Model studies toward the synthesis of the bioactive diterpenoid, harringtonolide

Timothy P. O'Sullivan* ${ }^{\boldsymbol{a}}$, Hongbin Zhang ${ }^{b}$ and Lewis N. Mander ${ }^{c}$

Receipt/Acceptance Data [DO NOT ALTER/DELETE THIS TEXT]
${ }_{5}$ Publication data [DO NOT ALTER/DELETE THIS TEXT]
DOI: 10.1039/b000000x [DO NOT ALTER/DELETE THIS TEXT]

Experimental

${ }_{10}$ Methyl (1SR, 4RS, 4aSR, 9aSR)-1,4,4a,9a-tetrahydro-6-methoxy-3,9-dioxo-1,4-ethenoindeno[2,1-c]pyran-4(3H)carboxylate (25).
The indenone 12 ($550 \mathrm{mg}, 3.44 \mathrm{mmol}$) and the pyrone 24 (504 $\mathrm{mg}, 3.27 \mathrm{mmol}$) were dissolved in dichloromethane (1 ml).
${ }_{15}$ The reaction mixture was then subjected to high pressure (19 Kbar) for 24 hours. The solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel (petroleum ether $40-60^{\circ} \mathrm{C}$: ethyl acetate $=3: 1$) to yield the cycloadduct 25 ($736 \mathrm{mg}, 72 \%$, based on pyrone).
${ }_{20}$ Recrystallisation from ethyl acetate afforded colourless crystals; mp 131-133 ${ }^{\circ} \mathrm{C}$ (from EtOAc); Found: C, 64.51%; H, 4.79\%. Calc. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{6}$: C, 64.97\%; H, 4.49\%; $v_{\max } / \mathrm{cm}^{-1}$ $3085(\mathrm{ArH}), 1763(\mathrm{C}=\mathrm{O}), 1740(\mathrm{C}=\mathrm{O}), 1256\left(\mathrm{ArOCH}_{3}\right), 1092$ $(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.62(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{H}-8)$,
${ }_{25} 6.94(1 \mathrm{H}, \mathrm{dd}, J=8.6 \mathrm{~Hz}, J=2.2 \mathrm{~Hz}, \mathrm{H}-7), 6.51(1 \mathrm{H}, \mathrm{d}, J=$ $2.0 \mathrm{~Hz}, \mathrm{H}-5), 6.36(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-10, \mathrm{H}-11), 5.45(1 \mathrm{H}, \mathrm{ddd}, J=$ $5.0 \mathrm{~Hz}, J=5.4 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}, \mathrm{H}-1), 4.32(1 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}$, $\mathrm{H}-4 \mathrm{a}), 4.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{3}\right), 3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 3.63$ $(1 \mathrm{H}, \mathrm{dd}, J=7.1 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
${ }_{30} 199.00$ (C9), 169.48 (C3), 168.13 (C12), 166.14 (C6), 154.00 (C4b), 132.03 (C8a), 130.57 (C11), 129.75 (C10), 126.24 (C8), 117.05 (C5), 109.87 (C7), 74.95 (C1), 59.90 (C4), 56.09 $\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 53.74\left(\mathrm{COOCH}_{3}\right), 52.83(\mathrm{C} 9 \mathrm{a}), 39.50(\mathrm{C} 4 \mathrm{a}) ; m / z$ 314 ($\mathrm{M}^{+}, 24 \%$), 268 (3), 242 (27), 226 (4), 211 (100), 168 35 (20), 160 (93), 139 (29), 134 (29), 123 (6), 106 (35), 91 (3), 77 (10), 63 (26).

Methyl (1SR, 4RS, 4aSR, 9RS, 9aRS)-1,4,4a,9a-tetrahydro-9-hydroxy-6-methoxy-3-oxo-1,4-ethenoindeno[2,1-c]pyran${ }_{40} \mathbf{4 (3 H)}$-carboxylate (29).

Sodium borohydride ($3 \mathrm{mg}, 0.31 \mathrm{mmol}$) was added to the ketone 25 ($50 \mathrm{mg}, 0.16 \mathrm{mmol}$) in a $1: 1$ solution of dichloromethane/methanol (5 ml) and stirred for 6 hours at room temperature. Acetone (1 ml) was added to decompose
45 the excess borohydride. The solution was acidified with 2 M $\mathrm{HCl}(1 \mathrm{ml})$ and extracted with ethyl acetate ($3 \times 20 \mathrm{ml}$). The organic phase was washed with brine (10 ml) and dried over magnesium sulfate. After filtration, the solvent was removed and the residue was purified by flash chromatography on
${ }_{50}$ silica gel (petroleum ether $40-60^{\circ} \mathrm{C}$: ethyl acetate $=2: 1$) to yield the alcohol 130 ($39 \mathrm{mg}, 77 \%$). Recrystallisation from ethyl acetate afforded colourless crystals; mp 139-141 ${ }^{\circ} \mathrm{C}$ (from EtOAc); Found: C, 64.72\%; H, 5.17\%. Calc. for
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{6}: \mathrm{C}, 64.55 \% ; \mathrm{H}, 5.10 \% ; \mathrm{v}_{\max } / \mathrm{cm}^{-1} 3515(\mathrm{OH}), 3013$
$55(\mathrm{ArH}), 1755(\mathrm{C}=\mathrm{O}), 1268\left(\mathrm{ArOCH}_{3}\right), 1109(\mathrm{C}-\mathrm{O}), 1094(\mathrm{C}-$ O); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.22(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-8), 6.85$ $(1 \mathrm{H}, \mathrm{dd}, J=8.4 \mathrm{~Hz}, J=2.2 \mathrm{~Hz}, \mathrm{H}-7), 6.51(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}$, H-5), $6.48(1 \mathrm{H}, \mathrm{dd}, J=4.5 \mathrm{~Hz}, J=4.1 \mathrm{~Hz}, \mathrm{H}-11), 6.38(1 \mathrm{H}$, dd, $J=4.5 \mathrm{~Hz}, J=2.1 \mathrm{~Hz}, \mathrm{H}-10), 5.45(1 \mathrm{H}, \mathrm{ddd}, J=4.0 \mathrm{~Hz}, J$
$\left.{ }_{60}=4.1 \mathrm{~Hz}, J=2.1 \mathrm{~Hz}, \mathrm{H}-1\right), 5.34(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-9), 4.27$ $(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}), 4.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{3}\right), 3.75(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 3.64(1 \mathrm{H}$, ddd, $J=8.2 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}, J=4.0 \mathrm{~Hz}$, $\mathrm{H}-9 \mathrm{a}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.31(\mathrm{C} 3), 169.11(\mathrm{C} 12), 161.38$ (C6), 140.68 (C4b), 138.16 (C8a), 131.41 (C11), 130.46 ${ }_{65}$ (C10), 126.13 (C8), 115.91 (C5), 109.24 (C7), 76.26 (C1), 73.57 (C9), $60.88(\mathrm{C} 4), 55.89\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 53.75\left(\mathrm{COOCH}_{3}\right)$, 47.04 (C9a), 45.01 (C4a); m/z 316 (M ${ }^{+}, 28 \%$), 290 (48), 272 (64), 254 (56), 240 (50), 223 (24), 211 (57), 195 (77), 184
(45), 162 (100), 152 (50), 135 (36), 115 (37), 102 (19), 91 70 (27), 77 (29), 63 (17).

Methyl (1SR, 4RS, 4aSR, 9RS, 9aRS, 10RS, 11SR)-1,4,4a,9a-tetrahydro-9-hydroxy-10,11-methano-6-methoxy-3-oxo-1,4-ethanoindeno[2,1-c]pyran-4(3H)-carboxylate 75 (30).
The alcohol 29 ($20 \mathrm{mg}, 0.06 \mathrm{mmol}$) and palladium acetate (1 $\mathrm{mg}, 0.004 \mathrm{mmol}$) were dissolved in dichloromethane (5 ml). An excess of ethereal diazomethane (~ 10 equiv) was added over 30 minutes at $0^{\circ} \mathrm{C}$. The solution was stirred at room 80 temperature for 16 hours until the yellow colour had disappeared. The solvent was removed under reduced pressure and the residue was purified by flash chromatography directly on silica gel (petroleum ether $40-60^{\circ} \mathrm{C}$: ethyl acetate $=2: 1$) to yield the cyclopropyl product $\mathbf{3 0}$ (20 mg , 95\%). ${ }_{85}$ Recrystallisation from ethyl acetate afforded colourless crystals. mp 129-130 ${ }^{\circ} \mathrm{C}$ (from EtOAc); Found: C, 65.03%; H, 5.32%. Calc. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{6}$: C, 65.45%; H, 5.49%; $v_{\text {max }} / \mathrm{cm}^{-1}$ $3530(\mathrm{OH}), 3005(\mathrm{ArH}), 1754(\mathrm{C}=\mathrm{O}), 1269\left(\mathrm{ArOCH}_{3}\right), 1095$ $(\mathrm{C}-\mathrm{O}), 1056\left(\mathrm{ArOCH}_{3}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.28(1 \mathrm{H}, \mathrm{d}, J=$ $\left.{ }_{90} 8.4 \mathrm{~Hz}, \mathrm{H}-8\right), 6.89(1 \mathrm{H}, \mathrm{dd}, J=8.4 \mathrm{~Hz}, J=2.2 \mathrm{~Hz}, \mathrm{H}-7), 6.56$ $(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H}-5), 5.49(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{H}-9), 5.06$ $(1 \mathrm{H}, \mathrm{d}, J=3.3 \mathrm{~Hz}, \mathrm{H}-1), 4.09(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}), 3.97$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{3}\right), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 3.34(1 \mathrm{H}, \mathrm{ddd}, J=$ $9.2 \mathrm{~Hz}, J=8.9 \mathrm{~Hz}, J=3.3 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a}), 1.52(1 \mathrm{H}, \mathrm{m}, J=8.0$ $\left.{ }_{95} \mathrm{~Hz}, J=4.2 \mathrm{~Hz}, \mathrm{H}-11\right), 1.07(1 \mathrm{H}, \mathrm{m}, J=7.9 \mathrm{~Hz}, J=4.2 \mathrm{~Hz}, \mathrm{H}-$ 10), $0.57-0.50(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{x} \mathrm{H}-13) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.09$ (C3), 170.83 (C12), 160.95 (C6), 140.5 (C4b), 138.28 (C8a), 126.08 (C8), 115.44 (C5), 109.92 (C7), 75.13 (C1), 73.92 (C9), 57.18 (C4), $55.97\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 53.69\left(\mathrm{COOCH}_{3}\right), 47.27$ 100 (C9a), 46.03 (C4a), 10.21 (C11), 9.43 (C10), 3.46 (C13); m/z

330 ($\mathrm{M}^{+}, 87 \%$), 299 (4), 280 (4), 270 (5), 253 (6), 225 (10), 209 (14), 197 (5), 175 (6), 162 (100), 147 (36), 139 (12), 126 (11), 115 (10), 102 (7), 91 (12), 77 (11), 59 (8)

105 Methyl 4-methyl-2-oxo-2H-pyran-3-carboxylate (32).
The pyrone $24(5 \mathrm{~g}, 32.5 \mathrm{mmol})$ was dissolved in dichloromethane (100 ml) and cooled to $0^{\circ} \mathrm{C}$. Ethereal diazomethane was added in portions over 1 hour until all the starting material had been consumed as monitored by TLC.
${ }_{110}$ Stirring at room temperature was continued for a further 16 hours. The solvent was removed under reduced pressure and the residue was purified by flash chromatography directly on silica gel (petroleum ether : ethyl acetate $=1: 1$) to yield the pyrone $32(4.525 \mathrm{~g}, 82 \%)$. Recrystallisation from ethyl acetate 115 afforded colourless crystals; mp $86-88{ }^{\circ} \mathrm{C}$ (from EtOAc); Found: C, 56.88%; H, 4.73%. Calc. for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{4}$: C, 57.14%; $\mathrm{H}, 4.80 \% ; v_{\max } / \mathrm{cm}^{-1} 3070(=\mathrm{CH}), 2970(\mathrm{CH}), 1701(\mathrm{C}=\mathrm{O})$, $1268(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.44(1 \mathrm{H}, \mathrm{d}, J=5.4 \mathrm{~Hz}, \mathrm{H}-$ 6), $6.14(1 \mathrm{H}, \mathrm{d}, J=5.4 \mathrm{~Hz}, \mathrm{H}-5), 3.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{3}\right), 2.26$ ${ }_{120}\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{C} 4\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 165.49\left(\mathrm{COOCH}_{3}\right)$, 159.51 (C 2), 156.02 (C4), 151.85 (C6), 119.89 (C3), 110.33 (C5), $53.25\left(\mathrm{COOCH}_{3}\right), 20.74\left(\mathrm{CH}_{3}-\mathrm{C} 4\right) ; m / z 168\left(\mathrm{M}^{+}, 73 \%\right)$, 140 (89), 137 (100), 125 (13), 112 (72), 109 (92), 97 (33), 82 (45), 67 (31), 59 (17).

125
Methyl (1SR, 4SR, 4aSR, 9aSR)-1,4,4a,9a-tetrahydro-6-methoxy-10-methyl-3,9-dioxo-1,4-ethenoindeno[2,1-c]pyran-4(3H)-carboxylate (33).
The indenone $12(500 \mathrm{mg}, 1.05 \mathrm{mmol})$ and the pyrone 32 (500 $130 \mathrm{mg}, 1 \mathrm{mmol}$) were dissolved in a minimum of dichloromethane $(1 \mathrm{ml})$. The reaction mixture was then subjected to high pressure (19 Kbar) for 20 hours. The solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel (petroleum ${ }_{135}$ ether $40-60^{\circ} \mathrm{C}$: ethyl acetate $=3: 1$) to yield the cycloadduct 33 ($713 \mathrm{mg}, 73 \%$, based on pyrone). Recrystallisation from ethyl acetate afforded colourless crystals; mp 129-131 ${ }^{\circ} \mathrm{C}$ (from EtOAc); $v_{\max } / \mathrm{cm}^{-1} 3000(\mathrm{ArH}), 1745(\mathrm{C}=\mathrm{O}), 1258$ $\left(\mathrm{ArOCH}_{3}\right), 1095(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.63(1 \mathrm{H}, \mathrm{d}, J=$ $\left.{ }_{140} 8.5 \mathrm{~Hz}, \mathrm{H}-8\right), 7.12(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{H}-5), 6.95(1 \mathrm{H}, \mathrm{dd}, J=$ $8.5 \mathrm{~Hz}, J=2.2 \mathrm{~Hz}, \mathrm{H}-7), 5.97(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{H}-11), 5.56$ $(1 \mathrm{H}, \mathrm{dd}, J=4.9 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, \mathrm{H}-1), 4.39(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}$, $\mathrm{H}-4 \mathrm{a}), 4.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{3}\right), 3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 3.53$ $(1 \mathrm{H}, \mathrm{dd}, J=6.8 \mathrm{~Hz}, J=4.9 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a}), 1.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{C} 10\right)$; ${ }_{145} \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 200.35(\mathrm{C} 9), 170.55(\mathrm{C} 3), 168.75(\mathrm{C} 12)$, 166.29 (C6), 154.69 (C4b), 140.59 (C10), 132.64 (C8a), 126.54 (C8), 124.29 (C11), 117.11 (C5), 111.26 (C7), 74.54 $(\mathrm{C} 1), 63.78(\mathrm{C} 4), 56.40\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 53.69\left(\mathrm{COOCH}_{3}\right), 53.34$ (C9a), 39.80 (C 4 a), $20.44\left(\mathrm{CH}_{3}-\mathrm{C} 10\right)$; $m / z 328\left(\mathrm{M}^{+}, 29 \%\right), 282$ 150 (3), 253 (4), 225 (89), 210 (4), 184 (10), 160 (100), 153 (12), 134 (14), 106 (17), 63 (14).

Methyl (1SR, 4SR, 4aSR, 9RS, 9aRS)-1,4,4a,9a-tetrahydro-9-hydroxy-6-methoxy-10-methyl-3-oxo-1,4-
155 ethenoindeno[2,1-c]pyran-4(3H)-carboxylate (34).
The ketone $33(400 \mathrm{mg}, 1.2 \mathrm{mmol})$ was dissolved in a $1: 1$ solution of dichloromethane/methanol (20 ml). Sodium borohydride ($46 \mathrm{mg}, 1.2 \mathrm{mmol}$) was added and the reaction mixture was stirred at room temperature for 16 hours. Acetone
$160(2 \mathrm{ml})$ was added to decompose the excess borohydride. The solvent was removed under reduced pressure and the residue was redissolved in ethyl acetate $(100 \mathrm{ml})$. The solution was acidified with $2 \mathrm{M} \mathrm{HCl}(10 \mathrm{ml})$ and washed with water (20 ml), brine (20 ml) and dried over magnesium sulfate. After 165 filtration, the solvent was removed and the residue was purified by flash chromatography on silica gel (petroleum ether $40-60^{\circ} \mathrm{C}$: ethyl acetate $=2: 1$) to afford the alcohol 34 ($342 \mathrm{mg}, 85 \%$) as a colourless oil; $v_{\max } / \mathrm{cm}^{-1} 3486(\mathrm{OH}), 3012$ $(\mathrm{ArH}), 2953(\mathrm{CH}), 1749(\mathrm{C}=\mathrm{O}), 1273 \quad\left(\mathrm{ArOCH}_{3}\right) ; \delta_{\mathrm{H}}$ ${ }_{170}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.22(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{H}-8), 6.85(1 \mathrm{H}, \mathrm{dd}$, $J=8.3 \mathrm{~Hz}, J=2.3 \mathrm{~Hz}, \mathrm{H}-7), 6.80(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}, \mathrm{H}-5)$, $6.04(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}, \mathrm{H}-11), 5.33(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-9)$, $5.31(1 \mathrm{H}, \mathrm{dd}, J=4.1 \mathrm{~Hz}, J=4.5 \mathrm{~Hz}, \mathrm{H}-1), 4.34(1 \mathrm{H}, \mathrm{d}, J=$ $8.1 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}), 4.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{3}\right), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right)$, $1753.52(1 \mathrm{H}$, ddd, $J=8.1 \mathrm{~Hz}, J=3.8 \mathrm{~Hz}, J=8.4 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a}), 1.63$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{C} 10\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.67(\mathrm{C} 3), 169.12$ (C12), 161.03 (C6), 140.79 (C4b), 140.52 (C10), 138.31 (C8a), 125.98 (C8), 125.50 (C11), 115.65 (C5), 110.36 (C7), $75.26(\mathrm{C} 1), 73.80(\mathrm{C} 9), 64.49(\mathrm{C} 4), 56.01\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 53.47$
${ }_{180}\left(\mathrm{COOCH}_{3}\right), 49.31(\mathrm{C} 9 \mathrm{a}), 46.83(\mathrm{C} 4 \mathrm{a}), 20.81\left(\mathrm{CH}_{3}-\mathrm{C} 10\right) ; m / z$ $330\left(\mathrm{M}^{+}, 24 \%\right), 300(1), 286$ (17), 268 (9), 254 (45), 236 (14), 225 (71), 209 (59), 195 (17), 184 (10), 175 (58), 162 (100), 147 (42), 135 (54), 119 (15), 102 (15), 91 (21), 77 (17), 65 (12).

185
Methyl (1RS, 4SR, 4aSR, 9RS, 9aRS, 10RS, 11SR)-1,4,4a,9a-tetrahydro-9,11-dihydroxy-6-methoxy-10-methyl-3-oxo-1,4-ethanoindeno[2,1-c]pyran-4(3H)carboxylate (35).
${ }_{190} 2 \mathrm{M}$ Borane-dimethyl sulfide in tetrahydrofuran ($2 \mathrm{ml}, 4$ mmol) was added dropwise over 5 minutes to the alkene $\mathbf{3 4}$ $(815 \mathrm{mg}, 2.47 \mathrm{mmol})$ in tetrahydrofuran $(25 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. Stirring was continued at room temperature for 10 hours. Triethylamine N-oxide ($900 \mathrm{mg}, 8.1 \mathrm{mmol}$) was added and the ${ }_{95}$ mixture was heated under for 16 hours. The solution was filtered through a short pad of silica gel and the solvent was removed under vacuum. The residue was purified by flash chromatography on silica gel (petroleum ether $40-60^{\circ} \mathrm{C}$: ethyl acetate $=1: 1)$ to afford the alcohol $35(423 \mathrm{mg}, 49 \%)$ as a 200 colourless oil and starting material $(80 \mathrm{mg}) ; v_{\max } / \mathrm{cm}^{-1} 3445$ $(\mathrm{OH}), 3010(\mathrm{ArH}), 2951(\mathrm{CH}), 1738(\mathrm{C}=\mathrm{O}), 1271\left(\mathrm{ArOCH}_{3}\right)$, $1114(\mathrm{C}-\mathrm{O}), 1034\left(\mathrm{ArOCH}_{3}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.29(1 \mathrm{H}$, d, $J=8.7 \mathrm{~Hz}, \mathrm{H}-8), 6.92(1 \mathrm{H}, \mathrm{dd}, J=8.7 \mathrm{~Hz}, J=1.7 \mathrm{~Hz}, \mathrm{H}-$ 7), $6.85(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}, \mathrm{H}-5), 5.50(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}, \mathrm{H}-$ $\left.{ }_{205}^{9} 9\right), 4.94(1 \mathrm{H}, \mathrm{d}, J=4.2 \mathrm{~Hz}, \mathrm{H}-1), 4.13(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}, \mathrm{H}-$ 4a), $4.08(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{H}-11), 3.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{3}\right)$, $3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 3.31(1 \mathrm{H}$, ddd, $J=9.9 \mathrm{~Hz}, J=4.2 \mathrm{~Hz}$, $J=9.5 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a}), 2.31(1 \mathrm{H}, \mathrm{dq}, J=7.2 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}, \mathrm{H}-10)$, $0.60\left(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{C} 10\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 210173.54 (C3), 170.02 (C12), 161.01 (C6), 141.27 (C4b), 136.59 (C8a), 126.52 (C8), 116.21 (C5), 112.06 (C7), 83.19 (C11), 73.69 (C9), 72.49 (C1), $59.27(\mathrm{C} 4), 56.04\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 53.50$ $\left(\mathrm{COOCH}_{3}\right), 44.85(\mathrm{C} 9 \mathrm{a}), 42.29(\mathrm{C} 4 \mathrm{a}), 41.98(\mathrm{C} 10), 16.53$ $\left(\mathrm{CH}_{3}-\mathrm{C} 10\right) ; m / z 348\left(\mathrm{M}^{+}, 100 \%\right), 330(25), 317$ (10), 299 (8), 215271 (19), 258 (29), 241 (46), 227 (49), 211 (34), 199 (22), 185 (30), 175 (59), 158 (32), 145 (42), 127 (24), 115 (28), 102 (12), 91 (12), 77 (12), 59 (11).

Methyl (1RS, 4SR, 4aSR, 9aSR, 10RS)-1,4,4a,9a220 tetrahydro-6-methoxy-10-methyl-3,9,11-trioxo-1,4-ethanoindeno[2,1-c]pyran-4(3H)-carboxylate (36). tert.-Butyl alcohol ($990 \mu \mathrm{l}, 10.34 \mathrm{mmol}$) was added to the Dess Martin periodinane ($2.14 \mathrm{~g}, \quad 5.17 \mathrm{mmol})$ in tetrahydrofuran $(50 \mathrm{ml})$ and the solution was stirred for 20 ${ }_{225}$ minutes. The diol $35(600 \mathrm{mg}, 1.72 \mathrm{mmol})$ in tetrahydrofuran $(5 \mathrm{ml})$ was added via syringe over 10 minutes. The solution was stirred for a further 2 hours at room temperature. A 1:1 mixture of saturated aqueous sodium thiosulfate and sodium bicarbonate (20 ml) was added and stirring was continued for ${ }_{230} 20$ minutes. The product was extracted with ethyl acetate ($3 \times 50 \mathrm{ml}$) and the combined organic phase was washed with saturated sodium thiosulfate (20 ml) and brine (20 ml). After filtration, the solvent was removed and the residue was purified by flash chromatography on silica gel (petroleum ${ }_{235}$ ether $40-60^{\circ} \mathrm{C}$: ethyl acetate $=2: 1$) to afford the diketone 36 ($285 \mathrm{mg}, 48 \%$) as a colourless oil; $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 3006$ (ArH), $2950(\mathrm{CH}), 1772(\mathrm{C}=\mathrm{O}), 1741(\mathrm{C}=\mathrm{O}), 1258\left(\mathrm{ArOCH}_{3}\right), 1152$ $(\mathrm{C}-\mathrm{O}), 1098(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.15(1 \mathrm{H}, \mathrm{d}, J=8.6$ $\mathrm{Hz}, \mathrm{H}-8), 7.07(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}, \mathrm{H}-5), 7.01(1 \mathrm{H}, \mathrm{dd}, J=8.6$ $\left.{ }_{240} \mathrm{~Hz}, J=2.1 \mathrm{~Hz}, \mathrm{H}-7\right), 5.09(1 \mathrm{H}, \mathrm{d}, J=5.4 \mathrm{~Hz}, \mathrm{H}-1), 4.55(1 \mathrm{H}$, d, $J=8.7 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}), 4.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{3}\right), 3.87(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 3.71(1 \mathrm{H}, \mathrm{dd}, J=8.7 \mathrm{~Hz}, J=5.4 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a}), 3.17$ $(1 \mathrm{H}, \mathrm{q}, J=7.3 \mathrm{~Hz}, \mathrm{H}-10), 0.49\left(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{C} 10\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 203.20(\mathrm{C} 11), 196.45(\mathrm{C} 9), 170.01(\mathrm{C} 3)$, ${ }_{245} 168.07$ (C12), 166.93 (C6), 154.65 (C4b), 131.02 (C8a), 127.54 (C8), 117.98 (C5), 112.22 (C7), 81.89 (C1), 60.16 (C4), $56.52\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 54.13\left(\mathrm{COOCH}_{3}\right), 51.58(\mathrm{C} 9 \mathrm{a}), 44.36$ (C10), 39.41 (C 4 a), $12.45\left(\mathrm{CH}_{3}-\mathrm{C} 10\right) ; m / z 344\left(\mathrm{M}^{+}, 100 \%\right)$, 312 (33), 300 (3), 285 (6), 268 (17), 257 (61), 248 (33), 241 250 (53), 229 (27), 213 (21), 200 (27), 190 (39), 174 (16), 161 (37), 145 (12), 127 (74), 115 (21), 102 (15), 89 (10), 77 (13), 59 (19).

Methyl (1RS, 4SR, 4aSR, 9aSR, 10SR)-1,4,4a,9a255 tetrahydro-6-methoxy-10-methyl-3,9,11-trioxo-1,4-ethanoindeno[2,1-c]pyran-4(3H)-carboxylate (37).
DBU ($10 \mu \mathrm{l}, 0.07$) was added to a solution of diketone $\mathbf{3 6}$ ($200 \mathrm{mg}, 0.58 \mathrm{mmol}$) in tetrahydrofuran $(20 \mathrm{ml})$ and stirred for 16 hours. The solvent was removed under reduced 260 pressure and the residue was purified using MPLC (petroleum ether $40-60^{\circ} \mathrm{C}$: ethyl acetate $=2: 1$) to afford the epimer 37 ($144 \mathrm{mg}, 72 \%$) as a colourless oil and starting material (41 $\mathrm{mg}) ; v_{\max } / \mathrm{cm}^{-1} 3005(\mathrm{ArH}), 2955(\mathrm{CH}), 1773(\mathrm{C}=\mathrm{O}), 1741$ $(\mathrm{C}=\mathrm{O}), 1258\left(\mathrm{Ar}^{2}-\mathrm{OCH}_{3}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.73(1 \mathrm{H}, \mathrm{d}, J$ $\left.{ }_{265}=8.7 \mathrm{~Hz}, \mathrm{H}-8\right), 7.04(1 \mathrm{H}, \mathrm{dd}, J=8.7 \mathrm{~Hz}, J=2.2 \mathrm{~Hz}, \mathrm{H}-7)$, $6.59(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{H}-5), 4.96(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}, \mathrm{H}-1)$, $4.54(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}), 4.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{3}\right), 3.88$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 3.70(1 \mathrm{H}, \mathrm{dd}, J=8.4 \mathrm{~Hz}, J=5.1 \mathrm{~Hz}, \mathrm{H}-$ $9 \mathrm{a}), 2.34(1 \mathrm{H}, \mathrm{q}, J=7.4 \mathrm{~Hz}, \mathrm{H}-10), 1.35(3 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}$, $\left.{ }_{270} \mathrm{CH}_{3}-\mathrm{C} 10\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 203.14$ (C11), 196.14 (C9), 168.13 (C3), 168.10 (C12), 167.04 (C6), 152.31 (C4b), 131.14 (C8a), 127.67 (C8), 117.79 (C5), 110.32 (C7), 82.05 (C1), $58.37(\mathrm{C} 4), 56.46\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 53.93\left(\mathrm{COOCH}_{3}\right), 50.50(\mathrm{C} 9 \mathrm{a})$, $42.68(\mathrm{C} 10), 42.42(\mathrm{C} 4 \mathrm{a}), 14.72\left(\mathrm{CH}_{3}-\mathrm{C} 10\right) ; m / z 344\left(\mathrm{M}^{+}\right.$, ${ }_{275} 100 \%$), 312 (22), 299 (2), 285 (4), 268 (7), 257 (70), 241 (28), 229 (26), 213 (13), 200 (26), 190 (54), 174 (13), 161 (35), 145 (11), 127 (82), 115 (15), 95 (10), 77 (8), 59 (13).

Methyl (1RS, 4SR, 4aSR, 9RS, 9aRS, 10SR, 11RS)280 1,4,4a,9a-tetrahydro-9,11-dihydroxy-6-methoxy-10-methyl-3-oxo-1,4-ethanoindeno[2,1-c]pyran-4(3H)carboxylate (38).
Sodium borohydride ($109 \mathrm{mg}, 2.87 \mathrm{mmol}$) was added to the diketone 37 ($330 \mathrm{mg}, 0.96 \mathrm{mmol}$) in a $10: 1$ solution of 85 tetrahydrofuran/methanol $(20 \mathrm{ml})$ and stirred for 6 hours. The solution was acidified with $2 \mathrm{M} \mathrm{HCl}(10 \mathrm{ml})$ and extracted with ethyl acetate $(3 \times 80 \mathrm{ml})$. The combined organic phase was washed with brine (30 ml) and dried over magnesium sulfate. After filtration, the solvent was removed and the residue was 290 purified by flash chromatography on silica gel (petroleum ether $40-60^{\circ} \mathrm{C}$: ethyl acetate $=1: 1$) to afford the diol 38 (221 $\mathrm{mg}, 66 \%$) as a colourless oil; $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3392$ (OH), 2953 (ArH), $1732(\mathrm{C}=\mathrm{O}), 1260\left(\mathrm{Ar}-\mathrm{OCH}_{3}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $7.35(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{H}-8), 6.92(1 \mathrm{H}, \mathrm{dd}, J=8.3 \mathrm{~Hz}, J=$ $\left.{ }_{295} 1.9 \mathrm{~Hz}, \mathrm{H}-7\right), 6.44(1 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}, \mathrm{H}-5), 5.35(1 \mathrm{H}, \mathrm{d}, J=$ $9.9 \mathrm{~Hz}, \mathrm{H}-9), 4.92(1 \mathrm{H}, \mathrm{d}, J=3.8 \mathrm{~Hz}, \mathrm{H}-1), 4.13(1 \mathrm{H}, \mathrm{d}, J=$ $10.3 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}), 3.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{3}\right), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}-\right.$ C6), $3.77(1 \mathrm{H}, \mathrm{d}, J=3.4 \mathrm{~Hz}, \mathrm{H}-11), 3.49(1 \mathrm{H}$, ddd, $J=10.3$ $\mathrm{Hz}, J=3.8 \mathrm{~Hz}, J=9.9 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a}), 2.04(1 \mathrm{H}, \mathrm{dq}, J=7.0 \mathrm{~Hz}, J$ $300=3.4 \mathrm{~Hz}, \mathrm{H}-10), 1.27\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{C} 10\right) ; \delta_{\mathrm{C}}$ $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.98(\mathrm{C} 3), 169.43$ (C12), 161.23 (C6), 138.93 (C4b), 138.61 (C8a), 126.11 (C8), 115.75 (C5), 110.02 (C7), 78.64 (C11), 74.34 (C9), 74.26 (C1), 60.99 (C4), 55.93 $\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 53.40\left(\mathrm{COOCH}_{3}\right), 45.98(\mathrm{C} 9 \mathrm{a}), 45.59(\mathrm{C} 4 \mathrm{a})$, ${ }_{05} 38.34(\mathrm{C} 10), 14.76\left(\mathrm{CH}_{3}-\mathrm{C} 10\right)$; $m / z 348\left(\mathrm{M}^{+}, 100 \%\right), 330(48)$, 317 (6), 299 (13), 271 (11), 258 (24), 253 (25), 241 (36), 225 (41), 213 (19), 202 (21), 186 (39), 175 (62), 162 (38), 145 (52), 127 (47), 115 (31), 102 (15), 96 (15), 77 (16), 59 (13).
${ }_{310}$ Methyl (1RS, 4SR, 4aSR, 9RS, 9aRS, 10SR, $11 R S$)-9,11-epoxy-1,4,4a,9a-tetrahydro-6-methoxy-10-methyl-3-oxo-1,4-ethanoindeno[2,1-c]pyran-4(3H)-carboxylate (31).
The diol 38 ($210 \mathrm{mg}, 60 \mathrm{mmol}$) and p-toluenesulfonic acid ($115 \mathrm{mg}, 60 \mathrm{mmol}$) were dissolved in tetrahydrofuran (20 ml) 315 and stirred for 2 hours. The solution was filtered through a short pad of silica gel and the solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel (petroleum ether $40-60^{\circ} \mathrm{C}$: ethyl acetate $=2: 1)$ to afford the ether $31(142 \mathrm{mg}, 71 \%)$ as a 320 colourless oil; $v_{\max } / \mathrm{cm}^{-1} 2998(\mathrm{CH}), 1766(\mathrm{C}=\mathrm{O}), 1258$ $\left(\mathrm{ArOCH}_{3}\right), 1152(\mathrm{C}-\mathrm{O}), 1098(\mathrm{C}-\mathrm{O}), 1065\left(\mathrm{ArOCH}_{3}\right) ; \delta_{\mathrm{H}}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.33(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-8), 6.86(1 \mathrm{H}, \mathrm{dd}$, $J=8.5 \mathrm{~Hz}, J=1.9 \mathrm{~Hz}, \mathrm{H}-7), 6.48(1 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}, \mathrm{H}-5)$, $5.22(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{H}-9), 5.15(1 \mathrm{H}, \mathrm{dd}, J=5.6 \mathrm{~Hz}, J=$ $\left.{ }_{325} 5.7 \mathrm{~Hz}, \mathrm{H}-1\right), 4.10(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}), 3.96(1 \mathrm{H}, \mathrm{d}, J=$ $5.7 \mathrm{~Hz}, \mathrm{H}-11), 3.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{3}\right), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right)$, $3.57(1 \mathrm{H}$, ddd, $J=8.8 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, J=5.0 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a}), 2.16$ $(1 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{H}-10), 1.10\left(3 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{C} 10\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.04(\mathrm{C} 3), 168.36(\mathrm{C} 12), 161.40(\mathrm{C} 6)$, 330141.85 (C4b), 136.80 (C8a), 126.48 (C8), 115.33 (C5), 110.20 (C7), 82.79 (C11), 79.66 (C1), 79.58 (C9), 57.55 (C4), 55.63 $\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 52.69\left(\mathrm{COOCH}_{3}\right), 49.23(\mathrm{C} 9 \mathrm{a}), 45.86(\mathrm{C} 4 \mathrm{a})$, $37.42(\mathrm{C} 10), 17.36\left(\mathrm{CH}_{3}-\mathrm{C} 10\right) ; m / z 330\left(\mathrm{M}^{+}, 100 \%\right), 299(6)$, 271 (8), 241 (15), 226 (4), 214 (11), 197 (10), 186 (62), 175 335 (22), 158 (15), 146 (39), 127 (58), 115 (21), 102 (15), 89 (3), 77 (5), 59 (9).
(1RS, 4SR, 4aSR, 9RS, 9aRS, 10SR, 11RS)-9,11-Epoxy-1,4,4a,9a-tetrahydro-6-methoxy-10-methyl-1,4${ }_{340}$ ethanoindeno[2,1-c]pyran-4(3H)-carboxylic acid (39).

Tetrahydrothiophene ($320 \mu 1,3.64 \mathrm{mmol}$) was added to a solution of aluminum tribromide ($194 \mathrm{mg}, 0.728 \mathrm{mmol}$) in dichloromethane $(10 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 5 minutes and the ester $\mathbf{3 1}(120 \mathrm{mg}, 0.364 \mathrm{mmol})$ in ${ }_{345}$ dichloromethane (2 ml) was then added dropwise over 10 minutes. Stirring was continued for 20 hours at room temperature. $4 \mathrm{M} \mathrm{HCl}(10 \mathrm{ml})$ was added and the product was extracted with dichloromethane $(4 \times 50 \mathrm{ml})$. The combined organic phase was washed with brine $(10 \mathrm{ml})$ and dried over 350 magnesium sulfate. After filtration, the solvent was removed and the residue was purified by flash chromatography on silica gel (petroleum ether $40-60^{\circ} \mathrm{C}$: ethyl acetate : acetic acid $=1: 2: 0.03)$ to afford the acid $39(79 \mathrm{mg}, 69 \%)$ as a colourless oil; $v_{\max } / \mathrm{cm}^{-1} 3500(\mathrm{COOH}), 2957(\mathrm{CH}), 1764(\mathrm{C}=\mathrm{O}), 1261$ ${ }_{355}\left(\mathrm{ArOCH}_{3}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.33(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H}-$ 8), $6.86(1 \mathrm{H}, \mathrm{dd}, J=8.2 \mathrm{~Hz}, J=1.9 \mathrm{~Hz}, \mathrm{H}-7), 6.72(1 \mathrm{H}, \mathrm{d}, J=$ $1.9 \mathrm{~Hz}, \mathrm{H}-5), 5.24(1 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}, \mathrm{H}-9), 5.20(1 \mathrm{H}, \mathrm{dd}, J=$ $5.6 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, \mathrm{H}-1), 4.03(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}), 4.01$ $(1 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz}, \mathrm{H}-11), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 3.62(1 \mathrm{H}$, 360 ddd, $J=8.7 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, J=5.4 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a}), 2.21(1 \mathrm{H}, \mathrm{q}, J$ $=7.4 \mathrm{~Hz}, \mathrm{H}-10), 1.10\left(3 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{C} 10\right) ; \delta_{\mathrm{C}}$ $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 171.42$ (C12), 170.76 (C3), 161.46 (C6), 141.25 (C4b), 136.46 (C8a), 126.39 (C8), 116.32 (C5), 110.55 (C7), 82.74 (C11), 79.84 (C1), 79.21 (C9), 56.99 (C4), 55.74 ${ }_{365}\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 49.23$ (C9a), 46.29 (C4a), 37.64 (C10), 17.12 $\left(\mathrm{CH}_{3}-\mathrm{C} 10\right) ; m / z 316\left(\mathrm{M}^{+}, 100 \%\right), 272$ (2), 244 (3), 226 (7), 213 (5), 197 (12), 186 (31), 175 (48), 158 (9), 146 (25), 128 (6), 115 (16), 102 (12), 89 (2), 77 (5).
${ }_{370}(1 R S, 4 S R, 4 \mathrm{aSR}, 9 R S, 9 \mathrm{aRS}, 10 S R, 11 R S)-9,11-$ Epoxy-1,4,4a,9a-tetrahydro-4-hydroxymethyl-6-methoxy-10-methyl-1,4-ethanoindeno[2,1-c]pyran-3(4H)-one (40). Oxalyl chloride ($194 \mu 1,2.23 \mathrm{mmol}$) was added to the acid 39 $(140 \mathrm{mg}, 0.446 \mathrm{mmol})$ in dry benzene $(25 \mathrm{ml})$. A few drops of ${ }_{375}$ DMF were added and stirring was continued for 2 hours. After removal of the solvent, the residue was dissolved in benzene $(10 \mathrm{ml})$ which was subsequently removed under vacuum. This last step was repeated twice. The residue was redissolved in tetrahydrofuran (15 ml) and cooled to $0^{\circ} \mathrm{C}$. A suspension of 380 sodium borohydride ($20 \mathrm{mg}, 0.535 \mathrm{mmol}$) in tetrahydrofuran $(5 \mathrm{ml})$ was added over 5 minutes. Stirring was continued for 4 hours at room temperature. Ethyl acetate (100 ml) was added and the mixture was acidified with $2 \mathrm{M} \mathrm{HCl}(10 \mathrm{ml})$, separated and washed with brine (10 ml). The organic phase was dried ${ }_{385}$ over magnesium sulfate, filtered and the solvent was removed. The residue was purified by flash chromatography on silica gel (petroleum ether $40-60^{\circ} \mathrm{C}$: ethyl acetate $=2: 1$) to afford the alcohol 40 ($95 \mathrm{mg}, 71 \%$) as a colourless oil; $v_{\text {max }} / \mathrm{cm}^{-1}$ $3414(\mathrm{OH}), 2946(\mathrm{CH}), 1767(\mathrm{C}=\mathrm{O}), 1261\left(\mathrm{ArOCH}_{3}\right), 1150$ ${ }_{390}(\mathrm{C}-\mathrm{O}), 1081\left(\mathrm{ArOCH}_{3}\right), 1056\left(\mathrm{ArOCH}_{3}\right) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.32(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-8), 6.98(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}$, $\mathrm{H}-5), 6.85(1 \mathrm{H}, \mathrm{dd}, J=8.4 \mathrm{~Hz}, J=2.1 \mathrm{~Hz}, \mathrm{H}-7), 5.22(1 \mathrm{H}, \mathrm{d}$, $J=5.4 \mathrm{~Hz}, \mathrm{H}-9), 5.12(1 \mathrm{H}, \mathrm{dd}, J=5.5 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, \mathrm{H}-1)$, $4.16\left(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{H}-1^{\prime} \alpha\right), 3.92(1 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{H}-$ $\left.{ }_{395} 4 \mathrm{a}\right), 3.84(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{H}-11), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right)$,
$3.54(1 \mathrm{H}$, ddd, $J=9.0 \mathrm{~Hz}, J=5.6, \mathrm{~Hz}, J=5.4 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a}), 3.38$ $(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{H}-1 ' \beta), 1.61(1 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{H}-10)$, $0.84\left(3 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{C} 10\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 175.71 (C3), 161.38 (C6), 142.82 (C4b), 136.47 (C8a), 126.22 400 (C8), 115.28 (C5), 111.75 (C7), 83.16 (C11), 79.72 (C1), 79.59 (C9), 60.45 ($\mathrm{C} 1{ }^{\prime}$), $55.79\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 50.20(\mathrm{C} 4), 46.14$ (C9a), 42.25 (C4a), 37.51 (C10), $16.19\left(\mathrm{CH}_{3}-\mathrm{C} 10\right)$; $m / z 302$ ($\mathrm{M}^{+}, 100 \%$), 284 (1), 255 (6), 243 (4), 227 (9), 216 (7), 199 (11), 188 (21), 175 (37), 159 (58), 139 (39), 128 (13), 115 405 (31), 99 (23), 77 (9).
(1RS, 4SR, 4aSR, 9RS, 9aRS, 10SR, 11RS)-9,11-Epoxy-4-formyl-1,4,4a,9a-tetrahydro-6-methoxy-10-methyl-1,4-ethanoindeno[2,1-c]pyran-3(4H)-one (41).
410 tert.-Butyl alcohol ($68 \mu \mathrm{l}, 0.714 \mathrm{mmol}$) was added to the Dess Martin periodinane ($171 \mathrm{mg}, 0.357 \mathrm{mmol}$) in tetrahydrofuran $(10 \mathrm{ml})$ and stirred for 5 minutes. The alcohol $167(72 \mathrm{mg}$, 0.238 mmol) in tetrahydrofuran (1 ml) was added via syringe over 5 minutes and the solution was stirred for a further 2
415 hours at room temperature. A $1: 1$ mixture of saturated aqueous sodium thiosulfate and sodium bicarbonate (5 ml) was added and stirring was continued for 5 minutes. The product was extracted with ethyl acetate ($3 \times 30 \mathrm{ml}$) and the combined organic phase was washed with saturated sodium 420 thiosulfate (10 ml) and brine (10 ml). After filtration, the solvent was removed and the residue was purified by flash chromatography on silica gel (petroleum ether $40-60^{\circ} \mathrm{C}$: ethyl acetate $=3: 1)$ to afford the aldehyde $168(66 \mathrm{mg}, 92 \%)$ as a colourless oil; $v_{\max } / \mathrm{cm}^{-1} 2955(\mathrm{CH}), 2838$ (CHO), 1751 ${ }_{425}(\mathrm{C}=\mathrm{O}), 1728(\mathrm{C}=\mathrm{O}), 1258\left(\mathrm{ArOCH}_{3}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $10.09\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1{ }^{\prime}\right), 7.31(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-8), 6.85(1 \mathrm{H}$, dd, $J=8.4 \mathrm{~Hz}, J=2.1 \mathrm{~Hz}, \mathrm{H}-7), 6.45(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-$ 5), $5.23(1 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}, \mathrm{H}-9), 5.17(1 \mathrm{H}, \mathrm{dd}, J=5.4 \mathrm{~Hz}, J=$ $5.6 \mathrm{~Hz}, \mathrm{H}-1), 3.99-3.94(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}, \mathrm{H}-11), 3.77(3 \mathrm{H}, \mathrm{s}$,
$\left.{ }_{430} \mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 3.64(1 \mathrm{H}, \mathrm{ddd}, J=8.9 \mathrm{~Hz}, J=5.4, \mathrm{~Hz}, J=5.2 \mathrm{~Hz}$, $\mathrm{H}-9 \mathrm{a}), 2.17(1 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{H}-10), 0.95(3 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}-\mathrm{C} 10\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 196.88$ ($\left.\mathrm{Cl}^{\prime}\right), 170.52$ (C3), 160.93 (C6), 140.61 (C4b), 136.33 (C8a), 126.23 (C8), 115.61 (C5), 111.50 (C7), 82.48 (C11), 79.45 (C1), 79.04 (C9), 58.55 ${ }_{435}(\mathrm{C} 4), 55.56\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 46.48$ (C9a), 46.09 (C4a), 35.25 (C10), $16.20\left(\mathrm{CH}_{3}-\mathrm{C} 10\right) ; m / z 300\left(\mathrm{M}^{+}, 100 \%\right), 272$ (14), 254 (6), 243 (20), 226 (24), 213 (19), 197 (35), 186 (25), 175 (21), 159 (21), 145 (39), 127 (15), 115 (37), 97 (32), 77 (11), 57 (12).

440
(1RS, 4RS, 4aSR, 9RS, 9aRS, 10SR, 11RS)-9,11-Epoxy-1,4,4a,9a-tetrahydro-6-methoxy-4-[(Z)-2'-methoxyethenyl]-10-methyl-1,4-ethanoindeno[2,1-c]pyran$3(4 H)$-one (42).
445 A 1M solution of lithium hexamethyldisilazide ($396 \mu \mathrm{l}, 0.396$ mmol) was added dropwise to a stirred suspension of (methoxymethyl)triphenylphosphonium chloride (135 mg, $0.396 \mathrm{mmol})$ in dry tetrahydrofuran (8 ml) at room temperature under nitrogen. After 10 minutes, the deep red 450 solution was cooled to $0^{\circ} \mathrm{C}$ and the aldehyde $41(66 \mathrm{mg}, 0.22$ mmol) in tetrahydrofuran (2 ml) was added dropwise over 30 minutes. The mixture was allowed to warm to room temperature and stirred for 1.5 hours. Water (2 ml) was added and stirring was continued for 2 minutes. The solution was
${ }_{455}$ acidified with $2 \mathrm{M} \mathrm{HCl}(10 \mathrm{ml})$ and extracted with ethyl acetate $(3 \times 20 \mathrm{ml})$. The combined organic phase was washed with brine (10 ml) and dried over magnesium sulfate. After filtration, the solvent was removed and the residue was purified by flash chromatography on silica gel (petroleum ${ }_{460}$ ether $40-60^{\circ} \mathrm{C}$: ethyl acetate $=3: 1$) to afford the enol ether 42 $(42 \mathrm{mg}, 58 \%)$ as a colourless oil; $v_{\max } / \mathrm{cm}^{-1} 2937(\mathrm{CH}), 1754$ $(\mathrm{C}=\mathrm{O}), 1257\left(\mathrm{ArOCH}_{3}\right), 1087(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $7.30(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{H}-8), 6.89-6.82(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{H}-7)$, $6.16(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{H}-2$ '), $5.20(1 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}, \mathrm{H}-9)$,
${ }_{465} 5.07(1 \mathrm{H}, \mathrm{dd}, J=5.4 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, \mathrm{H}-1), 4.35(1 \mathrm{H}, \mathrm{d}, J=$ $\left.6.9 \mathrm{~Hz}, \mathrm{H}-1{ }^{\prime}\right), 3.94(1 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz}, \mathrm{H}-11), 3.81-3.77(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H}-4 \mathrm{a}, \mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 3.52-3.48\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-9 \mathrm{a}, \mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 13\right)$, $2.14(1 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}, \mathrm{H}-10), 0.89\left(3 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3^{-}}\right.$ $\mathrm{C} 10) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 172.76$ (C3), $160.66(\mathrm{C} 6), 149.71$ 470 (C2'), 143.95 (C4b), 137.19 (C8a), 125.60 (C8), 114.10 (C5), 112.99 (C7), 100.21 (C1'), 82.93 (C11), 79.25 (C1), 78.98 (C9), $60.12\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 2 '\right), 55.67\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 50.53(\mathrm{C} 4), 48.42$ (C9a), 46.50 (C4a), 39.18 (C10), $16.54\left(\mathrm{CH}_{3}-\mathrm{C} 10\right)$; m/z 328 ($\mathrm{M}^{+}, 64 \%$), 314 (4), 286 (6), 268 (2), 242 (4), 223 (2), 197 (3), ${ }_{475} 186$ (55), 175 (12), 159 (100), 145 (62), 127 (13), 115 (17), 102 (16), 77 (5).
(1RS, 4SR, 4aSR, 9RS, 9aRS, 10SR, 11RS)-9,11-Epoxy480 1,4,4a,9a-tetrahydro-6-methoxy-10-methyl-4-(2'-oxo-ethyl)-1,4-ethanoindeno [2,1-c $]$ pyran- $3(4 H)$-one (43). The enol ether $42(30 \mathrm{mg}, 0.091 \mathrm{mmol})$, water $(500 \mu \mathrm{l})$, and $1 \mathrm{M} \mathrm{HCl}(25 \mu \mathrm{l})$ were stirred in tetrahydrofuran $(2 \mathrm{ml})$ for 24 hours. The solvent was removed under reduced pressure and 485 the residue was redissolved in ethyl acetate (10 ml). The organic phase was separated, washed with brine (2 ml) and dried over magnesium sulfate. After filtration, the solvent was removed and the residue was purified by flash chromatography on silica gel (petroleum ether $40-60^{\circ} \mathrm{C}$: ethyl 490 acetate $=3: 1)$ to afford the aldehyde $43(24 \mathrm{mg}, 83 \%)$ as a colourless oil; $v_{\max } / \mathrm{cm}^{-1} 2959$ (CH), 2852 (CHO), 1753 $(\mathrm{C}=\mathrm{O}), 1717(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 10.4(1 \mathrm{H}, \mathrm{d}, J=$ $3.3 \mathrm{~Hz}, \mathrm{H}-2$ '), $7.33(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{H}-8), 6.89(1 \mathrm{H}, \mathrm{d}, J=$ $2.2 \mathrm{~Hz}, \mathrm{H}-5), 6.87(1 \mathrm{H}, \mathrm{dd}, J=8.1 \mathrm{~Hz}, J=2.2 \mathrm{~Hz}, \mathrm{H}-7), 5.21$ ${ }_{495}(1 \mathrm{H}, \mathrm{d}, J=5.4 \mathrm{~Hz}, \mathrm{H}-9), 5.12(1 \mathrm{H}, \mathrm{dd}, J=5.4 \mathrm{~Hz}, J=5.2 \mathrm{~Hz}$, $\mathrm{H}-1), 3.93(1 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}, \mathrm{H}-11), 3.89(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}$, $\mathrm{H}-4 \mathrm{a}), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 3.51(1 \mathrm{H}$, ddd, $J=8.8 \mathrm{~Hz}, J=$ $5.2, \mathrm{~Hz}, J=5.4 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a}), 3.05\left(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime} \alpha\right)$, $2.29\left(1 \mathrm{H}, \mathrm{dd}, J=15.5 \mathrm{~Hz}, J=3.3 \mathrm{~Hz}, \mathrm{H}-1^{\prime} \beta\right), 1.68(1 \mathrm{H}, \mathrm{q}, J=$ $5007.6 \mathrm{~Hz}, \mathrm{H}-10), 0.92\left(3 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{C} 10\right) ; \delta_{\mathrm{C}}$ $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 202.20(\mathrm{C} 2 '), 173.68$ (C3), 161.21 (C6), 142.46 (C4b), 137.05 (C8a), 126.45 (C8), 115.36 (C5), 111.85 (C7), 83.02 (C11), 79.72 (C1), 79.32 (C9), $55.75\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right)$, 48.39 (C9a), 47.39 (C4), 46.13 (C4a), 42.44 (C1'), 40.27 ${ }_{505}(\mathrm{C} 10), 16.21\left(\mathrm{CH}_{3}-\mathrm{C} 10\right) ; m / z 314\left(\mathrm{M}^{+}, 24 \%\right), 286$ (30), 256 (4), 187 (20), 175 (19), 159 (100), 145 (33), 128 (18), 115 (30), 102 (24), 83 (35), 69 (24).
(1'RS, 4'SR, 4a'SR, 9'RS, 9a'RS, 10'SR, 11'RS)-9', 11'${ }_{510}$ Epoxy-1', 3', $\mathbf{4}^{\prime}, \mathbf{4 a}^{\prime}, 9^{\prime}, 9 \mathbf{9 a}^{\prime}$-hexahydro-6'-methoxy-10'-methyl-3'-oxo-1', $\mathbf{4}^{\prime}$-ethanoindeno ${ }^{2}{ }^{\prime}, 1^{\prime}-c$]pyranyl-acetic acid (44).

The aldehyde $43(16 \mathrm{mg}, 0.051 \mathrm{mmol}), 30 \%$ hydrogen peroxide ($270 \mu \mathrm{l}, 0.82 \mathrm{mmol}$) and sodium hydrogenphoshate $515(2 \mathrm{mg}, 0.017 \mathrm{mmol})$ were dissolved in a $1: 1$ solution of acetonitrile/water (1 ml) and cooled to $0^{\circ} \mathrm{C}$. Sodium chlorite $(7.5 \mathrm{mg}, 0.082 \mathrm{mmol})$ in water $(100 \mu \mathrm{l})$ was added dropwise. The mixture was warmed to room temperature and stirred for 2.5 hours. The reaction was quenched with sodium sulfate (20 $520 \mathrm{mg}, 0.168 \mathrm{mmol})$ and acidified with $6 \mathrm{M} \mathrm{HCl}(1 \mathrm{ml})$. The mixture was extracted with dichloromethane ($4 \times 15 \mathrm{ml}$) and the combined organic phase was washed with brine $(5 \mathrm{ml})$ and dried over magnesium sulfate. After filtration, the solvent was removed and the residue was purified by flash 525 chromatography on silica gel (petroleum ether $40-60^{\circ} \mathrm{C}$: ethyl acetate : acetic acid $=1: 1: 0.02)$ to afford the acid $44(11 \mathrm{mg}$, 65%) as a colourless oil; $v_{\max } / \mathrm{cm}^{-1} 3500(\mathrm{COOH}), 2931(\mathrm{CH})$, $1755(\mathrm{C}=\mathrm{O}), 1260\left(\mathrm{ArOCH}_{3}\right), 1031\left(\mathrm{ArOCH}_{3}\right) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.33\left(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H}-8^{\prime}\right), 6.89\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}\right), 6.87$ $530(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, \mathrm{H}-7 '), 5.22\left(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{H}-9^{\prime}\right), 5.12$ $(1 \mathrm{H}, \mathrm{dd}, J=5.5 \mathrm{~Hz}, J=5.8 \mathrm{~Hz}, \mathrm{H}-1$ '), $4.30(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}$, H-4a'), $3.94\left(1 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz}, \mathrm{H}-11^{\prime}\right), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}-\right.$ C6'), $3.53(1 \mathrm{H}$, ddd, $J=9.4 \mathrm{~Hz}, J=5.5, \mathrm{~Hz}, J=5.5 \mathrm{~Hz}, \mathrm{H}-$ $\left.9 \mathrm{a}^{\prime}\right), 2.96(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}, \mathrm{H}-1 \alpha), 2.34(1 \mathrm{H}, \mathrm{d}, J=16.0$
$\left.{ }_{535} \mathrm{~Hz}, \mathrm{H}-1 \beta\right), 1.67(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{H}-10$ '), $0.88(3 \mathrm{H}, \mathrm{d}, J=$ $\left.7.5 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{C} 10^{\prime}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 176.74(\mathrm{C} 2), 174.83$ (C3'), 161.32 (C6'), 142.74 (C4b'), 137.01 (C8a'), 126.41 (C8'), 115.10 (C5'), 111.91 (C7'), 83.20 (C11'), 79.70 (C1'), 79.48 (C^{\prime}), 55.78 ($\left.\mathrm{CH}_{3} \mathrm{O}-\mathrm{C}^{\prime}\right)$, 47.76 ($\left.\mathrm{C} 9 \mathrm{a}^{\prime}\right), ~ 46.29$ ($\left.\mathrm{C}^{\prime}\right)$, 54046.01 ($\left.\mathrm{C}^{\prime} \mathrm{a}^{\prime}\right), 40.38$ ($\left.\mathrm{C}_{10}{ }^{\prime}\right), 33.98$ (C 1), $16.11\left(\mathrm{CH}_{3}-\mathrm{C} 10^{\prime}\right) ; ~ m / z$ 330 ($\mathrm{M}^{+}, 9 \%$), 296 (100), 271 (33), 256 (35), 242 (15), 229 (53), 214 (12), 201 (11), 187 (6), 175 (58), 161 (12), 149 (8), 128 (7), 115 (13), 83 (43), 57 (21).

545 (1RS, 4SR, 4aSR, 9RS, 9aRS, 10SR, 11RS)-4-(3'-Diazo-2'-oxopropyl)-9,11-epoxy-1,4,4a,9a-tetrahydro-6-methoxy-10-methyl-1,4-ethanoindeno[2,1-c]pyran-3(4H)-one (45).
Oxalyl chloride ($15.5 \mu 1,0.18 \mathrm{mmol}$) was added to the acid 44 $(6 \mathrm{mg}, 0.0 .18 \mathrm{mmol})$ in dry benzene $(1 \mathrm{ml})$. A drop of DMF ${ }_{550}$ was added and stirring was continued for 2 hours. The solvent was removed under reduced pressure. Benzene (1 ml) was added and removed under vacuum. This step was repeated twice. The residue was redissolved in tetrahydrofuran (2 ml), which was then added dropwise to an excess of ethereal 55 diazomethane at $0^{\circ} \mathrm{C}$ and stirred for 6 hours. The mixture was warmed to room temperature and stirred for a further 16 hours. The solvent was removed and the residue was directly chromatographed on silica gel (petroleum ether $40-60^{\circ} \mathrm{C}$: ethyl acetate $=2: 1$) to afford the diazoketone $45(4 \mathrm{mg}, 62 \%)$ ${ }_{560}$ as a pale yellow oil; $v_{\max } / \mathrm{cm}^{-1} 3099(\mathrm{ArH}), 2930(\mathrm{CH}), 2104$ $\left(\mathrm{CHN}_{2}\right), 1753(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.34(1 \mathrm{H}, \mathrm{d}, J=$ $8.4 \mathrm{~Hz}, \mathrm{H}-8), 7.15(1 \mathrm{H}, \mathrm{d}(\mathrm{br}), J=2.5 \mathrm{~Hz}, \mathrm{H}-5), 6.87(1 \mathrm{H}, \mathrm{dd}$, $J=8.4 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, \mathrm{H}-7), 5.22(1 \mathrm{H}, \mathrm{d}, J=5.3 \mathrm{~Hz}, \mathrm{H}-9)$, $5.10\left(1 \mathrm{H}, \mathrm{dd}, J=6.2 \mathrm{~Hz}, J_{1,11}=5.4 \mathrm{~Hz}, \mathrm{H}-1\right), 4.90(1 \mathrm{H}, \mathrm{s}$
565 (br) C2'-CHN ${ }^{2}$), $4.45(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}), 3.93(1 \mathrm{H}, \mathrm{d}$, $\left.J_{11,1}=5.4 \mathrm{~Hz}, \mathrm{H}-11\right), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 3.51(1 \mathrm{H}, \mathrm{ddd}$, $J=8.8 \mathrm{~Hz}, J=6.1 \mathrm{~Hz}, J=5.4 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a}), 2.83(1 \mathrm{H}, \mathrm{d}(\mathrm{br}), J=$ $\left.15.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime} \alpha\right), 2.25\left(1 \mathrm{H}, \mathrm{d}, J=15.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime} \beta\right), 1.68(1 \mathrm{H}, \mathrm{q}$, $J=7.6 \mathrm{~Hz}, \mathrm{H}-10), 0.89\left(3 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{C} 10\right) ; m / z 354$ $570\left(\mathrm{M}^{+}, 3 \%\right), 326$ (100), 313 (31), 298 (18), 269 (7), 241 (10),

225 (7), 213 (12), 199 (7), 186 (42), 173 (38), 159 (51), 145 (35), 128 (11), 115 (20), 102 (1), 91 (8), 71 (5).

Methyl (1'RS, 4'SR, 4a'SR, 9'RS, 9a'RS, 10'SR, 11'RS)$5759^{\prime}, 11^{\prime}$-epoxy-1', $\mathbf{3}^{\prime}, 4^{\prime}, 4 \mathbf{a}^{\prime}, 9^{\prime}, 9 a^{\prime}-h e x a h y d r o-6^{\prime}$-methoxy-10'-methyl-3'-oxo- $1^{\prime}, 4^{\prime}$-ethanoindeno $2^{\prime}, 1^{\prime}$ 'cc]pyranyl-acetate (46).

The acid $44(15 \mathrm{mg}, 0.045 \mathrm{mmol})$ was dissolved in dichloromethane $(500 \mu \mathrm{l})$ and added dropwise to an excess of 580 ethereal diazomethane at $0^{\circ} \mathrm{C}$. The solution was warmed to room temperature and stirring was continued for 16 hours. The solvent was removed under reduced pressure and the residue was directly chromatographed on silica gel (petroleum ether $40-60^{\circ} \mathrm{C}$: ethyl acetate $\left.=2: 1\right)$ to afford the ester $46(15$ $585 \mathrm{mg}, 96 \%$) as a colourless oil; $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 2950(\mathrm{CH}), 1756$ $(\mathrm{C}=\mathrm{O}), 1261\left(\mathrm{ArOCH}_{3}\right), 1120(\mathrm{C}-\mathrm{O}), 1047\left(\mathrm{ArOCH}_{3}\right) ; \delta_{\mathrm{H}}$ $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.34\left(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{H}-8^{\prime}\right), 6.86(1 \mathrm{H}$, dd, $J=8.3 \mathrm{~Hz}, J=2.2 \mathrm{~Hz}, \mathrm{H}-7 '), 5.73(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{H}-$ $5 '), 5.21(1 \mathrm{H}, \mathrm{d}, J=5.4 \mathrm{~Hz}, \mathrm{H}-9$ '), $5.10(1 \mathrm{H}, \mathrm{dd}, J=5.5 \mathrm{~Hz}, J$ $\left.590=5.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.51\left(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}^{\prime}\right), 3.92(1 \mathrm{H}, \mathrm{d}, J$ $\left.=5.6 \mathrm{~Hz}, \mathrm{H}-11^{\prime}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6 '\right), 3.79(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{COOCH}_{3}\right), 3.52(1 \mathrm{H}, \mathrm{ddd}, J=8.8 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, J=5.4 \mathrm{~Hz}$, H-9a'), $2.88(1 \mathrm{H}, \mathrm{d}, J=16.8 \mathrm{~Hz}, \mathrm{H}-1 \alpha), 2.27(1 \mathrm{H}, \mathrm{d}, J=16.9$ $\mathrm{Hz}, \mathrm{H}-1 \beta), 1.66\left(1 \mathrm{H}, \mathrm{q}, J=7.7 \mathrm{~Hz}, \mathrm{H}-10{ }^{\prime}\right), 0.88(3 \mathrm{H}, \mathrm{d}, J=$ $\left.5957.7 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{C} 10^{\prime}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 173.16\left(\mathrm{C} 3^{\prime}\right), 171.49$ (C2), 160.88 (C6'), 143.01 (C4b'), 137.04 (C8a'), 126.22 (C8'), 114.07 (C5'), 111.83 (C7'), 82.92 ($\mathrm{C}_{1} 1^{\prime}$), 79.57 ($\left.\mathrm{Cl}^{\prime}\right)$, 79.09 (C9'), $55.43\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6 '\right), 51.92\left(\mathrm{COOCH}_{3}\right), 47.15$ (C9a'), 45.79 (C4'), 45.74 (C4a'), 39.99 (C10'), 32.60 (C1), $60015.91\left(\mathrm{CH}_{3}-\mathrm{C} 10^{\prime}\right) ; m / z 344\left(\mathrm{M}^{+}, 100 \%\right), 313$ (17), 270 (7), 241 (6), 227 (18), 213 (11), 199 (9), 186 (21), 175 (15), 171 (12), 159 (16), 145 (25), 128 (12), 115 (19), 102 (14), 91 (13), 81 (9), 57 (14).
${ }_{605}$ 4-Methyl-2-ox0-2H-pyran-3-carboxylic acid (47).
A mixture of hexamethyldisilane ($2.5 \mathrm{ml}, 12.2 \mathrm{mmol}$) and iodine ($1.55 \mathrm{~g}, 12.2 \mathrm{mmol}$) was carefully heated to $50^{\circ} \mathrm{C}$ in a dry 250 ml round-bottomed flask equipped with a reservoir and a long reflux condenser. A violent exothermic reaction ${ }_{610}$ occurred, and a homogeneous reddish brown solution resulted, which was heated under reflux for 1.5 hours to form a colourless liquid. The pyrone $32(2 \mathrm{~g}, 11.9 \mathrm{mmol})$ in 50 ml of dry chloroform was added, and the mixture was heated at reflux for 24 hours. The reaction mixture was cooled to $25^{\circ} \mathrm{C}$,
615 and 2 ml of water was added. The mixture was stirred for 10 minutes and then diluted with dichloromethane (100 ml). Saturated aqueous sodium thiosulfate (5 ml) was added, and the mixture was stirred until colourless. The organic later was separated and the aqueous layer was extracted with ${ }_{620}$ dichloromethane ($3 \times 100 \mathrm{ml}$). The combined organic solution was then washed with saturated aqueous sodium thiosulfate solution (20 ml), dried with magnesium sulfate, filtered and removed under reduced pressure. The residue was purified by flash chromatography on silica gel (petroleum ether $40-60^{\circ} \mathrm{C}$: ${ }_{625}$ ethyl acetate : acetic acid 1:1:0.02) to yield the acid 47 (1.381 g, 75%). Recrystallisation from ethyl acetate afforded colourless crystals; mp $116-117{ }^{\circ} \mathrm{C}$ (from EtOAc); Found: C, 54.28%; $\mathrm{H}, 4.00 \%$. Calc. for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{4}$: C, 54.55%; $\mathrm{H}, 3.92 \%$; $v_{\max } / \mathrm{cm}^{-1} 3500(\mathrm{COOH}), 3074(=\mathrm{CH}), 2971(\mathrm{CH}), 1725$
${ }_{630}(\mathrm{C}=\mathrm{O}), 1618(=\mathrm{CH}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.61(1 \mathrm{H}, \mathrm{d}, J=5.2$ $\mathrm{Hz}, \mathrm{H}-5), 6.46(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}, \mathrm{H}-4), 2.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{C} 4\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 167.90(\mathrm{COOH}), 166.02(\mathrm{C} 2), 163.40$ (C4), $152.06(\mathrm{C} 6), 114.37(\mathrm{C} 5), 112.85(\mathrm{C} 3), 23.78\left(\mathrm{CH}_{3}-\mathrm{C} 4\right)$; $m / z 154\left(\mathrm{M}^{+}, 54 \%\right), 136$ (100), 126 (32), 110 (79), 108 (63), ${ }_{635} 98$ (54), 81 (31), 69 (19), 67 (20), 52 (47).

5-Methoxy-7-methyl-1H-inden-1-one and 3-Bromo-5-methoxy-7-methyl-1 H -inden-1-one (4).

N-Bromosuccinimide ($1.2 \mathrm{~g}, 6.74 \mathrm{mmol}$) was added to a ${ }_{640}$ solution of the indanone $48(1.2 \mathrm{~g}, 6.82 \mathrm{mmol})$ in carbon tetrachloride $(100 \mathrm{ml})$. The resulting suspension was stirred at reflux with irradiation from a tungsten lamp for 1.5 hours. Triethylamine (4 ml) was added and the reaction mixture was stirred at $85^{\circ} \mathrm{C}$ (oil bath) for a further 2 hours. The mixture 645 was filtered through a short column of silica gel and washed with ethyl acetate. The solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel (petroleum ether $40-60^{\circ} \mathrm{C}$: ethyl acetate $=$ $30: 1 \rightarrow 10: 1)$ to afford 5 -methoxyindenone $4(750 \mathrm{mg}, 63 \%)$ as ${ }_{650}$ a yellow oil, and starting material (96 mg); $v_{\max } / \mathrm{cm}^{-1} 3010$ $(\mathrm{ArH}), 2941(\mathrm{CH}), 1695(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.23$ $(1 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}, \mathrm{H}-3), 6.35(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{H}-4), 6.25$ $(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{H}-6), 5.73(1 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}, \mathrm{H}-2), 3.72$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 5\right), 2.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{C} 7\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 55198.27 (C1), 163.91 (C5), 147.88 (C3a), 146.72 (C3), 139.95 (C7), 129.14 (C2), 120.09 (C7a), 113.35 (C6), 109.53 (C4), $55.71\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 5\right), 17.69\left(\mathrm{CH}_{3}-\mathrm{C} 7\right) ; m / z 174\left(\mathrm{M}^{+}, 100 \%\right), 159$ (13), 146 (20), 131 (29), 120 (14), 115 (26), 103 (29), 102 (24), 87 (12), 77 (29), 63 (20).

660
(1SR, $4 S R, 4 \mathrm{aSR}, 9 \mathrm{aSR}$)-1,4,4a,9a-tetrahydro-6-methoxy-8,10-dimethyl-3,9-dioxo-1,4-ethenoindeno[2,1-c]pyran-4(3H)-carboxylic acid (49).
The indenone $4(1.42 \mathrm{~g}, 9.22 \mathrm{~mol})$ and the pyrone $47(1.604 \mathrm{~g}$, 6659.22 mol) were dissolved in a minimum of dichloromethane $(10 \mathrm{ml})$. The reaction mixture was then subjected to high pressure (19 Kbar) for 16 hours. The solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel (petroleum ether $40-60^{\circ} \mathrm{C}$: ethyl 670 acetate : acetic acid $=1: 2: 0.03$) to yield the cycloadduct 49 ($2.07 \mathrm{~g}, 68 \%$, based on pyrone). Recrystallisation from ethyl acetate afforded colourless crystals; mp 158-160 ${ }^{\circ} \mathrm{C}$ (from EtOAc); Found: C, 65.84%; H, 4.93%. Calc. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{6}$: C, 65.85%; H, 4.91%; Found: C, 68.54%; H, 6.11%. Calc. for ${ }_{675} \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5}: \mathrm{C}, 68.78 \% ; \mathrm{H}, 5.77 \% ; v_{\max } / \mathrm{cm}^{-1} 3430(\mathrm{COOH})$, 3003 (ArH), 2959 (CH), 1750 (C=O), 1695 (C=O), 1251 $\left(\mathrm{ArOCH}_{3}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.08(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-7), 6.58(1 \mathrm{H}$, s, H-5), $5.85(1 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}, \mathrm{H}-11), 5.30(1 \mathrm{H}, \mathrm{dd}, J=4.7$ $\mathrm{Hz}, J=4.9 \mathrm{~Hz}, \mathrm{H}-1), 4.24(1 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}), 3.75$ $680\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 3.38(1 \mathrm{H}, \mathrm{dd}, J=6.7 \mathrm{~Hz}, J=4.7 \mathrm{~Hz}, \mathrm{H}-$ 9a), $2.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{C} 8\right), 1.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{C} 10\right) ; \delta_{\mathrm{C}}$ $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 200.63$ (C9), 171.47 (C12), 170.11 (C3), 165.01 (C6), 156.78 (C4b), 141.45 (C10), 141.34 (C8), 130.00 (C8a), 123.31 (C 11), 117.88 (C5), 108.70 (C7), 74.44 (C1), 68563.48 (C4), $55.86\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 53.37$ (C9a), 38.99 (C4a), $20.29\left(\mathrm{CH}_{3}-\mathrm{C} 10\right), 18.82\left(\mathrm{CH}_{3}-\mathrm{C} 8\right) ; \mathrm{m} / \mathrm{z} 328\left(\mathrm{M}^{+}, 3 \%\right), 239$ (100), 225 (26), 196 (7), 174 (28), 165 (11), 148 (28), 120 (27), 84 (37), 78 (31), 66 (46).

690 (1SR, 4SR, 4aSR, 9aSR)-1,4,4a,9a-Tetrahydro-4-hydroxymethyl-6-methoxy-8,10-dimethyl-9-oxo-1,4ethenoindeno $[2,1-c]$ pyran- $3(4 H)$-one (50).
Oxalyl chloride ($1.73 \mathrm{ml}, 20 \mathrm{mmol}$) was added to the acid 49 $(1.3 \mathrm{~g}, 4 \mathrm{mmol})$ in dry tetrahydrofuran (150 ml). DMF (150 ${ }_{695} \mu \mathrm{l}$) was added and stirring was continued for 2 hours. After removal of the solvent, the residue was dissolved in benzene $(50 \mathrm{ml})$ which was subsequently removed under vacuum. This step was repeated twice. The residue was redissolved in tetrahydrofuran $(150 \mathrm{ml})$ and cooled to $0^{\circ} \mathrm{C}$. A solution of 700 sodium borohydride ($454 \mathrm{mg}, 11.9 \mathrm{mmol}$) in DMF (5 ml) was added over 5 minutes. Stirring was continued for 5 hours at room temperature. The mixture was acidified with 2 M HCl $(50 \mathrm{ml})$ and the solvent was removed under reduced pressure. The product was extracted with dichloromethane ($3 \times 250 \mathrm{ml}$) 705 and the combined organic phase was washed with brine (50 ml), dried over magnesium sulfate and filtered. The solvent was removed and the residue was purified by flash chromatography on silica gel (petroleum ether $40-60^{\circ} \mathrm{C}$: ethyl acetate $=3: 1$) to yield the alcohol $50(820 \mathrm{mg}, 66 \%)$ and 710 starting material (86 mg). Recrystallisation from ethyl acetate afforded colourless crystals; mp 146-148 ${ }^{\circ} \mathrm{C}$ (from EtOAc); $v_{\max } / \mathrm{cm}^{-1} 3508(\mathrm{OH}), 3008(\mathrm{ArH}), 2942(\mathrm{CH}), 1743(\mathrm{C}=\mathrm{O})$, $1150(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.86(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-7), 6.66(1 \mathrm{H}$, s, H-5), $6.04(1 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}, \mathrm{H}-11), 5.41(1 \mathrm{H}, \mathrm{dd}, J=4.9$ $\left.{ }_{715} \mathrm{~Hz}, J=4.9 \mathrm{~Hz}, \mathrm{H}-1\right), 4.45\left(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}, \mathrm{H}-1^{\prime} \alpha\right), 4.19$ $(1 \mathrm{H}, \mathrm{d}, J=12.2 \mathrm{~Hz}, \mathrm{H}-1 ' \beta), 3.87(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a})$, $3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 3.48(1 \mathrm{H}, \mathrm{dd}, J=6.6 \mathrm{~Hz}, J=4.9 \mathrm{~Hz}$, $\mathrm{H}-9 \mathrm{a}), 2.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{C} 8\right), 1.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} H_{3}-\mathrm{C} 10\right) ; \delta_{\mathrm{C}}$ $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 201.11$ (C9), 176.02 (C3), 164.89 (C6), ${ }_{720} 154.85$ (C4b), 141.80 (C10), 140.74 (C8), 130.17 (C8a), 124.82 (C11), 117.86 (C5), 108.70 (C7), 74.29 (C1), 59.42 $\left(\mathrm{Cl}^{\prime}\right), 55.98\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 55.46$ (C4), 53.43 (C9a), 36.42 (C4a), $18.84\left(\mathrm{CH}_{3}-\mathrm{C} 8\right), 16.83\left(\mathrm{CH}_{3}-\mathrm{C} 10\right) ; m / z 315\left(\mathrm{M}^{+}+\mathrm{H}\right.$, 2\%), 239 (32), 225 (5), 196 (3), 174 (100), 165 (6), 148 (3), ${ }_{725} 120$ (8), 115 (7), 103 (4), 91 (5), 77(7).
(1SR, 4SR, 4aSR, 9aSR)-4-(tert.-Butyldimethylsilyloxymethyl)-1,4,4a,9a-tetrahydro-6-methoxy-8,10-dimethyl-9-oxo-1,4-ethenoindeno[2,1${ }_{730} \boldsymbol{c} \mid$ pyran-3(4H)-one (51).
tert.-Butyldimethylsilyl trifluoromethanesulfonate (272 μ l, 1.18 mmol) was added dropwise over 10 minutes to the alcohol $50 \quad(310 \quad \mathrm{mg}, \quad 0.99 \mathrm{mmol})$ and N, N diisopropylethylamine ($258 \quad \mu \mathrm{l}, \quad 1.49 \mathrm{mmol}$) in ${ }_{735}$ dichloromethane $(30 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. Stirring was continued at room temperature for 2 hours. The mixture was diluted with dichloromethane (150 ml), washed with $2 \mathrm{M} \mathrm{HCl}(20 \mathrm{ml})$, brine (20 ml) and dried over magnesium sulfate. The solvent was removed and the residue was purified by flash 740 chromatography on silica gel (petroleum ether $40-60^{\circ} \mathrm{C}$: ethyl acetate $=6: 1$) to yield the ether $51(350 \mathrm{mg}, 83 \%)$. Recrystallisation from ethyl acetate afforded colourless crystals; mp 155-157 ${ }^{\circ} \mathrm{C}$ (from EtOAc); $v_{\max } / \mathrm{cm}^{-1} 2951(\mathrm{CH})$, $1758(\mathrm{C}=\mathrm{O}), 1250\left(\mathrm{ArOCH}_{3}\right), 1149(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.{ }_{745} \mathrm{CDCl}_{3}\right) 6.99(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-7), 6.66(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 5.99(1 \mathrm{H}, \mathrm{d}, J=$ $5.1 \mathrm{~Hz}, \mathrm{H}-11), 5.36(1 \mathrm{H}, \mathrm{dd}, J=4.9 \mathrm{~Hz}, J=5.1 \mathrm{~Hz}, \mathrm{H}-1)$, $4.49\left(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime} \alpha\right), 4.12(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}, \mathrm{H}-$
$\left.1^{\prime} \beta\right), 4.01(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}), 3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} H_{3} \mathrm{O}-\mathrm{C} 6\right)$, $3.48(1 \mathrm{H}, \mathrm{dd}, J=6.9 \mathrm{~Hz}, J=4.9 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a}), 2.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} H_{3}-\right.$ $\left.{ }_{750} \mathrm{C} 8\right), 1.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{C} 10\right), 0.97\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}\right), 0.26(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{C} H_{3}-\mathrm{Si}\right), 0.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{Si}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 201.87$ (C9), 173.71 (C3), 164.95 (C6), 155.87 (C4b), 141.46 (C10), 140.75 (C8), 130.39 (C8a), 125.13 (C11), 118.11 (C5), 108.18 (C7), $73.46(\mathrm{C} 1), 58.42(\mathrm{C} 1 '), 55.92\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 55.30(\mathrm{C} 4)$, ${ }_{755} 53.20(\mathrm{C} 9 \mathrm{a}), 35.75(\mathrm{C} 4 \mathrm{a}), 26.15\left(\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}\right), 18.81\left(\mathrm{CH}_{3}-\mathrm{C} 8\right)$, $18.53\left(\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}\right), 17.03\left(\mathrm{CH}_{3}-\mathrm{Cl} 0\right),-5.05\left(\mathrm{CH}_{3}-\mathrm{Si}\right),-5.23$ $\left(\mathrm{CH}_{3}-\mathrm{Si}\right) ; m / z 371\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, 6 \%\right), 325$ (72), 252 (64), 239 (100), 223 (39), 197 (36), 179 (13), 165 (21), 153 (7), 115 (10), 89 (22), 77 (57), 75 (56).

760
(1SR, $\quad 4 S R, \quad 4 \mathrm{aSR}, \quad 9 R S, \quad 9 \mathrm{aRS}$)-4-(tert.-Butyldimethylsilyloxymethyl)-1,4,4a,9a-tetrahydro-9-hydroxy-6-methoxy-8,10-dimethyl-1,4-ethenoindeno[2,1-c]pyran-3(4H)-one (52).
${ }_{765}$ Sodium borohydride ($117 \mathrm{mg}, 3.08 \mathrm{mmol}$) was added to the ketone $51(880 \mathrm{mg}, 2.06 \mathrm{mmol})$ in tetrahydrofuran $(50 \mathrm{ml})$ and methanol $(1 \mathrm{ml})$ and the reaction mixture was stirred at room temperature for 3 hours. Acetone (5 ml) was added to decompose the excess borohydride. The solution was acidified 70 with $2 \mathrm{M} \mathrm{HCl}(30 \mathrm{ml})$ and extracted with ethyl acetate $(3 \times 100$ $\mathrm{ml})$. The organic phase was washed with brine (20 ml) and dried over magnesium sulfate. After filtration, the solvent was removed and the residue was purified by flash chromatography on silica gel (petroleum ether $40-60^{\circ} \mathrm{C}$: ethyl
775 acetate $=4: 1)$ to yield the alcohol $52(787 \mathrm{mg}, 89 \%)$ as a colourless oil; $v_{\max } / \mathrm{cm}^{-1} 3543(\mathrm{OH}), 2951(\mathrm{CH}), 1750(\mathrm{C}=\mathrm{O})$, $1731(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.78(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-7), 6.63$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 6.13(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}, \mathrm{H}-11), 5.34-5.25(2 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-1, \mathrm{H}-9), 4.52\left(1 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz}, \mathrm{H}-1{ }^{\prime} \alpha\right), 4.23(1 \mathrm{H}, \mathrm{d}, J$ $\left.{ }_{780}=10.4 \mathrm{~Hz}, \mathrm{H}-1 ' \beta\right), 3.96(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}), 3.77(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 3.54(1 \mathrm{H}, \mathrm{ddd}, J=8.7 \mathrm{~Hz}, J=4.2 \mathrm{~Hz}, J=8.5 \mathrm{~Hz}$, $\mathrm{H}-9 \mathrm{a}), 2.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{C} 8\right), 1.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{C} 10\right), 0.95$ $\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}\right), 0.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{Si}\right), 0.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{Si}\right)$; $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 175.03(\mathrm{C} 3), 160.96(\mathrm{C} 6), 141.59(\mathrm{C} 4 \mathrm{~b})$,
785140.51 (C10), 137.43 (C8), 136.54 (C8a), 126.35 (C11), 116.79 (C5), 107.20 (C7), 74.20 (C1), 73.63 (C9), 58.64 $(\mathrm{C} 1 '), 55.97\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 55.61$ (C4), 48.67 (C9a), 43.52 $(\mathrm{C} 4 a), 26.12\left(\left(\mathrm{CH}_{3}\right)-\mathrm{C}\right), 18.80\left(\mathrm{CH}_{3}-\mathrm{C} 8\right), 18.51\left(\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}\right)$, $17.42\left(\mathrm{CH}_{3}-\mathrm{Cl} 0\right),-5.06\left(\mathrm{CH}_{3}-\mathrm{Si}\right),-5.24\left(\mathrm{CH}_{3}-\mathrm{Si}\right) ; m / z 429$ $790\left(\mathrm{M}^{+}-\mathrm{H}, 1 \%\right), 413$ (1), 397 (1), 373 (9), 327 (12), 311 (6), 254 (31), 237 (43), 223 (17), 197 (100), 176 (28), 159 (25), 105 (13), 75 (21).
(1RS, 4SR, 4aSR, 9RS, 9aRS, 10RS, 11SR)-4-(tert.${ }_{795}$ Butyldimethylsilyloxymethyl)-1,4,4a,9a-tetrahydro-9,11-dihydroxy-6-methoxy-8,10-dimethyl-1,4-ethanoindeno[2,1$c \mid p y r a n-3(4 H)$-one (53).
2M Borane-dimethyl sulfide in tetrahydrofuran ($1.02 \mathrm{ml}, 2.04$ mmol) was added dropwise over 30 minutes to the alkene 52 $800(350 \mathrm{mg}, 0.814 \mathrm{mmol})$ in dichloromethane $(25 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. Stirring was continued at room temperature for 5 hours. Triethylamine N-oxide ($700 \mathrm{mg}, 6.3 \mathrm{mmol}$) was added and the mixture was heated under reflux for 16 hours. The solution was filtered through a short pad of silica gel and the solvent 805 was removed under reduced vacuum. The residue was purified by flash chromatography on silica gel (petroleum ether 40-
$60^{\circ} \mathrm{C}$: ethyl acetate $\left.=1: 1\right)$ to afford the alcohol $53(140 \mathrm{mg}$, 38%) as a colourless oil and starting material (42 mg); $v_{\max } / \mathrm{cm}^{-1} 3400(\mathrm{OH}), 2929(\mathrm{CH}), 1752(\mathrm{C}=\mathrm{O}), 1142(\mathrm{C}-\mathrm{O})$, ${ }_{810} 1104(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.64(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-7), 6.62(1 \mathrm{H}$, s, H-5), $5.46(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, \mathrm{H}-9), 4.90(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}$, $\mathrm{H}-1), 4.35(1 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}, \mathrm{H}-1 ' \alpha), 4.11(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}$, $\mathrm{H}-11), 3.96(1 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}, \mathrm{H}-1 ' \beta), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}-\right.$ C6), $3.54(1 \mathrm{H}, \mathrm{d}, J=10.4 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}), 3.21(1 \mathrm{H}, \mathrm{ddd}, J=10.3$
$\left.{ }_{815} \mathrm{~Hz}, J=4.0 \mathrm{~Hz}, J=9.7 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a}\right), 2.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} H_{3}-\mathrm{C} 8\right), 1.66$ $(1 \mathrm{H}, \mathrm{dq}, J=7.3 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}, \mathrm{H}-10), 0.86\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}\right)$, $0.61\left(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{C} 10\right), 0.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{Si}\right), 0.13$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{Si}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 177.15(\mathrm{C} 3), 160.56$ (C6), 142.53 (C4b), 138.47 (C8), 134.92 (C8a), 116.57 (C5), ${ }_{820} 108.33$ (C7), 81.90 (C11), 74.42 (C9), 72.79 (C1), 60.11 $\left(\mathrm{C}^{\prime}\right), 55.56\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 51.35(\mathrm{C} 4), 44.71(\mathrm{C} 9 \mathrm{a}), 40.60$ (C4a), $39.89(\mathrm{C} 10), 26.06\left(\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}\right), 18.95\left(\mathrm{CH}_{3}-\mathrm{C} 8\right), 18.48$ $\left(\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}\right), 14.19\left(\mathrm{CH}_{3}-\mathrm{Cl} 10\right),-5.19\left(\mathrm{CH}_{3}-\mathrm{Si}\right),-5.27\left(\mathrm{CH}_{3}-\mathrm{Si}\right)$; $m / z 449\left(\mathrm{M}^{+}+\mathrm{H}, 1 \%\right), 432$ (2), 420 (2), 414 (2), 391 (57), 825373 (11), 329 (9), 311 (10), 271 (6), 254 (40), 237 (58), 225 (25), 214 (17), 199 (53), 189 (26), 171 (76), 160 (49), 135 (10), 107 (23), 85 (53), 75 (100), 66 (57).
(1RS, 4SR, 4aSR, 9aSR, 10RS)-4-(tert.${ }_{830}$ Butyldimethylsilyloxymethyl)-1,4,4a,9a-tetrahydro-6-methoxy-8,10-dimethyl-9,11-dioxo-1,4-ethanoindeno[2,1-c]pyran-3(4H)-one (54).
The diol 53 ($316 \mathrm{mg}, 0.705 \mathrm{mmol}$) in tetrahydrofuran (5 ml) was added dropwise over 10 minutes to the Dess Martin ${ }_{835}$ periodinane ($1.35 \mathrm{~g}, 2.82 \mathrm{mmol}$) in tetrahydrofuran (30 ml). The solution was stirred for 16 hours at room temperature. A 1:1 mixture of saturated aqueous sodium thiosulfate and sodium bicarbonate (5 ml) was added and stirring was continued for 1 hour. The product was extracted with ethyl 840 acetate ($3 \times 100 \mathrm{ml}$) and the combined organic phase was washed with saturated sodium thiosulfate (20 ml) and brine $(20 \mathrm{ml})$. After filtration, the solvent was removed and the residue was purified by flash chromatography on silica gel (petroleum ether $40-60^{\circ} \mathrm{C}$: ethyl acetate $=5: 1$) to afford the ${ }_{845}$ diketone 54 ($182 \mathrm{mg}, 58 \%$) as a colourless oil; $v_{\max } / \mathrm{cm}^{-1} 2951$ $(\mathrm{CH}), 1775(\mathrm{C}=\mathrm{O}), 1748(\mathrm{C}=\mathrm{O}), 1700(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 6.91(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-7), 6.74(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 5.04(1 \mathrm{H}, \mathrm{d}, J=$ $5.6 \mathrm{~Hz}, \mathrm{H}-1), 4.25\left(1 \mathrm{H}, \mathrm{d}, J=10.3 \mathrm{~Hz}, \mathrm{H}-1{ }^{\prime} \alpha\right), 4.11(1 \mathrm{H}, \mathrm{d}, J$ $=10.4 \mathrm{~Hz}, \mathrm{H}-1 ' \beta), 4.03(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}), 3.87(3 \mathrm{H}, \mathrm{s}$, $\left.{ }_{850} \mathrm{C} H_{3} \mathrm{O}-\mathrm{C} 6\right), 3.66(1 \mathrm{H}, \mathrm{dd}, J=8.7 \mathrm{~Hz}, J=5.7 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a}), 2.57$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{C} 8\right), 2.53(1 \mathrm{H}, \mathrm{q}, J=7.4 \mathrm{~Hz}, \mathrm{H}-10), 0.96(9 \mathrm{H}, \mathrm{s}$, $\left.\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}\right), 0.45\left(3 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{C} 10\right), 0.24(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}-\mathrm{Si}\right), 0.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{Si}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 204.53$ (C11), 197.98 (C9), 172.75 (C3), 165.40 (C6), 155.54 (C4b), 855142.84 (C8), 128.71 (C8a), 118.26 (C5), 109.00 (C7), 80.74 (C 1$), 59.38\left(\mathrm{C} 1{ }^{\prime}\right), 55.85\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 52.43(\mathrm{C} 4), 52.06(\mathrm{C} 9 \mathrm{a})$, $43.13(\mathrm{C} 10), 36.54(\mathrm{C} 4 \mathrm{a}), 25.89\left(\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}\right), 18.76\left(\mathrm{CH}_{3}-\mathrm{C} 8\right)$, $18.35\left(\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}\right), 9.65\left(\mathrm{CH}_{3}-\mathrm{C10}\right),-5.35\left(\mathrm{CH}_{3}-\mathrm{Si}\right),-5.42$ $\left(\mathrm{CH}_{3}-\mathrm{Si}\right) ; m / z 387\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, 73 \%\right), 369$ (1), 343 (3), 295 ${ }_{860}$ (3), 267 (5), 239 (3), 213 (3), 199 (20), 187 (100), 171 (7), 159 (36), 129 (5), 116 (6), 75 (22).
(1RS, $\quad 4 S R, \quad 4 \mathrm{aSR}, \quad 9 \mathrm{aSR}, \quad 10 S R$)-4-(tert.-Butyldimethylsilyloxymethyl)-1,4,4a,9a-tetrahydro-6-
${ }_{865}$ methoxy-8,10-dimethyl-9,11-dioxo-1,4-ethanoindeno[2,1-c]pyran-3(4H)-one (55).
DBU ($2 \mu 1,0.013$) was added to a solution of diketone 54 $(182 \mathrm{mg}, 0.41 \mathrm{mmol})$ in tetrahydrofuran $(10 \mathrm{ml})$ and stirred for 1.5 hours. The solvent was removed under reduced ${ }_{870}$ pressure and the residue was purified by flash chromatography on silica gel (petroleum ether $40-60^{\circ} \mathrm{C}$: ethyl acetate $=5: 1$) to afford the epimer 55 ($179 \mathrm{mg}, 98 \%$) as a colourless oil; $v_{\max } / \mathrm{cm}^{-1} 2951(\mathrm{CH}), \quad 2929(\mathrm{CH}), 1772 \quad(\mathrm{C}=\mathrm{O}), 1254$ $\left(\mathrm{ArOCH}_{3}\right), 1150(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.99(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ $\left.{ }_{875} 7\right), 6.74(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 4.93(1 \mathrm{H}, \mathrm{d}, J=5.4 \mathrm{~Hz}, \mathrm{H}-1), 4.36(1 \mathrm{H}$, d, $J=10.8 \mathrm{~Hz}, \mathrm{H}-1$ ' α), $4.25\left(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}, \mathrm{H}-1^{\prime} \beta\right.$), 3.86 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} H_{3} \mathrm{O}-\mathrm{C} 6\right), 3.65(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}), 3.63(1 \mathrm{H}$, dd, $J=8.8 \mathrm{~Hz}, J=5.4 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a}), 2.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} H_{3}-\mathrm{C} 8\right), 1.83$ $(1 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{H}-10), 0.98\left(3 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{C} H_{3}-\mathrm{C} 10\right)$, ${ }_{880} 0.97\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}\right), 0.25\left(6 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{Si}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$, CDCl_{3}) 203.74 (C11), 198.68 (C9), 172.32 (C3), 165.89 (C6), 154.66 (C4b), 142.66 (C8), 129.19 (C8a), 118.57 (C5), 109.08 $(\mathrm{C} 7), 81.03(\mathrm{C} 1), 60.25\left(\mathrm{C} 1{ }^{\prime}\right), 56.01\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 52.19(\mathrm{C} 4)$, $50.51(\mathrm{C} 9 \mathrm{a}), 41.98(\mathrm{C} 10), 37.50(\mathrm{C} 4 \mathrm{a}), 26.10\left(\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}\right)$,
$88518.93\left(\mathrm{CH}_{3}-\mathrm{C} 8\right), 18.48\left(\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}\right), 11.78\left(\mathrm{CH}_{3}-\mathrm{Cl} 0\right),-5.07$ $\left(\mathrm{CH}_{3}-\mathrm{Si}\right),-5.23\left(\mathrm{CH}_{3}-\mathrm{Si}\right) ; m / z 387\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, 84 \%\right), 369(1)$, 343 (4), 295 (3), 267 (5), 239 (3), 213 (4), 199 (17), 187 (100), 171 (5), 159 (30), 129 (3), 116 (5), 75 (17).
${ }_{890}(1 R S, 4 S R, 4 \mathrm{aSR}, ~ 9 R S, ~ 9 a R S, ~ 10 S R, ~ 11 R S)-4-(t e r t .-~$ Butyldimethylsilyloxymethyl)-9,11-epoxy-1,4,4a,9a-tetrahydro-6-methoxy-8,10-dimethyl-1,4ethanoindeno $[2,1-c]$ pyran- $3(4 H)$-one (56).
Sodium borohydride ($51 \mathrm{mg}, 1.35 \mathrm{mmol}$) was added to the 95 diketone $55(260 \mathrm{mg}, 0.585 \mathrm{mmol})$ in tetrahydrofuran (20 ml) and methanol $(1 \mathrm{ml})$. The mixture was stirred at 3 hours at room temperature. Acetone (2 ml) was added and stirred for 10 minutes. The solution was acidified with 2 M HCl to pH 2 and extracted with ethyl acetate ($3 \times 100 \mathrm{ml}$). The combined 900 organic phase was washed with brine $(30 \mathrm{ml})$ and dried over magnesium sulfate. After filtration, the solvent was removed and the residue was purified by flash chromatography on silica gel (petroleum ether $40-60^{\circ} \mathrm{C}$: ethyl acetate $=5: 1$) to afford the ether $56(160 \mathrm{mg}, 64 \%)$ as a colourless oil; $v_{\text {max }} / \mathrm{cm}^{-}$ ${ }_{905}{ }^{1} 2951(\mathrm{CH}), 1764(\mathrm{C}=\mathrm{O}), 1254\left(\mathrm{ArOCH}_{3}\right), 1102(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}$ $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.89(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-7), 6.66(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 5.30$ $(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{H}-9), 5.06(1 \mathrm{H}, \mathrm{dd}, J=5.5 \mathrm{~Hz}, J=5.4 \mathrm{~Hz}$, $\mathrm{H}-1), 4.13\left(1 \mathrm{H}, \mathrm{d}, J=10.3 \mathrm{~Hz}, \mathrm{H}-1{ }^{\prime} \alpha\right), 3.90(1 \mathrm{H}, \mathrm{d}, J=8.9$ $\mathrm{Hz}, \mathrm{H}-4 \mathrm{a}), 3.84(1 \mathrm{H}, \mathrm{d}, J=5.3 \mathrm{~Hz}, \mathrm{H}-11), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}-\right.$ $\left.{ }_{910} \mathrm{C} 6\right), 3.45(1 \mathrm{H}$, ddd, $J=9.0 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a})$, $3.32(1 \mathrm{H}, \mathrm{d}, J=10.3 \mathrm{~Hz}, \mathrm{H}-1 ' \beta), 2.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} H_{3}-\mathrm{C} 8\right), 1.63$ $(1 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{H}-10), 0.96\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}\right), 0.78(3 \mathrm{H}, \mathrm{d}$, $\left.J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{C} 10\right), 0.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{Si}\right), 0.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3^{-}}\right.$ $\mathrm{Si}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 173.32(\mathrm{C} 3), 161.39$ (C6), 143.14 915 (C4b), 136.22 (C8), 135.99 (C8a), 116.39 (C5), 108.61 (C7), 81.85 (C11), 80.34 (C1), 79.15 (C9), 60.82 (C1'), 55.68 ($\left.\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 49.96$ (C4), 45.27 (C9a), 45.19 (C4a), 38.11 (C10), $26.15\left(\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}\right), 18.79\left(\mathrm{CH}_{3}-\mathrm{C} 8\right), 18.50\left(\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}\right)$, $15.78\left(\mathrm{CH}_{3}-\mathrm{Cl} 0\right),-5.16\left(\mathrm{CH}_{3}-\mathrm{Si}\right),-5.19\left(\mathrm{CH}_{3}-\mathrm{Si}\right) ; m / z 415$ $920\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 1 \%\right), 373$ (100), 343 (1), 315 (4), 286 (2), 253 (2), 225 (6), 213 (3), 197 (4), 171 (11), 159 (15), 141 (4), 129 (5), 75 (27).
(1RS, $4 S R, 4 \mathrm{aSR}, 9 R S, 9 \mathrm{aRS}, 10 S R, 11 R S)$-9,11-Epoxy${ }_{25}$ 1,4,4a,9a-tetrahydro-4-hydroxymethyl-6-methoxy-8,10-dimethyl-1,4-ethanoindeno[2,1-c]pyran-3(4H)-one (57).
1 M Tetrabutylammonium fluoride in tetrahydrofuran ($331 \mu \mathrm{l}$, $0.331 \mathrm{mmol})$ was added to the ether $\mathbf{5 6}(95 \mathrm{mg}, 0.221 \mathrm{mmol})$ in tetrahydrofuran $(10 \mathrm{ml})$ and stirred at room temperature for ${ }_{930} 2$ hours. The mixture was diluted with ethyl acetate (100 ml), washed with $2 \mathrm{M} \mathrm{HCl}(10 \mathrm{ml})$, brine $(10 \mathrm{ml})$ and dried over magnesium sulfate. After filtration, the solvent was removed and the residue was purified by flash chromatography on silica gel (petroleum ether $40-60^{\circ} \mathrm{C}$: ethyl acetate $=3: 1$) to ${ }_{935}$ afford the alcohol $253(66 \mathrm{mg}, 95 \%)$ as a colourless oil; $v_{\max } / \mathrm{cm}^{-1} 3480(\mathrm{OH}), 2941(\mathrm{CH}), 1751(\mathrm{C}=\mathrm{O}), 1277(\mathrm{CO})$, $1138(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.78(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-7), 6.60(1 \mathrm{H}$, s, H-5), $5.30(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{H}-9), 5.10(1 \mathrm{H}, \mathrm{dd}, J=5.6$ $\mathrm{Hz}, J=5.5 \mathrm{~Hz}, \mathrm{H}-1), 4.13\left(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime} \alpha\right), 3.90-$ $9403.80(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}, \mathrm{H}-11), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 3.49(1 \mathrm{H}$, ddd, $J=8.8 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a}), 3.39(1 \mathrm{H}, \mathrm{d}, J$ $\left.=9.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime} \beta\right), 2.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{C} 8\right), 1.61(1 \mathrm{H}, \mathrm{q}, J=7.5$ $\mathrm{Hz}, \mathrm{H}-10), 0.83\left(3 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{C} 10\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 175.81(\mathrm{C} 3), 161.42(\mathrm{C} 6), 142.48(\mathrm{C} 4 \mathrm{~b}), 136.75(\mathrm{C} 8)$, 945135.75 (C8a), 116.17 (C5), 108.99 (C7), 81.75 (C11), 80.13 (C 1), 79.68 (C9), $60.46(\mathrm{C} 1 '), 55.70\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 50.21$ (C 4$)$, 45.60 (C9a), 45.32 (C 4 a), 37.51 (C 10$), 18.80\left(\mathrm{CH}_{3}-\mathrm{C} 8\right), 16.22$ $\left(\mathrm{CH}_{3}-\mathrm{C} 10\right) ; m / z 316\left(\mathrm{M}^{+}, 100 \%\right), 298$ (4), 285 (2), 269 (6), 241 (9), 230 (5), 213 (10), 200 (40), 189 (56), 173 (62), 160 950 (48), 141 (9), 128 (14), 115 (21), 99 (20), 77 (5), 65 (2).

(1RS, 4SR, 4aSR, 9RS, 9aRS, 10SR, 11RS)-4-
 Dichloroacetoxymethyl-9,11-epoxy-1,4,4a,9a-tetrahydro-6-methoxy-8,10-dimethyl-1,4-ethanoindeno[2,1-c]pyran-
 ${ }_{955} \mathbf{3 (4 H)}$-one (58).

Dichloroacetyl chloride ($25.5 \mu \mathrm{l}, 0.266 \mathrm{mmol}$) was added to the alcohol $57(70 \mathrm{mg}, 0.222 \mathrm{mmol})$ and pyridine ($25 \mu \mathrm{l}$, $0.310 \mathrm{mmol})$ in dichloromethane $(5 \mathrm{ml})$ and stirred for 1 hour at room temperature. The mixture was acidified with 2 M HCl $960(5 \mathrm{ml})$ and extracted with dichloromethane $(3 \times 25 \mathrm{ml})$. The combined organic phase was washed with brine (10 ml) and dried over magnesium sulfate. After filtration, the solvent was removed and the residue was purified by flash chromatography on silica gel (petroleum ether $40-60^{\circ} \mathrm{C}$: ethyl 965 acetate $=3: 1)$ to afford the acetate $58(91 \mathrm{mg}, 96 \%)$ as a colourless oil; $v_{\max } / \mathrm{cm}^{-1} 2961$ (CH), 1764 (C=O), 1279 $\left(\mathrm{ArOCH}_{3}\right) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.67(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-7), 6.52(1 \mathrm{H}$, s, H-5), $6.09\left(1 \mathrm{H}, \mathrm{s}, \mathrm{COCHCl}_{2}\right), 5.32(1 \mathrm{H}, \mathrm{d}, J=5.4 \mathrm{~Hz}, \mathrm{H}-9)$, $5.11(1 \mathrm{H}, \mathrm{dd}, J=5.6 \mathrm{~Hz}, J=5.4 \mathrm{~Hz}, \mathrm{H}-1), 4.87(1 \mathrm{H}, \mathrm{d}, J=$ $97011.4 \mathrm{~Hz}, \mathrm{H}^{\prime} 1^{\prime} \alpha$), $3.93-3.80(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4 \mathrm{a}, \mathrm{H}-11, \mathrm{H}-1$ ' β), 3.73 $\left(3 \mathrm{H}, \mathrm{s}, C \mathrm{H}_{3} \mathrm{O}-\mathrm{C} 6\right), 3.54(1 \mathrm{H}$, ddd, $J=8.8 \mathrm{~Hz}, J=5.7 \mathrm{~Hz}, J=$ $5.6 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a}), 2.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{C} 8\right), 1.76(1 \mathrm{H}, \mathrm{q}, J=7.7 \mathrm{~Hz}$, $\mathrm{H}-10), 0.88\left(3 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{C} 10\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 172.09(\mathrm{C} 3), 163.95\left(\mathrm{COCHCl}_{2}\right), 161.54(\mathrm{C} 6), 141.54$ 975 (C4b), 137.00 (C8), 135.89 (C8a), 116.58 (C5), 108.03 (C7), 81.77 (C 11), $79.89(\mathrm{C} 1), 79.33(\mathrm{C} 9), 64.63\left(\mathrm{COCHCl}_{2}\right), 64.49$ $\left(\mathrm{C}^{\prime}\right), 55.70\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 48.15(\mathrm{C} 4), 45.63$ (C9a), 45.33 (C4a), $38.02(\mathrm{C} 10), 18.86\left(\mathrm{CH}_{3}-\mathrm{C} 8\right), 16.05\left(\mathrm{CH}_{3}-\mathrm{Cl} 0\right) ; \mathrm{m} / \mathrm{z}$ $430\left(\mathrm{M}+,{ }^{37} \mathrm{Cl}_{2}, 16 \%\right), 428\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}{ }^{35} \mathrm{Cl}, 71 \%\right), 426\left(\mathrm{M}^{+}\right.$, ${ }_{980}{ }^{35} \mathrm{Cl}_{2}, 100 \%$), 392 (7), 299 (14), 269 (6), 241 (11), 213 (9), 200 (25), 189 (10), 173 (14), 159 (23), 115 (7), 81 (5).
(1RS, 3SR, 4SR, 4aSR, 9RS, 9aRS, 10SR, 11RS)-4-Dichloroacetoxymethyl-9,11-ероху-1,3,4,4a,9,9a-
985 hexahydro-6-methoxy-8,10-dimethyl-1,4-ethanoindeno[2,1$c \mid p y r a n-3-0 \mathrm{l}$ and (1RS, 3SR, 4SR, 4aSR, 9RS, 9aRS, 10SR, 11RS)-9,11-Epoxy-1,3,4,4a,9,9a-hexahydro-4-hydroxymethyl-6-methoxy-8,10-dimethyl-1,4-ethanoindeno[2,1-c]pyran-3-ol (59).
990 1M Diisobutylaluminum hydride in heptane ($351 \mu \mathrm{l}, 0.351$ $\mathrm{mmol})$ was added dropwise to the lactone $\mathbf{5 8}(100 \mathrm{mg}, 0.234$ mmol) in toluene (5 ml) at $-40^{\circ} \mathrm{C}$ and stirred for 20 minutes. Methanol ($200 \mu \mathrm{l}$) was added to quench the reaction, followed by $10 \% \mathrm{HCl}(1 \mathrm{ml})$ also at $-40^{\circ} \mathrm{C}$. The mixture was warmed to 995 room temperature and diluted with ethyl acetate (10 ml). The product was extracted with ethyl acetate ($3 \times 25 \mathrm{ml}$) and the combined organic phase was washed with brine (5 ml) and dried over magnesium sulfate. After filtration, the solvent was removed and the residue was purified by flash 1000 chromatography on silica gel (petroleum ether $40-60^{\circ} \mathrm{C}$: ethyl acetate $=2: 1)$ to afford the hemi-acetal $59(57 \mathrm{mg}, 57 \%)$ as a colourless oil; $v_{\max } / \mathrm{cm}^{-1} 3391(\mathrm{OH}), 2959(\mathrm{CH}), 2853$ (w), 2840 (w), 1750 (C=O), 1141 (C-O); δ_{H} ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $6.94(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-7), 6.64(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 6.01\left(1 \mathrm{H}, \mathrm{s}, \mathrm{COCHCl}_{2}\right)$, $5.29(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 5.27(1 \mathrm{H}, \mathrm{d}, J=5.4 \mathrm{~Hz}, \mathrm{H}-9), 4.76(1 \mathrm{H}, \mathrm{d}, J$ $\left.=11.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime} \alpha\right), 4.56\left(1 \mathrm{H}, \mathrm{dd}, J=5.4 \mathrm{~Hz}, J_{1,11}=5.6 \mathrm{~Hz}\right.$, $\mathrm{H}-1), 4.08(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}, \mathrm{H}-1 ' \beta), 3.96(1 \mathrm{H}, \mathrm{d}, J=8.9$ $\mathrm{Hz}, \mathrm{H}-4 \mathrm{a}), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} H_{3} \mathrm{O}-\mathrm{C} 6\right), 3.67(1 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz}, \mathrm{H}-$ 11), $3.22(1 \mathrm{H}, \mathrm{ddd}, J=8.8 \mathrm{~Hz}, J=5.3 \mathrm{~Hz}, J=5.4 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a})$, $10102.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{C} 8\right), 1.52(1 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{H}-10), 0.94$ $\left(3 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{C} H_{3}-\mathrm{C} 10\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 164.36$ $\left(\mathrm{COCHCl}_{2}\right), 160.97(\mathrm{C} 6), 144.66$ (C4b), 136.71 (C8), 136.33 (C8a), 115.03 (C5), 108.98 (C7), 91.14 (C3), 82.71 (C11), 80.56 (C9), $74.05(\mathrm{C} 1), 68.37(\mathrm{C} 1 '), 64.72\left(\mathrm{COCHCl}_{2}\right), 55.63$ $\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 44.10$ (C9a), 41.37 (C4a), 40.23 (C4), 38.17 (C10), $18.96\left(\mathrm{CH}_{3}-\mathrm{C} 8\right), 14.74\left(\mathrm{CH}_{3}-\mathrm{C} 10\right) ; m / z 432\left(\mathrm{M}^{+}{ }^{37} \mathrm{Cl}_{2}\right.$, $9 \%), 430\left(\mathrm{M}^{+},{ }^{37} \mathrm{Cl}{ }^{35} \mathrm{Cl}, 44 \%\right), 428\left(\mathrm{M}^{+},{ }^{35} \mathrm{Cl}_{2}, 60 \%\right), 392$ (21), 347 (16), 301 (19), 271 (9), 254 (18), 239 (23), 225 (48), 213 (15), 200 (34), 189 (91), 173 (22), 160 (100), 128 (13), 1020115 (17), 95 (7), 83 (15).

(1RS, 3RS, 4SR, 4aSR, 9RS, 9aRS, 10SR, 11RS)-3-(tert.-Butyldimethylsilyloxymethyl)-4-dichloroacetoxymethyl-9,11-ероху-1,3,4,4a,9,9a-hexahydro-6-methoxy-8,10-dimethyl-1,4-ethanoindeno[2,1-c]pyran (60).

tert.-Butyldimethylsilyl trifluoromethanesulfonate ($30 \mu \mathrm{l}, 0.13$ $\mathrm{mmol})$ was added dropwise to the alcohol $59(11 \mathrm{mg}, 0.26$ mmol) and N, N-diisopropylethylamine ($46 \mu 1,0.26 \mathrm{mmol}$) in dichloromethane (1 ml). Stirring was continued at room 1030 temperature for 1 hour. Methanol (1 ml) was added and the solvent was removed under reduced pressure. The residue was purified by flash chromatography directly on silica gel (petroleum ether $40-60^{\circ} \mathrm{C}$: ethyl acetate $=20: 1$) to yield the ether $\mathbf{6 0}(10 \mathrm{mg}, 72 \%)$ as a colourless oil; $v_{\text {max }} / \mathrm{cm}^{-1} 2954$ ${ }_{1035}(\mathrm{CH}), 1750(\mathrm{C}=\mathrm{O}), 1141(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.62$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-7), 6.55(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 5.91\left(1 \mathrm{H}, \mathrm{s}, \mathrm{COCHCl}_{2}\right), 5.28$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 5.26(1 \mathrm{H}, \mathrm{d}, J=5.4 \mathrm{~Hz}, \mathrm{H}-9), 4.51(1 \mathrm{H}, \mathrm{dd}, J=$ $5.6 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}, \mathrm{H}-1), 4.43\left(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}, \mathrm{H}-\mathrm{l}^{\prime} \alpha\right)$, $4.34(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}, \mathrm{H}-1 ' \beta), 3.85(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{H}-$ 1040 4a), 3.77 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C} H_{3} \mathrm{O}-\mathrm{C} 6$), $3.66(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{H}-11)$, $3.14(1 \mathrm{H}$, ddd, $J=8.8 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a}), 2.36$
$\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{C} 8\right), 1.58(1 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{H}-10), 0.98(3 \mathrm{H}, \mathrm{d}$, $\left.J=7.7 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{C} 10\right), 0.93\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}\right), 0.18(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}-\mathrm{Si}\right), 0.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{Si}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 164.20$ $1045\left(\mathrm{COCHCl}_{2}\right), 160.88(\mathrm{C} 6), 144.96(\mathrm{C} 4 \mathrm{~b}), 136.80(\mathrm{C} 8), 136.22$ (C8a), 115.23 (C5), 108.57 (C7), 90.73 (C3), 82.60 (C11), 81.01 (C9), $73.79(\mathrm{C} 1), 70.02(\mathrm{C1}), 64.43\left(\mathrm{COCHCl}_{2}\right), 55.67$ $\left(\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 44.22$ (C9a), 42.31 (C4), 41.95 (C4a), 38.53 $(\mathrm{C10}), 26.05\left(\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}\right), 18.93\left(\mathrm{CH}_{3}-\mathrm{C} 8\right), 18.20\left(\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}\right)$, $105015.27\left(\mathrm{CH}_{3}-\mathrm{Cl} 0\right)$, $-3.83\left(\mathrm{CH}_{3}-\mathrm{Si}\right)$, $-4.60\left(\mathrm{CH}_{3}-\mathrm{Si}\right) ; \mathrm{m} / \mathrm{z} 432$ $\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9},{ }^{37} \mathrm{Cl}_{2}, 9 \%\right), 430\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9},{ }^{37} \mathrm{Cl}{ }^{35} \mathrm{Cl}, 44 \%\right), 428$ $\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9},{ }^{35} \mathrm{Cl}_{2}, 60 \%\right), 392$ (21), 347 (16), 301 (19), 271 (9), 254 (18), 239 (23), 225 (48), 213 (15), 200 (34), 189 (91), 173 (22), 160 (100), 128 (13), 115 (17), 95 (7), 83 (15).

1055
(1RS, 3RS, 4SR, 4aSR, 9RS, 9aRS, 10SR, 11RS)-3-(tert.-Butyldimethylsilyloxymethyl)-9,11-epoxy-1,3,4,4a,9,9a-
hexahydro-4-hydroxymethyl-6-methoxy-8,10-dimethyl-1,4-ethanoindeno[2,1-c]pyran (61).
1060 The dichloroacetate $\mathbf{6 0}(10 \mathrm{mg}, 0.018 \mathrm{mmol})$, triethylamine ($20 \mu \mathrm{l}, 0.144 \mathrm{mmol}$) and water $(5 \mu \mathrm{l})$ were stirred in methanol $(1 \mathrm{ml})$ for 16 hours. The mixture was diluted with ethyl acetate (20 ml), washed with brine $(2 \times 5 \mathrm{ml})$ and dried over magnesium sulfate. After filtration, the solvent was removed 1065 and the residue was purified by flash chromatography on silica gel (petroleum ether $40-60^{\circ} \mathrm{C}$: ethyl acetate $=10: 1$) to afford the alcohol $\mathbf{6 1}(7 \mathrm{mg}, 90 \%)$ as a colourless oil; $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-}$ ${ }^{1} 3400(\mathrm{OH}), 2955(\mathrm{CH}), 2928(\mathrm{CH}), 1139(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $6.91(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 6.62(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-7), 5.29$ ${ }_{1070}(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 5.28(1 \mathrm{H}, \mathrm{d}, J=5.4 \mathrm{~Hz}, \mathrm{H}-9), 4.51(1 \mathrm{H}, \mathrm{dd}, J=$ $5.4 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}, \mathrm{H}-1), 3.97(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, \mathrm{H}-4 \mathrm{a}), 3.79$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 3.60(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{H}-11), 3.44(1 \mathrm{H}$, d, $\left.J=11.1 \mathrm{~Hz}, \mathrm{H}-1^{\prime} \alpha\right), 3.14(1 \mathrm{H}, \mathrm{ddd}, J=9.1 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}$, $J=5.4 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{a}), 2.95(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}, \mathrm{H}-1 ' \beta), 2.36(3 \mathrm{H}$,
$\left.1075 \mathrm{~s}, \mathrm{CH}_{3}-\mathrm{C} 8\right), 1.35(1 \mathrm{H}, \mathrm{q}, J=7.6 \mathrm{~Hz}, \mathrm{H}-10), 0.95(9 \mathrm{H}, \mathrm{s}$, $\left.\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}\right), 0.82\left(3 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{3}-\mathrm{C} 10\right), 0.23(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}-\mathrm{Si}\right), 0.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-\mathrm{Si}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 160.87$ (C6), 145.16 (C4b), 136.29 (C8), 135.66 (C8a), 115.02 (C5), 108.73 (C7), 93.52 (C3), 82.52 (C11), 80.57 (C9), 74.14 (C1), 108064.38 (C1'), 55.41 ($\left.\mathrm{CH}_{3} \mathrm{O}-\mathrm{C} 6\right), 43.63$ (C9a), 41.52 (C4a), $38.30(\mathrm{C} 10), 37.26(\mathrm{C} 4), 25.84\left(\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}\right), 18.64\left(\mathrm{CH}_{3}-\mathrm{C} 8\right)$, $17.84\left(\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{C}\right), 14.06\left(\mathrm{CH}_{3}-\mathrm{Cl} 0\right)$, $-3.65(2 \mathrm{x} \mathrm{CH} 3-\mathrm{Si}) ; \mathrm{m} / \mathrm{z}$ 432 ($\mathrm{M}^{+}, 1 \%$), 375 (40), 329 (6), 283 (16), 275 (12), 265 (14), 255 (23), 237 (12), 225 (26), 213 (21), 197 (16), 173 (20), 169 1085 (22), 159 (100), 149 (24), 138 (26), 110 (27), 97 (33), 83 (43), 77 (29), 57 (42).

