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Abstract 
 

The magnetic properties of micro/nano-structure have attracted intense research interest in 

relation to geometrically-induced magnetism to delineate fundamental magnetic 

phenomena as well as focus the technological aspects in areas such as magnetic sensors, 

storage devices, integrated inductive components and a number of novel magnetic devices. 

Depending on the device applications, materials with high, medium or low magnetic 

anisotropy and their potential manipulation are required. The elements like geometry, 

crystal structure, magnetic spin configuration at the surfaces and interfaces are the basic 

ingredients for this manipulation. The most dramatic manifestation in this respect is the 

chance to manipulate the magnetic anisotropy over the intrinsic preferential direction of 

the magnetization, commonly observed in all ferromagnetic materials, thus opening up 

further possibility and functionality of ferromagnetic materials for device applications.  

 

In this thesis various types of magnetic anisotropy of different nanostructured materials 

and their manipulation are investigated. As a first approach detailed experimental and 

analytical methods for the qualitative and quantitative determination of magnetic 

anisotropy in nanomodulated Ni45Fe55 thin film are studied. In-plane magnetic field 

rotations in modulated Ni45Fe55 revealed various rotational symmetries of magnetic 

anisotropy due to dipolar interaction with a crossover from lower to higher fold as a 

function of modulation geometry. The tendency to form vortex is in fact found to be very 

small, which highlights that the strong coupling between metastable dipoles is more 

favorable than vortex formation to minimize energy in this nanomodulated structure. 

Derived mathematical expressions based on magnetic dipolar interaction and results 

obtained from Object Oriented Micromagnetic Framework (OOMMF) simulation are 

found to be in good agreement with our results. 

Further a second approach was investigated to control exchange anisotropy mostly known 

as excahneg bias at ferromagnetic (FM) – aniferomagnetic (AFM) interface in multifferoic 

nanocomposite materials where two different phase/types of materials have been 

simultaneously synthesized. Apart from the strong multiferroic coupling at room 

temperature, BiFeO3, with a long wavelength (~62 nm) cycloidal magnetic structure and 
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canted antiferromagnetism, exhibits an additional functionality of switching the magnetic 

anisotropy of a ferromagnetic layer via exchange bias coupling in a BiFeO3 

antiferromagnetic – Bi2Fe4O9 ferromagnetic layer composite. The switching can be 

triggered both by a magnetic as well as an electric field because of strong multiferroicity. 

Magnetic field, temperature and measurement protocol dependence of magnetic anisotropy 

of nanoscale multiferroic materials are presented.  

The third parallel aspect of this work was to electroplate thin films of metal alloy 

nanocomposite for enhanced exchange anisotropy. In this work an unique observation of 

positive (anti clock wise) and negative (clock wise) hysteresis loop formation in the Ni,Fe 

solid solution with very low coercivity and large positive exchange  anisotropy/exchange 

bias are investigated. These two opposite (positive/negative) hysteresis loop formation 

occur depending upon the field range used in hysteresis loop measurement and thus can 

potentially be manipulated. Hence, controllable positive and negative exchange bias is 

observed which has high potential application such as in MRAM devices.  

 

In this thesis, the current state of the art has been described in chapter one. In chapter two 

a broad literature review on the area of research has been reviewed.  

 

Different experimental techniques used in this work are discussed in details in chapter 

three.  

 

Micromagnetic simulation has been carried out to understand further the mechanism of 

magnetic materials. This has been discussed in chapter four.  

 

In chapter five the magnetic anisotropy control by 3D nanomodulation including how to 

avoid vortex formation in a continuous film are discussed.  

 

Chapter six introduces giant exchange anisotropy in multiferroic nanocomposite (BiFeO3-

Bi2Fe4O9) including the effect of temperature and magnetic field on it.  
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Chapter seven examines how the exchange anisotropy can be used to manipulate hysteresis 

loop direction in alloy composites with low coercivity (HC).  

 

Chapter eight concludes with the summary of the key findings of the study, potential 

application of them and possible future scope of the present research.  
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Units 
 

The subject of the thesis is widely based on different magnetic materials and different 

magnetic measurements. Different unit systems are used to study magnetism in recent 

times, they are mainly International System/System International d’Unites  (SI) or  meter-

kilogram-second system (MKS) and Gaussian system or centimeter-gram-second or 

electromagnetic system (CGS). The CGS system is commonly used in the USA and Asian 

countries whereas SI system is widely used in Europe. Both the systems define same 

phenomenon but visualizing in different way or obtained by different measurement 

technique and presented in different units. Same occurrence can be converted from one unit 

system to another by simple conversion factor.  Some of the principle magnetic properties 

in the two unit systems used in this thesis with their conversion factor are presented in 

Table 1.  

 

Table 1: CGS and SI magnetic unit conversion table. 

 

No Quantity Symbol Gaussian/cgs Conversion 

factor 

SI & mks  

1 Magnetic flux density B gauss (G) 10-4 tesla (T) 

2 Magnetic field strength H oersted (Oe) 103/4π ampere (A) 

3 Magnetization (vol.) M emu/cm3 103 A/m 

4 Magnetization (vol.) 4πM emu/cm3 103/4π A/m 

5 Magnetization (mass) σ, M emu/g 4π x 10-7 Wb.m/kg 

6 Magnetic moment m emu, erg/G 10-3 A.m2 

7 Magnetic dipole 

moment 
j emu, erg/G 4πx10-7 Wb.m 

8 Susceptibility (mass) χ emu/g (4π)2x10-10 H.m2/kg 

9 Permeability µ dimensionless 4π x 10-7 H/m 

10 Relative permeability µr undefined  dimensionless 

11 Demagnetization factor D,N dimensionless 1/4π dimensionless 
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1. Chapter – Introduction 

1.1. Background 

The magnetic properties of micro/nano-structured materials have attracted intense research 

interest from the viewpoints of geometrically-induced magnetism to delinate fundamental 

magnetic phenomena and also from the technological point of view in areas such as 

magnetic sensors, storage devices, integrated inductive components and a number of 

magnetic devices for novel applications. It is a well-known experimental fact that 

ferromagnetic material exhibits ‘easy’ and ‘hard’ directions of the magnetization 

depending on magnetic spin configuration for energy minimization. For the technological 

application this magnetic anisotropy becomes one of the most important properties of 

magnetic materials. The enormous research on magnetic properties of nanostructures has 

been the thrust in recent years behind the fundamental understanding of the magnetic 

anisotropy and its application in micromagnetic devices. For advanced device applications, 

materials with tuneable anisotropy are more useful.  

A preferred magnetic moment orientation in nanostructured material can be quite different 

in terms of the factors that account for the easy-axis alignment in bulk material, and 

consequently the anisotropy strength can also be significantly different. The influence of 

the elements like geometry, crystal structure, magnetic spin configuration at the materials 

interfaces and surfaces, are the basic ingredients for this behavior. By varying the suitable 

parameters and choosing appropriate materials, it is possible to tailor the magnetic 

anisotropy. The most dramatic manifestation in this respect could be the chance to 

manipulate the magnetic anisotropy over the intrinsic preferential direction of the 

magnetization as commonly observed in all ferromagnetic thin films which can open up 

new window of functionality of ferromagnetic materials for device applications.  

Different type of magnetic anisotropy of magnetic nanostructured thin films and their 

manipulation is discussed in this thesis. Magnetocrystalline, dipolar (shape), 

magnetoelastic and exchange anisotropies are explained. Detailed experimental and 

analytical methods for the quantitative and qualitative determination of various magnetic 

anisotropies are described. Many experimental results are further investigated by Object 

Oriented Micromagnetic Framework (OOMMF) simulation. Magnetic field, temperature 
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and measurement protocol dependence of magnetic anisotropy of nanoscale materials are 

presented. It is shown that geometry of nanostructures, material interface and selection of 

materials play important role to determine the magnetic anisotropy.  

 

1.2. Motivation of the work 

 

The interest in nanostructured magnetic materials has experienced a tremendous boost for 

potential use in numerous present and future device applications such as sensors, actuators, 

magnetic data storage and integrated passive devices due to the tunable magnetic properties 

and simultaneous improvement in material preparation technique. Following the 

unavoidable trend of device miniaturization, the present research trend is focused on 

various ways to reduce the size of every aspect of integrated circuits and integrated 

magnetic components.   In all such applications the key property of ferromagnetic materials 

is the direction of its magnetization which is widely based on magnetic anisotropy. This is 

the property which determines the preferred easy or hard magnetization directions of 

magnetic domains at remanence state and also decides the magnetization reversal process 

in presence of external field.  

1.3. Defining the scope of the Thesis 

 

A number of novel magnetic materials have been investigated to find out new possibilities 

to control and enhance magnetic anisotropy for next generation device applications. A 

unique nanopatterned soft magnetic thin film was investigated for possible magnetic 

anisotropy (shape/dipole) control. The goal of the work is to investigate a unique low cost 

solution to control magnetic anisotropy for device applications. 

The magnetic anisotropy has been distinguished depending on its origin. The crystalline 

anisotropy or magnetoelastic anisotropy is intrinsic in nature and originates due to spin–

orbit coupling (SOC) depending on crystalline structure of the materials. For 

polycrystalline materials, the overall magnetic anisotropy is of dipolar origin and largely 
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originates from the shape and known as shape anisotropy. In the present desertation work 

magnetic anisotropy of polycrystalline nanomodulated Ni45Fe55 films have been studied as 

a function of modulation geometry. In plane magnetic field rotations revealed a rotational 

symmetry of magnetization in a unique nanomodulated structure. We found a systematic 

crossover from lower folds to higher folds of magnetic symmetry in nanomodulated 

continuous film depending upon the modulation parameters. It is argued that this complex 

rotational symmetry can be introduced and controlled by proper 3-dimentional modulation 

having a particular geometrical symmetry. Analytical expression for the angular 

dependence of the magnetization was obtained to validate the experimental results. The 

overall discussion is focused on the effect of 3-dimensional geometry on magnetic property 

of a ferromagnetic thin film. The nanomodulation technique used in this work is cost 

effective. A further investigation in this work was how to avoid magnetic vortex formation 

in nano-patterned ferromagnetic material. The existence of both in plane and out of plane 

dipoles in this 3D nanomodulation film and their competition resulting into a metastable 

state don’t allow vortex formation (the minimum energy state). This is an essential 

requirement for nanostrcutured ferromagnetic materials in memory device application. 

A second approach in a novel technique was employed to control exchange anisotropy 

mostly known as exchange bias at ferromagnetic (FM) – aniferomagnetic (AFM) interface 

showing for the first time its tuneability in multiferroic nanocomposite materials where two 

different phase/types of materials can be simultaneously synthesized. Apart from the strong 

multiferroic coupling at room temperature, BiFeO3, with a long wavelength (~62 nm) 

cycloidal magnetic structure and canted antiferromagnetism, exhibits an additional 

functionality of switching the magnetic anisotropy of a ferromagnetic layer via exchange 

bias coupling in a BiFeO3 antiferromagnetic – Bi2Fe4O9 ferromagnetic layer composite. 

We have shown that the switching can be triggered both by a magnetic as well as an electric 

field because of strong multiferroicity present in the system. The role of exchange bias 

coupling has been noted not just in a single crystal BiFeO3-ferromagnetic layer system but 

in other thin film based heterostructures as well. Whether the exchange bias is larger in thin 

film or in bulk BiFeO3 based bilayer systems is debatable. While the exchange bias in thin 

films and nanoscale systems originates from uncompensated cycloid of the magnetic 
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structure, larger canting angle offers significant exchange bias even in bulk BiFeO3 based 

systems. 

The third parallel aspect of this work was to study the electroplated thin films of metal 

alloy nanocomposite for enhanced exchange bias. In this work we described direct 

observation of positive (anti clock wise) and negative (clock wise) hysteresis loop 

formation in the Ni,Fe solid solution with very low coercivity and large positive exchange  

anisotropy/exchange bias. These two opposite (positive/negative) hysteresis loop 

originated depending upon the field range of hysteresis loop measurement. Like most other 

positive exchange bias system Ni45Fe55 shows positive shift at field direction when the loop 

tracing field range is relatively small (just above the saturation field) and the loop is 

positive. However, when the film is measured with a higher loop tracing field range, we 

observed a typical negative hysteresis loop with no exchange bias. The main interest here 

was to achieve high exchange bias for materials with very low coercivity and low saturation 

magnetic field and trigger the hysteresis loop direction. The importance of this study lays 

in the essence on high exchange anisotropic materials for cutting edge technologies.  

 

1.4. Summary and Thesis Layout 

 

In this thesis at first the current state of the art in chapter two a broad literature review of 

the area of research has been reviewed. In chapter three different experimental techniques 

used in the work are discussed in details. Micromagnetic simulation has been performed to 

understand further the mechanism of magnetic materials. This has been introduced in 

chapter four. In chapter five, the magnetic anisotropy control by 3D nanomodulation and 

how to avoid vortex formation are discussed. Chapter six introduces giant exchange bias 

in multiferroic nanocomposite (BiFeO3-Bi2Fe4O9) and the effect of temperature and 

magnetic field on it. Chapter seven examines how the exchange bias can be used to 

manipulated hysteresis loop direction in alloy composite with low coercivity (HC). Chapter 

eight concludes with the summary of the key findings of the study, potential applications 

of them and possible future scope of the research.  
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2. Chapter – State of the Art Review 

2.1. Introduction 

In this chapter the state of the art in current research on magnetic anisotropy control in 

different ferromagnetic materials is discussed. Magnetic anisotropy in general is a 

fundamental property of magnetic materials. The magnetization tends to lie in a preferred 

direction to obtain lowest magneto-static energy state. The energy includes an anisotropy 

term Ea(θ,φ) where the direction of magnetization is defined by the angular coordinates θ 

and φ. The anisotropy can be intrinsic, related to atomic scale interactions in a unit cell 

which define easy directions in the crystal structure called magnetocrystalline anisotropy. 

It can also be related to the energy of the sample in its own demagnetizing field due to the 

sample geometry called shape/dipolar anisotropy. Exchange bias or exchange anisotropy 

occurs due to magnetic interaction between layers of magnetic materials where the strong 

magnetic coupling of an antiferromagnetic thin film causes a shift in the magnetic loop of 

soft magnetization of a ferromagnetic film. Magnetic anisotropy is one of the very 

important parameters in relation to the characterization of materials which is widely used 

in different technological applications, particularly magnetic recording media, sensors, 

magnetic passive devises, etc. The enormous research on magnetic anisotropy of ultrathin 

films and nanostructures opens up new horizon in terms of fundamental understanding as 

well. This chapter includes fundamental theory of different magnetic anisotropy and recent 

developments in this field. 

A vast number of magnetic devices are employed in the present day electronic industry. In 

ancient time the magnetic phenomenon in human beings were experienced by utilizing 

natural iron minerals. In modern times this was understood and explained from the 

standpoint of electromagnetics, to which many physicists such as Oersted and Faraday 

made a great contribution. In 1822 Ampère explained magnetic materials based on a small 

circular electric current which was the first explanation of a molecular magnet. Later, 

Ampère’s circuital law introduced the concept of a magnetic moment or magnetic dipoles. 

The magnetic field generated by an electrical field is given by Ampère’s circuital law as 

∮ 𝐻. 𝑑𝑙 = 𝐼 
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Where the total current (I), is equal to the line integral of the magnetic field (H) around a 

closed path containing the current. Whereas, in the materials the origins of the magnetic 

moment and it’s magnetic field are the electrons in atoms comprising the materials. The 

response of materials to an external magnetic field is relevant to magnetic energy 

expressed as (in CGS) 

𝐸 = −𝑚. 𝐻 

In SI unit  

𝐸 = −µ0𝑚. 𝐻 

where µ0 is the magnetic permeability of free space.  

The magnetization M is a property of the material which depends on the individual 

magnetic moments of its constituent magnetic origins. The magnetization of the material 

reflects the magnetic interaction at a microscopic molecular level which results in 

experimental behaviors due to external parameters such as temperature and magnetic field. 

Magnetic induction (B) is a magnetic response of the material when it is placed in an 

external magnetic field (H). The relationship between B and H is expressed as (in CGS) 

𝐵 = 𝐻 + 4𝜋𝑀 

In SI units the relationship is given using the permeability of free space (𝜇0) as 

𝐵 = 𝜇0(𝐻 + 𝑀) 

The magnetic properties are measured as a direct magnetization response to the applied 

magnetic field and the ratio of M to H expressed by magnetic susceptibility χ.  

𝜒 = 𝑀/𝐻 

The magnetization M of ordinary materials exhibits a linear function M = χ H with external 

magnetic field H. Material shows either positive or negative magnetic susceptibility, i.e. χ 

> 0 or χ < 0. In the case of χ > 0 the material is called as Paramagnetic and in the case of χ 

< 0 it’s known as diamagnetic material. In the M – H curve this behavior is discriminated 

as a positive or negative MH slope, as shown in Figure 2.1. Usually, a diamagnetic response 

toward an external magnetic field is very minor and the slope is very small compared to 

the slope of paramagnetic material.  
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Fig.2.1. Schematic representation of typical field dependence of magnetization for particular type of 

magnetic materials. 

 

Paramagnetic materials sometimes experience magnetic phase transitions due to orderings 

of magnetic moments which occur through exchange and dipolar interactions between 

them as a function of temperature. There exist several ordering patterns which specify the 

vector arrangement of magnetic moments in different kind of materials. Parallel and 

antiparallel orientations are called ferromagnetism andantiferromagnetism respectively.  

 

 

Fig.2.2. Disordered and ordered states of magnetic moments for different magnetic materials 

 

In ferromagnetic materials magnetization (M) curve under a magnetic field cycle after the 

magnetic field is applied to reach a certain high value, the field is reduced to zero, and then 

it is reversed in field direction, making a loop. The magnetization (M), is traced out versus 
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external applied field H, as shown in Figure 2.1, and is called a “hysteresis curve”. The 

initial increase of the magnetization starts at the origin and it reaches a maximum value 

called saturation magnetization, 𝑀 𝑠 =  𝑁 𝑔 𝐽µ𝐵𝐽. In the reverse process of the field the 

magnetization does not trall back to the original curve, but remains at a certain value of 

magnetization at H = 0. This is called the remanenence magnetization which corresponds 

to spontaneous magnetization of the material. The residual magnetization gradually 

decreased due to reversed magnetic field and finally makes the magnetization zero at 

certain field, H = HC, which is called the “coercivity” or “ coercive force ” for the material 

at that temperature. The hysteresis loop is a complete illustration of the magnetic moment 

after a cyclic application of the external magnetic field. The important parameters in the 

evaluation of hysteresis loop for the ferromagnetic materials consist of these three values, 

MS, Mr, and HC. Every combination of these materials parameters are useful for device 

applications depending on the various aims. For example, large remanence (Mr) means a 

strong magnet, and the coercivity (HC) determines the materials as either soft or hard 

magnets. A soft magnet is likely to be magnetized easily and is also easily demagnetized, 

whereas a hard magnetic material needs more field to be magnetized and reach 

magnetically saturated state. Even in the same sample it’s possible that in one direction it’s 

easier to magnetize compared to other direction which is called magnetic anisotropy. 

Ferromagnetic materials are most widely used material among all. The phenomenon of 

ferromagnetism originates from interactions of neighboring spins. While the spin 

interaction is complicated, the ferromagnetic moment can be considered as result from a 

quasi-paramagnetic response to a huge internal field called Weiss molecular field (Hw). 

According to Weiss theory, Hw is proportional to the magnetization of the material, i.e. 

Hw= βM                                                                                                              Equation 2.1 

The total magnetic field that the material experiences is: 

Htot=H + Hw = H+ βM                                                                                        Equation 2.2 

where β is the constant of proportionality, H is the external field. 

By analogy to paramagnetism, we can substitute x = μomb(Htot) ∕kT) for H in the Langevin 

function and write: 

𝑀

𝑀𝑆
= ℒ (

µ0𝑚𝑏(𝐻+𝛽𝑀)

𝐾𝑇
)                                                                                        Equation 2.3 
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For temperatures above the Curie temperature (Tc) by definition no internal field is zero, 

hence βM is zero. Substituting Nmb ∕ v for MS, and using the low-field approximation for 

L(a), we can write 

𝑀

𝐻
=

µ0 𝑁𝑚𝑏
2

𝑣3𝐾(𝑇−𝑇𝐶)
= 𝜒𝑓                                                                                           Equation 2.4 

This is known as the Curie-Weiss law and determines ferromagnetic susceptibility above 

the Curie temperature (TC). 

Since Hw >> H below the Curie temperature we can neglect the external field H and 

rewrite 

𝑀

𝑀𝑆
= ℒ (

µ0𝑚𝑏𝐵𝑀

𝐾𝑇
)                                                                                               Equation 2.5 

or 

𝑀

𝑀𝑆
= ℒ (

𝑇𝐶

𝑇
.

𝑀

𝑀𝑆
)                                                                                                 Equation 2.6 

Where, 𝑇𝐶 =
𝑁𝛽𝑚𝑏

2

𝑣𝐾
 

 

Below the Curie temperature (TC), due to the alignment of unpaired electronic spins over 

a large area within the crystal certain crystals have a permanent (remanent) magnetization. 

The magnetic spins can be either parallel or anti-parallel which is controlled entirely by 

crystal structure of the materials and the energy term associated with this phenomenon is 

called exchange energy. Depending on the spin configuration there are three main 

categories of spin alignment: ferromagnetism, ferrimagnetism and antiferromagnetism 

(Fig. 2.2). In ferromagnetism all the spins are parallel and the exchange energy is 

minimized as occurs in pure iron. In antiferromagnetism spins are perfectly antiparallel and 

there is no net magnetic moment. In some crystals the antiferromagnetic spins are not 

aligned in a perfectly antiparallel orientation, but are canted by a few degrees which give 

rise to a weak net moment.  

 

The magnetic anisotropy phenomenon is well established by theoretical and experimental 

investigations. As already described there is an obvious interest of magnetic anisotropy of 

ferromagnetic thin films and nanostructures for technological applications. The 

classification of the magnetic anisotropy is based on their physical origins such as spin–



 

Tyndall National Institute | Types of magnetic anisotropy 18 

 

orbit coupling (SOC), dipolar magnetic interaction, and exchange interaction. Based on 

that, magnetic anisotropy is classified in to magnetocrystalline, magnetoelastic, 

dipolar/shape, exchange, dipolar crystalline, etc. The dipolar crystalline anisotropy can be 

neglected due to its small magnitude. Magnetocrystalline anisotropy, magnetoelastic 

anisotropy, and shape anisotropy have been thoroughly investigated on bulk magnetism, 

ultrathin film magnetism, and for different magnetic nanostructures within last few 

decades.  In the following sections, an overview of the electronic origin of different kind 

of magnetic anisotropy is briefly discussed. The shape/dipolar magnetic anisotropy in 

nanomodulated films and exchange bias in different nanostructures are introduced, and the 

recent research trend in relation to that has been addressed. A comprehensive literature 

review has been carried out to identify different methods to control magnetic anisotropy of 

different magnetic materials. Different techniques to control anisotropy reported for the 

various structured materials have been overviewed, highlighting the respective advantages 

and disadvantages of each of the techniques. Examples of the techniques employed include 

patterned, isolated magnetic structures and structured continuous magnetic films. These 

approaches have certain limitations which inhibit their use for device applications. For 

example, why the isolated nanostructure forms vortex at frustrated state and one 

dimensional structure doesn’t have much control over anisotropy, etc alongwith some 

potential solutions have been discussed below.  

2.2. Types of magnetic anisotropy 

Magnetic anisotropy has historically been analyzed by means of the anisotropy of 

susceptibility and the anisotropy of an artificial remanent magnetization. Both types are 

due to a non-isotropic distribution of magnetic grains. Six mechanisms have been proposed 

to explain magnetic anisotropy, whereby shape anisotropy and crystalline anisotropy are 

the most important ones. 

2.2.1. Shape anisotropy 

One of the important sources of magnetic anisotropy is shape. To understand how the shape 

controls magnetic energy of the material, the concept of the internal demagnetizing field 

of a magnetized body needs to be understood. The magnetic vectors within a ferromagnetic 
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materials produced by an external magnetic field is proportional to the magnetic moment. 

A magnetized body will produce a set of free poles distributed over the surface of the 

materials. This surface magnetic charge distribution or surface magnetic poles do not just 

produce the external field, rather they produce an internal field as well which is known as 

the demagnetizing field (Hdem). The applied field causes surface magnetic charges, which 

produce an internal field in the opposite direction of the external field. If field is applied, 

the effective field (Heff) along the field direction is: 

demexteff HHH                                                                                                 Equation 2.7
 

The demagnetization field is proportional to the grain magnetization, the constant of 

proportionality being the demagnetization factor (Ni). Therefore the effective field can be 

written as: 

effxextexteff HNKHMHH                                                                           Equation 2.8
 

where Nx is the demagnetization factor along the x-axis and M is the magnetization of the 

grain. The relationship between the effective field and the external field considering 

isotropic susceptibility is: 

KN
HH

x

exteff



1

1
                                                                                          Equation 2.9

 

 

 

Fig.2.3. Shape anisotropy of rectangular film 

 

Consider a thin-film of rectangular shape with Hext applied along x-axis. The magnetization 

is: 

KN
HKHM

x

extxeffx
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1
                                                                          Equation 2.10
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In the example presented in Figure 2.3, the Hdem is higher when Hext is applied parallel to 

the x-axis as compared to the y-axis, because Nx>Ny, therefore Mx<My. 

 

2.2.2. Anisotropy due to domain alignment 

When magnetic thin-films are deposited on a substrate they form grains. In the growth 

process the magnetic energy and the magnetic charge grows with grain size. At a certain 

point, magnetic domains take a critical size which minimizes the magnetostatic energy. 

Each magnetic domain is a region of the material where the magnetization has a constant 

direction (Fig.2.4a&b). The region in which the magnetization changes its orientation from 

one domain to another is called a domain wall or Bloch Wall (Fig.2.4c). Magnetic 

susceptibility values depend on the direction of the applied field with respect to the domains 

of the magnetic material. When an external field is parallel to the domain walls, the 

obtained susceptibility (K) is a measure of the ease with which the 180° walls may move. 

The susceptibility perpendicular to the domain walls is due to the rotation of the 

spontaneous magnetization against the forces of magnetocrystalline anisotropy.  

 

Fig.2.4. Formation of two-domain grain decreases the magnetostatic energy.  a) single-domain grain, 

b) grain with two domains, in which the magnetic susceptibility has a different value parallel (
IIK ) 

or perpendicular (
K ) to the domain wall and c) simplified model of a domain wall. 

2.2.3. Crystalline anisotropy 

For magnetic materials with single-domain or with low saturation magnetizations, the 

crystal structure determines the magnetic anisotropy. In such materials the easy direction 

of magnetization or easy axis is alignedalong the crystallographic directions along which 

magnetocrystalline energy is minimum. In crystals, the arrangement of the ions in the 

lattice structure affects the exchange process. As a result the direction of magnetization is 
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directly influenced by this exchange and magnetocrystalline anisotropy. The spatial 

configuration of the cations and anions in the crystal is responsible for crystalline 

anisotropy in common ferromagnetic minerals. The super-exchange phenomenon is more 

effective in a certain direction than in others and therefore the magnetization prefers to lie 

along specific crystallographic directions. This behavior gives rise to an easy magnetization 

axis and a hard magnetization axis within the crystal. In Figure 2.5 the magnetocrystalline 

anisotropy energy density, Ea for magnetite at room temperature is shown. The highest 

energy bulges lie in directions perpendicular to the cubic faces (<001>, <010>, <100>) 

whereas the lowest energy dimples are along the body diagonals of the crystal unit cell 

(<111>). 

 

Fig.2.5. The magnetocrystalline energy is highest when the system is magnetized along a “hard” 

direction and lowest when magnetized along an “easy” direction. [Ref. 1] 

2.2.4. Textural anisotropy 

This is the term given to the magnetic anisotropy that results from the stringing together of 

magnetic grains in lines or planes. The stronger susceptibility lies parallel to the string of 

grains (Fig. 2.6). 

 

 

Fig.2.6. Schematic diagram of textural anisotropy. The arrow shows the direction of maximum 

magnetic susceptibility. 
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In natural materials the distribution of grains is generally related with structures in the 

samples, e.g., fractures or cracks, natural veins, minerals cleavage or void (e.g, Kligfield et 

al. (1982)). 

2.2.5. Exchange anisotropy 

This term was originally used to describe a magnetic interaction between an 

antiferromagnetic material and a ferromagnetic material and has been later extended to 

include the interaction between ferromagnetic and ferrimagnetic materials (Meiklejohn, 

1962). The simplest model assumes a single domain of antiferromagnetic material and a 

ferromagnetic material with an interface plane separating them (Figure 2.7) 

 

Fig.2.7. Simple model of exchange anisotropy. Tc is the Curie temperature of the ferromagneticphase 

and TN is the Néel temperature of the antiferromagnetic phase. 

 

When a large magnetic field is applied along the easy direction of magnetization with TN<T 

< TC, the ferromagnetic moments orient parallel to the applied field. If the specimen is then 

cooled through the Néel temperature TN of the antiferromagnet, the spins of the lattice 

closest to the ferromagnet will align in the same direction as the ferromagnet. Subsequent 

spin planes will orient antiparallel to each other. These alternating antiparallel planes are 

highly anisotropic and hold the magnetization of the ferromagnetic material in the direction 

of the applied field.  

The exchange energy per unit area of an exchange coupled assuming coherent rotation of 

the magnetic spin can be expressed as 

 

𝐸 = −𝐻𝑀𝐹𝑀𝑡𝐹𝑀 cos(𝜃 − 𝛽) + 𝐾𝐹𝑀𝑡𝐹𝑀𝑠𝑖𝑛2(𝛽) + 𝐾𝐴𝐹𝑀𝑡𝐴𝐹𝑀𝑠𝑖𝑛2(𝛼)

− 𝐽𝐼𝑁𝑇 cos(𝛽 − 𝛼)                                                                           Equation 2.11 
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Where, H is external applied field, 𝑀𝐹𝑀is the saturation magnetization, β is the angle 

between the magnetization and the FM anisotropy, α is the angle between the AFM 

sublattice magnetization and AFM anisotropy axis, θ is the angle between the applied field 

and the FM anisotropy axis, 𝑡𝐹𝑀is the thickness of the FM layer, 𝑡𝐴𝐹𝑀is the thickness of 

the AFM layer, 𝐾𝐹𝑀is the anisotropy of the AFM layer and 𝐽𝐼𝑁𝑇the interface coupling 

constant. 

 

It is considered that the FM and AFM anisotropy axes are in the same direction. In the 

energy equation the first term is for the effect of the applied field on FM layer, the second 

term represents the effect of the FM anisotropy, the third term is for the AFM anisotropy 

and the last term is due to interface coupling. 

 

2.2.6. Stress induced anisotropy 

In addition to above anisotropies, there is another anisotropy effect related to spin-orbit 

coupling arises from the strain dependence of the anisotropy constants which is called 

magnetostriction. Due to magnetization, a previously demagnetized crystal experiences a 

strain which can be estimated as a function of external applied field along the principal 

crystallographic axes. Hence a magnetic material changes its dimension when magnetized. 

 

The reverse effect or the change of magnetization due to stress can also occur. A uniaxial 

stress can generate a unique easy axis of magnetization or uniaxial anisotropy if the stress 

is sufficient to overcome all other anisotropies. This type of anisotropy is of interest, since 

it may lead to a possible deflection of the magnetization of rocks as a result of a tectonic 

stress. 

 

2.2.7. Induced uniaxial anisotropy 

 

Inducing a uniaxial anisotropy by the application of a magnetic field parallel to the plane 

of the depositing film is a widely used technique in thin film deposition where it is 

preferable to align the domain magnetisation in a particular direction during the deposition. 

The magnetic field is usually provided by permanent magnets which are positioned on 
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either side of the substrate in which direction the uniaxial anisotropy needs to be created. 

It is important that the field applied by the permanent magnets needs to be parallel to the 

substrate surface and to minimise the number of flux lines which intersect the surface of 

the substrate.   

There are other ways to create uniaxial anisotropy. One of the most commonly used method 

is thermal annealing. Macrosocpic anisotropy can be induced by applying a saturating 

magnetic field during thermal treatment so that the domain structure of the magnetic 

material consists of a single domain during the process. In voltage-driven spintronic 

devices the induced anisotropy can be created by applying very high voltage during the 

film deposition. 

2.3. Anisotropy control 

2.3.1. Crystal structure 

Magnetocrystalline anisotropy is one of the fundamental parameters in the analysis of 

magnetic behavior of magnetic materials. It can be easily observed by measuring 

magnetization curves along different crystalline directions. Magnetocrystalline anisotropy 

is the energy necessary to rotate the magnetic moment in a single crystal between the easy 

and the hard directions. In single-domain particles or particles with low saturation 

magnetizations the crystal structure of the materials dominates the magnetic energy. The 

so-called easy directions of magnetization are crystallographic directions along which 

magnetocrystalline energy is at a minimum. The magnetically easy and hard directions 

arise due to the interaction of the spin magnetic moment within the crystal lattice known 

as spin-orbit coupling. As a consequence of the magnetocrystalline anisotropy energy when 

the magnetization is aligned in an easy direction, work must be performed to change the 

magnetization in other direction. In order to switch from easy to hard direction or vice versa 

the magnetization has to traverse a path over an energy barrier which is the difference 

between the energy required for the spin to be aligned in the magnetically easy and hard 

directions. In cubic crystals the magnetocrystalline anisotropy energy is given by an 

exponential series in terms of the angles between the magnetization direction and the axes 
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of crystal cube. The anisotropy energy can be represented in an arbitrary direction only by 

the first two empirical constant terms in the series called the first- and second order 

anisotropy constants, or 1k and 2k respectively. 

 

The magnetic anisotropy in transition metals arises from spin-orbit coupling. The typical 

fourth-order approximation of the parameterization of uniaxial anisotropy expressed in 

terms of energy density is: 
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Where, 

i

uniε =The uniaxial anisotropy energy of a magnetic moment i  

1k =The primary anisotropy constant of a material obtained from experimental 

measurements, expressed as a temperature-dependent energy density 

2k =The secondary anisotropy constant of a material obtained from experimental 

measurements,  

i = The angle between iS  and the easy.  

Both the constants ( 1k & 2k ) are expressed as a temperature-dependent energy density and 

can exist with either a positive or negative sign. When 1k >1 the axis is easy, when 1k <0 the 

axis becomes hard (which yields an easy plane). 

By neglecting constant terms, an equivalent parameterisation can be written as:  
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The typical cubic anisotropyparameterization is not straight forward trigonometrically:  
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cub SSSkSSSSkε                                                         Equation 2.14 

where
i

cubε is the cubic anisotropy energy of a magnetic moment ki . 
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The positive 1k  yields easy axes along the body edges (100) and negative 1k  indicates the 

easy axes across the diagonals (111).  [2] 

The energy for a system of magnetic moments is given by: 


i

i

cubah εε                                                                                                   Equation 2.15 

where, ahε  is either uniε  or cubε . 

Materials like permalloys are considered isotropic (i.e. 1k = 2k = 0). The contribution to the 

total energy from the anisotropy for such kind of materials is zero. To induce anisotropy in 

those materials a novel technique such as nanomodulation technique is used, which is 

discussed in the next section. 

2.3.2. Nanomodulation 

In recent years magnetic anisotropy has been demonstrated for patterned, isolated magnetic 

structures [3-5] and structured continuous magnetic films [6]. Such kinds of control open 

up opportunities for potential applications such as spintronic devices, magnetic random 

access memory (MRAM) [7] high density patterned information storage media [7,8], and 

high precision ultra-small magnetic field sensors [9]. Due to fundamental reasons and 

potential applications, it is necessary to understand further the magnetic properties of 

patterned structures in reduced dimensions, while both geometry and crystal microstructure 

are needed to be optimized prior to configure the magnetization [10]. Subsequent 

investigations further reveal fascinating properties like geometrical frustration, domain 

wall pining, etc. due to dipolar interaction based on spin configurations [11,12]. Several 

methods such as ion irradiation through a mask [6], selective epitaxy [13], surface 

modulation [13], etc. have been studied to control the magnetization configuration in 

patterned structures. In recent years Ion beam lithography has been found to be very useful 

for transferring nanopatterns on three-dimensional surfaces. Ion beam lithography offers 

more precise nanopattern than UV, X-ray, or electron beam lithography because in this 

technique heavier particles with more momentum is used. Among all these, surface 
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nanomodulation is preferred for its cost effectiveness and simplicity to engineer spin 

configuration locally. [14] Furthermore, the optimization of magnetic parameters such as 

pattern geometry, film thickness, intrinsic anisotropy, and coercivity is essential to obtain 

a controlled anisotropy in a film by nanomodulation. Magnetostatic energy induced by 

strong nanomodulation forces the spins into local vortices which is unfavorable for many 

applications. Thus the development of a physical model for an optimized modulation is 

essential to manipulate film anisotropy.  

 

 

Fig.2.8. One dimensional nano structure gives 2 fold symmetry [Ref: 15] 

 

Artificially created ordered corrugation produces controllable magnetic anisotropy. 

However, while the external field favors such magnetic dipole alignment, interdipole 

magnetostatic interaction results in a variation of the effective magnetostatic energy in 

different directions. This effect translates into in-plane anisotropy variation depending 

upon modulation geometry (Fig. 2.8, 2.9).  
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Fig.2.9. Dimensional nanostructure gives four fold symmetry [Ref: 16] 

 

Magnetic anisotropy is the angular dependency of a specific magnetic property, e.g. 

magnetic susceptibility, remanent magnetization or saturation magnetization. In a given 

direction I, the relationship between magnetization and applied field is not a scalar but a 

second-rank tensor of magnetic anisotropy. The magnetization can be written as: 
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                                                Equation 2.16 

Magnetic dipole, generally a tiny magnet of microscopic to subatomic dimensions is 

equivalent to a flow of electric charge around a loop. Electrons circulating around atomic 

nuclei, electrons spinning on their axes, and rotating positively charged atomic nuclei all 

are magnetic dipoles. The sum of these effects may cancel so that a given type of atom may 

not be a magnetic dipole. If they do not fully cancel, the atom is a permanent magnetic 

dipole, as are iron atoms. Many millions of iron atoms spontaneously locked into the same 

alignment to form a ferromagnetic domain also constitute a magnetic dipole. Magnetic 

compasses needles and bar magnets are examples of macroscopic magnetic dipoles. 

The strength of a magnetic dipole, called the magnetic dipole moment, may be thought of 

as a measure of a dipole’s ability to turn itself into alignment with a given external magnetic 

field. In a uniform magnetic field, the magnitude of the dipole moment is proportional to 

the maximum amount of torque on the dipole, which occurs when the dipole is at right 

angles to the magnetic field. The magnetic dipole moment, often simply called the 
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magnetic moment, may be defined then as the maximum amount of torque caused by 

magnetic force on a dipole that arises per unit value of surrounding magnetic field in 

vacuum. 

 

 

 

Fig.2.10. Atomic force microscopy (AFM) and magnetic force microscopy MFM images of a 

frustrated lattice [Ref: 17] 

 

When a magnetic dipole is considered as a current loop, the magnitude of the dipole 

moment is proportional to the current multiplied by the size of the enclosed area. The 

direction of the dipole moment, which may be represented mathematically as a vector, is 

perpendicularly away from the side of the surface enclosed by the counterclockwise path 

of positive charge flow. Considering the current loop as a tiny magnet, this vector 

corresponds to the direction from the South to the North Pole. When free to rotate, dipoles 

align themselves so that their moments point predominantly in the direction of the external 

magnetic field. Nuclear and electron magnetic moments are quantized, which means that 

they may be oriented in space at only certain discrete angles with respect to the direction 

of the external field. In recent years the research focus is on the magnetic interaction of 

these tiny dipoles based on their geometrical arrangement (Fig.2.10) which opens up 

different new magnetic phenomena like magnetic monopole, artificial spin-ice, etc. [16, 

17] These have been created much interest for their potential application in memory 

devices.   
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For such application it is essential to control the dipolar or magnetostatic interaction at a 

large scale. Magnetic dipole moments have dimensions of ‘current times area’ or ‘energy 

divided by magnetic flux density’. In the MKS and SI systems, the specific unit for dipole 

moment is A2m. In the CGS electromagnetic system, the unit is the erg (unit of energy) per 

gauss (unit of magnetic flux density). One thousand ergs per gauss equal one ampere-

square metre. A convenient unit for the magnetic dipole moment of electrons is the Bohr 

magneton (equivalent to 9.27 × 10−24 A2m). A similar unit for magnetic moments of nuclei, 

protons, and neutrons is the nuclear magneton (equivalent to 5.051 × 10−27A2m). 

 

2.3.3. Exchange bias 

The shift of hysterecis loop, initially called exchange anisotropy was first reported by 

Meiklejohn and Bean [18] in ferromagnetic (FM) Co particle encapsulated with 

antiferromagnetic (FM) CoO as quoted by them “A new type of magnetic anisotropy has 

been discovered which is best described as an exchange anisotropy. This anisotropy is the 

result of an interaction between an antiferromagnetic material and a ferromagnetic 

material”. Later the name exchange anisotropy was changed to exchange bias. In the more 

than 60 years since its discovery, the phenomenon of exchange bias has become the basis 

for different important applications in micromagnetic technology with surge in research 

and development wordwide. However, it has only been within the last two decade or so 

when the basic, quantitatively predictive, fundamental understanding of exchange bias has 

been investigated significantly beyond the initial model presented by Meiklejohn and Bean. 

Primarily, exchange bias is the result of exchange interactions between ferromagnetic (FM) 

and anti-ferromagnetic (AFM) materials at the interface. Only recently these phenomena 

have been investigated thoroughly due to the required experimental and analytical tools for 

dealing with interfacial behavior at the atomic scale became available. Meiklejohn and 

Bean's discovery was initiated by the observation of the hysteresis loop measured below 

room temperature of a sample of nominal Co nanoparticles which was shifted along the 

field axis after cooling in an external applied field. They described how the exchange 

interaction across the interface between the FM Co and the AFM CoO could produce the 

shift in hysteresis loop along field direction and manifests exchange bias (Fig. 2.11). 
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Normally thr loop shift is measured after cooling under external magnetic field. The loop 

shift is equivalent to the assumption of a unidirectional anisotropy energy for the free 

energy at T=0 K of a single-domain spherical magnetic particle with uniaxial anisotropy. 

The uniaxial anisotropy is aligned with its easy axis in the direction of the external magnetic 

field(H) which is applied in the anti-parallel direction of particle's magnetization (Ms), i.e., 

 

𝐹 = 𝐻𝑀𝑆𝑐𝑜𝑠𝛩 − 𝐾𝑢𝑐𝑜𝑠𝛩 + 𝐾⟘ 𝑠𝑖𝑛2 𝛩                                                          Equation 2.17 

where Θ is the angle between the direction of magnetization and the easy direction of 

magnetization, 𝐾𝑢 and 𝐾1are the unidirectional and uniaxial anisotropy energy constants 

respectively.  

Solutions of this equation can be expressed in terms of an effective field 

 

𝐻′ = 𝐻 − 𝐾𝑢/𝑀𝑆                                                                                               Equation 2.18 

 

which gives the hysteresis loop displaced by 𝐾𝑢/𝑀𝑆 along the field axis. Thus, an 

explanation of the loop shift is equivalent to explaining the interfacial unidirectional 

anisotropy. 

For more than a half century this phenomena has been studied due to its potential 

applications in giant magneto resistance (GMR)[19], spin valve[20], high density storage 

media[21] etc. as well as for fundamental studies. The conventional way to induce 

exchange anisotropy, named exchange bias (EB) is to cool down a magnetically 

uncompensated AFM-FM interface below Nee´l Temperature (TN) of AFM and Curie 

Temperature (TC) of FM where TN<TC.  A unidirectional shift of hysteresis or exchange 

bias should be observed in exchange coupled FM-AFM interface. In most cases the 

exchange bias is observed in the direction of cooling field, which is called positive EB. 

Due to the AFM-FM interaction, the FM spins intend to point in the direction of the cooling 

field at low temperatures below TN. In some cases due to the large unidirectional anisotropy 

of AFM, the AFM-FM interfacial interaction biases FM spins to the opposite direction of 

cooling field and causes a loop shift in opposite direction causing negative exchange bias.  

In addition an enhancement of coercively is also observed [6-8, 22-24]. Conventional field 

cooling is not necessary to introduce exchange bias in all cases. An exchange bias can be 
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observed in some AFM-FM interface, named spontaneous exchange bias when temperature 

is decreased below TN, whereas field cooling enhance the effect. In very recent report Saha 

and Victora has discussed spontaneous mechanism of spontaneous exchange bias [25]. 

 

 

 

Fig.2.11. Schematic diagram of the spin configuration of an FM-AFM bilayer at different stages. 

 

Extensive research has been done to investigate exchange bias phenomena in different 

materials, most of them are focused in AFM-FM bilayers. The Exchange bias effect has 

also been observed in various nano composite of perovskite oxides [26- 29] which is still 

not well understood. Recent reports show some nanoscale multiferroic materials [30, 31] 

show exchange bias which is not well investigated yet.  
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Different models of exchange bias: 

Till now three main models are proposed to explain the exchangeanisotropy or exchange 

bias. The models are not mutually exclusive; often one incorporates several different 

ingredients in a particular calculation.  

 

2.3.3.1. Meiklejohn and Bean - Direct exchange 

This is the first and simplest model of exchange bias [18]. The antiferromagnet interface is 

uncompensated, with a net spin/area MAFM, and a Heisenberg coupling J1to the 

ferromagnetic spin MF is assumed: 

 

Edirect = J1(MAFM · MF )                                                                                    Equation 2.19 

 

If one assumes that the antiferromagnet does not undergo reversal with the ferromagnet, 

then there will be unidirection anisotropy and the shift in the hysteresis curve (or the bias 

field) is immediately seen to be: 

 

HE=E/2MFtF                                                                                                                                                    Equation 2.20 

 

However this formula leads to bias fields that are orders of magnitude larger, and so 

refinements of this simple picture are described in the following sections. Recent 

experimental realization makesthis simple model more relevant than previously thought. It 

was found that there are in fact only very small percentages (4%) of moments at the AFM 

interface which are pinned. The rest of the moments rotate rigidly with the ferromagnet. 

Only these pinned moments contribute to the expression above, so that the predicted bias 

fields are reduced by a factor of .04, which leads to realistic values for the exchange bias. 

However, the nature of the pinning (its origin and magnitude) is not known. 
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2.3.3.2. Mauri - AFM spring: 

Mauri realized that the exchange energy cost associated with reversal of the ferromagnet 

can be decreased by accommodating a domain wall within the antiferromagnet. A form of 

the energy function which accounts for this is given as follows: 

𝐸 = −𝑯. 𝑴 −J1[𝑴. 𝒎] + /2. [1 − 𝒎. 𝒏]                                                     Equation 2.21 

 

Here Mis the ferromagnetic orientation, m is the orientation of the net spin of the 

antiferromagnet at the interface, u is the direction of the easy axis of the antiferromagnet; 

it is assumed that far away from the interface the antiferromagnet has relaxed to point along 

its easy axis. σ is the energy of a domain wall in the antiferromagnet. An expression for the 

switching field can be found (here we assumed the external field points in the z-direction): 

 

HE=J1(/2)uz/(J1
2+(/2)2-J1(M.u)                                                                Equation 2.22 

 

If u is assumed to make an angle θ with the z-axis, then the above can be written: 

 

𝐻𝐸 = (𝐽1/𝑀𝑡)
cos 𝜃

(𝑟2+1+2𝑟|sin 𝜃|)1/2                                                                          Equation 2.23 

 

with r =J/(σ/2). The important point to note is that the presence of the domain wall 

decreases the bias field by a factor outside of the brackets - which for realistic parameters 

can reduce the exchange bias field by one or two orders of magnitude, making the model 

predictions consistent with experiments. Typically it is assumed that the domain wall is 

present in the antiferromagnet (because of a weaker stiffness in the AFM). In the case where 

r → ∞ (physically where the direct exchange J dominates, and is essentially frozen out of 

the problem), the above expression indicates an energy cost associated with ferromagnet 

reversal of σ - in this case, reversal costs the energy of 1 domain wall. If r → 0, the domain 

wall (DW) is frozen out and we recover exchange bias HE=E/2MFtF. 
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2.3.3.3. Malozemoff - Random field exchange 

The Mauri model gives a good explanation of the order of magnitude of the exchange bias. 

However, it suffers from some defects: for one, it is known that the exchange bias is not 

very sensitive to the thickness of the AFM. So even in very thin AFM, where a DW wall 

is impossible and Mauri’s model is no longer relevant, we still have a bias field that needs 

explanation. Malozemoff et al. considered the effect of interface roughness on a 

compensated antiferromagnet-ferromagnet interface. It turns out to be energetically 

favorable to form domains on the antiferromagnet interface surface, and these domains lead 

to a reduction of HE with a similar form as that found by Mauri.  

The following figure demonstrates how a single bump in the interface can lead to a 

unidirectional exchange between the ferromagnet and antiferromagnet at a compensated 

interface: 

 

 

Fig.2.12. The presence of a bump at the interface changes the relative energy 

between ferromagnet orientations. The difference in energies between (a) and (b) 

corresponds to the exchange bias from a single bump. (Notice that (b) is the same 

as (a) with the FM reversed). 

 

Figure 2.12 above shows how the spin configuration changes if we add a single bump at 

the interface. To find the energy associated with this bump, we count the number of 

reversed spin pairs the bump induces. Here the difference is 4 (1FM pair replaced by 3 

AFM pairs). Fig 2.12 (b) shows the difference when the bump is shifted by 1 lattice site -

(also, note configuration (b) corresponds to (a/c) when the ferromagnet in (a) is reversed). 
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In this case the difference in energy caused by the bump is -4 (1 AFM pair replaced with 3 

FM pairs - the exact counting of energies can be tricky, but it’s not important for us). Thus 

a single bump in the interfaceinduces unidirectional exchange energy of ±ziJ - where zi is 

of the order unity and depends on the lattice details around the bump, and J is the atomic 

exchange energy. The sign of the exchange bias depends on the atomic location of the 

bump - so for example the sign in Fig.2.12 (a) and (b) are different. An interface with 

random spatial roughness will result in spatially random effective exchange energies 

between the antiferromagnet and ferromagnet. In this simple model, a collinear 

arrangement of spins is assumed so that the exchange energy per unit area takes on a value 

of ±ziJ/a2at each atomic lattice site on the interface (‘a’ is the interatomic spacing).  

The model further assumes that the ferromagnet is uniform. So each atomic site on the anti-

ferromagnet surface has some random preferred direction, ±z. If there is no energy cost 

associated with formation of domains in the antiferromagnetic interface, then clearly it is 

energetically favorable for each lattice site to assume its preferred position. There is of 

course an energy cost for domain formation, and so the game is to find the energetically 

optimum domain size. 

 

 

Fig.2.13. A representation of surface roughness as a random FM-AFM exchange at 

each atomic plaquette (arrows = random direction of exchange field), with a circular 

domain superimposed. A small domain size decreases random field exchange energy, 

the expense of domain wall energy. 

 

The randomness of the problem plays a unique role in that as the domain size increases, a 

larger set of random exchange energies is averaged over, so that the exchange energy gain 

goes down (Fig.2.13). Specifically, for a domain of area L2, the number of lattice sites is N 

= L2/a
2, and the average unidirectional exchange energy per unit area is then −ziJ/a2√N 
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=−zi/aL. Mazeloff does the calculation to find the optimum domain size L, finding: L 

≃π(A/K)1/2. This leads to a unidirectional exchange energy of zi (KA)1/2, or a bias field of 

 

HE=(KA)1/2/2MFtF                                                                                            Equation 2.24 

 

which is the same form found in Meiklejohn and Bean model (in the r → ∞ limit). This 

model can explain the order of magnitude of HE for very thin AFM layers. The notion of 

DW formation on the surface of the AFM as the source of exchange bias is a feature of 

more modern and elaborate theories of exchange bias. 

2.3.3.4. Koon/Butler - Spin-flop coupling 

Koon found that at a perfectly compensated interface, the interface spins of the 

antiferromagnet will cant slightly out of the plane. A perfectly compensated interface will 

decrease its energy by canting slightly out of the plane, towards the FM. This results in a 

small net moment which couples to the FM, and leads to a spin-flop coupling between the 

FM and the axis of the AFM.There will be a small net moment which is perpindicular to 

the axis of the antiferromagnet. This moment will couple to the ferromagnet, and leads to 

spin-flop coupling like interaction K2(MF · MAFM)2. Adding this term to the energy,one 

obtains: 

E = −H· M − J[M· m] + Jsf[M· m]2+(σ/2)[1 − m · u]                                      Equation 2.25 

Koon initially proposed that this coupling can lead to unidirectional anisotropy, or 

exchange bias. The mechanism is Mauri-like, in that it relies on partial longitudinal domain 

wall formation in the antiferromagnet. This result was initially supported by atomistic 

calculations of Koon (done with an XY-model, or strictly easy plane limitation). However, 

Butler et al. reportedmore detailed calculations which allow for out-of-plane spins, and 

including magnetostatic interactions. They found that a pure spin-flop coupling for 

Heisenberg spin term does not give rise to exchange bias. The extra freedom allowed in 

Butler’s calculation allowed the antiferromagnetic orientation to switch between its 

degenerate minima before a domain wall is formed. This spin-flop coupling can, however, 

account for the enhanced hysteresis of the ferromagnet, Butler used a combination of spin-

flop coupling, and Malozemoff random field effects to find realistic values for the exchange 
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bias. Stiles et al found that the addition of spin-flop coupling actually reduces the exchange 

bias field in the simple model given by above equation. 

 

2.4 Different magnetic phenomena out of nanostrcutures  

2.4.1. Superparamagnetism  
Superparamagnetism (SPM) is a type of magnetism which occurs in small ferrimagnetic or 

ferromagnetic nanoparticles with size around a few nanometers to a couple of tenth of 

nanometers, depending on the materials. In a simple approximation, when the size of the 

nanoparticle are smaller than its single domain size the total magnetic moment of the 

nanoparticle can be regarded as one giant magnetic moment, composed of all the individual 

magnetic moments of the atoms of nanoparticle. These nanoparticles are called 

superparamagnetic nanoparticles. In such nanoparticles having5 uniaxial anisotropy, 

magnetization can randomly flip direction under the influence of temperature. The typical 

time between two flips is called the Néel relaxation time: 

𝜏 = 𝜏0𝑒𝑥𝑝 (
𝛥𝐸

𝑘𝐵𝑇
) 

Where, 

𝜏0=The length of time characteristic of the probed material.  

∆he length of  barrier the magnetization flip has to overcome by thermal energy. 

kB: The Boltzmann constant 

T: Temperature. 

 

 The observation of superparamagnetic state in nanoparticles does only depend on the 

temperature T and energy barrier ΔE but also measurement time τm of each experimental 

technique. Depending on the measuremnt time two scenarios can occur. When the 

measurement time is much smaller than the relaxation time, a well defined blocked state 

can be observed. If the measurement tttime is much larger than the relaxation time a time-

averaged net zero magnetic moment is observed due to the fluctuation state of 

magnetization which is called superparamagnetism. 
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2.4.2. Superferromagnetism  
Superferromagnetism is the magnetic state of an ensemble of magnetically interacting very 

small size (nano) magnetic material with super-moment. In the case of diluted nanoparticle 

systems where the magnetic interactions between particles are ignored, it is a 

superparamagnetic state of the nanoparticles due to the absence of a collective order. For 

highly dense nanoparticles with strong magnetic interactions, it can reach a 

superferromagnetism stage due to a collective ferromagnetic order. For example, 

nanoparticles of ferrihydrite (nominally FeOOH) like iron oxides interact magnetically and 

due to the interactions the magnetic behaviours of the nanoparticles (both above and below 

their blocking temperatures TB) are changed and lead to an ordered low-temperature phase 

with non-randomly oriented particle with super-moments which is called 

superferromagnetism. 

2.4.3. Super Spin Glass 
A spin glass is a disordered magnet, where the magnetic spin of the component atoms (the 

orientation of the north and south magnetic poles in three-dimensional space) are not 

aligned in a regular pattern. The spin glass is a random mixed-interactingsystem 

characterized by randomness and freezing of spins at a well-defined temperature Tf. Below 

the temperature a highly irreversible metastable frozen state generates without the usual 

long-range spatial magnetic order. The two most important charecteristics of spin glasses 

are, randomness in either position of the spins or the sign of interactions with neighbouring 

spin. Also a disordered, site or bond is required to create a spin glass. Otherwise the 

magnetic transition will be considered as standard ferromagnetic or antiferromagnetic type 

of long-range order. The term "glass" comes from an analogy from the positional disorder 

of a conventional, chemical glass, e.g., a window glass to the magnetic disorder in a spin 

glass. In amorphous solids like window glass, the atomic bond structures are highly 

disordered or irregular whereas in a crystal has a uniform pattern of atomic bonds. 

In magnetic nanoparticle systems, the particale size are smaller than single magnetic 

domain size and become superparamagnetic which interacts to each other weakly. 

Magnetic moments of each nanoparticle are called superspins, and such weakly interacting 

magnetic nanoparticle systems are called superparamagnets. For dense magnetic 
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nanoparticle systems, slow dynamics or cooperative spin-glass dynamics originates due to 

frustration caused by strong dipolar magnetic interactions among the nano particles, 

randomness in the particle positions and magnetic anisotropy axis orientations. Such dense 

magnetic nanoparticle systems, which exhibit spin-glass behavior are called superspin 

glasses. 

2.4.3. Inverted hysteresis loop 
The hysteresis loop is the fundamental behaviour of ferromagnetism, which is 

characterized by two important magnetic parameters, the remanence magnetization Mr, and 

the coercive field HC with positive values. For normal hysteresis loop when the field is 

decreased from positive saturation field a positive magnetization is observed which is 

called remanence magnetization Mr. A field is required in order to reverse its magnetization 

which is called the coercive field. These well-established features are challenged by 

inverted hysteresis loops (IHL) concept with partially inverted loops with negative 

remanence at positive coercive field. Instead of following the path anti clockwise, the loop 

follows clockwise path near the origin of the hysteresis loop. 

2.5. Sample preparation techniques 

2.5.1. Electrodeposition and electroplated magnetic materials - films 
In electroplating process electrolysis is used to deposit metal onto the surface of cathode. 

Electroplating is often called electrodeposition electrolytic deposition. It’s a process which 

uses electrical current to reduce cations of a desired material from an electrolyte solution 

and deposit that material onto a conductive substrate surface. Figure 2.14 shows a typical 

electroplating system for the deposition of nickel from nickel sulphate solution on a metal 

(Cu) coated substrate. The electrolytic solution contains positively charged nickel (Ni+) 

ions (cations) and negatively charged sulphate (SO4-) ions (anions). When an external 

electric field is applied, the cations are attarcted towords the cathode where they are 

discharged and deposited as metallic layer. 

 Thickness of the electrodeposited layer on the substrate is controlled by the time duration 

of the plating and the applied current/ potential. The longer the time the substrate remains 
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Fig.2.14. A schematic diagramme of electroplating example of Ni platting 

 

 

Table 2: Material for electrodeposition 

Chemical NiFe bath NiCo bath NiFeMo Bath 

NiSo4, 7H2O 200 g/L 300 g/L 60 g/L 

NiCl2, 6H2O 5 g/L 50 g/L  

FeSO4, 6H2O 8 g/L  4 g/L 

CoSO4, 7H2O  29 g/L  

Na2MoO4, 2H2O   2 g/L 

H3BO3 25 g/L 30 g/L  

NaCl   10 g/L 

Citic Acid   66 g/L 

Sodium Lauryl Sulfate  0.1 g/L  

Saccharin 3 g/L 1.4 g/L 3.0 g/L 
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in the operating plating bath, the thicker the resulting electroplated layer will be. The 

thickness depends on applied current/ potential across the two electrodes as well. Typically 

thicknesses of the film can be varied from 100 nm to 30 microns. An electroplated layer is 

genrally composed of a single metallic material. Co-deposition of two or more metals such 

as a Cu-Zn alloy, Au-Sn alloy or Ni-Fe alloy is possible under suitable bath conditions. 

The development of micromagneic devices has widely based on the use of electroplated 

nickel-iron permalloy since it has good soft magnetic properties, high permeability, stable 

high frequency responses, etc. [28-30] Initially electroplated permalloy (Ni/Fe 80/20) has 

been widely used for micromagnetic devices. Later other alloy materials like NiFeMo, Ni-

17Fe-4Mo, etc. have been investigated and used for better magnetic and mechanical 

properties [31-32]. Depending on the material composition the baths are prepared. Samples 

are electroplated on Si/Glass substrates with conducting titanium/gold/copper seed layer. 

Depending on alloy composition and deposition current, voltage, bath temperature, 

magnetic stirrer speed, external magnetic field, etc. are applied. 

2.5.2. Sonochemical methods - nanocomposites 
Researchers have recently developed sonochemical methods for the preparation of 

nanoparticles with controllable morphologies [33-34]. Ultrasound has become an 

important tool for the synthesis of different nanoparticles. Ultrasonic cavitation is formed 

when liquids are irradiated with ultrasonic irradiation. Ultrasonic cavitation which is is 

concerned with the formation, growth, and implosive collapse of bubbles, produces a 

variety of physical and chemical effects, such as high pressure (>20 MPa), temperature 

(>5000 K) and cooling rate (>1010 K s-1), which could provide a unique environment for 

chemical reactions under extreme conditions to prepare nanoparticles. Different research 

groups have demonstrated that ultrasound is a fine method to preparae nanoparticles with 

different controllable morphologies, such as dendritic, flowery, star-like, etc. It has been 

demonstrated that the ultrasonic irradiation plays a crucial role in the morphology of the 

product.  
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2.6. Nanocomposite multiferroic materials – The current state of the art 

In the last decade or so there has been much research interest given on bulk single crystals 

to nanostructured multiferroic materials along with novel characterization techniques to 

investigate order parameters, coupling, spin dynamics, etc. with experimental and 

theoretical complexity. A single phase multiferroic [39] is a material that simultaneously 

possesses more than one of the ‘ferroic’ order parameters—ferroelectricity, 

ferromagnetism, and ferroelasticity. Magnetoelectric coupling typically refers to the 

induction of magnetization by an electric field or polarization by a magnetic field [40]. The 

potential to manipulate coupling between magnetic and electronic order parameters has 

captured the interest of researchers on multiferroics especially application at room 

temperature. It is known that the future system requirements in ICT devices drive towards 

size minimization reduce weight and minimal power consumption along with enhanced 

performance. To fulfill these requirements it requires to refocus the research efforts from 

conventional macroscopic “bulk materials” approaches toward innovative micro-nanoscale 

technologies of emerging complex oxide and multiferroic thin film materials. Recent 

research indicates that integrated thin film complex oxide and multiferroic materials are 

expected to play a significant role in the development of high performance device 

applications in the near future. 

 

 

Fig.2.15. a) Relationship between multiferroic and magnetoelectric materials. (b) Schematic 

illustrating different types of coupling present in materials. Much attention has been given to 

materials where electric and magnetic order is coupled. These materials are known as 

magnetoelectric materials. [Ref: 41] 
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No other multiferroic has experienced the same level of interest in last decade as BiFeO3 

(BFO). The perovskite BFO was first invented in the late 1950s [42] and was thoroughly 

investigated for potential device application due to its magnetoelectric coupling [43]. Later 

in 1960/70s the physical and structural properties of BFO was studied. Initially BFO was 

suspected to be a G-type antiferromagnetic, ferroelectric multiferroic material [44, 45] with 

a N´eel temperature of ∼673 K [46] and possessed a cycloidal spin structure with a period 

of ∼620 Å[47]. Later the magnetic nature of BFO was studied in detail. It was also 

identified that if the magnetic moments were oriented perpendicular to the [111]-

polarization direction the symmetry allow a small canting angle of the moments in the 

structure which results a weak ferromagnetism of the Dzyaloshinskii–Moriya type 

(Fig.2.15.) [48, 49]. 

At ferroelectric state BFO possesses a distorted rhombohedral ABO3 type perovskite 

multiferroic with space group R3c with lattice parameters, ar = 3.965 Å and αr = 89.4° at 

room temperature. [50] Above the Curie temperature (TC= K), the structure possess a high 

symmetry cubic phase. Magnetic character of pure phase in single crystal is 

antiferromagnetic. On the other hand there have been some controversies on magnetism in 

thin film BFO where presence of impurities like Fe2+ and other iron borne impurities can 

show significant amount of magnetism. [51] 

 

 

Fig.2.16. (a) X-ray diffraction results from a fully epitaxial single phase BFO/SRO on STO(001) 

heterostructure. (b) Low and high resolution TEM images of BFO/SRO/STO(001) heterostructure. 

[Ref: 41] 
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2.7. Exchange bias systems – The current state of the art 

 

Exchange bias was first observed in fine particles by Meiklejohn and Bean in 1956. It was 

observed that the hysteresis loop below room temperature of a sample of Co nanoparticles 

was shifted along the field axis after cooling in an applied field. It was subsequently 

investigated that the ferromagnetic Co particles had been partially oxidized to CoO which 

is an antiferromagnetic material. Meiklejohn and Bean described how the exchange 

interaction across the interface between the FM Co core and the AFM CoO shell could 

produce the shifted hysteresis loop and the other unique manifestations of exchange bias. 

The Fig. 2.15 shows shifted hysteresis loop at 77 K in oxidized Co particles (10-100 nm). 

The shifted loop was measured after cooling in a field of 10 kOe. Meiklejohn and Bean 

showed that the loop shift was equivalent to the estimation of unidirectional anisotropy 

energy in terms of free energy at 0 K of a single-domain spherical particle with uniaxial 

anisotropy, aligned with its easy axis in the direction of the fieeld, H.  

Since its discovery, exchange bias has been mainly observed in ferromagnetic particles 

covered with their antiferromagnetic or ferrimagnetic native oxide like Co—CoO [18], 

Ni—NiO [52], Fe—FeO [53], etc. The particles studied are usually nanoparticals of size 

range 10—100 nm and prepared by a number of methods, such as vapour deposition, 

electrodeposition, reduction of the oxalate or mechanical alloying, sputtering, etc. In small 

particles it’s difficult to determin the exact FM and AFM thicknesses. Hence it is difficult 

to conclude a quantitative comparison of the results between different systems. Thus these 

systems are not ideal for fundamental study of exchange bias. Apart from that distribution 

of particle sizes, irregular shapes make it difficult to identify the nature of the interface, 

stoichiometry, etc. of the FM-AFM layers.  

The other major group is materials with multiple random AFM-FM interfaces, which are 

mainly polycrystalline materials with a mixture of AFM (or ferri) and FM components, so 

called inhomogeneous materials. Examples of the most studied in this group are Co 

sputtered in low oxygen pressure atmosphere, which includes Co rich and CoO rich areas 

[54], co-sputtered CoCr [55] or NiO with NiFe2O3 precipitates [56].  
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Fig.2.17. Exchange anisotropy first observed by W. Meiklejohn and C. P. Bean on Co-CoO particle 

at 77K after field cooled [Ref: 18] 

 

Exchange bias has been mostly studied in the materials in thin film form. In such systems 

the interface can be effectively controlled and well characterized [57, 58]. From the 

application point of view as well, most of the device applications are based on thin film 

systems of exchange bias [59, 60]. Moreover, in thin film systems there are many basic 

interesting parameters like AFM thickness [61], interface disorder [58], orientation 

dependence of HE [57], multi FM-AFM layers, etc. which open up new functionality in the 

exchange bias phenomenon. Among the layered systems, though AFM-FM interfaces 

based exchange bias are the most investigated, however other related systems such as 

AFM-ferri [62], ferri-ferri [63], ferri-FM [64] have also been investigated. The exchange 

bias based on AFM-FM interface can be divided in three main categories depending on 

AFM part: oxide, metallic and others. In this thesis both oxide and metallic materials have 

been thoroughly investigated for exchange bias studies. 
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3. Chapter – Experimental techniques 

3.1. Magnetic Characterizations of Materials 

3.1.1. Introduction to Magnetic characterization: 

The materials were characterized in our magnetic characterization laboratory  using two 

different instruments, an SHB instruments (Mesa 200-HF) Magnetic Measurement System 

real time B-H loop tracer and a Quantum Designs MPMS-XL5 superconducting quantum 

interference device (SQUID). An overview of this process and some of the results to date 

are outlined in this section. The first step prior to examining the results is to outline the 

operation of the instruments used.    

 The first instrument is a B-H loop tracer (hence forth referred to simply as the SHB) 

which was initially used to characterise thin-film samples. This instrument has the 

advantage of being a real time measurement at room temperature, allowing samples to 

be analysed quickly and inexpensively.  All thin-film samples were analysed using this 

instrument. 

 A selection of samples was chosen to be analysed using the Superconducting Quantum 

Interference Device (henceforth referred to as the SQUID) which is a far more sensitive 

instrument. A selection of thin-film and powder samples were measured, with room 

temperature and low temperature (down to 10K) measurements being performed.  

3.1.2. Characterization of materials with the hysteresis loop tracer 

For this work hysteresis loop tracer (MESA 200 HF) by SHB Instruments Inc. [65] was 

used which measures in the frequency range of 10 Hz and below. The mechanism of real 

time hysteresis loop tracer is to apply an AC magnetic field to the sample (thin film) and 

measure the flux density as a function of applied field generated by the magnetic coil where 

the sample acts like core material for the coil. To obtain the magnetic induction the 

response voltage from the sense coil is integrated by the instrument. In absence of a sample 

the instrument would still show an elliptical loop from the sensor coil itself due to the 
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applied field on it. To nullify this error a balancing error correction i.e. a balance coil placed 

in series with the sensor coil should be done prior to any measurement.  Other possible 

error in the measurements can be from noise pickup and the phase error between the applied 

current and the integrator output. 

 

Fig.3.1. Schematic diagram of hysteresis loop tracer (MESA 200 HF) by SHB Instruments Inc. 

 

As the SHB hysteresis loop tracer is calibrated for a 1 cm x 1 cm sample, thin-film samples 

were required to be diced to this size prior to analysis. This was done by either dicing the 

substrate on a wafer dicing machine prior to film deposition, or hand dicing of selected 

samples after the magnetic thin-film is deposited.  The diced samples were then loaded 

onto the sample stage and inserted into the instrument. Various drive fields were applied 

to the samples with intensities of up to 1000 Oersted (Oe)/(0.1T) and the resulting magnetic 

induction (flux density) was measured.  
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Fig. 3.2. SHB MESA 200 HF hysteresis loop tracer   

 

Once the samples were inserted into the SHB, the applied field and the measurement 

sensitivity were varied across the field range of the instrument. The resultant magnetic 

response of the material was observed on the instrument display screen. When a discernable 

B-H (magnetic flux density versus applied field) loop was observed, this showed that the 

material was within the range of sensitivity of the SHB. Typical material parameters 

examined were the saturation induction (Bs), the magnetic coercivity of the sample (Hc), 

and the anisotropy field of the sample (Hk), on both the hard and easy axis (where apparent). 

The samples were rotated with respect to applied magnetic field direction by rotating the 

sample stage.  

Due to the relatively small volumes of magnetic material in very thin samples, resultant 

magnetic moments produced by the applied fields were often beyond the limits of the SHB 
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sensitivity 0.008% of full scale. As such some samples had to be characterized in the 

SQUID which has a greater sensitivity range. 

3.1.3. Characterization of materials with the SQUID 

Quantum Design Superconducting Quantum Interference Device (SQUID) with 5 Tesla 

range Magnetic Properties Measurements System (MPMS-XL5) was used for magnetic 

measurements with high accuracy [66]. Measurement protocol of SQUID is based on low 

temperature superconductors operating at liquid helium temperature. The working 

principle of SQUID is based on magnetic flux quantization in a superconducting cylinder 

which makes possible very high sensitivity in voltage, current and magnetization 

measurements. The Josephson Effect leads to high sensitive measurements The SQUID 

with its electronic circuits able detect about of a flux quantum (40 =h/2e). The 

superconducting Nb-wire (0.08 mm in diameter) magnetic flux transformer consists of 

pick-up coils and a SQUID coil. A superconducting contact is obtained by pressing the 

wires mechanically together. During operation sometimes it’s required to destroy the 

supercurrent generated in the magnetic flux transformer. A carbon resistor of 10 kΩ is 

mounted in thermal contact with the wire to minimize unwanted magnetic fields near the 

magnetic- flux transformer. The whole SQUID unit is enclosed in a superconducting lead 

to avoid vibrations, and it must be rigorously shielded against external magnetic fields.  

For magnetic measurement the magnetic field B is generated by the superconducting 

magnet coil. The sample is slowly moved up and down through the pick-up coils by a 

hydraulic system. The magnetic moment of the sample produces a magnetic flux change in 

the pick-up coils. The magnetic flux transformer exhibits a superconducting loop, thus 

transforming part of the total magnetic flux change from the pick-up coils into the SQUID. 

A typical signal curve generated from a sample due to an applied field is shown in Fig. x.  

The samples with high magnetic moment should be moved very slowly through the pick-

up coils so that it does not exceed the maximum slewing rate of the electronic system.  
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Fig.3.3. Output voltage vs. sample position plot, as a result of moving the sample through the pickup 

coils under an applied field. 

 

 A  Prior to running samples on the SQUID, the samples were prepared by dicing them into 

a suitable size. The maximum size of a sample which can be inserted into the SQUID using 

the standard transport is approximately 6mm x 15 mm. To minimize the impact of shape 

anisotropy effect we diced the samples into a 4mm x 4mm size.  They were then placed 

into a sample holder and inserted into the SQUID. The SQUID is calibrated to take account 

of the magnetic contribution of the straw, which may distort the measurements. The 

samples are next centered by applying a magnetic field sufficiently high so as to saturate 

the sample (up to 5T) and moving the sample through the SQUID’s measurement coils.  

The operator then defines the center of the sample by visually inspecting the resultant 

centering curves and aligning the maximum point of the curve to the corresponding center 

point of the chamber. Once the sample is correctly loaded and centred, fields were applied 

to the samples varying from + 50000 Oe to -50000 Oe and the resultant magnetizationof 

the samples, in units of emu (electromagnetic units, 1000 emu/cm3= 1 A/m), was measured.  
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Fig. 3.4. SQUID Magnetometer by Quantum Design 

The SQUID measurement results are optimum in terms of time and accuracy for this unique 

new category of material. Both DC (or static) measurements (where the moment is 

measured in the prensence of a static magnetic field), as well as RSO (reciprocating sample 

option, where the sample is moved up and down relative to the pick-up coils in the presence 

of a static magnetic field) techniques were employed in the SQUID. For samples with low 

magnetic moments (not strongly ferromagnetic) both DC and RSO multimeasure 

techniques were used. This utilised a feature of the SQUID which measured the sample’s 

magnetic moment many times and then applied statistical techniques to decide whether 

subsequent measurements were required to ensure that a certain percentage of the resultant 

magnetic moments fell within 2 sigma of the mean response. While the SQUID has a 

theoretical sensitivity and measurement sensitivity of 10-8 emu, in practice this requires 

both a prohibitively large amount of time and by extension liquid He to measure such 

samples on the SQUID.  

Magnetic measurements using SQUID magnetometer: 

High sensitivity magnetometry to measure magnetic susceptibilities is carried out in a 

SQUID (Superconducting Quantum Interference Devices) magnetometer. An equivalent 

SQUID circuit [67] is shown in Fig.3.5. A closed superconducting loop, which consists of 

a pickup coil and input coil, is shown in the figure. A persistent current is generated in the 
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superconducting loop due to the magnetic flux field measured at the pickup coil. The two 

Josephson tunnel junctions in SQUID which are shunted with resistors eliminate hysteresis 

in tunnel junction current-voltage characteristics.  The output voltage across the Josephson 

junction appears due to the magnetic signal input at the pickup coil. The output voltage 

gradually changes due to the change of magnetic field for the quantum interference in 

Josephson junctions. Later this output signal is refined through modulation coil and 

converted to a magnetic moment. 

 

Fig. 3.5. Equivalent circuit of the SQUID for magnetometry  

In a SQUID magnetometer, the magnetic moment of a sample can be measured as a 

function of temperature and external magnetic field using different measurement protocols. 

A typical temperature dependent magnetization ZFC (zero field cooled)-FC (Field Cooled) 

curve constitutes a widespread experimental measurement protocol to investigate the 

magnetic properties as a function of temperature and bias field. These are mainly low field 

susceptibility measurements and generally follow a particular procedure explained below: 

1. Before any measuremnts each sample was demagnetized by a well designed 

demagnetized protocol by aplication of an oscillating field with varying amplitude; 

the amplitude reduces from maximum to zero. For example, for a demagnetizing 

field 1000 Oe, the amplitude is brought down to zero in the following sequence: 

(+1000)-(-900)-(+800)-(-700)...(+50)- (-40)...(+5)-(-4)-(+3)-(-2)-(+1)-(0).  
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2. The sample is cooled down from a high starting temperature (normally room 

temperature) to low temperature (2-5K) without applying any magnetic field. 

3. A small magnetic field (chosen from the linear region of hysteresis loop of 

respective sample) is applied and kept. Then a response moment from the sample 

is measured while the temperature is swept up to the starting point and down again 

with the same cooling rate and data accusing rate.  

4. Finally the field is removed and magnetization is measured with increasing 

temperature from lowest temperature to the highest temperature.  

 

Fig. 3.6. A typical Zero Field Cooled (ZFC) – Field Cooled (FC) – Remanence curve (a) and magnetic 

hysteresis (MH) loop (b) measured in SQUID magnetometer  

Hence the final curve is made of three different parts. The first part is called Zero Field 

Cooled (ZFC) curve, second curve is called Field Cooled (FC) curve and the third one is 

called remanence (REM) curve (Fig. 3.6.a). The point at which splitting between ZFC-FC 

curves occurs gives the transition temperatures, for example Neel temperature (TN) or 

blocking temperature (TB). Below TN or TB, the material is antiferromagnetic or 

ferromagnetic, and will give a small positive or a large positive remanence respectively. 

The other important measurement is magnetic hysteresis loop (MH) measurement, where 

the measurement is done as a function of field (Fig.3.6.b).  
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3.1.4. Characterization of materials with the MFM 

The operating principle of magnetic force microscopy is the same as in AFM [68]. Both 

static and dynamic detection modes can be applied, but mainly the dynamic mode is 

considered here because it offers better sensitivity. The cantilever (incorporating the tip) is 

excited to vibrate close to its resonance frequency, with certain amplitude and a phase shift 

with respect to the drive signal. The deflection sensor of the microscope monitors the 

motion of the tip. Under the influence of a probe-sample interaction, the cantilever behaves 

as if it had a modified  spring constantk , where c is the natural spring constant and  Fc = − 

∂F/∂z. ∂F/∂z is the derivative of the interaction force relative to the perpendicular 

coordinate z. It is assumed that the cantilever is oriented parallel to the sample surface.  

Anattractive interaction with ∂F / ∂ z> 0 will effectively make the 

 

Fig. 3.5. Magnetic force microscopy (MFM) technique for surface imaging 

cantilever spring softer, so that its resonance frequency will decrease. A shift in resonance 

frequency will lead to a change of the oscillation amplitude of the probe and of its phase. 

All of these are measurable quantities that can be used to map the lateralvariation of ∂F/∂z. 

The most common detection method uses the amplitude signaland is referred to as 

amplitude modulation (AM). The cantilever is driven slightlyaway from resonance, where 
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the slope of the amplitude-versus-frequency curve is high, in order to maximize the signal 

obtained from a given force derivative.Measurement sensitivity, or the minimum 

detectable force derivative, has an inverse dependence on the Q value of the oscillating 

system. Therefore, a high Qvalue might seem advantageous, but this has the drawback that 

it increases theresponse time of the detection system. In the situations where Q is 

necessarily high, for example when scanning in vacuum, a suitable alternative is the 

frequency modulation (FM) technique. In this method the cantilever oscillates directly at 

its resonance frequency by using a feedback amplifier with amplitude control. 

The VFM2-HV AFM-MFM by Asylum Research has been used for different AFM-MFM 

measuremnts in this thesis. The VFM2-HV can apply static magnetic fields up to ±0.8 T(~1 

G resolution), parallel to the sample plane. A unique design incorporating rare-earth 

magnets are used to produce the magnetic field. Due to this, there is no effect of heating or 

drift during the change of the field which provides low-noise, high-precision scanning 

probemeasurements. By rotating the powerful rare-earth magnet it allows the magnetic 

field intensity variation at the sample (maximum field when rotated at 90°, field is turned 

off at 0° or 180°). Once a field value is reached, the motor is turned off and the field is 

remained without residual heat, thermal drift, or mechanical vibration during the 

measurement time. Before any measurement, sharp MFM tips are magnetized by rare earth 

permanent magnets. 

3.2. Structural characterization of materials  

3.2.1. Characterization of materials with the TEM 

In Transmission Electron Microscopy (TEM) a monochromatic beam of electrons is 

accelerated through a potential of 40 to 100 kilovolts (kV) and passed through a strong 

magnetic field that acts as a lens [69].  Then this beam is transmitted through an ultra-thin 

sample and it interacts with the material while passing through. An image is formed due to 

the interaction of the electrons transmitted through the material which is magnified, 

focused and detected by a sensor such as a CCD camera. The resolution of a modern TEM 
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is about 0.2 nm which is the typical separation between two atoms in a solid. The TEM can 

magnify a specimen 1,000,000 times. Figure shown schematic diagram of a TEM. 

A TEM is constituted of three different types of lenses.  There are two to three condenser 

lenses which focus the electron beam on the sample. To form the diffraction in the back 

focal plane and the image of the sample an objective lens is used. Some intermediate lenses 

are used to magnify the diffraction pattern or the image on the screen.  

 

 

 

Fig. 3.6. Schematic diagram of TEM 

 

An amplitude contrasted image is obtained where the contrast depends on the sample 

thickness and chemical composition. To select the transmitted beam or diffracted beam an 

objective diaphragm is placed in the back focal plane. The crystalline parts of the sample 
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appear dark and the amorphous parts appear bright in Bragg orientation. This imaging 

method is called bright field imaging mode. If there are multiple diffractions from different 

phases they can be differentiated by selecting one of its diffracted beams and avoiding off 

axis aberrations using the objective lens. This imaging method is known as dark field 

imaging. 

An amplitude contrasted image is obtained where the contrast depends on the sample 

thickness and chemical compositions. To select the transmitted beam or diffracted beam 

an objective diaphragm is placed in the back focal plane. The crystalline parts of the sample 

appear dark and the amorphous parts appear bright in Bragg orientation. This imaging 

method is called bright field imaging mode. If there are multiple diffractions from different 

phases they can be differentiated by selecting one of its diffracted beams and avoiding off 

axis aberrations using the objective lens. This imaging method is known as dark field 

imaging. 

. 

 

Fig. 3.7. TEM instrument for micro structural analysis of materials 
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3.2.2. Characterization of materials with the Electron Energy Loss Spectroscopy 

(EELS)  

Electron Energy Loss Spectroscopy (EELS) is a very powerful technique to provide 

chemical and electronic information from particular areas of the sample. In the analysis of 

EELS the energy distribution of the electrons which have passed through a thin sample 

with inelastic collision is measured. Material information can be obtained by two different 

approaches. In the first approach EELS is combined with a scanning transmission electron 

microscope (STEM) where the electron probe is scanned across a selected sample area and 

an EELS spectrum is collected point by point across the scan and a Spectrum Image (SI) is 

obtained. In the second approach Energy Filtering Transmission Electron Microscopy 

(EFTEM) is used. In EFTEM a special spectrometer is used which has the capability to 

filter the energy of the electrons which interacted with the specimen. Thus images of two 

dimensional distribution of a particular element is obtained by concentrating on a particular 

ionization edge is obtained. 

 

 

 

Fig.3.8. Schematic Diagram of EELS 
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3.2.3. Characterization of materials with the SEM 

 

By a scanning electron microcopy an image of three-dimensional objects can be interpreted 

by scanning a very narrow electron beam across the sample surface. The main components 

of a typical SEM are electron column, vacuum system, scanning system, detector, and 

electronics controls [70]. The electron column of the SEM consists of an electron gun 

which generates free electrons and accelerates then to energies in the range 1-40 keV and 

two or more electromagnetic lenses to probe small, focused electron on the specimen. For 

this operation high vacuum is required. The purpose of the electron lenses is to create a 

small, focused electron to probe on the specimen. Most SEMs can generate an electron 

beam with spot size less than 10 nm with probe diameter in the range of 1 nm to 1 µm and 

probe current pA to µA. The surface of the specimen emits signal in the form of 

electromagnetic radiation due to accelerated electrons. There are different kinds of signals 

are produced due to the electron’s interaction with the sample such as secondary electrons, 

back scattered electron, characteristic X-rays, Auger electrons and cathadoluminescence. 

Characteristic X-rays are used to determine the chemical composition of the elements in 

the sample.  

 

 

Fig. 3.9. Principle of scanning electron microscopy (SEM) 
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The electron beam is rastered from top to bottom and left to right. There is a correlation 

between the rastering pattern of the specimen and the rastering pattern to produce the image 

on the monitor. In order to obtain high resolution images users need to adjust the probe 

diameter to the imaging scale of interest, contrast, appropriate probe current and scan rate 

settings. Since the SEM is operated under high vacuum the specimens should be 

 

Fig. 3.10. Schematic diagram of  SEM 

 

compatible with high vacuum (~ 10-5 mbar). The materials containing liquids and other 

volatile components cannot be imaged directly. Also fine powder samples need to be 

properly fixed on holder substrate so that they will not contaminate the high vacuum system 

and SEM chamber. It’s always difficult to image non-conductive materials due to charging 

effect. They need to be attached to a conductive specimen holder (carbon substrate/ copper 

tape) or coated with a very thin conductive film by sputtering or evaporating metal (Au, Pt, 

Pd, their alloys) or carbon.  
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3.2.4. Characterization of materials with the X-Ray Diffraction (XRD) 

 

X-ray diffraction (XRD) is one of the most important non-destructive methods to analyze 

crystalline structure and chemical compositions of different kind of materials [71]. XRD 

technique is based on the Debye-Scherrer method. X-rays are focused on powder or 

crystalline samples fixed on the axis of the spectrometer are diffracted by every possible 

crystalline orientation of the sample. The changes in the diffraction of X-ray intensities are 

measured, recorded in the three dimensional reciprocal space and plottedonto a single 

dimension against the rotation angles of the sample. The result is called the X-ray 

diffraction pattern of the material. The result is described in the three dimensional space 

with reciprocal axes x*,y* and z* or alternatively by spherical coordinates system q, φ*,  

 

 

 

Fig. 3.11. Schismatic diagram of operating principle of X-Ray Diffraction (XRD) mechanism. 

 

χ*. The Debye-Scherrer method averages the scanned data over φ* and χ*.‘q’becomes an 

important measurable quantity and crystal structure of the sample is determined by it. 
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Effects of texturing and true randomness can be eliminated by rotating the sample 

orientation. The graph obtained by scanning is called diffractogram where the diffracted 

intensity is plotted as function either of the scattering angle 2θ or as a function of the 

scattering vector q. The diffractogram is a unique “fingerprint” of materials from which 

one can analyze unknown materials and characterize them by comparing with 

diffractogram to known standards databases. 

 

 

Fig. 3.12. Image of PANalytical X'Pert Pro MPD X-ray Diffractometer (XRD) used for structural 

characterization of the materials. 

 

 

3.2.5. Focused Ion Beam 

Focused Ion Beam (FIB) technique is used to deposit materials with a resolution on the 

order of typically square microns, for the preparation of transmission electron microscopy 
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(TEM) specimens, etc. [72] A FIB can be used to image as sample by column of focused 

ions similar to SEM where column of electron is used.  In FIB instrument an ion beam is 

focused to create specimen image. The intensity of the secondary ions produced at the 

raster position on the surfaceare detected and used to create an image of the specimen. By 

FIB sample specimens can be imaged with magnifications up to ∽100 000 times with a 

very good depth of field. The operation of a FIB typically based on liquid metal ion source 

(LMIS) where a reservoir of gallium (Ga) source is positioned with a sharp Tungsten (W) 

needle. 

 

 

Fig. 3.13. A schematic diagram of the LMIS and FIB column 

 

The Ga flows to the tip of W needle. A sharp cone of Ga whose radius is around 5–10 nm 

is generated by a high extraction field (>108 V/cm). As a result of field ionization and post-

ionization the ions are emitted and then accelerated down the target FIB column. Ga ions 
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are used at a high power for milling and at a low power for imaging any sample. Ga is used 

as FIB material due its low melting point and Ga can be focused to a very fine probe size 

(<10 nm in diameter). FIB is typically operated with an accelerating voltage between 5 - 

50 keV and from tens of pA to several nA corresponding to a beam diameter of ∽5 nm to 

∽0.5 μm. FIB and SEM systems are generally integrated together into a single instrument 

which generates electron beam and ion beam simultaneously. The electron beam is used 

for imaging at much higher resolution without milling the surface as ion beam does. The 

sample is placed at the intersection point of electron beam. 

 

 

 

Fig. 3.14. Schematic illustration of the operating principle of FIB 
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4. Chapter - Micromagnetic Simulations 

 

4.1. Introduction 

In this chapter the technique of micromagnetic simulation has been discussed. The 

theoretical framework has been explained for the simulated results which have been 

incorporated in chapter 5. Further the advantages and limitation of micromagnetic 

simulation technique have also been explained.  

4.2. Micromagnetic Theory 

Presently there are different computational techniques available to model magnetic 

phenomena of materials and their associated parameters.  The micromagnetic modelling 

predicts the behaviour of magnetic materials on the length scale of nano-metre to 

micrometre by magnetization reversal process. When an external magnetic field is applied 

to a sample the individual atoms try to align at a particular direction to minimize the energy 

of the system. Depending on the material and sample structure energy configuration of the 

system varies. Micromagnetic simulation method models all possible magnetic interaction 

within the system and fully demonstrates the magnetic domain landscape’s evolution with 

time. Micromagneic simulation is one level above atomic simulation used to describe 

internal magnetic structure of a system.  

4.3. Energy terms in micromagnetic simulation 
 

Since micromagnetic simmulations is based on the magnetic interaction of individual 

magnetic moments, a continuous magnetization M is used to approximate the minimum 

energy.  

i. Exchange energy: 

One of the fundamental phenomenons of magnetism where individual atomic magnetic 

moments try to align all other neighboring atomic magnetic moments within a material is 

known as the exchange interaction (Aharoni, 2000). [73] The energy associated with this 
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magnetic interaction is called exchange energy. The exchange energy between two 

neighboring magnetic moments µi and µj is usually described by 

𝜀𝑒𝑥
𝑖,𝑗

=  −𝐽 𝑆𝑖𝑆𝑗                                                                                                      Equation 4.1 

Where J is the exchange integral originates from the overlap of wave function of two 

electrons. 

𝜀𝑒𝑥=
1

2
∑ ∑ 𝜀𝑒𝑥

𝑖,𝑗
𝑗€𝑁𝑖𝑖                                                                                               Equation 4.2 

Where, Ni is the nearest neighbour i.  

 

ii. Anisotropy Energy 

Magnetic anisotropy is a dependence of magnetic energy level within a system to the 

direction of magnetism of same system. If the magnetic moments in a material self-oriented 

towards one particular direction then the material is said to have uniaxial anisotropy, the 

direction is called easy axis and the perpendicular direction is called the hard direction. If 

the magnetization prefers to orient towards many particular directions, then the material 

has multiple easy and hard axes and it possesses different anisotropy symmetry (see figure 

4.1). Cubic crystals such as iron and nickel have cubic anisotropy symmetry (Aharoni, 

2000, p86) [73].This type of anisotropies is form of magnetocrystalline anisotropy which 

is attributed to spin-orbit coupling within the material arise from the crystalline structure 

of the material. 

 

 

Fig. 4.1. Normalised cubic anisotropy energy surfaces ɷc(θ,ϕ). The different shapes of the surfaces 

are a reflection of the sign of K1 (O'Handley, 1999). [Ref: 74] 
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iii. Zeeman energy 

When an external magnetic field (H) is applied to magnetic moment (µ) energy supplied 

by the external field induces the rotation of internal magnetization of material by 

harmonisation of the directions of internal and internal fields to minimization of Zeeman 

energy: 

𝜀𝑍𝑒
𝑖 = −µ0µ𝑖. 𝐻𝑖                                                                                                   Equation 4.3 

 

Where µ𝑖 and 𝐻𝑖 are the magnetization of individual magnetic moment due to the externally 

applied magnetic field on it.  

The Zeeman energy reaches a minimum when all the magnetic moments are aligned in a 

particular direction due to the applied field. 

iv. Dipolar energy 

Dipolar energy often called magnetostatic or demagnetising energy associated with the 

magnetic flux lines is the resultant energy due to the internal interaction of magnetic 

moments. The dipolar energy for two magnetic moments µ𝑖. and µ𝑗 positioned at ri and rj 

can be represented as: 

𝜀𝑑𝑖𝑝𝑜𝑙𝑒
𝑖,𝑗

= µ0 (
µ𝑖.µ𝑗

|𝑟𝑖𝑗|
3 −

3(µ𝑖𝑗.µ𝑖𝑗).(µ𝑗.µ𝑖𝑗)

|𝑟𝑖𝑗|
5 )                                                                 Equation 4.4 

Where 𝑟𝑖𝑗 = 𝑟𝑖-𝑟𝑗 

In the presence of external magnetic field a demagnetization field Hde(r) is created in the 

sample. The dipolar energy can be represented for a continuous media: 

𝜀𝑑𝑖 = −µ0 ∫ 𝑯𝑑𝑒(𝒓). 𝑴(𝒓)𝑑3𝑟
𝑣

                                                                         Equation 4.5 

 

 

4.4. Landau Lifshiftz Gilbert Equation 

 

An important differential micromagnetic equation to describe the precession towards 

equilibrium magnetization was derived by Landau and Lifshitz (1935). Later Gilbert (1955) 

modified the equation adding an extra damping term which leads to the Landau-Lifshitz-
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Gilbert (LLG) equation. Due to the rapidly-increased processing capability of modern 

computers, there has been of huge interest in the field of computational micromagnetic 

simulation to understand magnetic configuration. The LLG equation which is a 

fundamental part of time-dependent computational micromagnetics is used to define 

magnetization towords equilibrium. The OOMMF simulation software developed by 

Donahue and Porter in 1999 uses the Landau and Lifshitz form [79]: 

 

𝑑𝑴(𝑟,𝑡)

𝑑𝑡
= −|𝛾|̅𝑴(𝑟, 𝑡) × 𝑯𝑒𝑓𝑓(𝑴(𝑟, 𝑡)) −

|𝛾|̅𝛼

𝑀𝑠
𝑴(𝒓, 𝑡) × (𝑴(𝑟, 𝑡) × 𝑯𝑒𝑓𝑓(𝑴(𝑟, 𝑡)))                                               

Equation 4.6 

 

 

Which is written in simplified form 

 

𝑑𝑴

𝑑𝑡
= −|𝛾|̅𝑴 × 𝑯𝑒𝑓𝑓 −

|𝛾|̅𝛼

𝑀𝑠
𝑴 × (𝑴X𝑯𝑒𝑓𝑓)                                                Equation 4.7 

 

Where M is the magnetization, γ is gyromagnetic ratio (constant), 𝑯𝑒𝑓𝑓 is effective field 

and α is the Landau and Lifshitz phenomenological damping parameter [75]. 

 

𝑯𝑒𝑓𝑓 = 𝑯𝑒𝑓𝑒𝑥𝑓 + 𝑯𝑎𝑛 + 𝑯𝑚𝑠𝑎𝑡 + 𝑯𝑒𝑥𝑡                                                             Equation 4.8 

 

Where  

𝑯𝑒𝑥 : exchange field 

𝑯𝑎𝑛 : anisotropy field 

𝑯𝑚𝑠𝑎𝑡 : magnetostatic field 

𝑯𝑒𝑥𝑡 : external field 

If one assumes γ=(1+𝛼2)𝛾̅ 

Then the equation can be written in mathematical equivalent form  

𝑑𝑴

𝑑𝑡
= −|𝛾|̅𝑴 × 𝑯𝑒𝑓𝑓 −

𝛼

𝑀𝑠
𝑴 × (𝑴 ×

𝒅𝑴

𝒅𝒕
)                                                Equation 4.9 
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Fig. 4.2. Schematic illustration the action of 1st term (left) which induces motion of magnetization (M) 

about the effective field and 2nd term is schematic to illustrate of damped magnetic moment (M) in 

the presence of magnetic field (Heff). 

 

The first term in the equation describes the precession of the magnetization vector (M) 

about the effective field (Heff) where the angular frequency is equal to the Larmor frequency 

(wl) and angle between the magnetization and effective field remains constant.  

The magnetization decay over time due to the loss of eddy currents, spin scattering, 

diffusion and sample imperfections. To estimate this intrinsic loss a phenomelogical 

damping parameter α was introduced by Gilbert in 1955.The damping torque allows the 

magnetization to align along externally applied field.  

 

4.5. Length Scale 

 

In micromagnetic simulation a particular geometry isdiscretized into lots of smaller 

homogeneously magnetized cuboidal cells so that finite difference method can be used. 

Inside this cellular domain all of the atomic magnetic moments are defined to response as 

a single particle in simulation. At an atomic length scale the exchange interaction which is 

most significant energy term is responsible for the alignment of magnetic 

momentshomogeneously. These small cells which represent a certain amount of magnetic 
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material can then be used to perform the simulation. For micromagnetic simulation a 

smaller cell size is more desirable, particularly when there is curved surface in the sample 

geometry. 

The exchange length is a length scale over which the magnetization direction does not 

change significantly. Due to the energy minimization of magnetostatic energy sample is 

broken into multiple domains with different magnetisation directions. In a coarse mesh 

micromagnetic software cannot resolve the exchange length properly and independent 

domains will not form correctly. Hence, the magnetisation can change direction over one 

domain wall width as given by following equation: 

𝛿𝐵 = 𝜋√
𝐴

𝐾
                                                                                                           Equation 4.10 

 

The exchange length is calculated by considering (Seberino and Bertram, 2001, 

Kronmüller and Fähnle, 2003)[76, 77]: 

𝜆𝑒𝑥√
𝐴

1

2
µ0𝑀𝑠

2
                                                                                                           Equation 4.11 

 

Where A is the exchange energy, µ0 is the magnetic constant and MS is the magnetisation, 

µ0the magnetic constant. Therefor exchange length 𝜆𝑒𝑥 gives us a quantitative assumption 

of mesh resolution required for micromagnetic simulation. 

 

 

 

Fig.4.3. The effect of cell size and number of cell for a sample of sphere shape. As the cell size is 

reduced the ‘model’ gives much more accurate ‘spherical’ representation and accuracy of the 

simulation result is also increased. [Ref: Richard Boardman’s PhD thesis, University of 

Southampton][Ref: 78] 
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In general one equation of motion is solved for each cell. By reducing the cell size the 

number of cell is rapidly increased and simultaneously the computational overhead is also 

increased. The accuracy of simulation is also increased with the increment of number of 

cells shown in Figure 4.3. The demagnetization field Hd at each cell depends on the 

magnetization distribution over the entire mesh due to external applied field.  

 

4.6. The Object Oriented MicroMagnetic Framework (OOMMF) 

In micromagnetic simulation a set of partial differential equations are repetitively solved. 

For the systems where static metastable magnetisation state is considered can be simply 

relaxed by defining some initial magnetisation configuration, generally homogeneous or 

random. Then the Landau-Lifshitz-Gilbert equation is used as the Finite Differentiate (FD) 

method, opposed to Finite Element (FE) method to iterate the system until the rate of 

change of magnetisation goes below a certain threshold. The LLG theory which is difficult 

to solve analytically is numerically solved over time and leads to a set of differential 

equations. To solve that freely available Object Oriented Micromagnetic Framework 

(OOMMF) program based on FD method is used. [79]OOMMF was developed by 

Donahue and Porter in 1999 and provided by the National Institute of Standards and 

Technology (NIST), an agency of the U.S. Department of Commerce [79]. OOMMF has 

been exclusively used for all micromagnetic simulation for this thesis. To run OOMMF 

Tcl/Tk package is also required (Ball, 1999, Flynt, 1999, Raines and Tranter, 1999, Smith, 

2000, Welch, 1999). There are few computational issues involved with OOMMF 

simulation. OOMMF consumes approximately one kilobyte of RAM. The simulation 

packagewhich must be loaded into RAM itself requires certain amount of RAM and creates 

a fixed overhead. Figure 4.4 shows the amount of memory (RAM) required for simulation 

as function cell geometry. 

The first stage in the OOMMF simulation process is to define the magnetic structure to be 

solved.  This is done by creating a MIF file which contains the material parameters, defines 

the structural geometry.  The experimental parameters over which the simulation runs also 

defined in MIF file. It is essential to use accurate material parameters as inputs which are 
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representative of the material under investigation by micromagnetic simulation so that it 

can provide accurate and physically meaningful results. 

 

 

 

Fig.4.4.  The memory required for OOMMF simulation as a function of the number of discrete 

simulation cells in three-dimensional geometry. [Ref: 71] 

 

Table 3. Magnetic properties of some common ferromagnetic materials 

 

Material Exchange Energy 

A (J/m) 

Magnetisation 

Ms(A/m) 

Anisotropy 

K1(J/m3) 

Exchange 

Length 

𝝀𝒆𝒙 (nm) 

Nickel 9x10-12 4.9 X 105 -5.7 X 103 7.72 

Iron 2.1x10-13 1.7 X 106 4.8 X 104 3.4 

Cobalt 3.0x10-13 1.4 X 106 5.2 X 105 4.94 

Supermalloy 1.05x10-13 8.0 X 105 0 5.11 

Permalloy 1.30x10-13 1.11 X 106 0 2.76 
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Ms= Saturation magnetisation in A/m 

K1=First anisotropy constant in J/m3, i.e. by first order approximation the uniaxial 

anisotropy is given by K1Vsin2θ and 𝐾1 =
µ0𝑀𝑠𝐻𝑘

2
 

A=3
𝑘𝐵𝑇𝑐

𝑎𝑍
; kB is Boltzman’s Constant, Tc is the Curie temperature, a is lattice constant and 

z is number of nearest neighbouring atoms. 
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5 Chapter – Manipulation of magnetic anisotropy-shape/dipolar 

5.1. Introduction 

One of the most significant challenges in micromagnetic devices is to configure 

magnetization directions of patterned ferromagnetic films. In polycrystalline materials this 

is mainly determined by external environmental effects or geometry [80] due to insufficient 

long range microscopic crystalline order. Hence, applications of these materials are widely 

based on the ability to control the magnetic anisotropy resulting out of spin configuration 

based on pattern geometry. In recent years, this has been demonstrated for patterned, 

isolated magnetic structures [81-84] and structured continuous magnetic films [85]. Such 

kinds of control open up opportunities for potential applications such as spintronic devices, 

magnetic random access memory (MRAM)[86] high density patterned information storage 

media[86,87], and high precision ultra small magnetic field sensors[88]. Due to 

fundamental reasons and potential applications, it is necessary to understand further the 

magnetic properties of patterned structures in reduced dimensions, while both geometry 

and crystal microstructure are needed to be optimised prior to configure the 

magnetization[89]. Subsequent investigations further reveal properties like geometrical 

frustration, domain wall pining, etc due to dipolar interaction based on spin configurations 

[90, 91]. Several methods such as ion irradiation through a mask, selective epitaxy, surface 

modulation [92], etc. have been studied to control the magnetization configuration in 

patterned structures. Among them, surface nanomodulation is preferred for its cost 

effectiveness and simplicity to engineer the spin configuration locally [93]. Furthermore, 

the optimization of magnetic parameters such as pattern geometry, film thickness, intrinsic 

anisotropy, and coercivity is essential to obtain a controlled anisotropy in a film by 

nanomodulation. Magnetostatic energy induced by strong nanomodulation forces the spins 

into local vortices which is unfavourable for many applications. Thus, the development of 

a physical model for an optimized modulation is essential to manipulate the film 

anisotropy.  

In the present work results of anisotropy variation due to magnetic dipoles formation in 

nanomodulated film and detailed micromagnetic simulation study with key symmetry 
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features of complete nanomodulation based anisotropy in continuous ferromagnetic thin 

films have been discussed. Novel ways to produce different anisotropy are introduced, 

which have been validated by experimental evidences and analytical derivation. To 

determine anisotropy variation due to the magnetostatic dipole interactions we performed 

various magnetometry measurements combined with MFM imaging on nanomodulated 

continuous Ni45Fe55 film. Artificially created ordered corrugation produces controllable 

magnetic dipoles. However, while the external field favors such magnetic dipole alignment, 

interdipole magnetostatic interaction results in a variation of the effective magnetostatic 

energy in different directions. This effect translates into in-plane and out of plane 

anisotropy variation depending upon modulation geometry.  

It is also demonstrated how a unique nanostrucuture of continuous ferromagnetic film can 

induce magnetic dipoles at sub-micron scale at pre-defined locations and play a key role to 

tune the global magnetic properties of the film due to magnetostatic interactions. Synthetic 

arrays of magnetic dipoles are tuneable at in-plane and out of plane directions and can be 

rotated in plane in such three dimensional modulated structure. In-plane magnetic field 

rotations influence magnetostatic interactions in different directions which open up a new 

methodology to control the various magnetic properties of a ferromagnetic thin film. 

Gradual formation of magnetic dipoles and their tunability have been studied in detail by 

MFM imaging and other magnetic measurements. It is observed that the diploes go through 

a transformation from metastable to stable state. The magnetostatic interaction depends on 

their geometrical arrangements. Thus magnetic properties of the continuous film can be 

varied by pattern geometry. This has been shown by experiment and micromagnetic 

simulation (OOMMF) in nanomodulated Ni45Fe55.  It is usual that in nano pattern bigger 

than single magnetic domain, the dipole tries to form vortex at remanence state. Whereas 

this unique three dimensional structure prevents vortex formation due to strong 

magnetostatic interaction as a novel observation. Again this could influence the dynamic 

properties of the thin film. A detail analytical study of dipolar energy for our system agrees 

with our experimental and simulated results. 
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5.2. Nanomodulated Ni45Fe55 electrodeposited thin film 

A nanomodulated conformal and uniform alloy composition of ferromagnetic Ni45Fe55 thin 

film (Fig.5.1 & 2) was prepared by an electrodeposition process [94] on patterned 

substrates fabricated by nanoimprint lithographyto create artificial surface roughness on 

electroplated thin-films. 

 

 

Fig.5.1. Schematic diagram of sample preparation 

 

Nanoimprint processing was used to make the patterned substrate. A 

polymethylmethacrylate (PMMA, Molecular weight~230k) layer of 1μm thickness was 

spin-coated on a cleaned, 0.5mm thick silicon substrate and baked at 100°C for 10 minutes 

in air. Two different silicon stamps with 400 (D-diametre of the hole)/400 nm (S-seperation 

between two neighbouring holes) and 200/200nm diameter/separation were used to create 
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square arrays of nanoholes (Fig.5.2a). These stamps were fabricated by interference 

lithography and subsequent ion-reactive etching. A Self-Assembled Monolayer (SAM) of 

Octadecyltrichlorosilane (ODTS) was coated on the stamp to avoid any kind of adhesion 

with the pillar array. For multiple uses the stamps were cleaned by acetone and ethanol.  

The stamps were placed on the PMMA layer and heated at 160°C for 30 minutes with a 

pressure of 50 bars to generate an array of nanoholes with a depth of 240nm. After cooling 

down, the stamps were carefully removed and an array was imprinted on each substrate 

(Fig.5.2.a). An adhesion layer (10nm Ti) and a 150nm layer of Au were sputtered on 

patterned PMMA as a seed layer (Fig.5.2b). The thickness of the Au seed layer on the wall 

of the holes was around 25nm. A uniform Ni
45

Fe
55 

ferromagnetic film was deposited by 

DC electroplating on both types of pattern (Fig.5.2.c & d). 

 

 

Fig.5.2. (a) SEM image of nanohole array on PMMA on Si. (b) Gold seed layer on patterned 

substrate, (c) Electroplated continuous Ni45Fe55 on nanomodulated substrate. (d) Cross section of the 

nanomodulated film. 

 

During the electrodeposition an external magnetic field was applied at much higher level 

(~200 Oe) than the demagnetization field of the film to make sure it produces a uniaxial 

anisotropy in the deposited film along the field direction <100>.The variation of sample 
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thickness affects the anisotropy created by patterning. When the thickness of the sample is 

significantly more than the modulation amplitude then the anisotropy induced by patterning 

is suppressed by the uniaxial intrinsic anisotropy. Thicknesses near to the modulation 

amplitude give more control over the artificial anisotropy. 

5.3. Magnetic measurements of anisotropy manipulation 

Magnetic properties of nanopatterned films were investigated by using a hysteresis loop 

tracer (SHB instruments Inc., USA) and SQUID magnetometry (Quantum Design MPMS). 

A field range of +1000 Oe to - 1000 Oe was used to ensure saturation and to measure 

hysteresis loops in varying in-plane rotational angles.  

 

 

 

Fig.5.3. Angle dependent normalized remanant magnetization (Mr vs. θ) measured from 3D 

nanomodulated film with 400nm (a) and 200nm (b) element diameter respectively. 

 

In this experiment magnetic force microscopy (MFM) imaging was done by a commercial 

atomic force microscope in MFM mode (VFM2-HV - Asylum Research High Voltage 

Variable Field Module - Version 2) and MESP-RC probes (Bruker AFM 

ProbesInternational). The VFM2-HV can apply static magnetic fields up to ±0.1 Tesla 

(~1G resolution), parallel to the sample plane. We were able to map the magnetization of 
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each nano size magnetic dipoles and their interaction with a ferromagnetic tip with low 

remanence. The low remanence tips were used to ensure that the tip magnetization do not 

influence the film’s magnetization configuration within its own detection limit.  

We observed that the remanence magnetization (Mr) and coercivity (Hc) both vary as a 

function of angle due to magnetic anisotropy created by nanomodulation. Since the 

variation in remanence (Mr) is much stronger than that in coercivity (Hc) for an ultra-soft 

magnetic material, we consider remanence for further discussion. In Fig.5.3.a & b 

normalised remanent magnetization (Mr) is plotted as a function of sample rotation angles 

with respect to applied in-plane field direction for two different patterns. Variation of 

remanent magnetization (Mr) as a function of applied field direction is small compared to 

the remanent magnetization (Mr). Hence the normalised angle dependent remanent 

magnetization [Mr(θ) /(Mr-max-Mr-min)] is plotted to compare the symmetry variation.   Both 

patterns show 4-fold symmetry whereas satellite maxima of the higher order are prominent 

in 400nm pattern (Fig.5.3.a). 

 

Fig.5.4. Hysteresis loop measure from thin nanomodulated sample (a-150nm and b-50nm) shows 

metastable state. (b) Step like MH curve (zoomed of 15nm thickness-figure a) in various 

temperatures shows existence of metastable dipoles throughout the temperature range. Near zero 

remanance the dipoles suddenly jump from positive to negative value. (d) OOMMF simulated picture 

of magnetization configuration near remanent shows incomplete vortex formation 
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The anisotropy based on nanomodulation is so strong that it could dominate film’s uniaxial 

anisotropy.  A novel phase shift is observed in 200 nm pattern (Fig5.3.b) for higher aspect 

ratio, whereas after gold deposition the aspect ratio diameter/separation (D/S) becomes 3:1. 

The reason of this phase shift has been explained later. In the case of the thickness (t) of 

the sample being significantly more than the modulation amplitude (A), the anisotropy 

induced by patterning is dominated by the uniaxial intrinsic anisotropy of the film. When 

sample thickness, t, ~150 nm is lower than modulation amplitude, A, (~ 240 nm) it tries to 

form a vortex and a step like behaviour in MH curve is visible (Fig5.4.a) due to the effect 

of nanomudulation . A further decrease in sample thickness (t) to ~50nm (Fig5.4.c) gives 

near zero remanence. The sample with thickness (t) ~ 150nm was measured at different 

temperatures (Fig5.4.c), which shows the existence of metastable states trough out the 

temperature range. It is found that the nanomodulated film requires a very high field to 

obtain saturation magnetization due to the formation of magnetic dipoles and their strong 

coupling.  For the change of external magnetic field the magnetic dipole goes through a 

transition from saturation magnetization or stable non-hysteretic region via metastable 

planar region to unstable dipolar state or jumps (Fig5.4.c). At near zero fields, the 

remanence (Mr) suddenly jumps from positive to negative magnetization which indicates 

the existence of magnetic dipoles with nonzero Mr. Thus a complete vortex cannot be 

achieved in this unique structure. To understand the phenomena we focus on single 

element. For a square array-pattern of 400 nm diameter and 100 nm modulation amplitude 

( D/S is 1), the calculated energy densities are 0.49 x 104 J /m3 and 1.33 x 104 J /m3, for 

vortex and near single domain state respectively. Since the energy of a vortex state is less 

than that of a near-single-domain remanent state there should be a strong inclination to 

adopt vortex states in the nanomodulated continuous ferromagnetic thin films. On the other 

hand, it is necessary that the demagnetization processes needs to overcome the higher 

energy barrier to create local vortex in nanomodulated continuous ferromagnetic thin films 

where spins are strongly exchanged in parallel due to magnetostatic interaction. Thus these 

magnetostatic interactions in this patterned matrix try to resist formation of vortices which 

is analogous to closely-packed magnetic dots [95]. As a consequence, a near-single domain 

state originates at the remanence magnetisation state with an intention to become a vortex 
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state. To further elucidate, simulation results (Fig. 5.4-d) show that incomplete vortices 

exist all over the film but in very tiny amounts.  

A range of samples with different thicknesses having fixed modulation amplitude (240 nm) 

were prepared. Thick film shows uniaxial anisotropy since dipolar anisotropy is weaker 

compared to uniaxial anisotropy. Very thin film shows only four fold anisotropy symmetry 

where dipoles are too week for higher order dipolar-interaction. Thus thickness (t) near to 

modulation amplitude (A) shows maximum anisotropy variation in easy and hard 

directions.   These were investigated by micromagnetic simulation as well.  

To explain these results we refer to the recently developed power law for a magnetic film 

with a roughness-induced demagnetizing effect HK ~ ÑMS ~ A2 / t (Ñ is demagnetizing 

tensor) [96]. Since the power law was derived by using a demagnetizing tensor (Ñ) for 

demagnetizing field Hd in a magnetostatic phenomenon, it supports the argument that the 

symmetry of magnetic anisotropy comes from 3D nanomodulation, which has been shown 

by means of variation of remanence magnetization. The symmetry is based on alignment 

of the pattern induced magnetic dipoles and their magnetostatic interactions. The direction 

of effective dipole interaction depends on the direction of applied field (Figure 5.5).  

 

Fig. 5.5. Schematic diagram of out of plane (a-b) and in plane (c) modulation shows formation of 

dipoles and direction array chain of magnetostatic interactions. Modulation switches to upper layer 

for high aspect ratio (a) and to lower layer for low aspect ratio (b).  
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In the MFM image, the dipoles are aligned in <110> direction as an external field (1000 

Oe) was applied in that direction before imaging. In case of an alignment in a certain 

direction by an external field (Fig.5.7-a) depending upon the pattern symmetry, dipoles 

across each patterned elements are coupled with their neighbours and the demagnetization 

energy decreases with an increase in remanent magnetization due to strong magnetostatic 

interactions. Also the linear density of the dipoles changes as a function of directional angle 

and hence the net dipole interaction varies. This unique three dimensional ferromagnetic 

nanostructure forces the microspin configuration to follow a 

 

 

 

Fig.5.6. Different symmetry formation due to pattern arrangement (a). Interaction of one dipole with 

1st neighbour creats 4-fold symmetry, 2nd neighbor creats 8-fold, etc. MFM phase images of dipoles 

(b) for externally applied field. An external field of 1000 Oe was applied in <110> direction before 

imaging. The images were taken at a 50nm distance from sample surface. 
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wave like propagation of magnetization which collectively generates in plane and out of 

plane dipoles (Figure 5.5.a-c). In a square array of magnetic nano structure the magnetic 

ordering is determined by minimization of collective magnetostatic energy whereas the 

magnetic anisotropy energy depends on the dipole interaction if it is strong enough to keep 

the magnetization after removal of applied field. Normally, the isolated nanostructure 

bigger than single domain, tries to form vortex (Fig.5.6) at remanence state to obtain the 

minimum energy state. Here the competition between two different dipoles (in plane and 

out of plane) and possible spin pinning between two consecutive dipoles through 

continuous ferromagnetic media keeps the magnetization stable at the direction of applied 

field and resists vortex formation. We varied the angle of applied field direction with 

respect to patterned array. The dipoles rotate with the rotation of applied field which is 

shown in Figure 5.6 a. The variation of magnetic anisotropy was investigated by measuring 

coersivity at different direction which shows a clear trend of four fold anisotropy symmetry 

(Figure 5.3) in the square array structure. This result agrees with micromagnetic simulation 

result. The competition between two different dipoles generates a collective metastable 

magnetic configuration and a step like MH curve is observed (Figure 5.4). The wave pattern 

creates a strong out of plane dipoles which becomes difficult to align at a particular in plane 

direction by a high external field. This has been observed in measured MH curve. The 

curve shows a prominent minor loop (Figure 5.4.c) and an unsaturated major loop (Figure 

5.4.b) due to these strong out of plane dipoles. We applied a field of 1000 Oe, which is 

large enough to saturate Ni45Fe55 film and map the magnetization of our patterned field 

very carefully. Interestingly, a magnetic vortex with a single vortex core has been observed 

at the center of each nanopattern at high field due to the gyration motion of out of plane 

magnetic spins at vortex core.  

5.4. Micromagnetic simulation for anisotropy manipulation 

The experimental results for nanomodulated continuous ferromagnetic thin film has further 

been investigated by static micromagnetic simulations which were carried out by solving 

the Landau-Lifshitz-Gilbert (LLG) equations (Eqn. 5.12), using Object Oriented Micro-

magnetic Framework (OOMMF) [79] software from NIST US.  
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                                                                                      Equation 5.1 

Square and equilateral triangle arrays were made of 7 X 7 circular elements (Fig. 5.7-a) as 

this is the minimum number of elements required to include long range magnetostatic 

interaction effects in a large scale [97]. The real topographically patterned nanostructured 

film was implemented by creating two consecutive atlases or 3D geometrical spaces used 

for OOMMF simulation. In Figure 5.7 the side view of an ideal film is shown. To avoid 

the complexity of simulation the nanopattern has been simplified to square wave (Fig. 5.7). 

To simulate for such films, ideally unit cell with low dimension is required which will 

consider atomic interactions. This is unfavourable for mictomagnetic simulation. If the cell 

size is reduced too much, the computer will need huge time to complete one. Hence, an 

approximation close to the real system is required for such micromagnetic simulation. To 

simplify the simulation and save simulation time we have considered much simplified 

structure than the real nanomodulated film. Typical side view of simulated BIT maps is 

shown. The whole structure was modelled by creating two layers, top layer and the bottom 

layer, top-bottom view (Figure 5.7).  65% area of the whole atlas area was patterned  

 

Fig.5.7. Bit map image used for OOMMF simulation  
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to avoid edge effect in the simulation. For all simulation, a standard MIF was used. For the 

area of 8µm×8µm and thickness 200nm a mesh size of 50 nm (cell size 50nm × 50nm × 

50nm) produces 30000 cells. The pattern geometry and number of cells were kept constant 

but the diameter (D) of the hole was varied. Accordingly atlas size and cell size were varied 

keeping number of cell constant. For simulation, the cubic cells are used and minimum 

length of the cubic cell was taken as 6.25 nm, which is nearly equal to exchange length 

(A/2π) 1/2M, where A is exchange constant and M is magnetization. The total number of 

cells (102400 ~ 105) was constant for all simulations to maintain the same geometrical 

accuracy. Cell dimensions were varied accordingly depending upon simulation parameters. 

The  

 

 

Fig. 5.8. (a) Cross section and top view of patterned film used for simulation. (b) Schematic diagram 

of rotation of Hext in x-y plane. Uniaxial anisotropy in <100> direction of the pattern is considered for 

all simulation. 

 

magnetic parameters for OOMMF simulation are required as inputs. We assumed typical 

material parameters for Ni45Fe55: 4πMS = 1.2x106 A/m, A=6.47x10−12 J /m, and anisotropy 

constant: K=600 J /m3 in the <100> direction of the pattern (Fig. 5.8). The global external 
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magnetic field Hext was applied in the <100> direction of the whole atlas. To study 

rotational symmetry we only rotated the pattern (Fig. 5.8-b & Fig.5.9) with respect to whole 

atlas background and applied a magnetic field to confirm that only the effect of the 

patterned area was taken into account. In these calculations, we did not include the 

simulated results of angles near 0º, 90º and its equivalent angles for square pattern to avoid 

artificial degeneracy arising in simulations, when Hext is exactly parallel to the <100> and 

<010> direction. The external applied magnetic field Hext was increased from 0 Oe to 400 

Oe on the film to ensure saturated static magnetization (HK). For single element, we 

simulate the structure with cell dimension 20 nm x 20 nm x 20 nm of 400nm pattern 

elements having 3 x 3 arrays as this is the minimum number of elements required to include 

short range magnetostatic interaction effect.  

To investigate the anisotropy symmetry the pattern in bitmap was rotated within the whole 

atlas and the field was applied to <100> direction for all the cases. All the bitmap image 

files were created and rotated using Microsoft Power Point. The patterned structure were 

simulated in following angles 0˚, 5˚, 11˚, 15˚, 18˚, 23˚, 27˚, 30˚, 36˚, 40˚, 45˚, 50˚, 54˚, 60˚, 

60˚, 63˚, 67˚, 72˚, 70˚, 79˚, 85˚ and 90˚. All the other angles up to 360˚ were extrapolated 

by assuming symmetry in square atlas. To ensure the saturation of the sample and a field 

of 400 Oe was applied which is much higher that the saturation field of material. 

 

 

 

Fig.5.9. The patterned was rotated for OOMMF simulation to investigate magnetic anisotropy  

 

The equation of energy can be written as:  
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𝐸𝑡(𝑀, 𝐻𝑒𝑥𝑡) = ∫ [
𝐴

𝑀𝑆
2 ∑ (𝛻𝑀𝑖)

23
𝑖=1 + 𝑓𝑘(𝑀) −

µ0

2
𝑀. 𝐻𝑑 − µ0. 𝑀. 𝐻𝑒𝑥𝑡] 𝑑𝑣       Equation 5.2 

In OOMMF simulation the only energy term which is affected by this nanomodulation is 

magnetostatic energy and is proportional to 𝐻𝑑 , where 𝐻𝑑 is the demagnetising field. 

Again, 𝐻𝑑 equals to -𝑁𝑑𝑀 where 𝑁𝑑 is the demagnetising factor and M is the 

magnetisation. Normalised Magnetostatic Energy was calculated from OOMMF 

simulation output result for different rotation by following the equation and plotted as a 

function of angle (θ).  

𝑁𝑀𝐸(𝜃) =
(𝑀𝐸@𝜃0−𝑀𝐸@𝜃450)

(𝑀𝐸@00−𝑀𝐸@𝜃450)
                                                                            Equation 5.3 

 

The x and y Cartesian coordinates are extraploted using simple equations X = (1-NME) 

and Y = (1-NME) cos(θ), where NME= Normalised demagnetization energy. The results 

from simulations and related calculations are shown in the Table 4. The data then plotted 

in the following figure 5.10. 

 

Fig.5.10. (a) Normalised demagnetization energy (NME) ploted as a function of angle, (b) X & Y 

component of (1-NMY) ploted. 
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To visualize the results of the simulation, the magnetization vector datasets were used as 

real time 3D output by the software package. Color contrast and spin configuration of the 

real-time image define the state of magnetization at the different level of samples at 

different stage of simulation. 

Table 4: Micromagnetic simulation results 

 

Rotation 

(θ in ˚) 

Rotation 

(θ in rad) 

Magnetostatic 

Energy (J) 

Normalised 

ME (NME) 

1-NME X-value y-value 

0 0 1.56274E-13 1 0 0 0 

11 0.19199 1.56043E-13 0.75581 0.24419 0.04659 0.2397 

15 0.2618 1.55757E-13 0.45349 0.54651 0.14145 0.52789 

23 0.40143 1.55737E-13 0.43235 0.56765 0.2218 0.52253 

27 0.47124 1.55451E-13 0.13002 0.86998 0.39496 0.77516 

30 0.5236 1.55929E-13 0.63531 0.36469 0.18235 0.31583 

37 0.64577 1.55451E-13 0.13002 0.86998 0.52357 0.6948 

41 0.71558 1.55539E-13 0.22304 0.77696 0.50973 0.58638 

45 0.7854 1.55328E-13 0 1 0.70711 0.70711 

49 0.85521 1.55539E-13 0.22304 0.77696 0.58638 0.50973 

53 0.92502 1.55451E-13 0.13002 0.86998 0.6948 0.52357 

60 1.0472 1.55929E-13 0.63531 0.36469 0.31583 0.18235 

63 1.09956 1.55451E-13 0.13002 0.86998 0.77516 0.39496 

67 1.16937 1.55737E-13 0.43235 0.56765 0.52253 0.2218 

75 1.309 1.55757E-13 0.45349 0.54651 0.52789 0.14145 

79 1.37881 1.56043E-13 0.75581 0.24419 0.2397 0.04659 

90 1.5708 1.56274E-13 1 0 0 0 

101 1.76278 1.56043E-13 0.75581 0.24419 0.2397 -0.04659 

105 1.8326 1.55757E-13 0.45349 0.54651 0.52789 -0.14145 

113 1.97222 1.55737E-13 0.43235 0.56765 0.52253 -0.2218 

117 2.04204 1.55451E-13 0.13002 0.86998 0.77516 -0.39496 

120 2.0944 1.55929E-13 0.63531 0.36469 0.31583 -0.18235 

127 2.21657 1.55451E-13 0.13002 0.86998 0.6948 -0.52357 

131 2.28638 1.55539E-13 0.22304 0.77696 0.58638 -0.50973 

135 2.35619 1.55328E-13 0 1 0.70711 -0.70711 

139 2.42601 1.55539E-13 0.22304 0.77696 0.50973 -0.58638 

143 2.49582 1.55451E-13 0.13002 0.86998 0.52357 -0.6948 

150 2.61799 1.55929E-13 0.63531 0.36469 0.18235 -0.31583 

153 2.67035 1.55451E-13 0.13002 0.86998 0.39496 -0.77516 

157 2.74017 1.55737E-13 0.43235 0.56765 0.2218 -0.52253 

165 2.87979 1.55757E-13 0.45349 0.54651 0.14145 -0.52789 
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Rotation 

(θ in ˚) 

Rotation 

(θ in rad) 

Magnetostati

c Energy (J) 

Normalised 

ME (NME) 

1-NME X-value y-value 

169 2.94961 1.56043E-13 0.75581 0.24419 0.04659 -0.2397 

180 3.14159 1.56274E-13 1 0 0 0 

191 3.33358 1.56043E-13 0.75581 0.24419 -0.04659 -0.2397 

195 3.40339 1.55757E-13 0.45349 0.54651 -0.14145 -0.52789 

203 3.54302 1.55737E-13 0.43235 0.56765 -0.2218 -0.52253 

207 3.61283 1.55451E-13 0.13002 0.86998 -0.39496 -0.77516 

210 3.66519 1.55929E-13 0.63531 0.36469 -0.18235 -0.31583 

217 3.78736 1.55451E-13 0.13002 0.86998 -0.52357 -0.6948 

221 3.85718 1.55539E-13 0.22304 0.77696 -0.50973 -0.58638 

225 3.92699 1.55328E-13 0 1 -0.70711 -0.70711 

229 3.9968 1.55539E-13 0.22304 0.77696 -0.58638 -0.50973 

233 4.06662 1.55451E-13 0.13002 0.86998 -0.6948 -0.52357 

240 4.18879 1.55929E-13 0.63531 0.36469 -0.31583 -0.18235 

243 4.24115 1.55451E-13 0.13002 0.86998 -0.77516 -0.39496 

247 4.31096 1.55737E-13 0.43235 0.56765 -0.52253 -0.2218 

255 4.45059 1.55757E-13 0.45349 0.54651 -0.52789 -0.14145 

259 4.5204 1.56043E-13 0.75581 0.24419 -0.2397 -0.04659 

270 4.71239 1.56274E-13 1 0 0 0 

281 4.90438 1.56043E-13 0.75581 0.24419 -0.2397 0.04659 

285 4.97419 1.55757E-13 0.45349 0.54651 -0.52789 0.14145 

293 5.11381 1.55737E-13 0.43235 0.56765 -0.52253 0.2218 

297 5.18363 1.55451E-13 0.13002 0.86998 -0.77516 0.39496 

300 5.23599 1.55929E-13 0.63531 0.36469 -0.31583 0.18235 

307 5.35816 1.55451E-13 0.13002 0.86998 -0.6948 0.52357 

311 5.42797 1.55539E-13 0.22304 0.77696 -0.58638 0.50973 

315 5.49779 1.55328E-13 0 1 -0.70711 0.70711 

319 5.5676 1.55539E-13 0.22304 0.77696 -0.50973 0.58638 

323 5.63741 1.55451E-13 0.13002 0.86998 -0.52357 0.6948 

330 5.75959 1.55929E-13 0.63531 0.36469 -0.18235 0.31583 

333 5.81195 1.55451E-13 0.13002 0.86998 -0.39496 0.77516 

337 5.88176 1.55737E-13 0.43235 0.56765 -0.2218 0.52253 

345 6.02139 1.55757E-13 0.45349 0.54651 -0.14145 0.52789 

349 6.0912 1.56043E-13 0.75581 0.24419 -0.04659 0.2397 

360 6.28319 1.56274E-13 1 0 0 0 

 

The pattern diameters are varied from 50 to 800 nm while the modulation amplitude was 

held constant at 100 nm.  Since at first approximation the magnetostatic energy (EM) is 

inversely proportional to the remanent magnetization (Mr) (i.e. EM~HK~1/Mr), the polar 

plot of simulated results plotted with the opposite polarity, which is defined by (1-EM).  
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Fig. 5.11. Simulated angle dependence of magnetostatic energy derived from simulated 

demagnetization energy in nanomodulated films for different pattern diameter (D) from 50nm to 

800nm plotted in inverse polarity. All of the plots certainly show 4-fold symmetry.  Hints of new 8-

fold peaks at 300 nm, 12-fold peaks at 400nm superimposed on the 4-fold ones are seen. Higher order 

peaks are observed in bigger diameter. The modulation amplitude (A) 200nm remained same for all 

diameters. Further decrease of modulation amplitude shows same type of result (symmetry increase). 

 

This indicates the angle dependence of normalized magnetostatic energy (EM) at a single 

domain state which in turn leads to an angular dependence of remnant magnetization (Mr). 
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The simulation results based on pattern diameter variation are shown in Fig. 5.11, where 

the remanent magnetization is plotted as a function of the angle of the applied field. To 

amplify the variation in magnetization the remanent magnetization is normalized. Variation 

of diameter and modulation amplitude shows a clear trend of symmetry variation. All of 

the plots in Fig.5.8 certainly show 4-fold symmetry.  There is the indication of new 8-fold 

peaks at 300 nm, superimposed on the 4-fold ones, and these become clearer at 400 nm and 

600 nm. The simulated result for 400 nm diameter matches well with the experiamental 

result for 400 nm pattern. In both the cases four fold symmetry including satellite peaks 

coming from eight fould symmetry were observed. The influence of symmetries has been 

plotted in Fig. 5.12, which shows that only 4n symmetries (360°/θ = symmetry, Fig. 5.12a) 

areavailable in a square pattern. Hence controllable (4n-fold) symmetry can be obtained in 

a square array pattern. This signifies that the nanomodulation minimizes the magnetostatic 

energy at least in the two equivalent <110> directions, where the uniaxial anisotropy 

(induced in the <010> direction during simulation) has been dominated by the anisotropy 

due to nanomodulation. For the smaller diameters (~50nm) this fourfold symmetry is 

dominant whereas satellite maxima beside each main maximum (<110> direction) become 

visible as the pattern diameter increases or modulation amplitude decreases. In a 

continuous patterned film, the coupling between the periods of the nanostructures is much 

stronger rather than inter-dot coupling between isolated 2D dot arrays which increases the 

anisotropy [98]. Thus, an eightfold or even higher order symmetry may contribute to the 

anisotropy considerably. In the case of the high aspect ratio substrate, the wave-like 

modulation of magnetic domains is envisaged to shift to the upper region (Fig.5.5-a). Here 

the modulation amplitude is more in the <110> direction than in the <100> direction and 

the hard axis is obtained in the <110> direction which is supported by simulation result 

(Fig.5.12-a). Same kind of results should occur in the case of low aspect ratio where wave 

like modulation shifts to the lower part of the modulated film (Fig.5.5-b). Variation of 

diameter and modulation amplitude shows a clear trend of symmetry (4n fold) variation. 

Similarly other type of symmetries can be obtained by changing the pattern or dipole 

arrangement.  
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Fig. 5.12. For closed packed array phase shift has been observed (a). Equilateral triangular array 

shows 3n-fold symmetry (b). Fitted curve (redline) for 200nm (c) and 400nm (d) pattern with derived 

generalised anisotropy equation (Eqn.3). (e) Symmetry dependency for different pattern diameters, 

(f) Geometry depended Demagnetization energy. Inset graph shows the behaviour of f  as afunction 

of A/D 

 

The derived anisotropy equation (Eqn.4) fits well with our simulated results and describes 

possible anisotropies for different ferromagnetic materials. We considered up to 16-fold 

symmetry in curve fitting, which fits well to the data at  lower diameter (~50nm) and near 

that (Fig. 5.12-c), but does not fit well at higher diameters(D) (Fig.5.9-d), which indicates 
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the dominance of lower order symmetry in lower diameters. The demagnetization energy 

density (calculated from simulated results) as a function of pattern geometry, follows 

function f [98], which delineates the fact that the uniaxial induced anisotropy is strongly 

dominated by the anisotropy created by nanomodulation. (Fig.5.12-f). Simulation of the 

triangular pattern shows a 3n–fold symmetry (Fig. 5.12-b) which supports the generalised 

model for possible different symmetries.  

 

5.5. Generalized anisotropy model for modulated thin film 

 

The pattern gives both in-plane and out-of-plane modulation (Fig. 5.5-a-b-c) which allows 

dipoles to rotate. The effective magnetostatic interaction strength is based on three different 

parameters: out-of-plane modulation amplitude, in-plane modulation amplitude and 

direction, based on modulation geometry and their arrangements.  

A possible starting point for the description of the angularly-dependent magnetic behaviour 

for this patterned media in terms of anisotropy would be to consider all kinds of 

anisotropies in a system. We can write an equation for magnetic anisotropy in the following 

way: 
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Where the elements in the square bracket are in the following order i) Global shape 

anisotropy of the sample, ii) Induced Uniaxial Anisotropy, iii) Anisotropy due to patterning 

and iv) any other anisotropy. For simulation we rotated only the pattern to exclude any kind 

of shape anisotropy.  So except for the second and third part, the others remain the same 

for comparison as a function of angle. We simplify Eq. 5.4 as follows. 
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We generalise a possible directional symmetry where n = β/α; α is a number representing 

a minimum geometrical symmetry (i.e. 4 for square, 3 for equilateral triangular/hexagon) 

and β is a positive integer. Kn denotes the anisotropy constant for the corresponding 

symmetries. In nanomodulated films the magnetization follows a wave-like path due to 

modulation geometry [98] and creates two types of magnetic charge dipoles. Since 

magnetic induction B=μ0 (H+M) don’t have divergence, the points where lines of 

magnetization originate or terminate can be considered as magnetic charge poles with 

opposite polarity. Looking through the cross section the magnetization directions are 

opposite to each other at two sides of an element which creates an out-of-plane dipoles 

(Fig. 5.5-a-b). In the case of in-plane view magnetization directions at reverse sides of an 

element are of opposite polarity in an external magnetic field direction, which gives in-

plane dipoles (Fig. 5-c). These dipoles can interact with each other strongly only when 

there is a chain of elements in the applied field directions, creating an anisotropic 

magnetization throughout whole film. We consider all types of magnetic interaction in 

different region and by using sum rules given by Yafet, et. Al [99] the total magnetostatic 

energy is given by, 
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where  

MS is the saturation magnetization,  

V is the volume  

and A is modulation amplitude.  

Since by symmetry in a square struture;  
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magnetostatic energy becomes,  
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For an externally applied field H the magnetostatic energy can be written as

dvH.M
2

1
Emag


 . We can consider two different layers of the pattern with magnetic 

and nonmagnetic regions in each layer. The magnetization can be written as 
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layer, L ~ Lower Layer, 1 is magnetic region and 2 is nonmagnetic region) for 4 different 

cases. Then we can write magnetostatic energy in following way for patterned structure,  
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Where the distribution of magnetization can be expanded in Fourier series as follows,   

And the field correspond to each magnetization will be, 
j
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The inter-layer interaction gives perpendicular anisotropy and the remaining effects give 

in-plane anisotropy.  M. Rewienski [101] found magnetic anisotropy of ferromagnetic thin-

films due to surface roughness. Using the same principle we have calculated the anisotropy 

energy due to each single element as



































D

A
f(2π1A

4

1
M

2

1
CE

2

Simag

and 



































D

A
f(2π1A

2

1
M

2

1
CE

2

Simag
 where Ci is a constant which 

depends on pattern geometry and aspect ratio. The function [101] f is 0 at A/D=1 and 1 at 

A/D=0 (Fig. 5-f inset). The dipolar anisotropy is given by 0EEE mag
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magda  
which 

gives a finite dipolar anisotropy energy depending upon the modulation geometry. 

Considering up to second-order harmonics, we can rewrite the dipolar anisotropy for 

anisotropy energy as 
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modulation and D is the diameter of the element. The magnetostatic interaction strength 

depends on the density of elements in a particular direction. So we add another term sin 

(90°/β) for patterned induced magnetic anisotropy where β is a positive integer.  

Using the expression for KS we can then rewrite Eq. 5.2 
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Where, n = β/α, α is a number representing a minimum geometrical symmetry (i.e., four 

for square, three for equilateral triangular/hexagonal), the constant C depends upon single 

element geometry and diameter/separation (D/S). This equation describes the possibility of 

anisotropy variation by nanomodulation geometry for different ferromagnetic materials.  

The magnetostatic energy due to the dipolar configuration can be expressed as follows. For 

this model we assumed that each pattern has a single domain magnetic dipole, circularly 

shaped, they can be rotated across the center of dipole moment and the  

 

                                                                                                                         Equation 5.11 

 

neighboring spins are not exchanged coupled.  The system energy includes magnetostatic 

energy and the Zeeman energy while exchange coupling is neglected. 
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And   

Where g is the gyromagnetic factor and μB is the Bohr magneton. 

The total dipolar energy in the infinite array can be expressed as  
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Where g is the gyromagnetic factor and μB is the Bohr magneton. 

The total magnetostatic energy is the sum of surface and volume energy generated due the 

in plane and out of plane dipole formation and inter dipole interaction at the volume and 

surface of nanomodulated thin film. 
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Where MSmi is magnetization for each dipole. 

 

The static dipolar energy depends upon the dipole interaction. Thus the geometry of the 

patterned structure plays an important role.  

 

 

 

 

Fig. 5.13. (a) Ideal film and model film for OOMMF simulation. (b) Angle dependent remanant 

magnetization (Mr vs. θ) measured from 3D nanomodulated film with 400nm. (c) OOMMF 

simulation shows dipoles exist all over the film. 

 

Static magnetic properties of 7x7 ordered array of magnetic pattern have been examined 

by solving Landau-Lifshitz-Gilbartz equation in OOMMF package. [79] An external field 

is applied in the plane of array in <10> direction. All spins are aligned along the field 

direction by applying a sufficiently large field at the initial stage of each simulation (Fig. 

5.13).  The simulation shows the anisotropy symmetry due to three dimensional continuous 

patterned structures. The dipole configuration exists all over the sample configured by 



 

Tyndall National Institute | Summary 99 

 

pattern geometry (Fig. 5.13.c). The rotation of the field rotates the magnetic dipole. The 

strength of dipolar energy varies depending upon array symmetry and magnetostatic energy 

varies accordingly. 

 

5.6. Summary 

In this chapter, the variation of magnetic anisotropy is investigated through the formation 

of magnetic dipoles in continuous ferromagnetic thin-films due to a unique 

nanomodulation. Experimental evidence of well-ordered dipoles with metastable state have 

been detected by means of variation of magnetic anisotropy, step hysteresis and MFM 

imaging. The novel 3D modulation generates both in plane and out of plane dipoles, where 

the competition between in-plane and out of plane dipoles creates metastable state giving 

opportunity to manipulate anisotropy. The anisotropy model, based on collective dipolar 

interaction was used to demonstrate the ability to control anisotropy in continuous 

ferromagnetic thin-films by minimizing magnetostatic energy through nanomodulation. 

The change of diameter/separation ratio (D/S) in nanomodulation can switch the anisotropy 

direction due to the transformation of the modulation wave from one layer to another layer. 

The generalised model helps us to find out possible anisotropy based on material property 

and geometrical arrangement of nanopattern. By varying amplitude/diameter (A/D) ratio 

and geometrical arrangement (α) one can achieve desired anisotropy. Thicknesses close to 

the modulation amplitude provide more control over the anisotropy. Additionally, the 

formation of a metastable single domain resists vortex formation in nanopatterned 

ferromagnetic thin-films which is essential for realizing devices such as volatile memory, 

magnetically frustrated patterned media [90], highly integrated nanoscale magnetic devices 

[101, 102] etc. Fourier analysis of magnetostatic energy for this nanomodulated film 

supports the existence of magnetic diploes (Eda≠0).   The derived generalised mathematical 

expression based on magnetic dipolar interaction is found to be in good agreement with 

our results, which can help to estimate and understand the anisotropy in other pattern media 

also. The method described in this work is much simpler and can be demonstrated at a 

larger scale.In this unique three dimensional continuous ferromagnetic film the 

magnetostatic energy is tuned by magnetic interaction among the magnetic dipoles in 
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patterned array with in-plane external magnetic field. A strong out of plane dipoles are 

generated by in-plane magnetic field and the competition between in-plane and out-of-

plane magnetic dipole resists vortex formation in nanostructure thin ferromagnetic film   

which can be a key factor in high density storage media. The micromagnetic simulation 

shows a qualitative agreement with the experimental results. 
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6 Chapter – Giant exchange anisotropy in Bismuth ferrite (BFO) 

nanocomposite 

6.1. Introduction 
 

In a period spanning more than five decades now, exchange anisotropyor exchange bias 

effect has been observed in a multitude of magnetic heterostructures: (i) ferromagnet-

antiferromagnet [18], (ii) ferromagnet-spin glass [104], (iii) ferrimagnet-antiferromagnet 

[105], (iv) ferrimagnet-ferromagnet [106], (v) ferromagnet spin glass-antiferromagnet 

[107], etc. Conventionally, the exchange bias—measured by the shift of the magnetic 

hysteresis loop along the field axis—requires pre-biasing of the interface moment via a 

field cooling protocol from above the magnetic transition point [108]. This pre-biasing sets 

the unidirectional anisotropy by breaking the symmetry of the interface moment. Exchange 

bias has also been observed, spontaneously, when even in the absence of pre-biasing, 

unidirectional anisotropy sets in under the first field of loop evaluation [109, 110], where 

the sample is cooled down from above the transition point under zero field. The 

spontaneous exchange bias (SEB), where the unidirectional anisotropy (UA) sets in 

spontaneously under the application of the first field of a hysteresis loop even in an 

unmagnetized state, is a consequence, primarily, of biaxial symmetry in the 

antiferromagnetic (AFM) structure of ferromagnetic (FM)-AFM interface [111-113]. In a 

spin glass (SG)-FM structure, on the other hand, the anisotropy sets in under field cooling 

via oscillatory Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction [114]. However, we 

demonstrate in this chapter that glassy moments at the interface, in fact, introduce an 

additional magnetic degree of freedom in between the exchange coupled FM and AFM 

grains and breaks the symmetry truly spontaneously even before the application of the first 

field of a loop to set the UA in an unmagnetized state. As discussed later, the consequence 

of this is an asymmetry in the SEB depending on the path followed in tracing the hysteresis 

loop—positive or negative. In a nanocomposite of BiFeO3 (~94%)-Bi2Fe4O9 (~6%),we 

observed (i) a large SEB (~300–600 Oe) across 5–300 K, (ii) asymmetry in SEB depending 

on the path followed in tracing the hysteresis loop—positive or negative, and (iii) a 
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nonmonotonic variation of SEB with temperature. The magnitude of the SEB itself is far 

higher than what has so far been observed in all the bulk or thin film based composites of 

BiFeO3 [115–118] even under magnetic annealing. We have also observed the 

conventional magnetic-annealing-dependent exchange bias (CEB) with all its regular 

features such as dependence on annealing field, rate, and training. The random field 

generated by the glassy moments at the shell appears to be influencing the indirect 

exchange bias coupling called ‘‘superinteraction bias coupling’’ between the FM core 

[120] of finer Bi2Fe4O9 and local moments of AFM order in coarser BiFeO3and inducing 

the SEB, its path dependence, and its nonmonotonicity in variation with temperature. This 

has been investigated in nanocomposite of ~112 nm BiFeO3 and ~19 nm Bi2Fe4O9.  

 

6.2. BiFeO3-Bi2Fe4O9 nano-composite 

 

6.2.1.  Sample preparation 

The nanocomposite of BiFeO3-Bi2Fe4O9 has been synthesized at Central Glass and 

Ceramic Research Institute (CGCRI) - India by sonochemical route where coprecipitation 

from aqueous solution of mixed metal nitrates takes place in presence of ultrasonic 

vibration. The precipitate thus formed is collected in a centrifuge running at 12000 rpm. 

The powder is finally washed, dried and calcined at 350-550oC for 4-5h in air. The pH of 

the medium of coprecipitation, ultrasonic vibration energy, heat-treatment temperature, 

and time etc. can be controlled to yield nano-sized particles of either pure BiFeO3 or a 

nanocomposite of BiFeO3-Bi2Fe4O9 of varying concentration ratio of the component 

phases. Three type of nanocomposite was prepared: BFO-A with 112 nm BiFeO3 (~94%)- 

19 nm Bi2Fe4O9 (~6%),BFO-B 57 nm BiFeO3 (~90%)- 13 nm Bi2Fe4O9 (~10%) and BFO-

C (pure BiFeO3). 

 

6.2.2. Structural analysis 

The particle morphology and the crystallographic details have been studied by transmission 

electron microscopy (TEM), selected area electron diffraction (SAED), and high resolution 
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transmission electron microscopy (HRTEM). The Rietveld refinement of the high 

resolution powder x-ray diffraction pattern too offers information about the 

crystallographic details of the component phases in addition to the crystallite sizes and 

volume fraction of each phase.The crystallite sizes for the BiFeO3 and Bi2Fe4O9 phases 

turn out to be ~112 and ~19 nm for sample A, 57 and 13 nm for sample B, respectively, 

for this nanocomposites. The estimation from the x-ray diffraction data (Table 4) matches 

closely with what has been observed in TEM. Therefore, it appears that finer particles of 

Bi2Fe4O9 are dispersed within the matrix of coarser BiFeO3 particles. 

 

 

 

Fig. 6.1. (a) A representative bright-field TEM image of the nanocomposite (b) the SAED 

patterns showing diffraction spots from both the phases; the dark-field  

In Fig.6.1a, we show a representative bright field TEM image of the nanocomposite while 

in Figs. b and c, the representative dark field (DF) - bright field (BF) images of the 

individual particles and corresponding SAED and HRTEM (Fig. 6.1 a) images are shown. 

A large number of HRTEM (Fig. 6.1 a),  BF-DF TEM (Fig. 6.1 b & 6.2 a) and SAED (Fig. 

6.2 b) images have been taken across different regions of the nanocomposite and analyzed 

in order to determine the concentration of the interfaces. The SAED patterns showing 

diffraction spots from both the phases; the dark-field images (marked by numbers) in the 

side panel (Fig.6.1b) shows the regions of the particles corresponding to the diffraction 

spots; inset shows the bright-field image of the region; the bright-field/dark-field images 
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together with electron diffraction patterns from the regions show the dispersion of the 

phases and the interfaces in the nanocomposite. It is interesting to observe that the finer 

Bi2Fe4O9 particles are nearly evenly dispersed within the matrix of coarser BiFeO3 particles 

thus maximizing the interface density. The SAED spots from the single crystalline BiFeO3 

and Bi2Fe4O9 particles have been identified and indexed accurately using the interplanar 

spacing (d) and angle (ø) data of the BiFeO3 (space group R3c, hexagonal unit cell) and 

Bi2Fe4O9 (space group Pbam, orthorhombic unit cell) phases (Fig. 6.1). In the case of those 

spots which could be identified to be corresponding to a particular single crystal with a 

well-defined zone axis, the accuracy of indexing has been verified from the Weiss zone 

law as well. Determination of the zone axes for the crystals of BiFeO3 and Bi2Fe4O9 yields 

the tilt across an interface as ~19º for a test case. However, since the particles are nano-

sized and are oriented in different directions with respect to the beam direction, it is difficult 

to determine the zone axes for all such particles and find out the entire distribution pattern 

of orientation across the interfaces. 

 

 

 

Fig.6.2. (a) a representative bright-field TEM image of an interface; top inset shows the dark-

field image of the region while the bottom inset shows the HRTEM image of different 

orientation of the lattice fringes at the interface; (b) electron diffraction spots with their 

indexing corresponding to the pattern shown  ; red and blue colors indicate the BiFeO3 and 

Bi2Fe4O9 phases, respectively. 
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Table 5 

Structural details of the phases in the nanocomposite from FullProf refinement 

of x-ray diffraction data (done by S Goswami at CGCRI, Kolkata, India). 
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6.3. Magnetic measurements of exchange anisotropy/exchange bias 

The magnetic measurements have been carried out in a SQUID magnetometer (MPMS, 

Quantum Design) across5-300 K under a maximum field Hm of 50 kOe. In order to ensure 

that there is no trapped flux both in the superconducting coil of MPMS and in the sample 

we followeda well-designed protocol to demagnetize them. An oscillating field with 

varying amplitude, where the amplitude reduces from maximum to zero has typically been 

applied. For example, for a demagnetizing field 1000Oe, the amplitude is brought down to 

zero in the following sequence: (+1000) - (-900) - (+800) - (-700) ... (+50) - (-40) ... (+5) - 

(-4) - (+3) - (-2) - (+1) - (0). The superconducting coils of MPMS are normally discharged 

from high field (50 kOe) in oscillation mode; the amount of trapped flux is typically ~10 

Oe. Before starting a new batch of experiments, the superconducting coil was warmed to 

room temperature which is above the critical point. In addition, prior to the measurement 

of SEB, the sample itself was demagnetized with oscillating field using an appropriate 

protocol in order to ensure that there is no trapped flux in the sample.We have also 

measured the SEB at 300 K for a maximum field of 18 kOe following zero-field cooling 

(ZFC) from a high temperature (~700 K) - which is even above the magnetic transition 

point TN (~590 K) of the AFM component - in a vibrating sample magnetometer for a test 

case. We obtain an SEB of ~81 Oe at 300 K which is consistent with the SEB for different 

Hm across 10-50 kOe measured in SQUID. This shows that the demagnetization protocol 

used in SQUID was appropriate in ensuring unmagnetized state of the sample prior to the 

measurement. We report here mainly the results obtained in a nanocomposite of ~6% 

Bi2Fe4O9 and ~94% BiFeO3 (sample-A) which exhibits maximum SEB and CEB. In Fig. 

6.3, the results from the magnetic measurements are shown. In Fig. 6.3 a, we show the 

hysteresis loops which yield the SEB at several temperatures across 5-300 K. The region 

near the origin is blown up to show the extent of EB clearly. We used a field step size of 

100 Oe near the origin of hysteresis loop in order to measure the exchange bias accurately. 

The field span of 10 kOe under such a protocol is covered typically within ~3h (~104s) 

which gives the time scale of each of the measurements. In each case, the presence of a 

large shift in the loop along the field axis is conspicuous. This shift cannot result from 

relaxation of coercivity of the FM component as the tensorial nature of the 
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magnetocrystalline anisotropy cannot contribute to the unidirectional anisotropy. The EB 

(HE) is given by (HC1+ HC2)/2 while the coercivity HC is given by (HC1- HC2)/2; HC1 and 

HC2 are the fields corresponding to the points in forward and reverse branches of the 

hysteresis loop at which the magnetization reaches zero.  

 

 

Fig. 6.3.  (a) The hysteresis loop shift, signifying SEB at different temperatures across 5-300 K, 

measured under 50 kOe following zero-field cooling; the region near origin of the loop is blown 

up to show the extent of exchange bias clearly; (b) shows the CEB at different temperatures 

across 5-300 K measured under a field cooling with +10 kOe; (c) shows the switch in sign and 

change in magnitude of the loop shift at 5 K signalling asymmetry and tunability of the SEB 

depending on the sign of the starting field (+50 kOe/-50 kOe) of hysteresis loop measurement; 

(d) switch in sign and change in magnitude of the CEB at 5 K measured following field cooling 

under +50 kOe/-50 kOe.  
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Fig. 6.4. (a) The variation of SEB and corresponding HC with temperature; and (b) the variation 

of CEB - measured following field cooling under +10 kOe - andcorresponding HC with 

temperature (lines are guide to the eyes). 

6.4. Result and discussion 

The extent of SEB observed here right across 5-300 K is quite large and comparable to 

what has been reported by Wang et al. [112] in Ni-Mn-In bulk alloys at 10K. While 

ramping the temperature from one point to another a constant ramp rate of 2.5 K/min has 

been used. The observation of SEB iteslf in BiFeO3 based bilayer or composite system has 

not been reported so far, and, for the first time, we are reporting it in the nanocomposite of 

BiFeO3-Bi2Fe4O9.  In Fig. 6.3c, the asymmetry and hence the tunability of the SEB at 5 K 

has been demonstrated. Depending on the sign of the starting field +50 kOe (-50 kOe), the 

sign of the SEB is negative (positive) as well as |-HEp| > |+HEn|. This is also remarkable and 

has not yet been observed in any other system exhibiting SEB [104]. Fig. 6.3 b shows the 

CEB measured after a magnetic annealing treatment with 10 kOe. In this case a field of 10 

kOe has been applied at room temperature and then the temperature was ramped down to 

the given point at a cooling rate of 2.5 K/min. Like SEB, the CEB too turns out to be 

negative i.e., annealing under positive (negative) field yields hysteresis loop shift in 

negative (positive) direction along the field axis. Even more interesting is that, in this case 

too, the exchange bias HE for positive (negative) annealing field is asymmetric with |-HEp| 

> |+HEn|. This has been demonstrated clearly in Fig. 6.3d which shows the asymmetry in 

the shift of the loop along the field axis at 5 K depending on whether the sample has been 
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field-cooled under +50 kOe or -50 kOe. This asymmetry was observed for SEB as well 

(Fig.6.3c). In Figs. 6.4a and 6.4b, respectively, we show the HE and HC 

 

Fig. 6.5.  (a) The characteristic dip at ~21 K in the differential between two ZFC magnetization 

versus temperature patterns recorded under two different protocols - asimple ZFC and a ZFC with 

”stop-and-wait” approach; inset shows a similar dip even at 50 K; it appears to become sharper and 

more prominent with the increase in wait time; (b) The impact of training effect on CEB for sample-

A; the CEB and HC decreases with the increase in number of hys- teresis cycles (n); inset shows a 

portion of the loop at first and twelfth cycle. 

 

as a function of temperature (T) for SEB (measured under 50 kOe) and CEB (measured 

following FC with 10kOe). The HE and HC in both of these cases are nearly identical in 

magnitude and nonmonotonic. While HE-T plots exhibit valleys at ~150 K for both SEB 

and CEB, the HC-T plots exhibit valleys at ~50 K. In addition, the HE-T plot exhibits a peak 

at ~50 K for CEB (Fig. 6.4b). The nearly identical magnitude of HE and HC signifies nearly 

identical uniaxial anisotropy (UA) at the interface and domain pinning under ZFC and FC 

with 10 kOe. HE, however, is large at 5 K, possibly, because of large magnetization at low 

temperature which could increase further under field cooling. In order to trace the origin of 

all these features, we investigated the spin structure both in the bulk of the BiFeO3 and 

Bi2Fe4O9 particles as well as at their interfaces from well-designed protocol dependent 

magnetic memory and training effect measurements. 
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Fig. 6.6.  The memory effect observed at 21 K, 50 K, 100 K, and 150 K under ’stop-and-wait’ 

protocol of magnetic moment versus temperature measurement. This effect proves the presence of 

superspin glass moments in the nanocomposite. The effect becomes more prominent as the 

temperature decreases. 

 

We obtained a profound signature of the presence of superspin glass (SSG) moments in the 

memory effect measurement for sample-A.We used a ‘stop-and-wait’ protocol to measure 

the memory effect which is an unequivocal signature of the presence of SSG [121, 122]. 

In ‘stop and wait’ protocol the ZFC measurement is interrupted at a given temperature 

below blocking temperature (TB) or glass transition temperature (Tg). The system is 

maintained at this temperature for a certain time or long wait (for example 104 sec) and 
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then the cooling process again continue down to the possible lowest temperature (2K in 

this case). When the magnetization is measured as a function of temperature during 

warming up, lower values of the magnetization with respect to the values of the reference 

curve, measured in the ZFC process without interruption are observed in the temperature 

region where the previous ZFC cooling process was stopped or at the wait point (Tw). The 

sample was first cooled down to 2 K from room temperature under zero field and an M(T) 

pattern (which acts as reference line) was measured under 200 Oe.  

 

 

Fig. 6.7. (a) Hysteresis loops measured for three samples at 5K temperature. No exchange bias was 

found in Sample C which is pure BiFeO3. (b) The SEB for all the three samples with different volume 

fractions of the Bi2Fe4O9 phase. (c) The CEB and HC versus temperature plot for sample B. Large 

CEB (measured following field cooling under 50 kOe) could be observed at only below TB.  

 

After the sample temperature reaches 300 K, it was again brought back to 2 K under zero 

field. The M(T) measurement was then repeated but with a ’stop-and-wait’ protocol. As 

the temperature reaches at Tw ~21 K, the measurement was stopped and waited at that 

temperature for ~104s. The difference between the two patterns ~M(T) is shown in Fig.6.5a 

main frame. The memory effect is shown as a dip at ~21 K which confirms the presence of 

SSG phase in the nanocomposite. The entire measurement has been repeated for Tw~50 K 

(Fig. 6.5a inset). The memory effect could be observed even at other temperatures as well. 

We further measured the wait-time dependence of the memory effect (Fig. 6.5a inset). It 

appears that the effect becomes sharper and more prominent with the increase in wait time 

across 103-104s. The SSG moments develop due to  interaction among the frozen 

superparamagnetic domains - possibly present at the shell of the finer Bi2Fe4O9 particles 

of core-shell structure with FM core - at finite interparticle distance below the blocking 

temperature (TB> 350 K for sample-A) [123]. With the rise in exchange coupling strength, 
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the superparamagnetic particles form SSG, initially, and then even superferromagnetic 

phase. Fig. 6.6, we show the signature of the memory effect at different temperatures – 

measured using a ’stop-and-wait’ protocol - within a range below the blocking temperature 

(TB>350 K) of the system. The dips at different Tw are the signature of memory effect at 

different temperatures. It has been shown earlier that this memory effect is an unequivocal 

signature of the presence of SSG moments in the system. However, the dip broadens and 

the memory effect weakens as thetemperature is raised. This is because of enhanced 

thermal effect on the spin structure of the system. 

 

 

Fig. 6.8. The zero-field cooled (ZFC), field cooled (FC), and remanent magnetization versus 

temperature plots for (a) sample-A and (b) sample-B; the solid lines show the ZFC and FC 

magnetizations after subtraction of the contribution of paramagnetic C/T component in both the 

cases; TB turns out to be >350 K for sample-A and ~60 K for sample-B. 

 

The thermal energy induces randomness in the spin structure which, in turn, weakens the 

memory effect. Interestingly, the memory effect is completely absent above TB. This 

observation reflects that, as expected, presence of SSG moments and consequent memory 

effect is conspicuous at only below the TB. From the detailed analyses of the microstructure 

and crystallographic data of the nanocomposite, [107] it has been found out that the BiFeO3 

particles are bigger (~112 nm) while the Bi2Fe4O9 particles are finer (~19 nm). It has 

already been reported by others that finer Bi2Fe4O9 particles exhibit FM order. The BiFeO3 

particles are antiferromagnetic with uncompensated local spins. It has also been observed 

that there are superparamagnetic domains with a blocking temperature TB>350 K. The 
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memory effect, on the other hand, signifies the presence of superspin glass moments. As 

the interparticle distance reduces and the exchange interaction increases, the 

superparamagnetic domains give way, initially, to superspin glass phase and then even 

superferromagnetic phase as well. Therefore, the spin structure in the BiFeO3-Bi2Fe4O9 

composite appears to be consisting of a FM core and SSG shell interacting with the local 

moments of the AFM structure of coarser BiFeO3 particles. The exchange interaction 

among the FM cores of different finer particles is considered to have developed a net FM 

moment across the entire composite. The AFM structures, on the other hand, could be of 

various types including ones with biaxiality with respect to the axis of application of the 

field or exchange-coupled pairs [111]. This, in turn, yields partially hysteretic, fully 

hysteretic, and non-hysteretic grains. The symmetry of the interface moment, with respect 

to the direction of applied field, within the ensemble of coupled grains is spontaneously 

broken even in the absence of first field of hysteresis loop tracing via an indirect exchange 

bias coupling interaction between FM core of Bi2Fe4O9 and AFM moments of BiFeO3 

through the intermediate SSG moments at the interface.  

The dynamics of the spin structure at the interface has been probed for sample-A by 

studying the training effect on CEB at 5 K for 12 repeating cycles. The dependence of HE 

and HC on the number of repeating cycles (n) is shown in Fig. 6.5b. The CEB obtained 

under a field Hm of 50 kOe following FC with 50 kOe is shown here. Both the parameters 

are found to be decreasing monotonically with the increase in n indicating spin 

rearrangement at the interface. It appears that the empirical law [124] for purely AFM spin 

rearrangement at the interface HE
n =HE

∞ + k.n−1/2 with k = 505 Oe and HE
∞ = 813 Oe cannot 

describe our data well (green line in Fig. 6.5b). Instead,a model [125] which considers a 

mixed scenario of two different relaxation rates for frozen and rotate-able uncompensated 

spin components at the interface HE
n = HE

∞ + Af exp(−n/Pf ) + Ar exp(−n/Pr) (Eqn. 1) 

(where f and r denote the frozen and rotate-able spin components) fits the data perfectly 

well (brown line in Fig. 6.5b) and yields the fitting parameters as HE
∞ = 761Oe, Af = 1394 

Oe, Pf = 0.61, Ar = 451 Oe, and Pr= 3. The ratio Pr/Pf=5 indicates that the rotateable spins 

rearrange nearly 5 times faster than the frozenspins. Thus while the ’memory effect’ 

signifies the presence of SSG moments in the nanocomposite, the ’training effect’ on CEB 

shows that the SSG moments reside at the interfaces between FM Bi2Fe4O9 and AFM 
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BiFeO3 particles and influence the SEB and CEB significantly. It is important to mention 

here that the SEB exhibits negligible training effect within the laboratory time scale 

(~104s). This could be because it originates from a stable state under zero field and zero 

magnetization through spontaneous symmetry breaking. 

 

We further examined the SEB in two other samples with higher (~10%) and lower (<3%) 

volume fraction of Bi2Fe4O9 (sample-B and C, respectively). The corresponding full 

hysteresis loops have been shown in Figure 6.7a. The TN of the AFM component for 

sample-B and C are ~490 K and ~450 K, respectively. In Fig. 6.7a, comparison of the 

hysteresis loops among all the three samples (A, B, and C) and in Fig.6.7b SEB are 

shown.The SEB is found to follow a rather nonmonotonic pattern with the variation in the 

volume fraction of Bi2Fe4O9 phase. It decreases both with the increase and decrease in the 

volume fraction of the Bi2Fe4O9 phase. The SEB in all these cases could be observed at 

only below the respective TB. The TB decreases down to ~60 K in sample-B because of 

finer Bi2Fe4O9 particles (~8 nm). The TB, however, could 

 

 

Fig. 6.9. Schematic of the ferromagnetic and antiferromagnetic spin interaction via superspin glass 

moments at the interface; left part shows the ferromagnetic core of finer Bi2Fe4O9 particle and 

superspin glass moments at the shell interacting with the local moments of spiral spin spin structure 

of bigger BiFeO3; right part shows the spin configuration and interaction energies. 

 



 

Tyndall National Institute | Result and discussion 115 

 

not be located within the range 5-300 K for sample-C and, therefore, no exchange bias 

could be observed in this sample within the same temperature range. The CEB and HC for 

sample-B are also found to be finite (Fig. 6.7 c) only at below the TB (~60K). And as 

expected, the memory effect too has been observed in sample-B at below TB. The memory 

effect, observed both in sample-A and B, implies presence of SSG phase and its influence 

on the exchange bias. Since superparamagnetic and SSG phases coexist at below TB in both 

the samples, one can estimate the relative volume fraction of the SSG phase by calculating 

the ZFC and FC magnetic moment versus temperature pattern after subtracting the 

contribution of Curie paramagnetic component C/T (C = Curie constant) from the 

experimental result (Figs 6.8 a and b) and noting the flatness of the FC moment versus 

temperature pattern [125] at below TB. The calculated patterns (solid lines) for both the 

samples A and B are shown in Figs. 6.8 a  & b, respectively. It appears that the volume 

fraction of SSG phase is higher in sample-A than in sample-B. The SEB too is higher in 

sample-A than in sample-B. Clear correlation between the volume fraction of the SSG 

phase and the extent of SEB shows that the SSG phase plays a major role in inducing SEB. 

We show that all these results could be qualitatively understood by considering a model of 

”superinteraction bias coupling” between the superspin of superparamagnetic core of finer 

Bi2Fe4O9 and local uncompensated moments of the AFM order in coarser BiFeO3 particles 

via SSG shell at the interface. The model is shown schematically in Fig. 6.9 and draws 

essentially from the model proposed in Ref. 112. The dotted line marks the direction of the 

applied field. The shell SSG moments s1 and s2 are coupled to the FM moment SF by a 

coupling parameter JF and to the AFM moment SAF by JAF while the coupling between s1 

and s2 is J. The net coupling parameter b will depend on JAF, JF, and J and, finally, HE / b 

[114]. It has been shown [114] that the random fields generated by spin glass moments at 

the core can act on the saturated FM moment and set the UA via RKKY interaction. The 

model that we are proposing in the present case is the following. The random field from 

frozen SSG moments appears to be inducing a variation in the anisotropy of the AFM 

moments including biaxiality with respect to the direction of the applied field. Thus 

depending on the orientation of the principal easy axes of AFM grains with respect to the 

direction of the applied field, the AFM grains can experience either no torque or large 

torque. Accodingly AFM grains set the UA, primarily, in a direction opposite to that of the 
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applied field. The SEB, then, becomes negative - i.e., depending on the sign of the starting 

field for loop tracing, positive (negative), the SEB turns out to be negative (positive). 

Application of the first field for tracing the loop breaks the symmetry among the AFM 

grains and sets the UA. The FM moments are assumed to be saturated under the applied 

field. However, the most interesting aspect is that there is a spontaneous symmetry 

breaking as well, driven by the random field of the SSG moments at the interface which 

yields global minima in the energy landscape and sets the UA universally along the 

negative field direction even in absence of first field of loop tracing. These grains are thus 

always partially hysteretic along the negative direction of the applied field. The grains 

which set the UA in a direction opposite to that of applied field are partially hysteretic for 

both the directions of applied field. But the ones mentioned above are partially hysteretic 

only with respect to the negative field direction. This aspect, in fact, gives rise to the 

observed asymmetry in both SEB and CEB with |-HEp| > |+HEn| and has not been reported 

by others so far in the context of either SEB or The role of SSG moments, therefore, appears 

to be crucial in inducing this spontaneous symmetry breaking and setting the UA 

universally along the negative field direction. Alternatively, similar effect could be 

observed due to even finer fraction of Bi2Fe4O9 particles, because of a distribution in the 

size, which form super- ferromagnetic (SFM) domains via stronger interparticle exchange 

interaction [101]. The SSG mediated SFM-AFM exchange interaction within an ensemble 

of grains with finer fraction of Bi2Fe4O9 particles, in that case, could actually give rise to 

the spontaneous symmetry breaking and set the UA universally along the negative field 

direction even in absence of first field of loop tracing. Only those grains, then, are 

responsible for giving rise to the observed asymmetry in SEB and CEB. The temperature 

dependence of SEB is nonmonotonic as at well below TB, the increase in temperature 

increases the interaction between SSG and AFM moments which, in turn, induces the 

energy landscape necessary to set the UA in the system. The bias as well as the asymmetry, 

therefore, increases. However, as the TB is approached, the number of grains turning 

superparamagnetic increases which, in turn, reduces the bias. The nonmonotonic variation 

in SEB with the volume fraction of Bi2Fe4O9 phase, likewise, can be explained by 

considering nonmonotonic variation in the volume fraction of the SSG phase. 



 

Tyndall National Institute | Result and discussion 117 

 

The tunable spontaneous exchange bias of ~300-600 Oe across 5-300 K in nanocomposite 

of BiFeO3 (~94%) - Bi2Fe4O9 (~6%)(Sample A) originates from a superinteraction bias 

coupling between ferromagnetic core of finer Bi2Fe4O9 (~19 nm)  

 
 

 

Fig. 6.10. The path dependency of (a) spontaneous exchange bias and (b) corresponding coercivity as 

a function of temperature; the path dependency of (c) conventional exchange bias and (d) 

corresponding coercivity as a function of temperature. 
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particles and antiferromagnetic moment in coarser (~112 nm) BiFeO3 particles via 

superspin glass moments at the interface. Since it induces a variety of coupling across the 

interfaces and thus develops a complicated interaction energy landscape among the 

FM/AFM grains by breaking the symmetry spontaneously even in the absence of first field 

of loop tracing, the presence of superspin glass moments turns out to be crucial. This giant 

and tunable (i.e., path dependent) exchange bias can be utilized for an enormous 

improvement in the efficiency of switching the magnetic anisotropy in a ferromagnetic 

system electrically via “exchange coupling mediated multiferroicity” in such a 

nanocomposite and/or a multilayer thin film systems. 

While the conventional exchange bias (CEB) is observed under field cooling which sets 

the unidirectional anisotropy across a ferromagnet (FM) – antiferromagnet (AFM) 

interface prior to the measurement of the hysteresis loop, the spontaneous one is observed 

even in an unmagnetized state following zero-field cooling. It results from a symmetry 

breaking across the FM-AFM interfaces and setting of the unidirectional anisotropy (UA) 

under the first field of the hysteresis loop tracing. In recent times, the spontaneous exchange 

bias (SEB) has been reported for different alloy and nanoparticle composite systems [111]. 

The origin of this appears to be lying in the biaxiality of AFM grains and variation in the 

FM-AFM bias coupling among an ensemble of grains. We have observed an even more 

interesting feature of the SEB - variation in the magnitude of the bias depending on the 

path followed in tracing the hysteresis loop - in a nanocomposite of BiFeO3-Bi2Fe4O9. The 

hysteresis loop has been traced following two paths - +Hmax→-Hmax →+Hmax (path a) 

and -Hmax →+Hmax →-Hmax (path b); Hmax is the maximum field applied for tracing 

the loop. This asymmetry in the SEB offers an additional tunability apart from the 

magnitude of the maximum field itself and has not been reported for any other composite 

or multilayer system exhibiting exchange bias. We have also measured the CEB and found 

that CEB too, exhibits such a path dependency. The asymmetry in the SEB and CEB - 

ΔHSEB and ΔHCEB – is found to be temperature dependent; while ΔHSEB decreases with 

temperature nonmonotonically the ΔHCEB decreases rather monotonically. We have found 

that the SEB, CEB and their path dependency are originating from a spontaneous breaking 

of the symmetry of interface magnetic moment and setting of UA among an ensemble of 

FM and AFM particles even in the absence of first field of hysteresis as a result of superspin 
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glass (SSG) mediated exchange bias coupling interaction. The presence of SSG moment is 

revealed by a significant memory effect in a stop-and-wait protocol of measurement. The 

memory effect turns out to be dependent on the temperature. The BiFeO3-Bi2Fe4O9 

nanocomposite has been prepared by a solution chemistry route. The volume fraction of 

the Bi2Fe4O9 phase has been varied from <3% to ~10%. The exchange bias is maximum 

for a composite of <6 vol% Bi2Fe4O9. It decreases both with the increase and decrease in 

the volume fraction of the Bi2Fe4O9 phase.  
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Fig. 6.11. The asymmetry in SEB and CEB -ΔHSEB and ΔHCEB- as a function of temperature; ΔHSEB 

exhibits a peak around 200 K while ΔHCEB is rather monotonic across 5-300 K. 

 

We have also measured the SEB following a thermal cycling under zero field through ~800 

K which is far above the magnetic transition point TN(~590 K) of the composite, in the 

VSM system for confirming the unbiased state of the sample in MPMS. Further we discuss 

here the results obtained for the nanocomposite with <6 vol% Bi2Fe4O9 which exhibits 

maximum exchange bias. Spontaneous and conventional exchange bias areobserved across 

a temperature range 5-300 K.  We discuss the path dependency of the SEB and CEB and 

its temperature dependence. In Fig. 6.10a, we show the SEB and CEB by blowing up the 

portion of the loop near origin. The corresponding full loops are shown in Fig. 6.10b. Figs. 

6.10c,d,e, and f show the SEB and CEB for a maximum field of 5T measured following 

two different paths of tracing the loop - path a and path b (Fig. 6.10 b). Quite clearly both 
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the exchange bias HEand the coercivity HC appear to be depending on the path of loop 

tracing and temperature (Fig. 6.10). The sign of the HE is negative (positive) for positive 

(negative) starting field. In Fig. 6.11, we show the asymmetry in the SEB and CEB - 

ΔHSEBand ΔHCEB- as a function of temperature across 5-300 K. The ΔHSEB exhibits a 

nonmonotonic pattern with a peak around 200 K. The ΔHCEB, of course, decreases with the 

increase in temperature rather monotonically. We have also measured the CEB using 

different maximum field Hm. In Fig. 6.12, we show the Hm and temperature dependence 

of CEB and corresponding HC. Interestingly, while HCEB decreases monotonically with the 

increase in temperature for different Hm 1, 3, 5T, the corresponding HCexhibits a rise  

 

Fig. 6.12. The temperature dependence of (a) conventional exchange bias and (b) corresponding 

coercivity; there is an anticorrelation between HCEBand HCthroughout the entire range of Hm and 

temperature; while HCEB decreases with the increase in temperature, HCincreases. 

 

with temperature from above ~50 K. Therefore, there appears to be an anticorrelation 

between HCEB and HC. This anticorrelation signifies an anticorrelation between the UA of 

the exchange coupled structure and the magnetocrystalline anisotropy of the FM 

component. The magnetocrystalline anisotropy appears to be increasing with the increase 

in temperature under field cooling. Yet its tensorial nature does not influence the UA of 

the system. To understand further we investigate second sample BFO-B with blocking 

temperature (TB~70K) below room temperature. Figure 6.13(a) shows the zero-field cooled 

and field cooled (ZFC and FC) magnetization (M) versus temperature (T) plots for Sample-

B. Inset shows the dM/dT versus T plots, which help in identifying the blocking 

temperature TB. The change in slope of the dM/dT versus T plots below 10 K signifies 
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weak ferromagnetism [116,117]. Figure 6.13 (b) shows the hysteresis loops measured 

across 2–100 K. The portion near the origin is blown up to show the asymmetric shift of 

the loops along the field axis. The exchange bias (HE) observed in this case is conventional 

as the measurement has been carried out following field cooling under +50 and −50 kOe. 

Importantly, the extent of exchange bias turns out the system to be dependent on the sign 

of the field applied during field cooling 

 

Fig.6.13. (a) The zero-field cooled, field-cooled, and remanent magnetization versus temperature 

plots; inset shows the dM/dT vs T plots; (b) the hysteresis loop shifts at different temperatures 

showing the exchange bias; the portion near the origin is blown up; inset shows the full loops. 

 

and also on the path followed in tracing the loop: +50 kOe→0→−50 kOe→0→+50 kOe 

(positive) or −50 kOe→0→+50 kOe→0→−50 kOe (negative). In Fig. 6.14 (a), we show 

the asymmetric or path-dependent exchange bias (HE: HEp-positive, HEn-negative) and 

coercivity (HC: HCp-positive, HCn-negative) as a function of temperature. The exchange 

bias is given by HE = (Hc1 + Hc2)/2 and the coercivity is given by HC = (Hc1 − Hc2)/2, where 

Hc1 and Hc2 are the fields at which the magnetization reaches zero during the tracing of 

forward and reverse branches of the hysteresis loop.  

Further analysis of the hysteresis loops also reveals a vertical shift along the magnetization 

axis. The vertical shift was earlier observed [118] to be associated with the exchange bias 

and was resulting from induced net moment. While ferromagnetic coupling across the 

interface yields a positive shift, antiferromagnetic coupling results in a negative shift. 

Consistent with the earlier observation [118], the positive shift here is associated with 

negative exchange bias. However, the asymmetry in the vertical shift was not observed 
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Fig. 6.14. The temperature dependence of (a) exchange bias and (b) coercivity and the asymmetry of 

(c-d) exchange bias and coercivity across 5–100 K.  

 

between the loops traced via positive and negative paths at 2 K after cooling with +/− 5-T 

bias field. Finally, the temperature dependencies of the net exchange bias (ΔHE) and 

coercivity (ΔHC) are shown in Figs. 6.14(c) and (d), respectively.  

 

Fig. 6.15.  The complex ac susceptibility vs temperature plot at different frequencies; inset shows the 

shift in the peak temperature with the frequency. 
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Interestingly, both the HE and ΔHE (and likewise HC and ΔHC) increase sharply with the 

decrease in temperature below 20 K. The TB, however, is 60 K. In between 20 and 60K, 

exchange bias, coercivity, and their asymmetry are small and exhibit rather weak 

temperature dependence. In order to probe this observation further, we have carried out ac 

susceptibility measurements as well. In Fig. 6.15, we show the complex AC susceptibility 

versus temperature plots for different frequencies. It appears that a distinct  

 

 

 

Fig. 6.16. (a) The relaxation of the magnetization measured alternatively under +50 and −50 kOe at 5 

K; (b) field dependence of the thermo- and isothermal remanence at 5K. 

 

spin freezing transition takes place around 20 K. The peak temperature Tf (w) shifts towards 

higher temperature and linearly increases with lnw with the increase of frequencies (inset 
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Fig. 10), which is a clear signature of spin glass behavior [119]. The frequency sensitivity 

K of Tf (w) has been calculated to be 4.7. This frequency dependence of Tf (w) is described 

as conventional slowing down of spin dynamics, which results in the irreversibility in the 

spin glass [120]. The frequency dependence (inset of Fig. 6.15) of the peak temperature 

follows the Vogel-Fulcher pattern (Vogel-Fulcher freezing temperature at 29.4 K for 

BiFeO3) [121]. Previous reports suggest that at low-temperature BFO possess low-

temperature spin glass ordering, which leads to the increase of HB and HC at low 

temperature [121]. This result shows that the onset of spin-freezing transition has a strong 

bearing upon the exchange bias and its asymmetry. In order to probe the spin morphology 

of the system, we have carried out detailed magnetometry across 2–300 K. 

We have studied the relaxation of the moment at 2 K over a time span of 3600 s under both 

+50 and −50 kOe. The sample was first cooled down from 350 to 2 K under zero field and 

then +50 kOe was applied and the time dependence of the moment was measured for 3600 

s. After that, the field was ramped down to50 kOe and the magnetizationwas measured for 

3600 s. Again, the field was ramped back to +50 kOe and the measurement was repeated 

for 3600 s. The results of these three measurements are plotted in Fig. 6.16(a). They clearly 

show an upward creep signifying incoherent rotation of the ferromagnetic moment because 

of the presence of superspin glass (SSG) at the interface [129, 133]. Additionally, in this 

high field relaxation process, we observed that the amount of variation in magnitude of 

moments (M) in 3600 sec relaxation time is almost same for alternative fields. It indicates 

the uniaxiality (UA) of ferromagnetic grains. Thus the asymmetry in exchange bias does 

not come from the FM part of the composite. The possible reason of asymmetry could be 

the existence of random anisotropy at the interface of BiFeO3- Bi2Fe4O9 and interactions 

with uniaxial anisotropy of very small size of the ferromagnetic domains through a 

nontrivial interface spin structure where the exchange bias coupling freezes below the 

Vogel-Fulcher freezing temperature. The presence of super spin glass was also investigated 

in memory effect on ZFC magnetization measured by well-designed stop and wait protocol. 

The characteristic peak in the differential moment versus temperature plot at a temperature 

at which the measurement was stopped and waited for 104 s signifies presence of SSG in 

the system. We further carried out isothermal remanence and thermoremanence 

measurements at 5 K. For the thermoremanence measurement, the sample was cooled down 
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from room temperature to 5 K under a specific field and then the field was removed. The 

remanent moment was measured immediately. The isothermal remanence was measured 

following zero field cooling. In this case, the sample was brought down to 5 K from room 

temperature under zero field and momentarily a field was applied at 5 K. 

 

Fig.6.17. The hysteresis loops measured at 2 K following different protocols starting with +50 kOe 

(blue line) and −50 kOe (red line); anomalous jump structures could be seen in different branches of 

the loops; inset shows the spin structure. 

 

Then the field was removed and the magnetization was measured. The field dependence of 

both the thermo- and isothermal remanence at 5 K is shown in Fig. 6.16(b). Very 

interestingly, the patterns follow closely those expected for a two-dimensional dilute 

antiferromagnet in a field (DAFF) [134]. While the isothermal remanence exhibits a weak 

field dependence, the thermoremanence follows ∝HνH pattern where νH = 0.64. In the case 

of spin glass [128], the isothermal remanence curve increases with field relatively sharply 

and exhibits a peak at an intermediate field and meets the thermoremanence curve and then 

both saturate at higher field. For superparamagnetic system [129], the thermoremanence 

curve increases with field quite rapidly. For the present case, the results of thermoand 

isothermal remanence measurements indicate presence of two-dimensional DAFF. The 
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high-field relaxation process and memory effect on ZFC magnetization, on the other hand, 

signify simultaneous presence of SSG. The overall spin morphology, therefore, appears to 

be consisting of four components: ferromagnetic (FM) and antiferromagnetic (AFM) cores 

and interfaces vitiated by SSG and DAFF shells.  

Finally, we have measured the hysteresis loops with higher resolution at 2 K starting from 

+50 kOe and from −50 kOe. The loops, especially the portion near the origin, are shown in 

Fig. 6.17. Quite conspicuous are the sharp jumps in the loops. Such jumps have earlier been 

observed in systems containing inhomogeneities and thus random anisotropy [130-132]. In 

fact, both by experimental and theoretical work, it has been shown that depending on the 

strength of the random anisotropy with respect to the exchange coupling, several jumps 

might be seen in hysteresis loops at low temperature. Because of thermal perturbation, they 

smear off at higher temperature. In the present case too, loops measured at higher 

temperature (5 K) exhibit lesser number of jumps and complete smearing off eventually at 

temperature higher than that. However, there is an interesting distinction between the jumps 

observed in a ferromagnetic system containing purely random anisotropy because of 

inhomogeneities and the jumps observed here. The number of jumps observed, in the 

present case are different in two different branches of a particular loop. The inversion 

symmetry, normally observed in systems containing purely random anisotropy [131], is 

broken here. While lesser jumps (J1,J2) could be seen in the forward branch, more 

jumps(J1,J2,J3) are conspicuous in the reverse branch (Fig. 6.15). This is true for both the 

loops—whether the loop has been traced starting from+50 or−50 kOe. There is, however, 

conspicuous inversion symmetry in the jump structure in between two forward and two 

reverse branches of the loops traced starting from +50 and −50 kOe. It is possible to notice 

that the branch on the extreme left (blue line) is a mirror image of the branch on the extreme 

right (red line) of Fig. 6.17. Likewise, the inner blue and red branches are also mirror 

images of each other. Such an asymmetric pattern of jumps for a particular loop yet a 

symmetric one between the loops traced via two different protocols is remarkable and has 

not been reported earlier. This observation clearly points out that there could be a 

correlation between this symmetry of the jump pattern and the protocol dependency of the 

exchange bias. It has been argued below that these results from a local topological spin 

texture at the interface which, in turn, gives rise to a strong universal unidirectional 
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anisotropy of the interface moment along negative field direction. It has been shown that 

random anisotropy due to inhomogeneities leads to jumps in the hysteresis loop at a very 

low temperature (100–500 mK) as a result of avalanches in domain flipping.[132] The 

random anisotropy field competes with the applied field and as and when the spins are 

aligned with the local anisotropy, the avalanche takes place. The role of local anisotropy 

has been addressed both by site-centric local random field model [130] as well as cluster 

model [132]. The Hamiltonian considers the exchange coupling among the spins, local 

random field due to anisotropy, and the applied field. 

In the case of the present system, exhibiting exchange bias, exchange coupling interaction 

across the interface between the BiFeO3 and Bi2Fe4O9 particles should also be 

considered.This is strongly influenced by the SSG and DAFF layers at the interface. While 

BiFeO3 crystallizes in rhombohedral structure with R3c space group, Bi2Fe4O9 crystallizes 

in orthorhombic structure with Pbam space group. The interface, therefore, creates a certain 

topology that induces, at least, a local spin texture even though globally the salient features 

of the SSG and DAFF are retained. Therefore, in presence of such local spin texture, both 

random and textured anisotropy fields compete with the applied field and the exchange 

coupling interaction across the interface. The domain flipping and avalanche along two 

different pathways is not identically influenced. The textured anisotropy creates a self-

generating interfacial moment, which acts upon the exchange coupling interaction in 

between BiFeO3 and Bi2Fe4O9 and sets the universal unidirectional anisotropy along the 

negative direction of the applied field. This loss of randomness and preferred orientation 

of the local anisotropy breaks the inversion symmetry of the jump structure in the hysteresis 

loop. The net interface moment from this textured anisotropy and development of 

unidirectional anisotropy of the interface moment toward negative direction of the applied 

field as a consequence lies at the heart of the path dependency of exchange bias. In fact, 

this asymmetric jump structure in the hysteresis loop at 2 K is the first clear proof of the 

presence of textured pattern of anisotropy at the interface between ferromagnetic and 

antiferromagnetic cores which appears to generate the self-generating interface moment 

along a preferred direction with respect to the direction of the applied field. Topological 

spin texture in the form of magnetic vortices carrying an electric charge (skyrmion) could 

earlier be identified in chiral lattice system [133]. The random as well as the textured 
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anisotropy is strong enough as their influence on the hysteresis loop could be seen at a 

temperature as high as 2 K. In other ferromagnetic systems with local inhomogeneity [132], 

influence of random anisotropy could be seen at even lower temperature (100–500 mK). It 

is also important to mention here that the influence of this local spin texture in inducing a 

net interface moment is observable only below the spin freezing temperature, i.e., the 

Vogel-Fulcher freezing temperature at 29.4 K for BiFeO3. The spin structure at the 

interface needs to be frozen in order to create strong local field. As the temperature is raised 

toward∼29.4 K from below, influence of the interface spin morphology as well as the net 

interface moment weaken and so the exchange bias and its path dependency. 

This spontaneous setting of UA along the negative direction of applied field (or universal 

UA) even under zero field is the origin of the path dependency for both SEB and CEB. The 

volume fraction of the partially hysteretic grains 𝑉𝑓𝑔
𝑈𝑈𝐴 with universal UA (UUA) along the 

negative direction of the applied field governs the magnitude of exchange bias as well as 

its path dependency. The volume fraction of the partially hysteretic grains𝑉𝑓𝑔
𝑈𝐴 with UA set 

by the first field of the loop tracing, on the other hand, governs the magnitudeof exchange 

bias but not the path dependency. The temperature dependences of 𝑉𝑓𝑔
𝑈𝑈𝐴(T) and 𝑉𝑓𝑔

𝑈𝐴(T) 

and their subtle interplay influence the temperature dependence of ΔHSEB and HSEB. The 

nonmonotonicity in both HSEB and ΔHSEB possibly results from an initial increase in 

𝑉𝑓𝑔
𝑈𝑈𝐴and 𝑉𝑓𝑔

𝑈𝐴 with temperature due to an increase in SSG mediated indirect exchange bias 

coupling amongthe grains. As the temperature increases, the frozenmoments of SSG at the 

shell in between FM and AFM grains are thermally activated to interact strongly withthe 

FM and AFM moments. This strong interaction, inturn, makes the spontaneous symmetry 

breaking moreeffective and gives rise to enhanced path dependencyin SEB. With further 

rise in temperature, the 𝑉𝑓𝑔
𝑈𝑈𝐴 eventually decreases as enhanced thermal randomization of 

the spin structure itself results in weakening of bias coupling interaction. This anomalous 

influence of temperature is not conspicuous in the case of CEB as in this case both the 

UUA and UA are further influenced by field cooling from higher temperature. The 

impactof field cooling masks the subtle role of temperatureon SSG induced spontaneous 

setting of UA. In fact, as shown in Fig. 6.10, apart from its path dependency, the CEB itself 

does not exhibit any nonmonotonicity across 5-300 K.The ΔHSEB and ΔHCEB offer an 
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additional tenability to the exchange bias. Using a combination of maximumfield of loop 

tracing (Hm) as well as the path followed intracing the loop - positive or negative - it is 

possible totune the magnitude of the exchange bias. This tunability, in turn, can increase 

the functionality in electrically switching the magnetic anisotropy of a ferromagnetic 

systemin a BiFeO3-ferromagnetic composite like the present one via multiferroic coupling 

between ferroelectric polarization and magnetization in BiFeO3. 

 

6.5. Summary 

In summary, we report that in a nanocomposite of (~94 vol %) BiFeO3-(~6 vol%) Bi2Fe4O9 

with finer and ferromagnetic Bi2Fe4O9 particles and coarser and antiferromagnetic BiFeO3, 

one observes a large and path-dependent spontaneous exchange bias (~30-60 mT) across 

5-300 K. The conventional exchange bias too is found to be path dependent. This path 

dependency offers an additional tunability in the effect of electrical switching of magnetic 

anisotropy in a BiFeO3-ferromagnetic composite via multiferroic coupling and is expected 

to improve the functionality of such a device enormously. The net interface moment from 

textured anisotropy and consequent path dependency of the exchange bias is quite an 

attractive proposition as it offers tunability to the exchange bias depending on the path 

followed in tracing the hysteresis loop. Since BiFeO3 is a well-known room temperature 

multiferroic, it is possible to switch the magnetic anisotropy of the ferromagnetic 

component by applying electric field. Tunable exchange bias then helps in tuning the extent 

of switching and thus increases the functionality manyfold. In summary, we show that a 

textured pattern of magnetic anisotropy forms at the interface between ferromagnetic 

Bi2Fe4O9 and antiferromagnetic BiFeO3 nanoparticles from shells of superspin glass and 

dilute antiferromagnet in a field. The local field from this texture generates net interface 

moment to set the unidirectional anisotropy along a preferred direction with respect to the 

direction of the applied field. Such a spontaneous onset of nonswitchable unidirectional 

anisotropy under field appears to be the origin of the path dependency of the exchange bias. 

The textured anisotropy at the interface also yields an asymmetric pattern of sharp jumps 

in the hysteresis loop at low temperature. Thus a direct correlation could be established 

between the asymmetric jump structure in the hysteresis loop at low temperature and the 
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path dependency of the exchange bias. Instead of a “clean” interface between 

ferromagnetic and antiferromagnetic grains, an interface with coexisting local spin texture 

and random anisotropy emerging out of superspin glass and dilute antiferromagnet in a 

field, therefore, offers a rare tunability to the exchange bias via its path dependency and, 

thereby, increases its utility for device applications many fold.  
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7. Chapter - Tunable inverted hysterisis loop 

7.1. Introduction: 
 

In magnetism the shift of hysteresis loop, so called exchange bias (EB) was first observed 

by Meiklejohn and Bean [18] in ferromagnetic (FM) Co particle encapsulated with 

antiferromagnetic (AFM) CoO. For more than a half century this phenomena has been 

studied due to its potential applications in giant magneto resistance (GMR) [134], spin 

valve [135], high density storage media [136] etc. as well as for fundamental studies. The 

conventional way to induce exchange anisotropy, named exchange bias (EB) is to cool 

down a magnetically uncompensated AFM-FM interface below Nee´l Temperature (TN) of 

AMF and Curie Temperature (TC) of FM where TN<TC.  A unidirectional shift of hysterics 

or exchange bias should be observed in exchanges coupled FM-AFM interface. In most 

cases the exchange bias is observed in the direction of cooling field, which is called positive 

EB. Due to the AFM-FM interaction, the FM spins intend to point in the direction of the 

cooling field at low temperatures below TN. In some cases due to the large unidirectional 

anisotropy of AFM, the AFM-FM interfacial interaction biases FM spins to the opposite 

direction of cooling field and causes a loop shift in opposite direction causing negative 

exchange bias.  In addition an enhancement of coercivity is also observed [21-24].  

However, for large cooling field the same sample provide positive exchange bias where 

this large cooling field is required to reverse the magnetically easy direction of the 

unidirectional anisotropy to produce positive exchange bias in pure metal or metal-fluoride 

materials. [22] Later, it was found that ferromagnetic/ferromagnetic transition-metal rare 

earth alloy thin films can exhibit both positive and negative exchange bias based on their 

composition, most importantly charge distribution at the interface. [138,139]. Then the 

biasing process entirely depends on the competition between Zeeman energy of surface 

spins at the interface and antiferromagnetic exchange interaction strength between FM and 

AFM spins.  

A common characteristic in a hysteresis loop is that the magnetization does not decrease to 

zero but remains positive while the applied field is decreased from its value at positive 

saturation to zero [140]. The abnormal hysteresis behavior of ferromagnetic (FM) materials 



 

Tyndall National Institute | Introduction: 132 

 

was first observed by Esho in 1976 in amorphous Gd-Co films which showed a negative 

remanence and inverted hysteresis loop behaviour [141]. This means that instead of 

traversing anti-clockwise the hysteresis loops progress in a clockwise direction and display 

a negative remanence and coercivity. This anomalous hysteresis behavior is called inverse 

hysteresis loop (IHL) which also was observed in many other systems. This phenomenon 

has commonly been observed in inhomogeneous systems, such as exchange-coupled 

multilayers and soft/hard magnetized materials, [142-146] even in a simple homogeneous 

system like epitaxial Fe films [147] and a single domain particle with two competing 

anisotropies. [148, 149] The origin of the IHL has been explained through several proposed 

mechanisms based on coupling effects such as magnetostatic interaction, the 

antiferromagnetic coupling, and the competition of two anisotropies. [142-144,146-149]  

In this chapter we describe direct observation of counter-clockwise or normal hysteresis 

loop and clock wise or inverted hysteresis loop formation in the Ni,Fe solid solution with 

very low coercivity and large positive exchange bias. These two opposite (counter-

clockwise/clockwise) hysteresis loop formation manifest depending upon the field range 

of hysteresis loop measurement. Like most of the positive exchange bias systems Ni50Fe50 

shows positive shift at the field direction when the loop tracing field range is small (just 

above the saturation field) and the loop is counter-clockwise. Furthermore, when the film 

is measured with a higher loop tracing field range, we measure a typical clockwise 

hysteresis loop with no exchange bias. We found that the origin of this interesting 

phenomenon of dual type of hysteresis loop (counter-clockwise/clockwise) observation by 

hysteresis loop measurement protocol with different field ranges depends on the 

microstructure of Ni50Fe50. To investigate the origin of this unique and interesting IHL 

phenomenon we have performed a detailed microstructure and composition analysis along 

with thorough magnetic measurements in SQUID magnetometry. The Ni,Fe solid solution 

behaves like admixture of antiferromagnetic (AFM) phase and Ni50Fe50 naturally behaves 

as ferromagnetic (FM) material. At low field measurement range the interface acts like 

typical FM-AFM interface and permits positive exchange bias. This AFM coupling at 

interface can be overcome with a large field and AFM spins can be aligned like FM spin. 

Thus the AFM-FM system behaves like FM at high field where all spins are aligned in the 

field direction. 
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7.2. Sample preparation 

Soft ferromagnetic alloy Ni50Fe50 thin film was prepared by an electrodeposition process. 

A seed layer consisting of titanium and copper (Ti/Cu) of thickness 20/100 nm wasfirst 

sputtered on to the silicon substrate. The electrodeposition was carried out using the same 

composition of the bath as described by Park and Allen [150]. The bath was composed of 

168 gL-1 of NiSO4, 6H20, 81 gL-1 of FeSO4, 7H2O, 135 gL-1 of NiCl2, 6H2O, 50 gL-1 of 

Saccharin and 3 gL-1 of Boric Acid. Saccharin was added to reduce the internal stress in 

the grown thin film. The film was dc electrodeposited at constant temperature of 57oC and 

at a uniform current density of 30mA/cm2, while pH of the electrolytic bath was maintained 

at 3.7 during one hour of deposition process. Pt mesh with nickel balls inside was used as 

the anode and 2×1 cm2 Ti/Cu sputtered diced Si piece was used as cathode, while no air 

agitation was applied during the deposition process. The thickness of the deposited film is 

nearly 10 μm as found from the SEM analysis and the composition of the electroplated 

alloy was measured by energy dispersion spectroscopy (EDS). The composition of the film 

was found to be Ni 53.5%, Fe 46.5%. Figure 7.1 shows the XRD pattern of the Ni50Fe50 

thin film sample where θ is the Bragg’s angle. Phase analysis shows that the structure is 

dominated by FeNi3<111> and <200> phases respectively. The grain size of the diffracting 

sample was calculated using the Scherrer formula [151] d = Kλ/βcos θ, where d is the grain 

size, β is an angular width in terms of 2θ and θ is the Bragg angle, and λ is the wavelength 

of the radiation used and K is the shape factor which is normally 0.94 for crystalline 

material. The grain size was found to be 78.43 nm. For comparison a Ni45Fe55 sample was 

also prepared at room temperature using the electrolytic bath composed of 0.7M of 

NiCl2,6H2O, 0.05M of FeCl2, 4H2O, 0.45M of Boric Acid, 0.03M of Saccharin, 4.5 gL-1 of 

1, 3, 6 - Naphatalene Trisulphonic acid, 5.5 gL-1 of Sulfosalycylic acid, 0.5 gL-1 of Triton 

X-100. The film was dc electrodeposited for an hour at room temperature and at a uniform 

current density of 5 mA/cm2, while pH of the electrolytic bath was maintained at 2.5. In 

this case, Pt mesh was used as anode while similar diced Si piece was used as the cathode; 

also air agitation of 550 rpm was conducted during the entire deposition process. The 

thickness of the deposited film was found to be 6 μm using SEM analysis and the 

composition of the alloy was measured to be Ni 47.92% and Fe 52.08% by EDS method. 
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A comparison of electrolytic bath and deposition conditions of the two alloys has been 

tabulated in Table 5.  

 

Table 6: Comparison of electroplating conditions for two different alloys 

Conditions Ni50Fe50 Ni45Fe55 

Electrolytic Bath 

Composition 

168 gL-1 of NiSO4, 6H20, 

81 gL-1 of FeSO4, 7H2O, 

135 gL-1 of NiCl2, 6H2O, 

50 gL-1 of Saccharin and 3 

gL-1 of Boric Acid 

0.7M of NiCl2,6H2O, 

0.05M of FeCl2, 4H2O, 

0.45M of Boric Acid, 

0.03M of Saccharin, 4.5 gL-

1 of 1, 3, 6 - Naphatalene 

Trisulphonic acid, 5.5 gL-1 

of Sulfosalycylic acid, 0.5 

gL-1 of Triton X-100 

Current Density 30 mA/cm2 5 mA/cm2 

pH 3.7 2.5 

Temperature 57oC Room Temperature 

Anode 
Pt mesh with nickel balls 

inside 
Pt mesh 

Method of electroplating DC DC 
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Fig. 7.1. XRD pattern of the Ni50Fe50 thin film sample 
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7.3. Structural anlysis 
 

The microstructure of the film has been investigated by HRTEM. Cross sections were 

prepared using a Dual Beam Focused Ion Beam (FIB) FEI Helios NanoLab 600i. A 300  

 

 

 

Fig.7.2. Atomic resolution HRTEM image of Ni50Fe50 thin film. Inset shows thin lamella prepared by 

Focused Ion Beam (FIB). 

 

 

 

Fig.7.3. EDX elemental analysis of NiFe film at Ni rich region. 

nm Pt layer was deposited within the DualBeam FIB by electron beam induced deposition 

and 2 µm thick Pt layer with ion beam induced deposition. These two layers have been 
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grown for protection before the milling process. The lamellas were prepared and thinned 

down for the TEM analysis. Wedge like lamellas were obtained with approximately less 

than 200 nm thicknesses at the base going to 0 nm at the top edge. The thinning at 30 kV 

was finished by polishing at 5 kV and 2 kV to reduce the ion-beam  

 

 

Fig.7.4. Selected area electron diffraction (SADE) image shows exsistance of Ni3Fe populated region 

in Ni50Fe50 thin film. 

induced damage to a less than 2 nm thin layer on both sides. Both samples show a broad 

grain size distribution which is in the range from 0 to 30 nm for the Ni50Fe50 and 0 to 10 

nm for the Ni45Fe55. The existence of antiferromagnetic Ni50Fe50 solid solution structure 

with in the matrix of ferromagnetic NiFe has been observed in few places which have been 

confirmed by TEM-EDS, EELS and SAED analysis (Fig. 7.2, 7.4 &7.3). 

 

7.4. Magnetic Measurement 
 

It was found that ferromagnetic/ferromagnetic transition-metal rare earth alloy thin films 

can exhibit both positive and negative exchange bias based on their composition, most 

importantly charge distribution at the interface. Then the biasing process entirely depends 

on the competition between Zeeman energy of surface spins at the interface and 

antiferromagnetically exchange interaction strength between FM and AFM spins.  In this 

present work we have observed counter-clockwise and clock wise hysteresis loop 

formation in the Ni50Fe50 with very low coercivity and large positive exchange bias. No 
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exchange bias or inverse hysteresis loop was found in Ni45Fe55. These two opposite 

(counter-clockwise/clockwise) hysteresis loop formation in Ni50Fe50 thin film depends 

upon the field range of hysteresis loop measurement. Like most of the positive exchange 

bias system Ni50Fe50also shows positive exchange bias shift at field direction when the loop 

tracing field range is small (just above the saturation field) and the loop is also counter-

clockwise. When the film is measured with a higher loop tracing field range, it was 

observed that the hysteresis loop follows reverse path with no exchange bias. We found 

that the origin of this interesting phenomenon of dual type of hysteresis loop (counter-

clockwise/clockwise) observation with different field range hysteresis loop measurement 

protocol depends on the microstructure of Ni50Fe50. To investigate the origin of this unique 

and interesting phenomenon we have performed a detail microstructure and composition 

analysis. The Ni,Fe solution behaves like admixture of antiferromagnetic (AFM) phase and 

Ni50Fe50 naturally acts as ferromagnetic (FM). At low field range measurement the 

interface behaves like typical FM-AFM interface and permits positive exchange bias. This 

AFM coupling at interface can be overcome with a large field and AFM spins can be 

aligned like FM spin. Thus the AFM-FM system behaves like FM at high field where all 

spins are aligned at field direction.  

Typical hysteresis loops of NiFe thin film after field cooled (FC) from 350K to room 

temperature (300K) and low temperature 5K are shown in Fig. 7.5. A bias field of 1000 Oe 

was applied and it shows positive exchange bias in NiFe system. ±200 Oe field range was 

used to measured full hysteresis. When the same protocol was followed but with a different 

field range of ±50,000 Oe a completely different result was observed. Normally a hysteresis 

loop measurement shows an anti-clock wise MH loop, let call it as counter-clockwise 

hysteresis. When we measured the same sample after FC with higher field range the MH 

loop follows a clock wise path (Fig. 7.6-a). Both coercive field (HC) and remanence 

magnetization (MR) are obtained reverse directions. Throughout the discussion we will call 

it negative hysteresis. No step hysteresis has been found in ±50,000 Oe field range (Fig. 

7.6-b). Thus it is clear that the negative coersivity does not come from twisted hysteresis 

[152]. The positive hysteresis loops measured after +5T and -5T FC at 5K lay exactly on 

the right and left sides of inverse hysteresis loop (5K) respectively. A range of shaped 

hysteresis loops with various fields range were measured right after field cooled (FC) with 
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1000 Oe field at temperature 5K. Hysteresis loops measured with high field range shows 

negative hysteresis (Fig.7.6-a) whereas low field range shows counter-clockwise s 

(Fig.7.6-b). The field range dependence of Hc = (Hc1-Hc2)/2 and Hex = (Hc1+Hc2) /2 of the 

film are shown in Fig.7.6-c and Fig.7.6-d respectively. The coercivity of the film becomes 

zero at 688 Oe (Inset figure of Fig.7.6). Thus 688 Oe field is the critical field to switch the 

hysteresis from counter-clockwise to clockwise. With high field, it is likely that the FM-

AFM coupled spins at the interface are broken by field higher than 688 Oe. A field, more 

than this critical field is able to switch the anisotropy direction of exchange bias coupling 

(Figure 7.7a). The right half of the inverse hysteresis loop is the part of exchange bias loop 

where positive starting field works as a bias field and the other half results from the reverse 

 

 

Fig.7.5.  Exchange bias at 300 K and 5 K 
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Fig.7.6. Clockwise (a) and counter-clockwise (b) hysteresis loop formation. The switching from 

counter-clockwise and clockwise ative hysteresis loop is at 688 Oe. (c) The amount of exchange bias 

decreases with increase of field range and reaches zero at 50 kOe 

 

negative starting field (Fig. 7.7c). No step in hysteresis loop measurements was found 

(Fig.7.7 b). The ascending and descending branches of inverse hysteresis loop measured at 

5K coincide with exchange bias loop shift (counter-clockwisee loops) in positive and 

negative direction measured at 5K (Fig.7.7 c). The dM/dH curve shows half magnitude of 

negative hysteresis compared to counter-clockwise hysteresis.   
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Fig.7.7. (a) Inverse hysteresis loop observation at 2K temperature. (b) No step has not been observed 

throughout 50 kOe loop range. (c) The hysteresis loop observed at 2 K with 50 kOe coincides with 

low field (200 Oe) measurements. (d) δM/δH has been plotted for both positive and negative 

hysteresis loops 

7.5. Result and Discussion 

The hysteresis loop shift after the sample was cooled down under a bias field of positive 

(negative) 1000 Oe was in positive (negative) direction. Thus the type of exchange bias is 

positive. The amount of exchange bias is 5 Oe at room temperature and it increases at 2k 

up to 23 Oe. The coercivity of the sample is ~2 Oe. The saturation magnetization field was 

~50 Oe. 100 Oe was the lowest starting field used for hysteresis loop tracing to ensure the 

saturation of the sample. Later the starting field was gradually increased and it was found 

that the amount of coercivity was decreased monotonously and path of hysteresis loop 

became reversed after ~700 Oe field. The amount of exchange bias was also gradually 

decreased and became zero at 50 kOe starting field measurement. In order to qualitative 

interpret the counter-clockwise to clockwise hysteresis loop in the NiFe thin film we did 

detail HRTEM analysis. Exchange bias phenomenon depends on the interface coupling 
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between two different phases. The crystallographic relation between FM and AF phases 

are identified in the film by structures mapped onto HRTEM image pattern. From precise 

subnanoscale characterization and correlating these crystallographic structures with known 

magnetic structures by neutron diffraction of similar material [152] as shown in Fig. 7.4 its 

clear that in the matrix of ferromagnetic Ni50Fe50 there is tiny particles of Ni,Fe solid 

solution which antiferromagnetic (AFM) in nature. It was observed that the amount of 

exchange shift (HE) is much greater than the coercivity (HC) of the sample. From the detail 

microstructural analysis with nanoscale resolution we ascertain that the Ni,Fe solid solution 

is an admixture of AFM and FM phases and the interface to the Ni50Fe50 is effectively 

provides a local exchange coupling which permits a positive exchange bias. This exchange 

coupling at the interface can be developed and broken with large applied field. When a 

positive high field (+50 kOe) is applied positive exchange coupling is generated at the 

interface of the antiferromagnetic Ni3Fe and ferromagnetic Ni50Fe50. Hence first half of 

hysteresis loop (descending branch) is generated in the positive quadrant and a high 

negative field (-50 kOe) is applied at the end. This negative high field (-50 kOe) breaks the 

exchange coupling and generates negative exchange bias coupling at the interface. While 

measuring the second half of the hysteresis loop (ascending brunch) the curve follows 

exchange shift loop path in negative field direction. Hence an inverse hysteresis loop is 

generated. Negative coercivity has been earlier found in many multilayer thin film systems 

due to helical or step like hysteresis loop formation. The sum of the magnitudes of 

exchange shift in both directions (|+HEB|+|-HEB|) measured at 2K is equal to the coercivity 

(HC) of the inverse hysteresis loop. The loop tracing range was gradually increased from ± 

200 Oe to ± 50 kOe. The amount of exchange bias decreases and coercivity increases. Due 

to the increase of gradual loop tracing field the exchange coupling generated at the interface 

by bias field is broken by opposite high field in reverse direction. Hence the amount of 

exchange bias and coercivity are decreased. After certain field the loop switches to other 

direction and coercivity starts increasing. The Lowest exchange bias (0 Oe) and highest 

coercivity is obtained with the loop tracing range of ±50 kOe. 

 



 

Tyndall National Institute | Summary 142 

 

7.6. Summary 

 

In summary, we report that counter-clockwise and clockwise hysteresis loop formation 

with very low coercivity and large positive exchange bias is observed in the Ni,Fe solid 

solution. These two opposite (counter-clockwise to clockwise) hysteresis loop formation 

depends upon the field range of hysteresis loop measurement. Ni50Fe50 thin film shows 

positive exchange bias when the loop tracing field range is small (just above the saturation 

field) and the loop is positive. If the film is measured with a higher range of loop tracing 

field, a typical negative hysteresis loop with no exchange bias is observed. The origin of 

this interesting phenomenon of dual type of hysteresis loop (positive and negative) 

observation due to different range of field hysteresis loop measurement protocol depends 

on the microstructure of Ni50Fe50. Admixture of antiferromagnetic NiFe and ferromagnetic 

Ni50Fe50 acts like typical FM-AFM interface and permits positive exchange bias with very 

low coersivity. This AFM coupling at interface can be overcome with the application of a 

large field and AFM spins can be aligned like FM spin which leads to the formation of 

negative hysteresis loop. Thus the AFM-FM system behaves like FM at high field where 

all spins are aligned in the field direction. 
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8. Chapter - Conclusions 
 

In this work we have investigated different nanostructured magnetic materials which have 

potential device applications. The main focus of the research was to investigate possibilities 

of controlling and enhancing magnetic anisotropy by different nanostructures. We have 

investigated the properties of samples through magnetic measurements and micromagnetic 

simulation, playing particular attention to the shape and exchange anisotropy where a 

particular type of nanostructure has huge influence on the hysteresis loop and magnetic 

microstructure. A detail literature review was carried out to delineate the recent 

development in the field. Various nanostructures such as lines, dots, anti-dots, etc. were 

reported to control the anisotropy.  

A new model to achieve controllable magnetic anisotropy through the formation of 

magnetic dipoles in continuous ferromagnetic thin films due to a unique nanomodulation 

has been discussed in the thesis. Experimental evidence of well-ordered dipoles with 

metastable state has been detected by means of variation of magnetic anisotropy, step 

hysteresis, and MFM imaging. The anisotropy model, based on collective dipolar 

interaction, is used to demonstrate the ability to control anisotropy in continuous 

ferromagnetic thin films by minimizing magnetostatic energy through nanomodulation. 

The generalized model helps us to find out possible anisotropy based on material property 

and geometrical arrangement of nanopattern. Additionally, the formation of a metastable 

single domain resists vortex formation in nanopatterned ferromagnetic thin films, which 

are essential for realizing devices, such as volatile memory, magnetically frustrated 

patterned media, highly integrated nanoscale magnetic devices, etc.  

If the patterned frequency is comparable to the frequency of magnetic wave then one can 

assume the effect of pattern on the propagation of magnetic wave. The frequency of any 

wave is inversely proportional to the wavelength. 

 

 

The frequency of a wave in free space can be written as 

 

 

But for a magnetic material this is written as 
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Fig.8.1: EM wave inside pattered media 

 

 

If the pattern has a wave-like structure at certain dimensions one can calculate a resonance 

frequency for a particular material. This can be defined as 

 

 

 

Where fr is the resonance frequency, εr and μr are respective permittivity and permeability 

at the resonance frequency. The frequency of the wave in the magnetic material can be 

expressed in another way as  

 

 

 

Here v (t,M) is the velocity of the wave inside the material. The velocity of EM wave 

depends upon the material and thickness in nano scale. We would like to investigate the 

effect of the structure and anisotropy of the patterned magnetic media on the propagation 

of the EM wave inside the material. 

Exchange anisotropy or exchange bias is a complex phenomenon which has not been well 

understood yet after 60 years of its invention. In the present work the exchange bias at the 

interface of composite BiFeO3-Bi2Fe4O9 nanostructures has been investigated. The 

exchange bias effect is quite remarkable here for several reasons. Due to exchange coupling 

ordinary ferromagnetic meterials have not one but two equally favoured stable magnetic 




f






rr

rf

rr

rr

r

)M,t(









 2



 

Tyndall National Institute | Chapter - Conclusions 145 

 

directions. These directions are collinear and lie along the easy magtization directions so-

called "easy axis". Due to asymmetric exchange coupling two stable magnetization 

directions have slightly different energy. Hence different magnitude of an external field is 

required to rotate the magnetization by 180° from one easy direction to the other. Hence 

the magnetization loop is therefore asymmetric about zero field. However, in second 

approach in NiFe the ferromagnetic hysteresis loop is symmetric, indicating two equivalent 

easy directions. On the other hand, due to exchange coupling between NiFe solid solution 

and Ni50Fe50 the coercivity is less compared to conventional AFM-FM system. The 

exchange bias in such case is switchable via field. 

Historically, the main problem in establishing a realistic model of exchange bias lies in the 

lack of information on the spin structure near the interface and the difficulty of 

experimentally determining the magnetic structure at the interface. Hence the proper 

explanation of exchange bias remains unsolved for nearly 60 years. While even in our 

observation new aspects of this phenomenon FM-DAFF-SSG-AMF based exchange bias 

and asymmetric exchange bias in BFO nano-composite or positive-negative hysteresis loop 

formation are still not well understood. Over the last few years x-ray dichroism 

spectroscopy and microscopy measurements have made key contributions to the solution 

of this long-standing problem where direct information on the magnetic structure at the 

interface are invested. Further the interfacial spin structure and the FM-AFM link at 

interface can be investigated in our systems and a realistic model of exchange bias can be 

proposed. The microstructure of electrodeposited Ni50Fe50 thin film needs to be 

investigated to understand the formation of inverted hysteresis loop in such systems. It is 

envisaged that EELS analysis at atomic resolution will help to understand atomic level 

interaction. Furthermore, the optimization of magnetic parameters such as pattern 

geometry, film thickness, interfacial exchange coupling is required to obtain controllable 

exchange bias in a thin film. In those films the magnetization of the ferromagnetic layer is 

locally pinned differently at the interface by the antiferromagnetic layer implying that the 

complete film will adopt the resultant lateral varying magnetization. Thus an optimized 

nanostructure and material choice is essential to manipulate overall magnetic properties of 

the films which can be further investigated (Fig. 8.2). The patterned thin film can show a 

unique range of magnetic properties, particularly in the GHz frequency range used in RF 
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communications. If the patterned frequency is comparable to the frequency of magnetic 

wave then one can assume the effect of pattern on the propagation of magnetic wave. 

 

Fig.8.2. Single and multilayer nanomodulated film 

 

The impact of this work will be reflected on size reduction of magnetic components with 

better performance for miniaturized ICT devices and development of cost effective process. 

We have chosen modulated PR electrodeposition/ dc-rf-sputtering combined with 

nanoimprint lithography, a novel approach, for sample preparation. We believe that the 

work will result in novel nanomodulaed/multilater thin film of composite material, which 

would delineate novel physical insights in the new magnetic ‘multi- nano- layer-structures’ 

with a technological impact in ICT industry. The principal significance of this work will 

stem from the cost effective and compatible manufacturing process for the next generation 

high frequency micromagnetic devices for various applications e.g. telecommunication 

industry, storage media, magnetic component based electronics, etc. 
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Appendix 

A. Micromagnetic Input Format File (MIF) 
 

This MIF file was used to simulate the nanopatterned structure to understand the 

anisotropy variation.  

 

# MIF 2.1 

# Description: This MIF file was updated by Tuhin Miaty on 08/04/20011. 

#  

# This file will simulate a 3D patterned surface.  

 

 

 

set pi [expr 4*atan(1.0)] 

set mu0 [expr 4*$pi*1e-7] 

 

 

Specify Oxs_MultiAtlas:atlas { 

 

 atlas { Oxs_ImageAtlas { 

 xrange {0 8000e-9} 

 yrange {0 8000e-9} 

 zrange {0 100e-9} 

 viewplane "xy" 

 image R0.bmp 

 colormap { 

 white nonmagnetic 

 black magnetic 

 } 

 matcherror .1 

 } 

 } 

 

 atlas { Oxs_ImageAtlas { 

 xrange {0 8000e-9} 

 yrange {0 8000e-9} 

 zrange {100e-9 200e-9} 

 viewplane "xy" 

 image R0I.bmp 

 colormap { 

 white nonmagnetic 

 black magnetic 

 } 

 matcherror .1 
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 } 

 } 

 

 } 

 

 

#A mesh size of 50 nm will give 30000 cells 

Specify Oxs_RectangularMesh:mesh { 

cellsize {50e-9 50e-9 50e-9} 

atlas :atlas 

} 

 

#The anisotropy energy is the energy stored in a ferromagnetic crystal by virtue of the 

work done in rotating the magnetisation away from the direction of the 

#easy axis. The specify block takes two parameters, the crystalline anisotropy constant 

K1 (J/m^3) and the anisotropy direction axis. 

#the calculated value of K1 is 600. 

 

 

Specify Oxs_UniaxialAnisotropy { 

 K1 600 

 axis { Oxs_UniformVectorField { 

norm 1 

comment {this direction uses the standard x,y,z coordinate system} 

vector {1 0 0} 

} }    } 

 

 

#Specifies the exchange coupling constant in J/m. 

#A is the exchange constant. 

#A is also known as the exchange stiffness. 

 

Specify Oxs_UniformExchange:NiFe {A  6.47e-12} 

 

# The Zeeman energy is the interaction between an atomic or molecular magnetic 

moment and an applied magnetic field. 

# this multiplier is optional, the fields specified in the range entry are normally in A/m, 

but these values are multiplied by a multiplier 

# this effectively changes their units, the number 795.77472 converts from milliTesla to 

A/m.  

 

 

#{the 7th term give the number of steps, so one means go from the first field to the last 

field with no fields in between} 

Specify Oxs_UZeeman { 

multiplier 795.77472 
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  Hrange { 

 

      {0 0 0 400 0 0 10} 

 

 

} 

} 

 

# this is a standard specify term which is put into every mif file. It is built on the 

assumption that the demagnetisation field is constant in each cell and computers the 

average 

# demagnetisation field through the cell. 

Specify Oxs_Demag {} 

 

 

# Minimisation evolver. 

 

 

Specify Oxs_CGEvolve {} 

 

Specify Oxs_MinDriver { 

 

evolver Oxs_CGEvolve 

 

mesh :mesh 

 

comment {this value is in A/m, the oommf manual says that it is usually not possible to 

obtain a value of mxHxm below about 0.01} 

 stopping_mxHxm 1 

 

Ms  { 

 Oxs_AtlasScalarField { 

 atlas :atlas 

 default_value 0 

 values { 

 nonmagnetic 0 

 magnetic 1.2e6   

  

     } 

 }} 

 

 

 

comment {mo gives the initial configuration of the magnetisation unit spins} 

 m0 {0.017452406437283376 0.99984769515639127 0.0} 
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} 

This MIF file was used to simulate MH curve for the nanopatterned structure  

 

# MIF 2.1 

# Description: This MIF file was updated by Tuhin Miaty on 26/03/20011. 

#  

# This file will simulate a 3D patterned surface.  

 

 

 

set pi [expr 4*atan(1.0)] 

set mu0 [expr 4*$pi*1e-7] 

 

 

Specify Oxs_MultiAtlas:atlas { 

 

 atlas { Oxs_ImageAtlas { 

 xrange {0 4000e-9} 

 yrange {0 4000e-9} 

 zrange {0 400e-9} 

 viewplane "xy" 

 image Circula_SquarePattern_DistanceRatio1_Rotation00.bmp 

 colormap { 

 white magnetic 

 black magnetic 

 } 

 matcherror .1 

 } 

 } 

 

 atlas { Oxs_ImageAtlas { 

 xrange {0 4000e-9} 

 yrange {0 4000e-9} 

 zrange {400e-9 800e-9} 

 viewplane "xy" 

 image Circula_SquarePattern_DistanceRatio1_Rotation00_Inverse.bmp 

 colormap { 

 white magnetic 

 black magnetic 

 } 

 matcherror .1 

 } 

 } 

 

 } 
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#A mesh size of 50 nm will give 30000 cells 

Specify Oxs_RectangularMesh:mesh { 

cellsize {50e-9 50e-9 50e-9} 

atlas :atlas 

} 

 

#The anisotropy energy is the energy stored in a ferromagnetic crystal by virtue of the 

work done in rotating the magnetisation away from the direction of the 

#easy axis. The specify block takes two parameters, the crystalline anisotropy constant 

K1 (J/m^3) and the anisotropy direction axis. 

#the calculated value of K1 is 600. 

 

 

Specify Oxs_UniaxialAnisotropy { 

 K1 600 

 axis { Oxs_UniformVectorField { 

norm 1 

comment {this direction uses the standard x,y,z coordinate system} 

vector {1 0 0} 

} }    } 

 

 

#Specifies the exchange coupling constant in J/m. 

#A is the exchange constant. 

#A is also known as the exchange stiffness. 

 

Specify Oxs_UniformExchange:NiFe {A  6.47e-12} 

 

# The Zeeman energy is the interaction between an atomic or molecular magnetic 

moment and an applied magnetic field. 

# this multiplier is optional, the fields specified in the range entry are normally in A/m, 

but these values are multiplied by a multiplier 

# this effectively changes their units, the number 795.77472 converts from milliTesla to 

A/m.  

 

 

#{the 7th term give the number of steps, so one means go from the first field to the last 

field with no fields in between} 

Specify Oxs_UZeeman { 

multiplier 795.77472 

  Hrange { 

 

      {1000 0 0 0 0 0 100} 

      {0 0 0 -1000 0 0 100} 

      {-1000 0 0 0 0 0 100} 
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      {0 0 0 1000 0 0 100} 

 

 

 

} 

} 

 

# this is a standard specify term which is put into every mif file. It is built on the 

assumption that the demagnetisation field is constant in each cell and computers the 

average 

# demagnetisation field through the cell. 

Specify Oxs_Demag {} 

 

 

# Minimisation evolver. 

 

 

Specify Oxs_CGEvolve {} 

 

Specify Oxs_MinDriver { 

 

evolver Oxs_CGEvolve 

 

mesh :mesh 

 

comment {this value is in A/m, the oommf manual says that it is usually not possible to 

obtain a value of mxHxm below about 0.01} 

 stopping_mxHxm 1 

 

Ms  { 

 Oxs_AtlasScalarField { 

 atlas :atlas 

 default_value 0 

 values { 

 magnetic 1.2e6   

  

     } 

 }} 

 

 

 

comment {mo gives the initial configuration of the magnetisation unit spins} 

 m0 {0.017452406437283376 0.99984769515639127 0.0} 

 

} 

 



 

Tyndall National Institute | Example of sequence file used for SQUID 

magnetic measurement 

153 

 

B. Example of sequence file used for SQUID magnetic measurement 
 

MT & MH measurement  

 

Set Cal Factor: Temp: Tolerance 0.050 

Set Temperature 350.000K at 10.000K/min. 

Waitfor Temp:Stable Delay:1secs 

Run Sequence: C:\SQUID_DATA\Tuhin\Sequence\Tyndall\Ashish\Demag.seq 

Set Magnetic Field 50000.00 Oe, Oscillate, Hi Res Enabled 

Waitfor Field:Stable Delay:1secs 

Set Temperature 2.000K at 10.000K/min. 

Set Datafile: [**INVALID PATH**] 

C:\SQUID_DATA\Tuhin\Data\CGCRI\BFO_B\2013_New\BFO_B_Positive_5T_MH_2

K_20130206 

Run Sequence: 

C:\SQUID_DATA\Tuhin\Sequence\Tyndall\CGCRI\BFO\MH_5T_Positive.seq 

Set Magnetic Field 0.00 Oe, No Overshoot, Hi Res Enabled 

Waitfor Field:Stable Delay:1secs 

Set Temperature 350.000K at 10.000K/min. 

Waitfor Temp:Stable Delay:1secs 

Run Sequence: C:\SQUID_DATA\Tuhin\Sequence\Tyndall\Demag.seq 

Set Magnetic Field -50000.00 Oe, Oscillate, Hi Res Enabled 

Waitfor Field:Stable Delay:1secs 

Set Temperature 2.000K at 10.000K/min. 

Set Datafile: [**INVALID PATH**] 

C:\SQUID_DATA\Tuhin\Data\CGCRI\BFO_B\2013_New\BFO_B_Negaitive_5T_MH_

2K_20130206 

Run Sequence: 

C:\SQUID_DATA\Tuhin\Sequence\Tyndall\CGCRI\BFO\MH_5T_Positive.seq 

Set Magnetic Field 0.00 Oe, Oscillate, Hi Res Enabled 

Waitfor Field:Stable Delay:1secs 

 

 

ZFC Sequence 

Scan Temp from 2.000K to 99.00K at 1.000K/min in 1K increments (98 steps) Sweep 

    Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, 

raw:Yes, diag:Yes 

End Scan 

Scan Temp from 100.0K to 350.0K at 2.500K/min in 2.5K increments (101 steps) Sweep 

    Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, 

raw:Yes, diag:Yes 

End Scan  

 

 

AC ZFC sequence 
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Scan Temp from 5.000K to 350.0K at 2.500K/min in 2.5K increments (139 steps) Sweep 

    Measure AC: 2.0000 Oe, 99.947 Hz, 2 meas, 2 blks, 1E-005 Null, x 1, 1 s, AutoRng, 

track:No, diag:Yes, raw:Yes 

End Scan 

 

FC Sequence 

Scan Temp from 350.0K to 100.0K at 2.500K/min in -2.5K increments (101 steps) Sweep 

    Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, 

raw:Yes, diag:Yes 

End Scan 

Scan Temp from 99.00K to 2.000K at 1.000K/min in -1K increments (98 steps) Sweep 

    Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, 

raw:Yes, diag:Yes 

End Scan 

 

AC FC sequence 

Scan Temp from 350.000K to 5.0K at 2.500K/min in 2.5K increments (139 steps) Sweep 

    Measure AC: 2.0000 Oe, 99.947 Hz, 2 meas, 2 blks, 1E-005 Null, x 1, 1 s, AutoRng, 

track:No, diag:Yes, raw:Yes 

End Scan 

 

 

 

 

Positive MH curve Sequence 

 

Scan Field from 50000.00Oe to 10000.00 Oe in -20000.00 Oe increments (3 steps), No 

Overshoot, Hi Res Enabled 

    Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, 

raw:Yes, diag:Yes 

End Scan 

Scan Field from 8000.00Oe to -2000.00 Oe in -2000.00 Oe increments (6 steps), No 

Overshoot, Hi Res Enabled 

    Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, 

raw:Yes, diag:Yes 

End Scan 

Scan Field from -2500.00Oe to -5000.00 Oe in -500.00 Oe increments (6 steps), No 

Overshoot, Hi Res Enabled 

    Measure DC: 4.00 cm, 28 pts, 3 scans, AutoRng, Long, Iterative Reg., track:No, 

raw:Yes, diag:Yes 

End Scan 

Scan Field from -6000.00Oe to -8000.00 Oe in -2000.00 Oe increments (2 steps), No 

Overshoot, Hi Res Enabled 

    Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, 

raw:Yes, diag:Yes 

End Scan 
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Scan Field from -10000.00Oe to -50000.00 Oe in -20000.00 Oe increments (3 steps), No 

Overshoot, Hi Res Enabled 

    Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, 

raw:Yes, diag:Yes 

End Scan 

Scan Field from -30000.00Oe to -10000.00 Oe in 20000.00 Oe increments (2 steps), No 

Overshoot, Hi Res Enabled 

    Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, 

raw:Yes, diag:Yes 

End Scan 

Scan Field from -8000.00Oe to -4000.00 Oe in 2000.00 Oe increments (3 steps), No 

Overshoot, Hi Res Enabled 

    Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, 

raw:Yes, diag:Yes 

End Scan 

Scan Field from -3000.00Oe to 2000.00 Oe in 500.00 Oe increments (11 steps), No 

Overshoot, Hi Res Enabled 

    Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, 

raw:Yes, diag:Yes 

End Scan 

Scan Field from 3000.00Oe to 9000.00 Oe in 2000.00 Oe increments (4 steps), No 

Overshoot, Hi Res Enabled 

    Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, 

raw:Yes, diag:Yes 

End Scan 

Scan Field from 10000.00Oe to 50000.00 Oe in 20000.00 Oe increments (3 steps), No 

Overshoot, Hi Res Enabled 

    Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, 

raw:Yes, diag:Yes 

End Scan 

 

Negative MH curve sequence 

 

Scan Field from -50000.00Oe to -10000.00 Oe in 20000.00 Oe increments (3 steps), No 

Overshoot, Hi Res Enabled 

    Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, 

raw:Yes, diag:Yes 

End Scan 

Scan Field from -8000.00Oe to -2000.00 Oe in 2000.00 Oe increments (4 steps), No 

Overshoot, Hi Res Enabled 

    Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, 

raw:Yes, diag:Yes 

End Scan 

Scan Field from -1000.00Oe to 1000.00 Oe in 500.00 Oe increments (5 steps), No 

Overshoot, Hi Res Enabled 
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    Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, 

raw:Yes, diag:Yes 

End Scan 

Scan Field from 1500.00Oe to 5500.00 Oe in 500.00 Oe increments (9 steps), No 

Overshoot, Hi Res Enabled 

    Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, 

raw:Yes, diag:Yes 

End Scan 

Scan Field from 6000.00Oe to 8000.00 Oe in 2000.00 Oe increments (2 steps), No 

Overshoot, Hi Res Enabled 

    Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, 

raw:Yes, diag:Yes 

End Scan 

Scan Field from 10000.00Oe to 50000.00 Oe in 20000.00 Oe increments (3 steps), No 

Overshoot, Hi Res Enabled 

    Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, 

raw:Yes, diag:Yes 

End Scan 

Scan Field from 30000.00Oe to 10000.00 Oe in -20000.00 Oe increments (2 steps), No 

Overshoot, Hi Res Enabled 

    Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, 

raw:Yes, diag:Yes 

End Scan 

Scan Field from 8000.00Oe to 4000.00 Oe in -2000.00 Oe increments (3 steps), No 

Overshoot, Hi Res Enabled 

    Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, 

raw:Yes, diag:Yes 

End Scan 

Scan Field from 3000.00Oe to -1000.00 Oe in -500.00 Oe increments (9 steps), No 

Overshoot, Hi Res Enabled 

    Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, 

raw:Yes, diag:Yes 

End Scan 

Scan Field from -1500.00Oe to -4000.00 Oe in -500.00 Oe increments (6 steps), No 

Overshoot, Hi Res Enabled 

    Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, 

raw:Yes, diag:Yes 

End Scan 

Scan Field from -5000.00Oe to -9000.00 Oe in -2000.00 Oe increments (3 steps), No 

Overshoot, Hi Res Enabled 

    Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, 

raw:Yes, diag:Yes 

End Scan 

Scan Field from -10000.00Oe to -50000.00 Oe in -20000.00 Oe increments (3 steps), No 

Overshoot, Hi Res Enabled 
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    Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, 

raw:Yes, diag:Yes 

End Scan 

 

IRM & TRM sequence 

 

Set Cal Factor: Temp: Tolerance 0.050 

Set Temperature 300.000K at 10.000K/min. 

Waitfor Temp:Stable Delay:60secs 

Run Sequence: C:\SQUID_DATA\Tuhin\Sequence\Tyndall\FeO\Demag.seq 

Set Datafile: [**INVALID PATH**] 

C:\SQUID_DATA\Tuhin\Data\CGCRI\BFO_A\BFO_A_IRM 

Set Temperature 5.000K at 10.000K/min. 

Waitfor Temp:Stable Delay:60secs 

Set Magnetic Field 50.00 Oe, No Overshoot, Hi Res Enabled 

Waitfor Field:Stable Delay:60secs 

Set Magnetic Field 0.00 Oe, No Overshoot, Hi Res Enabled 

Waitfor Field:Stable Delay:60secs 

Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, raw:Yes, 

diag:Yes 

Set Magnetic Field 10000.00 Oe, No Overshoot, Hi Res Enabled 

Waitfor Field:Stable Delay:60secs 

Set Magnetic Field 0.00 Oe, No Overshoot, Hi Res Enabled 

Waitfor Field:Stable Delay:60secs 

Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, raw:Yes, 

diag:Yes 

Set Magnetic Field 20000.00 Oe, No Overshoot, Hi Res Enabled 

Waitfor Field:Stable Delay:60secs 

Set Magnetic Field 0.00 Oe, No Overshoot, Hi Res Enabled 

Waitfor Field:Stable Delay:60secs 

Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, raw:Yes, 

diag:Yes 

Set Magnetic Field 30000.00 Oe, No Overshoot, Hi Res Enabled 

Waitfor Field:Stable Delay:60secs 

Set Magnetic Field 0.00 Oe, No Overshoot, Hi Res Enabled 

Waitfor Field:Stable Delay:60secs 

Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, raw:Yes, 

diag:Yes 

Set Magnetic Field 40000.00 Oe, No Overshoot, Hi Res Enabled 

Waitfor Field:Stable Delay:60secs 

Set Magnetic Field 0.00 Oe, No Overshoot, Hi Res Enabled 

Waitfor Field:Stable Delay:60secs 

Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, raw:Yes, 

diag:Yes 

Set Magnetic Field 50000.00 Oe, No Overshoot, Hi Res Enabled 

Waitfor Field:Stable Delay:60secs 
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Set Magnetic Field 0.00 Oe, No Overshoot, Hi Res Enabled 

Waitfor Field:Stable Delay:60secs 

Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, raw:Yes, 

diag:Yes 

Set Temperature 300.000K at 10.000K/min. 

Waitfor Temp:Stable Delay:60secs 

Run Sequence: C:\SQUID_DATA\Tuhin\Sequence\Tyndall\FeO\Demag.seq 

Set Datafile: [**INVALID PATH**] 

C:\SQUID_DATA\Tuhin\Data\CGCRI\BFO_A\BFO_A_TRM 

Set Magnetic Field 50000.00 Oe, No Overshoot, Hi Res Enabled 

Waitfor Field:Stable Delay:60secs 

Set Temperature 5.000K at 10.000K/min. 

Waitfor Temp:Stable Delay:60secs 

Set Magnetic Field 0.00 Oe, No Overshoot, Hi Res Enabled 

Waitfor Field:Stable Delay:60secs 

Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, raw:Yes, 

diag:Yes 

Set Temperature 300.000K at 10.000K/min. 

Waitfor Temp:Stable Delay:60secs 

Run Sequence: C:\SQUID_DATA\Tuhin\Sequence\Tyndall\FeO\Demag.seq 

Set Magnetic Field 40000.00 Oe, No Overshoot, Hi Res Enabled 

Waitfor Field:Stable Delay:60secs 

Set Temperature 5.000K at 10.000K/min. 

Waitfor Temp:Stable Delay:60secs 

Set Magnetic Field 0.00 Oe, No Overshoot, Hi Res Enabled 

Waitfor Field:Stable Delay:60secs 

Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, raw:Yes, 

diag:Yes 

Set Temperature 300.000K at 10.000K/min. 

Waitfor Temp:Stable Delay:60secs 

Run Sequence: C:\SQUID_DATA\Tuhin\Sequence\Tyndall\FeO\Demag.seq 

Set Magnetic Field 30000.00 Oe, No Overshoot, Hi Res Enabled 

Waitfor Field:Stable Delay:60secs 

Set Temperature 5.000K at 10.000K/min. 

Waitfor Temp:Stable Delay:60secs 

Set Magnetic Field 0.00 Oe, No Overshoot, Hi Res Enabled 

Waitfor Field:Stable Delay:60secs 

Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, raw:Yes, 

diag:Yes 

Set Temperature 300.000K at 10.000K/min. 

Waitfor Temp:Stable Delay:60secs 

Run Sequence: C:\SQUID_DATA\Tuhin\Sequence\Tyndall\FeO\Demag.seq 

Set Magnetic Field 20000.00 Oe, No Overshoot, Hi Res Enabled 

Waitfor Field:Stable Delay:60secs 

Set Temperature 5.000K at 10.000K/min. 

Waitfor Temp:Stable Delay:60secs 
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Set Magnetic Field 0.00 Oe, No Overshoot, Hi Res Enabled 

Waitfor Field:Stable Delay:60secs 

Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, raw:No, 

diag:Yes 

Set Temperature 300.000K at 10.000K/min. 

Waitfor Temp:Stable Delay:60secs 

Run Sequence: C:\SQUID_DATA\Tuhin\Sequence\Tyndall\FeO\Demag.seq 

Set Magnetic Field 10000.00 Oe, No Overshoot, Hi Res Enabled 

Waitfor Field:Stable Delay:60secs 

Set Temperature 5.000K at 10.000K/min. 

Waitfor Temp:Stable Delay:60secs 

Set Magnetic Field 0.00 Oe, No Overshoot, Hi Res Enabled 

Waitfor Field:Stable Delay:60secs 

Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, raw:Yes, 

diag:Yes 

Set Temperature 300.000K at 10.000K/min. 

Waitfor Temp:Stable Delay:60secs 

Run Sequence: C:\SQUID_DATA\Tuhin\Sequence\Tyndall\FeO\Demag.seq 

Set Magnetic Field 50.00 Oe, No Overshoot, Hi Res Enabled 

Waitfor Field:Stable Delay:60secs 

Set Temperature 5.000K at 10.000K/min. 

Waitfor Temp:Stable Delay:60secs 

Set Magnetic Field 0.00 Oe, No Overshoot, Hi Res Enabled 

Waitfor Field:Stable Delay:60secs 

Measure DC: 4.00 cm, 28 pts, 2 scans, AutoRng, Long, Iterative Reg., track:No, raw:Yes, 

diag:Yes 

Set Temperature 2.000K at 10.000K/min. 

Waitfor Temp:Stable Delay:60secs 

Set Magnetic Field 0.00 Oe, No Overshoot, Hi Res Enabled 

Waitfor Field:Stable Delay:60secs 
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