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Abstract 1 

Ultrasound guidance is now a standard nerve localization technique for peripheral nerve block (PNB). 2 

Ultrasonography allows simultaneous visualization of the target nerve, needle, local anesthetic injectate 3 

and surrounding anatomical structures. Accurate deposition of local anesthetic next to the nerve is 4 

essential to the success of the nerve block procedure. Unfortunately, due to limitations in the visibility of 5 

both needle tip and nerve surface, the precise relationship between needle tip and target nerve is unknown 6 

at the moment of injection.  Importantly, nerve injury may result both from an inappropriately placed 7 

needle tip and inappropriately placed local anesthetic. The relationship between the block needle tip and 8 

target nerve is of paramount importance to the safe conduct of peripheral nerve block. This review 9 

summarizes the evolution of nerve localization in regional anesthesia, characterizes a problem faced by 10 

clinicians in performing ultrasound guided nerve block and explores the potential technological solutions 11 

to this problem. 12 

  13 
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Background 1 

Peripheral nerve block (PNB) procedures involve the placement of a needle and local anesthetic next to 2 

target nerves. The success of PNB is determined principally by the location of the needle tip and the 3 

subsequent location of administered drug(s).  ‘Regional anesthesia always works—provided you put the 4 

right dose of the right drug in the right place’
1
. In determining the ‘right place’ to deposit local anesthetic, 5 

reliable nerve localization techniques are required which permit accurate and safe needle placement in the 6 

immediate vicinity of the peripheral nerve. Injection too far from the nerve risks block failure
2
, injection 7 

within the nerve risks nerve injury
3
.  8 

Perioperative nerve injury may occur following anesthesia and surgery
4,5

, with contemporaneous 9 

estimates of nerve injury following PNB of 4-6 per 10,000 blocks
6-8

. Although rare, iatrogenic nerve 10 

injury can result in permanent sensory and motor dysfunction with neuropathic pain. These devastating 11 

complications can have catastrophic physical, psychological, social and economic consequences for the 12 

injured party. 13 

The peripheral nerve is a complex highly heterogeneous structure with variable micro anatomical 14 

architecture from root to terminal branch. Figure 1 illustrates the key components of a peripheral nerve. 15 

Nerve injury may occur via a number of mechanisms, some of which relate to the block procedure and 16 

others relate to the perioperative environment. Procedure-related nerve injury involves three interrelated 17 

mechanisms
9
. Firstly, if placed within the nerve, the block needle itself may cause direct trauma with 18 

disruption of nerve fascicles and intraneural blood vessels
10

. Even without direct fascicle or vessel injury, 19 

intraneural needle placement has been shown to cause inflammation within the nerve, with subsequent 20 

demyelination and impairment of nerve function
11,12

. Secondly, local anesthetic injection may cause harm. 21 

Injection of local anesthetic within a nerve may cause a spike in intraneural pressure, which can impair 22 

neural blood flow resulting in hypoxia and cell death (intraneural, extrafascicular injection)
13

. Should the 23 

needle tip pierce the perineurium, as little as 0.5 ml of injectate may be sufficient to rupture the fascicle 24 

(intraneural, intrafascicular injection)
14

. Finally, local anesthetic agents are known to be directly 25 
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neurotoxic via mechanisms which are as of yet poorly understood. Local anesthetic related neurotoxicity 1 

is known to be concentration dependent, with higher concentrations being more injurious
15,16

. 2 

Interestingly, observational models of intraneural needle placement and local anesthetic injection have 3 

demonstrated that not all intraneural injections result in clinically apparent nerve injury
17,18

. 4 

Although there is no universal consensus on the ‘right place’ to inject local anesthetic, it is intuitive that 5 

the avoidance of intraneural needle placement is desirable, and that this strategy might result in safer 6 

regional anesthesia. Innovative technologies are required to assist clinicians in avoidance of needle nerve 7 

contact and intraneural needle placement during the performance of PNB. The following paragraphs 8 

outline the evolution of nerve localization techniques used during PNB, describe the current limitations of 9 

these techniques in detecting accidental nerve puncture and investigate possible future directions for 10 

nerve localization. 11 

The Evolution of Nerve Localization 12 

The first reports of regional anesthesia appeared in the 1880s
19,20

.  Nerve localization techniques were 13 

based upon anatomical landmarks and formal surgical dissection. Percutaneous techniques using hollow 14 

needles subsequently developed, relying on needle-to-nerve contact and paresthesia to confirm needle 15 

location at or within a target nerve. Proponents of this technique claimed high success rates without 16 

adverse sequelae, even suggesting that the absence of paresthesia was an indicator of likely failed block: 17 

‘No paresthesia, no anesthesia’
21

. By the mid-20th Century tactile cues of fascial clicks and pops became 18 

important with reports of successful block without deliberately seeking paresthesia
22

. Blind needle 19 

placement guided by clicks, pops and paresthesia are however poor markers of needle tip location and the 20 

presence of paresthesia infers needle to nerve contact (if not needle into nerve puncture). Neither 21 

paresthesia nor tactile feedback reliably defines the relationship between needle tip and target nerve 22 

during blind PNB techniques. 23 
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Electrical Nerve Stimulation 1 

Stanley J. and L. Charlotte Sarnoff reported the use of prolonged peripheral nerve block for the treatment 2 

of hiccups in 1950
23

. In 1962 Greenblatt and Denson used a small portable transistorized nerve stimulator 3 

to perform PNB heralding the entry of electrical nerve stimulation (NS) into regional anesthesia
24

. By 4 

1969 nerve stimulators for delivery of nerve block were readily available and in widespread use
25

. 5 

Nerve localization with NS requires an electrical circuit between a constant current generator, the block 6 

needle (the cathode) and the patient (the anode is a conductive electrode placed on the skin surface)
26,27

. 7 

Short electrical pulses result in nerve cell depolarization causing either paresthesia or muscle 8 

contraction
28

. According to Ohm’s law (Equation 1), the current required to cause nerve depolarization is 9 

inversely proportional to the distance between needle and nerve
26

. This, it was thought, allowed indication 10 

of needle position relative to the nerve being stimulated. 11 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 (𝐼) =  
𝑉𝑜𝑙𝑡𝑎𝑔𝑒 (𝑉)

𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑅)
 

Equation 1: Ohm's Law 12 

Paresthesia or muscle contraction using a current of between 0.30 and 0.50 mA is taken to indicate the 13 

desired nerve location for drug administration
28

. Responses at stimulation currents of <0.2mA are thought 14 

to indicate intraneural needle placement. Recent data have questioned the validity of a simple 15 

interpretation of Ohm’s law in living tissue. Significant inter-individual variation exists as to the 16 

minimum stimulation threshold of peripheral nerves
29

. Intraneural needle placement does not always lead 17 

to nerve stimulation
30

. Individual electrophysiological sensitivities, nerve structural diversity and varying 18 

properties of perineural tissues may account for these observations
31-33

, each suggesting that NS is a 19 

somewhat insensitive tool in the detection of needle nerve contact
32,34,35

. 20 
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Using a conceptual framework, based upon the physics of electricity, assumptions were made as to 1 

proximity relationship between the needle tip and the target nerve. Unfortunately the sensitivity of this 2 

technology in identifying needle nerve contact is poor.  3 

Ultrasound Guidance 4 

Ultrasonography permits visualization of block needle, target nerve(s) and local anesthetic injectate
36,37

. 5 

This allows accurate paraneural needle placement, which in turn facilitates rapid onset  PNB and high 6 

block success rates using small volumes of local anesthetic
38

. Ultrasound (US), as a nerve localization 7 

technique, permits a detailed and person specific examination of the anatomy involved in PNB. 8 

Medical US utilizes sound waves in the frequency range of 3 to 15 MHz. Nerve visualization requires the 9 

use of probes with the capability of producing US at 10-15MHz. Ultrasound at these frequencies provides 10 

excellent spatial resolution, allowing the discrimination of nerve architecture. The ultrasonographic 11 

appearance of nerves varies with anatomical location and the quantity of connective tissue within the 12 

nerve.  Nerve roots are usually circular and have a bright hyperechoic surface a dark hypoechoic center 13 

(Fig. 2), while nerves further in the periphery (median nerve in the forearm) have a more honeycomb 14 

appearance (Fig. 3). Knowledge of the unique appearance of nerves at specific locations permits the 15 

anesthesiologist to readily identify and target the correct nerve(s) for specific procedures. Due to its 16 

watery consistency the injected local anesthetic behaves like a contrast medium enabling visualization of 17 

its distribution around the nerve
36

. A thorough understanding of how the US image is constructed is 18 

required to appropriately interpret images to guide needles during PNB. A description of the challenges in 19 

image interpretation and common image-related anomalies has been published
39,40

. 20 

Ultrasound Guidance versus Nerve Stimulation: Nerve Injury and Needle Nerve Contact 21 

When compared with NS, US-guidance is superior from the perspective of success rates, onset times, 22 

number of needle passes and limiting local anesthetic dose
41-48

. It is not known whether this superiority 23 

translates into improved patient safety. The definition of what constitutes a nerve injury is somewhat 24 
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ambiguous, ranging from transient paresthesia lasting less than 12 hours to motor deficit extending 1 

beyond 48 hours. Multiple factors including patient co-morbidities, surgery type and duration and 2 

circumferential limb tourniquets make the interpretation of published literature on adverse outcomes 3 

following PNB difficult. Data comparing the frequency of complications during PNB performed with 4 

either US or NS is sparse
49

.  5 

International regional anesthesia registries collecting prospective outcome data have reported the 6 

frequency of transient nerve injury as 4-6 per 10,000 blocks
6-8,50,51

. The Dartmouth registry
51

 provides 7 

some insight into the relationship between block location, dose and injury. More than half of the injuries 8 

reported arose following interscalene block, and high volume injectate (30ml) was used in all reported 9 

injuries. Fredrickson and Kilfoyle reported prospective data on  neurological symptoms in 1000 patients 10 

following ultrasound guided peripheral nerve block (USGPNB) at10 days, 1 and 6 months. Neurological 11 

symptoms were identified in 8%, 4% and 0.6% at each time point respectively, although symptoms were 12 

minor and deemed to be unrelated to USGPNB
52

. Liu and colleagues, reported prospective data from 13 

patients undergoing shoulder surgery under USGPNB and identified 0.4% with neurological symptoms at 14 

1 week post procedure
53

. Liu also identified the frequency of unintentional intraneural injection during 15 

USGPNB as 42/257 (17%) without reported postoperative neurological symptoms
54

.  16 

Detecting needle-to-nerve contact is problematic. Macfarlane, Bhatia and Brull examined several animal 17 

models for needle-to-nerve contact and intraneural injection. They concluded that neither NS nor US are 18 

sensitive enough to be reliable
32

. Vassiliou and co-workers studied whether combining US and NS 19 

achieved a higher rate of “close needle tip placements” than either modality alone, concluding better 20 

needle placement with the combined approach
55

. Steinfeldt explored the relationship between needle 21 

nerve contact and needle type
11,12

. Needle nerve contact, with or without nerve puncture, results in an 22 

inflammatory response which may contribute to impaired nerve function. In determining the relationship 23 

between intraneural needle placement, ultrasound and NS currents (0.2-0.5 mA ), Robards at al concluded 24 

that the absence of a motor response to NS does not exclude intraneural needle position
56

. 25 
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The American Society of Regional Anesthesia and Pain Medicine (ASRA) practice advisory on 1 

neurologic complications states:  “No nerve localization or monitoring technique has been shown to be 2 

clearly superior in terms of reducing the frequency of clinical injury” because “There are no animal or 3 

human data to support the superiority of one nerve localization technique—paresthesia, nerve stimulation, 4 

ultrasound—over another with regards to reducing the likelihood of nerve injury”
57

. 5 

Summary 6 

Nerve localization methods have evolved from blind needle placement using endpoints such as 7 

paresthesia, nerve stimulation and ultrasound-guidance. Nerve injury can occur when PNB needles, local 8 

anesthetic or both are placed within the substance of a peripheral nerve. The relationship between needle 9 

and nerve immediately prior to injection is therefore of critical importance. The following paragraphs 10 

discuss methods that may be used in the future to achieve more accurate information on needle tip 11 

location. 12 

Future Directions for Nerve Localization Techniques and Extraneural Needle Placement 13 

Inline Pressure Monitoring 14 

The injection of solution into a non-distensible space will cause pressure within that space to rise. This 15 

might be appreciated by the operator as relative ease or difficulty with injection, and can be measured 16 

using the compressed air injection technique
58

 and commercially available inline pressure manometers 17 

like B-smart (Concert Medical, Needham, MA). Compressed air techniques rely on subjective feedback 18 

from the syringe and are subject to significant inter-individual variability. The use of automated injection 19 

pressure monitoring might limit inter individual variability and improve the objectivity of this strategy to 20 

limit needle to nerve contact
59

. Hadzic et al. studied the relationship between injection pressure and 21 

neurological outcome of subgluteal sciatic block in an animal model. High injection pressures (> 20 psi) 22 

irrespective of needle tip location cause both clinically and histologically evident nerve injuries
14

. In 23 

humans undergoing interscalene block, Gadsden et al studied the relationship between opening injection 24 
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pressure and needle-to-nerve contact. In this study, high opening pressure (≥15 psi) consistently detected 1 

needle-to-nerve contact
60

. Thus the use of in-line pressure monitoring might alert the clinician to 2 

intraneural and intrafascicular needle placement, potentially preventing nerve injury. High opening 3 

pressure may be caused by factors other than intraneural needle placement - needle obstruction, tissue 4 

compression and injection into a tendon, not just needle to nerve contact. Such non-specificity might 5 

negatively influence operator behavior and impact block performance. Further clinical validation is 6 

required to define the true utility of this inline injectate manometry during PNB. 7 

Advances in Ultrasound Imaging 8 

Marhofer et al. published a two part review on “Fifteen years of ultrasound guidance in regional 9 

anesthesia”. Part 1 of the review concluded “if experience in other technological fields is to be used as a 10 

yardstick of the pace of development, the next 15 years will see an exponential increase in the quality of 11 

both 2D images and 3D ultrasound images”
61

. In using conventional B-mode US, the clinician is provided 12 

with a narrow two dimensional representation of underlying anatomy. To guide a needle this 2-D image 13 

must be cognitively processed and appropriate visuospatial interpretations made. A three dimensional 14 

image might permit better nerve surface identification, and assist identification of appropriate needle path 15 

and endpoint.  Real-time 3D US imaging (also known as 4D where 3D alone refers to static 3D images 16 

that can be collected and manipulated at a later stage
62

) has been used for: (1) continuous sciatic block at 17 

the popliteal fossa
63

; (2) axillary brachial plexus block; and (3) radial nerve block
64

. Future progression of 18 

3D ultrasonography is likely to bring a wider image volume and thus more information to the clinician.  19 

The absolute advantage of this technology is the ability to manipulate imaging planes without moving the 20 

probe
65

. Although it is believed that 3D US imaging will further enhance the use of US for PNB 21 

procedures, this imaging modality requires a new image interpretation skill set. Currently clinicians learn 22 

two dimensional cross sectional anatomies as undergraduates. The application of anatomical 23 

representation using 2D US is somewhat intuitive. Three dimensional imaging in real-time is as of yet an 24 

unknown entity, as are the skills required to safely perform PNB using such a modality
61

. A recent 25 
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publication on 3D US imaging to evaluate local anesthetic spread and perineural catheter placement, 1 

suggests that the complexity of the technique coupled with an increased amount of information, could 2 

limit the practicality and cost effectiveness in daily clinical practice
66

. Further studies are required to 3 

determine the true role of 3D/4D US imaging in peripheral nerve block. 4 

Multiplaner Magnetic & Robotic Needle Guidance 5 

Magnetic needle guidance permits needle tracking and prediction of needle trajectory. Using a magnetic 6 

field and sensors on the needle and ultrasound probe, real-time overlay of needle trajectory and needle tip 7 

location on the 2D ultrasound image is achieved
67

. This technology may prove useful in assisting needle 8 

guidance from point A to point B, but it does not assist in determining the relationship between the needle 9 

tip and nerve. It is therefore not useful in either detecting or preventing needle to nerve contact.  10 

Robotic devices have been developed to assist with the performance of complex skills during surgery. 11 

Robotic assistance in bench models of regional anesthesia has been reported in which robots advanced the 12 

needle toward a target
68,69

. This may prove useful limiting needling errors associated with PNB 13 

performance
70

.  There are, however, no data to validate the use of robotics within the context of clinical 14 

PNB performance, and none to suggest better definition of needle nerve relationship.  15 

Optical Reflectance Spectroscopy 16 

Optical reflectance spectroscopy has been used to differentiate tissue types at needle tip. This technique 17 

uses optical fibers to carry visible and near-infrared light to the tissue in contact with the needle tip. 18 

Tissues absorb and reflect light differently depending on their composition. Sensing fibers in the device 19 

detect reflected and scattered light over a set spectrum of wavelengths. The quantity of light absorption 20 

and scatter by natural chromophores such as hemoglobin, water and lipids in a tissue at particular 21 

wavelengths is dependent on cell size and molecular structure. It is these characteristics that define the 22 

optical properties of a tissue
71

. After some calculation the absolute optical properties of tissues  are 23 

quantified and subsequently absolute absorber concentrations can be determined i.e. concentration of 24 
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deoxygenated hemoglobin, oxygenated hemoglobin and water
72

. Based on the quantities of different 1 

chromophores in a specimen the tissue type can be identified. Differences in chromophore volume 2 

fractions are determined using diffusion reflectance spectroscopy
73

. 3 

Non-invasive detection of breast cancer using clinical optical tomography and near-infrared spectroscopy 4 

has been investigated
74

. Invasive applications of this technology include tissue diagnostics to allow 5 

disease states to be detected in vivo with a long term view to replace biopsies and histological analysis but 6 

more urgently to provide additional guidance in locating the optimum sites for biopsy 
75

. Prostate
76

  and 7 

ovarian
77

 cancers have been identified by invasive use of optical reflectance spectroscopy. This technique 8 

has also provided stereotactic guidance during neurosurgery
78

.  In 1985, a fiber optic needle stylet was 9 

used to identify biological fluids such as blood, bile, water, and the reflective intima of a blood or bile 10 

vessel at the needle tip allowing for its location to be known during percutaneous diagnostic and 11 

therapeutic procedures
79

. More recent studies have demonstrated the ability to identify transitions from 12 

subcutaneous fat to skeletal muscle and from the muscle to the nerve target region in vivo on swine and 13 

humans using optical impedance spectroscopy. The novel optical needle stylet has also identified vascular 14 

needle penetration which would prevent accidental intravascular anesthetic release during the USGPNB 15 

procedure
80

. Optical reflectance spectroscopy can differentiate tissue type and detect target nerves 16 

accurately. If integrated with USGPNB, procedural short comings, as characterized, might be eliminated 17 

and procedural safety improved
81,82

.  18 

Bioimpedance 19 

All objects will impede electrical current to some degree. When AC is applied to biological material 20 

impedance is referred to as bioimpedance. The measurement of tissue bioimpedance could provide 21 

valuable information about both tissue type and physiological events of interest
83

. Several electrodes are 22 

used for impedance measurement: a small current is applied to one or more electrode while other 23 

electrodes pick up the resulting voltage. As the conductivity in biological materials is electrolytic and 24 
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based on Na
+
 and Cl

— 
ions, changes in the content of liquid or the ion-concentration lead to changes in 1 

bioimpedance. Furthermore, cell membranes have low conductivity; hence the concentration of cells also 2 

influences bioimpedance
84,85

. The cell membrane separates two electrolytic systems i.e. intracellular fluid 3 

from extracellular fluid, which gives cells capacitor (energy storing) characteristics
83,86

. The resistive and 4 

capacitive components of biological tissues therefore are well described by the concept of complex 5 

impedance
87

. Cell size, orientation and membrane thickness also influence bioimpedance thus increasing 6 

its ability to discriminate between tissues
88

. 7 

Bioimpedance analysis has long been considered a potential tool for medical diagnostics in many 8 

different ways as it offers easy to apply techniques with low costs
89

. Current and potential medical 9 

applications for bioimpedance primarily exploit the principle that the content of liquid and the 10 

concentration of ions in the sample give different tissue types different and characteristic bioimpedances. 11 

Some tissues are very good conductors of electricity, while others are poor conductors. For example bone 12 

is a poor conductor with a typical resistivity of >40 Ω at 10 kHz while muscle is a relativity good 13 

conductor of electric charge demonstrating resistivity of 2-4 Ω at 10 kHz
90

. Bioimpedance, the inverse of 14 

conductance, can therefore be employed by the same token by measuring the tissue resistance under AC
90

. 15 

Investigations and current uses of this technology for medical diagnostics are divided into two categories: 16 

(1) invasive applications; and (2) non- invasive applications.  17 

Non-invasive applications include Electrical Impedance Tomography (EIT), a form of real-time bedside 18 

imaging
90,91

 which has been used in the diagnosis of breast cancer
92-94

, epilepsy, acute stroke
91,95

 and 19 

measurement of gastric emptying during continuous infusion of liquid feed
96-99

.  EIT imaging is low cost 20 

and non-hazardous which permits its use for surveillance over protracted time intervals. Bioelectrical 21 

Impedance Analysis (BIA) allows measurement of human body composition mainly to estimate total 22 

body water and fat free mass in clinical settings
100,101

. Skin impedance is used to detect and to classify 23 

skin cancer
102-107

 and to diagnose or analyze allergic reactions
108,109

, diabetes mellitus
110

, skin 24 

irritations
111,112

 and skin moisture
113

. Impedance cardiography offers a continuous, non-invasive, operator-25 
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independent method of monitoring cardiac output and stroke volume offering a potential tool in diagnosis, 1 

treatment and observation of patients
114,115

.  2 

Invasive applications of bioimpedance using needle-type probes may have more relevance to regional 3 

anesthesia than non-invasive applications. Many studies relating to invasive bioimpedance measurement 4 

suggest that the use of a bespoke probe/needle might aid tissue identification and potentially detect 5 

needle-to-nerve contact in regional anesthesia. This concept is been exploited for many medical 6 

applications to date.  In 1969, impedance measurement was used for detection neural structures during 7 

percutaneous cordotomy. Penetration of spinal cord was confirmed by a rise in bioimpedance  from that 8 

of the surrounding cerebrospinal fluid
116

. Kalvøy’s group during  several in vivo investigations 9 

determined the position of a needle within different kinds of tissue like muscle, liver, spleen, fat etc.
117

   10 

Various bioimpedance biopsy probes have been trialed for biopsies of brain tumors
118,119

, pulmonary 11 

masses
120

, prostate cancer
121,122

 and renal biopsies
123

. In 2008 Tsui et al. evaluated the role of impedance 12 

measurement in an experimental model of USGPNB. They found a significant difference in bioimpedance 13 

between extraneural and intraneural tissue. Consequently the group postulated that bioimpedance 14 

measurement could be a useful warning signal to avoid intraneural injection in the future
124

. With this 15 

technology’s ability to differentiate tissue type with a high degree of accuracy and resolution, the current 16 

procedural inability to objectively detect optimum needle tip location for PNB delivery may be resolved 17 

by using bioimpedance. 18 

Conclusion 19 

This review has summarized the major advances in PNB nerve localization techniques and how PNB has 20 

progressed from landmark based blind procedures to sighted guidance using ultrasound. As PNB 21 

techniques have evolved, so have the challenges facing regional anesthesiologists. A reliable method of 22 

characterizing the relationship between needle and target nerve immediately prior to injection during PNB 23 

is required. The integration of any such solution into PNB procedural skills must (1) solve the problem as 24 
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characterized; (2) lessen the cognitive burden of the anesthesiologist; (3) improve procedure related 1 

outcomes; and (4) not adversely affect patient outcome. To date, technology newly applied to PNB 2 

includes real time 3D imaging, multi-planar magnetic needle guidance and inline injection pressure 3 

monitoring. This review identified the relationship between needle tip and target nerve as a high priority 4 

deficit in PNB techniques, and postulates that optical reflectance spectroscopy and bioimpedance may 5 

hold the solution to accurately address this challenge. Until it is known how best define the relationship 6 

between needle and nerve at the moment of injection some common sense principles might be 7 

appropriate: (1) the desired location for local anesthetic solution is around the nerve and not in it (the 8 

paraneural space); (2) use a needle in-plane guidance technique; (3) only advance the needle when visible 9 

on ultrasound; (4) target the fascia at the periphery of the nerve, not the center of the nerve; (5) always 10 

aspirate the needle before injection; (6) inject small quantities of local anesthetic 0.5-1ml; (7) inspect the 11 

target nerve for signs of intraneural injection, and reposition to ensure injection outside the nerve; (8) do 12 

not persist to inject if there is resistance to injection; (8) maintain verbal contact with and seek feedback 13 

from the patient. 14 

In conclusion, the novel application of existing and modifiable technology may assist physicians in 15 

overcoming the procedural limitations inherent within ultrasound guided peripheral nerve block. 16 

Characterization of these challenges and matching innovative technology may in time improve procedural 17 

safety and efficacy. 18 
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Figure Legends 

Figure 1: Nerve structure 
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Figure 2: Interscalene Brachial Plexus: ASM = Anterior Scalene Muscle; MSM = Middle Scalene 

Muscle; SCM = Sternocleidomastoid Muscle; C5 = fifth cervical nerve root in interscalene groove; C6 = 

sixth cervical nerve root in interscalene groove. 

Figure 3: Median Nerve in the forearm: FDS = Flexor Digitorum Superficialis Muscles; FDP = Flexor 

Digitorum Profundus Muscles 

 


