
Title Subterfuge-safe trust management for delegation of permissions in open
environments

Author(s) Abdi, Samane

Publication date 2015

Original citation Abdi, S. 2015. Subterfuge-safe trust management for delegation of
permissions in open environments. PhD Thesis, University College
Cork.

Type of publication Doctoral thesis

Rights © 2015, Samane Abdi.
http://creativecommons.org/licenses/by-nc-nd/3.0/

Embargo information No embargo required

Item downloaded
from

http://hdl.handle.net/10468/2097

Downloaded on 2017-02-12T05:48:20Z

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://hdl.handle.net/10468/2097

Subterfuge-Safe Trust Management
for Delegation of Permissions in

Open Environments

Seyedehsamane Abdigarmestani
(Samane Abdi)

�

NATIONAL UNIVERSITY OF IRELAND, CORK

Faculty of Science

Department of Computer Science

Thesis submitted for the degree of
Doctor of Philosophy

January 2015

Head of Department: Professor Barry O’Sullivan

Supervisor: Dr. John Herbert

Contents

Contents

Abstract . v
Acknowledgements . vii
List of Figures . viii
List of Tables . x

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions . 4
1.3 Research Overview . 6
1.4 Structure of Thesis . 8

2 Background and Related Work 9
2.1 Traditional Access Control Models 9
2.2 Distributed Access Control Models 12
2.3 Subterfuge Vulnerability . 21
2.4 Delegation Subterfuge in Existing Trust Management Approaches 21

2.4.1 Delegation Subterfuge in KeyNote 22
2.4.2 Delegation Subterfuge in RT 24
2.4.3 Delegation Subterfuge In secPAL 25
2.4.4 Delegation Subterfuge In SPKI/SDSI 27

2.5 Summary . 32

3 Subterfuge Safe Trust Management 33
3.1 Overview on SSTM Infrastructure 33
3.2 Subterfuge Safe Authorization Language 34

3.2.1 Principals . 34
3.2.2 Permissions . 38
3.2.3 Delegation . 43
3.2.4 Accountability . 45

3.3 Formal Foundation for SSAL 46
3.3.1 Principal Names Relation 47
3.3.2 Permission Delegation 48
3.3.3 Permission Holding . 49
3.3.4 Permission Ordering . 50
3.3.5 Accountability for Permissions 51
3.3.6 Logical Properties . 52

3.4 Threats and Mitigation . 55
3.4.1 Key Expiration Threat 55
3.4.2 Key Refreshing Threat 55
3.4.3 Key Change Threat . 55
3.4.4 Key Compromised Threat 56
3.4.5 Threat Mitigation Techniques 56

3.5 Certificate Chain Discovery . 59
3.5.1 Related Work . 59
3.5.2 Certificate Chain Discovery for SSTM 61

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

i Seyedehsamane Abdigarmestani
(Samane Abdi)

Contents

3.6 Discussion . 70
3.7 Summary . 71

4 Ontology-Based Implementation for SSTM 72
4.1 Preliminaries . 73

4.1.1 Definition of Ontology 73
4.1.2 Ontology Languages and Reasoning Tools 74
4.1.3 Methodology . 90

4.2 SSALO . 91
4.2.1 Design the TBox for SSALO 92
4.2.2 Instantiating ABox with Individuals 102
4.2.3 Policy Rules . 105
4.2.4 Integration of Policies within SSALO 107
4.2.5 Queries for Trust Management 109
4.2.6 Case study: Trust Management for a Selling Service by

Brokers . 111
4.2.7 Run-Time Performance 114
4.2.8 Related Work for Solving Heterogeneity Problem 115
4.2.9 Discussion . 116

4.3 Summary . 118

5 Extending SSTM for Supporting Secure Cross Coalition Coop-
eration 119
5.1 Coalition Definition . 120
5.2 Coalition Features . 122

5.2.1 Membership Management 122
5.2.2 Administration . 122
5.2.3 Subterfuge Safe Open Cooperation 123
5.2.4 Formation and Evolution 124

5.3 Existing Coalition Frameworks 125
5.3.1 Systems Research Centre Model 125
5.3.2 Coalition-Based Access Control Model 126
5.3.3 Virtual Private Network Model 127
5.3.4 Mäki-Aura Model . 127
5.3.5 Internet Services of Coalition Model 128
5.3.6 Ellison-Dohrmann Model 128
5.3.7 Distributed Authorization Language Model 129

5.4 Secure Coalition Characteristics 130
5.5 SSTM-Based Coalition Framework 131

5.5.1 Forming a New Coalition 133
5.5.2 Issuing Membership . 134
5.5.3 Local Policy for Cross Coalition Sharing Resources . . . 134
5.5.4 Coalition Split/Merge 138

5.6 Discussion . 140
5.7 Case Study . 141
5.8 Summary . 144

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

ii Seyedehsamane Abdigarmestani
(Samane Abdi)

Contents

6 Application of SSTM 145
6.1 Secure Cloud Federation . 145

6.1.1 Breakdown in Permission Accountability in Cloud Federa-
tion . 147

6.1.2 Accountability for Delegated Permission 149
6.1.3 Compliance Checking for Accountability 150

6.1.3.1 Authorization Check 152
6.1.3.2 Delegation Check 152

6.1.4 Managing Cloud Federation Using SSTM 152
6.1.5 Discussion . 155

6.2 Trust Management for Secure Federation of XMPP Servers . . . 156
6.2.1 Introduction to XMPP Servers 156
6.2.2 SSTM for XMPP Servers Federation 156
6.2.3 Case Study . 157
6.2.4 Checking for Subterfuge Safe Delegation 164

6.2.4.1 Discussion . 165
6.3 Summary . 166

7 Conclusions and Future Work 167
7.1 Overview . 167
7.2 Summary of Contributions . 168
7.3 Future work . 170

7.3.1 Threshold Structures . 170
7.3.2 Run-Time Optimization 171

7.4 Summary . 172

Appendices 188

A List of Abbreviations and Symbols 189

B Proof of properties of SSAL Logic 191
B.1 Proof for Property 1 . 191
B.2 Proof for Property 2 . 192
B.3 Proof for Property 3 . 193
B.4 Proof for Property 4 . 193
B.5 Proof for Property 5 . 194
B.6 Proof for Property 6 . 195
B.7 Proof for Property 7 . 196
B.8 Proof for Property 8 . 197
B.9 Proof for Property 9 . 198

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

iii Seyedehsamane Abdigarmestani
(Samane Abdi)

I, Seyedehsamane Abdigarmestani (Samane Abdi), certify that this thesis is my
own work and I have not obtained a degree in this university or elsewhere on the
basis of the work submitted in this thesis.

Seyedehsamane Abdigarmestani
(Samane Abdi)

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

iv Seyedehsamane Abdigarmestani
(Samane Abdi)

Abstract

Abstract

Open environments involve distributed entities interacting with each other in an

open manner. Many distributed entities are unknown to each other but need

to collaborate and share resources in a secure fashion. Usually resource owners

alone decide who is trusted to access their resources. Since resource owners in

open environments do not have a complete picture of all trusted entities, trust

management frameworks are used to ensure that only authorized entities will ac-

cess requested resources. Every trust management system has limitations, and

the limitations can be exploited by malicious entities. One vulnerability is due to

the lack of globally unique interpretation for permission specifications. This lim-

itation means that a malicious entity which receives a permission in one domain

may misuse the permission in another domain via some deceptive but apparently

authorized route; this malicious behaviour is called subterfuge.

This thesis develops a secure approach, Subterfuge Safe Trust Management

(SSTM), that prevents subterfuge by malicious entities. SSTM employs the

Subterfuge Safe Authorization Language (SSAL) which uses the idea of a lo-

cal permission with a globally unique interpretation (localPermission) to resolve

the misinterpretation of permissions. We model and implement SSAL with an

ontology-based approach, SSALO, which provides a generic representation for

knowledge related to the SSAL-based security policy. SSALO enables integration

of heterogeneous security policies which is useful for secure cooperation among

principals in open environments where each principal may have a different security

policy with different implementation. The other advantage of an ontology-based

approach is the Open World Assumption, whereby reasoning over an existing

security policy is easily extended to include further security policies that might

be discovered in an open distributed environment. We add two extra SSAL rules

to support dynamic coalition formation and secure cooperation among coalitions.

Secure federation of cloud computing platforms and secure federation of XMPP

servers are presented as case studies of SSTM. The results show that SSTM pro-

vides robust accountability for the use of permissions in federation. It is also

shown that SSAL is a suitable policy language to express the subterfuge-safe

policy statements due to its well-defined semantics, ease of use, and integrability.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

v Seyedehsamane Abdigarmestani
(Samane Abdi)

To Ehsan, Kian & My Parents

Acknowledgements

Acknowledgements

"The reasonable man adapts himself to the world; the unreasonable one persists
in trying to adapt the world to himself. Therefore all progress depends on the
unreasonable man." (George Bernard Shaw)

During the course of my PhD project, I have been luckily supported by many
people to whom I would like to express my gratitude.

First of all, I would like to express my sincere gratitude to my supervisor, Dr.
John Herbert, for his support, technical discussions, and for giving freedom during
the course of this work. I was very lucky to have John’s support in helping me
to regain my confidence to do a technical work at this level. I would also thank
my thesis examiners, Prof. Joe Carthy and Dr. Sabin Tabirca, for taking time
to read my thesis and for valuable discussions during the viva exam. I am also
grateful to Dr. Simon Foley for initiating this project and providing financial
support.

Thanks to Prof. Barry O’Sullivan my PhD advisor, Dr.Ian Pitt from the Depart-
ment of Computer Science, Ms Michelle Nelson from the UCC Graduate Studies,
and Ms Suzan Buckly from International Office for their support and assistance.
I would also thank Science Foundation Ireland (SFI), FAME project for financial
support of this work. My sincere appreciation to Prof. Barry O’Sullivan, the
director of Insight Centre for Data Analytics in UCC for providing funding to
attend and present talks at the conferences.

I also thank former and current members of Security Group: William, Wayne,
Fatih, Olgierd, and Ultan. I am also grateful to former members of the Cork
Constraint Computation Centre, current and former members of Insight Centre
for Data Analytics, particularly Ena Tobin, Thuy Truong, Walid Trabelsi, Abdul
Razak and John Horan. All my friends whom I shared a large part of my life in
Cork with them. Big thank you to Caitriona Walsh, Eleanor O’Riordan, and Ann
O’Brien in the Computer Science Department who provided me with necessary
administrative supports during the last 4 years.

I take this opportunity to thank my parents not only for visiting me in Cork during
my maternity period, but also for all their support in my life. Special thanks to
my siblings in particular my lovely sister, Sanaz, who spent three months in Cork
to provide the necessary support and help.

Finally, I would like to thank my husband and love of my life, Ehsan, whom I owe
my sincerest gratitude. This PhD work would have not been easy to overcome
without his continuous and endless support and love. The last word goes to Kian,
my lovely son, who has been the light of my life for the last two years and who
has given me the extra strength and motivation to get things done.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

vii Seyedehsamane Abdigarmestani
(Samane Abdi)

List of Figures

List of Figures

1.1 Centralized access control model 3

2.1 DAC: UNIX access control matrix 11
2.2 A role-based access control example 12
2.3 An overview on trust management system 15
2.4 Expected chain for downloading AlbumX 28
2.5 Unexpected chain for downloading AlbumX 29
2.6 Subterfuge scenario by establishing a bogus company 30
2.7 Subterfuge in the delegation of permission Atlantic.com/AlbumX 31

3.1 Overview of SSTM framework 34
3.2 Illustration of a local name, a group, and an extended local name. 35
3.3 Example of a public key . 36
3.4 Direct and indirect delegation 44
3.5 "local cert" and "copy cert" in local repositories. 62
3.6 Initialization of certificates in distributed repositories 67

4.1 Concept hierarchy . 79
4.2 Example of concept membership 81
4.3 Set of individuals . 82
4.4 OWA without covering axiom 84
4.5 OWA considering covering axiom 84
4.6 An overview on SSALO . 93
4.7 An overview on concept Principal in SSALO 95
4.8 An overview on concept LocalPermission in SSALO 99
4.9 An overview on concept Delegation in SSALO 101
4.10 Integrating the locally defined policy to SSALO 109
4.11 Implementation of SSTM . 111
4.12 Delegation certificate . 112
4.13 Name certificate . 112
4.14 Permission certificate . 112
4.15 Run time performance of reasoning over SSALO 114
4.16 Run time performance of reasoning over SSALO 114

5.1 A sample of coalition structure 120
5.2 Centralized access control for coalitions 121
5.3 Decentralized access control for coalitions 122
5.4 Subterfuge in open cooperation of coalitions 124
5.5 The SRC framework . 126
5.6 Summary of coalition features of different frameworks 130
5.7 A coalition is formed by leader, issuing certificates to members . 137

6.1 Breakdown in accountability for permissions in cloud federation 146
6.2 Locally defined permission with global unique interpretation . . 149
6.3 Trust management for cloud federation 150

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

viii Seyedehsamane Abdigarmestani
(Samane Abdi)

List of Figures

6.4 Inputs and output of a compliance checking system 151
6.5 Robust accountability for permissions in cloud federation 154
6.6 XMPP server, client, and service connections 157
6.7 Representation of the delegation statement 6.7 in SSALO 160
6.8 FACNAC/SSTM federation scenario 164

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

ix Seyedehsamane Abdigarmestani
(Samane Abdi)

List of Tables

List of Tables

3.1 Permission sell and its definition in two different name spaces . 40

4.1 Concrete syntax of DL constructors 77
4.2 A comparison of SHOIN(D) and OWL-DL constructors 77
4.3 Domain and range of properties in SSALO 102
4.4 Terminological axioms and their syntaxes 103

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

x Seyedehsamane Abdigarmestani
(Samane Abdi)

Chapter 1

Introduction

Controlling access to protected data, resources, and services has been a major

issue in information security since the beginning of the information security dis-

cipline [1]. Access control systems mediate access to a protected resource by

only allowing authorized users to perform an operation on a particular resource.

Traditional access control mechanisms are robust enough to address authoriza-

tion control in closed environments. These systems are not sufficient to address

authorization control in open environments. Trust management systems were

introduced to address various concerns in decentralized access control. Although

trust management systems have a major advantage over traditional access control

approaches, they are vulnerable to subterfuge. Subterfuge is a deceptive behaviour

with the goal of evading the actual intention of a security mechanism. This thesis

explores the notion of subterfuge in current trust management frameworks, and

then introduces a subterfuge safe trust and authorization model for addressing

access control in open environments. This new approach for trust management

supports subterfuge safe cooperation by unknown entities in open environments.

In section 1.1 we discuss the motivation for this research. Section 1.2 covers the

contributions of the thesis to the field of trust management. Section 1.3 gives an

overview on the research. The structure of the thesis is outlined in section 1.4.

Section 2 discusses background and related work. The subterfuge vulnerability is

introduced in section 2.3. In section 2.4 we discuss delegation subterfuge in ex-

isting trust managements. Finally, a summary for the chapter is given in section

2.5.

1

1. Introduction 1.1 Motivation

1.1 Motivation

Traditional access control mechanisms focus on the protection of data in closed

environments. A security administrator is familiar with all resources in the system

and when a request for a resource is received, first determines who the requester

is. It typically uses an authentication protocol in which the requester digitally

signs the request. Then the administrator queries an internal database to decide

whether the signer should be granted access to the resource and allowed to per-

form the requested action. Access control mechanisms for closed environments

can be categorised as mandatory access control (MAC) [2, 3], discretionary ac-

cess control (DAC) [4], and role-based access control (RBAC) [5–7]. All these

access control models include subject, object, action, and function. Subjects are

entities that can perform actions on the system; objects are the entities repre-

senting resources to which access may need to be controlled. An access control

function is a matrix that maps each combination of subject, object, and action to

an authorization decision. The authorization decision result is either the access

request is granted, or the access request is denied. Figure 1.1 depicts a general

model of access control for closed environments. In closed environments, grant-

ing permission for a resource is controlled by a security administrator. A security

administrator is familiar with all resources that it controls and has a complete

overview on subjects, objects, and actions in the system. Thus, a security ad-

ministrator chooses a specific name schema for defining permissions for accessing

resources. Therefore, permissions that a security administrator defines to grant

access to a resource have a unique meaning in the system and can be only used

for that particular resource. In this way, the possibility of deceiving a security

administrator to define a permission specification that can be used to access two

different resources is very low.

When environments become open and decentralized, the distributed users may

make requests to access other users’ resources. Each resource owner is familiar

with its own resources and authorization is controlled by resource owners. The

resource owners and requesters may not be known to each other in advance. Ac-

cess control solutions need to decide which requester can be granted access to

the protected resource, as well as which principal is qualified to provide this re-

source [8]. Certificate-based access control models have been proposed to address

access control in open and decentralized environments. When a user makes a

request to access a resource, it must provide a certificate to the resource owner

proving that the requester has permission to access that resource. The resource

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

2 Seyedehsamane Abdigarmestani
(Samane Abdi)

1. Introduction 1.1 Motivation

Figure 1.1: Centralized access control model

owner defines a permission specifying that the holder of that permission is allowed

to access a particular resource. Therefore, defining a globally unique permission

relies on the expertise of the resource owner who defines the permission specifica-

tions. In open environments, a resource owner does not have a complete overview

on the name schema that other resource owners use for specifying permissions for

their resources. One resource owner may define a permission specification that

is the same as the permission specification that another resource owner specified

for accessing its resources. This ambiguity means that a malicious requester may

bypass the actual intention of a permission specification and deceive a resource

owner into allowing access to its resources with an apparently legitimate permis-

sion. Preventing deception of a principal depends on the expertise of the resource

owner who defines the permission specification, and the sources of vulnerability in

the actual security mechanism that the resource owner uses. Many existing trust

management systems are designed in an ad-hoc manner to prevent malicious be-

haviour. Their design follows best practice, and withstand only certain classes of

known malicious behaviours. They lack a systematic way of specifying a globally

unique interpretation for a permission. Without a globally unique interpretation

for permissions, a principal that receives a permission in one domain, may misuse

that permission in another domain via some deceptive, yet apparently authorized

route, i.e. the behaviour called subterfuge. Many existing trust management

frameworks such as [9, 10] are designed to specify arbitrary permissions. They

assume unique and unambiguous permission specifications are provided by using

a global name service. Although, global name services provide a unique interpre-

tation for each specification, the principals participating in a federation may still

define arbitrary specifications to represent their own resources. Specifying non-

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

3 Seyedehsamane Abdigarmestani
(Samane Abdi)

1. Introduction 1.2 Contributions

ambiguous permissions depends on the expertise of the administrator who defines

the permissions. However, the design of non-ambiguous permissions should not

rely on ad-hoc methods; it should be formalized in a systematic way. Due to the

lack of systematic design approaches, designing a well-founded security mecha-

nism is a challenging task. This thesis explores the possibility of designing a

well-founded security mechanism by answering the following research question:

Can we design a well-founded systematic method to avoid subterfuge for

cooperation of distributed principals in open environments?

1.2 Contributions

This thesis contributes to the field of trust management by focusing on preventing

subterfuge when managing trust and delegation relationships among distributed

entities in open environments. The main contributions are as follows:

1. The notion of localPermission is introduced with the purpose of defining

permissions locally, while also providing an automatic globally unique in-

terpretation for that permission.

2. A logic-based authorization language, Subterfuge Safe Authorisation Lan-

guage (SSAL), is introduced to support secure delegation of permissions in

open cooperation. SSAL is a simple yet expressive language. SSAL can

be used to prevent subterfuge without relying on a central authority and a

pre-agreed global naming service.

3. An ontology for SSAL is developed. The ontology-based approach, SSALO,

is also used as a technique for integration of heterogeneous security policies.

In open environments, different organizations may define different security

policies to meet their security requirements. These security policies may

be implemented with different techniques and different policy languages.

SSALO provides a mechanism for integration of these security policies.

SSALO can be viewed as a query engine for Subterfuge Safe Trust Man-

agement (SSTM).

4. Using SSTM, a formal framework for establishing secure dynamic coali-

tion and cross coalition cooperation is introduced. With this framework, a

coalition can be dynamically established in a fully distributed manner with-

out relying on a central authority. This framework can be used to merge

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

4 Seyedehsamane Abdigarmestani
(Samane Abdi)

1. Introduction 1.2 Contributions

coalitions and split a coalition into further coalitions.

5. The applicability of SSTM in two real world examples (cloud federation,

and federation of XMPP servers) is demonstrated. The results show that

SSTM is a robust mechanism for subterfuge safe delegation of permissions

in federation and also provides strong accountability for principals. The

success of SSTM for these case studies indicates that it provides a general

solution for subterfuge safe management of trust and authorization relation-

ships in open collaboration of entities. It can be applied to other examples

of open collaboration in open distributed environments.

The results in this thesis have been published in peer-reviewed publications as

follows:

1 Simon N. Foley and Samane Abdi, "Avoiding delegation subterfuge us-

ing linked local permission names.," In Proceedings of the 8th international

conference on Formal Aspects of Security and Trust (FAST’11),Lueven, Bel-

gium, September 2011.

2 Simon N. Foley, and Samane Abdi, "Avoiding Delegation Subterfuge Using

Linked Local Permission Names," Formal Aspects of Security and Trust.

(pp. 100-114). Springer Berlin Heidelberg, 2012.

3 Samane Abdi, "An Autonomic Trust Management Framework For Secure

Dynamic Coalition Cooperation," In Proceedings of the 10th IEEE Confer-

ence on Autonomic and Trusted Computing (ATC 2013), Vietri sul Mare,

Italy, December 2013.

4 Samane Abdi, "Integration of Heterogeneous Policies for Trust Manage-

ment" In Proceedings of the 38th IEEE International Conference in Com-

puter Software and Applications (COMPSACW), Västerås, Sweden, July

2014.

5 Samane Abdi, "I was confused: Robust accountability for permission del-

egation in cloud federations," In Proceedings of the 38th IEEE Interna-

tional Conference in Computer Software and Applications (COMPSACW),

Västerås, Sweden, July 2014.

6 Samane Abdi and John Herbert, "An Algorithm for Distributed Cer-

tificate Chain Discovery in Open Environments,” In Proceedings of the

30th ACM/SIGAPP Symposium On Applied Computing(SAC), Salamanca,

Spain, April 2015.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

5 Seyedehsamane Abdigarmestani
(Samane Abdi)

1. Introduction 1.3 Research Overview

7 Samane Abdi,"Federated Autonomic Trust Management," In Proceedings

of the 1st Insight Student Conference, Dublin, Ireland, September 2014.

The thesis is part of the Federated, Autonomic Management of End-to-end

communication services (FAME) project (http : //www.fame.ie/).

1.3 Research Overview

In this thesis, we introduce a logic-based authorization language to support open

and subterfuge free delegation of permissions for secure federations. This can

be used as a policy language to construct statements and manage authoriza-

tion/delegation relationships, and to automate the decision making process for

securely sharing resources among federated participants. This language also uses

the notion of localPermission to eliminate ambiguity concerning the interpre-

tation of a permission and thereby avoid subterfuge attacks. The notion of

localPermission refers to permission specifications that are defined locally but

have globally unique interpretation. The use of localPermissions means that a

principal receiving two identical permission specifications cannot misuse the per-

missions for non-intended purposes, since the permissions have globally unique

interpretations and clearly refer to a global context. Thus, localPermissions can

prevent subterfuge when unknown entities cooperate in open environments. This

new trust model can be used as a basis for the establishment and management

of secure dynamic cooperation in open environments.

Subterfuge Safe Authorization Language (SSAL) is designed to support sub-

terfuge safe delegation in open environments. SSAL provides the necessary ex-

pressiveness of an authorization language while supporting subterfuge safe del-

egation by using the notion of localPermission without requiring a pre-agreed

global and unique name scheme for defining permissions. The logic of the lan-

guage is robust enough in terms of providing a reliable formal way to determine

whether delegation of a particular permission to principals is able to resist against

a malicious principal’s misbehaviour.

It is essential to establish a common vocabulary that specifies the structure and

semantics of SSAL statements. Modelling SSAL within an ontology provides a

standard and formal semantic for the SSAL language. An ontology provides a

conceptual model of a domain of interest which is a formal description of concepts

and their relationships in the domain of discourse, and is intended for sharing

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

6 Seyedehsamane Abdigarmestani
(Samane Abdi)

1. Introduction 1.3 Research Overview

and reusing knowledge. It provides the ability to make logical statements of

shared information and infer new knowledge in the domain of discourse. A SSAL

ontology (SSALO) supports reasoning and querying about the knowledge in SSAL

statements without requiring an application side reasoning service. SSALO can

be used to integrate heterogeneous policies (issued by different principals in open

environments) and so supports well-founded access decisions that comply with

the policies of all of the principals involved.

SSALO is modelled in the OWL-DL sublanguage whose expressive power relies

on the expressiveness of Description Logic (DL) and the Web Ontology Language

(OWL). Using OWL-DL supports maximum expressiveness while guaranteeing

decidability and tractability. There is a rationale for using the ontology for en-

coding permissions. Permissions are structured data and ontologies are useful

to model structured data. A permission specification’s hierarchical structure can

be expressed in more detail by capturing relations and constraints in the ontol-

ogy. SSALO can be viewed as a Subterfuge Safe Trust Management (SSTM)

engine. Any particular application or service can use SSTM to manage access

control for its resources. A principal makes a request to an application or service

to access some resources. A query interpreter then interprets the request and

queries SSALO. SSALO returns the query results to the resource owner. More-

over, each principal may have its own local policy for access control for its own

resources. The principal adds its local policy to SSALO, presenting a set of cer-

tificates. SSALO then decides whether to permit the request based on the SSAL

statements, rules, and the local policy.

Every delegation certificate delegates some permission from its issuer to its sub-

ject. Chains of delegation certificates issued by different issuers may be formed,

thus enabling permission to be granted in a decentralized manner. Certificate

chain discovery refers to presenting a set of certificates relevant to a request. Del-

egation certificates can form chains of delegation, where permissions are delegated

from one principal to another. In order to prove to the resource owner that the

requester is authorized, the requester must present a set of certificates relevant

to its request to the resource owner.

SSTM can be used as a basis to form secure coalitions. The design of secure coali-

tions allows for secure cooperation and sharing of resources within one coalition

and across different coalitions.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

7 Seyedehsamane Abdigarmestani
(Samane Abdi)

1. Introduction 1.4 Structure of Thesis

1.4 Structure of Thesis

This thesis is divided into six chapters. The remainder of this chapter gives

the reader a background on trust management and the problem of subterfuge

in conventional trust management systems. Chapter 3 introduces a policy lan-

guage that prevents the subterfuge problem in a systematic way, the Subterfuge

Safe Authorization Language, SSAL. In chapter 4, an ontology-based approach

is introduced to implement SSAL as a policy engine, and to address the integra-

tion of heterogeneous policies defined by different entities in open environments.

A secure dynamic coalition framework that uses the subterfuge safe trust man-

agement model, SSTM, to support establishment of secure coalitions and safe

cross-coalition delegation is described in chapter 5. The application of this ap-

proach is demonstrated through two real world examples in chapter 6. Chapter

7 concludes the thesis and shows directions for possible future work.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

8 Seyedehsamane Abdigarmestani
(Samane Abdi)

Chapter 2

Background and Related Work

An important requirement for information systems is managing how the protected

data and resources must be secured against unauthorized principals, while making

them available to authorized principals. This feature is called "access control"

[11–13]. In access control, the principal that receives a request for access to its

resources first checks who the requester is, by using an authentication mechanism,

and then queries a centralized database to decide whether the access should be

granted or denied. On the other hand, trust management, introduced in [14], is

an approach for managing trust and authorization among distributed principals.

The concept of trust management is closely related to that of distributed access

control for open environments. The remainder of this chapter first reviews existing

access control models, with a focus on trust management systems. Then, we

investigate a vulnerability in current trust management frameworks that results

in the violation of the intention of a security mechanism. The review starts

from early work on access control models, and then continues with existing trust

management frameworks.

2.1 Traditional Access Control Models

Early work on access control can be categorized as mandatory access control, dis-

cretionary access control, and role based access control. In the following sections

we discuss these access control models.

9

2. Background and Related Work 2.1 Traditional Access Control Models

Mandatory Access Control (MAC)

Access control models came from the study of security policies in the 70s [15,16].

In hierarchical organizations the primary concern is confidentiality of data, where

prevention of information leakage is the most important goal. In response to this

need, Bell and LaPadula [15] introduced a security model that restricts flows of

classified information. Their work led to the development of numerous multilevel

security systems, and is arguably one of the most influential models in the history

of computer security. Multilevel security was developed as a means to manage

classified information in hierarchical organizations. Each document is labelled

with a degree of sensitivity, known as a classification such as: unclassified, confi-

dential, secret, and top secret. All the personnel of an organization are assigned

a clearance level on the same labelled scale as the classification. This assignment

may depend on a variety of factors, including professional rank, organizational

unit. The access control policy states that a reader must have a clearance at

least as high as the classification of the document he/she attempts to read. In

MAC models [12, 17, 18], the security policy is determined centrally by a system

administrator instead of by resource owners. In other words, the most important

feature of mandatory access control is that users who create resources do not

control these resources. The system security policy, set by the administrator,

entirely determines the access rights.

Discretionary Access Control (DAC)

The main idea behind DAC is that the owner of a resource should be trusted to

manage its security. More specifically, owners are granted full access rights to the

resources under their control, and are allowed to decide whether access rights to

their resources should be passed to other subjects or groups of subjects at their

own discretion. Lampson formulates the first abstract model of DAC from the

point of view of operating systems [19]. In his model, an access control matrix is a

two-dimensional matrix with a row for each subject and a column for each object

(resource). An element in the matrix specifies the access rights that a subject

has for an object. An access matrix is a convenient abstraction for expressing

discretionary access control polices. As a practical example, the UNIX file system

implements discretionary access control. It defines three subjects in the access

control matrix: the object owner, group, or everyone in the system. The user

who creates an object is the owner and only the administrator can change the

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

10 Seyedehsamane Abdigarmestani
(Samane Abdi)

2. Background and Related Work 2.1 Traditional Access Control Models

Figure 2.1: DAC: UNIX access control matrix

ownership of an object. There are three access modes: read, write and execute,

and the access rights for each subject is represented as a 3-bit value,"rwx". Figure

2.1 is an illustration of UNIX access matrix. The key to UNIX access control is

that the owner decides who is allowed to access the object and what kind of

permission they should have. The controls are discretionary in the sense that

a subject who holds an access permission may also delegate the permission to

others. In DAC, although the resource owners determine their security policies

but the super security administrator can change the whole security policy and

control the system.

Role Based Access Control (RBAC)

In the beginning of the 90s, it was observed that resources are generally not

owned by users, but rather by the organization or agency to which these users

belong. Access requests are typically made by a user in the capacity of some

role, and thus, access control decisions are often determined by the acting roles

[6,7]. Over the years, many researchers have proposed models for RBAC [6,7,20–

26]. While the differences in these models are quite significant, the core concept

remains fairly consistent between them. In RBAC, the basic components are

users, permissions, and roles. A user in RBAC typically refers to a human being,

although this definition can be extended to include machines, computer processes

or autonomous agents. Permissions are defined as an approval to execute an

operation on one or more protected objects. An operation could be a simple

access mode such as read, write, update, or a complex operation such as a method

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

11 Seyedehsamane Abdigarmestani
(Samane Abdi)

2. Background and Related Work 2.2 Distributed Access Control Models

Figure 2.2: A role-based access control example

invocation in an object-oriented system [22, 23]. Central to RBAC is the notion

of relation that connects permissions, users, and roles. Permissions assigned to

a role represent organizational security policies and are granted to users only

through roles. Suppose a user in a bank attempts to withdraw money from an

account, she must be assigned to some role that permits money withdrawal, for

instance, cashier. Note that, in RBAC it is possible to assign multiple roles to

a single user. In RBAC, the security policy is determind centrally by a system

administrator. Figure 2.2 demonstrates an RBAC model.

2.2 Distributed Access Control Models

The traditional access control models are insufficient in meeting the requirements

for access control in open environments. Traditional approaches assume that a se-

curity administrator is familiar with all the system and manages the access control

to all the protected resources. However, with the emergence of open networks, a

central security administrator is not sufficient to manage available resources. New

challenges exist for access control on resources owned by distributed principals.

The open networks are generally heterogeneous, decentralized and large scale,

with possibly millions of entities which may be individuals, agents, organizations

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

12 Seyedehsamane Abdigarmestani
(Samane Abdi)

2. Background and Related Work 2.2 Distributed Access Control Models

or other administrative domains. These entities wish to share their resources in a

secure and controlled fashion. Collaborating entities may be mutually unknown

to each other, thus access control cannot be based on a central administrator,

as is the case in traditional approaches. Most modern distributed access control

systems apply the ideas of cryptographic credentials as a proof of access rights in

open and distributed environments [27–34]. In these approaches, any entity that

can be authenticated is called a principal. The use of public keys for authen-

tication and signing the credentials is widespread due mainly to the complexity

of key management with symmetric key cryptography [35]. A principal and a

service must share a secret key which is distributed over the internet. Therefore,

it is desirable to constrain the use of a secret key to each individual service to

limit the damage caused by disclosure of the key. Public key cryptography sig-

nificantly simplifies key management because it is sufficient for a communicating

party to know only public keys. A public key credential binds a public key to

some attributes of the holder of the corresponding private key. From now on,

in this thesis, we use certificate to refer to the cryptographic credentials. Based

on how certificates are used, distributed access control may be grouped into two

categories: the identity-based approach, and key-based approach.

Identity-based Approach

One common use of access control certificates is to bind the name of a subject

with access permissions. The idea is that once the name of a requester has been

verified by a reliable authentication mechanism, access control certificates with

the matched name can then be used to make access decisions. This approach sep-

arates access control into two distinct stages: authentication and authorization.

Authentication requires the binding of a public key to a name, while authoriza-

tion is handled by the access control certificates which bind a name and a set of

permissions. The security of this approach therefore depends on the reliability of

both bindings. Standards exist for the binding of a public key to a name. Pretty

Good Privacy (PGP) [36,37] and X.509 Public Key Infrastructure (PKI) [38–41]

are the two most widely used standards today. The most prominent standard for

binding public keys to names are the X.509, Privilege Management Infrastruc-

ture (PMI) with its support for attribute certificates [42], and Simple Distributed

Security Infrastructure (SDSI) [43].

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

13 Seyedehsamane Abdigarmestani
(Samane Abdi)

2. Background and Related Work 2.2 Distributed Access Control Models

Key-based Approach

Another possible use of access control certificates is to directly bind a public key

with permissions, thus avoiding the use of names completely. With this approach,

the public key in an access control certificate effectively identifies a subject, and

if possession of the corresponding private key can be proved, a service accepting

this certificate can be sure of the identity of the subject and make access decisions

simply by examining the access permissions specified in the certificate. Unlike

the identity-based approach, the key-based approach integrates the problem of

authentication and authorization into one step. Most of the key-based access

control models are known as trust management systems. Examples are Simple

Public Key Infrastructure (SPKI) [44,45], and KeyNote [46]. We describe conven-

tional trust management systems and analyse a specific vulnerability associated

with them in the next section.

Trust Management Systems

In open environments there can exist a number of principals who may send re-

quests to the other principals to access their resources. These principals may be

unknown to each other unless they have had interactions before. Therefore, an ac-

cess control mechanism needs to be maintained securely in a distributed manner,

and has to be stored across the entire network to make the appropriate access deci-

sion. Thus, a distributed and flexible process for establishment of trust and mak-

ing authorization decisions has been proposed called Trust Management. Trust

Management [10, 43, 44, 47–53] is an approach to establish trust and manage au-

thorization relationships among distributed principals that mediates access con-

trol. It is divided into two main categories: reputation-based trust management

systems, and certificate-based trust management systems. In reputation-based

trust management systems, entities establish a trust relationship based on beliefs

resulting from past interactions, which predict future behaviour [49–51, 54–58].

In certificate-based trust management systems, entities establish a trust relation-

ship based on some evidence called certificates [10,43,47,48,59–63]. With a given

set of certificates that the requester provides to the resource owner (recipient)

for accessing specific resources, the recipient makes an access decision that com-

plies with the security policy. This approach not only allows unknown requesters

to prove their authorization for some resources, but also provides decentralized

control to support delegation of authorization among unknown principals to prop-

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

14 Seyedehsamane Abdigarmestani
(Samane Abdi)

2. Background and Related Work 2.2 Distributed Access Control Models

Figure 2.3: An overview on trust management system

agate access rights. In this thesis, when we use the term "trust management" we

mean certificate-based trust management.

Trust management systems are more expressive and scalable than classical access

control systems for distributed environments. Each principal can define its own

access control policy for its resources without the need to rewrite and reinterpret

its security mechanism when joining other principals in a distributed environ-

ment. It is also independent from the design of individual security policies in

applications. The trust management approach is based on the notion of delega-

tion certificate, where every delegation certificate delegates some permission from

its issuer to its subject. Chains of delegation certificates issued by different issuers

may be formed, thus enabling access to be granted in a decentralized manner.

Figure 2.3 depicts a trust management system. A principal sends access requests

for a resource to the trust management service via an API. The trust manage-

ment system checks whether the requester has provided the necessary certificates

for its request. The response determines whether access to the resource should

be granted or denied.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

15 Seyedehsamane Abdigarmestani
(Samane Abdi)

2. Background and Related Work 2.2 Distributed Access Control Models

Glossary

To clarify fundamental elements of trust management systems, we now provide a

glossary of relevant terms. These terms occur throughout the rest of this thesis.

Principal An entity that can be authenticated via an authentication mecha-

nism in distributed environments. Principals are entities that may be trusted and

consequently authorized to perform an action.

Permission A permission specifies the access rights to some resources. Permis-

sions imply a hierarchy of access rights and so a principal holding a permission

dominating other permissions can also holds the dominated permissions.

Delegation Propagation of a permission, that a principal holds, to other prin-

cipals is called delegation.

Policy A set of rules specifying the conditions under which a request may be

granted.

Compliance Checker A compliance checker handles the access decisions based

on a set of certificates and policies. For example, a bank trusts its employee Alice

to create a bank account. The bank authorizes Alice by issuing a certificate

for this purpose. Alice presents her request for creating a bank account along

with the relevant certificates to the trust management system. The compliance

checker checks Alice’s access for creating a bank account based on the certificates

she provides to the trust management system.

Certificates Cryptographic assertions as proof of authorization for some ac-

tions or delegation of permissions to other principals.

Actions Operations on protected resources that need to be controlled by the

trust management system.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

16 Seyedehsamane Abdigarmestani
(Samane Abdi)

2. Background and Related Work 2.2 Distributed Access Control Models

Authorization The authority to perform an action on some resource by a prin-

cipal is called authorization. Note that authorization is different from permission.

A permission is a specification of some action on some resource. Authorization

refers to binding a principal to a set of permissions.

Existing Approaches for Trust Management

Trust management frameworks may vary in terms of the infrastructure that they

use to establish trust relationships. However, at a higher level, they all have an

automatic way to manage the authorization by building up trust relationships

among ordinary principals in open and distributed environments. The term trust

management was coined when PolicyMaker was introduced by Blaze et al. [14]

in 1998. The main idea in PolicyMaker is authorizing decentralized access by

checking a proof of compliance. It provides a unified framework for managing

security policies, certificates and their trust relationships. Blaze et al. argue that

identity based approaches such as PGP [36, 37] and X.509 are limited and are

appropriate to only one application, and do not support security for applications

that are distributed. In PGP and X.509, a user’s public key is linked to the user’s

identity within the X.509 certificate, and also the user’s identity is linked to a set

of actions that the user is authorized to perform. The linking of a user’s identity

to the set of authorized actions should be implemented for each application sep-

arately; thus, this approach is inefficient for open and distributed environments.

PolicyMaker associates the user’s identity with a set of authorized actions by

binding a user’s public key to the actions they are authorized to perform. The

PolicyMaker engine takes the request, certificates, and local policy as input, and

the compliance checker provides a proof of compliance, returning True or False.

The True or False result determines whether or not, respectively, the requester

is authorized for performing the action that he/she requested. Certificates are

mainly used for trust delegations. A trusted principal issues a certificate to a

non-trusted principal to become trusted and, in turn, the new trusted principal

issues a similar certificate to another principal, and so on. The principal receives

the permission for a resource through a delegation certificate. Delegation is an

important feature that provides decentralized scalability for trust management

and access control. Certificate structures in PolicyMaker are arbitrary and can

be encoded within any programming languages. Moreover, permissions are spec-

ified arbitrarily and the global uniqueness of a permission specification depends

on the expertise of the security administrator, who defines these permissions, to

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

17 Seyedehsamane Abdigarmestani
(Samane Abdi)

2. Background and Related Work 2.2 Distributed Access Control Models

take care of providing a globally unique interpretation for them.

KeyNote [46, 47], which is the second generation of PolicyMaker, is also based

on certificates and local policies. In KeyNote, certificates and policies have the

same syntax and are both referred to as assertions. The only difference between

certificates and policies in either KeyNote or PolicyMaker is that certificates are

signed assertions and policies are not signed because they are locally trusted by

KeyNote trust management. A Principal is identified by a principal identifier

which is a public key. A principal signs certificates and distributes them across

an untrusted environment where they are used by other KeyNote trust manage-

ment systems. A principal P may request some action while the other principal

Q issues a certificate related to that action and delegates the permission for that

action to the principal P . All assertions in KeyNote are expressed in a lan-

guage managed by the KeyNote compliance checker. In receiving a query, the

KeyNote trust management constructs a graph where each node corresponds to

a principal’s public key and an edge corresponds to the assertion that represents

delegation of a permission. The root of the graph is the policy assertion and an

algorithm tries to construct a path to the requester’s public key, using certificates

to satisfy the compliance checker for acceptance or rejection of a request. De-

spite the fact that PolicyMaker leaves the verification of the requester’s signature

key with the application, KeyNote accomplishes this task inside the trust man-

agement system. The compliance checker inside the trust management system

evaluates the request and the result of the query is returned to the application.

The KeyNote compliance evaluation value is flexible and depends on the applica-

tion design, while in PolicyMaker compliance values are the binary values of True

or False. KeyNote defines a specific language to construct certificates, compared

with PolicyMaker where certificates can have arbitrary structure encoded within

any programming languages. These features make KeyNote more flexible to use

as a trust management system to integrate into applications rather than the pre-

vious trust management system, PolicyMaker. However, similar to PolicyMaker,

in KeyNote permissions are specified arbitrarily and the global uniqueness of a

permission specification depends on the expertise of the security administrator,

who defines these permissions, to take care of providing a globally unique inter-

pretation for them.

SPKI/SDSI is another certificate-based mechanism that can be viewed as a trust

management system. This mechanism is a combination of two different ap-

proaches, SPKI (Simple public key infrastructure) and SDSI (Simple Distributed

Security Infrastructure) [43]. SPKI/SDSI was combined in 1999 with the goal of

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

18 Seyedehsamane Abdigarmestani
(Samane Abdi)

2. Background and Related Work 2.2 Distributed Access Control Models

easy use of public key infrastructure (PKI) [64]. The combined SPKI/SDSI [60]

uses the SDSI approach for name certificates and the SPKI approach for autho-

rization certificates. It addresses the naming of principals, creation of groups of

principals, associating permissions for actions with principals, and the delegation

of permissions from one principal to another. A SPKI/SDSI name certificate is

inherited from SDSI’s name certificate [43], and provides a way of naming public

keys that are meaningful in a principal’s name space. A principal’s name space

is specified by its public key. Each principal chooses an arbitrary name for the

other principal in its name space and binds that arbitrary chosen name to its

public key to refer to that principal in a global manner. This binding is done

by issuing a name certificate. The name N , bound to a principal’s name space

identified by its public key K is called a local name, denoted as (K N). A name

certificate (K N) −→ P is a statement signed by the owner of public key K

that principal P is defined to be N in K’s local name space. A name certificate

can also be issued to refer to another local name principal, called an extended

name. Moreover, a name certificate can be issued to specify group membership.

A SPKI/SDSI authorization certificate is inherited from the SPKI approach [60].

The SPKI mechanism identifies principals only as public keys but allows binding

of permission to those keys and delegation of permissions from one key to another

by issuing an authorization certificate. An authorization certificate denoted by:

P
X

=⇒ Q indicates that principal P delegates authority for permission X to prin-

cipal Q. SPKI/SDSI inherits this approach for authorization and delegation of

permissions among principals that are identified by either their public keys or

local names.

PolicyMaker, KeyNote, and SPKI/SDSI have similar approaches where certain

permissions are delegated from their issuers to the other principals. Other prin-

cipals may delegate further those permissions.

Role-based Trust management (RT) [9,65] and secPAL [10] are other approaches

that are based on constrained Datalog [66, 67]. The RT is influenced by SDSI

and Delegation Logic [48, 68, 69]. Local names in SDSI correspond to roles in

RT. The notion of roles unifies concepts such as conditions in KeyNote, names in

SDSI, and permission tags in SPKI. For example, if P is a principal, N and R are

roles, P.N in RT may correspond to the local name (P N) in SDSI and P.R may

correspond to a permission which is defined in the condition field in Keynote and

permission tags in SPKI. RT is a family of a number of languages with a common

basic structure. The core basic language of RT is RT0, and additional features

were introduced as parametrized roles in RT1, delegation of activation of roles in

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

19 Seyedehsamane Abdigarmestani
(Samane Abdi)

2. Background and Related Work 2.2 Distributed Access Control Models

RTD, and manifold roles and role-product operators in RTT . In general, in the

RT family, principals are roles who also can define new roles, issue certificates,

and make requests. Principals may be identified by a public key, or by a user ac-

count. For example, Alice is a principal that may be identified by her public key

kA and is a member of role "Bank1.Manager". Permissions are also represented

by roles. Membership of a role assigns permissions that are defined to authorize

the principal who is a member of that role. For example, the permission for

opening an account on Bank1 can be represented by role "Bank1.openAccount".

Hence, a principal that belongs to the role "Bank1.openAccount" is authorized to

open an account in Bank1. In RT each principal may have a role and the tra-

ditional permissions that were mentioned in PolicyMaker, KeyNote, SPKI/SDSI

and delegation of permissions among principals are unified to the role assignment

concept.

secPAL is another approach for trust management which was proposed in [10,70].

It is a logic-based policy language that addresses establishment of trust and man-

agement of authorization in open and distributed environments with no predefin-

ing trust relationships. Policies and certificates are expressed by predicates, and

constraints within logical clauses. Authorization and delegation to principals are

defined in predicates. Further delegation is also supported to either fixed or

arbitrary depth of delegation. Assuming the same scenario in the previous ex-

ample for RT, the BankManager may decide to delegate permission for creating

an account (creatAccount) in Bank1 to its employees and allow its employees to

delegate of this permission to other principals in different domains. This can be

expressed in secPAL as the following assertions:

BankManager says X can say∞ createAccount

if X is an employee

delegation is expressed by "can say∞" construct and the suffix "∞" means that

the statement " can say∞ createAccount" can be delegated further with no depth

limit. All assertions are signed by their issuers, so the above assertion is signed

by BankManager. Returning back to the previous scenario, Alice can delegate

createAccount to Bob if the following statement exists:

BankManager says Alice can say∞ createAccount

if Alice is an employee

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

20 Seyedehsamane Abdigarmestani
(Samane Abdi)

2. Background and Related Work 2.3 Subterfuge Vulnerability

then the statement "createAccount is accepted" can be derived. Note that the "is

accepted" is an example of an attribute. secPAL supports expressing a wide range

of policies with role hierarchies, parametrized roles, and threshold constraints

using statements close to the natural English language.

2.3 Subterfuge Vulnerability

Subterfuge is a deceptive behaviour with the goal of evading the actual control

intention of a security mechanism [71, 72]. Many existing trust management

frameworks are explicit in their assumption that principals are uniquely identi-

fied, however the literature has generally not been as prescriptive regarding the

uniqueness of permissions. Authorization certificates are used to specify delega-

tion of permissions among principals. Permissions are bound to the certificate

issuer’s public key to facilitate access control in a decentralized approach. Since

binding permissions to public keys is not particularly meaningful to principals, a

series of delegation certificates, that a principal uses to prove authorization for

some action, may not return a result that reflects the exact intention of all partic-

ipants in the existing chain. A principal can somehow bypass the actual intention

of a series of delegation certificates via some indirect but apparently authorized

route. Delegation subterfuge refers to the inconsistency problem in delegation of

a permission that can arise when there is ambiguity concerning the uniqueness

and interpretation of a permission. In the following sections we investigate the

subterfuge vulnerability in the trust management frameworks discussed in section

2.2 with examples and more details.

2.4 Delegation Subterfuge in Existing Trust

Management Approaches

A trust management aids principals to carry out a task through an automated

decision making process. Malicious principals are incompetent principals who are

not expected to carry out an action based on the actual control intention of the

security mechanism. They attempt to perform the action by using a vulnerabil-

ity in a security mechanism via a sequence of deceptive but apparently legitimate

behaviours. Subterfuge is one of these deceptive behaviours performed by incom-

petent and malicious principals with the goal of evading the intended control of

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

21 Seyedehsamane Abdigarmestani
(Samane Abdi)

2. Background and Related Work

2.4 Delegation Subterfuge in Existing Trust

Management Approaches

a security mechanism and misleading the accountability tracking for a permis-

sion. Although, existing trust management languages have uniquely identified

assumptions for principals; they do not provide a systematic method for unique

interpretation of permissions. We explain subterfuge by giving some examples

of delegation in the mentioned trust managements. Although, they all rely on

some form of global name providers to ensure that different parties get the right

name for resources, still malicious principals may bypass the actual intention of

a delegation.

2.4.1 Delegation Subterfuge in KeyNote

KeyNote relies on the Internet Assigned Number Authority (IANA) [73] as a name

service provider to ensure that different parties get the right name for resources.

However, global name providers are not security administrators; they only provide

each name with a unique meaning and have no control over how names are used.

Principals from different name spaces may still use arbitrary specifications to

represent their own resources. Assume that an electronic banking system in

Bank1 uses KeyNote trust management to build and manage trust relationships.

The Bank1Manager, owner of public key kBM , issues a certificate that states

Alice, owner of public key kA, is trusted to create account for Bank1. This is

represented by the following delegation certificate:

KeyNote-Version: "2"

Comment: Certificate(1)

Authorizer: kBM

Licensees: kA

Condition: Action=="create account";

signature: by kBM

Alice may decide to delegate permission for create account in Bank1 to Bob,

owner of public key kB, who is an employee of Bank3. She issues the following

certificate:

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

22 Seyedehsamane Abdigarmestani
(Samane Abdi)

2. Background and Related Work

2.4 Delegation Subterfuge in Existing Trust

Management Approaches

KeyNote-Version: "2"

Comment: Certificate(2)

Authorizer: kA

Licensees: kB

Condition: Action=="create account";

signature: by kA

The electronic banking system in Bank2 also uses KeyNote as its trust manage-

ment system. Eve, the owner of public key kE, is an employee of Bank2. Eve

delegates the permission for create account in Bank2 to Bob who is an employee

of Bank3. Eve issues the following certificate:

KeyNote-Version: "2"

Comment: Certificate(3)

Authorizer: kE

Licensees: kB

Condition: Action=="create account";

signature: by kE

Bob is willing to delegate the permission create account in Bank2 that he obtained

from Eve to Dave, the owner of public key kD to access resources of Bank2. Bob

issues the following certificate:

KeyNote-Version: "2"

Comment: Certificate(4)

Authorizer: kB

Licensees: kD

Condition: Action=="create account";

signature: by kB

Dishonest Dave obtains certificates (1) and (2) and represents the chain of certifi-

cates (1),(2),(4) as proof of his authorization to create account in Bank1. How-

ever, Bob’s intention by issuing certificate (4) to Dave was to allow Dave to

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

23 Seyedehsamane Abdigarmestani
(Samane Abdi)

2. Background and Related Work

2.4 Delegation Subterfuge in Existing Trust

Management Approaches

present the certificates (3), (4) as a proof of authorization to Bank2.

2.4.2 Delegation Subterfuge in RT

The RT family [65] uses Application Domain Specification Documents (ADSDs)

[9] to ensure the globally unique naming. Although ADSDs provide a unique in-

terpretation for each name, the principals of different domains may still use arbi-

trary names to represent their own resources. For example, an electronic banking

system enables Alice to activate the role "Bank1.employee" to use in a session.

The role "Bank1.employee" is authorized for permission "Bank1.createAccount".

Alice delegates this role to Bob by issuing the delegation certificate for this pur-

pose denoted as:

Alice
act as Bank1.employee

−−−−−−−−−−−−→ Bob

"act as Bank1.employee" is called "role activation". Suppose that malicious Eve

obtains this role activation "act as Bank1.employee". She first intercepts the

above delegation certificate and then delegates this role to Bob by issuing the

certificate:

Eve
act as Bank1.employee

−−−−−−−−−−−−→ Bob

Bob may further delegate this role activation to Dave by issuing the certificate:

Bob
act as Bank1.employee

−−−−−−−−−−−−→ Dave

Dave requests to create an account in Bank1 in the capacity of

"act as Bank1.employee" that can be represented by the following statement:

Dave
act as Bank1.employee

−−−−−−−−−−−−→ Bank1.creatAccount

This request is granted because there is a chain of delegation from Alice to

Dave for the role activation "act as Bank1.employee". However, Bob’s inten-

tion by delegating the role activation "act as Bank1.employee" to Dave was

that Dave present the delegation chain from Eve to Dave for his request. This

happens because Bob does not understand that Eve has no authority over

"act as Bank1.employee" activation role. Therefore, the intercepted delegation

statement can be used by Dave to create an account for Bank1.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

24 Seyedehsamane Abdigarmestani
(Samane Abdi)

2. Background and Related Work

2.4 Delegation Subterfuge in Existing Trust

Management Approaches

2.4.3 Delegation Subterfuge In secPAL

We consider the previous scenario, the electronic bank system, and using the

secPAL policy language to investigate the subterfuge vulnerability in secPAL. In

the following example, we show how using the secPAL policy language results in

delegation subterfuge. We identify principals by their names as Bank1Manager,

Alice, Bob, Eve, Dave,... where a public key is associated to each of these names

in the implementation of secPAL as kBM , kA, kB, kE, kD, ... respectively. Bank

Manager issues a delegation statement for all of its employees to permit them to

create an account in Bank1. Note that, the constructor "say∞" means that the

permission in that statement can be delegated further. This delegation statement

is expressed as the following assertion in secPAL:

Bank1 Manager says X can say∞ createAccount

if X is an employee

Bank1 Manager says Alice is an employee

and therefore these statements can be inferred:

Bank1 Manager says Alice can say∞ createAccount

Alice delegates this permission to Bob by issuing the following assertion:

Alice says Bob can say∞ createAccount

The manager of Bank2 issues a similar statement for permitting its employees to

create an account. Thus, Bank2 Manager issues the following assertion:

Bank2 Manager says X can say∞ createAccount

if X is an employee

Bank2 Manager says Eve is an employee

and the following statement can be satisfied for X = Eve:

Bank2 Manager says Eve can say∞ createAccount

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

25 Seyedehsamane Abdigarmestani
(Samane Abdi)

2. Background and Related Work

2.4 Delegation Subterfuge in Existing Trust

Management Approaches

Malicious Eve delegates the permission for creating an account to Bob for further

delegation in the following assertion:

Eve says Bob can say∞ createAccount

Bob unwittingly delegates the createAccount permission, that he obtained from

Eve, to Dave to present to Bank2 for creating an account. Note that, the con-

structor "say0" means that the following statement is only accepted if it is directly

asserted by Dave and is not deduced by a chain of delegation assertions.

Bob says Dave can say0 createAccount

However, Dave can present the following collection of assertions along with his

request to Bank1 :

Bank1Manager says Alice can say∞ createAccount

Alice says Bob can say∞ createAccount

Bob says Dave can say0 createAccount

The intention of Bob by delegating the permission for creating account was to

allow Dave to use the following chain of delegation assertions:

Bank2Manager says Eve can say∞ createAccount

Eve says Bob can say∞ createAccount

Bob says Dave can say0 createAccount

This subterfuge happens because of poor expression in the statements by the

issuers. Good assertion construction depends on the issuers’ expertise. However,

the issuer of assertions does not have a clear view of all available naming schemes

across other domains. So, in the above scenario, Bob was confused because of

misinterpretation of permission creatAccount that he received from two different

principals.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

26 Seyedehsamane Abdigarmestani
(Samane Abdi)

2. Background and Related Work

2.4 Delegation Subterfuge in Existing Trust

Management Approaches

2.4.4 Delegation Subterfuge In SPKI/SDSI

In SPKI/SDSI permissions are identified by tags or S-expressions. Authorization

certificates specify either authorization or delegation of permissions to princi-

pals. Permissions are bound to the public key of the certificate’s issuers. Since

binding permissions to public keys does not provide a meaningful interpretation

for principals, a series of delegation certificates that a principal uses to prove

its authorization for some resources may not reflect the exact intention of those

delegation certificates. This issue is described in more detail in the following

examples. In the following examples, the permission tag:

T = (tag(download X))

refers to the permission specification defined in the SPKI/SDSI framework for

downloading AlbumX. We refer to this tag simply as AlbumX.

Example 1 Atlantic Records signs a music publishing contract with a Music

Broker Service (owner of public key kB), that by their agreement, the broker

service would be able to issue permission for its customers to download from

Atlantic Records website by paying $10 for AlbumX. Atlantic Records (owner

of key kA) adds Music Broker Service to its contract list which is identified by

the SDSI name (kA Contracts), that all members of SDSI group (kA Contracts)

are authorized to download AlbumX by paying $10. Principal kE registers in

Music Broker Service and is identified by the local name (kB Customers). kE

sends the request to download the AlbumX from Atlantic Records and presents

the following certificates as proof of its authorization (notations are explained in

2.4):

kA
AlbumX

=⇒ (kA Contracts)

(kA Contracts)→ kB

kB
AlbumX

=⇒ (kB Customers)

(kB Customers)→ kE

The expected certificate chain between Atlantic Records company and Music Bro-

ker Service is depicted in Figure 2.4.

On the other hand, Motown Records is another music company that also signs

a publishing contract with the same Music Broker Service (owner of public key

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

27 Seyedehsamane Abdigarmestani
(Samane Abdi)

2. Background and Related Work

2.4 Delegation Subterfuge in Existing Trust

Management Approaches

Figure 2.4: Expected chain for downloading AlbumX

kB), which by their agreement the Music Broker Service would be able to is-

sue permission to its customers to download from Motown Records by paying

$1 for AlbumX. Motown Records, the owner of public key kM , adds kB to its

contracts list specified by SDSI group (kM Contracts), where all the members of

this group are authorized for AlbumX. Dishonest kE can collect all the certificates

and present the following certificates to Motown Records to pay less for AlbumX :

kM
AlbumX

=⇒ (kM Contracts)

(kM Contracts)→ kB

kB
AlbumX

=⇒ (kB Customers)

(kB Customers)→ kE

However, kB’s intention when delegating permission AlbumX to the SDSI group

(kB Customers) is that kE uses the expected chain as proof of authorization to

download from Atlantic Records and make purchases by paying $10. Unknown to

kB, dishonest kE collects all other certificates and uses the above unexpected chain

to make a cheaper purchase by paying $1 to Motown Records rather than $10

to Atlantic Records. The unexpected certificate chain between Motown Records

company and Music Broker Service is depicted in Figure 2.5.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

28 Seyedehsamane Abdigarmestani
(Samane Abdi)

2. Background and Related Work

2.4 Delegation Subterfuge in Existing Trust

Management Approaches

Figure 2.5: Unexpected chain for downloading AlbumX

Example 2 Eve (the owner of public key kE) sets up a bogus company and

masquerades as kM , the owner of the bogus company. Note that Eve is also

the owner of public key kM . Eve encourages the Music Broker Service (owner of

public key kB) to join its company and consequently to its group (kM Contracts).

Eve, masquerading as kM , delegates permission on downloading AlbumX which

is the same as the permission that kB already holds from a different company.

kB does not realize this and delegates the permission on downloading AlbumX to

(kB Customers) and consequently to kC as a customer of Music Broker Service.

kC normally would not be expected to hold this permission. This confusion

occurs as kB might have too many certificates to manage and does not track

which permission should be associated to which company.

In this case, kB’s intention by registering in kM ’s company was purchasing mini-

mum quality and cheaper services for its ordinary customers. However, kC as an

ordinary customer of Music Broker Service can present the following certificates

to access Atlantic Records and download the higher quality and more expensive

product:

kA
AlbumX

=⇒ (kA Contracts)

(kA Contracts)→ kB

kB
AlbumX

=⇒ (kB Customers)

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

29 Seyedehsamane Abdigarmestani
(Samane Abdi)

2. Background and Related Work

2.4 Delegation Subterfuge in Existing Trust

Management Approaches

Figure 2.6: Subterfuge scenario by establishing a bogus company

(kB Customers)→ kC

Note that kC pays the Music Broker Service and the Music Broker Service pays

its contract companies. Hence, kB presumes that it should pay kM ’s company,

but Atlantic Records charges kB for principal kC ’s purchase. This scenario is

depicted in Figure 2.6.

Example 3 In Figure 2.7, AtlanticRecords delegates the permission AlbumX

to its group with the local name (kA Contracts). kC registers in the group

(kA Contracts) and is not aware of the permissions that this group has.

If kC delegates the permission Atlantic.com/AlbumX that she received from

Atlantic Records to another principal such as kM , the expected chain that kM

presents for requesting access to AlbumX on Atlantic Records would be the fol-

lowing chain:

kA
Atlantic.com/AlbumX

=⇒ (kA Contracts)

(kA Contracts)→ kC

kC
Atlantic.com/AlbumX

=⇒ kM

On the other hand, kE and kM are principals that can use the vulnerability

in permission naming to perform the following attack on Atlantic Records to

access AlbumX illegitimately. However, if kC is not willing to give the permission

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

30 Seyedehsamane Abdigarmestani
(Samane Abdi)

2. Background and Related Work

2.4 Delegation Subterfuge in Existing Trust

Management Approaches

Figure 2.7: Subterfuge in the delegation of permission Atlantic.com/AlbumX

Atlantic.com/AlbumX that she obtained from Atlantic Records to kM , kE can

collude with kM and intercepts kA
Atlantic.com/AlbumX

=⇒ (kA Contracts). kC has no

idea about the permissions that the group (kA Contracts) has. In addition, kC

does not realize kE has no authority over permission Atlantic.com/AlbumX, and

delegates the permission Atlantic.com/AlbumX to kM which it received from kE.

Therefore, kC ’s intention when delegating permission on Atlantic.com/AlbumX

to kM is that kM uses the expected chain:

kE
Atlantic.com/AlbumX

=⇒ kC

kC
Atlantic.com/AlbumX

=⇒ kM

as proof of authorization to kE. However, dishonest kM obtains all the cer-

tificates in the chain and presents the following collection of certificates to

Atlantic Records to access AlbumX without kC’s knowledge.

kA
Atlantic.com/AlbumX

=⇒ (kA Contracts)

(kA Contracts)→ kC

kC
Atlantic.com/AlbumX

=⇒ kM

Note, even if kE obtains permission Atlantic.com/AlbumX legitimately, they can

also collude with kM to perform the above attack.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

31 Seyedehsamane Abdigarmestani
(Samane Abdi)

2. Background and Related Work 2.5 Summary

2.5 Summary

This chapter has presented an overview of the research in access control models.

It has also briefly reviewed the research on distributed access control, starting

from the identity-based approaches to the modern key-based approaches. The

identity-based approach uses certificates as assertions for the binding of a public

key with a name. The representative work in this area is the X.509 Public Key

Infrastructure (PKI), Privilege Management Infrastructure (PMI), and Simple

Distributed Security Infrastructure (SDSI). The newer key-based approach as-

sociates a public key directly with permissions, thus avoiding the use of names.

Simple Public Key Infrastructure (SPKI), and PolicyMaker/KeyNote are repre-

sentative work in this area. In particular, PolicyMaker/KeyNote with an inte-

grated approach to the specification of security policies and trust relationships

underlies trust management systems.

Trust Management like many other protection techniques, provides operations

that are used to control access. As with any protection mechanism the chal-

lenge is to make sure that the mechanisms are configured in such a way that

they ensure some useful and consistent notion of security. We showed how poorly

characterized permission specifications within cryptographic certificates can lead

to authorization subterfuge during delegation operations. This subterfuge results

in a vulnerability concerning the accountability of the authorization provided by

a delegation chain. The delegation operations in the chain may not reflect the

actual intention of the security mechanism. The challenge here is to ensure that

permissions can be referred in such a way that properly reflects their context.

Since permissions are intended to be shared across local name spaces their re-

ferences must be global. We discussed some ad-hoc strategies to ensure global

permissions. In particular, we consider the use of global name services and pub-

lic keys as the sources of global identifiers. However, the design of a security

mechanism should not rely on ad-hoc methods, rather, should be formalized in a

systematic way to prevent subterfuge.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

32 Seyedehsamane Abdigarmestani
(Samane Abdi)

Chapter 3

Subterfuge Safe Trust

Management

This chapter introduces Subterfuge Safe Trust Management (SSTM). SSTM rep-

resents and expands the works that were introduced in [74, 75]. We begin with

an overview of the SSTM infrastructure, outlining the basic concepts and key

features in section 3.1. Section 3.2 introduces the Subterfuge Safe Authoriza-

tion Language (SSAL), a policy language for specifying trust-related policies. In

section 3.3, a formal foundation for SSAL is given. Section 3.4 outlines the poten-

tial threats to SSTM. Section 3.5 addresses certificate chain discovery for SSTM.

Finally, a summary of the chapter is presented in section 3.7.

3.1 Overview on SSTM Infrastructure

SSTM is a framework for specifying, expressing, and managing trust and au-

thorization relationships among distributed principals in open environments. It

provides a trust model for subterfuge safe delegation of permissions in large scale

distributed systems without relying on a pre-agreed global naming service or a

super security administrator. In SSTM, a principal may be a person, an organi-

zation, a computer process, or any other entity authenticated by some authority.

Principals are identified by either public keys or locally defined names that are

identified uniquely in global environments. Permissions are considered to be spec-

ified locally in some principal’s name space, however, they have globally unique

interpretations. A principal can delegate a permission to others. A principal de-

scribes its own security policy in its name space, therefore, a language is designed

33

3. Subterfuge Safe Trust

Management 3.2 Subterfuge Safe Authorization Language

Figure 3.1: Overview of SSTM framework

for policy specification, called Subterfuge Safe Authorization Language (SSAL).

Figure 3.1 shows a general overview of the SSTM framework.

3.2 Subterfuge Safe Authorization Language

Subterfuge Safe Authorization Language (SSAL) is intended to be used by prin-

cipals to specify their policies regarding subterfuge safe trust/delegation relation-

ships. SSAL introduces usage of localPermissions instead of using conventional

specification of permissions in existing trust management systems. This section

describes the syntax of the language and provides a formal semantics using formal

methods. The three main concepts in the language: principals, permissions, and

delegation will be discussed in the following sections.

3.2.1 Principals

There are two types of principals in SSAL, both of which are uniquely identifiable

in a global manner. A principal can be specified by a public key, and therefore

is globally unique. A principal can also be an arbitrarily chosen name associated

with a public key called local name, therefore is globally unique as well. Local

names are inherited from Simple Distributed Security Infrastructure (SDSI) [43]

and are formed by linking principals to arbitrary chosen names. Each principal

has its own name space, identified by its global unique identifier (either public

key or local name), and can choose independently an arbitrary name to refer to

another principal in its own name space. Binding a principal that is recognized

by its local name to a name identifier provides an extended local name. An

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

34 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.2 Subterfuge Safe Authorization Language

Figure 3.2: Illustration of a local name, a group, and an extended local name.

extended local name is a public key followed by two or more names. Note that

the arbitrarily chosen name can be a name for a group of principals called a group.

A group is a public key followed by a name. For example, the airline A, identified

by its public key kA, can choose an arbitrary name for its manager and define

the local name (kA Manager) as a unique reference for its manager in global

environments. The airline A can also define a group of brokers as (kA Brokers).

Assuming that the airline A’s manager has an employee called Clare, which is

unique in the name space of the manager, then Clare can be identified by the

extended local name (kA Manager Clare). Figure 3.2 illustrates this example.

Extended local names and groups do not have a separate definition; their meaning

is defined in terms of the meaning of the local names. In this thesis, we refer to

local names, extended local names, and groups simply as local names.

Public key

Public key cryptographically enables entities to securely communicate in insecure

open distributed environments, and reliably verifies the identity of an entity via

digital signatures. The public key is meant to be available for anyone in an open

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

35 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.2 Subterfuge Safe Authorization Language

---- BEGIN ... PUBLIC KEY ----

Comment: Public key for Alice

AAAAB3NzaC1yc2EAAAABIwAAAIEA1on8gxCGJJWSRT4uOrR13mUaUk0hRf4RzxgE

SZ1zRbYYFw8pfGesIFoEuVth4HKyF8k1y4mRUnYHP1XNMNMJl1JcEArC2asV8sHf

6zSPVffozZ5TT4SfsUu/iKy9lUcCfXzwre4WWZSXXcPff+EHtWshahu3WzBdnGxm

5Xoi89zcE

---- END ... PUBLIC KEY ----

Figure 3.3: Example of a public key

distributed environment. The private key is meant to be confidential, no one but

the owner is allowed to access it. The private key can be used to sign documents

such as statements, certificates, etc. Since it is kept privately only the owner can

use the private key. The public key can be used to verify a signature. Therefore,

once a document is signed by a private key anyone in the open environment can

verify the signature with the corresponding public key. Given these properties of

a public and private key pair, a principal can be represented by its public key as

a global unique identifier. We assume that no two entities share the same public

key and thus are globally unique and verifiable by others. Otherwise, if two or

more entities have the same public key they could impersonate each other. While

it is theoretically possible to generate the same public key, given the sizes of the

keys (1024 bits, about 309 digits), it is extremely unlikely to generate the same

public key in reality. Figure 3.3 depicts a Secure Shell (SSH) Public Key File

Format [76].

For simplicity in this thesis, we use k followed by a small number, letter or word

to refer to the public keys. For example, kA might represent the public key in

Figure 3.3.

Local Name

The syntax of the local name is the public key followed by a sequence (one or

more) of arbitrarily chosen names. A local name is an arbitrary name N that

principal P (identified by either a public key or a local name) chooses for principal

Q in its (P ’s) name space. Principal P refers to principal Q in its name space as

N and in the global environment as (P N). (P N) is called the local name for

Q and their relationship is represented using the speaks for relation whereby the

statement principal Q speaks for local name (P N) is denoted as:

(P N) −→ Q

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

36 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.2 Subterfuge Safe Authorization Language

Any statement that is signed by Q can be viewed as originating from (P N). For

example, an airline owner such as A, represented by its public key, kA, signs a

statement that Bob, the owner of public key kB, is acting as its broker:

(kA Brokers) −→ kB

which means that a message signed by the broker kB can be considered to be

originated from (kA Brokers).

Name Certificate

The local name and its relationship with other principals is identified by issuing

a name certificate. The principal P which signs the certificate is the issuer of the

name certificate, N is the locally chosen name in the name space of P , and Q is

the subject of the certificate that the issuer P refers to with the locally chosen

name N . The subject of the name certificate can be either a public key, or local

name. A name certificate is represented as the following where sK means the

certificate is signed by the owner of public key K (i.e. P):

{|N, Q|}sK

It states that principal Q is referred to by the name N in a principal’s name space

that is identified by public key K. For example, the certificate {|Bob, kB|}skA

specifies that Bob is the name that the owner of public key kA arbitrarily chose

to refer to (the owner of) kB in her name space. The speaks for relation can

be inferred from the name certificate whereby the name certificate {|N, Q|}sK

implicitly states that principal Q speaks for the principal (K N). It means that

a message signed by principal Q can be considered to be originated from N in

the name space of a principal identified by public key K.

Definition "B speaks for A" if and only if there exists a certificate where B is the

subject and A is the certificate issuer’s public key followed by an arbitrary chosen

name (local name). When Principal B makes a request, it can be interpreted that

the request came from A.

The following rewrite rule provides a speaks for interpretation for name certifi-

cates. Given Principal (local name or public key) Q, name N , public key K, the

following rule will be interpreted as speaks for relation, that Q speaks for (K N):

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

37 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.2 Subterfuge Safe Authorization Language

{|N, Q|}sK

(K N)→ Q

In addition to a single name, a name certificate may specify a group name, where

N represents the name for that group and can be bound to several principals

that are members of the group. Every member of the group speaks for the entire

group. For example, an airline owner, Alice, represented by her public key kA,

specifies a group of brokers. All she needs to do is give each member of the group

a name definition (kA Brokers) and issue one certificate. It is not necessary to

issue a new certificate for each individual member. If she decides to add some

members, she needs only issue a new name certificate for that principal. kA signs

a statement that kB is a member of its brokers (i.e. speaks for (kA Brokers)):

{|Brokers, kB|}skA

(kA Brokers) −→ kB

This means that a message signed by the broker kB can be considered as origi-

nating from (kA Brokers). The speaks for relation between kB and (kA Brokers)

is denoted by the following:

(kA Brokers) −→ kB

3.2.2 Permissions

Permissions are a set of rights that a principal may issue or obtain in a net-

work. They are specifications that define access rights to specific principals

and/or groups of principals. They are defined as an approval to perform an

action on one or more protected resources. A permission could be a simple ac-

tion on a file system such as read, write, update, or a complex specification such

as a method invocation in an object-oriented system. As discussed in chapter

1, existing trust management systems such as SPKI/SDSI, and KeyNote allow

specifying arbitrary permissions. In these systems it depends on the experience

of the principal who defines the permission for protected resources. However, in

distributed environments, none of the principals have a complete overview of the

name schema that other principals use for specifying arbitrary permissions for

their resources; therefore, they are vulnerable to the subterfuge problem. SSAL

introduces a systematic way of specifying subterfuge-safe permissions (rather than

relying on an ad-hoc method) called localPermission [74].

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

38 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.2 Subterfuge Safe Authorization Language

localPermission

A new notion for a globally unique permissions called localPermission is intro-

duced in SSAL. A localPermission is a permission specification that is bound to

its originator name space and has therefore a globally unique interpretation in

open environments. A localPermission is formed by a principal followed by a per-

mission specification. The reason for introducing localPermissions in SSAL was

to provide a globally unique interpretation for permission specification to prevent

ambiguity, and therefore subterfuge, in delegations. In other words, a principal

receiving two identical permission specifications cannot misuse the permissions

for non-intended purposes, since the permissions have globally unique interpre-

tations and refer clearly to a global context. localPermissions provide a reliable

scheme for naming permissions relative to their originator’s public key or local

names. In localPermission definition, permissions are arbitrarily chosen specifica-

tions. By binding permissions to their originator’s public key or local name, they

will have a global unique interpretation while preserving their locality to their

originator’s name space.

Definition A localPermission is an arbitrary permission specification that a

principal defines to access its resources in its name space. The arbitrary de-

fined permission specification is bound to the originator’s name space and refers

to a global unique context.

Each principal can define its own permission specification referencing a global

unique context. The global unique context is the signed value of that permission

specification signed by the permission originator P (where K is the public key of

P), represented as {|P erm|}sK
. This represents a permission specification P erm

that originates from a principal which is the owner of public key K. Therefore,

a principal by signing the statement {|P erm, {|P erm|}sK
|}sK

binds its arbitrary

defined permission specification P erm to the self signed permission {|P erm|}sK

to introduce a globally unique interpretation of P erm in its name space denoted

as 〈P P erm〉.

For example, an airline owner Alice, identified by her public key kA, specifies

permission for selling flights for her airline as sell, and delegates this permission

to the brokers. On the other hand, Dave, identified by his public key kD, the

owner of another airline defines the same permission specification sell for selling

flights for his airline by his brokers. Using the localPermission scheme provides

a systematic way of globally and uniquely interpreting these two identical per-

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

39 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.2 Subterfuge Safe Authorization Language

mission specifications relative to their originators’ name spaces without relying

on a global name service. Table 3.1 depicts permission sell in two different name

spaces of airline owners kA and kD with the globally unique interpretations.

Table 3.1: Permission sell and its definition in two different name spaces

Name Space Permission Specification Global Context localPermission

kA sell {|sell|}skA
〈kA sell〉

kD sell {|sell|}skD
〈kD sell〉

The localPermission 〈kA sell〉 clearly references the global unique context

{|sell|}skA
, therefore it is globally unique.

Similarly, the localPermission 〈kD sell〉 clearly references the global unique con-

text {|sell|}skD
which is different from the interpretation of 〈kA sell〉.

localPermission Characteristics

We assume that a localPermission has the following characteristics in its defini-

tion.

Reference to a Globally Unique Context A permission’s global unique

context is the signed value of a permission specification by the originator of the

permission. Each localPermission references a global unique context.

Local to a Name Space Although a localPermission has a globally unique

interpretation, it also preserves its locality to its issuer’s name space. localPer-

missions in different name spaces are distinct from each other even if they have

the same specification. In the example described in Table 3.1, 〈kA sell〉 is different

from 〈kD sell〉.

Associated with Their Originator The localPermissions are associated with

their originator’s either public key or local name. The localPermission of the form

〈P P erm〉 indicates that the principal P originated the permission P erm.

Globally Unique Interpretation Each localPermission references a global

unique context (self signed permission specification), and therefore has a unique

interpretation across all name spaces in open environments.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

40 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.2 Subterfuge Safe Authorization Language

Long-Lived Data It is assumed that permissions are considered as long-lived

data which do not need a specific validity period. When a principal originates a

permission in its name space, it is considered that the permission specification is

valid until the corresponding resource is unavailable. In other words, permission

specifications can be defined for a long period of time and are always valid.

Associating a validity period with permission certificates states that permission

specifications are not considered to be valid for all time [77], which contradicts

our assumption. This will be discussed in more detail in section 3.4.

Permission Certificate

There is also a permission certificate which binds a local specified permission in

an originator’s name space to a global context. The global context is the signed

permission by the permission originator {|P erm|}sK
and represents a permission

specification P erm that originates from a principal owning public key K. Based

on the assumption that a public key is considered to be globally unique, a per-

mission signed by the key can be considered to have a globally unique permission

interpretation and is assumed unambiguous. By signing {|P erm|}sK
, its origi-

nator is the owner of key K, and has just one interpretation for P erm in its

name space. When a principal originates a new permission to allow access to

its resources, that principal signs a self-signed certificate that binds the permis-

sion specification P erm to the globally unique value {|P erm|}sK
. The permission

certificate is represented as the following:

{|P erm, {|P erm|}sK
|}sK

Permission Global Ordering

localPermissions originate in some principal’s name space, and therefore a prin-

cipal must explicitly define how its locally specified permission relates to other

permissions either in its name space or other name spaces. For example, assume

Alice authorizes Bob to access all her resources and the global context for this

permission is {|all|}skA
. When Bob requests write permission for Alice’s docu-

ments, the trust management (policy) engine must infer that permission 〈kA all〉

dominates permission 〈kA write〉. Both permissions 〈kA all〉, and 〈kA write〉 are

globally defined values as {|all|}skA
, and {|write|}skA

respectively. There is implicit

ordering relations between these two unique values. Thus, we define an explicit

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

41 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.2 Subterfuge Safe Authorization Language

ordering relationship among localPermissions for further inferences to make ac-

cess decisions. A binary relation is defined between localPermissions to introduce

a meaningful ordering between them such that X Y represents permission

Y is "no less authoritative than" permission X. Therefore, a principal that ei-

ther issues or obtains permission Y is implicitly considered to hold permission

X. A principal may issue permission certificates to define permission orderings

that specify how a permission in its name space is related to permissions in other

name spaces, where:

{|P erm, X|}sK

is a statement by principal P who is the holder of public key K stating that the

permission P erm in its name space (denoted as 〈P P erm〉) is no less authoritative

than the permission X. The above permission certificate is denoted as:

X 〈P P erm〉

It indicates that permission X is dominated by permission 〈P P erm〉. In other

words, each principal that holds permission 〈P P erm〉 also holds permission X.

Principal P must hold the permission X to define the global ordering relation

with X relative to permission P erm in its name space. In general, the set of all

localPermissions S provides a lattice (S,⊑). A lattice is a partially ordered set

in which every two elements X and Y have a least upper bound U and a greatest

lower bound L. An upper bound U of S is said to be its least upper bound if

U ⊑W for each upper bound W of S. A set has zero or no more than one least

upper bound. Dually, L is said to be a grater lower bound of S if E ⊑ L for each

lower bound E of S. A set may have many lower bounds, or none at all, but can

have at most one greatest lower bound. The following diagram depicts a set of

permissions {a, b, c}, where the greatest lower bound of two elements {a, b} and

{a, c} is {a}. Therefore, permissions {a, b} and {a, c} dominate permission {a}.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

42 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.2 Subterfuge Safe Authorization Language

{a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

∅

Definition The greatest lower bound of localPermissions X and Y is denoted

as:

(X ⊓ Y)

(X ⊓ Y) dominates any localPermission Z that is a lower bound of localPer-

missions X and Y . For example, localPermissions 〈kA {read, write}〉 and

〈kA {read, execute}〉 dominate localPermission 〈kA read〉; that is:

〈kA read〉 (〈kA {read, write}〉 ⊓ 〈kA {read, execute}〉)

3.2.3 Delegation

Delegation refers to the act of a principal to propagate the permissions that ei-

ther it originates or obtains from other principals or group of principals. This

process can continue and form a chain of delegation. In delegation, the principal

who propagates permissions to others is called a delegator and the principal who

receives permissions is called a delegatee. A principal may be delegated a permis-

sion directly from another principal called direct delegation, or may be delegated

a permission via a chain of direct delegations called indirect delegation. The ex-

ample depicted in Figure 3.4 illustrates the delegation between Alice and Bob. It

means that Alice allows Bob to propagate permission X to other principals. Bob

then delegates permission X to Dave, and then Dave has been delegated X from

Alice indirectly. The delegation between Bob and Dave is a direct delegation.

The delegation between Alice and Dave is an indirect delegation.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

43 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.2 Subterfuge Safe Authorization Language

Figure 3.4: Direct and indirect delegation

Delegation Certificate

Delegation certificates are represented by the following syntax:

{|Q, X, D, V |}sK

A principal P (owner of public key K) signs the certificate and delegates the

authority for permission X (where X is a localPermission) to Q which is the

subject of the delegation certificate. Q is a principal or group of principals that is

identified by either its/their public key(s) or local name(s). For ease of exposition,

we ignore the delegation bit D and validity period V . The delegation certificate

is denoted as the statement P
X

=⇒ Q and indicates that principal P delegates

authority for permission X to principal Q. For example, the airline A, holder of

public key kA, delegates permission for selling flights (〈kA sell〉) to a group of its

brokers ((kA Brokers)). This delegation is accomplished by issuing the following

delegation certificate:

{|(kA Brokers), 〈kA sell〉, d1, v1|}skA

denoted as:

kA
〈kA sell〉

=⇒ (kA Brokers)

Note that, in SSAL, delegation of a permission does not imply that the recipient

of the permission holds it,

First, it depends on whether the permission was originated from the principal that

the permission specification was defined in that principal’s name space. When a

principal originates a permission specification, the permission specification occurs

inside a permission certificate that is assumed to be in the certificate issuer’s name

space. A general localPermission is of the form 〈K P erm〉 where K is the issuer’s

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

44 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.2 Subterfuge Safe Authorization Language

public key and P erm is an arbitrary chosen permission specification. Principal P ,

the owner of public key K, originates permission specification P erm in its name

space and binds permission P erm to the self signed permission {|P erm|}sK
as a

reliable reference to the globally unique context. Then, it is implicitly inferred

that P holds 〈P P erm〉, denoted as P ∋ 〈P P erm〉. In the above example, the

delegation of 〈kA sell〉 implies that the (kA Brokers) holds it, since kA is the

originator of permission 〈kA sell〉.

Second, the principal who is willing to delegate a permission must finally hold the

permission in order to propagate it further. This prevents malicious principals del-

egating permissions that they do not hold, and consequently are not expected to

delegate. For example, the malicious broker kM may delegate permission 〈kA sell〉

to Clare, holder of public key kC . In the presence of the delegation statement

kM
〈kA sell〉

=⇒ kC , kC does not know whether kM ∋ 〈kA sell〉 and mistakenly thinks

that she holds the permission 〈kA sell〉.

3.2.4 Accountability

Accountability refers to the obligation of a principal to be responsible for its ac-

tivities based on the permission that is delegated to it. Delegation subterfuge is

possible when one cannot precisely specify how a permission is held by a principal.

It leads to breakdown in tracking accountability. A principal who is concerned

about subterfuge checks whether other earlier principals in the chain are respon-

sible for the permissions they delegate. When a principal originates a permission

it is implicitly held accountable for that permission, denoted as P⊲〈P P erm〉. In

general, a principal is considered to be accountable for a permission if it accepts

responsibility for the result of the actions done by other principals using the del-

egated permission. For example, in issuing permission 〈kA sell〉 for airline A, the

principal kA is considered to be accountable for the use of permission 〈kA sell〉

by any principal that holds this permission. Note that, holding a permission by a

principal may not result in that principal’s accountability for that permission. In

other words, a principal may not be considered to be accountable for a permission

that it holds, unless it clearly states that it accepts accountability for that per-

mission. This prevents malicious principals deceitfully delegating a permission to

other principals to make them accountable by holding a permission. On the other

hand, a principal must hold the permission to assert accountability. This ensures

that a non-trusted malicious principal cannot assert accountability by issuing an

accepts accountability statement for a permission for which they are not trusted

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

45 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.3 Formal Foundation for SSAL

to hold. A principal who is accepting accountability for the permission issued by

a group of principals implicitly accepts accountability for the similar permission

specification referring to the name space of each member of the group. For ex-

ample, if Emily is a member of group (kA Brokers) and accepts accountability

for permission that is originated by (kA Brokers) group as 〈(kA Brokers) sell〉,

she implicitly asserts being accountable for 〈kE sell〉. Therefore, in delegating

〈kE sell〉 to Bob for further delegation, Emily accepts accountability for how

〈kE sell〉 is handled by Bob.

Moreover, permission ordering relations may not result in accountability, where

one cannot infer accountability for any permission in one name space dominated

by another permission originated in a different name space. If this were permitted

then Bob may not be aware of this and specifies his own permission 〈kB sell〉 and

asserts 〈kM sell〉 〈kB sell〉. Then since Bob is by default accountable for all

the permissions he originates then he would be inferred as accountable for the

〈kM sell〉 permission which results in subterfuge for kM .

3.3 Formal Foundation for SSAL

In this section we present a logic for the SSAL language which provides

subterfuge-freedom in delegation of permissions in open environments. When

a set of statements and certificates is defined, and an authorization request is

formulated, the logic rules can be used to check whether the request is valid as

a consequence of the existing SSAL statements. The SSAL logic uses the follow-

ing notations and formulae where P, Q, R represent principals; X, Y, Z represent

localPermissions; N is an arbitrary chosen name for a principal; P erm is an

arbitrary chosen specification of a permission, and A, B are formulae:

• P ∋ X: principal P holds permission X.

• P −→ Q: principal Q speaks for principal P .

• P
X

=⇒ Q: principal P delegates permission X to principal Q.

• P ⊲X: principal P is accountable for permission X in the delegation chain.

• X Y : localPermission Y is no less authoritative than localPermission X.

• (P N): local name N in the name space of principal P .

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

46 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.3 Formal Foundation for SSAL

• 〈P P erm〉: locally defined permission P erm in the name space of principal

P .

• A⇒ B: the statement A implies statement B.

Note that, by mentioning principal kA we mean that there is a principal A that

is the owner of public key kA. The main focus of the SSAL logic is a set of new

axioms, expressed as rewrite/inference rules that extends the SPKI/SDSI logic by

incorporating localPermissions and demonstration of how localPermission names

can avoid subterfuge in delegation of permissions. The idea behind the logic is to

allow a principal to make a subterfuge-safe decision, whether it is safe to delegate

a permission based on a collection of statements, and also whether there is any

principal accountable for the action performed based on that permission. The

SSAL logic is comprised of 21 axioms including 6 axioms (N1, N2, N3, D1, D2,

and D4) that come directly from SPKI/SDSI.

3.3.1 Principal Names Relation

Each name certificate denotes a speaks for relation between the subject of a

certificate and the arbitrary chosen name in the certificate issuer’s name space.

N1

Given principal (local name or public key) P , name N , and public key K, the

following rule will be interpreted as speaks for relation, that P speaks for (K N):

{|N, P |}sK

(K N) −→ P

N2

This reduction combines two linked speaks for statements. Given local names (or

public keys) P, Q, R and an arbitrary chosen name N then:

(Q N) −→ P ; R −→ Q

(R N) −→ P

This rule indicates that principal Q may define an arbitrary name N for principal

P in its (Q’s) name space; if principal Q speaks for principal R, then R also refers

to principal P in its (R’s) name space with the same name identifier N .

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

47 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.3 Formal Foundation for SSAL

N3

Given principals P, Q and R the speaks for relation is transitive, that is:

P −→ Q; Q −→ R

P −→ R

3.3.2 Permission Delegation

D1

The following rule provides an interpretation for delegation.

{|P, X, D, V |}sK

K
X

=⇒ P

D2

Given principals P, Q, R, S and permission X then the direct delegation reduction

rule is:

P
X

=⇒ Q; Q −→ R

P
X

=⇒ R

This rule indicates that the permission X which is delegated to principal Q is

also delegated to any principal (R) that speaks for the delegatee.

D3

In direct delegation of permissions, if principal P delegates a permission Y to

principal Q, principal P implicitly delegates any permission X dominated by Y .

P
Y

=⇒ Q; X Y

P
X

=⇒ Q

D4

The permission that a principal is delegated via indirect delegation is the inter-

section of all permissions delegated in the chain.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

48 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.3 Formal Foundation for SSAL

P
X

=⇒ Q; Q
Y

=⇒ R;

P
X⊓Y
=⇒ R

3.3.3 Permission Holding

H1

Given a public key K and arbitrary chosen specification N for permission, we

define the following Holding rule, that the owner of public key K holds localPer-

mission 〈K N〉:

{|N, {|N |}sK |}sK

K ∋ 〈K N〉

H2

Q is authorized for X, if P holds X in the first place and delegates it to Q:

P ∋ X, P
X

=⇒ Q

Q ∋ X

H3

A member of a group holds any permission that is held by the whole group:

P ∋ X, P −→ Q

Q ∋ X

Note that the group of principals does not hold the permissions that each of its

members holds in their own name spaces.

H4

A principal holding permission Y , holds all permissions, X, dominated by Y :

P ∋ Y ; X Y

P ∋ X

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

49 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.3 Formal Foundation for SSAL

3.3.4 Permission Ordering

P1

The following inference rule is the ordering interpretation for permission certifi-

cates. Given public key K, permission X and permission specification P erm then

〈K P erm〉 is no less authoritative than X:

{|P erm, X|}sK
, K ∋ X

X 〈K P erm〉

P2

The ordering relationship between permissions is, by definition, reflexive:

P ∋ X

X X

P3

If a localPermission X dominates locally defined permission P erm in the name

space of principal P , it implicitly dominates the similar permission specification

P erm in the name space of all principals that have speak for relation with P :

〈P P erm〉 X; P −→ Q

〈Q P erm〉 X

P4

localPermission reduction is defined by the following rule, whereby, given prin-

cipals P and Q, localPermissions X and Y , and an arbitrary chosen permission

specification P erm, then:

X 〈P P erm〉; P −→ Q; 〈Q P erm〉 Y ; Q⊲ 〈P P erm〉

X Y

This rule indicates that if a permission P erm originated in the name space of

principal P , and dominates permission X, and there exists the same permis-

sion specification P erm in the name space of Q; where Q speaks for P , then Q

must explicitly provide an accountability for permission 〈P P erm〉 so that any

permission Y that dominates 〈Q P erm〉 also dominates X.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

50 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.3 Formal Foundation for SSAL

P5

A permission that is a lower bound of permission X and Y is dominated by the

greatest lower bound of X and Y :

Z X; Z Y

Z (X ⊓ Y)

3.3.5 Accountability for Permissions

A1

The owner of public key K that originates the permission 〈K P erm〉 is considered

to be accountable for any actions permitted by that permission. We have:

K ∋ 〈K P erm〉

K ⊲ 〈K P erm〉

A2

A principal K that holds a permission may accept accountability for a valid

permission X by signing a statement indicating acceptance of accountability.

The following rule denotes this:

{|accept_accountability(X)|}sK
; K ∋ X

K ⊲X

A3

A principal P is considered to be accountable for a permission X if a principal

Q that is accountable for that permission X speaks for P :

Q⊲X; P −→ Q

P ⊲X

A4

For a principal referenced within a localPermission, the following accountability

may be deduced, that is:

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

51 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.3 Formal Foundation for SSAL

R ⊲ 〈P P erm〉; P −→ Q

R ⊲ 〈Q P erm〉

A5

A principal that is accountable for a permission is considered to hold the permis-

sion, that is:

R⊲X

R ∋ X

3.3.6 Logical Properties

The following properties are derived from the previous axioms. Their reason-

ableness provides confidence in the correctness of the SSAL logic. The formulae

A⇒ B indicates that the statement A implies statement B.

Property 1

The following property can be inferred from combining rule P5, D3, and the SPKI-

delegation rule D4 in section 3.3.2. This allows a principal to reason about indirect

delegation based on a collection of delegation statements and localPermission

relations. Given principals P, Q, R and permissions X, Y, Z then we infer:

((P
X

=⇒ Q) ∧ (Q
Y

=⇒ R) ∧ (Z X) ∧ (Z Y)) ⇒ (P
Z

=⇒ R) (3.1)

Property 2

This follows from Holding rule H2 and Permission Ordering rule P3 that, in

delegation of a localPermission Y by a principal that holds it, the recipient also

holds any localPermissions dominated by Y :

((P ∋ X) ∧ (P
Y

=⇒ Q) ∧ (X Y))⇒ (Q ∋ X) (3.2)

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

52 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.3 Formal Foundation for SSAL

Property 3

Any principal that speaks for the recipient of a localPermission also holds all

dominated localPermissions. It follows from combining Permission Delegation

rule P4, and Holding Permission rule H3:

((P ∋ X) ∧ (P
Y

=⇒ Q) ∧ (X Y) ∧ (Q −→ R))⇒ (R ∋ X) (3.3)

Property 4

If a principal is delegated some permissions and the delegator holds any domi-

nated permissions, that delegatee also holds the dominated permissions.

((P ∋ X) ∧ (P
Y

=⇒ Q) ∧ (X Y))⇒ (Q ∋ X)

Property 5

If a principal P originates a permission P erm in its name space, then it dominates

the same permission name P erm in the name space of all principals that have

speaks for relation with P .

((P ∋ 〈P P erm〉) ∧ (P −→ Q))⇒ (〈Q P erm〉 〈P P erm〉) (3.4)

Property 6

If we consider well-defined (held by principals) localPermissions X, Y and Z then

by reflexivity of speaks for and no less authoritative than, it follows that permis-

sion ordering is transitive in the sense that:

((X Y) ∧ (Y Z))⇒ (X Z) (3.5)

Proposition (3.5) can be considered in the context of a conventional trust manage-

ment system whereby some "super security authority" effectively asserts a global

pre-order over permissions (P ERM,⊑) and thus the set (P ERM,) forms a

pre-order.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

53 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.3 Formal Foundation for SSAL

Property 7

If a principal Q accepts accountability for permission P erm in the name space of a

principal P and principal Q also speaks for P , any permission, X, that dominates

permission P erm referring to its name space, also dominates the permission P erm

referred to by principal P that is:

((〈Q P erm〉 X) ∧ (P −→ Q) ∧ (Q⊲ 〈P P erm〉))⇒ (〈P P erm〉 X) (3.6)

Property 8

If a principal Q accepts accountability for the permission P erm in the name

space of principal P , and Q speaks for P , any permission that is dominated by

permission P erm in P ’s name space, is also dominated by the same permission

P erm in the name space of Q.

((X 〈P P erm〉) ∧ (P −→ Q) ∧ (Q⊲ 〈Q P erm〉))⇒ (X 〈Q P erm〉) (3.7)

Property 9

By reflexivity 〈P P erm〉 〈P P erm〉 on well-defined localPermissions, it follows

from proposition (3.6) that if a principal Q speaks for P and is accountable for

permission P erm referred to within principal P ’s name space, then the permission

P erm referred to by principal Q dominates permission P erm originated by P :

((P −→ Q) ∧ (Q⊲ 〈P P erm〉))⇒ (〈P P erm〉 〈Q P erm〉) (3.8)

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

54 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.4 Threats and Mitigation

3.4 Threats and Mitigation

Here, we describe the threats that can affect the global unique interpretation

of a localPermission. A localPermission is an interpretation of a permission in

a specific principal’s name space. A name space is identified by a principal’s

public key; therefore, any threat on that principal’s public key may affect the

localPermission’s global unique interpretation. A principal’s public key may be-

come compromised, changed, or expired and the localPermission interpretation

for that public key may no longer be valid. In this section, we review these threats

and propose a solution to mitigate the threats.

3.4.1 Key Expiration Threat

Each public key has an expiration date indicating the public key is invalid and

should not be trusted after the expiration date. When a principal’s public key has

expired, any localPermission interpretation that refers to that key will no longer

be valid. Assuming airline A’s public key is kA, after originating localPermission

〈kA sell〉 and delegating to Bob expires, then, when kA expires, the global unique

interpretation for 〈kA sell〉 is invalid.

3.4.2 Key Refreshing Threat

A public key’s expiration date can be extended. When a key holder finds out that

its public key (consequently private key) is expiring, they request the key provider

to extend the expiration date and retrieve the updated public key (actually key

pair). Thus, the localPermission interpretation that refers to that key would not

be changed. However, the originator of a permission needs to issue the permission

certificate with the public key that has a new expiration date.

3.4.3 Key Change Threat

A principal may change its public key (key pair); therefore, the localPermission

and its interpretation that is bound to that key would be affected. The localPer-

mission of the form 〈K P erm〉 emphasizes that permission P erm originates from

a principal with public key K and belongs locally to the name space of holder of

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

55 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.4 Threats and Mitigation

key K. If any change is applied to the originator’s public key, then, the localPer-

mission interpretation needs to be redefined with the new public key. Consider

the scenario that airline A changes its public key from kA to kA
′ . Assuming that

it already has originated permission sell in its name space as 〈kA sell〉, after

changing its public key, it has to sign all the existing permission certificates with

its new private key that corresponds to the new public key.

3.4.4 Key Compromised Threat

The use of a private key (corresponding to a public key) that an attacker has stolen

to sign the permission on behalf of the resource owner leads to referring to that key

pair as compromised [78]. Although obtaining a private key is a difficult process

for an attacker, it is possible. After an attacker obtains a private key, that key

pair is compromised. An attacker can use the stolen key to originate or modify

permissions and pretend that the permissions are from the legitimate resource

owner without the knowledge of the resource owner. Based on our assumptions,

permissions in our model are globally unique and long-lived data; therefore, they

do not have a validity period or at least are considered to have a long term

validity period. Thus, a malicious principal such as Eve with the public key kE

has enough time to obtain the compromised key and originate a new permission,

say 〈kA all〉 by using the compromised key kA and pretending that this permission

is from airline A.

3.4.5 Threat Mitigation Techniques

In this section, we discuss the solutions for threat mitigation and finally introduce

a reliable scheme for preventing the existing threats on localPermissions.

Setting Expiration Date for Permissions

Despite the characteristics in the definition of localPermission, we assume a va-

lidity period for a localPermission when a principal signs a permission certificate.

This validity period is independent of the validity period of the public key of the

originator of the permission, and also independent of the validity period of the

delegation certificate. The permission certificate with validity period is repre-

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

56 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.4 Threats and Mitigation

sented as:

{|P erm, {|P erm|}sK
, V |}sK

where P erm is a permission specification, V is a validity period of the localPer-

mission that references the permission value {|P erm|}sK
, and K is a public key

of the principal who originates the permission. In this scheme, when the va-

lidity period ends, the localPermission interpretation is not valid any more. In

addition, a principal can issue a permission certificate, within the validity period

V1, that dominates the other localPermission within the validity period V2, if V2

contains V1. For example, kA may issue a localPermission 〈kA sell〉 within valid-

ity period V1 = (02/06/2014, 04/06/2014), and define its global ordering relation

to permission sell in kB’s name space, 〈kB sell〉, within the validity period of

V2 = (01/06/2014, 05/06/2014), as 〈kB sell〉 〈kA sell〉). Validity period V2

contains the validity period V1 and indicates a principal must issue a permission

ordering certificate to any other permissions in the interval of validity period of

the dominated permission. Note that, if V2 ≤ V1, the permission ordering cannot

be effective after the time that the dominated permission expires. Moreover, a

delegation certificate that contains a localPermission is not effective outside of

the interval that the localPermission is valid. In the delegation of a permission

there is the complication of dealing with two levels of intervals, the interval at

which a delegation certificate is valid, and the interval at which a permission

is alive. A principal can issue a delegation certificate with validity period not

greater than the permission certificate validity period. For example, if we have

V1 validity period for the delegation certificate, and validity period V2 for the

permission certificate, the effective interval that the delegation certificate is valid

is V1 ⊓ V2. The above shows how validity periods for permission certificates can

be incorporated to the model. However, later discussions show the use of an

ephemeral key and a separated key for signing permission certificates makes it

non essential to use a validity period for permission certificates. Therefore, we

assume localPermissions to be long lived data without validity period.

Using an Ephemeral Key for Signing Permission Certificates

The signed permission as a global reference for a localPermission can be decrypted

by the holder of a public key to verify that the permission is originated by the

owner of the private key. Using a different key pair for signing permissions (called

permission key), rather than the permission originator’s identity public/private

key, will prevent the threats of expiration, refreshing, or changing the identity

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

57 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.4 Threats and Mitigation

key. However, even by using a different key for signing the permissions rather

than the permission originator’s identity key, there might exist enough time for

a malicious principal to run a compromised key attack for a permission key. To

prevent a compromised key attack, we propose using ephemeral keys [79–81] to

handle the security of localPermissions over a long period of time. An ephemeral

key is a private or public key that is unique for each signing scheme. An ephemeral

private key is to be destroyed as soon as computational need for it is completed.

It enables a principal to sign a permission in a way that ensures the private

key cannot be re-used after a finite period of time, and eventually prevents the

compromised key attack. Before the expiration time, the principal that aims to

encrypt the permission specification uses the ephemeral private key for signing

the permission and binds the permission global unique context to the locally

defined permission. The provider of an ephemeral key destroys the ephemeral

private key to prevent key recovery after a short time. In this way, an attacker

cannot obtain the principal’s ephemeral private key, since that is valid only for

a short period of time. A principal that originates the localPermission references

its permission key to its identity key by issuing a speaks for relation between the

permission key and identity key. Consider ke as permission key of the principal

that is the owner of the public key k, we have the following inference by rule N1

in SSAL (Note that in the name certificate the name can be null):

({|null, k|}ske
)⇒ (ke −→ k) (1)

A principal with public key k, originates permission P erm in its name space and

issues the permission certificate with the permission key ke, that is:

({|P erm, {|P erm|}ske
|}ske

)⇒ (ke ∋ 〈ke P erm〉) (2)

consequently by rule H3, statements (1), and (2) we deduce that k ∋ 〈ke P erm〉,

that is:

((ke ∋ 〈ke P erm〉) ∧ (ke −→ k))⇒ (k ∋ 〈ke P erm〉)

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

58 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.5 Certificate Chain Discovery

3.5 Certificate Chain Discovery

In distributed and open environments when a principal requests access to a re-

source, in order to prove to the resource owner that the requester is authorized,

the requester must present to the resource owner a set of certificates relevant to

its request. The requester may not know what set of certificates it should present

to the resource owner to be granted access to that resource, or even may not

know about the existence of such a set of certificates. It is assumed all relevant

certificates to a request are stored with the requester. If the requester main-

tains a database of a small number of certificates, it would be straightforward

to extract the certificates related to the request and send them to the resource

owner. However, if stored by distributed principals and each principal maintains

a large number of certificates, it is not obvious which set of certificates the re-

quester must present to the resource owner to prove authorization for accessing a

particular resource. Therefore, an automated process is required for discovering

and generating the sequences, if a valid chain of certificates exists. The pro-

cess of discovering the set of certificates that proves authorization for a resource

is called certificate chain discovery. In a centralized environment, a certificate

chain discovery algorithm addresses how to discover a set of certificates relevant

to a request from a large number of certificates that are stored in a centralized

manner. However, in decentralized environments certificates are issued by dis-

tributed principals. In order to discover a set of certificates related to a request,

a requester or even a resource owner does not have all certificates in one loca-

tion. In this section, we present a certificate chain discovery algorithm for SSAL

that discovers the full set of certificates related to a request when certificates are

stored with distributed principals.

3.5.1 Related Work

Certificate Chain Discovery in SPKI/SDSI

SSAL builds on some of the features of SPKI/SDSI. However, SPKI/SDSI does

not contain the notion of "localPermission" and specifies permissions in tags (s-

expressions). Several certificate chain discovery algorithms have been proposed

for SPKI/SDSI. Most of these [59,82] assume that all of the potential certificates

related to a request are centralized in one place, and they do not address how

these certificates are gathered. This assumption is unusual for trust management

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

59 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.5 Certificate Chain Discovery

systems, since they establish and manage trust and authorization relationships

between decentralized principals. Moreover, SPKI/SDSI uses an ACL (Access

Control List) that controls access to the resource belonging to the principal which

holds the ACL. A certificate chain discovery algorithm for SPKI/SDSI was pro-

posed in [59, 83]. In this approach the set of certificates are stored centrally, so

the proof of authorization is constructed in a centralized manner. Another certifi-

cate chain discovery algorithm based on the theory of push-down automata was

proposed in [82] for SPKI/SDSI. However this algorithm also assumes that certifi-

cates are stored centrally and proof of authorization requires finding a certificate

chain among a set of certificates that are stored centrally.

Certificate Chain Discovery in PolicyMaker and Keynote

While PolicyMaker and Keynote [14,47] support trust relationships in distributed

environments, they do not address mechanisms for certificate chain discovery.

They include a mechanism for checking the existence of a particular trust rela-

tionship called a compliance checker. The compliance checker service determines

how an operation requested by a principal should be handled, given a policy and

a set of certificates.

Certificate Chain Discovery in RT

Li et al. [84] proposed a certificate chain discovery algorithm for Role-based Trust

management (RT) that discovers the certificate chain when the storage of cer-

tificates is either centralized or decentralized. The scheme uses three algorithms:

forward search algorithm, backward search algorithm, and bidirectional search

algorithm. The bidirectional search algorithm is an alternative for both forward

and backward search algorithms when some chains cannot be found by neither

forward nor backward search algorithms individually. Although the certificate

chain discovery algorithm for RT addresses certificate discovery from distributed

principals, the proof of authorization is constructed in a centralized manner [84].

In our approach, certificate storage is distributed and various principals summa-

rize their part of the proof of authorization before sending it to other principals.

In addition, our approach uses a simple and effective algorithm to discover certifi-

cates without requiring centralized data storage such as the ACL in SPKI/SDSI.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

60 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.5 Certificate Chain Discovery

3.5.2 Certificate Chain Discovery for SSTM

Certificate Storage Strategy

In our model, distributed storage is provided by the repositories that are running

on different principals’ servers. When a principal issues a certificate, it stores

that certificate in its own repository called a "local cert". The issuer publishes its

certificate in another principal’s repository, a so called "copy cert". The purpose

of publishing the certificates to another principal’s repository is that those certifi-

cates can be distributively located and used by other principals. Each repository

supports insertion and storage of name, permission, and delegation certificates

to perform authorization queries and discovery of proof of authorization. Certifi-

cates, after being issued, are inserted in the issuer’s local repository. Copies of

these certificates are published to the repository of the subject of the certificates.

Consider airline A is a resource owner and delegates the permission 〈kA sell〉 to

a group of its brokers denoted as (kA Brokers). Bob is a member of this group.

The airline A issues the following delegation, name, and permission certificates:

C1 : kA
〈kA all〉
=⇒ (kA Brokers)

C2 : (kA Brokers) −→ kB

C3 : 〈kA sell〉 〈kA all〉

Airline A stores these certificates in its local repository. Copies of these certificates

are also stored with Bob, the owner of public key kB. Bob originates a new

permission in his name space as 〈kB all〉 and states that this permission dominates

the permission that he received from airline A. He then delegates the permission

〈kB all〉 to Dave. These assertions are defined by issuing the following certificates:

C4 : 〈kA all〉 〈kB all〉

C5 : kB
〈kB all〉
=⇒ kD

When Dave requests authorization for sell at airline A, he has a copy of certifi-

cates C4 and C5 (obtained from Bob and denoted as C4
′

and C5
′

) in his local

repository. Dave contacts Bob’s repository to collect all the certificates related

to permission 〈kA sell〉, where Bob is the subject of those certificates. Therefore,

C1
′

, C2
′

, and C3
′

will be found. Dave presents all those certificates to Airline A.

Hence, the set of certificates from different locations are successively discovered.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

61 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.5 Certificate Chain Discovery

Figure 3.5: "local cert" and "copy cert" in local repositories.

The requester collects all related certificates from different locations to discover

a delegation chain from the resource owner (airline A) to the requester (Dave) if

one exists. Figure 3.5 depicts the local repositories that contain the certificates

which support the trust relationship between airline A, Bob, and Dave.

Algorithm

The certificate chain discovery algorithm is used by the requester to discover

a set of certificates that provide a proof of the requester’s authorization. The

following protocol demonstrates the requesting process by requester A for an

action a on a resource r where principal B is the owner of resource r. The

notation A ։ B : {a, b, c, ...}sA
indicates that the entity A sends a message to

entity B. The message {a, b, c, ...} is signed by the sender (sA).

Msg1 : A։ B : {(a, r)}skA

Msg2 : A։ B : {S}skA

Msg3 : B ։ A : Authorization Decision

1. The requester sends a request to the resource owner to access resource r for

action a.

2. The requester sends a set of certificates S related to the permission

〈kB (a, r)〉.

3. If the resource owner verifies the proof of authorization, it grants the re-

quester access to the requested resources.

The certificate chain discovery algorithm is used for step 2. The algorithm takes

the requester’s public key kA, permission related to the requested action and

resource 〈kB (a, r)〉, a set of certificates, and current time as input, and returns

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

62 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.5 Certificate Chain Discovery

a certificate chain if one exists. The certificate chain provides proof that the

requester (public key kA) is authorized to perform the action a on resource r

at the time specified in the time interval I. If the time I is not specified in a

certificate it is assumed to be valid forever (−∞ to +∞). The set of certificates

in S includes all type of SSAL certificates, i.e. name certificates, permission

certificates, and delegation certificates.

The algorithm first excludes irrelevant certificates. Irrelevant certificates are cer-

tificates that are useless in deriving the proof of authorization. The following are

the certificates that need to be removed before the discovery process:

1. The certificates that either their signatures cannot be verified or are outside

of the valid time period.

2. Delegation certificates that do not include the permission that was requested

in the request.

3. Permission certificates which are not a superset of the requested permission.

Before the certificate chain discovery process, the permissions that are not a

superset of the requested permission are removed. For example, in the case that

there is the following permission ordering:

〈kA read〉 〈kA write〉 〈kA all〉

when a principal requests write on kA’s resources, the permission certificate for

〈kA read〉 will be removed before the certificate chain discovery process starts.

This is because the algorithm first checks that the requested permission is a subset

of the permissions in each of the delegation certificates. If there is a delegation

certificate whose permission is not a superset of the requested permission, the

certificate sequence is invalid, and is useless in providing a proof of authorization.

These certificates are useless in trying to derive the desired set of certificates.

The certificate chain discovery algorithm checks if there is a chain of delegation

certificates from resource owner to the requester. The complexity of discovering a

chain of delegation certificates depends on the subject of the delegation certificate.

We explain the discovery process based on the subject of delegation certificates:

public keys, local names, and extended local names.

Subjects as Public Keys The subject of a delegation certificate can be spec-

ified by its public key. The issuer of the delegation certificate is the resource

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

63 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.5 Certificate Chain Discovery

owner who originates the permission for access to its resources. The delegation

certificate grants the permission to the subject for the resources in the name space

of the issuer of the certificate. Considering P and Q as public keys, 〈P P erm〉

denotes the permission specified as P erm in the name space of P . The follow-

ing denotes a delegation certificate where P grants permission P erm in its name

space to Q

P
〈P P erm〉

=⇒ Q

Assuming all the delegation certificates are as above and all the useless certificates

are removed before the process, the algorithm proceeds for the scenario with

principals as public keys as follows:

1. A directed graph is set up where each public key is represented by a vertex

and the delegation relation between public keys is represented by an edge

between the associated vertices. The following is a directed graph with two

vertices and one edge representing the delegation certificate:

2. A Depth-First Search (DFS) algorithm [85] is used to determine if a path

exists from vertex kO (the public key of the resource owner) to vertex kR

(public key of the requester).

3. If the path exists the path is returned, and if there is not a path, it termi-

nates with failure.

Subjects as Local Names In this scenario, we assume that the subjects of the

delegation certificates are local names. To proceed with certificate chain discovery

the local names must be reduced to their public key values. Given public keys P

and R, local name Q, and permission 〈P P erm〉, the following rule (1) reduces

local names to their public key values:

P
〈P P erm〉

=⇒ Q; Q −→ R

P
〈P P erm〉

=⇒ R

The permission P erm originating in the name space of the issuer of the delegation

certificate P is delegated to a principal identified by its local name Q. The result

of this computation is a set of delegation certificates with the subjects as public

keys only. Recalling the scenario with only public keys, we can now run the

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

64 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.5 Certificate Chain Discovery

algorithm described for that scenario over the remaining delegation statements.

Subject as Extended Name The subject of a delegation certificate can be an

extended name. In most applications the use of extended names is not needed.

However, for those applications that need extra expressiveness for naming the

principals, extended local names can be used. For instance, Insight is a research

centre in University College Cork (UCC), and UCC is a member of the National

University of Ireland (NUI), then (kNUI UCC Insight) is an extended name

that identifies the unique name Insight in the name space of the principal that

is identified by its local name (kNUI UCC). Extended names can be reduced

to local names and further reduced to public keys using the following reduction

rule. The following rule (2) states that an extended local name ((Q N) M) can

be reduced to the local name (R M). Given local names (or public keys) Q, R,

and public key P and arbitrary chosen names N and M then:

((Q N) M) −→ P ; R −→ (Q N)

(R M) −→ P

Principal (Q N) may define an arbitrary name M for principal P in its name

space; if principal (Q N) speaks for principal R, then (R M) has the same public

key value. For example, the delegation certificate denoted k1
X

=⇒ (k2 N1 N2),

and the name certificates denoted as: (k2 N1) −→ k3 and (k3 N2) −→ k4 can be

reduced to the delegation statement k1
X

=⇒ k4. The result of this computation

is a set of delegation certificates with the public key as subject. Recalling the

scenario with only public keys, the algorithm described for that scenario can now

be run over the remaining delegation statements.

Distributed Chain Discovery

In this section, we demonstrate the certificate chain discovery through an exam-

ple. Recall that the issuer of each certificate stores the original certificate in its

local repository and sends a copy of that certificate to the repository of the subject

of the certificate. The distributed certificate chain discovery process starts from

the requester. The requester may hold a copy of the delegation certificate that is

related to the permission that it (the requester) needs for its request. Therefore,

the chain discovery algorithm looks up the local repository of the issuer of the

certificate to check if the requester holds a copy of that certificate. In the follow-

ing, we explain the procedure that will be applied to the local repository of the

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

65 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.5 Certificate Chain Discovery

principals:

1. Remove useless delegation certificates.

2. Convert the remaining name, permission, and delegation certificates to

name, permission, and delegation statements, respectively.

3. Compute the reduction rules (1) and (2) on these statements. This compu-

tation results in the subjects of all delegation statements being converted

to their public key values.

4. Extract all statements of the form ki
T =⇒ kj .

5. Form a directed graph, where the vertices are ki
T and kj, and the edges are

the delegation relations between ki and kj (ki and kj are public keys).

6. Use a DFS to determine if there is a path from resource owner ko to the

requester kr.

7. Output the desired set of certificates if there is a path, otherwise terminate

with failure.

This procedure is explained in detail in the following example. Suppose

that company A, identified by public key kA, sets up a group of brokers,

(kA flightBrokers), to sell flights on its behalf, by issuing the name certificate

c1, and sets up a group (kA hotelBrokers), to book its hotel rooms, by issuing

the name certificate c2. A allows its brokers to delegate further their permission

for selling flights and booking hotels. The other principals in this scenario are

kB, kC , kD, kF , kS, kT and (kT employees). Note that kS is not only a hotel

broker for A, but also is an employee of another company which is identified by

public key kT . A also issues the following delegation certificates c3, c4, and c5.

Certificates c6, c7, and c8 are further delegations of the permissions that are orig-

inated by kA. Certificate c9 defines kS is a member of the group of principals,

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

66 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.5 Certificate Chain Discovery

Figure 3.6: Initialization of certificates in distributed repositories

(kT employees).

c1 : (kA flightBrokers) −→ kC

c2 : (kA hotelBrokers) −→ kD

c3 : kA
T 〈kA sell〉

=⇒ (kA flightBrokers)T

c4 : kA
T 〈kA book〉

=⇒ (kA hotelBrokers)T

c5 : kA
T 〈kA sell〉

=⇒ kB
T

c6 : kD
T 〈kA book〉

=⇒ kS
F

c7 : kC
T 〈kA sell〉

=⇒ kF
T

c8 : kF
T 〈kA sell〉

=⇒ kS
F

c9 : (kT employee) −→ kS

Figure 3.6 depicts the initialization of each certificate in each local repository.

Assume that all certificates are valid for the period (15/04/2014, 17/04/2014).

For simplicity we omitted the validity period in defining the certificates. However,

the validity period can be added simply to the above delegation certificates. At

time (16/04/2014), kS (a hotel broker) requests kA for permission to book kA’s

hotel rooms and runs the certificate chain discovery algorithm for permission

〈kA book〉.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

67 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.5 Certificate Chain Discovery

The process is as follows:

In local repository of principal S

Step 1S. Remove the useless certificates: certificates c8
′

and c9
′

grant permission

〈kA sell〉, therefore are useless in discovering the certificate chain for per-

mission 〈kA book〉. The set of certificates that remains as a result of this

step is:

c
′

6 : kD
T 〈kA book〉

=⇒ kS
F

Step 2S. Compute the reduction rules over the set of certificates in step 1S which

results in the following delegation statement:

kD
〈kA book〉

=⇒ kS

Step 3S. Collect the original version of certificate c6. The result of this step is the

following certificate if found and stored in the local repository of S:

kD
T 〈kA book〉

=⇒ kS
F

In local repository of principal D:

Step 1D. Remove the useless certificates: all of the certificates in repository D are

related to granting permission 〈kA book〉. The set of certificates from this

step is:

c
′

2 : (kA hotel brokers) −→ kD

c
′

4 : kA
T 〈kA book〉

=⇒ (kA hotel brokers)T

c6 : kD
T 〈kA book〉

=⇒ kS
F

Step 2D. Compute the reduction rules over the set of certificates in step 1D. Comput-

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

68 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.5 Certificate Chain Discovery

ing the reduction rule 1 over certificates c2 and c4 results in the delegation

statement:

kA
〈kA book〉

=⇒ kD

Step 3D. Collect the original delegation certificates c2 and c4 from their issuers (kA).

The original version of these certificates will be sent to the local repository

of S.

kA
T 〈kA book〉

=⇒ kD
T

In local repository of principal S

Step 4S. Set up a directed graph and do a Depth First Search to determine if there

is a path from kA to kS. The result of this step is as follows:

The DFS algorithm returns the path: kA, kD, kS. This shows that a cer-

tificate chain from kA to kS exists.

Step 5S. Produce the certificate chain: reconstruct and output the desired set of

certificates from the information computed in the previous steps, consisting

only of the input set of certificates. The resulting set of certificates to

present to the resource owner kA is as follows:

c2 : (kA hotel brokers) −→ kD

c4 : kA
T 〈kA book〉

=⇒ (kA hotel brokers)T

c6 : kD
〈kA book〉

=⇒ kS

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

69 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.6 Discussion

Therefore, the requester kS, signs an access request for 〈kA book〉, along with the

above set of certificates (result of step 5S) to the resource owner kA. In the next

chapter, we show how the policy engine determines that this set of certificates

complies with the security policy to grant a request.

3.6 Discussion

Signed permissions are an effective approach to avoiding ambiguity in permis-

sion names. We followed SDSI’s rationale for local names and introduced an

extension to SPKI/SDSI that uses localPermissions in order to provide support

signed permissions and thereby provide an authorization language that incorpo-

rates localPermission for subterfuge safe delegation. The logic supports truly

decentralized access control whereby a principal may define, without rely on any

central authority, its own permission locally and define a global orderings relative

to permissions in other name spaces. Typical trust management systems make the

implicit assumption that there exists a super security administrator that defines

the global unique permissions. Many existing trust management systems such

as PolicyMaker, KeyNote [46], SPKI/SDSI [43,60], RT [86], and secPAL [10] are

designed to specify arbitrary permissions. They assume unique and unambiguous

permission names are provided by using a global name provider’s services. For

example, X.509 [40] uses X.500 naming service, the KeyNote uses the Internet As-

signed Number Authority (IANA) [73]. In addition RT uses Application Domain

Specification Documents (ADSDs) [86] to ensure the globally unique naming.

Although, global name providers provide a unique interpretation for each name,

the administrators may still use arbitrary names to represent their own resources.

It depends on the expertise of the administrator who creates the permissions to

specify non ambiguous permissions. Moreover, we introduced a simple certificate

chain discovery algorithm that takes a set of certificates and returns a chain of

certificates if one exists.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

70 Seyedehsamane Abdigarmestani
(Samane Abdi)

3. Subterfuge Safe Trust

Management 3.7 Summary

3.7 Summary

In this chapter, we introduced and developed the concept of localPermission,

and introduced the SSTM framework to support subterfuge safe delegation of

permissions in open environments. SSTM follows SDSI’s rationale for choosing

arbitrary names for principals and proposes an extension to SPKI/SDSI in order

to provide support for signed permissions. An authorization language, SSAL, is

provided to support truly decentralized and subterfuge safe trust management. A

principal may define, without reference to any central authority, a permission in

its own name space and define the global ordering relation of its localPermission

with other permissions. Typical trust management systems make the implicit as-

sumption that there exists a super security authority that defines the permission

name space and ordering. In [87] a role-based distributed authorization language

is described that provides subterfuge-freedom by constraint delegation to per-

missions that have an associated "originating" public key. While effective, this

approach suffers the challenge of reliably referencing public keys and relies on a

globally-defined function to define permission relationships (corresponding to an

ordering). The FRM distributed policy management framework [88, 89] permits

principals to locally define their permissions and orderings, and while it does

permit a principal to define permission relationships with local policies of other

principals, it is limited to permission orderings that form tree hierarchies. FRM

also uses signed permissions to avoid subterfuge, but effectively relies on using

public key values/X.509 certificates as principal identifiers.

The proposed logic comprises 15 axioms in addition to the original six axioms

that describe SPKI/SDSI. 9 properties derived from these axioms provide some

degree of confidence in the logic. Finally, we introduced a simple certificate

chain discovery algorithm for SSTM. First, we addressed how to store certificates

in a distributed manner. Then, we used an efficient algorithm to discover the

certificate chain between a resource owner and the requester when certificates

are stored with distributed principals. It has been shown that a DFS algorithm

returns the chain if one exists.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

71 Seyedehsamane Abdigarmestani
(Samane Abdi)

Chapter 4

Ontology-Based Implementation

for SSTM

In this chapter, we demonstrate an ontology-based approach, SSALO, that was

introduced in [90]. SSALO represents the SSAL using a Description Logic (DL)

[91] subset of the Web Ontology Language [92] (OWL-DL), and Semantic Web

Rule Language (SWRL) [93]. SSALO is used as the SSTM policy engine where

an incoming authorization request is evaluated by using a DL reasoner. Thus,

the implementation provides a trust engine that enforces subterfuge-safe access

to the protected resources of distributed parties. SSALO also provides a common

domain model for integration of heterogeneous security policies. This approach

is useful for secure cooperation and interoperability among principals in open

environments, where each principal may have a different security policy with

different implementation. We discuss the characteristics of SSALO in capturing

SSAL and providing a framework for secure, automatic and dynamic integration

of heterogeneous security policies specified by distributed principals in different

domains. We employ various tools such as Protégé [94], Pellet [95], the Java

programming language [96], and Jena framework [97] to implement our model.

This chapter is organized as follows: first we give the preliminaries in section

4.1, then we demonstrate the ontology model, SSALO in section 4.2. We later

show how SSALO is used for integration of heterogeneous policies that may be

implemented in different languages with different techniques. An example of us-

ing SSALO as policy engine is given. The work is then discussed in terms of its

characteristics for automatic integration of locally defined policies to capture sub-

terfuge safe trust management for cooperation of principals in open environments.

72

4. Ontology-Based Implementation

for SSTM 4.1 Preliminaries

Finally, we summarize the chapter in section 4.3.

4.1 Preliminaries

4.1.1 Definition of Ontology

The term Ontology is borrowed from philosophy where ontology means a sys-

tematic account of existence [98]. An ontology deals with questions concerning

what entities exist or can be said to exist, and how such entities can be grouped,

related within a hierarchy, and subdivided according to similarities and differ-

ences. Ontology as "an explicit specification of a conceptualization" is its first

definition in the context of computer science and information systems, defined by

Gruber [99]. A more formal definition of ontology used by many researchers in

the field [100–103], is as follows:

"An ontology is a formal, explicit specification of a shared conceptualization" [99]

Sharing of knowledge is one of the more common goals in developing ontolo-

gies. This facilitates organizations, programs, and humans to share and reuse

knowledge. A conceptualization is an abstract model that consists of the relevant

concepts and relationships that one wishes to represent for some purpose [104].

There must be a general accepted conceptualization of the specifications to be able

to reuse the ontology by a community who have an interest in the corresponding

knowledge. The core of an ontology is conceptualization which consists of the con-

cepts, for example: General Practitioner, Patient, Disease; and the relationships

that are assumed to be relevant to the concepts, for example: "General Practi-

tioner visits Patients", "Patient has Disease". Without conceptualization words

have no precise semantics where the word "Patient" has two different meaning

as a noun or adjective. Ontologies can be used for a range of applications such as

information retrieval [105–107], and information integration [108–112]. In recent

years, the use of ontologies for computer security, especially in the area of informa-

tion security [113,114], access control [115–127], and trust management [128–133]

has increased significantly.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

73 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.1 Preliminaries

4.1.2 Ontology Languages and Reasoning Tools

We describe the ontology languages and reasoning tools that we used in modelling

SSALO. A sub-piece of the web ontology language that is based on description

logics is called OWL-DL and is used to model the knowledge base for SSALO.

SWRL is used for expressing a set of axioms introduced in SSAL. A DL reasoner

is used for classification, realization and consistency checking of the knowledge

base. The reasoning tool is also used to reason over the asserted knowledge and

for inferring new knowledge.

Web Ontology Language

An ontology language is a formal language used to construct semantics for terms

and syntax. OWL is a World Wide Web Consortium (W3C) recommendation to

express meanings and semantics of an existing entity. OWL includes the definition

of three variants with different levels of expressiveness as OWL-Lite, OWL-DL,

and OWL-Full. The OWL-DL language is most closely related to the SHOIN(D)

description logic [134]. In SHOIN(D), S stands for ALC (Attributive Concept

Language) [135] plus role transitivity, H stands for role hierarchy, O stands for

nominals, I stands for inverse role, N stands for cardinality restrictions, and D

stands for data types. In order to encode knowledge in OWL-DL, an understand-

ing of the constructors for SHOIN(D) is necessary. This is given in the following

sections.

Description Logic

The Description Logic (DL) [91] is a decidable fragment of First Order Logic

(FOL) [136] and constitutes the formal basis for OWL-DL, a very expressive and

yet decidable subspecies of OWL. Building an ontology requires the use of a logic

as a means of axiomatizing [137]. Description Logics (DLs) [91] are a family

of concept based knowledge representation formalisms. They are characterized

by the use of constructors to describe complex concepts and relations among

concept instances which form a decidable subset of First Order Logic (FOL)

[136]. This decidability is very convenient for reasoning about ontologies. FOL

is not decidable, which means that it is not possible to know in advance the

validity of a formula and the computation can run forever without giving an

answer [138]. However, although the DLs have some limitations in expressiveness

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

74 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.1 Preliminaries

such as the absence of variables, they ensure decidability. Knowledge in DLs is

represented in a hierarchical structure of concepts (or classes). These concepts

are defined in terms of some specified properties (or roles) that individuals must

satisfy in order to belong to those concepts. In other words, concepts represent

sets of instances, and properties represent binary relations between instances.

Making an individual, an instance of a concept, is called instantiation [139].

Concepts are either atomic (those identified by a name) or complex (those derived

from atomic concepts using a set of constructors). DL basics include Concepts

(unary predicates, corresponding to classes in OWL), Roles (binary predicates,

corresponding to properties in OWL), Individuals (constants, corresponding to

instances in OWL), and Operators (corresponding to constraints in OWL).

A DL-based ontology consists of a set of terminological axioms (called TBox) and

assertional axioms (called ABox). Concepts and properties are separated from

instances by partitioning the knowledge base into the TBox and the ABox. The

TBox is constructed through declarations that describe properties for concepts.

The ABox contains extensional knowledge that is specific to instances of concepts

of the domain of interest.

Constructors Description logic can be used to represent much more than just

concepts, properties and instances. A description logic also offers a formal syntax

which specifies how to construct well formed statements. It also provides formal

semantics for relating those statements to a model. Statements are formulas to

represent concepts, properties, and instances. Thus, the constructors are used to

derive well formed formulas. SHOIN(D) as a family of DLs uses several kinds of

constructors and axioms. These constructors and axioms allow building complex

concepts and property relationships from atomic concepts, and atomic properties.

Note that, atomic concepts correspond to the unary predicates in FOL, atomic

properties correspond to the binary predicates in FOL. An OWL-DL knowledge

model consists of the Tbox and the Abox; where Tbox contains axioms relating

to concepts and properties, while the ABox contains axioms relating to individ-

uals. Both ABox and TBox utilize a comprehensive set of constructors (such as

intersection, union, universal quantifier, or existential quantifier) to derive well

formed formulas. The following constructors are used in this thesis.

Intersection (⊓): It is interpreted as the intersection of sets of individuals.

For example, the intersection of concepts Patient and Doctors is expressed as the

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

75 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.1 Preliminaries

following:

P atient ⊓Doctors

This denotes those instances of concept Patient that are shared with concept

Doctors.

Union (⊔): It is interpreted as the union of sets of individuals:

P atient ⊔Doctors

This denotes those individuals that belongs to either concept Patient or Doctors.

Existential quantifier (∃): Constrains those individuals that have a relation-

ship to instances of some concept. The following expression:

∃visits.Doctors

is the set of individuals, each of which has the property relation visits to some

instances of concept Doctors.

Universal quantifier(∀): Constrains those individuals that have a relationship

to only instances of some concept. The following expression:

∀hasP atient.P atient

is the set of individuals that have the relationship via hasPatient property to

only instances of concept Patient. Note that, universal quantification does not

ensure that there will be a property that satisfies the condition, but it guarantees

that if there is such a property, its range has to be constrained to the given

concept or type. In the table 4.1, we list some of very common constructors in

SHOIN(D), their notations, and their semantics as they are used in the ontology.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

76 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.1 Preliminaries

Table 4.1: Concrete syntax of DL constructors

Constructor DL Syntax Example

Intersection C1 ⊓ ... ⊓ Cn Patient ⊓ Doctors

Union C1 ⊔ ... ⊔ Cn Patient ⊔ Doctors

Complement ¬C ¬ Patient

Universal quantifier ∀P.C ∀ hasPatient.Patient

Existential quantifier ∃P.C ∃ visits.Doctors

MaxCardinality ≤n P ≤1 hasPatient

MinCardinality ≥n P ≥1 hasDoctor

ExactCardinality =n P =1 patientRoom

Notation: C and D are concepts, P is property.

Table 4.2: A comparison of SHOIN(D) and OWL-DL constructors

Constructor SHOIN(D) OWL-DL

Intersection C1 ⊓ C2 intersectionOf(C1, C2)

Union C1 ⊔ C2 unionOf(C1, C2)

Complement ¬C complementOf(C)

Universal quantifier ∀P.C allValuesFrom(C) on Property(P)

Existential quantifier ∃P.C someValuesFrom(C) on Property(P)

MaxCardinality ≤n P maxCardinality(n) on Property(P)

MinCardinality ≥n P minCardinality(n) on Property(P)

ExactCardinality =n P exactCardinality(n) on Property(P)

In addition, the OWL-DL constructors along with the corresponding SHOIN(D)

constructors, are listed in the table 4.2.

Description Logic Axioms Axioms in an OWL- DL ontology can be classified

according to the knowledge they describe as TBox entities or ABox entities. A

description logic knowledge base KB may be defined as the tuple consisting of a

TBox T and an ABox A. KB = (T, A), where T is the union of the set of concepts

with the set of property relations in the domain, and A is the set of individuals

in the domain. Furthermore, the TBox also contains axioms relating to concepts

and properties, while the ABox contains axioms relating to individuals. Based

on this categorization various DL axioms will be explained in the following.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

77 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.1 Preliminaries

Terminological Axioms Terminological axioms are statements related to

TBox entities as concepts and properties, but not individuals. These axioms

can be classified as either inclusion or equality axioms.

Inclusion An inclusion (⊑) states a necessary but not sufficient condition for

being an instance of some concept. The first type of inclusion is simply a concept

inclusion. The inclusion statement C ⊑ D is interpreted that for a TBox entity

to be included in the concept C, it is necessary to have the condition D. However

this condition D alone is not sufficient to conclude that the individual (or any

object) is in the concept C. In other words, if a random TBox entity satisfies

condition D, it does not necessarily belong to the concept C. An example of this

kind of axiom is:

Surgeon ⊑ (Doctors ⊓ Consultant)

where an individual who is a doctor and a consultant, is not necessarily a surgeon.

The second type of inclusion axiom is the specialization, which has the abstract

form C ⊑ A. This is similar syntax to that of the inclusion axioms, but the

right hand side of a specialization must be atomic (hence A). It indicates that

having properties of concept C is necessary for an entity in order to be included

in concept A. An example of specialization is:

P atient ⊑ isRegisteredWith.GP

A specialization axiom is useful when some concepts cannot be defined com-

pletely. The third type of inclusion is taxonomy. Concepts can be organized as a

hierarchy which is also known as a taxonomy. A concept can have sub-concepts

that represent the concepts that are more specific than the super-concept. For

example, the concept Doctors has the sub-concepts GP and Surgeon.

GP ⊑ Doctors

Surgeon ⊑ Doctors

Being a member of concept GP or Surgeon implies membership of its super-

concept Doctors. In addition, either GP or Surgeon membership constraints will

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

78 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.1 Preliminaries

Figure 4.1: Concept hierarchy

be inherited from their super-concept Doctors. Concept inclusion axioms are very

important in the structure of the knowledge base as they are used to generate

a taxonomy from a set of assertions in a TBox. Figure 4.1 depicts the concept

hierarchy.

Equation A concept equation of the form (C ≡ D) states necessary and suf-

ficient conditions that a TBox entity must hold in order for it to be included in

some concept. By including sufficient conditions, then any random TBox entity

that satisfies conditions D must be included in concept C. An example of this

kind of axiom is:

Doctors ≡ hasP atient.P atient

This states that an individual is a member of concept Doctors if and only if it has

the property relation hasPatient to members of concept Patient. Furthermore,

this axiom is a concept definition. A special kind of equation is a concept definition

of the form A ≡ C where the left hand side is an atomic concept. A concept

definition states the necessary and sufficient conditions that must hold in order

for a TBox entity to be included in some other concept. Having property C is

necessary and sufficient for a TBox entity to be included in concept A. Another

form of concept equation is a covering axiom that will be discussed later.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

79 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.1 Preliminaries

Assertional Axiom Assertional axioms are statements related to ABox en-

tities. These axioms can be classified as either concept assertion or property

assertion axioms. A concept assertion is of the form C(i), where C is some con-

cept from the TBox and i is an individual, representing i as an instance of concept

C. An example is:

Doctors(DrAlice)

A property assertion is of the form P(i,j), where P is some property from the

TBox and i and j are individuals; where P(i,j) means that individual i has a

P relation to individual j. An example of a property assertion axiom is given in

the following:

hasP atient(DrAlice,Bob)

Modelling in OWL-DL

OWL-DL supports those users who want the maximum expressiveness while re-

taining computational completeness (all conclusions are guaranteed to be com-

putable) and decidability (all computations will be finished in finite time). OWL-

DL includes all OWL language constructs, but they can be used only under certain

restrictions of DLs. For instance, while a concept may be a sub-concept of many

concepts, a concept cannot be an instance of another concept.

Concept Concepts are sets of instances that are described using formal descrip-

tions. The formal description specifies the conditions and requirements that must

be satisfied by an individual to be a member of a concept. Being an instance of a

concept includes either explicitly asserting an individual as an instance of a con-

cept or implicitly inferring an instance as a result of reasoning over the asserted

knowledge (for example, subsumption constraints) [140]. There is a general built-

in concept named Thing which includes all individuals and is the super-concept

of all concepts. We may choose to make a new sub-concept of the concept Thing

named Doctors. We may also create a new concept named Surgeon that is a

sub-concept of Doctors. From this, a reasoner can deduce that any instance of

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

80 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.1 Preliminaries

Figure 4.2: Example of concept membership

the concept Surgeon is also an instance of the concept Doctors. Note that there

is no limitation on cycle creation in sub-concept hierarchies. For example, the

following is an instance assertion for concept Surgeon.

Surgeon(DrAlice)

Moreover, the following DL notation is the result of reasoning over the subsump-

tion constraint that infers DrAlice as the instance of concept Doctors.

Doctors(DrAlice)

Figure 4.2 is an example of concept membership.

Property Properties are binary relations that instances of concepts can have

between one another. For example, the property hasPatient might link the in-

stance DrAlice of concept Doctors to the instance Bob of concept Patient as:

hasP atient(DrAlice,Bob)

Each property can have an inverse which provides an inverse of a given relation.

For example, the property hasPatient relates the instances of concept Doctors

to the instances of concept Patient. The inverse of the hasPatient property can

be the hasDoctor property which relates the instances of concept Patient to the

instances of concept Doctors. This is shown in the following:

hasP atient ≡ hasDoctor−

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

81 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.1 Preliminaries

Figure 4.3: Set of individuals

Individual A concept can be instantiated by individuals. The instantiation of

concepts with individuals makes an individual be an instance of some concepts.

Properties may also be used to relate one individual to another. For example, an

individual named Bob may be described as an instance of the concept Patient and

the property hasDoctor may be used to relate the individual Bob to the individual

DrAlice. Figure 4.3 illustrates individuals.

In this thesis, concepts and properties are written in italic font; a Concept begins

with an Upper case letter and a property begins with a lower case letter. Note

that instances are written in a lower case typewriter font.

Domain and Range It is possible to add domain and range restrictions to

properties thereby restricting a given property to taking particular concepts as

its domain and particular concepts as its range. Therefore, by defining a domain

restriction for a property, the former individual specified with that property is

assumed to belong to the concept(s) specified in the property domain. Fur-

thermore, the latter individual specified with that property must belong to the

specified range concept. For example, the following DL fragment limits the do-

main and range of property hasPatient to only the instances of concept Doctors

(as domain) and Patient (as range).

Doctors ⊑ hasP atient.P atient

Open World Assumption Open World Assumption (OWA) is the opposite of

Closed World Assumption (CWA). The Closed World Assumption (CWA) is the

assumption that what is not known to be true must be false. On the other hand,

OWA is the assumption that what is not known to be true is simply unknown.

For example, consider the following statement: “Bob is a patient". Now, what

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

82 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.1 Preliminaries

if we were to ask “Is Bob a doctor?" Under a CWA, the answer is "no". Under

the OWA, the answer is "it is not known". The CWA applies when a system has

complete information. CWA is the logical basis for traditional database systems.

OWA applies when a system has incomplete information. This is the case when we

want to represent knowledge and discover new information. In the knowledge base

(ontology) absence of information means that the information has not been made

explicit and further knowledge may make it explicit. Hence, OWA is an essential

aspect of knowledge base systems. Some of the OWA closures in description logic

are: disjointness, unique name assumption, covering and closure axioms.

Disjointness In DLs, not asserting an individual as an instance of a certain

concept does not mean it is not an instance of that concept. It must be asserted

that two concepts do not share any instances. This relation between concepts is

called disjoint concepts. For example, consider the concept GP versus concept

Surgeon. These two concepts may never share individuals since a given general

practitioner (GP) can never be interpreted as a surgeon, i.e.

GP ⊓ Surgeon ≡ ⊥

where the bottom concept ⊥ is the special concept with no individuals as in-

stances. The above axiom thus says that the intersection of the two concepts GP

and Surgeon is empty.

Covering Axioms In addition to disjointness, it is important to consider

whether some set of sub-concepts fully covers the super-concepts. The Open

World Assumption makes it possible that being instances of a super-concept

without being also instances of its sub-concept. Figure 4.4 indicates that the

super-concept Doctors may have other instances that are not an instance of its

sub-concepts GP and Surgeon.

However, by defining covering axioms, it is necessary to explicitly state if an

individual is an instance of a super-concept, then it must be an instance of at

least one of its sub-concepts. Moreover, if the sub-concepts are defined as disjoint

concepts then an instance of the super-concept must be an instance of one of its

sub-concepts. Figure 4.5 illustrates the covering axiom for concept Doctors and

its sub-concepts GP and Surgeon that are disjoint with each other. The following

DL assertion defines a covering axiom for concept Doctors that guarantees it will

only have two sub-concepts.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

83 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.1 Preliminaries

Figure 4.4: OWA without covering axiom

Figure 4.5: OWA considering covering axiom

Doctors ≡ GP ⊔ Surgeon

Closure Axiom Remembering the Open World Assumption, we need to define

a closure axiom if we want to restrict the possibility of further additions for a

given property. For example, the following fragment of DL assertion represents

the closure axiom on the hasDoctor property for the concept Patient :

P atient ⊑ ∃=1hasDoctor.Doctors

where the existential quantifier (∃) acts on the property hasDoctor having the

concept Doctors as property range. This closure states that to be an instance of

concept Patient, an individual must have exactly one hasDoctor property relation

to the instances of concept Doctors.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

84 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.1 Preliminaries

Unique Name Assumption The Unique Name Assumption (UNA) refers

to a case where if two individuals have different names they are, by default,

different. DLs do not usually make the Unique Name Assumption, and indeed

our formal definition allows two individual names to be interpreted as the same

individual. Therefore, we have to make it explicit whether two names denote the

same or distinct individuals. For example, an instance of concept Patients, say

Bob may have only one relationship to exactly one instance of concept Doctors

with property hasDoctor. Assuming individuals DrAlice and DrClare are both

inferred as instances of concept Doctors, we can have the following individual

instantiation:

P atient (Bob)←−hasDoctor(Bob, DrAlice)⊓

hasDoctor(Bob, DrClare)

DrAlice and DrClare must be explicitly asserted as distinct individuals. Other-

wise, the cardinality restriction will consider the individuals DrAlice and DrClare

as the same individuals. Moreover, if the individuals DrAlice and DrClare have

been asserted as distinct individuals, the above instantiation would be inconsis-

tent, since Bob must have the hasDoctor relationship to exactly one instance of

concept Doctors.

Reasoning in Description Logic

The term reasoning refers to automatic inference of further implicit facts from

explicitly asserted statements within the ontology. An ontology contains knowl-

edge as structured data. The users of an ontology are typically interested in

obtaining information about relationships between concepts described in the on-

tology and querying about the knowledge existing in the ontology. Both tasks

require reasoning tools; tools that can derive new knowledge from the ontology’s

explicit knowledge. A DL reasoner provides a set of description logic inference ser-

vices such as Consistency checking, Classification and Concept satisfiability [95].

Consistency checking ensures that the ontology model does not contain any con-

tradictory facts. For example, given individual DrAlice is an instance of concept

Surgeon, it can be easily inferred that DrAlice is an instance of concept Doctors

if one can Figure out that the concept Doctors subsumes the concept Surgeon.

Classification refers to creating a concept hierarchy by computing the subsump-

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

85 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.1 Preliminaries

tion relations. By reasoning over an ontology a new concept or individual can be

assigned automatically to the correct taxonomy classification. Concept satisfia-

bility refers to the possibility for a concept to have some instances. If a concept

is un-satisfiable, then creating an instance of that concept causes the entire on-

tology to become inconsistent. A knowledge base modelled in OWL-DL can be

reasoned over by a DL reasoner such as Pellet [95].

Semantic Web Rule Language

The Semantic Web Rule Language (SWRL) [93, 141] is a rule language that ex-

tends the semantic information described in an OWL (consequently in an OWL-

DL) ontology. Since some policy rules may not be expressed in OWL-DL, there-

fore, we use SWRL. SWRL is based on a combination of the OWL-DL sub-

language of the Web Ontology Language and the Unary/Binary Datalog RuleML

sub-language of the Rule Mark up Language [142]. It includes a high-level ab-

stract syntax for Horn-like rules in OWL, that enables extra knowledge express-

ibility and the use of decidability tools (www.w3c.org). SWRL is based on OWL

and all rules are expressed in terms of OWL entities as concepts, properties, in-

dividuals, literals and so on. SWRL allows one to write rules expressed in terms

of OWL concepts and properties. The rules can be used to infer new knowledge

from existing OWL knowledge bases. A SWRL rule syntax is as follow:

(a1 ∧ ... ∧ an) −→ b

where ai (i = 1..n) is an antecedent; and b is a consequence, which both consist of

one or more atoms [141]. The conjunction constructor ∧ is interpreted as "and".

Atoms (ai (i = 1..n), and b) can be of the form:

• C(i), where i is an instance of concept C.

• p(i, j), where instance i is related to instance j via the object property p.

• sameAs(i,j), where determines two instances i and j are interpreted as the

same instances.

• differentFrom(i,j), where determines the two instances i and j are not the

same instances.

• Built-in(b, a1, ..., an), represents a Built-in specification b is satisfied if a

set of data type variables or data type values a1, ..., an within a particular

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

86 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.1 Preliminaries

built-in are true.

• D(a), where a is an instance of data type D.

• u(i, a), where instance i is related to data type variable or data type value

a via the data type property u.

i and j represent object variables or individuals. It is denoted with a "?" prefix

or typewriter font, respectively.

The SWRL antecedent is satisfied, if it is empty (trivially true) or every atom of

it is satisfied. The SWRL atom in the consequent is satisfied if it is not empty

and atoms in the antecedent are satisfied. For example, a SWRL rule to express

that all surgeons (expressed by variable ?d) in OWL-DL are to be inferred as

both being a doctor and a PhD, can be expressed with the following assertion:

Doctors(?d) ∧ P hD(?d)

−→ Surgeon(?d)

It is possible to express some rules using only DLs depending on the number

of variables shared between consequent and antecedent. However in practice,

SWRL rules are used to express what is not expressible in DL (when two or more

variables are shared between antecedent and consequent).

Modelling in Semantic Web Rule Language The SWRL language includes

support for user-defined built-ins that are common to most programming and

scripting languages [140,143]. SWRL built-ins are predicates that accept several

arguments. All built-ins in SWRL must be preceded by the namespace quali-

fier"swrlb:". SWRL built-ins are categorized as: comparison operators, mathe-

matical operators, boolean values, strings, date, time, URIs, TBox, Abox, and

list operators [143,144]. Using built-ins will provide the flexibility for expressing

complex rules. The following SWRL rule:

Doctors(?d) ∧ numberOfP atient(?d, ?n) ∧ swrlb : lessThanOrEqual(?n, 50)

−→ GP (?d)

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

87 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.1 Preliminaries

states that any Doctors(?d) that has a a number of patients (?n) less than or

equal to 50 (swrlb :lessThanOrEqual) is to be classified as an instance of the GP

concept. SWRL supports the Open World Assumption. This means that the

SWRL does not support negation as failure, cardinality restrictions, and Unique

Name Assumption. It supports sameAs and differentFrom clauses. sameAs atom

can determine if two individuals are the same individual. Similarly, the different-

From atom can be used to express that two individuals are not the same. In the

following, we explain these in some concrete examples (Note that, invalid SWRL

syntax is denoted between the "<" and ">" symbols):

Example1 With SWRL, it is not possible to retract or remove facts from an

ontology. The following SWRL rule states that any doctor, ?d, having a greater

than or equal to 50 patients will have the range of the property isRegisteredDoctor

set to true.

Doctors(?d) ∧ numberOfP atient(?d, ?n)∧

swrlb : greaterThanOrEqual(?n, 50)

−→ isRegisteredDoctor(?d, true)

However, careful consideration is needed when adding new facts to the ontology

as these new facts may conflict with existing facts. For example, if a doctor for

whatever reason had its isRegisteredDoctor property previously initialized with

a relationship to the individual false, then that doctor may result in the isReg-

isteredDoctor property having both boolean values. As the isRegisteredDoctor

is intended to be functional, the DL reasoner will indicate an inconsistency with

the newly added facts inferred by SWRL inferencing.

Example 3 Negation as failure is not supported by SWRL. This is because

previously unknown facts yet to be discovered may invalidate a SWRL rule’s

conclusion. For example, it is not possible to state that individuals of concept

Doctors, not being an instance of concept Surgeon, should be classified as in-

stances of concept GP.

Doctors(?d)∧ < not Surgeon >

−→ GP (?d)

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

88 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.1 Preliminaries

Example 4 Both differentFrom and sameAs clauses are used by SWRL rules to

determine whether individuals that are identified by different names are in fact the

same individual or distinct individuals. These clauses are used in association with

DL axioms that define a particular set of individuals to be mutually distinct or

refer to the same individual. For example, stating that two independent instances

of concept Patient which have the same disease belong to the same department

(sameDept property relationship), requires explicitly defining both instances to

be distinct (differentFrom). This is represented by the following SWRL rule.

P atient(?p1) ∧ P atient(?p2) ∧ differentFrom(?p1, ?p2)∧

hasDisease(?p1, ?ds1) ∧ hasDisease(?p2, ?ds2)∧

swrlb : equal(?ds1, ?ds2)

−→ sameDept(?p1, ?p2)

Semantic Query-Enhanced Web Rule Language

Semantic Query-Enhanced Web Rule Language (SQWRL) [145] is an expressive

OWL query language that uses the SWRL semantics and serialization and sup-

ports comprehensive querying of OWL, and is defined based on the SWRL for

retrieving knowledge from OWL [145, 146]. It takes a SWRL rule antecedent

as a pattern specification for a query and replaces the consequent with a re-

trieval specification. For example, the most common SQWRL consequent is the

sqwrl:select operator, which takes one or more arguments (variables) that cor-

respond to those already specified in the antecedent. It builds a table where

arguments form columns of the table and the retrieval knowledge corresponding

to the arguments form each row. SQWRL queries can operate in conjunction

with SWRL rules in an ontology and can be used to retrieve knowledge inferred

by those rules. Note, all valid SWRL rule antecedent built-ins are valid within

SQWRL. SQWRL queries do not modify the knowledge within the ontology. The

following SQWRL query returns pairs of doctors and their associated patients :

Doctors(?d) ∧ hasP atient(?d, ?p)

−→ sqwrl : select(?d, ?p)

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

89 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.1 Preliminaries

SQWRL built-ins include basic counting (sqwrl:count) and aggregation

(sqwrl:min, sqwrl:max, sqwrl:sum, sqwrl:avg). These built-ins operate on the

query results and not on the underlying ontology. The sqwrl:count built-in, for

example, keeps track of the number of relevant items matched in a query, not the

number of such items in the ontology being queried. Similar to SWRL, the open

world assumption and the unique name assumption are supported in SQWRL.

SQWRL queries can also operate in conjunction with SWRL rules to retrieve

knowledge inferred by those rules. These inferences can be used by other rules

and queries. In addition to the query functionality, queries with more complex

closure requirements can not be expressed using these built-ins. For example,

queries with negation as failure, complex aggregation, or disjunction are not ex-

pressible. The set operators are added to support these requirements. These op-

erators include sqwrl:makeSet, sqwrl:groupBy, sqwrl:union, sqwrl:difference, and

sqwrl:intersection.

4.1.3 Methodology

Building an ontology is essentially a three stage process. First, design the TBox

for the knowledge base; second, populate the ABox with individuals; and third,

relate TBox and ABox. Below lists these steps specifically for building an ontol-

ogy.

1. Design the TBox for the knowledge base. a TBox consists of Concepts,

Properties, and Individuals.

1.1 Classify entities as concept, property, or individual.

1.2 Add concepts to TBox.

1.2.1 Declare atomic concepts.

1.2.2 Define non-atomic (constructed) concepts.

1.2.3 Create concept taxonomy.

1.2.4 Partition the concept taxonomy.

1.3 Add properties to TBox.

1.3.1 Declare transitive and symmetric properties.

1.3.2 Declare inverse properties.

1.3.3 Declare functional properties.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

90 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.2 SSALO

1.3.4 Add domain and range restrictions to properties.

1.3.5 Add cardinality restrictions to properties.

1.4 Add other axioms to further refine concepts and properties.

2 Populate the ABox with individuals.

2.1 Enumerate and classify each individual according to available concepts.

2.2 Relate individuals via available properties in the ontology.

3 Relate TBox and ABox.

3.1 Create enumerated concepts.

3.1 Relate individuals to concepts via properties.

The details of designing TBox, ABox, and relating them will be showed in next

section.

4.2 SSALO

The Subterfuge Safe Authorization Language (SSAL) was introduced in chapter 3

as a policy language with the purpose of subterfuge safe delegation of permissions

among principals [147]. In addition to the design of SSAL for trust management,

it is also important to capture a common vocabulary that is understandable by

different distributed principals. Having a common vocabulary allows information

sharing and reuse, and therefore facilitates integration of security policies defined

by individual principles for access to their own resources. Using an ontology facili-

tates sharing and reuse of knowledge and interoperability in the domain of security

policies. For a policy language, the ontology can express the policy statements

and certificates in a conceptual way. In addition, the ontology provides a common

vocabulary for integration of heterogeneous policies defined by different principles

in distributed environments. In this section, we demonstrate an ontology-based

approach that implements SSAL as well as allowing integration of heterogeneous

security policies for subterfuge safe trust management. This approach, SSALO,

represents SSAL using OWL-DL and SWRL. This implementation provides a

policy engine that enforces subterfuge safe authorization of requests for accessing

the protected resources of distributed principals. SSALO also provides a common

domain model for integration of heterogeneous security policies. This approach is

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

91 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.2 SSALO

useful for secure cooperation and interoperability among principals in open envi-

ronments (such as coalitions) where each principal may have a different security

policy and different implementation. We discuss the characteristics of SSALO in

capturing SSAL and providing a framework for secure and dynamic integration

of heterogeneous security policies specified by distributed principals in different

domains. We employ various tools such as Protégé, Pellet, the Java programming

language, Eclipse workbench (www.eclipse.org), and Jena framework to imple-

ment our model.

The objective of this section is to develop an ontology for SSAL, with which to

reason about a set of assertions and SSAL rules. An ontology-based approach

models the SSAL policy language using the OWL-DL [92] and the Protégé [94]

knowledge-modelling tool. This section is a revised and extended version of the

work presented in [90]. SSALO is intended to be used as a policy engine. To build

the SSALO, we follow the methodology described in section 4.1.3 which consists

of designing the TBox, filling the ABox with individuals, and relating TBox and

ABox. Figure 4.6 depicts an overview of the SSALO.

4.2.1 Design the TBox for SSALO

SSALO includes five concepts as: Principal, Key, LocalName, LocalPermission

and Delegation. It also includes sixteen object properties: asAuthAs, delegates-

Permission, hasDelegator, hasDelegatee, hasNameSpace, hasOriginator, holds,

isHeld, speaksFor, isSpokenBy, isAccountable, isAccountableBy, impliesTarget,

impliesAction, hasTarget, and hasAction. The property isHeldBy is the inverse

of property holds, property speaksFor is the inverse of property isSpokenBy, and

the property isAccountable is the inverse of property isAccountableBy. In addi-

tion, SSALO includes a data type (string) property: hasName. All these concepts

and properties correspond to the entities in SSAL. For instance, the speaksFor,

asAuthAs OWL properties correspond to the "speaks for" relationships among

the principals, and "no less authoritative than" ordering relationship among lo-

calPermissions introduced in SSAL, respectively. In the following, we define the

concepts using property definitions. The constructor (∀) is a value restriction

which all values of a property for instances of a concept must belong to the spec-

ified concept or data type. The constructor (∃) is an existential quantifier that

restricts those individuals which have a relationship to instances of a concept. The

constructor (⊔) is interpreted as a union of sets of individuals and the constructor

(⊓) is interpreted as the intersection of sets of individuals. Inclusion (⊑) states

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

92 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.2 SSALO

F
ig

u
re

4.
6:

A
n

ov
er

v
ie

w
on

S
S
A

L
O

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

93 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.2 SSALO

a necessary but not sufficient condition for being an instance of a concept, and

equality (≡) states necessary and sufficient conditions that an individual must

hold in order for it to be included in a concept. The cardinality restriction (=,>)

specifies the intended number of relationships that an individual must have for a

given property.

Concept: Principal

This concept models the principal entity which was defined in the SSAL domain.

A principal is identified by either its public key or local name. The concept

Principal subsumes two sub-concepts as LocalName and Key; where an instance

p is a member of concept Principal if and only if it is an instance of either

LocalName or Key. This concept is expressed with the following restrictions:

P rincipal ≡ (LocalName ⊔Key)

From this definition we do not know whether an individual which is a local name

is also a public key or not. We can specify that any individual that is a local

name is not a public key and vice-versa. That is, the set of public keys and the

set of local names are disjoint in the following way:

(LocalName ⊓Key) ⊑ ⊥

This states that the set formed by the intersection of concepts LocalName and

Key will always be empty. An instance for example, KA, belongs to Principal

concept if and only if it belongs to either concept Key or LocalName. Similary,

KA belongs to concept Key and concept Principal, if and only if it does not belong

to concept LocalName. Figure 4.7 gives an overview of concept Principal.

Concept: LocalName

A local name is an arbitrary name N that principal P (identified by its public

key) chooses for principal Q in its name space. Principal P refers to principal Q

in its name space as N and uses the speaks for relation to link the local name to

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

94 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.2 SSALO

F
ig

u
re

4.
7:

A
n

ov
er

v
ie

w
on

co
n
ce

p
t

P
ri

n
ci

p
al

in
S
S
A

L
O

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

95 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.2 SSALO

principal Q. It means that any statement that is signed by Q can be viewed as

originating from N in the name space of P . The concept LocalName, subsumed by

concept Principal and disjoint with concept Key, is the conceptualization of the

local name entity described in SSAL. This concept is expressed by the following

restrictions:

LocalName ⊑ P rincipal ⊓

∃ isSpokenBy.P rincipal ⊓

∃=1hasNameSpace.P rincipal ⊓

∃=1hasName.string

This expresses that the concept LocalName is a sub-concept of concept Principal.

An individual belongs to the concept LocalName if it has the object property

relation isSpokenBy (corresponding to the inverse of speaks for relation in SSAL)

to at least one instance of the concept Principal. Similarly, the individual must

have the object property relation hasNameSpace to exactly one instance of con-

cept Principal (either an instance of concept Key or LocalName), and have data

type property relation of hasName to string type. For example, an instance say,

kBAlice belongs to concept LocalName if it has the object property relation is-

SpokenBy to at least one instance of concept Principal such as kA. Similarly,

kBAlice belongs to the concept LocalName if it has the object property relation

of hasNameSpace to exactly one instance of concept Principal (either an instance

of concept Key or LocalName, in this example kB), and has data type property

relation of hasName to string Alice. The individual KBAlice as an instance of

concept LocalName is defined as the following:

LocalName(kBAlice)←−hasNameSpace(kBAlice,kB)⊓

hasName(kBAlice,Alice)⊓

isSpokenBy(KBAlice,kA)

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

96 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.2 SSALO

Concept: Key

The concept Key, a sub-concept of Principal and disjoint with concept LocalName,

models the public key entity described in SSAL as the global unique identifiers

for principals. This concept is captured in SSALO with the following constraint:

Key ⊑ P rincipal

which states that the concept Key is subsumed by concept Principal. This sub-

sumption is valid if all instances of concept Key are necessarily instances of con-

cept Principal.

Concept: LocalPermission

Each principal chooses a permission specification arbitrarily for its own resource

and binds that specification to its name space (identified by a public key or local

name). The concept of LocalPermission is defined to model the localPermission

introduced in chapter 3. The binding of a permission to its name space is captured

with the hasNameSpace property in SSALO. In addition, each permission must

be originated by a principal and this is captured in SSALO with the isHeldBy

property. There is always an ordering relationship (either implicitly or explicitly)

among permissions in local policies defined by principals. The localPermission or-

dering relationship "no less authoritative than" is represented using the asAuthAs

relation in the ontology where the statement asAuthAs(Y,X) indicates that per-

mission Y is no less authoritative than permission X. The following necessary

and sufficient condition restricts an individual to be included as an instance of

this concept. This concept is defined with the following necessary condition that

an individual must hold to be included in concept LocalPermission:

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

97 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.2 SSALO

LocalP ermission ≡

∃=1hasNameSpace.P rincipal ⊓

∃>1isHeldBy.P rincipal ⊓

∃>1isAccountableBy.P rincipal ⊓

∀>0asAuthAs.LocalP ermission ⊓

∃≥1hasTarget.Target ⊓

∃≥1hasAction.Action

which states that an individual belongs to the concept LocalPermission if and

only if it has exactly one hasNameSpace relation to the instances of concept

Principal, has the property relation of isHeldBy to at least one instance of con-

cept Principal, and has the property relation of isAccountableBy to at least one

instance of concept Principal. Moreover, an instance of concept LocalPermis-

sion has binary relation of hasTarget to at least one instance of concept Target;

and has binary relation of hasAction to at least one instance of concept Action.

The constraint ∀>0asAuthAs.LocalP ermission states that all instances that have

asAuthAs property relation to instances of concept LocalPermission must belong

to the LocalPermission concept.

Concept: Target

The concept Target models the target element in a permission specification. Each

permission specifies access to a target or a resource. For example, there is a prop-

erty relation of hasTarget from instances of LocalPermission to concept Target.

Concept Target has no restriction in its definition in SSALO.

Concept: Action

Each permission specification specifies an action that can be performed on a

target or resource. The concept Action models the action element in a permission

specification. Each permission specifies the actions that can be carried out on

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

98 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.2 SSALO

F
ig

u
re

4.
8:

A
n

ov
er

v
ie

w
on

co
n
ce

p
t

L
o
ca

lP
er

m
is

si
on

in
S
S
A

L
O

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

99 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.2 SSALO

a target or a resource. There is a property relation of hasAction from instances

of LocalPermission to concept Target. Concept Action has no restriction in its

definition in SSALO.

Concept: Delegation

A delegation statement indicates that the authority for a permission is delegated

from one principal to the other principal(s). An instance of Delegation concept

is defined with the following restrictions:

Delegation ≡ ∃=1hasDelegator.P rincipal ⊓

∃ hasDelegatee.P rincipal ⊓

∃ delegatesP ermission.LocalP ermisssion

These constraints state that an instance of a Delegation concept has property

relation hasDelegator to exactly one instance of concept Principal. This means

that the delegation statement is signed by only one principal called delegator.

Each instance of the Delegation concept has a hasDelegatee relation to at least one

instance of concept Principal. A delegation statement may state the delegation of

multiple permissions to multiple principals (delegatees). Therefore, an instance of

concept Delegation has the relation of delegatesPermission to at least one instance

of concept LocalPermission.

Properties in SSALO

Properties in SSALO are binary relations between instances of the concepts

in SSALO. SSALO includes sixteen object properties: asAuthAs, delegates-

Permission, hasDelegator, hasDelegatee, hasNameSpace, hasOriginator, holds,

isHeld, speaksFor, isSpokenBy, isAccountable, isAccountableBy, impliesTarget,

impliesAction, hasTarget, and hasAction. The property isHeldBy is the inverse of

property holds, property speaksFor is the inverse of property isSpokenBy, and the

property isAccountable is the inverse of property isAccountableBy. In addition,

it includes a data type (string) property: hasName. The domain and range for

each property is outlined in Table 4.3 .

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

100 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.2 SSALO

F
ig

u
re

4.
9:

A
n

ov
er

v
ie

w
on

co
n
ce

p
t

D
el

eg
at

io
n

in
S
S
A

L
O

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

101 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.2 SSALO

Table 4.3: Domain and range of properties in SSALO

Property Domain Range

asAuthAs LocalPermission LocalPermission

delegatesPermission Delegation LocalPermission

hasDelegatee Delegation Principal

hasDelegator Delegation Key

hasNameSpace LocalName Principal

hasPermission LocalPermission Permission

hasPermissionNameSpace LocalPermission Principal

holds Principal LocalPermission

isAccountable Principal LocalPermission

isAccountableBy LocalPermission Principal

isHeldBy LocalPermission Principal

speaksFor Principal Principal

isSpokenBy Principal Principal

The property names explain their meanings. For example, the postfix property

hasNameSpace(ln,p) is interpreted to mean that, the local name ln is in the name

space of the principal p. In addition, the domain and range for the property

hasNameSpace indicate that the individual ln is an instance of either concept

LocalName or LocalPermission, and the individual p is an instance of concept

principal. Moreover, table 4.4 demonstrates the terminological axioms and their

syntaxes with examples of SSALO.

4.2.2 Instantiating ABox with Individuals

The next step is to instantiate the various concepts and thereby populate the

knowledge base, in fact the ABox, with individuals. This step includes enumer-

ating the individuals, sorting them, and finally asserting knowledge about each

individual.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

102 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.2 SSALO

Table 4.4: Terminological axioms and their syntaxes

Axiom DL Syntax Example

Concept Inclusion C ⊑ D Key ⊑ P rincipal

Concept Equivalence C ≡ D P rincipal ≡ (Key ⊔ LocalName)

Concept Assertion C(i) P rincipal(kAAlice)

Disjoint Concepts C ⊑ ¬D Key ⊑ ¬LocalName

Property assertion p(i, j) hasKey(kAAlice, kA)

Property Inversion P1 ≡ P2
− speaksFor ≡ isSpokenBy−

Property Transitivity P + ⊑ P speaksFor + ⊑ speaksFor

Disjoin Individuals i 6= j kA 6= kB where Key(kA), Key(kB)

Notation: C and D are concepts, P is property, i and j are individuals.

Enumerate and Classify Each Individual According to Available Con-

cepts

This step concerns adding concrete data to SSALO. For example, adding all

local names defined in the SSAL language to the concept of LocalName. A single

statement such as the following is required for each introduction and classification

of an individual:

LocalName(kBemployees)

Relate Individuals via Available Properties in SSALO

With the axiomatization in the TBox, it is a relatively straightforward procedure

to assert knowledge about individuals. For example, to relate each instance of

concept LocalName to instances of concept Principal, with the speaksFor property,

we have the following instantiation :

speaksFor(kA,kBemployees)

SSAL statements are captured as instances in SSALO. Note that, an individual

is called an instance when it is classified in the appropriate concept and is linked

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

103 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.2 SSALO

to other individuals with appropriate properties. The following notation is used

for expressing instantiation in ABox. C is concept, Pk(k = (1..n)) is a property,

and i, j, l are individuals:

• C(i) ←− P k(i, j) ⊓ ... ⊓ P k(i,l): This denotes that the individual i has

the property relation Pk to the individual j, has the property relation Pk

to the individual l, and so on, to be an instance of concept C.

For example, the following delegation statement:

kA
〈(kB1 employees)createAccount〉

=⇒ kB

is captured in SSALO by the following instantiation:

Delegation(delForCrAc)←−hasDelegator(delForCrAc, kA)⊓

delegatesP ermission(delForCrAc,createAccount)⊓

hasDelegatee(delForCrAc,kB)

(This means that the individual delForCrAc has the property relation hasDelega-

tor to individual kA, has the property relation delegatesPermission to individual

createAccount, and has property relation to individual kB to be an instance of

concept Delegation.

LocalP ermission(createAccount)←−

hasNameSpace(createAccount,kB1employees)⊓

isHeldBy(createAccount,kB1employees)⊓

isAccountableBy(createAccount, kB1employees)

LocalName(kB1 employees)←−hasNameSpace(kB1 employees, kB1)⊓

isSpokenBy(kB1 employees,kA)

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

104 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.2 SSALO

4.2.3 Policy Rules

We use SWRL to represent SSAL rules introduced in chapter 3 and also in [74,75].

The policy statements are represented by individuals and their relations (via prop-

erties) with other individuals in SSALO. In addition to the asserted knowledge,

there is also hidden knowledge in the ontology that can be inferred from the

asserted knowledge. To infer that knowledge, a reasoning tool is required to per-

form inference. Along with SWRL there is a reasoning engine (Jess) [141, 148]

that provides reasoning over the asserted knowledge and produces new knowledge

regarding the asserted knowledge.

Name Rule

When principal Q identifies a name N in its name space, and Q speaks for R

then it is inferred that R is the implicit name space of N . A reduction rule is

derived in SSAL to reduce local names to principals; which considering ?p, ?q,

and ?r as principals, if principal ?q speaks for principal ?r, and ?q chooses name

?n for principal ?p, it can be inferred ?p is identified as ?n in the name space of

?r. This can be captured in SWRL with the following rule:

Ont−N1 :P rincipal(?p) ∧ P rincipal(?q) ∧ P rincipal(?r)∧

speaksFor(?p, ?qn) ∧ LocalName(?qn) ∧ hasNameSpace(?qn, ?q)∧

hasName(?qn, ?n) ∧ speaksFor(?q, ?r)∧

swrlx : makeOWLIndividual(?rn, ?qn)

−→ LocalName(?rn) ∧ hasNameSpace(?rn, ?r)∧

speaksFor(?p, ?rn) ∧ hasName(?rn, ?n)

Permission Delegation Rules

Delegation refers to the act of a principal propagating further the permission

that it obtains from other principals. If a principal ?r speaks for principal ?q,

any permission ?x that is delegated to ?q is implicitly delegated to ?r (Ont-

P1). Moreover, if a principal ?p delegates permission ?x, it implicitly delegates

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

105 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.2 SSALO

any permission ?y that is dominated by ?x (Ont-P2). This is modelled in the

following SWRL rules:

Ont− P 1 :P rincipal(?p) ∧ P rincipal(?q) ∧ LocalP ermission(?x)∧

delegatesP ermission(?d, ?perm) ∧ hasDelegatee(?d, ?q)∧

hasDelegator(?d, ?p) ∧ speaksFor(?r, ?q)

−→ hasDelegatee(?d, ?r)

Ont− P 2 :asAuthAs(?x, ?y) ∧ hasDelegator(?d, ?p)∧

hasDelegatee(?d, ?q) ∧ delegatesP ermission(?d, ?x)

−→ delegatesP ermission(?d, ?y)

Executing the Jess engine has the effect of setting the delegatesPermission prop-

erty as a relation from the individual ?d to a ?y that satisfies the rule.

Permission Holding Rule

Delegation of a permission does not necessarily imply that the recipient of the

permission holds it. Holding a permission depends on either the delegator already

originating the permission in its name space or already holding the permission to

propagate it further. This prevents malicious principals delegating permissions

that they do not hold, and as a consequence are not expected to delegate. A

principal by originating a permission asserts that it holds that permission. Hold-

ing a permission means that a principal is authorized to perform actions based

on that permission. The following implements this with a SWRL rule:

Ont− P 3 :P rincipal(?p) ∧ P rincipal(?q) ∧ LocalP ermission(?x)

∧ holds(?p, ?x) ∧ delegatesP ermission(?d, ?x)

∧ hasDelegatee(?d, ?q) ∧ hasDelegator(?d, ?p)

−→ holds(?q, ?x)

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

106 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.2 SSALO

Permission Global Ordering Rule

There are reduction rules to reduce localPermissions defined in the name space of

a principal, and that principal is identified by a local name. Considering ?p, ?q,

and ?r as principals, and ?pn as localPermission, the rule P4 indicates reduction

of local permissions. It indicates that, if the permission ?pn is issued by principal

?p and principal ?q speaks for ?p then the permission ?pn is implicitly in the

name space of ?q. Note that the asAuthAs property is a transitive relation. This

can be captured with the following SWRL rule:

Ont− P 4 :P rincipal(?p) ∧ P rincipal(?q) ∧ LocalP ermission(?x)

∧ LocalP ermission(?pn) ∧ hasNameSpace(?pn, ?p)∧

speaksFor(?q, ?p) ∧ asAuthAs(?x, ?pn)

−→ hasNameSpace(?pn, ?q)

The set of policy rules encoded in SWRL are used to reason over the knowledge

in SSALO and infer new knowledge from the existing knowledge to answer the

queries that come to the query engine. We will discuss the query engine later in

this chapter.

4.2.4 Integration of Policies within SSALO

Different principals define specific kinds of security policies to meet their specific

needs. For example, a confidentiality hierarchy is a kind of security policy in some

organizations, or access permission hierarchy is another kind of security policy in

file systems. These security policies are defined by different principals in different

name spaces and they may have their local techniques for implementation. To

effectively manage security policies we must be able to produce compatible pol-

icy representations. The existence of a large number of representation methods

leads to the conclusion that security policies, even when semantically compli-

ant, can be represented in ways that differ substantially in terms of formalism,

structure, and hierarchy, thus raising obstacles to their reconciliation. Therefore,

for effective management of trust and authorization among distributed principals

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

107 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.2 SSALO

one has to be able to integrate all policy representations to make proper access

decisions. Each principal defines its own security policy in its name space to

control access to its resources, so called a local policy. Local policies may have

different implementations in each name space. For example, one principal may

implement its security policy using XML, another principal may use an ontol-

ogy, and one may use the Prolog programming language to implement its local

security policy. In order to integrate with local policies of other principals for

federation, SSALO provides a common vocabulary that is understandable by dif-

ferent parties. We assume that each local policy contains a set of permissions

that constrain access to the corresponding resources. The set of all permissions

SP in a principal’s name space may be considered to form a pre-order relation

as (SP,⊑) : (spi ⊑ spj); (spi, spj ∈ SP). In other words, spj implies spi, thus

a principal that holds the permission spj also holds permission spi (inferred by

reasoning using the rules Ont-P2 and Ont-P3 in SSALO). A permission ?x for a

given resource of principal ?p will be represented as the following:

LocalP ermission(?p)←− isHeldBy(?x , ?p) ⊓ hasNameSpace(?x , ?p)

In each local policy, the set of permissions and their ordering relationship is spec-

ified locally, therefore the principal who defines the policy must explicitly define

a global interpretation for the set of permissions and their ordering relation-

ship. By signing the set of permissions and their ordering a principal provides a

global unique interpretation for permissions and consequently prevents subterfuge

during open cooperation with other principals. This is modelled in the SSALO

through OWL individuals and properties where: the set of permissions are consid-

ered as instances of concept LocalPermission; the name space of these permissions

are instances of concept Principal that signs the whole set of permissions; and the

pre-order relations among the permissions is considered as the asAuthAs prop-

erty. For example, the permission read of a set of permissions {read, write}, and

the ordering relationship read ⊑ write signed by kA ({|(read, write,⊑)|}skA
) will

be captured in SSALO as the following individual and properties:

LocalP ermission(kAread)←− isHeldBy(kA read, kA)⊓

hasNameSpace(kAread, kA) ⊓ asAuthAs(kAwrite, kAread)

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

108 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.2 SSALO

Figure 4.10 depicts the locally defined policy by principal kA as a fragment of

SSALO. This way each principal can define its security policy locally, in any

Figure 4.10: Integrating the locally defined policy to SSALO

policy language. The signed set of permissions and their pre-order relations are

captured as instances of concept LocalPermission and the asAuthAs property

(through an interpreter implemented in Java). These individuals will be part of

the knowledge base in SSALO and can be reasoned over for making the access

decision.

4.2.5 Queries for Trust Management

In addition to reasoning over the knowledge in SSALO, a query engine is required

for querying over the knowledge to answer an access request. An access request

can be evaluated by querying the knowledge in SSALO. For example, to verify

whether or not a principal kB is authorized to sell flight number 123 for airline

A, it is necessary to verify if the relation holds(kB,(kAsellFlightNo.123)) exists

or can be inferred in the ontology. This requires that before any possible request

evaluation, all the policy rules (implemented in SWRL) have to be executed to

infer all holds relations for principal kB and permission (kAsellFlightNo.123). The

following are the queries to evaluate if a request complies with the asserted policy

in the knowledge base.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

109 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.2 SSALO

Query for Subterfuge Safe Authorization The following query determines

an authorization which checks whether the requester holds the permission to

accomplish what it requests.

Q1 :P rincipal(?p) ∧ P rincipal(?q) ∧ LocalP ermission(?perm)∧

holds(?p, ?perm) ∧ isAccountable(?q, ?perm) −→ sqwrl : select(?p, ?perm, ?q)

This query returns all triples of a principal and the permissions that it holds as

well as the principal that is accountable for the actions authorized by permission

?perm.

Query On Subterfuge Safe Delegation The following query determines a

subterfuge safe delegation which checks whether it is safe for a delegator to dele-

gate the permission to other principals and that some principal is held accountable

for this permission.

Q2 :P rincipal(?p) ∧ P rincipal(?q) ∧ P rincipal(?r)∧

Delegation(?delcert) ∧ LocalP ermission(?perm)∧

hasDelegator(?delcert, ?p) ∧ hasDelegatee(?delcert, ?q)∧

delegatesP ermission(?delcert, ?perm) ∧ isAccountable(?r, ?perm)

−→ sqwrl : select(?delcert, ?p, ?perm, ?q, ?r)

This query returns all tuples of delegation certificates with their issuer, subject,

permission that is delegated to the subject, and the accountable principal for each

delegation statement.

A DL reasoner, Pellet, is integrated into Protégé and performs reasoning tasks in

SSALO. Thus, we use SSALO as a policy engine to make a decision for an access

request. A policy engine takes a request, a set of certificates, and policy as input,

then outputs a decision for that request [149]. In our model, a requester makes a

request to access some protected resources through an Application Programming

Interface (API) in the resource owner’s trusted environment. The API queries the

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

110 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.2 SSALO

trust management engine (SSALO) via a query interpreter. The query interpreter

which is implemented in the Java programming language, queries the ontology

about the request. Note that, the requester may present a set of certificates

(encoded using the Security Asserted Markup Language (SAML) [150]) to the

resource owner as proof of its authorization. The certificates are in XML data

format and are added to the ontology as OWL individuals and their relations via

OWL properties. We demonstrate this in the next section. Figure 4.11 depicts

the application of SSALO as policy engine.

Figure 4.11: Implementation of SSTM

4.2.6 Case study: Trust Management for a Selling Service

by Brokers

Consider that the owner of airline A trusts broker B to act as its broker. Bro-

kers are authorized to sell flights. Airline A (the owner of public key kA)

originates (and therefore holds) a localPermission 〈kAsellF lightAll〉. Then the

airline A adds broker B to the group of brokers identified by the local name

(kA flightBroker) (broker B is the owner of public key kB). The following is the

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

111 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.2 SSALO

delegation certificate that airline A issues:

kA
〈kA SellF lightAll〉

=⇒ (kA flightBrokers)

Figures 4.12, 4.13, and 4.14 are the XML implementation of the above SSAL

certificate.

Figure 4.12: Delegation certificate

Figure 4.13: Name certificate

Figure 4.14: Permission certificate

These certificates are captured in the following statements about individuals and

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

112 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.2 SSALO

their relationships in SSALO:

LocalName(kA flight broker)←−

isSpokenBy(kA flight broker, kB)⊓

hasNameSpace(kA flight broker, kA)⊓

hasName(kA flight broker, flight broker)

LocalP ermission(sellFlightAll)←−

hasNameSpace(sellFlightAll, kB)⊓

isHeldBy(sellFlightAll, kB)

Delegation(delSell)←−

hasDelegator(delSell, kA)⊓

delegatesP ermission(delSell,sellFlightAll)⊓

hasDelegatee(delSell,kA flight broker)

The set of policy rules (Ont-P1, Ont-P2, Ont-P3, and Ont-P4) that is encoded in

SWRL are used to reason over the asserted knowledge and infer new knowledge

for making proper access decision. Therefore, in receiving broker B’s request for

selling flights, airline A wishes to check whether kB’s request for selling flight at

the airline A is authorized or not. The policy engine executes the SWRL rule

Ont-P1 to reason over the asserted knowledge within SSALO . Thus, the SQWRL

query Q1 checks if the following statements can be inferred:

isHeldBy(sellFlightAll, kB)

isAccountableBy(sellFlightAll, kA)

As a result of a successful query, broker B’s access for selling flights of airline A

is granted.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

113 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.2 SSALO

4.2.7 Run-Time Performance

In this section, we present the evaluation of SSALO as a policy engine. The ob-

jective of these experiments is to evaluate the ability of SSALO to integrate a

number of security policies defined by different principals within a certain time

intervals. We used our implementation of SSALO (an OWL-DL model imple-

mented in Protégé) and the description logic reasoner Pellet [95] to carry out

the experiments. We used the Jena Semantic Web Toolkit [97], which supports

rule-based inference over the OWL-DL knowledge base. The experiments have

been conducted on a Linux workstation with the following hardware configura-

tion: 8Gb RAM with AMD A10-4655M quad core processor. Figures 4.15 and

4.16 shows the results of the experiments. The run time performance of SSALO

depends on two factors: size of the asserted individuals in the ontology, number

of heterogeneous policies for integration.

0
0.2

0.86

2.2

2.75

3.5

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300 350 400 450

T
im

e
 (

s)

Number of asserted individuals in SSALO

Run Time Performance

Figure 4.15: Run time performance of reasoning over SSALO

0

0.6

1.2

1.6

2.8

3.8

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60

T
im

e
 (

s)

Number of aserted Policies in SSALO

Run Time Performance

Figure 4.16: Run time performance of reasoning over SSALO

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

114 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.2 SSALO

This experiment shows that the run-time increases approximately linear when

the number of asserted individuals (certificates and policies) increases and that

the performance is adequate for most intended scenarios such as web-based ap-

plications apart from time-critical ones. It also shows that reasoning based on

SSALO is a feasible computational task.

4.2.8 Related Work for Solving Heterogeneity Problem

Grid technology was the very first effort to resolve heterogeneity problems in

integration of data types such as security policies with different implementa-

tions [151]. The Grid infrastructure was a good start for principals to share their

data, integrate them and consequently cooperate with each other. The main focus

of that effort was resource sharing among virtual organizations for seamless in-

teractivity. Another approach for solving heterogeneity problems for integration

of security policies was using a matching scheme. Matching schemes are usually

based on XML, the match operator takes two graph-like structures as input and

produces matches between their elements. If two structures correspond seman-

tically to each other, matching is successful. The work presented in [152] which

performs matches between permission attributes, is a good example of this ap-

proach. Within the last few years, there has been an increase of interest in using

ontologies for representing access control policies. Ontologies are believed to be

important for solving heterogeneity problems in integration of security policies.

Ontologies provide a formal specification and common vocabulary for a domain

of interest. An example of an ontology approach for integration of policies is

AIR (Accountability In RDF) proposed by Kagal et al. [153]. They used AIR as

an ontology-based language to express the access control policy for sharing data.

AIR enables users to share their data in open environments such as web services.

However, the integration of multiple policies is based on matching the conditions

of a set of rules. The rules also have to be designed in the same language to

be able to perform matching on them. Integration and matching are technically

difficult especially if multiple policies are defined in different languages with dif-

ferent implementation techniques. The identification of semantic relationships

between these policies is also a difficult problem. Thus, an automated dynamic

integration solution is required. In SSALO, we address not only the automatic

integration of heterogeneous policies implemented with different techniques, but

also we address the subterfuge safe collaboration of distributed principals after

integration of their policies. This feature is unique to SSALO. To the best of our

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

115 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.2 SSALO

knowledge, no formal framework for integration of heterogeneous policies that

can address subterfuge safe cooperation among distributed principals exists.

4.2.9 Discussion

In the context of trust management, an ontology produces a shared understanding

of different policies in different domains, represented as a set of concepts, relations,

functions, axioms and individuals. There are several reasons for developing our

trust management model based on an ontology:

Knowledge Sharing The use of SSALO enables different principals to have

a common set of concepts about their security policies and interacting with one

another.

Knowledge Reuse SSALO as a policy engine can be reused by different prin-

cipals without building a new policy engine from scratch. Reusing ontologies

reduces engineering costs since it avoids rebuilding existing ontologies. Moreover,

since SSALO is understood as a means for sharing knowledge concepts, reusing

that increases the secure interoperability between different principals both on the

syntactic and on the semantic level. Principals using the same ontology are as-

sumed to hold the same view upon the modelled universe of discourse, and thus

define and use domain concepts in the same way.

Scalability The description of a trust management system in a machine-

understandable fashion (ontology) is expected to have a great impact in areas

of policy integration, as it is expected to enable dynamic and scalable coop-

eration among different principals of open environments such as web services,

organizations, coalitions.

Complexity Choosing OWL-DL provides the possibility of using the OWL-DL

reasoner as a policy engine and a query tool. The DL reasoner Pellet and the

SWRL engine have high complexity (NExpTime-complete) but DL reasoners can

handle all features of the OWL-DL language. The DL expressibility of SSALO

model is SHOIN(D), where S stands for ALC [154] plus role transitivity, H stands

for role hierarchy, O stands for nominals, I stands for inverse role, N stands for

cardinality restrictions, and D stands for datatypes. However, we did not use

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

116 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.2 SSALO

some features such as nominals or role hierarchy in our model. We evaluated the

complexity of OWL-DL with its specific features used in SSALO via a calculator

for complexity of reasoning in description logics [155], and determined it to be

NExpTime-complete.

Subterfuge Safe Policy Integration Ontologies are frameworks for organiz-

ing structured data. Defining permissions for hierarchical resources is a very com-

mon requirement for security policies. The permissions for hierarchical resources

can be modelled in the ontology since ontologies provide a set of hierarchical

and relational representational primitives. In the SSAL policy language we de-

fined the "no less Authoritative than" relation as the global ordering relationship

among permissions. This ordering relationship is assumed to be specified explic-

itly. However, resources in a system have a hierarchical structure and therefore

permissions to access those resources form partial ordering relations. For example,

airline A may specify permission 〈kA (sellF lightAll)〉 for selling all flights in its

domain and the permission 〈kA (sellF lightNo123)〉 for selling flight number 123.

Consider that there is an explicit ordering relationship among the permissions

that A defines in its name space. For instance, there is an ordering relation-

ship (sellF lightNo123) ⊑ (sellF lightAll) in which permission (sellF lightAll)

implies permission (sellF lightNo123). Any requester that holds the permission

〈kA (sellF lightAll) implicitly should be able to sell flight number 123. The re-

source owner must specify the ordering relation among the permissions it defines

in its local policies. This relation is modelled in SSALO using the OWL property

asAuthAs. This property (asAuthAs) also supports subterfuge safe cooperation

among distributed principals when their local policies are integrated with one

another.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

117 Seyedehsamane Abdigarmestani
(Samane Abdi)

4. Ontology-Based Implementation

for SSTM 4.3 Summary

4.3 Summary

In this chapter, we first gave a background on the ontology technique, OWL-

DL, and SWRL. Then we introduced and demonstrated SSALO which is used as

the policy engine for SSTM. Using an ontology for representing and reasoning

over the policies provides a common vocabulary and well understood approach

for open environments, where multiple organizations with heterogeneous security

policies wish to cooperate. In addition, the OWA ensures reasoning over an ex-

isting security policy can be easily extended to include further security policies.

The implementation also supports integration of heterogeneous policies (policies

specified in different languages which may have different implementation in their

issuer’s name space) to facilitate trust management in open environments. Mul-

tiple SWRL rules may be executed in order to retrieve a set of information to

grant or deny the access request. SSALO can be potentially used in open sys-

tems such as distributed web services, cross coalitions cooperation, and cloud

federations [156] for subterfuge safe, and dynamic cooperation. The complexity

of reasoning over the knowledge in SSALO was evaluated as NP-complete which

means that the runtime required to reason over the asserted knowledge increases

as the size of the asserted knowledge grows in SSALO. Experiments have shown

adequate performance for typical non-time critical situations.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

118 Seyedehsamane Abdigarmestani
(Samane Abdi)

Chapter 5

Extending SSTM for Supporting

Secure Cross Coalition

Cooperation

Sharing resources and information in a secure fashion is a requirement for col-

laboration by distributed entities. Appropriate access control mechanisms are

required in order to manage access to those shared resources. A coalition pro-

vides a virtual space for collaborators to share their resources and interact with

each other. To participate in a coalition, entities must ensure that their resources

are safe from inappropriate access while sharing specific resources with coalition

participants. Cross coalition cooperation happens while resources of one coalition

are shared with participants of another coalition. In this chapter, we introduce a

secure dynamic coalition framework that guarantees subterfuge safe cross coali-

tion cooperation. We add two extra SSAL rules to support secure cross coalition

cooperation. This allows participants in one coalition to openly cooperate and

share resources in a secure manner with other coalitions. Section 5.1 introduces

coalitions, and section 5.2 discusses coalition features for secure open coopera-

tion. Section 5.3 reviews existing coalition frameworks. In section 5.4 we discuss

the desirable characteristics in any coalition supporting framework. Section 5.5

outlines the process of formation of a new coalition, the issuing of membership,

the two additional SSAL rules for sharing resources of coalition participants, and

describes the coalition split and merge processes. The characteristics of our model

for secure dynamic coalition cooperation are discussed in section 5.6. Section 5.7

provides an example. Finally, a summary for the chapter is given in section 5.8.

119

5. Extending SSTM for Supporting

Secure Cross Coalition

Cooperation 5.1 Coalition Definition

Figure 5.1: A sample of coalition structure

5.1 Coalition Definition

Sharing resources and cooperation among entities are defined in terms of a coali-

tion. A coalition provides a virtual space across a distributed environment to al-

low participants to share resources and cooperate securely for a specific duration

of time. The coalition can be formed for simple collaboration among individuals

that share resources such as normal sharing of information via email, or can be

for more structured and complex collaboration among organizations that share

resources for business purposes. For example, a coalition might provide a vir-

tual space for a group of citizens uniting behind a common goal. It also might

be an operational structure and regulation for a business-to-business relation-

ship. A group of companies that create a mutual trust between each other can

form a coalition in order to increase their profit. For example, Dunkin’ Donuts

and Baskin-Robbins formed a coalition by sharing stores and thus sharing rev-

enue [157]. At a system level, a coalition can be used to manage the relationships

between its resources. For example, a distributed application may be thought

of as forming a coalition between its execution components and the system re-

sources that are available for them to use. A coalition consists of an authority

who manages the coalition and coalition participants that provide/use coalition

resources and services. A coalition participant can be a resource/service provider,

and therefore provides services and resources for other participants of the coali-

tion. A coalition participant can be also a resource/service user, and therefore

uses the resources and services that are provided by the provider participants.

Figure 5.1 demonstrates an example of a coalition structure.

The ability to securely share resources is critical for service providers when they

join a coalition. Before accessing a coalition resource or using a coalition ser-

vice, a service user should obtain permission from the coalition authority who

makes the access decision for that resource or service. The service user sends a

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

120 Seyedehsamane Abdigarmestani
(Samane Abdi)

5. Extending SSTM for Supporting

Secure Cross Coalition

Cooperation 5.1 Coalition Definition

request to the service provider (the coalition participant who provides services

and shares its resources with other participants of the coalition). If the service

provider believes that the requester is authorized by an authority to use the ser-

vice/resource, then the request is allowed. Figure 5.2 depicts the request process

between a service provider and service user of a coalition with the involvement

of a central authority. Participants in a coalition may authenticate each other by

asking the question “who said this?” and share resources by asking the authoriza-

tion question “ who is trusted to access this resource?”. Usually authentication is

accomplished with the involvement of a central authority (CA) and authorization

is accomplished by an Access Control List (ACL), in which a set of trusted prin-

cipals for an action listed [158, 159]. However, authentication and authorization

mechanisms alone cannot provide cooperation control among participants of dif-

ferent coalitions. Authentication and authorization mechanisms rely on a super

security administrator who is familiar with all available resources and assigns per-

missions for those resources to the appropriate users in a centralized manner. In

centralized environments, both coalition participants and permissions for coali-

tion resources are defined and controlled by the super security administrator. In

decentralized environments, each participant in a coalition is familiar with and

controls its own resources. The resource owners (principals) decide on their own

who is trusted to access their resources. However, principals do not have a com-

plete picture of all trusted principals in coalition cooperation; thus, a framework

is required to support cooperation and sharing of resources across coalitions. This

is called a coalition framework. In coalitions, because of the incomplete view of

the system for making access decisions, trust management systems help partic-

ipants to make appropriate access decisions in decentralized environments and

cross coalition cooperation. Figure 5.3 depicts decentralized access control using

trust management for coalitions.

Figure 5.2: Centralized access control for coalitions

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

121 Seyedehsamane Abdigarmestani
(Samane Abdi)

5. Extending SSTM for Supporting

Secure Cross Coalition

Cooperation 5.2 Coalition Features

5.2 Coalition Features

A secure coalition framework provides a formalized template for membership

management, type of administration, type of cooperation, coalition formation and

evolution. The formalised template ensures that only the authorized principals

can access the shared resources in the coalition. In this section, we outline these

security features for coalitions.

5.2.1 Membership Management

Participants that gather together to form a coalition are called members of that

coalition. Coalition members are a subset of all principals in the network. A

principal must be able to prove its membership of a coalition to use the coalition

services and resources. It is also important to distinguish coalition members from

other principals in order to assign permissions only to members of a coalition.

5.2.2 Administration

A coalition can rely on a super security administrator (centralized) to control ac-

cess to the coalition resources. Relying on a super security administrator brings

challenges in forming dynamic coalitions. The super security administrator must

be appointed and be agreed before coalition formation by all the participants will-

ing to join in the coalition. The super security administrator controls the coalition

access control model. Thus, a good access control model relies on the super se-

curity administrator’s expertise and expertise. Moreover, giving all the power

to the super security administrator will bring concerns about possible arbitrary

behaviour by the administrator. For example, after a coalition is established and

Figure 5.3: Decentralized access control for coalitions

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

122 Seyedehsamane Abdigarmestani
(Samane Abdi)

5. Extending SSTM for Supporting

Secure Cross Coalition

Cooperation 5.2 Coalition Features

participants agree on sharing resources, the super security administrator, having

all powers on the shared resources, may arbitrarily authorize other individuals

or organizations outside the coalition to access the shared resources. A coali-

tion can also rely on decentralized security administrators, where two or more

administrators (with either the same or different authority) control the appro-

priate access to the coalition resources. Decentralizing coalition administration

among two or more administrators prevents failure in coalition operation when

one of the security administrators fails. However, there exists a challenge in hav-

ing the same authority for all security administrators. An administrator can use

its full authority to authorize principals outside of the coalition to access the

coalition resources without the agreement of the other coalition administrators.

Having multiple coalition administrators with different authority allows princi-

pals in decentralized environments to share their resources. Each principal can

be viewed as an administrator for sharing its own resources with other coalition

members. Loss of an administrator affects only resources that are controlled by

that administrator. Thus, the rest of the coalition can work properly.

5.2.3 Subterfuge Safe Open Cooperation

A coalition may define and allow operations only within the coalition, called

closed cooperation. For closed cooperation, a coalition does not need any glob-

ally unique identifier to represent it in a global environment. Open cooperation

relies on the ability of a coalition for subterfuge safe cross coalition delegation to

principals outside of a coalition. An open coalition uses a globally unique iden-

tifier to represent itself. When cooperating with other coalitions, the members

and permissions of an open coalition are bound to its global identifier. Thus,

the members and permissions of an open coalition can be recognized. There-

fore, an attempt by a malicious principal to access a resource by evading the

intended controls of a security mechanism in a coalition is unsuccessful. In order

to assign appropriate permissions to only trusted users, a delegation scheme was

introduced in SSAL. Permissions that are delegated must have globally unique

interpretation to prevent deceptive behaviour that may be accomplished by ma-

licious principals. The following scenario demonstrates the subterfuge problem

in cross coalition delegation for open cooperation among coalitions. Alice, Bob,

and Mary are members of coalition Blue. Alice trusts Bob and Bob trusts Mary

for selling flights at Alice’s company. By transitivity, Mary can prove her au-

thorization for selling flights from Alice. Eve, Bob, and Dave are members of

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

123 Seyedehsamane Abdigarmestani
(Samane Abdi)

5. Extending SSTM for Supporting

Secure Cross Coalition

Cooperation 5.2 Coalition Features

Figure 5.4: Subterfuge in open cooperation of coalitions

coalition Red. Eve intercepts the certificate for sell from Alice and delegates sell

permission to Bob. Bob thinks that authorization is from Eve and delegates it

to Dave. Dave can prove authorization for sell from Alice. Figure 5.4 illustrates

this scenario.

5.2.4 Formation and Evolution

Before forming a coalition, the participants may need to decide whether it would

be safe for them to establish the coalition and share their resources. This decision

is based on the security mechanisms that a coalition may provide. The security

mechanism must determine to what extent the members of a coalition can be

trusted. Coalition frameworks are mechanisms that provide templates to establish

secure coalitions. The participants may also decide which category of a coalition

is desired. For example, the coalition could have a centralized administration or

a decentralized administration, and a coalition could have closed cooperation or

open cooperation. When the category of a coalition is decided, a suitable coalition

framework is used to provide a template for secure formation and evolution of the

coalition. Two or more coalitions may come together and merge, or one coalition

may split into more than one coalitions.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

124 Seyedehsamane Abdigarmestani
(Samane Abdi)

5. Extending SSTM for Supporting

Secure Cross Coalition

Cooperation 5.3 Existing Coalition Frameworks

5.3 Existing Coalition Frameworks

Several coalition frameworks have been proposed to form secure coalitions and

their enhancements [40,64,87,160–164]. We investigate these coalition frameworks

in terms of the mentioned security features as dynamic membership, type of

administration, and subterfuge safe open cooperation.

5.3.1 Systems Research Centre Model

Lampson et.al. [165] introduced a framework to manage group membership at

Systems Research Centre (SRC). This framework defines a group where each

member speaks on behalf of the group. In order to speak on behalf of a group, a

principal must become a member of that group. This will be done by obtaining

group membership from the certificate authority of the group. A central authority

manages the group membership. The group is represented by a group name and

does not have a globally unique identifier. The certificate authority manages the

group membership by listing all group members and the group name in a single

membership certificate. The membership certificate is signed by the private key

of the certificate authority and issued to all group members. None of the group

members can admit new members or revoke the membership of the current mem-

bers by modifying the membership certificate. When a membership certificate is

issued, principals are listed in a membership certificate and therefore, principals

can prove their membership by presenting the membership certificate. For any

principal who receives the group membership list certificate, it can distinguish

whether itself (or another principal) is a member of the group or not. Consider

a group, named as friends, that has Alice, Bob and Mary as its members. The

membership certificate C1 is issued by the authority of the group and is held

by all members of the group, that is (Note that sk means that the authority,

identified by public key k, issues and signs the certificate):

{|Alice, Bob, Mary|}sk

In order to join the group friends, Dan sends a request to the authority. The

authority issues certificate C2 to all group members, that is:

{|Alice, Bob, Mary, Dan|}sk

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

125 Seyedehsamane Abdigarmestani
(Samane Abdi)

5. Extending SSTM for Supporting

Secure Cross Coalition

Cooperation 5.3 Existing Coalition Frameworks

Figure 5.5: The SRC framework

Figure 5.5 demonstrates how Dan joins the friends group. In this framework,

group maintenance would be difficult if the group has a large number of members.

Issuing or revoking membership results in having the authority update and re-

issue the entire membership list certificate to all related principals. On the other

hand, a group is controlled by a single certificate authority. Thus, it is subject

to the problem of having single point of failure. Open cooperation is impossible,

since it is impossible to distinguish that the message is from the group. The reason

for this is that a group is only represented by a group name that may not uniquely

identify the group over the open network. Without a globally unique identity,

it is impossible to distinguish a given group from other groups. Therefore, cross

coalition cooperation is not possible.

5.3.2 Coalition-Based Access Control Model

The Coalition-Based Access Control model (CBAC) was proposed as an access

control model for coalitions [163]. CBAC is a family of access control models

to capture the semantics of coalition interrelationships and the characteristics

of access control in such environments. CBACbasic is the simplest model in the

CBAC family, adding coalition entities and relationships to a role-based model.

CBACteam builds on CBACbasic to support the collection of users, acting in roles,

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

126 Seyedehsamane Abdigarmestani
(Samane Abdi)

5. Extending SSTM for Supporting

Secure Cross Coalition

Cooperation 5.3 Existing Coalition Frameworks

into teams. CBACtask builds on CBACbasic to allow access to be determined based

on task state. Finally, CBACteam+task combines the concepts of both teams and

tasks to enable team activation based on task state. The administration in CBAC

is distributed and is based on delegation of authority. Consider, for example, an

organization A that participates in coalition C. Members of organization A have

authorization to access coalition resources and the administrator of organization

A defines roles and assigns members to roles that operate within the coalition. In

defining roles and assigning members to those roles, the administrator delegates

authority within its own organization. Therefore, CBAC supports decentralized

administration. In CBAC a coalition is not represented by a unique identifier;

therefore, open cooperation with other coalitions is impossible since the coali-

tion is not identified in a global manner. The membership management for the

coalition is not addressed in CBAC.

5.3.3 Virtual Private Network Model

Virtual Private Network (VPN) [164] was developed for supporting secure cooper-

ation from different physical locations of the same company. Similar to ISC [162],

the objective in VPN is to provide secure communication among members of the

same coalition and therefore open cooperation was not the purpose of their de-

sign. VPN supports symmetric key and public key authentication. The routers or

the AAA (authentication, authorization and accounting) servers are the security

administrators. They keep all user information about keys and identities. In a

VPN, there could be many routers, each assigned to a subnet, making it scalable.

However, it focuses on the authentication of individual users to join a coalition,

and it does not address cooperation with other coalitions.

5.3.4 Mäki-Aura Model

A model for ad-hoc membership management and later a distributed security

architecture for ad-hoc networks were proposed by Mäki and Aura in [160,161]. In

this model, a principal, who is the group leader, establishes a group and refers to

that group by the group’s signature key. For admitting new members, the group

leader issues and signs a membership certificate as a verification of membership.

The group leader may also issue and sign a leader certificate to specify a group

leader with the same authority as the group establisher (the first group leader).

When a principal is appointed as a leader, it can use its own signature key to

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

127 Seyedehsamane Abdigarmestani
(Samane Abdi)

5. Extending SSTM for Supporting

Secure Cross Coalition

Cooperation 5.3 Existing Coalition Frameworks

sign certificates for admitting members and appointing leaders. Also, all group

leaders share the same signature key for issuing certificates. Different rights may

be delegated to different types of members by defining different roles. In this

framework, if a group leader leaves the group for any reason, the group will not

be broken. The form of administration is distributed and all leaders have the same

authority for managing the coalition resources. However, this framework suffers

from the problem that a compromise of the signature key leads to breakdown

failure of the entire group. The other disadvantage of this approach is that a

malicious principal who obtains the leadership of a group with the same authority

of other leaders, can misuse its authority for illegal behaviour.

5.3.5 Internet Services of Coalition Model

A framework for future Internet Services of Coalitions(ISC) was proposed in [162].

The focus of ISC is on collaboration of service providers in provisioning future

internet services. The form of administration is distributed as resource shar-

ing decisions are taken by each participant (an individual service provider) in

the coalition. It supports dynamic membership where a coalition is formed au-

tonomously by individual service providers. Several service providers may join

and leave the coalition at any time. Cross coalition cooperation is not an ob-

jective in their framework. We argue that the ISC framework does not support

cross coalition cooperation since the coalitions are not identified uniquely in the

global environment.

5.3.6 Ellison-Dohrmann Model

A model of access control for mobile computing platforms was proposed in [64]

based on SDSI name certificates. The form of administration is decentralized

in this model. Because the coalition does not rely on a central authority. The

coalition has a leader that admits members and controls all the resources of

the coalition. A coalition leader represents the corresponding coalition using a

SDSI name certificate. The leader may directly admit members by issuing name

certificates that relate its local name for the coalition with the public keys of

members. A coalition leader also controls all resources of the coalition. However,

this model is vulnerable to the subterfuge problem which limits the usage of this

model for open cooperation. A malicious principal E may deceive a principal P

that is already a member of group A, to join its group M . A malicious principal

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

128 Seyedehsamane Abdigarmestani
(Samane Abdi)

5. Extending SSTM for Supporting

Secure Cross Coalition

Cooperation 5.3 Existing Coalition Frameworks

Q intercepts the principal P ’s group membership certificate C1 in group A, and

principal P may issue a name certificate C2 to accept Q as a member of group M .

However, regardless of P ’s intention, principal Q can use the set of certificates

{C1, C2} to prove its membership in group A. Thus, this framework does not

support subterfuge safe open cooperation.

5.3.7 Distributed Authorization Language Model

A framework for establishing decentralized secure coalitions is proposed based

on a role-based Distributed Authorization Language (DAL) [87]. The coalition

is formed with the involvement of a constructor, founders, and oversight. The

constructor defines the regulation of the coalition and creates the coalition based

on those regulations. The founders agree on the coalition regulation that is spec-

ified by the constructor. The oversight is a pre-agreed penalty contract by the

coalition constructor and all the coalition founders. This framework supports

the dynamic establishment of coalitions, forming of further coalitions, and coali-

tion merge. A coalition has a unique identifier that includes its signature key as

defined in DAL. The purpose of the coalition key is to sign the initial coalition

regulations during the formation of the coalition. The coalition key is generated

and initially held by the constructor of the coalition. The constructor is selected

by the coalition founders and may be a trusted external third party or prospec-

tive member of the coalition. Once the initial coalition regulations that identify

the coalition constructor, founders and oversights have been signed and the coali-

tion formed, the coalition key is not used for further signing. Further specified

coalition regulations are signed by coalition founders. In forming a coalition, the

constructor signs a penalty contract accepting responsibility for the proper use of

the signing key. If the key is misused then the constructor becomes liable under

the terms of the contract. The coalition regulations are such that it is not possible

to establish a coalition without signing this contract. In practice, it is expected

that after forming the coalition, the constructor will destroy the coalition key in

order to avoid accidental compromise. This coalition framework does not rely

on a central authority. Once a coalition is formed, then all the authority of the

coalition stands with the founders who can create and regulate their own coalition

structure. Moreover, delegation subterfuge can be prevented by associating the

originator’s public key to permissions. However, this suffers from the challenge

of referencing public keys and relies on a globally defined function to define per-

mission relationships. Also, DAL as a basis for a coalition framework, does not

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

129 Seyedehsamane Abdigarmestani
(Samane Abdi)

5. Extending SSTM for Supporting

Secure Cross Coalition

Cooperation 5.4 Secure Coalition Characteristics

Figure 5.6: Summary of coalition features of different frameworks

support SDSI extended names as a way of providing indirect referencing among

participants in different coalitions for more expressiveness. Figure 5.6 depicts a

comparison of the reviewed coalition frameworks and the SSTM-based coalition

framework that will be introduced in section 5.5.

5.4 Secure Coalition Characteristics

To support formation and evolution of a secure coalition that is able to cooperate

openly with other coalitions we explain that the following characteristics are

desirable in a coalition framework.

Globally Unique Identification A secure coalition must have a permanent

and unique coalition identity to identify itself in open environments. This is im-

portant when a coalition makes a statement, as it must be clear for the principals

outside the coalition which coalition the statement is from.

Dynamic Formation The formation and evolution of a coalition must be

achieved entirely by its participants. Moreover, coalitions may form further coali-

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

130 Seyedehsamane Abdigarmestani
(Samane Abdi)

5. Extending SSTM for Supporting

Secure Cross Coalition

Cooperation 5.5 SSTM-Based Coalition Framework

tions (split). Coalitions may also come together to dynamically form a new coali-

tion (merge).

Dynamic Leadership and Membership Membership and leadership man-

agement should not be managed by any central authority. In a dynamic coalition

environment, any principal should be able to establish a coalition (following the

regulations) and assign a leader for the coalition and admit members.

Subterfuge Safe Cross Coalition Cooperation Permissions that may be

delegated from one coalition to another coalition must clearly reference their

originator. Therefore, the recipient of a permission in one coalition cannot misuse

the permission in another coalition. This way secure cooperation among multiple

coalitions is possible.

Accountability A coalition framework must provide a mechanism for tracking

responsibility for the permissions that are delegated within the coalition and also

across the coalitions. This prevents malicious participants in a coalition from

behaviour that results in misuse of coalitions resources while appearing legitimate.

Decentralized Administration The access control model for an open coali-

tion should be decentralized. In other words, the open coalition access control

model should not have to rely on a central authority or a centralized authorization

server. In a decentralized approach, each resource owner in the coalition should

prevent inappropriate access of its resources.

We are not aware of any existing approach that provides an infrastructure that

has all of the above characteristics. Using SSTM, we introduce a framework for

formation of secure and dynamic coalitions. Coalitions framework using SSTM

can be formed in a fully distributed manner without relying on a centralized

administration. This framework can be used to split a coalition into further

coalitions or allow multiple coalitions to merge.

5.5 SSTM-Based Coalition Framework

Cross coalition delegation is a challenge for open cooperation among coalitions.

When two or more participants from different coalitions define the same permis-

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

131 Seyedehsamane Abdigarmestani
(Samane Abdi)

5. Extending SSTM for Supporting

Secure Cross Coalition

Cooperation 5.5 SSTM-Based Coalition Framework

sion specification for accessing their resources, they are vulnerable to delegation

subterfuge [71]. The same permission specification might be ambiguous and cause

confusion for the principal who receives similar permissions. This ambiguity and

associated confusion results in delegation subterfuge, in that the principal who

receives the permission in one coalition can misuse it to access the resources

of another coalition via an indirect and apparently authorized route. Defining

two similar permission specifications happens because none of the participants in

different coalitions have a complete picture of the name schema for permission

specifications. This vulnerability for subterfuge was discussed in detail in chapter

1 and also presented in [71, 75].

Using policy based trust management systems provides a systematic security

mechanism for automatic trust decisions regarding the open cooperation of mem-

bers of different coalitions. This is a more controlled systematic way in contrast

to reputation based trust management systems. A variety of trust management

systems have been developed over the years to address the requirement for con-

structing trust and managing authorization without relying on a central author-

ity [9,10,43,46,60,65]. They assume unique and unambiguous permission names

are provided by a global name provider service. Although global name servers

provide a unique interpretation for each name, the principals participating in

coalitions may still use arbitrary names to represent their own resources. It de-

pends on the experience of the coalition participant administrator who creates the

permissions to specify non ambiguous permissions. However, the design of non

ambiguous permissions should not rely on this; it should be formalized in a formal

authorization language. Therefore, without a reliable name schema for globally

unique permission specification, it is impossible to prevent ambiguity and provide

subterfuge safe cross coalition delegation and consequently open cooperation.

SSAL was proposed to support subterfuge safe delegation in large scale distributed

systems without relying on a pre-agreed global naming service or super security

administrator [75]. A SSTM-based coalition framework uses SSAL as the security

policy to provide a secure framework when coalition participants are distributed.

The proposed coalition framework provides dynamic membership and subterfuge

safe delegation of permission across different coalitions without relying on a super

security administrator and global naming scheme. Moreover, it does not have the

problem of relying on a globally defined function to define permission ordering

relationships, such as existed in [87]. In addition, SSAL supports SDSI’s extended

names that provides a mechanism for indirect referencing among participants in

different coalitions. SSAL can be used as a policy language to construct state-

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

132 Seyedehsamane Abdigarmestani
(Samane Abdi)

5. Extending SSTM for Supporting

Secure Cross Coalition

Cooperation 5.5 SSTM-Based Coalition Framework

ments and manage authorization/delegation relationships to automate the deci-

sion making process for securely sharing resources among coalition participants.

In this section, we describe the process by which new coalitions are formed using

SSAL. To build an effective coalition, we must first establish the coalition enti-

ties and their relationships to one another. A coalition is identified by a unique

coalition identifier and is composed of coalition leaders, coalition members, and

a set of all shared resources of all members of the coalition.

5.5.1 Forming a New Coalition

A new coalition is created by generating a fresh (public/private) key pair. The

new key pair (kC , kC−1

) is called the coalition key. The public key kC is used as

the coalition global unique identifier. The coalition signature key kC−1

is used to

assign the coalition’s leader. The owner of the coalition key is called the leader of

this coalition and controls the coalition signature key. In this way, coalitions can

be formed dynamically. In some existing frameworks, coalitions may not have a

globally unique identifier [165]. If the coalition does not have a unique identifier,

then it cannot be identified over the global distributed network. Therefore, when

a coalition (spoken for by its leader) makes a statement it is not clear to the

principals outside of the coalition that the statement is from the coalition, and

thus cross coalition delegation is not possible. In forming a coalition, the coalition

leader generates a fresh key pair and signs the leadership statement for itself. This

is done by issuing a SSAL name certificate with the coalition signature key as the

issuer of the certificate and the leader’s global unique identification (either public

key or local name) as subject of the certificate. For example, assuming kc is the

coalition public key, and L the leader of the coalition, the following certificate:

(kc leader) −→ L1

means that L1 is the leader of the coalition identified by the coalition public key

kc. Once the coalition is formed and the leader is appointed, the coalition signa-

ture key (ephemeral private key) will be destroyed in order to avoid accidental

compromise of the coalition key. Then all the authority of the coalition lies with

the leader who can admit members and regulate the coalition.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

133 Seyedehsamane Abdigarmestani
(Samane Abdi)

5. Extending SSTM for Supporting

Secure Cross Coalition

Cooperation 5.5 SSTM-Based Coalition Framework

5.5.2 Issuing Membership

In the beginning, the leader is the only member of the coalition. The leader may

admit members by issuing SSAL name certificates for principals willing to join

any coalition. The certificates are signed with the leader’s signature key rather

than the coalition signature key. For example, the coalition leader L1 may admit

principal M1 to join the coalition as the coalition member. The coalition leader

L1 issues the following name certificate to accept M1 as a coalition member:

(L1 member) −→M1

Note that the leader uses its own key to admit new members. In other words, the

coalition leader speaks for the coalition. When a coalition leader admits members

to the coalition, it passes along all the certificates that prove its own status as

a leader in the coalition. In this way, a member can prove its membership to

another coalition member or to an outsider by presenting a set of certificates

related to its membership. In the above certificate, the member M1 proves its

membership to other members of coalition kC by presenting the following set of

certificates:

(kc leader) −→ L1

(L1 member) −→M1

where, the following statement can be inferred (applying the rule introduced in

section 3.3.1):

(kc leader member) −→M1

In this way, the membership of M1 in coalition kc can be proved.

5.5.3 Local Policy for Cross Coalition Sharing Resources

To effectively participate in dynamic coalitions, participants must be able to

share their resources within the coalition as stated in their access control policy.

They need to make sure that their resources are safe from access that does not

comply with their local policy. This requires each participant to define a security

policy for accessing its resources called a local policy (LP). It is important that

each participant in a coalition has a local policy to govern coalition members in

accessing its resources. Each local policy may contain a set of permissions that

constraint access to the corresponding resources. The set of all permissions S in

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

134 Seyedehsamane Abdigarmestani
(Samane Abdi)

5. Extending SSTM for Supporting

Secure Cross Coalition

Cooperation 5.5 SSTM-Based Coalition Framework

a coalition member’s name space may be considered to form a pre-order relation:

(S,⊑) : (Si ⊑ Sj); (Si, Sj ∈ S)

This means if a principal holds the permission Sj it also holds the permission Si,

we say Sj implies Si. For example, there might be a pre-order relation over the set

of permissions including {read, write} corresponding to a coalition member’s file

system resources, as read ⊑ write. To avoid ambiguity in permission interpreta-

tion when two different coalition partners define the same permission specification

for their resources, the SSAL framework provides a localPermission mechanism.

A permission x for a given resource of a coalition member identified by either its

public key or local name M will be represented as a localPermission 〈M x〉. The

set of permissions is created locally and a coalition member must explicitly define

how the permission that it originates locally, relates to other permissions glob-

ally. Thus, the coalition member M may define the permission global ordering no

less authoritative than over the set of permissions in its name space. Assuming

y as the other permission specification defined locally in the name space of M ,

where x ⊑ y, the coalition member M defines the permission global ordering as

x y (x is no less authoritative than y). However, it is not effective to define the

permission global ordering no less authoritative than among permissions of the

set of permissions individually forming a pre-order relationship. In other words,

it is neither effective nor efficient for a principal that is willing to join a coalition

to define localPermissions and their orderings through a multiple signing process.

The participant in a coalition should be able to define a set of permissions for its

resources and their orderings in its name space, and sign the entire permission

set and their ordering in a single signing process to make them globally unique.

We add two SSAL rules to transform the local pre-order relation among a set of

permissions defined in a coalition member’s local policy to the global permission

ordering no less authoritative than. These rules are defined in the following:

LP1

A resource owner signs the set of permissions for its resources and the pre-order

relation among permissions with its public key in a single signing process. In this

way, the resource owner holds any individual permission of that set in its name

space. Given a set of permissions S with pre-order relation among the permissions

of this set (S,⊑), a permission x in S, and public key K of the resource owner,

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

135 Seyedehsamane Abdigarmestani
(Samane Abdi)

5. Extending SSTM for Supporting

Secure Cross Coalition

Cooperation 5.5 SSTM-Based Coalition Framework

we define the following rule:

{|(S,⊑)|}sK
; x ∈ S

K ∋ 〈K x〉

This denotes that a coalition participant defines the set of permission S and

their ordering relationship as (S,⊑) for its resources. The participant holds each

individual permission x by signing the entire permission set and their orderings

(S,⊑) in a single signing process while willing to share its resources within the

coalition.

LP2

The pre-order relation among a set of permissions in a principal’s name space may

be transformed to the permission global ordering relation, no less authoritative

than, in the following rule:

{|(S,⊑)|}sK
; x ∈ S; y ∈ S; x ⊑ y

〈K x〉 〈K y〉

This denotes that by signing the entire set S, each permission in the set will

have a global unique interpretation, and the permission local ordering relation-

ship among each individual permission specification can be transformed to the

permission global ordering relationship no less authoritative than. Therefore, in

participating in a coalition, a resource owner only signs the set of permissions de-

fined in its local policy and then by applying rules LP1 and LP2 the permissions

and their ordering will have a global and unique interpretation. This prevents a

participant of a coalition signing every single permission in its local policy to pro-

vide a global unique interpretation across one coalition and also among different

coalitions.

A coalition participant that is willing to share its resources may sign the entire

permission set and their orderings over its resources and delegate it to the coalition

leader for further delegation (either within the coalition or cross coalitions). In

this way (applying rule LP1 and LP2) each permission is globally and uniquely

referenced by its originator as an accountable principal; so subterfuge will be

avoided. Moreover, the coalition leader may accept accountability (signing an

accountability statement) for the permissions that it receives from the member of

its coalition for further delegation of that permission to other coalitions. Figure

5.7 illustrates a coalition that is formed by leader issuing certificates to members.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

136 Seyedehsamane Abdigarmestani
(Samane Abdi)

5. Extending SSTM for Supporting

Secure Cross Coalition

Cooperation 5.5 SSTM-Based Coalition Framework

F
ig

u
re

5.
7:

A
co

al
it

io
n

is
fo

rm
ed

b
y

le
ad

er
,

is
su

in
g

ce
rt

ifi
ca

te
s

to
m

em
b

er
s

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

137 Seyedehsamane Abdigarmestani
(Samane Abdi)

5. Extending SSTM for Supporting

Secure Cross Coalition

Cooperation 5.5 SSTM-Based Coalition Framework

5.5.4 Coalition Split/Merge

SSTM-based coalition framework allows the dynamic formation of coalitions

among participants that are willing to collaborate, as well as supporting arbitrary

merge and split to modify a coalition partitioning. In the following sections, we

explain how a coalition can be split into further coalitions, as well as merging

multiple coalitions to one coalition.

Split

An existing coalition can decide to split into smaller coalitions where any coalition

Un
i=1 Ci can be split into the smaller coalitions as {C1, ..., Cn}. A participant

(including leader and members) of the existing coalition (where the coalition is

identified by its public key kc1) generates a coalition key pair as (kc2, kc−1

2). The

split coalition key kc2 can be used to assign a leader for split coalition kc2 and

then the leader can admit members. Assigning a leader and admitting members

will be done among the participants of coalition kc1. A coalition split happens

when a coalition member prefers to share its resources with a number of coalition

participants while still participating in the previous coalition. At this point, a

coalition member decides to split the coalition, appointing itself as the leader

of the split coalition, admitting members from the subset of current coalition

participants, and sharing its desired resources with the participants of the new

split coalition.

Merge

Multiple coalitions can merge into a larger coalition where any set of coalitions

{C1, ..., Cn}

can be merged to one coalition as

Un
i=1 Ci

In other words, the union of participants of multiple coalitions in order to share

their resources is called a coalition merge. Members of merged coalitions are the

union of the members of the previous coalitions before merging. The leaders of

two or more coalitions may come together and decide to merge their coalitions.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

138 Seyedehsamane Abdigarmestani
(Samane Abdi)

5. Extending SSTM for Supporting

Secure Cross Coalition

Cooperation 5.5 SSTM-Based Coalition Framework

Assume two coalitions with two globally unique identifiers kc1 and kc2 want to

merge. L1 is the leader of kc1 and L2 is the leader of kc2, denoted by the following

SSAL statements:

(kc
1 leader) −→ L1

(kc
2 leader) −→ L2

One of the leaders of these coalitions, issues a membership statement to admit, as

its coalition member, the leader of the coalition willing to merge. Therefore, only

a membership certificate needs to be issued for admitting the leader of a previous

coalition as a member of the new merged coalition. An instance of membership

certificate for merging coalitions is as follows:

(L1 member) −→ L2

Thus, the certificate (kc
2 leader) −→ L2 will be revoked (we do not consider

the mechanism for key revocation or certificate revocation in this thesis). The

previous membership statements issued by leader L2 can be used to refer to the

membership in the merged coalition. These are a form of extended local names

and can be inferred by applying the SSAL rule described in section 3.3.1. M2

is admitted as a member of coalition kc2 with the following SSAL statements

(employee is an arbitrary chosen name that L2 chooses for its members):

(kc
2 leader) −→ L2

(L2 employee) −→ M2

The new membership of M2 in the coalition kc
1 will be inferred from the above

statements by applying rule described in section 3.3.1 to the existing membership

statements:

(L1 member) −→ L2

(L2 employee) −→ M2

Applying SSAL rule 3.3.1, the membership of M2 in the coalition kc
1

((kc
1 Leader) −→ L1) can be inferred by the following extended name, that is:

(L1 member employee) −→M2

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

139 Seyedehsamane Abdigarmestani
(Samane Abdi)

5. Extending SSTM for Supporting

Secure Cross Coalition

Cooperation 5.6 Discussion

5.6 Discussion

STM-based coalition formation has a number of characteristics that we discuss

in the following.

Globally Unique Identification for Coalitions Every coalition is identified

by generating a key pair (public /private keys) by its leader. With the public

key the coalition will identify itself over the distributed environments. When a

coalition (spoken for by its leader) makes a statement, it is clear to the principals

outside the coalition which coalition the statement is from.

Dynamic and Autonomous Formation All coalitions, leaders, and members

can be viewed as principals which are identified as globally unique by a public

key. Then each principal can form a coalition autonomously using the SSTM

framework and consequently split/merge the coalitions.

Dynamic Leadership and Membership The leadership and membership

process is dynamic. Any principal that generates a key pair can establish the

coalition and consequently appoint itself as the leader of the coalition. Members

are admitted by the leader (speaking for the coalition).

Subterfuge Safe Cross Coalition Delegation SSAL statements and rules

can be used in the coalition framework to provide subterfuge safe cross coalition

delegation. Permissions delegated from one coalition to another coalition clearly

reference their originator. The recipient of a permission in one coalition, cannot

misuse the permission in another coalition.

Accountability Originating a permission creates an accountability for the re-

source owner. The SSTM framework provides two forms of accountability, ac-

countability by originating a permission, and accountability by issuing a state-

ment regarding the acceptance of accountability by a principal that holds the

permission (for example, the leader of a coalition).

Decentralized Access Control The coalition framework using SSAL state-

ments and rules, does not require a super security administrator. The coalition

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

140 Seyedehsamane Abdigarmestani
(Samane Abdi)

5. Extending SSTM for Supporting

Secure Cross Coalition

Cooperation 5.7 Case Study

participants (including leader and members) define the permissions and their or-

derings in the local policy in order to control access to their resources. The per-

missions and their orderings in the local policy will be transformed to a globally

unique interpretation and global ordering using the SSAL new rules in the frame-

work. In this way, the resources shared in the coalition are under the distributed

control of their owners. When a principal makes a request to the resource owner,

SSTM can be used by the coalition leader to make the appropriate decision for a

particular resource.

5.7 Case Study

In this study, we present about the formation of a coalition, assigning a leader,

admitting members, coalition split, and coalition merging.

Forming a coalition Alice establishes a coalition called Org by generating the

public key kc
org as the coalition’s global unique identifier. Alice is the coalition

leader because she generates and consequently owns the coalition signature key.

For proving her leadership, Alice, where, kA is Alice’s public key, appoints herself

as the coalition leader with the following certificate:

(kc
org leader) −→ kA (5.1)

Admitting members Alice may accept Mary, the owner of public key kM , as

a member of coalition Org by issuing the following certificate:

(kA member) −→ kM (5.2)

So, Mary as her proof of membership in coalition Org presents the certificates

(5.1), and (5.2).

Sharing resources To allow the participants of a coalition read and write on

her resource filex, Mary defines the following permission set and ordering in her

local policy and signs it as follows:

{|(read, write; read ⊑ write)|}skM

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

141 Seyedehsamane Abdigarmestani
(Samane Abdi)

5. Extending SSTM for Supporting

Secure Cross Coalition

Cooperation 5.7 Case Study

Mary delegates her signed set of permissions and orderings to Alice for further

delegation to the coalition’s participants as following:

kM

{|(read,write;read⊑write)|}skM=⇒ (kc
org leader)

Mary’s locally defined permission and ordering will have the following globally

unique interpretation 〈kM read〉, 〈kM write〉, and global unique ordering:

〈kM read〉 〈kM write〉

this prevents confusion and subterfuge in cross coalition delegations. Moreover,

it provides a form of accountability for Mary for these permissions.

Splitting coalitions Mary may decide to split the coalition to form a new

coalition HR and share part of her resources with specific participants in the

coalition. Mary generates the key pair (kc
HR, kc

HR
−1), as the coalition HR globally

unique identifier, and issues the following certificate to appoint the leader of the

coalition HR:

(kc
HR leader) −→ kM (5.3)

(kM hrMember) −→ kB (5.4)

Merging coalitions Consider another coalition Salec, identified by public key

kc
SL. Smith, the owner of public key kS, establishes this coalition and consequently

is the leader of this coalition. Dave is a member of this coalition. The following

are the certificates that are issued for establishing coalition Salec:

(kc
SL leader) −→ kS (5.5)

(kS member) −→ kD (5.6)

Mary, the leader of coalition HRc, and Smith, the leader of coalition Salec, decide

to merge to form a new coalition called HSc. Lucy, the owner of public key kL,

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

142 Seyedehsamane Abdigarmestani
(Samane Abdi)

5. Extending SSTM for Supporting

Secure Cross Coalition

Cooperation 5.7 Case Study

generates the coalition public key as kc
HS to identify the merged coalition. Lucy

issues the following leadership certificates:

(kc
HS leader) −→ kL (5.7)

(kL hsMember) −→ kM (5.8)

(kL hsMember) −→ kS (5.9)

Dave who was a member of coalition Salec, after merging the coalitions HRc

and Salec to coalition HSc can be inferred as a member of coalition HSc from

statements (5.7) and (5.9) (applying rule 3.3.1) as the following extended name:

(kc
HS leader hsMember) −→ kS (5.10)

and from statements (5.6) and (5.10) applying rule 3.3.1 we have the following

as the proof of Dave’s membership:

(kc
HS leader hsMember member) −→ kD (5.11)

Mary and Smith delegate the permissions that they hold to Lucy as the leader of

the merged coalition. For example, Mary delegates the set of permissions in her

local policy as (all;⊑) to Lucy, and Lucy delegates them further to share Mary’s

resources with the merged coalition participants.

kM

{|(all;⊑)|}skM=⇒ (kc
HS leader)

kL

{|(all;⊑)|}skM=⇒ (kL hsMember)

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

143 Seyedehsamane Abdigarmestani
(Samane Abdi)

5. Extending SSTM for Supporting

Secure Cross Coalition

Cooperation 5.8 Summary

5.8 Summary

In this chapter, we have used and extended SSTM as a policy based trust man-

agement framework for dynamic formation of coalitions among distributed par-

ticipants. A coalition may be formed by any principal that generates a key pair to

uniquely refer to the coalition in the global network. The principal appoints itself

as the leader (consequently the first member) of a coalition and admits members.

SSTM focuses on delegating permissions, whereby there is a global permission

ordering defined over localPermissions that have globally unique interpretations.

The globally unique interpretation provides a form of accountability for the orig-

inator of a permission and avoids the subterfuge problem that can occur in cross

coalition delegation [71, 75]. This advances the work presented in [87] for sub-

terfuge safe cross coalition delegation for open cooperation. The two new rules

allow the permissions and their orderings to be defined locally and delegated glob-

ally. The two rules can be used to transform the locally defined permissions and

their orderings to a globally unique interpretation and ordering. This chapter

addressed how participants in the coalitions can originate, manage, and delegate

their own policy rather than relying on a central definition of policy for defining

the access control policy for the whole coalition.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

144 Seyedehsamane Abdigarmestani
(Samane Abdi)

Chapter 6

Application of SSTM

In the previous chapters we introduced the subterfuge safe authorization lan-

guage, SSAL. We also developed SSALO, an ontology-based approach for sub-

terfuge safe access control in open environments. Using SSALO as the policy

engine, SSAL as the policy language, SSTM provides a trust model to build and

manage trust and authorization relationships across distributed principals. In

this chapter we describe the application of SSTM in two case studies. These case

studies demonstrate the use of SSTM for federation of clouds in section 6.1 , and

for managing the federation of XMPP instant messaging servers in section 6.2.

6.1 Secure Cloud Federation

Cloud computing is a new paradigm in which applications, data, and IT resources

are provided to customers as services in an open manner (over the internet) rather

than running locally on the customer’s machine. A cloud computing platform

enables customers to access these services with a high degree of freedom anywhere

and any time. In order to be more beneficial and productive, different cloud

computing platforms can share their resources with each other while guaranteeing

that each cloud computing platform has enough resources to achieve adequate

performance. This can be achieved through cloud federation.

A cloud federation [166] is a collaboration among different cloud computing plat-

forms to share their resources to take advantage of aggregation and produce an

enlarged computing utility. A cloud computing platform may share its resources

with other cloud computing platforms when it has resources beyond the needs of

its own customers. Similarly, a cloud computing platform may request resources

145

6. Application of SSTM 6.1 Secure Cloud Federation

Figure 6.1: Breakdown in accountability for permissions in cloud federation

from another cloud computing platform when its workload cannot be satisfied by

its own resources. In this way, both cloud computing platforms benefit because

one can obtain more customers, and the other will retain its existing customers.

Despite the potential gains achieved from cloud federation, there are security

concerns regarding access to the cloud computing resources [167,168]. Because of

the cloud federation characteristics such as large amounts of distributed resources,

and lots of distributed customers, a decentralized approach for managing access

to cloud computing resources is required. Trust management systems provide a

decentralized approach and are suitable to address access control for cloud com-

puting resources when multiple cloud computing platforms establish federation.

Permissions are delegated from the owner of resources of one cloud computing

platform to the service provider of another cloud computing platform rather than

directly controlling the access to cloud computing resources, thereby forming a

chain of delegations. A delegation chain provides permission evidence for ac-

cessing a resource, and also ensures accountability for the delegated permission.

Breakdown in accountability may arise when there is not a unique interpretation

for a permission specification. Thus, the delegation chain which is used by service

providers to verify their access to cloud computing resources may not reflect the

correct accountability for a permission in the chain.

In receiving two identical permission specifications, the delegator may be confused

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

146 Seyedehsamane Abdigarmestani
(Samane Abdi)

6. Application of SSTM 6.1 Secure Cloud Federation

when inferring the accountability for further delegation. However, permission ac-

countability should not rely on ad-hoc strategies, rather, a systematic way of pro-

viding accountability is required. The notion of localPermission was introduced

to provide a systematic way of providing globally unique interpretation for locally

defined permissions [147]. We use localPermissions to achieve robust accountabil-

ity for delegated permissions in cloud federation. This case study discusses the

breakdown in accountability for delegated permissions in cloud federation, and

then demonstrates how using SSTM provides breakdown-robust accountability.

6.1.1 Breakdown in Permission Accountability in Cloud

Federation

In this section, we introduce an example to explain the ambiguity regarding per-

mission specification that results in breakdown of accountability for that permis-

sion when different cloud computing platforms establish a federation. Note that,

accountability refers to the tracking of a principal’s activity under the permission

that the principal holds. The permission might be delegated by another principal

who must also be held responsible for the actions activated by that permission.

In trust management systems, certificates (cryptographic assertions) specify del-

egation of permissions among principals. Principals may further delegate their

permissions to other principals. A delegation statement indicates that the au-

thority for a permission is delegated from one principal to another principal(s).

The delegation statement is denoted as P
X

=⇒ Q, whereby principal P signs a

statement that it authorizes principal Q for permission X. A principal is consid-

ered to be accountable for a permission, if it accepts responsibility for how the

permission is used by other principals. Ambiguity regarding the unique interpre-

tation of a permission can result in confusion of the principal who is considered

to be accountable for that permission. From now on, we refer to cloud computing

platform with the term "cloud". Suppose that cloud A wants to federate with

cloud B and with cloud M , to use the maximum capacity of their data storage

resources. Cloud B, identified by its public key kB, issues a delegation statement

enabling cloud A, identified by its public key kA, to access data storage space at

cloud B. This is denoted by the statement:

c1 : kB
Storage
=⇒ kA

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

147 Seyedehsamane Abdigarmestani
(Samane Abdi)

6. Application of SSTM 6.1 Secure Cloud Federation

On the other hand, suppose that the malicious cloud M , identified by its public

key kM , intercepts the delegation statement issued by kB (c1), and uses it in the

following delegation statement issued by kM :

c2 : kM
Storage
=⇒ kA

Cloud A does not realize that it received the same permission specification (from

kB) and therefore it is led to believe that permission specification Storage is

related to accessing data storage resources at cloud M . As a consequence of

this confusion, cloud A grants access to the data storage space of cloud M to its

customer, identified by public key kC, denoted as:

c3 : kA
Storage
=⇒ kC

This scenario is depicted in Figure 6.1. However, customer kC , colluding with

the malicious cloud M , can use the certificates c1 and c3 as proof of authoriza-

tion to access the data storage space of cloud B. Regarding accountability, when

cloud A issues the certificate c3 (A is considered the accountable principal for

delegated permission in c3), it believes that the certificate c2 provides the cor-

rect accountability for cloud M (as a track record of accountability for delegated

permissions). However, kA is confused and should not be held accountable for

inadequacy in the permission specification that was specified by cloud B. One

may argue that this breakdown in accountability could be prevented by adding

extra information about the originator of the permission to the permission spec-

ifications. For example, the permission cloudB/Storage is clearly related to its

originator. However, a malicious service provider at cloud M , may intercept the

certificate:

c4 : kB
cloudB/Storage

=⇒ kA

and issue a delegation certificate to delegate permission cloudB/Storage to cloud

A, as:

c5 : kM
cloudB/Storage

=⇒ kA

Cloud A does not realize that cloud M does not have any authority over cloud

B’s resources and in further delegation to its customer, kC, issues the following

certificate as :

c6 : kA
cloudB/Storage

=⇒ kC

Cloud A claims that it cannot be held accountable for the confusion when kC uses

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

148 Seyedehsamane Abdigarmestani
(Samane Abdi)

6. Application of SSTM 6.1 Secure Cloud Federation

Figure 6.2: Locally defined permission with global unique interpretation

the delegation certificates c4 (instead of c5) and c6 to access the data storage of

cloud B.

6.1.2 Accountability for Delegated Permission

Using localPermission prevents the resource owners from issuing ambiguous per-

missions. The localPermission 〈P P erm〉 represents a permission specification

named locally as P erm in the name space of cloud P . P is identified by pub-

lic key k. The permission P erm signed by P ’s public key (sk), {|P erm|}sk
is

the globally unique reference that corresponds to (refers to) permission P erm

in the name space of P . This provides a globally unique interpretation for per-

mission specifications and prevents ambiguity. Therefore, principals such as a

cloud administrator receiving two identical permission specifications cannot mis-

use the permission or get confused and use of them for non-intended purposes.

Unambiguous interpretation for each permission makes the originator of each per-

mission accountable for any actions enabled by that permission. This is denoted

as P ⊲ 〈P P erm〉. For example, by originating a permission for granting access

to its data storage space, cloud B (owner of public key kB) is implicitly accepting

accountability for the use of this storage space, i.e. kB ⊲ 〈kB Storage〉. Fig-

ure 6.2 depicts the localPermission of this example. Moreover, in existing trust

management systems the set of permissions implicitly have a globally defined

pre-order relation. localPermissions are specified locally and an originator must

explicitly define how the permissions which are originated locally, relate to other

permissions globally. An ordering relation X Y is explicitly defined between

permissions X and Y , where permission X is dominated by permission Y . In

other words, a principal that is authorized for the resources enabled by permis-

sion Y is considered to be authorized for resources enabled by permission X.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

149 Seyedehsamane Abdigarmestani
(Samane Abdi)

6. Application of SSTM 6.1 Secure Cloud Federation

Figure 6.3: Trust management for cloud federation

For example, cloud B originates a localPermission 〈kB federation〉 authorizing

federation with another cloud. Cloud B also asserts that anyone authorized for

federation has authority to use its data storage space, denoted as:

〈kB Storage〉 〈kB federation〉

This represents a policy that is local to cloud B but is globally interpretable. A

principal Q may accept accountability for the permission 〈P P erm〉 by signing a

statement to that effect. However, the principal asserting accountability must be

authorized for the permission in the first place. This prevents a malicious prin-

cipal claiming accountability for a permission (enabling access to a resource) for

which it is not trusted. For the example in Figure 6.1, kM asserts that it accepts

accountability for 〈kB Storage〉, however, kM is not authorized for 〈kB Storage〉

and therefore, kA cannot deduce that kM is accountable for 〈kB Storage〉 (denoted

as kM ⊲ 〈kB Storage〉).

6.1.3 Compliance Checking for Accountability

Compliance checking is at the heart of a trust management system [14]. The

inputs for a compliance checker are a request, a set of certificates, and a security

policy. The compliance checker checks whether a set of certificates proves that

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

150 Seyedehsamane Abdigarmestani
(Samane Abdi)

6. Application of SSTM 6.1 Secure Cloud Federation

Figure 6.4: Inputs and output of a compliance checking system

a requested action complies with the security policy. Figure 6.4 illustrates the

inputs and outputs of a compliance checking system. Compliance checking in cur-

rent trust management systems corresponds to answering the query (by principal

P):

Is requester r authorized to access the resources specified in permission X?

This is evaluated by verifying that the request is supported by a set of certificates

that complies with the security policy. Thus, accountability is not addressed

directly in current compliance checking mechanisms for trust management. In

our approach, if principal P originates permission X then it is deduced that

principal P , as the originator of non-ambiguous permission X, is accountable

for that permission (P ⊲ X). However, in the case that P is not the originator

of permission X, principal P should determine that some principal R can be

held accountable for actions associated with permission X. This needs to be

determined before P can sign a delegation statement to delegate permission X to

other principals. This is evaluated by determining whether principal R (an earlier

principal in the delegation chain) is accountable for permission X, denoted as

(R⊲X), and that P trusts R to provide accountability. If the check succeeds then

P delegates permission X to other principals. We define two types of compliance

checking for determining accountability: one for accountability for authorization

to access a resource, and the other for accountability for further delegation of

permissions.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

151 Seyedehsamane Abdigarmestani
(Samane Abdi)

6. Application of SSTM 6.1 Secure Cloud Federation

6.1.3.1 Authorization Check

Compliance checking for accountability regarding accessing a resource owned by

principal P corresponds to the query:

CK1: Is requester r allowed to access the resource governed by permission X, for

which a principal R is accountable?

This is evaluated by determining whether the requester r can prove (with a set

of certificates) that it holds permission X and an accountable principal for per-

mission X can be inferred.

6.1.3.2 Delegation Check

Similarly, compliance checking for accountability regarding further delegation of

permission X corresponds to the query (by principal P):

CK2 : Is a principal R accountable for permission X, that was delegated to

principal P ?

This is evaluated by determining whether a principal R is accountable and

whether P trusts R to provide accountability. We assume that if a principal

is trusted for some permission, then any assertion that the principal makes for

accepting accountability for that permission is also trusted.

6.1.4 Managing Cloud Federation Using SSTM

SSTM can be used to manage the trust relationships among different clouds for

securely sharing their resources in a federation. Suppose that the service provider

for cloud B (identified by public key kB) in Figure 6.3 uses SSTM for controlling

access to its resources. When a request from an untrusted customer is made

to access cloud B’s resources, SSTM helps the service provider of cloud B in

making well-founded access decisions. Suppose all cloud A’s resources are in

use and cloud A, identified by its public key kA, is unable to instantiate further

resources for its customers. In order to be able to continue providing service to

its customers, cloud A decides to federate with cloud B. Thus, the federation

agent in cloud A (FA), identified by public key kF A, sends a signed request for

federation, including the IP address ranges of cloud A, to the federation agent in

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

152 Seyedehsamane Abdigarmestani
(Samane Abdi)

6. Application of SSTM 6.1 Secure Cloud Federation

cloud B (FB), identified by public key kF B as in the following:

msg1 : FA։ FB : {federation, IP range = 192.168.1.1− 192.168.1.100}skF A

Note that, all customers for cloud A are in this IP range. In addition, along with

the request, FA presents the delegation certificates that it obtained to prove that

FA can be trusted for using cloud B’s resources:

msg2 : FA։ FB : {kB
〈kB federation.IP range〉

=⇒ kF A}skF A

The federation agent for cloud B (FB) confirms the signature on the message

msg1 from the requester kF A and, if valid, then it queries SSTM as to whether

cloud A is trusted to federate with cloud B. As a consequence of a successful

query, cloud A federates with cloud B and the resources of cloud B can be shared

with cloud A. It is worth noting that the shared resources are then within cloud

B. After establishing federation, a customer S (identified by public key kS) for

cloud A sends a signed request including its IP address (which is in the range of

IP addresses of cloud A) for using the data storage space of cloud B:

msg3 : S ։ FB : {Storage, 192.168.1.50}skS

In addition, cloud B defines the following local policy that any principal that is

authorized for federation in the mentioned IP range is also authorized to access

the data storage space (LPB denote the local policy of cloud B):

LPB : 〈kB Storage〉 〈kB federation.IP range〉

Then cloud A defines its own local policy and originates a permission that ex-

plicitly identifies how the permission that it originates is related to the access

permission for cloud B’s data storage space. Cloud A asserts (LPA denote the

local policy of cloud A):

LPA : 〈kB Storage〉 〈kA Storage〉

and authorizes customer S for the data storage space:

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

153 Seyedehsamane Abdigarmestani
(Samane Abdi)

6. Application of SSTM 6.1 Secure Cloud Federation

Figure 6.5: Robust accountability for permissions in cloud federation

kA
〈kA Storage〉

=⇒ kS

Thus, when customer S requests cloud B’s data storage space, it presents a set

of certificates (LPB, and LPA) that are intended to satisfy the compliance check-

ing. The compliance checking evaluates whether it is safe to allow customer S

to access the data storage space at cloud B for which cloud A is held account-

able. Returning to Figure 6.1, cloud A checks whether any earlier principal in the

chain of delegation can be held accountable for actions authorized by permission

〈kB Storage〉. Cloud A received this permission from kB, and kB is both the origi-

nator of this permission and is accountable for it. Therefore, the compliance check

for delegation is successful. On the other hand, cloud A might not aware of the

statement 〈kB Storage〉 〈kB federation.IP range〉. Then in the presence of a

malicious delegation statement kM
〈kB Storage〉

=⇒ kF A , cloud A will not mistakenly

think that kM is accountable. When cloud A searches for an accountable princi-

pal, it cannot find any statement that a principal is held accountable to authorize

kM for the permission 〈kB Storage〉. Therefore, verification of accountability is

unsuccessful. This scenario is depicted in Figure 6.5.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

154 Seyedehsamane Abdigarmestani
(Samane Abdi)

6. Application of SSTM 6.1 Secure Cloud Federation

6.1.5 Discussion

SSTM provides a systematic security mechanism for automatic trust determina-

tion for open federation of clouds. Although a global name service provides a

unique interpretation for each name, the cloud administrator may still use arbi-

trary names to represent permissions for their own cloud resources. The cloud

computing administrator who originates the permissions must try to specify non

ambiguous permissions for cloud resources in order to provide accountability.

However, providing accountability for delegation of permissions should not rely

on ad-hoc strategies; it should be formalized in a systematic way. The localPer-

mission provides a reliable name schema for globally unique interpretations for

permissions without relying on a central authority. Using localPermissions, none

of the service providers have an excuse for confusion caused by inadequate infor-

mation in permissions specifications. Thus, SSTM provides a reliable scheme for

robust accountability for permission delegation in cloud federation.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

155 Seyedehsamane Abdigarmestani
(Samane Abdi)

6. Application of SSTM

6.2 Trust Management for Secure Federation

of XMPP Servers

6.2 Trust Management for Secure Federation of

XMPP Servers

6.2.1 Introduction to XMPP Servers

The Extensible Messaging and Presence Protocol (XMPP) is a communication

protocol based on XML for sending and receiving messages between distributed

entities. The conventional use of XMPP is in instant messaging (IM) and pres-

ence such as GoogleTalk. However, it supports a much wider range of other

applications such as multi party chat, voice and video calls, and remote comput-

ing. The XMPP network consists of XMPP servers, XMPP clients, and XMPP

services shown in Figure 6.6. XMPP services are hosted by XMPP servers and

offer remote functionality to other XMPP entities connected to the network, for

example, to XMPP clients. All traffic is routed through the XMPP servers. When

users of different XMPP servers want to exchange messages, the relevant XMPP

servers initiate server-to-server connections called XMPP federations. Establish-

ing XMPP server federation requires management of access control to XMPP

services. A system administrator who manages the XMPP services controls the

appropriate access to those services. This administrator must also deal with re-

quests for federation with new XMPP servers. In practice, XMPP servers feder-

ation is non-trivial, time-consuming and vulnerable to the delegation subterfuge.

6.2.2 SSTM for XMPP Servers Federation

SSTM can be used to automate the security administration of XMPP servers

involved in a federation. Using SSTM, rather than implementing directly on

the access control, the administrator creates a security policy that defines the

conditions controlling access to the XMPP services. SSTM provides the policy

framework and can be used to manage the trust relationships between the admin-

istrator and requesters. The advantage of using SSTM as a trust management

framework is that it does not necessarily rely on a centralized authorization/policy

service and the policy rules can be distributed across the network without any

subterfuge vulnerability in the open federation of XMPP servers. A Federated

Autonomic Configuration for Network Access Controls (FACNAC) security agent

was introduced in [169] to provide individual XMPP servers with autonomic con-

figuration of end-to-end services. SSTM can be used by the FACNAC agent to

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

156 Seyedehsamane Abdigarmestani
(Samane Abdi)

6. Application of SSTM

6.2 Trust Management for Secure Federation

of XMPP Servers

Figure 6.6: XMPP server, client, and service connections

help to manage the trust relationships across the federated servers and to decide

when it is safe to federate. FACNAC running on an XMPP server, on behalf

of the administrator, accepts configuration change requests and, if the request is

permitted by the SSTM policy, then the agent updates the configuration. The

request may originate from the administrator or from the user of another XMPP

server, requesting federation. The FACNAC agent must determine that the se-

curity policy indicates that the requester can be trusted. We use a case study to

demonstrate the federation of XMPP servers for instant messaging (IM) services.

The trust relationships between FACNAC agents are managed using SSTM.

6.2.3 Case Study

Two organizations Org1 and Org2 sign a business agreement and decide to feder-

ate their XMPP servers. Alice (the owner of public key kA) is the administrator

for Org1, and Bob (the owner of public key kB) is the administrator for Org2.

A trusted certification authority CA, identified by public key kCA, issues name

certificates for Alice and Bob as follows:

(kCA Alice) −→ kA (6.1)

(kCA Bob) −→ kB (6.2)

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

157 Seyedehsamane Abdigarmestani
(Samane Abdi)

6. Application of SSTM

6.2 Trust Management for Secure Federation

of XMPP Servers

Alice, the administrator of Org1, also acts as the certification authority for Org1

and issues a name certificate for IM service manager, Dave (owner of public key

kD); that is:

(kA Dave) −→ kD (6.3)

Alice defines a role imManager for IM services management at Org1 and adds

Dave to this role by issuing the following certificate:

(kA imManager) −→ (kA Dave) (6.4)

On the other hand, Bob defines a group (kB admins) that defines his adminis-

tration staff, and issues a name certificate to add Clare (identified by public key

kC) to this group as the following:

(kB admins) −→ kC (6.5)

Dave manages Org1 ’s IM servers and defines permission 〈kD federation〉. This

permission specification indicates that the holder of this permission can federate

with Org1 ’s XMPP server. Dave is the originator of this permission and it is in-

ferred that he holds this permission denoted as: kD ∋ 〈kD federation〉. Dave also

defines a local policy that any principal holding the permission 〈kD federation〉

is also permitted to federate with its IM servers with IP address i, that is:

∀i : 〈kD fedIP range.i〉 〈kD federation〉 (6.6)

Dave trusts Alice (the administrator of Org1) to decide with whom to federate

and delegates the permission 〈kD federation〉 to Alice by issuing the following

delegation certificate:

kD
〈kD federation〉

=⇒ kA (6.7)

On the other hand, Alice, the administrator of Org1 wishes the IM servers of

Org1 federate with IM servers of Org2 and therefore, accepts any email that is

signed by users of Org2. She originates permission 〈kA fedOrg1〉 for federation

with Org2, and permission 〈kA email〉 for authenticated email services. The

organization Org2 ’s IP address range is 192.168.1.∗.

〈kA email〉 〈kA fedOrg1〉 (6.8)

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

158 Seyedehsamane Abdigarmestani
(Samane Abdi)

6. Application of SSTM

6.2 Trust Management for Secure Federation

of XMPP Servers

Alice trusts the administrator of Org2, Bob, for these services and delegates the

permission 〈(kCA Alice) fedOrg1〉 to the administrator of Org2, Bob, with the

following delegation certificate:

kA
〈(kCA Alice) fedOrg1〉

=⇒ (kCA Bob) (6.9)

and Bob, in turn delegates this permission to his administration group by issuing

the following certificate:

kB
〈(kCA Alice) fedOrg1〉

=⇒ (kB admins) (6.10)

Recall from chapter 4 that these statements are represented as instances within

SSALO. For example, the delegation statement (6.9):

kA
〈(kCA Alice) fedOrg1〉

=⇒ (kCA Bob)

is captured in terms of the following instances and their relationships in SSALO:

LocalName(kCA Alice)←−

isSpokenBy(kCA Alice, kA)⊓

hasNameSpace(kCA Alice, kCA)⊓

hasName(kCA Alice, Alice)

LocalP ermission(fedOrg1)←−

hasNameSpace(fedOrg1, kCAAlice)⊓

isHeldBy(fedOrg1, kA)

Delegation(fedDel2)←−

hasDelegator(fedDel2, kA)⊓

delegatesP ermission(fedDel2,fedOrg1)⊓

hasDelegatee(fedDel2,kCA Bob)

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

159 Seyedehsamane Abdigarmestani
(Samane Abdi)

6. Application of SSTM

6.2 Trust Management for Secure Federation

of XMPP Servers

Figure 6.7: Representation of the delegation statement 6.7 in SSALO

This fragment of SSALO is illustrated in Figure 6.7. The SSAL statements 6.1,

6.2, 6.3, 6.4, and 6.5 are captured in SSALO in terms of the following instances

and their relationships:

The SSALO fragment corresponding to statement 6.1:

LocalName(kCA Alice)←−

isSpokenBy(kCA Alice, kA)⊓

hasNameSpace(kCA Alice, kCA)

The SSALO fragment corresponding to statement 6.2:

LocalName(kCA Bob)←−

isSpokenBy(kCA Bob, kB)⊓

hasNameSpace(kCA Bob, kCA)

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

160 Seyedehsamane Abdigarmestani
(Samane Abdi)

6. Application of SSTM

6.2 Trust Management for Secure Federation

of XMPP Servers

The SSALO fragment corresponding to statement 6.3:

LocalName(kA Dave)←−

isSpokenBy(kA Dave, kD)⊓

hasNameSpace(kA Dave, kA)

The SSALO fragment corresponding to statement 6.4:

LocalName(kA imManager)←−

isSpokenBy(kA imManager, kA Dave)⊓

hasNameSpace(kA imManager, kA)

The SSALO fragment corresponding to statement 6.5:

LocalName(kB admins)←−

isSpokenBy(kB admins, kC)⊓

hasNameSpace(kB admins, kB)

The SSALO fragment corresponding to statement 6.6:

LocalP ermission(federation)←−

hasNameSpace(federation, kD)⊓

isHeldBy(federation, kD)

LocalP ermission(fedIPrangei)←−

hasNameSpace(fedIPrangei, kD)⊓

isHeldBy(fedIPrangei, kD)⊓

AsAuthAs(federation, fedIPrangei)

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

161 Seyedehsamane Abdigarmestani
(Samane Abdi)

6. Application of SSTM

6.2 Trust Management for Secure Federation

of XMPP Servers

The SSALO fragment corresponding to statement 6.7:

Delegation(fedDel1)←−

hasDelegator(fedDel1, kD)⊓

delegatesP ermission(fedDel1,federation)⊓

hasDelegatee(fedDel1,kA)

The SSALO fragment corresponding to statement 6.8:

LocalP ermission(fedOrg1)←−

hasNameSpace(fedOrg1, kCAAlice)⊓

isHeldBy(fedOrg1, kA)

LocalP ermission(email)←−

hasNameSpace(email, kA)⊓

isHeldBy(email, kA)⊓

AsAuthAs(fedOrg1, email)

The SSALO fragment corresponding to statement 6.10:

Delegation(fedDel3)←−

hasDelegator(fedDel3, kB)⊓

delegatesP ermission(fedDel3,fedOrg1)⊓

hasDelegatee(fedDel3,kB admins)

Having these instances and their relationship in SSALO, the set of SWRL rules

implementing the axioms of SSAL in chapter 4 are then used to reason over the

known facts in SSALO and infer new facts. For example, consider the above

statements. Dave wishes to check whether Clare’s request to federate with IM

services at IP address 192.168.1.10 is authorized. Dave originates the permis-

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

162 Seyedehsamane Abdigarmestani
(Samane Abdi)

6. Application of SSTM

6.2 Trust Management for Secure Federation

of XMPP Servers

sion 〈kD fedIP range.192.168.1.10〉 and in SSALO defines the instances and their

relationship as:

LocalP ermission(fedIPrange192168110)←−

hasNameSpace(fedIPrange192168110, kADave)⊓

isHeldBy(fedIPrange192168110, kD)

He then executes the SWRL rules for the SQWRL query to check whether it is

possible to infer that kC ∋ 〈kD fedIP range.192.168.1.10〉 holds. Assuming the

scenario depicted in Figure 6.8, Dave manages Org1 ’s IM server with the help of

his FACNAC agent. Clare, an Org2 administrator, is responsible for managing

Org2 servers and relies on a FACNAC agent. Clare’s FACNAC agent uses public

key kC on behalf of Clare and sends a signed request to federate with Org2 ’s IM

server to the relevant FACNAC agent (associated with public key of Dave kD),

along with Org2 ’s IP address.

Msg1:kC ։ kD : {federation request, ip = 192.168.1.10}skC

Org1 ’s FACNAC agent (Dave) checks whether the requester holds the author-

ity to federate from IP address 192.168.1.10 with its IM server. Dave uses

SSALO to check whether it is possible to deduce that kC holds the permission

〈kD fedIP range.192.168.1.10〉, denoted as: kC ∋ 〈kD fedIP range.192.168.1.10〉.

The following SQWRL query determines whether the requester “?q” is authorized

by permission “?x”, for which “?r” is accountable.

P rincipal(?q) ∧ P rincipal(?r) ∧ LocalP ermission(?x)∧

holds(?q, ?x) ∧ isAccountable(?r, ?x)

−→ sqwrl : select(?q, ?x, ?r)

This query is issued by Dave to check whether it is possible to deduce that the

requester kC holds 〈kD fedIP range.192.168.1.10〉. The result is shown in the

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

163 Seyedehsamane Abdigarmestani
(Samane Abdi)

6. Application of SSTM

6.2 Trust Management for Secure Federation

of XMPP Servers

Figure 6.8: FACNAC/SSTM federation scenario

following table.

Requester ?q Permission ?x Accountable by ?r

kD kD fedIPrange192168110 kD

kC kD fedIPrange192168110 kD

6.2.4 Checking for Subterfuge Safe Delegation

Before a principal signs a delegation statement, it should check whether it leads

to subterfuge. In other words, the principal needs to make sure that there is an

accountable principal for the actions associated with the permission.

The following SQWRL query determines whether the principal "?r" can be held

accountable for permission "?x" for further delegation.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

164 Seyedehsamane Abdigarmestani
(Samane Abdi)

6. Application of SSTM

6.2 Trust Management for Secure Federation

of XMPP Servers

P rincipal(?r) ∧ LocalP ermission(?x) ∧ isAccountable(?r, ?x)

−→ sqwrl : select(?x, ?r)

When Bob wants to delegate permission 〈(kCA Alice) fedOrg1〉 to his adminis-

tration staff (kB admins), he checks if there is a principal who is accountable for

this further delegation. The result of Bob’s query is shown in the following table

Permission ?x Accountable by ?r

fedOrg1 (kCA Alice)

fedOrg1 kA

The sequences of this scenario is depicted in Figure 6.8.

6.2.4.1 Discussion

Federation of XMPP servers require security controls to provide end-to-end ser-

vices. A system administrator who manages the XMPP services controls the

appropriate access to those services. This administrator must also deal with re-

quests for federation with new XMPP servers. In practice, XMPP servers feder-

ation is non-trivial, time-consuming and vulnerable to the delegation subterfuge.

In establishing a federation, the agent uses a local knowledge-base, SSALO, which

implements local policy, integration of different policies defined by each XMPP

server for access control. Each XMPP server can have its own local FACNAC

agent, resulting in the distributed management of trust and authorization rela-

tionships. SSTM is used by the FACNAC agents to help managing the distributed

access control for secure federation and to help make decision for subterfuge safe

federation.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

165 Seyedehsamane Abdigarmestani
(Samane Abdi)

6. Application of SSTM 6.3 Summary

6.3 Summary

In this chapter we demonstrated the applicability of SSTM in two real world ex-

amples: cloud federation; federation of XMPP servers. Although cloud federation

and federation of XMPP servers offer effective distributed sharing of resources,

both require mechanisms to control access and provide accountability for the

use of resources. Permissions are delegated among distributed principals to al-

low each other access to non-local resources. By using unambiguous permission

specifications, there is no confusion regarding the accountability for the permis-

sions in sharing resources. The results show that SSTM is a robust model for

subterfuge safe delegation of permissions in federation and also provides strong

accountability for principals. The success of SSTM for these case studies indi-

cates that it provides a general solution for subterfuge safe management of trust

and authorization relationships in open cooperation of entities. It can apply to

other examples of open cooperation in open distributed environments.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

166 Seyedehsamane Abdigarmestani
(Samane Abdi)

Chapter 7

Conclusions and Future Work

In this chapter, we draw conclusions, summarise the contributions made in this

thesis, and indicate some future research directions.

7.1 Overview

Future distributed applications will be large scale, open, and will often need to

deal with complex collaborative interactions. A key necessity for the development

of these applications will be a powerful, scalable, flexible and extensible security

mechanism. A security mechanism is composed of a sequence of legitimate actions

that are performed by a number of principals. It provides a way to ensure that

principals will achieve those purposes that are consistent with the security policy.

When designing a security mechanism, we would like to ensure that a malicious

principal cannot bypass the security mechanism via some legitimate (according

to the design) but unexpected behaviour. A malicious principal can be a trojan

horse exploiting a covert channel; a spy engaging in a replay attack on a security

protocol; an ordinary principal engaging in authorization subterfuge in a trust

management scheme.

Many existing security mechanisms are designed in an ad-hoc manner and their

design follows best practice based on the expertise of their designer. Expertise-

based design only prevents known malicious behaviours. Delegation subterfuge

may still occur because a principal receiving a permission in one domain may

misuse the permission in another domain via some deceptive but apparently au-

thorized route.

167

7. Conclusions and Future Work 7.2 Summary of Contributions

The research question in this thesis was:

Can we design a well-founded systematic method to avoid subterfuge for

cooperation of distributed principals in open environments?

7.2 Summary of Contributions

An overview of access control models, especially trust management systems was

presented in this thesis. Trust management provides operations that are used for

decentralized access control. As with any protection mechanism the challenge is

to make sure that the mechanisms are configured in such a way that they ensure

some useful and consistent notions of security.

localPermission We showed how poorly specified permissions within delega-

tion certificates can lead to delegation subterfuge during indirect delegation of

permissions. The subterfuge vulnerability results in another vulnerability con-

cerning the accountability of the authorization provided by the delegation chain.

The challenge in this thesis was to ensure that permissions have a unique global

interpretation. Since permissions are intended to be shared in open environ-

ments, then their references must be global. We discussed some ad-hoc strategies

to ensure globalization of permissions. However, we showed that the design of a

security mechanism should not rely on ad-hoc methods, rather, it should be for-

malized in a systematic way to prevent subterfuge. The notion of localPermission

was introduced for this purpose.

SSAL An authorization language, SSAL, was provided to specify trust-related

policies. Using SSAL, a principal may define, without reference to any central

authority, its own local permissions, and define a local ordering over the permis-

sions in its name space. In addition, a principal who holds a permission, X, from

another name space can assert a global ordering between the permissions in its

own name space and permission X. Typical trust management systems make the

implicit assumption that there exists a super security administrator that defines

the permission name space and its orderings. For example, Distributed Autho-

rization Language prevents subterfuge by restricting delegation to permissions

that have an associated originating public key [87]. While effective, in contrast

to SSAL this approach suffers the challenge of reliably referencing public keys

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

168 Seyedehsamane Abdigarmestani
(Samane Abdi)

7. Conclusions and Future Work 7.2 Summary of Contributions

and relies on a central authority to define permission ordering relationships.

Distributed Certificate Chain Discovery Algorithm An efficient algo-

rithm was introduced to discover the certificate chain between a resource owner

and the requester when certificates are stored distributively. It has been shown

that the algorithm returns the chain of delegations if one exists.

SSALO An ontology, SSALO, was built as the policy engine of SSTM. SSALO

provides a generic representation for knowledge related to the SSAL-based secu-

rity policy. SSALO enables integration of heterogeneous security policies which

is useful for secure cooperation among principals in open environments where

each principal may have a different security policy with different implementation.

SSALO can be used for subterfuge safe and dynamic cooperation in open dis-

tributed systems. Example applications include distributed web services, cross

coalition cooperation, and cloud federation. The experiments in this study have

shown adequate performance for typical non-time critical situations.

SSTM Subterfuge Safe Trust Management (SSTM) was designed to support

subterfuge safe delegation of permissions in open environments. SSTM uses lo-

calPermissions to provide support for subterfuge safe access control and trust

management.

SSTM-Based Coalition Framework SSAL was extended for dynamic for-

mation of a coalition among distributed participants. A coalition may be formed

by any principal that generates a key pair to uniquely refer to the coalition in the

global network. The principal appoints itself as the leader/first member of the

coalition and admits members. The SSTM-based approach (using localPermis-

sion) mostly focuses on subterfuge safe cross coalition delegation of permissions.

Two additional SSAL rules are used to transform the locally defined permissions

and their ordering to a globally unique interpretation and ordering (localPermis-

sion). We also addressed how participants in a coalition can originate, manage,

and delegate their own policy rather than relying on a central authority to define

an access control policy for the whole coalition.

Federation The application of SSTM in two real world federation case stud-

ies has been presented. A cloud federation offers effective distributed sharing of

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

169 Seyedehsamane Abdigarmestani
(Samane Abdi)

7. Conclusions and Future Work 7.3 Future work

resources but requires mechanisms to control access and provide accountability

for the delegated permissions. In the first case study, the application of SSTM

for sharing resources in a cloud federation was demonstrated. SSTM provides

robust accountability for the use of permissions in a cloud federation. By us-

ing localPermissions there is no confusion regarding the accountability for the

delegated permissions. The proposed compliance checking provides a means of

determining accountability, and therefore can be used in preventing unauthorized

access to the cloud resources.

The second case study demonstrates the application of SSTM for managing trust

and authorization for federation of XMPP servers. The results showed that SSTM

is a robust mechanism for subterfuge safe delegation of permissions for federation

of XMPP servers. These case studies is an evidence of using SSTM to provide

a robust trust management for subterfuge safe open cooperation of distributed

principals.

7.3 Future work

Possible future directions of this work can include extending the theoretical model

and improving the implementation. An example of the former is incorporating

threshold structures into the model, and an example of the latter is run-time

optimization of SSTM authorization queries.

7.3.1 Threshold Structures

A threshold structure means that at least K of N number of principals are re-

quired to grant a permission or further delegate of that permission. In other

words, multiple principals are required to sign a certificate. The SSAL logic does

not directly support threshold structures. Without this support, a delegation to

a threshold of principals can only be implemented by conjunction of many delega-

tion statements and each delegation statement delegates the same permission to

different principals. This kind of complex statement is difficult to implement and

manage in practice. As a topic of ongoing research, one can investigate the incor-

poration of threshold structures into SSTM. There are situations that a request

should require several signatures. For example, Amazon Relational Database

Service makes it easy to use replication to enhance availability and reliability for

production workloads. A replication is a collection of nodes, with one primary

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

170 Seyedehsamane Abdigarmestani
(Samane Abdi)

7. Conclusions and Future Work 7.3 Future work

read-write cluster and up to five secondary read-only clusters, which are called

read replicas. Applications can read from any cluster in the replication group.

More than one replica is required to grant permission to the application which

wants to access the data resources if one replica is not available. Incorporating

the threshold structures to the model would make this type of applications more

manageable in practice.

7.3.2 Run-Time Optimization

To answer a query using SSTM, the interpreter first instantiates the SSALO with

individuals, then the reasoner builds all the possible relations (either asserted or

inferred) among all individuals, and finally the SQWRL runs over the knowledge

base and answers the query. When the number of individuals increases in SSALO,

the time the reasoner consumes to build up the relations and then infer the

statements to answer the query increases. For example, to answer the query of

the form: "is Alice authorized to read file X?", the query processor queries SSALO

to retrieve the instances that satisfies this query. Before querying, the knowledge

in SSALO is loaded into the reasoner. This step ensures the consistency, concept

satisfiability, and classification. During the loading phase, axioms about concepts

are put into the TBox and assertions about individuals are stored in the ABox.

For example, the interpreter interprets Alice’s requests {(readfileX)}skA
and

sends it to the query processor. The query processor checks whether it can satisfy

the following statement in SSALO:

holds(kA,readfileX) ∧ isAccountable(?p, readfileX)

In our experiment, we have evaluated the total time that it takes the reasoner

to check the consistency of the knowledge base and the time it takes to answer

each query. The experimental results show that this approach works well with

a relatively small number of asserted individuals and policies but it takes longer

time as the size of the target data set increases. While lack of efficiency may be

tolerable for some applications where time is not critical, but when we expect a

rather wide-scale application for security policies integration, optimizing run-time

for reasoning needs to be investigated as an ongoing research direction.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

171 Seyedehsamane Abdigarmestani
(Samane Abdi)

7. Conclusions and Future Work 7.4 Summary

7.4 Summary

In this chapter we gave a brief overview on the work done in this thesis. The works

contributed to the state of the art are: introducing the notion of localPermission;

Subterfuge Safe Authorization Language (SSAL); an algorithm for distributed

certificate chain discovery; an ontology-based implementation, SSALO, as policy

engine; Subterfuge Safe Trust Management(SSTM); SSTM-based coalition frame-

work; and the application of SSTM in two real world federation case studies. We

produced a well-founded mechanism for dealing with an important problem in

distributed open systems. Future research such as those suggested on threshold

structures and run-time optimization can build on, and add value to the current

work.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

172 Seyedehsamane Abdigarmestani
(Samane Abdi)

References

[1] J. Park and R. Sandhu, “Towards usage control models: Beyond traditional

access control,” in Proceedings of the Seventh ACM Symposium on Access

Control Models and Technologies, ser. SACMAT ’02. New York, NY, USA:

ACM, 2002, pp. 57–64.

[2] B. Thuraisingham, “Mandatory access control,” in Encyclopedia of

Database Systems. Springer, 2009, pp. 1684–1685.

[3] S. Upadhyaya, “Mandatory access control,” in Encyclopedia of Cryptogra-

phy and Security. Springer, 2011, pp. 756–758.

[4] N. Li, “Discretionary access control,” Encyclopedia of Cryptography and

Security, pp. 353–356, 2011.

[5] D. Ferraiolo, D. R. Kuhn, and R. Chandramouli, Role-based access control.

Artech House, 2003.

[6] D. F. Ferraiolo and D. R. Kuhn, “Role-based access controls,” arXiv

preprint arXiv:0903.2171, 2009.

[7] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-based

access control models,” Computer, vol. 29, no. 2, pp. 38–47, 1996.

[8] S. Jajodia and D. Wijesekera, “Recent advances in access control models,”

in Database and Application Security XV. Springer, 2002, pp. 3–15.

[9] N. Li and J. Mitchell, “RT: a role-based trust-management framework,” in

DARPA Information Survivability Conference and Exposition, vol. 1, 2003,

pp. 201–212.

[10] M. Y. Becker, C. Fournet, and A. D. Gordon, “Secpal: Design and seman-

tics of a decentralized authorization language,” Technical Report MSR-TR-

2006-120, Microsoft Research, Tech. Rep., 2006.

173

REFERENCES

[11] X. Jin, R. Krishnan, and R. Sandhu, “A unified attribute-based access

control model covering DAC, MAC and RBAC,” in Data and applications

security and privacy XXVI. Springer, 2012, pp. 41–55.

[12] D. F. Brewer and M. J. Nash, “The chinese wall security policy,” in Pro-

ceedings of the 1989 IEEE Symposium on Security and Privacy. IEEE

Computer Society, 1989, pp. 206–214.

[13] J. Pieprzyk, T. Hardjono, and J. Seberry, Fundamentals of computer secu-

rity. Springer, 2003.

[14] M. Blaze, J. Feigenbaum, and M. Strauss, “Compliance checking in the pol-

icymaker trust management system,” in Financial cryptography. Springer,

1998, pp. 254–274.

[15] D. E. Bell and L. J. LaPadula, “Secure computer systems: Mathematical

foundations,” DTIC Document, Tech. Rep., 1973.

[16] D. E. Bell and L. J. La Padula, “Secure computer system: Unified exposi-

tion and multics interpretation,” DTIC Document, Tech. Rep., 1976.

[17] K. J. Biba, “Integrity considerations for secure computer systems,” DTIC

Document, Tech. Rep., 1977.

[18] D. D. Clark and D. R. Wilson, “A comparison of commercial and military

computer security policies,” in Proceedings of the 1987 IEEE Symposium

on Security and Privacy. IEEE Computer Society, 1987, pp. 184–184.

[19] B. W. Lampson, “Protection,” ACM SIGOPS Operating Systems Review,

vol. 8, no. 1, pp. 18–24, 1974.

[20] M. Nyanchama and S. L. Osborn, “Access rights administration in role-

based security systems.” in Proceedings of 8th Conference on Data and Ap-

plications Security and Privacy (DBSec). Citeseer, 1994, pp. 37–56.

[21] M. Nyanchama and S. Osborn, “The role graph model and conflict of inter-

est,” ACM Transactions on Information and System Security (TISSEC),

vol. 2, no. 1, pp. 3–33, 1999.

[22] D. F. Ferraiolo, J. F. Barkley, and D. R. Kuhn, “A role-based access control

model and reference implementation within a corporate intranet,” ACM

Transactions on Information and System Security (TISSEC), vol. 2, no. 1,

pp. 34–64, 1999.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

174 Seyedehsamane Abdigarmestani
(Samane Abdi)

REFERENCES

[23] R. Sandhu, D. Ferraiolo, and R. Kuhn, “The NIST model for role-based

access control: towards a unified standard,” in ACM workshop on Role-

based access control, vol. 2000, 2000.

[24] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chandramouli,

“Proposed NIST standard for role-based access control,” ACM Transactions

on Information and System Security (TISSEC), vol. 4, no. 3, pp. 224–274,

2001.

[25] D. Ferraiolo, J. Cugini, and D. R. Kuhn, “Role-based access control

(RBAC): Features and motivations,” in Proceedings of 11th annual com-

puter security application conference, 1995, pp. 241–48.

[26] R. Sandhu, “Role activation hierarchies,” in Proceedings of the third ACM

workshop on Role-based access control. ACM, 1998, pp. 33–40.

[27] R. M. Needham and A. J. Herbert, The Cambridge distributed computing

system. Addison-Wesley, 1982.

[28] J. M. Bacon, I. M. Leslie, and R. M. Needham, Distributed computing with

a processor bank. Springer, 1990.

[29] A. D. Birrell and R. M. Needham, “A universal file server,” Software Engi-

neering, IEEE Transactions on, no. 5, pp. 450–453, 1980.

[30] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pol-

lack, “Hydra: The kernel of a multiprocessor operating system,” Commu-

nications of the ACM, vol. 17, no. 6, pp. 337–345, 1974.

[31] A. S. Tanenbaum, R. Van Renesse, H. Van Staveren, G. J. Sharp, and S. J.

Mullender, “Experiences with the amoeba distributed operating system,”

Communications of the ACM, vol. 33, no. 12, pp. 46–63, 1990.

[32] S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H. Saltzer, “Kerberos

authentication and authorization system,” in In Project Athena Technical

Plan. Citeseer, 1987.

[33] J. G. Steiner, B. C. Neuman, and J. I. Schiller, “Kerberos: An authen-

tication service for open network systems.” in USENIX Winter, 1988, pp.

191–202.

[34] R. M. Needham and M. D. Schroeder, “Using encryption for authentication

in large networks of computers,” Communications of the ACM, vol. 21,

no. 12, pp. 993–999, 1978.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

175 Seyedehsamane Abdigarmestani
(Samane Abdi)

REFERENCES

[35] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE

Transactions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[36] P. R. Zimmermann, The official PGP user’s guide. MIT press, 1995.

[37] S. Garfinkel, PGP: pretty good privacy. O’Reilly Media Inc., 1995.

[38] C. I’Anson and C. Mitchell, “Security defects in CCITT recommenda-

tion X.509–the directory authentication framework,” Computer Commu-

nications Review, vol. 20, no. 2, pp. 30–34, 1990.

[39] D. Cooper, “Internet X.509 public key infrastructure certificate and

certificate revocation list (CRL) profile,” 2008. [Online]. Available:

https://tools.ietf.org/html/rfc5280

[40] R. Housley, W. Polk, W. Ford, and D. Solo, “Internet X.509 public key

infrastructure certificate and certificate revocation list (CRL) profile,” 2002.

[41] D. Solo, R. Housley, and W. Ford, “Internet X.509 public key infrastructure

certificate and CRL profile,” 1999.

[42] S. Farrell and R. Housley, “An internet attribute certificate profile

for authorization,” 2002. [Online]. Available: http://tools.ietf.org/html/

rfc3281

[43] R. L. Rivest and B. Lampson, “SDSI- a simple distributed security infras-

tructure.” Crypto, 1996.

[44] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen,

“SPKI certificate theory,” IETF RFC 2693, September, Tech. Rep., 1999.

[45] C. M. Ellison, “SPKI requirements.” [Online]. Available: http://www.ietf.

org/rfc/rfc2692.txt

[46] M. Blaze and A. D. Keromytis, “The KeyNote trust-management system

version 2,” 1999. [Online]. Available: https://tools.ietf.org/html/rfc2704

[47] M. Blaze, J. Feigenbaum, and A. D. Keromytis, “KeyNote: Trust manage-

ment for public-key infrastructures,” in Security Protocols. Springer, 1999,

pp. 59–63.

[48] N. Li, B. N. Grosof, and J. Feigenbaum, “Delegation logic: A logic-based

approach to distributed authorization,” ACM Transactions on Information

and System Security (TISSEC), vol. 6, no. 1, pp. 128–171, 2003.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

176 Seyedehsamane Abdigarmestani
(Samane Abdi)

REFERENCES

[49] A. A. Selcuk, E. Uzun, and M. R. Pariente, “A reputation-based trust

management system for p2p networks,” in Proceedings of the 2004 IEEE

International Symposium on Cluster Computing and the Grid, ser. CCGRID

’04. Washington, DC, USA: IEEE Computer Society, 2004, pp. 251–258.

[Online]. Available: http://dl.acm.org/citation.cfm?id=1111683.1111799

[50] Q. Zhang, T. Yu, and K. Irwin, “A classification scheme for trust functions

in reputation-based trust management,” in ISWC Workshop on Trust, Se-

curity, and Reputation on the Semantic Web, 2004.

[51] L. Xiong and L. Liu, “PeerTrust: Supporting reputation-based trust for

peer-to-peer electronic communities,” IEEE Transactions on Knowledge

and Data Engineering, vol. 16, no. 7, pp. 843–857, 2004.

[52] T. H. Noor, Q. Z. Sheng, S. Zeadally, and J. Yu, “Trust management of

services in cloud environments: Obstacles and solutions,” ACM Computing

Surveys (CSUR), vol. 46, no. 1, p. 12, 2013.

[53] S. P. Weeks and X. Serret-Avila, “Trust-management systems and

methods,” Nov. 5 2013, US Patent 8,578,151. [Online]. Available:

http://www.google.com/patents/US8104075

[54] V. Shmatikov and C. Talcott, “Reputation-based trust management,” Jour-

nal of Computer Security, vol. 13, no. 1, pp. 167–190, 2005.

[55] S. Sen and N. Sajja, “Robustness of reputation-based trust: Boolean case,”

in Proceedings of the first international joint conference on Autonomous

agents and multiagent systems: part 1. ACM, 2002, pp. 288–293.

[56] Q. Zhang, T. Yu, and K. Irwin, “A classification scheme for trust functions

in reputation-based trust management.” in ISWC Workshop on Trust, Se-

curity, and Reputation on the Semantic Web, 2004.

[57] S. Mc Gonigle, Q. Wang, M. Wang, A. Taylor, and E. O. Nuallain,

“Reputation-based trust management for distributed spectrum sensing,”

in Networks and Communications (NetCom2013). Springer, 2014, pp.

255–264.

[58] Q. Pei, B. Yuan, L. Li, and H. Li, “A sensing and etiquette reputation-based

trust management for centralized cognitive radio networks,” Neurocomput-

ing, vol. 101, pp. 129–138, 2013.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

177 Seyedehsamane Abdigarmestani
(Samane Abdi)

REFERENCES

[59] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Morcos, and R. L. Rivest,

“Certificate chain discovery in SPKI/SDSI,” Computer Security, vol. 9,

no. 4, pp. 285–322, 2001.

[60] C. M. Ellison, C. Inc, B. Frantz, B. Lampson, R. Rivest, B. M. Thomas,

and T. Ylonen, “SPKI certificate theory,” IETF RFC, 1999.

[61] J. Wang, J. Li, C. Ma, and J. Peng, “Research on key-based trust model,”

in 10th International Computer Conference on Wavelet Active Media Tech-

nology and Information Processing (ICCWAMTIP). IEEE, 2013, pp. 153–

157.

[62] B. L. Fox and B. A. Lamacchia, “Intelligent trust management method and

system,” Jan. 15 2013, US Patent 8,355,970.

[63] C. J. Creed and D. J. Rosenblum, “Method, system, and apparatus for

facilitating trust certificate management/exchange,” Jul. 8 2014, US Patent

8,775,285.

[64] C. Ellison and S. Dohrmann, “Public-key support for group collaboration,”

ACM Trans. Inf. Syst. Secur., vol. 6, no. 4, pp. 547–565, Nov. 2003.

[Online]. Available: http://doi.acm.org/10.1145/950191.950195

[65] N. Li, J. Mitchell, and W. Winsborough, “Design of a role-based trust-

management framework,” in 2002 IEEE Symposium on Security and Pri-

vacy, 2002, pp. 114–130.

[66] P. Z. Revesz, Introduction to constraint databases. Springer, 2002, vol.

393.

[67] G. Kuper, L. Libkin, and J. Paredaens, Constraint databases. Springer,

2000.

[68] N. Li and J. C. Mitchell, “Datalog with constraints: A foundation for trust

management languages,” in Practical Aspects of Declarative Languages.

Springer, 2003, pp. 58–73.

[69] N. Li, B. Grosof, and J. Feigenbaum, “A practically implementable and

tractable delegation logic,” in 2000 IEEE Symposium on Security and Pri-

vacy. IEEE Computer Society, 2000, pp. 27–42.

[70] M. Y. Becker, C. Fournet, and A. D. Gordon, “Secpal: Design and semantics

of a decentralized authorization language,” Journal of Computer Security,

vol. 18, no. 4, pp. 619–665, 2010.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

178 Seyedehsamane Abdigarmestani
(Samane Abdi)

REFERENCES

[71] H. Zhou and S. N. Foley, “A logic for analysing subterfuge in delegation

chains,” in Formal Aspects in Security and Trust. Springer, 2006, pp.

127–141.

[72] S. Foley, “Authorisation subterfuge by delegation in decentralised net-

works,” in Security Protocols. Springer, 2007, pp. 103–111.

[73] (1999, May) Internet Assigned Numbers Authority. Internet corporation for

assigned names and numbers. [Online]. Available: http://www.iana.org/

[74] S. N. Foley and S. Abdi, “Avoiding delegation subterfuge using linked local

permission names,” in Proceedings of the 8th international conference on

Formal Aspects of Security and Trust. Springer-Verlag, 2011, pp. 100–114.

[75] ——, “Avoiding delegation subterfuge using linked local permission names,”

Formal Aspects of Security and Trust, pp. 100–114, 2012.

[76] T. Ylonen and C. Lonvick. (2006) The secure shell (SSH) protocol

architecture. [Online]. Available: https://tools.ietf.org/html/rfc4251

[77] S. Farrell, C. T. de Laat, P. R. Calhoun, and G. M. Gross,

“AAA authorization requirements,” 2000. [Online]. Available: http:

//tools.ietf.org/html/rfc2906

[78] L. Zhang and H. Zhang. (2012) Compromised-key digest signature

(CKDS) introduction and requirement. [Online]. Available: https:

//tools.ietf.org/html/draft-haikuo-ckds-01

[79] R. J. Perlman, “Ephemeral decryptability,” 2002, US Patent 6,363,480.

[80] B. LaMacchia, K. Lauter, and A. Mityagin, “Stronger security of authenti-

cated key exchange,” in Provable Security. Springer, 2007, pp. 1–16.

[81] A. Menezes and B. Ustaoglu, “On reusing ephemeral keys in diffie-hellman

key agreement protocols,” International Journal of Applied Cryptography,

vol. 2, no. 2, pp. 154–158, 2010.

[82] S. Jha and T. Reps, “Analysis of SPKI/SDSI certificates using model check-

ing,” in Proceedings of 15th IEEE Computer Security Foundations Work-

shop. IEEE, 2002, pp. 129–144.

[83] J.-E. Elien, “Certificate discovery using SPKI/SDSI 2.0 certificates,” Mas-

ters Thesis, MIT LCS, Tech. Rep., 1998.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

179 Seyedehsamane Abdigarmestani
(Samane Abdi)

REFERENCES

[84] N. Li, W. H. Winsborough, and J. C. Mitchell, “Distributed credential chain

discovery in trust management,” Journal of Computer Security, vol. 11,

no. 1, pp. 35–86, Feb. 2003.

[85] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM journal

on computing, vol. 1, no. 2, pp. 146–160, 1972.

[86] N. Li, J. C. Mitchell, and W. H. Winsborough, “Design of a role-based trust

management framework,” in Proceedings of the 2002 IEEE Symposium on

Security and Privacy. IEEE Computer Society Press, May 2002, pp. 114–

130.

[87] H. Zhou and S. Foley, “A framework for establishing decentralized secure

coalitions,” in 19th IEEE Computer Security Foundations Workshop, 2006,

pp. 13 pp.–282.

[88] K. Feeney, D. Lewis, and D.O’Sullivan, “Service oriented policy manage-

ment for web-application frameworks,” IEEE Internet Computing Maga-

zine, vol. (13):6, pp. 39–47, 2009.

[89] K. Feeney, R. Brennan, and S. N. Foley, “A trust model for capability dele-

gation in federated policy systems,” in International Conference on Network

and Service Management. IEEE, 2010, pp. 226–229.

[90] S. Abdi, “Integration of heterogeneous policies for trust management,” in

2014 IEEE 38th Annual Computer Software and Applications Conference

Workshops (COMPSACW). IEEE, 2014.

[91] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-

Schneider, Eds., The description logic handbook: theory, implementation,

and applications. New York, NY, USA: Cambridge University Press, 2003.

[92] D. L. McGuinness and F. Van Harmelen, “Owl web ontology language

overview,” W3C recommendation, vol. 10, no. 2004-03, p. 10, 2004.

[93] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof,

and M. Dean, “Swrl: A semantic web rule language combining owl

and ruleml,” World Wide Web Consortium, W3C Member Submission.

[Online]. Available: http://www.w3.org/Submission/SWRL

[94] N. F. Noy and D. L. Mcguinness, “Ontology development 101: A guide to

creating your first ontology,” Tech. Rep., 2001.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

180 Seyedehsamane Abdigarmestani
(Samane Abdi)

REFERENCES

[95] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A

practical OWL-DL reasoner,” Web Semant., vol. 5, no. 2, pp. 51–53, Jun.

2007. [Online]. Available: http://dx.doi.org/10.1016/j.websem.2007.03.004

[96] K. Arnold, J. Gosling, and D. Holmes, The Java programming language.

Addison-wesley Reading, 1996, vol. 2.

[97] B. McBride, “Jena: A semantic web toolkit,” IEEE Internet computing,

vol. 6, no. 6, pp. 55–59, 2002.

[98] T. R. Gruber. (1992) What is an ontology? [Online]. Available:

http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

[99] ——, “A translation approach to portable ontology specifications,” Knowl-

edge acquisition, vol. 5, no. 2, pp. 199–220, 1993.

[100] D. Fensel, Ontologies: A Silver Bullet for Knowledge Management and Elec-

tronic Commerce, 2nd ed. Springer-Verlag New York, Inc., 2003.

[101] Y. Ding, D. Fensel, M. Klein, and B. Omelayenko, “The semantic web: yet

another hip?” Data & Knowledge Engineering, vol. 41, no. 2, pp. 205–227,

2002.

[102] R. Meersman, “Semantic ontology tools in is design,” in Proceedings of the

11th International Symposium on Foundations of Intelligent Systems, ser.

ISMIS ’99. London, UK, UK: Springer-Verlag, 1999, pp. 30–45. [Online].

Available: http://dl.acm.org/citation.cfm?id=646358.689943

[103] R. Studer, V. R. Benjamins, and D. Fensel, “Knowledge engineering: prin-

ciples and methods,” Data & knowledge engineering, vol. 25, no. 1, pp.

161–197, 1998.

[104] J. de Bruijn, “Using Ontologies - Enabling Knowledge Sharing and Reuse

on the Semantic Web,” DERI, Technical Report, 2003. [Online]. Available:

http://www.debruijn.net/publications/DERI-TR-2003-10-29.pdf

[105] C. Coral, R. Francisco, and P. Mario, Ontologies for Software Engineering

and Software Technology. Berlin, Heidelberg: Springer-Verlag, 2006.

[106] D. Vallet, M. Fernández, and P. Castells, “An ontology-based informa-

tion retrieval model,” in The Semantic Web: Research and Applications.

Springer, 2005, pp. 455–470.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

181 Seyedehsamane Abdigarmestani
(Samane Abdi)

REFERENCES

[107] P. Castells, M. Fernandez, and D. Vallet, “An adaptation of the vector-

space model for ontology-based information retrieval,” Knowledge and Data

Engineering, IEEE Transactions on, vol. 19, no. 2, pp. 261–272, 2007.

[108] N. H. Anderson, “Foundations of information integration theory,” 1981.

[109] J. D. Ullman, “Information integration using logical views,” in Database

Theory—ICDT’97. Springer, 1997, pp. 19–40.

[110] A. Farquhar, R. Fikes, W. Pratt, and J. Rice, “Collaborative ontology con-

struction for information integration,” Technical Report KSL-95-63, Stan-

ford University Knowledge Systems Laboratory, Tech. Rep., 1995.

[111] F. T. Fonseca, M. J. Egenhofer, P. Agouris, and G. Câmara, “Using ontolo-

gies for integrated geographic information systems,” Transactions in GIS,

vol. 6, no. 3, pp. 231–257, 2002.

[112] N. F. Noy, “Semantic integration: a survey of ontology-based approaches,”

ACM Sigmod Record, vol. 33, no. 4, pp. 65–70, 2004.

[113] V. Raskin, C. F. Hempelmann, K. E. Triezenberg, and S. Nirenburg,

“Ontology in information security: a useful theoretical foundation and

methodological tool,” in Proceedings of the 2001 workshop on New secu-

rity paradigms. ACM, 2001, pp. 53–59.

[114] A. Herzog, N. Shahmehri, and C. Duma, “An ontology of information secu-

rity,” International Journal of Information Security and Privacy (IJISP),

vol. 1, no. 4, pp. 1–23, 2007.

[115] W. M. Fitzgerald and S. Foley, “Management of heterogeneous security

access control configuration using an ontology engineering approach,” in

Proceedings of the 3rd ACM workshop on Assurable and usable security

configuration, ser. SafeConfig ’10. New York, NY, USA: ACM, 2010, pp.

27–36. [Online]. Available: http://doi.acm.org/10.1145/1866898.1866903

[116] A. Masoumzadeh and J. B. Joshi, “OSNAC: An ontology-based access

control model for social networking systems,” in Social Computing

(SocialCom), 2010 IEEE Second International Conference on. IEEE,

2010, pp. 751–759. [Online]. Available: http://d-scholarship.pitt.edu/6024/

[117] T. Finin, A. Joshi, L. Kagal, J. Niu, R. Sandhu, W. Winsborough, and

B. Thuraisingham, “R owl bac: representing role based access control in

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

182 Seyedehsamane Abdigarmestani
(Samane Abdi)

REFERENCES

owl,” in Proceedings of the 13th ACM symposium on Access control models

and technologies. ACM, 2008, pp. 73–82.

[118] W. M. Fitzgerald and S. N. Foley, “Aligning Semantic Web applications

with network access controls,” Computer Standards & Interfaces, vol. 33,

no. 1, pp. 24–34, Jan. 2011.

[119] T. Finin, A. Joshi, L. Kagal, J. Niu, R. Sandhu, W. H. Winsborough, and

B. Thuraisingham, “Role Based Access Control and OWL,” in Proceedings

of the fourth OWL: Experiences and Directions Workshop, 2008.

[120] T. Priebe, W. Dobmeier, and N. Kamprath, “Supporting attribute-based

access control with ontologies,” in Proceedings of The First International

Conference on Availability, Reliability and Security, 2006 (ARES 2006).,

2006, pp. 8 pp.–.

[121] T.-Y. Chen, “Knowledge sharing in virtual enterprises via an ontology-

based access control approach,” Computers in Industry, vol. 59, no. 5,

pp. 502 – 519, 2008. [Online]. Available: http://www.sciencedirect.com/

science/article/pii/S0166361507001790

[122] S. Javanmardi, M. Amini, R. Jalili, and Y. GanjiSaffar, “Sbac: A semantic

based access control model,” in 11th Nordic Workshop on Secure IT-systems

(NordSec’06), Linkping, Sweden, vol. 22, 2006.

[123] M. A. Ehsan, M. Amini, and R. Jalili, “A semantic-based access

control mechanism using semantic technologies,” in Proceedings of the 2nd

international conference on Security of information and networks, ser. SIN

’09. New York, NY, USA: ACM, 2009, pp. 258–267. [Online]. Available:

http://doi.acm.org/10.1145/1626195.1626259

[124] M. Knechtel and J. Hladik, “RBAC authorization decision with DL reason-

ing,” 2008.

[125] T. Priebe, W. Dobmeier, C. Schläger, and N. Kamprath, “Supporting

attribute-based access control in authorization and authentication infras-

tructures with ontologies,” Journal of Software, vol. 2, no. 1, pp. 27–38,

2007.

[126] B. Shields and O. Molloy, “Using description logic and rules to deter-

mine xml access control,” in Proceedings of 18th International Workshop

on Database and Expert Systems Applications (DEXA’07), 2007. IEEE,

2007, pp. 718–724.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

183 Seyedehsamane Abdigarmestani
(Samane Abdi)

REFERENCES

[127] C. Zhao, N. Heilili, S. Liu, and Z. Lin, “Representation and reasoning on

RBAC: A description logic approach,” in Theoretical Aspects of Computing–

ICTAC 2005. Springer, 2005, pp. 381–393.

[128] V. D. S. Almendra and D. Schwabe, “Trust policies for semantic web reposi-

tories,” in Proceedings of 2nd International Semantic Web Policy Workshop

(SWPW’06), at the 5th International Semantic Web Conference (ISWC),

2006, pp. 5–9.

[129] B. Thuraisingham, “Building trustworthy semantic webs,” in Proceedings of

the 10th IEEE international conference on Information Reuse & Integration,

ser. IRI’09. Piscataway, NJ, USA: IEEE Press, 2009, pp. 455–457.

[Online]. Available: http://dl.acm.org/citation.cfm?id=1689250.1689340

[130] A. Squicciarini, E. Bertino, E. Ferrari, and I. Ray, “Achieving privacy in

trust negotiations with an ontology-based approach,” Dependable and Se-

cure Computing, IEEE Transactions on, vol. 3, no. 1, pp. 13–30, 2006.

[131] W. Nejdl, D. Olmedilla, M. Winslett, and C. C. Zhang, “Ontology-based

policy specification and management,” in 2nd European Semantic Web Con-

ference (ESWC). Springer, 2005, pp. 290–302.

[132] B. Thuraisingham, “Building trustworthy semantic webs,” in Proceedings

of 2009 IEEE International Conference on Information Reuse Integration

(IRI ’09), 2009, pp. xiii–xv.

[133] H. Yu, C. Jin, and H. Che, “A description logic for PKI trust domain

modeling,” in Third International Conference on Information Technology

and Applications (ICITA 2005), vol. 2, 2005, pp. 524–528.

[134] S. Farrar and D. T. Langendoen, “An owl-dl implementation of gold,” in

Linguistic Modeling of Information and Markup Languages. Springer, 2010,

pp. 45–66.

[135] F. Baader, I. Horrocks, and U. Sattler, “Handbook of knowledge repre-

sentation,” by Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter.

Elsevier, pp. 135–180, 2008.

[136] R. M. Smullyan, First-order logic. Courier Dover Publications, 1995.

[137] F. Baader, I. Horrocks, and U. Sattler, “Description logics as ontology

languages for the semantic web,” in Festschrift in honor of Jörg Siekmann,

Lecture Notes in Artificial Intelligence. Springer-Verlag, 2003, pp. 228–248.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

184 Seyedehsamane Abdigarmestani
(Samane Abdi)

REFERENCES

[138] R. van Glabbeek. The undecidability of first order logic. [Online]. Available:

http://kilby.stanford.edu/∼rvg/154/handouts/fol.html

[139] D. Nardi and R. J. Brachman, “An introduction to description logics.” in

Description Logic Handbook, 2003, pp. 1–40.

[140] J. Hebeler, M. Fisher, R. Blace, and A. Perez-Lopez, Semantic web pro-

gramming. John Wiley & Sons, 2011.

[141] M. O Connor, H. Knublauch, S. Tu, B. Grosof, M. Dean, W. Grosso, and

M. Musen, “Supporting rule system interoperability on the semantic web

with SWRL,” in Proceedings of the 4th international conference on The

Semantic Web, ser. ISWC 05. Springer-Verlag, 2005, pp. 974–986.

[142] G. Wagner, “How to design a general rule markup language,” in In Invited

talk at the Workshop XML Technologien für das Semantic Web (XSW 2002,

2002, pp. 24–25.

[143] M. O’connor, H. Knublauch, S. Tu, B. Grosof, M. Dean, W. Grosso, and

M. Musen, “Supporting rule system interoperability on the semantic web

with swrl,” in The Semantic Web–ISWC 2005. Springer, 2005, pp. 974–

986.

[144] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and

M. Dean, “SWRL: A semantic web rule language combining owl and

ruleml,” W3C Member submission, vol. 21, p. 79, 2004.

[145] M. J. O’Connor and A. K. Das, “SQWRL: A query language for OWL.” in

OWLED, vol. 529, 2009.

[146] D. H. Fudholi, N. Maneerat, R. Varakulsiripunth, and Y. Kato, “Applica-

tion of protégé, swrl and sqwrl in fuzzy ontology-based menu recommenda-

tion,” in Intelligent Signal Processing and Communication Systems, 2009.

ISPACS 2009. International Symposium on. IEEE, 2009, pp. 631–634.

[147] S. Abdi, “An autonomic trust management framework for secure dynamic

coalition cooperation,” in Ubiquitous Intelligence and Computing, 2013

IEEE 10th International Conference on and 10th International Conference

on Autonomic and Trusted Computing (UIC/ATC). IEEE, 2013, pp. 422–

429.

[148] E. Friedman-Hill et al., “Jess, the rule engine for the java platform,” 2008.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

185 Seyedehsamane Abdigarmestani
(Samane Abdi)

REFERENCES

[149] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis, “The role

of trust management in distributed systems security,” in Secure Internet

Programming. Springer, 1999, pp. 185–210.

[150] S. Cantor, J. Kemp, R. Philpott, and E. Maler, “Assertions and

Protocols for the OASIS Security Assertion Markup Language (SAML)

V2.0,” Tech. Rep., Mar. 2005. [Online]. Available: http://docs.oasis-

open.org/security/saml/v2.0/saml-core-2.0-os.pdf

[151] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, “Grid services for

distributed system integration,” Computer, vol. 35, no. 6, pp. 37–46, 2002.

[152] T. Priebe, W. Dobmeier, and N. Kamprath, “Supporting attribute-based

access control with ontologies,” in he First International Conference on

Availability, Reliability and Security (ARES 2006). IEEE, 2006, pp. 8–pp.

[153] L. Kagal, I. Jacobi, and A. Khandelwal, “Gasping for AIR why we

need linked rules and justifications on the semantic web,” 2011. [Online].

Available: http://dspace.mit.edu/handle/1721.1/62294

[154] S. Schlobach, Z. Huang, R. Cornet, and F. Van Harmelen, “Debugging

incoherent terminologies,” Journal of Automated Reasoning, vol. 39, no. 3,

pp. 317–349, 2007.

[155] E. Zolin, “Complexity of reasoning in description logics,” 2013, http://

www.cs.man.ac.uk/∼ezolin/dl/.

[156] S. Abdi, “I was confused: Robust accountability for permission delegation

in cloud federations,” in 2014 IEEE 38th Annual Computer Software and

Applications Conference Workshops (COMPSACW). IEEE, 2014.

[157] [Online]. Available: http://news.dunkinbrands.com/

[158] S. M. Shalabi, C. L. Doll, J. D. Reilly, and M. B. Shore, “Access control

list,” Dec. 5 2011, US Patent App. 13/311,278.

[159] J. Qian, S. Hinrichs, and K. Nahrstedt, “ACLA: A framework for access

control list (acl) analysis and optimization,” in Communications and Mul-

timedia Security Issues of the New Century. Springer, 2001, pp. 197–211.

[160] S. Mäki, T. Aura, and M. Hietalahti, “Robust membership management

for ad-hoc groups,” in Proc. 5Th Nordic Woekshop On Secure IT Systems

(NORDSEC 2000), Reyjavic, 2000.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

186 Seyedehsamane Abdigarmestani
(Samane Abdi)

REFERENCES

[161] T. Aura and S. Mäki, “Towards a survivable security architecture for

ad-hoc networks,” in Security Protocols, ser. Lecture Notes in Computer

Science. Springer Berlin Heidelberg, 2002, vol. 2467, pp. 63–73. [Online].

Available: http://dx.doi.org/10.1007/3-540-45807-7_9

[162] J. Rubio-Loyola, C. Merida-Campos, S. Willmott, A. Astorga, J. Serrat,

and A. Galis, “Service coalitions for future internet services,” in Communi-

cations, 2009. ICC ’09. IEEE International Conference on, 2009, pp. 1–6.

[163] E. Cohen, R. K. Thomas, W. Winsborough, and D. Shands, “Models

for coalition-based access control (CBAC),” in Proceedings of the seventh

ACM symposium on Access control models and technologies, ser. SACMAT

’02. New York, NY, USA: ACM, 2002, pp. 97–106. [Online]. Available:

http://doi.acm.org/10.1145/507711.507727

[164] B. Gleeson, G. Armitage, and J. Heinanen, “A framework for IP

based virtual private networks,” 2000. [Online]. Available: https:

//tools.ietf.org/html/rfc2764

[165] B. Lampson, M. Abadi, M. Burrows, and E. Wobber, “Authentication

in distributed systems: theory and practice,” ACM Trans. Comput.

Syst., vol. 10, no. 4, pp. 265–310, Nov. 1992. [Online]. Available:

http://doi.acm.org/10.1145/138873.138874

[166] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M. Llorente,

R. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres et al., “The reservoir

model and architecture for open federated cloud computing,” IBM Journal

of Research and Development, vol. 53, no. 4, pp. 4–1, 2009.

[167] D. Zissis and D. Lekkas, “Addressing cloud computing security issues,”

Future Generation Computer Systems, vol. 28, no. 3, pp. 583–592, 2012.

[168] H. Takabi, J. B. Joshi, and G.-J. Ahn, “Security and privacy challenges in

cloud computing environments.” IEEE Security & Privacy, vol. 8, no. 6, pp.

24–31, 2010.

[169] S. N. Foley, W. M. Fitzgerald, and W. Adams, “Federated autonomic net-

work access control,” in Proceedings of 4th Symposium on Configuration

Analytics and Automation (SAFECONFIG). IEEE, 2011, pp. 1–2.

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

187 Seyedehsamane Abdigarmestani
(Samane Abdi)

Appendices

188

Appendix A

List of Abbreviations and

Symbols

Abbreviations

ACL Access Control List

ALC Attribute Concept Language

ABox Assertional Axioms

CBAC Coalition-based Access Control

CWA Closed World Assumption

DAL Distributed Authorization Language

DL Description Logic

FACNAC Federated Autonomic Configuration for Net-

work Access Controls

FOL First Order Logic

ISC Internet Services of Coalitions

OWA Open World Assumption

OWL Web Ontology Language

OWL-DL Sub-pieces of OWL with maximum expressive-

ness while retains decidable

PGP Pretty Good Privacy

PKI Public Key Infrastructure

RDF Resource Description Framework

RT Role-based Trust management

189

A. List of Abbreviations and Symbols

SDSI Simple Distributed Security Infrastructure

SPKI Simple Public Key Infrastructure

SSAL Subterfuge Safe Authorization Language

SSALO An Ontology for Subterfuge Safe Authorization

Language

SSTM Subterfuge Safe Trust Management

SQWRL Semantic Query Web Rule Language

SWRL Semantic Web Rule Language

TBox Terminological Axioms

VPN Virtual Private Network

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

Symbols

P
P erm

−−−−−−−−−−−−→ Q This is used in RT and represents that principal

P delegates permission P erm to principal Q

P ∋ X principal P holds permission X

P −→ Q principal Q speaks for principal P

P
X

=⇒ Q principal P delegates permission X to principal

Q

P ⊲X principal P is accountable for permission X in

the delegation chain

X Y localPermission Y is no less authoritative than

localPermission X

(P N) local name N in the name space of principal P

〈P P erm〉 locally defined permission P erm in the name

space of principal P

A։ B : {a, b, c, ...}sA
The entity A sends a message to entity B. The

message {a, b, c, ...} is signed by the sender (sA)

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

190 Seyedehsamane Abdigarmestani
(Samane Abdi)

Appendix B

Proof of properties of SSAL Logic

B.1 Proof for Property 1

Theorem

Assuming principals P, Q, R, and permissions X, Y, Z, then when P delegates

permission X to Q and Q delegates permission Y to R, we can infer that the

greatest lower bound of X and Y is delegated to R. In the following Z is the

lower bound of permissions X and Y and is dominated by the greatest lower

bound of X and Y :

((P
X

=⇒ Q) ∧ (Q
Y

=⇒ R) ∧ (Z X) ∧ (Z Y))⇒ (P
Z

=⇒ R) (1)

Proof

Axiom P5:

Z X; Z Y

Z (X ⊓ Y)

From axiom P5 we have:

((Z X) ∧ (Z Y))⇒ (Z (X ⊓ Y)) (I)

Axiom D4:

P
X

=⇒ Q; Q
Y

=⇒ R

P
X⊓Y
=⇒ R

191

B. Proof of properties of SSAL Logic B.2 Proof for Property 2

From D4 we have:

((P
X

=⇒ Q) ∧ (Q
Y

=⇒ R))⇒ (P
X⊓Y
=⇒ R) (II)

Axiom D3:

P
Y

=⇒ Q; X Y

P
X

=⇒ Q

From D3 we have:

((P
X⊓Y
=⇒ R) ∧ (Z (X ⊓ Y))⇒ (P

Z
=⇒ R) (IV)

From (I), (II) and (IV) we have:

((P
X

=⇒ Q) ∧ (Q
Y

=⇒ R) ∧ (Z X) ∧ (Z Y))⇒ (P
Z

=⇒ R) (1)

B.2 Proof for Property 2

Theorem

If the delegator holds some permission then the delegatee also holds any domi-

nated permission.

((P ∋ Y) ∧ (P
Y

=⇒ Q) ∧ (X Y))⇒ (Q ∋ X) (2)

Proof

Axiom H2:

P ∋ Y, P
Y

=⇒ Q

Q ∋ Y

Axiom H4:

Q ∋ Y ; X Y

Q ∋ X

From H2 we have:

((P ∋ Y) ∧ (P
Y

=⇒ Q))⇒ (Q ∋ Y) (I)

From H4 we have:

((Q ∋ Y) ∧ (X Y))⇒ (Q ∋ X) (II)

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

192 Seyedehsamane Abdigarmestani
(Samane Abdi)

B. Proof of properties of SSAL Logic B.3 Proof for Property 3

From (I) and (II) we have:

((P ∋ Y) ∧ (P
Y

=⇒ Q) ∧ (X Y))⇒ (Q ∋ X) (2)

B.3 Proof for Property 3

Theorem

If a principal holds a permission, Y , and delegates it to Q then any principal that

speaks for the delegatee also holds all permissions that are dominated by Y .

((P ∋ Y) ∧ (P
Y

=⇒ Q) ∧ (X Y) ∧ (Q −→ R))⇒ (R ∋ X) (3)

Proof

Property 2:

((P ∋ Y) ∧ (P
Y

=⇒ Q) ∧ (X Y))⇒ (Q ∋ X) (2)

Axiom H3:

P ∋ X; P −→ Q

Q ∋ X

From axiom H3 we have:

((Q ∋ X) ∧ (Q −→ R))⇒ (R ∋ X) (I)

From property (2) and (I) we infer:

((P ∋ Y) ∧ (P
Y

=⇒ Q) ∧ (X Y) ∧ (Q −→ R))⇒ (R ∋ X) (3)

B.4 Proof for Property 4

Theorem

If a principal is being delegated a permission and the delegator holds any domi-

nated permissions, the delegatee also holds the dominated permissions.

((P ∋ X) ∧ (P
Y

=⇒ Q) ∧ (X Y))⇒ (Q ∋ X) (4)

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

193 Seyedehsamane Abdigarmestani
(Samane Abdi)

B. Proof of properties of SSAL Logic B.5 Proof for Property 5

Proof

Axiom D3:

P
Y

=⇒ Q; X Y

P
X

=⇒ Q

Axiom H2:

P ∋ X; P
X

=⇒ Q

Q ∋ X

From axiom D3 we have:

((P
Y

=⇒ Q) ∧ (X Y))⇒ (P
X

=⇒ Q) (I)

From axiom H2 we have :

((P
X

=⇒ Q) ∧ (P ∋ X))⇒ (Q ∋ X) (II)

From (I) and (II) we have:

((P ∋ X) ∧ (P
Y

=⇒ Q) ∧ (X Y))⇒ (Q ∋ X) (4)

B.5 Proof for Property 5

Theorem

Given principal P and Q, if Q speaks for P (P → Q) then any permission N that

is originated by P (〈P N〉) is also a valid permission in Q’s name space (〈Q N〉),

and is dominated by 〈P N〉.

((P ∋ 〈P N〉) ∧ (P −→ Q))⇒ (〈Q N〉 〈P N〉) (5)

Proof

Axiom P3:

〈P N〉 X; P −→ Q

〈Q N〉 X

From P3 we have:

((〈P N〉 X) ∧ (P −→ Q))⇒ 〈Q N〉 X (I)

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

194 Seyedehsamane Abdigarmestani
(Samane Abdi)

B. Proof of properties of SSAL Logic B.6 Proof for Property 6

X is a permission originated by P . Therefore we replace X with 〈P N〉 in the

statement (I):

((〈P N〉 〈P N〉) ∧ (P −→ Q))⇒ (〈Q N〉 〈P N〉) (II)

Lemma

The permission ordering is reflexive if and only if a permission is originated

by a principal:

(P ∋ X)⇐⇒ (X X) (L1)

Proof for Lemma Axiom H1:

{|N, {|N |}sK |}sK

K ∋ 〈K N〉

From H1 we infer that if there exists a permission 〈K N〉, some principal origi-

nated the 〈K N〉.

Therefore, From L1 we have:

(P ∋ 〈P N〉)⇐⇒ (〈P N〉 〈P N〉) (III)

From (II) and (III) we infer that 〈P N〉 〈P N〉 is always true if P has originated

〈P N〉 denoted as (P ∋ 〈P N〉). Consequently, we rewrite the statement (II) as:

((P ∋ 〈P N〉) ∧ (P −→ Q))⇒ (〈Q N〉 〈P N〉) (5)

B.6 Proof for Property 6

Theorem

Permission global ordering relation No less authoritative than denoted as , is

transitive.

((X Y) ∧ (Y Z))⇒ (X Z) (6)

Proof

Axiom P4:

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

195 Seyedehsamane Abdigarmestani
(Samane Abdi)

B. Proof of properties of SSAL Logic B.7 Proof for Property 7

X 〈P N〉; P −→ Q; 〈Q N〉 Y ; Q⊲ 〈P N〉

X Y

The speaks for relation is transitive. From axiom P4 and substituting Q for P ,

and Z for Y :

((X 〈Q N〉) ∧ (Q −→ Q) ∧ (〈Q N〉 Z) ∧ (Q⊲ 〈Q N〉))⇒ (X Z) (I)

The statement Q→ Q is always true, therefore statement (I) is rewritten as:

((X 〈Q N〉) ∧ (〈Q N〉 Z) ∧ (Q⊲ 〈Q N〉))⇒ (X Z) (II)

Axiom A5 (a principal which is accountable for a localPermission also holds it):

R⊲X

R ∋ X

From A5 substituiting Q for R and 〈Q N〉 for X we have:

(Q⊲X)⇒ (R ∋ 〈Q N〉) (III)

From (II) and (III) we have:

((X 〈Q N〉) ∧ (〈Q N〉 Z) ∧ (Q ∋ 〈Q N〉))⇒ (X Z) (III)

If 〈Q N〉 is a properly defined permission, there is a principal that originated it

and therefore holds it. The statement (Q ∋ 〈Q N〉) is a always true.

Finally, by rewriting 〈Q N〉 as Y and eliminating the true statement Q ∋ 〈Q N〉

we can infer transitivity of permission ordering :

((X Y) ∧ (Y Z))⇒ (X Z) (6)

B.7 Proof for Property 7

Theorem

If a principal Q accepts accountability for permission N in the name space of a

principal P , and principal Q also speaks for P , any permission, X, that dominates

permission 〈Q N〉, also dominates the permission 〈P N〉:

((〈Q N〉 X) ∧ (P −→ Q) ∧ (Q⊲ 〈P N〉))⇒ (〈P N〉 X) (7)

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

196 Seyedehsamane Abdigarmestani
(Samane Abdi)

B. Proof of properties of SSAL Logic B.8 Proof for Property 8

Proof

Axiom P4:

X 〈P N〉; P −→ Q; 〈Q N〉 Y ; Q⊲ 〈P N〉

X Y

From axiom P4, substituting 〈P N〉 for X and X for Y we have:

((〈P N〉 〈P N〉) ∧ (P −→ Q) ∧ (〈Q N〉 X) ∧ (Q⊲ 〈P N〉))⇒ (〈P N〉 X) (I)

The statement 〈P N〉 〈P N〉 is true from lemma L1, and also P ∋ 〈P N〉 is

implicitly stated in the statement Q ⊲ 〈P N〉. Permission 〈P N〉 is defined by

principal P and that P as the originator holds it (P ∋ 〈P N〉). Therefore we

have:

((〈Q N〉 X) ∧ (P −→ Q) ∧ (Q⊲ 〈P N〉))⇒ (〈P N〉 X) (7)

B.8 Proof for Property 8

Theorem

If a principal Q accepts accountability for the permission N in the name space of

the principal P (〈P N〉), and Q speaks for P , any permission that is dominated

by permission N in P ’s name space (〈P N〉), is also dominated by the same

permission N in the name space of Q (〈Q N〉).

((X 〈P N〉) ∧ (P −→ Q) ∧ (Q⊲ 〈Q N〉))⇒ (X 〈Q N〉) (8)

Proof

Axiom P4:

X 〈P N〉; P −→ Q; 〈Q N〉 Y ; Q⊲ 〈P N〉

X Y

From axiom P4 and substituting 〈Q N〉 for Y we have:

((X 〈P N〉) ∧ (P −→ Q) ∧ (〈Q N〉 〈Q N〉) ∧ (Q⊲ 〈P N〉))⇒ (X 〈Q N〉) (I)

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

197 Seyedehsamane Abdigarmestani
(Samane Abdi)

B. Proof of properties of SSAL Logic B.9 Proof for Property 9

Axiom A4:

R⊲ 〈P N〉; P −→ Q

R⊲ 〈Q N〉

From A4 and substituting Q for R we have:

((Q⊲ 〈P N〉) ∧ (P −→ Q))⇒ (Q⊲ 〈Q N〉) (II)

From (I) and (II) we have:

((X 〈P N〉) ∧ (P −→ Q) ∧ (〈Q N〉 〈Q N〉) ∧ (Q⊲ 〈P N〉))⇒ (X 〈Q N〉)

From lemma L1 the statement 〈Q N〉 〈Q N〉 is always true, therefore we have:

((X 〈P N〉) ∧ (P −→ Q) ∧ (Q⊲ 〈Q N〉))⇒ (X 〈Q N〉) (8)

B.9 Proof for Property 9

Theorem

If principal Q speaks for P and is accountable for permission 〈P N〉, then the

permission 〈Q N〉 dominates permission 〈P N〉:

((P −→ Q) ∧ (Q⊲ 〈P N〉))⇒ (〈P N〉 〈Q N〉) (9)

Proof

From property 8 and substitute 〈P N〉 for X we have:

((〈P N〉 〈P N〉) ∧ (P −→ Q) ∧ (Q⊲ 〈P N〉))⇒ (〈P N〉 〈Q N〉) (I)

From lemma L1 the statement 〈P N〉 〈P N〉 is always true. Therefore, we

have:

((P −→ Q) ∧ (Q⊲ 〈P N〉))⇒ (〈P N〉 〈Q N〉) (9)

Subterfuge-Safe Trust Management for

Delegation of Permissions in Open

Environments

198 Seyedehsamane Abdigarmestani
(Samane Abdi)

