Figs. 4.11, 4.12 and 4.13 for the

Omron, OVW and HP encoders respectively. The figures indicate that all the

methods show similar patterns of convergence, though the sample size must be

larger for the iterative method, as might be expected. It is seen that Ns = 10, 000

is sufficient for a 360 line encoder. The two pseudoinverse-based methods are

Chapter 4 Implementation and Evaluation of Learning Algorithms 101

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10

20

30

40

50

60

70

80

Ns

es
tim

at
ed

 e
rro

r r
ed

uc
tio

n
/ %

Omron (Iterative method)
Omron (Pseudoinverse A)
Omron (Pseudoinverse B)

Figure 4.11: Calculation of estimated error reduction (using Omron encoder
with 360 ppr) at 170 rpm, for various sample lengths, Ns.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10

20

30

40

50

60

70

80

90

N
s

e
st

im
a
te

d
 e

rr
o

r
re

d
u

c
ti

o
n

 /
 %

OVW (Iterative method)

OVW (Pseudoinverse A)

OVW (Pseudoinverse B)

Figure 4.12: Calculation of estimated error reduction (using OVW encoder
with 360 ppr) at 170 rpm, for various sample lengths, Ns.

Chapter 4 Implementation and Evaluation of Learning Algorithms 102

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

20

40

60

80

N
s

e
st

im
a
te

d
 e

rr
o

r
re

d
u

c
ti

o
n

 /
 %

HP (Iterative method)

HP (Pseudoinverse A)

HP (Pseudoinverse B)

Figure 4.13: Calculation of estimated error reduction at 1700 rpm for HP
encoder (200 ppr), without flywheel, as Ns varies.

equivalent, except for very small data sets, in which case the Pseudoinverse A

method is preferred.

In a further test, the learning algorithm was applied to both edges of the two

channels (CH-A and CH-B) in clockwise and anti-clockwise directions and the slit

errors calculated. As shown in Fig. 4.14, the slit errors estimated for the positive

edge of channel B in the clockwise direction are similar to those obtained when

the negative edge of channel B is considered in the anti-clockwise direction, as it

should be. Similar results are observed with channel A. The convergence traces

for some arbitrarily selected interval errors, δj(j+1), calculated using the iterative

learning process, are shown in Fig. 4.15.

Chapter 4 Implementation and Evaluation of Learning Algorithms 103

100 110 120 130 140 150

-0.0005

0.0000

0.0005

0.0010

encoder transition positions

sl
it

 e
rr

o
r

/
co

u
n

ts
Ch-B raising edge in clockwise direction

Ch-B falling edge in anti-clockwise direction

Figure 4.14: Slit errors of OVW encoder’s transition positions 100 to 150
for positive-going edge of channel B in clockwise, and negative-going edge in

anti-clockwise, directions, at 170 rpm.

0 2 4 6 8 10

-0.0002

-0.0001

0.0000

0.0001

0.0002

0.0003

time / s

in
te

rv
al

 e
rr

o
r

/
co

u
n

ts

sample number

107,108 221,222 65,66 64,65

0 2000 4000 6000 8000 10000

Figure 4.15: Convergence of interval error estimates using the iterative learn-
ing algorithm, to steady-state values, for a few randomly selected interval errors

at 170 rpm, using an Omron encoder, with 360 ppr.

Chapter 4 Implementation and Evaluation of Learning Algorithms 104

4.2.3 Investigation of alternative means of calculating the

reference velocity

The computation of reference-velocity values described in Section 3.4.1, and the

consequent results presented above, are based on the generation of a reference

velocity, Vr, waveform using a zero-phase filter. Error in Vr, system noise, and

unmodeled encoder non-idealities will all influence the e error vector described in

Chapter 3. However, given sufficient samples, the encoder errors can be estimated

well using (2.12), or any of the other methods described above, when the e(i)

values are uncorrelated with the relevant encoder errors, i.e. are uncorrelated with

δP (i) and δP (i−1), or δk,(k+1), k ∈ [P (i− 1), P (i)− 2].

The zero-phase filter is found to provide an excellent reference velocity. In order

to facilitate real-time encoder compensation, some simpler methods of generating

Vr(i) are considered. Other possibilities are to use a variant of the polynomial-fit

method of Merry et al. [4, 5], or a simple average of a number of CSDT velocity

values before and after sample i, as explained in Section. 3.4.1. It is clear from

Fig. 4.16 that the results from the polynomial-fit and the mean velocity calculation

methods are inferior to those due to application of the zero-phase filter. However

they still allow significant performance improvement. The fact that a lag of only

approximately half the number of samples used in the velocity reference estimate

exists between taking data, and being able to then start processing that data

for encoder compensation, is a significant advantage which allows the iterative

algorithm to be incorporated more easily in a real-time controller.

Chapter 4 Implementation and Evaluation of Learning Algorithms 105

200 250 300 350 400 450

55

60

65

70

75

80

velocity / rpm

es
ti

m
at

ed
 e

rr
o

r
re

d
u

ct
io

n
 /

 %

Zero phase filter
5-point interpolation

11-point interpolation
17-point interpolation
5-point average

Figure 4.16: Estimated error reduction, using Pseudoinverse B method with
Omron encoder (360 ppr), for variously calculated reference velocities.

It is important to remember that for the CSDT data, angular distance is the x -

axis variable. Filtering of this data usually utilizes a zero-phase filter, the nyquist

frequency of which is chosen. Therefore, a desired low-pass filter bandwidth is

dependent on the number of adjacent encoder transition position over which low-

pass filtering (averaging) will be employed.

In order to analyze the effect of the chosen bandwidth of the zero-phase filter

on high-frequency error calculation, several tests using different filter bandwidths

were conducted. Note that the bandwidths specified are normalized relative to the

Nyquist frequency. This, in turn, corresponds to a frequency of L/2 per revolution.

The obtained root-mean-square of the high-frequency error in the compensated

shaft velocity was obtained in each case. The results indicate that the resultant

Chapter 4 Implementation and Evaluation of Learning Algorithms 106

learning errors are insensitive to the chosen bandwidth of the zero-phase filter used

(as shown in Fig. 4.17).

0.5 1 1.5 2 2.5 3 3.5 4

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

time / s

rm
s

er
ro

r
/

co
u

n
ts

Bandwidth: 0.08

Bandwidth: 0.05

Bandwidth: 0.02

Figure 4.17: Root-mean square of high-frequency error in the compensated
shaft velocity at three different band-widths obtained by implementing the

Pseudoinverse-A learning algorithm on the Omron encoder.

4.2.4 Experimental evaluation of the noise and errors as-

sociated with an encoder

To match the theoretically postulated encoder non-linearities with those of a real

encoder, a comparision of the probability density functions of interval and slit

errors are performed. As shown in Fig. 4.18, the interval and slit errors of an

Omron encoder, with a resolution N = 360, are calculated (using the iterative

Chapter 4 Implementation and Evaluation of Learning Algorithms 107

learning algorithm). The probability density function of the interval error is almost

triangularly distributed, while the slit error, which is often assumed to be uniformly

distributed, is not exactly so. This can be caused by the nature of the encoder

wheel and electronics, or by any imperfections in determining the interval error.

However, the results obtained from experimental data are consistent with the

behaviour of a simulated encoder, as shown in Fig. 3.7, based on the theoretical

model of a typical encoder, as described in Chapter. 3.

In order to demonstrate the influence of the (encoder) position-dependent random

noise, δnP (i), and position independent random noise, δn(i), on the performance

of the learning algorithm, a comparative study is performed between the math-

ematical model and experimental implementation. The probability density func-

tion and figure of merit of the learning algorithm and the standard deviation of

the interval error were considered as important criteria. When comparing sim-

ulated and experimental devices, it will be assumed that the two show a great

similarity when the figure of merit and the standard deviation are both similar.

As shown in Fig. 4.19, the probability density function of different, but reason-

able, mathematical model scenarios (as documented in Table. 4.2), are found to

approximate well to the experimental data, based on the chosen criteria. The

simulated data is are plotted against the p.d.f. of the interval error obtained from

the Omron encoder (360 ppr). The experimental and model data are shown to be

almost identical. For analysing the various possibilities, the position-dependent

and position-independent noises (having the same standard deviation as the Om-

ron encoder) in some chosen mathematical models (with different parameters) are

Chapter 4 Implementation and Evaluation of Learning Algorithms 108

compared to experimentally obtained results. From Fig. 4.19 and Table. 4.2 it

can be concluded that the results are consistent with the assumptions made in

the mathematical modelling. Hence it can be concluded that assumptions made

in modelling the encoder errors are reasonable and insightful.

!0.002 !0.001 0 0.001 0.002
0

200

400

600

800

1000

1200

1400

interval error and slit error / counts

p.
d.

f.

interval error
slit error

Figure 4.18: Probability density function of interval and slit errors of the
Omron 360 ppr incremental encoder, calculated using the iterative learning

algorithm.

However, a detailed breakdown of the error source is (a) not possible without

a very large number of tests and calculations, and (b) will vary with different

encoders. Therefore, such over-analysis is not particularly helpful, given that the

application of the learning algorithm will work well without generation of such a

detailed model.

Chapter 4 Implementation and Evaluation of Learning Algorithms 109

Table 4.2: Comparative study of observed experimental characteristics and
judiciously selected mathematical models performance

Type of test Average position
dependent noise
/ count (×10−4)

Average position
independent noise
/ count (×10−5)

Standrad
deviation
(×10−4)

Figure of
merit

Experimental – – 3.7452 84.00
Simulation 2.5647 3.1774 3.8749 84.06
Simulation 2.2560 2.8853 3.5256 83.63
Simulation 1.9185 1.5880 3.5570 84.12
Simulation 1.9792 1.6410 3.0780 84.20

!1.5 !1 !0.5 0 0.5 1 1.5 2 2.5
x 10!3

0

200

400

600

800

1000

1200

interval error / counts

p.
d.

f

Simulation case 3
Simulation case 1
Simulation case 4
Simulation case 2
Experimental case

Figure 4.19: Probability density function of interval error for Omron incre-
mental encoder, and comparison with some mathematical models (with resolu-

tion of 360 ppr, calculated using iterative learning algorithm).

Chapter 4 Implementation and Evaluation of Learning Algorithms 110

4.3 Experimental Results for a Closed-Loop Ser-

vosystem

The proposed learning algorithm was incorporated into a closed-loop servosystem,

thereby allowing investigation of effects such as delay in the feedback provided

by the CSDT, and of sensor discretization and sampling, on the stability of the

servosystem. The effects of delay leading to self-sustained oscillation are well ex-

plained by Kuo and Kubis in [73, 74]. A linear, torque-mode, high-bandwidth am-

plifier driving a two-pole, permanent-magnet synchronous motor (PMSM) without

flywheel load and the 200 ppr, modular Hewlett Packard encoder are used in this

work, along with the previously described FPGA/DSP combination for CSDT and

controller implementation.

Drive

Motor Encoder FPGA

Encoder Output

2

3

DC Power

DSP

8
2D

AT
A

Sa
m

pl
e

&
 R

ea
d

3

CH A

CH B

ZM

Figure 4.20: Block diagram of a typical FPGA/DSP-based servosystem con-
troller (reproduced for convenience from Section 1.7).

Chapter 4 Implementation and Evaluation of Learning Algorithms 111

4.3.1 Design of the closed-loop controller

Table 4.3: Servosystem Parameters used for Experimental Implementation

System Parameters Value

DAC gain, Kdac 10 V/(unit controller O/P)
Amplifier gain, Ka 2 A/V
Torque constant, Kt 0.061 Nm A−1

Encoder gain, Kenc = L/(2π) 500 / (2π) cycles rad−1

Motor Inertia, J 59× 10−6 kg m2

Sample Time, Ts 1 ms

The controller is designed using the method of Roche et al. [75]. To obtain a

simplified plant model, it is assumed that the mechanical linkage between motor

and driven load has infinite stiffness, viscous friction on the mechanical load is

negligible, and that the power amplifier and motor act as an ideal torque actuator.

The parameters of the servosystem are provided in Table 4.3.2 Using the root locus

technique, the proportional and integral gains of the PI controller, Kvp and Kvi,

can be calculated, for a damping ratio of 0.707, as

Kvp =
0.06868

KplTs
2 (4.1)

Kvi =
0.3431

KplTs
2 (4.2)

where the plant has gain

Kpl =
KdacKaKtKenc

J
, (4.3)

from which the approximate values of proportional gain Kvp and integral gain Kvi

are calculated as 0.208 and 0.0417, respectively.

2The output of the PI controller calculation is a fractional number that is converted to an
amplifier voltage input via a DAC, the gain of which is represented as Kdac.

Chapter 4 Implementation and Evaluation of Learning Algorithms 112

The integration of CSDT into the control structure must be done with care. Ve-

locity information from both the CSDT and PCT (position difference) are used

in tandem at low speeds, to ensure correct output from the integral part of the

controller. The stability of the CSDT-enhanced controller is equivalent to that

of the usual PCT-based controller, but with much-improved accuracy at speeds

greater than one count per sample interval.

4.3.2 Comparative results to verify utility of the learning

algorithm in a closed-loop system

10 20 30 40 50 60 70 80 90 100

-0.0002

-0.0001

0.0000

0.0001

0.0002

0.0003

time / s

to
rq

u
e

/
N

m

40 45 50
-0.00002

0.0

0.00002

Torque ripple with compensated CSDT

Torque ripple with PCT

Torque ripple with CSDT

0 20000 40000 60000 80000 100000

0

sample number

Figure 4.21: Torque ripple, showing effect of switching velocity feedback
source from uncompensated CSDT, to compensated CSDT and, finally, to PCT,
when using 200 ppr HP encoder rotating at 2000 rpm, (the d.c. motor torque

is 0.0294 Nm approximately).

In [75], rms current ripple was used to evaluate the noise introduced into the

system due to the control algorithm, physical characteristics of the servosystem

Chapter 4 Implementation and Evaluation of Learning Algorithms 113

and quantization error. In this thesis, the root-mean-squared (rms) value of the

high-frequency components of input torque ripple is instead used to compare the

closed-loop performance of the different digital tachometers at a randomly se-

lected speed of 2000 rpm. The results, normalized with respect to that due to

use of a pulse-count tachometer (PCT) without quadrature decoding, are shown

in Table 4.4. The PCT induces the largest ripple content in the input torque,

predominantly due to quantization error and, to a lesser extent, encoder transi-

tion location errors. The torque ripple due to compensated CSDT-based velocity

feedback is approximately five times less than the equivalent value without com-

pensation (which is typical). A comparison of torque ripple pertaining to use

of the PCT feedback and that corresponding to use of either a compensated or

uncompensated CSDT is shown in Fig. 4.21.

Table 4.4: Normalized RMS Value of High-Frequency Torque Ripple in Ser-
vosystem

Type of tachometer Normalized h.f. trq. ripple (rms)

PCT 1
CSDT 0.0119
CSDT (compensated) 0.0022

Though an error reduction of over 95% was observed in the various simulations

consistently for different velocity profiles, the high-frequency error reduction ob-

served in the experimental implementation is around 80%. As the influence of

quantization error is mostly eliminated by using the CSDT velocity measurement

techinique (given that the sample time Ts is 1 ms and the high speed clock fre-

quency is 20 MHz, the typical error due to quantization while implementing the

CSDT method will be in the order of, 1
fs·Ts = 1

20000
), this deviation between the

Chapter 4 Implementation and Evaluation of Learning Algorithms 114

simulation and experimental results can be assumed to be mostly due the random

noise generated in the experimental system and the imperfect realization of the

calculated reference velocity, when compared to actual reference velocity.

Chapter 5

Conclusions

5.1 Conclusions

Three learning algorithm are proposed as a means of estimating the slit errors

(i.e. transition location errors) or interval error in the code wheel of a square-wave

incremental shaft encoder. A trivial modification of the methods would enable it

to be used equally for absolute encoders. While some previous work in this field

has shown the ability to reduce encoder error by 77% to 80%, these implemen-

tations have all had significant constraints, requiring the use of high-specification

reference sensors or special fixtures and/or hardware. This work proposed three

different learning methodologies to estimate the interval and slit errors. Of them,

the Pseudoinverse-A and Iterative methods are dedicated to computing slit errors,

while the Pseudoinverse-B algorithm estimates the interval errors of the encoder.

Under varied conditions, improvements up to 86% (but typically approximately

80%) in shaft velocity measurement, when compared to velocity measurement

115

Chapter 5 Conclusions 116

using the CDST method, are reported in this work. It is notable that the im-

provements are consistent for encoders with different resolutions from different

manufactures and for different traverses (some noisier than others). The chosen

CSDT velocity measuring method is shown to provide sufficient data to enable im-

plementation of the learning algorithms. Results highlight the possibility of using

a stand-alone implementation in which an iterative learning algorithm can be used

(possibly retrofitted), while a pseudoinverse-based off-line solution was shown to

provide the best performance with fewer data samples. The application of a zero-

phase filter to the CSDT waveforms was seen to provide an excellent ‘reference’

velocity. However, the demonstrated viability of using a simpler method, such as

interpolation and average methods, to generate the waveform, was shown to ease

real-time implementation with only slightly reduced performance.

It is clear that the compensation is a once-off, or very occasional, operation that

can function without regard to the specific control algorithm, or the drive or load

parameters, and its application does not disallow control structures such as an

observer or a Kalman filter. Given the lack of a reference sensor and the reliance

on the internally generated reference velocity, it makes sense to implement the

learning phase when the drive is somewhat detuned, or at least when it is not

exciting resonances in the load. This is easily arranged in most practical appli-

cations. The stipulation that effective operation of the learning algorithm implies

that those principal velocity error components measured by the CSDT which are

correlated with the shaft position are due to encoder transition position errors

should be borne in mind, particularly when drives with gearboxes are involved.

Chapter 5 Conclusions 117

The precision of velocity measurement with the pulse count and CSDT methods,

with and without compensation, are repeated in Table. 5.1 for convenience.

Table 5.1: Normalized RMS Value of High-Frequency Torque Ripple in Ser-
vosystem

Type of tachometer Normalized h.f. trq. ripple (rms)

PCT 1
CSDT 0.0119
CSDT (compensated) 0.0022

The proposed algorithms can be applied in many application such as accurate

trajectory following in very high bandwidth robotics applications, numerically-

controlled (NC) machines, etc.

Due to the limited time and resources available, certain limitations were set for

the project. All the algorithms proposed are tested only with optical incremental

square-wave encoders. In terms of potential future work, a number of extensions

are possible to the work presented in this thesis. While the learning techniques

have been designed in such a way that they can be utilized with little human

intervention, further work should be undertaken on how and when the servosystem

should self-calibrate, i.e. based on the trajectory that the servo is undertaking,

or indeed, a decision may be made that calibration is only required during the

installation phase of an automation system. In closed-loop systems, it would

be possible to augment the digital tachometer with a non-linear observer [76,

77]. With relatively minor alterations, it would also be possible to implement

the learning-algorithm on absolute encoders. Using the algorithm on sinusoidal

encoders would effectively take into account the fact that different actual widths

Chapter 5 Conclusions 118

are associated with different electrical cycles of the encoder output. This would

require an algorithm that utilized both the line width learning techniques presented

in this thesis, and the learning method of Kavanagh [44] for the average shape of

nominally sinusoidal waveforms in sinusoidal encoders. There does not appear to

be any major impediment to implementing such a system. The work described

in this thesis has been reported in a conference publication [28] and in the IEEE

Transactions on Instrumentation and Measurement [78].

Appendix A

Architecture of DS1104 dSPACE

R & D Controller Board

119

Appendix A. Architecture of DS1104 dSPACE R & D Controller Board 120

24
 –

 b
it

 I
/O

 B
us

P
C

PC
I

In
te

rf
ac

e

In
te

rr
up

t C
on

tr
ol

 U
ni

t

P
ow

er
P

C
 6

03
e

T
im

er
s

M
em

or
y

C
on

tr
ol

le
r

T
M

S
32

0F
24

0
D

S
P

D
ua

l P
or

t
R

A
M

8
M

B
 F

la
sh

M

em
or

y

32
 M

B
yt

e
SD

R
A

M

P
C

I
B

U
S

PW
M

1

x
3-

P
ha

se
4

x
1-

P
ha

se

4
C

ap
tu

re

In
pu

ts

S
er

ia
l

P
er

ip
he

ri
al

In

te
rf

ac
e

D
ig

it
al

 I
/O

14

 b
it

s

A
D

C
4

ch
. 1

6-
bi

t
4

ch
. 1

2-
bi

t

D
A

C
 8

ch

an
ne

ls
 1

6
-b

it

In
cr

.
E

nc
od

er
 2

C

ha
nn

el
s

D
ig

it
al

 I
/O

20

 b
it

s

S
er

ia
l I

nt
er

fa
ce

R
S

23
2/

R
S

48
5/

R
S

42
2

D
S

11
04

Figure A.1: DS1104 R & D Controller Board Block Diagram.

Bibliography

[1] C. Yien. Incremental encoder errors: Causes and ways to reduce them. In

Proc. PCIM’92, pages 110–121, Nuremberg, Germany, Apr. 1992.

[2] R. Nutt. Digital time intervals meter. Rev. Sci. Instruments, 39:1342–1345,

1968.

[3] G.Strang. Linear algebra and its applications. Harcourt Brace Jovanovich,

United States of America, third edition, 1988.

[4] R. Merry, R. van de Molengraft, and M. Steinbuch. Error modeling and

improved position estimation for optical incremental encoders by means of

time stamping. In American Control Conference, pages 3570–3575, New York,

USA, 2007.

[5] R. J. E. Merry and M. J. G. van de Molengraft and M. Steinbuch. Velocity

and acceleration estimation for optical incremental encoders. In The Intl.

Federation of Automatic Control, pages 7570–7575, Seoul, Korea, Jul. 2008.

[6] Saeed B. Niku. Introduction to Robotics - Analysis, Control, Applications.

John Wiley and Sons, Inc., United States of America, 2011.

121

Bibliography 122

[7] M.C. Srivastav M. Srivastava and S. Bhatnagar. Control Systems. Tata

McGraw-Hill publications., NewDelhi, India, 2009.

[8] E. A. Parr. Industrial Control Handbook. Butterworth-Heinemann Publica-

tions, Oxford, U. K., 1989.

[9] J. Lenarcic A. Stanovnik T. Bajd, M. Mihelj and M. Munih. Intelligent

systems, control, and automation: Science and engineering. Springer Publi-

cations, London, U. K., 2010.

[10] T. R. Padmanabhan. Industrial instrumentation: Principles and design.

Springer-Verlag Publications, London, U. K., 2000.

[11] W. Boyes. Instrumentation reference book. Butterworth-Heinemann Publica-

tions, London, U. K., 2003.

[12] G. H. Ellis. Control system design guide: A practical guide. Elsevier Academic

Press, London, U. K., 2004.

[13] M. Leonard. Push-pull optical detector integrated circuit. IEEE Jnl. Solid

State Circuits., SC-15:1087–1089, Dec. 1980.

[14] H. Epstein, M. Leonard, and R. Nicol. Economical high-performance optical

encoders. Hewlett-Packard Journal, 39(5):99–106, Oct. 1988.

[15] R.M. Gray. Quantization noise spectra. IEEE Transactions on Information

Theory, 36(6):1220–1244, Nov. 1990.

[16] S. R. Norsworthy, R. Schreier, and G. C. Temes. Delta-Sigma Data

Converters-Theory, Design and Simulation. IEEE press, 1992.

Bibliography 123

[17] Gene F. Franklin, J. David Powell, and Michael L. Workman. Digital Control

of Dynamic Systems. Addison-Wesley Publications & Co., third edition, 1997.

[18] K. W. Cattermole. Principles of Pulse Code Modulation. Iliffe Books Ltd.,

1969.

[19] R. C. Kavanagh and J. M. D. Murphy. The effects of quantization noise

and sensor non-ideality on digital-differentiator-based velocity measurement.

IEEE Trans. Instrum. Meas., 47:1457–1463, Dec. 1998.

[20] G. A. Woolvet. Transducers in Digital Systems. Institution of Electrical

Engineers, London, U.K, 1977.

[21] T. Ohmae, T. Matsuda, K. Kamiyama, and M. Tachikawa. A microprocessor-

controlled high-accuracy wide-range speed regulator for motor drives. IEEE

Trans. Ind. Electron., 29(3):207–211, Aug. 1982.

[22] R. C. Kavanagh. Improved digital tachometer with reduced sensitivity to

sensor non-ideality. IEEE Trans. Ind. Electron., 47(4):890–897, Aug. 2000.

[23] J. Mayrhofer and J. Strachwitz. A control circuit for electrical drives based

on transputers and FPGAs. In W.Moore and W.Luk, editors, More FPGAs,

pages 420–427. Oxford, Abbington EE and CS Books, 1993.

[24] J. Kalisz, M. Pawlowski, and R. Pelka. Error analysis and design of the Nutt

time-inverval digitiser with picosecond resolution. J. Phys. E, Sci. Instrum.,

20(11):1330–1341, 1987.

Bibliography 124

[25] J. Kalisz, R. Szplet, R. Pelka, and A. Poniecki. Single-chip interpolating time

counter with 200-ps resolution and 43-s range. IEEE Trans. Instrum. Meas.,

46(1):51–55, Feb. 1997.

[26] J. Kalisz, R. Szplet, J. Pasierbinski, and A. Poniecki. Field-programmable-

gate-array-based time-to-digital converter with 200-ps resolution. IEEE

Trans. Instrum. Meas., 46(4):851–856, Aug. 1997.

[27] S. C. Schneider R. H. Brown, and. Velocity observations from discrete position

encoders. In IEEE conf. of the Industrial Electronics Society, pages 1111–

1118, 1987.

[28] N. K. Boggarpu and R. C. Kavanagh. New learning algorithm for high-quality

velocity measurement from low-cost optical encoders. In IEEE Instrumenta-

tion and Measurement Technology Conference (I2MTC 2008), pages 1908–

1913, Victoria, Canada, May 2008.

[29] M. Prokin. Double buffered wide-range frequency measurement method for

digital tachometers. IEEE Trans. Instrum. and Meas., 40(3):606–610, Jun

1991.

[30] M. Prokin. Extremely wide-range speed measurement using a double-buffered

method. IEEE Trans. Instrum. and Meas., 41(5):550–559, Oct. 1994.

[31] M. Prokin. Speed measurement using the improved dma transfer method.

IEEE Trans. Ind. Electron., 38(6):476–483, Dec 1991.

Bibliography 125

[32] G. Bucci and C. Landi. Metrological characterization of a contactless smart

thrust and speed sensor for linear induction motor testing. IEEE Trans.

Instrum. and Meas., 45(2):493–498, Apr 1996.

[33] Jian-Zhong Tang, Yujian Fan, Bin Fei, and Dan Chen. New method for divid-

ing encoder signals by means of computer. SPIE - Measurement Technology

and Intelligent Instruments, 2101(1):901–904, 1993.

[34] R. C. Kavanagh. Signal processing techniques for improved digital tachom-

etry. In IEEE Intl. Symp. Industrial Electronics (ISIE2000), pages 511–517,

L’Aquila, Italy, Jul. 2002.

[35] E. Galván, A. Torralba, and L. G. Franquelo. A simple digital tachometer

with high precision in a wide speed range. In Proc IEEE IECON’94, pages

920–923, Bologna, Italy, Sept. 1994.

[36] E. Galván, A. Torralba, and L. G. Franquelo. ASIC implementation of a

digital tachometer with high precision in a wide speed range. IEEE Trans.

Instrum. Meas., 43(6):655–661, Dec. 1996.

[37] N. Chaudhuri, S. Ghosh, and A. M. Ghosh. Wide-range precision speed mea-

surement with adaptive optimization using a microcomputer. IEEE Trans.

Ind. Electron., IE-30:369–373, Nov. 1983.

[38] P. Bhatti and B. Hannaford. Single-chip velocity measurement system for

incremental optical encoders. IEEE Trans. Control. Syst. Technol., 5(6):654–

661, Nov. 1997.

Bibliography 126

[39] F. Thomas, J. K. Kishore, K. M. Bharadwaj, M. M. Nayak, and V. K.

Agrawal. Design and implementation of a wheel speed measurement circuit

using field-programmable gate array in a spacecraft. Microprocessors and

Microsystems, 22(9):553–560, Mar. 1999.

[40] R. C. Kavanagh. An enhanced constant sample-time digital tachometer

through oversampling. Trans. Inst. Meas & Control, 26:416–422, Apr. 2004.

[41] G. Kahl. Digital measurements of transient angular speeds with high resolu-

tion. In Proc. Intl. Conf. Microelectronics in Power Electronics and Electrical

Drives, pages 69–73, Darmstadt, Germany, 1982.

[42] S. K. Kaul, R. Koul, C. L. Bhat, I. K. Kaul, and A. K. Tickoo. Use of a

‘look-up’ table improves the accuracy of a low-cost resolver-based absolute

shaft encoder. Measurement Science and Technology, 8:329–331, 1997.

[43] D. Mancini, A. Auricchio, M. Brescia, E. Cascone, F. Cortecchia, P. Schipani,

and G. Spirito. Encoder system design : Strategies for error compensation.

In SPIE - The International Society for Optical Engineering, volume 3351,

pages 380–386, New York, USA, May 1998.

[44] R. C. Kavanagh. Probabilistic learning technique for improved accuracy of

sinusoidal encoders. IEEE Trans. Ind. Electron., 48(3):673–681, Jun. 2001.

[45] C. Wang, G. Zhang, S. Guo, and J. Jiang. Auto correction of interpolation

errors in optical encoders. In Proc. SPIE, volume 2718, pages 439–447, May

1996.

Bibliography 127

[46] I. Ogura, Y. Suzuki, and N. Hagiwara. A method of improving the accuracy

of rotary encoders using a code compensation technique. Trans. IEE Japan,

144c(1):75–88, Jun. 1994.

[47] J. Doernberg, Hae-Seung Lee, and D. Hodges. Full-speed testing of A/D

converters. IEEE Jnl. Solid-Stage Circuits., SC-19(6):820–827, Dec. 1984.

[48] K. Hachiya and T. Ohmae. Digital speed control system for a motor using

two speed detection methods of an incremental encoder. In Power Electronics

and Applications, 2007 European Conference on, pages 1–10, Sept. 2007.

[49] K. K. Tan and K. Z. Tang. Adaptive online correction and interpolation of

quadrature encoder signals using radial basis function. IEEE Trans. Control.

Syst. Technol., 13(3):370–377, May 2005.

[50] Agilent Technologies. Quick assembly two and three channel optical encoders,

datasheet.

[51] Nemicon Rotary Encoders. OVW incremental rotary encoder datasheet.

URL http://www.nemicon.com/pdf/OVW-2.pdf.

[52] Omron Industrial Automation. Omron incremental rotary encoder datasheet.

URL http://www.ia.omron.com/data_pdf/e6c2-c_ds_csm493.pdf.

[53] S. Wolf. Silicon Processing for the VLSI Era. Lattice Press, California, U.S,

1990.

http://www.nemicon.com/pdf/OVW-2.pdf
http://www.ia.omron.com/data_pdf/e6c2-c_ds_csm493.pdf

Bibliography 128

[54] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli. Architecture of field-

programmable gate arrays. Proceedings of the IEEE, 81(7):1013–1029, Jul.

1993.

[55] S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic. Field-Programmable

Gate Arrays. Kluwer Acad. Publ., 1992.

[56] H.-C. Hsieh, W.S. Carter, J. Ja, E. Cheung, S. Schreifels, C. Erickson, P. Frei-

din, L. Tinkey, and R. Kanazawa. Third-generation architecture boosts speed

and density of field-programmable gate arrays. In Proc. IEEE Custom Inte-

grated Circuits Conference, 1990, pages 31.2/1–31.2/7, May 1990.

[57] Trimberger. S. Beyond logic - FPGAs for digital systems. In W.Moore and

W.Luk, editors, FPGAs, pages 39–45. Oxford, Abbington EE and CS Books,

1991.

[58] Xilinx Inc. The programmable logic data book, 1996.

[59] D. Bursky. Streamlined RAM-based family of FPGAs trims system cost. In

Electronic design, volume 46, pages 98–100, Penton Media, Cleveland, OH,

USA, Feb 1998.

[60] dSPACE. DS1104 r & d controller board. URL http://www.dspaceinc.

com/en/home/products/hw/singbord/ds1104.cfm.

[61] Reliance Electric Company Electro-Craft. BRU-200/BRU-500 Brushless

Drives Instruction Manual. Reliance Electric Company, 1992.

http://www.dspaceinc.com/en/home/products/hw/singbord/ds1104.cfm
http://www.dspaceinc.com/en/home/products/hw/singbord/ds1104.cfm

Bibliography 129

[62] Aerotech Ltd. 1000 Series brush, rotary dc servomotors. URL http://www.

aerotech.com/products/pdf/1000.pdf.

[63] O. Axelsson. Iterative Solution Methods. Cambridge University Press, New

York, USA, 1st edition, 1994.

[64] A.C.Bajpai, I.M.Calus, and J.A.Fairley. Numerical Methods for Engineers

and Scientists. John Wiley & Sons, Great Britain, 1st edition, 1975.

[65] P. Barooah and J.P. Hespanha. Distributed estimation from relative measure-

ments in sensor networks. In Third International Conference on Intelligent

Sensing and Information Processing, 2005. ICISIP 2005., pages 226–231, Dec.

2005.

[66] Joo P. Hespanha Prabir Barooah, Neimar Machado da Silva. Distributed

Computing in Sensor Systems, volume 4026 of Lecture Notes in Computer

Science, chapter on Distributed Optimal Estimation from Relative Measure-

ments for Localization and Time Synchronization, pages 266–281. Springer

Berlin / Heidelberg, 2006.

[67] P. Barooah and J.P. Hespanha. Estimation from relative measurements: Elec-

trical analogy and large graphs. IEEE Trans. Sig. Proc., 56(6):2181–2193,

Jun. 2008.

[68] V. Delouille, R. Neelamani, and R. Baraniuk. Robust distributed estimation

in sensor networks using the embedded polygons algorithm. In Information

Processing in Sensor Networks, 2004. IPSN 2004. Third International Sym-

posium on, pages 405–413, Apr. 2004.

http://www.aerotech.com/products/pdf/1000.pdf
http://www.aerotech.com/products/pdf/1000.pdf

Bibliography 130

[69] The Mathworks Inc. Signal processing toolbox-for use with matlab, 1994.

[70] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification.

John Wiley & Sons, Inc, New York, United States of America, 2nd edition,

2001.

[71] R. C. Kavanagh. Performance analysis and compensation of M/T-type digital

tachometers. IEEE Trans. Instum. Meas., 50(4):965–970, Aug. 2001.

[72] W. Schumacher and G. Heinemann. Fully digital control of induction motor as

servo drive. In Proc. 1st. Euro. Conf. Power Electronics and Appls. (EPE’85),

pages 2.191–2.196, Brussels, Belgium, Oct 1985.

[73] B. C. Kuo and T. Kubis. Prediction of self-sustained oscillations in digital

systems with velocity decoders. In Proc. 11th Annual Symp. Incremental

Motion Control System and Devices, pages 79–86, Jun. 1982.

[74] B. C. Kuo. Prediction of self-sustained oscillations in digital control systems

by the discrete describing function. In Proc. 11th Annual Symp. Incremental

Motion Control System and Devices, pages 65–78, Jun. 1982.

[75] P. J. Roche, J. M. D. Murphy, and M. G. Egan. Reduction of quantisation

noise in position servosystems. In Proc. IEEE Conf. Ind. Elect. and Control

(IECON ’92), pages 464–469, San Diego, U.S.A, Nov. 1992.

[76] K. Fujita and K. Sado. Instantaneous speed detection with parameter iden-

tification for ac servo systems. IEEE Trans. Ind. Applicat., 28(4):864–872,

July/August 1992.

Bibliography 131

[77] S. Sakai and Y. Hori. Ultra-low speed control of servomotor using low resolu-

tion rotary encoder. In IEEE international conference on industrial electron-

ics and control, pages 615–620, 1995.

[78] N.K. Boggarpu and R.C. Kavanagh. New learning algorithm for high-quality

velocity measurement and control when using low-cost optical encoders. IEEE

Trans. Instrum. Meas., 59(3):565–574, March 2010.

	Declaration of Authorship
	Abstract
	Extended Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Background of the Project
	1.2 Encoder Types and Common Errors
	1.2.1 Square-wave encoders
	1.2.2 Sinusoidal encoders

	1.3 Description of the Error Sources of Optical (Square Wave) Incremental Encoders
	1.3.1 Quantization error

	1.4 Basic Speed Measuring Methodologies
	1.4.1 Elapsed-time method
	1.4.2 Pulse-count tachometer - PCT
	1.4.2.1 Quadrature decoding

	1.5 Advanced Velocity Measurement Techniques
	1.5.1 M/T method
	1.5.2 Method of accurate time-interval measurement
	1.5.3 CSDT method
	1.5.3.1 Low-speed CSDT
	1.5.3.2 Oversampled constant sample-time digital tachometer (OCSDT)

	1.6 Previous and Proposed Work on Compensation of Encoder Outputs
	1.7 Hardware Implementation
	1.7.1 Optical encoders used in experimental work
	1.7.2 Field Programmable Gate Array
	1.7.2.1 The Xilinx XC4000 FPGA

	1.7.3 dSPACE DS1104
	1.7.4 Electrical drives used in experimental work

	1.8 Aim and Objectives
	1.8.1 Objectives

	1.9 Outline of the Thesis

	2 Description of the Learning Algorithm
	2.1 Introduction
	2.2 Code-wheel Error - Description and Nomenclature
	2.3 Description of the Pseudoinverse-Based Learning Algorithms
	2.3.1 Description of Pseudoinverse-A method
	2.3.2 Description of Pseudoinverse-B method

	2.4 Iterative Solution of the Error Equations
	2.5 Conclusions

	3 Error Modeling and Analysis
	3.1 Introduction
	3.2 Error Modeling with Random Noise Included
	3.2.1 Error modeling considering slit error,

	3.3 Effect of sinusoidally distributed error on shaft velocity
	3.4 Simulation of Encoder, Tachometer and Iterative Learning
	3.4.1 Investigation of various means of calculating the reference velocity
	3.4.2 Behaviour of slit and interval errors
	3.4.3 Use of real encoder data in tachometer simulation

	3.5 Conclusions

	4 Implementation and Evaluation of Learning Algorithms
	4.1 Introduction
	4.2 Implementation and Experimental Evaluation of Learning Techniques in Open-Loop Measurement Applications
	4.2.1 Implementation of learning technique in open-loop
	4.2.2 Performance analysis of the proposed algorithms in an open-loop implementation
	4.2.2.1 Improvements in velocity estimates
	4.2.2.2 Performance and output of the learning algorithm

	4.2.3 Investigation of alternative means of calculating the reference velocity
	4.2.4 Experimental evaluation of the noise and errors associated with an encoder

	4.3 Experimental Results for a Closed-Loop Servosystem
	4.3.1 Design of the closed-loop controller
	4.3.2 Comparative results to verify utility of the learning algorithm in a closed-loop system

	5 Conclusions
	5.1 Conclusions

	A Architecture of DS1104 dSPACE R & D Controller Board
	Bibliography

