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Thesis Abstract 

This thesis was undertaken to investigate the relevance of two bacterial isoprenoid 

biosynthetic pathways (Mevalonate (MVAL) and 2-C-methyl-D-erythritol 4-

phosphate (MEP)) for host-microbe interactions. We determined a significant 

reduction in microbial diversity in the murine gut microbiota (by next generation 

sequencing) following oral administration of a common anti-cholesterol drug 

Rosuvastatin (RSV) that targets mammalian and bacterial HMG-CoA reductase 

(HMG-R) for inhibition of MVAL formation. In tandem we identified significant 

hepatic and intestinal off-target alterations to the murine metabolome indicating 

alterations in inflammation, bile acid profiles and antimicrobial peptide synthesis 

with implications on community structure of the gastrointestinal microbiota in statin-

treated animals. However we found no effect on local Short Chain Fatty Acid 

biosynthesis (metabolic health marker in our model). We demonstrated direct 

inhibition of bacterial growth in-vitro by RSV which correlated with reductions in 

bacterial MVAL formation. However this was only at high doses of RSV. Our 

observations demonstrate a significant RSV-associated impact on the gut microbiota 

prompting similar human analysis. Successful deletion of another MVAL pathway 

enzyme (HMG-CoA synthase (mvaS)) involved in Listeria monocytogenes EGDe 

isoprenoid biosynthesis determined that the enzyme is non-essential for normal 

growth and in-vivo pathogenesis of this pathogen. We highlight potential evidence 

for alternative means of synthesis of the HMG-CoA substrate that could render mvaS 

activity redundant under our test conditions. Finally, we showed by global gene 

expression analysis (Massive Analysis of cDNA Ends (MACE RNA-seq) a 

significant role for the penultimate MEP pathway metabolite (E)-4-hydroxy-3-

methyl-2-but-2-enyl pyrophosphate (HMBPP) in significant up regulation of genes 
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of immunity and antigen presentation in THP-1 cells at nanomolar levels. We 

infected THP-1 cells with wild type or HMBPP under/over-producing L. 

monoctyogenes EGDe mutants and determined subtle effects of HMBPP upon 

overall host responses to Listeria infection. Overall our findings provide greater 

insights regarding bacterial isoprenoid biosynthetic pathways for host-

microbe/microbe-host dialogue. 
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Chapter 1: Literature Review 

 

 

3-hydroxy-3-methylglutaryl coenzyme A reductase        

(HMG-R): evolution, biochemistry, phylogenetics and 

the cholesterol-independent effects of statins 
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1. Abstract 

3-hydroxy-3-methylglutaryl Co enzyme A reductase (HMG-R) is an important 

enzyme in the synthesis of mevalonate and subsequently the formation of isoprenoid 

compounds and cholesterol biosynthesis. Statins are lipid-lowering drugs that target 

the HMG-R enzyme for inhibition of the mevalonate pathway and cholesterol 

biosynthesis. Isoprenoids play a key role in cellular survival and the formation of 

integral cellular components such as the cell wall and cell membrane. In bacteria, 

isoprenoids are derived generally from one of two pathways: the classical 

mevalonate pathway or the alternate pathway via 2-C-methyl-D-erythritol 4-

phosphate (MEP). Two different classes of HMG-R have been elucidated both 

biochemically and following bioinformatics analysis. Class 1 HMG-R are more 

sensitive to statin exposure than the Class 2 counterparts. Bioinformatic analysis of 

HMG-R was described to ascertain the distribution of the different classes of HMG-

R in the gut microbiota. Biochemical analysis reveals the molecular level differences 

between both HMG-R classes and the associated tertiary structure of the enzyme. 

The historical use of statins and how they react with the target will also be discussed. 

Finally, cholesterol independent effects of statins associated with antimicrobial 

activity inflammation and immune response will be discussed to help ascertain the 

global impact of statin administration in the gut. The impact of statins on the bile 

acid biosynthetic regulatory network and on the production of short chain fatty acids 

will be analysed in light of implications on health and gut microbiota composition. 
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2. Introduction 

2.1 Importance of isoprenoids 

Isoprenoids are an important class of organic molecules that are ubiquitously found 

throughout a diverse range of organisms from eubacteria, archea and eukaryotes. At 

present, over 30,000 different isoprenoid derivatives are known. Their biological 

function is diverse in many micro-organisms forming membrane molecules such as 

hopanoids, sterols and electron transport molecules such as coenzyme Q. 

Isoprenoids also have wider functions involved in cellular transportation and 

regulation (Lange, Rujan et al. 2000; Wilding, Brown et al. 2000). Derivatives of 

isoprenoids such as farnesyl pyrophosphate (FPP) and geranyl pyrophosphate (GPP) 

are important compounds involved in metabolism as they form the backbone of 

many crucial products e.g. monoterpenes, sterols, farnesyl- and geranyl proteins, 

carotenoids, ubiquinones and Vitamin K2 (Holstein and Hohl 2004). 

Isoprenoid biosynthesis generally occurs via one of two different pathways: 

the classical mevalonate pathway which is found generally in eukaryotic micro-

organisms and a few prokaryotes and the alternate 2-C-methyl-D-erythritol 4-

phosphate (MEP) pathway which is used by most prokaryotes (Goldstein and Brown 

1990; Campos, Rodriguez-Concepcion et al. 2001; Hecht, Eisenreich et al. 2001; 

McAteer, Coulson et al. 2001) (Fig.1). Listeria monocytogenes is one such 

prokaryotic microorganism that has been well studied in our laboratory in terms of 

isoprenoid biosynthesis (Begley, Bron et al. 2008). 
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2.2. HMG-CoA reductase (HMG-R) 

HMG-CoA reductase (HMG-R) is the major rate-limiting enzyme of the mevalonate 

pathway encoded by the hmgR gene (Fig. 1). This enzyme is the target of the class of 

drugs known as statins, which are used in the treatment of patients with 

hypercholesterolemia and elevated low-density lipoprotein (LDL) cholesterol in the 

bloodstream. Indeed, figures for 2010 suggest that 255.4 million statin scripts were 

prescribed in the United States of America (Borders-Hemphill 2010). 

Analysis of the HMG-R enzyme revealed two different classes, each with their 

own distinct active site and enzymatic structure (Istvan 2001). These classes have 

been designated as Class 1 or Class 2 HMG-R isoforms. Comparisons of both 

enzymes elucidated highly conserved co-enzyme binding regions for nicotinamide 

adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate 

(NAD(P)H) and variable binding sites for the substrate HMG-CoA. 

  Structural and sequence variations (discussed later in this review) between the 

two classes of enzyme have been proposed as evidence of divergent evolution 

occurring in the history of the HMG-CoA reductase enzyme (Istvan 2001). An 

appreciation of the differing biochemistry of these enzyme classes is significant as it 

is known that Class 1 enzymes are more sensitive than Class 2 HMG-R enzymes to 

statins (Bochar, Stauffacher et al. 1999; Hedl, Tabernero et al. 2004). 

An evolutionary basis for the Mevalonate (MVAL) pathway and many other 

key catalytic enzymes such as HMG-R has been well described utilising modern day 

bioinformatics techniques (Neighbour-joining phylogenetic tree construction) 

shedding light on the origins  of this pathway in biology (Fig.2). Previously, it was 

widely believed that the MVAL pathway mainly existed in higher organisms such as 
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mammals whilst the MEP pathway was largely present in bacteria. We have shown 

by extensive bioinformatics and phylogenetic analysis the existence of HMG-R (and 

indeed the MVAL pathway) in many gut bacterial species (including Enterococcus 

faecalis, Enterococcus faecium and Lactobacillus johnsonii) with the Class 2 HMG-

R isoform and a number of other infectious bacterial species (including 

Corynebacterium kroppenstedti) with the Class 1 isoform (Fig.3).  

Careful examination of different hypotheses for the ancestry of the 

Mevalonate pathway concluded that the origin of mevalonate pathway enzymes 

derives from a single common cenancestor in the past and subsequent evolution over 

time lead to genetic variations in the pathway. The MEP pathway as we know it 

today was absent in the cenancestor and may have been acquired overtime during a 

horizontal transfer or symbiotic event between bacteria and eukaryotes (Fig. 2) 

(Lombard and Moreira 2011). 
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Fig.1. Schematic representation of the enzymes and metabolites involved in 

bacterial isoprenoid biosynthesis. 

Illustrated are the MVAL and MEP isoprenoid biosynthetic pathways as described 

for the bacterium L. monocytogenes EGDe. The classical mevalonate pathway is 

indicated in blue and the MEP pathway in red. Homologues for corresponding genes 

in L. innocua Clip 11262 are indicated in black. This figure was taken from (Begley, 

Gahan et al. 2004) and was developed from the NCBI database.  
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3. Evolution of isoprenoid biosynthetic pathways 

 
3.1 Mevalonate (MVAL) and MEP pathways  

 

Historically the mevalonate pathway was originally discovered in eukaryotes 

and other higher organisms as the main biosynthetic route for isoprenoid precursors 

such as isopentenyl-pyrophosphate (IPP), dimethylallyl-pyrophosphate (DMAPP) 

(McGarvey and Croteau 1995). Subsequently, an alternative pathway (known as the 

MEP pathway) was later discovered in bacteria for the generation of isoprenoid 

precursors (Boucher, Huber et al. 2001; Kuzuyama 2002).  

Evolutionary analysis of isoprenoid biosynthesis determined a hypothetical 

single common cenancestor organism which is believed to have given rise to the 

MVAL and MEP pathways in eukarya, bacteria and archaea (Fig. 2) (Lombard and 

Moreira 2011). This hypothesis suggests that over evolutionary time both pathways 

co-evolved in many different life forms and may point to why some microorganisms 

exclusively contain one or the other pathway. The MVAL pathway has been 

identified as the main biosynthetic route for isoprenoids for certain bacteria such as 

S. aureus (Balibar, Shen et al. 2009) and conversely the MEP pathway for other 

bacteria (such as E. coli) (Hintz, Reichenberg et al. 2001). Interestingly in our 

laboratory we identified a unique microorganism (L. monocytogenes) which is 

currently the only known utilizer of both pathways (Begley, Bron et al. 2008). An 

explanation for this anomaly is currently not well known but it is possible that host-

microbe interactions (including virulence potential and immune stimulation) may 

determine the development of either pathway in many microorganisms (Boucher and 

Doolittle 2000; Heuston, Begley et al. 2012).  
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Fig. 2. The cenancestor hypothesis for the origin of isoprenoid biosynthesis. 

For simplicity the subdivisions within the three main lineages (Archaea, Eukaryotes 

and Bacteria) have been excluded. Inheritance of the isoprenoid biosynthetic 

pathways is hypothesised to derive from a single common ancestral organism. 

Figure adapted from: (Lombard and Moreira 2011). 

 

3.2. Phylogenetic and bioinformatics analysis of HMG-CoA reductase (HMG-

R) 

HMG-R, the target of anti-cholesterol drugs such as statins has become one of 

the most widely studied enzymes. HMG-R previously was categorised into two 

groups; Class 1 and Class 2 isoforms determined using sequence-based alignments 

(Lombard and Moreira 2011), (Istvan 2001). In this review, we used published 

sequences from the National Centre for Biotechnology Information (NCBI) 

GenBank database (http://www.ncbi.nlm.nih.gov/) for a variety of bacteria and other 

organisms that contain the HMG-R enzyme (with a particular focus on major gut 

dwelling microbes). Subsequently we performed molecular evolutionary genetics 
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analysis (MEGA) to calculate evolutionary distance and determine phylogenetic 

trees using sequence based alignments for both isoforms (Neighbour-Joining 

method) (Saitou and Nei 1987) confirming observations in the literature (Fig. 3).  

We confirmed previous findings that Class 1 enzymes were mainly present in 

higher organisms such as humans (Homo sapiens), plant species (including 

Arabdopsis), and eukaryotic microorganisms (Saccharomyces) while Class 2 

enzymes were present in bacterial species (including E. faecalis and S. aureus). One 

notable microorganism identified by our analysis was the bacterium C. 

kroppenstedtii DSM44385. This bacterium was unique in that we were successfully 

able to cultivate under our laboratory conditions as a representative Class 1 HMG-R 

microorganism (Tauch, Bischoff et al. 2004). Importantly C. kroppenstedtii (a 

lipophilic corynebacterial species) is a less pathogenic relative of Corynebacterium. 

diptheriae (the causative agent of diphtheria) and is generally safe to work with. We 

were successfully able to investigate the effect on growth of this bacterium when 

exposed to statin treatment (see Chapter 2). 
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Fig.3. Phylogenetic analysis of Class 1 and Class 2 HMG-R enzymes in a variety 

of organisms. 

Sequences were obtained from the National Centre for Biotechnology Information 

(NCBI) GenBank database. Evolutionary analysis was inferred using the Neighbour-

Joining method. The bootstrap percentage value from 500 different replicates is 

given beside each branch and clustered together into representative taxa. 

Evolutionary distances were calculated based on a Poisson distribution and are 

represented in the number of amino acid substitutions per site. Twenty-four amino 

acids were analysed and positions containing gaps or missing data removed. 

Molecular evolutionary genetic analysis was carried out using MEGA5. 
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 Further explorations into the structural and functional properties of HMG-R 

revealed greater insights into the enzymatic architecture for both isoforms in humans 

and bacteria (Pseudomonas mevalonii) (Istvan 2001; Istvan and Deisenhofer 2001).  

Based on this it was generally accepted that Class 1 HMG-R isoforms were human 

like whilst Class 2 isoforms were bacterial like. Subsequently we summarise 

previous findings regarding conserved amino acid sequences for both isoforms 

involved in coenzyme factor binding, substrate (HMG-CoA) binding (summarised in 

Table 1).   

We summarise previous findings that binding of coenzyme factors (such as 

NADH or NAD(P)H) by HMG-R is one such important determinant for Class 1or  

Class 2 classification (Istvan 2001). Biochemical analysis determined that Class 1 

enzymes use the phosphorylated form of the nicotinamide adenine dinucleotide 

phosphate molecule (NAD(P)H). In contrast Class 2 enzymes use the non-

phosphorylated version (NADH) as an energy source (Kim, Stauffacher et al. 2000) 

(Table 1).  We summarise previous findings that Class 1 enzymes contain the amino 

acid sequence (DAMGAN) for coenzyme factor binding but there is a substitution in 

the fifth amino acid from alanine to methionine for Class 2 enzymes (DAMGMN). 

Both classes of HMG-R enzymes encode identical conserved amino acid regions for 

substrate (HMG-CoA) binding (CXDKK) and dimerization motifs (ENVIG) (Istvan 

2001). 
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Table 1. Structure and sequence alignments of Class 1 and Class 2 HMG-R 

enzymes.  

Summary of important findings based on amino acid sequence alignments of Class 1 

and Class 2 HMG-R enzymes. Conversed regions and associated functions were 

determined for both isoforms. This table summarises alignments performed by 

(Istvan 2001).  

 

 

 

 

 

 

 

Organism HMG-R Conserved sequence and  

function 

Homo sapiens  

 

 

 

 

 

 

 

 

Class 1 

DAMGAN 
 
 
 
 
 

CXDKK 
 
 
 
 
 

ENVIG 

NAD(P)H binding 
 
 
 
 
 

HMG-CoA binding 
 
 
 
 
 

Conserved 
dimerization motif 

Drosphila melanogaster 

Caenorhabditis elegans 

Dictyostelium 

discoideum 

Schistosoma mansomi 

Gossypium hirsutum 

(cotton) 

Trypanosoma cruzi 

Saccharomyces 

cerevisiae 

Methanococcus 

jannaschii 

Sulfolobus solfataricus 

Streptomyces 

griseosporeus 

Archaeoglobus fulgidus  

 

 

Class 2 

DAMGMN 
 
 

CXDKK 
 
 

ENVIG 

NADH binding 
 
 

HMG-CoA binding 
 
 

Conserved   
dimerization motif 

Staphylococcus aureus 

Enterococcus faecalis 

Streptoococcus 

pyogenes 

Borrelia burgdoferi 

Pseudomonas mevalonii 
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4. Cholesterol homeostasis and statins 

 

Cholesterol is an essential mammalian biomolecule found in nearly every cell 

of the body, serving many essential physiological functions such as forming 

precursors of steroidal hormones, vitamin D as well as the synthesis of bile acids. 

Normal healthy adults naturally synthesize approximately 900mg of cholesterol per 

day in the body and absorb around 300mg per day from the diet. Approximately 

10% of cholesterol is manufactured in the liver with the remaining 90% being 

generated in extrahepatic tissues (Dietschy, Turley et al. 1993) 

 Dietary cholesterol absorbed from the gut is converted by pancreatic lipase 

enzymes to free cholesterol and subsequently secreted as bile acids in the intestine. 

Bile acid accumulations in the intestine can be recycled and reabsorbed by the body 

with great efficiency (Bosner, Lange et al. 1999). The synthesis of cholesterol 

involves many different enzymes and intermediate metabolites (Fig. 4). The rate 

limiting and negative feedback control mechanism of this system involves the 

HMG-R enzyme which catalyses the initial reaction of the HMG-CoA to 

mevalonate, in cholesterol biosynthetic cascade. 

 Synthesis of cholesterol occurs following transport of acetyl CoA from the 

mitochondria to the cytosol of the cell. Two molecules of acetyl CoA fuse together 

in a condensation reaction forming acetoacetyl-CoA (acetoacetyl-CoA thiolase) 

(Iglesias and Diez 2003). HMG-CoA is subsequently formed by the fusion of a third 

acetyl-CoA unit by HMG-CoA synthase. Once formed, HMG-CoA is then moved to 

the endoplasmic reticulum membrane of the cell where it is reduced by the rate 

limiting enzyme HMG-CoA reductase to mevalonate. Sequential reactions by a 
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number of different enzymes phosphorylate mevalonate before it is decarboxylated 

to form IPP and DMAPP. Squalene synthase catalyses the formation of squalene 

from IPP and DMAPP, which is then finally converted to lanosterol and cholesterol 

(Iglesias and Diez 2003). Homeostasis of cholesterol can also be regulated naturally 

by monitoring the uptake of dietary cholesterol, via the conversion and excretion of 

bile acids from cholesterol and elimination into the faeces. 

Cholesterol homeostasis can also be artificially regulated by the use of highly 

hepato-selective drugs called statins that target HMG-R. Rosuvastatin (RSV) is a 

superstatin which is one of the most effective available on the market because of its 

low lipophilicity (Davidson, Ma et al. 2002; Cheng-Lai 2003). RSV can be rapidly 

absorbed via the oral route and retain high bioavailability (approx. 20% initial dose). 

RSV is administered in its active form and is minimally metabolised by the body 

compared to other statins (White 2002). 
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Fig.4. Cholesterol and geranylated/fernesylated protein biosynthesis in 

mammals. 

The major metabolites of the cholesterol biosynthetic cascade are highlighted. 

Indicated is the major rate limiting enzyme HMG-CoA reductase (HMG-R) the 

major target of statins. Figure adapted from (Thurnher, Nussbaumer et al. 2012). 
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5. Biochemistry of HMG-R   

 

Previously we outlined the phylogenetics and bioinformatics of HMG-R and 

determined two distinct isoforms Class 1 and Class 2. We discuss how both enzymes 

have variations in their amino acids for important molecular functions such as co-

enzyme factor binding (NADH/NAD(P)H). We will examine the precise molecular 

mechanisms involved in this interaction and determine the structure and folding of 

the HMG-R enzyme (below) 

 

5.1. Interactions of HMG-R with co-enzyme factors 

 X-ray crystallography of the HMG-R protein confirms that class 1 enzymes 

favourably bind NAD(P)H whilst class 2 enzymes have a higher tendency to bind 

the NADH (Lawrence, Rodwell et al. 1995; Istvan 2001; Tabernero, Rodwell et al. 

2003). Interestingly the orientation of the bound NAD(P) dihydronicotinamide ring 

structure differs in both enzymes. Relative to Class 1 enzymes the bound 

dihydronicotinamide ring in Class 2 enzymes is flipped at an angle 180º (Istvan 

2001). Interaction of Class 2 HMG-R with NADH occurs via engagement of the 

amino acid residue phenylalanine (Phe152). However the interaction of Class 1 

HMG-R with NAD(P)H involves a number of different amino acid residues at 

alternate positions including serine (Ser626), arginine (Arg627) and phenylalanine 

(Phe628) (Istvan 2002). This would suggest that modulation of HMG-R activity can 

be governed by phosphorylation states with respect to Class 1 and Class 2 enzymes.  
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5.2 Structure and folding of HMG-R 

             The polypepetide chain of the HMG-R enzyme can be divided into three 

main regions: the N-terminal membrane region, the C-terminal region and a short 

linking region connecting the catalytic and membrane regions. The N-terminal 

domain contains 339 amino acid residues integrated into the endoplasmic reticulum 

by membrane-spanning loops (eight in total) (Roitelman, Olender et al. 1992)     

(Fig. 5). This membrane region can sense elevated sterol levels in the cell and 

subsequently initiate degradation and repression of HMG-R (feedback regulation) 

(Skalnik, Narita et al. 1988). The C-terminal domain contains 548 amino acid 

residues and extends into the cytosol of the cell where it catalyses the formation of 

mevalonate (Liscum, Finer-Moore et al. 1985). The catalytic domain between Class 

1 and Class 2 HMG-R enzymes is generally well conserved (up to 60% amino acid 

residue similarity) (Hampton, Dimster-Denk et al. 1996).  

          At the protein structure level the most striking difference between both HMG-

R isoforms is the presence of a cis-loop conformation in the active site of the 

enzyme (Istvan 2001; Istvan 2002). Class 1 HMG-R enzymes exclusively contain 

this feature which plays an essential role in binding of the HMG-CoA substrate 

however it is completely absent from Class 2 HMG-R. Alternatively, it is known 

that Class 2 enzymes utilise neighbouring monomers in the active and recruiting 

specific lysine residues (Lys267), thus preserving orientation and functionality of the 

enzyme (Istvan 2001; Istvan 2002).  
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Fig.5. Simplistic illustration of the HMG-R enzyme.  

The membrane region of HMG-R spans the endoplasmic reticulum of the cell and 

functions to sense sterol levels. The catalytic and active domain of the enzyme are 

present in the cytosol and derive energy from co-enzyme factors (NADH or 

NAD(P)H) to convert HMG-CoA into mevalonate. This image was adapted from: 

(DeBose-Boyd 2008). 
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6. Statins as HMG-R inhibitors 

 

6.1 Mevastatin (compactin) the first naturally discovered statin 

In the early 1970’s, research began into microbial metabolites that had the ability to 

inhibit HMG-R, the important rate limiting enzyme in the biosynthesis of 

cholesterol. The first naturally discovered statin was mevastatin (or formerly 

compactin) found as a natural bi-product of some Penicillium species including: 

Penicillium citrinum, Penicillium brevicompactum and Penicillium cyclopium, 

(Brown, Smale et al. 1976; Endo, Kuroda et al. 1976; Doss, Chu et al. 1986). 

Mevastatin in its acidic form has a similar appearance to the core structure of the 

natural substrate of the HMG-R enzyme. This allows for competitive inhibition 

between the statin and HMG-CoA for the active site of the enzyme.  

6.2 Diversity of statins 

Currently, a large number of HMG-R inhibitors are widely available on the market 

to treat hypercholesterolemia including: atorvastatin, rosuvastatin, mevastatin, 

lovastatin, pravastatin and simvastatin (Fig. 6). These drugs have either been 

discovered in nature or were chemically synthesised and modified for increased 

activity.  Statins have been shown to be extremely effective in reducing cholesterol 

in patients in particular lowering levels of low density lipoprotein (LDL) (Mabuchi, 

Sakai et al. 1983; Arad, Ramakrishnan et al. 1992; Davignon, Montigny et al. 1992).   
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Statin Origin Reference 

Atorvastatin Chemically synthesised (Roth 2002) 

Rosuvastatin Chemically synthesised (Watanabe, Koike et al. 

1997) 

Mevastatin Penicillium spp. (Endo, Kuroda et al. 1976) 

Lovastatin Pleurotus ostreatus (oyster 

mushroom) 

(Bobek, Ozdin et al. 1998) 

Pravastatin Modified from lovasatin (Endo, Kuroda et al. 1976) 

Simvastatin Modified from mevastatin (Endo, Kuroda et al. 1976) 

 

                          

 

 

Fig. 6. Statin diversity and their origins. 

Described are six different statins (atorvastatin, rosuvastatin, mevastatin, lovastatin, 

pravastatin, and simvastatin) and their origins. Chemical structures for two 

commonly used statins are also illustrated (atorvastatin and rosuvastatin). 

 

 

 

 

 

 

 

  Atorvastatin  Rosuvastatin 

http://www.google.ie/url?sa=i&rct=j&q=atorvastatin&source=images&cd=&cad=rja&docid=5YnJWsOKOM3WlM&tbnid=lgsneyRGYQP1NM:&ved=0CAUQjRw&url=http://chemistry.about.com/od/factsstructures/ig/Chemical-Structures---L/Lipitor--Atorvastatin-.-LWh.htm&ei=cU8WUoeuG4iphAeg-YCADQ&bvm=bv.51156542,d.ZG4&psig=AFQjCNEKE6pQMjvP8Clk-3f4E9qPVgomJg&ust=1377280232684719
http://www.google.ie/url?sa=i&rct=j&q=rosuvastatin&source=images&cd=&cad=rja&docid=ZUURWMwgxCl9FM&tbnid=AJSUtoMRweTX1M:&ved=0CAUQjRw&url=https://en.m.wikipedia.org/wiki/File:Rosuvastatin-Formulae_V_1.png&ei=u08WUo_hNsLIhAf9uoHoCw&bvm=bv.51156542,d.ZG4&psig=AFQjCNElVE6EsQcaB_UYsFkzg20Kfzll5Q&ust=1377280309908130
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6.3. Competitive inhibition by statins 

Statins inhibit the formation of mevalonate by reversibly and competitively binding 

the active site of the HMG-R. All statins share a HMG-like moiety in their chemical 

structure that mimics the natural substrate (HMG-CoA) for binding of the active site 

of HMG-R (Istvan and Deisenhofer 2001). Statins are large bulky molecules that 

bind tightly with HMG-R forming numerous strong Van der Waals attractions 

(Istvan 2002). Atorvastatin and rosuvastatin (RSV) are known to elicit very strong 

binding interactions with HMG-R (Blum 1994). 

6.4. Antimicrobial activity of statins 

It has been shown that both Class 1 and Class 2 HMG-R enzymes can be affected by 

statins. Increasingly statins are becoming linked with antimicrobial activity. Indeed 

Simvastatin has been identified as having a minimum inhibitory concentration 

(MIC) of 29.2mg/L against methicillin-sensitive strains of S. aureus and an MIC of 

74.9mg/L against methicillin resistant strains (MRSA) (Jerwood and Cohen 2008). 

Similarly Atorvastatin proved beneficial in a hospital environment for the treatment 

of C. difficile in a number of patients (Park, Choi et al. 2013). Hence, it is reasonable 

to assume that there could be a possible effect on HMG-R containing 

microorganisms in the human gastro-intestinal as a result of long term prescription 

of these drugs (see Chapters 2 and 3 of this thesis).  
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7. Cholesterol-independent effects of statins 
 

7.1. Statins promote formation of extracellular traps 

 

Since the introduction of statins as a treatment for hypercholesterolemia, much 

research has been conducted into cholesterol-independent or off-target effects of 

statins. For instance, statins have been shown to improve endothelial function, 

decrease oxidative stress and inhibit the coagulation of blood (Liao and Laufs 2005). 

Statins have also been shown to engage the host human or murine immune system to 

increase the production of so-called DNA-based neutrophil or macrophage 

extracellular traps that are strongly antimicrobial (Chow, von Kockritz-Blickwede et 

al. 2010). These extracellular traps are the final end product of a cell death pathway 

and have become a key area of research as cholesterol-independent effectors of 

statins.  These unique features of the immune response are composed largely of 

nuclear DNA, histones, antimicrobial peptides and proteases which are capable of 

engulfing and digesting many bacteria (Brinkmann, Reichard et al. 2004; von 

Kockritz-Blickwede and Nizet 2009). Extracellular trap release and antimicrobial 

activity has been shown to be dependent on the presence of reactive oxygen species 

(ROS) for activation when studied in macrophages and neutrophils (Brinkmann, 

Reichard et al. 2004; von Kockritz-Blickwede and Nizet 2009). 

 

.  
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7.2. Antimicrobial peptides and mucins 

The gastrointestinal tract of many mammals including humans and mice is 

composed of a mucosal layer, which constitutes a physical (cellular) and chemical 

barrier against the external environment from invading microorganisms. 

Antimicrobial peptides and the mucosal layer comprise the main front line defence 

of the gastrointestinal tract (Wehkamp, Koslowski et al. 2008; Hansson and 

Johansson 2010). Defensins and cathelicidins are among the most important 

antimicrobial peptides of the gut (Jager, Stange et al. 2010). In combination with the 

mucus layer of the colon which is composed of a sterile inner epithelial cell layer 

and a protective mucus (gel layer) that form a protective barrier. Mucin is secreted 

by a subset of mucin genes in the intestine namely: MUC2, MUC5A, MUC5B, 

MUC6 and MUC19, of which MUC2 is the main essential gene of the formation of 

this protective layer (Tytgat, Buller et al. 1994).  

             Defensins are antimicrobial small cationic peptides (3-5kDa) that are 

effective against gram positive and gram negative bacteria in the gastrointestinal 

lumen (Jager, Stange et al. 2010). Human and murine defensins share a low level of 

similarity at the amino acid level but at the secondary and tertiary levels of protein 

structure share remarkable similarity in structure and function (Bauer, Schweimer et 

al. 2001). Defensins are classified as either α-defensins or β-defensins based of their 

unique pattern of linkages between cysteine residues (Zhao and Lu 2014). The exact 

mechanism for the action of defensins is not yet known but it is believed that they 

might be able to integrate into the cell membrane of the invading bacterial cell, 

expanding the outer membrane and crushing the inner membrane, therefore 

disrupting the normal function of the cell (Papo and Shai 2003). Currently there is 
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no knowledge about the pleotropic effects of statins on defensins in human or 

murine models (see Chapter 3 of this thesis). 

             The second major antimicrobial peptides of the gastrointestinal tract are 

cathelicidins namely LL-37 (human) or its equivalent cathelicidin-like peptides 

(CRAMP) (murine). Cathelicidins are antimicrobial polypeptides usually 39-80 

amino acid residues in size, comprised of a highly conserved cathelin domain and 

variable peptidic domain (Fig.7). They are found in the lysosomes of macrophages 

and other such iummune cells (Zanetti 2004). 

 

                     

 

Fig.7. Schematic diagram of the cathelin and peptidic domains of the 

antimicrobial peptide cathelicidin. 

Illustrated are the disulphide bridges located in the cathelin domain of the CAMP 

antimicrobial peptide. This figure was adapted from: (Zanetti 2004). 

 

Interestingly, the expression of cathelicidin in the gastrointestinal tract can be 

influenced by the bile acids including chenodeoxycholic acid and ursodeoxycholic 

acid which are influenced through nuclear hormone receptors in the liver namely the 

farnesoid X-receptor (FXR) and the vitamin D (VDR) receptors. These bile acids 

increase the induction of cathelicidin in the intestinal environment in combination 

with Vitamin D. This is indicative of cross-talk between in the liver and intestine 

that needs to be further investigated (D'Aldebert, Biyeyeme Bi Mve et al. 2009).  
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      Chow and colleagues (Chow, von Kockritz-Blickwede et al. 2010) showed that 

in-vitro, PMA-treated human neutrophils, treated with 50µM mevastatin had 

dramatically enhanced neutrophil extracellular trap formation (2.5 fold) compared to 

vehicle controls. Neutrophils exhibited a much stronger ability to entrap and kill 

fluorescently labelled S. aureus, which could be quantified by fluorescently 

activated cell sorting (FACS) for the release of extracellular DNA (Fuchs, Abed et 

al. 2007). A murine model developed by (Bubeck Wardenburg, Patel et al. 2007; 

Chow, von Kockritz-Blickwede et al. 2010) to induce bacterial pneumonia in 

C57Bl/6 mice by intra nasal inoculation of S. aureus (2x10
8 
CFU/animal sub-lethal 

dose) found that in-vivo, in alveolar sections the murine cathelicidin was 

significantly up regulated following treatment with 10µM simvastatin, up to 24 and 

72 hours after infection with improved clearance of the bacteria compared to vehicle 

controls. This suggests that statins predispose cells to enter the cell death pathway 

for neutrophil extracellular trap formation in response to bacterial infection (Chow, 

von Kockritz-Blickwede et al. 2010). PAD-4 (peptidyl arginine deaminase 4) which 

catalyses the deamination of arginine residues in histones to citrullines facilitating 

chromatin decondensation (Wang, Li et al. 2009), has emerged as another potential 

biochemical marker of neutrophil extracellular traps, but treatment of a PAD-4 

inhibitor failed to block enhanced neutrophil extracellular trap formation by 

simvastatin or mevastatin in such models. 

7.3. T-helper cell class switching in the intestine caused by statins 

Intra epithelial lymphocytes have the ability to secrete a wide variety of different 

cytokines including: IFNγ, TNFα, IL-2, IL-4, IL-6, IL-10, IL-15, IL-17, TGF-β1 

(transforming growth factor) and KGF (keratinocyte growth factor). These 

lymphocytes contribute to mediating the inflammatory response through secretion of 
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cytokines and also in surveying the intestinal lumen for pathogenic microbes and 

other such infectious antigens (Barrett, Gajewski et al. 1992; Yang, Antony et al. 

2004).  

                 In a study by Zhang and colleagues (Zhang, Osawa et al. 2013), two 

commonly used statins simvastatin and lovastatin suppressed the intra epithelial 

lymphocyte production of T-helper class 1 cytokines (IFNγ, TNFα, TNFβ, IL-2) as 

well as the pro-inflammatory cytokine IL-4. Previously it has been reported that 

statins have the ability to induce a switch in the immunogenic response in in-vitro 

cultured lymphocytes from a T-helper cell class 1 mediated response to a T-helper 

class 2 mediated response promoting secretion of TH2 specific cytokines (IL-4,IL5, 

IL-9, IL-10, IL-13 and TGF-β) (Youssef, Stuve et al. 2002). The TH1 response is 

primarily associated in the gut with the cellular immune response of macrophages 

and lymphocytes to promote phagocytosis of invaders. Whilst the TH2 response is 

strongly antibody-mediated and involves the accumulation of eosinophil cells 

(Romagnani 2000) which have been associated with defence against parasitic 

invaders and the allergenic response (Mowen and Glimcher 2004). 

                 T-helper (TH) cell cytokine class switching was also observed by Aktunc 

and colleagues (Aktunc, Kayhan et al. 2011) in the gastrointestinal tract of 

trinitrobezene sulfonic acid (TNBS-induced) inflammatory colitis in BALB/c mice. 

They observed that the hydrophobic statin, atorvastatin was able to alleviate clinical 

symptoms of colitis such as rectal bleeding, shortening of the colon often extended 

in colitis patients and improved histology of the cells lining the intestine. TNBS-

induced colitis in mice promotes inflammatory bowel diseases attributed to the 

increased production of TH1 and TH17 specific pro-inflammatory cytokines: IFNγ, 

IL-6, IL-12, TNFα, IL-17 and IL-23 which are secreted by activated macrophages 
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and neutrophils (Gross, Andus et al. 1992; Plevy, Landers et al. 1997). In 

atorvastatin-treated colitis mice, it was noted that the TH2 cytokine IL-10 suppressed 

the TH1 cell response and promoted a TH2 response. Other important 

proinflammatory cytokines such as IL-17 and IL-23 were also suppressed by statins. 

The  TH17 cell response is essential for enhancing T-cell priming and stimulating the 

production of IL-1, IL-6 and TNFα (Ikeda, Takeshima et al. 2008), which has been 

shown by (Aktunc, Kayhan et al. 2011). A representation of TH cell differentiation 

into TH cell subsets (Treg, TH1, TH2 and TH17) and effect of statins is depicted below 

(Fig.8), highlighting the major cytokines involved.  
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Fig.8. Presentation by antigen presenting cell to the surface of naïve T cells and 

subsequent cytokine mediated differentiation into T-helper cells (TH1,2 and 17 

and Treg).  

Indicated is the statin-mediated class switching of TH1 to TH2 cellular response and 

inhibition of TH17 helper cell mediated immunity. Signature cytokines for each T 

cell response: TH1 (IFNγ), TH2 (IL-4), TH17 and Treg (TGFβ1 and IL-10) are 

illustrated. The TH1 response is generally cell-mediated and proinflammatory in 

comparison to the TH2 response which is antibody-mediated and promote an 

allergenic and anti-parasitic response. Statins can also cause a suppression of the 

TH17 response by inhibiting the cytokine IL-17. Treg cells are the major regulatory 

cells of the immune system and are generally unaffected by statins. This figure was 

adapted from: (Jutel and Akdis 2011).  
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7.4. RegIII Ang-4 antimicrobials and statins 

 

Regenerating islet-derived protein 3 gamma (RegIII) is a protein encoded by the  

RegIIIgene family secreted by Paneth cells in the small intestine of mice, its human 

counterpart is denoted as HIP/PAP (Laurine, Manival et al. 2005).  RegIIIforms a 

C-type lectin protein (16kDa approx. in size) with conserved carbohydrate 

recognition domains (CRD’s) that target surface exposed carbohydrate moieties in 

the peptidoglycan cell wall of gram positive bacteria. Binding of RegIIIto the 

surface of the bacterium, restricts colonisation and replication of the bacteria by 

interfering with normal cell function (Cash, Whitham et al. 2006). The 

peptidoglycan cell wall of bacteria consists of alternating α-linked N-

acetylglucosamine (NAG) and N-acetylmuramic acid (NAM) residues that are cross-

linked by short peptides and are recognised by the CRD’s in RegIII. Chitin which is 

structurally very similar to peptidoglycan with β-linked (NAG-NAM) residues is the 

main constituent of many fungal cell walls and is also recognised by  RegIII which 

prevents colonisation of fungal species in the intestine (Cash, Whitham et al. 2006). 

The expression of RegIII  in the intestine is largely governed by a direct interaction 

of microbial associated molecular patterns (MAMP’s) such as the bacterial cell wall 

and signalling is directed through Toll-like receptors under the control of MyD88 

(myeloid differentiation primary response protein 88) and the cytokine IL-22 (Gallo 

and Hooper 2012).  

              Another important antimicrobial compound secreted by Paneth cells in the 

intestine is Angiopoietin-4 (Ang-4) encoded by the gene Ang-4 and its murine 

equivalent Ang-4-like peptide. Ang-4 is a class of RNase enzymes secreted by 

epithelial cells and is able to target both gram positive and gram negative bacteria, 
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currently there is not much known about the mode of action of Ang-4 in the defence 

of the gastrointestinal environment (Hooper, Stappenbeck et al. 2003). Angiogenin 

proteins have long been associated with the vascularisation (blood supply) of 

carcinogenic tumours (Fett, Strydom et al. 1985).  Recently Ang-4 has been 

associated with defence of the intestine. Research conducted by Hooper and co-

workers (Hooper, Stappenbeck et al. 2003) showed that Ang-4 is able to localise to 

the Paneth cell secretory granules and is exported into the gastrointestinal lumen in 

response to bacterial signals. They showed that exposure of gram negative E. 

faecalis and gram positive L. monocytogenes to 1µM Ang-4 exhibited a 99% 

reduction in the viable counts of both bacteria after 2 hours. However this effect 

appeared to be species specific as the commensal gut microbe E. coli K12 was found 

to be resistant to 10µM Ang-4 and similarly for the non-pathogenic bacteria L. 

innocua. Currently, there is little knowledge about the physiological concentration of 

Ang-4 in the lumen of the intestine, it is believed they might be secreted in a similar 

range to other antimicrobials such as defensins (1µM) (Ayabe, Satchell et al. 2000).  

Overall, previous work indicates a potential species-directed alteration of the gut 

microbial composition by Ang-4. As it stands, there is not much known about the 

cholesterol-independent effects of statins upon Paneth cell produced RegIII and 

Ang-4 in the gastrointestinal environment. It has been shown that some statins 

(including RSV) are excreted into the intestine via the biliary route (Bergman, 

Forsell et al. 2006).  As previously indicated statins elicit widespread effects on the 

host inflammatory immune response which could be suggestive of host-implicated 

alteration to the microbial composition of the gut. 
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8. Statins and bile acids 

 8.1. Overview of cholesterol degradation and bile acid metabolism  

Currently, there is relatively little research carried out on the host effects of statins 

correlating interactions observed in the microbiota with similar alterations seen in 

the metabolome. Metabolomics is a powerful global biochemical tool for capturing 

net interactions between the microbiome and the environment namely the intestinal 

metabolome (Kaddurah-Daouk, Baillie et al. 2011). We discuss the metabolomics of 

bile acids and short chain fatty acids (SCFA’s) with a view towards understanding 

their alterations in a statin-treated gastrointestinal environment.  

              In humans, cholesterol is an important biomolecule in the synthesis of bile 

acids (water soluble antimicrobial detergents), with chemical conversion to bile 

acids taking place via two pathways; the classic pathway via the enzyme 7α 

hydroxylase (CYP7A1) or the alternative (acidic) pathway involving the sterol 

mitochondrial associated 27-hydroxylase (CYP27A1) (Fig. 10). The classic pathway 

for bile acid synthesis occurs primarily in the liver, but the alternative pathway can 

occur in the brain and in the mitochondria of some cells (Chiang 2004). It is 

reasonable to assume that statins might have implications for the synthesis of bile 

acids by limiting available cholesterol. 

        The classic bile acid pathway is a complex system involving fourteen separate 

catalytic reactions that occur between the cytoplasm, microsomes, mitochondria and 

peroxisomes (Russell 2003). The classic pathway is able to synthesize two major 

primary bile acids cholic acid and chenodeoxycholic acid, which are subsequently 

conjugated with organic biomolecules glycine or organic acid taurine to form 
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conjugated bile acids that are secreted into the gastrointestinal tract and aid in the 

digestion of lipids and fats. The conjugation of bile acids is catalysed by the enzyme 

bile acid coenzyme A- amino acid N-acyltransferase. Conjugation of bile acids 

generally has the effect of improving their water solubility. The alternative pathway 

operates in a similar fashion utilising different cholesterol-associated enzymes to 

lead to formation of the primary bile acids (Chiang 2004). 

            As yet, a full understanding of the interplay between the classic and 

alternative pathway towards bile acid synthesis and homeostasis is not well 

characterised. It is hypothesised that the classic pathway is the main biosynthetic 

pathway in healthy humans and mammals (including mice) whereas the alternative 

pathway appears to be more active in patients with some forms of liver disease 

(Chiang 2004). 
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Fig. 10. The synthesis of primary unconjugated bile acids cholic acid and 

chenodeoxycholic acid from cholesterol via the classic and alternative pathways 

including the major regulatory CYP genes. 

Bile acid biosynthetic pathways are very complex reactions involving many different 

metabolites and major regulatory CYP genes. Shown here are the two main routes 

for bile acid synthesis; classic and alternative leading to the formation of cholic and 

chenodeoxycholic acid. This image was adapted from: (Chiang 2004) 

 

8.2. Bile acid synthesis and regulation 

The synthesis of bile acids occurs primarily in the liver which is mediated by a 

cytochrome P450-mediated (CYP) degradation and conversion of cholesterol 

involving 17 different enzymes and intermediary metabolites. The major rate 

limiting enzyme guarding the initial breakdown of cholesterol is cholesterol 7α-

hydroxylase (CYP7A1) for the classical pathway of bile acid synthesis and the minor 

rate limiting enzyme sterol 27-hydroxylase (CYP27A1) for the alternative pathway 

(Russell 2003; Chiang 2004).  

             In humans, the dominant primary bile acids that emerge directly from the 

breakdown of cholesterol are cholic acid and chenodeoxycholic acid and in mice 

cholic acid and muricholic acid predominate (Hylemon and Harder 1998). During 

this complex multi-enzymatic system, cholesterol is hydroxylated forming precursor 

oxysterols (24,25 and 27-hydroxycholesterol) that are further modified with the 

addition of ring structures, oxidized and subsequently conjugated with amino acids 

prior to excretion into the intestine (Russell 2003). It is important to note that 

hydrophobic bile acids such as cholic acid (CA), chenoxydeoxycholic acid (CDCA), 

deoxycholic acid (DCA) and lithocholic acid (LCA) are strong inhibitors of bile acid 

synthesis whereas hydrophilic bile acids such as ursodeoxycholic acid (ursine) and 

β-muricholic acid promote bile acid synthesis through interactions with the CYP7A1 
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gene (Chiang 2002). Increasing the hydrophilicity of the total bile acid pool has the 

effect of reducing the absorption of dietary cholesterol in the intestine and is 

generally compensated by an increase in cholesterol synthesis (Li-Hawkins, Gafvels 

et al. 2002).  

          Another important aspect of regulation are nuclear receptors that are able to 

regulate the expression of genes involved in the biosynthesis of bile acids. The major 

nuclear receptors involved in bile acid synthesis regulation include: farnesoid X 

receptor (FXR/NR1H4 in mice), liver X receptor (LXR/NR1H4 in mice), pregnane X 

receptor (PXR) and the vitamin D receptor (VDR). These receptors are able to 

control regulation on the bile acid synthetic pathway by targeting regulatory genes in 

the network namely: (CYP7A1, CYP27A1, CYP8B1, CYP7B1) (Chiang 2003). In this 

review regulation over each of these genes will be discussed along with the complex 

network of interactions that occur to control bile acid synthesis.  

        CYP7A1 (cholesterol 7α-hydroxylase), the first rate limiting enzyme of bile 

acid synthesis and its regulation have been well described in both mice and humans 

(Lehmann, Kliewer et al. 1997; Stroup, Crestani et al. 1997; Chiang 2004). 

Regulation of this enzyme is complex and multifaceted with multiple regulatory 

factors involved. In mice, CYP7A1 is regulated in the presence of high cholesterol 

by binding of a conserved bile acid response element (BARE-1) in the LXR receptor 

and inducing gene expression. However, in humans CYP7A1 is not regulated by the 

LXR receptor under high cholesterol conditions, in this case a second conserved 

(BARE-2) element that binds alternate nuclear receptors HNF-4α and RARα to 

regulate bile acid synthesis. Mutations in the CYP7A1 gene of CPYP7A1 -/- 

knockout mice have been associated with hypercholesterolemia and cholesterol 

build up (Pullinger, Eng et al. 2002). This leads to a high incidence of medical 
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complications of liver failure, vitamin deficiency and lipid malabsorption with an 

reduction in the total bile acid present (Schwarz, Lund et al. 1996; Arnon, 

Yoshimura et al. 1998). Suppression of CYP7A1 can also be mediated by the FXR 

nuclear receptor (NR1H4 in mice) through signalling of the SHP nuclear receptor. 

Excess accumulation of bile acids leads to repression of gene expression in CYP7A1 

through a complex cascade of regulatory factors (Goodwin, Jones et al. 2000) 

further stimulating bile acid conjugation and excretion into the intestine 

(Ananthanarayanan, Balasubramanian et al. 2001). Regulation of CYP7A1 inhibition 

can also take place by a SHP-independent mechanism repressing expression via the 

c-Jun N-terminus kinase (JNK) pathway, a full set of regulatory factors involved in 

the JNK pathway has not yet been fully elucidated. It is believed that FXR, can also 

induce activation of the Fibroblast Growth Factor 19 (FGF-19) leading to the JNK 

pathway-mediated inhibition of CYP7A1 (Stravitz, Vlahcevic et al. 1995). CYP7A1 

has also been shown to be repressed by the pro-inflammatory cytokines TNFα and 

IL-1β (Feingold, Spady et al. 1996). Statins, as potent inhibitors of the HMG-R 

enzyme are also known to have cholesterol-independent effects on the inflammatory 

response of the host which could have the potential to alter bile acid metabolism 

through targeting of CYP7A1 (cholesterol 7α- hydroxylase, (Ikeda, Takeshima et al. 

2008).  

  CYP27A1 (sterol 27- hydroxylase) which is the main enzyme involved in the 

alternative (acidic) pathway is another important regulatory enzyme of bile acid 

synthesis. It has been shown that in CYP27A1-/- knockout mice there is a dramatic 

accumulation of precursor oxysterols (7α-hydroxycholesterol, 7α-hydroxy-4-

cholesten 3-one, 5β –cholestane 3α, 7α ,12α – triol) and cholesterol. Defective mice 

also show a reduced synthesis of the primary bile acid chenodeoxycholic (CDCA). 
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CYP27A1 -/- mice have been shown to have a markedly reduced synthesis of bile 

acids and excretion into the faeces. Phenotypically these mice have engorged livers, 

high triglyceride levels with increased cholesterol absorption and synthesis (Rosen, 

Reshef et al. 1998; Repa, Lund et al. 2000).  

 CYP8B1 (sterol 12α- hydroxylase) is another important enzyme for the 

synthesis of primary bile acids and maintains homeostasis between cholic acid (CA) 

and chenodeoxycholic acid (CDCA). CYP8B1 -/- knockout mice were found to have 

non-existent cholic acid synthesis, but had an increased expression of CYP7A1. This 

is potentially due to de-repression by increased muricholic acid. This suggests that 

CYP8B1 is strongly regulated by the action of CYP7A1 and muricholic acid (Li-

Hawkins, Gafvels et al. 2002).  

 Finally, CYP7B1 (oxysterol 7α – hydroxylase) has been described as one final 

potential regulated enzyme in the bile acid biosynthetic pathway. CYP7B1 -/- 

knockout mice have been shown to have increased oxysterol precursor accumulation 

of 24, 25, and 27- hydroxycholesterol. However, these mice suffer a much less 

severe phenotype and clinical condition compared to CYP7A1, CY27A1 and CYP8B1 

mutagenic mice (Setchell, Schwarz et al. 1998; Li-Hawkins, Lund et al. 2000).  
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 8.3. Statins as mediators of bile acid synthesis 

 

A powerful gas-chromatography and mass spectrometry platform was utilised by 

Kaddurah and colleagues (Kaddurah-Daouk, Baillie et al. 2011) to measure 

metabolites of cholesterol synthesis, dietary sterol absorption and bile acid formation 

in human plasma of Caucasian and African-American males and females  with 

elevated cholesterol levels (160-400mg/dL) treated with the statin simvastatin 

(40mg/day) over a 6 week period. Bile acids and statins are known to share similar 

transporters in the liver and intestine and following this study the authors identified 

important bacterial-derived bile acids that were negatively correlated (i.e. poorly 

produced) as a result of positive statin-treatment to lower LDL-cholesterol. They 

indicate that pre-treatment levels of bile acids (and therefore the microbiota) were 

predictors of whether statins were effective in the host metabolome in relation to bile 

acid synthesis.  
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9. Short chain fatty acids and statins 

 

9.1 Butyrate  

Short chain fatty acids (SCFA’s) are a sub class of short (up to six carbons) volatile 

fatty acids that are produced in the gastrointestinal tract following bacterial 

fermentation in most mammals. In this review, we discuss the importance of the 

SFCA’s butyrate, propionate and acetate. These compounds in combination with 

trimethylamine, acetylaldehyde and inflammatory mediators are essential in 

maintaining the metabolic health of the host, through influences on satiety (feeling 

of being full), gut permeability and overall general immunity (Bergman 1990; Joyce 

and Gahan 2014). 

     Butyrate is synthesised in the gastrointestinal tract by pyruvate and acetyl CoA 

following the breakdown of complex carbohydrates (e.g. starch) (Louis and Flint 

2009). Butyrate, is one of the most important short chain fatty acids produced by the 

fermentation of dietary fibre in the gastrointestinal tract and has been shown to have 

beneficial effects on the host, controlling normal cell differentiation and 

proliferation of enterocytes (preventing cancers and tumours of the large intestine) 

(Roediger 1980; Scheppach, Bartram et al. 1992). Butyrate has also been implicated 

in improving the defence barrier of the colon, decreasing oxidative stress and a  

reduction in inflammation through inhibition of NF-KB (major gene regulating 

expression of pro-inflammatory cytokines), as well as histone deacetylation (Hamer, 

Jonkers et al. 2008) and inhibition of IFNγ production (Klampfer, Huang et al. 

2003). Butyrate has a very similar chemical structure to the molecule mevalonate 

and it is interesting to note that following oxidative metabolic conversion of butyrate 

to beta-hydroxybutyrate it is possible for the cell to establish precursors for the 
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synthesis of the HMG-CoA the substrate for mevalonate formation via HMG-CoA 

reductase (Velazquez, Jabbar et al. 1996). Very recently SCFA’s (namely butyrate 

and propionate) have been shown to modulate intestinal gluconeogenesis for glucose 

and energy homeostasis through activation of important gut-brain regulatory circuits 

via fatty acid receptors such as FFRAR3 (De Vadder, Kovatcheva-Datchary et al. 

2014). 

      Wachtershauser and co-workers (Wachtershauser, Akoglu et al. 2001) showed 

that mevastatin had a beneficial effect on the anti-proliferative ability of butyrate in 

a colorectal carcinoma model of Caco-2 epithelial cells. Co-culturing of Caco-2 cells 

with 1-2mM butyrate and 64µM mevastatin had a significant effect in reducing cell 

growth and proliferation in a dose and time dependent fashion over 5 days. This 

potentially demonstrates a synergistic interaction between butyrate and mevastatin in 

improving the disease state of cellular carcinoma. 

       Research conducted by Gaudier and co-workers (Gaudier, Jarry et al. 2004), 

showed that butyrate (2-5mM) was able to modulate the expression of mucin genes 

in epithelial goblet cells derived from a human colonic cell line (HT29-Cl.E) under 

glucose rich and glucose deprived conditions. They showed that under high glucose 

conditions butyrate significantly raised the expression of MUC3 and MUC5B (1.6 

fold), decreased MUC5AC expression and had no effect on the expression of MUC2 

control to untreated controls. Interestingly, under glucose deprived conditions there 

was a dramatic increase in the expression of all genes; MUC5AC expression was 

enhanced 3.7 fold and most strikingly MUC2 expression was enhanced 23-fold 

following gene expression analysis. As previously indicated, MUC2 has been 

described as the main mucin gene responsible for the formation of the protective 

mucosa barrier (Tytgat, Buller et al. 1994). Preliminary data from our lab suggests 
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that MUC2 gene expression is significantly raised by qRT-PCR analysis in statin-

treated C57Bl/6 mice fed on a high fat diet (see Chapter 3 of this thesis) Further 

research will need to be conducted to ascertain the potential for statins in butyrate-

mediated MUC2 expression or if statins can directly impact on the MUC2 gene 

itself.  

       Culture-independent 16S rRNA analysis has revealed a great wealth of 

knowledge on the complexity of the gut microbiota in recent times. In general, 

strictly anaerobic unculturable gram positive Firmicutes such as  Lachnospiraceae, 

Ruminococcaecae (Scott, Martin et al. 2014), Roseburia (Machiels, Joossens et al. 

2013), Eubacteria and Faecalibacterium prausnitzii (Louis and Flint 2009) emerged 

as the most significant butyrate producers in mammals. As it stands, there is little 

knowledge about the direct interaction of HMG-R inhibitors (such as statins) against 

butyrate-producing anaerobes.  

9.2. Propionate 

Propionate, similar to butyrate has potential health benefits for the host. Propionate 

is mainly taken up by hepatocytes in the liver and has been shown  to have anti-

proliferative effects in carcinoma of the liver and anti-inflammatory effects in in-

vivo colitis models and can even be used as energy source by gut cells (Cox, Jackson 

et al. 2009; Bindels, Porporato et al. 2012).  Similarly to butyrate, much analysis of 

propionate-producing bacteria has been gathered through culture independent 

techniques and 16S rRNA analysis of the gut microbiota. The main bacterial genera 

that produce propionate in the gut include; Bacteroides, Prevotella, Escherchia and 

Propionibacterium (Hosseini, Grootaert et al. 2011).  
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9.3. Acetate 

The SCFA acetate has traditionally been regarded as one of the end products of 

anaerobic fermentation which can be utilised by certain bacterial species such as 

Faecalibacterium prausnitzii and Roseburia spp. (accounting for 7% of total 

population in human faeces) for the formation of butyrate (Duncan, Holtrop et al. 

2004). Also it has been shown that another important member of the gut microbiota 

namely Coprococcus (Lachnospiraceae genera) in particular Coprococcus catus 

GD/7 is a net acetate producer in the gut (Duncan, Holtrop et al. 2004). This was 

determined from investigating incorporation of 
13

C-labelled acetate in batch 

anaerobic fermenters containing mixed bacterial populations from human faeces. 
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10. Discussion  

 

3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-R) is a very important 

enzyme in the Mevalonate pathway for the synthesis of isoprenoids in bacteria and 

for cholesterol in humans. The presence of either the Mevalonate pathway or 

alternative 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway has been well 

documented in many bacteria and other microorganisms. We have reviewed the 

biochemistry, evolution of both pathways and the phylogenetics of HMG-R enzymes 

as well as sensitivity to commonly used pharmaceutical anti-cholesterol drugs 

(statins) and explored their cholesterol-independent implications that affect host 

inflammation, immunogenic responses and the metabolome with a particular focus 

upon bile acids and SCFA’s. 

            It is fascinating that bacteria produce isoprenoids via either the classical 

mevalonate pathway or the alternative MEP pathway. We suggest that much greater 

work is needed in order to understand the sensitivity of bacteria harbouring the 

classical pathway (and therefore the HMG-R enzyme) to statins. We hypothesize 

that long term statin use may impact upon the gut microbiota in humans through 

direct or indirect (off-target) mechanisms, a phenomenon that we examine in a 

mouse model in Chapters 2 and 3 of this thesis. We also suspect that bacteria 

expressing the alternative (MEP) pathway may stimulate local immune responses via 

the pathway intermediate HMBPP. In chapter 5 of this thesis we examine this 

concept.    
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Abstract 

Rosuvastatin (RSV) is part of a family of drug molecules used in the treatment of 

hypercholesterolemia. RSV inhibits the enzyme 3-hydroxy-3-methylglutaryl 

coenzyme A reductase (HMGR) which is involved in the conversion of HMG-CoA 

to mevalonate (MVAL). The enzyme is essential for the synthesis of cholesterol in 

mammals and essential isoprenoids in bacteria. Isoprenoids can be synthesised in 

bacteria by either a mevalonate-dependent “classical” pathway or a mevalonate-

independent (2-C-methyl-D-erythritol 4-phosphate (MEP)) pathway. Bacteria with 

either pathways can be found in the gut environment leading us to hypothesise that 

statins may alter the community structure of the gut microbiota. Indeed, 

metagenomic pyrosequening of statin-treated mice revealed significant shifts in the 

microbial diversity of the caecum following treatment resulting in a significant 

reduction in physiologically relevant bacterial groups in the caecum and faeces 

(including the phylum Proteobacteria and the genera Roseburia and Akkermansia). 

The majority of bacteria affected by statin were negative for the presence of the 

HMGR enzyme, suggesting the gut microbiota might be altered indirectly. This 

finding prompted us to examine the effects of statins in bacteria in-vitro. HMGR-

mediated inhibition by statins on growth and MVAL production appears to be dose 

dependent on administration of statin in certain bacterial species. No significant 

change was determined in caecal Short Chain Fatty Acid synthesis by RSV 

treatment. This study suggests that a commonly used statin (RSV) leads to an altered 

gut microbial composition in normal mice, a finding which should prompt further 

studies to investigate the implications of statins for gut microbial stability and health 

in humans. 



 

65 
 

Introduction 

The gut microbiota encompasses vast numbers of microorganisms (10
11 

to 10
12 

g/ml) inhabiting the gastrointestinal tract and are integral to multiple physiological 

processes for the host. It is well known that microbial diversity in the gut is an 

important determinant of health and metabolic activity in the host (Kallus and 

Brandt 2012). The gut microbiota has been shown to affect host metabolism by 

driving increased energy utilisation from the diet, modulation of the immune system 

and associated physiological processes (Murphy, Cotter et al. 2010). Gut bacteria are 

well known to trigger innate immune responses in the host through key structural 

components of the cell such as lipopolysaccharide (LPS) (Sumbayev 2008). 

The gastrointestinal tract is home to the largest reservoir of bacteria in the 

body extending from the mouth, oesophagus, stomach, small and large intestine to 

the rectum and anus. A bacterial population gradient exists along the length of this 

tract, with only 10
3 
microorganisms per ml in the duodenum compared to 10

8 
in the 

ileum. Low pH, bile acids and immunomodulatory factors represent the main reason 

for this gradient (Joyce and Gahan 2014)(Walter and Ley 2011). Generally humans 

and rodents share identical phyla in the distal gut microbiota namely, Firmicutes, 

Bacteroidetes, Actinobacteria, Proteobacteria, Verrucomicrobia, Cyanobacteria, 

TM7, Fusobacteria and Spirochaetes. It is well established that the phyla Firmicutes 

(20% approx.) and Bacteroidetes (80% approx.) are the two most dominant bacterial 

phyla in the gut microbiota of humans and rodents (Ley, Turnbaugh et al. 2006). 

RSV is an example of a widely available statin used in the treatment of 

hypercholesterolemia worldwide (Johansen, Green et al. 2014). Statins inhibit the 

enzymatic activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-R), 
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an enzyme that catalyses the early rate limiting step in the synthesis of mevalonate, 

and subsequently the biosynthesis of cholesterol (Istvan 2002). As well as being an 

essential enzyme for the biosynthesis of cholesterol  HMG-R is also important for 

the synthesis of isoprene subunits such as isopentenyl diphosphate (IPP) and 

dimethylallyl diphosphate (DMAPP) that form a much larger family of organic 

compounds named isoprenoids. These molecules form essential cellular metabolites 

in mammals and notably within bacteria (Heuston, Begley et al. 2012). Isoprenoids 

are essential for a wide variety of biological functions, including membrane forming 

molecules hopanoids, sterols and coenzyme Q in electron transport (Lange, Rujan et 

al. 2000; Wilding, Brown et al. 2000). We therefore hypothesized that RSV may 

influence the microbial community structure in the gut and upon individual bacteria 

species in-vitro through potential interactions with bacterial HMG-R.  

Statins have been shown to elicit antibacterial effects (albeit at relatively high 

concentrations) (Jerwood and Cohen 2008) and have been proposed as potential 

alternatives to antibiotics (Motzkus-Feagans, Pakyz et al. 2012). However, only a 

subset of bacteria in the gut microbiota harbour the HMG-R enzyme (Lombard and 

Moreira 2011). The majority of bacterial species in the gut biosphere express an 

alternative (2-C-methyl-D-erythritol 4-phosphate (MEP)) pathway for isoprenoid 

biosynthesis and therefore lack the HMG-R isoform (Heuston, Begley et al. 2012). 

Reported antibacterial effects of statins have primarily been analysed in bacteria that 

possess HMG-R and to our knowledge a direct comparison of their effects upon a 

wide variety of bacteria is currently lacking.  

Phylogenetic analysis of the HMG-R protein has revealed two distinct classes 

of enzyme, a Class 1 HMG-R isoform that is primarily found in higher organisms 

such as in mammals, as well as in many Archaea and Actinobacteria, and a Class 2 
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isoform that is generally limited to bacterial species (Lombard and Moreira 2011). 

Class 1 enzymes are seemingly found to be more sensitive to inhibition statins than 

their Class 2 counterparts (Bischoff and Rodwell 1996). This disparity in statin 

sensitivity is likely due to a combination of differential co-enzyme binding activity 

(NADH/NAD(P)H) and distinct conformational protein variation between both 

isoforms for substrate and indeed statin binding of both isoforms (Istvan and 

Deisenhofer 2001).  

Previously unpublished data in our lab determined the in-silico distribution of 

isoprenoid biosynthetic pathways (including distribution of HMG-R) in the human 

gut microbiota (Konstantinidou 2012). The MetaHIT (European Metagenomics of 

the Human Intestinal Tract) catalogue of human metagenomic sequence data 

identified several gut bacterial species encoding enzymes with similarity to Class 1 

and Class 2 HMG-R isoforms using respective driver sequences. The Class 1 

isoform was categorised in many methanogenic bacterial species such as; 

Methanothermus fervidus, Methanobrevibacter smithii, the archeon Acidianus 

hospitalis and in the eukaryotic organism Blastocystis hominis. The Class 2 isoform 

was identified in a variety of important bacterial populations in the gut such as; 

Coprococcus catus, Flavonifractor plautii (Firmicutes) and a number of 

Lactobacillus species. This led us to hypothesise that long term statin treatment 

might inevitably have HMG-R target specific effects within the overall structure of 

the microbiota.   

In this study we provided oral RSV to C57BL/6 mice fed a controlled high fat 

diet and examined the effects of treatment upon the community structure of the 

microbiota. C57BL/6 mice provided us with an excellent model for examining the 

potential effects of RSV on gut bacteria as this mouse species has been extensively 
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studied under a variety of dietary conditions for alterations to the microbiota 

(Clarke, Murphy et al. 2012; Patterson, RM et al. 2014). A number of key microbial 

groups (including the phylum Proteobacteria and the genera Roseburia and 

Akkermansia) were significantly reduced in the caecum and/or faeces of statin-

treated animals. Interestingly the phyla affected were negative for the presence of 

HMG-R suggesting that the effects of statins in this instance were indirect (see 

Chapter 3). Indeed in-vitro susceptibility testing of a number of both gut 

representative HMGR positive and HMGR negative bacteria revealed that statins 

were effective antimicrobials only at relatively high concentrations. Evidence is 

presented that RSV effectively targeted the production of mevalonate (MVAL) 

(most likely through inhibition of HMG-R activity) when used at high 

concentrations.  
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Materials and Methods 

 

C57BL/6 murine RSV administration study: 

 Adult, female 8-12 week old C57BL/6 (n=20) mice were obtained from Harlan, UK 

and housed under pathogen-free conditions.  Ethical approval was obtained through 

the animal experimental ethics committee (AEEC). Mice were fed a High Fat 

Western diet (D12451- Research Diets Inc.) and were acclimatized for two weeks 

prior to statin administration. One group of mice (n=10) were orally administered ad 

libitum sterile drinking water with 62.6mg/L  dissolved Rosuvastatin Calcium Salt 

(Kemprotec Ltd.), the control group (n=10) received untreated sterile water. 

Consumption and dosage were calculated giving a final RSV concentration of 

0.5mg/ body weight /8ml daily consumption (Famer and Crisby 2007).  Drinking 

water was replaced regularly to maintain drug efficacy. Mice were humanely 

sacrificed under anaesthesia after one month intervention. Standard procedures for 

collection of blood (large retro optical sinus), organ dissection (liver, ileum and 

caecum) and faecal pellets were utilised. Tissues for gene expression analysis were 

preserved in RNAlater (Ambion), organs were flash frozen in liquid nitrogen, and 

serum was separated from blood by centrifugation (2,000g /10mins at 4º C). Murine 

specimens were maintained at -80ºC for long term storage.  

 

HDL/LDL and Total Cholesterol Quantification: 

Murine serum HDL and LDL cholesterol were measured using the (BioVision) HDL 

and LDL/VLDL cholesterol quantification kit (Catalog #K613-100) with 

measurements carried out according to the manufacturers guidelines.  
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Microbial DNA extraction, amplification and high throughput DNA sequencing: 

Total metagenomic DNA was extracted from individual faecal and caecal (content) 

samples of RSV treated and control mice using the QIamp DNA Stool Mini Kit 

(Qiagen), after an additional bead-beating step. Bacterial composition was 

determined by sequencing of 16S rRNA amplicons (V4-V5 region; 408nt long) 

generated by a separate PCR reaction for each sample (in triplicate) using universal 

16S primers. Forward primers (5’-AYTGGGYDTAAAGNG), with attached 

molecular identifier tags between the 454 adapter sequence and target-specific 

primer sequence, and the reverse primer V5 (5’-CCGTCAATTYYTTTRAGTTT) 

(Claesson, Wang et al. 2010) were used along with Biomix Red (Bioline, London 

UK) (Table 1). The template DNA was amplified under the following PCR 

conditions for 35 cycles: 94˚C for 2 mins and 1 min respectively (initialization and 

denaturation), 56˚C for 60 secs (annealing) and 72˚C for 60 secs (elongation), 

proceeded by a final elongation stage of 2 mins. Negative control reactions with 

PCR grade water in place of template DNA were used to confirm lack of 

contamination. Amplicons were pooled and cleaned using the AMPure XP 

purification system (Beckman and Coulter, Takeley, UK) and DNA concentration 

was determined using the NANODROP 3300 Fluorospectrometer (Thermo 

Scientific) coupled with the Quant-it™ Picogreen® dsDNA Assay Kit (Invitrogen). 

Equal volumes of each sample were then pooled together and underwent a final 

cleaning and quantification stage. Amplicons were sequenced at the 454 sequencing 

centre (Branford, CT, USA) with the Roche GS FLX Titanium platform. 
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Table 1. Barcoding of faecal and caecal genomic DNA samples for control and 

RSV-treated animals. 

 

16s rRNA analysis bacterial composition analysis was carried out using universal 

“tagged” 16S primers targeted to the 16S gene from a genomic DNA template. The 

forward primer: 5’-AYTGGGYDTAAAGNG-3’ was barcoded with a unique 

identifier for each biological sample between the forward primer and 454 adapter 

sequence (clamp). Amplicons were generated by PCR reaction with the V5 region 

reverse primer: 5’-CCGTCAATTYYTTTRAGTTT-3’ for up to 98% sequence 

coverage. 
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Bioinformatic and taxonomic analysis 

Raw sequencing reads were ‘de-noised’ using traditional techniques implemented in 

the Ribosomal Database Project Pyrosequencing (RDP) Pipeline and ambiguous 

bases, non-exact primer matches and reads shorter than 150bp were excluded. 

Trimmed FASTA files were then BLASTed against a previously published 16S-

specific database using default parameters. The resulting files were then parsed 

using the MEGAN software package, which assigns reads to the National Centre for 

Biotechnology Information (NCBI) taxonomies via the lowest common ancestor 

algorithm. Results were filtered prior to tree construction and summarization by the 

use of bit scores from within MEGAN where a cut-off bit score of 86 was employed 

(Urich, Lanzen et al. 2008; Rea, Dobson et al. 2011). The QIIME software suite was 

employed to achieve clustering of sequence reads into operational taxonomic units 

(OTUs) (Caporaso, Kuczynski et al. 2010). Chimeric OTUs were removed using the 

ChimeraSlayer program (Haas, Gevers et al. 2011) and phylogenetic trees 

constructed using the FastTreeMP tool (Price, Dehal et al. 2010). Beta diversity 

values were calculated based on Bray Curtis, weighted and unweighted UniFrac 

distances, and the KING viewer was used to visualise resulting PCoA plots (Huson, 

Richter et al. 2007; Chen, Davis et al. 2009). Sequence reads were deposited in the 

European Nucleotide Archive (EHA) under the accession number PRJEB5192. This 

work was undertaken in conjugation by our lab and our collaborators at the Teagasc 

Food Research Centre, Biosciences Department, Moorepark, Fermoy, Cork, Ireland. 
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RSV preparation for in-vitro growth experiments:  

RSV calcium salt was dissolved in appropriate growth media to a final near 

saturated concentration of 3mg/ml. Vortexing and gentle heating were applied to 

ensure complete dissolution. Sterilisation was performed by means of filtration 

(0.2µm). Subsequent dilution was performed with sterile media as required. 

Bacterial strains and growth conditions: 

Bacterial growth media and conditions were observed as follows: Enterococcus 

(GM17 broth), Staphylococcus aureus (Brain Heart Infusion (BHI) broth), L. 

monocytogenes (BHI broth), Escherichia coli (BHI or Luria Bertani (LB) broth) and 

Corynebacterium kroppenstedtii (BHI Yeast Tween (BYT) complex media) (Tauch, 

Bischoff et al. 2004) grown shaking aerobically at 37ºC. For anaerobic bacteria 

Bifidobacteria (Reinforced Clostridial Media (RCM)), cultures were under 

anaerobic conditions in a modular atmosphere controlled environment. For solid 

media (1.5%) agar was added.  

 

In-vitro bacterial growth curves:   

Bacterial growth was monitored in a TECAN GENios ™ Microplate reader. 

Overnight cultures were measured using a BioPhotometer (eppendorf) and (10X 4X 

45mm) cuvette.  An optical density (OD600) of 1 was determined for each bacteria 

and pelleted by centrifugation (13,000rpm/5mins) and resuspended in 1ml of broth. 

Cultures were diluted 1:20 giving a starting OD600 of 0.05 for growth. 200µL was 

dispensed per well of a 96-well plate in triplicate and growth monitored every hour. 

Bacteria were exposed to three different concentrations of media dissolved RSV 

(filter sterilised): 0.0005mg/ml, also 0.5mg/ml and 3mg/ml. 
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Mevalonate (MVAL) extraction from bacterial cells and growth media: 

Cultures were set up in triplicate for a number of HMGR positive (E. faecalis, E. 

faecium, L. monocytogenes, C. kroppenstedtii and S. aureus) and HMGR negative 

bacteria (E.coli and B. infantis) in appropriate growth media with the same starting 

OD used for growth curve analysis. Bacteria were incubated for 24 hours with a 

number of different RSV doses (Control (0mg/ml), 0.5mg/ml and 2mg/ml) until 

stationary growth phase was reached. At this time, optical density readings were 

taken for normalisation of data relative to an OD of 1. 560µL was aliquoted into 

tubes from each sample and subsequently the cellular and supernatant fractions were 

separated by centrifugation into separate tubes (13,000rpm/5mins). Bacterial cell 

pellets were resuspended in an equivalent volume of PBS. Deuterated internal 

standard (mevalonolactone-4,4,5,5-d4 (d4-MVAL) (CDN isotopes Canada) was 

added to both cellular and supernatant fractions prior to extraction. MVAL 

extraction was performed by acidification (addition of 140µL of HCl) with thorough 

vortexing (45s) and subsequent addition of 560µL of ethyl acetate to each sample 

with final vortexing at top speed for 5mins. Organic layer (containing ethyl 

acetate/MVAL/internal standard) and aqueous layer separation was performed by 

final centrifugation (13,000rpm/5mins). The organic layer was finally transferred 

carefully to fresh tubes, ethyl acetate evaporated off and resuspended in 140µL of 

Mobile Phase A (water + 5mmol/L ammonium formate, pH adjusted to 2.5 (formic 

acid)) for MVAL quantification. 
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Ultra Performance Liquid chromatography Mass Spectrometry (UPLC-MS): 

MVAL was detected and quantified on a Waters G2 Q-TOF LC-MS ® system 

following a procedure described by Waldron and colleagues (Waldron and Webster 

2011). Following conversion to the lactone version, MVAL was detected on the LC-

MS system in positive ion mode with tetra-deuterated d4-MVAL as the internal 

standard. The identity of MVAL was confirmed by its accurate mass obtained on the 

instrument corresponding to the protonated version of the analyte.  The size to 

charge ratio (m/z) of MVAL occurred at approximately 131.3Da and for the internal 

standard at 135.1Da. The chromatography column was supplied by Sigma Aldrich® 

(Ascentis Express F5 column, 10 cm x 2.1 mm, 2.1 um particle size). A solvent 

gradient was set up using Mobile Phases A and B. Mobile phase A: water + 5 mM 

ammonium formate pH adjusted to pH 2.5 with formic acid and B: methanol + 5 

mM ammonium formate pH adjusted to pH 3.0 with formic acid. The retention time 

on the instrument was approximately 2.5 minutes. The following parameters were 

observed using the MassLynx software package for running of the instrument. M.S. 

tune file: Polarity: ES+. Analyser: Resolution mode, Capillary voltage: 3kV, Sample 

cone: 80, Extraction cone: 2, Source Temperature: 120ºC, Desolvation Temperature: 

450ºC, Cone Gas Flow (L/Hr): 50, Desolvation Gas Flow (L/Hr): 800.  Sample 

infusion flow rate: 10µL/min by injection. Calibration (m/z range) of the instrument 

was performed using the reference compound: Leucine Enkephalin. The following 

UPLC conditions were observed on the instrument: Run Time: 5mins, Solvent A: 

water + 5mM ammonium formate (pH 2.5), Solvent B: methanol + 5mM ammonium 

formate (pH 3). Low pressure limit: 0 psi, High pressure limit: 15,000 psi. Washing 

of the Waters Acquity AutoSampler was carried out as follows; weak solvent wash: 

water + 0.1% formic acid, wash volume: 600µL, strong solvent wash: 50:50 
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methanol and water. Strong wash volume: 200µL. Target column temperature: 40ºC 

and Target sample temperature: 4ºC. The following MS functions were observed in 

general for running samples on the instrument: Function 1: Scans in function: 79, 

Cycle time: 1.014 secs, Scan duration: 1 sec, Inter Scan Delay: 0.014 sec, Start-End 

time: 0-5mins, Ionization mode: ES+, Data type: Enhanced Mass, Function type: 

TOF MS, Mass Range: 100-1000. Function 2: Scans in function: 13, Cycle Time: 

1.1 secs, Scan duration: 1 sec, Inter Scan Delay: 0.1 sec, Start-End time: 0-5mins, 

Ionization mode: Enhanced Accurate Mass, Function type: TOF MS and Mass 

Range: 100-1000.  

 

MVAL chromatogram and standard curve: 

 MVAL quantification was determined by means of a standard curve a range of run 

on the instrument. MVAL was assayed using a range of concentrations (20µg/ml to 

3.125ng/ml) with a final internal standard concentration of 5µg/ml (Fig. 1). 

Chromatograph peaks for MVAL and D4-MVAL internal standard peaks are 

illustrated below (Fig. 2).  

 

Fig. 1. MVAL standard curve (20µg/ml-3.125ng/ml) with R
2 
of the line equal to 

0.997725 
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Analysis of short chain fatty acids 

Short chain fatty acid (SCFA) analysis was performed according to a previously 

described protocol (Wall, Marques et al. 2012). Briefly, caecal content (30-40mg) 

was vortex-mixed with 1ml Milli-Q water and incubated at room temperature for 

10mins and subsequently centrifuged at 10,000g for 5mins to pellet bacteria and 

other solids. The supernatant was filtered, transferred to a clear gas chromatography 

(GC) vial and 2-ethylbutyric acid (Sigma-Aldrich) was added as an internal 

standard. Standard solutions of 10.0mmol/L, 8.0mmol/L, 6.0mmol/L, 4.0mmol/L, 

1.0mmol/L and 0.5mmol/L of acetic acid, propionic acid, isobutyric acid and butyric 

acid (Sigma-Aldrich), respectively were used for calibration. The concentrations of 

SCFA were measured using a Varian 3800 GC-flame-ionization system fitted with a 

ZB-FFAP column (30m X 0.32mm X 0.25µm; Phenomenex, Macclesfield, 

Cheshire, UK). Initial oven temperature was set at 100ºC for 30secs and raised to 

180ºC at 8ºC per min and subsequently held for 1min, then increased to 200ºC at 

20ºC per min and finally held at 200ºC for 5mins. Helium was used as the carrier gas 

at a flow rate of 1.3ml/min. The temperature of injector and the detector were set at 

Fig.2. Chromatogram peaks for analyte MVAL (above) and internal standard 

D4-MVAL (below) 
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240ºC and 250ºC respectively. A standard curve was constructed with different 

concentrations of a standard mix containing acetic acid, propionic acid, isobutyric 

acid and N-butyric acid (Sigma-Aldrich). Peaks were integrated using the Varian 

Star Chromatography Workstation v6.0 software. This work was carried out in 

conjugation by our lab and our collaborators at the Teagasc Food Research Centre, 

Biosciences Department, Moorepark, Fermoy, Cork, Ireland. 
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Results 

LDL and Total cholesterol was significantly lowered in statin treated animals: 

Murine serum HDL/LDL and Total Cholesterol were measured for control and 

statin-treated animals by means of the BioVision HDL and LDL/VLDL cholesterol 

quantification kit following manufacturer’s guidelines. RSV significantly lowered 

LDL (***p=0.001) and Total Cholesterol (*p=0.042) in the treated animals (Fig. 3). 
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Fig.3. Serum HDL, LDL and Total cholesterol (mg/dL) for control and statin-

treated animals 

Serum HDL, LDL and Total Cholesterol levels were determined for control (n=10) 

and statin-treated (n=10) mice. Error bars the represent standard deviation from the 

mean. LDL (***p=0.001) and Total Cholesterol (*p=0.042) were found to be 

significantly lower in statin-treated animals. 
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RSV significantly impacts the composition and diversity of the gut microbiota: 

A total of 683,749 V4-V5 16s rRNA sequence reads were generated during the 

sequencing process corresponding to an average of 170,937 reads per group or 

17,535 reads per animal. α-diversity values for species richness (Chao1), observed 

species and phylogenetic diversity were found to be significantly lower 

(***p<0.0001) in the statin treated animals (HF+ROS)  compared to the control 

group (HF+H20) in samples of caecal origin (Fig.4). No significant changes in α-

diversity were observed in samples of faecal origin. Principal coordinate (β-

diversity) analysis based upon unweighted UniFrac distances (Fig.5A and B) 

revealed a distant clustering between the two groups in samples of both caecal (Fig. 

5A) and faecal origin (Fig. 5B). Phylogenetic analysis (green and red flux charts) 

(Fig. 6 A and B) revealed several significant microbial populations changes in 

relative abundance due to RSV.  Presence of HMG-R in significantly altered 

bacteria was determined by GenBank and BLASTp analysis using the HMGR driver 

sequence from L. monocytogenes EGDe (NP_464352.1) and designated HMGR+, in 

both caecum and faeces. A complete phylogenetic breakdown for phyla, family and 

genus levels of speciation are illustrated in pie charts (Fig.8).  

 Flux chart analysis of the caecum (Fig.6A) revealed no significant changes in 

the phylum of statin-treated mice. At the family level there was a significant increase 

in the proportion of the family Lachnospiraceae (HMGR+) (*p=0.02), and a 

decrease in RF9 (*p=0.046) in statin-treated animals. At the genus level, Rikenella 

(p=0.028), and Coprococcus (HMGR+) (**p=0.010) a member of the 

Lachnospiraceae family were increased in the presence of RSV. Other bacterial 

genera such as Erysipelotrichaceae IS (**p=0.002) and Roseburia (***p=0.001) 

were significantly reduced (Fig.6A). 
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 Flux chart analysis of the faeces revealed overall decreases in the phylum, 

family and genus bacterial groups in the gut microbiota of statin-treated mice. At the 

phylum level, Proteobacteria (*p=0.041), Tenericutes (**p=0.009) and 

Verrucomicrobia (*p=0.024) were significantly reduced in the presence of RSV 

(Fig. 6B). At the family level, significant decreases were observed in the proportions 

of Desulfovibrionaceae (*p=0.022), Coriobacteriaceae (*p=0.029) and 

Akkermansiaeae (*p=0.024) for the statin-treated animals (Fig. 6B). At the genus 

level, Bilophila (*p=0.022), Erysipelotrichaceae Incertae Sedis (***p=0.001), 

Roseburia (**p=0.008), Enterorhabdus (*p=0.036) and Akkermansia (*p=0.024) 

proportions were found to be significantly decreased by RSV (Fig. 6B). HMG-R was 

absent in all of the bacterial groups identified. 

Our data suggests, a significant reduction in the biodiversity of the caecum (α-

diversity) and distant clustering of bacterial populations (PCA plots) in the presence 

of RSV relative to control mice. Flux analysis revealed widespread alteration in 

numerous bacterial phyla, family and genera in both the caecum and faeces of 

treated animals. The majority of these changes led to a reduction in bacterial 

populations. However, significant increases were observed in known HMG-R +ve 

bacteria (as determined in our lab) in the family Lachnospiraceae genera 

Coprococcus. This contradicted our initial hypothesis that RSV would target HMGR 

containing bacteria in the gut microbiota and led us to believe the effect is indirect at 

the physiological relevant dose used in our study. Chapter 3 of this thesis will 

explore the mediating host factors of this indirect effect. 
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Fig. 4. Reduced α-diversity in the caecum of statin treated (HF+Ros) mice 

relative to control (HF+H2O) mice. 

Chao1, Observed species and Phylogenetic diversity testing revealed a significantly 

lower abundance of bacterial taxa (***p<0.0001) in the caecum of statin-treated 

mice. α-diversity analysis revealed no significant differences in faeces. 

 

    

Fig.5. PCA analysis of control and statin-treated mice in caecum and faeces. 

Principle coordinate analysis (PCA) (β-diversity) revealed a distinctive clustering of 

whole microbial communities in the caecum in the presence of RSV relative to 

control mice. Clustering in the faeces had less spatial separation. β-diversity 

represents a means to analyse presence or absence of bacterial populations. 
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Fig.6. Phylogenetic (flux chart analysis) in the caecum and faeces of statin 

treated animals relative to control. 

Green bars indicate a significant increase in the statin-treated group of particular 

bacterial phyla, family or genus determined by the Kruskall Wallis algorithm 

A: CAECUM 

B: FAECES 

HMGR+ 

HMGR+ 
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(p<0.05). Conversely, red bars denote significant decreases in populations in the 

presence of RSV.  At the phylum level there were significant changes in the caecum 

At the family level, Lachnospiraceae (HMGR+ve) was increased, RF9 was 

decreased At the genus level, Rikenella and Coprococcus (HMGR+ve) were 

increased as well as reductions in the genera Erysipelotrichaceae IS and Roseburia  

In the faeces, a reduction in many bacterial populations was observed. Reductions 

were seen for phylum level (Proteobacteria, Tenericutes and Verrucomicrobia), 

family level (Desulfovibrionaceae, RF9, Coriobacteraceae and Akkermansiaceae) 

and genus level (Bilophila, Erysipelotrichaceae IS, Roseburia, Enterorhabdus and 

Akkermansia) in the presence of RSV. HMGR+ denoted presence or absence of 

HMG-R in each bacterial population. The majority of bacteria were negative for the 

presence of HMG-R.  
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Fig.7. Complete microbial map of the faecal and caecal microbiota of control 

(HF+H2O) and statin treated (HF+RSV) mice as determined by 16s rRNA 

analysis. 

 

RSV significantly affects growth of HMGR+ve bacteria at high levels:  

In-vitro susceptibility testing of HMGR+ve (S. aureus, E. faecalis, E. faecium and L. 

monocytogenes) and HMGR-ve bacteria (E. coli) (Fig.8) determined a reduction in 

bacterial growth only at the highest levels of RSV tested. RSV only inhibited growth 

of HMGR+ve bacteria and had no effect on HMGR-ve of the strains tested. 

Sensitivity was most pronounced in the exponential phase of growth. 
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                                                   HMGR +ve bacteria: 

         

Staphylococcus aureus Newmann
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Enterococcus faecium DOTX16
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Enterococcus faecalis V583
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Listeria monocytogenes EGDe
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                                                    HMGR-ve bacteria: 

    

Escherichia coli Nistle
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Escherichia coli K12 MG1655
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Fig. 8.  In- vitro susceptibility of HMGR+ bacteria (Staphylococcus aureus, 

Enterococcus faecium, Enterococcus. faecalis and Listeria monocytogenes) and 

HMGR- bacteria (Escherichia coli) against RSV.  

Dark circles denote (3mg/ml) media dissolved RSV, white circles (0.5mg/ml), black 

squares (0.0005mg/ml) RSV and white squares controls. Growth was monitored by 

optical density (OD600) over 24 hours and errors represent the standard deviation 

from the mean of a number of repeated experiments. 
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RSV significantly lowered mevalonate (MVAL) in supernatant of HMGR+ve 

bacteria: 

Mevalonate (MVAL) was quantified in cellular and supernatant fractions of 

HMGR+ve bacteria (S. aureus, E. faecalis, E. faecium, L. monocytogenes, C. 

kroppenstedtii) and HMGR-ve bacteria (E. coli and B. infantis) by UPLC-MS (see 

Materials and Methods) (Fig.9). Supernatant fractions contained significantly higher 

proportions of MVAL compared to cellular fractions. RSV significantly lowered the 

production of MVAL in a dose dependent fashion in the supernatant of HMGR+ve 

with respect to controls (Fig.9). HMGR-ve bacteria produced significantly lower 

levels of MVAL compared to HMGR+ve bacteria and this was unaffected by RSV. 
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  HMGR +ve BACTERIA: 

CELLULAR FRACTION: SUPERNATANT FRACTION: 

**p=0.0023 

**p=0.0084 

**p=0.0086 

*p=0.0365 

***p=0.0001 
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***p=0.001 
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C. kroppenstedtii  DSM44385
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 HMGR –ve BACTERIA: 

 

E. coli K12 MG1655
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Bif. infantis  ATCC 15697
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Fig.9. UPLC-MS analysis of (cellular and supernatant) bacterial MVAL 

production in response to RSV. 

Normalised MVAL (ng/ml) determination of the HMGR+ve bacteria (E. faecalis, E. 

faecium, L. monocytogenes, C. kroppenstedtii, and S. aureus) and HMGR-ve 

bacteria (E. coli and B. infantis) by UPLC-MS. Cellular (left column) and 

supernatant MVAL (right column). Error bars represent standard deviation from 

mean of a number of repeated experiments and statistical significance compared to 

controls was calculated by the Student’s T-test. 

CELLULAR FRACTION: SUPERNATANT FRACTION: 
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 .  

Impact of statins upon microbial SCFA production in mice 

The reduction in key microbial species (described above) and the links between 

SCFA and positive health indicators are well described (see Chapter 1). This 

prompted us to examine the impact of RSV upon microbial production of SCFA. 

The concentrations of butyrate, iso-butyrate, propionate and acetate in the caecal 

contents of RSV treated and control animals were determined (Fig. 10). The results 

indicate that despite the significant alterations in the microbiota community structure 

there is no significant impact upon net production of key SCFAs in our experimental 

system. 

 

 

Fig. 10. RSV does not significantly alter the synthesis of short chain fatty acids 

in the caecum of mice.  

Gas-liquid chromatography was used to analyse levels of short chain fatty acids 

(acetate, propionate, iso-butyrate, butyrate and total short chain fatty acids) in the 

caecum of RSV-treated mice and control animals. No significant differences 

detected between control and RSV-treated animals for any of the SCFA analysed. 

 

CONTROL 

RSV 
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Discussion 

Exposure to xenobiotics has the potential to significantly alter the community 

structure within the host microbiota (Maurice, Haiser et al. 2013) in turn potentially 

shifting metabolic parameters in the host. Significant numbers of patients worldwide 

take daily medications to regulate chronic conditions (including 

hypercholesterolemia, depression and gastric acidity). However, with notable 

exceptions (Davey, Cotter et al. 2013; Maurice, Haiser et al. 2013; Patterson and 

Turnbaugh 2014), relatively little is known about the impact of these long term 

medications upon the host microbiota. Statins target the HMG-R protein in the 

mammalian host reducing the formation of cholesterol to regulate systemic 

cholesterol levels (Istvan 2002) and also have off-target effects upon the host 

including the potential to regulate host inflammation (Liao and Laufs 2005; 

Thongtang, Diffenderfer et al. 2013; Nenseter, Aukrust et al. 2014) (see Chapter 3).         

We therefore hypothesized that long term administration of statins might influence 

the composition of the microbiota either through a direct effect upon bacteria which 

possess an HMG-R isoform or through other processes linked to inflammation or 

bile acid metabolism (see Chapter 3). Herein we demonstrate that exposure to oral 

RSV in mice significantly reduces the diversity of the gut microbial community 

through a mechanism that is likely to be indirect, reflecting the pleiotropic effects of 

RSV upon host physiological processes.  

 Following administration of RSV to mice we noted a significant reduction in 

the overall phylogenetic diversity within the microbial community of the caecum 

relative to control mice. Significant flux was observed in specific groups both in the 
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caecum and faeces with a reduction in the family Erysipelotrichaceae and genus 

Roseburia in both compartments.  These bacterial populations are well known to be 

associated with the production of Short Chain Fatty Acids (for example butyrate) and 

the beneficial health status of the host (Machiels, Joossens et al. 2013; Zhao, Wu et al. 

2013) (see Chapter 1 also). 

            In faeces there was a significant relative reduction in numerous clusters 

including Proteobacteria and Tenericutes, in Bilophila species within the family 

Desulfovibrionaceae, as well as a reduction in the Akkermansiaceae within the 

phylum Verrucomicrobia. The phylum Proteobacteria are a well reported gram 

negative bacterial population in the gut associated with inflammation via interaction 

with the endotoxin lipopolysaccharide (LPS) (Yue, Ma et al. 2012). Similarly we 

determined a statin-associated reduction in the gram positive bacterial genus 

Enterorhabdus which has been shown in murine studies to be pro-inflammatory 

(Clavel, Charrier et al. 2009). The phylum Akkermansiaceae has been shown by a 

number of groups to be strongly anti-inflammatory in the gut and improves gut barrier 

defence via mediation of the endocannabinoid system (Alhouayek, Lambert et al. 

2011; Hansen, Rosenkilde et al. 2011). Further interpretation of inflammatory role of 

RSV in the gastrointestinal environment will be discussed in Chapter 3. Also 

interestingly in our model, we observed a decline in the phylum Tenericutes which 

contain a recently discovered class of bacteria (Mollicutes) that are generally more 

prevalent in conventional mice fed a high fat diet (Turnbaugh, Backhed et al. 2008). 

             A number of the genera identified as altered by RSV in our model have been 

previously associated with physiological parameters in the host. For instance, 

Bilophila wadsworthia has been previously associated with causation of colitis in 

mouse models (Devkota, Wang et al. 2012; Joyce and Gahan 2014). Akkermansia 
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muciniphila (a mucin-degrading bacteria) has been associated with a lean phenotype 

in both human (Cani and Everard 2014) and murine models (Everard, Belzer et al. 

2013). A. muciniphila is well described as a gram negative bacterial species that 

colonises the mammalian gut early in life and can represent up to 3% of the total 

microbiota (Derrien, Collado et al. 2008). Also of interest, we observed a significant 

reduction in the phylum Desulfovibrionaceae which form part of major sulphate 

reducing microorganisms in the gut that can form a significant proportion (up to 50%) 

of the distal microbiome with Desulfovibrio piger contributing the largest cohort. This 

sulphate reduction process has beneficial implications for energy utilisation and 

metabolic processes in the host (Rey, Gonzalez et al. 2013).  

            Most notably members of the Lachnospiraceae (including Coprococcus and 

Roseburia) which are associated with butyrate production in the gut and are 

associated with improved health status were determined by flux analysis to be 

increased by RSV (Duncan, Hold et al. 2002; Duncan, Holtrop et al. 2004; Louis and 

Flint 2009; Claesson, Wang et al. 2010; Reichardt, Duncan et al. 2014).  However 

despite significant alterations to the caecal and faecal microbiota we failed to detect 

alterations in gastrointestinal SCFA production. This finding may reflect the fact that 

the Lachnopiraceae group is increased in the caecum of these animals while other 

populations of SCFA producers are decreased.   

            The most significant changes seen in RSV treated animals were to organisms 

which lack the mevalonate pathway for isoprenoid biosynthesis and therefore do not 

possess the HMG-R enzyme. Indeed Coprococcus spp., which we have shown to 

possess the hmgR gene (and other enzymes in this pathway), were increased by RSV 

treatment. Other bacterial families which we and others have shown to possess the 

mevalonate pathway (Lombard and Moreira 2011; Heuston, Begley et al. 2012) such 
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as Lactobacillaceae and Enterococcaceae (Hedl, Sutherlin et al. 2002) were not 

statistically altered through RSV administration in our study. This suggests that the 

impact of long-term RSV administration on the microbial community is indirect and 

not through inhibition of organisms that possess HMG-R. This supposition is 

supported by our finding that cultivable gut organisms which possess a mevalonate 

pathway (including Enterococcus species and Listeria species) are not susceptible to 

physiological concentrations of RSV in vitro. This supports previous analysis by 

Masadeh and coworkers (Masadeh, Mhaidat et al. 2012) which found that 

Enterococcus and S. aureus isolates display a minimum inhibitory concentration 

(MIC) for RSV which is approximately one thousand fold higher than a 

physiologically relevant dose for an average patient.  

 This finding was also supported when we analysed inhibition of MVAL (the 

product of HMG-R activity) formation in a number of cultivable bacteria. We 

developed a UPLC-MS approach to quantify MAVL in microbial samples. As 

expected we confirmed significant MVAL levels in HMGR+ve bacteria (E. faecalis, 

E. faecium, L. monocytogenes, C. kroppenstedtii and S. aureus) and marginal 

biosynthesis in HMGR-ve bacteria (E. coli and B. infantis).We demonstrated a 

significant reduction in HMGR+ve bacterial MVAL when cultures were exposed to 

RSV and these effects were dose dependent. These and previously mentioned 

findings confirm that relatively high levels of statins are required to directly inhibit 

bacterial growth (and MVAL) through targeting of the HMG-R enzyme. 

 Surprisingly, MVAL was predominantly detected in the supernatant of 

HMGR+ve bacteria and not in the cellular fraction. Previous studies in our lab 

(Heuston, Begley et al. 2012) (see also Chapter 4) have shown that exogenous 

MVAL can rescue the growth of HMG-R mutant in L. monocytogenes EGDe. The 
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combined studies suggest that MVAL is readily transported into the bacterial cell 

and is also secreted into the growth media. Further studies examining the 

mechanisms of microbial MVAL transport are warranted. 

          In conclusion, the current study demonstrates that RSV can significantly alter 

the community structure of the gut microbiota in our murine model. When examined 

in greater detail antimicrobial activity of this statin only appears to relate to 

inhibition of HMG-R activity at relatively high levels of this drug. However it is 

clear that observed perturbations to the gut microbiota are more likely due to a host 

(indirect) effect of RSV further manipulating the bacterial structure of the 

gastrointestinal environment which we further examine in Chapter 3 of this thesis. 

The current study should prompt further analysis to determine the effects of long-

term use of statins upon the gut microbial community and host health. 

 

  

 

  

 

 

 

 

 



 

100 
 

 

References 

Alhouayek, M., D. M. Lambert, et al. (2011). "Increasing endogenous 2-
arachidonoylglycerol levels counteracts colitis and related systemic inflammation." 
FASEB J 25(8): 2711-2721. 
 
 
Bischoff, K. M. and V. W. Rodwell (1996). "3-Hydroxy-3-methylglutaryl-coenzyme A 
reductase from Haloferax volcanii: purification, characterization, and expression in 
Escherichia coli." J Bacteriol 178(1): 19-23. 
 
 
Cani, P. D. and A. Everard (2014). "[Akkermansia muciniphila: a novel target 
controlling obesity, type 2 diabetes and inflammation?]." Med Sci (Paris) 30(2): 125-
127. 
 
 
Caporaso, J. G., J. Kuczynski, et al. (2010). "QIIME allows analysis of high-
throughput community sequencing data." Nat Methods 7(5): 335-336. 
 
 
Chen, V. B., I. W. Davis, et al. (2009). "KING (Kinemage, Next Generation): a 
versatile interactive molecular and scientific visualization program." Protein Sci 
18(11): 2403-2409. 
 
 
Claesson, M. J., Q. Wang, et al. (2010). "Comparison of two next-generation 
sequencing technologies for resolving highly complex microbiota composition using 
tandem variable 16S rRNA gene regions." Nucleic Acids Res 38(22): e200. 
 
 
Clarke, S. F., E. F. Murphy, et al. (2012). "The gut microbiota and its relationship to 
diet and obesity: new insights." Gut Microbes 3(3): 186-202. 
 
 
Clavel, T., C. Charrier, et al. (2009). "Isolation of bacteria from the ileal mucosa of 
TNFdeltaARE mice and description of Enterorhabdus mucosicola gen. nov., sp. 
nov." Int J Syst Evol Microbiol 59(Pt 7): 1805-1812. 
 
 
Davey, K. J., P. D. Cotter, et al. (2013). "Antipsychotics and the gut microbiome: 
olanzapine-induced metabolic dysfunction is attenuated by antibiotic 
administration in the rat." Transl Psychiatry 3: e309. 
 



 

101 
 

 
Derrien, M., M. C. Collado, et al. (2008). "The Mucin degrader Akkermansia 
muciniphila is an abundant resident of the human intestinal tract." Appl Environ 
Microbiol 74(5): 1646-1648. 
 
 
Devkota, S., Y. Wang, et al. (2012). "Dietary-fat-induced taurocholic acid promotes 
pathobiont expansion and colitis in Il10-/- mice." Nature 487(7405): 104-108. 
 
 
Duncan, S. H., G. L. Hold, et al. (2002). "Roseburia intestinalis sp. nov., a novel 
saccharolytic, butyrate-producing bacterium from human faeces." Int J Syst Evol 
Microbiol 52(Pt 5): 1615-1620. 
 
 
Duncan, S. H., G. Holtrop, et al. (2004). "Contribution of acetate to butyrate 
formation by human faecal bacteria." Br J Nutr 91(6): 915-923. 
 
 
Everard, A., C. Belzer, et al. (2013). "Cross-talk between Akkermansia muciniphila 
and intestinal epithelium controls diet-induced obesity." Proc Natl Acad Sci U S A 
110(22): 9066-9071. 
 
 
Famer, D. and M. Crisby (2007). "Rosuvastatin reduces gliosis and the accelerated 
weight gain observed in WT and ApoE-/- mice exposed to a high cholesterol diet." 
Neurosci Lett 419(1): 68-73. 
 
 
Haas, B. J., D. Gevers, et al. (2011). "Chimeric 16S rRNA sequence formation and 
detection in Sanger and 454-pyrosequenced PCR amplicons." Genome Res 21(3): 
494-504. 
 
 
Hansen, K. B., M. M. Rosenkilde, et al. (2011). "2-Oleoyl glycerol is a GPR119 
agonist and signals GLP-1 release in humans." J Clin Endocrinol Metab 96(9): E1409-
1417. 
 
 
Hedl, M., A. Sutherlin, et al. (2002). "Enterococcus faecalis acetoacetyl-coenzyme A 
thiolase/3-hydroxy-3-methylglutaryl-coenzyme A reductase, a dual-function protein 
of isopentenyl diphosphate biosynthesis." J Bacteriol 184(8): 2116-2122. 
 
 
Heuston, S., M. Begley, et al. (2012). "HmgR, a key enzyme in the mevalonate 
pathway for isoprenoid biosynthesis, is essential for growth of Listeria 
monocytogenes EGDe." Microbiology 158(Pt 7): 1684-1693. 



 

102 
 

 
 
Heuston, S., M. Begley, et al. (2012). "Isoprenoid biosynthesis in bacterial 
pathogens." Microbiology 158(Pt 6): 1389-1401. 
 
 
Huson, D. H., D. C. Richter, et al. (2007). "Dendroscope: An interactive viewer for 
large phylogenetic trees." BMC Bioinformatics 8: 460. 
 
 
Istvan, E. S. (2002). "Structural mechanism for statin inhibition of 3-hydroxy-3-
methylglutaryl coenzyme A reductase." Am Heart J 144(6 Suppl): S27-32. 
 
 
Istvan, E. S. and J. Deisenhofer (2001). "Structural mechanism for statin inhibition 
of HMG-CoA reductase." Science 292(5519): 1160-1164. 
 
 
Jerwood, S. and J. Cohen (2008). "Unexpected antimicrobial effect of statins." J 
Antimicrob Chemother 61(2): 362-364. 
 
 
Johansen, M. E., L. A. Green, et al. (2014). "Cardiovascular risk and statin use in the 
United States." Ann Fam Med 12(3): 215-223. 
 
 
Joyce, S. A. and C. G. Gahan (2014). "The gut microbiota and the metabolic health 
of the host." Curr Opin Gastroenterol 30(2): 120-127. 
 
 
Kallus, S. J. and L. J. Brandt (2012). "The intestinal microbiota and obesity." J Clin 
Gastroenterol 46(1): 16-24. 
 
 
Konstantinidou, N. (2012). "In-silico analysis of isoprenoid biosynthetic pathways in 
the human gut microbiota." MSc thesis (Bioinformatics), University College Cork. 
 
 
Lange, B. M., T. Rujan, et al. (2000). "Isoprenoid biosynthesis: the evolution of two 
ancient and distinct pathways across genomes." Proc Natl Acad Sci U S A 97(24): 
13172-13177. 
 
 
Ley, R. E., P. J. Turnbaugh, et al. (2006). "Microbial ecology: human gut microbes 
associated with obesity." Nature 444(7122): 1022-1023. 
 
 



 

103 
 

Liao, J. K. and U. Laufs (2005). "Pleiotropic effects of statins." Annu Rev Pharmacol 
Toxicol 45: 89-118. 
 
 
Lombard, J. and D. Moreira (2011). "Origins and early evolution of the mevalonate 
pathway of isoprenoid biosynthesis in the three domains of life." Mol Biol Evol 
28(1): 87-99. 
 
 
Louis, P. and H. J. Flint (2009). "Diversity, metabolism and microbial ecology of 
butyrate-producing bacteria from the human large intestine." FEMS Microbiol Lett 
294(1): 1-8. 
 
 
Machiels, K., M. Joossens, et al. (2013). "A decrease of the butyrate-producing 
species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in 
patients with ulcerative colitis." Gut. 
 
 
Masadeh, M., N. Mhaidat, et al. (2012). "Antibacterial activity of statins: a 
comparative study of atorvastatin, simvastatin, and rosuvastatin." Ann Clin 
Microbiol Antimicrob 11: 13. 
 
 
Maurice, C. F., H. J. Haiser, et al. (2013). "Xenobiotics shape the physiology and 
gene expression of the active human gut microbiome." Cell 152(1-2): 39-50. 
 
 
Motzkus-Feagans, C. A., A. Pakyz, et al. (2012). "Statin use and the risk of 
Clostridium difficile in academic medical centres." Gut 61(11): 1538-1542. 
 
 
Murphy, E. F., P. D. Cotter, et al. (2010). "Composition and energy harvesting 
capacity of the gut microbiota: relationship to diet, obesity and time in mouse 
models." Gut 59(12): 1635-1642. 
 
 
Nenseter, M. S., P. Aukrust, et al. (2014). "Low level of inflammatory marker in 
hyperhomocysteinemic patients on statin therapy." Scand J Clin Lab Invest 74(1): 1-
7. 
 
 
Patterson, A. D. and P. J. Turnbaugh (2014). "Microbial Determinants of 
Biochemical Individuality and Their Impact on Toxicology and Pharmacology." Cell 
Metab. 
 
 



 

104 
 

Patterson, E., O. D. RM, et al. (2014). "Impact of dietary fatty acids on metabolic 
activity and host intestinal microbiota composition in C57BL/6J mice." Br J Nutr: 1-
13. 
 
 
Price, M. N., P. S. Dehal, et al. (2010). "FastTree 2--approximately maximum-
likelihood trees for large alignments." PLoS One 5(3): e9490. 
 
 
Rea, M. C., A. Dobson, et al. (2011). "Effect of broad- and narrow-spectrum 
antimicrobials on Clostridium difficile and microbial diversity in a model of the 
distal colon." Proc Natl Acad Sci U S A 108 Suppl 1: 4639-4644. 
 
 
Reichardt, N., S. H. Duncan, et al. (2014). "Phylogenetic distribution of three 
pathways for propionate production within the human gut microbiota." ISME J 8(6): 
1352. 
 
 
Rey, F. E., M. D. Gonzalez, et al. (2013). "Metabolic niche of a prominent sulfate-
reducing human gut bacterium." Proc Natl Acad Sci U S A 110(33): 13582-13587. 
 
 
Sumbayev, V. V. (2008). "LPS-induced Toll-like receptor 4 signalling triggers cross-
talk of apoptosis signal-regulating kinase 1 (ASK1) and HIF-1alpha protein." FEBS 
Lett 582(2): 319-326. 
 
 
Tauch, A., N. Bischoff, et al. (2004). "Comparative genomics identified two 
conserved DNA modules in a corynebacterial plasmid family present in clinical 
isolates of the opportunistic human pathogen Corynebacterium jeikeium." Plasmid 
52(2): 102-118. 
 
 
Thongtang, N., M. R. Diffenderfer, et al. (2013). "Effects of atorvastatin on human 
C-reactive protein metabolism." Atherosclerosis 226(2): 466-470. 
 
 
Turnbaugh, P. J., F. Backhed, et al. (2008). "Diet-induced obesity is linked to marked 
but reversible alterations in the mouse distal gut microbiome." Cell Host Microbe 
3(4): 213-223. 
 
 
Urich, T., A. Lanzen, et al. (2008). "Simultaneous assessment of soil microbial 
community structure and function through analysis of the meta-transcriptome." 
PLoS One 3(6): e2527. 
 



 

105 
 

 
Waldron, J. and C. Webster (2011). "Liquid chromatography-tandem mass 
spectrometry method for the measurement of serum mevalonic acid: a novel 
marker of hydroxymethylglutaryl coenzyme A reductase inhibition by statins." Ann 
Clin Biochem 48(Pt 3): 223-232. 
 
 
Wall, R., T. M. Marques, et al. (2012). "Contrasting effects of Bifidobacterium breve 
NCIMB 702258 and Bifidobacterium breve DPC 6330 on the composition of murine 
brain fatty acids and gut microbiota." Am J Clin Nutr 95(5): 1278-1287. 
 
 
Walter, J. and R. Ley (2011). "The human gut microbiome: ecology and recent 
evolutionary changes." Annu Rev Microbiol 65: 411-429. 
 
 
Wilding, E. I., J. R. Brown, et al. (2000). "Identification, evolution, and essentiality of 
the mevalonate pathway for isopentenyl diphosphate biosynthesis in gram-positive 
cocci." J Bacteriol 182(15): 4319-4327. 
 
 
Yue, C., B. Ma, et al. (2012). "Lipopolysaccharide-induced bacterial translocation is 
intestine site-specific and associates with intestinal mucosal inflammation." 
Inflammation 35(6): 1880-1888. 
 
 
Zhao, Y., J. Wu, et al. (2013). "Gut microbiota composition modifies fecal metabolic 
profiles in mice." J Proteome Res 12(6): 2987-2999. 

 

 

 

 

 

 

 

 

 

 

 



 

106 
 

    Chapter 3 
 

 

The effects of rosuvastatin on the murine host: 
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Abstract 

 

Rosuvastatin (RSV) is a widely prescribed drug that is used for treating 

hypercholesterolemia. RSV acts by targeting the enzyme 3-hydroxy-3-

methylglutaryl co enzyme A reductase (HMG-R) and blocking the formation of 

mevalonate (MVAL), a key intermediate in cholesterol biosynthesis. We have 

shown that HMG-R is essential for isoprenoid biosynthesis in a number of bacteria 

that inhabit the gut. Previously, we have demonstrated that treating mice with RSV 

can significantly alter the community structure of the gut microbiota. Treatment 

predominantly affected bacteria negative for HMG-R suggesting an indirect effect of 

RSV upon the microbiota. In this chapter we examined how RSV might affect 

microbe-host regulatory circuits that are known to impact upon microbiota 

composition. We show that RSV significantly affects hepatic and ileal gene 

expression of a number of inflammatory markers including TNFα, IL-1β and cellular 

adhesion molecules (ICAM-1 and Itgal). qRT-PCR analysis revealed a significant 

increase in markers of antimicrobial activity in the gut (including RegIII, CAMP, 

iNOS2 and MUC2) that are likely to influence alterations in the gut microbiota. 

UPLC-MS analysis of bile acids revealed significant alterations in total and 

individual bile acids (including CA and CDCA), a finding that mirrored changes in 

the hepatic expression of genes encoding enzymes involved in bile acid synthesis 

(including CYP27A1 and CYP8B1).  RSV administration in germ free mice indicated 

the importance of the microbiota for host metabolomic processes. These findings in 

combination with those of Chapter 2 should prompt further investigation in humans. 
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Introduction 

 

Statins (including Rosuvastatin (RSV)) are important drugs for the treatment of 

hypercholesterolemia (Johansen, Green et al. 2014).  RSV is a potent inhibitor of  3-

hydroxy-3-methylglutaryl co enzyme A reductase (HMG-R) activity (Istvan 2002). 

RSV has been reported as being amongst the most potent of the statins in terms of 

lowering serum LDL cholesterol and triglycerides (Vijan and Hayward 2004).  

Statins have pleiotropic effects upon host metabolism in higher organisms 

(Liao and Laufs 2005). They lower markers of inflammation (Thongtang, 

Diffenderfer et al. 2013; Nenseter, Aukrust et al. 2014) and this activity may be 

relevant in lowering the risk of cardiovascular disease (Mora and Ridker 2006). 

Statins decrease production of pro-inflammatory cytokines in a variety of cell types 

(Ortego, Bustos et al. 1999; Rosenson, Tangney et al. 1999; Zhang, Osawa et al. 

2013) and also display anti-oxidant effects through alterations in both reactive 

oxygen and reactive nitrogen species (Tokuhara, Habara et al. 2013; Song, Liu et al. 

2014) (see Chapter 1). 

These pleiotropic effects of statins upon host physiological processes and the 

reported antibacterial effects of these drugs (Jerwood and Cohen 2008) led us to 

evaluate the impact of statin treatment upon the gastrointestinal microbiota (see 

Chapter 2). We administered RSV to mice and demonstrated highly significant 

changes to the community structure of the microbiota in both the caecum and the 

faeces of these animals (as determined by V4 16s rRNA sequencing) relative to 

untreated controls. Analysis of microbial changes revealed significant reductions in 

physiologically relevant genera including Roseburia and Akkermansia species. 
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Microbial genera that were reduced in statin-treated mice were generally negative 

for HMG-R indicating that the activity of the statin on the microbial populations in 

the gut was indirect (see Chapter 2). 

 We hypothesised that off-target effects of RSV might influence physiological 

parameters in the host that are known to impact upon the composition of the 

microbiota. We therefore examined the impact of RSV treatment on bile acid 

synthesis and ileal and hepatic gene expression changes as a result of statin 

treatment. The data indicate that RSV reduces hepatic expression of genes associated 

with inflammation in the host, supporting recent studies that statins reduce markers 

of systemic inflammation (see Chapter 1). However we determined that specific 

inflammatory markers are increased in the ileum of RSV-treated mice and may 

correlate with the changes in the microbiota witnessed previously (see Chapter 2).  

Bile acid synthesis has emerged as an example of a microbe-host regulated 

circuit that is known to directly influence microbial composition in the gut and in 

turn is influenced by the gut microbiota. In particular the effects of certain bile acids 

(such as cholic acid (CA)) have been shown in rodents to modulate the gut 

microbiota (Islam, Fukiya et al. 2011). That study showed that oral administration of 

cholic acid to rats significantly alters the composition of the gut microbiota 

promoting an increase in Firmicutes (in particular an outgrowth of specific 

Clostridium and Erysipelotrichi clusters) and an increase in Proteobacteria (in 

particular E. coli) (Islam, Fukiya et al. 2011). Research conducted by our group has 

also highlighted the importance of bile acids within wider implications for host lipid 

and cholesterol metabolism (and weight gain) in rodent models. In particular our 

laboratory analysed the activity of bile salt hydrolase (BSH) enzymes which form 

the basis of a specific microbe-host dialogue in the gut (Joyce, MacSharry et al. 
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2014).  We hypothesized the profound potential for RSV to impact upon these 

microbe-host interactions (Chapter 2) leading to concomitant effects on the gut 

microbiota. However the precise structure of the microbiota underpinning this 

phenomenon needs to be investigated. Overall we demonstrate significant alterations 

in the microbiota of statin-treated mice which are coincident with alterations to host 

bile acid metabolism and gut inflammatory markers.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

111 
 

Materials and Methods 

Quantitative RT-PCR (qRT-PCR) for target genes: 

RNA was extracted from liver and ileum specimens using the RNAeasy Plus 

Universal Kit (Qiagen). Primers for RT-PCR were designed for targets (Table 1) 

using the Roche Probe Finder® v2.5 web based software and performed using the 

Roche Universal Probe Library for Mouse (Roche#04869877001). Complementary 

(cDNA) was synthesised by reverse transcription using Roche® reverse transcriptase 

enzyme (Roche) using the Applied Biosystems® Veriti 96-well thermal cycler under 

the following conditions (25ºC/10mins, 55ºC/30mins, 85ºC/5mins and held forever 

at 4ºC). qRT-PCR amplifications were performed on the Roche® LightCycler480 

system in 384-well lightcycler480 plates (Roche) with the Roche 2X LG480 

mastermix. Relative changes in gene expression were determined using the 2
ΔΔC 

 

method (Livak and Schmittgen 2001) with beta-actin as the housekeeping or 

reference gene. 
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Genes UPL Probe Left primer sequence Right primer sequence 

Cyp3a #12 tgaatatgaaacttgctctcactaaaa ccttgtctgcttaatttcagaggt 

Cyp7a1 #4 aagcaagcttggaactcactg tttcttggtcttgaaaattacttcc 

Cyp7b1 #1 tcatttgtagtgaatgtgcttttct ggcagaacataaaaccatattagagg 

Cyp8b1 #9 aactcaaccaggccatgc gcacccagactcgaacctt 

Cyp27a1 #66 cctcacctatgggatcttcatc tttaaggcatccgtgtagagc 

CYP46a1 #1 ccattgactttcaaccctgac gtaagtgaaccgtggcttgg 

Padi4 #1 aggccaagatgaacagagtga aggccttccacatagaagtctg 

NFκB #3 cttatgaggccccgagcta cccaaaactgcatttggaac 

TNFα #49 tcttctcattcctgcttgtgg ggtctgggccatagaactga 

CCL20 #73 aactgggtgaaaagggctgt gtccaattccatcccaaaaa 

TGF-β1 #4 caccatccatgacatgaacc ccgcacacagcagttcttc 

TLR2 #50 taggggcttcacttctctgc ttctgaccggtgatgcaat 

ICAM-1 #6 tggtagacagcatttaccctca ggccaccatcctgttctg 

Itgal #78 ccccagacttttgctactgg cgtgtgtccaggttgtagctc 

Itgb2 #32 cccagtgtgagtgtcagtgc tcccaatgtagccagactca 

ROS #2 ctctggagcaaaccactctgt ggctgttgttgtaccaatcca 

iNOS2 #3 ggagcctttagacctcaacaga aaggtgagctgaacgaggag 

Reg3γ #89 ccccgtataaccatcaccat ggcatctttcttggcaactt 

MUC2 #12 gacgcctgtgacctctcaat ggtgcttgaaagggtggtag 

CAMP #20 gccctttcggttcaagaaa ccaatcttctccccaccttt 

IL-1β #38 agttgacggaccccaaaag agctggatgctctcatcagg 

IL-18 #46 caaaccttccaaatcacttcct tccttgaagttgacgcaaga 

IL-17A #34 gattttcagcaaggaatgtgg cattgtggagggcagacaat 

ACTB #106 ttgctgacaggatgcagaag tgatcttgatcttcatggtgct 

 

Table 1. Probe library primers for RSV intervention study target genes 
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Bile acid extraction 

Bile acids were extracted from serum, liver and faecal samples using a previously 

outlined method (Swann, Want et al. 2011) with modifications (Joyce, MacSharry et 

al. 2014). 100µL of plasma was added to 50% ice-cold methanol (Sigma-Aldrich). 

The extract was thoroughly combined and centrifuged (6,000g/10mins at 4ºC). 

Extraction was performed with addition of 5% acetonitrile (Sigma-Aldrich), the 

resulting supernatant was dried under vacuum and reconstituted in 150µL ice-cold 

50% methanol.  Liver and faecal bile acids were similarly extracted by first 

homogenising the samples in 2ml screw cap tubes containing silica beads with the 

Roche MagnaLyser® and then subsequently adding acetonitrile.  

 

Internal standards and chemicals 

Standards for conjugated bile acids and non-conjugated bile acids were purchased 

from Sigma-Aldrich or Steraloids. Tetra-deuterated d4-2,2,4,4 – cholic acid (D-2452) 

and d4-2,2,4,4 –chenodeoxycholic acid (D-2772) were obtained from CDN isotopes 

Inc.®  HPLC-grade methanol, acetonitrile, water, ammonium acetate, ammonium 

formate, ammonium hydroxide, formic acid and acetic acid were supplied by Fischer 

Scientific®. All bile acid standards were constituted as 1mg/ml solution. Stock 

solutions of individual bile acids were combined 50:50 in methanol/water and 

prepared to final concentration of 40µg/ml in a total volume of 1ml. Subsequent 

dilutions were performed to obtain a desired standard curve. 
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UPLC-MS analysis of murine bile acids 

UPLC-MS was performed using a method outlined by (Swann, Want et al. 2011), 

with certain modifications. 5µL of extracted bile acids was injected onto a 50mm T3 

Acquity column (Waters) and eluted using a 20min gradient of 100% mobile phase 

A to 100% mobile phase B. (A=0.1% formic acid in water, B=0.1% formic acid in 

methanol). The flow rate on the instrument was 400µL/min and column temperature 

(50ºC). Samples were analysed with the Acquity UPLC system (Waters) coupled 

online to an LCT Premier mass spectrometer (Waters) in negative electrospray mode 

with a scan range of 50-1,000 m/z. Bile acids strongly ionize in negative mode, 

resulting in a prominent [M-H] negative ion. Capillary voltage was 2.4kV, sample 

cone was 35V, desolvation temperature was 350ºC, source temperature was 120ºC 

and desolvation gas flow was 900L/hour. Principal component analysis (PCA) was 

performed using Markerlynx (Waters) by limiting elemental numbers (C, H, N and 

S) to detect individual analytes. A template of defined known molecular weight 

masses was applied to allow bile acid detection specifically. Each analyte was 

identified according to its mass and specific retention time (Table 2). Standard 

curves were performed   with known bile acids and each bile acid analyte was 

quantified thusly, normalisation was determined using deuterated internal standards 

(Appendix to Chapter 3). This work was carried out by collaboration within our own 

lab (SAJ). 
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Analyte Negative ion mass RT (min 25 m-1) Chemical formula 

Taurine 124.0068 0.75 C24H7NO3S 

Cholic acid 407.2797 11.76 C24H40O5 

Chenodeoxycholic acid 391.2848 17.63 C24H40O4 

Lithocholic acid 375.2855 21.72 C24H40O3 

Deoxycholic acid 391.2848 18.86 C24H40O4 

Dehydrocholic acid 401.239 1.71 C24H34O5 

Ursodeoxycholic acid 391.2848 9.04 C24H40O4 

Hyodeoxycholic acid 391.2848 10.04 C24H40O4 

α-muricholic acid 407.2898 5.5 C24H40O5 

β-muricholic acid 407.2898 6.44 C24H40O5 

ω-muricholic acid 407.2898 5.86 C24H40O5 

Taurocholic acid 515.2838 4.95 C26H45NO7S 

Taurochenodeoxycholic 

acid 

498.2889 8.64 C26H44NO6S 

Taurolithocholic acid 482.294 14.74 C26H45NO5S 

Taurodeoxycholic acid 498.2889 3.54 C26H44NNaO 

Tauroursodeoxycholic 

acid 

498.2889 8.64 C26H44NO6S 

Taurohyodeoxycholic 

acid 

498.2889 3.49 C26H43NO5 

Tauroα-muricholic acid 514.2838 1.79 C26H45NO7S 

Tauroβ-muricholic acid 514.2838 1.69 C26H45NO7S 

Tauroω-muricholic acid 514.2838 1.89 C26H45NO7S 

D4 cholic acid 411.3053 11.97 C24D4H36O5 

D4 chenodeoxycholic 

acid 

427.6565 17.82 C24D4H36O4 

 

 

Table 2. UPLC bile acid analysis for RSV intervention study 
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MSD cytokine analysis: 

Meso Scale Discovery (MSD)®  (10 spot MULTI-SPOT plates®) multi-plex 

cytokine assay (Cat# N05048A-1 – Proinflammatory Panel 1 (mouse)) platform was 

used to determine the effect of RSV in liver and plasma cytokines for the RSV 

intervention study (as well as complementary Germ Free animal study). Protein 

expression of pro-inflammatory cytokines (including IL-1β and TNFα) was 

determined in control statin treated mice. MSD utilises 96-well plate precoated with 

capture antibodies with independent well-defined spots in each well per cytokine. 

Plasma and liver are added as a solution containing detection antibodies conjugated 

to chemiluminescent labels (MSD SULFO-TAGS®). Plasma samples can be 

directly added to MSD. Liver extractions were performed as follows: 100mg liver 

tissue placed into 2ml (Magna Lyser®) tubes containing prefilled ceramic beads 

(Roche#03358941001) with 1ml of homogenization solution added (50ml PBS+10% 

Foetal Bovine Serum+2 Protease Cocktail Inhibitor Tablets (Sigma-Aldrich S8830)). 

Tubes were subjected to 5X rounds of 6,000rpm/30s shakes (MagnaLyser). 

Subsequently, tubes were centrifuged at 10,000g for 10mins at 4ºC with supernatant 

aspirated off into fresh tubes. The MSD instruction manual, manufacturer guidelines 

and supplied reagents were used for cytokine analysis. Analytes in each sample bind 

capture antibodies and are immobilised onto the working electrode surface 

completing the (SULFO TAG-Analyte-Capture Antibody-Working Electrode) 

sandwich. MSD read buffer is added to each well creating the appropriate chemical 

environment for electrochemiluminescence when appropriate voltage is applied to 

the electrodes causing the emission of light. MSD platform measures light intensity 

and quantifies based on a standard curve for each cytokine (Appendix to Chapter 3).  
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Germ Free (GF) statin trial: 

Neonatal Swiss Webster (SW) mice were delivered from adult female mice by 

caesarean section under completely sterile conditions and housed in a germ free 

incubation unit under ethical approval sought through the Alimentary Pharmabiotic 

Centre, University College Cork. Mice were reared post-caesarean in gnotobiotic 

units and fed by artificial lactation with sterile artificial milk substitutes for up to 21 

days. Subsequently, mice were weaned and switched onto a sterile solid chow diet 

and given sterile water ad libitum (Yi and Li 2012). Mice were allowed to reach 

adulthood (8-12 weeks) prior to commencing statin intervention. GF mice (n=7) 

were administered (62.6mg/L) rosuvastatin ad libitum in the drinking water 

(GF+RSV) (Famer and Crisby 2007) for 19 days, with control mice (GF) (n=5) just 

receiving sterile water. The GF trial was conducted in a similar manner to the 

convention C57BL/6 statin trial (as described above). At regular intervals during the 

entire time course of trial the weight was recorded for each individual mouse. At the 

end of the trial, mice were humanely sacrificed and biological samples were 

collected for analysis. Segments of the liver and ileum were harvested for qRT-PCR 

gene expression analysis (as described above) and stored in RNAlater (Ambion). 

Serum plasma, liver, faecal pellets and the gall bladder were harvested for UPLC-

MS bile acid analysis (as described above). Faecal and ileum samples were taken in 

order to determine if any microbial colonization had occurred. Indeed, weekly 

throughout the trial faecal pellets were taken and examined for microbial content 

throughout the trial.  This GF model will enable us to determine if physiological 

alterations in conventional C57BL/6 mice were due to a host response or a 

microbiota response to RSV. 

. 
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Statistical analysis 

Data for all variables were normally distributed by the standard deviation from the 

mean values in most cases. Statistical significance was determined as a p-value less 

than 0.05 inclusive of technical and biological replicates. 
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RESULTS 

Oral RSV modulates gut defensins and local and systemic cytokines in 

C57Bl/6J mice: 

 

Microbiological analysis indicated an indirect effect of RSV upon the microbiota 

(Chapter 2).  Such an indirect effect could be mediated through host physiological 

processes. To assess this possibility qRT-PCR was utilised to determine gene 

expression changes in RSV treated animals and we investigated host systems which 

are known to impact upon gut microbial community structure including 

inflammation (Everard, Belzer et al. 2013) mucin production (Bergstrom, Kristensen 

et al. 2012; Sommer, Adam et al. 2014), production of nitric oxide synthase (NOS) 

(Qiao, Sun et al. 2013) and defensin production (Mukherjee, Vaishnava et al. 2008; 

Ostaff, Stange et al. 2013). The data indicated a general reduction in expression of 

genes encoding systemic inflammatory markers in statin-treated animals (including 

TNF, CCL20, IL-1,IL-18, NF-κB) (Fig.1A). Levels of TNF and IL-1 proteins 

were significantly reduced in the plasma and liver respectively as measured by the 

mesoscale discovery (MSD) assay (Fig.1C).  A reduction in hepatic expression of 

genes encoding cellular adhesion molecules (ICAM-1 and Itgal) were also 

determined (Fig. 1A). In contrast, expression of genes encoding inflammatory 

markers (including TNF, CCL20, IL-1, IL-18, TGF-β1, IL-17A) and adhesion 

molecules (ICAM-1 and Itgal) were increased locally in the ileum of statin-treated 

animals (Fig. 1B). The genes encoding the antimicrobial peptides RegIII and CAMP 

were significantly increased in the ileum in statin-treated animals (Fig. 1B). 

Transcription of the genes encoding inducible nitric oxide synthase (iNOS2), and the 

common mucosal mucin (MUC2) were also significantly elevated in statin-treated 

animals (Fig. 1B). In all cases, relative changes in gene expression are indicated 
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using beta-actin as reference gene. Data is presented as means +/- SEM; *P<0.05, 

**P<0.01, ***P<0.005. 

                                                        LIVER: 

 

Fig. 1A. Gene expression profiles of selected genes in the liver of control mice or 

mice administered RSV. 

qRT-PCR amplifications were performed on a Roche Lightcycler480 system using 

appropriate primers. Data is presented as means +/- SEM; *P<0.05, **P<0.01, 

***P<0.005. 
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                                                                  ILEUM: 

 

Fig.1B. Gene expression profiles of selected genes in the terminal ileum of 

control mice or mice administered RSV. 

qRT-PCR amplifications were performed on a Roche Lightcycler480 system using 

appropriate primers. Data is presented as means +/- SEM; *P<0.05, **P<0.01 
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Fig. 1C. MSD analysis of hepatic and plasma cytokine levels.  

MSD assays were carried out according to the manufacturer’s instructions (Meso 

Scale Discovery, Rockville, MD). Data are indicated as means +/- SD from the 

mean. P values (*P<0.05) indicate significance relative to control mice. 
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RSV modulates changes in bile acid levels in mice 

Bile acids (BAs) are formed through pathways downstream of cholesterol 

biosynthesis in the liver and released as components of bile into the duodenum 

(Begley, Gahan et al. 2005). BAs can alter the microbial content of the gut through 

impacts upon individual microorganisms and ratios of various BAs in the gut are 

likely to influence microbiota composition (Islam, Fukiya et al. 2011; Yokota, 

Fukiya et al. 2012; Joyce, MacSharry et al. 2014). In our model RSV significantly 

reduced the hepatic expression of Cyp8b1 and Cyp27a1 genes which encode 

enzymes regulating the rate of conversion of 7α-hydroxycholesterol to cholic acid 

(CA) (Cyp8b1) or chenodeoxycholic acid (CDCA) (Cyp27a1) (Fig.2A). We utilised 

a UPLC-MS approach to determine the precise levels of individual BAs (see Table 

2) and examined the effects of RSV upon individual BA ratios in murine faeces (Fig. 

2 B, C), liver (Fig. 2 D, E) and plasma (Fig 3 A, B). PCA analysis demonstrated 

significant shifts in BA profiles in the faeces and plasma following long-term statin 

administration (Fig 4). In particular, RSV led to a significant reduction in faecal and 

hepatic levels of CA and CDCA which agrees with gene expression analysis (Fig. 2 

B, C, D, E).  

 

 

 

 

 

 



 

124 
 

                                                                        LIVER: 

 

Fig.2 A. Gene expression profiles of hepatic genes encoding key enzymes in the 

biosynthesis of BAs in control mice or mice administered RSV. 

qRT-PCR amplifications performed on a Roche Lightcycler480 system using 

appropriate primers. Relative changes in gene expression are indicated using beta-

actin as reference gene. Data presented as means +/- SEM; *P < 0.05. 
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                                                             FAECES: 

 

Fig. 2 B. UPLC-MS analysis of specific BAs in the faeces of control and RSV-

treated mice. 

Figure represents a summary of specific BA groups including primary BAs (pBA), 

secondary and tertiary BAs (stBA), muricholic acids (MCA), tauro-conjugated BAs 

(TcBA) and free taurine. Data are indicated as means +/- SD from the mean; *P < 

0.05, **P < 0.005. 
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                                                FAECES: 

 

 

  

 

Fig. 2 C. Precise levels of selected BAs in faeces of control and RSV-treated 

mice. 

Individual graphs indicate levels of Cholic acid (CA), Chenodeoxycholic acid 

(CDCA), Deoxycholic acid (DCA) and tauro-beta-Muricholic acid (TMCA). Data 

are indicated as means +/- SD from the mean; *P < 0.05, **P < 0.005. 
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                                                                      LIVER: 

 

Fig. 2 D. UPLC-MS analysis of specific BAs in the livers of control and RSV-

treated mice. 

Figure represents a summary of specific BA groups including primary BAs (pBA), 

secondary and tertiary BAs (stBA), muricholic acids (MCA), tauro-conjugated BAs 

(TcBA) and free taurine. Data are indicated as means +/- SD from the mean; *P < 

0.05, ***P < 0.0001. 
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                                                         LIVER: 

 

  

 

  

 

Fig. 2 E. Precise levels of selected BAs in livers of control and RSV-treated 

mice. 

Individual graphs indicate levels of Cholic acid (CA), Chenodeoxycholic acid 

(CDCA), taurodeoxycholic acid (TDCA) and tauro-urso-deoxycholic acid 

(TUDCA). Data are indicated as means +/- SD from the mean; *P < 0.05, ***P< 

0.0001. 
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Fig. 3 A. UPLC-MS analysis of specific BAs in the plasma of control and RSV-

treated mice. 

Figure represents a summary of specific BA groups including primary BAs (pBA), 

secondary and tertiary BAs (stBA), muricholic acids (MCA), tauro-conjugated BAs 

(TcBA) and free taurine. Data are indicated as means +/- SD from the mean; *P < 

0.05, ***P < 0.0001. 
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                                                               PLASMA: 
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Fig. 3 B. Precise levels of selected BAs in plasma of control and RSV-treated 

mice. 

Individual graphs indicate levels of Cholic acid (CA), Chenodeoxycholic acid 

(CDCA), alpha-muricholic acid (αMCA) and deoxycholic acid (DCA). Data are 

indicated as means +/- SD from the mean; *P < 0.05, ***P< 0.0001. 
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                               LIVER 

 

     

Fig. 4. Principle Co-ordinates analysis (PCA) revealed significant shifts in liver 

and plasma BA profiles following long-term RSV administration of C57BL/6 

mice. 

PCA analysis of total BA profiles in C57BL/6 mice demonstrated a significant 

profile shift in the liver and plasma comparing control and RSV-treated mice. Faecal 

BA profiles were not as significantly altered following treatment. 

 

 

 

     PLASMA 

FAECES 

  = Control 

 = RSV  



 

132 
 

No significant differences were detected from the analysis of a number of 

individual faecal bile acids: lithocholic acid (LCA), taurolithocholic acid (TLCA), 

taurodeoxycholic acid (TDCA), tauroursodeoxycholic acid (TUDCA), α-muricholic 

acid (αMCA), tauro-α-muricholic acid (TαMCA), β-muricholic acid (βMCA), tauro-

β-muricholic acid (TβMCA), ω-muricholic acid (ωMCA), tauro-ω-muricholic acid 

(TωMCA) or taurochenodeoxycholic acid (TCDCA), (Appendix to Chapter 3).  

No significant differences were detected in a number of individual hepatic bile 

acids; deoxycholic acid (DCA), taurocholic acid (TCA), ursodeoxycholic acid 

(UDCA), taurochenodeoxycholic acid (TCDCA), tauro-conjugated muricholic acid 

(TcMCA), α-muricholic acid (αMCA) and ω-muricholic acid (ωMCA), (Appendix 

to Chapter 3). Lithocholic acid (LCA) was not detectable in the liver.  

RSV did not significantly affect the precise levels of a number of plasma bile 

acids: deoxycholic acid (DCA), taurocholic acid (TCA), ursodeoxycholic acid 

(UDCA), taurodeoxycholic acid, (TDCA), taurochenodeoxycholic acid (TCDCA), 

tauro-conjugated muricholic acid (TcMCA), β-muricholic acid (βMCA) and ω-

muricholic acid (ωMCA) (Appendix to Chapter 3). Lithocholic acid (LCA) or 

taurolithocholic acid (TLCA) were not detected in the plasma of mice. 
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Oral RSV modulation in germ-free (GF) mice: 

Further to the C57BL/6 murine RSV administration study described in this chapter, 

a similar study was performed in germ free control and RSV-treated animals (see 

Materials and Methods). RSV significantly increased expression of inflammatory 

markers in the liver (IL-1β, TNFα, ICAM-1 and Itgal) and ileum (Itgb2) of statin 

treated animals (Fig 5). Levels of IL-1β protein were significantly increased in the 

liver of GF animals as determined by MSD (Fig.5). RSV did not modulate genes 

involved in hepatic BA synthesis (CYP7a1, CYP7b1, CYP8b1, CYP27a1 and 

CYP46a1) in germ free animals (Fig. 5). Genes encoding antimicrobial peptides 

(RegIII and CAMP), inducible nitric oxide synthase (iNOS2) and the common 

mucosal mucin gene (MUC2) were not affected in the ileum of germ free animals 

(Fig.5).   
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Fig. 5. Host gene expression analysis of RSV upon hepatic and gastrointestinal 

inflammatory markers, bile acid and antimicrobial genes in GF mice. 

Gene expression profiles of selected genes in the liver (IL-1β, TNFα, ICAM-1, Itgal, 

CYP7a1, CYP8b1, CYP27a1, CYP46a1) and ileum (Itgb2, MUC2, CAMP, RegIII) 
of control mice or mice administered RSV. qRT-PCR amplifications performed on a 

Roche Lightcycler480 system using appropriate primers. Relative changes in gene 

expression are indicated using beta-actin as reference gene. In all cases data are 

presented as means +/- SEM; *P < 0.05, **P < 0.01, ***P < 0.005. 

 

RSV did not affect hepatic, circulating, bilary or faecal primary bile acids 

synthesis in GF mice: 

Gene expression analysis of GF control and RSV-treated mice revealed no signifcant 

effect for genes (CYP7a1, CYP7b1, CYP8b1, CYP27a1 and CYP46a1) involved in 

hepatic BA synthesis (Fig. 5). This was confirmed by UPLC-MS analysis of 

individual primary BA’s (CA and CDCA) as well for MCA (Fig. 6) and for total 

primary (pBA), tauroconjugated (TcBA) and secondary (stBA) BA’s (Fig. 7). 

LIVER:  

  

PLASMA: 
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GALL BLADDER: 

 

 

FAECES: 

 

Fig.6. Precise levels of selected BAs in liver, plasma, gall bladder and faeces of 

control and RSV-treated GF mice.  

Individual graphs indicate levels of Cholic acid (CA), Chenodeoxycholic acid 

(CDCA), muricholic acid (MCA) in GF liver, plasma, gall bladder and faeces. RSV 

had no effect on indicated BA’s. Data are indicated as means +/- SD from the mean; 

*P < 0.05. 

 

RSV did not affect total primary, secondary and tauroconjugated BA’s in GF 

mice: 

GF mice were unaffected by RSV for individual synthesis of BA’s (CA, CDCA and 

MCA) (Fig.6). UPLC-MS analysis of total primary (pBA), secondary (stBA) and 

tauroconjugated (TcBA) confirmed this result in liver, plasma, gall bladder and faces 

of GF mice (Fig.7).  
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Fig. 7. UPLC-MS analysis of total primary, secondary and tauroconjugated 

BA’s in control and RSV-treated GF mice.  

Graphs indicate levels of total primary (pBA), secondary (stBA) and 

tauroconjugated (TcBA) BA’s in control and RSV-treated GF mice (liver, plasma, 

gall bladder and faeces). RSV had no effect on indicated BA’s. Data are indicated as 

means +/- SD from the mean with a value for *P < 0.05 denoting significance. 

 

RSV did not affect synthesis of a number of other individual BA’s: 

UPLC-MS analysis of hepatic, circulating, biliary and faecal BA’s including 

tauroconjugated muricholic acid (TcMCA),  taurocholic acid (TCA), 

taurochenodeoxycholic acid (TCDCA) or free taurine determined no effect of RSV 

in GF mice (Appendix to Chapter 3). 
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RSV did not modulate bile acid profiles in GF mice: 

Individual UPLC-MS (BA) analysis revealed no significant effect of RSV on the 

primary BA’s (CA and CDCA) and MCA (Fig. 6) as well for total primary, 

secondary and tauroconjugated BA’s (Fig.7) and a number of other BA’s (Appendix 

to Chapter 3). This finding was confirmed by PCA analysis for total hepatic, 

circulating, biliary and faecal BA signatures in control and RSV-treated GF mice 

(Fig. 8). This was confirmed by UPLC-MS analysis of individual BA’s. 

                                   LIVER                                                     PLASMA 

                 

                          GALL BLADDER                                             FAECES 

 

                     

  = Control 

 = RSV 

 

Fig. 8. Principle Component Analysis (PCA) of hepatic, circulating, bilial and 

faecal BA profiles of control and RSV-treated GF mice.UPLC-MS determined no 

significant shift in BA signatures (liver, plasma, gall bladder and faeces) in GF mice. 
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Discussion 

 

In addition to lowering systemic cholesterol levels in mammals, statins have 

been shown to affect markers of inflammation (Nenseter, Aukrust et al. 2014) and 

the efficacy of statins is influenced by bile acid profiles (as a marker of microbiota 

composition and activity) (Kaddurah-Daouk, Baillie et al. 2011). Indeed RSV has 

been shown to be secreted into the gastrointestinal tract of patients via the biliary 

route after initial treatment (Bergman, Forsell et al. 2006). As these physiological 

processes may influence microbiota composition we examined these parameters in 

our model. We show that markers of inflammation (hepatic expression of genes 

encoding TNF, CCL20, IL-1β, TLR2 and IL-18) were reduced following RSV 

treatment. Indeed it has been similarly reported that RSV in rodents reduced 

cytokine mediated (for example TNFα) inflammation following liver trauma and 

sepsis (Awad and El Sharif 2010).  

Contrastingly we observed a significant increase in the gene expression of 

both proinflammatory cytokines (such as IL-1β and IL-17A) combined with an 

increase in cellular adhesion molecules (such as ICAM-1, Itgal and Itgb2) as well as 

powerful anti-inflammatory mediators of inflammation (TGF-β, iNOS2) in the ileum 

of RSV treated C57BL/6 mice. We propose whilst statins generally have anti-

inflammatory effects in the intestine (Bereswill, Munoz et al. 2010), it is likely that 

observed pro-inflammatory increases in our model are masked by the effects of 

TGF-β and other such anti-inflammatory agents such as nitric oxide (NO). TGF-β is 

a strong anti-inflammatory cytokine which is a major up regulator of mucosal Treg 

cells (with potent immune suppression activity) in murine colitis models and is 

essential in maintaining inflammatory homeostasis (Ruemmele and Garnier-
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Lengline 2013). We observed a significant increase in the expression of this 

cytokine in our statin model.  Similarly, increased nitric oxide release (NO) 

attributed to statin exposure in other murine models has been shown to promote anti-

inflammatory activity in atherosclerotic cases (Momi, Monopoli et al. 2012). We 

determined a significant increase in the mucosal expression of iNOS2 in our statin 

model. With respect to other studies that show the anti-inflammatory effects of 

statins in the intestines (in particular artificially induced colitis models) (Naito, 

Katada et al. 2006), we accept that statins generally exhibit beneficial effects with 

regard to inflammation, however these effects were only shown in extreme (disease 

state) cases where cytokine levels (in particular serum TNFα) were artificially 

elevated (Jahovic, Gedik et al. 2006). Further studies should be prompted in models 

which examine statins in non-inflamed as well as non-induced cases further 

examining immune homeostasis. 

Importantly, we demonstrate a significant increase in the expression of genes 

encoding antimicrobial peptides (RegIII and CAMP) which have known functions 

in regulating the local composition of the microbiota (Vaishnava, Yamamoto et al. 

2011; Wan, van der Does et al. 2014) (see Chapter 1 and 2 also). RegIIIand CAMP 

respectively mediate the gut microbiota by directly inhibiting bacterial cell wall 

synthesis (Cash, Whitham et al. 2006) and normal functioning of the cell membrane 

(Thennarasu, Tan et al. 2010). Interestingly other groups have shown the induction 

of mucosal cathelicidin by statin (simvastatin) treatment (Bubeck Wardenburg, Patel 

et al. 2007; Chow, von Kockritz-Blickwede et al. 2010). Also in vitro models the 

anti-microbial activity of neutrophils is also enhanced following statin exposure 

(mevastatin) (Chow, von Kockritz-Blickwede et al. 2010). We noted significant 

increase in local expression of iNOS2 and the mucin gene (MUC2), factors which 
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are likely to impact locally upon the composition of the microbiota (Jager, Stange et 

al. 2010). Interestingly there is evidence that expression of antimicrobial peptides 

(such CAMP) can be influenced within the gastrointestinal tract by the presence of 

bile acids such as chenodeoxycholic acid (CDCA) and ursodeoxycholic acid 

(UDCA) via concomitant interactions with nuclear hormone receptors in human 

biliary epithelium (D'Aldebert, Biyeyeme Bi Mve et al. 2009).  

It has previously been shown that oral administration of cholic acid (CA) to 

rats significantly alters the composition of the gut microbiota promoting an increase 

in Firmicutes (in particular an outgrowth of specific Clostridia and Erysipelotrichi 

clusters) and an increase in Proteobacteria (in particular E. coli) (Islam, Fukiya et 

al. 2011; Yokota, Fukiya et al. 2012). In our study RSV administration in mice 

reduced expression of Cyp8b1 and Cyp27a1 in the liver and reduced overall levels 

of hepatic and faecal CA and CDCA. We note a concomitant effect on the 

microbiota which is broadly the opposite to that seen in CA-treated animals (Islam, 

Fukiya et al. 2011), notably a decrease in specific Firmicutes groups including 

specific Clostridial clusters (Roseburia species) and Erysipelotrichaceae and a 

decrease in the Proteobacteria (see Chapter 2). 

In our study we therefore show that RSV treatment resulted in a reduction in 

the synthesis of primary bile acids (including CA) which correlates with alterations 

to the microbiota that may reflect these changes.  Whilst inflammation and BA 

profiles are known to exert a powerful influence upon the microbiota we recognise 

that other physiological parameters (including regulation of local cholesterol levels 

(Martinez, Wallace et al. 2009; Martinez, Perdicaro et al. 2013) may also potentially 

influence the structure of the gut microbial community in our model. 
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We wished to examine whether some of the off-target effects of RSV are 

mediated directly in the host or are dependent upon specific host-microbe 

interactions in the gut. We therefore administered a sterile RSV formulation orally to 

germ free mice and measured selected physiological parameters in these animals. 

We noted an increase in the local expression of hepatic inflammatory markers (IL-

1β, TNFα, ICAM-1 and Itgal) and subsequently confirmed this by MSD protein 

analysis. This contrasted with an observed decrease in the expression of these same 

inflammatory markers in our conventional mouse model. Interestingly, hepatic 

expression of the intracellular adhesion molecule (ICAM-1) has been shown to be 

only constitutively expressed in the presence of a functional enteric microflora 

(Komatsu, Berg et al. 2000).  ICAM-1 expression is also strongly up regulated in the 

presence of other pro-inflammatory cytokines (in particular IL-1β) (Henninger, 

Panes et al. 1997) which we observed in our study. Similarly gut defensins including 

RegIIIare known to be influenced by the gut microbiota are generally poorly 

expressed in germ free animals (Vaishnava, Yamamoto et al. 2011; Natividad, 

Hayes et al. 2013; Joyce, MacSharry et al. 2014) and in our study we saw no effect 

of statins on these parameters in the absence of gut bacteria. We conclude that 

statins affect these parameters only in the presence of the gut microbiota through 

affecting the interplay between host and microbe with direct consequences for the 

community structure of the microbiota.   

RSV had no effect on the local hepatic expression of bile acid regulatory 

genes (CYP7a1, CYP7b1, CYP8b1, CYP27a1 or CYP46a1) in our GF murine model. 

This observation correlated with UPLC-MS analysis of individual (CA and CDCA) 

and total (primary and tauroconjugated) bile acids in the liver, plasma, gall bladder 

and faeces between control and RSV-treated animals. This is unsurprising as the gut 
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microbiota in human and murine models is well described as essential for bile acid 

metabolism (Narushima, Itoh et al. 1999; Bhowmik, An et al. 2012).  

Overall we show that RSV significantly influences the community structure of 

the gut microbiota most likely by altering the subtle interplay between microbe and 

host leading to changes in local gene expression and bile acid profiles that feedback 

further upon the microbiota. Microbial symbiosis in the gut is characterized by 

significant microbe-host and host-microbe feedback systems that influence both 

entities. For instance, whilst RegIII plays a major role in moderating the mucosal 

microbiota (Vaishnava, Yamamoto et al. 2011) direct alterations to gut microbiota 

composition can alter the expression of RegIII (Delzenne, Neyrinck et al. 2011; 

Swann, Want et al. 2011). Similarly bile acid synthesis in the host both influences 

and is influenced by the microbiota (Islam, Fukiya et al. 2011; Devkota, Wang et al. 

2012; Yokota, Fukiya et al. 2012). 

In the current study we demonstrate that statins significantly alter the gut 

microbiota in mice with attendant alterations to bile acid profiles and local gene 

expression profiles. Whilst we see no alterations in local SCFA production in our 

model (Chapter 2) the overall health implications of our findings are unclear and 

should prompt further studies in humans. 
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   Chapter 4 
 

 

HMG-CoA synthase (mvaS) involved in isoprenoid 

biosynthesis is non- essential for the normal growth of 

Listeria monocytogenes EGDe 

 

 

 

 

 

 

 

 

 

 

 

 

* A manuscript is currently being prepared based on research conducted in this chapter for 

publication. 
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Abstract 

HMG-CoA synthase is the second enzyme of the “classical” mevalonate pathway for 

isoprenoid biosynthesis in Listeria monocytogenes EGDe that catalyses the 

formation of HMG-CoA.  Isoprenoids are essential organic molecules that help to 

form major cellular structures (cell wall and cell membrane) of bacteria and are 

involved in important metabolic activities of the cell. L. monocytogenes is a unique 

micro-organism as it also possesses an alternative biosynthetic pathway for 

isoprenoid biosynthesis namely the MEP (methylerythritol 4-phosphate) pathway. 

Previously, it has been shown that deleting the third enzyme (HMG-CoA reductase) 

of the mevalonate pathway in L. monocytogenes EGDe, results in a mutant that is 

dependent upon the addition of mevalonate for normal growth.  However, in the 

current study deletion of the gene for HMG-CoA synthase (mvaS) did not affect 

growth in complex and defined media compared to the wild type or significantly 

impair virulence of the mutant in cell culture or in a murine model. Deletion of this 

gene did not significantly predispose the cells to antibiotic or cell wall stresses 

compared to the wild type. The HMG-Co reductase inhibitor Rosuvastatin did not 

significantly impair growth of the knockout mutant. Overall this work demonstrates 

that HMG-CoA synthase is not essential in L. monocytogenes and suggests the 

existence of other enzymes that may support this isoprenoid biosynthetic pathway. 
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Introduction 

HMG-CoA synthase (mvaS) (lmo1415) is the second enzyme reaction in the 

mevalonate-dependent isoprenoid biosynthetic pathway that catalyses the conversion 

of acetoacetyl-CoA to 3-hydroxy-3-methylglutaryl CoA (HMG-CoA). Isoprenoids 

are a large family of compounds synthesised by many living organisms on the 

planet. These terpenoids are essential to the growth and survival of many organisms 

by being integral cellular components such as the cell wall and cell membrane 

(bactoprenol and hopanoids), electron transport chain (ubiquinone and 

menaquinone), and components of the photosynthetic pathway (chlorophyll, 

bacteriophyll, rhodopsins and catenoids) (Rodríguez-Concepción and Boronat 

2013). In the majority of the bacterial kingdom, the common isoprenoid building 

blocks are formed via the MEP (methylerythritol 4-phosphate) pathway. This 

pathway is absent in the archaeal kingdom as well as in higher eukaryotes such as 

fungi and humans. In this case, the isoprenoid precursors are generated by a different 

pathway, the mevalonate pathway, which is biochemically distinct from the MEP 

pathway (Perez-Gil and Rodriguez-Concepcion 2013) & (Rodríguez-Concepción 

and Boronat 2013). Bacteria are unique in that some utilise either pathway and the 

foodborne pathogen L. monocytogenes, has been found to contain a complete sets of 

enzymes of both pathways in the genome (Fig. 1) (Begley, Gahan et al. 2004). 

Listeria innocua a non-pathogenic close relative of L. monocytogenes was found to 

be lack the genes gcpE and lytB of the MEP pathway but contains a full set of genes 

for the mevalonate pathway (Begley, Bron et al. 2008).   

 L. monocytogenes is a gram positive bacterium that is the cause of listeriosis in 

patients in particular those that have a suppressed immune system. L. 

monocytogenes is a non-sporeforming facultative anaerobic rod. It is capable of 
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growing at temperatures between -0.4ºC - 50ºC. The bacterium is catalase 

positive/oxidase negative and expresses a β-hemolysin on blood agar. It has been 

associated with the contamination of ready to eat foods including meat and dairy 

products. Upon infection, L. monocytogenes is able to cause meningtitis, septicaemia 

and even abortion in pregnant females (Farber and Peterkin 1991).  

 Previous work in our lab has shown that the rate limiting enzyme HMG-Co A 

reductase (hmgR) is essential for growth and survival of L. monocytogenes EGDe 

(Heuston, Begley et al. 2012). However it was unclear whether the entire pathway is 

essential for viability in this organism. Therefore the splicing by overlap extension 

(SOE) PCR technique (Leenhouts, Venema et al. 1998) was used to generate a 

precise deletion mutant in another gene in this pathway (mvaS) in L. monocytogenes 

EGDe. This mutant allowed us to examine if the enzyme HMG-CoA synthase 

(mvaS) is essential in L. monocytogenes EGDe for growth and virulence and 

permitted comparison with mutants in the mevalonate pathway, (hmgR (lmo0825)) 

or MEP pathway (gcpE (lmo1441) and lytB (lmo1451)) that have been generated 

previously. 
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       MVAL pathway                             MEP pathway 

                        Acetyl-CoA                                   glyceraldehyde-3-P + pyruvate    

                                

                      Acetoacetyl-CoA                                              DOXP 

                                                                                                

                        HMG-CoA                                                       MEP 

                                                                                                

                        Mevalonate                                                  CDP-ME 

                                                                                              

                       Mevalonate - P                                             CDP - MEP    

                                                                                              

                       Mevalonate – PP                                              MEcPP 

                                                                                                   

                                                                                            HMBPP 

                                                              IPP                                      

             

                    

                                                          DMAPP 

Fig. 1. The metabolites, enzymes and genes involved in the mevalonate and 

MEP pathways for isoprenoid biosynthesis in Listeria monocytogenes EGDe.  

The essential pathway enzymes HMG-CoA synthase and HMG-CoA reductase are 

highlighted and NCBI annotated. This figure was modified from (Begley, Gahan et 

al. 2004) 

HMG-CoA synthase 

(mvaS) 
   lmo1415 

 lmo 0825 HMG-CoA reductase 

(hmgR) 

lmo1441 

lmo1451 

HMBPP synthase 

(gcpE) 

HMBPP reductase 

(lytB) 
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Materials and Methods 

 

Bacterial strains, media, chemicals and other growth reagents: 

The pORI280 based repA
 
negative system was used during this study in an attempt 

to create a clean deletion mutant in L. monocytogenes EGDe in HMG-CoA synthase 

(lmo1415). The repA positive strain  Escherichia coli EC101 was used as a cloning 

host during the creation of the deletion mutant construct and was grown routinely at 

37ºC in Luria Bertani (LB) medium with shaking (Reid 1991).  L. monocytogenes 

EGDe was grown in Brain Heart Infusion (BHI) media (Oxoid) also at 37ºC with 

shaking. For agar plates, 1.5% agar technical from Merck was used. Antibiotic 

selection during the study was as follows:  E. coli EC101 (250µg/ml erythromycin), 

L. monocytogenes EGDe-pVE6007 (7.5µg/ml chloramphenicol) and L. 

monocytogenes EGDe (5µg/ml erythromycin). For the transformant selection, 

100µg/ml X-gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside) was added to 

the media (Sigma Aldrich).  

Mevalonate preparation: 

Mevalonate was prepared to 1M total concentration by dissolving Mevalonolactone 

powder (Sigma Aldrich) in deionised water and subsequently hydrolysed with an 

equal volume of 2M sodium hydroxide (NaOH) at 37ºC shaking. Following filter 

sterilisation, the 1M mevalonate solution was aliquoted and stored at -20ºC ready for 

use. In this study, mevalonate was always used at a final concentration of 0.001M as 

it is exogenously taken up by a mevalonate-deficient mutant (ΔhmgR) in L. 

monocytogenes EGDe  (Heuston, Begley et al. 2012) and we predicted that this 
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would support the growth of the (mvaS) HMG-CoA synthase clean deletion mutant- 

if required. 

Genetic manipulations: 

Plasmid DNA was isolated from bacterial cultures using the QIAGEN QIAprep 

Miniprep spin kit ®. For the cloning reactions the proofreading enzyme KOD Hot 

Start DNA polymerase (Novagen) was used, to carry out consecutive polymerase 

chain reactions during the SOEing PCR procedure. L. monocytogenes EGDe 

genomic DNA used as the template and was extracted using the GenElute bacterial 

genomic miniprep kit (Sigma Aldrich). Hyperladder 1® from BioLine® was used as 

the standard molecular weight marker during the entire study. Restriction enzymes 

for the cloning reactions were supplied by New England BioLabs®. The four 

overlapping oligonucleotide primers used during the experimented were synthesised 

to our specifications by MWG-BioTech®. All other reagents and chemicals used 

during this work were ordered from Sigma Aldrich.   

pORI280 chromosomal mutagenesis: 

Splicing by overlap extension (SOE) PCR technique was used to generate two 

fragments of approximately 600bp in length. The first fragment (AB) was generated 

upstream of the gene to be deleted and contained the ATG start codon and the 

second fragment (CD) generated downstream beginning with the stop codon TAA. 

Two sets of primers were designed such that the two fragments would overlap 

forming AB fragment (lmo1414For_Xba1/lmo1414RevOL) and CD fragment 

(lmo1416FOL/1416R_Pst1). The 1.2kb ABCD product was generated following 

three subsequent PCR reactions. In the first reaction, 1µL of diluted L. 

monocytogenes EGDe genomic DNA (10-50ng DNA) was used as the template to 
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generate the initial PCR fragments. The reaction conditions for KOD polymerase 

were as follows; hot start 95ºC for 5mins, 95ºC for 30secs, 55ºC for 30secs, 70ºC for 

45secs repeated for 35 cycles, final extension 70ºC for 2mins and held at 4ºC. These 

initial fragments were then combined in a 1:1 ratio in a primerless PCR reaction as 

follows; 95ºC for 1min, 55ºC for 1min and 70ºC for 1min this was repeated for 10 

cycles. The final PCR reaction was used to amplify the ABCD fragment using the 

lmo1414For_Xba1 and lmo1416R_Pst1 primers; initial denaturation 95ºC for 1min, 

95ºC for 1min, 55ºC for 30secs, 70ºC for 30secs repeated for 35 cycles, 70º for 

2mins final extension and held at 4ºC forever. The SOEing PCR product was 

subsequently digested with the appropriate restriction. 

The long fragment was visualised a gel and sequenced by GATC BioTech in 

the forward and reverse directions to ensure the accuracy of the ABCD product. An 

ATP-dependent ligation reaction using T4-DNA ligase (Roche) was carried out to 

unite the digested fragments and plasmids. The plasmid containing the insert 

pORI280:Δlmo1415 (mvaS) was first electroporated into electro-competent E. coli 

EC101 (see below), using the BioRad Gene Pulser ® electroporator set at the 

following conditions: (cuvette size 0.2cm; resistance 200Ώ; voltage 2.5kV; 

capacitance 25µF). Cells were revived by incubation with nutrient S.O.C. media 

shaking at 37ºC for 1hour. Subsequently, cells were plated on LB agar plates 

supplemented with 250µg/ml erythromycin. Colonies were then selected and grown 

overnight in appropriate broth and antibiotic at 37ºC with shaking. Plasmid 

extraction was then carried out to isolate plasmid containing the insert. 

Electrocompetent L. monocytogenes EGDe cells were prepared (see below) ready 

for electroporation with the purified plasmid construct.  
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Electrocompetent E. coli EC101 cell preparation and electroporation: 

From a freshly streaked out LB agar plate, a single colony of E. coli EC101 was 

grown overnight shaking at 37ºC. Into 200mls of LB broth, 2ml (1% inoculum) was 

placed into a sterile 250ml conical flask and grown shaking at 37ºC for approx. 3-4 

hours to an OD600 of 0.5-1 measured regularly throughout growth. The flask was 

then chilled on ice for 15 mins and centrifuged in sterile bottles at 4,000rpm for 15 

mins at 4ºC. The pellet was washed twice in 100mls of cold sterile water at 4ºC 

twice and finally placed into 50ml falcon tubes and centrifuged as before. 5ml of a 

10% (v/v) sterile glycerol solution was then used to resuspend once more and then 

finally in a volume of 750µL. The cells were dispensed into 50µL aliquots and 

stored at -80ºC ready for use.  

L. monocytogenes EGDe competent cell preparation and electroporation: 

A 10ml culture of L. monocytogenes EGD-pVE6007 was grown overnight in BHI 

broth (Oxoid) at 37ºC shaking, in the presence of 7.5µg/ml chloramphenicol. Into a 

sterile conical flask, 2ml of overnight culture was added to 100ml BHI broth 

supplemented with 0.5M sucrose (filter sterilised) and 7.5µg/ml chloramphenicol. 

The flask was grown shaking at 37ºC for 2-3 hours to an OD600 of 0.2-0.3. 100µL 

of Penicillin G antibiotic (10µg/ml final concentration) was added to the flask and 

left to incubate for a further 2 hours. Subsequently, the bacterial culture was 

centrifuged at 7,000rpm for 10 mins at 4ºC in 250ml bottles and the supernatant 

discarded. The cells were washed twice in a solution of 1mM ice-cold HEPES and 

0.5M sucrose in a volume of 100ml decanted and then 55ml and decanted again. 

After washing, cells were resuspended in a final volume of 200-300µL 

HEPES/sucrose and dispensed into 50µL aliquots and stored at -80ºC ready to be 
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used. The plasmid containing insert (pOR1280-Δlmo1415) was electroporated into 

L. monocytogenes EGDe-pVE6007 competent cells, with a helper plasmid providing 

RepA in-trans to allow replication of pORI280. The following electroporation 

conditions were used: (cuvette size: 0.2cm; resistance 400Ώ; voltage 1.8-2kV and 

capacitance 25µF). Cells were revived by incubation at 30ºC without shaking with 

2ml ice-cold 0.5M sucrose/BHI broth for 2 hours statically and spread plated onto 

BHI plates supplemented with 5µg/ml erythromycin, 100ug/ml X-gal and 0.001M 

mevalonolactone incubated at 30ºC for 48hours.  Individual light blue and dark blue 

colonies were selected from the transformation plates. The integration of pORI280 

by a single crossover event was stimulated by streaking selected colonies and onto 

BHI plates supplemented with erythromycin, X-gal and mevalonolactone and 

incubated at 37ºC for 24hours. The loss of the pVE6007 helper plasmid was 

confirmed by replica plating onto BHI agar containing 5µg/ml erythromycin or 

7.5µg/ml chloramphenicol. Chloramphenicol sensitive colonies were subsequently 

selected for plasmid excision and curing by statically passaging cultures diluted 

1:1000 for five successive passages and at 37ºC in  plain BHI broth supplemented 

with mevalonolactone, each passage was spread plate onto BHI plates containing X-

gal. Each passage was diluted 10
-5 

in BHI broth and 100µL spread on BHI agar 

supplemented with 100µg/ml and incubated for 24 hours at 37ºC. White colonies 

were screened by colony PCR with primers external to the deletion region 

(lmo1415OutFwd: 5’-catctgttaaaccatcaattaac – 3’ /lmo1415OutRev: 5’-

accgatcctttcgatattcgc – 3’) and compared to wild-type L. monocytogenes EGDe for 

the presence of the deleted gene and confirmed by sequencing. Colonies were patch 

inoculated on BHI agar containing erythromycin, sensitivity to the antibiotic 

confirmed loss (curing) of the pORI280 plasmid.  
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Complementation of the Δlmo1415 deletion mutant: 

The HMG-CoA synthase deletion mutant in L. monocytogenes EGDe was 

complemented using the pPL2 plasmid (Lauer, Chow et al. 2002). pPL2 is a site 

specific integration vector that can be used to complement gene deletions is L. 

monocytogenes EGDe. pPL2-lmo1415 was created using the primer pair 

(lmo1415CompF_Kpn1/lmo1415CompR_Spe1) to amplify a PCR fragment of 

approx.1.2kb in length containing the promoter region and start/stop codons of the 

HMG-CoA synthase gene and then electroporated into  DH5α cells.  This was then 

extracted, purified and transformed into HMG-CoA synthase (Δlmo1415) lmoEGDe 

deletion mutant. Transformants were selected using chloramphenicol as the 

selectable marker. The correct insert was verified and checked by PCR and 

sequencing. Primers external to the multiple cloning site were used to screen for the 

presence of the complemented gene (pPL2MCS_FWD: 5’- acgtcaatacgactcact-3’ 

and pPL2MCS_REV: 5’-gaatggcagaaattcgaaagc-3’). 
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Escherichia coli  
  
 Cloning host 

EC101 RepA+ integrated in the glgB gene 
 
 

DH5α Cloning host for complementation 
  

Listeria monocytogenes  
  

EGDe Wild type of serotype ½a, sequenced genome  
 

EGDe-Δlmo1415 EGDe with entire HMG-CoA synthase gene deleted 
 

EGDe::pEV6007 EGDe transformed with temperature sensitive 
helper plasmid 

  
Plasmids  

  
  

pORI280 Erythromycin/Chloramphenicol resistant, RepA- 
gene replacement vector, lacZ expressor 5.3kb in 
size 
 

pEV6007 Erythromycin resistant, Temperature sensitive 
helper plasmid supplies RepA in trans 
 

pPL2 Chloramphenicol resistant, Site specific Listeria 
integration vector 

 

Table 1. Bacterial strains and plasmids used in this study 
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Primers 5’-3’ sequence 

  
pORI280 system  

  
lmo1414For_Xba1 atatttctagaggattgatttcttcaccggctagctcggg 

lmo1414RevOL cggttttttttgattacatatgtaagctcaagtcctttatattttatttg 
lmo1416ForOL gacttgagcttacatatgtaatcaaaaaaaaccgactaggctaaatcagc 
lmo1416R_Pst1 atattctgcaggcacgtaatggccacagttagtcatatgg 

  
pPL2 complementation  

  
lmo1415CompF_Kpn1 aaggggtacctgctttaatagcgatttgtc 
lmo1415CompR_Spe1 ggggcgcagtacatgctactagtagga 

 
 

Muliple cloning site primers 
 
 

pORI280_FWD 
pORI280_REV 

 
 
 
 
tatcgatgcatgccatggtacc 
cgccagggttttcccagtcacgac 
 

 

Table 2. Oligonucleotides used in this study with restriction sites highlighted in 

bold. 

 

Growth curve analysis in normal growth media: 

L. monocytogenes EGDe wild and the clean deletion mutant ΔmvaS (HMG-Co A 

synthase), were grown in BHI (Brain Heart Infusion) broth overnight, shaking at 

37ºC. Overnight cultures of each strain were measured using a BioPhotometer 

(Eppendorf) and (10X4X45mm) polystyrene cuvettes (STARSTEDT). An OD600 of 

1 was determined for each strain and pelleted by centrifugation at 13,000rpm for 5 

mins and subsequently resuspended in 1ml of BHI broth. A 1:20 dilution was used 

to a give a starting optical density of (OD600= 0.05) for growth. 200µL was placed 

into each well of a 96-well plate in triplicate and growth was monitored every hour, 

over 24 hours. A multiscan microtitre plate reader (TECAN GENios® microplate 

reader) and Magellan® software package were used to determine growth of the 
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bacterial strains. Growth was compared to that of the wild type as well other 

mevalonate and MEP mutants generated in our lab (Δlmo0825 (hmgR), Δlmo1441 

(gcpE) and Δlmo1451 (lytB)). Exogenous mevalonate (0.001M) was added to 

support the growth of the mevalonate-dependent mutant Δlmo0825 (hmgR). Growth 

curves were correlated with spot plating of bacterial cultures on solid BHI (1.2%) 

agar grown overnight at 37ºC.  

Growth curve analysis in defined media (DM): 

Similar growth curves in the microtitre plate performed using BHI media were 

repeated using a chemically defined growth media for L. monocytogenes 

(Premaratne, Lin et al. 1991). Stock solutions: Na2HPO4/KH2PO4, MgSO4, Glucose, 

Fe-citrate, Amino acids (leucine, isoleucine, valine, methionine, arginine and 

glycine) were prepared in sterile water and autoclaved, Vitamins (riboflavin, biotin, 

thiamine prepared in 96% ethanol and combined with sterile water and an alcohol 

solution of thiotic acid). Fresh cysteine and glutamine stocks were prepared in sterile 

water and filter sterilised each time. Stock solutions were added to an appropriate 

volume of sterile water and used as the DM for monitoring the growth of L. 

monocytogenes EGDe wild and the deletion mutants. 

Murine macrophage (J774.A1) uptake and survival assay: 

J774.A1 macrophage cells were routinely maintained and grown in Dulbecco 

Modified Eagle Medium (DMEM) (Sigma-Aldrich), supplemented with 10% (v/v) 

Foetal Bovine Serum (Gibco) and 1% (v/v) Penicillin-Streptomycin (Sigma-Aldrich) 

in a 37ºC incubator supplemented with 5% CO2.  For all the uptake and survival 

assays, antibiotic-free media was used. Cells were routinely passaged 1:5 or 1:10, 

old media was removed and the cell monolayer washed with sterile Phosphate 
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Buffered Saline (PBS) (Sigma-Aldrich). Cells were removed from the monolayer by 

scraping using a Cell Scraper (STARSTEDT) and transferred to a fresh T175 tissue 

culture flask (STARSTEDT). Cells were counted using a haemocytometer and 

trypan blue exclusion to a cell density of 5 X 10
5 

cells/ml of media and seeded into 

each well of a 24-well tissue culture plate (STARSTEDT) in triplicate. Cells were 

allowed grow to a confluency of 70-80% over 48 hours. 24 hours prior to the assay 

cells were incubated in antibiotic free media. 

 Overnight cultures of wild type L. monocytogenes EGDe and deletion mutants 

strains were grown overnight at 37ºC shaking and in the case of the Δlmo0825 

(hmgR) supplemented mevalonate. One ml of overnight culture was subsequently 

pelleted by centrifugation and then washed in PBS and diluted to final concentration 

of 5 X 10
6 
CFU/ml and resuspended in plain DMEM giving a multiplicity of 

infection (M.O.I. = 10) for the assay. 

 The antibiotic-free DMEM was removed from the J774 cells in each well and 

washed once with sterile PBS, to which 1ml of bacteria suspension was added and 

incubated for 1 hour at 37ºC/5% CO2 to allow internalisation of the bacteria into the 

macrophage cells. Subsequently, the bacterial inoculum was removed and the 

monolayer washed once with sterile PBS. 50µg/ml gentamicin (Sigma) was 

resuspended in plain DMEM and applied to the monolayer and incubated one further 

hour to kill extracellular bacteria. This was then followed by lysis and scraping of 

the entire monolayer with a blue tip into ice cold sterile water containing 0.1% 

TritonX-100 in a sterile tube. 100µl of this lysate was serially diluted and plated 

onto BHI agar and in the case of the Δlmo0825 (hmgR) mutant supplemented with 

0.001M mevalonate, which was incubated at 37ºC overnight. Bacterial counts were 

performed (CFU/ml) for the time points T0, T7 and T24 hours.  
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Effects of the HMG-CoA reductase inhibitor Rosuvastatin (RSV) on the growth of 

L. monocytogenes WT and deletion mutants: 

 

Rosuvastatin calcium salt (CAS:147098-20-2) was obtained from KEMPROTEC 

Ltd, (11 Pennyman Green, Maltby, Middlesborough, TSB 0BX UK), as a pure solid 

powder. RSV was dissolved to a maximum soluble concentration of 3mg/ml for in-

vitro experimentation and subsequently filter sterilised (0.2µm). Growth curves were 

performed in a similar manner as outlined previously in BHI and DM media growth 

experiments in the microtitre plate reader. A range of RSV concentrations were used 

(0.0005mg/ml), (0.5mg/ml) and (3mg/ml) were dissolved in sterile BHI broth. 

Growth rates were compared for the following strains: L. monocytogenes EGDe 

wild, Δlmo1415 (mvaS), Δlmo0825 (hmgR), Δlmo1441(gcpE) and Δlmo1451(lytB) 

over 24 hours at 37ºC. 

Triton X-100 cell wall stress autolytic assay: 

Overnight cultures of L. monocytogenes EGDe wild type and the deletion mutant 

Δlmo1415 (mvaS) were grown at 37ºC shaking. The protocol for the Triton X-100 

autolytic assay was conducted as previously decribed (Popowska, Kusio et al. 2009). 

Bacterial cultures were pelleted by centrifugation and washed once with fresh BHI 

media and grown to log phase (OD600 = 0.6). Bacterial cells were harvested by 

spinning at 7000g for 12mins and washed once with sterile PBS and finally 

resuspended to an OD600 of 0.8 in lysis buffer. (50mM Trizma-Hydrochloride 

(Tris-HCl) (Sigma-Aldrich) pH adjusted with 2M Sodium Hydroxide (NaOH) to pH 

7.5. containing 0.1% Triton X-100). Incubations were performed shaking at 37ºC 

and cell lysis was measured as a percentage decline in the optical density (OD600) 
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using the BioPhotometer. Readings were recorded at T0, T30, T60, T90, T120, 

T150, T180 and T210mins and plotted as a declining curve on Sigma Plot®. 

Effect of cell wall antibiotics Penicillin G and Ampicillin: 

L. monocytogenes EGDe wild type clean deletion mutants (Δlmo1415 (mvaS) and 

Δlmo0825 (hmgR)) were examined by disk diffusion assay for sensitivity to 

Penicillin G and Ampicillin (cell wall synthesis inhibitors). Individual colonies were 

selected from overnight BHI agar plates and grown in Mueller-Hinton (MH) broth 

(Fluka Analytical). The bacterial suspension was thoroughly mixed and swabbed 

onto the surface of MH plates. Antibiotic disks Penicillin (2 units) and Ampicillin 

(10µg) were placed on the surface of the agar with a sterilised forceps and incubated 

inverted for 24 hours at 37ºC. Zones of clearance (bacterial inhibition) surrounding 

each disk were measured with a Vernier Callipers (mm) and conducted in triplicate 

for each strain. 

Oxidative stress (Hydrogen peroxide) disk assay: 

Overnight cultures of L. monocytogenes wild type and mutants Δlmo1415 (mvaS) 

and lmo0825 (hmgR) were grown shaking at 37ºC in BHI broth. Fresh BHI broth 

was inoculated with a 2% overnight culture and grown to an OD600=0.2 (log 

phase). 33.3% (v/v) hydrogen peroxide solution (Sigma-Aldrich) was prepared and 

autoclaved. Sterile filter disks (Sigma) were aseptically placed on the surface of a 

BHI plates. 10 and 20µL of the hydrogen peroxide solution was placed on the 

surface of each disk. 5mls molten BHI agar (0.75%) was inoculated with 10% 

bacterial suspension thoroughly combined and overlaid on the agar. Plates were 

incubated overnight at 37ºC and zones of clearance measured.  
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Enumeration of bacterial inoculum for BALB/c intraperitoneal infections: 

L. monocytogenes EGDe wild type, Δlmo1415 (mvaS) mutant and the 

complemented strain lmoEGDeΔlmo1415::pPL2(lmo1415) were grown overnight at 

37ºC shaking in BHI broth. For the complemented strain media was supplemented 

with 7.5µg/ml chloramphenicol. Bacterial cells were harvested by centrifugation 

(8,000rpm for 5mins) and cell pellets were then resuspended in equal aliquots of 

PBS. Optical density (OD600) was determined on the BioPhotometer and serial 

dilutions performed to obtain a final bacterial inoculum of 4x10
4
CFU/200µL 

injection volume.  

BALB/c intra-peritoneal in-vivo competition study: 

8-12 week old female BALB/c mice (n=6 per strain) were inoculated with                 

1 X 10
6 
CFU/ml bacteria by injection (200µL) via the intra-peritoneal route. 3 days 

post infection mice were humanely sacrificed and spleens and livers homogenized in 

5ml of PBS, serial dilutions were performed and plated onto BHI agar. CFU/ml was 

determined for each strain for in-vivo survival of the bacteria per mouse. All murine 

studies were conducted with relevant legislation and approved by the animal ethics 

committee at University College Cork. 

Bioinformatic and KEGG pathway analysis of Δlmo1415 deletion mutant: 

Bioinformatic analysis was carried out on the HMG-CoA synthase gene using 

information provided by the National Center for Biotechnology Information (NCBI) 

database, Pasteur Institute ListiList and Basic Local Alignment Search Tool 

(BLASTn, nucleotide query and BLASTx, translated query). The accession number 

(NP_464940.1) for HMG-CoA synthase (lmo1415) in L. monocytogenes EGDe was 
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used to gather information on the length of the gene and encoded protein, the 

presence of any other similar copies of the gene in the L. monocytogenes EGDe 

genome. The Kyoto Encyclopedia of Genes and Genomes (KEGG®) was used to 

elucidate potential other metabolic pathways that involve HMG-CoA synthase and 

its product HMG-CoA under the entry (EC: 2.3.3.10) in L. monocytogenes EGDe.  

Statistical analysis: 

Analysis of statistical in this study was performed for a number of technical and 

biological replicates and variance was determined via the Student’s T-test. Statistical 

significance was determined based on a p-value from the mean values (+/- SEM; *P 

< 0.05, **P < 0.01 and ***P< 0.001). 
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Results 

 

Bioinformatic analysis of the lmo1415 HMG-CoA synthase gene in L. 

monocytogenes EGDe: 

L. monocytogenes is a unique bacterial pathogen in that it contains a complete set of 

genes for the mevalonate and MEP pathways for isoprenoid biosynthesis (Fig.1.). 

The gene lmo1415 is predicted to encode HMG-CoA synthase, the second enzyme 

in the mevalonate pathway which was selected for deletion. Bioinformatic analysis 

of HMG-CoA synthase revealed a 388 amino acid (1167bp) protein on the positive 

strand, with a HMG-CoA synthase superfamily domain, 3 active site domains and 

multiple dimer interface sites that are distributed along the full length of the 

conserved domain of the protein (Fig.2). HMG-CoA synthase from this analysis 

belongs to a family of condensing enzymes that catalyse reactions either by 

carboxylation or non-carboxylation in a claisen like condensation reaction. Members 

of this family share strong structural similarity and are all involved in the synthesis 

or degradation of fatty acids and even in the production polyketides.  
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Fig.2. Conserved domains of the HMG-CoA synthase protein of L. 

monocytogenes EGDe in the Mevalonate pathway of isoprenoid biosynthesis 

Three active site domains and multiple dimer interface sites were found with the 

HMG-Co A synthase superfamily/condensing enzyme domains.  

 

Creation of a HMG-CoA synthase deletion mutant in L. monocytogenes EGDe: 

In this study, the splicing by overlap extension (SOE) PCR method (Fig. 3.) (Horton 

1995) was used to delete the lmo1415 HMG-CoA synthase gene in                           

L. monocytogenes EGDe, as a means to determine if this gene is essential to the 

lifecycle of the pathogen.  Previous work in our lab (Heuston, Begley et al. 2012) 

created a clean deletion mutant in the third enzyme in the mevalonate pathway of    

L. monocytogenes EGDe lmo0825 (HMG-CoA reductase), which proved to be 

essential in growth and survival of the wild type compared to the mutant variant.  

 

mvaS 
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Fig. 3. Genetic organisation of the HMG-CoA synthase (lmo1415) and 

surrounding genes in Listeria monocytogenes EGDe including schematic of 

SOEing procedure. 

 

Illustrated above is a diagram depicting the organisation and orientation of the 

lmo1415 gene in L. monocytogenes EGDe and its neighbouring genes lmo1414 and 

lmo1416. The gene to be deleted is highlighted in red and the neighbouring genes 

are indicated in black. The splicing by overlap extension (SOE) technique is 

described (Horton 1995). Following restriction digestion, the fragment was cloned 

into the site specific integrating vector pORI280. The vector pORI280 requires to be 

lmo1414 lmo1415 lmo1416 

A-B C-D 

ABCD 

Δlmo1415 

A-B and C-D 

fragments 

      ABCD fragment 

WT 

ΔmvaS 

 

pPL2-lmo1415 

L. monocytogenes EGDe- ΔmvaS 

deletion mutant 

lmoEGDe-Δlmo1415-pPL2(lmo1415) 

complemented strain 
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co-transformed with a helper plasmid pVE6007 into L. monocytogenes EGDe. 

Chromosomal integration in both cases is temperature sensitive at 37ºC. Deletion 

mutants were screened by colony PCR using primers external to the deleted region 

and compared to the wild type strain. 

KEGG pathway analysis of HMG-CoA synthase and HMG-CoA: 

KEGG pathway analysis of HMG-CoA synthase and HMG-CoA (S)-3-hydroxy-3-

methylglutaryl-CoA (EC:2.3.3.10) (below) in L. monocytogenes EGDe genera 

revealed a complex subset of biological reactions involved including: (lmo00280 

(valine, leucine and isoleucine degradation), lmo00650 (butanoate metabolism), 

lmo00900 (terpenoid backbone biosynthesis i.e. mevalonate and MEP pathways 

(Fig. 1), lmo01100 (metabolic pathways) and lmo01110 (biosynthesis of secondary 

metabolites). The pathway for the degradation of valine, leucine and isoleucine 

revealed another potential enzyme (EC:4.2.1.18 (methylglutaconyl-CoA hydratase)) 

that may provide an alternative route for the synthesis of HMG-CoA.  This 

degradation pathway was also found to exist in a wide variety of other bacteria. This 

could potentially be an alternative route for HMG-CoA substrate in L. 

monocytogenes EGDe but as of yet is not defined. 
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(A): KEGG pathway analysis of mvaS in L. monocytogenes EGDe:  

Entry 
lmo1415           CDS       T00066                                  

  
 

Definition hypothetical protein 

  K01641   hydroxymethylglutaryl-CoA synthase [EC:2.3.3.10] 

 

Organism lmo  Listeria monocytogenes EGD-e 

   lmo00072   Synthesis and degradation of ketone bodies 

lmo00280   Valine, leucine and isoleucine degradation 

lmo00650   Butanoate metabolism 

lmo00900   Terpenoid backbone biosynthesis 

lmo01100   Metabolic pathways 

lmo01110   Biosynthesis of secondary metabolites 

 

 

(B): Bacterial Valine, leucine and isoleucine degradation:  

 

http://www.genome.jp/dbget-bin/www_bget?gn:T00066
http://www.genome.jp/dbget-bin/www_bget?ko:K01641
http://www.genome.jp/dbget-bin/www_bget?ec:2.3.3.10
http://www.genome.jp/dbget-bin/www_bget?gn:T00066
http://www.genome.jp/kegg-bin/show_pathway?lmo00072+lmo1415
http://www.genome.jp/kegg-bin/show_pathway?lmo00280+lmo1415
http://www.genome.jp/kegg-bin/show_pathway?lmo00650+lmo1415
http://www.genome.jp/kegg-bin/show_pathway?lmo00900+lmo1415
http://www.genome.jp/kegg-bin/show_pathway?lmo01100+lmo1415
http://www.genome.jp/kegg-bin/show_pathway?lmo01110+lmo1415


 

174 
 

Fig. 4. KEGG pathway analysis of HMG-CoA synthase and its product HMG-

CoA (S)-3-hydroxymethylglutaryl-CoA in Listeria and other bacteria. 

KEGG pathway analysis of the enzyme HMG-CoA synthase (EC:2.3.3.10) in 

Listeria revealed a wide range of biochemical pathways including: terpenoid 

backbone synthesis (mevalonate and MEP pathways) as well as the degradation of 

valine, leucine and isoleucine. It should be noted that this degradation pathway also 

exists in a wide variety of other bacterial species and not just in L. monocytogenes 

EGDe. Highlighted is the enzyme HMG-CoA synthase (EC:4.3.3.10) and the 

enzyme denoted (EC:4.2.1.18 – methylglutaconyl-CoA hydratase) for  a potential 

alternative route of HMG-CoA synthesis. 

 

Growth characteristics of L. monocytogenes EGDe wild and mevalonate/MEP 

deletion mutants in normal growth media:  

 

Cultures of wild type L. monocytogenes EGDe and mutants ΔmvaS (lmo1415), 

ΔhmgR (lmo0825), ΔgcpE (lmo1441) and ΔlytB (lmo1451) were grown to late 

stationary phase (24 hours) in a microtitre plate reader to profile growth of each 

strain in BHI (see materials and methods) (Fig.5). Growth curves and statistical 

analysis were performed using Sigma Plot software package. 
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BHI growth curve WT vs. mutant Listeria monocytogenes EGDe
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Fig.5. Growth curve analysis of L. monocytogenes EGDe wild type and 

mevalonate and MEP pathway mutants BHI media. 

Cultures of wild type L. monocytogenes EGDe and deletions mutants lmo1415, 

lmo0825, lmo1441 and lmo1451 were grown and monitored in BHI broth (with or 

without 0.001M mevalonate (MVAL)) over 24 hours to late stationary phase in a 

microtitre plate reader. With the exception of the un-supplemented lmo0825 mutant 

all strains reached a similar final OD600 of 0.6-0.7, with similar profiles of growth. 

This suggests that the mvaS deletion is capable of normal growth under lab 

WT 

BHI only BHI + MVAL 

WT 

 

ΔmvaS ΔmvaS 

ΔgcpE ΔgcpE 

ΔhmgR ΔhmgR ΔlytB ΔlytB 

NO GROWTH 
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conditions without supplementation. Replica plating of all strains onto BHI or 

BHI+MVAL agar confirmed this finding. 

 

Growth characteristics of L. monocytogenes EGDe and mutant strains in DM: 

 

Growth experiments were similarly performed using a chemically defined media 

(DM) for L. monocytogenes EGDe (Premaratne, Lin et al. 1991). Wild type and 

mutant cultures were again grown to late stationary phase (24hours) in triplicate and 

repeated a number of times. Graphs were plotted and statistical analysis performed 

using Sigma Plot.  
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DM growth curve WT vs. mutant Listeria monocytogenes EGDe
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Fig.6. Growth curve analysis of L. monocytogenes EGDe wild type and deletion 

mutants ΔmvaS (lmo1415), ΔhmgR (lmo0825), ΔgcpE (lmo1441) and ΔlytB 

(lmo1451) in defined growth media over 24 hours. 

DM was able to support the growth of the wild type, lmo1415, lmo1441, 

lmo0825(+MVAL) and reach a similar final optical density OD600 = 0.4-0.5. The 

lmo1451 mutant had a reduced capacity for growth in DM only reaching a final 

OD600=0.3. Un-supplemented lmo0825 was not capable of growth in DM. 
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HMG-CoA synthase deletion mutant is not affected in virulence in J774 

macrophages compared to wild type and other mutants: 

 

In-vitro uptake and survival of the lmo1415 gene deletion mutant was not affected in 

murine J774 macrophages compared to the wild type L. monocytogenes strain and 

other mutant strains tested (Fig. 7). 5 X 10
5 
J774.A1 macrophage cells/ml were 

infected with 5x10
6 
CFU/ml (M.O.I. = 10). All mutants were not affected in their 

initial uptake by the macrophages at T0 hours determined by bacterial counts 

(average log CFU/ml) compared to the wild type strain. After 7 hours, there was no 

statistical difference in the ability of all strains to survive intracellularly in the 

macrophages. The extended time point T24 hours was determined and again there 

was no significant difference in any of the strains.  
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J774 macrophage assay T7 hours
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J774 macrophage assay T24 hours
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Fig. 7. In-vitro uptake and survival of L. monocytogenes EGDe wild type and 

deletion mutants ΔmvaS (lmo1415), ΔhmgR (lmo0825), ΔgcpE (lmo1441) and 

ΔlytB (lmo1451) in J774.A1 macrophages. 

Bacterial numbers are calculated per average log CFU/ml after T0, T7 and T24 

hours infection with wild type and deletion mutants. Error bars represent the 

standard deviation from the mean of a number of replica experiments. There was no 

statistical difference in any of the strains compared to the wild type by the Student’s 

T-test. 
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Growth of ΔmvaS deletion mutant was not significantly affected by the HMG-CoA 

reductase inhibitor Rosuvastatin (RSV): 

 

Growth analysis was performed on L. monocytogenes EGDe wild type and the 

ΔmvaS (lmo1415) deletion mutant in BHI broth containing varying concentrations of 

Rosuvastatin (see materials and methods) and controls without added RSV. Growth 

was monitored to late stationary phase.  
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Fig.8. Effect on growth of the HMG-CoA reductase inhibitor Rosuvastatin 

(RSV) on the growth of wild type L. monocytogenes EGDe and ΔmvaS 

(lmo1415) deletion mutant. 

Wild type L. monocytogenes EGDe wild type and the ΔmvaS (lmo1415) deletion 

mutant were grown and monitored to late stationary phase (24hours) in BHI broth 

containing: (3mg/ml; 0.5mg/ml and 0.0005mg/ml) dissolved RSV. Error bars were 

generated based on the standard deviation from the mean value from a number of 

replica experiments. Inhibition by RSV only occurs at very high levels (3mg/ml), 

perturbing growth between 0.1 and 0.15 OD600 at the stationary phase of growth is 
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reached compared to controls. There was no significant difference in the growth of 

wild type vs. lmo1415 deletion mutant both were equally sensitive.  

 

HMG-CoA reductase is the third rate limiting enzyme of the mevalonate pathway 

for isoprenoid biosynthesis and cholesterol metabolism and is the target for the 

treatment of hypercholesterolemia clinically by the drugs commonly known as 

statins (Istvan and Deisenhofer 2001). L. monocytogenes EGDe has been described 

as carrying a Class 2 HMG-CoA reductase enzyme (see Chapter 1) and according to 

(Jerwood and Cohen 2008) statins have been shown to possess antimicrobial activity 

against bacteria that utilise the mevalonate pathway for isoprenoid biosynthesis. 

HMG-CoA synthase precedes the target for statins and should be sensitive to statin 

exposure as HMG-CoA reductase. However, in our study we find little evidence of 

increased sensitivity of our deletion mutant.  

No difference in wild type and ΔmvaS mutant sensitivity to cell wall autolysis: 

HMG-CoA synthase is an important enzyme in the mevalonate pathway for 

isoprenoid biosynthesis that play a key role in forming major structures of the cell, 

such the cell membrane and cell wall. An autolytic Triton X-100 (see materials and 

methods) cell wall stress assay was performed on wild type L. monocytogenes EGDe 

and ΔmvaS deletion mutant to compare vulnerability. Previously, it was shown by 

(Heuston, Begley et al. 2012) that a deletion of the HMG-CoA reductase gene 

predisposed the bacterial cell to autolytic cell death from Triton X-100, with almost 

a 58% decline in optical density after 30mins. In our experiment, both the wild type 

and lmo1415 mutant displayed identical sensitivity over the time course. A 50-60% 

reduction in OD600 was attained between T90-T120mins and T210mins a final 

decline to 20% of both strains was observed.  
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Fig. 9. Triton X-100 induced cell wall autolysis of wild type L. monocytogenes 

EGDe and ΔmvaS (lmo1415) deletion mutant. 

Autolysis was determined as a % reduction in the optical density from an initial 

OD600 of 0.8, over the time course T0, T30, T90, T120, T150, T180 and T210 

mins. Error bars represent the standard deviation from the mean value of a number 

of replicated experiments. Both wild type and mutant strains display identical 

sensitivity to Triton X-100. There was no statistical significant effect over the course 

of the experiment.  

 

Effect of oxidative stress on L. monocytogenes EGDe wild type and ΔmvaS 

(lmo1415) and ΔhmgR (lmo0825) deletion mutants:  

 

L. monocytogenes EGDe wild type and the deletion mutants were examined for their 

sensitivity to hydrogen peroxide induced oxidative stress (Table 3). Hydrogen 

peroxide is a cytolytic oxidative antimicrobial compound that is commonly secreted 

by macrophages (Jorens, Matthys et al. 1995) . Oxidative compounds such as nitric 

oxide (iNOS) are known to have antimicrobial effects when the immune system is 

triggered following bacterial infection. Wild type and mutant strains were exposed to 

10 or 20µL 33.3% (v/v) hydrogen peroxide in blank filter disks (see materials and 
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methods). It was observed that wild type and lmo1415 deletion mutant shared 

similar vulnerability to oxidative stress by hydrogen peroxide in both 10 and 20µL 

disks. The lmo0825 mutant exhibited the most significant inhibition (15+/-

0.164mm) which was similarly observed by (Heuston, Begley et al. 2012). 

 

Strain 10µL (mm) 20µL (mm) 

lmoEGDe wild type 10.6 +/- 0.155 13.567 +/- 0.163 

Δlmo1415 10.567 +/- 0.121 13.3633 +/- 0.248 

Δlmo0825 10.833 +/- 0.216 15.0 +/- 0.164* 

       

 

 

Table 3. Hydrogen peroxide disk assay comparing the effect of oxidative stress 

on the growth of L. monocytogenes EGDe wild type and mevalonate pathway 

mutants. 

L. monocytogenes EGDe wild type and the mevalonate pathway mutants lmo1415 

and lmo0825 were grown to log phase and inoculated into molten BHI agar and 

incubated in the presence of 10 or 20µL of 33.3% (v/v) hydrogen peroxide. Zones of 

inhibition around the filter disks were measured using a Vernier Callipers in mm. 

Average values are expressed as +/- the standard deviation from the mean value of a 

number of replicated experiments. Statistical significance was determined via the 

Student’s T-test and an asterisk (*) denotes a p-value less than 0.05. Inhibition of 

growth was more pronounced in 20µL hydrogen peroxide compared to 10µL. Only 

the ΔhmgR (lmo0825) deletion mutant had a significant degree of inhibition 

compared to the wild type strain. The ΔmvaS (lmo1415) mutant showed very similar 

sensitivity to the wild type strain. 

 

 

Zone of inhibition 
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Penicillin G and Ampicillin cell wall antibiotic sensitivity is not increased by the 

deletion of HMG-CoA synthase: 

 

L. monocytogenes EGDe wild type and the mevalonate pathway deletion mutants 

ΔmvaS (lmo1415) and ΔhmgR (lmo0825), were examined for sensitivity to Penicillin 

G and Ampicillin (see Materials and Methods). Zones of clearance around the disk 

were measured using a Vernier Callipers in mm and results from a number of 

repeated experiments were tabulated in Table 4 below.  

Strain P2(mm) Amp10 (mm) 

EGDe wild type 22.83 +/- 0.279 29.083 +/- 0.232 

ΔmvaS (lmo1415) 22.167 +/- 0.48 28.933 +/- 0.314 

ΔhmgR (lmo0825) 27.383 +/- 0.366* 31.95 +/- 0.547* 

 

Table 4. Penicillin G and Ampicillin antimicrobial sensitivity of L. 

monocytogenes EGDe wild type and mevalonate pathway mutants. 

Zones of clearance surrounding P2 and Amp10 antibiotic disks were measured using 

Vernier Callipers. Average values are expressed +/- the standard deviation from the 

mean value of a number of replicated experiments. Statistical significance was 

determined via the Student’s T-test an asterisk (*) denotes a p-value less than 0.05. 

The ΔhmgR (lmo0825) mutant was most sensitive compared to the wild type. 
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In-vivo survival and virulence comparing L. monocytogenes wild type, ΔmvaS 

(lmo1415) mutant and pPL2 complemented strain in a murine model: 

The virulence potential of the ΔmvaS (lmo1415) mutant and complementation strain 

were examined by intraperitoneal injection (200µL) with 1 X 10
6
 CFU/ml bacteria 

into the abdominal cavity of BALB/c mice. Post-gastrointestinal phase virulence 

was assessed 3 days following infection by determining bacterial numbers in the 

spleen and liver of each animal. Average log CFU/ml for each mouse was 

determined by plating on BHI agar and graphed as a vertical scatter plot using 

GraphPad Prism5®. 
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Fig.10. Murine intraperitoneal infections of the spleen and liver with wild type 

L. monocytogenes EGDe, ΔmvaS (lmo1415) deletion mutant and complemented 

(pPL2) strain. 

Bacterial enumeration of wild type L. monocytogenes EGDe (), ΔmvaS (lmo1415) 

mutant () and pPL2 complemented strain (), 3 days post murine intraperitoneal 

infection of the spleen and liver. Bacterial numbers are expressed as average log 

CFU/ml for each strain. On average, approx. 1x10
5 
CFU/ml live bacteria was 

recovered from the spleen and liver of all 3 animal groups. Error bars represent the 

standard deviation from the mean of n=6 mice per group. There was no statistical 

difference between the virulence of the wild type and mutant strains or the 

complement strain as determined by the Student’s T-test. Spleen: (WT vs. Δlmo1415 

p=0.7749, WT vs. pPL2 p=0.7244), Liver: (WT vs. Δlmo1415 p=0.6495, WT vs. 

pPL2 p=0.0695). Statistical significance was determined as a p-value less than 0.05.  
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Discussion 

The main aim of this study was to create a clean deletion mutant in the gene 

lmo1415 (HMG-CoA synthase) of L. monocytogenes EGDe  in an attempt to 

elucidate if this enzyme is essential for the normal growth and virulence of this 

foodborne pathogen. L. monocytogenes is a highly unusual micro-organism in that it 

possesses genes encoding two different  pathways enzymes for isoprnoid 

biosynthesis (Fig.1), namely the mevalonate and methylerythritol 4-phosphate 

(MEP) pathways (Begley, Gahan et al. 2004). Isoprenoids and in particular the end 

metabolite of the pathway isopentenyl pyrophosphate (IPP) are utilised for essential 

components and biochemical processes within the cell.  

Previously, it was shown in our lab by Heuston et. al. (Heuston, Begley et al. 

2012) that a deletion mutant in the gene lmo0825 (encoding HMG-CoA reductase) 

of L. monocytogenes is dependent upon the addition of exogenous mevalonate to 

support normal growth of the bacteria in normal media. This suggested that HMG-

CoA reductase is a critical enzyme for cell viability and indicated that perhaps the 

mevalonate pathway rather than the MEP pathway is central to survival in this 

organism. Herein we wished to determine if another enzyme in the mevalonate 

pathway (HMG-CoA synthase) is also essential for survival of the pathogen. 

 Initial work in this study focussed on generating a clean deletion mutant in the 

lmo1415 gene for HMG-CoA synthase by using the spicing by overlap extension 

(SOE) PCR technique described by Horton and co-workers (Horton 1995). We 

successfully created a mutant using the pORI280 repA- plasmid (Monk, Gahan et al. 

2008) integration system which permitted double crossover and gene replacement 

with a mutated gene fragment. Interestingly, growth experiment analysis of ΔmvaS 
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(lmo1415) mutant in normal growth media (Fig.5.) and defined media (Fig.6.) 

revealed that knockout of the HMG-CoA synthase gene in did not adversely affect 

growth compared to the wild type and MEP pathway mutants ΔgcpE (lmo1441) and 

ΔlytB (lmo1451). In contrast, only the ΔhmgR (lmo0825) mutant required the 

addition of mevalonate to accommodate growth. This study suggests that the gene 

encoding HMG-CoA synthase is non-essential for the normal growth of L. 

monocytogenes EGDe despite the gene encoding the downstream enzyme of the 

pathway (HMG-CoA reductase), previously being shown to be a key enzyme 

(Heuston, Begley et al. 2012).  

 The ΔmvaS (lmo1415) mutant was examined phenotypically in order to 

determine the potential effect of the mutation upon growth and survival under 

different environmental conditions. In particular mutation of HMG-CoA reductase 

has previously been shown to influence susceptibility to Triton-X induced cell wall 

autolysis, hydrogen peroxide mediated oxidative stress of the cell and sensitivity to 

cell wall synthesis antibiotics indicating that it plays a role in resistance to cell 

envelope stresses (Heuston, Begley et al. 2012). In contrast, our ΔmvaS mutant was 

affected under similar conditions. Deletion of HMG-CoA synthase did not 

significantly increase susceptibility to Triton-X (Fig.9.), hydrogen peroxide (Table 

3) or the cell wall antibiotics Penicillin or Ampicillin (Table 4) comparable to the 

wild type L. monocytogenes EGDe. Similarly, we determined no difference between 

the HMG-CoA synthase mutant in their ability to infect J774 macrophages (Fig. 7.) 

or ability to infect mice (Fig.10.). Likewise, we found no increased sensitivity of 

HMG-CoA synthase mutant when exposed to a commonly used HMG-CoA 

reductase inhibitor (Rosuvastatin) under normal growth conditions compared to the 

wild type (Fig.8.).  
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 Collectively the data suggest the possibility of an alternative enzyme capable 

of generating HMG-CoA in L. monocytogenes but currently improperly annotated 

within the EGDe genome. Analysis of KEGG pathways for bacterial synthesis of 

HMG-CoA (Fig.4.) highlights an alternative means of generating this substrate  that 

potentially proceeds in other bacterial species and L. monocytogenes EGDe via the 

activity of methylglutaconyl-CoA hydratase (E.C. 4.2.1.18) involved in the 

degradation of valine, leucine and isoleucine (lmo00280).  Extensive KEGG 

pathway and bioinformatics searches of Listeria genomes failed to identify a 

properly annotated homologue of this enzyme in L.monocytogenes EGDe. 

Bioinformatic analysis of the methylglutaconyl-CoA hydratase only revealed 

presence of this enzyme in a more distantly related Listeria species (L. fleischmanni) 

which was likely used for construction of the KEGG pathway for valine, leucine and 

isoleucine degradation  for Listeria genomes (data not shown). It is possible that an 

alternative mechanism exists for providing the substrate in L. monocytogenes EGDe 

which renders the HMG-CoA synthase enzyme redundant at least under the 

conditions tested here which may involve methylglutaconyl-CoA hydratase. Further 

to this, extensive bioinformatics analysis of the HMG-CoA synthase enzyme 

determined only a single functional copy of this gene (mvaS) in the L. 

monocytogenes EGDe genome by Basic Local Alignment Search Tool (BLAST) 

analysis that was deleted in this study (data not shown). In order to investigate this 

hypothesis further I suggest that future studies could generate a transposon bank 

within the HMG-CoA synthase mutant and analyse this bank for clones incapable of 

growth in the absence of mevalonate.  
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     Chapter 5 
 

 

The effects of (E)-4-hydroxy -3-methyl-but-2-enyl 

pyrophosphate (HMBPP): a potential pathogen 

associated molecular pattern (PAMP) on human THP-1 

cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* A manuscript is currently being prepared based on research conducted in this chapter for 

publication. 
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Abstract 

We examined the bacterial metabolite (E)-4-hyroxy-3-methyl-but-2-enyl 

pyrophosphate (HMBPP), a potential pathogen associated molecular pattern 

(PAMP) as a mediator of immunity in antigen presenting cells. HMBPP is a key 

intermediary metabolite of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway 

in the bacterial non mevalonate pathway for isoprenoid biosynthesis. We show by 

MACE RNA-seq analysis that a biologically relevant concentration of exogenous 

HMBPP is able to elicit significant gene expression activation in “dendritic-like” 

THP-1 cells without a cellular permeabilisation agent and does not significantly 

impair cell viability. HMBPP significantly activated genes (including CCL4, IL-

17D, TNFAIP6, CCL22, FCGR2B, FCGR3B, TRAIL-R) involved in a number of 

immune and antigenic presentation pathways; (cytokine-cytokine receptor 

interactions, phagosome formation, apoptosis, toll-like receptor signalling, NFκB 

signalling and MAPK signalling pathways). Further qRT-PCR analysis of HMBPP-

activated genes in THP-1 cells infected, with wild type and HMBPP under-

producing (ΔgcpE) and HMBPP over-producing (ΔlytB) mutant L. monocytogenes 

EGDe strains showed that HMBPP likely plays a small yet important role in overall 

bacterial infection through other biological PAMPS’s most likely mask its effect. 

Our data suggest that HMBPP is an important signalling molecule potentially 

priming antigen presenting cells for stimulation of a γδ T-cells response during 

bacterial infection.  
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Introduction 

(E)-4-hydroxy-3-methyl-2-but-2-enyl pyrophosphate (HMBPP) is the last small 

metabolite molecule (<500Da) of the 2-C-methyl-D- erythritol 4-phosphate (MEP) 

pathway utilised by many bacterial and protozoan species known to infect mammals 

(humans) either systemically in the case of malaria (Plasmodium falciparum) 

(Rekittke, Olkhova et al. 2013) or via the gastrointestinal tract (for example L. 

monocytogenes) (Ryan-Payseur, Frencher et al. 2012). The MEP pathway exists as 

an alternative to the mevalonate pathway for the formation of IPP (isopentyl 

diphosphate) and DMAPP (dimethylallyl diphosphate) (Fig. 1), which are essential 

five carbon isoprene precursors leading to the formation of isoprenoid biomolecules 

(Begley, Gahan et al. 2004). Isoprenoids and their derivatives play functional and 

metabolic roles in many aspects of biology; for example as a part of cellular 

organelles, electron transport pathways, signal transduction pathways, mating 

pheromones and even in photosynthesis to name a few (Sacchettini and Poulter 

1997). 

  Amslinger and colleagues (Amslinger, Hecht et al. 2007)  have shown that 

HMBPP can activate Vγ9/Vδ2 human T cells in-vitro at concentrations as low as 

EC50 = 70pM (10
-12

moles) in the presence of antigen presenting cells (APCs). The 

isoprene molecule IPP was generally found to be 150 times less stimulatory for 

Vγ9/Vδ2 human T cells compared to HMBPP in the presence of APCs (Eberl, 

Altincicek et al. 2002). This was determined comparing wild type and ΔlytB (for 

HMBPP conversion) Escherichia coli, a microorganism that exclusively utilises the 

MEP pathway. HMBPP was released from the bacterial cultures by sonication and 

filtered (Millipore) of live cells producing low weight molecular extracts. Exposure 

of these extracts to γδ T-cells (in the presence of APCs) resulted in reduced 
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expansion and proliferation for the ΔlytB mutant compared to the wild type, 

affirming the strong immune potential of HMBPP (Eberl, Altincicek et al. 2002). 

    MVAL pathway                                   MEP pathway 

                      Acetyl-CoA                                   glyceraldehyde-3-P + pyruvate    

                                

                    Acetoacetyl-CoA                                              DOXP 

                                                                                                

                      HMG-CoA                                                       MEP 

                                                                                                

                      Mevalonate                                                  CDP-ME 

                                                                                              

                     Mevalonate - P                                             CDP - MEP    

                                                                                              

                    Mevalonate – PP                                              MEcPP 

                                                                                                   

                                                                                            HMBPP 

                                                              IPP                                      

             

                    

                                                          DMAPP 

Fig.1. Formation of IPP/DMAPP, during isoprenoid biosynthesis via the 

mevalonate pathway or the MEP pathway.  

lytB (lmo1451): 

HMBPP reductase 

gcpE (lmo1441):  

HMBPP synthase 
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Highlighted; the penultimate metabolite of the MEP pathway (HMBPP), a major 

immunostimulator of  Vγ9/Vδ T cells, HMBPP synthase (gcpE) for HMBPP 

synthesis from MEcPP and HMBPP reductase (lytB) for HMBPP conversion to IPP 

as characterised in L. monocytogenes EGDe.  Figure was adapted from (Begley, 

Gahan et al. 2004). 

 

HMBPP essentially meets all the criteria to be considered a pathogen 

associated molecular pattern (PAMP); it can be produced by certain pathogenic 

microorganisms such as those that cause malaria and listeriosis (as previously 

mentioned) but also by other infectious bacteria of the gastrointestinal tract such as 

Helicobacter pylori, Escherichia coli 0157, Salmonella enterica and even Legionella 

pneumophila (Eberl and Moser 2009).  

 HMBPP has a small molecular weight of around 260gmol
-1 

and is a major 

stimulator of the immune system via Vγ9/Vδ2 T cells as previously mentioned. 

However, at the moment there is very little known concerning the ability of APCs to 

process and present HMBPP to T-cells following bacterial phagocytosis (Fig. 2) 

(Hepworth and Sonnenberg 2014). It is estimated that sonicated lysates of E. coli 

and L. monocytogenes generally contain around 200-300mM of HMBPP (Eberl, 

Roberts et al. 2009). Despite this relatively high bacterial concentration numerous 

studies suggest nanomolar concentrations of HMBPP (EC50 of 0.1nM) potently 

activate γδ T-cells in presence of APCs (Hintz, Reichenberg et al. 2001; Eberl, Hintz 

et al. 2003).   

THP-1 human monocytic cell line were utilised to examine the molecular 

response in the antigen presenting cell to HMBPP.  THP-1 cells are an immortalised 

cell line derived from an acute monocytic leukaemia patient that can be 

differentiated by the addition PMA and IL-4 into “dendritic-like” APCs.  Cell 

viability, MACE RNA-seq and qRT-PCR analysis was performed following 
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exposure to HMBPP.  Host genes induced by HMBPP were subsequently examined 

in THP-1 cells infected with wild type, ΔgcpE (HMBPP under-producing), ΔlytB 

(HMBPP over-producing), L. monocytogenes EGDe mutants. 
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Fig.2. Representation of a HMBPP-producing bacterium infecting an antigen 

presenting cell. The bacterial cell is engulfed by the phagocytic cell. HMBPP is 

released following engulfment or recognised at the cell surface of the APC cell 

triggers HMBPP-specific activation and processing of this pathogen associated 

molecular pattern (PAMP) at the cell surface which is recognised by Vγ9/Vδ2 T cell 

eliciting proliferation and expansion. Much remains to be discovered about the 

cellular interactions between cells of the innate immune response (dendritic cells) and 

HMBPP. This figure was modified from; (Bonneville and Scotet 2006) 
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Materials and Methods 

Culturing of THP-1 cells: 

THP- 1 ATCC TIB-202 (human monocytic) immortalised cells derived from an 

acute monocytic leukaemia patient were obtained from frozen stocks at University 

College Cork. Cells were routinely cultured and maintained in RPMI-1640 media 

(Sigma Alrdich) supplemented with 10% (v/v) (FBS) Foetal Bovine Serum (Gibco) 

and 1% (v/v) Penicillin-Streptomycin (P/S) (Sigma Aldrich). Media was changed on 

average every 2-3 days by centrifuging the cell suspension at 250rcf/g for 5mins and 

aspirating off the old media. The cell pellet was subsequently resuspended in RPMI-

1640 supplemented media and seeded into fresh tissue culture flasks (Sarstedt), cells 

were counted by Trypan Blue exclusion (haemocytometry) and maintained at a cell 

density never more confluent than 2 X 10
6 
cells/ml. The cells were grown at 37ºC in 

a 5% CO2 supplemented incubator and monitored regularly under the inverted light 

microscope.  

Differentiation of THP-1 cells:  

For this study, THP-1 cells were differentiated into “dendritic-like” cells by the 

addition of 10ng/ml PMA (Phorbal 12-myristate 13-acetate) (Sigma Aldrich) and 

20ng/ml IL-4 (human interleukin 4) to RPMI-1640 supplemented media with FBS 

and P/S and incubation over 96 hours at 37ºC with 5% CO2. PMA was obtained in a 

powder form and resuspended in sterile chloroform at 0.1mg/ml and similarly for 

IL-4 which was resuspended as a 10µg/ml solution in sterile water. Following, cell 

counting by the haemocytometer the required cell density was determined and the 

cell suspension centrifuged to obtain a cell pellet which was, subsequently 
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resuspended in differentiation media. Cells were monitored regularly under the 

inverted light microscope to observe the establishment of a “dendritic-like” cell 

monolayer.  

Preparation of HMBPP and the digitonin permeabilisation buffer: 

(E)-4-hydroxy-3-methyl-but-2- enyl pyrophosphate (HMBPP) was obtained from 

Echelon® (675 Arapeen Drive, Suite 302, Salt Lake City, UT 84108) (Product code: 

I-M055) in powder form as an ammonium salt and resuspended in endotoxin-free 

sterile water to a working concentration of 1mg/ml. Serial dilutions for cell culture 

work were performed in Phosphate Buffered Saline (PBS) (Sigma Aldrich) to obtain 

nano molar concentrations of HMBPP. In order to aid uptake of HMBPP by 

“dendritic-like” cells, a digitonin permeabilisation buffer was prepared (Woodward, 

Iavarone et al. 2010) allowing permeability across the cell membrane. Digitonin was 

ordered in a powder form (Sigma Aldrich, Product code: D5628) and resuspended in 

96% sterile ethanol to a stock concentration of 10mg/ml and stored at -20ºC ready 

for use. Other stock solutions for the permeabilisation buffer were prepared as 

follows: Bovine Serum Albumin (BSA) 20% (w/v), HEPES 1M, Potassium chloride 

(KCl) 1M, Magnesium chloride (MgCl2) 1M, Dithiothreitol (DTT) 1M, Sucrose 

(1M), Adenosine tri phosphate (ATP) 0.1M and Guanosine-5’-triphosphate (GTP) 

0.1M in sterile water and filter sterilised using a 0.22µm filtration apparatus.  The 

digitonin permeabilisation solution was subsequently prepared in sterile PBS at the 

following final concentrations: (BSA (0.2%), HEPES (50mM), KCl (100mM), 

MgCl2 (3mM), DTT (0.1nM), Sucrose (85mM), ATP (1mM), GTP (0.1mM)). A 

10X volume of digitonin mixture was combined with HMBPP to obtain final desired 

concentration of phosphoantigen. Cell culture media was aspirated off the cells and 

subsequently 50µL of combined mixture added for cell viability testing (96-well 
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plate) or 500µL for RNA extractions (6-well plate). Cells were incubated for 30mins 

at 37ºC with 5% CO2 and afterwards the solution was removed and fresh RMPI-

1640 media supplemented with FBS and P/S added. Cells were incubated over 24 

hours and analysed for cell viability or RNA extraction (qRT-PCR). 

CellTitre-Glo® Luminescent Cell Viability assay:  

The CellTiter-Glo® luminescent cell viability assay was purchased from Promega® 

(Cat No#G7570) and used to determine the number of viable cells in our cell culture 

assays. Viability was quantified using the luciferase reaction to measure ATP 

formed by viable cells. Levels of ATP measured directly correlate with cell viability. 

If cells lose membrane integrity, and are killed as a result of HMBPP or digitonin 

treatment, they will lose the ability to synthesize ATP and endogenous ATPases will 

destroy any remaining ATP in the sample. For this study, 50,000 differentiated 

(dendritic-like) cells/cm
2
 were seeded in a total volume of 100µL cell culture media 

(as above) directly into each well (Thermo Scientific® white flat bottom nunclon 

delta surface 96-well plate Cat No# 136101) and incubated for 96hours. A range of 

HMBPP concentrations were tested on the cells: 0.05nM, 0.1nM and 1nm for cell 

viability. A number of controls were also assayed (untreated cells, digitonin control 

(1) - complete digitonin buffer without HMBPP, digitonin control (2) - digitonin 

buffer without added ATP/GTP or HMBPP and HMBPP diluted in PBS only)). 

ATP/GTP controls were analysed for cell viability analysis of the digitonin buffer. 

Prior to the assay being carried out , the Cell Titre Glo® substrate and Cell Titre 

Glo® buffer were combined in a 1:1 ratio to form the Cell Titre Glo® reagent 

providing luciferin, luciferase and other reagents required to lyse the cells, inhibit 

endogenous ATPases and allow for the bioluminescent reaction to occur. Following 

treatment with HMBPP/digitonin (see above), 100µL (equal volume) of the Cell 
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Titre Glo® reagent was applied to the treated cells, the plate was covered with tinfoil 

to protect from light and thoroughly mixed on an orbital shaker at 200rpm for 2mins 

to induce cell lysis. The plate was incubated at room temperature for 10mins to 

stabilize luminescent signal and read on a microtitre plate reading installed with the 

Promega® Cell Titre Glo software. Results were recorded and graphed as RLU 

(relative light units) using the Graph Pad Prism5 ® software package. Statistical 

analysis was performed on the different test groups via the Student’s T-test. 

RNA extraction from THP-1 cells: 

In a similar manner, to the cell viability assays, 50,000cells/cm
2
 were seeded into 

each well of 6-well plate (Sarstedt) in a total volume of 2ml cell media. The 

differentiation and treatment of the cells with HMBPP/digitionin was carried out as 

described previously. 1nM HMBPP was chosen for this study based on the optimal 

cell viability readings. The following groups were used for MACE RNA-seq 

analysis: (untreated cells, digitonin only control, HMBPP treated only and HMBPP 

+ digitonin). Total RNA extractions were performed 24 hours following treatment of 

“dendritic-like” cells with HMBPP by lysing the cell monolayer with Lysis Buffer 

from the BIOLINE® ISOLATE RNA mini kit and following the instructions 

outlined in the manual (Cat. No. BIO-52043) and then quantified on the NanoDrop 

® and stored at -80ºC to preserve samples.  
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Massive Analysis of cDNA Ends (MACE) RNA-seq analysis: 

MACE (Massive Analysis of cDNA Ends) is an accurate deep sequencing-based 

technology for high-resolution, global gene expression profiling (Zawada, Rogacev 

et al. 2014). MACE analysis of RNA samples in this study was performed by 

Genxpro GmbH, Altenhöferallee 3, 60438 Frankfurt am Main, Germany. MACE is 

as a digital gene expression analysis method, in which each cDNA molecule is 

represented by one cDNA fragment (tag) of 94 base pairs, originating from a region 

approximately 100-500 base pairs upstream from the 3’ end (poly-A tail) of the 

transcript. MACE is a high resolution gene expression analysis method that is 

capable of revealing differential expression in low abundance transcripts that might 

not otherwise be detected using conventional microarrays. MACE RNA-seq 

provides 20 times greater sequencing depth compared with other methods (Asmann, 

Klee et al. 2009). For preparation of the MACE library, 2µg/sample total RNA was 

extracted from cells (UCC), cDNA was synthesised by first and second strand 

synthesis (SuperScript® 3 First-Strand Synthesis System (Life Technologies 

Gmbh)) with modified and barcoded poly-T adapters for binding Illumina 

Hiseq2000 flow cell and biotinylated at the 5’ end (Genxpro). Subsequently, 

biotinylated cDNA are fragmented into approximately 250 base pair segments and 

are bound to streptavidin beads (Genxpro). TrueQuant adapters were ligated onto 

each of the fragments (Genxpro). For quantification of gene expression, MACE 

reads in the library were poly-A trimmed and the marked quality (Genxpro).  Reads 

were mapped onto the human genome using the Novoalign® software package 

(http://novocraft.com/) (Genxpro). Mapped coordinates were overlapped with the 

RefSeq® annotation track system via the UCSC table browser 

(http://genome.ucsc.edu/cgi-bin/hgTables?command=start). The DEseq® package 

http://novocraft.com/
http://genome.ucsc.edu/cgi-bin/hgTables?command=start
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was used to normalise and test differential gene expression using statistical 

programming language R (www.r-project.org/) (Anders and Huber 2010) (Genxpro). 

Gene ontology (GO) enrichment analysis was performed using the GO-enrichment 

analysis toolkit (http://genxpro.ath.cx) based on the Fischer’s exact test for 

differentially expressed transcripts with a p-value less than 0.05 (Genxpro). 

Differentially expressed genes from MACE RNA-seq analysis were organised by 

Genes Ontology designation and associated KEGG pathways using GATHER® 

(http://gather.genome.duke.edu), Duke University, NC, USA) and Subio® (Subio 

Inc., Japan) (UCC in collaboration with Dr. John Mac Sharry (JMS)). Differentially 

expressed genes in the dataset were screened for significance by initial stringent 

criteria reducing to 1.5 fold differential and P<0.05 cut off (UCC). Functional 

classification and annotation chart analysis was carried out using the web-based 

resources, GATHER® (http://gather.genome.duke.edu). Pathway visualisation was 

carried out using Subio software to identify the differentially expressed genes 

between assays (UCC). MACE RNA-seq analysis was confirmed by qRT-PCR 

analysis for selected altered genes (CCL4, IL-17D, TNFAIP6, CCL22, FCGR2B and 

FCGR3B). 

Microscopy of THP-1 cells: 

Light microscope images were taken of differentiated “dendritic-like” THP-1 cells 

treated and untreated with HMBPP or digitonin under the Nikon Eclipse TE2000-S 

and Olympus DP70 inverted light microscope and camera at 10X magnification. 

Cells were examined for dendritic cell morphology and an adherent pattern to the 

cell monolayer. Any changes in cell morphology were recorded.  

 

http://www.r-project.org/
http://genxpro.ath.cx/
http://gather.genome.duke.edu/
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L. monocytogenes EGDe infection of THP-1 cells: 

 

THP-1 cells were routinely maintained and differentiated for bacterial infection as 

described previously. 5 X 10
5 
cells/ml were seeded into 6-well cell culture plates 

(SARSTEDT) in a total volume of 2ml of RPMI-1640 media. After 96 hours 

differentiation, cells were infected with 5x10
6 
CFU/ml overnight cultures of PBS-

washed and DMEM-resuspended (no antibiotic), L. monocytogenes EGDe wild type, 

lmo1441 (ΔgcpE) HMBPP-under producing mutant, lmo1451 (ΔlytB) HMBPP-

overproducing mutant and mock infection to a multiplicity of infection of (1:10) in 

triplicate. Bacteria were allowed to internalise for 2 hours at 37ºC/5% CO2. 

Subsequently inoculum was removed and monolayer was washed once with 2ml 

PBS.  2ml gentamicin (50µg/ml) (Sigma-Aldrich) was resuspended in DMEM, 

applied to the monolayer and incubated for a further hour. The monolayer was 

washed twice with PBS and incubated for a further 5 hours post infection with plain 

DMEM. Post infection media was removed from cells and RNA was extracted as 

previously described above using the BIOLINE® ISOLATE RNA mini kit. qRT-

PCR analysis was subsequently performed on potential genes altered by HMBPP 

(Table 1). Bacterial counts (CFU/ml) were also performed by cell lysis of the 

monolayer with 0.1% (v/v) Triton X-100, serial dilution and spread plating on BHI 

agar. 

Reverse Transcription (RT) and cDNA synthesis: 

Total RNA extracted from the THP-1 cell assay system. Complementary DNA 

(cDNA) synthesis was performed using the Applied Biosystems® Veriti 96-well 

thermal cycler. Transcriptor reverse transcriptase enzyme, a random (nonamer) 

primer, deoxynucleoside triphosphates (dNTP’s) and RNase inhibitor (all Roche®) 
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were used for the reaction. 100ng of RNA in 10µL PCR grade water (Roche) was 

diluted for each sample. Master mix was made up with 5X Transcriptor buffer 

(Roche #3531287001), Protector RNase inhibitor (Roche #3335402001), PCR 

nucleotide mix (Roche #11814362001) in a total volume of 20µL per reaction as 

follows: (4µL Transcriptor RT buffer, 2µL nucleotide mix, 1µl Transcriptor RT 

enzyme, 3µL Random primer) to which the 10µL of RNA sample was to the PCR 

tube. Control negative RT reactions (without RT enzyme or RNA) were performed 

to check for potential contamination. RT reaction was carried out under the 

following conditions (10mins at 25ºC, 30mins at 55ºC, 5 mins at 85ºC and held at 

4ºC forever).  

Probe library primer design for qRT-PCR: 

Left (L) and Right (R) primers were subsequently designed for qRT-PCR analysis. 

The Human Gene Compendium® (http://www.genecards.org) was searched for 

potential matches including potential intron spliced variants (exons) for candidate 

genes and reference mRNA sequence obtained from the National Centre for 

Biotechnology Information (NCBI) RefSeq database. PCR primer pairs were 

designed using the Roche ProbeFinder® Version 2.5 web based software package 

(design centre) for candidate human genes (see below) 

 

 

 

 

 

http://www.genecards.org/
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Quantitative Real Time PCR (qRT-PCR) and mRNA expression: 

qRT-PCR was performed on the Roche® LightCycler 480 system and analysed 

using the Roche® LightCycler software package. Reactions were carried out using 

384-well white lightcycler480 plates (Roche#4729749001) in a total volume of 

10µL and were performed as follows: (5µL 2X LG480 mastermix, 1µL L+R primers 

(combined), 0.1µL PL probe, 2.9µL PCR grade water and 1µL cDNA sample). 

Negative no RT (reverse transcriptase) and no RNA controls were also analysed by 

RT-PCR, to verify primer amplification and exclude probability of contamination. 

The “housekeeping” gene beta-actin (β-Actin) was analysed as an invariant 

endogenous control or reference gene for data normalization in gene quantification 

analysis. Thermocycling conditions were as follows: 95ºC for 10mins initial 

denaturation and activation of Taq polymerase followed by 45 cycles of 95ºC for 

10secs, 50ºC for 20secs and 72ºC for 30secs with a ramping rate of 4.4ºC/second, 

2.2ºC/second and 4.4ºC/second respectively, Fluorescence was measured once at 

each 50ºC stage. 

Primer Sequence 

hACTB_PL64_L ccaaccgcgagaagatga 

hACTB_PL64_R ccagaggcgtacagggatag 

hCCL4_PL40_L ctctccagcgctctcagc 

hCCL4_PL40_R accacaaagttgcgaggaag 

hIL17D_PL27_L cctgaagcctactgcctgtg 

hIL17D_Pl27_R acggtgggcatgtagacag 

hTNFAIP6_PL34_L ggccatctcgcaacttaca 

hTNFAIP6_PL34_R cagcacagacatgaaatccaa 

hCCL22_PL51_L cgtggtgaaacacttctactgg 

hCCL22_PL51_R ccttatccctgaaggttagcaa 

hFCGR2B_PL14_L ctgcaggaaaaagcggatt 

hFCGR2B_PL14_R ggtttctcagggagggtctct 

hFCGR3B_PL9_L gggcttgttgggagtaaaaa 

hFCGR3B_PL9_R acttggtacccaggtggaga 
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qRT-PCR statistical analysis and interpretation: 

The Ct (threshold cycle value) was obtained for each gene of interest and for the 

housekeeping gene (β-actin) for each treatment group (Control, HMBPP, Digitonin 

and HMBPP + Digitonin) in the Roche® LightCycler 480. The Ct value represents 

the cycle number for the amplification curve fluorescence signal to cross the 

threshold and exceed background levels. The Ct value is inversely proportional to the 

quantity of target mRNA in each sample. Ct values below 35 cycles were generally 

regarded as acceptable reads for amplification. The 2
-ΔΔCt 

method (Livak and 

Schmittgen 2001) was used to calculate relative changes in gene expression. 

Statistical analysis was performed using the GraphPad prism software package 
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Results 

 

Cell viability analysis of HMBPP and/or digitonin-treated THP-1 cells: 

 THP-1 cells (50,000cells/cm
2
) were treated with a range of concentrations of (E)-4-

hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP): 0.05nM, 0.1nM and 1nM 

with and without complete digitonin (1) or digitonin (2) excluding ATP/GTP (see 

Materials and Methods). Cell viability was measured using Promega CellTitre-Glo® 

luminescent cell viability assay kit (see Materials and Methods).  Cell viability was 

read in a 96-well plate by luminescence RLU (relative light units) statistical analysis 

performed using the Student’s T-test (Fig. 3 (A and B)). 

50,000 cells/cm2

U
ntr

ea
te

d 

D
ig

ito
nin

 c
ontr

ol (
1)

D
ig

ito
nin

 c
ontr

ol (
2)

0.
05

nm
 +

 P
B
S

0.
05

nM
 +

 D
(1

)

0.
05

nM
 +

 D
(2

)

0.
1n

M
 +

 P
B
S

0.
1n

M
 +

 D
(1

)

0.
1n

M
 +

 D
(2

)

1n
M

 +
 P

B
S

1n
M

 +
 D

(1
)

1n
M

 +
 D

(2
)

0

5000

10000

15000

20000

HMBPP concentration

R
L

U
 (

R
e
la

ti
v
e
 L

ig
h

t 
U

n
it

s
)

 

Fig. 3 (A). Cell viability analysis of THP-1 cells against 0.05, 0.1 and 1nM 

HMBPP with and without digitonin and with and without exogenous 

ATP/GTP. 

 

(A) 

NSD 
*P>0.05 



 

208 
 

50,000cells/cm
2
 of THP-1 cells were exposed to HMBPP/digitonin treatment for 24 

hours and examined for cell viability. Cellular ATP was measured using the 

Promega® CellTitre Glo cell viability assay kit for untreated THP-1 cells, HMBPP 

only, complete digitonin buffer (1) and digitonin buffer (2) without ATP/GTP. 

0.05nM, 0.1nM and 1nM HMBPP was tested in this assay. Cell viability was 

determined in RLU (relative light units). 1nM HMBPP was found to give the most 

optimal cell viability readings for further analysis. NSD = No significant difference. 
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Fig. 3(B). Cell viability analysis of THP-1 cells treated and untreated with 1nm 

HMBPP, with or without digitonin controls. 

Summary of T-test results:  Digitonin control (2) vs. 1nM HMBPP + PBS 

(**p=0.0068), 1nM HMBPP + PBS vs. 1nM + Digitonin control (1) (*p=0.0112), 

1nM HMBPP + PBS vs. 1nM Digitonin control (2) (*p=0.0486). All other groups 

compared were not found to be statistically significant. HMBPP on its own does not 

seem to adversely affect cell viability in the THP-1 cells compared to controls. 

HMBPP in combination with digitonin seems to negatively affect viability. 

Exogenous ATP/GTP did not seem to affect the cell viability assay.  
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Microscopy of THP-1 cells treated and untreated with HMBPP/digitonin: 

 

10X magnification inverted light microscope images were captured of differentiated 

THP-1 cells treated and untreated with HMBPP/digitonin. Cells were examined for 

dendritic cell morphology and adherent patterns. HMBPP or digitonin did not 

visually alter cell morphology in this study (Fig. 4). 

   

   

 

Fig. 4. Inverted light microscope images (10X) of HMBPP/digitonin treated and 

untreated THP-1 cells.  

THP-1 cells were observed to have dendritic cell morphology under the light 

microscope and a very adherent pattern on the cell monolayer. HMBPP or digitonin 

did not visually affect cell morphology.  

 

 

 

UNTREATED  DIGITONIN ONLY 

HMBPP only HMBPP + DIGITONIN 
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MACE RNA-seq analysis of individual (triplicate) sample and grouped datasets 

for THP-1 treatments: 

 

The Subio platform was used for analysing the complete MACE RNA-seq dataset in 

this study (Materials and Methods). A total of 28,538 potential signal reads from the 

entire human genome were identified for all treatment groups (Control, Digitonin, 

HMBPP only and HMBPP + Digitonin with n=3 per group). Further statistical 

analysis will be performed on the complete dataset under stringent criteria to begin 

to identify significant differentially expressed genes (Materials and Methods) 

Individual samples (A) and grouped (B) expression plots are illustrated (Fig. 5).  

 

 

 

A. Individual (triplicate) analysed samples 
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Fig.5. Subio expression plot of MACE RNA-seq dataset for all THP-1 

treatments. 

Illustration of differential expressed genes for individual triplicate samples (A) and 

grouped samples, n=3 per group (B) between groups (Control, Digitonin, HMBPP 

and HMBPP + Digitonin) for 28,538 candidate genes prior to statistical analysis. A 

randomly selected gene is highlighted in both figures. Red indicates an increase in 

expression and blue represents a decrease in expression relative to untreated cells 

(Control).  

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Samples grouped by treatment 
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PCA analysis of complete MACE RNA-seq dataset: 

Principle Component Analysis (PCA) was performed on the entire MACE RNA-seq 

dataset for all THP-1 treatment (Control (untreated), Digitonin, HMBPP and 

HMBPP + Digitonin) (Fig. 6). Differential expression profiles were demonstrated 

for each treatment that was generally satisfactory for grouped (A) and individual 

samples (B) in the overall dataset. 

 

 

Fig. 6. Subio Principal Component Analysis (PCA) of complete THP-1 MACE 

RNA-seq dataset.  

PCA analysis of grouped (n=3 per group) (A) and individual samples (B) for THP-1 

treatments (Control (untreated), Digitonin, HMBPP and HMBPP + Digitonin). 

A. 

B. 

CONTROL 
DIGITONIN 

HMBPP 

HMBPP + DIGITONIN 

   CONTROL 
DIGITONIN 

HMBPP 

HMBPP + DIGITONIN 
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Statistical analysis to determine differentially expressed genes: 

Statistical analysis was performed on the complete dataset to narrow down candidate 

genes differentially expressed following THP-1 treatment (Control (untreated), 

Digitonin, HMBPP and HMBPP + Digitonin). A total of 589 genes were determined 

based on stringent selection criteria (1.5 fold differential and P<0.05 cut off) for all 

treatments and compared with Control (untreated) group (Fig. 7). 

 

 

A. 

B. 
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Fig.7. Scatter plot (A) and expression plot (B) representation of 589 

differentially genes selected by statistical analysis of THP-1 MACE RNA-seq 

dataset. 

589 genes were determined under stringent criteria (1.5 fold differential and P<0.05 

cut off) for control and treatment groups (Control, Digitonin, HMBPP, HMBPP + 

Digitonin). Red indicates an increase in expression and blue represents a decrease in 

expression relative to control (untreated) group. 

 

Heat map representation of 589 differentially expressed genes: 

The Subio platform was used to configure genes into a clustered heat map 

representative of differential expression. HMBPP alone was found to significantly 

affect gene expression in THP-1 cells without the need for the permeabilisation 

agent Digitonin stringent selection criteria (as above). Red indicates an increase in 

expression and blue represents a decrease in expression relative to control 

(untreated) group (Fig. 8). 

 

Fig. 8. Heat map representation of significant HMBPP-associated differential 

gene expression in THP-1 cells  
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Gene ontology analysis of HMBPP attributed differential expression: 

Functional classification and annotation chart analysis was carried out using a web-

based resource package (GATHER®) (Materials and Methods).  HMBPP elicited 

significant changes in genes involved in the immune response, defence response, 

response to biotic stimulus, response to external biotic stimulus, organismal 

physiological response, taxis and chemotaxis (Fig. 9). The numbers and identity of 

genes affected by HMBPP in each category are described and assigned p-value and 

Bayes factor score.  

 

Fig. 9. Screen shot illustrating GATHER gene ontology of 589 differentially 

expressed genes altered by HMBPP in THP-1 cells. 

Gene ontology demonstrates a significant effect of HMBPP in the immune response, 

defence response, response to biotic stimuli, response to external biotic stimuli, 

organismal physiological process, taxis and chemotaxis. Numbers and identity of 

differentially expressed genes are depicted and assigned p-value and Bayes factor 

score by GATHER®. Analysis represents differential expression of Control 

(untreated) vs. HMBPP under stringent criteria (1.5 fold change, P<0.05 cut off). 
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GATHER KEGG pathway analysis of HMBPP attributed differential expression: 

 

The GATHER platform was used to rank HMBPP associated differential gene 

expression changes according to major Kyoto Encyclopaedia of Genes and Genomes 

(KEGG) pathways based on the number of changed genes identified. HMBPP was 

found to significantly affect pathways associated with immunity and antigen 

presentation (Cytokine-Cytokine receptor interactions, MAPK signalling, Apoptosis, 

Oxidative phosphorylation, Toll-like receptor signalling) pathways (Fig. 10). The 

numbers and identity of genes affected by HMBPP in each pathway are described 

and are assigned a p-value and Bayes factor score.  

 

Fig. 10. Screen shot illustrating GATHER KEGG pathway analysis of 589 

differentially expressed genes altered by HMBPP in THP-1 cells. 

GATHER KEGG pathway analysis revealed a significant effect of HMBPP on a 

number of immunity and antigen presentation pathways (illustrated). Numbers and 

identity of differentially expressed genes are depicted and assigned a p-value and 

Bayes factor score by GATHER®. Analysis represents differential expression of 

Control vs. HMBPP under stringent criteria (1.5 fold change, P<0.05 cut off). 
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KEGG pathway visualisation: 

The Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway database was 

used for visualisation of pathways implicated by HMBPP attributed gene expression 

changes compared to control (untreated) cells. Differentially expressed genes are 

highlighted with red/blue symbols in each pathway (Cytokine-cytokine interactions, 

phagosome formation and apoptosis) (Fig. 11-13).  

 

Fig. 11. Cytokine-cytokine interaction KEGG pathway. 

 

 



 

218 
 

 

Fig. 12. Phagosome formation KEGG pathway. 

 

Fig. 13. Apoptosis KEGG pathway. 



 

219 
 

Heat map representation of key genes of interest: 

The Subio platform was utilised to identity key genes of interest for immunity and 

antigen presentation following GATHER and KEGG pathway analysis of HMBPP 

treatment of THP-1 cells. 42 such key genes were identified and assembled into a 

heat map for all treatment groups (Control, HMBPP, HMBPP + Digitonin and 

Digitonin) (Fig. 14). Differential expression was examined under stringent criteria 

(1.5 fold change and P<0.05). Analysis represents significant increases (red) and 

significant decreases (blue) for control (untreated) versus other groups. Heat maps 

were assembled (A) alphabetically and (B) from greatest to least overall expression 

for ease of interpretation. HMBPP in this study was observed to elicit significant 

increases in these key genes. 

     

A. B. 
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Fig. 14. Heat map illustrations of differential immunity and antigen 

presentation gene expression listed (A) alphabetically and (B) from overall 

greatest to least expression. 

HMBPP alone elicited significant increased activation of genes (red) involved in 

immunity and antigenic presentation pathways relative to the control (untreated) 

while decreased activation are highlighted in blue. Digitonin (D) and HMBPP + 

Digitonin (H+D) elicited a different set of gene expression changes that are 

unrelated to the aim of the study. Selection of genes was based on GATHER and 

KEGG pathway analysis under stringent criteria (1.5 fold change and P<0.05 cut 

off).  

 

Confirmation of MACE RNA-seq analysis by qRT-PCR: 

Confirmatory qRT-PCR analysis was performed on genes identified as being 

significantly increased by HMBPP treatment of THP-1 following MACE RNA-seq 

analysis (Fig. 15 (A-F)). qRT-PCR analysis subsequently confirmed significant 

activation of the following genes in a replicate experiment. CCL4 (*p=0.0443), IL-

17D (*p=0.0201), TNFAIP6 (**p=0.0086), FCGR3B (trend) confirm significant 

increases attributed to HMBPP stimulation (Fig.15). CCL4 (*p=0.0107) and 

TNFAIP6 (*p=0.0228) confirm a co-stimulatory activation effect of HMBPP (H) + 

Digitonin (D), while FCGR2B (*p=0.0313) and FCGR3B (*p=0.0126) confirm a 

HMBPP + Digitonin co down regulation relative to CONTROL. qRT-PCR also 

confirmed a down regulation of gene expression by Digitonin in FCGR2B 

(*p=0.013). Statistical significance was determined via Student’s T-test. 
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Fig. 15. Confirmation of MACE RNA-seq analysis for selected genes (A-F: CCL4, IL-

17D, TNFAIP6, CCL22, FCGR2B and FCGR3B). 

qRT-PCR of selected genes (A-F: CCL4, IL-17D, TNFAIP6, CCL22, FCGR2B and 

FCGR3B) confirmed expression changes from MACE RNA-seq in a replicate experiment. 

CCL4 (*p=0.0443), IL-17D (*p=0.0201), TNFAIP6 (**p=0.0086), FCGR3B (trend) 

show a significant increase by HMBPP stimulation. CCL4 (*p=0.0107) and 

TNFAIP6 (*p=0.0228) confirm a co-stimulatory activation effect of HMBPP (H) + 

*p=0.0443 

*p=0.0107 
*p=0.0201 

**p=0.0086 

* p=0.0228 

*p=0.0433 

*p=0.013 

*p=0.313 *p=0.0126 
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C. D. 
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Digitonin. (D), while FCGR2B (*p=0.0313) and FCGR3B (*p=0.0126) confirm a 

HMBPP + Digitonin co down regulation. FCGR2B (*p=0.013) confirmed a 

significant down regulation by Digitonin treatment in the dataset. Student’s T-test 

confirm statistical significance of genes analysed (*p>0.05).  

 

Identical virulence of wild type and mutant L. monocytogenes EGDe: 

THP-1 cells were seeded with 5 X 10
6 
cells/ml (6-well plate) for 96-hours and 

differentiated (see Materials and Methods). Cells were infected with an M.O.I. of 10 

with 5x10
6 
CFU/ml of wild type, lmo1441 (ΔgcpE) and lmo1451 (ΔlytB) strains of 

L. monocytogenes EGDe for 5 hours with gentamicin protection (Materials and 

Methods). Viable cell numbers (CFU/ml) were determined by plating on BHI agar 

overnight for uninfected and Listeria-infected cells, (Materials and Methods).  Mean 

viable cell numbers recovered were as follows; (3 X 10
5
 CFU/ml – wild type), (3.3 

X 10
5 
CFU/ml - ΔgcpE) and (1.8 X 10

5 
CFU/ml - ΔlytB). Student’s T-test analysis 

revealed no significant reduction in bacterial cell numbers for either mutant 

compared to wild type (Fig. 16). 
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Fig. 16. Viable cell counts (CFU/ml) of uninfected, wild-type, lmo1441(ΔgcpE) 

and lmo1451 (ΔlytB) L. monocytogenes EGDe infected THP-1 cells 

THP-1 cells (5 X 10
6
 cell/ml) were infected with 5 X 10

7 
CFU/ml to a M.O.I. of 1:10 

with wild type, lmo1441(ΔgcpE) and lmo1451(ΔlytB) mutant L. monocytogenes 

EGDe strains for 5 hours, following gentamicin protection. Error bars represent the 

standard deviation from the mean of a number of replicated experiments in triplicate. 

Viable cell numbers are expressed per log10 CFU/ml for each strain. Statistical 

significance (Student’s T-test) showed no differences in mutants compared to the 

wild type. 

 

HMBPP attributed gene expression was not affected by MEP deletion mutants in 

L. monocytogenes EGDe: 

qRT-PCR analysis of uninfected (THP-1), wild type (WT) and mutant 

lmo1441(ΔgcpE) and lmo1451(ΔlytB) L. monocytogenes EGDe after 5 hours 

determined no significant effect of MEP deletion mutants on HMBPP-attributed 

gene expression (Fig. 17). There is evidence that would suggest that deletion of the 

HMBPP reductase (lmo1451ΔlytB) enzyme in L. monocytogenes EGDe would result 

in an over accumulation of HMBPP and conversely for deletion of HMBPP synthase 

(lmo1441ΔgcpE) (Begley, Gahan et al. 2004). We predicted this might stimulate 
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expression of predicted genes (A-F: CCL4, IL-17D, TNFAIP6, CCL22, FCGR2B 

and FCGR3B).  qRT-PCR expression analysis failed to detect significant difference 

between wild type and either mutant L. monocytogenes EGDe expression for any of 

the predicted genes (Fig. 17).  
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Fig.17. qRT-PCR expression analysis of HMBPP-associated genes (A-F) 

comparing wild type and mutant L. monocytogenes EGDe 

qRT-PCR expression analysis of THP-1 cells infected with wild type and mutant 

(lmo1441ΔgcpE and lmo1451ΔlytB) L. monocytogenes EGDe.  Statistical analysis 

(Student’s T-test) determined no effect of either mutation on any of the predicted 

genes compared to wild type expression for all genes (A-F: TNFAIP6, IL-17D, 

FCGR2B, FCGR3B, CCL4 or CCL22). It should be noted that in comparison to the 

THP-1 (uninfected) cells expression was significantly increased for these genes in 

both wild type and mutants (up to 30 fold for CCL4, for example). 
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Discussion 

The main aim of this study was to try and elucidate the previously undefined 

effect of a potential pathogen associated molecular pattern (PAMP), (E)-4-hydroxy-

3-methyl-2-but-2-enyl pyrophosphate (HMBPP) on differentiated (dendritic-like) 

THP-1 cells. HMBPP is known to be a major stimulator of Vγ9/Vδ2 T cells for 

cellular proliferation and expansion (Eberl, Altincicek et al. 2002). A whole host of 

gut-associated microbes are known to synthesize this imunostimulatory molecule via 

the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway (including E. coli and L. 

monocytogenes). Indeed we predict that this molecule is likely to contribute to 

immune homeostasis (Begley, Gahan et al. 2004). While there is much research 

available on the interaction of HMBPP with Vγ9/Vδ2 T cells (Eberl, Altincicek et 

al. 2002), (Jomaa, Feurle et al. 1999), relatively few studies have looked at the 

interaction of HMBPP with antigen presenting cells (dendritic cells) prior to cellular 

processing and antigenic presentation to T-lymphocytes (Bonneville and Scotet 

2006). In our study, we used Massive Analysis of cDNA Ends (MACE) RNA-seq 

analysis to determine the effect of HMBPP on THP-1 cells.  Furthermore, gene 

expression analysis (qRT-PCR) was performed following infection of THP-1 cells 

with  wild type L. monocytogenes EGDe and knockout mutants (lmo1441ΔgcpE) 

and (lmo1451ΔlytB) that over- and under- produce HMBPP (Heuston, Begley et al. 

2012). 

Following optimisation of the experimental conditions, it was determined that 

1nM of HMBPP, provided the highest optimal concentration that would not 

negatively impact on cell viability and provided the greatest possibility of observing 

gene expression changes. Previously, HMBPP for γδ T-cell activation has been 
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described as having an EC50 value of 0.1nM (Hintz, Reichenberg et al. 2001; Eberl, 

Hintz et al. 2003).  Cell viability was determined based on measurement of cellular 

adenosine triphosphate (ATP) in THP-1 cells for both HMBPP and digitonin 

treatments. Digitonin has been used previously in order to ensure access of small 

molecules to the cell cytoplasm (Woodward, Iavarone et al. 2010).  

MACE RNA-seq analysis identified a total of 589 genes significantly altered 

by all treatment groups (Control, HMBPP only, Digitonin only and HMBPP + 

Digitonin) identified under stringent statistical criteria (Materials and Methods). For 

this thesis, it was decided to focus on the gene changes associated with HMBPP only 

relative to untreated cells (69 genes) (Appendix to Chapter 5), as it provided a 

significant effect on gene expression without the need of the permeabilisation agent. 

These genes were subsequently categorised according to their gene ontology and 

involvement in KEGG pathways for immunity and antigen presentation. Cytokine-

cytokine receptor interactions, phagosome formation and apoptosis as well as Toll-

like receptor signalling and NFκB signalling were identified as major pathways that 

were significantly affected by HMBPP. The following representative genes were 

selected from the data set for MACE RNA-seq confirmatory analysis: CCL4, IL-

17D, TNFAIP6, CCL22, FCGR2B and FCGR3B and again for further analysis in 

wild type and (HMBPP) mutant L. monocytogenes EGDe strains for potential 

HMBPP-attributed changes. HMBPP from this analysis stimulated a rich 

combination of genes that are known to be involved with immunostimulation and 

antigen presentation.  

CCL4 (chemokine (C-C motif) ligand 4 also known as macrophage 

inflammatory protein-1β (MIP-1β), is a major activator protein and chemokine that 

specifically binds the CCR5 receptor and is an important signalling molecule for 
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natural killer (NK) cells, monocytes and a wide variety of other immune cells such 

as T-lymophyctes (Bystry, Aluvihare et al. 2001). CCL4 was identified as an 

inflammatory cytokine involved in toll-like receptor and NFκB signalling that was 

significantly up regulated by HMBPP in our study along with a number of other 

cytokine genes (CXCL1, CXCL3, CXCL7, CXCL6, CXCL4 and CCL2). Chemokines 

are known to be important mediators between T-helper cells, effector cells and 

antigen presenting cells and are crucial for eliciting a controlled immune response 

(Roncarolo and Levings 2000).  

CCL22 (chemokine (C-C motif) ligand 22, encodes a dendritic and 

macrophage cell associated secretory protein that is involved in immuoregulatory 

and inflammatory processes. CCL22 is known to interact with numerous cell surface 

chemokine receptors for antigen processing (Vulcano, Albanesi et al. 2001) . CCL22 

is a potent chemokine that is strongly chemotactic for monocytes, dendritic cells and 

natural killer (NK) cells for activation, but mildly active for T-cells. CCL22 is 

known not to be chemotactic (cytokine-cytokine signalling molecule) for neutrophils 

and eosinophils during inflammation (Vulcano, Albanesi et al. 2001), (Yanai, Sato 

et al. 2007). In our current study, expression of CCL22 was found to be significantly 

increased in the presence of HMBPP.  This would suggest that HMBPP is an 

important mediator of CCL22 expression and could have potential implications for 

cell migration during microbial-associated infection of antigen presenting cells.  

IL-17D (Interleukin-17D), is an important secretory protein that belongs to the 

IL-17 superfamily (IL-17A-E), all of which have similar protein structure. IL-17D 

represents 25% of all the various isoforms within the superfamily and is an 

important proinflammatory cytokine secreted by T-cells and a host of other immune 

cells (Kolls and Linden 2004). T-helper cell 17 (Th17) related cytokines such as IL-
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17D have been shown to be essential for the expansion of γδ T cells following 

HMBPP-producing M. tuberculosis infection and antigen presentation in primates 

(Shen, Wang et al. 2014).  

TNFAIP6 (tumour necrosis factor alpha-induced protein 6) encodes another 

important secreted protein (TSG-6) that is characterised by a hyaluronan-binding 

domain, an essential chemokine molecule involved in cellular migration. TNFAIP6 

has been shown to be induced by a number of other cytokine signalling molecules 

such as TNFα and IL-1. Studies by Dyer and co-workers (Dyer, Thomson et al. 

2014), have previously demonstrated that TSG-6 suppresses cytokine-mediated 

chemotaxis of neutrophils as an anti-inflammatory mediator of inflammation. We 

speculate that HMBPP may fine tune local inflammatory response to bacteria. 

FCGR2B (low affinity immunoglobulin gamma Fc region receptor 2-B - 

CD32B) and FCGR3B (Fc fragment of IgG, low affinity 3B, receptor - CD16B) 

were also identified by our MACE RNA-seq analysis as being significantly 

increased by HMBPP. FCGR2B and FCGR3B were found to be important receptors 

for the formation of the phagosome (KEGG pathway). Research by Lafont and 

colleagues (Lafont, Liautard et al. 2001), showed experimentally in cell culture 

assays that phosphoantigens such as isopentyl pyrophosphate (IPP) and HMBPP 

significantly prime γδ T-cells for activation and cytokine production.  FCGR3B was 

an important specific cell surface receptor for the HMBPP directed expansion of γδ 

T-cells in co-culture with antigen presenting cells. 

HMBPP significantly increased expression of the negative response regulator 

TRAIL-R for the innate immune response (Diehl, Yue et al. 2004) in the apoptotic 

pathway. Studies in human cell lines by Uchiyama and co-workers (Uchiyama, 
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Yonehara et al. 2013) have shown activation of apoptosis following infection of 

Natural Killer and macrophages with L. monocytogenes via Fas (CD95/Apo-1) 

leading to the production of the Fas ligand and inflammatory cytokines (IL-1β and 

IL-18) (Uchiyama, Yonehara et al. 2013). This demonstrates the importance of 

TRAIL-R for immune activation post infection and here we shown this to be an 

important target for HMBPP. 

Viable cell counts of  wild type L. monocytogenes EGDe and mutant ΔgcpE 

(lmo1441) and ΔlytB (lmo1451) strains did not show any significant difference in 

bacterial cells numbers (CFU/ml bacteria) comparing wild and both mutants 

infection of THP-1 cells. qRT-PCR expression analysis of all L. monocytogenes 

EGDe strains (wild type, ΔgcpE and ΔlytB) for HMBPP-attributed gene expression 

(TNFAIP6, IL-17D, FCGR2B, FCGR3B, CCL4 and CCL22) showed no significant 

differences between wild type and either mutant strains. This would likely suggest 

that the overall effect of HMBPP in bacterial infection might be masked by other 

biological systems in the L. monocytogenes bacterium.  

It is well known that a whole host of genes are activated in response to 

Listerial stimulation.  Nod1 and Nod2 are two such cytosolic sensors critical for 

bacterial recognition and host defence (Kim, Park et al. 2008). However, as of yet a 

full understanding of the consequences of bacterial cell invasion is far from defined 

and it is likely that HMBPP may play an important role in this regard. In a wider 

context we showed a massive increase in expression of TNFAIP6, CCL4 and CCL22 

(>15-fold) following infection with L. monocytogenes in general (regardless of 

phenotype) compared to uninfected cells.  As previously mentioned, these genes are 

known to be important mediators of immunity and antigen presentation and we have 
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now shown these systems to be triggered following Listerial infection of THP-1 

cells.  

Recently published research identified an interesting gene Butyrophilin 3A1 

(BTN3A1) located on human chromosome 6 that is involved in presenting 

phosphorylated antigens such as HMBPP to γδ T-cells (Vavassori, Kumar et al. 

2013; Willcox, Mohammed et al. 2013). Unlike our study, in which we adopted a 

global investigation of the entire human genome (MACE RNA-seq analysis), they 

confined their investigation to genes located on chromosome 6 known to be 

associated with the butyrophillin family of immunoglobulin-like molecules. 

Interestingly, when we analysed our MACE RNA-seq dataset for genes identified in 

their study (Appendix to Chapter 5), we found that BTN3A1 just came under the 

remit of being significantly increased (>1.5 fold) but was clearly increased in THP-1 

cells following HMBPP treatment. Further explorations into our dataset might 

involve protein analysis by flow cytometry in the supernatant fractions of our 

samples for BTN3A1 expression (as well as other genes identified in our study) and 

subsequently blocking with the anti-CD277 antibody (Vavassori, Kumar et al. 2013) 

to determine potential differences related to HMBPP in THP-1 cells.  

In conclusion, we have highlighted in this study the importance of HMBPP as 

a pathogen associated molecular pattern (PAMP) that is recognised by antigen 

presenting cells such as THP-1’s. We show that the HMBPP molecule alone 

(without the aid of a permeabilisation agent) is able to elicit a significant number of 

gene expression changes in THP-1 cells, representing a number of biological 

pathways for immunity and antigen presentation such as cytokine-cytokine 

interactions, phagosome formation, apoptosis, toll-like receptor signalling, NFκB 

signalling and MAPK signalling without a detectable loss to cell viability. APCs are 
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generally necessary for optimal γδ T-cell cell response to HMBPP (Eberl, Roberts et 

al. 2009). Here we demonstrate that HMBPP provides a discrete signal to APCs 

which may co-ordinate the subsequent γδ T-cell response. Because many bacteria in 

the human gut microbiota produce HMBPP it is tempting to speculate that the 

molecule may play a significant role in immune homeostasis. However further work 

is necessary to examine this hypothesis.  
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Thesis Summary 

The main aim of this body of work was to investigate the relevance of 

bacterial isoprenoid biosynthetic pathways for host-microbe interactions. In this 

study, specific enzymes and immunostimulatory metabolites of both the mevalonate 

and MEP pathways for isoprenoid (isopentyl pyrophosphate (IPP)) synthesis were 

investigated in light of potential implications for overall human health and relevance 

to microbial infections. Isoprenoids are essential organic molecules for both 

prokaryotic and eukaryotic organisms. They contribute too many key cellular 

functions including cellular structure formation, energy transport and even vitamin 

absorption. Bacteria are unusual in that they synthesize isoprenoids via one of two 

pathways. Most bacteria utilise the MEP pathway for IPP biosynthesis and this 

pathway generates an intermediate (HMBPP) which is a potent stimulator of human 

gamma delta (γδ) T-cells. A subset of bacteria (including gut bacteria such as 

Lactobacillus species, Enterococcus species and gut Archaea) utilise the classical 

mevalonate pathway for IPP biosynthesis. These bacteria express the enzyme HMG-

R which is an isoform of the human HMG-R enzyme that is the target of statin 

drugs. It is likely that the mevalonate pathway represents the oldest evolutionary 

form of the pathway which was retained in higher Eukarya but replaced by the MEP 

pathway in the majority of bacteria.  

The first chapter of this thesis provides an in-depth overview of the literature 

examining the biochemistry of HMG-R enzymes in bacteria and humans and 

outlining the specific and off-target effects of statins. The literature describes two 

isoforms of HMG-R (encoded by hmgR) that exist in the biosphere; Class 1 (human-

like) and Class 2 (bacterial-like). Structural and sequence based analysis reveal 
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explanations for varying statin-sensitivity between both isoforms; Class 1 enzymes 

are much more susceptible to statins compared to their Class 2 counterparts. 

Historically, the first naturally discovered HMG-R inhibitor was compactin (modern 

day mevastatin), isolated form Penicillium species. To date, a wide diversity of 

statins are readily available as moieties modified from the original mevastatin 

structure or chemically synthesised. Rosuvastatin (RSV), is an example of a “super 

statin” with low lipophilicity, rapid absorption time and high bioavailability for 

hypercholesterolemia treatment. The literature clearly indicates that statins have 

been increasingly linked with off-target (pleiotropic) effects upon host responses. 

These include the promotion of antimicrobial activity through formation of 

neutrophil and macrophage extracellular traps against bacterial colonisation and a 

potential influence upon the production of host antimicrobial peptides. Furthermore 

statins are able to elicit a T-helper cell class switching response from Class 1 to 

Class 2, altering cytokine release and chemotaxis and even blocking the T-helper 17 

cell responses.  

Given the potential for statins to directly affect bacterial growth (through 

inhibition of HMG-R) or to indirectly influence bacterial survival in-vivo (through 

an influence upon host response and immunity), we investigated the influence of the 

statin RSV upon the composition of the gut microbiota in mice (Chapter 2).  In-

silico analysis of the MetaHIT database revealed several gut representative 

microorganisms containing both Class 1 (including methanogenic bacteria) and 

Class 2 (including Lactobacilli and Coprococcus) HMG-R isoforms. Through a 

range of in-vitro experiments we determined that RSV inhibits bacterial growth and 

MVAL formation in HMGR+ bacteria (E. faecalis, E. faecium, L. monocytogenes 

etc.) but only when administered at relatively high concentrations.   
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However in-vivo analysis of RSV is our murine model, determined a 

significant alteration to the community structure of the gut microbiota at a 

physiologically relevant dose. We noted a significant reduction in overall microbial 

biodiversity in the caecum of statin-treated mice as determined by α-diversity 

analysis (chao1, observed species, phylogenetic diversity), which was not apparent 

in the faeces. β-diversity (PCA) analysis confirmed a significant distant clustering of 

bacterial groups in the caecum of RSV-treated mice. It is well known that a rich 

biodiversity of microorganisms in the gastrointestinal tract is essential for 

maintaining a healthy homeostasis in metabolic, nutritional, physiological and 

immunological processes in the host. Disruption to this fine balance has been 

associated with increased susceptibility to metabolic disorders (metabolic syndrome) 

and a whole host of other health related effects (including increased obesity, 

diabetes, regulation of normal gut function and prevention of opportunistic 

infection) (Turnbaugh, Backhed et al. 2008; Clarke, Murphy et al. 2012; Kallus and 

Brandt 2012; Joyce and Gahan 2014). Overriding the obvious beneficial effects of 

statins our findings should prompt an investigation in human models for similar 

shifts in the microbiota biodiversity. 

When we examined individual bacterial species (such as Akkermansia, 

Bilophila and the phylum Desulfovibrionaceae) more closely in our model we noted 

substantial reductions in these key microbial species in the presence of RSV. These 

groups have previously been associated with physiological parameters in the host 

and are known predictors of disease risk. For instance, the species, Bilophila 

wadsworthia has been strongly linked with the causation of colitis in knockout 

murine mice (Devkota, Wang et al. 2012). Akkermansia muciniphila, is now 

believed to be a strong indicator for lean phenotypes and inflammation in 
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mammalian models. A significant reduction in Akkermansia would predict towards a 

phenotype with a higher susceptibility for weight gain, Type 2 diabetes and 

increased intestinal inflammation (Everard, Belzer et al. 2013).  Similarly, we 

determined a significant reduction in the phylum Proteobacteria, which almost 

exclusively contains gram negative bacteria members (such as E. coli). This group is 

well regarded as a driver of inflammation in the intestine through pathogen 

associated molecular patterns such as LPS (Yue, Ma et al. 2012). We can interfere 

from our findings that statins exhibit a strong propensity to alter the gut microbiota 

potentially with wider implications for the overall health of the host that should be 

followed up in humans. 

We investigated a measureable marker of positive metabolic activity (SCFA’s) 

in the host that are strongly linked to a bio diverse microbiota and as mentioned 

previously are strongly beneficial for gut health (Hamer, Jonkers et al. 2008; Cox, 

Jackson et al. 2009; Louis and Flint 2009). We identified significant decreases in 

key microbial groups (such as Roseburia and Eyrsipelotrichaceae) as well as a 

significant increase in Lachnospiraceae (Coprococcus) in the caecum and faeces of 

RSV-treated animals. Many of these groups are known to be important producers of 

the SCFA butyrate which exhibits strong anti-inflammatory and anti-cancerous in 

the gut (Machiels, Joossens et al. 2013) Similarly we examined a reduction in the 

family Coriobacteriaceae which is beneficial for polyphenol conversion, bile acid 

and lipid metabolism in the gut. However, in our model we determined no 

considerable effect on individual SCFA markers (butyrate, propionate, aceate) or 

total SFCA’s in the caecum. This suggests that whilst the microbial community 

structure is altered by statins, there is no effect upon overall production of SCFA’s. 

A similar investigation in humans is certainly warranted. 



 

241 
 

In Chapter 3 of this thesis, we aimed to link observed changes to the murine 

microbiota with respect to RSV (Chapter 2) with predicted in-direct (pleotropic) 

effects of statins (Chapter 1) regarding microbe-host and host-microbe feedback 

systems. We examined three main parameters in our model inflammation, bile acid 

synthesis and expression of antimicrobial effectors. We noted significant reductions 

in hepatic gene expression of pro inflammatory cytokines and cellular adhesion 

molecules (including TNFα, CCL20, IL-1β and IL-18) compared to an increased ileal 

response (including ICAM-1, IL-17A, TGF-β and IL-1β) in RSV-treated mice. This 

was confirmed by protein expression (MSD analysis) for systemic and hepatic 

cytokines (IL-1β and TNFα were both reduced by RSV administration). Our 

findings confirm previously reported pleiotropic effects of statins (Chapter 1) 

suggesting a strong involvement with local inflammation. We propose that statins 

have wider implications in respect of local and system inflammation and are likely 

to disrupt overall homeostasis with broad ranging implications for health.  

Most importantly, RSV enhanced expression of genes encoding intestinal 

antimicrobials (RegIII, CAMP and iNOS2) as well as local mucin production 

(MUC2). These antimicrobial agents are known to strongly influence microbial 

composition in the gastrointestinal tract and are active against a wide range of 

bacterial species. RegIII is a potent inhibitor of peptidoglycan cell wall synthesis 

for bacterial replication. CAMP is a strongly antibacterial protein associated with the 

lysosomes of macrophages. iNOS2 is essential for the synthesis of nitric oxide and 

acts as a key signalling molecule in the gut and can be stimulated by IL-1, TNFα in 

response to bacterial infection. Our findings confirm previous observations that 

statins can induce mucosal expression of CAMP (von Kockritz-Blickwede and Nizet 

2009; Chow, von Kockritz-Blickwede et al. 2010).  Similarly, it was reported that 
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individual bile acids (such as CDCA and UDCA) can considerably enhance CAMP 

activity in the gut (D'Aldebert, Biyeyeme Bi Mve et al. 2009). We deduce that in our 

model statin alterations to the gut microbiota are more likely due to effects on these 

key agents rather than direct antimicrobial activity.  

Lastly we examined bile acid synthesis a well-defined microbe-directed 

physiological system with obvious implications for the host and indeed the gut 

microbiota. Bile acids are sterol compounds formed from the breakdown of 

cholesterol and are readily required for the absorption and emulsification of fats in 

the diet. It has been shown previously that bile acid feeding (cholic acid) 

significantly altered the gut microbiota prompting an increased outgrowth of 

Firmicutes (in particular Clostridia and Erysipelotrichi clusters) as well as 

Proteobacteria (E.coli) (Islam, Fukiya et al. 2011; Yokota, Fukiya et al. 2012). In 

our study we observed reduced hepatic expression of CYP8b1 and CYP27a1 genes 

that coincided with an overall reduction in hepatic and faecal bile acids (CA and 

CDCA). We note a concomitant effect on the microbiota that is broadly opposite to 

that seen in CA-treated rodents. Notably we witnessed a decrease in specific 

Firmicutes groups including specific Clostridial clusters (Roseburia), 

Erysipelotrichaceae and Proteobacteria. We therefore deduce that RSV resulted in 

reduced hepatic primary bile acid synthesis correlating with alterations to the 

microbiota that reflect these changes. These findings were confirmed by PCA plot 

analysis showing distinctive separation of control and RSV-treated animals for total 

hepatic, circulating and faecal bile acid profiles. Whilst inflammation and BA 

synthesis exert strong influences on the microbiota we recognise that other 

physiological parameters (including cholesterol homeostasis) may also potentially 
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influence the community structure within the gut microbiota. Our findings 

demonstrate a need to examine the potential for similar effects in humans. 

When we examined the implications of RSV in GF mice, we observed 

contrasting effects compared to our conventional model. In this case RSV elicited an 

increase in the gene expression of hepatic inflammatory markers (including IL-1β, 

TNFα, ICAM-1 and Itgal) which we confirmed by MSD protein analysis. RSV had 

no effect on the expression of genes encoding intestinal antimicrobial peptides 

(RegIIICAMP, iNOS2) or mucin genes (MUC2) in GF mice. We determined no 

effect of statin on genes encoding hepatic bile acid synthesis (CYP7a1, CYP7b1, 

CYP8b1, CYP27a1 or CYP46a1), which was confirmed by UPLC-MS analysis for 

individual (including CA, CDCA and MCA) and total primary, secondary and tauro-

conjugated bile acids. PCA plot analysis demonstrated no significant alterations for 

total hepatic, circulating, biliary or faecal bile profiles comparing control and RSV-

treated GF animals. Our study confirms the importance of a functional, rich enteric 

microbiota for driving BA synthesis in the host. Similarly, it is known that the 

microbiota is a key determinant for intestinal inflammatory homeostasis (in 

particular ICAM-1 and IL-1β). With the exception of certain porcine models 

(simvastatin) the inflammatory effects of statins in GF animals are not well defined 

(Jung, Wang et al. 2012; Bui, Kocher et al. 2013). Our study is the first of its kind 

that examines such effects in gnotobiotic rodents and highlights the significance of 

altering the gut microbiota for both inflammation (and indeed BA synthesis) in the 

host with implications for health status. 

Chapter 4 of this thesis was undertaken to investigate the contribution of the 

second enzyme (HMG-CoA synthase) in the mevalonate pathway of L. 
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monocytogenes EGDe (growth and virulence) following clean deletion of ΔmvaS.  

Previously, our lab has shown that the third mevalonate pathway enzyme (HMG-R) 

is essential in L. monocytogenes EGDe for normal growth and virulence (this mutant 

could be rescued by addition of exogenous MVAL) (Heuston, Begley et al. 2012). L. 

monocytogenes is a unique bacterium which has been identified as containing a 

complete set of enzymes for both mevalonate and MEP pathways. 

In our study we successfully knocked out the mvaS gene by deletion 

mutagenesis. Surprisingly, we determined no effect on growth of this mutant in 

complex and defined media compared to the parent wild type strain. This mutant 

was capable of similar comparable growth without addition of exogenous MVAL. 

This was in contrast compared to the ΔhmgR mutant which failed to grow in the 

absence of exogenous MVAL. Phenotypic analysis under different environmental 

stress conditions (cell wall autolysis, oxidative stress, cell wall antibiotics or HMG-

R inhibitors) revealed no increased susceptibility of this deletion for L. 

monocytogenes EGDe. Similarly, in-vivo we observed no increased disadvantage of 

this mutant for infection in cell culture (J774 macrophages) and animal models 

(BALB/c mice) against the wild type. We reasoned from this that mvaS was non-

essential for the normal growth and virulence of L. monocytogenes EGDe.   

Collectively our data suggested the possibility of an alternative enzyme 

capable of generating the substrate of mvaS (HMG-CoA) encoded in L. 

monocytogenes EGDe genome. KEGG pathway analysis highlighted an alternative 

means of generating this substrate in other bacteria via activity of methylglutaconyl-

CoA hydratase involved in the degradation of amino acids (valine, leucine and iso-

leucine). Extensive bioinformatics analysis of Listerial genomes failed to identify a 

properly annotated homologue of this gene in EGDe. We identified the presence of 
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this enzyme in the distantly related species (L. fleischmanni). Hence it is possible 

that an alternative mechanism for providing the HMG-CoA substrate in L. 

monocytogenes EGDe exists rendering HMG-CoA synthase activity redundant (at 

least under our test conditions) that may involve methylglutaconyl-CoA hydratase. 

We suggest that in order to investigate this hypothesis further a transposon bank 

could be generated within the ΔmvaS mutant and to screen this bank for clones 

incapable of growth in the absence of MVAL. Our study (at least for L. 

monocytogenes EGDe) suggests that much more remains to be discovered about 

isoprenoid biosynthesis concerning other potential pathways and metabolites that 

may feed into the mevalonate and MEP pathways as currently described with 

attendant implications for bacterial infection. 

In Chapter 5, the focus of this thesis switched to the alternative pathway for 

isoprenoid biosynthesis i.e. the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway 

and the penultimate metabolite (E)-4-hydroxy-3-methyl-2-but-2-enyl pyrophosphate 

(HMBPP), a potential pathogen associated molecular pattern (PAMP).  HMBPP is a 

potent activator of Vγ9/Vδ2 human T cells which elicits proliferation and expansion 

of this T-cell subset. Many gut-associated microbes (such as E.coli and Listeria 

monocytogenes) are known to synthesize this immunostimulatory molecule with 

strong implications for immune homeostasis (Eberl, Hintz et al. 2003). Whilst much 

research has focussed on the on the interaction of HMBPP with T-cells, our study is 

one of the first to examine the interaction of HMBPP with antigen presenting cells 

(APC’s) (dendritic cells) prior to cellular processing and presentation to γδ T-cells 

(Bonneville and Scotet 2006). 

We determined that HMBPP at optimised nanomolar concentrations (without 

the aid of a cellular permeabilisation agent) significantly altered gene expression in 
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human THP-1 cells by MACE RNA-seq analysis. HMBPP significantly activated 

genes (including CCL4, IL-17D, TNFAIP6, CCL22, FCGR2B, FCGR3B and TRAIL-

R) involved in pathways for immunity and antigen presentation (cytokine-cytokine 

receptor interactions, phagosome formation, apoptosis, toll-like receptor signalling, 

NFκB signalling and MAPK signalling). Further gene expression analysis of 

HMBPP-activated genes in THP-1 cells infected with wild type, HMBPP under-

producing (ΔgcpE) and HMBPP over-producing (ΔlytB) mutant L. monocytogenes 

EGDe strains (available in our lab), showed that HMBPP likely plays a small yet 

significant role in overall bacterial infection. However we postulate that other 

biological interactions (such as with Nod 1 and Nod 2) may mask the importance of 

effect (Kim, Park et al. 2008).  

We also examined our dataset in relation to other previous studies that 

implicated other genes (such as butyrophilin (immunoglobulin-like) genes) involved 

in HMBPP presentation by APC’s to γδ-T cells (Vavassori, Kumar et al. 2013; 

Willcox, Mohammed et al. 2013). Our dataset stands out as the first global 

investigation in relation to HMBPP antigen presentation compared to these previous 

localised (human chromosome 6) studies.  BTN3A1 was identified as one such 

potential target which we found to be just under the remit of significantly activated 

(along with a number of other butyrophilin associated genes located on chromosome 

6) under our test conditions. Further exploration might involve protein (flow 

cytometry) analysis in supernatant fractions of our samples blocking BTN3A1 

activity (anti-CD277 antibody) to determine potential HMBPP-associated effects in 

our dataset. Overall we reveal the importance of HMBPP as a PAMP recognised by 

APC’s (such as THP-1 cells) for immunity and antigen presentation in providing a 

discrete signal γδ T-cell proliferation and expansion. Our findings provide a greater 
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in depth molecular knowledge regarding the effects of HMBPP in early bacterial 

infection. Since many bacteria in the human gut microbiota synthesize this molecule 

it is tempting to speculate that HMBPP may play a significant role in immune 

homeostasis. However further investigation will be necessary to expand upon this 

hypothesis.  

In summary, we provide a complex overview of host-microbe interactions 

involving different enzymes and intermediary metabolites of both the mevalonate 

and non-mevalonate (MEP) pathways for isoprenoid biosynthesis, building upon 

what is already known about these pathways. We have presented evidence for wider 

expansion of enzymes and metabolites that could be further linked to these pathways 

in bacteria. We examined the previously uncharacterised effects of a widely 

prescribed medication (RSV) which we show has a profound impact upon gut 

microbiota structure and concomitant host responses in murine studies. Given the 

number of individuals worldwide currently taking statins this could potentially have 

widespread implications for human medicine into the future. Finally, in this thesis 

we were successfully able to expand on previous knowledge regarding the early 

stages of bacterial infection which may in time change our current perceptions about 

host-microbe and indeed microbe-host dialogue.   
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Appendix to Chapter 3 

 

Bile acid standard curves: 

Taurine: R
2 
= 0.975028 

 

 

Cholic acid (CA): R
2 = 

0.999481 

 

Compound name: Cholic acid

Coefficient of Determination: R^2 = 0.999481 

Calibration curve: 0.192316 * x

Response type: Internal Std ( Ref 5 ), Area * ( IS Conc. / IS Area )

Curve type: Linear, Origin: Force, Weighting: Null, Axis trans: None
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Chenodeoxycholic acid (CDCA): R
2
=0.975284

 

Lithocholic acid (LCA): R
2 
= 0.000 (always difficult!) 

 

 

Deoxycholic acid (DCA): R
2 

= 0.997885 

 

 

Compound name: Lithocholic acid

Coefficient of Determination: R^2 = 0.000000 

Calibration curve: 0.0682274 * x

Response type: Internal Std ( Ref 5 ), Area * ( IS Conc. / IS Area )

Curve type: Linear, Origin: Force, Weighting: Null, Axis trans: None
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Compound name: Deoxycholic acid

Coefficient of Determination: R^2 = 0.997885 

Calibration curve: 0.241799 * x

Response type: Internal Std ( Ref 5 ), Area * ( IS Conc. / IS Area )

Curve type: Linear, Origin: Force, Weighting: Null, Axis trans: None
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Ursodeoxycholic acid (UDCA): R
2 
= 0.976659 

 

 

α –muricholic acid (α-MCA): R
2
= 0.968570 

 

 

β-muricholic acid (β-MCA): R
2 
= 0.982533 

 

 

 

Compound name: Ursodeoxycholic acid

Coefficient of Determination: R^2 = 0.976659 

Calibration curve: 0.151834 * x

Response type: Internal Std ( Ref 5 ), Area * ( IS Conc. / IS Area )

Curve type: Linear, Origin: Force, Weighting: Null, Axis trans: None
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Compound name: alpha-muricholic acid

Coefficient of Determination: R^2 = 0.968570 

Calibration curve: 0.42465 * x

Response type: Internal Std ( Ref 5 ), Area * ( IS Conc. / IS Area )

Curve type: Linear, Origin: Force, Weighting: Null, Axis trans: None
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Compound name: B-Muricholic acid

Coefficient of Determination: R^2 = 0.982533 

Calibration curve: 0.245306 * x

Response type: Internal Std ( Ref 5 ), Area * ( IS Conc. / IS Area )

Curve type: Linear, Origin: Force, Weighting: Null, Axis trans: None

ug/ml
-0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

Re
sp

on
se

-0.00

2.00

4.00

ug/ml

Re
sid

ua
l

-50

0

50



 

255 
 

ω – muricholic acid (ω-MCA): R
2 
= 0.989249 

 

 

Taurocholic acid (TCA): R
2
 = 0.985264 

 

 

Taurochenodeoxycholic acid (TDCA): R
2 
= 0.981316 

 

 

 

Compound name: omega Muracholic acid

Coefficient of Determination: R^2 = 0.989249 

Calibration curve: 55767.8 * x

Response type: External Std, Area

Curve type: Linear, Origin: Force, Weighting: Null, Axis trans: None
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Compound name: Taurocholic acid

Coefficient of Determination: R^2 = 0.985264 

Calibration curve: 0.198613 * x
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Response type: Internal Std ( Ref 5 ), Area * ( IS Conc. / IS Area )

Curve type: Linear, Origin: Force, Weighting: Null, Axis trans: None
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Taurolithocholic acid (TLCA): R
2 
= 0.977044 

 

 

Taurodeoxycholic acid (TDCA): R
2 
= 0.997838 

 

 

Tauroursodeoxycholic acid (TUDCA): R
2
 = 0.961158 

 

 

 

Compound name: Taurolithocholic acid

Coefficient of Determination: R^2 = 0.977044 

Calibration curve: 0.207965 * x

Response type: Internal Std ( Ref 5 ), Area * ( IS Conc. / IS Area )

Curve type: Linear, Origin: Force, Weighting: Null, Axis trans: None
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Taurobetamuricholic acid (TβCA): R
2
 = 0.998299 

 

 

Taurochenodeoxycholic acid (TCDCA): R
2 
= 0.927171 

 

 

Tauro-α-muricholic acid (TαMCA): R
2 
= 0.871911 

 

 

 

 

 

 

Compound name: Taurobetamuricholic acid

Coefficient of Determination: R^2 = 0.998299 

Calibration curve: 0.501312 * x

Response type: Internal Std ( Ref 5 ), Area * ( IS Conc. / IS Area )

Curve type: Linear, Origin: Force, Weighting: Null, Axis trans: None

ug/ml
-0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

Re
sp

on
se

-0.0

2.5

5.0

7.5

10.0

ug/ml

Re
sid

ua
l

-0.0

10.0

20.0

30.0

40.0

Compound name: Na Taurochenodeoxycholic acid

Coefficient of Determination: R^2 = 0.927171 

Calibration curve: 1.37791 * x

Response type: Internal Std ( Ref 5 ), Area * ( IS Conc. / IS Area )
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Calibration curve: 22341.7 * x

Response type: External Std, Area

Curve type: Linear, Origin: Force, Weighting: Null, Axis trans: None
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Tauro-β-muricholic acid (TβMCA): R
2
 = 0.909661 

 

 

Fig. 1. UPLC-MS bile acid standard curves for individual BA’s. 

 

 

 

 

 

Compound name: Taurobetamuricholic acid

Coefficient of Determination: R^2 = 0.909661 

Calibration curve: 0.351872 * x

Response type: Internal Std ( Ref 5 ), Area * ( IS Conc. / IS Area )

Curve type: Linear, Origin: Force, Weighting: Null, Axis trans: None
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Faecal UPLC-MS BA analysis (C57Bl/6 mice): 
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Fig.2. RSV unaffected certain faecal BA’s in RSV-treated C57Bl/6 mice. 

Individual graphs indicate levels of a number of faecal BA’s (LCA, TLCA, TDCA, 

TUDCA, αMCA, TαMCA, βMCA, TβMCA, ωMCA, TωMCA and TCDCA) in 

control and RSV-treated mice. No significant differences where determined. 

 

 

 

 

 

Fig. 3. RSV unaffected certain hepatic BA’s in RSV-treated C57Bl/6 mice. 

Individual graphs indicate levels of a number of liver BA’s (DCA, TCA, UDCA, 

TDCA, TcMCA, αMCA and ωMCA) in control and RSV-treated mice. No 

significant differences where determined. 

 

 

Hepatic (Liver) UPLC-MS BA analysis (C57Bl/6 mice): 
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Fig. 4. RSV unaffected certain circulating BA’s in RSV-treated C57Bl/6 mice. 

Individual graphs indicate levels of a number of plasma BA’s (DCA, TCA, UDCA, 

TDCA, TcMCA, βMCA, ωMCA and TCDCA) in control and RSV-treated mice. No 

significant differences were determined. 

 

 

 

 

 

 

 

 

 

 

Circulating (Plasma) UPLC-MS BA analysis (C57Bl/6 mice): 
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Fig.5. RSV unaffected a number of hepatic, circulating (plasma), biliary and 

faecal BA’s in GF mice. 

Individual graphs indicate levels of a number of BA’s (TcMCA, TCA, TCDCA and 

free taurine) between control and RSV-treated mice in liver, plasma, gall gladder 

(biliary) and faeces of GF animals. No significant differences were determined. 

 

 

 

UPLC-MS BA analysis (GF mice): 
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    IL-1β: 

 

Fig. 6. MSD standard curves for IL-1β and TNFα proinflammatory cytokines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2 = 1 R2 = 1    

MSD cytokine analysis: 

TNFα: 
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Appendix to Chapter 5 

 

Fig. 7. Example of qRT-PCT amplification curves. 

Red circles indicate positive amplification, green circles indicate negative 

amplification and blue circles indicate uncertain values. Graphs represent 

fluorescence vs. cycle number for each amplification.   
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KEGG pathway analysis of differentially expressed genes in THP-1 cells by 

HMBPP for immunity and antigen presentation:                            
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Fig. 8. HMBPP attributed gene activation for immunity and antigen 

presentation in KEGG pathways for Toll-like receptor signalling, NFκB 

signalling and MAPK signalling in THP-1 cells. 

 

 

 

 

Fig. 9. Venn diagram representation of common and unique genes to each THP-

1 treatment. 
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HMBPP did not significantly alter expression of the butyrophillin family of 

immunoglobulin-like molecules located on human chromosome 6 in THP-1 cells 

for antigenic presentation: 

 

Fig. 10. MACE RNA-seq analysis of the butyrophillin family of 

immunoglobulin-like molecules (human chromosome 6) for control versus 

HMBPP. 

 

 

 

 

 

 

 

 

 

 

Gene ID Control Digitonin HMBPP HMBPP & Digitonin Sig. (CNTRL vs. HMBPP)
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ENSG000001

24783
921 868.3333 1172 1258

SLC35B3

ENSG000001

24786
140 164 177.33333 183

TMEM14C

ENSG000001

11843
699 740.3333 907 1057.6666

TMEM14B

ENSG000001

37210
479 574 630.3333 819

CCDC90A/MCUR1

ENSG000000

50393
70.3333 101.333336 81.666664 105.333336

FAM8A1

ENSG000001

37414
58 59 80.333336 78.666664

MBOAT1

ENSG000001

72197
50.6667 55.333332 66.666664 90.333336

CDKAL1

ENSG000001

45996
68.3333 72.333336 71.333336 86.333336

HDGFL1

ENSG000001

12273
0.33333 0.33333334 1.6666666 0.6666667

NRSN1
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52954
2.66667 2.3333333 3.3333333 2.6666667
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BTN3A2
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ENSG000000
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