
Title A distributed architecture for the monitoring and analysis of time series
data

Author(s) O'Reilly, Ruairi Donagh

Publication date 2015

Original citation O'Reilly, R. D. 2015. A distributed architecture for the monitoring and
analysis of time series data. PhD Thesis, University College Cork.

Type of publication Doctoral thesis

Rights © 2015, Ruairi D. O'Reilly.
http://creativecommons.org/licenses/by-nc-nd/3.0/

Embargo information No embargo required

Item downloaded
from

http://hdl.handle.net/10468/2139

Downloaded on 2017-02-12T08:03:43Z

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://hdl.handle.net/10468/2139

A Distributed Architecture for the Monitoring and

Analysis of Time Series Data

by

Ruairi Donagh O’Reilly, B.Sc.

THESIS

Presented to the College of Science, Engineering and Food Science

National University of Ireland,

Cork

for the Degree of

Doctor of Philosophy

September 15, 2015

Declaration

In signing this declaration, I am confirming, in writing, that the submitted work is entirely

my own original work, except where clearly attributed otherwise, and that it has not been

submitted partly or wholly for any other educational award.

Name:

Signed:

Date:

1

Abstract

It is estimated that the quantity of digital data being transferred, processed or stored at

any one time currently stands at 4.4 zettabytes (4.4 × 270 bytes) and this figure is expected

to have grown by a factor of 10 to 44 zettabytes by 2020 [1]. Exploiting this data is, and

will remain, a significant challenge. At present there is the capacity to store 33% of digital

data in existence at any one time; by 2020 this capacity is expected to fall to 15%. These

statistics suggest that, in the era of Big Data, the identification of important, exploitable

data will need to be done in a timely manner.

Systems for the monitoring and analysis of data, e.g. stock markets, smart grids and

sensor networks, can be made up of massive numbers of individual components. These com-

ponents can be geographically distributed yet may interact with one another via continuous

data streams, which in turn may affect the state of the sender or receiver. This introduces a

dynamic causality, which further complicates the overall system by introducing a temporal

constraint that is difficult to accommodate.

Practical approaches to realising the system described above have led to a multiplicity

of analysis techniques, each of which concentrates on specific characteristics of the system

being analysed and treats these characteristics as the dominant component affecting the

results being sought. The multiplicity of analysis techniques introduces another layer of

heterogeneity, that is heterogeneity of approach, partitioning the field to the extent that

results from one domain are difficult to exploit in another.

The question is asked can a generic solution for the monitoring and analysis of data that:

accommodates temporal constraints; bridges the gap between expert knowledge and raw

data; and enables data to be effectively interpreted and exploited in a transparent manner,

be identified?

The approach proposed in this dissertation acquires, analyses and processes data in a

manner that is free of the constraints of any particular analysis technique, while at the same

time facilitating these techniques where appropriate. Constraints are applied by defining a

workflow based on the production, interpretation and consumption of data. This supports

the application of different analysis techniques on the same raw data without the danger of

2

3

incorporating hidden bias that may exist.

To illustrate and to realise this approach a software platform has been created that allows

for the transparent analysis of data, combining analysis techniques with a maintainable

record of provenance so that independent third party analysis can be applied to verify any

derived conclusions.

In order to demonstrate these concepts, a complex real world example involving the

near real-time capturing and analysis of neurophysiological data from a neonatal intensive

care unit (NICU) was chosen. A system was engineered to gather raw data, analyse that

data using different analysis techniques, uncover information, incorporate that information

into the system and curate the evolution of the discovered knowledge.

The application domain was chosen for three reasons: firstly because it is complex and

no comprehensive solution exists; secondly, it requires tight interaction with domain experts,

thus requiring the handling of subjective knowledge and inference; and thirdly, given the

dearth of neurophysiologists, there is a real world need to provide a solution for this domain.

Acknowledgements

I would like to thank my supervisor, Prof. John Morrison for his encouragement and

support throughout my time in the Centre for Unified Computing. Also, my examiners,

Dr Carolyn McGregor and Dr John Herbert, for their time, constructive feedback and

interesting discussion.

A number of thanks are due to my colleagues in the CUC: Phil, for his guidance,

assistance and mentoring in my early days; Brian, for accommodating and assisting with

technical work; and Stefan for acting as a sounding board for my many ideas and sharing

his extensive knowledge on all things technical.

I would like to thank Michelle for her patience, proofreading and perseverance with me

while I completed the PhD. Also a note of thanks to Dr Rainville and Dr Cotter for their

interesting conversation over the years. Finally, a last minute thanks to my brother Finbarr,

for stepping in with his proofreading skills at the last minute.

4

Contents

Declaration 1

Abstract 2

Acknowledgements 4

Publications arising from this work 13

1 Introduction 14

1.1 Monitoring And Analysis Of Data . 15

1.2 Related Work . 16

1.2.1 Stream Computing . 17

1.2.2 Complex Event Processing . 18

1.2.3 Remote Monitoring And Analysis Systems 19

1.2.4 Decision Support . 21

1.2.5 Knowledge Discovery . 23

1.2.6 Complex Software Systems . 24

1.2.7 Agent Frameworks . 27

1.3 Research Question . 28

1.4 Use Case: Neurophysiological Monitoring 29

1.4.1 The Clinical Perspective . 29

1.4.2 The Challenge For Neurophysiological Monitoring 29

1.5 The NICU As An Interpreting Environment 32

1.6 Summary . 33

1.7 Dissertation Overview . 34

2 Structure Of The Interpreting Environment 35

2.1 Monitoring And Analysis . 35

2.2 An Interpreting Environment . 36

2.2.1 The Process Of Mapping Roles To Components 38

5

0.0 CONTENTS 6

2.2.2 Feedback . 41

2.2.3 Convergence Within An IE . 41

2.2.4 The Use Case . 44

2.3 Summary . 45

3 Interpreting Environment Workflow 46

3.1 The Data Producer . 46

3.1.1 Time Series Data . 46

3.1.2 Temporal Abstraction . 49

3.2 The Interpreting Component . 50

3.2.1 Capturing Expert Knowledge . 51

3.2.2 Interpretation In The Context Of The Use Case 51

3.2.3 Annotation Of Data . 52

3.2.4 Annnotations In The Context Of The Use Case 54

3.2.5 Annotations Within The Physiological Data Server 57

3.3 The Data Consumer . 60

3.4 Overview Of The Workflow . 61

3.5 Summary . 63

4 Implementing The Interpreting Environment 64

4.1 Design Philosophy . 65

4.1.1 Design Principles . 65

4.1.2 Technologies Employed . 66

4.2 The IE Toolbox . 67

4.3 The IE Architecture . 68

4.3.1 The Event System . 68

4.3.2 The Agent Framework . 69

4.4 IE Container Interfaces . 76

4.5 Data Store . 77

4.6 Configuring The IE . 77

4.7 Utility Code . 78

4.8 Distributed IE Architectures . 79

4.9 Summary . 80

5 Realising A Physiological Data Server 82

5.1 The Physiological Data Server . 83

5.1.1 The Upload Application . 83

5.1.2 Server . 86

0.0 CONTENTS 7

5.1.3 Data Store . 87

5.2 The Viewer . 88

5.3 Software-specific Additions . 92

5.3.1 Adobe Flash . 92

5.4 Agent Framework Operation . 93

5.5 Security . 94

5.6 The Testbed . 95

5.6.1 Initial Approach . 95

5.6.2 Consequence Of An Integrated Approach 96

5.6.3 A Revised Approach . 96

5.7 Streaming Data In Real Time . 97

5.8 Summary . 100

6 Evaluating The Physiological Data Server 101

6.1 Experimental Testbed . 101

6.2 Generating Data for Experimental Purposes 102

6.3 Streaming Data . 104

6.4 Mapping Roles Via The Agent Framework 105

6.4.1 The EDFExportAgent (DP) . 106

6.4.2 The aEEGAgent (IC) . 106

6.5 Assisting Interpretation . 109

6.5.1 The GotmanAgent (IC)/(DC) . 110

6.6 Evaluating The Distributed Alternatives . 112

6.6.1 Supporting Neurophysiological Monitoring 112

6.6.2 The NEMO project . 117

6.6.3 Discussion . 118

6.7 National Data Store . 118

6.7.1 Architectural Overview . 119

6.8 Integrating Cloud-based Services . 122

6.8.1 ScrutiniseIT . 122

7 Conclusions 128

7.1 Summary . 129

7.2 Future Work . 130

7.2.1 Supporting Computer-aided Science 130

A Requirements 132

0.0 CONTENTS 8

Bibliography 139

List of Figures

1.1 Jenning’s view of a canonical complex system. 26

1.2 A neurophysiologist’s workflow. 30

2.1 The mapping of roles between a patient and general practitioner from the

perspective of an Interpreting Environment (IE). 37

2.2 Examples of the different mappings between an IE’s roles and an IE’s com-

ponents. 37

2.3 Multiple components being mapped to multiple roles. R(i+1) contains com-

ponents that are mapped to alternate roles. 38

2.4 An IE depicted with multiple levels of abstraction and its transformation to

a single network of DPs, ICs and DCs. 38

2.5 The NICU mapping process and the rearrangement of components to form

a hierarchy. 40

2.6 The IE incorporating a feedback loop. 41

2.7 The resultant state (DC) observed is converging the data (DP) to a desired

state that complies with the hypothesis (IC). This is an invalid use of conver-

gence, as the resultant observation is being used to alter the data acquired.

In effect, the data is being altered to suit the theory. 42

2.8 The resultant state (DC) observed is converging the hypothesis (IC) to a

desired state, such that it complies with the data being generated. This is

a valid use of convergence as the resultant observation is being used to alter

the hypothesis. 43

2.9 The neurophysiologist is converging on a healthy patient state and so it is a

valid use. 43

2.10 The neurophysiologist is converging the desired results to match the state

dictated by the NICU. 44

2.11 The stakeholders that encompass the process of neurophysiological monitor-

ing: The neonate, the neurophysiologist and the NICU. 45

9

0.0 LIST OF FIGURES 10

3.1 This workflow depicts data awaiting processing by the Interpreting Compo-

nent being persisted to a buffer. 47

3.2 A plot of time series data showing the exchange rate of the US dollar against

the Euro. 48

3.3 An IC with a sub-workflow comprised of multiple ICs, interpreting data asyn-

chronously. 51

3.4 A visualisation of EEG data recorded from a healthy term neonate. 52

3.5 Annotations facilitating cooperation between the human actors. 55

3.6 Annotations facilitating cooperation between agent-based and human actors. 56

3.7 An annotated EEG being reviewed in the web-based viewer. 58

3.8 The complete workflow including the DC with a feedback loop to the DP. . 61

4.1 An abstract view of an application being constructed from a workflow de-

scription and the IE toolbox. 64

4.2 Components of the IE Toolbox. 67

4.3 The event system facilitates communication within the IE. 68

4.4 The components comprising the Agent Framework. 69

4.5 Agent hierarchial overview. 72

4.6 UML diagram representing the relationship between the AgentManager, AgentFactory

and Agent instances. 73

4.7 The agent processing queue in operation. 75

4.8 DP, IC and DC Containers. 76

4.9 Convergence Container. 76

4.10 The IE enabling remote production, interpretation and consumption of data. 79

4.11 The IE as a distributed expertise centre. 81

4.12 The IE facilitating collaboration between distributed experts. 81

5.1 The workflow of the Physiological Data Server. 82

5.2 Architectural components specific to the Physiological Data Server. 83

5.3 A flowchart depicting the operation of the Upload Application. 85

5.4 UML diagram of data structures. 87

5.5 The components comprising the Viewer. 88

5.6 The electrode placements as set out by the International 10–20 system [2]. 89

5.7 Editing a montage in the Viewer. 90

5.8 The Viewer displaying 8 channels of EEG data in a bipolar montage along

with one channel each of EKG and EOG. 91

5.9 The original data flow envisaged for the system. 96

5.10 The revised data flow envisaged for the system. 97

0.0 LIST OF FIGURES 11

5.11 The process of streaming data within PDS. 99

6.1 EEG data being uploaded to PDS. 103

6.2 Approximately 12 hours of data, uploaded to PDS and exported by the

EDFExportAgent in real time. 103

6.3 Real-time acquisition of one hour of data. 105

6.4 Available source data (EEG) graph against available derived data (aEEG)

on the system. 108

6.5 EEG data available awaiting processing by the aEEGAgent. 109

6.6 aEEG visualisation of two channels F4-C4 generated by MATLAB (on the

left) and the aEEGAgent (on the right). 109

6.7 Components of the Gotman Agent. 110

6.8 The login panel for secure user access. 113

6.9 The view presented to users after logging in to PDS. 113

6.10 The recordings tab maintains a list of all EEG data on PDS and relevant

meta-information. 114

6.11 PDS enables you to view detailed information about a recording, such as

channels present, frequency and annotations. 114

6.12 A user is able to interact with a recording via the Viewer. In this instance,

8 channels of EEG are being displayed, as well as a single channel depicting

Respiratory function and ECG. 115

6.13 Adding a location. Used to associate geographic locations with the origin of

data on PDS. 115

6.14 Manually uploading an EEG file to PDS. 116

6.15 Overview screen of PDS’s web application. Locations with EEGs available for

review are indicated in the pane on the left. The pane on the right contains

a summary of recent activity. 116

6.16 IE workflow within NEMO. 117

6.17 PDS depicted as a distributed network of interconnecting components. . . . 119

6.18 Real-time acquisition of multiple concurrent throttled data streams. 121

6.19 Real-time acquisition of multiple concurrent unthrottled data streams. . . 121

6.20 A high level view of PDS and ScrutiniseIT components in operation. 123

6.21 Signal matching in a ScrutiniseIT search. 124

6.22 The view of EEG provided to a clinician through the viewer. Seizure is visible

on channels F3-C3, Cz-C3, C3-01, C3-T3, C4-Cz, so predominantly on the

left hemisphere of the brain. 126

6.23 Preliminary results from ScrutiniseIT evaluation. 127

List of Tables

3.1 Agent capability to create annotations. 60

6.1 Hardware specifications of experimental testbed. 101

6.2 VM specifications used for carrying out experimental work. 102

6.3 Values indicative of seizure in the Rhythmic Discharge Detector. 111

6.4 Expected data transfer between NICUs and the National Data Store. 120

6.5 Results obtained from a number of searches altering WS and GS values.

Speedup obtained is also shown. 125

12

Publications arising from this work

[1] P. D. Healy, R. D. O’Reilly, G. B. Boylan, and J. P. Morrison, “Web-based remote

monitoring of live EEG”, in Proceedings of the 12th International Conference on E-

Health Networking, Applications and Services, (Lyon, France), July 2010.

[2] R. D. O’Reilly, P. D. Healy, G. B. Boylan, and J. P. Morrison, “An agent framework

for the analysis of streaming physiological data”, in Proceedings of the 3rd International

ICST Conference on Electronic Healthcare, (Casablanca, Morocco), December 2010.

[3] P. D. Healy, R. D. O’Reilly, G. B. Boylan, and J. P. Morrison, “Interactive annotations

to support collaborative analysis of streaming physiological data”, in Proceedings of the

24th International Symposium on Computer-Based Medical Systems, (Bristol, UK), June

2011.

[4] R. D. O’Reilly, J. P. Morrison, and C. McGregor, “A system for the transmission,

processing and visualisation of EEG to support Irish neonatal intensive care units”, in

Electrical & Computer Engineering (CCECE), 2012, 25th IEEE Canadian Conference

on Electrical & Computer Engineering, (Montreal, Canada), pp. 1–5, IEEE, June 2012.

[5] R. D. O’Reilly, D. Power, P. D. Healy, J. P. Morrison, and G. B. Boylan, “Scrutiniseit:

A search-based approach to EEG seizure detection”, in eTELEMED 2013, The Fifth

International Conference on eHealth, Telemedicine, and Social Medicine, (Nice, France),

pp. 310–313, March 2013.

13

Chapter 1

Introduction

Technologies for the monitoring and analysis of data are rapidly developing. New paradigms,

algorithms and techniques for the acquisition and processing of data are continually emerg-

ing; examples include MapReduce, BigTable and MongoDB. These technologies are used in

domain-specific contexts. Advances, of a practical or theoretical nature, are subsequently

applied within that context as they are discovered.

There is a tendency to adopt a domain-specific approach to the application of emerging

tools, which makes it difficult to subsequently apply those techniques in a broader context.

This phenomenon is corroborated by Wagstaff, who states that in the field of machine learn-

ing, the pursuit of algorithmic performance has taken precedence over the communication

of results to the domains from which the data has originated [3].

Similarly the development of monitoring and analysis systems is seen as a means to an

end with the design and development of a system being justified by its application in a

specific domain. The monitoring and analysis of data is often a secondary concern with the

proposed analysis technique being the primary. This is evident throughout the literature

and can be seen in systems that assist with medical decision support [4, 5, 6], act as a tool

for knowledge discovery [7, 8, 9] or those used to demonstrate the suitability of a paradigm

to the task [10, 11, 12, 13].

The isolated treatment of similar concepts in different fields has a number of disadvan-

tages. It is wasteful, as resources are consumed to explore concepts which may have already

been explored in a similar field. It discourages reusability, as the scope of the advancement

is limited to the field from which it arises. It is self-perpetuating, as each advancement

increases the separation between the fields. Consequently, the tools and techniques that are

available to one field are denied to another.

The limitations of this isolated approach are avoidable and constitute missed oppor-

tunities to further our understanding of the domain in question and any other field that

14

1.1 Monitoring And Analysis Of Data 15

may benefit from the transfer of knowledge acquired outside that field. This dissertation

sets out to illustrate that through a combination of careful engineering and by viewing the

monitoring and analysis of data from a holistic perspective, encompassing a comprehensive

workflow analysis, distinguishing between data capture and analysis and incorporating an

auditable trail of information generation, it is possible to successfully address these issues

and enable each advance to deliver benefit across multiple domains.

Moreover, given that feedback loops are characteristic of many application domains and

are used typically to drive a system towards convergence, it is imperative that these loops

are transparently applied so that appropriate convergence paths result.

1.1 Monitoring And Analysis Of Data

Monitoring involves the acquisition of data from one or more sources over a period of time.

Analysis is the means through which the acquired data can be interpreted. The data that

is being monitored, the means through which it is monitored and the analysis that takes

place determine the design, development and performance of a monitoring and analysis

system. Central to such a system are three components, the Data Producer (DP), the Data

Consumer (DC) and the Interpreting Component (IC). The DP is the entity generating

data or the source from which data is acquired. The IC is the entity that takes data from a

data source, interprets it and provides the resulting information to the DC. The DC is the

entity that subsequently acts on that information.

The DPs, ICs, and DCs together with a description of their relationships, form part of a

system, which will be called the Interpreting Environment (IE), in which data is monitored,

analysed and the results acted on. An IE will be required to:

i) Bridge the gap between expert knowledge and raw data, that is to enable experts

to access data from which knowledge is synthesised and to allow the reincorporation

of that knowledge for subsequent use through the provision of appropriate feedback

loops.

ii) Maintain an expert knowledge base, enabling the evolution of that knowledge base

and preserving the integrity of both pre-existing knowledge and newly acquired data.

This is a complex challenge, whose solution may involve a combination of approaches

including algorithms to detect nonsense data and peer review to inject a degree of

quality assurance.

iii) Accommodate the unique perspective of each DC. This may necessitate the develop-

ment of appropriate consumer-specific interfaces.

1.2 Related Work 16

iv) Dynamically accommodate changes in the rate of data production, processing and

consumption, which in turn may lead to real-time or near real-time system operation.

v) Dynamically incorporate varying numbers of DPs, ICs and DCs.

Without loss of generality, a DP and a DC can be viewed as independent entities, how-

ever the IC relies heavily on characteristics of each. As such, it is a challenge to create

efficient and effective ICs that are capable of generically supporting the complex relation-

ships that may exist between arbitrary DPs and DCs.

Therefore, an IE can be a complex entity and may include components that handle physi-

cal communications, provide data storage, embody analysis tools, incorporate expert knowl-

edge and accommodate temporal constraints resulting from the need to process ephemeral

data in a timely manner.

Existing systems (see Section 1.2) that may be viewed as IEs (as defined here) tend to

be point solutions, solving one particular problem without regard for related problems, and

as such fall short of the ideal generic IE. They are limited in the types of data they can

handle, the quantity of data they can process, the types of analysis techniques they can

employ and the domains to which their solution can be readily employed.

A few take a generic perspective, but do so in a manner that does not allow their

implementations to be readily compared to other similar systems. They do not provide

the means to reduce the complexity associated with the configuration of systems of that

nature. Similarly the systems do not support the requirements necessitated for a complete

monitoring and analysis system [4, 8], as can be realised by the proposed IE.

Related work advances particular techniques, and approaches, in specific contexts. It

does not do so in a generic manner. This limits the proposed advance to that context failing

to enable the multitude of alternate but closely related domains to take advantage of the

knowledge derived [3].

Consequently, opportunities are lost to incorporate, share and make use of expert data

across these diverse domains and peer support for the verification and validation of in-

terpretations cannot be leveraged. Tapping this valuable resource is itself an important

motivation for the creation of a generic IE.

1.2 Related Work

Active areas of related research include the following:

1. Stream Computing (see Section 1.2.1)

2. Complex Event Processing (see Section 1.2.2)

1.2 Related Work 17

3. Remote monitoring and analysis systems (see Section 1.2.3)

4. Decision support (see Section 1.2.4)

5. Knowledge discovery (see Section 1.2.5)

6. Complex Software Systems (see Section 1.2.6)

7. Agent Frameworks (see Section 1.2.7)

While each research area is different by definition, there is a significant overlap in the

design and development of systems for realising them. In reviewing application-specific

instances, it is noted that many include functionality that is outside the scope of a moni-

toring and analysis platform, but benefits the domain in which it is applied. Functionality

that enhances an IE and has the potential for broad application should be considered for

inclusion.

The monitoring and analysis of data is closely related to fields that deal with the timely

processing of data. Two fields of study that have made significant contributions to the

ephemeral processing of data are Stream Computing (see Section 1.2.1) and Complex Event

Processing (see Section 1.2.2), both of which influenced the design and development of the

IE.

1.2.1 Stream Computing

Stream Computing is a computing paradigm based on the processing of data streams in

a manner that tries to minimise the quantity of storage that is required, this enables the

processing of large volumes of data when compared to the quantity of storage available [14,

15]. Processing of data streams in real time enables real-time analytics and information

to be provided. The underlying data model takes a transient approach to data acquired,

as the quantity of data is so great that persisting it to disk would be impractical. Instead

the query running against the data is altered as data is processed, after which the data is

discarded.

The database management system (DBMS) used in a Stream Computing platform em-

phasises different characteristics than that of a traditional DBMS. It is based on the DBMS-

active, human-passive (DAHP) model [16], whereby data is acquired from external sources

and the DBMS’s role is to act on that data, as opposed to the human-active, DBMS-passive

(HADP) model [16], whereby the DBMS is treated as a repository of data and the initiation

of queries is the human’s role. This enables the platform to react to data analysis in real

time and return insights from that data, both of which are relevant to a monitoring and

analysis system.

1.2 Related Work 18

Stream Computing is seen as a potential means of handling massive data generation

and has been applied to a number of domains including healthcare. For instance, in [17] a

Stream Computing platform for the analysis of physiological data in real time is presented.

It is used to turn data processed into information for medical professionals, to provide an

infrastructure for processing large quantities of data and returning valuable information in

an online manner [17].

The platform has been deployed to a NICU in a real clinical setting, where the intent

is to develop “a Decision Support System to assist in detecting subtle changes in physio-

logical data” [18]. Stream Computing provides a means of enabling data driven knowledge

discovery of streaming physiological data at scale, which is a promising way to further our

understanding of human ailments [19]. Stream computing shares a number of the charac-

teristics that embody a monitoring and analysis system and as such a large overlap exists

which will have a direct influence on the development of the IE.

1.2.2 Complex Event Processing

The perspective taken by Complex Event Processing (CEP) [20] is different to that of

Stream Computing. Continuous data streams are viewed as a stream of events in which

identical patterns can occur that are indicative of higher level events occurring in the real

world. There is a separation between the providers and consumers of events and a means

of querying relationships between events is also provided. This enables the development of

dynamic systems that are heavily interconnected and capable of operating at scale [20]. As

such there is a significant overlap with the envisioned IE and so a number of systems that

utilise CEP were reviewed.

CEP in relation to the acquisition and processing of RFID data streams is discussed

in [21]. A number of challenges affecting the management and processing of the data are

outlined: i) Duplicates within the data stream require filtering; ii) RFID observations have

to be aggregated in order to derive meaningful information from them; iii) The RFID data

is temporal, streaming and high volume, and so requires a suitable means of processing that

data.

An event oriented framework was developed that: enabled aggregation through the gen-

eration of complex events (compounded primitive/complex events); allowed the specification

of events with temporal constraints; and the detection of events with temporal constraints.

This enabled the three challenges to be addressed and was shown to be both efficient and

scalable [21].

In [22] an application for the timely processing of data is referred to as an information

flow processing system (IFP). A survey of such systems is presented with the two main

1.2 Related Work 19

models that contribute to the application being identified as the data stream processing

model and the complex event processing model. It is argued that neither of these models

sufficiently address the needs of an IFP engine, as a hybrid of the two is necessitated by a

“fully-fledged” implementation.

An IFP engine is defined as a “a tool that operates according to a set of processing

rules which describes how incoming flows of information have to be processed to timely

produce new flows as outputs” [22]. The key characteristics emphasised include: real-time

processing of information; a language in which to express how information is processed;

and a scalable solution to be capable of handling geographically dispersed nodes that have

to cooperate [22]. As such an IFP shares many of the characteristics seen in a distributed

system for the monitoring and analysis of data.

1.2.3 Remote Monitoring And Analysis Systems

Remote monitoring and analysis systems are defined as those that are concerned with the

analysis of data and the mitigation of geographic constraints. They are used to provide

remote analysis, thereby addressing a need for timely data analysis, and/or a means to

achieve greater efficiencies. They constitute the foundations of modern monitoring and

analysis platforms and their architecture closely resembles that outlined in Section 1.1.

There are numerous examples of remote monitoring and analysis systems, a number of

which discussed are of particular relevance to the use case.

An early method of remote monitoring of Electroencephalogram (EEG) and other phys-

iological data involved analogue transmission over telephone lines [23, 24, 25, 26]. This

approach involves the modulation of EEG signals to audible frequencies before transmission

over the public switched telephone network [27]. Although these systems allow for real-time

monitoring, they are constrained by poor bandwidth to a limited number of channels, incur

high telephone charges when used long-distance, and suffer from signal degradation due to

noise.

An electrophysiological data monitoring and testing device for neurological intensive care

units was presented in [28]. The device, which is mounted at the patient’s bedside, does not

sample continuously; instead it records segments of data at predetermined intervals. The

resulting segments can then be viewed using a web browser within the hospital intranet.

It also supports functionality for the further processing of the acquired signals, including

spectral analysis, burst counting and loose lead detection.

A neurosurgery intensive care unit (ICU) monitoring system developed at UCLA [29]

provided a web interface to physiological signal data. Remote monitoring of data is fa-

cilitated through the dynamic generation of plots that are viewed as images embedded in

1.2 Related Work 20

HTML pages. The system lacks the immediacy available through the use of more advanced

client-side technologies such as Java or Flash. Although the system supports EEG, the

extent to which EEG specific features (such as filtering and montaging) are supported is

unspecified.

TeleEEG [30] is a remote monitoring system that allows EEG data to be stored in

a standardised format. Files can then be transferred easily between TeleEEG instances

at geographically dispersed medical centres. An online viewing facility is provided via the

dynamic generation of plots that are viewed as images embedded in web pages. This viewing

system is similar to the UCLA system, but is somewhat more advanced in that support for

EEG-specific features such as montaging is provided. However, the system does not provide

real-time monitoring capability.

A system for the remote diagnosis of epilepsy through the use of a high-bandwidth,

point-to-point link between Japan and the US is presented in [31]. The system allows

segments (5–20 minutes) of ictal and interictal EEG data to be transferred quickly between

locations, along with corresponding video files of patient activity and medical image data

such as MRI, CT and PET. Teleconferencing capabilities are also provided in order to

facilitate collaborative diagnosis. The aim of this system is to support telepresence at case

conferences rather than real-time remote monitoring and analysis.

The BRIAN system [32] allows for interactive, but non-real-time, remote monitoring

using compressed digital transmission. The system can adjust the quality of the signal to

take advantage of available bandwidth. Data are viewed using custom viewing software

on the client. Caching is not performed on the client; each screenful of data is fetched on

demand. The possibility of performing computationally intensive analysis of captured EEG

data using Grid technologies has been examined [33]. The system has also been extended [34]

to support web-based review using a Java applet, eliminating the need to install custom

software and supports the display of annotations that were made prior to data acquisition

(data uploaded to server). The web-based system, although also non-real-time, is fully

featured and incorporates advanced features such as spike and eye-blink detection. Limited

caching is performed through prefetching of the most probable next screenful of data.

The e-babies project [6] began as a system for integrating and analysing real-time data

collected from the various monitors found in the NICU. The system was then expanded

to provide data warehousing and remote monitoring [35, 36, 37] via a web interface. The

monitoring of both real-time physiological data and video streams is supported. Java applets

are provided for viewing incoming physiological data streams. The video quality and data

sampling rates can be adjusted automatically based on available bandwidth in order to

reduce congestion. Alternatively, signal quality can be maximised if potential delays in

transmission are acceptable. However, the system does not, as yet, support EEG.

1.2 Related Work 21

In many cases, these systems provide a means to bridge the gap between expert knowl-

edge and raw data but their capacity to do so for more complex bio-signals, such as EEG,

in real time is questionable. Furthermore, none of the aforementioned systems provide a

means to collate, or incorporate, the expert knowledge garnered during the analysis of data.

As such, these systems are not capable of fulfilling the requirements of an IE.

1.2.4 Decision Support

A Decision Support System (DSS) is a computer-based information system that supports

decision making activities. It typically combines data acquired by a monitoring system with

a repository of expert knowledge (or an algorithmic representation of that knowledge) that

enables assistance to be provided to the expert carrying out the analysis. This assistance

can be in the form of a query submission to a knowledge base or the continual interrogation

of data as it is being acquired. A DSS can also be used to assist with the retrospective

analysis of data.

DSS’s are a rational progression in the evolution of a monitoring and analysis platform.

They enable expert knowledge to be utilised in a reusable manner. This is beneficial to

all parties as the DSS provides assistance to the analysis phase while the expert knowledge

contained within it is simultaneously undergoing a process of verification and validation

through its use. Furthermore in some instances, DSS’s are capable of adding newly acquired

expert knowledge (either through the actions of a human expert or the automated processing

of the data) to the system’s knowledge repository. A growing knowledge repository can in

some cases increase the overall performance of the system by increasing the quantity of

pertinent data available for classification and comparison.

In [4] a platform for medical decision support in the ICU is presented, referred to as

Intensive Care Agent Platform (ICAP). Its architecture is middleware focused, enabling

the distribution of agents to multiple workstations seamlessly. Simplified integration, and

scalability in the platform are realised by adopting an agnostic approach to the underlying

operating system (implemented in Java EE and CORBA) and an agent-based architecture.

This enables the execution of medical decision support agents and their distribution across

the workstations that ICAP has access to. Eight requirements outlined for the platform

include: data/work-flow integration, generic operation, task management, distributed work-

load, computational efficiency, robustness, security and a configurable topology. These are

typical concerns of a monitoring and analysis platform.

The primary application of the platform is managing the computational resources avail-

able to medical decision support agents and assigning them appropriately. Its contributions

come in the form of transparent load balancing, task scheduling, real-time compilation of

1.2 Related Work 22

agents and a migratory capacity for said agents.

In [5] the need for methodology that supports “scientific homogeneity and accountabil-

ity of healthcare decisions and actions” is articulated. It is argued that existing knowledge

management tools do not readily integrate with clinical DSSs to the extent that there is a

lack of “pragmatic” tools offering clinicians assistance in real time. As such, the combina-

tion of an ICU monitoring and analysis platform with a DSS is proposed. The Intelligent

Clinical Information Management Support (ICIMS) system enables the combination of clin-

ical information and processing tasks. These processing tasks encapsulate knowledge-based

system techniques that are being prototyped. This provides a means for the integration

of solutions that enable clinical assistance. Furthermore, it allows these knowledge-based

system techniques to be assessed by personnel working with the system.

An interesting form of DSS that is often utilised for specific conditions is Multi-Agent

DSS. One such system, which diagnoses cardiac disorders, is presented in [38]. Agents

that incorporate new domain knowledge and methodologies can be incorporated without

structural changes to the multi-agent system. An agent in the system, denoted CATS

(chaotic analysis of time series), uses a methodology based on non-linear dynamics that

performs offline analysis of Electrocardiographic (ECG) data. An ontology-based intelligent

healthcare agent for respiratory waveform recognition was presented in [39]. The agent uses

fuzzy matching against an ontology to recognise and classify respiratory waveforms.

An agent server for the analysis of physiological data streams from NICUs is presented

in [40]. The agent-based intelligent support system examines streaming physiological data

as well as previously acquired physiological data and clinical history data in order to detect

trends and patterns that may indicate the onset of clinical conditions.

An agent-based distributed DSS for the diagnosis and prognosis of brain tumours is

presented in [41]. The agent-based architecture provides a distributed network from which

clinical data can be collected and classifiers, designed to identify brain tumours, used to

process the data. The results of this classification are presented to the user via a graphical

user interface. Agent functionality is abstracted to ensure platform independence. The

argument is put forward that, due to the increased quantity of data available to the agents,

improved reliability and accuracy is possible. This is further supported by the ability to

retrain the classifiers on an ongoing basis.

A survey of agent-based intelligent decision support systems (IDSS) to support clinical

management and research is presented in [42]. It identifies a number of IDSS from the

literature available and compares them based on features specific to IDSS functionality

(the types of decisions supported, the reasoning for developing the system, decision time

sensitivity), the data layer (data source, distributed capabilities, real-time support) and

the agent-specific features (whether the multi-agent system was open or closed, the agent

1.2 Related Work 23

structure and the coordination mechanism used).

1.2.5 Knowledge Discovery

Knowledge discovery (also referred to as Knowledge Discovery in Databases (KDD)) is a

broad field of study, involving research into the automated identification of novel patterns in

data that are potentially useful and understandable. KDD differs from related fields, such

as data mining and machine learning, in that it is concerned with the entire process from

data acquisition to the eventual feedback of novel discoveries to the domain from which

the data originated. Data mining and machine learning are considered stages within the

process, used either for the classification of targeted entities within a data set or the training

of a model to perform that classification.

In [7] efforts undertaken to integrate expert knowledge with data-driven techniques in

order to improve operational protocols are presented. The difficulties faced by diagnosing

a critically ill patient are highlighted. The large number of variables, potentially in excess

of 200, are too great to develop a systematic response to. This is seen as a motivating

factor for the utilisation of a DSS. The stated goal of decision support is “to supply the

best recommendation under all circumstances” [7]. However, the task of developing the

knowledge base is seen as an impediment to the development of DSS, particularly due to

the cost in time.

It is proposed that a combination of statistics, machine learning and knowledge discov-

ery should be used to develop the guidelines associated with DSS. Abstracted data and a

Support Vector Machine (SVM) are combined with an expert knowledge base in order to

assist clinicians in their decision making process. A combination of time series analysis and

machine learning methodology is used to assist the development of decision support algo-

rithms in a critical care setting. Time series data of high dimensionality is abstracted using

the Phase Space Model. The SVM is used for learning state action rules and, combined with

first order logic, as a representation of medical knowledge for action effect behaviour. The

approach supports ongoing improvement and greatly reduces the cost of forming operational

procedures and their validation.

In [8] a system for knowledge construction is presented. This is achieved through a

human-machine collaborative approach to the exploration of time series data. It advocates

annotations as a means for human interaction with the machine, allowing them to take the

form of informative labels or segment delineations. These annotations act as a learning

cycle for machine-based methodology, allowing clinicians to train the machine as to which

segments should be flagged. The system is based on a multi-agent paradigm and introduces

1.2 Related Work 24

a number of different agents; one for finding interesting segments, a second for classifica-

tion and a third for defining relationships between time-stamped symbols. The feasibility,

performance and usability of the system are then evaluated with an ethos of structural

coupling (continual and influential mutual contributions to the definitive structure of the

knowledge base at each level of the process), differentiating it from previous efforts. It is

proposed that the use of a feeback loop from relationship to segment detection could lead

to a performance increase.

In [43] a platform for the unsupervised data mining of time series data in an attempt

to discover local patterns is presented. The design of an abstraction process to support

discrete representation of global trends in multi-dimensional time series and support multi-

level learning is proposed. An algorithm that aids in the mining of noisy, multidimensional

data across a number of data transition phases is presented.

There is a large overlap between KDD and DSS. Both utilise aspects of monitoring and

analysis, data mining, machine learning, pattern recognition and statistical methodology

where appropriate. It could be argued the differentiating factor between the two is that

DSS’s application of information, and knowledge, is primarily focused on the assistance of

data analysis, as opposed to KDD’s primary focus which is knowledge generation. However,

the two are not mutually exclusive and often are simultaneously integrated into systems.

One such example is the Artemis project [18, 19]. This framework involves the acquisi-

tion of large volumes of streaming physiological data from the ICU and the application of

clinical rules to these data streams in real time. Clinical rules are derived from specifica-

tions for existing clinical guidelines, or specified anecdotally by a clinician. Alternatively,

rules can be proposed through a set of data mining conditions in physiological data streams,

laboratory results, and observations of patients. The framework supports the acquisition,

real-time processing, storage and data mining of physiological data. The framework is used

in the ICU to detect changes that might serve as onset predictors for selected conditions.

1.2.6 Complex Software Systems

An IE consists of an arbitrarily large number of interacting components. These components

can be loosely organised and operate free of laws that govern their behaviour, individual

components can be goal-driven and can change over time. They can also be influenced by

the behaviour of their subcomponents. As such, an IE is considered a complex software

system. This realisation has influenced many of the subsequent design and implementation

decisions.

Components involved in the process of monitoring and analysing data have a many-to-

many relationship. This process can comprise of multiple sources of data, each of which

1.2 Related Work 25

can contain a multitude of data formats requiring a multitude of analysis techniques; the

supporting of which may necessitate the facilitation of expert analysis.

Complex software systems and how to manage complexity are discussed by Jennings [44].

He states that complexity is a natural characteristic of systems with large numbers of

interacting components and that software engineering plays a significant role in providing a

means to handle this complexity. Identifying the complexity of an IE and its role within the

process of monitoring and analysing data is a step towards identifying a means of handling

that complexity. A number of characteristics relating to complex software systems are

identified:

i) Complex systems and hierarchy:

• Systems are made up of interacting subsystems; each of which has its own hier-

archy that can be broken down into smaller subsystems (until the lowest form of

components is arrived at).

• The organisational relationships between subsystems can take forms that are

readily recognisable (e.g. peer-to-peer, client/server) but these can also change

over time.

ii) Defining that which is considered primitive within a system is an arbitrary decision

and is dependent on the observer.

iii) “Hierarchic systems evolve more quickly than non-hierarchic ones of comparable size

(that is, complex systems will evolve from simple systems more rapidly if there are

clearly identifiable stable intermediate forms than if there are not).” [44]

iv) Interactions between subsystems and those within a subsystem can be differentiated

based on the frequency and predictability of the interaction. Interactions within a sub-

system occur more frequently and are more predictable than those that occur between

subsystems. For this reason, complex systems are considered “nearly decomposable”

and their subsystems are treated as independent entities even though they interact

with one another. Jennings [44] highlights the benefits of a complex system as well as

the limitations of a less complex, yet well understood design.

Based on these characteristics, a complex system in its simplest form, as described by

Jennings [44], is depicted in Figure 1.1. The “frequent interaction” connections are rep-

resentative of interactions within subsystems, the “infrequent interaction” connections are

representative of interaction between subsystems and the hierarchial nature of the system

is represented by the “related-to” connections.

1.2 Related Work 26

subsystem component

related-to
Infrequent
interactionsubsystem

frequent interaction

Figure 1.1: Jenning’s view of a canonical complex system.

A number of tools, devised to manage complexity, are compatible with this view of

complex systems. Decomposition: the breaking down of a problem, or system, into smaller

manageable ones. Abstraction: defining the level (of complexity) at which interaction with

the system takes place and suppressing complexity outside of this level. Decomposition

and abstraction assist with managing the complexity of a system by limiting the scope

of its design. Organisation: how relationships between components are managed. This

assists with complexity by enabling organised relationships between simple components to

be created, resulting in the creation of higher-level functionality.

Complex Systems Integrated With Expert Analysis

Financial markets are an example of a complex system and can be viewed as a non-linear

dynamic system that is continually evolving [9]. The associated domain knowledge is both

complex and dynamic. This results in the selection of an optimal investment being a

difficult problem for an investor [9]. Irrespective of these difficulties, significant research

efforts have been undertaken to further the understanding of stock market fluctuations, to

develop predictive capabilities and formulate associated trading strategies.

Financial time series data is characterised by high-frequency multi-polynomial com-

ponents, nonlinearities and discontinuities [45]. As such, the forecasting of future market

prices and the prediction of their movements is difficult [45]. This is an example of a domain

where time series data requires expert analysis. The mining of financial time series data is

challenging due to both the characteristics that embody the market and the volatility of

data being monitored. Endeavors to further our understanding of the nature of this data

and its complexities have been met with some success, as evidenced by the increasing level

of stocks and future trades that employ intelligent systems to assist/make decisions.

1.2 Related Work 27

1.2.7 Agent Frameworks

Agent theory is concerned with the application of individual agents to collectively solve

problems. It typically incorporates a multi-agent system, as described in [46], where a

collection of loosely-coupled problem solver entities cooperate to achieve desired objectives

that are beyond the individual capabilities or knowledge of each entity. An agent-oriented

approach aligns with that of a complex system as a number of their characteristic traits

overlap.

A significant body of work exists on the application of Multi Agent Systems (MASs) to

medical problem domains. Medical MASs have been developed in areas such as decision

support, clinical knowledge tools, patient history tracking and monitoring solutions. One of

the earlier examples of the intended use of intelligent agents for intensive care monitoring is

presented in [47]. The agent operates on two levels; the lower level performs data reduction

and abstraction tasks and the higher level applies various reasoning rules and reactive

diagnosis skills against the data.

There are many benefits to be realised from an agent-oriented application. Software

reusability and maintainability can be achieved through the use of an agent-based approach.

Other advantages, such as the ability of the system to evolve over time, or pivot to change

with user needs, can also be realised. A more comprehensive overview of agent approaches is

presented in [48]. Agent theory influenced the IE’s design because of the intentional stance

and the ability to reason about the problem domain that characterise the agent approach

also closely mimic the process of human interpretation. Furthermore, the independent

nature of the various components envisioned in the IE lend themselves to implementation

as agents. A number of generic agent frameworks have been developed

JADE [49] is a Java-based software framework to develop agent applications in com-

pliance with the FIPA (Foundation for Intelligent Physical Agents) specifications for inter-

operable intelligent multi-agent systems. JADE provides a development environment that

enables the implementation of agent platforms in a manner that is compliant with FIPA

standards for interoperable intelligent multi-agent systems. Its goal is to simplify agent

development while ensuring compliance with FIPA standards [50]. This is achieved by pro-

viding common functionality for the non-application specific tasks in an agent framework

such as message transport, encoding, parsing and the agent lifecycle. In doing so, JADE

enables simpler integration with external software providing a general model that can be

specialised to implement both reactive and belief-desire-intent architectures.

The SPARK agent framework [51] is based on the belief-desire-intent model of ratio-

nality. SPARK offers a framework that is scalable, while maintaining a clean semantic un-

derpinning, traditionally associated with formal agent frameworks. This allows SPARK’s

1.3 Research Question 28

procedural language to be well defined and the framework to support reasoning techniques

for procedure validation. SPARK’s ability to scale makes it applicable to a multitude of

real world problems.

Agentcities [10] is an initiative to create a global, open, heterogeneous network of agent

platforms and services to which any agent researcher can connect their agents. The intent

is to enable the running of agents on a variety of different platforms, operated in different

manners, implemented in different languages and owned by different organisations. This

is achieved by providing agent components that can “be created through the flexible use

of this inter-agent communication model and the semantic frameworks, shared ontologies,

content languages and interaction protocols that support it.” [10]. The main objective of

AgentCities is to identify how heterogeneous resources and services can identify and co-

ordinate with one another.

Agent Frameworks provide a practical means of embodying complex behaviour in a

system. They incorporate a model of how functionality can evolve, demonstrate goal-

directed behaviour and provide a mechanism for the integration of new techniques on an

ongoing basis. The frameworks reviewed support many of the characteristics that are desired

in an IE and as such will influence its design and development.

1.3 Research Question

This thesis explores the creation of a system that can meet the challenges, and requirements,

outlined in Section 1.1. It describes the creation of a generic environment for managing the

lifecycle of data, from its production, through to its appropriate interpretation in a given

context, so that it can be effectively exploited. A system capable of performing these

functions is referred to here as an Interpreting Environment (IE). No existing system takes

the generic approach proposed here.

Thus, the novelty in the IE lies in its generic approach, in the use of transparent,

hierarchically organised workflows, the incorporation of appropriate feedback techniques,

which may be used to drive the system to convergence, and the dynamic creation of an

audit trail supporting data provenance.

A prime motivation for the creation of the IE was to make it difficult to use data

inappropriately within a field of study. Appropriateness is a relative term and should

be defined and accepted within each application domain. The generation of transparent

workflows enables the IE map the flow of data through the system. This is intended to

enable enhanced peer review with regard to how data is processed within a system.

Once defined, only valid workflows should be supported by the IE and any attempt,

albeit inadvertent, at an inappropriate workflow construction should be transparent and

1.4 Use Case: Neurophysiological Monitoring 29

easily discoverable. This phenomenon is recognised by Keogh [52], and with the proliferation

of data and the explosion of specialisations, it is anticipated that this problem will become

more prevalent. The IE will address this by enabling its components to log data such that

a verifiable audit trail could be generated.

To illustrate the practical advantages of the IE, a challenging application domain re-

quiring all of the subtleties of interaction alluded to in Section 1.1, is used as a running

example to illustrate its efficacy. This application domain is described in Section 1.4.

1.4 Use Case: Neurophysiological Monitoring

Neurophysiological monitoring of brain function is required for many newborn babies. This

involves the acquisition of EEG data, which is carried out by trained clinicians. Data is

interpreted by neurophysiologists who are expert in the analysis of neonatal EEG. The

analysis of EEG, and other physiological data streams captured in the NICU is essential for

the effective diagnosis and subsequent treatment of neonates.

1.4.1 The Clinical Perspective

Hypoxic-ischaemic encephalopathy (HIE) and associated seizures are common neurological

conditions that can cause lifelong disability in neonates. Neonates can experience seizure

as a result of multiple central nervous system diseases. Seizures afflict approximately .003%

of full-term neonates and approximately 5% of pre-term neonates [53] [54]. 20-40% of full-

term neonates afflicted are subsequently handicapped. This can be as high as 75-88% for

premature neonates [55] [56].

Seizures are notoriously difficult to detect, as the signs for clinical diagnosis may be

subtle or absent. Currently, the monitoring of a multi-channel EEG is the gold standard

for identifying neonatal seizures. This requires the neonate to be continuously monitored

for long periods of time [57].

In the case of HIE, the monitoring of EEG is used to form a prognosis [58]. Neuro-

protective treatments, such as therapeutic hypothermia, are available and are becoming

the standard of care [59]. However, treatment is time-critical and must commence within

six hours of birth. So a delay in EEG analysis results in a missed opportunity to improve

patient outcomes and has a significant impact on long-term outcomes.

1.4.2 The Challenge For Neurophysiological Monitoring

Monitoring of a multi-channel EEG is the most effective means of detecting seizure activity

accurately. Ideally, an experienced on-site neurophysiologist will be available to analyse the

1.4 Use Case: Neurophysiological Monitoring 30

EEG and issue a clinical report. However, in reality, NICUs are widely dispersed and the

vast majority have no access to the required expertise [60] [61]. The problem is further

frustrated by a lack of standardised data collection procedures and the prevalence of stand-

alone ad hoc systems [60] [62].

There is a divide between our medical, scientific and technical advances and their ap-

plication to neurophysiological monitoring. As this divide grows, health systems, their

personnel and the infrastructure to support them will come under increasing pressure. This

divide is analogous to the “know-do gap” [63], whereby known solutions are not being

applied even though the potential to do so exists. The challenge for neurophysiological

monitoring of brain function lies in identifying the root causes for this divide and devising

a solution to overcome them.

The Current Process

In the case of neurophysiology, monitoring refers to the observation of electrical activity in

the brain. This is achieved by having trained technologists place a number of electrodes on a

patient’s head. The electrical activity is observed as an analog signal, converted to a digital

format and persisted to an EEG monitoring machine. EEG data consists of a series of

two-dimensional, high-frequency, time-value pairs with each time-value pair corresponding

to a reading from a specific electrode (see Section 5.2).

Ideally, the neurophysiologist is physically present in the NICU and interacts directly

with the EEG monitoring machine connected to the patient. The patient’s data is accessed

from the EEG monitoring machine locally, as depicted in Figure 1.2. The data is interpreted

by visualising it as a series of time series values, drawn in a left to right fashion, across the

monitor of the EEG monitoring machine. A montage (the arrangement of the electrodes

placed on the head combined with the form of monitoring (referential or bipolar)) is applied

to the EEG data to more clearly display the brain activity. Analysis is carried out by a

neurophysiologist reviewing this visualisation. As a result, the neurophysiologist formulates

a diagnosis and prescribes a treatment.

Figure 1.2: A neurophysiologist’s workflow.

Where a neurophysiologist is not available, possible courses of action include: forego

analysis; move the patient to another location where expertise is available; request that

1.4 Use Case: Neurophysiological Monitoring 31

a neurophysiologist travel to the acquisition location; or provide a neurophysiologist at a

remote location with some means of viewing the recording data remotely. All of these occur

in practice. The first two options are less desirable as they may impact negatively on patient

outcome. Bringing an expert on-site may introduce a delay in diagnosis and the time spent

travelling results in a loss of productivity for the neurophysiologist. The last option is the

most desirable, provided that the process of transferring EEG data between locations does

not introduce delays that could result in a missed opportunity for treatment.

In many cases, data transfer is achieved by stopping the acquisition device and sending

the resulting EEG data by courier or electronic transfer to the remote location for analysis.

This technique introduces a significant delay as no analysis is performed until acquisition

has stopped and the data transfer has been completed. Another technique that has be-

come increasingly common is to allow the off-site expert to interact with the acquisition

software directly using a remote desktop session. This eliminates the time delay, but is

not without drawbacks: a low-latency network connection is required; difficulties may arise

with hospital firewalls; confidential patient information may be visible on screen, possibly in

breach of hospital policy or data protection regulations; and inadvertent interference with

the acquisition process is possible.

Issues With The Current Process

Diagnosis of neonates and their subsequent treatment is a time-critical process with a lim-

ited window of opportunity. This results in a definitive time limit in which diagnosis and

treatment can occur. This time limit puts considerable pressure on the operation of the

NICU. As such, the timeliness of data analysis is a major issue for the NICU.

Currently the NICU workflow requires a neurophysiologist to be physically present to

diagnose a patient. In reality, NICUs are geographically dispersed and the majority have

little or no access to expertise. This localised workflow is overly restrictive and results in

the suboptimal treatment of patients as well as the suboptimal operation of the NICU.

A workflow is influenced by both the personnel and the infrastructure available. Current

NICU infrastructure could be described as an intermeshing web of closed platforms. This

leads to inter-operability and communication barriers whenever a change is proposed to

the NICU workflow. These barriers stem from the prevalence of proprietary hardware and

software utilised for the monitoring and analysis of EEG; these systems also use proprietary

file formats, and communication protocols, further frustrating the problem and resulting in

vendor lock-in.

The analysis of physiological data requires expert knowledge in that type of physiological

data. Just as a neurophysiologist is required to analyse an EEG, a cardiologist is required

1.5 The NICU As An Interpreting Environment 32

to analyse an electrocardiogram (ECG). This expertise infers a significant investment, both

monetary and in terms of time, on the part of the expert. The finite nature of this expertise

can make its offering prohibitively expensive to an individual NICU.

The issue is further frustrated by the localised nature of the workflow, making it impos-

sible to effectively pool expertise and share associated costs. Furthermore, even where cost

is not an issue, demand for expertise can often outstrip the supply [64]. This precarious

access to expertise negatively impacts NICU services.

The availability of expertise is also an issue for the NICU. Naturally, the time of birth of

a neonate is unpredictable. As diagnosis and treatment is time-critical, in order to maximise

patient outcome, the required expertise needs to be available on a twenty-four-hour basis.

However, even NICUs that have access to EEG monitoring and the required expertise on a

continuous basis are often unable to provide an “out-of-hours service” [64].

While these issues are presented within the context of the use case, they are not unique to

neurophysiological monitoring. Each issue can be extrapolated to a broad range of domains

that require the monitoring and analysis of data. Consequently, it is envisaged that the

applicability of any solution identified will be far reaching and benefit each of the domains

that experience these issues.

1.5 The NICU As An Interpreting Environment

It is clear that the monitoring and analysis of neurophysiological data is an integral part

of the NICU’s operation. The diagnosis and treatment of neonates necessitates data ac-

quisition, analysis and subsequent action. In this case, these actions are the application of

appropriate treatments. As such, an IE for the monitoring and analysis of neurophysiolog-

ical data that mitigates the issues identified in Section 1.4 would be highly advantageous.

As EEG data is digitised, data interchange between neurophysiological instruments and

other computer and information networks can be facilitated. Teleneurophysiology capabil-

ities have been developing over the past two decades, and detailed remote assessments of

brain function by a neurophysiologist are now possible. This has resulted in the develop-

ment of a number of proof-of-concept and limited commercial endeavours being undertaken

(see Section 1.2.3 for more detail). However, none of these has managed to address the

problem in a comprehensive manner. The reasons for this are many and varied:

1. Timeliness of data analysis: Realising real-time access to data in the NICU is difficult

due to the proprietary, and closed, nature of the software used for the monitoring and

acquisition of data.

2. Over specification: Current systems focus on clinicians’ immediate needs, resulting

1.6 Summary 33

in the development of niche monitoring solutions that are difficult to maintain and

are not capable of supporting a broad range of functionality that would simplify and

assist clinicians with their work. Clinical experts should not be expected to perceive

the value of general purpose solutions.

3. NICU infrastructure: Inter-operability issues are prevalent due to a use of proprietary

file formats, communication protocols and the prevalence of closed platforms within

the NICU.

4. Localised workflow: Access to expertise due to geographic constraints. Workflows,

and the systems that support them, should optimise access to expertise, even if only

local use is intended.

5. Availability of expertise: There is a finite level of expertise available. How can a system

be utilised such that an expert’s time is maximised? Improvements to collaborative

functionality, automated solutions to reduce an expert’s workload and standardising

the practices involved could all contribute to increasing the availability of expertise.

6. Capturing of expertise: The ability to capture expert knowledge in a reusable state is

critical to deriving long-term solutions. It facilitates research into advanced automated

solutions.

The complexity of this application domain will draw upon all of the characteristics asso-

ciated with the IE as set out in Section 1.1. Thus, near real-time acquisition helps to solve

the problem of providing a clinical diagnosis by making data available to a pool of non-local

neurophysiologists. The unique perspectives of neurophysiologists will be accommodated

by providing appropriate interfaces to the environment. Over-specification will be overcome

by providing these interfaces in the form of modular components and analysis techniques,

thereby removing any associated infrastructural and workflow constraints. The ability of

the environment to dynamically accommodate expert knowledge, and its association with

raw data, enables it to be captured at the level at which it is being generated. Furthermore,

the availability of this knowledge provides the means to construct, preserve and maintain an

expert knowledge base, gathering the necessary data for future growth and the development

of advanced, automated solutions.

1.6 Summary

This chapter outlined the motivation for creating a generic IE, illustrated some concepts and

characteristics of that environment, discussed related work based on those characteristics,

1.7 Dissertation Overview 34

described a complex application domain to which it would be of benefit and described how

an IE would be mapped to that application domain.

1.7 Dissertation Overview

The remainder of this dissertation is organised as follows: Chapter 2 details the structure of

the IE and the roles comprised within it. Chapter 3 discusses the workflow of the environ-

ment and the flow of data through its components. Chapter 4 details the implementation of

the IE, highlights the design and engineering decisions taken, and introduces an IE Toolbox

to assist the development of generic IEs. Chapter 5 details the application of the IE to a

specific application domain resulting in the creation of the Physiological Data Server. In

Chapter 6, an evaluation of the Physiological Data Server is carried out. Finally, Chapter 7

details future avenues of work and conclusions.

Chapter 2

Structure Of The Interpreting

Environment

The use case in Section 1.4 presented a series of issues that affect the monitoring and analysis

of neurophysiological data. These issues are not unique to neurophysiological monitoring,

but can be extrapolated to many domains requiring expert analysis of data in a timely

manner. In this chapter we view the process more generally. This allows for a more

comprehensive understanding of the issues involved in creating a generic IE.

Initially, the monitoring and analysis of data is discussed. Thereafter, the roles that

constitute an IE are identified. The relationships between these roles and how they relate

to the challenges and issues that afflict a monitoring and analysis system are discussed. The

use case is explored such that a switching of perspective from the general to the specific,

and vice versa, is facilitated. This allows a greater appreciation for what a generic solution

should entail, it assists in identifying the issues that arise and highlights the level at which

they should be addressed.

2.1 Monitoring And Analysis

Monitoring

Monitoring is the observation of the state of an entity. Carrying out an observation requires

both the means to access and record the state being observed. The frequency of monitoring

can vary. An entity can be monitored:

1. As a single point observation e.g. an MRI scan to perform a diagnosis.

2. Periodically e.g. a quarterly review of expenditure.

3. Continuously e.g. meteorological data being accessed in real time.

35

2.2 An Interpreting Environment 36

Analysis

Analysis of data is a process that transforms raw data into information. This process can

range from inspection by an expert in the data domain to the application of sophisticated

algorithms designed to uncover trends and relationships. The information resulting from

the process of analysis may subsequently be interpreted by another expert, but this time

in the application domain rather than the data domain. Similarly, algorithms can analyse

data in the application domain and result in informed actions being taken based on that

information.

Cost Of Monitoring And Analysis

Monitoring and analysis typically has associated costs in relation to the accessing, processing

and storage of data. These costs often have an impact on the decision of how frequently

monitoring takes place. For example, the limiting factor in an MRI scan could be one of

access to data resulting from the availability of the patient to be scanned. In the case of

quarterly reviews, the limiting factor could be the cost of processing data, resulting from

the financial cost associated with accountants who process that data. While in the case of

meteorological data, the limiting factor could be the cost associated with the storage of the

data generated.

Other factors determining the frequency of monitoring and analysis can include the

amount of information that can be derived from the data. For example, in trend detection

there is little point in monitoring at a higher frequency than the data is changing, or for

the purposes of real-time analysis, there is little point in monitoring at a frequency that

generates more data than it is possible to process. Moreover, monitoring does not occur in

isolation and invariably impacts on the system being monitored. If monitoring is performed

intrusively it may alter the behaviour of the system being monitored. For these reasons, it

is important to carefully identify which system entities should be monitored and the degree

to which each should be monitored.

2.2 An Interpreting Environment

An IE provides an abstract perspective from which systems for the monitoring and analysis

of data can be viewed. This perspective makes the inner workings of a system more readily

approachable thereby allowing for an improved understanding of their inherent complexity

and by providing a standardised perspective from which to view systems of a comparable

nature. Moreover, it provides a means of managing and organising this complexity by

enabling the decomposition of a system into multiple levels of abstraction. Each level of

2.2 An Interpreting Environment 37

abstraction is defined by the roles that embody the processes of monitoring and analysis.

Patient

DP DC

General Practitioner

IC

Role:

Component:

Figure 2.1: The mapping of roles between a patient and general practitioner from the
perspective of an Interpreting Environment (IE).

In Chapter 1 an IE was defined as a collection of DPs, ICs and DCs together with a

description of their relationships. Each of these components is present in a non-trivial IE.

From the perspective of an application domain in which data is produced, interpreted and

consumed, each action can be associated with an entity adopting a particular role within

that domain. Thus, for example, a patient may act in the role of the DP when they undergo

tests and describe symptoms to a general practitioner. The general practitioner may adopt

the role of the IC as they interpret data received from patients to form a diagnosis and the

patient may adopt a second role, that of the DC, as they consume and act on that diagnosis.

R1

DP IC DC

R1

DP

R2

IC

R3

DC

R4

DC

R1R2

DP

R3

IC

Role:

Component:

Figure 2.2: Examples of the different mappings between an IE’s roles and an IE’s compo-
nents.

The mapping of roles to an IE’s components may be one-to-one, many-to-many or one-

to-many. In addition, as seen later, a component may be associated with a number of

entities collaborating to fulfill a particular role in such a way that that collaboration can

be recursively mapped onto the three main components of the IE. This recursive definition

can give rise to a hierarchical description of the application domain and each level in that

hierarchy represents an abstraction of the level below as depicted in Figure 2.4.

2.2 An Interpreting Environment 38

R (i)

DC
IC

R (i+1)

DC

IC

DP

R (i+2)

R (i+3)
R (i+4)

R (i+5)

Figure 2.3: Multiple components being mapped to multiple roles. R(i+1) contains compo-
nents that are mapped to alternate roles.

R(1) R(2) R(3)

R(4)

R(7)

R(5)

R(8)

R(6)

R(9) R(1) R(2) R(3) R(9)

IE Level 1

IE Level 2

IE Level 3

Figure 2.4: An IE depicted with multiple levels of abstraction and its transformation to a
single network of DPs, ICs and DCs.

The power of the IE comes from being able to handle each level of abstraction as a single

network of DPs, ICs and DCs, thus hiding information appropriately to reduce complexity

at that level.

2.2.1 The Process Of Mapping Roles To Components

The process of mapping roles to components is carried out by the domain expert when

attempting to capture the workflow in the application domain. In this process DPs, ICs,

and DCs are identified, each of which may in turn be refined into other DPs, ICs and DCs.

The decisions taken in creating the hierarchy will be informed by the expert knowledge about

how the workflow should best reflect the goals and correctness of the specific application.

2.2 An Interpreting Environment 39

For example, two alternate mapping processes are depicted in Figure 2.5. The first two

diagrams depict different approaches to the mapping process for the treatment of a patient

in the NICU1. In both instances, a neonate is mapped to the role of a DP, as the producer

of data, the NICU is mapped to the role of the IC, as it carries out the interpretation of

that data. This is where the similarities end.

In the first instance (see Map#1 in Figure 2.5), the neonate, the neonate’s parent and the

clinician are mapped to the role of DC and so are consuming the interpretation generated by

the NICU. While a domain expert may create this hierarchy, it is not ideal. For instance, the

parent, and the neonate, may not be capable of comprehending the interpretation produced

by a NICU (In this instance a clinical report issued by the NICU relating to the patient

state). As such, an alternate hierarchy that enables interpretation by a non-expert may be

better suited.

Instead, a domain expert may desire a hierarchy involving a series of IC such that in-

terpretation of data can be derived and delivered at the appropriate level. In the second

instance (see Map#2 in Figure 2.5), this process is broken down into multiple levels of

abstraction. This enables an improved hierarchy to be realised. The neonate and NICU

maintain their original roles, but they are mapped to a DP at a lower level of abstraction

(level 2 of the abstraction process). This enables the clinician to act as an IC and provide

an interpretation that is more suitable for a parent (resulting in a lower level of abstraction

again). Subsequently, the parent and neonate repeat this process enabling the two higher

levels of abstraction to act as a DP and the parent to provide interpretation for the neonate.

In this manner, the domain expert can create hierarchies that map components at a partic-

ular level of abstraction, simplifying its representation and more accurately reflecting the

goals and correctness of the specific application desired.

This process is a means to maintain a record of the components in an IE, the role they

play and the relationships between them. In doing so, the provenance of data production,

interpretation and consumption can be provided. This record can then be interrogated by

interested parties, enabling a greater level of transparency throughout the entire process.

Transparency introduces a number of potential benefits. For example, certified IE in-

stances, whose workflows have been approved by the community, could be digitally signed

thus enabling these peer-reviewed workflows to be used correctly and with a degree of con-

fidence. Thus enabling reusable components to be created and to be used as elements in

software engineering methodologies.

1In the context of this workflow the NICU is responsible for the interpretation of data acquired from the
neonate and outputting data relating to the patient state. The clinician is considered outside the scope of
the NICU.

2.2 An Interpreting Environment 40

(DP) (IC)

(DC)

Clinician

NICU Parent

Neonate

Neonate

(DC)

(DC)

Neonate NICU R1

Clinician R2

Parent Neonate

Level 1

Level 2

Level 3

(DP)

(DP)

(IC)

(IC)

(IC)

(DP)

(DC)

(DC)

(DC)

(DC)

Neonate
(DC)

NICU ParentClinician Neonate
(DP) (IC) (DC)(IC) (IC)(IC) (DC)

Neonate NICU R1
(DP) (IC) (DC)

Map#1

Map#2

Abstraction Process

Top level of abstraction

Figure 2.5: The NICU mapping process and the rearrangement of components to form a
hierarchy.

2.2 An Interpreting Environment 41

2.2.2 Feedback

Feedback is defined as using the output of a process as an input to an earlier process.

Feedback loops are used for checking system up-time in a wide array of systems such as

control systems, telecommunications, internet protocols etc. Integrating feedback loops are

one way in which expert knowledge can be collected and expert knowledge repositories

formed. Integrating them with an IE can be a complex challenge.

Data Producer
Interpreting
Component

Data Consumer
(DP) (IC) (DC)

Figure 2.6: The IE incorporating a feedback loop.

Figure 2.6 depicts an IE that contains a feedback loop. The IC is continually processing

data being generated by the DP. The IC’s output is being fed to the DC, until the desired

result is output from the IC. The DC receives the interpretation and if it is in the desired

state exits the IE, otherwise the loop continues and an iteration of the interpretation process

occurs.

To simplify the management of feedback loops in the IE they can be viewed as a dynamic

recursive invocation of the workflow. Thus each recursive step can once again be viewed

as a simple produce, interpret, consume graph. In effect, this recursion creates a dynamic

hierarchy (in contrast to the static hierarchy defined by the domain expert) whose lowest

level of abstraction is the base case of the recursion and is achieved when desired convergence

is reached.

2.2.3 Convergence Within An IE

Convergence is a desired state into which you wish to dynamically transition and once

achieved, in which you wish to remain. Convergence to a particular goal state is often the

desired outcome from an IE and hence a mechanism to support it is needed.

Workflows incorporating feedback may be used to model feedback control systems, re-

sulting in the state of a component in an IE being driven to convergence. Through the use

of explicit feedback loops in a workflow within an IE, the components whose state is being

modified is explicit and transparent. Depending on the application domain, manipulating

2.2 An Interpreting Environment 42

that state may or may not be appropriate.

Inappropriate Use Of Convergence

The scientific method is the process of observing a phenomenon, formulating a hypothesis

to explain that phenomenon, designing and running an experiment in a controlled environ-

ment to objectively evaluate this hypothesis. Scientific rigour requires that these controlled

experiments can be reproduced by others and it is an effective means of identifying bi-

ased, incorrect and fraudulent research findings. Figure 2.7 and Figure 2.8 depict the IE’s

application of convergence to facilitate the scientific method.

In Figure 2.7 the IE is being used to implement the scientific method in an incorrect

manner. A phenomenon is occurring in a controlled environment (the IE) resulting in

the production of data (DP), this data is being used to evaluate a hypothesis (IC), this

interpretation results in an observation as to the validity of that hypothesis and a subsequent

action being performed based on that observation (DC). In this instance, the hypothesis

(IC) is static as the output from the observation (DC) is being fed into the phenomenon

(DP) as an input such that the data is being acted on but the hypothesis is not. From

the perspective of the scientific method, this is an invalid use of convergence as the data is

being modified to suit the theory.

Data Hypothesis Observation
(DP) (IC) (DC)

Figure 2.7: The resultant state (DC) observed is converging the data (DP) to a desired
state that complies with the hypothesis (IC). This is an invalid use of convergence, as the
resultant observation is being used to alter the data acquired. In effect, the data is being
altered to suit the theory.

In Figure 2.8 the IE is being used to implement the scientific method in a correct manner.

A phenomenon is occurring in a controlled environment (the IE) resulting in the production

of data (DP), this data is being used to evaluate a hypothesis (IC), this interpretation

results in an observation as to the validity of that hypothesis and a subsequent action being

performed based on that observation (DC). However, in this instance the hypothesis is not

static, the observation is being used to alter and refine the hypothesis. From the perspective

2.2 An Interpreting Environment 43

of the scientific method, this is valid as the hypothesis is being modified to suit the data.

Data Hypothesis Observation
(DP) (IC) (DC)

Figure 2.8: The resultant state (DC) observed is converging the hypothesis (IC) to a desired
state, such that it complies with the data being generated. This is a valid use of convergence
as the resultant observation is being used to alter the hypothesis.

Appropriate Use Of Convergence

In Figure 2.9 a neurophysiologist is continually interpreting data being produced by the

neonate, which results in an action being carried out by the NICU. The NICU is responsible

for interpreting the neurophysiologist’s prognosis and carrying out any associated actions,

in this case, some form of treatment. Due to the feedback mechanism within the IE, this

subsequently affects the data being produced by the neonate and the interpretation by the

neurophysiologist. This results in a change to the prescribed course of treatment consumed

by the NICU. The neurophysiologist desires the patient data to converge on a healthy patient

state, and is continually altering their interpretation based on the data being interpreted.

As the IE is converging to a healthy patient state this is a valid use of convergence within

this application domain.

Neonate Neurophysiologist NICU
(DP) (IC) (DC)

Figure 2.9: The neurophysiologist is converging on a healthy patient state and so it is a
valid use.

2.2 An Interpreting Environment 44

Similarly, in Figure 2.10 a neurophysiologist is continually interpreting data being pro-

duced by the neonate, which results in an action being carried out by the NICU. In this

case, an altering of the neurophysiologist’s state. Due to the feedback mechanism within the

IE, this subsequently effects the interpretation by the neurophysiologist, but has no effect

on the data being produced by the neonate. It may result in a change to the prescribed

course of treatment consumed by the NICU, but this change will not impact the patient.

The neurophysiologist desires the patient data to converge on a healthy patient state but

alterations to the interpretation of data have no effect on the neonate. As such, the IE is

not converging to a healthy patient state, rather it is converging a neurophysiologist’s inter-

pretation to a particular state. This is an invalid use of convergence within this application

domain.

Neonate Neurophysiologist NICU
(DP) (IC) (DC)

Figure 2.10: The neurophysiologist is converging the desired results to match the state
dictated by the NICU.

Overview

In both cases, the benefit of the IE is its capacity to visualise the workflow of the system in

a transparent manner. This exposes its relationships to the relevant community, allowing

them to identify whether or not a process is being carried out in the correct manner. The

validity of a workflow using convergence is specific to an application domain, for instance,

the valid and invalid examples given for the instances above are opposites of one another.

The application-specific nature of workflows further emphasises the need for transparent

analysis of such workflows.

2.2.4 The Use Case

The use case (see Section 1.4) has three stakeholders from which the process of monitoring

and analysis is considered. The neonate; who is, or is suspected to be, in need of treatment,

the neurophysiologist; who is an expert in neonatal EEG and possesses the knowledge that

2.3 Summary 45

enables analysis of the neonate’s brain activity, and the NICU; which is responsible for

interpreting any prescribed treatment received from the neurophysiologist and acting on it,

administering treatment as a result if necessary. The stakeholders and the roles they play

are highlighted in Figure 2.11.

Figure 2.11: The stakeholders that encompass the process of neurophysiological monitoring:
The neonate, the neurophysiologist and the NICU.

2.3 Summary

This chapter outlined the structure of an IE. It discussed the process through which a system

is decomposed into multiple levels of abstraction and the mapping of roles to entities within

a domain based on the production, interpretation and consumption of data. The role of

a domain expert in facilitating the mapping process is also highlighted. The concept of

feedback and the resulting dynamic hierarchies that ensue are discussed, along with the

appropriate/inappropriate application of convergence within an IE.

Chapter 3

Interpreting Environment

Workflow

Having looked at the structure of the IE, this chapter looks at the flow of data through the

workflows in that environment. As seen in Chapter 2, every workflow can be abstracted

into a simple network of producers, interpreters, consumers (possibly with feedback loops)

by hiding sub-workflows in component containers at the appropriate level of abstraction.

This drastically reduces the complexity of analysing workflows within the IE. Requiring us

to only look at each of the three components (DP, IC and DC).

3.1 The Data Producer

In practice, DPs can emit data at different frequencies from single point measurements to

high-frequency data streams. The greater the frequency, the bigger the challenge, since the

data will have to be either processed at the rate of emission or stored for later processing.

Figure 3.1 depicts data being produced at a rate greater than the IC can process it. A

buffer is used to cache the excess data. This enables the IE to continue operating as excess

data is stored in a manner that is accessible to the IC. The relationship between production

and processing introduces a constraint to the IE’s workflow as the quantity of data the

buffer can handle is finite and if this limit is exceeded an overflow will ensue. It should be

noted that buffering can be introduced for reasons other than attenuating the frequency of

production and the frequency of interpretation (see Section 3.2.1).

3.1.1 Time Series Data

Time series (TS) data is a sequence of observations taken at discrete (not necessarily uni-

form) time intervals. An observation is one, or more, data points that denote the state of

46

3.1 The Data Producer 47

EEG Machine Neurophysiologist
(DP) (IC)

Data length

Buffer length

Figure 3.1: This workflow depicts data awaiting processing by the Interpreting Component
being persisted to a buffer.

an entity. Therefore, TS data can be defined as:

TS = xt1, xt2, xt3,, xtn (3.1)

where each observation x occurs at time t.

TS data is used to monitor the state of an entity over time and its numeric and continuous

nature makes it particularly suitable for monitoring and analysis purposes [65]. As such, it is

utilised in a wide range of domains. For example, the monitoring of stock prices in financial

markets, the monitoring of meteorological data for weather forecasts and the monitoring of

web traffic.

Figure 3.2 illustrates the visualisation of TS data in the form of a line chart. This chart

depicts the value of the US dollar plotted against that of the euro from the year 2000 to

2013. The X-axis is representative of time in years and the Y-axis is representative of the

value of the US dollar. To calculate the value of the Euro in US dollars at a point in time,

simply select the year on the X-axis and move up until you intersect the plotted line, then

move across to the Y-axis and you have the Euro’s value in US dollars at that point in time.

Time Series Analysis

TS analysis is the inference of meaning from TS data. One of the most common forms of

analysis is the visual interpretation of a TS data plot (as depicted in Figure 3.2). There are

a large number of analysis techniques for the interpretation of TS data in existence, ranging

from statistical techniques such as regression analysis, moving average and seasonality, to

artificial intelligence (AI)-based approaches, such as support vector machines and neural

networks.

The known applicability of an analysis technique influences whether or not it is used in

3.1 The Data Producer 48

Figure 3.2: A plot of time series data showing the exchange rate of the US dollar against
the Euro.

a domain. Other factors that influence analysis include:

i) The quantity of TS data available: this is related to the number of data points in

each observation, the frequency at which these observations take place and the time

interval concerned.

ii) The complexity of the interpretation process: the transformation of TS data into

temporal information, which is carried out to assist, or enable, the inference of meaning

from the TS data. The primary intent is the structuring, or presentation, of TS data

in a more intelligible format for the entity intended to consume that interpretation.

iii) The knowledge to be exposed from the TS data: This is concerned with the identifica-

tion of patterns, trends or shapes that add value to the analysis of the data; typically

in the form of an objective analysis.

TS is widely used as a means of representing data specific to a domain in an abstracted

form. It allows for the analysis and comparison of multiple sources of data, which can be

used as the basis for decision-making. Consequently, TS data is a promising candidate for

representing knowledge in an accessible manner, allowing for domain-specific information to

be discovered, and for key features to emerge through the use of abstract analysis techniques.

As such, TS is considered a suitable choice for data representation within the IE.

3.1 The Data Producer 49

Analysis techniques for TS data are well understood, it is an understanding of their

application and uniformity of approach that is lacking. Libraries containing functionality

to analyse data are continually developed for specific data formats in specific domains. This

specificity limits both the utility of the method and the impact of the associated results.

Embodying analysis techniques in an IC provides a simple means of highlighting the rela-

tionship between data produced and the consumption of that interpretation by abstracting

the interpretation process. It encourages the development of generic interfaces for these

techniques, thereby preventing over-specification and promoting the idea that functionality

should be leveraged across multiple separate domains.

3.1.2 Temporal Abstraction

Temporal abstraction (TA) is the creation of interval-based abstractions from a combination

of time-stamped data and interactions that originate outside the scope of that data stream.

TA is typically used in a clinical setting, and can be considered analysis of TS data and

contextual information that originates outside the scope of the data. It has been previously

defined as the detection of relevant patterns in data over time [66]. In effect, it is the

combination of TS data and contextual information relating to an event as evidenced by

the data.

TA uses a domain-specific ontology to encapsulate the terms, concepts and relevant

relations, and a method called the knowledge-based temporal-abstraction (KBTA) [67]. It

is postulated by Shahar [68] that the explicit declaration of knowledge requirements has

benefits in the form of increased reusability, easier acquisition, reduced maintenance and

the potential for increased sharing between domains. It has been used extensively for the

process of acquiring and maintaining domain-specific, temporally abstracted knowledge in

a clinical setting.

It is quite common that multiple types of data are continually being generated in the

diagnosis and treatment of patients. This data can be in multiple alternate formats including

physiological time-stamped data, records of routine check-ups or treatment plans underway.

This data is used in the identification of trends/patterns within a patient context and the

specific domain in which it occurs.

The temporal model incorporates time intervals and time-stamped points. A time in-

terval is a pair of TS values (tstart, tend) representing the interval’s start and end time. A

time-stamped point, T, is a 0-length interval represented by the same TS value (Tpoint, Tpoint).

An action or process that originates outside the data stream is considered an event for which

a description shall be attached.

One of the strengths of TA is its ability to take disjointed data sources and identify

3.2 The Interpreting Component 50

relationships from them. A perceived weakness is its divergence from TS analysis and

its reliance on domain-specific tools and functionality. As such, a number of beneficial

approaches provided by TS analysis are isolated from TA, and vice versa, due to the manner

in which they are realised. This was a motivating factor in the development of a generic

workflow within the IE.

3.2 The Interpreting Component

The IC is where data is processed to produce information. This can be done using one of

the variety of approaches described in Chapter 1. Each of these approaches requires specific

architectural components to support its operation. For example, digital signal processors

may be required to implement data transformations in a timely fashion or a data source

may be required to train a support vector machine.

In addition to these automated techniques, an IC may be realised by a human with

expert domain knowledge. Incorporating the human into the interpretation process brings

with it unique challenges. The idealised expert will always give the same interpretation to

the same input data. However, humans can be far from ideal and their analysis may vary

depending on factors outside the IE.

A workflow may rely on peer review and community validation for acceptance. Vari-

ances between experts’ interpretations highlights the value of collaborative environments

for achieving consensus. In this respect, an IE with a human IC is the most challenging. In

the context of the use case, the IC is the neurophysiologist and the DP is the EEG machine

connected to a neonate. Sitting in front of the machine, the neurophysiologist can process

the data at the rate of production and deliver an interpretation, which may be used for

subsequent treatment. If in this scenario, data is not stored, consequently its interpretation

cannot be validated. In practice, it is common for the interpretation to be stored separately

to the raw data and hence the link between them may be difficult to recover.

A workflow can be created to address these issues. In Figure 3.3 the IC contains a

sub-workflow in which a number of neurophysiologists have access to the raw data from

the EEG machine and an appropriate buffer. They can asynchronously navigate that data

and annotate it with their observations. Once annotated, these observations become avail-

able to other neurophysiologists and thus a collaborative environment is created using this

feedback mechanism. A secondary advantage of this workflow is that the observations and

ultimately the consensus interpretation is stored with the raw data thus preserving this

valuable link. As part of the workflow it can be seen that one neurophysiologist is charged

with communicating the interpretation to the DC. The transparency of this arrangement

helps to eliminate miscommunications that could occur in a human-centric network, that

3.2 The Interpreting Component 51

(DP)

IC

IC

IC

IC

(DC)

(IC)

Data length

Buffer length

(DP)

Figure 3.3: An IC with a sub-workflow comprised of multiple ICs, interpreting data asyn-
chronously.

is, only one neurophysiologist speaks authoritatively to the DC on behalf of the group.

Analysing this network more closely, it can be seen that the buffer acts as a DP and a DC.

3.2.1 Capturing Expert Knowledge

Expert knowledge can be used for the development of data analysis techniques, be it training

or validation data for a machine learning algorithm or as contributions to a knowledge base

that a decision support system depends on. The workflow described in Section 3.2, and

depicted in Figure 3.3, is producing expert knowledge by storing the link between the

experts’ consensual interpretation and the raw data.

As such, the IC is facilitating the capturing of expert knowledge. This expert knowledge

can be used to develop improved tools and techniques that assist with the interpretation of

data. Automated solutions, improved interpretation techniques and advanced visualisations

are just some of the solutions that could be enabled from this workflow. The mechanism

used to facilitate this process is the annotation.

In Section 3.2.3 a review of technical work relating to annotations is presented. This is

followed by a discussion on annotations in the context of the use case (see Section 3.2.4)

and finally annotations in the IE (see Section 3.2.5).

3.2.2 Interpretation In The Context Of The Use Case

The interpretation process requires the neurophysiologist to review EEG data acquired from

a neonate. This is achieved by viewing screenfuls of EEG data, comprising multiple channels

of EEG data over a small time scale. For example, Figure 3.4 depicts a screenful of EEG data

that is comprised of 8 channels over a 10-second period. The neurophysiologist must review

3.2 The Interpreting Component 52

Figure 3.4: A visualisation of EEG data recorded from a healthy term neonate.

this data and identify any waveforms, trends or shapes indicative of a neonate’s condition,

e.g. healthy, unhealthy, recovering, worsening etc. Furthermore, the neurophysiologist must

be capable of differentiating between EEG data and artefact or noise, as these may affect

interpretation. Adding to the complexity is the fact that analysis occurs across multiple

channels of data and spans multiple screenfuls of data.

3.2.3 Annotation Of Data

The annotation of data, be it paper-based written material or digital data, represents an

engagement with the material [69]. This engagement results in the creation of metadata

that serves a purpose desired by the individual creating the annotation. The defining

characteristic of an annotation is its intended purpose. For example, the act of highlighting

a sentence might serve as a signal for future attention or as a memory aid.

It is important to note that this engagement is both user-defined and user-specified.

It has the capacity to evolve over time and be adapted to different demands and desires,

as long as there are appropriate interfaces to the data. Traditionally, annotations were

3.2 The Interpreting Component 53

paper-based. These took many forms, such as highlighting, underlining, comments, color

coding, short notation, calculations, references to other material, writing in the top/bottom

margins of documents and keeping pages of separate notes for a document.

The reasoning behind paper annotations is examined in [70]. The motivations for the

different types of annotative marks made on paper, as well as the perceived benefits for each

kind are discussed. A comparison is then made to Web 2.0 technologies and a prototype

for annotating web pages in a paper-like fashion is presented. This provides a foundation

from which to consider design guidelines for an annotation system that could assist with

the integration and capturing of expert knowledge.

A Digital Annotation System

Digital annotations are a natural evolution of the traditional paper-based approach. The

design and implementation of digital annotation systems that mimic the functionality of

their paper-based counterparts in medical and technical fields are presented in [71], [72], [73].

A survey of the most desirable functionality for the digital annotation of data, in [74],

found that functionality available in traditional paper-based annotation schemes, such as

marking up documents, writing in margins and writing at the top of documents is not

as desired as more advanced features, such as the ability to annotate images, support for

multiple document formats and the ability to search annotations. This is indicative of the

higher expectations users have of digital annotations. Functionality already available to

them on paper is taken for granted. As a result, when designing an annotation system for

the IE it was considered a priority to support the functions already provided by paper-based

systems, as these would be expected by users, in addition to identifying advanced features

which would be of value.

An advantage of digital annotations is their ability to implement functionality that

paper-based schemes cannot support. Examples include:

1. Support for comment-sharing in documents.

2. Compact display of indexed annotations and relationship discovery.

3. Collaborative sharing of comments with selective viewing permissions [74].

4. Support for editing of own and other users’ annotations [75].

5. The ability to search a collection of documents based on keywords within annotations.

6. Annotation of TS data and searching based on similarity to annotated segments.

7. Extraction of meta-data that, combined with further processing, allows for the cre-

ation of further valuable data, such as training sets for machine learning techniques.

3.2 The Interpreting Component 54

8. The ability to circumvent the rigidity of electronic health records by allowing the

creation of data not envisaged and accommodated by the original document schema

architects.

The collaboration between different disciplines in healthcare and the complexities in-

volved in implementing efficient information exchange is discussed in [72]. Difficulties with

written and electronic medical forms, the rigid structure imposed by forms, and how this

constrains practices are outlined. A model for communication via forms that support col-

laboration by accommodating different levels of interpretation is presented.

The addition of annotations to electronic health records (EHR) as a means to promote

collaboration, coordination and awareness is presented in [71]. The loss of created knowledge

due to the strict structure of the EHR is discussed, along with a proposed solution: the

use of annotations to allow documents to overcome this rigidity and provide support for

non-envisaged functionality.

A tablet-PC-based software tool for collaborating on TS data is presented in [75]. It

provides functionality to allow the researcher to browse datasets, create, view and edit

annotations (both their own and those created by others). The use of annotated data to

create feature-specific datasets for the training of diagnostic algorithms is proposed.

3.2.4 Annnotations In The Context Of The Use Case

Paper-based EEG monitors allowed for manual annotation through the addition of hand-

written notes indicating acquisition events and features of interest in signals. More modern,

software-based monitors support the addition of simple textual annotations both during

acquisition and subsequent analysis. Some systems, such as the Natus Olympic Brainz

Monitor [76], allow for annotations to be viewed and added from a remote review station.

The goal of the annotation system in an IE is to extend this functionality to create a

common medium for the interchange of signal meta-data between all actors (human and

software) in the IE. Humans use the annotation system as an aid for analysis, collaboration

with colleagues, identification of features of interest and for training purposes. Software

agents provide annotations that can assist humans with their analysis. Furthermore, soft-

ware agents can make use of annotations provided by humans, both as a resource to be

searched and as a source of training data. The resulting meta-data is therefore of benefit

to all actors in the system. The following sections present a number of interesting use cases

which discuss the annotation systems’ goals in more detail.

3.2 The Interpreting Component 55

Figure 3.5: Annotations facilitating cooperation between the human actors.

Expert-to-Expert Collaboration Via Annotation

While reviewing a TS data stream, an expert analyst identifies a feature of interest. The

expert analyst creates a public annotation, incorporating the data, and continues reviewing

the data stream. When the annotation is saved, the information entered, such as the wave-

form type, duration, start-time, end-time, and affected data feeds, is stored in a relational

database.

The result is a collection of annotations that can be independently verified by another

expert analyst. Furthermore, if expert analysts do not agree on a waveform classification,

then a discussion takes place via the addition of comments. The expert analyst and his/her

peers can also express their level of confidence in the classification. Eventually, a consensus

is reached on whether or not the waveform fits the classification assigned to it. In this

manner, the annotation system supports a multitude of expert perspectives simultaneously.

Expert-to-Analyst Training Via Annotation

A trainee analyst is reviewing a TS data stream. The trainee is uncertain about the classifi-

cation a particular waveform should be given. The trainee analyst annotates the data with

a query, stating their own views and asking for guidance on how to distinguish between the

different types of waveform classifications.

An expert analyst sees the query and responds by distinguishing between the waveform

classifications and annotating the annotation. The annotations evolve into a thread-based

3.2 The Interpreting Component 56

discussion related to the type of data being analysed. This aids both the transfer, and

generation, of knowledge and assists in overcoming the geographic constraints on expert

knowledge.

Automating Expert Analysis

UOIT visit – November 2011

Facilitating Collaborative Diagnosis

Figure 3.6: Annotations facilitating cooperation between agent-based and human actors.

Reasonably accurate seizure detection algorithms are available (see Section 6.5), but are

not considered sufficiently accurate for diagnostic purposes. However, if the output of these

algorithms is presented to an expert analyst in the form of annotations, these segments of

interest have the potential to assist diagnosis.

Consider the case of an expert analyst examining a neonatal EEG data stream in order

to determine whether the patient is suffering from seizures. The expert analyst can scan

EEGs visually at two 10-second pages per second [32]. The interpretation of 24 hours of

EEG recording therefore requires 72 minutes of analysis time per patient. If the expert

analyst, on opening a data stream, can view a list of annotations that have been generated

by the seizure detection algorithm, then he/she can jump immediately to these segments

and confirm whether or not seizures are present. This plays to the strengths of both types of

analysis: the ability of algorithms to rapidly process large volumes of data, and the ability

of humans to definitively categorise waveforms.

Complementing the objective of assisting human interpretation, the annotation system

could assist with interpretation by software agents. As the system is used over an extended

period of time, a large number of waveforms are classified by expert analysts. This ex-

pert knowledge would become a valuable source of data for the development of new ICs.

3.2 The Interpreting Component 57

Annotated signal segments can be extracted to use as training and evaluation datasets for

machine learning algorithms. These segments could also form the basis of ICs used to

compare new data against a database of known waveforms of a particular type.

3.2.5 Annotations Within The Physiological Data Server

The annotative functionality chosen for the Physiological Data Server (PDS) (For more

information on PDS see Chapter 5) is a combination of the features provided by traditional

paper-based systems, with the collaborative and knowledge-sharing capabilities facilitated

by digital annotations. This functionality is then extended to include meta-annotations

in the form of comments and confidence measures. Top-level annotations fall into two

categories: events and waveform classifications. Events indicate occurrences at a more

abstract level than that of the waveform.

• Waveform classifications - An annotation denoting the observation of a type of wave-

form. Representative of the categorisation, or classification, of data segments by an

expert or software process. They are considered bottom-up as they are identified

directly from the data.

• Event type - An annotation denoting the observation of an event. Event types are

external observations. They originate from a more abstract level than that of the

waveform and are considered top-down in that they originate from a context outside

the data.

Annotations within an IE are denoted by a start-offset and end-offset in milliseconds

relative to the beginning of a data stream, incorporating one or more feeds of data from

that stream. Meta-annotations, in the form of comments (general free-form text markup

of data), can be added to any top-level annotation. However, confidence measures (such as

the Likert scale [77]) can only be applied to waveform classifications.

In the context of the NICU use case, annotations can originate from a number of sources:

1. Acquisition location: Modern EEG acquisition software typically annotates the output

file being produced with annotations indicating events of interest during acquisition,

such as when an impedance test is performed or a loose lead is detected. These can

be supplemented by notes entered manually by staff either at the bedside or at a

review station. Examples include notes indicating that the patient has been moved

or highlighting features of interest such as suspected seizures or signal artifacts.

2. Remote reviewers: Analysts at remote locations are free to create new top-level an-

notations of any type. They can also add comments to any top-level annotations.

3.2 The Interpreting Component 58

Figure 3.7: An annotated EEG being reviewed in the web-based viewer.

As noted above, reviewers can only add confidence measures to existing waveform

classifications.

Realising Feedback Through Annotations

Annotations were chosen as the mechanism to realise feedback, as described in Section 2.2.2,

within the PDS. In order to provide annotative functionality, a means of visualising and

interacting with TS data was required. To that end a web-based viewer capable of visualising

and annotating TS data was developed and is described in more detail in Section 5.2.

Operation And Visibility

The simplest annotation use case is as a means for users to leave notes for themselves.

This is useful for memory aiding, indications for further analysis, etc. The system supports

private annotations for this purpose. A new annotation is created by selecting an option

from the drop-down menu at the top of the application window. A mouse-click is then

used to indicate the annotation starting point. Once the starting point has been selected,

a new, empty, annotation appears. The on-screen representation consists of an annota-

tion summary component and two arrows indicating the start and end recording offsets.

The start and end arrows can be dragged to change the recording segment referred to by

the annotation. The annotation summary consists of four sub-components indicating the

3.2 The Interpreting Component 59

annotation type, description, visibility (public/private) and affected channels. These can

be specified by clicking on the respective subcomponents. The annotation summary also

contains a button that saves the newly created annotation to the server. Alternatively, a

drop-down menu option is available to save all newly created annotations.

A more advanced use case is when an analyst shares annotations with peers. When

the annotation is shared, all other users viewing the recording in question are notified as

soon as the annotation is saved via a server-push messaging system. The other users can

then add meta-annotations by rating or commenting on the annotation. The rating system

uses a Likert scale [77] to enable reviewers to provide a measure of their confidence in the

accuracy of the annotations. The available options are “strongly disagree”, “disagree”,

“neutral”, “agree” and “strongly agree”. Users may also comment on the annotation.

The result is a thread of ratings and discussion pertaining to the annotation, facilitating

consensus diagnosis or training instruction.

The annotation summary components for public annotations contain a label indicating

the number of associated ratings and comments. If any of these items have not yet been

viewed, then the label text is rendered in a different colour to draw the user’s attention to the

new content. Hovering the mouse pointer over an annotation summary component causes

it to expand and to display the ratings and comments below. Clicking on an annotation

summary component brings up a more detailed user interface that allows new comments

and ratings to be added. Any comments or ratings added to an annotation are immediately

saved to the server automatically.

Users can navigate quickly from one annotation to the next using a pane at the bottom

of the viewing window that displays the annotations in the vicinity of the currently visible

recording segment. Annotations currently visible on-screen are displayed in the center, with

those preceding and following shown on the left and right, respectively. A complete list of all

annotations attached to the data stream can be viewed via a drop-down menu option. This

view contains visibility settings for the various annotation categories and allows annotations

to be grouped.

The creation of a large body of data that has been annotated by experts is also of benefit

to users. Domain experts can identify users whose work is relevant to them and view all

of that expert user’s annotations by visiting the expert user’s profile page on the system.

This feature encourages knowledge-sharing and collaboration by providing a platform from

which trainee analysts can learn from expert analysts, and likewise expert analysts can

monitor the progress of trainees.

3.3 The Data Consumer 60

Table 3.1: Agent capability to create annotations.

Case Event FOI Comment Question Meta

Acq. software ! % % % %

Staff at acq. site ! ! ! ! !

Remote Reviewers ! ! ! ! !

Benefits Arising From The Annotative Ability

The means to quantify and capture expert knowledge is facilitated through annotative

functionality. Annotations are created by analysts as they review the data, resulting in

an electronic record of that interaction. This facilitates the categorisation of data which

subsequently enables features of interest (FOI) within the data to be analysed collectively.

It is envisioned that this will result in a large corpus of expert-annotated data being accu-

mulated, which will have a much greater value than raw data alone.

Furthermore, the provisioning of functionality for annotations will provide a rich medium

of communication that will facilitate collaborative analysis and form the basis of a co-

operative environment for data interpretation. The introduction of functionality for human-

to-human collaboration will allow for improved patient care by facilitating more accurate

and timely diagnosis. Furthermore, the annotations added by expert analysts will provide

a valuable resource for the creation and evaluation of ICs.

The combination of functionality for the processing of data as it is acquired by the

system, and the automated annotation of that data, would assist in the identification of

segments of interest. These informative, and automated, annotations are seen as highly

beneficial.

3.3 The Data Consumer

The DC uses information from the IE to determine the appropriate action. This can be

anything from simply invoking an actuator, to the initiation of a complex process designed

to achieve specific goals. In the context of the use case, the NICU is the entity that acts

as the DC (see Section 2.2.4). The NICU is responsible for interpreting any prescribed

treatment received from the neurophysiologist and acting on it, administering treatment

as a result if necessary. The personnel, within the NICU, are charged with caring for the

neonate in question, and so acts on the information received from neurophysiologists (IC)

to deliver the appropriate care. In treating the neonate, the NICU’s actions may be viewed

as a feedback loop in our network, the exercising of which results in a change in the state of

the neonate. This change is reflected in the data emitted by that DP and is used to drive a

3.4 Overview Of The Workflow 61

subsequent invocation of the workflow. This process repeats until there is no further need

to apply treatment. In terms of the abstract workflow the DP converges to a desired goal

state, this is interpreted by the IC and relayed to the DC, who reacts accordingly.

(DP) (DC)

Neonate NICU

IC

IC

IC

IC

(IC)

Data length

Buffer length

(DP)

Figure 3.8: The complete workflow including the DC with a feedback loop to the DP.

The complete use case workflow is illustrated in Figure 3.8. It is interesting to note

the differences between the two feedback loops in this workflow. In the first, the feedback

information is captured and stored and may subsequently be inspected. In the second, the

feedback loop does not result in information being stored explicitly, rather, in that case the

state change is represented by the subsequent behaviour of the data-producing component.

This means that the change in state in the DP is not inspectable unless the history of those

changes are stored.

It can be seen from Figure 3.8 that the history of state changes in the EEG can be

stored in the buffer. However, to preserve the link between change in state and the action

performed to precipitate that change, it would be necessary to propagate that action at the

start of each workflow invocation. Thus, the action is communicated over the feedback loop

concatenated, and concatenated to the subsequent data stream emitting from the DP. In

this manner, the provenance of the new data can be recorded.

Supporting features like provenance and audit trails, requires the addition of some

“memory component” to the system. The location and number of these memory com-

ponents will depend on the application workflow.

3.4 Overview Of The Workflow

Within an IE there are constraints that affect the frequency at which data is produced, data

is interpreted and data is consumed. While these constraints are specific to each instance

of an IE, there are a number of generic requirements arising from the workflow, which may

need to be addressed. Some of these include:

3.5 Overview Of The Workflow 62

i) Data generation and storage: Often the quantity of data being generated is greater

than that which can be processed. This results in an interest in methodology for

separating data into what needs to be processed and what does not. As well as what

needs to be stored and what can be discarded.

ii) Supported data: TS data was identified as the data format that the IE would support.

It is robust enough to support monitoring in a generic manner, such that single-point,

periodic or continuous monitoring, and analysis, can be accommodated. TS provides

a sufficiently fine-grained measurement and is readily compatible with a broad range

of domains.

iii) Real-time processing: Processing data in real time is typically associated with critical

systems. For instance, an aircraft’s life support system is of a critical nature. Its

designers ensured it processes environmental data in real time (air pressure, oxygen

levels etc.), as any delay would jeopardise the safety of passengers on board. A real-

time traffic control system for a city is also of a critical nature, as any delay could cause

a potentially fatal road accident and/or result in less than optimal use of transport

infrastructure, which incurs an associated cost. In both cases, the production, inter-

pretation and consumption of data is occurring at a defined pace, which necessitates

real-time analysis, adding to the complexity of that system.

iv) Storage: If data is stored then it can be processed retrospectively. This allows for

a trade-off between the storage and processing of data. For instance, when compute

cycles are costly it may prove more economic to store data for a period of time and

process this data when the cost of compute cycles has reduced. In some instances the

data may never be processed, but its storage is necessitated as a means of provenance.

For example, for Service-Level-Agreements in cloud configuration, metrics for services

provided are often persisted and only analysed at the request of a customer.

These outline some of the technical requirements facing a generic IE. These challenges

directly relate to the storage of data, the maintenance of provenance and the need for

historical records of interaction. Sometimes it may be necessary to augment the system

with components that are specific to the application domain. An example of this will be

given in Chapter 5 when discussing the PDS.

3.5 Summary 63

3.5 Summary

This chapter outlined requirements arising from the realisation of a generic IE, identified

TS data as a suitable data format for that environment, and discussed the means for in-

tegrating and capturing expert knowledge. Two approaches to facilitate expert knowledge

were reviewed: TA and annotations. Annotations are considered more appropriate due to

their direct interaction with the data and their ability to support bottom-up observations,

identifying features directly from the data, and top-down observations, originating from a

more abstract context outside the scope of the data. An understanding of how the PDS’s

annotation system would operate was also presented with a series of use cases to highlight

the benefits of such a system.

Chapter 4

Implementing The Interpreting

Environment

In Chapter 3 the IE workflow was presented and in effect it is possible to view the work-

flow description as a “blueprint” describing a specific application supported by the IE. It

will be seen that this “blueprint”, in conjunction with a collection of re-useable software

components, called the IE toolbox, can be used to construct a specific application.

Convergence Feedback Events

DP DCIC

Workflow description

Software
Additions

Application Application

Agent
Framework

IE Toolbox

Figure 4.1: An abstract view of an application being constructed from a workflow description
and the IE toolbox.

This chapter explores the IE toolbox, which can be used by an application engineer to

simplify the construction of an environment for capturing, interpreting and consuming TS

data. Employing this toolbox will also help standardise the construction of these environ-

ments, thus instilling confidence in the construction process. The toolbox is constructed to

support the IE components and their interactions as depicted in Figure 4.1.

The rest of this chapter is organised as follows; the design philosophy of the IE is

64

4.1 Design Philosophy 65

discussed in Section 4.1, this is followed by a high-level overview of the IE Toolbox’s ar-

chitectural components in Section 4.2, after which, each component is discussed in more

detail in subsequent sections. Finally, a number of distributed IE architectures are given, to

illustrate how the partitioning of IEs among various geographically distributed sites results

in exposing high-level characteristics, such as the creation of centres of expertise, which can

be exploited in specific application domains.

4.1 Design Philosophy

4.1.1 Design Principles

Best practice software engineering design principles were employed in the creation of the IE

toolbox. These include:

Separation of Concerns (SoC) - This involves maintaining a clear distinction

between the implementation of each functional component such that no component is

implicitly dependent on another. This approach allows for improved maintainability

and robustness. The IE was primarily developed using an Object-Oriented (OO)

approach and the architectural design incorporated design patterns as appropriate.

For example, the Model View Controller was used where outward-facing visualisations

were required by stakeholders.

Modular Design [78] - Modularisation of the code base is a complementary approach

to SoC. It results in a clear separation between components and provides improved

maintainability and increased reusability. It enables individual components to operate

independently, and to be reused.

Portability - There was a desire to ensure sufficient abstraction between the IE’s

application logic and the underlying operating system (OS). In the context of the use

case, the majority of the software designed and developed for a clinical setting runs

on the Microsoft Windows OS [79]. By providing a portable solution, support for the

environment across a broad range of OSs was maximised.

Operability - Monitoring and analysis systems support critical infrastructure. En-

suring they operate as expected in production is important. To that end a combination

of Unit Testing (software testing method whereby source code is broken down into

small units and tested in isolation to enure they operate as expected) and depen-

dency injection (a design pattern that decouples software components through the

implementation of the dependency inversion principle) were employed throughout the

development process.

4.2 Design Philosophy 66

4.1.2 Technologies Employed

Java - The IE was developed using the Java programming language [80]. This enabled

an agnostic approach to the underlying OS and nicely aligned with the aforementioned

design principles. Java’s OO nature assists with the modularisation of the code-

base. Java’s inter-operability across OSs makes it a widely adopted language for

applications. For instance, the Physiological Data Server was required to run on both

Linux and MS Windows. The portable nature of the IE components provided the

required support.

Representational state transfer (REST) - This was chosen as the most suitable

architectural style for components to communicate with one another within the IE.

REST [81] assists in defining the architectural constraints between the system’s pri-

mary components, by using existing standards provided by the World Wide Web. It

not only enables the IE components to be easily distributed, but it also enables the

integration of distributed IEs, thus, allowing for the construction of rich application

environments.

Jetty [82] is an embedded HTTP server that is used for requesting and serving data

by the IE. It enables ubiquitous access as HTTP is the communication protocol over

which the World Wide Web operates. The server defines the connection socket from

which the web portal is accessed, where requests should be addressed to and specifies

the format of RESTful requests and responses.

Extensible Markup Language (XML) - XML provides a markup language in

which the configuration of individual components can be defined. It was decided to

use XML because it is human readable and works well with RESTful services. Due

to the overheads associated with data transfer, it was decided not to encode data in an

XML format but rather to use a more compact binary representation for data storage

and transmission.

Binary attachment with web services - Compact binary representation for data

storage and transmission. The original design of the system called for these interfaces

to be implemented using Simple Object Access Protocol (SOAP). Although SOAP is

widely supported across development platforms, it was found that this support did not

extend to SOAP extensions for the efficient transmission of binary data (SOAP with

Attachments and Message Transmission Optimization Mechanism). As, for reasons

of efficiency, the environment involves the transfer of significant amounts of data

in binary form, simple HTTP requests, which are supported by practically every

platform, were used instead.

4.2 The IE Toolbox 67

4.2 The IE Toolbox

The three components (DP, IC, DC) encapsulate the core functionality for the production,

interpretation and consumption of data. An Agent Framework (AF) is used to facilitate the

extension of this functionality and is the means through which scalable and elastic resources

can be accessed.

The modular design of the IE enables a loose coupling of components from which the

construction of sophisticated solutions can be realised. Transparency between components

allows for SoC between communication, data transfer and processing functionality in the

environment. This is intended to support a higher level of maintainability and stability [83].

DP
Container

IC
Container

DC
Container

Agent
Framework

Event System

Agent
DB

Scalable
Processing

Scalable
Storage

Feedback
Mechanism Data

Store

Convergence
Container

Figure 4.2: Components of the IE Toolbox.

The IE Toolbox can be used by application developers to create instances of the IE

representing domain-specific applications. Using these components results in the rapid

realisation of standardised environments due to component reuse. The components included

in the IE Toolbox include:

• The Event System: It provides communications between components (see Section 4.3.1)

• The Agent Framework: It provides a mechanism for incorporating new computational

components as the system evolves. This, for example, allows for the periodic upgrading

of the system with more sophisticated ICs, without impacting on the rest of the

implementation (see Section 4.3.2).

• DP, IC and DC containers: These provide standardised interfaces with the remainder

of the IE. Specific DPs, ICs and DCs may require the provisioning, by the application

designer, of adapter components mapping the specific DP, IC and DC interfaces to

the standardised DP, IC and DC container interfaces.

4.3 The IE Architecture 68

• The Data Store: It provides the IE with a “memory component” which can be used to

record state and state transitions, audit and feedback information (see Section 4.5).

• The Feedback Mechanism: It allows for the incorporation of state information into

the next iteration or instance of the workflow. Each workflow iteration or instance is

precipitated by the arrival of feedback information. In essence, feedback resembles a

workflow acting as a DP. In practice, feedback information will be recorded in the Data

Store and this record will also be used to support data provenance. An application’s

specific component used to determine when the workflow has converged to a specific

state may also be accommodated by the provision of a convergence container.

4.3 The IE Architecture

The components of the IE Toolbox can be combined into an architecture that can be used

to realise workflows. Elements of this architecture are now described.

4.3.1 The Event System

DP
Container

IC
Container

DC
Container

Agent
Framework

Event System

Agent
DB

Scalable
Processing

Scalable
Storage

Feedback
Mechanism Data

Store

Convergence
Container

Figure 4.3: The event system facilitates communication within the IE.

Event-driven programming (EDP) is a paradigm where the control flow is determined

by the occurrence of events. These events can originate from user actions (mouse clicks, key

presses etc.), sensor input (arrival of new data, the breaking of threshold values) or from

communication with other programs. In the context of the IE, events are used to notify

other components of an occurrence that may be of interest. This involves the defining of an

event and specifying when to create an event of that type. For instance, when a new entity

is created an EntityCreatedEvent is generated.

EDP provides flexibility by enabling programs to react differently based on the events

that occur. It provides for a publish/subscribe model in which users can define events of

4.3 The IE Architecture 69

interest. If these events occur, notification of the occurrence is sent to those parts of the

system that are subscribed. Events may be used as system-wide notifications. They may

refer to the arrival of new data, the deletion of data or the change of state of a component

within the IE. In principle every component in the IE Toolbox is capable of generating events

to reflect its change in state. Furthermore, every component is capable of subscribing to

receive notification of an events occurrence.

Judicious use of these events by the application designer is important to ensure that

faithful conformance to the workflow description is maintained. It is easy to subvert the

explicit workflow description by listening for and reacting to global events in an unstructured

manner.

Even though any component of the IE can subscribe to arbitrary system events and use

these events to alter its subsequent behaviour, unintended system-wide consequences will

not result provided the workflow blueprint is not violated.

4.3.2 The Agent Framework

The Agent Framework (AF) operates as a standalone module within the IE. This separates

the acquisition, storage and direct analysis of data from the subsequent processing of that

data. This separation allows access to data to be facilitated as part of a monitoring and

analysis workflow, while simultaneously enabling the evolution of the environment through

the implementation of new agents. The AF allows a user-configurable set of agents to

perform analysis on data as they are streamed through the system.

DP
Container

IC
Container

DC
Container

Agent
Framework

Event System

Agent
DB

Scalable
Processing

Scalable
Storage

Feedback
Mechanism Data

Store

Convergence
Container

Figure 4.4: The components comprising the Agent Framework.

4.3 The IE Architecture 70

Agent Philosophy

Agent theory supports many of the characteristics that comprise a complex system. Adopt-

ing this design paradigm provides the IE with a means to model how its functionality should

evolve, to demonstrate its goal-directed behaviour and to act as a mechanism for the inte-

gration of multiple analysis techniques. It is envisaged that individual ICs will be realised

through their implementation as agents and will embody a variety of analysis techniques

such as those described in Chapter 1. This will enable aspects of a multi-agent system, as

described in [46], to be implemented, thus providing the means for a collection of loosely

coupled problem-solver entities to cooperate and achieve a desired objective. This is impor-

tant as the objective can be beyond the individual capabilities of a single technique, but is

made possible through that cooperation.

The intentional stance views agents as rational acting entities, with each agent’s actions

predicted based on their beliefs, intentions, desires etc. [46] The ability to reason about a

problem domain based on these characteristics closely mimics the interpretation process.

This was another reason for adopting an agent-based approach to the analysis of data.

The AF enhances the IE by enabling a user-configurable set of agents to perform analysis

on data, as they are being acquired by the system. The following design requirements were

identified:

1. Configurability: The set of available agents should be user-configurable.

2. Intentional stance: The framework should be capable of determining which of the

available agents, if any, are applicable to a particular container (DP, IC or DC).

3. Persistence: Agent state will be recoverable in the event of a server shutdown/restart,

due to a fault.

4. Error handling: Errors generated by agents should be identified, gracefully extracted

from the system, and reported to the user.

5. Security: Although access control to data available to the framework is outside the

scope of the agent framework, agents should not be permitted to perform actions that

could compromise system security. This is enforced by undertaking the code review

process for agent development, and decoupling the storage of data from the AF, such

that the AF’s agents may read data, but may not overwrite it. This lead to the design

decision that the agent database be segregated from the Data Store.

6. Data integrity: Ensuring data integrity requires the enforcement of global con-

straints. The actions of individual agents may not violate these constraints.

4.3 The IE Architecture 71

7. Code reuse: Code duplication in agent implementations should be avoided by pro-

viding well tested libraries to facilitate tasks that agents are expected to commonly

perform. This will assist in a repository of utility code to emerge over time, thereby

reducing the workload required for subsequent agent implementations.

8. Resource management: Agents may be created dynamically depending on the in-

tended application. Memory will be managed by storing only active agents in memory.

Inactive agents will have their state written to persistent storage to be reconstructed

when required.

9. Stream processing: Data should be processed as they arrive at the appropriate

container. New data segments should be detected when they are appended to a

container and any agents attached to that container should be notified.

Agent Framework Hierarchy

The AF hierarchy is depicted in Figure 4.5. The agent manager is responsible for providing

the agents’ execution environment. This involves: managing the set of configured agent

factories; creating agent instances as needed; managing agent persistence; subscribing to

system-wide events and forwarding events of interest to the appropriate agent factories and

executing the processing tasks generated by agents.

Agent factories are used to instantiate agent instances on behalf of the agent manager.

Agent instances are persisted and reconstructed as required using the Java Persistence API.

Event forwarding is performed by determining the set of agents to which a system event

applies to, then reconstructing those agents from the persistent store and forwarding the

event to them. A task executor, with a configurable number of threads, is used to perform

signal processing on behalf of agents.

Agent Factory

The Factory method [84] is the design pattern used for agent implementation. This enables

agent-related objects to be defined as an interface while allowing subclasses to decide on

which class to instantiate. The intent is to provide an abstraction between the related or

dependent objects and the concrete classes that implement them. This enables indepen-

dent components within the AF to articulate the conditions under which something should

happen, without having to concern itself with exactly how that implementation is realised.

This results in agents maintaining control of how, when and why they are instantiated

as well as providing a separation between instantiation and implementation. Each factory

4.3 The IE Architecture 72

Figure 4.5: Agent hierarchial overview.

facilitates abstraction of the constructor from individual agent classes. It enables the poly-

morphic creation of agents, as opposed to specifying individual polymorphic behaviour for

each agent individually.

Factories contain permutations of constraints, the general case includes a combination

of events to listen for, a specific data type, and the presence of certain characteristics

within that data type. This is a simple, yet powerful, means of packaging domain-specific

knowledge while ensuring that both the knowledge, and the underlying implementation of

processes, can continue to evolve and be further developed without affecting the overall

platform.

Each factory results in the specification of domain-specific knowledge. This will facilitate

the encapsulation of semantic knowledge of a domain, simplifying the process of organising,

identifying and arranging associations within that knowledge base. Collecting and dissemi-

nating this domain-specific knowledge in a transparent manner can have multiple benefits.

For instance, it could be used to assist in the identification of prejudice or bias within a

system’s knowledge base. This is considered further in Chapter 7.

Deploying an agent to an instance of the IE is then a case of packaging a factory and

the associated underlying agents into a JAR file. This enables updated domain knowledge,

and underlying techniques employed, to be rolled out in a manageable way. It is hoped that

this will assist the evolution of a rich collection of domain-specific functionality.

4.3 The IE Architecture 73

Agent Database

The AF uses a relational database to store meta-data about the agents in addition to the

agents themselves. The AF can be notified of any modification to the Data Store (such

as the arrival of new recording data) by subscribing to the events system, as can any of

the agents within the IE. The agent database data model is generated upon start-up and

results in the creation of the “agentDb” and its associated tables. Each type of agent

factory and agent can specify their own unique data model enabling greater configurability

and extensibility of the IE’s architecture. This is achieved by utilising a combination of

Object-relational mapping [85] and the Java persistence API [86].

Similarly to the Data Store, the agent database is implemented using HyperSQL. The

database statically defines the driver, protocol, database name and table name as well as

the connection URL and associated log files. An instance of the database “agentDb” with

the “AGENTS” table is created upon invoking the constructor. It is responsible for creating,

shutting down and connecting to the “agentDb”. Methods are provided for inserting and

updating agents, checking if an agent exists by its ID, checking those agents, which may be

associated with a container and methods for the serialisation/deserialisation of an agent’s

state.

Agent Development

Agent implementations are organised into packages, with each package containing an imple-

mentation of the AgentFactory interface. The agent factory is responsible for determining

the set of agents in the package that are applicable to a given recording, instantiating the

agent instances, and returning them to the agent manager.

Agent Factory

Agent Manager

Agent

Abstract Agent

AeegAgent

EDFExportAgent

CSVExportAgent

0....*

1

1

0....*

Figure 4.6: UML diagram representing the relationship between the AgentManager,
AgentFactory and Agent instances.

4.3 The IE Architecture 74

Functionality common to all agents, such as task generation and error handling, is de-

fined in the Agent interface. The AbstractAgent class provides a concrete implementation

of shared properties (such as data source and data stream duration), and is designed to be

subclassed as needed. Implementations of common functionality for the agents supported

by the framework is provided by the availability of utility code (see Section 4.7), as depicted

in Figure 4.6.

The AF should be made aware of any agent state that must be preserved between

task invocations. For example, the implementation of the aEEG agent, as described in

Section 6.4.2, requires that filter variables and 2 seconds of buffered input be preserved

between tasks. State persistence is achieved by adding Java Persistence API annotations

to the relevant sections of code.

Once agent development and testing is complete, the agent package is deployed by

packaging the required class into a JAR file, which is placed in a specific location in the

IE. Upon a system restart, the package will be detected automatically. Any new database

tables required by the agents will be created and an instance of the agent factory will be

instantiated.

Agent Perspective

Agents perceive their environment through the events system, and they effect changes to

their environment through modifications to the agent database and the addition of data to

the Data Store. These database changes in turn trigger further events that can be acted

upon by both the AF and other components in the IE. For example, from Chapter 5, the

creation of a new annotation by an agent would result in an event that would be detected

by the Physiological Data Server, causing an annotation to appear on the screens of any

analysts viewing the relevant recording.

Each event (EntityCreatedEvent, EntityChangedEvent, EntityDeletedEvent) has

an appropriate handler within the AF. When an event is thrown the agent manager notifies

each of the agent factories. Each factory encapsulates the constraints relating to the agent’s

domain-specific requirements. If the requirements are met, an instance of the agent is

instantiated.

For example, if an entity is altered, an EntityChangedEvent is thrown. This results

in the agent manager notifying all relevant agents. This is achieved by taking the entity

ID and querying the agent database for all relevant agents. These agents are loaded into

memory and each agent updates the parameters relevant to them.

4.4 The IE Architecture 75

Task Execution

agentsWithTasksPending and agentsWithUnprocessedData queues are used for managing

the execution of tasks by the AF. agentsWithTasksPending contains the ID numbers of

agents that have a submitted task for execution and agentsWithUnprocessedData contains

the ID numbers of agents that have outstanding data waiting to be processed.

An agent task can be generated when an event is thrown (as described in Section 4.3.2),

or when an agent task completes its execution and there is enough unprocessed data to create

another, as depicted in Figure 4.7. Initially, the details of the data source are updated, then

the agentsWithTasksPending is checked to ensure there are no outstanding tasks awaiting

completion for this agent. If there are, these are added to the agentsWithUnprocessedData.

Agent

Processing

Figure 4.7: The agent processing queue in operation.

Next, the agent is queried to see if it has enough data available to create a task.

This is dependent on the agent’s implementation as they process time intervals of vary-

ing length. The agent task is then created, which updates the amount of agent data pro-

cessed. A check is made against the amount of data available and if it equals zero it is

subsequently removed from agentsWithUnprocessedData. Then the agent is added to the

agentsWithTasksPending queue and submitted to the executor. The executor executes

the submitted tasks as a Runnable.

4.5 IE Container Interfaces 76

4.4 IE Container Interfaces

The container interfaces provide standard interfaces to the IE and specific instances are

adapted to these containers by the application designer. The standard interfaces include

the following:

The standard interface for the DP, IC and DC are effectively read/write communication

channels, which components can create and to which components can attach.

DP Container IC Container DC Container

Create adapter Attach adapter

<DP Interface> <IC Interface> <DC Interface>

Figure 4.8: DP, IC and DC Containers.

The convergence container takes two or more states as input and communicates “the

distance” between these states as its output. In the simplest case, the state container will

output a true/false value depending on whether or not its input states are equal.

State(X) State(Y)

<State X Interface> <State Y Interface>

State(X) = State(Y)

True False

Convergence Container

State adapter State adapter

Figure 4.9: Convergence Container.

4.6 Data Store 77

4.5 Data Store

The Data Store is the component that facilitates the provision of a “memory component”,

the need for which was highlighted in Section 3.3. It is encapsulated by the Database.java

class, which statically defines the database driver, database protocol, database name, the

connection URL and specifies log files associated with the Data Store.

JDBC is a Java database connectivity technology that defines how a client may access

a database and provides the means for updating/querying data within the Data Store.

The Data Store is decoupled from any specific implementation of a relational database

through its use of JDBC. This decoupling is further supported by the use of Hibernate,

which implements the Java Persistence API, and provides object relationship mapping.

This enables all entities within the IE to be persisted to tables in the relational database.

It is up to the specific application domain designer to specify how data will be structured,

the type of database technology that will be used and the layout of that database etc.

As increasing numbers of storage solutions are specified, it is envisaged that the IE will

be capable of providing a base for comparison between different storage techniques and

practices for application-specific domains.

4.6 Configuring The IE

Configuration of the IE is encapsulated by a Java object when running and persisted to disk

as an XML file (IEConfig.xml) when deactivated. The format of the XML configuration

file is shown in Listing 4.1.

Listing 4.1: XML configuration file for the IE.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<agentConfigModel>

<configFile>IE\conf\agentFrameworkConfig.xml</configFile>

<debugModeEnabled>false</debugModeEnabled>

<httpsEnabled>false</httpsEnabled>

<httpEnabled>true</httpEnabled>

<httpPort>8080</httpPort>

<instanceName>Interpreting Environment Name</instanceName>

<googleMapsAPI></googleMapsAPI>

<jmxSupportModeEnabled>false</jmxSupportModeEnabled>

<jmxPort>-1</jmxPort>

<jmxUsername></jmxUsername>

<jmxPassword></jmxPassword>

4.7 Utility Code 78

<uuidModeEnabled>true</uuidModeEnabled>

<uuid></uuid>

<databaseName>dbtemp0</databaseName>

<databaseNumber>0</databaseNumber>

<csvGenerationEnabled>false</csvGenerationEnabled>

<agentFrameworkEnabled>true</agentFrameworkEnabled>

<agentDatabaseName>AgentDb</agentDatabaseName>

<agentTypes>

<agentType>

<factoryClassName>AgentFactory#1</factoryClassName>

</agentType>

<agentType>

<factoryClassName>AgentFactory#2</factoryClassName>

</agentType>

</agentTypes>

</agentConfigModel>

4.7 Utility Code

The design of the IE advocates the creation of utility code. Utility code refers to abstracted

functionality that is not limited to a specific task, rather its potential for reuse in multi-

ple components is maximised. The ongoing development of utility code while developing

solutions to specific tasks is envisaged. This is intended to encourage the development of

a standardised and maintainable code-base and discourage the implementation of idiosyn-

cratic solutions that re-implement existing functionality.

There are a number of existing classes that that are examples of utility code. They

assist with generic tasks related to the monitoring and analysis of data:

epochGenerator: Specifies an interval of TS data for which a sliding window is gen-

erated. It enables both the length (time period) and the increment between window

instances to be defined.

signalProcessingTask: An abstract means of specifying a thread that should be

processed. It is used by agents to encompass the work that should be carried out.

SignalStorage: An interface to the Data Store’s fast file-based storage system. It

links data sources to the data files on disk (see Section 5.1.3). It also specifies how

the IE reacts to the creation, changing and deletion of such data.

4.8 Distributed IE Architectures 79

Annotation simplifies the task of creating a list of signal annotations. Persistence of

the resulting annotations is handled by the class. Other classes need only add anno-

tations to the list once they have been identified and instantiated. Helper methods

are provided to assist with the extension of previously created annotations.

DerivedRecording simplifies the task of creating recordings that are derivations of

existing ones. The creation of a derived recording is handled by this class. Helper

methods are provided to easily append sample values to the derived signals.

4.8 Distributed IE Architectures

The design of the IE, with its distinct loosely coupled components, makes it an ideal can-

didate for distributed implementation. Thus, the DP can be implemented at site 1, the

IE at site 2 and the DC at site 3, where sites 1, 2 and 3 are geographically distributed as

depicted in Figure 4.10. This would be seen to be the case, for example, in the Physio-

logical Data Server described in Chapter 5. The distributed nature of these components is

often mandated by the physical application being implemented and often poses additional

engineering challenges including the provisioning of secure communication channels and the

need to react in a timely manner in a real-time data-processing environment.

DP

Site 1 Site 2 Site 3

IC DC

Figure 4.10: The IE enabling remote production, interpretation and consumption of data.

In addition to considering the distribution of a single component, it is natural to consider

how multiple components of a particular type can be distributed for effective processing.

For example, consider co-locating many ICs at a single site into which data is streamed

from multiple distributed DPs and information is streamed to multiple DCS as depicted in

Figure 4.11. This model effectively co-locates the IC, thus providing a centre of expertise

servicing a distributed community.

Yet another architectural model can be realised by the creation of multiple distributed

IEs as depicted in Figure 4.12 to produce a network of collaborating peers.

4.9 Summary 80

It will be shown in Chapter 5 how these distributed models map naturally onto specific

application instances and how those mappings can be exploited to specific advantage.

4.9 Summary

This chapter described the implementation of an IE, introduced the IE Toolbox, a col-

lection of abstract re-useable functionality for the development of application-specific IEs

and presented a number of possible distributed IE architectures, each displaying interesting

characteristics derived for specific groupings of functionality.

4.9 Summary 81

DP

DP

DP

DP

DC

DC

DC

IC

IC

IC

IC

Figure 4.11: The IE as a distributed expertise centre.

IE

IE

IE

Figure 4.12: The IE facilitating collaboration between distributed experts.

Chapter 5

Realising A Physiological Data

Server

The Physiological Data Server (PDS) was constructed based on the workflow description

depicted in Figure 5.11. This workflow description acts as a blueprint for the implementation

of the application. Combined with the abstract methodology provided by the IE Toolbox,

the complexity of the task was greatly reduced.

Neonate

Neurophysiologist

DC : Data Consumer

DP : Data Producer
IC : Interpreting Component

(IC)

Storage

NICU

real-time(DP)(DC) (DP)(IC) (DC)

(DP)(DC)

treat neonate

prescribe treatment

Figure 5.1: The workflow of the Physiological Data Server.

The neonate in the system adopts the roles of DP, producing data for the NICU and

receiving treatment from the same. The NICU, in turn, adopts each of the roles in the IE,

as it carries out an initial interpretation (IC), produces the data for the workflow’s storage

element (DP) and consumes interpretations of data output from the neurophysiologist (IC).

The neurophysiologist adopts the role of an IC, analysing EEG data and providing an

interpretation, in the form of a prescribed treatment for the neonate, is administered by the

NICU. The dataflow incorporates feedback and so is continually driving the system towards

1The neurophysiologist (IC) is considered outside the scope of the NICU. The NICU (DC) consumes the
neurophysiologists interpretation in the form of a diagnosis and acts to treat the neonate (DP)

82

5.1 The Physiological Data Server 83

a state of convergence, in this case the desire for a healthy patient state.

5.1 The Physiological Data Server

The PDS consists of four components: an upload application, a server, the Data Store

and a viewing application, as depicted in Figure 5.2. The upload application is responsible

for transferring data from the acquisition location to the server. The server provides the

interfaces necessary for both human and software interaction with the data. The Data Store

is a repository of all recorded data. The viewing application is used to analyse individual

data records. Each of these components is discussed in more detail in the following sections.

Upload
Application

Viewer Server
Agent
Server

Event System

Data
Store

Agent
DB

Scalable
Processing

Scalable
Storage(i) (iv) (v)

(iii)

(ii)

(vi)

Figure 5.2: Architectural components specific to the Physiological Data Server.

5.1.1 The Upload Application

The upload application (UA) is responsible for the monitoring and acquisition of EEG data

in real time. As such, the UA is acting in the role of the DP. The (i) in Figure 5.2 refers to

the incoming flow of data to the UA, which is subsequently transferred to the server (ii).

This results in a number of functional requirements:

i) The UA requires read access to the data being generated.

ii) The UA must be capable of identifying data that currently exists, detecting any

modifications to this data and reacting accordingly when new data is generated. This

necessitates the maintaining of a record of all previously acquired data.

iii) The UA must have a means of packaging and transferring data to the server.

iv) Finally, the UA must be capable of carrying out these tasks in near real time. The

process is subject to a time constraint that complies with the operational procedures

necessitated by the interpretation of data.

5.1 The Physiological Data Server 84

The UA’s configuration is encapsulated by a Java object when running and persisted to

disk as an XML file (autouploadConfig.xml) when deactivated. The format of the XML

configuration file is shown in Listing 5.1.

Listing 5.1: XML configuration file for the UA

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<AutoUploadConfigModel>

<debugMode>false</debugMode>

<serverIP>localhost</serverIP>

<serverPort>8080</serverPort>

<location>CUMH</location>

<clientDataDirectory>C:\workspace\testdata</clientDataDirectory>

<numConcurrentUploads>1</numConcurrentUploads>

<uploadInterval>1</uploadInterval>

<ignoreDirectories>

<ignoreDirectory>backup</ignoreDirectory>

</ignoreDirectories>

<fileTypes>

<fileType>

<name>Nicolet EEG</name>

<extension>e</extension>

</fileType>

<fileType>

<name>European Data Format</name>

<extension>edf</extension>

</fileType>

</fileTypes>

</AutoUploadConfigModel>

serverIP and serverPort tags provide the address of the server to which all data is

forwarded.

location is the unique name of the data source.

clientDataDirectory denotes the top-level directory where data is stored.

numConcurrentUploads specifies the number of files that can be concurrently up-

loaded to the server. It has a default value of 1.

5.1 The Physiological Data Server 85

uploadInterval is the time interval that the UA waits before rechecking the

clientDataDirectory for new data entries. It is specified in minutes and has a

default value of 3 minutes.

ignoredirectories specifies the directories that are ignored when checking for newly

created, or modified, data. The specified address is relative to the upload directory

and directory names are case sensitive, e.g. “TEMP” is not the equivalent of “temp”.

Furthermore, specified directory names are valid for all subdirectories, not just at the

top level, so any occurrence within the sub-directory tree structure will be ignored.

filetypes contain two nested elements that are used to specify both the name of a

supported file type and its associated extension. If a file within the

clientDataDirectory is not one of the supported file types, it will neither be detected

by the UA nor transferred to the server.

Operation Of The UA

The operation of the UA is depicted in Figure 5.3. It is initiated by running a batch script

(Microsoft Windows) or a shell script (Linux), depending on the underlying OS. Upon start-

up the clientDataDirectory is queried to see if new data files have been generated or if

existing data files are being extended. If so, this is detected and the new data is uploaded

to the server. If not, the daemon for querying the clientDataDirectory sleeps for the

specified uploadInterval before retrying.

New/modified
data?

Start UA
Upload data to

Server
YES

No

Sleep for Upload Interval

Figure 5.3: A flowchart depicting the operation of the Upload Application.

A record of all files that match supported file types, as specified in

autouploadConfig.xml, are maintained by the UA. This facilitates the detection of new,

and extended, files. Newly created files are detected by querying the set of existing file

names, while an extension of a file is detected by comparing the file’s name, access time

and size to a previously recorded entry.

5.1 The Physiological Data Server 86

Transferring The Data

The UA uses HTTP as the communication protocol for transferring data to the server.

There are a number of benefits associated with a HTTP-based transfer protocol. It is

widely supported through the World Wide Web (WWW), can avail of secure connectivity

and transfer of data through HTTPS (layering HTTP on top of the SSL/TLS protocol) and

avoids issues with firewalls by operating on port 80, which is typically open in systems that

have Internet access. Data is transferred to the server using a series of web requests with

each HTTP POST request having a binary attachment that contains the data.

5.1.2 Server

The server is the intermediary between the components that comprise the PDS. As such,

it it is fulfilling multiple roles, it acts as the primary DC and shares the role of IC with the

Viewer. As depicted in Figure 5.2 it is responsible for the receipt and acknowledgment of

data from the UA (ii), the persistence of that data to the Data Store (vi), the serving of

data to the viewing application (iii) and the pushing of notices to interested parties via the

event system (v).

The server enables experts to browse available data by providing a web interface from

which they can select the data they are interested in (for more detail see Section 5.2). The

server adopts the role of IC as it facilitates access to both the data streams and experts’

access to those data streams. The server adopts the role of DC as it is responsible for

acting upon the receipt of an expert’s interpretation. The server provides a large array of

functionality that enhances the work of the application, aiding the monitoring and analysis

of data, and contains methodology that could be reincorporated into an abstract IE.

Acquiring Data

The server uses a RESTful architecture for communication. The arrival of data starts when

a request, containing an XML description of the data, is received by the server from the

UA. The server creates a corresponding database entry and responds with a data ID. This

ID is then used as a parameter in the series of requests containing data samples uploaded

by the UA. On receipt of one of these requests, the server saves the attached data to its

internal Data Store (see Section 5.1.3) and updates the database entry to reflect the fact

that it has been extended. This process continues until the UA is shut down manually, or

a predefined time period has elapsed in which no changes are detected.

5.1 The Physiological Data Server 87

Recording Sessions

 - id:int
 - location:Location
 - recordings:List<Recording>
 - startTime:Date
 - uploadedFiles:List<UploadedFile>

 + Getters/Setters

Recording

 - id:int
 - startTime:Date
 - uploadComplete:boolean
 - channels:List<Channel>
 - uploadedFile:UploadedFile

 + Getters/Setters

Channel
 - id:int
 - recording:Recording
 - channelNumber:int
 - label:String
 - signalType:SignalType
 - unit:Unit
 - resolution:Double
 - sampleFrequency:int
 - sampleWidth: int

 + Getters/Setters

1 1..* 1 1..*

Figure 5.4: UML diagram of data structures.

5.1.3 Data Store

The Data Store is implemented using a combination of an embedded SQL database for

storing meta-data and a collection of data files containing sample values. The database

used by the server is implemented using HyperSQL [87], which is an open source relational

database, implemented entirely in Java and available under the BSD License. HyperSQL

was a fortuitous choice as it implements standards defined by Java, JDBC and SQL.

The use of standardised file formats such as EDF [88] and EBS [89] was considered

when designing the Data Store, but none offered sufficient flexibility for planned future

extensions to the environment’s functionality. Instead a custom data structure was defined

that enables an agnostic approach to the handling of TS data.

How Data Is Structured

The use case (see Section 1.4) influenced how data is organised and the data structure is

depicted in Figure 5.4. While the data structure is specific to the application domain, as

outlined by the use case, it is capable of handling TS data in a generic manner and so would

be of benefit to other application domains that use TS data. Its main elements include:

· Channel: An individual series of TS values.

· Recordings: A collection of one or many channels of TS data from a DP.

· RecordingSessions: A top-level container encompassing multiple recordings from a

single DP.

5.2 The Viewer 88

Meta-data stored in the database includes recording attributes such as the acquisition

location, commencement time, and the properties of the individual channels, e.g. the fre-

quency at which a channel was recorded. A data file containing sample values is maintained

for each channel of each recording. Data files are used to avoid performance overheads

incurred by storing individual sample values in the database, and allow arbitrary intervals

of recording data to be retrieved efficiently.

5.2 The Viewer

The viewer facilitates the neurophysiologist’s interpretation process and so adopts the role of

an IC. It captures that interpretation by enabling the neurophysiologist to provide feedback

in the form of annotations as described in Section 3.2.4.

Upload
Application

Viewer Server
Agent
Server

Event System

Data
Store

Agent
DB

Scalable
Processing

Scalable
Storage

Figure 5.5: The components comprising the Viewer.

Although most TS data can be displayed effectively using a simple plot, the display of

EEG tends to be more complex. The raw data is of limited use and typically a montage is

applied in order to assist interpretation. A montage refers to the placement of electrodes

on the human head. There are two types of montage used for clinical analysis, a referential

montage, whereby there is a single reference electrode for all electrodes, or a bipolar montage

where you have two electrodes per channel, thereby having a reference electrode for each

channel.

The 10-20 system or International 10-20 system is a recognised standard for the place-

ment of electrodes on the scalp for recording EEG data, as depicted in Figure 5.8. The

10-20 system is a standardised approach to the recording of EEG data; this standardisation

enables the comparison of data acquired from different studies.

Experienced neurophysiologists may switch between several different montages when

5.2 The Viewer 89

Cz T4C4C3T3

Pz

Fz

T6

O2

T5

F7 F8

O1

Fp1 Fp2

F4F3

P3 P4

A1 A2

INION

NASION

Figure 5.6: The electrode placements as set out by the International 10–20 system [2].

analysing a recording. Two viewing modes are typically used: a review mode that switches

instantaneously between one screenful of data at the user’s discretion, and a “playback”

mode that simulates the acquisition process. Signal filters are essential to eliminate noise

and highlight features of interest. Other features expected by experienced analysts include

sensitivity adjustment and the rendering of signals in various colours determined by elec-

trode location.

A plug-in technology capable of more advanced client-side applications was therefore

required to implement the viewing application. During the evaluation process three such

technologies were in widespread use, any of which would have been suitable: Flash, Java and

Silverlight [90]. Flash was chosen for its ubiquity (available on 96% of browsers compared

to 81% for Java and 35% for Silverlight2) and excellent graphics support. The use of a

plug-in technology allows the application to be hosted on the platform and downloaded on

demand, facilitating seamless software updates and eliminating the need for users to install

software on their local machines.

Once the upload of an EEG recording to PDS has commenced, the recording may be

viewed by users with access to the system. This process begins with the user selecting

the recording to be viewed in the web application. This causes the viewing application to

open in a popup window. Once the viewing application has finished loading, it commences

operation by downloading the details of the recording being viewed, such as the acquisition

location, commencement time and channel attributes. The signal browsing interface is then

presented to the user (see Figure 5.8).

Next, the application begins to download signal data from the system. By default, the

2Statistics from statowl.com, Jul-Dec 2009.

5.2 The Viewer 90

Figure 5.7: Editing a montage in the Viewer.

application will attempt to load all of the signal data in sequence in the background. A

progress bar at the bottom of the screen indicates the current view position and the amount

of data segments that have been loaded. For usability purposes, data is downloaded on

demand, i.e. the recording segment currently in view receives priority. So, if the user moves

the viewport to a recording segment that has not yet been downloaded, then the current

request is interrupted and a new request is issued starting from the updated viewport

location. If acquisition is ongoing, then new data will periodically arrive on the server. The

viewing application detects the presence of new data by polling the server. If a change in

the recording duration is detected, then the view is updated and the user is notified.

By default, a bipolar montage is applied to the electrode data. A menu is provided

that allows the user to edit the default montage or create a new montage. As illustrated

in Figure 5.7, side-by-side lists are used to select channel combinations, for instance, here

the channel P4-Cz is about to be added. Signal rendering colours are applied automatically

based on electrode placement, but the colours are also user-configurable. Three filters are

available: a 0.5Hz high-pass filter to remove slow artefact, a 30Hz low-pass filter to remove

high-frequency artefact and a 50Hz notch filter to remove artefacts caused by electrical

power lines. Only the notch filter is enabled on all channels by default, but each can be

enabled or disabled on a per-channel basis. An option is provided to disable the rendering

of selected channels – a useful feature when artefacts caused by loose electrodes obscure the

view of other channels.

Two viewing modes are provided: browsing and playback. In browsing mode, the user

flips instantaneously forwards or backwards through screenfuls of data using buttons or

keyboard shortcuts. The duration of the recording segment visible on screen can be adjusted

5.2 The Viewer 91

Figure 5.8: The Viewer displaying 8 channels of EEG data in a bipolar montage along with
one channel each of EKG and EOG.

5.3 Software-specific Additions 92

using a drop-down menu. An arbitrary recording offset can be selected by hovering the

mouse over the bar at the bottom of the screen. When the mouse pointer is over the bar,

a visual indication of the exact offset to be selected appears and changes dynamically as

the pointer is moved left or right. Clicking the mouse moves the view to the selected offset.

Playback mode is activated by clicking on the play/pause button. In playback mode, the

next screenful of data is drawn gradually from left to right over the existing data on-screen.

The update speed can be adjusted using a slider control, allowing data to be reviewed at

a speed that suits the user. When the end of the recording is reached, new data will be

displayed as soon as it arrives from the server, allowing the most up-to-date data to be

continuously monitored.

Viewer Technologies

The use of REST and XML results in a solution that is free of proprietary technologies such

as BlazeDS (server-based Java remote and web messaging technology that communicates

with back-end and front-end Rich Internet Applications (RIA) developed for Adobe Flash

(Adobe Flex or AIR)). Communication with the viewer is carried out via HTTP, REST and

XML, thus, preventing vendor lock-in (restricted future development due to dependencies on

a proprietary technology stack). For example, the development of a HTML5-based viewer

for Android devices is a possibility and would readily integrate with the back-end of PDS.

5.3 Software-specific Additions

Application-specific requirements

While the IE is capable of facilitating a broad range of requirements, specific application

domains often necessitate the fulfilment of application-specific functionality. In the case of

the PDS, the use case identified a number of these requirements. A requirements docu-

ment (see Appendix A) was formed based on consultations with neurophysiologists. This

requirements document was also influenced by the use case description in Section 1.4 and

a review of the related work (see Section 1.2).

5.3.1 Adobe Flash

Experts required a means to visualise data remotely. This resulted in the development of

a browser-based application. The extensive level of custom viewing options required by

experts for the interpretation of data required a sophisticated technology for its realisa-

tion (see Section 5.2). Adobe Flash [91] is a means to develop Rich Internet Applications

5.4 Agent Framework Operation 93

(applications capable of delivering functionality traditionally associated with a desktop ap-

plication) with an excellent user experience to meet the requirements of the viewer for the

IE. Furthermore, when the viewer was initially developed HTML5 was at an early stage and

Adobe Flash was the dominant browser graphics rendering environment, being available on

96% of commonly installed web browsers [92].

5.4 Agent Framework Operation

Upon start-up, the agent manager reads its configuration file. An instance of each enabled

agent factory is instantiated. Next, the agent manager determines if any agents have tasks

outstanding that were prevented from executing by a fault such as an unexpected server

shutdown. If so, the outstanding tasks are recreated and submitted to the task executor.

Once the upload of a new recording commences, an event is dispatched that is detected

by the agent manager. The agent manager then informs the set of available agent factories,

who instantiate the set of agents applicable to the recording. The resulting agents are

then persisted to the database. Each agent queries the Data Store, in order to update

the quantity of data available and to check if sufficient data is available to begin/resume

processing. If so, the agent returns an executable task, which is submitted to the task

executor.

Data is streamed from the acquisition location in discrete segments. The arrival of each

segment triggers an event indicating that the data stream in question has been extended.

The agent manager responds to these events by reconstructing the set of agents associated

with that data stream using the persistence API, querying each agent for a task to be ex-

ecuted and scheduling the resulting tasks to the task executor. Although the set of agents

associated with a datastream is frequently reconstructed, the caching facility provided min-

imises the resulting performance impact.

The completion of each task results in an update to the internal state of the agent. These

changes are then reflected in the database through the persistence API. If the execution

of an agent task has not been completed by the time a new segment of recording data has

arrived, the agent is not reactivated until such time as the outstanding task has completed

execution and the updated state of the agent has been written to the database (where the

agent output is sequential and not parallel). This ensures that all tasks execute with an

up-to-date representation of the agent’s state.

In the event that an agent task results in an error, the agent manager flags the agent

in question and does not solicit any new tasks from it. Information about the error (such

as the amount of data that was successfully processed before the error occurred and the

Java exception that was caught) is stored and made accessible via the web interface. This

5.5 Security 94

error-handling scheme cannot detect situations where an agent task hangs indefinitely. The

only means of preventing this currently are through testing and the code review process

(see Section 5.5).

PDS is notified by the UA once signal acquisition has ceased and all outstanding data

segments have been uploaded. This triggers an event within the IE, to which the agent

manager responds by reconstructing the affected agents and notifying them in turn. This

allows agents to perform any final processing that may be required.

5.5 Security

Security concerns for data protection are an important consideration when patient data is

concerned. Steps have been taken to address the security concerns of tele-health systems, as

outlined by ISO 27001 [93] and ISO 27799 [94] with regard to data sensitivity, data transfer

and code review, in so far as feasible.

Data Sensitivity

PDS contains interfaces that interact directly with sensitive information. Care must be

taken to properly manage such information. PDS addresses this in a number of ways. In

order to preserve confidentiality, unnecessary data that could identify an individual is not

acquired. For example, when being used in the NICU, the upload application does not read

personal patient information (name, age, sex) from data files and the server has no means

of storing it.

Data Transfer

Consideration was also given to the security of data transfer. To reduce the likelihood of

malicious attacks and to prevent eavesdropping on data being transferred, the ability to

enable HTTPS and communicate over an SSL connection is supported.

Code Review

Two possible solutions to the issues of security and data integrity considered are sandbox-

ing and code review/JAR-signing. The sandboxing solution executes agents in a restricted

environment using a dedicated Java security manager [95] to mediate access to system re-

sources. The JAR-signing solution involves the use of a Java class loader that will refuse

to load JARs that have not been signed using a key known only to the framework devel-

opers [96]. In order to have an agent JAR signed, the source code implementing the agent

5.6 The Testbed 95

package undergoes code review to determine if there any issues with security or data in-

tegrity. On reflection, it was decided that the JAR-signing solution is the most appropriate,

as the use of a security manager imposes a performance overhead of 5-100% per resource

access statement [97]. The JAR-signing restriction is only enabled on production builds of

the remote monitoring server, in order to facilitate the development and testing of agent

implementations, before they are submitted for review.

5.6 The Testbed

A testbed was deployed to the NICU in the Cork University Maternity Hospital in associ-

ation with the Neonatal Brain Research Group [98] (NBRG) from October 2009 to March

2012. This enabled the operation of PDS to be tested in a real clinical environment on an

ongoing basis. A process of requirement-gathering was undertaken with personnel working

in the NBRG (the details of which are outlined in Appendix A). This was beneficial, as it

assisted with the identification of issues affecting the design of PDS, such as infrastructural

constraints and the technologies employed.

Many of the medical devices found in the NICU, such as heart rate monitors, typically

contain a serial port that allows the data stream to be extracted easily during acquisition.

However, many of the EEG machines currently in use do not have such a facility. Even

if the data stream were to be extracted directly from the amplifier, this data is of little

use without knowledge of the electrode placements and other settings that are typically

configured in the acquisition software, and which enable interpretation.

Access to this information from within the acquisition software is possible if an ap-

propriate plug-in API is supplied by the vendor of the acquisition software. A drawback

of this approach is potential disruption of the acquisition process if bugs arise due to the

interaction between the plug-in and acquisition software.

5.6.1 Initial Approach

Initially, the system’s data flow contained five entities. These were the patient, the EEG

monitoring machine, the UA, the server and the neurophysiologist, as depicted in Figure 5.9.

The intention was to install the UA directly on the EEG monitoring machine. This would

provide the UA with access to the data as it was being generated by the data source,

enabling the upload application to run concurrently on the EEG monitoring machine and

stream the EEG data to the server directly.

The acquisition software running on the EEG monitoring machine was proprietary and

all data generated by the acquisition software was stored in a proprietary format. The

software was capable of generating data in a non-proprietary format, the European Data

5.6 The Testbed 96

Figure 5.9: The original data flow envisaged for the system.

Format (EDF) [99]. However, EDF did not support the association of contextual informa-

tion (in the form of text-based labels) with data streams and so, was largely unused by the

clinicians.

A suite of dynamic link libraries (DLLs) were provided by the software vendor, enabling

direct interaction with the acquisition software, and enabling the reading and writing of

data in the proprietary format. A prototype of the UA was developed that transferred data

as it was being acquired by the proprietary software. This demonstrated that the prototype

could successfully acquire data in a simulated environment.

Upon deployment of the prototype to the EEG monitoring machine, the UA failed to

acquire EEG data. The was due to the DLLs provided by the vendor of the acquisition

software. The DLLs provided were a debug version. Registered in isolation, these debug-

DLLs enabled the UA to acquire data. Registered in conjunction with the production-DLLs,

they rendered the UA inoperable. As the production version of these DLLs was already

registered, installing the UA would result in the prevention of critical operations being

carried out in the NICU.

5.6.2 Consequence Of An Integrated Approach

As a result not only was the UA prevented from reading and transferring data to the

PDS, but the EEG monitoring machine was prevented from acquiring data from patients,

rendering it inoperable. It was decided that this method could only be made trustworthy

through extensive testing in partnership with individual vendors of the acquisition software.

Concerns relating to the validity of the medical device’s CE mark [100] as a result of

installing third-party software were also raised. As such, an alternative acquisition process

to mitigate these issues was required.

5.6.3 A Revised Approach

A more “hands off” and non-invasive approach is to extract the required data from the EEG

data file output by the acquisition software. An advantage of this method is that it can

5.7 Streaming Data In Real Time 97

be performed on a file server, eliminating the need to install any software on the machine

used for acquisition, thereby ensuring the integrity of the machine and its CE mark. A

limitation of this method is that the acquisition software must be capable of saving to a

file server. Rather than saving the EEG data to the local machine, the acquisition software

saves the data to a shared network drive on the intranet. This strategy provides a sandbox-

like environment, isolating the production environment critical to the everyday operation

of the NICU from untested code and configuration changes. However, this does not solve

the issue of acquiring the data as it is being generated, a necessity for the analysis of data

with temporal constraints.

Figure 5.10: The revised data flow envisaged for the system.

Figure 5.10 illustrates the revised flow of data through the system. The UA, running on

the file server, streams data from the EEG data file to the server. From there, it is streamed

to the viewing application running on the neurophysiologist’s PC within a browser. The

file server is not accessible outside the hospital LAN because it contains sensitive patient

information.

5.7 Streaming Data In Real Time

Streaming data necessitates the ability to access data in real time. This was a major

challenge for PDS to address, as data generation was carried out by third-party software.

As data generation was outside the scope of PDS’s DPs, it required a general purpose

solution for the accessing and streaming of data in real time.

This can require invasive measures, such as accessing a file while it is being modified by

another process. This can be difficult from a software engineering perspective, especially

when used in conjunction with critical infrastructure and processes. PDS provides a novel

solution to overcoming this challenge, that enables the acquisition of data, while maintaining

the integrity of the data and does so in a non-invasive manner.

5.7 Streaming Data In Real Time 98

The Challenge Of Real-Time Acquisition

The default behaviour of some OSs, such as Microsoft Windows, is to disallow concurrent

access to a file by more than one process. If the OS enforces exclusive file access then

the process that attempts to read from the shared file will be prevented from doing so

and must wait indefinitely until the writing process closes the file. If the writing process

opens and closes the file periodically then the reading process may access the file after the

writing process closes it. However, the reading process may in turn lock the file, preventing

the writing process from reopening it and potentially leading to undesirable behaviour.

Although a processs locking behaviour can be changed programmatically, this approach

requires access to the processs source code, and is not applicable as a general purpose

solution. A similar situation arises when file access is being performed using a library for

which the source is not available.

At present, the only means to implement concurrent access to locked files is to either

(a) modify one or both processes to implement less restrictive locking behaviour or (b) run

the processes on an OS that does not enforce exclusive locks using one of the techniques

described above. If neither of these solutions is applicable, as in the context of the use

case, then the only means available is to provide concurrent access to files in the presence of

exclusive locks. This applies generally to any situation where file-locking behaviour prevents

concurrent access to a file.

The Solution

Consider two processes: the first, the writer, is modifying a data file that runs continuously;

the second, the reader, is invoked repeatedly, reading and processing any new data in the

file upon invocation. Concurrent access to the shared file is prevented by the OS’s file-

locking mechanism. The PDS’s solution is to create a third process, the monitor, that

detects changes to the shared file using attributes, such as file length or access time, that

can be determined without locking the file. When a change to the shared file is detected,

the monitor performs a block-level copy of the shared file, bypassing the OSs file-locking

functionality.

The reader then works on the newly created copy. This process is repeated until new

data is no longer detected. This technique insulates the reader from the writer, preventing

the locking behaviour of one from interfering with the operation of the other. The solution

described here does not require any modifications to the applications/libraries themselves.

However, the technique does involve the creation of copies of the file in potentially incon-

sistent states. The reading process must be robust enough to tolerate this.

This robustness is facilitated by the Volume Shadow Copy Service [101] (VSCS). The

5.7 Streaming Data In Real Time 99

VSCS is integrated into multiple versions of the Microsoft Windows OS. PDS re-purposes

this service to enable real-time acquisition of data from a data source in a reliable and

maintainable manner. VSCS enables a snapshot of data on disk to be taken and is typically

used for backing up systems by making copies, or snapshots, of the files on disk. There

are two important features of the VSCS: firstly, it ensures that data does not change while

the backup is taking place, and secondly, it avoids the aforementioned problems with file

locking. PDS uses Hobocopy [102] to incrementally invoke Shadow Copy on the data source,

by creating a clone in a reliable manner that is compliant with Microsoft Windows operating

procedures. These incremental copies are then read by the UA and any new data detected

is uploaded to the Server as depicted in 5.11.

101010011101
111001100000
101010010101
000111010101
1010....

i) writes to

File Server

ii) VSCW
performs
incremental
block level copy

iii) UA uploads new data

101010011101
111001100000
101010010101
000111010101
1010....

EEG Monitor Data Server

Figure 5.11: The process of streaming data within PDS.

An Alternative Approach

An alternative approach could be the use of Shim infrastructure [103], a technical solution

for enabling application compatibility on Microsoft Windows. Shim infrastructure enables

developers to hook into function calls made by particular versions of a running application.

By linking API calls to alternative code it would be possible to access a data source as it

was being generated by software running on a Microsoft Windows OS. In this manner, data

could be accessed without interfering with the acquisition process and a copy of the data

provided for streaming purposes. However, the scope of this solution is severely limited as

it would require a specific instance of the solution for each software application generating

the data, as well as an understanding of how that application interacted with the Microsoft

Windows OS.

5.8 Summary 100

Deployment To The NICU

The real-time monitoring solution is directly integrated in to the UA. An instance of the

UA is generated and deployed to a file server in the NICU. The UA itself is a collection

of JAR files that encompass the functionality for acquiring, packaging and transferring the

data to a server, the DLLs that enable the reading and writing of files in the proprietary

format, and some third-party software for invoking snapshots. Also included is an XML

configuration file for setting the relevant details and batch/shell scripts for running the

application with the respective OS. The revised approach is depicted in Figure 5.10

The UA streams individual data files that are associated with a patient. This record-

ing consists of multiple channels of EEG data. Each channel of the recording refers to

a particular location on the human head where an electrode has been placed. A patient

may have multiple recordings, e.g., the recording goes on for a prolonged period of time, or

different EEG monitoring machines are used to acquire the data. The recordings are then

grouped into a recording session. This is how it is displayed in the viewer, as a series of

recordings under one recording session. Also the UA can support multiple uploads to the

server simultaneously.

5.8 Summary

This chapter used the concepts developed in Chapter 2, Chapter 3 and Chapter 4 to cre-

ate the PDS. A workflow description, representing a blueprint for the specific application

domain, was used to aid the software construction process. This process made use of the

generic functionality offered by IE Toolbox.

In addition, it was necessary, due to specific application requirements, to create addi-

tional software components. These components predominantly relate to managing propri-

etary formats and interfacing with third-party libraries. As such, the functionality required

could not be anticipated and provided for in a generic manner by the IE. It is likely that all

applications of the kind described here will require some degree of customisation. However,

it can also be seen that a large portion of the application code can be realised from the

generic reusable components.

The fact that a TS application as complicated as the PDS could be rapidly constructed

using mostly standardised components together with a transparent workflow description,

provides strong evidence of the utility of the IE proposed here. The utility and fitness for

purpose of the resulting application is explored further in Chapter 6.

Chapter 6

Evaluating The Physiological Data

Server

In this chapter the Physiological Data Server’s (PDS) capacity to produce, process and

consume data is demonstrated. Throughout this demonstration an emphasis is placed

on how PDS frees itself from the constraints of any particular IC, while at the same time

facilitates the inclusion of specific analysis techniques that a particular domain may require.

6.1 Experimental Testbed

The hardware used for experimental work consisted of a Dell PowerEdge R720 Server with

a mounted NFS datastore, which was directly connected through a 1Gbit/s network con-

nection. Hardware specifications are detailed in Table 6.1. The server ran a 64-bit version

of CentOS 6.6. Experiments were executed on virtual machines, with varying specifications,

using the hypervisor KVM.

Manufacturer Dell

Model PowerEdge R720

CPU model Intel Xeon CPU E5-2640 v2

Cores 8

Sockets 2

Total physical cores 16

Clockspeed 2.0 GHz

Memory 64GB

HDD 1TB over NFS

Hyperthreading yes

Table 6.1: Hardware specifications of experimental testbed.

The virtual machines used, operated using a 64-bit version of Microsoft Windows 7

101

6.2 Generating Data for Experimental Purposes 102

Professional SP1. Hardware configurations of VMs varied between experiments as shown

in Table 6.2. The CPU configuration was set to host, to pass through all available CPU

instructions. Due to the limitations of Windows 7, the socket count was set to 1. Otherwise

the system would simulate a socket for each core, which does not work with Windows 7

Professional. The storage driver was set to virtIO with the storage format qcow2. This

allowed the use of thin provisioning, which only grows the image file when the space is in

use.

Size Standard Large

Cores 4 16

Sockets 1 1

Memory 4GB 16GB

Used in exp. work for Sections 6.2, 6.3, 6.4.2, and 6.5.1 Section 6.7

Table 6.2: VM specifications used for carrying out experimental work.

Additional software installed on the VMs included the Java 7 runtime (version 1.7.0.71).

The browser used to interact with the web interface of PDS was Google Chrome (version

41.0.2272.118m). Python scripts were used to automate the execution of the experiments

and so Python (version 2.7.9) was also installed.

6.2 Generating Data for Experimental Purposes

To carry out a number of the experiments it was necessary to generate data on demand. This

necessitated the creation of an arbitrary number of DPs in order to produce an arbitrary

quantity of data on demand. This also necessitated the generated of data in real time.

This generation must occur in a manner that periodically writes the data to a file such that

the file-locking behaviour, as discussed in Section 5.7, occurs. Furthermore, the ability to

generate multiple data feeds concurrently must be provided.

Data Generation

A custom instance of PDS was deployed to facilitate data generation. An upload application

(UA) transmits a collection of pre-recorded EEG data files to this instance, in 60-second

chunks, with a delay of 59,985 ms between each transmission. The delay period was se-

lected based on empirical testing to identify which value most closely mimicked real-time

generation. A DP was developed to assist with the process, the EDFExportAgent (for more

information see Section 6.4.1).

Figure 6.1 depicts a 6-min segment of EEG data being uploaded by a UA at the throttled

rate. Note how the data available on the custom instance (blue) and the data exported by

6.3 Generating Data for Experimental Purposes 103

 0

 50

 100

 150

 200

 250

 300

 350

 400

00 01 02 03 04 05 06

Ti
m

e
se

rie
s

da
ta

 in
 s

ec
on

ds

Time (Minutes)

Data on disk

 0

 50

 100

 150

 200

 250

 300

 350

 400

00 01 02 03 04 05 06

Ti
m

e
se

rie
s

da
ta

 in
 s

ec
on

ds

Time (Minutes)

Data exported

Figure 6.1: EEG data being uploaded to PDS.

the EDFExportAgent (red) are identical. This illustrates the PDS’s capacity to export

data without a degradation of service in the order of seconds. Figure 6.2 demonstrates

the generation of data, over a longer period of time with no noticeable degradation in

performance.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 2 4 6 8 10 12 14

T
im

e
se

rie
s

da
ta

 a
va

ila
bl

e
in

 s
ec

on
ds

Time (Hours)

Available on PDS

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 2 4 6 8 10 12 14

T
im

e
se

rie
s

da
ta

 u
pl

oa
de

d
in

 s
ec

on
ds

Time (Hours)

Exported by EDFExportAgent

Figure 6.2: Approximately 12 hours of data, uploaded to PDS and exported by the
EDFExportAgent in real time.

6.3 Streaming Data 104

6.3 Streaming Data

The ability to stream data in real time is critical for timely analysis. A delay in data

acquisition can have critical consequences, as in the case of neurophysiological monitoring

(see Section 1.4). As such, real-time acquisition of data is seen as an essential requirement

for a generic monitoring and analysis platform.

Experimental Procedure

To evaluate PDS’s capacity to support real-time acquisition, a one hour EEG data file was

acquired in a real-time setting. Each stage of the dataflow was monitored and associated

metrics generated. UA1 and UA2 are both instances of an upload application (as described

in Section 5.1.1). UA1 uploads one hour of EEG data to an instance of PDS. The PDS

instance exports the data to disk using the EDFExportAgent. This recreates the file-locking

behaviour that affects the acquisition of real-time data in the NICU (as described in Sec-

tion 5.7). UA2 acquires and uploads the data in real time using PDS’s non-invasive means

of acquiring streaming data (as described in Section 5.7). There is a programmed delay

of two minutes between the execution of UA1 and UA2 to ensure that the data has been

uploaded and exported before acquisition is attempted by UA2.

6.4 Mapping Roles Via The Agent Framework 105

Results

The data was acquired at a rate that exceeded real-time data generation and experienced

no noticeable delay as can be seen from Figure 6.3.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

59:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00

D
at

a
up

lo
ad

ed
 in

 K
b

Time (Minutes:Seconds)

Acquiring a live datastream in the NICU

UA1
UA2

Figure 6.3: Real-time acquisition of one hour of data.

Discussion

Figure 6.3 demonstrates PDS’s capacity to acquire data in real time and support the timely

analysis of data. UA1 uploads an hour of data in approximately 6 minutes, this data is

exported to disk as it arrives. UA2 periodically invokes a low-level copy of the data on disk

and proceeds to upload it to a second instance of PDS. UA2’s ability to access “locked data”

without interfering with UA1’s writing process is indicative of PDS’s ability to acquire data

in real time in a non-invasive manner.

6.4 Mapping Roles Via The Agent Framework

Individual agents are capable of adopting the roles associated with the workflow components

and can embody functionality that enhances PDS. This provides a means of specifying

extensible functionality tailored to the specific domain being analysed. To demonstrate

this, a number of agents that assist with the production, processing and consumption of

data have been implemented. The first acts in the role of a DP and assists with generation

6.4 Mapping Roles Via The Agent Framework 106

of data (see Section 6.4.1), the second acts in the role of both a DP and an IC by broadening

the number of experts (and processes) that can analyse the EEG data (see Section 6.4.2),

and the third acts in the role of both an IC and DC, assisting experts with their workload

by processing data streams as they are received (see Section 6.5).

6.4.1 The EDFExportAgent (DP)

The EDFExportAgent was developed to assist with simulating data generation. It demon-

strates PDS’s capacity for extension via the Agent Framework. As data is received by

PDS an EntityCreated and an EntityChanged event are thrown. The EDFExportAgent is

listening for both, and so, is notified when a recording is either created or extended. The

EDFExportAgent reads this data from the Data Store and proceeds to write this data to a

file on disk, extending it in 1-second chunks, in the EDF file format.

The manner in which data is written results in the periodic locking of the file, as data

is written to disk as it arrives. This closely resembles the acquisition process as it occurs in

the NICU. For example, the Nicolet One Monitor [104] was found to buffer approximately

8-12 seconds of data before writing to disk. In doing so, the EDFExportAgent recreates the

file-locking behaviour experienced in the NICU.

This provides the ability to evaluate PDS at a user-defined rate of data generation. This

is something the testbed, discussed in Section 5.6, could not have facilitated.

6.4.2 The aEEGAgent (IC)

Amplitude-integrated electroencephalogram (aEEG) is a derived signal from a reduced EEG

and is used as a method for the continuous monitoring of a patient’s brain. The method

is based on filtered and compressed EEG that enables evaluation of long-term changes and

trends in electrocortical background activity by relatively simple pattern recognition. It

is an extension of the cerebral function monitor which was developed in the late 1960s to

monitor adults in the intensive care unit [105].

In term infants (infants born at 37 to 42 weeks gestation) aEEG is an excellent method

for evaluating cerebral function and cerebral recovery after hypoxic-ischemic insults such as

perinatal asphyxia and apparent life-threatening events [105]. aEEG background activity

within the first six hours of birth in term infants afflicted by hypoxic ischaemic encephalopa-

thy has been shown to be predictive of later neurological outcome [64].

PDS’s application to neurophysiological monitoring resulted in an agent for the deriva-

tion of aEEG being considered an appropriate analysis technique. As an IC, it enables

the interpretation of raw EEG data, resulting in a derivation of new information and the

production of new data, in effect the aEEGAgent is simultaneously carrying out the role of

6.4 Mapping Roles Via The Agent Framework 107

a DP and a IC. As such, the aEEGAgent was developed and incorporated into the system.

The aEEG approximation implemented by the agent uses a 9th order digital infinite impulse

response (IIR) least P-norm bandpass filter designed to pass energy in frequencies from 2Hz

to 15Hz. The nonlinear mapping function is defined as follows:

F (eeg(t)) =

{
|eeg(t)| |eeg(t)| ≤ th
th log (|eeg(t)| − [log(th)− 1]) |eeg(t)| > th

(6.1)

where log denotes the natural logarithm and the threshold, th, is chosen as 20µV. The

nonlinear mapping is then averaged across 3s and scaled:

aEEG(t) =
1

3

∫ t+1.5

t−1.5
2F (eeg(τ))dτ. (6.2)

The algorithm was initially implemented and tested using MATLAB [106]. As segments

of recording data are acquired by PDS, the AF is notified via the event system resulting in

the agent being instantiated. When the aEEGAgent data requirements are met, tasks are

created and processing of the EEG data commences.

The MATLAB implementation was used to verify the agent’s output. The persistent

agent state preserved between task invocations consists of the buffered filter inputs and

outputs, and the previous 2s of output from the nonlinear mapping function. Unit testing

was used to ensure that the agent state was persisted and reconstructed correctly.

Evaluating The aEEGAgent

Experimental Procedure

1. The aEEGAgent was deployed to an instance of PDS.

2. EEG data was streamed to that instance of PDS for approximately six hours.

3. This data was acknowledged by the AF and an aEEGAgent was instantiated to generate

an aEEG recording.

4. Metrics related to the aEEGAgent were monitored, including the arrival time of the

EEG data and the time taken for the derivation of the aEEG data.

5. A clinical neurophysiologist reviewed the data derived by the aEEGAgent.

6. The clinical neurophysiologist compared this derivation to the output of the Matlab

implementation.

6.5 Mapping Roles Via The Agent Framework 108

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 8:30 9:00 9:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30

T
im

e
S

er
ie

s
da

ta
 in

 s
ec

on
ds

Time (Hour:Minutes)

Processed data
Unprocessed data

Figure 6.4: Available source data (EEG) graph against available derived data (aEEG) on
the system.

Results

The processing of the EEG data by the aEEGAgent results in an aEEG recording being

made available in real time. This recording can then be visualised in the web-based viewer

and so is available to experts for analysis. Figure 6.6 compares a visualisation of the aEEG

derived by the aEEGAgent on PDS and a screenshot of the same aEEG as derived by the

Matlab implementation the agent was based on. The visual output of the aEEGAgent was

reviewed by a clinical expert in neurophysiological monitoring and deemed sufficient for

clinical diagnosis. As can be seen in Figure 6.6 there is little or no difference between the

visualisations. Furthermore, Figure 6.4 indicates there is no delay in the availability of the

aEEG visualisation due to processing requirements of the EEG.

Discussion

The aEEGAgent presents a number of desirable characteristics. It demonstrates PDS’s ca-

pacity to integrate analysis techniques (ICs) that are beneficial to analysis, in this instance

by broadening the scope of expertise that can interact with patient data. Similarly it pro-

vides an alternate data format that can be analysed by existing analysis techniques on the

system. This demonstrates both the extensible nature of PDS and the reasoning for which

that extension should be facilitated.

6.5 Assisting Interpretation 109

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 8:30 9:00 9:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30

T
im

e
S

er
ie

s
da

ta
 in

 s
ec

on
ds

Time (Hour:Minutes)

Data available to be processed

Figure 6.5: EEG data available awaiting processing by the aEEGAgent.

Figure 6.6: aEEG visualisation of two channels F4-C4 generated by MATLAB (on the left)
and the aEEGAgent (on the right).

6.5 Assisting Interpretation

A large body of work exists on automated analysis techniques for the processing of EEG

data. Typically, these techniques are used to identify features of interest (e.g. detect

ailments indicative of an undesirable patient state), act as decision support aides or for

knowledge discovery purposes.

Seizure detection algorithms are examples of analysis techniques. These algorithms use

a variety of signal processing techniques, as well as AI and Machine Learning approaches,

to process EEG with the intent of confirming the presence, or absence, of seizure activ-

ity. For example, in [107], a neural-network-based approach that operates in five stages:

filtering, artifact detection, feature extraction (of both candidate and non-candidate data),

6.5 Assisting Interpretation 110

redundancy and relevance analysis is presented. In [108], the authors focus on the use of

Discrete Wavelet Transformation as an improved time frequency representation for EEG in

order to improve classification results.

In [109], three algorithms (Celka et al., Gotman et al. and Liu et al.) for the automated

analysis of neonatal EEG are evaluated. The algorithms employ a variety of classifica-

tion techniques, such as modelling, complexity analysis, rhythmic discharge detection and

auto-correlative functions. The algorithms were found to have sensitivities ranging from

42.9% to 66.1% and specificities ranging from 54% to 90.2%. It is interesting to note that

the specificities and sensitivities differ from those originally published by each respective

algorithm and opens the question as to how best to publish one’s work such that it can be

empirically re-implemented and tested.

Alternative approaches to traditional signal processing techniques have also been taken.

For instance, in [110] it is stated that classifier based methodologies are too rigid and not

suitable due to the large variance in neonates’ frequency, morphology and topography. The

method of detection proposed is to mimic a human expert. An algorithm that identifies two

of the main characteristics that a human expert uses to detect seizure has been devised.

The algorithm focuses on the background EEG and the recurrence of pattern in the signal.

To demonstrate PDS’s capacity to assist experts analysis, a seizure detection-based

analysis technique was implemented. The Gotman algorithm [111, 112, 113, 114] was chosen.

As an algorithm for the automatic detection of seizure in the newborn it was considered an

appropriate choice as an IC.

6.5.1 The GotmanAgent (IC)/(DC)

The Gotman algorithm is comprised of three methods for analysing EEG data: spectral

analysis to find rhythmic discharges; spike detection to find groups of abnormal spikes that

may not be rhythmic; and low-pass digitally filtered EEG to find very slow discharges.

Rhythmic Discharge
Detector

Multiple Spike
Detector

Slow Rhythmic
Discharge Detector

Abstract Agent

GotmanAgent

Incoming EEG data

Candidate Seizure
to be Annotated

Figure 6.7: Components of the Gotman Agent.

6.5 Assisting Interpretation 111

Table 6.3: Values indicative of seizure in the Rhythmic Discharge Detector.

Dominant Frequency WDSP Power Ratio Stability PEC PDC

0.5-1.5 ≤ 0.6 3-4 < 3 < 0.8 > 0
1.5-10 ≤ 0.6 2-4 < 3 < 0.8 > 0
1.5-10 ≤ 1 4-80 < 3 < 0.8 > 0

Rhythmic Discharge Detector

This component involves the detection of rhythmic discharges from 0.5Hz - 10Hz. Spectral

analysis is performed on 10-second time intervals of sequential EEG data, with a 2.5-second

sliding window between time intervals. The frequency spectrum is computed using a fast

fourier transform (FFT) with a length of 2048 points and a frequency ranging from 0Hz -

100Hz. Two prior time intervals, with a gap of 60 seconds, are used to provide background.

The following are computed for each time interval: the dominant frequency, the width

of the dominant spectral peak (WDSP), the power ratio, the stability of current time

interval, poor electrode contact (PEC) and the patient disconnected indicator (PDC). If

the dominant frequency, WDSP and power ratio for a given time interval are found to be

within the specified range (see Table 6.3) for stability, poor electrode contact and patient

disconnected indicator, it is considered a positive detection.

Multiple Spike Detector

This component uses a spike-detection algorithm developed for adult EEG [114]. The adult

algorithm was modified due to a tendency towards longer spikes in neonatal EEG. An IIR

filter is used to perform high-pass digital filtering of the EEG prior to spike detection to

an order of 3 with a cut-off frequency of 2Hz. A detection is considered positive when 6 or

more spikes are detected within a 10s time interval.

Slow Rhythmic Discharge Detector

The detection of slow rhythmic discharges uses an IIR filter to perform low-pass digital

filtering, of order 2 with a cut-off frequency of 2Hz, of the EEG prior to it being processed

by another algorithm also developed by Gotman [113] using the same time interval duration,

gap and background duration as above.

Performance

The average seizure detection rate reported by Gotman has been found to be 69% with an

average false detection rate of 2.3 per hour [112]. The algorithm can be decomposed into

three independent functions for processing the EEG as depicted in Figure 6.7. Initially, each

6.6 Evaluating The Distributed Alternatives 112

process was developed and tested independently, with validation being performed using a

pre-existing MATLAB implementation.

Evaluating the GotmanAgent

The algorithm as described in Section 6.5.1 was initially implemented and tested using

MATLAB. As segments of recording data are acquired by PDS, the AF is notified via the

event system resulting in the GotmanAgent being instantiated. When the GotmanAgent’s

data requirements are met, tasks are created and processing of the EEG data commences.

Upon detecting a seizure, the agent annotates the recording.

Upon reviewing the data, an expert is presented with a list of annotations. The expert

can decide whether or not the GotmanAgent has classified the data correctly. This aids

experts in analysing data by drawing their attention to classified sections. Naturally, the

agent processing alone is not suitable for clinical detection due to the occurrence of false

positives and false negatives, but it still is able to assist the expert in their analysis.

Discussion

This demonstrates one means in which PDS can support automated analysis of data; it also

demonstrates its capacity to communicate the analysis results to an expert. In constructing

re-useable, and extensible, ICs, PDS is contributing to an increased level of analysis; this in

turn will assist with the uncovering of new knowledge as increased quantities of information

are derived from raw data. It is envisaged that these knowledge repositories, and their

classified data, will assist in advancing the understanding of the domain from which they

originate.

6.6 Evaluating The Distributed Alternatives

PDS has proven to be a robust clinical tool within the field of clinical neurophysiology. This

is demonstrated by the testbed, as discussed in Section 5.6, and through PDS’s support of

a clinical drugs trial, whereby it facilitated collaboration between distributed experts, as

discussed in Section 6.6.2.

6.6.1 Supporting Neurophysiological Monitoring

A walkthrough of how clinicians use PDS and its remote reviewing capabilities are illustrated

in Figures 6.8– 6.14.

6.6 Evaluating The Distributed Alternatives 113

Figure 6.8: The login panel for secure user access.

Figure 6.9: The view presented to users after logging in to PDS.

6.6 Evaluating The Distributed Alternatives 114

Figure 6.10: The recordings tab maintains a list of all EEG data on PDS and relevant
meta-information.

Figure 6.11: PDS enables you to view detailed information about a recording, such as
channels present, frequency and annotations.

6.6 Evaluating The Distributed Alternatives 115

Figure 6.12: A user is able to interact with a recording via the Viewer. In this instance,
8 channels of EEG are being displayed, as well as a single channel depicting Respiratory
function and ECG.

Figure 6.13: Adding a location. Used to associate geographic locations with the origin of
data on PDS.

6.6 Evaluating The Distributed Alternatives 116

Figure 6.14: Manually uploading an EEG file to PDS.

Figure 6.15: Overview screen of PDS’s web application. Locations with EEGs available for
review are indicated in the pane on the left. The pane on the right contains a summary of
recent activity.

6.6 Evaluating The Distributed Alternatives 117

6.6.2 The NEMO project

Treatment of NEonatal seizures with Medication Off-patent (NEMO) [115] is a study on

the effects of bumetanide in the treatment of neonatal seizure. The study occurred at an

international level with 14 participating institutions based in seven different EU member

states and one partner in the USA (some of which are depicted in Figure 6.15). The goal is

to develop a drug-based course of medical treatment for the seizures that affect the newborn

in the form of anti-epileptic drugs.

The first stage of the study involved the evaluation of bumetanide, a drug that could

potentially alleviate one of the main causes of seizure in neonates. The study was a first of

its kind in that it was “the first time that an anti-epileptic drug (AED) specifically aimed

at this age group will be evaluated in a large, adequately powered, randomised trial with

EEG monitoring, recognised to be the “gold standard” method for seizure diagnosis in the

newborn.” [115].

In the context of neurophysiological monitoring, the challenge facing the project was the

lack of expertise in neonatal EEG to allow the diagnosis of seizure and the administration

of bumetanide to take place. The reasons for this occurring are similar to those discussed

in Section 1.4 with this instance being an example of the problem at a larger scale.

PDS provided the means to remotely collect, collaborate and analyse the EEG data

required for the study, thus enabling institutions without the necessary level of expertise to

participate in the study thereby assisting in the evaluation of the drug.

Workflow Of PDS Within NEMO

DP

DCDP

DP

IC IC DC

PDSEEG Data E-mail
notification

Neurophysiologist Action

Figure 6.16: IE workflow within NEMO.

The typical use case of PDS was as follows. A patient is identified as having a suspected

neurological condition. Acquisition of EEG data commences, with the resulting EEG data

being saved to a file server. On the file server, the upload application is invoked upon the

EEG data file. Any data present in the file is immediately uploaded to the data server. The

6.7 National Data Store 118

upload application then periodically determines whether additional data has been added to

the file and if so, the new data is uploaded.

Once the transfer of data from the acquisition location has commenced, the data is

queried to evaluate if it is of the correct type, in this case EEG. If so, the neurophysiologist

at the remote location is contacted via e-mail. The neurophysiologist logs into the data

server and selects the appropriate recording. The viewing application then opens in a popup

window, providing the neurophysiologist with a continually updating view of the recording.

The neurophysiologist analyses the EEG data and issues a clinical report containing his/her

findings. The report is then uploaded to a separate web-based system for recruitment within

clinical trials. Based on this report, the decision is taken whether or not to administer the

bumetanide. The results of which are recorded (dosage, physiological ailments and patient

outcome) thereby adding to the empirical evaluation of the drug as a form of treatment.

These results are stored in a separate proprietary system that specialises in data entry for

clinical trials and is managed by a private company.

The end result is an IE that is capable of providing a teleneurophysiology service for

clinical trial recruitment. From a technical perspective, specific functionality is provided for

each role in the review process: upload, review, administration etc. Access control and other

security requirements were also rigidly enforced. The remote review feature of the system

enables rapid in-browser remote review of uploaded EEG files, allowing candidate patients

to be evaluated quickly. The web-based viewing application provides neurophysiologists

with the features that they expect to have available for EEG interpretation.

6.6.3 Discussion

Feedback to date has been very positive, with users expressing satisfaction with functionality

and usability of PDS when compared with more primitive methods of remote monitoring,

such as those discussed in Section 1.2.3.

The testbed (see Section 5.6) and the NEMO study (see Section 6.6.2) provide real

world applications of PDS. In order to fully demonstrate the benefits of PDS’s distributed

architecture, the workflow had to incorporate a greater number and variety of components.

6.7 National Data Store

To demonstrate PDS’s distributed architecture and to highlight the benefits to neurophys-

iological monitoring, it was decided to simulate Ireland’s NICU infrastructure. In total

on the island of Ireland there are 35 NICUs, 26 in the Republic of Ireland [116] and 9 in

Northern Ireland [62].

6.7 National Data Store 119

A National Data Store (NDS) was created to simulate a repository for all EEG data

generated by Irish NICUs and demonstrate PDS’s capacity to act as an expert knowledge

repository at scale. In this manner, PDS is capable of facilitating the acquisition of data from

multiple distributed NICUs (IE) and providing resources at scale by co-locating multiple

components in a single location (see Section 6.8.1). This provides neurophysiologists with

the means required to interact with the data, both locally and remotely.

6.7.1 Architectural Overview

Figure 6.17: PDS depicted as a distributed network of interconnecting components.

Once a NICU is connected to the NDS, transmission of any pre-existing data commences

and is continuously transferred as new data arrives at the NICU. Cross-contamination of

data is avoided through the use of Universally Unique Identifiers (UUIDs) for identifying

datasets belonging to individual NICUs. The NDS provides the functionality for the long-

term storage of the data and acts as a gateway through which a proliferation of analysis

techniques can be employed.

Experimental Procedure

Demonstrating the architecture involved the creation of multiple instances of PDS (8) with

four data streams concurrently uploading data for approximately a 12hr period. This

equates to 32 neonates being monitored at any given time. This figure exaggerates the

number of neonates that are monitored in practice. However, it is an acceptable upper

limit for what the system should support. Given that 16-data-streams are used for routine

monitoring of a neonate with a sample rate of 256 samples per second per channel, this can

lead to the continuous transfer, storage and processing of a large quantity of data.

6.7 National Data Store 120

Table 6.4: Expected data transfer between NICUs and the National Data Store.

Case Web Requests transfer No. of NICUs No. of neonates Per neonate

1 second 700kb 35 140 5kb
1 minute 41Mb 35 140 300kb
1 hour 2.460Gb 35 140 17.57Mb
1 day 59.06Gb 35 140 421.87Mb

A routine monitoring period for a neonate can be up to three days. If used for the

monitoring of 140 neonates simultaneously this would amount to approximately 177Gb

being transferred to the NDS (see Table 6.4). However, the experiment was not run at

that scale. Log files detailing the state of the system were recorded for approximately a

12hr period. These were then parsed to derive performance metrics. With this data we

can extrapolate how PDS handles large quantities of data, the effect on data integrity and

identify correlations between the number of NICUs and the quality of service provided.

6.7 National Data Store 121

Results

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

21:00 22:00 23:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

T
im

e
se

rie
s

da
ta

 in
 s

ec
on

ds

Time (Hours : Minutes)

Datastream 1.1
Datastream 1.2
Datastream 1.3
Datastream 1.4
Datastream 2.1
Datastream 2.2
Datastream 2.3
Datastream 2.4
Datastream 3.1
Datastream 3.2
Datastream 3.3
Datastream 3.4
Datastream 4.1
Datastream 4.2
Datastream 4.3
Datastream 4.4

Figure 6.18: Real-time acquisition of multiple concurrent throttled data streams.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30

T
im

e
se

rie
s

da
ta

 in
 s

ec
on

ds

Time (Hours : Minutes)

Datastream 1.1
Datastream 1.2
Datastream 1.3
Datastream 1.4
Datastream 2.1
Datastream 2.2
Datastream 2.3
Datastream 2.4
Datastream 3.1
Datastream 3.2
Datastream 3.3
Datastream 3.4
Datastream 4.1
Datastream 4.2
Datastream 4.3
Datastream 4.4

Figure 6.19: Real-time acquisition of multiple concurrent unthrottled data streams.

6.8 Integrating Cloud-based Services 122

Discussion

The NDS was capable of handling multiple data streams from multiple instances of PDS

concurrently. This resulted in 32 streams of data being written to the NDS at any given

time. A selection of these streams are depicted in Figure 6.18 where data is transferred

at a throttled rate to mimic real time. In Figure 6.19, data is transferred at the default

rate. As can be seen from Figure 6.18, when data is transferred in real time there is

no delay in acquisition. When the data is throttled at the default rate, as depicted in

Figure 6.19, a slight degradation in the rate of acquisition is experienced over time, but is

still approximately three times faster than the real-time rate of generation.

6.8 Integrating Cloud-based Services

One infrastructural advance PDS’s distributed co-locating approach can avail of is the

elasticity of the cloud. The cloud enables access to on-demand resources such as compute

and storage, thereby enabling scalability at a level that would normally be outside the reach

of a NICU. On-demand resources are applicable to a wide range of analysis techniques.

One of those we consider is search based classification (SBC). SBC is an analysis technique

that utilises the availability of pre-existing classified data, to classify newly acquired data.

However, this can be a computationally expensive technique, particularly when dealing with

large quantities of high-frequency data. This makes it an ideal candidate as a cloud-based

Service. PDS is capable of integrating this form of analysis by using the Agent Framework

to process queries on newly acquired data using an analysis technique called “ScrutiniseIt”.

6.8.1 ScrutiniseIT

ScrutiniseIT is a cloud-based analysis technique for feature detection that leverages expert

knowledge repositories and scalable computation. The scan-and-scrutinise based methodol-

ogy, originally outlined in [117], consists of two aptly named phases “scan” and “scrutinise”.

The scan phase of the algorithm runs continually on data streams being acquired. A simple

evaluation function is used to determine data segments that warrant closer examination.

Upon detection of a potential feature of interest, that section of the stream is more closely

scrutinised. The scrutinise phase determines if particular features of interest are present in

the candidate signal. This is done within a specified confidence time interval. It incorporates

the scalability benefits of cloud computing, enabling large volumes of data to be continu-

ously analysed for the identification of features of interest. It relies on expert annotations

to the data and an algorithm designed to search through existing data repositories.

The TS data stream is treated as a series of time intervals. Each time interval is

6.8 Integrating Cloud-based Services 123

Figure 6.20: A high level view of PDS and ScrutiniseIT components in operation.

examined for potential matches to the database of known features. Once a pre-determined

threshold has been reached, the potential for a match is noted, processing of that time

interval ceases, and the process continues by advancing to the next time interval. The size

of the time interval is defined by the Window Size (WS) parameter described below. A

match occurs when a series of points observed match a similar series in the database.

ScrutiniseIT acts as a stand-alone component accessible by the individual instances of

PDS via the AF. Through the tuning of different parameters, the algorithm can either

accelerate its search through the TS data (scanning), or perform slower, more detailed,

analysis (scrutinising). These parameters are:

Confidence: a percentage value indicating a minimum threshold that must be ex-

ceeded before a match with a feature of interest is recognised. The higher the confi-

dence specified, the more exacting the match must be before the feature is reported.

Window Size (WS): ScrutiniseIT uses a dynamic sliding window to contextually

analyse a candidate signal pattern. Larger windows are used during the scan phase

when trying to identify regions of interest in the candidate signal. When such a region

is identified, the window size contracts appropriately to scrutinise these regions in more

detail in an attempt to report features for a given confidence.

Grain Size (GS): ScrutiniseIT operates by matching turning points in the incoming

EEG with similar points in the database of known seizures. The grain size specifies

the number of points required for a match to occur and is used to determine when an

advance to the next time interval is triggered. The larger the grain size, the greater

the accuracy of the resulting matches.

6.8 Integrating Cloud-based Services 124

Threshold Deltas δt, δp : Matches are compared on each point at time +/- δt, and

with accuracy +/- δp.

Figure 6.21: Signal matching in a ScrutiniseIT search.

Figure 6.21 illustrates the matching process in action. The dotted line shows a sample

signal from the database. Each turning point in the signal has a known amplitude, which

represents a point of interest. The window size being examined is encapsulated by the

dashed rectangle. For each point of interest, the boundaries defined by the δt and δp points

are shown as a shaded rectangle. The candidate signal is compared against the database of

known signals. Although, in this case, the candidate signal exhibits a slightly different form;

within the given window there are 11 matches out of 13 possible turning points exhibiting

a confidence rating in the order of 84%. If a confidence rating less than 84% had been

specified, a match would have been reported, if greater than 84% no match would have

occurred. There is a trade-off between the time taken to process the signal and the search

parameters such as window size (WS) and grain size (GS). The data shown in Table 6.5

illustrates this - the larger the window size, the faster the algorithm executes, but the less

accurate the match with the points stored in the database. Similarly, the smaller the grain

size, the faster the algorithm executes, but the less accurate the match.

Therefore, our initial results show that a larger grain size will yield more accurate

matches, but at a cost of slower execution time. During our preliminary tests we have

observed that for signals containing no known features, the number of matches is tiny.

6
.8

In
tegra

tin
g

C
lou

d
-b

a
sed

S
erv

ices
125

Table 6.5: Results obtained from a number of searches altering WS and GS values. Speedup obtained is also shown.

GS = 5 GS=10 GS=15 Speedup
Window Size Time(s) Matches Time(s) Matches Time(s) Matches GS=5 GS=10 GS=15

0 3216 1840 3216 920 3216 613 1 1 1
256 612 176 1536 113 2208 108 5 2 1
512 476 65 898 60 1303 59 7 4 2
768 354 43 634 42 962 40 9 5 3
1024 266 33 511 31 677 32 12 6 5
1280 199 26 441 25 503 25 16 7 6
1536 183 21 329 23 420 21 18 10 8
1792 144 18 244 18 371 18 22 13 9
2048 137 16 268 17 381 16 23 12 8
2304 92 14 224 14 290 14 35 14 11
2560 79 13 216 14 273 13 41 15 12
2816 95 12 189 12 168 12 34 17 19
3072 76 11 178 10 241 11 42 18 13

6.8 Integrating Cloud-based Services 126

Application To Neurophysiological monitoring

ScrutiniseIT affords clinicians the ability to collaboratively enhance one another’s work.

Clinicians annotate newly acquired data to highlight the occurrence of features of interest

and this data becomes part of the annotated data repository. Subsequent processing of the

data repository will be influenced by these contributions, thus altering the results of the

system over time.

This service avails of a search-based approach to seizure detection that relies on compar-

ison with a growing body of acquired data. It is not intended to compete with traditional

signal processing techniques but rather to demonstrate the capabilities of utilising cloud-

based services in conjunction with PDS. ScrutiniseIT enables PDS to provide an advanced

seizure detection service on demand that would be beyond the scope of a local NICU. The

processing of EEG can be computationally expensive, therefore availing of cloud infrastruc-

ture allows the required resources to be employed only when necessary.

Figure 6.22: The view of EEG provided to a clinician through the viewer. Seizure is visible
on channels F3-C3, Cz-C3, C3-01, C3-T3, C4-Cz, so predominantly on the left hemisphere
of the brain.

Ideally, all data streamed from local instances of PDS would be processed by a service

such as ScrutiniseIt. In doing so, all candidate EEG would be compared to a set of expert-

annotated EEG data containing seizures. This would be beneficial in increasing the quantity

of raw data being analysed and increasing the quantity of seizure data collected.

Results

Initial tests of ScrutiniseIT have been conducted with a limited database of known seizures.

An excerpt of the results from these tests are listed in Table 6.5 and depicted in Figure 6.23.

In Figure 6.23(A) total execution speedup obtained versus selected window size is shown.

6.8 Integrating Cloud-based Services 127

Three sets of results are shown for different grain sizes. It can be seen that significant

speedup can be achieved by selecting a smaller grain size, albeit at the cost of a reduction

in the quality of matches. For the tests illustrated in this example, a confidence value of

70% was chosen.

Figure 6.23: Preliminary results from ScrutiniseIT evaluation.

Figure 6.23 (B) illustrates that, as window size is increased, the total execution time is

reduced. This is due to the reduced number of time intervals that are available for selection.

If a significant number of contiguous matches are found, PDS begins the scanning process

at the next time interval. So, larger window sizes result in faster, less accurate, searches.

Discussion

PDS’s capacity to extend its functionality via components such as ScrutiniseIT enables

access to levels of computation that would otherwise be unattainable. It is a symbiotic

relationship in that PDS provides ScrutiniseIT with the data required (both EEG data and

expert annotations) and ScrutiniseIT provides PDS with the computational means to carry

out real-time seizure detection through the utilisation of cloud based resources. ScrutiniseIT

demonstrates how a component that fulfills the role of an IE component can be developed

and integrated with an IE’s workflow.

Chapter 7

Conclusions

In [3] it is stated that “there exist glaring limitations in the datasets we investigate, the

metrics we employ for evaluation, and the degree to which results are communicated back to

their originating domains”. These concerns were also articulated by Keogh [52] in relation to

TS data mining. Keogh [52] surveyed a large body of work in that domain, re-implemented

the techniques involved and carried out an exhaustive set of experiments. Subsequently, he

found that the level of “improvement” offered by many of the published works (constituting

new paradigms, algorithms and techniques for TS data mining) was of little, or no, utility

due to the variance that would have been experienced by testing the work on a broader

range of TS data sets, or altering minor unstated implementation details.

Keogh pointed to the lack of a standardised approach and the inability to accurately

compare works, which, on the surface, would appear to be comparable. He recommended

the following:

i) The design of experiments should be free of implementation bias.

ii) Transparency should be ensured by making code and data available where possible.

iii) The approach detailed should be tested on a wide array of datasets.

iv) The utility of a reported advance should be limited to that which can be demonstrated.

This insight by Keogh [52], pointing to a potential crisis in the evolution of scientific

knowledge, motivated the design of the generic IE described here. This environment, com-

posed of transparent workflows and standardised reusable components, attempts to make

it difficult to inadvertently have the results of analysing TS datasets altered by opaque

implementation details. In this manner, it was hoped that the transparency and standard-

isation, correctly identified by Keogh [52] as pre-requisites for the incremental building of

a knowledge base, would be provided.

128

7.2 Summary 129

7.1 Summary

In this dissertation, platforms for monitoring and analysis of data are recognised as being

composed of three components DP, IC and DC. This work showed how these components

could be used in a workflow description that explicitly captured the specifics of an applica-

tion design. These workflows incorporate the concept of feedback and hierarchical position

and through this rich structure are capable of expressing complex and evolving monitoring

systems.

This work discussed the creation of a generic toolbox and architecture for the IE, which

could be used by application designers to rapidly produce standardised environments using

the workflow description as a blueprint.

The thesis looked at creating an application instance of the IE, in the form of a Phys-

iological Data Server (PDS) for the remote monitoring of neonatal EEG. This system was

non-trivial and contained many implementation challenges including the acquisition of data

from a secure environment, the anonymisation of that data to conform with data protection

rules, the interfacing with proprietary standards and libraries, near real-time visualisation

and interpretation of that data by human experts and the provision of a feedback mecha-

nism, in the form of annotations, to allow those experts to drive the system to convergence.

This work resulted in the creation of a first-of-its-kind, real-time viewer for analysing

TS data (as demonstrated by the use case), a non-invasive means of acquiring TS data in

real time while maintaining the integrity of the data and the identification of an exemplar

design paradigm for a monitoring and analysis platform. In the context of neurophysiological

monitoring, the platform has been demonstrated to enable remote expert analysis, increase

the number of experts who can analyse the data and assist experts with their analysis.

Individual components within IEs encompass significant engineering contributions, as

well as pushing the boundaries of our theoretical understanding of how systems for the

monitoring and analysis of data should be conceptualised, designed and implemented. The

IE provides a generic architecture for the analysis of TS data. It has the capacity to be

tailored to support specific requirements of domains that analyse TS data, as was demon-

strated through its application to neurophysiological monitoring. Instances of this problem

occur in multiple domains. The benefits demonstrated for EEG analysis could easily be

applied to other forms of physiological and TS data.

Tests were carried out to demonstrate that PDS was performant and fit for purpose and

this was further validated by positive feedback received from experts in the field. Finally,

the success of PDS was demonstrated, by its use in the NEMO project, and in its supporting

of the work of other international researchers. The design of a national centre for expertise

in neonatal seizure detection was articulated as a natural extension of the PDS system.

7.2 Future Work 130

7.2 Future Work

i) Completeness of the IE: Future work could investigate if the IE is complete in that it

is capable of capturing all monitoring and analysis applications.

ii) Workflow descriptions created by application domain experts, faithfully implemented

by application designers. In the future, it would be advantageous if the implementa-

tion could be formally checked against the workflow description.

iii) Explicit support of provenance: Currently the system records an evolution of state

from which provenance information can be subsequently reconstructed. In the future,

it is anticipated that the use of a notarised record, consisting of the application of

data transformations to data, as it moves through the system, could provide that

provenance information. A possible solution may be found by applying a combination

of hashing techniques, third-party seeds and the Java Serialization API.

iv) Investigating convergence algorithms and appropriate techniques for driving systems

to convergence may involve the creation of a system for measuring “distance” between

system states, so convergence and divergence can be readily measured.

v) ScrutiniseIT Container.

vi) Incorporate Keogh’s algorithms [118] into the platform.

vii) Load-balancing of components: How are roles allocated to the current resources, based

on their availability and the level of priority? How is a level of priority defined?

viii) In a system where IC are human experts, the potential for subjective bias is high.

Mitigating this bias through the socialisation of the expert input, thus replacing po-

tential subjective bias with community consensus, is an important goal. Mechanisms

to effectively achieve that goal need to be explored further.

7.2.1 Supporting Computer-aided Science

It would be exciting to see the IE facilitate the process of Knowledge Discovery. As the

IE contains a monitoring and analysis solution with an Agent Framework, it already has

the majority of components required to do so. Extending the IE’s functionality to enable

KD techniques process data, while providing an objective analysis (and record) of that

technique, would be one means of assisting analysis even further.

Integration is a key component as it enables non-technical practitioners to combine their

expertise with the benefits of KD. Objectivity is achieved by enforcing a scientific means

.0 Future Work 131

of inquiry. The intent is to provide a transparent, and reproducible, analysis of both the

techniques, the experimental design and the subsequent empirical validation.

It is envisaged that the objective analysis will form the basis of a comparative analysis for

KD techniques. Continually evaluating these techniques against an evolving set of statistical

measures and benchmark thresholds is the primary means of ensuring objectivity. It enables

the ongoing verification of an algorithm’s suitability for its intended task.

Observation of experiments undertaken with the IE could enable the collection of meta-

data. This meta-data forms the basis of performance metrics, providing a confidence mea-

sure in the techniques employed. This enables a confidence measure to be applied to an

algorithm. This rating is built on metrics measured and observed in a controlled environ-

ment that is being validated through experimentation on an ongoing basis.

This comparative analysis can dictate the suitability of an algorithm for a domain.

While being derived from observed performance metrics, and building upon the existing

knowledge of KD techniques, it provides a means of disseminating novel information that

can be readily accepted, and/or challenged, by the scientific community. The laboratory-

like environment assists in the analysis of TS data while simultaneously enforcing scientific

rigour.

An objective overview of an algorithm’s performance and data-mining capabilities would

be highly beneficial to the KD community. The identification of the most suitable algorithm

for solving a problem is a non-trivial task, as the ability to reliably compare algorithms’

suitability requires an expert understanding of the workings of each algorithm under con-

sideration.

Environments for the analysis of TS data in its general sense have long been, and will

continue to be, an important tool in many application domains, the most fundamental of

which is knowledge discovery using the rigors of the scientific method. Heretofore, expert

opinion would suggest that these environments are somewhat lacking and open to incorrect

use [52, 119]. The work presented here attempts to meet this problem head-on and to

provide the first steps for the creation of a much needed standardised, open, transparent

and rigorous environment.

Appendix A

Requirements

Requirements using the word “shall” are mandatory deliverables and those using the word

“should” are desirable deliverables. Each stakeholder (see Section 2.2.4) is considered a

user of the system.

1. Monitoring: The monitoring of EEG shall infer that data can be acquired from mul-

tiple locations, i.e. not only acquired locally. Monitoring refers to the acquisition of

data from one or many NICUs in order to carry out analysis.

(a) (POINT 1) The platform shall remove geographic limitations that affect the

monitoring of EEG in the NICU. This is achieved through the ubiquitous access

provided by the internet.

(POINT 2) The platform shall remove geographic limitations affecting expert

analysis of EEG. An expert capable of connecting to the internet shall have

access to all data available on the platform. Furthermore he/she shall be able to

upload patient data directly for analysis. The limiting factor shall primarily be

internet connectivity. (Secondary factors include bandwidth)

(b) Experts shall have access to patient data acquired from one or many NICUs.

(c) The system shall be capable of monitoring multiple patient data feeds from an

individual NICU simultaneously.

(d) No stakeholder shall be able to interact with software responsible for local data

acquisition in the NICU. This is a “separation of concerns” and intended to

prevent any unintended consequences.

(e) All data acquired from the NICU shall be anonymised to prevent the disclosure

of sensitive patient details. This is to prevent any breach of NICU policy, or

violation of patients rights. Similarly as above, this is a “separation of concerns”,

thereby preventing unintended consequences.

132

A.0 133

(f) The system shall be capable of acquiring patient data in real time (bandwidth

dependent).

(g) The expert shall be able to access the platform securely. They will only be able

to review data for which they are authorised.

2. Analysis: this can refer to either the interpretation of data by an expert through

visualisation, or processing of data by the system.

(a) The expert shall be provided with a viewer to analyse patient data available on

the system. The expert shall also be able to view details about the data (file

size, number of channels, sampling rate, frequency etc.), upload data manually

(in an accepted format) and download data directly to his/her local machine.

(b) Multiple experts shall be able to analyse a data feed simultaneously.

(c) EEG monitoring machines in the NICU allow for the capacity to directly annotate

data on the monitor. The expert shall be capable of annotating data in the

viewer. This is both to support quantification of expert knowledge and encourage

increased collaboration between experts.

(d) The expert shall be capable of analysing data in real time (bandwidth depen-

dent).

3. Limited Expertise:

(a) All users should experience a benefit or gain by adopting the system. For the

NICU, this is achieved via access to expertise through remote monitoring. For the

expert, it is achieved through increased utilisation of their time and increased

efficiency in the analysis of data (remote monitoring, automated assistance).

For the patient, it is achieved through increased availability of treatment and a

reduced time to diagnosis.

(b) The system should increase the relevance of analysts’ expertise through the

derivation of alternate formats from the original data feed where possible.

(c) Accessibility: Increased accessibility to experts also increases the relevance of

that expertise.

(d) Collaboration: The system shall provide experts with a means of communicating

to one another directly that mimics the localised work environment (Analysis of

data on screen through annotations).

(e) The system shall reduce an expert’s workload through the provisioning of auto-

mated solutions. e.g. seizure and threshold detection algorithms, event notifica-

tion, automated workflows.

A.0 134

(f) Annotated data reflecting the quantification of expert knowledge embodies an

excellent training resource for both experts and the NICU.

4. Infrastructure: The technical infrastructure currently supporting the NICU is de-

signed and optimised for a local workflow. It is postulated that an infrastructure

developed on top of an architectural design that supports both future and evolving

requirements would be better suited to the NICU. Limited expert knowledge, and the

technology to overcome geographic constraints, have resulted in a localised workflow

being adopted in the NICU. The platform architectural design shall provide the means

by which a number of these issues can be mitigated.

(a) Current workflows should not be impacted. The platform architecture shall

support the current workflow of the expert and the NICU as much as possible.

This is to encourage adoption of the system and reduce the impact experienced

by users. This policy should be enforced as long it does not negatively impact

the stakeholders.

(b) The system shall avail of both distributed and scalable resources. This provides

the NICU with a greater level of redundancy. The NICU shall have access to a

pool of experts registered with the system and, in turn, this pool of experts will

have access to the NICU’s patient data.

(c) The system shall enable concepts such as “economies of scale” to be applied.

Thus, issues/tasks that would be prohibitively expensive for a smaller number of

NICUs to address can be made affordable. This is necessary to improve our over-

all understanding of the field and is one of the major benefits of interconnecting

stakeholders at scale.

(d) The platform shall provide access to more advanced technological solutions than

are available at a local level.

(e) The platform shall provide access to functionality for the further processing of

data (Agent Framework, Stream computing).

(f) The system shall provide access to scalable just-in-time third-party services

(ScrutiniseIT).

(g) All stakeholders shall be confident in the integrity of the system. Monitoring re-

lies on sensors for the acquisition of data, a transfer protocol for the transmission

of data and a system for storing and serving the data.

(h) The system shall store all data acquired.

A.0 135

This includes checks being implemented by the acquisition and transmission process,

including the system storage and recall of data.

System Requirements

Three components that are considered necessary for the system to fulfill the above require-

ments are:

· (Data source) Client side application (CSA) - For acquiring patient data and trans-

ferring it to a centralised location.

· (Middleware) Server side application (SSA) - For registering experts and NICUs,

enabling patient data to be acquired and access experts.

· (Process) Web-based viewer (WBV) - For experts to analyse patient data resulting in

treatment (This comes from requirement 4a).

1a 1. EEG data acquired in the NICU shall be transferred to the SSA using HTTP

requests.

2. Experts and NICUs shall be registered with the system prior to being able to

access it.

3. An SSA shall have a publicly accessible web portal.

4. The only technical requirements for an expert to access the SSA are internet

connectivity and a web browser.

5. The only technical requirements for the CSA to upload data to the SSA are

internet connectivity and port 80 to be open.

6. Each expert shall have a unique username and password combination. The expert

will use this to gain entry to the SSA.

7. Upon successful login, the expert shall be able to view a list of data files available

on the SSA.

8. An expert shall be capable of uploading data to the SSA directly.

1b 1. The CSA shall be designed to acquire data locally and transmit it to remote

locations.

2. The CSA’s installation shall be required to enable real-time monitoring function-

ality.

3. The CSA shall run on a machine locally in the NICU. It shall have access to

patient data as it is being recorded by EEG-monitoring machines.

A.0 136

4. The CSA shall achieve this by monitoring a file directory where data is being

stored/created.

5. The CSA shall upload data (using predefined time segments) to the system as it

arrives with a standard transfer protocol.

6. The SSA shall have a port open and acknowledge receipt of data from registered

CSAs.

7. The SSA shall make the acquired data available to experts for remote analysis.

1c 1. Each CSA shall be associated with a single SSA.

2. The CSA shall be capable of monitoring, and uploading, multiple data feeds

simultaneously.

1d 1. The CSA shall not interfere with the machine acquiring the data.

2. The CSA shall be installed on an alternate machine to the acquisition machine

and have access to the local network.

3. The CSA shall not be capable of interacting with software running on the acqui-

sition machine.

4. The CSA shall have read-only access to the directory where data is stored by the

acquisition machine.

1e 1. The CSA shall not transmit confidential patient data.

2. The CSA shall have read-only access to the directory where data is stored by the

acquisition machine.

3. The CSA shall detect when new data files are created.

4. The CSA shall detect when existing data files are modified.

5. The CSA shall read any newly available data.

6. The CSA shall package the data omitting all patient sensitive details.

7. The CSA shall begin uploading and transfer data to the SSA in pre-defined

chunks.

4h 1. The CSA should employ appropriate security measures when transmitting data.

2. The SSA should enforce fine-grained access control.

3. The SSA should employ appropriate security measures when accepting/trans-

mitting data.

Analysis

A.0 137

2a (a) The WBV shall visualise EEG data within a web browser.

(b) The WBV shall mimic that of a traditional viewer for EEG.

(c) The WBV shall support the features that an expert has become used to in the

NICU.

(d) WBV features shall include: the ability to apply montages, and filters, to data,

the ability to scale data feeds and the ability to select/deselect different feeds for

viewing.

2b (a) The SSA shall support multiple users. Each user shall have a unique ID.

(b) Each data file available on the system shall have a unique ID.

(c) Multiple users shall have access to data feeds simultaneously.

(d) The SSA shall support synchronous requests for the same data feed.

2c (a) While viewing data in the WBV, an expert shall be able to create an annotation.

(b) The annotation shall be associated with data channels on the y-axis, and a start

and end time on the x-axis.

(c) Multiple types of annotations can be supported.

2d (a) The transfer of EEG data shall not result in a delay in analysis.

Infrastructure that supports the solution:

4a (a) Currently an expert accesses EEG data from a local machine in the NICU. EEG

data is visualised as a number of time series data feeds, drawn in a left to right

fashion. Each data feed corresponds to an electrode (or combination of electrodes

- depending on the montage).

(b) The system shall have a WBV to enable users to visualise TS data in a similar

manner online.

4g (a) Integrity checks shall be undertaken for each stage of data workflow.

(b) The CSA should check to ensure the integrity of the data file is correct after

reading.

(c) The transmission process should include a means to verify the data received by

the SSA, is that which was sent.

(d) The SSA shall ensure integrity of all data preserved.

(e) The WBV shall ensure the data served by the system is identical to that received.

138

4h (a) The system’s data module should provide a read-only, open and transparent

interface for other modules to access data. (Infrastructure)

4c (a) The system shall employ a standardised workflow for data collection procedures.

4d (a) The system shall notify all interested parties of the creation/deletion/extension

of data.

(b) The system should support long-term storage of data.

4f (a) The system should support scalable services.

Non-Functional requirements

1. The transfer of EEG data should not delay analysis being undertaken as it is a time-

critical process that can impact patient outcome. (Product requirement)

2. Encouraging trust: potential points of failure within the system should be identi-

fied and a preemptive response implemented to ensure the integrity of the system is

maintained. (Product requirement)

3. Neurophysiologist analysis of live data feeds: The system shall be capable of real-time

acquisition of data to meet user expectations. Failure to do so would result in reduced

adoption of the system. (Organisational requirement)

Bibliography

[1] EMC. Digital universe study. Technical report, EMC, April 2014.

[2] Wikimedia Commons. Electrode locations of international 10-20 sys-

tem for eeg (electroencephalography) recording, accessed on 08-08-14.

“http://commons.wikimedia.org/wiki/File:21 electrodes of International 10-

20 system for EEG.svg”, 2010.

[3] Kiri L Wagstaff. Machine learning that matters. In Proceedings of the 29th Interna-

tional Conference on Machine Learning (ICML-12), pages 529–536, 2012.

[4] F. De Turck, J. Decruyenaere, P. Thysebaert, S. Van Hoecke, B. Volckaert, C. Dan-

neels, K. Colpaert, and G. De Moor. Design of a flexible platform for execution of

medical decision support agents in the intensive care unit. Computers in Biology and

Medicine, 37:97–112, 2007.

[5] Dimitris A. Kalogeropoulos, Ewart R. Carson, and Paul O Collinson. Towards

knowledge-based systems in clinical practice: Development of an integrated clini-

cal information and knowledge management support system. Computer Methods and

Programs in Biomedicine, 72:65–80, 2003.

[6] Raymond Lister, George Bryan, and Mark Trac. The e-babies project: Integrated data

monitoring and decision making in neo-natal intensive care. In European Conference

of Information Systems, 2000.

[7] Katharina Morik, Michael Imboff, Peter Brockhausen, Thorsten Joachims, and Ursula

Gather. Knowledge discovery and knowledge validation in intensive care. Artificial

Intelligence in Medicine, 19(3):225 – 249, 2000. Knowledge-based Information Man-

agement in Intensive Care and Anaesthesia.

[8] Thomas Guyet, Catherine Garbay, and Michel Dojat. Knowledge construction from

time series data using a collaborative exploration system. J. of Biomedical Informat-

ics, 40:672–687, December 2007.

139

BIBLIOGRAPHY 140

[9] Sheng-Tun Li and Shu-Ching Kuo. Knowledge discovery in financial investment for

forecasting and trading strategy through wavelet-based som networks. Expert Systems

with Applications, 34(2):935 – 951, 2008.

[10] Steven Willmott, Jonathan Dale, Bernard Burg, Patricia Charlton, and Paul O’Brien.

Agentcities: A worldwide open agent network. AgentLink Newsletter, 8:13–15, Novem-

ber 2001.

[11] Emanuela Merelli, Giuliano Armano, Nicola Cannata, Flavio Corradini, Mark

d’Inverno, Andreas Doms, Phillip Lord, Andrew Martin, Luciano Milanesi, Steffen

Mller, Michael Schroeder, and Michael Luck. Agents in bioinformatics, computational

and systems biology. Briefings in Bioinformatics, 8(1):45–59, 2006.

[12] Julien Balter, Annick Labarre-Vila, Danielle Zibelin, and Catherine Garbay. A

knowledge-driven agent-centred framework for data mining in emg. Comptes Ren-

dus Biologies, 325(4):375 – 382, 2002.

[13] A Aguilera, E Herrera, and A Subero. Medical coordination work based in agents.

Biomedical Engineering, (Isbme):122–126, 2008.

[14] Monika R Henzinger Prabhakar Raghavan. Computing on data streams. In External

Memory Algorithms: DIMACS Workshop External Memory and Visualization, May

20-22, 1998, volume 50, page 107. American Mathematical Soc., 1999.

[15] Stream computing, accessed on 13/08/2015. http://www-01.ibm.com/software/

data/infosphere/stream-computing/.

[16] Daniel J Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey,

Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Aurora: a

new model and architecture for data stream management. The VLDB JournalThe

International Journal on Very Large Data Bases, 12(2):120–139, 2003.

[17] Daby Sow, Alain Biem, Marion Blount, Maria Ebling, and Olivier Verscheure. Body

sensor data processing using stream computing. In Proceedings of the international

conference on Multimedia information retrieval, pages 449–458. ACM, 2010.

[18] Carolyn Mcgregor, Daby Sow, Andrew James, Marion Blount, Maria Ebling, J Mikael

Eklund, and Kathleen Smith. Collaborative research on an intensive care decision

support system utilizing physiological data streams. In Artificial Intelligence, pages

1124–1126, 2009.

http://www-01.ibm.com/software/data/infosphere/stream-computing/
http://www-01.ibm.com/software/data/infosphere/stream-computing/

BIBLIOGRAPHY 141

[19] Marion Blount, Carolyn Mcgregor, Maria R. Ebling, J. Mikael Eklund, Andrew G.

James, Nathan Percival, Kathleen P. Smith, and Daby Sow. Real-time analysis for

intensive care. IEEE Engineering in Medicine and Biology Magazine, 2010.

[20] Alejandro Buchmann and Boris Koldehofe. Complex event processing. it-Information

Technology Methoden und innovative Anwendungen der Informatik und Information-

stechnik, 51(5):241–242, 2009.

[21] Fusheng Wang, Shaorong Liu, Peiya Liu, and Yijian Bai. Bridging physical and virtual

worlds: Complex event processing for rfid data streams. In Yannis Ioannidis, MarcH.

Scholl, JoachimW. Schmidt, Florian Matthes, Mike Hatzopoulos, Klemens Boehm,

Alfons Kemper, Torsten Grust, and Christian Boehm, editors, Advances in Database

Technology - EDBT 2006, volume 3896 of Lecture Notes in Computer Science, pages

588–607. Springer Berlin Heidelberg, 2006.

[22] Gianpaolo Cugola and Alessandro Margara. Processing flows of information: From

data stream to complex event processing. ACM Comput. Surv., 44(3):15:1–15:62,

June 2012.

[23] Charles D. Ray, Reginald G. Bickford, W. Grey Walter, and Antoine Remond. Expe-

riences with telemetry of biomedical data by telephone, cable and satellite: Domestic

and international. Medical Electronics and Biological Engineering, 1965.

[24] Donald R. Bennett and Reed M. Gardner. A model for the telephone transmission of

six-channel electroencephalograms. Electroencephalography and Clinical Neurophysi-

ology, 29:404–408, 1970.

[25] Reed M. Gardiner, Donald R. Bennet, and Richard B. Vorce. Eight channel data set

for clinical EEG transmission over dial-up telephone network. IEEE Transactions on

Biomedical Engineering, 1974.

[26] F. Vaz, O. Pacheco, and A.M. da Silva. A telemedicine application for eeg signal

transmission. In Engineering in Medicine and Biology Society, 1991. Vol.13: 1991.,

Proceedings of the Annual International Conference of the IEEE, pages 466 –467,

oct-3 nov 1991.

[27] M. L. Bykhovskii and É. M. Krishchyan. Transmission of medical information through

telephone lines. Biomedical Engineering, 2:307–313, November 1968.

[28] André J.W. van der Kouwe and Richard C. Burgess. Neurointensive care unit system

for continuous electrophysiological monitoring with remote web-based review. IEEE

Transactions on Information Technology in Biomedicine, 7(2), June 2003.

BIBLIOGRAPHY 142

[29] V. Nenov and J. Klopp. Remote analysis of physiological data from neurosurgical

ICU patients. Journal of the American Medical Informatics Association, 1996.

[30] L. Grandinetti, D. Conforti, and L. De Luca. CAMD and TeleEEG: Software tools

for telemedicine applications. High-Performance Computing and Networking, 1401,

1998.

[31] S. Tsuji, N. Akamatsu, Y. Murai, S. Tobimatsu, M. Kato, E.C. Jacobs, and H.O.

Luders. Remote diagnosis of intractable epilepsy by bidirectional telemedicine sys-

tem between Japan and USA. Electroencephalography and Clinical Neurophysiology,

103(1):60–60, July 1997.

[32] Jim Cameron David Holder and Colin Binnie. Tele-eeg in epilepsy: review and initial

experience with software to enable eeg review over a telephone link. Technical report,

University College London, 2003.

[33] D.S. Holder, R.H. Bayford, J. Fritschy, O. Gilad, H. Kaube, and C.D. Binnie. Devel-

opment of generic software for analysis, archiving & internet dissemination of brain

and systems physiological data. Technical report, University College London, 2004.

[34] J. Fritschy, M. De Lucia, and D.S. Holder. Web EEG reader for remote reporting and

automatic detection of normal and abnormal patterns in EEG. Clinical Neurophysi-

ology, 117, 2006.

[35] Carolyn McGregor, G. Bryan, J. Curry, and M. Tracy. The e-baby data warehouse:

a case study. In Proceedings of the 35th Annual Hawaii International Conference on

System Sciences, 2002.

[36] Carolyn McGregor, Jennifer Heath, and Ming Wei. A web services based framework

for the transmission of physiological data for local and remote neonatal intensive

care. In Proceedings of the 2005 IEEE International Conference on e-Technology,

e-Commerce and e-Service on e-Technology, e-Commerce and e-Service (EEE’05),

Hong Kong, China, 2005.

[37] Carolyn McGregor, Bruce Kneale, and Mark Tracy. On-demand virtual neonatal

intensive care units supporting rural, remote and urban healthcare with Bush Babies

Broadband. Network and Computer Applications, 103(1):60–60, July 1997.

[38] DL Hudson and ME Cohen. Use of intelligent agents in the diagnosis of cardiac

disorders. Computers in Cardiology, 29:633–636, 2002.

BIBLIOGRAPHY 143

[39] Chang-Shing Lee and Mei-Hui Wang. Ontology-based intelligent healthcare agent and

its application to respiratory waveform recognition. Expert Systems with Applications,

33:606–619, 2007.

[40] Darren Foster and Carolyn McGregor. Design of an agent server for neonatal analysis

and trend detection. International Transactions on Systems Science and Applications,

1:27–34, 2006.

[41] Horacio Gonzlez-Vlez, Mariola Mier, Margarida Juli-Sap, Theodoros N. Arvanitis,

Juan M. Garca-Gmez, Montserrat Robles, Paul H. Lewis, Srinandan Dasmahapa-

tra, David Dupplaw, Andrew Peet, Carles Ars, Bernardo Celda, Sabine Huffel, and

Mag Lluch-Ariet. HealthAgents: distributed multi-agent brain tumor diagnosis and

prognosis. Applied Intelligence, 30, 2009.

[42] Darren Foster, Carolyn McGregor, and Samir El-Masri. A survey of agent-based

intelligent decision support systems to support clinical management and research. In

Multi-Agent Systems for Medicine, Computational Biology, and Bioinformatics, 2005.

[43] Florence Duchne, Catherine Garbay, and Vincent Rialle. Learning recurrent behav-

iors from heterogeneous multivariate time-series. Artificial Intelligence in Medicine,

39(1):25 – 47, 2007.

[44] Nicholas R Jennings. An agent-based approach for building complex software systems.

Communications of the ACM, 44(4):35–41, 2001.

[45] Esmaeil Hadavandi, Hassan Shavandi, and Arash Ghanbari. Integration of genetic

fuzzy systems and artificial neural networks for stock price forecasting. Know.-Based

Syst., 23(8):800–808, December 2010.

[46] Roberto A. Flores-Mendez. Towards a standardization of multi-agent system frame-

work. ACM Crossroads, 5:18–24, 1999.

[47] Barbara Hayes-Roth, Serdar Uckun, Jan Eric Larsson, David Gaba, Juliana Barr, and

Jane Chien. Guardian: A prototype intelligent agent for intensive-care monitoring.

Artificial Intelligence in Medicine, 4:165–185, 1992.

[48] Davide Brugali and Katia Sycara. Towards agent oriented application frameworks.

ACM Computing Surveys, 32, 2000.

[49] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. JADE: A FIPA-compliant

agent framework. In Proceedings of the Fourth International Conference on the Prac-

tical Application Intelligent Agents and Multi-agent Technology (PAAM’99), pages

97–108, London, UK, April 1999.

BIBLIOGRAPHY 144

[50] The foundation for intelligent physical agents, accessed on 07-08-15.

http://www.fipa.org/.

[51] David Morley and Karen Myers. The spark agent framework. In Proceedings of the

Third International Joint Conference on Autonomous Agents and Multiagent Sys-

tems - Volume 2, AAMAS ’04, pages 714–721, Washington, DC, USA, 2004. IEEE

Computer Society.

[52] Eamonn Keogh and Shruti Kasetty. On the need for time series data mining bench-

marks: A survey and empirical demonstration. Data Min. Knowl. Discov., 7(4):349–

371, October 2003.

[53] M Lanska and DJ Lanska. Neonatal seizures in the united states: results of the

national hospital discharge survey, 1980–1991. Neuroepidemiology, 15(3):117–125,

1996.

[54] Volpe JJ. Neonatal seizures. in: Neurology of the newborn. 4th edition:178–214, 2001.

[55] Hasan Tekgul, Kimberlee Gauvreau, Janet Soul, Lauren Murphy, Richard Robertson,

Jane Stewart, Joseph Volpe, Blaise Bourgeois, and Adré J du Plessis. The current

etiologic profile and neurodevelopmental outcome of seizures in term newborn infants.

Pediatrics, 117(4):1270–1280, 2006.

[56] Mark S Scher, Kosaburo Aso, Marquita E Beggarly, Marie Y Hamid, Doris A Steppe,

and Michael J Painter. Electrographic seizures in preterm and full-term neonates:

clinical correlates, associated brain lesions, and risk for neurologic sequelae. Pediatrics,

91(1):128–134, 1993.

[57] D. M. Murray, G. B. Boylan, C. A. Ryan, B. P. Murphy, and S. Connolly. Defining the

gap between electrographic seizure burden, clinical expression and staff recognition of

neonatal seizures. Archives of Disease in Childhood - Child Fetal Neonatal Edition,

93(3):187–191, 2008.

[58] R.M. Pressler, G.B. Boylan, M. Morton, C.D. Binnie, and J.M. Rennie. Early serial

EEG in hypoxic ischaemic encephalopathy. Clinical Neurophysiology, 112(1):31–37,

2001.

[59] A. J. Gunn. Cerebral hypothermia for prevention of brain injury following perinatal

asphyxia. Current Opinion in Pediatrics, 12(2):111–115, April 2000.

BIBLIOGRAPHY 145

[60] M. Fitzsimons, L. Ronan, K. Murphy, G. Browne, S. Connolly, J. McMenamin, and

N. Delanty. Customer needs, expectations, and satisfaction with clinical neurophysi-

ology services in Ireland: a case for tele-neurophysiology development. Irish Medical

Journal, 97(7):208–211, July 2004.

[61] L. Ronan, K. Murphy, G. Browne, S. Connolly, J. McMenamin, B. Lynch, N. Delanty,

and M. Fitzsimons. Needs analysis for tele-neurophysiology in the Irish north-western

health board. Irish Medical Journal, 97(2):46–49, July 2004.

[62] J. Jenkins, F. Alderdice, and E. McCall. Improvement in neonatal intensive care in

northern ireland through sharing of audit data. In Quality and Safety in Health Care,

volume 3, pages 202–206, June 2005.

[63] Lee Jong Wook. New who report calls for a new and innovative approach to health

systems research. http://www.who.int/mediacentre/news/releases/2004/pr78/en/,

2004.

[64] G. Boylan, L. Burgoyne, C. Moore, B. O’Flaherty, and J. Rennie. An international

survey of EEG use in the neonatal intensive care unit. Acta Paediatrica, 99:1150–1155,

August 2010.

[65] Tak chung Fu. A review on time series data mining. Engineering Applications of

Artificial Intelligence, 24(1):164 – 181, 2011.

[66] Adam Stein, Mark A Musen, and Yuval Shahar. Knowledge acquisition for temporal

abstraction. In Proceedings of the AMIA Annual Fall Symposium, page 204. American

Medical Informatics Association, 1996.

[67] Yuval Shahar and Mark A Musen. Knowledge-based temporal abstraction in clinical

domains. Artificial Intelligence in Medicine, 8(3):267 – 298, 1996. Temporal Reasoning

in Medicine.

[68] Yuval Shahar. A Knowledge-Based Method for Temporal Abstraction of Clinical Data.

PhD thesis, Stanford University, October 1994.

[69] Catherine C. Marshall. Annotation: from paper books to the digital library. In

Proceedings of the second ACM international conference on Digital libraries, DL ’97,

pages 131–140. ACM, 1997.

[70] Ricardo Kawase, Eelco Herder, and Wolfgang Nejdl. A comparison of paper-based

and online annotations in the workplace. In Ulrike Cress, Vania Dimitrova, and

Marcus Specht, editors, Learning in the Synergy of Multiple Disciplines, volume 5794

BIBLIOGRAPHY 146

of Lecture Notes in Computer Science, pages 240–253. Springer Berlin / Heidelberg,

2009.

[71] Sandra Bringay, Catherine Barry, and Jean Charlet. Annotations for the collaboration

of the health professionals. In American Medical Informatic Associations Annual

Symposium Proceedings, pages 91–95, 2006.

[72] Nathalie Bricon-Souf, Sandra Bringay, Saliha Hamek, Francoise Anceaux, Catherine

Barry, and Jean Charlet. Informal notes to support the asynchronous collaborative

activities. International Journal of Medical Informatics, 76:342–348, Dec 2007.

[73] Yves Keraron, Alain Bernard, and Bruno Bachimont. Annotations to improve the

using and the updating of digital technical publications. Research in Engineering

Design, 20:157–170, 2009.

[74] ILIA A. OVSIANNIKOV, MICHAEL A. ARBIB, and THOMAS H. MCNEILL. An-

notation technology. International Journal of Human-Computer Studies, 50(4):329 –

362, 1999.

[75] William B. S. Pressly Jr. Tspad: a tablet-pc based application for annotation and

collaboration on time series data. In ACM Southeast Regional Conference, pages

166–171, 2008.

[76] Natus Medical Incorporated. Olympic brainz monitor. Pdf from online catalogue,

august 2010.

[77] Likert scale wikipedia entry. http://en.wikipedia.org/wiki/Likert_scale. Ac-

cessed: 16/12/2014.

[78] David Lorge Parnas. On the criteria to be used in decomposing systems into modules.

Communications of the ACM, 15(12):1053–1058, 1972.

[79] Microsoft windows, accessed on 08-01-15. ”http://windows.microsoft.com/en-

us/windows/home”.

[80] Java, accessed on 26-01-15. https://www.oracle.com/java/index.html.

[81] Roy T. Fielding. Representational state transfer (rest), accessed on 07-01-15.

http://www.ics.uci.edu/ fielding/pubs/dissertation/rest arch style.htm, 2000.

[82] Jetty, accessed on 07-01-15. http://eclipse.org/jetty/about.php.

[83] Haitham S. Hamza. Separation of concerns for evolving systems: a stability-driven

approach. SIGSOFT Softw. Eng. Notes, 30:1–5, May 2005.

http://en.wikipedia.org/wiki/Likert_scale

BIBLIOGRAPHY 147

[84] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:

elements of reusable object-oriented software. Pearson Education, 1994.

[85] Object-relational mapping, accessed on 13/07/2015. https://en.wikipedia.org/

wiki/Object-relational_mapping.

[86] Java persistence api. https://en.wikipedia.org/wiki/Java_Persistence_API.

Accessed: 13/07/2015.

[87] Hypersql, accessed on 07-01-15. http://hsqldb.org/.

[88] B. Kemp, A. Varri, A.C. Rosa, K.D. Nielsen, and J. Gade. A simple format for

exchange of digitized polygraphic recordings. Electroencephalography and Clinical

Neurophysiology, 82:391–393, 1992.

[89] Gunther Hellmann, Markus Kuhn, Markus Prosch, and Manfred Spreng. Extensible

biosignal (EBS) file format: simple method for EEG data exchange. Electroencephalog-

raphy and Clinical Neurophysiology, 1996.

[90] Silverlight, accessed on 26-01-15. http://www.microsoft.com/silverlight/.

[91] Adobe flash player, accessed on 07-01-15. http://www.adobe.com/software/flash/about/.

[92] Philip Healy. Critical care telemonitoring: Babylink, 2008.

[93] Information technology – security techniques – information security man-

agement systems – requirements using iso/iec 27001, accessed on 07-01-15.

http://www.iso.org/iso/home/store/catalogue ics/catalogue detail ics.htm?csnumber=54534,

2013.

[94] Health informatics – information security management in health using iso/iec 27002,

accessed on 07-01-15. http://www.iso.org/iso/catalogue detail?csnumber=41298,

2008.

[95] Almut Herzog and Nahid Shahmehri. Using the Java sandbox for resource control.

In Proceedings of the 7th Nordic Workshop on Secure IT Systems (NordSec), pages

135–147, November 2002.

[96] Scott Oaks. Java Security (2nd Edition). O’Reilly, May 2002.

[97] Almut Herzog and Nahid Shahmehri. Performance of the Java security manager.

Computers & Security, 24:192–207, May 2005.

https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Java_Persistence_API

BIBLIOGRAPHY 148

[98] Neonatal brain research group (nbrg), accessed on 27-01-15.

http://www.nbrg.ie/898p911ded0#&panel1-1.

[99] European data format, accessed on 07-01-15. http://www.edfplus.info/.

[100] Ce marking - basics and faqs, accessed on 07-01-15.

http://ec.europa.eu/enterprise/policies/single-market-goods/cemarking/about-

ce-marking/index en.htm.

[101] Volume shadow copy service, accessed on 27-01-15. https://technet.microsoft.com/en-

us/library/ee923636%28v=ws.10%29.aspx.

[102] Hobocopy, accessed on 07-01-15. http://candera.github.io/hobocopy/.

[103] Understanding shims, accessed on 27-01-15. https://technet.microsoft.com/en-

us/library/dd837644%28v=ws.10%29.aspx.

[104] Nicoletone neurodiagnostic system, accessed on 07-01-15.

http://www.natus.com/index.cfm?page=products 1&crid=693.

[105] L. Hellstrom-Westas, I. Rosen, L.S. de Vries, and G. Greisen. Amplitude-integrated

EEG classification and interpretation in preterm and term infants. NeoReviews,

7(2):76–87, April 2006.

[106] Matlab, accessed on 07-01-15. http://uk.mathworks.com/products/matlab/.

[107] Ardalan Aarabi, Reinhard Grebe, and Fabrice Wallois. A multistage knowledge-

based system for EEG seizure detection in newborn infants. Clinical Neurophysiology

1 December 2007 (volume 118 issue 12 Pages 2781-2797).

[108] A. Subasi. Epileptic seizure detection using dynamic wavelet network. Expert Systems

with Applications, vol. 29, pp 343355, 2005.

[109] Stephen Faul, Geraldine Boylan, Sean Connolly, Liam Marnane, and Gordon Light-

body. An evaluation of automated neonatal seizure detection methods. Clinical Neu-

rophysiology, 116:1533–1541, 2005.

[110] W. Deburchgraeve, P.J. Cherian, M. De Vos, R.M. Swarte, J.H. Blok, G.H. Visser,

P. Govaert, and S. Van Huffel. Automated neonatal seizure detection mimicking a

human observer reading eeg. Clinical Neurophysiology, 119(11):2447 – 2454, 2008.

[111] J. Zhang J. Gotman, D. Flanagan and B. Rosenblatt. Automatic seizure detection

in the newborn: methods and initial evaluation. Electroencephalography and clinical

Neurophysiology, 103:356–362, 1997.

BIBLIOGRAPHY 149

[112] J. Gotman, D. Flanagan, B. Rosenblatt, A. Bye, and E.M. Mizrahi. Evaluation of an

automatic seizure detection method for the newborn eeg. Electroencephalography and

clinical Neurophysiology, 103:363–369, 1997.

[113] J. Gotman. Automatic seizure detection: improvements and evaluation. Electroen-

cephalography and clinical Neurophysiology, 76:317–324, 1990.

[114] J. Gotman, J.R Ives, and P. Gloor. Automatic recognition of inter-ictal epileptic activ-

ity in prolonged eeg recordings. Electroencephalography and Clinical Neurophysiology,

46:510–520, 1979.

[115] Nemo: Treatment of neonatal seizures with medication off-patent: evaluation

of efficacy and safety of bumetanide, accessed on 26-01-15. http://www.nemo-

europe.com/en/about-nemo.php.

[116] E. Finan, T. Bolger, and SM. Gormally. Modes of death in neonatal intensive care

units. The Irish Medical Journal, 99:106–108, 2006.

[117] Ruairi D O’Reilly, David Power, Philip D Healy, John P Morrison, and Geral-

dine B Boylan. Scrutiniseit: A search-based approach to eeg seizure detection. In

eTELEMED 2013, The Fifth International Conference on eHealth, Telemedicine, and

Social Medicine, pages 310–313, Nice, France, March 2013.

[118] Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn Keogh.

Querying and mining of time series data: experimental comparison of representations

and distance measures. Proc. VLDB Endow., 1(2):1542–1552, August 2008.

[119] W.F. Tichy. Should computer scientists experiment more? Computer, 31(5):32–40,

1998.

	Declaration
	Abstract
	Acknowledgements
	Publications arising from this work
	Introduction
	Monitoring And Analysis Of Data
	Related Work
	Stream Computing
	Complex Event Processing
	Remote Monitoring And Analysis Systems
	Decision Support
	Knowledge Discovery
	Complex Software Systems
	Agent Frameworks

	Research Question
	Use Case: Neurophysiological Monitoring
	The Clinical Perspective
	The Challenge For Neurophysiological Monitoring

	The NICU As An Interpreting Environment
	Summary
	Dissertation Overview

	Structure Of The Interpreting Environment
	Monitoring And Analysis
	An Interpreting Environment
	The Process Of Mapping Roles To Components
	Feedback
	Convergence Within An IE
	The Use Case

	Summary

	Interpreting Environment Workflow
	The Data Producer
	Time Series Data
	Temporal Abstraction

	The Interpreting Component
	Capturing Expert Knowledge
	Interpretation In The Context Of The Use Case
	Annotation Of Data
	Annnotations In The Context Of The Use Case
	Annotations Within The Physiological Data Server

	The Data Consumer
	Overview Of The Workflow
	Summary

	Implementing The Interpreting Environment
	Design Philosophy
	Design Principles
	Technologies Employed

	The IE Toolbox
	The IE Architecture
	The Event System
	The Agent Framework

	IE Container Interfaces
	Data Store
	Configuring The IE
	Utility Code
	Distributed IE Architectures
	Summary

	Realising A Physiological Data Server
	The Physiological Data Server
	The Upload Application
	Server
	Data Store

	The Viewer
	Software-specific Additions
	Adobe Flash

	Agent Framework Operation
	Security
	The Testbed
	Initial Approach
	Consequence Of An Integrated Approach
	A Revised Approach

	Streaming Data In Real Time
	Summary

	Evaluating The Physiological Data Server
	Experimental Testbed
	Generating Data for Experimental Purposes
	Streaming Data
	Mapping Roles Via The Agent Framework
	The EDFExportAgent (DP)
	The aEEGAgent (IC)

	Assisting Interpretation
	The GotmanAgent (IC)/(DC)

	Evaluating The Distributed Alternatives
	Supporting Neurophysiological Monitoring
	The NEMO project
	Discussion

	National Data Store
	Architectural Overview

	Integrating Cloud-based Services
	ScrutiniseIT

	Conclusions
	Summary
	Future Work
	Supporting Computer-aided Science

	Requirements
	Bibliography

