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Abstract 

This article describes for the first time the controlled monolayer doping (MLD) of bulk and 

nanostructured crystalline silicon with As at concentrations approaching 2  1020 atoms cm-3.  

Characterization of doped structures after the MLD process confirmed that they remained 

defect and damage free, with no indication of increased roughness or a change in 

morphology.  Electrical characterization of the doped substrates and nanowire test structures 

allowed determination of resistivity, sheet resistance and active doping levels.  Extremely 

high As-doped Si substrates and nanowire devices could be obtained and controlled using 

specific capping and annealing steps.  Significantly, the As-doped nanowires exhibited 

resistances several orders of magnitude lower than the pre-doped materials. 

 

Introduction 

Controlled doping of electronic devices at the nanoscale is challenging, especially as devices 

transition from planar to non-planar architectures, requiring innovative methods to reliably 

and reproducibly dope with extremely fine control and conformality.1-2  Conventional dopant 

technologies, such as ion implantation, are problematic for advanced non-planar devices, e.g. 

fin field effect transistors (finFET) due to the intrinsically high-energy nature of the 

bombardment process at the surface.3  There are a number of disadvantages associated with 

ion implantation, including the difficulty in obtaining an abrupt implantation layer on a 

nanometre scale, poor control over the spatial distribution of implanted ions and often severe 

damage to the crystal lattice of the semiconductor.  Additionally, the source gases used in ion 

implantation are also invariably harmful from a health and environmental perspective.4 

 

An alternative approach to ion implantation is spin-on doping, which consists of depositing a 

dopant-containing solution onto a semiconductor surface, followed by a diffusion anneal step.  
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Compared to ion implantation, spin-on doping is a non-destructive and simple technique, but 

there are still issues associated with this approach ranging from a lack of uniformity and dose 

control over large areas of the substrate.5  Additionally, residues left over from the solvent 

containing the dopant precursor are not easily removed from the surface.6  Plasma doping is 

an emerging and promising technique due to the suppression of crystalline defect formation 

and the realisation of nanoscale devices with reproducible electrical characteristics.7  The 

doping profiles with plasma approaches are generally more conformal than those achieved 

using ion implantation, however some crystal damage can still occur and problems can still 

be encountered when attempting to dope with multiple species at different energies in a single 

process.8  Research is also continuing on the integration of dopants during nanomaterial 

fabrication and synthesis.  This in-situ method of doping nanomaterials is promising but the 

challenges of scale-up and large scale integration in addition to the problematic concentration 

gradients still remain.9 

 

Recently, a facile approach for controllable doping of semiconductor nanostructures was 

introduced, termed monolayer doping (MLD).10  MLD comprises two steps: i) 

functionalization of the semiconductor surface with a p- or n-dopant containing molecule and 

ii) thermal diffusion of those dopant atoms into a semiconductor by a rapid thermal anneal 

(RTA) step.  MLD has been applied to a large variety of nanostructured materials fabricated 

by either the “bottom-up” or “top-down” approaches.  The self-assembled monolayers are 

formed using self-limiting reactions, commonly a hydrosilylation reaction between a 

hydrogen-terminated surface and a labile C=C site on the dopant containing molecule.  The 

surface chemistry of Si is well known and established, leading to a variety of methods with 

which to passivate and functionalise the surface.11–17  MLD is extremely flexible as the 

surface preparations, molecular footprints, capping layer and also the thermal treatment 
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parameters can all be finely tuned to optimise surface coverage of the molecule and diffusion 

of the dopant into the semiconductor surface, in addition to its ease of application to both 

“bottom-up” and “top-down” materials. 

 

MLD has been demonstrated successfully using boron and phosphorus-containing molecules 

on bulk crystalline silicon substrates enabling the formation of sub-5 nm ultra-shallow 

junctions in conjunction with conventional spike annealing.18  The technique has also 

successfully been applied to the doping of InAs materials and InP photovoltaics using sulfur 

containing monolayers.19  MLD has also been successfully used in conjunction with 

nanoimprint lithography to control the lateral positioning of the molecular monolayers using 

selective patterning steps.20  A variation of the MLD process, termed monolayer contact 

doping (MLCD), has been demonstrated for the controlled doping of Si wafers where a donor 

substrate functionalized with the dopant-containing monolayer is placed in contact with an 

acceptor substrate and annealed together.  The MLCD process has been shown on bulk Si 

substrates and a number of Si nanowire devices.21  More recently, Hoarfrost and co-workers 

demonstrated a type of MLD involving spin-on organic polymer dopants in an attempt to 

bridge the MLD technique and conventional inorganic spin-on dopants.  Compared to 

traditional spin-on dopants, these polymer based spin-on dopants may be easier to remove 

post-anneal. 22  Most recently, Puglisi et al reported an application of the MLD process to 

arrays of Si nanowire based solar cells, achieving electrical data that proved promising for the 

next generation of solar cell devices.23  These examples show the great flexibility that the 

MLD process has for different materials. 

 

In this article we report for the first time the successful doping of Si using organo-arsenic 

molecular monolayers.  Extremely high dopant concentrations, up to 2 × 1020 dopants cm-3 
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were achieved.  We also report the successful application of the technique to a number of Si 

nanowire devices of varying sizes down to 20 nm in width highlighting that the process leads 

to effective doping of nanostructures without the formation of defects or changes in nanowire 

morphology.  These devices also display excellent electrical characteristics with significant 

decreases observed in their resistivity when compared to the undoped devices. 

 

Experimental 

Arsenic trichloride, anhydrous diethyl ether, stabilized deuterated chloroform and mesitylene 

were purchased from Acros Organics.  Mesitylene was dried, distilled from calcium hydride 

and stored over molecular sieves before use.  All other chemicals were used as received 

without further purification.  Allylmagnesium bromide was purchased from Sigma-Aldrich 

and used as-received.  All chemical manipulations were carried out under strictly anaerobic 

conditions in an atmosphere of ultra-high purity argon from Air Products Inc. using a 

combination of Schlenk apparatus and an inert-atmosphere glovebox.  SEM imaging was 

carried out on an FEI Quanta FEG 650 microscope operating at 5 - 10 kV.  TEM images were 

acquired on a JEOL 2100 HRTEM microscope operating at an accelerating voltage of 200 

kV.  XPS spectra were acquired on an Oxford Applied Research Escabase XPS system 

equipped with a CLASS VM 100 mm mean radius hemispherical electron energy analyser 

with multichannel detectors in an analysis chamber with a base pressure of 5.0 × 10-10 mbar.  

Survey scans were recorded between 0-1400 eV with a step size of 0.7 eV, dwell time of 0.5 

s and pass energy of 100 eV.  Core level scans were acquired with a step size of 0.1 eV, dwell 

time of 0.5 s and pass energy of 20 eV averaged over 10 scans.  A non-monochromated Al-kα 

X-ray source at 200 W power was used for all scans.  All spectra were acquired at a take-off 

angle of 90 with respect to the analyser axis and were charge corrected with respect to the C 
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1s photoelectric line.  Data was processed using CasaXPS software where a Shirley 

background correction was employed and peaks were fitted to Voigt profiles. 

 

Synthesis of Triallylarsine 

Triallylarsine (TAA) was synthesised according to literature procedures. 24–26 A reaction 

scheme for this synthesis showing the structure of the molecule is shown in Figure S1 in 

Supporting Information.  Briefly, allylmagnesium bromide (138.5 ml, 138.5 mmol) was set to 

stir in a three-neck round bottom flask.  To one arm was attached a coil condenser with an 

argon inlet.  A pressure-equalising addition funnel containing arsenic trichloride (5.0g, 2.3 

ml, 28 mmol) in anhydrous diethyl ether (25 ml) was attached to the middle arm and the 

remaining arm was stoppered.  The arsenic trichloride solution was added to the Grignard 

reagent at 0 C over a period of 30 min under vigorous stirring.  On completion of the arsenic 

trichloride addition, the reaction was left to warm to room temperature for a further 30 min 

and was then heated to reflux for 2 h.  The reaction was once more cooled to 0 C after 2 h 

and a deoxygenated, saturated solution of NH4Cl at 0 C was added very slowly to neutralise 

remaining Grignard reagent.  The mixture was filtered into a large separating funnel and the 

organic phase was extracted with a 25 ml portion of diethyl ether.  The aqueous phase was 

washed separately with 3 × 25 ml portions of diethyl ether and the washings were combined 

with the organic phase.  The organic phase was dried with granular magnesium sulfate and 

filtered into a round-bottom flask.  Excess diethyl ether was removed by rotary evaporation 

and the oily residue was distilled twice using a Kugelrohr short path distillation apparatus. 

 

General Procedure for Si Substrate Functionalization 

All glassware was cleaned with a piranha wash, dried in an oven overnight at 130 C and 

allowed to cool under a stream of dry Ar on the Schlenk line.  TAA was dissolved in 
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mesitylene (5 ml) to make up a 2.5 % v/v solution.  The solution was degassed and dried 

using several freeze-pump-thaw cycles and left to purge under a positive pressure of argon 

while the substrate was being prepared.  A 1.5 cm2 sample of Si was degreased, cleaned by 

standard RCA washes and immersed in a 20 % solution of hydrofluoric acid to remove 

surface oxide and metal contaminants and to induce H-passivation of the surface.  The 

substrate was dried under a stream of dry nitrogen and placed immediately into a two neck 

round bottom flask under argon to prevent re-oxidation of the surface.  The TAA solution 

was then cannulated under positive pressure of Ar into the flask containing the H-passivated 

Si substrate.  The flask was then heated up to 180 C under argon and left for 2 h at reflux, 

maintained by means of a thermocouple temperature feedback controller.  The color of the 

solution was monitored over the course of 2 h.  After the reaction had completed the substrate 

was removed from the vessel and immediately immersed in a vial of anhydrous toluene and 

sonicated to remove any physisorbed species.  The sample was rinsed in a vial of fresh 

anhydrous toluene and sonicated in successive vials of anhydrous toluene, dichloromethane 

and ethanol with careful drying in a N2 stream between each vial.  The sample was kept under 

an inert atmosphere before removal for further processing and characterization. A schematic 

showing the MLD process applied here is shown in Figure 1 

 

Fabrication of Nanowire Test Devices 

The silicon-on-insulator (SOI) substrates were patterned using a Raith e-Line Plus electron 

beam lithography (EBL) system.  The substrates were patterned using hydrogen 

silesquioxane (HSQ) (Dow Corning Corp) as the resist.  The top Si layer thickness was 

approximately 50 nm.  The substrates were firstly degreased by sonication successively in 

acetone and isopropylalcohol (IPA) solvents and blown dry in a stream of N2.  Following a 

bake at 120 C for 5 min a 1:2 concentration solution of HSQ in methylisobutyl ketone 
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(MIBK) was spun on the substrates at 2000 rpm for 33 s, giving a HSQ film approximately 

50 nm thick on any substrate.  The substrates were again baked at 120 °C for 3 min prior to 

EBL exposure.  EBL exposure was a two-step process where the first lithography step was 

carried out to pattern only the high resolution fin structures.  In the second step the contact 

pads for the four probes were exposed.  To attain a highly focused beam for the first step, a 

10 kV beam voltage and 100 μm write-field was chosen.  To avoid a large exposure time, the 

low resolution contact pads were written with 1 kV beam voltage and 400 μm write-field.  

After the EBL exposures, the substrates were developed in a solution of 0.25 M NaOH and 

0.7 M NaCl for 15 s followed by 60 s rinse in DI water and a 15 s immersion in IPA.  For the 

second lithography step, HSQ was spun onto the substrate with the aforementioned 

parameters and then exposed.  A SEM micrograph of the test device is shown in Figure S4 in 

Supporting Information.  To transfer the HSQ pattern onto the top Si layer of the SOI 

substrates, they were subjected to a reactive ion etch (RIE) using Cl2 chemistry in an Oxford 

Instruments Plasmalab 100 system. 

 

Carrier Profiling 

SIMS analysis was carried out at the INSA Toulouse using a CAMECA IMS 4F6 

spectrometer with a Cs+ source at 2 kV accelerating voltage and beam current of 20 nA.  This 

low energy mode was used to analyse the composition of the sample close to the surface of 

the sample where the diffusion process in MLD is most effective.  SIMS analysis was 

benchmarked using known calibration standards and samples.  ECV profiling was carried out 

on a WEP Control CVP21 Wafer Profiler using 0.1 M ammonium hydrogen bifluoride as the 

etchant.  Scanning parameters were automatically controlled by the instrument by selecting 

the appropriate sample type, layer map and etchant combination. Error did not exceed 15% 

for ECV analysis. 
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Results and Discussion 

Silicon Functionalization 

Initial experiments were performed on bulk crystalline silicon substrates to ensure the process 

could be applied successfully for the material, to develop an experimental procedure for 

MLD and also to perform carrier profiling and SIMS profiling that is not possible at 

nanoscale feature sizes. 

 

Figure 2(a) shows a high-resolution XPS Si 2p scan of a freshly cleaned and etched Si 

substrate with the inset depicting the surface after preparation.  The absence of any detectable 

oxide features in the XP spectra indicated the presence of a close to pristine, oxide-free 

substrate surface necessary for MLD.  Figure 2(b) shows an XPS survey scan of a Si 

substrate freshly functionalized with TAA molecules; the As 2p and 3d photoelectric lines are 

shown.  The binding energy of the Si 2p core level scan of the functionalized sample, shown 

in Figure 3(a), exhibits primarily the non-oxidised elemental peak at 99.8 eV, indicating a 

passivated surface which consists mainly of Si-C bonds.  There is a very small presence of 

oxide at the higher binding energy of 103 eV27 suggesting limited oxygen uptake during air 

exposure during transport to the UHV equipment.  Note that the sample was transported 

under a positive pressure of Ar and introduced to the nitrogen-purged environment of the 

XPS instrument with less than 5 s of contact with air.  The As 3d spectrum acquired from the 

same substrate is shown in Figure 3(b).  The elemental As peak is shown at 42.0 eV 28 with a 

second peak chemically shifted to a higher binding energy of 44.8 eV.  This binding energy 

and the chemical shift of 2.8 eV with respect to the elemental As component is consistent 

with the presence of an oxidised arsenic species on the surface of the substrate post-

functionalization and may be attributed to oxidation of the TAA molecule in air post-

reaction.29  Again, sample exposure to air was minimized as much as possible.  The atomic 
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percentages of the elemental As and oxidised As components were determined to be 28 % 

and 72 % respectively.  To determine if the Si oxide peak shown in Figure 3(a) was 

associated with post-functionalization oxidation or the functionalization process itself, a 

blank, non-functionalized Si sample was exposed to ambient conditions for 24 h and analysed 

by XPS.  The amount of oxide observed was very similar to that obtained for the 

functionalized sample after a 2 h functionalization procedure.  This was observed despite 

several freeze-pump-thaw cycles being performed on the dopant molecule solution to remove 

traces of oxygen and water.  The presence of this trace amount of oxide did not appear to 

have an appreciable effect on the dopant diffusion process. 

 

Stability of Functionalized Samples toward Ambient Conditions  

The stability of the underlying Si surface toward reoxidation is important.  Regrowth of the 

oxide prior to rapid-thermal-anneal treatment and subsequent processing steps is undesirable.  

Functionalized Si is known to be more resistant to re-oxidation than non-functionalized Si.30  

To determine the resistance to re-oxidation of the underlying silicon substrate post-

functionalization, a functionalized sample was left in ambient conditions for periods of time 

ranging from 24 h to one month and the XPS Si 2p core level was used to determine the 

stability of the functionalized sample relative to a piece of unfunctionalized Si.  The 

components corresponding to silicon oxides were monitored and recorded.  The acquired 

stability spectra for the functionalized samples are shown in Figure S2 (a)-(d) (see 

Supporting Information) with elemental Si and oxidised Si atomic percentage concentrations 

labelled.  The comparative spectra on the unfunctionalized Si substrates are shown in Figure 

S3 (a)-(d) (see Supporting Information).  With the exception of the first 24 h, the acquired 

data showed no discernible difference between the rates of oxidation between a TAA 

functionalized substrate and a non-functionalized substrate.  The rate at which the atomic 
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concentrations of Si oxides increased was very similar between both samples.  This oxidation 

may be attributed to the small molecular footprint of the TAA molecule, or possibly pinhole 

oxidation at unreacted hydrogen passivated sites, which is consistent with the fact that H-

passivated silicon surfaces are only stable in air for a matter of minutes.13   

 

Estimation of Overlayer Thickness  

A good indicator of the coverage and thickness of the organo-arsenic layer on Si substrates 

was estimated by XPS analysis of the TAA functionalised sample as shown in Figure 2(b) 

using a method originally defined by Cumpson, from equation 1. 31  The overlayer referred to 

here is the monolayer composed of the TAA molecule, 
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where I0 and Is represent the respective measured peak intensities of the overlayer and 

substrate peaks, S0 and Ss refer to the relative sensitivity factors for the overlayer and the 

substrate respectively with 0 and s referring to the attenuation lengths of electrons in the 

overlayer and substrate.  θ is the emission angle with respect to the surface normal.  To 

minimise the effect of potential errors arising from surface roughness and inelastic scattering 

a photon emission angle of 35ο was used in conjunction with a 90ο take-off angle with respect 

to the sample normal.  The peak intensity of the organoarsenic overlayer peak, Io, and the 

peak intensity of the substrate peak, Is, were determined using CasaXPS software after a 

transmission correction.  The relative sensitivity factors for the substrate peak Ss and the 

overlayer peak So
 were obtained from the database in the XPS instrument acquisition software 

and manually input into the data processing software to remove instrumental factors which 
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may affect quantification.  The attenuation length of photoelectrons in the overlayer, λo, was 

estimated using the NIST Electron Effective Attenuation Length database to be 2.6 nm.  The 

overlayer thickness was therefore estimated to be approximately 0.5 nm, which based on the 

predicted molecular footprint of the TAA molecule of approximately 0.6 nm, would imply 

the presence of a monolayer on the Si surface.  The surface was thoroughly cleaned by 

prolonged sonication in anhydrous solvents prior to characterization to remove all 

physisorbed species prior to analysis to minimize contributions from contaminants to the 

overlayer thickness. 

 

Carrier Profiling 

The functionalized substrates were capped with a 50 nm layer of sputtered SiO2 and heated 

by rapid thermal annealing under nitrogen at varying temperatures for 5 s, to investigate the 

effect of temperature on the dopant depth and concentration gradient.  We note that the 

specific composition of the capping layer and the method used for deposition can affect the 

monolayer integrity and diffusion process but the effect of the capping layer was not studied 

in this work.  Use of electron beam evaporation or plasma-enhanced chemical vapour 

deposition could be investigated to determine the effect on the MLD process.  The oxide cap 

was removed post anneal using a buffered oxide etch prior to further characterization.  To 

ascertain the dopant depth, total dopant concentration and active carrier concentration a set of 

samples were analyzed by SIMS.  Figure 4(a) shows SIMS derived chemical concentration 

vs. depth data of three samples thermally treated for 5 s at 950, 1000 and 1050 oC 

respectively.  The data shows, as expected, that the higher processing temperature results in 

an overall higher incorporation of As in Si, with the maximum chemical concentrations 

approaching 2 × 1020 atoms/cm3 at 1050 °C.  Table 1 summarises the chemical concentration 

data and also shows chemical dose and diffusivity (D) data extracted from the SIMS profiles  
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by integration, in Figure 4(a). 

 

Table 1.  Extracted data for blanket samples showing the total chemical dose and diffusivity 

data extracted from the SIMS profiles in Figure 4(a) where D refers to the diffusivity, ni 

refers to the intrinsic carrier concentration and C/ni is the surface impurity concentration over 

the intrinsic carrier concentration. 

 

Figure 4(b) depicts the extracted diffusivity data vs. 1000/T (T in Kelvin) plotted in red and 

compared with the intrinsic diffusivities from the literature plotted in blue.  The data shows 

that extrinsic diffusivity rates are observed in this study.  The doped substrates also exhibited 

high carrier concentrations.  The concentrations increased evenly with the rising rapid-

thermal anneal temperature, i.e. controlled diffusion.  Figure S4 (Supporting Information) 

shows a representative ECV profile indicating good dopant activation.  Semiconductor 

devices rely on the ability to form two different types of electrically-conducting layers: p-

type and n-type.  An electrically active dopant atom contributes a free carrier to the valence 

band or conduction band by creating an energy level that is very close to either band.  

Therefore an ideal dopant should have a shallow donor/acceptor level and a high solubility.  

The vast majority of MLD work to date has been concerned mainly with phosphorus- and 

boron-containing moieties and, to the best of our knowledge, no reports exist of MLD using 

As-containing liquid molecules.  Concentrations approaching 6 × 1020 atoms/cm3 have been 

Temperature 

(°C) 

Dose 

(atoms/cm3) 

Max concentration 

(atoms/cm3) 

D 

(cm2/s) 

ni (atoms/cm3) C/ni 

950 5.69 × 1013 3.41 × 1019 4.36 ×10-13 7.00E+18 4.9 

1000 3.31 × 1014 1.04 × 1020 1.58 × 10-12 1.00E+19 10.4 

1050 7.06 × 1014 1.57 × 1020 3.16 × 10-12 1.50E+19 10.5 
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reported in the literature for phosphorus-MLD in conjunction with spike annealing at 1050°C 

using a P source with a molecular footprint of approximately 0.12 nm,32 while concentrations 

as high as 1022 atoms/cm3 have been noted for P-MLD using a high temperature soak anneal 

with spike annealing.33  The TAA molecule has a similar molecular footprint and peak 

concentrations for the As-MLD process used here are of the same order of magnitude as 

previous P-MLD work with junction depths on average  <50 nm from SIMS data in Figure 

4(a).  Arsenic and phosphorus are considered to be the best choices for n-type doping of 

semiconductors based on their ionisation energies34 and also based on their high solubilities 

in Si.35  For extremely small feature size devices with complex and non-planar geometries 

that need abrupt shallow doping profiles it is desirable that the diffusion rate of the dopant is 

small.  Compared to phosphorus, As has a much smaller diffusion coefficient, making it the 

dopant of choice for heavy and shallow n-type doping of silicon.36  As the junction depth in 

the MLD process is limited by temperature and duration of anneal, the diffusion of As in Si 

using the MLD method could be further fine-tuned in terms of shallower junction depths by 

using emerging spike annealing techniques such as flashlamp annealing and laser 

annealing.37–39 

 

Application of the MLD Strategy to Nanowire Devices 

As the MLD process can be applied to various types of semiconductor surfaces, including 

nanostructured quasi-1D and 2D materials, an analogous arsenic doping process was 

attempted to controllably dope ‘top-down’ Si nanowires fabricated on silicon-on-insulator 

(SOI) substrates.  Intense research continues into semiconductor nanowires due to their 

potential in the scaling of semiconductor devices.40  As Si has long been the material of 

choice in the semiconductor industry its properties are well known and its processing 

technologies are well established, making Si nanowires ideal for fundamental research, while 



15 
 

maintaining compatibility with current electronic processing techniques for eventual 

integration into future technology nodes.  As nanowires in general have large surface-to-

volume ratios, defects trapped at Si/SiOx
 interfaces have acute effects on the performance of a 

device by trapping and scattering mobile charge carriers.41  The applications of certain 

surface passivation techniques, such as hydrogen-termination42, can greatly reduce the 

density of these defects and increase the FET response of a Si nanowire channel.43  An 

advantage of the MLD process developed in this study is that there is no damage to the 

nanowires, which might otherwise be caused by techniques such as ion implantation.  Charge 

depletion caused by the presence of surface states can potentially limit the effective channel 

diameter of a nanowire.  Additionally, dielectric mismatch between a nanowire and its 

surrounding can also cause changes in the electrical characteristics by increasing the 

ionisation energies for dopants which are near the nanowire surface.44  This problem can be 

overcome by using good surface treatments which minimize surface damage and enable high-

dopant densities and, most importantly for FET doping, high conformality which is attainable 

using the MLD based strategy employed here. 

 

To properly assess the effects of the MLD process on fine features, top-down patterned Si 

nanowires (fins) ranging in width from 20 – 1000 nm were fabricated.  The fabrication 

process is described in detail in the Experimental section.  A SEM micrograph of the test 

structure itself is shown in Figure S5 in Supporting Information.  In essence, the structure is 

a 4-point probe test structure where a user-defined current is forced across the nanowire by 

the outer electrodes and then the inner electrodes sense the resulting voltage drop across the 

nanowire.  The design of the contact pads ensures that the voltage drop at the nanowire is 

measured accurately.  The nanowire resistance can be extracted from this current-voltage 

relationship.  The raw I-V data shown in Figure 5(a) are of post-MLD nanowires.  The 
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resistivity data shown in Figure 5(b) is from the pre- and post-MLD nanowires.  In Figure 

5(a) the current as a function of voltage is linear for all nanowires and passes through the 

origin.  As expected, the current level can also be seen dropping as the nanowire width is 

scaled down.  This change in the current is indicative of ohmic current conduction and good 

dopant activation, where even 20 nm devices were observed to conduct current very well, 

indicating that the MLD process was non-destructive toward the smallest nanowires.  

Assuming that current flows uniformly through the entire cross section of a nanowire, 

similarly to a metal track, the resistivity () of a nanowire can be calculated from equation 2: 

 

𝜌 = 𝑅
𝐴

𝐿
           (2) 

 

where L refers to the length of a nanowire, A is the cross-sectional area and R is resistance.  

The application of this model is appropriate for sub-40 nm nanowires and FinFETs as at these 

dimensions the probability of having a uniformly doped cross-section is high.  At the smallest 

sizes it can be assumed that the entire volume of the device is uniformly doped and current 

flows throughout the entire cross-section i.e. like that of a metal track.  As current devices are 

sub-40 nm and future technologies will continue to scale, this model offers a good platform to 

evaluate device behaviour in current and future device technologies.  Figure 5(b) shows both 

pre- and post-MLD resistivity data for nanowires.  Significantly lower resistivities were 

obtained for post-MLD nanowires, especially those with widths less than 40 nm.  There is a 

similar striking difference of several orders of magnitude between the resistivities of the 

nanowires pre- and post-MLD.  The largest decrease in resistivity was observed within 

nanowires with dimensions under 40 nm, with a decrease of between 5 orders of magnitude 

for larger nanowires and 7 orders of magnitude for the smallest sized nanowires, when 

compared to the undoped nanowires; showing the efficacy of the MLD process on such small 



17 
 

feature size devices.  Figure S6 in Supporting Information displays resistance data for the 

MLD-doped nanowires. 

 

To confirm that the MLD process did not affect nanowire morphology, cross-sectional TEM 

analysis of the doped nanowires was undertaken.  Historically, {111} twin boundary defect 

formation and stacking faults are the most common problems faced when doping at small 

feature sizes, most often caused by ion-implantation processes.  Extended defects are 

considered here as these defects are quite easily visible by TEM analysis.  Figure 6(a) shows 

a TEM image of a section of a 40 nm Si nanowire test device.  Figure 6(b) displays a 

magnified high-resolution TEM image of the same nanowire with the <111> and <100> 

directions indicated.  The Fast Fourier Transform (FFT) shown in the inset of Figure 6(b) 

shows the highly crystalline nature of the nanowire, which is consistent with the non-

destructive nature of the MLD process.  There are no indications on either micrograph of any 

extended defects or damage to the crystal lattice, showing that the developed arsenic-MLD 

process as applied to bulk Si wafers also transfers very well to nanostructured devices.  This 

is in stark contrast to ion implanted nanostructures where crystal damage is very easily visible 

and poly-crystalline changes can be problematic with a decreasing Wfin. 
 

 

Conclusions 

The doping of non-planar nanostructures is difficult due to the non-conformality of 

conventional doping methods in addition to the problems encountered during diffusion, 

during their activation, in trying to prevent their escape during the thermal processing 

treatments and all the while still trying to preserve the crystalline nature of the material.  The 

controlled doping of bulk and nanostructured silicon was achieved successfully via the use of 

organo-arsenic molecular monolayers.  Extremely high dopant concentrations approaching 2 
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 1020 atoms cm-3 were observed for bulk Si while excellent electrical characteristics were 

observed for the MLD-doped Si nanostructures with the with the highest decrease in 

resistivity of seven orders of magnitude observed for nanowires less than 40 nm in width.  

The MLD process was observed to have no effect on the crystallinity of the nanowires and no 

visible damage or defects were observed.  Research must continue on the design and 

characterization of suitable molecular precursors that are stable during the hydrosilylation 

procedure and remain stable and resistant to decomposition in ambient conditions afterwards. 
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Figures 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic depicting the MLD process developed and applied in this study.  A 

hydrosilylation reaction occurs between a reactive H-passivated Si surface and the labile C=C 

site on the dopant containing molecule, resulting in a covalently bonded molecular layer.  The 

samples are then capped with 50 nm of SiO2 and subjected to a rapid-thermal-anneal (RTA) 

step resulting in high concentration, shallow doping of silicon. 
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Figure 2.  (a) High resolution Si 2p core level scan pre-functionalization, showing the 

pristine oxide-less surface required for MLD with a schematic representation inset,  (b) wide, 

survey scan of a TAA functionalized Si surface with peaks of interest labelled.  Inset shows 

schematic representations of the functionalized surface. 
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Figure 3.  (a) Si 2p core level spectrum of a freshly functionalized substrate composed 

primarily of elemental Si and a small shoulder peak indicating a low amount of SiOx, (b) As 

3d core level spectrum of a TAA functionalized Si surface.  The elemental components of the 

peak are labelled in red with the oxidised components of each sample labelled in blue. 
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Figure 4.  (a) Secondary ion mass spectrometry profiles of 3 samples processed at varying 

temperatures for 5 s.  The carrier depths were observed to be extremely shallow with peak 

concentrations achieved at less than 25 nm (b) Diffusivity data extracted from SIMS analysis.  

As can be seen in the measured data in red, the samples exhibit diffusivity in the extrinsic 

regime. 
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Figure 5.  (a) Raw I-V data for post-MLD nanowires.  The data is symmetrical about the 

origin with the current obeying Ohms law and scales with reducing nanowire width.  (b) 

Resistivity of nanowires as a function of width for pre-MLD and post – MLD wires.  The best 

results were observed for nanowires < 40 nm in width, showing that the MLD strategy 

employed works extremely well for small feature sizes. 
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Figure 6.  (a) TEM micrograph of a section of the 40 nm Si nanowire test device, (b) 

magnified HRTEM micrograph of the nanowire with the <111> and <100> directions 

indicated.  The FFT shown in the inset of (b) shows the highly crystalline nature of the 

nanowire.  There are no indications on either micrograph of any defects or damage to the 

crystal lattice. 
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