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Abstract  

Biogas production is the conversion of the organic material into methane (CH4) and carbon dioxide 

(CO2) under anaerobic conditions. Anaerobic digestion (AD) is widely used in continental and 

Scandinavian communities as both a waste treatment option and a source of renewable energy. 

Ireland however lags behind this European movement. Numerous feedstocks exist which could be 

digested and used to fuel a renewable transport fleet in Ireland. An issue exists with the variety of 

feedstocks; these need to be assessed and quantified to ascertain their potential resource and 

application to AD. Characteristics identified through the course of this research was the Carbon to 

Nitrogen ratio (C:N). From literature the ideal C:N ratio is between 25 and 30:1. Low levels of C:N 

(<15) can lead to problems with ammonia inhibition. Within the digester a plentiful supply of 

nutrients and a balanced C:N is required for stable performance. Feedstocks were sampled from a 

range of over 100 different substrates in Ireland including for first, second and third generation 

feedstocks. The C:N ranged from 81:1 (Winter Oats) to 7:1 (Silage Effluent). The BMP yields were 

recorded ranging from 38 + 2.0 L CH4 kg−

1 VS for pig slurry (weaning pigs) to 805 + 57 L CH4 kg−

1 VS 

for used cooking oil (UCO). However the selection of the best preforming feedstock in terms of C:N 

ratio or BMP yield alone is not sufficiently adequate. A total picture has to be created which includes 

C:N ratio, BMP yield, harvest yield and availability. Potential feedstocks which best meet these 

requirements include for Grass silage, Milk processing waste (MPW) and Saccharina latissima. MPW 

has a potential of meeting over 6 times the required energy for Ireland’s 2020 transport in energy 

targets. S. Latissima recorded a yield of over 10,000 GJ ha-1 yr-1 which out ranks traditional second 

generation biofuels by a factor of more than 4. Grass silage has impressive all round characterises 

including a BMP yield of 400 L CH4 kg−

1 VS and 152 GJ ha-1 yr-1. Grass silage has the added advantage 

of being grown on 91% of Irish arable land as well as being the cheapest crop to produce in this 

country. Further work included for batch testing and continuous operation. Using data from batch 

trials, feedstocks were combined in various mixes and operated for up to 10 months in continuous 

reactors. Continuous trials were used to simulate full-scale working conditions and determine which 

factors influenced stable operation, such as organic loading rate (OLR) and volatile fatty acid (VFA) 

concentrations. For example green macro-algae Ulva lactuca (U. lactuca) was trialled in 6 different 

reactors in dried and fresh form; it was co-digested with a varying percentage of dairy slurry (25, 50 

and 75% by VS content). Dairy slurry increased the C:N ratio of the mixture; U. lactuca had a C:N 

ratio of 7:1. The optimum reactor mix was found to be 25% Fresh U. lactuca and 75% dairy slurry 

operated at an OLR of 2.5 kg VS m3 d-1 with an average yield of 170 L CH4 kg−

1 VS.  
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Nomenclature 

AD   anaerobic digestion 

Bix  biodegradability index 

BMP   biochemical methane potential 

CH4   methane gas 

CHP   combined heat and power 

CNG   compressed natural gas 

CO2   carbon dioxide gas 

COD   chemical oxygen demand 

CSTR   continuously stirred tank reactor 

DM   dry matter (equivalent to total solids in this thesis) 

DS   dry solids (equivalent to total solids in this thesis) 

EU   European Union 

Eqn  equation  

FW   food waste 

H2   hydrogen gas 

H2S   hydrogen sulphide gas 

MSW   municipal solid waste 

MPW  milk processing waste 

NG   natural gas 

NH3   free ammonia 

NH3-N   ammonia nitrogen (equivalent to TAN in this thesis) 
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OLR   organic loading rate 
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RES-T  renewable energy supply in transport 

SD  Standard deviation 
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t yr-1   tonnes per annum 
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TAN   total ammonia nitrogen 

TS   total solids 

UCC   University College Cork 

VFA   volatile fatty acids 

VS   volatile solids 

wwt   wet weight 
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1.1 Introduction and background of thesis 

 

Anaerobic digestion (AD) is an expanding renewable energy source throughout Europe. There were 

over 13,800 biogas plants across Europe in 2012 (European Biogas Association), however only 27 

operational biogas plants were in Ireland. This number however includes for plants used as part of 

waste water treatment processes, which suggests the number of actual anaerobic digesters 

specifically built for biogas production is less. AD is a process where a consortium of anaerobic 

bacteria and achaea, degrade organic matter through four sequential stages to produce methane 

and carbon dioxide, the biogas is typically 50 – 60% methane.  As the biogas industry grows in 

Europe, countries such as Ireland can take advantage of the advances made. A key issue with the 

design of an efficient biogas industry is identification of potential substrates. Ireland has a large 

agricultural industry, associated with a large export market. Farmers have established good practices 

in crop production and have identified the best yielding crops. With a large dairy and beef industry 

there are large volumes of wastes from the food processing sector, which may be combined with 

cattle manure to fuel biogas plants. The effective management of land use to avoid direct 

competition with existing food production and the establishment of waste pathways to treat organic 

waste are necessary for the successful development of a biogas industry in Ireland. 

 

By 2020 according to The Renewable Energy Directive (European Commission 2012), 10% of energy 

use in transport should be renewable. In 2011 first generation biofuels provided for approximately 

5% renewable energy supply in transport (RES-T) in the EU. In April 2015 the European Commission 

increased the cap on first generation food based biofuels to 6% RES-T, from 5% proposed in 2012. It 

was also stipulated that advanced biofuels, such as sourced from seaweed, should represent at least 

2.5% RES-T by 2020. Combining the use of AD to treat organic wastes and produce biogas with 

Ireland’s obligations set by the European Commission for RES-T, provides a sustainable platform to 

develop a biogas industry in Ireland. Also the as part of the ambition to meet RES-T, Member States 

shall ensure that compressed natural gas (CNG) refuelling points are available within at least 150 km 

of each other by 2020 (The Alternative Transport Fuel Directive). The development of CNG stations 

should facilitate the use of biomethane as a gaseous transport biofuel. What types of substrates 

would be best suited to allow Ireland satisfy 10% RES-T through biomethane systems? 

Ireland, with over 7,500 miles of coastline and direct access to the Atlantic Ocean offers itself as an 

ideal location to utilise macro-algae (seaweed) as a source of biofuel. Algae can be either cultivated 
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in aquaculture farms or harvested from beaches or from the sea. U. lactuca, a green macro algae is a 

particular case in that it is detrimental to coastal environments that have long shallow bays which 

are subject to eutrophication. This has become more endemic in recent years in France, Denmark 

and Japan. It is seen as an algae bloom and can result in thousands of tonnes washing up on to 

beaches, forcing closures and threatening the amenity of the whole bay area. However the quantity 

of the bloom can lead to a cheap source of biofuel as it greatly reduces the harvesting costs. 

Seaweed (or macro-algae) biofuels are deemed to be third generation biofuels. They do not interfere 

with food production directly (they do not use food crops) or indirectly (they do not use agricultural 

land). 

 

Industrial residues and wastes from municipalities can contribute to a biogas industry. Ireland 

produces over 35 m t yr-1 of bovine slurry alone, combined with a dairy industry which process 4.5 

bn litres yr-1 of milk. Agriculture and industries linked to the agricultural sector produces vast 

quantities of wastes, which can all be processed by AD to produce biogas. A full review of all 

potential AD feedstocks is required to suitably identify potential yields, which could fuel an AD 

industry in Ireland. However one such test is not available to quantify all substrates and their biogas 

potential. An optimised approach or methodology needs to be designed to efficiently develop 

potential biogas yields through a combination of stoichiometric, batch and continuous laboratory 

experiments.  

 

 

1.2 Thesis aims and objectives  

 

The aims and objectives of this thesis are:  

• Identify and classify available substrates, which may be used to produce biogas in Ireland.   

• Compare mono and co-digestion of substrates and establish synergies between substrates 

which improve digestion efficiencies.   

• Assess theoretical and actual biochemical methane potential (BMP) of macro algae 

substrates which are readily available around Irish coastlines. 

• Analyse the suitability of macro algae U. lactuca to anaerobic digestion. 

• Assess the energy yield per hectare per annum of optimum performing biofuel substrates. 

• Relate substrate availability and potential biomethane production to RES-T targets. 
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1.3 Thesis outline and link between chapters 

 

This thesis is comprised of 8 chapters and 4 appendices. Chapter 2 is a literature review of the biogas 

process and associated parameters, which are vital to understand successful operation of the biogas 

process. Chapters 3 through 7 are published or submitted papers for peer reviewed journals, which 

have been edited to fit a thesis format. They are the main body of work. There are 4 additional peer 

reviewed papers, which I contributed significantly to. A guideline to each chapter is detailed below. 

 

Chapter 3: A detailed assessment of variation in biomethane potential of first, second and third 

generation substrates 

 

This paper is an accumulation of assessments of various substrates. It includes for data which 

compile a matrix of potential BMP yields of available substrates in Ireland. As the biogas industry is 

starting to develop in Ireland, there is a need to quantify potential substrates for AD and understand 

associated parameters with these substrates. A standardised method was established to run BMP 

assays, in triplicate on the Bio-process AMPTS II unit. A total of 83 substrates from industry, 

agriculture, municipalities and marine sources were assessed. Homogenous samples were taken for 

each feedstock to ensure a representative sample was obtained. Using the same procedure each 

time, a blank and a cellulose control were assessed. This enabled each run to be compared to the 

previous run for statistical relevance and to maintain accuracy all BMP assays. Six primary categories 

were identified including: Agricultural wastes, Grass substrates, Root Crops, Food Processing Wastes, 

Municipal Wastes and Macro algae. Grass, received a category to itself as it is the most dominant 

arable crop grown in Ireland (91% of agricultural land is covered by grass). Each of the primary 

categories had a number of substrates trialled in an attempt to accurately identify that category. 

After each substrate was trialled the best performing substrates were chosen. The biomethane 

resource for Ireland was assessed, by factoring the quantity of substrate available by the specific 

methane yield (SMY) of that substrate. Crops and seaweeds an energy value per hectare was 

established. A route to reaching RES-T targets was then produced.  

 

Chapter 4: Evaluation of the biomethane yield from anaerobic co-digestion of nitrogenous 

substrates. 
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This chapter is part of two papers submitted together to the same journal. The second paper is 

attached in appendix A. The biomethane potential from five major organic waste streams for a 

proposed community scale anaerobic digester in a rural town in Ireland were assessed. Batch tests, 

theoretical yields, kinetic and statistical modelling were all employed; this is a similar methodology 

as in Chapter 3. Five main waste streams were identified as possible substrates for biogas 

production, namely: abattoir waste, (consisting of paunch content and dewatered activated sludge); 

cheese waste effluent; commercial and domestic food waste; pig slurry; and waste water treatment 

sludge. From initial batch tests of each substrate individually, two co-digestion mixes were 

proposed; these were also run in batch tests. From these results only limited data was obtained. No 

information on organic loading rate (OLR), on levels of VFA, of total ammonia nitrogen (TAN) or 

other operating parameters are yielded from batch trials. This was the starting point of Chapter 4. 

The brief was to examine the relative merits of two mixes of the best performing substrates from 

the BMP trials.  The three substrates used in the two mixes were: abattoir waste; cheese waste; and 

food waste. The two mixes comprised of: T1 (40% abattoir waste; 50% cheese waste; 10% food 

waste on a wet weight (w/w) basis) and T2 (30% abattoir waste; 40% cheese waste; 30% food 

waste). The C:N ratio of both mixes were below optimum. These low levels suggest that the 

production of free ammonia (NH3) in semi-continuous digestion was of primary concern. Both mixes 

were digested in a semi-continuous process for 25 weeks. The aim of these continuous trials (as with 

chapter 7) was to reach a steady state of biomethane production at a yield as close or above the 

BMP yield of the mixes from batch tests. Final results recommended operating conditions for T1 as a 

loading rate of 3 kg VS m-3 d-1
 at a retention time of 23 days. The biomethane yield was 305 LCH4 kg−

1 

VS, which was 87% of the BMP value and indicated 61% biodegradability. For T2 (with a higher C:N 

ratio) a higher loading rate of 4 kg VS m-3 d-1
 at a lower retention time of 15 days was recommended. 

The biomethane yield was 439 LCH4 kg−

1 VS (99% of the BMP value and 84% biodegradability).  

At these conditions levels of Total Ammonia Nitrogen (TAN) were 4109 and 4831 mg l-1 for T1 and T2 

respectively. These values are on the large side according to the literature. The temperature was 

reduced to 35oC to minimise toxicity associated with TAN. VFA inhibition did not occur as 

concentrations were well below permitted ranges.  

 

Chapter 5: What is the gross energy yield of third generation gaseous biofuel sourced from 

seaweed? 
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The use of third generation biofuels avoids competition between agricultural land and energy. Algae 

(both macro and micro) have been suggested as potential future sources of renewable energy in 

transport in Europe. The Renewable Energy Directive assigns a weighting of two to biofuel produced 

from algae. Thus in calculating renewable energy supply in transport (RES-T) targets the energy from 

algae biofuels may be doubled in considering the 2020 target of 10% RES-T.  With the qualification of 

seaweeds for double credits, brown seaweeds in particular Saccharina latissima and Laminaria 

digitata have high concentrations of naturally occurring sugar such as alginate and lamanarian which 

can be readily degraded in a biogas digestion system and converted to methane. This chapter has 

the aims of identifying the most abundant brown macro algae varieties around Irish shorelines and 

developing a matrix of potential biomethane yields and characteristics associated with these 

seaweeds. A series of beaches and estuaries across the west Cork coastline were chosen to collect 

each seaweed variety to ensure a wide variety sample was collected. A full theoretical analysis was 

undertaken on ten different seaweeds to determine C:N ratios as well as C:S ratios to try and predict 

H2S concentrations. From these results a series of batch tests were conducted to determine BMP 

yields. From the obtained yields and literary review a table of potential energy yields per hectare 

was developed to determine how much area would be required to meet RES-T targets. Results 

showed that S. latissima reported the highest BMP yield (ca. 342 L CH4 kg-1 VS). S. latissima if farmed, 

may produce 10,250 m3 CH4 ha-1 yr-1 (365 GJ ha-1 yr-1) which is in excess of all land based liquid 

biofuel systems. 

 

Chapter 6: The potential of algae blooms to produce renewable gaseous fuel  

 

Chapter 6 details the issue of a particular macro-algae species, which is both a residue and a third 

generation biofuel substrate. The macro algae or seaweed U. lactuca (commonly known as sea 

lettuce) is a green seaweed which dominates algae blooms. These blooms are collectively known as 

“Green Tides” and are caused by excess nitrogen from agriculture and sewage outfalls resulting in 

eutrophication in shallow estuaries. A solution to this problem is to remove the algae and use as a 

source of renewable energy in the form of biomethane. However as this seaweed is naturally 

occurring its growing and harvest conditions are hard to control compared to terrestrial crops like 

grass or maize. Samples of U. lactuca were taken from the Argideen estuary in West Cork for two 

consecutive years; these were analysed for biogas potential as well as physical characteristics. In 

batch tests fresh U. lactuca achieved a BMP yield 183 L CH4 kg−

1 VS. Fresh samples (sampled a year 
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later) produced results of 205 L CH4 kg−

1 VS.  A series of pre-treatments were carried out in an 

attempt to improve biomethane yields. The best results were obtained for a dried, washed and 

macerated sample, yielding a BMP result of 250 L CH4 kg−

1 VS. The resource in this West Cork estuary 

is sufficient to fuel 260 cars. Some issues were highlighted with the seaweed in terms of its chemical 

makeup, which can lead to problems in digesting U. lactuca. The C:N ratio is low and the sulphur 

content is high. The sulphur content of U. lactuca is such that hydrogen sulphide (H2S) is released 

when it anaerobically digests on the shore releasing rotten egg smells. It is recommended that U. 

lactuca is co-digested with a substrate which has a higher C:N ratio and also provides a source of 

minerals and trace elements to improve digester performance.  

 

Chapter 7: Investigation of the optimal percentage of green seaweed that may be co-digested with 

dairy slurry to produce gaseous biofuel. 

 

This chapter is a continuation of the work of the previous chapter. It deals with continuous digestion 

of U. lactuca. The green seaweed variety was found to have high levels of sulphur and a low ratio of 

carbon to nitrogen. Associated literature on the continuous digestion of a substrate with such 

characteristics illustrated that microbial failure could occur. These operational parameters, which 

cannot be analysed in batch tests, were assessed in continuous trials. Fresh and dried U. lactuca 

were continuously co-digested with dairy slurry at ratios of 25%, 50% and 75% (by volatile solid 

content) in 6 number 5L reactors for 9 months. Dried U. lactuca was chosen as it had the highest 

specific methane yield of all the pre-treatment options assessed in chapter 6. The reactors digesting 

a mix with 75% U. lactuca struggled to reach sustainable operating conditions. Failure was 

dominated by volatile fatty acid (VFA) inhibition. The levels of ammonia increased with percentage 

U. lactuca in the mix. Optimum conditions were observed with a mix of 25% fresh U. lactuca and 

75% slurry. A yield of 170 L CH4 kg−

1 VS was achieved at an organic loading rate of 2.5 kg VS m-3 d-1. 

The reactor with the lowest portion of U. lactuca preformed the best, this mix had the highest C:N 

ratio. There was a gradual decline in the biomethane yield for this reactor after it was increased to 

an OLR of 2.5 kg VS m-3 d-1 without any correlating rise in VFA or TAN concentrations. A detailed 

trace element and fingerprint rDNA analysis was conducted to establish the exact cause of the 

reduction in yields. The discussion and results of this data is presented in appendix B.   
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2 A review of anaerobic digestion and third generation biofuels 

 

2.1 Early research in biomethane potential of substrates 

 

Anaerobic digestion is a biological process, which degrades organic material via four sequential 

stages to produce a renewable natural gas in the form of biomethane. Hydrolysis, acidogenesis, 

acetogenesis and methanogenesis are the steps involved in breaking the volatile components of the 

substrates to methane and carbon dioxide. Initial studies conducted by Buswell and Neave [1], were 

conducted with the aim to fully understand the four stages of AD in treating sludge and stabilising 

waste. The premise of their work was to fully understand biochemical influences of carbonaceous 

and nitrogenous material on anaerobic degradation. Further studies in the same year by Neave and 

Buswell [2] developed the relationship to a stoichiometric equation to forecast potential methane 

and carbon dioxide yields from degradation of fatty acids. From these studies they showed that 

water acted as an oxidising agent in breaking down organic acids and a further relationship exists 

between the number of carbon atoms present in the acids and the number of molecules of water 

which exist during digestion.  

Leading on from these trials Symons and Buswell [3] using previous methodology and results 

developed a method to determine the potential methane and carbon dioxide production of a 

substrate depending on its stoichiometric composition using an empirically derived formula. This 

formula is known as the Buswell equation and is used in this thesis as a first stage in the biogas 

analysis of substrates prior to biochemical methane potential (BMP) assays. However a drawback or 

constraint of the Buswell equation is that the stoichiometric equation does not take into account the 

organic material which is consumed by the anaerobic bacteria and archae, which need a source of 

energy for subsistence, reproduction and evolution. From this assumption made by Buswell and in a 

similar method published by McCarthy [4] that all electrons donated in the degradation process are 

exclusively used for metabolic energy and not for microbial growth, an overestimation in BMP yields 

can occur. This overestimation can vary widely from each substrate as additional factors can occur 

such as a substrate having a concentration of fibre or lignin which may not be readily degradable, yet 

are attributed to methane yield by the Buswell equation. Thus the Buswell equation is used only as a 

“ceiling value” or maximum theoretical yield to the total methane that may be produced and not the 

actual methane produced by a unit mass of a substrate. Labatut et all [5] attempted to determine a 

method to avert this issue and develop relationships between the concentration of volatile organic 
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matter of a substrate and stoichiometric composition. Results showed that their modified equation 

could predict the BMP of a substrate to above 90% accuracy. From this initial work and the 

development of equations to predict BMP yields, a detailed and precise understanding was 

established. However an initial BMP test would be required as a coefficient in Labatut’s equation is 

the yield of the substrate itself. 

 

2.2 Biochemical methane potential of substrates 

There are a number of particular drivers which have led to a development of a biogas industry. 

These drivers can be defined as the treatment of various wastes streams, divert wastes from landfill, 

reduce CO2 emissions, and meet renewable energy targets. Rather than just a process 

understanding, a full knowledge of the biogas cycle is required. One constraint with biogas systems 

is their dependence on local substrates. It is not economically viable to transport organic feedstocks 

great distances as this can affect the viability of the entire process; this is especially true for 

substrates with low percentage total solids (TS). Smyth et all [6] published results showing that the 

transport requirements of removal of the digestate 10km, alone were 2% of gross energy produced 

from a typical biogas plant treating grass and dairy slurry. This constraint has led to further research 

and development of optimised biogas production by further understanding the substrates and what 

is required to successfully digest the organic matter available.  

Subsequent to theoretical yields, a laboratory method described as a batch test was successfully 

developed with a set of optimised parameters. Successful studies conducted by Chynoweth et all [7] 

and Owens et all [8] on batch tests developed vital parameters such as the feeding ratio of the 

inoculum and the substrate and the reactor vessel sizing. The batch test or BMP assay is conducted 

in a reactor vessel, which is fed once and sealed, allowing the biogas to escape through a designated 

outlet, which connects to a gas flow meter. It is difficult to make adjustments during the process. 

Some minor adjustments can be conducted such as pH adjustment but these adjustments have an 

impact on the final BMP yield. It is preferable to make any adjustments to the inoculum pH or trace 

element concentration, before the batch test is initiated. An optimised feeding rate was established. 

This is known as the Inoculum to Substrate ratio (I:S ratio). It is typically between 1:1 and 2:1 on a 

volatile solid (VS) basis [7, 8]. Volatile solids were determined to be the optimum substrate physical 

parameter rather than total solids which includes the ash content (AC). From these established 

results it was found that an I:S ratio below 1:1 would lead to inhibition within the batch vessel as 

there would not be a necessary amount of bacteria present within the inoculum to successfully 

digest the substrate. A retention time of over 30 days would also result, which compromises the 
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effectiveness of the test. An I:S ratio above 2:1 would produce an adequate result but the volume of 

the substrate required is quite small, which increases the percentage error in sampling a 

homogenous substrate.  

A final conclusion was the reactor size of the batch tests. The use of the serum bottle batch tests 

which may allow high throughput, ultimately sacrifices the homogeneity and representativeness of 

the substrate as the serum bottle size can be under 100 ml. By using a reactor vessel this size, would 

mean a substrate sample of a significantly small size increasing percentage error. An optimised BMP 

system allows researchers an accurate method to determine the actual Specific Methane Yield (SMY 

in units of L CH4 kg-1 VS) of a substrate under optimised lab conditions as opposed to a theoretical 

yield from a stoichiometric equation. The AMPTS II system was the system used throughout these 

experimental trials. It uses a vessel of 400ml as a reactor. It is described in greater detail in chapter 

3.   

 

2.3 Continuous reactors  

The specific methane yield (L CH4 kg-1 VS) may be assessed using theoretical methods and using the 

BMP assay. However these methods fail to give adequate information on the allowable organic 

loading rate (OLR) in continuous digestion or the operational parameters of a biogas reactor. Such 

parameters are vital in establishing the viability and longevity of the AD process. These parameters 

include pH, total ammonical nitrogen (TAN), volatile fatty acids (VFAs) and FOS:TAC (ratio of acidity 

to alkalinity). The microbial fauna present in the digester are dependent on these parameters. 

Acetoclastic methanogens require a stable pH range between 7 and 8 [9]. If an accumulation of VFA 

occurs, a reduction in the pH of the reactor can occur. This reduction in pH leads to unfavourable 

conditions for the methanogens and may lead to biodegradability inefficiencies or worse total 

reactor failure. The presence of toxic levels of free ammonia in the form of NH3+ can also lead to 

reactor disturbances in biogas production [10]. These environmental characteristics however cannot 

be monitored through a period of time in a batch test. There is a requirement for continuous or 

semi-continuous laboratory experiments. By running a continuous experiment which is closely 

related to a large scale or industrial reactor these reactor parameters can be recorded for a 

particular substrate and possible causes of failures identified and prevented. This allows 

optimisation of the biogas process in the design of a commercial facility.   

Various continuous reactor systems exist. They include for 1 stage continuous stirred tank reactors 

(CSTR) [11] and 2 stage CSTRs [12], which are distinguished by having one or more tanks are rector 

vessels. The CSTR can be horizontally or vertically operated. Horizontal CSTRs are commonly referred 
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to as plug flow reactors. Continuous reactors can also be double phase were the solid substrate is 

hydrolysed and undergoes acidogenisis in the first phase, and in the second phase conditions are 

optimised for methanogenisis possibly in an up-flow anaerobic sludge blanket reactor (UASB) [13]. 

The trialling of these various reactor configurations for a particular substrate will establish the 

optimum AD process. 

 

2.4 Third generation biofuels  

The technology includes for reactor configuration and substrate requirements. The substrate must 

be quantified in terms of proximate analysis and ultimate analysis. Existing first (crops) and second 

generation (residues and lignocellulosic substrates) biofuel substrates have received detailed 

examination [14, 15]. This may not be said for third generation (algae) biofuel substrates. The 

Carbon to Nitrogen (C:N) ratio is a primary indicator of how well a substrate may be digested [16]. 

An optimum range of the C:N ratio lies between 25:1 and 30:1 [17]. If the C:N ratio of a substrate lies 

outside this range it can make it difficult for the flora and fauna of the bacteria consortium to 

operate in a stable environment. The carbon to sulphur (C:S) ratio can forecast potential H2S 

concentrations [18]. H2S is a toxic gas, which can be produced alongside methane and carbon 

dioxide. It needs to be limited, as it causes harm to Combined Heat and Power (CHP) systems or 

upgrading equipment. It is also inhibitory to the AD process [19, 20]. 

An issue with third generation biofuels is that the C:N can vary significantly, far greater than 

terrestrial biofuel substrates currently used in AD. This large variance is combined with additional 

factors such as the composition of the substrates in terms of inhibitory concentrations of lipids or 

fats which rapidly degrade and produce an excess amount of VFAs [21, 22]. Substrates such as fish 

offal, food waste, used cooking oils and grease trap waste, have high lipid and soluble fat 

concentrations, which make continuous digestion difficult especially in a mono-digestion. Advanced 

continuous systems such as two phase digestion which cannot process high or shock loads of a high 

strength (COD concentration) liquor from rapidly degrading oily substrates such as food waste can 

lead to failure. This would not be the case for a lignocellulose substrate such as grass which has a 

lower rate of degradation [23]. When algae species are considered, there are two distinct categories: 

macro and micro algae. Micro algae are microscopic algae species and have a low total solids (TS) 

content (between 0.1% - 1% TS) as produced in open and closed bioreactors [24, 25]. Micro-algae 

like oil rich waste substrates are rich in lipids, which leads to high theoretical specific methane yields 

(SMYs) and actual yields obtained by BMP assays. A down side to these concentrations of lipids is the 

inhibitory effect on the AD process [21]. Macro algae are large algae species typically known as 
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seaweeds. Macro algae are typically separated into 3 groups: Red, Brown and Green macro algae. 

Green macro algae (similar to micro algae species) have low C:N ratios; they also have high sodium 

and sulphur concentrations, all of which make digestion challenging [26]. Brown seaweeds are found 

in all types of climatic conditions, while Red seaweeds are associated with warmer climates. The 

composition of these seaweeds can vary greatly in terms of carbohydrates and sugar content [27]. 

The literature available on the use of algae as a biogas substrate is sparse when compared to first 

and second generation biofuel substrates.  

There is a great potential to be harnessed from directing third generation biofuel substrates to AD 

and producing renewable gaseous transport fuel. The EU awards double credits to renewable energy 

in transport derived from second and third generation biofuel substrates when assessing the 10% 

renewable energy supply in transport (RES-T) target for 2020 [28]. For instant Gosh et al. [29] 

outlined how a city of 1 million inhabitants could fuel between 5 - 9% of the city’s natural gas 

demand from municipal refuse alone[29]. In an Irish context if the organic fraction of municipal solid 

waste (OFMSW) was diverted to AD (instead of landfilling) a biomethane quantity of 2.36 PJ yr-1 or 

1.36% of RES-T could be satisfied. With double credits this could be 2.72% of the RES-T from OFMSW 

alone. A study carried out by Yokoyama et al. [30] showed that a potential of 18.66 PJ yr-1 of energy 

could be produced by growing a Laminaria species of macro algae off shore, in Japan [30]. All be it 

these are desktop calculations, there is existing data which can suggest that a large contribution of 

national and global energy targets and CO2 reductions can be made by developing a biogas industry 

and substituting renewable gaseous fuel sources for fossil fuels.   
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3 A detailed assessment of variation in biomethane potential of first, second 
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Abstract 

There are a myriad of substrates available for anaerobic digestion, which may be categorised as: first 

generation substrates (such as food crops); second generation (such as grasses and wastes) and third 

generation (such as seaweed). This paper recounts analysis of 83 samples of substrates through 

assessment of biochemical methane potential (BMP) and through kinetic analysis of the produced 

BMP curve. Significant variation in the BMP of a substrate may be found depending on for example, 

season and method of harvest. Grass samples ranged from 156 L CH4 kg-1 VS hay to 433 L CH4 kg-1 VS 

first cut baled silage. Dairy slurry from the same farm varied from 175 L CH4 kg-1 VS in autumn (cattle 

fed on concentrate at end of farming year) to 239 L CH4 kg-1 VS in the summer when cattle are fed 

fresh grass. Seaweeds such as S. latissima generated a higher volumetric yield 36.4 m3 CH4 t
-1 wwt 

than summer dairy slurry 16 m3 CH4 t
-1 wwt. It is likely that the most sustainable and cheapest source 

of biomethane will be from wastes, but this will not satisfy all energy demands. Biomethane from 

agri-food wastes could satisfy 65% of energy in transport in Ireland. Larger resources will require 

third generation substrates such as seaweed. 

 

Keywords:  Biomethane potential assays; first, second and third generation feedstocks. 
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3.1 Introduction 

3.1.1 Anaerobic digestion industry in Europe and Ireland 

Anaerobic digestion (AD) is an emerging renewable energy source throughout Europe. There were 

over 13,800 biogas plants across Europe in 2012, however there are only 22 operational biogas 

plants in Ireland and 14 of these are associated with wastewater treatment (IEA Task 37, 2015). 

Ireland has the advantage of utilising recent advancements in anaerobic digestion technologies (and 

learning from the mistakes and successes of others) prior to extending the industry to the scale of 

other European Countries such as Germany with 10,020 digesters and Austria with 337 (IEA Task 37, 

2015). 

 

3.1.2 Matching substrates to the biogas industry 

A key issue with an efficient national biogas industry is identifying potential substrates available in 

that country. Ireland has a large food and agricultural industry and exports significant quantities of 

food; for example 85% of beef is exported [1]. High volumes of potential wastes from food 

processing may be combined with cattle manure to fuel biogas plants. This will minimise the usage 

of agricultural land and direct competition with food while establishing waste treatment pathways 

with production of renewable energy.  

Diary slurry is seen as an excellent co-digestion feedstock in biogas facilities not alone in that Ireland 

has a significant dairy industry. It has an optimal Carbon to Nitrogen (C:N) ratio (between 20 and 30). 

It can reduce volatile fatty acids (VFA) within a biogas reactor, add to the microbial diversity in the 

digester and supply essential nutrients to encourage biogas production [2, 3].  

Perennial rye grass (PRG) is the main forage crop grown in Ireland with 92% of arable land covered 

by grass. Grass silage also has an optimal C:N ratio [4] 

 

3.1.3 Biomethane as a source of renewable transport fuel 

Biogas may be readily converted to biomethane via upgrading technology. Ireland has made much 

progress in renewable energy supply in electricity (RES-E) mainly through wind turbines. But this is 
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not the case with renewable energy supply in transport (RES-T). The Renewable Energy Directive 

states that 10% of energy use in transport should be renewable by 2020, [5]. A recent amendment to 

this Directive suggests that first generation biofuels from food crops be limited to 7% of energy in 

transport (Council of European Union, 2014). This puts on onus on second generation biofuel 

substrates such as biomethane from residues to match the shortfall of 3% by 2020. This is reinforced 

by the Alternative Transport Fuel Infrastructure Directive [6], which states that Member States shall 

ensure that compressed natural gas (CNG) refuelling points are available within at least 150 km of 

each other by 2020. The development of CNG stations will facilitate the use of biomethane as a 

gaseous transport biofuel.  

 

3.1.4 Assessment of biogas resource  

The biomethane potential (BMP) of the substrate (measured in L CH4 kg-1 VS) may be multiplied by 

the practical available resource to assess the energy that may be produced.  

Of concern in a country initiating a biogas industry is that inexperienced consultants may take values 

from literature; this is not advisable as substrates differ from region to region and country to 

country.  Food wastes (FW) from Ireland may differ from food waste in France or Germany due to 

different diets and inclusion (or not) of yard waste (grass cuttings and pruning). The BMP of 

substrates can vary over the year. Early cut grass silage yields a higher BMP than late cut grass silage 

[7]. Dairy slurry can vary in content over the year depending on the diet the animals are fed and 

stage of lactation. 

The BMP may be evaluated through use of the Buswell Method [8] which uses the stoichiometric 

equation of the substrate to generate a maximum possible theoretical BMP (section 3.2.2.5). The 

BMP may ideally be evaluated through laboratory experiment (section 3.2.2.2). The laboratory BMP 

assay will be less than the theoretical maximum assessed using the Buswell method.  

3.1.5 Aims and objectives 

The aim of this paper is to identify and sample potential substrate’s biogas production and to 

undertake BMP assays for each sample. The objectives of this paper are to: 

• Identify and classify available substrates;  



Biogas Production from Novel Substrates 

 

 

- 39 - 
 

• Asses theoretical and actual BMP of each substrate; 

• Analyse all tested substrates for biodegradability and apply kinetic modelling and statistical 

analysis to all BMP results;  

• Assess the energy yield per hectare per annum of crop substrates; 

• Determine a biogas route to facilitate compliance with RES-T targets.  

 

3.2 Materials and methods: 

 

3.2.1 Materials 

Eighty-three substrates were sampled and assessed. Criteria for selection included the most 

abundant and available substrates in Ireland. The substrates included first generation substrates 

(food crops) such as: beets, maize, cereal crops, oil seed rape, potatoes and turnips. Second 

generation substrates included grass silage, agri-food waste streams, and agricultural and municipal 

wastes. Third generation substrates included marine biomass such as green seaweed (U. lactuca) 

and brown seaweeds (Saccharina latissima, Laminaria digitata and Ascophylum nodosum). Various 

pretreatments were assessed such as drying, ensiling and macerating to highlight differences in 

potential methane yields.  

Specific substrates such as dairy slurry, food waste and grass silage were examined in closer detail 

due to their abundance and the variety of sub-streams. Nine different slurries were sampled as well 

as poultry manure and farmyard manure. Ten variations of grass silage were sampled. These 

represent the various methods Irish farmers used to preserve and cut silage and include baling, 

ensiling, hay and 1st (early and late stage cuts) and 2nd cuts of silage. Eleven variants of food wastes 

were sampled. Milk processing wastes (MPW) and abattoir wastes were also sampled as various 

wastes are produced from these processes. Appendix A and B in supplementary data includes for a 

full list of substrates. 
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3.2.2 Methods 

 

3.2.2.1 Proximate and analytical methods 

Each sample was analysed initially for total solids (TS) content and volatile solid (VS) content by 

drying to 105oC for 24 hours and again placing samples in a furnace heated to 550oC for 6 hours as 

described by APHA standards [9]. To determine a theoretical yield for each sample the Carbon, 

Nitrogen, Hydrogen and Oxygen percentage of each sample (<1mm particle size) was obtained from 

a dried sample of each substrate by a CE 440 elemental analyser in triplicate. The C:N ratio was also 

observed from the elemental analysis. To facilitate in the completion of successful BMP assays and 

to ensure homogeneity amongst each substrate, all samples were macerated to 5mm particle size by 

a lab scale macerator. Liquid samples were mixed by a lab scale blender prior to all analysis tests. 

Liquid samples were tested for soluble chemical oxygen demand (SCOD) using Hach Lange CLK 914 

cuvettes. pH was obtained using a Jenway 3510 pH meter.  

The biodegradability index (ratio of BMP assay yield to theoretical yield) was calculated for all 

substrates. This indicates the level of VS destruction of the substrate over 30 days.  

 

3.2.2.2 BMP procedure 

The same BMP apparatus was used on all of the substrates to ensure repeatability of results. Two 

Bioprocess AMPST® II units were used in tandem: all samples were run in triplicate. Inoculum and 

cellulose controls were conducted for each run; this allowed for 8 substrates to be analysed for each 

run of the BMP system. An inoculum to substrate ratio (I:S) on a VS basis, of 2:1 was chosen for 

these trials [10]. Nitrogen was used to flush the head space of the 400 ml reactors prior to 

commencing each BMP assay. The mixing system alternated between on and off for 60 seconds at 

30 rpm. Reactor vessels were placed in a water bath and heated to 37oC for the duration of the 

experiment. The biogas produced was then passed through a solution of 3M NaOH to remove CO2, 

H2S and other gaseous impurities. An electronic gas-tipping device recorded the volume of 

biomethane, which was produced from each reactor vessel. The total biomethane produced from 

the inoculum was averaged and subtracted from the volume of biomethane produced by the 

individual substrate, to determine the specific methane yield of the substrate. Automatic adjustment 
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was completed for standard temperature and pressure for all results. Overestimation in the flush gas 

was corrected for also by the AMPTS II system. In order to allow for the numerous substrates the 

inoculum was chosen from two different sources. One half was from a continuous lab scale reactor, 

which was fed grass silage, dairy slurry and macro algae. The other half of the inoculum came from 

the previous BMP assay run. Both inoculum sources were mixed to a homogeneous state and 

analysed for solids composition.   

 

3.2.2.3 Statistical analysis 

To compare a run of 8 BMP substrates to another run of 8 other substrates, the method of analysis 

of variance (ANOVA) was used to determine the influence of the substrate on biochemical yield. The 

BMP run was regarded as the block effect and the substrate as the main effect for the ANOVA test. 

The test procedure SIMULATE was used from the statistical analysis programme SAS 9.3. A 

significance of differences in methane yields between substrates was determined by multiple 

comparisons, with a significance level, α (set at p < 0.05).  

 

3.2.2.4 Kinetic analysis 

Kinetic analysis was performed on the cumulative production curves produced from each BMP 

assay. Kinetic modelling was used to create an insight into the biodegradability of each substrate. It 

is also used as a method of physical comparison for the cellulose BMP assays from each run. This can 

help to illustrate any differences between BMP runs and highlight any outlying results if kinetic 

values deviate from average results. A first order differential equation was used to determine the 

decay constant value, k (Eqn. 3.1). The modified Gompertz formula (Eqn. 3.2) was used to determine 

the remaining kinetic biodegradability values associated with BMP assays.  

���� = ��	. 	1 − exp������  Eqn. 3.1 

���� = � ∙ exp{	− exp[	����∙�� �∆ − ��] + 1}  Eqn. 3.2 

Y(t) is the cumulative biomethane yield (L CH4 kg-1 VS) at a digestion time t (days). Ym is the maximum 

biomethane potential (L CH4 kg-1 VS) of the substrate added.  k the decay constant (days-1). k is a 

measure of the rate that the substrate has been degraded. M(t) is the cumulative biomethane yield 

(L CH4 kg-1 VS) at a given time t (days). P is the maximum biomethane potential (L CH4 kg-1 VS) of the 
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substrate from the BMP test. Rmax is the maximum biomethane production rate (L CH4 kg-1 VS d-1). Δ 

the lag phase is a measure of how long it takes (days) before biochemical methane production starts 

to occur. t is the time (days). T50 is the half-life (days) and is a measure of how long it takes to 

produce half of the maximum cumulative yield of biomethane. R2 is a measure of how the kinetic 

equation model fits the curve of biomethane production (%).  

 

3.2.2.5 Theoretical yields 

Data for elemental compositions collected on each substrate was used to create theoretical 

methane yields using the Buswell equation (Eqn. 3.3). The Buswell equation is a method to 

determine the maximum BMP yield of substrates by converting all available VS to methane and 

carbon dioxide. This stoichiometric equation however assumes all donated electrons are used 

entirely for metabolic energy, which does not allow for the development of the anaerobic bacteria 

or losses within the system. This lends itself to an overestimation in the theoretical yield. A ceiling 

value however is established for the chosen substrates and a biodegradability index (BMPassay/ 

BMPBuswell) can be established which can indicate how well a substrate can be degraded.  
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3.3 Results and discussion  

3.3.1 Proximate and elemental analysis 

A wide range of substrates was sampled for these trials (Tables 3.1 to 3.6). Assessments included for: 

proximate analysis (TS and VS); ultimate analysis (the percentage of the dry solids which are Carbon, 

Hydrogen, Nitrogen, Oxygen); C:N ratio; specific methane yields (theoretical and laboratory BMP 

result); biodegradability index (ratio of BMPassay/BMPBuswell) and the results of the kinetic analysis. 

The solids content should be below 10% for a continuously mixed tank reactor (CSTR). The optimum 

C:N ratio is between 25 and 30:1 for a biogas reactor [11]. Below this range there is potential for 

inhibition from ammonia [12]. High percentages of TS and VS are preferable so as to reduce energy 

used in transportation and increase net energy yields per tonne wet weight (wwt). Substrates are 
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grouped into 6 main groups. The 6 wastes were: agricultural wastes; grass; crops; food processing 

residues; municipal wastes: and seaweed. 

 

3.3.2 First generation biofuels  

Twelve terrestrial feed crops were analysed from farms throughout County Cork, in the south of 

Ireland (Table 3.1). The crops included cereal crops, beets and potatoes. In Ireland cereal crops are 

dominated by barley and wheat. Spring and winter cereals were assessed. Whole crop (seed and 

stalk) was sampled for these trials. First generation biofuels have the distinct disadvantage of 

competing directly with land, which could be used for food. Provision of biofuels from crops are also 

capped at a maximum contribution to RES-T of 7% [6].   

 

3.3.2.1 Cereal crops 

No significant variation in BMP yields, were observed between the 4 samples of cereals: winter 

barley (harvested in July) and spring barley (harvested in August) or winter wheat (harvested in July) 

and spring wheat (harvested in September). BMPs of the samples ranged from 340.16 + 9.56 L CH4 

kg-1 VS (spring wheat) to the maximum yielding crop of 366.53 + 14.80 L CH4 kg-1 VS (winter barley). 

Triticale and winter oats returned lower yields of 314.11 + 7.61 L CH4 kg-1 VS and 281.26 + 4.57 L CH4 

kg-1 VS respectively (both harvested in August).  

3.3.2.2 Oil seed rape 

Oil seed rape (OSR) was initially introduced as a feedstock for biodiesel production in Ireland but has 

seen a switch over to a use as a feedstuff. It has a high lipid content and C:N ratio of 21:1 which 

makes it, potentially, a very high yielding biofuel. The BMP yielded 646.30 + 7.39 L CH4 kg-1 VS 

(macerated and harvested in July). The whole crop of OSR before it was sprayed off for harvesting (2 

weeks prior to harvesting) yielded 318.92 + 10.91 L CH4 kg-1 VS. Un-macerated OSR however yielded 

a significantly lower yield of 215.17 + 12.47 L CH4 kg-1 VS. This can be attributed to the hard shell in 

which the OSR is enclosed. The crushing or pulverising of the crop as a pre-treatment, which 

increased the BMP yield by over 200% is a necessary step for biomethane production.  
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3.3.2.3 Root crops 

Two varieties of potatoes sampled produced BMP yields of 351.01 + 12.27 L CH4 kg-1 VS (Rooster 

variety) and 337.56 + 12.94 L CH4 kg-1 VS (Kerr Pink variety). Both substrates had high C:N ratios (> 

59:1). Turnips are easily tilled and grow well in Ireland. The BMP revealed a yield of 398.61 + 8.62 L 

CH4 kg-1 VS. Harvest dates occurred in October.  

Three varieties of beets were assessed. Beets have been extensively studied in continuous mono-

digestion and have been found to operate well over long periods of time without the 

supplementation of dairy slurry or trace elements [13]. Fodder beets are the easiest to grow in terms 

of fertilizer inputs and are popular with dairy farmers. All three beet varieties were harvested in 

December. The BMP yield was 332 + 5.01 L CH4 kg-1 VS. The second variety was a sugar beet sub 

variety termed energy beet. This was developed to produce higher levels of sugars and dry solids 

content to increase yield and profitability per hectare. This was reflected in the yield. Whilst sugar 

beet yielded 344.18 + 12.36 L CH4 kg-1 VS, energy beet yielded 375.13 + 6.93 L CH4 kg-1 VS. Beets had 

high C:N ratios, 54 – 65:1. Beets must be considered a good biofuel feedstock in Irish agriculture due 

to a strong knowledge of beet growing due to a large sugar industry, which has closed in recent 

years.  

The whole beet was harvested for these trials. On average the beet tops made up 45% of the mass 

of the washed beet plant and yielded a BMP yield of 306 + 12.75 L CH4 kg-1 VS. The beet tops had a 

low C:N ratio of 12.9:1.
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Table 3.1 Analysis of methane potential from first generation biofuel crops.  

Substrate TS % VS % C %  H % N % C:N Theoretical 

BMP L CH4  

kg
-1

 VS 

BMP assay 

L CH4  

kg
-1 

VS 

SD 

+ L CH4 kg
-1 

VS 

Biodegradability 

index 

Specific yield 

m
3
 t

-1 
wwt 

K value 

d
-1

 

Lag 

d 

T50 

d 

Cereal crops 

Winter Barley 55.79 53.74 44.38 5.87 0.60 73.97 438 366.53 14.80 0.84 196.97 0.19 0.40 3.58 

Spring Barley 68.64 67.08 44.17 6.32 0.64 69.37 439 361.81 22.81 0.82 242.70 0.15 0.16 4.50 

Winter Wheat 59.52 54.07 44.03 6.42 1.12 39.20 505 354.48 6.16 0.70 191.67 0.18 0.48 4.01 

Spring Wheat 66.95 63.70 43.92 6.23 1.15 38.19 446 340.15 9.56 0.76 216.68 0.15 0.04 4.66 

Triticale  54.36 48.98 44.12 6.51 1.45 30.43 475 314.11 7.61 0.66 153.85 0.17 0.14 3.94 

Winter Oats 63.89 61.90 44.39 6.38 0.55 80.70 450 281.26 4.57 0.63 174.10 0.15 0.12 4.60 

Oil seed rape 

OSR (macerated) 92.62 87.55 58.83 8.69 2.80 21.01 772 646.30 7.39 0.84 565.84 0.090 2.90 7.57 

OSR Whole Crop 88.49 84.92 50.68 7.43 1.90 26.63 590 318.92 10.91 0.54 270.83 0.13 0.12 5.30 

OSR not macerated 92.42 88.60 59.98 8.51 2.54 23.65 762 215.16 12.47 0.28 190.63 0.09 1.80 7.36 

Root crops 

Potatoes, Roosters 25.75 24.72 42.32 5.94 0.71 59.61 416 351.01 12.27 0.84 86.77 0.23 0.82 2.43 

Potatoes, Kerr pinks 24.34 23.35 42.45 6.02 0.67 63.04 421 337.56 9.91 0.80 78.82 0.23 0.85 2.45 

Turnips 10.65 9.99 41.10 5.65 1.80 22.83 416 398.61 8.62 0.96 39.82 0.130 1.00 5.20 

Sugar beet 22.62 22.08 42.05 6.15 0.65 65.02 407 344.18 12.36 0.85 75.99 0.290 0.47 2.36 

Energy beet 22.77 22.14 41.68 6.13 0.78 53.67 395 375.13 6.93 0.95 83.05 0.260 0.40 2.63 

Fodder Beet  16.58 15.12 42.50 5.77 1.40 30.43 460 332.60 5.01 0.72 50.29 0.14 1.27 6.44 

Sugar beet tops 12.06 9.67 41.06 5.12 3.17 12.94 544 306.01 12.75 0.56 29.59 0.230 0.33 3.01 

Standard deviation (SD)
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3.3.3 Second generation biofuels – Grasses 

Fifteen samples of grass and maize substrates were collected. These include bales of silage, pit or 

clamp silage, hay, fresh grass and fresh maize. Different stages are included such as 1st cut silage, 2nd 

cut silage and a late 1st cut silage. Silage effluent and digestate from a biogas reactor fed 100% grass 

were also included (Table 3.2). Grass offers great potential as a biofuel for the AD industry in Ireland 

as it qualifies as a second generation biofuel (lignocellulosic material) and is liable for double credits 

in assessing the RES-T target for 2020. It is the most abundant crop in Ireland covering 92% of 

agricultural land [14].  

 

3.3.3.1 First cut of silage grass  

First cut clamp silage from perennial rye grass were sampled from three separate clamps in three 

different areas in Ireland during the early growth stage (May – June). Yields of 399.56 + 4.12 L CH4 

kg-1 VS (Midlands), 389.61 + 3.06 L CH4 kg-1 VS (North) and 374.48 + 29.69 L CH4 kg-1 VS (South) were 

encountered. Statistically there was no significant difference. A late 1st cut sample was also assessed 

and yielded 392.55 + 6.83 L CH4 kg-1 VS (Midlands). This showed no significant difference from a 

regular first cut harvest. Fresh un-ensiled grass yielded a BMP of 367.83 + 8.79 L CH4 kg-1 VS (South). 

Grass, which was not ensiled, resulted in the lowest yielding of first cut substrates. It is well 

documented that ensiling can increase the yield of a feedstock in conjunction with being a cheap 

method of year round preservation [15]. All 1st cut grass silages are favourable substrates with 

optimal C:N ratios (>25:1) and Biodegradability indices of 0.79 to 0.90.  

 

3.3.3.2 Baled silage 

Baled silage was encased in a plastic wrap allowing for less effluent to escape. This may account for 

the higher observed yields as the sugar rich effluent doesn’t escape. Yields of 432.85 + 8.59 L CH4 kg-1 

VS (North, 1st cut) and 428.36 + 7.79 L CH4 kg-1 VS (North, 2nd cut) for baled silage from the same 

sources were achieved.  
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3.3.3.3 Other grass substrates  

Second cut grass silage harvested in July, yielded 367.99 + 6.19 L CH4 kg-1 VS (South). Statistical 

analysis showed there was no significant difference between 1st and 2nd cut samples from the same 

origin despite the reduction in yields.  A further observation made was the particle size of the grass 

and its effect on BMP values. A sample of late first cut PRG (Midlands) was only lightly cut to 30mm 

in size and produced a BMP value of 315.56 + 20.46 L CH4 kg-1 VS, a reduction of 77.0 CH4 kg-1 VS 

(20%) on macerated late cut silage (Midlands). Other methods of grass preservation such as making 

hay were trialled. This produced a grass with a high dry solids content (87.4%) but caused a very 

large reduction in BMP yield, 156 + 19.0 L CH4 kg-1 VS (South). This may be expected as hay is left to 

dry for over 7 days which leads to a reduction in sugars present in the grass necessary for high BMP 

yields.  An experimental grass (Szarvasi) yielded a BMP value of 311 + 4.80 L CH4 kg-1 VS. An 

advantage of Szarvasi is it is a perennial crop, which can be harvested twice yielding up to 15 t 

DM/ha (yields from sampled farm).  Such a crop can help reduce GHG emissions and the carbon 

footprint of a grass based biofuel. This sample was sourced from South Germany but is readily 

adaptable to Irish growing conditions. The best preforming BMP yield however was from silage 

effluent, 553.68 + 14.69 L CH4 kg-1 VS. As it has a low C:N ratio (6.92) it may be only co-digested in 

low percentages. 

 

3.3.3.4 Maize 

Maize forage crop, which makes up a majority of German and Austrian biogas substrates were 

sampled from a farm in Cork, Ireland. The maize crop was grown using a Samco system©, which lays 

a layer of biodegradable plastic over the seed bed which encourages a green-house type effect. A 

fresh sample (harvested in September) producing 354.06 + 12.94 L CH4 kg-1 VS and an ensiled sample 

produced 394.08+ 13.51 L CH4 kg-1 VS. The ensiling process showed that an increase of BMP yield 

could be achieved. The specific yields of maize (121 – 127 m3 t-1 wwt) showed that the maize whole 

crop could out preform the best grass substrates (107 m3 t-1 wwt). 
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Table 3.2 Analysis of biomethane potential of grass.  

Substrate TS % VS % C %  H % N % C:N Theoretical 

BMP L CH4 kg
-1

 

VS 

BMP assay 

L CH4  

kg
-1

 VS 

SD 

+ L CH4 kg
-1

 VS 

Biodegradability 

index 

Specific 

yield m
3
 

t
-1 

wwt 

K 

value 

d
-1

 

Lag 

phase 

d 

T50 

d 

1
st

 Cut grass silage 

Grass silage 

(Midlands) 

29.27 26.84 43.32 5.88 1.67 25.94 443 399.56 4.12 0.90 107.24 0.11 1.94 7.65 

Grass silage (North) 15.38 13.26 42.40 5.60 1.74 24.37 503 389.61 3.06 0.77 51.66 0.153 0.10 4.76 

Grass silage (South) 12.22 11.25 44.47 5.65 1.02 43.74 472 374.48 29.69 0.79 42.13 0.10 3.20 8.86 

Late cut silage 

(Midlands) 

17.85 16.42 43.80 5.91 1.08 40.43 469 392.56 6.83 0.84 64.46 0.14 0.54 5.01 

Fresh Grass (south)  20.42 43.14 5.84 1.92 22.51 472 367.83 8.79 0.78 75.11 0.16 0.60 4.50 

Baled silage 

Silage bales (1
st

 cut) 16.81 15.32 45.25 5.95 1.48 30.64 507 432.86 8.59 0.85 66.31 0.147 0.11 4.85 

Silage bales (2
nd

 cut) 17.35 15.90 44.43 5.94 1.75 25.34 493 428.36 7.79 0.87 68.11 0.166 0.15 4.50 

Other grass substrates 

Silage (2
nd

 cut, south) 24.96 23.14 44.30 5.96 1.27 34.97 477 376.99 6.19 0.79 87.23 0.153 0.08 4.80 

Late 1
st

 cut silage 

(Midlands NM) 

22.16 20.42 43.80 5.91 1.08 40.43 598 315.56 20.46 0.53 64.44 0.110 0.79 6.04 

Hay 87.38 82.17 44.86 5.77 1.59 28.15 470 156.03 19.00 0.33 128.21 0.09 4.84 10.37 

Savazi grass (silage) 23.83 20.80 42.18 5.81 2.35 17.95 503 311.25 4.80 0.62 64.74 0.110 1.28 6.57 

Silage effluent 4.55 3.09 34.76 4.79 5.02 6.92 599 553.68 14.69 0.92 17.11 0.29 0.00 2.32 

Grass digestate 5.36 3.92 - - - - / 126.83 11.30 / 4.97 0.11 0.21 6.30 

Maize substrates 

Fresh Maize 32.83 31.77 43.85 6.21 1.17 37.48 426 354.06 12.94 0.83 112.48 0.23 0.21 2.98 

Maize silage 33.48 32.46 44.72 6.32 1.23 36.36 458 394.08 13.51 0.86 127.92 0.170 0.10 3.94 

*NM = Not macerated, cut to 30mm. Data adapted from [4].
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3.3.4 Second generation biofuels - Agricultural wastes 

In total, 11 agricultural wastes were collected in these trials (Table 3.3). Slurries in particular are well 

documented as a co-digestion feed stock for various reasons such as: micro nutrient availability; high 

C:N ratio; year round availability; and reasonable BMP yields. However there is a variation in BMP 

values at different times of the year of dairy slurries sampled due to a production cycle that varies 

largely due to stopping and restarting of dairy cows lactation. Other farm wastes such as beef slurry, 

poultry manure, farm yard manure (FYM) and pig slurry do not have large variations in their 

compositions due to a constant year round production cycle without having to stop for calving and a 

drying off period, as seen in dairy farming.  

 

3.3.4.1 Dairy slurries 

Samples showed variations in TS and VS composition, ranging from 5.55 to 9.10 % TS and 4.44 to 

6.69% VS. A relationship between the diet and production period of the dairy cows and dairy slurry 

BMP was established. Cows fed 2kg d-1 of concentrate feed (CF) at the end of the farming year (Slurry 

Autumn) grazing poor quality grass kept indoors for half a day yielded 175.45 + 13.87 L CH4 kg-1 VS. 

As the diet was stepped back up in terms of energy content, when the cows were fed good quality 

silage and CF, there was an observed increase in BMP yield. The increase in energy yield of the cows 

diet, was related to the stage of production, from a drying off period (Cows not milking) and not fed 

CF (December to January, A), calving period and transition to a higher energy diet (2 – 6 kg d-1 CF) 

(February to April, B) and finally a full milking diet with cows being fed a fresh grass diet 

supplemented by CF (2 – 3 kg d-1) from April throughout the summer (Summer C), resulting in BMP 

yields of 199.97 + 1.71 L CH4 kg-1 VS (A), 214.01 + 9.03 L CH4 kg-1 VS (B), 238.11 + 4.71 L CH4 kg-1 VS (C, 

2012), and 239.39 + 9.46 L CH4 kg-1 VS (C, 2013) respectively.  

These observed results can be factored into assigning an average value for dairy slurry to accurately 

forecast yields for a biogas industry (Table 3.8). This average yield was 207.7 L CH4 kg-1 VS.  

Heifer animals 1-2 years in age fed a low energy diet (not being milked) produced the lowest BMP 

value 136.05 + 11.97 L CH4 kg-1 VS. The lowest observed solids percentage (5.55% TS) came from 

dairy parlour washings. This was expected due to level of water used to wash down collecting yards 

and milking parlours, causing dilution of the dairy slurry. Similar results were found by Hellwing, 
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Weisbjerg [16] where increased biogas yields were observed in slurry from dairy cows fed maize and 

grass silage, than when fed higher energy diets and they observed enteric methane emissions were 

lower from the cows when the biogas production was higher. One adverse trait of Dairy slurries is 

the low Biodegradability Index (0.26 – 0.62). This can mainly be attributed to the high percentage of 

fibre which is concentrated in cattle slurries [16].  

 

3.3.4.2 Alternative agricultural wastes 

Beef slurry had an observed TS and VS of 8.44 % and 6.76% respectively, which was higher than the 

average dairy slurry sample and yielded a BMP of 310.79 + 6.08 L CH4 kg-1 VS. Pig slurry was at the 

lower end of solids composition and C:N ratio. Pig slurry produced the lowest BMP from this 

grouping, 99.29 + 8.79 L CH4 kg-1 VS. C:N ratios were between 17.05 and 24.87 for dairy slurries; beef 

slurry had a C:N of 16.15. The remaining farm wastes had lower values with poultry manure 

producing a C:N ratio of 13.24, highlighting the poor yields and ammonia inhibition associated with 

poultry manure [17].  
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Table 3.3 Analysis of methane potential from agricultural waste. 

Substrate TS % VS % C %  H % N % C:N Theoretical 

BMP L CH4 kg
-1

 
VS 

BMP assay 

L CH4 kg
-1

 VS 
SD 

+ L CH4 kg
-1

 
VS 

Biodegradability 

index 

Specific 

yield 

m
3
 t

-1 

wwt 

K 

value 

d
-1

 

Lag 

phase 

d 

T50 

d 

Dairy Slurries 

Slurry Autumn 6.50 5.10 42.25 5.36 1.98 21.34 575 175.45 13.87 0.31 8.95 0.13 1.99 6.55 

Slurry  (Dec – Jan (A) 7.11 5.75 42.80 5.88 2.51 17.05 606 199.77 1.71 0.33 11.49 0.09 4.40 9.26 

Slurry Feb – Apr (B) 9.10 6.56 40.05 5.06 2.24 17.90 525 214.01 9.03 0.41 14.04 0.15 0.99 4.36 

Slurry Summer (C, 2012)  6.10 4.78 39.31 5.22 1.90 20.72 525 238.11 4.71 0.45 11.38 0.15 0.85 4.25 

Slurry Summer (C, 2013) 8.75 6.69 41.95 5.38 2.2 19.07 389 239.39 9.46 0.62 16.02 0.082 2.45 10.13 

Slurry (dairy heifers) 7.84 5.51 43.26 5.84 2.19 19.75 516 136.05 11.97 0.26 7.50 0.12 1.56 4.29 

Parlour washings 5.55 4.44 41.45 5.67 1.67 24.87 557 208.89 7.26 0.38 9.27 0.15 0.48 4.49 

Other agricultural wastes 

Slurry (beef) 8.44 6.76 42.49 5.78 2.63 16.15 529 310.79 6.08 0.59 21.01 0.093 1.62 7.44 

Pig slurry (Mix) 5.42 4.16 39.65 5.22 2.97 13.35 330 99.29 8.79 0.30 4.13 0.07 1.98 5.11 

Poultry manure 51.46 29.72 31.15 4.26 2.35 13.24 614 228.26 2.32 0.37 67.84 0.19 0.50 3.61 

Farm yard manure 19.80 17.09 41.91 5.59 2.93 14.32 506 137.96 2.73 0.27 23.58 0.05 7.56 15.88 
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3.3.5 Second generation biofuels - Food processing wastes 

3.3.5.1 Milk processing wastes 

Wastes were sampled from a cheese and skimmed milk products processing plant, processing 160 m 

l yr-1. These wastes are commonly referred to as milk processing wastes (MPW). Four samples were 

taken from separate stages of the waste water treatment process (WWTP) which gave varying 

results, ranging from waste activated sludge (WAS) 188.57 + 3.57 L CH4 kg-1 VS from an aeration 

basin, to the initial waste which first rises in a dissolved air floatation (DAF) tank which is high in 

sugars including lactose and pectin (787.36 + 59.51 L CH4 kg-1 VS). A final slurry mix, which is a 

combination of all present waste streams, which is maintained at between 8 to 10% TS was sampled 

producing a yield of 461.19 + 31.20 L CH4 kg-1 VS (8% sludge). This sludge stream may also be 

produced without a direct DAF input, which was also sampled for these trials. This waste is then 

mixed with a lime additive to produce a cake mixture which is roughly 35% TS and is land spread. 

Using the final slurry as an AD feedstock would avoid this final caking stage.  

 

3.3.5.2 Abattoir waste 

In 2011, 1.64m cattle and 5.31m sheep and pigs were slaughtered in Ireland [1]. This is a large 

potential for a country of 4.4 million people. Three separate wastes were evaluated from abattoirs: 

WAS; Paunch content (undigested residue from the animals); and green sludge (part of the 

processing waste from slaughtering). They produced BMP yields of 165.74 + 13.37 L CH4 kg-1 VS, 

238.25 + 16.31 L CH4 kg-1 VS and 403.54 + 18.78 L CH4 kg-1 VS respectively. The green sludge had 

increased yields due to addition of fatty material added along the stages of production. A mix of the 

3 streams was sampled, as all 3 streams are combined when land spreading the wastes; a yield of 

336.45 + 15.74 L CH4 kg-1 VS was obtained. One issue associated with abattoir waste is the 

accumulation of ammonia within biogas reactors operated continuously due to its low C:N ratio 

(11.81 for the mixed sample). This may be overcome through co-digestion as is the case with MPWs 

[18].  

3.3.5.3 Miscellaneous commercial wastes 

Miscellaneous commercial wastes were assessed including for: bakery wastes, bread wastes, 

brewery stillage, grocery wastes, fish offal and city park/grass waste. Fish offal recorded the highest 
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BMP (591.82 + 76.71 L CH4 kg-1 VS). The high yield can be attributed to high levels of proteins and 

oils present in fish offal, however this can lead to adverse effects [19] due to its low C:N ratio (8.66). 

Bakery, grocery and bread wastes all produced high yields; 529.23 + 27.26 L CH4 kg-1 VS, 421.59 + 

44.47 L CH4 kg-1 VS and 396.72 + 7.53 L CH4 kg-1 VS respectively. Brewing stillage was also collected 

from a local brewery in the city of Cork, Ireland. It produced a BMP yield of 331.93 + 10.95 L CH4 kg-1 

VS. 

Two final wastes from a local municipality were city park and grass waste (CPGW) and WWTP sludge. 

These had relatively low BMP yields: WWTP sludge yielded 247.41 + 11.02 L CH4 kg-1 VS; CPGW 

yielded 252.58 + 26.03 L CH4 kg-1 VS.  
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Table 3.4 Analysis of methane potential of food processing wastes. 

Substrate TS % VS % C %  H % N % C:N Theoretical 

BMP L CH4 kg
-

1
 VS 

BMP assay 

L CH4 kg
-1

 VS 

SD 

 + L CH4 kg
-1

 VS 

Biodegradability 

index 

Specific 

yield 

m
3
 t

-1 

wwt 

K 

value 

d
-1

 

Lag 

phase 

d 

T50 

d 

Milk processing waste 

WAS  15.92 8.85 24.90 4.10 4.60 5.41 530 188.57 3.57 0.36 16.69 0.13 1.2 10.8 

8 % sludge (without DAF 

sub-stream) 

8.63 7.3 55.1 8.62 3.46 15.92 508 454.28 19.41 0.89 33.16 0.11 3.32 11.2 

8 % sludge 9.42 7.62 43.9 6.8 5.6 7.84 492 461.19 31.20 0.94 35.14 0.16 0.81 3.7 

DAF  3.94 3.09 65.1 10.3 1.3 50.08 826 787.36 59.51 0.95 24.32 0.1 2.34 5.07 

Abattoir wastes 

Abattoir waste (mix) 16.64 14.84 48.32 6.85 4.09 11.81 481 336.45 15.74 0.70 49.92 0.15 0.60 5.50 

Abattoir waste (paunch 

content) 

17.01 15.62 46.50 6.30 2.80 16.61 469 238.25 16.31 0.51 37.21 0.09 0.51 5.6 

Abattoir waste (green 

sludge) 

19.62 18.11 57.30 8.40 3.00 19.10 683 403.54 18.78 0.59 73.08 0.18 0.98 5.3 

Abattoir waste (DAS) 13.3 10.78 41 5.8 6.5 6.31 408 165.74 13.37 0.41 17.87 0.17 0.55 4.2 

Miscellaneous wastes 

Bakery waste 45.72 42.02 52.70 8.20 2.80 18.82 696 529.23 27.26 0.76 222.36 0.08 3 5.45 

Brewing stillage  22.80 21.68 49.83 6.75 4.61 10.82 592 331.93 10.95 0.56 71.96 0.11 2.04 8.10 

Grocery waste  16.29 15.28 49.48 6.88 2.60 19.01 584 421.59 44.47 0.72 64.42 0.22 0.52 3.19 

Fish offal Mix 39.50 33.95 55.08 6.57 6.36 8.66 798 591.82 76.71 0.74 200.92 0.08 0.41 6.02 

Bread waste  66.19 63.59 45.07 6.27 2.61 17.25 472 396.72 7.53 0.84 252.27 0.22 0.10 3.22 

CPGW (City park and grass 

waste) 

23.22 20.79 44.79 5.77 3.08 14.56 525 252.58 26.03 0.48 52.51 0.13 1.93 6.87 

WWTS (municipal) 8.61 6.77 43.3 5.8 2.2 19.68 406 247.41 11.02 0.61 16.75 0.18 0.52 4.66 

Data adapted from [21].
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3.3.6 Second generation biofuels - Municipal wastes 

Domestic and commercial food waste represent a large proportion of Ireland’s municipal solid waste 

(MSW) fraction and in 2010 accounted for 0.82 m tonnes which was landfilled, incinerated or 

composted [20].  

This resource currently is underutilised and if diverted to AD would offset GHG emissions from 

landfilling and incineration rather than add to GHG. Food waste is a readily digestible substrate due 

to the levels of fats and sugars present, especially in the liquor proportion. 

Thirteen samples of food waste were collected to represent the various origins and variety of 

substrates. Values were adapted from previously published work completed in conjunction with this 

body of work to form a total range of potential municipal wastes substrates [21, 22] 

 

3.3.6.1 Rural and urban domestic food waste 

Rural food waste (RFW) and urban food waste (UFW) sourced from a domestic source segregated 

waste stream, yielded BMP values of 367.82 + 6.32 L CH4 kg-1 VS and 343.75 + 2.91 L CH4 kg-1 VS. 

During summer periods the addition of garden wastes is added to these waste streams from their 

source collection point. This had the effect of significantly reduced the BMP yield of RFW and UFW, 

by 93.66 and 47.04 L CH4 kg-1 VS respectively. There was no significant differences observed between 

the RFW and UFW in terms of BMP yield, but there was a significant reduction in yields when the 

addition of grass cuttings was included.  

 

3.3.6.2 Commercial and domestic streams of food waste 

Food wastes from canteens and restaurants (CFW) were assessed in the summer and winter to 

represent the change in seasonal diet. CFW sampled in winter achieved a BMP of 490.97 + 4.81 L CH4 

kg-1 VS. BMP yields increased to 534.55 + 4.99 L CH4 kg-1 VS for a summer sample. Further samples of 

food wastes were taken from a centralised collection centre (FWCCC), which consisted of food 

wastes from both rural and urban locations with only partial source segregation from separate 

domestic and commercial origins. These two substrates produced BMP yields of 419.62 + 48.90 L CH4 

kg-1 VS and 535.27 + 20.04 L CH4 kg-1 VS for a domestic and commercial sample respectively. These 
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samples displayed a similar result where domestic sampled food waste produced a lower BMP value 

than a commercially sourced food waste. These two streams were also mixed before they left the 

centre, as is the processing procedure. The mixed sample recorded a yield of 508.44 + 24.53 L CH4 kg-

1 VS. A dried sample of domestic food waste (FWCCC sample) was also trialled with a BMP value of 

396.31 + 5.14 L CH4 kg-1 VS, highlighting the biogas potential and the soluble fats present in the liquor 

of food wastes.  

 

3.3.6.3 Analysis of food wastes 

Analysing the recorded parameters associated with food wastes substrates gave a further indication 

to which exact stream or sub-stream produced the best results as a feedstock. All sampled 

substrates had k values in the higher range of: 0.15 – 0.22 d-1 (except for the dried sample, where the 

kinetic value was 0.13 d-1). Low C:N ratios were observed for all samples ranging from 12.6:1 to 

17.3:1. This may contribute to inhibition when digested as suggested by Banks, Salter [23] due to VFA 

inhibition, even at low organic loading rates (OLR) making it a difficult substrate to mono-digest. A 

sample of recycled paper and cardboard waste was also analysed; this recorded a C:N ratio of 52.29, 

which make it an ideal substrate to co-digestate. It yielded a BMP of 254.19 + 4.34 L CH4 kg-1 VS, 

which was greater than the maximum yielding dairy slurry.  

 

3.3.6.4 Alternative wastes 

Two final substrates associated with food wastes and direct food consumption are, used cooking oil 

(UCO) and grease trap waste (GTW). UCO had the highest of all substrates sampled, 804.61 + 57.0 L 

CH4 kg-1 VS, largely due to its high lipid content as an oil and saturated fats collected during the 

cooking process. GTW yielded a BMP value of 416.59 + 6.85 L CH4 kg-1 VS. Elemental analysis could 

not be conducted on these 2 substrates due to the high percentage oil content, which was not 

compatible with the elemental analyser used. Values from literature were used in their absence [3]. 
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Table 3.5 Analysis of methane potential of municipal wastes  

Substrate TS % VS % C %  H % N % C:N Theoretical 

BMP L CH4  

kg
-1

 VS 

BMP yield 

L CH4  

kg
-1

 VS  

SD 

+ L CH4  

kg
-1

 VS 

Biodegra

-dability 

index 

Specific yield 

m
3
 t

-1 
wwt 

K 

value 

d
-1

 

Lag 

phase 

d 

T50 

d 

Rural and Urban domestic food waste 

RFW (with grass) 33.40 27.49 43.30 5.90 2.70 16.04 577 274.16 4.78 0.48 75.36 0.16 2.20 8.87 

RFW (without grass) 30.6 27.05 44.90 6.60 3.10 14.48 566 367.82 6.32 0.65 99.50 0.18 2 8.66 

UFW (with grass) 25.66 18.89 41.30 5.20 2.60 15.88 625 296.71 6.14 0.47 56.04 0.17 1.3 6.71 

UFW (without grass) 31 29.08 46.50 7.30 3.70 12.57 564 343.75 2.91 0.61 99.96 0.15 2.2 9.32 

Commercial and domestic streams of food waste 

CFW (summer) 32.8 30.37 49.00 7.00 3.40 14.41 620 534.55 4.99 0.86 162.36 0.21 2.3 9.34 

CFW (winter) 23.8 21.42 48.20 70.00 3.60 13.39 620 490.97 4.81 0.79 105.17 0.19 2.5 10.74 

FWCCC (mix) 28.72 25.14 48.80 7.30 3.25 15.02 537 508.44 24.53 0.95 127.82 0.17 6.75 12.80 

FWCCC (domestic) 21.91 19.96 46.80 6.30 2.70 17.33 471 419.62 48.90 0.89 83.76 0.17 1.35 4.92 

FWCCC (commercial) 35.4 30.11 49.00 7.00 3.40 14.41 550 535.27 20.04 0.97 161.17 0.22 3.26 8.42 

FWCCC (domestic & dried) 95.12 87.51 50.57 7.21 3.68 13.74 569 396.31 5.14 0.70 346.81 0.134 1.1 4.12 

Alternative wastes substrates 

Recycled paper & cardboard 90.15 77.81 41.66 5.46 0.80 52.29 476 254.19 4.34 0.53 197.78 0.14 2.02 6.43 

UCO 99.90 99.12 - - - - 986 804.61 57.00 0.82 797.53 0.091 3.57 9.71 

Grease trap waste 27.36 26.01 - - - - 975 416.59 6.85 0.42 108.35 0.22 0.11 3.56 

Data adapted from [21, 22].
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3.3.7 Third generation biofuels   

In recent years research into macro algae (seaweed) as an AD feedstock has gained popularity and is 

been seriously examined as a potential biogas feedstock. Seaweed has been partially disregarded as 

an AD feedstock in countries of cooler climates for various reasons including the inhibitory 

concentrations of salts, high levels of nitrogen (in green seaweeds) and sulphur [24, 25]. Brown 

seaweeds such as kelps have TS percentage content comparable to energy crops and C:N ratios 

which can be as high as 31.9:1 [26]. Ireland has a coastline of over 7,500 km which makes both 

growing seaweed off shore and collecting beach cast seaweed very accessible [27]. Seaweeds also 

qualify as 3rd generation biofuels when used to produce biomethane as a transport biofuel. In 

assessing RES-T targets algal biomethane qualifies for double credit (of the energy production), with 

the added advantage of not competing with land based food production [28]. 

3.3.7.1 Seaweed and biomethane potential 

Ten separate seaweed varieties were collected from the southern coastline of Ireland (51N -9E) in 

August 2013. Nine samples were categorised as brown seaweeds and 1 as green seaweed. From 

available literature three particular sugars which are present in brown seaweeds, which contribute 

to their BMP: alginate; laminarin; and mannitol [29]. The highest yielding BMP seaweed was S. 

latissima (also known as Sugar Kelp) with a BMP 341.46 + 36.40 L CH4 kg-1 VS and a C:N ratio of 

23.9:1. The next best yielding seaweed was S. polyschides (263.25 + 4.23 L CH4 kg-1 VS) followed by H. 

elongate (260.81 + 2.05 L CH4 kg-1 VS) both having high C:N ratios (above 22:1). L. digitata and A. 

nodosum were the only remaining seaweeds with C:N ratios above 23:1.  

No statistical significant difference was observed between samples of U. lactuca collected from two 

separate years from the same beach location, where the 2012 sample had a BMP yield of 205.27 + 

8.65 L CH4 kg-1 VS and 2011 sample yielding 183.20 + 5.83 L CH4 kg-1 VS [27]. Four seaweeds yielded 

in excess of 30 m3 CH per t wet weight (ww). These were (in descending order): S.polyschides (34.5); 

S.latissima (34.5); F.spiralis (32.7); and A.nodosum (32.3). 

One aspect, which may encourage the use of seaweeds in the production of biogas is the high yields 

per hectare which could be achieved if farmed off shore. A yield of 30 tVS ha-1 yr-1 for S. latissima was 

reported [30]. Combined this with yields from these trials, a potential yield of 10,250 m3 ha-1 yr-1 (363 

GJ ha-1 yr-1) for this seaweed variety, which is in the upper range of existing bio-energy crops (Allen et 

al., 2015).  
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Table 3.6 Analysis of methane potential of seaweed  

Substrate TS % VS % C %  H % N % C:N Theoretical 

BMP                 

L CH4 kg
-1

 VS 

BMP yield      

L CH4 kg
-1

 

VS  

SD 

+ L CH4  

kg
-1

 VS 

Biodegradabil

-ity index 

Specific 

yield 

m
3
 t

-1 

wwt 

K value 

d
-1

 

Lag 

phase 

d 

T50 

d 

 Brown seaweed  

H. elongate 12.65 8.10 30.81 4.07 1.38 22.33 334 260.81 2.05 0.78 21.13 0.18 1.17 4.24 

L. digitata 14.20 10.34 34.19 4.78 1.46 23.42 479 217.56 4.14 0.45 22.54 0.19 0.79 3.85 

F. spiralis 19.72 13.92 36.11 4.72 2.08 17.36 540 234.76 9.43 0.43 32.74 0.16 0.74 4.85 

S. latissima 15.49 10.09 29.14 3.78 1.22 23.89 422 341.46 36.40 0.81 34.47 0.16 1.23 4.55 

A. nodosum 23.16 19.44 40.38 5.3 1.62 24.93 488 166.52 20.00 0.34 32.33 0.12 0.32 7.48 

F. serratus 19.72 13.92 37.08 4.76 2.38 15.58 532 101.71 9.37 0.19 14.16 0.18 1.62 3.84 

F. vesiculous 21.18 16.11 26.81 3.24 1.54 17.41 249 126.34 11.38 0.51 20.35 0.22 0.50 3.10 

S. polyschides 15.25 13.11 36.11 4.99 1.56 23.15 386 263.25 4.23 0.68 34.51 0.19 0.45 3.85 

A. esculenta 18.72 11.91 29.3 4.24 1.89 15.50 474 225.98 5.66 0.48 26.91 0.19 0.50 3.61 

Green seaweed 

U. lactuca 2013 18.03 10.88 30.00 4.40 3.50 8.57 495 190.15 3.10 0.38 20.69 0.13 0.96 5.30 

U. lactuca 2012 17.75 10.35 33.8 2.61 3.71 9.11 514 205.27 8.65 0.40 21.25 0.06 6.3 16 

U. lactuca dried 2012 77.94 46.36 29.30 2.95 4.14 7.08 525 225.71 3.58 0.43 104.64 0.23 0.40 3.00 

Data adapted from [27, 31].
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3.3.8 Kinetic and statistical analysis 

One issue involved with using kinetic analysis on numerous BMP assays and when 

comparing kinetic values with values from literature is the variance, which occurs due to 

the inoculum not always being the same. This can also be an issue when trialling large 

numbers of BMPs over a long period of time as the inoculum may change. This variance 

was measured by assessing the kinetic results of each of the 12 BMP runs undertaken. The 

twelve cellulose BMP assays yielded an average of 362.04 L CH4 kg-1 VS with a SD of 13.83 L 

CH4 kg-1 VS (3.82% SD variation). The cellulose achieved an average biodegradability index 

of 0.87 when compared to the theoretical yield of 414 L CH4 kg-1 VS; this indicated a healthy 

and productive inoculum throughout these trials.  The kinetic decay constant (K) averaged 

0.18 d-1.  

 

3.3.8.1 Range of kinetic decay contestants  

The kinetic values are related to the composition of the substrate in terms of 

carbohydrates, proteins and lipid concentrations, which degrade at varying rates, resulting 

in different BMP curve profiles, T50 values and K values for each substrate [32].  

The K values observed in these trials may be divided between high (>0.2 d-1), medium (<0.2 

- >0.1 d-1) and low (<0.1 d-1). Three high yielding BMP substrates had low K values, UCO 

0.09 d-1, OSR 0.09 d-1 and fish offal 0.08 d-1. This can be attributed to the high lipid content 

associated with these oily substrates, which is an inhibitor to the AD process [19]. 

Substrates, which performed well in terms of K values, were fresh Maize and potato 

varieties, with K values of 0.23 d-1; this is high due to the high starch content. Sugar beet 

varieties had K values of 0.26 – 0.29 d-1; due to the high sugar content. Silage effluent had a 

K value of 0.29 d-1; this can be directly attributed to volatile fatty acid and lactic acid 

content. These high ranging substrates also had good biodegradable rates ranging from 

0.84 (potatoes) to 0.93 (energy beet), indicating that continuous digestion will require 

shorter hydraulic retention times and digest very well. The majority of substrates fell into 

the medium range of K values group.  

Kinetic values can be linked to the biodegradability index where substrates with easily 

degradable carbohydrate concentrations produce higher BMP yields and decay quickly. 

Kinetic analysis can also highlight such issues in digesting substrates such as their biological 
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composition, which relates to reduced biogas yields or biodegradability index.  This may be 

seen with lower K values for grasses (0.09 – 0.17 d-1) which is lignocellulosic and slurries 

(0.07 – 0.15 d-1) which contain fibrous material [4]. 

  

3.3.8.2 Statistical results of BMP assays  

Statistical analysis conducted on each of the six groups of substrates identified any 

significant differences between substrates. Similar substrates such as Wheat and Barley 

varieties showed no significant difference between each other. Neither did first cut grass 

silages. Conversely significant differences were observed in substrates, which were 

assessed for pre-treatment effects such as maceration, drying and some sampling dates. 

Sampling dates for Commercial Food Waste, for summer and winter resulted in no 

significant difference in BMP yields; the same was observed for the seaweed U. lactuca. 

However drying specific substrates such as food waste (FWCCC) and grass exhibited 

significant differences for both increased (FWCC) and decreased BMP (hay) yields. However 

no significant difference was observed in drying U. lactuca. Where commercial food waste 

and grass showed a reduction in BMP yields in a dried sample, U. lactuca exhibited 

increases in BMP yields in a dried sample. This highlights the BMP potential in the liquor 

fraction of the food waste and grass silage. Maceration also exhibited significant 

differences in BMP yields when trialled on selected substrates such as grass (PRG) and 

oilseed rape (OSR), in particular OSR where the hard outer shell once broken allowed 

greater degradation of the substrate. A full list of results for statistical variance between 

substrates can be seen in supplementary data section. 

 

3.3.9 Bio-resource associated with best preforming substrates 

The availability of substrates was assessed to determine which substrates would minimise 

land use and maximise energy yield per hectare. Crops and seaweeds maybe compared in 

terms of a yield of biomethane per hectare per annum (m3 ha-1 yr-1) as in table 3.7.  

Substrates such as wastes and residues require no land (Table 3.8) and digestion provides a 

feasible waste to energy pathway. All substrates can be compared to each other on a 
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specific yield per ton wet weight (m3 t-1 wwt). A selection of the best preforming substrates 

were chosen from each group of substrates and assessed in terms of quantities and yields 

(Tables 3.7 and 3.8). Yields in table 3.7 are based on yields from harvest and results from 

BMP assays.  Average figures for BMP and TS collected for all samples collected throughout 

the year were used for residues (Table 3.8).  

Some figures were difficult to establish, as literature was not found for quantities of 

specific waste streams. In these cases average figures for dry matter yields were 

established from literature where available and cross referenced with waste yields 

obtained from sources of substrates (the industry operators producing MPW and abattoir 

waste). For example the quantity of fish offal (0.073 M dry tonnes) was assessed as follows: 

The volume of fish produced in Ireland in 2004 (latest available figure) was multiplied by 

0.6; according to Kołodziejska, Skierka [33] waste fish offal can equate to 60% of the live 

weight. It was then factored by the percentage dry weight obtained from the collected fish 

offal sample in these trials. Dairy slurry yields were averaged throughout the year from 

samples taken. 
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Table 3.7 Energy yields for crop biomethane systems 

Substrate Grass silage 

(midlands) 

Energy 

beet 

Winter 

Barley 

Maize 

(silage) 

S. latissima Potatoes 

(Roosters) 

Yield  

(Dry t ha-1 yr-1) 

11.0a
 17.2 12.2 19.1 30b (VS)

 35.6 

CH4 yield  

(L CH4 kg-1 VS) 

400 375 367 394 341 351 

CH4 yield  

(m3 ha-1 yr-1) 

4,030 6,274 4,308 7,297 10,244 11,996 

Gross energy  

(GJ ha-1 yr-1) 

152 237 163 276 387 453 

Specific yield 

(m3 t-1 wwt) 

107.3 83.1 197.0 127.9 34.5 86.8 

Area required to 

meet RES-T (ha-1) 

123,684 79,325 115,337 68,116 48,579 41,501 

A, [4]. B, [30]. Higher heating value used for Energy conversion of 1 m
3
 CH4 = 37.77MJ. Energy 

required to satisfy 10% renewable energy in transport (10% RES-T = 18.8 PJ) ignoring any weighting 

from Directives  

 

Table 3.8 Energy yields for residue biomethane systems 

Substrate FW 

(average) 

Slurry 

dairy 

(average) 

Slurry 

Beef 

Fish offal MPW slurry Abattoir 

waste 

Available yield  

(Dry t yr-1) M  

0.155a
 1.264b,c

 2.43b,c
 0.073c,d

 8.71c,
 0.028c 

CH4 yield  

(L CH4 kg-1 VS) 

419 208 311 592 461 336 

CH4 yield  

(m3 yr-1) M 

56.6 204.8 604.1 37.1 3217.6 8.4 

Gross energy  

(PJ yr-1)  

2.14 7.73 22.82 1.40 121.55 0.32 

Specific yield 

(m3 t-1 wwt) 

107.9 11.5 21.0 200.9 35.1 49.9 

% RES-T met by 

waste 

substrate  

1.1 4.1 12.14 0.74 64.65 0.17 

a, [20] b, [34] c, [1] d, [33].  
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Potatoes displayed a high gross energy yield per hectare (Table 3.7) however they are up to 

5 times more expensive to produce per tonne and have higher energy inputs than maize or 

beet crops [35]. MPW provided the best available waste substrate in terms of gross energy 

per annum for a biogas system (Table 3.8). 

Seaweeds such as S. latissima have yet to trialled in long-term continuous trials and have 

expensive harvesting costs, which will prevent immediate commercial use. Technology 

readiness level (TRL) concepts would suggest residues and first generation biofuel crops 

such as Energy Beet and Maize will dominate biogas systems. However first generation 

biofuels are limited to 7% of energy in transport (when used as a transport fuel) and 

conflict with direct land use for food production. Residues are sustainable but their 

resource is finite.  

3.4 Conclusions 

In examining substrates from anaerobic digestion and assessing a resource for renewable 

energy in Ireland, care has to be taken in understanding the substrate and its biomethane 

yield. There is a significant variation in methane potential of substrates. Grasses vary by 

time of harvest and method of harvest.  Dairy slurry has less methane potential at the end 

of the season when the animals are fed a reduced diet as compared to milking season. Milk 

processing wastes such as from the creamery and cheese production facilities show the 

largest resource with potential to satisfy 65% of energy demand in transport in Ireland.  
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3.5 Supplementary data   

Lower case letters after each substrate tittle indicate their significance to all other substrates. Where a 

substrate shares at least one similar letter to another, they are said to be significantly similar to a 95% 

(α, p < 0.05) confidence factor. Otherwise substrates display a significant difference in terms of BMP 

yield from one another.   

 

Figure S3.1 Statistical analysis of terrestrial biofuel crops and BMP yields.  

 

Figure S3.2 Statistical analysis of grass substrates and BMP assay results.  
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Figure S3.3 Statistical analysis of agricultural wastes and BMP assay results.  

 

Figure S3.4 Statistical analysis of food processing wastes and BMP assay results.  
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Figure S3.5 Statistical analysis of municipal wastes and BMP assay results. 

 

Figure S3.6 Statistical analysis of macro algae and BMP assay results. 
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Figure S3.7 Comparison between a selection of BMP yields and C:N ratios.
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4 Evaluation of the biomethane yield from anaerobic co-digestion of 

nitrogenous substrates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Biogas Production from Novel Substrates 

 

 

- 74 - 
 

Evaluation of the biomethane yield from anaerobic co-digestion of nitrogenous substrates 

Eoin Allen a,b, James Browne a,b, Jerry D. Murphy ab 

a Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland  

b School of Engineering, University College Cork, Cork, Ireland  

 

Abstract 

This paper examines three substrates for anaerobic co-digestion: abattoir waste; cheese 

waste and food waste. These substrates were assessed in detail for suitability for 

biomethane production. Biomethane potential (BMP) assays were carried out in mono and 

co-digestion for the three substrates and two mixes: T1 (40% abattoir waste; 50% cheese 

waste; 10% food waste on a wet weight (w/w) basis) and T2 (30% abattoir waste; 40% 

cheese waste; 30% food waste). The C:N ratio of both mixes was below optimum. Low 

levels suggest that the production of free ammonia (NH3) in semi-continuous digestion was 

of primary concern. Both mixes were digested in a semi-continuous process for 25 weeks. 

The recommended operating condition for T1 was a loading rate of 3 kg VSm-3 d-1
 at a 

retention time of 23 days. The biomethane yield was 305 LCH4 kg−

1 VS which was 87% of 

the BMP value and a biodegradability index of 0.61. For T2 (with the higher C:N ratio) a 

higher loading rate of 4 kg VS m-3 d-1
 at a lower retention time of 15 days was 

recommended. The biomethane yield was 439 LCH4 kg−

1 VS (99% of the BMP value and 0.84 

biodegradability index). At these conditions levels of Total Ammonia Nitrogen (TAN) were 

4109 and 4831 mg l-1 for T1 and T2 respectively. These values are on the large side 

according to the literature. The temperature was reduced to 35oC to minimise toxicity 

associated with TAN. Ratios of volatile acids to total alkalinity were typically in the range 

0.2 to 0.3 suggesting stable operation. 

Keywords: biomethane; biogas; abattoir waste; food waste. 
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4.1 Introduction 

4.1.1 Importance of biofuel production from residues 

The EU Renewable Energy Directive [1] allows a double credit to biofuels produced from 

residues. In October 2012 the European Commission [2] published a proposal to limit food-

based biofuels to 5% of renewable energy in transport. Biofuel production at present is 

very close to this level and as such the Commission is placing barriers to the development 

of further first generation liquid biofuel systems. Their objective is to stimulate second 

generation biofuels from non-food substrates such as wastes which do not interfere with 

food production. Greenhouse gas emissions from biofuels must effect a 60% reduction in 

greenhouse gas emissions on a whole life cycle basis as compared to the fossil fuel 

displaced [1, 2]. Typical values are given in The EU Renewable Energy Directive for biofuel 

systems, including for: 83% for compressed biomethane generated from residues; 32% for 

wheat ethanol and 45% for rapeseed biodiesel [1, 3]. This paper interrogates the optimum 

production of biomethane from residues available in a rural community and builds upon a 

paper by Browne et al [4]. 

4.1.2 Outline of scenarios to be investigated  

Browne et al. [4] outline of scenarios to be investigated and examined the potential for 

biomethane production from a community from five substrates: abattoir waste; cheese 

waste; food waste; pig slurry and wastewater treatment sludge. They highlighted the 

requirement for detailed sampling of the various components of the substrates. For 

example abattoir waste had three components (paunch grass, green sludge and waste 

activated sludge). These three components yielded different specific biomethane 

production (L CH4 kg−

1 VS) rates and were available in different quantities. Based on the 

analysis of fifteen BMP assays Browne and co-workers [4] suggested that pig slurry and 

wastewater treatment sludge should be omitted from this community digester if 

optimisation of gas production per unit substrate was required. Food waste was shown to 

have the highest yield per volume of substrate (131 m3 CH4 t
-1). This substrate is also 

beneficial as it generates a gate fee [5]. At present source segregation of food waste only 

allows for 1000 t yr-1 of available substrate in this community. It is very possible with new 
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legislation that 5000 t yr-1 will be available in the short term. Thus two trials will be 

investigated as outline in Table 4.1. 

4.1.3 Operational parameters of concern for semi-continuous digestion 

 A limitation with preliminary design of anaerobic digesters using the results of BMP assays 

is that little information is given on organic loading rate (OLR), hydraulic retention time 

(HRT) or parameters which indicate the stability of the process, such as: levels of total 

ammonical nitrogen (TAN); and the ratio of volatile fatty acids (VFAs) to alkalinity. A low 

C:N ratio is an indication of a nitrogen rich substrate and the potential for significant 

ammonia production within the digester when digested. The un-dissociated form of 

ammonia nitrogen, NH3 is the toxic component. The concentration of NH3 is temperature 

and pH dependent. Inhibition starts somewhere between 1500 and 3000 mg l−1TAN, but 

higher concentrations (up to 8500 mg l−1
) can be tolerated [6] but often with a reduction in 

biomethane production. It is important to monitor the ratio of VFAs to alkalinity. Typically, 

a ratio greater than 0.3 indicates that the process is beginning to become unstable and 

levels at 0.8 suggest that the process is in failure.[7] In this paper, the ratio of volatile 

organic acids (VOA) measured in gHAceq L−

1 (which is equivalent to the measurement of 

acetic acid), to alkalinity measured in mg CaCO3 L−

1 was also assessed. This is referred to as 

Fos:Tac, the German translation as per the industry standard. 

4.1.4 Literature on digestion of food waste 

 Food waste is not a homogenous substrate and its composition varies from place to place. 

It also depends on whether the food waste has been source segregated or is from a co-

mingled source, separated at a materials recovery facility. The organic fraction of municipal 

solid waste (OFMSW) is another source of food waste which includes for more refractory 

material (paper, cardboard and textiles) and potentially is a poorer source of 

biomethane.[5] Data on biomethane production from source segregated food waste found 

in the literature include: 401–489 L CH4 kg−

1 VS,[8] 455 L CH4 kg−

1 VS [9] and 467–529 L CH4 

kg VS−

1.[5] Lower values are encountered for source segregated OFMSW. Cecchi et al. [8] 

quote values of 158–397 L CH4 kg−

1 VS while Davidsson et al. [10] quote values of 300–400 L 

CH4 kg−

1 VS.  
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4.1.5 Literature on digestion of abattoir waste 

 Banks et al. [11] highlighted the high level of nitrogen (and the corresponding low C:N 

ratio) in kitchen waste leading to high levels of ammonia in the digester which may be 

responsible for accumulation of VFAs. For similar reasons anaerobic digestion of 

slaughterhouse waste may be problematic. A digester in Austria [12] digests floatation fat, 

pig blood, hind gut of pig and bovine rumen content. TAN levels of between 4500 and 7500 

mg l−1are documented; at the higher levels, gas production decreased. NH3 which is 

temperature dependent is the toxic form of ammonia nitrogen; at lower temperatures, 

lessNH3 is produced.[7] The slaughterhouse waste digester in Austria maintained the 

temperature of the digester at or below 35◦C to minimize production of NH3 and maximize 

production of biomethane.[7] Edstrom et al. [13] document the problems in mono-

digestion of 3 slaughter wastes (stomach and intestinal content, animal low risk excluding 

blood, and blood). Again the primary issue is the significant production of TAN, 

accumulation of VFAs and limiting methane production. To successfully operate a pilot 

scale facility they co-digested the slaughter waste with food waste and eventually operated 

at 3 kg VS m-3 d-1. Ammonia nitrogen levels were of the order of 4500 mg l−1. The 

biomethane yield was 560 L CH4 kg−

1 VS with a methane concentration of 70%.[13]  

4.1.6 Literature on digestion of cheese waste  

Waste from cheese production is also a high nitrogen content substrate, typically with a 

C:N ratio below 15.[4,14] In a trial experiment to establish an optimum loading rate for 

cheese waste Jihen et al. [14] added biological waste from a dairy farm in order to increase 

the C:N ratio. This resulted in both higher levels of biodegradability and increased methane 

content.[14]To overcome high ammonia levels, Comino et al. [15] reduced the operating 

temperature to 35◦C in co-digesting cheese waste and cattle slurry (1:1 mix). Biomethane 

yields of 343 L CH4 kg−

1 VS were obtained.[15]  

 

4.1.7 Inhibition associated with TAN 

Ammonia (NH3) is a compound that can be present in both gaseous and soluble form.      
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                                                Eqn 4.1 

Gerardi [16] reported on the relationship of ammonia in an anaerobic digester as follows: 

Ammonia is released through the degradation of amino acids and proteins and comes in 

the form of either ammonium ions (ionized ammonia NH+ 4 ) or dissolved ammonia gas 

(free ammonia NH3). The release of ammonia increases the digester alkalinity which is an 

important buffering step in the digestion process. However, at certain concentrations 

ammonia can become toxic to methanogens and may result in digester failure. The 

dissolved ammonia gas (free ammonia NH3) is the more toxic component specifically to 

acetoclastic methanogens. Ammonium ions (NH+ 4 ) are less toxic and are used by the 

bacteria as a nutrient source for nitrogen. Both free ammonia (NH3) and ammonium ions 

(NH+ 4 ) are reduced forms of nitrogen. The two forms are in equilibrium as the conversion 

of free ammonia to ammonium ions is pH dependent. A higher pH results in the production 

of free ammonia (NH3), while lower pH results in the production of ammonium ions (NH+ 4 

). Dropping the pH in a reactor can convert much of the free ammonia to the less harmful 

ammonium ions. Deublein and Steinhauser [17] similarly stated that the equilibrium 

relationship is also temperature dependent and that a rise in temperature will shift the 

equilibrium in favour of free ammonia (NH3), thereby increasing the chances of inhibition. 

Dropping the temperature by a few degrees Celsius can improve reactor stability. Banks 

and Heaven [18] described an equation relating production of free ammonia to the pH and 

temperature:  

Eqn 4.2 

4.1.8 Aims and objectives of paper  

An ambition of this paper is to evaluate the relevance, and highlight the limitation of the 

BMP assay as a method for undertaking design of a community digester facility. To 

facilitate this ambition, semi-continuous digestion was undertaken of two mixes of 

substrates (with different C:N ratios as outlined in Table 4.1) over 175 days. The objectives 

of the paper are to:  
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• Compare theBMPassays of these substrates in monodigestion and anaerobic co-

digestion 

• Assess the ideal operational parameters (OLR and HRT) for the two mixes (Table 

4.1) in semi-continuous digestion.  

• Assess the performance of the reactors at these operational conditions, in 

particular specific methane yields (L CH4 kg−

1 VS), ratio of organic acids/alkalinity 

(Fos:Tac) and levels of TAN. 

• Compare the biomethane yield to that obtained using BMP assays.  

• Compare the BMP assays of these substrates in mono-digestion and anaerobic co-

digestion. 

• Assess the ideal operational parameters (OLR and HRT) for the two mixes (Table 

4.1) in semi-continuous digestion. 

• Assess the performance of the reactors at these operational conditions, in 

particular specific methane yields (L CH4 kg−

1 VS), ratio of Fos:Tac and levels of TAN. 

• Compare the biomethane yield to that obtained using BMP assays. 
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Table 4.1 Individual substrates, proposed mixes and BMP results. 

 

 

C:N 

ratio 

TS 

(%) 

VS 

(%) 

C  

(%) 

H 

(%) 

N  

(%) 

BMP 

mono-digestion 

(L CH4 kg−

1 VS) 

Trial T1 

proportion of mix 

Trial T2 

proportion of mix 

        wwt basis 

(%) 

VS basis 

(%) 

wwt basis 

(%) 

VS basis 

(%) 

Abattoir 13.6 12 10.6 47.2 5.8 3.4 239 40 42 30 24 

Cheese factory 14.8 8.3 6.9 48.5 8.0 3.3 515 50 34 40 21 

Food waste 15 28 24.5 48.8 7.3 3.3 535 10 24 30 55 

C:N ratio        14.3 14.6 

TS (%)        11.7 15.3 

VS (%)        10.1 13.2 

BMP weighted mono-

digestion L CH4 kg−

1 VS 

       403 459 

BMP actual co-digestion L 

CH4 kg−

1 VS 

       350 443 
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4.2 Materials and methods 

4.2.1 Materials 

The three substrates were sourced in significant quantities to allow representative samples 

to be taken and to allow for 25 weeks of laboratory assessment. The samples were 

macerated to a particle size of less than 2mm and placed in a freezer set at -20◦C. The 

samples were previously described in Browne et al. [4] and summarized below: Abattoir 

waste: Slaughter wastes containing 53% grass like paunch; 32% dewatered activated sludge 

and 15% green sludge. Cheese waste: Liquid sludge which includes 83% biologically treated 

effluent and 17% dissolved air floatation sludge. Food waste: Source segregated domestic 

and commercial waste. Present levels of 1000 ta−

1 are expected to rise to 5000 ta−

1 over the 

next four years. Of issue with the substrates is the low C:N ratio (Table 4.1). Ideally, the C:N 

ratio of the substrates in an anaerobic process should be in the range of 20:1–30:1.[7] The 

levels here (14.3:1 for Trial 1 and 14.6:1 for Trial 2) suggest excess nitrogen and as such 

elevated levels of TAN.[6,11]  

  

Figure 4.1 Semi-continuous digestion system consisting of 5L reactors and tipping bucket 

measuring device.   

4.2.2 BMP assays   

BMP assays are in essence a batch digestion process. Inoculum at a ratio of 2:1 or greater 

to feedstock on a volatile solids (VS) basis is recommended in laboratory BMP trials.[19] 
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This reduces the chances of process inhibition from excess VFAs or ammonia. The same 

process was used here as in Browne et al. [4] using the automatic methane potential test 

system developed by Bioprocess™. All assays were carried out in triplicate. The assays were 

run until biogas production was minimal (in this case less than 5ml day−1). Glass bottles 

with a working volume of 400 ml mixed by electric stirrers are maintained at a constant 

temperature. Carbon dioxide is removed from the biogas by passing through a solution of 

1Msodium hydroxide. Individual gas tippers automatically count and record biomethane 

flow. BMP assays were performed on both the individual substrates (mono-digestion) and 

the mix of the substrates (co-digestion). BMP assays were also carried out on the digestate 

removed from the semi-continuous reactors at the end of the process to quantify the BMP 

remaining in the digestate.  

4.2.3 Semi-continuous digestion trials  

Semi-continuous trials were carried out in two parallel continuously stirred tank reactors. 

The reactors were referred to as T1 (Tank 1 used for Trial 1 mix) and T2 (Tank 2 used for 

Trial 2 mix). The trials ran for a period of 25 and 24 weeks. The reactors were initially 

maintained at 37 ± 1◦C and continuously stirred at a rate of 100 rpm. The temperature 

was reduced to 35 ± 1◦C at the start of week 13, when the OLR increased to 3 kg VS m-3 d-

1. The reactors were constructed out of thick walled plastic with a vertically mounted 

stirring mechanism. The tank volumes were 5 L with a working volume of 4 L. Each reactor 

was placed inside a coiled copper pipe frame which was heated by a thermo-circulator; an 

insulated cover was placed over the system to reduce heat loss (Figure 4.1).   

4.2.4 Inoculum, start-up and feeding and operation  

Inoculum for both the BMP assays and the semi-continuous trials were sourced from a 

working reactor which co-digested dairy and poultry manure and food waste. For the semi-

continuous trials, the inoculum was placed in the reactors two weeks before the start of 

the trial; this was done to de-gas, and digest any residual VS in the inoculum. An OLR of 2 

kg VS m-3 d-1 was chosen as a start-up feeding rate. The substrate was macerated and 

weighed and placed in 100 ml containers for each of the two systems. An ultimate analysis 

(percentage carbon, hydrogen and oxygen) and a proximate analysis (total solids (TS), VS 

and ash content), was carried out for both mixes in the containers to insure minimal 
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variations. Each reactor was fed five days a week (not on Saturdays or Sundays). In order to 

reduce HRT and to minimize stress on the stirring mechanism, the substrates were reduced 

to a maximum of 10% TS content. This was achieved by recirculation of liquor digestate 

from the reactor output to the inlet. The OLR was determined by analysing the VS in all 

substrates. The two mixes (Table 4.1) were based on a wet weight (WW) basis. To 

determine accurate destruction rates and maintain a constant liquor level in both tank 

reactors, a mass balance was conducted including for biomethane yields; this allowed 

calculation of the amounts of digestate to be removed daily from both T1 and T2 (Table 

4.2).   

4.2.5 Gas measurement in semi-continuous trials 

The cumulative gas yield for the full week was recorded and divided by the grams of VS fed 

over the week (only five days of feeding). Biogas was collected in Teflor gas bags and 

analysed for composition (percentage CH4, CO2 and H2S in ppm). The measuring system 

used incorporated gas tipping buckets. A set volume of gas (ca. 78 ml) causes the tipping 

mechanism to tip. The number of tips was recorded and translated into volume of biogas. 

Measurement of the percentage of methane in the biogas allowed calculation of 

biomethane production.  
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Table 4.2 Mass balance of T1 at organic loading rate of 2 kg VS m-3 d-1 

Mix T1 (40% Abattoir Waste, 50% Cheese Waste and 10% Food Waste)  

11.7% TS and 10.1% VS 

Feeding and recirculation 

OLR 2 kg VS m-3 d-1  * 4L effective volume = 8g VS d-1  

8g VS d-1 at 10.1% VS = 79 g wwt d-1 

Expect 90% destruction of volatiles; 7.2 g VS converted to methane d-1 

79 g wwt d-1 with destruction of 7.2 g d-1 implies addition of 71.8 g d-1 

To keep liquor level constant remove, 71.8g of digestate d-1 

DS of liquor is 6%:  

79g wwt T1 mix at 11.7% TS plus 34g liquor at 6% TS = 113 g wwt at 10% DS 

Hydraulic Retention Time 

4000 L of effective volume equates to ca. 4000g of mass 

HRT including recirculation is 4000 g/113g d-1 = 35 days 

HRT excluding recirculation is 4000 g/79g d-1= 51 days 

4.2.6 Analysis and parameter calculations  

The composition of the biogas was measured using two hand-held gas measuring devices 

which were checked with a standard solution of calibration gas each week for accuracy to 

±1% CH4 (1,171,580) using a 35% CO2 in CH4 balance. Two infrared analysers were used: a 

Drager X-AM 7000 and a Status Scientific Control ComBI-R Biogas analyser. All biogas and 

biomethane yields were reported in L CH4 kg VS−

1 and adjusted for standard temperature at 

273K and pressure at 1013 mbar. The VOAs were measured in mg HAceq l−1. Alkalinity was 

measured inmgCaCo3 l-1. The Nordmann titration method [20] was used to output both the 

VOA and alkalinity, using a sample of 0.1n sulphuric acid using a Titronic Universal titrator. 

The ratio of VOA to alkalinity was measured using the Fos:Tac method as described by 

Weiland [21]. The titration is first carried out until a pH of 5.0 (bicarbonate alkalinity) and 

then until 4.4 (alkalinity caused by organic acids). TS and VS were determined by APHA 

standards. [22] Samples were taken twice weekly. pH was measured daily on samples of 

digestate using a Jenway 3510 pH meter. TAN was measured weekly using a Hach DR 3900 

spectrophotometer (Hach phial number CLK 303).  
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4.3 Results  

4.3.1 BMP results  

The three substrates underwent mono-digestion in BMP assays and co-digestionin mixes 

with results as outlined in Table 4.1. BMP based on actual co-digestion varied from the 

calculated specific methane yield based on weighted mono-digestion. For mix T2 there was 

a slight reduction in yield (3.5%). In mix T1 there was a variance of 52 L CH4 kg VS−

1 or a 13% 

reduction in the BMP from co-digestion as compared with the expected yield based on 

weighted mono-digestion. 

4.3.2 Initial loading and retention time for semi-continuous trials  

The two systems operated in parallel. They were initially run on a low OLR (2 kg VS m-3 d-1
) 

to allow a period of acclimatization and ensure a healthy start-up for the reactors. The TS 

contents of the two mixes for T1 and T2 were 11.74% and 15.31%, respectively. The 

calculated quantities of liquor return were added to dilute the solids content of the feed to 

a level of ca. 10%. This had the added effect of reducing HRT from 51 to 35 days for reactor 

T1 and from 66 to 31 days for T2. Table 4.2 outlines the loading regime for T1. 

4.3.3 Results of semi-continuous trials at an OLR of 2 kg VS m-3 d-1 

 For a period of 13 weeks both reactors were operated at a temperature of 37 ± 1◦C and 

an OLR of 2 kg VS m-3 d-1 to allow for an adequate start-up phase (Table 4.3). This equated 

to three HRTs. The maximum yield recorded for T1 (378 L CH4 kg VS−

1) over the entire 25-

week experimental period was recorded in the first retention time of the OLR of 2 kg VS m−

3 d−1. There was a decline in yields from the first HRT to the second HRT (Figure 4.2). The 

third HRT was a more stable period for biomethane production. The methane production 

ranged ±22 L CH4 kg VS−

1 for HRT 3 as compared with ±129, and ±52 L CH4 kg VS−

1 for 

HRT 1 and HRT 2, respectively. T2 did not produce any significant levels of biogas for the 

first two weeks of operation; biogas production in T2 started in week 3 (Figure 4.2(a)). 

There was a similar trend for T2 as for T1 (Figure 4.2(a)). A sharp rise in biomethane levels 

were recorded in the first retention period, followed by a decline to lower levels in the 

second HRT and a steady state in the third HRT as indicated by a smaller deviation in 

biomethane yields. The Fos:Tac ratio of in T1 and T2 was predominately below 0.2 only 
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rising above this limit for 2 weeks out of a total of 13 weeks in the first reactor (Table 4.5).  

T2 had higher levels of a Fos:Tac ratio but was at the upper bound of acceptable limits, 

reaching 0.37 at its maximum. This suggests that steady state had been reached. 

Biomethane production values in table 4.3 exclude the initial period of start-up (the first 

three weeks). The methane content in the biogas (Figure 4.2(b); Table 4.4) indicates the 

time to stable operation is of the order of five weeks. 
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Table 4.3 Summary of results of biomethane yields for T1 and T2 

Method T1 (L CH4 kg−

1 VS) T2 (L CH4 kg-1VS) 

Theoretical maximum based on Buswell Equation 

 501 525 

BMP 

Weighed based on mono-digestion 407 438 

Co-digestion 350 443 

Results from 25 weeks of continuous trials 

      Average (25 weeks) 267 378 

      Average, after start up  312 413 

      OLR 2 kg VS m-3 d-1 

                 HRT 1 after start up 266 189 

                 HRT 2 267 366 

                 HRT 3 281 398 

                 Average after start up 280 380 

      OLR 3 VS m-3 d-1 

                 HRT 1  267 386 

                 HRT 2 334 440 

                 Average  305 410 

      OLR 4kg VS m-3 d-1 

                 HRT 1  291 469 

                 HRT 2 290 420 

                 Average  291 439 
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4.3.4 Results of semi-continuous trials at an OLR of 3 kg VS m-3 d-1  

The OLR was increased from 2 to 3 kg VS m-3 d-1 in both reactors and the temperature was 

dropped to 35 ± 1◦C to reduce the toxic effect of free ammonia. With return of liquors the 

HRT was calculated as 23 days and 20 days for T1 and T2, respectively (Table 4.5). An initial 

decrease in biomethane yields was recorded for both reactors, but this levelled out (Figure 

4.2(a)) and a more stable production of biomethane was observed. T1 yields for this OLR 

averaged 305 L CH4 kg VS−

1; this may be compared with an average of 280 L CH4 kg VS−

1 for 

the lower OLR. The average yield raised from 267 to 334 L CH4 kg VS−

1 from retention 

period 1–2 (Table 4.3). The Fos:Tac ratio averaged 0.21 for this period (Table 4.5) indicating 

a lack of stress on Figure 4.2. (a) Biomethane yield, (b) methane content and (c) NH3-N for 

T1 and T2. the system. The pH rose somewhat from 7.63 to 7.89 (Table 4.5). TAN levels 

(Figure 4.2(c)) dropped off somewhat from 4518 (at an OLR of 2 kg VS m-3 d-1
) to 4109 mg l-1 

(at 3 kg VS m-3 d-1
). This may be explained by the drop in temperature to 35◦C. Trends for 

T2 were similar to T1. Biomethane production averaged 410 L CH4 kg VS−

1 as compared with 

an average of 380 L CH4 kg VS−

1 for the lower OLR. The average yield raised from 386 to 440 

L CH4 kg−

1 VS from retention period 1–2 (Table 4.3). Fos:Tac ratio averaged 0.29 for this 

period (Table 4.5) down from 0.37 from the previous loading rate. The pH rose from 7.69 to 

7.91 (Table 4.5). TAN levels (Figure 4.2(c)) dropped from 5501 (at an OLR of 2 kg VS m-3 d-1
) 

to 4834 mg l-1(at an OLR of 3 kg VS m-3 d-1) again explained by the drop in temperature.  
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Figure 4.2 Biomethane yields and TAN concentrations for T1 and T2. 

 (a) Biomethane yield, (b) methane content and (c) NH3-N for T1 and T2. 
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Table 4.4 Efficiency of biomethane production 

Reactor  T1 T2 

OLR (kg VS m-3 d-1) 2 3 4 2 3 4 

Yield/ BMP  0.80 0.87 0.85 0.86 0.95 0.99 

Biodegradability index  0.56 0.61 0.60 0.72 0.79 0.83 

CH4 % 63.11 63.45 66.93 63.48 64.07 66.85 

Specific CH4 yield  

(L CH4 kg−

1 VS) 

279.7 305.3 291.0 380.0 409.8 439.0 

Specific yield m3CH4 t
-1  28.3 30.9 29.44 50.46 54.42 58.30 

 

Table 4.5 Analysis of operation of T1 and T2  

Reactor  T1 T2 

OLR (kg VS m-3 d-1) 2 3 4 2 3 4 

HRT (ignore recirculation) 

d 

51 34 25 66 44 33 

HRT (with recirculation) d 35 23 17 31 20 15 

Operating parameters 

TAN (mg l-1) 4518 4109 4187 5501 4834 4831 

Free Ammonia (mg l-1) 412.89 375.94 400.10 340.98 441.56 478.12 

pH 7.63 + .11 7.89 + .09 8.00 + .07 7.69 + .16 7.91 + .12 8.03 + .09 

VOA (Fos) (g HAceq l-1)  1205 653 1322 1687 1109 956 

TIC (Tac) (mg CaCo3 l-1) 5239 3110 5508 4559 3824 4780 

Fos:Tac ratio 0.23 0.21 0.24 0.37 0.29 0.20 

 



Biogas Production from Novel Substrates 

 

 

- 91 - 
 

4.3.5 Results of semi-continuous trials at an OLR of 4 kg VS m-3 d-1  

Again the systems were operated for two retention times. Reactor T1 averaged 291 L CH4 

kg VS−

1 which was a decline of 4.6% from the previous average production at the lower OLR 

(Table 4.3). The biomethane yield was quiet stable; variation in average yield between the 

first and second retention period was only ±1%. TAN was very similar to the lower OLR 

(4187 compared with 4109 mg l−1). Fos:Tac ratio was low at 0.24 (up from 0.21). The pH did 

rise to 8 which is high; ammonia is more toxic at higher pH.[7] The authors believe that this 

system is stable with slightly less biomethane production than at the lower OLR (3 kg VS m-3 

d-1). This would suggest that for T1 the optimum OLR lies somewhere between 3 and 4 kg 

VS m-3 d-1. Reactor T2 increased biomethane yields; from an average of 410 L CH4 kg−

1 VS at 

3 kg VS m-3 d-1
 to 439 L CH4 kg−

1 VS at 4 kg VS m-3 d-1
 (an increase of 7.3%; Table 4.3). Fos:Tac 

was recorded at 0.2. TAN was at levels of 4831 mg l−1 (Table 4. 5). pH was recorded in 

excess of 8 which is high and of issue when associated with high ammonia levels.[7] The 

biomethane level achieved is very similar to the BMP result. Using the weighted BMPs for 

the individual substrates a value of 459 L CH4 kg VS−

1 is calculated. The BMP of the 

substrate mix T2 was recorded at 443 L CH4 kg VS−

1. The semi-continuous system has a 

specific methane yield very close to these values (Table 4.6). The result of the semi-

continuous trial for an OLR of 4 kg VS m-3 d-1
 is within 1% of the BMP of the mixture. The 

authors would suggest that 4 kg VS m-3 d-1
 is very close to optimum performance. The 

retention time is low at 15 days including for recirculation.  
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Table 4.6 Summary of evaluation of methane yield from multiple waste streams 

Method T1 

 

T2  

 

Theoretical maximum based on Buswell Equation  (L CH4 kg−

1 VS) 501 525 

BMP weighted based on mono-digestion (L CH4 kg−

1 VS) 403 459 

BMP co-digestion (L CH4 kg−

1 VS) 350 + 12 443 + 14 

Recommended OLR (kg VS m-3 d-1) 3 4 

Hydraulic Retention time without recirculation (d) 34 33 

Hydraulic Retention time without recirculation (d) 23 15 

Corresponding biomethane production  (L CH4 kg−

1 VS) 305 439 

Biomethane production as a ratio of BMP  0.87 0.99 

Biodegradability index  0.61 0.84 

NH3-N (mg l-1) 4109 4831 

Fos:Tac 0.21 0.2 

pH 7.89 8.03 

 

4.4. Discussion of results 

4.4.1 Level of efficiency 

Efficiency of the reactor was estimated (Table 4.4) using two different metrics: • Dividing 

the biomethane produced in semi-continuous trials by the maximum theoretical yield 

derived from the Buswell equation.[23] This is known as the biodegradability index and is 

expressed as a ratio. Dividing the biomethane produced in semi-continuous trials by the 

BMP yield recorded in BMP assays. Many believe that the BMP is an upper limit on specific 
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biomethane yield and as such the value should not be greater than 1. Reactor T1 had its 

highest rates of biomethane production (Table 4.4) at an OLR of 3 kg VS m-3 d-1 (0.87 (ratio 

of BMP) and 0.61 (biodegradability index)). Reactor T2 had the highest biomethane 

production (Table 4.4) at an OLR of 4 kg VS m-3 d-1 (0.99 (ratio of BMP) and 0.83 

(biodegradability index)). The BMP is often considered the upper level of biomethane 

production, but a number of researchers [24–26] have recorded methane yields from semi-

continuous processes in excess of values obtained in BMP assays. Table 4.4 outlines the 

specific yields of the mixes for the different OLRs and also list these values in yields per unit 

mass on a wwt basis. For example, at an OLR of 4 kg VS m-3 d-1 T1 yields 29 m3 CH4 t
−

1 as 

compared with 58 m3 CH4 t
-1 for T2. This is almost double the yield. This highlights the 

higher methane potential and dry solids content of food waste (535 L CH4 kg VS−

1 at 24.5% 

VS = 131 m3 t−1
) as compared with abattoir waste (239 L CH4 kg VS−

1 at 10.6% VS = 25 m3 t−

1). 

4.4.2 Ammonia levels  

The Hach Lange cuvette test results yield the reduced form of nitrogen (TAN). According to 

Section 1.7, Banks and Heaven [18] described an equation relating production of free 

ammonia to the pH and temperature. TAN levels in both T1 and T2 were measured weekly 

(Figure 4.2(c)) and reached their highest level after 10 weeks in T1 and 11 weeks in T2 

(4518 mg l−1and 5501 mg l−1, respectively). These levels are considered high with respect to 

the scientific literature [6, 7]. Drosg et al. [6] suggest inhibition can start at 3000 mg l−1. A 

slaughter waste digester in Austria [12] operated with TAN levels of between 4500 and 

7500 mg l−1and experienced reduced biomethane production at the higher levels. Initially 

(up to week 13), the temperature was set at 37◦C, but as ammonia levels began to rise, the 

temperature dropped to 35◦C and maintained at this level for the remainder of the 

experiment. The objective of this was to reduce the toxic effect of free ammonia (NH3) and 

maintain stability as recommended by Hansen et al. [27] The inoculum used in this 

experiment was taken from a commercial scale digester operating on poultry manure and 

food waste. This inoculum would be expected to have high levels of TAN even before 

feeding commenced. Levels of TAN in the inoculum before a period of de-gassing took 

place were 3368 mg l−1. At the start of the experiment, the level was 2860 mg l−1. However, 

after a suitable period of acclimatization had been allowed to take place the ammonia 



Biogas Production from Novel Substrates 

 

 

- 94 - 
 

decreased in concentration. At week 13 when the OLR was increased and the temperature 

dropped the concentration of TAN reduced to just over 4106 mg l−1in T1 and 4966 mg l−1in 

T2. It continued to decrease to a level of 3316 mg l−1in T1. At the OLR of 4 kg VS m-3 d-1 it 

averaged 4187 mg l−1. T2 had a similar curve profile but at a slightly elevated level; it 

reached a lower level of 3750 mg l−1at week 18 and averaged 4831 mg l−1at an OLR of 4 kg 

VS m-3 d-1. Free ammonia concentrations are reported in table 4.4 For stable anaerobic 

digestion at high ammonia concentrations, the following parameters are a prerequisite [6]: 

• good adaptation of the microbes, • good trace element availability and • low-to-medium 

hydrogen sulphide concentrations.  

4.4.3 Stability of process  

The Fos:Tac ratio was not high. Levels remained steadily in the range of 0.15–0.3 in both 

reactors. An average level of 0.37 was experienced in T2 at the lowest OLR but this dropped 

as the system evolved. This suggests that both consortia of microbial bacteria were healthy 

and not under undue pressure. pH in both reactors was at satisfactory levels (7.5 for T1 and 

7.6 for T2) for the entire period with an OLR of 2 kg VS m-3 d-1. The pH rose to above 8.0 at 

an OLR of 4 kg VS m-3 d-1 for both T1 and T2. This is problematic when coupled with high 

ammonia levels.[6,7]  

4.4.4 Biogas composition  

Biogas composition showed increases in volume of CH4 from an average of 63% CH4 (after 

start-up) in T1 and T2 at an OLR of 2 kg VS m-3 d-1 to 64% CH4 in T1 and T2 for an OLR of 3 kg 

VS m-3 d-1 (Table 4.4). This further increased to 67% CH4 for the final OLR. Methane 

composition in the biogas was predominantly higher on the day after the two-day feeding 

lull (Saturday and Sunday). Percentages reached on average 2–3%CH4 higher on Mondays 

as compared with the weekly average. Biogas composition was similar in both reactors. H2S 

levels did not register in the biogas composition until week 9 in both reactors (Figure 4.3). It 

remained under 500 ppm until week 20 when the OLR was increased to 4 kg VS m-3 d-1. The 

initial device (Status Scientific Control ComBI-R Biogas analyser) could not measure levels in 

excess of 500 ppm. A new device (Drager X-AM 7000) was purchased (in place in week 23) 

with a larger measuring range for H2S. Levels of up to 860 ppm were recorded in T1 and 

980 ppm in T2 (Figure 4.3). The Drager recorded levels of hydrogen over 2000 ppm from 
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week 23 when it was purchased to week 25 (termination of experiment). Figure 4.3. Levels 

of H2S (ppm) in biogas from T1 and T2.  

 

Figure 4.3 Levels of H2S (ppm) in biogas from T1 and T2. 

 

4.5 Conclusions  

The results of this paper and previous work [4] allow a comparison of biomethane yields 

using four methodologies including for three different laboratory procedures. The methods 

include: 

 • Theoretical maximum calculated using the Buswell equation based on the ultimate 

analyses of the substrates. 

 • The first laboratory procedure is based on mono-digestion BMP trials. 

 • The second laboratory procedure is based on BMP trials of actual mixes. 
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 • The third laboratory procedure included for 25 weeks of semi-continuous digestion at 

three different OLRs. The results are summarized in table 4.6. The result of the BMP assay 

from Co-digestion is not the same as would be calculated using a weighting of mono-

digestion results. There is actually a small decrease for T2 (3%) and a more significant 

decrease for T1 (13%). The recommended OLR is lower (3 kg VS m-3 d-1
) for T1 than for T2 (4 

kg VS m-3 d-1
). The HRT (with recirculation) is recommended at 23 days for T1 and 15 days 

for T2. The ratio of VOC/alkalinity is typically below 0.3 for both trials. This suggests 

stability though the pH is on the high side at 7.89 and 8.03, respectively, for T1 and T2. The 

ratio of the biomethane yield from the semi-continuous trials to that obtained using BMP 

assays is 0.87 for Trial 1 and 0.99 for Trial 2. It is suggested that using a BMP for a 

preliminary design of an anaerobic reactor does not yield sufficient data for choosing 

operating conditions.  
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5 What is the gross energy yield of third generation gaseous biofuel 

sourced from seaweed? 
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Abstract 

Seaweed may be a source of third generation gaseous biofuel, in the form of biomethane. 

The scientific literature is sparse on the relative suitability of different varieties of seaweed 

to produce biomethane. This paper assesses the biochemical methane potential (BMP), 

ultimate analysis and theoretical yields of ten species of seaweed which may be found in 

commercial quantities around the coastline of Ireland. Saccharina latissima reported the 

highest BMP yield (ca. 342 L CH4 kg−

1 VS). S. latissima if farmed, may produce 10,250 m3 CH4 

ha-1 yr-1 (365 GJ ha-1 yr-1) which is in excess of all land based liquid biofuel systems. 

 

Key words: Anaerobic digestion; Biogas; Macro-algae; third generation biofuels. 
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5.1 Introduction 

5.1.1 Why use algae to generate gaseous biofuel? 

The use of third generation biofuels avoids competition between agricultural land and 

energy. Algae (both macro and micro) have been suggested as potential future sources of 

renewable energy in transport in Europe. The Renewable Energy Directive [1] assigns a 

weighting of two to biofuel produced from algae. Thus in calculating renewable energy 

supply in transport (RES-T) targets the energy from algae biofuels may be doubled in 

considering the 2020 target of 10% RES-T.  

 

5.1.2 Micro-algae biofuels 

Much work has been published on micro-algae as a potential source of biofuel. A 

disadvantage associated with production of liquid biofuel from micro-algae (micro-algae 

biodiesel) is the low total solids (TS) content of the micro-algae (0.1% to 1%TS) produced in 

open and closed bioreactors [2, 3].The requirement to utilise only dry lipids in the 

bioesterification process leads to a requirement for  energy intensive thickening, 

dewatering and drying processes [4]. Prajapati and co-workers, have shown that gaseous 

biofuels produced by anaerobic digestion may overcome these disadvantages, as the algae 

can be digested wet [5, 6]. Micro-algae are rich in lipids which leads to high theoretical 

specific methane yields (SMYs) as assessed by biochemical methane potential (BMP) assay, 

however these lipids can cause inhibitory conditions when digested [7]. Micro-algae have 

low carbon to nitrogen (C:N) ratios, high sodium and sulphur concentrations, all of which 

make its digestion challenging [8]. Solutions to these problems include: co-digestion of 

micro-algae with substrates rich in carbon such as cassava [9], optimisation of microbial 

growth to reduce protein content and increase C:N ratio, efficient pre-treatments and 

combined hydrogen fermentation and anaerobic digestion [10].  

The literature on gaseous biofuel production from macro-algae (also known as seaweed) is 

less abundant than from micro-algae.  
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5.1.3 Seaweed as a source of gaseous biofuel 

5.1.3.1 Characteristics of seaweeds 

The characteristics of seaweeds are such that they have no lignin, low levels of cellulose 

and low levels of lipid content [11, 12]. Jard and co-workers, break down seaweeds into 

three broad types: brown, red and green seaweeds. Brown seaweeds are very prevalent on 

the Irish Coast and include for Saccharina latissima, Ascophylum nodosum and Laminaria 

digitata [12, 13]. Green seaweeds such as U. lactuca tend to be associated with 

eutrophication and algae blooms [14]. Red seaweeds (such as Gracilaria verrucosa) are not 

prevalent in Ireland.  

Seaweeds tend to have high solids content. The solids content for seaweeds are 

documented in the range 8.3 to 22% [12, 15, 16]. As such there is no requirement for any 

energy intensive thickening, dewatering or drying processes. 

The volatile solids content expressed as a percentage of dry solids for brown and red 

seaweeds ranged from 44.6% to 73.8% [12]. Green seaweed (in particular U. lactuca) has 

reported values in the range 57 to 82.1% [14, 17]. 

5.1.3.2 Benefits of biofuels produced from seaweeds 

Brown seaweeds (or kelps) have significant potential as a farmed feedstock for anaerobic 

digestion in temperate oceanic climates. It is suggested that seaweed farms be situated in 

close proximity to sources of pollution (such as salmon farms) to optimise their growth rate 

whilst simultaneously cleaning the water of excess nutrients. 

A further advantage of seaweed as a biofuel feedstock is the sequestration of CO2 

associated with cultivation. Typically one tonne of kelp sequesters six times the amount of 

CO2 that is emitted during transport and maintenance of the kelp stock [18]. The majority 

of greenhouse gas (GHG) emissions (and costs) are associated with harvesting of seaweed. 

A value added product from digestion of seaweed is the rich level of macro elements in the 

digestate, which can be beneficial as a bio-fertiliser [19].  
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5.1.3.3 Suitability of seaweed to anaerobic digestion 

The C:N ratio for optimal anaerobic digestion is in the range 20:1 to 30:1 [14]. If the C:N 

ratio is less than 15 excess levels of ammonia can lead to unstable digestion [20]. Protein 

concentrations are low in brown seaweeds but can be high in green sea weeds [12]. The 

nitrogen associated with high protein content thus leads to low C:N ratios in U. lactuca 

(green seaweed); values of less than 10 have been recorded [14]. Brown seaweeds on the 

other hand, contain high levels of carbohydrates in the form of polysaccharides (mannitol, 

laminarin and alginate) which are easily degradable [21]. Jard and co-workers recorded a 

C:N ratio of Saccharina  latissima of 22 [12]. 

Ascophylum nodosum (a brown seaweed) contains polyphenols which are difficult to 

degrade and can inhibit anaerobic digestion [22]. U.  lactuca can have a sulphur content of 

up to 5%; as a result hydrogen sulphide (H2S) is prevalent in the biogas and can inhibit 

anaerobic digestion [23]. 

 

5.1.3.4 Biomethane potential and energy yields per hectare per annum 

An essential element of a biofuel system is the gross energy output per hectare per annum. 

These have been calibrated for an assortment of biofuel systems and tabulated in table 5.1. 

The authors have not found literature on gross energy yields for seaweed biofuels. This 

figure is dependent on the biomethane potential of the seaweed species (L CH4 kg−

1 VS), 

the volatile solids (VS) expressed as a percentage of wet weight and the growth of the 

seaweed per hectare of sea. 

BMP values found in the literature vary from 200 to 335 L CH4 kg−

1 VS for Himalthalia 

elongate in France and Saccharina latissima in Ireland respectively [12, 13]. Seaweeds can 

be either collected off the beach (beach cast) or farmed at sea (aquaculture). Growth rates 

can be as high as 45 t TS ha-1 yr-1 for green seaweeds; these are predominantly beach cast 

and are not as suitable for aquaculture as brown seaweeds maybe. Yields for farmed brown 

seaweed are suggested in the range 26 – 80 t volatile solids (VS) ha-1 yr-1 [17, 24]. This may 

be compared to land cultivated biomass such as perennial ryegrass, which has yields up to 

a maximum of 15 t TS ha-1 yr-1 [25].  
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Table 5.1: Gross energy yields of biofuel 

Biofuel System Gross energy (GJ ha-1 yr-1) 

Rape seed biodiesel 46 

Wheat ethanol 66 

Palm Oil biodiesel 120 

Sugarcane ethanol 135 

Grass biomethane 122 – 163 

Willow biomethane 95 - 130 

Expressed as GJ ha-1 yr-1; data from [25-27]. 

 

5.1.4 Objectives of paper 

There is little research documented in the scientific literature at present into either the 

availability of seaweed stocks or their potential to produce biomethane.  

The objectives of this paper are to:  

• Classify a number of species of seaweed common in Ireland through proximate and 

ultimate analysis;  

• Assess the BMP of these species;  

• Assess the energy yield per hectare per annum of third generation gaseous biofuel 

produced from seaweed. 

5.2 Materials and methods 

5.2.1 Materials 

Ten varieties of seaweed were collected from beaches in Cork, in the south of Ireland 

(51°N, -9°E). The seaweeds were beach cast and harvested from their natural environment. 

The samples were taken in August to represent peak growing conditions [28]. Nine of the 

seaweeds were brown, one was green. The brown species were: Ascophylum nodosum, 

Himalthalia elongate, Laminaria digitata, Saccorhiza polyschides, Fucus spiralis, Fucus 

serratus, Fucus vesiculosus, Alaria esculenta and Saccharina latissima. The green species 
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was Ulva lactuca. Approximately 25 kg of each species was collected. These seaweeds are 

the most commonly occurring around the coast of Ireland.  

Inoculum was sourced from a combination of numerous lab scale reactors processing grass 

silage, dairy slurry and macro-algae; all of these reactors operated at 37oC.  

 

5.2.2 Methods 

5.2.2.1 Method design 

Proximate and ultimate analysis and sample preparation for BMP assay 

A representative sample of each seaweed was sampled for TS and VS using the standard 

method of drying (105oC for 24 hours and further baking at 550oC) [29]. Samples were 

prepared for ultimate analysis by drying for 24 hours at 105oC and then finely grinding to 

pass through a 600 µm sieve. Samples were analysed for C, H, N, and O (O calculated by 

difference) on an ash free basis using a CE 440 elemental analyser.  

Prior to digestion, samples were macerated using a Buffalo macerator to a particle size of 

less than 4 mm. The pH of the samples, were measured using a Jenway 3510 pH meter. The 

prepared samples were placed in sealed containers and frozen at -20oC; they were 

defrosted prior to BMP assessment.  

5.2.2.2 BMP assay 

The Bioprocess AMPST II® system was used to conduct BMP assays. All samples were 

assessed in triplicate. In each run of the system one of the samples was inoculum and one 

was cellulose. An inoculum to substrate ratio (I:S) on a VS basis, of 2:1 was used [30]. The 

reactor vessels had a working volume of 400 ml with a total head space of 250 ml. After the 

calculated inoculum and substrate amounts were placed in the reactor vessels, nitrogen 

was flushed through the system to create anaerobic conditions. Each reactor vessel was 

placed inside a water bath constantly maintained at 37oC. A mixing system was connected 

to each reactor vessel and was continuously operated at a speed of 30 rpm, alternating 

between on and off for 60 second periods. The biogas produced was passed through a 

solution of 3M NaOH to remove CO2, H2S and other impurities.  The biomethane was then 
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passed through a gas tipping device which recorded the volume of gas produced for each 

reactor vessel. This data was constantly recorded and logged for each day. Each BMP assay 

was ran in triplicate and assessed for standard deviation. The total average biomethane 

produced from the inoculum was subtracted from the average biomethane produced by 

each sample to determine specific biomethane production. All results were automatically 

adjusted for standard temperature and pressure and overestimation error was eliminated 

for the flush gas. 

In total 14 BMP assays in triplicate were conducted for this experimental procedure. These 

included for the 10 species of seaweed. The assays were carried out in two runs; thus a 

BMP of the inoculum and of cellulose were carried out twice. 

 

5.2.2.3 Kinetic analysis 

The kinetic analysis allows a viewpoint on the biodegradability and the rate of 

biodegradability of the substrate. Kinetic and statistic modelling was applied to the output 

of the BMP system. Data was taken from cumulative production curves and input to a 

Matlab code to output kinetic values. A first order differential equation was used to 

determine the decay constant values (Eqn. 5.1). The modified Gompertz formula (Eqn. 5.2) 

was used to develop a list of variables to describe the decay process of organic matter in 

batch tests [31].  

���� = ��	. 	1 − exp������   Eqn. 5. 1 

���� = � ∙ exp{	− exp[	����∙�� �∆ − ��] + 1}  Eqn. 5. 2 

Where, 

Y(t) is the cumulative biomethane yield (L CH4 kg−

1 VS) at a digestion time, t (days).  

Ym is the maximum biomethane potential (L CH4 kg−

1 VS) of the substrate added.   

k the decay constant (days -1) is a measure of the rate that the substrate has been 

degraded.  
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M(t) is the cumulative biomethane yield (L CH4 kg−

1 VS) at a given time t (days). 

P is the maximum biomethane potential (L CH4 kg−

1 VS) of the substrate from the BMP test.  

Rmax is the maximum biomethane production rate (L CH4 kg−

1 VS d-1).  

Δ the lag phase is a measure of how long it takes (days) before biochemical methane 

production starts to occur. 

t is the time (days). 

T50 is the half-life (days) and is a measure of how long it takes to produce half of the 

maximum cumulative yield of biomethane.  

R2 is a measure of how the kinetic equation model fits the curve of biomethane production 

(%).  

 

5.2.2.4 Theoretical biomethane calculation 

The ultimate analysis data allows the theoretical biomethane yield to be calculated. Using 

the Buswell equation (Eqn. 5.3) values are input to give a maximum potential methane 

yield through conversion of VS to methane and carbon dioxide [32]. The molar volume of 

the gases is taken as 22.414 L at 0oC and 1 atm. However a short coming of using the 

Buswell equation is that it does not take into account maintenance and anabolism of the 

microbial community. Also some of the VS content present in macro-algae consists of 

proteins and fibres which are difficult to break down. This leads to a reduction in BMP 

yields when compared to yields derived from the Buswell equation. Therefore an over 

estimation of biomethane yields occur which leave theoretical yields as ceiling values for 

BMP assays. 
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5.2.2.5 Statistical analysis  

Statistical analyses were performed using the software SAS 9.3 (SAS Institute Inc., Cary, NC, 

USA). Analysis of variance (ANOVA) was carried out in order to assess the influence of 
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substrate on biochemical methane yield with the BMP run regarded as a block effect and 

substrate regarded as the main effect. The significance of differences in methane yield 

between substrates was determined by multiple comparisons applying the test procedure 

SIMULATE in SAS [33]. The significance level α, was set to p < 0.05. 

 

5.3 Results 

5.3.1 Proximate and ultimate analysis 

The results of a proximate and ultimate analysis of the seaweeds and the inoculum are 

reported in table 5.2. The C:N ratio is quiet low for the green seaweed (U. lactuca). Many of 

the seaweeds are in, or close to the ideal range of 20:1 to 30:1. Theoretical biomethane 

yields were calculated from this analysis for each substrate using the Buswell equation 

(column 4: table 5.3).  

5.3.2 BMP batch results 

The substrate significantly influenced the BMP yield (F=96.17, P ˂0.0001) whereas no 

significant effect was found for the BMP run (F=2.06, P=0.165).  BMP yields of seaweed 

ranged from 101.7 to 341.7 L CH4 kg−

1 VS (Figure 5.1). The BMP yield of S. latissima 

significantly exceeded yields of all other seaweed investigated. The lowest BMP yields were 

analysed for F. serratus and F. vesiculosus. Cellulose controls recorded BMP yields within 

recommended ranges from literature.  

The biodegradability index is defined as the BMP yield divided by the theoretical 

biomethane yield. This value gives an indication of how well the substrate was degraded 

and how the BMP yield compared to the theoretical biomethane yield. The highest 

biodegradability index (0.81) was found for S. latissima. 

F. serratus, A. nodosum and U. lactuca displayed low biodegradability (0.19, 0.34 and 0.41 

respectively). Pre-treatment technologies will have significantly more applicability where 

the biodegradability is low [34]. The specific yield (Table 5.3) is defined as the yield of 

methane per tonne wet weight; this indicates the biomethane yield per tonne collected 
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and may be more instructive to the biogas developer.  S. latissima and S. polyschides have 

the highest values at 34.5 m3 CH4 t
-1 wwt. 

 

Table 5.2 Characteristics of raw seaweeds and inoculum used in experimental trials. 

Substrate TS  

% of 

wwt 

VS  

% of 

wwt 

Ash 

% of 

 TS 

C 

% of 

TS 

H 

% of 

TS 

N 

% of 

TS 

O*  

% of 

TS 

C:N 

ratio 

A. nodosum 23.2 19.4 16.1 40.4 5.3 1.6 36.6 26.0 

H. elongate 12.65 8.10 36.0 30.8 4.1 1.4 27.7 21.4 

L. digitata 14.20 10.34 27.2 34.2 4.8 1.5 32.3 22.3 

F. spiralis 19.72 13.92 29.4 36.1 4.7 2.1 27.7 17.3 

F. serratus 20.07 14.74 26.6 37.1 4.8 2.4 29.1 15.5 

F. vesiculosus 21.18 16.11 24.0 26.8 3.2 1.5 44.5 17.6 

S. polyschides 15.25 13.11 14.0 36.1 5.0 1.6 44.3 23.2 

S. latissima 15.49 10.09 34.9 29.1 3.8 1.2 31.0 24.0 

A. esculenta 18.72 11.91 36.4 29.3 4.2 1.9 28.2 15.5 

U. lactuca 18.03 10.88 39.7 30.0 4.4 3.5 22.4 8.5 

Inoculum  2.97 1.88 36.7 33.4 4.1 1.8 24.0 18.4 

* O was not measured but evaluated assuming that Total Solids is comprised entirely of 

Ash, C, N, H and O. wwt = wet weight.   
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Table 5.3 Biomethane production for seaweed using results of BMP analysis and theoretical 

analysis.  

Substrate BMP yield 

(L CH4 kg−

1 VS) 

Theoretical 

composition of 

biogas (CH4 %) 

Theoretical 

yield (L CH4 

kg−

1 VS) 

Biodegradability 

index 

Specific 

yield (m3 

CH4 t
-1 wwt) 

A. nodosum 166.3bc + 20 53 488 0.34 32.3 

H. elongate 260.9f + 2.05 36 334 0.78 21.1 

L. digitata 218.0de + 4.14 53 479 0.46 22.5 

F. spiralis 235.2ef + 9.43 55 540 0.44 32.7 

F. serratus 101.7a + 9.37 54 532 0.19 13.5 

F. vesiclosus 126.3ab + 11.38 37 249 0.51 19.4 

S. polyschides 263.3f + 4.23 48 386 0.68 34.5 

S. latissima 341.7g + 36.40 50 422 0.81 34.5 

A. esculenta 226.0def + 5.66 53 474 0.48 26.9 

U. lactuca 190.1cd + 3.10 48 465 0.41 20.9 

Cellulose 357.4g + 15.20 - 414 0.86 - 

Different superscript letters abcdefg Indicate significant differences between BMP yield means 

of substrates (P < 0.05, adjustment = SIMULATE). wwt = wet weight. 
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Figure 5.1 BMP cumulative yield curves.  

 

5.3.3 Kinetic analysis 

The kinetic and statistical analysis results are described in table 5.4. The modified Gompertz 

equation showed very good correlation as values of R2 were within acceptable tolerance 

(defined as greater than 0.95). Cellulose values showed the least correlation, though still 

within tolerance. This is largely due to the BMP profile curve of the control substrate where 

there is an elongated lag phase, which disrupts the potential accuracy of the kinetic 

assessment. This is commonly observed when using cellulose as a control substrate.  

In general all seaweeds performed well with good kinetic decay values; F.vesiclosus had the 

highest value at 0.22 d-1.  As a perspective, analysis in the same laboratory highlighted a k 

value for perennial ryegrass of 0.11 d-1 [25] whilst food waste had a k value of 0.17 d-1 [35]. 

The lag phase for all seaweeds were less than or equal to that of cellulose. The half-life for 

all substrates were relatively low suggesting a retention time of less than 20 days would be 

more than sufficient in a full scale reactor. The lag phase observed was substantially less 



Biogas Production from Novel Substrates 

 

 

- 113 - 
 

than observed by Gurung and co-workers  (6 - 9 days) who also digested brown seaweeds 

[36]. This may be explained by the low I:S ratio of 0.8:1; as compared to 2:1 which is used in 

these trials and others [14, 35]. 

Table 5.4 Kinetic and statistical analysis of seaweeds and cellulose 

Substrate k (d-1) R
2  Δ (d) T50 (d) 

A. nodosum 0.12 0.98 0.32 7.48 

H. elongate 0.18 0.95 1.17 4.24 

L. digitata 0.19 0.96 0.79 3.85 

F. spiralis 0.16 0.97 0.74 4.85 

F. serratus 0.18 0.99 1.62 3.84 

F. vesiculosus 0.22 0.99 0.50 3.10 

S. polyschides 0.19 0.99 0.45 3.85 

S. latissima 0.16 0.95 1.23 4.55 

A. esculenta 0.19 0.98 0.50 3.61 

U. lactuca 0.13 0.98 0.96 5.30 

Cellulose A 0.17 0.94 1.75 4.54 

Cellulose B 0.19 0.95 1.25 3.57 

 

5.4 Discussion of results 

5.4.1 Brown seaweed 

5.4.1.1 S. latissima 

The best yielding seaweed was S. latissima (figure 5.2 A) which produced a BMP yield of 

341.7 + 36.4 L CH4 kg−

1 VS or 34.5 m3 CH4 t
-1 wwt.  S. latissima had the highest standard 

deviation of all the samples. When compared to literature these results matched the 

highest available values for S. latissima; 333 + 64.1 L CH4 kg−

1 VS reported for a washed and 
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macerated sample harvested in Denmark (harvest date not given) [37]. However a lower 

value was reported (223 + 61 L CH4 kg−

1 VS) for S. latissima, harvested in August in Norway 

[38]. The variability in yields highlights the effect of location of harvest, and time of harvest, 

on yield. Handå and co-workers  reported a trial where S. latissima was cultivated in two 

locations: an off shore salmon farm and a near shore location [39]. Large variations were 

observed in C:N ratios throughout the year: from 7 to 21 for the near shore location; and 7 

to 16 for species harvested from the salmon farm. The C:N ratio was 24 in this study. 

Alginate concentration varied between 6% and 27% TS [39]. The high sugar content of S. 

latissima leads to the elevated specific yields of biomethane when compared to other 

seaweed varieties, but when alginate levels are reduced due to specific geographic or 

harvest conditions, the seaweed will have a reduced specific biomethane yield. 

 

5.4.1.2 L. digitata 

L. digitata (Figure 5.2B) has been widely reported as a potential biofuel feedstock due to 

the levels of laminarin (up to 30% TS) and mannitol (up to 25% TS). These sugars can be 

readily converted to biomethane [40]. Significant research has been conducted on the 

seasonal variation of L. digitata in terms of the variation in these digestible sugars and in 

the C:N ratio; both of these parameters dictate the specific methane yield (SMY). The C:N 

ratio of L. digitata ranged from 10.9 in January to a peak of 31.9 in August harvested in the 

UK [28]. In this study,  L. digitata collected in August with a C:N ratio of 22.5 generated a 

BMP yield of 218.0 + 4.1 L CH4 kg−

1 VS; this yield was higher than L. digitata harvested in 

May (184 L CH4 kg−

1 VS) [41] and in January (103.3 + 19.8 L CH4 kg−

1 VS) [42] both in Ireland.  
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Figure 5.2 A selection of six varieties of the macro algae sampled in these trials.  

A: S. latissima; B: L. digitata; C: A. nodosum; D: F. spiralis; E: H. elongate; F: U. lactuca. 

 

5.4.1.3 A. nodosum 

A. nodosum (Figure 5.2C) is the most abundant seaweed on Irish and Nordic coastlines [43]. 

A. nodosum shares its family type with the macro-algae Fucus spp. (Figure 5.2D) and shares 

similar growing conditions and appearance characteristics. It consists of bladder like 

nodules which contain a gel substance. A. nodosum can be rich in calcium alginate gels as 

well as containing alginic acid. Alginate concentrations can reach up to 33% of TS [44]. 
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These high concentrations of degradable carbohydrates, provide a good base to support 

the use of A. nodosum as a substrate for biomethane, but it also can contain high levels of 

polyphenols, up to 14% of TS, which are natural inhibitors of the anaerobic digestion (AD) 

process [22]. A. nodosum sampled in this work produced a BMP yield of 166.3 + 20 L CH4 kg

−

1 VS when compared to 110 L CH4 kg−

1 VS harvested in September in Norway [45]. The low 

BMP yield, combined with the low biodegradability index (0.34: Table 5.3) and the low 

kinetic decay values (0.12 d-1: table 5.4) indicate that high polyphenol levels may be 

present. However A. nodosum may be a prime candidate for a pre-treatment process, 

especially one that could remove polyphenols. 

 

5.4.1.4 F. species 

Three species of Fucus were sampled in these trials. F. vesiculosus and F. spiralis (Figure 

5.2D) share a particular physical resemblance to A. nodosum (Figure 5.2C); both have 

bladders attached to the leaf section of the plant. All three Fucus species exhibited low C:N 

ratios when compared to other brown seaweeds, ranging from 15.5 to 17.6 (Table 5.2).  

F. vesiculosus is also reported as having a high polyphenol content; as high as 13% of TS 

content [22]. In this work F. vesiculous had a low biodegradability (0.51) and a poor BMP 

yield (126.3 + 11.4 L CH4 kg−

1 VS); this yield was higher than the BMP yield of 71.5 + 4.9 L 

CH4 kg−

1 VS of F. vesiculosus harvested in January in Ireland [42].  

F. serratus shared little physical characteristics with the two other Fucus species sampled. It 

has one of the lowest C:N ratios of brown seaweed sampled. F. serratus is a low density 

material which grows along rocky shores and piers, and is difficult to harvest in large 

volumes. A BMP yield of 101.7 + 9.4 L CH4 kg−

1 VS was recorded, which was the lowest of all 

sampled seaweeds. A yield of 65 L biogas kg−

1 VS was observed for F. serratus collected in 

September, Ireland [13].  

F. spiralis however produced a BMP yield of 235.2 + 9.4 L CH4 kg−

1 VS and a specific yield of 

32.74 m3 CH4 t
-1 wwt, which made it one of the better preforming macro-algae species 

trialled.   
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5.4.1.5 S. polyschides 

S. polyschides has a good polysaccharide concentration, with particularly high alginate 

concentrations (up to 16% TS) [12]. S. polyschides has similar growth and geographical 

patterns to both L. digitata and L. hyperborea. They attach to rocky coastlines and could be 

readily cultivated along artificial rock beds or along rope lines. A BMP yield of 263.3 + 4.2 L 

CH4 kg−

1 VS was recorded in these trials. Due to its high volatile solids content, it produced 

the highest yield per weight wet (34.5 m3 CH4 t
-1 wwt). In the literature yields of S. 

polyschides include for 216 + 16 L CH4 kg−

1 VS in July in France [12] and 255 L CH4 kg−

1 VS in 

September in Ireland [13]. It would be considered a good seaweed for digestion with a k 

value of 0.19 (in excess of food waste) and a C:N ratio in the optimum range (23.2). It has 

the highest volatile solid content when expressed as a percentage of wet weight and a 

good biodegradability index ratio (0.68). 

 

5.4.1.6 H. elongate 

There is little literature associated with biomethane production from H. elongata (Figure 

5.2E). It has a long string like appearance and grows along shallow rock faces and is easily 

accessed at low tide. This makes the harvest intensive and potential for up-scaling difficult. 

H. elongate recorded a BMP yield of 260.9 + 2.1 L CH4 kg−

1 VS compared to a BMP yield 

recorded in July in France of 202 + 0.03 L CH4 kg−

1 VS [12]. H. elongate has a C:N ratio in the 

optimum range (21.4). 

5.4.1.7 A. esculenta 

Again the literature on A. esculenta is sparse. It was not found to be in abundance when 

sampling was conducted for these trials. There is little evidence of significant resource to 

satisfy a biomethane industry. A BMP yield of 226.0 + 5.7 L CH4 kg−

1 VS was recorded. A. 

esculenta also had the lowest C:N ratio (15.5) of brown seaweeds. 

5.4.2 Green macro-algae – U. lactuca  

U. lactuca, commonly known as sea lettuce, is a green seaweed. Algae blooms (or green 

tides) are a direct result of eutrophication. These blooms of U. lactuca accumulate over the 
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summer months and spoil the amenity of beaches [14]. This species has attracted particular 

attention in recent years, particularly in France where it has become an increasing problem 

for both shell fish production and amenity of beaches. U. lactuca on the low tide can result 

in depths of 300mm or more of rotting sea lettuce giving off the idiosyncratic rotten egg 

smell of H2S gas. U. lactuca contains almost no lignin ( < 0.03 g kg-1) and has rich glucose 

concentrations in the form of uronic acid and xylose which make up its sugar content [46]. 

H2S is produced due to the high sulphur content of the U. lactuca [47]. In these trials the 

sulphur content of U. lactuca species was analysed; a value of 2.95% of TS was recorded. 

BMP results recorded were 190.1 + 3.1 L CH4 kg−

1 VS (this work) and 183 L CH4 kg−

1 VS in 

June the previous year from the same beach [14]. This compares well to U. lactuca 

assessed in Denmark at 200 L CH4 kg−

1 VS [17].  

5.4.3 Additional macro-algae species 

Additional species worth mentioning are Laminaria hyperborea which shares its genus with 

L. digitata and is also similar in physical appearance. No samples of L. hyperborea were 

available for collection over the period of trials in the selected beaches from which the 

seaweeds were collected. However this species potentially offers a good biofuel potential 

as it is reported to grow well from rock beds. A yield of 260 L CH4 kg−

1 VS was observed 

from continuous digestion from L. hyperborea harvested in July in the UK [47].  

Laminaria japonica is a species of Laminaria which is heavily cultivated in Japan and 

eastern Asia for food production. Over 5 x 106 wet tonnes of L. japonica were harvested 

globally; 36% from aquaculture [48]. A yield range of 260 – 280 L CH4 kg−

1 VS was achieved 

for L. japonica which puts it in the higher range of brown seaweed chosen for trials in 

Ireland [30]. However L. japonica is not native to Irish waters but does cope well in cold 

waters, which make it a potential species for large scale aquaculture.  

Macrocystis pyrifera commonly referred to as “giant kelp” is the only macro-algae species 

that has been harvested at large scale in the USA. M. pyrifera has the potential to be 

harvested at large scales for two reasons:  its maximum growth size, up to 43 meters in 

length; and growth rate of 50 t VS ha-1 yr-1 [49]. M. pyrifera also has a high concentrations 

of both polysaccharides, mannitol (5 - 6% TS) and alginate (13-24% TS) which make it a very 

suitable feedstock for anaerobic digestion [50]. Reported yields are also high, in the range 
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of 390 – 410 L CH4 kg−

1 VS. However low C:N values (in the range 11.7 – 17.5) were 

reported [24]. These lower ranges of C:N cause difficult operation of continuous digestion 

at high loading rates due to ammonia toxicity. The optimum growing temperatures stated 

for M. pyrifera lie between 13 – 15oC [51], which make it possible to grow such a species in 

Irish waters for approximately 5 months of the year (June – October). 

5.4.4 Requirement for continuous digestion trials 

Batch tests such as BMP assays are a first step in the design of an anaerobic digestion 

system. Full design requires a continuous digestion trial to highlight operating parameters 

such as levels of volatile fatty acid (VFA) and ammonia. Sulphur can be problematic in 

continuous digestion if the C:S ratio is less than 40 [52]. U. lactuca sampled as part of these 

trials had a C:S ratio of 10.2.  C:S ratios for S. latissima was recorded as 24:1 [12] while for 

L. digitata, values of 29 - 60.3 were documented [28]. 

 

5.4.5. Harvesting potential 

The harvest of seaweed can be by manual collection from naturally occurring stocks either 

by physical harvest or from beach cast. The data on yields is limited. For example only one 

data source was found for L. Digitata which suggested 5 t TS ha-1 yr-1 [57]. This is very small 

when considering the other species of Lamanaria (hyperborea and japonica) are attributed 

yields in the range of 30 to 90 t TS ha-1 yr-1. 

A significant issue arising from harvesting of natural stocks is the cost per tonne of 

seaweed. Harvest of A. nodosum is reported anecdotally from industry sources as costing 

€330 dry t-1 in Ireland. This may be compared to the cost of grass silage of €79 dry t-1 [53]. 

A. nodosum, H. elongate, F. spiralis, F. serratus and F. vesiculosus are all seaweeds which 

would share similar harvesting cost, due to their growing environment along piers and 

rocky shorelines. The cost may be rationalised by considering the road infrastructure to 

costal rural beaches, the separation between beaches and the manual nature of the work. 

U. lactuca falls into a different category in that it accumulates as a bloom in such volumes 

that it can be mechanical cleared off of beaches. The reported arising of U. lactuca in 

Lannion Bay, Brittany, France are of the order of 100,000 t wwt yr-1 [54]. In West Cork an 
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area of 85 ha of U. lactuca covered to a depth of 300mm is visible on low tide; 10,000 t wwt 

yr-1, is cleared off this beach each year [14].  As it is detrimental to the amenity of a bay and 

there are little opportunities for reuse or disposal, it is possible to be given a gate fee to 

process this substrate. It is likely that this may be the cheapest source of seaweed for 

biofuel production.  

The second option involves aquaculture. L. digitata, S. polyschides, S. latissima and A. 

esculenta are all species which can be cultivated at larger scales and added to existing 

aquaculture systems. These seaweeds may benefit from a poly-culture system, producing 

the seaweed in association with mussels, or in the vicinity of a salmon farm (cleaning the 

water through removal of excess nutrients). Seaweed farms may be associated with off 

shore wind turbine towers, or wave or tidal turbines, which have existing infrastructure to 

act as a growing medium for the seaweed. Large financial costs are involved in the 

development and maintenance of a seaweed farm. Alvarado-Morales, Boldrin [18] 

undertook a life cycle analysis of a seaweed biofuel project in Nordic conditions and found 

the production stage was the most energy intensive, requiring 57% of energy input. 

Developing a low cost, high productivity (large yields of VS ha-1 yr-1) and high biomethane 

yielding seaweed is essential to optimising gaseous biofuel industry produced from 

seaweed. 

 

5.4.6 Energy yields from seaweed biomethane 

The EU recommend 2.5% renewable energy supply in transport (RES-T) from advanced 

biofuels such as from seaweed [55]. According to Allen and co-workers, one beach in West 

Cork (generating 10,000 t wwt yr-1 of U. lactuca) has the potential to provide biomethane 

to fuel 264 cars on a year round basis from a single digester [14]. Potential biomethane 

yields per hectare of seaweed on an annual basis are presented in table 5.5. To put these 

figures in context Smyth and co-workers, assessed the gross energy per hectare for a range 

of terrestrial crop liquid biofuel systems [27]. The best results were obtained for palm oil 

biodiesel at 120 GJ ha-1 yr-1 and sugarcane ethanol at 135 GJ ha-1 yr-1. Biogas systems tend 

to produce more energy per hectare from crops than liquid biofuel systems. Murphy et al. 

assessed a range of energy crop biogas systems. Maize and perennial ryegrass have 
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biomethane yields of between 1,660 - 12,250 and 2,682 - 6,400 m3 ha-1 yr-1 respectively 

[56]. This corresponds to 60 to 441 GJ ha-1 yr-1. From table 5.5, seaweeds have a higher 

upper bound in the energy production per hectare range, potentially yielding over 700 GJ 

ha-1 yr-1. What is crucial however is that this area required to grow the macro algae is at sea 

and is not taking land from food production. 

 

Table 5.5 Potential gross energy production per hectare per annum based on a variety of 

species of seaweed 

Substrate Yield (harvest) Biomethane 

yield 

Biomethane 

yield  

Gross 

Energy  

 tTS ha-1 yr-1 

(*tVS ha-1 yr-1) 

t wwt ha-1 yr-1 m3 CH4  t
-1wwt m3 ha-1 yr-1 GJ ha-1 yr-1 

L. digitata 5.0a 35.2 22.5 792 28 

S. polyschides 22.5b 147.5 34.5 5090 181 

S. latissima 30.0*c 297.3 34.5 10,260 365 

A. esculenta 36.0*d 302.2 26.9 8130 289 

U. lactuca 45.0e 249.6 20.9 5216 186 

L. hyperborea 30.0 – 90.0f   6630 – 19,890 239 – 716 

L. japonica 31.0*c – 80.0*g   8060 – 20,800 290 – 749 

M. pyrifera  34.0*d – 50.0*h   13,260 – 19,500 477 – 702 

* = VS basis, a = [57], b = [43], c = [58], d = [59], e = [17] , f = [60], g = [61], h = [24]. 

Biomethane yields (m3 ha-1 yr-1) are calculated from data in table 5.3. 

 

5.5 Conclusions 

Seaweeds are a source of third generation gaseous biofuel. They do not require agriculture 

land and do not interfere with food production. The market however is not as yet 

commercial and there are many variables to consider in proposing an optimal model for 
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this proposed industry. Of the beach cast seaweeds U. lactuca appears most profitable as it 

gathers in blooms that need to be removed from beaches. Thus harvest cost is cheap and it 

may even attract a gate fee. Gross energy yields are of the order of 186 GJ ha-1 yr-1, which 

are higher than the optimal first generation liquid biofuel systems such as sugarcane 

ethanol (135 GJ ha-1 yr-1) or palm oil biodiesel (120 GJ ha-1 yr-1). 

It is suggested that S. latissima has the highest specific methane yield of seaweeds available 

in Ireland. If used in aquaculture yields of 365 GJ ha-1 yr-1 may be achieved. It is suggested 

that seaweed farms be situated in close proximity to sources of pollution (such as salmon 

farms) to optimise their utility. 

Other species of seaweed not indigenous to Ireland such as L. japonica and M. pyrifera may 

provide higher energy yields. 
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6 The potential of algae blooms to produce renewable gaseous fuel  
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The potential of algae blooms to produce renewable gaseous fuel  
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b School of Engineering, University College Cork, Cork, Ireland  

 

Abstract: 

U. lactuca (commonly known as sea letuce) is a green sea weed which dominates Green 

Tides or algae blooms. Green Tides are caused by excess nitrogen from agriculture and 

sewage outfalls resulting in eutrophication in shallow estuaries. Samples of U. lactuca were 

taken from the Argideen estuary in West Cork on two consecutive years. In year 1 a 

combination of three different processes/pretreatments were carried out on the U. 

lactuca. These include washing, wilting and drying. Biomethane potential (BMP) assays 

were carried out on the samples. Fresh U. lactuca has a biomethane yield of 183 L CH4 kg−

1 

VS. For dried, washed and macerated U. lactuca a BMP of 250 L CH4 kg−

1 VS was achieved. 

The resource from the estuary in West Cork was shown to be sufficient to provide fuel to 

264 cars on a year round basis. Mono-digestion of U. lactuca may be problematic; the C:N 

ratio is low and the sulphur content is high. In year 2 co-digestion trials with dairy slurry 

were carried out. These indicate a potential increase in biomethane output by 17% as 

compared to mono-digestion of U. lactuca and slurry. 

Keywords: macro-algae; biomethane; gaseous biofuels.  
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6.1 Introduction 

This paper investigates the potential to convert U. lactuca (a sea weed commonly known as 

sea lettuce) into biomethane, a renewable gaseous fuel. Annually, large amounts of U. 

lactuca are washed up on shorelines where it decomposes, generating malodours, and 

reducing the amenity of the bay. Green Tides (blooms of U. lactuca) occur in shallow 

estuaries or bays, which are subject to eutrophication from excess run off of nitrogen [1] 

from non-point sources (septic tanks and spreading of slurries on agricultural land) and 

point sources (sewage outfalls). Mono-digestion of U. lactuca is difficult due to the high 

sulphur content and the low C:N ratio [2]. The C:N ratio was assessed at less than 10:1, 

which is significantly less than the ideal range of 20:1 to 30:1 [3]. 

 

6.1.1 Worldwide use of algae 

Algae may be split into two groups: micro algae and macro algae. Both algae types were 

investigated as potential fuel sources during the oil crises of the 1970’s in Japan and the 

USA [4] However over the last 15 years research is dominated by micro algae biodiesel [5] 

whilst research on digestion of digestion of micro algae is very limited partly due to the 

poor returns in biomethane production [6]. 

Research on macro algae (or sea weed) receives less attention. Digestion of macro algae 

has been shown to produce significant levels of biomethane [7] . Macro algae may be 

harvested from natural stocks (cast sea weed) or cultivated [8]. The FAO [9] reported that 

there was approximately 1.29 million wet tonnes of macro algae harvested from natural 

stocks; this is about 1/8th of the 10.1 million wet tonnes of marine biomass cultivated (with 

a net value of $6 billion). In 2010 the FAO [10] reported a harvest of 1.5 million wet tonnes 

from natural stocks and 15.4 million wet tonnes cultivated.   

Ireland, Denmark, France, Italy and Japan suffer greatly from Green Tide and the associated 

deposition of U. lactuca (sea lettuce) on the shore line. Anaerobic digestion of this resource 

is beneficial to the marine environment and a source of third generation renewable 

gaseous biofuel. 
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6.1.2 Macro algae as a source of gaseous biofuel 

Biofuels from sugars, starches and oil crops may be considered first generation biofuels. 

Biofuels from lingo cellulosic biomass and residues are considered second generation. 

Biofuels from algae, are considered third generation. There is a significant call to limit the 

production of first generation biofuels; second generation biofuels from lignocellulosic 

biomass (such as Willow or Miscanthus) require agriculture land and are as such, still an 

issue in the food fuel debate [11]. The energy balance of micro algae biodiesel (due to the 

need to separate the lipids from the micro-algae solution) is poor [12]. 

Biogas production from macro algae may be a sustainable gaseous biofuel. It is free from 

the food fuel debate and it does not suffer from the energy balance issues of biodiesel 

micro algae. Macro algae consist of polysaccharides (alginate, laminarin and mannitol), 

with lignin content as low as 0.03g/kg dry matter [13]. This may be compared to the lignin 

content of grass (a substrate used for biogas production) of between 3-7% [14, 15]. 

Seaweeds have low cellulose content, which make them an easy material to convert to 

methane by anaerobic digestion processes [16]. U. lactuca is both a third generation feed 

stock for biofuels and a residue requiring treatment. A Sea Lettuce Task Force [17] stated 

that a: “do-nothing” approach is not an option given the potential serious health concerns 

associated with accumulations of decaying sea lettuce. The report further stated that in 

2009 some 10,000 tonnes of sea lettuce (13kg sea lettuce per m2 of estuary) accumulated 

around the Argideen estuary, in West Cork (the source of seaweed used in the 

experimental analysis in this paper).  

6.1.3 Eutrophication, U. lactuca and green tides 

The Irish EPA issued reports on eutrophication [18, 19] and identified nine sites as 

eutrophoric (Figure 6.1) and susceptible to Green Tide. Green Tide is also an issue in Japan 

and France [20, 21]. Two factors influence growth of U. Lactuca.  

The first is the physical characteristics of the bay; shallow basins with protected inlets are 

most susceptible; the shape of these bays prevents the blooms and nitrate concentrations 

being discharged to the sea. Coastal lagoons due to their topography (generally being 

shallow) lend themselves to growth of macro algae and sea grasses such as U. lactuca rigida 

[22]. Along with preventing wash out of algae; it also keeps the pollutant Urea content of 
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other nitrogen causing materials to stay within the estuary initiating the algal growth [23]. 

Macro algae blooms are produced by nutrient enrichment of estuaries in which the sea 

floor can still receive levels of light penetration known as the photic zone [24]. 

The second factor in macro algae growth in coastal basins is intense farming of land. 

Estuarine farmlands with significant nutrient application (N, P and K) contribute to large 

blooms of macro algae which wash up on strands or beaches along the estuaries. 

Areas in continental Europe which experience mass wash up of U. lactuca include Lannion 

Bay and St Brieuc (Brittany, France) and Seden Beach (Odense Fjord, Denmark). In the 

Lannion estuary 25,000 wet tonnes were washed up in one season (as compared to 10,000 

wet tonnes in Argideen). Eleven sites have reported yields of between 1,500 m3 and 20,000 

m3 of sea lettuce [25]. 

 

6.1.4 Research on digestion of U. lactuca 

Authors in Japan and Brittany [26, 27] suggest anaerobic digestion as a more viable waste 

management option than composting or landfill. However research on biogas produced 

from U. lactuca is very limited. The literature is dominated by laboratory scale work and in 

particular biomethane potential (BMP) tests. Table 6.1 summarises relevant outputs. The 

values from fresh U. lactuca are in the range of 126 to 174 L CH4 kg−

1 VS. Pre-treatments, 

such as maceration and washing, lead to increased methane yields in the range of 180 to 

271 L CH4 kg−

1 VS. Peu and Sassi [28] generated 330 L CH4 kg−

1 VS for juice extracted from U. 

lactuca. 
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Figure 6.1 Estuary conditions and eutrophic status, (adapted from EPA, 2010; reproduced 

with permission). 

 

Table 6.1 Bio-methane yields of U. lactuca from the literature 

U. lactuca from: Pre-treatment type BMP yield  

(CH4 L  kg−

1 VS) 

No pre-treatment 

Japan 
a
       Fresh 126 

Denmark
 b

 Fresh 174 

France 
c
 Fresh 128 

Pre-treatment 

Denmark
 b

 Unwashed and macerated 271 

Japan 
a
       Washed grinded 180 

Hydrolytic juices 

Brittany 
d
 Juices 330 
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6.1.5 Objectives 

The objectives of this paper are to: 

• Collect and categorise U lactuca from Irish beaches. 

• Assess the biomethane potential of treated and untreated U. lactuca. 

• Assess any variation in U lactuca over consecutive years. 

• Establish if synergistic effects occur in co-digestion with dairy slurry. 

 

6.2 Materials and methods 

6.2.1 Collection, pre-treatment and characterisation of U. lactuca 

Samples of U. lactuca were collected initially in June 2011 from the Argideen estuary 

(Figure 6.1).  Six, 1 m3 bags were collected. Samples were processed in a warehouse on 

large drying tables with openings on the underside to allow any water to flow through. 

Wilted samples were left on the drying tables to air dry naturally. For dried samples, two 

kerosene space heaters were used. They were placed below a suspended floor and were 

operated for up to 36 hours. Treatments may be described as below: 

• Fresh seaweed as sampled from the shoreline. 

• Wilting or natural drying was effected by laying samples out on the perforated 

table. Samples were turned after a day and left to wilt for a further 24 hours and 

then frozen (-20oC).  

• Washed seaweed was rinsed with water to remove any sand and other impurities 

collected with the seaweed when removed from the beach.  

• Dried seaweed involved laying the seaweed on top of wood pallets with a gas 

furnace placed underneath burning constantly for 2 weeks at a temperature of 80 

oC. 
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Figure 6.2 Comparison between the fresh sample and dried, macerated pre-treated 

sample. 

pH was measured daily on samples of digestate using a Jenway 3510 pH meter. The dry 

solids (DS) and volatile solids (VS) were determined gravimetrically using the methods 

described in [29]. To obtain percentage dry solids the samples were placed in triplicate into 

an oven for 24 hours at 105 degrees Celsius. The samples were then placed in a furnace at 

550 degrees from between 6 to 12 hours to obtain the volatile solids content of the 

samples.  

To obtain the percentages of Carbon, Hydrogen and Nitrogen (which allows generation of 

stoichiometric description of biomass) the samples were oven dried at 100 degrees Celsius, 

ground down and passed through a 600 µm sieve. Each waste stream was sampled and 

tested in triplicate for total carbon (C), hydrogen (H) and nitrogen (N) on a total solids basis 

and was attained by ultimate analysis using element analyser (CE 440 Model) at the 

Chemistry Department in University College Cork, Ireland. The samples analysed were given 

a range of +/- 0.5 percentage error factor.  

Table 6.2 highlights 4 samples of U. lactuca subjected to the pre-treatment processes 

described above. The dried samples of U. lactuca had a DS content of 72% with a VS 

content of 40% (expressed as a percentage of weight of sample). The fresh and wilted 

samples the DS content was in the range 19% to 32%; while the VS content was in the 

range 11% to 16%. The day before the samples were digested they were defrosted in a cold 

storage room for 24 hours at 4oC. Samples were passed through a bench top grinder to 

ensure a homogeneous sample was prepared. The dried sample was easily broken to a 

powder like consistency which ultimately would aid in its bio-degradability. All other 

samples were broken down to a sample size of between 10 and 15mm.  
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Table 6.2 Ultimate analysis of U. lactuca samples 

U. lactuca  C H N C:N 

ratio 

DS % VS % pH Protein 

% 

1. Fresh 25.4 3.7 3.3 7.7 19 11 6.99 21.4 

2. Wilted & 

unwashed 

27.2 4.0 3.1 8.7 20 11 7.77 21.1 

3. Washed & 

dried 

22.3 3.3 2.3 9.6 72 40 7.35 23.7 

4. Washed & 

wilted 

23.3 3.2 2.6 8.8 32 16 7.60 20.8 

 

6.2.2 Assessment of potential energy using Buswell equation 

Using the Buswell equation [30] (Eqn. 6.1) a stoichiometric equation can be developed to 

obtain the potential Methane (CH4) and Carbon Dioxide (CO2) volumes produced when the 

substrate is broken down by the consortium of micro bacteria present in the digester.  
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6.2.3 Biomethane potential assessment of U. lactuca 

Batch BMP tests were carried out in triplicate. The batch reactors consisted of 500 ml glass 

bottles with an outlet port for biogas to flow out and a purging port to allow Nitrogen to 

flush the head space of the reactors (Figure 6.3). The reactor bottles had a continuous 

stirring motor attached which was timed to come on for 60 seconds and off for 60 seconds 

at 60rpm, for the duration of the experiment. Three blank inoculum mixes were prepared; 

the BMP results for these blanks were subtracted from the biomethane production yield 

curve of the substrate to output a substrate only BMP. The ratio selected was 3:1 inoculum 

to substrate (I:S). This was chosen to ensure good destruction of volatile solids by 
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overcoming possible inhibitory results due to the low C:N ratio of the substrate. This is in 

line with recommendations of Angelidaki, Alves [31] and Raposo, Banks [32]. Inoculum was 

sourced from a large scale digester operating on a mix of food wastes, cattle slurry and 

grease trap waste located in Co. Kilkenny, Ireland operating at 2 kg VS m3 d-1. 

The required amount of inoculum and substrate were evaluated for each reactor. This was 

adjusted to allow the same amount of inoculum in each reactor to facilitate accurate and 

easy calculation of the BMP. The sample with the lowest VS percentage required was 

chosen to generate the quantity of inoculum; this volume of inoculum was placed in each 

bottle. The substrate amounts were calculated at 3:1 (Inoculum: Substrate). After each 

sample was prepared and the adjusted weight calculated it was placed inside the reactor 

with the set volume of inoculum. The solution was made up to 400ml by de-ionised water. 

Reactor bottles and caps were screw tightened and sealed with silicon spray. The head 

space which accounted for 250 ml, including cleaning solution, connection pipe work and 

reactor head space was flushed immediately after sealing each reactor with 99.99% purity 

Nitrogen. The counter mechanism was a set of 15 electronic tipping buckets submerged in 

water, each tipper corresponding to a specific amount of gas from a specific reactor (Figure 

6.3). The biogas produced was passed through an individual solution of NaOH 3M 

concentration to remove CO2 and any other impurity. The outputted results were 

automatically adjusted for Standard Temperature and Pressure (STP).  

 

Figure 6.3 Biomethane potential test system. 
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6.2.4 Mono and co-digestion of U. lactuca and dairy slurry 

U. lactuca was harvested for a second year (2012) with the purpose of identifying annual 

variation in biomethane production. A series of BMP assays were completed for mono-

digestion of fresh and dried U. lactuca and co-digestion of the U. lactuca with dairy slurry. 

The dairy slurry was taken from 18 – 24 month year old cows, housed during the summer 

period. In co-digestion, ratios of both dried and fresh U. lactuca with dairy slurry were 

chosen at 25, 50 and 75% respectively.  

6.2.5 Calculation of kinetic decay constant, half-life and lag phase 

Using a combination of first order and second order kinetics for the degradation of organic 

material, a Matlab programme was developed to process all data from BMP assays to 

determine a set list of parameters. Equation 6.2, is used to develop decay constants, K. The 

modified Gompertz formula (Eqn. 6.3) [33] was used to determine the lag phase Δ, which 

was calculated for each BMP assay to establish the time taken to initiate biomethane 

production within the vessels. A regression coefficient R2, was obtained for each BMP trial 

substrate to determine how well the curve fit expression worked on each graph of 

biomethane production. The half-life determined the time taken for half of the biomethane 

production to be produced. 

/�0� = 	/1	�2 − 3��40��                  Eqn. 6.2 

/�0� = 	/1	. 3[−3 5( 6/1	, . �∆ − 0� + 27]                      Eqn. 6.3 

Where,  

G (t) = the cumulative biomethane yield at time t (L CH4 kg−

1 VS). 

Go = Biomethane potential of the substrate recorded (L CH4 kg−

1 VS). 

k = Biomethane production decay rate constant (days -1). 

t = time of BMP test in days.  

Δ = lag phase (days). 
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6.3 Results 

6.3.1 Characterisation of U. lactuca  

Table 6.3 is used to outline the stoichiometric equation of fresh U. lactuca. The analysis in 

table 6.4 suggests that U. lactuca with 11% VS (1. Fresh), a theoretical maximum yield of 

431 L CH4 kg−

1 VS may be achieved. Using this methodology the theoretical maximum 

production of methane, the portion of methane in the biogas and the maximum production 

of biogas may be generated from each sample (Table 6.5). 

Table 6.3 Generation of stoichiometric equation of fresh U. lactuca. 

Component Number of Atoms 

per mole 

Atomic 

Weight 

Weight 

Contribution (kg t-1) 

Percentage 

of TS (%) 

Carbon 21.19 (8.98) 12.00 254.28 25.43 

Hydrogen 37.01 (15.69) 1.00 37.01 3.7 

Oxygen 17.23 (7.3) 16.00 275.69 27.5 

Nitrogen 2.36 (1) 14.00 33.03 3.3 
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Table 6.4 Theoretical assessment of energy production from fresh U. lactuca  

Theoretical assessment of energy production from fresh U. lactuca 

Biogas production as assessed by Buswell equation: 

C8.98 H15.7 O7.3 + 1.41 H2O → 4.63 CH4 + 4.35 CO2  

110kg VS + 11.6 kg water → 33.9kg CH4 + 88kg CO2 (Fresh U. lactuca is 11% VS)  

Density of CH4 = 0.714kg m-3, Density of CO2 = 1.96kg m-3  

Gas by volume → 47.45m3 CH4 + 44.76m3 CO2 = 92.2m3 biogas @ 51.5% CH4  

 

Theoretical maximum methane production:  

47.45 m3 CH4/ 110 kg VS:  431 L CH4 kg−1 VS 

 

Table 6.5 Theoretical methane yields of all pre-treated samples of U. lactuca collected. 

U. lactuca  Biomethane  

 (L CH4 kg−

1 VS) 

 Biogas  

(L kg−

1 VS) 

Methane  

(%) 

Fresh 431 838 51.5 

Wilted & unwashed  460 864 53.3 

Washed & dried 394 793 50.4 

Washed & wilted 402 816 49.6 

 

The samples which showed the most theoretical methane yield were the unwashed 

samples (Table 6.5) which suggest there is biomethane potential in the juices which may be 

removed when washing the fresh material. However there are benefits from a practical 

perspective in washing the seaweed prior to treatment in an anaerobic process. 

Mechanical problems which may arise as a result of debris and sand collecting in the 

digester system are minimised through washing. Sand is also abrasive to moving parts 
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(mixers and pumps). Potentially salts may also be removed in this process which will lead to 

a more stable digestion process.  

 

6.3.2 Mono-digestion of U. lactuca from year 1 

The BMP results for mono-digestion of U. lactuca are illustrated in figure 6.4. Table 6.6 

outlines a comparison of the BMP results with theoretical methane production. The yields 

are significantly lower than theoretical maximum potential suggested by use of the Buswell 

Equation. The unwashed samples (samples 1 and 2) the BMP achieved 42% and 36% of 

theoretical value respectively. The fresh sample generated a higher value than the wilted 

sample. The washed samples exhibited a higher methane yield with sample 3 (washed and 

dried) generating the highest yield at 250 L CH4 kg−

1 VS (64% of the theoretical value).  

 Figure 6.4 Cumulative BMP, fresh and pre-treated samples from Year 1. 
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Table 6.6 BMP results compared to theoretical yield. 

Sample  BMP 

result 

(L CH4 

kg−

1 VS) 

Standard 

deviation 

(L CH4 kg−

1 

VS)  

Max potential  

from Buswell, (table 

6.5) (L CH4 kg−

1 VS) 

Specific 

yield (m3 

CH4  t 
-1) 

C:N 

ratio 

Increased 

yield in co-

digestion 

(%) 

Year 1 

1 Fresh 183.2 5.83 431 20.2 7.7  

2 Wilted & 

unwashed 

165.0 9.47 460 18.2 8.7  

3 Washed 

& dried 

250.2 13.32 394 100.1 9.6  

4 Wilted & 

washed 

221.1 22.74 402 35.4 8.8  

Year 2 

Slurry 136 2.99 382 7.00 19.8  

Dried U. 

lactuca 

226 6.66 401 104.86 7.1  

Fresh U. 

lactuca 

205 5.01 412 21.32 9.1  

Co-digestion 

Yield based 

 on mono-digestion 

75% Fresh 220 4.91 188 20.11 11.77 + 17.0 

50% Fresh 200 11.2 171 15.88 14.45 + 17.0 

25% Fresh 183 7.85 153 12.30 17.12 + 19.6 

75% Dried 210 6.31 203 75.915 10.275 + 3.4 

50% Dried 193 5.42 181 50.064 13.45 + 6.7 

25% Dried 186 8.81 158 29.24 16.62 + 17.7 
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6.3.3 Mono and co-digestion of U. lactuca from year 2 and dairy slurry 

The BMP results for mono-digestion of U. lactuca from year 2 are illustrated in figure 6.5. 

Table 6.6 outlines a comparison of the BMP results with theoretical methane production. 

Again the yields are significantly lower than theoretical maximum potential suggested by 

use of the Buswell Equation. A comparison was drawn between the expected BMP results 

based on a pro-rata analysis of mono-digestion and the result in co-digestion. This 

approach was used to establish whether there was a positive symbiotic reaction between 

the two substrates when digested. This was expected due to the forecasted increase in the 

C:N ratio. Table 6.7 outlines the results of the kinetic analysis. 

 

Figure 6.5 Cumulative BMP for U. lactuca from the second year in mono and co-digestion. 
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Table 6.7 Kinetic decay constants and related values for all BMP assays of U. lactuca and 

dairy slurry. 

Sample  BMP 

result 

(L CH4 kg−

1 VS) 

Standard 

deviation 

(L CH4 kg−

1 VS) 

Max potential  

from Buswell, (table 

6.5) (L CH4 kg−

1 VS) 

Specific 

yield (m3 

CH4 t
-1) 

C:N 

 ratio 

Increased 

yield in co-

digestion 

(%) 

Year 1 

1 Fresh 183.2 5.83 431 20.2 7.7  

2 Wilted & 

unwashed 

165.0 9.47 460 18.2 8.7  

3 Washed 

& dried 

250.2 13.32 394 100.1 9.6  

4 Wilted & 

washed 

221.1 22.74 402 35.4 8.8  

Year 2 

Slurry 136 2.99 382 7.00 19.8  

Dried U. 

lactuca 

226 6.66 401 104.86 7.1  

Fresh U. 

lactuca 

205 5.01 412 21.32 9.1  

Co-digestion 

Yield based 

 on mono-digestion 

75% Fresh 220 4.91 188 20.11 11.77 + 17.0 

50% Fresh 200 11.2 171 15.88 14.45 + 17.0 

25% Fresh 183 7.85 153 12.30 17.12 + 19.6 

75% Dried 210 6.31 203 75.915 10.275 + 3.4 

50% Dried 193 5.42 181 50.064 13.45 + 6.7 

25% Dried 186 8.81 158 29.24 16.62 + 17.7 
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6.4 Discussion  

6.4.1 Comparison of BMP results from fresh and pre-treated samples with literature 

Both years dried U. lactuca produced the highest yield (Table 6.6) both in terms of L CH4 kg−

1 VS (226 to 250 L CH4 kg−

1 VS Year 2 and 1 respectively) and more obviously in terms of m3 

CH4 t
-1 volume (100 to 105 m3 CH4 t

-1). It is suggested that this is a feed stock that would 

have considerable interest for developers of biogas facilities. However a significant parasitic 

thermal demand can be associated with drying unless surplus heat is available from a 

biogas combined heat and power (CHP) facility.  

Wilted and washed U. lactuca produced more methane than wilted and unwashed U. 

lactuca (Table 6.6). Fresh U. lactuca produced more methane than wilted and unwashed U. 

lactuca. In this experiment we may suggest that wilting of unwashed U. lactuca is the least 

desirable pre-treatment while drying is the most desirable pre-treatment.  

Research undertaken in Brittany [27] suggested that juices pressed from sea lettuce can 

provide significant levels of biomethane; in their work they generated a methane yield 

from hydrolytic juices from U. lactuca of 330 L CH4 kg−

1 VS or 261 L CH4 kg COD-1. The liquor 

was shown to be easily degradable as a destruction rate of 93% was obtained. These results 

indicate the biomethane potential of juices associated with sea lettuce and suggests that 

pressing or collecting these liquors could lead to a significant biomethane potential.  

 Besides harvesting existing U. lactuca there is potential to cultivate U. lactuca. The 

maximum growth rate in a Danish bay was found to be 45 t DS ha.yr-1 [34]. This is similar to 

the required yield according to Bird and Benson [35], when harvested at a large scale from 

an off shore farm producing Laminaria (brown macro algae). Samples of U. lactuca were 

treated to a varying range of pre-treatments from drying, macerating and washing. The 

optimum methane yield of 271 L CH4 kg−

1 VS [34] came from algae which was unwashed 

and macerated; this may be compared with 250 L CH4 kg−

1 VS for washed and dried U. 

lactuca in this experiment. Fresh U. lactuca had a very similar BMP result to the fresh U. 

lactuca in this experiment (174 L CH4 kg−

1 VS versus 183 L CH4 kg−

1 VS respectively). Brown 

seaweed in particular kelps, are documented to produce higher biomethane yields: up to 

280 L CH4 kg−

1 VS  Laminaria and 410 L CH4 kg−

1 VS  for a giant kelp variety Macroystis [36]. 

Similar results were obtained in studies carried out on sea lettuce samples in Japan where 
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just macerating the feedstock led to an increase in biomethane yields. Values of 180 L CH4 

kg−

1 VS  were obtained; values of 70% of this (ca. 126 L CH4 kg−

1 VS) were reached for 

untreated U. lactuca samples [26] The literature (Table 6.1) indicates how basic pre-

treatment can aid in producing greater BMP yields.  

 

6.4.2 Variation in algae from year 1 to year 2 

The U. lactuca assessed in this paper varied from year 1 to year 2. The BMP yield of the 

dried sample decreased by 10%; this may be explained by the decrease in C:N ratio from 

9.6 to 7.1. The BMP yield of the fresh sample increased by 12% in the second year, again 

corresponding to an increase in the C:N ratio. A small decrease was observed in the dry 

solids content of the U. lactuca (19.6 % to 17.8%). The volatile solids content also 

decreased from 11.2% to 10.4%. A larger variation was observed in the dried samples but 

this can be attributed to the level of completion of drying. 

  

6.4.3 Process kinetics 

Table 6.7 outlines the results of the kinetic modelling of the U. lactuca year 1 and 2 and for 

co-digestion of U. lactuca with dairy slurry. Higher K values, (indicating faster degradation 

rates) were recorded for U. lactuca collected in year 1 than year 2. The highest K value 

(0.23 d-1) was associated with dried U. lactuca in year 1. With respect to figures 6.4 and 5 

the K values are indicative of a steeper curve and as such a faster degradation rate, a 

shorter retention time and a smaller cheaper digester. This K value may be compared with 

values of 0.433 d-1  food waste and 0.239 d-1  grass silage from trials carried out by the 

authors (data not included in this paper).  

R2 values indicate the fit of the model to the result, with an R2 value of 100 suggesting a 

perfect fit. Δ is the lag phase which represents the time taken for the process to produce 

significant amounts of methane. T50 is the half-life (when half of the methane has been 

produced). It may be noted that these values would suggest relatively small digesters with 

retention times typically less than 30 days. Typically substrates with large lag phases have 

longer half-lives and those with small lag phases have short half-lives. The ideal substrate 
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would have a high K value, a short lag phase and a short half-life. Dried U. lactuca year 1 

would appear to be the best substrate.  

6.4.4 Inhibition  

There has been wide scale research into monodigestion of various bioenergy substrates 

which have, at short retention times proven successful with efficient biomethane yields. 

Overtime, however there can be a build-up of VFAs with increased organic loading rates, 

until there is inhibition of the methogenic bacteria and methane production ceases (Jiang 

et al., 2010). The inhibition can occur at increased rates depending on the Carbon to 

Nitrogen ratio (C:N). When C:N is lower than 20, there is an imbalance between carbon and 

nitrogen requirements for the anaerobic micro flora [37] leading to increased levels of 

ammonia in the bioreactor which can eventually lead to failure [2, 38]. Other factors relating 

to inhibition of biomethane production is high Sulphur and high Sodium concentrations of 

macro algae, which can disturb the anaerobic digestion process and ultimately methogenic 

activity [39]. Macro algae and specifically U. lactuca has a particularly low C:N ratio (in the 

range 7.7 to 9.6: table 6.2 and 6.6). Despite this low C:N ratio, elevated sulphur content, 

high sodium concentration, U. lactuca when either mono digested or co-digested with 

animal slurry produces a lower than expected level of H2S without inhibition taking place 

[40]. An explanation suggested for the continuation of biomethane production is that the 

sludge or inoculum acclimatises to the substrate content and the inhibiting substances 

present. The ratio of inoculum to substrate and organic loading rates are also important in 

inoculum acclimatisation [41]. It should however be noted that there is little practical 

commercial experience of digestion of U. lactuca. 

6.4.5 Mono-digestion and co-digestion of U. lactuca 

The literature on mono-digestion of U. lactuca is dominated by lab scale work and even 

more so dominated by BMP analyses. The Tokyo Gas Company [20] however commissioned 

the development of a large scale biogas plant which ran for 150 days. It ran two trials 

digesting 2 different macro algae, brown algae (Laminaria) and green algae (U. lactuca). 

Trials for U. lactuca operated for 70 days with a biomethane yield of between 15 and 17 m3 

t-1 of seaweed added. The seaweed sampled had a DS of approximately 10% (lower than in 

this experiment). There was no volatile solids percentage given in these trials. The results 
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are similar to sample 1 (Fresh: 20 m3 t-1: table 6.6) and sample 2 (Wilted & unwashed: 18 

m3 t-1: table 6.6) in this experiment. 

 However the conditions which are described fit more closely to sample 4 (washed & 

wilted) which in this experiment yielded 35 m3 CH4 per tonne wet weight at a dry solids 

content of 31%. At 10% dry solids content this would equate to approximately 12 m3 t-1. We 

can say that our results are not dissimilar to those of the Tokyo Gas Company.  

However it is well documented that there tends to be a reduction in the biomethane yield 

when operating a continuous system when compared to batch BMPs. A recent paper which 

followed on from the work completed in the Brittany region on anaerobic digestion of U. 

lactuca, co-digested collected U. lactuca with pig slurry [28]. A total yield was not given 

between the combined substrates but a specific yield of 128 L CH4 kg−

1 VS was given for the 

U. lactuca by subtracting the yield from a reactor with pig slurry only from the total 

biomethane yield produced from a mix of U. lactuca and pig slurry (48% and 52% 

respectively). H2S as predicted was present in large amounts (up to 35,000 ppm) but did 

not inhibit the process. This successful digestion of U. lactuca provides a future avenue of 

research where a co-digestion potential feedstock is dairy slurry with U. lactuca. The 

Argideen estuary is surrounded by an intensive dairy farming industry, which is partly to 

cause for the development of the macro algae bloom. With over 38 million tonnes of cattle 

slurry produced in Ireland each year, this provides a possible potential co-substrate to 

digest with U. lactuca [42].  

6.4.6 Results of co-digestion of U. lactuca with slurry 

In co-digestion with slurry of the order of 17% more biomethane yield was produced than 

in mono-digestion of U. lactuca and slurry separately (Table 6.6). The highest yield is 

between 75% fresh U. lactuca and 75% dried U. lactuca which have specific yields of 220 

and 210 L CH4 kg−

1 VS respectively. However on a m3 CH4 t
-1 basis 75% Dried U. lactuca and 

25% slurry give the highest yield (203 m3 CH4 t
-1) 

Co-digestion with slurry should lead to a reduction in H2S as a large array of minerals are 

present in dairy slurry which could help reduce sulphide inhibition of the digestion process 

[43]. An advantage of drying U. lactuca is that it can be stored and digested when dairy 
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slurry is of higher quality; dairy slurry taken from the same farm during the winter period, 

achieved a yield of 239 L CH4 kg−

1 VS.  

6.4.7 Resource of biomethane produced from U. lactuca 

U. lactuca is abundunt in shallow coastal estuaries in West Cork (Figure 6.1). In the 

Argideen Estuary approximately 10,000 wet tonnes are produced per annum. This equates 

to ca. 1900 t DS/a (Fresh at 19% dry solids) or 1100 t VS/a (Fresh at 11% VS). Digesting U. 

lactuca should produce at least 180 L CH4 kg−

1 VS. Thus a digester in West Cork should have 

the resource of 198,000 m3 of CH4 which has an energy equivalent of 198,000 L of diesel.  

An average car in Ireland travels approximately 15,000 km/a at a fuel efficiency of 5 l diesel 

/100 km using 750 L of diesel per annum. Thus this biomethane resource is equivalent to 

264 cars. Obviously this may be increased using a co-digestion system with available 

slurries in the region.   

6.5 Conclusion 

U. lactuca is detrimental to the amenity of a bay. This paper indicates that it is a viable 

source of third generation gaseous biofuel. Three pre-treatments were undertaken to 

assess the best method of optimising digestion. A combination of washing and drying 

yielded the best BMP result. A yield of 250 L CH4 kg−

1 VS was achieved which is equivalent 

to 100 m3 CH4t
-1 of substrate. This is significant. Digestion of sea lettuce can be problematic 

due to the low C:N ratio. Co-digestion of fresh and dried U. lactuca with dairy slurry was 

assessed at various ratios. The slurry had a C:N ratio of 20. In all cases synergistic effects 

were noted. For example co-digestion of fresh U. lactuca and dairy slurry (75% VS in U. 

lactuca: 25% VS in slurry) resulted in 17% more biomethane than the sum of mono-

digestion of the substrates.  
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7 Investigation of the optimal percentage of green seaweed that may 

be co-digested with dairy slurry to produce gaseous biofuel  
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Abstract  

 

U. lactuca lactuca, a green seaweed, accumulates on beaches and shallow estuaries subject 

to eutrophication. As a residue, and macro-algae, it is a source of sustainable third 

generation biofuel. Production of biomethane from mono-digestion of U. lactuca, however 

is problematic due to high levels of sulphur and low ratios of carbon to nitrogen. Fresh and 

dried U. lactuca were continuously co-digested with dairy slurry at ratios of 25%, 50% and 

75% (by volatile solid content) in 6 number 5L reactors for 9 months. The reactors digesting 

a mix with 75% U. lactuca struggled to reach sustainable operating conditions. Failure was 

dominated by volatile fatty acid inhibition. The levels of ammonia increased with 

percentage U. lactuca in the mix. Optimum conditions were observed with a mix of 25% 

fresh U. lactuca and 75% slurry. A yield of 170 L CH4 kg−

1 VS was achieved at an organic 

loading rate of 2.5 kg VS m-3 d-1.  

 

Keywords: seaweed; U. lactuca lactuca; biomethane; biofuel  
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7.1 Introduction  

7.1.1 The rationale for macro-algae as a source of biofuel  

By 2020 according to The Renewable Energy Directive [1], 10% of energy use in transport 

should be renewable. In 2011 first generation biofuels provided for approximately 5% 

renewable energy supply in transport (RES-T) in the EU. In October 2012 an EC proposal [2] 

suggested limiting first generation food based biofuels to 5% RES-T. This limit was proposed 

to be raised to 6% in September 2013 [3] at which time it was also stipulated that advanced 

biofuels, such as sourced from seaweed, should represent at least 2.5% of RES-T by 2020. 

 Seaweed (or macro-algae) biofuels are deemed to be third-generation. They do not 

interfere with food production directly (they do not use food crops) or indirectly (they do 

not use agricultural land). From an energy perspective the differentiation between first, 

second and third generation biofuels can be noted with reference to potential gross energy 

yield per hectare. Per example rape seed biodiesel (first generation) generates 

approximately 1350 L (44 GJ) of biodiesel per hectare per annum [4], willow biomethane 

(second generation biofuel produced through gasification) generates a gross energy yield of 

ca. 130 GJ-1 ha-1 yr-1 [5]. The yields per hectare of algae are not fully documented; however 

Christiansen [6] stated that yields of 130 t of kelp may be achieved per hectare. Allowing 

for 15% volatile solids and 330 L CH4 kg−

1 VS [7] the gross energy per hectare would be in 

the order of: 230 GJ-1 ha-1 yr-1.  

Ireland, with over 7,500 miles of coastlines and direct access to the Atlantic Ocean offers 

itself as an ideal location to utilise macro-algae as a source of biofuel. Algae can be either 

cultivated in aquaculture farms or harvested from beaches or from the sea. U. lactuca, a 

green seaweed is a particular case in that it is a scourge to coastal environments that have 

long shallow bays which are subject to eutrophication. This has become more endemic in 

recent years in France, Denmark and Japan. It is seen as an algae bloom and can result in 

thousands of tonnes washing up on to beaches, forcing closures [8]. However the quantity 

of the bloom can lead to a cheap source of biofuel as it greatly reduces the harvesting 

costs.  
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7.1.2 Biomethane production from green seaweed  

Anaerobic digestion (AD) is a relatively low energy input process which converts wet 

substrates to a gaseous biofuel. Germany has in excess of 7,000 digestion facilities with 

substrates dominated by crops such as maize, cereals and grass [9]. These systems which 

can have very good energy balances [10] are never the less classified as first and second 

generation biofuels, and directly or indirectly compete with land for food production [11]. 

Production of biogas from macro-algae has not occurred in a commercial setting. The 

scientific literature on biogas from macro-algae, in particular U. lactuca, is very recent and 

relatively sparse. Most of the work relates to laboratory batch studies that do not give any 

indication of the operating conditions in continuous commercial operation of a bio-

digester. Continuous co-digestion of Ulva  sp. with pig or dairy slurry, respectively was 

tested by Peu and  Sassi [12] and Sarker [13], however these studies did not focus on 

optimising the mixtures of U. lactuca with co-substrates or the effect of varying the organic 

loading rates, which are essential parameters for continuous co-digestion  

U. lactuca has been shown to have potential as an AD feedstock reaching yields of between 

128 to 271 L CH4 kg−

1 VS [14]. U. lactuca has extremely low levels of lignin making it readily 

accessible for microbial digestion [15]. However a crucial aspect of anaerobic digestion is 

the carbon to nitrogen (C:N) ratio; optimum values range from 20 – 30. U. lactuca has a C:N 

ratio less than 10 [14]. This can lead to problematic digestion due to excess levels of total 

ammonia nitrogen (TAN) which may inhibit methanogenesis. Co-digestion benefits from 

increased C:N ratios which aid digestibility and have been found to increase the level of 

digestibility for specific substrates [16]. One method of increasing the C:N ratio is to co-

digest with dairy slurry, which is characterised by a higher C:N ratio of above 20:1 and in 

addition has a rich base of trace minerals, increasing digester efficiency [17, 18].  

U. lactuca also has a high sulphur content which can result in significant levels of hydrogen 

sulphide (H2S) in the produced biogas [19]. H2S is toxic and results in increased corrosion of 

equipment in biogas plants. High levels of dissolved H2S can also act as an inhibitor to 

microorganisms of the AD process [12]. Potential H2S concentrations in biogas produced 

from a particular substrate can be forecasted by examining the carbon to sulphur ratio 

(C:S). The minimum recommended ratio is 40. Sulphur available for reduction or 

fermentation to H2S is proportional to the biodegradable content of carbon in the substrate 



Biogas Production from Novel Substrates 

 

 

- 160 - 
 

[20]. A substrate with a C:S below 40 will tend to have larger accumulations of H2S gas as 

experienced by seaweed digestion trails [20].  

7.1.3 Aims and Objectives  

This paper builds upon previous work by the authors who evaluated co-digestion of U. 

lactuca and slurry in biomethane potential (BMP) assays operated in batch mode (Allen et 

al., 2013a). The aim of this paper is to assess the suitability of green seaweed in continuous 

long term co-digestion and to glean information on optimal operating parameters. The 

objectives are to establish:  

(1) What is the optimum percentage of U. lactuca that may be co-digested with dairy slurry 

in a stable continuous anaerobic process?  

(2) What are the ideal operating conditions including for organic loading rate (OLR)?  

(3) What parameters are likely to lead to failure in digestion of green seaweed?  

 

7.2 Materials and methods  

7.2.1 Materials  

Approximately 300 kg of U. lactuca was sampled from Harbour view beach, Timoleague, 

Cork, Ireland in August, 2012. This was the same U. lactuca used in previous trials by the 

authors (Allen et al., 2013a). The seaweed was not washed. Drying was effected by placing 

on airing tables with hot air passed up through the seaweed for 36 hours at 80oC. The 

seaweed was separated into 20 kg bags, frozen and stored at -20oC.  

Dairy slurry was collected from a dairy farm of 200 milking cows, in Cork, Ireland. The 

sampled slurry came from cows housed indoors, at the end of the lactation period. A 

significant quantity of slurry was collected and frozen in separate containers. U. Lactuca 

and dairy slurry samples were defrosted prior to feeding of the digesters. The inoculum 

used for the trials, was taken from a pilot scale reactor, fed only dairy slurry, which was 

operating in the same research lab. The inoculum was sieved through a 1 mm sieve and 

placed in each reactor and left to run for 1 week to remove residual gas which may 
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contribute to biogas production. Biomethane potential (BMP) was previously assessed 

(Allen et al. 2013a) in a proprietary biomethane potential (BMP) system (Bioprocess AMPTS 

II system) as described in section 2.2.2.The substrates are described in table 7.1.  

7.2.2 Methods  

7.2.2.1 Analytical methods  

Total solids (TS) and volatile solids (VS) were analysed and calculated by using standard 

methods [21]. The pH was measured by a Jenway 3510 pH metre. The ratio of organic acid 

concentration to alkalinity (referred to as Fos:Tac) was carried out according to the 

Nordmann titration method using 0.1 N sulphuric acid with pH 5.0 and 4.4 endpoints [22]. 

The ammonia concentration in each reactor was measured in terms of Total Ammonical 

Nitrogen (TAN) using Hach Lange CLK 303 cuvettes, with a 1:100 dilution of digestate using 

a Hach Lange DR3900 spectrometer to read samples. Free ammonia (NH3) was calculated 

from a standardised equation relating the ammonia content to pH and temperature of the 

liquor [23] total volatile fatty acid (tVFA) content was measured using gas chromatography 

(Agilent HP 6890 Series) equipped with a NukolTM fused silica capillary column (30m x 

0.25mm x 0.25μm), argon as a carrier gas and flame ionisation detector. Samples were 

tested every second week for acetic, propionic, iso-butyric, butyric, iso-valeric, valeric, iso-

caproic, caproic and enanthic acid. Ultimate analysis of each substrate and digestate was 

carried out using an EAC CE 4500 elemental analyser. Samples for ultimate analysis were 

oven dried to 105oC for 24 hours and were ground to < 0.6 mm particle size. Trace element 

analysis was carried out by a commercial lab (Agrolab Labor GmbH) using standard 

methods [24, 25]. Salinity and conductivity were calculated using a VWR hand held C0310 

monitor. These parameters were measured in conjunction with chloride concentrations to 

determine the extent of salt concentrations in the reactor and how it effects biogas 

production over time. Hach Lange CLK 303 cuvettes were used at a dilution of 1:100 to 

determine chloride levels. Biogas was analysed for methane, carbon dioxide, oxygen, and 

hydrogen sulphide using a handheld Ntron Mentor CombI-R biogas analyser.  
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Table 7.1 Characterisation of substrates and inoculum (adapted from Allen et al., 2013a). 

Substrate TS VS C:N C:S sCOD BMP  Specific                                                           

.                                                     yield 

 % %   mg l-1 L CH4 kg−

1 

VS 

L kg -1 TS m3 kg-1 wwt 

Fresh U. 

lactuca  

17.75 10.35 7.1 10.5 - 205 120 21.2 

Dried U. 

lactuca 

77.94 46.36 9.1 9.9 - 226 134 104.7 

Dairy slurry 8.65 5.75 19.8 70.9 67,900 136 90 7.8 

Inoculum 2.43 1.40 18.4 120 30,860 53 30.5 0.7 

TS: Total solids; VS: volatile solids; C:N: carbon to nitrogen ratio; C:S: carbon to sulphur 

ratio; sCOD: soluble chemical oxygen demand; SMY: specific methane yield; BMP: 

biomethane potential. 

Table 7.2 Design mixes used in continuous experiments. 

Reactor 

Number 

Dairy 

slurry 

Dried 

U. 

lactuca 

Fresh 

U. 

lactuca 

C:N 

ratio 

C:S 

ratio 

BMP (L CH4 

kg−

1 VS) 

Biodegrad-

ability Index 

 % % %     

R1 25 75 - 10.2 25.2 210 (6.3) 0.53 

R2 50 50 - 13.4 40.4 193 (5.4) 0.49 

R3 75 25 - 16.6 55.7 186 (8.8) 0.48 

R4 25 - 75 11.8 27.4 220 (4.9) 0.54 

R5 50 - 50 14.4 41.9 200 (11.2) 0.50 

R6 75 - 25 17.1 56.4 183 (7.8) 0.47 

Standard deviation in parenthesis; VS: volatile solids; C:N: carbon to nitrogen ratio; C:S: 

carbon to sulphur ratio; BMP: biochemical methane potential. 
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7.2.2.2 Biomethane potential and biodegradability index  

Two Bioprocess AMPTS II systems were used to assess the BMP. 500 ml glass bottles were 

used as batch vessels with a semi continuous stirring system operating at 30 rpm. Biogas 

produced was passed through a 1M NaOH solution to remove non methane gases. 

Biomethane volume was measured using a gas tipping device. The BMP is calculated as the 

sum of the methane volume produced during a period of 30 days, referring to the VS of the 

sample added to the test. All samples were conducted in triplicate. A detailed description 

of the BMP assay is given by [26]. An ultimate analysis was carried out on each substrate to 

determine theoretical methane yields using the Buswell equation [27]. Theoretical yields 

obtained from the Buswell equation were used to determine a biodegradability index 

which is defined as the ratio of the BMP to the theoretical methane yield obtained using 

the Buswell equation.  

7.2.2.3 Continuous system  

A total of six, 5 litre PVC cylindrical reactors with a working volume of 4 litres were used in 

parallel. Each reactor had a 25 mm inlet feeding port which was sealed with a rubber bung. 

A gas outlet valve was mounted at the top of the reactor which was connected to a tipping 

bucket gas meter via polythene gas tight tubing. A centrally mounted vertical axis stirrer 

was used to continuously stir the reactor contents at 40 rpm. A 12 V dc motor was used to 

power the motors. The temperature was controlled by water (circulated continuously 

through a brass coil which sat around the reactor) at a constant temperature of 37oC + 1oC. 

A cover with insulated panels was placed over the reactors and heating coil. A Labjack data-

logger was used to count each tip from the gas tipping-buckets, each of which had a known 

volume. Volumes each reactor were corrected for standard temperature and pressure at 

0oC and 101.325 kPa. A 1 litre Tedlar gas bag was used to collect biogas which had passed 

through the tipping buckets daily for analyses of gas composition. Gas bags were typically 

connected 8 – 12 hours a day.  

7.2.2.4 Operation of continuous system  

Six reactors were operated with different mixes of dried or fresh U. lactuca (25% to 75% on 

a VS basis) and dairy slurry (R1 – R6) as outlined in table 7.2. Previous work (Allen et al., 

2013a) assessed these mixes in a BMP system. The BMP values and the biodegradability 



Biogas Production from Novel Substrates 

 

 

- 164 - 
 

were similar whether the U. lactuca was dried or fresh. BMP values and biodegradability 

fell as the ratio of U. lactuca in the mix dropped. The BMP value obtained for each co-

digestion mixture was used as a target yield for each continuous reactor. Biomethane 

efficiency ratios (Eff) were calculated by dividing the yield of each continuous reactor by its 

BMP yield. Each reactor was started at an OLR of 2 kg VS m-3 d-1 and operated for an initial 

period of one hydraulic retention time (HRT) to assess stability of the process and potential 

for an increase in OLR or the necessity to decrease OLR. Depending on the biomethane 

efficiency ratio and the Fos:Tac ratio, the OLR was decreased or increased. Reactors were 

fed 5 days a week. A calculated wet weight quantity was fed to each reactor to provide the 

required OLR; this wet weight quantity was also used to calculate an initial HRT. The 

amount of digestate removed equated to the amount of fresh feedstock fed into the 

reactor less the amount of organic matter converted to biogas. A specific amount of sieved 

digestate was then returned to each reactor to reduce the total solids content to less than 

10%. This had the effect of reducing the actual HRT, operated within the reactor trials. H2S 

concentrations within the biogas were found to be at high levels. In order to control the 

H2S levels FerroSorp® DG solution was added at the levels recommended by the 

manufacturer which was 700 g m-3 feedstock added.  

 

7.3 Results and discussion  

7.3.1 Methane yields and the relationship to Fos:Tac, ammonia and chlorides  

The TAN was recorded at 1,796 mg l-1, chloride at 1,840 mg l-1, total VFA (tVFA) at 1,312 mg 

l-1 and soluble chemical oxygen demand (sCOD) at 30,860 mg l-1. Figure 7.1 outlines the 

variation in specific methane yield (SMY) and the Fos:Tac for the six mixes over the time 

period of the experiment. The process may be considered stable when the Fos:Tac is in the 

range 0.2 to 0.4 and the SMY is approaching the BMP value.  

Figure 7.2 compares the six reactors in terms of VFA, TAN and chloride. R6 (25% fresh U. 

lactuca, 75% slurry) has one of the lowest continuous values of Fos:Tac, of TAN and of 

chloride. R1 (75% dried U. lactuca, 25% slurry) is highlighted as having the highest 

continuous values of these parameters.  
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Table 7.3 highlights the results of the operation of the reactors. The description of results 

and operating procedures are discussed in detail for the least stable reactors (R1) and most 

stable reactor (R6).  
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 Figure 7.1 Performance and operational parameter curves R1 – R6. 

Vertical dashed lines indicate changes in organic loading rate (OLR), vertical dashed and 

dotted lines indicate retention times. Horizontal lines indicated Biochemical methane 

potential (BMP) yield and organic acid to alkalinity ratio (Fos:Tac) of different mixes of 

dried or fresh U. lactuca with dairy slurry. 
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Figure 7.2 Environmental parameters R1 – R6. 

(a) Total volatile fatty acid content (tVFA), (b) total ammonia nitrogen content (TAN) and (c) 

chloride content for R1 to R6. 
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7.3.2 Detailed assessment of R1 (75% Dried U. lactuca, 25% slurry)  

From co-digestion batch trials a BMP of 210 L CH4 kg−

1 VS was recorded. During the first 

HRT the Fos:Tac ratio and tVFAs rose steeply from 0.21 to 0.56 (Figure 7.1a) and 1306 mg l-1 

to 4954 mg l-1 respectively (Table 7.3). A maximum specific methane yield (SMY) of only 

126 L CH4 kg−

1 VS was reached (week 7). 

 The OLR was reduced to 1 kg VS m-3 d-1 and operated for 3 HRTs (27 weeks). The Fos:Tac 

dropped to sustainable levels (<0.4). tVFAs also reduced to 1250 mg l-1. A maximum SMY 

was reached of 222 L CH4 kg VS m-3 d-1, with an average of 177 L CH4 kg−

1 VS (Eff 0.84, table 

7.3). TAN levels rose up to 5250 mg l-1 but had reduced to 3900 mg l-1 by the end of the 3rd 

HRT (Figure 7.2b). The pH of the reactors remained between 7.81 and 8.12.  

Finally the OLR was increased to 1.5 kg VS m-3 d-1. The SMY however dropped to 145 L CH4 

kg−

1 VS (Eff 0.69) and Fos:Tac increased to 0.43. TAN rose to 5,300 mg l-1. The optimum OLR 

was decided upon as being 1 kg VS m-3 d-1.  

As with all reactors which were trialled, a steady increase in chloride and conductivity 

concentrations was observed (Figure 7.2c). The maximum level reached was 10,300 mg l-1 

and 40.2 mS cm-1 respectively. There was no clear correlation between SMY and chloride or 

conductivity concentration. CH4 levels slowly increased from 33% + 8% (average HRT1) to 

an average of 47% + 4% over the course of the second and third OLR of 1 and 1.5 kg VS m3 

d-1. H2S concentrations, as predicted by having a low C:S ratio (25.2 which is less than 40), 

were found to rise well above recommended levels of 250 ppm [28]. Addition of Ferrosorp® 

DG solution reduced the concentrations of H2S to below 600 ppm and maintained this level 

in the biogas.  

7.3.3 Detailed assessment of R6 (25% Fresh U. lactuca, 75% slurry)  

This mix in R6 consists of the least amount of fresh U. lactuca, and the largest amount of 

dairy slurry. In the BMP trials (Allen et al., 2013a) it showed a 19% increase in biomethane 

yields in co-digestion (as opposed to mono-digestion). It has the largest C:N ratio of the 6 

mixes (Table 7.2). In continuous trials it showed the highest biomethane efficiency ratio at 

95% (Table 7.3). R6 was able to operate at an initial OLR of 2 kg VS m-3 d-1 but took 3 HRTs 

to achieve stable operating conditions (Fos:Tac between 0.2 and 0.4 with methane yield 
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approaching BMP value). This may be compared with R2 and R3 (the only other reactors 

that were deemed stable at 2 kg VS m-3 d-1) which achieved stability after 2 HRTs. The 

Fos:Tac ratio of R6 was at 0.39 at the end of the 2nd HRT, and reduced to 0.25 at the end of 

the 3rd HRT. Biomethane yields averaged 178 kg VS m-3 d-1 (Eff 0.95) with TAN and pH 

levels reaching 2168 mg l-1 and 7.68. The maximum tVFA concentration recorded was 1955 

mg l-1 for this OLR (Table 7.3).  

After 22 weeks the OLR was increased to 2.5 kg VS m-3 d-1. R6 showed biological stability 

but the specific methane yield began to drop in the second and third retention time even 

with Fos:Tac in the stable range (Figure 7.2a), and consistent TAN levels (Figure 7.2b). 

Fos:Tac and tVFA levels reduced gradually to 0.23 and 1,720 mg l-1. Biomethane yields 

reduced slowly, rather than sharply or catastrophically as observed in R2 and R3. The 

maximum SMY recorded was 221 L CH4 kg−

1 VS and, on average for this OLR period was 170 

L CH4 kg−

1 VS (Eff 0.93). Biogas composition was stable for both OLRs operated (51% + 3 and 

52% + 2 respectively). H2S concentrations in R6 were the lowest of all reactors partially 

predicted due to a higher C:S ratio. R6 still reached excessive levels of H2S (>250 ppm), the 

reactor was treated with FerroSorp® DG which reduced levels to below 200 ppm. TAN 

concentrations marginally rose from the first OLR to 3,000 mg l-1. TS and pH remained at 

low levels and within stable operating ranges at 6.48% and 7.73. Chloride and conductivity 

levels followed similar trends to the other reactors with a steady rise in concentrations 

reaching 6300 mg l-1 and 30.8 mS cm-1 respectively. Industry literature states that an 

optimum range of conductivity in a biogas reactor is within 20 - 25 mS cm-1 and higher 

conductivity levels may result in reduced biogas production [29].Thus increasing 

conductivity levels ins R6 which suggests an accumulation of salts within the reactor could 

have contributed to the slow decline in ethane yield in the second and third retention time 

at an OLR of 2.5 kg VS m-3 d-1.  

R6 showed stable signs operating at both OLRs. However an OLR of 2 kg VS m-3 d-1 is 

recommended as the operation was more stable. A reason for the reducing performance at 

the higher loading rate is elusive, but may be related to low levels of Selenium (discussed in 

section 3.7) as well as an elevated conductivity concentration. 17  
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7.3.4 Reactors R2 to R5  

7.3.4.1 R2 and R3 (fed with 50% and 25% dried U. lactuca respectively)  

Both R2 and R3 reached steady state biomethane production after 2 HRTs at an initial OLR 

of 2 kg VS m-3 d-1 (figure 7.1). However after a period of operation at an increased OLR of 

2.5 kg VS m-3 d-1 extremely high levels of VFAs were experienced in R2 and R3 (7,138 mg l-1 

and 11,208 mg l-1 respectively) and Fos:Tac reached 1.2 for R2 and 1.3 for R3 (Table 7.3). 

TAN, TS, pH all were within range for R2, and R3, before failure occurred. It is 

recommended that mixes with 50% and 25% dried U. lactuca operate at 2 kg VS m-3 d-1.  

7.3.4.2 R4 and R5 (fed with 75% and 50% fresh U. lactuca respectively)  

Both R4 and R5 started at an OLR of 2 kg VS m-3 d-1, and both showed signs of failure at an 

early stage reaching an average SMY of 24 L CH4 kg−

1 VS (Eff 0.11) for R4 and 36 L CH4 kg−

1 

VS (Eff 0.18) for R4 (Table 7.3). Fos:Tac and tVFA were at elevated levels for both reactors 

at the end of the first HRT (1.86 and 13,929 mg l-1 for R4; 0.68 and 6538 mg l-1 in R5). The 

OLR in R4 was dropped to 0.5 kg VS m-3 d-1 and in R5 to 1.5 kg VS m-3 d-1. Steady state 

biomethane production was achieved in both reactors at these OLR, with the SMY for R4 

being 184 L CH4 kg−

1 VS (Eff 0.84) and 186 L CH4 kg−

1 VS (Eff 0.93) for R5. The OLR was 

further increased in both reactors but in both cases SMY decreased and Fos:Tac rose above 

0.40. It is not recommended to digest a mix with 75% fresh U. lactuca. An OLR of 1.5 kg VS 

m-3 d-1 is recommended for a mix with 50% fresh U. lactuca
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Table 7.3 Highlights of results from continuous digestion. 

Continuous 
Results 

BMP SMY Efficiency 
factor 

CH4 HRT Fos:Tac 
(max) 

tVFA 
(max) 

TAN 

 L CH4 
kg-1 VS 

L CH4 
kg-1 VS 

 % d  mg l-1 mg l-1 

Dried U. lactuca 

R1 75% Ulva 210        

OLR 2  83 0.40 33 49 0.56 4,954 3,443 

OLR 1  177 0.84 47 63 0.34 4,135 5,250 

OLR 1.5  145 0.69 47 56 0.43 4,355 5,300 

R2 50% Ulva 193        

OLR 2  137 0.71 45 49 0.44 2,311 3,106 

OLR 2.5  127 0.72 48 35 1.20 7,138 4,690 

R3 25% Ulva 186        

OLR 2  158 0.85 49 50 0.29 1,527 2,794 

OLR 2.5  121 0.65 48 41 1.30 11,208 3,300 

Fresh U. lactuca 

R4 75% Ulva 220        

OLR 2  24 0.11 25 40 1.86 13,929 2,113 

OLR 0.5  184 0.84 46 160 0.29 801 3,090 

OLR 1  137 0.61 50 80 0.45 4,825 2,955 

R5 50% Ulva 200        

OLR 2  36 0.18 32 44 0.68 6,538 1,939 

OLR 1.5  186 0.93 51 56 0.46 3,502 3,330 

OLR 2  151 0.76 50 44 0.46 3,386 2,580 

R6 25% Ulva 183        

OLR 2  178 0.95 51 49 0.39 1,955 2,168 

OLR 2.5  170 0.93 52 42 0.30 1,720 3,000 

VS: volatile solids; SMY: specific methane yield (weekly yields averaged over the HRT); 

BMP: biomethane potential; HRT: hydraulic retention time; Fos:Tac: organic acid 

concentration to alkalinity ratio; tVFA: total volatile fatty acid content; TAN: total ammonia 

nitrogen content. Units of OLR kg VS m-3 d-1.
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7.3.5 Comparison of SMY and OLRs with data in the literature 

Peu, Sassi [12] co-digested U. lactuca with pig slurry on a 48% - 52% wet weight ratio at a 

constant OLR of 2.5 kg VS m-3 d-1; a SMY of 126 L CH4 kg−

1 VS was achieved. Reactor R5 (50% 

fresh U. lactuca on a volatile solid basis) generated a SMY of 151 L CH4 kg−

1 VS at an OLR of 

2.0 kg VS m-3 d-1.  

Sarker [13] co-digested U. lactuca in the ratio 24% U. lactuca : 76% dairy slurry (on a VS 

basis) at an OLR of 2.9 kg VS m-3 d-1 and produced a SMY of 133 L CH4 kg−

1 VS. This may be 

compared to R6 (25% U. lactuca) which generated 170 L CH4 kg−

1 VS at an OLR 2.5 kg VS m-3 

d-1.  

These two papers operated for shorter periods and did not vary the organic loading rates to 

the extent of this work. Long term build-up of inhibitors cannot be forecasted with short 

experimental times. Per example R2 (50% dried U. lactuca) experienced three hydraulic 

retention periods at an OLR of 2.5 kg VS m-3 d-1 in a steady state before failure occurred in 

the 4th retention period.  

7.3.6 Composition of biogas 

Methane content of the biogas remained in a steady range between 49% CH4 + 3% for all 

rectors when operated at a steady state at their optimised OLR. This was in agreement with 

other co-digestion trails with dairy slurry [16, 18]. When not steady, reduced SMY was 

experienced in reactors. R1 (75% dried U. lactuca), R4 (75% fresh U. lactuca) and R5 (50% 

fresh U. lactuca) experienced very low methane percentages of 35%, 25% and 32% 

respectively. H2S concentrations reached very high levels, + 19,000 ppm (inhibitory levels in 

excess of 200 ppm). This was forecasted by a selection of the reactors having a C:S ratio 

below 40 and the U. lactuca having a C:S ratio itself of below 13:1. The levels of H2S were 

found to decrease as this ratio increased from 25.2 (R1) to 56.4 (R6) for the worse and best 

case scenario reactors. Treatment with FerroSorp® DG (using maximum recommended 

rates of 700 g m3) led to levels below 600 ppm. 

7.3.7 Operational parameters 

7.3.7.1 Sodium chloride  

Sodium chloride has been identified as an AD process inhibitor but is still required in small 

concentrations to enable biomethane production [30]. There was no direct correlation 
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between chloride levels and SMY. A gradual increase in chloride concentration was 

observed in all 6 reactors. This steady increase was mimicked by conductivity and salinity 

levels recorded. It was reported that when ammonia levels are low that the tolerance for 

salts can be higher [31]. In these trials TAN levels remained low.  

7.3.7.2 Total ammonical nitrogen concentrations 

Values of TAN in excess of 5000 mg l-1 are deemed to be in an inhibitory range [32]. TAN 

remained in a relatively low range (especially for the fresh U. lactuca mixes; Figure 7.2) 

despite the low level of C:N ratio which can result in reduced organic conversion [16]. 

Higher levels of TAN can also lead to reduced SMY [33]. However it is postulated that low 

OLRs and increased C:N ratio of the co-digestion mixtures helped to keep TAN relatively 

low. 
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Figure 7.3 Breakdown of VFA concentrations for reactors R1-R6 

Butyric acid is the sum of iso-butyric acid and n-butyric acid; Valeric acid is the sum of 

isovaleric acid and n-valeric acid; Caproic acid is the sum of iso-caproic acid and n-caproic 

acid.  
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7.3.7.3 Volatile fatty acid inhibition 

Volatile Fatty Acid inhibition is suggested as the prime reason for failure or stress in 

reactors R1 – R5. Initially higher tVFA concentrations were observed in the reactors fed 

with fresh U. lactuca (R4-R6) leading to lower initial OLR in these reactors as opposed to 

reactors fed with dried U. lactuca (R1 – R3). However the reactors fed dried U. lactuca (R2 

and R3) accumulated large concentrations of VFAs towards the end of the digestion trials, 

leading to their failure over time.  

This suggests that the VFA content in the fresh U. lactuca is more concentrated and can 

lead to quick VFA accumulation whilst the drying pre-treatment reduces this initial VFA 

accumulation.   

Typically acetic acid comprised between 49% and 66% of the tVFA concentration for all 

reactors; propionic acid ranged between 15% and 30%; iso-valeric acid ranged between 9% 

and 18%. One case of an outlying concentration was iso-valeric acid (38%) in R4 when tVFA 

reached a level close to 14,000 mg l-1. Previous studies with U. lactuca as a co-digestion 

substrate showed that with increased percentage of U. lactuca in the co-digestion mix 

there was a large increase of VFAs [13]. Safe operating ranges of tVFA lie below 4,000 mg l-

1. Over this range, unstable biomethane production occurs as well as process failure [34].  
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Table 7.4 Trace element analysis of substrates and digestate from R1 to R6. 

Substrate Mg S Na Ca Mn Mo Co Se Cd 

 g l-1 g l-1 g l-1 g l-1 mg l-1 mg l-1 mg l-1 mg l-1 mg l-1 

Dried U. 

lactuca 
24.24 22.99 11.38 32.52 109.12 <0.10 1.57 <0.04 <0.02 

Fresh U. 

lactuca 
5.22 4.63 5.31 9.95 19.53 <0.10 0.34 <0.04 <0.02 

Dairy Slurry  0.65 0.53 0.15 0.12 21.63 0.18 0.21 0.14 <0.02 

R1 2.95 0.92 1.43 4.65 22.97 3.29 0.79 <0.04 0.04 

R2 2.21 0.76 1.34 5.54 19.63 0.94 0.37 <0.04 0.02 

R3 1.77 0.63 0.85 3.45 22.51 0.68 0.36 <0.04 0.03 

R4 2.59 0.78 2.49 5.32 17.09 1.06 0.40 <0.04 <0.02 

R5 2.68 0.76 2.35 2.80 21.59 0.93 0.40 0.07 0.05 

R6 2.41 0.67 1.66 2.42 25.54 0.91 0.49 0.06 <0.02 

 

Table 7.5 Heavy metal analysis of substrates and digestate from R1 to R6. 

Substrate Ni Fe Cu Zn 

 mg l-1 mg l-1 mg l-1 mg l-1 

Dried Ulva 17.07 3094.22 5.64 30.47 

Fresh Ulva 1.25 706.45 0.65 3.62 

Dairy Slurry  0.45 279.22 5.18 26.30 

R1 27.24 673.20 3.75 9.82 

R2 7.63 517.93 2.69 10.34 

R3 5.22 473.35 7.62 17.21 

R4 9.63 508.94 9.95 10.96 

R5 6.97 431.76 9.04 17.89 

R6 7.19 498.46 15.48 22.83 
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7.3.7.4 Trace elements and heavy metals 

The concentration of each of the substrates and final reactor contents were analysed for 

trace elements and heavy metals (Table 7.4 and 7.5). Sodium was the one trace element 

which differed significantly between reactors fed with fresh and dried U. lactuca. Levels of 

Na were significantly higher in dried U. lactuca; this however did not carry over to the 

operation of the digesters and neither were at critical levels (6 - 30 g l-1) reached. 

Levels of Selenium were low in all reactors. The recommended range of Se for stable 

growth of methane producing bacteria varies from author to author with no definitive 

critical limit established. The upper range of critical values suggested for Se lies between 

0.1 – 0.35 mg l-1 [35]. Low levels of Selenium were recorded in all the reactors with values 

below the measuring range (<0.04 mg l-1) recorded in 4 reactors and initial U. lactuca 

substrates. These low concentrations may have caused poor methane efficiency rates and 

inhibition to occur. This is possibly a reason for the declining SMY at the OLR of 2.5 kg VS m-

3 d-1 in R6. However, lower trace element recommendations of 0.008 to 0.79 mg l-1 are also 

found in literature and values in commercial biogas plants showed ranges comparable to 

Selenium concentrations found in the present study [35].  

Sulphur was found to be at high concentrations in the U. lactuca substrate with drying 

seeming to concentrate the levels. However concentrations of S (though highest in the 

reactors with higher portions of U. lactuca), were lower in all the reactors due to the co-

digestion with slurry and the binding of H2S and formation of iron sulphide through 

addition of FerroSorp® DG. The addition of FerroSorp® DG probably led to the elevated 

levels of Iron (Table 7.5).  

High Calcium concentrations were analysed in U. lactuca substrates which resulted in 

elevated amounts of Ca especially in reactors R1 to R4. Ca levels of 2.5 to 4 g l-1 which are 

reported to be moderately inhibitory [28] were found within these reactors, but Ca levels 

with strong inhibitory effects of 8 g l-1 (Chen et al., 2008) were not reached. Copper and 

Zinc were at higher levels in the slurry than U. lactuca (Table 7.5). This led to higher levels 

of Cu and Zn in the reactors with more slurry (R3 and R6). It is not considered that these 

levels were at high enough levels to inhibit the process [35].  
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7.4. Conclusions 

The optimum mix of U. lactuca and dairy slurry in a biogas facility is suggested as 25% fresh 

U. lactuca with 75% dairy slurry. This reached 95% of the BMP value at an OLR of 2 kg VS m-

3 d-1. Initially it operated well at an OLR of 2.5 kg VS m-3 d-1 but it experienced a decreasing 

trend in methane yield with time. It is postulated that addition of trace elements could 

allow satisfactory operation at higher OLR. Mixes in excess of 75% U. lactuca are not 

recommended. Critical parameters include high levels of VFA, Calcium, chloride and low 

levels of Selenium. 
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8 Conclusions and recommendations 
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8.1 Conclusion of thesis   

 

 

A number of conclusions and recommendations are presented: 

• The best performing substrates available to an emerging biogas industry in Ireland 

are not the high yielding substrates such as used cooking oil (804.61 + 57.0 L CH4 kg
−1 VS) or cheese processing waste (DAF)  (787.36 + 59.51 L CH4 kg−1 VS). These 

substrates do not have the desired C:N ratio or they have excess lipids or other 

inhibitory elements. Preferential substrates include substrates such as energy beet 

(375.13 + 6.93 L CH4 kg−1 VS) or grass silage (399.56 + 4.12 L CH4 kg−1 VS) which are 

abundant and are suitable for  co-digestion with slurries.  

• Eleven macro algae substrates were sampled, of which the best performing species 

in terms of biomethane yield was S. latissima (341.46 + 36.40 L CH4 kg−1 VS or 34.41 

m3 t-1 wwt). This seaweed had a C:N ratio of 24:1. Also the potential biomethane 

yield per hectare of S. latissima (10,244 CH4 m3 ha-1 yr-1) may surpass that of 

terrestrial first and second generation biofuel crops. 

• The use of U. lactuca as a primary or mono digestion feedstock is not 

recommended in large scale AD at levels in excess of 25% by VS content. The 

combination of a low C:N ratio and high sulphur concentration leads to rapid VFA 

production within a continuous biogas reactor. 

• The optimum co-digestion of U. lactuca is 25% with 75% dairy slurry at an OLR of 

between 2 and 2.5 kg m3 d-1. Even at this low OLR stability issues arose over the 

period of 40 weeks. This was due to microbial population depletion over time due 

to chloride or salinity associated issues.  

• Anaerobic digestion of U. lactuca indirectly inhibits acetogenic and methanogenic 

processes, with ammonia showing the strongest causative correlation. Through the 

use of 16S rDNA analysis, it is shown that for high U. lactuca volumes, decreasing 

the OLR was not sufficient to recover the acetoclastic methanogens required to 

remove acetic acid and prevent over-loading. Neither could the system retain 

hydrogenotrophic methanogens. At low U. lactuca volumes, inhibition of 

acetogenesis caused Methanosarcina populations to shrink, affecting biogas yield. 

Chloride accumulated but did not clearly correlate with inhibition. Effects of U. 
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lactuca loading rates significantly affected community makeup, with higher U. 

lactuca loading rates characterised by diverse, facultatively anaerobic, marine and 

halotolerant taxa, lack of methanogens, and a predicted reliance on alternative 

carbon metabolism 

• In light of resulting data from trials with U. lactuca, it is recommended that further 

trials be conducted with lower percentages of U. lactuca and dairy slurry (< 25%). 

Also that possibly a third substrate be co-digested with U. lactuca and dairy slurry 

in a bid to increase biogas yields, possibly using grass silage.  

• Potentially, Ireland can establish a strong AD industry with a combination of 

specific feedstocks particularly from diverting wastes streams from landfill to 

biogas production. The opportunity of converting industrial organic wastes to 

biomethane could be very effective. A potential output of over 100 PJ of energy 

potential could be captured if milk processing and agricultural wastes were 

streamed to an energy recovery system like AD.  

• Milk processing wastes in particular offer a great potential in terms of reaching the 

RES-T of 10%. Over 6 times the 10% RES-T target of 18.8 PJ could be met if dairy 

processers and creameries combined and sent their waste to biogas facilities. 

Macro algae can also pay a part in meeting these targets as S. latissima showed 

greatest potential as a biofuel, yielding 10,244 CH4 m3 ha-1 yr-1.  

• A final recommendation is that biogas research is added to future mandates and 

provisions in governmental poloicies. Where Ireland has now began to fall behind 

in its initial RES-T targets which are set for the year 2020. It is necessary that as a 

nation Ireland achieve it’s initial targets to finally achieve the greater goals of 2050 

which see a net reduction of 80% of C02 emissons based on 1990 levels. Policy 

makers need to be aware and where possible, implement biogas systems into 

future strategies to increase penetration of renewables into the energy markets. 
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Future work 

• Co-digestion of seaweed species with slurries 

• Greater levels of detail of the yields associated with seaweeds which are cultivated 

or beach cast. The natural harvest tends to be older and accumulate heavy metals. 

Cultivated seaweeds are newer and do not accumulate the same levels of heavy 

metals. There is a lack of literature available on seaweed biogas. An economic 

assessment is essential to determine the commercial viability of second and third 

generation biofuels and the establishment of an AD industry in Ireland.  

 

Final remarks 

Ireland has a myriad of potential substrates for anaerobic digestion. There is potential to 

meet RES-T targets through bio-methanation by the year 2020 from a combination of 

substrates from any of the 6 groups or 83 substrates investigated. The low hanging fruits 

are the waste feedstocks. Larger resources will necessitate crops, particularly marine crops 

such as seaweed. An economic analysis is required to determine which feedstocks are 

viable in terms of their characteristics and/or their transport distance to a biogas plant. 
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Appendix A: Evaluation of the biomethane potential from multiple 

waste streams for a proposed community scale anaerobic digester 
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This paper examines the biomethane potential from organic waste for a proposed community scale anaerobic digester in a
rural town. The biomethane potential test is used to assess the suitability of waste streams for biomethane production and
to examine the variation in biomethane potential between waste sub-streams. A methodology for accurately estimating the
biomethane potential from multiple heterogeneous organic waste substrates is sought. Five main waste streams were identified
as possible substrates for biogas production, namely Abattoir waste (consisting of paunch and de-watered activated sludge);
cheese factory effluent; commercial and domestic food waste; pig slurry and waste water treatment sludge. The biomethane
potential of these waste streams ranged from as low as 99 L CH4 kg VS−1 for pig slurry to as high as 787 L CH4 kg VS−1

for dissolved air floatation (DAF) sludge from a cheese effluent treatment plant. The kinetic behaviour of the biomethane
production in the batch test is also examined. The objective of the paper is to suggest an optimum substrate mix in terms of
biomethane yield per unit substrate for the proposed anaerobic digester. This should maximize the yield of biomethane per
capital investment. Food waste displayed the highest biomethane yield (128 m3

n t−1) followed by cheese waste (38 m3
n t−1)

and abattoir waste (36 m3
n t−1). It was suggested that waste water sludge (16 m3

n t−1) and pig slurry (4 m3
n t−1) should not

be digested. However, the biomethane potential test does not give information on the continuous operation of an anaerobic
digester.

Keywords: anaerobic digestion; biogas; biomethane potential test; waste to energy

1. Introduction
1.1. Benefits of anaerobic digestion in waste treatment

and energy recovery
Anaerobic digestion uses a large variety of organic sub-
strates to produce biogas. Germany has over 6000 anaerobic
digesters with energy crops as the dominant feedstock.[1]
However with world food prices continuing to rise into the
foreseeable future, there is much international concern over
the use of energy crops for fuel production. This concern
can be seen in the latest amendment to the European Union
renewable energy directive [2] as Europe seeks to introduce
a limit to the contribution made from liquid biofuels pro-
duced from food crops, such as those based on cereals and
other starch rich crops, sugars and oil crops. Attention has
been redirected to utilizing waste and residues for energy
recovery. The renewable energy directive [3] states that bio-
fuels produced from wastes, residues, non-food cellulosic
material and ligno-cellulosic material shall be considered at
twice their energy value for assessment of compliance with
the 2020 target of 10% renewable energy supply in trans-
port. This suggests that compressed biomethane produced
from food waste and residues are more sustainable transport

∗Corresponding author. Email: jerry.murphy@ucc.ie

biofuels than first generation food crop-based biofuels such
as ethanol produced from wheat. The typical greenhouse
gas savings (as compared with the displaced fossil fuel)
for compressed biomethane from municipal solid waste
is quoted as 80%. This may be compared with 32% for
wheat ethanol and 45% for rapeseed biodiesel.[4] One of
the advantages of anaerobic digestion is the flexibility in
substrates that may be used to produce biogas and the flex-
ibility in the use of the biogas. Biogas (which is between
50% and 70% methane) may be used as renewable heat,
renewable electricity or if upgraded to biomethane (∼98%
methane) it may be used as a renewable gaseous transport
biofuel in compressed natural gas vehicles.

1.2. Anaerobic co-digestion of organic wastes
There have been many previous studies on the co-digestion
of agricultural slurries and energy crops or organic wastes,
however, there are limited publications on the assessment
of multiple waste streams for a single anaerobic digestion
process. As the spectrum of potential substrates for bio-
gas production broadens to include more organic wastes

© 2013 Taylor & Francis
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Evaluation of the biomethane potential from multiple waste streams for a proposed 

community scale anaerobic digester  
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Abstract 

This paper examines the biomethane potential from organic waste for a proposed 

community scale anaerobic digester in a rural town. The biomethane potential test is used 

to assess the suitability of waste streams for biomethane production and to examine the 

variation in biomethane potential between waste sub streams. A methodology for 

accurately estimating the biomethane potential from multiple heterogeneous organic 

waste substrates is sought. Five main waste streams were identified as possible substrates 

for biogas production, namely: Abattoir waste, (consisting of paunch and dewatered 

activated sludge); cheese factory effluent; commercial and domestic food waste; pig slurry; 

and waste water treatment sludge. The biomethane potential of these waste streams 

ranged from as low as 99 L CH4 kg−

1 VS for pig slurry to as high as 787 L CH4 kg−

1 VS for 

dissolved air floatation sludge from a cheese effluent treatment plant. The kinetic 

behaviour of the biomethane production in the batch test is also examined. The objective 

of the paper is to suggest an optimum substrate mix in terms of biomethane yield per unit 

substrate for the proposed anaerobic digester. This should maximise the yield of 

biomethane per capital investment. Food waste displayed the highest biomethane yield 

(128 m3 t-1) followed by cheese waste (38 m3 t-1) and abattoir waste (36 m3 t-1). It was 

suggested that waste water sludge (16 m3 t-1) and pig slurry (4 m3 t-1) should not be 

digested. However the biomethane potential test does not give information on the 

continuous operation of an anaerobic digester.  

Keywords: anaerobic digestion; biogas; biomethane potential test; waste to energy; 

Introduction 



Biogas Production from Novel Substrates 

 

 

- 188 - 
 

1.1 Benefits of anaerobic digestion in waste treatment and energy recovery 

Anaerobic digestion uses a large variety of organic substrates to produce biogas. Germany 

has over 6,000 anaerobic digesters with energy crops as the dominant feedstock [1]. 

However with world food prices continuing to rise into the foreseeable future, there is 

much international concern over the use of energy crops for fuel production. This concern 

can be seen in the latest amendment to the EU renewable energy directive [2] as Europe 

seeks to introduce a limit to the contribution made from liquid biofuels produced from 

food crops, such as those based on cereals and other starch rich crops, sugars and oil crops. 

Attention has been redirected to utilising waste and residues for energy recovery. The 

Renewable Energy Directive [3] states that biofuels produced from wastes, residues, non-

food cellulosic material and ligno-cellulosic material shall be considered at twice their 

energy value for assessment of compliance with the 2020 target of 10% renewable energy 

supply in transport. This suggests that compressed biomethane produced from food waste 

and residues are more sustainable transport biofuels than first generation food crop based 

biofuels such as ethanol produced from wheat. The typical greenhouse gas savings (as 

compared to the displaced fossil fuel) for compressed biomethane from municipal solid 

waste (MSW) is quoted as 80%. This may be compared with 32% for wheat ethanol and 

45% for rapeseed biodiesel [4]. One of the advantages of anaerobic digestion is the 

flexibility in substrates that may be used to produce biogas and the flexibility in the use of 

the biogas. Biogas (which is between 50 and 70% methane) may be used as renewable 

heat, renewable electricity or if upgraded to biomethane (~98% methane) it may be used 

as a renewable gaseous transport biofuel in compressed natural gas vehicles.  

 

1.2 Anaerobic co-digestion of organic wastes 

 

There have been many previous studies on the co-digestion of agricultural slurries and 

energy crops or organic wastes, however there are limited publications on the assessment 

of multiple waste streams for a single anaerobic digestion process. As the spectrum of 

potential substrates for biogas production broadens to include more organic wastes and 

residues, a suitable method to determine the methane potential of a potential substrate is 

the biochemical methane potential (BMP) test. Such tests can provide information such as 



Biogas Production from Novel Substrates 

 

 

- 189 - 
 

the rate of material degradation and the expected methane yield per gram of material 

added, which is known as the specific methane yield.  

1.3 Feedstock sampling and screening for biomethane potential  

As the demand for selecting and pricing biomass substrate for anaerobic digestion 

continues to increase the biomethane potential test is an increasingly recognised tool for 

screening potential feedstocks for biomethane potential. Many anaerobic digesters treat a 

variety of organic wastes that may change throughout the year. Representative sampling 

can often be difficult to achieve in practise due to heterogeneity of certain waste streams, 

fluctuations can occur in daily waste production and in sampling location. Within certain 

processes there may be several sub streams of waste production which can have widely 

different characteristics and therefore will affect widely different biomethane yields. The 

importance of accurate feedstock sampling and analysis for biogas production cannot be 

under estimated [5]. The biomethane potential (BMP) test is arguably the most significant 

part of an initial substrate analysis for biogas production and has a major impact on the 

design of an anaerobic digester. The methodology used in the BMP test is extremely 

important. Various authors have indicated a potential for different results depending on 

the methodology chosen [6-9]. The BMP test aims to assess the biomethane yield per unit 

of mass of feedstock under favourable anaerobic conditions. The BMP result is usually seen 

as the maximum methane potential for a particular feedstock, however, the BMP does not 

exactly replicate conditions in a continuously feed AD system and therefore the BMP result 

should not be viewed as an absolute value. Thamsiriroj and Murphy [10] suggest that some 

reactor configurations and process parameters, such as a high solid retention time, may 

result in higher methane yields than the BMP test.  

1.4 Aims and Objectives  

This paper sets out a methodology to assess and screen potential substrates from five 

major waste streams for a proposed anaerobic co-digestion facility using the biochemical 

methane potential (BMP) test as a selection tool. The BMP test is also used to assess the 

level of variability of biomethane potential within the waste streams. The objective is to 

select substrates with a high methane production per unit mass which will lead to an 

economic digester design. This paper is part I of two papers in this issue. The second paper 

[11] examines the biomethane production and bioreactor performance from continuously 
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fed laboratory trials over a period of 8 months based on the selection strategy of this 

paper.  

 

2 Materials and Methods 

 

2.1 Methodology for assessing potential substrates for biomethane production 

The methodology used by the authors to assess the suitability of substrates for biogas 

production is as follows; 

• Carry out an ultimate and proximate analysis on samples of all potential 

substrates 

• Using values from ultimate analysis (CHN) use the Buswell equation to get a 

theoretical biomethane yield 

• Carry out a BMP test on each sample in triplicate 

• Compare the BMP yield to the theoretical yield to get a biodegradability index 

• Use BMP test data to select substrates for a preliminary design on expected 

biomethane yield 

• Carry out continuous lab scale AD trials to determine parameters such as 

organic loading rate and any inhibitory effects from the substrates (paper 

2/chapter 4).  

The results of the ultimate analysis were used to calculate the theoretical methane yield 

using the Buswell equation [12] (Equation 1) and the carbon to nitrogen ratio for each 

waste stream. 

"#	$%&' + () −	%* −
'
+,$+&	 → 	 (

#
+ +	

%
. −

'
*,	"$* 	+	(

#
+ −	

%
. +

'
*,	"&+ Eq. 1 

The biodegradability index is defined as the ratio of the biomethane yield from the BMP 

test expressed as a percentage of the maximum theoretical value based on the Buswell 

equation. This parameter can be used to assess the associated methane conversion 

efficiency of the waste material. 
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2.2 Experimental Outline 

Two rounds of BMP tests were conducted. The first round of tests was conducted to assess 

the BMP yield from composite waste samples collected by the waste producers. These 

samples were deemed to be representative samples for each of the five major waste 

streams (as shown in Figure 1) according to the waste producers. The second round of BMP 

tests was carried out to check for variation in BMP yield within waste streams and to check 

the difference between the BMP result of the composite samples and the weighted 

average BMP sub samples from the second round. Nine sub samples were tested for BMP 

in round 2. All samples were tested in triplicate to get a mean and standard deviation. By 

sampling each individual sub stream a more accurate estimation of the variation of biogas 

yield within each main waste stream can be achieved. In total there were 14 samples 

tested in triplicate for BMP between round 1 and 2. 

The five major waste streams which were investigated in round 1 were as follows: 

• Abattoir waste mix (paunch grass, green sludge and dewatered activated sludge at 

equal ratios based on mass of fresh matter) 

• Cheese process waste 

• Food waste mix (domestic and commercial food waste at equal ratios based on 

mass of fresh matter) 

• Pig slurry mix (slurry from weaners and fatteners at equal ratios based on mass of 

fresh matter) 

• Waste water treatment sludge – final sedimentation sludge 
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Figure 1 Major waste streams and sub streams considered for the anaerobic co-

digestion facility 

 

2.3 Waste Materials 

The five major waste streams and associated sub streams to be investigated for BMP for 

the proposed AD plant are shown in Figure 1. These five waste streams were identified as 

possible substrate sources for the proposed anaerobic digester as they are the most 

available locally produced wastes within a 20 km radius of the proposed site. 

1. Abattoir Waste: A local abattoir produces about 4700 tonnes per annum (t yr-1) of 

paunch content from the slaughter of cattle. Three categories of paunch and 

process sludge material were produced: paunch grass; green sludge; and 

dewatered activated sludge (DAS).  

2. Cheese processing waste: A cheese factory produces approximately 6000 (t yr-1) of 

treated sludge which includes biologically treated effluent (5000 t yr-1) and 

dissolved air floatation (DAF) sludge (1000 t yr-1).  

3. Food waste: A local waste collector operates a collection service for 1000 t yr-1
 of 

source segregated domestic and commercial food waste. The quantity of domestic 

household source separated food waste is expected to significantly increase over 



Biogas Production from Novel Substrates 

 

 

- 193 - 
 

the next two years due to the implementation of national organic waste separation 

policy. It is estimated that approximately 5000 tonnes per annum of source 

separated domestic food waste will be collected in the area once the waste 

separation policy is implemented.  

4. Pig slurry: a local pig farm produces 20,500 t yr-1
 of pig slurry. The pigs are housed 

on concrete slats which allow slurry to flow to under-floor pits. Slurry samples were 

collected from weaners (young pigs from 3 months) and from fatteners (maturing 

pigs for market).  

5. Waste water treatment sludge: the local waste water treatment plant is licensed to 

treat a maximum of 6,500 population equivalent. The characteristics of the waste 

samples are shown in table 1.  
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2.4 Sampling Technique 

The standards VDI [13] and ISO 5667 [14] were followed for sampling methodology. For 

solid material such as brown bin waste, a representative sample was obtained by taking a 

large sample from different locations in the bulk material. This large sample was spread on 

a clean surface and then mixed well. A cross was drawn through the middle of the spread 

sample, and two opposite quarters were removed. The remaining two quarters were 

spread and mixed again, and again a cross was drawn and two quarters removed. This 

process was repeated until the required amount of sample was obtained [5]. Liquid 

feedstocks were sampled at different frequencies, liquid levels and process streams to 

ensure good representation. Solid waste materials such as abattoir waste, food waste and 

waste water treatment sludge were processed through a food mincer (Buffalo 800W) to a 

particle size of less than 5mm. Liquid waste such as pig slurry and cheese processing 

effluent were homogenised in a blender. All samples were stored in a freezer at - 20°C until 

required.  

2.5 Source of Inoculum  

The inoculum for round 1 of the BMP tests was obtained from a farm scale anaerobic 

digester (farm A) operating at mesophilic temperatures, treating mostly cattle slurry and a 

small portion of grease trap waste from a local catering premises. The approximate feed 

ratio of cattle slurry to grease trap waste was 9:1 on a volumetric basis. Inoculum from 

farm A was incubated at 35 °C for 3 weeks prior to the BMP round 1. The inoculum had a 

pH of 7.9, total solids (TS) of 33.0 gTS kg-1
 and volatile solids (VS) content of 17.1 gVS kg-1

 

after passing through a 2mm sieve. Inoculum used in round 2 BMP tests was sourced from 

another farm scale anaerobic digester (farm B) operating at mesophilic temperatures 

treating a mixture of cattle slurry, poultry litter and a small quantity of grease trap waste at 

an approximate ratio of 5:4:1 respectively, on a volumetric basis. The inoculum from farm B 

was incubated at 35 °C for 1 week prior to BMP round 2. The inoculum from round 2 had a 

pH of 7.95, TS of 59.4 gTS kg-1
 and VS content of 42.9 gVS kg-1

 after passing through a 2 mm 

sieve. The higher VS content in the inoculum from round 2 is due to the operation of higher 

total solids digestion process on the second farm which included finely macerated straw 

associated with the poultry litter as part of the substrate.  
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Both samples of inoculum were taken from stable anaerobic digesters operating on 

substrate mixes dominated by cattle slurry and at similar temperatures. Inoculum from 

both rounds was tested using cellulose as a standard control substrate (C12 H20 O10). The 

maximum theoretical methane yield from cellulose according to the Buswell equation is 

415 L CH4 kgVS-1. Inoculum from source A gave a specific methane yield of 354 ± 6 L CH4 kg−

1 

VS while inoculum from source B gave 371 ± 4 L CH4 kgVS-1. As both sources of inoculum 

gave over 85% of the theoretical max, this proves that a healthy consortium of anaerobic 

microbes were present in both rounds. Indeed some recent research carried out by Holliger 

and colleagues (2012) indicate that there is little or no influence on the source of inoculum 

or its adaptation on the BMP result for the tested substrates, provided the inoculum 

contains sufficiently diverse microbial communities to cope with the degradation of 

complex substrates [15]. In the study by Holliger and colleagues (2012) no significant 

difference was found between BMP results using four different sources of inoculum. In 

another inter-laboratory study by Raposo and colleagues (2011), related to BMP testing 

four substrates (starch, cellulose, gelatine and mung bean) the influence of inocula source 

was insignificant with respect to the extent of anaerobic biodegradation [16]. However the 

source of inoculum can have an effect on the kinetic rate of degradation.  

2.6 BMP Apparatus 

The apparatus used to conduct the BMP tests was the Automatic Methane Potential Test 

System II (Bioprocess Control Sweden AB). This laboratory instrument is specially designed 

for determination of the BMP of a substrate. The AMPTS II system consists of three major 

parts as can be seen in Figure 2.  
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Figure 2 BMP apparatus used in the paper: Automatic Methane Potential Test 

System II (Bioprocess Control Sweden AB). 1. Water bath with 15 No. 500 ml bottle 

reactors: 2. Carbon dioxide fixing unit: 3. Gas flow measuring unit  

1. A temperature controlled water bath with 15 bottle reactors of 500 ml volume, 

each equipped with a mixer that can be run in either continuous or intermittent 

mode  

2. A carbon dioxide fixing unit with an alkaline solution (3N sodium hydroxide) that 

absorbs the carbon dioxide and hydrogen sulphide produced during the anaerobic 

digestion process  

3. A gas measuring unit consisting of 15 parallel operating cells, where the gas is 

measured through water displacement. When approximately 10 ml of gas has been 

accumulated each cell opens and releases the gas. For each opening, the time, 

temperature and pressure are registered and stored locally in an embedded 

Central Processing Unit (CPU). Based on these measurements, normalised (0°C, 1 

atm and dry gas) accumulated gas production and gas flow rate are calculated.  

The BMP tests were performed with a working volume of 400 ml. The ratio of inoculum to 

substrate was chosen to be 2:1 on a volatile solids (VS) basis. The inoculum to substrate 

ratio is a critical parameter in conducting a BMP test according to the Anaerobic Digestion 

Specialist Group of the International Water Association [6]. A ratio of 2:1 or greater of 

inoculum to substrate on a VS basis is recommended for BMP trials to limit any inhibitory 

effects due to the chemical composition of the substrate such as inhibition associated with 

accumulation of ammonia and volatile fatty acids (VFA) [6, 7, 16]. 
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If several substrates are to be tested with the same inoculum, the amount of inoculum 

used in each bottle is calculated in accordance with the substrate with the lowest VS 

content. This amount of inoculum is then subsequently used for the other substrates and 

the amount of substrate is then adjusted so that the desired VS ratio is achieved. In this 

way only one set of blanks (corresponding to the amount of inoculum added in each 

reactor) is used. If some reactors contain a total volume less than 400 ml then these 

reactors are topped up to 400 ml with de-ionized water. The amount of inoculum to be 

used is calculated in accordance with equation 5.4 which is derived from equations 5.2 and 

5.3. The mass of substrate on a VS basis is calculated based on equation 5.5. The adjusted 

mass for the other test substrates is calculated using equation 5.6.  

 

Where Min is the mass of inoculum, Msub is the mass of substrate, VSin is the volatile solids 

content of the inoculum and VSsub is the volatile solids content of the substrate. The 

headspace volume (260ml) in each of the reactor bottles was flushed with nitrogen for 3-4 

minutes at a rate of 500ml per minute to eliminate oxygen and create a fully anaerobic 

environment. 

 

The BMP tests were run for a period of 30 days or until biogas production was less than 5ml 

day -1. The reactor bottles were maintained at a constant temperature 37oC (± 0.5 °C) by 

means of a water bath. The biogas is passed through a solution of sodium hydroxide (3 N 

NaOH) to remove carbon dioxide and other non methane gases. The methane is then 
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passed through individual gas tippers which automatically count and record gas flow. This is 

a well established method for removing carbon dioxide from the biogas in order to get an 

accurate measurement of methane flow rate [5]. Removing carbon dioxide using an 

alkaline solution prior to measuring the gas flow is desirable for volumetric methods based 

on water displacement since a certain amount of carbon dioxide will always dissolve in 

water leading to inaccurate measurements [17, 18].  

2.7 Analytical methods 

The total solids (TS) and volatile solids (VS) were determined gravimetrically using the 

methods described in APHA 2005 [19]. Each waste stream was sampled and tested in 

triplicate for total carbon (C), hydrogen (H) and nitrogen (N) on a total solids basis and was 

attained by ultimate analysis using element analyser (CE 440 Model) at the Chemistry 

Department in University College Cork, Ireland.  
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3 Results and Discussion 

3.1 Results from BMP trials 

The cumulative biomethane potential yields for round 1 and 2 of BMP tests are shown in 

Table 5.2. Methane yields are reported as the average of triplicate samples with standard 

deviations. Table 5.2 Biomethane potential and biodegradability of composite samples and 

sub Streams. 
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3.2 Abattoir Waste 

In the first round of BMP trials the mixed abattoir waste sample gave an average specific 

methane yield of 336 L CH4 kg−

1 VSwith a standard deviation (SD) of 4.5% (Table 5.2). The 

biodegradability of the abattoir waste from round one was 71% of the theoretical methane 

yield calculated by the Buswell equation. The composite abattoir waste sample tested in 

the first round of BMP tests consisted of equal parts paunch grass, green sludge and 

dewatered activated sludge on a fresh matter basis. Based on the volatile solids content of 

each abattoir sub stream, the ratio of the mixture on a volatile solids basis is 0.35 grass 

paunch, 0.41 green sludge and 0.24 DAS.  

The BMP results from round 2 shows that there is large variation in specific methane yield 

between the three sub streams of abattoir waste. The grass paunch sub stream gave an 

average methane yield of 238 L CH4 kg−

1 VSwith a SD of 6.7%; the green sludge gave an 

average specific methane yield of 403 L CH4 kg−

1 VS with a SD of 3.7%, while the de-watered 

activated sludge yielded the lowest average methane potential at 165 L CH4 kg−

1 VSwith SD 

of 4.6%. As shown in Table 5.2 all three abattoir sub streams had lower biodegradability 

than the composite sample in round 1. It is expected that the de-watered activated sludge 

(DAS) which has undergone a biological treatment process would have a reduced 

biomethane potential due to biological aerobic degradation of the waste stream. To 

compare the BMP results from round 1 and 2 the weighted average BMP of the 3 sub 

streams from round 2 is compared to that of round 1. The weighted BMP mix is calculated 

based on the specific methane yield of each abattoir sub stream (in round 2) multiplied by 

the respective ratio of sub stream used in round 1 on a volatile solids basis.  

Weighted BMP mix = (0.35 * Paunch grass) + (0.41 * Green sludge) + (0.24 * DAS) The mean 

weighted BMP result is 288 ± 11 L CH4 kg−

1 VS. Based on this calculation the average specific 

methane yield from round 2 is approximately 14% less than was achieved in round 1. Using 

the two-sample t-test for equal variances (t = 4.51, p < 0.0107 ), there is a statistically 

significant difference between the weighted BMP from round 2 and the actual BMP result 

of the composite mixed sample in round 1 with 95% confidence. This indicates a positive 

synergistic effect in co-digestion of the three sub streams as opposed to mono digestion of 

each sub stream. This can be attributed to improvement of the C:N ratio. For example the 

C:N ratio of the DAS is 6.3, while the C:N ratio of the composite is 15.2. Although there 



Biogas Production from Novel Substrates 

 

 

- 202 - 
 

have been many studies done on anaerobic digestion of mixed slaughter house waste, few 

studies assess only the paunch content from ruminants. Palatsi and colleagues (2011) 

achieved methane potentials of 270-300 L CH4kg COD-1
 (208-230 L CH4 kg−

1 VS) from mixed 

pig and cattle slaughterhouse wastes [20]. Wang and Banks (2003) previously achieved 210 

L CH4per kg TS added using a two-stage anaerobic digestion system for treating mixed 

abattoir wastes [21]. Abattoir waste such as paunch content from ruminants is desirable as 

a co-substrate for AD due to the presence of ruminant bacteria which produce enzymes 

that help hydrolyse complex carbohydrates such as cellulose [22].  

The abattoir waste stream as produced at the cattle slaughtering facility in this study 

produces different quantities of waste sub streams. The abattoir waste is dominated by the 

paunch grass sub stream at the approximate ratio of 2.5 paunch grass to 1.5 de-watered 

activated sludge (DAS) to 0.7 green sludge on a fresh matter basis. The weighted average 

biomethane potential from the abattoir waste is calculated based on the BMP results from 

round 2 multiplied by the proportions at which each material occurs. Weighted average 

methane yield from abattoir waste as it occurs in the processing plant is estimated as 

follows; [(2.5 * 238) + (1.5 * 165) + (0.7 * 403)] / 4.7 = 239 L CH4kgVS-1.  

This can be viewed as a conservative estimate as the BMP results from the composite 

sample in round 1 indicate that there may be positive synergetic effects from the co-

digestion of the three sub-streams which may increase the actual BMP yield of the mix. 

3.3 Cheese Processing Waste 

The cheese process effluent from round 1 gave a maximum BMP of 454 L CH4 kg−

1 VSwith a 

SD of 4.3%; this was 89% of the theoretical methane yield calculated by the Buswell 

equation (Table 5.2). In round 2 the dissolved air floatation (DAF) sludge yielded a BMP of 

787 L CH4 kg−

1 VS. DAF is the highest methane yielding substrate of all sub streams tested; 

this can be attributed to the high carbon to nitrogen ratio of 50 which is also the highest of 

all substrates tested. DAF is known to contain dissolved fats from the cheese process 

effluent. The bio-treatment sludge gave an average methane yield of 461 L CH4 kg−

1 VS 

which is 1.5% higher than the previous BMP result for cheese waste in round 1 and is 

within the standard variation of 4.3% of the previous BMP result from round 1. It was 

noted that the composite cheese process sample from round 1 was very similar to the bio-
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effluent sample in round 2. After further enquiries from the waste producers it was 

discovered that on the day of sampling the composite sample of cheese process waste 

from round 1 contained only the biologically treated effluent as the Dissolved Air Floatation 

(DAF) tank was not connected. Therefore the BMP results for cheese process waste in 

round 1 are representative of the bio-effluent sub stream.  

The two sub streams of cheese waste effluent tested in round 2 showed a relatively large 

difference in BMP with the DAF yielding 71% extra specific methane yield than the bio-

effluent sludge. Typically there are 5 parts biologically treated effluent to 1 part DAF at the 

cheese processing plant. This gives a weighted average of 515 L CH4 kg−

1 VSfor the 

combined sub streams. This value is higher than other reported values for cheese 

processing waste. Erguder and colleagues (2001) achieved a maximum of 424mL CH4 gCOD-

1
 using cheese whey [23] while Labatut et al. (2011) reported a BMP yield of 423.6 L CH4 kg−

1 

VS for cheese whey [24]. It can be concluded that the higher methane yields from cheese 

effluent in this study is attributed to the DAF portion of the waste stream which consists 

mostly of dissolved fats which contribute to higher methane yields.  

Harvest 2020- A vision for Irish agri-food and fisheries [25] has projected an increase of 50% 

in milk production to supply increasing world demand for dairy products. This will result in 

more cheese processing effluent requiring further treatment and additional waste 

management options. To this effect the inclusion of cheese processing sludge as a 

substrate for biogas production is an attractive waste to energy concept.  

3.4 Food Waste 

The composite mixed sample of domestic and commercial source separated food waste 

gave the highest specific methane yield of round one with an average BMP of 508 L CH4 kg−

1 

VSwith a standard deviation of 4.2%, giving approximately 95% of the theoretical methane 

as per the Buswell equation. Previously reported BMP yields from canteen food waste are 

similar to these results (480-530 L CH4 kgVS-1) [9].  

A large variation in biomethane potential was also noted between the two main 

substreams of source segregated food waste. Commercial food waste which is typically 

collected from canteens, restaurants, hotels and catering premises gives a relatively high 

methane potential of 535 L CH4 g VS-1
 with a SD of 3.7%. The biodegradability of the 
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commercial food waste is 97% of the theoretical which indicates very good degradation 

under anaerobic conditions. This BMP result for commercial food waste is similar to the 

maximum BMP yield from university canteen waste of 527 L CH4 g VS-1
 previous observed 

by Browne and Murphy (2013) for canteen food waste [9]. The domestic food waste 

samples gave an average methane potential of 419 L CH4 kg−

1 VS with a larger SD of 11% 

and biodegradability of 85%. Zhang and colleagues (2012) achieved between 445-456 L CH4 

kg−

1 VS from domestic source segregated food waste [26]. The BMP result for domestic 

food waste is approximately 22% lower than the BMP for commercial food waste and is 

due to the physiochemical differences between the two food waste sub streams as shown 

in Table 5.1. The variability in BMP yield from the domestic food waste stream is larger 

than that of the commercial waste stream; however the variability in BMP yield between 

waste streams was not found to be statistically significant using the Ftest two sample for 

variances in Excel (p<=0.183, F=4.47). The weighted average BMP from food waste in round 

2 is 477 L CH4 kg−

1 VS. 

This is 6.1% less than the BMP from round 1 (composite mixed sample). Using the two-

sample t-test for equal variances t = 1.87, p < 0.135 (two tail), there is no significant 

difference between the weighted BMP from round 2 and the actual BMP result of the 

composite mixed sample in round 1 with 95% confidence. This indicates that the difference 

in BMP result between round 1 and 2 for food waste is attributed to the level of variability 

of BMP yields within the food waste streams. The BMP results for food waste samples in 

this study are higher than other reported methane yields for similar food waste substrates, 

Davidsson and colleagues (2007) reported methane yields of between 300-400 L CH4 kg−

1 

VS for a large number of source sorted OFMSW samples which had all been through 

different pretreatment processes [27]. In the current study, food waste samples were 

collected as produced therefore ensuring the samples had not undergone degradation and 

produced relatively higher methane yields.  

3.5 Pig Slurry 

The pig slurry gave much lower BMP results than expected, with an average methane yield 

of 99.3 L CH4 kg−

1 VSin round 1. This is about half the expected BMP yield reported in the 

scientific literature for pig slurry [28], typically in the range of 200-250 L CH4 kgVS-1. Astals 

and co-workers (2011) achieved methane yields of 188 L CH4 kg−

1 VS from batch mono-
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digestion of pig slurry [29]. Kafle and Kim (2013) reported BMP yields for pig slurry in the 

range of 259-268 ml CH4 g COD added [30].  

In round 2 pig slurry sub stream samples from weaners (young pigs about 28 days old) and 

fatteners (older pigs being prepared for market) were tested to confirm if the initial BMP 

results for mixed slurry were accurate. Similar to the pig slurry mix in round 1, slurry taken 

from the fattener’s sub stream of pig slurry, with a volatile solids concentration of 4.76% of 

total mass, gave a reduced average methane yield of 70 L CH4 kg−

1 VS. The slurry collected 

from the weaner’s slurry tank which had a lower volatile solids content of 3.28% of the 

total mass, yielded an extremely low specific methane yield of 38 L CH4 kg−

1 VS. The 

cumulative methane curve started to decrease after day 7 (at 38 L CH4 kg−

1 VS) and dropped 

to only 18 L CH4 kg−

1 VS by day 30. The rate of methane production from the inoculum 

alone (blank) was greater than that of the weaner pig slurry (with the same amount of 

inoculum as the blank). This indicates that the weaner pig slurry sampled may have 

contained toxins or inhibitors to the anaerobic inoculum. The first sample of mixed pig 

slurry used in round 1 BMP trials had a volatile solids concentration of only 1.35% of the 

total mass. It was initially thought that the low methane yield from pig slurry in round 1 

was possibly due to an error in sampling. However after additional sampling and testing of 

individual sub streams of pig slurry in round 2, even lower BMP yields were achieved. 

 The reason as to the low methane yields from pig slurry is unclear; great effort was taken 

in the second round of BMP trials to attain slurry samples from different depths in the 

slurry tank and samples were well mixed and homogenised prior to the BMP tests. One 

hypothesis is that the weaner slurry may have been contaminated with a bio-toxic 

substance such as an anti-biotic. However a bio-toxicology test is beyond the scope of this 

paper. In this particular case study it is recommended that pig slurry would not be included 

as part of the substrate mix due to its low methane yield and low solids content.  

3.6 Biomethane kinetics 

The characteristics of biomethane production were examined by using the modified 

Gompertz equation to predict cumulative biomethane production in batch mode [30- 32]. 

Biomethane production can be predicted as follows; 

���� = � ∙ exp{	− exp[	����∙�� �∆ − ��] + 1}  Eq. 7.1 
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Where, 

M is the cumulative methane yield a given time (L CH4 g VS-1), 

P is the max methane potential (L CH4 kg−

1 VS) from BMP test, 

Rmax is the maximum methane production rate (L CH4 kg−

1 VS d-1), 

e is the mathematical constant = 2.7183, 

λ is the lag phase for methane production to begin (days), 

t is the time (days). 

Rmax and λ are can be determined by non linear regression using the SOLVER function in 

Microsoft Excel, which employs an iterative least squares fitting routine to produce the 

optimal goodness of fit between data and function. The statistical indicators, correlation 

coefficient (R2) and root mean square error were calculated [33].  

The cumulative methane production curves from round 1 BMP tests shown in figure 5.3 

have a slightly S-shape or sigmoid shaped cumulative curves which indicate a delay in 

methane production. This time lag is most noticeable for samples tested using inoculum 

from farm A during round 1 BMP trials. This inoculum was incubated for a longer period of 

time (3 weeks) prior to the commencement of BMP tests than inoculum from farm B (1 

week). The lag time in the first round of BMP tests is between 6.4 and 7.3 days for abattoir, 

cheese and food waste but is 0.5 day for wastewater treatment sludge and 0 for slurry. All 

substrates have a BMP half life (BMP T0.5) of less than 13 days which indicates that these 

waste materials are readily biodegradable under favourable anaerobic conditions. The 

model curve fitting generated using the modified Gompertz equation, gave a coefficient of 

determination of greater than 0.95 for the all waste streams in round 1, which indicates a 

very close fit.  
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Figure 3 (a) BMP of abattoir waste round 1 & 2 (b) BMP of cheese processing waste 

round 1 & 2 (c) BMP of food waste round 1 & 2 
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The time lag for methane production in the second BMP trial was found to range from 0 to 

3 days. All substrate samples tested in round two have a BMP half life (BMP T0.5) of less 

than 9 days which indicates that these waste materials are readily biodegradable under 

favourable anaerobic conditions. Except for the weaner’s pig slurry sample, the curve fits 

for all the waste streams in round 2 have a coefficient of determination of greater than 

0.95 which indicates a very close fit. The kinetic parameters of the modified Gompertz 

equation are shown in Table 5.3. 

 

3.7 Methane potential per mass of substrate 

Typically for an operator of an anaerobic digester the input substrate is best described in 

terms of wwt or actual weight arriving at the facility. Methane production is best 

understood in terms of m3of methane per tonne of substrate delivered to the facility. The 

methane potential per tonne of substrate is outlined in Table 5.4. The food waste is the 
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highest yielding substrate per tonne of wet weight (128 m3
 CH4 t -1 wwt) followed by the 

cheese waste and the abattoir waste (38 and 36 m3 CH4 t-1
 wwt respectively). The 

wastewater sludge and the pig slurry are the weakest substrates (17 and 4.2 m3
 CH4 t -1 wwt 

respectively). The significance of volatile solids content may be noted immediately. The 

weighted average BMP result of cheese waste yielded 515 L CH4 kg−

1 VS with an average VS 

content of 7.5% VS, this equates to 38 m3 CH4 t-1
 wwt. This may be compared to the food 

wastes samples which yielded a similar, weighted average BMP of 512 L CH4 kg−

1 VS at a VS 

content of 25% of total weight equating to 128 m3
 CH4 t -1 wwt.  
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3.8 Suitability of waste substrates for commercial biogas production 

The total quantity of substrate available is approximately 33,000 tonnes per annum with an 

average methane yield of 19 m3 t-1
 wwt which would be expected to generate 
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approximately 629,000 m3
 of methane annually. This is a low average methane yield per 

tonne of feedstock and would not be deemed conducive to a financially viable biogas 

system. The Danish model typically is built upon a minimum average methane yield of 30 

m3 CH4 t-1[34]. With reference to Table 5.4 it may be noted that pig slurry accounts for 

approximately 67% of the total available feedstock. However it would only contribute 

approximately 14% of the total estimated methane yield. The value for the maximum BMP 

of pig slurry is particularly low (maximum of 99 L CH4 kg−

1 VS). The authors recommend that 

pig slurry should not be part of the feedstock for this digester system. The waste water 

treatment sludge (WWTS) only provides 2% of the total estimated methane yield from 3% 

of the total available waste. Final sludge from a typical extended aeration basin, as is used 

in this location, is considered a low methane yielding feedstock for anaerobic digestion. It is 

not recommended that the WWTS is part of this digester system based on the relatively 

low BMP yield of 19 m3 t-1
 of feedstock. Conversely in the case of food waste, 21% of the 

total estimated methane yield 

energy comes from only 3% of the total available feedstock. The objective of this proposed 

waste to biogas anaerobic digester is to have a cost effective design with an optimum 

specific volumetric methane yield. Therefore it is recommended that pig slurry and waste 

water treatment sludge be removed from the proposed AD substrates. The authors 

recommend that the design of the biogas plant should be based on three substrates: 

abattoir waste, cheese waste and food waste.  

3.9 Recommended waste substrates for proposed digester 

The scenarios include for substrates with a high specific methane capacity. Information 

from waste collectors in the region would suggest that the availability of source segregated 

food waste will increase (from a low base) over the next few years as landfill levies rise. An 

assumption is made that 4300 t yr-1
 of source separated food waste may be sourced. From 

Table 5.5 it may be noted that 947,600 m3
 of CH4 may be produced for 15,000 t of 

substrate. This equates to 63 m3CH4 per tonne of substrate. This is more than a three-fold 

increase in the specific methane capacity than from digestion of all substrates (see Table 

5.4: 19 m3 CH4 t
-1). By eliminating the lower methane yielding feedstocks such as pig slurry 

and WWTS a smaller digester volume with a higher volumetric methane yield will be 

achieved. This will improve the biomethane yield per unit of capital cost.  
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3.10 Limitation of designing anaerobic facilities based on BMP results 

The results of BMP tests yield data on the potential biomethane yield from substrates 

digested in an anaerobic digester. The test is however limited in its ability to model a 

continuous AD process. A continuously fed AD trial is required to assess important 

parameters such as determining the optimum organic loading rate and hydrolytic retention 

time. The monitoring of inhibitory compounds such as the accumulation of volatile fatty 

acids and ammonia is required to assess the long term suitability of substrates at a specific 

organic loading rate.  

4 Conclusions 

The BMP test can be used to find the variability of biomethane potential between waste 

sub streams, identify any potential toxic substrates and can also be used to examine the 

kinetics of biomethane production. The BMP results as presented in this paper suggest that 

abattoir waste, source separated food waste and cheese process effluent sludge are all 

potentially high methane yielding feedstocks. However waste water treatment sludge and 

pig slurry in particular were deemed to be unsuitable for commercial scale digestion due to 

their low solids content and low specific methane yield. Of the potential waste substrates 

the best estimated methane yields range from 128 m3 t-1
 wwt for source separated food 

waste to 36 m3 t-1
 wwt for abattoir waste. However there are limitations to the test as it is 

essentially a batch reactor with optimum conditions for biomethane production. A small 

scale continuously feed AD trial is necessary to more accurately assess the long term 

digestion stability of the nitrogen rich substrates outlined in this paper. This is dealt with in 

a following paper in this journal [11].  

Acknowledgements 



Biogas Production from Novel Substrates 

 

 

- 213 - 
 

Researchers were funded by Science Foundation Ireland (SFI), the Irish Research Council for 

Science, Engineering and Technology (IRCSET) and Bord Gais Energy (BGE). Laboratory 

equipment was funded by Bord Gais Networks (BGN). 

 

References 

[1] J.D. Murphy, R. Braun, P. Weiland, and A. Wellinger, Biogas from crop digestion, 

IEA Bioenergy, 2011.  

[2] EC, Proposal for a DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE 

COUNCIL amending Directive 98/70/EC relating to the quality of petrol and diesel fuels 

and amending Directive 2009/28/EC on the promotion of the use of energy from 

renewable sources, in Official Journal of the European Union, E. Union ed., Brussels, 

2012.  

[3] EC, Directive 2009/28/EC of The European Parliament and of The Council of 23 April 

2009 on the promotion of the use of energy from renewable sources and amending 

and subsequently repealing Directives 2001/77/EC and 2003/30/EC, Official Journal of 

the European Union, 2009.  

[4] N.E. Korres, A. Singh, A.S. Nizami, and J.D. Murphy, Is grass biomethane a 

sustainable transport biofuel?, in Biofuels, Bioproducts and Biorefining, 2010, pp. 310-

325.  

[5] B. Drosg, T. Al Saedi, R. Braun, and G. Bochmann, Analysis and Characterisation of 

Biogas Feedstocks, in The biogas handbook: Science, production and applications, M. 

Wellinger A., J.D., Baxter, D. ed., Woodhead Publishing, 2012.  

[6] I. Angelidaki, M. Alves, D. Bolzonella, L. Borzacconi, J.L. Campos, A.J. Guwy, S. 

Kalyuzhnyi, P. Jenicek, and J.B. Van Lier, Defining the biomethane potential (BMP) of 

solid organic wastes and energy crops: A proposed protocol for batch assays, in Water 

Science and Technology, 2009, pp. 927-934.  

[7] F. Raposo, C.J. Banks, I. Siegert, S. Heaven, and R. Borja, Influence of inoculum to 

substrate ratio on the biochemical methane potential of maize in batch tests, in 

Process Biochemistry, 2006, pp. 1444-1450.  



Biogas Production from Novel Substrates 

 

 

- 214 - 
 

[8] A.S. Nizami, A. Orozco, E. Groom, B. Dieterich, and J.D. Murphy, How much gas can 

we get from grass?, in Applied Energy, 2012, pp. 783-790. 

[9] J.D. Browne, and J.D. Murphy, Assessment of the resource associated with 

biomethane from food waste, in Applied Energy, 2013, pp. 170-177. 

[10] T. Thamsiriroj, and J.D. Murphy, Modelling mono-digestion of grass silage in a 2-

stage CSTR anaerobic digester using ADM1, in Bioresource Technology, 2011, pp. 948-

959.  

[11] E. Allen, J. Browne, and J.D. Murphy, Evaluation of the biomethane yield from co-

digestion of nitrogenous substrates, in Environmental Technology, 2013. [12] A.M. 

Buswell, and S.L. Neave, Laboratory studies of sludge digestion., in Illinois Division of 

State Water Survey, Bulletin No. 30., URBANA, ILLINOIS, 1930. [13] VDI, Fermentation 

of organic materials - Characterisation of the substrate, sampling, collection of 

material data, fermentation tests., 2006.  

[14] ISO 5667-1, Guidance on the Design of Sampling Programs and Sampling 

Techniques, in Water Quality-Sampling-Part 1:, ISO, 2006.  

[15] C. Holliger, N. Bachmann, H. Fruteau de Laclos, M. Deront, Y. Membrez, and A. 

Wellinger, Inoculum origin and adaptation had no influence on biomethane potential 

results with different substrates, in 4th International Symposium on Energy from 

Biomass and Waste, IWWG, Venice, Italy, 2012.  

[16] F. Raposo, V. Fernández-Cegrí, M.A. De la Rubia, R. Borja, F. Béline, C. Cavinato, G. 

Demirer, B. Fernández, M. Fernández-Polanco, J.C. Frigon, R. Ganesh, P. Kaparaju, J. 

Koubova, R. Méndez, G. Menin, A. Peene, P. Scherer, M. Torrijos, H. Uellendahl, I. 

Wierinck, and V. de Wilde, Biochemical methane potential (BMP) of solid organic 

substrates: evaluation of anaerobic biodegradability using data from an international 

interlaboratory study, in Journal of Chemical Technology & Biotechnology, John Wiley 

& Sons, Ltd., 2011, pp. 1088-1098.  

[17] M. Walker, Y. Zhang, S. Heaven, and C. Banks, Potential errors in the quantitative 

evaluation of biogas production in anaerobic digestion processes, in Bioresource 

Technology, 2009, pp. 6339-6346.  



Biogas Production from Novel Substrates 

 

 

- 215 - 
 

[18] A. Rozzi, and E. Remigi, Methods of assessing microbial activity and inhibition 

under anaerobic conditions: a literature review, in Re/Views in Environmental Science 

& Bio/Technology, Kluwer Academic Publishers, 2004, pp. 93-115.  

[19] APHA, Standard Methods for the Examination of Water and Wastewater, in (21st 

ed.)American Public Health Association, American Water Works Association, Water 

Environment Federation (2005), 2005.  

[20] J. Palatsi, M. Viñas, M. Guivernau, B. Fernandez, and X. Flotats, Anaerobic 

digestion of slaughterhouse waste: Main process limitations and microbial community 

interactions, in Bioresource Technology, 2011, pp. 2219-2227.  

[21] Z. Wang, and C.J. Banks, Evaluation of a two stage anaerobic digester for the 

treatment of mixed abattoir wastes, in Process Biochemistry, 2003, pp. 1267-1273.  

[22] Z.-H. Hu, and H.-Q. Yu, Application of rumen microorganisms for enhanced 

anaerobic fermentation of corn stover, in Process Biochemistry, 2005, pp. 2371-2377.  

[23] T.H. Ergüder, U. Tezel, E. Güven, and G.N. Demirer, Anaerobic biotransformation 

and methane generation potential of cheese whey in batch and UASB reactors, in 

Waste Management, 2001, pp. 643-650.  

[24] R.A. Labatut, L.T. Angenent, and N.R. Scott, Biochemical methane potential and 

biodegradability of complex organic substrates, in Bioresource Technology, 2011, pp. 

2255-2264.  

[25] Teagasc, Agriculture in Ireland, 2013.  

[26] Y. Zhang, C.J. Banks, and S. Heaven, Anaerobic digestion of two biodegradable 

municipal waste streams, in Journal of Environmental Management, 2012, pp. 166-174. 

[27] A. Davidsson, C. Gruvberger, T.H. Christensen, T.L. Hansen, and J.l.C. Jansen, 

Methane yield in source-sorted organic fraction of municipal solid waste, in Waste 

Management, 2007, pp. 406-414.  

[28] S. Xie, G. Wu, P.G. Lawlor, J.P. Frost, and X. Zhan, Methane production from 

anaerobic co-digestion of the separated solid fraction of pig manure with dried grass 

silage, in Bioresource Technology, 2012, pp. 289-297.  



Biogas Production from Novel Substrates 

 

 

- 216 - 
 

[29] S. Astals, M. Ariso, A. Galí, and J. Mata-Alvarez, Co-digestion of pig manure and 

glycerine: Experimental and modelling study, in Journal of Environmental 

Management, 2011, pp. 1091-1096.  

[30] G.K. Kafle, and S.H. Kim, Anaerobic treatment of apple waste with swine manure 

for biogas production: Batch and continuous operation, in Applied Energy, 2013, pp. 

61-72. [31] Budiyono, I.N. Widiasa, S. Johari, and Sunarso, The kinetic of biogas 

production rate from cattle manure in batch mode, in World Academy of Science, 

Engineering and Technology, 2010, pp. 983-988.  

[32] A. Nopharatana, P.C. Pullammanappallil, and W.P. Clarke, Kinetics and dynamic 

modelling of batch anaerobic digestion of municipal solid waste in a stirred reactor, in 

Waste Management, 2007, pp. 595-603.  

[33] A.M. Brown, A step-by-step guide to non-linear regression analysis of 

experimental data using a Microsoft Excel spreadsheet, in Computer Methods and 

Programs in Biomedicine, 2001, pp. 191-200.  

[34] J.D. Murphy, and E. McKeogh, The benefits of integrated treatment of wastes for 

the production of energy, in Energy, 2006, pp. 294-310.  

 

 

 

 

 

 

 

 

 

 



Biogas Production from Novel Substrates 

 

 

- 217 - 
 

Appendix B: Microbial community analysis of anaerobic bacteria and 

the effect on biogas production stability on the digestion of macro 

algae and dairy slurry 
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Abstract  

 Algae represent ideal resources as next generation biofuels, but necessitate a 

refinement of the anaerobic digestion process. In a previous study, contrasting mixes of 

dairy slurry and the macroalga U. lactuca were anaerobically digested in continuously 

stirred tank reactors for 40 weeks. Higher proportions of U. lactuca in the feedstock led to 

inhibited digestion, rapid accumulation of volatile fatty acids, and required reductions in 

organic loading rate. Building on this work, the worst (R1) and best (R6) reactors were 

investigated via 16S pyrosequencing, allowing the microbial communities of both reactors 

to be characterised as they developed over a 39 and 27-week period, respectively. 

Comparison of the different communities revealed clear differences in taxonomy, 

metabolic orientation and mechanisms of inhibition, while constrained canonical 

ordination showed ammonia and biogas yield to be the strongest factors differentiating the 

two reactor communities. Significant biomarker taxa and predicted metabolic activities 

were found for successful and failing anaerobic digestion of U. lactuca. Acetoclastic 

methanogens were inhibited early in R1 operation, followed by gradual decline of 

hydrogenotrophs. Near total loss of methanogens led to an accumulation of acetic acid that 

crippled R1, while a slow reduction in biogas yield late in R6 operation is attributed to 

inhibition of acetogenic rather than methanogenic activity.. The improved performance of 

R6 was attributed to a large Methanosarcina population which enabled rapid removal of 

acetic acid, providing favourable conditions for substrate degradation.  

Keywords: Biogas, algae, co-digestion, ammonia, inhibition, 16S, biomarker, U. lactuca, 

Methanosarcina, Hydrogenispora, Psychrobacter 
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1. Introduction  

As the application of anaerobic digestion (AD) and biogas production garners support with 

both national energy suppliers and public interest, the need to fully optimise all process 

parameters involved with the bioconversion of feedstocks to bio-methane. The biogas 

production process has seen advances in industrial application in recent times courtesy of 

increased laboratory research. Initial biogas research was initiated in the 1930’s where, [1] 

developed a greater understanding of the stages and steps involved in the biochemical 

conversion of organic matter in AD. The constant advances and uptake of biogas use and 

industrial installation has driven the need to optimise yields of specific substrates and the 

process itself. Such parameter guidelines exist in terms of inhibitory elements such as, 

volatile fatty acids (VFAs), ammonia (total ammonical nitrogen) inhibition and pH ranges 

within biogas reactors [2]. However these environmental factors only exist as values or 

concentrations in terms of their presence with a reactor.  

These parameters mentioned give little insight as to the actual micro bacteria or taxonomy 

of the AD process. There is a need to identify which phylum of bacteria and sub-phylum 

exist within a biogas reactor to accurately identify what is happening within the biogas 

reactor. It took until 2007 for the first study to be undertaken on a conventional biogas 

reactor system digesting plant biomass in a continuously stirred tank reactor (CSTR) and 

the analysis of the microbial population or phylum of bacteria which exist within CSTR 

biogas reactor [3]. From then there has been an increase in the publications in this newly 

researched area of biogas analysis. A constraint however of this research is that with their 

being millions of various AD bacterial species, coupled with the fact there are 4 key stages 

of the AD process with all having specific bacteria communities [4]. Compiling a database of 

all bacteria phyla and their correlation to environmental conditions is difficult for these 

reasons. This issue is further complicated with the fact that each biogas reactor is different 

from the next, due to the various alternative feedstocks it may be fed. A method to 

optimise biogas reactors is to acclimatise an inoculum and over time and the reactor 

contents over time to a specific substrate or multiple substrates, which can increase yield 

and reactor efficiency [5]. This acclimatisation is a development of distinct bacterial 

communities developing which thrive particularly on a specific substrate and accounting for 

a greater population of the taxonomy present in the reactor which are greater suited to 

digest such feedstocks, hence increasing biogas yields [6]. Specific issues which cannot be 
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described exactly by existing parameters such as the formation of foaming in a biogas 

reactor can be more closely examined by identification of a reactors taxonomy and analysis 

of the consortium of bacteria present [7] 

“Next generation” sequencing technologies (e.g. Pyrosequencing, Illumina) have become 

crucial to resolving biogas communities through generation of a microbial “census”, based 

on a population's signature 16S ribosomal subunit genes. Characterisation of whole 

environments based on 16S gene fragment sequences has been made feasible by the huge 

volume of sequences processed, relative ease of application to any sample type, and the 

swelling databases of annotated taxonomy against which to draw comparison. The utility of 

16S metagenomics is bolstered by precursor methods of 16S analysis - notably Denaturing 

Gradient Gel Electrophoresis (DGGE). By addressing the same genetic variation as 

metagenomics, DGGE allows robust preliminary exploration of community 

structure/diversity to be carried out in efficient compliment. The emphasis placed on 

biogas communities has also produced considerable advantages for molecular methods: in 

particular, a wealth of genomic sequence data on which to base analysis and further work.  

Furthermore as biogas research starts moves to new substrates such as macro-algae and 

third generation biofuels which can pose difficulties to the AD with low C:N ratios [8] and 

high concentrations of inhibitory constituents such as sulphur and sodium [9, 10]. The need 

to collectively identify microbial communities present or absent in a biogas reactor treating 

such substrates is necessary to tackle inhibitory pathways encountered.  The work in this 

paper sets out an objective of identifying the causes of microbial de-population of 2 biogas 

reactors which were operated for 9 months. The digesters treated a macro algae U. lactuca 

commonly known as “sea lettuce” and dairy slurry. U. lactuca is a green macro algae which 

has significantly troublesome physical characteristics associated to it such as a low C:N 

ratio, below 9:1 and high sulphur concentrations up to 3% [9]. Optimum C:N ratios are 

between 25 - 30:1 [11]. The need to determine the present methanogens was greatly 

required as failure occurred in various stages and rates with biogas reactors treating 6 

various ratios of u. lactuca. One reactor in particular showed no clear signs of conventional 

failure from increased VFA, TAN or trace element concentrations. The use of a molecular 

biology approach of genetic fingerprinting to establish microbial communities present in 

the digester at the time of performance drop off, may find an answer to these reactor 

inefficiencies.   
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2. Methods 

2.1 Biogas reactor configuration.  

A total of 6, 5 l one step CSTR were operated in parallel digesting mixes of U. lactuca and 

dairy slurry. 3 reactors treated dried U. lactuca in co-digestion mixes of 25, 50 and 75% 

with dairy slurry. This process was repeated for a further 3 reactors, substituting dried U. 

lactuca with a fresh sample of the algae substrate. The working volume of each of the 

biogas reactors was 4l. A specific volume of feed was inputted to each reactor each day 

which with an exact amount of digestate removed from the reactor to keep the volume 

constant at 4l. Initially each reactor was started with an OLR of 2 kg VS m3 d-1. Failure to 

obtain steady state biogas production was observed in 3 out of the 6 reactors with two 

further reactors reaching steady state production profiles but incurred heavy VFA inhibition 

with only one reactor achieving satisfactory yields. The 6 reactors which were trialled for a 

period of up to 42 weeks experienced a range of results in terms of VFA, biogas yields and 

trace element concentrations, which overall illustrated failure to establish high rates of 

substrate input. A clear observation from these trails to optimise the production of biogas 

was that, high percentages of U. lactuca in co-digestion mixes were overall a poor 

performing substrate and reduced reactor stability. The reactor digesting 25% fresh U. 

lactuca (R6) was the best performing reactor, which showed signs of stability in terms of 

VFA concentrations and yields at an OLR of 2.5 kg VS m3 d-1. R6 was one of the chosen 

reactors to be selected for further fingerprint rDNA to determine the microbial 

communities present within the reactor. The second reactor chosen was R1, which 

digested 75% dried U. lactuca and 25% dairy slurry. R1 was chosen on account that, out of 

the 5 reactors (R1 – R5) which experienced greater difficulties in biogas production it 

treated dried U. lactuca opposed to R6 (fresh U. lactuca)and it lasted for a longer digestion 

period than the alternative 2 reactors (R2 and R3) treating dried U. lactuca.  
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Figure 1. Schematic of Reactor set up for R1 and R6.  

A sample from the top, middle and bottom of the reactor was removed from R1 and R6 on 

a weekly basis to determine homogeneity between these three zones and ensure an 

adequate bacterial population was present with the reactor  

Reactor R1 was operated for a total 40 weeks. Initially an OLR of 2 kg VS m3 d-1 was used for 

R1. However failure to reach the designated yields after the first hydraulic retention time 

(HRT) and the increase in VFA concentration saw this OLR reduced to 1 kg VS m3 d-1. Steady 

state biogas production was achieved throughout this period. Samples were taken at weeks 

1, 5 , 13, 20, 30 and 39, spanning five retention times. R6 was also operated for 40 weeks. 

An OLR of 2 kg VS m3 d-1 was successfully maintained for R6 after a period of 3 HRTs. The 

OLR was increased to 2.5 kg VS m3 d-1. Steady state biogas production was achieved 

throughout this period. Samples were taken at weeks 1, 5, 13, 21 and 27, spanning four 

retention times. A gradual decline was observed in the final HRT for R6 without a 

corresponding increase in VFA or ammonia concentrations to account for this reduction. A 

stable temperature of 37oC was maintained throughout the course of the experimental 

trial. The decision to increase OLR was determined by two factors; VFA concentrations and 
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their effect on reactor performance in terms of biogas yields. This was determined exactly 

by the Nordmann [12] method, commonly known as the FOS:TAC ratio, which is a ratio of 

the volatile organic acids and the total inorganic carbonate. The operational ranges set out 

by this method dictates, as to whether the reactor is being over, under or fed satisfactorily. 

The second limitation was the biodegradability index (Bix), this index is simply the 

biochemical methane potential (BMP) yield obtained from a 30 day batch test on that exact 

substrate(s) divided by the specific methane yield (SMY) of that reactor. The closer a Bix is 

to 1 the better and even >1 is acceptable as residual feedstock may be retained in a reactor 

after a weekly period. A comprehensive detailing of the laboratory methods used to 

analysis all environmental factors of R1 and R6 is described by[9].  

2.2 Molecular Methods 

DNA extraction was carried out using the PowerSoil DNA extraction kit (MoBio, CA, USA), 

with a modified protocol: 1) wet-spin (30 seconds at 10,000 g) to remove an excess liquid 

fraction prior to cell lysis; 2) 3x cycles of 10 minute bead-beating followed by 5 minutes 

chilling at -20_C; 3) 2 washes of elution buffer. Extractions were performed in triplicate 

before combining equimolar quantities for each sample. Extractions were quantified by 

spectrophotometer (ND-1000, Thermo-Fisher, DE, USA) and viewed on 1% agarose gel with 

ethidium bromide (10mg:1ml agarose gel).  

Denaturing Gradient Gel Electrophoresis (DGGE) [13] was used to validate that the CSTR 

design provided a homogeneously mixed environment. The Reactor 3, week 18 timepoint 

was taken as an example of a stable methanogenic community (OLR=2.5kg VS m-3 d-1, avg. 

64% of BMP). Sample material for this time point consisted of digestate from the top, 

middle and bottom portion of Reactor 3 at week 18; following the above protocol, DNA was 

extracted from each of the three digestate samples and diluted to concentrations of 6 ng l-

1.  

For each sample (top, middle, bottom), primer pairs a340F/a1000R [14] and b27F/u1492R 

[15] were used to carry out an initial PCR covering the V3 to V5 and V1 to V3 16S regions 

for Archaea and Bacteria respectively. For Archaea, Phu Polymerase (New England Biolabs, 

MA, USA) was used with an initial denaturing step of 30 seconds at 98ºC, followed by 35 

cycles of 98ºC for 7 seconds, 63.6ºC for 30 seconds, 72ºC for 1 minute, and a final 

extension of 2 minutes at 72ºC. For Bacteria, DreamTaq Polymerase (Thermo-Fisher 
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Scientific Inc., MA, USA) was used with the program  was used with an initial denaturing 

step of 3 minutes at 95ºC, followed by 30 cycles of 95ºC for 1 minute, 50ºC for 1 minute, 

72ºC for 1 minute, and a final extension of 5 minutes at 72ºC.  To improve specificity [Boon 

et al., 2002], Nested amplicons were then generated from these products in a subsequent 

PCR using archaeal primers a344FGC/a915R [16] and bacterial primers b63FGC/u518R [17],  

incorporating a 40bp GC-clamp. PCR programs with initial denaturing steps of 5 minutes at 

94ºC were followed by 35 cycles of 94ºC, 65ºC, and 72ºC for 1 minute, and 92ºC, 59ºC,  and 

72ºC for 1 minute  for Archaea and Bacteria respecitvely, with final extension steps of 5 

minutes at 72ºC. Nested-PCR products were cleaned using a PCR Purification Kit (QIAGEN, 

Manchester, UK). 

DGGE was carried out on the D-CODE (BioRad, CA, USA) platform using polyacrylamide gel 

with a 20%-80% denaturing gradient of formamide and urea. Two wells were run per 

sample, each containing 25 µl PCR product. Gels were run at 75V for 17 hours at 60ºC. 

Once run, gels were incubated at 32ºC in 1x SYBR Gold (Thermo-Fisher Scientific Inc., MA, 

USA) for 20 minutes, then exposed to UV light and recorded on digital camera.  

Each sample was amplified in triplicate via polymerase chain reaction (PCR) using 

pyrosequencing primers with the following motif: adapter sequence (Roche-454 Lib-A and 

Lib-B chemistry); key sequence (TCAG); Roche-454 pyrosequencing MIDs 1-10 and 12 

inclusive; and 16S universal primers U-789F (5' TAGATACCCSSGTAGTCC 3') and U-1053R (5' 

CTGACGRCRGCCATGC 3') [18].  PCR used a program of initial denaturation at 94ºC for 5 

minutes, followed by 26 cycles of 30 seconds denaturing at 95ºC, 30 seconds annealing at 

53ºC, and 45 seconds of extension at 72ºC, with a final extension step of 72ºC held for 6 

minutes. Products in the expected range were extracted using a gel extraction kit (QIAGEN, 

Manchester, UK) which required subsequent use of a PCR purification kit (QIAGEN, 

Manchester, UK). Replicates were combined in equimolar quantities, and final 

pyrosequencing of samples was carried out by MACROGEN (Seoul, Republic of Korea). 

2.3 Bioinformatic Analysis 

Denoising was performed in Acacia [19] before import into the Quantitative Insights Into 

Microbial Ecology (QIIME) software pipeline [20] for demulitplexing, chimera-slaying, 

aligning, taxonomic assignment and exploratory analyses: Sequences were split into sample 

libraries with a maximum forward primer mismatch of 8bp; Chimera filtering was carried 
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out using USEARCH v6.1 [21]. Alignments and taxonomic assignments were carried out with 

reference to the Silva [22] 111 Database release at 97% similarity using PyNast [20]and the 

RDP Classifier 2.2 [23]. Tree building was carried out using FastTree [24]. Beta diversity was 

calculated using UniFrac [25]. 3D PCoA plots generated by Emperor [25]. 

Sequence data was combined with environmental data from Allen et al., 2014 inside the R 

statistics program [26]. R packages vegan and phyloseq [27] were used to subset OTUs by 

sample, reactor environment and perform statistical analysis. 

Greengenes release 13.5 [28]  was necessary to perform closed-reference OTU picking in 

QIIME prior to generating metabolic predictions with the HMP Unified Metabolic Analysis 

Network (HUMAnN) [29] package. Significant differences between the two reactors were 

then calculated using the LDA Effect Size (LEfSe) resource [30] on the Huttenhower Lab 

Galaxy server (Galaxy Ref 123) to analyse taxonomic and metabolic prediction data. 

 

3.0 Results and discussion 

 The previous study trialled the anaerobic digestion of varying ratios of U. lactuca 

and dairy slurry, demonstrating severe inhibition at higher U. lactuca laoding ratess. To 

determine the cause of inhibition, this study set out to characterize and contrast microbial 

communities within two reactors digesting opposite ratios of U. lactuca and dairy slurry. 

The significant composition of communities was determined, allowing characterisation of 

biomarker species and predicted metabolic activities for both reactors. Relationships with 

reactor process were then defined, illustrating a likely mechanism of reactor failure and the 

influence of U. lactuca on the microbiology of an anaerobic digester. 

3.1 Process results of biogas reactors, R1 and R6 

At steady state operation, the methane (CH4) yield per kilogram of volatile solids 

(kgVS-1) was similar between the two reactors: R1 produced an average 176.75 l CH4 kg−

1 

VS; R6 produced an average of 176.38 l CH4 kg−

1 VS. However, R1 could only maintain 

steady-state operation for 26 weeks, with a fluctuating biodegradability index (Bix) (0.40, 

0.84 and 0.69 for the total trial period), and low OLR of 1 kg VS m3 d-1. These fluctuations 

correlated with toxic concentrations of VFAs [31], and unfavourable Fos:Tac ratios (outside 
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the recommended range of 0.2 – 0.4). In comparison, R6 showed steady-state biogas 

production for all 40 weeks of trialling: Bix values of 0.95 and 0.90, Fos:Tac values 

consistently between 0.2 and 0.4, and low VFA levels even at the increased OLR of 2.5 kg VS 

m3 d-1. Comparison of reactor parameters clearly shows that R1 struggled at the higher U. 

lactuca composition, while R6 successfully digested the algae, at a higher OLR.  

 R1   R6  

Parameters HRT 1  HRT 2 HRT3 HRT 1 HRT 2 

Reactor type CSTR - - CSTR - 

% U. lactuca  75 (dried) - - 25 (dried) - 

TS (%) 29.61 - - 10.55 - 

VS (%) 18.42 - - 7.22 - 

Temperature (
o
C) 37 37 37 37 37 

OLR (kg VS m3 d-1) 2 1 1.5 2 2.5 

BMP (CH4 kg−

1 VS) 210 + 6.3 - - 183 + 7.8 - 

SMY (CH4 kg−

1 VS) 83.31 176.77 145.21 178.11 170.46 

Bix  0.40 0.84 0.69 0.95 0.90 

Methane content (%) 33 47 47 51 52 

VFA (mg l-1) 4954 4135 4355 1955 1720 

Fos:Tac  0.56 0.34 0.43 0.39 0.30 

TAN (mg l-1) 3443 5250 5300 2168 3000 

Table 1. Highlights of results of semi continuous digestion trials.  

 

3.2 Characterizing Community Makeup 

A full break down of  community abundances is given in Table 1 of Supplementary Data. 

Rarefaction curves and UNIFRAC Community distances are given as Figures 1 and 2 of 

Supplementary Data. 
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3.2.1 Sequencing Results and Diversity Measures 

Pyrosequencing returned 270,111 raw sequences: after denoising in Acacia and processing 

in QIIME, 89,251 (average length: 244bp) sequence reads were produced with an average 

of 8,114 reads per trial time-point.  

To ensure representative samples from both reactors, diversity metrics were calculated to 

estimate coverage of species diversity (Chao1 index) and species abundances (Simpson's 

Index). Rarefaction curves of these indices indicate that the most abundant species were 

thoroughly characterised in this study. However, the curves suggest that a wealth of low-

abundance Archaea, Bacteria and unidentified taxa remain undetected due to  sparse 

abundance.  

Both diversity indices (Chao1, Simpson's) were seen to decrease in later retention times 

and showed slight negative correlations with most process conditions; in particular CH4 

yield (Chao1: R=-0.64, Simpson's: R=-0.52) and biogas (Chao1: R=-0.62, Simpson's: R=-0.63). 

Rather than some direct interaction between biogas and diversity, this suggests the 

maturation of trophic systems in either reactor, where 'surplus' diversity is marginalized 

beyond the sequencing threshold. [32, 33] that species diversity forms an important 

reservoir of metabolic capability, invoked at establishment of reactor communities or 

during disruptions, being otherwise obscured by more abundant species.  
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3.2.2 Community Structure 

 

Table 2: Proportional abundances of the main community components. 

 

The QIIME pipeline identified 2,824 Operational Taxonomic Units (OTUs, each representing 

a presumed species of microbe) in the 89,251 sequence reads (where read counts act as 

proxy for population size, i.e. relative abundance). Singleton and doubleton OTUs 

(abundances < 3 reads) were discarded to reduce statistical noise, giving 1,320 OTUs 

(82,914 sequence reads). Of  the 1,320 OTUs, 1,057 were present in R1, 955 in R6. 

Taxonomic alignments provided by Silva [release 111] identified 2 phyla, at least 4 classes, 

5 orders, 7 families and 8 genera of Archaea (20 OTUs, 9,010 sequences), and at least 34 

phyla/candidate phyla, 44 classes, 86 orders, 124 families and 190 unique genera of 

Proportional Abundance in Sample

Archaea Reactor 6 – 75% dairy slurry : 25% Ulva

Genus: Week 1 Week 5 Week 13 Week 21 Week 30 Week 39 Week 1 Week 6 Week 13 Week 20 Week 27

Acetoclasts
Methanosarcina 1.10% 1.20% 0.10% 0.00% 0.00% 0.00% 9.70% 20.50% 24.10% 17.70% 18.30%

Methanosaeta 0.50% 0.20% 0.00% 0.00% 0.00% 0.00% 0.40% 0.20% 0.30% 0.10% 0.00%

Hydrogenotrophs

Methanobrevibacter 0.10% 0.00% 0.30% 0.30% 0.30% 0.10% 0.30% 0.70% 0.70% 0.30% 0.40%

Methanoculleus 0.10% 0.20% 0.60% 0.60% 0.40% 0.20% 0.20% 0.40% 0.10% 0.10% 0.20%

Methanobacterium 0.00% 0.00% 0.00% 0.00% 0.10% 0.00% 0.00% 0.10% 0.20% 1.10% 0.80%

Methanosphaera 0.00% 0.00% 0.00% 0.00% 0.10% 0.00% 0.00% 0.00% 0.00% 0.10% 0.00%

Methanocorpusculum 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Methanospirillum 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.20% 0.00% 0.00% 0.00% 0.00%

0.1% 0.0% 0.1% 0.0% 0.1% 0.0% 0.00% 0.10% 0.20% 1.20% 0.80%

Sum Archaea 2.00% 1.90% 0.90% 1.20% 1.10% 0.50% 11.00% 21.80% 25.30% 19.30% 19.60%

Proportional Abundance in Sample

Bacteria
Reactor 6 – 75% dairy slurry : 25% Ulva

Phylum: Week 1 Week 5 Week 13 Week 21 Week 30 Week 39 Week 1 Week 6 Week 13 Week 20 Week 27

Firmicutes 15.30% 38.30% 26.70% 38.50% 50.80% 56.80% 36.80% 29.20% 37.80% 40.50% 31.60%

Bacteroidetes 12.70% 26.10% 8.70% 22.70% 16.20% 17.00% 14.80% 15.20% 15.20% 15.20% 10.30%

Proteobacteria 34.70% 10.60% 31.40% 12.90% 7.90% 7.00% 12.30% 5.80% 2.40% 8.80% 12.50%

- Spirochaetes 12.60% 9.90% 15.10% 4.00% 4.40% 2.00% 5.50% 7.30% 2.60% 1.60% 4.30%

- Synergistetes 6.00% 2.00% 6.40% 12.80% 7.30% 2.60% 8.10% 3.80% 2.60% 3.00% 4.40%

- Chloroflexi 1.00% 1.10% 3.00% 0.30% 0.20% 0.00% 0.90% 3.10% 3.80% 2.20% 5.30%

- Tenericutes 0.00% 0.50% 0.20% 2.60% 4.50% 9.20% 0.00% 0.50% 1.10% 1.00% 0.60%

- Unidentified 0.70% 3.20% 1.00% 1.80% 2.20% 2.90% 1.20% 1.10% 0.90% 0.80% 0.50%

Reactor 1: 25% dairy slurry : 75% Ulva

Other Archaea 
(non-methanogenic)

Reactor 1: 25% dairy slurry : 75% fresh Ulva

Hydrolysers
fermentaters
acidogens

fermenters
 Acidogens

diverse,
Acidogens
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Bacteria (1,206 OTUs, 73,185 sequence reads). Lower taxonomic classifications could not 

be assigned to 16% of Bacteria families and 53% of Bacteria genera. 

3.2.3 Unassigned Operational Taxonomic Units 

A final 94 OTUs remained unidentified and were not assigned to Bacteria or Archaea. 

Unassigned taxa comprised 1% of sequence reads (72 OTUs) from R1, and <1% of reads (42 

OTUs) from R6. Of these, only 6 OTUs exceeded an abundance of 11 sequence reads: 1 OTU 

persisted at these levels in late R1, showing 92% coverage at 84% identity with the 

Firmicute Desulfomataculum BLASTn[34], known oxidisers of VFAs and reducers of sulfur 

compounds. 

 

3.2.4 Archaeal Components  

Large Methanosarcina populations effectively buffer against fluctuations in substrate 

availability, preventing accumulation or shock loading of acetic acid [35, 36] 

Methanosarcina has a documented tolerance for acetic acid up to 15,000 mg/l, and a 

higher tolerance for changes in pH and salt (see review in [37]) than hydrogenotrophic 

counterparts. Methanothrix, an obligate acetoclast [Huser et al., 1982], was scarce or 

absent in this study, likely out-competed by the higher growth rate of Methanosarcina at 

non-limiting acetate concentrations [35, 38, 39], or inhibited by salt [40] or ammonia [41-

44]  

Hydrogenotrophic methanogens (Methanoculleus, Methanobrevibacter, 

Methanobacterium, Methanocorpusculum, Methanospirillum and Methanosphaera in this 

study) are commonly found in anoxic sediments [45], as gut flora [46-48], and in AD 

reactors where they sometimes dominate [49, 50] Most archaeal OTUs remained present 

at uninformatively low frequencies, often disappearing below the sequencing coverage 

threshold.  

 

3.2.5 Bacterial Components 

Bacterial components of these reactors show good agreement with documented biogas 

communities, while some key and accessory species are associated with marine or salt 
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environments. The most abundant phylum was Firmicutes (565 OTUs, 36% of all sequence 

reads), containing many groups known to hydrolyse polymers (e.g. cellulose, lignin, 

polysaccharides, proteins: Lachnospiraceae, Peptostreptococcaceae, Ruminococcaceae), 

ferment carbohydrates (e.g. saccharides, amino acids, organic molecles: Hydrogenispora, 

Gelria, Christensenellaceae), and produce organic acids as metabolic endpoints (i.e.: 

acidogens: Sedimentibacter Tissierella, Syntrophomondaceae). Firmicutes are major 

components of anaerobic environments such as digesters [49-51] and alimentary tracts [52, 

53], in this study accounting for over a third of sequences in both reactors: in short, they 

are highly diverse, widely distributed, and understood as essential components of 

anaerobic digestion. 

The second-most abundant phylum, Bacteroidetes (126 OTUs, 16% of all sequence reads), 

is also frequently detected in anaerobic reactors, with important roles as fermenters and 

acidogens. In particular, species from the family Porphyromonadaceae (9% of all reads) are 

known for degradation of proteins and amino acids, eschewing saccahrides (genera 

Petrimonas [54] and Proteiniphilum [55]. 

Phylum Proteobacteria (203 Otus, 13% of sequence reads) comprises the most diverse 

known taxonomic group of the Bacteria to date. The sub-ordinate classes Alpha- and 

Gamma-Proteobacteria contributed 3% and 7% of reads in this study respectively, with 

remaining proteobacteial classes totaling 3%. Proteobacteria are typical residents of 

anaerobic digesters [49, 50, 56] known to incorporate nitrogen and/or sulphur as electron 

acceptors in metabolism of varied carbohydrates (e.g.: Nitrosimonas, Nitrobacter). 

However, some species observed here are unexpected inclusions, with described 

preferences for aerobic metabolism (in some cases obligate: Rhodobacteraceae, 

Granulosiococcaceae, Nannocytineae;) and a high propensity for saline and marine 

environments (water: Rhizobacteraceae; sediments: Desulfomicrobium; seaweeds and 

plants: Alteromonadaceae, Nannocystinaceae, Granulosiococcaceae).  As such, their 

presence in this study reflects persistent contributions from the U. lactuca feedstock 

alongisde species typical of a biogas digester habitat. 

Phylum Spirochaetes (47 OTUs and 6% of sequence reads in this study) are diverse, highly 

motile, frequently anaerobic bacteria, but metabolic information is limited in anaerobic 

digesters despite being frequently encountered in low or medium abdundances. They have 
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been characterised both as acetogens [57, 58] and acetoclasts involved in methanogenic 

activity (as Syntrophic Acetate-Oxidising Bacteria) [59]. 

Phylum Synergistetes composed 6% of all sequence reads and 34 OTUs. Synergistetes are 

typically seen at lower abundances in a wide variety of environments [60], in syntrophic 

associations with hydrogenotrophic species. A possible role in this reactor was oxidising 

amino acids as a substrate in the presence of methanogens [61, 62].  

Most phyla were present at much lower levels (< 2% of reads): Phylum Chloroflexi contains 

fermentative, acido- and acetogenic, obligate and facultative anaerobes seen in anaerobic 

digesters and hot springs respectively, and requires removal of hydrogen which suggests 

syntrophic roles[63] Phylum Tenericutes is represented by Acholeplasma spcs.- poorly 

characterised sugar fermenters [64]. Species from Phylum Actinobacteria contain many 

heterotrophic fermenters including lipidophiles, and obligate marine-associated 

species[65]. Phylum Acidobacteria species are uncharacterised but similar to sequences 

recovered from remedial petrochemical aquifers[isolate BPC102, NCBI accession 

AF154083.1]: Taxa from Phylum Armatimonadetes are expected to be chemo-

heterotrophs, and are suggested to associate with degradation of photosynthetic biomass 

[66].  

Although the eleven phyla outlined above describe over 94% of all sequence reads, the 

remaining Bacteria (6% of reads, 135 OTUs) correspond to at least a further 26 phyla, again 

reflecting the huge diversity in anaerobic reactor communities.  

 

3.3 Relation between Process and Community Structure 

3.3.1 Changes in Archaeal Abundances 

R1 Archaea declined from an initial 2% of all Week 1 sequence reads to 0.3% by Week 39 – 

from 8 OTUs to 3. Abdundances of acetoclastic Methanosarcina increased in Weeks 1 and 5 

to a maximum of half of all archaeal reads, but were negligible from Week 13 and not 

detected by Week 39. Despite reactor stabilising at a lower OLR, abundance of aceticlastic 

methanogens remained extremely low and high acetate levels accumulated in the following 

weeks. Hydrogenotrophic Methanobrevibacter and Methanoculleus became the dominant 
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Archaea from Week 13 onwards, contributing <0.3% and <0.6% of sequence reads for any 

time-point, with sustained low abundances corresponding to a poor methane yield and 

eventually decline seen from Week 30; Archaea contributed 0.3% of sequence reads for 

Week 39. 

Despite the short lead-time, R6 Week1 showed methanogen sequences to be 

comparatively enriched: Archaea comprised 11% of sequence reads in R6 Week1, 

compared to 2% of reads from Week1 of R1. This may reflect a rapid acclimatization to 

feedstock (uncharacteristic of methanogens), or a greater methanogen contribution from 

the slurry portion of the feedstock, which was a three-fold larger volume in R6 than R1. R6 

Archaea represented all methanogen taxa found in R1 in addition to Methanospirillum, 

Methanocorpusculum and Methanomassiliicoccus. After Week1 (16 OTUs), R6 Archaea 

peaked at Week13 (25% of reads, 17 OTUs), and reduced towards the end of the trial with 

20% of reads (14 OTUs) by Week27. However when the most numerous genus 

(Methanosarcina, 90% of all Archaea sequence reads) is discounted, population levels 

remain stable: other Archaea contribute 1.4% of reads (6 OTUs) across Week13 to Week27, 

revealing a relatively stable (hydrogenotrophic) methanogen sub-community, with 

Methanobacterium and Methanobrevibacter as the largest sub-populations. Reduction in 

R6 Methanosarcina populations coincides with a slow decline in biogas yield observed 

towards the end of the study, despite optimal process conditions: FOS:TAC  0.22-0.24; free 

ammonia and chloride below inhibitory levels; VFA concentrations below inhibitory levels 

despite an increased OLR [37, 42] 

Given the similar sensitivity of samples (as per rarefaction observation rates, see 

Supplementary Materials), attrition in R1 archaeal sequence reads reflects a real decrease 

in methanogen abundance (presumably due to inhibition), while in R6 a specific decline is 

seen in Methanosarcina abundance as the reactor matures and acetate becomes limiting.  

 

3.3.2 Changes in Bacterial Abundances 

Communities were considered at Order level (93% of OTUs assigned taxa). R1 showed 

several changes in composition. Week1 abundances appeared initially balanced between 

hydrolysers (Clostridiales, Bacteroidales, Synergistales), fermenters (Clostridiales, 
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Bacteroidales, Desulfovibrionales, Synergistales), and acido/acetogens (Desulfovibrionales, 

Pseudomonadales, Clostridiales, Bacteroidales), as well as species considered 

environmental inclusions (Rhizobiales, Rhodobacterales, Myxococcales) associated with 

slurry, U. lactuca, or marine sources. 

At R1 Week5, Clostridiales and Bacteroidales orders (hydrolysers/fermenters) increased to 

36% and 16% of the total sequence reads respectively: of note, increases in populations 

involved in cellulose degradation (Ruminococcaceae, Lachnospiraceae), protein 

degradation (Proteiniphilum), and an unknown Sphingobacteriales taxon from Group 

WCHB1-69. Increases were also seen in acido- & acetogenic fermenters of amino acids 

(Spirochaetales and Sedimentibacter).  

In R1 Week13, hydrolysing and fermenting Clostridiales (24%) and Bacteroidales (6%) were 

displaced by a sharp rise in the abundance of a Psychrobacter OTU (from 

Pseudomonadales) to 25% of sequence reads: Psychrobacter, which is often associated 

with cold marine environments, is likely to reduce amino and organic acids to acetate [67]. 

This proliferation at Week 13 co-incides with the metabolism of large quantities of valeric 

acid accumulated from Week 6 coinciding with a drop in methanogen populations, 

suggesting an important role for Psychrobacter in continuous digestion of U. lactuca and 

slurry. 

At R1 Week21 the reactor was dominated again by hydrolysers and fermenters: 33% of 

sequence reads for Clostridiales (Hydrogenispora (previously OPB54) at 13% of reads, with 

Ruminococcaceae, Peptostreptococcaceae, and Gelria); 21% for Bacteroidales (largely 

Proteiniphilum (16%), some Petrimonas); 13% for Synergistales (Aminobacterium and an 

unidentified OTU). It is worth noting most of these taxa are acetogens, degraders of 

proteins & amino acids, or both. Psychrobacter abundance is reduced to 6%, possibly 

reflecting low levels of propionic acid. Several taxa (e.g.: Synergistaceae, Petrimonas, 

Gelria) are also known or suspected methanogen syntrophs [54, 60, 68]. 

In later weeks, a relatively stable topography at order-level disguised underlying 

proliferation of single-genus populations, likely related to increased OLR and a gradual 

accumulation of VFAs (particularly acetic acid) to high levels (> 3,000 mg/l). R1 Week 30 

produced small but suggestive changes in the community makeup: hydrolysers and 

fermenters (Clostridiales, Bacteroidales) remained at the fore; cellulytic and saccharolytic 
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species (Acholplasmataceae, Ruminococcus, Gelria) increased as did Hydrogenispora; while 

protein and amino acid metabolisers declined (Aminobacterium, Proteiniphilum, 

Psychrobacter, Peptostreptococcaceae). This may indicate a shift from protein to 

polysaccharide metabolism as higher OLR provides fresh substrate. 

As acetic acid continued to accumulate (FOS:TAC in excess of 0.4), R1 Week 39 saw further 

increases in acetotrophic Acholeplasmataceae (9% of reads) and Hydrogenispora (36% of 

reads, saccharide-fermenter & acetogen), as well as Proteiniphilum (13% of reads, protein 

and amino acid fermenter & acetogen). These abundances displaced Synergistales 

(syntrophic heterotrophic acetogens), Ruminococcaceae (cellulolytic acetogens) and 

Clostridiaceae (likely heterotrophic fermenters and acetogens) populations. Many 

populations persisted, albeit at very low levels: larger populations included Family XI (from 

Clostridiales) Rhodobacterales, Rhizobiales (possible enviromental inclusions), and 

Peptostreptococcaceae (saccharide and amino acid fermenters). 

R6 showed a more pronounced continuity between samples than R1 when considered at 

Order-level (inferred taxa for 84% of OTUs; archaeal order Methanosarcinales included for 

comparison). R6 Week 1 showed a community already typical of a biogas consortium: large 

populations of hydrolysers (e.g. Clostridiales (32% of sequence reads), Bacteroidales (10%)), 

fermenters and acidogens (e.g. Clostridiales, Bacteroidales, Synergistales (8%)), with 

relatively abundant methanogens (i.e. Methanosarcinales: 10%) present at levels which 

persisted for the duration of the trial.  

Shifts were apparent as the reactor matured: R6 Week 5 saw methanogen abundance 

double to 22% of sequence reads, with only 1 to 3% increases on Week 1 abundances in 

probable fermenters and acetogens (Bacteroidales, Christensenellaceae, Rikenellaceae, 

Spirochaetaceae), syntrophs (Syntrophomonadaceae, Cloacamonas), and uncharacterised 

Acidobacteria. Proteolytic, non-saccharide fermenting populations of Synergistaceae were 

replaced by smaller stable Synergistaceae populations of unknown activity. Clostridiales 

broadly involved in hydrolysis, fermentation and acidogenesis (incl. Hydrogenispora) 

declined to 27%.  

R6 Week 13 represented the high-point in R6 acetic acid, biogas production, and 

methanogen abundance (25% of sequence reads), again consisting almost entirely of 

Methanosarcina (24%). Contrasting with other time-points from either reactor, there were 
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no large homogeneous bacterial populations: instead, heterogeneous 

hydrolytic/fermentative/acidogenic communities (Clostridiales: 33%; Bacteroidales: 14%; 

others: 19%) comprised of numerous smaller subpopulations were seen. The largest 

subpopulations (Christensenellaceae: 6%, Rikensellanaceae: 4%) are acetogenic saccharide 

fermenters associated with the gut; several protein fermenting populations are also 

evident (Peptostreptococcaceae: 5%, Proteiniphilum: 3%), as are diverse sub-populations of 

cellulytic Ruminococcaceae (5%) and Lachnospiraceae (4%). This combination of high-

diversity, low-abundance Bacteria populations with low-diversity, high-abundance Archaea 

populations may typify a balanced U. lactuca-digesting reactor, operating at or within 

capacity. Wittebolle [Wittebolle et al., 2009] and Werner [Werner et al., 2011] suggest 

more balanced (‘even’) microbial populations exhibit greater metabolic capability and 

therefore long-term stability. 

Reduced output at R6 Week 20 saw slight changes in the dominant fermenting, acidogenic 

and acetogenic populations. Such changes may be stochastic, or could reflect altered 

substrate availability: hydrolysing (Peptostreptococcaceae: protein and amino acid 

fermentation; Lachnospiracceae: polysaccharide lysis) and saccharide fermenting 

(Christensenellaceae, Rikensellaceae, Lachnospiraceae, Clostridiales Family XI) populations 

were displaced by populations with similar activities (Ruminococcaceae, Proteiniphilum, 

Psychrobacter, Thermoanaerobacteraceae, Hydrogenispora). Importantly, Methanosarcina 

abundance decreased to 18%. This decrease in Methanosarcina and increase in 

Psychrobacter could reflect the decreasing availabiltiy of acetic acid and increase in higher 

VFAs (particularly valeric acid and its products), again suggesting a role for Psychrobacter in 

metabolism of higher VFAs.  

R6 Week 27 represented an OLR of 2.5, with abundances further concentrated within 

subpopulations. Methanosarcina levels remained stable at 18%. Saccharide and amino acid 

(i.e. monomer) fermenters, acidogens and syntroph populations (Synergistaceae, 

Cloacamonas, Psychrobacter, Thermoanaerobacteraceae, Caldilineaceae) displaced 

metabolic equivalents (e.g. Christensenellaceae) and degraders of polymers like cellulose 

(Ruminococcaceae, Lachnospiraceae) or proteins (Syntrophomonadaceae, 

Peptostreptococcaceae, Proteiniphilum, Petrimonas), likely reflecting increased availability 

of simple substrates with increased OLR. Although total VFA levels remained relatively low, 

valeric and caproic acids were accumulating while acetic acid was limited. Reduced 
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acetotroph (e.g. Methanosarcina) activity could inhibit catabolism of higher VFAs through 

unfavourable equilibria, but would present with an increased concentration of acetic acid. 

Instead, declines in acetic acid, Methanosarcina, and biogas output along with 

accumulation of higher VFAs suggests inhibition prior to methanogenesis, perhaps at the 

acetogenesis stage: as such, acetate may have been limiting for Methanosarcina in R6, with 

substrate inhibition affecting some acetogenic process. 

 

3.4 Possible Mechanisms of Inhibition 

3.4.1 Volatile Fatty Acids:  

VFA levels for R1 show a gradual accumulation of acetic and iso-valeric acid until Week 3 

(1,099 & 1,776 mg/l respectively), followed at Week 5 by a peak in iso-valeric acid 

(3,501mg/l) while acetic acid was depleted (155mg/l). Methanosarcina abundance 

increased in line with acetic acid metabolism while acetogenesis via iso-valeric acid was 

inhibited. After reducing the OLR to 1 kg VS m3 d-1 at Week 7, iso-valeric acid was 

metabolised to equal portions of acetic acid - which the reactor was absorbing by Week 7 - 

and propionic acid, which persisted past Week 13. Psychrobacter abundances increased 

with availability of propionic acid, implying a role in metabolism. By Week 13 acetoclastic 

Methanosarcina abundances dropped (1.2% to <0.1% of sequence reads) despite stable 

reactor conditions until Week 26 (FOS:TAC 0.21 – 0.31), a lack of inhibitory VFAs (<4,000 

mg/l, [37] and favourable levels of acetic acid for that genus (1100 – 1300mg/l [37]; also 

evidenced by similar concentrations in R6, Week 13). Small hydrogenotrophic methanogen 

populations continued with meagre biogas output, while a bacterial community with a 

focus on alternative carbon metabolisms developed. Later accumulation of acetic and 

propionic acid corresponded with abundance increases in an acetogenic Hydrogenispora 

sp., but no increase in Psychrobacter abundance. From Week 23 onwards (and particularly 

after OLR was increased at Week 33), apparent lack of acetoclasts led to acetic acid and 

propionate accumulation (3200mg/l and 700mg/l respectively). 

Initial accumulation of iso-valeric acid (600mg/l) and acetic acid (200mg/l) was also seen in 

R6: however, iso-valeric acid was quickly metabolized, with acetic acid formed as the chief 

by-product until Week 9. Later peaks were seen in propionic acid (707mg/l, Week 13), and 

iso-capronic acid (606 mg/l, Week 17) which was converted to valeric acid (551mg/l, Week 
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21). Spikes in valeric and propionic acid levels were shadowed by increases in acetic acid, 

suggesting degradation via acetogenesis. Later R6 increases in VFAs levels (valeric and iso-

capronic acids), and abundances of Psychrobacter and Hydrogenispora from Week 20 were 

similar to R1 when perturbed, partially attributed to an OLR increase to 2.5 kg VS m3 d-1. 

Although biogas output and Methanosarcina abundance decrease slightly from Week 25, 

overall stability of the methanogenic populations and scarce acetic acid levels again suggest 

constriction of the biogas process at some preceding point in acetogenesis, as occurred in 

R1, Week 5. 

VFA accumulation can occur as a product of instability [69], can be transitionary [38, 70, 71] 

and can even have little to no effect on biogas output [72] Initial accumulation of iso-valeric 

and acetic acids was seen in both reactors: the relative difference between build-ups 

(initially three-fold higher in R1; higher thereafter) suggests this is due to hydrolysis and 

fermentation of the most accessible fractions of U. lactuca. Immediate availability of 

organic material should allow rapid acidogenesis, providing good biogas yield. However, 

inhibition of bacterial acetogens made acetate a rate-limiting substrate for biogas 

production, while inhibition of methanogenic acetoclasts lead to accumulation of acetic 

acid. This bimodal 'flood or famine' effect on levels of acetic acid is attributed to inhibition 

at different points in the biogas community. 

 

3.4.2 NH3 

The recommended ratio of carbon to nitrogen (C:N ratio) for anaerobic digestion is 20-30: 

C:N ratios for U. lactuca range between 7 [Allen et al., 2014] and 14.5 [73]. C:N ratios for 

feedstocks in this study were 10.2 for R1 and 17.1 for R6, with improved values reflecting 

addition of slurry (C:N ratio often >20: [74]). Proteins contribute nearly all of the nitrogen in 

U. lactuca [75], entering solution as free ammonia or the ammonium ion. Elevated pH, 

temperature, and headspace partial pressure increase concentration of the uncharged free 

ammonia (NH3) state. At sufficiently high concentrations NH3 diffusion across cell 

membranes can inhibit biogas process by causing loss of cellular potassium, de-potentiating 

the cell membrane, and accumulating in the cytoplasm [76].  Ammonia inhibition is well 

documented in methanogens [41, 43, 76, 77], affecting other taxa to a greater or lesser 

extent. Pure cultures of methanogens remain viable at TAN levels up to 10,000mg/l but 

have been documented declining at a range of TAN levels between 1,700 to 6,000 mg/l 
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when part of a reactor community. Differential responses between hydrogenotrophic and 

acetoclastic methanogens are documented but contradictory. 

Initial levels of total ammoniacal nitrogen (TAN) were similar for R1 and R6: 2,000 and 

1,800 mg/l respectively. R1 levels increased to 3,000 mg/l at Week 5, fluctuated between 

4,000 and 5,000 mg/l from Weeks 15 to 25 before stabilising and returning to values closer 

to 4,000mg/l after Week 26. Increase of R1 OLR from 1 to 1.5 kg VS m3 d-1 at Week 34 saw 

TAN increase again, exceeding 5,000mg/l by trial completion. Higher levels of TAN in R1 are 

associated with a demonstrated loss of methanogens and lower methane yield. Of note, 

the acetoclastic Methanosarcina declined first, at a TAN concentration of ~3500mg/l: 

hydrogenotrophic methanogens persisted but declined between Weeks 21 and 30 (peak 

TAN of 5,300mg/l Week 22). No recovery in methanogens was seen when TAN receded. R6 

TAN levels were lower but behaved similarly: TAN exceeded 2,000mg/l at Week 5, peaked 

at 3,000 mg/l at Week 25 before stabilising to ~2,000 mg/l. OLR was raised to 2.5 kg VS m3 

d-1 at Week 23; TAN levels rose again at Week 33, before stabilising below 3,000mg/l by 

trial completion. A similar trend of TAN accumulation followed by metabolism may 

represent acclimatisation in both reactors, despite crucial differences in ‘peak’ (5,300mg/l 

in R1; 3,000mg/l in R6) and ‘acclimatised’ (4-5,000 mg/l in R1; 2-3,000 mg/l in R6) levels. 

   

3.4.3 Mineral salts:  

An inhibitory role for salts has long been recognised in anaerobic digestion [69]. Cations 

(e.g. Na+, Ca2+, Mg2+, K+) affect biogas production in a charge-dependent manner, possibly 

by inhibiting a Na+ export channel necessary for the final methanogenic reaction [78].  

However, complex and proportionate mixes of cations can offset the inhibitory effects of 

one another [69, 79], as well as ameliorating ammonia [Sprott et al., 1986] and VFA 

inhibition [Rinzema et al., 1988]. Pre-trial characterisations showed slurry to have low (< 

2,000mg/l) total mineral content, while fresh U. lactuca provided 5,220, 5,310 and 

9,950mg/l of Mg2+, Na+ and Ca2+ respectively.  Cations were not monitored directly, but 

through Cl- levels it can be inferred that salt-loading was significanlty higher in R1: Cl- 

concentrations passed 5,000mg/l at Weeks 7 (R1) and 10 (R6), with R1 levels peaking at 

10,300 mg/l at close of trial, while R6 peaked on Week 21 with 6,760 mg/l and decreased 

thereafter, completing trial at 5,400mg/l. Reported inhibitory levels of Na+ and Ca2+ vary, 

with lower estimates registering from 5,000 mg/l [40]. As U. lactuca contributed a variety 
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of salts which accumulated gradually, acclimatisation of communities in R1 and R6 is 

expected, with performances in this trial displaying partial inhibition and/or later onset.  

3.5 Statistical Resolution and Constrained Analysis 

3.5.1 Taxonomic Characteristics  

Anaerobic digestion is characterised by diverse communities degrading feedstocks in a 

step-wise manner. In the current study, digestion of U. lactuca and slurry in opposing ratios 

encourages subsets of hydrolysers, fermenters and chemo-organo-heterotrophs, including 

notable halotolerant and marine taxa. To improve characterisation of the microbe 

communities digesting U. lactuca mixes, the LDA (Linear Discriminant Analysis) Effect Size 

package (LEfSe,[30]) was used to detect taxa characteristic of digestion at high (R6) or low 

rates (R1), acting as 'biomarkers' for either setup.  

Taxonomic LDA statistical ouptut is presented in Supplementary Table 2. 

Taxa characteristic of the R1 environment show a strong affinity for marine environments 

and/or halotolerance. Additionally, most were originally isolated from marine sources; 

three from U. lactuca or other seaweeds (Maritalea, Arenibacter, Alteromonadaceae). 

Several are aerobes or facultative aerobes (Nitratireductor, Altermonadaceae) and many 

show degrees of fermentative and/or acidogenic activity.  The most significantly associated 

taxa (LDA effect  ≥4, α ≤0.05) are from the Actinobacteria (Micrococcales), Alpha-

Proteobacteria (Devosia, Nitratireductor, Rhizobium and Rhodobacteraceae sp.), Beta-

Proteobacteria (Hydrogenophaga and Limnohabitans),  Bacteroidetes (Proteiniphilum) and 

Firmicutes (Alkaliphilus, Bacillales, Lutispora, Syntrophomonadaceae, 

Tepidanaerobacterales, Tissierella) phyla. As well as known fermenters, acidogens 

(Proteiniphilum, Firmicutes) and syntrophs (Firmicutes), these taxa suggest diverse 

saccharide use, and use of alternate electron acceptors (nitrogen, sulfur) detrimental to 

biogas production (Alpha- and Betaproteobacteria).  

Indicators of the R6 environment were more closely linked to anaerobic digestion, but 

retained some associations with marine and haline habitats. The most significantly 

associated taxa (LDA effect ≥4, α ≤0.05) are more commonly anaerobic and documented as 

hydrolysers (Alkaliflexus, Caldilineae, Lachnospiraceae, Proteiniphilum, Ruminococcaceae), 

fermenters (Caldilineae, Desulfomicrobia) and acetogens (Alkaliflexus, BPC102, Caldilinea, 
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Christensenellaceae, Syntrophomonas, etc.), as well as including three methanogens: the 

acetoclastic Methanosarcina and  hydrogenotrophic Methanobacterium and 

Methanobrevibacterium. Most methanogens were not significant indicators, as abundances 

were similar between reactors.  

 

3.5.2 Predicted Metabolic Characteristics 

 A full table of inferred metabolism along with LDA statistical outrput is available in 

Supplementary Table 3. 

Species abundances were combined with data from the Kyoto Encyclopedia of Genes and 

Genomes (KEGG; release 73.1[80]) using the HUMAnN package [29] to infer metabolic 

capabilities for the two communities. Again, using LefSe, significantly abundant metabolic 

processes were then identified, providing metabolic features expected to characterise the 

two reactors. 

Diverse carbohydrate metabolism is likely to differentiate R1, with the highest LDA effect 

scores (4.1 – 3.9, α=0.006) for central carbohydrate metabolism and saccharide transport. 

Although carbohydrates are fundamental to all metabolism, the variety of metabolic 

pathways represented in these categories suggest that the R1 community utilises a more 

opportunistic and varied range of carbon sources, with significantly elevated predictions for 

the Entner Doudoroff Pathway, Pentose Phosphate Pathyway and Citrate Cycle (LDA 

effects: 3.18 – 3.42, α<0.05). Predicted markers for R1 also include transport of putrescine 

and spermidine, key components[81] in the formation and regulation of biofilms (LDA 

effect: 3.47 – 3.71, α= 0.006 – 0.011); and Type VI secretion systems used in competition 

for resources (LDA effect: 3.7, α=0.034). 

Metabolism of methane is a strong recurring prediction for R6 (LDA effect: 3.53 – 3.98, 

p=0.006) with the emphasis on methanogenesis via methanol and acetate (LDA effect: 3.64 

and 3.58 respectively, α = 0.006). However, the strongest predicted characteristics of R6 

metabolism are transport of cobalt (LDA effect: 4, α=0.006) and nickel (LDA effect: 4.2, 

α=0.006). Cobalt is required for methylotrophic methanogenesis [82], whilst nickel is 

central to the final step of all methanogenic routes [83, 84]. A weight of literature indicates 

methane production increases substantially when nickel and cobalt are added [85-87]. 
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Increased archaeal ribosome metabolism (LDA effect: 3.64, α=0.006) and reduction of 

quinones in energy metabolism (LDA effect: 3.52, α<0.02) are also predicted to 

differentiate metabolism in R6 from R1.  

 

3.5.3 Constrained Correlation Analysis  

Constrained Correlation Analysis (CCA) measured the relationships between community 

structure and time-points, and metabolism and time-points, in the context of specified 

('constraining') process variables. Several process variables were intercorrelated, describing 

the same source of variation in the dataset. In particular, levels of TAN, alkalinity and total 

dissolve solids (TDS) were strongly intercorrelated (R=0.80 – 0.95), as were Bix, biogas 

output and specific methane yield (SMY) (R= 0.81 – 0.97); and chloride, total salinity, 

chemical oxygen demand (COD), volatile solids (VS) and duration of trial  (R=0.81 – 0.97). As 

such, three governing processes described the reactor communities: inhibitor 

accumulation, biogas activity, and duration of trial.  
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5.3.1 CCA of Communtiy Abundances 

 

Figure 2: Constrained Canonical Analysis plot, illustrating differentiation of the reactor 

communities due to the strongest factors: ammonia (TAN), biogas yield (rBiogas), and 

chloride concentration (Cl). 

CCA showed that levels of ammonia (specifically total ammoniacal nitrogen, TAN), chloride 

and raw biogas output had the strongest correlations with community makeup, with the 

most significant and non-redundant effects on taxonomic abundances (R=0.50, significance 

after 999 permutations: , VIF< 8).  Together, these 3 parameters described 49.8% of 

variation in community abundance and allowed the major interactions defining these 

communities to be visualised via biplot (fig. ORDI). Ordination under these contraints 

shows clear segregation between the two samples. Although initial community and process 

similarities cause Week1 samples to cluster, R1 and R6 time-points diverged along X and Y 

axes respectively, with clustering of later time-points showing established communities. 

Despite low OLR in R1, accumulation of TAN exceeded 5,000mg/l in later time-points, and 
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was the most strongly correlated inhibitor of biogas process (X axis). R6 time-points show 

negligible interaction with ammonia levels or overloading along the X axis, indicating TAN 

levels up to 3000mg/l did not inhibit the R6 community. R6 instead correlates strongly with 

increasing biogas output, seen as distribution along the Y axis. Note that Week 13 of R1 

correlated with biogas production (movement on Y axis) before R1 reached higher 

ammonia levels. Rising chloride concentrations correlate with both reactor setups, relating 

trial duration and a gradual accumulation of dissolved content. A stronger association with 

R1 is explained through a higher U. lactuca laoding rates, with no obvious inhibitory effects. 

Correlations with OLR, Alk and TAN were up to x1.5 times stronger for Archaea, while pH, 

salinity, COD, VS% and Cl correlated to Bacteria more strongly (x1.5 – 2 times). Curiously, 

the bacterial community was more than twice as correlated to Bix as the archaeal 

community (R: 0.21 v 0.12), reflecting the more patterned bacterial community involved in 

methanogenesis and/or relatively consistent methanogen components. A negative 

correlation between biogas output and biodiversity indices (R>-0.6) can be explained 

through 'niche exclusion', where taxa unsuited to anaerobic digestion are outcompeted by 

better-equipped taxa, causing a decrease in diversity. Excluded taxa are known to persist at 

low abundances and play important roles during reactor transitions [33, 88].  
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3.5.3.2 CCA of Predicted Metabolic Activitie

 

Figure 3: Constrained Canonical Analysis plot of samples and predicted metabolic 

abundances, diffrentiated by the strongest factors, ammonia (TAN) and specific 

biomethane potential (scBMP). 

CCA using predicted metabolic abundances showed strongest non-redundant correlations 

with TAN and Bix (R=0.50, VIF=1 significant after 999 permutations).  Ordination under 

these constraints showed energy metabolism to best differentiate samples along the X axis, 

with methanogenesis predictions for R6 contrasting with predicted alternative anaerobic 

metabolic pathways (Entner-Duodoroff, ethylmalonyl, and pentose-phosphate pathways) 

and carbon uptake pathways (multi-saccharide transport system) in R1. Samples 

differentiated along the Y axis as reactors matured, with earlier metabolic diversity (e.g. 

sulphate reduction and transport, methane oxidation) absent in later samples as overall 

diversity decreased. Methanogenesis (acetate and methanol metabolism) and archaeal 



Biogas Production from Novel Substrates 

 

 

- 245 - 
 

translation and transcription clearly associated wit hR6, while negatively correlating with 

TAN levels. Predictions for Nickel and Cobalt transport also associate with R6 time-points.  

 

4.0 Summary 

U. lactuca presents a self-renewing resource with a highly accessible organic fraction, low 

or lacking in recalcitrant polymers (cellulose, lignin, alginates) [73, 89, 90]. However, 

anaerobic digestion of U. lactuca is prone to a high VFA yield [73, 91]. In this study, VFA 

accumulation was the result of several cumulative underlying inhibitors of the microbial 

community, correlating with trial duration. CCA showed total ammoniacal nitrogen (TAN) 

concentration to be the most influential variable affecting biogas community structure, 

causing a near-absence of methanogens and subsequently leading to high concentrations 

of acetic acid in R1. Biogas production was the second best descriptor of community 

structure, with classical biogas taxa detected in both reactors. Hydrolytic populations 

fluctuated in response to OLR, with rapid generation of VFAs (in particular acetic acid) by 

multiple acidogenic and acetogenic populations digesting the U. lactuca portion of 

feedstock.  

Methanosarcina was the primary methanogen, enabling successful biogas operation in R6 

through continuous degradation of acetic acid. Methanosarcina has been previously 

described as a more resilient methanogen [37, 42, 92], however this study saw early loss of 

all acetoclasts in R1, presumably due to high ammonia levels. Methanosarcina populations 

in R1 collapsed between Weeks 5 and 13 as TAN exceeded 3,500mg/l, while 

hydrogenotrophic archaea declined after TAN exceeded 5,000: these are posited as 

inhibitory thresholds for methanogens in U. lactuca-slurry digestion as operated in [Allen et 

al., 2014]. Sequential inhibition of acetoclastic followed by hydrogenothrpic methanogens 

reduced R1’s ability to metabolise acetic acid directly (via acetoclasty) and indirectly 

(enabling oxidation by bacteria), causing accumulation of acetic acid. Methanogenesis also 

maintains a raised oxidation-reduction potential (ORP) in the reactor by sequestering 

highly-reduced carbon into the gaseous phase as methane. Reduced methanogenic activity 

encouraged use of alternate electron acceptors (e.g. nitrates), favouring populations of 

marine, halotolerant and non-obligate anaerobes known for diverse metabolism of 

proteins, amino acids and nitrogen (largely Alphaproteobacteria and 

Gammaproteobacteria, strong biomarkers for R1). Reduced methanogenic activity would 
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also reduce dependence on uptake of cobalt and nickel, a predictable biomarker for R6. 

Contrasting the overloading of R1, acetic acid availability was limiting in R6: good growth 

conditions and a lack of inhibition are demonstrated for Methanosarcina by increased 

abundance at raised VFA levels of 1,860 mg/l at R6 Week 13. The gradual reduction in 

biogas yield in R6 [Allen et al., 2014] is attributed to a decrease in acidogenic activity, 

possibly due to inhibition via ammonia accumulation. Strong metabolic predictions for 

cobalt and nickel uptake in R6 re-enforce the importance of trace elements in biogas 

reactors 

Inhibited acetogenic metabolism of iso-valeric acid at R1 Week 5 lead to a deficit of acetic 

acid. Catabolism of iso-valeric acid to propionic and acetic acid during reactor inception 

mirrors abundance of an uncharacterised Sphingobacterales genus (family WCHB1-69, 

aquifer remediation isolate) in both R1 and R6. In R1, an unknown factor suppressed 

catabolism of iso-valeric acid at Week 5 leading to subsequent overload, which may be 

linked to the disappearance of WCHB1-69 from that reactor. Psychrobacter was seen to 

proliferate in both reactors in response to abundant propionic acid and decline when it was 

limiting, implicating a role in propionic acid metabolism. Although propionic acid has been 

demonstrated as non-inhibitory to methanogens [72] accumulation is likely to hinder 

equilibria of substrate degradation. Late proliferation of the Clostridiales taxa 

Hydrogenispora (previously isolate OPB54) suggests a lack of inhibition at high levels of 

ammonia, salt or acetate, and involvement in VFA metabolism. Consistently elevated 

Proteiniphilum abundances in R1 reflect the high protein content of U. lactuca, with a likely 

role in ammonia release.  

 

5.0 Conclusion 

Anaerobic digestion of U. lactuca indirectly inhibits acetogenic and methanogenic 

processes, with ammonia showing strongest causative correlation. At high U. lactuca 

volumes, decreasing OLR was not sufficient to recover the acetoclastic methanogens 

required to remove acetic acid and prevent overloading, nor retain hydrogenotrophic 

methanogens. At low U. lactuca volumes, inhibited acetogenesis caused Methanosarcina 

populations yields to shrink, affecting biogas yield. Chloride accumulated but did not clearly 

correlate with inhibition. Effects of U. lactuca laoding rates significantly affected 
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community makeup, with higher U. lactuca loading characterised by diverse, facultatively 

anaerobic, marine and halotolerant taxa, lack of methanogens, and a predicted reliance on 

alternative carbon metabolism. 
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Appendix C: Assessing biomethane production from the organic 

fraction of municipal solid waste in batch and continuous operation 
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h i g h l i g h t s

� Eight organic waste streams were examined for biochemical methane potential (BMP).
� Commercial food waste produced 560 mL CH4 g VS�1 in continuous trials.
� Raising the loading rate to 4 kg VS m�3 day�1 led to a reduction in methane yield.
� The low C:N ratio led to levels of 7000 mg N L�1 at high loading rates.
� Free ammonia levels of 1000 mg N L�1 were encountered at a pH of 8.
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a b s t r a c t

This paper examines the variability in biomethane potential from the organic fraction of municipal solid
waste depending on source of origin. Eight organic waste streams were examined for biochemical
methane potential (BMP). Specific methane yields of between 274 and 368 mL CH4 g VS�1 for household
waste and 491–535 mL CH4 g VS�1 for commercial waste were achieved. Inclusion of garden waste
reduced methane yields. A continuous trial on commercial food waste produced an average of
560 ± 29 mL CH4 g VS�1 at a moderate organic loading rate (OLR) of 2 kg VS m�3 day�1 with a hydraulic
retention time (HRT) of 30 days. Raising the OLR to 4 kg VS m�3 day�1 led to a reduction in specific
methane yield. The low carbon to nitrogen (C:N) ratio of commercial food waste (14.4) led to process
instability due to total ammonia nitrogen levels in excess of 7000 mg L�1 towards the end of the trial.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Many municipal organic waste streams are dominated by food
waste, particularly catering premises such as restaurants, hotels
and office canteens. In the Republic of Ireland, food waste
accounts for approximately 25% of domestic household and 40%
of commercial waste [1]. The organic fraction of municipal solid
waste (OFMSW) is a term often used in Ireland and the UK to
describe food and garden waste in household and commercial
waste streams. In many EU countries OFMSW is simply referred
to as biowaste. National and European legislation places restric-
tions on the amount of OFMSW which may be sent to landfill
[2] while the current EU Waste Framework Directive [3] seeks

to encourage waste separation at source and biological treatment
of OFMSW. Anaerobic digestion (AD) is a mature biotechnology
which can maximise the value of organic waste. The methane
component of biogas, produced from the anaerobic process, is a
valuable renewable gaseous fuel. The digestate from the biogas
process may be used as a mineral rich fertilizer and reduce syn-
thetic fertilizer consumption [4].

One of the objectives of this paper is to outline the variability in
methane yields from OFMSW depending on the waste source and
type of collection. A selection of organic waste samples from
domestic, commercial and food processing waste streams were
investigated. The biochemical methane potential (BMP) test was
used to assess the methane yield for each substrate. In addition
to the BMP tests, a continuous AD trial was carried out for
25 weeks using commercial canteen food waste as substrate to
examine the effects of organic loading rate and hydraulic retention
time on the specific methane yield.
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Abstract: 

This paper examines the variability in biomethane potential from the organic fraction of 

municipal solid waste (OFMSW) depending on source of origin. Eight organic waste streams 

were examined for biochemical methane potential (BMP). Specific methane yields of 

between 274-368 L CH4 kg−

1 VS for household waste and 491-535 L CH4 kg−

1 VS for 

commercial waste were achieved. Inclusion of garden waste reduced methane yields. A 

semi continuous trial on commercial food waste produced an average of 560 ± 29 L CH4 kg−

1 

VS at a moderate organic loading rate (OLR) of 2 kg VS m-3
 d-1

 with a hydraulic retention 

time (HRT) of 30 days. Raising the OLR to 4 kg VS m-3
 d-1

 led to a reduction in specific 

methane yield. The low carbon to nitrogen (C:N) ratio of commercial food waste (14.4) led 

to process instability due to levels in excess of 7000 mg l-1 towards the end of the trial. 

Keywords: anaerobic digestion; food waste; BMP; CSTR  
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1 Introduction 

Food waste accounts for approximately 25% of domestic household waste in Ireland [1]. 

Many commercial organic waste streams are also dominated by food waste, particularly 

catering premises such as restaurants, hotels and office canteens. National and European 

legislation place restrictions on the amount of organic waste which may be sent to landfill 

[2]. The current EU Waste Framework Directive [3] seeks to encourage waste separation at 

source and biological treatment of organic waste. Anaerobic digestion is a vector which can 

maximise the value of organic waste. The methane component of biogas, produced from 

the anaerobic process, is a valuable renewable gaseous fuel. The digestate from the biogas 

process may be used as a mineral rich fertilizer and reduce synthetic fertilizer consumption 

[4]. This paper seeks to outline the variability in methane yields from OFMSW depending 

on the waste source and type of collection. A selection of organic waste samples from 

domestic, commercial and food processing waste streams were investigated. The 

biochemical methane potential (BMP) test was used to assess the methane yield for each 

substrate. Based on the results of the BMP test the waste stream with the highest BMP was 

chosen as the feedstock for a semi continuous anaerobic digestion trial. This trial was used 

to assess the long term process stability at increasing organic loading rates.  

 

2 Materials and methods 

2.1 Collection, preparation and characterisation of waste samples Samples were collected 

in a large centralised facility (Acorn Recycling Ltd.) licensed to treat 45,000 tonnes per 

annum of organic municipal waste (referred to as brown bin waste in Ireland ). This facility 

treats a wide range of municipal organic waste streams from across the province of 

Munster in Ireland (population circa 1.25 million people). As shown in Figure 8.1, a total of 

8 different waste streams were sampled; 4 household, 2 commercial and 2 food processing 

streams. Each sample consisted of approximately 10 kg of material sampled across a large 

bulk quantity of each waste stream. The German VDI guidelines were followed on sampling 

solid material [5]. The samples were screened for non organic material and were then 

passed through a Buffalo food mincer to a particle size of less than 5mm. All samples were 

stored in a freezer at -20°C until required as previously described by [6]. A proximate and 
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elemental analysis was carried out in triplicate on samples from each waste stream as 

shown in Table 8.1.  

 

 

 

Figure 1 Illustration of samples taken from the organic fraction of municipal solid waste 

(with and without garden waste)  
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2.2 BMP tests 

The apparatus used to conduct the BMP tests was the Automatic Methane Potential Test 

System II (Bioprocess Control Sweden AB). This laboratory instrument is specially designed 

for determination of the BMP of a substrate. The AMPTS II system consists of three major 

parts as follows:  

• A temperature controlled water bath with 15 bottle reactors of 500 ml volume, 

each equipped with a mixer that can be run in either continuous or intermittent 

mode.  

• A carbon dioxide fixing unit with an alkaline solution (3N sodium hydroxide) that 

absorbs the carbon dioxide and hydrogen sulphide produced during the anaerobic 

digestion process.  

• A gas measuring unit consisting of 15 parallel operating cells, where the gas is 

measured through water displacement. When approximately 10 ml of gas has been 

accumulated each cell opens and releases the gas. For each opening, the time, 

temperature and pressure are registered and stored locally in an embedded 

Central Processing Unit (CPU). Based on these measurements, normalised (0°C, 1 

atm and dry gas) accumulated gas production and gas flow rate are calculated.  

The BMP tests were performed with a working volume of 400 ml. The ratio of inoculum to 

substrate was chosen to be 2:1 on a volatile solids (VS) basis. The inoculum to substrate 

ratio is a critical parameter in conducting a BMP test according to the Anaerobic Digestion 

Specialist Group of the International Water Association [7]. A ratio of 2:1 or greater of 

inoculum to substrate on a VS basis is recommended for BMP trials to limit any inhibitory 

effects due to the chemical composition of the substrate such as inhibition associated with 

accumulation of ammonia and volatile fatty acids (VFA) [8]. All samples were tested for 

BMP in triplicate. A BMP test of the inoculum alone (referred to as a blank) was conducted 

in triplicate. The average methane yield from the blanks was subtracted from the samples 

of OFMSW with inoculum to accurately assess the BMP yields from the samples only. A 

triplicate BMP test was also carried out on cellulose for quality control as the maximum 

BMP from cellulose is known and can be compared with the BMP yield. The percentage 

volatile solids destroyed, during the batch process was calculated as follows: 

 % VS destruction = 100 · (1 – (VS f – VS f b)/(VS i – VS i b).  (Eq. 1) 
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Where; VS i is the amount of total input VS (g),  

VS f is the amount of total VS at the end of the BMP test (g),  

VS ib is the amount of VS (g) in the inoculum (blank) at the beginning of the BMP test, 

VSfb is the amount of VS (g) in the inoculum (blank) at the end of the test. 

The Buswell equation was used to calculate the theoretical maximum methane 

potential [9]. 

"#	$%&' + () −	%* −
'
+,$+&	 → 	 (

#
+ +	

%
. −

'
*,	"$* 	+	(

#
+ −	

%
. +

'
*,	"&+ (Eq. 2) 

Where; 

n is the number of atoms of carbon; 

a is the number of atoms of hydrogen; 

b is the number of atoms of oxygen; 

The biodegradability index is the ratio of the measured BMP divided by the theoretical 

methane yield according to the Buswell equation and is used to assess the level of 

biodegradability of a substrate. 

2.3 Source and characteristics of inoculum for BMP tests 

The inoculum for the BMP tests was obtained from a lab scale 300L digester treating mostly 

cattle slurry and a small portion of food waste operating at mesophilic temperatures (35 

°C). After an incubation period of one week the inoculum had a pH of 7.9, total solids (TS) 

of 34.2 gVS kg-1
 and volatile solids (VS) content of 21.4 gVS kg-1

 after passing through a 2mm 

sieve. Inoculum from both rounds was tested using cellulose as a standard control 

substrate (C12 H20 O10). The maximum theoretical methane yield from cellulose according to 

the Buswell equation is 415 L CH4 kg VS- 1. The specific methane yield produced from the 

cellulose was 371±4 LCH4 kgVS-1. This is almost 90% of the theoretical maximum indicating 

that a healthy inoculum.  

2.4 Kinetic modelling of BMP tests 
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Two first order kinetic models were used to fit the cumulative methane production 

data from the BMP tests. Assuming first-order kinetics for the hydrolysis of 

particulate organic matter, the cumulative methane production can be described by 

means of the following equation: 

���� = ��	. 	1 − exp������   (Eq. 3) 

Where, 

Y(t) is the cumulative methane yield at digestion time t days (L CH4 kg−

1 VS),  

Ym is methane potential of the substrate (L CH4 kg−

1 VS),  

k is methane production rate constant (first order disintegration rate constant) (d-1), 

 t is the time (days). 

The duration of the lag phase is also an important factor in determining the efficiency of 

anaerobic digestion. The lag phase (k) can be calculated with the modified Gompertz model 

as described by [10] as follows: 

���� = � ∙ exp{	− exp[	����∙�� �∆ − ��] + 1}  (Eq. 4) 

Where, 

M is the cumulative methane yield at a given time (L CH4 g VS-1),  

P is the max methane potential (L CH4 kg−

1 VS) from the BMP test, 

Rmax is the maximum methane production rate (L CH4 kg−

1 VS d-1), 

e is the mathematical constant = 2.7183,  

λ is the lag phase for methane production to begin (days),  

t is the time (days). 

A nonlinear least-square regression analysis was performed using Excel to determine λ, 

Rmax, k, and the predicted methane yield. The predicted methane yield obtained from the 
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regression analysis was plotted with the measured methane yield. The statistical indicators, 

Correlation coefficient (R2) and root mean square error (RMSE) were calculated to assess 

the goodness of fit [11].  

2.5 Statistical analysis 

The significance of differences in the average methane yields was determined by using 

single factor Analysis of Variance (ANOVA) in Excel software 2007. If the calculated F value 

was higher than the tabulated F value, the minimum significant difference (MSD) was 

calculated to judge whether two or more averages were significantly different or not 

(Tuckey test). MSD was calculated at P = 0.05 (MSD 0.05) [12].  

2.6 Semi-continuous trial 

The semi continuous trial was carried out in a continuously stirred tank reactor (CSTR) with 

a total volume of 5L (working volume of 4L) and ran for a period of 25 weeks. The reactor 

was maintained at a temperature of 37 + 1oC and was continuously stirred at a rate of 100 

rpm. The reactor was constructed out of thick walled plastic with a vertically mounted 

stirring mechanism as shown in Figure 8.2. The reactor was placed inside a coiled copper 

pipe frame which was heated by a thermo-circulator. Biogas flow was measured using a 

tipping bucket mechanism whereby the number of tips was recorded and multiplied by the 

calibrated gas volume of the tipping bucket (78 ml per tip). Biogas was sampled 

downstream of the gas flow tipping meter in 1L Tedlar gas bags and analysed for methane, 

carbon dioxide and hydrogen sulphide. 
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Figure 2 Continuously stirrer tank reactor (5L) used for semi continuous trial 

 

2.7 Analytical methods Total solids and volatile solids were determined gravimetrically 

following the standard methods (APHA, 2005). The biogas composition in the semi 

continuous trial was measured by infra red gas analyser (Status Scientific Control I-R biogas 

analyzer). The instrument was calibrated before the commencement of the trial and 

showed an accuracy of ± 1% when tested weekly on a standard mixture of 65% methane 

35% carbon dioxide provided by BOC specialty gases. All methane yields were adjusted to 

standard temperature of 273 K and 1 atmosphere (1013 hPa). Volatile organic acids and 

total alkalinity were measured using the Nordmann titration method (1978) using 0.1N 

sulphuric acid and a Titronic Universal Titrator. The pH of the digestate was measure daily 

using a Jenway 3510 pH meter. Total ammonia was measured using the Hach NH3-N vials 

and spectrophotometer DR 3900.  
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3 Results and Discussion 

3.1 Results from the BMP tests 

The results from the BMP test are shown in Table 8.2. Household waste streams ranged in 

methane potential from 274 – 368 L CH4 kg−

1 VS, commercial waste samples ranged from 

491 – 535 L CH4 kg−

1 VS while food processing samples exhibit the largest difference 

between samples (529 L CH4 kg−

1 VS for bakery waste and only 188 L CH4 kg−

1 VS for cheese 

waste activated sludge). The commercial waste samples exhibited a much higher degree of 

biodegradability and volatile solids reduction than the household waste samples. In 

particular the household waste streams which consisted of mostly garden waste had a 

much lower biodegradability index than waste streams without garden waste. The BMP 

result for the cheese waste was much lower than expected. In a previous study by the 

authors [6] a sample of cheese processing treatment sludge from a different location 

yielded 461 L CH4 kg−

1 VS. This demonstrates that the type of existing biological waste 

treatment processes at dairy plants can produce waste sludge with hugely different 

biomethane potential. A one way Anova analysis suggests a statistical difference between 

the mean biomethane potential results depending on the source of OFMSW (F7,16 = 332.6, 

P < 0.01.Where there are 7 degrees of freedom between samples and 16 degrees of 

freedom within samples. Multiple comparisons using the Tuckey test (MSD0.05 = 34.4 mL 

gVS-1, P < 0.05) revealed that there is a significant difference in biomethane potential 

between almost 90% of the waste samples depending on source, however there were 

some notable exceptions. In the household waste stream there was no significant 

difference between urban and rural samples that came from a similar collection system (P > 

0.05). However there was a significant difference in methane potential depending whether 

garden waste was included or not. For example samples without garden waste gave higher 

methane yields than samples which consisted mostly of garden waste. Canteen waste 

samples gave significantly higher BMP yields than from household waste streams. However 

there was a significant difference between canteen waste samples depending on the 

season. Samples taken from the same waste collection run in summer (June 2012) gave 9% 

higher BMP yields than winter (December 2012). In the food processing stream bakery 

waste samples gave vastly greater methane yields (529 L CH4 kg−

1 VS) than from cheese 

waste activated sludge (188.5 L CH4 kg−

1 VS). Interestingly the bakery waste sample did not 
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differ significantly from the canteen waste (CCS). The results from the commercial waste 

samples are similar to previously reported BMP yields from canteen food waste (480-530 L 

CH4 kgVS-1) [13].  

 

3.2 Kinetic study results 

The results of the kinetics analysis using the first order kinetic model and the modified 

Gompertz model are summarised in Table 8.3 (a) and (b) respectively. The first order 

kinetic model gave k values ranging from 0.12 – 0.17 d-1
 for household samples, 0.07 - 0.09 

d-1
 for commercial samples and 0.08 - 0.13 d-1

 for food processing samples. The commercial 

food waste samples had higher percentages of proteins and lipids which take longer to 
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digest than carbohydrates therefore resulting in lower k values [14]. The modified 

Gompertz model showed a lag time of 1.2 and 3 days for all samples tested. The time taken 

to reach 90% of the maximum BMP value was shown to range from 9 – 15 days indicating 

that all OFMSW substrates were readily degradable. Both models exhibited a good fit when 

plotted against the measured data with the coefficient of determination (R2) ranging from 

0.93 -0.95 for the first order model and 0.99 for the Gompertz model. The RMSE ranged 

from 10.7 – 48.8 L CH4 kg−

1 VS for the first order model while the Gompertz model gave 

lower values of over 0.7 – 9.9 L CH4 kg−

1 VS. Both models can be used to predict the 

maximum methane potential. The modified Gompertz model gave slightly lower predicted 

maximum BMP yields than the measured data ranging from -0.8 to -9.3% while the first 

order model generally gave higher predicted methane yields than measured ranging from -

1.8 to +19.2%. In 87.5% of cases the model Gompertz gave a more accurate predicted max 

biomethane yield than the first order equation. Based on the statistical indicators (RMSE 

and R2) the modified Gompertz model was found to demonstrate the best fit for the 

samples tested. The cumulative methane yields of the BMP tests are shown in Figure 8.3. 

The first order kinetic model fits are shown in dashed curves while the modified Gompertz 

model fits are shown in unbroken curves.  
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Figure 3 BMP cumulative methane yields for (a) household samples and (b) commercial & 

processing samples 

 

4 Results from semi continuous trial 

4.1 Specific methane yields in period 1 

The semi continuous trial was operated for 176 days using commercial canteen food waste 

from the same collection as sample CCS in the BMP trials. This waste stream was chosen as 

a substrate for the semi-continuous trial because the same material had been used in 

separate AD trials conducted by the authors [15]. The semi-continuous system was started 

at a moderate organic loading rate (OLR) of 2 kg VS 
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m-3
 d-1. The hydraulic retention time (HRT) was initially set at 30 days. This was achieved by 

adding a portion of digestate back in with the input feed keeping the total solids content of 

the input feed to 10% which facilitated easy stirring of digester contents. The reactor was 

maintained at this OLR for 3 HRTs (period 1). The first HRT incorporated the start-up and 

acclimatisation period. By the end of the first HRT the system had reached a steady state of 

methane production. Methane yields from the second and third HRT were used to calculate 

average specific methane yield for period 1 (OLR of 2 kg VS m-3
 d-1) which was 560.1 ± 29.3 

L CH4 kg−

1 VS. The standard deviation in the second and third HRT was only 5% of the total 

yield and clearly showed that the reactor was in steady state. The weekly average specific 

methane yield is shown in Figure 8.4 (a). The daily percentage methane in the biogas is 

shown in Figure 8.4(b). In the start-up period the percentage methane increased from 

40.4% to 60% over the first 30 days with the weighted average methane percentage in the 

biogas remaining at 60 ± 1.3 % for period 1. 

 

 

Figure 4 (a) Weekly average specific methane yield and (b) daily methane percentage 
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4.2 Specific methane yields in period 2 

After completing 3 HRTs at the initial feeding rate, the OLR was increased to 3 kg VS m-3
 d-1

 

at day 99. By increasing the OLR to 3 the HRT was reduced to 21 days as the solids content 

of the input material was kept at 10% TS by recirculation of an increased amount of 

digestate. The OLR was maintained at 3 kg VS m-3
 d-1

 for 2 HRTs (42 days). The average SMY 

for period 2 was 484 ± 72.0 L CH4 g VS-1. This is a reduction of about 13% from the previous 

SMY in period 1. The standard deviation in period 2 is approximately 15% of the average 

SMY and shows that there was greater fluctuation in daily gas production at the higher OLR 

of 3 kg VS m-3
 d-1. The weighted average methane content in the biogas increased to 61.5 ± 

2.8 % in period 2.  

 

4.3 Specific methane yields in period 3  

On day 142 the OLR was further increased to 4 kg VS m-3
 d-1

 which resulted in a reduced 

HRT of 17 days. The trial was completed on day 176. The average SMY in the final period 

was 381.5 ± 52.0 L CH4 g VS-1
 which was a 21% decrease in SMY from period 2 and a 32% 

decrease from period 1. The average methane content was 60.7±3.6%.  

4.4 Conversion of volatile solids to gas 

To assess the conversion of VS to gas the following equation 8.5 taken from [16] is used: 

MR = LN · ((16·CH4%) + (44·CO2%))/22.413 (Eqn. 5) 

Where; 

MR is the daily average mass of volatile solids removed (g VS), 

LN is the average daily normalised biogas volume (L) at standard temperature and pressure 

(STP), 

CH4 %, is the methane content in the biogas, 

CO2 is the carbon dioxide content in the biogas. 
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There are 22.413 L per mole of gas at STP. According to this equation the average removal 

of VS in period 1 was 84% with a HRT of 30 days. This decreased to 72% in period 2 with a 

HRT of 21 days and further reduced to 54% in period 3 with a HRT of 17 days. The average 

concentration of total solids in the digestate increased from 5.1 ± 0.5 % TS in period 1 to 

5.5 ± 0.3 % TS in period 2 and 6.7 ± 0.9 % TS in the final period. This indicates that reducing 

the HRT also reduces the degradation of volatile solids. However the large drop in specific 

methane yield towards the end of the trial may not be entirely as a result of the reduced 

HRT as signs of process instability emerged towards the end of the trial at an OLR of 4 kg VS 

m-3
 d-1.  

4.5 Monitoring process stability in semi-continuous trial 

During the semi-continuous trial the total volatile fatty acids (VFA), total alkalinity (TA), pH 

and total ammonia nitrogen (TAN) were monitored to assess the stability of the digestion 

process. The average results from the three time periods are shown in Table 8.4. In Period 

1 (OLR 2 kgVS m-3
 d-1) the concentration of total VFAs was 1128 ± 281 mg Aceq l-1. A small 

increase was observed during Period 2 (OLR of 3 kgVS m-3 d-1) with an average of 1511 ± 77 

mg Aceq l-1. The concentration of VFAs rose sharply towards the end of the trial during 

Period 3 (OLR of 4 kgVS m-3 d-1) as shown in Figure 8.5 (a), with an average of 2595 ± 750 

mg Aceq l-1. The sharp increase in VFA concentration indicated that the biological system 

was stressed.  
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The average total alkalinity for the period 1 was 8093 ± 970 mg CaCO3 l-1. This increased to 

9839 ± 159 mg CaCO3 l-1 in period 2 and 10230 ± 185 mg CaCO3 l-1 in period 3. The ratio of 

TVFA/TA is often used to assess the stability of the AD process. A ratio of 0.4 or less 

indicates that the process is stable while ratios over 0.8 indicate organic overloading and 

process instability. During the trial the VFA/TA ratio remained below 0.4, however it is clear 

that even though the ratio was within stable limits, high concentrations of total ammonia 

nitrogen (TAN) coupled with a large decrease in SMY towards the end of the trial indicate 

that a state of semiinhibited methanogenesis had been reached.  

 

 

 

 

 

 



Biogas Production from Novel Substrates 

 

 

- 274 - 
 

 

Figure 5 (a) Monitoring of total alkalinity (TA) and total volatile fatty acids. (TVFA) (b) 

total ammonia nitrogen (TAN) and free ammonia (NH3) in the semi-continuous trial. 

 

4.6 The inhibitory effects of high ammonia concentrations 

There is a linear relationship between decreased specific methane yield and increasing 

concentrations of free ammonia in the liquid phase. Total ammonia nitrogen (TAN) 

contributes to the buffering capacity of the system but can be toxic to methanogens at 

higher pH values. A rise in pH from 7 to 8 can result in a 10 fold increase in the 

concentration of free ammonia. During the trial the pH increased from an average of 7.7 ± 

0.1 in period 1 to 8.1 ± 0.1 in the final period. The high pH is of concern when combined 

with high levels of TAN as the relationship between ionised ammonium (NH4 +) and 

unionised (free) ammonia (NH3) is pH and temperature dependent. The concentration of 
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TAN increased linearly for the duration of the trial with final concentrations in excess of 

7000 mg N l-1, as shown in Figure 8.5(b). This is a very high concentration of TAN and would 

be considered to be well in the toxicity range for methane production [17]. It is well 

documented that high concentrations of free ammonia (NH3) can cause inhibition to 

methane production, [18]. [19] reported that free ammonia concentrations above 1000 mg 

N l-1 are inhibitory for methanogenesis. Banks and colleagues (2012) reported high 

concentrations of total ammonia at high organic loading rates using source separated food 

waste. They showed that at elevated levels of total ammonia the acetoclatic methanogens 

were virtually nonexistent with the methane production coming from the 

hydrogenotrophic route. To overcome the inhibitory effects of high levels of ammonia the 

addition of trace elements such as iron, cobalt, selenium and molybdenum were 

successfully shown to improve methane yields at high organic loading rates (e.g. 5 kg VS m-3 

d-1) [20]. 8.4.7 Comparison of methane yield from food waste The specific methane yield 

(SMY) produced during period 1 of the semi continuous trial was relatively high in 

comparison to other reported methane yields from food waste. The highest average SMY 

of 560 ± 29.3 L CH4 kg−

1 VS was achieved at an OLR of 2 kg VS m-3 d-1
 and HRT of 30 days. 

This is 90.3% of the Buswell Equation value. It is however 7% higher than the average BMP 

result from the same sample. This indicates that at moderate organic loading rates a 

continuous AD process may equal or even exceed methane yields from the BMP test. This 

may be due to acclimatisation of the inoculum with time. Other workers have recorded 

higher SMYs in continuous digestion than in BMP mode [21]. Zhang and colleagues (2012) 

achieved 425 L CH4 kg−

1 VS from continuous digestion of source segregated food waste at 

an OLR of 2 kg VS m-3 d-1. The same material gave BMP results of between 445-456 L CH4 kg−

1 VS [22]. Davidsson and colleagues (2007) reported methane yields of between 300-400 L 

CH4 kg−

1 VS for a large number of source sorted OFMSW samples which had all been 

through different pre-treatment processes [23]. Separate trials by the authors [15] on a 

two phase AD system involving sequentially fed leach beds connected to an upflow 

anaerobic sludge blanket, treating the same commercial food waste, produced 384 L CH4 kg

−

1 VS which corresponded to 72% of the value obtained in the BMP test. This is 

approximately 70% of the highest average methane yield achieved in the semi continuous 

trial and suggests that a conventional CSTR may be the best reactor configuration for 

maximising methane yield from food waste.  
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5 Conclusions 

The characteristics of OFMSW can vary largely depending on the source and type of 

collection with BMP values of between 274 - 535 L CH4 kg−

1 VS. A semi continuous trial on 

commercial food waste produced an average of 560 ± 29 L CH4 kg−

1 VS at a moderate OLR of 

2 kg VS m-3 d-1
 with a HRT of 30 days. At higher OLRs (4 kg VS m-3 d-1) increasing 

concentrations of VFAs (2595 mg l-1) coupled with high concentrations of free ammonia 

(952 mg l-1) led to a greatly reduced average specific methane yield (344 L CH4 kg−

1 VS). 
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Appendix D: Grass for biogas production: The impact of silage 

fermentation characteristics on methane yield in two contrasting 

biomethane potential test systems 
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a b s t r a c t

Grassland biomass is likely to be harvested and stored as silage to ensure a predictable quality and a
constant supply of feedstock to an anaerobic digestion facility. Grass (Phleum pratense L. var. Erecta) was
ensiled following the application of one of six contrasting additive treatments or a 6 h wilt treatment to
investigate the effects of contrasting silage fermentation characteristics on CH4 yield. In general, silage
fermentation characteristics had relatively little effect on specific CH4 yield (from 344 to 383 Nl CH4 kg

�1

volatile solids). However, the high concentrations of fermentation products such as ethanol and butyric
acid following clostridial and heterofermentative lactic acid bacterial fermentations resulted in a
numerically higher specific CH4 yield. While the latter fermentation products of undesirable microbial
activity have the potential to enhance specific CH4 yield, the numerically higher specific CH4 yield may
not compensate for the associated total solids and energy losses during ensiling.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Grassland biomass can be an excellent feedstock for biogas
production and will likely be the dominant feedstock for on-farm
anaerobic digestion in temperate Northwest Europe [1,2]. In order
to ensure a predictable quality and a constant supply of grass to an
anaerobic digestion facility, it is most likely to be harvested and
stored as silage [1]. The main objective of ensilage is the efficient
preservation of the energy content of a crop and this is achieved by
the combination of an anaerobic environment and the bacterial
fermentation of sugar. The lactic acid produced in the latter process
lowers the pH and prevents the proliferation of spoilage microor-
ganisms [3].

However, fermentation under farm conditions is not a
controlled process and silage fermentation characteristics will
depend on the nutrients fermented and the microorganisms
responsible [4]. Silage which has undergone a desirable fermenta-
tion is generally characterised by a low pH, high lactic acid content
and low concentrations of butyric acid and ammonia-N [5,6].

Furthermore, the ensiled energy is almost completely recoverable
in a closed lactic acid dominant fermentation [7]. In contrast, and
despite the negligible loss of energy, the production of ethanol by
yeast during fermentation is undesirable because no acidification
occurs [8]. Similarly, under sub-optimal ensiling conditions a sec-
ondary clostridial fermentation may lead to considerable total
solids (TS) and energy losses due to extensive production of CO2
and H2 from the fermentation of lactate and hexose sugars [3].

A range of fermentation products formed during ensiling can
influence specific CH4 yield. For example, the specific CH4 yield of
some silages has been reported to be higher than for the original
parent material due to the proportionately greater loss of TS than
energy during the formation of fermentation products such as
ethanol and 1,2-propanediol [9e11]. Similarly, a more hetero-
fermentative lactic acid bacteria (LAB) fermentation with higher
concentrations of acetic acid has been reported to enhance CH4
production [12,13]. However, in all these cases, the potential losses
occurring during fermentation must also be taken into account in
order to make a more complete assessment of the overall effects of
silage fermentation.

However, in general, only a limited number of studies [10,12,14]
have provided information on the impact of grass silage fermen-
tation characteristics on CH4 production. Thus, the objective of this
study was to investigate the effects of contrasting grass silage
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Abstract 

Grassland biomass is likely to be harvested and stored as silage to ensure a predictable 

quality and a constant supply of feedstock to an anaerobic digestion facility. Grass (Phleum 

pratense L. var. Erecta) was ensiled following the application of one of six contrasting 

additive treatments or a 6 h wilt treatment to investigate the effects of contrasting silage 

fermentation characteristics on CH4 yield. In general, silage fermentation characteristics 

had relatively little effect on specific CH4 yield (from 344 to 383 L CH4 kg−

1 VS). However, 

the high concentrations of fermentation products such as ethanol and butyric acid 

following clostridial and heterofermentative lactic acid bacterial fermentations resulted in a 

numerically higher specific CH4 yield. While the latter fermentation products of undesirable 

microbial activity have the potential to enhance specific CH4 yield, the numerically higher 

specific CH4 yield may not compensate for the associated total solids and energy losses 

during ensiling.  
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1. Introduction 

Grassland biomass can be an excellent feedstock for biogas production and will likely be 

the dominant feedstock for on-farm anaerobic digestion in temperate Northwest Europe 

[1,2]. In order to ensure a predictable quality and a constant supply of grass to an 

anaerobic digestion facility, it is most likely to be harvested and stored as silage [1]. The 

main objective of ensilage is the efficient preservation of the energy content of a crop and 

this is achieved by the combination of an anaerobic environment and the bacterial 

fermentation of sugar. The lactic acid produced in the latter process lowers the pH and 

prevents the proliferation of spoilage microorganisms [3]. However, fermentation under 

farm conditions is not a controlled process and silage fermentation characteristics will 

depend on the nutrients fermented and the microorganisms responsible [4]. Silage which 

has undergone a desirable fermentation is generally characterised by a low pH, high lactic 

acid content and low concentrations of butyric acid and ammonia-N [5,6]. Furthermore, the 

ensiled energy is almost completely recoverable in a closed lactic acid dominant 

fermentation [7]. In contrast, and despite the negligible loss of energy, the production of 

ethanol by yeast during fermentation is undesirable because no acidification occurs [8]. 

Similarly, under sub-optimal ensiling conditions a secondary clostridial fermentation may 

lead to considerable total solids (TS) and energy losses due to extensive production of CO2 

and H2 from the fermentation of lactate and hexose sugars [3]. A range of fermentation 

products formed during ensiling can influence specific CH4 yield. For example, the specific 

CH4 yield of some silages has been reported to be higher than for the original parent 

material due to the proportionately greater loss of TS than energy during the formation of 

fermentation products such as ethanol and 1,2-propanediol [9e11]. Similarly, a more 

heterofermentative lactic acid bacteria (LAB) fermentation with higher concentrations of 

acetic acid has been reported to enhance CH4 production [12,13]. However, in all these 

cases, the potential losses occurring during fermentation must also be taken into account 

in order to make a more complete assessment of the overall effects of silage fermentation.  

However, in general, only a limited number of studies [10,12,14] have provided information 

on the impact of grass silage fermentation characteristics on CH4 production. Thus, the 

objective of this study was to investigate the effects of contrasting grass silage 

fermentation characteristics on CH4 yield. Methane productionwas determined in two 

contrasting biomethane potential (BMP) test systems.  
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2. Materials and methods 

2.1. Approach 

Grass was ensiled following the application of one of six different additive treatments or a 6 

h wilt treatment to generate seven silages with markedly contrasting fermentation 

characteristics. The effect of grass silage fermentation characteristics on specific CH4 yield 

(i.e. normalised litre per kilogram volatile solids; L CH4 kg−

1 VS) was subsequently 

determined using two contrasting BMP test systems. Silage aerobic stability and the impact 

of aerobic deterioration on specific CH4 yield were also determined, since these potentially 

impact on the efficiency of CH4 production and are affected by the silage fermentation 

process.  

2.2. Harvest and ensiling 

Timothy (Phleum pratense L. var. Erecta) was grown in four field plots (each 20 m2) at 

Grange (53_ 520 N, 06_ 660 W) under an inorganic fertiliser N input of 125 kg N ha_1 and 

harvested on 24 May 2010. The herbage from each plot was harvested using a Haldrup 

forage plot harvester (J. Haldrup, Løgstor, Denmark) to an average 6 cm stubble height and 

passed through a precision-chop harvester (MEX V1, Pottinger; nominal chop-length of 19 

mm) immediately prior to ensiling.  

Prior to filling laboratory silos, seven randomly selected samples of chopped herbage (each 

8 kg) from each plot were assigned to each of the following treatments: (1) Control (i.e. no 

additive applied), (2) Formic acid based additive (Add SafeR_, 70 g ammonia and 640 g 

formic acid per 1 kg additive; Trouw Nutrition, UK), 5 L t_1, (3) Sucrose, 10 kg t_1, (4) 

Calcium carbonate (CaCO3; Sigma, Dublin, Ireland), 10 kg t_1, (5) Homofermentative LAB 

inoculant (Ecosyl 100_, Lactobacillus plantarum MTD1, 1 _106 colony forming units g_1 

herbage; Ecosyl Products Ltd., North Yorkshire, U.K.) plus sucrose (20 kg t_1) and CaCO3 (4 

kg t_1), (6) Heterofermentative LAB inoculant (Pioneer 11A44_, Lactobacillus buchneri, 1 _ 

105 colony forming units g_1 herbage; Southern Farm and Fuel Supplies, Cork, Ireland) plus 

sucrose (20 kg t_1) and CaCO3 (4 kg t_1) and (7) 6 h wilting period. Herbage for the 6 h wilt 

treatment was wilted outdoors on sheets of polythene with frequent manual tedding. 

There was no rainfall during harvesting or wilting. A constant weight (5 kg) of each herbage 

was then ensiled in laboratory silos [15] for 110 days. No effluent was produced during 
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storage. Representative samples of the herbage pre- and postensiling were stored at _18 

_C prior to chemical analyses and determination of specific CH4 yield (silage samples only).  

2.3. Aerobic stability 

After each of the silages had been weighed and sampled on day 110, the remainder of the 

silage was used to assess aerobic stability and deterioration [16]. Briefly, each silage was 

placed in a polythene-lined polystyrene box within an insulated room (4.35 m _ 3.66 m _ 

2.80 m) where the ambient temperature was held at 20 _ 1 _C. Thermocouples were placed 

in the middle of the silage in each box and the temperature was recorded every hour (for 

192 h) by a data logger (SQ ELTEK 80 T, Eurolec Instrumentation Ltd., Dundalk, Ireland). 

Uninsulated plastic containers of water (4 _ 3.8 L) stored near the silage acted as reference 

temperatures to which all silage temperatures were compared. The main indices of aerobic 

stability and deterioration were expressed as (a) the interval in hours until the temperature 

increased more than 2 _C above the reference temperature (b) maximum temperature rise 

and (c) the accumulated temperature rise (_C) up to 192 h of aerobiosis. The similar water 

content of the six unwilted silage treatments would confer similar specific heat 

characteristics on them, so that recording changes in their temperatures during exposure 

to air should reflect their relative heat production. The lower water content of the Wilt 6 h 

treatment necessitates some caution when comparing its aerobic stability or deterioration 

index values to the other treatments. 

 A representative sample of each silage was taken after 8 days (i.e. 192 h) exposure to air 

and samples were stored at _18 _C prior to chemical analyses and determination of specific 

CH4 yield (using the micro-BMP system only).  

2.4. Chemical analysis 

 Representative herbage samples pre- and post-ensiling were dried at 98 and 85 _C, 

respectively, for 16 h in an oven with forced air circulation to estimate TS content, and the 

values for silage samples were corrected for the loss of volatiles [17]. Replicate samples 

were also dried at 40 _C for 48 h before being milled (Wiley mill; 1 mm screen). Dried, 

milled samples were used for the determination of in vitro total solids digestibility and 

neutral detergent fiber, acid detergent fiber, crude protein, ash and water soluble 

carbohydrate concentrations and buffering capacity (herbage pre-ensiling only) as 
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previously described by King et al. [18]. Herbage VS concentration was subsequently 

determined (VS ¼ TS _ ash). Using silage samples taken prior to drying, the pH was 

determined from an aqueous extract using a handheld pH meter (R 315 pH, Reagecon 

Diagnostics Ltd., Dublin, Ireland). Further silage juice was extracted for the analysis of lactic 

acid, volatile fatty acids (i.e. acetic acid, propionic acid and butyric acid), ethanol and 

ammonia-N as previously described by McEniry et al. [19]. 

 The pH and TS concentration of the silages after 8 days exposure to air and the TS (85 _C 

for 16 h) and VS content of the sludge inoculum used in subsequent BMP tests were also 

determined using methods described above.  

 

2.5. BMP test systems  

Two contrasting BMP test systems were used to investigate the effects of silage 

fermentation characteristics on specific CH4 yield as outlined below. The impact of exposure 

of silage to air on specific CH4 yield was determined in the micro-BMP system only.  

2.5.1. Micro-BMP  

Dried, milled samples were used to determine the specific CH4 yield of each silage in 160 ml 

micro-BMP tests, in accordance with VDI 4630 [20] and as described previously by McEniry 

et al. [2]. Drying the silage samples facilitated their preservation and the processing of a 

relatively large representative sample of undried herbage to provide a smaller 

representative sub-sample for analyses [21]. Briefly, inoculum and substrate were added to 

160 ml incubation bottles at a VS inoculum to substrate ratio of 2:1 and at a final VS 

concentration of 10 g kg_1. The inoculum (pH ¼ 7.98; 4 g TS kg_1, 2 g VS kg_1) was 

obtained from a farm digester treating cattle manure (Agri-Food and Biosciences Institute, 

Hillsborough, Northern Ireland). Micro- and macro- mineral solutions were added to ensure 

that nutrient conditions were not limiting [2] and distilled water was added to each bottle 

to adjust the final volume to 70 ml.  

In order to determine the CH4 yield of the inoculum, six replicate bottles with no substrate 

(i.e. blanks) were incubated under the same conditions. The final pH in each bottle was 

adjusted to 7.2 with 1 M hydrochloric acid, before the contents were flushed with N2 gas 



Biogas Production from Novel Substrates 

 

 

- 285 - 
 

for 1 min and sealed with butyl rubber stoppers and aluminium crimp seals. Bottles were 

incubated at 38 _C for 35 days and hand-mixed daily.  

Using a detachable pressure transducer (Tracker 220, Gems Sensors and Controls, 

Basingstoke, UK), the gas headspace pressure inside each bottle was recorded after 2, 5, 8, 

13, 18, 27 and 35 days. The total amount of biogas produced was estimated using the 

following equation: Gas production (ml) ¼ (vh/Pa) _ Pt; where vh is the headspace volume 

(ml), Pa is the atmospheric pressure (hPa) and Pt is the gas headspace pressure (hPa). 

Following the determination of biogas volume, a 0.8 ml sample of gas was used to 

determine CH4 concentration by gas chromatography [2]. After sampling the gas pressure 

inside each bottle was released.  

Evaluation of these data included the following steps [20]: (a) headspace correction of the 

biogas values on day 2, as inert gas in the headspace at the beginning (day 0) of the batch 

digestion test causes a dilution of the biogas components, (b) subtraction of the volume of 

CH4 produced by the inoculum (i.e. blank) from the volume of CH4 produced in the batch 

digestion test with substrate and inoculum and (c) normalising the CH4 volume to standard 

temperature and pressure conditions (i.e. dry gas, 273 K, 1013 hPa). The specific CH4 yield 

was calculated as the cumulative sum of the CH4 volume produced over the 35 day 

incubation period relative to the substrate VS concentration added to the test. Methane 

yield (L CH4 kg TS-1) was also expressed relative to the substrate TS concentration added to 

the test and this was subsequently adjusted to reflect silage TS recovered (i.e. expressed 

based on grass TS ensiled and taking account of in-silo losses).  

2.5.2. Large-BMP  

The specific CH4 yield of each silage was also determined using an Automated Methane 

Potential Test System (AMPTS II; Bioprocess Control; Lund, Sweden), in accordance with 

VDI 4630 [20]. When required for analysis, individual silage samples were thawed at 4 _C 

for 24 h. Inoculum and substrate were added to 500 ml incubation bottles at a VS inoculum 

to substrate ratio of 2:1 and at a final VS concentration of 56 g kg_1. The inoculum (pH ¼ 

7.56; 6 g TS kg_1, 4 g VS kg_1) was obtained from a farm digester treating cattle and 

poultry manure (Shanagolden, Co. Limerick, Ireland). Distilled waterwas added to each 

bottle to adjust the final volume to 400 ml. 
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In order to determine the CH4 production of the inoculum, three replicate bottles with no 

substrate (i.e. blanks) were incubated under the same conditions. The incubation bottles 

were sealed with a screw-on cap and silicon spray before the contents were flushed with 

N2 gas for 1 min. Bottles were incubated at 38 _C for 33 days and the contents of each 

bottle were mixed with a slow rotating mixing rod (60 r.p.m.; every second minute). 

Methane production was recorded remotely over the 33 day incubation period. The biogas 

produced in each bottle passes through a second unit of bottles (one for each incubation 

bottle) containing 3M NaOH solution, which allows CH4 to pass through while retaining CO2 

and H2S. The CH4 is then passed through a third unit comprising a gas measuring tipping 

mechanism (one for each bottle). A specific volume of CH4 causes the tipping device to tip. 

This movement is recorded via a digital pulse and output is recorded in a software package 

as volume of CH4 produced. These data were evaluated as described previously for the 

micro-BMP system.  

2.6. Statistical analysis  

Means and standard deviations (s.d.) were calculated for grass chemical composition pre-

ensiling. Appropriate silage data and CH4 yield data from BMP tests were analysed by one-

way analysis of variance using the Proc GLM procedure of SAS, Version 9.1.2. Methane 

yield data from the two BMP test systems were analysed separately. The Tukey adjustment 

for multiple comparisons was used in testing for differences between means. The changes 

in silage chemical composition and specific CH4 yield as a result of exposure to air were 

calculated by subtracting values for silage after 8 days exposure to air from silages at silo 

opening, respectively. These data were analysed according to the same procedure as 

outlined above.  

 

3. Results 

3.1. Grass composition pre-ensiling 

Mean (s.d.) grass composition pre-ensiling is presented in Table 1. The 6 h wilt treatment 

resulted in a numerical increase in herbage TS concentration to 265 g kg_1 and had little 

effect on any of the other variables measured. 3.2. Silage composition Although relatively 

small differences in silage total solids digestibility were observed between treatments, 
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these differences were not significantly different (P > 0.05) across treatments (Table 2). 

Neutral detergent fibre and acid detergent fibre concentrations were lower (P < 0.01) for 

the silages from the homofermentative LAB treatment compared with the control, CaCO3 

(acid detergent fibre only), heterofermentative LAB and 6 h wilt treatments. Herbage crude 

protein concentration was lower (P < 0.001) and ash concentration higher (P < 0.001) for 

the silages from the CaCO3 treatment compared with all other treatments. There was a 

major decline in herbage water soluble carbohydrate concentration during ensiling with the 

concentration of water soluble carbohydrate remaining in the silages being higher (P < 

0.001) for the formic acid treatment compared with all other treatments.  

Silage pH was highest (P < 0.001) for the CaCO3 treatment followed by the control and 

heterofermentative LAB treatments, with the pH for other treatments being similarly low 

(3.9 to 4.09; Table 2). In contrast, lactic acid concentrationwas lower (P < 0.001) for the 

silages from the CaCO3, control and heterofermentative LAB treatments compared with 

the homofermentative LAB treatment. Acetic acid (P < 0.001), propionic acid (P < 0.01; with 

the exception of control and CaCO3 treatments) and ethanol (P < 0.01) concentrations 

were all higher for the silages from the heterofermentative LAB treatment. Although 

butyric acid concentration was numerically higher for the control and the CaCO3 

treatments (16.2 and 20.6 g kg_1 TS), this difference was not significant (P > 0.05). This 

reflects the heterogeneous nature of silage feedstocks and suggests that preservation was 

particularly poor for specific replicates of some treatments (e.g. CaCO3 treatment), but that 

this trendwas not evident across all replicates. Total fermentation products concentration 

was higher (P < 0.001) for the homofermentative LAB, sucrose and heterofermentative LAB 

treatments compared with the CaCO3 treatment. Similarly, the proportion of lactic acid in 

total fermentation products was higher (P < 0.001) for the formic acid, sucrose, 

homofermentative LAB and 6 h wilt treatments (0.76 to 0.81) compared with the CaCO3 

treatment (0.31), with the other two treatments being intermediate (0.45 to 0.55). Finally, 

ammonia-N concentration was highest (P < 0.01) for the CaCO3 additive treatment 

compared with the other six treatments. Although TS recovery was numerically higher for 

the homofermentative LAB and sucrose treatments and lowest for the CaCO3 treatment, 

these differences were not significant (P > 0.05).  
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3.3. Aerobic stability 

The additive treatments and the 6 h wilt treatment had little effect (P > 0.05) on the 

indices of aerobic stability measured (Table 3). However, although not statistically 

significant, the interval in hours until the temperature increased more than 2 _C above the 

reference temperature was numerically lower for the sucrose (159 h) and 

homofermentative LAB (162 h) treatments, with all other silages appearing to be stable 

after 184e192 h of aerobic exposure. Similarly, the maximum temperature rise (4.8 and 6.7 

_C for sucrose and homofermentative LAB treatments, respectively) and the accumulated 

temperature rise up to 192 h of aerobiosis (10.0 and 13.0 _C) were numerically higher for 

these silages.  

3.4. BMP test systems-specific CH4 yield 

On average in the micro-BMP system, 0.78 of total CH4 production over the 35 day 

incubation period was produced by day 13 of the batch digestion test. The specific CH4 yield 

for the dried, milled silage samples varied from 283 to 314 L CH4 kg−

1 VSVS and did not 

differ (P > 0.05) between treatments (Table 4). In the large-BMP system the average 

specific CH4 yield for the silages ranged from 344 to 383 L CH4 kg−

1 VSVS (Table 4). Despite 

the higher numerical specific CH4 yield of the CaCO3 and heterofermentative LAB 

treatments (370 and 383 L CH4 kg−

1 VSVS, respectively), there was no difference (P > 0.05) 

observed between the silages from different treatments. In contrast, when CH4 yield is 

expressed per kg_1 silage TSrecovered (Tables 2 and 4), the CH4 yield of the CaCO3 treatment was 

lower (P < 0.01) than all treatments (with the exception of the control and 6 h wilt 

treatments).  

3.5. Exposure to air e changes in chemical composition and specific CH4 yield 
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In general, exposure of the silages to air resulted in a numerically small increase in silage 

pH (þ0.39) and a small decrease in TS concentration (_2.9 g kg_1) and specific CH4 yield 

(_11 L CH4 kg−

1 VSVS; but with the exception of the heterofermentative LAB and 6 h wilt 

treatments). However, these changes were relatively small and they were not significantly 

different (P > 0.05) across treatments (Table 5).  

 

4. Discussion 

4.1. Silage fermentation characteristics 

The seven treatments produced a range of silages with contrasting fermentation 

characteristics. With the exception of the control, CaCO3 and heterofermentative LAB 

treatments, all silages exhibited a lactic acid dominant fermentation (i.e. >0.75 lactic acid 

/fermentation products) with little or no clostridial activity as evidenced by butyric acid and 

ammonia-N concentrations of <10 g kg_1 TS and 100 g kg_1 N, respectively. This was 

indicative of a satisfactory preservation [6]. The increase in ammonia-N concentration with 

the formic acid based additive (127 g kg_1 N) is a result of the direct contribution of 

ammonia-N from the additive thus overestimating the extent of proteolysis during ensiling 

[22]. In contrast, silages from the control and CaCO3 treatments showed evidence of both 

saccharolytic and proteolytic clostridial activity as indicated by the high pH (4.81 and 5.62 

for control and CaCO3 treatments, respectively) and high concentrations of butyric acid 

(16.2 and 20.6 g kg_1 TS) and ammonia-N (158 and 368 g kg_1 N) [5].  
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In the case of the control treatment, the relatively low TS (201 g kg_1) and water soluble 

carbohydrate (96 g kg_1 TS) concentrations of the herbage pre-ensiling and the relatively 

high buffering capacity (461 m. Eq. kg_1 TS) would have presented an elevated challenge to 

preservation. This was further evidenced by a fermentation coefficient (FC ¼ TS (g 100 g_1) 

þ 8 water soluble carbohydrate/ buffering capacity) value of 31, which is considerably 

lower than the critical value of 45 considered to be essential for the production of 

anaerobically stable silage free of butyric acid [23]. This combination of factors appeared to 

be conducive to permitting undesirable clostridial activity.  

However, the direct acidification and antimicrobial effect of the formic acid treatment 

allowed LAB to dominate the fermentation (i.e. 0.81 lactic acid/fermentation products) and 

produced silages with more desirable fermentation characteristics. This treatment resulted 

in a low pH and likely resulted in a greater inhibition of Enterobacteria and Clostridia as 

evidenced by reduced concentrations of ethanol, butyric acid and ammonia-N compared 

with the control treatment [5,8]. Adding sucrose also improved silage preservation, further 

suggesting that the low water soluble carbohydrate concentration in the herbage pre-

ensiling presented an elevated challenge to preservation. The sucrose provided an 

additional supply of fermentable substrate to the microbial population, counteracting the 

negative ensilability effects of low TS concentration and high buffering capacity, and 

resulted in an almost two-fold increase in lactic acid concentration and a decrease in pH.  

Calcium carbonate was included to act as a buffer against acidification. The resulting silages 

were very poorly preserved showing evidence of high levels of clostridial activity which 

resulted in high (0.195) TS losses. As no signs of excessive respiration (e.g. mould growth) 

were evident and no effluent was produced for any of the silages, TS loss was largely 

reflective of the efficiency and extent of fermentation. In contrast, the addition of a 

homofermentative LAB inoculant (including sucrose and CaCO3) resulted in a lactic acid 

dominant fermentation, with a high concentration of lactic acid (154 g kg_1 TS), reduced 

proteolysis and a greater TS recovery. The inclusion of small amounts of sucrose and CaCO3 

with the latter inoculant would have increased the total fermentation products 

concentration by supplying additional substrate for fermentation and increasing the 

amount of lactic acid required to lower the pH, respectively.  
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The heterofermentative LAB treatment (including sucrose and CaCO3) resulted in the 

production of high concentrations of a number of fermentation products. Acetic acid, 

propionic acid and ethanol concentrations were all high (42.7, 11.4 and 28.8 g kg_1 TS, 

respectively) in these silages, with lactic acid contributing only 0.45 of total fermentation 

products. Similar to the formic acid treatment, the 6 h wilt treatment produced silages with 

a more restricted fermentation as evidenced by the lower concentration of total 

fermentation products. The reduced concentrations of butyric acid and ammonia-N, 

compared with the control treatment, demonstrates the inhibitory effect of higher TS 

concentration on Clostridia [24].  

 

4.2. Silage fermentation characteristics and specific CH4 yield 

Despite the large differences in both the extent and direction of fermentation among the 

seven grass silages, no significant differences were observed in specific CH4 yield. However, 

the numerically higher specific CH4 yield values of the CaCO3 and the heterofermentative 

LAB treatments likely reflect the higher potential CH4 yield from fermentation products 

such as ethanol and butyric acid [11]. For example, there is no difference in the theoretical 

CH4 yield of lactic acid and acetic acid (355 L CH4 kg-1), whereas the theoretical CH4 yield for 
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ethanol (693 L CH4 kg-1), butyric acid (604 L CH4 kg-1) and propionic acid (503 L CH4 kg-1) are 

significantly higher [9,25].  

Furthermore, the CH4 content of the biogas produced during anaerobic digestion can be 

altered by the chemical composition of the fermentation products [11]. For example, the 

theoretical CH4 content (expressed as a proportion of biogas volume) for ethanol, butyric 

acid and propionic acid are 0.75, 0.63 and 0.58, respectively [9]. Thus, the specific CH4 yield 

of the CaCO3 and the heterofermentative LAB treatments was numerically higher due to 

the accumulation of fermentation products showing a higher CH4 yield than those of the 

other dominant fermentation products measured (i.e. lactic acid and acetic acid). This 

suggests that the numerically higher specific CH4 yield of the heterofermentative LAB 

treatment may be a result of the increased concentrations of fermentation products such 

as ethanol and propionic acid, as opposed to the higher proportion of acetic acid [12,13]. 

However, an increase in the specific CH4 yield expressed on a VS 

basis may not reflect the CH4 yield per mass unit of silage material and the losses occurring 

during ensilage must also be taken into account [11,12]. When considering TS recovered 

and in-silo losses, the lowest CH4 yield was observed for the CaCO3 treatment. This reflects 

the high levels of clostridial activity which resulted in high TS losses due to extensive 

production of CO2 and H2 from the fermentation of lactate and hexose sugars [5]. 

Neurieter et al. [26] also reported that a clostridial fermentation could improve specific CH4 

yield, but that the high losses during storage negatively compensated for the higher specific 

CH4 yield. In the current study, however, the positive effect of enhanced specific CH4 yield 

was outweighed by the large TS losses during the ensiling process.  

Heterofermentative lactic acid bacterial fermentations are generally associated with higher 

TS losses than homofermentative lactic acid fermentations [3]. This was not particularly 

evident in the current study with differences in TS losses during ensiling being minimal. 

Furthermore, the CH4 yield for the heterofermentative LAB treatments, expressed on a TS 

recovered basis, was also numerically higher (on average 24 L CH4 kg−

1 VSTSrecovered, 

excluding the CaCO3 treatment) than all other treatments. This may suggest that under 

good ensiling conditions, with minimal TS losses, that there may be some potential to 

increase CH4 yield through the promotion of a heterofermentative lactic acid bacterial 

fermentation.  
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4.3. Aerobic stability and specific CH4 yield Aerobic microorganisms can be reactivated on 

exposure to air causing spoilage [3]. These microorganisms multiply and contribute to 

heating and chemical changes within the silage, indicated at its simplest by a reduction in 

lactic acid concentration and a corresponding rise in pH. Aerobic deterioration is 

undesirable and losses can amount to 30e50 g TS kg_1 within 1 day of exposure to air [27], 

as well as to losses in available energy content.  

In the current study, all silages appeared to be relatively stable on exposure to air, with 

only relatively small increases in silage pH (from 0.06 to 1.07) and small losses in TS 

concentration (from _0.4 to 5.9 g kg_1) observed. The presence of acetic acid (from 13.4 to 

42.7 g kg_1 TS) and propionic acid (from 1.7 to 11.4 g kg_1 TS) in all silages may have 

resulted in the inhibition of yeast activity and this may have enhanced silage stability on 

exposure to air [28]. Furthermore, the numerically higher temperature rise and the shorter 

interval until temperature increased by more than 2 _C above the reference temperature 

for the sucrose and homofermentative LAB treatments may be explained by the high 

concentrations of lactic acid in these silages possibly acting as a substrate for lactate-

assimilating yeast [29].  

Reflecting this high aerobic stability, only a small decrease in specific CH4 yield was 

observed for the silages following 8 days exposure to air and this likely reflects small losses 

in residual water soluble carbohydrate and fermentation products concentrations as a 

result of aerobic microbial activity. However, this trend was not consistent across all 

treatments and a small increase in specific CH4 yield was observed for the 

heterofermentative LAB and 6 h wilt treatments following exposure to air. An explanation 

for this trend is not apparent.  

4.4. Comparison of BMP test systems 

A major difference between the two BMP test systems was the use of dried, milled silage 

samples in the micro-BMP test. Thermal drying can change the chemical composition of a 

feedstock and these changes may impact on specific CH4 yield. For example, continued 

activity by plant enzymes during thermal drying at low temperatures can result in organic 

matter losses, while drying at high temperatures can result in the production of indigestible 

‘Maillard’ products [21].  
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More importantly, thermal drying can result in the loss of volatile compounds such as 

fermentation acids and alcohols, with Porter and Murray [17] reporting volatility 

coefficients of 0.09, 0.55 and 0.99 for lactic acid, volatile fatty acids and alcohols 

fermentation products when thermal drying at 60 _C, respectively. Although the volatility 

of the silage at 40 _C would have been considerably lower than when drying at 60e100 _C 

[17,30], some partial losses would still have occurred and this likely contributed to the 

numerically lower specific CH4 yield for each silage in the micro- BMP test system.  

However, despite the numerically lower specific CH4 yield data observed for the micro-BMP 

test system, no significant differences in specific CH4 yield were observed between the 

silages in either of the BMP test systems. This may suggest that the micro-BMP test system 

is useful for the comparison and ranking of samples relative to one another, but is less 

suitable for the determination of the maximum specific CH4 yield.  

5. Conclusions  

Grass silage fermentation characteristics appear to have relatively little effect on specific 

CH4 yield. However, the relatively high concentrations of fermentation products such as 

ethanol and butyric acid in the CaCO3 and the heterofermentative LAB treatments resulted 

in a numerically higher specific CH4 yield. For the CaCO3 treatment, the positive effect of 

enhanced specific CH4 yield with an undesirable clostridial fermentation was outweighed by 

the large TS losses occurring during ensiling. While some of the fermentation products (i.e. 

ethanol and butyric acid) of undesirable microbial activity have the potential to enhance 

specific CH4 yield, this numerically higher specific CH4 yield may not compensate for the 

associated TS and energy losses occurring during ensiling.  
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a b s t r a c t

This paper examines the rate of degradation of food waste in a leach bed reactor (LBR) under four differ-
ent operating conditions. The effects of leachate recirculation at a low and high flow rate are examined
with and without connection to an upflow anaerobic sludge blanket (UASB). Two dilution rates of the
effective volume of the leach bed reactors were investigated: 1 and 6 dilutions per LBR per day. The
increase in dilution rate from 1 to 6 improved the destruction of volatile solids without connection to
the UASB. However connection to the UASB greatly improved the destruction of volatile solids (by almost
60%) at the low recirculation rate of 1 dilution per day. The increase in volatile solids destruction with
connection to the UASB was attributed to an increase in leachate pH and buffering capacity provided
by recirculated effluent from the UASB to the leach beds. The destruction of volatile solids for both the
low and high dilution rates was similar with connection to the UASB, giving 82% and 88% volatile solids
destruction respectively. This suggests that the most efficient leaching condition is 1 dilution per day
with connection to the UASB.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Introduction to municipal biowaste treatment

Municipal biowaste often referred to as the organic fraction of
municipal solid waste (OFMSW) consists of food and garden waste
from domestic, commercial and street cleanings. It is the main
cause of smell and nuisance in municipal solid waste (MSW) and
is responsible for most of the environmental hazards associated
with municipal waste management, such as the formation of pol-
luting leachate and methane gas under anaerobic conditions. As
EU states are obliged to divert biodegradable waste from landfill
under the terms set out in the Landfill Directive 1999 (EC, 1999),
new treatment methods are sought in many countries to treat
OFMSW in the most environmentally and economically sound way.

The use of anaerobic digestion (AD) in treating OFMSW is
becoming increasingly popular across Europe (Mata-Alvarez,
2003). However OFMSW is a complex and heterogeneous material
and many questions still remain about the most effective AD pro-
cess for OFMSW digestion and even if it is suitable for long term
continuous mono-digestion (Banks et al., 2011). A significant por-
tion of OFMSW consists of food waste with a total solids (TS) con-
tent of 20–30% (Davidsson et al., 2007). As of June 2010,
commercial premises in Ireland which produce greater than

50 kg of food waste per week are legally required to provide desig-
nated bins for source separated food waste (SSFW) (Dept of Envi-
ronment, 2009). It is estimated that over a million tonnes per
annum of OFMSW will have to be diverted from landfill in Ireland
by 2016 to meet the EU Landfill Directive (EC, 1999). Currently
alternative waste treatment infrastructure is insufficient to meet
this demand (EPA, 2009). Due to the recent EC proposal (EC,
2012) to limit biofuels from food crops to 2011 levels (ca. 5%)
the potential to upgrade biogas from food waste to biomethane
(Budzianowski, 2012) and use as a transport fuel (Murphy et al.,
2013) can help EU states to meet the 10% renewable energy in
transport target.

1.2. Anaerobic digestion technology

The most commonly known and used digester type is the con-
tinuously stirred tank reactor (CSTR) which is operated at a low to-
tal solids content, typically 5–10% TS (Banks et al., 2011;
Climenhaga and Banks, 2008; Nizami et al., 2009). Food waste
has a total solids content of between 20% and 30% therefore wet
AD systems may require dilution with water or agricultural slurry
to facilitate homogenization and mixing. As water has a relatively
large specific heat capacity (4.2 kJ/kg/�C) the required heat energy
would be larger due to the increased volumes to be treated as
would the energy required for pumping and mixing (Jagadabhi
et al., 2011). It is commonly cited in the waste management indus-
try that food waste even when it is collected in a designated bin,
can be heavily contaminated with other household waste materials
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a b s t r a c t

Biomethane is an energy vector suitable for renewable transport fuel which may derive energy through
three different methodologies: thermal gasification; biological anaerobic digestion; and conversion of
electricity to hydrogen (via electrolysis) and on tomethane as described by the Sabatier Equation. Thermal
gasification to producemethane (based on “hard” feed stock) tends to require significant scale, of the order
of 400 MW. Biological anaerobic digestion (based on “soft” feed stock) is typically of scale less than 1 MW.
Systems based on the Sabatier Equation convert hydrogen to methane exothermically and sequester car-
bon. The resource is assessed at 19% of energy in transport in Ireland. Adopting the approach of the EU
Renewable Energy Directive (for example double credit for biofuels from residues and lignocellulosic feed
stock) biomethane can supply 40% renewable energy supply in transport (RES-T). The resource is sufficient
to supply 30% of the private transport fleet with indigenous sustainable gaseous biofuel.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

There tends to be a preoccupation with renewable electricity
when discussing renewable energy. This tends to follow the desire
for a silver bullet technology [1]; one solution to solve the problems
of peak oil (and peak fossil fuel?), security of supply, global
warming and climate change. Considering that electricity is
approximately 20% of final energy demand [1] on average, a sim-
plistic solution would suggest that electricity capacity is increased
considerably (up to a factor of five if no energy reduction takes
place) and that green electricity is used to satisfy the three main
energy demands (electricity, heat and transport). An intelligent
examination of the problem may suggest that electricity is pre-
dominately produced by coal and gas (which tend not to be on the
critical path for peak fuel) while oil (which probably has peaked) is
the dominant fuel for transport (petrol and diesel) and in many
countries for heat (as kerosene). Thus the most pressing problem
for the world may be renewable transport and thermal energy
supply. Pragmatically a number of solutions are required to replace
depleting oil reserves for a growing world population with
improving standards of living. Initially natural gas may be seen as
the first abundant source of substitution for oil [2]. Natural gas has

a far higher hydrogen composition than oil (25% versus 13%) and as
such produces less carbon dioxide per unit of energy. Local air
quality is far better served using natural gas vehicles (NGVs) than
diesel in buses or petrol in cars. There are over 12 million NGVs on
the world’s roads, many in developing countries such as Pakistan.
Many of the vehicles are buses which use far more fuel than a pri-
vate vehicle [2]. Biomethane may be blended with or used as
a substitute for natural gas in NGVs. Obviously biomethane may
also displace natural gas as a source of thermal energy. All thorough
investigations of renewable energy resources must examine the
potential market size and the technology [3,4]. Three technologies
are considered here: biological and thermal production of methane
is relatively well understood; the third source is as a storage
mechanism for green electricity.

Anaerobic digestion is a ubiquitous technology; however the
feed stocks utilised are ever expanding. Initially residues such as
sewage, slurry, organic waste dominated; now however crops and
crop residues are greatly enhancing the potential bioresource.
There are over 6000 biodigesters in Germany alone; Maize is the
dominant feed stock [5]. As of late gas grid injection is the dis-
tribution system of choice allowing optimal energy and financial
returns [6,7]. Countries such as Ireland with an extensive natural
gas grid and large bioresource (91% of agricultural land under
grass) see huge potential for biomethane; 2.5% of grass land is
potentially surplus and available for biomethane production [7].
The EU Renewable Energy Directive [8] allows double credit for
biofuels produced from lignocellulosic feed stock and residues.
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Optimisation of digester performance with increasing organic loading
rate for mono- and co-digestion of grass silage and dairy slurry
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h i g h l i g h t s

� Higher grass silage input maximises potential biomethane output.
� At 4 kg VS m�3 d�1 the SMY for mono-digestion of grass silage reduces by 12%.
� Biomethane efficiencies remain optimal at high OLRs with addition of 20% slurry.
� HRT should exceed 20 days for effective anaerobic digestion of grass silage.
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a b s t r a c t

This study investigated the feasibility of mono-digesting grass silage, dairy slurry and the co-digestion of
the two substrates at a range of concentrations with a specific focus on digester performance while
increasing organic loading rate (OLR). The results show that the higher the proportion of grass silage
in the substrate mix the higher the specific methane yield (SMY) achieved. Optimum conditions were
assessed for 100% grass silage at an OLR of 3.5 kg VS m�3 d�1 generating a SMY of 398 L CH4 kg�1 VS
equating to a biomethane efficiency of 1.0. For co-digestion of grass silage with 20% dairy slurry the opti-
mum condition was noted at an OLR of 4.0 kg VS m�3 d�1 generating a SMY of 349 L CH4 kg�1 VS and a
biomethane efficiency of 1.01. Hydraulic retention times of less than 20 days proved to be a limiting fac-
tor in the operation of farm digesters.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Use of grass to meet renewable energy targets through anaerobic
digestion

Whereas the predominant crop feedstock for anaerobic diges-
tion in Germany and Austria is maize silage (IEA, 2014), Ireland,
with a temperate climate, is more suited to the production of grass
and can potentially achieve high yields per hectare (O’Donovan
et al., 2011). Thus, grass silage is the primary source of conserved
feed for ruminants in the country (O’Mara, 2008). Excess grass
silage, surplus to livestock requirements, has been identified as
a potential source for biomethane production which would

significantly contribute to upcoming renewable energy targets
(McEniry et al., 2013; Wall et al., 2013). The successful operation
of grass-fed digesters is of utmost importance to the establishment
of an anaerobic digestion industry in the country.

Mono-digestion of grass silage has been reported to give diffi-
culties due to a deficiency in essential trace elements over long
term operation of a reactor (Jarvis et al., 1997; Thamsiriroj et al.,
2012). Ireland has an abundance of slurry, derived from faeces
and urine, collected from ruminant and monogastric farm livestock
accommodated indoors. This is a potential co-substrate attribut-
able to its relatively high content of trace elements. However, the
addition of slurry to a digester theoretically reduces potential
biomethane yields (Wall et al., 2013) and therefore it is important
to find the right balance with respect to the stable operation of a
reactor and its economic feasibility. Digesters fed solely with slurry
have proved economically challenging with low methane yields
(Gerin et al., 2008).
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The effect of trace element addition to mono-digestion of grass silage
at high organic loading rates
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� Dairy slurry when co-digested with grass silage provided sufficient trace elements.
� Low addition of slurry (20% VS) exhibited stable VFA profiles and high SMYs.
� Mono-digestion of grass silage at high loading rates required trace element addition.
� Supplementation of cobalt, nickel and iron to mono-digestion increased SMY by 12%.
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This study investigated the effect of trace element addition to mono-digestion of grass silage at high
organic loading rates. Two continuous reactors were compared. The first mono-digested grass silage
whilst the second operated in co-digestion, 80% grass silage with 20% dairy slurry (VS basis). The reactors
were run for 65 weeks with a further 5 weeks taken for trace element supplementation for the
mono-digestion of grass silage. The co-digestion reactor reported a higher biomethane efficiency (1.01)
than mono-digestion (0.90) at an OLR of 4.0 kg VS m�3 d�1 prior to addition of trace elements. Addition
of cobalt, iron and nickel, led to an increase in the SMY in mono-digestion of grass silage by 12% to
404 L CH4 kg�1 VS and attained a biomethane efficiency of 1.01.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Role of nutrients in anaerobic digestion

The role of nutrients in the anaerobic digestion process is a key
aspect of digester performance and stability. Macronutrients (N, P,
K, Na, Ca and Mg) are primarily associated with the digestate, and
their potential role is as a fertiliser substitute or other valued
added end products. They also act as important biological compo-
nents in digestion systems. Micronutrients, or trace elements (TEs),
are aligned to the operational performance of the reactor and any
deficiency in such TEs can have a detrimental effect on potential
biomethane yields. The bio-availability of TEs is primarily
dependent on the chemical form in which they are present, and
on the balance between individual macro-/micro-nutrients.

1.2. Benefit of trace elements in grass silage digestion

Grass silage, produced in excess of livestock requirements, is an
essential substrate in the establishment of an anaerobic digestion
industry in Ireland. In a previous paper by the authors (Wall
et al., 2014), continuous mono-digestion of grass silage (termed
R6 in the paper) was shown to give high specific methane yields
(SMY) of 398 L CH4 kg�1 volatile solids (VS) at an organic loading
rate (OLR) of 3.5 kg VS m�3 d�1. However, as the OLR was increased
to 4.0 kg VS m�3 d�1, the SMY decreased to 360 L CH4 kg�1 VS; a
drop of 12%. The system employed recirculation of effluent liquor
(<25 g dry solids (DS) kg�1) to ensure the reactor remained at a
desirable solids content (<100 g DS kg�1). This led to a shortened
hydraulic retention time (HRT) of 19 days, which is postulated as
a reason for the drop off in SMY.

To maintain high SMYs for mono-digestion of grass silage it is
suggested that specific TEs be added to the reactor. Alternatively
co-digestion with dairy cow slurry, an abundant agricultural
resource in Ireland may be utilised. The addition of 20% dairy slurry
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Investigation of effect of particle size and rumen fluid addition on
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� Treatments to stimulate hydrolysis were assessed on a high fibre grass silage.
� Particle size reduction and rumen fluid addition were assessed by methane yields.
� Batch tests did not reveal the impact of these variables reporting similar yields.
� Operation of continuous digestion of grass >3 cm was mechanically problematic.
� The best case was <1 cm silage with rumen fluid addition yielding 371 L CH4 kg�1 VS.
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This work examines the digestion of advanced growth stage grass silage. Two variables were investi-
gated: particle size (greater than 3 cm and less than 1 cm) and rumen fluid addition. Batch studies indi-
cated particle size and rumen fluid addition had little effect on specific methane yields (SMYs). In
continuous digestion of 3 cm silage the SMY was 342 and 343 L CH4 kg�1 VS, respectively, with and with-
out rumen fluid addition. However, digester operation was significantly affected through silage floating
on the liquor surface and its entanglement in the mixing system. Digestion of 1 cm silage with no rumen
fluid addition struggled; volatile fatty acid concentrations rose and SMYs dropped. The best case was
1 cm silage with rumen fluid addition, offering higher SMYs of 371 L CH4 kg�1 VS and stable operation
throughout. Thus, physical and biological treatments benefited continuous digestion of high fibre grass
silage.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

To meet the mandatory EU transport targets set under the
Renewable Energy Directive (EC, 2009), a number of digestible
feedstocks have been identified for gaseous biofuel production in
Ireland including food waste (Browne and Murphy, 2013), green
seaweed and slurry (Allen et al., 2014). Grass silage, a substantial
crop resource, has also been recognised for its potential contribu-
tion (McEniry et al., 2013). It has been reported that digesting grass
silage and dairy slurry on a 1:1 volatile solids (VS) basis can
achieve over 10% renewable energy supply in transport (RES-T)
using just 1.1% of grassland in the country (Wall et al., 2013).
However, grass is not a homogenous feedstock and its chemical

characteristics can vary significantly (McEniry and O’Kiely, 2013).
Grass silage harvested at an advanced growth stage will typically
have higher lignocellulosic content and lower dry solids digestibil-
ity (DSD). Optimising the digestion of this type of crop can poten-
tially improve the knowledge employed by farmers and developers
in tailoring the design of their technologies and maximising biogas
production. Two treatments are investigated in this work to
improve the digestibility of low DSD grass silage: particle size
reduction and rumen fluid addition.

Limited literature is available on the optimum particle size of
grass silage for anaerobic digestion. Previous batch digestion tests
suggested that a particle size of approximately 1 cm may be opti-
mum (Kaparaju et al., 2002). Other crop substrates such as maize,
sorghum, forage rye, winter rye and triticale have been examined
for the effect of particle size in batch trials, using both fresh and
ensiled substrates (Herrmann et al., 2012a). Shorter chopping
lengths were shown to increase the availability of fermentable

http://dx.doi.org/10.1016/j.biortech.2015.05.078
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Abstract: 

High lignocellulose content grass silage was investigated for two-phase digestion (leaching 

followed by UASB) for application to demand-driven biogas production. Leaching trials 

were undertaken investigating the effects of particle size reduction and rumen fluid 

addition on the hydrolysis and acidogenesis phases. Reducing grass silage particle size to <1 

cm was not suited to leaching as particles could not be fully entrained in the system; this 

was not an issue at >3 cm particle size. Rumen fluid addition increased production of VFAs 

but reduced pH levels, which subsequently hindered hydrolysis of volatile solids (VS). When 

electricity demand is low, it is recommended to operate in leach only mode with grass 

silage particle size >3 cm and with rumen fluid addition; this limits VS destruction to 30 % 

while maintaining a high VFA yield. When electricity demand is high, connection of the 

UASB generates 61 % destruction of VS maximising biogas production.  

Keywords: grass silage, particle size, rumen fluid, demand driven biogas 
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