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ABSTRACT 

Copper is the main interconnect material in microelectronic devices, and a 2 nm-

thick continuous Cu film seed layer needs to be deposited to produce microelectronic 

devices with the smallest features and more functionality. Atomic layer deposition 

(ALD) is the most suitable method to deposit such thin films. However, the reaction 

mechanism and the surface chemistry of copper ALD remain unclear, which is 

deterring the development of better precursors and design of new ALD processes. In 

this thesis, we study the surface chemistries during ALD of copper by means of 

density functional theory (DFT).  

To understand the effect of temperature and pressure on the composition of copper 

with substrates, we used ab initio atomistic thermodynamics to obtain phase diagram 

of the Cu(111)/SiO2(0001) interface. We found that the interfacial oxide Cu2O phases 

prefer high oxygen pressure and low temperature while the silicide phases are stable at 

low oxygen pressure and high temperature for Cu/SiO2 interface, which is in good 

agreement with experimental observations. 

Understanding the precursor adsorption on surfaces is important for understanding 

the surface chemistry and reaction mechanism of the Cu ALD process. Focusing on 

two common Cu ALD precursors, Cu(dmap)2 and Cu(acac)2, we studied the precursor 

adsorption on Cu surfaces by means of van der Waals (vdW) inclusive DFT methods. 

We found that the adsorption energies and adsorption geometries are dependent on the 

adsorption sites and on the method used to include vdW in the DFT calculation. Both 

precursor molecules are partially decomposed and the Cu cations are partially reduced 

in their chemisorbed structure. It is found that clean cleavage of the ligand−metal bond 

is one of the requirements for selecting precursors for ALD of metals. Bonding 
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between surface and an atom in the ligand which is not coordinated with the Cu may 

result in impurities in the thin film.  

To have insight into the reaction mechanism of a full ALD cycle of Cu ALD, we 

proposed reaction pathways based on activation energies and reaction energies for a 

range of surface reactions between Cu(dmap)2 and Et2Zn. The butane formation and 

desorption steps are found to be extremely exothermic, explaining the ALD reaction 

scheme of original experimental work. Endothermic ligand diffusion and re-ordering 

steps may result in residual dmap ligands blocking surface sites at the end of the Et2Zn 

pulse, and in residual Zn being reduced and incorporated as an impurity. This may 

lead to very slow growth rate, as was the case in the experimental work.  

By investigating the reduction of CuO to metallic Cu, we elucidated the role of the 

reducing agent in indirect ALD of Cu. We found that CuO bulk is protected from 

reduction during vacuum annealing by the CuO surface and that H2 is required in order 

to reduce that surface, which shows that the strength of reducing agent is important to 

obtain fully reduced metal thin films during indirect ALD processes. 

Overall, in this thesis, we studied the surface chemistries and reaction mechanisms 

of Cu ALD processes and the nucleation of Cu to form a thin film.  
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1 Introduction and Overview 

1.1 Atomic layer deposition (ALD) 

Atomic layer deposition (ALD, previously called Atomic Layer Epitaxy) is a 

modified version of chemical vapour deposition (CVD) technique to grow ultrathin 

continuous and uniform thin films through alternate self-limiting surface reactions.[1] 

ALD has attracted wide interest in recent years as a powerful thin film deposition 

method for various applications in many fields, most notably in microelectronics. No 

other thin film technique can approach the conformality achieved by ALD on high 

aspect structures.[2] Unlike CVD, ALD relies on sequential and saturating surface 

reactions of the alternately applied precursors. The precursor pulses are separated by 

inert gas purging or evacuation of the reaction chamber to avoid gas-phase reactions 

between the precursors.[1]  

As ALD is most common only used to deposit metal oxides, we illustrate the 

process using a simple metal oxide deposition cycle. The basic principle of ALD is 

schematically illustrated in Figure 1.1, where one ALD cycle of a metal oxide 

(M=metal, O=oxygen) deposition process is presented. In the first step, the substrate 

surface is exposed to a “precursor” of gaseous MLn (L represents a ligand) which 

chemisorbed onto the OH covered surface, leaves the surface saturated with a 

monolayer of the precursor fragments.  The proton transfer from the surface to the 

chemisorbed MLn yields intermediate OML at the surface and by-product HL. After 

purging the HL by-product with inert gas, a “co-reagent” (in this example, H2O) is 

introduced for further transformation of OML into the –O–M– bonds. The H2O 
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molecules react with the OML at the surface and produce a second by product, HL, 

leaving the MO layer covered with OH groups. After inert gas purging the next ALD 

cycle continues. Because there are only a finite number of surface sites, the surface 

reactions self-limit at a finite coverage of surface species.  If each of the two surface 

reactions is self-limiting, then the two reactions may proceed in a sequential fashion to 

deposit a thin film with atomic level control.[2]  

 

Figure 1.1. Schematic illustration of a metal oxide (MO) ALD cycle where 

precursors (MLn and H2O) are alternately pulsed and separated by inert gas 

purging.  

It is the self-limiting nature of ALD reactions that give rise to a uniform and 

conformal growth behaviour and control over thickness and composition of the 

film.[3] Therefore, the alternate exposure of the precursors alone does not qualify the 

process as ALD. A successful ALD process relies on suitable chemical precursors 

being used under reaction conditions that are appropriate for them. The requirements 

for ALD precursors include sufficient volatility, thermal stability, and self-limited 

reactivity with substrates and with the films being deposited. The precursor vapour 

should not etch or corrode the substrate or deposited film.[4]  
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Thanks to its superior capabilities, ALD has become an important tool in nano-, 

energy, bio- and environmental technologies and has bright future applications in other 

newly emerging fields.[5] The various materials deposited with ALD include oxides, 

nitrides, sulfides and metals.[6] However, many challenges have also emerged as ALD 

becomes increasingly popular. One such challenge is ALD of metals, and more 

specifically ALD of copper.   

1.2 ALD of copper 

The interest in depositing uniform and island-free ultrathin films of copper 

originated from its application as the interconnect material in microelectronic devices. 

Copper has superior properties such as lower resistivity and higher current density for 

electromigration than aluminium and these are critical for improved device 

performance and reliability. Figure 1.2 shows a typical cross-section of Hierarchical 

Scaling for a microprocessor unit (MPU) from the International Technology Roadmap 

for Semiconductors (ITRS).[7] We can see from the cross-section that the MPU 

utilizes a high number of metal layers (orange colours) with a hierarchical wiring 

approach of steadily increasing pitch and thickness at each conductor level. These 

complex copper interconnects are currently fabricated using the electrodeposition 

technique and CVD.  Important processing steps prior to electroplating involve the 

deposition of a thin copper layer in order to provide a conductive substrate for 

electroplating and to prevent copper diffusion into dielectric substrates. Ideally, the 

thickness of this seed layer should be less than 2 nm and should be uniform and 

continuous in order to meet the future demands of current trends in integrated circuit 

technology.  
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Deposition techniques including physical vapour deposition (PVD),[8] 

electrodeposition,[9] and CVD[10] have been applied with the aim of obtaining such a 

thin film of Cu. However, voids are formed when these techniques are used to fill the 

high aspect ratio features structures, which cause an open circuit and degrades the 

device quality. It is extremely difficult to deposit continuous thin films of Cu at this 

thickness and instead islands of Cu tend to be more favourable.[11] Of these 

deposition approaches, ALD shows the most promise in surmounting the island 

growth problem as well as meeting future demands of device scaling. [12] 

 

Figure 1.2. Typical Cross-sections of Hierarchical Scaling for microprocessor 

unit (MPU). (image from ITRS 2009 edition).[7]  

Table 1.1 lists research articles dedicated to copper ALD. One of the first studies to 

deposit copper thin film involve using copper (I) chloride [CuCl] with H2 as the 

precursor at a temperature of 350–500 °C.[13,14] Later, a three step ALD process was 

reported based on the reaction of CuCl and H2O and further reduction of Cu2O to 

metallic copper by H2.[15] The reactions of various copper (I) and copper (II) 
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organometallic compounds, as the structures are shown in Figure 1.3, with molecular 

or plasma H2 have been reported as a way to achieve copper metal ALD. These 

include ALD of copper based on the reaction of Cu(acac)2 (copper acetylacetonate) 

with molecular H2 at 250 °C,  [Cu(iPr-amd)]2 (copper propylamidinate) with H2 at 280 

°C  and  Cu(tmhd)2 (tmhd = 2,2,6,6-tetramethyl-3,5- heptanedionate) and H2 plasma at 

180 °C.[16–20] Unfortunately, the typical temperature requirement for these reactions 

(200–400 °C) causes dewetting which leads to discontinuous copper films. Significant 

progress was made by Sung et al. with low temperature ALD of copper metal using 

the reaction of copper dimethylamino-2-propoxide [Cu(dmap)2] and diethylzinc 

[ZnEt2] at 100–120 °C.[12] Although subsequent work reported that the parasitic 

chemical vapour deposition reaction of ZnEt2 may lead to Zn incorporation into the 

copper thin film,[11] the work by Sung et al. has important implications on the co-

reagent strategy which was traditionally limited to the use of molecular or plasma H2. 

Vidjayacoumar et al. investigated ALD reactions of the eight different copper (II) 

complexes separately with AlMe3, Bet3 and ZnEt2 in order to identify the most 

promising combination of the copper precursor and co-reagent.[11,21] Knisley et al. 

reported a low temperature ALD which involves a three-step process using 

Cu(dmap)2, formic acid (HCO2H) and hydrazine (N2H4) at 120 °C and indicated that 

their method can avoid undesired elements in the precursors, and affords high purity, 

low resistivity copper metal.[22] Kalutarage et al. compared two-step and three-step 

processes using the ALD reaction of the Cu(dmap)2 with BH3(NHMe2) and separately 

with BH3(NHMe2) and HCO2H.[23] They showed that the two-step process requires a 

Cu seed layer, and affords a growth rate of about 0.13 Å/cycle within the 130−160 °C 

ALD window. The three-step process does not need a Cu seed layer for growth, and 

affords a growth rate of 0.20 Å/cycle within the 135−165 °C ALD window. Our 
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experimental colleagues in Tyndall reported plasma enhanced ALD using two 

different precursors AbaCus and CTA-1 with H2 plasma at temperature of 30–60 

°C[24] and using  NHC-Cu(hmds) with H2 plasma on different substrates at 190–250 

°C.[25] They found that the film structure is extremely dependent on the substrate 

material and that Cu agglomerates into islands on many materials including TaN, Si 

and CDO (carbondoped SiO2) even at temperatures as low as 30 °C, while on Ru and 

Pd very thin conductive films could be grown.  

Table 1.1. Literature review of copper atomic layer deposition. 

Year, 

Ref. Precursor     

Reducing 

agent 

Temp. 

(°C) 

Substr

ate 

Growth 

rate 

1992, [13] CuCl H2 500 Si, SiO2  

1997, [14] CuCl H2 360–400 Ta 8 Å/min 

2000, [16] Cu(acac)2 H2 250  Ti  

2003, [17] [Cu(iPr-amd)]2 H2 280 Si 0.5 Å/cycle 

2004, [15] CuCl H2O, H2 375–475 Al2O3 1.6 Å/cycle 

2005, [18] Cu(tmhd)2 H2 plasma 180 SiO2, Au 0.12 Å/cycle 

2005, [19] Cu(acac)2 H2 plasma 140 Si 0.18 Å/cycle 

2006, [20] [Cu(
s
Bu-amd)]2 NH3, H2 160 Ru/TaN  

2008, [26] Cu(acac)2 H2 plasma 165 Ru  

2009, [12] Cu(dmap)2 Et2Zn 100–120  Si 0.2 Å/cycle 

2010, [11] CuL2 
a
 

AlMe3, BEt3, 

ZnEt2 

130–150 

 
SiO2  

2010, [27] [Cu(
s
Bu-amd)]2 H2 220 SiO2  

2011, [28] Cu(dmamb)2 H2 plasma 150 Ta 0.65 Å/cycle 

2011, [22] Cu(dmap)2 HCO2H, N2H4 120 Si 0.5 Å/cycle 

2013, [24] AbaCus, CTA-1 H2 plasma 
30–60 

 

Ru, TaN 

CDO 

0.2 Å/cycle, 

0.3 Å/cycle 

2013, [29] Cu(nhc)(hmds) H2 plasma 225 Si 0.2 Å/cycle 

2014, [23] Cu(dmap)2 

BH3(NHMe2), 

BH3(NHMe2) 

& HCO2H 

130–160 

135–165 
Pd, Pt 

0.13 Å/cycle 

0.2 Å/cycle 

2014, [25] NHC-Cu(hmds) H2 plasma 190–250 Ru, Pd 0.4 Å/cycle 
a
in ref [11], eight different copper (II) complexes are used with AlMe3, BEt3. “L” in 

precursor CuL2 separately represents acetylacetonate (acac), hexafluoroacetylacetonate (hfac), 

N-isopropyl-β-ketiminate (acnac), N,N-dimethyl-β-diketiminate (nacnac), 2-pyrrolylaldehyde 

(PyrAld), N-isopropyl-2-pyrrolyl-aldiminate (PyrImiPr), N-ethyl-2-pyrrolylaldiminate 

(PyrImEt), and N-isopropyl-2-salicylaldi-minate (IPSA). 
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Figure 1.3. Examples of copper ALD precursor molecules. Colour scheme: 

red=O, salmon pink=Cu, blue=N, grey=C and white=H.  

ALD has also been successfully applied to deposit transition metals (e.g. nickel, 

ruthenium, iridium, platinum, and palladium) and their alloys (e.g. RuPt,[30] 

PdPt[31,32]) because thin films and nanostructures of these transition metals and 

alloys have a wide range of current and future applications in many technologies such 

as plasmonic devices[33] spintronics[34] and catalysis[35]. We believe that careful 

investigation of Cu ALD as the model system for metal ALD could explain the 

reaction mechanisms and surface chemistry of other metals.    

1.3 Challenges of Cu ALD 

Despite the substantial progress towards achieving uniform and continuous ultrathin 

film of copper, the following problems are hindering its widespread applications.  

First, island formation during ALD of copper. The growth mode of copper on a 

substrate is dependent on the adhesion energies between copper island and the 

substrate, the surface energies of copper and substrate, and stress between islands or 

film and the substrate caused by lattice mismatch and grain boundaries (GB).  In 

general, copper thin films can grow during ALD through three different growth modes 
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(Figure 1.4): layer by layer (Frank–van der Merwe growth), 3D island formation 

(Volmer–Weber growth), and 2D layer deposition followed by the growth of 3D 

islands (Stranski–Krastanov growth).[36] Many scanning electron microscope (SEM) 

images of ALD deposited copper show island formation on different 

substrates.[24,25,29] This indicates that deposition of copper on a substrate follows 

3D island growth mechanisms (Volmer–Weber growth). These 3D islands finally 

transform into a thin film through Ostwald ripening and coalescence as the growth 

cycles increase. The critical thickness for transformation from 3D islands to thin film 

is strongly dependent on the thermodynamics of copper/substrate and on the 

composition of the substrate, e.g. defects, dopants, and chemical groups at the surface.      

 

Figure 1.4. Three different thin film growth modes (a) Volmer–Weber mode 

(3D island growth), (b) Frank–van der Merwe (layer by layer growth), (c) 

Stranski – Krastanov (mixed growth).   

Second, lack of understanding of the reaction mechanisms and surface chemistry 

during ALD of copper. Many theoretical and computational works were dedicated to 

the understanding of the reaction mechanisms of metal oxide ALD.[37–40] However, 
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the reaction mechanisms and surface chemistries of copper ALD process remain 

largely unclear. Experimental works on copper ALD have mainly focused on the 

growth rate and characterization of copper thin films and not on the chemical 

mechanisms.          

Third, scarcity of suitable precursors. As we discussed earlier, a successful ALD 

process requires suitable chemical precursors. The organometallic copper complexes 

which satisfy all the requirements of a good ALD precursor are rare. Thus, the 

development of new precursors and co-reagents is necessary for further progress in 

copper ALD.    

Last but not least, identifying effective co-reagents. Co-reagents that reduce the 

chemisorbed copper precursor to metallic copper are far less available compared to the 

copper precursor itself. Chemisorption of the first precursor on the substrate yields a 

monolayer of precursor molecules bound to or dissociated on the surface. As we 

discuss later, van der Waals (vdW) interactions play important role in correctly 

describing the energetics and geometries of precursor adsorption on the surface. 

However, this monolayer is not the target material that we want to achieve and we 

need to reduce the metal cations to the desired thin film. To this end, it is necessary to 

identify effective reducing agents to react with the chemisorbed precursors at the 

surface without producing any impurities and with higher growth rate.  The H2 

molecule or plasma is used frequently (Table 1.1). If more than one co-reagent is used 

during ALD, the process becomes a three-step process, namely, chemisorption of the 

first precursor, conversion to reducible compounds and reduction of the compound to 

the target metal. Thus it is called indirect ALD if multiple reducing agents are used. 
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Understanding the role of co-reagents and how they reduce the chemisorbed copper 

precursor is crucial for designing improved ALD process for copper and other metals.    

  

1.4 Thesis overview and scope 

The theoretical approach behind our entire computational work is Density 

Functional Theory (DFT). In Chapter 2, I will briefly review its fundamentals and the 

most relevant parts for the modelling of surface chemistry during ALD of copper.   

Despite the success of Cu ALD in recent years, the islanding and nucleation of Cu 

on the substrate remains a main challenge. In Chapter Error! Reference source not 

ound., we build a model to describe the nucleation process based on our ab-initio 

calculations. We apply this model to explain copper islanding on the Ru(0001) and 

SiO2(111) surface. In particular, relative stability of islands with different contact 

angle and critical thickness of transforming from islands to thin film will be studied. 

The first step of an ALD process is the adsorption of precursor molecules. 

Understanding how precursor molecules adsorb on the substrate has a crucial role in 

unravelling the full reaction mechanism of an ALD process. In Chapter 4, we study the 

adsorption of a popular Cu precursor, copper dimethylamino-2-propoxide 

[Cu(dmap)2], on the Cu surfaces and compare the adsorption behaviour of Cu(acac)2. 

We show that the precursor adsorption geometries are crucial to understand the 

reaction mechanism.  

 Based on the results from Chapter 4, we investigate the surface chemistry for Cu ALD 

reaction from [Cu(dmap)2] and via the co-reagent Et2Zn in Chapter 5. We calculate 
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activation barriers and reaction energies for a series of surface reactions to propose 

reaction mechanism for depositing Cu through the ALD process.  

Since the two-step ALD reaction has encountered some challenges, such as the lack 

of suitable precursor molecule and efficient reducing agent, three-step ALD processes 

are considered as a promising method to deposit Cu thin film at low temperature. The 

third step is reduction of a copper compound (e.g. CuO) to metallic copper. To better 

understand this reducing step, in Chaptor 6 we investigate the reduction of CuO 

surface using oxygen vacancy formation and H2 adsorption, which can be 

experimentally achieved through vacuum annealing and reducing with H2, 

respectively. 

In the last chapter, I summarize the important results of the thesis and describe the 

potential future work.  
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2 Theoretical Background 

Density functional theory (DFT) is an extremely powerful tool for studying various 

problems in physics, chemistry and material science. It is a computational scheme to 

efficiently solve the Schrödinger equation for complex many-body systems from first 

principles. This chapter outlines the basic concepts of DFT as the entire work in this 

thesis is based on calculations using DFT. First I describe the many-body problem as 

the target to be solved with DFT and introduce the Hohenberg-Kohn theorem and the 

Kohn-Sham equation. Second, I will briefly mention GGA+U and hybrid DFT 

methods as I used them in some cases. Third, I will summarize the methods for 

including van der Waals (vdW) interactions in DFT calculations. Last, I introduce ab 

initio atomistic thermodynamics, a method to combine DFT with thermodynamics.    

2.1 Density functional theory    

2.1.1 The Many-body problem 

The basis for all quantum mechanical calculations of the electronic structure of a 

material is the time-independent Schrödinger equation, 

 𝐻𝜓(𝑟, 𝑅) = 𝐸𝜓(𝑟, 𝑅) (2.1) 

where H is the Hamiltonian operator, E is the energy eigenvalue and 𝜓 is the wave 

function. r and R list all the coordinates of the electrons and nuclei, respectively. 

Using atomic units (i.e. 𝑚e = ℏ = 𝑒 = 1), a nonrelativistic system of electrons and 

nuclei can be described with a Hamiltonian[41], 
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𝐻 = −
1

2
∑ ∇𝑖

2

𝑖

− ∑
ℏ2

2𝑀𝐼
∇𝐼

2

𝐼

+
1

2
∑

𝑒2

|𝒓𝒊 − 𝒓𝒋|
𝑖≠𝑗

+
1

2
∑

𝑍𝐼𝑍𝐽𝑒2

|𝑹𝑰 − 𝑹𝑱|
𝐼≠𝐽

− ∑
𝑍𝐼𝑒2

|𝒓𝒊 − 𝑹𝑰|
𝑖,𝐼

 

(2.2) 

where electrons are denoted by lower case subscripts and where nuclei, with charge ZI 

and mass MI, are denoted by upper case subscripts. The first and second terms denote 

the kinetic energies of electrons (𝑇e) and nuclei (𝑇n), respectively. The last three terms 

depict the electronelectron (𝑉ee), nucleinuclei (𝑉nn) and electronnuclei (𝑉en) 

interactions, respectively. For convenience, Equation (2.2) can be rewritten, 

 𝐻 = 𝑇e + 𝑇n + 𝑉ee + 𝑉nn + 𝑉en (2.3) 

Solving the Schrödinger equation analytically for more than a few particles is not 

feasible, but it can be solved with approximate methods. The first approximation to 

reduce the complexity is to assume independence of the nuclear and electron wave 

functions and then treat the slow-moving nuclei as classical particles. This is the Born-

Oppenheimer approximation.[42] In the following section we introduce the theoretical 

basis of DFT.   

2.1.2 The Hohenberg-Kohn theorems 

The theorems initially formulated by Hohenberg and Kohn[43] constitute the 

theoretical basis of DFT. The first Hohenberg-Kohn theorem legitimizes the use of 

electron density n(r) as the basic variable. It states:  

Theorem 1 (Uniqueness): For any system of interacting particles in an external 

potential 𝑉ext(𝑟), the potential 𝑉ext(𝒓) is determined uniquely, except for a constant, 

by the ground state particle density 𝑛0(𝒓). 
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An alternative explanation of this theorem: all the properties of the system are 

completely determined given only the ground state density 𝑛0(𝒓). For example, the 

kinetic energy of the electrons 𝑇e, etc, is uniquely determined if n(r) is specified.  

Theorem II (Universality): A universal functional for the energy 𝐸[𝑛] in terms of the 

density 𝑛(𝑟) can be defined, valid for any external potential 𝑉ext(𝒓). For any particular 

𝑉ext(𝑟), the exact ground state energy of the system is the global minimum value of 

this functional, and the density 𝑛(𝒓) that minimizes the functional is the exact ground 

state density 𝑛0(𝒓). 

According to theorem II, all the properties including the total energy can be viewed as 

functionals of the density, 

 

𝐸𝐻𝐾[𝑛] = 𝑇[𝑛] + 𝐸𝑖𝑛𝑡[𝑛] + ∫ 𝑑3𝑟𝑉𝑒𝑥𝑡(𝑟)𝑛(𝑟) + 𝐸𝐼𝐼 

               = 𝐹𝐻𝐾[𝑛(𝒓)] + ∫ 𝑑3𝑟𝑉𝑒𝑥𝑡(𝑟)𝑛(𝑟) + 𝐸𝐼𝐼 

 

(2.4) 

where 𝐸𝐼𝐼 is the interaction energy of the nuclei. The functional 𝐹𝐻𝐾[𝑛] includes all 

internal energies and kinetic energies of the interacting electron system,  

 𝐹𝐻𝐾[𝑛(𝒓)] =  𝑇[𝑛] + 𝐸int[𝑛] (2.5) 

If the functional 𝐹𝐻𝐾[𝑛(𝒓)] was known, then it would be possible to find the exact 

ground state density and energy by minimizing the total energy of the system in 

equation (2.4).  

2.1.3 The Kohn-Sham equation 

The basic idea of the Kohn–Sham approach is to replace the many-particle problem 

with a system of non-interacting particles which has the same ground state density n(r) 
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as the original many-particle system.[44] According to the Kohn–Sham approach, the 

Hohenberg-Kohn expression for the ground state energy functional (2.4) can be 

rewritten as  

𝐸𝐾𝑆 = 𝑇𝑠[𝑛] + ∫ 𝑑𝑟𝑉𝑒𝑥𝑡(𝑟)𝑛(𝑟) +
1

2
∫ 𝑑3𝑟𝑑3𝑟′

𝑛(𝑟)𝑛(𝑟′)

|𝒓 − 𝒓′|
+ 𝐸𝐼𝐼 + 𝐸𝑥𝑐[𝑛] (2.6) 

where 𝑇𝑠[𝑛] is non-interacting particle kinetic energy. The third term is the Hartree 

energy and 𝐸𝑥𝑐[𝑛] is the exchange and correlation energy. 

Performing variation of the energy in (2.6),  

 𝛿𝐸[𝑛] = 0 (2.7) 

gives, 

 
𝛿𝐸𝐾𝑆

𝛿𝑛(𝑟)
= 𝑉ext +

1

2
∫ 𝑑3𝑟′

𝑛(𝑟′)

|𝒓 − 𝒓′|
+

𝛿𝑇𝑠[𝑛]

𝛿𝑛(𝑟)
+

𝛿𝐸𝑥𝑐[𝑛]

𝛿𝑛(𝑟)
 (2.8) 

Defining the effective potential 𝑉eff in the above equation, 

 
𝑉eff = 𝑉ext +

1

2
∫ 𝑑3𝑟′

𝑛(𝑟′)

|𝒓 − 𝒓′|
+

𝛿𝐸𝑥𝑐[𝑛]

𝛿𝑛(𝑟)
 

(2.9) 

 

yields a set of Schrödinger-like equations, also called the Kohn-Sham equation. 

 𝐻eff𝜓𝑖(𝑟) = [−
1

2
∇2 + 𝑉eff] 𝜓𝑖(𝑟) = 𝜖𝑖𝜓𝑖(𝑟) (2.10) 

The ground state density is given by, 

 𝑛(𝒓) = ∑|𝜓𝑖(𝒓)|2

𝑁

𝑖=1

 (2.11) 

where the sum is over the N lowest eigenstates of 𝐻eff given in (2.10).  
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2.2 Approximation of exchange-correlation energy 

One of the great challenges in electronic structure calculations is determining the 

exchange correlation energy 𝐸𝑥𝑐 because it needs to be approximated.[41] One such 

approach is the local density approximation (LDA),[45] in which 𝐸𝑥𝑐 is simply an 

integeral over all space with 𝐸𝑥𝑐 assumed to be the same as in a homogeneous electron 

gas. The generalized gradient approximation (GGA)[46] considers functions that 

modify the behaviour at large gradients in such a way as to preserve desired 

properties. These methods have been widely used to describe many systems.    

However, LDA or GGA methods fail to correctly describe systems like transition 

metal oxides and rare earth systems, where the electrons are strongly interacting. 

Introducing a strong intra-atomic interaction in a (screened) Hartree-Fock like manner, 

or as an on-site adjustment to the LDA or GGA can alleviate this problem. This may 

be done by including an orbital dependent Hubbard U term that is fitted so as to match 

a known property.[47]  

In Figure 2.1, we draw the calculated lattice parameter of bulk Cu as the function of 

total energy. The calculated lattice parameter for Cu is 3.631 Å and bulk modulus is 

134.3 GPa, which are in good agreement with the experimental values of 3.615 Å and 

138 GPa.[48] Thus we use the generalized gradient approximation (GGA) and 

Perdew–Burke–Ernzerhof (PBE) functional[46,49] to calculate the adsorption and 

reactions on Cu surfaces. 
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Figure 2.1. The calculated lattice parameter as a function of total energy using 

PBE functional. 

2.3 Van der Waals (vdW) force 

The vdW force is found to be crucial to accurately describe non-bonded interactions 

such as between molecules or at interfaces. In ALD modelling, we study the reactions 

of precursors, usually organometallic compounds, with solid surfaces, and thus vdW 

forces must be treated carefully. Unfortunately, the standard DFT with exchange-

correlation functionals (local density approximation [LDA], Perdew-Burke-Ernzerhof 

[PBE]) does not include nonlocal vdW interactions, and thus different approaches 

have been proposed in order to incorporate vdW forces in DFT calculation.[50]  

One of the approaches is the addition of empirical, pairwise inter-atomic dispersion 

corrections of the form −C6r−6, commonly referred to as DFT plus dispersion (DFT-

D).[51,52] In the DFT-D3 method, the total energy is given by[53] 
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 𝐸𝐷𝐹𝑇−𝐷3 = 𝐸𝐾𝑆−𝐷𝐹𝑇 − 𝐸disp (2.12) 

where 𝐸𝐾𝑆−𝐷𝐹𝑇 is the usual self-consistent Kohn–Sham energy as obtained from the 

chosen DF and 𝐸𝑑𝑖𝑠𝑝 is the dispersion correction as a sum of two- and three-body 

energies 

 𝐸𝑑𝑖𝑠𝑝 = 𝐸(2) + 𝐸(3) (2.13) 

The most important two-body term is given by, 

 𝐸(2) = ∑ ∑ 𝑠𝑛
𝐶𝑛

𝐴𝐵

𝑟𝐴𝐵
𝑛 𝑓𝑑,𝑛(𝑟𝐴𝐵)𝑛=6,8,10,...𝐴𝐵     

(2.14) 

here the first sum is over all atom pairs in the system, 𝐶𝑛
𝐴𝐵  denotes the averaged 

(isotropic) n
th

-order dispersion coefficient (orders n=6,8,10,...) for atom pair AB, and 

𝑟𝐴𝐵
𝑛  is their inter-nuclear distance. Damping functions 𝑓𝑑,𝑛 are used to determine the 

range of the dispersion correction.  

 𝑓𝑑,𝑛(𝑟𝐴𝐵) =
1

1 + 6 (𝑟𝐴𝐵/(𝑠𝑟,𝑛𝑅𝑛
𝐴𝐵))

−𝛼𝑛
 (2.15) 

where 𝑠𝑟,𝑛 is the order-dependent scaling factor of the cutoff radii 𝑅𝑛
𝐴𝐵.[54] 

The long-range part of the interaction between three ground-state atoms can be 

obtained by applying the concept of short-range damping analogously as for the 

pairwise term,  

 𝐸(3) = ∑ 𝑓𝑑,3

𝐴𝐵𝐶

(�̅�𝐴𝐵𝐶)𝐸𝐴𝐵𝐶 (2.16) 

where the sum is over all atom triples ABC in the system and geometrically averaged 

radii �̅�𝐴𝐵𝐶  is used as a damping function. The triple-dipole dispersion term 𝐸𝐴𝐵𝐶 is  
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 𝐸𝐴𝐵𝐶 =
𝐶9

𝐴𝐵𝐶(3𝑐𝑜𝑠𝜃𝛼𝑐𝑜𝑠𝜃𝑏𝑐𝑜𝑠𝜃𝑐 + 1)

(𝑟𝐴𝐵𝑟𝐵𝐶𝑟𝐶𝐴)3
 (2.17) 

Where 𝜃𝛼, 𝜃𝑏 and 𝜃𝑐 are the internal angles of the triangle formed by 𝑟𝐴𝐵, 𝑟𝐵𝐶 and 𝑟𝐶𝐴 

and 𝐶9
𝐴𝐵𝐶 is the triple-dipole constant which can be found in ref [53]. 

Another promising method to include the vdW interaction in DFT is the nonlocal vdW 

density functional (vdW-DF) by Langreth and Lundqvist and co-workers[55] which is 

implemented in the VASP code.[56,57] In vdW-DF the non-local correlation is 

calculated in that the exchange–correlation energy takes the form 

 𝐸𝑥𝑐 = 𝐸𝑥
𝐺𝐺𝐴 + 𝐸𝑐

𝐿𝐷𝐴 + 𝐸𝑐
𝑛𝑙 (2.18) 

where 𝐸𝑥
𝐺𝐺𝐴 is the GGA exchange energy. 𝐸𝑐

LDA accounts for the local correlation 

energy obtained within the local density approximation (LDA) and 𝐸𝑐
𝑛𝑙 is the non-

local correlation energy. 𝐸𝑐
𝑛𝑙 is exact at long distances between separated fragments, 

 𝐸𝑐
𝑛𝑙 = ∫

𝑑𝑢

2𝜋
𝑡𝑟[ln(1 − 𝑉�̃�) − ln 𝜖]

∞

0

 (2.19) 

where �̃� is the density response to a fully self-consistent potential with long-range, 

inter-fragment spectator contributions omitted. 𝑉 is the inter-electronic Coulomb 

interaction, 𝜖 is an appropriately approximated dielectric function, and 𝑢 is the 

imaginary frequency. 

We use these and similar methods for treating the vdW interaction along with the pure 

DFT method to identify the role of vdW forces on precursor adsorption on substrate 

during ALD of Cu, which will be explained in more detail in Chapter 4. 

2.4 Bader charge 

Electronic charges in molecules and solids are not observables and, therefore, not 

defined by quantum chemical theory. Many different schemes to assign electronic 
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charge distributed in space to a certain ion. An approach that focused on charge 

density has been proposed by Bader.[58] In this approach, space is divided into 

regions by surfaces that run through minima in the charge density. More precisely, at a 

point on a dividing surface the gradient of the electron density has no component 

normal to the surface, which is called Bader regions.[59] Henkelman et al. proposed 

an algorithm to calculate the charges on atoms based on Bader’s theory.[59,60] In 

their algorithm, each point on a regular (x,y,z) grid is assigned to one of the regions by 

following a steepest ascent path on the grid. 

2.5 Ab initio atomistic thermodynamics 

Ground state DFT is a zero-temperature and zero-pressure technique. As such, the 

results of total energy calculations at surfaces have to be connected with the ambient 

experimental conditions. Ab initio atomistic thermodynamics (also known as first 

principles thermodynamics) enable us to connect density functional calculations with 

external conditions by considering appropriate thermodynamic potentials, e, g, Gibbs 

free energy.[61–63] The surface free energy of a surface in contact with gases can be 

defined as following 

 𝛾(𝑇, 𝑃𝑖) =
1

𝐴
[𝐺 − ∑ 𝑁𝑖𝜇𝑖(𝑇, 𝑃𝑖)

𝑖

] (2.20) 

where 𝐺 is the Gibbs free energy of the surface that we would like to study. 𝜇𝑖(𝑇, 𝑃𝑖) 

is the chemical potential of the ith species under the external conditions and 𝑁𝑖 is the 

number of atoms (or molecules) of the ith species in the considered reservoir.  𝑇 and 

𝑃𝑖 are the temperature and partial pressures of the ith species. The most stable 

structures are characterized by the lowest surface free energy. In equation (2.20), not 

all the chemical potentials in the system are independent, and therefore we can reduce 
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the number of unknown 𝜇𝑖(𝑇, 𝑃𝑖). For example, the chemical potential of metal oxide 

MO (M=metal), 

 𝜇MO = 𝜇M + 𝜇O (2.21) 

where, 𝜇MO and 𝜇M can be approximated with the DFT energies of corresponding 

metal oxide (MO) and metal (M). in this way only one independent variable 𝜇O 

remains in the left side of equation (2.20).For a surface in contact with certain gases 

(e. g. oxygen),  

 𝜇gas(𝑇, 𝑃𝑖) = 𝐸gas
tot + 𝐸gas

ZPE + ∆𝜇gas(𝑇, 𝑃0) + 𝑘𝐵𝑇 ln (
𝑃

𝑃0
) (2.22) 

where  𝐸gas
tot  is the total DFT energy of the gas, 𝐸gas

ZPE is the zero point energy, 

∆𝜇gas(𝑇, 𝑃0) is the chemical potential of the gas at ambient pressure at T, which can 

be obtained from JANAF Thermochemical Tables.[64]   

 𝐺 = 𝐸tot + 𝐹vib + 𝐹conf + 𝑃𝑉 (2.23) 

where 𝐸tot is the total energy, 𝐹vib is the vibrational free energy, 𝐹conf is the 

configurational free energy. If we choose a reference system, e.g. a clean surface, we 

only have to calculate the difference in Gibbs free energy.  

We employ ab initio atomistic thermodynamics in different occasions in this work, 

namely, the surface in contact with the precursors, the metal/substrate interface and the 

surface with the reducing agent.  
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3 Interface Composition of Cu/SiO2 Interface 

3.1 Introduction 

Metal/dielectric interfaces are of great interest because of their widespread occurrence 

in microelectronic devices.[65] The Cu/SiO2 interface, in particular, is crucial for 

metal-oxide-semiconductor (MOS) capacitors because copper is the main interconnect 

material and SiO2 or C-doped SiO2 is widely used as the low-k dielectric substrate. 

Willis et al. reported that Cu is stable on SiO2 in an oxygen-free environment under 

thermal and electrical stress.[66] However, they measured significant Cu transport 

through SiO2 as the sample was exposed to ambient gases or pure oxygen. This 

suggests that the oxidized copper is a source of copper ions that are transported 

through the SiO2 via diffusion and drift, leading to the failure of the devices. For this 

reason, a diffusion barrier between the copper interconnect and the SiO2 is necessary 

to prevent Cu migration into the dielectrics. At the Cu/SiO2 interface, the formation of 

interface oxides and silicides depends on the ambient temperature and the partial 

pressure of oxygen gas.  Understanding how the structure of these metal/dielectric 

interfaces depends on oxygen pressure and temperature thus has crucial importance for 

the reliability of electronic devices.  

In this section, we determine the phase diagrams of Cu/SiO2 interfaces as a function 

of oxygen pressure and temperature using ab initio atomistic thermodynamics, i. e. by 

combining the results of density functional theory (DFT) based calculations with the 

thermodynamics of the grand canonical ensemble. Our work offers an explanation for 
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the impact of the oxygen environment on formation of the interfacial oxides and 

silicides at Cu/SiO2 interfaces. 

 

Figure 3.1. Optimized M: : SiO2 interface structures with different interfacial O 

concentration (O). (a)  = 0, (b) clean interfaces at  = 0.5 and (c) Oxidized 

interfaces at  = 1.75. (red=O, yellow=Si, salmon-pink = Cu). Green dashed 

arrows represent a process that one oxygen atom at a time is added to the 

interface structures. 

 

3.2 Computational methods 

The Cu/SiO2 interface model was constructed by positioning a (4 × 4) Cu(111) slab 

on top of the (2 × 2) SiO2(0001) slab and adding 12 Å thickness of vacuum. Half of 

the O atoms from the O-terminated SiO2(0001) surface were moved to the Si-

terminated surface of the SiO2 slab in order to eliminate the instability due to the 

dipole moment. The dangling O atoms at the bottom of the SiO2 slabs were passivated 

with H atoms. The lattice parameters of the interface areas of the metal slabs were 

adjusted to those of SiO2 in the plane of the interface and the resulting misfit of 

Cu/SiO2 interfaces was about 2%. 

The interfacial O concentration ( ) varies between 0    1.75 in units of 0.125 for 

Cu/SiO2 interfaces, which can be represented by Cu:  : SiO2, where
 
  is defined as the 
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ratio of O atoms to the total number of Si and O atoms at the interface. Three 

representative interface structures, where  = 0, 0.5 and 1.75, are shown in Figure 3.1. 

When  = 0, the interface structures contain only Cu – Si bonds (Figure 3.1a), which 

corresponds to the formation of silicide structures in an oxygen lean environment. For 

 =0.5, the number of O atoms equals the initial number of O in the initial SiO2 slab, 

and equal numbers of Si and O atoms from the SiO2 side of the interface form bonding 

with metal slabs, as shown in Figure 3.1b. When  =1.75, the interfaces have excess 

amount of O atoms which results in significant interface reconstructions. These 

interfaces with  = 0, 0.5, 1.75 are referred to as “silicide”, “clean” and “oxidized” 

interfaces, respectively.  Later we will see from the phase diagrams that these 

interfaces with different  correspond to different oxygen pressure and temperature.  

In order to obtain the interface phase diagrams, we employ ab initio atomistic 

thermodynamics,[67] which has been successfully applied to various systems 

including adsorption,[63] co-adsorption on surfaces[68–70] and interfaces.[71,72] For 

the Cu:  : SiO2 interface structure in thermodynamic equilibrium, the interface free 

energy (𝛾𝜃) can be obtained by 

 𝛾𝜃O
=

1

𝐴
(𝐺𝜃O

− 𝑛Si𝜇Si − 𝑛O𝜇O − 𝑛Cu𝜇Cu) − 𝜎SiOH − 𝜎Cu (3.1) 

where 𝐺𝜃is the Gibbs free energy for Cu: 𝜃: SiO2 interface, A is the interface area, and 

𝑛Si, 𝑛O and 𝑛Cu  are the number of Si, O and Cu atoms in the system, respectively.  𝜇Si 

and 𝜇O are the chemical potential of Si and O in -quartz structure. 𝜎SiOH and 𝜎Cu are 

the surface energies of the non-interacting surfaces of the slab. Equation (3.1) can be 

written,    
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 𝛾𝜃 =
1

𝐴
(𝐺𝜃O

− 𝑛Si𝐺SiO2
− (𝑛O − 2𝑛Si)𝜇O − 𝑛Cu𝐺Cu) − 𝜎SiOH − 𝜎Cu (3.2) 

where,  

 𝜇Si + 2𝜇O = 𝐺SiO2
,    𝜇Cu = 𝐺Cu (3.3) 

and here 𝐺SiO2
and 𝐺Cu are the Gibbs free energies of bulk quartz SiO2 and bulk Cu, 

respectively. We further define the relative interface free energy (∆𝛾𝜃) by using 𝛾0.5 as 

a reference and replacing 𝑛O − 2𝑛Si by 4(2𝜃 − 1) in equation (3.2). 

 ∆𝛾𝜃 = 𝛾𝜃 − 𝛾0.5 =
1

𝐴
[𝐸𝜃O

− 𝐸0.5 − 4(2𝜃O − 1)∆𝜇O(𝑇, 𝑃O2
)] (3.4) 

Using the interface free energy relative to that of a reference system reduces the 

computational cost and determines the stability of various interface structures. Since 

the interface structures are assumed to be in thermodynamic equilibrium in contact 

with sources of molecular O2, the 𝜇O is equal to half of 𝜇O2
, which is a function of 

temperature (T) and oxygen pressure (𝑃O2
), 

 𝜇O2
(𝑇, 𝑃O2

) = 𝐸O2

DFT + ∆𝜇O2
(𝑇, 𝑃O2

) (3.5) 

where 𝐸O2

DFT is the DFT energy of an O2 molecule in gas phase. For the ideal gas, 

 ∆𝜇O2
(𝑇, 𝑃O2

) =  ∆𝜇O2
(𝑇, 𝑃0) + 𝑘𝐵𝑇𝑙𝑛(𝑃O2

𝑃0⁄ ),  (3.6) 

where 𝑘𝐵 is the Boltzmann constant and ∆𝜇O2
(𝑇, 𝑃0) can be obtained from JANAF 

thermodynamics tables.[64] In Equation (3.4), we neglect the configurational and 

vibrational contributions to the relative interface free energy because these two terms 

only result in minor changes to the interface phase diagrams.[73] 
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3.3 Results and discussion 

We calculate the relative interface free energy ∆𝛾𝜃, which is defined in equation (3.4) 

as the difference between the interface free energy of Cu:  : SiO2 and that of clean 

Cu: 0.5: SiO2. The relative interface free energies as a function of oxygen chemical 

potential are displayed in Figure 3.2. The lower boundary  ∆𝜇O2
 = - 5.0 eV is defined 

to avoid the decomposition of bulk -quartz into silicon and oxygen. The straight lines 

with different slopes represent Cu:  : SiO2 interface structures with different 

interfacial oxygen concentration .  Figure 3.1 shows the optimized structures of Cu:  

: SiO2 heterostructures. The silicide interface with  = 0, which has the line with the 

largest positive slopes,  is the most stable phase between the oxygen chemical 

potentials of -5.0 and -3.38 eV. As we can see from Figure 3.1a, the Si atoms form 

bond with two Cu atoms with the bond distances of 2.36 Å. This indicates the 

formation of stable Cu2Si silicide structure at the interface under the oxygen lean 

condition. The clean interface with  = 0.5 becomes stable within a narrow stability 

region. The three stable regions appear with excess O for the Cu:  : SiO2 interface: 

0.5 <  < 0.875, 0.875   < 1.25 and 1.25   < 1.75, which have the borders at 

∆𝜇𝑂 =2.91 and 1.29 eV, respectively. The calculated formation energy of Cu2O, 

 ℎCu2O=1.24 eV,[74] approximately equal to the oxygen chemical potential where the 

lines corresponding to Cu: 1.25 : SiO2 and Cu: 1.75: SiO2 interfaces. Figure 3.1c 

shows the significant rearrangement of interface atoms to form Cu – O bonding and 

the penetration of O atoms to the Cu slab, which is similar to previous computational 

works.[75,76] The Cu – O bond distance varies between 1.84 - 2.04 Å, which are the 

similar to the calculated Cu – O distance of 1.87 Å in bulk Cu2O. This implies the 

formation of stable Cu2O appears at the interface starting from  = 1.25.  
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Figure 3.2. The relative interface free energy as a function of ∆μ(O )for the Cu:  : 

SiO2 interface. The vertical dashed lines are the boundaries between two different 

stable interface structures  

The intersection points of the lowest lying lines in Figure 3.2  determines the certain 

values of oxygen chemical potential ∆𝜇O as the boundary of two stable interface 

structures. Substituting these values of ∆𝜇O to equation (6) yields phase diagrams as a 

function of oxygen pressure and temperature, which are shown in Figure 3.3. For the 

Cu :  : SiO2  interface structure, the interfacial oxide phases prefer high oxygen 

pressure and low temperature while the silicide phases are stable at low oxygen 

pressure and high temperature. Valladares et al. obtained Cu2O in a Cu/SiO2/Si 

system obtained by thermal oxidation following annealing Cu thin film at 200 C 

under atmospheric pressure.[77] They observed the mixture of Cu2O and CuO at the 
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temperature of 250 – 300 C. Benouattas et al. observed the silicide formation after 

annealing the Cu/SiOx/Si system at temperature of 600 – 750 C and under a vacuum 

of 6 × 10
-10

 atm.[78] Our results are consistent with these experimental data at 

different temperature and pressure. 

 

Figure 3.3. The interface phase diagrams of Cu/SiO2  

In summary, we used ab initio atomistic thermodynamics to investigate the interface 

stabilities of Cu/SiO2 interface. We calculated the interface free energies as a function 

of oxygen chemical potential for interface structures with different amount of 

interfacial oxygen content, from which the phase diagrams as a function of oxygen 

pressure and temperature are obtained. We demonstrate that our predicted temperature 

and oxygen pressure are in agreement with experimental results. Our result offers an 
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explanation to determine the interface structures of Cu/SiO2 interface in a range of 

oxygen pressure and temperature. 

3.4 Conclusion 

The surface energy of SiO2 and Cu/SiO2 interface energy are dependent on the surface 

composition of SiO2, e.g. number of reactive oxygen atoms, and hydroxyl groups. We 

used ab initio atomistic thermodynamics to understand the level of interface oxygen at 

the Cu/SiO2 interface as the function of oxygen chemical potential. From this the 

interface phase diagram as a function of oxygen pressure and temperature is obtained. 

We found that the interfacial oxide Cu2O phases prefer high oxygen pressure and low 

temperature while the silicide phases are stable at low oxygen pressure and high 

temperature for Cu/SiO2 interface, which is in good agreement with experimental 

observations. 
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4 Precursor Adsorption on Copper Surfaces
1
 

4.1 Introduction 

Thin films of metals have a wide range of current and future applications in many 

technologies such as microelectronics,[17] plasmonic devices,[33] spintronics[34] and 

catalysis[35]. Atomic layer deposition (ALD) is one of the most promising techniques 

to deposit highly uniform and conformal thin films.[2] Metal thin films have been 

deposited both with thermal and plasma ALD using metalorganic compounds as 

precursors. In ALD, the first precursor adsorbs on the substrate in one ALD pulse and 

reacts at the surface with reducing co-reagents during the second pulse.[17,22] In 

contrast with the ALD of other metals, ALD growth of Cu has been relatively well 

established because of the availability of Cu precursors and because of the 

technological demand for Cu as a main interconnect material in electronics. Although 

several Cu ALD processes that use different Cu(I) and Cu(II) metalorganic 

compounds and co-reagents have been developed in the past,[19,20,24,25] a notable 

advance in low temperature Cu ALD processing was made by employing the reaction 

of copper dimethylamino-2-propoxide [Cu(dmap)2] (see Figure 4.1a) with diethylzinc 

(Et2Zn) at temperatures of 100 – 120 °C.[12] The growth mechanism of this process 

has been investigated using density functional theory (DFT) in a gas-phase model and 

it is predicted that the surface is probably covered with Cu(I) intermediates.[79] Later, 

a thin film of very pure Cu has been deposited using a three-step ALD process which 

entails the sequential reactions of Cu(dmap)2, formic acid and hydrazine (N2H4) at 

120 °C.[22] Recently, low temperature Cu ALD has also been demonstrated using a 

                                                 
1
 (Some cntent of this chapter is published in in The Journal of Physical Chemistry C.  

See ref [147]). 
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two-step process of Cu(dmap)2 and borane dimethylamine [BH3(NHMe2)] and a three-

step process using Cu(dmap)2, formic acid and BH3(NHMe2).[23] In these cases, the 

Cu(dmap)2 precursor is successful because of its relatively high vapor pressure and 

thermal stability. Given these promising developments, the reaction mechanism and 

surface chemistry of Cu(dmap)2 precursor during Cu ALD should be carefully 

investigated in order to identify better precursors and design new ALD processes for 

Cu as well as other metals.  

In particular, we are interested to find out whether there is selectivity in the 

adsorption of molecules like Cu(dmap)2 onto a growing Cu surface, and whether 

growth at islands or edges is favoured over layer-by-layer growth of the smooth 

surface. Island growth is one of the obstacles towards the use of ALD in the 

semiconductor industry.[24] The first step in a typical ALD process is the 

chemisorption of the precursor molecule on the surface, which is followed by a series 

of surface reactions, some of which may be irreversible due to desorption of by-

products. The subsequent reactions are not possible in the case of weaker 

physisorption because the physisorbed precursors tend to desorb first, meaning that no 

ALD takes place. Thus, it is imperative to carefully investigate the adsorption of the 

precursors on the substrate. Zaera et al. studied the adsorption of metal ALD 

precursors on a metallic substrate using temperature programmed desorption (TPD) 

and X-ray photoelectron spectroscopy and showed the usefulness of experimental 

surface chemistry methods for the development of ALD.[80–82]
 

Computational 

approaches such as electronic structure theory calculations can also be an efficient way 

to investigate the surface chemistry and reaction mechanism and thus shorten the 

process development time in the laboratory. However, very few computational studies 

on the surface chemistry of metal ALD are available in the literature.[83]  
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Accurate description of the interaction between organometallic precursors like 

Cu(dmap)2 and the substrate poses a theoretical challenge because the origin of the 

precursor/substrate interaction is complex, resulting mainly from a balance between 

van der Waals (vdW) interactions, charge transfer, Pauli repulsion, covalent and 

ionocovalent bonds and interaction between the permanent dipole of the adsorbates 

and image dipoles in the substrate.[84] Of these, the vdW interaction is poorly 

described in standard DFT functionals. A large supercell is necessary to include the 

Cu(dmap)2 adsorbate (39 atoms, 9 Å in diameter), which makes the system 

computationally expensive, and thus using a higher level method such as the random 

phase approximation is not feasible at present.[50] New approaches for the 

approximate treatment of vdW interactions at the DFT level have recently been 

implemented, and so we are interested to discover whether they make it possible to 

quantitatively describe the interaction of the organometallic precursor with the 

substrate. 

4.2 Cu(dmap)2 adsorption on Cu surface. 

In the present theoretical work, we study the adsorption of the Cu(dmap)2 molecule  

on Cu surfaces using DFT with various levels of treatment of vdW forces. This work 

specifically aims (i) to study the energetic, geometric and electronic properties of 

adsorbed Cu(dmap)2 on different adsorption sites on the Cu substrate (both flat and 

rough bare surfaces); (ii) to investigate the role of vdW interactions between the 

molecule and surface in the initial stage of Cu ALD using several vdW inclusive DFT 

schemes; and (iii) to discuss the implications of various adsorption geometries of 

Cu(dmap)2 for understanding the surface chemistry, island growth and reaction 

mechanism of ALD of copper.  
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Figure 4.1. Copper dimethylamino-2-propoxide molecule [Cu(dmap)2]. (a) 

Optimized gas-phase structure; colour scheme: red – O, blue – N, salmon pink 

– Cu, grey – C and white – H. (b) Lowest unoccupied molecular orbital 

(LUMO).   

4.2.1 Theoretical method 

Computational details. The Vienna ab initio simulation package (VASP 5.3) was 

used for the periodic DFT calculations.[85] The projector augmented wave (PAW) 

approach[86] was applied for describing the effective potential of core electrons. The 

generalized gradient approximation (GGA) was employed with the exchange 

correlation functional of Perdew, Burke and Ernzerhof  (PBE).[46] As Cu has a 

partially filled d shell, spin polarized calculations were performed throughout. 

Nevertheless, the resulting total spin moment was zero. The wave functions were 

expanded in the plane wave basis up to a cutoff energy of 450 eV. Because of the large 

cell sizes, it was found to be adequate to use only the   point to sample the Brillouin 

zone for both slab and gas phase calculations. The atomic positions of ions were 

optimized using a conjugate gradient algorithm until the forces on each ion were 

smaller than 0.02 eV/Å. The geometry optimization for a single Cu(dmap)2 molecule 

in the gas phase was performed by placing the molecule in a rhombohedral supercell 
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with  = 60 and a side length of 25 Å. The molecular orbital calculations were 

performed with the TURBOMOLE 6.4 suite of quantum chemical programs[87] using 

DFT within the GGA paramerization by PBE,[46] the resolution-of-identity (RI) 

approximation[88,89] and a split valence polarization basis set (def2-SVP).[90] The 

climbing-image nudged elastic band (CI-NEB) method was used for calculations of 

energy barriers between physisorbed and chemisorbed states.[91,92]  

Treatment of VdW Interaction. Since no experimental data are currently available 

for the adsorption configuration of Cu(dmap)2 on the Cu surface, it is not 

straightforward to fully validate our calculations and assess the role of vdW interaction 

for this system. The vdW interactions are found to be crucial for computing reliable 

geometries and energies for various organic/inorganic interfaces.[50] Thus, we choose 

several vdW inclusive DFT methods along with pure PBE to assess the role of vdW 

interactions for the Cu(dmap)2/Cu interface. Several articles give a detailed review of 

the development and challenges of vdW inclusive DFT methods.[50,93] The 

adsorption of a benzene molecule on metals is one of the most popular model systems 

to assess the performance of vdW inclusive DFT for the organic/solid interface.[94–

99]  Interatomic pairwise DFT-D methods by Grimme[51,53] are found to 

systematically overestimate the adsorption energies of benzene and several other 

molecules on metal surfaces.[99–101] As a result, they are used to represent an upper 

bound of the adsorption energy.[100,102]  Hence, for this purpose we choose the latest 

version of this semi-empirical dispersion correction (PBE-D3)[53] with Becke-

Johnson (BJ) rational damping.[103] The vdW-DF functional[55] and its second 

version (vdW-DF2)[56] are known to yield even smaller adsorption energies than PBE 

for various systems.[98,104–106] We therefore use the vdW-DF2 functional to 

estimate the lower bound of the adsorption energies. Yildirim et al. studied the 
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adsorption characteristics of benzene on coinage and transition metals to compare the 

performance of different vdW functionals.[95] They found that optPBE-vdW and 

optB88-vdW[56] functionals show systematically good agreement with “averaged” 

experimental adsorption energies. A comparative study by Carrasco et al. on the 

performance of the two classes of vdW-inclusive methods (the PBE+vdW[107] and 

the PBE+vdW
surf

 methods[108]) for benzene adsorption on transition metals suggests 

that PBE+vdW
surf

 and optB88-vdW predict adsorption energies and equilibrium 

geometries that are in equally good agreement with experimental data.[98] Keeping 

these in mind, we also choose the optB88-vdW method which is available in the 

VASP code. To conclude, the vdW inclusive methods that we have chosen in this 

paper along with pure PBE are PBE-D3, vdW-DF2 and optB88-vdW.   

Adsorption Models. The calculated lattice parameters of fcc bulk Cu using the 

chosen vdW inclusive methods and PBE are 3.63 Å (PBE), 3.57 Å (PBE-D3) 3.74 Å 

(VDW-DF2) and 3.62 Å (optB88-vdW), compared with the experimental value of 

a0=3.61 Å.[109] These lattice parameters are used to build corresponding slab models 

in each method. The slabs consist of four atomic layers of Cu.  All atomic layers are 

allowed to relax within a fixed cell. A vacuum 18 Å thick was added so as to separate 

adjacent slabs with adsorbate.  

Three different Cu surfaces were used as substrates: flat Cu(111) surface, stepped 

Cu(332), and Cu(643) with a kink (see Figure 4.2). To accommodate the adsorbed 

precursor, a (6 × 6) surface expansion of Cu(111) is used, which gives the shortest H – 

H distance of 8.1 Å between adsorbate images in neighbouring cells and a precursor 

coverage of one Cu(dmap)2 per 2 nm
2
. As schematically illustrated in Figure 4.2a, we 

take four different adsorption configurations into account on the Cu(111) surface: 
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these adsorption configurations are denoted as Cu(111)-T, Cu(111)-D, Cu(111)-M and 

Cu(111)-B according to the alignment of O – Cu – O bonds in the molecule relative to 

the surface. In the Cu(dmap)-T configuration, the adsorbate Cu atom aligns with the 

top of a Cu surface atom and the O atoms are slightly off the top of Cu atoms of one 

surface row. In Cu(111)-D, the O – Cu – O bond aligns with the long diagonal of four 

neighbouring Cu atoms. In this configuration, the two O atoms align on the top of two 

Cu surface atoms and the adsorbate Cu atom is at a bridge site. In the Cu(111)-M 

configuration, two O atoms are on the bridge sites and the adsorbate Cu atom is on the 

hollow site between rows. In the Cu(111)-B configuration, the adsorbate Cu atom is 

on a bridge site and the O atoms are slightly off bridge sites of the same row. As we 

will show in the following sections, these adsorption configurations give completely 

different descriptions of Cu(dmap)2 adsorption on the Cu(111) surface.  

 

 

Figure 4.2. Adsorption models of Cu(dmap)2 on different Cu surfaces. The 

initial position of O – Cu – O bonds of Cu(dmap)2 on the surface are shown 

schematically.  (a) Four adsorption sites on Cu(111) surface: Cu(111)-T, 

Cu(111)-D, Cu(111)-M and Cu(111)-B.  (b) Two adsorption sites on the upper 

layer of the Cu(332) step: Cu(332)-T  and Cu(332)-B. (c) Cu(643)-K. 

Abbreviations: T=top; D=diagonal; M=median; B=bridge; K=kink. The green 

lines on (b) and (c) show the edge atoms of the upper layer. 

We use (5 × 1) and (2 × 2) surface expansions for the stepped Cu(332) surface and 

the Cu(643) surface with a kink, respectively (see Figure 4.2b-c). For the stepped 



4. Precursor Adsorption on Copper Surfaces 

 
 

37 

 

Cu(332) surface, two different adsorption sites are considered: Cu(332)-T and 

Cu(332)-B. In the Cu(332)-T configuration, the adsorbate Cu atom is aligned on the 

top of a Cu atom on the edge and the O atoms are slightly off the top of Cu surface 

atoms on the same edge. In Cu(332)-T, the adsorbate Cu atom is at the bridge site 

between two Cu atoms on the edge, and the O atoms are slightly off the bridge sites of 

the same edge (Figure 4.2b).  Only one configuration is considered for Cu(643) 

because the kink only provides an adsorption site to the Cu atom in the molecule, and 

the ligands remain relatively distant (Figure 4.2c).   

The adsorption energy, Eads, is defined by 

 𝐸ads = −(𝐸precursor@surf − 𝐸surf − 𝐸precursor) (4.1) 

where Eprecursor@surf and Esurf are the total energies of the slab with and without 

Cu(dmap)2, respectively. Eprecursor is the total energy of the Cu(dmap)2 molecule in the 

gas phase. A positive value of Eads means that the adsorption is energetically 

favourable compared to isolated systems. All the calculated adsorption energies Eads 

from PBE and vdW inclusive DFT are obtained starting from the same initial structure 

for each adsorption configuration as shown in Figure 4.2.     

Examining the electronic charge density allows further analysis of the adsorption of 

Cu(dmap)2 on different Cu surfaces. The charge density difference due to the 

adsorption of Cu(dmap)2 on the surface is calculated as 

 ∆𝜌 = 𝜌precursor@surf − (𝜌surf + 𝜌precursor) (4.2) 

where ρprecursor@surf is the electronic charge density of Cu(dmap)2 adsorbed on Cu 

surface, ρsurf is the charge density of the relaxed Cu slab in the adsorption 

configuration without the presence of Cu(dmap)2, and ρprecursor is the charge density of 
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the molecule fixed in the adsorption geometry in vacuum. Bader charge analysis was 

performed to examine charge transfer between the molecule and the surface.[59] The 

theoretical scanning tunnelling microscopy (STM) images were visualized using the 

Hive software,[110] which implements the Tersoff-Hamann formalism.[111]  

4.2.2 Results 

Below, we present the results of Cu(dmap)2 adsorption on different adsorption sites 

on the flat and rough surfaces of Cu using DFT with different levels of vdW treatment. 

In the first section, we summarize and compare the energetics and adsorption 

geometries for the precursor adsorbed on different adsorption sites. In the second 

section, through the charge density difference, we analyse how the electronic structure 

of the precursor/surface interface changes upon the adsorption.  

4.2.2.1 Adsorption Structure and Energy   

Gas Phase Cu(dmap)2. Figure 4.1a shows the optimized structure of the precursor 

molecule Cu(dmap)2 with pure PBE. The Cu(dmap)2 molecule contains two O and two 

N atoms, which coordinate to the central copper atom. The Cu atom forms two rings 

with the ligands, which are approximately co-planar, with angles of ∠OCuO = 179.6° 

and ∠NCuN = 178.3°. The PBE computed Cu – O, Cu – N distances in Cu(dmap)2 are 

1.89 Å and 2.10 Å, respectively, in good agreement with the experimental values of 

1.87 Å and 2.07 Å.[112] The calculated geometric parameters from PBE-D3, optB88-

vdW and vdW-DF2 are slightly different from those of PBE. Figure 4.1b displays the 

lowest unoccupied molecular orbital (LUMO), which is of Cu:d, O:p and N:p 

character, consistent with Cu
2+

 as the formal oxidation state, modified by the 

ionocovalent ligand – Cu bonding that is visible in the occupied orbitals (not shown). 

As examined below, the reactivity of the molecule mostly involves the interaction of 
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Cu and O atoms with the surface, and the C, H, and N atoms of the dmap ligands are 

less reactive. The orientation of O – Cu – O bonding on the surface determines the 

how the molecule adsorbs (Figure 4.2).  

Table 4.1. Adsorption energies (Eads) and structural parameters of Cu(dmap)2 

adsorbed on different adsorption sites on bare Cu(111) surface including the 

adsorption height Zad (Å)a, the distortion angle  ()b and the Cu – N distance in 

the molecule dCuN (Å) obtained using PBE, PBE-D3, optB88-vdW and vdW-

DF2 for different adsorption sites.  

method Properties 
adsorption sites 

Cu(111)-T Cu(111)-D Cu(111)-M Cu(111)-B 

PBE 

Eads (eV) 0.39 1.47 0.39 0.37 

Zads (Å) 3.96 2.27 4.02 4.12 

 () 8.3 39.7 7.6 5.1 

dCuN (Å) 2.05 2.55 2.04 2.04 

structure Figure 4.3 Figure 4.4b Figure 4.3 Figure 4.3 

PBE-D3 

Eads (eV) 3.49 3.57 3.58 3.17 

Zads (Å) 2.40 2.22 2.24 2.22 

 () 36.1 36.7 37.5 35.6 

dCuN (Å) 2.34 2.33 2.40 2.27 

structure Figure 4.4a Figure 4.4b Figure 4.4c Figure 4.4d 

optB88-vdW 

Eads (eV) 2.91 3.16 3.12 1.59 

Zads (Å) 2.41 2.23 2.18 3.69 

 () 38.8 38.6 39.6 8.3 

dCuN (Å) 2.45 2.44 2.58 2.04 

structure Figure 4.4a Figure 4.4b Figure 4.4c Figure 4.3 

vdW-DF2 

Eads (eV) 1.00 2.04 1.01 0.99 

Zads (Å) 3.88 2.30 3.93 3.98 

 () 9.9 39.5 8.8 4.3 

dCuN (Å) 2.12 2.58 2.10 2.09 

structure Figure 4.3 Figure 4.4b Figure 4.3 Figure 4.3 
a
The adsorption height Zads is defined as the perpendicular distance between the 

adsorbate Cu atom and the surface Cu atoms averaged over the flat (111) surface or 

over the edge Cu atoms for the Cu(332) step. For Cu(643)-K, Zads is the distance 

between the adsorbate Cu atom and the outer kink atom on the Cu(643).  

b
The distortion angle  is defined as 𝛼 =  

1

2
(∠NCuN(gas) − ∠NCuN(adsorbed)), 

where ∠NCuN(gas) and ∠NCuN(adsorbed) are the N – Cu – N angles in gas phase 

and adsorbed Cu(dmap)2, respectively. 

Adsorption on Flat Surface. We investigate the adsorption of Cu(dmap)2 on the 

Cu(111) surface for flat lying orientation. We choose four different adsorption sites, as 
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shown in Figure 4.2a. Table 4.1 displays the adsorption energies (Eads) and selected 

geometric parameters including adsorption height Zads, distortion angle  and Cu – N 

bond distance dCuN of each configuration. Figure 4.3 and Figure 4.4 show the 

different types of optimized geometries of Cu(dmap)2 adsorption on these four sites on 

the Cu(111) using PBE, PBE-D3, optB88-vdW and vdW-DF2 methods.  

As shown in Table 4.1, adsorption energies computed with PBE corresponding to 

Cu(111)-T, Cu(111)-M and Cu(111)-B vary slightly between 0.37 ~ 0.39 eV. The 

Cu(dmap)2 molecule pushed away from the initial position on the surface after the 

optimization on these three adsorption sites, as shown in Figure 4.3. The distances 

between the adsorbate Cu atom and the surface (Zads) are around 3.9 – 4.1 Å. The 

distortion angle  is the change of the ∠NCuN  angle after the adsorption and 

describes the degree of deformation of ligands around the Cu center. The distortion 

angles  for these adsorption sites are between 5 and 8.  No chemical bonds are 

formed between the molecule and the surface and the gas phase structure of 

Cu(dmap)2 is not significantly changed after the adsorption, which is indicative of 

physisorption.    

Surprisingly, the adsorption energy computed from PBE is 1.47 eV for the Cu(111)-

D, which is significantly greater than that computed for the other adsorption sites. This 

implies that the nature of the Cu(dmap)2 adsorption is fundamentally different on the 

Cu(111)-D site. The optimized structure of Cu(dmap)2 on Cu(111)-D (Figure 4.4b) 

shows that the molecule undergoes significant change relative to the gas phase in this 

configuration. The O atoms and Cu atom in the adsorbate bond to the surface Cu 

atoms and the adsorption height Zads is 2.27 Å.  The bond lengths between adsorbate 

Cu and bonding surface Cu atoms are 2.62 Å, which is close to the computed Cu – Cu 
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bulk distance (2.56 Å). The O atom – surface distances are 2.01 Å and close to the 

computed Cu – O distance in bulk CuO (1.95 Å).[74] The Cu – O distance in adsorbed 

Cu(dmap)2 is 1.91 Å which is slightly bigger than  the initial gas phase distance. The 

bond distances and adsorption energy at Cu(111)-D are thus characteristic of 

chemisorption. In order to release the stress between the molecule and the surface, the 

Cu – N distance has significantly elongated to become 0.44 Å longer than its gas phase 

distance. One CH3 group on each N in the dmap ligands has changed its position to the 

upper side of the ligands. The distortion angle of Cu(dmap)2 on the Cu(111)-D is 

around 40, showing that the Cu(dmap)2 molecule is strongly distorted and  half-

decomposed upon the adsorption.  

We now describe the impact of vdW forces on Cu(dmap)2 adsorption on the 

Cu(111) surface. As listed in Table 4.1, PBE-D3 produces adsorption energies of 3.1 – 

3.6 eV for all the four adsorption configurations, which are considerably greater than 

those of pure PBE. In the Cu(111)-T configuration (Figure 4.4a), the O – Cu – O motif 

of the adsorbate forms bonds with three adjacent Cu surface atoms in a row. The Cu 

surface atom under the adsorbate Cu atom is pushed slightly downward by 0.2 Å, 

while the Cu atoms that form bonds with the O atoms move slightly upward by 0.1 Å. 

The adsorption structure of Cu(dmap)2 on Cu(111)-D obtained from PBE-D3 is 

similar to the structure found by pure PBE, which is shown in Figure 4.4b. The 

Cu(111)-M configuration (Figure 4.4c) yields a similar structure to Cu(111)-D, but the 

O atoms  form bonds with Cu surface atoms in two neighbouring rows. In the 

Cu(111)-B configuration as shown in Figure 4.4d, the Cu and O atoms in the adsorbate 

each locate on the bridge site of the three consecutive surface Cu atoms with the Cu – 

Cu bond length of 2.56 Å and the O – Cu bond length of 2.06 Å. Notice the formation 

of triangular Cu3 with the distance of 2.562.62 Å in all configurations. The adsorbate 
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O atoms bond with the surface Cu atoms with the distance of 2.06 Å. For all the 

adsorption configurations on Cu(111) from PBE-D3, the adsorption height Zads varies 

between 2.2 and 2.4 Å and the distortion angle  is 36 – 38. The Cu – N distance 

(dCuN) in the adsorbate is stretched by 0.16  0.30 Å compared to the gas phase Cu – 

N distance. These results show that PBE-D3 describes the Cu(dmap)2 adsorption on 

Cu(111) surface as strong chemisorption regardless of the adsorption site.  

 

Figure 4.3. Physisorption structure of Cu(dmap)2 on Cu(111) surface. (a) side 

view (b) top view.   

As listed in Table 4.1, using optB88-vdW yields the adsorption energies Eads in the 

range of 2.93.1 eV for Cu(111)-T, Cu(111)-D, Cu(111)-M configurations, which are 

lower than those calculated from PBE-D3, but higher than those from pure PBE. The 

optimized structures of Cu(111)-T, Cu(111)-D and Cu(111)-M configurations using 

optB88-vdW are represented in Figure 4.4ac, respectively. The adsorption heights 

Zads are in the range of 2.2 – 2.4 Å, the distortion angle  varies between 38– 39 and 

the Cu – N distance (dCuN) is 0.2  0.4 Å longer than its gas phase distance. Thus 

Cu(111)-T, Cu(111)-D and Cu(111)-M configurations calculated with optB-vdW 

represent chemisorption. By contrast, the Cu(111)-B configuration has much lower 

adsorption energy of 1.59 eV with the same functional. Although this energy is higher 

than the adsorption energy which is calculated using pure PBE for the Cu(111)-D 
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configuration, no chemical bonds are formed between the adsorbate and the surface. 

The adsorption height of 3.69 Å and the distortion angle of 8.3 implies that optB88-

vdW predicts a physisorbed structure for Cu(111)-B, but with vdW interactions 

contributing an extra 1.2 eV to Eads relative to PBE.     

 

Figure 4.4. Side and top views of different adsorption structures of the 

Cu(dmap)2 on the Cu(111) surface using DFT with and without vdW 

corrections (See Table 4.1 for thorough explanation). (a) Cu(111)-T. (b) 

Cu(111)-B (c) Cu(111)-M (d) Cu(111)-B. Only the top two Cu layers of the slab 

are shown for clarity.  

The calculations with the vdW-DF2 functional show Eads of 2.04 eV for Cu(111)-D, 

which is twice as great as Eads of Cu(111)-T, Cu(111)-M and Cu(111)-B (Table 4.1). 

The optimized structures for Cu(111)-D predicted with vdW-DF2 functional are 

shown in Figure 4.4b. The Cu – N distances have elongated to 2.58 Å and the 

distortion angle  is 39.5. The vdW-DF2 functional thus predicts an additional 0.6 eV 

contribution from vdW attraction to the physisorption energy relative to pure PBE. 

The optimized structures of Cu(111)-T, Cu(111)-M and Cu(111)-B are represented in 

Figure 4.3. No chemical bonds are formed as the adsorption heights (Zads) are 3.9-4.0 
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Å and the distortion angles are small (4 – 10) for these configurations. These data 

indicate that the adsorption mode of these structures is physisorption. It can be noticed 

that the PBE and vdW-DF2 both predict a chemisorbed structure on Cu(111)-D and 

physisorbed structures at the other three  adsorption sites, although the adsorption 

heights of the latter are slightly shorter than those predicted with pure PBE.   

The above results show that two types of adsorption mode, namely physisorption and 

chemisorption, exist for Cu(dmap)2 on the Cu(111) surface depending on the 

adsorption sites and the treatment of vdW interaction. It is interesting to ask whether 

these adsorption modes can interconvert. We therefore investigate the transition 

between physisorbed and chemisorbed states and assess the potential-energy surface 

(PES) by performing CI-NEB calculations.[91,92] Figure 4.5 shows the pure PBE 

energy as a function of reaction coordinate, which is the collective change in the 

coordination of all the atoms in the molecule. We see that the PES is very flat near the 

physisorbed geometry and the transition from Cu(111)-T to Cu(111)-D proceeds with 

a very small energy barrier (Ea = 0.17 eV for PBE), which is likely to be overcome at 

ALD temperatures, e.g. 100°C. As the vdW-DF2 functional also predicts a 

physisorbed structure on the Cu(111)-T site, we calculated the PES for the transition 

from Cu(111)-T to Cu(111)-D using the vdW-DF2 functional. We found that the 

vdW-DF2 method predicts that no appreciable energy barrier exists for the transition 

from physisorption (T) to chemisorption (D).  However, here too the PES is very flat 

around the physisorption structure, so that such structures may exist for short lifetimes.  

Note that no minimum is obtained for physisorption using PBE-D3 and optB88-vdW. 
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Figure 4.5. PBE reaction energy profile of transformation of Cu(dmap)2 from 

physisorption at Cu(111)-T to chemisorption at Cu(111)-D.  

Adsorption on rough surfaces. During the ALD growth of copper, steps and kinks 

are likely to form on the surfaces with various geometries. Steps and kinks are 

considered to be more reactive compared to flat surfaces like Cu(111) because of the 

under-coordinated edge and corner atoms.[113] We therefore calculate the adsorption 

of Cu(dmap)2 on steps and kinks so as to understand the role of rough surfaces during 

ALD of copper. The Cu(332) step and the Cu(643) kink are chosen as the models for a 

rough surface in this study because they are the common steps and kinks that can be 

observed experimentally.[114,115] The optimized structures of adsorption on 

Cu(332)-T and Cu(643) are the structures from PBE calculations in  Figure 4.6c-d, 

respectively. The adsorption energies and selected geometric parameters of those 

structures are displayed in Table 4.2. For the Cu(332)-B configuration, PBE, optB88 

and vdW-DF2 yield a structure with adsorbate Cu – N bond elongation as shown in 

Figure 4.6a, while PBE-D3 predicts a structure with adsorbate Cu – O distance 
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elongated as shown in Figure 4.6b. For Cu(332)-T and Cu(643)-K configurations, all 

the methods with and without vdW interactions produce similar structure.  

 

Figure 4.6. Adsorption geometry of Cu(dmap)2  on rough Cu surfaces. (a) 

Cu(332)-B configuration obtained from PBE, optB88-vdW and vdW-DF2. (b) 

Cu(111)-B configuration obtained from PBE-D3. (c) Cu(332)-T and (d) 

Cu(643)-K from all the calculations. 

PBE predicts an adsorption energy of 1.50 eV for the Cu(332)-B, which is slightly less 

than that of Cu(332)-T. In both structures (Figure 4.6a and c),  the adsorbate O – Cu – 

O atoms in the Cu(dmap)2 molecule form bonds with the three adjacent Cu atoms on 

the edge Cu atoms of the Cu(332) step. The adsorption height Zads is 2.2 Å for 

Cu(332)-B and 2.3 Å for Cu(332)-T. The distortion angles on Cu(332) steps are 

smaller than those of chemisorbed structures on Cu(111) surface by 5  10. These 

smaller distortion angles indicate that the molecule is less distorted at the Cu(332) 

steps because of the less steric hindrance between the terraces and the molecule. The 

bond length between adsorbate O atoms and the surface Cu atoms are around 1.99 Å ~ 

2.01 Å and the bonding Cu edge atoms shift slightly upward by 0.2-0.3 Å relative to 
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the clean Cu(332) step. The ligands move toward the terraces and the Cu – N bonds 

elongate slightly to 2.27 Å. 

Table 4.2. Adsorption energies (Eads) and structural parameters of Cu(dmap)2 

adsorbed on rough Cu surfaces including the adsorption height Zad (Å), the 

distortion angle  () of Cu(dmap)2 on the Cu surfaces and the Cu – N distance 

in the molecule dCuN (Å) obtained using PBE, PBE-D3, optB88-vdW and vdW-

DF2. 

method Property 
adsorption sites 

Cu(332)-B Cu(332)-T Cu(643)-K 

PBE 

Eads (eV) 1.50 1.53 1.78 

Zads (Å) 2.22 2.39 2.45 

 () 28.8 26.3 32.6 

dCuN (Å) 2.26 2.40 2.36 

PBE-D3 

Eads (eV) 3.63 3.44 3.59 

Zads (Å) 2.09 2.37 2.40 

 () 19.3 22.1 29.3 

dCuN (Å) 2.01 2.17 2.26 

optB88-vdW 

Eads (eV) 2.99 3.12 3.29 

Zads (Å) 2.25 2.36 2.31 

 () 26.5 27.1 31.4 

dCuN (Å) 2.20 2.23 2.32 

VDW-DF2 

Eads (eV) 2.06 2.34 2.15 

Zads (Å) 2.26 2.43 2.48 

 () 27.4 29.9 32.2 

dCuN (Å) 2.33 2.38 2.75 

 

PBE-D3 calculations predict an adsorption energy of 3.6 eV for Cu(332)-B and 3.4 

eV  for Cu(332)-B. For the Cu(332)-B adsorption site, PBE-D3 predicts a structure 

with significant elongation of the adsorbate Cu – O bond, as shown in Figure 4.6b. 

The angle  is 19. Unlike the other structures, the Cu – N bond length has shortened 

by 0.1 Å from its gas phase distance and the Cu – O bonds in the adsorbate have 

increased significantly by 0.9 Å, with these O atoms bonding to edge Cu atoms. 

However, for the Cu(332)-T configuration, PBE-D3 gives a structure with Cu – N 
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bond elongation, which is similar to the Cu(332)-T structure predicted by the other 

methods.  

We obtained Eads of 3.0 eV and 2.0 eV at the Cu(332)-B step site using optB88-

vdW and vdW-DF2 functionals, respectively. The optimized structures of Cu(332)-B 

with optB88-vdW and vdW-DF2 are again similar to the one predicted by PBE 

(Figure 4.6a), but with different adsorption heights and distortion angles as listed in 

Table 4.2. The Cu edge atom that bonds with the Cu atom in Cu(dmap)2 is pushed 

downward by 0.2 – 0.4 Å and the Cu edge atoms that form Cu – O bonds are slightly 

pulled upward. The distortion angles  for these structures vary between 22 and 30, 

smaller than those of the configurations on the Cu(111) surface because of less steric 

hindrance on the vicinal surfaces. Adsorption energies obtained with optB88-vdW and 

vdW-DF2 for the Cu(332)-T configuration are slightly  greater than that of Cu(332)-B 

with these methods. The adsorbate O-Cu-O atoms bond to three adjacent edge atoms 

with the adsorption height of 2.3-2.4 Å and distortion angle of between 22 and 30. 

In the Cu(643)-K structure, the molecule is initially located on the outer kink atom 

on the Cu(643) surface at an initial Cu – O distance greater than 3 Å before 

optimization. All the methods with and without vdW correction produce a similar 

optimized structure for Cu(643)-K, and thus we only show the structure from PBE 

calculation in Figure 4.6d. As listed in Table 4.2, the calculated Eads are 1.8 eV (PBE), 

2.2 eV (vdW-DF2), 3.3 eV (optB88-vdW) and 3.6 eV (PBE-D3). In this structure, the 

adsorption height ranges from 2.4 to 2.5 Å, depending on the functional, which is 

close to the Cu - Cu bulk distance. One of the O atoms bonds with the inner Cu kink 

atom and the other O atom bonds with the edge Cu atom neighbouring the outer kink 

Cu atom. The distortion angle ranges 29 ~ 33, and the Cu – N distance dCu-N varies 
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between 2.3 and 2.6 Å. It is noteworthy that the outer Cu kink atom is significantly 

displaced (0.4 Å) from its bulk position in the vdW-DF2 calculations.     

4.2.2.2 Electronic Structure 

To further examine the interaction of Cu(dmap)2 with the Cu surfaces, we analyse 

the electronic structure via the charge density difference (Equation 2), Bader charge 

and simulated STM images. We found that the 3D charge density difference plots and 

simulated STM images from DFT with and without additional vdW interactions are 

very similar for any given structure and we therefore only show the results for the 

Cu(111)-D, Cu(332)-T  and Cu(643)-K configurations calculated with PBE. 

The yellow and cyan regions in Figure 4.7 represent the electronic charge 

accumulations and depletions respectively between the molecule and the surface. It 

can be observed that the charge accumulation and depletion are mainly confined to the 

area between the adsorbate O – Cu – O bonds and the surface. The electron 

accumulation (yellow) is mainly located on the bonds between the adsorbate and 

surface, while the electron depletion (cyan) is located on top of the O – Cu – O atoms 

and the two Cu surface atoms that are attached to the O atoms. However, there is little 

change in the charge on C and H atoms in the ligands. This indicates that the 

interaction between Cu(dmap)2 and the Cu surface is well localized and that the 

adsorption of the molecule mainly involves charge redistribution between the Cu and 

O atoms in the molecule and the surface. All the yellow regions are located on the 

molecule, indicating that the molecule gains electrons upon adsorption. The 

accumulation of electrons between the O atoms and the Cu surface atoms suggest that 

covalent bonds are formed between the O atoms and the Cu surface. The large buildup 

of electrons around the bonds between the adsorbate Cu and the two Cu surface atoms 
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is indicative of metallic bonding.  This Cu3 trimer shows a Cu-Cu(adsorbate)-Cu angle 

of 60.3 in the Cu(111)-D configuration. Yellow regions on the front and back of the 

N atoms can be observed, which indicates restoration of the N lone pair. The cyan 

regions and lack of yellow regions on the surface indicate that the surface donates 

electrons to the molecule from those surface Cu atoms that bond to the adsorbate O – 

Cu – O atoms. 

 

Figure 4.7. 3D isosurface of charge density differences obtained with an 

isovalue of ±0.001 e/Å3 of Cu(dmap)2 on (a) Cu(111)-D (b) Cu(332)-B (c) 

Cu(643)-K obtained using PBE. Yellow and cyan regions represent the 

accumulation and depletion of electronic charge, respectively.  

In order to quantitatively analyse the charge redistribution, we calculated the net 

Bader charges on the adsorbate Cu atom (qCu) and on the molecule (Q) relative to 

the Bader charge of the gas phase Cu(dmap)2 molecule, as listed in Table 4.3. From 

Table 4.3, we can see that all the methods with and without additional vdW interaction 

produce the same order of qCu and Q for a given structure. This indicates that the 

vdW interaction has little direct effect on the electronic structures of the adsorbed 

Cu(dmap)2 molecule on Cu surfaces. The adsorbate Cu atom gains negligible electrons 

(qCu < 0.1 e
-
) in all the physisorption structures and gains 0.2 ~ 0.4 e

-
 in the 

chemisorption structures depending on the adsorption sites and calculation method.  

The Bader charge analysis of the physisorbed structures reveals that a fraction of an 
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electron is transferred from the molecule to the slab, where it is highly delocalised. By 

comparing the net charge differences for the various structures, we notice that the 

molecule gains electrons in all the chemisorbed structures. Q of the whole molecule 

in the Cu(111)-D structure is slightly greater than Q for other adsorption sites on the 

Cu(111) surface, which is in line with the stronger adsorption of Cu(111)-D. The 

electron gain of the molecule in the chemisorbed structure is consistent with what was 

observed in electron density difference plots (Figure 4.7) and probably originates from 

electron transfer to the LUMO (Figure 4.1b). Notice that qCu and Q of the Cu(332)-

B structure predicted by PBE-D3 is significantly greater than those of other structures 

because of the breaking of the Cu – O bonds.   

Table 4.3. Calculated change in Bader electronic charge (units of e) of 

adsorbate Cu atom (qCu) and Cu(dmap)2 molecule (Q) upon the adsorption 

of Cu(dmap)2 on Cu surfaces relative to the Bader charge of the gas phase 

molecule. 

 PBE PBE-D3 optB88-vdw VDW-DF2 

 qCu Q qCu Q qCu Q qCu Q 

Cu(111)-T -0.08 -0.28 0.21 0.30 0.20 0.32 -0.02 
-

0.20 

Cu(111)-D 0.25 0.34 0.23 0.31 0.24 0.32 0.26 0.39 

Cu(111)-M -0.07 -0.29 0.26 0.36 0.23 0.35 -0.04 -0.18 

Cu(111)-B -0.07 -0.31 0.23 0.31 -0.06 -0.29 -0.03 -0.18 

Cu(332)-B 0.22 0.32 0.45 0.58 0.22 0.34 0.23 0.36 

Cu(332)-T 0.20 0.33 0.18 0.28 0.19 0.32 0.23 0.39 

Cu(643)-K 0.22 0.31 0.26 0.36 0.22 0.34 0.24 0.37 

 

The methods we used in this work produce a range of adsorption energies and 

different adsorption structures.  No experimental data exist at present against which 

the calculations can be validated in order to determine the best method. We therefore 

simulate theoretical STM images of the chemisorbed structures as a route towards 

validation in future experimental work. Figure 4.8 depicts the simulated STM images 

of Cu(111)-D, Cu(332)-B and Cu(643)-K configurations calculated with PBE. In these 
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STM images, the adsorbate Cu and O atoms are located in the darker part, which 

indicates that Cu and O atoms are close to the surface and far from the STM tip. We 

showed the atomic positions of adsorbate Cu (green) and O (red) in the right half of 

the STM images. The brightest regions of the STM images of the Cu(111)-D structure 

correspond to the methyl groups in the ligand, which face upward. Since the two 

ligands of the molecule are inclined at the rough surfaces, the brightness of upper parts 

of the STM images of Cu(332)-B and Cu(643)-K differ slightly.  

 

 

Figure 4.8. Simulated STM images of Cu(dmap)2 adsorbed on (a) Cu(111)-D 

(b) Cu(332)-B (c) Cu(643)-K with bias voltage V = 1.5 eV and tip distance d = 

1.5 Å. Contours are added on the right to guide the eye. The circles inside the 

contours show the positions of atoms in Cu(dmap)2: green, Cu; yellow, N; red, 

O; aqua, C; pink, H.  

4.2.3 Discussion 

Now we discuss the results of the Cu(dmap)2 adsorption on different adsorption 

sites. First we analyse the geometric and electronic features of physisorption and 

chemisorption structures obtained by DFT with different levels of vdW treatment. 

Then we compare and assess the performance of these vdW treatments. Finally we 

discuss how the Cu atom in the Cu(dmap)2 molecule is reduced during adsorption and 

the implications for Cu ALD processes. 



4. Precursor Adsorption on Copper Surfaces 

 
 

53 

 

Physisorption vs. chemisorption structure. The results show that the Cu(dmap)2 

molecule chemisorbs or physisorbs depending on the stereoselective environment on 

the Cu(111) surface. From the adsorption energy and structural changes in Cu(dmap)2 

calculated with PBE, we can see that Cu(dmap)2 chemisorbs on the Cu(111)-D site 

and physisorbs on the other sites including Cu(111)-T, Cu(111)-M and Cu(111)-B. In 

order to explain this site-selective chemisorption on Cu(111)-D, one needs to look at 

its adsorption structure. The Cu(111)-D configuration allows the molecule to approach 

the surface with the shortest O–surface distance and with less steric hindrance between 

the ligands and the surface, which is not the case in the other structures. From the 

charge density difference plot, we can see that the strong ionocovalent bonds between 

O and surface Cu atoms hold the molecule attached to the surface and apparently 

overcome the Pauli repulsion forces and energetic cost of breaking Cu–N bonds. 

However, on the other three configurations on Cu(111), Cu–N bonds are not broken 

and Cu–O bonds are not formed because the O-surface distance is not short enough in 

the starting configurations. For the rough surfaces, it is predicted that the molecule 

chemisorbed onto the Cu(332) step and Cu(643) kink in all our calculations.  

The geometric features of physisorbed Cu(dmap)2 (Figure 4.3) include the long 

adsorbate-surface distance (approximately 4.0 Å) and the small distortion angle ( < 

9). The molecule undergoes only slight distortion and the Cu atom keeps its position 

in the planar coordination. Physisorption is characterized by a smaller adsorption 

energy (Eads = 0.4 eV) for PBE, but of the order of 1.0 eV for the vdW-DF2 

calculation.  

On the other hand, chemisorption involves relatively high adsorption energy both 

with and without additional vdW interactions in DFT. These high adsorption energies 
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are the net result of bond formation between the adsorbate O – Cu – O motif and the 

surface Cu atoms tempered by distortion. The new bonding causes an accumulation of 

stress between the precursor and surface that is generally released in the form of Cu – 

N breaking and the distortion of the rest of the ligands. The distortion of Cu(dmap)2 

can be characterized in the following ways. (i) The adsorbate Cu atom loses its 

position in the planar structure and obtains a linear structure in the O – Cu – O motif 

bonded with the surface. (ii) The Cu – N distances are elongated significantly by 0.2 to 

0.5 Å (except for the Cu(332)-B structure with PBE-D3), but N remains oriented 

towards the Cu center. (iii) The Cu adsorption height Zads is comparable to the Cu – Cu 

bulk distance and the accumulation of charge between multiple Cu atoms is consistent 

with metallic bonding. (iv) The distortion angle  is greater than 26 (flat surface) and 

19 (rough surface) and correlated with the Cu – N distance. The chemisorbed 

Cu(dmap)2 molecule accepts electron density from the surface and the charge transfer 

mainly occurs in the region between adsorbate O – Cu – O bonds and the surface.         

The impact of different levels of vdW treatment. The calculations with different 

levels of vdW treatment give different adsorption energies and optimized structures. 

Pure PBE predicts that Cu(dmap)2 chemisorbs on Cu(111)-D and physisorbs on 

Cu(111)-T, Cu(111)-B, Cu(111)-M. The vdW-DF2 functional also predicts 

chemisorption at Cu(111)-D and physisorption at Cu(111)-T, Cu(111)-B and Cu(111)-

M, but with Eads nearly 0.6 eV greater. PBE–D3 predicts chemisorption for all 

configurations, with the higher adsorption energies that are 2 eV greater than those 

obtained from pure PBE.  The optB88-vdW method yields chemisorption on the three 

sites Cu(111)-T, Cu(111)-B and Cu(111)-M sites and physisorption on Cu(111)-B. 

This indicates that the vdW interactions act not only to increase the adsorption 

energies, but also to fundamentally change the nature of the adsorption.  
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It is reported that semi-empirical dispersion corrections (PBE-D) overestimate the 

adsorption energies for other organic/metal interactions.[116] This overestimation 

comes from the neglect of screening of dispersive interactions by the subsurface 

copper atoms. The adsorption energies of 3.2-3.5 eV predicted here by PBE-D3 are 

therefore most probably overestimated and thus represent the maximum limit. 

Although optB88-vdW predicts chemisorbed structures on three out of four 

configurations, the optB88-vdW energies for chemisorption are smaller than those of 

PBE-D3. The adsorption energy of chemisorbed Cu(111)-D from vdW-DF2 is less 

than that of PBE-D3 and optB88-vdW by 2.0 eV. The relative order of adsorption 

energies for Cu(dmap)2 on Cu surfaces is Eads(PBE-D3) > Eads(optB88-vdW) > 

Eads(vdW-DF2) > Eads(PBE). This is the same order as was obtained for benzene/metal 

interations.[98,100] The difference between adsorption energy on rough surfaces are 

less dramatic, but they are in the same order as those of Cu(111). Thus we believe that 

optB88-vdW is the most suitable one of these methods for describing Cu(dmap)2 

adsorption on the Cu surfaces. 

Our results from the charge density difference and Bader charge analysis show that 

the choice of vdW inclusive method has no significant impact on the electronic 

structure of the Cu(dmap)2 adsorbate on Cu surfaces. For chemisorbed Cu(dmap)2 on a 

certain adsorption site, all the methods predict similar electronic structures. 

Experimental STM study of Cu(dmap)2 adsorption on the Cu surface could 

complement this study and validate the methods we used. If very ordered Cu(dmap)2 

molecules oriented solely at 120° to each other were observed on the Cu(111) surface, 

the vdW-DF2 or pure PBE methods could be correct, as shown in Figure 4.8a. In the 

same manner, more disordered Cu(dmap)2 structures on this Cu surface could indicate 
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that the PBE-D3 or optB88-vdW methods correctly describe Cu(dmap)2 chemisorption 

in almost any orientation. 

Implication for Cu ALD. In a Cu ALD experiment, the substrate was saturated 

with Cu(dmap)2 when the pulse time exceeded 2.0 s and this gave a growth rate of 0.2 

Å/cycle.[12] An indirect ALD experiment with Cu(dmap)2 pulse time  longer than 3.0 

s afforded a growth rate of 0.50 Å/cycle.[22] In ALD, the precursor molecules should 

chemisorb strongly on the substrate and react with the co-reagent through surface 

diffusion. If however the precursor is merely physisorbed on the substrate, reaction of 

the Cu center with the co-reagent may not be possible because distortion in the 

structure of physisorbed precursors is very slight and the Cu center is not accessible. 

The adsorption sites of chemisorbed precursors thus determine the initial position of 

ALD reactions within the desired monolayer of adsorbates. Regardless of vdW 

functional, we find that the precursors chemisorb easily with less steric hindrance on 

rough surfaces such as Cu(332) steps and Cu(643) kinks. Nevertheless, the 

chemisorption energies on the smooth Cu(111) surface are of the same magnitude 

(with any given method) and thus, the ALD reactions may take place on both smooth 

and rough parts of the growing Cu surface simultaneously.  

The significant elongation of Cu – N during adsorption indicates that the Cu – N 

bond breaks in the early stage of ALD reaction cycle as the Cu centre gains electrons 

and is reduced. As a result, the ligands become unstable and the precursor becomes 

more reactive to the co-reagent. The breaking of the Cu – O bond in the Cu(332)-B 

configuration of the PBE-D3 calculation illustrates that the Cu – O bond may also 

break. These indications show that breaking ligand – Cu bonds is energetically more 

favourable than the breaking of C – C, C – N, C – O and C – H bonds in the ligand 
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that might lead to C or N impurities, or to deposition of copper oxide. This indicates 

that the dmap ligand acts as a unit during the ALD of Cu and is an “innocent” ligand 

that does not participate in the redox reaction. The tendency toward ligand – Cu bond 

breaking in Cu(dmap)2 may partially explain the success of low temperature ALD of 

Cu with this molecule. Clean cleavage of the ligand – metal bond is one of the 

requirements for selecting precursors for ALD of metals.  

The Bader charge analysis shows that the Cu atom in the molecule gains 0.2 to 0.4 

electrons from the surface on chemisorption, which indicates that the adsorbate Cu 

atom is partially reduced. We recognise that DFT has systematic errors in the 

distribution of charge in metal d states.  Nevertheless, some reduction of the adsorbate 

Cu atom should accompany metallic bonding to the surface. This leads to the loss of 

the precursor’s square planar structure and to the linear O – Cu – O motif that attaches 

to the surface.  In order to deposit the Cu metal atom from Cu(dmap)2, the adsorbed 

Cu atom should eventually be reduced to Cu
0
 and the ligands should be removed from 

the surface to pave the way for the next ALD cycle. This is achieved with the reducing 

agent Et2Zn in direct ALD[12] and with formic acid and hydrazine in 3-step ALD.[22] 

Understanding the adsorption of Cu(dmap)2 on the surface provides a base to study the 

full reaction mechanisms between the reducing agent and the adsorbed precursor, 

which we will address in chapter 5.  

4.3 Cu(acac)2 adsorption on Cu(111) surface 

Metal acetylacetonates are frequently used as the precursor for metal ALD and CVD 

processes.[117–120] Copper(II) acetylacetonate [Cu(acac)2] has been mainly used in 

plasma assisted ALD processes to deposit metallic copper and copper oxide, as shown 

in Table 1.1 (page 6). For instance, Wu et al. deposited copper thin film on Ru 
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substrate using Cu(acac)2 and H2 plasma.[121] Thermal ALD of copper using 

Cu(acac)2 has also been reported with a three-step process which involves the 

deposition of the corresponding metal oxide and its reduction to a metal.[16] Cu(II) 

oxide has also been deposited with Cu(acac)2 and ozone (O3) in a temperature window 

of 150 C to 230 C with a growth rate of 0.38 Å/cycle.[122]  

 

Figure 4.9. Optimized structure of copper(II) acetylacetonate [Cu(acac)2] with 

the lowest unoccupied molecular orbital (LUMO) displayed. Color scheme: 

red=O, salmon pink=Cu, grey=C, and white=H. 

In this section, we study the adsorption of Cu(acac)2 on a Cu(111) surface. First we 

present and discuss the energetics and geometric structures of Cu(acac)2 adsorbed on 

several adsorption sites on the Cu(111) surface. Second, we shed light on the factors 

that explain the deposition of copper oxide or metallic copper from Cu(acac)2 by 

analysing the adsorption geometry and charge distribution.  Third, we compare the 

adsorption behaviour of Cu(acac)2 with that of Cu(dmap)2 which is studied in detail in 

section 4.2. We briefly discuss what makes a good Cu ALD precursor from the initial 

adsorption of the precursors. In the top site configuration, the adsorbate Cu atom of 

Cu(acac)2 aligns with the top of a Cu surface atom and the O atoms are slightly off the 

top of Cu atoms of one surface row.  
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In the previous section, we studied the adsorption of Cu(dmap)2 on flat and rough 

Cu surfaces using pure PBE, PBE-D3, vdW-optB88 and vdW-DF2 methods. We 

concluded that the vdW-optB88 functional is one of the most suitable methods for 

describing the vdW interactions at a precursor/substrate interface. Therefore we use 

pure PBE and vdW-optB88 method to study the adsorption of Cu(acac)2 on a Cu(111) 

surface. We use the same computational setups that were used for Cu(dmap)2 

adsorption on Cu(111) surface.  

 

Figure 4.10. Models for the Cu(acac)2 adsorption on a Cu(111) surface. Three 

different adsorption sites, namely hollow, diagonal and top sites, are 

considered. Salmon pink, red, grey and white spheres represent Cu, O, C and 

H atoms, respectively.    

As we understand from the previous section, adsorption energy and adsorption 

geometry are site-selective. Therefore we choose three adsorption sites for Cu(acac)2 

adsorption on the Cu(111) surface: hollow, diagonal and top sites, as shown in Figure 

4.10. In the hollow configuration, the adsorbate Cu atom is located on the hollow site 

of the surface, and the two O atoms are located in bridge sites. In the diagonal 

configuration, one of the O – Cu – O bonds aligns with the long diagonal of four 

neighbouring Cu atoms. In the top configuration, two O atoms align on the top of two 

Cu surface atoms and the adsorbate Cu atom is at a bridge site.  
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The adsorption energies (Eads), the adsorption height (Zads), the Cu – O distance (dcu-

o) and the distance between C, the surface (dc-surf) and the net Bader charge on the 

adsorbate Cu (qCu) are given in  

Table 4.4. With pure PBE, the adsorption energy of -0.48 eV is obtained for the 

diagonal configuration, which is greater than the adsorption energies of hollow and top 

configurations by 0.12 eV. The adsorption height in the diagonal configuration is 2.22 

Å, which is significantly smaller than the adsorption heights in the hollow and top 

configurations.  The net Bader charge change (qCu) on the adsorbate Cu atom in the 

diagonal configuration is also 0.26 e

, while qCu is about zero in the hollow and top 

configurations. It is obvious from these findings and the optimized structures in Figure 

4.11a-c and the 3D charge density plots in Figure 4.12a-c that the Cu(acac)2 molecule 

is chemisorbed in the diagonal configurations and physisorbed in the hollow and top 

configurations for PBE.  

Table 4.4. Calculated adsorption energies and selected structural parameters 

of Cu(acac)2 adsorption on Cu(111) surface using PBE and optB88-vdW 

methods. 

 Eads (eV) Zads (Å) dc-surf (Å) qCu (e

) 

PBE 

diagonal -0.48 2.22 2.24 0.26 

hollow  -0.36 3.20 3.52 0.00 

top -0.36 3.17 3.56 0.01 

OptB88-vdW 

diagonal -2.12 2.21 2.26 0.28 

hollow  -1.77 2.55 3.12 0.20 

top -1.86 2.52 3.11 0.19 
a
The adsorption height Zads is defined as the perpendicular distance between the adsorbate Cu atom 

and the surface Cu atoms averaged over the flat (111) surface. dcu-o is the bond lengths of adsorbate Cu 

and O atoms. dc-surf (Å) is the distance between adsorbate C and the nearest surface Cu atom.   
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Figure 4.11. Optimized Structures of Cu(acac)2 adsorbed on Cu(111) surface 

calculated with PBE (ac) and vdW-optB88 method (df). Structures (a) and 

(c) are for diagonal, (b) and (e) are for hollow and (c) and (f) are for top 

configurations.  

Contrary to pure PBE, the vdW-optB88 functional predicts chemisorption in all 

three configurations (Figure 4.11d-f). The adsorption energy of the Cu(acac)2 

molecule in the diagonal configuration is -2.12 eV, which is about 0.3 eV greater than 

the adsorption energies of the Cu(acac)2 adsorbed in the hollow and top 

configurations. The adsorption height in the diagonal site is 2.21 Å, very close to that 

predicted with pure PBE.  The adsorption heights Zads in the hollow and top structures 

are 2.55 and 2.52 Å, which are in line with the weaker adsorption energies. The net 

adsorbate Cu atom Bader charge in the diagonal site is 0.28 eV, slightly greater than 

the qCu values in top and hollow structures, all indicative of partial reduction of Cu 

on chemisorption. 

As we can see from optimized structures of diagonal configurations, which has the 

highest adsorption energies both from pure PBE and vdW-optB88 functional, two of 

the adsorbate C atoms form a bond with the surface. The C atom and the surface 

distances are 2.24 and 2.26 Å with the surface Cu atom pulled up slightly, indicating 

the Cu – C bond formation. This is also evident from the charge density difference 

plots in Figure 4.12a and d, the surface Cu and C atoms lose electrons (yellow) to form  
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bonds (green regions) between the Cu and C atoms. As we will see in the next chapter, 

the breaking of Cu – C bond needs very high activation energies.  Thus the 

chemisorbed Cu(acac)2 molecule in the diagonal configuration may decompose 

through the scission of the C – O bonds and retention of CuO bonds. This would 

leads to the deposition of CuO or Cu2O rather than Cu metal. Thus, the formation of C 

and surface bonding when the Cu precursor adsorbs on the surface is detrimental to the 

Cu ALD, as it leads to the decomposition of the ligands.  

In conclusion, we studied the adsorption of the Cu(acac)2 molecule on the Cu(111) 

surface with pure PBE and vdw-optB88. The chemisorbed structure is predicted for 

the diagonal structure with pure PBE and for all three configurations with vdW-

optB88 method. The adsorption energies and net adsorbate Bader charge are slightly 

greater in the diagonal configurations in both methods. The bonding between the 

carbon atom and the surface in the diagonal configurations may lead to the reaction 

pathways for the deposition of copper oxides rather than copper metal.  

 

 

Figure 4.12. 3D isosurface of charge density differences obtained with an 

isovalue of ±0.001 e/Å3 of Cu(acac)2 on Cu surfaces using PBE (a-c) and vdW-

optB88 (d-f).  Green and yellow regions represent the accumulation and 

depletion of electronic charge, respectively.  
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4.4 Conclusions 

In conclusion, we studied the adsorption of the Cu(dmap)2 molecule on different 

sites on flat and rough Cu surfaces using DFT with various levels of treatment of vdW 

forces. It is found that the vdW forces are crucial to describe the precursor – substrate 

interaction. The relative order of computed adsorption energies for Cu(dmap)2 on Cu 

surfaces is Eads(PBE-D3) > Eads(optB88-vdW) > Eads(vdW-DF2) > Eads(PBE). We find 

that the pure PBE and the vdW-DF2 methods yield Cu(dmap)2 chemisorbed 

selectively at one Cu(111) surface site, while the PBE-D3 method yields chemisorbed 

structures on Cu(111) at all adsorption sites. The vdW-optB88 functional predicts a 

chemisorbed structure for three out of four adsorption sites and physisorption for one 

site, with a relatively large energy for physisorption. For the rough surfaces, all the 

methods with and without additional vdW forces predict that the molecule chemisorbs 

on the Cu(332) step and Cu(643) kink. 

The absence of Cu – C bonds and the breaking of Cu – N or Cu – O bonds as 

Cu(dmap)2 chemisorbs shows that metal – ligand bonding is broken cleanly during the 

early stage of Cu ALD, making the molecule reactive to the co-reagent in Cu ALD 

reactions without unwanted impurities of C, H, O or N. Charge redistribution occurred 

between the O – Cu – O unit of the molecule and the Cu surface. Bader charge 

analysis shows that the molecule gains electrons in the chemisorbed structures, with 

the Cu centre in particular being partially reduced.  

We also studied the adsorption of the Cu(acac)2 molecule, which is used for deposition 

of metallic Cu and copper oxides, on the Cu(111) surface.  Through considering 

several adsorption sites, a chemisorbed structure is predicted for the diagonal site with 

pure PBE and for all three configurations with vdW-optB88. The bonding between 
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carbon atom and the surface in the diagonal configuration may lead to the reaction 

pathways for the deposition of copper oxides.  
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5 Surface Chemistry of Cu ALD by 

Transmetallation 

In Chapter 4, we studied the adsorption of Copper dimethylamino-2-propoxide 

[Cu(dmap)2] on Cu surfaces. In this chapter, we use periodic DFT method to study the 

surface reaction of Cu(dmap)2 and diethylzinc (Et2Zn, Et = C2H5) to understand the 

reaction mechanism of the low temperature ALD of Cu reported by Lee et al. [12], as 

this experimental work achieved low temperature Cu ALD using a novel precursor and 

co-reagent concept. In the work done by Lee et al, a uniform, conformal, pure copper 

metal thin film was deposited through a new ALD process using the reaction of 

Cu(dmap)2 and Et2Zn, 

 

 

(5.1) 

Lately, low temperature ALD of copper was achieved using Cu(dmap)2 but with other 

co-reagents.[22,23] Although the ALD mechanisms of metal oxides are well 

understood,[37,40,123] very few theoretical works were dedicated to understand the 

reaction mechanisms of copper and other metals.[79,124]  Dey et al. used a gas phase 

model to study the reactions of several common Cu precursors with Et2Zn.[79] 

However, since ALD is based on self-terminating surface reactions, it is necessary to 

understand the role of the surface. This chapter deal with the reaction pathways and 

energetics for a full cycle of Cu ALD, including the adsorption/dissociation of 

Cu(dmap)2, adsorption/decomposition of (C2H5)2Zn, ligand diffusion by-product 
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formation and desorption. Finally we determine the reaction mechanism of Cu ALD 

based on our calculation.  

5.1 Computational method 

All calculations were performed using the Vienna Ab Initio Simulation Package 

(VASP).[85,125] Projector augmented wave (PAW)[86] potentials were used to 

represent the effective cores. Electronic optimization was performed self-consistently 

using the plane wave basis set with a cutoff energy of 450 eV. The 

Perdew−Burke−Ernzerhof (PBE)[46] functional was used to describe exchange and 

correlation effects. The Cu(111) surface was modelled with p (6 × 6) surface unit cells 

and fourlayer slabs separated by 18 Å of vacuum and a precursor coverage of one 

Cu(dmap)2 per 2 nm
2
 (cell volume = 4.99 nm

3
), following our previous study in 

Chapter 4. All atoms in the slab were allowed to relax, and the systems were 

considered to be fully optimized when the forces on each ion were smaller than 0.02 

eV/Å. 

 The minimum energy pathways (MEP) were investigated using the climbing image 

nudged elastic band method (CI-NEB) to determine the transition state (TS) 

structure.[91,92] For both reactant and product of a certain reaction, we perform 

geometry optimization to identify the minimum energy configurations which are used 

to generate a number of initial images along the MEP using linear interpolation. The 

atomic structures were relaxed using the quasi-Newton scheme as the CI-NEB method 

requires a forcebased optimizer. Ten images were introduced for each reaction. The 

reaction was divided into two separate reactions if an intermediate minimum was 

found. The forward reaction rate can be calculated from, 
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 𝑘 = [
𝑘𝐵𝑇

ℎ
𝑒𝑥𝑝 (

∆𝑆‡

𝑅
)] 𝑒𝑥𝑝 (

−𝐸𝑎

𝑅𝑇
) (5.2) 

where 𝑘𝐵 and h are Boltzmann’s and Planck’s constants, respectively. ∆𝑆‡, the 

entropy of activation, is the standard molar change of entropy when the activated 

complex is formed from reactants and 𝐸𝑎 is the activation energy. T is the temperature 

in Kelvin. We consider low activation barriers 𝐸𝑎 of less than 1 eV, which is 

accessible at ALD temperatures of around 500 K.[40] 

  

5.2 Results 

This ALD process of Cu consists of pulses of precursor Cu(dmap)2 and co-reagent 

Et2Zn, separated by purges. Thus, we postulate the reaction pathways based on our 

calculations and divide the reaction pathways into two sections, namely, (i) adsorption 

and decomposition of Cu(dmap)2 on Cu(111) surface and (ii) adsorption and 

decomposition of Et2Zn on the Cu(111) surface covered with Cu(dmap)2 fragments 

and by-product formation. Table 5.1 lists the calculated activation barrier (Ea) and the 

reaction energy (E) for the possible reactions of Cu(dmap)2 and Et2Zn on the 

Cu(111) surface. The steps in this cyclic process are labelled with capital letters from 

‘A’ to ‘G’. In the following sections, we separately present our results on each of these 

steps and discuss these reactions in order to understand the overall reaction mechanism 

of Cu ALD.      

5.2.1 First half reaction: adsorption and decomposition of Cu(dmap)2 

on Cu(111) surface. 

In the previous chapter, we studied the adsorption of Cu(dmap)2 on a number of 

adsorption sites on flat and rough Cu surfaces using different levels of treatment of 
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vdW interactions. We found that pure PBE predicts that physisorbed and chemisorbed 

stuctures exist on Cu(111) surface depending on the adsorption sites. Now we discuss 

the possible reaction pathways of the decomposition of Cu(dmap)2 and its reaction 

with Et2Zn molecule on the Cu(111). Figure 5.1 shows the reaction energy pathways 

of the first half part of the Cu ALD reaction, which consists of adsorption and 

decomposition of Cu(dmap)2 represented with step A and step B respectively. 

Table 5.1. The calculated activation barrier (Ea) and reaction energies (E) for 

possible reactions for depositing Cu from Cu(dmap)2 and Et2Zn through ALD. 

Capital letters ‘A’ to ‘G’ represent following steps: A is  adsorption of 

Cu(dmap)2, B is decomposition of Cu(dmap)2, C is adsorption of Et2Zn on the 

dmapcovered surface, D is the ethyl group migration, E is ligand diffusion, F 

is ligand re-ordering, G is  Zn(dmap)2/butane formation. The capital letters with 

numbers represent different configurations. The configurations with Ea less 

than 1.0 eV are shown in the following figures.           

reactions Ea (eV) E (eV) explanation 

First half reaction 

1. A1A2 0.17 -1.01 Physisorption to chemisorption transition 

2. A2B1 0.44 -0.11 One CuO bond scission (Cudmap+dmap) 

3. A2B2 0.58 -0.01 double CuO bond scission (dmap+Cu+dmap) 

4. A2B3 1.56 0.26 The OC bond scission 

5. A2B4 1.92 0.90 The CC bond scission 

6. A2B5 2.59 0.73 The CN bond scission 

Second half reaction 

7. B1C1  -0.03 Et2Zn adsorption on Cudmap+dmap  

8. B2C2  0.01 Et2Zn adsorption on dmap+ Cu + dmap  

9. C1D1 0.78 -2.03 Butane formation and desorption 

10. C2D1 1.25 -0.52 Butane formation and desorption 

11. C1D2 0.55 -0.65 ZnEt, CuEt, Cudmap, dmap formation 

12. C2D2 0.57 -0.69 ZnEt, CuEt, Cudmap, dmap formation 

13. C1D3 0.61 0.31 Two ethyl group attached to the surface 

14. D1E1 0.34 -0.33 dmap ligand diffusion 

15. D1E2 0.68 0.28 dmap ligand diffusion 

16. D2E3 0.85 -0.68 Butane formation 

17. D3E4 0.33 0.20 dmap ligands diffusion 

18.E1F1 0.44 0.37 dmap ligands diffusion 

19.E2F2 0.62 0.28 dmap ligands diffusion 

20.E3F3 0.71 0.35 Dmap ligands diffusion 

21.E4F4 0.56 0.30 Zn(dmap)2 formation 

22. F1G1 0.78 0.43 Dmap ligands re-ordering 
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23. F2G1 0.15 0.05 Dmap ligands re-ordering 

24. F3G1 0.32 -0.83 Dmap ligands re-ordering 

25. F4G2 0.49 -0.38 Ethyl groups re-ordering 

26.G1H1 0.79 0.72 Zn(dmap)2 desorption 

27. G2H2 0.73 -1.49 Butane desorption 

Adsorption energy of Et2Zn (reaction 7 and 8) on decomposed Cu(dmap)2 is calculated relative to 

configuration B1 with surface fragments of Cudmap + dmap.  

 

 

Figure 5.1. First half of the reaction cycle of Cu ALD. Reactant/product states 

are in black and activation energies are in red. Activation energy greater than 1 

eV is not included in the graph.   

A: adsorption of Cu(dmap)2. The physisorbed (A1) and chemisorbed (A2) structures 

are shown in Figure 5.2. The physisorbed Cu(dmap)2 molecule is very stable and not 

spontaneously reactive to Et2Zn. Therefore the physisorbed Cu(dmap)2 molecules 

should transform into chemisorbed states. Figure 5.1 shows that transformation from 

the physisorbed (A1) to chemisorbed (A2) structures needs an activation energy (Ea) 

of 0.17 eV, which can be overcome by a typical ALD temperature, e.g. 100 C. 
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Figure 5.2. Step A: adsorption of Cu(dmap)2 on Cu(111) surface. A1: 

physisorption, A2: chemisorption. 

B: decomposition of Cu(dmap)2.  The surface should be saturated with the 

chemisorbed Cu(dmap)2 molecules or fragments to form a monolayer after the 

Cu(dmap)2 pulse during the ALD experiment. We found that Et2Zn will not react with 

the chemisorbed Cu(dmap)2 molecules on Cu(111). This is because the Cu centre of 

the molecule is still not accessible, even though the Cu(dmap)2 molecule is partially 

decomposed upon chemisorption. Thus, it is legitimate to assume that the chemisorbed 

Cu(dmap)2 undergoes further decomposition. We considered several possibilities for 

bond scissions in the Cu(dmap)2 molecule: one CuO bond (B1), both CuO bonds 

(B2), OC bond (B3), CC bond (B4) and CN bond (B5). We calculated the 

activation barriers for breaking one (A2B1) and two (A2B2) CuO bonds to be 

0.44 eV and 0.58 eV, respectively, indicating that the reactions are both viable at ALD 

temperature. The optimized structures for the resulting configuration B1 and B2 are 

shown in Figure 5.3. In configuration B1, the surface is covered with the dmap and 

Cu(dmap) fragments of the molecule. The distance between the O atom in dmap and 

the Cu atom in Cu(dmap) is 4.45 Å. The O atom in the dmap is located in the hollow 

site of the Cu(111) surface and bonds with three surface Cu atoms. The CuN bond is 

formed (2.10 Å) again in the Cudmap because of a reduction of strain in the molecule 
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upon the decomposition. In configuration B2, the distances of the O atoms in the dmap 

fragments from the adsorbate Cu atom are 3.95 Å and 3.99 Å. Both the O atoms in 

dmap fragments are located in the hollow site. An N – surface Cu bond is formed 

(2.31 Å) in one of the dmap ligands, as it is evident from Figure 5.3 that the Cu 

surface atom under the N atom is pulled up significantly. The reverse reaction to form 

the Cu(dmap)2 molecule from these decomposed fragments is extremely unlikely 

because the chemisorption of Cu(dmap)2 alone needs energy of 1.47 eV.            

We now consider decomposition of a dmap ligand from chemisorbed Cu(dmap)2 

(A2). The calculated activation energies are 1.56 eV for the scission of the OC bond 

(A2B3), 1.92 eV for the scission of CC bond (A2B4) and 2.59 eV for the 

scission of CN bond (A2B5). The breaking of the OC, CC and CN bonds are 

therefore not accessible at a typical ALD reaction temperature of 200  300 C, as in 

the work done by Lee et al. [12] This indicates that the Cu(dmap)2 molecules fragment 

instead through the breaking of one or two CuO bond in ALD experiments. This 

proves that dmap ligands are ‘innocent’ and participate in the reaction as a single unit. 

In the Et2Zn pulse, the Et2Zn molecules may react with the two different fragments of 

Cu(dmap)2, namely Cudmap + dmap (B1) and dmap + Cu + dmap (B2).      
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Figure 5.3. Step B: decomposition of Cu(dmap)2 on Cu(111). The fragments of 

decomposed Cu(dmap)2 are Cudmap + dmap (B1) and dmap + Cu + dmap 

(B2). 

5.2.2 Second half reaction: Et2Zn adsorption, butane formation and 

Zn(dmap)2 formation 

The second half of the Cu ALD transmetallation process is the reaction of Et2Zn on 

the surface covered with fragments of Cu(dmap)2 to deposit atomic Cu and by-

products butane and Zn(dmap)2.   

Figure 5.4 shows the reaction energy pathways, which we discuss in detail. 
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Figure 5.4. Reaction energy diagram for the second half reaction cycle of Cu 

ALD process. Reactant/product states are in black and activation energies are 

in red. Activation energy greater than 1 eV is not included in the graph. The 

configurations labelled with a capital letter and a number are given in the 

following figures.   

C: adsorption of Et2Zn on the dmapcovered surface. Figure 5.5 shows the 

optimized structures of Et2Zn adsorption on the configuration B1 and B2, which are 

labelled C1 and C2, respectively. The adsorption energies of Et2Zn on configuration 

B1 and B2 are calculated to be -0.03 eV and 0.01 eV, respectively. These small 

adsorption energies are apparently the result of significant distortions of both dmap 

ligands and Et2Zn molecule on the surface. In the C1 configuration, the Et2Zn 

molecule is adsorbed between Cu(dmap) and dmap fragments. The Zn atom in the 

Et2Zn molecule is situated on a bridge site of Cu(111) surface. The ethyl groups are 

bent upward and the C-Zn-C angle is 134.5. The distance between Zn and the 

adsorbate Cu atom is 3.11 Å. The Zn – O distances are 4.01 Å and 4.35 Å. In 
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configuration C2, the Et2Zn molecule is attached on top of the adsorbate Cu atom. The 

adsorbate Cu atom forms bonds with the Zn atom (Zn–Cu bond length is 2.43 Å) and 

with the C atom (C Cu bond length is 2.12 Å) in one of the ethyl groups to form a 3-

membered ring. This results in substantial stabilization relative to B2. However, 

overall, the C1 and C2 structures are very close in energy.    

 

Figure 5.5. Step C: Adsorption of Et2Zn on the surface with fragments of 

Cu(dmap)2 B1 and B2, respectively. 

D: The ethyl group migration. As the Zn atom is attached to ethyl groups in 

configuration C1 and C2, we assume that ethyl groups migrate away from Zn atom in 

order to give the dmap ligand access to Zn and allow the ethyl groups to form butane. 

We consider several possibilities for ethyl group migration: (1) direct butane 

formation from Zn and desorption (C1D1); (2) one ethyl migration to adsorbate Cu 

to form CuEt and ZnEt fragments (C1D2, C2D2) and (3) migration of both ethyl 

groups to surface Cu (C1D3). The final configurations D1, D2 and D3 of ethyl 

group migrations are shown Figure 5.6. The direct butane formation (C1D1) is 

highly exothermic  (E = -2.03 eV, Table 5.1), and needs activation energy of 0.78 

eV. Electrons are transferred from desorbing ethyl groups to surface Zn atom. This 

direct formation of butane is not possible scenario on configuration C2, as evidenced 
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by the calculated activation barrier is 1.32 eV (C2D1). This is because an extra C – 

Cu bond was formed in the Et2Zn adsorbed on the Cu atom in configuration C2. In the 

second case, formation of the CuEt and ZnEt fragments attached to the surface 

(configuration D2) was achieved from both C1 and C2, with the activation energy of 

0.55 eV and 0.57 eV, and E of -0.7 eV. The configuration D3, with the two ethyl 

groups migrated to the Cu(111) surface was achieved from configuration C1 with an 

activation energy of 0.61 eV. We found that achieving D3 from C2 needs activation 

energy of 1.78 eV, thus making C2 D3 not possible, probably because this would 

re-expose the adsorbate Cu atom.         

 

Figure 5.6. Step D: reaction of Et2Zn obtained from configuration C1 and C2. 

Three possibilities are considered: D1 is butane formation; D2 is EtZn + EtCu 

fragment formation and D3 is fragments of two ethyl groups on Cu(111) 

surface. 

E: ligand diffusion. Once the Zn atom becomes accessible for dmap ligands, dmap 

ligands may diffuse on the surface to form a Zn(dmap)2 molecule. Figure 5.7 shows 

the configurations of relevant reaction products obtained from D1, D2 and D3 

configurations. The configurations E1 and E2 are obtained from D1 by moving dmap 

ligands after removing the butane molecule. In configuration E1, a free standing dmap 

ligand moves toward Zn atom (D1E1), which needs an activation energy of 0.33 eV 
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and releases energy of E = 0.33 eV. As can be seen in Figure 5.4, E1 is the most 

stable surface intermediate that has been found for the Et2Zn pulse. The activation 

energy for D1E2 is twice greater than that of  D1E1. This is because the dmap 

ligand has to move above the Cu-Zn dimer instead of the smooth Cu(111) surface, 

which makes the diffusion of dmap more difficult. The butane molecule is formed 

from two ethyl groups attached to the Cu and Zn in configuration E3, with the 

activation energy Ea of 0.85 eV and the reaction energy E of -0.68 eV. The Cu and 

Zn atom distance is 4.47 Å and the distances between O atoms in the dmap ligand and 

the Zn atom are 4.22Å and 4.69 Å in configuration E3. We also checked the formation 

of (dmap)CuEt intermediate product from configuration E3 through moving CuEt 

fragments to the dmap ligand in D2 configuration, which has Ea of 0.44 eV and E = 

0.16 eV. We found that butane formation and ethyl group migrations to the surface 

from the (dmap)CuEt covered surface are not likely because the activation barriers for 

these two processes are quite high (1.35 and 1.11 eV, respectively, not listed in Table 

5.1). Since the reaction energy of forming the intermediate product (dmap)CuEt is 

endothermic (0.16 eV), the reverse reaction from the intermediate product to form the 

CuEt and ZnEt in configuration D2 may take place with the reverse activation barrier 

0.28 eV. In configuration E4, two dmap ligands diffuse toward the Zn atom to form 

Zn(dmap)2 molecule, which is obtained from D3. The D3E4 transition has the 

activation energy of 0.33 eV. Clearly, through the reaction pathway 

B1C1D3E4, the Zn(dmap)2 is formed when the ethyl groups are donated to the 

surface.     
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Figure 5.7. step E: ligand diffusion. E1 and E2 are reaction products of D1. E3 

and E4 are the reaction products of D2 and D3, respectively.  

F: ligand re-ordering. After the dmap ligands have diffused towards the Zn atom, 

they may re-order their atomic positions to form a Zn(dmap)2 molecule. Figure 5.8 

shows the re-ordered ligands. The E1F1 reaction needs activation  of 0.44 eV. As 

we can see from the F1 configuration, the Zn(dmap)2 structure is deformed with NZn 

distance 3.8 Å. The reaction E2  F2 needs Ea of 0.62 eV. In this case, the long OZn 

distance is 4.2 Å. Thus, in the F2 configuration, the ligands have to move further to 

form Zn(dmap)2 molecule. The O atoms in dmap ligands are attached to the Zn atom 

in F3 configuration, which is obtained from E3 after removing the butane molecule. 

This process (E3  F3), that is slightly exothermic with the reaction energy of -0.35 

eV, has the activation barrier of 0.71 eV. In F4 configuration, the Zn(dmap)2 by-

product molecule is formed and desorbed from the surface in the presence of two ethyl 
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groups on the surface (F4). Obtaining F4 from E4 needs the Ea of 0.56 eV and E of 

0.30 eV.        

 

Figure 5.8. Step F: ligand re-ordering. configuration F1 and F2 are reaction 

products of E1 and E2, respectively.  

G: Zn(dmap)2/butane formation. After ligand diffusion and ligand re-ordering 

steps, a Zn(dmap)2 molecule can be formed from these re-ordered ligands. Because the 

F1, F2 and F3 configurations have the same surface elements and only the location of 

dmap and Zn(dmap) fragments differ slightly, we merge them to a single configuration 

G1, as shown in Figure 5.9. The activation energy from achieving G1 from F1 (0.78 

eV) is approximately twice greater than that of achieving G1 from F3 (0.32 eV). The 

process F2  G1 only needs activation energy of 0.15 eV because the Zn atom is 

already coordinated to the damp ligand in the previous step. The two processes of  

Zn(dmap)2 formation from F1 and F2 are endothermic with the reaction energies of 

0.43 eV and 0.05 eV, respectively. In configuration G1, Zn(dmap)2 is not fully shaped 
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as one of the CuN bond lengths is greater than its gas phase bond length by 1.6 Å. By 

comparing the Cu(dmap)2 chemisorbed on Cu(111) with configuration G1, we can 

find that it has some common features: OZnO atoms form bonds with the surface 

Cu atoms, and Ncontaining parts of the ligand are distorted. This indicates that G1 is 

indeed the chemisorbed Zn(dmap)2 on Cu(111) surface. Next, this chemisorbed 

Zn(dmap)2 molecule should desorb from the surface.  

The ethyl groups or the deposited Cu adatom migrate to form a butane molecule in 

configuration G2, which follows the desorption of the Zn(dmap)2 molecule in 

configuration F4. We found that formation of butane from ethyl groups on the smooth 

surface is not favourable, because it needs activation energy of 1.25 eV. As the 

deposited Cu adatom can diffuse on the surface with the relatively small energy cost 

(Ea = 0.02 eV from one hollow site to the neighbouring hollow site), we moved the 

deposited Cu adatom between the two ethyl groups to form the Cu(Et)2 intermediate. 

The activation barrier to form the Cu(Et2) in configuration G2 from F4 (after removing 

the Zn(dmap)2 molecule and moving the deposited Cu adatom between two ethyl 

groups) is 0.49 eV. The reaction is slightly exothermic with the reaction energy of 

0.38 eV.  This indicates that butane formation is only possible on rough surfaces 

during the ALD process. 
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Figure 5.9. step G: Zn(dmap)2 formation.  

H: Zn(dmap)2/butane desorption. In G1 configuration, dmap ligands re-ordered to 

form Zn(dmap)2 and in H1 this molecule desorbs (Figure 5.10). The calculated 

activation barrier Ea is 0.79 eV and the reaction energy E  is 0.72 eV, i.e. the 

desorption of Zn(dmap)2 is endothermic. The ZnO and ZnN bond distances are 

1.89Å and 2.30 Å, respectively. The Znsurface distance is 4.2 Å, which indicates that 

the molecule is almost not interacting with the surface. The desorbed Zn(dmap)2 by-

product molecule can be purged away to vacate the surface for the new Cu(dmap)2 

molecules in the next ALD cycle.   

In the H2 configuration, which is obtained from configuration G2, the butane 

molecule desorbs through the decomposition of the Cu(Et)2 molecule, which needs an 

activation energy of 0.73 eV. The G2  H2 process is strongly exothermic, consistent 

with the process C1  D1. Once again, reduction of the surface cations to metallic Cu 

is achieved in this step by donation of electrons from ethyl groups as they combine 

into butane and desorb. As we described above, the metallic Cu atom may be 

deposited through two different pathways. 
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Figure 5.10. Step H: Zn(dmap)2 (H1) or butane (H2) desorption.  

5.3 Discussion 

5.3.1 The reaction mechanism of Cu ALD 

The results on the first half reaction cycle shows that the Cu(dmap)2 pulse just seems 

to involve dissociative chemisorption with ligands intact. In the original experimental 

work, the film thickness per cycle for Cu(dmap)2 is saturated when the pulse time 

exceeds 2 s.[12] This relatively long pulse time of Cu(dmap)2 allows the full saturation 

of the surface with the fragments of Cu(dmap)2. During the second pulse, we predict 

that butane molecule is formed just after adsorption of Et2Zn , and this reaction is 

extremely exothermic. In the experimental work,[12] the pulse time for Et2Zn is 0.5 s 

and it was found that Et2Zn undergoes a fast self-terminating replacement reaction 

with the Cu(dmap)2 adsorbed on the surface, which seems to be consistent with our 

result.    

The reaction pathways based on Figure 5.1 and Figure 5.4 are schematically illustrated 

in Figure 5.11. In the first pathway, the butane formation takes place just after Et2Zn 

adsorption. Then the dmap ligands diffuse and re-order to form the Zn(dmap)2 

molecule, which finally desorbs from the Cu surface. In the second reaction pathway 

(Figure 5.11b), the ethyl groups migrate away from Zn to the surface. This provides 
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dmap ligands with access to diffuse toward the free Zn atom and to re-order to form 

the Zn(dmap)2 molecule. The formation of butane on the smooth Cu surface is not 

preferred as it requires rather high activation barrier. The formation of intermediate 

product Cu(Et)2 helps the formation of butane because the activation energy is 

significantly lowered by the migration of the Cu adatom. It is possible that these two 

types of reactions take place at the same time, with different reaction rates. 

As we can see from Figure 5.4, the reaction energies of most of the ligand diffusion 

and ligand re-ordering steps leading to Zn(dmap)2 are endothermic and the reaction 

pathways are uphill in these stages. This indicates that the activation barrier for the 

reverse reactions is smaller than that of forward reactions. Thus the rates of reverse 

reactions can be higher than those of the forward reactions during the ligand diffusion 

and re-ordering steps. Nevertheless, desorption of Zn(dmap)2 is expected to be 

irreversible, and this will drive the equilibrium (slowly) towards formation of the 

product. Residual adsorbed dmap may block sites against adsorption of Cu(dmap)2 in 

the next ALD cycle. This may lead to a slower growth rate during ALD.  Lee et al 

reported that the growth rate is 0.2 Å/cycle with  Cu(dmap)2 and Et2Zn in their ALD 

work.[12] Slow desorption of the Zn by-product may result in incorporation of Zn into 

the growing metallic film as an impurity. Indeed 10 % Zn is detected in the 

experiment.[11]  
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Figure 5.11. The schematic illustration of reaction mechanisms of copper ALD 

by transmetallation from Cu(dmap)2 and Et2Zn.  

 

5.4 Conclusion 

Atomic layer deposition (ALD) has been a promising method to deposit conformal and 

uniform thin film of copper for future microelectronic devices. However, the reaction 

mechanism and the surface chemistry of copper ALD remain unclear. In this Chapter, 

we employ density functional theory to study the ALD reaction of copper 

dimethylamino-2-propoxide [Cu(dmap)2] and diethylzinc [Et2Zn] based on the seminal 

paper of Lee et al. [Angew. Chemie Int. Ed. 2009, 48, 4536–4539]. We conclude 
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based on activation energies and reaction energies for a range of surface reactions that 

there are two different reaction pathways in the Et2Zn pulse. We found that the 

chemisorbed Cu(dmap)2 decomposes through breaking of one or both Cu–O on 

Cu(111) after the  Cu(dmap)2 pulse. The butane formation and the migration of ethyl 

groups to the surface are two possible routes for the decomposed Et2Zn after its 

adsorption on the Cu(111) surface saturated with the decomposed Cu(dmap)2. In the 

first case, the butane formation/desorption is followed by the diffusion and reordering 

of dmap ligands around the Zn atom to form the Zn(dmap)2 molecule. In the second 

case, the dmap ligands diffuse and re-order around the Zn atom. The Zn(dmap)2 is 

formed and desorbed in the presence of ethyl groups, which is followed by butane 

formation and desorption with the assistance of migrating Cu atom. 

Because the butane formation and desorption steps are extremely exothermic, the ALD 

reaction in reaction scheme (5.1) is possible. However, the ligand diffusion and re-

ordering steps are endothermic which may result in residual dmap ligands blocking 

surface sites at the end of the Et2Zn pulse, and in residual Zn being reduced and 

incorporated as an impurity. This may lead to very slow growth rate, as was the case in 

the experimental work.        

 

 

 

  



6. The Reduction Of CuO To Metallic Copper 

 
 

85 

 

6 The Reduction Of CuO To Metallic Copper
2
 

6.1 Introduction 

ALD processes where only one co-reagent is used after the copper organometallic 

compound pulse have a low growth rate and require relatively high temperature, which 

leads to the agglomeration of Cu islands at substrates.[22] A three-step ALD process 

which uses two co-reagents consecutively was found to enhance the growth rate.[23] 

These indirect approaches for metal ALD from oxides and nitrides are based on the 

reduction of the corresponding oxide/nitride,[16] i. e. an ALD cycle for depositing the 

metal oxide or nitride and reduction to the metal with a pulse of reducing agent. 

Examples of this indirect approach to metal ALD include ALD of Cu3N followed by 

reduction to Cu metal by treatment with H2 at 160 °C[126] and ALD of CuO followed 

by reduction to Cu metal with H2 at 270–320 °C.[16] More recently, Knisley et 

al. reported low temperature deposition of high purity copper film through ALD of 

copper(II) formate, which is then readily reduced to Cu metal by a hydrazine (N2H4) 

pulse at 80 °C.[22] Cu islands and discontinuous thin films on the substrate are 

observed in these indirect ALD methods after the reduction to metallic Cu. Kalutarage 

et al. compared two-step process and three-step process using the ALD reaction of 

Cu(dmap)2 with BH3(NHMe2) and separately with BH3(NHMe2) and HCO2H.[23] 

They showed that the two-step process requires a Cu seed layer, and affords a growth 

rate of about 0.13 Å/cycle within the 130−160 °C ALD window. The three-step 

process does not need a Cu seed layer for growth, and affords a growth rate of 0.20 

                                                 
2
 (Content of this chapter is published in Physical Chemistry Chemical Physics. See 

ref [74]). 
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Å/cycle within the 135−165 °C ALD window. Indirect ALD has also been applied to 

deposit other metals. An atomic layer of NiO is reduced to Ni metal after the ALD 

process using hydrogen radical at 165 °C.[127] Ir metal is obtained from reducing 

IrO2 by applying a H2 pulse at 120–180 °C after each ALD cycle of IrO2.[120]  

Ideally, the reduction process that follows ALD should be carefully chosen so as to 

obtain conformal and uniform thin metal films at low temperature, but it is not clear 

whether it is possible. Experimentally, metal oxides have been reduced to 

corresponding metals using different methods. Lee et al. reduced CuO to metallic 

copper through vacuum annealing at 673 K.[128] Kim et al. reported CuO reduction at 

atmospheric pressure of H2 and temperatures of 423–573 K.[129,130] Reduction of 

NiO with H2 was studied by Rodriguez and co-workers using in situ time-resolved 

XRD and NEXAFS/EXAFS at atmospheric pressure of H2 and temperatures of 523–

623 K.[131] In order to improve the process of Cu film growth, it is necessary to 

understand the reduction mechanisms of metal oxide films and surfaces to the 

corresponding metals. 

In this chapter, we study the reduction of a CuO surface (that would be grown with 

ALD) to metallic Cu using density functional theory (DFT) with the generalized 

gradient approximation (GGA) corrected for on-site Coulomb interactions through the 

Hubbard U correction (GGA + U) and with a screened hybrid density functional 

(HSE06).[132,133] The CuO(111) surface is the most stable, as measured by surface 

energy, and hence we consider only this surface for our study (Section 6.2.1). Two 

possible mechanisms for CuO reduction to metallic Cu are studied: direct formation of 

oxygen vacancies by removal of neutral oxygen from surface and subsurface as the 

model of vacuum annealing method in ref. [128] (Section 6.2.2) and the reaction of 
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H2 with oxygen on the CuO(111) surface to form water as the model of reduction of 

CuO with reducing agent H2 in ref [129] and [130] (Section 6.2.3). Using ab 

initio atomistic thermodynamics, we relate our computational results with these two 

different reduction methods, and we get new insight into how the CuO surface is 

reduced to metallic Cu. 

6.2 Computational methods 

All calculations were performed using DFT implemented in the VASP 

code,[125] in which the valence electron states are expanded in a plane-wave basis set 

with an energy cutoff of 400 eV.[85] Exchange and correlation are treated within the 

generalized gradient approximation (GGA), using the Perdew–Burke–Ernzerhof 

(PBE) functional.[134] Since conventional DFT functionals are unable to adequately 

describe the strong correlation effect among the partially filled Cu 3d states in 

CuO,[135] the Hubbard parameter, U, is introduced for the Cu 3d electrons to describe 

the on-site Coulomb interaction, giving the well-known GGA + U method.[136] The 

values of U = 7 eV and J = 0 eV for CuO were adopted from ref. [137]. Spin polarized 

calculations were performed since bulk CuO has an antiferromagnetic ground state. 

For bulk CuO, an 8 × 8 × 8 k-point grid within the Monkhorst–Pack scheme in the 

Brillioun zone was employed. To allow the vacancy formation energy and adsorption 

energy to be obtained, gas phase H2, O2 and H2O molecules were calculated in the 

CuO(111)-(2 × 1) supercell without CuO. Full geometry relaxation of all surface 

structures was carried out using the conjugate gradient method for energy 

minimization until the forces on each ion were less than 0.02 eV Å
-1

. 

To study oxygen vacancy formation and H2 adsorption on CuO(111) surface, a (2 × 

1) surface supercell expansion was used and a (2 × 2) surface supercell was also used 
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to check the results for oxygen vacancy formation. The slab thickness was six layers 

(12.4 Å), with a 15 Å vacuum gap. The Brillouin zone was sampled with a 4 × 8 × 1 k-

point grid. For the oxygen vacancy calculations, we validate our results by using the 

Heyd–Scuseria–Ernzerhof (HSE06) hybrid functional with a screening length of 0.2 

Å
−1

, where correlation is described in GGA (PBE) and the exchange is a mixture of 

25% exact (HF) exchange and 75% PBE exchange.[132,133] A 2 × 4 × 1 k-point grid 

is used for all the HSE06 calculations due to the computational intensity of the hybrid 

functional. 

The formation energy per oxygen vacancy is defined as 

 
𝐸vac = 𝐸(CuO1−𝑛𝛿) − 𝐸(CuO1−(𝑛−1)𝛿) +

1

2
𝐸(O2) 

(6.1) 

where  𝐸(CuO1−𝑛𝛿) −and  𝐸(CuO1−(𝑛−1)𝛿) are the  energies of the slabs 

with n and n − 1 number of oxygen vacancies, respectively. Here, a positive number is 

energetic cost. δ is the vacancy concentration that results from removing one oxygen 

atom from the cell. In our (2 × 1) slab, δ = 0.25 for one oxygen vacancy in a 

layer. 𝐸(O2) is the energy of oxygen molecule in the gas phase and corresponds to the 

chemical potential of oxygen gas at standard pressure and T = 0 K. While the GGA 

method overbinds the O2 molecule by 0.7 eV per atom relative to 

experiment,[109] which leads to overstabilisation of an oxygen vacancy, the trends in 

oxygen vacancy stability are expected to be unaffected by this constant error. The 

HSE06 functional has been used by Ganduglia-Pirovano et al. for studying oxygen 

vacancies in the CeO2 surface, where they found that DFT + U and HSE06 predict the 

relative stability correctly.[138] Thus, the impact of overstabilisation of oxygen 

vacancies in our calculations can be assessed by using HSE06. 
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For the adsorption of H2 onto the CuO(111) surface, the adsorption energy ΔEads is 

calculated from: 

 ∆𝐸ads = 𝐸(H2@CuO1−𝑛𝛿) − 𝐸(CuO1−𝑛𝛿) − 𝐸(H2) (6.2) 

where E(H2@CuO1−nδ) is the energy of CuO(111) surface with n oxygen vacancies 

and a H2 molecule adsorbed. E(H2) is the energy of a hydrogen molecule in the gas 

phase and thus represents conditions of PH2 = 1 atm and T = 0 K. 

The desorption energy of a water molecule from the partially reduced CuO(111) 

surface after H2 adsorption is calculated from: 

 ∆𝐸des = 𝐸(CuO1−(𝑛−1)𝛿) + 𝐸(H2O) − 𝐸(H2@CuO1−𝑛𝛿) (6.3) 

where 𝐸(H2O) is the energy of a water molecule in the gas phase. If the desorption 

energy is negative, desorption of the water molecule into the vacuum is favourable. 

The reduction energy ∆Ered of the CuO(111) surface with H2 is thus defined as the sum 

of adsorption and desorption energies above: 

 ∆𝐸red = ∆𝐸ads + ∆𝐸des (6.4) 

In order to investigate the surface stability across a range of experimental 

conditions, we apply ab initio thermodynamics[68] to the two cases of CuO(111) 

surface reduction – oxygen vacancy formation and H2 adsorption on the CuO(111) 

surface. At temperature T, and pressure P, the surface free energy of the CuO(111) 

surface can be defined 

 
𝛾(𝑇, 𝑃) =

1

𝐴
[𝐺 − ∑ 𝑁𝑖𝜇𝑖(𝑇, 𝑃)

𝑖

] 
(6.5) 

where G is the Gibbs free energy of the solid with the surface area A. 𝜇𝑖(𝑇, 𝑃) is the 

chemical potential of the ith species and Ni is the number of units in the system. In the 
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first case, for vacuum annealing of CuO (Section 6.2.2), only two atom types are 

present and react according to the stoichiometry Cu + O → CuO so 

that μCu + μO = μCuO. Hence Equation (6.5) can be written as a function of one 

chemical potential: 

 

𝛾(𝑇, 𝑃) =
1

𝐴
[𝐸𝑠𝑙𝑎𝑏 − 𝑁𝐶𝑢𝜇𝐶𝑢 − 𝑁𝑂𝜇𝑂]

=
1

𝐴
[𝐸𝑠𝑙𝑎𝑏 − 𝑁𝐶𝑢𝜇𝐶𝑢𝑂 − 𝑁𝑣𝑎𝑐𝜇𝑂] 

(6.6) 

where Nvac = NCu − NO is the number of oxygen vacancies on the CuO(111) surface, 

and the plus sign means an oxygen deficiency in the system. The oxygen chemical 

potential μO can be related to the oxygen pressure P and the temperature T by 

 𝜇𝑂(𝑇, 𝑃) = 𝜇(𝑇, 𝑃0) +
1

2
𝑘𝑇𝑙𝑛

𝑃

𝑃0
 (6.7) 

To determine the range of the oxygen chemical potential, we set the maximum 

value of μO(T, P) to be the total energy of oxygen in the gas phase, i.e., μO(0, P
0
) = 

½E(O2) = 0, which corresponds to the oxygen-rich condition. The minimum 

of μO(T,P) can be defined as the condition where bulk CuO transforms to Cu bulk and 

releases oxygen and this corresponds to the oxygen-poor condition. Thus, the allowed 

range of μO is 

 𝜇𝐶𝑢𝑂 − 𝜇𝐶𝑢 < 𝜇𝑂 <
1

2
𝐸(𝑂2) (6.8) 

From this we can obtain the allowed range for the change in μO, which is 

 ℎ𝐶𝑢𝑂 < 𝛥𝜇𝑂 < 0 (6.9) 

where ℎCuO = 𝐸CuO
bulk − 𝐸Cu

bulk −
1

2
𝐸(𝑂2), denotes the formation energy of bulk CuO, 

and where, 
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𝛥𝜇𝑂 =  𝜇𝑂 −

1

2
𝐸(𝑂2) 

(6.10) 

In the second case, we consider the effect of a chemical reducing agent, namely H2 gas 

(section 6.2.2). In principle this introduces an additional variable 𝜇H2
. However, given 

that H2 + ½O2 → H2O, it is experimentally reasonable to set μH2O = E(H2O) as 

constant and restrict our focus to the oxygen poor condition μO ≤ μCuO − μCu. Now the 

single variable 𝜇H2
 can range between 𝜇𝐻2

= 𝐸(𝐻2) and 𝜇H2
= 𝜇H2O − 𝜇O =

𝐸(H2O) − 𝜇CuO+𝜇Cu. Hence, 𝜇O is given by, 

 𝜇𝑂 = 𝜇H2O − 𝜇H2
 (6.11) 

and the available range of oxygen chemical potential μO is taken as follows, 

 𝜇H2O − 𝜇H2
< 𝜇O < 𝜇CuO − 𝜇Cu (6.12) 

This indicates that the minimum value of O during the reduction of 

CuO via oxygen vacancies is the maximum value of O during the reduction of CuO 

surface with H2 adsorption. 

6.2.1 CuO surface 

To check the applicability and accuracy of the GGA + U approach with the chosen 

parameters, we first performed calculations to optimize the structural parameters of 

bulk CuO (space group with C2/c). The calculated lattice parameters are a = 4.683 

Å, b = 3.43 Å, c = 5.138 Å, β = 99.2° and the Cu–O distance is 1.95 Å, in good 

agreement with experimental data.[139] Figure 6.1(a) shows the bulk structure and 

antiferromagnetic spin ordering in bulk CuO. Figure 6.2 shows the total electronic 

density of states (DOS) and the DOS projected on Cu and O states in bulk CuO. The 

GGA + U band gap is about 1.3 eV which is underestimated compared to experiment 

(1.9 eV)[140] and consistent with an earlier calculation (1.1 eV).[141] The calculated 
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magnetic moment per Cu atom is 0.63 B, which is consistent with experiment 

(0.68 μB).[142] This indicates that the GGA + U approach with chosen U and J is 

appropriate for describing the ground state of antiferromagnetic bulk CuO.  

 

Figure 6.1. Structure and antiferromagnetic spin ordering of (a) CuO bulk. (b) 

CuO(111) slab. The red and salmon pink balls represent oxygen and copper 

atoms, respectively and this colour scheme is used throughout the chapter. 

Arrows in black represent spin up states and arrows in blue represent spin 

down states. Four coordinated Cu and O atoms on the surface are labelled 

Cu4
surf and O4

surf , while three coordinated Cu and O atoms are labelled 

Cu3
surf and O3

surf, respectively. The subsurface oxygen atoms which 

coordinated with three Cu atoms on the subsurface and one Cu atom on the 

surface are labeled Ou
sub ; the subsurface oxygen atoms which coordinated 

with three Cu atoms on the subsurface and one Cu atom on the sub-

subsurface are labeled Od
sub.  
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Figure 6.2. Total electronic density of states (DOS) and projection of the DOS 

onto Cu 3d and 4s and O 2p states of CuO bulk. The top of the valence band 

is aligned to 0 eV. 

To identify the most stable surface of CuO, several different low index surfaces are 

studied. Surface energies for these surfaces are calculated with the formula 𝛾
surf

=

(𝐸𝑠𝑙𝑎𝑏 − 𝑛𝐸𝑏𝑢𝑙𝑘) 2𝐴⁄ , where Eslab is the energy of stoichiometric CuO, Ebulk is the CuO 

bulk energy and A is the cross-sectional area of the slab. The factor of 2 comes from 

the two slab surfaces. The computed surface energies are 0.72, 0.91, 1.18, 1.68 and 

2.24 J m
−2

 for CuO(111), CuO(011), CuO(110), CuO(010) and CuO(100) 

stoichiometric surfaces, respectively. This indicates that the CuO(111) surface is the 

most stable compared to other stoichiometric surfaces, which is consistent with the 

report by Hu et al.[141] The surface energies of nonstoichiometric surfaces including 

O- and Cu-terminated CuO(110) and CuO(100) are evaluated in that paper as a 

function of μO, and it is found that these nonstoichiometric surfaces are only more 

stable than CuO(111) surface in a very narrow range near the limit of O-rich condition 

which is difficult to achieve in typical experimental conditions.[141] Thus we choose 

the stoichiometric CuO(111) surface as a model surface to study the reduction process 

of the CuO. For the CuO(111) surface calculation, we find that a bulk-like magnetic 
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ordering is the most stable, which is depicted by arrows on the Cu atoms of the relaxed 

structure of the stoichiometric CuO(111) shown in Figure 6.1 (b). The other 

possibilities of magnetic ordering were studied in detail in the paper by Hu et al.[141]  

The CuO(111) surface has two kinds of geometrically different oxygen atoms 

(Figure 6.1b): those that are coordinated with three Cu atoms on the surface and one 

Cu atom on the subsurface, denoted O4
surf, and those which are only coordinated with 

three surface Cu atoms, denoted O3
surf. O4

surf atoms are more exposed on the surface 

compared to O3
surf. The four coordinated Cu atoms, denoted Cu4

surf, are coordinated to 

four oxygen atoms within the plane of the surface. Three-fold Cu atoms, denoted 

Cu3
surf, are coordinated with O3

surf and O4
surf atoms on the surface and one O3

surf atom 

of the subsurface. All the oxygen atoms in the subsurface are four coordinated, 

bonding with the three Cu atom in the plane, and with either one surface (upwards) or 

sub-subsurface Cu atom (downwards) and we denote these atoms Ou
sub and 

Od
sub respectively. The distinction between O3

surf, O4
surf, Ou

sub and Od
sub ions is 

important, as they behave very differently during the reduction of the CuO(111) 

surface. 

6.2.2 Oxygen vacancies on CuO(111) surface 

Removing neutral oxygen atoms so as to create oxygen vacancies is the simplest 

way to investigate how CuO can be reduced to metallic copper. The magnitude of the 

oxygen vacancy formation energy plays a crucial role in this process: if the formation 

energy of oxygen vacancies is too high then desorption of oxygen into vacuum will 

not be favourable. To this end, we consider different coverages (𝛩) of surface, 

subsurface and a mixture of surface–subsurface oxygen vacancies on a (2 × 1) surface 

supercell of the CuO(111) surface. This gives insight into the energetics of formation 
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of metallic copper during the reduction process. In the following subsections, we 

discuss each coverage in turn – ranging from 𝛩 =
1

4
 oxygen vacancies (removal of one 

oxygen per cell) to 𝛩 = 1 oxygen vacancies at the surface (removal of four oxygen per 

cell). 

6.2.2.1 𝜣 =
𝟏

𝟒
  oxygen vacancy 

Since there are two types of oxygen atoms in the surface–subsurface of CuO(111), 

we consider two types of oxygen vacancy each for surface and subsurface, namely,  

VO3
surf and VO4

surf on the surface by removing three-fold O3
surf and four-fold O4

surf 

coordinated surface oxygen atoms, and VOu
sub and V

Od
sub  on the subsurface by removing 

up-bonded Ou
sub and down-bonded Ou

suboxygen atoms (see Figure 6.1b). The oxygen 

vacancy formation energies are calculated using equation (6.1), and are listed from left 

to right in Table 6.1 according to the energetic preference. We can see that both DFT 

+ U and HSE06 predict that the structure with subsurface VOu
sub  vacancy is 

energetically more favourable than the structure with surface VO3
surf vacancy by 0.34 

(GGA +U) and 0.48 eV (HSE06). The preference for subsurface oxygen vacancy over 

the surface oxygen vacancy was also found for CeO2(111).[138] The second most 

stable structure is the structure with VO3
surf   vacancy and has computed formation 

energy of 3.02 eV by GGA + U and 2.77 eV by HSE06. This is not surprising because 

O3
surf

 is under-coordinated. This is energetically more favourable than the structure 

with VO4
surf  vacancy, which has a  formation energy of 3.52 eV by GGA + U and 3.27 

eV by HSE06. While GGA + U produces the same formation energies of 3.52 eV 

for VO4
surf  and V

Od
sub  vacancies, HSE06 predicts that 𝑉

Od
sub has a slightly smaller 

formation energy than VO4
surf . Surprisingly then, removal of subsurface VOu

sub  is most 
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favoured whereas removal of subsurface V
Od

sub  is least favoured at Θ = ¼. This may 

be due to the limited relaxation of sub-subsurface Cu below V
Od

sub in contrast to the 

substantial relaxation observed for Cu above VOu
sub . The magnitude of the vacancy 

formation energy indicates that the stoichiometric CuO(111) surface is quite stable 

under conditions of high O2 pressure, where 𝜇𝑂2
= 𝐸(𝑂2). Nevertheless, a comparison 

of the computed energies with those of well-known reducible metal oxide surfaces 

such as CeO2(111)[143] and TiO2(110),[144] indicates that the CuO(111) surface can 

be classed as reducible. 

Table 6.1. Oxygen vacancy formation energies Evac in eV for CuO(111) surface 

with a surface and subsurface oxygen vacancy (𝛩 =
1

4
) calculated using GGA + 

U and HSE06. The energetic preference decreases from left to right. 

Method 𝐕𝐎𝐮
𝐬𝐮𝐛 𝐕𝐎𝟑

𝐬𝐮𝐫𝐟 𝐕𝐎𝐝
𝐬𝐮𝐛 𝐕𝐎𝟒

𝐬𝐮𝐫𝐟 

GGA + U 2.68 3.02 3.52 3.52 

HSE06 2.29 2.77 3.09 3.27 

 

To check size effects in the surface supercell, we also calculated Evac in a (2 × 2) 

supercell expansion using GGA + U. The calculated Evac is 2.91 eV for  

VO3
surf  and 3.16 eV for VO4

surf  on the (2 × 2)-CuO(111) surface with 𝛩 =
1

4
 oxygen 

vacancy. A (2 × 2)-CuO(111) surface with a 𝛩 =
1

4
 oxygen vacancy concentration 

has Evac of 2.58 eV for the structure with two 𝑉O3
surf  and 2.91 eV for the structure with 

two VO4
surf . The relative stability of VOu

sub > VO3
surf > V

Od
sub > VO4

surf    at 𝛩 =
1

4
  oxygen 

vacancies in (2 × 1) supercell remains as the cell size increases. Thus we use the (2 × 

1) supercell expansion of CuO(111) for the further calculations. 
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We also performed test calculations to investigate the effect of U for the Cu 3d 

states on the energetic preferences of the oxygen vacancies. We found that the 

energetic preference of the different oxygen vacancies at Θ = ¼ in Table 6.1 remains 

irrespective of the value of U (U = 0, 3, 5.2, 7 and 9 eV). From these test calculations, 

we conclude that using U = 7 eV in our calculations not only yields an electronic 

structure reasonably consistent with experiment, but that the energetic properties are 

also consistently described. 

Figure 6.3 shows the relaxed structures of CuO(111) with the O3
surf, O4

surf, Ou
sub and 

Od
sub vacancy along with the stoichiometric CuO(111) surface. The corresponding 

changes in Bader charge for Cu are shown relative to the stoichiometric surface; 

changes in the charges on the O atoms are negligible. A surface Cu
2+

 cation in 

stoichiometric CuO(111) has a computed Bader charge of 9.90 electrons. The Cu
+
 

cation in Cu2O bulk has computed Bader charge of 10.46 electrons, and hence a 

change in the charge of 0.5–0.6 electron is indicative of reduction from Cu
2+

 to Cu
+
. 

 

Figure 6.3. Optimized structures of (2 × 1)-CuO(111) surface with an oxygen 

vacancy on the surface and subsurface at Θ = ¼. (a) Stoichiometric CuO(111) 

(b) VO3
surf (c) VO4

surf  (d) VOu
sub (e) V

Od
sub . Changes in Bader charge (e-) relative to 

(a) are shown for Cu atoms. 

From the relaxed structure of VOu
sub (Figure 6.3d), it is noteworthy that one of the 

surface O3
surf atoms is significantly shifted downward. The surface Cu3

surf and 

subsurface Cu4
surf  bordering the vacancy gain 0.46 and 0.47 electrons, respectively, 
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which can be assigned as Cu
+
. After relaxing the CuO(111) surface with VO3

surf, the 

remaining O3
surf atom moves toward the vacancy site and migrates outwards, making 

bonds to Cu4
surf atoms which also migrate toward the O3

surf atom (Figure 6.3b). The 

bond length Cu4
surf–O3

surf, which was 2.73 Å before reduction, shortens by 0.7 Å. One 

Cu3
surf  and one Cu4

surf atom on the surface each gains about 0.4 electrons after 

removal of the oxygen, indicating that in terms of formal oxidation states, these 

Cu
2+

 are reduced to approximately Cu
+
 in the presence of the O3

surf vacancy. The 

surface structure with VO4
surf is more distorted compared to the one with VO3

surf  (Figure 

6.3c). One O3
surf atom is substantially shifted upward and the distance between the 

other O3
surf and Cu4

surf atoms becomes shorter. Two Cu4
surf atoms move toward 

O3
surf atoms, and the distance between Cu4

surf and O3
surf is shortened slightly from 1.86 

Å to 1.82 Å. Two Cu3
surf atoms gain 0.39 and 0.48 electrons, which we again assign as 

reduced Cu
+
. One of the Ou

sub atoms moves toward the vacancy site in the relaxed 

structure with 𝑉
Od

sub (Figure 6.3e). While one subsurface Cu3
surf  atom gains 0.42 

electrons, one subsurface Cu and one sub-subsurface Cu atom each gains 0.3 electron. 

The difference between the calculated Bader charge of these reduced Cu atoms after 

vacancy formation on the CuO(111) surface and a Cu
+
 ion in bulk Cu2O is between 

0.05 to 0.15 electrons, so that the assignment of these ions as Cu
+
 is reasonable. The 

computed spin magnetization on the reduced Cu ions is 0, consistent with formation of 

a Cu
+
 ion with a closed 3d shell. 

6.2.2.2 𝜣 =
𝟏

𝟐
 oxygen vacancy 

Upon removal of half of the oxygen atoms in surface–subsurface or the same 

number from both surface and subsurface, a number of different vacancy pairs can be 
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formed in the (2 × 1). We can remove two O3
surf/Ou

sub or two O4
surf/Od

sub atoms, or 

remove one O3
surf and one O4

surf from surface–subsurface. We can also remove one 

O3
surf or O4

surf atom from the surface and one Ou
sub or Od

sub from subsurface. The 

vacancy formation energies of the vacancy pairs are computed relative to the surface 

with one oxygen vacancy present, and are listed in Table 6.2. The structure with 

VOu
sub + V

Od
sub , which has the formation energy Evac of 1.74 eV relative to VOu

sub and 

0.89 relative to V
Od

sub , is energetically most favourable compared to the other 

structures. The second most stable structure with a vacancy pair is the structure with 

VO3
surf + VO4

surf. The VO3
surf + VO4

surf  vacancy pair can be obtained either by removing 

an O3
surf atom from the structure with VO4

surf  (Evac = 1.77 eV) or by removing an 

O4
surf atom from the structure with VO3

surf  (Evac = 1.27 eV). Figure 6.4(a) and 

(b) shows these two most stable structures with an oxygen vacancy pair, along with 

the Cu Bader charges relative to the perfect CuO(111) surface and the energies (ΔE) 

relative to the most stable structure. Other combinations of surface and subsurface 

oxygen vacancy pairs are not as energetically favourable. The less stable structures 

and their formation energies are displayed in Figure 6.5(ah) and Table 6.3. 

Table 6.2 Oxygen vacancy formation energies for Θ=1/2 relative to the existing 

oxygen vacancies Θ=1/4  for CuO(111) surface calculated using GGA + U. 

Reduction path Evac (eV) 

(1) 𝑉O3
surf → 2𝑉O3

surf 3.43 

(2) 𝑉O3
surf → 𝑉O3

surf + 𝑉O4
surf 1.77 

(3) 𝑉O4
surf → 2𝑉O4

surf 3.01 

(4) 𝑉O4
surf → 𝑉O3

surf + 𝑉O4
surf 1.27 

(5) 𝑉Ou
sub → 2𝑉Ou

sub  2.43 

(6) 𝑉Ou
sub → 𝑉Ou

sub + 𝑉
Od

sub 1.74 

(7) 𝑉
Od

sub → 2𝑉
Od

sub  2.88 
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(8)  𝑉
Od

sub → 𝑉Ou
sub + 𝑉

Od
sub 0.89 

(9) 𝑉O3
surf → 𝑉O3

surf + 𝑉
Od

sub 3.38 

(10) 𝑉O3
surf → 𝑉O3

surf + 𝑉Ou
sub 2.66 

(11) 𝑉O4
surf → 𝑉O4

surf + 𝑉Ou
sub 2.42 

(12) 𝑉O4
surf → 𝑉O4

surf + 𝑉
Od

sub 2.97 

 

Table 6.3. Oxygen vacancy formation energies for less stable structures 

relative to the most stable structures for Θ=1/2, Θ=3/4 and Θ=1 on CuO(111) 

surface calculated using GGA + U. 

structure E(eV) 

=1/2 

2VO3
surf 2.03 

2VO4
surf 2.11 

2VOu
sub 0.69 

2V
Od

sub 1.98 

 VO3
surf + VOu

sub 1.26 

VO4
surf  + V

Od
sub 2.07 

VO4
surf + VOu

sub  1.51 

VO3
surf + VOd

sub 1.98 

=3/4 

2VO3
surf  + VO4

surf 1.09 

VO3
surf  + 2VO4

surf 0.70 

VO3
surf  + VO4

surf + VOu
sub 0.39 

=1 

2VO3
surf +  2VO4

surf  1.86 
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Figure 6.4. Optimized structures of (2 × 1)-CuO(111) surface with different 

oxygen vacancy coverage. Changes in Bader charge (e−) relative to (a) in Fig. 

3 are shown for Cu atoms. (a) and (b) for Θ = ½, (c) and (d) for Θ = ¾, (e) and 

(f) for Θ = 1. The energies (ΔE) relative to the most stable structure of each 

coverage are given on top of each subfigure in eV. 

From the Bader charges shown in Figure 6.4 (a), it can be seen that three subsurface 

Cu atoms and one surface Cu atom in the VOu
sub + V

Od
sub  each gains 0.4–0.6 

electrons. Figure 6.4(b) shows that four surface Cu atoms in the 𝑉𝑂3
surf +

𝑉𝑂4
surf structure gain 0.4–0.7 electrons, which are close to the calculated value of the 



6. The Reduction Of CuO To Metallic Copper 

 
 

102 

 

Bader charge on Cu+ in Cu2O bulk. The distances between the remaining O and 

reduced Cu atoms in the surface and subsurface are 1.84–1.89 Å, which are close to 

the calculated Cu–O distance of 1.85 Å in Cu2O bulk. This shows that four Cu2+ ions at 

and near the surface are formally reduced overall to four Cu+ ions by the presence of a 

vacancy pair. Furthermore, we can conclude that the reduction process 4Cu2+ → 

4Cu+ is more favourable than the competing reduction process whereby the existing 

Cu+ species from the single vacancy are further reduced to Cu0. 

 

Figure 6.5. Optimized structures of less stable structures with Θ=1/2, Θ=3/4 

and Θ=1.  
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6.2.2.3 𝜣 =
𝟑

𝟒
  and 𝜣 = 𝟏 oxygen vacancy 

Two types of triple oxygen vacancy (𝛩 =
3

4
) can be obtained by removing two 

𝑂3
surf/𝑂u

sub and one O4
surf/Od

sub atoms or two O4
surf/Od

sub and one O3
surf/Ou

sub atoms 

from the surface–subsurface. The mixed surface–subsurface oxygen vacancies 

at 𝛩 =
3

4
 concentration are also taken into account. The most stable vacancy structure 

at 𝛩 =
3

4
 is the structure with VOu

sub + V
Od

sub + VO3
surf, as shown in Figure 6.4(c). The 

vacancy formation energy relative to VOu
sub + V

Od
sub  is 2.60 eV. From the relative 

Bader charges shown in Figure 6.4(c), it can be seen that three Cu
2+

 ions in the 

subsurface and three surface Cu
2+

 gain around 0.5–0.6 electrons, indicating that these 

ions are reduced to six Cu
+
. The second most stable oxygen vacancy configuration 

at Θ = ¾ is the structure with VOu
sub + 2V

Od
sub , which is less stable than the VOu

sub +

V
Od

sub + VO3
surf structure by 0.35 eV. (See Figure 6.4(d)). Four Cu

2+
 ions in the 

subsurface layer around the vacancies gain 0.6–0.7 electrons and extend their Cu–O 

bond lengths to 1.84–1.93 Å. Two other Cu
2+

 ions are reduced by 0.4 electrons, so that 

overall 6Cu
2+

 are reduced to Cu
+
. 

It can be seen that, as is the case at Θ = ¼ and Θ = ½ coverages, the reduction 

process Cu
2+

 → Cu
+
 continues to be preferred over the the reduction of existing Cu

+
 to 

metallic Cu
0
. We also see that layer by layer reduction of the CuO(111) surface is not 

favoured during the vacuum annealing since the structure with a mixture of surface 

and subsurface vacancies is more favourable than a configuration with 𝛩 =

3

4
 vacancies in a single layer. Energetically less favourable oxygen vacancy 

configurations at 𝛩 =
3

4
 have also been studied (see Figure 6.5(ik)). 
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Upon further removal of the oxygen atoms from the surface or subsurface, a 

coverage of oxygen vacancies equivalent to a full layer (𝛩 = 1) is reached. The 

mixture of surface–subsurface vacancies can be obtained by removing three from the 

subsurface and one from the surface, or removing two from each of the surface and the 

subsurface. Figure 6.4(e) and (f) shows the first and second most energetically 

preferred configurations at the vacancy concentration 𝛩 = 1. The most stable structure 

has VOu
sub + 2V

Od
sub + VO3

surf. The vacancy formation energy relative to VOu
sub +

V
Od

sub + VO3
surf is 1.61 eV. All eight Cu

2+
 ions per cell in the surface and subsurface are 

reduced to the Cu
+ 

as evidenced by the gain in net Bader charge of 0.5 to 0.6 electrons. 

The second most stable structure is the combination of two of the most favourable 

oxygen vacancies at 𝛩 =
1

2
 e.g. VOu

sub + V
Od

sub + VO3
surf + VO4

surf. In this case, all the 

Cu
2+

 ions have gained around 0.5–0.7 electrons, indicating again that all the Cu
2+

 ions 

are now reduced to Cu
+
 ions. Although the complete reduction of the surface layer 

Cu
2+

 to metallic Cu
0
 is possible, the calculation shows that the 2VO3

surf +

2VO4
surf vacancy is not energetically favourable (see Figure 6.5l). 

We conclude that the oxygen vacancy mechanism is not sufficient to describe how 

CuO(111) is reduced to metallic Cu, because the reduction process of Cu
2+

 → Cu
+
 is 

energetically preferred over the reduction of Cu
+
 to metallic Cu

0
. We therefore 

suppose that Cu
0
 can only be formed when the diffusion of oxygen to the surface is 

kinetically limited, or when the entire sample has transformed into Cu2O. 

Summarising the above, the subsurface oxygen vacancy 𝑉Ou
sub is found to be 

energetically more favoured than three coordinated oxygen vacancy VO3
surf at 𝛩 =

1

4
. 

The subsurface oxygen vacancy pair VOu
sub + V

Od
sub is found to be the most stable 
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structure at 𝛩 =
1

2
. Mixture of surface and subsurface oxygen vacancies are 

energetically preferred over the structures with a fully reduced monolayer at 𝛩 =
3

4
 

and 𝛩 = 1. Our analysis of step-wise oxygen vacancy formation can explain how the 

CuO(111) surface is reduced. The energetics of oxygen vacancy formation are such 

that at the temperatures in the experiments of ref [128], oxygen vacancy formation will 

take place and our results show that in all oxygen vacancy coverages, Cu
2+

 → Cu
+
 is 

energetically preferred over Cu
+
 → Cu

0
, and therefore Cu2O is an intermediate state 

prior to being fully reduced to metallic Cu
0
. 

6.2.2.4 Ab initio atomistic thermodynamics of oxygen vacancies on CuO(111) 

surface 

In order to estimate the temperature for the oxygen vacancy formation on the 

CuO(111) surface, ab initio atomistic thermodynamics is used to calculate the surface 

free energy γ. Using equation (6.6) and (6.7), we calculate the surface free 

energy γ(T,P) of the CuO(111) surface for different oxygen vacancy coverages as a 

function of the O atomic chemical potential (Figure 6.6). The dependence of the 

oxygen chemical potential is translated into a temperature scale at an oxygen pressure 

of P = 10
−8

 Torr (which would be a typical vacuum pressure in experimental work) 

using the standard thermodynamic tables.
36

 From Figure 6.6 we can see that the 

surface free energy γ increases significantly with an increase of oxygen vacancy 

concentration and that the stoichiometric surface is energetically favourable even 

under oxygen-poor conditions. This means that the reduction process is not 

spontaneous and that stronger reducing conditions than vacuum annealing are needed. 

Notice that the Θ = ½ oxygen vacancy structure 𝑉Ou
sub + 𝑉

Od
sub is relatively low in 

energy and becomes more stable than 𝑉Ou
sub under oxygen-poor condition. This implies 
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that subsurface Cu2O is an intermediate state during the reduction process, and CuO 

may reduce to Cu2O before it is directly reduced to metallic Cu.  

 

Figure 6.6. surface free energy γ(T,P = 10−8 Torr) of CuO(111) surfaces with 

different oxygen vacancy coverage as a function of oxygen chemical potential 

relative to 
1

2
𝐸(O2). Solid lines are for 𝛩 =

1

4
 oxygen vacancy coverage; black 

line:  VOu
sub, blue line: VO3

surf. Dash lines are for 𝛩 =
1

2
 oxygen vacancy, 

black: VOu
sub + V

Od
sub, blue: VO3

surf + VO4
surf. Short dashed lines are for 𝛩 =

3

4
  

oxygen vacancy; black: VOu
sub + V

Od
sub + VO3

surf and blue: VOu
sub + 2V

Od
sub. Dash 

dot lines are for 𝛩 = 1  oxygen vacancy; black: VOu
sub + 2V

Od
sub + VO3

surf  and 

blue: VOu
sub + V

Od
sub + VO3

surf + VO4
surf. Green dash line is for stoichiometric 

CuO(111) surface. Vertical red dashed line shows the chemical potential of 

oxygen in bulk Cu2O. 

Thus we also calculated the formation energy of Cu2O using the 

definition hCu2O = μCu2O − 2μCu − μO, where μCu2O is the energy of bulk Cu2O. The 
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calculation gives hCu2O = −1.24 eV, which is very close to the previous 

calculation.[145] From the calculated formation energy of bulk Cu2O, we derive a 

temperature of about 540 K (P = 10
−8

 Torr) for the conversion of CuO into Cu2O 

(shown with vertical dashed line in Figure 6.6). Lee et al. reported the reduction of 

CuO to Cu2O at 473 K and reduction of CuO to metallic Cu at 673 K through vacuum 

annealing at a pressure of 10
−8

 Torr.[128] Our calculated result is thus consistent with 

the experimentally measured conditions under which CuO is reduced to Cu2O. An 

error bar for the temperature in the range of 100–200 K is due to the translation of an 

uncertainty of the vacancy formation energy of a few tenths of an eV from the DFT 

calculations.[146]  

6.2.3 H2 adsorption on CuO(111) surfaces 

Reduction of transition metal oxides with H2 has been used to grow thin metallic 

films. In this section, we study the reaction of H2 with the CuO(111) surface as a 

model of the initial stages in H2 reduction of CuO. Since accommodating four H2 

molecules per (2 × 1) cell simultaneously at the surface is not favourable, we focus on 

the more reasonable route of sequential adsorption of H2 on the CuO(111) surface, 

until a full layer of surface oxygen is removed. We assume that H2 cannot react 

directly with subsurface oxygen, although O atoms can presumably diffuse to the 

surface and create subsurface vacancies (Section 6.2.2). 

6.2.3.1 Sequential adsorption of H2 on CuO(111) surface 

For the first H2 molecule, there are two different adsorption sites, O4
surf and O3

surf. 

The calculated adsorption energy ΔEads of H2 on O4
surf is 0.02 eV, which indicates that 

there is no reaction of H2 on the O4
surf site. However, the adsorption of H2 on the 

O3
surf site is quite exothermic with a gain of ΔEads = −0.82 eV at T = 0 K. Consistent 
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with our oxygen vacancy calculation, this is because O3
surf is more reactive than 

O4
surf (Section 6.2.2). The relaxed atomic structure of H2 on the O3

surf site is shown 

in Figure 6.7(a). Oxygen O3
surf is pulled out of the surface upon reaction with H2 to 

form a water molecule. The distance between this oxygen atom and H is about 1.0 Å 

and the angle H–O–H is 107.5°, typical of the water molecule. The distance between 

the O atom in the water molecule and the nearest Cu is 1.99 Å, which is notably longer 

than the Cu–O distance in the CuO(111) surface layer. The desorption energy of the 

formed water molecule from the surface is ΔEdes = 0.78 eV. If the desorption energy is 

positive, additional thermal energy is needed to break the bond between O in H2O and 

the surface Cu atom. Thus, the dissociative adsorption of a H2 molecule on the 

O3
surf site on CuO(111) leads to spontaneous formation of a water molecule and partial 

reduction of the CuO(111) surface. However desorption of water from the surface is 

not spontaneous at T = 0 K, and elevated temperature is needed to desorb water. Bader 

charge analysis of H2 adsorption on the O3
surf site shows that one Cu3

surf and one 

Cu4
surf  atom on the surface gain 0.4 and 0.2 electrons, respectively, indicating that 

H2 adsorption on the CuO(111) surface can reduce two Cu
2+

 ions to Cu
+
, which is 

consistent with the reduction process observed in Section. 4.1 for oxygen vacancy 

formation.  
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Figure 6.7. Structure of the CuO(111) surface after successive adsorption of 

each H2 molecule and formation of water. The adsorption energy of H2 on the 

surface (ΔEads) and desorption energy of water from the surface (ΔEdes) are 

shown on the top of each subfigure. The arrows in green represent the 

removal of formed water molecule and introducing another H2 on the partially 

reduced surface. The arrow in the bottom indicates the trend of reduction. 

Changes in Bader charge (e−) relative to Figure 6.3 are shown for Cu atoms in 

the top layer. 

The next H2 adsorption on the partially reduced CuO(111) surface with Θ = ¼ 

oxygen vacancy takes place after removing the formed H2O molecule. The calculated 

adsorption energy ΔEads of this H2 molecule on the remaining O3
surf is −0.40 eV 

(Figure 6.7(b)). The angle H–O–H is 106.6° and the H–O distance is 0.98 Å. The 

distance between O in water and the nearest surface Cu is 2.00 Å. This indicates that 

another water molecule formed spontaneously on the partially reduced surface. The 

change in Bader charge on surface Cu is shown in Figure 6.7(b). Two Cu4
surf atoms 

gain 0.7 and 0.4 electrons and the other two Cu3
surf atoms gain 0.5 and 0.4 electrons 

after the second H2 is introduced to the surface, indicating further reduction of Cu. The 

Cu–O distance is shortened from 1.95 Å to 1.84 Å for each of Cu3
surf and Cu4

surf atoms. 

This implies that all the Cu
2+

 are reduced to Cu
+
. During this step we can conclude that 

the Cu
2+

 → Cu
+
 process is spontaneous in the presence of reducing agent H2. In this 
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case, the desorption energy ΔEdes is negative, and no thermal effect is needed to 

remove the water molecule from the surface. 

The O4
surf atoms on the stoichiometric CuO(111) surface are initially not reactive to 

the H2 molecule. However, the third H2 molecule reacts with an O4
surf atom at the 

surface when they are two VO3
surf  because it is shifted upward and Cu–O3

surf bond is 

weakened (Figure 6.7(c)). This indicates that the reactivity of the CuO(111) surface 

increases with the presence of oxygen vacancies. A water molecule is formed with an 

adsorption energy of ΔEads = −0.35 eV, which is weaker compared to adsorption on 

O3
surf

 because O4
surf has a higher coordination number and is less favourable to remove. 

The desorption of the water molecule is not favoured in this case (the desorption 

energy is positive). The distance between the O in H2O molecule and the Cu atom is 

3.09 Å. The H–O distances in H2O are 0.98 and 0.99 Å, and the H–O–H angle is 

109.6°. The Cu4
surf atoms gain 0.6 electrons, while other Cu3

surf atoms gain 0.4 and 0.5 

electrons, respectively. The distance between the Cu4
surf that gains 0.6 electron and 

O3
surf is 2.61 Å, which is very close to bulk Cu–Cu distance. The Cu–O distance on the 

surface is about 1.84 to 1.90 Å. From the above Bader charge and the structure 

analysis, we conclude that metallic copper species start to be formed at this coverage 

of Θ = ¾ oxygen vacancies in a single layer, and other Cu
2+

 ions are reduced to Cu
+
, so 

that Cu
0
 and Cu

+
 co-exist on this surface. 

Finally, the interaction of H2 with the last surface oxygen atom O4
surf which is 

shifted upward by the adsorption of previous H2, gives formation of a water molecule 

with an adsorption energy of −0.29 eV (Figure 6.7(d)) It is of note that the 

H2 adsorption energies ΔEads on the CuO(111) surface with different oxygen vacancies 

are all negative, which shows that the reduction of the surface is energetically 
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favoured. The Cu–Cu distance on the surface is in the range of 2.4 to 2.8 Å, compared 

to 2.55 Å in bulk Cu metal. The change in the Bader charge on Cu surface atoms 

in Figure 6.7(d) indicates that full reduction of the surface Cu
2+

 ions to metallic Cu
0
 

takes place, as seen for Θ = 1 vacancies in the surface layer (Figure 6.5). From the 

Bader charges shown in Figure 6.7, we can conclude that indirect reduction of CuO → 

Cu2O → Cu is again dominant over direct reduction CuO → Cu, which is consistent 

with our oxygen vacancy calculations and the experimental results.
17

 

6.2.4 Ab initio atomistic thermodynamics of H2 adsorption on 

CuO(111) surface 

To understand the structural stability and effect of temperature during the reduction 

of the CuO(111) surface with H2, we again apply ab initio thermodynamics 

using equation (6.6) and (6.7). Figure 6.8 shows the surface free energy γ of CuO(111) 

surfaces with the different percentage of oxygen vacancies for each sequential 

adsorption of H2 as a function of oxygen chemical potential μO at 1 bar of O2 pressure. 

By drawing a vertical line through the point where the horizontal black dashed line 

(stoichiometric CuO(111) surface) and the red line (Θ = ½ vacancies) cross, we know 

that Cu
2+

 ions on the CuO(111) surface start reducing to Cu
+
 at circa 360 K. This 

process continues until the temperature goes up to 780 K where the green line (Θ = 1 

reduced CuO(111) surface) crosses the red line. Therefore a Cu2O to metallic copper 

transition occurs on the surface at this point, and metallic Cu islands form on CuO, as 

highlighted in Figure 6.7(d). Rodriguez et al. observed the reduction of CuO to Cu2O 

with low H2 flow at atmospheric H2 pressure and elevated temperature 423–673 K 

using in situ time-resolved XRD technique,
16

 which is consistent with Figure 6.8. 
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Figure 6.8. Surface free energy γ of CuO(111) surfaces with different oxygen 

vacancies in the presence of H2 as the function of oxygen chemical potential 

ΔμO. Black: Θ = ¼, red: Θ = ½, blue: Θ = ¾, green: Θ = 1. Black dashed line: 

stoichiometric CuO(111) surface. 

By juxtaposing Figure 6.6 with Figure 6.8 which are both obtained from ab 

initio atomistic thermodynamics studies, one should notice that Figure 6.8 corresponds 

to the continuation of the left-hand-side of Figure 6.6 because the O-poor condition in 

reduction of the surface with oxygen vacancy is the O-rich condition for the reduction 

of the surface with H2 adsorption. It can be seen that the lines with the same 

percentage of oxygen vacancies are parallel in these two figures. Thus we can compare 

these two figures and can come to the conclusion that reduction of the CuO(111) 

surface to metallic Cu is energetically difficult to achieve without a reducing agent. 

The horizontal line in Figure 6.6, which corresponds to the stoichiometric CuO(111) 

surface, lies under all the other lines, even at the oxygen-poor condition. However 

in Figure 6.8, this line is crossed by the red line (Θ = ½ O vacancies) at ΔμO = −0.33 
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eV and by the green line (Θ = 1 O vacancies) at ΔμO = −0.77 eV. This indicates that 

the CuO(111) surface can be reduced by H2 to Cu2O and finally to metallic Cu. It 

should also be noticed that the extreme left-hand-side of Figure 6.8 corresponds to the 

reduction energies of CuO(111) with H2 that are calculated using equation (6.4) and 

are in line with the data in Figure 6.7. 

 Figure 6.6 spans the range of the reduction of the bulk phase CuO because the Cu 

and the CuO bulk energies are used to obtain the lower and higher limit of oxygen 

chemical potential μO. The range of oxygen chemical potential μO in Figure 6.8 is 

derived from the condition where the CuO(111) surface is reduced with H2. We have 

found surface structures that correspond to the mixtures of oxidation states expected 

under the same conditions in the bulk, namely, Cu
2+

 and Cu
+
 at Θ = ¼ vacancy 

coverages and Cu
+
 and Cu

0
 at Θ = ¾. However, as shown in Figure 6.6 and Figure 6.8, 

these mixtures are not as stable as exclusively Cu
2+

 or Cu
+
 or a Cu

0
. 

 

Figure 6.9. Schematic phase diagram of CuO(111) reduction to metallic Cu 

under different oxygen and H2 pressures. Green and blue colours represent 

bulk and surface, respectively. 

Combining the ideas of Figure 6.6 and Figure 6.8, we obtain a schematic phase 

diagram for the reduction of CuO(111) surface to metallic Cu with and without 

H2 reducing agent, as shown in Figure 6.9. The vertical dashed red lines approximately 



6. The Reduction Of CuO To Metallic Copper 

 
 

114 

 

show the formation energies of the bulk Cu2O and CuO by which the H2 pressures are 

obtained. Figure 6.9 shows that different processes are needed for bulk and surface 

reduction, i.e. reducing the O2 pressure is adequate for bulk reduction, but applying 

H2 is needed for surface reduction. From Figure 6.9, we can see that the bulk CuO is 

reduced to the mixture of CuO and Cu2O as the oxygen pressure decreases, then to the 

mixture of Cu2O and Cu
0
 near vacuum conditions. The surface CuO needs a stronger 

reduction condition compared to the reduction of bulk CuO. The surface CuO 

transforms to Cu2O with the application of H2 and eventually to metallic Cu with 

increased H2 pressure. This implies that the surface oxides protect the underlying bulk 

from reduction during vacuum annealing. Applying the reducing agent H2 can 

significantly facilitate the reduction of CuO. 

A future step would be to study how subsurface oxygen can diffuse to the surface 

and re-oxidise it, in competition with reducing by H2, thus generating deeper 

subsurface oxygen vacancies (section 6.2.2). 

6.3 Conclusion 

In conclusion, we studied two mechanisms for the reduction of CuO(111) surface, 

namely oxygen vacancies from vacuum annealing and H2 adsorption. Oxygen vacancy 

calculations reveal that removal of a subsurface Ou
sub atom is energetically more 

favourable than removal of under-coordinated O3
surf at =

1

4
 . The subsurface oxygen 

vacancy pair VOu
sub + V

Od
sub is found to be the most stable structure at 𝛩 =

1

2
. The 

mixture of surface–subsurface vacancies is found to be more favourable than a single 

layer oxygen vacancies at 𝛩 =
3

4
  and 𝛩 = 1. The reduction process Cu2+ ⟶ Cu1+ is 

found to be more favoured than the process Cu1+ ⟶ Cu0 at all the vacancy 
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concentrations, indicating that vacuum annealing is not sufficient to reduce oxide to 

metal during indirect ALD. The calculation of sequential adsorption of H2 on the 

CuO(111) surface shows that H2 adsorption initially takes place on the O3
surf site, 

giving a water molecule and the partially reduced surface. Subsequent adsorption of 

H2 fully reduces the surface and gives water molecules. Comparing the results from ab 

initio atomistic thermodynamics for the two mechanisms, we conclude that CuO bulk 

is protected from reduction during vacuum annealing by the CuO surface and that 

H2 is required in order to reduce that surface. Thus, different processes are needed for 

bulk and surface reduction, i.e. reducing the O2 pressure is adequate for bulk 

reduction, but applying H2 is needed for surface reduction. For indirect ALD 

processes, these results show that the strength of reducing agent is important to obtain 

fully reduced metal thin films. 
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7 Conclusions 

7.1 Summary 

Overall, this thesis is dedicated to understand by means of density functional 

calculations the surface chemistry and reaction mechanisms of depositing copper 

through the atomic layer deposition technique.     

The surface energy of SiO2 and the Cu/SiO2 interface energy are dependent on the 

surface composition of SiO2, e.g. number of reactive oxygen atoms, and hydroxyl 

groups. Thus we used ab initio atomistic thermodynamics to relate the level of 

interface oxygen at the Cu/SiO2 interface as the function of oxygen chemical potential. 

From this the interface phase diagram as a function of oxygen pressure and 

temperature is obtained, which allows us to understand the effect of pressure and 

temperature on thin film deposition process.  It is found that the interfacial oxide Cu2O 

phases prefer high oxygen pressure and low temperature while the silicide phases are 

stable at low oxygen pressure and high temperature for Cu/SiO2 interface, which is in 

good agreement with experimental observations.       

Although the ALD mechanisms of oxide materials have been investigated well in 

literature, ALD processes of Cu and other metals are not well understood. In chapter 4, 

we studied the adsorption of two common precursors, Cu(dmap)2 and Cu(acac)2 

molecules, on different sites on Cu surfaces using DFT with various levels of 

treatment of vdW forces. It is found that the vdW forces are crucial to describe the 

precursor – substrate interaction. The adsorption energies and geometries are found to 

be sensitive toward the method of including vdW interaction in DFT. In both cases, 
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the precursors undergo partial decomposition and the adsorbate Cu atoms are partially 

reduced. 

For Cu(dmap)2 adsorption, we found that the pure PBE and the vdW-DF2 methods 

yield Cu(dmap)2 chemisorbed selectively at one Cu(111) surface site, while the PBE-

D3 method yields chemisorbed structures on Cu(111) at all adsorption sites. The vdW-

optB88 functional predicts a chemisorbed structure for three out of four adsorption 

sites and physisorption for one site, with a relatively large energy for physisorption. 

For the rough surfaces, all the methods with and without additional vdW forces predict 

that the molecule chemisorbs on the Cu(332) step and Cu(643) kink. The breaking of 

Cu–N or Cu–O bonds as Cu(dmap)2 chemisorbs shows that metal–ligand bonds are 

broken cleanly during the early stage of Cu ALD, making the molecule reactive to the 

co-reagent in Cu ALD reactions without unwanted impurities of C, H, O or N. Charge 

redistribution occurred between the O–Cu–O unit of the molecule and the Cu surface.  

For Cu(acac)2 adsorption, PBE predicts a chemisorbed structure on the diagonal site 

and physisorbed structures on hollow and top sites. The vdW-optB88 method gives 

chemisorbed structure in all three adsorption sites on the Cu(111) surface. In the 

diagonal site, the Cu(acac)2 molecule is attached to the surface through the carbon – 

surface bond. This would lead to the deposition of CuO or Cu2O rather than Cu metal. 

Thus, the formation of the carbon in ligand to surface when the Cu precursor adsorbs 

on the surface is detrimental to the Cu ALD, as it leads to the decomposition of the 

ligands. 

In conclusion, studying the adsorption of precursor molecules on the surface can 

provide useful information to understand the surface chemistry during ALD. From the 

precursor adsorption studies, we can draw the following conclusions for precursors. 
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1. The Cu atom and the atoms coordinated directly to the Cu in precursor should 

form bonds to the surface. The formation of bonds between other ligand atoms (except 

the atoms coordinated to the Cu) and the surface may lead to impurity.   

2. Clean cleavage of the ligand−metal bond is one of the requirements for selecting 

precursors for ALD of metals. Scission of bonds within the ligands may result in 

undesired surface reaction.   

Based on the detailed studies of the precursor adsorption on the surface, we further 

study the reaction of this chemisorbed precursor with the reducing agent Et2Zn, based 

on the seminal work done by Lee et al. [Angew. Chemie Int. Ed. 2009, 48, 4536–

4539]. We propose two different reaction pathways based on activation energies and 

reaction energies for a range of surface reactions. We find that the chemisorbed 

Cu(dmap)2 decomposes through breaking one or both Cu–O on Cu(111) after the first 

ALD pulse. Butane formation and the migration of ethyl groups to the surface are two 

possible routes for the decomposed Et2Zn after its adsorption on the Cu(111) surface 

saturated with the decomposed Cu(dmap)2. In the first case, the butane 

formation/desorption is followed by the diffusion and reordering of dmap ligands 

around the Zn atom to form the Zn(dmap)2 molecule. In the second case, the dmap 

ligands diffuse and re-order around Zn atom. The Zn(dmap)2 is then formed and 

desorbs in the presence of ethyl groups, which is followed by butane formation and 

desorption with the assistance of a migrating Cu atom. The butane formation and 

desorption steps are extremely exothermic, which means that the originally proposed 

ALD process is possible. However, the diffusion and re-ordering steps are 

endothermic which make the reaction rates of reverse reactions higher than the 
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forward reactions. This may lead to very slow growth rate, as was the case in the 

experimental work.  

As the direct ALD method to deposit copper faces many challenge, indirect ALD 

which uses more than two steps emerged as more promising because of its ability to 

enhance the growth rate and lower the ALD temperature. In order to understand the 

reduction steps of indirect ALD, we studied two mechanisms for the reduction of the 

CuO(111) surface, namely oxygen vacancies from vacuum annealing and 

H2 adsorption in chapter 6. The reduction process Cu2+ ⟶ Cu1+ is found to be more 

favoured than the process Cu1+ ⟶ Cu0 at all the vacancy concentrations, indicating 

that vacuum annealing is not sufficient to reduce oxide to metal during indirect ALD. 

The calculation of sequential adsorption of H2 on the CuO(111) surface shows that 

H2 adsorption initially takes place on the three-coordinated O atom, giving a water 

molecule and the partially reduced surface. Subsequent adsorption of H2 fully reduces 

the surface and gives water molecules. Comparing the results from ab initio atomistic 

thermodynamics for the two mechanisms, we conclude that CuO bulk is protected 

from reduction during vacuum annealing by the CuO surface and that H2 is required in 

order to reduce that surface. Thus, different processes are needed for bulk and surface 

reduction, i.e. reducing the O2 pressure is adequate for bulk reduction, but applying 

H2 is needed for surface reduction. For indirect ALD processes, these results show that 

the role of reducing agent is important to obtain fully reduced metal thin films. 

7.2 Future work and outlook 

In our future work, we would describe the nucleation of copper on various 

substrates to understand if it is possible to achieve uniform and continuous 2 nm 

copper thin film with atomic layer deposition. The main difficulties in this task is how 
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to describe a mesoscopic stress between copper and substrate based on ab initio 

method.   

In chapter 5, we omitted the effect of corrections to the vdW interactions on the 

activation energies and reaction energies. It is clear from chapter 4 that vdW 

interaction has an important role on correctly describing the precursor adsorption. 

However, it is not clear how vdW interactions impact on the reaction mechanism. We 

expect that the overall reaction mechanism that we proposed in chapter 5 would not 

change with the inclusion of vdW interaction. Thus, we will in the future check this by 

studying energetics across the reaction mechanism of Cu ALD in chapter 5 with the 

vdW-inclusive DFT method. 

Through this thesis, we made progress to understanding the atomistic origin of Cu 

ALD process. However, the surface chemistry and the reaction mechanisms of ALD of 

other transition metals are not understood yet. We can expand the methods in this 

thesis to study the ALD of other metals.  
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