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ABSTRACT 
 

Understanding how dynamic ecological communities respond to anthropogenic drivers 

of change such as habitat loss and fragmentation, climate change and the introduction of 

alien species requires that there is a theoretical framework able to predict community 

dynamics. To do this requires that we understand how component individual species 

populations respond to environmental change and how these species populations 

interact with one another. At present there is a lack of empirical data that can be used to 

inform and test predictive models, which means that much of our knowledge regarding 

the response of ecological communities to perturbations is obtained from theoretical 

analyses and simulations. 

 

This thesis is composed of two strands of research: an empirical experiment conducted 

to inform the scaling of intraspecific and interspecific interaction strengths in a three 

species food chain and a series of theoretical analyses on the changes to equilibrium 

biomass abundances following press perturbations. Both strands of research are 

conducted within the Lotka-Volterra model framework. The experiment presented in 

Chapter 2 is a consequence of the difficulties faced when parameterising the 

intraspecific interaction strengths in a Lotka-Volterra model. A modification of the 

dynamic index is used alongside the original dynamic index to estimate intraspecific 

interactions and interspecific interaction strengths in a three species food chain 

consisting of, the dwarf broad bean, Vicia faba  (Linnaeus) as a basal species, the pea 

aphid, Acyrthosiphon pisum (Harris) as a herbivore species, and green lacewing larvae, 

Chrysoperla carnea as a carnivore species. The sign (positive or negative) of 

intraspecific interaction strength estimates for basal species varied with food chain 

structure. The estimated ratios of intra- to interspecific interaction strengths for basal 

and consumer species took values between -0.01 and -0.001. It was not possible to draw 

conclusions about the magnitude of the ratio of intraspecific to interspecific interaction 

strength estimates for consumer/predator species since the variation in the data was too 

large. 

 

Chapters 3-5 are theoretical analyses focused on the effect of press perturbations to focal 

species on the equilibrium biomass densities of all species in the community; these 

perturbations allow for the quantification of a species total net effect. In Chapter 3 it is 
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found that there is a strong and consistent positive relationship between a species body size 

and its total net effect for a set of 97 synthetic food webs and also for the Ythan Estuary and 

Tuesday Lake food webs (empirically described food webs). A negative relationship 

between the linkage density of a species and its total net effect was present for 38 of the 97 

synthetic food webs analysed and also for the Ythan Estuary food web, indicating that a 

species total net effect may depend on the structure of the community in which it is 

embedded.  

Chapter 4 represents an analysis of food chains where interaction strengths have been 

defined allometrically using predator-prey body size ratios. The chapter shows how 

ecological constraints (due to allometric scaling) on the magnitude of entries in the 

community matrix cause the patterns observed in the inverse community matrix and thus 

explain the relationship between a species body mass and its total net effect in a 

community. Finally, in Chapter 5, the relationship between a species linkage density and its 

total net effect is analysed using a range of food webs of size 12 or 16 with two alternative 

structures and varying complexity. The analyses show that, on a web level, any potential 

effect of linkage density is masked by the overwhelming positive relationship between body 

size and total net effect. Examining the relationship between a species linkage density and 

its total net effect within trophic levels found that a negative relationship occurred 

frequently within the basal and herbivore trophic levels but was rare within the carnivore 

trophic level. The mechanism by which highly connected species could potentially have 

weak total net effects was not clear, but it was possible to conclude that a negative 

relationship is not a consequence of parameterising the community matrix using predator-

prey body size ratios and allometric constraints and is a consequence of the pattern of 

interaction strengths in the surrounding web. 
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Introduction 

The benefits that ecosystems provide to humanity are collectively referred to as 

ecosystem services and include the vital processes of provisioning (the production of 

renewable resources), supporting (processes that underpin all other services, for 

example nutrient recycling) and regulating (processes that help maintain the status quo, 

for example, pest-control) (Millenium Ecosystem Assessment 2005). At present, human 

activities are having an increasingly negative impact on the environment resulting in 

climate change, habitat transformation, changes to global biogeochemistry and rates of 

biodiversity loss (Vitousek et al. 1997, Barnosky et al. 2011, Estes et al. 2011). The 

impact of biodiversity loss on ecosystem services is still a topic of intense study; while 

increased knowledge and advances in technology may increase the benefits derived 

from some resources, it has been shown that the loss of biodiversity reduces the 

efficiency of ecosystem services resulting in lower rates of provisioning and an 

accelerated rate of environmental change (Hooper et al. 2005a, Schröter et al. 2005, 

Cardinale et al. 2012). In this context of human induced environmental change, 

understanding and predicting the behaviour of ecological communities is of great 

importance. 

Mathematical models in food web ecology 

An ecological community is a group of species that coexist in the same location at the 

same time; a food web is an example of an ecological community where the species are 

linked via trophic interactions. Mathematical models are a useful tool for understanding 

real world systems and predicting their behaviour, however, the complexity inherent in 

ecological communities makes the task of building useful models extremely difficult. 

Modelers face two main difficulties; first, ecological communities are so complex that 

at present we lack accurate community descriptions. For example, communities often 

consist of thousands of species and most published food webs contain at most hundreds 

of species (Pimm et al. 1991), which means that either many species are ignored or the 

food webs are aggregated by pooling certain species together into trophic species 

(Martinez 1991, 1993b, Solow and Beet 1998). The second difficulty faced by modelers 

is that even these inaccurate, simplified descriptions of food webs are extremely 

complex mathematically; creating a locally stable dynamic food web model in which 

hundreds of species coexist still remains a challenge today. In short, mathematical 

models are inaccurate representations of empirical descriptions of food webs which, in 

turn, are inaccurate representations of food webs found in nature. Despite these 
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difficulties and despite the current lack of accurate predictive models, utilising the 

conceptual framework of mathematical models has greatly advanced our understanding 

of ecological communities.  

Complexity and Stability 

The most well-known example of using mathematical models to explore the properties 

of an ecological community is May’s seminal result (May 1972), where he showed that 

for communities in which interaction strengths between species are randomly assigned, 

communities with many species are less stable than communities with few species. 

May’s result contradicted the previously held theory that complexity in ecological 

communities confers stability (MacArthur 1955, Elton 1958). The models that May 

used in his analysis were not useful in the sense that they explained or predicted the 

behaviour of ecological communities, but they inspired researchers to question how 

complex ecological communities can be stable. What are the mechanisms by which 

complexity in ecological communities can be reconciled with stability? Current theories 

propose that food web structure and the prevalence of weak interaction strengths 

between species may affect the stability of a system (McCann et al. 1998, McCann 

2000, Emmerson and Yearsley 2004, Neutel et al. 2007, Allesina and Pascual 2008, 

Allesina and Tang 2012). Studies have also shown that the application of predator-prey 

body mass ratios and allometric scaling to define interaction strengths between species 

promotes stability in food web models (Yodzis 1981, Jonsson and Ebenman 1998, 

Emmerson and Raffaelli 2004, Brose et al. 2006b, Otto et al. 2007). 

 

Food web metrics 

Definitions play a key role in Mathematics and the study of food webs has been 

enhanced by the use of clear, precise definitions of quantities and concepts associated 

with food webs. Table 1.1 gives a summary of some of the common definitions used in 

food web ecology and which will be used throughout this thesis. 
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Table 1.1 Summary of definitions used in food web ecology 

Concept 
Definition 

 Measured at the species level 

Body size (m) The average biomass of a species  

Trophic position The number of species below a given species in a food chain +1 

Trophic height The mean trophic position  

Numerical population density (N) The number of individuals of a given species in a defined area 

Population biomass density (B) The biomass of a given species in a defined area 

Total number of links (l) The number of trophic links of an individual species 

Linkage density (LD) 
The number of trophic links of an individual species/ the number 

of  species in the food web (l/S) 

Generality (g) The number of prey items a species has 

Vulnerability (v) The number of predators that a species has 

Interaction strength The effect of one species on another species
1
 

Measured at the web level   

Web size (S) The number of distinct species in a food web
2
 

Total number of links (L) The number of trophic links in a food web 

Web connectance (C)  L/S
2
 

Linkage density/Complexity The average number of links per species (L/S) 

Proportion of basal species (B) B/S 

Proportion of intermediate species (I) I/S 

Proportion of top species (T) T/S 

Omnivory The proportion of species that feed on more than one trophic level 

Generality (G) The mean number of prey items a species has 

Vulnerability (V) The mean number of predators that a species has 

Weighted Generality (G’) 
The mean  number of prey items a species has where each species 

is weighted by its proportional biomass consumption 

Weighted Vulnerability (V’) 

The mean number of predators that a species has where each 

species is weighted by its proportional biomass contribution to 

available resources. 

Maximum path length The length of the longest food chain present in a food web 

Average path length The mean length of all food chains in a food web 

Average shortest path length (D) The mean of all shortest paths between all species 

Mean clustering coefficient (Cl) 

The number of links between species that have a direct link  

to a focal species divided by the number of links that could  

possibly exist between them. This ratio is averaged over  

all species in the web to give the mean clustering coefficient 

 

 
The mean of all shortest paths between all species 

 
The number of links between species that have a direct link  

to a focal species divided by the number of links that could  

possibly exist between them. This ratio is averaged over  

all species in the web to give the mean clustering coefficient 

 

 
 

  1
 This is a general definition of interaction strength; interaction strengths have been defined in numerous 

ways (Berlow et al. 2004). In this thesis interaction strengths are defined precisely in terms of a Lotka-

Volterra system as the coefficients of the community matrix see p.11 
2
 Species can be defined as individual species or aggregated into functional species with implications for 

food web structure. 

 

 

 



 

5 
 

Food web structure and static food web models 

The functioning and stability of ecological communities is dependent on their structure 

(Borrvall et al. 2000, McCann 2000, May 2001, Sole and Montoya 2001, Dunne et al. 

2002b, Hooper et al. 2005b). Static food web models consider only the structure of a food 

web and do not consider the way that species population densities fluctuate over time (the 

dynamics of a food web). Models that recreate food web structures can provide insights into 

the mechanisms behind observed food web patterns as well as creating synthetic food webs 

on which to test theories. Early analysis of food web structure indicated that some food web 

properties were scale invariant. In particular, it was observed that linkage density (L/S) was 

constant with respect to species richness which would imply that web connectance (L/S2) 

decreases with species richness (Cohen and Briand 1984, Cohen et al. 1986). This 

observation was used in the cascade model (Cohen and Newman 1985) to produce food 

web structures using two parameters: the number of species S and the linkage density L/S. 

The linkage density parameter L/S was held constant to reflect the scale invariance of 

linkage density but the value of S could vary to produce webs of different size. The model 

assigned links between species randomly using just two assumptions: (1) species are 

assigned a random number from the uniform interval [0, 1] and organised hierarchically 

according to their number; (2) each species can only feed on species that are lower than 

themselves in the hierarchy. Despite its simplicity the cascade model described the observed 

patterns in empirical food webs well in comparison to a model where the links are assigned 

completely at random. One notable limitation was that although, in general, species do feed 

on species below them in a food chain, loops (A eats B, B eats C, C eats A) including 

cannibalism do occur in empirical food webs; the cascade model does not account for this.  

 
Improvement in the quality of empirical data cast doubt on the scale invariance of certain 

food web properties (Martinez 1993a, 1994, Dunne et al. 2002a, Schmid‐Araya et al. 2002, 

Montoya and Solé 2003, Dunne et al. 2004, Riede et al. 2010) and later models sought to 

create the patterns observed in the improved data (see Table 1.2 for a summary of some of 

the recent patterns identified). The niche model (Williams and Martinez 2000) used two 

parameters, species richness S and connectance L/S2. It is important to note that both S and 

L/S2 were varied to create webs of different sizes and complexity; there was no assumption 

made about the scaling of linkage density or connectance with species richness.  
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Table 1.2 Patterns found in current empirical food web data 

Pattern
1
 Studies 

Linkage Density/Complexity increases with species 

richness 

(Hall and Raffaelli 1991, Martinez 1994, 

Schmid‐Araya et al. 2002, Montoya and 

Solé 2003, Riede et al. 2010) 

  
Connectance decreases with species richness

2
  Hall and Raffaelli, 1991, Martinez, 1994, 

Schmid‐Araya et al., 2002, Montoya and 

Solé, 2003, Riede et al., 2010) 

  
There is variation in linkage density/complexity across 

ecosystem types
3
 

(Chase 2000, Link 2002, Riede et al. 2010) 

The proportion of basal species decreases with species 

richness 

(Schoener 1989, Martinez 1993a, 1994, 

Riede et al. 2010) 

The proportion of intermediate species increases with 

species richness 

(Martinez 1993a, 1994, Riede et al. 2010) 

The proportion of top species decreases with species 

richness 

(Martinez 1993a, 1994, Riede et al. 2010) 

The proportion of omnivorous species increases with 

species richness 

(Riede et al. 2010) 

The average shortest path length decreases with species 

richness 

(Williams et al. 2002, Riede et al. 2010)  

The mean clustering coefficient increases with species 

richness.
4
  

(Riede et al. 2010) 

  
Food webs are often organised into compartments of 

species that interact frequently among themselves 

(Krause et al. 2003, Allesina and Pascual 

2009, Rezende et al. 2009, Stouffer and 

Bascompte 2011) 

  
Maximum food chain length is usually between four and 

five but can be longer e.g. a maximum food chain length 

of 9 was recorded for the Yythan Estuary food web 

(Pimm 1982, Hall and Raffaelli 1991) 

  
Species numerical abundance (N) scales negatively with 

body mass (m). The reported exponent is often near -3/4 

or -1 

(Peters 1983, Cohen et al. 2003, Brown et 

al. 2004, Jonsson et al. 2005, White et al. 

2007, Blanchard et al. 2009, Reuman et al. 

2009) 

  
Species trophic height (Th) scales positively with body 

mass (m) 

(Cohen et al. 2003, Jonsson et al. 2005, 

Riede et al. 2011) 

Predator-prey body size ratios decrease with trophic 

height 

(Riede et al. 2011) 

1
It is important to note that many of these patterns are sensitive to the methods used to gather the data. 

(Martinez 1991, 1999) 
2(

Riede et al. 2010) noted that the significance of this result was marginal and that further study is 

needed to confirm or refute this finding  

3(
Riede et al. 2010) found

 
significant variation between river and terrestrial systems only. See (Dunne 

et al. 2004) for an alternative finding 
4
This contradicts earlier findings by (Dunne et al. 2002a) and (Camacho et al. 2002). 
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Interaction strengths and dynamic models 

Static food web models account for the number of species present in a community and 

who eats whom. If we wish to examine stability, the effects of environmental 

perturbations, species extinctions and species invasions then we must also consider the 

way that species interact. Dynamic models define interaction strengths between species 

to capture the way that species population densities fluctuate over time. The general 

form of a consumer-resource system can be written as: 

 

𝑑𝑅

𝑑𝑡
= 𝑓1(𝑅) + 𝑔1(𝑅, 𝐶) 

 

𝑑𝐶

𝑑𝑡
= 𝑓2(𝐶) + 𝑔2(𝑅, 𝐶) 

 

Where R represents the population density (numerical or biomass) of a resource or prey 

species and C represents the population density of a consumer or predator species. The 

function 𝑓1(𝑅) represents the growth rate of the resource species in the absence of the 

consumer species and the function 𝑓2(𝐶) represents the death rate of the consumer 

species in the absence of the resource species. The function 𝑔1(𝑅, 𝐶) represents the 

units of resource species consumed per unit of the consumer species and is referred to as 

the functional response. The function 𝑔2(𝑅, 𝐶) represents the effect a unit of the 

resource species has on the consumer species growth rate, i.e. the efficiency of the 

conversion from resource matter into consumer matter. The most widely used dynamic 

model is the Lotka-Volterra model where species growth rates and death rates are 

constant and the functional response is linear (Holling’s type I functional response). 

Throughout this thesis population density is measured in units of biomass so the Lotka-

Volterra model for a community with S species is of the form:  

 














 



S

j

jijii

i BarB
dt

dB

1

 

 

where Bi is the biomass of species i (measured in kg or g), for a resource species ri is 

positive and represents the per unit mass growth rate of species i in the absence of a 

consumer species. For consumer species the ri term is negative and represents the per 

unit mass death rate of species i in the absence of resource species. The per unit mass 
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effect of consumer species j feeding on resource species i per unit of time is denoted by 

aij. Note that the intraspecific term aii incorporates species self-limitation into the model 

so that for resource species, aii may be thought to represent 
𝑟𝑖

𝐾𝑖
 where Ki is the carrying 

capacity of species i and thus resource species exhibit logistic growth. The type I 

functional response used in the Lotka-Volterra model assumes that the consumer’s 

consumption rate of a resource species is independent of the resource species density 

(Figure 1.1). This assumption implies that the handling time (the time it takes to 

consume a resource species) is negligible and is not a realistic assumption for many 

consumer-resource interactions.  

 

Whilst not used in this thesis, Holling’s type II and type III functional responses 

incorporate a handling time per unit of resource, reflecting the time it takes for a 

consumer to manipulate and eat a prey item. The incorporation of a handling time leads 

to a functional response that becomes a saturating function of resource density.  

 

 

 

Figure 1.1 The variation in type I, II and III functional responses with respect to resource species density. 

Some empirical data suggests that functional responses may also vary with consumer 

density (Arditi and Ginzburg 1989, Reeve 1997, Abrams and Ginzburg 2000). The 

Beddington DeAngelis functional response (Beddington 1975, DeAngelis et al. 1975) 

incorporates a predator interference term into the Holling type II functional response 

formula that reduces the attack rate when predator densities are high. Ratio dependent 

functional responses express the functional response as a function of the ratio of 

predator-prey densities 𝑓 (
𝐵𝑖

𝐵𝑗
) (Arditi and Ginzburg 1989). Empirical estimates of 
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functional response have found evidence for all types of functional response depending 

on the nature of the consumer resource interaction (Arditi and Ginzburg 1989, Reeve 

1997, Case 2000, Jeschke et al. 2004, Sarnelle and Wilson 2008, Begon et al. 2009). 

The form of the functional response has implications regarding the stability of a multi-

species system. A type I functional response has a stabilising effect since resource 

species densities are kept in check by consumers. The saturation of type II and III 

functional responses at high resource species densities means that resource species can 

reach a point where they will increase unchecked which makes it difficult to use type II 

and III functional responses to model large complex systems (May 1973). In this thesis, 

type I functional responses were used for their simplicity but since the analyses 

presented in Chapters 3, 4 and 5 consider the effect of small perturbations away from 

equilibrium, we may assume that any non-linear functional responses are well described 

by a type I functional response (Case 2000).  

 

Sequential assembly models incorporate dynamics into the assembly process so the 

resulting topology of a sequentially assembled web is a consequence of the dynamics 

underlying the component species (Drossel et al. 2001, Virgo et al. 2006). The topology 

of the webs used in Chapter 3 of this thesis were a result of a sequential assembly 

algorithm implemented by Säterberg et al. (2013). 

 

The stability of Lotka-Volterra systems 

In the context of food web ecology, the term stability has an intuitive meaning that the 

populations of species present in a community will persist through time with no 

extinctions. In order to persist, it is expected that when subject to a disturbance or 

perturbation, the community has the ability to return to its original state. Three 

commonly used stability concepts for a Lotka- Volterra system are: local stability, 

global stability and permanence. 

 

In theoretical studies, the most frequently used criterion is local stability. For a Lotka-

Volterra system, let A represent the community matrix that contains the interaction 

strengths between every pair of species in the community and let r represent a column 

vector that contains the growth rates of all species present in the community. An 

equilibrium point B* is a point at which the growth rate of all species is 0 so that: 
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𝒓 + 𝑨𝑩∗ = 0 

and therefore 

𝑩∗ = −𝑨−𝟏𝒓 

 

The Jacobian matrix associated with the system contains the partial derivatives of the 

population growth equations with respect to each species, therefore the ij
th

 element of 

the Jacobian matrix represents the change in the growth rate of species i with respect to 

the population biomass of species j. For a system with a type I functional response, the 

ij
th

 element of the Jacobian matrix C is given by 

 

𝑐𝑖𝑗 =
𝜕

𝜕𝐵𝑗
(
𝑑𝐵𝑖

𝑑𝑡
) = 𝑎𝑖𝑗𝐵𝑖

∗ 

and C may be written as 

𝑪 = 𝑑𝑖𝑎𝑔(𝑩∗)𝑨 

 

The equilibrium point B* is said to be feasible if the equilibrium abundances of all 

species are positive and locally stable if the real parts of all the eigenvalues of C are 

negative. If an equilibrium point is locally stable then population densities subject to a 

small perturbation will return to equilibrium. A locally stable equilibrium point can be 

described as an attractor. The return trajectory that the populations follow after a 

perturbation depends on the imaginary parts of the eigenvalues. The imaginary parts of 

an eigenvalue produce a circular oscillation, so, for the case where the imaginary parts 

are non-zero, the trajectory will spiral into the equilibrium point. If the imaginary parts 

of the eigenvalues are zero then the population densities follow a monotonic trajectory 

back to the equilibrium point. It is possible for more than one locally stable equilibrium 

point to exist, in which case a system has alternative stable states. A large enough 

perturbation can shift the populations from one stable state to another (May 1977, 

Scheffer et al. 2001). A criticism of using local stability as a measure of community 

stability is that it only holds in the neighbourhood of the equilibrium point and gives no 

indication of how large this neighbourhood is, i.e. it gives no indication of how large a 

perturbation the system can withstand before the populations move away from 

equilibrium (Haydon 1994, Chen and Cohen 2001). A system that is globally stable can 

withstand any arbitrarily large perturbation within the feasible domain (for a system 

with S species, the feasible domain isℝ+
𝑆 ). The global stability of a system is determined 
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by showing that a Lyapunov function for the system exists which can be a challenge for 

complex systems.  

 

Systems that are not locally stable may still persist within the feasible domain. 

Population densities may follow well defined stable limit cycles or chaotic orbits. In 

these circumstances, permanence may be a more suitable criterion for assessing the 

stability of a system. A system is said to be permanent if all population densities with 

nonzero starting densities remain in a fixed bounded domain of ℝ+
𝑆  that is a nonzero 

distance from the boundary (Anderson et al. 1992). Permanence can be shown by 

satisfying two conditions: (1) the population densities of all species are bounded above 

and (2) any orbit approaching the boundary will move away from it (Anderson et al. 

1992). Since any predator-prey system that includes intraspecific interaction terms will 

be bounded above, condition 1 is satisfied for most Lotka-Volterra systems. Condition 2 

can be checked by finding a function whose time average acts a Lyapunov function near 

the boundary of the feasible domain which can be expressed as a linear programming 

problem and solved numerically (Jansen 1987, Law and Blackford 1992). A recent 

study investigating the relationship between local stability and permanence in Lotka-

Volterra systems found a positive correlation between local stability and permanence, 

indicating that local stability may be a good indicator of permanence (Townsend et al. 

2010). Although improvements in computing power mean that permanence may be 

checked numerically, studies that have used permanence as a criterion for system 

stability have been restricted to webs with fewer than 20 species (Chen and Cohen 

2001, Emmerson and Yearsley 2004, Christianou and Ebenman 2005, Townsend et al. 

2010). 

 

Interaction strengths and the community matrix 

In a Lotka-Volterra system, the parameters determining the nature and the strength of an 

interaction between two species are referred to as interaction strengths and are often 

denoted by aij. The units of aij can be quantified either in terms of per capita effects or 

per unit biomass effects. In this thesis, aij represents the per unit mass effect of species j 

feeding on species i per unit of time. Units of biomass were chosen to facilitate 

comparisons with other studies (O'Gorman et al. 2010, Berg et al. 2011). The 

community matrix, denoted by A, is the matrix whose ij
th

 entry is aij, thus the 

community matrix contains the interaction strengths between every pair of species in 

the community. For a type I functional response, the aij terms are constant and do not 
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vary with population densities. Some studies define interaction strengths in terms of the 

Jacobian matrix (often denoted by C) where the entries, cij, represent the per unit mass 

effect of species j on the population biomass of species i per unit of time at equilibrium 

(Neutel et al. 2002, Neutel et al. 2007, Montoya et al. 2009).  

 

Parameterising Lotka-Volterra models in such a way that leads to feasible, persistent 

and/or stable communities has remained a challenge when modeling complex 

multispecies communities (Berlow et al. 2004, Neutel et al. 2007). Assigning interaction 

strengths at random often leads to communities that are unstable or not persistent (May 

1972, Haydon 2000), and yet clearly complex ecological communities do persist in 

nature. Recent studies have found that by using ecological information to parameterise 

food web models, it is possible to create food web models that are both complex and 

stable (Yodzis 1981, Jonsson and Ebenman 1998, Emmerson and Raffaelli 2004, 

Andersen and Beyer 2006, Brose et al. 2006b, Otto et al. 2007, Zhang et al. 2013). In 

particular, the relation of allometric scaling and body mass based energy requirements 

to food webs has led to the development of mechanistic body-sized based 

parameterisations of the Lotka-Volterra model. The fundamental concept is that species 

energy requirements and growth rates are governed by their metabolic rate which has 

been shown to scale with body mass (m). Whole organism metabolic rate scales as m
3/4

 

so that the per unit mass metabolic rate scales as m
-1/4 

(Brown et al. 2004).
  

Defining 

interaction strengths between species using predator-prey body size ratios and 

allometric scaling has been shown to promote stability in food web models and explain 

community structure and dynamics (Yodzis 1981, Jonsson and Ebenman 1998, 

Emmerson and Raffaelli 2004, Andersen and Beyer 2006, Brose et al. 2006b, Otto et al. 

2007, Berlow et al. 2009, O'Gorman et al. 2010, Zhang et al. 2013). 

 

Interaction strengths have also been estimated empirically using a measure referred to as 

the dynamic index (Wootton 1997, Sala and Graham 2002, Navarrete and Castilla 2003, 

Emmerson and Raffaelli 2004). The measure is calculated using data from mesocosm 

experiments where the density of a prey species is measured in the presence and 

absence of a predator species. The dynamic index is derived from the discrete-time 

version of the generalised Lotka-Volterra multispecies equations (Laska and Wootton 

1998). The derivation uses two equations: one describing the biomass density of the 

prey species (species i) in the presence of the predator species (species j) at time t,
j

tiB

, , 
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and the other describing the biomass density of the prey species in the absence of the 

predator species at time t,
j

tiB

, :  
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where 0,iB is the initial biomass density of species i at time t=0, 
ir  is the intrinsic 

growth rate of species i, jia ,  is the per unit mass effect of species j on species i per unit 

of time and the summations are over the n species in the community. Rearranging 

equations (1a) and (1b) gives the dynamic index for aij  
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If a study measures per capita interaction strengths then the biomass densities are 

replaced with numerical densities. Measuring interaction strengths empirically, using 

the dynamic index or otherwise, is extremely difficult (Laska and Wootton 1998, 

Abrams 2001, Berlow et al. 2004, Wootton and Emmerson 2005).  In addition to the 

direct effect that the experiment is supposed to measure, changes in the density of the 

prey species may also be attributed to indirect effects where the effect of the predator 

species is mediated by one or more intermediate species. When we measure the impact 

of the predator species on the prey species empirically the choice of time scale for the 

experiment will influence the extent to which indirect effects are measured. 

Nonlinearities in the functional response of species will affect the efficacy of 

empirically estimated interaction strengths in Lotka-Volterra models (Abrams 2001). 

An index for empirically estimating the parameters for type II functional response has 

been proposed, but currently no estimates have been made using experimental data 

(Novak and Wootton 2010).  
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Intraspecific interaction strengths 

The diagonal elements of the community matrix, aii, represent intraspecific interaction 

strengths and the local stability of a Lotka-Volterra system is dependent on the scaling 

of intraspecific interactions strengths relative to interspecific interaction strengths. In 

general, the more negative a systems intraspecific interaction strengths are, the more 

likely it is that the system will be locally stable (Saunders 1978, Yodzis 1981, Haydon 

1994). Despite the importance of the scaling of intraspecific with interspecific 

interaction strengths little is known about their relative strengths in natural communities 

resulting in a great deal of uncertainty over the parameterisation of the community 

matrix. There is a lack of empirical data that can be used to inform the scaling of 

intraspecific and interspecific interactions for Lotka-Volterra models, and whilst there 

are several methods used to estimate interspecific interaction strengths empirically 

(Berlow et al. 2004), there is no clear method for estimating intraspecific interaction 

strengths. Chapter 2 presents a study where a modification of the dynamic index 

(referred to as the intraspecific dynamic index) is used alongside the dynamic index to 

estimate intraspecific and interspecific interaction strengths in a three species food 

chain. The experiment used food chains of increasing length (1 to 3 species); a plant-

only food chain (Vicia faba), a plant-herbivore food chain (Vicia faba-Acyrthosiphon 

pisum) and a plant-herbivore-predator (Vicia faba-Acyrthosiphon pisum-Chrysoperla 

carnea) food chain. Data regarding species biomass densities from each food chain was 

collected and the resulting intra and interspecific interaction strengths were then 

compared to examine how they scaled within and across trophic levels. 

 

The inverse community matrix and net effects 

In this thesis we define the pairwise net effect and the total net effect of a species within 

the Lotka-Volterra framework as first considered by Bender et al. (1984) (but see 

(Berlow et al. 2009) for an alternative definition). The pairwise net effect of species j on 

species i is the sum of both the direct effects and indirect effects of species j on species 

i, it represents the change in equilibrium biomass density of species i following a 

change in the growth rate of species j. The analysis presented by Bender et al. showed 

that the pairwise net effect of species j on species i can be calculated by applying a press 

perturbation to the equilibrium biomass density of species j, the effect of this press 

perturbation on the equilibrium biomass density of species i in a multispecies 

community is defined by the ij
th

 inverse element of the community matrix, A
-1

. Such a 

press perturbation can occur through the sustained removal or addition of a constant 
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biomass of a species to a community (e.g. fishing) or through a change in the intrinsic 

growth/mortality rate of a species (e.g. global warming induced changes to intrinsic 

rates or habitat loss). The total net effect of species j on the community represents the 

effect that a press perturbation to species j has on the equilibrium biomass densities of 

all species in the community and is given by the sum of the absolute values of elements 

of column j in the inverse community matrix. This measure was formally defined by 

Berg et al. (2011) where it was referred to as the sensitivity of equilibrium abundances 

to changes in growth rates. A similar measure, referred to as the mean net effect (the 

mean of the absolute values in column j of the inverse community matrix) has also been 

used to examine net effects within a community (Montoya et al. 2005 O'Gorman et al. 

2010).  

 

Analysis of the inverse community matrix has the potential to inform how a community 

will respond to press perturbations and identify keystone species (Berg et al. 2011), 

however, due to the uncertainty surrounding the parameterisation of the community 

matrix and the complex nature of the inversion process, understanding and predicting 

the nature of net effects in a community remains a challenge. When Yodzis considered 

the effect of press perturbations on a set of sixteen empirical food webs he found that 

the response of the communities was highly indeterminate (Yodzis 1988). Yodzis found 

that not only were the magnitudes of species responses to a press perturbation 

unpredictable, the direction (either an increase or a decrease in population density) of a 

species responses could also vary depending on the parameterisation of the food web. In 

an attempt to show whether the direction of species responses could be determined from 

community structure alone, Dambacher, Li et al. (2003) explored the effect of food web 

structure on the qualitative response of communities to press perturbations. The study 

examined the proportion of positive and negative feedback cycles that make up each 

element of the inverse community matrix and found that the direction of species 

response to a press perturbation is sometimes based solely on community structure, 

however, they found that in general, the elements of the inverse community matrix are a 

mixture of positive and negative feedback cycles and the direction of the response is 

dependent on the magnitude of the entries in the community matrix A.  

 

Rather than relating the entries of the community matrix to the entries in its inverse, 

recent studies (Montoya et al. 2005, Montoya et al. 2009, O'Gorman et al. 2010, Berg et 

al. 2011) instead related patterns in the inverse matrix directly to species traits. These 
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studies examined the mean net effects of species in the Ythan Estuary and Broadstone 

Stream food webs (Montoya et al. 2005) and in Lough Hyne (O'Gorman et al. 2010), it 

was found that species with high linkage density had weak mean net effects within the 

community. However no relationship between a species linkage density and its total net 

effect was found for the Baltic Sea and Lake Vättern food webs (Berg et al. 2011). In 

the same analyses, a positive relationship between a species body mass and its total net 

effect was found for the Ythan Estuary food web and the Baltic Sea and Lake Vättern 

food webs. In Chapter 3 these relationships are examined further on a set of 97 synthetic 

food webs generated by an assembly algorithm (Säterberg et al. 2013) and the Ythan 

Estuary, and Tuesday Lake empirical food webs. Specifically, we examine how species 

traits (body size and linkage density) and food web properties (species richness, 

connectance, mean clustering coefficient, average shortest path length and the 

proportion of basal, herbivore, intermediate and top carnivore species) affect the total 

net effect that a species has in a community. In Chapter 4 the relationship between a 

species body mass and its total net effect is examined analytically using simple food 

chains. The community matrices are parameterised using allometric scaling and 

predator-prey body size ratios and the relationship between body size and total net 

effect is examined. Since the entries in the inverse community matrix are determined by 

the entries in the community matrix, the parameterisation of the community matrix is 

key to understanding the mechanisms behind the observed relationship. In the final 

Chapter, the relationship between a species linkage density and its total net effect is 

examined analytically and graphically using a range of food webs of size 12 or 16 with 

two alternative structures and varying complexity. Since species linkage density effects 

the structure of the food web and the way that indirect effects travel through a food web 

web we may expect it to relate to the impact a species has on a community. The net 

effects analyses presented in this thesis hope to establish whether there are relationships 

between a species traits and its impact on the community in which it is embedded and if 

so, why these relationships are present. 
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QUANTIFYING INTRASPECIFIC AND INTERSPECIFIC INTERACTION 

STRENGTHS IN A THREE SPECIES FOOD CHAIN  
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Abstract 

When modeling ecological communities using Lotka-Volterra models, little is known about the 

values of intraspecific interaction strengths. They are often arbitrarily set to the value of -1 yet the 

relationship between intraspecific and interspecific interaction strengths is fundamental to the 

behaviour of the system. The Dynamic Index has been used to obtain empirical estimates of 

interspecific interaction strengths. In the following chapter, the Intraspecific Dynamic Index, 

which is a novel extension of the Dynamic Index that can be used to estimate intraspecific 

interaction strengths, is derived. The study also presents the results of a 3-trophic level mesocosm 

experiment. Data from the experiment was used to test the effectiveness of the Dynamic Index and 

its extension at estimating intra- and interspecific interaction strengths. 

 

The sign (positive or negative) of intraspecific interaction strength estimates for basal species 

varied with food chain structure and estimated ratios of intra- to interspecific interaction strengths 

for basal/consumer species took values between -0.01 and -0.001. It was not possible to draw 

conclusions about the magnitude of the ratio of intraspecific to interspecific interaction strength 

estimates for consumer/predator species since the variation in the data was too large. 

 

Estimates of interspecific interaction strengths were calculated for more than one density of basal 

and consumer species. These estimates indicate that interspecific interaction strengths are not 

constant with respect to species density and may follow a type II or type III functional response. 

The results indicate that the Dynamic Index and the Intraspecific Dynamic Index can be used to 

gain a more complete insight into species interaction strengths. Estimates from these indices reveal 

the potential of indirect effects and variation between individuals to greatly influence species 

interaction strengths. 
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Introduction 

The Lotka- Volterra model has been used in numerous studies to gain insights into the structure 

and functioning of ecological communities (May 1972, Pimm and Lawton 1977, Pimm 1982, 

Arditi and Ginzburg 1989, Law and Blackford 1992, Emmerson and Raffaelli 2004, Eklöf and 

Ebenman 2006). A major issue within the Lotka- Volterra model framework arises over the choice 

of the parameter values that define the strength of interactions between and within species. 

Assigning interaction strengths at random often leads to communities that are unstable or not 

persistent (Haydon 2000) and increasing the complexity of communities with randomly assigned 

interaction strengths has a further destabilising effect (May 1973). Parameterising Lotka-Volterra 

models in such a way that leads to persistent and feasible communities has remained a challenge in 

predicting the dynamics of complex multispecies communities and food webs (Berlow et al. 2004, 

Neutel et al. 2007). The particular arrangement of interaction strengths across trophic levels, when 

determined by body size (Jonsson and Ebenman 1998, Emmerson and Raffaelli 2004, Brose et al. 

2006b), has been shown to have important implications with regard to community stability, 

resilience, biodiversity, and the patterning of abundance or biomass densities across trophic levels 

(Yodzis 1981, de Ruiter et al. 1995, Jonsson and Ebenman 1998, Berlow 1999, Neutel et al. 2002, 

Jansen and Kokkoris 2003, Emmerson and Raffaelli 2004, Neutel et al. 2007). In particular, the 

use of ecological constraints and empirical information to inform the pattern of interaction 

strengths has helped to reconcile complexity with stability (Yodzis 1981, Moore and William Hunt 

1988, de Ruiter et al. 1995, Jonsson and Ebenman 1998, McCann et al. 1998, Neutel et al. 2002, 

Emmerson and Raffaelli 2004, Neutel et al. 2007).  

 

Intraspecific interaction strengths 

The local stability of a community described by a Lotka-Volterra system is dependent on the 

intraspecific interactions. A necessary (but not sufficient) condition for local stability of a 

community is that the sum of the intraspecific interaction strengths is less than zero (May 1973) 

and in general, a system is more likely to be locally stable the more negative its intraspecific 

interaction strengths become (Saunders 1978, Yodzis 1981, Haydon 1994). Diagonal dominance 

occurs when the intraspecific interaction strength of each species in a system is greater than the 

sum of all its interspecific interaction strengths. When all intraspecific interaction strengths in a 

system are negative, then diagonal dominance of a system results in local stability. Consequently, 

when modelling a natural community using Lotka-Volterra dynamics, if intraspecific interaction 
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strengths are not estimated from ecological data then local stability of the system can occur by 

choosing sufficiently negative intraspecific interaction strengths. Such parameterisations may not 

reflect the true nature of the community. The relationship between the values of intraspecific 

interaction strengths and the local stability of the system has been used to measure the stability of 

Lotka-Volterra models of soil communities (Neutel et al. 2002, Neutel et al. 2007), highlighting 

the important role that intraspecific interaction strengths play in community dynamics. 

 

Intraspecific interactions have probably received less attention than interspecific interactions 

because it is often incorrectly assumed that the community matrix can be rescaled to a standard 

intraspecific interaction strength (commonly taken to be -1). This practice may have its roots in 

Levin’s original definition of the community matrix where the interspecific interaction strengths 

were scaled to the intraspecific interaction strengths (Levins 1968), but may also arise from a 

misunderstanding of May’s demonstration that a matrix can be rescaled by choosing a different 

timescale (May 1972). Rescaling the community matrix to a different timescale simply involves 

multiplying the community matrix by a constant, but if there is variation in the values of 

intraspecific interaction strengths then rescaling will not remove this variation. When interspecific 

interaction strengths are estimated carefully using ecological information, arbitrarily assigning a 

value of -1 to all the intraspecific interaction strengths will change the pattern of interaction 

strengths, which will alter important properties of the community matrix (Haydon, 1994).  

 

Pimm and Lawton (1977) argued that negative density effects of predators and consumers can be 

achieved solely through interaction with their prey since if the predator/consumer density 

increases, the prey density will decrease and the food shortage will decrease the density of the 

predator (Pimm and Lawton 1977, Pimm 1982). However, for systems where non-basal 

intraspecific interaction strengths have been set to zero, it has been shown that increasing 

productivity in the system produces unrealistic responses in equilibrium abundance/biomass 

distributions across trophic levels (Ginzburg and Akçakaya 1992). Including non-zero intraspecific 

interaction strengths for all species avoids this problem (Abrams 1994, Gleeson 1994). Little is 

therefore known about the scaling of intraspecific and interspecific interactions for dynamical 

predator prey models. Some studies have defined intraspecific interaction strength to be stronger 

for basal species than for consumer and predator species since it has been argued that basal species 

are sedentary and have to compete for space and light (Emmerson and Raffaelli 2004, Christianou 
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and Ebenman 2005, Eklöf and Ebenman 2006).  While this assumption may be true in terrestrial 

systems, it may not apply to basal species in aquatic systems since phytoplankton are not sedentary 

but float with the current.  

 

A few studies have assumed that intraspecific interaction strengths scale with body size with an 

exponent of -1/4 (Virgo et al. 2006, Lewis and Law 2007, Lewis et al. 2008). This scaling is 

derived by considering basal species equilibrium biomass densities in the absence of consumer 

species. At equilibrium, a basal species biomass density Bi
*
 can be related to its growth rate ri and 

its intraspecific interaction coefficient aii by 𝐵𝑖
∗ =

𝑟𝑖

𝑎𝑖𝑖
. It has been observed that the scaling of 

species population biomass across trophic levels is often invariant with body size (Peters 1983, 

Schmid et al. 2000) and that species growth rates scale with so body size (Blueweiss et al. 1978, 

Peters 1983) with an exponent of -1/4 which implies that intraspecific interaction strengths also 

scale with body size with an exponent of -1/4. This relationship may not hold in multispecies 

systems where equilibrium biomass densities are also affected by consumer species. There is a lack 

of system-specific ecological data that can be used to inform the scaling of intraspecific and 

interspecific interactions for dynamical predator prey models and whilst there are several methods 

used to estimate interspecific interaction strengths empirically (Berlow et al. 2004), there is no 

clear method for estimating intraspecific interaction strengths. 

 

Measuring intraspecific and interspecific interaction strengths 

The Dynamic Index (Wootton 1997, Laska and Wootton 1998) is a technique that has been used 

with some success to measure the strength of interspecific interaction strengths in communities 

(Wootton 1997, Sala and Graham 2002, Navarrete and Castilla 2003, Emmerson and Raffaelli 

2004, O’Gorman et al. 2008, McCluney and Sabo 2009, O'Connor 2009). In this study we use the 

Dynamic Index (DI) to measure interspecific interaction strengths and present the Intraspecific 

Dynamic Index (IDI), which is an extension of the dynamic index that measures intraspecific 

interaction strengths (see Methods below). We also describe a mesocosm experiment to apply 

these measures to a three species food chain. The aim was to test the effectiveness of the DI and 

IDI at estimating interaction strengths and to quantify how intraspecific and interspecific 

interaction strengths vary across three trophic levels.  
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Materials and Methods 

We developed an extension of the dynamic index that can be used to estimate intraspecific 

interaction strengths from experimental data. The same data set can be used to estimate 

interspecific interaction strengths using the original DI and thus enable us to gain insight into the 

scaling of intraspecific and interspecific interaction strengths in the same system. The method was 

applied to biomass time-series data from a mesocosm experiment. The experiment used three food 

chains of increasing length; a plant-only food chain (food chain A; strictly this is not a food chain, 

but we use the terminology for consistency), a plant-herbivore food chain (food chain B) and a 

plant-herbivore-predator food chain (food chain C). Each food chain was run for both high and low 

initial species biomass densities and the resulting intra and interspecific interaction strengths were 

then compared to examine how they scaled within and across trophic levels. 

 

Estimating interspecific interactions using DI 

The dynamic index can be derived from the discrete-time version of the generalised Lotka-Volterra 

multispecies equations (Laska and Wootton 1998). The derivation uses two equations: one 

describing the biomass density of the prey species (species i) in the presence of the predator 

species (species j) at time t, 
j

tiB

, , and the other describing the biomass density of the prey species 

in the absence of the predator species at time t, 
j

tiB

, :  
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where 0,iB is the initial biomass density of species i at time t=0, ir  is the intrinsic growth rate of 

species i, jia ,  is the per unit mass effect of species j on species i per unit of time and the 

summations are over the n species in the community. We note that many of the previous studies 

used species abundance rather than biomass (Wootton 1997, Sala and Graham 2002, Navarrete and 

Castilla 2003, Emmerson and Raffaelli 2004). Here we use species biomass, as in Brose, Berlow 

and Martinez (2005a) and O’Gorman and Emmerson (2009) to facilitate the comparison of 
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interaction strength estimates from different ecosystem types. Rearranging equations (1a) and (1b) 

gives the DI for ai,j  

 

tB

B

B

a
j

j

ti

j

ti

ji

0,

,

,

,

ln 














    (2) 

 

Thus when we calculate interaction strength using the DI we are calculating the jia ,  values in the 

discrete-time version of the generalised Lotka-Volterra multispecies equations. The jia , value 

represents the rate of change in biomass of species i caused by a unit of biomass of species j.  The 

DI for all pairs of species give all the off -diagonal elements of the un-scaled community matrix 

(the elements of the community matrix before they are scaled by the diagonal intraspecific terms). 

We state this explicitly since the term interaction strength has been used to describe many different 

quantities in community ecology, for a comprehensive review see (Berlow et al. 2004). Equation 

(2) assumes that the initial biomass of a species in equation (1a) is the same as in equation (1b), 

and that population growth rate is purely a linear function of the species biomasses. This second 

assumption in particular may not hold in real communities (Alberti et al. 2008, Otto et al. 2008). 

 

Estimating intraspecific interactions using IDI 

To estimate the intraspecific interaction strength of species i we adapt equation (1a) by considering 

different initial biomass densities of species i  
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where superscript 
H
 and 

L
 denote high and low initial biomass densities, respectively. Dividing 

equation (3a) by equation (3b) and rearranging to isolate the intraspecific interaction parameter iia ,  

we obtain:  
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which we call the Intraspecific Dynamic Index (IDI) (see Appendix A for details). As for the DI, 

equation (4) assumes that the initial biomass of species k, 0,kB , is the same in equations (3a) and 

(3b) (except for species i) and that the biomass density of species i does not affect the way that 

species i interacts with other species in the community (including itself).  

 

Experimental method  

Species biomasses for three types of food chains (food chains A, B and C, Figure 2.1) were 

collected from mesocosms under laboratory conditions. All food chains had dwarf broad bean, 

Vicia faba (Linnaeus) as a basal species, food chains B and C had the pea aphid, Acyrthosiphon 

pisum (Harris) as a herbivore species, and food chain C had green lacewing larvae, Chrysoperla 

carnea (Stephens) as a predator species. Each mesocosm consisted of one plant pot (diameter 

14.5cm) inside a 32.5 x 32.5 x 32.5cm Bugdorm® cage with polyester netting (96 x 26 

mesh/square inch) and a transparent Ethylene Vinyl Acetate front and top panels over an 

Acrylonitrile Butadiene Styrene frame.  

 

Figure 2.1 Schematic representation of the experiment showing which interaction strengths can be calculated from 

each food chain. 

The initial biomass density of each species in a food chain was varied in a fully factorial design, 

with biomass density taking values of either high or low (Figure 2.2). This gave 2, 4 and 8 

treatments for food chains A, B and C respectively. Low biomass density treatments corresponded 

to one broad bean plant, 100 pea aphids and 4 lacewing larvae per pot. High biomass density 

treatments corresponded to three broad bean plants, 200 pea aphids and 8 lacewing larvae per pot. 

http://bugdorm.megaview.com.tw/popup_96x26mesh.php
http://bugdorm.megaview.com.tw/popup_96x26mesh.php
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This gave 2, 4 and 8 treatments for food chains A, B and C respectively. The experiment was 

repeated in three separate time blocks with two replicates running in each block: 22
nd

 - 29
th

 

February 2008 (replicates R1, R2), 7
th

 – 14
th

 March 2008 (replicates R3, R4) and 21
st
 – 28

th
 March 

2008 (replicates R5, R6). Details of the mesocosm set up and the biomass collection are given in 

Appendix B. All biomasses were measured in grams and time, t, was measured in days which 

implies that the units of the interaction parameters ai,i and ai,j are g
-1

.d
-1

. 

 

 

Figure 2.2 Design of food chain and density treatments. H represents high biomass density treatment and L represents 

low biomass density treatment 

 

Data analysis 

We used the DI and IDI to calculate interaction strength estimates from all possible combinations 

of food chain data. This resulted in multiple estimates for each interaction strength due to different 

food chains and different initial biomass densities (Table 2.1). For example, the plant intraspecific 

interaction strength a11 could be estimated from food chain A, B and C, but the lacewing 

intraspecific interaction strength a33 could only be estimated from food chain C (see Figure 2.1). 

Moreover, we obtained two estimates of a11 from food chain B (due to the low and high initial 

aphid biomass treatments) and four estimates of a11 from food chain C (due to the low and high 

initial aphid and lacewing biomass treatments). In the cases where there was an intraspecific 

interaction strength estimate for each food chain we quantified the effect of food web structure on 

interaction strength estimates. Interaction strength estimates from different biomass treatments and 

different food web structures could be compared because interaction strength estimates were 

measured in g
-1

.d
-1 

(i.e. on a per unit mass basis). 

We performed two analyses that tested the influences of food web structure and initial species 

biomass upon our interaction strength estimates. The effect of food web structure on each 

H
Plants

Aphids

Lacewings

L

H LL H

H L H L H L H L
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interaction strength estimate was analysed using a mixed effect model with food web structure 

(food chains A, B or C) as a fixed effect and experimental replicates (R1-R6) as a random effect. 

Tukey’s HSD post-hoc test was used to identify differences in the estimates of intraspecific 

interaction strength among food chain treatments. The effect of initial species biomass on each 

interaction strength estimate was also analysed using mixed effect models with starting biomass 

densities as fixed effects (represented as B10, B20 and B30 for plants, aphids and lacewings with each 

being either Low or High) and experimental round as a random effect (R1-R6). Interspecific 

interaction strengths estimated from the DI method are not completely independent because the 

same biomass data from the treatment where the predator species is absent can contribute to two 

estimates of interaction strength. To account for this we included an additional random factor 

(absence) that indicated where two estimates shared data from the ‘absence’ treatment. 

 

Models were selected using stepwise deletion with the likelihood ratio test (AIC gave identical 

results for all but one model) and we present the results from any fixed effects that were retained. 

Where effects are reported in the results we present the parameter estimate and its standard error 

(after Bates (2008)). The full set of parameter estimates and associated standard errors for the 

selected models are given in Tables 2.2 and 2.3. Homogeneity of variance and normality of the 

standardised residuals was satisfied for all models. All statistical analyses were undertaken using R 

version 2.12.0 (R Development Core Team 2013), mixed effect models used the ‘lme4’ package 

and Tukey’s HSD test was carried out using the ‘multcomp’ package. The calculation of the 

intraspecific and interspecific parameters was performed using MATLAB version 7.7.0 

(MATLAB 2008). 

 

Results 

Data from nine mesocosm replicates could not be used to calculate interaction strengths because 

their aphid populations crashed to zero (all when plant biomass was low, with three instances in 

the plant-aphid treatment and six instances in the plant-aphid-lacewing treatment). Data from these 

replicates were removed from the analysis. One plant in a low plant biomass treatment for food 

chain A was identified as an outlier (Grubb’s test for outliers p < 0.05) because its growth rate per 

unit mass was over four times smaller than the other plants in the same treatment. The data for this 

plant gave unrealistic, positive plant-aphid interspecific interaction strength estimates and was 

therefore removed from the analysis.  
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Scaling of intraspecific and interspecific interaction strengths across and within trophic levels 

The magnitude of the intraspecific interaction strength estimates and the variation within replicates 

for both intraspecific and interspecific interaction strength estimates increased with trophic level 

(Table 2.1). The variability between replicates in the same treatment was so large for a22, a23 and 

a33 that no effects of species biomass densities could be detected and the true values of the 

interaction strengths could not be inferred (Table 2.1-2.4). The ratio of a11 / a12 lies between -0.01 

and -0.001 (Table 2.2) but it is not possible to draw conclusions about the magnitude of ratio of a22 

/ a23 since estimates of a22 and a23 were highly variable. 

 

 Effect of food web structure on interaction strength estimates  

Estimates of the basal intraspecific interaction strength, a11 could be both positive or negative 

depending on the particular food chain studied (food chain A estimate –0.009 ± 0.007 g
-1

d
-1

, food 

chain B estimate 0.023 ± 0.008 g
-1

d
-1

, food chain C estimate  0.017 ± 0.008 g
-1

d
-1

, Figure 2.3a). 

The a11 estimate for food chain A (plant only) was more negative than the estimate for food chain 

B but not significantly different from food chain C (Tukey’s HSD p <0.05). This indicates that 

intraspecific interaction strength need not be constant with respect to food web structure, contrary 

to the assumption made in equation (2) for the dynamic index. Food web structure did not have a 

significant effect on the a12 and a22 estimates (Figure. 2.3, Table 2.1). The effect of food web 

structure on the a23 and a33 estimates could not be tested since these estimates could only be 

obtained from food chain C (Figure 2.1). 

 

Table 2.1 Interaction strength estimates made using the DI or IDI 

Interaction 
Food 

Chain 

Estimate (g
-1

d
-1

) 

Mean ± SE 

Mean of Absolute 

Values ± SE 

a11 

A -0.009 ± 0.003 0.009 ± 0.003 

B 0.014 ± 0.005 0.019 ± 0.004 

C 0.008 ± 0.003 0.014 ± 0.002 

a12 
B -2.5 ± 0.35 2.5 ± 0.34 

C -2.1 ± 0.17 2.0 ± 0.17 

a22 
B -7.1 ± 3.5 9.6 ± 2.8 

C -2.2 ± 2.4 6.1 ± 1.9 

a23 C -0.56 ± 38.12 135 ± 31 

a33 C -28 ± 24 96 ± 14 
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Effect of species biomasses on interaction strength estimates 

Our estimates of intraspecific interaction strengths (a11, a22, a33) were not affected by the initial 

species biomasses. Estimates of plant-aphid interspecific interaction strengths a12 showed evidence 

of being influenced by initial species biomasses while aphid-lacewing interaction strength 

estimates a23 did not (Tables 2.2, 2.3 and 2.4). The estimated value of a12 was influenced by both 

the initial plant and aphid densities (Figures 2.4 and 2.5). High initial biomasses of plants or aphids 

made a12 estimates less negative (e.g. for food chain B high plant biomass a12= –1.7 ±0.46 g
-1

d
-1

, 

low plant biomass a12= –3.4 ± 0.37, high aphid biomass a12= –1.9 ± 0.35  g
-1

d
-1

, low aphid biomass 

a12= –3.0 ± 0.58 g
-1

d
-1

, Table 2.1). For food chain C there was some evidence that the combined 

effect of high plant and high aphid initial densities was not additive (Table 2.4). The estimates 

from food chain C were not influenced by the initial lacewing densities. 

 

 

Figure 2.3 The effect of food web structure on (a) plant intraspecific interaction strength estimates and (b) plant-aphid 

interspecific interaction strength estimates. The plant only food chain (food chain A) is shown in white, the plant-aphid 

food chain (food chain B) is shown in black and the plant-aphid-lacewing food chain (food chain C) is shown in grey. 
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Figure 2.4 The effect of (a) plant biomass density and (b) aphid biomass density on plant- aphid interspecific 

interaction strength estimates for the plant-aphid food chain (food chain B). 
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Figure 2.5 The effect of (a) plant biomass density and (b) aphid biomass density on plant-aphid interspecific 

interaction strength estimates for the plant-aphid-lacewing food chain (food chain C). 
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 Table 2.2 The effect of initial species biomass density and food chain identity on interaction strength estimates made using the DI and IDI 

Interaction Strength 

Estimate 

Mean  ±  SE (g
-1

d
-1

) 

High Density 

Plant Treatment 

Low Density 

Plant Treatment 

High Density 

Aphid Treatment 

Low Density 

Aphid Treatment 

High Density 

Lacewing 

Treatment 

Low Density 

Lacewing 

Treatment 

a11 Food Chain B - - 0.016 ± 0.009 0.013 ± 0.007 - - 

a11 Food Chain C - - 0.008 ± 0.005 0.008 ± 0.004 0.007 ± 0.005 0.009 ± 0.005 

a12 Food Chain B -1.7 ± 0.46* -3.4 ± 0.37* -1.9 ± 0.35 * -3.0 ± 0.58 * - - 

a12 Food Chain C -1.4 ± 0.16* -2.9 ± 0.25* -1.9 ± 0.17* -2.3 ± 0.32* -2.1 ± 0.28 -2.1 ± 0.23 

a22 Food Chain B -5.1 ± 2.5 -10.1 ± 8.5 - - - - 

a22 Food Chain C -0.54 ± 0.89 -7.1 ± 9.7 - - -2.8 ± 2.8 -1.5 ± 4.0 

a23 Food Chain C -0.51 ± 26.4 -0.66 ± 99.8 50.6 ± 61.8 -39.6 ± 47.5 -6.5 ± 25.9 5.1 ± 71.1 

a33 Food Chain C -2.6  ± 33.6 -53.6 ± 33.7 -23.3 ± 42.5 -32.9 ± 24.1 - - 
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Table 2.3 Models used to investigate the effect of food web structure on interaction strength estimates. 

Food Chain 

Datasets 
Full Model 

Final Model                                   

(after model selection) 

Parameter Estimate ± SE                  

(from final model) 

A, B, C a11 ~ food chain +   (1|round) a11  ~ food chain + (1|round) 

Food chain A      -0.009±0.007 

Food chain B        0.023±0.008 

Food chain C        0.017±0.008 

B, C 
a12 ~ food chain +(1| absence) + 

(1|round) 
a12 ~ (1|absence) + (1|round) NA 

    
B, C a22 ~ food chain + (1|round) a22 ~ + (1|round) NA 
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Table 2.4 Models used to investigate the effect of initial species biomass density on interaction strength estimates. 

 

 

  
Dataset Full Model Final Model (after model selection) 

Parameter Estimate ± SE 

(from final model) 

Food chain B a11 ~ B20 + (1|round) a11 ~ (1|round) NA 

Food chain C a11 ~ B20* B30 + (1|round) a11 ~ (1|round) NA 

    Food chain B a12 ~ B10 * B20+ (1| absence) + (1|round) a12 ~ B10 + B20  + (1|absence) + (1|round) B10                    1.64±0.64 

B20                     1.02±0.41 

    Food chain C a12  ~ B10 * B20* B30 + (1| absence) + (1|round) a12 ~ B10 * B20 + (1| absence) + (1|round) B10                    1.74±0.43 

B20                    0.93±0.35 

B10: B20            -0.96±0.47 

    
Food chain B  a22 ~ B10 + (1|round) a22 ~ + (1|round) NA 

Food chain C  a22 ~ B10 * B30 + (1|round) a22 ~ + (1|round) NA 

Food chain C a23 ~ B10 * B20* B30 + (1| absence) + (1|round) a23 ~  (1| absence) + (1|round) NA 

Food chain C a33 ~ B10 * B20  + (1|round) a22 ~  (1|round) NA 
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Discussion 

This study is the first to use a standardized technique to simultaneously obtain empirical 

estimates for both intra- and interspecific interaction strengths at a whole food chain scale 

from the same set of data. Like the original dynamic index, the intraspecific dynamic index 

provides a simple way of estimating interaction strengths using variations in abundances or 

biomass densities. The simultaneous estimation of intra- and interspecific interaction 

strengths for our plant-aphid-lacewing food chain detects non-linearity in interspecific 

interactions that would not be possible to detect if the initial species biomass were not 

allowed to vary. 

 

Four broad patterns emerge from this study. First, both the intra- and interspecific interaction 

strength estimates become larger and more variable with increasing trophic level (Table 1). 

Second, the ratio of intra- to interspecific interaction strengths for the basal species is very 

small, indicating that interspecific effects are much larger in magnitude than intraspecific 

effects. Third, the sign of intraspecific interaction strength (+ or -) for the basal species 

depends on the presence or absence of higher trophic level consumers (Figure 2.3). Fourth, 

the plant-aphid interspecific interaction strength estimates were dependent upon the initial 

plant and aphid biomass (Figures 2.4 and 2.5). 

 

Estimating interaction strengths across trophic levels 

The magnitude and variation of interaction strength estimates increased with trophic level. 

This is partly due to the behaviour of the DI calculation, which divides by the biomass of the 

predator species (equation 2), and the behaviour of the IDI calculation, which divides by the 

difference between initial biomasses of the focal species (equation 4). A positive correlation 

between the magnitude of interaction strengths and trophic level is expected from our data 

because lacewing biomass density was lower than aphid biomass density, which in turn was 

considerably lower than plant biomass density. The dependence of interaction strength 

estimates on the initial biomass density (or abundance) of the predator species is a feature of 

the dynamic index (Novak and Wootton 2010) and is highlighted in the present study where 

the top predator species was present at low biomass densities.  

 

The increasing variation of interaction strength estimates with trophic level could also be due 

to the length of the food chain, because longer chains may allow more factors to affect the 

interaction strength estimates. Consider the aphid-lacewing interaction strength, a23. Lotka-
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Volterra dynamics assume that the final aphid biomass in paired plant-aphid-lacewing and 

plant-aphid treatments should only differ due to the presence of lacewings. However the 

individual plants and aphids also differ between these treatments and this variation may also 

have contributed to the differences in final aphid biomasses, distorting the effect of lacewing. 

In short, the variation in a23 values could reflect the effect of plants on aphids and aphids on 

aphids in addition to the effect of lacewings on aphids. Cannibalism by lacewing larvae could 

also increase the variability in estimates of a23 and a33. Chance encounters between lacewing 

larvae resulted in one larvae consuming the other (personal observation) which would reduce 

the rate of predation on the aphids and directly affect the final biomass of lacewing larvae.  

 

Ratio of plant intraspecific to interspecific interaction strengths 

The estimated intraspecific interaction strength for plants is approximately 100-1000 times 

smaller in magnitude than the interspecific interaction strength between plants and aphids 

which may be smaller than the ratios in other systems. Aphids are a pest species, which 

reproduce quickly and, at high densities, cause considerable damage to plants. In the natural 

environment aphid population densities are often suppressed by a variety of natural enemies 

and only become a pest when populations exceed economically damaging thresholds 

(Hutchison and Hogg 1984, Aquilino et al. 2005). In the treatment for food chain B, there 

was no predation on aphids, so populations grew exponentially causing a large reduction in 

plant biomass. Similarly, in treatments for food chain C, the lacewing larvae failed to 

suppress the aphid populations so plant biomass was greatly reduced. Therefore, the ratios 

estimated for plants and aphids in this study may be smaller than ratios in the environments 

where aphid populations are kept in check by a variety of natural enemies and smaller than 

ratios for other pairs of species in different systems. 

 

The intraspecific: interspecific ratios found in this study are smaller in magnitude than the 

ratios used in many previous theoretical studies (Table 2.5) which may reflect the fact that the 

food chains analysed in this study were unstable. If theoretical studies of community 

dynamics were to use similar values of intraspecific: interspecific ratios to those found in 

empirical studies, then, in order to ensure local stability, stricter conditions would need to be 

placed on the pattern of interspecific interaction strengths. However, we note that this study 

focuses on three species only and in order to inform the choice of interaction strengths in 

theoretical studies more information about the patterning of interaction strengths within and 

between a wide range of species is necessary. Further applications of this technique to 
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estimate the patterning of intra- and interspecific interaction strengths in other systems could 

provide this information.  

 

Table 2.5 Ratios of aii / aij reported in the literature, where aii is the intraspecific interaction strength of a basal 

species and aij is their interspecific interaction strength with a primary consumer.  

 

a 
aii / aij ratios from empirical studies estimate aij directly from experimental data whilst aii are 

inferred from biological data rather than measured experimentally (with the exception of this 

study). 
b
 Neutel et al (2007) and de Ruiter et al. (1995) define interaction strength to be elements of the 

Jacobian matrix, 
ij . We converted these elements into the community matrix by dividing the 

Jacobian by the equilibrium biomass of species i, i.e. 
*

i

ij

ij
B

a


 . 

c 
Interaction strengths in this study used predator-prey body sizes from the Ythan Estuary to 

estimate interaction strengths. We class these estimates as theoretical since they did not come from 

experimental data.
 

  

Min Max

1 1 Empirical -0.01 -0.001 This study (food chain B)

1 1 Empirical -0.008 -0.0008 This study (food chain C)

2 3 Empirical 0.03 0.08 Neutel et al. (2007)
b

2 4 Empirical 0 0.03 de Ruiter et al. (1995)
b

4 1 Empirical 0.01 0.57 Schmitz (1997)

4-6 4 Theoretical 2 30 Petchey et al. (2008b)

Variable Variable Theoretical 2 70 Eklöf & Ebenman (2006)

3 3 Theoretical 1 Infinite Christianou & Ebenman (2005)

4 57 Theoretical 0.0003 500000 Emmerson & Raffaelli (2004)
c

1 1 Theoretical 0.01 0.01 Jonsson & Ebenman (1998)

Number of Basal 

Species (i)

Number of Primary 

Consumers (j)
Estimation

a
Ratio a ii  / a ij

Study
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The effect of food web structure on interaction strengths 

Plant intraspecific interaction strengths were found to vary with food web structure. It is not 

clear whether the differences in intraspecific interaction strength estimates are due to changes 

in plant conspecific interactions or non-linearity in the plant-aphid interspecific interaction 

strength. To estimate the plant intraspecific interaction strength (a11) it was assumed that the 

plant-aphid interspecific interaction strength (a12) is constant with respect to plant biomass 

density which implies that aphids have a linear functional response. If a12 is not constant then 

the differences between plant biomasses used to calculate the a11 term may be caused by 

biologically meaningful variation in the a12 term, reflecting a non-linear functional response.  

 

Ecologically, it is entirely possible that intraspecific interactions are not constant with respect 

to food web structure. For example, plants in severe environments (severity here includes 

disturbances such as herbivory) can benefit from the proximity of neighbouring plants since 

under stressful conditions the benefits of a neighbour can outweigh the costs of competition 

(Brooker and Callaghan 1998, Brooker et al. 2008). In a field experiment where both plant 

(Collinsia torreyi) and herbivore (Euphydryas editha) densities were manipulated, it was 

found that the herbivores only reduced the fitness of the plants at low plant biomass density, 

but not at high plant biomass density (Parmesan 2000). It has also been observed that the crab 

Chasmagnathus granulatus regulates the balance of competitive and facilitative interactions 

between plant species Spartina densiflora and Sarcocornia perennis in Argentinean marshes 

(Alberti et al. 2008).  

 

We found that plant-aphid interspecific interaction strength estimates did not vary between 

food web structures. This result is in contrast to Otto et al. (2008) who found that the 

presence of a second predator changed the interaction strength between a predator and 

herbivore. Plant- herbivore interaction strengths were not calculated for the Otto et al. (2008) 

study but it was identified that the assemblage of predators did have an impact on plant 

biomass.  

 

In the present study it is clear that aphids were limited by absolute resource abundance rather 

than relative resource abundance which may explain why the lacewing larvae did not affect 

aphid biomass. In an insightful discussion of herbivory that considered the behaviour of the 

individual herbivore and the consequences of this behaviour in an ecosystem context Schmitz 

et al. (2008) proposed that if herbivores are limited by their rate of consumption rather than 
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by resource availability, then predators (at a third trophic level) can have an impact on plant 

biomass since the remaining herbivores cannot increase their rate of consumption to 

compensate for the biomass that would have been consumed by the herbivores removed 

through predation. Alternatively, if herbivores are limited by the total amount of resources 

available for consumption then predators will not have an impact on plant biomass since the 

remaining herbivores will increase their consumption and the amount of biomass lost due to 

herbivory will not change.  

 

The effect of species biomass density on interaction strengths 

It is widely accepted that the interspecific interaction strength between a predator and prey 

species can vary with prey species density (Ruesink 1998, Case 2000, Sarnelle 2003, Vucic-

Pestic et al. 2010). In this study, we found that aphids had a greater impact on plant biomass 

when plants were at low biomass density. This is consistent with a type II functional response 

where consumption rates (and therefore interaction strengths) decrease with increasing prey 

density. It is possible that part of the mechanism underlying the relationship between plant 

biomass density and plant- aphid interaction strength is attributable to the response of the 

plants to aphid damage, but since plant-aphid interactions are highly complex (Goggin 2007, 

Guerrieri and Digilio 2008), disentangling the effect of aphid functional response from plant 

response to aphid herbivory is difficult. This problem does not apply to predator- prey 

relationships where predators kill prey in discrete units and have a known functional 

response.  

 

The DI is calculated using the same starting prey densities for the treatments where predators 

are present and absent which means that the DI makes no assumptions on the form of the 

interaction strength between predator and prey, it simply provides a figure to quantify the 

value of interaction strength for particular species densities. It is only when the DI is 

calculated at more than one prey density that one can inform the way interaction strength 

changes with prey density (Novak and Wootton 2010).  

 

Conclusions 

A limitation of many studies is the enumeration of just one measurable response (e.g. change 

in biomass or abundance) but numerous causes (e.g. prey species density, presence or 

absence of predator(s), predator(s) species density, species behaviour) may interact in a 

complicated way (Bender et al. 1984). This considerable problem applies to all previous 
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studies using abundances and biomasses to estimate interaction strengths.  The present 

experiment highlights the difficulty in extracting parameters from experimental data, e.g. the 

aphid-lacewing interspecific interaction estimate made using DI index assumes that any 

change in aphid biomass density is due to lacewing predation, but it is clear that plant 

biomass density had the greatest effect on aphid biomass density. So even if the model 

underlying the DI is a good approximation of species growth rates, it seems that small 

differences between individuals can have large effects on growth rates which can mask the 

interaction being estimated.  

 

Given the complexities underlying measurable changes in species densities, we suggest that a 

great deal of uncertainty remains over the nature of species interaction strengths and 

empirical estimates of species interaction strengths should be used cautiously in making 

predictions about the real world consequences of future environmental change. Despite 

decades of research we still find that our ability to empirically measure simple interactions is 

limited, and that a gap still exists between the requirements of models and the availability of 

data with which to accurately parameterise them. Whilst the results of the present study only 

provide crude estimates of species interactions, they do provide qualitative insights into the 

presence of nonlinearities and indirect effects, which illustrates the importance of community 

structure on community dynamics.  

 

We conclude that the IDI can be used to estimate intraspecific interaction strengths between 

species but these estimates can be affected by variation between individuals and, in the 

presence of other species, can be affected by non-linearities in interspecific interaction 

strengths and indirect effects.  The results from this study found that both the magnitude of 

interaction strength estimates and the variation associated with the estimates increased with 

trophic level, that the ratio of intra- to interspecific interaction strength is small (a11 / a12 lies 

between -0.01 and -0.001), that intraspecific interaction strengths can vary with food web 

structure and that plant-herbivore interaction strengths can be nonlinear. To further 

understand how species interact within a community will require more experimental data that 

manipulates multiple species at multiple densities, that describes who interacts with whom, 

that quantifies species population dynamics through time (on more than just two occasions), 

and which ultimately provides a framework within which to validate model predictions 

regarding the future consequences of biodiversity loss. 
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Derivation of the Intraspecific Dynamic Index 

 

Given the discrete-time version of the generalised Lotka-Volterra multispecies equations: 
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where : 

B
H

i,t is the biomass of species i at time t in the treatment where the initial density of species i 

was high 

B
L

i,t is the biomass of species i at time t in the treatment where the initial density of species i 

was low 

B
H

i,0  is the initial biomass of species i in the high treatment 

B
L

i,0 is the initial biomass of species i in the low treatment 

ri is the intrinsic growth rate of species i 

aik is the per unit mass effect of species k on species  i 

Bk,0 is the initial biomass of species k 

aii is the per unit mass effect of species i on itself 

t is the length of time that the experiment runs for 

 

Dividing equation (1a) by equation (1b) gives:  
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Rearranging and taking the natural log of both sides of the equation, we obtain: 
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APPENDIX B 
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Details of Experimental Method 

Plants were grown under identical conditions for each time block. Approximately 150 broad 

bean seeds were soaked in water for 2 days, and then placed in trays of damp vermiculite for 

8 days to germinate. After germination, 60 plants of similar size were selected and 

transplanted into pots filled with vermiculate and 100ml of Hoagland solution (concentration 

1.6g of Hoagland per 1000ml of water). An additional 20 plants that varied in size were 

grown and used to calculate the relationship between a plant’s fresh weight and dry weight. 

All the plants were placed under 30 watt Grolux fluorescent lights and after four days were 

given another 100ml of Hoagland solution. The lights had a day-night cycle of 16:8 hours. 

The plants remained under the lights for a further ten days where they were given 50ml of 

Hoagland solution every other day until the start of the experiment.  

 

On the first day of the experiment 56 plants of a similar size were selected for the mesocosm 

experiment.  Each whole plant was weighed after its roots were washed gently and dried, to 

remove any remaining vermiculite. Plants were then re-potted in vermiculite in their different 

density treatments, labelled and each pot was given 500ml of water followed by 200ml of 

Hoagland solution.  

 

A stock culture of Acyrthosiphon pisum was reared under laboratory conditions on dwarf 

broad bean plants under 30 watt Grolux fluorescent lights with a day-night cycle of 16:8 

hours. Fourth instar/adult aphids of length 2 – 3.5mm with an estimated mean length of 

2.75mm were evenly distributed onto mesocosm plants with a dampened brush. Lacewing 

larvae were obtained commercially (Koppert Biological Systems in the Netherlands), and 

second instar lacewing larvae with a length of between 3 – 5mm were put onto plants using a 

damp brush.  

 

All mesocosms were placed under 30 watt Grolux fluorescent lights with a day night cycle of 

16:8 hours. On days three and five of the experiment each pot was given a further 200ml of 

Hoagland solution. At the end of the experiment the dry weight of the plants was estimated 

by removing the plants from the pots, washing the roots gently to remove all visible traces of 

vermiculite, and then dried in the oven at 60
°
C for 3 days. Living aphids and lacewing were 

carefully removed from each mesocosm and put into 70% alcohol before they were later 

dried at 60
°
C for 3 days. 
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To calculate interaction strengths, dry weights for each species at the start of the experiment 

were required. The initial dry weight of each plant was calculated from the relationship 

between fresh weight and the dry weight of the plants (y = 0.27 + 0.06x, r
2
 = 0.73, n = 71). 

To estimate the initial dry weight of aphids and lacewing larvae, the initial abundances in 

each treatment were multiplied by the average dry weight of an adult aphid (0.000264g) and a 

second instar lacewing larva (0.000195g). 
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PATTERNS OF TOTAL NET EFFECTS ACROSS FOOD WEBS OF VARYING 

SIZE AND COMPLEXITY 
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Abstract 

The impact that a species has on the community in which it is embedded can be measured as 

a species’ total net effect, which quantifies how a small sustained change in the equilibrium 

biomass density of an individual species affects the equilibrium biomass densities of all other 

species in the community. In this study, I examine how species traits (body size and linkage 

density) affect the total net effect that a species has in its community. The relationships were 

investigated over a range of food web properties (species richness, connectance, mean 

clustering coefficient, average shortest path length and the proportion of basal, herbivore, 

intermediate and top carnivore species) using a set of 100 synthetic webs and 2 real webs 

(Ythan Estuary and Tuesday Lake). 

 

The results from this study show that there is a strong positive relationship between the body 

size of a species and the total net effect it has on a community, that is; species with a large 

body size have a large impact on their community. This relationship was found to be 

consistent whether trophic interaction strengths are measured on a per unit mass or per capita 

basis and the relationship holds for webs of varying size and complexity.  The relationship 

between the linkage density of a species and the total net effect it has on a community seems 

to depend on the structure of the surrounding community. A negative relationship between 

the linkage density of a species and the total net effect it has on a community was found for a 

subset of 38 synthetic webs The webs where the negative relationship was present have low 

clustering coefficients and long average shortest path lengths compared to the subset of webs 

where the relationship was not present. The negative relationship between species linkage 

density and total net effects breaks was not present for smaller simpler webs. 
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Introduction 

Ecosystems throughout the globe are changing due to human activities (Vitousek et al. 1997, 

Steffen et al. 2005), these changes can affect food webs through biodiversity loss (Pimm et al. 

1995, Brooks et al. 2002, Butchart et al. 2010) and shifts in species traits (Root et al. 2003). 

Biodiversity loss reduces the size of food webs and simplifies their structure, while shifts in 

species traits can alter intrinsic rates and interactions between species. Additionally, 

interactions between species are affected by the size and structure of the surrounding 

community (Paine 1966, Koh et al. 2004, Otto et al. 2008) and changes to a single species 

can affect the entire community through the spread of direct and indirect effects (Schmitz et 

al. 2003, Ebenman and Jonsson 2005), thus the impacts of biodiversity loss, and changes to 

species traits, on ecological communities remain unclear.  

 

The impact that a species has within communities of varying size and structure can be 

quantified by examining the total net effect of each species within the community. The total 

net effect of a species is a measure that quantifies how a small sustained change in the 

equilibrium biomass density of that individual species affects the equilibrium biomass 

densities of all other species in the community. This type of small sustained change in the 

equilibrium biomass (or population) density of a species was considered by Bender et al. 

(1984) where it was described as a press perturbation, and has since been studied in Yodzis 

1988, Schmitz 1997, Laska and Wootton 1998, Montoya et al 2005, Montoya, Woodward et 

al. 2009, O'Gorman, Jacob et al. 2010, and in particular Berg et al. (2011) where it was used 

as a measure of community robustness.  

 

The total net effect of a species has been largely defined within the Lotka-Volterra 

framework. In a Lotka-Volterra system, the parameters determining the nature and the 

strength of an interaction between two species are referred to as interaction strengths and are 

often denoted by aij. The units of aij can vary and can be quantified either in terms of per 

capita effects or per unit biomass effects. Here, we consider aij to represent the per unit mass 

effect of species j feeding on species i per unit of time. The community matrix is the matrix 

whose ij
th

 entry is aij, thus the community matrix contains the interaction strengths between 

every pair of species in the community, and it is often denoted by A. For clarity we note that 

the community matrix, A is different to the Jacobian matrix (often denoted by C) where the 

entries, cij, represent the per unit mass effect of species j on the population biomass of species 

i per unit of time. The analysis presented by Bender et al. (1984) shows that the net effect of 
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species j on species i (the sum of both direct and indirect effects) can be calculated by 

applying a press perturbation to the equilibrium biomass density of species j, the effect of this 

press perturbation on the equilibrium biomass density of species i in a multispecies 

community is defined by the ij
th

 element of the community matrix, A
-1

. Such a press 

perturbation can occur through the sustained removal or addition of a constant biomass of a 

species to a community (e.g. fishing) or through a change in the intrinsic growth/mortality 

rate of a species (e.g. global warming induced changes to intrinsic rates or habitat loss). An 

alternative measure of net effects was used in a study by Berlow et al. (2009) where 

simulations were run to estimate the net effect of species in 600 different communities, 

ranging from 10-30 species. The net effect of species j on species i was defined to be the 

difference in the time averaged population biomass of species i in the presence and absence 

of species j.  

 

When Yodzis considered the effect of press perturbations on a set of  sixteen empirical food 

webs he found that the response of the communities was highly indeterminate (Yodzis 1988). 

Yodzis defined the elements of the community matrices randomly from within an 

ecologically plausible interval. For each of the 16 food webs he considered, 100 different 

feasible and locally stable parameterisations of the community matrix were examined. He 

found that not only were the magnitudes of species responses to a press perturbation 

unpredictable, the direction (either an increase or a decrease in population density) of a 

species responses could also vary depending on the parameterisation of the food web. He 

concluded that predicting the response of a community to a press perturbation would be a 

daunting prospect indeed (Yodzis 1988).  

 

The elements of the inverse community matrix, A
-1

, are determined by the structure and the 

magnitude of the entries in the community matrix A. Dambacher, Li et al. (2003) explored the 

effect of food web structure on the qualitative response of communities to press 

perturbations. The study examined the proportion of positive and negative feedback cycles 

that make up each element of the inverse community matrix and found that the direction of 

species response to a press perturbation is sometimes based solely on community structure, 

however, they found that in general, the elements of the inverse community matrix are a 

mixture of positive and negative feedback cycles and the direction of the response is 

dependent on the magnitude of the entries in the community matrix A.  
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The present study aims to further our understanding of the response of communities to press 

perturbations by investigating the factors that determine the magnitude of species net effects 

in communities. Specifically, by examining how species traits (body size and linkage density) 

and food web properties (species richness, connectance, mean clustering coefficient, average 

shortest path length and the proportion of basal, herbivore, intermediate and top carnivore 

species) affect the total net effect that a species has in a community. To understand the 

mechanisms driving these relationships we examine the relationship between species traits, 

food web properties and the community matrix and also between the community matrix and 

its inverse (Figure 3.1). Finally we checked the consistency of the relationships when trophic 

interactions were measured on a per capita basis rather than a per unit mass basis.  

 

 

 

Figure 3.1 A schematic representation, showing how species total net effects can be influenced by species traits 

and food web properties via the community matrix. Note that food web properties are shown in bold type and 

species traits are shown in regular type. 
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Materials and Methods 

Consider the following Lotka-Volterra system where dynamics of species i in a community 

consisting of n species is given by: 

 














 



n

j

jijii
i BarB

dt

dB

1

 

 

where Bi is the biomass of species i, ri is the intrinsic growth rate of species i  (kg.kg
-1

t
-1

) and 

aij is the per unit mass effect of species j feeding on species i per unit of time (kg
-1

t
-1

).  We 

define the net effect of species j on species i to be the change in the equilibrium biomass 

density of species i due to the sum of both the direct and indirect effects caused by a small 

press perturbation to species j. The net effect of species j on species i is given by the ij
th

 

element of the inverse community matrix, A
-1

, denoted by γij (Bender et al. 1984). The total 

net effect of species j is a measure of the change in equilibrium biomass densities of all 

species in the community following a small press perturbation to species j. We denote the 

total net effect of species j by Sj which is defined to be the sum of the absolute values of 

elements of column j in the inverse community matrix A
-1

, i.e. 



n

i

ijjS
1

  this measure was 

first used by (Berg et al. 2011) where it was referred to as the sensitivity of equilibrium abun-

dances to changes in growth rates.    

 

To examine the relationship between a species trait and the community matrix and between 

the community matrix and its inverse we calculate the following metrics: the total direct 

effect of a species, the mean direct effect of a species and the variation in the direct effect of a 

species (see Table 3.1 for definitions). 
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 Table 3.1 Definitions of the community matrix metrics.  

Description Formula 

The total direct effects of species j, Dj , is defined to be the 

sum of the absolute values of the j
th

 column of the 

community matrix A: 





n

i

ijj aD
1

 

The average direct effect of species j, is given by: 

n

a

D

n

i

ij

j


 1  

The variation in the direct effect of species j, is given by: 
 

 

1

2

1










n

Da

DVar

n

i

jij

j  

 

Food Webs 

Analyses were carried out on two sets of food webs; 100 synthetic webs and 2 real webs 

(Ythan Estuary and Tuesday Lake). Each of the 100 synthetic food webs was created 

sequentially using an assembly algorithm from a previous study (Säterberg et al. 2013). The 

algorithm was initiated with a feasible locally stable community consisting of 7 competing 

basal species whose body masses were drawn from a uniform distribution. At each step a new 

species was added to the community and the dynamics observed. Each new species, either 

basal, herbivore or carnivore was chosen at random and allocated a body mass drawn from a 

uniform distribution associated with the relevant trophic position. All feeding interactions 

were determined from this body mass (see Appendix C for a detailed description). After each 

addition, the new equilibrium was checked for feasibility and local stability. If the new 

equilibrium did not satisfy the criteria then the community was returned to the previous step 

and the process repeated. If these criteria were satisfied then the new community was retained 

and the process repeated until the community contained 50 species. 

 

The Ythan Estuary is located near Aberdeen in Scotland where the Ythan River meets the 

North Sea. The Ythan Estuary food web is well resolved and has been studied extensively 

(Hall and Raffaelli 1991, Dunne et al. 2002a, Montoya and Solé 2002, Emmerson and 

Raffaelli 2004). The version used in this study has is a total of 87 species, consisting of 4 

basal species (detritus, phytoplankton, algae and particulate organic matter), 31 herbivore 

species (including macroinvertebrates, birds and fish) and 52 carnivore species (including 

crustaceans, molluscs, polychaetes, fish and birds) (Emmerson and Raffaelli 2004). The body 

sizes range from 10
-11

 to 10
2
 kg. Tuesday Lake is a freshwater lake located in Michigan, 
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United States. The Tuesday lake food web is one of the most widely studied food webs 

(Cohen et al. 2003, Reuman and Cohen 2004, Jonsson et al. 2005, Petchey et al. 2008a, 

Thierry et al. 2011, Eklöf et al. 2012). The version used in this study describes a pelagic 

community containing 51 species, consisting of 29 basal species (phytoplankton), 15 

herbivore species (zooplankton) and 7 carnivore species (zooplankton and fish) (Cohen et al. 

2003). The body sizes range from 10
-13

 to 10
-1

 kg. 

 

Population Dynamics 

All food webs were initially parameterised following the energetics based approach used in 

(Säterberg et al. 2013) (see Appendix C for details) with one difference; interspecific 

competition between basal species was not included in any of the food webs used in this 

study. Interspecific competition between basal species was removed for this study because 

we focus on the relationship between the linkage density, defined by trophic interactions, of a 

species and its total net effect in the community. The inclusion of non-trophic interactions in 

the community matrix would alter both the linkage density of a species and the inverse 

community matrix. The removal of interspecific competition between basal species in this 

study had a destabilising effect on the synthetic food webs used and, in addition, it was not 

possible to obtain feasible, stable parameterisations for the two real food webs using this 

parameterisation method alone. It was necessary to introduce an additional parameterisation 

algorithm (Pimenov, manuscript in preparation) that made small adjustments to the 

community matrix by allowing the parameter that determined the strength of trophic 

interactions to vary between ecological limits, this algorithm consistently produced food 

webs that were feasible, and locally stable (Appendix C).  

 

Extinction sequences 

To investigate the effect of biodiversity loss on the relationships between species body size, 

linkage density and total net effects, a series of extinction sequences were carried out on the 

synthetic and real webs to create subsets of food webs of varying size and complexity. For 

each pre-extinction food web, 100 different random extinction sequences were simulated. 

After setting initial biomass abundances to equilibrium values, a primary extinction removed 

a single (randomly chosen) species from the web and the dynamics of the new community 

were monitored. At this point the population biomasses could settle down to a new 

equilibrium, cycle, or secondary extinctions could occur.  The simulation was stopped when 

all species biomass abundances were within 10% of the new equilibrium biomass 
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abundances. Any species exhibiting a 99.9% decline in biomass density were removed, 

recorded as secondary extinctions and the simulation continued. If there were no further 

secondary extinctions and the new equilibrium was locally feasible and stable then the results 

were recorded and the next primary extinction took place. If species biomass abundances did 

not settle to within 10% of the new equilibrium biomass abundances within 10,000 time steps 

then the biomass abundances were checked and any species exhibiting a 99.9% decline in 

biomass density were removed, recorded as secondary extinctions and the simulation 

continued. This sequence of events was repeated until all species had been lost from the 

community. Secondary extinctions often occurred, so the size of the community after each 

primary extinction varied. 

 

Data analysis 

For each pre-extinction food web (containing all 50 species), the relationships between the 

total net effect of species j, and the body size and linkage density of species j were examined 

using multiple linear regression analysis, where the data for each explanatory variable was 

standardised before use. The effect of the measure used to estimate interaction strengths (per 

unit mass vs. per capita) on the relationship between species traits and total net effects was 

checked by performing the same multiple regression analysis on the set of synthetic food 

webs where interaction strengths were measured on a per-capita basis.  

 

To further understand the relationships, a data set was created from all the pre-extinction 

synthetic webs that showed a negative relationship between species total net effects and 

linkage density (approximately 40% showed this negative relationship).  The new data set 

was split containing the following four trophic groups: basal, herbivore, intermediate 

consumers and top carnivores. For each trophic group, the relationships between a species 

total net effect and its body size and linkage density were examined using a mixed effect 

model with species body size and linkage density as fixed effects and food web ID as a 

random effect on the intercept and on the slope of species linkage density.  

 

To investigate why the total net effect of each species, in the community, was related to its 

body size and linkage density we calculated Pearson’s correlation coefficients between a 

species body size/linkage density and its total direct effect, Dj (the column sum of a species 

entries in the community matrix) and between a species total direct effect, Dj and its total net 

effect.  
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The effect of food web structure on the relationship between species linkage density and total 

net effects was examined further by splitting the synthetic webs into two data sets, one set 

where the statistical analysis detected a negative relationship between species linkage density 

and total net effects and one set where it did not. Differences in the following food web 

properties were checked using t-tests: food web connectance, mean clustering coefficient, 

average shortest path length and the proportion of basal, herbivore, intermediate and top 

carnivore species.  

 

The effect of biodiversity loss on the relationship between species body size, linkage density 

and total net effect was explored using data from the extinction sequences. For each complete 

food web, the extinction sequences yielded a subset of webs of varying size and complexity 

and for each sub-web the Pearson’s correlation coefficient between species body size and 

total net effect and species linkage density and total net effect was calculated.  

 

  Models were selected using stepwise deletion with the likelihood ratio test. Final parameter 

estimates, along with standard errors for all parameters retained in each model, are presented 

in Appendix D (Tables D1, D2 and D6). Homogeneity of variance and normality of the 

standardised residuals was satisfied for all models. All statistical analyses were undertaken 

using R version 2.14.2 (R Development Core Team 2013), mixed effect models used the 

‘lme4’ package. The simulations and calculation of correlation coefficients were performed 

using MATLAB version 7.7.0 (MATLAB 2008).  

 

Results 

The relationships between species body size, linkage density and total net effect were initially 

analysed for each of the synthetic webs and for the Tuesday Lake food web before any 

extinctions sequences were run. Three of the synthetic webs had ill-conditioned community 

matrices (likely due to large differences in the order of magnitude of entries) so were 

excluded from the analysis, leaving a set of 97 synthetic webs of size 50 to be analysed. The 

community matrix for the Ythan estuary food web was also ill-conditioned but rather than 

exclude this data set entirely we analysed the largest well-conditioned sub-web (containing 

53 species) obtained from the extinction sequences. 

 

Out of the 97 synthetic food webs it was found that 8 had a significant negative correlation 

between species body size and linkage density (see Appendix D, Table D3). For these 8 webs 
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species linkage density was excluded as an explanatory variable due to collinearity. Initially 

species trophic height was also considered as an explanatory variable but since it was 

strongly collinear with body size in all the webs examined it was also excluded (see 

Appendix D, Tables D3 and D4). The full linear model used for each of the remaining 89 

synthetic webs and the two real webs included body size, linkage density and their two-way 

interaction as explanatory variables.  

 

The relationship between a species body size and its total net effect  

There was a positive relationship between the body size of a species and its total net effect for 

all the webs analysed (see Figure 3.2a for correlation coefficients and Appendix D, Tables D1 

and D2 for linear models), indicating that larger bodied species have the greatest total net 

effect in a community. Further, over all 97 synthetic food webs, body size accounted for, on 

average, 87% of the variation in total net effects, thus we conclude that body size is the most 

influential factor in determining a species total net effect in the community. There was a 

negative relationship between the body size of a species and its total direct effect, Dj and a 

negative relationship between a species total direct effect, Dj and its total net effects for the 

synthetic webs (Figure 3.2b and c) and the real food webs (Appendix D, Table D5). 

 

For the set of synthetic food webs where trophic interactions were measured on a per capita 

basis, the relationship between the body size of a species and its total net effect remained 

positive (Figure 3.2d for correlation coefficients and Appendix D Table D6 for linear 

models). However, there was a positive relationship between the body size of a species and 

its total direct effect, Dj, (Figure 3.2e) and a positive relationship between a species total 

direct effect, Dj and its total net effect (Figure 3.2f). Despite differences in the community 

matrices, perturbations to large bodied species have the greatest impact on equilibrium 

densities for both per capita and per unit mass measures.   
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Figure 3.2 The distribution of Pearson’s correlation coefficients (r) between (a) a species body size and its total 

net effects (per unit mass measure), (b) a species body size and its total direct effect Dj (per unit mass measure), 

(c) a species total direct effect Dj  and its total net effect (per unit mass measure), (d) a species body size and its 

total net effects (per capita measure) (e) a species body size and its total direct effect, Dj (per capita measure) (f) 

a species total direct effect, Dj and its total net effect (per capita mass measure). 
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The relationship between a species linkage density and its total net effect  

  In the set of 89 synthetic webs where species linkage density was not collinear with body 

size, there was a negative relationship between the linkage density of a species and its total 

net effect for 38 webs, a weak positive relationship for 1 web and for the remaining 50 webs 

species linkage density was not retained in the model (see Figure 3.3 for a summary or 

Appendix D, Table D1 for details). Out of the subset of 38 webs that showed a negative 

relationship between species linkage density and total net effect there were 4 webs that also 

retained a two way interaction between species body size and linkage density, suggesting 

that, in those webs, the relationship between linkage density and total net effect may depend 

on the body size of a species. There was a negative correlation between species linkage 

density and total net effects for the Ythan Estuary sub-web but the Tuesday Lake food web 

showed a positive correlation (Appendix D, Table D2). 

 

 
Figure 3.3 Bar chart showing the proportion of food webs that showed (i) no relationship, (ii) a negative 

relationship or (iii) a positive relationship between species linkage density and total net effect. The grey shading 

represents the proportion of food webs where there was an interaction term present between body size and 

linkage density.  

Further analysis of the set of 38 webs that showed a negative relationship between species 

linkage density and total net effect indicates that this negative relationship only occurs in the 

basal and herbivore trophic levels (Table 3.2). The positive relationship between body size 

and total net effects is consistent within the basal, herbivore and intermediate consumer 

trophic levels but no relationship was detected between body size and net effects for the top 
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carnivores (Table 3.2). The lack of relationship for top carnivores may be due to the small 

number of top carnivores present in the food webs. 

 
 Table 3.2 Results from the four mixed effects models analysing the relationship between species body size, 

linkage density and total net effect within each trophic level for the set of 38 webs that showed a negative 

relationship between linkage density and total net effect. Models were selected using stepwise deletion with the 

likelihood ratio test and therefore all terms retained in the model and Table 3.2 are of importance. 

Trophic 

Level 

Intercept 
  

Body Size 
  

Linkage Density 

Estimated 

Coefficient 

Standard 

Error  

Estimated 

Coefficient 

Standard 

Error  

Estimated 

Coefficient 

Standard 

Error 

1 4.33 0.13 
 

0.21 0.02 
 

-0.16 0.05 

2 9.02 0.14 
 

0.38 0.03 
 

-0.43 0.06 

3 8.54 0.13 

 

0.33 0.06 

 
  

4 9.51 0.15 

       

The full model analysed was given by: log(Yjk) ~ α + β1(log(mjk)) +  β2(Ljk) + β3(log(mjk)Ljk) + γk + β2k(Ljk) + ε  
        

        

where Yjk represents the total net effect of species j in food web k, mjk represents the body mass of species j in  

food web k and Ljk represents the linkage density of species j in food web k. 

The parameter γk represents the random effect of food web k on the intercept and β2k represents the random 

effect of food web k on the slope for linkage density.     

Final model for trophic level 1: log(Yjk) ~ α + β1(log(mjk)) +  β2(Ljk)  + γk + β2k(Ljk) + ε                     

Final model for trophic level 2:  log(Yjk) ~ α + β1(log(mjk)) +  β2(Ljk)  + γk + β2k(Ljk) + ε                     

Final model for trophic level 3:  log(Yjk) ~ α + β1(log(mjk))   + γk  + ε                         

Final model for trophic level 4:  log(Yjk) ~ α   + γk  + ε                             

 

Correlations between a species linkage density and its total direct effect, Dj, its mean net 

effect, jD  and the variance of the direct effects, Var(Dj) were checked for all 38 webs that 

showed a negative relationship between species linkage density and its total net effect but no 

relationships were found (Appendix D, Table D7).  

 

To check the effect of food web structure on the relationship between linkage density and 

total net effect, the synthetic food webs were split into two groups; group A contained all 38 

webs that showed a negative relationship between linkage density and total net effect and 

group B contained all 50 webs where no relationship was found. Differences in food web 
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properties where checked using t-tests. The mean clustering coefficient for webs in group A 

(0.19) was significantly less than the mean clustering coefficient for webs in group B (0.22, p 

= 0.04, n = 88) and the average shortest path length for webs in group A was significantly 

longer (1.92) than the average shortest path length for webs in group B (1.86, p = 0.01, n = 

88). No significant differences in food web connectance or the proportion of species at each 

trophic level were detected. 

 

For the case where trophic interaction strengths were measured on a per capita basis, there 

were 83 synthetic webs where the community matrices were invertible and species linkage 

density was not collinear with body size. Out of this set of 83 webs, there was a negative 

relationship between the linkage density of a species and its total net effect for 27 webs and 

for the remaining 56 webs species linkage density was not retained in the model (Appendix D 

Table D6). Out of the 27 webs where a negative relationship was found for the per capita 

measure, 25 of these also showed a negative relationship for the per unit mass measure, 

giving a positive percentage agreement value of 93%.  Out of the 56 webs where a negative 

relationship was not detected for the per capita measure, 45 of these did not show a negative 

relationship for the per unit mass measure, giving a negative percentage agreement value of 

80%. Overall, out of the 83 webs, the detection of a negative relationship (or not) was 

consistent for both measures in approximately 84% of the webs (Table 3.3). 

 

Table 3.3 The effect of the unit of measurement on the distribution of webs that had a negative relationship 

between species linkage density and total net effects. 

Per unit mass 

measure 

  Per capita measure 

  Negative Relationship No Relationship Total 

Negative 

Relationship 
  25 11 36 

No Relationship   2 45 47 

Total   27 56 83 

 

  

The effect of biodiversity loss on total net effects  

The mean net effect was calculated for each pre-extinction synthetic food web and for each 

food web generated by the extinction sequences. For each pre-extinction synthetic food web 

and its subset (97 data sets), Pearson’s correlation coefficient between the mean net effect 

and web size was calculated. The correlations show that larger webs have larger mean net 

effects (Figure 3.4).  
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Figure 3.4 The distribution of Pearson’s correlation coefficients (r) between webs size and the mean net effect 

calculated for each web for all 97 data sets generated from the synthetic webs. All data sets apart from one 

showed a positive relationship between web size and mean net effect. The mean net effect for each web was 

calculated by averaging over all the rows and columns of A
-1 

 

The correlation coefficient between species body size and total net effect was calculated for 

all 97 pre-extinction synthetic webs and their subsets. The positive relationship between 

species body size and total net effect holds as webs get smaller (Figure 3.5a). To check 

whether the negative relationship between species linkage density and total net effects 

remains as webs get smaller, the correlation coefficient between species linkage density and 

total net effect was calculated for the set of 38 synthetic webs that showed a negative 

relationship and their subsets (Figure 3.5b). In general, the relationship seemed to break down 

as webs got smaller, although some strong negative correlations did remain for smaller webs. 

It is possible that the strong negative correlations found for small webs are due to an increase 

in collinearity between linkage density and body size as webs get smaller. 
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 Figure 3.5 (a) The positive relationship between species body size and total net effects holds as webs get 

smaller. (b) The negative relationship between species linkage density and total net effects breaks down as webs 

get smaller.  
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Discussion 

Five main results emerged from this study: first, there is a strong positive relationship 

between the body size of a species and the total net effect it has on a community (Figure, 

3.2a, Appendix D, Tables D1 and D2 and Figure 3.5a). Second, the relationship between the 

linkage density of a species and the total net effect it has on a community seems to depend 

on the structure of the community: the subset of food webs where a negative relationship 

between a species linkage density and its total net effect was detected have low clustering 

coefficients and long average shortest path lengths compared to the subset of webs where the 

relationship was not detected. Third, the relationships between body size and species total 

net effects are consistent whether trophic interaction strengths are measured on a per unit 

mass or per capita basis. Fourth, on average, species have larger net effects in species rich 

communities (Figure 3.4). Fifth, the positive relationship between species body size and 

total net effects holds as webs get smaller, but the negative relationship between species 

linkage density and total net effects breaks down as webs get smaller. 

 

Body Size 

There was a strong positive relationship between the body size of a species and the total net 

effect it has on a community for all the webs examined, supporting the results from previous 

studies on the Ythan Estuary food web (Montoya 2005) and the Baltic Sea and Lake Vättern 

food webs (Berg et al. 2011), where, for each food web a positive relationship between 

species body size and total net effect was found. This result implies that perturbations to 

species with a large body size will have greatest impact on the equilibrium biomass 

distribution of a community. However we note the results from (Berg et al. 2011) where the 

relationship between body size and total net effect depended on the type of perturbation 

applied. If the perturbation considered was of the same order of magnitude to all species 

regardless of body size then a positive relationship was found. For the Baltic Sea and Lake 

Vättern food webs, if the perturbation applied was proportional to the growth rate of a 

species then the relationship was reversed and the smallest species tended to have the largest 

net effect in the community. For completeness we checked the relationship between body 

size and total net effect, when the perturbation was proportional to the growth rate and we 

found that the relationship remained positive but was weak and was only significant for 37 

of the 97 synthetic food webs (Appendix D, Table D8). For our synthetic data set the 

positive relationship between body size and total net effects was strong enough that the 

scaling of the total net effects by the growth rate of a species did not affect the sign of the 

relationship, only the magnitude. This different result may be due to the fact that the 
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synthetic webs used in this study are more strictly size structured than the real webs used in 

Berg et al. (2011). The study by Montoya (2005) did not detect a relationship between body 

size and the average net effect of a species for the Broadstone stream food web. One 

possible explanation put forward was that since there was a high level of redundancy in the 

top trophic level of the Broadstone stream, species of a similar size may compensate 

following perturbations to large bodied species thus reducing the impact of the perturbation. 

Alternatively, it was proposed that the Broadstone stream food web did not contain the large 

predators such as birds that were present in the Ythan Estuary food web so that the gradient 

of body size present in the Broadstone stream food web was not large enough for the 

relationship to emerge. It is interesting to note that in the study (Montoya 2005), the 

community matrix for the Ythan Estuary food web was parameterised using predator-prey 

body size ratios, similarly to the study presented here, whereas the Broadstone stream food 

web was parameterised empirically using information from gut analysis (Woodward and 

Hildrew 2002). 

 

To identify the mechanism leading to a positive relationship between body size and total net 

effect, we examined the column sums of the community matrix (the total direct effect Dj) 

and found that they were negatively correlated with species body size, and that in turn the 

column sums of the community matrix were negatively correlated with the column sums of 

the inverse matrix (the total net effects) (Figure 3.2 and 3.6 for an overview). The negative 

relationship between species body size and its entries in the community matrix is a 

consequence of the metabolic based parameterisation of the food webs, one which has been 

widely implemented in a number of studies, e.g. (Yodzis and Innes 1992, Brose et al. 2005a, 

Otto et al. 2007, O'Gorman et al. 2010). Species with a large body size have a lower per unit 

mass consumption rate than species with a small body size, thus per unit mass interaction 

strengths (the entries in the community matrix) are smaller. In light of this, the positive 

relationship between species body size and its total net effect seems counterintuitive: species 

with small direct effects have large net impacts on equilibrium biomass abundances. This 

relationship is a result of the inversion process which, for a community of 50 species, is 

difficult to elucidate. We considered whether the negative relationship between the column 

sums of the community matrix (Dj) and the column sums of its inverse matrix (total net 

effect) was simply a result of the inversion process, but it is not true in general that if 

column j of a matrix has a small sum (relative to the other columns) then column j of the 

inverse matrix will have a large sum (relative to the other columns). This fact is highlighted 

when we consider the case where trophic interactions are measured on a per capita basis: 
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species with a large body size have strong trophic interactions and thus the column sums of 

the community matrix are large. When we checked the relationship between the column 

sums of the community matrix and its inverse (where trophic interactions are measured on a 

per capita basis) we found a positive relationship, i.e. species with a large total direct effect 

also have a large net effect.  We conclude that the relationship between a species body size 

and its total net effect is not driven by the column sums of the community matrix but, 

encouragingly, the relationship is consistent for both per unit mass and per capita measures 

of interaction strength.     

 

The results from the extinction sequences showed that species with a large body size have the 

greatest net effect in the community regardless of species richness. As food webs decreased in 

size, species with a large body size still had the greatest total net effect in the community. The 

strength and consistency of this positive relationship predicts that a wide range of ecological 

communities can be greatly affected by perturbations to large bodied species, which has been 

documented empirically (Wootton 1993, Estes and Duggins 1995, Shurin et al. 2002, Estes et al. 

2011). To further add to the vulnerability of communities, it has also been documented that large 

bodied species are often the most at risk to human-induced perturbations (Petchey et al. 1999, 

Myers and Worm 2003, Estes et al. 2011).  

 



 

66 

 

Figure 3.6 Diagram summarizing the relationships between a species body size, linkage density, total direct 

effects D
j
, and its total net effects for case (a) where trophic interactions are measured on a per unit mass basis 

and for case (b) where trophic interactions are measured on a per capita basis. Species linkage density is not 

correlated with total direct effects D
j,
 the mean direct effects or the variance of the direct effects Var(D

j
). 

Linkage Density 

The negative relationship between the linkage density of a species and its total net effect was 

only present for 38 of the 97 food webs analysed, indicating that a species total net effect 

may depend on the structure of the community in which it is embedded. A negative 

relationship between species linkage density and its average net effect was found in the 

experimental marine communities of Lough Hyne studied by O’Gorman et al. (2010), where 

average species net effects were calculated empirically (using a modification of the dynamic 

index) and theoretically (using metabolic scaling similar to the present study). Both the 

theoretical and the empirical estimates of average net effects had a negative relationship 

with species linkage density. This negative relationship was also found for the Ythan 

Estuary and Broadstone Stream food webs (Montoya et al 2005), but was not present in the 

Baltic Sea and Lake Vättern food webs (Berg et al. 2011). 

 

Further examination of the set of 38 webs where a negative relationship between linkage 

density and total net effect was detected, found that the negative relationship was only 

present in the basal and herbivore trophic levels. This could be due to the fact that the 

negative relationship between linkage density and total net effect is relatively weak and the 

lower numbers of consumer and top carnivore species make it less likely to be detected 

statistically.  

 

For the 38 synthetic webs where the negative relationship between species linkage density 

and total net effect was present, there were no obvious relationships detected between the 

linkage density of a species and its entries in the community matrix. The lack of 

relationships is possibly due to the overwhelming effect of body size on a species direct 

effect; however, there were structural differences between the set of 38 synthetic food webs 

where the negative relationship was present and the set of 50 synthetic webs where it was 

not. The 38 synthetic webs where the negative relationship was present had significantly 

lower clustering coefficients and significantly longer average shortest path lengths than the 

50 webs where the relationship was not present. To calculate the clustering coefficient, the 

number of feeding links between species that have a direct link to a focal species is divided 

by the number of links that could possibly exist between them and this ratio is averaged over 
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all species in the web. Thus, for the set of food webs where a negative relationship was 

detected, a species neighbours are less likely to be connected to each other than in the set of 

webs where the relationship was not detected. It is possible that the effect of a species 

having many links to other species is reduced in webs with high clustering coefficients since 

the clusters of species may act in a similar way to a highly connected species.  

The average shortest path length is calculated by averaging the most direct path between 

each species pair in the food web. The set of webs where the negative relationship between 

species linkage density and total net effects was present had significantly longer average 

shortest path lengths that the set of webs that did not; one possible explanation for this is that 

in webs with a long average shortest path length, there are no shortcuts (through omnivory) 

and therefore there are more links for a species effect to pass through, weakening 

interactions so that weak effects are weakened further  in webs with a long average shortest 

path length.  Although have possible biological reasons for the effect of food web structure 

on the relationship between species linkage density and total net effect have been outlined, it 

should be noted that while the results were statistically significant, it is possible that they 

may not be biologically significant and further investigation is needed.   

 

The analysis of the relationship between linkage density and species total net effect for the 

synthetic webs where trophic interactions were measured on a per capita basis found a set of 

27 webs where the negative relationship was present; 25 out of the set of 27 per capita webs 

were also present in the set of 38 per unit mass webs. The consistency of the results across 

different patterns of interaction strength in the community matrix (i.e. per capita or per unit 

mass measures of interaction strength) indicates that the negative relationship is a result of 

the topological structure of the community matrix.  

 

The negative relationship between linkage density and total net effect broke down as 

biodiversity decreased. As biodiversity decreases, so too does the potential number of 

trophic links that a species can have, thus the gradient of linkage density is reduced and the 

relationship breaks down. 

 

Mean net effect 

The mean net effect for a community (the mean entry in the inverse community matrix) had 

a positive correlation with biodiversity; larger webs had larger mean net effects. If a 

community has a large mean net effect then small changes to a species equilibrium biomass 

densities cause large changes to the distribution of community biomass densities. The larger 
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the changes in equilibrium biomass densities the more likely it is that a community is 

destabilised and extinctions will occur. This may imply that communities with high 

biodiversity are less stable than communities with few species, as shown for the community 

matrix (May 1973) where interaction strengths are randomly assigned. May’s (1973) results 

have since been contradicted in many studies where ecological and empirical information 

was used to estimate trophic interaction strengths (Yodzis 1981, Moore and William Hunt 

1988, de Ruiter et al. 1995, Jonsson and Ebenman 1998, McCann et al. 1998, Neutel et al. 

2002, Emmerson and Raffaelli 2004, Neutel et al. 2007). In general, it is not true that the 

larger the dimensions of a matrix the larger the elements of its inverse so although we have 

found this pattern in our study, examination of species total net effects in other studies is 

needed. 

 

In this study we examined the total net effect of a species by summing the absolute values of 

the entries of the inverse community matrix which gives a measure of the influence of a 

species in a community. Given the complex nature of the inversion process, it is difficult to 

predict entries in the inverse community based on entries in the community matrix (Yodzis 

1988, Dambacher et al. 2003). The aggregation of species pairwise net effects into a 

measure of a species total net effect has revealed relationships between species traits and its 

net effects that were indeterminate when examined at a finer scale. We found that species 

body size is overwhelmingly important in determining the impact of a species; species with 

large body size had a large impact on the distribution of equilibrium biomass abundances. 

The impact of highly connected species on equilibrium biomass abundances was less clear 

and may depend on the structure of the community; for a subset of webs, highly connected 

species had a small impact on the distribution of equilibrium biomass abundances. The 

overwhelming effect of body size on a species net effect may have masked the effect of 

species linkage density and examination of communities with a less rigid size structure may 

be necessary. These results may be useful in identifying keystone species and eventually 

may have implications for conservation strategies for size-structured communities. 
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APPENDIX C 
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Here we describe the derivation of the metabolic scaling used to parameterise the 

community matrix for the food webs used in Chapters 3, 4 and 5 (Säterberg et al. 2013). 

Consider the following Lotka-Volterra system where the dynamics of species i in a 

community consisting of n species is given by: 














 



n

j

jijii BarB
dt

dBi

1

  

where Bi is the biomass density of species i, ri is the intrinsic growth rate of species i and aij 

is the per unit mass effect of the consumer species j feeding on the resource species i per 

unit of time. 

 

Growth rates 

Let mi represent the body mass of species i. The growth rate of species i is related to the 

body mass of species i by: 

 𝑟𝑖 = 𝐶𝑟𝑚𝑖

−
1

4 (Blueweiss et al. 1978, Peters 1983) 

where Cr is positive (here set to 0.0041) if species i is a basal species and negative (set to -

1.1935 10^
-5) 

if species i is a consumer species (McCoy and Gillooly 2008). 

 

Trophic interaction strengths 

The trophic interaction, strengths, aij, represent the per unit mass effect of the consumer 

species j on the growth rate of the resource species i. To estimate aij, we first consider the 

metabolic requirements of the consumer species j. The per unit mass feeding rate of species j 

with body mass mj can be described by: 

  𝐹𝑗 = 𝐶𝐹𝑚
𝑗

−
1

4 (Peters 1983)                   (1) 

where the feeding rate is measured in units kg.kg
-1

day
-1

. A consumer species may feed on 

more than one resource species so multiplying the feeding rate of an individual consumer 
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species j (1) by its prey preference, (zij), gives the biomass of species i consumed by an 

individual of species j: 

𝐹𝑖𝑗 = 𝑧𝑖𝑗𝐶𝑚
𝑗

−
1

4                   (2) 

Now 𝐹𝑖𝑗 represents the per unit mass effect of species j on the growth rate of the population 

biomass density of species i, (i.e. 𝐹𝑖𝑗 = 𝑎𝑖𝑗𝐵𝑖 where Bi is the biomass density of species i). 

To estimate the per unit mass effect of an individual of species j on the per unit mass growth 

rate of species i we divide the expression through by the biomass density of species i. The 

number of individuals in a population has been shown to scale with body mass as 𝑁𝑖 =

𝐶𝑖𝑚𝑖

−
3

4 (Brown et al. 2004) so we can write: 

 𝐵𝑖 = 𝑁𝑖𝑚𝑖 = 𝐶𝑖𝑚𝑖

1

4                          (3) 

Dividing (3) by yields: 

𝑎𝑖𝑗 = 𝑧𝑖𝑗𝐶𝑎𝑖𝑗(𝑚𝑖𝑚𝑗)
−

1
4 

where 𝐶𝑎𝑖𝑗 is a parameter that determines the strength of the consumer-resource interaction. 

The per unit mass effect of the resource species i on the consumer species j, 𝑎𝑗𝑖 is given by  

 𝑎𝑗𝑖 = −𝑒𝑎𝑖𝑗 

where 𝑒 is the conversion efficiency, set to 0.1. 

 

Intraspecific competition 

For basal species, the intraspecific term aii scaled with body mass as: 

𝑎𝑖𝑖 = 𝐶𝑎𝑖𝑖𝑚𝑖

1
2 

following the scaling observed in a phytoplankton study (Cermeño et al. 2006). For 

consumer species the intraspecific term scaled with body mass as: 

𝑎𝑖𝑖 = 𝐶𝑎𝑖𝑖𝑚𝑖

−
1
4 

following the scaling used in (Virgo et al. 2006) and (Lewis and Law 2007). 
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The prey preference function 

The prey preference function was defined to be a truncated Gaussian function: 

𝑧𝑖𝑗
∗ =

1

𝜎√2𝜋
𝑒𝑥𝑝 [−

1

2
[
log (𝛽𝑚𝑖/𝑚𝑗)

𝜎
]

2

] 

for mi < mj and −𝛿𝜎 ≤ log (𝜎
𝑚𝑖

𝑚𝑗
) ≤ 𝛿𝜎 

The value 𝑧𝑖𝑗
∗ is dependent on:  

1. The resource and consumer body masses, mi and mj  

2. The optimum consumer resource body mass ratio β (the mean of the preference 

function) 

3. The standard deviation of the preference function, σ 

4. The number of standard deviations away from the mean at which point the 

probability density curve is set to 0, δ. This represents the number of standard 

deviations away from the optimal consumer-resource body mass ratio at which the 

consumer stops feeding on the resource. 

The value of 𝑧𝑖𝑗
∗ was standardised so that the sum of 𝑧𝑖𝑗

∗ over all resource species is one: 

𝑧𝑖𝑗 = 𝑧𝑖𝑗
∗

1

∑ 𝑧𝑖𝑗
∗

𝑖
 

 

Adjusting the parameterisation 

The parameterisation of the original food webs used in Säterberg et al. (2013) included 

terms for basal interspecific competition but including non-trophic interactions in the 

community matrix for this study would alter both the linkage density of a species and the 

inverse community matrix. Interspecific competition terms were removed for this study 

which had a destabilising effect on the synthetic food webs used so it was necessary to 

introduce an additional parameterisation algorithm (Pimenov et al. manuscript in 
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preparation) that made small adjustments to the community matrix by allowing the 

parameter that determined the strength of trophic interactions between individual consumer 

and resource pairs 𝐶𝑎𝑖𝑗 to vary within ecological limits: 

𝐶𝑎𝑖𝑗
𝑚𝑖𝑛 ≤ 𝐶𝐶𝑎𝑖𝑗 ≤ 𝐶𝑎𝑖𝑗

𝑚𝑎𝑥
 

where 𝐶𝑎𝑖𝑗
𝑚𝑖𝑛

 corresponds to the consumption rate at which species 𝑗 has zero growth rate 

in the absence of predators (survival consumption rate), and 𝐶𝑎𝑖𝑗
𝑚𝑎𝑥

 can be chosen 

arbitrarily between 𝐶𝑎𝑖𝑗
𝑚𝑖𝑛 and the maximal consumption rate to allow enough variation of 

𝐶𝑎𝑖𝑗. 
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APPENDIX D 
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Table D1 Results from the 97 linear models showing the relationship between species total net effect and 

species body size and linkage density. 

Full model: log(Yj) ~ α + β1(log(mj)) +  β2(Lj) + β2(mjLj) + ε 

Where Yj is the total net effect of species j, mj is the body mass of species j and Lj is the linkage density of 

species j. 

No results for webs 41, 58 and 84 due to ill conditioned community matrices. 

Webs shown in red were analysed using the Full model: Net Effects ~ Constant + Body Size since body size 

and linkage density were collinear. 

 

 

  

Estimated 

Coefficient

Standard 

Error

Estimated 

Coefficient

Standard 

Error

Estimated 

Coefficient

Standard 

Error

Estimated 

Coefficient
Standard Error

1 8.16 0.13 1.63 0.13

2 7.26 0.14 1.83 0.14

3 6.84 0.08 1.82 0.08

4 9.70 0.12 1.63 0.12

5 7.16 0.09 1.83 0.09

6 8.97 0.17 1.77 0.17 -1.00 0.17

7 7.68 0.14 1.73 0.16 -0.35 0.16

8 8.67 0.15 1.55 0.16 -0.33 0.16

9 7.48 0.13 1.91 0.13

10 7.73 0.15 1.58 0.16 -0.43 0.16

11 7.48 0.15 1.76 0.15

12 7.33 0.16 1.61 0.16

13 6.30 0.12 1.34 0.12

14 7.70 0.13 1.84 0.14

15 7.34 0.12 1.23 0.13 -0.42 0.13

16 7.60 0.12 1.84 0.12

17 8.38 0.21 1.74 0.23 -1.56 0.23

18 7.52 0.09 1.48 0.10 -0.48 0.10

19 8.49 0.09 1.49 0.11 -0.25 0.11

20 7.45 0.12 1.51 0.13 -0.36 0.13

21 7.99 0.15 1.82 0.15

22 8.62 0.13 1.69 0.16 -0.58 0.16

23 7.28 0.12 2.06 0.12

24 8.97 0.27 1.19 0.35 0.06 0.29 -0.89 0.34

25 6.45 0.15 1.37 0.15

26 7.69 0.10 1.87 0.10

27 8.18 0.11 1.72 0.11

28 7.96 0.09 1.72 0.09

29 7.53 0.09 1.93 0.09 -0.26 0.09

30 7.09 0.14 1.78 0.14

Web

Intercept Body Size Linkage Density Linkage Density: Body Size
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Table D1 continued 

 

Estimated 

Coefficient

Standard 

Error

Estimated 

Coefficient

Standard 

Error

Estimated 

Coefficient

Standard 

Error

Estimated 

Coefficient

Standard 

Error

31 8.48 0.15 1.77 0.16 -0.32 0.16

32 8.65 0.14 1.76 0.14 -0.33 0.14

33 7.68 0.10 1.59 0.10

34 7.56 0.11 1.61 0.15 -0.29 0.12 0.39 0.18

35 7.13 0.13 1.98 0.13

36 7.62 0.09 1.70 0.09

37 7.09 0.10 1.72 0.10

38 6.94 0.14 1.57 0.14

39 8.28 0.16 2.17 0.18 -0.39 0.18

40 7.37 0.10 2.18 0.12 -0.44 0.10 -0.29 0.09

41

42 9.74 0.21 0.80 0.26 -0.89 0.26

43 7.67 0.09 1.68 0.09

44 7.85 0.13 2.18 0.13

45 8.64 0.15 1.91 0.15

46 7.32 0.15 1.91 0.15

47 8.45 0.23 1.52 0.27 -0.55 0.27

48 8.91 0.15 1.93 0.15

49 9.28 0.16 1.81 0.17

50 8.92 0.22 1.04 0.41 -0.60 0.22 0.60 0.26

51 8.67 0.17 2.12 0.20 -0.54 0.20

52 7.55 0.14 1.90 0.14

53 9.52 0.16 1.55 0.16

54 7.35 0.10 1.73 0.10

55 7.76 0.12 2.00 0.12

56 8.03 0.13 1.77 0.13

57 6.61 0.10 1.90 0.11 -0.35 0.12 -0.19 0.09

58

59 7.77 0.08 2.07 0.08

60 7.63 0.12 1.59 0.12 -0.42 0.12

61 7.40 0.11 1.73 0.15 -0.40 0.15

62 9.30 0.23 2.22 0.23

63 7.20 0.12 1.57 0.12

64 6.70 0.08 1.78 0.08

65 6.50 0.09 1.44 0.10 -0.32 0.10

Body Size Linkage Density
Linkage Density: 

Body Size

Web

Intercept
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Table D1 continued 

 

  

Estimated 

Coefficient

Standard 

Error

Estimated 

Coefficient

Standard 

Error

Estimated 

Coefficient

Standard 

Error

Estimated 

Coefficient

Standard 

Error

66 9.17 0.15 2.20 0.15 -0.56 0.15

67 8.18 0.13 1.90 0.13

68 7.70 0.11 2.03 0.11

69 7.89 0.10 1.81 0.11

70 8.49 0.17 2.14 0.17

71 7.56 0.11 1.77 0.11

72 7.88 0.17 1.75 0.17 -0.44 0.17

73 6.51 0.15 1.60 0.16 -0.36 0.16

74 6.68 0.20 1.52 0.24 -0.65 0.24

75 10.32 0.31 0.98 0.32

76 7.88 0.10 1.67 0.11

77 7.43 0.11 1.64 0.13 -0.28 0.13

78 7.95 0.15 2.18 0.16

79 8.36 0.15 2.12 0.16

80 7.81 0.14 1.83 0.15

81 7.66 0.12 1.87 0.12

82 8.68 0.20 2.11 0.20

83 8.12 0.14 1.89 0.15

84

85 8.22 0.17 2.13 0.18 -0.77 0.18

86 8.25 0.13 2.05 0.14 -0.29 0.14

87 7.65 0.08 1.83 0.09 -0.17 0.09

88 8.19 0.17 1.48 0.17 -0.53 0.17

89 7.93 0.13 1.92 0.15 -0.40 0.15

90 7.26 0.10 1.46 0.13 -0.43 0.13

91 8.82 0.15 1.78 0.15

92 6.65 0.09 1.71 0.09

93 7.98 0.15 1.81 0.15

94 7.54 0.10 1.68 0.10 -0.23 0.10

95 8.90 0.18 1.61 0.23 -0.43 0.23

96 9.69 0.15 1.89 0.15

97 8.17 0.18 1.66 0.18

98 8.13 0.11 2.03 0.11

99 8.29 0.16 1.67 0.20 -0.43 0.20

100 7.43 0.09 1.96 0.09

Intercept Body Size Linkage Density
Linkage Density: Body 

Size

Web
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Table D2 Results from the linear models showing the relationship between species total net effect and species 

body size and linkage density for the Ythan Estuary and Tuesday Lake food webs. 

Full model: log(Yj) ~ α + β1(log(mj)) +  β2(Lj) + β2(mjLj) + ε 

Yj is the total net effect of species j, mj is the body mass of species j and Lj is the linkage density of species j. 

 

Estimated 

Coefficient

Standard 

Error

Estimated 

Coefficient

Standard 

Error

Estimated 

Coefficient

Standard 

Error

Ythan Estuary 3.38 0.23 0.69 0.24 -0.85 0.24

Tuesday Lake -0.63 0.09 1.47 0.10 0.36 0.10

Web

Intercept Body Size Linkage Density
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Table D3 Correlations between species traits for the synthetic food webs, correlations larger (in magnitude) 

than 0.7 are shown in red 

 

 

  

Correlation 

coefficient r
p - value

Correlation 

coefficient r
p - value

Correlation 

coefficient r
p - value

Correlation 

coefficient r
p - value

Correlation 

coefficient r
p - value

Correlation 

coefficient r
p - value

1 0.850 <0.001 -0.200 >0.05 -0.747 <0.001 -0.807 < 0.001 0.547 <0.001 -0.788 <0.001

2 0.851 <0.001 -0.321 <0.05 -0.751 <0.001 -0.729 < 0.001 0.435 <0.05 -0.711 <0.001

3 0.860 <0.001 -0.489 <0.001 -0.603 <0.001 -0.835 < 0.001 0.414 <0.05 -0.810 <0.001

4 0.794 <0.001 -0.803 <0.001 -0.881 <0.001 -0.686 < 0.001 0.428 <0.05 -0.282 <0.05

5 0.832 <0.001 -0.565 <0.001 -0.717 <0.001 -0.743 < 0.001 0.439 <0.05 -0.776 <0.001

6 0.827 <0.001 -0.244 >0.05 -0.851 <0.001 -0.808 < 0.001 0.760 <0.001 -0.480 <0.001

7 0.833 <0.001 -0.472 <0.001 -0.713 <0.001 -0.765 < 0.001 0.490 <0.001 -0.728 <0.001

8 0.792 <0.001 -0.369 <0.05 -0.720 <0.001 -0.773 < 0.001 0.622 <0.001 -0.715 <0.001

9 0.863 <0.001 -0.255 >0.05 -0.705 <0.001 -0.790 < 0.001 0.703 <0.001 -0.755 <0.001

10 0.839 <0.001 -0.263 >0.05 -0.669 <0.001 -0.792 < 0.001 0.506 <0.001 -0.629 <0.001

11 0.829 <0.001 -0.192 >0.05 -0.739 <0.001 -0.725 < 0.001 0.767 <0.001 -0.508 <0.001

12 0.825 <0.001 -0.455 <0.001 -0.656 <0.001 -0.659 < 0.001 0.546 <0.001 -0.588 <0.001

13 0.854 <0.001 -0.158 >0.05 -0.666 <0.001 -0.827 < 0.001 0.511 <0.001 -0.748 <0.001

14 0.875 <0.001 -0.715 <0.001 -0.583 <0.001 -0.631 < 0.001 0.357 <0.05 -0.701 <0.001

15 0.846 <0.001 -0.296 <0.05 -0.750 <0.001 -0.787 < 0.001 0.593 <0.001 -0.631 <0.001

16 0.842 <0.001 -0.515 <0.001 -0.626 <0.001 -0.750 < 0.001 0.453 <0.001 -0.540 <0.001

17 0.898 <0.001 -0.375 <0.001 -0.746 <0.001 -0.762 < 0.001 0.660 <0.001 -0.708 <0.001

18 0.824 <0.001 -0.379 <0.001 -0.726 <0.001 -0.742 < 0.001 0.654 <0.001 -0.590 <0.001

19 0.775 <0.001 -0.540 <0.001 -0.704 <0.001 -0.683 < 0.001 0.599 <0.001 -0.641 <0.001

20 0.855 <0.001 -0.259 >0.05 -0.750 <0.001 -0.784 < 0.001 0.601 <0.001 -0.640 <0.001

21 0.837 <0.001 -0.217 >0.05 -0.778 <0.001 -0.760 < 0.001 0.604 <0.001 -0.662 <0.001

22 0.858 <0.001 -0.579 <0.001 -0.828 <0.001 -0.795 < 0.001 0.592 <0.001 -0.574 <0.001

23 0.834 <0.001 -0.191 >0.05 -0.582 <0.001 -0.760 < 0.001 0.599 <0.001 -0.717 <0.001

24 0.845 <0.001 -0.503 <0.001 -0.581 <0.001 -0.387 < 0.05 0.450 <0.05 -0.717 <0.001

25 0.850 <0.001 0.047 >0.05 -0.575 <0.001 -0.819 < 0.001 0.584 <0.001 -0.783 <0.001

26 0.828 <0.001 -0.586 <0.001 -0.739 <0.001 -0.766 < 0.001 0.694 <0.001 -0.491 <0.001

27 0.833 <0.001 0.025 >0.05 -0.650 <0.001 -0.847 < 0.001 0.654 <0.001 -0.691 <0.001

28 0.821 <0.001 -0.562 <0.001 -0.753 <0.001 -0.827 < 0.001 0.644 <0.001 -0.713 <0.001

29 0.863 <0.001 -0.101 >0.05 -0.504 <0.001 -0.746 < 0.001 0.596 <0.001 -0.605 <0.001

30 0.841 <0.001 -0.435 <0.05 -0.679 <0.001 -0.861 < 0.001 0.442 <0.05 -0.728 <0.001

31 0.855 <0.001 -0.304 <0.05 -0.708 <0.001 -0.767 < 0.001 0.628 <0.001 -0.765 <0.001

32 0.825 <0.001 -0.176 >0.05 -0.552 <0.001 -0.790 < 0.001 0.553 <0.001 -0.708 <0.001

33 0.847 <0.001 -0.387 <0.05 -0.686 <0.001 -0.804 < 0.001 0.514 <0.001 -0.741 <0.001

34 0.843 <0.001 -0.434 <0.05 -0.700 <0.001 -0.762 < 0.001 0.643 <0.001 -0.586 <0.001

35 0.855 <0.001 -0.721 <0.001 -0.614 <0.001 -0.694 < 0.001 0.625 <0.001 -0.647 <0.001

36 0.844 <0.001 -0.592 <0.001 -0.755 <0.001 -0.823 < 0.001 0.465 <0.001 -0.758 <0.001

37 0.869 <0.001 -0.291 <0.05 -0.584 <0.001 -0.734 < 0.001 0.443 <0.05 -0.691 <0.001

38 0.849 <0.001 -0.125 >0.05 -0.719 <0.001 -0.866 < 0.001 0.648 <0.001 -0.786 <0.001

39 0.867 <0.001 -0.350 <0.05 -0.773 <0.001 -0.763 < 0.001 0.631 <0.001 -0.690 <0.001

40 0.911 <0.001 -0.553 <0.001 -0.729 <0.001 -0.627 < 0.001 0.619 <0.001 -0.741 <0.001

41 0 0

42 0.818 <0.001 -0.580 <0.001 -0.690 <0.001 -0.427 < 0.05 0.482 <0.001 -0.717 <0.001

43 0.853 <0.001 -0.488 <0.001 -0.764 <0.001 -0.679 < 0.001 0.474 <0.001 -0.639 <0.001

44 0.838 <0.001 -0.259 >0.05 -0.748 <0.001 -0.863 < 0.001 0.720 <0.001 -0.703 <0.001

45 0.841 <0.001 -0.439 <0.05 -0.799 <0.001 -0.774 < 0.001 0.626 <0.001 -0.525 <0.001

46 0.842 <0.001 -0.579 <0.001 -0.653 <0.001 -0.619 < 0.001 0.553 <0.001 -0.566 <0.001

47 0.784 <0.001 -0.535 <0.001 -0.649 <0.001 -0.779 < 0.001 0.550 <0.001 -0.238 > 0.05

48 0.841 <0.001 -0.129 >0.05 -0.639 <0.001 -0.760 < 0.001 0.610 <0.001 -0.746 <0.001

49 0.805 <0.001 -0.781 <0.001 -0.730 <0.001 -0.614 < 0.001 0.431 <0.05 -0.454 <0.05

50 0.798 <0.001 -0.652 <0.001 -0.680 <0.001 -0.669 < 0.001 0.497 <0.001 -0.580 <0.001

Web

Body Size vs Linkage 

Density

Body Size vs Trophic 

Height
Body Size vs Predator 

Prey - Ratio Body Size vs Generality

Body Size vs 

Vulnerability

Body Size vs Biomass 

Abundance
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Table D3 continued 

 

  

Correlation 

coefficient 

r

p - value
Correlation 

coefficient r
p - value

Correlation 

coefficient r
p - value

Correlation 

coefficient r
p - value

Correlation 

coefficient r
p - value

Correlation 

coefficient r
p - value

51 0.833 <0.001 -0.473 <0.05 -0.699 <0.001 -0.596 < 0.001 0.561 <0.001 -0.635 <0.001

52 0.807 <0.001 -0.145 >0.05 -0.767 <0.001 -0.772 < 0.001 0.626 <0.001 -0.734 <0.001

53 0.844 <0.001 -0.125 >0.05 -0.780 <0.001 -0.825 < 0.001 0.650 <0.001 -0.706 <0.001

54 0.848 <0.001 -0.233 >0.05 -0.593 <0.001 -0.825 < 0.001 0.602 <0.001 -0.685 <0.001

55 0.870 <0.001 -0.177 >0.05 -0.746 <0.001 -0.805 < 0.001 0.614 <0.001 -0.755 <0.001

56 0.786 <0.001 -0.293 <0.05 -0.593 <0.001 -0.719 < 0.001 0.705 <0.001 -0.622 <0.001

57 0.827 <0.001 -0.344 <0.05 -0.757 <0.001 -0.847 < 0.001 0.658 <0.001 -0.666 <0.001

58 0 0

59 0.812 <0.001 -0.432 <0.001 -0.689 <0.001 -0.815 < 0.001 0.563 <0.001 -0.694 <0.001

60 0.865 <0.001 -0.198 >0.05 -0.875 <0.001 -0.842 < 0.001 0.648 <0.001 -0.592 <0.001

61 0.855 <0.001 -0.668 <0.001 -0.846 <0.001 -0.785 < 0.001 0.572 <0.001 -0.650 <0.001

62 0.833 <0.001 -0.781 <0.001 -0.790 <0.001 -0.617 < 0.001 0.394 <0.05 -0.399 <0.05

63 0.856 <0.001 -0.376 <0.05 -0.704 <0.001 -0.803 < 0.001 0.487 <0.001 -0.573 <0.001

64 0.825 <0.001 -0.573 <0.001 -0.712 <0.001 -0.768 < 0.001 0.450 <0.05 -0.562 <0.001

65 0.849 <0.001 -0.409 <0.001 -0.737 <0.001 -0.821 < 0.001 0.475 <0.001 -0.700 <0.001

66 0.810 <0.001 -0.262 >0.05 -0.642 <0.001 -0.694 < 0.001 0.694 <0.001 -0.600 <0.001

67 0.862 <0.001 0.097 >0.05 -0.739 <0.001 -0.752 < 0.001 0.742 <0.001 -0.770 <0.001

68 0.844 <0.001 -0.582 <0.001 -0.755 <0.001 -0.800 < 0.001 0.491 <0.001 -0.664 <0.001

69 0.877 <0.001 -0.278 >0.05 -0.736 <0.001 -0.822 < 0.001 0.644 <0.001 -0.779 <0.001

70 0.823 <0.001 -0.346 <0.05 -0.701 <0.001 -0.833 < 0.001 0.635 <0.001 -0.527 <0.001

71 0.831 <0.001 -0.244 >0.05 -0.587 <0.001 -0.601 < 0.001 0.590 <0.001 -0.660 <0.001

72 0.843 <0.001 -0.106 >0.05 -0.707 <0.001 -0.757 < 0.001 0.746 <0.001 -0.555 <0.001

73 0.820 <0.001 -0.342 <0.05 -0.677 <0.001 -0.780 < 0.001 0.547 <0.001 -0.591 <0.001

74 0.860 <0.001 -0.504 <0.001 -0.662 <0.001 -0.838 < 0.001 0.428 <0.05 -0.737 <0.001

75 0.845 <0.05 -0.814 <0.001 -0.778 <0.001 -0.379 < 0.05 0.343 <0.05 -0.592 <0.001

76 0.828 <0.001 -0.110 >0.05 -0.424 <0.05 -0.733 0.000 0.573 <0.001 -0.696 <0.001

77 0.847 <0.001 -0.476 <0.05 -0.656 <0.001 -0.747 < 0.001 0.414 <0.05 -0.764 <0.001

78 0.827 <0.001 -0.152 >0.05 -0.698 <0.001 -0.844 < 0.001 0.713 <0.001 -0.614 <0.001

79 0.848 <0.001 -0.722 <0.001 -0.719 <0.001 -0.782 < 0.001 0.645 <0.001 -0.719 <0.001

80 0.856 <0.001 -0.214 >0.05 -0.714 <0.001 -0.706 < 0.001 0.685 <0.001 -0.585 <0.001

81 0.848 <0.001 -0.332 <0.05 -0.766 <0.001 -0.823 < 0.001 0.592 <0.001 -0.743 <0.001

82 0.826 <0.001 -0.759 <0.001 -0.783 <0.001 -0.644 < 0.001 0.465 <0.001 -0.499 <0.001

83 0.835 <0.001 -0.297 <0.05 -0.771 <0.001 -0.772 < 0.001 0.666 <0.001 -0.717 <0.001

84 0 0

85 0.857 <0.001 -0.334 <0.05 -0.762 <0.001 -0.821 < 0.001 0.509 <0.001 -0.679 <0.001

86 0.855 <0.001 -0.373 <0.05 -0.719 <0.001 -0.792 < 0.001 0.765 <0.001 -0.638 <0.001

87 0.810 <0.001 -0.468 <0.001 -0.601 <0.001 -0.849 < 0.001 0.503 <0.001 -0.644 <0.001

88 0.857 <0.001 0.002 >0.05 -0.744 <0.001 -0.801 < 0.001 0.777 <0.001 -0.736 <0.001

89 0.855 <0.001 -0.511 <0.001 -0.680 <0.001 -0.713 < 0.001 0.594 <0.001 -0.661 <0.001

90 0.843 <0.001 -0.613 <0.001 -0.746 <0.001 -0.743 < 0.001 0.543 <0.001 -0.521 <0.001

91 0.820 <0.001 -0.502 <0.001 -0.716 <0.001 -0.816 < 0.001 0.602 <0.001 -0.488 <0.001

92 0.837 <0.001 -0.574 <0.001 -0.643 <0.001 -0.795 < 0.001 0.437 <0.05 -0.674 <0.001

93 0.846 <0.001 -0.176 >0.05 -0.647 <0.001 -0.859 < 0.001 0.596 <0.001 -0.790 <0.001

94 0.816 <0.001 -0.209 >0.05 -0.474 <0.05 -0.803 < 0.001 0.580 <0.001 -0.686 <0.001

95 0.827 <0.001 -0.614 <0.001 -0.936 <0.001 -0.790 < 0.001 0.629 <0.001 -0.598 <0.001

96 0.847 <0.001 -0.476 <0.001 -0.772 <0.001 -0.829 < 0.001 0.625 <0.001 -0.555 <0.001

97 0.834 <0.001 -0.130 >0.05 -0.765 <0.001 -0.902 < 0.001 0.625 <0.001 -0.709 <0.001

98 0.848 <0.001 -0.094 >0.05 -0.668 <0.001 -0.734 < 0.001 0.673 <0.001 -0.772 <0.001

99 0.803 <0.001 -0.575 <0.001 -0.820 <0.001 -0.741 < 0.001 0.514 <0.001 -0.481 <0.001

100 0.851 <0.001 -0.529 <0.001 -0.827 <0.001 -0.776 < 0.001 0.519 <0.001 -0.687 <0.001

Body Size vs 

Vulnerability

Body Size vs Linkage 

Density

Body Size vs Predator 

Prey - Ratio

Body Size vs Biomass 

Abundance Body Size vs Generality

Web

Body Size vs Trophic 

Height
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Table D4 Correlations between species traits for the real food webs, correlations larger (in magnitude) than 0.7 

are shown in red 

 

  

Correlation 

coefficient r p - value

Correlation 

coefficient r p - value

Correlation 

coefficient r p - value

Correlation 

coefficient r p - value

Correlation 

coefficient r p - value

Ythan Estuary 0.767 < 0.001 -0.252 > 0.05 0.256 < 0.001 0.567 < 0.001 -0.524 < 0.001

Tuesday Lake 0.849 < 0.001 0.320 < 0.05 0.846 < 0.001 0.840 < 0.001 -0.428 < 0.05

Body Size vs 

Vulnerability
Web

Body Size vs Trophic 

Height

Body Size vs Linkage 

Density

Body Size vs Predator 

Prey - Ratio

Body Size vs 

Generality
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Table D5 Real food webs: the second column shows the correlation between a species body size and its total 

direct effect. The third column shows the correlations between a species total direct effect and its total net 

effect. 

 

  

Correlation 

coefficient r
p - value

Correlation 

coefficient r
p - value

Ythan Estuary -0.838 < 0.001 -0.691 < 0.001

Tuesday Lake -0.8273 < 0.001 -0.755 < 0.001

Direct Sum (Dj) vs Total 

Net Effect
Web

Body Size vs Direct 

Sum(Dj)
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Table D6 Results from the 91 linear models showing the relationship between species total net effect and 

species body size and linkage density where trophic interaction strength is measured on a per capita basis. 

Full model: log(Yj) ~ α + β1(log(mj)) +  β2(Lj) + β2(mjLj) + ε 

Yj is the total net effect of species j, mj is the body mass of species j and Lj is the linkage density of species j. 

No results for webs 24, 41, 42, 53, 75, 84, 98, 99 and 100 due to ill conditioned community matrices. Webs 

shown in red were analysed using Full model: Net Effects ~ Constant + Body Size since body size and linkage 

density were collinear 

 

  

Estimated 

Coefficient

Standard 

Error

Estimated 

Coefficient

Standard 

Error

Estimated 

Coefficient

Standard 

Error

Estimated 

Coefficient

Standard 

Error

1 13.33 0.17 1.62 0.17

2 12.88 0.13 1.35 0.14 -0.48 0.13 0.43 0.15

3 12.47 0.08 1.84 0.08

4 14.02 0.12 1.63 0.12

5 12.99 0.11 1.77 0.11

6 12.03 0.15 1.75 0.16 -0.87 0.16

7 12.50 0.14 1.67 0.16 -0.38 0.16

8 13.25 0.16 0.96 0.32 -0.57 0.18 0.56 0.26

9 13.41 0.13 1.88 0.13

10 12.35 0.16 1.65 0.17 -0.51 0.17

11 12.90 0.15 1.21 0.15 -0.36 0.16 0.39 0.13

12 12.46 0.16 1.64 0.16

13 12.96 0.27 1.17 0.27

14 12.58 0.29 1.74 0.29

15 13.67 0.13 1.23 0.14 -0.32 0.14

16 13.21 0.14 1.77 0.14

17 13.14 0.17 1.11 0.23 -0.30 0.18 0.94 0.28

18 13.30 0.09 1.51 0.09

19 13.04 0.10 1.43 0.12 -0.35 0.12

20 12.74 0.14 1.76 0.14

21 13.33 0.16 1.77 0.16

22 13.08 0.13 1.68 0.16 -0.51 0.16

23 11.81 0.20 2.23 0.20

24

25 12.89 0.15 1.43 0.15

26 13.04 0.09 1.88 0.09

27 14.68 0.13 1.78 0.13

28 13.39 0.10 1.69 0.11

29 13.36 0.09 1.82 0.09

30 12.54 0.12 1.87 0.12

Web

Intercept Body Size Linkage Density
Linkage Density: 

Body Size
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Table D6 continued 

   

Estimated 

Coefficient

Standard 

Error

Estimated 

Coefficient

Standard 

Error

Estimated 

Coefficient

Standard 

Error

Estimated 

Coefficient

Standard 

Error

31 13.49 0.15 1.83 0.15

32 13.50 0.13 1.76 0.13 -0.34 0.13

33 13.67 0.10 1.59 0.11

34 12.29 0.10 1.90 0.10

35 12.24 0.13 1.92 0.13

36 13.06 0.11 1.81 0.11

37 13.62 0.10 1.64 0.10

38 12.41 0.16 1.64 0.16

39 12.63 0.22 2.10 0.22

40 12.01 0.11 1.87 0.13 -0.43 0.13

41

42

43 13.46 0.09 1.67 0.09

44 12.36 0.14 2.17 0.14

45 12.56 0.17 1.85 0.17

46 12.47 0.13 1.81 0.13

47 11.42 0.21 1.56 0.25 -0.47 0.25

48 13.69 0.16 1.88 0.16

49 12.42 0.17 1.82 0.17

50 12.52 0.15 1.80 0.20 -0.40 0.20

51 12.52 0.15 1.80 0.20 -0.40 0.20

52 12.95 0.13 1.89 0.13

53

54 13.75 0.10 1.74 0.10

55 13.53 0.13 1.89 0.13

56 12.79 0.12 1.68 0.13

57 11.84 0.10 1.83 0.11 -0.25 0.11

58 13.37 0.21 1.82 0.21

59 12.95 0.08 2.04 0.08

60 13.93 0.13 1.52 0.14 -0.59 0.14

61 12.22 0.12 1.97 0.12

62 12.24 0.18 2.08 0.18

63 13.15 0.15 1.74 0.15

64 13.10 0.10 1.78 0.10

65 12.46 0.10 1.55 0.11 -0.30 0.11

Body Size Linkage Density
Linkage Density: 

Body Size

Web

Intercept
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Table D6 continued 

 

  

Estimated 

Coefficient

Standard 

Error

Estimated 

Coefficient

Standard 

Error

Estimated 

Coefficient

Standard 

Error

Estimated 

Coefficient

Standard 

Error

66 12.13 0.16 2.16 0.17 -0.50 0.17

67 13.60 0.15 1.88 0.15

68 13.06 0.11 2.03 0.11

69 13.76 0.12 1.73 0.12

70 12.29 0.18 2.17 0.18

71 13.76 0.11 1.76 0.11

72 13.29 0.15 1.79 0.16 -0.39 0.16

73 12.04 0.13 1.73 0.13

74 12.76 0.10 1.51 0.12 -0.24 0.12

75

76 13.69 0.12 1.68 0.12

77 12.52 0.18 1.58 0.18

78 12.74 0.13 2.23 0.13

79 12.68 0.13 2.10 0.14

80 13.11 0.13 1.82 0.13

81 12.52 0.12 1.86 0.12

82 11.79 0.18 2.06 0.18

83 13.08 0.14 1.85 0.14

84

85 12.46 0.17 2.14 0.18

86 12.60 0.12 2.01 0.13 -0.33 0.13

87 13.12 0.09 1.77 0.11 -0.24 0.11

88 13.75 0.15 1.19 0.16 -0.69 0.16 0.47 0.16

89 12.17 0.13 1.92 0.15 -0.38 0.15

90 12.80 0.10 1.53 0.13 -0.27 0.13

91 13.54 0.16 1.89 0.16

92 12.48 0.21 1.63 0.21

93 12.84 0.17 1.86 0.17

94 13.29 0.10 1.69 0.11 -0.26 0.11

95 13.06 0.19 1.82 0.19

96 14.02 0.15 1.87 0.15

97 12.94 0.19 1.75 0.19

98

99

100

Body Size Linkage Density
Linkage Density: 

Body Size

Web

Intercept
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Table D7 Synthetic webs: the second column shows the correlation between a species linkage density and its 

total direct effect.  

The third column shows the correlation between a species linkage density and the variance of its entries in the 

community matrix. The fourth column shows the correlations between a species linkage density and its average 

entry in the community matrix. 

 

Correlation 

coefficient r
p - value

Correlation 

coefficient r
p - value

Correlation 

coefficient r
p - value

6 -0.235 > 0.05 -0.450 < 0.05 -0.319 < 0.05

7 -0.003 > 0.05 0.112 > 0.05 -0.019 > 0.05

8 -0.091 > 0.05 -0.176 > 0.05 -0.192 > 0.05

10 -0.085 > 0.05 -0.056 > 0.05 -0.191 > 0.05

15 0.193 > 0.05 0.090 > 0.05 0.025 > 0.05

17 0.047 > 0.05 -0.284 < 0.05 -0.222 > 0.05

18 0.274 > 0.05 -0.337 < 0.05 -0.096 > 0.05

19 0.024 > 0.05 0.071 > 0.05 -0.184 > 0.05

20 0.126 > 0.05 0.011 > 0.05 0.068 > 0.05

22 -0.038 > 0.05 0.182 > 0.05 -0.060 > 0.05

29 0.020 > 0.05 -0.034 > 0.05 -0.082 > 0.05

31 0.234 > 0.05 0.065 > 0.05 0.071 > 0.05

32 0.017 > 0.05 0.061 > 0.05 -0.018 > 0.05

34 -0.082 > 0.05 0.003 > 0.05 -0.198 > 0.05

39 -0.100 > 0.05 0.044 > 0.05 -0.196 > 0.05

40 0.064 > 0.05 -0.168 > 0.05 -0.071 > 0.05

42 -0.021 > 0.05 -0.018 > 0.05 -0.106 > 0.05

47 -0.269 > 0.05 -0.362 < 0.05 -0.357 < 0.05

50 -0.125 > 0.05 -0.034 > 0.05 -0.273 > 0.05

51 -0.069 > 0.05 0.185 > 0.05 -0.083 > 0.05

57 0.110 > 0.05 -0.179 > 0.05 -0.093 > 0.05

60 0.094 > 0.05 -0.073 > 0.05 -0.051 > 0.05

61 -0.021 > 0.05 0.003 > 0.05 -0.163 > 0.05

65 0.152 > 0.05 -0.022 > 0.05 -0.125 > 0.05

66 -0.084 > 0.05 -0.188 > 0.05 -0.154 > 0.05

72 -0.148 > 0.05 -0.361 < 0.05 -0.170 > 0.05

73 -0.053 > 0.05 -0.099 > 0.05 -0.160 > 0.05

74 0.134 > 0.05 0.048 > 0.05 -0.023 > 0.05

77 -0.110 > 0.05 0.063 > 0.05 -0.120 > 0.05

85 -0.084 > 0.05 -0.267 > 0.05 -0.346 < 0.05

86 0.034 > 0.05 0.187 > 0.05 -0.025 > 0.05

87 0.020 > 0.05 0.071 > 0.05 -0.021 > 0.05

88 0.111 > 0.05 -0.072 > 0.05 0.019 > 0.05

89 -0.061 > 0.05 0.002 > 0.05 -0.077 > 0.05

90 -0.139 > 0.05 -0.250 > 0.05 -0.319 < 0.05

94 -0.069 > 0.05 -0.229 > 0.05 -0.159 > 0.05

95 -0.071 > 0.05 0.097 > 0.05 -0.185 > 0.05

99 -0.278 > 0.05 -0.407 < 0.05 -0.339 < 0.05

Web

Linkage Density vs 

Column Sum (Dj)

Linkage Density vs Var 

(Dj) 

Linkage Density vs 

mean(Dj)
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 Table D8 The correlation between species body size and the elasticity of equilibrium biomass densities  

  

Correlation 

coefficient r
p - value

1 0.237 > 0.05

2 0.3246 < 0.05

3 0.383 < 0.05

4 0.3071 < 0.05

5 0.2239 > 0.05

6 0.1202 > 0.05

7 0.2029 > 0.05

8 0.1484 > 0.05

9 0.2537 > 0.05

10 0.1737 > 0.05

11 0.1717 > 0.05

12 0.5483 > 0.05

13 0.2852 < 0.05

14 0.2126 > 0.05

15 0.266 > 0.05

16 0.3227 < 0.05

17 0.2349 > 0.05

18 0.334 < 0.05

19 0.2441 > 0.05

20 0.2571 > 0.05

21 0.2812 < 0.05

22 0.1482 > 0.05

23 0.2281 > 0.05

24 0.1892 > 0.05

25 0.2447 > 0.05

26 0.4193 < 0.05

27 0.3868 < 0.001

28 0.2185 > 0.05

29 0.3541 < 0.05

30 0.2892 < 0.05

Web

Body Size vs Elasticity
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Table D8 continued 

  

  

Correlation 

coefficient r
p - value

31 0.2876 < 0.05

32 0.2477 > 0.05

33 0.3171 < 0.05

34 0.2994 < 0.05

35 0.2234 > 0.05

36 0.2586 > 0.05

37 0.4204 < 0.05

38 0.2183 > 0.05

39 0.238 > 0.05

40 0.2157 > 0.05

41

42 0.2307 > 0.05

43 0.5386 < 0.001

44 0.1917 > 0.05

45 0.1228 > 0.05

46 0.1968 > 0.05

47 0.1039 > 0.05

48 0.1961 > 0.05

49 0.1952 > 0.05

50 0.2872 < 0.05

51 0.1006 > 0.05

52 0.3836 < 0.05

53 0.3148 < 0.05

54 0.3195 < 0.05

55 0.3008 < 0.05

56 0.2535 > 0.05

57 0.2879 < 0.001

58

59 0.4351 < 0.05

60 0.1686 > 0.05

61 0.1328 > 0.05

62 0.0781 > 0.05

63 0.2486 > 0.05

64 0.3137 < 0.05

65 0.426 < 0.05

Web

Body Size vs Elasticity
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Table D8 continued 

Correlation 

coefficient r
p - value

66 0.2043 > 0.05

67 0.3223 < 0.05

68 0.3219 < 0.05

69 0.314 < 0.05

70 0.2684 > 0.05

71 0.3023 < 0.05

72 0.2535 > 0.05

73 0.2339 > 0.05

74 0.173 > 0.05

75 0.1971 > 0.05

76 0.1885 > 0.05

77 0.2977 < 0.05

78 0.3168 < 0.05

79 0.2515 > 0.05

80 0.2753 > 0.05

81 0.206 > 0.05

82 0.1487 > 0.05

83 0.3152 < 0.05

84

85 0.1761 > 0.05

86 0.2085 > 0.05

87 0.4479 < 0.05

88 0.163 > 0.05

89 0.3022 < 0.05

90 0.2213 > 0.05

91 0.1538 > 0.05

92 0.4506 < 0.001

93 0.266 > 0.05

94 0.2564 > 0.05

95 0.142 > 0.05

96 0.2572 > 0.05

97 0.1378 > 0.05

98 0.3813 < 0.05

99 0.1627 > 0.05

100 0.3597 < 0.05

Web

Body Size vs Elasticity
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WHY DO LARGE BODIED SPECIES HAVE A STRONG TOTAL NET EFFECT 

ON THEIR COMMUNITY? 

  



 

91 

 

Abstract 

In Chapter 3, it was observed that species with a large body size have a large impact on 

their surrounding community, as measured through a species total net effect. The total net 

effect that a species has on a community is calculated by summing the absolute values of 

the entries for each column of the inverse community matrix. The matrix inversion process 

is extremely complex and while it is possible to observe the relationship between a species 

body size and its total net effect, the mechanism causing this relationship is unclear. The 

study presented in the following chapter, examines the column sums of the inverse 

community matrices for food chains consisting of 3-6 species. The simplicity of the 

community matrices associated with these food chains enables direct examination of the 

column sums of the inverse community matrices.  

The community matrix for each food chain was parameterised under the assumptions that a 

predator preys upon species with a smaller body size and that a predator’s rate of 

consumption is proportional to its own body size. To keep the analysis as general as 

possible, the parameters that determine the strength of interactions between species 

(predator-prey body mass ratio, ecological efficiency and intraspecific competition) were 

allowed to vary within ecologically defined limits and the effect of these parameters on the 

relationship between body mass and total net effects was examined. The analysis showed 

that the relationship between a species body size and its total net effect is a consequence of 

the body size based parameterisation of the community matrix. It also highlighted that the 

strength of intraspecific interactions in relation to interspecific interactions and ecological 

efficiency affect the impact that a species has on its community. 
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Introduction 

Conservation of the natural world is dependent on an ecosystem approach: all life is part of 

a complex set of interactions between and within the biotic and abiotic environments. 

However, the limited resources available to conservationists means that conservation 

efforts must be prioritised and therefore it is of interest to identify which species have a 

large effect on their community (Paine 1969, 1995, Power et al. 1996, Christianou and 

Ebenman 2005, Sutherland et al. 2009). One method of identifying species that have large 

impacts on the communities in which they are embedded is to examine the total net effect 

of each species in the community. The total net effect of species j is a measure of the 

sensitivity of the equilibrium biomass densities of all species in the community following 

a press perturbation of species j. A press perturbation is a small sustained change in the 

growth rate of a species which can be achieved through the sustained removal or addition 

of a constant biomass of a species to a community or through a change in the intrinsic 

growth/mortality rate of a species. In a Lotka-Volterra system, the parameter describing 

the per unit mass effect of species j feeding on species i per unit of time is denoted by aij. 

The community matrix (denoted by A) contains every pairwise interaction in the 

community and therefore describes the structure and dynamics of the entire community. 

Bender et al. (1984) showed that the net effect of species j on species i (the sum of both 

direct and indirect effects) following a press perturbation is the ij
th

 element of the inverse 

community matrix, A
-1

. The total net effect of species j on the community represents the 

effect that a press perturbation to species j has on the equilibrium biomass densities of all 

species in the community and is given by the sum of the absolute values of elements of 

column j in the inverse community matrix.  

 

Previous studies (Yodzis 1988, Schmitz 1997, Dambacher et al. 2003, Montoya et al. 

2009) have focused on understanding the distribution of pairwise net effects between 

species. Initially,  it was concluded that the net effect of one species on another was 

indeterminate due to food web complexity (Yodzis 1988), however approaches using 

empirical and/or allometric information to estimate the elements of the community matrix 

improved the determinacy of  net effects (Schmitz 1997), and it was found that in general, 

highly connected species had weak net effects (Montoya et al. 2009). In Chapter 3 and in 

three previous studies, pairwise net effects were aggregated into a measure of a species 

total net effect (Chapter 3 and Berg et al. 2011) or mean net effect (Montoya et al. 2005 

O'Gorman et al. 2010). The data presented in Chapter 3 showed that species with a large 
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body mass and high trophic position had a large total net effect in a community, supporting 

the findings from the Ythan Estuary food web (Montoya et al. 2005), and the Baltic Sea 

and Lake Vättern food webs (Berg et al. 2011).  This result implies that perturbations to 

species with a large body mass will have the greatest impact on the equilibrium biomass 

distribution of a community; this effect is compounded further by the possibility that 

species with a large body mass are often the species facing the greatest threat from 

environmental change (Petchey et al. 1999, Purvis et al. 2000, Denney et al. 2002, Myers 

and Worm 2003, Sutherland et al. 2009, Estes et al. 2011). 

 

The community matrices for the food webs analysed in Chapter 3 were parameterised 

similarly to the Ythan Estuary Food web (Montoya 2005) and the Baltic Sea and Lake 

Vättern food webs (Berg et al. 2011) using predator-prey body mass ratios. In particular, 

the parameterisation of the community matrix in Chapter 3 and the Berg et al (2011) study 

used allometric scaling where the consumption rate of an individual predator is defined to 

be proportional to its body mass raised to the power of 3/4. The application of predator-

prey body mass ratios and allometric scaling to define interaction strengths between 

species has been shown to promote stability in food web models and explain community 

structure and dynamics (Yodzis 1981, Jonsson and Ebenman 1998, Emmerson and 

Raffaelli 2004, Andersen and Beyer 2006, Brose et al. 2006b, Otto et al. 2007, Berlow et 

al. 2009, O'Gorman et al. 2010, Zhang et al. 2013). Analysis of the community matrix and 

its inverse in Chapter 3 found: (1) a negative relationship between a species body mass and 

its total direct effect (the sum of the absolute values of its entries in the community 

matrix), and (2) a negative relationship between a species total direct effect and its total net 

effect. Due to the complexity of the inversion process, an outstanding question concerns 

the mechanisms causing the positive relationship between a species body mass and its total 

net effect. The present study aims to show how ecological constraints (due to allometric 

scaling) on the magnitude of entries in the community matrix cause the patterns we have 

observed in the inverse community matrix and thus explain the relationship between a 

species body mass and its total net effect in a community. 

 

To show that the positive relationship between a species body mass and its total net effect 

is a consequence of allometric scaling we start with a simple three species food chain 

where the inverse community matrix is simple enough to consider analytically. Trophic 

interactions between the species are defined using predator-prey body mass ratios and 
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allometric scaling. To keep the analysis as general as possible, assumptions regarding the 

parameters that determine the strength of interactions between species (predator-prey body 

mass ratio, ecological efficiency and intraspecific competition) are kept to a minimum and 

then the relationship between body mass and total net effects for the food chain is 

examined in the context of these parameters. The analysis is then extended to four, five 

and six species food chains and the range of values of the parameters that ensure a positive 

relationship between species body mass and net effect are compared to the distribution of 

parameters found in the synthetic and real food webs examined in Chapter 3. Finally, we 

repeat the analyses for the case where predator-prey body mass ratios decrease with body 

mass/trophic height which has been observed in marine, lake and terrestrial food webs 

(Riede et al. 2011) and occurs in the food webs analysed in Chapter 3. 

 

Materials and Methods 

Consider a food web, consisting of S species whose dynamics are described by the 

following Lotka-Volterra equations:   

 

   (1) 

 

where Bi is the biomass of species i (measured in kg), for basal species ri is positive and 

represents the per unit mass growth rate of species i, for consumer species the ri term is 

negative and represents the per unit mass death rate of species i and aij is the per unit mass 

effect of consumer species j feeding on resource species per unit of time. 

 

Following the metabolic scaling used in Chapter 3 to parameterise (1) we define the per 

unit mass growth/mortality rates and consumer-resource interaction strengths in terms of 

body mass. The per unit mass growth rate of species i is defined to be: 

 

𝑟𝑖 = 𝐶𝑟𝑚𝑖
−1/4

 (kg.kg
-1

t
-1

)     

 

where mi is the body mass of species i and Cr is a positive constant for basal species and a 

negative constant for consumer species. The per unit mass effect of consumer species j 

feeding on resource species i  per unit of time, aij is defined to be:  














 



S

j

jijii

i BarB
dt

dB

1

i
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𝑎𝑖𝑗 = 𝐶𝑎𝑖𝑗𝑝𝑖𝑗(𝑚𝑖𝑚𝑗)
−

1

4  (kg
-1

t
-1

)  

 

where Caij is a constant, pij represents the proportion of resource species i present in 

consumer species j’s diet and mi and mj represent the resource and consumer species body 

masses respectively. The per unit mass effect of the resource species i on the consumer 

species j, 𝑎𝑗𝑖 is given by  

 

 𝑎𝑗𝑖 = −𝑒𝑎𝑖𝑗 

 

where 𝑒 is the conversion efficiency.  

The scaling of intraspecific and interspecific interactions has important implications for the 

behavior of the system. In general, a dynamic system is more likely to be locally stable 

when intraspecific interaction strengths become more negative (Saunders 1978, Yodzis 

1981, Haydon 1994). If the intraspecific interaction strength of each species in a system is 

greater than the sum of all its interspecific interaction strengths then diagonal dominance 

occurs and the system is guaranteed to be stable. (Ginzburg and Akçakaya 1992, Abrams 

1994, Gleeson 1994, Haydon 1994). Analysis by McPeek (2014) showed that the response 

of a community to the removal of a top predator is dependent on the relative values of 

consumer species intraspecific and interspecific interaction strengths. Despite this 

evidence that the relative scaling of intraspecific and interspecific interaction strengths is 

of fundamental importance for community dynamics, there is little empirical information 

available. The experimental data in Chapter 2 found intraspecific interaction strengths for 

the basal species to be between 100 and 1000 times weaker than interspecific interaction 

strengths but it was not possible to estimate the scaling of intraspecific interaction 

strengths for consumer species from the data. To maintain generality we allow the 

intraspecific interaction terms to vary and consider the following two cases: first where 

intraspecific interaction strengths scale with interspecific interactions for each species (see 

Appendix E), and second where intraspecific competition is the same for all basal species 

and intraspecific competition is the same for all consumer species. We define: 

 

 𝑎𝑖𝑖 = 𝐶𝑏𝑎𝑖𝑗  for basal species and  𝑎𝑖𝑖 = 𝐶𝑐𝑎𝑖𝑘   for consumer species 
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where Cb and Cc are parameters that we can vary to investigate how the magnitude of aii 

values affect the pattern of total net effects. Here, species j is a herbivore species (body 

mass m2 in Figure. 4.1) and species k is a carnivore species (body masses m3, m4, m5 or m6 

in Figure 4.1). 

 

 
 

Figure 4.1 Food web motifs of the 3, 4, 5 and 6 species food chains examined. 

 

Three Species Food Chain 

For the simple food chain shown in Figure 4.1(a), let m1, m2 and m3 denote the body 

masses of the basal, herbivore and carnivore species respectively. Let 𝑞∗ represent the 

predator-prey body mass ratios so that 𝑞∗ =
𝑚2

𝑚1
=

𝑚3

𝑚2
 then we can write: 

 

 𝑚2 = 𝑞∗𝑚1 

𝑚3 = (𝑞∗)2𝑚1    

and, 

 𝑎12 = 𝐶𝑎12(𝑚1𝑚2)
−

1

4 = 𝐶𝑎12(𝑞
∗𝑚1

2)−
1

4 = 𝐶𝑎12(𝑚1

−
1

2)(𝑞∗)−
1

4 

𝑎23 = 𝐶𝑎23(𝑚2𝑚3)
−

1
4 = 𝐶𝑎23((𝑞

∗)3𝑚1
2)−

1
4 = 𝐶𝑎23(𝑚1

−
1
2)(𝑞∗)−

3
4 

 

To simplify the form of the aij entries we replace (𝑞∗)
1

4 with the variable q and since Caij is 

a constant that scales the magnitude of all the aij entries we replace 𝐶𝑎𝑖𝑗𝑚1

−
1

2 with the value 

(a) (b) (c) (d)

m6

m5

m4

m3

m2

m1
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-1. This gives 𝑎12 = −
1

𝑞
   and 𝑎23 = −

1

𝑞3 so that the community matrix A for the simple 

food chain shown in Figure 4.1(a) is of the form: 

 

(

 
 
 
 

−𝐶𝑏

𝑞
−

1

𝑞
0

𝑒

𝑞

−𝐶𝑐

𝑞3
−

1

𝑞3

0
𝑒

𝑞3

−𝐶𝑐

𝑞3 )

 
 
 
 

 

 

Note that the intraspecific interaction terms are defined to be same for all basal species, 

−𝐶𝑏

𝑞
, and the same for all consumer species, 

−𝐶𝑐

𝑞3 .  This is consistent with many previous 

studies (Emmerson and Raffaelli 2004, Christianou and Ebenman 2005, Eklöf and 

Ebenman 2006, Petchey et al. 2008b, Berg et al. 2011) where basal intraspecific 

interaction strengths are constant (often set to -1) and consumer intraspecific interaction 

strengths are constant, but smaller in magnitude (often set to -0.1 or -0.01), however, since 

there is so little known about the scaling of intraspecific interaction strengths we also 

consider the case where intraspecific interaction strengths scale with interspecific 

interactions for each species (Appendix E). Note that for the case where intraspecific 

interaction terms are defined to be same for all consumer species, 𝐶𝑐 represents the 

intraspecific: interspecific strength ratio for the herbivore species only. For the case where 

intraspecific interaction terms scale with interspecific interactions, 𝐶𝑐 represents the 

intraspecific: interspecific strength ratio for each species. 

The total net effect of a species in the community is represented by the column sums of the 

absolute values of the inverse matrix, 𝐴−1. To investigate the ordering of the column sums 

we examine the column sums of the simpler but identically scaled matrix, 

 𝐵 = 𝑑𝑒𝑡 (𝐴)𝐴−1, 

where det (𝐴)  is the determinant of the community matrix A. Inverting A, multiplying by 

the determinant, 𝑑𝑒𝑡 (𝐴)  and taking the absolute value of the resulting entries gives: 
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𝐵+ =

(

 
 
 
 

𝐶𝑐
2 + 𝑒

𝑞6

𝐶𝑐

𝑞4

1

𝑞4

𝐶𝑐𝑒

𝑞4

𝐶𝑏𝐶𝑐

𝑞4

𝐶𝑏

𝑞4

𝑒2

𝑞4

𝐶𝑏𝑒

𝑞4

𝑒𝑞2 + 𝐶𝑏𝐶𝑐

𝑞4 )

 
 
 
 

 

 

where 𝐵+ represents the matrix of the absolute values of the entries of B. The column sums 

are: 

 
𝑆1 =

𝐶𝑐
2 + 𝑒

𝑞6
+ 

𝐶𝑐𝑒 + 𝑒2

𝑞4
 

 

 

 
𝑆2 = 

𝐶𝑏𝐶𝑐 + 𝐶𝑏𝑒 + 𝐶𝑐

𝑞4
 

 

 

 
𝑆3 =

1 + 𝐶𝑏 + 𝐶𝑏𝐶𝑐

𝑞4
+

𝑒

𝑞2
 

 

 

The ordering of the column sums from largest to smallest represents the species in the 

community in order of their total net effect, from largest to smallest. It is clear that the 

ordering of the sums is dependent on the relative values of the parameters q, Cb, Cc and e. 

We aim to evaluate the ordering of the column sums with minimum constraints placed on 

the parameters, however, ecological constraints allow us to make the following 

assumptions: 

1. If we exclude the possibility of positive intraspecific interaction coefficients 

(mutualism between individuals of the same species) we may assume that q, Cb, Cc 

and e are all positive.  

2. Since energy is always lost between trophic levels, we may assume 0 < e < 1. 

3.  For size based parameterisations such as the one used in Chapter 3 it is often 

assumed that a consumer species will always feed on smaller species, so that q > 1.  

Given the complex nature of the column sums we make one or both of the following 

further assumptions: 

4. The value of q is large enough to ensure that the column sum is dominated by the 

term with the smallest power of q in the denominator.  

5. Consumer intraspecific competition, Cc, is small compared to the other parameters.  
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Since it is given that q is greater than 1, the assumption that q is large enough to ensure 

that the column sum is dominated by the term with the smallest power of q in the 

denominator does not require q to be very large due to the nature of power functions, this 

is illustrated in Figure 4.2. This technique is common practice in asymptotic analysis 

where a function that cannot be expressed explicitly is approximated by the leading terms 

of its power series. We examine two situations: first where the assumption that Cc is small 

compared to the other parameters holds and second where Cc is unconstrained. In the first 

situation, the ratio of intra- interspecific interaction strength for consumers, Cc, is set to 

zero, then for fixed Cb and e the body mass ratio parameter q is allowed to become large. 

In ecological terms, this would equate to a situation where consumer intraspecific 

competition is weak compared to intraspecific competition amongst basal species. The 

assumption that consumer intraspecific competition is small compared to the other 

parameters is based on the biological argument that basal species are sedentary and have to 

compete for space and light, thus consumer intraspecific interaction strengths can be 

considered to be small compared to basal intraspecific interaction strength (Emmerson and 

Raffaelli 2004, Christianou and Ebenman 2005, Eklöf and Ebenman 2006). In the second 

situation, Cc, Cb and e are fixed and the body mass ratio parameter q is allowed to become 

large.  

 

Figure 4.2 Graph showing how functions of increasing powers of the predator-prey ratio q* increase rapidly 

for q* greater than 1. 
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Food Chain Analysis 

To evaluate the ordering of the columns sums S1, S2 and S3 for the three species food chain 

we first investigate the case where consumer intraspecific competition is small compared 

to the other parameters by setting 𝐶𝑐 = 0 and then allowing q to become large so that the 

column sums are: 

 S1 =
e

q6
+

e2

q4
 

𝑆2 =
𝐶𝑏𝑒

𝑞4
 

𝑆3 =
𝑒

𝑞2
 

 

Comparing the terms of S2 and S3 it is clear that S2 < S3 since 𝑞2 is much smaller than 𝑞4
. 

The ordering of S1 and S2 is dependent on the values of the parameters e and Cb. Now,  

 

𝑆2 − 𝑆1 =
𝐶𝑏𝑒

𝑞4
− (

𝑒

𝑞6
+

𝑒2

𝑞4
) 

So we have S2 > S1 when  

𝐶𝑏𝑒𝑞
2 − 𝑒 − 𝑒2𝑞2 > 0 

i.e. when 

𝐶𝑏 − 𝑒 >
1

𝑞2
 

 

If 𝐶𝑏 > 𝑒 then this will hold provided q is large enough.   

 

If consumer intraspecific competition is not set to 0 then the relationships are more 

complex. For fixed Cb, Cc, and e, if q is sufficiently large then the column sums are 

dominated by the terms: 

 𝑆1 =
𝐶𝑐𝑒 + 𝑒2

𝑞4
 

𝑆2 = 
𝐶𝑏𝐶𝑐 + 𝐶𝑏𝑒 + 𝐶𝑐

𝑞4
 

 

𝑆3 =
1 + 𝐶𝑏 + 𝐶𝑏𝐶𝑐

𝑞4
+

𝑒

𝑞2
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Again, S2 < S3, because 𝑞2 is much smaller than 𝑞4 but the ordering of S2 and S1 depends 

on the relative magnitude of the parameters Cb, Cc and e. Here, 

 

𝑆2 − 𝑆1 = (𝐶𝑏𝐶𝑐 + 𝐶𝑏𝑒 + 𝐶𝑐) − (𝐶𝑐𝑒 + 𝑒2) 

 

therefore S2 > S1 when  

 𝐶𝑐 + (𝐶𝑏 − 𝑒)(𝐶𝑐  + 𝑒) > 0 Inequality (1) 

   

which holds for 𝐶𝑏 > 𝑒. For 𝐶𝑏 < 𝑒 the inequality depends on the relative values of Cb, e 

and Cc as illustrated in Figure 4.3. 

 

The analysis for food chains of lengths 4, 5 and 6 with constant predator prey-body mass ratios 

is shown in Appendix F and the analysis for the case where predator-prey body mass ratios 

decrease with body mass/trophic position for food chains of lengths 3, 4, 5 and 6 is shown in 

Appendix G.  
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Figure 4.3(a) The ordering of the column sums S1 and S2 for the three species chain is shown by the plot of 

the function 𝑪𝒃 = 𝐞 −
𝑪𝒄

𝒆+𝑪𝒄
 for a range of values of Cc. The ordering S2 > S1 holds for the areas above the 

curves. As Cc → 0 the graph becomes Cb = e and as Cc becomes large the graph becomes 𝑪𝒃 = 𝒆 − 𝟏 thus 

inequality (3) always holds for Cc large. (b) The ordering of the column sums S1 and S2 for the three species 

chain is shown by the plot of the function 𝑪𝒃 = 𝐞 −
𝑪𝒄

𝒆+𝑪𝒄
 for a range of values of e. The ordering S2 > S1 

holds for the areas above the curves. (c) The ordering of the column sums S1 and S2 for the three species 

chain is shown by the three dimensional surface plot showing of the function 𝑪𝒃 = 𝐞 −
𝑪𝒄

𝒆+𝑪𝒄
. The ordering S2 

> S1 holds for the volume above the surface.  
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Comparison with Synthetic and Real Webs 

The analytical food chain analysis produced ranges of values of the parameters Cb, Cc, and 

e that ensure a positive relationship between species body mass and total net effect. The 

range of values of Cb, Cc, and e were then compared to the distribution of parameters found 

in a set of 97 synthetic webs and 2 real webs (Tuesday Lake and a reduced version of the 

Ythan Estuary). Each of the 97 synthetic food webs was created sequentially using an 

assembly algorithm from a previous study (Säterberg et al. 2013). The algorithm was 

initiated with a feasible locally stable community consisting of 7 competing basal species 

whose body masses were drawn from a uniform distribution.  At each step a new species 

was added to the community and the dynamics observed. Each new species, either basal, 

herbivore or carnivore was chosen at random and allocated a body mass drawn from a 

uniform distribution associated with the relevant trophic position. All feeding interactions 

were determined from this body mass (see Appendix C for a detailed description). After 

each addition, the new equilibrium was checked for feasibility and local stability. If the 

new equilibrium did not satisfy the criteria then the community was returned to the 

previous step and the process repeated. If these criteria were satisfied then the new 

community was retained and the process repeated until the community contained 50 

species. Previously, we have shown (Chapter 3 of this thesis) that there is a positive 

relationship between a species body mass and its total net effect for all of the food webs 

analysed. The parameters that determine the strength of interactions between species 

(predator-prey body mass ratio, ecological efficiency and intraspecific competition) for the 

synthetic and real food webs were calculated for each of the synthetic and real food webs 

and the distributions of the parameters compared to the values that emerged from the 

analytical food chain analysis. The analyses were performed using MATLAB version 7.7.0 

(MATLAB 2008). 
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Results 

Constant predator-prey body mass ratio 

If 𝐶𝑐 represents the intraspecific: interspecific strength ratio for each species so that 

intraspecific competition varies amongst consumer species, then for Cb > e the ordering of 

species from largest body mass to smallest body mass corresponds precisely with the 

ordering of influence from largest total net effect to smallest total net effect for all food 

chains (see Table 4.1 for a summary of the orderings and Appendix E for analysis). For the 

case where consumer intraspecific competition, 𝐶𝑐 is set to 0 then there is an emerging 

pattern where the ordering from largest body mass to smallest body mass corresponds 

precisely with the ordering of influence from largest total net effect to smallest total net 

effect for Cb > e (see Table 4.1 for a summary of the orderings and Appendix F for 

analysis). For Cb < e the ordering is not precise, however, powers of q ensure that there is a 

general pattern that largest body sizes are the most important. 

 

If consumer intraspecific competition is not set to 0 and can vary among consumer species 

then the ordering of the species from largest body mass to smallest body mass does not 

always correspond with the ordering of influence from largest total net effect to smallest 

total net effect (Table 1), but is dependent on the relative magnitude of the parameters Cb, 

Cc and e governed by inequalities (1), (2) and (3) (shown in Table 4.2 and Figures 4.3, 

4.4(a) and 4.4(b) respectively). The derivation of inequality (1) is shown above in the 

materials and methods section and the derivation of inequalities (2) and (3) is shown in 

Appendix F. 
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Table 4.1 Summary of the order of species total net effects for food chains of lengths, 3, 4 5 and 6 for the 

case where the predator-prey body size ratio, q, is constant. 

 

 

Table 4.2 The inequalities governing the order of species total net effects for food chains of lengths 3, 4, 5 

and 6. 

 

 

 

 

 

C c  = 0 Condition C c  ≠ 0 Condition

3 S 1  < S 2  < S 3 C b  > e S 1  < S 2  < S 3 Inequality (3)

4 S 1  < S 2  < S 3 < S4 C b  > e S 1  < S 2  < S 3 < S 4 Inequality (3)

Inequality (4)

5 S 1  < S 2  < S 3 <  S4 < S5 C b  > e S 1  < S 2  < S 3 < S 5  < S 4 Inequality (3)

Inequality (4)

Inequality (5)

6 S 1  < S 2  < S 3 <  S4 < S5 < S6 C b  > e S 1  < S 2  < S 3 < S 6  < S 5  < S 4 Inequality (3)

Inequality (4)

Inequality (5)

Constant predator-prey body size ratio (q )
Food Chain Length

Inequality (1) 

Inequality (2) 

Inequality (3) 

𝐶𝑐 + (𝐶𝑏 − 𝑒)(𝐶𝑐  + 𝑒) > 0 

𝐶𝑏𝑒 − 𝐶𝑏𝐶𝑐 − 𝐶𝑐 + 𝑒 − 𝑒2 > 0 

𝐶𝑏𝑒 − 𝐶𝑏𝐶𝑐 − 𝐶𝑐 − 𝑒2 > 0 
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Figure 4.4 (a) the ordering of the column sums S3 and S4 for the four species chain is shown by the plot of 

the function 𝐶𝑏 =
𝑒2

𝑒−𝐶𝑐
− 1 for a range of values of Cc. The ordering S4 > S3 is true for the area shown 

above and to the right of the upper set of curves. Figure 4.4 (b) the ordering of the column sums S3 and S5  

for the five species food chain is shown by the plot of the function 𝐶𝑏 =
𝑒2+𝐶𝑐

𝑒−𝐶𝑐
 for a range of values of Cc. 

The ordering S5 > S3 is true for the area shown above and to the right of the upper set of curves.  
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For all of the food chains examined here, the column sums for the basal and herbivore 

species are always smaller than those for the carnivore species. If consumer intraspecific 

competition varies amongst consumer species or is set to 0 then the condition, Cb > e is 

sufficient to ensure that the herbivore species have a larger total net effect than the basal 

species. For the case where consumer intraspecific competition is not set to 0 and is the 

same for all consumer species, the ordering of the basal and herbivore species is governed 

by the same inequality (3), (see Figure 4.3) for all the food chains examined. We note that 

for Cb > e, inequality (3) holds and the herbivore species has a larger total net effect than 

the basal species, i.e. the condition Cb > e ensures that the herbivore species has a larger 

total net effect than the basal species for all cases considered here. 

 

If consumer intraspecific competition varies among consumer species then the ordering of 

carnivore species from largest body mass to smallest body mass corresponds precisely 

with the order of influence from largest total net effect to smallest total net effect for all 

food chains for all possible values of the parameters. If consumer intraspecific 

competition, 𝐶𝑐 is set to 0 then the ordering of the carnivore species is governed by 

inequalities (1), (2) and (3) (see Table 2.2); if the inequalities are satisfied then the 

ordering of carnivore species from largest body mass to smallest body mass corresponds 

precisely with the ordering of influence from largest total net effect to smallest total net 

effect for all food chains. If consumer intraspecific competition is not set to 0 then 

amongst the carnivore species, it seems that smaller carnivores have greater influence than 

larger carnivores with the exception of the smallest carnivore (body mass m3), whose 

position in the order is dependent on the relative magnitude of the parameters Cb, Cc and e 

(see Table 2.1). The smallest carnivore has a smaller total net effect than the next largest 

carnivore (body mass m4) when inequality (2) is satisfied (see Table 2.2 and Figure 4.4a) 

and has a smaller net effect than the largest bodied carnivores (body masses m5 and m6) 

when inequalities (2) and (3) are satisfied. We note that for the smallest carnivore to have a 

smaller total net effect than the next largest carnivore it is necessary, but not sufficient, that 

Cc < e and to ensure that the smallest carnivore species has a smaller total net effect than 

the largest bodied carnivores (body masses m5 and m6) it is necessary, but not sufficient 

that Cc < e < Cb.  

 

  



 

108 

 

The distribution of the parameters q*, Cb, Cc and e in the synthetic food webs 

Next, consider the frequency distribution of the predator-prey ratios, q*, that occurred in 

the 97 synthetic food webs analysed in Chapter 3 (see Figure 4.5a). The predator-prey 

ratios form three distinct distributions: the ratio between basal species and herbivore 

species, the ratio between herbivore and carnivore species and the ratio between carnivore 

and top carnivore species. The histogram shows that all of the basal-herbivore predator 

prey-ratios are greater than 1, with an average value of 10
9
 (the power represents the mean 

of the base 10 logarithms of the predator-prey ratios) and that all of the herbivore-

carnivore predator-prey body mass ratios are greater than 1, with an average value of 10
2.1

. 

These ratios satisfy the assumption that ‘q is large enough’ made in the analysis above. 

However there are a significant number of carnivore-top carnivore predator-prey ratios less 

than 1, which means that for many of the top carnivore species the assumption ‘q large 

enough’ is not met and the column sums representing the total net effects of the top 

carnivore species may not be dominated by the leading terms. 
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Figure 4.5 (a) Plot of the probability density function for predator-prey body size ratios for all of the 

predator-prey interactions present in the 50 synthetic webs analysed in Chapter 3. The predator-prey body 

size ratio decreases with trophic height and body size. Figures 4.5 (b) and (c) Plots of the probability density 

functions for the intra – interspecific interaction strength ratios for all interactions present in the 50 synthetic 

webs analysed in Chapter 3. The distributions show that basal intra-interspecific interaction ratios (Cb) were 

usually greater than 1 and, in general, were larger than consumer intra-interspecific interaction ratios (Cc) 

which were frequently less than 1 
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The ecological efficiency parameter, e, used in Chapter 3 was assumed to be 0.1. The 

frequency distributions of the parameters Cb and Cc for all 97 synthetic webs are shown in 

Figures 4.5(b) and (c). Examining the distributions of parameters for all 97 webs showed that 

over 97% of the values of Cb were greater than 0.1 and 26% of the values of Cc were less than 

10
-4

. These values of Cb and Cc correspond approximately to the first case we examined 

where Cb is greater than e, Cc is set to 0 and there is a perfect correlation between body mass 

and total net effect. However, on a per web basis, just one web had values of Cb and Cc where 

all values in the individual web satisfied Cb is greater than e and Cc is less than 10
-4

.  

 

Examining the distributions of parameters for all 97 synthetic webs showed that 58% of the 

values of Cc were less than 0.1 and on a per web basis, 46 webs had values of Cc where all 

values in the individual web satisfied Cc less than 0.1. Therefore, for over half of the 

synthetic webs examined the values of Cc were not less than e and we do not expect a 

correlation between body mass and total net effects within the carnivore species. Examination 

of the correlations between carnivore species body mass and total net effects found that just 4 

webs had a significant (at the 5% level) positive correlation and 2 webs had a significant 

negative correlation. The average correlation over all 97 webs was 0.135. However, predator-

prey body mass ratios still guarantee that basal and herbivore species have a weaker total net 

effect than carnivore species thus ensuring correlation between species body mass and total 

net effects for the whole food web. The correlations between species body mass and total net 

effect for each of the 97 food webs were not perfect; they ranged between 0.41- 0.97 with an 

average correlation of 0.87. This deviation from a perfect correlation may be due to smaller 

carnivore-top carnivore predator-prey mass ratios, the relatively large values of Cc or the 

more complex structure of the webs. 

 

The distribution of the parameters q*, Cb, Cc and e in the real food webs 

The distributions of the predator-prey ratios, q*, that occurred in the Tuesday Lake and Ythan 

Estuary food webs analysed in Chapter 3 are shown in Figures 4.6(a) and 4.7(a). The 

distribution of predator-prey body mass ratios show that the predator-prey ratios, q* are 

nearly all greater than 1. Figures 4.6(b) and 4.7(b) show that basal intra-interspecific 

interaction ratios (Cb) were all greater than the efficiency e (set to 0.1). For the Tuesday Lake 

food web (Figure 4.6b) 28% of consumer intra-interspecific interaction ratios (Cc) were less 

than 0.1 and no ratios were less than 10
-4

. For the Ythan Estuary food web, 81% of consumer 

intra-interspecific interaction ratios (Cc) were less than 0.1 and 18% were less than 10
-4

. The 
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smaller values of Cc found in the Ythan Estuary food web may lead us to believe that the 

correlation between species body mass and total net effects should be stronger for the Ythan 

Estuary food web than for the Tuesday Lake food web but this was not the case. The 

correlation between species body mass and total net effect was 0.91 for the Tuesday Lake 

food web but just 0.44 for the Ythan Estuary food web. The stronger correlation in the 

Tuesday Lake food web may be explained by the different compositions of the food webs; 

the Tuesday Lake food web consisted of 29 basal species, 15 herbivore species and just 7 

carnivore species whereas the Ythan Estuary food web consisted of just 4 basal species, 24 

herbivore species and 25 carnivore species, thus the overall size structuring in the Tuesday 

Lake food web is more distinct than the Ythan Estuary food web, contributing to a stronger 

correlation.  
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Figure. 4.6 (a) Plot of the probability density function for predator-prey body size ratios for all predator-prey 

interactions present in the Tuesday Lake food web analysed in Chapter 3. Figure 4.6 (b) Plot of the probability 

density functions for the intra–interspecific interaction strength ratios for all interactions present in the Tuesday 

lake food web analysed in Chapter 3. The distributions show that basal intra-interspecific interaction ratios 

(C
b
)were usually greater than 1 and, in general, were larger than consumer intra-interspecific interaction ratios 

(C
c
). 
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Figure 4.7 (a) Plot of the probability density function for predator-prey body size ratios for all predator-prey 

interactions present in the largest invertible sub-web of the Ythan Estuary food web analysed in Chapter 3 

(contains 53 species). Figure 4.7 (b) Plot of the probability density functions for the intra–interspecific 

interaction strength ratios for all interactions present in the largest invertible sub-web of the Ythan Estuary 

food web analysed in Chapter 3. The distributions show that basal intra-interspecific interaction ratios (C
b
) 

were usually greater than 1 and consumer intra-interspecific interaction ratios (C
c
) were usually less than 1. 
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Predator-prey ratios decrease with trophic position and body-mass 

The ranking of species in order of their total net effects for each food chain is shown in 

Table 4.3. 

 

Table 4.3 summary of the order of species total net effects for food chains of lengths, 3, 4 5 and 6 for the 

case where the predator-prey body size ratio, q, decreases with trophic position and body-mass. 

 

 

For food chains of length three and four, in the case where consumer intraspecific 

competition is set to 0, allowing predator-prey body mass ratios to decrease with trophic 

height has no effect on the relationship between species body mass and the magnitude of 

its total net effects, i.e. if consumer intraspecific competition is set to 0 then there is a 

precise ordering of increasing species total net effects with increasing body mass for Cb > 

e. For food chains of length five and six, in the case where consumer intraspecific 

competition is not set to 0, allowing predator-prey body mass ratios to decrease with 

trophic height caused a small change in the ordering of species; the two smallest carnivore 

species, (body masses m3 and m4) switched places in the ordering so that the carnivore 

with the smallest body mass (m3) had a greater total net effect than its predator species 

(body mass m4).  

 

If consumer intraspecific competition is not set to 0 then the ordering of the carnivore 

species from largest body size to smallest body size does not correspond with the ordering 

of influence from largest total net effect to smallest total net effect. As in the case for 

constant predator-prey body mass ratios we find that for each of the food chains examined 

here, the column sums for the basal and herbivore species are always smaller than those 

for the carnivore species and the ordering of the basal and herbivore species is given by 

inequality (3) (Figure 4.3) for all food chains.  

C c  = 0 Condition C c  ≠ 0 Condition

3 S 1  < S 2  < S 3 C b  > e S 1  < S 2  < S 3

4 S 1  < S 2  < S 3 < S4 C b  > e S 1  < S 2  < S 4 <  S3 Inequality (3)

5 S 1  < S 2  < S 4 <  S3 < S5 C b  > e S 1  < S 2  < S 5 <  S3 < S4 Inequality (3)

6 S 1  < S 2  < S 4 <  S3 < S5 <  S6 C b  > e S 1  < S 2  < S 6 <  S5 < S3 <  S4 Inequality (3)

Decreasing predator-prey body size ratio (q )
Food Chain Length
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For the three species food chain this means that the orderings are no different to the case 

where the predator-prey body mass ratio, q, is constant. However, it seems that for food 

chains of length four, five and six, decreasing predator-prey body mass ratios changes the 

ordering of carnivore species. Recall, that for the case where q was constant and Cc was 

not set to 0, we found that smaller carnivores have greater influence than larger carnivores 

with the exception of the smallest carnivore (body mass m3), whose position in the order is 

dependent on the relative magnitude of the parameters Cb, Cc and e (see Table 4.1 and 

Figures 4.4a and 4.4b) whereas for decreasing q there is no obvious ordering of total net 

effects with body mass (see Table 4.3). 

 

Discussion 

The food chains analysed here are much simplified representations of the synthetic and 

real webs that were examined in Chapter 3. For large webs, the relationship between the 

community matrix and its inverse can become lost in the complexity of the inverse 

operation. The simplicity of these food chains enables us to determine the mechanisms 

driving the relationship between body mass and total net effects. Analyses of these simple 

food chains showed that in an energetics based framework, where food webs are 

parameterised according to energetic constraints under the assumption that large bodied 

species eat small bodied species, in general, large species have greater total net effects than 

small species (subject to conditions on parameters). This finding explains the relationship 

observed in Chapter 3 where it was demonstrated that the total net effect of a species was 

highly correlated with its body mass. 

 

We found that basal and herbivore species were always less influential than carnivore 

species and that the condition Cb > e guaranteed that basal species were less influential 

than herbivore species for all food chains. Recall, the parameter e represents the ecological 

efficiency of the consumer species i.e. the fraction of prey biomass ingested by the 

consumer that is turned into new consumer biomass and the parameter Cb represents the 

ratio of intraspecific: interspecific interaction strengths for basal species. If Cb has a value 

that is less than one, then the effect of herbivory on the basal species is greater than the 

self-limiting effect of intraspecific competition amongst the herbivore species. How often 

the condition Cb > e is satisfied in real food webs is unclear since intraspecific and 

interspecific interactions are notoriously difficult to measure empirically (Laska and 

Wootton 1998, Abrams 2001, Berlow et al. 2004, Wootton and Emmerson 2005). 
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Ecological efficiency is clearly bounded above by 1, it is estimated to lie between 0.02 and 

0.32 (Begon et al. 2009) and has been shown to decrease with body mass in marine 

systems (Barnes et al. 2010). For the synthetic food webs parameterised using predator-

prey body mass ratios and allometric scaling, Cb was greater than 1 (the upper bound of e) 

for 80% of the ratios calculated and greater than 0.1 for over 97% of the ratios calculated, 

thus the condition Cb > e was satisfied for most species, and herbivores had a greater total 

net effect than basal species. However, the empirical measures of intraspecific and 

interspecific interaction strengths measured from the plant-aphid mesocosm experiment 

presented in Chapter 2 indicate that Cb lies between 0.01 and 0.001. Since the ecological 

efficiency estimate for the pea aphid is approximately 0.2 (Auclair 1965), the condition Cb 

> e is not satisfied and we expect the basal species to have a larger total net effect than the 

herbivore species for that system. This example is somewhat counterintuitive; the reason 

the intraspecific: interspecific interaction strength ratio was so low was because the aphids 

had a large impact on the plants and yet we expect that the total net effect of the plants is 

greater than the total net effect of the aphids. It is important to note that since aphids are 

pest species, the intraspecific: interspecific interaction strength ratio estimated for plants 

and aphids in the study presented in Chapter 2 might be smaller than ratios in the 

environments where aphid populations are kept in check by a variety of natural enemies 

and smaller than ratios for other pairs of species in different systems.  

 

The impact of both intraspecific competition and predation can vary with population 

density (through functional responses and carrying capacities), it can vary with the 

structure of the community and also with environmental conditions (Menge and Sutherland 

1987, Goldberg et al. 1999, Case 2000, Sarnelle 2003, Otto et al. 2008, Schmitz et al. 

2008, Alvarez et al. 2013). In light of this, it is likely that the relative importance of basal 

species and herbivore species will vary between communities and, over time, within a 

community; more empirical information is needed to estimate the extent of this variation. 

For food chains of length four or greater, it was found that the ordering of carnivore 

species from largest body mass to smallest body mass corresponds precisely with the 

ordering of influence from largest total net effect to smallest total net effect for the case 

where consumer intraspecific interaction strength varies among consumer species (for all 

values of the parameters) and for the case where consumer intraspecific interaction 

strength is set to 0 (for Cb > e). If consumer intraspecific interaction strength is not set to 0 

and is the same for all consumer species then, for the case where the predator-prey body 
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mass ratio is constant, it seems that smaller carnivores have greater influence than larger 

carnivores with the exception of the smallest carnivore (body mass m3), whose position in 

the order is dependent on the relative magnitude of the parameters Cb, Cc and e (Table 4.2 

and Figures 4.4a and 4.4b). For the case where predator-prey body mass ratios decrease 

with body mass, and consequently trophic height, there is no obvious ordering of total net 

effects with body mass. 

 

If intraspecific competition is the same for all consumer species, as trophic level increases 

intraspecific interaction strengths remain constant while interspecific interaction strengths 

decrease, thus intraspecific interaction strengths became relatively stronger for species at 

higher trophic levels. The fact that larger bodied carnivore species experience relatively 

stronger self-limitation may explain the pattern we see where smaller bodied carnivore 

species have greater net effects than larger bodied carnivore species. If intraspecific 

interaction strengths vary among consumer species then there is a precise ordering of 

increasing total net effects with increasing body mass and trophic level. Again, since we 

do not know how intraspecific interaction strengths scale with interspecific interaction 

strengths in real systems it is not possible to draw definite conclusions regarding the 

ordering of carnivore species. 

 

The fact that the ordering of species net effects amongst carnivore species in longer food 

chains was not always clear may not have a large effect on the correlation of species body 

mass with total net effects in large complex food webs, since top carnivore species are 

rarer than species at lower trophic levels. For the synthetic webs analysed in Chapter 3, 

just 5% of species were top-carnivore species. For the Tuesday Lake food web there were 

just 2 top-carnivore species (representing less than 4% of all species) and for the Ythan 

Estuary web there were just 4 top carnivore species (representing less than 8% of all 

species). Therefore, the ordering amongst the carnivore species will not have a large effect 

on the overall relationship between body mass and net effect; the most important factor is 

that basal species have smaller net effects than herbivore species which have smaller net 

effects than carnivore species. This result alone is enough to ensure a strong correlation 

between body mass and net effect in complex webs. 

 

In the synthetic webs and real webs analysed in Chapter 3 we note that the trophic levels 

are not clearly defined the way they are for a food chain since most species have more than 
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one prey, thus species trophic heights are averaged. This, along with the fact that in food 

webs there are multiple species of similar size eating similar sized prey means that entries 

in the community matrix may be similar for multiple species and the precise ordering of 

these species will depend on the values assigned to intraspecific competition as well as the 

structure of the web. 

 

For size structured communities where large species feed on smaller species, the results of 

this analysis indicate that, in general, large bodied species have the greatest net effect in a 

community (on a per unit mass basis). At a population level, the relationship between 

species body mass and total net effects is dependent on how population biomass density 

scales with body mass across trophic levels. The population biomass of species i, Bi, can be 

written as 𝐵𝑖 = 𝑁𝑖 × 𝑚𝑖  where Ni is the numerical population density of species i and mi 

is the average body mass of species i. If the previously reported scaling between numerical 

population density and body size (𝑁𝑖 = 𝑚𝑖
−1) (Peters 1983, Schmid et al. 2000) holds then 

 𝐵𝑖 = 𝑁𝑖 × 𝑚𝑖 = 𝑚𝑖
−1 × 𝑚𝑖 = 𝑚𝑖

0 and population biomass density is invariant with body 

size across trophic levels thus the relationship between body mass and total net effect at 

the population level is unchanged.  If the scaling exponent between population biomass 

density and body mass is greater than 0 then the positive relationship between body mass 

and total net effect at the population level is strengthened but if the scaling exponent is less 

than 0 then the positive relationship between body mass and total net effect at the 

population level is weakened. For a scaling exponent less than 0, whether the relationship 

holds at the population level or not will depend on the value of the scaling exponent and 

how strongly size structured the community is. Within the size structured North Sea 

community, exponents less than 0 have been reported for fish and epifaunal predator 

species and exponents greater than 0 have been reported for infaunal detritivore species 

(Blanchard et al. 2009), these values have the potential to alter the relationship between 

species body mass and total net effects at the population level.   

 

Several conclusions can be drawn from the present study. First, in an energetics based 

framework, where food webs are parameterised according to energetic constraints under 

the assumption that large bodied species eat small bodied species, in general, large species 

have greater total net effects than small species. Second, the precise ordering of species is 

terms of their total net effect is dependent on the relative values of efficiency, e, and 
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intraspecific: interspecific interaction strength ratios. Finally, the relationship between 

species body size and total net effect at the population level will also depend on how 

population biomass density scales with body mass and how strongly the community is size 

structured. Much information is known about the ecological efficiency parameter e (Begon 

et al. 2009, Barnes et al. 2010), and there is a growing body of empirical studies informing 

the size structuring of communities (Jennings and Warr 2003, Brose et al. 2005b, Brose et 

al. 2006a, Riede et al. 2011), and the scaling of population biomass density with body size 

(Peters 1983, Schmid et al. 2000, Blanchard et al. 2009, Wilson et al. 2010), but further 

empirical information regarding the scaling of intraspecific and interspecific interaction 

strengths is necessary before we can predict the total net effect of a species within a 

community.  
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Here we present the analysis for the food chains shown in Figures 4.1(a)-(d) under the 

assumption that consumer intraspecific interaction strength scales with consumer 

interspecific interaction strength so that: 

𝑎𝑖𝑖 = 𝐶𝑏𝑎𝑖,𝑖+1  for basal species and  𝑎𝑖𝑖 = 𝐶𝑐𝑎𝑖,𝑖+1   for consumer species 

where Cb and Cc are parameters that we can vary to investigate how the magnitude of aii 

values affect the pattern of total net effects. Note that this definition cannot apply to the top 

predator so for the top predator we define intraspecific competition to be the same as for 

its prey species so that: 

𝑎𝑖𝑖 = 𝐶𝑐𝑎𝑖−1,𝑖 where i is a top predator.   

For the simple three species food chain shown in Figure 4.1 (a) this does not change the 

community matrix A so the orderings of column sums will be unchanged. 

 

Four Species Food Chain 

For the simple food chain shown in Figure 4.1 (b), let m1, m2, m3 and m4 denote the body 

masses of the basal, herbivore, carnivore and top carnivore species respectively. Following 

the assumptions made for the case where consumer intraspecific competition is the same 

for all consumer species, the community matrix A for the four species food chain is of the 

form:  

𝐴 =

(

 
 
 
 
 
 

−𝐶𝑏

𝑞
−

1

𝑞
0 0

𝑒

𝑞

−𝐶𝑐

𝑞3
−

1

𝑞3
0

0
𝑒

𝑞3

−𝐶𝑐

𝑞5
−

1

𝑞5

0 0
𝑒

𝑞5

−𝐶𝑐

𝑞5 )

 
 
 
 
 
 

 

We examine the column sums of the absolute values of the entries of the matrix B, where, 

𝐵 = 𝑑𝑒𝑡 (𝐴)𝐴−1. 
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𝐵+ =

(

 
 
 
 
 
 
 

𝐶𝑐(𝐶𝑐
2 + 𝑒𝑞2 + 𝑒)

𝑞13

𝐶𝑐
2 + 𝑒

𝑞11

𝐶𝑐

𝑞9

1

𝑞9

𝐶𝑐
2𝑒 + 𝑒2

𝑞11

𝐶𝑏𝐶𝑐
2 + 𝐶𝑏𝑒

𝑞11

𝐶𝑏𝐶𝑐

𝑞9

𝐶𝑏

𝑞9

𝐶𝑐𝑒
2

𝑞9

𝐶𝑏𝐶𝑐𝑒

𝑞9

𝐶𝑐𝑒𝑞
2 + 𝐶𝑏𝐶𝑐

2

𝑞9

𝑒𝑞2 + 𝐶𝑏𝐶𝑐

𝑞9

𝑒3

𝑞9

𝐶𝑏𝑒
2

𝑞9

𝑒2𝑞2 + 𝐶𝑏𝐶𝑐𝑒

𝑞9

𝐶𝑏𝐶𝑐
2 + 𝐶𝑐𝑒𝑞

2 + 𝐶𝑏𝑒𝑞
2

𝑞9 )

 
 
 
 
 
 
 

 

 

The matrix 𝐵+ is the matrix whose entries are the absolute values of the entries of matrix 

B. The column sums are: 

𝑆1 =
𝐶𝑐

3 + 𝑒

𝑞13
+ 

𝐶𝑐
2𝑒 + 𝐶𝑐𝑒 + 𝑒 + 𝑒2

𝑞11
+

𝐶𝑐𝑒
2 + 𝑒3

𝑞9
 

𝑆2 =
𝐶𝑏𝑒 + 𝐶𝑏𝐶𝑐

2 + 𝐶𝑐
2 + 𝑒

𝑞11
+

𝐶𝑏𝐶𝑐𝑒 + 𝐶𝑏𝑒
2

𝑞9
 

𝑆3 =
𝐶𝑏𝐶𝑐 + 𝐶𝑏𝐶𝑐

2 + 𝐶𝑏𝐶𝑐𝑒 + 𝐶𝑐

𝑞9
+

𝐶𝑐𝑒 + 𝑒2

𝑞7
 

𝑆4 =
1 + 𝐶𝑏 + 𝐶𝑏𝐶𝑐 + 𝐶𝑏𝐶𝑐

2

𝑞9
+

𝐶𝑏𝑒 + 𝐶𝑐𝑒 + 𝑒

𝑞7
 

For sufficiently large q, the column sums are approximated by: 

𝑆1 ≈
𝐶𝑐𝑒

2 + 𝑒3

𝑞9
 

𝑆2 ≈  
𝐶𝑏𝐶𝑐𝑒 + 𝐶𝑏𝑒

2

𝑞9
 

𝑆3 ≈
𝐶𝑐𝑒 + 𝑒2

𝑞7
 

𝑆4 ≈
𝐶𝑏𝑒 + 𝐶𝑐𝑒 + 𝑒

𝑞7
 

It is clear that max{S1,  S2} < S3 < S4 since 𝑞7 is much smaller than 𝑞9
. The ordering of S1 

and S2 depends on the relative magnitude of the parameters Cb, Cc and e.  
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The ordering S2 > S1 holds when 

𝑆2 − 𝑆1 = 
𝐶𝑏𝐶𝑐𝑒 + 𝐶𝑏𝑒

2

𝑞9
− 

𝐶𝑐𝑒
2 + 𝑒3

𝑞9
> 0 

i.e. when 

𝐶𝑏(𝐶𝑐 + 𝑒) − 𝑒(𝐶𝑐 + 𝑒) > 0 

which holds for 𝐶𝑏 > 𝑒.  

 

Five Species Food Chain 

For the five species food chain shown in Figure 4.1 (c), let m1, m2, m3, m4 and m5 denote 

the body masses of the species in order of increasing size and trophic height. Following the 

assumptions made for the four species food chain, the community matrix A for a five 

species food chain is of the form:  

𝐴 =  

(

 
 
 
 
 
 
 
 
 

−𝐶𝑏

𝑞
−

1

𝑞
0 0 0

𝑒

𝑞

−𝐶𝑐

𝑞3
−

1

𝑞3
0 0

0
𝑒

𝑞3

−𝐶𝑐

𝑞5
−

1

𝑞5
0

0 0
𝑒

𝑞5

−𝐶𝑐

𝑞7
−

1

𝑞7

0 0 0
𝑒

𝑞7

−𝐶𝑐

𝑞7 )

 
 
 
 
 
 
 
 
 

 

 

The column sums of the matrix 𝐵+  which is the matrix containing the absolute values of 

the matrix entries of 𝑑𝑒𝑡 (𝐴)𝐴−1 are:  

𝑆1 =
𝐶𝑐

4 + 𝐶𝑐
2𝑒

𝑞22
+

2𝐶𝑐𝑒
2 + 𝐶𝑐

3𝑒 + 𝑒 + 𝑒2

𝑞20
+

𝐶𝑐
2𝑒2 + 𝐶𝑐𝑒

2 + 𝑒3

𝑞18
+

𝐶𝑐𝑒
3 + 𝑒4

𝑞16
 

𝑆2 =
𝐶𝑏𝐶𝑐

3 + 𝐶𝑏𝐶𝑐𝑒 + 𝐶𝑐
3 + 𝑒

𝑞20
+

𝐶𝑏𝐶𝑐𝑒 + 𝐶𝑏𝐶𝑐
2𝑒 + 𝐶𝑐𝑒 + 𝑒

𝑞18
+

𝐶𝑏𝐶𝑐𝑒
2 + 𝐶𝑏𝑒

3

𝑞16
 

𝑆3 =
𝐶𝑏𝐶𝑐

2 + 𝐶𝑏𝐶𝑐
3 + 𝐶𝑏𝑒 + 𝐶𝑏𝐶𝑐𝑒 + 𝐶𝑐

2 + 𝑒

𝑞18
+

𝐶𝑏𝐶𝑐
2𝑒 + 𝐶𝑏𝐶𝑐𝑒

2 + 𝐶𝑐
2𝑒 + 𝑒2

𝑞16
+

𝐶𝑐𝑒
2 + 𝑒3

𝑞14
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𝑆4 =
𝐶𝑏𝐶𝑐 + 𝐶𝑏𝐶𝑐

2 + 𝐶𝑏𝐶𝑐
3 + 𝐶𝑏𝐶𝑐

2𝑒 + 𝐶𝑐

𝑞16
+

𝐶𝑏𝐶𝑐𝑒 + 𝐶𝑏𝑒
2 + 𝐶𝑐𝑒 + 𝐶𝑐

2𝑒 + 𝐶𝑐𝑒
2

𝑞14
 

𝑆5 =
1+𝐶𝑏 + 𝐶𝑏𝐶𝑐 + 𝐶𝑏𝐶𝑐

2 + 𝐶𝑏𝐶𝑐
3

𝑞16
+

𝐶𝑏𝑒 + 2𝐶𝑏𝐶𝑐𝑒 + 𝐶𝑐𝑒 + 𝐶𝑐
2𝑒 + 𝑒

𝑞14
+

𝑒2

𝑞12
 

For non-zero consumer intraspecific competition and for sufficiently large q, the column 

sums are dominated by the terms:  

𝑆1 ≈
𝐶𝑐𝑒

3 + 𝑒4

𝑞16
 

𝑆2 ≈
𝐶𝑏𝐶𝑐𝑒

2 + 𝐶𝑏𝑒
3

𝑞16
 

𝑆3 =
𝐶𝑐𝑒

2 + 𝑒3

𝑞14
 

𝑆4 ≈
𝐶𝑏𝐶𝑐𝑒 + 𝐶𝑏𝑒

2 + 𝐶𝑐𝑒 + 𝐶𝑐
2𝑒 + 𝐶𝑐𝑒

2

𝑞14
 

𝑆5 ≈
𝑒2

𝑞12
 

It is clear that {S1, S2 } < S3 < S4 < S5. The ordering S2 > S1 holds when 

𝑆2 − 𝑆1 = 
𝐶𝑏𝐶𝑐𝑒

2 + 𝐶𝑏𝑒
3

𝑞16
− 

𝐶𝑐𝑒
3 + 𝑒4

𝑞16
> 0 

i.e. when 

𝐶𝑏(𝐶𝑐 + 𝑒) − 𝑒(𝐶𝑐 + 𝑒) > 0 

which holds for 𝐶𝑏 > 𝑒.  

Six Species Food Chain 

For the six species food chain shown in Figure 4.1 (d), let m1, m2, m3, m4, m5 and m6 denote 

the body masses of the species in order of increasing size and trophic height. Following the 

assumptions made for the shorter food chains the community matrix A for the six species 

food chain is of the form:  
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𝐴 =  

(

 
 
 
 
 
 
 
 
 
 
 

−𝐶𝑏

𝑞
−

1

𝑞
0 0 0 0

𝑒

𝑞

−𝐶𝑐

𝑞3
−

1

𝑞3
0 0 0

0 −
𝑒

𝑞3

−𝐶𝑐

𝑞5
−

1

𝑞5
0 0

0 0
𝑒

𝑞5

−𝐶𝑐

𝑞7
−

1

𝑞7
0

0 0 0
𝑒

𝑞7

−𝐶𝑐

𝑞9
−

1

𝑞9

0 0 0 0
𝑒

𝑞9

−𝐶𝑐

𝑞9 )

 
 
 
 
 
 
 
 
 
 
 

 

 

In the case where consumer intraspecific competition is not small compared to the other 

parameters and q is sufficiently large, the column sums are dominated by the terms:  

𝑆1 ≈
𝐶𝑐𝑒

4 + 𝑒5

𝑞25
 

𝑆2 ≈
𝐶𝑏𝐶𝑐𝑒

3 + 𝐶𝑏𝑒
4

𝑞25
 

𝑆3 ≈
𝐶𝑏𝐶𝑐

2𝑒2 + 𝐶𝑏𝐶𝑐𝑒
3 + 𝐶𝑐

2𝑒2 + 𝑒3

𝑞25
+

𝐶𝑐𝑒
3 + 𝑒4

𝑞23
 

𝑆4 ≈
𝐶𝑏𝐶𝑐

2𝑒2 + 𝐶𝑏𝐶𝑐
3𝑒

𝑞25
+

𝐶𝑏𝐶𝑐𝑒
2 + 𝐶𝑏𝑒

3 + 𝐶𝑐
2𝑒2 + 𝐶𝑐𝑒

3

𝑞23
 

𝑆5 =
𝐶𝑐𝑒

2 + 𝑒3

𝑞21
 

𝑆6 ≈
𝐶𝑏𝑒

2 + 2𝐶𝑐𝑒
2 + 𝑒2

𝑞21
 

It is clear that max{S1, S2} <  S3 < S4 < S5 < S6. The ordering of S1 and S2 depends on the 

relative magnitudes of the parameters. We have:  

𝑆2 − 𝑆1 =
𝐶𝑏𝐶𝑐𝑒

3 + 𝐶𝑏𝑒
4

𝑞25
−

𝐶𝑐𝑒
4 + 𝑒5

𝑞25
 

so that S2 > S1 when 
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𝐶𝑏(𝐶𝑐 + 𝑒) − 𝑒(𝐶𝑐 + 𝑒) > 0 

which, once again, holds for 𝐶𝑏 > 𝑒.  
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APPENDIX F 
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Here we present the analysis for the food chains of length 4, 5 and 6 shown in Figure 

4.1(b)-(d) where consumer intraspecific competition is the same for all consumers. 

 

Four Species Food Chain 

For the simple food chain shown in Figure 4.1 (b), let m1, m2, m3 and m4 denote the body 

masses of the basal, herbivore, carnivore and top carnivore species respectively. Following 

the assumptions made for the three species food chain, the community matrix A for the 

four species food chain is of the form:  

𝐴 =

(

 
 
 
 
 
 

−𝐶𝑏

𝑞
−

1

𝑞
0 0

𝑒

𝑞

−𝐶𝑐

𝑞3
−

1

𝑞3
0

0
𝑒

𝑞3

−𝐶𝑐

𝑞3
−

1

𝑞5

0 0
𝑒

𝑞5

−𝐶𝑐

𝑞3 )

 
 
 
 
 
 

 

We examine the column sums of the absolute values of the entries of the matrix B, where, 

𝐵 = 𝑑𝑒𝑡 (𝐴)𝐴−1. 

 

𝐵+ =

(

 
 
 
 
 
 
 

𝐶𝑐(𝐶𝑐
2𝑞4 + 𝑒𝑞4 + 𝑒)

𝑞13

𝐶𝑐
2𝑞4 + 𝑒

𝑞11

𝐶𝑐

𝑞7

1

𝑞9

𝐶𝑐
2𝑒𝑞4 + 𝑒2

𝑞11

𝐶𝑏𝐶𝑐
2𝑞4 + 𝐶𝑏𝑒

𝑞11

𝐶𝑏𝐶𝑐

𝑞7

𝐶𝑏

𝑞9

𝐶𝑐𝑒
2

𝑞7

𝐶𝑏𝐶𝑐𝑒

𝑞7

𝐶𝑐𝑒𝑞
2 + 𝐶𝑏𝐶𝑐

2

𝑞7

𝑒𝑞2 + 𝐶𝑏𝐶𝑐

𝑞9

𝑒3

𝑞9

𝐶𝑏𝑒
2

𝑞9

𝑒2𝑞2 + 𝐶𝑏𝐶𝑐𝑒

𝑞9

𝐶𝑏𝐶𝑐
2 + 𝐶𝑐𝑒𝑞

2 + 𝐶𝑏𝑒

𝑞7 )

 
 
 
 
 
 
 

 

 

The matrix 𝐵+ is the matrix whose entries are the absolute values of the entries of matrix 

B.  
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The column sums are: 

𝑆1 =
𝐶𝑐𝑒

𝑞13
+ 

𝑒2

𝑞11
+

𝐶𝑐
3 + 𝐶𝑐𝑒 + 𝑒3

𝑞9
+

𝐶𝑐
2𝑒 + 𝐶𝑐𝑒

2

𝑞7
 

𝑆2 =
𝐶𝑏𝑒 + 𝑒

𝑞11
+

𝐶𝑏𝑒
2

𝑞9
+ 

𝐶𝑏𝐶𝑐
2 + 𝐶𝑏𝐶𝑐𝑒 + 𝐶𝑐

2

𝑞7
 

𝑆3 =
𝐶𝑏𝐶𝑐𝑒

𝑞9
+

𝐶𝑏𝐶𝑐 + 𝐶𝑏𝐶𝑐
2 + 𝐶𝑐 + 𝑒2

𝑞7
+

𝐶𝑐𝑒

𝑞5
 

𝑆4 =
1 + 𝐶𝑏 + 𝐶𝑏𝐶𝑐

𝑞9
+

𝐶𝑏𝐶𝑐
2 + 𝐶𝑏𝑒 + 𝑒

𝑞7
+

𝐶𝑐𝑒

𝑞5
 

If we set consumer intraspecific competition to 0 and allow q to become large then the 

column sums are: 

𝑆1 =
𝑒2

𝑞11
+

𝑒3

𝑞9
 

𝑆2 =
𝐶𝑏𝑒 + 𝑒

𝑞11
+

𝐶𝑏𝑒
2

𝑞9
 

𝑆3 =
𝑒2

𝑞7
 

𝑆4 =
𝐶𝑏𝑒 + 𝑒

𝑞7
 

Comparing the terms of S4 and S3 it is clear that S3 < S4.  For q large enough, the powers of 

q ensure that S2 < S3 but again, the ordering of S1 and S2 is dependent on the values of the 

parameters e and Cb.  

Assuming q is large enough, we have  

𝑆2 − 𝑆1 =
𝐶𝑏𝑒

2

𝑞9
−

𝑒3

𝑞9
 

thus S2 > S1 when  

𝐶𝑏𝑒
2 − 𝑒3 > 0 

i.e. when 𝐶𝑏 > 𝑒 which is consistent with the result for the three species food chain. 
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If consumer intraspecific competition is not set to 0 then, for sufficiently large q, the 

column sums are approximated by: 

𝑆1 ≈
𝐶𝑐

2𝑒 + 𝐶𝑐𝑒
2

𝑞7
 

𝑆2 ≈ 
𝐶𝑏𝐶𝑐

2 + 𝐶𝑏𝐶𝑐𝑒 + 𝐶𝑐
2

𝑞7
 

𝑆3 ≈
𝐶𝑏𝐶𝑐 + 𝐶𝑏𝐶𝑐

2 + 𝐶𝑐 + 𝑒2

𝑞7
+

𝐶𝑐𝑒

𝑞5
 

𝑆4 ≈
𝐶𝑏𝐶𝑐

2 + 𝐶𝑏𝑒 + 𝑒

𝑞7
+

𝐶𝑐𝑒

𝑞5
 

 

It is clear that 𝑚𝑎𝑥{𝑆1, 𝑆2} < 𝑚𝑖𝑛{𝑆3, 𝑆4} since 𝑞5 is much smaller than 𝑞7
. The ordering 

of S3 and S4 and the ordering of S1 and S2 depends on the relative magnitude of the 

parameters Cb, Cc and e.  

Examining the difference between the column sums yields:  

𝑆4 − 𝑆3 =
𝐶𝑏𝐶𝑐

2 + 𝐶𝑏𝑒 + 𝑒

𝑞7
−

𝐶𝑏𝐶𝑐 + 𝐶𝑏𝐶𝑐
2 + 𝐶𝑐 + 𝑒2

𝑞7
 

 

hence S4 > S3 when 

 𝐶𝑏𝑒 − 𝐶𝑏𝐶𝑐 − 𝐶𝑐 + 𝑒 − 𝑒2 > 0 

 

Inequality (2) 

Whether this inequality holds depends on the relative values of Cb, e and Cc as illustrated 

in Figure 4.4. Note that Cc < e is a necessary condition for inequality (2) to hold. 
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The ordering S2 > S1 holds when 

𝑆2 − 𝑆1 = 
𝐶𝑏𝐶𝑐

2 + 𝐶𝑏𝐶𝑐𝑒 + 𝐶𝑐
2

𝑞7
− 

𝐶𝑐
2𝑒 + 𝐶𝑐𝑒

2

𝑞7
> 0 

i.e. when 

𝐶𝑐 + (𝐶𝑏 − 𝑒)(𝐶𝑐  + 𝑒) > 0 

 

which is same as inequality (1) for the three species chain, thus the ordering S2 > S1 holds 

for 𝐶𝑏 > 𝑒. For 𝐶𝑏 < 𝑒 the inequality depends on the relative values of Cb, e and Cc as 

again illustrated in Figure 4.3. 

 

Five Species Food Chain 

For the five species food chain shown in Figure 4.1 (c), let m1, m2, m3, m4 and m5 denote 

the body masses of the species in order of increasing size and trophic height. Following the 

assumptions made for the three and four species food chains the community matrix A for a 

five species food chain is of the form:  

𝐴 =  

(

 
 
 
 
 
 
 
 
 

−𝐶𝑏

𝑞
−

1

𝑞
0 0 0

𝑒

𝑞

−𝐶𝑐

𝑞3
−

1

𝑞3
0 0

0
𝑒

𝑞3

−𝐶𝑐

𝑞3
−

1

𝑞5
0

0 0
𝑒

𝑞5

−𝐶𝑐

𝑞3
−

1

𝑞7

0 0 0
𝑒

𝑞7

−𝐶𝑐

𝑞3 )
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The column sums of the matrix 𝐵+ which is the matrix containing the absolute values of 

the matrix enties of 𝑑𝑒𝑡 (𝐴)𝐴−1 are: 

𝑆1 =
𝐶𝑐

2𝑒 + 𝑒2

𝑞20
+

𝐶𝑐𝑒
2 + 𝑒3

𝑞18
+

𝐶𝑐
2𝑒 + 𝑒4

𝑞16
+

𝐶𝑐𝑒
2

𝑞14
+

𝐶𝑐
4 + 𝐶𝑐

2𝑒 + 𝐶𝑐𝑒
3

𝑞12
+

𝐶𝑐
3𝑒 + 𝐶𝑐

2𝑒2

𝑞10
 

𝑆2 =
𝐶𝑏𝐶𝑐𝑒 + 𝐶𝑏𝑒

2 + 𝐶𝑐𝑒

𝑞18
+

𝐶𝑏𝑒
3

𝑞16
+

𝐶𝑏𝐶𝑐𝑒 + 𝐶𝑐𝑒

𝑞14
+

𝐶𝑏𝐶𝑐𝑒
2

𝑞12
+

𝐶𝑏𝐶𝑐
3 + 𝐶𝑐

3𝐶𝑏𝐶𝑐
2𝑒 + 𝐶𝑐

3

𝑞10
 

𝑆3 =
𝐶𝑏𝑒 + 𝐶𝑏𝐶𝑐𝑒 + 𝑒

𝑞18
+

𝐶𝑏𝐶𝑐𝑒
2 + 𝑒2

𝑞16
+

𝑒3

𝑞14
+

𝐶𝑏𝐶𝑐
2𝑒

𝑞12
+

𝐶𝑏𝐶𝑐
2 + 𝐶𝑏𝐶𝑐

3 + 𝐶𝑐
2 + 𝐶𝑐𝑒

2

𝑞10
+

𝐶𝑐
2𝑒

𝑞8
 

𝑆4 =
𝐶𝑏𝐶𝑐

2𝑒 + 𝐶𝑏𝑒
2

𝑞14
+

𝐶𝑏𝐶𝑐 + 𝐶𝑏𝐶𝑐
2 + 𝐶𝑐

𝑞12
+

𝐶𝑏𝐶𝑐
3 + 𝐶𝑏𝐶𝑐𝑒 + 𝐶𝑐𝑒

𝑞10
+

𝐶𝑐
2𝑒

𝑞8
 

𝑆5 =
1+𝐶𝑏 + 𝐶𝑏𝐶𝑐

𝑞16
+

𝑒 + 𝐶𝑏𝐶𝑐
2 + 𝐶𝑏𝐶𝑐𝑒 + 𝐶𝑏𝑒

𝑞14
+

𝐶𝑐𝑒 + 𝑒2

𝑞12
+

𝐶𝑏𝐶𝑐
3 + 𝐶𝑏𝐶𝑐𝑒

𝑞10
+

𝐶𝑐
2𝑒

𝑞8
 

Setting  𝐶𝑐 = 0 the column sums are: 

𝑆1 =
𝑒2

𝑞20
+

𝑒3

𝑞18
+

𝑒4

𝑞16
 

𝑆2 =
𝐶𝑏𝑒

2

𝑞18
+

𝐶𝑏𝑒
3

𝑞16
 

𝑆3 =
𝐶𝑏𝑒 + 𝑒

𝑞18
+

𝑒2

𝑞16
+

𝑒3

𝑞14
 

𝑆4 =
𝐶𝑏𝑒

2

𝑞14
 

𝑆5 =
1+𝐶𝑏

𝑞16
+

𝐶𝑏𝑒 + 𝑒

𝑞14
+

𝑒2

𝑞12
 

Comparing the sums term by term yields the following orderings, max{S1, S2} < min {S3, S4, 

S5}and max{S3, S4 } < S5. The ordering of the pairs S3, S4 and S1, S2 are dependent on the 

values of the parameters e and Cb.  
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Assuming q is large enough, we have:  

𝑆4 − 𝑆3 =
𝐶𝑏𝑒

2

𝑞14
−

𝑒3

𝑞14
 

whence S4 > S3 for  

𝐶𝑏𝑒
2 − 𝑒3 > 0 

i.e. when 𝐶𝑏 > 𝑒. The ordering of S1 and S2 is given by considering the equality 

𝑆2 − 𝑆1 =
𝐶𝑏𝑒

3

𝑞16
−

𝑒4

𝑞16
 

so we have S2> S1 when  

𝐶𝑏𝑒
3 − 𝑒4 > 0 

 

which is, once again, when 𝐶𝑏 > 𝑒.  

For non-zero consumer intraspecific competition and for sufficiently large q, the column 

sums are dominated by the terms:  

𝑆1 ≈
𝐶𝑐

3𝑒 + 𝐶𝑐
2𝑒2

𝑞10
 

𝑆2 ≈
𝐶𝑏𝐶𝑐

3 + 𝐶𝑏𝐶𝑐
2𝑒 + 𝐶𝑐

3

𝑞10
 

𝑆3 ≈
𝐶𝑏𝐶𝑐

2 + 𝐶𝑏𝐶𝑐
3+𝐶𝑐

2 + 𝐶𝑐𝑒
2

𝑞10
+

𝐶𝑐
2𝑒

𝑞8
 

𝑆4 ≈
𝐶𝑏𝐶𝑐

3 + 𝐶𝑏𝐶𝑐𝑒 + 𝐶𝑐𝑒

𝑞10
+

𝐶𝑐
2𝑒

𝑞8
 

𝑆5 ≈
𝐶𝑏𝐶𝑐

3 + 𝐶𝑏𝐶𝑐𝑒

𝑞10
+

𝐶𝑐
2𝑒

𝑞8
 

Powers of q ensure that max{S1, S2 } < min {S3, S4, S5}. Within the carnivore species 3, 4, 

and 5 it is clear that S5 < S4 but the relationships between S3 and S5 and S3 and S4 are more 

complex.  
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We have :  

𝑆5 − 𝑆3 =
𝐶𝑏𝐶𝑐

3 + 𝐶𝑏𝐶𝑐𝑒

𝑞10
−

𝐶𝑏𝐶𝑐
2 + 𝐶𝑏𝐶𝑐

3 + 𝐶𝑐
2 + 𝐶𝑐𝑒

2

𝑞10
 

thus S5 > S3 when 

 𝐶𝑏𝑒 − 𝐶𝑏𝐶𝑐 − 𝐶𝑐 − 𝑒2 > 0 

 

Inequality (3) 

Whether this inequality holds depends on the relative values of Cb, e and Cc as illustrated in 

Figure 4.3. Note that the condition Cc < e < Cb is necessary for inequality (3) to hold. 

Similarly, 

𝑆4 − 𝑆3 =
𝐶𝑏𝐶𝑐

3 + 𝐶𝑏𝐶𝑐𝑒 + 𝐶𝑐𝑒

𝑞10
−

𝐶𝑏𝐶𝑐
2 + 𝐶𝑏𝐶𝑐

3+𝐶𝑐
2 + 𝐶𝑐𝑒

2

𝑞10
 

so we have S4 > S3 when:  

𝐶𝑏𝑒 + 𝑒 − 𝐶𝑏𝐶𝑐 − 𝐶𝑐 − 𝑒2 > 0 

which is the same as inequality (2) which governs the ordering of S3 and S4 for the four 

species food chain, see Figure 4.4. 

The ordering S2 > S1 holds when 

𝑆2 − 𝑆1 = 
𝐶𝑏𝐶𝑐

3 + 𝐶𝑏𝐶𝑐
2𝑒 + 𝐶𝑐

3

𝑞10
− 

𝐶𝑐
3𝑒 + 𝐶𝑐

2𝑒2

𝑞10
> 0 

i.e. when 

𝐶𝑐 + (𝐶𝑏 − 𝑒)(𝐶𝑐  + 𝑒) > 0 

which is the same inequality (1) which governs the ordering of S1 and S2 for the three and 

four species food chains, see Figure 4.3. 

 

Six Species Food Chain 

For the six species food chain shown in Figure 4.1 (d), let m1, m2, m3, m4, m5 and m6 denote 

the body masses of the species in order of increasing size and trophic height. Following the 

assumptions made for the shorter food chains the community matrix A for a six species food 
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chain is of the form:  

𝐴 =  

(

 
 
 
 
 
 
 
 
 
 
 

−𝐶𝑏

𝑞
−

1

𝑞
0 0 0 0

𝑒

𝑞

−𝐶𝑐

𝑞3
−

1

𝑞3
0 0 0

0 −
𝑒

𝑞3

−𝐶𝑐

𝑞3
−

1

𝑞5
0 0

0 0
𝑒

𝑞5

−𝐶𝑐

𝑞3
−

1

𝑞7
0

0 0 0
𝑒

𝑞7

−𝐶𝑐

𝑞3
−

1

𝑞9

0 0 0 0
𝑒

𝑞9

−𝐶𝑐

𝑞3 )

 
 
 
 
 
 
 
 
 
 
 

 

 

Due to the increasing complexity of the matrix 𝐵+, which is the matrix containing the 

absolute values of the matrix entries of 𝑑𝑒𝑡 (𝐴)𝐴−1, we first examine column sums where 

consumer intraspecific interaction strength is set to 0: 

𝑆1 =
𝑒3

𝑞29
+

𝑒4

𝑞27
+

𝑒5

𝑞25
 

𝑆2 =
+𝐶𝑏𝑒

2 + 𝑒3

𝑞29
+

𝐶𝑏𝑒
3

𝑞27
+

𝐶𝑏𝑒
4

𝑞25
 

𝑆3 =
𝑒3

𝑞25
+

𝑒4

𝑞23
 

𝑆4 =
𝐶𝑏𝑒 + 𝑒

𝑞27
+

𝐶𝑏𝑒
2 + 𝑒2

𝑞25
+

𝐶𝑏𝑒
3

𝑞23
 

𝑆5 =
𝑒3

𝑞21
 

𝑆6 =
1+𝐶𝑏

𝑞25
+

𝐶𝑏𝑒 + 𝑒

𝑞23
+

𝐶𝑏𝑒
2 + 𝑒2

𝑞21
 

For q sufficiently large, comparing the sums term by term yields the following orderings, 

max{S3, S4} <  S5 < S6 and max{S1, S2} < S3. The ordering of the pairs S3, S4 and S1, S2 are 

dependent on the values of the parameters e and Cb. For q large enough, 

𝑆4 − 𝑆3 =
𝐶𝑏𝑒

3

𝑞23
−

𝑒4

𝑞23
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therefore S4 > S3 when  

𝐶𝑏𝑒
3 − 𝑒4 > 0 

i.e. when 𝐶𝑏 > 𝑒. The ordering of S1 and S2 is given by considering the equality 

𝑆2 − 𝑆1 =
𝐶𝑏𝑒

4

𝑞25
−

𝑒5

𝑞25
 

and S2 > S1 when  

𝐶𝑏𝑒
4 − 𝑒5 > 0 

 

which is, once again, when 𝐶𝑏 > 𝑒.  

In the case where consumer intraspecific competition is not 0 and q is sufficiently large, the 

column sums are dominated by the terms:  

𝑆1 ≈
𝐶𝑐

5 + 𝐶𝑐
3𝑒 + 𝐶𝑐

2𝑒3

𝑞15
+

𝐶𝑐
4𝑒 + 𝐶𝑐

3𝑒2

𝑞13
 

𝑆2 ≈
𝐶𝑏𝐶𝑐

2𝑒2

𝑞15
+

𝐶𝑏𝐶𝑐
4 + 𝐶𝑏𝐶𝑐

3𝑒 + 𝐶𝑐
4

𝑞13
 

𝑆3 ≈
𝐶𝑏𝐶𝑐

3𝑒

𝑞15
+

𝐶𝑏𝐶𝑐
3+𝐶𝑏𝐶𝑐

4 + 𝐶𝑐
3 + 𝐶𝑐

2𝑒2

𝑞13
+

𝐶𝑐
3𝑒

𝑞11
 

𝑆4 ≈
𝐶𝑏𝐶𝑐

2 + 𝐶𝑏𝐶𝑐
3 + 𝐶𝑐

2 + 𝐶𝑐
2𝑒2

𝑞15
+

𝐶𝑏𝐶𝑐
4+𝐶𝑏𝐶𝑐

2𝑒 + 𝐶𝑐
2𝑒

𝑞13
+

𝐶𝑐
3𝑒

𝑞11
 

𝑆5 ≈
𝐶𝑐

2𝑒 + 𝐶𝑐𝑒
2

𝑞15
+

𝐶𝑏𝐶𝑐
4+𝐶𝑏𝐶𝑐

2𝑒

𝑞13
+

𝐶𝑐
3𝑒

𝑞11
 

𝑆6 ≈
𝐶𝑐𝑒

2

𝑞15
+

𝐶𝑏𝐶𝑐
4+𝐶𝑏𝐶𝑐

2𝑒

𝑞13
+

𝐶𝑐
3𝑒

𝑞11
 

It is clear that max{S1, S2} <  min{S3, S4 ,S5, S6}. Within the carnivore species 3, 4, 5 and 6 

the ordering is S6  <  S5 < S4 but the ordering of S3 with S4, S5 and S6 depends on the relative 

magnitudes of the parameters. We have:  

𝑆6 − 𝑆3 =
𝐶𝑏𝐶𝑐

4+𝐶𝑏𝐶𝑐
2𝑒

𝑞13
−

𝐶𝑏𝐶𝑐
3+𝐶𝑏𝐶𝑐

4 + 𝐶𝑐
3 + 𝐶𝑐

2𝑒2

𝑞13
 

so that S6 > S3 when 
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𝐶𝑏𝑒 − 𝐶𝑏𝐶𝑐 − 𝐶𝑐 − 𝑒2 > 0 

This inequality is the same as inequality (3) derived for the ordering of S5 and S3 for the five 

species food chain, see Figure 4.3. To compare the ordering of S3 with S5 note that the 

coefficients for the term containing q
13

 are identical for S5 and S6 therefore the ordering of S3 

with S5 is also governed by inequality (3). Similarly, 

𝑆4 − 𝑆3 =
𝐶𝑏𝐶𝑐

4+𝐶𝑏𝐶𝑐
2𝑒 + 𝐶𝑐

2𝑒

𝑞13
−

𝐶𝑏𝐶𝑐
3+𝐶𝑏𝐶𝑐

4 + 𝐶𝑐
3 + 𝐶𝑐

2𝑒2

𝑞13
 

hence S4 > S3 when:  

𝐶𝑏𝑒 − 𝐶𝑏𝐶𝑐 − 𝐶𝑐 + 𝑒 − 𝑒2 > 0 

which is the same as inequality (2) which governs the ordering of S3 and S4 for the four 

species food chain, see Figure 4.4. Note that if inequality (3) holds then inequality (2) will 

also hold so that S3 < S6 < S5 < S4 but if inequality (2) does not hold then inequality (3) will 

not hold and S6 < S5 < S4 < S3.  

The ordering S2 > S1 holds when 

𝑆2 − 𝑆1 = 
𝐶𝑏𝐶𝑐

4 + 𝐶𝑏𝐶𝑐
3𝑒 + 𝐶𝑐

4

𝑞13
−

𝐶𝑐
4𝑒 + 𝐶𝑐

3𝑒2

𝑞13
 

i.e. when 

𝐶𝑐 + (𝐶𝑏 − 𝑒)(𝐶𝑐  + 𝑒) > 0 

which is the same as inequality (1) which governs the ordering of S1 and S2 for the three, 

four and five species food chains, see Figure 4.3. 
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APPENDIX G 
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The ordering of species net effects when predator-prey ratios decrease with trophic position 

and body-mass. 

For the 97 synthetic food webs analysed it was found that predator-prey body mass ratios 

decreased with trophic height (see Figure 4.5), this pattern has also been observed in real 

food webs (Riede et al. 2011). To examine how decreasing predator-prey ratios with body 

mass affects the ordering of total net effects we examine the column sums of the inverse 

community matrix where the entries in the community matrix depend on varying predator-

prey body mass ratios. We assume that the predator-prey body mass ratios are strongly 

ordered so that predator-prey body mass ratios between species at the bottom of the food 

chain are much larger than predator-prey body mass ratios between species at the top of the 

food chain. Note that we maintain the assumption that a consumer species will always feed 

on smaller species so that predator-prey body mass ratios are always greater than 1. 

 

Parameterisation of Food Chains 

We begin by defining the interaction strengths present in the community matrix for the 

longest food chain, containing six species (Figure. 4.1(d)). Since all the food webs analysed 

in this section are subsets of this six species food chain all the interaction strengths required 

to parameterise the food chains shown in Figures 4.1(a)-4.1(d) are defined by parameterising 

the six species food chain. For the simple six species food chain shown in Figure 4.1 (d), let 

m1, m2, m3, m4, m5 and m6 denote the body mass of species in order of increasing mass and 

trophic height. Let 𝑞1
∗ represent the predator-prey body mass ratio 

𝑚2

𝑚1
, let 𝑞2

∗ represent 

predator-prey body mass ratio 
𝑚3

𝑚2
, let 𝑞3

∗ represent predator-prey body mass ratio 
𝑚4

𝑚3
, let 𝑞4

∗ 

represent the predator-prey body mass ratio 
𝑚5

𝑚4
 and let 𝑞5

∗ represent the predator-prey body 

mass ratio 
𝑚6

𝑚5
.  
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Then we can write: 

 𝑚2 = 𝑞1
∗𝑚1 

𝑚3 = 𝑞2
∗𝑞1

∗𝑚1    

𝑚4 = 𝑞3
∗𝑞2

∗𝑞1
∗𝑚1 

𝑚5 = 𝑞4
∗𝑞3

∗𝑞2
∗𝑞1

∗𝑚1 

𝑚6 = 𝑞5
∗𝑞4

∗𝑞3
∗𝑞2

∗𝑞1
∗𝑚1 

and, 

 𝑎12 = 𝐶𝑎12(𝑚1𝑚2)
−

1

4 = 𝐶𝑎12(𝑞1
∗𝑚1

2)−
1

4 = 𝐶𝑎12(𝑚1

−
1

2)(𝑞1
∗−

1

4) 

𝑎23 = 𝐶𝑎23(𝑚2𝑚3)
−

1
4 = 𝐶𝑎23(𝑞1

∗2𝑞2
∗𝑚1

2)−
1
4 = 𝐶𝑎23(𝑚1

−
1
2)(𝑞1

∗−
1
2)(𝑞2

∗−
1
4) 

𝑎34 = 𝐶𝑎34(𝑚3𝑚4)
−

1
4 = 𝐶𝑎34(𝑞1

∗2𝑞2
∗2𝑞3

∗𝑚1
2)−

1
4 = 𝐶𝑎34(𝑚1

−
1
2)(𝑞1

∗−
1
2)(𝑞2

∗−
1
2)(𝑞3

∗−
1
4) 

𝑎45 = 𝐶𝑎45(𝑚4𝑚5)
−

1
4 = 𝐶𝑎45(𝑞1

∗2𝑞2
∗2𝑞3

∗2𝑞4
∗𝑚1

2)−
1
4

= 𝐶𝑎45(𝑚1

−
1
2)(𝑞1

∗−
1
2)(𝑞2

∗−
1
2)(𝑞3

∗−
1
2)(𝑞4

∗−
1
4) 

𝑎56 = 𝐶𝑎56(𝑚4𝑚5)
−

1
4 = 𝐶𝑎56(𝑞1

∗2𝑞2
∗2𝑞3

∗2𝑞4
∗𝑚1

2)−
1
4

= 𝐶𝑎56(𝑚1

−
1
2)(𝑞1

∗−
1
2)(𝑞2

∗−
1
2)(𝑞3

∗−
1
2)(𝑞4

∗−
1
4) 

To simplify the form of the aij entries we replace (𝑞𝑖
∗)

1

4 with the variable qi and since Caij is 

a constant that scales the magnitude of all the aij entries we replace 𝐶𝑎𝑖𝑗𝑚1

−
1

2 with the value -

1. This gives 𝑎12 = −
1

𝑞1
, 𝑎23 = −

1

𝑞1
2𝑞2

, 𝑎34 = −
1

𝑞1
2𝑞2

2𝑞3
, 𝑎45 = −

1

𝑞1
2𝑞2

2𝑞3
2𝑞4

, 

 𝑎56 = −
1

𝑞1
2𝑞2

2𝑞3
2𝑞4

2𝑞5

  

As for the case where q is considered constant, the intraspecific interaction strengths are 

defined to scale with the interspecific interactions so that  𝑎𝑖𝑖 = 𝐶𝑏𝑎12 = −
𝐶𝑏

𝑞1
  for basal 

species (i = 1) and 

  𝑎𝑖𝑖 = 𝐶𝑐𝑎23 = −
𝐶𝑐

𝑞1
2𝑞2

  for consumer species (i = 2,3,4,5,6). 
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Using this notation, the community matrix A for the six species food chain is of the form:  

𝐴 =  

(

 
 
 
 
 
 
 
 
 
 
 

−𝐶𝑏

𝑞1
−

1

𝑞1
0 0 0 0

𝑒

𝑞1

−𝐶𝑐

𝑞1
2𝑞2

−
1

𝑞1
2𝑞2

0 0 0

0 −
𝑒

𝑞1
2𝑞2

−𝐶𝑐

𝑞1
2𝑞2

−
1

𝑞1
2𝑞2

2𝑞3

0 0

0 0
𝑒

𝑞1
2𝑞2

2𝑞3

−𝐶𝑐

𝑞1
2𝑞2

−
1

𝑞1
2𝑞2

2𝑞3
2𝑞4

0

0 0 0
𝑒

𝑞1
2𝑞2

2𝑞3
2𝑞4

−𝐶𝑐

𝑞1
2𝑞2

−
1

𝑞1
2𝑞2

2𝑞3
2𝑞4

2𝑞5

0 0 0 0
𝑒

𝑞1
2𝑞2

2𝑞3
2𝑞4

2𝑞5

−𝐶𝑐

𝑞1
2𝑞2 )

 
 
 
 
 
 
 
 
 
 
 

 

 

The community matrices for the smaller food chains are defined as subsets of this matrix. 

 

Three Species Food Chain 

The community matrix A for the simple three species food chain shown in Figure 4.1 (a) is 

of the form: 

𝐴 =

(

 
 
 
 

−𝐶𝑏

𝑞1
−

1

𝑞1
 0

𝑒

𝑞1
−

𝐶𝑐

𝑞1
2𝑞2

−
1

𝑞1
2𝑞2

0
𝑒

𝑞1
2𝑞2

−
𝐶𝑐

𝑞1
2𝑞2)

 
 
 
 

 

 

Once again, to investigate the ordering of the column sums we examine the column sums of 

the simpler but identically scaled matrix 𝐵 = 𝑑𝑒𝑡 (𝐴)𝐴−1 where: 

𝐵+ =

(

 
 
 
 

𝐶𝑐
2 + 𝑒

𝑞1
4𝑞2

2

𝐶𝑐

𝑞1
3𝑞2

1

𝑞1
3𝑞2

𝐶𝑐𝑒

𝑞1
3𝑞2

𝐶𝑏𝐶𝑐

𝑞1
3𝑞2

𝐶𝑏

𝑞1
3𝑞2

𝑒2

𝑞1
3𝑞2

𝐶𝑏𝑒

𝑞1
3𝑞2

𝑒𝑞1𝑞2 + 𝐶𝑏𝐶𝑐

𝑞1
3𝑞2 )
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The matrix 𝐵+ is the matrix whose entries are the absolute values of the entries of matrix B. 

The column sums are: 

 
𝑆1 =

𝐶𝑐
2 + 𝑒

𝑞1
4𝑞2

2 + 
𝐶𝑐𝑒 + 𝑒2

𝑞1
3𝑞2

 
 

 
𝑆2 = 

𝐶𝑐𝐶𝑏 + 𝐶𝑏𝑒 + 𝐶𝑐

𝑞1
3𝑞2

 
(6) 

 
𝑆3 =

1 + 𝐶𝑏 + 𝐶𝑏𝐶𝑐

𝑞1
3𝑞2

+
𝑒

𝑞1
2 

 

 

Comparing the column sums in (6) to the column sums in (2) for the case where the 

predator-prey body mass ratio q is constant we see that the numerators of the terms in the 

column sums are identical and that the relative scaling of terms in the denominator is the 

same (𝑞6 < 𝑞4 < 𝑞2 in (2) and 𝑞1
4𝑞2

2 < 𝑞1
3𝑞2 < 𝑞1

2 in (6). So the ordering of column sums 

is identical to the case where q is constant.  

 

Four Species Food Chain 

The community matrix A for the four species food chain is of the form:  

𝐴 =

(

 
 
 
 
 
 

−𝐶𝑏

𝑞1
−

1

𝑞1
0 0

𝑒

𝑞1

−𝐶𝑐

𝑞1
2𝑞2

−
1

𝑞1
2𝑞2

0

0
𝑒

𝑞1
2𝑞2

−𝐶𝑐

𝑞1
2𝑞2

−
1

𝑞1
2𝑞2

2𝑞3

0 0
𝑒

𝑞1
2𝑞2

2𝑞3

−𝐶𝑐

𝑞1
2𝑞2 )
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We examine the column sums of the absolute values of the entries of the matrix B, which 

equals 

(

 
 
 
 
 
 
 

𝐶𝑐
3𝑞2

2𝑞3
2 + 𝐶𝑐𝑒𝑞2

2𝑞3
2 + 𝐶𝑐𝑒

𝑞1
6𝑞2

5𝑞3
2

𝐶𝑐
2𝑞2

2𝑞3
2 + 𝑒

𝑞1
5𝑞2

4𝑞3
2

𝐶𝑐

𝑞1
5𝑞2

2

1

𝑞1
5𝑞2

3𝑞3

𝐶𝑐
2𝑒𝑞2

2𝑞3
2 + 𝑒2

𝑞1
5𝑞2

4𝑞3
2

𝐶𝑏𝐶𝑐
2𝑞2

2𝑞3
2 + 𝐶𝑏𝑒

𝑞1
5𝑞2

4𝑞3
2

𝐶𝑏𝐶𝑐

𝑞1
5𝑞2

2

𝐶𝑏

𝑞1
5𝑞2

3𝑞3

𝐶𝑐𝑒
2

𝑞1
5𝑞2

2

𝐶𝑏𝐶𝑐𝑒

𝑞1
5𝑞2

2

𝐶𝑏𝐶𝑐
2 + 𝐶𝑐𝑒𝑞1𝑞2

𝑞1
5𝑞2

2

𝐶𝑏𝐶𝑐 + 𝑒𝑞1𝑞2

𝑞1
5𝑞2

3𝑞3

𝑒3

𝑞1
5𝑞2

3𝑞3

𝐶𝑏𝑒
2

𝑞1
5𝑞2

3𝑞3

𝐶𝑏𝐶𝑐𝑒 + 𝑒2𝑞1𝑞2

𝑞1
5𝑞2

3𝑞3

𝐶𝑏𝑒 + 𝐶𝑏𝐶𝑐
2 + 𝐶𝑐𝑒𝑞1𝑞2

𝑞1
5𝑞2

4 )

 
 
 
 
 
 
 

 

 

The column sums are: 

𝑆1 =
𝐶𝑐𝑒

𝑞1
6𝑞2

5𝑞3
2
+

𝐶𝑐
3 + 𝐶𝑐𝑒

𝑞1
6𝑞2

3 +
𝑒2

𝑞1
5𝑞2

4𝑞3
2
+

𝑒3

𝑞1
5𝑞2

3𝑞3

+
𝐶𝑐

2𝑒 + 𝐶𝑐𝑒
2

𝑞1
5𝑞2

2
 

𝑆2 =
𝐶𝑏𝑒 + 𝑒

𝑞1
5𝑞2

4𝑞3
2

+
𝐶𝑏𝑒

2

𝑞1
5𝑞2

3𝑞3

+
𝐶𝑏𝐶𝑐

2 + 𝐶𝑏𝐶𝑐𝑒 + 𝐶𝑐
2

𝑞1
5𝑞2

2
 

𝑆3 =
𝐶𝑏𝐶𝑐𝑒

𝑞1
5𝑞2

3𝑞3

+
𝐶𝑏𝐶𝑐 + 𝐶𝑏𝐶𝑐

2 + 𝐶𝑐

𝑞1
5𝑞2

2
+

𝑒2

𝑞1
4𝑞2

2𝑞3

+
𝐶𝑐𝑒

𝑞1
4𝑞2

 

𝑆4 =
𝐶𝑏𝐶𝑐

2 + 𝐶𝑏𝑒

𝑞1
5𝑞2

4
+

1 + 𝐶𝑏 + 𝐶𝑏𝐶𝑐

𝑞1
5𝑞2

3𝑞3

+
𝐶𝑐𝑒

𝑞1
4𝑞2

3 +
𝑒

𝑞1
4𝑞2

2𝑞3

 

 

Assuming that consumer intraspecific competition is small compared to the other 

parameters, we set  𝐶𝑐 = 0, then the column sums are: 

𝑆1 =
𝑒2

𝑞1
5𝑞2

4𝑞3
2
+

𝑒3

𝑞1
5𝑞2

3𝑞3

 

𝑆2 =
𝐶𝑏𝑒 + 𝑒

𝑞1
5𝑞2

4𝑞3
2

+
𝐶𝑏𝑒

2

𝑞1
5𝑞2

3𝑞3

 

𝑆3 =
𝑒2

𝑞1
4𝑞2

2𝑞3

 

𝑆4 =
𝐶𝑏𝑒

𝑞1
5𝑞2

4
+

1 + 𝐶𝑏

𝑞1
5𝑞2

3𝑞3

+
𝑒

𝑞1
4𝑞2

2𝑞3
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Comparing the terms of S4 and S3 it is clear that S3 < S4. The assumption that predator-prey 

ratios decrease with body mass means that we assume q1 is much larger than q2 which is in 

turn much larger than q3 and all ratios are greater than 1.  Comparing powers of q1 yields S2 

< S3. Since the powers of q1 are equivalent for the terms in the column sums S1 and S2 we 

determine the order of S1 and S2 by assuming that the column sums are dominated by the 

terms containing the lowest power of q2. This assumption gives us the ordering S1 < S2 

when𝐶𝑏 > 𝑒, which is consistent with the case for constant q. 

For the case when consumer intraspecific competition is not set to 0, the column sums are 

approximated by: 

𝑆1 ≈
𝑒3

𝑞1
5𝑞2

3𝑞3

+
𝐶𝑐

2𝑒 + 𝐶𝑐𝑒
2

𝑞1
5𝑞2

2
 

𝑆2 ≈
𝐶𝑏𝑒

2

𝑞1
5𝑞2

3𝑞3

+
𝐶𝑏𝐶𝑐

2 + 𝐶𝑏𝐶𝑐𝑒 + 𝐶𝑐
2

𝑞1
5𝑞2

2
 

𝑆3 ≈
𝑒2

𝑞1
4𝑞2

2𝑞3

+
𝐶𝑐𝑒

𝑞1
4𝑞2

 

𝑆4 ≈
𝐶𝑐𝑒

𝑞1
4𝑞2

3 +
𝑒

𝑞1
4𝑞2

2𝑞3

 

 

 Comparing powers of q1 yields max{S1, S2} < min{S3, S4} and comparing powers of q2 

gives the ordering S4 < S3. Again, the powers of q1 are equivalent for the terms in the sums 

S1 and S2 so the column sums are approximated by the terms containing the lowest powers 

of q2, therefore, the ordering S2 > S1 holds when 

𝑆2 − 𝑆1 = 
𝐶𝑏𝐶𝑐

2 + 𝐶𝑏𝐶𝑐𝑒 + 𝐶𝑐
2

𝑞1
5𝑞2

2
− 

𝑒𝐶𝑐
2 + 𝐶𝑐𝑒

2

𝑞1
5𝑞2

2
> 0 

i.e. when 

𝐶𝑐 + (𝐶𝑏 − 𝑒)(𝐶𝑐  + 𝑒) > 0 

which is same inequality (3) which governs the ordering of S1 and S2 for the food chains 

where q is constant (Figure 4.3) 
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Five Species Food Chain 

The community matrix A for the five species food chain is of the form:  

𝐴 =

(

 
 
 
 
 
 
 
 
 

−𝐶𝑏

𝑞1
−

1

𝑞1
0 0 0

𝑒

𝑞1

−𝐶𝑐

𝑞1
2𝑞2

−
1

𝑞1
2𝑞2

0 0

0
𝑒

𝑞1
2𝑞2

−𝐶𝑐

𝑞1
2𝑞2

−
1

𝑞1
2𝑞2

2𝑞3

0

0 0
𝑒

𝑞1
2𝑞2

2𝑞3

−𝐶𝑐

𝑞1
2𝑞2

−
1

𝑞1
2𝑞2

2𝑞3
2𝑞4

0 0 0
𝑒

𝑞1
2𝑞2

2𝑞3
2𝑞4

−𝐶𝑐

𝑞1
2𝑞2 )

 
 
 
 
 
 
 
 
 

 

 

The column sums of matrix 𝐵+, which is the matrix containing the absolute values of the 

matrix entries of 𝑑𝑒𝑡 (𝐴)𝐴−1, are: 

𝑆1 =
𝐶𝑐

2𝑒 + 𝑒2

𝑞1
8𝑞2

6𝑞3
4𝑞4

2 +
𝐶𝑐

2𝑒

𝑞1
8𝑞2

6𝑞3
2 +

𝐶𝑐
4 + 𝐶𝑐

2𝑒

𝑞1
8𝑞2

4 +
𝐶𝑐𝑒

2 + 𝑒3

𝑞1
7𝑞2

5𝑞3
4𝑞4

2
+

𝑒4

𝑞1
7𝑞2

5𝑞3
3𝑞4

+
𝐶𝑐𝑒

2

𝑞1
7𝑞2

5𝑞3
2
+

𝐶𝑐𝑒
3

𝑞1
7𝑞2

4𝑞3

+
𝐶𝑐

3𝑒 + 𝐶𝑐
2𝑒2

𝑞1
7𝑞2

3  

𝑆2 =
𝐶𝑏𝐶𝑐𝑒 + 𝐶𝑏𝑒

2+𝐶𝑐𝑒

𝑞1
7𝑞2

5𝑞3
4𝑞4

2
+

𝐶𝑏𝑒
3

𝑞1
7𝑞2

5𝑞3
3𝑞4

+
𝐶𝑏𝐶𝑐𝑒 + 𝐶𝑐𝑒

𝑞1
7𝑞2

5𝑞3
2

+
𝐶𝑏𝐶𝑐𝑒

2

𝑞1
7𝑞2

4𝑞3

+
𝐶𝑏𝐶𝑐

3 + 𝐶𝑏𝐶𝑐
2𝑒 + 𝐶𝑐

3

𝑞1
7𝑞2

3  

𝑆3 =
𝐶𝑏𝑒 + 𝐶𝑏𝐶𝑐𝑒 + 𝑒

𝑞1
7𝑞2

5𝑞3
4𝑞4

2
+

𝐶𝑏𝐶𝑐𝑒
2

𝑞1
7𝑞2

5𝑞3
3𝑞4

+
𝐶𝑏𝐶𝑐

2𝑒

𝑞1
7𝑞2

4𝑞3

+
𝐶𝑏𝐶𝑐

2 + 𝐶𝑏𝐶𝑐
3 + 𝐶𝑐

2

𝑞1
7𝑞2

3 +
𝑒2

𝑞1
6𝑞2

4𝑞3
4𝑞4

2

+
𝑒3

𝑞1
6𝑞2

4𝑞3
3𝑞4

+
𝐶𝑐𝑒

2

𝑞1
6𝑞2

3𝑞3

+
𝐶𝑐

2𝑒

𝑞1
6𝑞2

2 

𝑆4 =
𝐶𝑏𝐶𝑐

2𝑒 + 𝐶𝑏𝑒
2

𝑞1
7𝑞2

4𝑞3
2𝑞4

+
𝐶𝑏𝐶𝑐 + 𝐶𝑏𝐶𝑐

2 + 𝐶𝑐

𝑞1
7𝑞2

4𝑞3

+
𝐶𝑏𝐶𝑐

3 + 𝐶𝑏𝐶𝑐𝑒

𝑞1
7𝑞2

3 +
𝐶𝑐𝑒

2

𝑞1
6𝑞2

3𝑞3
2𝑞4

+
𝐶𝑐𝑒

𝑞1
6𝑞2

3𝑞3

+
𝐶𝑐

2𝑒

𝑞1
6𝑞2

2 

𝑆5 =
1 + 𝐶𝑏 + 𝐶𝑏𝐶𝑐

𝑞1
7𝑞2

5𝑞3
3𝑞4

+
𝐶𝑏𝐶𝑐𝑒

𝑞1
7𝑞2

5𝑞3
2
+

𝐶𝑏𝐶𝑐
2 + 𝐶𝑏𝑒

𝑞1
7𝑞2

4𝑞3
2𝑞4

+
𝐶𝑏𝐶𝑐

3 + 𝐶𝑏𝐶𝑐𝑒

𝑞1
7𝑞2

3 +
𝐶𝑐𝑒

𝑞1
6𝑞2

3𝑞3
2𝑞4

+
𝑒

𝑞1
6𝑞2

4𝑞3
3𝑞4

+
𝑒2

𝑞1
6𝑞2

4𝑞3
2 +

𝐶𝑐
2𝑒

𝑞1
6𝑞2

2 
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If consumer intraspecific competition is set to 0, the column sums are: 

𝑆1 =
𝑒2

𝑞1
8𝑞2

6𝑞3
4𝑞4

2 +
𝑒3

𝑞1
7𝑞2

5𝑞3
4𝑞4

2
+

𝑒4

𝑞1
7𝑞2

5𝑞3
3𝑞4

 

𝑆2 =
𝐶𝑏𝑒

2

𝑞1
7𝑞2

5𝑞3
4𝑞4

2
+

𝐶𝑏𝑒
3

𝑞1
7𝑞2

5𝑞3
3𝑞4

 

𝑆3 =
𝐶𝑏𝑒 + 𝑒

𝑞1
7𝑞2

5𝑞3
4𝑞4

2
+

𝑒2

𝑞1
6𝑞2

4𝑞3
4𝑞4

2 +
𝑒3

𝑞1
6𝑞2

4𝑞3
3𝑞4

 

𝑆4 =
𝐶𝑏𝑒

2

𝑞1
7𝑞2

4𝑞3
2𝑞4

 

𝑆5 =
1 + 𝐶𝑏

𝑞1
7𝑞2

5𝑞3
3𝑞4

+
𝐶𝑏𝑒

𝑞1
7𝑞2

4𝑞3
2𝑞4

+
𝑒

𝑞1
6𝑞2

4𝑞3
3𝑞4

+
𝑒2

𝑞1
6𝑞2

4𝑞3
2 

 

Comparing the terms of sums it is clear that max{S1, S2} < S4 < S3 < S5 which is a different 

ordering than the one obtained for the case where q is constant. Since we assume that q3 is 

much larger than q4, to compare the column sums S1 and S2 we compare terms containing 

the lowest power of q3 so that S1 < S2 when 𝐶𝑏 > 𝑒 which is consistent with the case for q 

constant. 

If consumer intraspecific competition is not set to 0 then, the column sums are dominated by 

the terms: 

𝑆1 ≈
𝐶𝑐

3𝑒 + 𝐶𝑐
2𝑒2

𝑞1
7𝑞2

3  

𝑆2 ≈
𝐶𝑐

4 + 𝐶𝑏𝐶𝑐
3 + 𝐶𝑏𝐶𝑐

2𝑒

𝑞1
7𝑞2

3  

𝑆3 ≈
𝐶𝑐

2 + 𝐶𝑏𝐶𝑐
2 + 𝐶𝑏𝐶𝑐

3

𝑞1
7𝑞2

3 +
𝑒2

𝑞1
6𝑞2

4𝑞3
4𝑞4

2 +
𝑒3

𝑞1
6𝑞2

4𝑞3
3𝑞4

+
𝐶𝑐𝑒

2

𝑞1
6𝑞2

3𝑞3

+
𝐶𝑐

2𝑒

𝑞1
6𝑞2

2 

𝑆4 ≈
𝐶𝑏𝐶𝑐

3 + 𝐶𝑏𝐶𝑐𝑒

𝑞1
7𝑞2

3 +
𝐶𝑐𝑒

2

𝑞1
6𝑞2

3𝑞3
2𝑞4

+
𝐶𝑐𝑒

𝑞1
6𝑞2

3𝑞3

+
𝐶𝑐

2𝑒

𝑞1
6𝑞2

2 

𝑆5 ≈
𝐶𝑏𝐶𝑐

3 + 𝐶𝑏𝐶𝑐𝑒

𝑞1
7𝑞2

3 +
𝐶𝑐𝑒

𝑞1
6𝑞2

3𝑞3
2𝑞4

+
𝑒

𝑞1
6𝑞2

4𝑞3
3𝑞4

+
𝑒2

𝑞1
6𝑞2

4𝑞3
2 +

𝐶𝑐
2𝑒

𝑞1
6𝑞2

2 
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It is clear that max{S1 , S2} < min{S3, S4, S5}. Within the carnivore species 3, 4, and 5, if 

differences in the ordering q3 < q2 < q1 are large enough then S5 < S3 < S4.  

The ordering S2 > S1 holds when 

𝑆2 − 𝑆1 = 
𝐶𝑏𝐶𝑐

3 + 𝐶𝑏𝐶𝑐
2𝑒 + 𝐶𝑐

3

𝑞1
7𝑞2

3 − 
𝐶𝑐

3𝑒 + 𝐶𝑐
2𝑒2

𝑞1
7𝑞2

3 > 0 

So that S2 > S1 when 

𝐶𝑐 + (𝐶𝑏 − 𝑒)(𝐶𝑐  + 𝑒) > 0 

which is same as inequality (2) governing the ordering of S1 and S2 for the three and four 

species food chains. 

 

Six Species Food Chain 

The community matrix A for the six species food chain is of the form:  

𝐴 =  

(

 
 
 
 
 
 
 
 
 
 
 

−𝐶𝑏

𝑞1
−

1

𝑞1
0 0 0 0

𝑒

𝑞1

−𝐶𝑐

𝑞1
2𝑞2

−
1

𝑞1
2𝑞2

0 0 0

0 −
𝑒

𝑞1
2𝑞2

−𝐶𝑐

𝑞1
2𝑞2

−
1

𝑞1
2𝑞2

2𝑞3

0 0

0 0
𝑒

𝑞1
2𝑞2

2𝑞3

−𝐶𝑐

𝑞1
2𝑞2

−
1

𝑞1
2𝑞2

2𝑞3
2𝑞4

0

0 0 0
𝑒

𝑞1
2𝑞2

2𝑞3
2𝑞4

−𝐶𝑐

𝑞1
2𝑞2

−
1

𝑞1
2𝑞2

2𝑞3
2𝑞4

2𝑞5

0 0 0 0
𝑒

𝑞1
2𝑞2

2𝑞3
2𝑞4

2𝑞5

−𝐶𝑐

𝑞1
2𝑞2 )

 
 
 
 
 
 
 
 
 
 
 

 

 

For 𝐶𝑐 = 0, the column sums of the matrix 𝐵+, which is the matrix containing the absolute 

values of the matrix entries of 𝑑𝑒𝑡 (𝐴)𝐴−1, are: 

𝑆1 =
𝑒3

𝑞1
9𝑞2

8𝑞3
6𝑞4

4𝑞5
2 +

𝑒4

𝑞1
9𝑞2

7𝑞3
5𝑞4

4𝑞5
2
+

𝑒5

𝑞1
9𝑞2

7𝑞3
5𝑞4

3𝑞5

 

𝑆2 =
𝐶𝑏𝑒

2 + 𝑒2

𝑞1
9𝑞2

8𝑞3
6𝑞4

4𝑞5
2 +

𝐶𝑏𝑒
3

𝑞1
9𝑞2

7𝑞3
5𝑞4

4𝑞5
2
+

𝑒5

𝑞1
9𝑞2

7𝑞3
5𝑞4

3𝑞5
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𝑆3 =
𝑒3

𝑞1
8𝑞2

6𝑞3
5𝑞4

4𝑞5
2
+

𝑒4

𝑞1
8𝑞2

6𝑞3
5𝑞4

3𝑞5

 

𝑆4 =
𝐶𝑏𝑒 + 𝑒

𝑞1
9𝑞2

7𝑞3
5𝑞4

4𝑞5
2
+

𝐶𝑏𝑒
2

𝑞1
9𝑞2

6𝑞3
4𝑞4

4𝑞5
2 +

𝐶𝑏𝑒
3

𝑞1
9𝑞2

6𝑞3
4𝑞4

3𝑞5

+
𝑒2

𝑞1
8𝑞2

6𝑞3
5𝑞4

4𝑞5
2
 

𝑆5 =
𝑒3

𝑞1
8𝑞2

6𝑞3
4𝑞4

2𝑞5

 

𝑆6 =
1+𝐶𝑏

𝑞1
9𝑞2

7𝑞3
5𝑞4

3𝑞5

+
𝐶𝑏𝑒

𝑞1
9𝑞2

6𝑞3
4𝑞4

3𝑞5

+
𝐶𝑏𝑒

2

𝑞1
9𝑞2

6𝑞3
4𝑞4

2 +
𝑒

𝑞1
8𝑞2

6𝑞3
5𝑞4

3𝑞5

+
𝑒2

𝑞1
8𝑞2

6𝑞3
4𝑞4

2𝑞5

 

 

Assuming differences in the ordering q3 < q2 < q1 are large enough and comparing the terms 

of sums yields max{S1, S2} < S4 < S3 < S5< S6 and as in the case for constant q, we have S1 < 

S2 when 𝐶𝑏 > 𝑒. 

If consumer intraspecific competition is not set to 0 then, for sufficiently large q1, the 

column sums are approximated by:  

𝑆1 ≈
𝐶𝑐

4𝑒

𝑞1
9𝑞2

4 +
𝐶𝑐

3𝑒2

𝑞1
9𝑞2

4  

𝑆2 ≈
𝐶𝑐

4

𝑞1
9𝑞2

4 +
𝐶𝑏𝐶𝑐

4

𝑞1
9𝑞2

4 +
𝐶𝑏𝐶𝑐

3𝑒

𝑞1
9𝑞2

4  

𝑆3 ≈
𝐶𝑐

3

𝑞1
9𝑞2

4 +
𝐶𝑏𝐶𝑐

3

𝑞1
9𝑞2

4 +
𝐶𝑏𝐶𝑐

4

𝑞1
9𝑞2

4 +
𝐶𝑐𝑒

2

𝑞1
8𝑞2

7𝑞3
4𝑞4

4𝑞5
2 +

𝑒3

𝑞1
8𝑞2

6𝑞3
5𝑞4

4𝑞5
2
+

𝑒4

𝑞1
8𝑞2

6𝑞3
5𝑞4

3𝑞5

+
𝐶𝑐𝑒

2

𝑞1
8𝑞2

5𝑞3
4𝑞4

2

+
𝐶𝑐𝑒

3

𝑞1
8𝑞2

5𝑞3
3𝑞4

+
𝐶𝑐

2𝑒

𝑞1
8𝑞2

4𝑞3

+
𝐶𝑐

3𝑒

𝑞1
8𝑞2

3 

𝑆4 ≈
𝐶𝑏𝐶𝑐

2

𝑞1
9𝑞2

4 +
𝐶𝑏𝐶𝑐

2𝑒

𝑞1
9𝑞2

4 +
𝑒2

𝑞1
8𝑞2

6𝑞3
5𝑞4

4𝑞5
2
+

𝐶𝑐𝑒
2

𝑞1
8𝑞2

5𝑞3
4𝑞4

4𝑞5
2
+

𝑒3

𝑞1
8𝑞2

5𝑞3
4𝑞4

3𝑞5

+
𝐶𝑐

2𝑒2

𝑞1
8𝑞2

4𝑞3
2𝑞4

+
𝐶𝑐

2

𝑞1
8𝑞2

4𝑞3

+
𝐶𝑐

3𝑒

𝑞1
8𝑞2

3 

𝑆5 ≈
𝐶𝑏𝐶𝑐

4

𝑞1
9𝑞2

4 +
𝐶𝑏𝐶𝑐

2𝑒

𝑞1
9𝑞2

4 +
𝑒2

𝑞1
8𝑞2

6𝑞3
4𝑞4

4𝑞5
2 +

𝐶𝑐𝑒

𝑞1
8𝑞2

5𝑞3
3𝑞4

+
𝐶𝑐𝑒

2

𝑞1
8𝑞2

5𝑞3
2
+

𝐶𝑐
2𝑒2

𝑞1
8𝑞2

4𝑞3
2𝑞4

2𝑞5

+
𝐶𝑐

2𝑒

𝑞1
8𝑞2

4𝑞3
2𝑞4

+
𝐶𝑐

3𝑒

𝑞1
8𝑞2

3 
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𝑆6 ≈
𝐶𝑏𝐶𝑐

4

𝑞1
9𝑞2

4 +
𝐶𝑏𝐶𝑐

2𝑒

𝑞1
9𝑞2

4 +
𝑒

𝑞1
8𝑞2

6𝑞3
5𝑞4

3𝑞5

+
𝑒2

𝑞1
8𝑞2

6𝑞3
4𝑞4

2𝑞5

+
𝐶𝑐𝑒

𝑞1
8𝑞2

5𝑞3
4𝑞4

3𝑞5

+
𝐶𝑐𝑒

2

𝑞1
8𝑞2

5𝑞3
4𝑞4

2
+

𝐶𝑐𝑒
2

𝑞1
8𝑞2

5𝑞3
2

+
𝐶𝑐

2𝑒

𝑞1
8𝑞2

4𝑞3
2𝑞4

2𝑞5

+
𝐶𝑐

3𝑒

𝑞1
8𝑞2

3 

 

It is clear that max{S1,  S2}  <  min{S3, S4 ,S5, S6} . Within the carnivore species 3, 4, 5 and 6 

if differences in the ordering q4 < q3 < q2 < q1 are large enough then S6 < S5 < S3 < S4.  

The ordering S2 > S1 holds when 

𝑆2 − 𝑆1 = 
𝐶𝑏𝐶𝑐

4 + 𝐶𝑏𝐶𝑐
3𝑒𝐶𝑐

4

𝑞1
9𝑞2

4 − 
𝐶𝑐

4𝑒 + 𝐶𝑐
3𝑒2

𝑞1
9𝑞2

4 > 0 

So that S2 > S1 when 

𝐶𝑐 + (𝐶𝑏 − 𝑒)(𝐶𝑐  + 𝑒) > 0 

which is same as inequality (3) governing the ordering of S1 and S2 for the three and four 

species food chains. 
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CHAPTER 5 
 

 

 

 

 

FACTORS THAT DETERMINE WHETHER SPECIES WITH HIGH LINKAGE 

DENSITY HAVE WEAK TOTAL NET EFFECTS ON THEIR COMMUNITY 
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Abstract 

It has been observed that weak interaction strengths between species in food webs can have 

a stabilising effect on the system. Most studies have focused on the role of species with 

weak direct effects, i.e. species whose entries in the community matrix are small in 

magnitude compared to other species in the community but a few recent studies have 

focused on species net effects and it has been observed that species with a high linkage 

density have weak net effects.  

 

The study presented in Chapter 3 of this thesis analysed the relationship between a species 

linkage density and its total net effect for 97 synthetic food webs. A subset of 38 webs 

showed a negative relationship between linkage density and species total net effect 

indicating that the relationship between species linkage density and its total net effect may 

depend on the structure of the community in which it is embedded. In this study we examine 

the relationship between a species linkage density and its total net effect using a range of 

food webs of size 12 or 16 species with two alternative structures and varying complexity. 

The analyses show that, on a web level, any potential effect of linkage density is masked by 

the overwhelming positive relationship between body size and total net effect.  

To remove the dominating effect of body size, the relationship between a species linkage 

density and its total net effect was examined within trophic levels. The analysis found that a 

negative relationship occurred frequently within the basal and herbivore trophic levels but 

was rare within the carnivore trophic level. For the webs examined, the negative relationship 

was not affected by web size or the ratio of basal: herbivore and carnivore species but was 

affected by the arrangement of links, indicating that the negative relationship between 

linkage density and total net effect is a consequence of the pattern of interaction strengths in 

the surrounding web.  
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Introduction 

May’s seminal result from 1972 showed that, in general, complexity in  food webs leads to 

instability (May 1972). This result contradicts evidence seen every day in the natural world 

around us, where throughout the globe large complex communities do persist in nature. 

Since May’s counter-intuitive result, numerous studies have shown that by using ecological 

information to inform food web models, complexity can be reconciled with stability (Yodzis 

1981, Moore and William Hunt 1988, de Ruiter et al. 1995, Jonsson and Ebenman 1998, 

McCann et al. 1998, Neutel et al. 2002, Emmerson and Raffaelli 2004, Neutel et al. 2007). 

In particular, it has been observed that interaction strengths between species in a community 

are skewed so that weak interactions between species occur more frequently than strong 

interactions (Paine 1992, Fagan and Hurd 1994, Wootton 1997, Kokkoris et al. 1999, 

Bascompte et al. 2005, O'Gorman et al. 2010, Alvarez et al. 2013). This distribution of 

interaction strengths has been shown to have a stabilising effect on systems by coupling 

strong interaction strengths with negatively covarying weak interaction strengths (McCann 

2000, O'Gorman and Emmerson 2009). Additionally, weak interaction strengths can dampen 

the knock on effect of strong consumer-resource interactions which in turn reduces 

fluctuations in population densities for the whole system (McCann et al. 1998, Neutel et al. 

2002).  

 

Interaction strengths can be defined loosely as a measure of the effect of one species on 

another species. In a Lotka-Volterra system we can define an interaction strength more 

precisely as aij, where aij represents the per unit mass effect of species j feeding on species i 

per unit of time. The community matrix is the matrix whose ij
th

 entry is aij, thus the 

community matrix contains the interaction strengths between every pair of species in the 

community, and it is often denoted by A. The net effect of species j on species i (the sum of 

both direct and indirect effects) is defined to be the ij
th

 element of the inverse community 

matrix, A
-1

 and can be calculated by applying a press perturbation to the equilibrium biomass 

density of species j (Bender et al. 1984). The total net effect of a species is a measure that 

quantifies how a small sustained change in the equilibrium biomass density of that 

individual species affects the equilibrium biomass densities of all other species in the 

community and is defined to be the sum of the absolute values of elements of column j in 

the inverse community matrix (Berg et al. 2011).  

 

When measuring interactions strengths empirically it can be difficult to distinguish between 

direct effects and indirect effects (Wootton and Emmerson 2005, O'Connor et al. 2013) and 
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the role of species with weak interaction strengths has mainly been investigated by 

considering species with weak direct effects, i.e. species whose aij entries in the community 

matrix are small in magnitude compared to other species in the community (McCann et al. 

1998, McCann 2000, Neutel et al. 2002, Christianou and Ebenman 2005, O'Gorman and 

Emmerson 2009). A few studies have focused on species net effects (Montoya et al. 2005 

Montoya et al. 2009, O'Gorman et al. 2010, Berg et al. 2011). For example, studies by 

Montoya et al. on the Ythan Estuary and Broadstone Stream food webs and by O’Gorman et 

al. on mesocosms in Lough Hyne found that species with high linkage density had weak 

pairwise net effects (Montoya et al. 2009) and weak mean net effects (Montoya et al. 2005 

O'Gorman et al. 2010) on their community (the measures of a species mean net effect and 

total net effect are proportional and perfectly correlated). In contrast, Berg et al. (2011) 

examined the Baltic Sea and Lake Vättern food webs and found no relationship between a 

species linkage density and its total net effect. The study presented in Chapter 3 of this thesis 

analysed the relationship between a species linkage density and its total net effect for 97 

synthetic food webs generated by an assembly algorithm (Säterberg et al. 2013). A subset of 

38 webs showed a negative relationship between linkage density and species total net effect 

indicating that the relationship between species linkage density and its total net effect may 

depend on the structure of the community in which it is embedded. It is important to note 

that the analyses presented in Chapters 3 and 4 of this thesis highlight the fact that the body 

size of a species has an overwhelming influence on its total net effect in the community, 

thus, the effect of species linkage density may be difficult to detect when there is large range 

of body sizes and when body size covaries with linkage density. In this study we aim to 

establish whether species with high linkage density do have weak total net effects and if so 

what conditions lead to this relationship. 

 

Materials and Methods 

To determine whether there is a negative relationship between a species linkage density and 

its total net effect, we depart from the simple food chain used in Chapter 4 and consider 

more complex food webs that allow for a gradient of species linkage density. We considered 

three food web properties that might contribute to the relationship between species linkage 

density and total net effect: web size (species richness), web composition (the proportion of 

basal, herbivore and carnivore species) and web complexity (connectance). A step-wise 

approach was employed, considering webs of different size, composition and complexity, 

starting with a twelve species web consisting of four basal species, four herbivore species 

and four carnivore species (Figure 5.1). Ecologically, this web is not realistic, but it has a 
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structure that allows for a gradient of species linkage density to be established, whilst being 

relatively simple. Five different cases were examined (see Figure. 5.1): case (a) where the 

basal species (species 1) is highly connected because it is fed upon by all four herbivore 

species; case (b) where the herbivore species (species 5) is highly connected because it preys 

on all four basal species; case (c) where the herbivore species (species 5) is highly connected 

as it is preyed upon by all four carnivore species; case (d) where the carnivore species 

(species 9) is highly connected preying on all four herbivore species; and case (e) where 

species 5 is highly connected preying on all four basal species and itself being preyed upon 

by all four carnivore species. It was important to examine all five cases since we expect 

species with large body sizes to be the most influential (Berg et al. 2011, Chapter 3 of this 

thesis). The different scenarios also vary the body size of the highly connected species, 

allowing us to disentangle the relative effects of body size and linkage density on the net 

effects. To check whether omnivorous links contribute to the relationship between species 

linkage density and total net effect we also examined the webs shown in Figures. 5.1(f) and 

5.1(g) containing omnivorous links. In Figure 5.1(f) the basal species (species 1) is highly 

connected because it is preyed upon by all four herbivore species and all four carnivore 

species and in Figure 5.1(g) the carnivore species (species 9) is highly connected preying on 

all herbivore and all basal species.  
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Figure.5.1 Food web motifs of the first set of food webs to be examined. We examine cases:  

(a) basal species 1 is preyed on by all herbivore species  

(b) herbivore species 5 preys on all basal species 

(c) herbivore species 5 is preyed upon by all carnivore species 

(d)  carnivore species 9 preys upon all herbivore species 

(e) herbivore species 5 preys upon all basal species and is preyed upon by all carnivore species.  

(f) basal species 1 is preyed upon by all species 

(g) carnivore species 9 preys upon all species  

(a)

9 10 11 12

1 2 43

5 6 7 8

(e)

9 10 11 12

1

5 876

2 3 4

(c)

9 10 11 12

1

5 6 7 8

2 3 4

(b)

9 10 11 12

1

5 6 7 8

2 3 4

(f)

9 10 11 12

1 2 43

5 6 7 8

(d)

9 10 11 12

1

5 6 7

2 3

8

4

(g)

9 10 11 12

1

5 6 7

2 3

8

4



 

156 

 

Next a set of food webs were examined where size, composition and complexity were varied 

systematically (see Figures 5.2-5.8 for web diagrams and Table 5.1 for an overview). For the 

set of webs where size was increased, web size was increased from 12 species to 16 species. 

For the set of webs where the composition was altered,  the ratio of basal, herbivore and 

carnivore species was changed from 1:1:1 to 1:2:1 and for the set of webs where complexity 

was increased, the pattern of feeding links was changed from having one highly connected 

species and all other species minimally connected (with just one or where necessary two 

prey items) to varying patterns where the maximum gradient of linkage density was 

maintained (one species with the maximum number of links and one species with the 

minimum number of links), but more links were assigned between the remaining species. 

Note that for 16 species it was not possible to split the number of species evenly between 

trophic levels to maintain a ratio of exactly 1:1:1, the remaining species was assigned to the 

basal trophic level giving a ratio of 6:5:5, which we refer to as 1:1:1 for simplicity. The ratio 

of basal, herbivore and carnivore species (1:2:1) was chosen to approximate ratios found for 

the subset of the synthetic food webs analysed in Chapter 3 that showed a negative 

relationship between species linkage density and total net effect.  

 

For the webs shown in Figures 5.2(a)-(e), web size was increased to 16 species but the 

original web composition was maintained as closely as possible (1:1:1) and apart from one 

highly connected species, web connectance was minimal. For the webs shown in Figures 

5.3(a)-(e) web size was maintained at 12 species but the ratio of basal, herbivore and 

carnivore species was changed from 1:1:1 to 1:2:1 and apart from one highly connected 

species, web connectance was minimal. For the webs shown in Figures 5.4(a)-(f), web size 

was maintained at 12 species and the ratio of basal, herbivore and carnivore species was 

maintained as closely as possible (1:1:1), but web connectance was varied. For the webs 

shown in Figures 5.5(a)-(e) web size and web composition were changed but the complexity 

was unaltered. For the webs shown in Figures 5.6(a)–(f) we changed web size and 

complexity but web composition was kept as similar as possible (1:1:1). For the webs shown 

in Figures 5.7(a)-(f) we changed web composition and complexity but web size was 

unchanged. Finally, all three properties were changed (Figures. 5.8a-f).  
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Figure. 5.2 Food web motifs of the set of 16 species food webs with a basal, herbivore and carnivore species 

ratio of (1:1:1) and minimal complexity (whilst allowing for one species to have the maximum number of 

links).  We examine cases:  

 

(a) basal species 1 is preyed on by all herbivore species  

(b) herbivore species 7 preys on all basal species 

(c) herbivore species 7 is preyed upon by all carnivore species 

(d)  carnivore species 12 preys upon all herbivore species 

(e) herbivore species 7 preys upon all basal species and is preyed upon by all carnivore species.  
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Figure. 5.3 Food web motifs of the set of 12 species food webs with a basal, herbivore and carnivore species 

ratio of (1:2:1) and minimal complexity (whilst allowing for one species to have the maximum number of 

links).  We examine cases:  

(a) basal species 1 is preyed on by all herbivore species  

(b) herbivore species 7 preys on all basal species 

(c) herbivore species 7 is preyed upon by all carnivore species 

(d)  carnivore species 12 preys upon all herbivore species 

(e) herbivore species 7 preys upon all basal species and is preyed upon by all carnivore species.  
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Figure 5.4 Food web motifs of the set of 12 species food webs with a basal, herbivore and carnivore species 

ratio of (1:1:1) and varying complexity. 
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Figure. 5.5 Food web motifs of the set of 16 species food webs with a basal, herbivore and carnivore species 

ratio of (1:2:1) and minimal complexity (whilst allowing for one species to have the maximum number of 

links).  We examine cases:  

 
(a) basal species one is preyed on by all herbivore species  

(b) herbivore species seven preys on all basal species 

(c) herbivore species seven is preyed upon by all carnivore species 

(d)  carnivore species twelve preys upon all herbivore species 

(e) herbivore species seven preys upon all basal species and is preyed upon by all carnivore species.  
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Figure 5.6 Food web motifs of the set of 16 species food webs with a basal, herbivore and carnivore species 

ratio of (6:5:5) and varying complexity. 
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Figure. 5.7 Food web motifs of the set of 12 species food webs with a basal, herbivore and carnivore species 

ratio of (1:2:1) and varying complexity. 
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Figure. 5.8 Food web motifs of the set of 16 species food webs with a basal, herbivore and carnivore species 

ratio of (1:2:1) and varying complexity 
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Table 5.1 Summary of the systematic variation in species richness, composition (basal: herbivore: carnivore 

ratios) and complexity (connectance) for the food webs shown in Figures. 5.2-5.8. 

Web 

Number 
Species Richness 

Basal: Herb: Carnivore 

Ratios 
Complexity 

1 12 1:1:1 Minimal 

2 16 1:1:1 Minimal 

3 12 1:2:1 Minimal 

4 12 1:1:1 Varied 

5 16 1:2:1 Minimal 

6 16 1:1:1 Varied 

7 12 1:2:1 Varied 

8 16  1:2:1 Varied 

 

A negative relationship between species linkage density and total net effect was present for 

some of the webs shown in Figures 5.2-5.8 but it was not consistent and there was no 

obvious explanation for this in relation to the structure of the webs examined. To further 

understand how food web structure may determine whether species with high linkage 

density have a weak total net effect we examined the 16 species food web with a ratio of 

basal, herbivore and carnivore species of 1:2:1 (shown in Figures 5.8a –f) in more detail.  

Excluding omnivorous links, examining all possible combinations of feeding links would 

have meant analysing 2
64

 food webs which was not feasible so, to reduce the number of 

webs examined, the following simplifying assumptions were made: 

 all webs contained one basal species (chosen to be species one) that was preyed upon 

by all herbivore species. 

  all webs contained one basal species (chosen to be species two) that was preyed 

upon by just one herbivore (chosen to be species five). 

  all webs contained one carnivore species (chosen to be species thirteen) that preyed 

upon all herbivore species. 

 all webs contained one carnivore species (chosen to be species fourteen) that preyed 

upon just one herbivore species (chosen to be species five). 

These simplifying assumptions ensured that the maximum gradient of linkage density was 

maintained and reduced the number of permutations in the arrangement of feeding links. To 

reduce the number of webs further, the arrangement of links for basal species three and 

carnivore species fifteen was restricted. The number of links for basal species three was 

varied from 1-8 but just two alternative configurations were used: one where it was 

connected to the same herbivore as species fourteen and one where it was not (a total of 15 
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permutations). More specifically, links were assigned to the herbivore species with the 

lowest number. For example, when species three had just one link there were two alternative 

configurations: for the case where species three was connected to the same herbivore as 

species two then both species were connected to herbivore species five, but for the case 

where species three was not connected to the same herbivore as species two, then species 

three was connected to herbivore species six. Similarly, the number of links for carnivore 

species fifteen was varied from 1-8 but just two alternative configurations were used: one 

where it was connected to the same herbivore as species fourteen and one where it was not 

(a total of 15 permutations). Again, links were assigned to the herbivore species with the 

lowest number. Now, for the basal species, the feeding links for species one and two were 

fixed (just 1 permutation), species three had a total of 15 permutations, then all possible 

permutations of feeding links for species four were assigned (2
8
 -1 permutations, we subtract 

the 1 since species four must be preyed upon by at least one herbivore species). For the 

carnivore species, the feeding links for species thirteen and fourteen were fixed (just 1 

permutation), species fifteen had a total of fifteen permutations, then all possible 

permutations of feeding links for species sixteen were assigned (2
8
-1 permutations). This 

gave a total of 1x1x15x255x1x1x15x255= 14,630,625 permutations. For each food web 

generated, Spearman’s rank correlation coefficient was calculated between a species linkage 

density and its total net effect within each trophic level and for the overall web. The 

correlation coefficient was recorded along with web connectance, the number of links of 

each species and whether or not species two and three were connected to the same herbivore, 

or whether species fifteen and sixteen were connected to the same herbivore. 

 

Parameterisation of the webs 

The parameterisation of the more complex food webs was identical to the parameterisation 

used to investigate the relationship between species body size and its total net effect in 

Chapter 4. To recap, consider a food web, consisting of S species whose dynamics are 

described by the following Lotka-Volterra equations:   

 














 



S

j

jijii

i BarB
dt

dB

1

        (1) 

 

where Bi is the biomass of species i (measured in g), for basal species ri is positive and 

represents the per unit mass growth rate of species i, for consumer species ri is negative and 
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represents the per unit mass death rate of species i and aij is the per unit mass effect of 

consumer species j feeding on resource species i per unit of time. 

The per unit mass growth rate of species i is defined to be: 

 

𝑟𝑖 = 𝐶𝑟𝑚𝑖
−1/4

 (kg.kg
-1

t
-1

)     

 

where mi is the body mass of species i and Cr is a positive constant for basal species and a 

negative constant for consumer species. The per unit mass effect of consumer species j 

feeding on resource species i  per unit of time, aij is defined to be:  

 

𝑎𝑖𝑗 = 𝐶𝑎𝑖𝑗𝑝𝑖𝑗(𝑚𝑖𝑚𝑗)
−

1

4  (kg
-1

t
-1

)  

 

where Caij is a constant, pij represents the proportion of resource species i present in 

consumer species j’s diet and mi and mj represent the resource and consumer species body 

masses respectively. Note that to simplify the case where a consumer species has multiple 

resource species we replaced the biomass based preference term zij used in Chapter 3 with 

the simpler term pij defined to be 
1

𝑛𝑗
 where nj is the total number of resource species 

consumed by species j (O'Gorman et al. 2010). The per unit mass effect of the resource 

species i on the consumer species j, 𝑎𝑗𝑖 is given by  

 

 𝑎𝑗𝑖 = −𝑒𝑎𝑖𝑗 

 

where 𝑒 is the conversion efficiency.  

 

For the food chains analysed in Chapter 4 of this thesis we defined intraspecific interaction 

strengths to scale with interspecific interaction strengths as: 

 

 𝑎𝑖𝑖 = 𝐶𝑏𝑎𝑖𝑗  for basal species and  𝑎𝑖𝑖 = 𝐶𝑐𝑎𝑖𝑘   for consumer species 

 

where 𝐶𝑏 represents the ratio of intra-interspecific interaction strength for basal species and 

Cc represents the ratio of intra-interspecific interaction strength for consumer species. 

Species j is a herbivore species (body mass m2 in Figure. 4.1) and species k is the smallest 

carnivore species (body mass m3 in Figure 4.1). In an ecological context, large values of Cb 

occur when basal intraspecific competition is large compared to the effects of herbivory and 
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large values of Cc occur when consumer intraspecific competition is large compared to the 

effects of predation. For the food webs analysed in this chapter, prey species can have 

multiple predator species so we define intraspecific interaction strengths to scale with the 

sum of interspecific interaction strengths as: 

 

𝑎𝑖𝑖 = 𝐶𝑏 ∑ 𝑎𝑖𝑗𝑗∈Ω𝑖
  for basal species and  𝑎𝑖𝑖 = 𝐶𝑐 ∑ 𝑎𝑖𝑗𝑗∈Ω𝑖

   for consumer species 

 

where Ω𝑖 represents the set of species that feed on species i. 

 

For the food webs shown in Figures 5.1-5.8, let m1, m2 and m3 denote the body masses of the 

basal, herbivore and carnivore species respectively (note that we have made the simplifying 

assumption that body mass is constant within each trophic level). Let 𝑞∗ represent the 

predator-prey body size ratios so that 𝑞∗ =
𝑚2

𝑚1
=

𝑚3

𝑚2
, then we can write: 

 

 𝑚2 = 𝑞∗𝑚1 

𝑚3 = 𝑞∗2𝑚1    

and, 

 𝑎𝑖𝑗 = 𝐶𝑎𝑖𝑗
1

𝑛𝑗
(𝑚1𝑚2)

−
1

4 = 𝐶𝑎𝑖𝑗
1

𝑛𝑗
(𝑞∗𝑚1

2)−
1

4 = 𝐶𝑎𝑖𝑗
1

𝑛𝑗
(𝑚1

−
1

2)(𝑞∗)−
1

4 

𝑎𝑗𝑘 = 𝐶𝑎𝑗𝑘

1

𝑛𝑘
(𝑚2𝑚3)

−
1
4 = 𝐶𝑎𝑗𝑘

1

𝑛𝑘
(𝑞∗3𝑚1

2)−
1
4 = 𝐶𝑎𝑗𝑘

1

𝑛𝑘
(𝑚1

−
1
2)(𝑞∗)−

3
4 

 

where species i is a basal species, species j is a herbivore species and species k is a carnivore 

species. To simplify the form of the aij and ajk entries we replace (𝑞∗)
1

4 with the variable q 

and since Caij = Cajk is a constant that scales the magnitude of all the aij and ajk entries we 

replace 𝐶𝑎𝑖𝑗𝑚1

−
1

2 and 𝐶𝑎𝑗𝑘𝑚1

−
1

2 with the value -1. This gives 𝑎𝑖𝑗 = −
1

𝑛𝑗𝑞
   and 𝑎𝑗𝑘 = −

1

𝑛𝑘𝑞3 . 

The total net effect of a species in the community is represented by the column sums of the 

absolute values of the elements of the inverse matrix, 𝐴−1.  

 

For the food webs shown in Figures 5.1(a)-(g), we examine two situations: first where the 

ratio of consumer intra-interspecific interaction strength, Cc, is set to 0 and second where Cc 

is unconstrained. In ecological terms, setting Cc to 0 equates to a situation where consumer 

intraspecific competition is very weak compared to intraspecific competition amongst basal 

species. The assumption that consumer intraspecific competition is small compared to the 
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other parameters is based on the biological argument that basal species are sedentary and 

have to compete for space and light, thus consumer intraspecific interaction strengths can be 

considered to be small compared to basal intraspecific interaction strength (Emmerson and 

Raffaelli 2004, Christianou and Ebenman 2005, Eklöf and Ebenman 2006). For the food 

webs shown in Figures 5.1(a)-(e), the column sums for each inverse community matrix were 

simple enough to be analysed directly, but for the omnivorous food webs shown in Figures 

5.1(f) and 5.1(g) the column sums were too complex. To simplify the analysis, the 

ecological efficiency parameter, e, was set to 0.1 and the ordering of column sums was 

examined graphically for the cases Cb = 100e, Cb = 10e, Cb = e and Cb = 0.1e. For the case 

where consumer intraspecific competition is not small compared to the other parameters, 

again the column sums were extremely complex so we examined the ordering of column 

sums graphically for fixed values of Cb, Cc and e. Although this is not a rigorous 

examination of the ordering of the column sums, all six possible orderings of the parameters 

Cb, Cc and e are considered (Table 5.2).  

 

Table 5.2 Values used for the parameters Cb, Cc and e when examining the column sums of food webs 1(a)-

(g) for the case where Cc is not set to 0. Case (i) represents the situation where the ratio of basal intra-

interspecific interaction strength is 1 i.e. intraspecific interaction strengths are equal to interspecific interaction 

strengths, the ecological efficiency is 0.1 and the ratio of consumer intra-interspecific interaction strength is 

0.01, i.e. intraspecific interaction strengths are one hundred times smaller than interspecific interaction 

strengths. It is not known which case occurs most frequently in empirical food webs and therefore it is of 

interest to see how the ordering of species is affected by the parameter values. 

 

Case Order of Parameters Values of Parameters 

(i) Cc < e < Cb Cb = 1 Cc = 0.01 e = 0.1 

(ii) Cc < Cb < e Cb = 0.01 Cc = 0.001 e = 0.1 

(iii) e < Cc < Cb Cb = 10 Cc = 1 e = 0.1 

(iv)  e < Cb < Cc  Cb = 1 Cc = 10 e = 0.1 

(v) Cb < e < Cc Cb = 0.01 Cc = 1 e = 0.1 

(vi) Cb < Cc < e Cb = 0.001 Cc = 0.01 e = 0.1 

 

When we expanded the analysis over a range of food webs of varying size, composition and 

complexity it was not possible to consider all six possible orderings of the parameters Cb, Cc 

and e, so we focused on the ordering that corresponded most closely to the ordering found in 

the webs examined in Chapter 3, thus Cb was set to 1, Cc was set to 0.01 and e was set to 0.1. 

It was also necessary to fix the predator-prey body size ratio q which was set to 100. The 

analyses undertaken in the present study aim to investigate patterns in the inverse 
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community matrix caused by variation in species linkage density and so webs were not 

checked for stability.  

 

Statistical Analysis 

Four data sets were generated by the permutations of the 16 species food web. For each web, 

four correlation coefficients between species linkage density and total net effect were 

calculated: one for the whole web and one for each of the basal, herbivore and carnivore 

trophic levels. The data sets were examined graphically and due to the large size of the data 

set, classification trees were initially used to examine the relationship between the 

correlation coefficients (the response variables) and food web properties (the explanatory 

variables). The correlation coefficients for each web were placed in one of two classes: webs 

with correlation coefficients less than -0.4 were classified as ‘negative relationship between 

linkage density and total net effects present’ and webs with correlation coefficients greater 

than -0.4 were classified as ‘no relationship between linkage density and total net effects 

present’.  The value of -0.4 rather than 0 was chosen as an appropriate threshold, because 

coefficients between -0.4 and 0 indicate a weak negative correlation. We also repeated the 

analyses using -0.7 as the threshold for determining whether a negative relationship was 

present or not and the results were qualitatively consistent with those using a threshold value 

of -0.4.  

 

The variables used to partition the data in the classification trees (i.e. the explanatory 

variables) were web connectance, the number of links of each species, whether or not the 

basal species with just one link (species two) and the basal species with a varying number of 

links (species three) were connected to the same herbivore and whether or not the carnivore 

species with just one link (species fourteen) and the carnivore species with a varying number 

of links (species fifteen) were connected to the same herbivore. Classification trees were run 

on each data set to detect patterns in web structure associated with a negative relationship 

between linkage density and total net effect. Web connectance was identified as a possible 

indicator as to whether a negative relationship between linkage density and net effect was 

present in a web, and therefore a logistic regression model was used to explore the 

relationship between the correlation coefficient classes and web connectance. Additionally, 

t-tests were used to determine whether differences in web connectance were significant 

between the two groups of correlation coefficients. The graphical analyses, food web 

permutations and calculation of correlation coefficients were performed using MATLAB 

version 7.7.0 (MATLAB 2008). The statistical analyses were undertaken using R version 
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3.0.2 (R Development Core Team 2013) , classification trees were calculated using the 

‘rpart’, package and drawn using ‘rattle’(Williams 2011).  

 

Results 

Food webs 5.1(a)-(g) intraspecific interaction strength set to 0 

For the twelve species food webs shown in Figures. 5.1(a)-(e), where consumer intraspecific 

competition is set to 0, the column sums are analysed in Appendix H and a summary of the 

results is presented in Table 5.3. The ordering of species was determined by species body 

size, where species with a large body size have the largest total net effect. When the ordering 

of species net effects within each trophic level (where species have the same body size) was 

examined, we did not find a consistent pattern. For the web shown in Figure 5.1(a) where 

basal species one had the maximum linkage density we found that the highly connected 

species had a smaller net effect than the other species within the same trophic level. For the 

web shown in Figure 5.1(b) where herbivore species five had the maximum linkage density 

(because it preyed upon all four basal species) it was found that the highly connected species 

had the same net effect as the other herbivore species. For the web shown in Figure 5.1(c) 

where the herbivore species five had the maximum linkage density (due to being preyed 

upon by all four carnivore species) and for the web shown in Figure 5.1(e) where species 

five again had the maximum linkage density (because it preyed on all four basal species and 

was preyed upon by all four carnivore species) it was found that the highly connected 

herbivore species had a smaller net effect than the other herbivore species. When the 

carnivore species had the maximum linkage density (Figure 5.1d) it was found that the 

highly connected carnivore species had a larger net effect than the other carnivore species. 

For the web shown in Figure 5.1(f) where the basal species was highly connected (preyed 

upon by all herbivore species and all carnivore species) and for the web shown in Figure 

5.1(g) where the carnivore species was highly connected (preys upon all herbivore species 

and all basal species) it was found that for the cases where Cb > e, the highly connected 

species had a larger net effect than the other species within the same trophic level and for the 

case where Cb ≤ e the highly connected species had a smaller net effect than the other 

species within the same trophic level (see Appendix H Figures. H1a and H1b).  

 

Food webs 1(a) – (g) intraspecific interaction strength is not set to 0 

For the case where consumer intraspecific competition Cc is not set to 0, the species with the 

highest linkage density is not the species with the smallest net effect with the exception of 

the webs shown in Figures 5.1(a) and 5.1(f) where the basal species has the highest linkage 
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density (see Table 5.3 for a summary and Appendix H Figures. H2a-g) for the orderings. For 

the web shown in Figure 5.1(g) where the carnivore species was highly connected it was 

found that the highly connected carnivore species had a smaller net effect than the other 

carnivore species for cases (ii), (iii) and (vi) (see Table 5.3 and Appendix H Figure H2g). 

 

Table 5.3 Summary of the column sum analyses indicating whether the highly connected species has weak 

total net effects. For the case consumer intraspecific interaction strength is set to 0 (Cc = 0) and where it is 

positive (Cc > 0). For the webs shown in Figures 5.1(a)-(e) the position of the highly connected species relative 

to other species within the same trophic level was not affected by the values of the parameters Cb, Cc and e. 

For the web shown in Figure 5.(g) for Cc > 0 the highly connected carnivore has the weakest net effect when 

one of the three conditions is satisfied. 

Food web Cc 
Highly connected species 

has weak total net effects? 
Condition 

5.1(a) basal fed on by all herbivores 0 Yes None 

 

> 0 Yes None 

5.1(b) herbivore feeds on all basal species  0 No None 

 

> 0 No None 

5.1(c)  herbivore species fed on by all 

carnivores 0 Yes None 

 

> 0 No None 

5.1(d) carnivore species feeds on all 

herbivores 0 No None 

 

> 0 No None 

5.1(e) herbivore species feeds on all 

carnivores and is fed on by all basal species 0 Yes None 

 

> 0 No None 

5.1(f) basal species fed on by all herbivores 

and carnivores 0 Yes Cb ≤ e 

 

> 0 Yes None 

5.1(g) carnivore species feeds on all 

herbivores and basal species 0 Yes Cb < e 

 

> 0 Yes Cc < Cb < e 

   

e < Cc < Cb 

      Cb < Cc < e 

 

Food webs 2 – 10:  a range of web size, composition and complexity 

As expected, body size was the most influential factor determining a species total net effect 

(Appendix I Figures. I1-I7), therefore we examined the relationship between linkage density 

and total net effect within each trophic level, where body mass was constant. For the food 

webs where complexity was not varied (Figures. 5.2, 5.3 and 5.5), the highly connected 

basal species was consistently the species with the smallest total net effect (see Table 5.4 for 

a summary and Appendix I Figures. I1a, I2a and I4a). For the webs where complexity was 

varied (see Figures. 5.4, 5.6, 5.7 and 5.8) the highly connected basal species was often the 

species with the smallest total net effect (see Table 4 for a summary and Appendix I Figures. 
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I3(a)(c)(e), I5(a)(c)(f), I6(a)(b)(e)(f) and I7(a)(b)(e)(f)). However for some of the 

arrangements of links the highly connected basal species had similar total net effects to the 

other basal species present (Appendix I Figures. I3(b)(d)(f), I5(b)(d)(e), I6(c)(d) and 

I7(c)(d)). For the food webs where complexity was not varied (Figures. 5.2, 5.3 and 5.5) the 

highly connected herbivore species was never the herbivore species with the smallest total 

net effect (see Appendix I Figures. I1(b)(c)(e), I2(b)(c)(e) and I4(b)(c)(e)). For the webs 

where complexity was varied (shown in Figures. 5.4, 5.6, 5.7 and 5.8), the highly connected 

herbivore species was sometimes the species with the smallest total net effect (see Appendix 

I Figures. I3(b)(d)(e), I5(c)(e), I6(e) and I7(c)(e)). The highly connected carnivore species 

was never the species with the smallest total net effect (see Appendix I Figures. I1-I7). 

 

Table 5.4: summary of the column sum analyses indicating whether the highly connected species has weak 

total net effects for webs of varying size, composition and complexity (Figures 5.1-5.8). 

Highly connected 

species 
Food web 

Species 

Richness 

Compositio

n 
Complexity 

Highly connected species 

has weak total net effects? 

Basal 1 12 1:1:1 Minimal Yes 

 

2 16 1:1:1 Minimal Yes 

 

3 12 1:2:1 Minimal Yes 

 

4 12 1:1:1 Varied Dependent on links 

 

5 16 1:2:1 Minimal Yes 

 

6 16 1:1:1 Varied Dependent on links 

 

7 12 1:2:1 Varied Dependent on links 

 

8 16 1:2:1 Varied Dependent on links 

 
     

Herbivore 1 12 1:1:1 Minimal No 

 

2 16 1:1:1 Minimal No 

 

3 12 1:2:1 Minimal No 

 

4 12 1:1:1 Varied Dependent on links 

 

5 16 1:2:1 Minimal No 

 

6 16 1:1:1 Varied Dependent on links 

 

7 12 1:2:1 Varied Dependent on links 

  8 16 1:2:1 Varied Dependent on links 

 

Permutations of the 16 species web with a trophic level ratio of (1:2:1) 

For each web, four correlation coefficients between linkage density and total net effect were 

calculated: one for the whole web and one for each of the basal, herbivore and carnivore 

trophic levels. The correlation between linkage density and total net effect for the whole 

webs and for each trophic level varied and could be positive or negative (Figure 5.9). For the 

whole webs, most correlations between total net effect and linkage density were weak 

(positive or negative), with a mean value of 0.046, just 0.2% of correlations had a value of -
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0.4 or less and just 1.2%of correlations had a value of 0.4 or more, Figure 5.9(a). For the 

basal trophic level, correlations between total net effect and linkage density varied between -

1 and 1, with a mean value of -0.201, 31.2% of correlations had a value of -0.4 or less and 

15.6% of correlations had a value of 0.4 or more, Figure 5.9(b). For the herbivore trophic 

level, correlations between total net effect and linkage density varied between -1 and 1, but 

were more frequently negative. The mean correlation coefficient was -0.227, 36.6% of 

correlations had a value of -0.4 or less and 7.5% of correlations had a value of 0.4 or more, 

Figure 5.9(c). The correlation coefficients for the carnivore trophic level were mostly strong 

and positive with a mean value of 0.6753, just 5.5% of correlation coefficients had a value 

of -0.4 or less and 79.2% of correlations had a value of 0.4 or more (Figure 5.9d). 

 

 

Figure 5.9 The distribution of the correlation coefficients between total net effect and linkage density for (a) 

the whole web (b) within the basal trophic level (c) within the herbivore trophic level and (d) within the 

carnivore trophic level. 

The classification tree run on the correlation coefficients for the whole webs detected no 

web level patterns underlying the relationship between total net effect and linkage density. 

The tree did not progress beyond the root node which, for the complexity parameter chosen 
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(0.01), which indicated that splitting the data using the variables in the data set did not 

improve the missclasification error rate of the tree by 1% or more.  

 

For the basal trophic level, a negative relationship occurred more frequently when three 

different conditions were met: (1) when the basal species with a varying number of links 

(species three) had just one link and was not connected to the same herbivore as the basal 

species with just one link (species two); (2) the basal species with a varying number of links 

(species three) had two or three links, was not connected to the same herbivore as the basal 

species with just one link (species two) and the linkage density of the carnivore species with 

a varying number of links (species fifteen) was less than five; and (3) the basal species with 

a varying number of links (species three) had eight links, and was (inevitably) connected to 

the same herbivore as the basal species with just one link (species two) and the linkage 

density of the carnivore species with a varying number of links (species fifteen) was less 

than 6 (see Figure 10(a) for the classification tree and Appendix J Figures J1(a) and (b) for 

bar charts showing how the proportion of negative correlations varied with the number of 

links for each species).  

 

The missclassification rate for a classification tree gives the proportion of observations that 

were assigned to the incorrect class, i.e.the number of observations being assigned to the 

incorrect class divided by the total number of observations. In this study, an observation can 

be missclasified by assigning it to the class representing a correlation coefficient less than -

0.4 when it has a correlation coefficient greater than -0.4 or by assigning it to the class 

representing a correlation coefficient greater than -0.4 when it has a correlation coefficient 

less than -0.4. The classification tree for the data obtained from the basal trophic level had a 

missclasification rate of 0.23.  

 

For the herbivore trophic level, a negative relationship occurred more frequently for two 

different conditions: (1) when the web connectance was less than 0.29; and (2) when the 

web connectance was between 0.29 and 0.32 and the basal species with a varying number of 

links (species three) had one, two, three, seven or eight links (see Figure 10(b) for the 

classification tree and Appendix J Figures J2(a) and (b) for bar charts showing how the 

proportion of negative correlations varied with the number of links for each species). The 

classification tree for the herbivore trophic level has a missclasification rate of 0.30.  
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For the carnivore trophic level, a negative relationship occurred when the carnivore species 

with a varying number of links (species fifteen) had one link connected to the same 

herbivore as the carnivore species with just one link (species fourteen) and the carnivore 

species with links of varying number and position (species sixteen) had two, three, four, five 

or eight links (see Figure 11(c) for the classification tree and Appendix J Figures J3(a) and 

(b) for bar charts showing how the proportion of negative correlations varied with the 

number of links for each species). The classification tree for the carnivore trophic level has a 

missclasification rate of 0.005. 

 

 

Figure 5.10 Classification trees for partitioning webs with a correlation coefficient less than -0.4 (1) from webs 

with a correlation coefficient greater than -0.4 (0) for (a) the basal trophic level (b) the herbivore trophic level 

and (c) the carnivore trophic level. The variable three indicates whether the basal species with a varying 

number of links (species three) was connected to the same herbivore as the basal species with just one link 

(species two) (1) or connected to a different herbivore (0). Similarly, the variable fifteen indicates whether the 

carnivore species with a varying number of links (species fifteen) was connected to the same herbivore as the 

carnivore species with just one link (species fourteen) (1) or connected to a different herbivore (0). 
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The negative correlation between total net effect and linkage density occurred more 

frequently in webs with low connectance for all trophic levels (Figure 5.11). The mean 

connectance for webs with a correlation coefficient less than -0.4 for the basal trophic level 

(mean connectance = 0.318)  was significantly less than the mean connectance for webs with 

a correlation coefficient greater than -0.4 (mean connectance = 0.339), (t-test, p < 0.001, n = 

14,630,623). The mean connectance for webs with a correlation coefficient less than -0.4 for 

the herbivore trophic level (mean connectance = 0.319)  was significantly less than the mean 

connectance for webs with a correlation coefficient greater than -0.4 (mean connectance = 

0.340),  (t-test, p < 0.001, n = 14,630,623) and the mean connectance for webs with a 

correlation coefficient less than -0.4 for the carnivore trophic level (mean connectance = 

0.306) was significantly less than the mean connectance for webs with a correlation 

coefficient greater than -0.4 (mean connectance = 0.334), (t-test, p < 0.001, n = 14,630,623). 

 

 

 

Figure 5.11 Distribution of web connectance for webs with a correlation coefficient more negative than -0.4 

(white) and greater than -0.4 (black) for (a) the basal trophic level (b) the herbivore trophic level and (c) the 

carnivore trophic level. 
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Discussion 

This study did not find a consistent relationship between a species linkage density and its 

total net effect.  Direct and graphical examination of species total net effects showed that in 

a framework where interaction strengths are parameterised using predator-prey body size 

ratios and allometric constraints, species with a large body size have large total net effects 

and species with a small body size have weak total net effects, regardless of linkage density. 

For each of the 14,630,625 permutations of the 16 species food webs a correlation 

coefficient between species linkage density and total net effect was calculated at the web 

level (using all species), just 0.02% of those webs had a strong correlation coefficient less 

than -0.4. The relationship between species linkage density and total/mean net effect has 

only been investigated in three studies to date (Montoya et al. 2005, O'Gorman et al. 2010, 

Berg et al. 2011), a negative relationship was present for the study by  Montoya et al. (2005) 

on the Ythan Estuary and Broadstone stream food webs and for the study by O’Gorman et 

al. (2010) on mescocosms in Lough Hyne but no relationship was present for the Baltic Sea 

and Lake Vättern food webs examined by Berg et al. (2011). 

 

The lack of consistency that was found in the relationship between species linkage density 

and total net effect in this study indicates that the relationship is not a consequence of 

parameterising the community matrix using predator-prey body size ratios and allometric 

constraints. Since the positive relationship between body size and total net effects is so 

strong, it is worth considering that the negative relationship between linkage density and 

total net effect observed by Montoya et al. (2005) and O’Gorman et al. (2010) was a 

consequence of a negative relationship between species body size and linkage density, i.e. 

species with a small body size have a high linkage density. This relationship was not 

investigated for the Ythan Estuary and Broadstone stream webs, but for the Lough Hyne 

mesocosm webs, a positive relationship between linkage density and mean net effect was 

reported, so it is possible to conclude that the negative relationship was not a consequence of 

body size. O’Gorman et al. (2010) confirmed the lack of a body mass effect by maintaining 

web structure, but allowing interaction strengths to take on values that were no longer 

constrained by naturally occurring predator–prey body size ratios. Instead, interaction 

strengths were calculated from randomly chosen predator-prey body size ratios (for 1000 

different permutations) and then the relationships between linkage density and mean net 

effects for those webs were subsequently examined when interaction strengths were no 

longer size structured. In these instances, the negative relationship remained, implying that it 
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was not a consequence of the body size based parameterisations, which supports the finding 

from the present study.  

 

The study by O’Gorman et al.(2010) also reported a negative relationship between species 

linkage density and an empirical measure of species mean net effect. An empirical measure 

of a species mean net effect was calculated using an adaptation of the dynamic index 

formula, so that, the denominator no longer included the time scale of the experiment. It was 

argued that since this measure estimates the long-term change in abundance, and is not a 

growth rate, it provides a measure of the net effect of one species on another. However, it 

should be noted that the original dynamic index was derived to estimate the direct effects of 

one species on another (the aij terms of the community matrix) using the discrete-time 

version of the generalised Lotka-Volterra multispecies equations. To estimate the aij terms 

using the dynamic index, the population density of prey species i is measured in the presence 

and absence of consumer species j, and its application does not require species to be at a 

local equilibrium. Net effects are defined to be the inverse elements of the community 

matrix and the net effect of species j on species i represents the effect that a small sustained 

change in the growth rate of species j has on the equilibrium biomass abundances of species 

i.  To measure the net effect of species j on species i, the equilibrium biomass abundance of 

species i must be measured before and after a press perturbation is applied to species j (as 

per Schmitz 1997), altering the formula of the dynamic index does not give an empirical 

measure of this. This can be seen when we consider the dimensions of the two quantities: the 

dimensions of the inverse elements of the inverse community matrix are (Mass.Time), 

whereas the dimensions of the amended dynamic index formula are (Mass
-1

).  

 

Examination of the relationship between species linkage density and total net effect within 

trophic levels found that highly connected species can have a weak total net effect in 

comparison to species with the same body size (Tables 5.3 and 5.4 and Figure 5.10), but the 

relationship is not consistent and the conditions under which it occurs are not clear (Figure 

5.10). Despite the unpredictable nature of the relationship some general observations can be 

made: within the basal and herbivore trophic levels, a strong negative relationship between 

linkage density and total net effects occurred more frequently than a strong positive 

relationship (Figure 5.9), for the food webs shown in Figures 5.1(a)-(e), when a negative 

relationship was present it held for all values of the parameters Cb (which represents the 

intra-interspecific interaction strength ratio for basal species) and e (the ecological 

efficiency) (Table 5.3). The size of the web and the ratio of basal: herbivore: carnivore 
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species did not affect the relationship between species linkage density and total net effect for 

the food webs shown in Figures 5.2-5.8 (for Cb, Cc and e fixed), but the arrangement of links 

did have an effect (Table 5.4). Finally, the permutations of the 16 species food webs showed 

that a negative relationship between species linkage density and total net effect was more 

likely to occur in webs with low connectance (Figure 5.11).  

 

The construction of the food webs in this study ensured that, within a specified set of food 

webs, the only differences between a highly connected species and a poorly connected 

species in the same trophic level were the interaction strengths and the arrangement of links. 

The fact that for some webs a highly connected species had a weak net effect but for other 

webs, that were identical in all respects apart from the arrangement of links of the 

surrounding species, the same highly connected species did not have a weak effect implies 

that the negative relationship between linkage density and total net effect is a consequence 

of the pattern of interaction strengths in the surrounding web and not solely the weaker 

interaction strengths of the highly connected species. The importance of web structure in 

determining the response of a community to a press perturbation was highlighted by 

Dambacher et al. (2003) who found that the direction of species response (an increase or 

decrease) to a press perturbation is sometimes based on community structure alone.  

 

Within the basal trophic level a highly connected species had a weak total net effect for all 

the webs examined that had minimal complexity. Permutations of the 16 species food web 

showed that correlations between species linkage density and total net effects for the basal 

trophic level could vary from strongly negative to strongly positive (Figure 5.9b), but there 

were no distinct patterns in the arrangement of links that could distinguish, precisely, the 

webs that had strong negative correlations from those that did not. In general, there was a 

higher proportion of negative correlations between species linkage density and total net 

effects at the basal trophic level for webs where species had few links (Figure 5.11(a) and 

Appendix J Figures J1(a) and (b), but note that statistical significance of the difference 

between the mean connectance of webs with a correlation coefficient less than -0.4 and 

those with a correlation coefficient greater than -0.4 was likely considering the large sample 

size. Whether the difference is of ecological significance is unclear since there is a large 

amount of overlap between the two sets). It is possible that in webs where many species 

have a high linkage density the correlation between linkage density and total net effect is 

less likely to be strongly negative since the many highly connected species (within the same 

trophic level) are likely to have similar total net effects and thus the ordering of species (for 
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Spearman’s rank correlation) may not lead to a strong negative correlation. This effect could 

be investigated by calculating Pearson’s correlation coefficients between species linkage 

density and total net effects for larger webs. Alternatively, the presence of other highly 

connected species might alter the effect a highly connected species has in a community.  In 

contrast to the general result that a negative correlation was more likely to occur for webs 

where species had few links, a strong negative correlation between species linkage density 

and total net effects at the basal trophic level is also more likely to occur in webs where 

basal species three or four had eight links (maximum linkage density) which supports the 

observation that the response of a species to a press perturbation is dependent on community 

structure (Dambacher et al. 2003). 

 

The relationship between species linkage density and total net effect within the herbivore 

trophic level was affected by the value of consumer intraspecific interaction strength Cc. 

For food web 1 where consumer intraspecific competition was set to zero, the highly 

connected herbivore species (five) was never the species with the smallest total net effect 

(Table 5.3), but when consumer intraspecific interaction strength was positive, species five 

had the smallest total net effect in food webs 1(c) and (e). Herbivore species five had high 

linkage density in webs 1(b),(c) and (e); in web (b) species five had high generality (it fed on 

all basal species), in web (c) species five had high vulnerability (it was preyed on by all 

carnivore species) and in web (e) it had high generality and vulnerability. The contrast in the 

results from web (b) with webs (c) and (e) might indicate that a herbivore species has a 

small total net effect if it has high vulnerability. Examination of the correlation coefficients 

for the permutations of the 16 species webs found that 32.1% of webs had a negative 

correlation between species generality and total net effect and 38.6% of webs had a negative 

correlation between species vulnerability and total net effect. A difference is present, but it is 

not large so further investigation is needed to determine whether a herbivore species total net 

effect is associated with its vulnerability.  

 

Web size and the ratio of basal: herbivore: carnivore species did not affect the relationship 

for the food webs shown in Figures 5.2-5.8 (for Cb, Cc and e fixed).  The arrangement of 

links did have an effect so that for the more complex webs examined (Figures. 5.4, 5.6, 5.7 

and 5.8) the highly connected herbivore species had a weaker total net effect than other 

herbivore species for 8 out of 24 webs. This result together with the result from the basal 

trophic level implies that the total net effect of a species depends not just on individual 

species traits but on the structure of the web in which it is embedded. For the webs shown in 
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Figures 5.2, 5.3, and 5.5 with minimal complexity, there were contrasting results for the 

basal trophic level and the herbivore trophic level:  the highly connected basal species had a 

weak total net effect relative to other basal species, but the highly connected herbivore 

species did not have a weak total net effect relative to other herbivore species (Table 5.4). 

However, in agreement with the result for the basal trophic level, permutations of the 16 

species food web showed that the correlation coefficient between species linkage density 

and total net effects was more likely to be negative (less than -0.4), when web connectance 

was low (Figures. 5.10(b), and 5.11(b), but again note the large sample size). Webs where 

the basal species with varying links (species three or four) had eight links did not agree with 

this result (Appendix J Figures J2a and b) and there were no distinct patterns in the 

arrangement of links that could be used to distinguish the webs that had strong negative 

correlations from those that did not (Figure 10). 

 

Regardless of parameter values, web size or web composition, the highly connected 

carnivore species was never the species with the smallest total net effect for the webs shown 

in Figures 5.1-5.8 (Tables 5.3 and 5.4). Permutations of the 16 species food web showed that 

the correlation coefficient between linkage density and total net effect for the carnivore 

trophic level was negative (less than -0.4) for just 5.5% of all webs. 

 

Food webs 1(f) and (g) contained omnivorous links: in web (f) a basal species was fed on by 

all herbivore species and all carnivore species and in web (g) a carnivore species fed on all 

basal species and all herbivore species. In both omnivorous webs the highly connected 

species had weak total net effects at their respective trophic levels. For the basal trophic 

level this result is the same as for food web 1(a) where omnivorous links were not present 

but for the carnivore trophic level, this result is in contrast to the result for food web 1(d) 

where omnivorous webs were not present. Indeed, this result for the carnivore trophic level 

is in contrast to all the webs analysed with the exception of 5.5% of the webs from the 

permutations. It is not possible to draw conclusions about the effect of omnivory on a 

species total net effect based on the results from the two webs considered in this study. 

Moreover, this result is in contrast to the result from Chapter 3 of this thesis where the set of 

synthetic webs for which a negative relationship between species linkage density and total 

net effects was present had significantly longer average shortest path lengths that the set of 

webs that did not. Omnivory reduces the average shortest path length in a web so it is 

possible that webs with long average shortest path lengths contain fewer omnivorous links. 

Omnivory is known to alter stability properties of food webs, in particular, weak 
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omnivorous links (weak direct effects) can increase the likelihood of local stability 

(Emmerson and Yearsley 2004, Gellner and McCann 2012). It creates shortcuts in energy 

flow around food webs, and in size structured communities omnivory will increase the 

predator-prey body size ratios used to determine interaction strengths, therefore omnivory 

has great potential to impact the way a perturbation affects a community. The effect of 

omnivory on a species total net effect is of interest for future studies. 

 

In conclusion, there was not a consistent negative relationship between species linkage 

density and total net effect for the set of webs analysed in the present study. Body size 

determined the impact a species had in the community, so that, in strictly size-structured 

communities linkage density is not expected to determine a species total net effect. 

However, the webs used in this study were small and unrealistic in comparison to the Ythan 

Estuary, Broadstone Stream and Lough Hyne food webs where such a relationship was 

detected. It is possible that the particular arrangement of links found in some empirical food 

webs do generate a negative relationship between linkage density and total net effect. The 

distributions of correlation coefficents from the permutations of the 16 species food web 

(Figure 5.9) show that although the size, composition and parameterisation of all 14,630,625 

food webs was the same, the relationship between linkage density and total net effects could 

vary considerably as a consequence of the arrangement of links alone.  

 

The webs analysed in this study were not checked for stability and it has been shown that the 

arrangement of links in empirical food webs and in stable theoretical food webs is skewed so 

that weak interactions between species occur more frequently than strong interactions (Paine 

1992, McCann et al. 1998, Kokkoris et al. 1999, O'Gorman and Emmerson 2009). It is also 

possible that the conditions imposed on the patterns of interaction strengths in food webs by 

the criterion of stability may have an impact on the relationship between a species linkage 

density and the its total net effect. This idea could be investigated further by running 

stability checks on the food webs generated by the permutations of the 16 species food web. 

Analysis of the relationship between linkage density and total net effect for the set of stable 

webs would reveal any possible effect of the stability criterion. 

 

The mechanism by which highly connected species could potentially have weak total net 

effects is still not clear and without further knowledge of the conditons under which the 

relationship is present, uncovering this mechanism is unlikely, due to the complexity of the 

mathematical inversion process. It might be possible to find patterns common to webs where 



 

183 

 

a negative relationship between linkage density and total net effects is present through 

further analysis of simple webs that include omivory and more realistic, stable, webs with 

varying properties, such as connectance, the gradient of linkage density, clustering 

coefficient and average shortest path length.     
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APPENDIX H 
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The community matrices for the five food webs shown in Figures. 5.1(a)-(e) are presented 

below along with analysis of the column sums for the case where consumer intraspecific 

interaction strength, Cc is set to 0. 

    Case (a): the basal species (species 1) is highly connected due to being preyed on by all 

four herbivore species. The community matrix A is: 

 

𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−𝐶𝑏

𝑞
0 0 0

−1

𝑞

−1

2𝑞

−1

2𝑞

−1

2𝑞
0 0 0 0

0
−𝐶𝑏

𝑞
0 0 0

−1

2𝑞
0 0 0 0 0 0

0 0
−𝐶𝑏

𝑞
0 0 0

−1

2𝑞
0 0 0 0 0

0 0 0
−𝐶𝑏

𝑞
0 0 0

−1

2𝑞
0 0 0 0

𝑒

𝑞
0 0 0

−𝐶𝑐

𝑞3
0 0 0

−1

𝑞3
0 0 0

𝑒

2𝑞

𝑒

2𝑞
0 0 0

−𝐶𝑐

𝑞3
0 0 0

−1

𝑞3
0 0

𝑒

2𝑞
0

𝑒

2𝑞
0 0 0

−𝐶𝑐

𝑞3
0 0 0

−1

𝑞3
0

𝑒

2𝑞
0 0

𝑒

2𝑞
0 0 0

−𝐶𝑐

𝑞3
0 0 0

−1

𝑞3

0 0 0 0
𝑒

𝑞3
0 0 0

−𝐶𝑐

𝑞3
0 0 0

0 0 0 0 0
𝑒

𝑞3
0 0 0

−𝐶𝑐

𝑞3
0 0

0 0 0 0 0 0
𝑒

𝑞3
0 0 0

−𝐶𝑐

𝑞3
0

0 0 0 0 0 0 0
𝑒

𝑞3
0 0 0

−𝐶𝑐

𝑞3 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

The column sums of the absolute values of the entries of the inverse matrix A⁻¹ are:  

𝑆1 =
𝑞

𝐶𝑏
+

𝑒𝑞3

4𝐶𝑏
 

𝑆2 = 𝑆3 = 𝑆4 =
𝑞

𝐶𝑏
+

5𝑒𝑞3

4𝐶𝑏
 

𝑆5 = 𝑆6 = 𝑆7 = 𝑆8 = 𝑞3 

𝑆9 =
𝑞3

𝐶𝑏𝑒
+

𝑞3

𝑒
+

𝑞5

𝐶𝑏
 

𝑆10 = 𝑆11 = 𝑆12 =
𝑞3

𝐶𝑏𝑒
+

𝑞3

𝑒
+

5𝑞5

4𝐶𝑏
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The highly connected basal species is the species with the smallest total net effect within the 

basal species level. 

Case (b): the herbivore species (species 5) is highly connected due to feeding on all four 

basal species. The community matrix A is: 

 

𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−𝐶𝑏

𝑞
0 0 0

−1

4𝑞
0 0 0 0 0 0 0

0
−𝐶𝑏

𝑞
0 0

−1

4𝑞

−1

𝑞
0 0 0 0 0 0

0 0
−𝐶𝑏

𝑞
0

−1

4𝑞
0

−1

𝑞
0 0 0 0 0

0 0 0
−𝐶𝑏

𝑞

−1

4𝑞
0 0

−1

𝑞
0 0 0 0

𝑒

4𝑞

𝑒

4𝑞

𝑒

4𝑞

𝑒

4𝑞

−𝐶𝑐

𝑞3
0 0 0

−1

𝑞3
0 0 0

0
𝑒

𝑞
0 0 0

−𝐶𝑐

𝑞3
0 0 0

−1

𝑞3
0 0

0 0
𝑒

𝑞
0 0 0

−𝐶𝑐

𝑞3
0 0 0

−1

𝑞3
0

0 0 0
𝑒

𝑞
0 0 0

−𝐶𝑐

𝑞3
0 0 0

−1

𝑞3

0 0 0 0
𝑒

𝑞3
0 0 0

−𝐶𝑐

𝑞3
0 0 0

0 0 0 0 0
𝑒

𝑞3
0 0 0

−𝐶𝑐

𝑞3
0 0

0 0 0 0 0 0
𝑒

𝑞3
0 0 0

−𝐶𝑐

𝑞3
0

0 0 0 0 0 0 0
𝑒

𝑞3
0 0 0

−𝐶𝑐

𝑞3 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

    The column sums of the absolute values of the entries of the inverse matrix A⁻¹ are: 

𝑆1 =
𝑞

𝐶𝑏
+

𝑒𝑞3

4𝐶𝑏
 

𝑆2 = 𝑆3 = 𝑆4 =
𝑞

𝐶𝑏
+

5𝑒𝑞3

4𝐶𝑏
 

𝑆5 = 𝑆6 = 𝑆7 = 𝑆8 = 𝑞3 

𝑆9 =
𝑞3

𝐶𝑏𝑒
+

𝑞3

𝑒
+

𝑞5

𝐶𝑏
 

𝑆10 = 𝑆11 = 𝑆12 =
𝑞3

𝐶𝑏𝑒
+

𝑞3

𝑒
+

5𝑞5

4𝐶𝑏
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The highly connected herbivore species is not the species with the smallest total net effect 

within the herbivore trophic level. 

Case (c): the herbivore species (species 5) is highly connected due to being preyed on by all 

four carnivore species. The community matrix A is:     

 

𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−𝐶𝑏

𝑞
0 0 0

−1

𝑞
0 0 0 0 0 0 0

0
−𝐶𝑏

𝑞
0 0 0

−1

𝑞
0 0 0 0 0 0

0 0
−𝐶𝑏

𝑞
0 0 0

−1

𝑞
0 0 0 0 0

0 0 0
−𝐶𝑏

𝑞
0 0 0

−1

𝑞
0 0 0 0

𝑒

𝑞
0 0 0

−𝐶𝑐

𝑞3
0 0 0

−1

𝑞3

−1

2𝑞3

−1

2𝑞3

−1

2𝑞3

0
𝑒

𝑞
0 0 0

−𝐶𝑐

𝑞3
0 0 0

−1

2𝑞3
0 0

0 0
𝑒

𝑞
0 0 0

−𝐶𝑐

𝑞3
0 0 0

−1

2𝑞3
0

0 0 0
𝑒

𝑞
0 0 0

−𝐶𝑐

𝑞3
0 0 0

−1

2𝑞3

0 0 0 0
𝑒

𝑞3
0 0 0

−𝐶𝑐

𝑞3
0 0 0

0 0 0 0
𝑒

2𝑞3

𝑒

2𝑞3
0 0 0

−𝐶𝑐

𝑞3
0 0

0 0 0 0
𝑒

2𝑞3
0

𝑒

2𝑞3
0 0 0

−𝐶𝑐

𝑞3
0

0 0 0 0
𝑒

2𝑞3
0 0

𝑒

2𝑞3
0 0 0

−𝐶𝑐

𝑞3 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

    The column sums of the absolute values of the entries of the inverse matrix A⁻¹ are: 

𝑆1 =
𝑞

𝐶𝑏
+

𝑒𝑞3

𝐶𝑏
 

𝑆2 = 𝑆3 = 𝑆4 =
𝑞

𝐶𝑏
+

3𝑒𝑞3

𝐶𝑏
 

𝑆5 = 𝑞3 

𝑆6 = 𝑆7 = 𝑆8 = 3𝑞3 

𝑆9 =
4𝑞3

𝐶𝑏𝑒
+

4𝑞3

𝑒
+

10𝑞5

𝐶𝑏
 

𝑆10 = 𝑆11 = 𝑆12 =
2𝑞3

𝐶𝑏𝑒
+

2𝑞3

𝑒
+

6𝑞5

𝐶𝑏
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The highly connected herbivore species is the species with the smallest total net effect 

within the herbivore trophic level. 

Case (d): the carnivore species (species 9) is highly connected due to feeding on all four 

herbivore species. The community matrix A is: 

 

𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−𝐶𝑏

𝑞
0 0 0

−1

𝑞
0 0 0 0 0 0 0

0
−𝐶𝑏

𝑞
0 0 0

−1

𝑞
0 0 0 0 0 0

0 0
−𝐶𝑏

𝑞
0 0 0

−1

𝑞
0 0 0 0 0

0 0 0
−𝐶𝑏

𝑞
0 0 0

−1

𝑞
0 0 0 0

𝑒

𝑞
0 0 0

−𝐶𝑐

𝑞3
0 0 0

−1

4𝑞3
0 0 0

0
𝑒

𝑞
0 0 0

−𝐶𝑐

𝑞3
0 0

−1

4𝑞3

−1

𝑞3
0 0

0 0
𝑒

𝑞
0 0 0

−𝐶𝑐

𝑞3
0

−1

4𝑞3
0

−1

𝑞3
0

0 0 0
𝑒

𝑞
0 0 0

−𝐶𝑐

𝑞3

−1

4𝑞3
0 0

−1

𝑞3

0 0 0 0
𝑒

4𝑞3

𝑒

4𝑞3

𝑒

4𝑞3

𝑒

4𝑞3

−𝐶𝑐

𝑞3
0 0 0

0 0 0 0 0
𝑒

𝑞3
0 0 0

−𝐶𝑐

𝑞3
0 0

0 0 0 0 0 0
𝑒

𝑞3
0 0 0

−𝐶𝑐

𝑞3
0

0 0 0 0 0 0 0
𝑒

𝑞3
0 0 0

−𝐶𝑐

𝑞3 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

    The column sums of the absolute values of the entries of the inverse matrix A⁻¹ are: 

𝑆1 =
𝑞

𝐶𝑏
+

7𝑒𝑞3

𝐶𝑏
 

𝑆2 = 𝑆3 = 𝑆4 =
𝑞

𝐶𝑏
+

𝑒𝑞3

𝐶𝑏
 

𝑆5 = 7𝑞3 

𝑆6 = 𝑆7 = 𝑆8 = 𝑞3 

𝑆9 =
4𝑞3

𝐶𝑏𝑒
+

4𝑞3

𝑒
+

28𝑞5

𝐶𝑏
 

𝑆10 = 𝑆11 = 𝑆12 =
2𝑞3

𝐶𝑏𝑒
+

2𝑞3

𝑒
+

8𝑞5

𝐶𝑏
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The highly connected carnivore species is not the species with the smallest total net effect 

within the carnivore trophic level. 

Case (e): species 5 is highly connected due to preying on all four basal species and being 

predated on by all four carnivore species. The community matrix A is: 

 

𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−𝐶𝑏

𝑞
0 0 0

−1

4𝑞
0 0 0 0 0 0 0

0
−𝐶𝑏

𝑞
0 0

−1

4𝑞

−1

𝑞
0 0 0 0 0 0

0 0
−𝐶𝑏

𝑞
0

−1

4𝑞
0

−1

𝑞
0 0 0 0 0

0 0 0
−𝐶𝑏

𝑞

−1

4𝑞
0 0

−1

𝑞
0 0 0 0

𝑒

4𝑞

𝑒

4𝑞

𝑒

4𝑞

𝑒

4𝑞

−𝐶𝑐

𝑞3
0 0 0

−1

𝑞3

−1

2𝑞3

−1

2𝑞3

−1

2𝑞3

0
𝑒

𝑞
0 0 0

−𝐶𝑐

𝑞3
0 0 0

−1

2𝑞3
0 0

0 0
𝑒

𝑞
0 0 0

−𝐶𝑐

𝑞3
0 0 0

−1

2𝑞3
0

0 0 0
𝑒

𝑞
0 0 0

−𝐶𝑐

𝑞3
0 0 0

−1

2𝑞3

0 0 0 0
𝑒

𝑞3
0 0 0

−𝐶𝑐

𝑞3
0 0 0

0 0 0 0
𝑒

2𝑞3

𝑒

2𝑞3
0 0 0

−𝐶𝑐

𝑞3
0 0

0 0 0 0
𝑒

2𝑞3
0

𝑒

2𝑞3
0 0 0

−𝐶𝑐

𝑞3
0

0 0 0 0
𝑒

2𝑞3
0 0

𝑒

2𝑞3
0 0 0

−𝐶𝑐

𝑞3 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

    The column sums of the absolute values of the entries of the inverse matrix A⁻¹ are: 

𝑆1 =
𝑞

𝐶𝑏
+

𝑒𝑞3

4𝐶𝑏
 

𝑆2 = 𝑆3 = 𝑆4 =
𝑞

𝐶𝑏
+

11𝑒𝑞3

4𝐶𝑏
 

𝑆5 = 𝑞3 

𝑆6 = 𝑆7 = 𝑆8 = 3𝑞3 
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The highly connected herbivore species is the species with the smallest total net effect 

within the herbivore trophic level. 
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The column sums of the omnivorous food webs 5.1(f) and 5.1(g) were too complex to 

examine directly so were examined graphically for the cases Cb = 100e, Cb = 10e, Cb = e and 

Cb = 0.1e. 
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Figure H1(a) The ordering of the column sums 

for the omnivorous food web (f) for Cc = 0, Cb 

= 10, 1, 0.1, 0.01, and  e = 0.1 Note that in Fig. 

(iv) the column sum for the highly connected 

basal species (is preyed upon by all herbivore 

species and all carnivore species and shown in 

yellow) is indistinguishable from the other basal 

species (shown in green).  
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Figure. H1(b) The ordering of the 

column sums for the omnivorous food 

web (g) for Cc = 0, Cb = 10, 1, 0.1, 

0.01, and  e = 0.1 The highly connected 

carnivore species (is preys upon all 

herbivore and basal species) is shown in 

pink. For graph (iii) the column sum for 

the highly connected carnivore species 

(preys upon by all herbivore and basal 

species and shown in pink) is 

indistinguishable from the other 

carnivore species (shown in red).  
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Consumer intraspecific interaction strength is not set to 0 

For the case where consumer intraspecific interaction strength is not set to 0, the column 

sums of the inverse community matrix for the five food webs shown in Figures. 5.1(a)-(e) 

are examined graphically for fixed values of Cb, Cc and e.  
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Figure. H2(a) The ordering of the 

column sums for food web (a) with 6 

different parameterisations. The 

highly connected basal species 

(preyed upon by all herbivore species) 

is shown in yellow.  
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Figure. H2(b) The ordering of the column 

sums for food web (b) with 6 different 

parameterisations. The highly connected 

herbivore species (preys upon all basal species) 

is shown in light blue.  
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Figure H2(c) The ordering of the column 

sums for food web (c) with 6 different 

parameterisations. For graphs (iv) and (v) 

the column sum of the highly connected 

herbivore species (shown in light blue) is 

indistinguishable from the other herbivore 

species (shown in dark blue). 
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Figure H2(d) The ordering of the column 

sums for food web (d) with 6 different 

parameterisations. For graphs (iv), (v) and 

(vi) the column sum of the highly 

connected carnivore species (shown in 

pink) is indistinguishable from the other 

carnivore species (shown in red). 
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Figure H2(e) The ordering of the column 

sums for food web (e) with 6 different 

parameterisations. The highly connected 

herbivore species (preys upon all basal 

species and preyed upon by all carnivore 

species) is shown in light blue.  
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Figure H2(f) The ordering of the column 

sums for food web (f) with 6 different 

parameterisations. The highly connected 

basal species (preyed upon by all herbivore 

and carnivore species) is shown in yellow.  



 

199 

 

 

  

 

Species 6, 7 and 8 (herbivore) 

Species 9 (carnivore) 

Species 10, 11 and 12 (carnivore) 

Species 1 (basal) 

Species 2, 3 and 4 (basal) 

Species 5 (herbivore) 

(i) Cc < e < Cb 

(v) Cb < e < Cc 

(iv) e < Cb < Cc 

(ii)Cc < Cb < e 

(iii) e < Cc < Cb 

(vi) Cb < Cc < e 

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

10
x 10

4

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

10
x 10

4

0 5 10 15 20 25 30 35 40 45 50
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5 10 15 20 25 30 35 40 45 50
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5 10 15 20 25 30 35 40 45 50
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5 10 15 20 25 30 35 40 45 50
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

To
ta

l n
et

 e
ff

ec
t 

To
ta

l n
et

 e
ff

ec
t 

To
ta

l n
et

 e
ff

ec
t 

q q 

Figure H2(g) The ordering of the column sums 

for food web (g) with 6 different 

parameterisations. The highly connected 

carnivore species (preys upon all herbivore and 

basal species) is shown in pink. For graphs (iv) 

and (v) the column sum for the highly 

connected carnivore species is indistinguishable 

from the column sum for the other carnivore 

species (shown in red).  
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Ordering of species for webs of different size structure and complexity 

The columns sums for the seven food webs shown in Figures. 5.2-5.8 are examined 

graphically for Cb = 1, Cc = 0.01, e = 0.1 and q = 100. 

 

 

 Figure I1 The relationship between a species total net effect and its linkage density for food webs 5.2(a) – (e) 

where there were 16 species with a basal, herbivore and carnivore species ratio of (6:5:5) and minimal 

complexity for cases: 
(a) basal species 1 is preyed on by all herbivore species  

(b) herbivore species 7 preys on all basal species 

(c) herbivore species 7 is preyed upon by all carnivore species 

(d)  carnivore species 12 preys upon all herbivore species 

(e) herbivore species 7 preys upon all basal species and is preyed upon by all carnivore species.  

C
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 = 0.01, e = 0.1 and q = 100 

N.B. In Figures (a) and (b) carnivore species 12 is indistinguishable from carnivore species 13 - 16 
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Figure I2 the relationship between a species total net effect and its linkage density for food webs 5.3(a)-(e) of 

size 12 with a basal, herbivore and carnivore species ratio of (1:2:1) and minimal complexity for cases: 
(a) basal species 1 is preyed on by all herbivore species  

(b) herbivore species 7 preys on all basal species 

(c) herbivore species 7 is preyed upon by all carnivore species 

(d)  carnivore species 12 preys upon all herbivore species 

(e) herbivore species 7 preys upon all basal species and is preyed upon by all carnivore species.  

C
b
 =1 ,C

c
 = 0.01, e = 0.1 and q = 100 

In Figure (a) species 4, 5, and 10 are indistinguishable from carnivore species 11-12. 
In Figure (b) species 10 is indistinguishable from species 11-12. 
In Figure (d) species 4 is indistinguishable from species 5-9. 
  

(a)

Number of links

Lo
g 1

0(
to

ta
l n

et
 e

ff
ec

t)

(b)

Number of links

Lo
g 1

0(
to

ta
l n

et
 e

ff
ec

t)

(c)

Number of links

Lo
g 1

0(
to

ta
l n

et
 e

ff
ec

t)

(d)

Number of links

Lo
g 1

0(
to

ta
l n

et
 e

ff
ec

t)

(e)

Number of links

Lo
g 1

0(
to

ta
l n

et
 e

ff
ec

t)

Species 1 (basal)

Species 2 - 3 (basal)

Species 4 (herbivore)

Species 5 - 9 (herbivore)

Species 10 (carnivore)

Species 11 - 12 (carnivore)



 

203 

 

 
 

Figure. I3: the relationship between a species total net effect and its linkage density for food webs 5.4(a)-(f) 

where there were 12 species with a basal, herbivore and carnivore species ratio of (1:1:1) and varying web 

complexity. 
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Figure. I4 The relationship between a species total net effect and its linkage density for food webs 5.5(a)-(e) 

where there were 16 species with a basal, herbivore and carnivore species ratio of (1:2:1) and minimal 

complexity for cases: 
(a) basal species 1 is preyed on by all herbivore species  

(b) herbivore species 7 preys on all basal species 

(c) herbivore species 7 is preyed upon by all carnivore species 

(d)  carnivore species 12 preys upon all herbivore species 

(e) herbivore species 7 preys upon all basal species and is preyed upon by all carnivore species.  

C
b
 =1 ,C

c
 = 0.01, e = 0.1 and q = 100 

In Figure (a) species 5, 6 and 13 are indistinguishable from species 14-16. 
In Figure (b) species 13 is indistinguishable from herbivore species 14-16. 
In Figure (d) species 5 is indistinguishable from herbivore species 6-12.. 
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Figure I5 The relationship between a species total net effect and its linkage density for food webs 5.6(a)-(f) 

where there were 16 species with a basal, herbivore and carnivore species ratio of (6:5:5) and varying web 

complexity. C
b
 =1 ,C

c
 = 0.01, e = 0.1 and q = 100 
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Figure I6 The relationship between a species total net effect and its linkage density for food webs 5.7(a)-(f) 

where there were 12 species with a basal, herbivore and carnivore species ratio of (1:2:1) and varying web 

complexity. 
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Figure I7 the relationship between a species total net effect and its linkage density for food webs 5.8(a)-(f) 

where there were 16 species with a basal, herbivore and carnivore species ratio of (1:2:1) and varying web 

complexity. 
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Bar charts showing how the proportion of negative correlations varied with the number of 

links for each species for the set of food webs generated by the permutations of the 16 

species food web. 

 

  
 
Figure J1(a) Basal trophic level: bar charts showing how the proportion of correlations between linkage 

density and total net effect with a value less than < -0.4  varies with the linkage density of species 3 – 8. 
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Figure J1(b)  Basal trophic level: bar charts showing how the proportion of correlations between linkage 

density and total net effect with a value less than < -0.4  varies with the linkage density of species 9 – 12, 15 

and 16. 
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Figure J2(a) Herbivore trophic level: bar charts showing how the proportion of correlations between linkage 

density and total net effect with a value less than < -0.4  varies with the linkage density of species 3 – 8. 
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Figure J2(b) Herbivore trophic level: bar charts showing how the proportion of correlations between linkage 

density and total net effect with a value less than < -0.4  varies with the linkage density of species 9 – 12,  15 

and 16. 
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Figure J3(a)  Carnivore trophic level: bar charts showing how the proportion of correlations between linkage 

density and total net effect with a value less than < -0.4  varies with the linkage density of species 9 – 12, 15 

and 16. 

 

  

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of links for species 3

P
ro

p
o
rt

io
n
 o

f 
n
e
g
a
ti
v
e
 c

o
rr

e
la

ti
o
n
s

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of links for species 4

P
ro

p
o
rt

io
n
 o

f 
n
e
g
a
ti
v
e
 c

o
rr

e
la

ti
o
n
s

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of links for species 5

P
ro

p
o
rt

io
n
 o

f 
n
e
g
a
ti
v
e
 c

o
rr

e
la

ti
o
n
s

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of links for species 6

P
ro

p
o
rt

io
n
 o

f 
n
e
g
a
ti
v
e
 c

o
rr

e
la

ti
o
n
s

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of links for species 7

P
ro

p
o
rt

io
n
 o

f 
n
e
g
a
ti
v
e
 c

o
rr

e
la

ti
o
n
s

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of links for species 8

P
ro

p
o
rt

io
n
 o

f 
n
e
g
a
ti
v
e
 c

o
rr

e
la

ti
o
n
s

(a) (b)

(c) (d)

(e) (f)



 

214 

 

 

Figure J3(b)  Carnivore trophic level: bar charts showing how the proportion of correlations between linkage 

density and total net effect with a value less than < -0.4  varies with the linkage density of species 1-8. 
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CHAPTER 6 
 

 

 

 

 

GENERAL DISCUSSION  

 

  



 

216 

 

Main Findings 

The work in this thesis explored the role of interaction strengths between species in food 

webs both empirically and theoretically. The study presented in Chapter 2 is the first to use 

the dynamic index and the newly developed intraspecific dynamic index to simultaneously 

obtain empirical estimates for both intraspecific and interspecific interaction strengths. 

These empirical measurements were made at the whole food chain scale comprising a novel 

experimental analysis of a simple three trophic level plant-herbivore-predator model system. 

In Chapter 3, a net effects analysis was used to investigate relationships between a species 

traits and its impact on the community; and in Chapters 4 and 5, the inverse community 

matrix was examined in detail to gain insight into the mechanisms underlying the observed 

relationships. 

 

It is widely accepted that measuring interaction strengths between species empirically is 

problematic (Laska and Wootton 1998, Abrams 2001, Berlow et al. 2004, Wootton and 

Emmerson 2005) and the experiment to determine species intraspecific and interspecific 

interaction strengths (Chapter 2) highlighted this. Using food chains of different length and 

of varying initial species biomass densities revealed that interaction strength estimates can 

be affected by variation between individuals, non-linearities in interspecific interaction 

strengths, indirect effects and food chain structure. The interaction strengths estimated from 

the three-species food chain increased in both size and variation with trophic level but the 

variation associated with the estimates increased to the point that the aphid-lacewing and 

lacewing-lacewing estimates at the third trophic level were not informative. The ratio of 

intraspecific to interspecific interaction strength for the plant species was found to be small 

(a11 / a12 lay between -0.01 and -0.001) which is low compared to ratios used in previous 

theoretical studies (de Ruiter et al. 1995, Schmitz 1997, Jonsson and Ebenman 1998, 

Emmerson and Raffaelli 2004, Eklöf and Ebenman 2006, Neutel et al. 2007, Petchey et al. 

2008b). However the plant-aphid-lacewing food chain that the estimates were derived from 

is not typical, in that aphids are a pest species that reproduce quickly, causing considerable 

damage to plants if the population is not kept in check by a variety of natural enemies 

(Hutchison and Hogg 1984, Aquilino et al. 2005). The ratio of intraspecific to interspecific 

interaction strength for basal species is expected to be higher in other systems, which could 

be checked using further applications of the dynamic and the intraspecific dynamic index.  

 

Surprisingly, the estimate of basal intraspecific interaction strength was positive or negative 

depending on the presence or absence of higher trophic level consumers. It was not clear 
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whether the differences in intraspecific interaction strength estimates were due to changes in 

plant conspecific interactions as observed in (Parmesan 2000, Alberti et al. 2008) or non-

linearity in the plant-aphid interspecific interaction strength (Ruesink 1998, Case 2000, 

Sarnelle 2003, Vucic-Pestic et al. 2010).  

 

In Chapter 3 it was found that, for model communities where interaction strengths between 

species were defined using an energetics approach, species with a large body size had a large 

impact on the community. This result supports previous findings for the Ythan Estuary 

(Montoya et al. 2005), and the Baltic Sea and Lake Vättern (Berg et al. 2011). A small press 

perturbation to large bodied species caused a large change in the equilibrium biomass 

abundances of the whole community. This relationship was strong and consistent, holding 

for all webs analysed. Chapter 4 showed that this positive relationship between a species 

body size and its total net effect is a consequence of the body-size based parameterisation of 

the community matrix and that the precise ordering of species with regard to their total net 

effect is dependent on relative values of the ecological efficiency parameter, predator-prey 

body mass ratios and intraspecific-interspecific interaction strength ratios. Information 

regarding ecological efficiency is relatively easy to find (Begon et al. 2009), and predator-

prey body size ratios can be measured (Jennings and Warr 2003, Brose et al. 2005b, Brose et 

al. 2006a, Riede et al. 2011), but there is a lack of information regarding the empirical 

scaling of intraspecific and interspecific interaction strengths.  

 

The nature of the relationship between species body size and its impact on the community at 

the population level depends on how population biomass density scales with body size. 

Numerical population density has been reported to scale with body mass according to a 

power law with an exponent between -1 and −
3

4
  (Peters 1983, Jonsson et al. 2005, White et 

al. 2007), if this observation holds, then biomass abundance would be invariant with body 

size or increase with body size and the positive relationship between body mass and total net 

effect persists at the population level. This result indicates that the conservation of large 

bodied species could be important for the persistence of strongly size-structured 

communities. However, although body size has been shown to be an important predictor for 

the impact that a species has on the community, it is not the only trait that can determine a 

species’ role in the community. Body temperature, feeding strategy (e.g. predator, 

scavenger, grazer, filter feeder),  resource type (e.g. herbivore, carnivore, omnivore 

detritivore), mobility, and environmental location have also been shown to contribute to the 

effect that a species has on the community in static food web models (Jacob et al. 2011). 
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Further information about how these traits affect the parameters in dynamic food web 

models (i.e. interspecific interaction strengths, intraspecific interaction strengths and the 

ecological efficiency) would better enable us to predict the response of communities to 

perturbations. 

 

The relationship between a species linkage density and the impact it has on the community 

was found to be less consistent: in Chapter 3, out of 97 webs created using an assembly 

algorithm, a negative relationship between linkage density and net effects was detected for 

38 webs. Comparison of the set of webs where a negative relationship was present and 

where it was not indicated that the set of webs for which the relationship was present had a 

statistically lower clustering coefficient and a higher average shortest path length. In Chapter 

5, further analysis of the relationship using webs of size 12 and 16 (species) with varying 

structure and complexity found that negative correlations between linkage density and total 

net effects, at the whole web level (including all species in the web), were uncommon; the 

impact that a species had on its community was determined by its body size and any 

potential relationship between linkage density and total net effect did not affect this. Out of 

three studies that have examined the relationship between species linkage density and 

mean/total net effect (Montoya et al. 2005, O'Gorman et al. 2010, Berg et al. 2011), a 

negative relationship was present for the Ythan Estuary and Broadstone stream food webs 

(Montoya et al. 2005) and for mesocosm food webs in Lough Hyne (O'Gorman and 

Emmerson 2009), but no relationship was detected for the Baltic Sea and Lake Vättern food 

webs (Berg et al. 2011). The inconsistency of the relationship indicates that it is not a result 

of the body size based parameterisation of the community matrix.  

 

Examining the relationship between species linkage density and total net effect within 

trophic levels where body size was held constant showed that for the basal and herbivore 

trophic levels, the relationship was frequently negative and rarely positive but the 

mechanism determining the nature of the relationship was unclear. The relationship was 

more likely to be negative in webs with low connectance, but this was not a definitive 

property and a negative relationship may or may not be present in a web with low 

connectance. The set of webs analysed contained webs that were identical in all respects: 

species richness, basal: herbivore: carnivore trophic ratios, interaction strengths, the linkage 

density of the most highly connected species and the linkage density of the most poorly 

connected species. The only difference permitted was in the arrangement of links of 

surrounding species and yet a negative relationship between linkage density and total net 
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effect was present in some webs, but not in others, indicating that the negative relationship 

between linkage density and total net effect is a consequence of the pattern of interaction 

strengths in the surrounding web. The importance of web structure in determining stability 

and the response of a community to perturbations is well documented (McCann 2000, 

Neutel et al. 2002, Dambacher et al. 2003, Neutel et al. 2007). 

 

 

 

 

Synthesis and Future Directions 

In the broad context of food web ecology, the analyses presented in this thesis highlight 

issues regarding two important questions. First, is it possible to parameterise multispecies 

food web models directly using interaction strength estimates derived from empirical data? 

Second, in theoretical studies, how sensitive are the results to the underlying model?  

 

Empirical Estimates of Interaction Strengths 

Estimating the impact that species j has on species i requires measuring the population 

density of species i in response to changes in the population density of species j. Assuming 

that a model captures the behaviour of a system, an interaction strength estimate used to 

parameterise a particular model must be derived from the model in question (Laska and 

Wootton 1998, Berlow et al. 1999). The dynamic index used in Chapter 2 is an example of 

such an estimate; it is used to estimate the per capita/per unit mass effect of species j on 

species i per unit time in a discrete time Lotka-Volterra model (Laska and Wootton 1998). 

The experiment presented in Chapter 2 highlighted the difficulties in obtaining and 

interpreting empirical estimates based on population density measures. In just a simple three 

species food chain, non-linearities, indirect effects and context dependency in the estimates 

were observed.  

 

To parameterise a non-linear functional response requires knowledge of the form of the 

functional response as well as the parameters. Once the form is established it is possible to 

estimate parameters by measuring changes in population densities for varying initial 

biomass densities (Ruesink 1998, Sarnelle 2003, Novak and Wootton 2010, Vucic-Pestic et 

al. 2010).  
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The problems associated with indirect effects are more difficult to overcome. The 

fundamental idea on which experiments are based is that we manipulate one variable (in this 

case the population density of species j), and record the impact that it has on the response 

variable (the population density of species i). Even if we exclude all other sources of 

variation we are still faced with the fact that the population densities of species i and species 

j are interdependent.  In order to accurately measure the direct effect of species j on species i 

in a Lotka-Volterra model by applying a press perturbation to species j, it is necessary that 

the population density of species j is held constant at its new perturbed level i.e. species j is 

prevented from responding to changes in the population density of species i by either adding 

or removing individuals/biomass. If this method is extended to a community with S species 

then to measure the direct effect of species j on species i it is necessary that (within each 

treatment) the population density of all species is held constant (species j at the perturbed 

level and the other species at baseline levels) and only the population density of species i is 

permitted to respond (Nakajima and Higashi 1995). If the population densities of all species 

in the system (with the exception of the focal species) are not held constant then the 

experiment measures the net effect of species j on species i which includes indirect effects 

that are mediated through changes in population density of other species in the system. 

Indirect effects have been observed in many manipulation experiments (Wootton 1993, 

Werner and McPeek 1994, Menge 1995, O'Gorman et al. 2010). At present, controlling 

multiple species population densities in empirical systems is not possible, but measurements 

of population densities at frequent time intervals might give an indication of the timescale of 

direct and indirect effects  (O'Connor et al. 2013). The development of novel techniques that 

allow frequent (ideally constant), non-destructive monitoring of population densities would 

advance our understanding of interaction strengths and should be a priority when designing 

manipulation experiments.  

 

Evidence that interaction strengths between species are context dependent and can be altered 

by both environmental conditions and the composition of the surrounding community 

(Werner and Peacor 2003, Chapter 2, Alberti et al. 2008, Otto et al. 2008) raises doubts 

about the efficacy of interaction strength estimates in predictive models (Abrams 2001). A 

fundamental aim of model building in ecology is to provide information about the behaviour 

of a community when faced with novel perturbations; if the building blocks, that are 

pairwise interaction strengths, are highly sensitive to changes in the surrounding community 

then the predictive power of the model is lost. Further empirical information about the 

sensitivity of interaction strengths to abiotic and biotic conditions is required, along with 
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information about the sensitivity of the underlying model to changes in interaction strengths 

(Berg et al. 2011).  

 

Despite the numerous shortcomings discussed above it can still be argued that empirical 

manipulation experiments provide useful information for parameterising models. Novak et 

al. (2011) found that when examining community responses to press perturbations, the use 

of empirical estimates of interaction strengths to parameterise the community matrix 

provided greater certainty in the community response than using just qualitative entries.  

Currently, it is not possible to estimate all pairwise interaction strengths in a community 

accurately, but information regarding how interaction strengths scale across trophic levels 

and how intraspecific interaction strengths scale with interspecific interaction strengths 

would improve current models.  

 

Model Sensitivity 

Ecological systems are extremely complex so making simplifying assumptions is an 

essential part of model building. How these simplifying assumptions affect the outcomes of 

theoretical studies is an important question. Some important considerations include: 

functional responses, species resolution, ontogenetic shift, time scales and seasonality, 

omnivory, types of interactions (trophic, competitive, commensal or mutualistic), and units 

of measurement. The net effects analyses presented in Chapters 3, 4, and 5 were based on 

community matrices that were parameterised using a type I functional response and an 

energetics based approach via predator-prey body size ratios and allometric scaling. 

Interaction strengths were measured on a per unit biomass basis and interspecific 

competition was ignored.  

 

Type I functional responses were used for their simplicity, analysis of the inverse 

community matrix is complex and near equilibrium (as in the case for a small press 

perturbation), non-linear functional responses are well described by a type I functional 

response (Case 2000). Ideally, for studies where dynamics are far from equilibrium, the 

effect of functional response on the outcomes of the study can by investigated by running 

models with alternative functional responses (Säterberg et al. 2013). 

 

 There is compelling empirical evidence that body size is important in describing the 

structure and dynamics of ecological communities (Cohen et al. 2003, Jonsson et al. 2005, 

Loeuille and Loreau 2005, Brose et al. 2006b, Riede et al. 2010) and the use of predator-
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prey body size ratios and allometric scaling to parameterise interaction strengths is 

potentially an important step towards the development of predictive models. The use of size-

spectra models in fisheries have provided insights into the structure and functioning of 

marine communities  and have had implications regarding fisheries management (Jennings 

et al. 2002, Shin et al. 2005, Andersen and Beyer 2006, Andersen et al. 2009, Plank and Law 

2012, Blanchard et al. 2014). Incorporating elements of size-spectrum models into food web 

models can address problems associated with the assumption that all individuals of a species 

have an average body size and allow for ontogenetic shifts in diet (Andersen and Beyer 

2006, Hartvig et al. 2011, Zhang et al. 2013). The relevance of body size based 

parameterisations of models in aquatic communities is clear, and there is evidence of size 

structuring in terrestrial communities (Memmott et al. 2000, Brose et al. 2006a, Riede et al. 

2011). However, many trophic interactions within ecological communities are not typical 

predator-prey interactions and these often do not follow size based rules. In particular, host-

parasitoid interactions, where small parasitoids consume much larger hosts, some benthic 

invertebrates, whose feeding method allows them to consume much larger prey and plant 

based herbivorous interactions, where small insect herbivores feed on large plants. These 

types of trophic interactions cannot be modelled using body size alone and incorporating 

such interactions into an energetics based framework is of great interest (Lafferty et al. 

2008).  

 

Interspecific competition between basal species was excluded from the models used in 

Chapters 2 and 4. This decision can be put into a broader context when we consider other 

types of interaction strengths in food web models: trophic, competitive, commensal or 

mutualistic. The incorporation of non-trophic links will change the structure of the 

community matrix which will, in turn, have consequences for the spread of indirect effects 

through the community and could potentially alter the response of a community to 

perturbations (Hosack et al. 2009). Examining the results of analyses using models with and 

without non-trophic interactions would determine the sensitivity of the results to the 

inclusion of non-trophic interactions and could provide insight into the mechanisms behind 

the set of observed results.  

 

The choice of units is important when describing patterns in food webs. In a size structured 

community, if a community matrix is parameterised using predator-prey body size ratios 

then on a per unit mass basis, the entries in the community matrix decrease with increasing 

body size but on a per capita basis, the entries in the community matrix increase with 
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increasing body size. This is just one example of how the units of measurement can affect 

observed relationships, and while it is easy to convert from per capita to per unit mass, 

inconsistency in the choice of units can obscure patterns and make comparisons between 

studies difficult.  

 

In conclusion, theoretical models could potentially be improved by using experimental 

information to inform the scaling of interspecific interaction strengths (both trophic and non-

trophic) and intraspecific interaction strengths across multiple trophic levels. This would 

require more experimental data that manipulates multiple species at multiple densities, that 

describes who interacts with whom and quantifies species population dynamics, at frequent 

intervals, through time. The Dynamic Index and the Intraspecific Dynamic Index used in 

Chapter 2 has the potential to provide such information.  

 

As well as improving our understanding of ecological communities through empirical 

experiments, it is also possible to improve our understanding of ecological communities 

theoretically by examining the sensitivity of models to the underlying ecological 

assumptions. The importance of the scaling of interspecific and intraspecific interactions 

was highlighted in the Chapter 4 where it was shown that, in general, species with a large 

body size have a large impact on their surrounding community, however, it was also shown 

that the magnitude of a species’ impact is constrained by the amount of intraspecific 

competition it is subject to. Whilst the scaling of interspecific interaction strengths and 

intraspecific interaction strengths is unknown, it would be beneficial to examine the 

sensitivity of models results to changes in the scaling of interspecific interaction strengths. 

Improved computing power will enable us to test multiple models side by side and examine 

the sensitivity of results to model choices.  
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