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Abstract  

Wave measurement is of vital importance for assessing the wave power resources and for developing 

wave energy devices, especially for the wave energy production and the survivability of the wave 

energy device. Wave buoys are one of the most popular measuring technologies developed and used 

for long-term wave measurements. In order to figure out whether the wave characteristics can be 

recorded by using the wave buoys accurately, an experimental study was carried out on the performance 

of three wave buoy models, viz two WaveScan buoys and one ODAS buoy, in a wave tank using the 

European FP7 MARINET facilities. This paper presents the test results in both time and frequency 

domains and the comparison between the wave buoys and wave gauge measurements. The analysis 

results reveal that for both regular and irregular waves, the WaveScan buoys have better performances 

than the ODAS buoy in terms of accuracy and the WaveScan buoys measurements have a very good 

correlation with those from the wave gauges. 
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1. INTRODUCTION 

As the fossil energy is running out day after day, more projects are in process to exploit the power from 

the ocean taking advantage of various wave or tidal energy devices. Various wave, tidal and current 

energy converters have been developed to exploit the huge potential marine power, especially wave 

energy. According to Smith et al. (2011, 2013), 3 stages of resource assessment are needed to go when 

developing the wave energy: resource characterization, site assessment and resource and energy 

monitoring. During the process above-mentioned, the measurements of different characteristics in 

various sea states, including the wave, current, tide and wind parameters are very important and 

necessary for assessing the energy reserves and the productivity of the energy devices. Besides, 

researchers shall be able to evaluate the survivability and reliability of the energy devices more 

convincing if the extreme wave states can be measured accurately. 

So far, several technologies for wave measurements have been developed and used for observations 

and measurements of waves around the world for many years, such as the popular wave buoys (for 

instance, WaveRider, WaveScan and ocean data acquisition system (ODAS) buoy), high frequency 
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radar and even satellite imaging. However, for long-term (months or years) wave measurements, wave 

buoys are the most popular technology due to its relatively easy installation/retrieval for different water 

depths, its measurement reliability and the continuous data transmission, and they are frequently 

referred as the standard method for wave measurement in the seas. 

Conventionally, the wave buoys are moored in the single point mooring system, which allows 

enough flexibility to match the different wind, tide and wave conditions. However, the large flexibility 

may also induce a problem that whether the wave buoys are measuring the actual waves, especially for 

those very large short-crested waves, for which the wave buoys may move around and hence miss to 

record the largest waves. It is shown by Alleder et al. (1989) that during high sea states, the WaveRider 

tends to underestimate the spectral wave energy. It is also shown the wave buoys may response to the 

large waves when compare to conventional wave gauges (fixed-point measurement). Rademakers (1993) 

compared the time series of the sea surface elevation recorded by a fixed wave staff and a free floating 

buoy. It is showed the underestimation of wave energy by the buoys is induced by that the fixed wave 

gauge distorts the time series of the vertical motion of a water particle. 

In order to figure out whether the wave characteristics can be recorded accurately using these wave 

buoys, an experimental study on the performance of 3 wave buoy models in a wave tank was carried 

out using the European FP7 MARINET facilities (free access to the European test facilities). Both time 

and frequency domain analysisand the comparison between the wave buoy and wave gauge 

measurements will be presented in this paper, and the accuracy of the wave buoy measurements will be 

examined using some statistical characteristics. Besides, mooring systems located at different water 

depths are adopted during the wave tank test, so that the effect of the mooring system for the wave 

buoys could be assessed. 

2. PHYSICAL MODELAND EXPERIMENTAL METHOD 

2.1 Physical Model 

During the wave tank test,the motions of wave buoys throw a variety of wave states are to be simulated. 

As the waves are dominated by gravity, the Froude similarity criteria are used to determine the scale 

for the buoy models, see Form.1. According to the definition of Froude number, the nexus among the 

velocity scale, the time scale and the length scale could be described as Form.2.  

(Fr)𝑝𝑝 = (Fr)𝑚𝑚         (1) 

λ𝑣𝑣 = λ𝑡𝑡 = �𝜆𝜆𝑙𝑙          (2) 

where Fr is Froude number, the subscript p represents the prototype, m represents the model; 𝜆𝜆 is the 

model scale, the subscript vrepresents velocity, t represents time and l represents length. 

The prototypes for this wave buoy model test are WaveScan and ODAS buoys, the models’ dimensions 

are calculated referred to the prototypes. The test models include 1:8 and 1:16 scaled WaveScan models 
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and a 1:11.25 ODAS buoy model, see Fig. 1a and 1b. The WaveScan buoy models are in disc shape, 

55 mm and 27.5 mm thick separately, and the radii are 163 mm and 81.5 mm respectively for the 1:8 

and 1:16 models.The ODAS buoy model is in cylinder shape with a cone at the bottom and 115mm 

thick, and the radius of the cylinder is 89 mm. 

 
Figure 1 left: WaveScan buoy models; right: ODAS buoys model 

Tests were conducted in the wave tank in Ecole Central de Nantes, France.The wave tank is 50 m long, 

30 m wide and 5 m depth, with a constant surface water temperature 10-20℃. A segmented wave maker 

is located at one end of the tankcomposed of 48 paddles which are individually controlled by software, 

and could generate directional waves, including regular waves with maximum height of 1.1 m and 

irregular waves with maximum significant wave height of 0.6 m. At the other end of the wave tank, a 

parabolic rigid absorbing beach is located, at about 40 m away from the wave maker. The incident wave 

could be dissipated through the wave breaking processes during the wave tests. A 30 m wide moving 

bridge is equipped upon the wave tank to locate the instrumentations, including the wave gauges. 

Table 1 Regular wave states 
Hm(m) Tm(s) 

0.1 1.5 2.0 2.5 3.0 
0.5 1.5 2.0 2.5 3.0 

 

Table 2 Irregular wave states 
HS (m) TP (s) 

0.2 2 (01)   2.7 (02)   3.3 (03)   
0.3   2.3 (04)         
0.4     2.7 (05)   3.3 (06) 4 (07) 
0.5       2.85 (08)     
0.6         3.3 (09) 4 (10) 

0.75         3.3 (11)   
 

For the wave tank tests, the waves are determined by the wave height and period. With the length scale 

settled, the time scale could be easily calculated. Considering the capability of wave makers and the 

data readability, the prototypical wave states are chosen and scaled down as shown in Tab. 1-2. During 

the tests, there are 2 wave heights (Hm) and 4 wave periods (Tm) for the regular wave states, while for 

the irregular wave states, the Bretshneider spectrum are used with 6 different significant wave heights 

(HS) and 6 peak periods (TP) for long crest (LC for short) and short crest (SC for short) waves. The wave 



4 
 

height and period could be assembled to obtain a variety of wave states for the tests, and the irregular 

wave states are numbered as shown in Tab. 2 for convenience. 

2.2 Experimental Method 

The incident waves are generated by the segmented wave makers during the wave tank tests, while the 

wave makers are controlled by software. In order to confirm the characteristics of the incident waves, 

three groups of wave gauges were installed in the wave tank for measuring the waves in the tank, so 

that the incident waves could be calibrated before the tests during both regular and irregular states.In 

addition, the measurements of the wave gauges will be referred as the benchmark for the wave buoy 

models in these tests. 

After calibration, the buoy models will be located in the wave tank with a lack mooring system, with 2 

or 3 reflective markers placed on every buoy model. The motions of the wave buoys in waves were 

measured using the Qualysis system, a non-intrusive measurement allowed to measure the motions of 

very small models (the model of 1:16 WaveScan weighs 220g).The time series of the motions of the 

buoy models could be recorded as the motions of the markers being captured with the frequency of 60 

Hz by high resolution cameras located around the wave tank. The measurements of different buoy 

models during the same wave states will be compared mutually and with those recorded by the wave 

gauges. In addition, for the 1:16 WaveScan buoy model only, the mooring system is located at depth 5 

m and 10 m in succession to investigate the influence on the measurements of buoy models from the 

mooring system.  

3. DATA AQUISATION ANDPROCESSING  

As mentioned in section 2.2, the time series of the buoy models’ motions are recorded by the Qualysis 

system during the wave tank tests. The Qualysis system capture the optical signals of the target objects 

and transform the signals into the Cartesian Coordinates we need. For these tests, the reflective light 

markers are placed on the buoy models, see Fig. 2.  

 

Figure 2 Markers on the model 

 

3.1 Data Preprocessing 
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As the lack mooring system is adopted during the tests, the buoy models have 6 degrees of freedom to 

move, while the heave motion is the most concerned one. For every marker, the Cartesian Coordinates 

could be able to be described with a rotation and translation matrix, which shows the relative movements 

between the marker and the gravity center of the buoy model, see Form.3. 
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coordinate axis directions, and the rotation matrices X Y ZR R R R=  or Z Y XR R R R= due to different 

rotation order, where 𝑅𝑅𝑋𝑋,𝑅𝑅𝑌𝑌,𝑅𝑅𝑍𝑍are functions about the pitch, roll and yaw motion, as shown in Form. 

4(a)-(c).  
















−=

φφ
φφRx

cossin0
sincos0
001

        (4a) 

















−
=

θθ

θθ

cos0sin
010

sin0cos

yR         (4b) 















 −
=

100
0cossin
0sincos

ψψ
ψψ

zR         (4c) 

Where φis the roll motion, θis the pitch motion, ψis the yaw motion. 

With the coordinates of the markers, the movements of the gravity center of the buoy models can be 

deduced by computing the rotation matrix. Besides, the buoy models are axial symmetrical bodies so 

that the effects of the yaw could be ignored.  

3.2 Time Domain Analysis 

8 combinations of wave heights and periods are taken as the regular wave states during the wave tank 

tests.Time domain analysis are applied for the regular waves, and the cross-zero methods are used to 

calculate the wave characteristics, including the wave number, mean wave height, 1/3 wave height, 1/10 
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wave height, etc. For the typical regular waves, the mean wave height is equal to 1/3 wave height and 

1/10 wave height so we take the mean wave height Hm and period Tm as our characteristic parameters.  

The time series of motions recorded by the wave gauges and buoy models are counted separately on the 

basis of zero-crossing criteria. 

3.3 Frequency Domain Analysis 

For the irregular waves, both long crest and short crest, the generated waves are dominated by the 

spectral characteristics: significant wave height HS and the peak period HP. For the purpose of obtaining 

the spectral characteristics recorded by the wave gauge and buoy models, the Fast Fourier Transform 

(FFT) algorithm is applied on the calculations for the wave buoy models’ data during irregular waves. 

The wave energy density spectra S(f)are transformed from the time series of the movements of the buoy 

models with the aid of FFT algorithm, where f represents frequency. The spectral moments (𝑚𝑚𝑛𝑛) of the 

energy density spectral are defined as Form. 5.  

𝑚𝑚𝑛𝑛 = ∫ 𝑓𝑓𝑛𝑛 𝑆𝑆(𝑓𝑓)𝑑𝑑𝑓𝑓        (5) 

whereinteger nis the order of the moments. 

With the spectral moments, the wave characteristics can be derived using Form. 6. 

�
𝐻𝐻𝑆𝑆 = 4�𝑚𝑚0
𝑇𝑇𝑚𝑚 = 𝑚𝑚0 𝑚𝑚1⁄

  𝑇𝑇𝑃𝑃 = 1.296𝑇𝑇m
         (6) 

where 𝐻𝐻𝑆𝑆 is the significant wave height,𝑇𝑇𝑚𝑚 is the mean wave period and  𝑇𝑇𝑃𝑃 is the spectral peak 

wave period, and the linear ratio is empirical coefficient for the Bretshneider spectrum. 

4. RESULTS AND DISCUSSION 

For the wave characteristics calculated, the correlation coefficient (CC), the root mean square errors 

(RMSE) and the relative errors (RE) are introduced as statistical parameters to estimate the correlation 

and the closeness of the measurements by the wave buoy modelswith the wave gauges. In order to 

investigate the performance of different type of buoy models, the inter-comparisons are performed 

during regular and irregular wave states. The internal comparisons are also conducted between large 

and small scaled WaveScan buoys and between WaveScan buoy using different mooring systems. 

4.1 Wave Measurements by the Buoy Models 

The wave characteristics calculated by the buoy models are compared with those by the wave gauges 

and 3 statistical parameters are obtained, see Tab.3~4. The correlation coefficient is dimensionless and 

shows the closeness between two groups of data, while RMSE shares the same dimension with the data 

and indicates the errors between the data and percentage RE reveals the degree of error deviation.  

In General, for wave heights measurements, all the buoy models show very good correlation with the 

wave gauges with CCs exceed 0.95 during both regular and irregular wave states. The RMSEsduring 

irregular waves seem less than those during regular waves, take the 1:16 WaveScan buoy model as an 

example, the RMSE for mean wave height is 0.0802m during regular wave states while the RMSE for 
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significant wave height is 0.0225m during irregular wave states. On the other side, for wave periods 

measurements, the buoy models show much better performances during irregular wave states. All the 

REs for wave peak period are beneath 5% while for the regular wave states, the REs are quite large 

respectively, with a minimum of 16.72%. 

Accordingly, for wave measurements, all the buoy models show good agreements with the wave gauges, 

especially during irregular wave states. The statistical parameters also reveal that, for both regular and 

irregular waves, the 1:16 Wave scan buoy model shows best correlation with the wave gauges and has 

the smallest measurement errors. The performances of different buoy models are discussed in the inter-

comparison sections as follows. 

Table 3 Statistic parameters for regular waves 
 1:16 WaveScan 1:8 WaveScan ODAS buoy 
 Hm(m) Tm(s) Hm(m) Tm(s) Hm(m) Tm(s) 

Correlation Coefficients 0.9953 0.8847 0.9563 0.8406 0.9958 0.7534 
Root Mean Square Error 0.0830 0.0710 0.1599 0.1650 0.0738 0.0676 

Relative Error 3.84% 17.35% 7.22% 40.30% 3.41% 16.52% 

 

Table 4  Statistic parameters for irregular waves 
 1:16 WaveScan 1:8 WaveScan ODAS buoy 

 HS(m) TP(s) HS(m) TP(s) HS(m) TP(s) 
Correlation Coefficients 0.9984 0.9938 0.9963 0.9744 0.9894 0.9649 
Root Mean Square Error 0.0225 0.0609 0.0296 0.1145 0.0360 0.1256 

Relative Error 3.47% 1.87% 3.79% 3.05% 3.90% 2.27% 
 

4.2 Internal comparisons among the buoy models 

In order to show the measurements performance clearly, the wave characteristics calculated from the 

data recorded by the buoy models and wave gauge are drawn into one figure so that the inter-comparison 

can be more distinct. For the regular wave states with the height 0.1m, the buoys didn’t record the wave 

motions completely, which may be due to the markers sheltered from the cameras. For the regular waves 

with the height 0.5m, themeasurements by the 3 buoy models contrasted with those by the wave gauge 

are shown in Fig.3, where the axis R1-R4 are short for regular wave state numbers, the red column is 

the results by the 1:16 WaveScan buoy model, the green column the 1:8 WaveScan buoy, the blue 

column the ODAS buoy and the black line with square is results by the wave gauge.. For regular wave 

states, the ODAS buoy and smaller WaveScan buoy show better agreement with the wave gauge, while 

the larger one lost one group of data and the characteristics show large deviation from those recorded 

by the wave gauge. 

On the whole, the smaller WaveScan buoy and ODAS buoy show very good performance on measuring 

the wave heights, while the 2 buoy models couldn’t record the accurate wave periods both during the 

regular waves, which we can also see from Tab. 3. In addition, the bigger WaveScan buoy model doesn’t 

perform well during the tests, especially for wave periods. 
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For the irregular wave states, the measured wave characteristics by the wave buoy models are shown in 

Fig.4 and all the buoy models results are compared with those of the wave gauge. As there are many 

wave states, including some extreme cases, a lot of data have missed and we can see from the figures. 

The results indicates that the 1:16 WaveScan buoy models has completely recorded all the wave states, 

while the other 2 buoys lost some data for cases LC/SC04, etc. The smaller WaveScan buoy model 

shows distinctively accurate and complete measurements for the HS and TP, and the measurements by 

the other models are good except the missed cases. 

 
Figure 3 measurements for Hm (a) and Tm (b) during regular wave states(R1-R4) 

 

 

Figure 4 measurements for HS (a) and TP (b) during irregular wave states (LC/SC01-11) 
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It’s quite interesting that the measurements by the buoy models during irregular wave states are better 

than those during regular wave states. Besides, the buoy models tends to overestimate the mean wave 

periods during regular waves, while they tend to overestimate the significant wave heights during 

irregular waves but underestimate the peak period. 

4.3 Effect of the mooring system 

In case the buoys are flushed too far away, the slack mooring lines are attached to the bottom of each 

buoy model. Contrast tests were set in irregular wave states for WaveScan 1:16 buoy model to check if 

the mooring system would affect the movements of the buoys. The wave density spectral characteristics 

recorded by the buoy model with mooring systems located at different depth are drawn together with 

those from the wave gauges, see Fig.5. 

 
Figure 5Measurements for HS(a) and TP(b) by 1:16 WaveScan buoy model with mooring system 

located at depth 5m and 10m during irregular waves 

As the figures show, for the wave states with small wave heights, the measurements with different 

mooring systems seem quite close to each other. With the wave height getting larger, the buoy model 

with mooring system located at depth 10m tends to overestimate HS and TP, while the model in the 

other case shows very good agreement with wave gauges. For the extreme wave states such as SC10, 

the deeper mooring system shows the effect of amplifying the movements of the buoy model. Besides, 

the movements of the buoy models weren’t captured by the Qualysis system, as a result of the 

overreaction of the model during the extreme waves. 

5. CONCLUSIONS 

An experimental study is carried out on the performance of three wave buoy models, viz two WaveScan 

buoys and one ODAS buoy, in a wave tank using the European FP7 MARINET facilities.Wave tank 

tests were taken to investigate how the floating buoys act differently with each other and the fixed wave 

gauge on recording the wave surface information. Scaled models for ODAS buoy and WaveScan buoy 

were used with matching regular and irregular wave states. Zero-crossing method and FFT are used to 

analysis the data recorded by the measuring facilities. 
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Among all the wave states, both the wave buoys and wave gauges tend to underestimate the set wave 

characteristics, especially during the extreme states. Meanwhile, the buoys’ results agree with the model 

control better, ODAS buoy the best. The underestimation might be caused by the inaccuracy from the 

wave makers, or the buoys absorbing partial wave energy. 

Compared with the 1:8 WaveScan buoy model, the smaller one shows better performance on measuring 

the wave surface with less data missing and smaller errors. Besides, the deeper mooring system affects 

the measurement significantly during some extreme states. 

More physical tests and numerical simulations need to done to give a thorough analysis on the wave 

measurements using wave buoys. The effects of the dimensions of the buoys will be shown distinctive 

if more models can be investigated. 

 

Fundings 

The research was supported by the National Natural Science Foundation of China (51079072、51279088), 

the National High Technology Research and Development Program (2012AA052602) and the State Key 

Laboratory of Hydroscience and Engineering (grant no. 2013-KY-3). 

 

REFERENCE 

[1] Smith G, Bittencourt-Ferreira C, Smith H. Protocols for the equitable assessment of marine energy 
converters [M]. Institute for Energy Systems, School of Engineering, University of Edinburgh, 2011. 

[2] Smith H, Haverson D, Smith G H. A wave energy resource assessment case study: Review, analysis and 
lessons learnt [J]. Renewable Energy, 2013, 60: 510-521. 

[3] Reguero B G, Menéndez M, Méndez F J, et al. A global ocean wave (GOW) calibrated reanalysis from 1948 
onwards [J]. Coastal Engineering, 2012, 65: 38-55. 

[4] Pandian P K, Emmanuel O, Ruscoe J P, et al. An overview of recent technologies on wave and current 
measurement in coastal and marine applications [J]. Journal of Oceanography and Marine Science, 2010, 
1(1): 001-010. 

[5] Rademakers P J. Waverider-wavestaff comparison [J]. Ocean engineering, 1993, 20(2): 187-193. 
[6] Allender J, Audunson T, Barstow S F, et al. The WADIC project: A comprehensive field evaluation of 

directional wave instrumentation [J]. Ocean engineering, 1989, 16(5): 505-536. 

 

 

 
 

) 


	Experimental Study on the wave measurements of wave buoys
	Abstract
	Fundings

