
Title Planning a portfolio of controls for software development

Author(s) Malgonde, Onkar; Hevner, Alan; Collins, Rosann Webb

Editor(s) Donnellan, Brian
Gleasure, Rob
Helfert, Markus
Kenneally, Jim
Rothenberger, Marcus
Chiarini Tremblay, Monica
VanderMeer, Debra
Winter, Robert

Publication date 2015-05

Original citation MALGONDE, O., HEVNER, A., COLLINS R. W. 2015. Planning a
portfolio of controls for software development. In: DONNELLAN, B.,
GLEASURE, R., HELFERT, M., KENNEALLY, J.,
ROTHENBERGER, M., CHIARINI TREMBLAY, M.,
VANDERMEER, D. & WINTER, R. (eds.) At the Vanguard of Design
Science: First Impressions and Early Findings from Ongoing Research
Research-in-Progress Papers and Poster Presentations from the 10th
International Conference, DESRIST 2015. Dublin, Ireland, 20-22 May.
pp. 101-108.

Type of publication Conference item

Link to publisher's
version

http://desrist2015.computing.dcu.ie/
Access to the full text of the published version may require a
subscription.

Rights ©2015, The Author(s).

Item downloaded
from

http://hdl.handle.net/10468/1813

Downloaded on 2017-02-12T05:13:58Z

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cork Open Research Archive

https://core.ac.uk/display/61580007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://desrist2015.computing.dcu.ie/
http://hdl.handle.net/10468/1813

Planning a Portfolio of Controls for Software
Development

Onkar Malgonde, Alan Hevner, and Rosann Webb Collins

Muma College of Business, University of South Florida, USA
{omalgonde, ahevner, rwcollins}@usf.edu

Abstract. A growing number of software development projects successfully
exhibit a mix of agile and traditional software development methodologies.
Many of these mixed methodologies are organization specific and tailored to a
specific project. Our objective in this research-in-progress paper is to develop
an artifact that can guide the development of such a mixed methodology. Using
control theory, we design a process model that provides theoretical guidance to
build a portfolio of controls that can support the development of a mixed meth-
odology for software development. Controls, embedded in methods, provide a
generalizable and adaptable framework for project managers to develop their
mixed methodology specific to the demands of the project. A research method-
ology is proposed to test the model. Finally, future directions and contributions
are discussed.

Keywords: Control theory, Portfolio of controls, Method engineering, Design
science

1 Introduction

Increasingly, software development teams want control and flexibility to co-exist in
their development process. Such a controlled-flexible approach allows them to handle
uncertainty in market and produce a better market-product match [1]. A recent indus-
try trend report [2] on enterprise software quality reports that a mix of Agile and Wa-
terfall (plan-driven) methods produces higher structural quality for business critical
applications than either Agile or Waterfall methods alone. Similarly, Baskerville,
Heje-Pries and Madsen [3] note that companies are successfully combining agile and
plan-driven approaches, consolidating the lessons learnt, and developing an organiza-
tional software development process. Such an organizational development process can
then be tailored to specific projects to meet project goals.

A mixed methodology is desirable for software development teams because they
find that adhering to a specific software development approach may not provide an
adequate fit to the project needs. For example, within agile methods, Fitzgerald,
Hartnett and Conboy [4] combine extreme programming (XP) and Scrum to develop
an effective software development methodology. They select 6 existing XP practices
out of 12, based on their applicability to the project environment. These 6 XP practic-

es are then supplemented with 6 practices from the Scrum methodology. The rationale
behind such a combination is that XP provides support for technical aspects whereas
Scrum provides better support for planning and tracking for the projects progress.

In this research-in-progress paper, we aim to provide theoretical guidance on de-
veloping a mixed methodology that is tailored for a specific project. The key focus is
a portfolio of controls that is initially developed based on the critical factors found in
the project [5]. Controls, which are embedded in method fragments, are used to identi-
fy method fragments to develop the methodology. The focus of this manuscript, then,
is to describe our research-in-progress on designing an artifact that provides guidance
and understanding of controls needed to build a mixed methodology. Our goal is to
improve current practices in developing mixed methods for software development, as
positioned in design science research [6]. In the following sections we explore related
literature, provide an example of mixed methodology development, develop our de-
sign artifact, propose a research methodology to evaluate that artifact, and discuss
future work and contributions of our research.

2 Tailoring a Software Development Method

Traditionally, two method-tailoring (situational methodology) approaches have been
employed to develop organization-wide and project-specific methodologies from
existing methods: contingency factors and method engineering [4, 7]. Both emphasize
that method-tailoring is driven by critical factors in the project and organizational
context. Proposed by Davis [8], contingency factors require the development team to
analyze the project environment (source of contingency). Upon analyzing the project
environment, the project team would then identify critical contingency factors. Based
on the identified contingency factors, methods of software development are compared
that are available in an organizational repository of methods. Typically, organizational
repository of methods is a function of successful prior utilization of methods. Based
on the analysis and identification of a suitable fit, the methodology is chosen for soft-
ware development, and is tailored to the project specific environment [4].

Method engineering [9] involves developing a software development methodology
using method fragments from existing methodologies that are present in the organiza-
tional repository of methods [10]. Based on the project performance, an organizational
method repository is continually updated with new method fragments. An important
decision point in method engineering is the concept of situation specific selection of
method fragments [10], where method fragments are replaced or added to the existing
method based on particular situations that arise during project execution. The selec-
tion of method fragments is based on contingencies, similar to the previous approach.

Project teams face multiple challenges while employing contingency factors and
method engineering approaches. First, these approaches advance an organization-
specific development approach that can be challenging in situations where multiple
organizations are involved. Distributed or culturally diverse teams can find it chal-
lenging to adapt to tailored methodologies. Second, these approaches to methodology
development do not provide practical risk-benefit analysis of adding, substituting,

deleting, and combining methods from different methodologies. Third, much rests on
the project manager’s experience about how the methodology can be tailored to situa-
tion specific needs. Finally, these approaches lack formal theory to describe how the
selected method achieves a balance between control and flexibility [1].

3 Control Theory

A central responsibility of any manager is to exercise control over employees and
organizational activities. Control theory [11-13] explains different control modes
available to managers, including project managers. It provides the lens that guides the
development of a project-specific methodology. Control modes are categorized into
two types: formal and informal. Formal modes of controls are viewed as performance
rewarding strategies by the management [14, 15]. In formal control mode, the man-
agement specifies a goal and reward for the team upon completion of the project goal.

Two forms of formal control are outcome control and behavior control. Outcome
control specifies establishing prior set of goals and determining reward levels based
on the extent to which established goals have been accomplished. For example, speci-
fied software load time is a system goal. If such a load time is consistently achieved,
the software team has met the outcome goal and can be rewarded based on a pre-
specified contract. Behavior control specifies adherence to established processes that
software development teams should follow in order to achieve the outcome goals. In
such a control mode, management’s emphasis is on observing team’s behavior. For
example, presence in daily Scrum meetings is expected from team members so that
information can be shared.

In contrast to formal modes of control an informal mode of control relies on a so-
cial strategy to achieve the goal of aligning organizational and employee goals. Two
forms of informal control are clan control and self-control. Clan control relies on the
team to foster a unique set of rules, applying to all, that help in achieving the common
goal for the team. Management has limited leverage on such a control since it is loose-
ly coupled from the organization goals and is highly influenced by interactions within
the team. Self-control emphasizes individual autonomy to achieve goals set by the
individual. In a software development team, individuals are required to be creative
and govern their own individual processes to meet deadlines [16]. In professional
settings like software development informal modes of control are also influenced by
developers’ education and socialization to the profession.

In order to extend Control Theory to handle situations with high risk and uncertain-
ty, Harris, Collins and Hevner [1] propose a new mode of control: emergent outcome
control (EOC). They identify two EOC mechanisms. Scope boundaries limit the fea-
sible solution such that the development team has the flexibility to explore but is con-
strained within a boundary. However, the project team is unconstrained within the
boundaries thereby maintaining creativity. Ongoing feedback is provided to the team,
from users, or the market, to steer development so that specifications are closely met.
For example, feedback can be provided to the team via meetings, documentation, user
reviews, or market orientation. Such feedback allows them to adjust their development
to specific needs of the market and achieve their goal.

Project managers employ control mechanisms to implement control modes [15, 17].
For example, delivering a working prototype every 2 weeks implements outcome
control by specifying a target for every development cycle. Also, it implements be-
havioral control by providing a sense of urgency within the team. In a software devel-
opment project, control mechanisms are embedded in method fragments [18].

Kirsch [15] posits that construction of a portfolio of controls is driven by four in-
fluencing factors: availability of pre-existing mechanisms, task characteristics, role
expectations, and project-related knowledge and skills. This critical factor focus is
congruent with the contingency theory and methods engineering approaches to select-
ing project methods. However, there are three limitations with this approach. First, the
approach is highly biased towards selecting preexisting mechanisms without any
analysis of their aptness to the project. Second, the approach does not focus on what
controls are needed for the successful completion of the project. Rather, the approach
is focused on factors that aim to fit existing controls to project needs. Finally, as the
project unfolds, Kirsch [19] attributes changes in the configuration of portfolio of
controls, across project phases, to the influencing factors, but does not explain how
project teams can proactively change the configuration to steer project development
towards its goal.

Thus, there is still a gap in our understanding about which controls should be in-
cluded in the initial portfolio of controls, and how the portfolio should be manipulated
over the execution of the project to best adapt to change. Addressing the first gap here,
we now discuss our process model to develop an initial portfolio of controls.

4 Designing a Portfolio of Controls

Figure 1 describes our work-to-date on a process model for developing a portfolio of
project controls. Initially, the project manager should analyze the project needs for
control, based on the critical factors in the context. Boehm and Turner [5] provide five
critical factors to analyze a project’s needs for its suitability to plan-driven or agile
approach: size (number of personnel), criticality (loss due to impact of defects), level
of skilled personnel, dynamism (change in requirements), and the culture (people feel
comfortable under chaos or order). Three of these factors overlap with Kirsch’s influ-
encing factors of project-related knowledge and skills and role expectations (size,
level of skilled personnel and culture). An influencing factor to add to Boehm and
Turner’s factor set is task characteristics. Analyzing the project on the resulting six
critical factors using a polar graph [5], the project manager can identify needed con-
trols to accomplish the project goal.

Based on the analysis using critical factors, the project team selects desired control
modes and mechanisms (controls) from the controls base. The control base is the re-
pository of control modes and mechanisms available to the project manager. At this
point, the selection of controls is completely based on the desired outcomes envi-
sioned by the project manager. Selection of desired controls is due to the high tem-
poral distance between the present state of the project and the project goal. For exam-
ple, in Intel Shannon [4], the development team had formed a cohesive group over

many years of working together. For such a project, relying primarily on informal
controls while supplementing it with formal controls would maintain the comradery
and cohesion, and help attain the project goal.

Following the initial selection of controls, the project manager then selects method
fragments from the methods base [9]. The selection of method fragments is governed
by desirability of the method fragment and the extent to which the method fragment
embeds the control mechanisms identified.

Figure 1. Process Model for a Portfolio of Controls

After selecting the required method fragments that embed the desired control
mechanisms, the project manager should conduct a mapping analysis of needed con-
trols versus support available for them via method fragments. Table 1 demonstrates
such an analysis using Intel Shannon as the example [4]. Note that we have not in-
cluded all method fragments and control mechanisms due to space constraints. Col-
umns represent the required control modes. Rows represent method fragments which
are selected to support the control modes. Mapping of controls and supporting method
fragments reveals high reliance on informal control modes in the selected methods.
Though such a portfolio is beneficial based on the cohesive group, inclusion of formal
controls will allow the project manager to provide product demos and delivery dates
to the customer. After identifying such a gap in control-method mapping, the project
team can add appropriate method fragments to fill those gaps. During instances where
appropriate method fragments are not available, the project manager can adapt exist-
ing control mechanisms to fill those gaps. For example, on-site customer method

fragment was not feasible for the Intel Shannon team. They can adapt the post-game
closure fragment to incorporate customer feedback after every sprint.

Table 1. Mapping Controls and Method Fragments (constructed from [4])

Method
Fragments

 Control Modes

 Outcome
Controls

Behavioral
Controls

Clan
Controls

Self-
Controls

Scope
Boundaries

Ongoing
Feedback

Pair
Programming

 Work
together

Activities
transparent
to team
members

 New
ideas
tested with
partner

Testing Provides
feedback
On re-
quired
work

Development
bounded by
test constraints

Post-Game
Closure

Specify com-
pletes and
incompletes at
the end of each
sprint

 Progress
visible

Scrum
Sprints

Specify sprint
outcomes at
the
start

5 Future Research Directions and Contributions

Our on-going research plan is to first validate the process model design in Figure 1. In
the selection of the portfolio of controls, we need to: (1) determine if the six critical
factors set is both accurate and reasonably complete, (2) understand the processes of
analyzing the need for controls and the selection of method fragments, and (3) devel-
op the mapping of controls and methods. In addition we need to understand how the
role of a need for flexibility is balanced against control in this process. Our goal is to
design a model that is prescriptive in nature. Interviews with project managers that
have experience in developing mixed approaches for software development will pro-
vide rich data for model evaluation. Organizations that have a specified organization-
al-methodology and allow managers to customize it based on the project would be
ideal places for conducting interviews. Also, projects with multi-organizational or
multi-cultural involvement provide additional testing areas for our process model.

This project provides multiple avenues for future research. The research proposed
in this paper supports the planning stage of a software development project. Our fu-
ture directions will develop a similar process model that adapts the initial control port-
folio to the changes found while executing the project. Specifically, we will draw
upon Construal-Level Theory [20] which argues that objects that are at a higher tem-

poral distance are perceived as abstract concepts, whereas objects with lower temporal
distance are perceived as concrete concepts. Evaluation of a decision alternative for an
abstract concept tends to focus on a holistic and desired view for the object. On the
other hand, evaluation of a decision alternative for a concrete concept tends to focus
on feasibility and precise view of the object. Desirable alternatives are the long-term
ideal actions that are coveted at the outset when temporal distance between the deci-
sion and the goal is greater. Feasible alternatives, on the other hand, are the short-term
actions that are required to attain the desired goal which is temporally close. With
increasing temporal distance, desirable alternatives are preferred over feasible alterna-
tives. Conversely, decreasing temporal distance to the goal leads to greater acceptance
of feasible alternatives [21]. For example, Liberman and Trope [22] find empirical
evidence for student’s preference for a desirable (interesting) assignment over feasible
(simple) assignment as a choice over distant future. In software development projects,
the initial portfolio of controls consists of desirable control modes since the project
goal is at a higher temporal distance. However, as the project is being performed and
the project goal is at a lower temporal distance, project characteristics change over
time. This requires changes in the control portfolio that can adjust to the changing
project characteristics. With decreasing temporal distance, desirable controls are re-
placed by feasible controls to attain the project goal. Thus, it is important to identify
the conditions under which method fragments need to be added, deleted, or replaced
with other fragments over time. In addition, the impacts of adverse situations like time
or budget pressure on portfolio of controls and possible mitigating strategies are other
important areas that need further research.

Adhering to a single software development approach is increasingly challenging
when project characteristics and market needs change [9]. We have presented our
artifact as a model that guides the process of constructing an initial portfolio of con-
trols. The application area for our model is the development of mixed methodology
but with guidance of using controls as the driving force rather than methods fragments
themselves. Further, our process model provides a risk-benefit analysis for project
manager that can be used to develop mixed methodologies. We have also proposed a
research methodology to evaluate our process model that will serve as an evaluation
mechanism.

6 References

1. Harris, M.L., Collins, R.W., Hevner, A.R.: Control of Flexible Software
Development Under Uncertainty. Information Systems Research 20, 400-419 (2009)
2. Curtis, B., Szynkarshi, A., Lesokhin, L., Duthoit, S.: The CRASH Report - 2014.
CAST Research on Application Software Health (2014)
3. Baskerville, R., Heje-Pries, J., Madsen, S.: Post-agility: What follows a decade of
agility? Information and Software Technology 53, 543-555 (2011)
4. Fitzgerald, B., Hartnett, G., Conboy, K.: Customising agile methods to software
practices at Intel Shannon. European Journal of Information Systems 15, 200-213 (2006)
5. Boehm, B., Turner, R.: Balancing Agility and Discipline (2004)
6. Gregor, S., Hevner, A.R.: Positioning And Presenting Design Science Research For
Maximum Impact. MIS Quarterly 37, (2013)

7. Fitzgerald, B., Russo, N., O'Kane, T.: Software Development Method Tailoring at
Motorola. Communications of the Association for Information Systems 46, (2003)
8. Davis, G.: Strategies for information requirements determination. IBM Systems
Journal 21, 4-30 (1982)
9. Brinkkemper, S.: Method Engineering: engineering for information systems
development methods and tools. Information and Software Technology 38, 275-280 (1996)
10. Kumar, K., Welke, R.: Methodology Engineering: A proposal for situation-specific
methodology construction. In: Cotterman, W., Senn, J. (eds.) Challenges and Strategies for
Research in Systems Development, (1992)
11. Ouchi, W.: The relationship between organizational structure and organizational
control. Administrative Science Quarterly 22, 95-113 (1977)
12. Ouchi, W.: A conceptual framework for the design of organizational control
mechanisms. Management Science 25, 833-848 (1979)
13. Ouchi, W.: Markets, bureaucracies, and clans. Administrative Science Quarterly 25,
129-141 (1980)
14. Eisenhardt, K.M.: Control: Organizational and Economic Approaches. Management
Science 31, 134-149 (1985)
15. Kirsch, L.J.: Portfolios of Control Modes and IS Project Management. Information
Systems Research 8, 215-239 (1997)
16. Henderson, J., Lee, S.: Managing I/S Design Teams: A Control Theories Perspective.
Management Science 38, 757-777 (1992)
17. Choudhury, V., Sabherwal, R.: Portfolios of Control in OUtsourced Software
Development Projects. Information Systems Research 14, 291-314 (2003)
18. Harris, M.L., Collins, R.W., Hevner, A.R.: Controls in Flexible Software
Development. Communications of the Association for Information Systems 24, 757-776 (2009)
19. Kirsch, L.J.: Deploying Common Systems Globally: The Dynamics of Control.
Information Systems Research 15, 374-395 (2004)
20. Trope, Y., Liberman, N.: Construal-Level Theory of Psychological Distance.
Psychological Review 117, 440-463 (2010)
21. Ariely, D., Zakay, D.: A timely account of the role of duration in decision making.
Acta Psychologica 108, 187-207 (2001)
22. Liberman, N., Trope, Y.: The Role of Feasibility and Desirability Considerations in
Near and Distant Future Decisions: A Test of Temporal Construal Theory. Journal of
Personality and Social Psychology 75, 5-18 (1998)

	1 Introduction
	2 Tailoring a Software Development Method
	3 Control Theory
	4 Designing a Portfolio of Controls
	5 Future Research Directions and Contributions
	6 References

