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Abstract 

Background/Aim: The innate immune system is a complex system which maintains 

a fine balance between homeostatic function and the inflammatory response. It has 

been demonstrated that a number of pathologies occur as a result of dysregulation of 

the immune system. Whilst classically associated with apoptosis, the Fas (CD95) 

signalling pathway has also been demonstrated to play a role in inflammation. 

Studies have demonstrated that Fas activation augments TLR4-mediated MyD88-

dependent cytokine production, whilst the Fas adapter protein FADD is required for 

RIG-I-induced IFNβ production. As a similar signalling pathway exists between 

RIG-I, TLR3 and the MyD88-independent of TLR4, we hypothesised that Fas 

activation may modulate both TLR3- and TLR4-induced cytokine production.  

Results: The dsRNA mimetic, poly I:C, induced IFNβ, IL-8, IL-10 and TNFα which 

were reduced by Fas activation. However, poly I:C-, poly A:U- and Sendai virus-

induced IP-10 production were augmented by Fas activation, demonstrating that this 

effect was not receptor specific. Overexpression studies demonstrated that the Fas 

adapter protein FADD inhibits TLR3-, RIG-I- and MDA5-induced IP-10 luciferase 

activation. Poly I:C-induced phosphorylation of p-38 and JNK MAPK was reduced 

by Fas activation, with overexpression studies demonstrating that FADD induces 

AP-1 luciferase activation. Point mutations in the AP-1 binding site also resulted in 

enhanced poly I:C-induced IP-10 production. LPS-induced IL-10, IL-12, IL-8 and 

TNFα production were enhanced by Fas activation. Fas activation reduced LPS-

induced IFNβ production. Absence of FADD using FADD
-/-

 MEFs resulted in 

impaired IFNβ production compared to wild-type MEFs whilst overexpression 

studies demonstrated that FADD augments TLR4-, MyD88- and TRIF-induced IFNβ 
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luciferase activation. Overexpression studies also suggested that enhanced TLR4-

induced IFNβ production was independent of NFκB activation. 

Conclusion: Viral-induced IP-10 production is augmented by Fas activation which 

alleviates the repressive activity of FADD on the system, with Fas activation 

reducing phosphorylation of p-38 and JNK MAPKs. This reduces the activation of 

the transcription factor AP-1, thus alleviating the negative effect of AP-1 on the IP-

10 promoter, promoting IP-10 production. The Fas signalling pathway reduces LPS-

induced IFNβ production, whilst augmenting all other cytokines investigated, with 

our data demonstrating that FADD is required for TLR4-induced IFNβ production. 

Studies presented here demonstrate that the Fas signalling pathway can therefore 

modulate the immune response. Our data demonstrates that this modulatory effect is 

mediated by its adapter protein FADD, which tailors the immune response by acting 

as a molecular switch. This ensures the appropriate immune response is mounted, 

thus preventing an exacerbated immune response, therefore limiting collateral 

damage to the host following infection.  
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Chapter 1 

General Introduction  
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1.1.1 The Innate Immune System 

The innate immune system consists of physical barriers and phagocytic immune 

cells. It is the first line of defence of the host, providing protection against a myriad 

of infections. The innate immune system relies on the recognition of evolutionary 

conserved molecular patterns that are common and essential for survival of 

microbes, but are absent in the host. These are known as pathogen associated 

molecular patterns (PAMPs) (1). Recognition of these PAMPs occurs through the 

presence of germline-encoded pattern recognition receptors (PRRs) which are a vital 

component of the innate immune system (2). Whilst recognition of PAMPs by PRRs 

can result in cytokine production, phagocytosis by antigen presenting cells (APCs) 

such as dendritic cells and macrophages can also occur. The pathogenic antigen is 

then presented on the APC, which upon recognition by antigen specific naïve T 

lymphocytes, results in activation of the adaptive immune response.  

1.1.2 Innate immune cells 

Innate immune cells are diverse in nature and represent the first line of defence of 

the host. These cells express and utilise the PRRs to mount an immune response 

against pathogenic material in the early hours of infection (3). Phagocytic leukocytes 

are white blood cells which are generated from haematopoietic stem cells, 

differentiating into the various subsets depending on the colony stimulating factor to 

which they are exposed (4). Neutrophils are the predominant leukocyte present in the 

bloodstream, are both secretory and phagocytic cells and are the first cell type to 

arrive at the site of infection. Recent studies have demonstrated that neutrophils 

target both gram-positive and gram-negative bacteria by neutrophil extracellular 

traps (NETs) (5). Crosstalk between both neutrophils and macrophages also aids the 



3 
 

innate immune response, with neutrophils producing macrophage inflammatory 

protein-1α (MIP-1α) and MIP-1β, resulting in migration of macrophages to the site 

of infection (5). 

Macrophages are an essential component of the innate immune system, capable of 

multiple functions including phagocytosis and antigen presentation. They are formed 

as a result of migration of monocytes from the blood stream into various tissues, 

with the resultant macrophages adopting specific functions dependent on their 

location (6). The heterogeneous nature of macrophages can be observed when 

comparing macrophages from different locations. PRRs and scavenger receptors are 

highly expressed on alveolar macrophages present in the lungs (6), inducing the 

expression of inflammatory cytokines, inducing an immune response thus clearing 

the infection (7). As transmission of many pathogenic microorganisms occurs 

through exposure to infective airborne particles (8), this upregulation and production 

of cytokines is unsurprising, resulting in a heightened immune response towards 

pathogenic material.  

Macrophages present in the gut are constantly exposed to commensal bacteria; 

therefore, intestinal macrophages lack some innate immune receptors which are 

present on blood monocytes, therefore reducing their capacity to react to commensal 

bacteria. Whilst cytokine production by these macrophages is compromised, these 

macrophages still retain their phagocytic and bacteriocidal capacity (9), therefore 

allowing these cells to function in close proximity to commensal bacteria whilst 

recognising and mounting an immune response against pathogens.  
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1.2 Pattern Recognition Receptors 

A variety of PRRs exist, each designed to evoke a specific immune response targeted 

against specific invading pathogens. These include Toll-like Receptors (TLRs), 

Nuclear Oligodimerization Domain (NOD)-Like Receptors (NLRs), C-type Lectin 

(CLEC) receptors (CLRs) and retinoic acid-inducible gene-I (RIG-I) like Receptors 

(RLRs), which recognise a range of evolutionary conserved PAMPs. Secreted PRRs, 

such as collectins and ficolins trigger activation of the lectin pathway of the 

complement system, resulting in the opsonisation of micro-organisms (10). This 

allows phagocytosis to occur resulting in antigen expression by immune cells, 

activating the adaptive immune system (11). Recent studies have also demonstrated 

that the human caspases, caspase-4 and caspase-5, and the murine homolog caspase-

11 directly bind to lipopolysaccharide (LPS) (12-14), indicating that these can be 

added to the list of known PRRs (14). These PRRs are poised to mount a rapid 

immune response culminating in the production of chemokines and cytokines. 

1.2.1 Toll-like Receptors 

Macrophages express a number of different PRRs, a family of which are the TLRs. 

The protein Toll was first identified in the fruit fly Drosophilia melanogaster by 

Nüsslein-Volhard and Wieschaus (15). It was initially demonstrated that Toll was 

required for the development of the dorsal-ventral axis in Drosophilia (15). Further 

studies demonstrated that it also played a significant role in the prevention of 

microbial infections in Drosophilia, whereby an absence of Toll in these flies 

resulted in them being highly susceptible to fungal infection (16). This subsequently 

led to the discovery of its mammalian homolog, Toll-like receptor 4 (TLR4) (17). 

Prior to the discovery of Toll in the fruit fly Drosophilia melanogaster, the innate 
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immune system was seen as a rudimentary system with its sole purpose being 

activation of the adaptive immune system. However, with the identification of Toll 

and TLR4, research in this field has led to the discovery of a multitude of other 

TLRs and indeed, PRRs of the innate immune system. 

TLRs are a vital part of the innate immune system. To date, 13 mammalian TLRs 

have been identified, 10 of which are expressed in humans, each having homology to 

the interleukin-1 receptor (IL-1R) (18). They are defined as type 1 transmembrane 

glycoproteins and along with members of the IL-1R family share a conserved stretch 

of ~200 amino acids in their cytoplasmic region known as the Toll/IL-1R (TIR) 

domain (19). This TIR domain is composed of three conserved boxes, formed from a 

central five stranded β-sheet surrounded by five α-helices, of which BB loops 

connect these secondary structures, connecting β-strand B with α-helix B (20). This 

BB loop contains within it a conserved proline residue which is present in all TLRs 

except that of TLR3, which contains an alanine residue at that site (21). 

Conservation of this proline residue induces LPS responsiveness. Substitution of 

proline to histidine induces resistance to endotoxin, as observed in C3H/HeJ mice  

The extracellular portion of TLRs contains Leucine-Rich-Repeats (LRRs) (22, 23) 

appearing in a xLxxLxLxx motif (2, 19). Recognition of the ligand by its cognate 

receptor induces activation of intracellular signalling cascades resulting in 

production of appropriate cytokines and chemokines (24).  

Ligands for all TLRs with the exception of TLR10 have now been elucidated (Table 

1.1).  
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Table 1.1 Intracellular location of each TLR with their known respective 

ligands and the origin of each ligand. 

 

Receptor Location Ligand Ligand origin 

TLR1 Cell surface multiple triacyl lipopeptides Bacteria 

TLR2 Cell surface 

multiple glycolipids, 

multiple lipoproteins, Heat 

Shock Protein (HSP)70 

zymosan, High Mobility 

Group Protein B1 

(HMGB1), Lipoteichoic 

acid, haemaglutinin 

Bacteria 

Bacteria 

Host 

Fungi 

TLR3 
Cell 

compartment 

double-stranded RNA 

(dsRNA) 
Viruses 

TLR4 Cell surface 

lipopolysaccharide (LPS), 

several HSPs, 

fibrinogen, heparin sulfate, 

fibronectin, hyaluronic acid, 

HMGB1, F-protein (RSV), 

lipotechoic acid 

Gram-negative 

bacteria 

Bacterial and host 

cells 

Host 

TLR5 Cell surface Flagellin Bacteria 

TLR6 Cell surface 
multiple diacyl lipopeptides, 

lipoteichoic acid, zymosan 
Mycoplasma 

TLR7 
Cell 

compartment 

Single stranded RNA 

(ssRNA) 
RNA Viruses 

TLR8 
Cell 

compartment 

Single stranded RNA 

(ssRNA) 
RNA Viruses 

TLR9 
Cell 

compartment 

unmethylated CpG 

oligodeoxynucleotide DNA 

Bacteria, DNA 

Viruses 

TLR10 Cell surface ? ? 

http://en.wikipedia.org/wiki/Lipopeptide
http://en.wikipedia.org/wiki/Glycolipid
http://en.wikipedia.org/wiki/Lipoprotein
http://en.wikipedia.org/wiki/HSP70
http://en.wikipedia.org/wiki/Zymosan
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TLRs are present both on the plasma membrane, as well as endosomally, poising 

them for appropriate PAMP recognition and response (24). TLRs 1, 2, 4, 5 and 6 are 

located on the plasma membrane, and predominantly recognise microbial cell wall 

components. Whilst TLR1 and 2 are capable of recognising bacterial lipoproteins, 

TLR2 requires dimerization with TLR1 or TLR6 in order to mediate an appropriate 

immune response (18). TLR5 recognises flagellin which is present in gram-positive 

and gram-negative bacterial flagella (25). Recognition of LPS by LPS Binding 

protein (LBP) facilitates the interaction between LPS and CD14 (26, 27), resulting in 

shuttling of LPS to the lymphocyte antigen 96 (MD2)-TLR4 complex (28, 29). 

TLR4 then homodimerizes, resulting in the recruitment of its adapter proteins. This 

induces the activation of downstream signalling components and eventual induction 

of cytokines (19). While well defined as a receptor of LPS, a component of gram-

negative cell walled bacteria, studies have now demonstrated that TLR4 can also 

recognise viral particles, as well as gram-positive bacteria (18).  

Endosomally located TLRs primarily detect nucleic acids, in particular by-products 

of viral reproduction (24). TLR3, along with TLR7, 8 and 9 localizes to the 

endosome, with TLR3 recognising double-stranded RNA (dsRNA), while both 

TLR7 and 8 recognise single-stranded RNA (ssRNA). TLR9 recognises 

unmethylated CpG Oligodeoxynucleotide DNA from both DNA viruses and 

bacteria. TLR11 has been reported to recognize uropathogenic E. coli (30) and a 

profilin-like protein from Toxoplasma gondii (31). TLR10 has also been shown to be 

located intracellularly and whilst it has been shown to recognise the micro-organism 

Listeria monocytogenes (32), its exact ligand has yet to be elucidated.  
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As TLR3 and TLR4 are the main focus of this work, they will be described in more 

detail. 

1.2.2 Toll-like Receptor 4 Signalling Pathway 

Following recognition of LPS, recruitment of the adapter protein Mal to TLR4 

occurs, resulting in the recruitment of Myeloid differentiation adapter protein 

(MyD88) (33). MyD88 can then recruit the IL-1 receptor kinase-4 (IRAK-4) through 

DD-DD interactions, subsequently recruiting IRAK-1. Phosphorylation and 

ubiquitylation of IRAK-1 then results, allowing for association between IRAK-1 and 

TNFR-Associated Factor (TRAF)6 to occur. This induces both oligomerization and 

polyubiquitination of TRAF6. The E3 ubiquitin ligase Pellino1 also induces 

ubiquitylation of TRAF6. Following both auto-ubiquitylation and ubiquitiylation of 

TRAF6, TRAF6, present in the IRAK-1 complex, becomes activated and 

subsequently dissociates from the receptor, allowing two TAK-binding proteins, 

TAB2 and TAB3 to associate with TGF-β-activated kinase (TAK1). This induces 

phosphorylation of inhibitor of kappa B Kinase-β (IKKβ), resulting in recruitment of 

TAK1. Inhibitory κB (IκB) bound in a complex with Nuclear Factor κ B (NFκB) is 

then degraded, resulting in translocation of NFκB to the nucleus, thus inducing 

production of inflammatory cytokines and chemokines (34). Similarly, TAK1 also 

induces activation of c-Jun N-terminal Kinase (JNK), extracellular signal related 

kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinases (MAPKs). This 

induces activation of the transcription factor activator protein-1 (AP-1), resulting in 

production of cytokines and chemokines. Additional proteins not detailed here are 

involved in this pathway as outlined in figure 1.1 (35). 
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Figure 1.1: Signalling pathway of Toll like receptor 4  

 

Following ligand recognition, TLR4 initiates a downstream signalling cascade using 

the adapter molecules Mal and MyD88, resulting in activation of NFκB and the 

MAPKs. This induces the production of inflammatory cytokines. TLR4, when 

trafficked to the endosome, recruits the adapter proteins TRAM and TRIF, resulting 

in the activation of IRF3, inducing the production of inflammatory cytokines. 
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Following activation of the MyD88 dependent pathway, it is thought that 

internalization of the receptor occurs in a clathrin and dynamin dependent manner, 

allowing activation of the MyD88 independent pathway to occur (36). This pathway 

is generally referred to as a late response pathway. It is thought that TLR4, now 

present in endosomes is recognised by TRIF related adapter molecule (TRAM). 

TRAM binds to the TIR domain in TLR4 once bound to MyD88. TRAM now binds 

to TRIF. TRIF then recruits Receptor Interacting Protein 1 (RIP1) through RIP 

homotypic interaction motif (RHIM) interactions, which can then complex with 

TNFR1-associated death domain protein (TRADD), which mediates downstream 

activation of signalling molecules, resulting in TRIF-induced NFκB activation and 

cytokine production (37). Whilst it is unclear whether Pellino-1 acts directly on RIP1 

(38), it has been demonstrated that phosphorylation of Pellino-1 by the TBK1-IKKε 

complex (39) induces polyubiquitylation of RIP1, resulting in recruitment of TAK1, 

and TAB1/2 and NFκB essential modulator (NEMO), resulting in the activation of 

downstream transcription factors such as NFκB and AP-1 (Activator-protein-1), 

resulting in cytokine production. TRIF also recruits the signalling intermediate 

TRAF-3 which can interact with TRAF family member-associated NFκB activator 

(TANK), TANK binding kinase 1 (TBK-1) and also IKKε (IKKi). Dimerization and 

translocation of the Interferon regulatory factor 3 (IRF3) to the nucleus then results 

from interaction of TBK1 and IKKε, inducing the production of interferons (figure 

1.1) (36). 

The TLR4 signalling pathway is tightly regulated, with upwards of 35 regulatory 

proteins identified to date (40-42). IRAK-M is an inactive kinase which binds to and 

prevents IRAK4 and IRAK1 association with MyD88. As a result, the MyD88 

signalling pathway is interrupted thus limiting NFκB activation (43). A20 is a 
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ubiquitin-modifying enzyme with deubiquitination of RIP1 by A20 preventing the 

activity of RIP1, and thus, any activation of downstream signalling intermediates 

again limiting NFκB activation (44). Sterile α- and armadillo-motif-containing 

protein (SARM) has been shown to limit TLR4-induced cytokine production (45). 

Whilst studies have shown that SARM and TRIF can directly interact, it has been 

demonstrated that SARM mediates its negative regulatory effect by inhibiting 

MAPK activation, thus limiting activation of NFκB, reducing the production of 

cytokines (46). 

1.2.3 Toll-like Receptor 3 Signalling pathway 

TLR3 recognises dsRNA from viruses such as respiratory syncytial virus (RSV) and 

rotavirus and therefore it predominantly induces production of anti-viral cytokines 

such as interferon-β (IFNβ). It is capable however, of inducing interleukin 

production through activation of NFκB. In the resting state, TLR3 is found within 

the endosome compartment (47, 48). This may be a mechanism preventing activation 

of TLR3 by self-nucleic acids (49). While TLR3 can be expressed on the cell 

surface, for example on human fibroblasts, it has been suggested that expression on 

the cell surface may be transient as viral infection of A549 lung epithelial cells with 

RSV led to detection of cell surface TLR3 (50). In contrast, TLR3 cell surface 

expression was not detected in A549 cells devoid of infection with RSV (50). 

TLR3 signalling utilises the adapter molecule TRIF for signal transduction. Upon 

recognition of dsRNA, TLR3 becomes phosphorylated at two tyrosine residues 

present in its cytoplasmic tail (51). TRIF is recruited via TIR-TIR interaction to 

TLR3 (52), which can then associate with TRAF-3 and TRAF-6 through TRAF-

binding motifs contained within its N-terminal portion (24, 53). Recruitment of 
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TRAF3 then results in activation of TBK-1 and the IκB kinases IKKε/i which 

induces phosphorylation and subsequent activation and dimerization of IRF-3 and 

IRF-7 which migrate to the nucleus. This results in an anti-viral response by 

induction of type-1 interferons (figure 1.2) (24).  
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Figure 1.2: Signalling pathway of Toll like receptor 3 

Following ligand recognition, TLR3 initiates the activation of a downstream 

signalling cascade using the adapter TRIF which initiates downstream activation of 

TRAF3 and subsequently TBK1 which results in activation of the transcription 

factor IRF3, inducing the production of anti-viral interferon genes. TRIF also 

recruits RIP1 through RHIM interactions, which mediates activation of TAK1, 

initiating the activation of the downstream signalling cascade, resulting in activation 

of NFκB. This induces the production of inflammatory cytokines. 
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Whilst the adapter proteins MyD88 and Mal are not required for TLR3-induced 

signalling, recent studies have demonstrated that these proteins may act as negative 

regulators of the TLR3 signalling pathway, thus limiting IFNβ production (54, 55). 

They demonstrated that MyD88
-/- 

macrophages had enhanced IFNβ production 

compared with wild-type macrophages following poly I:C stimulation, with 

overexpression of MyD88 observed to inhibit IKKε activity, limiting IFNβ 

production (54). Similarly, poly I:C-induced production of IFNβ by Mal
-/-

 Bone 

marrow-derived macrophages (BMDMs) was also enhanced, with Mal inhibiting the 

activity of Interferon Regulatory Factor (IRF)7 (55). 

In addition to the TIR domain, TRIF also contains the RHIM which facilitates 

interaction with RIP1, required for TLR3 induced NFκB activation (37). Upon 

phosphorylation of Pellino-1 by the TBK1-IKKε complex, RIP1, held in a complex 

with TRADD, undergoes Pellino-1 mediated ubiquitylation (39). TAK1 mediates 

downstream TLR3-induced activation of NFκB by both TRAF6 and RIP1 (56). Both 

TRAF6 and RIP1 utilise the same downstream molecules, IKKα, IKKβ and NEMO, 

collectively known as the IKK complex which induce the phosphorylation of IκB, 

thus allowing the activation of the transcription factor NFκB resulting in the 

production of inflammatory cytokines and chemokines (figure 1.2) (57).  
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1.2.4 RIG-I like Receptors (RLRs) 

RLRs are located intracellularly and recognise viral components present in the 

cytoplasm of the cell. This family comprises of RIG-I, Melanoma Differentiation-

associated Antigen 5 (MDA-5) and Laboratory of Genetics and Physiology 2 

(LGP2), all composed from three DExD/H box helicases which are essential for viral 

recognition (58, 59).  

RIG-I and MDA5 have a number of similarities in their structures and are organised 

into three distinct domains: an N-terminal region which has sequential caspase 

activation and recruitment domains (CARDs), a central DExD/H box RNA helicase 

domain, and a C-terminal repressor domain (RD) which is enclosed within the C-

terminal domain (CTD) present only in RIG-I (figure 1.3a) (59). MDA5 recognises 

long dsRNA, while RIG-I recognises both short dsRNA molecules and ssRNA 

which are phosphorylated at the 5’ end (60, 61). RIG-I and MDA5 associate with 

dsRNA through the helicase domain (62), as unwinding of dsRNA occurs through an 

ATPase dependent process (63). Once the dsRNA binds to the helicase domain of 

the RIG-I molecule, a conformational change occurs in RIG-I (57), which releases 

the CARD domain enabling interaction with interferon-β promoter stimulator 1 (IPS-

1, also known as mitochondrial anti-viral signalling protein (MAVS), virus-induced 

signalling adaptor (VISA) and CARD adaptor inducing IFNβ (CARDIF)) through 

CARD-CARD interactions (64).  

Both RIG-I and MDA5 share common signalling intermediates as they both activate 

the adapter protein IPS-1 (65, 66). IPS-1 interacts with RIG-I and MDA5 through 

CARD-like domains present in the N-terminal, IPS-1 recruiting the downstream 

signalling components Fas-associated protein with death domain (FADD) and RIP1 
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through the C-terminal effector domain (65). TRADD has also been implicated in 

RLR signalling. It has been demonstrated that IPS-1 recruits TRADD which then 

forms a complex with both FADD and RIP1 through death domain interactions (DD-

DD) (59, 67). Following ubiquitination of RIP1, NEMO is recruited, acting as a 

scaffold for both IKKα and IKKβ thus leading to NFκB activation (67). RLR 

activation also results in interaction of the RLR adapter protein IPS-1 with TRAF3 

through TRAF-interacting motif (TIM) (59, 68). Recruitment of TRAF3 results in 

the recruitment of both TBK-1 and IKKε. This results in phosphorylation and 

activation of both IRF3 and IRF7, resulting in the production of type-1 IFNs (figure 

1.3b) (68).  

The role of LGP2 in anti-viral signalling is not well defined. However, it is thought 

that RIG-I and MDA5 are regulated by LGP2 (69) potentially by sequestering 

dsRNA which prevents LGP2 from binding to RIG-I and/or MDA5 through the 

action of its repressor domain (RD) (68, 70). 
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Figure 1.3: Structure representation and signalling pathway of RIG-I and 

MDA5 

 

(a) RIG-I and MDA5 consists of two CARD domains; a DEAD helicase and a C-

terminal domain that encodes the repressor domain. (b) Upon ligand recognition, 

RIG-I and MDA5 recruit the adapter protein IPS-1. TRAF3 mediates activation of 

TBK1, resulting in the activation of the transcription factors, IRF3/7. IPS-1 also 

interacts with RIP-1, resulting in activation of a downstream signalling cascade, 

culminating in activation of the transcription factor, NFκB. 
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1.2.5 NOD-like Receptors 

NLRs are intracellular cytosolic sensors, involved primarily in bacterial recognition. 

They are composed of a tripartite structure, similar to that of plant R-proteins. They 

consist of an N-terminal effector binding region containing protein-protein 

interaction domains such as CARD, pyrin (PYD) and baculovirus inhibitor repeat 

(BIR) domains, an intermediary nucleotide binding and oligomerization domain 

(NOD) and an array of C-terminal LRR motifs which detect microbial PAMPs and 

modulate NLR activity (71). Spontaneous activation of NLR proteins is thought to 

be prevented by the LRRs in the C terminus folding back onto the NOD domain (72, 

73). To date, 23 NLR proteins exist in humans, with 34 in mice (74). NOD1 and 

NOD2 are well characterised members of this family which recognise peptidoglycan 

components of bacterial cell walls (figure 1.4a). NOD1 recognises γ-D-glutamyl-

meso-diaminopimlic acid, present in all Gram-negative but only some Gram-positive 

bacteria, while NOD2 recognises muramyl dipeptide, present in both Gram-positive 

and Gram-negative bacteria (75). Upon activation of these receptors, conformational 

changes occur causing the receptors to self-oligomerise. This in turn exposes the 

effector domains, recruiting and activating a downstream kinase of the NOD 

signalling cascade, RICK (RIP2), a serine-threonine kinase specifically required for 

NOD1/2 signalling. This is required for NFκB and MAPK activation (76, 77).  

Several distinct members of the NLR family of receptors, including NLRP3 and 

NLRP4, have been described (figure 1.4b). These NLR family members can form a 

high molecular weight complex termed the inflammasome upon recognition of 

PAMPs as well as Damage Associated Molecular Patterns (DAMPs) (78, 79). Upon 

activation, oligomerization of these NLRs occur, resulting in the recruitment of 
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apoptosis-associated speck-like protein containing a CARD (ASC) through PYD-

PYD interactions, resulting in the formation of multimers of ASC dimers. ASC then 

recruits procaspase-1 by CARD-CARD interactions, inducing self-cleavage of 

procaspase-1, resulting in its activation. This in turn activates both pro-IL-1β and 

pro-IL-18 (78-80). This pathway is termed the canonical pathway as it does not 

require additional co-factors for processing of IL-1β. TLR4-induced IFNβ 

production is however required for processing of IL-1β in the NLRP3 

inflammasome, with IFNβ activating caspase-11 thereby resulting in the activation 

of caspase-1 and the production of IL-1β and IL-18 (figure 1.4c) (78).   

Inflammasome formation can also induce pyroptotic cell death as a result of caspase-

1 activation which shares features with both apoptosis and necrosis, inducing an 

inflammatory response (78). 
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Figure 1.4 Structure of the NLRs NOD1, NOD2, NLRC4 and NLRP3 and 

depiction of inflammasome formation 

(a) NOD1 and NOD2 are composed of three domains: a carboxy-terminal LRR 

domain, a central NOD domain, and an amino-terminal domain composed of a 

CARD. (b) NLCR4 and NLRP3 are composed of a carboxy-terminal LRR, a NOD 

domain, and either a CARD domain or PYD domain respectively. (c) Upon 

activation, oligomerization of NLRs, recruiting ASC. This results in formation of the 

inflammasome, resulting in the activation of caspase-1 and processing of IL-18 

(Lechtenberg et al. (80)). 
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1.2.6 C-type Lectins (CLRs) 

CLRs are PRRs well characterised for their role in fungal recognition, recognising 

carbohydrate based moieties through at least one carbohydrate recognition domain 

(CRD) present on the receptor. Present as both transmembrane proteins and soluble 

proteins, to date, 17 groups exist within this family consisting of over 1,000 

members. They are distinguished from each other according to phylogeny and 

structure, with further subdivisions made based on the signalling potential of the 

CLR (81). Recent studies suggest however, that CLRs also recognise other 

pathogens such as bacteria and viruses (82-85). In terms of their role in bacterial 

infection, CLRs have been implicated in controlling M. tuberculosis (MTB) 

infection in vitro, however, in vivo studies have failed to replicate these findings (82, 

83).  

CLRs have also been implicated in viral infection in both a protective and 

detrimental manner. Activation of the CLR, DC-SIGN appears to exacerbate HIV 

infection by promoting viral survival, thus favouring transmission, infection and 

inflammation. This occurs as a result of modulating TLR-induced cytokine 

production and inducing accelerated dendritic cell (DC) apoptosis, dampening the 

maturation process of DCs in general, enhancing viral infection (84). Conversely, 

CLRs appear to have a protective role in the host against Herpes Simplex virus, 

whereby CLRs recognise dead and damaged cells, inducing activation of CD8
+
 T 

cells (85).  

Taken together, it is clear that PRRs in their entirety facilitate removal of invasive 

micro-organisms, both individually and in collaboration with each other, 



22 
 

demonstrating that the innate immune system is a diverse and complex entity in the 

host’s armoury against infection. 

1.3.1 The Fas Receptor 

Fas (CD95/APO-1) is expressed as a homotrimer (86, 87) by numerous cells 

throughout the body, including lymphoid immune cells as well as in the heart, 

kidney and liver (88-90). Fas was first identified as a death receptor as a result of the 

specific apoptotic ability of anti-Fas antibodies on tumour cells (91, 92). Fas is a 

45kDa type-1 transmembrane protein and is a member of the TNF receptor 

superfamily of death receptors, that also include TNFR1, TNFR2, DR3, TRAIL-R1 

(DR4) and TRAIL-R2 (DR5), which share  homology in their extracellular cysteine 

rich domains (93).  

The Fas gene is comprised of nine exons, separated by 8 introns. It consists of three 

cysteine-rich domains (CRDs), the hallmark of the TNFR superfamily, present in the 

N terminal region encoded by exons 1 through 5, a transmembrane domain encoded 

by exon 6, and the intracellular domain encoded by exons 7 through 9 which 

contains a death domain (DD) composed of 80 amino acids (94). This facilitates the 

interaction with the DD of its adapter protein, FADD (figure 1.5a).  

1.3.2 Fas Ligand 

Activation of Fas signalling occurs following binding of the Fas receptor by its 

ligand, Fas Ligand (FasL/CD95L). FasL is a 40kDa type II transmembrane protein 

(95) expressed on activated T cells, NK cells and cytotoxic T lymphocytes (96), as 

well as in immune privileged sites such as the eye, testis, ovary and placenta (97, 

98). The human FasL gene is composed of four exons. Interaction between Fas and 
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FasL is mediated by the specific receptor binding domain, present in the C terminal 

extracellular domain of FasL, which binds to the CRD of Fas. It is thought that the 

highly conserved proline residues contained within the N terminal intracellular 

domain of FasL, along with several potential tyrosine phosphorylation sites may 

influence FasL protein sorting to secretory lysosomes (96). Oligomerization of FasL 

is mediated by a self-assembly domain on FasL, whilst the function of the putative 

casein kinase I (CKI) motif has yet to be elucidated (figure 1.5b) (96). 

1.3.3 The Fas associated death domain containing protein (FADD) 

The FADD (Mort-1) gene is located on chromosome 11q13.3 in humans and 

chromosome 7 in mice and is organised into two exons, separated by a 2kb intron 

(99). Murine FADD shares 68% identity with that of human FADD (100). Within its 

structure, FADD contains two well conserved domains, the DD and the Death 

Effector Domain (DED), present in the C-terminal region in exon 2and in the N-

terminal region in exon 1 respectively (figure 1.5c) (99, 101).    

FADD is required for activation of the Fas signalling pathway. It has also been 

demonstrated that FADD is required for embryo development. Homozygous FADD 

mutant mice, generated by gene targeting in embryonic stem cells, did not survive in 

utero (102). Although FADD was detected in all tissues, with the expression of 

FADD concentrated in the brain, liver, developing vertebrae and myocardium, the 

requirement of FADD for embryo development is thought to be due to its role in the 

development of the ventricular myocardium (102).  

Through the presence of the DD, FADD can also interact with other members of the 

TNF family of death receptors through DD-DD interactions. FADD can interact with 
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the TNF-R1 signalling pathway through interaction with its adapter protein TRADD, 

inducing NFκB activation (103). Internalisation of the TNFR1 receptor results in 

dissociation of TRADD, which can now interact with FADD, resulting in apoptosis 

(103). FADD also interacts with both DR4 and DR5 through DD-DD interactions, 

resulting in both apoptosis (104, 105) and in activation of NFκB  (106).  
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Figure 1.5: Structure of Fas, FasL and FADD protein 

(a) Fas contains within its extracellular domain three cysteine-rich domains, a 

transmembrane domain, and a death domain contained within the intracellular 

domain in the N-terminus. (b) The C-terminal extracellular domain of FasL contains 

a specific receptor binding domain and self-assembly domain. FasL also contains a 

transmembrane domain. FasL contains a conserved proline rich domain and casein 

kinase I (CKI) within the N-terminal domain. (c) FADD contains an N-terminal 

DED domain and a C-terminal DD domain. 
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1.3.4 Apoptotic pathways of Fas 

Cell death can occur by apoptosis, autophagy, necrosis (107), and the more recently 

identified necroptosis (108). Apoptosis is a form of programmed cell death, which 

results in nuclear and cytoplasmic condensation, resulting in the formation of 

apoptotic bodies (107, 109). These apoptotic bodies are then engulfed by 

neighbouring cells and degraded in a controlled manner, thus avoiding immune 

activation (107, 109). Fas-mediated apoptosis can be further characterised into two 

pathways; the extrinsic (death receptor) pathway, and the intrinsic (mitochondrial) 

pathway (110), with FADD, the adapter protein of the Fas signalling pathway, also 

contributing to programmed necrosis (necroptosis) (111).  

The extrinsic pathway is induced upon binding of FasL to the Fas receptor, present 

on the plasma membrane, resulting in activation of the Fas signalling pathway (112). 

Upon activation, the intracellular domain of the receptor undergoes a conformational 

change (113), resulting in recruitment of the adapter protein FADD to Fas, through 

DD-DD interactions (114). FADD then recruits procaspase-8 (115, 116), procaspase-

10 and cellular FADD-like IL-1β-converting enzyme-(FLICE)-inhibitory protein 

(cFLIP), a regulator of caspase-8/10 activation (117) through DED-DED 

interactions. This results in the formation of the Death Inducing Signalling Complex 

(DISC) around the cytoplasmic tail of Fas (115), with internalization of the receptor 

required for efficient DISC formation (118). Oligomerization of procaspase-8 

occurs, resulting in auto-proteolytic cleavage of procaspase-8, which results in the 

activation of caspase-8. In type I cells, sufficient amounts of caspase-8 are activated 

at the DISC to trigger activation of additional caspases (119), including the effector 
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caspases, caspase-3 and caspase-7 (120). This results in enhancement in caspase 

activity and apoptotic death of the cell (118).  

However, if insufficient levels of caspase-8 activation occur due to reduced DISC 

formation, the Fas signalling pathway has a compensatory mechanism, which utilises 

the mitochondria for activation of the effector caspases, resulting in activation of 

Fas-induced intrinsic apoptotic pathway (120). These are known as type II cells 

(121). In these cells, caspase-8 activation results in the cleavage of the protein Bid, a 

member of the Bcl-2 family of proteins present in the cytoplasm (122). This results 

in the formation of truncated Bid (tBid) which translocates to the mitochondria, 

causing the aggregation of both Bax and Bak, two members of the Bcl-2 family of 

proteins (123). This then results in the release of second mitochondria-derived 

activator of caspase (SMAC) and cytochrome c from the mitochondria, with the 

latter forming a complex with apoptotic protease-activating factor-1 (Apaf-1), 2’-

deoxyadenosine 5’triphosphate (dATP) and procaspase-9, resulting in the activation 

of the initiator caspase in this apoptosome complex (121, 124). Caspase-9 can in turn  

activate the effector caspase, caspase-3, resulting in apoptosis of the cell (figure 

1.6a) (123).  
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Figure 1.6a: The Fas/FasL-induced apoptotic signalling pathways 

Recognition of FasL by its receptor Fas results in the oligomerisation of the receptor, 

initiating DISC formation. Auto-proteolytic cleavage of procaspase-8 occurs 

resulting in the activation of downstream effector caspases, and ultimately cell death. 

Reduced levels of caspase-8 can also activate the mitochondrial cell-death pathway, 

mediated by the activation of Bid, resulting in the release of cytochrome c from the 

mitochondria, resulting in the activation of Apaf-1 and caspase-9, culminating in 

apoptosis. 
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It is thought that inhibitors of apoptosis (IAPs), composed of cIAP1/2 and X 

chromosome-linked inhibitor of apoptosis protein (XIAP) may also regulate Fas-

mediated apoptosis. XIAP, cIAP1 and cIAP2 are thought to all bind and inhibit 

caspase-3, -7 and -9, whilst having no effect on caspases-1, -6, -8 or -10 (125, 126). 

In the absence of caspase activation, Fas activation can result in necroptosis (127, 

128). The requirement for the Fas adapter protein FADD in necroptotic signalling 

has also been demonstrated (129, 130). Necroptotic signalling is mediated through 

formation of a signalling complex composed of RIP1, RIP3, FADD and caspase-8, 

termed the Ripoptosome, with its formation occurring independent to other death 

receptor signalling pathways (127, 129, 130). Ripoptosome formation is regulated by 

the IAPs, as well as cFLIP (129). IAPs mediate ubiquitination of RIP1, thereby 

limiting its availability for Ripoptosome formation (130). cFLIP is a negative 

regulator of Ripoptosome formation, with increased levels of cFLIP reducing 

Ripoptosome formation (129) by limiting the availability of FADD for complex 

formation. Studies have demonstrated that the kinase activity of both RIP1 and RIP3 

are essential components for Ripoptosome formation, with formation of this complex 

inducing either apoptotic (caspase dependent) or necroptotic (caspase independent) 

signalling (figure 1.6b) (108, 129).  
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Figure 1.6b: Fas activation and necroptosis 

 

Fas activation in the absence of caspase activity results in necroptosis of the cell. 

Necroptotic signalling is mediated by a complex containing RIP1, RIP3, FADD and 

caspase-8, with the kinase activity of RIP1 and RIP3 capable of inducing 

necroptosis. 
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1.3.5 Apoptotic functions of Fas 

The Fas signalling pathway is an important means of maintaining immune privileged 

sites such as the eye, testis, ovary and placenta. Local expression of FasL targets 

invading Fas expressing cells, resulting in apoptosis. This limits inflammation, thus 

limiting any collateral damage from inflammatory events, maintaining anatomical 

integrity of these sensitive sites (97, 98, 131). Immune privilege may also be utilised 

by tumours to evade the immune system, with tumour cells expressing FasL 

inducing Fas-mediated apoptosis of infiltrating immune cells, thus allowing 

progression of the tumour (121, 132, 133).  

The Fas signalling pathway plays a vital role in T cell homeostasis. This becomes 

apparent when the Fas signalling pathway is interrupted, resulting in dysregulation 

of Fas-induced apoptosis. It has been demonstrated in mice which contain mutations 

in Fas (lpr) or FasL (gld) that interruption of the Fas signalling pathway disrupts 

Fas-mediated apoptosis and as a result, disrupts T cell homeostasis resulting in 

lymphoproliferative disorders, as well as autoimmune conditions such as arthritis 

and systemic lupus erythromatosis (SLE) (134, 135). This is similar to the human 

condition, autoimmune lymphoproliferative syndrome (ALPS) which is caused by 

mutation in components of the Fas signalling pathway, preventing Fas signalling. 

This results in lymphoproliferation and a predisposition of these individuals to 

develop lymphomas (136-138). 

1.3.6 Non-apoptotic Functions of the Fas signalling pathway 

Whilst Fas is classically associated with apoptosis, recent studies have demonstrated 

that the Fas signalling pathway is multifaceted and is involved not only in T cell 
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homeostasis and the maintenance of immune privileged sites, but can also trigger 

migration, proliferation and inflammation (figure 1.7).  
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Figure 1.7: The functions of the Fas signalling pathway 

In addition to apoptosis, the Fas/FasL pathway has been shown to induce migration, 

invasion, proliferation and inflammation. 
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Proliferation 

Whilst studies have demonstrated that naïve T cells are resistant to Fas-mediated 

apoptosis, ligation of Fas induces proliferation of these cells (139, 140). Proliferation 

of T cells also occurred with regard to memory T cells due to their prior exposure to 

an antigen (141). T cells require two main signals for activation. Signal 1 results 

from engagement of the T cell receptor (TCR)/CD3 complex, with signal 2 provided 

by either IL-12, IL-4, or ligation with CD28. Activation of the TCR/CD3 complex in 

the absence of signal 2 would result in Fas-mediated apoptosis of naïve T cells. 

However, TCR/CD3-stimulated memory T cells in the absence of signal 2 do not 

undergo Fas-mediated apoptosis following Fas ligation. It has been demonstrated 

that co-stimulation of memory T cells with TCR/CD3 with Fas activation results in 

proliferation of memory T cells (141). Studies have also demonstrated that Fas 

activation can also induce proliferation of tumour cells, whereby a reduction in Fas 

or FasL expression resulted in reduced proliferation, possibly as a result of reduced 

JNK and ERK MAPK activation (142, 143). Fas and FasL are widely expressed in 

the nervous system (144, 145) with studies demonstrating that following sciatic 

nerve injury in vivo, Fas activation enhanced nerve regeneration (88).  

 Migration/Invasion 

Fas ligation can also result in migration and invasion in apoptosis resistant cells, 

with stimulation of tyrosine kinase activity by Fas implicated in these processes 

(146). Fas induces tyrosine kinase activity, resulting in phosphorylation of caspase-8 

(147), the scaffold protein TRIP6 (148), and the catalytic subunit of 

phosphatidylinositol-3-kinase (p110-PI3K) (149) however the sequence in which 

this occurs is unclear (146). Caspase-8 then becomes a docking site for Src 
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homology domain 2 (SH2) containing proteins, recruiting them to the Fas complex 

(146). Recruitment of Yes and p85-PI3K, members of the Src-family kinase, to the 

Fas complex results in PI3K activation. This results in the activation of Akt which, 

following a series of signalling events, can activate either NFκB through interaction 

with the caspase8/RIP1/TRAF2 signalling complex, or the Wnt pathway, inducing 

the expression of metalloproteases (MMPs) and urokinase plasminogen activator 

(uPA) (110, 146).  Studies have demonstrated that expression of MMP9 results in 

increased migration of cells, with MMPs aiding the migration of cells through the 

extracellular matrix (110, 146). 

Inflammation 

Fas activation has also been implicated in inflammation (figure 1.8). Fas activation 

by the agonistic Fas antibody CH11 induced the production of TNFα, IL-8 and IL-10 

in human monocyte-derived macrophages (150). This study demonstrated that 

human monocyte-derived macrophages were resistant to apoptosis, and therefore the 

inflammatory effect was not a by-product of cell death (150). They also 

demonstrated that Fas-induced cytokine production was independent of caspase 

activation (150).  

It has also been observed that priming of macrophages with LPS induced Fas 

expression in macrophages which, upon ligation of Fas, resulted in the production of 

IL-1β and IL-18 (151). Whilst associated with the inflammasome, the maturation and 

secretion of IL-1β and IL-18 were determined to be independent of the 

inflammasome components NLRP3, ASC and caspase-1. Thus they concluded that 

Fas ligation induced the expression of these cytokines in a non-canonical manner 

(151).  
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Fas ligation can induce the phosphorylation of MAPKs (152, 153). The MAPKs are 

thought to play a key role in cytokine production, particularly ERK1/2 and JNK 

MAPKs. Studies have demonstrated that inhibition of the MAPKs resulted in 

inhibition of IL-8 production (152, 154). MAPK activation resulted in the activation 

of the transcription factors AP-1 and NFκB, inducing cytokine production (155).  

Whilst it is well established that the MyD88 adapter protein facilitates TLR-induced 

cytokine production, it has now been demonstrated that MyD88 may be implicated 

for Fas-induced inflammation (156). In this study, they demonstrated that while Fas 

induced the production of inflammatory cytokines, in the absence of MyD88 

cytokine production in both RAW264.7 macrophages, as well as peritoneal 

macrophages derived from MyD88
-/-

 mice was diminished, with cytokine production 

occurring independent of caspase activation (156). Consistent with this, MyD88 was 

shown to be required for Fas-induced production of CXCL-1/KC by alveolar 

epithelial cells. This was also demonstrated to occur independent of caspase 

activation (154). 

Together, these studies have demonstrated that Fas activation can indeed result in the 

production of inflammatory cytokines. As the Fas adapter protein FADD has been 

implicated in a number of innate immune receptor signalling pathways, it has now 

been demonstrated that Fas activation modulates their cytokine production .This 

occurs following recruitment of FADD to the DISC complex. This reduces the level 

of FADD present in the cytosol, thereby removing its effect from these immune 

receptors (157-159). 
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Figure 1.8: Fas-induced inflammation is induced by different signalling 

pathways. 

Fas-mediated inflammation may be induced via activation of the NFκB transcription 

factor, or activation of ERK, p38 and JNK MAPK signalling pathways downstream 

of the DISC. MyD88 may directly interact with Fas in a FADD independent manner, 

resulting in Fas-mediated inflammation. Signalling pathways/intermediaries which 

are not fully elucidated are represented by dashed lines.  
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1.4 Cross-talk between Fas and Toll like receptors 

Studies have demonstrated that the Fas signalling pathway can modulate TLR-

induced cytokine production (158, 160-162). Interruption of the Fas signalling 

pathway reduced the expression of LPS-induced IL-6 production in macrophages 

(158), whilst Fas activation enhanced both LPS- and Flagellin-induced cytokine 

production in intestinal epithelial cells (160). Recruitment of inflammatory cells and 

therefore cytokine production was also reduced in cardiac dysfunction by blocking 

Fas signalling (161, 162).  

The Fas adapter protein FADD has also been reported to play a negative regulatory 

role in TLR4 signalling (157-159). Studies have demonstrated that LPS-induced 

NFκB activation was reduced following overexpression of FADD (157, 158). It has 

also been demonstrated that LPS-induced NFκB activation was enhanced in FADD
-/-

 

MEFs (157), with FADD regulating NFκB activation through interaction with 

MyD88, one of the four adapter proteins utilised by TLR4 (158, 159) and IRAK1 

(159) through DD-DD interactions, with IRAK1 proving essential for formation of 

this complex (159). These studies demonstrated a regulatory role for FADD in LPS-

induced cytokine production using overexpression studies or removal of FADD from 

the cell.  

Studies have demonstrated that viruses can modulate the Fas signalling pathway to 

their advantage (163, 164). Both equine herpesvirus type 2 (EHV-2) protein E8 and 

molluscum contagiosum virus (MCV) MC159 protein are DED containing proteins. 

It has been demonstrated that E8 interacts with the DED of caspase-8 prodomain, 

whilst MC159 binds to the DED of FADD, thereby preventing the activation of Fas-

mediated apoptosis, resulting in the persistent infection of cells by these viruses 
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(163). Studies have also demonstrated that infection of cells with HSV-2 enhanced 

the expression of Bcl-2, thus protecting against Fas-induced apoptosis and resulting 

in the establishment of a persistent infection (164).   

The role of FADD however is more defined in terms of viral infection. Studies have 

shown that FADD is required for RIG-I and MDA5 induced type 1 IFN production 

(165, 166). They demonstrated that RIG-I-induced IFNβ production was 

significantly reduced in FADD
-/-

 MEFs following poly I:C stimulation as compared 

to wild-type cells, with reconstitution of FADD
-/-

 MEFs  with FADD restoring their 

ability to produce IFNβ (165). This group also demonstrated that FADD is 

associated with activation of secondary IFNα genes, with a reduction of IRF7 

activation observed in FADD
-/-

 MEFs following viral stimulation mediating its effect 

through IRF7 activation (166). 

Therefore, while it is apparent that FADD is implicated in the innate immune 

system, its role is somewhat unclear. 
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1.5 Aim of this study 

The Fas signalling pathway is well characterised in terms of its ability to induce 

apoptosis. Studies now demonstrate that this pathway also mediates inflammatory 

cytokine production, with an increasing body of data indicating that there is crosstalk 

between the TLR and Fas signalling pathways both in terms of crosstalk between the 

receptors themselves and crosstalk between the adaptor proteins in both pathways. 

Work in this field has been restricted to studies examining crosstalk between Fas and 

TLR4 with no studies investigating crosstalk between Fas and other TLRs. In 

addition there are very few studies investigating both Fas and FADD together in 

terms of their ability to modulate TLR responses.  In this study we sought to 

examine the crosstalk between Fas and TLRs and the effect of Fas activation on TLR 

signalling, in particular, TLR3, and TLR4. Studies have alluded to the fact that 

crosstalk may be implicated in the modulation of TLR3- and TLR4-mediated 

antiviral signalling, as RIGI and TLR3, apart from their adapter proteins, share 

similar downstream signalling components. Equally, these signalling components are 

shared by the MyD88-independent signalling pathway of TLR4. To our knowledge, 

no study has implicated Fas activation on this pathway. Therefore, we sought to 

investigate more thoroughly the impact of Fas activation on TLR signalling 

pathways.  

 Specific Aims: 

1. To investigate the role of Fas in the induction of anti-viral cytokine and 

chemokine responses, and to investigate whether there was a potential role 

for Fas in modulating poly I:C-induced cytokine and chemokine responses 

(Chapters 3, 4). 
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2. To further characterise the role of both Fas and its adapter protein FADD in 

modulating TLR4-induced inflammation using the agonistic Fas antibody, 

CH11, and also to identify any potential novel FADD interacting proteins 

(Chapter 5).   
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Chapter 2 

Materials and Methods 
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2.1 Cell Culture 

The leukemic monocytic cell line THP1 and Jurkat T cell line was obtained from the 

European Collection of Cell Cultures (ECACC). Human embryonic kidney cells 

stably transfected with either TLR3 or TLR4 (HEK293/TLR3, HEK293/TLR4) were 

obtained from Invivogen (San Diego, CA). HEK293T cell line and the murine 

macrophage cell line RAW264.7 were kindly donated by Dr. Ken Nally 

(Ailimentary Pharmabiotic Centre, UCC). The astrocytoma cell line U373 was 

kindly donated by Dr. Luke O’Neill (Trinity College Dublin). Both wild-type and 

FADD deficient murine embryonic fibroblasts (MEFs) were kindly donated by Dr. 

Tak Mak (University Health Networ, Ontario, Canada). Wild-type and TRIF 

deficient immortalised bone marrow-derived macrophages (iBMDMs) were kindly 

donated by Dr. Sinead Miggin (Maynooth University, Co. Kildare, Ireland). 

THP1 monocytic cell line and Jurkat T cell line were maintained in Roswell Park 

Memorial Institute (RPMI)-1640 media (Sigma-Aldrich, Dorset, UK) supplemented 

with 10% (v/v) foetal calf serum (FCS) (Sigma-Aldrich) and 1% (w/v) 

penicillin/streptomycin (pen/strep) (Sigma-Aldrich). HEK-293T, RAW264.7, U373, 

MEFs and iBMDMs were all maintained in Dulbecco’s Modified Eagles Medium 

(DMEM) supplemented with 10% (v/v) FCS and 1% (w/v) pen/strep. 

HEK293/TLR3 and HEK293/TLR4 cell lines were maintained in DMEM 

supplemented with 10% FCS and 1% pen/strep, with selective antibiotics, with 

HEK293/TLR3 cells requiring 10mg/ml Blasticidin (Invivogen, San Diego, CA), 

with 10mg/ml Blasticidin (Invivogen) and 100mg/ml HygroGold (Invivogen) 

required for HEK/TLR4 cells.  
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Mycoplasma testing was performed quarterly using Mycoplasma Detection Kit 

(Invivogen). Cells were incubated without antibiotics for 48 hours. Cell culture 

supernatant was collected. A 500μl sample of cell culture supernatant was then heat 

inactivated and incubated with genetically engineered HEK-Blue cells for 24 hours. 

The presence of Mycoplasma was detected as follows: no colour change (pink 

colour) indicates a negative result and a blue/purple colour indicates the presence of 

Mycoplasma. All cell cultures used in these experiments tested negative. 

2.2 Differentiation of THP1 monocytic cells into THP1 monocyte-derived 

macrophages 

THP1 monocytes were seeded in 6 well plates at a concentration of 1 x 10
6
 cells per 

well in full RPMI-1640 media, supplemented with 100ng of phorbal 12-myristate 

13-acetate (PMA) (Sigma-Aldrich) (167). THP1 monocytic cells were allowed to 

differentiate for 72 hours. Media was then changed, and macrophages were allowed 

to rest overnight, following which stimulations occurred.   

2.3 Human monocyte derived macrophages 

Human monocytes were obtained from healthy volunteers. A minimum of 28ml of 

fresh whole blood was collected into ethylene diamine tetra-acetic acid (EDTA) 

vacutainers. One sample was centrifuged at 1200 x g for 20mins to retrieve the 

plasma which is used to supplement the media. Fresh samples were added into 50ml 

conical flasks, with 3mls Ficoll-Hypaque (Sigma-Aldrich) added for every 7mls of 

blood. Samples were centrifuged at 670 x g for 30mins with no brake applied. The 

buffy coat was then removed using sterile pipettes. Cells were washed by adding 

three times the volume of Hanks buffered salt solution, and centrifuged at 283 x gg 
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for 10minutes. Supernatant was removed, and cells washed twice more as described. 

Mononuclear cells were suspended in RPMI-1640 supplemented with 1% (w/v) 

pen/strep and 2% (v/v) of subject’s serum and seeded in 24 well plates as required. 

Cells were seeded and allowed to adhere for 4 days. Non-adherent cells were 

removed with remaining cells gently washed three times with RPMI-1640 

supplemented with 1% (w/v) pen/strep and 2% (v/v) of subject’s serum. Media was 

replaced and cells were allowed to fully differentiate for a further 3 days.  

2.4 Caspase 3/7 Assay 

Cells were seeded overnight in black flat-bottomed 96-well plates at a density of 

20,000 cells/well. Cells were pre-treated with human agonistic Fas antibody (clone 

CH11) (Merck-Millipore, Darmstedt, Germany) for 1 hr and subsequently with 20 

µg/ml polyinosinic:polycytidylic acid (poly I:C) or 100ng/ml lipopolysaccharide 

(LPS) for 24 hr. Alternatively, cells were treated with each agonist separately.  Apo-

ONE caspase-3/7 reagent (Promega, Madison, USA) was added and following 1 hr 

incubation, fluorescence (485 excitation, 530 emission) was measured using a 

GENios Microplate Reader (Tecan Group Ltd, Männedorf, Switzerland). Changes in 

caspase 3/7 activation were normalised relative to untreated cells. 

2.5 Viability Assay 

Cells were untreated or were stimulated with poly I:C (Sigma-Aldrich), poly A:U 

(Sigma-Aldrich), and/or CH11 (Merck-Millipore) as indicated in the figure legends. 

Cells were trypsinised with trypsin neutralised using double the volume of medium. 

Cells were centrifuged at 170 x g for 3 mins and pellets resuspended in 1ml of 

media. A 1:10 dilution was then performed with 10μl of cell suspension added to 
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90μl trypan blue (Sigma Aldrich). 10μl of this cell suspension was added to a 

haemocytometer. Trypan blue is excluded from living cells due to the presence of 

intact cell membranes (168). Cell counts were performed on both living and dead 

cells across all treatment groups. 

2.6 Murine bone marrow-derived macrophages 

Mice were sacrificed and femur and tibia bones were removed and cleaned with 1X 

sterile PBS and 70% ethanol. Bones were placed in sterile 1X PBS. To isolate bone 

marrow both ends of the bone were cut and, using a 5ml syringe, bone marrow was 

flushed through with sterile cold PBS. Isolated bone marrow was re-suspended to 

generate a single cell suspension and passed through a 45μm cell filter strainer. The 

cell suspension was centrifuged at 4°C at 380 x g for 5 minutes. The cell pellet was 

washed once in BMDM culture media (DMEM, 10% (v/v) foetal bovine serum, 1% 

(v/v) pen/strep, 1% L-Glutamine, 1% non-essential amino acids) and centrifuged at 

4°C at 380 x g for 5 minutes. The cell pellet was re-suspended in BMDM 

differentiating media (BMDM culture media supplemented with 30% (v/v) L929 

conditioned media) for 7 days to allow for macrophage progenitors to differentiate 

into mature macrophages. The cells were cultured on 100mm sterile Petri dishes. On 

day 3 of differentiation, fresh differentiating culturing media was added. Any non-

adherent cells were removed at this stage. Adherent cell differentiate into BMDM 

over the 7 day period. After 7 days the cells were cultured in BMDM media without 

L929 conditioned media. 
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2.7 Stimulation of Cells 

THP-1 macrophages were pre-treated with 100ng/ml CH11 (Merck-Milipore), for 1 

hour prior to stimulation with either 100ng/ml LPS or 20μg/ml poly I:C (Sigma-

Aldrich) for either 8 hours for RNA expression or 48 hours for protein expression 

unless stated otherwise. 

2.8 Poly I:C-induced Fas and FasL expression of THP1 macrophages 

THP1 monocytes were seeded to a final concentration of 1 x 10
6
 cells/ml and 

allowed to differentiate into macrophages as described. Cells were then treated with 

poly I:C at concentrations of 5μg/ml, 10 μg/ml, 20 μg/ml and 40 μg/ml and 

incubated for either 8 hours for mRNA expression, or 24 hours for protein 

expression. An untreated control was also included. 

2.9 LPS-induced Fas, FasL and FADD expression in THP1 macrophages 

THP1 monocytes were seeded to a final concentration of 1 x 10
6
 cells/ml and 

allowed to differentiate into macrophages as described. Cells were then treated with 

LPS at concentrations of 25ng/ml, 50ng/ml, 100ng/ml, 200ng/ml and 400ng/ml and 

incubated for either 8 hours for RNA expression, or 24-72 hours for protein 

expression. An untreated control was also included. 

2.10 CH11-induced TLR3 and TLR4 expression in THP1 macrophages 

THP1 monocytes were seeded to a final concentration of 1 x 10
6
 cells/ml and 

allowed to differentiate into macrophages as described (Section 2.1.2). Cells were 

then treated with 25ng/ml, 50ng/ml, 100ng/ml and 200ng/ml of CH11 (Merck- 
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Millipore) for either 8 hours for RNA expression or 24 hours for protein expression. 

An untreated control was also included.  

2.11 Sample Preparation - Western Blotting  

Cells were rinsed once in ice cold 1x PBS and either lysed directly in 200μl Laemmli 

buffer supplemented with 1mM DTT (Sigma-Aldrich) and stored at -20
o
C, or lysed 

on ice for 1 hour with 100μl of lysis buffer (50mM tris-hydroxymethyl) amino 

methane (Tris-Cl, 150mM sodium chloride (NaCl), 1% (w/v) Triton x-100) 

supplemented with 1x protease an phosphatase inhibitor cocktail (both from Merck-

Millipore). Cells were then scraped and transferred to a 1.5ml eppendorf.  Samples 

lysed in lysis buffer were centrifuged at 14000 x g at 4
o
C for 10 minutes. The 

resulting cell debris was discarded and lysate stored at -20
o
C.  

2.12 Bicinchoninic Acid (BCA) Assay 

Protein standards were prepared using Bovine Serum Albumin (BSA) (Thermo 

Scientific, IL, USA) (0, 2.5, 5, 7.5, 10, 15, 20μg/ml) and added to a 96 well plate.  

2μl of each sample was added to the plate followed by 38μl of dH20.  Both standards 

and samples were analysed in triplicate. 160μl of BCA Protein Assay Reagent 

(Thermo -Scientific) was added to each well, the plate agitated and then left at 37°C 

for 30 minutes before reading at 595nm on a spectrophotometer. A standard curve 

was then generated  using GraphPad Prism software and used to calculate the protein 

concentrations of unknown samples.  
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2.13 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

and Western blotting 

50µg of cell supernatant protein was mixed with 5 x PAGE loading buffer (125mM 

Tris, 2% SDS, 20% Glycerol, 2.5% beta mercaptoethanol) and lysis buffer 

(described above) to a final volume of 20μl. Samples were boiled for 5 minutes, with 

20μl loaded onto a separating and stacking SDS gel.  A 19-180 kilodalton (kDa) 

molecular weight marker (Sigma-Aldrich) was run alongside the samples.  Proteins 

were separated by electrophoresis at 40mA/A and then transferred for 90 minutes at 

room temperature onto an Immobilon –P polyvinylidene diflouride membrane (I-

PVDF) (Millipore, CA, USA) at 120V/V using a wet transfer method. Protein 

loading and efficiency of transfer were monitored by Ponceau S staining for all 

experiments except those using phospho-antibodies. With the exception of phospho-

antibodies which were blocked in 5% (w/v) BSA in 0.1%TBS/Tween-20, 

membranes were blocked for 1 hour at room temperature in BLOTTO (5% (w/v) 

non-fat dry milk in 0.1% PBS/Tween-20) and then incubated overnight at 4
o
C with 

the appropriate primary antibody (Table 2.1). With the exception of phospho-

antibody membranes which were washed in 0.1% TBS/Tween-20, membranes were 

washed with PBS/0.1% Tween-20 for 5 x 5 minutes, with primary antibodies 

detected by incubating the membrane for 1 hour at room temperature with the 

appropriate horseradish peroxide (HRP)-conjugated IgG secondary antibody (Dako 

Corp., Carpinteria, CA). Peroxidase activity was detected with the enhanced 

chemiluminescence system (ECL) (Millipore, Billerica, MA) using the FujiFilm 

LAS-3000 Lightbox. As a loading control, duplicated membranes were blocked for 1 

hour in BLOTTO and incubated overnight at 4
o
C with anti-β actin specific antibody 
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(Table 2.1). The primary antibody was detected using anti-mouse HRP secondary 

antibody (Dako Corp.). 
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Table 2.1 Antibodies used for Western blotting and immunofluorescence. 

Antibody Cat. Number Company 

TLR4 (H-80) sc-10741 Santa Cruz 

Fas (C-20) sc-715 Santa Cruz 

FADD H-10 sc-271520 Santa Cruz 

FasL 555290 Abcam 

Monoclonal Anti-VSV Glycoprotein 

P5D4 

V5507 Sigma-Aldrich 

Anti-Flag F1804 Sigma-Aldrich 

βactin AAC-74 Sigma-Aldrich 

Phospho-Antibodies Cat. Number Company 

phospho-IκBα 133462 Abcam 

phospho-p42/44 MAPK 9101s Cell Signaling 

phospho-p38 MAPK 9211s Cell Signaling 

phospho-JNK 9251s Cell Signaling 

Secondary HRP antibodies Cat. Number Company 

Polyclonal Rabbit anti-Mouse P0260 DAKO 

Polyclonal Mouse anti-Rabbit P0448 DAKO 

Fluorescent labelled Secondary 

antibodies 

Cat. Number Company 

Donkey anti-rabbit Texas Red (TR) sc2784 Santa Cruz 

Donkey anti-mouse Fluorescein 

isothiocyanate (FITC) 

sc2099 Santa Cruz 
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2.14 Immunofluorescence  

Cells were seeded at 1x10
5
 cell/ml onto EZ slides (Millipore). Cells were then fixed 

in 100% ice-cold methanol for 5 mins the following day.  Cells were permeabilsed 

using 0.2% (w/v) Trition X-100 in PBS for 30mins before blocking in 10% (v/v) 

normal donkey serum (Sigma-Aldrich) for 1hr at room temperature.  The slide was 

incubated with primary antibody overnight in 1.5% (v/v) normal donkey serum at 

4°C.  The following day, the slide was washed three times in PBS and incubated in 

the appropriate secondary antibody diluted in normal donkey serum for 1 hour before 

counterstaining with 4’ 6-Diamidino-2-phenylindole (DAPI) (Sigma-Aldrich). DAPI 

preferentially stains dsDNA, binding to AT-rich regions of DNA, emitting a blue 

fluorescent hue (169). Anti-fade fluorescent mounting media (Dako) was utilised 

when applying coverslips to impede fading of fluorescence, with slides stored in the 

dark following application of cover-slips. Emission of primary or only secondary 

antibody negative controls were also included.   

2.15 Quantitative Real Time PCR (qRT-PCR) 

Total RNA was isolated using either the GenElute Mammalian Total RNA Mini 

Prep kit (RT-70-1KT, Sigma-Aldrich) or the ISOLATE kit (Bioline, UK) according 

to the manufacturer’s instructions. 10 µl of total RNA was used as the template for 

cDNA synthesis (Bioline, UK).  This was added to 1μl of Oligo (Dt), and 1μl of 

10mM dNTP and heated to 65°C for 10 minutes.  Following 2 minutes on ice, 4μl of 

5x Reverse Transcriptase Buffer, 1μl of RNase inhibitor, 0.25μl of Reverse 

Transcriptase, and 2.75μl of DEPC treated water was added to each sample before 

incubation at 37
o
C for 30 minutes. The reaction was terminated by a final incubation 
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at 70°C for 15 minutes and chilling samples on ice. cDNA samples were then diluted 

to 100μl using DEPC water (Sigma-Aldrich).  

TaqMan MasterMix was used with TaqMan Gene Expression probes Fas, FasL, 

TLR3, TLR4, RIG-I, IL-8, IL-10, IL-12, TNFα, IFNβ, hIP-10/CXCL-10 and mIP-

10/CXCL-10, mIFNβ (table 2.2) (Bio-Sciences, Dublin, Ireland) with qRT-PCR 

analysis performed using LightCycler instrument (Applied Biosystems). PCR 

reactions for CCL-20 were performed using 900nM of CCL-20 and 250nM of Sensi 

Mix II (BioLine, London, UK) in the LightCycler 480 Real-Time PCR System 

(Roche) software. Thermal cycling conditions were as recommended by the 

manufacturer (Roche). Table 2.3 below contains the primer sequences used for CCL-

20.  ΔΔCt analysis (170) was performed using Microsoft Excel. 
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Table 2.2 qRT-PCR reaction conditions for TaqMan method. 

 Left Primer Right Primer UPL# 

CCL-20 5’ gctgctttgatgtcagtgct 3’ 5’ gaagaatacggtctgtgtatccaa 3’ 39 

β-actin 5’ attggcaatgagcggttc 3’ 5’ tgaaggtagtttcgtggatgc 3’ 11 

Table 2.3: Sequences of primers used in qRT-PCR analysis. Primers were 

generated by Eurofins MWG (www.eurofinsgenomics.eu). 

Gene Name Probe Reaction Conditions 

Human  

 

 

 

50
o
C for 2 mins  

95
o
C for 10mins 

60 cycles@ 95
o
C for 

15secs and 60
o
C for 15sec 

Fas Hs00236330_m1 

FasL Hs00181225_m1 

IL-8 Hs99999034_ml 

TNFα Hs00174128_m1 

IFNβ Hs00277188_s1 

IL-10 Hs00961622 

IP-10 Hs00171042_m1 

IL-12 Hs01073447_m1 

TLR3 Hs01551078_m1 

TLR4 Hs00370853_m1 

RIG-I Hs00204833_m1 

GAPDH GAPDH, 4352934E 

Murine 

IP-10 Mm00445235_m1 

IFN β Mm00439552 

β-actin β-actin, 4352341E 



55 
 

2.16 Migration and Attachment of T cells to THP1 monocyte-derived 

macrophages 

Sterile coverslips were placed in each well of a 6 well plate. THP1 monocytes were 

seeded and allowed to differentiate as described. Stimulations were performed for 24 

hours, following which Jurkat T cells were co-cultured for a further 48 hours. 

Coverslips were then washed in PBS and mounted on slides. Bright field microscopy 

was then performed. 

2.17 Transwell Migration Assay 

Jurkat T cells were cultured overnight in THP1 macrophage-derived supernatant to 

induce CXCR-3 expression. 750μl of THP-1 macrophage treated cell culture 

supernatant was added to each well of a 24 well plate, with 200μl of Jurkat T cells at 

a concentration of 1.25 x 10
6
 cells/ml in serum free media added to the chamber. 

Plate was incubated at 37°C for 2 hrs, following which the upper chamber was 

removed, with the contents of the well collected. Samples were centrifuged at 12,400 

x g for 5 mins, with sample incubated on ice between each centrifuge cycle. Cells 

were washed twice in PBS and fixed in ice cold methanol for 5 minutes. Cells were 

then stained in 0.1% (w/v) crystal violet in 0.1M borate pH 9.0 and 2% (v/v) ethanol 

for 20mins. Cells were then washed 3 x 5mins in PBS, with supernatant removed 

after each step. Elution of stain was then performed using 200μl of acetic acid and 

vortexing periodically over 15mins. Cells were centrifuged at 12,400 x g for 3 min, 

with supernatant collected and absorbance read at 570nm. 
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2.18 Flow Cytometry 

THP1 macrophages were treated with 20μg poly I:C, 100ng CH-11, and pre-

stimulated with 100ng CH-11 prior to poly I:C stimulation. Stimulations progressed 

for 48 hours. Supernatant from each treatment was then collected and centrifuged for 

3 mins at 170 x g to remove any residual cells. This supernatant was then added to 

individual wells of a 6 well plate, with Jurkat T cells then seeded in this supernatant 

and incubated for 24 hours at 37°C with 5% CO2. CXCR-3 FITC conjugated 

antibody (MSC) was applied to cells as per manufacturer’s protocol, with 

appropriate isotype control (Santa Cruz BioTechnology, Dallas, TX). Flow 

cytometry was performed on the Facscaliber flow cytometer with analysis performed 

using Cell Quest Pro software.  

2.19 Transformation of competent DH5α cells by heat-shock 

DH5α cells were thawed on ice with 2μl of plasmid added to 25μl of competent cells 

(Bio-Sciences, Dublin). Suspension was left on ice for 30mins. Cells were then 

heated to 42°C for 2 mins, and immediately cooled on ice for 2 mins. 1ml LB broth 

was added, with suspension incubated at 37°C for 1hr with agitation. 100μl of this 

cell suspension was then plated onto agar plates containing selective antibiotic, e.g. 

1mg/ml ampicillin. Plates were left overnight at 37°C, with colonies detected the 

following day. A single colony was then picked and added to 1ml of LB broth with 

selective antibiotic (starter culture). The starter culture was incubated at 37°C for 

8hrs. 100μl of this starter culture was then added to 100ml of LB broth with selective 

antibiotic in sterile conical flasks and incubated with agitation overnight at 37°C 

with the bacterial culture then ready for plasmid extraction. 
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2.20 MaxiPrep 

Plasmids were purified following the protocol for using the EndoFree Plasmid 

Purification Kit (Qiagen). Bacterial cultures generated above were harvested by 

centrifugation at 6000 x g for 60mins in a refrigerated centrifuge. The pellets were 

then lysed according to the manufacturer’s instructions. Precipitate was removed 

using the QIAfilter Cartridge which removes the proteins, genomic DNA and 

detergent contained within the precipitate. Endotoxin was removed by addition of an 

endotoxin removal buffer (Buffer ER), with suspension added the QIAGEN-tip. The 

QIAGEN-tip is an anion-exchange tip which utilises positively charged 

diethylaminoethyl (DEAE) bound to the resin. The positive charge of DEAE then 

binds to the negatively charged phosphates of the DNA backbone forming a complex 

whilst removing other impurities. The QIAGEN-tip was then washed twice, with 

DNA eluted using elution buffer provided. Isopropanol was added to the DNA and 

centrifuged at 6000 x g for 60mins at 4°C. The supernatant was removed, with 5ml 

of endotoxin free room-temperature 70% ethanol added, with sample centrifuged at 

6000 x g for 60mins at 4°C. Supernatant was carefully removed with pellet allowed 

to air-dry for 10mins. Pellet was then resuspended in 200μl endotoxin-free Buffer 

TE. The yield was then determined by measuring the plasmid DNA using the 

NanoDrop Spectrophotometer. 

2.21 Luciferase/Plasmids 

All cells were seeded in 200μl at 2 x 10
5
 cells/ml in 96 well plates, with the 

exception of RAW264.7 which were seeded in 1ml at 1.5 x 10
5
 cells/ml in 24 well 

plates. RAW264.7 cells were transfected using Turbofect (Fermentas, Thermo Fisher 

Scientific, Waltham, MA, United States of America) with HEK cells and U373s 
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transfected with GeneJuice (Merck Millipore) according to the manufacturer’s 

protocol. Cells were transfected with 40ng of full length IP-10 promoter, IP-10 

containing point mutations in the ISRE, κB1, κB2 and the AP-1 binding sites (kind 

gifts from Prof. David Proud), full length mIP-10 promoter (a kind gift from Dr. 

Daniel Muruve, UC Calgary, Canada), IFNβ, ISRE, NFκB luciferase plasmid, and 

5ng of Thymidine kinase Renilla luciferase (TK Renilla), along with varying 

amounts of expression plasmids including MyD88, TLR3, TLR4, IRAK4, RIP-1, 

IKKε, TRIF, TRAF3, FADD-DD (kind gifts from Prof. L. O’Neill, Trinity College 

Dublin, Ireland) and FADD (was a gift from Prof. A Winoto - Addgene plasmid 

31814), 3xAP1pGL3 (3xAP-1 in pGL3-basic) (a kind gift from Alexander Dent) 

(Addgene plasmid # 40342). Stimulations involving poly I:C were performed for 6 

hours prior to lysis of cells. Extracts were prepared by lysing the cells for 15 minutes 

in 50μl luciferase lysis buffer (10mM EDTA, 100mM DTT, 50% glycerol, 5% 

Triton X-100, 125mM Tris base, with pH adjusted to 7.8) and measured for Firefly 

luciferase and Renilla luciferase activity. Firefly luminescence readings were 

corrected for Renilla activity and expressed as fold stimulation over unstimulated 

empty vector (EV) control. Luminescent activity was then measured on Promega 

GloMax system (MSC). 

2.22 ELISA 

Supernatant from THP-1 macrophages stimulated with poly I:C +/- CH-11 for 48 

hours was used for IL-8 and IL-10 ELISA (BioLegend). A dilution of 1:1000 was 

necessary for IL-8 ELISA due to the copious amounts of IL-8 produced by this cell 

type. Samples for IL-10 ELISA required no dilution. ELISA was performed as per 

manufacturer’s instructions. IP-10/CXCL-10 protein analysis was performed using 
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MSD plates (Meso Scale Discovery, Washington DC, USA). A dilution of 1:20 was 

required due to the amount of IP-10/CXCL-10 produced by this cell type. MSD was 

performed as per manufacturer’s instructions. 

2.23 Virus Infection 

Sendai virus (SeV), a kind gift from Dr. Liam Fanning (Molecular Virology and 

Diagnostic Research Laboratory, UCC) was supplied at 10(7.5)CEID[50]/0.2 mL 

(ATCC). THP-1 macrophages were washed twice in PBS. Initial dilutions of SeV 

were performed, with a final dilution of 1:10,000 and 1:50,000 added to THP-1 

macrophages in a 1ml volume in full RPMI-1640 media. Cells were then incubated 

at 37
o
C for 5 hours, after which 1ml full media was added to each well. Cells were 

incubated for a further 3 hours, with lysis of cells performed, with total RNA 

extracted (Bioline) or for a total of 24 hours, with supernatant harvested for protein 

analysis by ELISA.  

2.24  Co-Immunoprecipitation 

Initial optimisation experiments were performed by transfecting HEK293T cells 

either 2μg or 4μg Flag-FADD and protein expression detected by Western blotting, 

immunoblotting using anti-Flag. Overexpression of VSV-TRIF was also performed 

using 1, 2, 4 and 10μg of VSV-tagged TRIF. Cells were lysed on ice for 1 hr in 1ml 

RIPA buffer (50mM Tris-HCL pH8.0, 150mM NaCl, 0.1% SDS, 0.5% Sodium 

deoxycholate, 1% Triton X-100, 1mM phenylmethylsulfonyl) supplemented with 

protease and phosphatase inhibitor cocktail. Cell scraping was performed, with 

samples collected into Eppendorf tubes. Samples were centrifuged at 14600rpm at 

4
o
C for 10 minutes. The resulting cell debris was discarded. An aliquot of the lysate 
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was removed for Western blotting of both VSV and Flag. Following optimisation, 

HEK293T cells were co-transfected with 2μg VSV-TRIF and 4μg Flag-FADD. 10μg 

Flag antibody or 10μg VSV antibody was added to 100μl protein A agarose beads 

and incubated overnight at 4
o
C with agitation. Protein A agarose beads complexed 

with the relevant antibody was added to lysate and incubated at room temperature for 

2hrs. Complex was washed x2 with TBS and x2 with RIPA buffer. Lysate-agarose 

bead suspension was then washed x1 in 500μl water, with 100μl Laemmli buffer 

added. Samples were then heated to 95
o
C for 5mins. Supernatant was then 

transferred to an Eppendorf and stored at -20
o
C. Samples then underwent 15% SDS-

PAGE gel electrophoresis and Western blotting. 

2.25 Precipitation of Endogenous Proteins 

THP1 cells were seeded and differentiated into macrophages as previously described 

(section 2.2) in 100mm dish at 1.5 x 10
6
 cells in 10mls of media, with cells 

stimulated as required. Cells were lysed on ice for 1 hr in 1ml RIPA buffer 

supplemented with protease and phosphatase inhibitor cocktail. Cell scraping was 

performed, with suspension collected into eppendorf tubes. Cells were centrifuged at 

14000 x g at 4
o
C for 10mins. The resulting cell debris was discarded. An aliquot of 

the lysate was removed for Western blotting of FADD. 4μg FADD antibody was 

added to protein A agarose beads and incubated overnight at 4
o
C with agitation after 

which lysate was added to this protein A agarose beads: FADD antibody complex , 

with immunoprecipitation performed as outlined for that of the co-

immunoprecipitation (section 2.24). 
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2.26 siRNA transfection of THP1 macrophages 

siRNA transfections were performed with Santa Cruz specific FADD siRNA (sc-

35352, Santa Cruz) and control siRNA (sc-37007, Santa Cruz). THP1 siRNA 

transfections were performed using the Amaxa (Lonza, Basel, Switzerland) system 

according to the manufacturer’s protocol. Cells were cultured for a further 48 hours 

prior to stimulation. 

2.27 Statistics 

Statistical Analysis was performed using GraphPad Prism software. Data are 

expressed as the mean ± SEM.  

Experiments were performed a minimum of three times in triplicate. Results were 

statistically evaluated using One-Way Anova with Tukeys post-test with MEF and 

iBMDM experiments assessed using Two-way Anova with student t-test. Values of 

p<0.001 are indicated by three asterisks (***). Values of p < 0.01 are indicated by 

two asterisks (**). Values of p < 0.05 are indicated by one asterisk (*).  

The results were considered to be significantly different at p values <0.05, with the 

significance indicated by a symbol such as asterisk as follows: *p<0.05, **p<0.01, 

***p<0.001. p>0.05 was considered non-significant.  
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Chapter 3: 

Investigating the role of Fas activation on 

immune responses. 
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3.1 Introduction 

Macrophages play a key role in the innate immune response. Detection of a viral 

infection by macrophages results in recruitment of a variety of immune cells to the 

site of infection. Initial detection is dependent on recognition by host Pattern 

Recognition Receptors (PRRs) (171). PRRs that detect viral infections include a 

group of structurally related cytosolic sensors including RIG-I-like receptors (RLRs), 

which are sensors of RNA, and AIM2-like receptors (ALRs), which are sensors of 

DNA. Detection of double-stranded RNA (dsRNA) by the cytosolic sensor RIG-I 

results in recruitment of its adapter protein IPS-1 (MAVS/Cardif/VISA) and the 

downstream induction of anti-viral cytokines (172). PRRs involved in the anti-viral 

immune response also include endosomally located Toll-Like Receptors (TLRs) 3, 

7/8 and 9, which recognise viral nucleic acids such as dsRNA, single-stranded RNA 

(ssRNA) and DNA, respectively (171, 173).  

Macrophages also express the Fas (CD95/Apo-1) receptor, which is a well-known 

member of the tumour necrosis factor (TNF) family (174). Whilst activation of Fas 

by ligation of its ligand, Fas ligand (FasL) is best studied in terms of its role in 

apoptosis, Fas activation has also been implicated in inflammation (151, 152). For 

instance, activation of the Fas signalling pathway has been shown to induce IL-18 

and IL-1β production in bone marrow derived macrophages (BMDMs) (151), and 

IL-8 production in THP1 macrophages(152). 

Following viral infection, both Fas and FasL have been shown to be induced across a 

number of different cell types. Co-expression of Fas and FasL in influenza infected 

HeLa cells resulted in Fas-mediated apoptosis of infected cells due to cell-cell 

interaction (175). Although co-expression of both Fas and FasL following Herpes 
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Simplex Virus (HSV)-2 infection of epithelial and keratinocyte cells was shown, 

apoptosis of these cells was not observed (164).  

As studies have demonstrated that Fas activation can result in production of pro-

inflammatory cytokines, and that viral infection can induce both Fas and FasL 

expression, the initial aim of the work presented in this chapter was to investigate the 

role of Fas in the induction of anti-viral cytokine and chemokine responses. As we 

observed little to no induction of anti-viral immune responses, we extended this 

study to investigate whether there was a potential role for Fas in modulating poly 

I:C-induced cytokine and chemokine responses. Work presented in this chapter 

demonstrates that activation of Fas modifies poly I:C-induced immune responses.  

3.2 Results 

3.2.1 Immunofluorescence staining shows expression of CD68, TLR3, Fas and 

FasL in THP1 macrophages and human monocyte derived macrophages 

(hMDMs). 

Phorbol 12-myristate 13-acetate (PMA) treated THP1 monocytes were differentiated 

into macrophages on glass slides over 3 days, (167) as per materials and methods. 

Human monocytes isolated from the peripheral blood of healthy volunteers were 

seeded onto glass slides and allowed to differentiate to macrophages over 7 days 

(167). CD68 is commonly used as a histological marker for cells of macrophage 

lineage. Consistent with this, positive staining of CD68 was observed following 

derivation of both THP1 monocytes and human peripheral blood mononuclear cells 

(PBMCs) into macrophages (figure 3.1a). Following this, we next determined that 

THP1 macrophages and hMDMs express the innate immune PRR TLR3, as well as 
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both Fas and FasL. Positive staining was observed for TLR3 (figure 3.1b), Fas 

(figure 3.1c) and FasL (figure 3.1d) in both THP1 macrophages and hMDMs. 
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Figure 3.1: THP-1-derived macrophages and human monocyte-derived 

macrophages (hMDMs) express CD68, TLR-3, Fas, and Fas Ligand (FasL). 

THP-1 cells were differentiated with 100μg/ml PMA for 72 hrs. Human monocyte-

derived macrophages were differentiated into macrophages over 7 days on glass 

slides. Florescent images indicate positive staining for the myeloid marker CD68 

(green) (a), the PRR TLR-3 (red) (b), Fas (red) (c) and FasL (red) (d) superimposed 

with nuclear staining using DAPI (blue). Bars, 50μm. Data are representative of 

three individual experiments. 
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3.2.2 Stimulation with poly I:C increases expression of Fas and FasL by 

macrophages. 

As previous studies have demonstrated that viral infection resulted in increased Fas 

and FasL expression in macrophages (175, 176), we initially confirmed that the 

dsRNA mimetic poly I:C could up-regulate both Fas and FasL in THP1 

macrophages. Upon stimulation with increasing concentrations of poly I:C, THP1 

macrophages showed increased expression of both Fas and FasL at both the mRNA 

(figure 3.2a, b) and protein level (figure 3.2c). 
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Figure 3.2: Fas and Fas Ligand expression are increased following treatment 

with increasing concentrations of poly I:C. THP-1 cells were differentiated with 

100μg/ml PMA for 72 hrs. Cells were treated with increasing concentrations of poly 

I:C (5, 10, 20 and 40µg/ml). Fas and FasL expression was detected by qRT-PCR 

after 8 hrs (a,b) with cells normalised to GAPDH expression levels. mRNA is 

expressed relative to untreated cells. Western blotting was performed 48 hrs (c). 

Results shown representative of three separate experiments. ** p<0.01, values shown 

as Mean ± SEM, (n=3). 
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3.2.3 Stimulation with agonistic anti-Fas antibody (CH11) does not affect either 

TLR3 or RIG-I expression. 

As we have demonstrated that poly I:C can induce expression of both Fas and FasL, 

we next investigated the effect of Fas activation on the expression levels of innate 

immune receptors involved in viral recognition; TLR3 and RIG-I. THP1 

macrophages were stimulated with increasing concentrations of the agonistic anti-

Fas antibody CH11, with expression of both TLR3 and RIG-I mRNA determined. 

We observed no induction of TLR3 (figure 3.3a) or RIG-I (figure 3.3b) mRNA 

expression following 8 hours stimulation, suggesting that crosstalk, in terms of 

receptor expression levels between these pathways is unidirectional.   
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Figure 3.3: Stimulation with agonistic anti-Fas (CH11) did not alter either 

TLR-3 or RIG-I expression in THP-1 macrophages. THP-1 cells were 

differentiated with 100μg/ml PMA for 72 hrs. Cells were treated with increasing 

concentrations of CH11 (25, 50, 100 and 200ng/ml) for 8 hours following which 

qRT-PCR was performed. mRNA expression was normalised to GAPDH expresion 

levels. mRNA expression of  TLR-3 (a) and RIG-I (b) are expressed relative to 

untreated cells. Values are shown as Mean ± SEM, (n=3) with results shown 

representative of three separate experiments. 
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3.2.4 Caspase 3/7 activation was not induced following Fas activation or poly 

I:C stimulation in THP1 macrophages. 

Given the well characterised apoptotic function of Fas, we next investigated whether 

induction of Fas and FasL expression by poly I:C induced apoptosis in THP1 

macrophages by measuring caspase 3/7 activation. Stimulation of THP1 

macrophages with either poly I:C or CH11 did not result in enhanced caspase 3/7 

activation (figure 3.4a). This is consistent with previous studies, whereby activation 

of Fas in THP1 macrophages also did not trigger apoptotic cell death (152). To 

confirm that CH11 was able to induce apoptosis in Fas sensitive cells, Jurkat T cells 

were treated with CH11 which resulted in strong caspase 3/7 activation (figure 3.4a). 

Cell viability of THP1 derived macrophages was also unaffected by either poly I:C 

or CH11 treatment (figure 3.4b). In contrast, staurosporine reduced the viability of 

the cells. Together, these data demonstrates that Fas activation with and without poly 

I:C stimulation does not induce caspase 3/7 activation, nor does it affect cell 

viability, despite increased Fas and FasL expression observed on poly I:C stimulated 

THP1 macrophages.  
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Figure 3.4: Caspases 3/7 activation and cell viability were unaffected by both 

poly I:C and CH11 stimulation. THP-1-derived macrophages and Jurkat T cells 

were treated with 200ng/ml CH11 and/or 20μg/ml poly I:C for 24 hrs, or with 5 μM 

staurosporine as indicated. Caspase 3/7 activity (a) was measured by fluorescence 

whereby the amount of caspase 3/7 activity is directly proportional to the amount of 

fluorescence measured. Cell viability (b) was determined by trypan blue exclusion 

after 24 hours. Data shown are representative of three independent experiments, with 

values shown as percentage Caspase 3/7 activation relative to Jurkat T cells 

stimulated with 200ng/ml CH11 (a) or as Mean ± SEM (b).  
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3.2.5 Fas activation does not induce significant inflammatory cytokine or 

chemokine production in THP1 macrophages.   

As expression of both Fas and FasL were both augmented by poly I:C, we next 

investigated the ability of macrophages to produce cytokines and chemokines in 

response to Fas activation by the agonistic Fas antibody CH11 (figure 3.5). Initially 

we focused on induction of anti-viral response genes such as IFNβ and IP-10. 

Interestingly, we observed no up-regulation of these genes in response to Fas 

activation (figure 3.5a). As some previous studies have shown that Fas activation can 

up-regulate expression of other pro-inflammatory cytokines, we next examined 

expression of IL-8 and TNFα. Similar to results obtained with IP-10 and IFNβ, up-

regulation of these cytokines was not observed (figure 3.5b). To confirm that the 

concentration of CH11 used was capable of inducing cytokine expression, SW480 

intestinal epithelial cells were stimulated with CH11 and cytokine production 

assessed. In contrast to THP1 macrophages, Fas activation by CH11 in SW480 cells 

resulted in a strong induction of IP-10, IL-8 and TNFα (figure 3.5c).   
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Figure 3.5: Fas activation does not induce significant inflammatory cytokine 

production in THP-1 macrophages. THP-1 macrophages (a, b) and SW480 cells  

(c) were treated with 200ng/ml CH11 for 8 hrs. Changes in cytokine expression were 

detected by qRT-PCR. mRNA expression was normalised to GAPDH expression 

levels, with changes in mRNA expressed relative to untreated cells. qRT-PCR values 

are shown as Mean ± SEM, (n=3), * p<0.05, ** p<0.01 and *** p<0.001. 
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3.2.6 Fas activation reduces poly I:C-induced TNFα, IL-10, IL-8 and IFNβ 

mRNA production in THP1 macrophages. 

Given that poly I:C was able to increase the expression of both Fas and FasL, but 

that no augmentation in anti-viral response genes was observed upon Fas activation, 

we next investigated whether CH11 stimulation could affect poly I:C-induced 

cytokine production. Stimulation of THP1 macrophages with poly I:C alone induced 

expression of IFNβ, IL-8, IL-10 and TNFα. However, Fas activation with subsequent 

poly I:C stimulation resulted in a reduction in the expression of all four cytokines. 

Poly I:C-induced IFNβ, IL-10 and TNFα production were significantly reduced by 

50% by Fas activation  (figure 3.6a, c, d). A reduction in IL-8 production was also 

observed, albeit to a lesser extent (figure 3.6b). 
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Figure 3.6: Fas activation decreases poly I:C-induced IL-8, IL-10, TNFα and 

IFNβ transcription. THP-1-derived macrophages were treated with 200ng/ml CH11 

for 1 hr followed by stimulation with 20μg/ml poly I:C. mRNA expression was 

normalised to GAPDH, with changes in IFNβ (a), IL-8 (b), IL-10 (c) and TNFα (d) 

expressed relative to untreated cells. Data shown are a combination of three 

independent experiments, with values shown as Mean ± SEM. * p<0.05, ** p<0.01. 
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3.2.7 Poly I:C-induced IP-10 mRNA production is augmented following Fas 

activation. 

As our initial aim had been to investigate the role of Fas in anti-viral response, we 

also examined expression of IP-10 (CXCL-10), a potent T cell chemokine. In 

contrast to other cytokines examined, poly I:C-induced IP-10 production was 

significantly augmented (3 fold; p <0.01) by Fas activation with CH11 (figure 3.7), 

suggesting that Fas activation plays a role in enhancing poly I:C-induced IP-10 

production. 
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Figure 3.7: Fas activation augments poly I:C-induced IP-10 transcription. THP-

1-derived macrophages were treated with 200ng/ml CH11 for 1 hr followed by 

stimulation with 20μg/ml poly I:C. IP-10 mRNA expression was detected by qRT-

PCR at 8 hrs with mRNA normalised to GAPDH. Changes in IP-10 expression were 

expressed relative to untreated cells. Data shown are a combination of three 

independent experiments, with values shown as Mean ± SEM. ** p<0.01. 
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3.2.8 Fas activation reduces poly I:C-induced IL-8 and IL-10 protein 

expression, but augments IP-10 protein expression in THP1 macrophages. 

To confirm mRNA analysis, changes in IL-8, IL-10, TNFα and IP-10 protein 

production were detected by ELISA. THP1 macrophages were stimulated as outlined 

in the figure legend (figure 3.8), with supernatant harvested and ELISA analysis 

performed. Similar to results shown in figures 3.6 and 3.7 for mRNA expression, 

CH11 did not induce IL-8, IL-10, TNFα and IP-10 cytokine production (figure 3.8). 

However, Poly I:C-induced IL-8 production was reduced by 30% by Fas activation 

(figure 3.8a), while poly I:C-induced IL-10 production was reduced to that of 

untreated levels by Fas activation (figure 3.8b). In contrast to the mRNA data 

obtained, poly I:C-induced TNFα production was unchanged by pre-treatment with 

CH11 (figure 3.8c). Poly I:C-induced IP-10 production, however, was again 

significantly augmented (p <0.001) by Fas activation (figure 3.8d). 
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Figure 3.8: Fas activation decreases poly I:C-induced IL-8, IL-10 and TNFα 

protein production, whilst augmenting IP-10. THP-1-derived macrophages were 

treated with 200ng/ml CH11 for 1 hr followed by stimulation with 20μg/ml poly I:C. 

Changes in IL-8 (a), IL-10 (b), TNFα (c) and IP-10 (d) protein production were 

detected by ELISA after 48 hrs. Data shown are a combination of three independent 

experiments, with values shown as Mean ± SEM. * p<0.05, *** p<0.001. 

 

 



81 
 

3.2.9 Fas activation reduces poly I:C-induced TNFα, IL-10 and IFNβ mRNA 

production, while augmenting poly I:C-induced IP-10 mRNA production in 

human monocyte-derived macrophages.  

As we had observed that Fas activation could modulate poly I:C-induced cytokine 

production in THP1 cells, we wished to confirm this result in a primary cell line. 

Fresh whole blood was obtained from healthy volunteers. Peripheral blood 

mononuclear cells (PBMCs) were then isolated, with monocytes derived into 

macrophages for 7 days. Similar to THP1 macrophages, Fas activation did not 

significantly induce IFN IL-10, TNFor IP-10 cytokine expression (figure 3.9). 

Both poly I:C-induced expression of  IFN and TNFwere reduced by 50% upon 

co-stimulation with CH11(figure 3.9a, c), while poly I:C-induced IL-10 production  

was reduced by 40% by Fas activation (figure 3.9b). However, poly I:C-induced P10 

production was again augmented upon Fas activation (figure 3.9d).   
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Figure 3.9: Fas activation decreases poly I:C-induced IFNβ, IL-10 and TNFα 

whilst augmenting production of IP-10 cytokine production in hMDMs. Human 

monocyte-derived macrophages were treated with 200ng/ml CH11 for 1 hr followed 

by stimulation with 20μg/ml poly I:C. mRNA expression was detected by qRT-PCR 

after 8 hrs and normalised to GAPDH. Changes in IFNβ (a), IL-10 (b), TNFα (c) and 

IP-10 (d) are expressed relative to untreated cells. Data shown are a combination of 

three independent experiments, with values shown as Mean ± SEM. * p<0.05, ** 

p<0.01, *** p<0.001. 
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3.2.10 Poly I:C-induced IP-10 production in THP1 macrophages was unaffected 

when pre-stimulated with the IgM isotype control. 

To ensure that modulation of cytokine expression observed following stimulation of 

Fas with CH11 is specific to Fas activation, we next stimulated cells with a non-

specific isotype IgM control antibody. IgM stimulation alone had no effect on IP-10 

production. Poly I:C stimulation strongly induced IP-10 mRNA expression, which 

was unaffected by stimulation with the IgM isotype control (figure 3.10). 
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Figure 3.10: Poly I:C-induced IP-10 production was unchanged by stimulation 

with IgM isotype control. THP-1 macrophages  were treated with 200ng/ml IgM 

isotype control for 1 hr followed by stimulation with 20μg/ml poly I:C. mRNA 

expression were detected by qRT-PCR after 8 hrs and normalised to GAPDH. 

Changes in IP-10 mRNA expression are expressed relative to untreated cells. Data 

shown are a combination of three independent experiments, with values shown as 

Mean ± SEM, ns – no significant change observed. 
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3.2.11 Pre-treatment of macrophages with CH11 modulates both Sendai Virus 

(SeV) and poly A:U-induced cytokine production. 

As poly I:C is recognised by both TLR3 and RIG-I, we next investigated which of 

these receptors was involved in the altered cytokine production seen upon Fas 

activation by CH11 and subsequent poly I:C stimulation. We initially investigated 

the effect of CH11 stimulation on SeV-induced cytokine production. SeV is a 

negative sense single-stranded RNA virus which signals specifically through the 

receptor RIG-I. SeV induced robust expression of IP-10 (figure 3.11a and b). Similar 

to data observed following co-stimulation with poly I:C and CH11, SeV-induced IP-

10 mRNA expression was significantly augmented by Fas ligation (2 fold; p <0.05) 

(figure 3.11a). Similarly, SeV-induced IP-10 protein production was also 

significantly increased by Fas ligation (2 fold; p <0.01), compared with SeV-induced 

IP-10 protein production alone (figure 3.11b).  

SeV-induced IL-8 expression was also examined, with SeV-induced IL-8 mRNA 

expression increased (2 fold). Unlike previous results obtained whereby CH11 

reduced poly I:C-induced cytokine production, the induction of IL-8 mRNA or 

protein by SeV was unchanged when pre-stimulated with CH11 (figure 3.11c and d).  
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Figure 3.11: Ligation of macrophages with CH11 increases SeV-induced IP-10 

production.THP-1-derived macrophages were treated with 200ng/ml CH11 for 1 hr 

followed by infection with Sendai virus. mRNA expression was determined by qRT-

PCR after 8 hrs and normalised to GAPDH with changes in IP-10 and IL-8 

production expressed relative to untreated cells (a, c). Changes in expression of IP-

10 and IL-8 were also detected by ELISA after 48 hrs (b, d). Data shown are 

representative of three independent experiments, with values shown as Mean ± SEM. 

* p<0.05, ** p<0.01  
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To further investigate through which receptor modulation of poly I:C-induced IP-10 

production by CH11 is mediated, we next used the TLR3 specific agonist, poly A:U. 

While CH11 did not induce significant levels of IP-10 cytokine production, poly 

A:U stimulation of THP1 macrophages resulted in an increase of IP-10 mRNA 

production. Fas activation by CH11 with subsequent poly A:U stimulation resulted 

in augmentation of IP-10 production (2.5 fold; p <0.01) compared to poly A:U alone 

(figure 3.12a), suggesting that Fas activation is required for enhanced TLR3 

mediated IP-10 production. The effect of Fas ligation on poly A:U-induced IFNβ 

expression was also examined. Poly A:U stimulation resulted in a 2 fold increase of 

IFNβ production in THP1 macrophages. Although co-stimulation with CH11 did not 

significantly affect IFNβ production, a downward trend was observed (figure3.12b). 
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Figure 3.12: The augmentation in poly I:C-induced IP-10 production following 

ligation of Fas is also mediated by TLR3. THP-1-derived macrophages were 

treated with 200ng/ml CH11 for 1 hr followed by stimulation with poly A:U. mRNA 

expression was determined by qRT-PCR after 8 hrs and normalised to GAPDH with 

changes in IP-10 (a) and IFNβ (b) expressed relative to untreated cells. Data shown 

are a combination of three independent experiments, with values shown as Mean ± 

SEM. ** p<0.01  
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Taken together, this data indicate that the ability of CH11 to modulate poly I:C-

induced cytokine production may occur through an interaction with the RIG-I and 

TLR3 signalling pathways. 

3.2.12 Poly I:C-induced IP-10 production was augmented in immortalised bone 

marrow derived macrophages (iBMDMs), with no augmentation observed in 

TRIF
-/-

 iBMDMs. 

No report has previously implicated cross-talk between the TLR3 pathway and the 

Fas signalling pathway. As we have demonstrated that poly I:C enhances both Fas 

and FasL expression, we wished to further investigate potential cross-talk between 

the TLR3 and Fas signalling pathways. Therefore, we examined the effect of Fas 

activation on poly I:C-induced IP-10 production in immortalised wild type bone 

marrow-derived macrophages (iBMDMs), and iBMDMs lacking the TLR3 adapter 

protein TRIF (TRIF
-/-

 iBMDMs). Consistent with our data using the human agonistic 

Fas antibody CH11, stimulation of Fas with the murine agonistic Fas antibody, Jo2, 

significantly augmented poly I:C-induced IP-10 production by wild type iBMDMs 

(p <0.001) (figure 3.13) . This is noteworthy as we have now observed augmented 

poly I:C-induced IP-10 production by Fas activation in three different cell lines, 

indicating this is not a cell line specific effect. In contrast, no augmentation of poly 

I:C-induced IP-10 production was observed in the TRIF
-/-

 iBMDMs by Fas 

activation (figure 3.13). This data provides further evidence that the ability of Fas to 

augment poly I:C induced IP-10 production involves the TLR3 signalling pathway. 
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Figure 3.13: Poly I:C-induced IP-10 production is augmented following Fas 

activation in wild-type immortalised bone marrow-derived macrophages 

(iBMDMs), which was absent from TRIF-/- iBMDMs. Immortalised wild type 

and TRIF-/- BMDMs were stimulated with 1ng/ml murine agonistic Fas antibody 

(Jo2) for 1 hr followed by stimulation with 20μg/ml poly I:C for a further 8 hrs. 

mRNA expression was detected by qRT-PCR and normalised to GAPDH. Changes 

in IP-10 were expressed relative to untreated cells. Data shown are representative of 

three independent experiments, with values shown as Mean ± SEM. ***p<0.001 

 

 

 

 



91 
 

3.2.13 Optimal poly I:C-induced IP-10 production by Fas activation occurs 

between 4 and 8 hours.  

IP-10 is an early phase potent T cell chemokine. As a result, we next wished to 

determine the time-frame by which poly I:C-induced IP-10 expression is augmented 

by Fas ligation. IP-10 production was examined over a 24 hour time-course in the 

presence or absence of CH11. In contrast to all other time points, CH11 was seen to 

induce IP-10 mRNA at 4 hours of stimulation to a level comparable to that of poly 

I:C. However, the level of poly I:C-induced IP-10 following Fas ligation was 

dramatically increased compared to poly I:C alone (75 fold) (figure 3.14a). Poly I:C-

induced IP-10 production following Fas ligation was also increased at 8 hours (3 

fold) and at 12 hours (1.5 fold), compared to poly I:C alone (figure 3.14b and c 

respectively). In contrast to 4, 8 and 12 hours, poly I:C-induced IP-10 production 

following Fas ligation was reduced at 24 hours (50% reduction) (figure 3.14d). This 

data suggests that the ability of CH11 to modulate poly I:C-induced IP-10 

production is an early event with maximum augmentation observed at 4 hours, an 

effect which is reversed by 24 hours. 
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Figure 3.14: Poly I:C-induced IP-10 production is augmented following Fas 

activation at 4, 8 and 12 hrs with reduction in IP-10 production at 24 hrs. THP-1 

macrophages were stimulated with 200ng/ml CH-11 for 1 hr followed by poly I:C 

stimulation with 20μg/ml for 4 hrs (a), 8 hrs (b), 12 hrs (c) and 24 hrs (d). Cytokine 

expression was detected by qRT-PCR and normalised to GAPDH. Changes in 

cytokine expression were expressed relative to untreated cells. 
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3.2.14 Stimulation of THP1 macrophages with CH11 and poly I:C results in 

enhanced Jurkat T cell recruitment and increased CXCR-3 expression.  

We have demonstrated that IP-10 production is enhanced in THP1 macrophages 

stimulated with both CH11 and poly I:C. As IP-10 is a potent T cell chemokine, we 

next investigated what effect this would have on T cell recruitment. Optimisation 

experiments were initially performed. Increased migration of Jurkat T cells towards 

RPMI-1640 media supplemented with 10% serum and IP-10 was observed compared 

to media supplemented with 10% serum alone (figure 3.15a). Next, supernatant from 

THP1 macrophages treated with poly I:C in the presence and absence of CH11 for 

24 hours was harvested and migration of Jurkat T cells towards these supernatants 

assessed using a transwell migration assay. We were unable to obtain consistent 

results for this assay due to a high variation between experiments, resulting in large 

error bars (figure 3.15 b). Therefore, we next performed a cell recruitment 

experiment, examining the recruitment of Jurkat T cells to THP1 macrophages which 

were stimulated with poly I:C with and without CH11 stimulation for 24 hours prior 

to addition of Jurkat T cells (figure 3.15 c-f). Recruitment and attachment of Jurkat T 

cells to these macrophages was then examined following 24 hours of co-culture. We 

observed that both untreated and CH11 stimulated THP1 macrophages had minimal 

T cell recruitment and attachment, as determined by the number of T cells 

surrounding macrophages (figure 3.15 c, d), while enhanced recruitment of T cells 

was observed following stimulation of THP1 macrophages with poly I:C (figure 3.15 

e). Co-stimulation with both Fas and poly I:C increased T cell recruitment (figure 

3.15 f). This data is also represented graphically, whereby we calculated the ratio of 

T cells attached to macrophages to T cells not attached to macrophages (figure 3.15 

g) for all stimulations. 
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Figure 3.15: THP-1 macrophages stimulated with both poly I:C and CH11 had 

enhanced Jurkat T cell recruitment compared to other treatment groups. Jurkat 

T cells were added to the upper well of a transwell and migration towards complete 

media and complete media with 50ng IP-10 determined (a). Migration of Jurkat T 

cells towards supernatant harvested from THP-1 macrophages treated with poly I:C 

with and without CH11 was also determined (b). After 2 hrs, migrated cells were 

collected, stained with crystal violet and absorbance measured (a, b). THP-1 

macrophages were treated with 200ng/ml CH11 for 1 hr, followed by 20μg/ml poly 

I:C for 24hrs. Jurkat T cells were added to treated macrophages and cultured for 24 

hrs, with cell aggregation observed microscopically. Macrophages are outlined in 

black, with Jurkat T cells outlined in red (c, d, e, f). The ratio of T cells attached to 

macrophages : non-attached T cells was determined with a minimum of 18 visual 

fields counted (g). Data shown are representative of three independent experiments.  
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As we had observed increased poly I:C-induced IP-10 production following Fas 

activation, and also increased recruitment of T cells to macrophages following co-

stimulation of cells with poly I:C and CH11, we next wished to determine if 

enhanced expression of the IP-10 receptor, CXCR-3, on Jurkat T cells may account 

for the increased recruitment of T cells to treated THP1 macrophages. Resting Jurkat 

T cells expressed low levels of CXCR-3 (4.1%) (figure 3.16a). THP1 macrophages 

were either untreated or stimulated with poly I:C, CH11, or co-stimulated with both 

poly I:C and CH11 for 24 hours. Supernatant was then harvested and used for sub-

culturing of Jurkat T cells. CXCR-3 expression increased 10-fold upon culturing of 

T cells in untreated THP1 macrophage supernatant (figure 3.16b). Whilst culturing 

of T cells in macrophage supernatant with CH11 (figure 3.16c) resulted in only a 

modest augmentation of CXCR-3 expression on T cells above unstimulated, most 

augmentation in CXCR-3 expression was observed following stimulation with poly 

I:C and CH11 (figure 3.16e). Taken together, these results suggest optimal T cell 

recruitment of T cells to IP-10 requires induction of CXCR-3 expression on T cells 

by an as of yet unknown macrophage-derived factor. These studies also show that 

augmented IP-10 production seen upon co-stimulation of macrophages with poly I:C 

and CH11 may have a functional consequence regarding increased recruitment of T 

cells to macrophages.  
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Figure 3.16: The IP-10 receptor, CXCR-3, is induced by untreated macrophage 

supernatant and increased by a combination of poly I:C and CH-11. Jurkat T 

cells were cultured in RPMI-1640  media (a), or in macrophage-derived supernatant 

which was either untreated (b) or treated with (c) 200ng/ml CH11, (d) 20ug/ml poly 

I:C or (e) poly I:C and CH11 for 24 hrs. Expression of CXCR-3 was determined by 

flow cytometry. Data are representative of three individual experiments.  
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3.3 Discussion 

Our findings in this study demonstrate that activation of the Fas signalling pathway 

by ligation of Fas to its ligand, FasL, modulates poly I:C-induced inflammatory 

cytokine production. We have demonstrated augmentation of Fas and FasL 

expression in response to poly I:C stimulation of THP1 macrophages. We have also 

showed that poly I:C-induced production of IFNβ, IL-8, IL-10 and TNFα were 

reduced upon activation of Fas. Conversely, we have shown that poly I:C-induced 

IP-10 production is augmented by Fas activation, with caspase 3/7 activation 

unaffected. We also observed enhanced CXCR-3 expression on Jurkat T cells when 

cultured in THP1 macrophage supernatant. Finally, we observed increased T cell 

recruitment towards THP1 macrophages treated with poly I:C and CH11, compared 

to poly I:C alone.  

We have demonstrated increased Fas and FasL expression following poly I:C 

stimulation in THP1 macrophages. Previous studies have also demonstrated 

increased Fas expression following exposure to other pathogen-associated membrane 

proteins (PAMPs). Lipopolysaccharide (LPS) has been shown to enhance Fas 

expression in bone marrow-derived macrophages (BMDMs) (151). Similarly, the 

double-strand RNA mimetic, poly I:C, has been shown to enhance Fas expression in 

the murine macrophage cell line, RAW 264.7 (176). Consistent with this, viral 

proteins have also been shown to enhance both Fas and FasL expression. Basal FasL 

expression on human monocyte-derived macrophages was enhanced following HIV 

(human immunodeficiency virus) infection (177), while influenza was also shown to 

induce expression of both Fas and FasL in HeLa cells (175). Given that we too have 

observed enhanced Fas and FasL expression following stimulation with poly I:C, our 
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findings add further evidence that Fas and FasL can be increased by TLR and viral 

stimuli. 

Fas and FasL are best known for inducing apoptosis. Whilst we have demonstrated 

increased Fas and FasL expression following poly I:C stimulation, we did not detect 

any change in cell viability, nor did we see activation of the executioner caspases, 

caspases-3/7. Measurement of caspase-3/7 activation was used as a marker of 

apoptosis in this study, as activation of caspase-3 results in irreversible commitment 

to apoptosis of the cell (178). Indeed, some viruses target the Fas apoptotic pathway, 

thereby inducing apoptosis (179, 180). Similar to our findings however, studies have 

also demonstrated that viral infection does not consistently induce Fas mediated-

apoptosis. The DNA virus, equine herpesvirus type 2 (EHV-2) can bind to the pro-

domain of caspase-8 (163), while the DNA virus molluscum contagiosum virus 

(MCV) binds to FADD, thus preventing Fas mediated apoptosis (163). Moreover, 

although Herpes Simplex Virus 2 (HSV-2) Fas and FasL expression in keratinocytes 

and epithelial cells, increased levels of the anti-apoptotic protein Bcl-2 was also 

observed in HSV-2 infected cells, protecting the infected cells, and thus the virus, 

from Fas-mediated apoptosis (164). We too observed increased Fas and FasL 

expression following poly I:C stimulation of THP1 macrophages with no caspase 3/7 

activation, and this may be due to enhanced levels of the anti-apoptotic proteins 

cFLIP or Bcl-2. However, the mechanisms responsible for resistance to Fas-

mediated apoptosis were not investigated as part of this study. Taken together, these 

studies suggests that the up-regulation of Fas and FasL observed may play an 

alternative function, possibly in host defense against some viral infections.  
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As we observed increased Fas and FasL expression following poly I:C stimulation in 

THP1 macrophages, and several studies have now described a variety of non-

apoptotic functions for Fas including migration, proliferation and inflammation, we 

next investigated the effect of Fas activation on inflammatory cytokine production 

by THP1 macrophages. Previous studies have demonstrated that Fas activation 

induced IL-18 and IL-1β production in macrophages (151). However, we did not see 

any induction of cytokine production upon Fas ligation. This may have been due to 

the concentration of CH11 used as in another study which used a similar 

concentration of CH11, cytokine production in THP1 cells was also not observed. 

Increasing the concentration of CH11 however, resulted in the induction of IL-8 to a 

level similar to that seen upon LPS stimulation (152). As poly I:C-induced both Fas 

and FasL expression, with no induction of cytokines or chemokines following Fas 

activation, we hypothesised that Fas may be modulating poly I:C-induced cytokine 

and chemokine production.    

We have demonstrated that Fas ligation is capable of modulating poly I:C-induced 

cytokine production through both the RIG-I and TLR3 pathways, with specific 

enhancement of IP-10. Whilst no study to date has examined the effect of Fas 

ligation on poly I:C signalling, studies have demonstrated that the Fas signalling 

pathway plays a role in modulating TLR4 and LPS responses (162, 176, 181). LPS-

induced IL-6 production was reduced upon interruption of Fas ligation, with reduced 

LPS-induced IL-6 production seen in both Fas (lpr) and FasL (gld) deficient mice,
 

compared to wild-type mice (181). Consistent with this, blocking of Fas-FasL 

interaction in two models of cardiac dysfunction was shown to attenuate 

inflammatory cell infiltration and cytokine secretion in the myocardium without 

affecting apoptosis in vivo (161, 162), significantly preserving cardiac function. 
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Additionally Fas ligation on macrophages promoted TLR4-mediated chronic 

inflammation in a model of collagen-induced arthritis (181). These studies illustrate 

the importance of the Fas signalling pathway in TLR4 mediated signalling. Given 

our findings that the Fas signalling pathway also plays a role in signalling through 

both RIG-I and TLR3 pathways, our data indicates that the cross-talk between Fas 

and pathogen recognition receptors is more extensive than previously thought. 

IP-10 is an early response gene; therefore we investigated the time-frame for the 

augmentation in IP-10 production. The augmentation in IP-10 following activation 

with both poly I:C and agonistic anti-Fas was most dramatic at the earlier time points 

of 4 and 8 hours, with reduced augmentation observed at 12 hours. A reduction in 

poly I:C-induced IP-10 occurred at 24 hours was seen following co-activation of 

both receptors. Changes in the expression levels of the receptors may account for this 

divergent effect at 24 hours as it is well-known that Fas is internalised following 

activation (181). Alternatively it is possible that Fas ligation is primarily required for 

up-regulation of IP-10 production in the early phase of the anti-viral response, 

consistent with the high level of IP-10 observed at 4 hours compared to 24 hours.  

IP-10 is a potent T cell chemokine which affects T cell generation and trafficking in 

vivo (174), recruiting T cells expressing its receptor CXCR-3 (182, 183). While we 

have shown a specific enhancement of IP-10 by Fas activation and poly I:C 

stimulation, we have also shown that expression of the IP-10 receptor, CXCR-3 in 

Jurkat T cells is increased upon culturing in macrophage-derived supernatant, 

suggesting that Fas activation may play a significant role in IP-10 production 

following viral infection. The importance of IP-10 in clearance of viral infection is 

well established (174, 184, 185). IP-10 has been shown to protect mice infected with 
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neurotropic coronavirus mouse hepatitis (MHV), as blocking of IP-10 production 

increased mouse death and reduced the ability of infected mice to clear the infection 

(184). Moreover, mice lacking Fas or FasL showed reduced IP-10 production 

following infection with herpes simplex virus (HSV)-2, with a reduction in immune 

cell recruitment resulting in delayed clearance of the virus (186). We have also 

demonstrated increased T cell recruitment and attachment towards macrophages 

treated with poly I:C and CH11 compared to other treatment groups. Taken together, 

these studies demonstrate the importance of both IP-10 production and the Fas 

signalling pathway in protecting the host following viral infection. 

Excessive IP-10 production however, has implications for a variety of human 

diseases including infectious diseases, chronic inflammation, immune dysfunction, 

tumour development, metastasis and dissemination (182). Increased IP-10 

production may exacerbate inflammation and induce significant tissue damage as a 

result of increased immune cell trafficking (187). It is important, therefore, that 

following viral infection, IP-10 levels are regulated to ensure an adequate immune 

response whilst avoiding an exacerbated inflammatory response. It has been 

demonstrated that RNA derived from necrotic synovial fluid cells induces IP-10 

expression by rheumatoid arthritis synovial fibroblasts, potentially by activation of 

TLR3 (188). The majority of T cells present in the synovial fluid of joints affected 

by rheumatoid arthritis (RA) are positive for the IP-10 receptor CXCR-3 (189, 190), 

with an increase in IP-10 chemotactic gradient favouring migration of CXCR-3 

positive T cells from the serum to synovium of RA affected joints (189).  As 

activated T cells express FasL, our results suggest that in situations of excessive T 

cell recruitment as characterised by many chronic inflammatory conditions, binding 

of FasL expressed by T cells to macrophage-expressed Fas may result in activation 
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of Fas, which may further exacerbate the inflammatory response. Therefore, 

blocking Fas may represent a potential therapeutic target for pathologies requiring T 

cell involvement, such as rheumatoid arthritis (189-191) and more recently systemic 

lupus erythematosus (SLE) (192).  

In conclusion, we have shown that the chemokine IP-10 is specifically enhanced 

following Fas activation and subsequent stimulation with poly I:C, poly A:U and 

SeV, and that the ability of Fas to modulate poly I:C-induced cytokine production is 

not specific to either TLR3 or RIG-I, but is rather common to both pathways. This 

indicates that Fas ligation will affect cytokine production in response to a myriad of 

viral infections.  
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Chapter 4 

Identification of a mechanism by which Fas 

activation augments poly I:C-induced IP-10 

production. 
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4.1 Introduction 

Fas is a well characterised death receptor, with ligation of Fas by its ligand, FasL, 

resulting in the recruitment of the adaptor protein Fas-associated death domain 

(FADD). FADD contains two functional domains, the Death Effector Domain 

(DED) and the Death Domain (DD), with binding of FADD to Fas by DD-DD 

interaction. This in turn recruits the cysteine protease pro-caspase-8 via a DED-DED 

interaction, resulting in the formation of the death-inducing signalling complex or 

DISC. Following activation in the DISC, caspase-8 in turn activates the effector 

caspases, culminating in the apoptotic cell death of sensitive cells (193). As 

mentioned in the previous chapter, the Fas signalling pathway, together with its 

adaptor protein FADD, can also mediate other biological processes. FADD has been 

shown to be essential for embryonic development in utero (102). FADD has also 

been shown to have a functional role in processes such as autophagy and apoptosis, 

tumour growth, necrosis and innate immunity (194).  

In the previous chapter, we demonstrated that Fas activation augmented both TLR3 

and RIG-I induced IP-10 production. While a role for FADD in dsRNA-induced type 

I interferon (IFN) production through the RIG-I signalling pathway has been 

demonstrated (165), the role of FADD in TLR3-induced cytokine production is 

unclear. IP-10/CXCL-10 is a potent chemokine, recruiting immune cells such as Th1 

cells and Natural Killer (NK) cells expressing its receptor, CXCR-3 (182). IP-10 

plays an important role in viral clearance (174, 184, 185). However, dysregulation of 

IP-10 production has been implicated in a variety of pathologies (182, 187). It is 

important, therefore, that following viral infection, IP-10 levels are regulated to 

ensure an adequate immune response whilst avoiding an exacerbated inflammatory 
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response. Thus, identifying mechanisms involved in regulating IP-10 production in 

response to viral infection is important. The aim of the current chapter was to 

investigate the mechanism involved in the augmentation of poly I:C-induced IP-10 

production by Fas and to characterise the role of the Fas adapter FADD in this 

pathway.    

4.2 Results 

4.2.1 Attempt at optimising siRNA knockdown of FADD expression in THP1 

macrophages.      

In the first chapter we identified a role for Fas in modifying poly I:C-induced 

cytokine production with specific upregulation of IP-10. Given the important role of 

FADD in the Fas signalling pathway, we next wished to analyse the role of FADD in 

poly I:C-induced IP-10. We initially aimed to investigate the role of FADD in poly 

I:C-induced IP-10 production by reducing endogenous levels of FADD by siRNA 

transfection. THP1 cells were transfected with FADD-specific siRNA or scrambled 

control siRNA. Changes in FADD expression were detected by Western blotting. 

Compared to untreated cells, endogenous levels of FADD were reduced following 

transfection with 100nM, 150nM or 300nM FADD siRNA (figure 4.1a). As we 

wanted to determine what effect a reduction in FADD would have on poly I:C-

induced IP-10 production, THP1 monocytes were transfected with either 100nM of 

FADD siRNA or100nM scrambled control siRNA and differentiated into 

macrophages, and then stimulated with and without 20μg/ml poly I:C (figure 4.1b). 

However, transfection of THP1 macrophages with both scrambled control siRNA 

and FADD-specific siRNA completely abrogated the capacity of the cells to respond 

to poly I:C (figure 4.1b). To ensure that THP1 macrophages were still responsive to 
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poly I:C, non-transfected cells were also stimulated with poly I:C, which induced a 

3.5 fold increase in IP-10 protein production (figure 4.1c). This indicates that the 

effect observed following siRNA knockdown was most likely due to the transfection 

of the cells with siRNA and as a result we were unable to utilise this technique. 
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Figure 4.1: Transfection of THP-1 macrophages with either scrambled control 

siRNA or FADD-specific siRNA suppressed the ability of the cells to produce 

IP-10 in response to poly I:C. THP-1-derived macrophages were transfected with 

100nM, 150nM and 300nM FADD siRNA. 24 hrs later, FADD expression was 

detected by Western Blotting (a). THP-1 monocytes were transfected with either 

scrambled siRNA control or FADD specific siRNA and derived into macrophages 

over 72 hrs. Cells were then stimulated with 20μg/ml poly I:C for 48 hrs, and IP-10 

production detected by ELISA. (b). Non-transfected THP-1-derived macrophages 

were stimulated with 20μg/ml poly I:C for 48 hrs, and IP-10 production  detected by 

ELISA (c). Results shown are representative of three separate experiments. 
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4.2.2 Absence of FADD augments poly I:C-induced IP-10 transcription and 

inhibits poly I:C-induced IFNβ production.  

As we encountered significant difficulties with the siRNA method, we next 

investigated the role of FADD in poly I:C-induced IP-10 production using murine 

embryonic fibroblasts (MEFs) which lack the Fas adaptor protein FADD (FADD
-/-

 

MEFs). Wild-type and FADD
-/-

 MEFs were stimulated with increasing 

concentrations of poly I:C and expression of IP-10 analysed by qRT-PCR. Induction 

of IP-10 by poly I:C was significantly increased in FADD
-/-

 MEFs as compared to 

wild-type MEFs at all doses examined (p <0.05) (figure 4.2a). As previous studies 

have demonstrated an essential role for FADD in the type-1 interferon production via 

RIG-I (166), we also investigated the ability of  poly I:C to induce IFNβ production 

in these cells (figure 4.2b). In contrast to IP-10 production, poly I:C-induced IFNβ 

production was decreased in FADD
-/-

 MEFs when compared to wild-type MEFs 

(figure 4.2b). While these results were not statistically significant, they are consistent 

with the previously published findings that FADD is required for poly I:C-induced 

IFNβ production (165, 166). We also investigated the role of FADD on poly I:C-

induced CCL20 production. Both wild-type and FADD
-/-

 MEFs showed similar 

levels of CCL-20 expression following poly I:C stimulation, suggesting that FADD 

may not be required for poly I:C-induced CCL-20 production. 
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Figure 4.2: Absence of FADD augments poly I:C-induced IP-10 transcription 

and inhibits poly I:C-induced IFNβ production. Wild type and FADD 
-/- 

MEFs 

were stimulated with increasing concentrations of poly I:C (25, 50 and 100ng/ml) for 

8 hrs, with mRNA expression measured using qRT-PCR and normalised to GAPDH. 

Changes in IP-10 (a), IFNβ (b) and CCL-20 (c) mRNA were expressed relative to 

untreated cells. Values shown as Mean ± SEM, (n=3). * p<0.05 
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4.2.3 IP-10 production is reduced following overexpression of FADD in three 

cell lines.    

Given that deletion of FADD resulted in enhanced poly I:C-induced IP-10 

production, we sought to further confirm a role for FADD in this pathway using 

overexpression studies. The murine macrophage cell line RAW264.7 was transfected 

with plasmids encoding an IP-10 luciferase reporter construct and increasing doses 

of FADD (figure 4.3a). Stimulation of these cells with poly I:C induced IP-10 

luciferase activation, with IP-10 luciferase production reduced by FADD in a dose 

dependent manner (figure 4.3a). Based on these results, a concentration of 40ng 

FADD was selected for further luciferase experiments. The ability of 40ng of FADD 

to suppress poly I:C-induced luciferase activation was first confirmed in RAW 264.7 

cells (figure 4.3b). This finding was subsequently confirmed using the human 

astrocytoma cell line U373 (figure 4.3c) and human embryonic kidney cells HEK-

293/TLR3 (figure 4.3d), with poly I:C-induced IP-10 luciferase activation reduced 

upon overexpression of FADD in both cell lines (figure 4.3c, d). 
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Figure 4.3: FADD reduces poly I:C-induced IP-10 production. Cells were 

transfected with IP-10 luciferase and TK-renilla reporter plasmid. RAW264.7 cells 

were also transfected with increasing concentrations of FADD plasmid (4, 20, 50 and 

100ng) and stimulated 24 hrs after transfection with 25μg/ml poly I:C for 6hrs (a). 

RAW 264.7 cells were transfected with 40ng IP-10 luciferase construct and/or 

stimulated 24 hrs after transfection with 25μg/ml poly I:C (b). U373 and HEK-

293/TLR-3 cells were also transfected with 40ng FADD and/or stimulated 24 hrs 

after transfection with 25ng/ml poly I:C and 20ng/ml respectively for 6 hrs (c, d). IP-

10 luciferase activity was measured and expressed as fold-change over TK-renilla 

activity. Data shown are representative of three independent experiments with values 

shown as Mean ± SEM. *** p<0.001 
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4.2.4 Overexpression of cells with FADD-DD plasmid enhances poly I:C-

induced IP-10 luciferase activation in U373 cells. 

The role of FADD was also confirmed using a plasmid encoding the death-domain 

of FADD (FADD-DD), a known dominant negative of FADD, which binds to 

FADD and inhibits its activity. In contrast to the findings obtained following 

transfection of FADD plasmid (figure 4.3c), transfection of U373 cells with the 

FADD-DD construct augmented poly I:C-induced IP-10 luciferase activation (figure 

4.4), adding further evidence that FADD inhibits poly I:C-induced IP-10 production.  
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Figure 4.4: Poly I:C-induced IP-10 luciferase production is augmented by 

overexpression of the death domain of FADD (FADD-DD). U373-CD14 were 

transfected with the IP-10 luciferase construct and TK-renilla construct with/without 

40ng FADD-DD. Cells were stimulated 24 hrs after transfection with 25μg/ml poly 

I:C for 6 hrs. IP-10 luciferase activity was measured and expressed as fold-change 

over TK-renilla activity. Data shown are representative of three independent 

experiments with values shown as Mean ± SEM. ** p<0.01 
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4.2.5 FADD is required for poly I:C-induced ISRE luciferase activation. 

Our data thus far has demonstrated that poly I:C-induced IP-10 luciferase activity is 

reduced following overexpression of FADD, implying that FADD may inhibit poly 

I:C-induced IP-10 production. Given the findings of previously published studies 

demonstrating that FADD is required for poly I:C-induced type-1 IFN production we 

next investigated the role of FADD in poly I:C-induced interferon-stimulated 

response element (ISRE) luciferase activation. U373 cells were transfected with 

plasmids encoding an ISRE luciferase reporter construct and FADD. Stimulation of 

these cells with poly I:C resulted in a 6 fold increase in ISRE luciferase activation. In 

contrast to the inhibitory effect of FADD overexpression seen on the IP-10 luciferase 

construct (figure 4.3), poly I:C-induced ISRE activation was slightly enhanced by 

FADD (figure 4.5a). This requirement for FADD in poly I:C-induced ISRE 

luciferase production was confirmed using a plasmid encoding the FADD-DD. In 

contrast to transfection of full-length FADD construct, transfection of U373 cells 

with the FADD-DD construct reduced poly I:C-induced ISRE luciferase activation 

(figure 4.5b). Thus, in contrast to the inhibitory effect seen with FADD on poly I:C-

induced IP-10 production, our results demonstrate that FADD is required for poly 

I:C-induced ISRE luciferase activity. This is consistent with our results which 

showed that poly I:C-induced IFNβ production is reduced following Fas activation 

(chapter 3, figure 3.6a), and augmented in FADD
-/-

 MEFs (figure 4.2b).  
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Figure 4.5: FADD is required for poly I:C-induced ISRE luciferase activation. 

U373 cells were transfected with ISRE luciferase and TK-renilla reporter plasmid, 

with 40ng FADD (a) or 40ng FADD-DD (b). After 24 hrs, cells were stimulated 

with 20μg/ml poly I:C. ISRE luciferase activity was measured and expressed as fold-

change over TK-renilla activity. Data shown are representative of three independent 

experiments with values shown as Mean ± SEM. ** p<0.01, *** p<0.001 
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4.2.6 Overexpressing FADD reduces RIG-I-, MDA5-, TLR3- and TRIF-induced 

IP-10 luciferase activity. 

Our data thus far demonstrates that FADD modulates poly I:C-induced cytokine and 

chemokine production, with FADD specifically inhibiting poly I:C-induced IP-10 

production. Whilst FADD has been previously implicated in modulating RIG-I-

induced cytokine production (165, 166), poly I:C is known to be detected by the 

viral receptors RIG-I, MDA5 and TLR3, and the role for FADD in MDA5 and TLR3 

signalling is not fully characterised. Therefore, we first wished to investigate if 

FADD was having a specific effect on the ability of any of these receptors to induce 

IP-10 production. To assess this, cells were initially transfected with plasmids 

encoding an IP-10 luciferase reporter construct, FADD and/or RIG-I (figure 4.6a). 

Transfection of cells with RIG-I plasmid alone induced IP-10 production of 

luciferase activity regulated by full length IP-10 promoter, which was reduced upon 

co-transfection with FADD (figure 4.6a). Cells were also transfected with an IP-10 

luciferase construct, FADD and/or MDA5 (figure 4.6b). Transfection of cells with 

MDA5 also induced IP-10 luciferase activation, with overexpressing FADD 

reducing MDA5-induced IP-10 luciferase activation (figure 4.6b).  
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Figure 4.6: FADD reduces RIG-I and MDA5-induced IP-10 production. HEK-

293T cells were transfected with IP-10 luciferase and TK-renilla reporter plasmid. 

Cells were also transfected with 40ng/ml FADD and 80ng/ml RIG-I (a) or 40ng/ml 

FADD and 80ng MDA5 (b). IP-10 luciferase activity was measured and expressed 

as fold-change over TK-renilla activity. Data shown are representative of three 

independent experiments with values shown as Mean ± SEM. ** p<0.01, *** 

p<0.001 
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As poly I:C is also recognised by TLR3, we next investigated the role of FADD in 

TLR3-induced IP-10 luciferase production. Cells were transfected with plasmids 

encoding an IP-10 luciferase reporter construct, FADD and/or TLR3 (figure 4.7a). 

Transfection of cells with TLR3 plasmid alone induced IP-10 production, which was 

reduced upon co-transfection with FADD (figure 4.7a). TLR3-induced IP-10 

luciferase activation was not inhibited when cells were co-transfected with FADD-

DD plasmid, indeed levels were slightly augmented (figure 4.7b). 

Cells were also transfected with plasmids encoding an IP-10 luciferase reporter 

construct, FADD and/or the TLR3 adaptor protein TRIF (figure 4.7c). Similar to 

results shown with TLR3, transfection of cells with TRIF induced IP-10 luciferase 

activation, which was reduced upon co-transfection with FADD (figure 4.7c). TRIF 

induced IP-10 luciferase activation was enhanced however, following co-transfection 

with FADD-DD (figure 4.7d). Taken together, these results demonstrate that TLR3-

and TRIF-induced IP-10 luciferase activity was reduced by FADD, demonstrating a 

role for FADD in the TLR3/TRIF mediated pathway of IP-10 production.  
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Figure 4.7: FADD reduces TLR-3- and TRIF-induced IP-10 production. HEK-

293T cells were transfected with IP-10 luciferase and TK-renilla reporter plasmid. 

Cells were also transfected with 40ng FADD or 40ng FADD-DD, together with 40ng 

TLR-3 (a, b) or 80ng TRIF (c, d). IP-10 luciferase activity was measured and 

expressed as fold-change over TK-renilla activity. Data shown are representative of 

three independent experiments with values shown as Mean ± SEM. ** p<0.01, *** 

p<0.001, ns – non significant. 
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Taken together, these results suggest that FADD reduces RIG-I-, MDA5-, TLR3- 

and TRIF-mediated IP-10 luciferase activation and also indicates that the inhibitory 

effect of FADD on poly I:C-induced IP-10 production is not specific to any viral 

RNA receptor. 

4.2.7 Overexpression of FADD has no effect on RIP-1- or IKKε-induced IP-10 

luciferase activation.     

As it appeared that FADD was specifically inhibiting poly I:C-mediated IP-10 

production, and not IFNβ and that this modulatory effect was not specific to TLR3, 

RIG-I or MDA5, we hypothesised that FADD may be exerting an inhibitory effect at 

a specific point on the pathways downstream of these receptors. In an attempt to 

identify where FADD may be having this effect, we next transfected cells with 

plasmids encoding RIP-I and IKKε. Both RIP-1 (65, 195) and IKKε (196, 197) are 

downstream of TLR3, RIG-I and MDA5. Transfection with either RIP-1 or IKKε 

alone induced IP-10 luciferase activation, which was slightly enhanced upon co-

expression of FADD (figure 4.8a, c). Overexpression of the FADD-DD however, 

had no effect on either RIP-1 or IKKε IP-10 luciferase activation (figure 4.8b, d). As 

FADD did not inhibit IP-10 luciferase activation driven by signalling components 

downstream of poly I:C receptors or the adapter TRIF, our results suggested that 

FADD may reduce IP-10 luciferase activation at the level of receptors themselves or 

the adapter TRIF.  
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Figure 4.8: FADD does not inhibit RIP-1- and IKKε-induced IP-10 production. 

HEK-293T cells were transfected with IP-10 luciferase and TK-renilla reporter 

plasmid, with 40ng FADD or 40ng FADD-DD, together with 80ng RIP-1 (a, b) or 

80ng IKKε (c, d). IP-10 luciferase activity was measured and expressed as fold-

change over TK-renilla activity. Data shown are representative of three independent 

experiments with values shown as Mean ± SEM. * p<0.05, *** p<0.001 
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4.2.8 Co-immunoprecipitation of VSV-TRIF and FLAG-FADD was 

unsuccessful in detecting an interaction between TRIF and FADD. 

Whilst FADD has never been shown to directly interact with TRIF, previous studies 

have demonstrated an indirect interaction, mediated through a complex containing 

TRIF/FLIP/RIP-1 (130). As our luciferase data indicated an ability of FADD to 

inhibit TRIF-induced IP-10 production, but not any components further downstream, 

we hypothesised that FADD may directly interact with TRIF. To investigate this, 

HEK-293T cells were initially transfected with different concentrations of a VSV-

tagged TRIF construct (figure 4.9a) and a FLAG tagged FADD construct (figure 

4.9b) and Western blotting performed with anti-VSV antibody and anti-Flag 

antibody respectively. Transfection of the FLAG-FADD construct was initially 

optimised.  Transfection of cells with both 2μg and 4μg Flag-FADD resulted in 

expression of the protein (figure 4.9a). We subsequently attempted to optimise 

overexpression of the VSV-TRIF construct. Initial optimisation experiments were 

performed using 1, 2, 4 and 10μg of VSV-tagged TRIF. It was noted however, that 

following transfection of the higher doses of VSV-tagged TRIF, extensive cell death 

was observed. Therefore, we optimised the overexpression of TRIF at lower 

concentrations. While we did not observe a band in cells transfected with 1μg VSV-

TRIF, a faint band was observed following Western blotting with anti-VSV in cells 

transfected with 2μg VSV-TRIF (figure 4.9b).  

HEK-293T cells were next transfected with the optimal concentration of VSV-TRIF 

(2μg) with or without FLAG-FADD and co-immunoprecipitation was performed 

(figure 4.9c). Immunoprecipitation for both VSV and FLAG were performed. 

Following immunoprecipitation with the VSV antibody and immunoblotting for 
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FLAG, a band was detected in all samples at approximately 23-26kDa. This band, 

which is most likely Light chain of the immunoprecipitating antibody (anti-VSV), 

ran at the same size at FADD (26kDA) and therefore may mask any potential 

interactions that we may have observed (figure 4.9c). We also performed the same 

experiment in the reverse direction, immunoprecipitating with anti-Flag and 

immunoblotting with anti-VSV (figure 4.9d). In this experiment the same band at 

26kDA can be observed as was seen in figure 4.9c. Moreover no band corresponding 

to the correct size for VSV-tagged TRIF (75kDa) was observed, perhaps reflecting 

the very low level of expression of VSV-TRIF as seen in figure 4.9b. Similar results 

were obtained three times, and therefore we were unable to identify an interaction 

between FADD and TRIF.     
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Figure 4.9: Co-immunoprecipitation of VSV-TRIF and FLAG-FADD was 

unsuccessful in detecting an interaction between TRIF and FADD in HEK-293T 

cells. HEK-293T cells were transfected with either FLAG-FADD (a) or VSV-TRIF 

(b) and immuno-blotting performed for anti-FLAG or anti-VSV respectively. 

Optimal concentrations of both FLAG-FADD and VSV-TRIF were selected, with 

cells either untransfected or transfected with 2μg/ml VSV-TRIF with and without 

4μg/ml FLAG-FADD (c, d). Immuno-precipitation was performed. Samples which 

were immunoprecipitated with anti-VSV were immunoblotted for FLAG (c). 

Similarly, samples immunoprecipitated with anti-FLAG were immunoblotted for 

VSV (d).  
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4.2.9 Co-stimulation with poly I:C and CH11 reduces poly I:C-induced 

phosphorylation of JNK and p38 MAP Kinases (MAPKs).  

Thus far our data demonstrates that Fas activation enhances viral-induced IP-10 

production. We have also shown that over-expressing FADD inhibits TLR3-, 

MDA5- and RIG-I-induced IP-10 production in a non-receptor specific manner, 

thereby directly implicating FADD in this process. However, we had not yet defined 

a precise molecular mechanism by which FADD is able to modify poly I:C-induced 

IP-10 production. Furthermore, it was increasingly difficult to comprehend how 

FADD could specifically inhibit levels of IP-10, whilst either augmenting or not 

affecting other cytokines, such as IFNβ. To address these issues we decided to 

examine the ability of the Fas/FADD pathway to modify signalling components 

common to all three viral receptors. As these receptors can activate both NFκB and 

the MAP Kinase (MAPK) signalling pathways, we initially investigated whether 

poly I:C-induced activation of these signalling intermediates was altered in FADD
-/-

 

MEFs compared to wild-type MEFs. The results of these experiments however were 

inconclusive. In spite of loading the maximum amount of protein (i.e. lysing samples 

directly in sample buffer) and increasing antibody concentration, only faint bands 

were observed upon probing. Similarly, consistent banding patterns were not 

achieved over three independent experiments. This may be due to variations in 

protein loading. Therefore the same experimental model as utilised in the previous 

chapter was employed. THP1 cells were stimulated with CH11, followed by poly I:C 

stimulation, and phosphorylation of signalling intermediates downstream of poly I:C 

was measured. While poly I:C-induced phosphorylation of IκBα and p42/p44 MAPK 

was unaffected by CH11, Fas activation by CH11 followed by poly I:C stimulation 

resulted in markedly reduced phosphorylation of the MAP kinase p38 at 15, 30 and 



126 
 

60 minutes of stimulation, relative to poly I:C alone (figure 4.10). Similarly, 

phosphorylation of JNK was also reduced at 30 and 60 minutes.  
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Figure 4.10: Ligation of Fas suppresses poly I:C-induced phosphorylation of 

JNK and p38 MAPK. THP-1 macrophages were treated with CH11 1 hr prior to 

poly I:C stimulation for 15, 30 and 60 mins. pIκBα, phospho-p42/44 MAPK, 

phospho-p38 MAPK, phospho-JNK and βactin were detected by Western blotting. 

Data shown are representative of three independent experiments.  
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4.2.10 The AP-1 transcription factor negatively regulates IP-10 production.  

Phosphorylation of JNK and p38 MAPK are known to result in activation of the 

transcription factor AP-1. As the IP-10 promoter contains an AP-1 binding site, we 

next examined the IP-10 promoter using IP-10 promoter luciferase constructs 

mutated at the ISRE binding site, two separate NFκB binding sites (κB1, κB2) and 

the AP-1 binding site (figure 4.11a). Interestingly, cells transfected with the IP-10 

promoter mutated at the AP-1 binding site showed augmented IP-10 luciferase 

activation in response to poly I:C (figure 4.11b). This augmentation parallels the 

increased IP-10 expression seen upon co-stimulation with CH11 and poly I:C 

(chapter 3, figure 3.7). In contrast, poly I:C-induced IP-10 activation was reduced 

following mutation of two separate NFκB binding sites (figure 4.11c, d) and also of 

the ISRE binding site (figure 4.11e). These results indicate that the AP-1 

transcription factor represses poly I:C-induced IP-10 production.  
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Figure 4.11: AP-1 negatively regulates the IP-10 promoter in response to poly 

I:C. HEK-293/TLR3 cells were transfected with full length IP-10 luciferase 

plasmids or IP-10 luciferase plasmids containing point deletions in the binding sites 

for proximal AP-1, NF-κB (κB1, κB2), or ISRE. A schematic of these putative 

binding sites is illustrated (a). 24 hrs post transfection, cells were stimulated with 

20μg/ml poly I:C for 6 hrs with IP-10 luciferase activity expressed as fold-change 

over TK-renilla activity (b, c, d, e). Data shown are representative of three 

independent experiments with values shown as Mean ± SEM. ** p<0.01, *** 

p<0.001 
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4.2.11 Overexpression of FADD activates AP-1 luciferase activation. 

Thus far we have shown that Fas ligation modifies poly I:C-induced phosphorylation 

of transcription factors upstream of AP-1. We have also demonstrated that AP-1 is 

inhibitory to poly I:C-induced IP-10 production. In order to demonstrate that Fas, 

through its adapter FADD, can affect AP-1 activation and thereby potentially explain 

the ability of Fas to upregulate poly I:C-induced IP-10, we next investigated whether 

transfection of cells with FADD altered activation of an AP-1 luciferase construct. 

Activation of AP-1 by FADD was low but was consistently enhanced in a dose- 

dependent manner upon transfection with FADD, with TNFα inducing a moderate 

induction in AP-1 activity (figure 4.12). As we have demonstrated that AP-1 

negatively regulates IP-10 production, and that FADD enhances AP-1 activity, we 

have identified a potential mechanism by which Fas activation may modulate viral-

induced IP-10 production. We hypothesise that Fas activation results in recruitment 

of the FADD adapter protein to the DISC complex (114), thereby limiting the levels 

of FADD in the cytoplasm. This would alleviate the repression of AP-1 by reducing 

phosphorylation of both JNK and p38 MAPK. This potential mechanism of 

upregulation of poly I:C-induced IP-10 by Fas is illustrated in figure 4.13.  
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Figure 4.12: Overexpression of FADD induces AP-1 luciferase activation. 

HEK293/TLR3 cells were transfected with an AP-1 luciferase reporter construct. 

Cells were also transfected with the indicated doses of FADD. 24 hrs after 

transfection cells were stimulated with 20μg/ml poly I:C or 20ng/ml TNFα further 6 

hrs. AP-1 luciferase activity was measured and expressed as fold-change over TK-

renilla activity. Data shown are representative of three independent experiments with 

values shown as Mean ± SEM. * p<0.05 
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4.3 Discussion 

The findings in this chapter demonstrate a role for FADD in regulating viral-induced 

IP-10 production. Over-expression studies revealed that FADD inhibits TLR3-, RIG-

I- and MDA-5- induced IP-10 production. Investigation of signalling intermediates 

demonstrated that Fas activation reduces poly I:C-induced phosphorylation of both 

JNK and p38 MAPK, with mutation of the AP-1 transcription factor binding site on 

the IP-10 promoter resulting in enhanced poly I:C-induced IP-10. The Fas adapter 

protein FADD enhanced the luciferase activity of the AP-1 transcription factor. 

Therefore, we hypothesise that upon Fas activation, FADD is recruitment to the Fas 

receptor thus reducing the amount of FADD present in the cytoplasm. This in turn 

reduces activation of the AP-1 transcription factor thus alleviating AP-1 mediated 

repression of the IP-10 promoter and enhancing IP-10 production (figure 4.13). 

In chapter 3 we observed that Fas activation reduced poly I:C-induced IFNβ 

production. In this chapter, we have shown that an absence of FADD (FADD
-/-

MEFs) reduced poly I:C-induced IFNβ production, indicating that FADD may be a 

critical signalling component in this pathway. Previous studies investigating the role 

of FADD in poly I:C signalling have also shown that FADD is a critical component 

of the RIG-I signalling pathway, whereby production of type 1 IFNs in response to 

intracellular dsRNA was defective in FADD
-/-

 MEFs (165). This study demonstrated 

that FADD
-/-

 MEFs had increased replication of vesicular stomatitis virus (VSV) 

with respect to wild-type MEFs, and while transfection of the dsRNA mimetic poly 

I:C still induced a low level of IFNβ in FADD
-/-

 MEFs, more robust IFNβ production 

was observed in FADD
+/-

 MEFs (165). In a separate study, this group also 

demonstrated that FADD was essential for RIG-I-, MDA5- and MAVS/IPS-1-
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induced IFNβ production, with overexpression of these receptors inducing enhanced 

IFNβ luciferase activation following poly I:C stimulation in FADD
+/-

 MEFs when 

compared to FADD
-/-

 MEFs  (166). They also demonstrated that FADD was also 

required for poly I:C-induced IRF7 expression with poly I:C inducing expression of 

IRF7 in FADD
+/-

 MEFs, with no induction in expression observed in FADD
-/-

 MEFs 

(166). Therefore, our data provides further evidence that FADD is required for poly 

I:C-induced IFNβ production.   

In contrast to the data shown here concerning the essential role of FADD in IFNβ 

production, we have identified that overexpression of FADD inhibits IP-10 

production and that a more robust induction in poly I:C-induced IP-10 production is 

observed in FADD
-/-

 MEFs when compared to wild-type MEFs. Interestingly, this is 

in contrast to a study published by Zhande et al (159). Using a similar experimental 

design to our study, they exposed both wild-type and FADD
-/- 

MEFs to poly I:C and 

analysed IP-10 production (159). IP-10 production was measured by ELISA, with 

wild-type MEFs showing enhanced IP-10 production when compared to FADD
-/-

 

MEFs (159). It seems possible that these differences could be explained by a 

difference in the generation of the FADD knockout MEFs. The cell line that we used 

was obtained from Dr. Tak W. Mak in the University of Toronto, whereas that used 

by Zhande et al. was obtained from Amgen, Inc., therefore differences in animal 

units, and the genetic background of the mice may account for the contrasting results 

observed. Also, in our study we have confirmed the specific modulation of poly I:C-

induced IP-10 production by Fas stimulation using FADD
-/- 

MEFs and using 

overexpression experiments involving both FADD and the FADD-DD. Moreover, 

these experiments were performed in multiple cell lines and multiple species. Our 

data is therefore strengthened by the variety of techniques and cell lines used as 
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compared to Zhande et al. who only examined IP-10 production in FADD
-/- 

MEFs. It 

is worth noting that the other published studies investigating the role of FADD in 

poly I:C responses did not examine levels of IP-10. Furthermore, an inhibitory role 

for FADD in cytokine production was recently shown in another study. This study 

identified a novel interaction between FADD and TRIM21, and showed that 

overexpression of FADD and TRIM21 was able to repress both IRF7 

phosphorylation and transcriptional activity. Loss of FADD and TRIM21 led to 

higher levels of IFNα induction in response to Sendai virus (198). These authors 

concluded that this complex constitutes a negative feedback loop of late IFNα 

pathway during viral infection (198), indicating that FADD negatively regulates 

IFNα (198). Our data concerning IP-10 is consistent with these findings for an 

inhibitory role for FADD as we have shown that, with respect to dsRNA-induced IP-

10 production, FADD is able to repress IP-10 production. 

The ability of FADD to inhibit poly I:C-induced IP-10 production does not appear to 

be receptor specific, as over-expression of FADD inhibited RIG-I-, MDA5-, TLR3 

and TRIF-induced IP-10 luciferase activation. Interestingly, FADD did not either 

inhibit RIP-1- or IKKε-induced IP-10 production. Upon dsRNA recognition, TLR3 

recruits the adapter protein TRIF for activation of downstream signalling 

components, while both RIG-I and MDA5 recruit the adapter protein IPS-1 (70). 

Both RIP-1 and IKKε are utilised by both RIG-I and TRIF, activating NFκB and IRF 

3/7 respectively (70). Both NFκB and the IRFs regulate IP-10 production (199-201). 

Given that FADD and RIP-1 have previously been shown to be in a complex (130), 

it may have been expected that FADD would also inhibit RIP-1-induced IP-10 

production. Instead a slight augmentation of RIP-1-induced IP-10 was observed 

upon co-transfection of cells with FADD and RIP-1. RIP-1 is known to be a key 
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component of the RIG-I signalling pathway. In this pathway RIP-1 and FADD have 

been shown to interact in a complex with IPS-1, and this interaction is essential for 

RIG-I-induced production (65). Thus, the failure of FADD to inhibit RIP-1-induced 

IP-10 is possibly due to the involvement of RIP-1 in the RIG-I signalling and may 

indicate additional complexities of FADD in RIG-I-induced IP-10 production that 

remain to be elucidated.  

As mentioned above FADD has been shown to be in a complex with RIP-1 and this 

complex also includes the adapter TRIF as well as caspase-8 (130). As we had 

observed that overexpression of FADD could inhibit TRIF-induced IP-10 and were 

unable to show inhibition of other downstream signalling proteins, it seemed 

possible that FADD could be interacting with TRIF directly. TRIF is a 76kDa 

protein containing several potential binding domains for protein-protein interactions. 

It contains a conserved TIR domain through which it interacts with TLR3 (52). 

Three TRAF-binding motifs present in the amino terminal region of TRIF are 

necessary for association with TRAF6. Destruction of these motifs reduces the 

activation of NFκB (202). It also contains a RIP homotypic interaction motif 

(RHIM) through which it recruits RIP-1 and RIP-3 (195), essential for activation of 

apoptosis (172). Similarly the protein structure of FADD is well characterised. It is a 

26kDa protein containing two conserved domains: the death domain (DD), and the 

death effector domain (DED) (194), required for downstream signalling following 

receptor activation. Whilst none of these domains in TRIF or FADD would be 

classically considered to be protein-protein interacting domains, we nonetheless 

performed co-immunoprecipitation experiments to try to determine whether these 

proteins interacted. Unfortunately, the results of the TRIF-FADD co-

immunoprecipitation experiment were inconclusive. Whilst we were able to detect 
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overexpression of both TRIF and FADD during optimisation of the experiments, 

following immunoprecipitation, it is possible that the Light chain, apparent at 23-

26kDa, is masking any possible interaction between FADD and TRIF. Also, as 

overexpression of TRIF resulted in the detection of a faint band, this suggests that 

the quantity of TRIF present may not have been sufficient to detect any interaction, 

however, a higher concentration could not be used as optimisation experiments using 

higher concentrations of TRIF resulted in cell death. Thus it remains to be fully 

clarified whether FADD and TRIF interact directly. 

As we had observed that FADD over expression inhibited at the level of the 

receptors for poly I:C and also at the level of the adapter TRIF but were unable to 

pinpoint where on the pathway this inhibitory effect may be occurring we next 

examined the ability of the Fas/FADD pathway to modify the phosphorylation status 

of downstream signalling components common to all poly I:C receptors. We 

demonstrated that poly I:C-induced phosphorylation of p44/42, IκBα, JNK and p38 

MAPK, with activation of Fas reducing the phosphorylation of JNK and p38 MAPK. 

IκBα is a regulatory protein which sequesters NFκB in the cytoplasm, therefore 

limiting the transcriptional activity of NFκB. However, upon activation, IκBα 

becomes phosphorylated, releasing its hold on NFκB, allowing NFκB to migrate to 

the nucleus, inducing its transcriptional activity. Given our earlier findings that 

overexpression of FADD did not alter RIP-1-induced IP-10 luciferase activity, and 

the important role of RIP-1 in activating NFκB, it was not surprising that Fas 

activation did not alter the phosphorylation status of IκBα. JNK and p38 MAPK are 

known to be involved in the activation of the AP-1 transcription factor. AP-1 is 

composed of the sub-families c-Jun and c-Fos, as well as the Maf 

(musculoaponeurotic fibrosarcoma) and ATF (activating transcription factor) 
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subfamilies, all of which are dimeric basic region-leucine zipper (bZIP) proteins 

(203). c-Fos and c-Jun are the main AP-1 proteins, with c-Fos proteins requiring c-

Jun proteins to form stable heterodimers as they are not capable of forming 

homodimers (203). We have demonstrated that mutation of the AP-1 binding site 

augmented IP-10 transcription, indicating that AP-1 inhibits the IP-10 promoter. 

This finding may explain our data concerning opposing roles of FADD on the same 

poly I:C pathway. It would seem that it is not that FADD is exerting a direct 

inhibitory effect on IP-10, but rather that it is somewhat specifically modulating the 

AP-1 transcription factor, with the AP-1 transcription factor in turn repressing the 

IP-10 promoter. Thus, the ability of CH11 to reduce poly I:C-induced 

phosphorylation of JNK and p38 MAPK may result in a reduction in the level of AP-

1 binding to the IP-10 promoter, thus alleviating the AP-1-mediated repression of IP-

10. Consistent with this, a similar inhibitory role for AP-1 on the IP-10 promoter was 

recently shown in hepatocytes following Hepatitis C (HCV) infection (204). In this 

study, poly I:C-induced IP-10 production was reduced upon point mutation in the 

κB1, κB2 and ISRE binding sites of the IP-10 promoter, with a point mutation in the 

AP-1 binding site enhancing IP-10 production. Although this study did not 

investigate the role of Fas during HCV infection, hepatocytes are known to express 

Fas (205) and thus the system that we have identified here suggests that activation of 

the Fas signalling pathway in hepatocytes during HCV infection may play an 

important role in the induction of IP-10 in these cells.  

As we had shown that Fas can reduce phosphorylation of poly I:C-induced p38 and 

JNK MAPK and that AP-1 is inhibitory to poly I:C-induced IP-10, we wished to link 

these findings by identifying that the Fas/FADD system could directly modify AP-1. 

Here we have shown that overexpression of FADD activates an AP-1 luciferase 
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reporter construct. Thus, our working hypothesis is that activation of Fas recruits 

FADD to Fas, limiting the levels of FADD available in the cytoplasm. This would 

reduce the inhibitory effect of FADD on p38 and JNK, reducing AP-1 activation and 

alleviating AP-1 mediated repression of IP-10. While our data supports this working 

hypothesis further work is required to make a definitive conclusion. In order to 

investigate this hypothesis fully, electrophoretic mobility shift assay (EMSA) could 

be performed on THP1 macrophages treated with poly I:C with or without CH11 

stimulation, with interaction between AP-1 and its binding site on the IP-10 

promoter examined. Based on our data to date, we would expect to find less AP-1 

bound to IP-10 when cells were stimulated with poly I:C and CH11. Chromatin 

immunoprecipitation assay (ChIP) could also be performed. For ChIP analysis, a 

specific antibody against AP-1 could be used to immunoprecipitate the AP-1/IP-10 

complex, with IP-10 expression measured by qRT-PCR. Based on our findings, we 

would expect to see reduced expression of IP-10 on qRT-PCR analysis in cells 

stimulated with both poly I:C and CH11, compared to poly I:C alone. Also whilst we 

and others have shown that FADD is recruited to Fas upon stimulation with CH11 

(114, 206), we have not shown that this substantially decreases levels of FADD in 

the cytoplasm of the cell such that the ability of signalling pathways that utilise 

FADD would be affected. Although experiments such as these were not performed 

due to time constraints, they would have strengthened the working hypothesis of the 

potential mechanism outlined here for augmented poly I:C-induced IP-10 production 

by Fas activation (figure 4.13). 
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Figure 4.13: Schematic of mechanism whereby Fas activation may enhance poly 

I:C-induced IP-10. In the absence of Fas engagement, poly I:C, acting through both 

TLR3 and RIG-I, cause the  phosphorylation of JNK and p38 MAPK in a FADD 

dependant manner. This results in AP-1 activation and translocation of AP-1 to the 

nucleus, where it acts to repress IP-10 production. Dashed lines indicate that the 

precise position of FADD in this pathway is unknown (a). Upon Fas activation, 

FADD is recruited to Fas, reducing poly I:C-induced JNK and p38 MAPK 

activation. This reduces the levels of AP-1, thereby alleviating AP-1-mediated 

repression of the IP-10 promoter, resulting in enhanced IP-10 production (b). 
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In conclusion, we demonstrate here a role for Fas in modulating poly I:C-induced 

cytokine production. These studies show that ligation of Fas specifically enhances 

IP-10 through modulation of p38 and JNK MAP kinases and the AP-1 transcription 

factor. It is not clear why AP-1 negatively regulates IP-10 and not the other 

cytokines examined here. This study points to a level of complexity present in the 

IP-10 promoter whereby levels of IP-10 are tightly regulated in the anti-viral 

immune response. It may be that there is a requirement for a second activating signal 

such as Fas ligation, ensuring that the promoter is optimally induced during active 

infection. 

 

 

 



  
 
 
Lyons, C. M. 2015. Investigating the role of Fas (CD95) signalling in the 
modification of innate immune induced inflammation. PhD Thesis, University 
College Cork. 
 
Please note that Chapters 5-6 (pp.141-210) are unavailable due to a restriction 
requested by the author.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CORA Cork Open Research Archive http://cora.ucc.ie  
 

http://cora.ucc.ie/


211 
 

7. References 

1. Philpott, D. J., Girardin, S. E., and Sansonetti, P. J. (2001) Innate immune 

responses of epithelial cells following infection with bacterial pathogens. 

Current opinion in immunology 13, 410-416 

2. Akira, S., Uematsu, S., and Takeuchi, O. (2006) Pathogen recognition and 

innate immunity. Cell 124, 783-801 

3. Janeway Jr, C. A., and Medzhitov, R. (2002) Innate immune recognition. 

Annual review of immunology 20, 197-216 

4. Ogawa, M. (1993) Differentiation and proliferation of hematopoietic stem 

cells. Blood 81, 2844-2853 

5. Kumar, V., and Sharma, A. (2010) Neutrophils: Cinderella of innate immune 

system. International immunopharmacology 10, 1325-1334 

6. Gordon, S., and Taylor, P. R. (2005) Monocyte and macrophage 

heterogeneity. Nature Reviews Immunology 5, 953-964 

7. Fels, A., and Cohn, Z. (1986) The alveolar macrophage. Journal of applied 

physiology 60, 353-369 

8. Droemann, D., Goldmann, T., Branscheid, D., Clark, R., Dalhoff, K., Zabel, 

P., and Vollmer, E. (2003) Toll-like receptor 2 is expressed by alveolar 

epithelial cells type II and macrophages in the human lung. Histochemistry 

and cell biology 119, 103-108 

9. Smythies, L. E., Sellers, M., Clements, R. H., Mosteller-Barnum, M., Meng, 

G., Benjamin, W. H., Orenstein, J. M., and Smith, P. D. (2005) Human 

intestinal macrophages display profound inflammatory anergy despite avid 

phagocytic and bacteriocidal activity. The Journal of clinical investigation 

115, 66-75 

10. Medzhitov, R. (2007) Recognition of microorganisms and activation of the 

immune response. Nature 449, 819-826 

11. Iwasaki, A., and Medzhitov, R. (2010) Regulation of adaptive immunity by 

the innate immune system. Science 327, 291-295 

12. Shi, J., Zhao, Y., Wang, Y., Gao, W., Ding, J., Li, P., Hu, L., and Shao, F. 

(2014) Inflammatory caspases are innate immune receptors for intracellular 

LPS. Nature 514, 187-192 

13. Hagar, J. A., Powell, D. A., Aachoui, Y., Ernst, R. K., and Miao, E. A. 

(2013) Cytoplasmic LPS activates caspase-11: implications in TLR4-

independent endotoxic shock. Science 341, 1250-1253 



212 
 

14. Broz, P., Ruby, T., Belhocine, K., Bouley, D. M., Kayagaki, N., Dixit, V. M., 

and Monack, D. M. (2012) Caspase-11 increases susceptibility to Salmonella 

infection in the absence of caspase-1. Nature 490, 288-291 

15. Anderson, K. V. (2000) Toll signaling pathways in the innate immune 

response. Current opinion in immunology 12, 13-19 

16. Imler, J. L., and Hoffmann, J. A. (2001) Toll receptors in innate immunity. 

Trends in cell biology 11, 304-311 

17. Medzhitov, R., Preston-Hurlburt, P., and Janeway, C. A., Jr. (1997) A human 

homologue of the Drosophila Toll protein signals activation of adaptive 

immunity. Nature 388, 394-397 

18. Takeda, K., and Akira, S. (2007) Toll-like receptors. Current protocols in 

immunology / edited by John E. Coligan ... [et al.] Chapter 14, Unit 14 12 

19. Akira, S. (2003) Toll-like receptor signaling. The Journal of biological 

chemistry 278, 38105-38108 

20. Xu, Y., Tao, X., Shen, B., Horng, T., Medzhitov, R., Manley, J. L., and 

Tong, L. (2000) Structural basis for signal transduction by the 

Toll/interleukin-1 receptor domains. Nature 408, 111-115 

21. Vercammen, E., Staal, J., and Beyaert, R. (2008) Sensing of viral infection 

and activation of innate immunity by toll-like receptor 3. Clin Microbiol Rev 

21, 13-25 

22. Akira, S., and Takeda, K. (2004) Toll-like receptor signalling. Nat Rev 

Immunol 4, 499-511 

23. Park, B. S., Song, D. H., Kim, H. M., Choi, B. S., Lee, H., and Lee, J. O. 

(2009) The structural basis of lipopolysaccharide recognition by the TLR4-

MD-2 complex. Nature 458, 1191-1195 

24. Takeuchi, O., and Akira, S. (2010) Pattern recognition receptors and 

inflammation. Cell 140, 805-820 

25. Hayashi, F., Smith, K. D., Ozinsky, A., Hawn, T. R., Yi, E. C., Goodlett, D. 

R., Eng, J. K., Akira, S., Underhill, D. M., and Aderem, A. (2001) The innate 

immune response to bacterial flagellin is mediated by Toll-like receptor 5. 

Nature 410, 1099-1103 

26. Tobias, P. S., Soldau, K., and Ulevitch, R. J. (1986) Isolation of a 

lipopolysaccharide-binding acute phase reactant from rabbit serum. The 

Journal of experimental medicine 164, 777-793 

27. Wright, S. D., Tobias, P. S., Ulevitch, R. J., and Ramos, R. A. (1989) 

Lipopolysaccharide (LPS) binding protein opsonizes LPS-bearing particles 



213 
 

for recognition by a novel receptor on macrophages. The Journal of 

experimental medicine 170, 1231-1241 

28. Nagai, Y., Akashi, S., Nagafuku, M., Ogata, M., Iwakura, Y., Akira, S., 

Kitamura, T., Kosugi, A., Kimoto, M., and Miyake, K. (2002) Essential role 

of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol 3, 667-

672 

29. Shimazu, R., Akashi, S., Ogata, H., Nagai, Y., Fukudome, K., Miyake, K., 

and Kimoto, M. (1999) MD-2, a molecule that confers lipopolysaccharide 

responsiveness on Toll-like receptor 4. The Journal of experimental medicine 

189, 1777-1782 

30. Zhang, D., Zhang, G., Hayden, M. S., Greenblatt, M. B., Bussey, C., Flavell, 

R. A., and Ghosh, S. (2004) A toll-like receptor that prevents infection by 

uropathogenic bacteria. Science 303, 1522-1526 

31. Lauw, F. N., Caffrey, D. R., and Golenbock, D. T. (2005) Of mice and man: 

TLR11 (finally) finds profilin. Trends Immunol 26, 509-511 

32. Regan, T., Nally, K., Carmody, R., Houston, A., Shanahan, F., Macsharry, J., 

and Brint, E. (2013) Identification of TLR10 as a key mediator of the 

inflammatory response to Listeria monocytogenes in intestinal epithelial cells 

and macrophages. J Immunol 191, 6084-6092 

33. West, A. P., Koblansky, A. A., and Ghosh, S. (2006) Recognition and 

signaling by toll-like receptors. Annual review of cell and developmental 

biology 22, 409-437 

34. Bowie, A. G. (2008) Insights from vaccinia virus into Toll-like receptor 

signalling proteins and their regulation by ubiquitin: role of IRAK-2. 

Biochemical Society transactions 36, 449-452 

35. Kumar, H., Kawai, T., and Akira, S. (2009) Toll-like receptors and innate 

immunity. Biochemical and biophysical research communications 388, 621-

625 

36. Kagan, J. C., Su, T., Horng, T., Chow, A., Akira, S., and Medzhitov, R. 

(2008) TRAM couples endocytosis of Toll-like receptor 4 to the induction of 

interferon. Nature immunology 9, 361-368 

37. Cusson-Hermance, N., Khurana, S., Lee, T. H., Fitzgerald, K. A., and 

Kelliher, M. A. (2005) Rip1 mediates the Trif-dependent toll-like receptor 3- 

and 4-induced NF-{kappa}B activation but does not contribute to interferon 

regulatory factor 3 activation. The Journal of biological chemistry 280, 

36560-36566 

38. Moynagh, P. N. (2014) The roles of Pellino E3 ubiquitin ligases in immunity. 

Nature Reviews Immunology  



214 
 

39. Chang, M., Jin, W., and Sun, S.-C. (2009) Peli1 facilitates TRIF-dependent 

Toll-like receptor signaling and proinflammatory cytokine production. Nat 

Immunol 10, 1089-1095 

40. Kawasaki, T., and Kawai, T. (2014) Toll-like receptor signaling pathways. 

Frontiers in immunology 5 

41. Ahmed, S., Maratha, A., Butt, A. Q., Shevlin, E., and Miggin, S. M. (2013) 

TRIF-mediated TLR3 and TLR4 signaling is negatively regulated by 

ADAM15. The Journal of Immunology 190, 2217-2228 

42. Lang, T., and Mansell, A. (2007) The negative regulation of Toll-like 

receptor and associated pathways. Immunology and cell biology 85, 425-434 

43. Kobayashi, K., Hernandez, L. D., Galán, J. E., Janeway Jr, C. A., Medzhitov, 

R., and Flavell, R. A. (2002) IRAK-M is a negative regulator of Toll-like 

receptor signaling. Cell 110, 191-202 

44. Janssens, S., Burns, K., Vercammen, E., Tschopp, J., and Beyaert, R. (2003) 

MyD88< sub> S</sub>, a splice variant of MyD88, differentially modulates 

NF-κB-and AP-1-dependent gene expression. FEBS letters 548, 103-107 

45. Carty, M., Goodbody, R., Schröder, M., Stack, J., Moynagh, P. N., and 

Bowie, A. G. (2006) The human adaptor SARM negatively regulates adaptor 

protein TRIF–dependent Toll-like receptor signaling. Nature immunology 7, 

1074-1081 

46. Peng, J., Yuan, Q., Lin, B., Panneerselvam, P., Wang, X., Luan, X. L., Lim, 

S. K., Leung, B. P., Ho, B., and Ding, J. L. (2010) SARM inhibits both 

TRIF‐and MyD88‐mediated AP‐1 activation. European journal of 

immunology 40, 1738-1747 

47. Nishiya, T., Kajita, E., Miwa, S., and DeFranco, A. L. (2005) TLR3 and 

TLR7 are targeted to the same intracellular compartments by distinct 

regulatory elements. Journal of Biological Chemistry 280, 37107-37117 

48. Yu, M., and Levine, S. J. (2011) Toll-like receptor 3, RIG-I-like receptors 

and the NLRP3 inflammasome: Key modulators of innate immune responses 

to double-stranded RNA viruses. Cytokine & growth factor reviews 22, 63-72 

49. McGettrick, A. F., and O'Neill, L. A. J. (2010) Localisation and trafficking of 

Toll-like receptors: an important mode of regulation. Current opinion in 

immunology 22, 20-27 

50. Groskreutz, D. J., Monick, M. M., Powers, L. S., Yarovinsky, T. O., Look, D. 

C., and Hunninghake, G. W. (2006) Respiratory syncytial virus induces 

TLR3 protein and protein kinase R, leading to increased double-stranded 

RNA responsiveness in airway epithelial cells. The Journal of Immunology 

176, 1733-1740 



215 
 

51. Gauzzi, M. C., Del Cornò, M., and Gessani, S. (2010) Dissecting TLR3 

signalling in dendritic cells. Immunobiology 215, 713-723 

52. Oshiumi, H., Matsumoto, M., Funami, K., Akazawa, T., and Seya, T. (2003) 

TICAM-1, an adaptor molecule that participates in Toll-like receptor 3–

mediated interferon-β induction. Nature immunology 4, 161-167 

53. Honda, K., Takaoka, A., and Taniguchi, T. (2006) Type I inteferon gene 

induction by the interferon regulatory factor family of transcription factors. 

Immunity 25, 349-360 

54. Siednienko, J., Gajanayake, T., Fitzgerald, K. A., Moynagh, P., and Miggin, 

S. M. (2011) Absence of MyD88 results in enhanced TLR3-dependent 

phosphorylation of IRF3 and increased IFN-β and RANTES production. The 

Journal of Immunology 186, 2514-2522 

55. Siednienko, J., Halle, A., Nagpal, K., Golenbock, D. T., and Miggin, S. M. 

(2010) TLR3-mediated IFN-beta gene induction is negatively regulated by 

the TLR adaptor MyD88 adaptor-like. European journal of immunology 40, 

3150-3160 

56. Kawai, T., and Akira, S. (2010) The role of pattern-recognition receptors in 

innate immunity: update on Toll-like receptors. Nature immunology 11, 373-

384 

57. Yoneyama, M., and Fujita, T. (2009) RNA recognition and signal 

transduction by RIG‐I‐like receptors. Immunol Rev 227, 54-65 

58. Yoneyama, M., and Fujita, T. (2007) Function of RIG-I-like receptors in 

antiviral innate immunity. The Journal of biological chemistry 282, 15315-

15318 

59. Loo, Y. M., and Gale, M., Jr. (2011) Immune signaling by RIG-I-like 

receptors. Immunity 34, 680-692 

60. Pichlmair, A., Schulz, O., Tan, C. P., Naslund, T. I., Liljestrom, P., Weber, 

F., and Reis e Sousa, C. (2006) RIG-I-mediated antiviral responses to single-

stranded RNA bearing 5'-phosphates. Science 314, 997-1001 

61. Hornung, V., Ellegast, J., Kim, S., Brzozka, K., Jung, A., Kato, H., Poeck, 

H., Akira, S., Conzelmann, K. K., Schlee, M., Endres, S., and Hartmann, G. 

(2006) 5'-Triphosphate RNA is the ligand for RIG-I. Science 314, 994-997 

62. Kawai, T., and Akira, S. (2006) Innate immune recognition of viral infection. 

Nat Immunol 7, 131-137 

63. Seth, R. B., Sun, L., and Chen, Z. J. (2006) Antiviral innate immunity 

pathways. Cell research 16, 141-147 



216 
 

64. Wilkins, C., and Gale, M., Jr. (2010) Recognition of viruses by cytoplasmic 

sensors. Current opinion in immunology 22, 41-47 

65. Kawai, T., Takahashi, K., Sato, S., Coban, C., Kumar, H., Kato, H., Ishii, K. 

J., Takeuchi, O., and Akira, S. (2005) IPS-1, an adaptor triggering RIG-I-and 

Mda5-mediated type I interferon induction. Nature immunology 6, 981-988 

66. Meylan, E., Curran, J., Hofmann, K., Moradpour, D., Binder, M., 

Bartenschlager, R., and Tschopp, J. (2005) Cardif is an adaptor protein in the 

RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437, 

1167-1172 

67. Michallet, M.-C., Meylan, E., Ermolaeva, M. A., Vazquez, J., Rebsamen, M., 

Curran, J., Poeck, H., Bscheider, M., Hartmann, G., and König, M. (2008) 

TRADD protein is an essential component of the RIG-like helicase antiviral 

pathway. Immunity 28, 651-661 

68. Takeuchi, O., and Akira, S. (2008) MDA5/RIG-I and virus recognition. 

Current opinion in immunology 20, 17-22 

69. Yoneyama, M., Kikuchi, M., Matsumoto, K., Imaizumi, T., Miyagishi, M., 

Taira, K., Foy, E., Loo, Y. M., Gale, M., Jr., Akira, S., Yonehara, S., Kato, 

A., and Fujita, T. (2005) Shared and unique functions of the DExD/H-box 

helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 

175, 2851-2858 

70. Meylan, E., and Tschopp, J. (2006) Toll-like receptors and RNA helicases: 

two parallel ways to trigger antiviral responses. Molecular cell 22, 561-569 

71. Franchi, L., Warner, N., Viani, K., and Nunez, G. (2009) Function of Nod-

like receptors in microbial recognition and host defense. Immunol Rev 227, 

106-128 

72. Duncan, J. A., Bergstralh, D. T., Wang, Y., Willingham, S. B., Ye, Z., 

Zimmermann, A. G., and Ting, J. P. (2007) Cryopyrin/NALP3 binds 

ATP/dATP, is an ATPase, and requires ATP binding to mediate 

inflammatory signaling. Proceedings of the National Academy of Sciences of 

the United States of America 104, 8041-8046 

73. Faustin, B., Lartigue, L., Bruey, J. M., Luciano, F., Sergienko, E., Bailly-

Maitre, B., Volkmann, N., Hanein, D., Rouiller, I., and Reed, J. C. (2007) 

Reconstituted NALP1 inflammasome reveals two-step mechanism of 

caspase-1 activation. Molecular cell 25, 713-724 

74. Shaw, M. H., Reimer, T., Kim, Y. G., and Nunez, G. (2008) NOD-like 

receptors (NLRs): bona fide intracellular microbial sensors. Current opinion 

in immunology 20, 377-382 

75. Girardin, S. E., Boneca, I. G., Viala, J., Chamaillard, M., Labigne, A., 

Thomas, G., Philpott, D. J., and Sansonetti, P. J. (2003) Nod2 is a general 



217 
 

sensor of peptidoglycan through muramyl dipeptide (MDP) detection. 

Journal of Biological Chemistry 278, 8869-8872 

76. Girardin, S. E., Tournebize, R., Mavris, M., Page, A. L., Li, X., Stark, G. R., 

Bertin, J., DiStefano, P. S., Yaniv, M., and Sansonetti, P. J. (2001) 

CARD4/Nod1 mediates NF‐κB and JNK activation by invasive Shigella 

flexneri. EMBO reports 2, 736-742 

77. Park, J.-H., Kim, Y.-G., Shaw, M., Kanneganti, T.-D., Fujimoto, Y., Fukase, 

K., Inohara, N., and Núñez, G. (2007) Nod1/RICK and TLR signaling 

regulate chemokine and antimicrobial innate immune responses in 

mesothelial cells. The Journal of Immunology 179, 514-521 

78. Latz, E., Xiao, T. S., and Stutz, A. (2013) Activation and regulation of the 

inflammasomes. Nature Reviews Immunology 13, 397-411 

79. Martinon, F., Mayor, A., and Tschopp, J. (2009) The inflammasomes: 

guardians of the body. Annual review of immunology 27, 229-265 

80. Lechtenberg, B. C., Mace, P. D., and Riedl, S. J. (2014) Structural 

mechanisms in NLR inflammasome signaling. Current opinion in structural 

biology 29, 17-25 

81. Zelensky, A. N., and Gready, J. E. (2005) The C‐type lectin‐like domain 

superfamily. Febs Journal 272, 6179-6217 

82. Rothfuchs, A. G., Bafica, A., Feng, C. G., Egen, J. G., Williams, D. L., 

Brown, G. D., and Sher, A. (2007) Dectin-1 interaction with Mycobacterium 

tuberculosis leads to enhanced IL-12p40 production by splenic dendritic 

cells. The Journal of Immunology 179, 3463-3471 

83. Schlesinger, L. S., Hull, S. R., and Kaufman, T. M. (1994) Binding of the 

terminal mannosyl units of lipoarabinomannan from a virulent strain of 

Mycobacterium tuberculosis to human macrophages. The Journal of 

Immunology 152, 4070-4079 

84. Chen, Y., Hwang, S.-L., Chan, V. S., Chung, N. P., Wang, S.-R., Li, Z., Ma, 

J., Lin, C.-W., Hsieh, Y.-J., and Chang, K.-P. (2013) Binding of HIV-1 

gp120 to DC-SIGN promotes ASK-1-dependent activation-induced apoptosis 

of human dendritic cells. PLoS pathogens 9, e1003100 

85. Zelenay, S., Keller, A. M., Whitney, P. G., Schraml, B. U., Deddouche, S., 

Rogers, N. C., Schulz, O., Sancho, D., and e Sousa, C. R. (2012) The 

dendritic cell receptor DNGR-1 controls endocytic handling of necrotic cell 

antigens to favor cross-priming of CTLs in virus-infected mice. The Journal 

of clinical investigation 122, 1615-1627 

86. Papoff, G., Hausler, P., Eramo, A., Pagano, M. G., Di Leve, G., Signore, A., 

and Ruberti, G. (1999) Identification and characterization of a ligand-



218 
 

independent oligomerization domain in the extracellular region of the CD95 

death receptor. Journal of Biological Chemistry 274, 38241-38250 

87. Siegel, R. M., Frederiksen, J. K., Zacharias, D. A., Chan, F. K.-M., Johnson, 

M., Lynch, D., Tsien, R. Y., and Lenardo, M. J. (2000) Fas preassociation 

required for apoptosis signaling and dominant inhibition by pathogenic 

mutations. Science 288, 2354-2357 

88. Desbarats, J., Birge, R. B., Mimouni-Rongy, M., Weinstein, D. E., Palerme, 

J.-S., and Newell, M. K. (2003) Fas engagement induces neurite growth 

through ERK activation and p35 upregulation. Nature cell biology 5, 118-125 

89. Leithäuser, F., Dhein, J., Mechtersheimer, G., Koretz, K., Brüderlein, S., 

Henne, C., Schmidt, A., Debatin, K., Krammer, P., and Möller, P. (1993) 

Constitutive and induced expression of APO-1, a new member of the nerve 

growth factor/tumor necrosis factor receptor superfamily, in normal and 

neoplastic cells. Laboratory investigation; a journal of technical methods 

and pathology 69, 415-429 

90. Sträter, J., and Möller, P. (2000) Expression and function of death receptors 

and their natural ligands in the intestine. Annals of the New York Academy of 

Sciences 915, 162-170 

91. Yonehara, S., Ishii, A., and Yonehara, M. (1989) A cell-killing monoclonal 

antibody (anti-Fas) to a cell surface antigen co-downregulated with the 

receptor of tumor necrosis factor. The Journal of experimental medicine 169, 

1747-1756 

92. Trauth, B. C., Klas, C., Peters, A. M., Matzku, S., Moller, P., Falk, W., 

Debatin, K.-M., and Krammer, P. H. (1989) Monoclonal antibody-mediated 

tumor regression by induction of apoptosis. Science 245, 301-305 

93. Peter, M. E., Scaffidi, C., Medema, J. P., Kischkel, F., and Krammer, P. H. 

(1999) The death receptors. In Apoptosis: biology and mechanisms pp. 25-63, 

Springer 

94. Fisher, G. H., Rosenberg, F. J., Straus, S. E., Dale, J. K., Middelton, L. A., 

Lin, A. Y., Strober, W., Lenardo, M. J., and Puck, J. M. (1995) Dominant 

interfering Fas gene mutations impair apoptosis in a human autoimmune 

lymphoproliferative syndrome. Cell 81, 935-946 

95. Takahashi, T., Tanaka, M., Inazawa, J., Abe, T., Suda, T., and Nagata, S. 

(1994) Human Fas ligand: gene structure, chromosomal location and species 

specificity. International Immunology 6, 1567-1574 

96. Kavurma, M., and Khachigian, L. (2003) Signaling and transcriptional 

control of Fas ligand gene expression. Cell Death & Differentiation 10, 36-44 

97. D'Alessio, A., Riccioli, A., Lauretti, P., Padula, F., Muciaccia, B., De 

Cesaris, P., Filippini, A., Nagata, S., and Ziparo, E. (2001) Testicular FasL is 



219 
 

expressed by sperm cells. Proceedings of the National Academy of Sciences 

98, 3316-3321 

98. Hunt, J. S., Vassmer, D., Ferguson, T. A., and Miller, L. (1997) Fas ligand is 

positioned in mouse uterus and placenta to prevent trafficking of activated 

leukocytes between the mother and the conceptus. The Journal of 

Immunology 158, 4122-4128 

99. Kim, P., Dutra, A. S., Chandrasekharappa, S. C., and Puck, J. M. (1996) 

Genomic structure and mapping of human FADD, an intracellular mediator 

of lymphocyte apoptosis. The Journal of Immunology 157, 5461-5466 

100. Zhang, J., and Winoto, A. (1996) A mouse Fas-associated protein with 

homology to the human Mort1/FADD protein is essential for Fas-induced 

apoptosis. Molecular and cellular biology 16, 2756-2763 

101. Weber, C. H., and Vincenz, C. (2001) The death domain superfamily: a tale 

of two interfaces? Trends in biochemical sciences 26, 475-481 

102. Yeh, W. C., Pompa, J. L., McCurrach, M. E., Shu, H. B., Elia, A. J., 

Shahinian, A., Ng, M., Wakeham, A., Khoo, W., and Mitchell, K. (1998) 

FADD: essential for embryo development and signaling from some, but not 

all, inducers of apoptosis. Science 279, 1954 

103. Micheau, O., and Tschopp, J. (2003) Induction of TNF receptor I-mediated 

apoptosis via two sequential signaling complexes. Cell 114, 181-190 

104. Wajant, H., Moosmayer, D., Wüest, T., Bartke, T., Gerlach, E., Schönherr, 

U., Peters, N., Scheurich, P., and Pfizenmaier, K. (2001) Differential 

activation of TRAIL-R1 and-2 by soluble and membrane TRAIL allows 

selective surface antigen-directed activation of TRAIL-R2 by a soluble 

TRAIL derivative. Oncogene 20, 4101-4106 

105. Natoni, A., MacFarlane, M., Inoue, S., Walewska, R., Majid, A., Knee, D., 

Stover, D. R., Dyer, M. J., and Cohen, G. M. (2007) TRAIL signals to 

apoptosis in chronic lymphocytic leukaemia cells primarily through TRAIL‐
R1 whereas cross‐linked agonistic TRAIL‐R2 antibodies facilitate signalling 

via TRAIL‐R2. British journal of haematology 139, 568-577 

106. Varfolomeev, E., Maecker, H., Sharp, D., Lawrence, D., Renz, M., Vucic, D., 

and Ashkenazi, A. (2005) Molecular determinants of kinase pathway 

activation by Apo2 ligand/tumor necrosis factor-related apoptosis-inducing 

ligand. Journal of Biological Chemistry 280, 40599-40608 

107. Edinger, A. L., and Thompson, C. B. (2004) Death by design: apoptosis, 

necrosis and autophagy. Current opinion in cell biology 16, 663-669 

108. Cho, Y. S., Challa, S., Moquin, D., Genga, R., Ray, T. D., Guildford, M., and 

Chan, F. K. (2009) Phosphorylation-driven assembly of the RIP1-RIP3 



220 
 

complex regulates programmed necrosis and virus-induced inflammation. 

Cell 137, 1112-1123 

109. Kerr, J. F., Wyllie, A. H., and Currie, A. R. (1972) Apoptosis: a basic 

biological phenomenon with wide-ranging implications in tissue kinetics. 

British journal of cancer 26, 239 

110. Brint, E., O’Callaghan, G., and Houston, A. (2013) Life in the Fas lane: 

differential outcomes of Fas signaling. Cellular and Molecular Life Sciences 

70, 4085-4099 

111. Vandenabeele, P., Galluzzi, L., Berghe, T. V., and Kroemer, G. (2010) 

Molecular mechanisms of necroptosis: an ordered cellular explosion. Nature 

reviews Molecular cell biology 11, 700-714 

112. Guicciardi, M. E., and Gores, G. J. (2009) Life and death by death receptors. 

The FASEB Journal 23, 1625-1637 

113. Scott, F. L., Stec, B., Pop, C., Dobaczewska, M. K., Lee, J. J., Monosov, E., 

Robinson, H., Salvesen, G. S., Schwarzenbacher, R., and Riedl, S. J. (2008) 

The Fas–FADD death domain complex structure unravels signalling by 

receptor clustering. Nature 457, 1019-1022 

114. Chinnaiyan, A. M., O'Rourke, K., Tewari, M., and Dixit, V. M. (1995) 

FADD, a novel death domain-containing protein, interacts with the death 

domain of fas and initiates apoptosis. Cell 81, 505-512 

115. Muzio, M., Chinnaiyan, A. M., Kischkel, F. C., O'Rourke, K., Shevchenko, 

A., Ni, J., Scaffidi, C., Bretz, J. D., Zhang, M., and Gentz, R. (1996) FLICE, 

a novel FADD-homologous ICE/CED-3–like protease, is recruited to the 

CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85, 817-827 

116. Boldin, M. P., Goncharov, T. M., Goltseve, Y. V., and Wallach, D. (1996) 

Involvement of MACH, a novel MORT1/FADD-interacting protease, in 

Fas/APO-1-and TNF receptor–induced cell death. Cell 85, 803-815 

117. Dickens, L. S., Boyd, R. S., Jukes-Jones, R., Hughes, M. A., Robinson, G. L., 

Fairall, L., Schwabe, J. W., Cain, K., and MacFarlane, M. (2012) A death 

effector domain chain DISC model reveals a crucial role for caspase-8 chain 

assembly in mediating apoptotic cell death. Molecular cell 47, 291-305 

118. Lee, K. H., Feig, C., Tchikov, V., Schickel, R., Hallas, C., Schütze, S., Peter, 

M. E., and Chan, A. C. (2006) The role of receptor internalization in CD95 

signaling. The EMBO Journal 25, 1009-1023 

119. Enari, M., Talanian, R. V., Wrong, W. W., and Nagata, S. (1996) Sequential 

activation of ICE-like and CPP32-like proteases during Fas-mediated 

apoptosis. Nature 380, 723-726 



221 
 

120. Scaffidi, C., Fulda, S., Srinivasan, A., Friesen, C., Li, F., Tomaselli, K. J., 

Debatin, K. M., Krammer, P. H., and Peter, M. E. (1998) Two CD95 (APO‐
1/Fas) signaling pathways. The EMBO Journal 17, 1675-1687 

121. Houston, A., and O’Connell, J. (2004) The Fas signalling pathway and its 

role in the pathogenesis of cancer. Current opinion in pharmacology 4, 321-

326 

122. Li, H., Zhu, H., Xu, C.-j., and Yuan, J. (1998) Cleavage of BID by caspase 8 

mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 

491-501 

123. Peter, M. E., and Krammer, P. (2003) The CD95 (APO-1/Fas) DISC and 

beyond. Cell Death & Differentiation 10, 26-35 

124. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, 

E. S., and Wang, X. (1997) Cytochrome c and dATP-dependent formation of 

Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 

479-489 

125. Deveraux, Q. L., and Reed, J. C. (1999) IAP family proteins—suppressors of 

apoptosis. Genes & development 13, 239-252 

126. Salvesen, G. S., and Duckett, C. S. (2002) IAP proteins: blocking the road to 

death's door. Nature reviews Molecular cell biology 3, 401-410 

127. Ofengeim, D., and Yuan, J. (2013) Regulation of RIP1 kinase signalling at 

the crossroads of inflammation and cell death. Nature reviews Molecular cell 

biology 14, 727-736 

128. Degterev, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., Cuny, 

G. D., Mitchison, T. J., Moskowitz, M. A., and Yuan, J. (2005) Chemical 

inhibitor of nonapoptotic cell death with therapeutic potential for ischemic 

brain injury. Nature chemical biology 1, 112-119 

129. Tenev, T., Bianchi, K., Darding, M., Broemer, M., Langlais, C., Wallberg, F., 

Zachariou, A., Lopez, J., MacFarlane, M., and Cain, K. (2011) The 

Ripoptosome, a signaling platform that assembles in response to genotoxic 

stress and loss of IAPs. Molecular cell 43, 432-448 

130. Feoktistova, M., Geserick, P., Kellert, B., Dimitrova, D. P., Langlais, C., 

Hupe, M., Cain, K., MacFarlane, M., Häcker, G., and Leverkus, M. (2011) 

cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing 

intracellular cell death complex differentially regulated by cFLIP isoforms. 

Molecular cell 43, 449-463 

131. Griffith, T. S., Brunner, T., Fletcher, S. M., Green, D. R., and Ferguson, T. 

A. (1995) Fas ligand-induced apoptosis as a mechanism of immune privilege. 

Science 270, 1189-1192 



222 
 

132. Bennett, M. W., O’Connell, J., O’Sullivan, G. C., Brady, C., Roche, D., 

Collins, J. K., and Shanahan, F. (1998) The Fas counterattack in vivo: 

apoptotic depletion of tumor-infiltrating lymphocytes associated with Fas 

ligand expression by human esophageal carcinoma. The Journal of 

Immunology 160, 5669-5675 

133. O'connell, J., O'sullivan, G. C., Collins, J. K., and Shanahan, F. (1996) The 

Fas counterattack: Fas-mediated T cell killing by colon cancer cells 

expressing Fas ligand. The Journal of experimental medicine 184, 1075-1082 

134. Takahashi, T., Tanaka, M., Brannan, C. I., Jenkins, N. A., Copeland, N. G., 

Suda, T., and Nagata, S. (1994) Generalized lymphoproliferative disease in 

mice, caused by a point mutation in the Fas ligand. Cell 76, 969-976 

135. Watanabe-Fukunaga, R., Brannan, C. I., Copeland, N. G., Jenkins, N. A., and 

Nagata, S. (1992) Lymphoproliferation disorder in mice explained by defects 

in Fas antigen that mediates apoptosis. Nature 356, 314-317 

136. Straus, S. E., Jaffe, E. S., Puck, J. M., Dale, J. K., Elkon, K. B., Rösen-Wolff, 

A., Peters, A. M., Sneller, M. C., Hallahan, C. W., and Wang, J. (2001) The 

development of lymphomas in families with autoimmune 

lymphoproliferative syndrome with germline Fas mutations and defective 

lymphocyte apoptosis. Blood 98, 194-200 

137. Sneller, M. C., Wang, J., Dale, J. K., Strober, W., Middelton, L. A., Choi, Y., 

Fleisher, T. A., Lim, M. S., Jaffe, E. S., and Puck, J. M. (1997) Clinical, 

immunologic, and genetic features of an autoimmune lymphoproliferative 

syndrome associated with abnormal lymphocyte apoptosis. Blood 89, 1341-

1348 

138. van der Werff ten Bosch, J. (2003) Autoimmune lymphoproliferative 

syndrome: etiology, diagnosis, and management. Paediatric drugs 5, 185-

193 

139. Alderson, M. R., Armitage, R. J., Maraskovsky, E., Tough, T. W., Roux, E., 

Schooley, K., Ramsdell, F., and Lynch, D. (1993) Fas transduces activation 

signals in normal human T lymphocytes. The Journal of experimental 

medicine 178, 2231-2235 

140. Klas, C., Debatin, K.-M., Jonker, R. R., and Krammer, P. H. (1993) 

Activation interferes with the APO-1 pathway in mature human T cells. 

International Immunology 5, 625-630 

141. Desbarats, J., Wade, T., Wade, W., and Newell, M. (1999) Dichotomy 

between naive and memory CD4+ T cell responses to Fas engagement. 

Proceedings of the National Academy of Sciences 96, 8104-8109 

142. Shinohara, H., Yagita, H., Ikawa, Y., and Oyaizu, N. (2000) Fas drives cell 

cycle progression in glioma cells via extracellular signal-regulated kinase 

activation. Cancer research 60, 1766-1772 



223 
 

143. Chen, L., Park, S.-M., Tumanov, A. V., Hau, A., Sawada, K., Feig, C., 

Turner, J. R., Fu, Y.-X., Romero, I. L., and Lengyel, E. (2010) CD95 

promotes tumour growth. Nature 465, 492-496 

144. Bechmann, I., Mor, G., Nilsen, J., Eliza, M., Nitsch, R., and Naftolin, F. 

(1999) FasL (CD95L, Apo1L) is expressed in the normal rat and human 

brain: evidence for the existence of an immunological brain barrier. Glia 27, 

62-74 

145. Park, C., Sakamaki, K., Tachibana, O., Yamashima, T., Yamashita, J., and 

Yonehara, S. (1998) Expression of fas antigen in the normal mouse brain. 

Biochemical and biophysical research communications 252, 623-628 

146. Steller, E., Borel Rinkes, I., and Kranenburg, O. (2011) How CD95 

stimulates invasion. Cell Cycle 10, 3857-3862 

147. Cursi, S., Rufini, A., Stagni, V., Condò, I., Matafora, V., Bachi, A., Bonifazi, 

A. P., Coppola, L., Superti‐Furga, G., and Testi, R. (2006) Src kinase 

phosphorylates Caspase‐8 on Tyr380: a novel mechanism of apoptosis 

suppression. The EMBO Journal 25, 1895-1905 

148. Lai, Y.-J., Lin, V. T., Zheng, Y., Benveniste, E. N., and Lin, F.-T. (2010) The 

adaptor protein TRIP6 antagonizes Fas-induced apoptosis but promotes its 

effect on cell migration. Molecular and cellular biology 30, 5582-5596 

149. Gulbins, E., Hermisson, M., Brenner, B., Grassmé, H. U., Linderkamp, O., 

Dichgans, J., Weller, M., and Lang, F. (1998) Cellular stimulation via CD95 

involves activation of phospho-inositide-3-kinase. Pflügers Archiv 435, 546-

554 

150. Park, D. R., Thomsen, A. R., Frevert, C. W., Pham, U., Skerrett, S. J., 

Kiener, P. A., and Liles, W. C. (2003) Fas (CD95) Induces Proinflammatory 

Cytokine Responses by Human Monocytes and Monocyte-Derived 

Macrophages. The Journal of Immunology 170, 6209-6216 

151. Bossaller, L., Chiang, P. I., Schmidt-Lauber, C., Ganesan, S., Kaiser, W. J., 

Rathinam, V. A., Mocarski, E. S., Subramanian, D., Green, D. R., Silverman, 

N., Fitzgerald, K. A., Marshak-Rothstein, A., and Latz, E. (2012) Cutting 

edge: FAS (CD95) mediates noncanonical IL-1beta and IL-18 maturation via 

caspase-8 in an RIP3-independent manner. J Immunol 189, 5508-5512 

152. Lee, S.-M., Kim, E.-J., Suk, K., and Lee, W.-H. (2011) Stimulation of Fas 

(CD95) induces production of pro-inflammatory mediators through 

ERK/JNK-dependent activation of NF-κB in THP-1 cells. Cellular 

immunology 271, 157-162 

153. Kober, A., Legewie, S., Pforr, C., Fricker, N., Eils, R., Krammer, P., and 

Lavrik, I. (2011) Caspase-8 activity has an essential role in CD95/Fas-

mediated MAPK activation. Cell death & disease 2, e212 



224 
 

154. Farnand, A. W., Eastman, A. J., Herrero, R., Hanson, J. F., Mongovin, S., 

Altemeier, W. A., and Matute-Bello, G. (2011) Fas activation in alveolar 

epithelial cells induces KC (CXCL1) release by a MyD88-dependent 

mechanism. American journal of respiratory cell and molecular biology 45, 

650-658 

155. Palao, G., Santiago, B., Galindo, M., Rullas, J., Ramirez, J. C., and Pablos, J. 

L. (2006) Fas activation of a proinflammatory program in rheumatoid 

synoviocytes and its regulation by FLIP and caspase 8 signaling. Arthritis & 

Rheumatism 54, 1473-1481 

156. Altemeier, W. A., Zhu, X., Berrington, W. R., Harlan, J. M., and Liles, W. C. 

(2007) Fas (CD95) induces macrophage proinflammatory chemokine 

production via a MyD88-dependent, caspase-independent pathway. Journal 

of leukocyte biology 82, 721-728 

157. Bannerman, D. D., Tupper, J. C., Kelly, J. D., Winn, R. K., and Harlan, J. M. 

(2002) The Fas-associated death domain protein suppresses activation of NF-

kappaB by LPS and IL-1beta. Journal of Clinical Investigation 109, 419-419 

158. Ma, Y., Liu, H., Tu-Rapp, H., Thiesen, H.-J., Ibrahim, S. M., Cole, S. M., 

and Pope, R. M. (2004) Fas ligation on macrophages enhances IL-1R1–Toll-

like receptor 4 signaling and promotes chronic inflammation. Nat Immunol 5, 

380-387 

159. Zhande, R., Dauphinee, S. M., Thomas, J. A., Yamamoto, M., Akira, S., and 

Karsan, A. (2007) FADD negatively regulates lipopolysaccharide signaling 

by impairing interleukin-1 receptor-associated kinase 1-MyD88 interaction. 

Molecular and cellular biology 27, 7394-7404 

160. Fernandes, P., O’Donnell, C., Lyons, C., Keane, J., Regan, T., O’Brien, S., 

Fallon, P., Brint, E., and Houston, A. (2014) Intestinal Expression of Fas and 

Fas Ligand Is Upregulated by Bacterial Signaling through TLR4 and TLR5, 

with Activation of Fas Modulating Intestinal TLR-Mediated Inflammation. 

The Journal of Immunology 193, 6103-6113 

161. Shiraishi, H., Toyozaki, T., Tsukamoto, Y., Saito, T., Masuda, Y., 

Hiroshima, K., Ohwada, H., Kobayashi, N., and Hiroe, M. (2002) Antibody 

binding to fas ligand attenuates inflammatory cell infiltration and cytokine 

secretion, leading to reduction of myocardial infarct areas and reperfusion 

injury. Laboratory investigation; a journal of technical methods and 

pathology 82, 1121-1129 

162. Niu, J., Azfer, A., and Kolattukudy, P. E. (2008) Protection against 

lipopolysaccharide-induced myocardial dysfunction in mice by cardiac-

specific expression of soluble Fas. Journal of molecular and cellular 

cardiology 44, 160-169 

163. Bertin, J., Armstrong, R. C., Ottilie, S., Martin, D. A., Wang, Y., Banks, S., 

Wang, G. H., Senkevich, T. G., Alnemri, E. S., Moss, B., Lenardo, M. J., 



225 
 

Tomaselli, K. J., and Cohen, J. I. (1997) Death effector domain-containing 

herpesvirus and poxvirus proteins inhibit both Fas- and TNFR1-induced 

apoptosis. Proceedings of the National Academy of Sciences of the United 

States of America 94, 1172-1176 

164. Krzyzowska, M., Shestakov, A., Eriksson, K., and Chiodi, F. (2011) Role of 

Fas/FasL in regulation of inflammation in vaginal tissue during HSV-2 

infection. Cell death & disease 2, e132 

165. Balachandran, S., Thomas, E., and Barber, G. N. (2004) A FADD-dependent 

innate immune mechanism in mammalian cells. Nature 432, 401-405 

166. Balachandran, S., Venkataraman, T., Fisher, P. B., and Barber, G. N. (2007) 

Fas-associated death domain-containing protein-mediated antiviral innate 

immune signaling involves the regulation of Irf7. The Journal of Immunology 

178, 2429 

167. Daigneault, M., Preston, J. A., Marriott, H. M., Whyte, M. K., and Dockrell, 

D. H. (2010) The identification of markers of macrophage differentiation in 

PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One 

5, e8668 

168. Strober, W. (2001) Trypan blue exclusion test of cell viability. Current 

protocols in immunology/edited by John E. Coligan...[et al.], Appendix 3B 

169. Kapuscinski, J. (1995) DAPI: a DNA-specific fluorescent probe. Biotechnic 

& Histochemistry 70, 220-233 

170. Livak, K. J., and Schmittgen, T. D. (2001) Analysis of Relative Gene 

Expression Data Using Real-Time Quantitative PCR and the 2< sup>− 

ΔΔCT</sup> Method. methods 25, 402-408 

171. Thompson, A. J., and Locarnini, S. A. (2007) Toll-like receptors, RIG-I-like 

RNA helicases and the antiviral innate immune response. Immunology and 

cell biology 85, 435-445 

172. Kaiser, W. J., and Offermann, M. K. (2005) Apoptosis induced by the toll-

like receptor adaptor TRIF is dependent on its receptor interacting protein 

homotypic interaction motif. The Journal of Immunology 174, 4942 

173. Kumar, H., Kawai, T., and Akira, S. (2011) Pathogen recognition by the 

innate immune system. International reviews of immunology 30, 16-34 

174. Dufour, J. H., Dziejman, M., Liu, M. T., Leung, J. H., Lane, T. E., and 

Luster, A. D. (2002) IFN-gamma-inducible protein 10 (IP-10; CXCL10)-

deficient mice reveal a role for IP-10 in effector T cell generation and 

trafficking. J Immunol 168, 3195-3204 



226 
 

175. Fujimoto, I., Takizawa, T., Ohba, Y., and Nakanishi, Y. (1998) Co-

expression of Fas and Fas-ligand on the surface of influenza virus-infected 

cells. Cell death and differentiation 5, 426-431 

176. Fukui, M., Imamura, R., Umemura, M., Kawabe, T., and Suda, T. (2003) 

Pathogen-associated molecular patterns sensitize macrophages to Fas ligand-

induced apoptosis and IL-1β release. The Journal of Immunology 171, 1868-

1874 

177. Badley, A. D., McElhinny, J. A., Leibson, P. J., Lynch, D. H., Alderson, M. 

R., and Paya, C. V. (1996) Upregulation of Fas ligand expression by human 

immunodeficiency virus in human macrophages mediates apoptosis of 

uninfected T lymphocytes. J Virol 70, 199-206 

178. Cohen, G. M. (1997) Caspases: the executioners of apoptosis. The 

Biochemical journal 326 ( Pt 1), 1-16 

179. Ghosh, S., Dutta, K., and Basu, A. (2013) Chandipura virus induces neuronal 

death through Fas-mediated extrinsic apoptotic pathway. J Virol 87, 12398-

12406 

180. Clarke, P., Beckham, J. D., Leser, J. S., Hoyt, C. C., and Tyler, K. L. (2009) 

Fas-mediated apoptotic signaling in the mouse brain following reovirus 

infection. J Virol 83, 6161-6170 

181. Eramo, A., Sargiacomo, M., Ricci‐Vitiani, L., Todaro, M., Stassi, G., 

Messina, C. G., Parolini, I., Lotti, F., Sette, G., and Peschle, C. (2004) CD95 

death‐inducing signaling complex formation and internalization occur in lipid 

rafts of type I and type II cells. European journal of immunology 34, 1930-

1940 

182. Liu, M., Guo, S., Hibbert, J. M., Jain, V., Singh, N., Wilson, N. O., and 

Stiles, J. K. (2011) CXCL10/IP-10 in infectious diseases pathogenesis and 

potential therapeutic implications. Cytokine & growth factor reviews 22, 121-

130 

183. Hansen, D. S., Bernard, N. J., Nie, C. Q., and Schofield, L. (2007) NK cells 

stimulate recruitment of CXCR3+ T cells to the brain during Plasmodium 

berghei-mediated cerebral malaria. J Immunol 178, 5779-5788 

184. Liu, M. T., Chen, B. P., Oertel, P., Buchmeier, M. J., Armstrong, D., 

Hamilton, T. A., and Lane, T. E. (2000) The T cell chemoattractant IFN-

inducible protein 10 is essential in host defense against viral-induced 

neurologic disease. J Immunol 165, 2327-2330 

185. Lindell, D. M., Lane, T. E., and Lukacs, N. W. (2008) CXCL10/CXCR3‐
mediated responses promote immunity to respiratory syncytial virus infection 

by augmenting dendritic cell and CD8+ T cell efficacy. European journal of 

immunology 38, 2168-2179 



227 
 

186. Krzyzowska, M., Baska, P., Orlowski, P., Zdanowski, R., Winnicka, A., 

Eriksson, K., and Stankiewicz, W. (2013) HSV-2 regulates monocyte 

inflammatory response via the Fas/FasL pathway. PLoS One 8, e70308 

187. Brownell, J., and Polyak, S. J. (2013) Molecular pathways: hepatitis C virus, 

CXCL10, and the inflammatory road to liver cancer. Clinical cancer 

research : an official journal of the American Association for Cancer 

Research 19, 1347-1352 

188. Brentano, F., Schorr, O., Gay, R. E., Gay, S., and Kyburz, D. (2005) RNA 

released from necrotic synovial fluid cells activates rheumatoid arthritis 

synovial fibroblasts via Toll-like receptor 3. Arthritis and rheumatism 52, 

2656-2665 

189. Patel, D. D., Zachariah, J. P., and Whichard, L. P. (2001) CXCR3 and CCR5 

ligands in rheumatoid arthritis synovium. Clin Immunol 98, 39-45 

190. Qin, S., Rottman, J. B., Myers, P., Kassam, N., Weinblatt, M., Loetscher, M., 

Koch, A. E., Moser, B., and Mackay, C. R. (1998) The chemokine receptors 

CXCR3 and CCR5 mark subsets of T cells associated with certain 

inflammatory reactions. Journal of Clinical Investigation 101, 746 

191. Lundy, S. K., Sarkar, S., Tesmer, L. A., and Fox, D. A. (2007) Cells of the 

synovium in rheumatoid arthritis. T lymphocytes. Arthritis research & 

therapy 9, 202 

192. Mak, A., and Kow, N. Y. (2014) The pathology of T cells in systemic lupus 

erythematosus. Journal of immunology research 2014, 419029 

193. Nagata, S. (1999) Fas ligand-induced apoptosis. Annual review of genetics 

33, 29-55 

194. Tourneur, L., and Chiocchia, G. (2010) FADD: a regulator of life and death. 

Trends Immunol 31, 260-269 

195. Meylan, E., Burns, K., Hofmann, K., Blancheteau, V., Martinon, F., Kelliher, 

M., and Tschopp, J. (2004) RIP1 is an essential mediator of Toll-like receptor 

3-induced NF-[kappa]B activation. Nat Immunol 5, 503-507 

196. Fitzgerald, K. A., McWhirter, S. M., Faia, K. L., Rowe, D. C., Latz, E., 

Golenbock, D. T., Coyle, A. J., Liao, S. M., and Maniatis, T. (2003) 

IKK&epsi; and TBK1 are essential components of the IRF3 signaling 

pathway. Nature immunology 4, 491-496 

197. Tailor, P., Tamura, T., and Ozato, K. (2006) IRF family proteins and type I 

interferon induction in dendritic cells. Cell research 16, 134-140 

198. Young, J. A., Sermwittayawong, D., Kim, H. J., Nandu, S., An, N., 

Erdjument-Bromage, H., Tempst, P., Coscoy, L., and Winoto, A. (2011) Fas-

associated death domain (FADD) and the E3 ubiquitin-protein ligase 



228 
 

TRIM21 interact to negatively regulate virus-induced interferon production. 

The Journal of biological chemistry 286, 6521-6531 

199. Kawai, T., Takeuchi, O., Fujita, T., Inoue, J., Muhlradt, P. F., Sato, S., 

Hoshino, K., and Akira, S. (2001) Lipopolysaccharide stimulates the 

MyD88-independent pathway and results in activation of IFN-regulatory 

factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. 

J Immunol 167, 5887-5894 

200. Ohmori, Y., and Hamilton, T. A. (1993) Cooperative interaction between 

interferon (IFN) stimulus response element and kappa B sequence motifs 

controls IFN gamma-and lipopolysaccharide-stimulated transcription from 

the murine IP-10 promoter. Journal of Biological Chemistry 268, 6677-6688 

201. CHENG, G., NAZAR, A. S., SHIN, H. S., VANGURI, P., and SHIN, M. L. 

(1998) IP-10 gene transcription by virus in astrocytes requires cooperation of 

ISRE with adjacent κB site but not IRF-1 or viral transcription. Journal of 

interferon & cytokine research 18, 987-997 

202. Sato, S., Sugiyama, M., Yamamoto, M., Watanabe, Y., Kawai, T., Takeda, 

K., and Akira, S. (2003) Toll/IL-1 receptor domain-containing adaptor 

inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 

and TANK-binding kinase 1, and activates two distinct transcription factors, 

NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. 

J Immunol 171, 4304-4310 

203. Shaulian, E., and Karin, M. (2002) AP-1 as a regulator of cell life and death. 

Nature cell biology 4, E131-E136 

204. Brownell, J., Bruckner, J., Wagoner, J., Thomas, E., Loo, Y.-M., Gale, M., 

Liang, T. J., and Polyak, S. J. (2014) Direct, interferon-independent 

activation of the CXCL10 promoter by NF-κB and interferon regulatory 

factor 3 during hepatitis C virus infection. Journal of virology 88, 1582-1590 

205. Roskams, T., Libbrecht, L., Van Damme, B., and Desmet, V. (2000) Fas and 

Fas ligand: strong co‐expression in human hepatocytes surrounding 

hepatocellular carcinoma; can cancer induce suicide in peritumoural cells? 

The Journal of pathology 191, 150-153 

206. Chinnaiyan, A. M., Tepper, C. G., Seldin, M. F., O'Rourke, K., Kischkel, F. 

C., Hellbardt, S., Krammer, P. H., Peter, M. E., and Dixit, V. M. (1996) 

FADD/MORT1 is a common mediator of CD95 (Fas/APO-1) and tumor 

necrosis factor receptor-induced apoptosis. Journal of Biological Chemistry 

271, 4961-4965 

207. Uchikura, K., Wada, T., Hoshino, S., Nagakawa, Y., Aiko, T., Bulkley, G. 

B., Klein, A. S., and Sun, Z. (2004) Lipopolysaccharides induced increases in 

Fas ligand expression by Kupffer cells via mechanisms dependent on reactive 

oxygen species. American Journal of Physiology-Gastrointestinal and Liver 

Physiology 287, G620-G626 



229 
 

208. Stanger, B. Z., Leder, P., Lee, T. H., Kim, E., and Seed, B. (1995) RIP: a 

novel protein containing a death domain that interacts with Fas/APO-1 

(CD95) in yeast and causes cell death. Cell 81, 513-523 

209. Martin, M. U., and Wesche, H. (2002) Summary and comparison of the 

signaling mechanisms of the Toll/interleukin-1 receptor family. Biochimica 

et biophysica acta 1592, 265-280 

210. Suzuki, N., Suzuki, S., Duncan, G. S., Millar, D. G., Wada, T., Mirtsos, C., 

Takada, H., Wakeham, A., Itie, A., Li, S., Penninger, J. M., Wesche, H., 

Ohashi, P. S., Mak, T. W., and Yeh, W. C. (2002) Severe impairment of 

interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. 

Nature 416, 750-756 

211. Behrmann, I., Walczak, H., and Krammer, P. H. (1994) Structure of the 

human APO‐1 gene. European journal of immunology 24, 3057-3062 

212. Ettou, S., Humbrecht, C., Benet, B., Billot, K., d'Allard, D., Mariot, V., 

Goodhardt, M., Kosmider, O., Mayeux, P., and Solary, E. (2013) Epigenetic 

control of NF-κB-dependent FAS gene transcription during progression of 

myelodysplastic syndromes. Molecular Cancer Research 11, 724-735 

213. Kasibhatla, S., Genestier, L., and Green, D. R. (1999) Regulation of fas-

ligand expression during activation-induced cell death in T lymphocytes via 

nuclear factor κB. Journal of Biological Chemistry 274, 987-992 

214. Tsatsanis, C., Androulidaki, A., Alissafi, T., Charalampopoulos, I., 

Dermitzaki, E., Roger, T., Gravanis, A., and Margioris, A. N. (2006) 

Corticotropin-releasing factor and the urocortins induce the expression of 

TLR4 in macrophages via activation of the transcription factors PU.1 and 

AP-1. J Immunol 176, 1869-1877 

215. Rehli, M., Poltorak, A., Schwarzfischer, L., Krause, S. W., Andreesen, R., 

and Beutler, B. (2000) PU. 1 and interferon consensus sequence-binding 

protein regulate the myeloid expression of the human Toll-like receptor 4 

gene. Journal of Biological Chemistry 275, 9773-9781 

216. Lenczowski, J. M., Dominguez, L., Eder, A. M., King, L. B., Zacharchuk, C. 

M., and Ashwell, J. D. (1997) Lack of a role for Jun kinase and AP-1 in Fas-

induced apoptosis. Molecular and cellular biology 17, 170-181 

217. Pamer, E. G. (2004) Immune responses to Listeria monocytogenes. Nature 

Reviews Immunology 4, 812-823 

218. Pietras, E. M., Saha, S. K., and Cheng, G. (2006) The interferon response to 

bacterial and viral infections. Journal of endotoxin research 12, 246-250 

219. Mancuso, G., Midiri, A., Biondo, C., Beninati, C., Zummo, S., Galbo, R., 

Tomasello, F., Gambuzza, M., Macri, G., Ruggeri, A., Leanderson, T., and 



230 
 

Teti, G. (2007) Type I IFN signaling is crucial for host resistance against 

different species of pathogenic bacteria. J Immunol 178, 3126-3133 

220. Sakaguchi, S., Negishi, H., Asagiri, M., Nakajima, C., Mizutani, T., Takaoka, 

A., Honda, K., and Taniguchi, T. (2003) Essential role of IRF-3 in 

lipopolysaccharide-induced interferon-beta gene expression and endotoxin 

shock. Biochemical and biophysical research communications 306, 860-866 

221. Ernst, R. K., Hajjar, A. M., Tsai, J. H., Moskowitz, S. M., Wilson, C. B., and 

Miller, S. I. (2003) Pseudomonas aeruginosa lipid A diversity and its 

recognition by Toll-like receptor 4. J Endotoxin Res 9, 395-400 

222. Carrigan, S. O., Junkins, R., Yang, Y. J., Macneil, A., Richardson, C., 

Johnston, B., and Lin, T. J. (2010) IFN regulatory factor 3 contributes to the 

host response during Pseudomonas aeruginosa lung infection in mice. J 

Immunol 185, 3602-3609 

223. Cantaert, T., Baeten, D., Tak, P. P., and van Baarsen, L. G. (2010) Type I 

IFN and TNFalpha cross-regulation in immune-mediated inflammatory 

disease: basic concepts and clinical relevance. Arthritis research & therapy 

12, 219 

224. Häcker, H., Redecke, V., Blagoev, B., Kratchmarova, I., Hsu, L.-C., Wang, 

G. G., Kamps, M. P., Raz, E., Wagner, H., and Häcker, G. (2005) Specificity 

in Toll-like receptor signalling through distinct effector functions of TRAF3 

and TRAF6. Nature 439, 204-207 

225. Wang, F., Lu, Z., Hawkes, M., Yang, H., Kain, K. C., and Liles, W. C. 

(2010) Fas (CD95) induces rapid, TLR4/IRAK4-dependent release of pro-

inflammatory HMGB1 from macrophages. J Inflamm (Lond) 7, 30 

226. An, H., Hou, J., Zhou, J., Zhao, W., Xu, H., Zheng, Y., Yu, Y., Liu, S., and 

Cao, X. (2008) Phosphatase SHP-1 promotes TLR- and RIG-I-activated 

production of type I interferon by inhibiting the kinase IRAK1. Nat Immunol 

9, 542-550 

227. Kayagaki, N., Warming, S., Lamkanfi, M., Vande Walle, L., Louie, S., Dong, 

J., Newton, K., Qu, Y., Liu, J., Heldens, S., Zhang, J., Lee, W. P., Roose-

Girma, M., and Dixit, V. M. (2011) Non-canonical inflammasome activation 

targets caspase-11. Nature 479, 117-121 

228. Laguette, N., Sobhian, B., Casartelli, N., Ringeard, M., Chable-Bessia, C., 

Ségéral, E., Yatim, A., Emiliani, S., Schwartz, O., and Benkirane, M. (2011) 

SAMHD1 is the dendritic-and myeloid-cell-specific HIV-1 restriction factor 

counteracted by Vpx. Nature 474, 654-657 

229. Hrecka, K., Hao, C., Gierszewska, M., Swanson, S. K., Kesik-Brodacka, M., 

Srivastava, S., Florens, L., Washburn, M. P., and Skowronski, J. (2011) Vpx 

relieves inhibition of HIV-1 infection of macrophages mediated by the 

SAMHD1 protein. Nature 474, 658-661 



231 
 

230. Triantafilou, K., Triantafilou, M., and Dedrick, R. L. (2001) A CD14-

independent LPS receptor cluster. Nature immunology 2, 338-345 

231. Qi, W., Liu, X., Qiao, D., and Martinez, J. D. (2005) Isoform-specific 

expression of 14-3-3 proteins in human lung cancer tissues. International 

journal of cancer. Journal international du cancer 113, 359-363 

232. Liou, J. Y., Ghelani, D., Yeh, S., and Wu, K. K. (2007) Nonsteroidal anti-

inflammatory drugs induce colorectal cancer cell apoptosis by suppressing 

14-3-3epsilon. Cancer research 67, 3185-3191 

233. Zuo, S., Xue, Y., Tang, S., Yao, J., Du, R., Yang, P., and Chen, X. (2010) 14-

3-3 epsilon dynamically interacts with key components of mitogen-activated 

protein kinase signal module for selective modulation of the tnf-α-induced 

time course-dependent nf-κb activity. Journal of proteome research 9, 3465-

3478 

234. Lee, S. K., Park, S. O., Joe, C. O., and Kim, Y. S. (2007) Interaction of HCV 

core protein with 14-3-3epsilon protein releases Bax to activate apoptosis. 

Biochemical and biophysical research communications 352, 756-762 

235. Flo, T. H., Smith, K. D., Sato, S., Rodriguez, D. J., Holmes, M. A., Strong, 

R. K., Akira, S., and Aderem, A. (2004) Lipocalin 2 mediates an innate 

immune response to bacterial infection by sequestrating iron. Nature 432, 

917-921 

236. Kjeldsen, L., Bainton, D. F., Sengelov, H., and Borregaard, N. (1994) 

Identification of neutrophil gelatinase-associated lipocalin as a novel matrix 

protein of specific granules in human neutrophils. Blood 83, 799-807 

237. Wong, G. H., and Goeddel, D. V. (1986) Tumour necrosis factors alpha and 

beta inhibit virus replication and synergize with interferons. Nature 323, 819-

822 

238. Ivashkiv, L. B. (2003) Type I interferon modulation of cellular responses to 

cytokines and infectious pathogens: potential role in SLE pathogenesis. 

Autoimmunity 36, 473-479 

239. Jungo, F., Dayer, J.-M., Modoux, C., Hyka, N., and Burger, D. (2001) IFN-β 

INHIBITS THE ABILITY OF T LYMPHOCYTES TO INDUCE TNF-α 

AND IL-1β PRODUCTION IN MONOCYTES UPON DIRECT CELL–

CELL CONTACT. Cytokine 14, 272-282 

240. Molnarfi, N., Gruaz, L., Dayer, J.-M., and Burger, D. (2004) Opposite effects 

of IFNβ on cytokine homeostasis in LPS-and T cell contact-activated human 

monocytes. Journal of neuroimmunology 146, 76-83 

241. Peng, T., Zhu, J., Hwangbo, Y., Corey, L., and Bumgarner, R. E. (2008) 

Independent and cooperative antiviral actions of beta interferon and gamma 



232 
 

interferon against herpes simplex virus replication in primary human 

fibroblasts. J Virol 82, 1934-1945 

242. Bartee, E., and McFadden, G. (2013) Cytokine synergy: an underappreciated 

contributor to innate anti-viral immunity. Cytokine 63, 237-240 

243. Bartee, E., Mohamed, M. R., Lopez, M. C., Baker, H. V., and McFadden, G. 

(2009) The addition of tumor necrosis factor plus beta interferon induces a 

novel synergistic antiviral state against poxviruses in primary human 

fibroblasts. J Virol 83, 498-511 

244. Sato, S., Nomura, F., Kawai, T., Takeuchi, O., Mühlradt, P. F., Takeda, K., 

and Akira, S. (2000) Synergy and cross-tolerance between toll-like receptor 

(TLR) 2-and TLR4-mediated signaling pathways. The Journal of 

Immunology 165, 7096-7101 

245. De Nardo, D., De Nardo, C. M., Nguyen, T., Hamilton, J. A., and Scholz, G. 

M. (2009) Signaling crosstalk during sequential TLR4 and TLR9 activation 

amplifies the inflammatory response of mouse macrophages. The Journal of 

Immunology 183, 8110-8118 

246. Theiner, G., Rößner, S., Dalpke, A., Bode, K., Berger, T., Gessner, A., and 

Lutz, M. B. (2008) TLR9 cooperates with TLR4 to increase IL-12 release by 

murine dendritic cells. Molecular immunology 45, 244-252 

247. Kish, D. D., Gorbachev, A. V., Parameswaran, N., Gupta, N., and Fairchild, 

R. L. (2012) Neutrophil expression of Fas ligand and perforin directs effector 

CD8 T cell infiltration into antigen-challenged skin. The Journal of 

Immunology 189, 2191-2202 

248. Liles, W. C., Kiener, P. A., Ledbetter, J. A., Aruffo, A., and Klebanoff, S. J. 

(1996) Differential expression of Fas (CD95) and Fas ligand on normal 

human phagocytes: implications for the regulation of apoptosis in 

neutrophils. The Journal of experimental medicine 184, 429-440 

249. Zinkernagel, R. M., and Hengartner, H. (2001) Regulation of the immune 

response by antigen. Science 293, 251-253 

250. Mantovani, A., Cassatella, M. A., Costantini, C., and Jaillon, S. (2011) 

Neutrophils in the activation and regulation of innate and adaptive immunity. 

Nature Reviews Immunology 11, 519-531 

251. Soehnlein, O., and Lindbom, L. (2010) Phagocyte partnership during the 

onset and resolution of inflammation. Nature Reviews Immunology 10, 427-

439 

252. Oshima, N., Ishihara, S., Rumi, M., Aziz, M., Mishima, Y., Kadota, C., 

Moriyama, I., Ishimura, N., Amano, Y., and Kinoshita, Y. (2010) A20 is an 

early responding negative regulator of Toll‐like receptor 5 signalling in 



233 
 

intestinal epithelial cells during inflammation. Clinical & Experimental 

Immunology 159, 185-198 

253. Otte, J. M., Cario, E., and Podolsky, D. K. (2004) Mechanisms of cross 

hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal 

epithelial cells. Gastroenterology 126, 1054-1070 

254. Sheedy, F. J., Palsson-McDermott, E., Hennessy, E. J., Martin, C., O'Leary, 

J. J., Ruan, Q., Johnson, D. S., Chen, Y., and O'Neill, L. A. (2010) Negative 

regulation of TLR4 via targeting of the proinflammatory tumor suppressor 

PDCD4 by the microRNA miR-21. Nature immunology 11, 141-147 

255. Ishida, A., Akita, K., Mori, Y., Tanida, S., Toda, M., Inoue, M., and Nakada, 

H. (2014) Negative regulation of Toll-like receptor-4 signaling through the 

binding of glycosylphosphatidylinositol-anchored glycoprotein, CD14, with 

the sialic acid-binding lectin, CD33. Journal of Biological Chemistry 289, 

25341-25350 

256. Borysiewicz, E., Fil, D., and Konat, G. W. (2009) Rho proteins are negative 

regulators of TLR2, TLR3, and TLR4 signaling in astrocytes. Journal of 

neuroscience research 87, 1565-1572 

257. Kondo, T., Kawai, T., and Akira, S. (2012) Dissecting negative regulation of 

Toll-like receptor signaling. Trends in immunology 33, 449-458 

258. Reikine, S., Nguyen, J. B., and Modis, Y. (2014) Pattern recognition and 

signaling mechanisms of RIG-I and MDA5. Frontiers in immunology 5 

259. Sneller, M., Straus, S., Jaffe, E., Jaffe, J., Fleisher, T., Stetler-Stevenson, M., 

and Strober, W. (1992) A novel lymphoproliferative/autoimmune syndrome 

resembling murine lpr/gld disease. Journal of Clinical Investigation 90, 334 

260. Rieux-Laucat, F., Le Deist, F., Hivroz, C. e. a., Roberts, I., Debatin, K., 

Fischer, A., and De Villartay, J. (1995) Mutations in Fas associated with 

human lymphoproliferative syndrome and autoimmunity. Science 268, 1347-

1349 

261. Bleesing, J., Brown, M. R., Novicio, C., Guarraia, D., Dale, J. K., Straus, S. 

E., and Fleisher, T. A. (2002) A composite picture of TcR alpha/beta (+) 

CD4 (-) CD8 (-) T Cells (alpha/beta-DNTCs) in humans with autoimmune 

lymphoproliferative syndrome. Clinical immunology (Orlando, Fla.) 104, 21-

30 

262. Neven, B., Magerus-Chatinet, A., Florkin, B., Gobert, D., Lambotte, O., De 

Somer, L., Lanzarotti, N., Stolzenberg, M.-C., Bader-Meunier, B., and 

Aladjidi, N. (2011) A survey of 90 patients with autoimmune 

lymphoproliferative syndrome related to TNFRSF6 mutation. Blood 118, 

4798-4807 



234 
 

263. Chung, C.-S., Song, G. Y., Lomas, J., Simms, H. H., Chaudry, I. H., and 

Ayala, A. (2003) Inhibition of Fas/Fas ligand signaling improves septic 

survival: differential effects on macrophage apoptotic and functional 

capacity. Journal of leukocyte biology 74, 344-351 

264. Hartmann, N., Messmann, J. J., Leithäuser, F., Weiswange, M., Kluge, M., 

Fricke, H., Debatin, K.-M., and Strauss, G. (2013) Recombinant CD95-Fc 

(APG101) prevents graft-versus-host disease in mice without disabling 

antitumor cytotoxicity and T-cell functions. Blood 121, 556-565 

265. Al Rouq, F., Hammad, D., and Meo, S. A. (2014) Protection of neuronal cell 

death against diabetes-induced apoptosis by Fas blocker ZB4. Journal of 

International Medical Research, 0300060513510656 

266. Ferrara, J. L., Levine, J. E., Reddy, P., and Holler, E. (2009) Graft-versus-

host disease. The Lancet 373, 1550-1561 

267. Levine, J. E. (2011) Implications of TNF-α in the pathogenesis and 

management of GVHD. International journal of hematology 93, 571-577 

268. Korngold, R., Marini, J. C., de Baca, M. E., Murphy, G. F., and Giles-Komar, 

J. (2003) Role of tumor necrosis factor-α in graft-versus-host disease and 

graft-versus-leukemia responses. Biology of Blood and Marrow 

Transplantation 9, 292-303 

269. Wen, P. Y., and Kesari, S. (2008) Malignant gliomas in adults. New England 

Journal of Medicine 359, 492-507 

270. Weller, M., Kleihues, P., Dichgans, J., and Ohgaki, H. (1998) CD95 ligand: 

lethal weapon against malignant glioma? Brain pathology 8, 285-293 

271. Wick, W., Weller, M., Weiler, M., Batchelor, T., Yung, A. W., and Platten, 

M. (2011) Pathway inhibition: emerging molecular targets for treating 

glioblastoma. Neuro-oncology 13, 566-579 

272. Wick, W., Fricke, H., Junge, K., Kobyakov, G., Martens, T., Heese, O., 

Wiestler, B., Schliesser, M. G., von Deimling, A., and Pichler, J. (2014) A 

Phase II, Randomized, Study of Weekly APG101+ Reirradiation versus 

Reirradiation in Progressive Glioblastoma. Clinical Cancer Research 20, 

6304-6313 

273. Chen, N.-J., Chio, I. I. C., Lin, W.-J., Duncan, G., Chau, H., Katz, D., Huang, 

H.-L., Pike, K. A., Hao, Z., and Su, Y.-W. (2008) Beyond tumor necrosis 

factor receptor: TRADD signaling in toll-like receptors. Proceedings of the 

National Academy of Sciences 105, 12429-12434 

274. Natoli, G., and Austenaa, L. M. (2008) A birthday gift for TRADD. Nature 

immunology 9, 1015-1016 



235 
 

275. Ermolaeva, M. A., Michallet, M.-C., Papadopoulou, N., Utermöhlen, O., 

Kranidioti, K., Kollias, G., Tschopp, J., and Pasparakis, M. (2008) Function 

of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-

dependent inflammatory responses. Nature immunology 9, 1037-1046 

276. Ishikawa, H., Ma, Z., and Barber, G. N. (2009) STING regulates intracellular 

DNA-mediated, type I interferon-dependent innate immunity. Nature 461, 

788-792 

277. DeFilippis, V. R., Alvarado, D., Sali, T., Rothenburg, S., and Früh, K. (2010) 

Human cytomegalovirus induces the interferon response via the DNA sensor 

ZBP1. Journal of virology 84, 585-598 

278. Ishii, K. J., Kawagoe, T., Koyama, S., Matsui, K., Kumar, H., Kawai, T., 

Uematsu, S., Takeuchi, O., Takeshita, F., and Coban, C. (2008) TANK-

binding kinase-1 delineates innate and adaptive immune responses to DNA 

vaccines. Nature 451, 725-729 

279. Unterholzner, L., Keating, S. E., Baran, M., Horan, K. A., Jensen, S. B., 

Sharma, S., Sirois, C. M., Jin, T., Latz, E., and Xiao, T. S. (2010) IFI16 is an 

innate immune sensor for intracellular DNA. Nature immunology 11, 997-

1004 

280. Rathinam, V. A., Jiang, Z., Waggoner, S. N., Sharma, S., Cole, L. E., 

Waggoner, L., Vanaja, S. K., Monks, B. G., Ganesan, S., and Latz, E. (2010) 

The AIM2 inflammasome is essential for host defense against cytosolic 

bacteria and DNA viruses. Nature immunology 11, 395-402 

281. Muruve, D. A., Pétrilli, V., Zaiss, A. K., White, L. R., Clark, S. A., Ross, P. 

J., Parks, R. J., and Tschopp, J. (2008) The inflammasome recognizes 

cytosolic microbial and host DNA and triggers an innate immune response. 

Nature 452, 103-107 

 

  

 

 

 

 



236 
 

Appendix A 

 



Accession Description Score Coverage # Proteins # Unique Peptides # Peptides # PSMs # AAs MW [kDa] calc. pI 
P13796 Plastin-2 OS=Homo sapiens GN=LCP1 PE=1 SV=6 - 

[PLSL_HUMAN] 
1689.75 51.83 3 26 26 50 627 70.2 5.43 

B4DNE0 cDNA FLJ52573, highly similar to Elongation factor 1-
alpha 1 OS=Homo sapiens PE=2 SV=1 - 
[B4DNE0_HUMAN] 

1470.06 14.94 14 4 4 44 395 42.6 9.01 

P02545-2 Isoform C of Prelamin-A/C n=2 Tax=Homo sapiens 
RepID=P02545-2 

837.86 33.57 4 19 19 25 572 65.1 6.84 

P35908 Keratin, type II cytoskeletal 2 epidermal OS=Homo 
sapiens GN=KRT2 PE=1 SV=2 - [K22E_HUMAN] 

584.47 31.46 1 11 14 16 639 65.4 8.00 

B4DNW7 Adenylyl cyclase-associated protein OS=Homo 
sapiens PE=2 SV=1 - [B4DNW7_HUMAN] 

486.64 23.09 5 9 9 14 433 47.4 8.22 

P14317 Hematopoietic lineage cell-specific protein 
OS=Homo sapiens GN=HCLS1 PE=1 SV=3 - 
[HCLS1_HUMAN] 

442.58 17.49 1 7 7 13 486 54.0 4.81 

B3KVX6 cDNA FLJ41699 fis, clone HCHON2004776, highly 
similar to Homo sapiens cytoskeleton-associated 
protein 4 (CKAP4), mRNA OS=Homo sapiens PE=2 
SV=1 - [B3KVX6_HUMAN] 

384.95 21.31 4 8 8 10 521 58.1 5.25 

P12314 High affinity immunoglobulin gamma Fc receptor I 
OS=Homo sapiens GN=FCGR1A PE=1 SV=2 - 
[FCGR1_HUMAN] 

373.79 13.37 1 6 6 13 374 42.6 7.97 

P08107-2 Isoform 2 of Heat shock 70 kDa protein 1A/1B n=1 
Tax=Homo sapiens RepID=P08107-2 

359.84 16.04 4 6 8 9 586 63.9 5.71 

Q6ZNL4 FLJ00279 protein (Fragment) OS=Homo sapiens 
GN=FLJ00279 PE=2 SV=1 - [Q6ZNL4_HUMAN] 

275.01 15.63 3 7 7 7 563 65.7 8.85 

P13647 Keratin, type II cytoskeletal 5 OS=Homo sapiens 
GN=KRT5 PE=1 SV=3 - [K2C5_HUMAN] 

266.60 14.07 1 6 8 8 590 62.3 7.74 

Q5DT20 Hornerin OS=Homo sapiens GN=HRNR PE=2 SV=1 - 
[Q5DT20_HUMAN] 

265.86 10.95 2 7 7 8 2850 282.2 10.02 

E9PKE3 Heat shock cognate 71 kDa protein OS=Homo 
sapiens GN=HSPA8 PE=2 SV=1 - [E9PKE3_HUMAN] 

263.26 12.92 3 5 7 8 627 68.8 5.52 

F5H0T1 Stress-induced-phosphoprotein 1 OS=Homo sapiens 
GN=STIP1 PE=2 SV=1 - [F5H0T1_HUMAN] 

225.30 14.45 5 6 6 7 519 59.7 6.80 

B4DEK4 Sorting nexin-2 OS=Homo sapiens GN=SNX2 PE=2 
SV=1 - [B4DEK4_HUMAN] 

221.82 17.66 6 6 6 6 402 46.1 7.24 

Table A.1: FADD-protein interactions isolated from Mass spectrometry analysis for sample 1, untreated THP-1 macrophages.  



B4DNK4 Pyruvate kinase OS=Homo sapiens PE=2 SV=1 - 
[B4DNK4_HUMAN] 

216.06 15.54 2 5 5 6 457 49.9 7.83 

P20700 Lamin-B1 OS=Homo sapiens GN=LMNB1 PE=1 SV=2 - 
[LMNB1_HUMAN] 

207.87 15.19 1 6 6 6 586 66.4 5.16 

Q8IUK7 ALB protein OS=Homo sapiens PE=2 SV=1 - 
[Q8IUK7_HUMAN] 

207.83 6.06 13 3 3 6 396 45.1 6.10 

P02533 Keratin, type I cytoskeletal 14 OS=Homo sapiens 
GN=KRT14 PE=1 SV=4 - [K1C14_HUMAN] 

184.53 14.41 1 4 5 5 472 51.5 5.16 

Q59GL1 Synaptotagmin binding, cytoplasmic RNA interacting 
protein variant (Fragment) OS=Homo sapiens PE=2 
SV=1 - [Q59GL1_HUMAN] 

165.64 10.11 1 5 5 5 534 59.6 8.73 

B4DLW8 Probable ATP-dependent RNA helicase DDX5 
OS=Homo sapiens GN=DDX5 PE=2 SV=1 - 
[B4DLW8_HUMAN] 

147.76 11.03 6 5 5 5 535 60.5 9.07 

P21589-2 Isoform 2 of 5'-nucleotidase n=1 Tax=Homo sapiens 
RepID=P21589-2 

143.75 7.82 5 3 3 3 524 57.9 6.98 

Q03252 Lamin-B2 OS=Homo sapiens GN=LMNB2 PE=1 SV=3 - 
[LMNB2_HUMAN] 

138.11 5.83 2 3 3 3 600 67.6 5.35 

Q9Y3Z3-4 Isoform 4 of Deoxynucleoside triphosphate 
triphosphohydrolase SAMHD1 n=1 Tax=Homo 
sapiens RepID=Q9Y3Z3-4 

133.21 8.80 3 5 5 5 591 68.1 6.90 

Q8TD55 Pleckstrin homology domain-containing family O 
member 2 OS=Homo sapiens GN=PLEKHO2 PE=2 
SV=1 - [PKHO2_HUMAN] 

107.35 7.14 1 3 3 3 490 53.3 5.43 

Q16555 Dihydropyrimidinase-related protein 2 OS=Homo 
sapiens GN=DPYSL2 PE=1 SV=1 - [DPYL2_HUMAN] 

103.56 6.82 3 3 3 3 572 62.3 6.38 

P23786 Carnitine O-palmitoyltransferase 2, mitochondrial 
OS=Homo sapiens GN=CPT2 PE=1 SV=2 - 
[CPT2_HUMAN] 

92.94 3.34 1 2 2 2 658 73.7 8.18 

B7Z2F4 T-complex protein 1 subunit delta OS=Homo sapiens 
GN=CCT4 PE=2 SV=1 - [B7Z2F4_HUMAN] 

86.89 6.94 5 2 2 2 389 42.3 7.61 

F5GZM7 Tyrosine-protein phosphatase non-receptor type 6 
OS=Homo sapiens GN=PTPN6 PE=2 SV=1 - 
[F5GZM7_HUMAN] 

84.53 24.77 12 2 2 2 109 12.4 6.93 

Q8WWJ8 Integrin beta OS=Homo sapiens PE=2 SV=1 - 
[Q8WWJ8_HUMAN] 

83.22 5.82 7 2 2 2 378 41.8 6.61 

H0YMM1 Annexin (Fragment) OS=Homo sapiens GN=ANXA2 
PE=2 SV=1 - [H0YMM1_HUMAN] 

79.67 16.11 7 2 2 2 149 16.4 5.91 



B4DDC8 cDNA FLJ57252, highly similar to Protein 
phosphatase 2C isoform gamma (EC 3.1.3.16) 
OS=Homo sapiens PE=2 SV=1 - [B4DDC8_HUMAN] 

79.64 4.47 4 2 2 2 515 56.1 4.34 

Q70T18 BBF2H7/FUS protein (Fragment) OS=Homo sapiens 
PE=2 SV=1 - [Q70T18_HUMAN] 

76.12 14.65 13 2 2 2 157 16.1 9.00 

Q9H3P7 Golgi resident protein GCP60 OS=Homo sapiens 
GN=ACBD3 PE=1 SV=4 - [GCP60_HUMAN] 

74.24 7.58 1 2 2 2 528 60.6 5.06 

Q5T0H9 Gelsolin OS=Homo sapiens GN=GSN PE=2 SV=1 - 
[Q5T0H9_HUMAN] 

74.11 6.19 10 2 2 2 485 52.3 5.34 

B3KTA3 Fascin OS=Homo sapiens PE=2 SV=1 - 
[B3KTA3_HUMAN] 

70.71 4.66 4 2 2 2 472 52.2 7.65 

B3KRK8 cDNA FLJ34494 fis, clone HLUNG2005030, highly 
similar to VIMENTIN OS=Homo sapiens PE=2 SV=1 - 
[B3KRK8_HUMAN] 

63.11 5.90 4 2 2 2 407 46.9 5.00 

Q6PK50 HSP90AB1 protein (Fragment) OS=Homo sapiens 
GN=HSP90AB1 PE=2 SV=1 - [Q6PK50_HUMAN] 

62.97 13.11 3 2 2 2 351 40.3 4.97 

Q9H834 cDNA FLJ13966 fis, clone Y79AA1001394, weakly 
similar to CELL DIVISION PROTEIN FTSH HOMOLOG 
(EC 3.4.24.-) OS=Homo sapiens PE=2 SV=1 - 
[Q9H834_HUMAN] 

55.36 3.33 7 2 2 2 480 53.5 9.45 



Accession Description Score Coverage # Proteins 
# Unique 
Peptides 

# Peptides # PSMs # AAs MW [kDa] calc. pI 

Q1KLZ0 HCG15971, isoform CRA_a OS=Homo sapiens GN=PS1TP5BP1 PE=2 SV=1 
- [Q1KLZ0_HUMAN] 

5898.81 67.73 4 1 23 184 375 41.7 5.48 

P63261 Actin, cytoplasmic 2 OS=Homo sapiens GN=ACTG1 PE=1 SV=1 - 
[ACTG_HUMAN] 

5847.44 68.00 1 2 24 183 375 41.8 5.48 

P04259 Keratin, type II cytoskeletal 6B OS=Homo sapiens GN=KRT6B PE=1 SV=5 
- [K2C6B_HUMAN] 

1230.07 15.96 1 1 8 37 564 60.0 8.00 

Q6KB66-2 Isoform 2 of Keratin, type II cytoskeletal 80 n=1 Tax=Homo sapiens 
RepID=Q6KB66-2 

1162.88 7.82 3 2 3 29 422 47.2 5.30 

P13647 Keratin, type II cytoskeletal 5 OS=Homo sapiens GN=KRT5 PE=1 SV=3 - 
[K2C5_HUMAN] 

924.93 28.14 1 10 15 28 590 62.3 7.74 

Q5DT20 Hornerin OS=Homo sapiens GN=HRNR PE=2 SV=1 - [Q5DT20_HUMAN] 671.14 17.40 2 13 13 22 2850 282.2 10.02 
P02533 Keratin, type I cytoskeletal 14 OS=Homo sapiens GN=KRT14 PE=1 SV=4 - 

[K1C14_HUMAN] 
662.59 36.86 1 7 13 19 472 51.5 5.16 

Q5HYL6 Putative uncharacterized protein DKFZp686E1899 OS=Homo sapiens 
GN=DKFZp686E1899 PE=2 SV=1 - [Q5HYL6_HUMAN] 

525.29 30.40 2 9 9 13 352 39.5 5.19 

Q6ZNL4 FLJ00279 protein (Fragment) OS=Homo sapiens GN=FLJ00279 PE=2 SV=1 
- [Q6ZNL4_HUMAN] 

486.63 19.89 3 8 8 12 563 65.7 8.85 

P15924 Desmoplakin OS=Homo sapiens GN=DSP PE=1 SV=3 - [DESP_HUMAN] 467.73 6.20 1 14 14 15 2871 331.6 6.81 
P08779 Keratin, type I cytoskeletal 16 OS=Homo sapiens GN=KRT16 PE=1 SV=4 - 

[K1C16_HUMAN] 
396.32 20.93 1 3 9 12 473 51.2 5.05 

P04075 Fructose-bisphosphate aldolase A OS=Homo sapiens GN=ALDOA PE=1 
SV=2 - [ALDOA_HUMAN] 

365.10 35.71 1 9 9 11 364 39.4 8.09 

Q02413 Desmoglein-1 OS=Homo sapiens GN=DSG1 PE=1 SV=2 - [DSG1_HUMAN] 356.17 7.91 1 6 6 8 1049 113.7 5.03 
F2XI28 MHC class I antigen (Fragment) OS=Homo sapiens GN=HLA-A PE=3 SV=1 

- [F2XI28_HUMAN] 
313.14 32.23 1 3 7 8 273 31.6 6.47 

P14923 Junction plakoglobin OS=Homo sapiens GN=JUP PE=1 SV=3 - 
[PLAK_HUMAN] 

287.05 9.80 1 6 6 8 745 81.7 6.14 

P61160 Actin-related protein 2 OS=Homo sapiens GN=ACTR2 PE=1 SV=1 - 
[ARP2_HUMAN] 

228.43 14.97 1 5 5 7 394 44.7 6.74 

B4DU58 cDNA FLJ51488, highly similar to Macrophage capping protein 
OS=Homo sapiens PE=2 SV=1 - [B4DU58_HUMAN] 

225.87 25.38 3 7 7 7 327 36.2 6.25 

Q6YHK3-2 Isoform 2 of CD109 antigen n=1 Tax=Homo sapiens RepID=Q6YHK3-2 206.14 3.51 3 4 4 5 1368 152.6 5.64 
Q08188 Protein-glutamine gamma-glutamyltransferase E OS=Homo sapiens 

GN=TGM3 PE=1 SV=4 - [TGM3_HUMAN] 
64.15 3.90 1 2 2 2 693 76.6 5.86 

Table A.2: FADD-protein interactions isolated from Mass spectrometry analysis for sample 2, THP-1 macrophages treated with 
200ng/ml CH11.  



H0YKS4 Annexin (Fragment) OS=Homo sapiens GN=ANXA2 PE=3 SV=1 - 
[H0YKS4_HUMAN] 

149.14 31.82 5 5 5 5 176 19.5 5.96 

H2AM05 MHC class I antigen (Fragment) OS=Homo sapiens GN=HLA-A PE=3 SV=1 
- [H2AM05_HUMAN] 

146.79 16.48 1 1 5 6 273 31.4 5.67 

P24752 Acetyl-CoA acetyltransferase, mitochondrial OS=Homo sapiens 
GN=ACAT1 PE=1 SV=1 - [THIL_HUMAN] 

145.77 15.69 1 4 4 4 427 45.2 8.85 

D6RG15 Twinfilin-2 OS=Homo sapiens GN=TWF2 PE=2 SV=1 - [D6RG15_HUMAN] 141.51 18.11 2 3 3 4 254 28.9 6.13 
E7EUT5 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens 

GN=GAPDH PE=2 SV=1 - [E7EUT5_HUMAN] 
136.83 16.54 3 3 3 4 260 27.9 6.95 

Q8N1N4 Keratin, type II cytoskeletal 78 OS=Homo sapiens GN=KRT78 PE=2 SV=2 - 
[K2C78_HUMAN] 

135.59 8.27 1 4 4 4 520 56.8 6.02 

P08567 Pleckstrin OS=Homo sapiens GN=PLEK PE=1 SV=3 - [PLEK_HUMAN] 124.02 8.29 1 2 2 3 350 40.1 8.28 
H0YJC0 26S protease regulatory subunit 10B (Fragment) OS=Homo sapiens 

GN=PSMC6 PE=4 SV=1 - [H0YJC0_HUMAN] 
112.73 15.27 2 3 3 3 262 29.6 6.40 

P05089 Arginase-1 OS=Homo sapiens GN=ARG1 PE=1 SV=2 - [ARGI1_HUMAN] 112.65 9.32 2 2 2 2 322 34.7 7.21 
B4DNY3 Adenylyl cyclase-associated protein OS=Homo sapiens PE=2 SV=1 - 

[B4DNY3_HUMAN] 
107.25 10.97 7 3 3 3 401 43.7 8.54 

Q9Y371 Endophilin-B1 OS=Homo sapiens GN=SH3GLB1 PE=1 SV=1 - 
[SHLB1_HUMAN] 

104.86 7.67 2 2 2 2 365 40.8 6.04 

Q93020 GTP-binding regulatory protein Gi alpha-2 chain (Fragment) OS=Homo 
sapiens GN=WUGSC:H_LUCA16.1 PE=2 SV=2 - [Q93020_HUMAN] 

97.33 21.83 3 3 3 3 197 22.1 5.49 

P04040 Catalase OS=Homo sapiens GN=CAT PE=1 SV=3 - [CATA_HUMAN] 96.47 4.55 1 2 2 3 527 59.7 7.39 
B3KUZ8 Aspartate aminotransferase OS=Homo sapiens PE=2 SV=1 - 

[B3KUZ8_HUMAN] 
95.19 7.01 4 2 2 2 371 41.3 8.84 

A8K0T9 cDNA FLJ75422, highly similar to Homo sapiens capping protein (actin 
filament) muscle Z-line, alpha 1, mRNA OS=Homo sapiens PE=2 SV=1 - 
[A8K0T9_HUMAN] 

93.54 9.09 2 2 2 2 286 32.9 5.69 

B4DLC0 Poly(rC)-binding protein 2 OS=Homo sapiens GN=PCBP2 PE=2 SV=1 - 
[B4DLC0_HUMAN] 

88.38 8.97 2 2 2 3 301 32.1 7.90 

Q9HB00 Desmocollin 1, isoform CRA_b OS=Homo sapiens GN=DSC1 PE=2 SV=1 - 
[Q9HB00_HUMAN] 

85.80 2.86 2 2 2 3 840 93.8 5.53 

E7DVW5 Fatty acid binding protein 5 (Psoriasis-associated) OS=Homo sapiens 
GN=FABP5 PE=2 SV=1 - [E7DVW5_HUMAN] 

79.22 13.33 1 2 2 2 135 15.2 7.01 



Accession Description Score Coverage # Proteins 
# Unique 
Peptides 

# Peptides # PSMs # AAs MW [kDa] calc. pI 

B2RDE1 cDNA, FLJ96568, highly similar to Homo sapiens tropomyosin 3 (TPM3), mRNA 
OS=Homo sapiens PE=2 SV=1 - [B2RDE1_HUMAN] 

1835.02 62.10 1 13 22 65 248 29.0 4.75 

P67936 Tropomyosin alpha-4 chain OS=Homo sapiens GN=TPM4 PE=1 SV=3 - 
[TPM4_HUMAN] 

1196.13 54.03 1 11 19 44 248 28.5 4.69 

P02533 Keratin, type I cytoskeletal 14 OS=Homo sapiens GN=KRT14 PE=1 SV=4 - 
[K1C14_HUMAN] 

903.90 37.92 1 7 16 27 472 51.5 5.16 

Q5DT20 Hornerin OS=Homo sapiens GN=HRNR PE=2 SV=1 - [Q5DT20_HUMAN] 847.20 16.04 2 14 14 31 2850 282.2 10.02 
P08779 Keratin, type I cytoskeletal 16 OS=Homo sapiens GN=KRT16 PE=1 SV=4 - 

[K1C16_HUMAN] 
830.51 35.52 1 9 16 27 473 51.2 5.05 

P04259 Keratin, type II cytoskeletal 6B OS=Homo sapiens GN=KRT6B PE=1 SV=5 - 
[K2C6B_HUMAN] 

710.30 18.44 1 1 10 24 564 60.0 8.00 

B4DRR0 cDNA FLJ53910, highly similar to Keratin, type II cytoskeletal 6A OS=Homo sapiens 
PE=2 SV=1 - [B4DRR0_HUMAN] 

514.37 22.43 3 2 11 18 535 57.8 8.00 

B7Z722 Tropomyosin 1 (Alpha), isoform CRA_i OS=Homo sapiens GN=TPM1 PE=2 SV=1 - 
[B7Z722_HUMAN] 

472.50 32.26 2 3 11 19 248 28.6 4.79 

P15924 Desmoplakin OS=Homo sapiens GN=DSP PE=1 SV=3 - [DESP_HUMAN] 379.48 4.14 1 10 10 13 2871 331.6 6.81 
P62258 14-3-3 protein epsilon OS=Homo sapiens GN=YWHAE PE=1 SV=1 - [1433E_HUMAN] 310.99 47.45 1 8 10 12 255 29.2 4.74 
Q04695 Keratin, type I cytoskeletal 17 OS=Homo sapiens GN=KRT17 PE=1 SV=2 - 

[K1C17_HUMAN] 
300.68 24.07 1 2 10 10 432 48.1 5.02 

F5GWP8 Junction plakoglobin OS=Homo sapiens GN=JUP PE=2 SV=1 - [F5GWP8_HUMAN] 292.11 16.92 1 2 8 9 591 66.3 5.19 
B4DVQ0 cDNA FLJ58286, highly similar to Actin, cytoplasmic 2 OS=Homo sapiens PE=2 SV=1 

- [B4DVQ0_HUMAN] 
270.45 27.33 3 7 7 10 333 37.3 5.71 

Q02413 Desmoglein-1 OS=Homo sapiens GN=DSG1 PE=1 SV=2 - [DSG1_HUMAN] 234.23 6.39 1 4 4 5 1049 113.7 5.03 
P00491 Purine nucleoside phosphorylase OS=Homo sapiens GN=PNP PE=1 SV=2 - 

[PNPH_HUMAN] 
218.81 24.22 2 5 5 6 289 32.1 6.95 

Q53FB0 Chloride intracellular channel 1 variant (Fragment) OS=Homo sapiens PE=2 SV=1 - 
[Q53FB0_HUMAN] 

200.54 39.83 2 5 5 6 241 27.0 5.17 

Q96C19 EF-hand domain-containing protein D2 OS=Homo sapiens GN=EFHD2 PE=1 SV=1 - 
[EFHD2_HUMAN] 

199.71 34.58 1 7 7 8 240 26.7 5.20 

Q06323 Proteasome activator complex subunit 1 OS=Homo sapiens GN=PSME1 PE=1 SV=1 - 
[PSME1_HUMAN] 

139.03 20.88 2 5 5 5 249 28.7 6.02 

Table A.3: FADD-protein interactions isolated from Mass spectrometry analysis for sample 3, THP-1 macrophages treated with 
200ng/ml CH11.  



D0PNI1 Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta 
polypeptide OS=Homo sapiens GN=YWHAZ PE=2 SV=1 - [D0PNI1_HUMAN] 

120.89 20.00 1 2 4 4 245 27.7 4.79 

P24534 Elongation factor 1-beta OS=Homo sapiens GN=EEF1B2 PE=1 SV=3 - 
[EF1B_HUMAN] 

117.30 12.44 1 2 2 2 225 24.7 4.67 

B4DQ50 cDNA FLJ56823, highly similar to Protein-glutamine gamma-glutamyltransferase E 
(EC 2.3.2.13) OS=Homo sapiens PE=2 SV=1 - [B4DQ50_HUMAN] 

96.66 6.00 1 2 2 2 533 58.8 7.15 

P81605 Dermcidin OS=Homo sapiens GN=DCD PE=1 SV=2 - [DCD_HUMAN] 91.06 22.73 2 2 2 3 110 11.3 6.54 
H0YMM1 Annexin (Fragment) OS=Homo sapiens GN=ANXA2 PE=2 SV=1 - 

[H0YMM1_HUMAN] 
85.34 16.11 7 2 2 2 149 16.4 5.91 

Q5D862 Filaggrin-2 OS=Homo sapiens GN=FLG2 PE=1 SV=1 - [FILA2_HUMAN] 83.90 2.09 1 3 3 3 2391 247.9 8.31 
C9JZ20 Prohibitin (Fragment) OS=Homo sapiens GN=PHB PE=2 SV=1 - [C9JZ20_HUMAN] 79.74 10.95 8 2 2 2 201 22.3 5.96 
P04040 Catalase OS=Homo sapiens GN=CAT PE=1 SV=3 - [CATA_HUMAN] 74.48 6.83 1 2 2 2 527 59.7 7.39 
Q6ZNL4 FLJ00279 protein (Fragment) OS=Homo sapiens GN=FLJ00279 PE=2 SV=1 - 

[Q6ZNL4_HUMAN] 
72.29 4.26 3 2 2 2 563 65.7 8.85 

P29508-2 Isoform 2 of Serpin B3 n=1 Tax=Homo sapiens RepID=P29508-2 68.77 9.17 3 2 2 2 338 38.5 6.74 
B1AHF3 NADH-cytochrome b5 reductase 3 membrane-bound form (Fragment) OS=Homo 

sapiens GN=CYB5R3 PE=2 SV=1 - [B1AHF3_HUMAN] 
64.39 16.33 3 2 2 2 147 16.7 9.73 

P00918 Carbonic anhydrase 2 OS=Homo sapiens GN=CA2 PE=1 SV=2 - [CAH2_HUMAN] 59.42 9.62 1 2 2 2 260 29.2 7.40 
Q15404-2 Isoform 2 of Ras suppressor protein 1 n=2 Tax=Homo sapiens RepID=Q15404-2 52.30 7.14 4 2 2 2 224 25.5 8.72 



Accession Description Score Coverage # Proteins 
# Unique 
Peptides 

# Peptides # PSMs # AAs MW [kDa] calc. pI 

F8W1R7 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=2 SV=1 
- [F8W1R7_HUMAN] 

3092.29 57.93 9 9 9 92 145 16.3 4.65 

H6VRF8 Keratin 1 OS=Homo sapiens GN=KRT1 PE=3 SV=1 - 
[H6VRF8_HUMAN] 

3049.76 45.81 6 26 30 91 644 66.0 8.12 

P13645 Keratin, type I cytoskeletal 10 OS=Homo sapiens GN=KRT10 PE=1 
SV=6 - [K1C10_HUMAN] 

1622.25 46.40 1 19 24 42 584 58.8 5.21 

B4DNE0 cDNA FLJ52573, highly similar to Elongation factor 1-alpha 1 
OS=Homo sapiens PE=2 SV=1 - [B4DNE0_HUMAN] 

1451.44 17.22 14 4 4 43 395 42.6 9.01 

P35527 Keratin, type I cytoskeletal 9 OS=Homo sapiens GN=KRT9 PE=1 
SV=3 - [K1C9_HUMAN] 

1332.51 43.82 1 19 19 39 623 62.0 5.24 

P35908 Keratin, type II cytoskeletal 2 epidermal OS=Homo sapiens 
GN=KRT2 PE=1 SV=2 - [K22E_HUMAN] 

842.03 43.04 1 14 21 25 639 65.4 8.00 

P02533 Keratin, type I cytoskeletal 14 OS=Homo sapiens GN=KRT14 PE=1 
SV=4 - [K1C14_HUMAN] 

680.47 32.42 1 6 13 20 472 51.5 5.16 

P08779 Keratin, type I cytoskeletal 16 OS=Homo sapiens GN=KRT16 PE=1 
SV=4 - [K1C16_HUMAN] 

610.11 32.35 1 7 14 20 473 51.2 5.05 

Q6KB66-2 Isoform 2 of Keratin, type II cytoskeletal 80 n=1 Tax=Homo sapiens 
RepID=Q6KB66-2 

546.55 7.82 3 2 3 14 422 47.2 5.30 

P13647 Keratin, type II cytoskeletal 5 OS=Homo sapiens GN=KRT5 PE=1 
SV=3 - [K2C5_HUMAN] 

482.26 20.68 1 8 12 15 590 62.3 7.74 

B4DRR0 cDNA FLJ53910, highly similar to Keratin, type II cytoskeletal 6A 
OS=Homo sapiens PE=2 SV=1 - [B4DRR0_HUMAN] 

409.54 23.18 3 6 12 13 535 57.8 8.00 

A1A4E9 Keratin 13 OS=Homo sapiens GN=KRT13 PE=2 SV=1 - 
[A1A4E9_HUMAN] 

394.16 19.21 2 4 8 13 458 49.6 4.96 

P15924 Desmoplakin OS=Homo sapiens GN=DSP PE=1 SV=3 - 
[DESP_HUMAN] 

343.90 4.11 1 10 10 12 2871 331.6 6.81 

P14923 Junction plakoglobin OS=Homo sapiens GN=JUP PE=1 SV=3 - 
[PLAK_HUMAN] 

287.68 9.93 1 6 6 7 745 81.7 6.14 

P07737 Profilin-1 OS=Homo sapiens GN=PFN1 PE=1 SV=2 - 
[PROF1_HUMAN] 

260.85 47.14 1 5 5 7 140 15.0 8.27 

A4D1U3 Single-stranded DNA-binding protein OS=Homo sapiens GN=SSBP1 
PE=2 SV=1 - [A4D1U3_HUMAN] 

230.52 37.84 2 4 4 6 148 17.2 9.60 

Q5DT20 Hornerin OS=Homo sapiens GN=HRNR PE=2 SV=1 - 
[Q5DT20_HUMAN] 

211.01 8.49 2 5 5 6 2850 282.2 10.02 

Q6ZNL4 FLJ00279 protein (Fragment) OS=Homo sapiens GN=FLJ00279 PE=2 
SV=1 - [Q6ZNL4_HUMAN] 

196.58 6.22 3 3 3 5 563 65.7 8.85 

Q01546 Keratin, type II cytoskeletal 2 oral OS=Homo sapiens GN=KRT76 
PE=1 SV=2 - [K22O_HUMAN] 

194.23 7.68 1 2 5 6 638 65.8 8.12 

B4DVQ0 cDNA FLJ58286, highly similar to Actin, cytoplasmic 2 OS=Homo 
sapiens PE=2 SV=1 - [B4DVQ0_HUMAN] 

188.71 14.11 9 4 4 5 333 37.3 5.71 

Table A.4: FADD-protein interactions isolated from Mass spectrometry analysis for sample 4, THP-1 macrophages treated with 
200ng/ml CH11.  



UPI00017BDB3
D 

FabOX108 Light Chain Fragment n=1 Tax=Homo sapiens 
RepID=UPI00017BDB3D 

165.60 21.20 1 3 3 4 217 23.8 6.67 

O15511 Actin-related protein 2/3 complex subunit 5 OS=Homo sapiens 
GN=ARPC5 PE=1 SV=3 - [ARPC5_HUMAN] 

149.08 21.19 1 3 3 4 151 16.3 5.67 

B8ZZQ6 Thymosin alpha-1 OS=Homo sapiens GN=PTMA PE=4 SV=1 - 
[B8ZZQ6_HUMAN] 

142.71 26.17 7 3 3 3 107 11.8 3.81 

A3KPC7 Histone H2A OS=Homo sapiens GN=HIST1H2AH PE=2 SV=1 - 
[A3KPC7_HUMAN] 

137.16 27.34 11 3 3 8 128 13.9 10.89 

Q02413 Desmoglein-1 OS=Homo sapiens GN=DSG1 PE=1 SV=2 - 
[DSG1_HUMAN] 

131.84 4.29 1 3 3 3 1049 113.7 5.03 

E7DVW5 Fatty acid binding protein 5 (Psoriasis-associated) OS=Homo 
sapiens GN=FABP5 PE=2 SV=1 - [E7DVW5_HUMAN] 

110.32 20.00 1 3 3 4 135 15.2 7.01 

O75348 V-type proton ATPase subunit G 1 OS=Homo sapiens 
GN=ATP6V1G1 PE=1 SV=3 - [VATG1_HUMAN] 

103.17 22.03 1 2 2 2 118 13.7 8.79 

P81605 Dermcidin OS=Homo sapiens GN=DCD PE=1 SV=2 - [DCD_HUMAN] 101.70 20.00 2 2 2 3 110 11.3 6.54 
Q08188 Protein-glutamine gamma-glutamyltransferase E OS=Homo sapiens 

GN=TGM3 PE=1 SV=4 - [TGM3_HUMAN] 
101.39 3.90 1 2 2 3 693 76.6 5.86 

P30049 ATP synthase subunit delta, mitochondrial OS=Homo sapiens 
GN=ATP5D PE=1 SV=2 - [ATPD_HUMAN] 

84.62 13.69 1 2 2 2 168 17.5 5.49 

B4DRV9 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens 
PE=2 SV=1 - [B4DRV9_HUMAN] 

73.21 10.23 3 2 2 2 215 23.2 8.54 

P61956 Small ubiquitin-related modifier 2 OS=Homo sapiens GN=SUMO2 
PE=1 SV=3 - [SUMO2_HUMAN] 

72.69 18.95 4 2 2 2 95 10.9 5.50 

P31025 Lipocalin-1 OS=Homo sapiens GN=LCN1 PE=1 SV=1 - 
[LCN1_HUMAN] 

64.37 12.50 1 2 2 2 176 19.2 5.58 

P13073 Cytochrome c oxidase subunit 4 isoform 1, mitochondrial 
OS=Homo sapiens GN=COX4I1 PE=1 SV=1 - [COX41_HUMAN] 

64.28 13.02 1 2 2 2 169 19.6 9.51 

P62854 40S ribosomal protein S26 OS=Homo sapiens GN=RPS26 PE=1 SV=3 
- [RS26_HUMAN] 

59.10 20.87 2 2 2 2 115 13.0 11.00 




