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Abstract

A certain type of bacterial inclusion, known as a bacterial microcompartment, was

recently identified and imaged through cryo-electron tomography. A reconstructed

3D object from single-axis limited angle tilt-series cryo-electron tomography

contains missing regions and this problem is known as the missing wedge problem.

Due to missing regions on the reconstructed images, analyzing their 3D structures is

a challenging problem.

The existing methods overcome this problem by aligning and averaging

several similar shaped objects. These schemes work well if the objects are symmetric

and several objects with almost similar shapes and sizes are available. Since the

bacterial inclusions studied here are not symmetric, are deformed, and show a wide

range of shapes and sizes, the existing approaches are not appropriate.

This research develops new statistical methods for analyzing geometric

properties, such as volume, symmetry, aspect ratio, polyhedral structures etc., of

these bacterial inclusions in presence of missing data. These methods work with

deformed and non-symmetric varied shaped objects and do not necessitate multiple

objects for handling the missing wedge problem.

The developed methods and contributions include: (a) an improved method

for manual image segmentation, (b) a new approach to 'complete' the segmented and

reconstructed incomplete 3D images, (c) a polyhedral structural distance model to

predict the polyhedral shapes of these microstructures, (d) a new shape descriptor

for polyhedral shapes, named as polyhedron profile statistic, and (e) the Bayes

classifier, linear discriminant analysis and support vector machine based classifiers

for supervised incomplete polyhedral shape classification.

Finally, the predicted 3D shapes for these bacterial microstructures belong to

the Johnson solids family, and these shapes along with their other geometric

properties are important for better understanding of their chemical and biological

characteristics.
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Chapter 1

Introduction

1.1 Biological Background

1.1.1 Cells and Organelles

In biology, the cell  is  the smallest  functional and structural  unit  of life.  Working as

the building blocks of life [1], cells control all living activities. Some living creatures

have  only  a  few  cells,  even  as  few  as  one,  but  most  of  them  are  assemblies  of

millions of different types of cells. For example, a small protozoan Amoeba Proteus

consists of only one cell,  whereas an adult  human has trillions of different types of

cells [2]. Different types of cells are responsible for different organic activities,

having different structures and may contain different cellular inclusions. For

instance, the structures, functions and constituent materials of human red blood cells

are different from those of human nerve cells.

There are two broad types of living organisms - prokaryotes and eukaryotes.

Prokaryotes have cells without a membrane-bound nucleus and the most ancient

living creatures, e.g. bacterial cells, belong to this group. Eukaryotes have a well-

defined membrane bound nucleus. All modern living creatures, including humans are

from this group. The cells in prokaryotes are smaller in size, simpler in structure and

contain fewer cellular inclusions than the cells from eukaryotes [3].
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1.1.2 Bacterial Microcompartments

An organelle or sub-cellular component is a specialized subunit within a cell having

some specific functions [4]. For instance, the nucleus, mitochondria, and ribosome

are some of these sub-cellular components in eukaryotes. Functionally, mitochondria

are responsible for energy conversion and calcium ion storage, while protein

biosynthesis is one of the functions of ribosome.

The term ‘organelle’ is mostly used for cellular inclusions in eukaryotes. The

organelle-like structures in bacterial cells are often termed bacterial organelles or

bacterial microcompartments.  They  are  about  100-150nm  in  the  cross  section  and

they  contain  a  number  of  enzymes  encapsulated  by  a  solid  protein  shell  [5],  [6].

These organelle-like components from several heterotrophic bacteria are thought to

take part in at least seven metabolic processes, though many other functions may yet

be discovered [7]. Due to their participation in metabolic processes, they are often

named metabolosomes.

Types of Microcompartments

The microcompartments are classified based on their participation in different

metabolic processes, such as carbon fixation or various forms of fermentative

metabolism. Until recently only three types of microcompartments were

characterized: Carboxysomes, pdu-type and eut-type [8].

Carboxysomes were the only known bacterial microcompartment for several

years [7], [8], [9]. They were observed more than 50 years ago as polyhedral bodies

inside cyanobacteria and participate in the carbon fixation processes. Among other

microcompartments identified, a recently found one is from heterotrophic bacteria,

e.g. Cytrobacter freundii, Escherichia coli (Figure 1.1). These metabolosomes are

pdu-type and take part in a specific metabolic process called 1, 2 - propanediol

utilization [8], [9]. The detailed chemical and biological properties of these pdu-type

metabolosomes have only been explored recently [9].

 The detailed structure of Carboxysomes helped scientists gain a better

understanding of its chemical, biological and structural properties and its importance

[7], [9]. This work also focuses on the three-dimensional structures of these pdu-type

metabolosomes described in [9] and is expected to provide more insight into their

characteristics. The significance of these structures are described in Section 1.1.4.
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Figure 1.1: The pdu-type microcompartments inside a bacterial cell, imaged through electron
cryo-tomography. The microcompartments are marked with arrows. The scale bar indicates
100 nm. Image source: Liang et al. [10].

1.1.3 3D Structures of Microcompartments

The 3D structure is one of the important characteristics of microcompartments and it

is of current research interest, as the structure plays significant roles in

biotechnology, medicine and related areas.

(a) (b) (c)

Figure 1.2: Carboxysome is in two-dimensional and three-dimensional shapes. (a) Purified
Carboxysomes from Halothiobacillus neapolitanus cells (scale bar, 100 nm). (b) An
enlargement of a single Carboxysome (scale bar, 50 nm). (c) Its icosahedral structure
described in [10], [11].

Microcompartments are macro-molecular assemblies, but like many natural

objects, these macromolecular structures surprisingly have well-defined geometric
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shapes. For instance, Carboxysomes have a highly symmetric polyhedral shape,

called an icosahedron (Figure 1.2) [12], [10]. Many natural objects, such as

poliovirus, rhinovirus, adenovirus, etc. also have similar polyhedral shapes [13]. The

amount and arrangement of the proteins and nucleic acid inside viruses determine

their sizes and shapes [14].

1.1.4 Biological Significance

There is a growing recognition that living cells are made of multiple interior

interconnecting machines, i.e. macromolecular complexes [15]. To appreciate how

cells work, it is important to understand the structure of these large protein

complexes and how they fit together. A three-dimensional model of these

components is essential to understand how they interact with each other and perform

their roles within the cell.

Medicine

In medicine, knowing the shape of a biological structure and how it fits together with

other structures helps in designing drugs to affect its function.  Typically drugs apply

their effects by molecular interactions with molecules both inside and outside of

cells. The three-dimensional shape of the structures ultimately determines these

interactions. For example, extrication of the details of these complex macromolecular

structures and the associated self-assembly path leading to their efficient and precise

construction, plays an important function in developing medicines to affect their

activities [16], [17].

Biotechnology

In biotechnology, knowing the overall shape and inclusions inside these structures

permits predictions about their method of assembly, strength, volume, and maximal

metabolic capability. For example, the volumes of the microcompartments provide

an estimate of the amount of proteins inside the shell. The face area similarly

estimates  the  amount  of  shell  proteins,  and  the  length  of  edges  is  an  indication  of

multi-component elasticity shell capsule [18]. The surface area to volume ratio is an

estimate of the ratio of area available to exchange metabolites to the amount of

enzymes inside available to work on them [16], [19].



Chapter 1    Introduction

5

Industry

Understanding three-dimensional structures of these bacterial inclusions may also

help biologists for on demand production of these macromolecular structures in

laboratories.

1.2 The Problem Statement

1.2.1 Problem with Tomographic Imaging

Cryo-electron tomography or electron cryo-tomography (ECT) is a well accepted

imaging method for biological microstructures since it allows scientists to visualize

biological structures in near-native form by avoiding sample fixation artefacts, such

as dehydration [20]. In single-axis ECT, biological samples rotate along a single axis

in a limited range of angles (± 60° in general) [21] due to technical restrictions.

Since the sample rotates in a limited angle range only, the reconstructed

three-dimensional objects contain unobservable (missing) regions at the top and the

bottom (i.e.  along z-axis).  This problem is commonly termed as the missing wedge

[21], [22] or missing cone problem. A graphical presentation of the missing wedge

problem is provided below. A detailed discussion about this problem, underlying

reconstruction geometry, proportion of missing data etc. are provided in Section

2.2.5 (Chapter 2).

Figure 1.2a: A graphical representation of the missing wedge problem.
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These missing regions in reconstructed objects introduce difficulties in three-

dimensional structural analysis [21]. In addition, noise, low contrast and low

resolution along with the missing wedge problem make structural analysis especially

challenging.

1.2.2 Shape Alignment and Averaging

Existing strategies for managing the missing wedge problem from ECT are broadly

two types: (1) shape alignment and averaging for single-axis tomography and (2)

dual-axis tomography [23], [24]. Since this research is focused on analyzing single-

axis tilt-series tomographic images, the dual-axis tomography techniques are not

discussed in this dissertation.

For simplicity, we described the shape alignment and averaging method in

the context of two-dimensional projection images. For two-dimensional images, this

method can enhance signals of the images and reduce noise [25], [26]. Here we have

used 2D diagrams to demonstrate how this approach also improves the visibility of

the objects in the presence of missing data.

Let us consider a biological specimen containing several copies of the object

of interest (e.g. metabolosome). The specimen was imaged through electron

microscopy from only one angle of view, generating a single two-dimensional

projection image of the specimen. Since the specimen contains several copies of the

object, this image contains several objects' projections.

Step 1: Alignment

Even when two objects have the same shapes and sizes, their projections may be

different due to their varied orientations in 3D [25]. First, from this set of images of

the objects, a few 'identical' projections are picked up. These 'identical' projections

may only differ with respect to their orientations (Figure 1.3) in the projection plane.

To demonstrate, in Figure 1.3 three projection images are identical (hexagonal

objects  of  almost  same  size)  but  have  different  orientations  with  respect  to  the

reference axes (x- and y- axes).

This step involves finding the orientations and properly aligning the objects

based on these orientations such that the aligned objects show the same structural

orientation (Figure 1.3). Several methods have been developed for finding the
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orientation [27], for example, the common lines method [28], polar Fourier transform

[29], method of moments [30], model based alignment [31], Procustes method [32]

etc. are just a few of them.

Figure 1.3: Alignment of identical objects so that the objects have same orientation. Here
three uniform hexagons are aligned such that the aligned hexagons have same orientation.

Step 2: Averaging

The aligned images now look identical with respect to the orientation as well.

Finally, the aligned images are overlapped or 'averaged' to generate a single image

expecting that the averaging would improve the signals of the projection images and

reduce noise. As shown in Figure 1.4, four aligned objects with missing regions are

overlapped. It shows the alignment and averaging technique can also improve the

visibility of the missing object boundary.

Figure 1.4: The averaging step to manage missing wedges. Four aligned hexagonal objects
have missing regions in their different parts. These objects are overlapped to generate a
complete hexagon.
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The averaging method, followed by a three-dimensional reconstruction was

first used by R. A. Crowther [33] to study the three-dimensional structures of a virus

(tomato bushy stunt virus). Since this technique can potentially improve the visibility

of the missing regions, this concept has also been extended and applied to handle the

missing wedge problem in three-dimensional tomographic reconstructions [21], [34].

1.2.3 Averaging in Tomography

Step 1: Tomographic Reconstruction

First, a three-dimensional image is reconstructed from tilt-series tomographic

projection images (Chapter 2). The reconstructed three-dimensional image may

contain several copies of the object and these three-dimensional objects have missing

regions due to the missing wedge problem. The individual objects are isolated from

the reconstructed three-dimensional image. This isolation is done by creating a

bounding box around the three-dimensional object inside the full tomogram. The

process is explained in Section 2.4.1 (Chapter 2).

Step 2: Alignment

The next step is finding orientations of the objects and aligning them in 3D. Several

methods have been developed for this purpose [35],  [36], for example, alignment

with respect to a reference [37], reference free alignment [38], [39], and multiple

reference [40] are a few of them. Sometimes, the tomographic images are denoised

prior to alignment for better alignment accuracy [41]. As described in [35], "these

methods rely in general on the premise that differences observed among projection

images of different copies of the same object arise from differences in the orientation

of the object relative to the electron beam." Since these methods assume that the

different images are just copies of the same object, here scaling is not particularly

important.

Step 3: Averaging

Finally, the aligned three-dimensional images are overlapped to generate a single

image, expecting that the averaging will improve the visibility of the missing regions

of the objects [42], [33]. Since the alignment and averaging require a large number of

objects, software (e.g. SPIDER [43]) has been developed for this purpose.
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1.2.4 Limitations of Shape Alignment and Averaging

Clearly, these alignment and averaging approaches work well if the objects under

study have similar shapes and sizes. If the objects are different in structure, the

'averaged' shape may not be a good representative shape for the objects. However, if

the objects have different shapes, then several tomograms are to be identified for

each different shape and size class.

In addition, these methods work most efficiently if the objects are similarly

symmetric [29]. However, recently some methods have been developed without the

symmetry assumption [35] but these methods require more samples to align and

average, and also involve higher computational costs.

Nonetheless, all these methods rely on the fundamental assumption of single

particle analysis that there are several objects available with similar inherent shapes

and sizes. Clearly, none of these methods can predict structures based on a single

object and hence, a uniquely shaped object is ignored since no other object is

available to average with it. In addition, alignment and averaging may eliminate the

finer structural distinctions among objects.

1.2.5 Requirements for New Algorithms

As demonstrated in Chapter 4, our objects of interest show a wide range of volumes

and they are non-symmetric and non-uniform, i.e. deformed. Since these objects are

imaged through single-axis tilt-series ECT [44], they also suffer from the missing

wedge problem. In fact, there are no two objects found having the same shape and

size (Chapter 6). Hence the fundamental assumptions behind shape averaging are not

satisfied here. Therefore, new shape prediction algorithms from ECT images are

required having these properties:

1) Can deal with non-symmetric or deformed shapes.

2) Can work with objects having considerably different shapes and sizes.

3) Can predict shapes based on a single object. Hence the uniquely shaped

objects can be characterized.

An initial analysis shows (Chapter 4), like Carboxysomes [12], [10], many

viruses [13] and crystals [45], the objects under study (metabolosomes) also have

convex polyhedral shapes. This observation sets the theme of this research, i.e.
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developing statistical methods for predicting three-dimensional convex polyhedral

structures from single-axis tilt-series ECT images, in the presence of missing data.

The statistical methods developed here are also designed to conform to the required

properties, i.e. these methods can be applied to the objects with different shapes and

sizes, objects having non-symmetric or deformed shapes, and do not require multiple

objects to align.

1.3 Polyhedral Shape Classification

1.3.1 Standard Polyhedral Shapes

Standard classes (families) for convex polyhedra were defined long ago [46], [47].

Some common convex polyhedra families are Platonic solids, Archimedean solids,

Johnson  solids,  Catalan  solids,  prisms  and  antiprisms  [46],  [47].  These  solids  are

uniform (Chapter 3), contain some symmetry properties [46] and are few in number.

Undoubtedly, infinitely many other convex polyhedral structures can exist in nature

or are possible to construct, but they are not ‘standard’, i.e. they do not fit in to these

well-defined polyhedral families.

A standard convex polyhedron can generate infinitely many convex

polyhedra through affine or non-affine transformations. Though these transformed

solids do not carry the symmetry or uniformity characteristics, they still hold

identical topological properties like vertex, face, and edge counts from their parent

solids. Besides all uniform standard solids, in this work, we also consider this

infinitely large set of deformed standard solids for shape classification.

1.3.2 Feature Vector for Polyhedra

Statistical shape analysis starts with a shape descriptor. A great number of shape

descriptors have been developed and used for different purposes. For example,

landmarks [48], [49], dense surface meshes [50], skeleton-based representations [51],

[52] are some of them. A review of these methods is provided in [53].

In general, these shape descriptors (or feature vectors) map the image to a

higher dimensional space and statistical models are developed to classify the shapes
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based on these high-dimensional features. However, the choice of the feature vector

depends on the intended applications.

Since the training image space for this work consists of standard polyhedral

shapes, it needs a special shape descriptor, retaining unique standard polyhedron

identification features. The objects under study in this research are deformed

(Chapter 4). Clearly, symmetry or uniformity properties based descriptors are not

meaningful for these objects. So, we define a set of deformation invariant topological

properties as shape descriptors to characterize deformed standard polyhedral shapes

(Chapter 3).

1.3.3 Incomplete Polyhedral Shape Classification

Again, analogous to the missing wedge problem, if a standard solid is truncated by

two parallel planes from random orientations, it generates a class of different

truncated shapes, based on the truncation percentage and orientation (Chapter 6).

This observation turns this shape analysis problem into a supervised learning

problem [54], where the collections of truncated shapes from standard solids

constitute the training classes. This research develops classifiers for incomplete

polyhedral shapes, based on the set of deformation invariant topological properties

(Chapter 6).

1.4 Thesis Outline

As mentioned in Section 1.1.2, Carboxysomes were the only metabolosomes having

three-dimensional structures studied so far [12], [10]. This study focuses on

developing statistical methods to predict three-dimensional structures of another

microcompartment - a pdu-type metabolosome (Section 1.1.2). Although previous

work [9] highlighted some basic information about the structural features, such as

diameter, axial dimensions of the non-spherical polyhedral structures of these

metabolosomes, this is the first extensive characterization of their three-dimensional

structures.
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This research starts with the raw metabolosome images acquired through

ECT (Chapter 2). Subsequently, raw projection images were combined using

tomographic reconstruction methods, segmented, smoothed and visualized before

analyzing their three-dimensional shapes. These essential image data preparation

steps are also part of this research and included in Chapter 2. An important part of

this chapter is a least squares based method we developed for improved manual

image segmentation (Section 2.5.5).

The reconstructed slices and the reconstructed incomplete (due to missing

wedge problem) three-dimensional metabolosomes indicate that the metabolosomes

have convex polyhedral shapes. In Chapter 3, standard polyhedral families, e.g.

Platonic, Archimedean, Johnson and Catalan solids and their properties are

described. A notable part of this chapter is the development of topological properties

based on the polyhedron profile statistic, which is invariant under affine and non-

affine transformations.

Chapter 4 is concerned with the fundamental structural properties of the

metabolosomes, such as volume, aspect ratio and deformation. It illustrates that the

metabolosomes have widely distributed sizes; they are deformed and non-symmetric.

Hence we showed the inadequacy of the shape alignment and averaging methods.

One  significant  part  of  this  chapter  is  a  modified  INTERPRET  program  [55]  we

developed for managing the missing wedge problem in polyhedral structures.

Using the method described in Chapter 4, the incomplete metabolosome

shapes are ‘completed’. In Chapter 5, we developed a polyhedral shape matching

algorithm (polyhedral structural distance model) to predict the shapes of the

metabolosomes based on these ‘completed’ structures.

The goal of the next chapter (Chapter 6) is to develop polyhedral shape

classifiers in the presence of missing data. Part I of this chapter describes a

simulation scheme to generate classes of truncated standard polyhedral shapes. The

second part of this chapter explains a novel Bayes classifier [56] we developed to

classify incomplete polyhedral shapes. We also used linear discriminant analysis

(LDA) [57] and support vector machine (SVM) [58] to classify incomplete

polyhedral structures. This chapter concludes with combining these classifiers into a

single classifier and predicted shape for metabolosomes.
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Chapter 7 summarizes and concludes from the results obtained from analyses

and discusses the future directions of this work. Appendices and references are

included at the end of the dissertation.

1.5 Contributions

In this work we present a framework for predicting standard polyhedral shapes from

ECT images, in the presence of missing data and applied it to predicting three-

dimensional structures of a bacterial inclusion. These algorithms do not need

multiple objects to be aligned, work with deformed, non-symmetric, varied sized

objects and in the presence of missing data. The contributions include:

1) An algorithm to improve the outcome of manual image segmentation.

2) An algorithm for handling missing wedge problems for polyhedral shapes.

3) Deformation invariant topological properties as a polyhedral shape descriptor.

4) A structural distance model for predicting standard polyhedral shapes of

deformed three-dimensional objects, in the presence of segmentation and

reconstruction errors and curved surfaces.

5) A Bayes classifier for incomplete polyhedral shape classification with a

hierarchical shape matching scheme based on the Bayes classifier.

6) Linear discriminant analysis and support vector machine based classification

of incomplete polyhedral shapes.

7) First study of fundamental structural properties, such as volume, aspect ratio,

symmetry of the pdu-type bacterial microcompartments.

At least two research papers are expected to be published from this work. The

manuscripts are submitted and now under review. The details about these papers are

included in the 'Publications by the Author' section at the end of this thesis. The

author presented this work in two conferences, details about those presentations are

also included in the 'Publications by the Author' section.



Chapter 2

Tomographic Reconstruction, Segmentation and

Visualization

2.1 Introduction

The metabolosome images from cryo-electron tomography are the basic data for this

research. These projection (raw) images are processed using tomographic

reconstruction methods and the reconstructed images are used for further analysis.

This chapter starts with describing cryo-electron microscopy. Section 2.3 describes

imaging metabolosomes and three-dimensional tomographic reconstruction from

projection images. The pre-segmentation image processing steps (e.g. trimming,

reconstructing images and slicing) are described in Section 2.4. Image segmentation

and a proposed least squares based method for improved image segmentation is

discussed in Section 2.5. Finally, smoothing and visualizing the segmented

metabolosomes are explained in Section 2.6. All projection images are processed

through the same image processing steps.
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2.2 Tomography and Reconstruction

2.2.1 Transmission Electron Microscopy

An electron microscope differs from a light microscope in that it uses an electron

beam instead of light to illuminate a specimen and produce a magnified image [59],

[60]. Since electrons have wavelengths much shorter (about 100,000 times) than

visible light, electron microscopy (EM) provides much higher magnification and can

generate images with resolution as high as 50 picometre (1 picometre = 10-12 metre)

[61]. The resolution and magnifying power of electron microscopy make it

indispensable to investigate the ultrastructure of a wide range of biological and

inorganic specimens including micro-organisms, cells, large molecules, biopsy

samples, metals, crystals, etc. [62], [63]. For example, EM has been used to describe

the structure of a poliovirus having about 15nm radius [64].

Transmission electron microscopy (TEM) is a form of electron microscopy

where a beam of electrons is transmitted through an ultra-thin specimen. Depending

on the density of the material present, some electrons are scattered out of the beam

during transmission. An image is formed by the remaining electrons transmitted

through the specimen. The image is magnified and focused onto an imaging device,

like a fluorescent screen, photographic film or charge-coupled device (CCD) censor.

As a result, TEM generates a two-dimensional projection image of a three-

dimensional object [65], [66], [67]. Figure 2.1 shows the structure of a transmission

electron microscope.

2.2.2 Cryo-electron Microscopy

Biological specimens are easily damaged during preparation for electron microscopy

due to dehydration, adsorption  (accumulation of molecules to form a thin film on the

surface of a solid) onto the supporting film and other causes [68]. Cryo-electron

microscopy (cryo-EM) addresses these problems by using cryogenic temperatures to

fix the samples before imaging, preserving the native shape of the specimen [20].

This emerging technology allows thin samples such as macromolecular complexes

and small bacterial cells to be imaged in a nearly native state to molecular (~ 4 nm)

resolution [69].
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Figure 2.1: The imaging system in a transmission electron microscope. Image source: [70].

The many advantages of cryo-EM over general TEM [69], [71], [72] include:

· It allows the imaging of native and hydrated structural features of the

specimen.

· There are no stains or chemical fixatives to distort the sample.

· The contrast between nucleic acids, proteins, and lipids can be distinguished.

· Provides good preservation of biological structure in the microscope vacuum.

· There is no distortion by attaching the sample and flattening against the

supporting film.

This imaging method is widely used in biological sciences, studying viruses

[73], bacteria [74], cellular inclusions [75], and protein complexes [76]. This project

also adopted the cryo-EM technique for imaging metabolosomes.

2.2.3 Electron Tomography

In  general,  'electron  tomography'  refers  to  any  technique  that  employs  the  TEM to

collect projections of an object that is tilted in multiple directions and uses these

projections to reconstruct the three-dimensional object in its entirety [21]. Similar to
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TEM, when the penetrating wave is an X-ray, it gives the most familiar application

of tomography, known as X-ray computed tomography (X-ray CT) [77].

Tomography has found extensive applications in many scientific areas, including

physics, chemistry, biology and medicine.

2.2.4 Tomographic Reconstruction

Electron cryo-tomography (ECT) is a special form of tomographic electron

microscopy where cryo-EM is used to generate the projection image. Multiple

projection images taken from different directions are required to capture the 3D

structure on the specimen using tomographic reconstruction techniques. A tilt-series

imaging technique rotates the sample in 1° increments about an axis perpendicular to

the electron beam, generating an image at each angle.

A. Klug in his pioneering work in 1970's [33] developed the technique of

reconstructing three-dimensional images from tilt-series image sets. Later in 1974,

W. Hoppe used this technique to reconstruct 3D images of macromolecules (fatty

acid synthetase molecule) [78], [79]. This technique has two steps: first, each

projection image from the tilt-series is corrected for unwanted motion artifacts, and

second, the projection images are transformed into a single 3-dimensional image.

Motion  artifacts  are  the  errors  due  to  the  positioning  of  a  sample  during

imaging. Such errors can occur due to vibration or mechanical glide. Alignment

methods are used to correct these errors. Image registration techniques are used to

align the various images in the series to each other. There are several methods

commonly used for image registration (see [80], [81], [82]).

The set of aligned two-dimensional images are transformed and combined to

construct a single three-dimensional image using reconstruction algorithms. The

most widely used families of reconstruction algorithms in 3D TEM are direct Fourier

inversion, filtered back-projection and algebraic methods. The back-projection

reconstruction algorithms are based on inverse Radon’s transform [21], [83], [84].

Additionally, many algebraic methods are also available, for example, the

simultaneous iterative reconstruction technique (SIRT), the algebraic reconstruction

technique (ART), the simultaneous algebraic reconstruction technique (SART) [84],

and the maximum likelihood expectation maximization (MLEM) [85].

Many tomographic reconstruction tools (including IMOD [86]) provide back-

projection and SIRT algorithm based reconstruction. For this work, we applied the
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back-projection method provided in IMOD. Figure 2.2 shows a general scheme for

reconstructing a 3D image from tilt series images.

Figure 2.2: Diagram showing the tomographic image reconstruction from tilt series image.

2.2.5 The Missing Wedge Problem

Commercial TEM systems normally have restricted tilt angle ranges and generally,

the tilt angle range does not exceed ± 60° [21] due to mechanical support systems for

the specimen. This limits the number of projection angles and reduces the volume of

the specimen which can be reconstructed in the final image, since a significant

portion of the Fourier transform is not measurable [21]. Therefore, the Fourier-based

back projection method decreases the range of resolvable frequencies in the 3D

reconstruction. This problem is known as ‘missing wedge’ or ‘missing cone’

problem. Figure 2.3 shows the Fourier geometry of missing wedge.

Figure 2.3: Single-axis tilt data collection geometry. (a) Tilting in real space around an axis
perpendicular to the plane of this page (which is assumed to be the x-axis). (b) Fourier space
representation of the information presented in (a); the different projections provide values in
the central sections, through the 3D Fourier Transform of the object with the X-axis in
common. (c) Close-up view of (b) from the direction of the positive X-axis, showing the
missing wedge. Image and description are from Frank, 2006 [21].
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However, mechanical refinements, such as dual-axis tilting [87] or conical

tomography [88],  [89] can be used to control the impact of the missing data on the

observed specimen structures. In addition, numerical techniques exist for improving

collected data quality [21]. Figure 2.3a shows the missing regions in a reconstructed

and segmented metabolosome.

(a) (b)

Figure 2.3a: The Missing regions on reconstructed and segmented three-dimensional
metabolosomes. The missing regions are marked with red arrows. In left, the missing region
is also marked with an approximate boundary; in right, a missing region is shown from a
different view.

How much data is truncated?

A very important point to consider: since the tilt angle range does not exceed ± 60°,

how much data is truncated? If the object if a perfect sphere, about 33% of its

volume are unobservable [90]. Since we are reconstructing the surface only (based

on the slice boundaries), the internal structures inside the objects are not considered.

So the interest is not in the volume, but in its surface. We need to estimate the

proportion of its diameter affected due to the missing wedge problem. Based on the

Figure 2.3(c), Figure 2.3b is drawn.

The maximum rotation angle is 60° as marked in the Figure 2.3b. The circle

represents a spherical object; so the missing wedge at the top is the 'pie' bounded by

the angle P1CP2. CD2 is the radius and due to missing wedge problem the part

D1D2 is missing from the radius. A simple calculation shows, if CD2 = r, CD1 =
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√ଷ
ଶ
,and hence ݎ	 D1D2 =  0.13r. So, due to ± 60° limited rotation, about 13% (of its

height) from top and 13% (of its height) from the bottom of the object are 'truncated',

Figure 2.3b: Geometry of missing wedges - extended from Figure 2.3(c).

The metabolosomes are not spherical - they are polyhedral. In addition, they

are not uniform and its vertices, faces and edges could be in the missing regions. So

the 13% radius truncation rule may not be strictly applied to the metabolosomes. In

fact, the truncation proportion could also vary for each metabolosome. Here we

consider a range of truncation proportions for metabolosomes: 5% to 15% of the

vertical height of the object (in place of radius, since the objects are not spherical).

The Section I of Chapter 6 discusses more about these truncation proportions.

2.3 Imaging Metabolosomes and Reconstruction

2.3.1 Imaging Metabolosomes

The metabolosomes were imaged through single-axis tilt angle cryo-electron

tomography at The Jensen Laboratory [91], California Institute of Technology.

During the imaging process, the specimen was tilted around a single axis from -60°

to +60° with 1° intervals. Therefore, each specimen was imaged 121 times from

consecutive 1° interval angles, generating a sequence of 121 two-dimensional images
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(projections). The imaging system then combined the tilt series images and generated

a single file as output (raw image).

A total of 41 specimens were imaged using Cryo-EM. This research starts

with these 41 raw images. The details of biological sample preparation, extracting

metabolosomes from bacterial cells and imaging parameters are described in [44].

2.3.2 Tomographic Reconstruction for Metabolosomes

The eTomo module of IMOD [86] was used for the tomographic reconstructions

from the raw projection images. As explained below, some of the reconstruction

steps in IMOD, e.g. marking gold particles, slice selection for final contrasts were

manually executed. During imaging, 121 images (2D) are taken from 121 angles and

these 2D images are required to be aligned (known as image registration) properly

before 3D reconstruction. To facilitate the alignment process, generally some gold

nano-particles are placed near the specimen and these particles generate black 'dots'

on these 2D images. As a part of the IMOD reconstruction procedure, these gold

particle spots are required to be marked manually.

During the last step of the reconstruction, IMOD requires a range of grayscale

values for the final reconstructed image. These values can be input manually, or

IMOD can calculate them from a set of selected slices. We selected 5 middle slices

for each image for this purpose. This effects the image contrast and brightness only.

IMOD eTomo module provides a program ‘tiltalign’ for image registration to

align tilt-series images. eTomo makes available both the SIRT and back-projection

methods for reconstruction. The back-projection method was preferred for its

efficiency. The final output of eTomo is a reconstructed three-dimensional stacked

image.

All  of  the  41  raw images  were  reconstructed,  but  7  of  them do  not  contain

metabolosomes. Also, 18 of the reconstructed images contain a few metabolosomes,

but with very low visibility. This very low visibility may occur due to several

reasons, such as part of the metabolosome is outside of the image or the image has

extremely low contrast. A total of 16 images were selected from the 41 reconstructed

images based on visibility of the metabolosomes.

Each reconstructed image has dimension 2048 x 2048 pixels along both x-

and y-axis. Along the z-axis the dimensions (thickness) are between 390 - 490 pixels

with average thickness of 476 pixels (Table 2.1).
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Image Serial
Number

Dimension along
x-axis (in pixel)

Dimension along
y-axis (in pixel)

Dimension along
z-axis (in pixel)

05 2048 2048 486
10 2048 2048 390
11 2048 2048 480
12 2048 2048 490
13 2048 2048 484
14 2048 2048 480
15 2048 2048 476
16 2048 2048 484
19 2048 2048 484
20 2048 2048 476
22 2048 2048 490
31 2048 2048 476
32 2048 2048 490
34 2048 2048 468
39 2048 2048 486
41 2048 2048 476

Table 2.1: The dimensions of 16 selected reconstructed images (in pixel).

Based on the dimension of the projection images, IMOD determines the

dimension (along x-axis and y-axis) of the reconstructed 3D images. But it calculates

dimension along z-axis based on a manually provided parameter called Sample

tomogram thickness and another manual process called Create boundary model. The

Sample tomogram thickness was set to 500 pixels for all reconstructed images. This

step has significant impacts on the final reconstructed images, since it determines the

number  of  slices  and  physical  slice  'thickness'.  A  smaller  value  for  the  sample

tomogram thickness (e.g. 250) would 'squeeze' the tomogram and a few objects of

interest could be excluded from the reconstructed tomogram. Too large value of the

sample tomogram thickness (e.g. say 1000) would generate more slices, but requires

longer time for segmentation and also reduces the overall image quality.

2.3.3 Visualizing Raw and Reconstructed Images

It is important to visualize the reconstructed images prior to further processing

because we need to determine if a reconstructed image contains metabolosomes and

whether the metabolosomes are clearly visible. In addition, the metabolosomes were

labeled for identification during visualization. The following image shows a typical

slice from a reconstructed image. The labels on the image identify individual

metabolosomes.
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Several tomographic image visualization software packages, including

3DMOD from IMOD [86], Chimera UCSF [92], AMIRA [93] were used to visualize

the reconstructed 3D images and for subsequent analyses. As mentioned before,

IMOD and its modules helped to reconstruct the 3D images from the tilt-series

images, AMIRA was used to visualize the 2D and 3D images in different steps.

Another important purpose of AMIRA is the slicing of the 3D images and stacking

the slices back to reconstruct the 3D image. The Chimers UCSF helped to draw the

3D polyhedral structures (Chapter 4). These tools are simple to use and widely

accepted, particularly for this type of research problems.

Figure 2.4: A typical slice from a reconstructed 3D image showing few metabolosomes,
three of them are labeled.
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2.4 Trimming and Slicing 3D Images

2.4.1 Trimming Complete Tomogram

As is visible in Figure 2.4, the reconstructed three-dimensional images contain

multiple metabolosomes. A typical metabolosome is much smaller than the full

reconstructed image. The individual metabolosomes must be separated from the full

reconstructed image for segmentation and subsequent analyses. This process contains

three steps:

1) Finding a ‘bounding box’ for the target metabolosome such that the bounding

box contains a complete object and least possible non-contributing exterior.

2) Recording the coordinates from the vertices of this bounding box.

3) Trimming the complete tomogram based on the coordinates from (2).

The ‘trimvol’ module of IMOD separates the volume selected by the

bounding box from a complete tomogram based on the bounding box coordinates.

Selection of metabolosome was subjective. We selected larger objects for

segmentation. Larger objects are selected visually, for example, in Figure 2.4, 13_01,

13_02 and 13_03 are larger objects but 13_S is a smaller one. Larger metabolosomes

were selected for trimming because larger metabolosomes have larger boundaries in

slices and the larger the boundary, the more precise is the segmentation. In other

words, larger is better because the relative error of reconstruction is smaller for a

larger object, assuming a fixed level of error for boundary drawing. Section 4.5.1

(Chapter 4) describes the volumes of the smallest and largest metabolosomes

segmented.

However, we also attempted to segment and reconstruct a smaller object, but

the next image processing steps such as structure drawing etc. (Section 4.2, Chapter

4) was difficult. The difficulties were due to problems in identifying edges and

vertices on the surface of the segmented small object.

2.4.2 Slicing Trimmed Image

Each 3D trimmed image was sliced into a series of 2D images for manual

segmentation and subsequent image processing steps. During slicing, we sliced each

object three times: along the x-, y- and z-axes using AMIRA and MATLAB [94]. If
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the dimension of the trimmed image is d1× d2 × d3 in pixels, slicing procedure

generates three separate slice sequences with following description:

Number of Slices Dimension of Each slice

Sliced along x-axis d1 d2 × d3

Sliced along y-axis d2 d1× d3

Sliced along z-axis d3 d1× d2

Table 2.2: The number of slices generated from thee-way slicing.

The above slicing method shows, each two-dimensional slice is one pixel

'thick'. Figure 2.5 illustrates the slicing procedure graphically.

Figure 2.5: Three-way slicing method. (a) Slicing along x-axis generates slices in yz plane,
(b) Slicing along z-axis generates slices in xy plane and (c) Slicing along y-axis generates
slices in xz plane.

The slices along the z-axis contain the clearest and complete boundaries of

the objects and hence are the most informative in general. However, the slices along

the x-axis and y-axis also carry useful information about metabolosome shapes and

we utilized this information during the image segmentation (Section 2.5.4). The

following image (Figure 2.6)  shows  three  slices  from  three  slice  sets  of  a  trimmed

metabolosome.

2.4.3 Voxel in Metabolosome Images

In digital image analysis, a pixel or picture element is the smallest element or unit of

a  digital  image.  Formally,  a  pixel  at  (x, y)  of  a  two-dimensional  image  of  size  (or

dimension) m × n, 1 ≤ x ≤ m and 1 ≤ y ≤ n, represents a small square area with center

at  (x, y) and the image has m and n pixels along axes. The three-dimensional
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counterpart of pixel is voxel. A voxel with location (x, y, z) represents a small cube

(or cuboid) with centroid at (x, y, z).

(a) (b) (c)

Figure 2.6: Slices from three slice sets of a metabolosome. (a) A slice from slicing along x-
axis, (b) A slice from slicing along y-axis and (c) A slice from slicing along z-axis.

The  ‘trimvol’  module  of  IMOD  also  displays  the  voxel  size  of  the  three-

dimensional trimmed metabolosome images. It shows that the voxels in all

reconstructed metabolosomes are uniform in size (i.e. perfect cube) with dimensions

9.6201 × 9.6201 × 9.6201 (in Å unit, 1 Å = 10-10 metre). The voxel size is

mechanically determined through reconstruction algorithms in IMOD.

2.5 Image Segmentation

2.5.1 General Approaches

The surrounding cellular objects and noise prevent unobstructed visualization of

trimmed metabolosomes in 3D. One potential solution to this problem is to extract

the 3D metabolosome from its surroundings. This requires image segmentation, an

operation where the image is compartmentalized into distinct meaningful regions.

Segmenting a 3D object involves segmenting the object based on its boundaries from

each of its 2D slices and stacking over the sequence of segmented regions again.
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The segmentation procedures are broadly two types - algorithm driven or

unsupervised image segmentation and manual. A number of algorithms are

established for image segmentation; their review and evaluations are provided in [95]

and in particular, Chapter 12 of [21] discussed the segmenting approaches used for

cryo-electron tomographic images. Manual segmentation is the most subjective way

of segmenting objects; but segmentation by manual contouring is still most popular

and usually employed for biological microscopy images due to the extreme

complexity and noise in electron tomographic images (see Chapter 12 of [21], [96]

and Section 2.5.2).

2.5.2 Limitations of Automated Segmentation

Though algorithm driven segmentation procedures have advantages like

reproducibility of the segmentation output, time efficiency and absence of manual

segmentation errors, it also has huge disadvantages in metabolosome segmentation as

explained below:

Noisy and Low Contrast Image

The efficiency of algorithm driven segmentation procedures greatly depends on

image quality. The metabolosome images are noisy and with very low contrast. So

detection of metabolosome boundaries may be erroneous. However, denoising

procedures and contrast improvement steps may solve this problem to some extent,

though the other problems stated below still affect the automated boundary detection

efficiency.

Existence of other Cellular Inclusions

It  is  also  seen  that  some  of  the  slices  contain  other  cellular  inclusions  (e.g.  fibres)

which create ambiguity about target metabolosome boundaries (Figure 2.7). An

automated segmentation algorithm possibly will consider these inclusions as objects

of interest and require manual elimination afterwards.

Existence of Partial Boundary

The bounding box defined for a metabolosome during trimming cannot generally

exclusively create a partition for that metabolosome due to overlapping three-

dimensional arrangements of the metabolosomes in the complete tomogram. Some of
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the slices may contain partial boundary of another metabolosome besides the

complete boundary of the target metabolosome (Figure 2.7). An automated

segmentation algorithm will consider these partial boundaries as objects of interests

and require manual inspection for elimination.

(a) (b) (c)

Figure 2.7: Complexities in metabolosome slices. (a) Partial boundaries of other
metabolosomes. (b) Missing boundary. (c) Other boundary like inclusions in image.

Missing Wedge Problems

Due to the missing wedge problem (Section 2.2.5) the metabolosome boundaries are

often not completely visible. Careful assessment is required to see how an automated

segmentation procedure is handling those regions. Automated boundary detection

algorithms may lead to poor segmentation for metabolosomes with partial

boundaries. Figure 2.7 shows a few examples where these difficulties occurred.

2.5.3 Segmenting Metabolosome

These difficulties with automated segmentation led us to adopt manual segmentation.

For similar reasons, Jensen et al. [10] also preferred a manual segmentation process

when faced with a similar segmentation task for Carboxysomes. During manual

segmentation, we superimpose a hand drawn boundary on each of the original object

boundaries and collect the coordinates of those hand drawn boundaries. Figure 2.8

shows the manual segmentation process. The boundaries are drawn using MATLAB.

Since each image was sliced along three different directions, segmentation

was carried out for three sets of slices for each metabolosome. For instance, if there

is an image with dimensions of 200 × 200 × 200, segmentation is to be carried out

for about 550 slices for that image (since few initial and end slices do not contain

object boundaries).
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(a) (b) (c)

Figure 2.8: Manual segmentation process for metabolosomes. (a) A slice with complete
boundary of a metabolosome, partial boundaries of other metabolosomes and a boundary like
object. (b) Superimposed hand drawn boundary on the metabolosome boundary. (c) The
slice with segmented metabolosome.

2.5.4 Data from Manual Segmentation

Boundary Data

The manual segmentation process creates a hand-drawn boundary superimposed on

the image of the metabolosome boundary. This superimposed boundary is an

approximately convex polygon defined by a set of cyclical ordered points as vertices

of the polygon. We collected the coordinates of these points from each slice and used

the collection of these boundary points obtained from all slices of a metabolosome to

represent a collection of points sampled from the surface of that metabolosome.

Interior-exterior Identifier Data

If a slice contains the complete boundary of a target metabolosome, some pixels

from this slice will be inside the boundary, some exactly on the boundary and the

remaining are outside the boundary. But if a slice contains a partially missing

boundary of the target metabolosome, some pixels from this slice will be in the

missing regions too. We assume that:

1) The incomplete slice boundary is approximately a subset of a convex

polygon.

2) All interior pixels of a metabolosome in a slice belong to that slice; even if

there are missing boundaries (i.e. the corresponding bounding box contains

the object entirely).
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3) The pixels exactly on the boundary of a metabolosome are interior pixels of

metabolosome.

We define,

Sz = set of all pixels from zth slice of a metabolosome, z = 1, 2, …, number of slices.

Hz = corresponding hand-drawn boundary i.e. a convex polygon superimposed on the

original metabolosome boundary in zth slice during segmentation.

Sz(x, y) = the pixel at (x, y) from Sz

Iz = set of pixels interior of Hz, i.e. (interior pixels)

Ez = set of pixels exterior of Hz, i.e. (exterior pixels)

Mz = set of pixels from missing area (missing pixels) in zth slice

During manual segmentation we assign,

Pz(x, y) = ቐ
1																																										if			ܵ௭(ݕ,ݔ) ∈ 	 ௭ܫ
	0																																										if			ܵ௭(ݔ, (ݕ ∈ ௭ܧ	

NaN	(missing	value)								if			ܵ௭(ݕ,ݔ) ∈ ௭ܯ	 	
�

This gives with above assumptions,

௭ܫ 	∪ ௭ܧ	 	∪ ௭ܯ	 	= 	 ܵ௭    and ௭ܫ 	∩ ௭ܧ	 	= 	 ௭ܧ ௭ܯ	∩ 	= 	 ௭ܫ 	∩ ௭ܯ 	= 	߶

and

Pz = {Pz(x, y), " x, y} ® Sz

Besides boundary data, we also collected Pz(x,  y) from each metabolosome

slice. The process is repeated for all slices along the x-, y- and z-axes separately.

Segmentation in presence of Partially Missing Boundary

As discussed, some of the slices contained partially missing boundaries of the target

metabolosome. This situation frequently occurs near the top and bottom slices of the

metabolosomes and in the case of slices obtained from x-axis and y-axis slicing (due

to the missing wedge problem). In this case, we superimposed the hand-drawn

boundary only on the visible part of the boundary.
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(a) (b)

(c) (d)

Figure 2.8a: Segmentation process for partially missing boundary. (a) A metabolosome slice
with partially missing boundary, marked with an arrow. (b) Hand-drawn boundary
superimposed only on visible part of the boundary. (c) Marking the missing region which
includes missing part of the metabolosome with high probability. (d) The segmentation
outcome: the black region contains interior pixels, white for exterior and gray for missing
pixels.

Hence, this procedure generates partial boundary data only from the visible

part of the object boundary. However, collecting the interior-exterior identifier data

(Section 2.5.4) in these cases is difficult due to the following reason.

A  missing  region  (Mz), by its nature, cannot be exactly marked with a

boundary. Since,

zzzz SMEI =ÈÈ

and Mz cannot be clearly defined, Iz  and Ez cannot be precisely determined as well.

To solve this problem heuristically, assign,

Pz(x, y) = 1, if Sz(x, y) Î C(Hz) where C(Hz) = convex hull of Hz
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The next step is to visually identify the regions such that these regions may

include the missing metabolosome boundary with high probability. Define these

regions as 1Mz, 2Mz, …, kMz, where k is the number of missing regions. We assign,

Pz(x, y) = 0 if Sz(x, y) Î E'z

where,

E'z = Sz - (C(Hz) È 1Mz È 2Mz È …È kMz)

and finally assign, Pz(x, y) = NaN (= missing value) if:

Sz(x, y) Î Sz - (C(Hz) È E'z).

Figure 2.8a shows the segmentation of an object with partially missing boundary.

2.5.5 Least Squares Method for Improved Segmentation

The segmentation data from the z-axis slices alone can generate the 3D segmented

metabolosome. However, the segmentation data from slices along x-axis and y-axis

may consist of exclusive information about metabolosome surface boundary. Hence

combining segmentation data from slices along all three axes could result more

precise segmentation. In addition, combining three sets of segmented data could also

reduce the manual segmentation errors. We propose a least squares (LS) based

approach to estimate the interior-exterior identifier value for each voxel utilizing the

three-way  segmentation  data.  Figure  2.10  gives  a  visual  demonstration  of

improvements in segmentation using this approach.

Method

Using the same notation from section 2.5.4, let the pixel Pz(x,  y) corresponds the

voxel at (x, y, z) in the the three-dimensional image. Let the true (unknown) interior-

exterior identifier value for this voxel be			݂(ݕ,ݔ, .(ݖ  The  purpose  is  to  estimate

,ݕ,ݔ)݂ for all (ݖ x, y, z. Let,

fx (x,y,z) = the voxel value at (x,y,z)  when sliced through x-axis

fy (x,y,z) = the voxel value at (x,y,z)  when sliced through y-axis

fz (x,y,z) = the voxel value at (x,y,z)  when sliced through z-axis

fx(x,y,z), fy(x,y,z) and fz(x,y,z) values are obtained from segmentation as described in

Section 2.5.4. We define,
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	∆ଶ= ൫݂(ݕ,ݔ, (ݖ − ௫݂(ݕ,ݔ, ൯ଶ(ݖ + ቀ݂(ݕ,ݔ, (ݖ − ௬݂(ݕ,ݔ, ቁ(ݖ
ଶ

+ ൫݂(ݕ,ݔ, (ݖ − ௭݂(ݕ,ݔ, .൯ଶ(ݖ

The least squares estimate of ,ݔ)݂	 ,ݕ is obtained by minimizing (ݖ 2, i.e. by solving

߲∆ଶ

,ݕ,ݔ)݂߲ (ݖ = 0

which gives the least squares estimate of		݂(ݕ,ݔ, as (ݖ

መ݂(ݕ,ݔ, (ݖ = 	 ଵ
ଷ

( ௫݂(ݕ,ݔ, (ݖ + ௬݂(ݕ,ݔ, (ݖ + ௭݂(ݕ,ݔ, .((ݖ

Hence, each voxel gets a least squares estimated value utilizing information

from all of three sets of slices. To eliminate the influence of the missing voxel values

in calculations, we modified this estimate as follows: define,

௜݂
,ݕ,ݔ)∗ (ݖ = 	 ቄ ௜݂(ݔ, ,ݕ 		if														(ݖ ௜݂(ݕ,ݔ, (ݖ = 1

0																										otherwise
�	

n = |{ ௜݂(ݕ,ݔ, (ݖ ∶ 	 ௜݂(ݕ,ݔ, (ݖ = 0	or	1}| where i Î {x, y, z}.

Finally, if መ݂∗(ݕ,ݔ, ,ݕ,ݔ)݂		is the adjusted LS estimate of (ݖ then ,(ݖ

መ݂∗(ݕ,ݔ, (ݖ = 	෍ ௜݂
,ݕ,ݔ)∗ (ݖ
݊

௜

.

We preferred LS method to combine three-way segmented outcomes, because it is

simple to apply, easy to interpret and the outcome is satisfactory. However, some

other methods (e.g. logistic regression) may be used for the same purpose.

The same voxel is considered three times during the three-way segmentation;

hence it is reasonable to consider that fx(x,y,z), fy(x,y,z) and fz(x,y,z) are of equal

relevance. Now, since the least squares estimate of		݂(ݕ,ݔ, is the average of three (ݖ

voxel values, a voxel from three different directions receives equal weights and

hence the LS approach is appropriate for this problem.

Visualizing Segmented Images

To convert the segmentation data to a 3D image, we define a three-dimensional

matrix V such that, V(x, y, z) = መ݂(ݕ,ݔ, (ݖ " x, y, z. For a particular z, say zk, the set of

voxels {V(x,  y,  zk)} " x,  y is  the LS estimate of the pixel values of zk
th slice, while

slicing along z-axis.

D
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Converting these pixel values to grayscale, we generated the segmented LS

estimated slice images. Finally this slice sequence was stacked (using AMIRA) to

develop the three-dimensional metabolosome. Figure 2.10 shows a segmented and

reconstructed three-dimensional metabolosome. Noticeably, some voxels, mostly

near to missing boundary regions may receive fraction values (e.g. 1/2, 1/3, 2/3 etc.)

during the LS estimation. These voxels will get a lower grayscale value in

visualization.

2.6 Smoothing Metabolosome Surface

The segmentation of the metabolosomes using manual segmentation results in

images like those shown in Figure 2.10. The images contain sharp striations due to

the imprecise nature of the manual segmentation. This creates difficulties in

identifying possible vertices and edges on the surfaces. Statistical smoothing [97],

[98], [99] methods are applied to smooth the metabolosome surface, preserving the

inherent sharpness of vertices and edges.

Most of the smoothing methods can be extended to work with three-

dimensional  data  as  well.  We  used  one  of  the  simplest  smoothing  methods  -  the

simple moving average (see Chapter 2 of [99]).

2.6.1 Method

For a set of observation {x1, x2, …, xn} from a random variable X, sequenced over time

or proximity etc., the simple moving average of span k at lth location is:

௟ܯ 	=
1
݇
	 ෍ ௜ݔ

௟ା௞ିଵ

௜	ୀ	௟

where 1 ≤ l  ≤ n  -  k  + 1 and 1≤ k  ≤ n. We applied the three-dimensional form of this

method, also known as box method for smoothing metabolosome surfaces. For the

convolution kernel (k1, k2, k3), k1, k2, k3 are odd integers ≥ 3, define:

VN (x, y, z) = {V(n1, n2, n3)}

such that,

ݔ − ௞భିଵ
ଶ

≤ ݊ଵ ≤ ݔ + ௞భିଵ
ଶ

 , ݕ − ௞మିଵ
ଶ

≤ ݊ଶ ≤ ݕ + ௞మିଵ
ଶ

  and ݖ − ௞యିଵ
ଶ

≤ ݊ଷ ≤ ݖ + ௞యିଵ
ଶ
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which is a set of all neighborhood voxels of V(x, y, z) forming a cuboid of dimension

k1 × k2 × k3 such that V(x, y, z) locates at the centroid of the cuboid. Then,

ௌܸ(ݔ, ,ݕ (ݖ 	= 	
1

݇ଵ݇ଶ݇ଷ
		 ෍ ܸ(	݊ଵ , 	݊ଶ, 	݊ଷ)
௡భ,௡మ,௡య

is the smoothed voxel value at x,  y,  z.  This  is  also  a  simple  average  like  the  LS

method applied during segmentation, but the LS method considered three values of

the same voxel, but here averaging takes different adjacent voxels into account.

As input to the smoothing process, we provided the least squares estimate of

all  voxels  and  obtained  new  (smoothed)  values  of  those  voxels  as  output.  For  a

particular value of z, say zk, VS(x,  y,  zk) is  a  2D  matrix.  Converting  this  matrix  to  a

grayscale image, we generated the zk
th slice of the smoothed metabolosome. Stacking

the slices sequentially generates the 3D smoothed metabolosome. Figure 2.9 shows a

slice before and after smoothing.

(a) (b)

Figure 2.9: Effect of smoothing on individual slice.  (a) A typical least squares reconstructed
slice. (b) The same slice after applying smoothing.

2.6.2 Smoothing Parameter

For higher values of convolution kernel (k1, k2, k3), the surface becomes smoother, but

the vertices and edges lose their sharpness. If a vertex is sharp, it tends to contain less

error than a blunt vertex when we manually record its location on the surface. On the

other hand, if we do not smooth the surface, locating a vertex on surface may also be

difficult. So, the parameter (k1, k2, k3)  is  to  be  estimated  such  that  it  results  in

acceptable surface smoothness, preserving the satisfactory sharpness of the vertices

and edges.
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(a) (b)

(c) (d)

Figure 2.10: 3D segmented metabolosomes in different steps. (a) A 3D metabolosome
reconstructed using segmented data only from slices along z-axis. (b) The smoothed form of
(a). (c) The same metabolosome is reconstructed using segmentation data obtained from
three sets of slices with least squares estimation. (d) The smoothed form of (b). Clearly, the
image in (d) is smoother preserving sharpness.

If only one-way segmentation is considered instead of three-way, even the

smoothed image contains 'ridges' on surface due to segmentation errors (Figure 2.10-

b) which may cause difficulties in identifying edges. However, three-way

segmentation and LS reconstruction solves this problem (Figure 2.10-d). Hence our

proposed segmentation method works well for these images.

We  started  with  the  convolution  kernel  (k1, k2, k3)  =  (3,  3,  3)  which  is  the

minimum possible value. Then several combinations of values for (k1, k2, k3) are

tested. For example, some of the combinations we considered are (3, 3, 5), (3, 5, 5),

(3, 5, 3), (5, 3, 3), (5, 5, 7), (5, 3, 7) etc.  Finally, we selected (k1, k2, k3) = (3, 3, 5) and

determined that this set of values performs satisfactory for all metabolosomes.
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The performance was evaluated based on repeated visual inspections. Figure

2.10 illustrates a reconstructed 3D metabolosome in different steps. It also shows the

effectiveness of LS approach and smoothing surface. One important observation is:

for the best performing combination, k3 is larger than k1 and k2. This is because the

transition to a slice from its immediate previous slice (along z-axis) is not as smooth

as consecutive points on any boundary from x-y plane. That is why clear 'ridges' on

the surface are visible along z-axis (Figure 2.10(a)), but not along x- or y-axis. To

achieve approximately same smoothness across three axes, k3 is chosen larger.

2.7 Summary

The metabolosomes were imaged using cryo-electron tomography. Among 41 raw

images reconstructed using IMOD, 16 reconstructed images were considered for

future processing. 30 metabolosomes selected from six tomograms were segmented

for further analysis. IMOD was used for tomographic reconstruction. Matlab and

AMIRA were used for slicing and volume rendering.

A manual segmentation approach was preferred over algorithmic

segmentation. We introduced a least squares based method and a three-way

segmentation approach for improving manual segmentation. Statistical smoothing

was used to reduce the roughness and segmentation errors from the three-

dimensional objects. The tomographic reconstruction, trimming and slicing

approaches are quite standard, used in many published research, e.g. [10] and here no

validation approach was considered for these steps. The segmentation approach is

new, and we justified this method (LS methods) theoretically as well as visually

examining the final segmented smoothed images. The smoothing method is also very

standard, and we justified the method for selecting the kernel for this data. The

selections of other tuning parameters (such as tomogram thickness etc.) are justified

in corresponding sections, hence no such rigorous validation study is required.

The three-dimensional objects from intermediate image processing steps were

visualized through IMOD, Chimera UCSF and AMIRA. The following diagram

(Figure 2.11) summarizes the reconstruction, segmentation and visualization

approaches applied on the metabolosome raw images to generate final segmented

images.
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Figure 2.11: The summary of steps for three-dimensional tomographic image reconstruction,
segmentation, smoothing and visualization.



Chapter 3

Polyhedron Families and their Properties

3.1 Introduction

Polyhedral shapes have been studied by geometers for thousands of years. Long ago,

Kepler associated polyhedral shapes with a version of the solar system in his book

Mysterium Cosmographicum [100], Plato allied them with earth, fire, air, water and

ether in his dialogue Timaeus and Critias [101], [102], which he believed to be the

basic elements of the world. The frequent appearance of polyhedral shapes in nature,

architecture, art, cartography, even in philosophy and literature points to their

importance in various fields of knowledge. Several books including [46], [103], [47]

and [104] have depicted the evolution of polyhedral shapes and their presence in

nature, ancient and modern society.

Numerous instances of polygons and polyhedra exist in nature, for instance,

benzene molecules have a hexagonal arrangement of carbon atoms, starfish and

petals of many flowers form pentagons, diamonds are octahedral, honeybees use the

geometry of rhombic dodecahedra to form honeycombs, crystal pyrites may have

dodecahedral shapes [45].

Scientists have also found reasons and utilities behind the shapes of these

objects. For example, starfish with five arms exhibit the best performance with

respect to detection, turning over, autotomy and adherence [105]; five petals actually

give a flower optimum growth and stability [106]; the hexagonal structure minimizes
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the honeycomb wall perimeters and gaps among honeycomb cells [107], the

structures of crystals depend on the internal symmetry of the crystal, and the relative

growth rates along the various directions in the of the crystal [108], etc.

Modern developments in imaging technology reveal the 3D shapes of

microscopic living elements and surprisingly some of them have well defined

polyhedral shapes. As described in Chapter 41 of [13]: Structure and Classification

of Viruses, many viruses show resemblance to polyhedral shapes, e.g. poliovirus,

rhinovirus, and adenovirus have icosahedral shapes.

Bacterial microcompartments may also have polyhedral shapes; for instance,

a recently identified microcompartment (named Carboxysome) has an approximately

icosahedral shape [10]. One of the main purposes of this work is to identify the

possible polyhedral structures of another bacterial microcompartment (called pdu-

type microcompartment, Section 1.1.2, Chapter 1).

In this chapter we introduce standard polyhedral families, along with their

characterizing features. These characterizing features develop a shape descriptor for

a polyhedron, named as the polyhedron profile statistic.  Though,  some  of  these

features, for example, vertex types and counts, face types and counts (Section 3.4.1

and 3.4.2) etc. are previously studied in geometry as individual features [109], [110];

a few other features, such as, adjacency matrices for complete and incomplete

polyhedra are introduced in this work. In addition, the polyhedron profile statistic,

which is a combination of different features, is also used for the first time here to

characterize complete and incomplete polyhedra.

3.2 Polytope and Polyhedron

A polytope is a geometric figure bounded by portions of lines, planes or hyperplanes.

Two-dimensional polytopes are just polygons. To define a polygon formally, a p-gon

is  a  circuit  of p line-segments A1A2, A2A3, …, ApA1 joining consecutive pairs of p

points A1, A2, …, Ap. The points are termed as vertices and the line segments are

sides or edges of the polygon [47]. For a triangle, p = 3 and for a pentagon, p = 5 etc.
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In this chapter and all subsequent chapters, we assume vertices of a polygon are

coplanar.

A polyhedron (a polytope in ℝଷ) is a finite, connected set of plane polygons,

such that every side of each polygon belongs also to just one another polygon, with

the proviso that the polygons surrounding each vertex form a single circuit [47]. The

polygons forming a polyhedron are referred to as the faces of the polyhedron,

provided  that  all  coplanar  polygons  with  common  sides  or  segments  of  sides  are

treated as a sole polygon, thus making a single face. The sides and vertices of the

faces  of  a  polyhedron  are  referred  to  as  the edges and vertices of the polyhedron

[102]. Figure 3.1 is a common polyhedron, known as cube.

Even though there are several other definitions of polytopes, polygons and

polyhedra in modern algebraic geometry [111], the above classical definition of

polyhedra (from Coxeter [47]) is adequate for our purposes.

Figure 3.1: A common polyhedron - a hexahedron, also known as cube. The vertices are
marked with Vi, i = 1, 2, …, 8. The straight line connecting V1 and V2 is  an  edge  and  the
square with vertices V1, V2, V3 and V4 is a face.

Polyhedron as Graph and Solid

The three-dimensional objects are often visualized as their projections on a two-

dimensional  space.  For  example,  an  image  of  a  body  organ  on  a  X-ray  plate,  the

images taken by a digital camera, the images displayed in general digital displays etc.

are the projection of three-dimensional objects on two-dimensional space. Clearly, a

projection image contains less information than the original three-dimensional object

since the projection image does not contain information along the third direction.

We consider a polyhedron as a geometrical object in the three-dimensional

Euclidean space. Frequently, a polyhedron is visually expressed as a planar graph,
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i.e. a two-dimensional projection of its vertices and edges. This has the advantage of

allowing all of the vertices, edges, and faces to be viewed at the same time. As in

Chapter 1.1 of [102], however, it is sometimes more convenient to regard a

polyhedron as a body, for instance when we speak about a point inside a polyhedron

or about one polyhedron inside another. In such cases, we usually indicate that the

polyhedron under consideration is a solid.  In  this  work,  these  two  notions  are

analogous and we refer to polyhedra as graphs and solids interchangeably.

3.3 Convex Polyhedron

A convex polyhedron is a polyhedron composed of finitely many planar polygons so

that: (1) it is possible to pass from one polygon to another through polygons having

common sides or segments of sides, and (2) the entire figure lies on one side of the

plane of each constituent polygon.

It is the second condition that defines convexity; the first means that a

polyhedron  does  not  split  into  parts  meeting  only  at  vertices  or  even  disjoint  from

each other [102]. The cube in Figure 3.1 is an example of a convex polyhedron.

Many microscopic objects, for example, virus bodies [13] and Carboxysomes [10]

are found to be convex.

Concave or non-convex polyhedra are those do not follow any of the above

two conditions. There are several types of non-convex polyhedra too (e.g. star

polyhedra) and they appear in nature as well, for example, gold nanocrystals [112].

3.3.1 Convex Polyhedron and Slice

Let P be a convex polyhedron and L be a plane in ℝଷ. The intersection, I = P ∩ L is a

vertex, edge or face of P, or a closed curve (slice), depending on how L intersects P

[113], [114]. Extending this notion, suppose L1, L2 ,…, Ln are arbitrary n parallel

planes such that they are distinct and can intersect P simultaneously.  Clearly,

P ∩ {L1, L2 ,…, Ln} = {I1, I2, …, In}

where Ik is the kth polygon, k = 1, 2, …, n and n is an arbitrary integer. Since in any

convex polyhedron, the dihedral angles are less than 180°, Ik's are all convex

polygons, for all k = 1, 2, …, n, assuming Ik is not a vertex or edge.
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Figure 3.2: A plane intersects a cube and generates a pentagon with vertices at (a, b, c, d, e).
Image is from O’Rourke [114].

Since L1, L2 ,…, Ln are arbitrary, this observation is invariant with respect to

angle of intersection. Considering a polyhedron as a solid (Section 3.2), it is

equivalent to think that parallel successive slicing of a convex polyhedron produces a

sequence of convex polygonal slices. However, the converse statement may not be

true always. In other words, if Ik is convex " k = 1, 2, …, n from {I1, I2, …, In}, it

cannot be  said  that P is convex. A simple way to determine whether a three-

dimensional object is convex when all of its slices are convex could be to reconstruct

the three-dimensional object by stacking back its slices and inspect visually. This is

how we determined the convexity of the metabolosomes.

3.3.2 Convexity of Metabolosomes

We assume the metabolosomes are randomly oriented inside bacterial cells. While

reconstructed 3D metabolosomes are sliced only along the z-axis (Section 2.4.2,

Chapter 2), this is equivalent to slicing the metabolosomes along random axes. These

slices are parallel to each other and the original three-dimensional object can be

reconstructed just by stacking these slices in their original order. The slicing axis

(also later mentioned as slicing direction) is the axis orthogonal to the slices.

Considerate and repeated visual inspections show that almost all resulting

slices from all metabolosomes contain approximately convex polygonal boundaries.

Though some slices contain metabolosomes with partial boundaries (for the missing

wedge problem, Section 2.2.5, Chapter 2), the visible parts of those boundaries also

suggest the same.
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In addition, visual inspections also show that the segmented and smoothed

3D metabolosomes have convex polyhedral shapes (Figure 3.3). An earlier study of a

similar bacterial microcompartment (Carboxysome) also revealed convex polyhedral

shapes [10]. And further, another work [18] on the shapes formed by multi-

component elastic membranes suggests that metabolosomes may have convex

polyhedral shapes.

(a) (b)

Figure 3.3: Convexity of metabolosomes. (a) A slice from a metabolosome shows convex
polygonal shape. (b) A segmented and smoothed metabolosome is also shows convex shape.

Therefore, for the purpose of this analysis, only convex polyhedra were

investigated. The words 'polyhedron' and 'solid' in subsequent chapters will imply

convex polyhedron only.

3.4 Characterizing Polyhedra

3.4.1 Vertex, Edge and Face Counts

Number of Vertices: The vertex of a polyhedron is explained in Section 3.2. As

notation, we define a set of all vertices in a polyhedron P as:

V = {Vi, i = 1, 2, …, NV }, Vi  = ith vertex, NV = total number of vertices.

Number of Edges: The edge of a polyhedron is also explained in Section 3.2. If there

is an edge in P connecting vertices Vi and Vj, define the edge as:
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Eij = (Vi, Vj), i, j Î [1, NV], Vi, VjÎ V

Eij exists if and only if there is a graph from Vi to Vj or vice versa, such that

there is no node (vertex) between Vi and Vj. Hence Eij does not exist for some i and j.

We define the set of edges as,

E = { Eij, i, j Î [1, NV] such that Eij exists}

then, the total number of edges is NE = |E| = cardinality of E.

Number of Faces: Consider a face Fi (a polygon) with n vertices Vi1, Vi2, … ,Vin Î V

from P. We express Fi is a closed walk with no repetitions of vertices or edges are

allowed, i.e.

Fi = (Di, Ai), where Di = {Vi1, Vi2, … ,Vin} and

Ai = {(Vi1, Vi2), (Vi2, Vi3), … , (Vin-1, Vin), (Vin, Vi1)}

where (x,  y) means a directed path from x to y. For simplicity, when a face Fi is

expressed as Fi = { Vi1, Vi2, … ,Vin }, it simply means the face has in vertices and Vi1

is connected with Vi2, Vi2 is connected with Vi3 and so on; lastly Vin-1 is connected

with Vin. The set of all faces,

F = {Fi, i = 1, 2, …, NF}, where NF is number of faces in P.

For example, the cube in Figure 3.1 has NV = 8, NE = 12 and NF = 6. NV, NE

and NF are the simplest features of a polyhedron. Though these features are

insufficient alone to uniquely identify a polyhedron, they are still important in

characterizing a polyhedron (Chapter 5 and 6).

3.4.2 Vertex Type and Face Type

All vertices in P may or may not be the same. Some of the vertices may be connected

with only three edges whereas remaining vertices are connected with five edges and

this is how the edges creates a connected path through vertices and finally build a

polyhedron. This connectivity information has importance in distinguishing the

standard solids (discussed in subsequent sections). In geometry, a polyhedron feature

called vertex configuration [109], [115], [110] captures this information. To

characterize a vertex Vi, define,
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௜ܸ
ா= | {Eij, " j Î [1, NV] such that Eij ÎE} |, i = 1, 2, …, NV

i.e. the number of edges connected to Vi or equivalently the number of faces adjacent

to Vi. The number of vertices with T edges =

௏ܰ
் = 	 ห	൛ ௜ܸ

ா ∶ 	 ௜ܸ
ா = ܶ, ݅ = 1, 2, … ௏ܰൟ	ห.	

Besides NV of P,  the  number  of  vertices  of  different  types  is  also  a

characterizing feature. Any vertex of a polyhedron is common in at least 3 edges,

however, among standard solids, a vertex can be a meeting point of at most 10 edges.

Notably, there is no vertex common in exactly seven or nine edges from any standard

polyhedron. If any vertex be common in seven or nine edges, the dihedral angle,

symmetry properties etc. would not match with those from the standard polyhedral

families. For computation, we express this feature as a vector:

௏ܰ
∗ = (	 ௏ܰ

ଷ, 	 ௏ܰ
ସ, 	 ௏ܰ

ହ , ௏ܰ
଺, ௏ܰ

଼ , 	 ௏ܰ
ଵ଴	) .

Similarly, all Fi's in P may or may not be same. Some faces are triangular;

some are quadrilaterals or pentagons etc. So in addition to the number of faces (NF),

we take number of faces of different types as another feature into account. Define the

number of T-gonal faces as,

ிܰ
்	= | {Fi, i = 1, 2, …, NF : | Di | = T} | .

The standard polyhedra may have triangular to decagonal faces and

everything in between except heptagon and nonagon. Similar to ௏ܰ
∗, we express this

feature as,

ிܰ
∗ = ( ிܰ

ଷ, 	 ிܰ
ସ , 	 ிܰ

ହ, ிܰ
଺ , ிܰ

଼, ிܰ
ଵ଴).

For example, ௏ܰ
∗ for a cube (Figure 3.1) is (8, 0, 0, 0, 0, 0) and ிܰ

∗ is (0, 6, 0,

0, 0, 0). Importantly, these features are invariant under deformation (Section 3.6).

3.4.3 Adjacency Matrix

In geometry and graph theory, an adjacency matrix represents the connection pattern

among vertices or nodes (Chapter 8.1 of [116]). Adjacency matrices for polyhedra

are symmetric and the entries are values of an indicator function, defined as follows.

Let ADJ(P) = adjacency matrix for polyhedron P with NV vertices.
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ADJ(P)ij = ൜1				if		ܧ௜௝	exists,			݅, ݆ = 	1, 2, … , ௏ܰ
0																																									otherwise

�

This matrix not only carries information on vertex connection patterns, it also

provides NV and ௏ܰ
∗ values. However, this matrix depends on how vertices are

numbered. We consider two other types of adjacency matrices for polyhedra, namely

edge adjacency matrix and face adjacency matrix.   For  the  cube  in  Figure  3.1,  the

adjacency matrix is:

V1 V2 V3 V4 V5 V6 V7 V8

V1 0 1 0 1 0 0 1 0
V2 1 0 1 0 0 0 0 1
V3 0 1 0 1 0 1 0 0
V4 1 0 1 0 1 0 0 0
V5 0 0 0 1 0 1 1 0
V6 0 0 1 0 1 0 0 1
V7 1 0 0 0 1 0 0 1
V8 0 1 0 0 0 1 1 0

Edge Adjacency Matrix

In graph theory, an edge adjacency matrix shows which two edges are adjacent. As

described in [117], [118] and [119], the edge-adjacency matrix of P is a square and

symmetric matrix whose (i,j)th element = 1 if and only if the ith edge is adjacent to jth

edge, i.e. if there is a common vertex in two edges and zero elsewhere.

But we define the edge adjacency matrix with a different notion. Each edge in

a polyhedron has two terminal points (vertices). Here the edge adjacency matrix

captures the vertex type information (Section 3.4.2) of those vertices. The edge

adjacency matrix of a polyhedron P, eADJ(P) is defined as follows:

Suppose EmnÎ E is an edge connecting two vertices Vm and Vn. Their vertex

types are ௠ܸ
ா (= r) and ௡ܸ

ா (= s) respectively, i.e. Vm is connected with r edges and Vn

with s edges. We consider a matrix Mmn for this edge (Emn) such that ௥,௦ܯ
௠௡ = 1, and

zero elsewhere, i.e. this edge Emn is contributing a unit only at (r, s) location of Mmn.

Then,

௥,௦(ܲ)ܬܦܣ݁ 	= 	෍ ෍ ௥,௦ܯ
௠௡

௡௠
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However, ignoring the directed path in Emn, it gives ௥,௦ܯ
௠௡ = ௦,௥ܯ

௠௡. Using this

observation, the edge adjacency matrix is converted as an upper triangular matrix.

Thus, if:

1௦ܮ ,௥ 	= 	 ൜݁ܬܦܣ(ܲ)௥,௦ 										if	ݎ > ݏ
0																				otherwise

�   and 2௥,௦ܮ 	= 	 ൜݁ܬܦܣ(ܲ)௥,௦ 											if	ݎ ≤ s
0																					otherwise

�

then, the final eADJ(P)r,s = L1r,s + L2r,s for r ≤ s, zero otherwise. For example, the

(3,4)th entry  of eADJ(P) is the total number of edges in P having vertex pairs at

terminals, such that one of the vertices has 3 edges and other has 4 edges connected

with it.

Since a cube (Figure 3.1) has 12 edges and all edges have terminal vertex

pairs both connected with 3 edges, the eADJ(P) for the cube is as follows:

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

V1 0 0 0 0 0 0 0 0 0 0
V2 0 0 0 0 0 0 0 0 0 0
V3 0 0 12 0 0 0 0 0 0 0
V4 0 0 0 0 0 0 0 0 0 0
V5 0 0 0 0 0 0 0 0 0 0
V6 0 0 0 0 0 0 0 0 0 0
V7 0 0 0 0 0 0 0 0 0 0
V8 0 0 0 0 0 0 0 0 0 0
V9 0 0 0 0 0 0 0 0 0 0
V10 0 0 0 0 0 0 0 0 0 0

This matrix is also independent of numbering vertices. As described in

subsequent sections, the eADJ(P) is an efficient identifying feature of P.

Face Adjacency Matrix

In graph theory, the face adjacency matrix, fADJ(P),  shows  which  two  faces  are

adjacent [120], [121]. We modified this matrix to include the face type data. The

modified face adjacency matrix of a polyhedron P, fADJ(P) is defined as follows:

Suppose EmnÎ E is an edge common in faces Fm and Fn. Fm and Fn are r-

gonal and s-gonal respectively. We consider a matrix Qmn for this edge (Emn) such

that ܳ௥,௦
௠௡ = 1, and zero elsewhere, i.e. this edge Emn is contributing a unit only at (r, s)

location of Qmn. Then,

௥,௦(ܲ)ܬܦܣ݂ 	= 	෍ ෍ ܳ௥,௦
௠௡

௡௠
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Similar to eADJ(P), we construct fADJ(P) also as an upper triangular matrix.

The reason for choosing upper triangular form of this matrix is discussed in the Edge

Adjacency Matrix section. However, a lower triangular form is also equivalent for

analysis. For example, the if there are exactly 3 edges in P such that the faces

adjacent to each of those 3 edges are pentagonal and quadrilateral, then fADJ(P)4,5 =

3. As described in subsequent sections, the fADJ(P) is also an identifying feature of

P.

Since the maximum number of edges in a face and vertex are 10 in both

cases, the dimension of eADJ(P) and fADJ(P) are set as 10×10. Sometimes, eADJ(P)

and fADJ(P) are expressed as vectors, obtained by stacking the columns. So a

fADJ(P) matrix (of size 10 × 10) gives a vector of length 100. Though the vector

length is 100, some of the elements are always zero (for example, the first element of

the vector, since no edge can have only one other edge connected with its terminals;

it needs at least two more edges). Later, during calculations, these elements are not

important.

3.5 Standard Regular Polyhedron Families

Convex polyhedra are classified into different families based on their characteristics,

for example, with respect to the symmetry group [122], the rotation group [47], the

face type and vertex type (Section 3.4.2), (Chapter 8 of [102]), [47] etc. Since the

metabolosomes have deformed shapes (Chapter 4), we consider only the classifying

features that are invariant under deformation (Section 3.6). Face type and vertex type

are such two features invariant under deformation and these two features in

combination generate three convex polyhedra families - Platonic solids,

Archimedean solids and Johnson solids. In addition, we consider a group of dual

solids.

3.5.1 Platonic Solids

As defined in [123], "A Platonic, or regular, solid is a polyhedron whose faces are

identical regular polygons with all vertex angles being equal. There are precisely 5

Platonic solids, the tetrahedron, octahedron, cube or hexahedron, icosahedron and
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dodecahedron". The regular polyhedra are known as the 'Platonic solids' because the

Greek philosopher Plato (427–347 B. C. E.) immortalized them in his dialogue

Timaeus [101], [103]. The origin, appearance in nature, etc. of Platonic solids are

depicted in Chapter 2 of [46], Chapter 1 of [47], and Chapter 3 of [120]. Figure 3.4

shows a Platonic solid - Icosahedron.

Figure 3.4: An Icosahedron - an example of Platonic solids. All faces are the same (triangles)
and all vertices are identical (adjacent to five triangles). Image is from Wikipedia [124].

The above definition shows a platonic solid has the same number of faces that

meet at each vertex and all faces are regular and congruent. In other words:

| { ௏ܰ
் ∶ 	 ௏ܰ

் 	¹	0	"		ܶ} | = 1 and | { ிܰ
் ∶ 	 ிܰ

் 	¹	0	"		ܶ} | = 1

where T indicates edges. For example, for an icosahedron (Figure 3.4),

௏ܰ
் =	ቄ 12										for	ܶ = 5

				0													Otherwise
�       and ிܰ

் =	 ቄ20											for	ܶ = 3
0											Otherwise

�

If P is a Platonic solid, important observations from eADJ(P) and fADJ(P) are:

eADJ(P)i,i = ቄ> 0		for	only	one	݅	
= 0									otherwise

�	         and eADJ(P)i,j = 0 " i ¹  j

fADJ(P)i,i = ቄ> 0		for	only	one	݅	
= 0										otherwise

�	         and fADJ(P)i,j = 0 " i ¹  j

where i = 3, 4, 5, 6, 8, 10.

Appendix 3.1 provides the NV, NE, NF, ௏ܰ
∗ and ிܰ

∗ values for all Platonic

solids. The following tables (Table 3.1a and Table 3.1b) show the face type and

vertex type data for Platonic solids. As discussed above, in all cases the distribution

is degenerated in a single point per solid.
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Solid Name Number of Edges per Face (Face Type Data)
3 4 5 6 8 10

Tetrahedron 4 0 0 0 0 0
Cube 0 6 0 0 0 0
Octahedron 8 0 0 0 0 0
Dodecahedron 0 0 12 0 0 0
Icosahedron 20 0 0 0 0 0

Table 3.1a: The face type data from the five Platonic solids.

Solid Name Number of Edges per Vertex (Vertex Type Data)
3 4 5 6 8 10

Tetrahedron 4 0 0 0 0 0
Cube 8 0 0 0 0 0
Octahedron 0 6 0 0 0 0
Dodecahedron 20 0 0 0 0 0
Icosahedron 0 0 12 0 0 0

Table 3.1b: The vertex type data from the five Platonic solids.

3.5.2 Archimedean Solids

An Archimedean solid is a highly symmetric, semi-regular convex polyhedron

consisting of more than one type of regular polygonal face, but meeting in identical

vertices. The vertices are identical indicating that the same number of faces occurs in

the same order about each vertex. Archimedean solids are distinct from the Platonic

solids, as Platonic solids are composed of only one type of polygonal face (Chapter 3

of [120]).

Figure 3.5: A cubeoctahedron - an example of Archimedean solids. All vertices are identical
but there are two types of faces. Image is from Wikipedia [124].
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Figure 3.5 is an example of an Archimedean solid, called a Cubeoctahedron, having

NV = 12, NE =  24  and NF =  14.  It  has  two  types  of  faces  -  8  triangles  and  6

quadrilaterals, though all vertices have same configuration (4 edges in each vertex

with alternating triangle and quadrilateral). According to this definition of

Archimedean solids,

| { ௏ܰ
் ∶ 	 ௏ܰ

் 	¹	0	"		ܶ} | = 1     and        | { ிܰ
் ∶ 	 ிܰ

்	¹	0	"		ܶ} | > 1

For example, a cubeoctahedron gives:

௏ܰ
் = 	 ቄ 12											for	ܶ = 4

						0												Otherwise
�       and ிܰ

் = 	 ൝
			8			for		ܶ	 = 3
			6			for			ܶ = 4
			0			Otherwise

�

If P is an Archimedean solid, eADJ(P) has same property as Platonic solids, i.e.

eADJ(P)i,i = ቄ		> 0		for	only	one	݅	
= 0							otherwise

�	         and eADJ(P)i,j = 0 " i ¹  j.

Solid Name Number of Edges per Vertex (Vertex Type Data)
3 4 5 6 8 10

Truncated tetrahedron 12 0 0 0 0 0
Cuboctahedron 0 12 0 0 0 0
Truncated cube 24 0 0 0 0 0
Truncated octahedron 24 0 0 0 0 0
Rhombicuboctahedron 0 24 0 0 0 0
Truncated cuboctahedron 48 0 0 0 0 0
Snub cube 0 0 24 0 0 0
Icosidodecahedron 0 30 0 0 0 0
Truncated dodecahedron 60 0 0 0 0 0
Truncated icosahedron 60 0 0 0 0 0
Rhombicosidodecahedron 0 60 0 0 0 0
Truncated icosidodecahedron 120 0 0 0 0 0
Snub dodecahedron 0 0 60 0 0 0

Table 3.2a: The vertex type data from the 13 Archimedean solids.

However, the fADJ(P)  from  an  Archimedean  solid  does  not  have  the  same

property as for Platonic solids. There are exactly 13 Archimedean solids. Appendix

3.2 gives their names and NV, NE, NF, ௏ܰ
∗ and ிܰ

∗ values. The above tables (Table

3.2a and Table 3.2b) show the face type and vertex type data for all Archimedean

solids. As discussed above, in all cases the distribution vertex type data degenerate at

a single point for each solid but this is not true for face type.
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Solid Name
Number of Edges per Face (Face Type Data)

3 4 5 6 8 10
Truncated tetrahedron 4 0 0 4 0 0
Cuboctahedron 8 6 0 0 0 0
Truncated cube 8 0 0 0 6 0
Truncated octahedron 0 6 0 8 0 0
Rhombicuboctahedron 8 18 0 0 0 0
Truncated cuboctahedron 0 12 0 8 6 0
Snub cube 32 6 0 0 0 0
Icosidodecahedron 20 0 12 0 0 0
Truncated dodecahedron 20 0 0 0 0 12
Truncated icosahedron 0 0 12 20 0 0
Rhombicosidodecahedron 20 30 12 0 0 0
Truncated icosidodecahedron 0 30 0 20 0 12
Snub dodecahedron 80 0 12 0 0 0

Table 3.2b: The  face type data from the 13Archimedean solids.

3.5.3 Johnson Solids

A Johnson solid is also a strictly convex polyhedron, each face of which is a regular

polygon, but the solid is not uniform i.e. there is no requirement that each face must

be the same polygon, or that the same number of polygons join around each vertex.

In 1966, Norman Johnson published a list which included all 92 solids, and gave

them their names and numbers [125] and later it was proved that the list is exhaustive

[126].

Figure 3.6: A Sphenocorona - example of Johnson solids. Image is from Wikipedia [124].

The difference between the Archimedean solid and the Johnson solid is in

their vertex configurations. An Archimedean solid has all vertices identical but this is

not so in a Johnson solid. The following image (Figure 3.6) shows a sphenocorona,
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the 86th Johnson Solid with NV = 10, NE = 22 and NF = 14. It also has two types of

faces: 12 triangles and 2 quadrilaterals. But the vertex configurations differ across

vertices. The following inequalities follow from the definition of Johnson solids,

| { ௏ܰ
் ∶ 	 ௏ܰ

் 	¹	0	"		ܶ} | > 1 and | { ிܰ
் ∶ 	 ிܰ

் 	¹	0	"		ܶ} | > 1

So a sphenocorona gives,

௏ܰ
் = 	 ൝

6			for		ܶ	 = 4
4			for			ܶ = 5
0			Otherwise

�            and ிܰ
் = 	 ൝

12			for		ܶ	 = 3
2			for			ܶ = 4
0			Otherwise

�

Appendix 3.3 gives the NV, NE, NF, ௏ܰ
∗ and ிܰ

∗ values for all Johnson solids.

The  following  tables  (Table  3.3a  and  Table  3.3b)  give  the  distributions  of  the  face

type and the vertex type data for 6 selected Johnson solids. These solids are

especially selected, because an initial analysis (Chapter 5) predicted these shapes as

the shapes of the metabolosomes. These shapes have maximum three types of

vertices and two types of faces. As mentioned before, unlike Platonic solids, each

solid has at least two types of faces and unlike Archimedean solids, each solid has at

least two types of vertices.

Solid Name Number of Edges per Vertex (Vertex Type Data)
3 4 5 6 8 10

Elongated pentagonal bipyramid 0 10 2 0 0 0
Biaugmented triangular prism 0 6 2 0 0 0
Metabidiminished icosahedron 2 6 2 0 0 0
Sphenocorona 0 6 4 0 0 0
Augmented sphenocorona 0 3 8 0 0 0
Sphenomegacorona 0 4 8 0 0 0

Table 3.3a: The vertex type data from 6 Johnson solids.

Solid Name Number of Edges per Face (Face Type Data)
3 4 5 6 8 10

Elongated pentagonal bipyramid 10 5 0 0 0 0
Biaugmented triangular prism 10 1 0 0 0 0
Metabidiminished icosahedron 10 0 2 0 0 0
Sphenocorona 12 2 0 0 0 0
Augmented sphenocorona 16 1 0 0 0 0
Sphenomegacorona 16 2 0 0 0 0

Table 3.3b: The face type data from 6 Johnson solids.
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3.5.4 Catalan Solids

In geometry, when the vertices of one polyhedron correspond to the faces of another

polyhedron, the polyhedron pair is called dual (Chapter 3 of [120]). The dual of

Platonic solids are again Platonic solids. Eugène Catalan [127] described first the

dual of Archimedean solids, thus known as Catalan solids. So there are exactly 13

Catalan solids. The following figure is a Catalan solid - Tetrakis Hexahedron.

Figure 3.7: A Tetrakis hexahedron - an example of a Catalan solid. Image: Wikipedia [124].

There are a few other classes of polyhedra, for example, duals of Johnson

solids, prisms and antiprism. However, visual inspections on the metabolosomes

show they are very unlikely to belong to these remaining classes. So these 123 solids

only from the four classes (5 Platonic, 13 Archimedean, 92 Johnson and 13 Catalan

solids) are considered for further analyses. The following plots (Figure 3.8) show the

distribution of three basic features (NV, NF and NE) for these 123 solids. They show

NV Î [4, 120], NF Î [4, 120] and NE Î [6, 180].

Two polyhedra can be considered closer to each other when they are from

one family than they are from two different families when their face types and vertex

types are considered only. But if the other characteristics are also considered, this

family-based classification is not sufficient (for example, solids from each of these

classes may have say, 12 vertices). So to quantify 'distance' between two polyhedra, a

more sophisticated model has been developed in Chapter 5.
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(a) (b)

(c)

Figure 3.8: Distribution of vertex, face and edge counts from standard solids. (a) The number
of vertices from the standard solids. (b) The number of edges from the standard solids. (c)
The number of faces from the standard solids.

3.6 Polyhedron Profile Statistic

Section 3.4.1 and Section 3.4.2 describe that each standard polyhedron has NV, NF,

NE counts, 6 numbers for ௏ܰ
∗ and 6 numbers for	 ிܰ

∗.  For  example,  Table  3.4  shows

these values for a Sphenocorona (Figure 3.6), the 86th Johnson solid.

Let us construct a vector of length 15 using these feature values in the

following order:

(NV, NF, NE,	 ிܰ
ଷ , 	 ிܰ

ସ, 	 ிܰ
ହ, ிܰ

଺, ிܰ
଼ , 	 ிܰ

ଵ଴, ௏ܰ
ଷ , 	 ௏ܰ

ସ, 	 ௏ܰ
ହ, ௏ܰ

଺, ௏ܰ
଼ , ௏ܰ

ଵ଴).
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This feature vector describes a polyhedral shape and we term it as the

‘polyhedron profile statistic’. This statistic is used as a shape descriptor for all

polyhedral shapes in subsequent analyses. For example, the polyhedron profile

statistic for a Sphenocorona is (10, 14, 22, 12, 2, 0, 0, 0, 0, 0, 6, 4, 0, 0, 0).

Feature Class Features Values

Vertex, Face and Edge Counts
NV 10
NF 14
NE 22

ிܰ
∗

(Face Type Data)

ிܰ
ଷ 12

	 ிܰ
ସ 2

	 ிܰ
ହ 0
ிܰ
଺ 0
ிܰ
଼ 0

		 ிܰ
ଵ଴ 0

௏ܰ
∗

(Vertex Type Data)

௏ܰ
ଷ 0

	 ௏ܰ
ସ 6

	 ௏ܰ
ହ 4
௏ܰ
଺ 0
௏ܰ
଼ 0

		 ௏ܰ
ଵ଴ 0

Table 3.4: The values corresponding to the characterizing features of Sphenocorona.

This profile statistic uniquely identifies a standard polyhedron from all 123

polyhedra; with the exception of 16 cases involving 38 solids (Appendix 3.5). The

solids  in  each  of  these  cases  have  the  same profile  statistics.  However,  this  profile

statistic combining with edge adjacency and face adjacency matrices (Chapter 6) can

uniquely identify 123 solids except for only 8 pairs (16 solids) (Appendix 3.5).

Among  these  8  pairs,  solids  from  4  pairs  can  be  differentiated  based  on  their

symmetry groups [122] and polyhedron net [128]. Due to deformation (Chapter 4),

metabolosomes lose their symmetry properties, so the symmetry groups are not

considered here.

However, these almost identical solids are very unlikely to appear as shapes

for metabolosomes, since NV for these solids is much larger than the maximum

possible vertex counts from metabolosomes. The minimum number of vertices

among these 8 pairs (16 solids) is 18 and maximum is 70 (Appendix 3.5), whereas

we found that the metabolosomes have up to 12 vertices (Chapter 5 and 6).
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3.6.1 Inter-feature Relationships

The parameters contributing to the polyhedron profile statistic are not all

independent; rather multiple relationships exist among them. The most notable one is

the relation among number of vertices, faces and edges, known as Euler’s formula

[129]. It states that,

NV - NE + NF = 2

Additionally, two other trivial relationships of interest are:

ிܰ 	= 	 ∑ ிܰ
் 	்

 and

௏ܰ 	= 	෍ ௏ܰ
்

்

Although some of the features are functions of other features, they are still

important in the polyhedron profile statistic. These are discussed in Chapter 6.

3.6.2 Profile Statistic and Transformation

Transformations applied on a standard polyhedron generate another polyhedral shape

that may or may not be another standard polyhedron. When the transformation does

not generate any (1) new edge, nor (2) new vertex and (3) maintains convexity,  we

term the transformed polyhedron a deformed polyhedron. These transformations may

be affine transformations [130] or non-affine also.

Undoubtedly, every polyhedron may generate infinitely many distinct

deformed polyhedra based on different transformation functions. For example, a

slightly flattened icosahedron (flattening deforms the icosahedron) also has NV = 12,

NF = 20 and NE = 30 and it is still convex, but unlike an ideal icosahedron (Figure

3.4), it has unequal edge lengths and unequal face areas. Also, infinitely many such

deformed icosahedrons are possible. In nature, objects with elastic surfaces

belonging to an environment with uneven distributed energy may be deformed [18].

Deformation Invariance

Many polyhedron characteristics, like symmetry, planar angle, or solid angle may be

altered due to deformation. However, the polyhedron profile statistic described

above are invariant with respect to deformation when the above three conditions are

satisfied. The proof is given here:
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Let P is a polyhedron and P* is its deformed form. The deformation satisfies

the above three conditions. So, from the conditions:

NV(P) = NV(P*) and NE(P) = NE(P*),

i.e. the number of vertices and edges remain unchanged. From Euler's formula, NF(P)

= NF(P*), i.e. the number of faces also remains unchanged.

Let  us  consider  the ith edge  in  P  is Ei(P), i = 1, 2, ..., NE(P) and its

corresponding edge in P* is Ei(P*). Assume Ei(P) connects two vertices Vm(P) and

Vn(P), and Vm(P) is connected with r edges and Vn(P) is connected with s edges, m,

n = 1, 2, ..., NV(P). By condition (1), since no new edges are generated due to

deformation, Vm(P*) is also connected with r edges  and  Vn(P*) is also connected

with s edges.

Since the above is true for all m, n, the (r, s)th element of the edge adjacency

matrix eADJ(P)r,s =  eADJ(P*)r,s. For the same reasons, the face adjacency also

shows: fADJ(P)r,s = fADJ(P*)r,s. Since r, s are arbitrary, it finally gives,

eADJ(P) = eADJ(P*) and fADJ(P) = fADJ(P*).

Now, the number of triangles in P is:
1
3
	[2 × ଷ,ଷ(ܲ)ܬܦܣ݂ + .	+	ଷ,ସ(ܲ)ܬܦܣ݂	 . . 	[	ଷ,ଵ଴(ܲ)ܬܦܣ݂	+

Similarly, the number of quadrilaterals in P is:
1
4
	[2 × ସ,ସ(ܲ)ܬܦܣ݂ + 	ସ,ଷ(ܲ)ܬܦܣ݂	 + .+	ସ,ହ(ܲ)ܬܦܣ݂	 . . [	ସ,ଵ଴(ܲ)ܬܦܣ݂	+

and similar for other face types. Since fADJ(P) = fADJ(P*), the above two equations

gives, ிܰ
∗	(ܲ) 	= 	 ிܰ

∗	(ܲ∗),  i.e.  face  type  data  also  remains  unchanged  due  to

deformation. Similarly it can be shown that, the vertex type data also remains

unchanged. Hence the polyhedron profile statistic is invariant under deformation. So

we conclude that, this polyhedral shape descriptor is suitable for analyzing deformed

polyhedra as well.

However, the invariant property is only valid when the above three conditions

are satisfied. However, for incomplete polyhedral shape classification (Chapter 6),

we assume that these conditions are strictly followed, i.e. the metabolosomes shapes

are the deformed shapes of the standard polyhedra and the deformation satisfied the
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above three conditions. However, a little relaxation on these conditions is allowed for

the polyhedral structural distance model (Chapter 5) for shape prediction.

3.7 Data Collection

Drawing a polyhedron in ℝଷ requires the coordinates of the vertices and the

information about the directed path (Section 3.4.1) constructing each of the facets

(face data). These two attributes are sufficient to generate all other required features

of that polyhedron. For example, face data for the cube (Figure 3.1) is as follows:

F = {{V1, V2, V4, V3}, {V3, V4, V8, V7}, {V5, V6, V8, V7}, {V5, V6, V2, V1}, {V1, V3, V7,

V5}, {V2, V4, V8, V6}} = {Fi, i = 1, 2, …, 8}.

This information provides:

NV = | F1 È F2È … È F8 | and NF = | F |.

Consequently, following the notation from section 3.4.1,

F1 = {V1, V2, V4, V3} Û F1 = (D1, A1) where

D1 = {V1, V2, V3, V4} and

A1 = {(V1, V2), (V2, V4), (V4, V3), (V3, V1)} = {E12, E24, E43, E31} etc.

Since Eij = Eji " i, j Î 1, 2, …, 8, NE = | A1 È A2È … È A8 |.

Similarly, the number of faces with 4 edges, for example:

ிܰ
ସ	= | {Fi, i = 1, 2, …, 8 such that | Di | = 4} | = 6

and the number of vertices with 3 edges:

௏ܰ
ଷ = 	 ห	൛ ௜ܸ

ா ∶ 	 ௜ܸ
ா = 3, i = 1, 2, . . . , 8ൟ	ห	 = 8

and so on. The vertex coordinates are useful for drawing polyhedra and with face

data it facilitates calculating edge lengths, and face areas. The Mathematica [131]

package ‘JohnsonSolids.m’ [132] provides the face data for all Platonic solids,
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Archimedean solids, Johnson solids and Catalan solids. Appendices 3.1 to 3.4 give

the profile statistics for all solids considered.

3.8 Conclusions

There are 5 Platonic solids, 13 Archimedean solids, 92 Johnson solids and 13 Catalan

solids considered as standard polyhedra for all subsequent analysis. Among many

features of polyhedra, the features like vertex, face and edge counts, vertex type, face

type and two adjacency matrices were recorded. Based on these features, a

polyhedron  profile  statistic  is  proposed  and  data  collected  on  it  from  all  of  these

solids. This profile statistic is suitable for characterizing deformed shapes as well. An

algorithm based on the polyhedron profile statistic is developed in Chapter 5 for

predicting shapes for metabolosomes.

The polyhedron profile statistic is developed for convex polyhedra and in

subsequent chapters we establish that this statistic is a good shape descriptor and also

performs well for incomplete convex standard polyhedral shapes. This consideration

is useful for this research problem particularly; but if the objects of interest were

more complicated or belong to other polyhedron classes (for example concave

polyhedra), this statistic may not perform well. In those cases, a few more

characteristics might be required. This aspect has not been explored in this work and

could be a potential direction for future research.



Chapter 4

Statistical Analysis of Fundamental Structural

Properties

4.1 Introduction

Chapter 2 of this thesis describes the procedures for generating segmented and

smoothed 3D objects (metabolosomes) from the raw images. This chapter starts with

those segmented and smoothed metabolosomes. As discussed in Section 2.2.5

(Chapter 2), due to limited-angle single-axis tomography, the reconstructed

metabolosomes suffer from the missing wedge problem. This chapter first explains

the method we developed to solve this problem for polyhedral shapes.

The subsequent sections describe some fundamental structural properties of

the metabolosomes, such as aspect ratio, volume, and deformation. The properties

like aspect ratio, distribution of edge lengths and face area are not invariant  with

respect to deformation. So the analyses of these characteristics show whether the

metabolosome shapes are deformed.

Another purpose of these analyses is to test if the metabolosomes show

substantial discrepancies based on these structural parameters. The choice of shape

prediction algorithms largely depends on these results (Chapter 5 and 6). These

outcomes also have impacts from biological perspectives - they are discussed
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subsequently. However, this is the first ever study of these properties for these

bacterial microcompartments.

4.2 Polyhedral Approximation of Metabolosome Shapes

4.2.1 Polyhedral Structure for Metabolosomes

The segmented and smoothed metabolosome were visualized using UCSF Chimera

[92]. As displayed in Figure 4.1, the 3D views show each metabolosome has:

i) Some vertices.

ii) Few clearly visible complete and incomplete edges.

iii) Complete and incomplete facets; some of the facets are slightly curved.

iv) Some abrupt peaks (mostly at missing regions, due to segmentation errors).

Section 3.3.2 (Chapter 3) explained some reasons supporting the assumption

that the metabolosomes have (convex) polyhedral shapes. In addition, the above

observations (i) - (iii) also support some polyhedral models for the metabolosomes.

A similar bacterial microcompartment called Carboxysome also has a convex

polyhedral shape [10].

(a) (b) (c)

Figure 4.1: Vertices, faces and complete and incomplete edges in metabolosomes. (a) A
clearly  visible  vertex,  marked  with  a  circle  (b)  A  complete  face  (marked  with  vertices  in
blue, edges in red) (c) a complete (red) and an incomplete (yellow) edge.
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However, not all microscopic biological objects fit to a polyhedral model. For

example, the Rous sarcoma virus cores fit well with ellipsoid or cylindrical models

[133], Rhabdoviruses has bullet shaped morphology [134]. Some recent studies

proposed a few fullerene models [135] for viruses as well.

4.2.2 Drawing Incomplete Structures

Since the metabolosomes have missing regions due to the missing wedge problem

(Section  2.2.5,  Chapter  2),  fitting  a  closed  (or  complete)  polyhedron  to  a

metabolosome is not possible at this step. So we superimposed an incomplete

polyhedral structure on these incomplete metabolosomes (Figure 4.2). This has been

accomplished in three steps, using Chimera UCSF [92].

Step 1: Identifying vertices visually and labeling them.

Step 2: Connecting identified vertices - gives complete edges.

Step 3: Identifying incomplete edges visually and labeling them.

For a metabolosome (M), an incomplete structure (ISM) is defined as:

ISM = (V, IV, E, IE), where,

V = {Vi, i = 1, …, NV} = set of all visible vertices, NV = number of visible vertices.

E = {Eij, i ¹ j = 1, …, NV}  = set of all complete edges, Eij connects Vi and Vj.

NE = | E | is the number of complete edges,

IE = {IEi, i = 1, …, NIE} = set of all incomplete edges where,

NIE = number of incomplete edges.

An incomplete edge may have one or both terminals missing (only one edge

is found from 30 metabolosomes where both of the terminals of one edge are

missing). We termed the endpoints of an incomplete edge adjacent to missing regions

as intermediate vertices (IV). If the edge is complete, the IVs would be just points on

the edges.

Let, IV = {IVi, i = 1, …, NIV}  = set of all intermediate vertices where NIV is

the number of intermediate vertices. Since the truncation of a polyhedron from top

and bottom needs at least two vertices, and each vertex is connected with at least

three edges, it immediately follows that NIV ≥ 6 and NIE ≥ 6. Here the V, IV, E and IE

on ISM were identified through repeated and careful visual inspections.
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Reproducibility

Since the vertices, edges and hence faces are identified manually, reproducibility of

the results are required to be considered. As mentioned in this section, the first step

of drawing an incomplete structure for a metabolosome is to identify vertices. Some

vertices are very sharp and clearly visible - these vertices are unlikely to be mistaken.

However, some vertices are not so sharp and due to segmentation errors, they

may be surrounded by a few small 'peaks'. The existence of a vertex in such a case

could be realized by visually analyzing the gradients of the adjacent faces, possibility

of a meeting point of the adjacent visible edges etc. Though the vertices in these

cases are very likely to be identified by any examiner, the coordinates of the marked

vertex locations may differ to some extent across examiners. The coordinates are

important indeed, but a small variation in the coordinate would not affect the overall

shape of the object.

Once the vertices are identified, their connected edges are also identified.

There may be some ambiguities about the existence of an edge on a curved face - this

problem is solved by the principal component analysis ( Section 4.3.3); so there is no

issue with the reproducibility in these cases.

But one more reproducibility problem still exists - the problem with

incomplete edge identification. An incomplete edge has only one visible vertex. To

draw an incomplete edge, another random point must be chosen on the visible part of

that edge and this point selection is very much subjective. However, this subjective

selection may not have much effect on the overall structure as long as the incomplete

edges are identified.

In conclusion, the manual structure drawing approach is reproducible to a

great extent, thought the process may contain some operator effects. Since an

algorithm driven approach is disadvantageous (Section 4.6) for this problem, we

preferred manual vertex and edge identification.

Data from Incomplete Structures

From these superimposed incomplete polyhedral structures we collected the

coordinates of V and IV along with information on their connectivity, completeness

and the terminal nodes of E and IE. Chimera stores all of these data (file type: Python
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[136], file extension: .py) for each structure. We collected these data from 30

segmented incomplete metabolosomes.

(a) (b)

Figure 4.2: Superimposing an incomplete structure on a metabolosome. (a) A superimposed
structure on a metabolosome. (b) The same structure without metabolosome. The complete
edges are marked in red and incomplete edges are marked in yellow color.

4.3 Solving the Missing Wedge Problem

Section 2.2.5 (Chapter 2) describes the missing wedge problem in electron cryo-

tomography. The existing method attempts to solve the missing wedge problem by

the shape alignment and averaging (Section 1.2.2, Chapter 1) method. In this chapter,

we demonstrate that the reconstructed metabolosomes do not satisfy the assumptions

for this method. So we developed a new method to solve this problem. Section 4.3.1

and 4.3.2 describe this method.

4.3.1 The Problem in Computer Vision

The partially missing edges in a metabolosome are straight lines, but one or both

ends of those straight lines are missing due to the missing wedge problem. Clearly, if

the metabolosomes had no missing regions, the superimposed structures would not

have any incomplete straight lines. So the goal is now to predict the complete

polyhedron from the superimposed incomplete polyhedral structure corresponding to

a metabolosome. This prediction requires 'completing' the incomplete structures, i.e.
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finding all missing vertices, all completely missing edges and completing the

partially missing edges.

Let  us  consider  a  similar  problem  in  computer  vision  -  a  photograph  of  a

three-dimensional object having straight edges (e.g. a cubic box). Suppose, due to

noise  or  obstructions  during  imaging,  some  of  the  edges  cannot  be  completely

identified, i.e. the 2D image consists of imperfect (incomplete) 2D line data

corresponding to the edges. Now the problem of interpreting the 3D object from the

scene image from its imperfect 2D line data is a classical problem in computer

vision. If we consider ISM =  (V, IV, E, IE) as a planar graph instead of a solid

(Section 3.2, Chapter 3), our problem is now similar to this computer vision problem.

This problem in computer vision is approached through several algorithms

over  the  years  [137],  [138].  One  of  the  simplest  methods  is  the  INTERPRET

program, where the problem is resolved by "fitting straight line segments to the edge

points, extending these lines to form corners, identifying closed regions, and

determining which closed regions constitute the background" [55]. However, even a

modified simpler form of INTERPRET is adequate to solve our problem.

4.3.2 The Proposed Algorithm

The basic idea of our method is to extend the incomplete edges towards the missing

regions and check if the extended edges might meet together, at least approximately.

Step 1: Incomplete Edge Identification

Figure 4.3: First step of the proposed algorithm for completing structures demonstrated in a
cube. (a) Three incomplete edges which if extended, may meet with each other.  (b) Three
incomplete edges, separated from (a).
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First, we visually identified three incomplete edges from ISM which if

extended toward the missing region, might meet together. Certainly, the meeting

point would be in a missing region. We considered three incomplete edges, because a

vertex in a polyhedron needs at least three edges to meet in 3D. A simulated scenario

is provided in Figure 4.3.

Step 2: The extrapolation method for straight lines in 3D

In this step, the incomplete edges were sufficiently extended towards the missing

regions. This extension was carried out though extrapolation method. For simplicity,

let us denote IE1, IE2 and IE3 as 3 such incomplete edges and their terminal vertices

are (V1, IV1), (V2, IV2) and (V3, IV3) respectively, Vi Î V and IVi Î IV, i = 1, 2, 3 (as in

Figure 4.3). Then we sampled a set of ordered points {pm1, pm2, …, pmn} on the mth

incomplete edge [Figure 4.4 (b)], such that:

d(pm1, pm2)  = d(pm2, pm3) = … = d(pm(n-1), pmn)

where, d(x, y) = Euclidean distance between x and y in	ℝଷ. The value of n is chosen

such that d(pm1, pm2)  is  very  small  (e.g.  we  sampled  1000  points  per  nanometer).

Based on these points on the mth incomplete edge, another set of ordered points {qm1,

qm2, …, qmk} on the mth incomplete edge was extrapolated toward the missing region

[Figure 4.4 (c)], satisfying the conditions:

d(qm1, qm2)  = d(qm2, qm3) = … = d(qm-1,k, qmk) and ௞
௡
≥ 10.

Hence, the set {qm1, qm2, …, qmk} are also equidistant points on the extended

part of the mth incomplete edge. The equidistance condition ensures the new path is

10 times longer than the existing (visible) path. At least 10 times length confirms the

new path is long enough to go beyond the possible missing vertices locations.

Step 3: Proximity Measurement

After extension, the mth incomplete edge now consists of two parts - the previously

visible part and the extended part. In other words,

IVm = {pm1, pm2, …, pmn} È {qm1, qm2, …, qmk}.



Chapter 4    Statistical Analysis of Fundamental Structural Properties

69

In this step we checked if these extended paths meet with each other. This test

relies on the fact that if three straight lines in 3D intersect; they intersect at exactly

one point. First we considered three points, one from each of the three incomplete

edges, say q1i, q2j, and q3l and then defined a distance among these three points:

Dijl = d(q1i, Cijl) + d(q2j, Cijl) + d(q3l, Cijl) where Cijl = (q1i + q2j + q3l) / 3

where d(x, y) = Euclidean distance between x and y in	ℝଷ. So Dijl is  the sum of the

distances from the vertices to the centroid of the triangle [Figure 4.4 (d)] formed by

{q1i, q2j, q3l}.

Figure 4.4: The edge extrapolation method. (a) The three incomplete edges from Figure 4.3.
(b) Equidistant points are sampled on the incomplete edges. (c) The extrapolation method is
applied to generate points on the extended edge (in blue) and (d) a triangle considered for
calculating D.

Let D =  {Dijl, " i,  j,  l}, then min(D)  » 0 if and only if the three extended

edges exactly meet at one point. Since neither the vertices nor the edges are very

sharp; there are segmentation errors and vertices were selected manually i.e. the

measurements contain subjective errors, three extended edges of a metabolosome are

unlikely to meet. So we set a small threshold value t, such that:

Cijl is a possible vertex if Dijl ≤ t.
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For metabolosomes, this threshold value is set as 30 Å based on visual inspections.

Step 4: Justification

If any Cijl is  qualified  as  a  vertex  by  Step  3,  this  step  further  justifies  if  it  is  a  real

vertex. Let Cijl is a new vertex 'recovered' through extending incomplete edges. It

would give three new 'complete' edges with terminal vertices (V1, Cijl), (V2, Cijl) and

(V3, Cijl). Cijl is finally considered as a vertex if:

d(Vm, Cijl) ≤ 	௟ߤ	 + ,  ௟ߪ3	 " m = 1, 2, 3

where, ௟ are respectively the mean and the standard deviation of theߪ	and	௟ߤ complete

edge lengths from the corresponding incomplete structure.

If X is a continuous random variable representing the edge lengths of a

metabolosome, then by Chebyshev's inequality [139],

ܲ(|ܺ − |௟ߤ ≥ (௟ߪ3 ≤	
1
9

In other words, this limit ensures that at least about 90% of the extended

edges will satisfy the condition in Step 4. During calculation, we found that none of

the extended edges violated this limit. However, after the missing vertices are

recovered and incomplete edges are completed, ௟  are calculated based onߪ	and	௟ߤ

all edges. We found that 12 edges from 12 metabolosomes (out of 30

metabolosomes) exceed the 	௟ߤ	 + ௟ limit. Hence, the choice of theߪ2	 	௟ߤ	 + ௟ limitߪ3	

is not 'too liberal'.

Step 5: Completing the Incomplete Edges

We repeated Step 1 - 5 for all possible incomplete edge triplets and checked if this

algorithm gives any new vertex.

Let the recovered vertices be RV = {RVi, i = 1, …, NRV}, NRV is the number of

recovered vertices. Incorporating RV in previous .py file for ISM (from Chimera

UCSF) displays RV alongside M and ISM. Finally, connecting RV with relevant visible

vertices generates the completed edges corresponding to each IEi, i = 1, …, NIE.

However, RVi may be connected with more than 3 edges. To find other edges

connected to it, first we considered all edges (RVi, Vj), i = 1, …, NRV and j = 1, …, NV.

(RVi, Vj) is considered an edge if it maintains the convexity of the structure and the

coplanarity of the vertices of a non-triangular face.
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4.3.3 Curved Facets Approximation

Section 4.2.1 explains that some metabolosomes have curved facets (Figure 4.5).

This  phenomenon  raises  ambiguity  about  the  existence  of  possible  edges  on  those

curved facets. For example, a curved quadrilateral facet actually may consist of two

adjacent triangles, or a curved pentagonal facet on a metabolosome may be actually a

triangle adjacent with a quadrilateral. We used the principal component analysis to

handle this problem.

Principal Component Analysis

The principal component analysis (PCA) [140], [141] converts a set of observations

into another set of values of uncorrelated variables through an orthogonal

transformation. Suppose that, X is a vector of p random variables x1, x2, …, xp. The

principal component of X is a set of another p variables (z1, z2, …, zp) where,

௜ݖ = 	 ܽ௜′ܺ = 	∑ ܽ௜௝
௣
௝ୀଵ ௝ݔ  , i = 1, 2, …, p

where, ai's are constants such that,

Var(Z1) ≥ Var(Z2) ≥ … ≥ Var(Zp) and Cov(Zi, Zj) = 0 " i ¹ j,

Var(.) and Cov(.) are the variance and covariance of corresponding random variables

respectively. The variances of the principal components measure different

dimensions of the data along orthogonal directions. We used this notion to test

coplanarity of a set of points in 3D.

Coplanarity and PCA

In geometry, a set of points are coplanar if they are on the same plane. Vertices of a

triangle in 3D are always coplanar, but this is not necessarily the case for sets of four

or more points. Also, due to segmentation and detection errors, it is very unlikely that

all vertices of the n-gonal facets (n ≥ 4) in a metabolosome are exactly coplanar.

For example, let a curved facet have a quadrilateral boundary defined with

vertices Q = (V1, V2, V3, V4), where, Vi's are the coordinates of the vertices in 3D and

the variables here are x, y and z in the coordinate system (Figure 4.5). PCA on Q

gives 3 principal components, say PC1, PC2 and PC3 such that,

Var(PC1) ≥ Var(PC2) ≥ Var(PC3).



Chapter 4    Statistical Analysis of Fundamental Structural Properties

72

Var(PC3) is null if (V1, V2, V3, V4) are exactly coplanar. For slightly curved facets,

Var (PC1) ≥ Var(PC2) ≫ Var(PC3) ¹ 0

Figure 4.5: A curved facet in a metabolosome, marked with vertices (V1, V2, V3, V4) and its
graphical presentation.

Since Var(PC3) increases with curvature, we considered a coplanarity statistic

(Tcop) as:

Tcop = 	ට௏௔௥(௉஼య)
௏௔௥(௉஼భ)

A rectangular curved facet is considered as two adjacent triangles if Tcop ≥ t

where t is a threshold value, determined heuristically. First, for the few rectangular

facets that were visually indentified, Tcop was calculated. Let t1 = max(Tcop) for these

cases. Next, the same procedure was repeated for several adjacent clear triangular

faces; let t2 = min(Tcop) for these cases. We found that t1 = 0.0491 and t2 = 0.0548 and

selected t such that t1 ≤ t ≤ t2.

Results and Discussion

The threshold value (t) was set to 0.05. Since vertices were selected manually, and t

largely depends on these coordinates, an insignificant relaxation on t was considered.

Repeated and careful visual inspections identified only 6 cases where Tcop ≥ 0.05 but

two adjacent triangular faces constituted a quadrilateral. These values are 0.072,

0.052, 0.076, 0.087, 0.060 and 0.069. However, these are not too far from the

considered threshold. The remaining 58 quadrilaterals from 30 metabolosomes

satisfied t1 ≤ t ≤ t2.
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Figure 4.6 (a) displays the histogram of Tcop where two triangles adjacent to

an edge are not coplanar and Figure 4.6 (b) shows the same for Tcop calculated from

the vertices of the non-triangular faces. These two plots justify that the threshold (t)

well separates the adjacent triangle pairs from non-triangular facets.

The coplanarity statistic (Tcop) depends on the Var(PC1)  as  well,  i.e.  the

performance of this statistic depends on the span of the surface along the direction of

its first principal component. In other words, this statistic is more sensitive for

detecting an edge on a smaller surface than a larger one. However, no simulation

study was carried out for comparing performance of this statistic for different types

of faces.

(a) (b)

Figure 4.6: Distribution of the coplanarity statistics. (a) The distribution of Tcop from  the
cases where two adjacent triangular faces are not coplanar and (b) Tcop calculated for the
non-triangular faces.

4.4 Data from Fitted Polyhedra

Section 4.2.2 describes the data from an incomplete polyhedron. The algorithm in

Section 4.3.2 generates vertices in missing regions. The procedure in Section 4.3.3

decides if edges are possible on curved facets. Combining these together, we fitted a

complete polyhedron for each metabolosome.

As described in Section 4.2.2 and Section 4.3.2, Chimera UCSF records

information about the fitted polyhedron. Section 3.6 (Chapter 3) describes the
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polyhedron profile statistic. We extracted (1) the polyhedron profile statistic values,

(2) the coordinates of vertices and (3) data on the directed path for each face from the

completed polyhedron fitted to each of the metabolosomes from Chimera output.

Distribution of Fitted Polyhedron Features

The  following  plots  (Figure  4.7  and  Figure  4.8)  displays  the  distribution  of  two

important features - number of edges connected to each vertex and types of faces

from metabolosomes. There may be some errors in structure drawing, manual

segmentation etc. as discussed in Section 4.2.2; however, these plots accurately

displays the structures we finalized.

Figure 4.7: The distribution of face type data in metabolosomes. The 'M' stands for
metabolosome in the plot.

Figure 3.6 (in Chapter 3) describes that the distribution of face type data for

the Platonic solids degenerates at a single value. Figure 4.7 shows non-zero

frequencies for more than one value which is clearly opposing the fact from the

Platonic solids. Therefore, the metabolosomes do not have Platonic solids shapes.

Similar observations from the following plot (Figure 4.8) imply that the

metabolosomes cannot be Archimedean solids. Figure 3.8 (from Chapter 3) shows
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the distribution of the vertex type data degenerates at a single point for the

Archimedean solids. The vertex type data for the metabolosomes do not agree.

The Catalan solids differ from the Archimedean solids in terms of face and

vertex type - a Catalan solid has only one type of face, but its vertex types may be

different. So, metabolosomes cannot be Catalan solids as well, since a Catalan solid

can have only one type of face.

Figure 4.8: The distribution of number of edges connected to each vertex in metabolosomes.
The letter 'M' stands for metabolosome in the plot.

4.5 Structural Properties of Metabolosomes

4.5.1 Volume

The metabolosome volumes were estimated using voxel-count and adjusted for

missing wedges. When slicing a metabolosome (M) along the z-axis (Section 2.4.2,

Chapter 2), we define slices as S = {Si, i = 1, 2, … , Ns}, Ns = number of slices along

the z-axis. Since top and bottom slices of the IMOD reconstructed trimmed images
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(Section 2.4, Chapter 2) do not contain the object (metabolosome), let Sstart =  first

segmented slice and Send = last segmented slice, 1≤ Sstart ≤ Send ≤ SNs.

Recalling the interior pixel from Section 2.5.4 (Chapter 2), we denote the

number of interior pixels in Si as Pi, Sstart ≤ i ≤ Send. Since each slice is one pixel

'thick', and the voxels have uniform dimensions (9.62 Å × 9.62 Å × 9.62 Å), the

number of voxels Mvox and the physical volume (Mvol) of M are estimated as:

௩௢௫ܯ 	= 	෍ ௜ܲ
௜

						and								ܯ௩௢௟ = ௩௢௫ܯ	 	× 	9.62ଷ	Åଷ	

Adjustment for Missing Wedge

Due to missing wedge problem (Section 2.2.5, Chapter 2), Mvol is slightly

underestimated. To consider this downward bias, the sequence (Pi, Sstart ≤ i ≤ Send)

has been extrapolated for ± 10 slices at both ends. Let (Pi*, Sstart - 10 ≤ i ≤ Send + 10)

is the new sequence. The adjusted volume is:

(݆݀ܽ)௩௢௟ܯ 	= 	෍ ௜ܲ
∗

௜

	× 	9.62ଷ	Åଷ	.

Results

Figure  4.9  shows  the  distribution  of Mvol(adj)  from  the  30  metabolosomes.  The

minimum  volume  is  0.04  attoliter  (1  attoliter  =  109 Å3), whereas the maximum is

3.35 attoliter with average volume of 1.15 attoliter, i.e. the metabolosomes show

about 80-fold variability in their volumes.

Figure 4.9: Distribution of volumes of the 30 metabolosomes considered for analysis.
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The volume distribution is left-truncated since the metabolosomes smaller

than 0.04 attoliter are excluded from segmentation and hence excluded from

estimating volume distribution. The smaller objects are excluded because they are

not good for segmentation. Larger objects have larger boundaries in slices and the

larger the boundary, the more precise is the segmentation. In other words, the relative

error of reconstruction is smaller for a larger object, assuming a fixed level of

subjective errors for boundary drawing.

Cluster Analysis of Volumes

Cluster analysis is a method of grouping a set of observations in such a way that the

observations within a group (cluster) are more alike than the observations from other

groups [142]. There are several methods for clustering; we used the hierarchical

clustering with Ward's minimum variance method [143] (package 'hclust' in R) [144]

for metabolosome volumes. The cluster analysis on Mvol(adj) shows (Figure 4.10)

there may be three volume groups, though there are at least 2-fold within-group

variations. The results have biological significance as discussed below.

Figure 4.10: A dendrogram from cluster analysis of the volumes of the metabolosomes. The
rectangles (in blue) show the volume groups.

Biological Significance

The volume analysis helps biologists to estimate the amount of proteins or inclusions

inside a compartment. Biologists may also be interested  to know the variability in

relative proportions of building proteins across different volume groups.
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The metabolosomes may have different shapes as well (Chapter 5). It is also

of interest to analyze if particular shaped metabolosomes are more likely to be in a

certain volume group than others and vice-versa which may help illuminating the

assembly mechanism of proteins inside the compartments. We also found that, there

is no clear relation between volume groups and predicted shapes i.e. all types of

predicted polyhedral shapes (Chapter 5 and 6) appear in all volume groups.

4.5.2 Regularity

Edge Length for Deformed Polyhedron

Regular polyhedra like the Platonic solids, Archimedean solids or Johnson solids, all

have regular faces, i.e. all faces have edges with equal lengths. Hence, one way of

identifying deformation is to analyze the edge lengths distribution of metabolosomes.

Recalling the notations from Section 3.4 (Chapter 3):

V = {Vi, i = 1, 2, …, NV}, Vi  = ith vertex, NV is the total number of vertices,

E = {Eij, i, j Î [1, NV]} = set of all edges and NE = number of edges.

Let, ELr =  length  of rth edge, r =  1,  2,  …, NE and L = ௥ݔܽܯ 	(ELr) and l =

.	(௥ܮܧ)	௥݊݅ܯ

We considered the ratio ௅
௟
 to check for deformation. Clearly ௅

௟
≥ 1 with

equality holding for regular polyhedral shapes. The edge length was calculated based

on the data collected from fitted complete polyhedron to the metabolosomes (Section

4.4). While comparing the edge lengths within a single metabolosome, the ratio ௅
௟
 is

useful. Since the same ௅
௟
 ratio could arise from very different distributions of edge

lengths, however, it does not provide information about edge length distributions

across metabolosomes. Appendix 4.1 provides some basic statistical measures on the

edge lengths from individual metabolosomes.

Results

These measurements were calculated from completed metabolosome structures. The

minimum of ௅
௟
 ratio is 1.7855 and maximum is 4.4306 with mean 3.0866, i.e. the

longest edge of any metabolosome is about twice of the smallest one. This

observation suggests that the metabolosome structures are deformed. Figure 4.11
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shows the distribution of edge lengths for a single metabolosome and the distribution

of ௅
௟
 for the 30 metabolosomes.

(a) (b)

Figure 4.11: Checking deformation through edge length. (a) Distribution of edge lengths
from a single metabolosome. (b) Distribution of edge length ratio from 30 metabolosomes.

Total and Average Edge Length

The above calculations also give total edge length and average edge length for each

metabolosome. Let, TLr = total edge length and µr = average edge length of rth

metabolosome, r = 1, 2, …, 30.

(a) (b)

Figure 4.12: (a) Distribution of total edge lengths and (b) average edge lengths from 30
metabolosomes.

As provided in the table in Appendix 4.1, the Min(µr) = 62.53 (in pixel) and

the Max(µr) = 125.76 (in pixel), which is about two times of the minimum average

edge lengths. An ANOVA for comparing equality of µr is not appropriate here since
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some of the edge length distributions are not normal and the equality of variance

assumption is not satisfied. The similar observation is found from TLr as well.  The

Min(TLr) = 1371 (in pixel) and Max(TLr) = 3457 (in pixel) which is about 2.5 times

of the minimum. Hence we conclude that the average and total edge length vary

significantly (2- folds and 2.5-folds respectively) across metabolosomes. These

results confirm that the metabolosomes are not regular polyhedra; they are rather

deformed. Figure 4.12 shows the distribution of total and average edge length from

30 metabolosomes.

Biological Significance

Recent studies show that the multicomponent elastic membranes of bacterial

inclusions can be shaped to the standard polyhedral structures [18], [145]. According

to these models, the shell proteins contributing to the edges are stiffer than faces.

Hence, total edge length may work as an estimated amount of those less elastic

proteins. The distribution of average edge lengths across metabolosomes helps to

understand the average amount of those proteins per edge.

Face area for Deformed Polyhedron

Figure 4.13: A box plot showing the distribution of the areas of all triangular faces from 30
metabolosomes.

Along with edge length, face area is also an indicator of deformation. Similar type

faces in any non-deformed standard polyhedron have exactly equal area. For
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example, a sphenocorona (86th Johnson solid) has all (12) triangles with equal area

and all squares (2) with equal area. Thus, similar shaped faces with different areas

indicate the object is deformed, though the reverse may not be true.

Similar to edge length, the ratio of minimum to maximum (triangular) face

area show it too varies within metabolosome. Figure 4.13 shows the distribution of

triangular face area. Appendix 4.2 gives some basic statistical measures on the

triangular face areas from 30 metabolosomes.

Biological Significance

Face area also has some impacts on the function of these microcompartments. The

surface area to volume ratio is the area available to exchange metabolites vs. the

amount of enzymes inside available to work on them. The total face area provides an

estimate for the amount of shell proteins enveloping the compartments.

4.5.3 Aspect Ratio and Sphericity

The aspect ratio of a geometric shape is the ratio between its lengths in different

dimensions, most commonly the ratio of its longest length to shortest length. For

example, a square and a circle have aspect ratios 1:1; in landscape a rectangle has

aspect ratio as width: height, for an ellipse it is the ratio of lengths of major to minor

axis etc. The definition for multidimensional object is provided in [146].

An ellipsoid is defined with three orthogonal axes: one major and two minor

axes. Let r1, r2 and r3 are the lengths of these three axes such that r1 ≥ r2 ≥ r3. If r1 =

r2 = r3, the ellipsoid turns out to be a sphere. Thus, a sphere has aspect ratio 1:1 and

an ellipsoid has aspect ratio		௥భ
௥ଷ

> 1. We estimate the r1, r2 and r3 of  the  best  fit

ellipsoid to a metabolosome through PCA and hence test their sphericity.

Method

Recalling the Section 2.5.4 (Chapter 2), we collected the coordinates from the hand-

drawn boundaries, sliced along the z-axis. For a metabolosome, let the set of all

boundary points from the tth slice  (St) is SBPt =  {(SXti, SYti, SZti)}, i =  1,  2,  …,

number of points on tth slice boundary, Sstart ≤ t ≤ Send. So, the set of boundary points

(BP) from all slices, i.e. the collected surface points from visible metabolosome

regions,
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	ܲܤ = 	 ራ ܤܵ ௧ܲ

ௌ೐೙೏

௧	ୀ	ௌೞ೟ೌೝ೟

Suppose, BPPC1, BPPC2, and BPPC3 are the three principal components from

BP, satisfying SD(BPPC1)  ≥ SD(BPPC2)  ≥ SD(BPPC3) where SD(.) is the standard

deviation. We use these standard deviations to estimate the aspect ratio of the fitted

ellipsoid to the metabolosome. If the fitted ellipsoid has axes lengths r1, r2 and r3 (r1

≥ r2 ≥ r3), then the aspect ratio:
ଵݎ
ଷݎ

»	
ܤ)ܦܵ ௉ܲ஼ଵ)
ܤ)ܦܵ ௉ܲ஼ଷ)

	.

For convenience, we considered the inverse aspect ratio: ܴଵ 	= 	 ௥య
௥భ
	.

The minimum and maximum of this ratio for the metabolosomes are 0.4251

and 0.8017 respectively with the mean of 0.6207. Notably, about 97% of the values

are less than 0.75. In addition, the ratio:

ܴଶ 	= 	
ܤ)ܦܵ ௉ܲ஼ଶ)
ܤ)ܦܵ ௉ܲ஼ଵ)

	.

is also calculated for these metabolosomes. The minimum, maximum and average of

R2 are 0.4989, 0.9343 and 0.8108 respectively. Figure 4.14 gives the distributions of

these ratios from all metabolosomes.

(a) (b)

Figure 4.14: The distribution of the aspect ratios. (a) The distribution of R1 and  (b)  the
distribution of R2, calculated from 30 metabolosomes.

However, the metabolosomes have missing regions and these ratios are from

visible  data  only.  The  data  from  missing  regions  can  affect  this  ratio  but  it  would

need a large increment in the ratio for the metabolosomes to be spherical. For
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example, the ratios below 0.70 must be increased by ≥ 42.86% to be approximately

unity, which is unlikely. This result indicates most of the metabolosomes are non-

spherical.

Biological Significance

The estimated length along the major axis is also an estimate of the maximum

possible diameter of a metabolosome cross-section. The cross-section length may

provide an estimate of the number of discrete molecules of specific sizes that can fit

side-by-side. Cross-section and aspect ratio together may provide the 'thickness' of

the compartment. This estimate along with other structural information provides

assembly mechanism for molecules inside metabolosomes. More about these aspects

are discussed in [19].

4.5.4 Polyhedron Profile Statistic based Clustering

In this section, we carried out a cluster analysis on the metabolosomes based on the

polyhedron profile statistic to have an initial understanding on how many types of

structures are there. We used the hierarchical clustering with Ward's minimum

variance method [143] (package 'hclust' in R) [144].

Figure 4.15: A dendrogram from the cluster analysis of the metabolosomes based on the
polyhedron profile statistic.
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The above dendrogram shows, based on the polyhedron profile statistic there

may be approximately 5-6 types of metabolosomes. An important observation is: in

spite of considerable variability among any two metabolosomes with respect to their

aspect ratios, volumes, edge lengths, face areas etc., there are only a few types of

polyhedral structures possible. However, more sophisticated methods for classifying

metabolosomes are discussed in Chapter 5 and 6.

4.6 Conclusions and Discussion

In  this  chapter,  we  found  that  the metabolosomes have convex polyhedral shapes.

Most importantly, the metabolosomes largely vary in size. In addition, they are non-

symmetric, non-uniform (deformed) and have varied aspect ratios. We also

developed an algorithm for handling the missing wedge problem in the polyhedral

shaped cryo-EM tomographic reconstructed images. This chapter also provides an

indication that the metabolosomes may have structures resembling the Johnson

solids, as opposed to symmetric icosahedral shape of the Carboxysome.

The features extraction from the incomplete metabolosome reconstructions

were accomplished manually and may be subject to little inconsistency. Here an

automated algorithm to identify vertices, edges and faces could be more appropriate.

Though the algorithm driven identification results are reproducible, but the manual

feature identification has advantages in the case of metabolosomes.

The manual feature extraction is advantageous due to several reasons. First,

as described in Section 4.2.1, the reconstructed metabolosomes have some abrupt

peaks which may be considered as a part of the object in automated algorithms. Next,

the reconstructed metabolosomes have missing regions. The missing regions

boundaries will be treated as metabolosome boundaries in automated algorithms and

would require manual intervention. Again, the non-missing areas also contain errors

from manual segmentation and there are curved edges. It is very difficult to set a

global threshold for fitting planes to the metabolosome surfaces due to these errors.

These difficulties led us to visually identify the polyhedral features.



Chapter 5

Polyhedral Structural Distance Model

5.1 Introduction

The analyses of the fundamental geometric properties establish that the

metabolosomes vary largely in shapes and sizes, they are non-uniform and non-

symmetric. As discussed earlier, the traditional shape alignment and averaging

methods cannot be applied here to manage the missing wedge problem.

This chapter is concerned with characterizing polyhedral shapes of the

metabolosomes and it describes a method we developed for predicting polyhedral

shapes in the presence of missing data. This is the first ever shape characterization of

these bacterial inclusions.

Two different approaches were undertaken to solve this shape prediction

problem. The first approach is discussed in this chapter and uses the ‘completed’

metabolosome structures (Section 4.3, Chapter 4) to match with the standard

polyhedra (Section 3.5, Chapter 3). The second approach is discussed in Part II of

Chapter 6.

The approach discussed here is a method we developed using the polyhedron

profile statistic (Section 3.6, Chapter 3) and a distance function for polyhedral shape

matching. Importantly, this method is also equally applicable to the deformed objects

with varying sizes.
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5.2 Shape Prediction using Completed Shapes

The initial metabolosome structures are incomplete but have been subsequently

'completed' using an algorithm described in Chapter 4. This section is concerned with

a polyhedral structural distance model we developed to evaluate the similarities

among the completed metabolosome structures and the solids from the standard

polyhedral families.

5.2.1 Shape Descriptor for Polyhedron

In general, the statistical shape matching algorithms have two main components - a

shape descriptor and a proximity measure function [147]. Since the shapes

considered here are standard polyhedra, the shape descriptor should contain the

discriminating features of the standard polyhedra. The polyhedron profile statistic

(Section 3.6, Chapter 3) is such a shape descriptor we used, since:

1) It characterizes the features of standard polyhedra.

2) This statistic can differentiate almost all standard polyhedra except very few,

as discussed in Section 3.6 (Chapter 3).

3) It contains topological properties invariant under deformation.

As discussed in Chapter 1, several shape descriptors are developed for use in

a different contexts. But very little attention had been directed towards translation

invariant standard polyhedral shape descriptors to classify standard polyhedral

shapes families.

We also developed a specialized distance function for polyhedral shape

matching, particularly suitable for these biological microstructures from their ECT

images, and it is discussed in the next section.

5.2.2 The Structural Distance Model

Let us recall the polyhedron profile statistic from Section 3.6 (Chapter 3) and the key

notations. MPSi is the profile statistic for the ith completed metabolosome and SPSj is

the same for the jth standard polyhedron, i =  1,  2,…,  30  and j =  1,  2,  …,  123.  Let

MPSik and SPSjk be the observations for the kth feature, k =  1,  2,  …,  15,  since  the
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polyhedron profile statistic has 15 entries. NV and NE are the number of vertices and

edges respectively and 	 ிܰ
௥ be the number of faces with r edges, r Î{3, 4, 5, 6, 8, 10}.

We define the structural distance (Dij) between the ith complete metabolosome

and the jth standard solid as:

௜௝ܦ = 	෍ݓ௞

ଵହ

௞ୀଵ

݀௞

where,

݀௞ = 	 ቊ
݈ଵ௞	 × ܲܯ| ௜ܵ௞ −	ܵܲ ௝ܵ௞ห				if		(ܲܯ ௜ܵ௞ −	ܵܲ ௝ܵ௞൯ ≤ 0	
݈ଶ௞	 × ܲܯ| ௜ܵ௞ −	ܵܲ ௝ܵ௞ห				if		(ܲܯ ௜ܵ௞ −	ܵܲ ௝ܵ௞൯ ≥ 0

�

and the parameter wk represents the weight of the kth feature, l1k and l2k indicate the

robustness (Section 5.2.3) of the kth feature, k =1, 2, …, 15. The ith metabolosome is

predicted to have tth standard solid's shape if argmin j Dij = t, j = 1, 2, …, 123 and i =

1, 2,…,30. However, the parameters l1k and l2k also  put  some  weights  to  the kth

feature, but these are separately considered from wk since l1k and l2k are used for

different purposes as described in next section.

5.2.3 Parameters Selection

Weights

It is possible to convert any non-triangular face to a number of coplanar triangular

faces. A quadrilateral can be considered as two adjacent coplanar triangles or a

pentagon can be partitioned as three adjacent coplanar triangles. Notably, this

'triangularization' does not change the shape of the object, but changes its polyhedron

profile statistic, since converting a non-triangular face to triangles needs extra edges.

But in 3D, four or five vertices from a metabolosome are very unlikely to be

coplanar (at least approximately) and when they are, it may indicate a meaningful

characteristic. In other words, a clearly visible quadrilateral or a pentagonal facet in a

metabolosome is especially an important feature. These observations are

incorporated in the structural distance model through weights (w).

Naturally, the more important characteristics are given greater weights. In

notation: wm ≥ wn if the mth feature is more important than the nth one, m, n = 1, 2, …,

15. However, the weights corresponding to the features are assigned heuristically and

a possible set of values we used for wk is provided in Appendix 5.1.



Chapter 5    Polyhedral Structural Distance Model

88

Robustness

Since the metabolosome data may contain errors arising from manual segmentation

or visual feature identification, the polyhedron profile statistic from a metabolosome

may not exactly be equal to that of any standard polyhedron. So, if MPSi is  such  a

metabolosome profile, ܲܯ ௜ܵ௞ −	ܵܲ ௝ܵ௞ 	 ≠ 	0 for some k = 1, 2, …, 15 and for all j = 1,

2, …, 123. However,	|{݇ ∶ 	 ܲܯ) ௜ܵ௞ −	ܵܲ ௝ܵ௞) 	 ≠ 	0}| varies, i.e. mismatches may occur

for a different number of features.

Now, if the profile statistic from a metabolosome does not match with any of

the standard polyhedron, we find the 'nearest' standard polyhedron for this

metabolosome. In other words, we find that standard polyhedron whose structure can

be achieved by minimal meaningful changes on the metabolosome structure. This is

explained as follows.

The structural changes of a polyhedron can be done through several ways, e.g.

1) Adding one or more vertices to the structure, and connecting these new

vertices with the existing vertices. Note that, one new vertex in 3D needs at

least three new edges to be connected. It automatically generates new faces as

well. However, this approach changes the original shape of the structure.

2) Adding diagonals to convert quadrilateral facets to coplanar triangles or

pentagonal facets to coplanar triangles and quadrilaterals etc. This procedure

does not change the shape, but changes the edge counts and different types of

face counts.

Now,  for  example,  adding  a  vertex  and  the  required  (at  least  3)  edges  to  a

metabolosome structure generates a new structure which exactly resembles the SPSm.

Also, adding one diagonal of just one quadrilateral face to the same metabolosome

structure generates another structure which exactly resembles the SPSn. We prefer

the SPSn since it involves minimal changes (requires just one edge) rather than the

SPSm (which requires one vertices and at least three edges).

In addition, since the incomplete metabolosome structures are 'completed', we

assume that the probability of existence of a new vertex beyond the observed

'completed' structure is very small. Rather, due to curved facets and segmentation

errors, it is highly probable that edges may exist at the diagonals of curved

quadrilateral or pentagonal facets. So the number of vertices is less preferable to

alter, hence less robust than the number of faces.
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Again, adding diagonals changes the number of edges, the number of faces,

the types of faces and the types of vertices. If e is an additional diagonal added to a

curved quadrilateral face, the triangle count 	( ிܰ
ଷ)	 increases and the quadrilateral

count	( ிܰ
ସ) decreases. But adding a diagonal to a curved pentagonal face results

increment in	 ிܰ
ଷ	 and 	 ிܰ

ସ	simultaneously. So, some features tend to increase (e.g.	 ிܰ
ଷ),

some to decrease (e.g.	 ிܰ
ହ) and some features (e.g.	 ிܰ

ସ) may show both (pentagons are

highest edged faces in the metabolosomes). So an important consideration is:

sign(ܲܯ ௜ܵ௞ − ܵܲ ௝ܵ௞) where, ܲܯ) ௜ܵ௞ − ܵܲ ௝ܵ௞) ¹ 0.

The parameter l1k manages the increments and l2k manages the decrement of

the kth feature. The higher value of l1k indicates that the kth feature is more probable to

decrease during structural changes and it is just opposite for l2k.  All  these

observations are included in the structural distance model (Section 5.2.2). However,

the values of these parameters are assigned intuitively (with the following

justification). Appendix 5.1 gives a possible set of values we used for l1k and l2k.

Selection of l1, l2 and w

First, l1 and l2 for all features are set to 1. Then, based on the importance of the

features and effects of these parameters on individual features (discussed in Section

5.2.3), the values are changed. The rationale behind the amount of changes made on

these two parameters (from its initial value =1) are also discussed in Section 5.2.3.

For the parameter w (weight), initially all values are set to 1/15 = 0.0667, so

that total weight becomes unit. Then based on the importance of a feature (discussed

in Section 5.2.3) the corresponding weight is increased and the increment is

subtracted equally from other features' weights to keep the total as unit. This process

is repeated until all features get appropriate weights based on the discussion in

Section 5.2.3. Finally, the l1, l2 and w are fine tuned through the following process:

As discussed in Section 5.2.4, there are 11 metabolosomes shows exact match

with the standard polyhedra. For these 11 metabolosomes, these parameters are

irrelevant, because in the structural distance model, ݀௞  is  zero  for  all k.  We  first

record these shapes; they are J62,  J86,  J87 and  J88 (J  =  Johnson  solid).  Next,  some

errors are introduced (example below) to these structures and applied the structural

distance model to check if the prediction is correct. The parameters are 'tuned' until
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the model predicts the correct initial shapes. This is an iterative process and many

possible choices for the parameters are possible.

Example: The polyhedron profile statistic of a Sphenocorona (J86) is:

T = (10, 14, 22, 12, 2, 0, 0, 0, 0, 0, 6, 4, 0, 0 , 0).

Due to curved surface, segmentation error etc., say one edge adjacent to two triangles

was not recorded from the structure. So the recorded polyhedron profile statistic is:

T* = (10, 13, 21, 10, 3, 0, 0, 0, 0, 0, 8, 2, 0, 0, 0).

(The vertex count remains same, face count is reduced by 1 as two adjacent triangles

now form one quadrilateral, edge count is reduced by 1, triangle count is reduced by

2, quadrilateral count is increased by 1. Due to removal of an edge, two vertices are

affected; the number of vertices with 4 edges is increased by 2 and the number of

vertices with 5 edges is decreased by 2).

Finally the structural distance model is applied to T* and the parameters are

'tuned' until J86 gets the lowest structural distance. The same process is repeated for

J62,  J87 and J88 and for different types of errors as well  (e.g.  non-recorded vertex or

non-recorded edge and vertex both etc.). The final set of parameters are selected such

that the set provides the best possible prediction (may not be correct prediction in a

few cases) for this controlled experiment.

5.2.4 Results: Predicted Shapes

The distance matrix D = ((Dij)) is displayed as a heatmap [148] using R [149], [150].

However, a transformation has been applied to Dij for a vivid display:

dij = loge ((c × Dij) +1) " i, j and c = 5.

The distribution and the following heatmap (Figure 5.1) of dij shows the

metabolosomes may have about 6-8 standard polyhedral shapes. As described in

Section 4.4 (Chapter 4), almost all of these predicted shapes are Johnson solids. This

result also supports the initial observation from another study regarding the non-

symmetric structure of the metabolosomes [151].

It  may  also  be  useful  to  check  if  all  predicted  shapes  are  equally  likely  to

appear as shapes of the metabolosomes. The most frequent predicted shapes are the

86th, 87th and 88th Johnson solids [125] with names Sphenocorona, Augmented

Sphenocorona and Sphenomegacorona respectively. Table 5.1 gives the names of all

predicted solids and their frequencies.
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Figure 5.1: A heatmap displaying the distances among the metabolosome and the standard
solids obtained through the structural distance model. 'M' stands for metabolosome and 'J' for
Johnson solids. The locations corresponding to the predicted solids are marked.
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Polyhedron Name Frequency
Augmented sphenocorona (J87) 15
Sphenocorona (J86) 6
Sphenomegacorona (J88) 3
Elongated pentagonal bipyramid (J16) 1
Metabidiminished icosahedron (J62) 2
Biaugmented triangular prism (J50) 1
Cubeoctahedron (Archimedean solid) 1
Gyro-elongated square bipyramid (J17) 1

Table 5.1: The predicted shapes and their frequencies obtained through the structural
distance model. 'J' in table stands for Johnson solids, followed by solid number.

Figure 5.2a shows these most frequent shapes. There are 11 metabolosomes

from 30 metabolosomes show Dij = 0. The polyhedron profile statistic for these

solids is provided in Appendix 3.3.

(a) (b) (c)

Figure 5.2a: Identified metabolosome shapes using the structural distance model. (a)
Sphenocorona (NV = 10, NE =  22, NF =  14  and  it  has  two  adjacent  quadrilaterals),  (b)
Augmented Sphenocorona (NV = 11, NE = 26, NF = 17 and it has only one quadrilateral) and
(c) Sphenomegacorona (NV = 12, NE = 28, NF = 18 and it has two adjacent quadrilaterals).

In this context, it may also be relevant to see if there is any pattern in the

distances among the metabolosomes. So, Dij is calculated i = 1, 2, ..., 30 and j = 1, 2,

..., 30 among metabolosomes and the distances are plotted as a heatmap (Figure

5.2b). The plot shows there are clear similarities among metabolosomes and a few

different types of metabolosomes are there.
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Figure 5.2b: A heatmap displaying the distances among metabolosome structures obtained
through the structural distance model. 'M' stands for metabolosome.

However,  it  is  also  useful  to  check  how  this  model  affects  the  standard

polyhedral structures, i.e. to check if this model predicts a standard polyhedra as

another polyhedra, at least for the predicted shapes. So, like Figure 5.2b, distances

are calculated among the standard solids and plotted as a heatmap (Figure 5.2c). The

plot shows that, this model discriminates most of the standard solids and in

particular, the predicted shapes for the metabolosomes would not be wrongly

predicted  as  other  solids.  This  experiment  validates  the  usefulness  of  this  distance

measure.
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Figure 5.2c: A heatmap displaying the distances among standard polyhedra obtained through
the structural distance model.
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5.2.5 Visual Validation of Predicted Shapes

Data from the metabolosomes may contain errors due to manual image segmentation

and visual feature extraction. So we visually checked if the predicted shapes are

relevant to the objects. For example, if the predicted shape for a metabolosome has

two adjacent pentagons (e.g. Metabidiminished icosahedron) we checked if that

metabolosome really may have two adjacent pentagonal facets. We found that all of

these predicted shapes are relevant to the metabolosome structures. However, a few

other shapes are also possible for each metabolosome. These possibilities are based

on the second or third lowest Dij values for each i, but also utilize some visual

characterization, such as the possibility of an unidentified vertices, edges or possible

missing proportions.

Appendix 5.2 shows the results. In summary, about 70% of the second

'nearest' solids are also Johnson Solids. Noticeably, any polyhedron with NV =  12

infers an obvious choice as an Icosahedron which is a Platonic solid, since additional

diagonals can convert all non-triangular faces to adjacent triangles and an all-

triangular faced convex polyhedron with NV = 12 is eventually an Icosahedron.

5.3 A Simulation Study

The purpose of this simulation study is to estimate the probability that the structural

distance method along with shape completion (Section 4.3.2, Chapter 4) can predict

the correct parent shapes from their incomplete structures, for varying degrees of

missing percentages.

Since about 80% of the proposed shapes of the metabolosomes were

classified as the Sphenocorona, Augmented Sphenocorona and Sphenomegacorona,

only these three solids and Icosahedron are considered for this simulation study. The

Icosahedron is also included since a previously identified microcompartment called

Carboxysome [12], [10] has this shape.
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5.3.1 Simulation Algorithm

Step 1: Generating 3D Solids

Simulate a standard polyhedron using vertex coordinates and the information on

directed path (Section 3.4.1, Chapter 3) constructing each of the facets (face data).

Figure 5.3(a) shows a simulated Sphenocorona.

Step 2: Truncation

Randomly rotate the simulated solid. Analogous to the missing wedge problem in

metabolosomes, truncate the simulated solid from top and bottom by certain

proportion (e.g. 10%) of its original length. Figure 5.3(b) shows a truncated

Sphenocorona.

(a) (b)

(c) (d)

Figure 5.3: A simulation study on the structural distance model on sphenocorona. (a) A
simulated sphenocorona, (b) the sphenocorona is truncated from top, (c) the identified
vertices, completed and incomplete edges from truncated sphenocorona and (d) completed
structure from (c).
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Step 3: Completing Structure and Data Collection

Identify the complete and incomplete polyhedral features (vertices, edges, faces etc.)

and complete those using the modified INTERPRET algorithm (Section 4.3.2,

Chapter 4). Collect the polyhedron profile statistic from these completed solid.

Figure 5.3(d) shows a completed structure from the truncated one.

Step 4: Structural Distance Model

Apply the structural distance model to predict the parent solid from the polyhedron

profile statistic.  We repeated Step 1- Step 4 for the four solids,  for several  random

rotations (here 1000 times) and for different truncation percentages (here, 1% to 80%

with 1% interval). If this model can correctly predict n times for a particular solid

and for a fixed truncation proportion, the correct prediction probability =		 ௡
ଵ଴଴଴

.

5.3.2 Results from Simulation Study

Figure 5.4 and Table 5.2 summarize the results from this simulation study. It shows

that if the solid is truncated by ≤ 30%, the probability that this algorithm will predict

the correct parent shape is ≥ 0.90 and in cases of ≤ 20% truncation, this probability is

» 1. So if the metabolosomes have missing regions of ≤ 30%, this algorithm predicts

the correct shapes of the metabolosomes with probability ≥ 0.90.

100% Correct
Prediction

90% Correct
Prediction

80% Correct
Prediction

Truncate
Proportion
(at most)

Truncate
Proportion
(at most)

Truncate
Proportion
(at most)

Sphenocorona 18% 38% 42%
Augmented Sphenocorona 26% 40% 44%
Sphenomegacorona 21% 37% 40%
Icosahedron 41% 48% 51%

Table 5.2: The correct prediction probabilities with varying truncation percentage for four
standard solids.

As discussed in Section 2.2.5 (Chapter 2),  the truncation proportion at the top and

the bottom of a spherical object could be around 13% in case of ± 60° limited angle

tilt-series imaging. Considering this proportion (26%, top and bottom together) as a

reference, we selected 30% in this context (since the metabolosomes are not
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spherical and may have varied truncation proportion as well). The above table shows,

for 90% correct prediction, the truncation proportion may be up to 37%.

This result also shows, for higher truncation proportions, among these four

solids, the Sphenomegacorona is least predictive and the Icosahedron is most

predictive. This simulation is conducted for deformed solids as well, where the

deformation has been controlled based on the average aspect ratios of the

metabolosomes and it shows exactly the same results as non-deformed objects.

Figure 5.4: The plot shows the gradual decrease of correct prediction probabilities across
four solids for varying truncation percentage.

In this simulation, the predicted shapes do not match with the original shapes

(misclassified) only when some of the vertices are not recovered from the truncated

solids by this algorithm. Now, for example, a vertex could not be recovered and the

original  solid  was  a  Sphenocorona  (number  of  vertices  =  12).  The  polyhedral

structural distance model would not predict a (nearest) solid which has 12 vertices,

rather it would predict a solid with 11 vertices due to the higher weights assigned on

the vertices. The Section 5.2.3 describes the reasons behind the higher weight

assignments. This is the main aspect of the misclassified solids.
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5.4 Strengths and Limitations

5.4.1 Strengths of the Structural Distance Model

1) The structural distance (Dij) is calculated based on the polyhedron profile

statistic. Since this statistic is invariant under deformation, one of the

strengths of this method is it can compare non-symmetric, non-uniform

shapes with varying sizes as well. For instance, it can identify the inherent

structure of a deformed cube as a cube.

2) An additional strength is feature prioritization and feature robustness, which

is particularly important for the biological microstructures. The polyhedron

profile statistic contains 15 features, but not all features carry equal

importance nor are they equally sensitive to image segmentation and visual

identification errors. The model parameters here capture these observations.

3) This model has another potential use - it can predict the 'nearest' standard

solid when the polyhedron profile statistic from a metabolosome does not

exactly match with any of the standard solids. This model predicts the

standard solid as 'nearest' which requires minimum changes in its polyhedral

structure.

4) Finally, this model is free from missing constraints, since it works with

completed structures.

5.4.2 Limitations of the Structural Distance Model

Though the polyhedral structural distance model has elegance in predicting correct

polyhedral shapes for lesser truncation, it has some limitations too.

1) This algorithm relies on the completed metabolosome structures. The shape

completion depends on 'recovering' vertices in the missing regions. But, there

is a chance that some vertices are not recovered. This situation may occur due

to unknown missing proportion in the metabolosomes, errors in manual

segmentation and visual feature extraction.
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2) For similar reasons, the recovered vertices may not be 'real'. In addition, a

wrong vertex completely changes the polyhedron profile statistic, since the

features in the polyhedron profile statistic are correlated on the vertex counts.

3) No statistical method is developed to estimate the model parameters (wk, l1k

and l2k). Hence these values are heuristically selected and preference based.

Since they are not unique, it may predict different sets of solids for different

choices of parameters.

4) This method does not provide the misclassification probabilities, i.e. given an

unknown polyhedral structure, this method only predicts the 'nearest' standard

solid, but without any probability attached with it.

5) Finally, this method is not useful to compare the incomplete polyhedral

shapes, since after truncation, two different polyhedra can result in the same

polyhedron profile statistics.

5.5 Conclusions

A polyhedral structural distance is described in this chapter and the metabolosome

shapes are predicted by minimizing this distance. The predicted shapes are Johnson

solids  and  about  80%  of  them  are  just  three  Johnson  solids  -  the  Sphenocorona,

Augmented sphenocorona and Sphenomegacorona.

The results from a simulation study support the potential of this model for

polyhedral shape prediction. This model is designed for a particular biological

microstructure and works well for it, but suffers from limitations, as described in

Section 5.4.2. To address these limitations, we developed a novel incomplete

polyhedral shape classification model, described in the next chapter.



Chapter 6

Incomplete Polyhedral Shape Classification

Section I: Simulation

6.1 Introduction

The results from Chapter 4 confirm that the metabolosomes have largely varied

shapes and sizes. They are also non-uniform and non-symmetric, i.e. deformed. Thus

the traditional shape averaging method is not applicable here. In Chapter 4 and 5, we

developed an algorithm for handling the missing wedge problem and a structural

distance model to predict the most probable polyhedral structures for the

metabolosomes. However, as discussed in Section 5.4.2 (Chapter 5), the structural

distance model has a few limitations.

In this chapter the metabolosome shape analysis problem is approached in a

different way. Instead of 'completing' the incomplete metabolosome structures, the

standard solids are rather truncated and then the incomplete metabolosome structures

are compared with the truncated standard solids.

Later this chapter (Section II), we discuss that the polyhedral shape prediction

for the incomplete metabolosomes can be considered as a classification problem

through supervised learning [152]. We developed a novel Bayes classifier [54] for

incomplete polyhedral shapes classification. We also developed classifiers using the
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linear discriminant analysis [57] and the support vector machine [58] for the same

purpose and the metabolosome shapes are predicted using each of these classifiers.

The first section of this chapter deals with truncating standard polyhedron.

6.2 Truncating Standard Polyhedron

Chapter 3 describes the standard polyhedra and their families. A polyhedral structure

is characterized by its polyhedron profile statistic and this statistic also serves as a

polyhedral shape descriptor. This section describes the notion of truncated

polyhedron and the polyhedron profile statistic for truncated polyhedron.

6.2.1 Truncation by a Single Plane

Let SPi is the ith standard polyhedron, i = 1, 2, …, 123. If there exists a plane (P) in

ℝଷ	such that SPi Ç P is  a p-gonal (p ≥ 3) polygon, then P 'divides' SPi into two

disjoint but adjacent polyhedra, say 1SPi and 2SPi. Considering SPi is a solid instead

of a graph (Section 3.2, Chapter 3), SPi = 1SPi È 2SPi and each of 1SPi and 2SPi is

truncated form of SPi. Evidently, infinitely many truncated polyhedra pairs (1SPi,

2SPi) are possible from SPi based on the choices of P.

Now, if there are two distinct planes (say, P1 and P2) in ℝଷ	such that SPi Ç P1

and SPi Ç P2 are both p-gonal (p ≥ 3) polygons, then P1 and P2 divide SPi into a set

of polyhedra say, {1SPi, 2SPi, …, kSPi }, k = 3, 4, such that SPi = 1SPi È 2SPi È … È

kSPi. Here too, depending on the selection of P1 and P2, {1SPi, 2SPi, …, kSPi } and k

vary.

6.2.2 Truncation by Two Parallel Planes

If P1 ǁ P2 (the symbol 'ǁ' indicates parallel), then P1 and P2 separate SPi into exactly

three polyhedra when both of SPi Ç P1 and SPi Ç P2 are p-gonal (p ≥ 3). Consider P1

and P2 (P1 ǁ P2) divide SPi into 1SPi, TSPi and 3SPi, TSPi Î P1 Å P2 where Å denotes

the intermediate space bounded by two planes, then TSPi is the most important part

for our future analyses and we define it as the truncated standard polyhedra (TSP)

from the ith solid (TSPi). The following figure (Figure 6.1) illustrates this.
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Now, a set  of equidistant parallel  planes 'divides'  a 3D metabolosome into a

set of 2D slices and the original 3D metabolosome may be formed by stacking the

slices back in proper order (Section 2.4.2 provides the method behind slicing through

a graphical presentation). Hence any two slices are parallel to each other. Recalling

the missing wedge problem in a 3D reconstructed ECT images (Section 2.2.5,

Chapter 2), a few slices from top and bottom of the metabolosomes could not be

segmented. Since the last segmented slices at the top and the last segmented slices at

the bottom of the segmented metabolosomes are also parallel, it is equivalent to

assume that the metabolosomes are truncated from top and from bottom by two

approximately parallel planes and therefore, the condition P1 ǁ P2 is imposed here.

Figure 6.1: Truncating standard polyhedra - a cube. Two parallel planes P1 and P2 intersects
the cube {V1, V2, …, V8}.  Among three new polyhedra generated, the polyhedra with
vertices {T1, T2, …, T8} is the TSP.

6.2.3 Truncation Parameters

But, as mentioned in last section, SPi can generate infinitely many TSPi based on the

selection of P1 and P2, even though the condition P1 ǁ P2 is satisfied. However, when

P1 ǁ P2, TSPi depends on only two other characteristics of P1 and P2: f1(P1, P2) and

f2(P1, P2) as described below.

To define these functions, let A = the largest diagonal of SPi obtained by

connecting two farthest vertices (say, V1, V2) from SPi and A ^ P1, P2 (^ means

perpendicular). When P1 and P2 intersect SPi, suppose A Ç P1 = a1 and A Ç P2 = a2

are the two points on A such that the paths (V1, a1), (a1, a2) and (a2, V2) are disjoint.
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Then, f1(P1, P2) = (d(V1, a1), d(a2, V2)) and f2(P1, P2) = (qx, qy, qz) where d(.) is the

Euclidean distance and qx, qy, qz are  the  angles  of A with  the  x-,  y-  and  z-axis

respectively. Since d(V1, V2) depends on V1 and V2, f1(P1, P2) is rather expressed as:

ଵ݂( ଵܲ, ଶܲ) = 	 ൬	
d( ଵܸ,ܽଵ)
d( ଵܸ, ଶܸ)

,
d(ܽଶ, ଶܸ)
d( ଵܸ, ଶܸ)

	൰.

The function f1(P1, P2) is termed as truncation proportion and f2(P1, P2) as truncation

angle.

6.2.4 Example: Effect of the Truncation Parameters

For simplicity, the effects of these two parameters f1(P1, P2) and f2(P1, P2) are

described for a two-dimensional image. The three-dimensional cases are similar. The

truncation planes here are just two parallel straight lines.

Figure 6.2 (b) and (d) show that, for a fixed f1(P1, P2), truncation angles

determine whether the vertices will be missing or complete edges as well. Figure 6.2

(b) and (c) compares the truncation proportion for a fixed f2(P1, P2).

Figure 6.2: Effects of truncation parameters. (a) A complete hexagon. (b) Two parallel
planes P1 and P2 truncate the shape. The truncated shape has 4 vertices and 6 edges. (c)
Increased truncation proportion keeping the truncation angle fixed as (b) - the truncated
shape has only 2 edges, no vertex. (d) Changed truncation angle, keeping truncation
proportion fixed as (b) - the truncated shape has 2 vertices and 4 edges.

6.3 Characterizing Truncated Polyhedron

In Section 3.6 (Chapter 3), we defined the polyhedron profile statistic and utilized it

as a polyhedron shape descriptor in Chapter 5.  The components of this statistic are

vertex, face, edge counts, different types of vertices and faces and two adjacency
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matrices.  However, they have been developed in the context of complete polyhedra

thus far.

But this statistic from TSPi would naturally differ from the same from SPi

since some of the vertices, edges and faces have been removed due to truncation. In

addition, truncation generates extra features as well, such as incomplete edges and

incomplete faces which were not considered before. A modified polyhedron profile

statistic is thus needed to addresses these differences.

6.3.1 Vertex, Edge and Face Counts

Section 3.4.1 (Chapter 3) describes the notion of vertex, face and edges in standard

complete polyhedron. This section describes them in the context of the truncated

(incomplete) polyhedron.

Number of Vertices

We define, set of all vertices in a SP as: V = {Vi, i = 1, 2, …, NV }, Vi  = ith vertex, NV

is the total number of vertices. However, due to truncation, some vertices are

removed. So the set of remaining vertices from TSP is defined as: TV = {TVi, i = 1, 2,

…, NTV },  where TVi  = ith vertex from TSP, NTV = total number of visible vertices.

Clearly, TV Ì V and NTV ≤ NV - 2. As an example, Figure 6.3 is a cube truncated by

two parallel planes; this TSP has NTV = 6.

Number of Edges

The edge of a polyhedron is explained in Section 3.2 (Chapter 3). The set of edges

from SP is defined as, E =  {Eij, i, j Î [1, NV] such that Eij exists} and the total

number of edges is NE =  |E|. However, truncation leaves the following 3 types of

edges in a polyhedron:

1. Some edges may completely disappear (missing edges).

2. Some edges may partially disappear (partially missing edges).

3. Remaining edges remain undamaged (complete edges).

So, a TSP may have two types of edges - a set of partially missing edges (PE) and

another set of complete edges (CE). Since PE are edges indeed, the number of edges

in TSP, denoted as NTE = |PE| + |CE|, PE È CE Í E and NTE ≤ NE. For example, Figure
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6.3 shows NTE = 12, |PE| = 6 and |CE| = 6. Notably, none of the edges in Figure 6.3

are completely missing here due to truncation.

Figure 6.3: A cube truncated by two parallel planes (T11, T12, T13) and (T21, T22, T23).

Number of Faces

The notion of faces is also explained in Section 3.2 (Chapter 3). We define the set of

all faces from SP as F =  {Fi, i =  1,  2,  …, NF}, where NF is  number  of  faces  in P.

However, similar to edges, truncation also generates the following 3 types of faces:

1. Some faces may completely disappear (missing faces)

2. Some faces may be truncated partially (partially missing faces)

3. Remaining faces stay unaltered (complete faces)

Here  too,  a TSP may have two types of faces - partially missing faces (PF) and

complete faces (CF). Since PF are also distinct faces, the number of faces of TSP,

denoted as NTF =  |PF|  +  |CF|.  Similar  to NE, PF È CF Í F and NTF ≤ NF. For

example, the truncated cube in Figure 6.3 has NTF = 6, |PF| = 6 and |CF| = 0, i.e. all

faces are affected due to truncation.

6.3.2 Vertex Type and Face Type

Recalling from Section 3.4.2 (Chapter 3), the vertex type is defined as the number of

edges connected to a vertex or equivalently the number of faces adjacent to a vertex.

As defined there, for a SP, the number of vertices with k edges,

௏ܰ
௞ =	 ห	൛ ௜ܸ

ா ∶ 	 ௜ܸ
ா = ݇, ݅ = 1,2, . . ௏ܰൟ	ห
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where,

௜ܸ
ா 	= | {Eij, " j Î [1, NV] : Eij Î E} |, i = 1, 2, …, NV.

But truncation may remove some vertices altogether and even when a vertex

is visible, all of its attached edges may or may not remain visible. To capture this

phenomenon we introduce here the notion of censoring.

First, we consider only vertices having all of its attached edges at least

partially visible. Define, ܶ ௏ܰ
௞ =	 number of vertices from TSP with k edges attached

to it and none of its attached edges are missing, k = 3, 4, 5, 6, 8, 10.

Next, we consider only those visible vertices having one or more of its

attached edges completely missing and define, ݐ ௏ܰ
௞ =	number of vertices from TSP

with exactly k visible edges, k = 3, 4, …, 10. Combining ܶ ௏ܰ
௞ and ݐ ௏ܰ

௞,  it  gives the

number of vertices from TSP with at least k visible edges ܶܣ) ௏ܰ
௞). Hence,

ܶܣ ௏ܰ
௞ = 	 ห	൛ܶ ௜ܸ

ா ∶ 	 ܶ ௜ܸ
ா ≤ ݇, ݅ = 1,2, . .்ܰ௏ൟ	ห

where, ܶ ௜ܸ
ா		= number of visible edges from TSP connected with TVi, i =  1,  2,  …,

NTV.  However,  both  of ܶ ௏ܰ
௞ and ܶܣ ௏ܰ

௞ are considered separately for characterizing

TSP. For example, in Figure 6.3 the numbers of vertices with exactly 3 and 4 vertices

are 6 and zero respectively. The number of vertices with at least 3 vertices is also 6

in this example.

The similar notion is applied to face type data as well. Since, some of the

faces are partially truncated; these faces are no longer triangles or quadrilaterals. So

the CF's are characterized by ܶ ிܰ
௞ =	 Number of faces from TSP with exactly k

visible edges and none of its edges were incomplete, k = 3, 4, 5, 6, 8, 10.

The PF's are characterized by ݐ ிܰ
௞ =	number of partially missing faces with

exactly k visible edges, k = 3, 4, …, 10. Combining ܶ ிܰ
௞ with ݐ ிܰ

௞ results in the

number of faces with at least k visible edges		൫ܨܰܶܣ
݇൯, k = 3, 4, …, 10. For example,

for the truncated solid in Figure 6.3, number of complete faces with exactly 4 edges

is zero, but the number of faces with at least 4 faces is 6. Clearly, the 'at least type

data' also takes the incomplete faces into account and hence is more informative.
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6.3.3 Adjacency Matrices

The notion of edge adjacency matrix, face adjacency matrix and their construction

methods are described in Section 3.4.3 (Chapter 3). Here for TSP, exactly the same

concept is used, but only the complete edges, complete faces and complete vertices

are considered.

For simplicity, let us consider Figure 6.4, where a cube is truncated by a

single plane only (T1, T2, T3). There are only 3 edges, (V1, V6), (V5, V6) and (V6,

V7) where both of the adjacent faces are intact after truncation and there are 9 edges

having their terminal vertices unaffected due to truncation. So the face adjacency

matrix  (fADJt) for TSP considers only 3 edges and the edge adjacency matrix

(eADJt) for TSP reflects 9 edges. Hence,

fADJtij =ቄ3					if	i = j = 4
0						otherwise

�    and eADJtij = ቄ9							if	i = j = 3
0							otherwise

�

Figure 6.4: A cube truncated by a single plane (T1, T2, T3).

6.3.4 Polyhedron Profile Statistic for Truncated Polyhedron

As discussed, the truncated standard polyhedra have important characterizing

features which are expressed through the at least type data. These extra features are

important, because these numbers also capture the polyhedra features affected due to

truncation. Here is the summary of them:

1) Vertex, face and edge counts: (NTV, NTF, NTE)

2) Complete vertex type: TN୚
∗  = (ܶ ௏ܰ

ଷ, ܶ ௏ܰ
ସ, ܶ ௏ܰ

ହ, ܶ ௏ܰ
଺ , ܶ ௏ܰ

଼ , ܶ ௏ܰ
ଵ଴	)

3) Complete face type: TN୊
∗  = (ܶ ிܰ

ଷ, ܶ ிܰ
ସ, ܶ ிܰ

ହ, ܶ ிܰ
଺, ܶ ிܰ

଼, ܶ ிܰ
ଵ଴)
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4) At least vertex type: ATN୚
∗  =

ܶܣ	) ௏ܰ
ଷ, ܶܣ ௏ܰ

ସ, ܶܣ ௏ܰ
ହ , ܶܣ ௏ܰ

଺ , ܶܣ ௏ܰ
଻ , ܶܣ ௏ܰ

଼, ܶܣ ௏ܰ
ଽ, ܶܣ ௏ܰ

ଵ଴	)

5) At least face type: ATN୊
∗  =

ܶܣ) ிܰ
ଷ, ܶܣ ிܰ

ସ , ܶܣ ிܰ
ହ , ܶܣ ிܰ

଺ , ܶܣ ிܰ
଻, ܶܣ ிܰ

଼, ܶܣ ிܰ
ଽ, ܶܣ ிܰ

ଵ଴)

6) Edge adjacency matrix (eADJt) = 10 × 10 matrix, transformed as a vector of

length 100

7) Face adjacency matrix (fADJt) =  10  ×  10  matrix,  transformed as  a  vector  of

length 100.

Combining all these features in the above order into a single vector generates

the new polyhedron profile statistic for truncated standard polyhedra (TPPS,

truncated polyhedron profile statistic). It should be noted that a profile statistic for

TSPi is not just SPi’s profile statistic with some missing entries. The TPPS serves as

the truncated polyhedral shape descriptor for further analysis.

Similar to TPPS, the complete solids also have these properties as discussed

in Section 3.4 (Chapter 3). Combining these features in the same order as TPPS, we

get the polyhedron profile statistic for complete solids. A single standard polyhedron

can generate several TPPS, but can have only one complete polyhedron profile

statistic.

The polyhedron profile statistic for a complete polyhedron is discussed and

applied in Chapter 3 and Chapter 5. We found this statistics is a good polyhedral

shape descriptor and it can capture useful structural properties to distinguish a

polyhedron from polyhedra families. It is also utilized in the polyhedral structural

distance model to predict the shapes of the metabolosomes.

Since the TPPS is based on the same notion of the polyhedron profile

statistic, TPPS should also be a meaningful and useful statistic for the truncated

polyhedra. In fact, the second part of this chapter shows that various classifiers which

are developed based on the TPPS are found to be considerably powerful classifiers

for classifying incomplete polyhedra. Hence, we considered TPPS is a relevant

statistics for this purpose.



Chapter 6 Incomplete Polyhedral Shape Classification: Section I: Simulation

110

6.4 Truncated Standard Polyhedron Simulation

6.4.1 Purpose of Simulation

Since the incomplete metabolosomes have truncated polyhedral shapes, the purpose

of this simulation is to generate truncated standard polyhedra analogous to the

truncated metabolosomes.

123 standard polyhedra from four polyhedron families are considered for this

analysis. These standard polyhedral structures are truncated from varying truncation

proportions and angles in ℝଷ. Each standard polyhedron generates a class of

truncated polyhedra based on these truncation parameters. The ultimate goal is to

classify an incomplete metabolosome structure into any of these classes.

First, a complete standard polyhedron is generated based on the polyhedra

data discussed in Section 3.7 (Chapter 3). Then the polyhedron is rotated and

truncated based on pre-defined truncation parameters. Finally, the polyhedron profile

statistic is collected from the truncated standard polyhedron through an automated

algorithm. This process is repeated based on pre-determined truncation parameters.

6.4.2 Simulation Parameters

While truncating a polyhedron, the truncation characteristics should be analogous to

the missing wedges so that truncated metabolosomes are comparable with the

truncated polyhedron. Section 6.2 describes one such characteristic incorporated by

imposing the constraint P1 ǁ P2. In this section, the other truncation parameters, i.e.

truncation proportion and truncation angles are explained.

Truncation Proportion

The value of the function f1(P1, P2) also has to be chosen to reflect the truncation

proportions of the metabolosomes. But the actual values of f1(P1, P2) for the

metabolosomes are unknown and are expected to vary slightly across objects due to

some segmentation and reconstruction errors. However, repeated visual inspection

suggests that the reconstructed metabolosomes may have about 25% missing.
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But, a missing proportion (e.g. 0.20) in standard polyhedra can be achieved

through numerous selections of f1(P1, P2), e.g. (0.15, 0.05) or (0.12, 0.08). To restrict

this choice of f1(P1, P2) to a finite class, we impose the condition:

ܦ = 	
d( ଵܸ,ܽଵ)
d( ଵܸ, ଶܸ)

	= 	
d(ܽଶ, ଶܸ)
d( ଵܸ, ଶܸ)

and allow D to taking values from {0.050, 0.075, 0.100, 0.125, 0.150}. So, during

simulation, each of the 123 standard polyhedra will be truncated from top and bottom

with equal proportion for each value of D.

In general  a TSP with D = 0.050 contains more information than D = 0.150

for a fixed f2(P1, P2). If the parent solid can be predicted from TSP with D = 0.150, it

is very likely that the same can be achieved when D = 0.050. Thus max(D) = 0.150

which truncates total 30% of a polyhedron is chosen to exceed the maximum

possible truncation proportion in the metabolosomes.

Truncation Angle and Number of Rotations

As mentioned before, the structure of a TSP not only depends on the f1(P1, P2), but

also on the angle of truncation, i.e. f2(P1, P2)  =  (qx, qy, qz). Similarly to truncation

proportion, the truncation angles (qx, qy, qz) for metabolosomes are also unknown.

However, in simulation, the SP is truncated by P1 ǁ P2 from several angles in ℝଷ,

expecting that it includes the actual truncation angles occur in the metabolosomes.

The rotation angles (qx, qy, qz) are independently selected such that:

௧ߠ 	~	uniform(−2ߨ, ,(ߨ2 ݐ = ,ݕ,ݔ .ݖ

The parameters (qx, qy, qz) are sampled a sufficiently large number of times

(Nsim) so that an exhaustive set of TSP for each of 123 SP is generated. For this

simulation study Nsim = 5000 and in subsequent sections we show that Nsim is

sufficiently large to produce an exhaustive set of TSP.

6.4.3 Rotating Plane vs. Rotating Object

Let D be fixed, P1 ǁ P2 and (qx, qy, qz) are set to some values. P1 and P2 truncate SP

from angles (qx, qy, qz) to generate a TSP. This is equivalent to the following:

Suppose, A is a straight line in ℝଷ such that A ^ P1 ǁ P2 and (qx*, qy*, qz*) are

the  rotation  angles  required  to  set A parallel to z-axis. Now the SP is rotated using
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(qx*, qy*, qz*) and two new planes P1Z and P2Z are defined such that P1Z ǁ P2Z and P1Z,

P2Z ^ z-axis and D is the distance between P1Z and P2Z. If P1Z and P2Z truncates SP

simultaneously, it generates same TSP as by P1 and P2 above.

This observation is implemented in the simulation for computational

simplicity. The SP is rotated using independently distributed ௧ߠ ,ߨ2−)݉ݎ݋݂݅݊ݑ	~	

,(ߨ2 ݐ = ,ݕ,ݔ and each rotated	ݖ SP is truncated by P1 ǁ P2 with distance D and P1 ^

z-axis. The truncation proportion (D) is calculated based on the 'height' of the rotated

SP along the z-axis. The truncation proportion = 0.100 means it truncates 10% from

top and  10% from bottom of  the  rotated SP. The following algorithm gives details

about the truncation process.

6.4.4 The Truncation Algorithm

Notation

SPi is the ith complete standard polyhedron, i = 1, 2, …, 123.

NV = total number of vertices in SPi.

NE = total number of edges in SPi.

E = {Ejk, j, k Î [1, NV] such that Ejk exists} is the set all edges from SPi and

Ejk = the edge connecting vertices Vj and Vk, Ejk Î E.

Step 1: Simulating a Complete Standard Polyhedron

Section 3.7 (Chapter 3) shows that, from the face data of SPi, the terminal vertices of

each edge can be extracted. Let Ejk from SPi connects Vj and Vk.   Instead  of

considering Ejk as a straight line in ℝଷ, let us define Ejk = {qjk1, qjk2, …, qjkm} where

qjk's points are sampled on the path Vj ® Vk such that m is very large (here 1000 per

unit edge length) and d(qjk1, qjk2) = d(qjk1, qjk3) = … = d(qjk(m-1), qjkm). Here d(.) is the

Euclidean distance in ℝଷ. Clearly, the collection of the points on edges (EPi)  =

⋃ ௝௞௝,௞ܧ  is  the set  of all  sampled points from all  edges of SPi. Certainly, plotting all

points from EPi would  generate  the  graph  of SPi. Hence the simulated SPi is

expressed as the set of points EPi.
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Step 2: Rotating the Simulated Polyhedron

Since rotating SPi is equivalent to rotating EPi, a set of rotational transformations are

applied to EPi to  rotate  the  object  in  3D.  This  transformation  is  for  elemental

rotation, i.e. rotation about Cartesian axes. If rotation of EPi by qx, qy and qz angles

along the x-, y- and z-axes respectively generates the rotated object REPi, then REPi

= Rx(qx) × Ry(qy) × Rz(qz) × EPi where Rx(qx), Ry(qy) and Rz(qz) are rotation matrices

defined as follows [153]:

ܴ௫(ߠ௫) = ൥
1 0 0
0 ௫ߠݏ݋ܿ ௫ߠ݊݅ݏ−
0 ௫ߠ݊݅ݏ ௫ߠݏ݋ܿ

൩, ܴ௬൫ߠ௬൯ = ቎
௬ߠݏ݋ܿ 0 ௬ߠ݊݅ݏ

0 1 0
௬ߠ݊݅ݏ− 0 ௬ߠݏ݋ܿ

቏ and

ܴ௭(ߠ௭) = ൥
௭ߠݏ݋ܿ ௭ߠ݊݅ݏ− 0
௭ߠ݊݅ݏ ௭ߠݏ݋ܿ 0

0 0 1
൩.

Step 3: Truncating Rotated Polyhedron

In this step the rotated solid (REPi) is truncated by two planes perpendicular to the z-

axis, where the distance between two planes (D) is predetermined. The algorithm is:

SET D
REPi(z) = set of z-coordinates of all points in REPi.
MAX_Z = Maximum(REPi(z))
MIN_Z = Minimum(REPi(z))
LENGTH_ALONG_Z = MAX_Z - MIN_Z
TOP_TRUNCATION_LIMIT = MAX_Z - D
BOTTOM_TRUNCATION_LIMIT = MIN_Z + D
FOR K = 1 TO NUMBER OF POINTS IN REPi

IF Z_COORDINATE OF Kth POINT ≤ BOTTOM_TRUNCATION_LIMIT
OR
IF Z_COORDINATE OF Kth POINT ≥ TOP_TRUNCATION_LIMIT

SET COORDINATES OF Kth POINT of REPi=(NaN,NaN,NaN)
(NaN = Missing value)

END

This step finally gives the coordinates of the points on the edges only

belonging in the region bounded by two parallel D-distant planes P1 and P2. In other

words, this algorithm provides the coordinates of the points only on the edges from

TSPi. This set of points is the representation of the truncated solid.

Step 4: Polyhedron Profile Statistic from Truncated Polyhedra

An extension of the above algorithm can keep track of each edge from SPi, and

record whether an edge is affected due to truncation. This edge information

eventually provides the status of each face of TSPi, i.e. whether truncation affected a
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face. A face is partially visible if at least two of its edges remain visible after

truncation. Finally, as discussed in Section 3.7 (Chapter 3), this face data can

generate all other entities in the polyhedron profile statistic.

A relevant fact in this context is differentiating a completely missing edge

from a partially truncated edge. Consider Ejk =  {qjk1, qjk2, …, qjkm} as an edge

affected due to truncation and let {qjkr, …, qjkm}, 1≤ r ≤m be the points truncated. The

problem is what the value of r  should be such that Ejk would be a partially missing

edge instead of completely missing. Theoretically, for any 1< r < m, Ejk can be

considered as a partially missing edge.

But in metabolosomes, due to curved facets, reconstruction and segmentation

errors, an incomplete edge is 'identifiable' only if at least 'a considerable proportion'

of that edge is visible. Based on a visual inspection of the metabolosomes, we set this

proportion to 0.25, i.e. a partially truncated edge from TSPi is 'completely missing'

only  if  less  than  25%  of  that  edge  remains  after  truncation.  In  other  words, Ejk is

completely missing if:

d(qjkr, qjkm) ≥ 0.75 × d(qjk1, qjkm}.

Step 5: Repeating the Simulation

FOR Polyhedra = 1 TO 123
FOR d IN {0.050, 0.075, 0.100, 0.125, 0.150}

FOR Rotation = 1 TO 5000
GENERATE RANDOM qx, qy, qz
REPEAT Step 2 TO Step 4

END
END

END

The final output of this algorithm is a set of NTSP = (5000 × 123) polyhedron profile

statistics, 231 entries in each, creating a numerical matrix with dimension 615000 ×

231.

Class Labels for Truncated Standard Polyhedra

Each of the TPPS is 'labeled' with its parent solid's name so that for any particular

TPPS, its original complete solid can be identified. Clearly, the set {TPPSij " j}

forms the ith class of truncated standard polyhedra, i =  1,  2,  …,  123.  One  of  the

purposes of this labeling is to facilitate this data for use in supervised learning.
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6.4.5 Unique Polyhedron Profile Statistic

For a fixed D, let TSPij be the jth TSP generated from SPi using the above algorithm, i

=  1,  2,  …,  123  and j = 1, 2, …, 5000. The jth truncated standard polyhedra is the

outcome of the jth random truncation. As mentioned earlier, for fixed D, TSPij varies

based on (qx, qy, qz).

Let TSPij correspond to TPPSij, " i =  1,  2,  …,  123  and j = 1, 2, …, 5000.

Since the TPPS is  the  only  shape  descriptor  for TSP, TSPmn = TSPrs  Û TPPSmn =

TPPSrs " m, r Î 1, 2, …, 123 and n, s Î 1, 2, …, 5000. Interestingly, the situation

TPPSmn = TPPSrs occurred for several m, n, r, and s in the simulated dataset.

Now it  is  of  interest  to  see  how many 'unique' TPPS are generated from an

individual solid and from the complete simulated datasets since it justifies whether

Nsim (= 5000) simulations were adequate. Let L(TPPS i) be the number of unique

TPPS from SPi,  i  =  1,  2,  …,  123  and L(TPPS) the total number of unique TPPS

from all NTSP profiles together. We found that, for D = 0.100 the proportions of

unique TPPS = L(TPPS)  / NTSP with 231 features is 0.0448. Figure 6.5 shows the

distribution of L(TPPS i) / NTSP.

We found that only 7 solids among 123 solids have this ratio larger than 20%

and only 13 solids have this ratio 10% or more. All of these 13 solids are Johnson

solids (J47, J48, J68, J70, J71, J72, J74, J75, J78, J79, J81, J82, J83).  A possible reason for the

higher proportions of unique TPPS is the complicated structure of these solids.

Among these solids,  the lowest number of vertices is  35 (J47)  and the highest  is  75

(J71). The higher number of vertices associate with a higher number of edges and

hence with a higher number of different face types. In addition, the adjacency

matrices also tend to have more non-zero elements. Thus, when truncated, these

structures are very likely to introduce more heterogeneity in TPPS than the simpler

structures.

Since these ratios are small, the profiles are expected to repeat a considerable

number of times and hence we assume the simulation generates almost all possible

TSP. However, more samples lead to better estimation of the distribution of TPPS,

but also introduce overfitting in learning [154]. The distribution of TPPS is described

in Section II of this chapter.

One important observation is, if the TPPSij would contain fewer features, e.g.

only three features - vertex, face and edge counts, the L(TPPS) is expected to reduce
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considerably. With D = 0.100, L(TPPS)  / NTSP =  0.0075  when  only  these  three

features are considered.

Figure 6.5: The distribution of L(TPPSi)/ NTSP calculated from 123 solids with truncation
proportion 0.100 and all of 231 features are considered.

A relevant point is discussed in this context - where there may be infinitely

many ways to truncate a polyhedron, whether there are surely only a finite set of

distinct truncated polyhedra possible. Since a truncated polyhedra is defined by its

TPPS, we plotted the number of unique TPPS with respect to the number of random

truncations for verification. The result is provided in Figure 6.5a.

Figure 6.5a: The increments of unique polyhedron profile statistic with increasing number of
random truncations.
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The plot shows, the slope of the lines are almost zero toward the end, i.e.  a

new profile is very unlikely to appear beyond 5000 simulations. Though theoretically

it is possible that infinitely many truncated polyhedron may be generated from a

standard polyhedron, this observation demonstrates that 5000 simulations are

sufficient to include almost all of them. Thus we have a good sample representing the

truncated standard polyhedron population.

6.5 Incomplete Metabolosomes Data

6.5.1 Data Collection

Section 4.2.2 (Chapter 4) described the detailed procedure of superimposing an

incomplete polyhedron  on  an incomplete reconstructed metabolosome. As

mentioned, Chimera UCSF records the fitted incomplete polyhedron in a .py file.

From this associated file, the data on directed paths for all complete and incomplete

faces are extracted manually.

This extracted face data can generate all other features (Section 3.7, Chapter

3) required to develop the truncated polyhedron profile statistic for the

metabolosomes. This truncated metabolosome profile statistic (TMPS) is computed

for all 30 metabolosomes. Analogous to TTPS, TMPS also has a length of 231. The

vertex, face, edge counts, face and vertex type data for all incomplete metabolosomes

are provided in Appendix 6.1.

6.5.2 Distribution of Metabolosome Features

The distribution of the first feature of TMPS,  i.e.  the  number  of  vertices  in  the

incomplete metabolosomes (IMNV) is displayed in following figure. As mentioned in

Section 6.3.1, since NTV ≤ NV - 2, min(IMNV) = 6 and max(IMNV) = 10, almost surely

the distribution of IMNV is IMNV Î [8,  20]  in  the  complete  metabolosomes.  The

results obtained from the polyhedral structural distance model (Chapter 5) also

support this observation.
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Figure 6.6: Distribution of number of vertices from 30 incomplete metabolosomes.

6.5.3 Reduction in Computational Cost

The distribution of IMNV shows that instead of 123 standard solids, considering only

complete solids having NV Î [8, 20] would be sufficient for shape prediction. Exactly

55 solids from 123 standard solids have NV Î [8,  20].  So  for  further  analysis,  only

these 55 solids were considered.

The support vector machine, used for subsequent analysis is computationally

intensive [155] and requires significantly longer time and larger memory when 123

solids instead of 55 solids are considered. The setup with 123 solids, 2500 TPPS

from each solid as training data and remaining 2500 TPPS as test data and TPPS

length as 231 took approximately three days for SVM with one-vs-one voting

method (Section 6.10.1). For computing purpose, the Duke Compute Cluster [156]

with 128 GB of memory was used. With the same setup and computing resources, it

took about only 3−5 hours (depending on the truncation proportion) when

considering 55 solids with NV Î [8, 20]. Since the simulation studies were required to

repeat more than hundred times (for parameters tuning, different truncation

proportions, different feature sets, etc.), the execution time was considered as an

important factor for these calculations.

 Thus reducing the number of solids saves computing time and resources.

However, considering a fewer number of solids does not impact the individual

misclassification probabilities (Section 6.8.3). To support this, misclassification

probabilities from two cases (with 123 and 55 solids) were computed for the Bayes
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Classifier, compared for the common predicted solids and found no difference in

their misclassification probabilities.

6.6 Summary

An algorithm is developed to truncate 123 standard solids from random directions

and in varying truncation proportions. The truncation is performed a sufficiently

large number of times and for each truncation the corresponding truncated

polyhedron profile statistic is collected through an algorithm. The similar profile

statistic is also collected from 30 incomplete metabolosomes.

The collection of these truncated polyhedra constitutes a truncated polyhedra

library. Each truncated polyhedron is characterized by its truncated polyhedron

profile statistic and labeled by its parent shape's name. However, due to computing

time and resource constraints, instead of 123 solids only 55 solids were considered

for further analyses - these 55 solids have vertices fewer than 20 but larger than 8.



Chapter 6

Section II: Incomplete Polyhedral Shape

Classification

6.7 Introduction

Section I of this chapter describes the classes of truncated polyhedral shapes. Since

the metabolosomes also have truncated polyhedral shapes, the objective is now to

classify these incomplete metabolosomes to any of the standard polyhedra classes.

Thus the problem of predicting metabolosome shapes turns out to be a statistical

classification problem.

Developing classifiers involves 'learning' the observed data. The simulated

data from Section I is utilized for 'learning' about truncated polyhedral shapes. These

methods also require a qualitative or quantitative description on the characterizing

features of the classifying objects. The truncated polyhedron profile statistic (Section

6.3.4) serves this purpose.

Since the class labels for simulated truncated shapes are known and there are

more than two classes, this is a multiclass classification problem with supervised

learning. In this section of the chapter, we developed some supervised learning

methods for classifying incomplete polyhedral structures and used these classifiers to

predict the metabolosome shapes.
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6.7.1 Training Data and Test Data

Notations

Here are some key notations used in this subsection and also in the remaining part of

this chapter. The remaining notations are explained in subsequent sections as

required.

SP = {SP1, SP2, …, SP55} = the class of 55 standard solids.

TPPSij = jth truncated polyhedron profile statistic (TPPS) from the ith standard solid,

i = 1, 2, …, 55, j = 1, 2, …, 5000.

TMPSk = kth truncated metabolosome profile statistic (TMPS), k = 1, 2, …, 30.

ܶܲܲ ௜ܵ௝
௠ = mth entry in TPPSij and ௞௠ܵܲܯܶ 	is the same for TMPSk, m = 1, 2, …, 231.

PPSi = polyhedron profile statistic (PPS) for the ith complete standard polyhedra,

i = 1, 2, …, 55.

ܲܲ ௜ܵ
௠ = mth entry in PPSi, m = 1, 2, …, 231, i = 1, 2, …, 55.

As described in Section 6.3, each of the TPPS and TMPS contains the feature set:

{NTV, NTF, NTE, ܶ ௏ܰ
∗, ܶ ிܰ

∗, ܶܣ ௏ܰ
∗, ܶܣ ிܰ

∗ , eADJt, fADJt}

which form the polyhedron profile statistic for a truncated polyhedron. Finally, as

described in Section 3.6 (Chapter 3) and Section 6.3.4, each of the PPS contains the

feature set (in the same order as TPPS and TMPS):

{NV, NF, NE, ௏ܰ
∗, ிܰ

∗, ܣ ௏ܰ
∗, ܣ ிܰ

∗ , eADJ, fADJ}

Training Data and Test Data Separation

The set of all TPPSij with even j are considered as training data and remaining TPPSij

are kept aside as test data. Since the truncation was carried out from random

orientations, this partition for training data eliminates the selection bias [157]. There

are 5000 TPPS from each standard polyhedron, hence test data and training data both

has 2500 profiles from each standard polyhedron.

This  training  set  was  utilized  to  develop  the  classification  rules  for  all

subsequent classification approaches. The test data was used to calculate the

misclassification probabilities (Section 6.8.3) to evaluate the performance of these

classifiers. The following diagram (Figure 6.7) shows the training data and test data

selection scheme.
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Figure 6.7: The training and test data selection and classification scheme.

6.7.2 Selection of Truncation Proportion

As discussed in Section 6.2, the characteristics of a simulated truncated polyhedron

(polyhedron profile statistic) may depend on truncation proportion, i.e. f1(P1, P2).

This scenario was demonstrated in Figure 6.2. Five different truncation proportions

were considered for simulation.

The exact values of D (equivalently f1(P1, P2)) for different metabolosomes

are difficult to find and since the metabolosomes have different shapes and sizes,

there is no reason that the values of D will be exactly same for all metabolosomes.

However,  as discussed in Section 2.2 (Chapter 2),  for a spherical  object with ± 60°

tilt angle ECT, D is approximately 0.13.

A few end slices of any metabolosome cannot be segmented (as discussed

before), but those slices contain some sort of 'signatures' (dark regions, slightly

different texture than neighborhood regions etc.) from where it could be visualized

that a part of the metabolosome exists there. We counted the number of such slices

starting from the last segmented slice at the both ends and estimated D from them.

Thus through visual inspections we determine that the truncation proportion (D, as

discussed in Section 6.4.2) for metabolosomes is approximately 0.100. So the results

presented in this chapter are based on D = 0.100

The another approach for determining D could be comparing 'completed'

polyhedral structure (Section 4.3) with the corresponding incomplete metabolosome,

if there is not much segmentation errors (abrupt peaks) near the last segmented
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slices.  Since D can be slightly different for different metabolosomes, the results for

other D, i.e. 0.050, 0.075, 0.125 and 0.150 are also provided (in the Appendix

section).

6.8 The Bayes Classifier

The Bayes classifier [158] has long been applied in pattern recognition, shape

classification [56] and many other classification problems. The construction of these

classifiers is based on the Bayes' theorem [159] and it is an optimal classifier [160]

with respect to minimization of probability of classification errors (Section 6.8.3).

The Bayes classifier requires prior knowledge of probability distributions of

the classified objects. Since these are rarely known in advance, the probabilities are

to be estimated from training data [161]. If the number of features in the training data

is very large, more samples are needed to estimate these probabilities and in the

absence of a sufficiently large number of samples, this estimation may be erroneous.

This phenomenon is also known as the 'curse of dimensionality' [162]. However, our

data do not suffer from this problem (Section 6.4.5). In this section, we develop the

Bayes classifiers to classify incomplete polyhedral shapes.

One similar classifier is  the Naive Bayes classifier [56],  [163],  [164],  which

assumes that the effect of a variable on a given class is independent of the other

variables. This assumption is known as the class-conditional independence [164],

[165]. However, since the variables in TPPS have strong relationships among

themselves, the Naive Bayes classifier is not appropriate here.

6.8.1 Probability Distribution for Truncated Polyhedra

As discussed in Section 6.5.3, we considered 55 classes of polyhedra for all

subsequent classification approaches. Here the observations are the simulated

truncated polyhedra and the polyhedron profile statistic is the feature vector for these

observations.

Section 6.4.6 explains that TPPSmj = TPPSnj for many choices of (m, n) and

TPPSij = TPPSik for  several  (j, k) pairs. So we expect that, TPPSij has non-null
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frequencies across classes. Here we calculated the probability distributions of TPPSij.

The probability distribution for the TPPS is calculated based on the training data

consisting of NT = 137500 (= 55 × 2500) observations. Let the mth TPPS in the

training data (TPPSm) have frequency NTPPSm, m = 1, 2, …, NT. Now, if

SP = {SP1, SP2, …, SP55} is the class of 55 polyhedra and

nTPPSim = frequency of the mth TPPS from SPi, nTPPSim Î [0, NTPPSm],

the probability of TPPSm appearing in SPi is:

P (TPPS = TPPSm | SP = SPi) =
௡்௉௉ௌ೔೘
ே்௉௉ௌ೘

 , m = 1, 2, …, NT and i = 1, 2, …, 55.

Also, P (TPPS = TPPSm) = ே்௉௉ௌ೘
ே೅

 , m = 1, 2, …, NT and P (SP = SPi) = 1/55 " i.

The posterior probability, i.e. P (SP = SPi | TPPS = TPPSm) is calculated using the

Bayes theorem:

P(ܵܲ = ܵ ௜ܲ 	|	ܶܲܲܵ = ܶܲܲܵ௠) = 	
P(ܶܲܲܵ = ܶܲܲܵ௠ 	|	ܵܲ = ܵ ௜ܲ)	P(ܵܲ = ܵ ௜ܲ)

∑ P(ܶܲܲܵ = ܶܲܲܵ௠ 	|	ܵܲ = ܵ ௞ܲ)	P(ܵܲ = ܵ ௞ܲ)௞
	

where, m = 1, 2, …, NT and i = 1, 2, …, 55. P (SP = SPi | TPPS = TPPSm) describes:

given the mth TPPS, the probability that SPi will contain this profile. These

probabilities are used for constructing Bayes classifiers for truncated polyhedral

shapes. An example in the next section (Section 6.8.2) illustrates this computation.

6.8.2 Bayes Classifiers for Truncated Polyhedra

Let TMPSk be the kth truncated metabolosome profile statistic, described in Section

6.5, k =  1,  2,  …,  30.  The  Bayes  classifier  states  that,  select  that  solid  which

maximizes the posterior probabilities for this particular profile, i.e. assign TMPSk to

tth standard polyhedra (SPt), t = 1, 2, …, 55 if:

1) TMPSk = TPPSm for some m, m Î {1, 2, …, NT} and

2) ܲܵ)P		௥		ݔܽ݉݃ݎܽ = ܵܲܲܶ	|	ݎܲܵ = ܶܲܲܵ݉) 	= ݐ	

Example

The following example illustrates the construction of the Bayes classifiers for

truncated polyhedral shapes. For simplicity, consider 3 standard polyhedra {SP1, SP2,
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SP3} only and the test data contains just 4 profiles from each class. Also consider that

the TPPS and TMPS both consist of just 5 features (vertex, face and edge counts,

triangle and quadrilateral counts). The following table gives a sample data for TPPS.

Solid Number Vertex Face Edge Triangle Quadrilateral
SP1 7 14 21 4 1
SP1 7 13 20 4 1
SP1 7 14 21 4 1
SP1 7 14 21 4 1
SP2 7 12 20 4 0
SP2 7 12 20 4 0
SP2 7 14 21 4 1
SP2 7 14 20 4 0
SP3 7 14 21 4 2
SP3 6 14 21 3 0
SP3 6 14 21 3 0
SP3 8 14 21 4 1

Table 6.1: A sample dataset consisting of fewer features from truncated polyhedron profile
statistic.

This data generates the following frequency distribution:

Vertex Face Edge Triangle Quadrilateral
Frequency

SP1 SP2 SP3

7 14 21 4 1 3 1 0
7 13 20 4 1 1 0 0
7 12 20 4 0 0 2 0
7 14 20 4 0 0 1 0
7 14 21 3 2 0 0 1
6 14 21 3 0 0 0 2
8 14 21 4 1 0 0 1

Table 6.2: The frequency distribution of the TPPS from Table 6.1.

Now, let  a TMPS = (7,  14,  21,  4,  1).  Since TMPS = TPPS1 (first  row of the

frequency table), we calculate the probabilities: P(TPPS1 | SP1)  =  0.75,  P(TPPS1 |

SP2) = 0.25 and P(TPPS1 | SP3) = 0.00. Since, P(SP1) =  P(SP2) = P(SP3) = 1/3, the

posterior probabilities are: P(SP1 | TPPS1) = 0.75, P(SP2 | TPPS1) = 0.25 and P(SP3 |

TPPS1) = 0.00. The Bayes classifier predicts this TMPS to have SP1 with probability

0.75, since argmax k P(SPk| TPPS1) = 1.
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6.8.3 Misclassification Probability

The error in classification occurs when TPPSij → SPk, i.e., a test TPPSij is classified

to SPk for some k ≠ i through  the  classifier  (here  the  Bayes  classifier).  The

misclassification probability for a particular profile, say TPPSij is

1	 − 	෍ P(ܶܲܲ ௜ܵ௝	|	ܵܲ = ܵ ௞ܲ)).
௞ஷ	௜

However, we are interested in L*(i) = the probability that a TPPS from SPi is

misclassified to SPk for some k  ≠ i. The L*(i), also termed as the overall

misclassification probability [56] for SPi, is estimated as follows.

All test TPPSij for a fixed i have same parent class labels = SPi for all j. Each

of these TPPSij for a fixed i is classified based on the Bayes classifiers. We define an

identity function for TPPSij as:

{௜,௝}ܫ 	= 	 ൜			1					ܶܲܲ ௜ܵ௝ 	→ 	 ܵ ௜ܲ
0										Otherwise

�

and this function gives an estimate of L*(i) as:

(݅)∗ܮ = 	1	 −	
1
݊
	෍ {௜,௝}	ܫ		
௝

where n = 2500. The following plot shows the distribution of L*(i) for i = 1, 2, …, 55

when we consider all features (i.e. the profile statistic has length 231). The minimum,

maximum  and  mean  ±  SD  of L*(.) are 0.0000, 0.3560 and 0.0323 ± 0.0577

respectively. Also, 90.91% of the solids have L*(.)  ≤ 0.10.  These  results

demonstrate:

1) The Bayes classifier can be considered as a strong classifier for this problem

2) The TPPS is a ‘good’ descriptor for the truncated standard polyhedral shapes

Appendix 6.2 provides the distributions and summary of overall misclassification

probabilities from the Bayes classifiers for different truncation proportions.
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Figure 6.8: The distribution of overall misclassification probabilities from 55 solids,
calculated for Bayes classifiers when truncation proportion is 0.100. The outlier proportion is
from J35.

6.8.4 Bayes Classifiers for Subset Features

Section 6.8.2 states that for a TMPS, the Bayes classifier requires TMPSk = TPPSm

for  at  least  one m, m =  1,  2,  …, NT (Section  6.8.2,  condition  1).  In  case  of

metabolosomes, due to manual segmentation and feature extraction errors this

condition may not be satisfied. In fact, there is no TMPS (with all 231 features)

which satisfies this condition. The simulation generates a sufficiently large number

of observations and this problem does not occur frequently for test TPPS. This is

rather  due  to  errors  in  the TMPS data.  So,  this  is  not  due  to  the  'curse  of

dimensionality' [162]. Two modified forms of Bayes classifier are considered for this

problem - distance based profile selection and hierarchical feature selection.

Distance Based Profile Selection

The distance based profile selection first computes distance between two polyhedron

profile statistics, say, TPPSm and TPPSn as

d(݉,݊) = 	 ෍ 	ܶܲܲܵ௠	௜|ݓ
௜ 	− 	ܶܲܲܵ௡௜ 	|௞

ଶଷଵ

௜	ୀ	ଵ

where 	ܶܲܲܵ௠	
௜  is the value of the ith feature from TPPSm, wi is the weight for the ith

entry in TPPS, i = 1, 2, …, 231. When wi = 1 " i, k = 1 gives the 1- norm distance

and k = 2 gives the squared Euclidean distance etc. Clearly, d(m, n) = 0 gives exact
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match. For a TMPS, say TMPSk, this distance is calculated with all training TPPS and

the best matched TPPS is the one with minimum distance. Let the selected TPPS is

TPPSm. Similar to Section 6.8.2, the Bayes classifier classifies TMPSk as SPt if:

ܲܵ)P		௥		ݔܽ݉݃ݎܽ = ܵ ௥ܲ	|	ܶܲܲܵ = ܶܲܲܵ௠) 	= .ݐ	

But this approach has a flaw. As discussed in Section 5.2.2 and 5.2.3

(Chapter 5) in the context of the polyhedral structural distance model, all features in

a TPPS may not carry the same importance. So it is necessary to include the feature

based weights (wi) in the model. Since the predicted shapes largely depend on wi’s

and choosing the wi’s is a genuine problem, this approach is not used for further

analysis.

6.8.5 Hierarchical Feature Selection

Since the distance based profile selection is not feasible here, we developed the

Bayes classifiers based on hierarchically selected features. The central notion of

hierarchical feature selection is to eliminate the 'weakest' features step-by-step from

the TPPS and develop the Bayes classifiers based on reduced length TPPS.

Step 1: Feature Selection

First, we need to decide which feature is to be excluded. For simplicity, let fADJt be

excluded first. We can express,

TPPS =  {NTV, NTF, NTE, ܶ ௏ܰ
∗, ܶ ிܰ

∗, ܶܣ ௏ܰ
∗, ܶܣ ிܰ

∗, eADJt} Å {fADJt}  = 1TTPS Å 2TTPS,

where Å denotes augmentation and 2TTPS = {fADJt}. Similar separations are made

for PPS and TMPS too.

Step 2: Filtering Solids

This step utilizes the fact that ܶܲܲ ௜ܵ௝
௠ ≤ ܲܲ ௜ܵ

௠, " i, j, m, i.e., any feature from the

truncated solid should have a lower value than that from the corresponding complete

solid. Using this observation we create the following rule:

2ܶܲܲ ௜ܵ௝
௠  ≥ 2ܲܲܵ௞௠ for any m  Þ exclude SPk from calculation for TPPSij

where m = 1, 2, …, 100 (since fADJt is of length 100), k =  1,  2,  …,  55.  In  other

words, if any value of the face adjacency matrix from the truncated polyhedron is
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larger than the corresponding entry from a complete solid, the truncated profile

cannot be from that complete solid - so we exclude that solid from further analysis.

Let the filtered results {SPk, k Î [1, 55], max(k) ≤ 55} for a particular TPPSij, while

filtering is done based on fADJt.

Step 3: Probability Distribution and Bayes Classifiers re-construction

Recalling Section 6.8.1 for the probability distribution of TPPSij, the same procedure

was applied for calculating the probability distribution of 1TTPSij. 1TTPSij has length

131 and i = 1, 2, …, n (≤ 55). Based on the probability distribution of 1TTPSij, we re-

calculated the Bayes classifiers using the same way as in Section 6.8.2. In this

example, the Bayes classifiers will be constructed based on 131 features of TPPS

instead of 231 features and the number of target classes is possibly less than 55.

Stopping Criterion

If  a 1TMPSk does not match with any of the 1TTPSij, then some more features from

1TTPSij are to be excluded. If the next discarded feature is eADJt, then TPPS = 1TTPS

Å 2TTPS where 1TTPS =  {NTV,  NTF,  NTE, ܶ ௏ܰ
∗, ܶ ிܰ

∗, ܶܣ ௏ܰ
∗, ܶܣ ிܰ

∗ } and 2TTPS =

{eADJt, fADJt}. Here 1TTPS has 31 features only and filtering will be based on

2TTPS,  which has 200 entries.  We repeat the process until 1TMPSk = 1TTPSij for at

least one i, j, where i  Î remaining solids after filtering at that stage. The following

diagram describes this algorithm.

Order of Features for Exclusion

This feature selection approach needs to determine which feature to exclude first,

which second, and so on. The order of exclusion is determined as follows:

The TPPS includes two types of features - some features are based on only

complete data and some are based on both complete and incomplete data. For

example, eADJt and fADJt relies on only completely visible edges and vertices, but

NTE includes both of complete and incomplete edges. The features incorporating both

of complete and incomplete data convey more information and hence are more

'contributive'.

The exclusion criterion is set up in such a way that, the remaining features

take account of maximum possible information at that step. The Table 6.3 describes

the stepwise feature selection scheme adopted for TPPS.
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Feature Name
Selection Matrix

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
NTV, NTF, NTE x x x x x x x x x

∗ிܰܶܣ x x x x x x x x
∗௏ܰܶܣ x x x x x x
ܶܰி∗ x x x x x x
ܶܰ௏∗ x x x x

eADJt x x
fADJt x

Table 6.3: The order of exclusion of the features - 'S' in columns indicates the steps and the
'x' marked features are included for constructing Bayes classifier at that step. The features in
blank cells participate in filtering.

Figure 6.9: The hierarchical approach for selecting features and Bayes classifiers
construction.

Feature Combination Misclassification Probability
NTV, NTF, NTE 0.7108
NTV, NTF, NTE, ܶܣ ிܰ

∗, ܶܣ ௏ܰ
∗ 0.1716

NTV, NTF, NTE, ܶܣ ிܰ
∗, ܶܣ ௏ܰ

∗, eADJt 0.0236
All features combined 0.0192

Table 6.4: The changes in misclassification probabilities of Sphenocorona when some
features are excluded.
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However, the L*(.) increases significantly with the exclusion of features. For

example, the above table shows the effect of exclusion on L*(.) for the 86th Johnson

solid, the Sphenocorona. The distributions of L*(.) from 55 solids for different

feature sets are provided in Appendix 6.3.

Effects of Filtering on Classification

Another question to assess is: if the filtering has any effect on classification. As

discussed in Section 3.5 (Chapter 3), the eADJ and fADJ have capabilities to

discriminate the Platonic and Archimedean solids from the Johnson solids. So eADJ

and fADJ may help to separate the Johnson solids from others.

To evaluate this effect, L*(.) is calculated for 55 solids before and after

filtering when TPPS excludes eADJt and fADJt. Let DL*(i) = FL*(i) - NFL*(i), where

FL*(i) and NFL*(i) are L*(i) with and without filtering respectively. We expect that

DL*(.) should not have a degenerate distribution at zero and the following plot

confirms this.

Figure 6.10: The plot showing the effects of filtering on overall misclassification
probabilities.

6.8.6 Predicted Metabolosome Shapes

As mentioned before, a TMPS may not exactly match with any of the TPPS. So the

metabolosomes are treated with the hierarchical feature selection approach. The

following table gives the predicted shapes and corresponding frequencies for

metabolosomes.
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The most frequent predicted shapes are Sphenocorona (J86), Sphenomegacorona

(J88), Augmented Sphenocorona (J87) and Elongated pentagonal bipyramid (J16). The other

solids are Metabidiminished icosahedron (J62), Gyroelongated pentagonal pyramid (J11),

Gyroelongated triangular cupola (J22), Augmented Elongated square bipyramid (J15) and

Augmented and biaugmented pentagonal prisms (J52, J53) where 'J' stands for Johnson solid.

Predicted Solids Solid Type Frequency
Sphenocorona J86 8
Sphenomegacorona J88 6
Augmented Sphenocorona J87 5
Elongated pentagonal bipyramid J16 3
Other Solids J11, J15, J22, J52, J53, J62 8

Table 6.5: Predicted shapes for metabolosomes and their frequencies, using Bayes
classifiers. 'J' stands for Johnson solid followed by Johnson solid numbers.

6.8.7 Conclusions

The predicted metabolosome shapes form a small number of Johnson solids [125].

Notably, these predicted shapes agree with the results from polyhedral structural

distance model (Chapter 5).

However, excluding features increases L*(.), that means, if a TMPS needs too

many features excluded, the misclassification probability may not be negligible. Also

the Bayes classifiers are very sensitive with respect to errors in data, i.e., during

manual feature identification in metabolosomes, if one or more features are wrongly

recorded, the impact may be large. An analysis is carried out to identify the effects of

data errors on the Bayes classifiers in Section 6.11.2.

6.9 Linear Discriminant Analysis

The Bayes classifiers are very sensitive to data errors, hierarchical feature selection

may increase L*(.) and distance based profile selection could not be used due to

weight selection problems. So some classifiers are developed where all features are

utilized and expected to be less sensitive with respect to data errors. One of them is

the linear discriminant analysis (LDA).
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The LDA [57] is used extensively for classification problems in many varied

fields; for example speech analysis [166], facial recognition [167],  [168], medical

image processing [169], bioinformatics  [170], and data mining  [171] are a few of

them. Here we develop classifiers for incomplete polyhedral structures using LDA.

The standard algorithm behind LDA is well known and available in many

statistics books, such as [172], [173]. Briefly, suppose there are only two standard

polyhedra classes, say SP1 and SP2, x is the feature vector (TPPS), μ1 and μ2 are the

class means (of TPPS) and  S1 and  S2 are their covariance matrices respectively. The

Fisher's LDA defines a linear combination ݓ ∙ :and calculates the ratio	ݔ

ܵ	 = 	
	ݓ) ∙ ଵߤ)	 − ଶ))ଶߤ

Sଵ	(	ᇱݓ + 	Sଶ)	ݓ

which is actually the ratio of the variance between classes to the variance within

classes. The maximum separation between two classes occurs when S is maximum,

i.e.		ݓ ∝ 	 (Sଵ + Sଶ)ିଵ(ߤଵ − ଶ). The Fisher's LDA assigns a newߤ x to SP2 if ݓ	 ∙ 	ݔ >

	ܿ for some threshold constant c.

However, Fisher's LDA is nonparametric; but the solution of LDA is optimal

only  when  the  distributions  of  samples  from  different  classes  satisfy  the

homoscedastic Gaussian model, i.e., distinct mean vectors but with the same

covariance matrix for all the classes [174]. Also, Fisher's LDA was initially

developed as a binary classifier, and is generalized by [175] for multiclass

classification. In the following section, we discuss applying LDA to our problem.

6.9.1 LDA on Truncated Polyhedra

The training data selection for the LDA uses the scheme explained in section 6.7.1

and the training TPPS contain 231 features. The constant features (e.g., the first entry

from eADJt) are removed to avoid singularity problems [176] prior to calculation.

The  training  data  with  reduced  dimension  is  used  to  develop  the  LDA  classifiers

using the library 'MASS' [177] in R [144].

The constant features from the test data are also removed to match the

dimension of the training data and classified using LDA classifiers. The LDA

predicted classes for test data are further analyzed to estimate the misclassification

probabilities as discussed in Section 6.8.3. Finally, these rules are applied to predict

the metabolosome shapes.
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The MASS library in R uses moments as standard and unbiased estimators of

the mean and variances [177] and calculates the prior probabilities of class

membership from data, which is in fact, 1/55 for all cases. It also transforms

observations to discriminant functions, normalized such that within groups, the

covariance matrix is spherical [177]. Classifying new data results in its maximum a

posterior (MAP) class as well as the posterior class probabilities.

6.9.2 LDA Predicted Metabolosome Shapes

The most frequent predicted shapes are Gyroelongated pentagonal pyramid (J11),

Elongated pentagonal bipyramid (J16), Sphenocorona (J86) and Augmented Sphenocorona

(J87).  The other solids are Metabidiminished icosahedron (J62), Sphenomegacorona (J88),

Elongated square bipyramid (J15), Augmented pentagonal prisms (J52) and Gyroelongated

square bipyramid (J17). Clearly all of them are Johnson solids [125]. The following table

gives the frequencies of the predicted solids:

Predicted Solids Solid Type Frequency
Gyroelongated pentagonal pyramid J11 7
Elongated pentagonal bipyramid J16 10
Sphenocorona J86 5
Augmented Sphenocorona J87 2
Other Solids J62, J88, J15, J52, J17 6

Table 6.6: The frequency of LDA predicted metabolosome shapes.

Since the LDA also calculates posterior probabilities for each class for each

TMPS, it may be useful to see the posterior probabilities for MAP and other nearest

classes. These probabilities are provided in Appendix 6.4.

The posterior probabilities for the first solid and differences in probabilities

between first and second solids are substantially large in most of the cases. This

indicates the classes for the TMPS are predicted with high certainty. However, as a

classifier, the LDA would be a strong one if overall misclassification probabilities,

i.e., L*(.) are small. These probabilities are analyzed in the next section.
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6.9.3 LDA Misclassification Probabilities

The misclassification probabilities for each class are calculated based on the test

data, as described in Section 6.8.3. The distribution of L*(i), i = 1, 2, …, 55 is shown

in Figure 6.11.  It  shows, there are quite a few classes (65.45%) with L*(.) ≥ 0.10.

The minimum, maximum, mean and SD of L*(.) are 0.0000, 0.6336, 0.1791 and

0.1521 respectively. These summary statistics indicate that the LDA is not a very

strong classifier for this problem. Appendix 6.2 provides the distributions and

summary of overall misclassification probabilities from the LDA for different

truncation proportions.

Figure 6.11: The distribution of overall misclassification probabilities for 55 solids, obtained
from LDA. The largest misclassification probability is from J36.

One expected reason could be that some of the features from some of the solids are

overlapped. Figure 6.12 confirms this fact for J16,  whose  21.48%  profiles  are

classified as J27 ('J' stands for Johnson solids). The plot displays two features - NTV,

and NTE from  J16 and  J27. These two features have strong impacts too on LDA,

because the coefficients of the linear discriminants corresponding to these two

variables are considerably large (for first linear discriminant, these coefficients are

-0.1791 and 1.440 respectively, where the largest coefficient is -2.047 and the

smallest coefficient is -0.0048, in absolute terms).
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Figure 6.12: Overlapped distributions of vertex and edge counts from two Johnson solids: J16

and J27.

6.9.4 Conclusion

There are some good points for the LDA on truncated polyhedral shapes. The LDA

predicted shapes are in line with Bayes classifiers as well as the polyhedral structural

distance model. It is simple to implement, efficient in terms of computation and

memory usage. It is less sensitive with respect to data error (Section 6.11.2) than the

Bayes  classifiers  and  uses  all  the  features  from the TPPS.  Also,  the  posterior  class

probabilities of the predicted classes of the metabolosomes are very high.

However, the LDA does not give good overall misclassification probabilities.

The reasons may be the overlapping in the TPPS distributions, the validity of the

assumptions, etc. So we need to consider a classifier which can handle overlapped

distributions and can address the problems of the Bayes classifiers and the LDA. The

support vector machine is one of them used here.

6.10 Support Vector Machine

The Support vector machines (SVM) or support vector networks (SVN) are

supervised learning methods, frequently used for classification and regression

analysis. The SVM was proposed by [178], [58] as a new learning machine for

binary classification problems [179] and after that, it has been extensively applied to
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several different areas with the name Support Vector Machine [180]. For example,

face detection [181],  [182], image classification [183], object recognition [180],

[184], [185], and hand writing and digital recognition [186], [187] are a few of them.

We developed classifiers using SVM to classify truncated polyhedral structures. The

metabolosome shapes are then predicted using these classifiers. In the subsequent

sections we explain the procedure.

One  of  the  strengths  of  SVM  over  LDA  is:  SVM  classifies  with  better

accuracy in many cases where linear classifiers end with high error rates [188]. The

SVM applies kernel transformations to the training data so that the classes become

well separable in the kernel space (often with higher dimension than the feature

vector's dimension) by the decision plane [189]. The standard algorithm behind SVM

learning and their properties are explained in some detail in [54].

6.10.1 Binary and Multi-class SVM

The initial SVM algorithms are developed as binary classifiers [58],  [178], and later

extended for multi-class classification problems [190]. Many of these extensions

divide a multi-class problem into a set of several binary classification problems and

finally combine those binary classifiers [191], and a few of them consider it as a

single optimization problem, e.g. [192].

Here we adopted the first approach, i.e. combination of binary classifiers. In

this method, the predicted class is determined using "one-vs-all" or "one-vs-one"

voting methods [193], [194]. Though posterior class probabilities for a test object can

also be calculated [195], [196], [197], the voting scheme is more appropriate for

class selection [193], [198].

Since there are 55 classes of truncated polyhedra, the one-vs-one voting

scheme considers all possible pairs from 55 classes, i.e., total 55C2 =  1485  pair  of

classes and assigns a test object to a class from each pair using the SVM classifiers.

Let SPi (j) =1 if the test object is classified to SPi for jth pair, j = 1, 2, …, 55 and zero

otherwise. Then the total 'vote' for SPi is		ܸܵ ௜ܲ 	= 	 ∑ ܵ ௜ܲ௝ (݆). If argmax k VSPk = c, the

test object is classified to SPc.

Among the two voting schemes, the one-vs-one method is generally preferred

over one-vs-all [193], though some studies defend the power of the later [199]. We

use 'one-vs-one' voting scheme for classifying our incomplete polyhedral shapes.
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6.10.2 Parameters for SVM Learning

The  development  of  SVM  classifiers  needs  to  specify  the  kernel  function.  The

Gaussian Radial Basis kernel is one of the most popular kernels used for SVM [189]

and for our problem we also preferred this kernel. However, the data must be scaled

to zero means and unit variances prior to calculation. This kernel is defined as:

k(x1, x2) = −)	݌ݔ݁ ଵ
ଶఙమ

ଵݔ||	 	− (ଶ||ଶݔ	

where x is the observed data and the hyper-parameter s is the Gaussian kernel width

[200]. The calculation is carried out using the 'kernlab' [201] library in R [144]. This

library uses a heuristic method [202] to estimate s.

Among other parameters the cost of constraints violation [201] is set to 5. A

3-fold cross validation [201] on the training data is performed to assess the quality of

the model, i.e., the accuracy rate for the SVM classification. As discussed in the

previous section, the prediction for test data and metabolosomes use the 'one-vs-one'

voting scheme.

We started with default parameters provided in the 'kernlab' library. The

kernel is selected and other parameters are tuned by running the SVM program

several times with different combination of parameters. The combination with best

performance was selected for further calculations. The s is estimated by the 'kernlab'

library itself, so we did not work on estimating this parameter.

6.10.3 SVM for Truncated Polyhedra

Section 6.7.1 described the training and test data selection. The same training data is

used to develop the SVM classifiers. The feature vector for each data point has

length 231. Each test TPPS is then classified using these developed rules.

Finally the overall misclassification probability L*(.) for SVM for each class

is calculated using the method described in 6.8.3. The minimum, maximum, mean

and SD of these errors are 0.0000, 0.3360, 0.0394 and 0.0621 respectively. Since

these values are considerably small, we conclude that, similar to the Bayes

classifiers, the SVM also provides good classification for this problem. In fact,

87.27% of the solids have L*(.) ≤ 0.10. Figure 6.13 shows the distribution of L*(.),

calculated from the SVM. Appendix 6.2 provides the distributions and summary of

overall misclassification probabilities from SVM for different truncation proportions.
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One observation is: the solids with largest misclassification probabilities from

these three methods. For LDA, the largest misclassification probability came from J36

and  for  other  two  methods,  it  is  J35. The distribution of the misclassification

probabilities is bimodal, irrespective of the classification method used. We found

that, the more symmetric and simpler objects (Archimedean and Platonic solids) tend

to have lower misclassification probabilities from all three methods. This is expected,

because, the Archimedean and Platonic solids have some strong distinguishing

features e.g. vertex type and face type. However, the Johnson solids appear in either

groups.

6.10.4 SVM Predicted Metabolosome Shapes

Each of the TMPS is classified using the SVM developed rules using the one-vs-one

voting scheme. Unlike the Bayes classifier, filtering is not required and each TMPS

has a length of 231. The following table (Table 6.7) gives the predicted shapes for

metabolosomes and corresponding frequencies.

Figure 6.13: The distribution of overall misclassification probabilities for 55 solids, resulted
from SVM. The largest misclassification probability is from J35.

The most frequent predicted shapes (Table 6.7) are Sphenocorona (J86),

Sphenomegacorona (J88), Augmented Sphenocorona (J87), Elongated pentagonal

bipyramid (J16) and Gyroelongated pentagonal pyramid (J11). The other predicted

solids are Metabidiminished icosahedron (J62), Gyroelongated square bipyramid

(J17), Biaugmented triangular prism (J50) and Augmented hexagonal prism (J54).
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Predicted Solids Solid Type Frequency
Sphenocorona J86 8
Augmented Sphenocorona J87 3
Sphenomegacorona J88 2
Elongated pentagonal bipyramid J16 9
Gyroelongated pentagonal pyramid J11 4
Other Solids J17, J50, J54, J62 4

Table 6.7: Predicted shapes for metabolosomes and their frequencies, using SVM. 'J' stands

for Johnson solid followed by Johnson solid number.

6.11 Classification Summary

6.11.1 Summary of the Metabolosome Shapes

The SVM predicted solids are similar to those are predicted using the Bayes

classifiers, LDA and the polyhedral structural distance model (Chapter 5). The

following table shows the predicted solids across all three methods.

Predicted Solid Name
Frequency

Bayes LDA SVM
Gyroelongated pentagonal pyramid 2 7 4
Elongated square bipyramid 1 1 0
Elongated pentagonal bipyramid 3 10 9
Gyroelongated square bipyramid 0 2 1
Gyroelongated triangular cupola 2 0 0
Elongated square bipyramid 0 0 1
Augmented pentagonal prism 1 1 0
Biaugmented pentagonal prism 1 0 0
Augmented hexagonal prism 0 0 1
Metabidiminished icosahedron 1 1 1
Sphenocorona 8 5 8
Augmented Sphenocorona 5 2 3
Sphenomegacorona 6 1 2

Table 6.8: The frequency of the predicted solids from three classification methods. The
solids having non-zero frequencies from all three methods are highlighted.

Interestingly, there are just 6 Johnson solids predicted through all classifiers.

These 6 solids constitute about 86.66%, 86.66% and 90% of the metabolosomes
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respectively. It suggests that, no matter what methods are used, the metabolosomes

have very particular shapes. The results in the above table also suggest an entire new

class of shapes for bacterial microcompartments as opposed to previous studies on

the Carboxysomes.

6.11.2 Prediction Agreement Matrix

The metabolosome shapes are predicted by four methods: polyhedral structural

distance model (PSDM), Bayes classifiers (BC),  LDA  and  SVM.   Let  the ith

metabolosome be predicted as iSPSDM, iSBC, iSLDA and iSSVM by these four methods

respectively, i = 1, 2, …, 30.

Let PSDM and BC 'agree'  for ith metabolosome if iSPSDM = iSBC.  Hence,  the

total number of agreement between iSPSDM and iSBC is

AG(PSDM, BC) = ∑ ೔ௌುೄವಾ	)	ܫ	 	ୀ	೔ௌಳ಴)௜

where, I(.) is the identity function. For example, let us consider the following matrix

for (ܥܤ,ܯܦܵܲܯܣ) PSDM and BC.  The  entry  in  (1,  2)  location  shows  there  is  one

metabolosome which is predicted as J10 by PSDM and  J11 by BC.  It  is  not  an

agreement. Clearly, AG(PSDM, BC) = trace(ܥܤ,ܯܦܵܲܯܣ) and here AG(PSDM, BC) = 12.

PSDM vs BC
J10 J11 J15 J16 J17 J22 J50 J52 J53 J54 J62 J86 J87 J88 J99

J10 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
J11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
J15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
J16 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
J17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
J22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
J50 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
J52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
J53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
J54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
J62 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
J86 0 0 0 0 0 0 0 0 0 0 0 4 2 0 0
J87 0 1 0 2 0 2 0 0 1 0 0 4 3 2 0
J88 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0
J99 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

The 'J' stands for Johnson solids, followed by their identification number. J99

is actually icosahedron which is a Platonic solid. The Table 6.9 gives the agreements

among all 4 methods.



Chapter 6    Section II: Incomplete Polyhedral Shape Classification

142

PSDM Bayes LDA SVM
PSDM 30 12 5 13
Bayes 30 13 15
LDA 30 15
SVM 30

Table 6.9: Prediction agreement among 4 classification methods.

This table shows that the agreement between polyhedral structural distance

model and the LDA is least and the SVM matches with other methods in maximum

cases. Interestingly, still all 4 methods eventually suggest that there are only about 6

classes.

6.12 Comparing Classifiers

Comparing classifiers first requires a measurement of their performance. The

performance of a classifier can be evaluated using many factors such as time and

space complexity, or misclassification errors [203]. However, since no universally

'best' classifier exists and performance of a classifier widely varies across

applications [171], our performance evaluation and comparison of classifiers must

address our particular problem, i.e., incomplete polyhedral shape classification.

There are several methods to compare classifiers [203], [204], [205] and we

adopted a common evaluation method - comparing misclassification probabilities

across methods. We compare these probabilities corresponding to each standard

polyhedral class, calculated based on the Bayes, LDA and SVM based classifiers.

6.12.1 Comparing Misclassification Probabilities

Let the misclassification probabilities for SPi be 1L*(i), 2L*(i) and 3L*(i) for the

Bayes classifier, LDA and SVM respectively, i = 1, 2, …, 55. The following box

plots give distributions of 1L*(i), 2L*(i) and 3L*(i), calculated based on 231 features.
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Figure 6.14: The box plots showing distributions of L*(.), calculated from three methods.

The plot shows that the Bayes classifiers are the best predictor followed by

SVM. As we found in previous sections, the LDA does not provide good

classification for this problem. If m1, m2 and m3 are the medians of 1L*(.) - 2L*(.),

2L*(.) - 3L*(.), and 1L*(.) - 3L*(.) respectively, the null hypothesis H0: m1 = 0 against

not  H0 is rejected by the Wilcoxon signed rank test [206] with p-value 0.0000. A

similar result is also obtained for H0: m2 = 0 against not H0. But the same test cannot

reject the H0: m3 = 0 against not H0 (p-value = 0.0917).

However, it is also important to examine 1L*(.), 2L*(.) and 3L*(.) for

individual solids, at least for the leading predicted solids for the metabolosomes.

Table 6.10 gives these probabilities.

Predicted Solid Name
Misclassification  Probability
Bayes LDA SVM

Gyroelongated pentagonal pyramid (J11) 0.0052 0.0328 0.0204
Elongated pentagonal bipyramid (J16) 0.0004 0.3380 0.0000
Metabidiminished icosahedron  (J62) 0.0092 0.1224 0.0588
Sphenocorona  (J86) 0.0192 0.1740 0.0196
Augmented Sphenocorona  (J87) 0.1180 0.2952 0.1064
Sphenomegacorona  (J88) 0.0368 0.2404 0.1064

Table 6.10: The misclassification probabilities for the leading predicted solids and common
in three methods.

While considering the Bayes classifiers, the maximum misclassification

probability is 0.1180. The other values are even smaller than 0.05. For the SVM, the
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maximum is 0.1064 and the LDA shows comparatively high misclassification

probabilities. Also, Bayes classifiers are only slightly outperforming the SVM in

these classes. We conclude that the leading shapes for the metabolosome correspond

to good prediction accuracies.

6.12.2 Effects of Data Error

As discussed in Chapter 4 and Chapter 5, the metabolosomes features are collected

manually. In addition, the truncation planes for metabolosomes may not be exactly

parallel as in the simulation study. They may have varying unknown truncation

proportions at the ends, contain segmentation errors and polyhedral approximation

leaves out some structural information. So it is possible that some features from

metabolosomes are missed or wrongly recorded. Since the features have inter-

dependencies, one error in one feature affects the whole statistic. We term this as

data error.

We developed another classification scheme based on these three classifiers

individually to test the effects of data error on L*(i), i = 1, 2, …, 55. The algorithm is

same for all three classifiers - the following steps describe the scheme in general.

Step 1: Training Step

As with previous classifiers, 2500 TPPS are considered from each of the standard

solids as training data. This training dataset develops the classification rule, based on

the  classification  method  (Bayes,  LDA  or  SVM)  applied.  This  step  is  exactly  the

same as previous classifiers developments.

Step 2: Introducing Errors in Test Data

Recalling the simulation section of this chapter, the rotated solid (REP) was

truncated by two planes P1 ǁ P2, perpendicular to the z-axis (Step 3, Section 6.4.4).

This truncation generated TSP and TPPS was recorded from this TSP.

Here, only for  test  data,  we  randomly  remove one more vertex from TSP,

which is equivalent that a vertex from metabolosome is missed during data

collection. Let this dropped vertex TSP be denoted by TSP* and corresponding TPPS

is denoted by TPPS*.  An  important  point  is, TPPS* cannot be obtained just by

adding some random integer noise to TPPS, because TPPS* should also contain the

information about inter-dependencies among features.
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Step 3: Classifying TPPS* using the rules from TPPS

The TPPS* is classified using the rules developed in Step 1. Similar to Section 6.8.3,

the overall misclassification probabilities are calculated for each class based on

predicted shapes of TPPS*. The following diagram displays this new scheme.

Results

The misclassification probabilities are calculated for the Bayes, LDA, SVM based

classifiers and the Bayes with filtering. The effects of introducing data error to the

test data is assessed through comparing these error rates. The analysis is carried out

based on truncation proportion = 0.10. Figure 6.16 compares the distribution of these

probabilities calculated from 4 methods.

Figure 6.15: The flowchart describing the classification method for measuring data error.
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Figure 6.16: The distributions of the misclassification probabilities across three classifiers in
comparison with the same when there are data errors in test data.

The results show that the Bayes classifiers are most affected by introducing

test data errors and the SVM is least effected here. These probabilities from the LDA

are also increased significantly. Table 6.11 summarizes the misclassification

probabilities in the presence of data errors.

LDA SVM Bayes Bayes + Filter
Minimum 0.0072 0.0000 0.6768 0.5276
Maximum 0.8956 0.6984 1.0000 1.0000
Mean 0.3832 0.2606 0.9598 0.7968
Standard Deviation 0.2484 0.1853 0.0661 0.1347

Table 6.11: Summary statistics of the misclassification probabilities in presence of data error

across classifiers.

The very high misclassification probabilities in Bayes classifiers are not

surprising, because the test data did not appear in the training data library in most of

the cases, and they are treated as misclassified. In the presence of filtering, the

classifier is naturally based on less than 231 features which can lead to higher error

rates. The SVM gives best error rates among all methods in presence of data error.
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6.13 Summary and Conclusion

This section summarizes the incomplete polyhedral shape classification methods and

the  results.  We  developed  the  Bayes  classifiers  and  a  modified  form  of  it  for  this

supervised learning problem. We also applied the LDA and the SVM for this

problem. The predicted shapes for the metabolosomes were very consistent across

classifiers. In addition, these shapes are also predicted when the polyhedral structural

distance model was used. There are just 6 leading shapes and all of them are the

Johnson solids, as opposed to a previous study on Carboxysome which was found to

have a Platonic solid shape.

The full feature based misclassification errors are minimum in the Bayes

classifiers, followed by the SVM and LDA. When the Bayes and SVM classifiers are

considered, the predicted solid classes have considerably smaller overall

misclassification probabilities. However, Bayes classifiers with filtering approach

may have higher misclassification probabilities. We also found that errors in test data

or in a classifying object have a large impact if the Bayes classifiers are used. This

impact is least for the SVM, followed by the LDA. Hence, considering all results, the

SVM is a 'strongest' and the most 'reliable' classifier for this problem.



Chapter 7

Conclusions and Future Research

The first section of this chapter presents concise notes on the research problem, the

solutions we developed and the results we found. In Section 7.2, the advantages and

disadvantages of this work are discussed. Some scope of future improvements related

to these methods are discussed in Section 7.3. Finally, we focus on how these

methodologies could be rolled out for more routine use, e.g. applying these methods

to similar other problems (Section 7.4).

7.1 Methods and Results Summary

The goal of this thesis is a methodological development for classifying incomplete

polyhedral structures and to apply these methods to predict 3D polyhedral structures

for a recently identified bacterial inclusion, called metabolosome.

7.1.1 Statistical Problem, Sampling and Inference

This is a statistical classification problem through supervised learning; but unlike

general  classification  problems,  here  the  training  data  does  not  consist  of  the

measurements of the representative objects from each class. The training data does

not contain any measurements of the standard polyhedra, rather we 'measured' their

transformed forms (truncated polyhedra). Hence this particular classification problem
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comes with an additional mapping problem: relations among the standard solids and

their truncated forms.

Sampling

This mapping problem here, in fact, brings the notion of sampling. A standard

polyhedron may produce a set of infinitely large number of truncated shapes; hence

an efficient sampling scheme is essential to collect a finite set of truncated shapes

such that this finite set can well represent the original complete shapes. In Section I

of Chapter 6, the simulation procedure we developed is actually such a sampling

scheme. We also showed that, the set of samples is a well representative of the

population (Section 6.4.5).

Inference

A statistical classification problem (here through supervised learning) also can be

formulated as a standard inference problem, but instead of significance testing, here

the misclassification probabilities are to be considered. Also, unlike usual hypothesis

testing, for a classification problem the test statistic is unknown and the main

purpose is to 'learn' this statistic (also known as classification rule). In general terms,

here the hypothesis to test is:

H0: M Î C (Pi) against not H0 for a particular i,

where i =  1,  2,...,  number  of  the  standard  polyhedron,  M  is  an  incomplete

metabolosome and C (Pi)  is  the  class  of truncated polyhedral shapes from the ith

standard polyhedron. In other words, the central statistical problems we addressed

here are: what is the best possible polyhedral class for a given incomplete

metabolosome and what is the probability that the incomplete metabolosome will

belong to this predicted class. Hence both of sampling and inference are accounted

for this work to a great extent.

7.1.2 Imaging, Reconstruction and Segmentation

The research starts with the raw images from cryo-electron tomography. These raw

images were reconstructed through IMOD [86] software to generate 3D stacked

images. The reconstructed three-dimensional images were then trimmed, sliced,
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manually segmented and smoothed to generate final metabolosome images. We

processed 30 metabolosomes for further analysis. In this step, we developed a least-

squares based method to combine 3-way segmented image boundaries. Visual

inspections showed the metabolosomes have convex polyhedral structures.

7.1.3 Fundamental Structural Properties

Statistical analyses describe the fundamental structural properties, such as volume,

symmetry, and aspect ratio of the reconstructed and segmented metabolosomes. We

found that the metabolosomes widely vary in size. The largest metabolosome is

about 80 times larger than the smallest one. The minimum and maximum of the

aspect ratio of the metabolosomes are 0.4251 and 0.8017 respectively with a mean of

0.6207. This shows the metabolosomes are non-spherical.

The analyses also show the ratio of the longest to shortest edge lengths ranges

between 1.7855 and 4.4306  with a mean of 3.0866. So, the metabolosomes are non-

uniform or deformed in structures.

In summary, the metabolosomes have widely varied sizes, with non-spherical

and deformed polyhedral structures. This is the first investigation to produce these

findings for these properties of the metabolosomes. These findings differ

significantly from the studies on another bacterial microcompartment named as

Carboxysomes which show that those objects have uniform, highly symmetric

convex polyhedral shapes [12], [10].

7.1.4 Polyhedral Structural Distance Model

Since the reconstructed objects suffer from missing wedges and they vary widely in

shapes and sizes, the existing shape averaging methods are not useful here. So we

developed an algorithm to logically 'complete' these incomplete structures and a

statistical method to find the best fit standard polyhedral shapes to these completed

structures (Chapter 5).

This analysis demonstrates that 29 of 30 metabolosomes have shapes from

the Johnson solids. The leading predicted solids are Sphenocorona, Augmented

Sphenocorona and Sphenomegacorona which are 86th, 87th and 88th Johnson solids

respectively. Previous work found that a similar microcompartment (Carboxysomes)

to have an icosahedral shape [12], [10] which is a Platonic solid.
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7.1.5 Polyhedron Profile Statistic

Analyzing shapes requires a shape descriptor. Here we developed a shape descriptor

for complete and incomplete polyhedral structures and named it the Polyhedron

Profile Statistic (Section 3.6, Chapter 3 and Section 6.3.4, Chapter 6). This feature

vector not only contains vertex, edge or face counts of a polyhedron, it also captures

more complex topological properties of a polyhedron. Importantly, this feature

vector is invariant under some conditional deformation and hence can describe the

deformed polyhedral objects as well.

7.1.6 Simulation for Shape Library

Predicting shapes of the incomplete metabolosomes is fundamentally a supervised

learning problem. The standard polyhedral shapes constitutes the classes for this

problem and the objects themselves are described through a feature vector -

polyhedron profile statistic. But we lacked sufficient samples to train this learning

model. So we developed a simulation algorithm to generate samples of truncated

polyhedral shapes. The standard polyhedra were randomly truncated followed by an

automated extraction of their polyhedron profile statistic. This develops a library of

truncated standard polyhedral shapes (Chapter 6, Part I).

7.1.7 Incomplete Polyhedral Shape Classification

Finally, we developed novel Bayes classifiers for the incomplete polyhedral shapes

classification. In addition, we also applied LDA and SVM for the same classification

problem. The misclassification probabilities evaluate the performance of these

classifiers. Finally we compare and combine the classifiers and predicted the shapes

of metabolosomes using these classifiers (Chapter 6, Part II).

The leading shapes from these classifiers are Gyroelongated Pentagonal

Pyramid (J11), Elongated Pentagonal Bipyramid (J16), Metabidiminished Icosahedron

(J62), Sphenocorona (J86), Augmented Sphenocorona (J87) and Sphenomegacorona

(J88). Notably, these shapes are all Johnson solids ('J' stands for Johnson solids).
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7.2 Discussion

7.2.1 Some Observations

Consistency in Results across Methods

The polyhedral structural distance model (Chapter 5) and three classifiers (Chapter 6,

Part II) are applied to predict the shapes of the metabolosomes. There is a clear

consistency: each method predicts about same set of shapes. We found that, though

the metabolosomes widely vary in size, average edge length, aspect ratio, and other

respects, they have only a very limited number of shapes and all of them are the

Johnson solids (Chapter 3). The consistency of results across methods strengthens

the claims about the validity of the prediction.

Performance of Classifiers

The polyhedral structural distance model cannot provide the misclassification

probabilities, but other methods do. The analysis on the misclassification

probabilities shows the Bayes classifiers have the lowest error rates and LDA has the

highest error rates in general. However, SVM is almost equally as good as the Bayes

classifier for this problem (Chapter 6, Part II).

But we also see that the Bayes classifiers can be affected largely in presence

of data errors while SVM is least affected. Hence SVM is most 'reliable' for this

classification problem. The highest error rate is about 10% in SVM and in the Bayes

classifiers for leading metabolosome shapes, which we accepted (Chapter 6, Part II).

7.2.2 Strengths and Limitations

The methods have several unique strengths. The biggest overall strength is: these

methods are able to work with non-symmetric or deformed objects and can operate

on a single metabolosome at a time; thus these methods solve the problem of

predicting shapes from incomplete structures even when no two objects are alike.

Thus the main goal of this research is achieved.

These methods also have the additional advantage that they are not

computationally intensive. However, these methods are developed specifically for
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convex polyhedral structures, so are limited to investigating convex polyhedral

shapes only. They may not be applied to non-convex polyhedral shapes, for example,

concave polyhedron, structures of proteins, cylindrical objects etc. The advantages

and disadvantages, strengths and limitations of the individual methods are discussed

here.

Claim 1: Three-way segmentation and LS method results better segmentation output.

Manual segmentation for these images is an accepted method. Now, three-

way segmentation definitely gathers more information than the traditional one-way

segmentation; but also accumulates more segmentation errors. The least squares (LS)

method actually 'averages' the values of the same voxel obtained from three different

segmentations and thus the errors are expected to be 'normalized' largely. The visual

inspection also shows the superiority of the outputs from the three-way segmentation

and  the  LS  method  than  a  one  way  segmentation.  So  the  Claim  1  is  justified

conceptually and also visually.

However, we believe that three values of a voxel carry same reliability while

segmented from three different directions; so there is no conflict that during LS

estimation, these three values got the same weight (=1). However, in any other case,

if it is realized that three values of a voxel are not equally reliable, then some other

methods (e.g. logistic regression) may be more appropriate.

Claim 2: The approach to 'complete' an incomplete structure is efficient.

The approach is straightforward and a simulation study (Section 5.3) shows

that if  the solid is  truncated up to by ≤ 30%, this algorithm will  predict  the correct

parent shape for ≥ 90% cases. This is checked for the most common predicted solids.

In addition, we established theoretically and visually that the metabolosomes are

very likely to be truncated by ≤ 30%. Thus for this particular problem the algorithm

is strong enough. Hence the Claim 2 is justified by the results from a simulation.

But this algorithm suffers with generalization issues. As discussed in Chapter

5, at least three incomplete edges are required to be visible for this algorithm to

work, otherwise it may fail. It also depends on the coordinates of the terminal

vertices of the incomplete edges and a cut-off proximity measure (we set it as 30 Å) -

these two are subjective and situation dependent. Finally, this algorithm is not tested

with more complicated solids (i.e. the solids with higher number of vertices and with

more verities of faces).
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Claim 3: The predicted shapes by the polyhedral structural distance model are

relevant.

This claim is justified in two different ways. The predicted shapes by the

polyhedral structural distance model are also in line with the shapes predicted by

other three classification algorithms (Chapter 6). Each predicted shape is also

visually verified whether the predicted shape can really fit to the metabolosome. For

example, if the predicted shape contains a vertex with 5 edges, we verified whether

the metabolosome can actually have such a vertex. If not, then we considered the

second nearest shape. So the results in this particular problem are reliable. Hence the

Claim 3 is justified.

However, this model has two serious drawbacks. This model does not provide

any probability associated with its prediction; as if the results (predicted shapes) are

perfect, but that is not the case. The second one is the parameter selection. The

weights and the loss functions are assigned heuristically. Though we provided a

justification on the parameter selection in Section 5.2.3, that is specific to this

problem only. In future, a more sophisticated and generalized method for parameter

estimation are required to be developed.

Claim 4: Polyhedron profile statistic is a good shape descriptor and deformation

invariant.

This claim is justified indirectly. Except for only 8 pairs out of 123 standard

polyhedra, this shape descriptor can uniquely identify the remaining standard solids

(non-truncated). Secondly, while using this statistic for the Bayes classifier or SVM,

the misclassification probabilities are in acceptable range in almost all cases. Third,

this statistic consists of some very powerful topological features (such as vertex type

and face type) of a standard polyhedron which even alone can separate the solids into

different polyhedral families. In addition, we also explained in Section 3.6.2 that it is

invariant under some restricted deformation. Hence, we believe that the polyhedron

profile statistic is a good shape descriptor for this problem.

However, this statistic has some limitations. This shape descriptor is quite

appropriate for convex standard polyhedra and (with some justifications) we assume

that the metabolosomes are also convex standard polyhedra. However, for more

complicated shapes (for example concave polyhedra) and for convex solids outside

of these standard families, this shape descriptor may not be equally useful. However,
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extensive research is required to establish usefulness of this shape descriptor for

other solids.

Finally, this statistic will definitely lose its deformation invariant property if

any one of the three conditions (described in Section 3.6.2) are violated. Since there

are infinitely many types of deformation possible, we need to justify the validity of

these conditions before using this statistic for deformed polyhedral structures.

Claim 5: The approach for simulation is efficient to generate a good sample from

truncated polyhedron population, resembling truncated metabolosomes.

The simulation study relies on three assumptions - the truncation proportions

at both side are equal, the truncation is carried out by two parallel planes and the

truncation proportions do not exceed by 15% at each side. All of these assumptions

are justified to be approximately valid for the metabolosomes (in Section 6.2.2 and

Section 2.2.5).

The quality of the sample is justified through the question: is there any new

truncated polyhedra possible outside of this sample? This is justified in Section 6.4.5

and we found that increasing sample size (beyond 5000 per solid) does not result

much increments in the new profiles. Hence the Claim 5 is justified - the simulation

efficiently generated a 'good' sample, resembling truncated metabolosomes.

However, scenarios may occur when the truncation proportions are not the

same at both sides or the truncation planes are not parallel. That may not be for the

metabolosomes or similar ECT images, but may be for other applications. There this

simulation is to be re-parameterized based on the problem. Hence this simulation

here does not generate a general library of the truncated standard polyhedra.

Claim 6: The classifiers we developed are well capable to classify incomplete

polyhedral shapes.

This is justified by the misclassification probabilities. There is nothing new

approach we developed for classification, as the Bayes, LDA and SVM are standard

methods. But we used these methods to developed new classifiers for the truncated

polyhedra. Since there is no 'benchmark' for the acceptable misclassification

probabilities for this problem, we depended on experts' judgments and found that the

Bayes and SVM based classifiers show acceptable misclassification probabilities.

However,  LDA  did  not  work  well  for  this  problem,  though  the  predicted

shapes are in line with other three methods. This misclassification probabilities are
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much higher  than  the  Bayes  and  SVM. The  exact  reasons  are  not  investigated;  we

just showed, some features are overlapped (Section 6.9.3). In future it may need

more investigations and based on that a new classifier might be developed.

Claim 7: The metabolosomes have predicted standard polyhedral shapes.

It is difficult to justify why the metabolosomes must have standard polyhedral

shapes. Few research articles (e.g. [18]) claim that the standard polyhedral shapes are

formed due to some thermodynamic processes inside multi-component elastic

membranes, as like metabolosomes. Also, another similar microcompartment called

Carboxysome has standard polyhedral shape; some natural objects like viruses etc.

are polyhedral. Hence, this assumption is thought to be valid based on the literatures

and from the instances in nature. However, the polyhedral structural distance model

resulted in 11 out of 30 metabolosomes are showing an exact match to the standard

solids. This result, to some extent, validates the assumption.

On  the  other  hand,  for  the  shape  classification  purpose,  we  must  need  a

standard  reference  class  (class  of  solids).  It  is  true  that,  beyond  of  these  standard

solids there are infinitely many convex solids possible, but they are not 'standard', i.e.

do not carry geometric properties like a standard solid. This is another reason that we

assumed metabolosomes have standard polyhedral shapes. If any metabolosome

actually does not have a standard polyhedral shape, these methods in fact find a most

probable standard polyhedral shape for it with a strong logical explanation.

7.2.3 Reproducibility

This shape classification task is a workflow consisting of a number of steps. Some of

these steps are executed manually as described in corresponding chapters. There are

no known automated algorithm driven methods to work satisfactorily for these steps.

Naturally there are errors due to subjectivity and hence some reproducibility issues

arise.

As we explained in corresponding sections, the tasks like structure drawing,

manual segmentation etc. would definitely depend on the subjects, but if the tasks are

carefully executed and examined repeatedly, the overall shapes of the objects should

not be affected much. However, these tasks can be repeated by different subjects and

the outcomes from individuals could be assessed and then combined to eradicate

some of the subjective errors.
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Some parameters are also determined heuristically (e.g. parameters in the

polyhedral structural distance model, smoothing parameters for metabolosome

surface etc.), but they are justified in the corresponding sections. These parameters

are good for this problem only, and may need to change for another similar problem.

7.3 Future Research

Methodological Improvements

Segmentation

This research starts with 3D image reconstruction and segmentation. The

segmentation was carried out manually. Several algorithm-driven, automated

segmentation methods exist, but biologists generally prefer manual segmentation for

this type of image. Since manual segmentation contains subjective errors, it is

worthwhile to develop an automated or semi-automated segmentation algorithms for

this type of image. In addition, since 3D smoothing is followed by segmentation, a

joint 3D segmentation-smoothing algorithm could be useful. However, this topic is

beyond the scope of this thesis.

Features Extraction

The polyhedra profile statistic for metabolosomes requires identification of vertices,

faces and edges from the segmented images. These features are identified through

visual inspections which may again introduce subjectivity errors. The

metabolosomes contain curved facets, segmentation errors and missing regions and

some of the vertices, faces and edges are not readily apparent. Hence, the possibility

for identification errors is not negligible. An algorithm driven approach to identify

these features from the segmented objects could reduce the uncertainty of the

predicted shapes. Again, this was not the prime focus of this work.

Retrospective Analysis

The structures of these metabolosomes were studied for the first time using these

new methods. Since the objects and the methods both are new, we need some
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retrospective studies to review the strengths of these methods. For example, these

methods can be applied to other similar image data (such as Carboxysomes), whose

shapes are already established earlier. These methods however, do show very

promising outcomes when applied to simulated data.

Classifiers

The Bayes classifiers and SVM have good misclassification probabilities, while LDA

is  weak  for  this  problem.  Like  our  modified  form  of  the  Bayes  Classifiers,  the

standard LDA may be customized to work better for this problem. Also a logistic

discriminant analysis may be developed for this problem. Another common approach

is  a  tree-based  model  for  classification,  which  might  also  be  worthy  to  explore  in

future for this type of data. However, since there is no 'best' classifier for any

classification problem, our research in fact opens the opportunities to search for

better classifiers for this problem. It may be through developing a better shape

descriptor, a new classifier or a strong ensemble method.

Fullerene Models

Recently, three-dimensional structures of many viruses are expressed using fullerene

models [207], [135]. However, the topological properties, such as number of edges

per vertices and number of edges per face do not support a possible fullerene model

for the metabolosomes, since the fullerenes have only pentagonal or hexagonal facets

[208], [209]. However, the problem of using fullerene models for structures with

missing regions is an entirely different research area and certainly needs attention in

the future.

7.4 Future Applications

Incompleteness in shapes may be due to various reasons and the limited angle single

axis cryo-tomography is just one of them. Irrespective of the reasons behind

incompleteness, if the underlying structures are convex polyhedra, these methods

could be appropriate to analyze their shapes. The objects may be other bacterial

inclusions or any other incomplete, deformed shaped polyhedral structures.
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For instance, computer vision scientists may need to identify objects on the

basis of incomplete scene images. The research presented here may be of benefit in

solving such problems.

 Automation

The complete research, starting from image reconstruction to shape classification, is

a time consuming, laborious and diligent process. This is mostly due to the manual

execution of some steps. We believe that, the complete workflow could be rolled out

to more routine use in future with some automation introduced to the process.

A software pipeline could be thought to develop for this purpose, but a big

challenge is to develop algorithm driven ways to execute current manual process. For

example, algorithms for segmentation and polyhedral feature extraction from a

segmented metabolosome are the initial requirements. Another challenge is to

integrate the existing software driven tasks (for example, image reconstruction, etc.)

to the new software pipeline. We hope, in future these developments will be

accomplished and these methods will be used for many similar other problems.

Applications

Finally, this polyhedral shape prediction approach definitely can be applied to similar

shape prediction problems. This approach has two main parts: getting the incomplete

structures (data collection) and shape prediction (analysis). We followed a fairly

standard data preparation approach (used by other published researches as well). The

data collection (information about incomplete structures) approach is manual here,

though may be automated as well (e.g. computer vision applications). As discussed

before, the shape library is almost complete but may need to use different parameters

depending on the problems. The polyhedron profile statistic is a strong one for

standard polyhedral shapes, but before using for any other problem, it is

recommended to check if the objects of interest are convex polyhedral and the

deformation assumptions are appropriate.

We believe that this research will significantly contribute to future developments in

statistics, machine learning, structural biology, medicine and other related fields.
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Appendix

Appendix for Chapter 3

Appendix 3.1

As described in Chapter 3, the polyhedron profile statistic for standard polyhedra

contains 15 features. The following table gives the polyhedron profile statistic for the

5 Platonic solids. However, this statistic was extended later to contain more features

as described in Chapter 6, Part I. Throughout the Appendix, the following symbols

are used:

NV = Number of vertices, NE = Number of edges, NF = Number of faces,

ிܰ
௜  = Number of faces with i edges, i = 3, 4, 5, 6, 8, 10 and

௏ܰ
௜  = Number of vertices with i edges, i = 3, 4, 5, 6, 8, 10.

Feature Name Tetrahedron Cube Octahedron Dodecahedron Icosahedron
NV 4 8 6 20 12
NF 4 6 8 12 20
NE 6 12 12 30 30
ிܰ
ଷ 4 0 8 0 20
ிܰ
ସ 0 6 0 0 0
ிܰ
ହ 0 0 0 12 0
ிܰ
଺ 0 0 0 0 0
ிܰ
଼ 0 0 0 0 0
ிܰ
ଵ଴ 0 0 0 0 0
௏ܰ
ଷ 4 8 0 20 0
௏ܰ
ସ 0 0 6 0 0
௏ܰ
ହ 0 0 0 0 12
௏ܰ
଺ 0 0 0 0 0
௏ܰ
଼ 0 0 0 0 0
௏ܰ
ଵ଴ 0 0 0 0 0

Table A3.1: The polyhedron profile statistic (with 15 features) for the 5 Platonic solids.



Appendix 3.2

Similar to Appendix 3.1, the following table gives the polyhedron profile statistic (with 15 features) for the 13 Archimedean solids.

Solid Name NV NF NE ࡲࡺ
૜ ࡲࡺ

૝ ࡲࡺ
૞ ࡲࡺ

૟ ࡲࡺ
ૡ ࡲࡺ

૚૙ ࢂࡺ
૜ ࢂࡺ

૝ ࢂࡺ
૞ ࢂࡺ

૟ ࢂࡺ
ૡ ࢂࡺ

૚૙

Truncated tetrahedron 12 8 18 4 0 0 4 0 0 12 0 0 0 0 0
Cuboctahedron 12 14 24 8 6 0 0 0 0 0 12 0 0 0 0
Truncated cube 24 14 36 8 0 0 0 6 0 24 0 0 0 0 0
Truncated octahedron 24 14 36 0 6 0 8 0 0 24 0 0 0 0 0
Rhombicuboctahedron 24 26 48 8 18 0 0 0 0 0 24 0 0 0 0
Truncated cuboctahedron 48 26 72 0 12 0 8 6 0 48 0 0 0 0 0
Snub cube 24 38 60 32 6 0 0 0 0 0 0 24 0 0 0
Icosidodecahedron 30 32 60 20 0 12 0 0 0 0 30 0 0 0 0
Truncated dodecahedron 60 32 90 20 0 0 0 0 12 60 0 0 0 0 0
Truncated icosahedron 60 32 90 0 0 12 20 0 0 60 0 0 0 0 0
Rhombicosidodecahedron 60 62 120 20 30 12 0 0 0 0 60 0 0 0 0
Truncated icosidodecahedron 120 62 180 0 30 0 20 0 12 120 0 0 0 0 0
Snub dodecahedron 60 92 150 80 0 12 0 0 0 0 0 60 0 0 0

Table A3.2: The polyhedron profile statistic (with 15 features) for the 13 Archimedean solids.



Appendix 3.3

Similar to Appendices 3.1 and 3.2, the following table gives the polyhedron profile statistic (with 15 features) for the 92 Johnson solids.

Solid Name NV NF NE ࡲࡺ
૜ ࡲࡺ

૝ ࡲࡺ
૞ ࡲࡺ

૟ ࡲࡺ
ૡ ࡲࡺ

૚૙ ࢂࡺ
૜ ࢂࡺ

૝ ࢂࡺ
૞ ࢂࡺ

૟ ࢂࡺ
ૡ ࢂࡺ

૚૙

Square pyramid 5 5 8 4  1 0 0 0 0 4 1 0 0 0 0
Pentagonal pyramid 6 6 10 5 0 1 0 0 0 5 0 1 0 0 0
Triangular cupola 9 8 15 4 3 0 1 0 0 6 3 0 0 0 0
Square cupola 12 10 20 4 5 0 0 1 0 8 4 0 0 0 0
Pentagonal cupola 15 12 25 5 5 1 0 0 1 10 5 0 0 0 0
Pentagonal rotunda 20 17 35 10 0 6 0 0 1 10 10 0 0 0 0
Elongated triangular pyramid 7 7 12 4 3 0 0 0 0 4 3 0 0 0 0
Elongated square pyramid 9 9 16 4 5 0 0 0 0 4 5 0 0 0 0
Elongated pentagonal pyramid 11 11 20 5 5 1 0 0 0 5 5 1 0 0 0
Gyroelongated square pyramid 9 13 20 12 1 0 0 0 0 0 5 4 0 0 0
Gyroelongated pentagonal pyramid 11 16 25 15 0 1 0 0 0 0 5 6 0 0 0
Triangular bipyramid 5 6 9 6 0 0 0 0 0 2 3 0 0 0 0
Pentagonal bipyramid 7 10 15 10 0 0 0 0 0 0 5 2 0 0 0
Elongated triangular bipyramid 8 9 15 6 3 0 0 0 0 2 6 0 0 0 0
Elongated square bipyramid 10 12 20 8 4 0 0 0 0 0 10 0 0 0 0
Elongated pentagonal bipyramid 12 15 25 10 5 0 0 0 0 0 10 2 0 0 0
Gyroelongated square bipyramid 10 16 24 16 0 0 0 0 0 0 2 8 0 0 0
Elongated triangular cupola 15 14 27 4 9 0 1 0 0 6 9 0 0 0 0
Elongated square cupola 20 18 36 4 13 0 0 1 0 8 12 0 0 0 0
Elongated pentagonal cupola 25 22 45 5 15 1 0 0 1 10 15 0 0 0 0
Elongated pentagonal rotunda 30 27 55 10 10 6 0 0 1 10 20 0 0 0 0
Gyroelongated triangular cupola 15 20 33 16 3 0 1 0 0 0 9 6 0 0 0
Gyroelongated square cupola 20 26 44 20 5 0 0 1 0 0 12 8 0 0 0
Gyroelongated pentagonal cupola 25 32 55 25 5 1 0 0 1 0 15 10 0 0 0

Continued: The polyhedron profile statistic (with 15 features) for the 92 Johnson solids
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Solid Name NV NF NE ࡲࡺ
૜ ࡲࡺ

૝ ࡲࡺ
૞ ࡲࡺ

૟ ࡲࡺ
ૡ ࡲࡺ

૚૙ ࢂࡺ
૜ ࢂࡺ

૝ ࢂࡺ
૞ ࢂࡺ

૟ ࢂࡺ
ૡ ࢂࡺ

૚૙

Gyroelongated pentagonal rotunda 30 37 65 30 0 6 0 0 1 0 20 10 0 0 0
Gyrobifastigium 8 8 14 4 4 0 0 0 0 4 4 0 0 0 0
Triangular orthobicupola 12 14 24 8 6 0 0 0 0 0 12 0 0 0 0
Square orthobicupola 16 18 32 8 10 0 0 0 0 0 16 0 0 0 0
Square gyrobicupola 16 18 32 8 10 0 0 0 0 0 16 0 0 0 0
Pentagonal orthobicupola 20 22 40 10 10 2 0 0 0 0 20 0 0 0 0
Pentagonal gyrobicupola 20 22 40 10 10 2 0 0 0 0 20 0 0 0 0
Pentagonal orthocupolarotunda 25 27 50 15 5 7 0 0 0 0 25 0 0 0 0
Pentagonal gyrocupolarotunda 25 27 50 15 5 7 0 0 0 0 25 0 0 0 0
Pentagonal orthobirotunda 30 32 60 20 0 12 0 0 0 0 30 0 0 0 0
Elongated triangular orthobicupola 18 20 36 8 12 0 0 0 0 0 18 0 0 0 0
Elongated triangular gyrobicupola 18 20 36 8 12 0 0 0 0 0 18 0 0 0 0
Elongated square gyrobicupola 24 26 48 8 18 0 0 0 0 0 24 0 0 0 0
Elongated pentagonal orthobicupola 30 32 60 10 20 2 0 0 0 0 30 0 0 0 0
Elongated pentagonal gyrobicupola 30 32 60 10 20 2 0 0 0 0 30 0 0 0 0
Elongated pentagonal orthocupolarotunda 35 37 70 15 15 7 0 0 0 0 35 0 0 0 0
Elongated pentagonal gyrocupolarotunda 35 37 70 15 15 7 0 0 0 0 35 0 0 0 0
Elongated pentagonal orthobirotunda 40 42 80 20 10 12 0 0 0 0 40 0 0 0 0
Elongated pentagonal gyrobirotunda 40 42 80 20 10 12 0 0 0 0 40 0 0 0 0
Gyroelongated triangular bicupola 18 26 42 20 6 0 0 0 0 0 6 12 0 0 0
Gyroelongated square bicupola 24 34 56 24 10 0 0 0 0 0 8 16 0 0 0
Gyroelongated pentagonal bicupola 30 42 70 30 10 2 0 0 0 0 10 20 0 0 0
Gyroelongated pentagonal cupolarotunda 35 47 80 35 5 7 0 0 0 0 15 20 0 0 0
Gyroelongated pentagonal birotunda 40 52 90 40 0 12 0 0 0 0 20 20 0 0 0
Augmented triangular prism 7 8 13 6 2 0 0 0 0 2 5 0 0 0 0
Biaugmented triangular prism 8 11 17 10 1 0 0 0 0 0 6 2 0 0 0
Triaugmented triangular prism 9 14 21 14 0 0 0 0 0 0 3 6 0 0 0
Augmented pentagonal prism 11 10 19 4 4 2 0 0 0 6 5 0 0 0 0
Biaugmented pentagonal prism 12 13 23 8 3 2 0 0 0 2 10 0 0 0 0

Continued: The polyhedron profile statistic (with 15 features) for the 92 Johnson solids
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Solid Name NV NF NE ࡲࡺ
૜ ࡲࡺ

૝ ࡲࡺ
૞ ࡲࡺ

૟ ࡲࡺ
ૡ ࡲࡺ

૚૙ ࢂࡺ
૜ ࢂࡺ

૝ ࢂࡺ
૞ ࢂࡺ

૟ ࢂࡺ
ૡ ࢂࡺ

૚૙

Augmented hexagonal prism 13 11 22 4  5 0 2 0 0 8 5 0 0 0 0
Parabiaugmented hexagonal prism 14 14 26 8 4 0 2 0 0 4 10 0 0 0 0
Metabiaugmented hexagonal prism 14 14 26 8 4 0 2 0 0 4 10 0 0 0 0
Triaugmented hexagonal prism 15 17 30 12 3 0 2 0 0 0 15 0 0 0 0
Augmented dodecahedron 21 16 35 5 0 11 0 0 0 15 5 1 0 0 0
Parabiaugmented dodecahedron 22 20 40 10 0 10 0 0 0 10 10 2 0 0 0
Metabiaugmented dodecahedron 22 20 40 10 0 10 0 0 0 10 10 2 0 0 0
Triaugmented dodecahedron 23 24 45 15 0 9 0 0 0 5 15 3 0 0 0
Metabidiminished icosahedron 10 12 20 10 0 2 0 0 0 2 6 2 0 0 0
Tridiminished icosahedron 9 8 15 5 0 3 0 0 0 6 3 0 0 0 0
Augmented tridiminished icosahedron 10 10 18 7 0 3 0 0 0 4 6 0 0 0 0
Augmented truncated tetrahedron 15 14 27 8 3 0 3 0 0 6 9 0 0 0 0
Augmented truncated cube 28 22 48 12 5 0 0 5 0 16 12 0 0 0 0
Biaugmented truncated cube 32 30 60 16 10 0 0 4 0 8 24 0 0 0 0
Augmented truncated dodecahedron 65 42 105 25 5 1 0 0 11 50 15 0 0 0 0
Parabiaugmented truncated dodecahedron 70 52 120 30 10 2 0 0 10 40 30 0 0 0 0
Metabiaugmented truncated dodecahedron 70 52 120 30 10 2 0 0 10 40 30 0 0 0 0
Triaugmented truncated dodecahedron 75 62 135 35 15 3 0 0 9 30 45 0 0 0 0
Gyrate rhombicosidodecahedron 60 62 120 20 30 12 0 0 0 0 60 0 0 0 0
Parabigyrate rhombicosidodecahedron 60 62 120 20 30 12 0 0 0 0 60 0 0 0 0
Metabigyrate rhombicosidodecahedron 60 62 120 20 30 12 0 0 0 0 60 0 0 0 0
Trigyrate rhombicosidodecahedron 60 62 120 20 30 12 0 0 0 0 60 0 0 0 0
Diminished rhombicosidodecahedron 55 52 105 15 25 11 0 0 1 10 45 0 0 0 0
Paragyrate diminished rhombicosidodecahedron 55 52 105 15 25 11 0 0 1 10 45 0 0 0 0
Metagyrate diminished rhombicosidodecahedron 55 52 105 15 25 11 0 0 1 10 45 0 0 0 0
Bigyrate diminished rhombicosidodecahedron 55 52 105 15 25 11 0 0 1 10 45 0 0 0 0
Parabidiminished rhombicosidodecahedron 50 42 90 10 20 10 0 0 2 20 30 0 0 0 0
Metabidiminished rhombicosidodecahedron 50 42 90 10 20 10 0 0 2 20 30 0 0 0 0
Gyrate bidiminished rhombicosidodecahedron 50 42 90 10 20 10 0 0 2 20 30 0 0 0 0

Continued: The polyhedron profile statistic (with 15 features) for the 92 Johnson solids
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Solid Name NV NF NE ࡲࡺ
૜ ࡲࡺ

૝ ࡲࡺ
૞ ࡲࡺ

૟ ࡲࡺ
ૡ ࡲࡺ

૚૙ ࢂࡺ
૜ ࢂࡺ

૝ ࢂࡺ
૞ ࢂࡺ

૟ ࢂࡺ
ૡ ࢂࡺ

૚૙

Tridiminished rhombicosidodecahedron 45 32 75 5 15 9 0 0 3 30 15 0 0 0 0
Snub disphenoid 8 12 18 12 0 0 0 0 0 0 4 4 0 0 0
Snub square antiprism 16 26 40 24 2 0 0 0 0 0 0 16 0 0 0
Sphenocorona 10 14 22 12 2 0 0 0 0 0 6 4 0 0 0
Augmented sphenocorona 11 17 26 16 1 0 0 0 0 0 3 8 0 0 0
Sphenomegacorona 12 18 28 16 2 0 0 0 0 0 4 8 0 0 0
Hebesphenomegacorona 14 21 33 18 3 0 0 0 0 0 4 10 0 0 0
Disphenocingulum 16 24 38 20 4 0 0 0 0 0 4 12 0 0 0
Bilunabirotunda 14 14 26 8 2 4 0 0 0 4 10 0 0 0 0
Triangular hebesphenorotunda 18 20 36 13 3 3 1 0 0 0 18 0 0 0 0

Table A3.3: The polyhedron profile statistic (with 15 features) for the 92 Johnson solids.
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Appendix 3.4

The following table shows the polyhedron profile statistic (with 15 features) for the 13 Catalan solids:

Solid Name NV NF NE ࡲࡺ
૜ ࡲࡺ

૝ ࡲࡺ
૞ ࡲࡺ

૟ ࡲࡺ
ૡ ࡲࡺ

૚૙ ࢂࡺ
૜ ࢂࡺ

૝ ࢂࡺ
૞ ࢂࡺ

૟ ࢂࡺ
ૡ ࢂࡺ

૚૙

Triakis Tetrahedron 8 12 18 12 0  0 0 0 0  4 0 0 4  0 0
Rhombic Dodecahedron 14 12 24 0 12 0 0 0 0 8 6 0 0 0 0
Triakis Octahedron 14 24 36 24 0 0 0 0 0 8 0 0 0 6 0
Tetrakis Hexahedron 14 24 36 24 0 0 0 0 0 0 6 0 8 0 0
Deltoidal Icositetrahedron 26 24 48 0 24 0 0 0 0 8 18 0 0 0 0
Disdyakis dodecahedron 26 48 72 48 0 0 0 0 0 0 12 0 8 6 0
Rhombic triacontahedron 32 30 60 0 30 0 0 0 0 20 0 12 0 0 0
Triakis icosahedron 32 60 90 60 0 0 0 0 0 20 0 0 0 0 12
Pentakis dodecahedron 32 60 90 60 0 0 0 0 0 0 0 12 20 0 0
Pentagonal icositetrahedron 38 24 60 0 0 24 0 0 0 32 6 0 0 0 0
Deltoidal hexecontahedron 62 60 120 0 60 0 0 0 0 20 30 12 0 0 0
Disdyakis triacontahedron 62 120 180 120 0 0 0 0 0 0 30 0 20 0 12
Pentagonal hexecontahedron 92 60 150 0 0 60 0 0 0 80 0 12 0 0 0

Table A3.4: The polyhedron profile statistic (with 15 features) for the 13 Catalan solids.
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As discussed in Chapter 3, the polyhedron profile statistic with 15 features cannot

alone differentiate all standard polyhedral shapes. The solids inside parentheses

below show the same polyhedron profile statistic. The profiles are different across

parentheses.

1. (Cuboctahedron, Triangular orthobicupola)
2. (Square gyrobicupola, Square orthobicupola)
3. (Pentagonal orthobicupola, Pentagonal gyrobicupola)
4. (Pentagonal orthocupolarotunda, Pentagonal gyrocupolarotunda)
5. (Elongated triangular gyrobicupola, Elongated triangular orthobicupola)
6. (Elongated pentagonal orthobicupola, Elongated pentagonal gyrobicupola)
7. (Elongated pentagonal orthocupolarotunda, Elongated pentagonal

gyrocupolarotunda)
8. (Elongated pentagonal orthobirotunda, Elongated pentagonal gyrobirotunda)
9. (Parabiaugmented hexagonal prism, Metabiaugmented hexagonal prism)
10. (Metabiaugmented dodecahedron, Parabiaugmented dodecahedron)
11. (Parabiaugmented truncated dodecahedron, Metabiaugmented truncated

dodecahedron)
12. (Elongated square gyrobicupola, Rhombicuboctahedron)
13. (Pentagonal orthobirotunda, Icosidodecahedron)
14. (Parabidiminished rhombicosidodecahedron, Metabidiminished

rhombicosidodecahedron, Gyrate bidiminished rhombicosidodecahedron)
15. (Gyrate rhombicosidodecahedron, Parabigyrate rhombicosidodecahedron,

Metabigyrate rhombicosidodecahedron, Trigyrate rhombicosidodecahedron,
Rhombicosidodecahedron)

16. (Triaugmented truncated dodecahedron, Gyrate rhombicosidodecahedron,
Parabigyrate rhombicosidodecahedron,  Metabigyrate rhombicosidodecahedron,
Trigyrate rhombicosidodecahedron, Rhombicosidodecahedron)

The following solids inside parentheses show the same polyhedron profile statistic,

same edge adjacency matrix and same face adjacency matrix (Nv = No. of vertices).

1. (Elongated triangular orthobicupola, Elongated triangular gyrobicupola), Nv = 18
2. (Elongated square gyrobicupola, Rhombicuboctahedron) , Nv = 24
3. (Elongated pentagonal orthobicupola, Elongated pentagonal gyrobicupola) , Nv = 30
4. (Elongated pentagonal orthocupolarotunda, Elongated pentagonal

gyrocupolarotunda) , Nv = 35
5. (Elongated pentagonal orthobirotunda, Elongated pentagonal gyrobirotunda), Nv =40
6. (Parabiaugmented truncated dodecahedron, Metabiaugmented truncated

dodecahedron) , Nv = 70
7. (Parabigyrate rhombicosidodecahedron, Metabigyrate rhombicosidodecahedron),

 Nv = 60
8. (Paragyrate diminished rhombicosidodecahedron, Metagyrate diminished

rhombicosidodecahedron) , Nv = 55
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Appendix for Chapter 4

Appendix 4.1

The following table provides some basic statistical measures on the edge lengths

from individual metabolosomes. The measurements are in pixel where 1 pixel = 9.62

Å (approximately).

Metabolosome Edge
Count Min Max Range Mean SD

1 26 46.10 150.50 104.41 96.45 35.90
2 23 27.49 121.78 94.30 78.52 26.19
3 28 69.20 161.31 92.10 123.47 23.71
4 26 43.46 169.38 125.92 105.98 37.61
5 26 42.98 127.62 84.64 87.71 20.57
6 22 74.54 186.17 111.63 125.76 29.47
7 24 44.90 129.22 84.32 86.14 23.60
8 24 43.57 131.58 88.01 94.64 23.77
9 25 65.76 170.38 104.62 113.14 27.71
10 22 50.35 134.31 83.95 87.08 20.77
11 28 42.07 116.77 74.70 81.79 22.29
12 23 49.92 152.50 102.58 88.90 22.00
13 19 42.30 152.33 110.03 96.75 29.19
14 24 60.05 121.00 60.95 87.29 16.25
15 25 36.96 120.59 83.63 77.35 23.70
16 22 43.46 164.94 121.48 106.57 38.66
17 23 38.61 143.00 104.39 105.00 26.93
18 28 45.74 107.76 62.01 73.79 16.00
19 16 38.66 156.30 117.64 90.16 34.60
20 26 36.35 151.77 115.42 90.56 30.26
21 22 31.61 105.19 73.58 62.53 21.03
22 26 43.05 113.58 70.53 81.57 19.50
23 26 49.67 155.37 105.70 113.59 26.44
24 23 72.84 161.75 88.91 114.55 27.33
25 24 62.16 149.57 87.41 93.46 24.01
26 23 40.99 177.39 136.40 102.00 34.00
27 24 55.29 140.52 85.23 91.49 23.00
28 25 35.34 111.86 76.52 63.09 20.16
29 20 47.22 84.31 37.09 68.53 11.95
30 27 29.81 111.13 81.32 68.46 23.25

Table A4.1: Some basic measurements on the edge lengths from 30 metabolosomes.



Appendix: Polyhedral Shape Classification

185

Appendix 4.2

The following table provides some basic statistical measures on the triangular face

areas from 30 metabolosomes. The measurements are in square pixel where 1 pixel is

approximately 9.62 Å.

Metabolosome Face
Count

Min
(×102)

Max
(×102)

Range
(×102)

Mean
(×102)

SD
(×102)

1 16 11.37 57.38 46.01 35.40 15.06
2 14 5.14 47.91 42.78 24.87 12.47
3 16 33.71 98.67 64.95 64.06 20.01
4 16 12.27 68.50 56.22 42.35 15.90
5 12 21.61 54.97 33.35 34.66 10.23
6 12 35.64 91.84 56.20 60.68 22.21
7 12 13.86 47.83 33.98 30.14 11.15
8 12 17.72 56.17 38.45 38.34 11.44
9 13 23.03 88.64 65.61 52.34 20.02

10 12 14.69 52.84 38.16 30.73 10.86
11 16 8.87 45.60 36.73 27.64 10.26
12 14 16.93 53.89 36.96 32.13 10.91
13 8 19.76 71.50 51.74 42.67 17.42
14 12 21.41 39.10 17.69 30.75 5.56
15 11 13.67 34.11 20.44 25.62 6.82
16 12 14.59 99.49 84.89 46.17 27.13
17 10 14.84 73.54 58.70 46.91 18.86
18 16 13.35 40.16 26.82 22.89 7.22
19 8 13.33 57.63 44.30 30.06 15.44
20 16 13.91 56.02 42.11 31.90 14.30
21 12 6.58 32.18 25.60 15.47 8.19
22 16 11.69 41.49 29.80 27.40 10.44
23 12 23.12 79.46 56.34 50.28 15.94
24 14 30.23 80.55 50.32 51.79 15.22
25 12 20.11 48.04 27.93 33.24 9.35
26 10 25.68 64.44 38.76 44.86 12.26
27 12 16.43 56.23 39.80 34.45 11.62
28 14 7.87 21.55 13.67 14.70 4.23
29 10 13.39 28.32 14.93 20.78 4.94
30 14 6.78 30.88 24.11 15.60 6.88

Table A4.2: Some basic measurements on the triangular face areas from 30 metabolosomes.
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Appendix 5.1

As discussed in Chapter 5, we developed a structural distance model which contains parameters associated with weights and robustness

of the features of a polyhedron. A possible set of values we used for shape prediction is provided here.

Features l1 l2 w
Number of Vertices 1 1 0.5387
Number of Faces 1 4 0.0252
Number of Edges 1 1 0.0252
Number of Triangles 1 2 0.0252
Number of Quadrilaterals 4 2 0.0252
Number of Pentagons 4 1 0.1333
Number of Hexagons 1 1 0.0252
Number of Octagons 1 1 0.0252
Number of Decagons 1 1 0.0252
Number of Vertices with 3 Edges 1 1 0.0252
Number of Vertices with 4 Edges 4 1 0.0252
Number of Vertices with 5 Edges 1 1 0.0252
Number of Vertices with 6 Edges 1 1 0.0252
Number of Vertices with 8 Edges 1 1 0.0252
Number of Vertices with 10 Edges 1 1 0.0252

Table A5.1: A possible set of values for parameters in the structural distance model.

Appendix 5.2

The name of the predicted shapes for metabolosomes: the 'Nearest' solid has the minimum structural distance;  ' Second Nearest' and
'Third Nearest' solids are based on second and third minimum structural distances and visual inspection on metabolosome structures.
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Metabolosome Nearest Solid Second Nearest Solid Third Nearest Solid
1 Augmented sphenocorona (J87) Icosahedron (P)
2 Sphenocorona (J86) Gyro-elongated square bipyramid (J17) Augmented sphenocorona (J87)
3 Sphenomegacorona (J88) Icosahedron (P)
4 Augmented sphenocorona (J87)
5 Elongated pentagonal bipyramid (J16) Sphenomegacorona (J88) Icosahedron (P)
6 Sphenocorona (J86) Augmented sphenocorona (J87) Gyroelongated square bipyramid (J17)
7 Augmented sphenocorona (J87) Sphenomegacorona (J88)
8 Augmented sphenocorona (J87) Sphenocorona (J86)
9 Augmented sphenocorona (J87) Icosahedron (P)

10 Sphenocorona (J86) Gyroelongated square bipyramid (J17) Augmented sphenocorona(J87)
11 Sphenomegacorona (J88) Icosahedron (P)
12 Sphenocorona (J86) Gyroelongated square bipyramid (J17) Augmented sphenocorona(J87)
13 Metabidiminished icosahedron (J62)
14 Augmented sphenocorona (J87) Gyroelongated pentagonal pyramid(J11)
15 Augmented sphenocorona (J87)
16 Sphenocorona (J86) Gyroelongated square bipyramid (J17)
17 Augmented sphenocorona (J87) Sphenomegacorona (J88)
18 Sphenomegacorona (J88) Icosahedron (P)
19 Biaugmented triangular prism (J50) Snub disphenoid (J84)
20 Augmented sphenocorona (J87)
21 Sphenocorona (J86) Gyroelongated square bipyramid (J17)
22 Augmented sphenocorona (J87) Icosahedron (P) Sphenomegacorona (J88)
23 Cubeoctahedron (A) Icosahedron (P)
24 Gyroelongated square bipyramid (J17) Sphenocorona (J86) Augmented sphenocorona (J87)
25 Augmented sphenocorona (J87) Sphenomegacorona (J88) Icosahedron (P)
26 Augmented sphenocorona (J87) Sphenomegacorona (J88) Elongated pentagonal bipyramid
27 Augmented sphenocorona (J87) Icosahedron (P)
28 Augmented sphenocorona (J87) Icosahedron (P)
29 Metabidimisinhed icosahedron (J62)
30 Augmented sphenocorona (J87) Sphenomegacorona (J88) Icosahedron (P)

Table A5.2: Predicted solids' names, obtained through the structural distance model. 'A' stands for Archimedean solids, 'P' stands for platonic solids
and 'J' stands for Johnson solids, followed by the Johnson solid number.
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Appendix 6.1

As described in Chapter 6, from each of the metabolosomes, 231 features were

extracted. Here, the completely visible features are provided from 30 incomplete

metabolosomes. 'M' stands for metabolosome.

M NV NF NE ࡲࡺ
૜ ࡲࡺ

૝ ࡲࡺ
૞ ࡲࡺ

૟ ࡲࡺ
ૡ ࡲࡺ

૚૙ ࢂࡺ
૜ ࢂࡺ

૝ ࢂࡺ
૞ ࢂࡺ

૟ ࢂࡺ
ૡ ࢂࡺ

૚૙

1 7 16 22 5 0 0 0 0 0 0 1 5 0 0 0
2 7 15 21 3 0 0 0 0 0 0 3 3 0 0 0
3 9 16 23 5 0 0 0 0 0 0 4 2 0 0 0
4 8 15 21 6 0 0 0 0 0 0 2 3 0 0 0
5 9 15 23 1 3 0 0 0 0 0 4 2 0 0 0
6 7 14 17 3 0 0 0 0 0 0 3 1 0 0 0
7 8 14 21 4 0 0 0 0 0 0 3 3 0 0 0
8 8 14 21 2 2 0 0 0 0 0 3 3 0 0 0
9 8 13 20 2 1 0 0 0 0 0 4 1 0 0 0

10 7 13 19 2 1 0 0 0 0 0 5 1 0 0 0
11 9 17 24 5 1 0 0 0 0 0 2 5 0 0 0
12 8 15 20 4 1 0 0 0 0 0 3 2 0 0 0
13 7 10 15 0 0 0 0 0 0 3 2 0 0 0 0
14 8 14 21 3 0 0 0 0 0 0 6 1 0 0 0
15 9 15 21 4 1 0 0 0 0 0 5 1 0 0 0
16 8 14 21 4 1 0 0 0 0 0 4 3 0 0 0
17 9 14 22 5 1 0 0 0 0 0 6 2 0 0 0
18 10 18 24 9 0 0 0 0 0 0 2 6 0 0 0
19 6 10 14 2 0 0 0 0 0 0 4 0 0 0 0
20 9 17 23 6 1 0 0 0 0 0 2 4 0 0 0
21 8 14 21 4 1 0 0 0 0 0 5 2 0 0 0
22 8 16 23 4 0 0 0 0 0 0 2 4 0 0 0
23 9 16 21 4 1 0 0 0 0 0 4 1 0 0 0
24 8 15 21 8 0 0 0 0 0 0 2 4 0 0 0
25 8 13 19 1 1 0 0 0 0 0 3 1 0 0 0
26 9 13 20 2 3 0 0 0 0 1 3 1 0 0 0
27 9 13 20 5 1 0 0 0 0 0 4 1 0 0 0
28 8 15 22 5 0 0 0 0 0 0 4 2 0 0 0
29 7 11 17 3 0 0 0 0 0 2 2 1 0 0 0
30 9 16 23 7 0 0 0 0 0 0 3 4 0 0 0

Table A6.1: Some characteristic features from the metabolosomes.
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Appendix 6.2

This section presents misclassification probabilities for different truncation

proportions, different feature combinations and comparisons among them. The

distributions of overall misclassification probabilities for 55 solids from the Bayes

classifiers, LDA and SVM are calculated based on different truncation proportions.

These probabilities are calculated using all 231 features from a TPPS (truncated

polyhedron profile statistic).

Figure A6.1: Misclassification probabilities from three classifiers for varying truncation
proportions.

Intuitively, higher truncation proportions remove more 'information' from a

polyhedron, so the misclassifications are also expected to be higher. This is true for

all of the Bayes classifiers, LDA and SVM. Figure A6.1 displays this observation.

The following table summarizes these probabilities for LDA, SVM and the

Bayes Classifiers. As discussed before, the Bayes classifiers and SVM work better

than LDA for this classification problem, irrespective of truncation proportion.
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Bayes Classifier Truncation Proportion
0.0500 0.0750 0.1000 0.1250 0.1500

Minimum 0.0000 0.0000 0.0000 0.0000 0.0000
Maximum 0.3616 0.2416 0.3560 0.2380 0.2808
Mean 0.0217 0.0257 0.0323 0.0385 0.0480
Standard Deviation 0.0546 0.0475 0.0577 0.0524 0.0645

LDA Truncation Proportion
0.1000 0.1500 0.2000 0.2500 0.3000

Minimum 0.0000 0.0000 0.0000 0.0000 0.0000
Maximum 0.6580 0.5976 0.6336 0.6840 0.6364
Mean 0.0999 0.1444 0.1791 0.2046 0.2568
Standard Deviation 0.1252 0.1415 0.1521 0.1712 0.1773

SVM Truncation Proportion
0.1000 0.1500 0.2000 0.2500 0.3000

Minimum 0.0000 0.0000 0.0000 0.0000 0.0000
Maximum 0.5160 0.4424 0.3360 0.3544 0.3068
Mean 0.0250 0.0325 0.0394 0.0459 0.0606
Standard Deviation 0.0735 0.0701 0.0621 0.0657 0.0788

Table A6.2: The summary of misclassification probabilities, calculated for varied truncation
proportion and across three methods.

Appendix 6.3

Here we showed the impact of feature selection on misclassification probabilities.

Let us fix the truncation proportion = 0.10. We define three feature sets as: Set_1 =

{NTV, NTF, NTE, ܶ ௏ܰ
∗, ܶ ிܰ

∗},  Set_2  =  {NTV, NTF, NTE, ܶ ௏ܰ
∗, ܶ ிܰ

∗, ܶܣ ௏ܰ
∗, ܶܣ ிܰ

∗} and

Set_3 = {NTV, NTF, NTE, ܶ ௏ܰ
∗, ܶ ிܰ

∗, ܶܣ ௏ܰ
∗, ܶܣ ிܰ

∗, eADJt, fADJt}. It is expected that the

inclusion of more features improves the error rates. Figure A6.2 shows the

misclassification probabilities from different feature sets across three methods.

As a simple measure to evaluate the impacts of excluding features from TPPS

on misclassification probabilities, we estimated the k, such that L*(k) ≤ 0.10,

calculated across above three feature sets and three classifiers. Table A6.3 gives the

result. It shows the impact is large.

Set_1 Set_2 Set_3
Bayes 37 44 50
LDA 14 11 19
SVM 32 39 48

Table A6.3: The number of solids with misclassification probabilities ≤ 0.10.
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Appendix 6.4

In the following table, the solids are ordered based on the posterior probabilities, and

first three solids (predicted by LDA) with their posterior probabilities are provided.

Metabolosome 1st Solid 2nd Solid 3rd Solid P(1st Solid) P(2nd Solid) P(3rd Solid)

1 17 87 88 0.6608 0.3339 0.0053
2 11 17 51 0.9917 0.0051 0.0017
3 11 88 87 0.9999 0.0001 0.0000
4 11 17 87 0.9842 0.0109 0.0048
5 11 16 86 0.6577 0.3423 0.0000
6 86 16 84 0.6694 0.3280 0.0014
7 86 11 16 0.9312 0.0506 0.0172
8 11 86 51 0.8410 0.1500 0.0062
9 86 16 10 0.8606 0.1366 0.0024

10 16 86 50 0.8075 0.1493 0.0283
11 87 88 17 0.5380 0.4197 0.0423
12 16 86 11 0.9963 0.0035 0.0002
13 52 63 3 0.8734 0.1226 0.0030
14 16 27 99 0.9954 0.0025 0.0009
15 16 27 99 0.9778 0.0155 0.0067
16 86 10 16 0.8827 0.1161 0.0008
17 16 86 10 0.9930 0.0049 0.0021
18 17 87 88 0.7330 0.2637 0.0034
19 15 14 50 0.7063 0.2937 0.0000
20 87 88 17 0.5750 0.4108 0.0142
21 86 10 16 0.9353 0.0548 0.0097
22 88 87 11 0.6465 0.3342 0.0151
23 16 11 86 0.9996 0.0004 0.0000
24 11 17 51 0.4444 0.3714 0.1804
25 16 86 11 0.9997 0.0003 0.0000
26 16 86 84 0.6543 0.3455 0.0001
27 16 86 10 0.9764 0.0236 0.0000
28 16 86 11 0.9718 0.0243 0.0039
29 62 9 50 1.0000 0.0000 0.0000
30 11 17 87 0.8909 0.0603 0.0452

Table A6.4: The posterior probability based ordered solids and their corresponding
probabilities. Only top three solids with maximum posterior probabilities are shown.
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Figure A6.2: Misclassification probabilities from three classifiers for different feature sets.
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