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Abstract

The aging population profile in many countries brings into focus ris-

ing healthcare costs and pressure on conventional healthcare services.

Pervasive healthcare has emerged as a viable solution capable of pro-

viding a technology-driven approach to alleviate such problems by

allowing healthcare to move from the hospital-centred care to self-

care, mobile care, and at-home care. The state-of-the-art studies in

this field, however, lack a systematic approach for providing compre-

hensive pervasive healthcare solutions from data collection to data

interpretation and from data analysis to data delivery.

In this thesis we introduce a Context-aware Real-time Assistant (CARA)

architecture that integrates novel approaches with state-of-the-art

technology solutions to provide a full-scale pervasive healthcare solu-

tion with the emphasis on context awareness to help maintaining the

well-being of elderly people. CARA collects information about and

around the individual in a home environment, and enables accurately

recognition and continuously monitoring activities of daily living. It

employs an innovative reasoning engine to provide accurate real-time

interpretation of the context and current situation assessment. Being

mindful of the use of the system for sensitive personal applications,

CARA includes several mechanisms to make the sophisticated intel-

ligent components as transparent and accountable as possible, it also

includes a novel cloud-based component for more effective data anal-

ysis. To deliver the automated real-time services, CARA supports

interactive video and medical sensor based remote consultation.

Our proposal has been validated in three application domains that are

rich in pervasive contexts and real-time scenarios: (i) Mobile-based

Activity Recognition, (ii) Intelligent Healthcare Decision Support Sys-

tems and (iii) Home-based Remote Monitoring Systems.
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Chapter 1

Introduction

1.1 Motivation

The current ageing of the population in most European countries is exerting pres-

sure on the healthcare systems in various ways: more chronic medical conditions,

increasing health costs, and the need for long-term care and assistance of elderly

people [Codagnone, 2009]. Driven by the quality of life and cost issues, there is a

need to change the current healthcare system from a hospital focused setting to

a home centred setting and from managing illness to maintaining wellness. Inno-

vative pervasive technology [Varshney, 2003] has been identified as a promising

solution for facilitating this transformation. Research on pervasive computing

technologies for healthcare does not aim to replace traditional healthcare, but

rather is directed towards paving the way for a user-centred preventive health-

care model [Arnrich et al., 2010].

Pervasive healthcare can be viewed from two perspectives: i) as the applica-

tion of pervasive computing technologies for healthcare, and ii) as making health-

care available anywhere, anytime and to anyone [Fortino et al., 2014]. Pervasive

healthcare has evolved based on biomedical engineering (BE), medical informatics

(MI), and pervasive computing (PerCom). BE combines engineering principles

with medical and biological sciences to advance healthcare treatment. MI deals

with large medical resources to optimize the acquisition, storage, retrieval, and

use of information in healthcare. PerCom designs, develops and evaluates the use

1



1. Introduction

of the new paradigm of healthcare systems deployed on a large scale throughout

everyday life. While each one of these technologies can be used to improve the ex-

isting health delivery model, pervasive healthcare in contrast tries to change the

healthcare delivery model: ”from doctor-centric to patient-centric, from

acute reactive to continuous preventive, from sampling to monitoring”

[Bardram, 2008]. Overall, pervasive healthcare have been widely recognized as

promising solutions for providing in-home healthcare services to the elderly, in

particular those suffering from chronic illness, as well as for reducing long-term

healthcare costs and improving the quality of care [Alwan and Nobel, 2008].

These advantages have motivated us to research and develop an innovative soft-

ware architecture for pervasive healthcare.

In designing an intelligent software infrastructure for pervasive healthcare,

three specific application domains are targeted: Activity of Daily Living Anal-

ysis, Context-aware Reasoning and Remote Monitoring. Focusing attention on

real-world life-critical problems results in a number of important technical goals

such as the use of various contextual information, the need for real-time intelli-

gent analysis of time-critical data and the delivery of pervasive healthcare ser-

vices. The overall objective of producing an effective solution will be evaluated

by performing two in-depth case studies for activity recognition and anomaly de-

tection within a pervasive home environment. One of these will focus on tracking

activities of patients using smartphones, and the second will be concerned with

independent in-home monitoring of patients through a Wireless Sensor Network

(WSN).

In this dissertation, the Context-aware Real-time Assistant (CARA) system

is presented which is designed to provide personalized healthcare services for the

elderly in a timely and appropriate manner by adapting the healthcare tech-

nology to seamlessly integrate in normal activities of the elderly and working

practices of the caregivers. It addresses the need for a new generation of per-

vasive healthcare systems that allows early detection of anomalies and health

problems for elderly people by identifying behaviour and physiological changes

over time. The incorporation of small, low-cost, low-intrusion sensors, including

Body Area Networks (portable electronic devices and smartphone sensors capa-

ble of monitoring and communicating patient vital signs) and Wireless Sensor

2



1. Introduction

Networks (such as smart home sensors capable of monitoring the home envi-

ronment and detecting behavioural patterns of the patient), with the intelligent

reasoning framework provides a real-time monitoring and context-aware analysis

capability that should lead to better medical diagnosis and better patient quality

of life. Moreover, comprehensive and efficient real-time remote monitoring will

contribute to autonomous healthcare and less hospitalization.

1.2 Challenges and Solutions

While pervasive healthcare offers new possibilities, there are many technical chal-

lenges to be overcome before the vision of pervasive healthcare can be realized.

First, most existing solutions focus on developing individual techniques that lead

to segmented solutions and poor interoperability [Alwan and Nobel, 2008]. A

comprehensive pervasive healthcare system requires an appropriate infrastructure

that integrates all enabling technologies for information acquisition, management,

analysis and delivery. Second, it is essential for environments that aim at pro-

viding pervasive healthcare services to have some sort of Ambient intelligence

(AmI). AmI refers to electronic environments that are capable of recognizing

and responding to the presence of individuals in a seamless and unobtrusive way

[Ducatel et al., 2010]. AmI as a technological paradigm has the potential to

make a significant impact upon everyday human life by building an environment

where devices work in concert to support people in carrying out their everyday

life activities, tasks and routines in an easy, natural way. Third, contextual in-

formation is the key to enable pervasive healthcare systems to behave and adapt

intelligently [Couto et al., 2012]. Interpreting and managing such context in a

reasoning infrastructure is essential for providing an efficient healthcare solution

for the elderly, their family members, and caregivers. Last but not least, a perva-

sive healthcare system should have a wide usability [Pung et al., 2009]. It must

provide interactive user interfaces and easy to use mechanisms for elderly patients

and caregivers, and also provide appropriate data analysis models for the efficient

management of healthcare data by service providers.

This dissertation addresses these and other problems: it aims to develop the

infrastructure to provide a previously unavailable solution [Chiang et al., 2013;

3



1. Introduction

Sain et al., 2010] that can improve healthcare and the patient quality of life

through the combination of intelligent software and a smart home environment.

The following characteristics of pervasive healthcare have been considered during

the design and development of the CARA architecture:

• Real-time Data Processing: This is required because the real-time sen-

sor data for healthcare sometimes contains time-critical information. Be-

sides, the context is dynamic and its elements will vary with the situation

and the availability of sensor readings. Intelligent data fusion to produce

the real-time context is needed. The system should be able to merge the

various real-time sensor readings, along with other pertinent data such as

patient profile and time, deal with all available data sources, and provide,

in real-time, a current context.

• Context Awareness: Context awareness is an important notion in per-

vasive computing. The context of a patient’s current needs can be derived

from the patient’s medical history, current time, location and activity, pa-

tient’s current vital signs, among other pieces of information [Varshney,

2009]. The use of context is imperative because, in an environment with

many sources of data (some of which may be unreliable), the context can

be used to disambiguate the real critical conditions from false alarms.

• Healthcare Decision Support: An essential goal is to incorporate enough

intelligence into the system to provide accurate real-time interpretation of

the sensor readings. This requires a general reasoning engine suitable for

real-time execution of the set of application-specific rules incorporating do-

main knowledge. The reasoning engine should be flexible and customizable

with different rules for distinct scenarios, and be able to analyse the full con-

text of the sensor readings in order to distinguish critical from non-critical

situations. Rules representing the domain knowledge should be examinable

by stakeholders to ensure the accountability of the reasoning engine. Fur-

thermore, it is desirable for the system to be as sophisticated and adaptable

as possible, while also being as transparent as possible for both subject and

caregivers by presenting the provenance of the reasoning output.

4



1. Introduction

• Remote Monitoring: Remote monitoring is a technology to enable moni-

toring of patients outside of conventional clinical settings (e.g. in the home),

which allows the pervasive healthcare system to remotely and continuously

monitor the patient through a wireless sensor network and deliver health

related information to a remote caregiver in real-time. Incorporating re-

mote monitoring in chronic disease management can significantly improve

an individual’s quality of life. It allows patients to maintain independence,

reduce hospital visits, and minimize healthcare costs [Liang et al., 2012].

• Healthcare Data Analysis: Effectively analyzing various forms of health-

care data over a period of time can predict impending healthcare problems

[Jensen et al., 2012]. However, analyzing large amounts of data from com-

plex heterogeneous patient sources is a computationally intensive task. By

utilizing a cloud infrastructure, the system is able to infer knowledge from

the massive amounts of data and provide personalized care to the patient.

A cloud-based solution can also improve the scalability and availability of

a pervasive healthcare system.

On the other hand, due to the critical nature of health related work, this thesis

does not cover the entire aspect of disease management and prevention. [Mihai-

lidis and Bardram, 2010] defined usage models of pervasive healthcare outside of

hospital conditions. These usage models have different requirements in regard

of criticalness, user’s participation, privacy, usability, etc. This dissertation pri-

marily covers the usage models of Fitness, and partially Risk management, and

marginally Chronic disease management.

1.3 Contributions

The advances in technology allow the emergence of pervasive healthcare systems,

which can seamlessly integrate to the daily lives of people. Thus, it is now possible

to bring healthcare systems outside of traditional medical environments to our

everyday lives in the form of wearable, non-invasive sensors to track external and

internal aspects of our bodies [Smarr, 2012]. The state-of-the-art studies in this

field, however, lack a systematic approach for providing comprehensive pervasive
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healthcare solutions from data collection to data interpretation and from data

analysis to data delivery.

The primary contribution of this research is the design and development of the

Context-aware Real-time Assistant architecture for pervasive healthcare (CARA)

which involves data collection, data processing, data analysis and data deliv-

ery. This is achieved by pervasive sensing, real-time activity recognition, contex-

tual data modelling, context-aware reasoning, interactive remote monitoring and

cloud-based data analysis.

The CARA architecture consists of a number of distributed components which

are designed and developed to provide an integrated technology-driven solution

for pervasive at-home healthcare. Notable strengths of the CARA architecture

include:

• the integration of wireless wearable body sensors and smart home sensors

for data collection and context acquisition;

• the incorporation of a smartphone-based activity recognition approach that

involves identifying a user’s activity through the combined use of a threshold-

based mechanism and multiple machine learning algorithms;

• the design of a context-aware reasoning framework which makes most use

of contextual information about and around a person in the pervasive home

environment to achieve early detection and prevention of health problems;

• the implementation of a remote monitoring approach that enables the per-

son within the home environment to be monitored by a remote caregiver in

an interactive and efficient manner;

• the development of a cloud-based data analysis solution which provides an

efficient means for data sharing and data mining.

In collaboration with the Tyndall National Institute and an external electri-

cal engineer, we developed the wireless sensor network (WSN) consisting of

wearable medical sensors and smart home sensors for continuously monitoring

the patient vital signs and the home environment. The Zephyr BioHarness sen-

sor [Zephyr Inc., 2013] was integrated into the WSN (as a replacement for the
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Tyndall medical sensors) to provide more accurate sensing and a more reliable

solution. An Android smartphone was introduced as an additional sensing plat-

form for activity recognition using a hierarchical classification method and an

adaptive classification model. Data fusion was applied to sensor data gathered

from the patient and environment, and this provides comprehensive context to

a hybrid reasoning engine for anomaly detection and home automation based

on expert domain knowledge as well as user behavioural patterns. A semantic-

based approach is used to examine the rules for inconsistency or possible conflict,

and indicate this to the user, and a provenance mechanism is used to explain

the outcome of the reasoning system. These support both transparency and

accountability in the sophisticated reasoning system. We integrated a remote

monitoring service into the system which allows the assessment of patient state

along with other relevant context to be shared with remote caregivers in real-time

through the internet. The functionality of video-conferencing enables real-time

interaction between the patient and the remote caregiver while the patient vital

signs are being monitored. Finally, a cloud-based data analytics framework

was developed to exploit the cloud infrastructure to improve the effectiveness of

data mining through machine learning techniques, and to overcome the limitation

of hardware resources in a thin client. Various aspects of the research have been

published, a list of all the included published work can be found in Appendix A:

List of Publications.

1.3.1 Possible examples of use of CARA

The use of pervasive computing within a healthcare environment has been shown

to increase productivity in assisting medical practitioner during their daily tasks

[Bali et al., 2013]. The CARA system is capable of interpreting sensor data

into multiple context elements and reasoning with all available knowledge and

experience which may assist the medical practitioner in providing an effective

continuous service. It can benefit patients and caregivers in different ways.

A possible scenario is to monitor a patient under supervisory circumstances,

allowing critical information about existing medical conditions to be checked by

the on-site caregiver or a remote medical consultant. This provides an incremental
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introduction of CARA as a pervasive healthcare system when the wireless sensors

are initially introduced to the patient. For example:

• Scenario of On-site Care

Jacob, a patient at his local clinic, has been complaining of a slight chest

pain. After preliminary tests, the doctor can not diagnose anything in

particular, but decides to keep him under observation using CARA and

also allow remote diagnosis by a specialist. Wireless wearable sensors were

introduced and attached to Jacob. This enabled him to be monitored on-

site under supervision while his real-time vital signs can be examined by

remote medical practitioners for consultancy. After a period of monitoring,

the system did not detect any abnormalities of Jacob’s current medical

condition. So the doctor advised the patient to set up the CARA system

in his home and to carry on the monitoring session at home. The system

can send notification to relevant practitioners if he needs instant attention.

Another scenario involves remote at-home monitoring and checkup. A patient

with chronic disease is monitored remotely and continuously within a smart home

environment, the intelligent reasoning engine could detect anomalies based on the

daily routine and perceived medical information of the patient,and transmit alert

messages to healthcare providers for getting emergency services. The patient

could also use the system to communicate with a doctor or GP while his/her

physiological indices are measured by wearable sensors at home. Thus reducing

the amount of efforts and inconsistency in coming to a hospital. For example:

• Scenario of At-home Care

Michael lived independently by himself in the suburb area but suffered from

chronic heart disease. It was inconvenient for him to see the doctor in the

hospital weekly for a routine heart function check. So the medical sup-

port team decided to have him monitored in his home environment. Smart

home sensors were deployed in Michael’s house and wireless medical sensors

were worn on his body. Vital signs and ambient information were collected

by the system to learn the everyday routine of Michael. The current con-

dition of Michael was assessed and shared with remote caregivers. Every
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Tuesday morning, Michael was supposed to meet the doctor through the

video-conferencing so that he could be checked up remotely at home.

1.4 Thesis Outline

The following chapters are included in this dissertation:

• Chapter 2 presents background research and related work on pervasive

healthcare. The changing demographic of the worldwide aging population

and its impact on healthcare systems around the world is reviewed. The

role of technology in supporting independent living in the home is then

examined. Technologies that support developing pervasive healthcare sys-

tems is presented, and the state-of-the-art of existing pervasive healthcare

approaches is reviewed.

• Chapter 3 introduces CARA in a general way, including an overview of the

architecture and the description of each component.

• Chapter 4 is a description of the development of the wireless sensor network

(WSN) in the CARA architecture. The WSN supports CARA with physi-

ological contexts, environmental contexts and activity contexts. It is used

to sense a user’s vital signs, surroundings, and activities. To achieve this, a

Body Area Network (BAN) is used to measure the vital signs; smart home

sensors are deployed to monitor the surroundings in home environment; and

a smartphone is used to identify the activities associated with the BAN.

• Chapter 5 introduces the methodology of smartphone-based real-time ac-

tivity recognition. The ability to accurately recognize and continuously

monitor activities of daily living (ADLs) is one of the key features that

CARA is expected to provide. The solution involves identifying a user’s ac-

tivity through the combined use of inertial sensors(accelerometer and gyro-

scopes) built into the smartphone along with the wearable wireless sensors

(e.g. Zephyr BioHarness). A hybrid classifier is developed by combining

threshold-based methods and machine learning mechanisms. The adaptive

machine learning mechanism makes the model customizable and adaptable.
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Incorporating a cloud infrastructure overcomes the limitations of computing

power and storage of a smartphone. The activity recognition application is

used as a case study for evaluating the cloud-based data analytics frame-

work.

• Chapter 6 discusses the design and development of a personalized and exten-

sible context-aware reasoning framework in the CARA architecture. This

provides a novel approach that combines context awareness, general domain

knowledge, and automated intelligence for pervasive healthcare. It plays a

crucial role in CARA by interpreting sensor data within a wide context, rea-

soning with all available knowledge for situation assessment, and reacting

according to the reasoning outputs. The incorporation of rule-based and

case-based reasoning mechanisms enables the system to become more robust

and adaptive to a changing environment. Furthermore, a semantic-based

analysis is included for detecting any conflict in rules, and a provenance

recording mechanism is applied to case-based reasoning for the explanation

of the reasoning conclusion to the user.

• Chapter 7 describes scenarios of using CARA in a visualized interactive

manner where continuous monitoring of the patient and home environment

is carried out in a non-intrusive way via the wireless sensor network. In

addition, a telecare function provides interaction between the patient and

remote caregiver through real-time video communication. The remote mon-

itoring solution is integrated into the system and can make use of CARA’s

intelligent analysis as well as its recording and playback facilities. This in-

teractive user friendly approach provides an introduction to the technology

for an elderly person in advance of deploying a more automated solution.

• Chapter 8 gives conclusions about the presented CARA architecture and

provides an overview of future development of pervasive healthcare using

the CARA architecture.
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Chapter 2

Background Research

2.1 Introduction

In recent decades, developed countries have experienced an increase of average

life-span with a consequent impact of chronic conditions on the population. Per-

vasive and context-aware healthcare applications have been widely recognized

as promising solutions for improving quality of life of both patients suffering

from chronic conditions and of their caregivers, as well as for reducing long-term

healthcare costs and improving quality of healthcare services.

In this chapter, the changing demographic of the worldwide aging population

and its impact on the healthcare systems of countries around the world is re-

viewed. The role of technology in supporting independent living in the home is

then examined, with an emphasis on the potential value of moving routine moni-

toring and care from hospitals into the home. This is followed by introducing the

pervasive computing paradigm for healthcare and reviewing the state-of-the-art

of existing approaches.

2.2 Pervasive Healthcare Evolution

2.2.1 Aging Society

The increasing elderly population worldwide brings a need for more healthcare

options. In general, senior citizens are more vulnerable to chronic diseases such
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2. Background

as heart disease, cancer and Alzheimer’s requiring medical care, than the rest

of the population. This places enormous demands on healthcare systems, not

only in terms of acute hospital care but also for routine monitoring and health

maintenance.

174 million people in Europe and North America are aged 65 years or older.

This is about 40 million people more than 20 years ago and a further increase

of about 93 million people is expected within the next 20 years, which clearly

illustrates that population ageing is accelerating. Figure 2.1 shows the most

significant demographic changes within the EU candidate and potential candidate

countries. Although this group of countries will still be among those with the

lowest share of people aged 80 and older in the total population, the number of

people aged 80 and older will almost double within the next 20 years [Rodrigues

et al., 2012]. This increase will have a direct impact on healthcare institutions,

specifically considering the fact that the healthcare costs per capita for persons

over 65 years are three to five times greater in comparison with the healthcare

costs of people under 65.

Figure 2.1: Evolution of the population in the older age groups 1990, 2010 and
2030 (Source: UNPP 2011: World Population Prospects)
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Some 861 million people worldwide with chronic diseases incur up to 85% of

healthcare expenditure. This includes a large amount of care for the growing

elderly population. Figure 2.2 provides information on the public resources de-

voted to long-term care in a comparable way. It indicates a large share of public

expenditure is spent on institutional care in most countries. Clearly, traditional

healthcare systems will not work with the increasing demands. There is a press-

ing need to explore a different way of caring for a rapidly growing population

of elderly while reducing healthcare costs. Andy Grove, former CEO of Intel, in

an interview in Fortune magazine described the healthcare situation as follows:

”Given the high cost of institutional care, helping older people to live independent

lives in their own home must be a priority for healthcare systems” [Schlender,

2003].

Figure 2.2: Public expenditure on long-term care, by care setting 2009 or latest
available year (Source: OECD Health Data 2011).
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2.2.2 Potential of Technology

Fortunately advances in technology can assist people in maintaining and moni-

toring their own health. Advanced sensing and communication technologies have

started to converge, which provides the opportunity for healthcare solutions that

may become both ambient and pervasive [Black et al., 2011].

At-home healthcare

Pervasive computing has the potential to revolutionize healthcare in the home.

At-home healthcare can help address the social and financial burdens of an ageing

population. At the same time, technology can support the network of caregivers

such as family members, and clinicians with new and innovative ways to monitor

the wellbeing of older people, and to enable rapid response to emergency situ-

ations [Dishongh and McGrath, 2010]. The contemporary social reality is that

many family members will be geographically located away from an elderly rela-

tive, yet there is a compelling need for them to play an active part in the care

giving duties to an elderly parent or relative. Technological advances will result

in time savings and reduce travel overheads for caregivers and relatives.

At-home healthcare systems will enable people to monitor themselves with

devices that give proactive warnings of illness so that they can turn to their

doctors earlier, when intervention can be the most effective [McCullagh and Au-

gusto, 2011]. As devices are enabled with processing capacities and the ability to

communicate autonomously, there is the potential for body wearable and envi-

ronmental sensors to work collaboratively with healthcare systems by collecting,

processing and exchanging data and information. Appropriate information or

alerts can be fed back directly to a person using a home PC or an intelligent mo-

bile device. In addition, data and information can be stored in a central facility

(a home computer, or possibly a remote server or a cloud server) to provide a

longer term view, or possibly to contribute to the compilation of population-based

statistics.

William Herman, director of the division of physical sciences in the Food

and Drug Administration’s Center for Devices and Radiological Health (CDRH),

which regulates medical devices in the United States, calls home-care systems
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”the fastest growing segment of the medical device industry” [Lewis,

2009]. The at-home healthcare model is not designed to replace the traditional

acute care role of hospitals and clinicians; instead, it enables the elderly person to

be an active participant in their own healthcare, particularly in the daily routine

maintenance and monitoring of health. Eventually, the home can become an

equally important location for healthcare as the hospital.

Challenge

Although deployment of technology in support of at-home care has the potential

to radically reduce the pressure on hospital resources, it remains a significant

challenge since many of the required technology solutions do not yet exist or are

still in early prototyping stages. It is important to note that the use of such

technologies on a regular basis is required so that relevant trends or deviations

can be identified. However, the major challenge is the scale of deployment of

such systems [Intille, 2013]. The initiatives are run on a small scale by innovation

players and researchers, making their wider deployment difficult. While there

are some successful institutional programmes incorporating ICTs (information

and communication technologies)[Corporation, 2013; McKinstry, 2009], and a few

larger scale commercial players [MayoClinic, 2014; OPNET, 2014], many services

are still developed and provided by rather small scale organisations, often start

ups or research laboratories. The fragmentation of care services is a barrier to

the entry of these new organisations to the market [Carretero et al., 2012].

2.3 State of the Art and Related Work

2.3.1 Wireless Sensor Networks in Healthcare

In Wireless Sensor Networks (WSNs), a number of tiny, battery-powered com-

puting devices are scattered throughout a physical environment. Each device is

capable of sensing, and transmitting information. It is a packaged data collection

and transmission component, which consists of a sensor module, an embedded

processor, a transceiver module, and a power delivery mechanism. Components

are held within an enclosure.
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A sensor board is the part that actually interacts with the environment and

sends an appropriate signal to the embedded processor (microcontroller unit).

The Shimmer ECG board is an example [Shimmer, 2013]. The microcontroller

unit may decide to forward the sensed signal to a base station, or to do some

processing locally. When ready, the processor sends the signal to the transceiver

board which contains the radio stack and antenna; the transceiver then uses a

communications protocol (e.g. IEEE 802.15.4, Bluetooth, ZigBee) to pass the

information to the base station.

WSNs have been used in commercial, industrial, and academic applications

to monitor data that would be difficult or expensive to be captured using wired

sensors. A variety of applications have been presented in the literature for wire-

less sensor networks. These include environmental monitoring [Oliveira and Ro-

drigues, 2011], building monitoring [Yoon et al., 2011], natural disaster prevention

[Chen et al., 2013], and structural health monitoring [Hu et al., 2013]. Recently,

researchers have investigated the potential of developing WSNs for healthcare

systems [Aminian and Naji, 2013; Caldeira et al., 2012; Peiris, 2013]. What dif-

ferentiates healthcare from other WSN technology applications is the criticality

of the application and the human centred aspect. To design a WSN for the solu-

tion of healthcare problems, the following key principles should be kept in mind

throughout the process:

• This is a healthcare problem, not a technology problem. The patient plays

the decisive role, not the technology.

• There is often more than one approach to achieve a clinical or care objective.

• The simpler the technology, the better the solution.

• It has to work in the home, not just in the lab.

Concerning the ability of the WSN to function properly and the impact on the

safety of patients and caregivers, a range of new factors must be considered, not

only technological but also user-centred and healthcare associated, at all stages

of designing a WSN architecture for healthcare solutions. The most essential

requirements include: Cost Efficiency, Fault Tolerance, Stability and Scalability,
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Low Power Consumption, Long-term Usability, Privacy and Security. However,

the interpretation and implementation of these guidelines totally depends on the

particular design of each healthcare application. In some cases, not all the points

above will be relevant.

Wireless Body Area Network (WBAN)

Wireless Sensor Network (WSN)

Users

GPRS/3G

Healthcare 
Professional

Hospital Facilities

Remote Family/ 
Caregiver

Medical Servers

Tier 1 Tier 2 Tier 3

Internet

Figure 2.3: Generalized WSN architecture for pervasive healthcare

Figure 2.3 shows a generalized WSN architecture for pervasive healthcare.

While this does not illustrate any specific system, it shows the components of

a pervasive healthcare system and their relationships with one another. At the

core of the system is the user, also referred to as the ”subject” (in a research

environment) and as the ”patient” (in a clinical or therapeutic environment).

The user is monitored by wireless sensor networks. This is referred to as Tier

1. The information gathered by the components of the WSN is sent to a base

station, or home gateway (often a PC or a smart phone) for data processing and

analysis. This is referred to as Tier 2. The communication links used between the

WSN and the home gateway will vary according to circumstances (e.g. ZigBee,

Bluetooth, WiFi). The home gateway connects over the internet and/or other

long range communications protocols to various Tier 3 services. These may in-

clude a medical server, a healthcare provider, a family member, a caregiver and

emergency services etc. Again, a range of communications protocols are possible
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here, depending on the requirements of the particular problem domain [Dishongh

and McGrath, 2010].

More and more prototype and commercial systems for pervasive healthcare

monitoring have been developed for the elderly, and chronically ill people, using

the generalized WSN architecture. After exploring these systems, it is observed

that the main application areas include:

• Activities of daily living monitoring [Benzo et al., 2014; Charlon et al., 2013;

Lu and Fu, 2009].

• Fall and movement detection [Gannot et al., 2013; Schwickert et al., 2013;

Wang et al., 2008].

• Location tracking [Lee et al., 2013; Marco et al., 2008; Thomas et al., 2013].

• Medication adherence prompting [Chen et al., 2014; Chu, 2013; Pang et al.,

2009].

• Medical status monitoring [Kailanto et al., 2008; Tharion et al., 2013; Tri-

antafyllidis et al., 2013].

In the first category, applications try to identify and differentiate everyday activi-

ties of the patients and the elderly such as watching television, sleeping, preparing

meals, and be able to detect abnormal conditions. Fall and movement detection

applications are focused on physiological conditions such as posture and fall de-

tection for people that need special care like the elderly people who are susceptible

to falls. Location tracking, medication intake reminders and monitoring systems

can help cognitively impaired people to survive independently. Medical moni-

toring applications make use of medical and environmental sensors in order to

obtain comprehensive health status information of the patients, including ECG,

heart rate, blood pressure, skin temperature, and oxygen saturation.

In this dissertation, a comprehensive WSN is developed, incorporating body

area network and smart home sensors, to achieve monitoring of a person and

surroundings in a home environment. Distinguished from existing works, which

mostly focus on a single application area as listed above, the WSN is dedicated

to gather as much as possible information about and around a person to cover

multiple tasks of a healthcare application.
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2.3.2 Activity Monitoring and At-home Care

Activity of Daily Living Recognition

Advances in ubiquitous and pervasive computing have resulted in the development

of a number of sensing technologies for capturing information related to human

daily activities. Different approaches for lifestyle monitoring in terms of activity

recognition have been studied using different underlying sensing mechanisms.

The environmental sensor-based approach has received significant attention in

recent years. It is a promising approach for recognizing activities which can

not be simply distinguished by body movement alone. Additional sensors such

as motion sensors, door contact sensors, pressure sensors, object RFID tags and

video cameras are required for gathering activity related information [Tapia et al.,

2004]. However, it requires the installation of a lot of equipment, and in some

cases it is only feasible for use in laboratory settings.

On the other hand, wearable sensors have proved to be an effective and reli-

able method for human activity recognition. They are small in size, lightweight,

low cost and non-invasive. Some of the existing work on wearable sensor based

activity recognition utilizes multiple accelerometers placed on different parts of

the body[Krishnan et al., 2008; Ravi et al., 2005; Tapia et al., 2007]. [Krishnan

et al., 2008] collected data using two accelerometers for recognizing locomotion

activities in real-time using adaptive decision trees. Other research has explored

the use of multiple kinds of wearable sensors for activity recognition. [Maurer

et al., 2006] used accelerometers, temperature sensors and microphones to analyze

multiple time domain feature sets for activity recognition. Most of the wearable

sensors are required to be fixed onto specific locations on the subject’s body, such

as the chest, ankle, thigh, wrist or waist. Current body-fixed sensors may be

considered to be inconvenient to wear and impractical for continuous long term

monitoring in a normal daily living environment. Smartphones have the poten-

tial to be an alternative platform for activity recognition with the advantages of

unobtrusiveness and not requiring any additional equipment for data collecting

or processing.

Recent research has focused on using smartphones as mobile sensing and com-

puting platforms to achieve activity recognition [Khan et al., 2010; Kwapisz et al.,
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2010; Stefan et al., 2012]. [Kwapisz et al., 2010] utilize a smartphone for recog-

nizing very simple activities such as walking, jogging, climbing up and down

stairs, sitting and standing with a threshold based method. More comprehensive

approaches have been investigated by leveraging sophisticated machine learning

algorithms. [Stefan et al., 2012] use the inertial sensor data of a smartphone to

build machine learning models for recognizing both simple and complex activities

of daily living at home. A single smartphone was mounted onto the pelvic region

of subjects to collect data on different activities, and conventional classifiers were

trained using supervised machine learning mechanism. However, the performance

of their approach is less effective due to the ambiguity of upper body movement

tracking.

In this dissertation, we build on these approaches and extend them to improve

the ability of real-time identification of everyday activities. Our approach, using

two sets of sensors including one set in a smartphone is, in effect, a combination

of previous techniques, and is able to distinguish static and dynamic activities

and identify activities utilizing both threshold based and machine learning meth-

ods. The performance of activity recognition is significantly improved by this

combination.

Telecare Supported At-home Care

The desire to overcome the challenges facing all healthcare systems, including the

need to increase the quality of care while decreasing overall healthcare costs, has

led to a growing interest in the application of telecare solutions. In particular,

telecare supported at-home care, also known as remote patient monitoring, is

gaining more and more attraction. The global market for telecare is set to exceed

$1 billion by 2016 and could jump to $6 billion in 2020, according to a new re-

port by [InMedica, 2011], the leading independent provider of medical electronics

market research group.

Telecare is the use of a digital network to provide automated monitoring and

treatment delivery to a patient who is in a different physical location than the

medical expert providing treatment. It can refer to simple communications like

messages sent between patients and providers to extremely complex procedures
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like remote robotic surgery [Sudan et al., 2011]. It offers the potential for a

home based healthcare solution, in which the patient and healthcare professional

collaborate on the care plan. The patient collects health related information in

their own home, using home monitoring devices. The doctor can then remotely

view the data and provide appropriate advice, either at a subsequent appointment

or by video communication. Thus, technology can act as a filter, enabling the

doctor to attend to urgent cases.

Today, common forms of telecare include home monitoring services and video-

conferencing. Home monitoring is becoming increasingly relevant in the treat-

ment of chronic diseases. For instance, home monitoring of blood-pressure al-

lows sufferers of hypertension to manage their condition better and monitor their

progress, and diabetics would be able to transmit their blood sugar levels to their

caregiver for review, via the internet from the comfort of their home [Wakefield

et al., 2012]. This kind of monitoring can improve the quality of life of patients

and reduce the number of visits patients need to make to the hospital. Moreover,

telecare supported at-home care can extend this paradigm with the use of smart

home sensors (such as Passive Infra Red (PIR) devices, bed occupancy sensors,

door and window switches, and enabled devices such as cookers, heaters etc.),

to build up patterns of behaviour and provide information to the person for self-

management, or to a remote caregivers for consultation [Wang et al., 2010]. As for

video-conferencing facilities, the prevalence of broadband communication offers

tele-consultation with a healthcare professional, using well-known communication

utilities such as Skype. Systems with this type of functionality are available from

companies such as Doc@Home [Docobo, 2013], Health Buddy [Bosch, 2013], and

Intel PHS6000 [Corporation, 2013]. However, such systems are often designed

specifically for a particular healthcare purpose. They usually provide standalone

functionality with no adaptability to other monitoring systems or devices.

In the dissertation, we propose a general solution supporting an at-home

telecare system. The Context-aware Real-time Assistant (CARA) architecture

supports multifunctional remote monitoring, which is compatible not only with

medical devices but also with smart home sensors and mobile devices, and is more

adaptable to the dynamic environment by utilizing the intelligence of a reasoning

engine. A live video communication component is also integrated in the system
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with access from any web browser.

2.3.3 Context Awareness and Context Reasoning

Context-aware Healthcare in a Smart Home Environment

To positively alter the relationship between humans and technology, it is essen-

tial for systems that aim at helping people in their daily life to be context-aware

[Makris et al., 2013]. Context-aware computing has the potential to make a sig-

nificant impact upon everyday human life by building an environment that is

capable of recognizing and responding to the presence of individuals in a seam-

less and unobtrusive way [Ducatel et al., 2010]. As one form of many possible

realizations of context awareness, smart homes with the deployment of WSNs,

BANs and smart devices have been extensively explored over the last decade.

In a smart home environment, hardware, software and networks have to coop-

erate in an efficient and effective way to provide a suitable result to users. This

area has attracted a significant amount of research, and some prototype systems

have already been developed and deployed. For example, the Aging in Place

project at the University of Missouri aims to provide a long-term care model

for seniors in terms of supportive health [Rantz et al., 2011]. Elite care is an

assisted living facility equipped with sensors to monitor indicators such as time

in bed, bodyweight, and sleep restlessness using various sensors [Adami et al.,

2010]. Taking into account the complexity of smart home systems, each research

project has focused upon different aspects of such complex architectures. In this

dissertation, we explore the integration of the smart home technology with the

healthcare system, which can assist the healthcare support system:

• to understand the usual behaviour of the user so that caregivers can super-

vise and assess the pattern of behaviour and detect anomalies [Pecht and

Jaai, 2010] (e.g., by knowing how long and when the subject usually sleeps,

the system allows the caregiver to assess their rest).

• to automate activation/deactivation of some devices depending on the needs

of the user [Zhang et al., 2011] (e.g. by turning the heater on when the

subject goes into the bathroom when the temperature is low).
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• to increase safety and to save energy [Zeifman and Roth, 2011; Ziekow

et al., 2013] (e.g. by either switching the cooker off or issuing an alarm

when detecting that the subject has left it on; by switching the lights off

when the subject has gone out).

Essentially, the smart home environment should have intelligence and learning

ability to support healthcare systems, and this should be achieved in an unob-

trusive and transparent way. Learning means that the environment has to gain

knowledge about the preferences, needs and habits of the user in order to better

assist the user [Aztiria et al., 2010]. Furthermore, it is insufficient to learn user

patterns only once because preferences and routines can change with time. Hence,

it is necessary for a smart home environment to adapt itself to these new patterns

continuously. Learning and adapting to user patterns is a key feature of the suc-

cessful development of a healthcare system in a smart home environment. In the

CARA architecture, this is achieved by developing a hybrid reasoning framework

with the capacity of learning and adaptation.

Context Reasoning

Using reasoning mechanisms to achieve context awareness has been addressed

previously [Lum, 2002; Ranganathan and Campbell, 2003; Wallace and Stamou,

2002]. The reasoning component is usually developed to understand behaviours of

the user, or combined with other types of knowledge, to make high-level decisions.

There are a large number of different context reasoning decision models. Most of

the models originated and are employed in the fields of artificial intelligence and

machine learning. Therefore, these models are not specific to context-reasoning

but commonly used across many different fields in computing and engineering.

After studying systems developed by different research groups, we realized that

current approaches have very specific applications with focused goals. Therefore,

they use the most suitable machine learning technique and only consider the needs

of a specific domain. [Bettini et al., 2010; Rashidi and Mihailidis, 2013] summarize

the state-of-the-art of context reasoning technique for elderly based on ambient

intelligence paradigm in their survey. Our intention here is not to survey context

reasoning techniques but to briefly introduce them so it will help to understand
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and appreciate the role of context reasoning in pervasive healthcare. Further-

more, we investigate the combination of multiple machine learning techniques to

discover patterns of user behaviour for the purpose of activity recognition and

anomaly detection.

• Artificial Neural Networks

[Chan et al., 1995] was among the first reports of an application using Artificial

Neural Networks (ANNs) for smart home environments in which user behaviour

patterns were considered. The aim of their system was to design an adaptive

house that considers the lifestyle of the inhabitants to achieve home automation.

For that, they used a feed-forward neural network to assess if a given situation was

normal or abnormal. After validating this application in an institution for elderly

and disabled people, they claimed that 90% of predictions by the system were

correct. Other researchers have followed on using ANNs to provide intelligent

services in smart home environments. [Badlani and Bhanot, 2011] proposes an

adaptive smart home system for optimal utilization of power, through ANN.

The system comprises of a recurrent neural network to capture Human behavior

patterns and a feed forward architecture in ANN for security applications in the

smart homes.

However, there are some limitations of using ANNs regarding their black box

nature, in that their internal structure is not human-readable. If we want to

examine user patterns in order to understand common behaviour of the user, the

system would not be able to represent the learned patterns in a comprehensible

and transparent way. In other words, it would not be able to explain how it

inferred a particular result. In pervasive healthcare systems where the user plays

a fundamental role, the ability to represent patterns and explain the actions

carried out by the system is essential.

• Statistical Classification

In machine learning, statistical classification is another approach of identifying to

which set of categories a new observation belongs. It is considered as an instance

of supervised learning, where a training set of correctly identified observations is

24



2. Background

available. An algorithm that implements classification, is known as a classifier.

It uses a training set to build a statistical model according to a mathematical

function that is capable of mapping input data to a category. Typical classifiers

for supporting machine learning include: Bayesian Networks, Hidden Markov

Models, Decision Trees and Support Vector Machines. They have been widely

used for mobile phone sensing [Lane et al., 2010] and activity recognition [Riboni

and Bettini, 2009].

According to [Brdiczka et al., 2005], ”a user is only willing to accept an

intelligent environment offering services implicitly if he understands

and foresees its decisions”. [Stankovski and Tmkoczy, 2006] pointed out that

the model generated by decision trees is easy to understand and suitable for

human inspection. In their work, they proposed to use a decision tree classifier in

order to detect abnormal situations. For that, they trained a decision tree with

the collected data that described the normal state of the environment. Thus,

any situation external to the tree would be considered as abnormal. However,

a system constructed under such a hypothesis can generate some false alarms,

because new situations inherent to the environments are not always abnormal.

• Fuzzy Logic

Fuzzy Logic is considered as a collection of methods, tools, and techniques for

modelling and reasoning about vague concepts [Biacino, 2002]. In contrast to a

”black box” model like neural networks, the fuzzy system works as a ”white box”

model that is more comprehensible and transparent. It is a rule-based approach

that allows approximate reasoning instead of fixed and crisp reasoning. Fuzzy

logic is similar to probabilistic reasoning but confidence values represent degrees

of membership rather than probability. In traditional logic theory, acceptable

truth values are 0 or 1. In fuzzy logic partial truth values are acceptable. It

allows real world scenarios to be represented more naturally; as most real world

facts are not crisp. It further allows the use of natural language (e.g.temperature:

slightly warm, fairly cold) definitions rather than exact numerical values (e.g.

temperature: 10 degrees Celsius). In other words it provides a simple way to

reach a definite conclusion based upon ambiguous, imprecise, noisy, or missing

input information, which is critical in context information processing.
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In a fuzzy system, knowledge is represented in terms of fuzzy sets and fuzzy

rules, which are considered more robust when dealing with data of a continu-

ous nature (e.g., temperature, humidity and time). Rules are another knowledge

representation mechanism often used in reasoning systems. In addition to their

human-readable representation, they have the advantage that they are easy to

add, modify or delete. As a rule-based approach, fuzzy logic has been success-

fully applied in knowledge-based reasoning systems. The work of [Vainio et al.,

2008] was focussed on developing an application that generated a set of fuzzy

rules representing habits of the user in the smart home environment. They man-

ually constructed the membership functions that mapped data into fuzzy sets,

and made inference on fuzzy sets according to fuzzy rules. Several examples of

applying fuzzy logic to represent context information and to handle uncertainty

are presented in [Padovitz et al., 2008].

However, the fact is that the ”knowledge acquisition bottleneck” still remains

one of the key problems in the design of intelligent and knowledge-based systems.

Indeed, experience has shown that a purely knowledge-driven approach, which

aims at representing problem related human expert knowledge, is often difficult

and tedious.

• Case-based Reasoning

Research conducted under the UT-AGENT project [Kushwaha et al., 2004] used

Case-Based Reasoning (CBR), which can be defined as an instance-based learning

technique, in order to learn the preferences of the user. The system recorded the

set of tasks that the user usually performed, and tried to provide relevant infor-

mation to the user through a CBR module that matched cases using a K-nearest

neighbor algorithm. The principle of CBR is to retrieve former, already solved

problems similar to the current one and to attempt to modify their solutions to

fit the current problem [Aamodt, 1994]. It has proved an effective machine learn-

ing mechanism in various practical domains. For instance, a CBR-based expert

system was developed by [Chattopadhyay et al., 2013] with the design of a flexi-

ble auto-set tolerance (T), which serves as a threshold to extract cases for which

similarities are greater than the assigned value of T, to help doctors diagnose

complex diseases particularly those that involve multiple domains in medicine.
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However, use of instance-based learning techniques has some limitations. As

this process infers a solution for each specific instance, it does not create a model

that represents patterns. Therefore, it would not be possible to extract a general

pattern indicating the behaviour of users. Furthermore, as each instance can be

represented by means of a large number of parameters, the matching process can

be very complicated because there are no clues regarding the importance of each

parameter in each case.

Table 2.1: Strengths and weaknesses of machine learning techniques
Techniques Strength Weakness

Neural Network Capacity to generalize complex
situations;

Possibility of introducing
neurons dynamically

Not human readable;
Need of restructuring of the

whole network for adaptation

Classifier Human readable;
Discovering of conditions;

Various algorithms available

Event-Situation relations only;
Need to re-build models for

adaptation
Fuzzy Logic Human readable;

Robust to uncertainties;
Easy to add, delete or change

rules

Knowledge acquisition
bottleneck;

Need of restructuring to avoid
conflicts

Instance-based No need of training, learning
from experience;

Possible source of information
for other techniques

No creation of general
patterns;

High computational and
temporal cost

As discussed above, each technique has pros and cons. To sum up, Table

2.1 highlights the strengths and weaknesses of each technique regarding machine

learning characteristics. Analysis of the different techniques reveals that there is

still no single approach that provides a global solution to fulfil all requirements of

intelligent services. Nevertheless, a combined use of techniques may result in ef-

fective problem solving in comparison with each technology used individually and

exclusively. Some research projects e.g. Gaia [Román et al., 2002], CDMS [Xue

et al., 2008], and HCoM [Ejigu et al., 2007] highlight the importance of employing

multiple reasoning techniques such as Bayesian networks, probabilistic and fuzzy

logic, where each technique performs well in different situations. Incorporation of
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multiple modelling and reasoning techniques can mitigate individual weaknesses

using each others strengths. COSAR [Riboni and Bettini, 2009] combines sta-

tistical reasoning and ontological reasoning techniques to achieve more accurate

results.

Some existing reasoning approaches, such as semantics based ontology mech-

anisms and rule based expert systems, have the potential to support pervasive

healthcare systems. However, such systems require as much domain knowledge as

possible in advance to produce better reasoning results. Other machine learning

approaches like neural networks and Bayesian networks, although they are capa-

ble of gaining understanding about a problem domain and providing reasoning

functions after learning, take great effort to train. We are not dismissing these

existing methods and their capabilities in this dissertation. We are trying to

improve them by adapting the rule-based mechanism with learning ability. This

makes our reasoning system more adaptive and more intelligent.

In this dissertation, we propose a promising approach to achieve pervasive

healthcare by combining a classification model, fuzzy rule-based reasoning and

case-based reasoning mechanisms into a reasoning framework that allows the

CARA system to learn and understand patterns of an inhabitant’s daily living,

reason with knowledge and experience to make decisions based upon observations,

adapt to a changing environment while recording data for further analysis. In ad-

dition, being aware of CROCO [Pietschmann et al., 2008], in which validation (e.g.

consistency), conflict resolution, and clarity concerns are given attention where

they are rarely addressed by many other solutions, we develop a semantic-based

approach to detect conflicts between rules and a provenance-based mechanism to

enables the user to have a better understanding of the reasoning result.

2.3.4 Cloud Computing

Cloud Assisted Pervasive Healthcare

Like many other fields, the healthcare industry is looking to cloud computing as

a means to improve the quality of service and the efficiency of operations while

reducing costs. With cloud computing, the limitations of traditional healthcare

systems could be minimized(e.g. small physical storage, less processing power,
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and high cost of distributed computing [Kopec et al., 2003]). Also through the

process of cloud-based data mining, the system can do fast analysis of information

taken from the patient. Therefore, the user can have a more efficient service.

As presented by [Ahuja et al., 2012], various cloud assisted healthcare systems

have been designed and deployed for the pervasive healthcare system:

• Comprehensive health monitoring services enable patients to be monitored

at any time and anywhere through broadband wireless communications.

• An intelligent emergency management system can manage and coordinate

a fleet of emergency teams effectively and quickly when receiving calls from

accidents or incidents.

• Health-aware mobile devices detect pulse-rate, blood pressure, and level of

alcohol to alert the healthcare emergency system.

• Pervasive access to healthcare information allows patients or healthcare

providers to access current and past medical information.

As a practical example, a telemedicine home-care management system [Tang

et al., 2010] is implemented in Taiwan to monitor participants, especially for pa-

tients with hypertension and diabetes. The system monitors 300 participants and

stores more than 4736 records of blood pressure and sugar measurement data

on the cloud. When a participant performs blood glucose and blood pressure

measurement via specialized equipment, the equipment can send the measured

parameters to the cloud system automatically. After that, the cloud system will

gather and analyze the information about the participant and return results. The

cloud-based system provides a useful healthcare service for participants. How-

ever, the information to be collected and managed relating to personal health

is sensitive. Therefore, [Hoang and Chen, 2011; Nkosi and Mekuria, 2011] pro-

pose solutions to protect participants’ health information, thereby increasing the

privacy of the services.

Cloud-based Data Analysis

Traditional machine learning applications have limitations in terms of the high

cost of servers and network, limited local computational resources and storage
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[Chen et al., 2010; Gao and Zhai, 2010]. Cloud-based data analysis is introduced

to solve these limitations, especially for mobile applications. For example, cloud

computing with large storage capacity and powerful processing ability can provide

users with much richer services in terms of data size, faster processing speed, and

bigger storage.

A few mobile applications in machine learning have already been developed

utilizing the capability of cloud computing [Ferzli and Khalife, 2011; Yin et al.,

2009; Zhao et al., 2010]. [Ferzli and Khalife, 2011] presents the benefits of combin-

ing machine learning techniques and cloud computing to enhance the image/video

processing. Through mobile clients, users can understand and compare different

algorithms processed in the cloud environment (e.g. de-blurring, de-noising, face

detection, and image enhancement). In this dissertation, we took advantage of

cloud computing in order to achieve the analysis of the healthcare data in a more

efficient and reliable way. As a case study of using the CARA system for perva-

sive healthcare, we deployed the machine learning module for activity recognition

in the cloud infrastructure whereby the data processing and storage are moved

from the local mobile device to the powerful and centralized computing platform

located in the cloud. The results of data analysis and machine learning classifica-

tion models are then accessed over the internet connection through a thin native

client.
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Chapter 3

Context-aware Real-time

Assistant Architecture

This chapter describes the CARA system in a general way, including an overview

of the system architecture and description of each component. Details on the im-

plementation and evaluation of these components are discussed in later chapters.

3.1 System Design Overview

Advancements in wireless sensor networks and mobile technologies have made

possible innovative methods for the delivery of healthcare. To fulfil the vi-

sion of pervasive healthcare, a comprehensive Context-aware Real-time Assistant

(CARA) architecture is proposed which requires the utilization and integration

of a significant number of data acquisition, processing, analysis and presentation

components. The design overview of CARA is presented in Figure 3.1.

As a pervasive healthcare system, CARA makes use of a mixture of different

data sensing, processing, analysis and delivery mechanisms. Consequently, the

CARA system consists of four main components:

• Wireless Sensor Network (WSN): patient specific monitoring of vital signs,

activity recognition as well as sensing the ambient context in a smart home

environment.
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Figure 3.1: CARA pervasive healthcare system design overview

• Reasoning and decision support: interpreting sensor data within a wider

context, reasoning with all available knowledge and previous experience for

situation assessment, and performing actions according to the decision of

the reasoning output.

• Remote monitoring service: remotely and continuously measuring physio-

logical indices of the patient, monitoring changes in the home environment

and transmitting data to the remote server in real-time.

• Cloud server: utilizing the computational power of a cloud infrastructure

to provide services for sensor data storage, data analysis through machine

learning mechanisms.

Figure 3.2 illustrates the architecture of the CARA system. In the pervasive

healthcare scenario, a BAN(Body Area Network) and various environmental sen-

sors are deployed in a home environment to gather as much information about

and around the person as possible. The system listens to all available sensor

data via wireless communication protocols (i.e. Bluetooth, MiWi). On the other

hand, the mobile application collects raw accelerometer and gyroscope readings
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Figure 3.2: Architecture of the CARA system

from wearable body sensors and the smartphone itself to produce low level activ-

ity contexts(i.e. sitting, lying, standing, walking, rolling). These contexts along

with other environmental and physiological sensor readings are interpreted into

contextual information for the monitored individual and environment. They can

then be used by the context-aware reasoning engine, which works as the core

of the system, to provide medical condition assessment and anomaly detection

at home. The real-time reasoning task is carried out in parallel with remote

monitoring services which enable the pervasive context, as well as the patient’s

current condition, to be shared with a remote caregiver in real-time. The local

client connects over the internet to the remote server which provides data analysis

and reasoning function management services. A client integrated with a webcam

also publishes real-time sensor data along with live video streams to the server

so that the remote caregiver can communicate with the elderly throughout the

monitoring session.
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3.2 Pervasive Sensing in Smart Homes

In computing, ambient intelligence (AmI) refers to electronic environments that

are sensitive and responsive to the presence of people [Aarts and Marzano, 2003].

Ambient intelligence is a vision of future consumer electronics, telecommunica-

tions and computing that aim at helping people in their everyday life. The AmI

paradigm is characterized by systems and technologies that is:

• Embedded: many networked devices are integrated into the environment.

• Context aware: these devices can recognize you and your ambient context.

• Personalized: they can be tailored to your needs.

• Adaptive: they can change in response to you.

As a typical realization of AmI, smart homes have been extensively explored

to reduce long-term healthcare cost and to improve healthcare services over the

last decade. In a smart home environment, hardware, software and networks need

to cooperate in an efficient and effective way to provide sensing, reasoning and

acting functions. Pervasive sensing in the smart home allows the state of the user

and the environment to be perceived by means of wireless sensors. The reasoning

engine uses these contexts to make decisions based on the environment to achieve

certain goals, and finally, the system reacts based on these decisions.

Figure 3.3 shows the infrastructure of the smart home Wireless Sensor Net-

work (WSN) developed for the CARA system. The WSN provides significant

amounts of contextual information about the individuals and home environment

using sensors such as environmental sensors (e.g. temperature, light, sound, and

humidity), room occupancy sensors (e.g. location), device and gadget sensors (e.g.

status of TV, cooker, windows, lights and heater), smartphone (e.g. kinematics)

and Body Area Networks (e.g. physiology readings). Such infrastructure has the

potential to make a significant impact upon everyday life by providing a smart

home environment that is capable of recognizing and responding to the needs of

individuals. Furthermore, the proposed WSN would also be extensible and cater

for many other devices and other healthcare or smart home applications.
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Figure 3.3: Overview of the Wireless Sensor Network in smart home

The most noteworthy use of the WSN is the development of an activity recog-

nition agent for pervasive sensing. Learning and recognizing the activities of

daily living (ADLs) of an individual is vital when providing an individual with

context-aware at-home healthcare. In this dissertation, we assess the unobtrusive

detection of inhabitants’ activities in the smart home environment through the

use of a smartphone and a wearable body sensor. The solution involves a combi-

nation of a threshold-based technique for identifying simpler static activities, and

a sophisticated machine learning technique for identifying more complex dynamic

activities. This can be used to detect changes in a subject’s routine and to assist

the automated reasoning with activity contexts.
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3.3 Context-aware Healthcare Decision Support

A system is considered context aware if it uses context to provide relevant infor-

mation and services to the user, where relevance depends on the user’s task [Dey

and Abowd, 1999]. This could include both ”passive” context awareness where

the system becomes aware of, but does not adapt to the changing contexts, and

”active” context awareness, where the system adapts to the changing contexts.

The CARA system is designed to achieve active context awareness, where its

adaptive learning aids in better decision making on the patient’s medical condi-

tion and healthcare needs.
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Figure 3.4: Context-awareness in the CARA system

The workflow of context processing in the CARA system is illustrated in Fig-

ure 3.4. Raw sensor data are gathered and interpreted into contexts to support
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the reasoning function. A hierarchical structure is designed for context modelling.

For instance, low level activity context (e.g. sitting, lying, walking) is produced

from accelerometer and gyroscope sensor data using activity recognition mech-

anisms. These contexts are then interpreted into high level activity contexts

(watching TV, sleeping, exercising, etc.) by incorporating other related contexts

(e.g. occupancy and object usage) according to specific rules and personal profile.

The profile and rules are adaptive to individuals and changing contexts.

Context-aware healthcare decision support provides caregivers and patients

with a reasoning mechanism and built-in intelligence to enhance healthcare ser-

vices. As a novel approach to achieve intelligent reasoning in the CARA system, a

context-aware hybrid reasoning framework is developed (consisting of case-based

reasoning mechanisms incorporating fuzzy-based domain knowledge) to compen-

sate for the deficiencies of a single reasoning model. Although the straightforward

rule-based reasoning engine is a competent approach, it still has some unsatisfac-

tory limitations. Especially in the medical domain, the knowledge of experts does

not only consist of rules, but of a mixture of explicit knowledge and experience.

In order to improve the performance of the inference mechanism, a case-based

reasoning approach is adopted, which makes use of the accumulation of previously

solved cases to accomplish the reasoning task. Figure 3.5 presents the workflow

of the reasoning system in CARA.

Sensor Data 
Acquisition

Context 
Modelling

Intelligent 
Inference

Machine 
Learning Action

Hybrid Reasoning Framework

Fuzzy-based Reasoning Case-based Reasoning+

Figure 3.5: Workflow of the CARA reasoning framework

The reasoning engine can be tailored with different knowledge based rules for

different applications (such as for in-clinic assessment or at-home monitoring).
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Such rules are customizable and must be verified to ensure the correctness and

consistency of the reasoning system. The reasoning engine also executes in real-

time and offers immediate notification of abnormal conditions. Such anomalies

can be identified from correlating different contexts and trends in behavioural

patterns accumulated over time. Moreover, provenance of the reasoning output

is recorded to give an explanation of the decision to the user, which makes the

sophisticated reasoning engine more transparent and accountable. Overall, the

CARA reasoning component is capable of performing the following reasoning

tasks:

• Continuous contextualization of the ambient condition of a patient.

• Configuration of custom rules and verification of rule conflicts.

• Prediction of possibly abnormal situations with reasoning provenance.

• Notification of emergency situations indicating a health risk.

• Home automation or user prompting within a smart home environment.

3.4 Remote Monitoring Service

For people with chronic diseases like hypertension and heart conditions, it requires

a lifelong collaboration with caregivers to manage their health condition. A key

goal in managing chronic disease is to catch evolving conditions early so that the

caregiver and patient can make medical or lifestyle changes before the condition

worsens and requires more complex and costly treatments.

The CARA remote monitoring system is designed to provide long-term health-

care services in an appropriate timely manner, which allows patients with certain

medical devices to be monitored or examined remotely in real-time. It achieves

interactive at-home care by integrating a video-conferencing function and trans-

ferring healthcare data captured by sensors via the internet to a remote caregiver

in real-time. This creates a seamless link between the clinical view and home

healthcare which can lead to greater cost-efficiency of healthcare services.
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Figure 3.6: CARA remote monitoring conceptual model

Figure 3.6 shows the conceptual model of the remote monitoring service in

the CARA system. It is fulfilled with four functionalities and deals with diverse

stakeholders. Real-time remote monitoring enables caregivers to monitor a pa-

tient remotely through medical devices and smart home sensors. The relevant

information, such as patient vital signs, activity status, medical conditions, and

home environment readings, are updated in real-time and shared with remote

medical professionals through an internet connection, so they can make an early

diagnosis based on the current situation of the patient. On the other hand, pa-

tients can get more efficient medical consultation and treatment with fewer visits

to the hospital/clinic. Real-time remote monitoring is expected to provide com-

parable health outcomes to traditional in-person patient encounters, and supply

greater satisfaction to patients.

Remote monitoring can also be carried out autonomously in an offline model.
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Distinct from the real-time monitoring, it does not require the presence of a

medical specialist and patient at the same time. The patient with wearable

medical devices is continuously monitored within a smart home environment.

Sensor data are processed and transmitted to the remote server. They are stored

in the server as healthcare data in an electronic form, instead of actual physical

examination and history, for the medical specialist to make an assessment at a

convenient time. Additionally, the remote monitoring service can make smart,

timely healthcare decisions with collaboration of the CARA reasoning framework

so that it can send notifications or alerts in case any anomaly or emergency occurs.

In addition to the traditional remote monitoring services, we developed an

interactive telecare component which provides real-time interactions between the

patient and healthcare provider using a web-camera integrated device (e.g. Tablet

or PC). A video link is established along with the real-time sensor data transmis-

sion that allows a patient to communicate with a remote caregiver throughout

the monitoring session. It enables various activities, such as medical consultation,

physical examination, and psychological counselling, comparable to those done

in traditional face-to-face visits. The audio and video sessions are recorded as

healthcare data and stored on the server as well.

Last but not least, a user interface is developed to allow the medical consul-

tant to review the historical data in a graphical view. It consists of sensor data

review and video review functions. The continuous sensor data can be segmented

by timestamps and viewed in web-based graphical charts with scrolling, zooming

and tagging functions, and the recorded video can be replayed with synchronized

sensor data for the better understanding of the patient’s condition at that mo-

ment. Furthermore, the recorded data review component can be used not only

for remote medical assessment but also for teaching purposes.

3.5 Cloud-based Data Analysis for Healthcare

The growth of sensors and intelligent systems has created a whole new warehouse

of valuable data for healthcare. The problem in healthcare is never the lack of

data, but the lack of information that can be used to support decision-making,

planning and strategy. By applying effective data analysis technology to the data
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gathered from sensors and intelligent systems, it can make decision support for

healthcare more efficient and ultimately more accurate.

Data analysis technology is designed to work with large volumes of heteroge-

neous data. It uses sophisticated statistical methods such as machine learning,

computational mathematics, and artificial intelligence to explore the data and

to discover interrelationships and patterns. Deeper insights are possible when

more data are available. Typical data analysis systems require clusters of servers

to support the tools that process the large volumes and varied formats of data.

However, traditional methodologies such as distributed systems and database

management systems are often not suitable to handle very large data sets in

terms of scalability and availability. Therefore, innovative solutions need to be

explored, which should be able to offer a large number of machines exposing huge

storage and computing power.

Lately, cloud computing has received a substantial amount of attention from

both industry and academia. Cloud computing can offer scalable data analy-

sis solutions while enabling greater efficiencies and reducing costs. As the cloud

infrastructure is distributed and fault tolerant, a cloud-based data analysis frame-

work can deploy multiple instances on pools of server, storage, and networking

resources that can be scaled up or down as needed. These instances can be moved

around depending on the need to make the best use of the hardware without com-

promising performance. Indeed, cloud computing offers a cost-effective way to

support data analysis technologies and intelligent healthcare applications with

high flexibility, scalability and availability for accessing healthcare data, discov-

ering patterns, and processing machine learning tasks.

In the CARA system, a comprehensive cloud-based data analysis framework

is developed incorporating machine learning and cloud computing technologies.

This provides analysis as a service - from data delivery and data analysis to

data storage, in order to optimize the total value of healthcare data. A general

structure of the cloud-based data analysis framework is presented in Figure. 3.7.

In the case of CARA activity recognition, different choices of machine learning

algorithms are investigated to build classification models (i.e. Decision Tree,

Neural Network, Nearest Neighbour and Bayesian Network), each of which can

be viewed as a blackbox that is capable of inferring current activity based on the
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Figure 3.7: CARA cloud-based data analysis structure

input dataset. However, each model comes from a unique algorithm approach and

will perform differently for the same dataset; also the same model may not fit

all the users since the behavioural pattern of each individual is slightly different.

The best approach is to use cross-validation to determine which model performs

best for a given dataset. In addition, continuous gathering of activity data will

result in huge amounts of data, especially if many users are involved. Ideally,

one might want to keep a large amount of this raw data for future (and maybe

different) analysis, and also analyse the data to produce a compact model which

can be used in the smartphone for real-time analysis of new data. This motivates

a cloud computing solution for data analysis where data from many users can be

stored and analysed efficiently, and then the compact results of the analysis can

be downloaded and used in the smartphone.

In this dissertation, the activity monitoring system is used as a case study for

evaluating the cloud-based data analysis framework. Several machine learning

nodes are deployed on a private cloud server sharing blob storage. Each node

holds an instance of one type of machine learning method for dealing with the

input dataset. Once the new dataset is uploaded to the cloud by the user, ev-

ery machine learning node starts analysing data in parallel, producing machine
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learning models as well as evaluating them. After examining the evaluation result,

the best model is selected to support activity recognition in the CARA system.

New training datasets can be generated locally in a home environment in an

unsupervised manner through using the best classification model to classify and

label the new input data. As more data are gathered and continually uploaded

to the cloud, the model is adapted through an unsupervised scheme to produce

enhanced models which are then downloaded onto the smartphone for improved

real-time activity analysis. Consequentially the system becomes more accurate

and reliable. Moreover, models and datasets are stored in the blob as resources

to be shared with other applications or healthcare systems.
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Chapter 4

Wireless Sensor Networks for

Pervasive Healthcare

4.1 Introduction

This chapter is a description of the development of wireless sensor networks

(WSNs) in the CARA system. The goal of developing WSNs for the CARA

system is to sense a user’s vital signs, surroundings, and activities. To achieve

this, a body area network (BAN) is used to measure the vital signs; smart home

sensors are deployed to monitor the surroundings in a home environment; and an

Android smartphone is used to identify the activities associated with the BAN.

Thus, the WSN supports the CARA system with physiological contexts ,environ-

mental contexts and activity contexts.

4.2 BANs for Medical Sensing

A BAN is formally defined by IEEE 802.15 as, ”a communication standard op-

timized for low power devices and operation on, in or around the human body

(but not limited to humans) to serve a variety of applications including medical,

consumer electronics, personal entertainment and other” [IEEE-BAN, 2013]. In

more general terms, a BAN is a wireless network of wearable computing devices

that cooperate for the benefit of the user. As an emerging technology, BANs are
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mostly used in the medical field for the purpose of pervasive healthcare. They are

quite flexible and scalable in terms of integration of different wearable medical

sensors. Some of the conventional medical sensors for physiology measurement

are listed in Table 4.1.

Table 4.1: Properties that can be measured from wearable medical sensors
Property Description

Temperature Using thermistor to measure the skin temperature
of the body.

Respiration Rate Using plethysmograph to measure breathing.
Impedance of fabric changes with stretching.

ECG and Heart Rate Using wearable electrodes which attach to the skin
to detect ECG trace and heart rate.

Weight Using scales to measure body weight, body fat per-
centage and body mass index (BMI).

Skin Conductance Using Galvanic Skin Response (GSR) sensor to de-
tect electrical conductance of the skin.

Pulse Oximetry (SPO2) Using a light source to measure changes in pigmen-
tation which reflect oxygen in the blood stream.

Blood Glucose Piercing the finger to provide a blood test. Particu-
larly important in the care of diabetes.

Blood Pressure Using a cuff to measure systolic/diastolic pressure of
the blood.

These wireless medical sensors are usually non-invasive, replaceable and low

cost. However, each of the devices has unique requirements in terms of bandwidth,

latency, power usage, and signal distance. IEEE 802.15 established a task group

to develop the standards for the use of BAN sensors [IEEE-BAN, 2013]. The

task group has outlined the ideal position for a BAN in the power vs data rate

spectrum as described in Figure 4.1.

As you can see the range of BAN devices can vary greatly in terms of band-

width and power consumption. Lots of research prototypes and commercial

products have been designed to support the needs of healthcare based on IEEE

standards [CodeBlue, 2013] [Shimmer, 2013] [Biosensics, 2013] [Equivital, 2013]

[Zephyr Inc., 2013].
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Figure 4.1: Data rate vs Power consumption [IEEE-BAN, 2013]

4.2.1 Tyndall Sensors

At the first stage of developing the CARA system, the BAN is constructed us-

ing a range of wireless sensors built upon the Tyndall 25mm hardware platform

[O’Flynn et al., 2004]. It is a layered wireless sensor networking solution, consist-

ing of 25mm x 25mm layers which may be combined in a plug and play fashion.

The platform configuration illustrated in figure 4.2 consists of a battery layer

for energy provision, an 802.15.4 compliant transceiver/microcontroller layer for

computation and communication and a sensor layer for sensing.

The Tyndall 25mm 802.15.4 transceiver/microcontroller layer has been devel-

oped for wireless sensors incorporating Chipcon’s CC2420 transceiver [Chipcon,

2013] and the Atmel Atmega128 microcontroller [Atmel, 2013] into a small ver-

satile package for processing and communication. Two accelerometer boards,

a pulse oximeter and a two-lead Electrocardiogram (ECG) have been used as

the sensor layer to collect vital sign data. The sensors, when coupled with a

transceiver layer, monitor movement and collect heart rate, blood oxygen satura-

tion (SpO2), and ECG data. The data are relayed in raw form over a short-range

(100m) wireless network to a basestation in real-time. The basestation is built
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Figure 4.2: The Tyndall 25mm platform (a) Stacked, (b) From left to right
Communication and Processing Layer, Sensor Layer and Power Layer.

upon a Tyndall Programming Board which transmits data to a laptop.

Although Tyndall sensors are capable of building the basic BAN for the CARA

system, they have some limitations in terms of connectivity and mobility. The

USB-serial port connection between basestation and PC makes it non-portable

and not compatible with other mobile devices that do not have a serial port build-

in. Besides, it turns out unpackaged sensor nodes sometimes have difficulty to be

worn in an unobtrusive way from the user point of view. As a result, we started

seeking for a more integrated and packaged solution in order to improve the user

experience.

4.2.2 Zephyr BioHarness

After investigating several research development kits [CodeBlue, 2013] [Shimmer,

2013] and commercial products [Biosensics, 2013] [Equivital, 2013] [Zephyr Inc.,

2013], we decided to use Zephyr BioHarness sensors in an infrastructure incorpo-

rating Tyndall sensors to build the BAN for CARA.

The BioHarness is a physiological monitoring wireless device designed for

monitoring of patients in the home environment and alternate care settings. It

can be used as a general patient monitor to provide physiological information as

part of a healthcare monitoring system, for general research purposes. The device

consists of a chest strap and an electronics module that attaches to the strap.

The device provides a facility to detect and transmit vital signs data including

ECG, heart rate, respiration rate, skin temperature, body orientation and 3D-
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Figure 4.3: The Zephyr BioHarness 3

acceleration as shown in figure 4.3. Part of the specification of sensor data is

shown in table 4.2 .

The BioHarness is powered by an internal battery which can be charged in the

USB charging cradle. It can last over 20 hours for real-time data transmitting with

a fully charged battery. The device can collect measurements captured during

both static as well as dynamic activity and transmit the data to any Bluetooth

enabled device in real-time. Table 4.3 gives the Radio Frequency characteristics

of the Bluetooth protocol used for data communication. Overall, the Zephyr

BioHarness is a powerful and portable device with integration of all the features

required for a monitoring system. It provides an ideal packaged solution to build

the BAN for the CARA system.

4.3 Smart Home Sensors

To achieve pervasive healthcare for independent living, a context-aware system

should be able to observe, interpret and reason about dynamic situations in the

home environment. However, the system might make quite a different assessment

of medical conditions without the information about surrounding contexts. For

instance, the inference result might be different if a person is cooking in the

kitchen rather than sleeping in the bedroom. For the CARA system to be as useful

and unobtrusive as possible, it needs to be aware of environmental conditions as

well as the medical condition of individuals by incorporating small, low-cost, low-
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Table 4.2: Data output of Zephyr BioHarness [Zephyr Inc., 2013]
Parameter Freq. (Hz) Range Units Description

General Data Packet
Heart Rate 1 25 - 240 BPM Beats per Minute
Breathing Rate 1 3 - 70 BPM Breaths per Minute
Temperature 1 10 - 60 ◦C Skin Temperature
Posture 1 ±180 Degrees Vertical=0◦,

Inverted=180◦

Peak Acceleration 1 ±16 g Peak absolute accel-
eration, 1/10 g’s

X Acceleration Min 1 ±16 g Vertical axis
X Acceleration Peak 1 ±16 g
Y Acceleration Min 1 ±16 g Lateral axis
Y Acceleration Peak 1 ±16 g
Z Acceleration Min 1 ±16 g Sagittal axis
Z Acceleration Peak 1 ±16 g
Battery 1 0 - 100 % % of full capacity

ECG Packet
ECG sensor output 250 0 - 1023 bit 1 bit=0.013405 mV

Table 4.3: RF characteristics [Zephyr Inc., 2013]
Bluetooth Compliance Version 2.1 + EDR
Supported Profile Serial Port
Frequency 2.4 to 2.835 GHz
Output Power 10 dBm
Operating Range Up to 300ft/100m
Sensitivity -91 dBm
Antenna Type Internal

intrusion smart home sensors with the BAN in a home environment. This makes

a further comprehensive level of real-time home monitoring possible and should

lead to better healthcare decisions and quality of life for independent living.

4.3.1 Sensor Development

In a WSN, each wireless sensor is a node in a wireless sensor network that is

capable of gathering sensory information, processing it in some manner, and
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Table 4.4: Smart Home sensors specification
Sensor Signal Type Sample Rate Functionality
Passive Infrared Thermal < 1 Hz Motion, movement in rooms
Electromagnetic Electrical < 1 Hz Home appliances usage
Proximity Optical < 40 Hz Presence of nearby objects
Capacitive Mechanical < 1 Hz Objects occupancy
Light Optical < 1 Hz Ambient light in the room
Temperature Thermal < 1 Hz Environmental temperature
Sound Acoustic < 1 Hz Ambient noise in the room
Humidity Thermal < 1 Hz Environmental humidity

communicating with other nodes in the network. The majority of wireless sensor

platforms share a common set of system components:

• Microcontroller: provides the computational capabilities of the platform.

• Radio transceiver: provides low-power wireless communications.

• Sensor board: provides hardware interfaces to external sensors.

• Power Layer: provides power through batteries, capacitors, or solar arrays.

Although lots of off-the-shelf smart home products are available in the mar-

ket, none of them meet all the requirement of our system. In addition, these

commercial products usually provide packaged hardware solutions using a unique

firmware or communication protocol, which makes them incompatible with other

applications. Therefore, it is difficult to integrate them in our system. Con-

sequently, we decided to build customized devices to construct the WSN from

modules that support processing, sensing, radio, or other functions. The custom

designed WSN for smart home applications is built upon MICROCHIP modules

and adopts the MiWi network protocol for wireless communication. A summary

of smart home sensors in the WSN is given in Table 4.4, and an example of a

sensor prototype is shown in Figure 4.4.

4.3.2 Wireless Networking Protocol

There is a growing expectation that devices will have built-in abilities to commu-

nicate with each other without a hard-wired connection. The benefits of wireless
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Figure 4.4: Prototype of the PIR sensor

communication are reduced costs and ease of implementation. It does not require

cabling and other hardware, and associated installation costs. To implement the

application with the smart home WSN, the challenge is to select the right wireless

networking protocol and implement it in a cost-effective manner.

The three primary protocols available on the market today are the IEEE

802.15.4 based ZigBee and MiWi protocols, and the ISO Dash7 standard. A brief

comparison of Dash7, ZigBee, and MiWi is shown in Table 4.5. Since for many

Table 4.5: Comparison of protocols for wireless personal area networks (WPANs)
Protocol Underlying

Standard
Frequency Range Footprint

Zigbee IEEE 802.15.4 2.4 GHz, 915
MHz, 868 MHz

30-500 m 40-100 K

Miwi IEEE 802.15.4 2.4 GHz 10-100 m 3-17 K
Dash7 ISO 18000-7 433 MHz 1 km 15-40 K

applications the full ZigBee protocol has become too comprehensive and complex,

a large percentage of IEEE 802.15.4-compliant wireless networks use alternative

proprietary protocols. The Microchip MiWi Wireless Networking Protocol Stack

is a simple protocol designed for low data rate, short distance, low-cost networks.
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Based on IEEE 802.15.4 for wireless personal area networks, the MiWi protocol

provides an easy-to-use alternative for wireless communication. In particular, it

targets smaller applications that have relatively small network sizes, with few

hops between [Flowers and Yang, 2010]. Since the scale of our smart home WSN

is small and the topology of the WSN is simple, we decided to use the Microchip

MiWi P2P wireless protocol which is the simplified wireless protocol that are sup-

ported in the MiWi Development Environment. The protocol has a rich feature

set that can be compiled in and out of the stack to meet a wide range of design

needs. However, as a simpler variation of the MiWi protocol it only supports

peer-to-peer and star topologies without a routing mechanism, so the wireless

communication coverage is defined by the radio range [Yang, 2010].

The MiWi P2P protocol categorizes devices based on IEEE standards and

their role in making the communication connections as shown in Table 4.6 and

Table 4.7.

Table 4.6: IEEE 802.15.4 device types - based on functionality
Functional Type Power Source Receiver Idle

Configuration
Data

Transmission
Method

Full Function
Device (FFD)

Mains On Poll from
associated devices

Reduced Function
Device (RFD)

Battery Off Push to the
associated device

Table 4.7: IEEE 802.15.4 device types - based on role
Role Type Functional Type Role Description

Personal Area
Network (PAN)

Coordinator

FFD The device starts first and waits for a
connection.

End Device RFD The device starts after the PAN
coordinator has begun to establish a

connection.

A star topology supported by the MiWi P2P protocol is adopted for the

development of our WSN (as shown in Figure 4.5). From a device role perspective,
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the topology has one PAN (Personal Area Network) coordinator, which in our case

is a Raspberry Pi working as the basestation that initiates communications and

accepts connections from other devices. It has several end devices that join the

communication. These are the various wireless sensors. From the functionality

perspective, the PAN coordinator is a FFD (Full Function Device). An end

device is a RFD (Reduced Function Device) with its radio off when it is idle. The

MiWi P2P protocol supports two ways of transmitting a message: broadcast and

unicast. Broadcast packets have all devices in the radio range as their destination.

There is no acknowledgement for broadcasting messages. Unicast transmissions

have only one destination and use the long address as the destination address.

It requires acknowledgement for all unicast messages. In the implementation of

the smart home WSN, the unicast mode is adopted, so end devices can establish

connections only with the PAN coordinator.

PAN Coordinator

RFD End Device

Figure 4.5: Star Topology [Yang, 2010]

A typical MiWi P2P protocol application starts by initializing the hardware

and MiWi P2P protocol. Then, it attempts to establish a connection and to

enter the normal operation mode of receiving and transmitting data. Figure 4.6

illustrates the typical flow of the MiWi P2P protocol application. The MiWi P2P
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Stack Initialization

Establish Connection

Process the Packet Send the Packet
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Figure 4.6: Flowchart for the MiWi P2P wireless protocol application

protocol uses MiApp as its application programming interface.

4.3.3 Field Deployment

In order to carry out experiments to evaluate the CARA system, we deploy the

WSN in a friendly environment. A ”friendly” environment is a real-world (out-

of-lab) deployment environment, lived in by a researcher rather than by a real

patient. The purpose of friendly environment deployment is to assess the system

in a real home environment over a protracted period.

A key issue for deploying is the layout of the home environment and the

identification of ideal sensor locations. The ideal sensor locations reflect the

range of the radios being used (e.g., MiWi, Bluetooth), the size of the rooms,

the sensitivity of sensors, and so forth. Figure 4.7 presents the floor plan of the

home trial with sensor locations. Although the sensor locations are customized to
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Figure 4.7: Deployment of wireless sensors within a real-world home environment

this specific home layout in this dissertation, it is desirable the system provides

integration mechanisms that allow users to design and deploy sensors in their own

home. As shown in the floor map, various types of wireless sensors are deployed

to monitor the ambient changes within the home environment:

• Proximity sensors in yellow indicate the approach to the sink, toilet, bathtub

and fridge.

• Capacitive sensors in green detect the occupancy of the couch, bed and

dining chair.

• Electromagnetic sensors in blue detect the use of home appliances, e.g. TV,

cooker, washing machine and PC.

• Passive infrared sensors in red detect the motion around.
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• Integrated environmental sensors in pink measure the temperature, humid-

ity, noise and light level in the home.

Figure 4.8: Raspberry Pi hosted basestation with the ZENA Wireless Adapter

Real-time signals are transmitted to a basestation which is developed on a

Raspberry Pi (See Figure 4.8). To establish the connection between sensor nodes

and the base station, the ZENA Wireless Adapter [Microchip Technology Inc.,

2012] is used to connect the Raspberry Pi as a wireless node to the sensor network

for data collection. The ZENA Wireless Adapter is a multi-function USB wire-

less adapter connecting USB-equipped devices with Microchip wireless sensors

for development of a WSN. It is pre-programmed with a MiWi Wireless Proto-

col Sniffer application that enables the user to receive MiWi Wireless Protocol

packets. The base station also communicates with a home gateway (PC/Laptop)

through a Bluetooth connection. In this way, the customized WSN is integrated

into the CARA system.

The above MiWi-based WSN was developed in collaboration with an external

mechanical engineer who designed and developed the hardware and low level

software.
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4.4 Smartphone Associated Sensing

Advances in computing capability and connectivity have accelerated the con-

vergence between mobile phones and powerful computers facilitating the devel-

opment of smartphone technology in recent years. Mobile phones are getting

smarter by utilizing embedded sensors and additional resources in the phone.

They can be used to understand our life patterns, manage our health and well-

being, help us navigate through our day, and intervene on our behalf. This is

giving rise to a new area of research called smartphone sensing [Lane et al., 2010].

4.4.1 Smartphone Development

Early mobile phones had only basic phone features, so people with computational

needs had to carry a separate dedicated personal digital assistant (PDA) device,

running early versions of operating systems such as Palm OS, BlackBerry OS

or Windows CE/Pocket PC [Nusca, 2009]. It is not until the late 1990s, IBM

introduced the Simon that combined the functions of a (PDA) with a mobile

phone, which is referred to as the first smartphone [Sager, 2012]. With the rapid

development of smartphone technology, today’s top-end smartphones come with

1.4-GHz quad-core processors and a growing set of low cost yet powerful embed-

ded sensors (see Table 4.8). They also have multiple radios for communications,

large storage, and a touch screen. Sensor enabled smartphones are becoming

more and more central to people’s lives.

An early smartphone such as the Nokia N95, had an embedded accelerometer

and GPS. However, it lacked an efficient software infrastructure to support mobile

sensing applications. Nokia didn’t provide competent application programming

interfaces (APIs) to access the sensor data, because the accelerometer was only

there for video stabilization and photo orientation. There were also limitations

for implementing efficient resource management routines, e.g., turning the sensors

into sleep mode when not needed. Advanced smartphone operating systems, such

as iOS, Android, BlackBerry, and Windows Mobile, are much more supportive

platforms for the development of smartphone sensing applications. They provide

a more comprehensive set of APIs to access the low level components of the phone

while taking advantage of more powerful hardware (CPU and RAM). Each new
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Table 4.8: Common smartphone integrated sensors
Type Measurand

Present
3-axis Accelerometer Acceleration in the X, Y, Z axes
3-axis Gyroscope Rotation in space (Roll, Pitch, Yaw)
3-axis Magnetometer Location direction (compass)
Microphone Audio
Camera Images, video
GPS Location
Ambient Light Illuminance
Proximity Nearby objects
Pressure Pressure (used to determine altitude)

Future
6-dimensional accelerometer Combination of accelerometer and gy-

roscope
9-axis motion sensor Combination of accelerometer, compass

and gyroscope
Biochemical Biochemical agents
Physiological Physiological agents

release of smartphones offers advances in sensing, computation, and communica-

tions which make the smartphone a truly ubiquitous mobile computing device.

Smartphone associated sensing, combined with pervasive computing techniques,

is enabling a new generation of mobile healthcare that can both monitor and

enhance physical and emotional well-being.

4.4.2 Smartphone Sensing for Activity Recognition

Enabling context-awareness in smartphones has been the focus of much research

recently. A key for developing such applications is the utilization of a variety

of sensors in modern smartphones, allowing them to learn about the user’s be-

haviour and the surrounding environment. Among all these applications, activity

recognition has been considered as an important issue for the successful realiza-

tion of context-awareness in pervasive environments. This relates to the fact that

activities in a pervasive environment provide important contextual information

and the intelligent use of such an environment relies on the activity context. As
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a consequence, smartphone based activity recognition has attracted increasing

attention for real-world pervasive healthcare applications.

Early activity recognition work focused on using a network of wearable sensors

to track the movement of specific limbs as well as the body as a whole [Maurer

et al., 2006]. These sensors are usually small in size, lightweight, low cost and non-

invasive. It has proved to be an effective and reliable method for human activity

recognition. Nevertheless, most of the wearable sensors need to be fixed onto

specific locations on the subject’s body. As a consequence, wearing these special-

ized sensors on a daily basis becomes a major challenge, making these systems

less practical. In contrast, research shows that a variety of daily human activities

can be inferred most successfully from embedded sensors on the smartphone (i.e.

accelerometer, gyroscope and GPS). By taking advantage of smartphones’ com-

putational power and sensing capabilities, and their tight coupling with users’

everyday lives, smartphones can become an alternative platform to customized

sensors that researchers have previously adopted to recognize activities of daily

living [Choudhury et al., 2008]. Using a smartphone as a primary device for data

collection and processing increases the likelihood of data coverage and represents

a minimal cost and maintenance commitment to the user.

In this dissertation, a novel Activity of Daily Living (ADL) recognition ap-

proach for pervasive healthcare is discussed. The solution involves identifying

a user’s activity through the combined use of inertial sensors(accelerometer and

gyroscopes) built-in to the smartphone along with the Zephyr BioHarness sensor.

The patient wears the BioHarness sensor on the chest and puts a smartphone in

the pants pocket as shown in Figure 4.9. These devices are continuously mon-

itoring the 3D acceleration and rotation of a patient’s body and transmitting

data to the smartphone via a Bluetooth connection. Raw sensor data are col-

lected, filtered and extracted into distinctive features on the smartphone. These

features are then used to build and update statistical models using multiple ma-

chine learning algorithms. The trained machine learning classifier working on the

smartphone is able to identify the user activities in real-time. Compared with

other work using multiple kinds of wearable sensors [Maurer et al., 2006] [Tapia

et al., 2008], our approach is more robust in terms of flexibility and scalability.

Unlike other approaches [Kwapisz et al., 2010] [Khan et al., 2010] [Stefan et al.,
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Figure 4.9: Activity recognition using smartphone associated BAN

2012], using only a single smartphone to detect activity, with undistinguished

performance due to the ambiguity of upper body movement tracking, the over-

all activity recognition rate of our approach achieved over 95% in a real usage

environment.

4.4.3 Sensing Paradigms

Researchers discuss how much the user should be actively involved during the

sensing activity (e.g. taking the phone out of the pocket to collect an activity

sample). The work in this dissertation is founded on two sensing paradigms:

participatory sensing [Burke et al., 2006], where the user actively engages in the

data collection activity (i.e. the user manually determines how, when, what, and

where to sample) and opportunistic sensing [Campbell et al., 2006], where the

data collection stage is fully automated with no user involvement. Each of these

sensing paradigms presents significant trade-offs.

Participatory sensing places a higher burden or cost on the user. For example,

manually selecting data to collect and then sampling it. An advantage is that
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complex operations can be supported by leveraging the intelligence of the person.

The drawback of participatory sensing is that the quality of data is dependent on

participant enthusiasm to reliably collect sensing data. In our work, this paradigm

is applied in the first stage to collect training data for supervised learning. The

volunteers are asked to perform specific activities carrying the smartphone. There

is a wireless controller application that enables the user to label the ongoing

activity and start/stop recording the activity data. The labelled data are saved

in data files for the purpose of machine learning.

Opportunistic sensing, on the other hand, has the benefit of a lower burden

placed on the user, allowing large-scale data collection, analysis and sharing.

In this case, sensing happens automatically and continuously when the system

starts working. It is particularly useful for activity recognition, where each user’s

behaviour pattern may be hard to quantify and only accrues over a long time.

The smartphone-based activity recognition application is designed to be robust

and cope with possible changes in user behaviour patterns, and the classification

model is required to be adaptive to different users. With opportunistic sensing,

the smartphone is able to continuously gather a user’s activity data in an unob-

trusive way and autonomously re-train the machine learning classifier to optimize

the model of activity patterns. One of the foremost challenges of using oppor-

tunistic sensing is the phone usage problem. For instance, the application wants

to only take samples for activity feature extraction when the phone is in the user’s

pants pocket. These types of usage issues can be solved by using other embedded

smartphone sensors(e.g. the light sensors to determine if the phone is out of the

pocket).

4.4.4 Smartphone Sensing Issues

In spite of the increasingly powerful hardware platforms, there are still issues

that limit smartphone sensing applications. The battery capacity of smartphones

is still a limitation, which makes it impossible to run long-term sensing applica-

tions. Another issue is the unpredictable and unexpected use of the smartphones.

Smartphones are often used on the go and in ways that are difficult to anticipate

in advance. This complicates the use of machine learning models that may fail
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to generalize under unexpected environments. For example, to identify the user’s

activity correctly, the smartphone is supposed to be carried in the user’s pants

pocket. It may fail to infer the physical actions of the person if users carry their

smartphones in different locations.

Programmability of the smartphone also remains a challenge. Different ven-

dors offer different APIs, making porting the same sensing application to multi-

platforms become an issue. It is useful for the vendors to think about and propose

sensing mechanisms and APIs that could be standardized and adopted by differ-

ent smartphone platforms. Moreover, the stability of these kinetic sensors varies

with different devices. For instance, the sensor readings are unreliable with elec-

trostatic interference in some older smartphones such as HTC Nexus One, while

the sensor data are of much better quality in some recent released smartphones

such as Samsung Galaxy III and HTC One.

Although smartphones continue to provide more computation, memory, stor-

age, sensing, and communication bandwidth, the smartphone is still a resource-

limited device if complex signal processing and inference are required. Signal

processing and machine learning tasks can stress the resources of the phones in

different ways. In particular, for healthcare applications that require continuous

sensing, it is more resource demanding in that real-time processing and classi-

fication of the incoming stream of sensor data are required. To mitigate this

problem, some smartphone sensing systems tend to trade off accuracy for lower

resource usage by implementing simple algorithms that require less computation

or a decreased amount of sensor data. Another strategy is to leverage client-

server architecture where different sensor data processing stages are offloaded to

back-end servers when possible [Cuervo et al., 2010]. In our work, the cloud in-

frastructure is exploited, whereby a thin client is run on the smartphone to handle

real-time activity recognition while more resource-intensive tasks, such as train-

ing and evaluating a classification model, are offloaded to the cloud server. Being

aware of battery consumption and network latency issues, feature extraction and

some pre-processing of the raw data are performed locally in the smartphone to

minimize the amount of data to be sent to the cloud server.

Last but not least, privacy and security are very sensitive issues for pervasive

sensing that infer a user’s activity, context, and surrounding conditions. Solutions
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to protect users’ privacy for smartphone sensing applications have been proposed

[Cornelius et al., 2008] [Ganti et al., 2008] [Ahmadi et al., 2010]. In the CARA

system, the security issue is addressed on the server side by generating a private

key for each user and developing a mechanism for user management. However,

we still need to take into account the risk of local malware that can access a user’s

data stored on the device. This could be addressed by encryption of critical data

and a secure communication protocol.

4.5 Conclusion

An at-home healthcare solution must detect and respond to the activities and

conditions of the patient. A wireless sensor network (WSN) is an ideal tech-

nology platform for detecting and responding to health-relevant parameters such

as movement, breathing, ECG, and daily activity. The WSN we used consists

of: a wireless body area network (BAN) that can monitor various vital signs

while providing real-time feedback to the patient and remote caregiver; smart

home sensors deployed in a patient’s home environment that provide real-time

and extended monitoring of activity and wellbeing; as well as a smartphone car-

ried by the user that detect daily activities. The WSN can deliver a long-term

home monitoring service to provide assistance in diagnostics and identification of

changes in a person’s behavioural pattern. As well as offering excellent long-term

care benefits, the always-on nature of the WSN means that it can identify and

respond to anomalies in a timely manner. In particular, the BAN can provide

notice of significant shifts in critical physiological parameters in order to prevent

a health crisis.

The potential value of WSNs for pervasive healthcare can be further exploited

when coupled with other technologies such as context-aware reasoning, telecare,

data mining and cloud computing. By mining the extensive data set collected

by the WSN and incorporating intelligent reasoning functions, the WSN can

keep patient, family, and caregivers linked, while also establishing trends and

detecting variations in patient health condition. Other quality-of-life issues, such

as privacy, dignity, and convenience, are supported and enhanced by the ability

to unobtrusively provide services in the patient’s own home.
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Chapter 5

Activity Recognition in Smart

Home Environment

5.1 Introduction

The methodology of the activity recognition system is introduced in this chapter.

The ability to accurately recognize and continuously monitor activities of daily

living (ADLs) is one of the key features that the CARA system is expected

to provide. ADL is associated with both physical and mental health and is a

primary indicator of quality of life [Skelton and McLaughlin, 1996]. Indeed, some

age-related neurological diseases (e.g. cognitive impairments, mild dementia and

Parkinson’s disease) have a direct impact on the ADL of the elderly [White et al.,

2001]. Activity recognition has been studied as part of a pervasive healthcare

solution to reduce the necessity for caregiver supervision of patients. With the

addition of on-going pattern analysis, activity recognition can assist in identifying

changes in a subject’s routine.

In this dissertation, a robust ADL recognition approach for pervasive health-

care is developed. The solution involves identifying a user’s activity through

the combined use of inertial sensors(accelerometer and gyroscopes) built-in to

the smartphone along with a wearable wireless sensor (e.g. Zephyr BioHarness),

which provides the activity context in the CARA system. Raw sensor data are

gathered and segmented. Various features are then extracted from segmented

64



5. Activity Recognition in Smart Home Environment

data and are used to build classification models using different machine learn-

ing algorithms. For the real-time classification of a person’s activity, a hybrid

classifier is developed by combining threshold-based methods for simple activ-

ity recognition and machine learning classification models for complex activity

recognition. An adaptation mechanism is also incorporated by adapting a uni-

versal model, which is trained using the dataset of all users, to an individual user

through an unsupervised learning scheme.

On the other hand, continuous gathering of data will result in huge amounts

of data, especially if many users are involved. Ideally, one might want to keep

a large amount of this raw data for future (and maybe different) analysis. It

is also desirable to analyse the data to produce a compact model which can be

used in the client for real-time analysis of new data. This motivates a cloud

computing solution where data from many users can be stored and analysed

efficiently, and then the compact results of the analysis can be downloaded and

used in the client. As a result, a cloud-based data analysis framework is developed

to provide an efficient means for data sharing and data analysis. This cloud-

based approach is demonstrated using a case study of the activity monitoring

system. It incorporates various machine learning algorithms to enhance and build

classification models for each individual in parallel and to select the most suitable

model for the user. As more activity data are gathered and continually uploaded

to the cloud, the classification model is adapted using an unsupervised learning

approach to produce enhanced models which are then downloaded on to the

smartphone for improved real-time activity analysis.

The evolving cloud-based machine learning mechanism makes the activity

recognition system become more customizable and self-adaptive. It also over-

comes the limitation of the computational and storage resources of a smartphone.

The evaluation results of the experiments conducted on eight participants indicate

that the activity recognition system can robustly identify activities in real-time

across multiple individuals: the average recognition rate of ADL is over 95% in

a real usage environment.
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5.2 ADLs in a Home Environment

As a context-aware system especially designed for pervasive healthcare, the CARA

system can help extend independent living for the elderly in a smart home en-

vironment by monitoring the person and ambient changes to detect anomaly

situations. To achieve that, it is important to detect human body posture as

well as movement which can provide the basic activity context to support better

healthcare reasoning functions.

The basic activity of daily living in the home environment can be divided into

two categories: static posture and dynamic movement. Static posture indicates

the state of the body which consists of sitting, standing, lying, bending and

leaning back, whereas dynamic movement is the compilation of a series of multiple

actions. The dynamic activities within a home environment that we considered

in our system include:

• Walking: Subject walks from one room to another.

• Running: Subject jogs in the yard.

• Walking Stairs: Subject climbs up or down stairs.

• Washing Hands: Subject washes hands at the sink.

• Sweeping: Subject sweeps the living room area.

• Falling: Subject falls on the ground and remains lying afterwards.

5.3 Activity Recognition Overview

A comprehensive activity recognition application has been implemented and runs

on an Android smartphone for the real-time classification of activities. The overall

process of activity recognition is summarised in Figure 5.1 and further details are

discussed in the following sections. The work flow is described as follows:

1. The machine learning classification model is loaded from the cloud into a

smartphone.
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Collect accelerometer and gyroscope 
data from sensors

Start

End

Extract features from 1-second analysis 
window until data is fully processed

Distinguish static and dynamic activities 
using threshold-based method

Load classification model

Convert acceleration to angles(degree)

Determine activity according to the 
posture of body and legs

Sitting Standing Bending Lying

Build dataset for classification

Static Dynamic

Activity recognition using machine 
learning classifier

Walking Running

Walking Stairs Sweeping

WashingHand Falling

Apply threshold to the confidence of 
classification output

Unknown Activity Recognized Activity

Confidence < 0.9 Confidence ≥  0.9

Cloud-based
Model Optimization

Activity recognition output

Figure 5.1: Flowchart of the activity recognition in the CARA system

2. Raw data are collected from BioHarness sensors and smartphone built-in

accelerometer and gyroscope sensors.

3. The signals are then segmented and a 1-s window is moved over the signal

and overlapped every 500ms.
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4. Features corresponding to each window are extracted.

5. Static and dynamic activities are distinguished using a threshold-based

method where a threshold value of acceleration is applied.

6. Static activities are divided into sitting, standing, bending, lying and lean-

ing back by applying threshold angles for both trunk and thigh.

7. Dynamic activities are classified using machine learning classifiers based on

the input dataset of extracted features.

8. Activities are labelled as correctly classified if the output confidence is high

enough.

9. Features and the activity label of each detected case are stored in the data

file.

10. The recorded data are used to retrain the classifier and optimize the classi-

fication model using the cloud-based data analysis framework.

Wearable wireless sensors and smartphone sensors generate huge amounts of

raw data while the patient is under monitoring. However, raw data make no sense

for identifying activities, they have need to be processed and built into models,

which can be constructed via machine learning methods to describe salient fea-

tures in the dataset. As a result, features of the data are then extracted and

built into datasets which are used to build models. In this dissertation, we in-

vestigate different machine learning algorithms to build classification models for

activity recognition (i.e. Decision Tree, Neural Network, Nearest Neighbour and

Bayesian Network), each of which can be viewed as a blackbox that is capable

of inferring the current movement based on the input dataset. However, each

model comes from a unique algorithm approach and will perform differently for

the same dataset. The best approach is to use cross-validation to determine which

model performs best for a given dataset. As a consequence, the cloud-based data

analysis approach is explored for the model optimization and adaptation.
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5.4 Data Collection

The first step of processing activity recognition is sensor data collection. Recently,

two methods of collecting data have been extensively researched. The first method

relies upon environmental sensors (e.g. RFID tags, cameras) to track aspects such

as motion, location and object interaction. The second method uses a network

of wearable sensors to track the acceleration of specific limbs as well as the body

as a whole. Both of these methods have demonstrated impressive results in

constrained laboratory settings. A major hurdle in implementing these systems

outside of trials is how intrusive these sensors are. Environmental sensors involve

a large investment in setting up and maintaining the system. Body Area Networks

(BANs) are more unobtrusive and require less effort to set up. However, it is

often impractical for the subject to wear sensors all over the body in normal

daily life. The ubiquity of smartphones and their capability to support sensor

data collection, processing and communications makes them a natural alternative

to wearable sensors. As a result, using a smartphone as a primary device for data

collection and processing increases the likelihood of data coverage and represents

a minimal maintenance commitment and cost to the user.

Recently, some research has focussed on using smartphones as mobile sensing

and computing platforms to achieve activity recognition [Kwapisz et al., 2010;

Stefan et al., 2012]. A common issue of these approaches is the ambiguity of upper

body movement tracking, which leads to low-performing of activity recognition.

In this dissertation, we build on these approaches and extend them to enhance

the ability of real-time identification of daily activities. Instead of using only a

single smartphone, we also integrate a Zephyr BioHarness sensor which can be

easily worn on the chest to track the trunk movement. The recognition rate of

activities is dramatically improved according to the evaluation results.

The sensor data were collected from a Samsung Galaxy SIII mobile phone

[Samsung Inc., 2013] and the wearable Zephyr BioHarness sensor as shown in Fig-

ure. 5.2(a) [Zephyr Inc., 2013]. The smartphone embedded triaxial accelerometer

and gyroscope sensors measure the 3D-acceleration and orientation of the phone.

The three axes of acceleration are dependent upon the orientation of the phone.

The x-axis runs parallel to the width of the phone, the y-axis runs the length of

69



5. Activity Recognition in Smart Home Environment

the phone, and the z-axis runs perpendicular to the face of the phone, as shown

in Figure. 5.2(b). The sensor integrated into the mobile device is easy to use

without assistance and the phone can be carried comfortably for long periods of

time [Choudhury et al., 2008].

(a) Zephyr BioHarness sensor (b) Smartphone 3D-acceleration

Figure 5.2: Body Area Network for sensor data collection

The data collection for supervised learning was conducted by performing ex-

periments on eight postgraduate students at University College Cork, Ireland.

Subjects carried the smartphone in their front pocket of their trousers and wore

the BioHarness sensor on the chest. The BioHarness sensor data were transmitted

to the smartphone through a Bluetooth connection in real-time. Subjects were

asked to perform a series of activities while the real-time sensor readings were

recorded for the purpose of training the machine learning classification models.

Another android application running on a tablet device communicated with the

smartphone through Bluetooth. It worked as a monitor as well as a controller that

enables the selection of the on-going activity label and controls the smartphone

to start or stop recording sensor data.

Nine channels of sensor readings, 3D-acceleration and orientation of the thigh

and 3D-acceleration of the trunk with associated timestamps (t, Ax, Ay, Az,

Gx, Gy, Gz, Tx, Ty, Tz) were collected as the training dataset and subsequently

used for the evaluation of the activity classification algorithms. Figure. 5.3

shows the sample of raw sensor data collected by the smartphone. As to the
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(a) 3-axis acceleration of the smartphone

(b) Absolute accelerometer and gyroscope sensor readings

Figure 5.3: Plot of the raw sensor data of the smartphone

sampling frequency, the sensors in the Android phone trigger an event whenever

the accelerometer or gyroscope values change. The rate of events can be set to

one of four thresholds: fastest, game, normal, and UI, with the fastest being

the fastest sampling rate and UI being the slowest. In order to balance the

speed of data processing and activity feature extraction, the sampling rate for
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the experiment was set to normal which is about 15Hz and is fast enough for the

daily activity classification.

5.5 Features Extraction

After obtaining sensor readings, the machine learning classifier should be trained

to build statistical classification models for real-time activity recognition. How-

ever, standard classifiers may not work well on the raw sensor data due to the

characteristics of sensor readings, e.g. instability and noise. It is critical to ex-

tract features from the raw sensor data in order to improve the quality and reduce

the quantity of readings. This is usually performed by breaking the continuous

data into windows of a certain duration. In this dissertation, we explored a fixed

length of a time window which is overlapped by one half of the window length.

Thus, each window is a single instance, but any given data point contributes to

two instances. This method has been shown to be effective in earlier work us-

ing accelerometer data [Bao and Intille, 2004]. We also experimented with 1-s,

2-s and 10-s time windows respectively for feature extraction. However, these

yielded very similar results in terms of classification rate but with different lags

for recognition, where a 10-s time window has the largest lag. As a result, we

decide to use the 1-s time window in the process of feature extraction.

Table 5.1 summarizes a number of features extracted from each window. We

compute both time-domain and frequency-domain features for each axis of ac-

celerometer and gyroscope readings. The time-domain features measure the tem-

poral variation of a signal, and consist of the following four features. The dy-

namic range is defined as Min, Max and Mean, which represents the minimum,

maximum and the mean value in a time interval. The Standard Deviation is

calculated to characterize the stability of a signal, normalized by the mean value

of the readings in the interval. For the frequency domain, we consider two fea-

tures. The Zero-Crossing Rate and Mean-Crossing Rate indicate the frequency

of sign-changes along a signal in a time interval, which measures the rate of sig-

nal changes from positive to negative and from higher than the mean value to

lower than the mean value. Additionally, we also investigate a feature concern-

ing the Angular Degree of each axis acceleration signal, it is calculated based on
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the equation proposed by [Lyons et al., 2005]. Thus, in total a 66-dimensional

feature vector is generated every second. Processed features were saved in the

smartphone in an arff(Attribute-Relation File Format) file for data analysis.

The extracted features actually generate a pattern for a certain activity, and

these patterns (consisting of feature vectors) are then used to train the classifiers

and build machine learning classification models. Figure 5.4 demonstrates the

samples of extracted standard deviation of two accelerometers and one gyroscope

readings associated with different activities. As we can see, there is a significant

difference between different activity patterns. More details of activity patterns

can be found in the Appendix B: Activity Patterns with Accelerometer Signals.

5.6 Hybrid Classifier For Activity Recognition

Activities of daily living in the home can be split into two categories. Simple

motionless activities, such as sitting, standing, lying and bending, which corre-

spond to static postures of the human body. These activities may be successfully

recognized by using a threshold based method. [Lyons et al., 2005] concluded

that using a minimum of two accelerometers, one mounted on the trunk and

another mounted on the thigh, was sufficient to distinguish postures from move-

ments. Complex dynamic activities, such as walking on stairs, cooking, sweeping

and washing hands, can be represented as single repeated actions or even involve

multiple overlapping actions. These activities can be recognized by identifying

patterns of people’s movement through machine learning classifiers.

In this dissertation, we propose a multilayer hybrid classifier which is, in

effect, a combination of the aforementioned techniques, and is able to distinguish

static and dynamic activities and identify activities using different methods. To

achieve this, a threshold based method is used to distinguish static and dynamic

activities, a rule-based reasoning mechanism is applied to identify simple static

activities, and various machine learning classifiers are applied to classify complex

dynamic activities. In this case, the cost efficiency of activity recognition using a

mobile device can be significantly improved. The smartphone, even with limited

computing power, can perform intelligent real-time classification and this provides

novel functionality in our solution.
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(a) Standard Deviation of the acceleration of the smartphone

(b) Standard Deviation of the rotation of the smartphone

(c) Standard Deviation of the acceleration of the BioHarness sensor

Figure 5.4: Plot of the extracted Standard Deviation feature
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5.6.1 Distinguishing Static and Dynamic Activities

To distinguish the static and dynamic activities, we investigated features ex-

tracted from segmented sensor readings and it turns out that the standard de-

viation is the most useful metric for classifying static and dynamic activities.

The standard deviation indicates the variability of the accelerometer signal for

each 1-s window of recorded data. High variability would be expected during

dynamic activities whereas static activities result in low variability. Thresholds

are then applied to the standard deviation of both smartphone and BioHarness

accelerometer signals. Thresholds were determined empirically from the gathered

data. The threshold for trunk acceleration was set at 0.25 m/s2 and the thresh-

old for thigh acceleration was set to 0.2 m/s2 to make sure that all motionless

activities are detected. Figure 5.5 shows an example of the standard deviation

threshold for BioHarness accelerometer readings.

Figure 5.5: Standard Deviation threshold for trunk accelerometer signals

Algorithm 1 is implemented to determine the Activity State using these

thresholds. Here, we classify the Activity State into three categories:

• Stationary: Subject is in a state of rest, one of various postures (e.g. lying,

sitting, standing).
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• Transitional: The state of the subject’s activity transitions from static to

dynamic or the other way round.

• Active: Subject is performing dynamic activities (e.g. walking, running,

sweeping).

The activity state of a subject is determined by the standard deviations of both

thigh and trunk absolute accelerations as well as the previous activity state. For

example, we assume the subject was resting and the activity state was identified

as stationary. The next moment, if both standard deviations of accelerations are

above the threshold for that second, the activity state is changed to transitional,

and if both of them are below the threshold, the activity state is still deemed

stationary.

5.6.2 Real-time Classification

When the activity is deemed static, the mean accelerations over the one second

window are converted to a corresponding inclination angle using the arc cosine

transformation of Equation 5.1, where a is the mean acceleration of the corre-

sponding axis (e.g. y-axis in our case), g is the gravity of the earth, θ in degrees

corresponds to the angle of inclination for the trunk or thigh.

θdegrees =
180

π
arccos(

a

g
) (5.1)

Specific trunk and thigh inclination ranges are set based on the findings of

[Lyons et al., 2005]. They proposed the best estimate threshold which accurately

reflects real-life trunk and thigh ranges. However, they only considered three

static activities, sitting, standing and lying. In this dissertation, we added two

more static activities, bending and leaning back for classification. Figure 5.6

outlines the upper and lower threshold values for determining the trunk position.

Similarly, thresholds are applied to the thigh acceleration. The overall thresholds

applied for the thigh and trunk angles for each posture are listed in Table 5.2.

The static activity is classified according to the position of the trunk and thigh

through a rule-based approach. For instance, if the thigh position is detected as

horizontal while the trunk is in any position except horizontal, the posture of the
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input : Extracted Feature Vector, Previous Activity State
output: Activity State

begin
sdThigh −→ StandardDeviationoftheSmartphoneAcceleration;
sdTrunk −→ StandardDeviationoftheBioHarnessAcceleration;
foreach sdThigh and sdTrunk of the feature vector do

switch Previous Activity State do
case Transitional

if sdThigh 6 0.2 and sdTrunk 6 0.25 then
ActivityState←− Stationary;

else
ActivityState←− Active;

end

end
case Active

if sdThigh 6 0.2 and sdTrunk 6 0.25 then
ActivityState←− Transitional;

else
ActivityState←− Active;

end

end
case Stationary

if sdThigh > 0.2 and sdTrunk > 0.25 then
ActivityState←− Transitional;

else
ActivityState←− Stationary;

end

end

endsw

end

end

Algorithm 1: Threshold-based algorithm for distinguishing activity state
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subject is deemed sitting. During the experiment, detection accuracies of 98%

and greater were achieved for each of the static activities (See Table 5.5).
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Figure 5.6: The inclination threshold arrangement for various trunk positions

For real-time recognition of dynamic activities, machine learning classifiers are

employed to identify patterns of people’s movement. The open source Weka ma-
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Table 5.2: Threshold in degrees for thigh and trunk posture detection
Thigh Posture Upper Threshold Lower Threshold
Vertical 0 45
Horizontal 45 90
Trunk Posture Upper Threshold Lower Threshold
Vertical -30 30
Bending 30 60
Horizontal | ± 90| | ± 60|
Leaning Back -60 -30

chine learning package implemented by [Witten et al., 2011] is used in this study

to develop the machine learning mechanism. This package provides a collection

of machine learning algorithms for data mining tasks and can be integrated into

other applications. In this dissertation, four popular machine learning algorithms

are explored and evaluated:

• Bayesian Network: It learns from the training data by building a prob-

ability distribution table for each attribute. The strength of the Bayesian

Network is that it is highly scalable and can learn incrementally because

all it does is to count the observed variables and update the probability

distribution table.

• Decision Tree: It is expressed as a recursive partition of the instance

space. Each leaf in the tree is assigned to one class which shows the most

appropriate target value. The way that instances are classified is by nav-

igating them from the root of the tree down to a leaf. Some advantages

of the Decision Trees are: as a classification it can handle datasets that

have errors and missing values, the models it builds are transparent and

understandable and their flexibility makes them applicable to a wide range

of problems.

• K-Nearest Neighbour: It is an instance-based classifier that tries to clas-

sify an instance by comparing it to pre-classified examples. Classification is

based on the distance function which measures the similarity value of two

instances.
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• Neural Network: It can be considered as a multi-layer perceptron that

uses back propagation to classify instances. This multi-layer model enables

the Neural Network to learn the non-linear relationship between the input

and output.

We use the default parameters associated with each of the classifiers. The

classifier obtains a classification model during the training stage. After training, it

can predict the class membership for new instances using the classification model.

The real-time classification is achieved by feeding the classification model with

the input dataset of features extracted from real-time sensor data. Specifically,

the machine learning classifier loads the classification model and then does an

inference on the extracted features of sensor readings. The classification results

are then produced with associated confidence values. The one with the highest

confidence value is considered as the predicted activity.
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Figure 5.7: Diagram of the transition of activity states

As discussed in the previous section, we distinguish static activities from dy-

namic activities using a threshold based method, and a hybrid classifier is applied

81



5. Activity Recognition in Smart Home Environment

to handle different types of activities. During the experiment, we found that static

activities and a single repeated dynamic activity can be relatively easy to iden-

tify. However, often the machine learning classifier misclassifies the activity when

the movement of a subject is changing (e.g. from walking to running). To solve

this problem, we introduce the idea of Transitional State to fill the gap between

activities. Figure 5.7 illustrates the transition of different activity states, where

S0 is the transitional state and S1-S5 represents the state of each activity respec-

tively. Some basic rules shown as Rii, Rji and Rij are applied to the classification

result to determine the current state of activity considering the previous state of

activity. Specifically, whenever an activity is recognized based on a new dataset

and is deemed to be different from the previous one, the activity state will be set

to be transitional for a certain time period (e.g. 1 second) until the next activity

is the same as the current one and the new dataset will not be recorded in the

new training set. This method can improve the recognition rate by minimizing

the number of misclassified activities, as well as excluding the disqualified activity

from the training dataset. However, not all the daily activities can be recognized

by the classification models. The unknown or untrained activity will either be

misclassified as another activity or marked as an Unknown State according to the

confidence value of the classification result. Algorithm 2 implements these rules:

input : Predicted Activity: ACT , Previous Activity State: SP

output: Current Activity State: SC

begin
ST −→ TransitionalState;
foreach ACT of Classification Result do

if ACT 6= SP then
SC ←− ST ;

else
SC ←− ACT ;

end

end

end

Algorithm 2: Applying the transitional state when distinguishing two ac-
tivities

82



5. Activity Recognition in Smart Home Environment

5.6.3 Adaptive Classification Models

To start with, data collected from each individual are manually labelled for super-

vised learning. The individual’s data are randomized and divided into training

set and testing set. The classification model is built on the training set and

evaluated on the testing set for each individual, which is referred to as the Per-

sonalized Model in this dissertation. Although the personalized model is able

to provide a better results for a specific user, it may not be reliable or suitable

for other users. In other words, it has the limitation of usability and scalability.

In addition, the supervised learning scheme requires a great effort of manually

labelling the activity data which is a tedious and burdensome task for the user.

As a result, we studied the adaptation of a classification model and developed the

model optimization framework which is designed to provide a one-model-fits-all

solution.

Since the personalized model only works for a specific user, a generalized model

is required to cater for all users. Hence, data collected from all the subjects are

pooled together to build a universal classification model referred to as the Uni-

versal Model in the rest of the dissertation. However, it may not exactly fit each

individual regarding a specific activity because of physical differences between

individuals. In order to improve the classification performance, we introduced

the idea of model adaptation to enhance the classification model.

As shown in Figure 5.8, all users start with a default classification model (the

universal model), which in turn gets enhanced and adapted to each individual user

for better performance when more activity data are available as users carry the

phone. For each user, a Filtered Model was built based upon the dataset, where

all misclassified instances are removed after evaluating the default model using

a 10-fold cross validation method. Then the filtered model is employed in real-

time classification. An unsupervised learning scheme is used to build an Adapted

Model which is based on self-labelled data without any user input. It reuses the

predicted label and confidence statistics generated by the filtered model during

the inference process to select new training samples. The adaptation method

determines whether a data sample is appropriate for adaptation according to

the confidence level of the inference result. If the normalized likelihoods of the
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Figure 5.8: The process of model adaptation

two classes are quite close to each other, the classifier will have a low confidence

for the prediction. Hence, a confidence threshold is used to filter the doubtful

samples and only high confidence samples are added into the dataset to retrain

the filtered model. Because unlabelled data are abundant, the system can use

a very high threshold to ensure data quality. Finally, the universal model gets

updated by the adapted model periodically. The principle of model adaptation is

to keep updating the classification model for an individual user while the activity

recognition task is carried on.

Table 5.3 presents the detail of the activity instances for each classification

model. As we can see, the default model starts with 10218 instances in total

and it gets filtered to 9340 instances before the filtered model is used for real-

time activity classification. After the trial run, the adapted model is able to be

built based on the filtered model of 11277 instances, it then becomes the new

default model for the specific user. The classification model keeps being filtered

and updated every time the new application cycle starts so that it gets more and
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Table 5.3: Number of activity instances for different classification models
Activity Default Model Filtered Model Adapted Model

Walking 1680 1516 1868
Running 1237 1057 1139
Walking Stairs 2169 1801 1995
Sweeping 1316 1243 1403
Washing Hands 833 775 883
Falling 69 52 52
Standing 510 494 822
Sitting 615 609 972
Lying 561 545 650
Bending 586 580 718
Leaning Back 462 458 557
Rolling 180 174 218
Total 10218 9340 11277

more adapted to an individual.

We evaluate the adapted model for each individual using different machine

learning classifiers. The accuracy of the classifiers is tested using 10-fold cross

validation for each classification model. Based on our experiments we have found

that the Neural Network has provided slightly superior results in most of the

cases. However, it turns out that the performance of different classifiers varies

from person to person which mostly depends on the training dataset collected

from each individual. A desirable approach should manipulate multiple machine

learning classifiers to yield the best result. As a result, we investigate a cloud-

based data analysis approach for machine learning.

5.7 Cloud-based Data Analytics

Although smartphones continue to provide more computation, memory, storage,

sensing, and communication bandwidth, it is still a resource-limited device if

complex signal processing and inference are required. Signal processing and ma-

chine learning algorithms consumes a large amount of time and computational

resources, especially for activity recognition that require continuous sensing and

real-time processing which is very resource demanding. As a consequence, a new
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incredibly scalable approach for data analysis and model adaptation has been

explored by utilizing a cloud infrastructure with large storage capacity and pow-

erful processing ability. This system can offer a cost-effective way to support data

analysis technologies with high flexibility, scalability and availability for accessing

data, discovering patterns, and deriving models.

Build/Update 
Models

Real-time 
Classification

New Training 
Dataset

Best Model

Upload
Dataset

Model 
Evaluation

Download
Model

Unsupervised 
Learning

Client

Cloud

Misclassified
Filtering

Default 
Model

Adapted 
Model

Figure 5.9: The process of model optimization

The cloud-based data analysis framework is designed to optimize a classifica-

tion model through using multiple machine learning algorithms so that the model

becomes customizable and adaptive for different individuals. As a cloud-centred

approach, it provides high scalability and availability, with the solution ready to

be deployed to hundreds of potential users without any change in the architec-

ture. Since the generation and evaluation of the classification model is offloaded

to the cloud, the mobile device can go beyond simple recording of data. In this

case, the cloud-based solution provides an efficient means of data sharing and

data mining which overcomes limitations of the mobile device.

The workflow of the cloud-based model adaptation approach is presented in

Figure. 5.9. The original data collected from each subject are stored as the

personal testing set. After supervised off-line training, the first universal model
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was built based on all subjects’ data using a Neural Network classifier. It works

as the default for a new user when there is no existing adapted model available

for the user. On the mobile client, real-time activity recognition is carried out

in the smartphone using the classification model while new training data are

generated in an unsupervised manner and stored in the smartphone temporarily.

The recorded data can be uploaded to the cloud periodically or on demand to

retrain an adapted model and update the universal model.

On the cloud server, blob storage, multiple queues and worker roles are de-

ployed for the purpose of analysing a user’s activity data and producing the best

classification model for each user. Blob storage in the cloud stores all the avail-

able activity data and classification models separately for each user. Each single

user is assigned an independent container which contains individual activity data,

including existing data and new uploaded training data, and the adapted classi-

fication model for this user.

5.7.1 A Basic Synchronous Approach

At first, the cloud-based data analysis framework is designed to work in a syn-

chronized manner which is simple in terms of implementation. This provides us

with reasonable evaluation results at the first stage of our experiment, and it lays

the foundation for the improved asynchronous approach. Figure. 5.10 illustrates

the structure of the synchronous approach. The framework consists of five types

of queues:

• Data Queue: This queue is a general queue and is used to communicate

between the client and the Controller node. When a client uploads a train-

ing file into the blob, the URL of the link plus the user id is added into the

data queue.

• Result Queue: When the most suitable model is selected by the allocated

worker role (evaluation node), the URL of the best model is added to that

user’s result queue. Unlike the data queue, which is unique and all the

users have access to it, the result queue is independently created for each

individual and doesn’t provide public access.
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Figure 5.10: Structure of the synchronous cloud-based data analysis framework
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• Register Queue: It is used to transfer the information of a new user.

Once a new user is registered, the system assigns him/her a dedicated result

queue and a blob container. The default model will be sent to the new user

initially.

• Task Queue: The controller reads data from the data queue and assigns it

into different task queues. There is a dedicated task queue for the universal

node which will update the default model based on the data from all users.

• Model Queue: Once the model of each classifier is retrained and evaluated,

the evaluation result will be sent to the evaluation node through the model

queue.

The definition of each worker role and their responsibilities are listed below:

• Controller Node: The main role of the controller is to control and manage

the flow of incoming data and assign new tasks to the task queue for further

processing.

• Machine Learning Nodes: Each of the nodes reads a message from the

task queue and starts building a classification model based on a specified

machine learning classifier. When the model is retrained, it will be evaluated

by using a manually labelled testing set.

• Universal Node: Unlike the other machine learning nodes, it is designed

to deal with data from all the users to update the universal model using a

dedicated classifier (e.g. Neural Network). The model is evaluated using a

cross-validation method and misclassified instances are filtered out.

• Evaluation Node: The duty of this worker role is to select the most

suitable model for a specific user. It can be achieved by comparing the

evaluation results (e.g. error rate, precision, recall) of each classification

model excluding the universal model. Moreover, a misclassify filter is also

applied to filter the user’s data once the best model is found.

The process of cloud-based model adaptation and optimization is described

here. Once new training data are uploaded by the client, the URL of the training
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data is received by the controller node and assigned in different tasks to machine

learning nodes. The data are then used to either build new classification models

(in the case of a new user) or enhance the existing models. Moreover, the data

are also fused with the available data from all users to update the default model

in the universal node. In the deployment, four machine learning nodes work in

parallel to process the data analysis tasks. Each of them is designed to handle

one popular machine learning algorithm. The models are generated and evaluated

for each machine learning classifier in the corresponding node. After gathering

the evaluation results of all the models in the evaluation node, the most suitable

model is selected according to the performance of each model. Data (combining

new training data and any previously existing data) for that user are then filtered

by a misclassify filter and stored in the blob storage replacing the previous data.

Once the process is finished, the best model is sent back to the client device

automatically. Thus, the new adapted model is available in the client for real-

time classification.

The design is synchronous, since the controller node has to wait for the re-

sult from the evaluation node and assign the next task after the whole machine

learning process is finished. The synchronous approach implies that the data

assignment process is halted while machine learning tasks are being executed.

Even in this cloud scenario, where machine learning algorithms execute in dif-

ferent worker roles, the controller is blocked until the best model is selected and

every machine learning node returns to an idle state. In this case, all machine

learning nodes work as a single unit and the actual processing time of a best

model depends on the worst case of all machine learning algorithms. It turns

out that the slowest algorithm (e.g. Neural Network) requires approximately 100

times of processing time compared to the fastest algorithm (e.g. Decision Tree)

based on the experimental results. For instance, user A and user B upload their

data to the cloud simultaneously. User A’s data arrives first and gets assigned

as the new task to machine learning nodes by the controller, and user B has to

wait in line until user A’s task is fully finished. It only takes 1 second to finish a

model in the Decision Tree node while 2 minutes are required to build a model

in the Neural Network node. So user A receives the best classification model

after approximate 2 minutes, while the user B has to wait about 4 minutes until
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he gets his result. The blocking of the controller not only causes unnecessary

delay but also wastes the resource of the cloud since there are several machine

learning nodes remaining idle after they finish the current task. This violates the

immediacy of synchronous communication as well as the availability of the cloud

infrastructure.

The synchronous approach can be useful for real-time and immediate com-

munication where the delay of data processing is not a problem. However, in

our scenario, there is a huge delay in terms of building the classification model

using specified machine learning algorithms, and this makes it an inappropriate

approach for data analysis tasks. As a result, we design and develop an evolved

asynchronous approach in order to improve the performance of data analysis in

the cloud.

5.7.2 An Evolved Asynchronous Approach

In the asynchronous approach, the controller uses a send-and-forget approach

that enables it to continue to execute after it assigns a new task. Consequently,

the assignment procedure continues to run while the machine learning nodes are

being invoked. Figure. 5.11 presents the structure of the asynchronous approach.

In the asynchronous structure, the machine learning node is no longer dedi-

cated to a specific machine learning algorithm, rather that each machine learning

node is designed to run any available machine learning algorithm so that it can

handle any machine learning task on demand. Different from the synchronous

approach, the controller now continuously and sequentially assigns a new task

to the task queue until there is no more available data in the data queue. Each

message in the task queue consists of the data structure of 5.2 which distinguishes

the task from others.

{USER ID, TASK ID,DATA URL,ALGORITHM} (5.2)

Any machine learning node that is currently idle is obliged to retrieve the next

available message in the task queue and start processing data using the corre-

sponding machine learning algorithm. In this case, the cloud resource is fully
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Figure 5.11: Structure of the asynchronous cloud-based data analysis framework
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exploited and the efficiency of data analysis is improved. In addition, aware that

the processing time of certain machine learning algorithm can be significantly

long, it is necessary to develop an alternative mechanism for machine learning

result delivery. As a result, we investigate two different approaches for the acqui-

sition of a classification model in terms of priority in speed or priority in quality.

In the normal case, the system will run a full-scale analysis on a user’s dataset

and produce the best classification model through using all available machine

learning classifiers. This ensures the best quality model while the whole process

is time consuming. Alternatively, in the case that there is an urgent demand

for a new classification model, the system will produce the quickest classification

model generated by whichever machine learning node finishes data analysis first

while ignoring the results of the rest of the machine learning nodes that are still

processing. This is an efficient approach when the quality of classification model

is not a major concern. Thus, the user has the option to choose whether the

classification model that he/she receives is selected based on the first-in-first-out

approach or the best-among-all approach. Ideally, the controller node should

incorporate an intelligent component that could automatically choose a suitable

data analysis approach for the user under different circumstances.

This design of the cloud-based data analysis framework allows a plug-in style

for machine learning nodes and classification algorithms. Accordingly, the number

of machine learning nodes can be adjusted on demand to increase the throughput

of the system. It takes advantage of the cloud infrastructure with a queue-based

architecture where worker roles are asynchronously coupled which means that

scaling or adding/removing instances does not affect the other worker roles. In

this case, there is no hard dependency between cloud nodes. The framework pro-

vides horizontal scalability for the various machine learning tasks. Furthermore,

Kmiecik [2013] pointed out that the size of the classifier model is independent of

the size of the training data whereby even though the training dataset is very huge

the model does not need to be very big. A huge amount of training data can be

stored in the cloud while compact models generated from the training data can be

downloaded and used in any mobile device. That can be interpreted as another

advantage of this framework: improving the availability of the smartphone-

based activity recognition system. In our experiments, training data of 54.4 MB,
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which contains one hour activity data (more than 10000 samples), only generates

a model file of 170 KB (Decision Tree classifier). In the worse case scenario, a

model file of 1.8 MB (Neural Network classifier) was built based on a dataset of

78.6 MB, which is acceptable for a smartphone-based application. Last but not

least, the framework also minimizes the processing time of the machine learn-

ing tasks by leveraging the computing power of the cloud infrastructure in an

asynchronous manner which enables a quicker response in the mobile client.

5.8 Experiments and Results

Eight volunteers (five male, three female) were involved in our experiments to

help us evaluate the feasibility of the proposed approach. The activity data were

collected in a home setting and recorded in data files for training and testing

machine learning classifiers. During the experiment, subjects were asked to per-

form static and dynamic activities sequentially while carrying the smartphone

and wearing the body sensor. There was a remote control application running

on another Android tablet that controlled the smartphone through a Bluetooth

connection to start or stop recording activity data and to label the recorded data

on the fly. The recorded activity data were used to build classification models in

a supervised learning manner. They also worked as the personal standard testing

set to evaluate the adapted classification model generated for each individual.

Firstly, we evaluated the mechanism of activity recognition locally in a smart-

phone. We built the personalized model which is a completely user dependent

approach. It requires training machine learning classifiers on each individual

user’s activity data and generates a user dependent model for each user. Clearly,

this scheme is superior to others in terms of performance for a specific user, but its

lack of general usability and scalability greatly limits its application. In addition,

the supervised learning scheme requires a great effort of manually labelling the

activity data which is a tedious task for the user. To improve it, we decided to

move on to a semi-supervised approach where a universal model (also referred as

the default model) is built based on manually labelled data from all users. As we

discussed in the previous section, an unsupervised learning scheme was applied

to gather additional training data to update the model so that it gets adapted to

94



5. Activity Recognition in Smart Home Environment

each individual user in a progressive manner. In this case, an adapted model was

gradually generated for each user. Figure 5.12 presents the number of instances

of each activity in the training set that is used to build the default model.

Figure 5.12: Example of overall activity instances of Default Model

Four different machine learning algorithms were investigated in the local trial

run: Bayesian Network, Decision Tree, K-Nearest Neighbour and Neural Net-

work. Each of them represents a typical approach of supervised learning for

classification problems. The overall performance of each classification model ob-

tained from different classifiers is summarized in Table 5.4. It can be observed

that the classification accuracy of each adapted model remains consistently above

90%. Due to the transitional state we introduced in our classification mechanism,

massive miscellaneous data are filtered during real-time data classification. As a

result, high accuracy rate is achieved through the relatively clean data sample.

The best accuracy was obtained with the Decision Tree classifier. In a case

study of the Bayesian network classifier, the accuracies of the different classifica-

tion models for each of the eight subjects are presented in Figure 5.13. As shown

in the plots the universal model is penalized for its one-size-fits-all philosophy.

The universal model provides the lowest accuracy of 80.17%. The personalized

model provides the highest accuracy of 99.19% and the adapted model yields

93.16% average accuracy.

The confusion matrix of considered daily activities is presented in Table 5.5.

The result is for the k-nearest neighbour classifier using an adapted model. The
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Figure 5.13: Accuracy of different models using Bayesian Network classifier

Table 5.4: Weighted average accuracy using different classifiers and models
Classifier Precision Recall F-Score MMC Accuracy

Personal Model
Bayesian Network 98.3% 98.3% 98.3% 98.0% 98.3%
K-Nearest Neighbour 99.1% 99.1% 99.0% 98.9% 99.0%
Neural Network 98.8% 98.7% 98.7% 98.6% 98.7%
Decision Tree 99.0% 99.0% 99.0% 98.9% 99.0%

Default Model
Bayesian Network 86.3% 85.1% 85.2% 82.8% 85.1%
K-Nearest Neighbour 98.1% 98.1% 98.1% 98.0% 98.1%
Neural Network 97.1% 96.9% 96.9% 96.6% 96.9%
Decision Tree 97.9% 97.9% 97.9% 97.6% 97.9%

Adapted Model
Bayesian Network 93.2% 93.2% 93.1% 93.0% 93.2%
K-Nearest Neighbour 98.3% 98.3% 98.2% 98.0% 98.3%
Neural Network 98.3% 98.2% 98.2% 98.1% 98.2%
Decision Tree 98.5% 98.5% 98.5% 98.3% 98.5%

matrix shows that most errors occurred between Falling, Standing and Lying.

Nevertheless, the average accuracy is still over 95% since the original default

model was built using the supervised learning scheme. The reason for misclassi-

fying falling is that it is a quick action which usually involves a series of static

pre-actions and post-actions (e.g. standing and lying). So it is difficult to clas-

sify it through a machine learning model using a fixed sliding window method.
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5. Activity Recognition in Smart Home Environment

However, a threshold based method would solve this problem because the change

of activity readings are dramatic at the moment people fall. We evaluated this

method and the recognition rate of falling was boosted from 62% to 91%. More

details of the classification results can be found in Appendix C: Details of Activity

Recognition Results.

After evaluating the activity recognition approach on the local mobile client,

we decided to carry out more experiments to evaluate the cloud-based approach.

The cloud-based approach was first tested on two users(one female user A and one

male user B) using the synchronous design. The manually labelled data gathered

from these two users were used as the testing set to evaluate four classification

models. Each user started with the default model and was given his/her own

adapted model after the first run. The model was updated and optimized as

the experiment proceeded. After four runs for each user, the overall accuracy of

the adapted model was boosted and the average performance achieved was over

95% (see Fig. 5.14). We notice the fact that the performance of each machine

learning algorithm varies from subject to subject. The detailed results for each

classification model obtained from each run of User A are summarized in Table

5.6. It can be observed that the performance of each model in the first run is

quite poor, because the default model was actually used for classification and

it does not suit the user very well. However, after updating the adapted model

and filtering misclassified instances in the next few runs, the accuracy of most

classifiers remains consistently above 90% except for K-NN. The best accuracy

was obtained from the Neural Network classifier, while the most efficient model

was the Decision Tree. Note that the execution time for building and evaluating

the model using the Decision Tree algorithm was around 1.5s on average while

the processing time of the Neural Network linearly increases with the growth

of the instances. In this case, the Decision Tree classifier was considered as

the best classifier for building the adapted model for this user. The adapted

model represents a middle ground between the default model and the personalized

model. It got enhanced and eventually yielded 98% accuracy after four runs

through model optimization and adaptation, and it is this model that is used for

real-time activity recognition in the smartphone.

To evaluate the efficiency of the cloud-based data analysis framework, we con-
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(a) Overall recognition accuracy for the female user A

(b) Overall recognition accuracy for the male user B

Figure 5.14: Cloud-based classification model optimization for different classifiers
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5. Activity Recognition in Smart Home Environment

ducted another cloud experiment with the same dataset using the asynchronous

approach, and compared the results to the previous synchronous approach. In

this experiment, we asked User A and User B to upload their datasets simulta-

neously and measured the elapsed time for both tasks. Table 5.7 lists the actual

processing time for the two users’ best classification models and the waiting time

for both users to receive the best classification model. It is clear that the asyn-

chronous approach significantly reduced waiting time for the second user. As in

the synchronous approach, User B’s task can only be started after User A’s task

has been finished. So we conclude that the asynchronous messaging is a better

approach when dealing with concurrent tasks for the cloud-based data analysis

framework.

Table 5.7: Efficiency test: Synchronous vs Asynchronous approach
Synchronous Approach 1st Run 2nd Run 3rd Run 4th Run

User A Processing Time (ms) 85276 152932 232983 291587
User A Waiting Time (ms) 85276 152932 232983 291587
User B Processing Time (ms) 59680 101760 143565 210758
User B Waiting Time (ms) 144956 254692 376548 502345
Asynchronous Approach
User A Processing Time (ms) 88149 148095 270207 302478
User A Waiting Time (ms) 88149 148095 270207 302478
User B Processing Time (ms) 62473 108415 186713 227724
User B Waiting Time (ms) 62473 108415 186713 227724

Table 5.8: Feature ranking evaluated by two different methods
Rank Correlation Subset

1 AbsGyoMax AbsAccMax
2 AbsGyoMean AbsAccMin
3 GyoX Standard Deviation AbsAccMean
4 AbsGyo Standard Deviation AbsAcc Standard Deviation
5 GyoXMax AccXMean
6 GyoY Standard Deviation AccX Standard Deviation
7 AccY Standard Deviation AccXZeroCross
8 AccZ Standard Deviation AccYMin
9 AbsAcc Standard Deviation AccY Standard Deviation
10 GyoXMin AccZMin
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5. Activity Recognition in Smart Home Environment

To study the importance of each extracted feature for the purpose of machine

learning classification, we measure the correlation of the different features using

information gain based on the attribute ranker search method [Witten et al.,

2011], which evaluates the worth of an attribute by measuring the correlation

between it and the class. We also evaluate the worth of a subset of features using

the greedy stepwise method [Witten et al., 2011] by considering the individual

predictive ability of each feature along with the degree of redundancy between

them. Subsets of features that are highly correlated with the class while having

low intercorrelation are preferred. Table 5.8 presents the top 10 features eval-

uated on all user data using both methods. It is clear that the smartphone’s

accelerometer and gyroscope reading are ranked as the most important signals,

and standard deviations of signals are selected as the most predictive features.

5.9 Conclusion

A robust system of daily activity recognition is designed to provide activity con-

text for the CARA system using a hierarchical classification method by com-

bining rule-based reasoning and multi-classifier machine learning algorithms. An

Android smartphone and an additional motion sensor are placed on the thigh and

chest, respectively, to provide the basic sensor readings. Human daily activities

can be naturally represented through hierarchies, such as motional (dynamic)

and motionless (static). Firstly, a threshold-based mechanism was used to sepa-

rate the sensing data into two groups: static and dynamic. Static activities are

identified based on the posture of the body which is calculated from the accel-

eration, and dynamic activities are classified by using adapted machine learning

classification models. By utilizing the cloud infrastructure, the system provides

high scalability and availability for data analysis and machine learning model op-

timization. Data processing and classification algorithms are implemented in the

smartphone for real-time activity monitoring while the data analysis and evalu-

ation are offloaded to the cloud. The experimental results compare favourably

with other work using body sensors [Cook, 2012]. Moreover, the performance

of our approach shows a significant improvement in comparison to an approach

using a single smartphone [Zhang et al., 2010]. This shows a lot of promise for
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5. Activity Recognition in Smart Home Environment

using smartphones as an alternative to dedicated accelerometers as well as using

the cloud-based data analysis framework to process machine learning tasks.
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Chapter 6

Context-aware Reasoning

Framework

6.1 Introduction

To provide pervasive healthcare services, the CARA system should be able to

observe, interpret and reason about dynamic situations (both temporal and spa-

tial) in a home environment [Mileo, 2010]. This is achieved through an intelligent

reasoning component. There are several approaches to build a reasoning system

[Riesbeck and Schank, 2013]. Among them, rule-based reasoning (RBR) is one

of the most popular reasoning paradigms for implementing healthcare decision

support systems, where it can be used to store and manipulate knowledge to

interpret information in a useful way [Bassiliades et al., 2011]. A classic exam-

ple of a RBR system is a domain-specific expert system that uses rules to make

decisions or choices. For example, a RBR system can help a doctor choose the

correct diagnosis based on a number of symptoms.

Although the straightforward RBR is a competent approach, it still has some

unsatisfactory limitations. For example, RBR requires eliciting an explicit model

from a domain where domain knowledge may be hard to be structured. In addi-

tion, very specific rules may be easy to apply and are reliable, but only apply to

a narrow range of adaptation problems; whereas more abstract rules may span

a broad range of potential adaptations but not provide domain-specific guid-
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6. Context-aware Reasoning Framework

ance [Fan et al., 2011]. Case-based reasoning (CBR) [Ma, 2005] is another ap-

proach targeting problem resolution which can be used to bypass the knowledge-

acquisition bottleneck. Instead of relying solely on general knowledge of a problem

domain, CBR is able to utilize the specific knowledge of previously experienced

problems to solve a new problem by finding a similar past case, and reusing it in

the new problem solution. Moreover, CBR also is an approach to incremental,

sustained learning, since a new experience is retained each time a problem has

been solved, making it immediately available for future problems. However, it

requires an accumulation of sufficient previous cases to accomplish the reasoning

task.

In this dissertation, we introduce a personalized, flexible and extensible hy-

brid reasoning framework for the CARA system which provides a comprehensive

solution that combines context awareness, general domain knowledge, and au-

tomated intelligence for pervasive healthcare. As a part of the CARA system,

the reasoning framework plays a crucial role by interpreting sensor data within a

wide context, reasoning with all available knowledge for situation assessment, and

reacting according to the reasoning output. We studied how the incorporation of

fuzzy rule-based reasoning (FRBR) and CBR mechanisms enable the CARA sys-

tem to become more robust and adaptive to a changing environment. In theory,

case-based reasoning is capable of making an inference based on previous expe-

rience by solving new problems based on the solutions of similar past problems,

and fuzzy rule-based reasoning makes use of domain knowledge represented in

terms of fuzzy sets and rules to interpret useful information. The combination of

these two approaches is achieved by adopting the fuzzy adaptation model in the

CBR cycle to retrieve similar case and to revise the solution depending on the

circumstance.

The context-aware hybrid reasoning framework is applicable to various do-

mains. Especially in the medical field, the knowledge of experts does not only

consist of rules, but a mixture of explicit knowledge and experience. Therefore,

most medical knowledge based systems should consider two types of knowledge

[Schmidt and Gierl, 2001]:

• Objective knowledge is fact-based, measurable and observable, and is

usually defined in encyclopedias or textbooks and can be updated by ex-
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6. Context-aware Reasoning Framework

perts.

• Subjective knowledge is interpreted based on personal opinions, beliefs

and experiences, and is limited in space and time and varies from individ-

uals.

Both sorts of knowledge can clearly be identified in the CARA system, where

objective knowledge can be represented in the form of fuzzy membership functions

and fuzzy rules, and subjective knowledge is contained in cases that identify the

significant features. The limitations of objective knowledge can be solved by

incrementally updating the cases, whereas the limitations of subjective knowledge

can be overcome by adapting objective knowledge in the process of reusing cases.

Moreover, we introduce the idea of query-sensitive similarity measures in the

process of case retrieving where weights of contexts are dynamically adjusted

based on the output of the fuzzy rule-based reasoning engine.

The CARA hybrid reasoning framework provides the basis for a pervasive

healthcare solution in a smart home environment. While there is a need for the

system to be as sophisticated and adaptable as possible, there is a danger that the

system may become too complex and difficult to understand for both subject and

caregiver. Transparency and accountability are therefore important concerns that

must be addressed. These concerns are especially important as the system aims

to provide intelligent assistance for (possibly vulnerable) individuals in possibly

critical situations. The use of a structured natural language and incorporation of

fuzzy logic which supports the subject or caregiver inspecting and maybe modi-

fying the rules aims to satisfy this goal. Transparency and clarity in interpreting

the reasoning outcomes are also important, and this concern leads to more critical

analysis of the reasoning output and indicates the need for appropriate metrics

to be used. This is achieved through a provenance-based result tracing approach

which enables the user to have a better understanding of the reasoning result.

System accountability also relies on the correctness of the reasoning engine.

For the rule-based reasoning, an important goal is that the rules used in the

smart-home analysis should be consistent enough to prevent possible conflicts in

the inference. A semantic-based approach is exploited for detecting the indication

of possible conflicts between the rules to ensure the coherence of the rule-based
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reasoning. In this case, the hybrid reasoning framework incorporating both FRBR

and CBR enables CARA to be more robust and sophisticated.

6.2 Hybrid Reasoning Framework

A pervasive healthcare system is an ambient intelligent system that is able to

(i) reason about gathered data providing a context-aware interpretation of their

meaning, (ii) support understanding and decision making and (iii) provide cor-

responding healthcare services. During the first stage of developing a reason-

ing engine for the CARA system, a fuzzy logic based context model and a re-

lated context-aware reasoning approach are investigated. This reasoning engine

provides context-aware data modelling and representation as well as inference

mechanisms that support remote patient monitoring and caregiver notification.

Noteworthy about the work is the use of a fuzzy context model to deal with the

imperfections of the data, and the use of both structure and hierarchy to control

the application of rules in the context reasoning system. Although the model and

rules can be specified and modified manually by medical experts, it is difficult to

comprehensively cover all domain knowledge in terms of rules and fuzzy sets. On

the other hand, the rules are limited to a specific domain and not automatically

adaptable to the changing environment. In other words, it lacks a self-updating

function and learning abilities. To improve that, we introduce a context-aware

hybrid reasoning framework that combines FRBR and CBR. The key features

and most notable benefits of our hybrid reasoning framework include:

• Hierarchical Context Modelling

• Context-aware Case Retrieving

• Fuzzy Validated Case Adaptation

• Provenance-based Result Tracing

• Semantic-based Rule Validation

The high-level interactions in the hybrid reasoning engine are presented in

Figure 6.1. Raw data collected from sensors are processed and combined with
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Context-aware Hybrid Reasoning Framework

Context Data Modelling

Sensor Data
Context 

Infomation

Interpret

Fuzzy-based Reasoning

Fuzzy Sets Fuzzy Output
Inference

Case-based Reasoning

Case Base

Retrieve

Revise

New Case Similar Cases

Solved Case

Similarity Weighted Vote

Revised Case

Reuse
Retrain

Dynamic Weights

Rule-based Adaption

XOR

Fuzzy Rules

Figure 6.1: The structure of the context-aware hybrid reasoning framework

context knowledge through context modelling, producing contexts for the rea-

soning functions. After that, the reasoning system starts running a standard

CBR cycle (Retrieve, Reuse, Revise and Retain) to perform anomaly detection

and home automation. Simultaneously, the FRBR component loads fuzzy rules,

which have been validated using a semantic-based approach, from the inference

rule database and applies these rules to generate higher level contexts (e.g. med-

ical conditions, and accident events) and further to identify the current situa-

tion of the patient (normal, abnormal or emergency). Unlike the standard CBR

approach, we integrate the fuzzy rule-based reasoning mechanism into both the

process of case retrieving and case adaptation. Specifically, the result of the fuzzy

reasoning output is used to dynamically adjust weights of features or groups for

case retrieving, and it also affects the adaptation of the retrieved solution to the

new case. The intuition behind the heuristic weighting of features in the CBR is

that the importance of features is indicated by their presence in any fuzzy rule rel-
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evant to the situation. In this case, the solution of a new case is revised according

to solutions of the retrieved similar cases and the fuzzy reasoning outputs. The

new case features and revised case solution are stored for enhancing the case base

and subsequent additional analysis. Finally, if the detected situation is abnor-

mal or an emergency, a notification or alarm is automatically sent to the remote

monitoring server and an emergency service call can be triggered. The details of

designing context models for both FRBR and CBR approaches, the principle of

each reasoning mechanism and the integration of the two reasoning engines are

discussed in the following sections.

6.3 Context Modelling

Context is any information that can be used to characterize the situation of an

entity. In a context-aware system, the key feature is using context to provide

relevant information and intelligent services to the user, where relevance depends

on the particular task of the user. The study of [Mileo, 2010] indicates that

there are certain entities in contexts that, in practice, are more important than

others for home monitoring. These are location, identity, activity and time. We

divide the basic context required in a pervasive healthcare environment into the

following entities:

• Person entity to model the person, their clinical profile and movement.

• Physiology entity to model the vital signs of a person.

• Area entity to model rooms and surroundings in the home environment.

• Object entity to model objects or resources the person can interact with.

These entities can be observed and measured by pervasive sensing through

the wireless sensor network (WSN) deployed in a smart home environment and

the body area network (BAN) worn by a patient. However, in a real world de-

ployment, it is sometimes difficult to obtain an accurate and well-defined context

which could be classified as ’unambiguous’ since the interpretation of sensed data

as context is in general imperfect and incomplete. We contend that the hybrid
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reasoning framework we propose has the potential to minimize this problem. To

deal with vagueness and uncertainty of the context, the FRBR method introduces

an infinite number of truth-values for constructing fuzzy sets along a spectrum

between perfect truth and perfect falsity (e.g. perfect truth may be represented

by ”1”, and perfect falsity by ”0”), and also allows us to represent knowledge in

linguistic terms. On the other hand, the CBR approach addresses problems of in-

complete data using feature weights and global similarity metrics. The objective

of our context modelling approach is to provide an extensible and flexible infras-

tructure for the delivery and management of the information around a patient in

the home environment.

6.3.1 Fuzzy Context Model

The main problem that we consider for context modelling is the following: given

the current raw data, how can we structure the context, (i.e. the current values

of relevant context parameters), and deal with data coming from multiple sources

where part of the data may be erroneous or missing. For the FRBR approach,

we adopt the fuzzy set to represent the relevant variables and to build low level

and high level context models. An overview of the fuzzy context model is shown

in Figure 6.2 where we structure the low level contexts into Personal Context

and Environmental Context, and generate the high level contexts consisting of

Activity Event and Medical Condition. The final reasoning output is inferred

from the high level contexts which represent the current situation of a person.

These are the contexts required in a ubiquitous context-aware environment.

All pieces of information gathered by sensors can be indexed as the attributes

of context entities. In this dissertation, we map these attributes into discrete

fuzzy sets in the FRBR engine. The principle of building fuzzy sets is to de-

sign appropriate membership functions. A membership function represents the

magnitude of participation of each input. It defines functional overlap between

inputs, and ultimately determines the output response [Kosko, 1992]. Some of

the attributes associated with entities in our context model and their membership

functions are listed in Table 6.1. These fuzzy sets can be used for the high level

context interpretation and further for reasoning inference.
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Figure 6.2: The fuzzy context model

Table 6.1: Examples of fuzzy sets representing Person and Area entities
Fuzzy Set Attributes Description
Age {young, middle-aged, old} Age of the person
Gender {male, female} Gender of the person
Time {morning...late night} Time of the day
Medical Condition {hypertension...diabetes} State of health
TV {on, off} Status of TV
Window {open, close} Status of windows
Temperature {cold, warm, hot} Room temperature
Light {dark, regular, bright} Brightness
Sound {mute, regular, noisy} Noise level
Humidity {dry, normal, wet} Humidity level
Location {bedroom...living room} Current location

6.3.2 Contexts in Case-based Reasoning

Research has proven that case based reasoning is a reliable approach to provide

smart home solutions [Nguyen et al., 2009]. In a smart home scenario, contexts

include the home environment and physical information about the subject that

can be sensed. Thus, the context supplies the dynamic part of the environment

and physiological information that is used to identify the current situation. These
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contexts can represent the location where the situation is occurring, the activity

of a person is performing, and the time of a day, etc.

Figure 6.3: Grouped contexts for CBR

Figure 6.3 presents the structured contexts that are used in our CBR engine.

In CBR, a case is the basic unit of data representation and processing. It usually

consists two main parts: the Features of the situation, which consists of the

perceived context; and the Solution, which consists of the goal to be achieved

and the corresponding task to be accomplished. Note that, in the prototype of

the CARA system, an interpreted solution involves both anomaly detection and

home automation.

A notable improvement of our context model for CBR is the introduction of

grouped features. The hierarchical context model was populated through obser-

vations done in the process of system evaluation. It turns out that not all the

context is relevant to a specific situation. For example, if hypertension is de-

tected during the night when the subject is watching TV, it certainly does not

matter whether the lights are on or off or the humidity of the room is high or

low. In order to improve the accuracy of case retrieval, we use different context

groups and their group similarities to achieve the goals of the reasoning task.

We divide relevant features into three groups: Activity Features which consists

of the contexts used for recognizing user daily activities; Ambient Features which

contains two sub-groups of contexts representing the home environment and the

usage of home appliances; Physiology Features which includes physical readings

obtained from wearable sensors. Instead of using a local similarity value of each

individual feature for case retrieving, we calculate the group similarity based on
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local similarities and dynamic weights. This can boost the performance of our

reasoning engine in dealing with real world problems.

6.4 Fuzzy Rule-based Reasoning (FRBR)

The declarative logical framework we use for knowledge representation and RBR

in the CARA system is that of fuzzy logic, based on the fuzzy set theory proposed

by Lotfi Zadeh [Zadeh, 1965]. The way that people think is inherently fuzzy. The

way that we perceive the world is continually changing and cannot always be

defined in true or false statements. Built on this theory, fuzzy logic is useful

when working with vague, ambiguous, imprecise, noisy or missing information.

Because of similar characteristics of sensor data, we adopt fuzzy logic to build a

rule-based reasoning engine which represents domain knowledge in the system.

A fuzzy reasoning system consists of three main parts: fuzzy sets, rules, and

an inference engine. These components and the general architecture is shown in

Figure 6.4.

Fuzzifier

Input
Sensor Data

ECG

HR

TEMP

ACT

Inference

AND

AND

AND

OR

AND

AND

ACT_SLP

MED_HYP

RULE 1

RULE n

Defuzzifier

Fuzzy Output

Fuzzy Rules
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Figure 6.4: A generalized fuzzy logic system

The process of fuzzy reasoning can be broken down into three main steps

[Bělohlávek and Klir, 2011]. The first of these is the fuzzification, this uses

defined membership functions to process the inputs and to fuzzify them. These
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fuzzified inputs are then used in the second part, the rule-based inference system.

This system uses previously defined linguistic rules to generate a fuzzy output.

The fuzzy output is then defuzzified in the final process: defuzzification. This

process will provide a real number as an output.
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Figure 6.5: The workflow of the FRBR

Figure 6.5 presents the workflow of the CARA fuzzy reasoning engine. Low

level contexts are obtained from raw data collected from sensors and are mapped

into fuzzy sets according to predefined membership functions. After that, fuzzy

rules loaded from the inference rule database are applied to fuzzy input sets to

generate high level contexts. Finally, the rule engine identifies the current situ-

ation of the patient (normal, abnormal or emergency) based on the combination

of high level contexts. The fuzzy output is stored for provenance and forwarded

to assist the CBR component for making final decisions.

Fuzzy relations among the fuzzy sets are represented in terms of fuzzy rules

in the reasoning process. These rules are stated as linguistic rules that relate

different fuzzy sets and numbers. The general form of these rules are: ”if x is

A then y is B,” where x and y are fuzzy numbers in the fuzzy sets A and B

respectively. These fuzzy sets are defined by membership functions. The rules
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use the input membership values as weighting factors to determine their influence

on the fuzzy output sets of the final output conclusion. Inputs are combined

logically using the logical operators to produce output response values for all

expected inputs. The final conclusion is then combined into a logical sum for each

membership function. Once the functions are inferred, scaled, and combined, they

are defuzzified into a crisp value that best represents, and consistently represents

the fuzzy set. The output can also be used as the confidence value, which indicates

the strength of each output membership function [Zadeh, 1965]. An abstract view

of the relations of all the fuzzy sets that implicate fuzzy rules is shown in Figure

6.6. As we can see, low level entities are gathered to generate high level contexts

which are then used to infer a final decision.
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Figure 6.6: The abstract view of fuzzy relations

The hybrid architecture analyses the context information (derived from sen-

sors and other information sources) using both CBR and FRBR. FRBR supple-

ments CBR with expert insight and the ability to disambiguate between cases

using domain knowledge. In line with the goal of transparency, rules are de-

scribed, as much as possible, by means of linguistic terms using user-friendly
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Table 6.2: Sample rules for generating high level contexts

Medical Context Generating Rules

IF(Age is Elderly or Middle Age) and Systolic Blood Pressure is Very High and
Diastolic Blood Pressure is Very High THEN Medical is Pre-Hypertension
IF Systolic Blood Pressure is Low and Diastolic Blood Pressure is Low THEN
Medical is Hypotension

Event Context Generating Rules

IF On Bed and In Bedroom and Low Activity Level and Light is Dark and Sound
is Mute THEN Activity is Sleeping
IF TV On and In Living Room and (Low Activity Level or Normal Activity
Level) and (Sound is Regular or Loud) THEN Activity is Watching TV

Table 6.3: Sample rules for anomaly detection in the smart home environment

Medical Context Associated Rules

IF SystolicBloodPressure is VeryHigh and DynamicBloodPressure is VeryHigh
THEN Situation is Emergency
IF Activity is not Exercising and (HeartRate is VeryHigh or RespirationRate is
VeryHigh) THEN Situation is Alert

Event Context Associated Rules

IF Activity is Sleeping and (TV is ON or Cooker is ON or Lights is ON) THEN
Situation is Warning
IF (Activity is Eating or Activity is Cooking or Activity is Bathing or Activity
is Exercising) and Time is Night and Lights is OFF THEN Situation is Alert

range-type values derived from expert knowledge. The FRBR approach allows

the system to make use of imperfect data (e.g. lacks precision, is noisy or am-

biguous) and can apply rules to reach a conclusion. In fact, it tries to model

human-like decision making based on contextual information but does so in a

more explicit way, mechanically and much faster. An example of generating high

level context rules is given in Table 6.2, and Table 6.3 demonstrates some situ-

ation assessment rules associated with high level contexts. More detailed fuzzy

rules can be found in Appendix D: Examples of Fuzzy Rules for Inference. Figure

6.7 presents the user interface for fuzzy rules and membership functions manage-

ment in the CARA system. One notable aspect of our fuzzy reasoning engine is
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that all the hierarchical fuzzy rules and membership functions can be specified

by a medical expert or a particular caregiver in linguistic terms, and the system

will automatically translate them into computable objects. Thus a non-computer

expert, can add the domain knowledge to our reasoning system. Furthermore,

such rules and membership functions can also be modified by a patient under

supervision.

Figure 6.7: GUI for fuzzy sets and rules management

6.4.1 Semantic-based Rule Conflict Detection

Desired accountability of the FRBR engine largely depends on the coherence of

the fuzzy rules. However, because the rules are configured manually by experts,

conflicts may be introduced unintentionally into the rule set when a new rule is

defined. Conflicts among these rules may result in an unexpected result from the

reasoning engine. For example, a simple scenario of conflict is:

Rule 1: IF Time is Night and Activity is not Sleeping THEN Action is

Turn On Lights
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Rule 2: IF Time is Night and Activity is Watching TV THEN Action is

Turn Off Lights

For a specific fuzzy input, multiple rules may be eligible to be triggered. Assume

that a person is watching TV during the night, the second rule is in conflict with

the first one, because the conditional parts are matched while the action parts are

non-compatible. There are many reasons why this kind of collision exists. The

most reasonable one is that the rule designer does not have a clear and complete

understanding of the previously defined rules when adding new rules to the rule

base. This situation actually happens quite often when the number of rules in the

rule base is increasing. So it is necessary to detect and remove incompatible rules

to prevent the above scenario from happening. If conflicts among rules exist, the

rule designer can amend the conflicting rule to prevent an undesired action taking

place.

In this dissertation, a semantic-based logical mechanism is used for detecting

conflict and redundancy among fuzzy rules; this is the approach that addresses

the consistency issue. One of the existing conflict resolution strategies deals with

rule conflicts dynamically during the run-time by choosing which one of the rules

should be fired if more than one rule match working memory contents [Kuchar

and Yang, 2000]. However, they only consider how the rules are prioritized but

not how the rules are designed at the first place. As a consequence, it is sometimes

difficult to maintain the rule base since more conflicting rules will be added into

the rule base. This could also have impact on the performance of the rule engine.

To reduce the redundancy of our rule base as well as to improve the run-time

efficiency of our rule engine, we design and implement a static approach that

checks for conflict and inconsistency whenever a new rule is defined and gives

feedback to the user whether the new rule is eligible to be added, so that there

are never any incompatible rules in the fuzzy rule base.

Conflict occurs when the objectives of two or more rules can not be simulta-

neously satisfied. The definition of conflicting rules is as follows:

Definition 1. Conflicting Rules

Given a rule base which has N fuzzy rules:
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Ri : if(Ci)then(Ai) 1 <= i <= N

We say that two pieces of rules Ri and Rj are conflict if Ai conflicts with

Aj and Ci ∧ Cj is satisfiable.

Based on this definition, we distinguish two types of conflict between rules:

• Possible Condition Conflict: we suppose Ai conflicts with Aj, the con-

junction of Ci and Cj is satisfiable in some ways that Ai and Aj can both

be fired.

• Probable Condition Conflict: we suppose Ai conflicts with Aj, Ci and

Cj are logically equivalent, thus Ai and Aj are always simultaneously fired.

We also identify implausible rules that are logically correct in design but are

worth to be reviewed by rule designer in the real-world application.

• Implausible Rule: Consider the following two rules:

R1 : ifCithenAi R2 : ifCjthenAi

where Cj = ¬Ci. Consequently, either Ci or Cj will be true, Ai is always

fired. Thus, the rules are flagged to the user for review.

When detecting any possible conflict in the rule design phase, the system sends a

notification with all possible conflicting rules to the user and lets the user decide

whether to add the new rule into the rule base or not. As for the probable conflict

and anomalies, the system is supposed to alert the user and prevent the new rule

from being added to the rule base since there’s a definite error that will cause

troubles. Figure 6.8 illustrates the flow chart of the conflict detection mechanism.

The algorithm we proposed to solve the conflict detection problem involves

three steps. The first step is to normalize the fuzzy rules. The second step is

to check the compatibility between the action parts of the new rule and existing

rules, and the third step is to check for different types of conflicts between rules.

The principle of the rule normalization is to transform the conditional part of

a rule into disjunctive normal form (DNF) [Hazewinkel, 2001] and its negation

form (NF) (e.g. Given a conditional formula A ∧ B, its NF is ¬(A ∧ B)).
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Figure 6.8: The workflow of the semantic-based conflicts detection approach

In this way, the condition part of the rule can be represented by a set of terms

on which one or more actions are applied. The enforcement of another action

on a sub-set of this set can provoke a conflict (the compatibility of action parts

must be checked first). Based on Definition 2, any propositional formula can be
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expressed in DNF. Similarly, any propositional formula can be transformed into

its NF as well.

Respecting characteristics of fuzzy rules that rules consist of linguistic terms

which indicate the membership function of fuzzy sets, functionally complete log-

ical connectives: conjunction, disjunction and negation (∧,∨,¬) can be mapped

into linguistic terms: AND,OR,NOT respectively.

Definition 2. DNF Transformation

Given an arbitrary conditional expression C, we can transform it into a

disjunctive normal form:

C = P1 ∨ P2 ∨ ... ∨ Pn

Where P1, P2, ..., Pn are either:

• Literals which represent the membership function of fuzzy sets

• Statements of the form Q1 ∧Q2 ∧ ... ∧Qn

Use law of Conjunction Distributes over Disjunction to convert any Qi =

(R1 ∨R2 ∨ ... ∨Rn), until all the Q1, Q2, ..., Qn are literals.

Every conjunctive formQ1, Q2, ..., Qn is referred as a clause in the algorithm.

However, the rule-based reasoning system is designed based on a Closed World

Assumption [Duan and Cruz, 2011]. As a result, any other circumstances firing

the action part of the rule besides the circumstances considered in the system

are out of scope of the system. The system only considers the equivalence of the

terms that has been designed in the set. The underlying model of the rule-based

reasoning engine is designed based on fuzzy logic, which is a superset of conven-

tional(Boolean) logic that has been extended to handle the concept of partial

truth values between ”completely true” and ”completely false”. The importance

of fuzzy logic derives from the fact that most modes of human reasoning and

especially common sense reasoning are approximate rather than exact. It may

be considered that apparent conflicts among fuzzy rules would be handled by the

fuzzy logic, since every term is a matter of degree in fuzzy sets. However, in fact,
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conflicting rules will result in a lower membership degree of the fuzzy output set

which can lead to undesirable confidence value. Besides, not all natural phenom-

ena considered in our reasoning system are fuzzy. Some of the terms are intended

to have discrete values (e.g. ON/OFF,OPEN/CLOSE, or Temperature = HIGH-

/MEDIUM/LOW). As a result, it is necessary to eliminate possible conflicts in

the process of designing fuzzy rules.

In order to apply our conflict detection algorithm to all rules with appar-

ent conflicts, we assume every term in the set is exclusive, and consequently,

each specific clause of a rule is non-compatible with each other. It is inappro-

priate to simply convert a term to its logic negation form. For example, in a

logical formula, the negation form of Temperature is not High is presented

as: ¬(Temperature is High). While according to the terms of the set Tempera-

ture{High, Medium, Low }, the clause Temperature is not High is the equivalent

of the clause Temperature is Medium or Temperature is Low. It may cause a

conflict between rules that contain these clauses. In this case, the negation form

of the clause should be presented as:

Temperature is not High = Temperature is Low ∨ Temperature is Medium

Hence we can eliminate a NOT term by converting negative term into a positive

term according to the corresponding set. The final sets of DNF and NF terms

are refined using the Absorption Law:

P ∨ (P ∧Q) = P

This eliminates the redundant clauses produced during the transformation. An

example of rule normalization is listed in Table 6.4:

Since the final output result of fuzzy rule-based reasoning is used for anomaly

detection and home automation, the action part of fuzzy rules is built upon either

the set of Situation {Warning, Alert, Emergency} or the set of Automation {Turn

on TV, Turn off Cooker, Open Window, ...}, or the combination of both. To

distinguish the conflict between actions of two fuzzy rules, we create a conflict

table (see Table 6.5) representing the compatibility of actions so that the conflict

between actions can be checked based on this table.

In the second step of the algorithm, we traverse the rule base to check the

action of the existing rule against the action of the new rule. All the rules that
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Table 6.4: An example of rule normalization process

Original Rule:
IF (Activity is not Sleeping or Cooker is ON) and Time is Night THEN Situation
is Alert and Automation is Turn OFF Cooker

DNF Terms:
(Activity is not Sleeping and Time is Night) or (Cooker is ON and Time is Night)

NF Terms:
(Activity is Sleeping or Time is not Night) and (Cooker is OFF or Time is not
Night)

Finalized DNF Terms:
(Activity is Resting and Time is Night) or (Activity is Watching TV and Time
is Night) or (Activity is Bathing and Time is Night) or (Activity is Cooking and
Time is Night) or (Activity is ... and Time is Night) or (Cooker is ON nd Time
is Night)

Finalized NF Terms:
(Activity is Sleeping and Cooker is OFF) or (Time is Morning) or (Time is Af-
ternoon) or (Time is Evening)

Table 6.5: The compatibility of the action of rules (N: Non-compatible)

Action Pair
Situation Automation
S1 S2 S3 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

S1:Warning N N
S2:Alert N N
S3:Emergency N N
A1:TV ON N
A2:TV OFF N
A3:Cooker ON N
A4:Cooker OFF N
A5:Heater ON N
A6:Heater OFF N
A7:Window Open N
A8:Window Close N
A9:Light ON N
A10:Light OFF N

have conflicting actions or the same action as the new rule are fetched and are

going to be checked in the next step of the algorithm to detect the conflict between
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rules. There can be multiple terms in the action part of each rule. We call an

action part that has multiple terms as a composite-action. The conflict between

the single action of any two composite-actions may result in the conflict between

these two composite-actions. Definition 3 gives a formal description of the conflict

between two composite-actions. Two composite-actions are conflicting if there is

at least one pair of actions in conflict.

Definition 3. Conflict Composite-actions

For two rules Ri and Rj:

Ri : if(Ci)then(Ai1;Ai2; ...;Ain)

Rj : if(Cj)then(Aj1;Ai2; ...;Ajm)

Their action parts conflict if and only if there is at least one pair of actions

(Aip, Ajq): Aip conflicts with Ajq (1 ≤ p ≤ n, 1 ≤ q ≤ m).

The last step is to identify different types of conflicts based on the output

of the last two steps and to notify the rule designer with the conflict detection

result. According to Definition 1, two rules are non-compatible if they estab-

lish the action and its opposite. Further we define the two types of conflicts:

{Possible Conflict, Probable Conflict} and implausible rules in our conflict de-

tection algorithm. Conflict detection is achieved by checking the intersection of

the set of clauses in the DNF/NF between the new rule and existing rules. The

implementation of this mechanism is described in Algorithm 3.

Considering the characteristics of fuzzy logic [Zadeh, 1965], a single input data

could contribute to multiple fuzzy terms. In this case, multiple rules could be

triggered during the inference process. For instance, let’s consider the following

two simple fuzzy rules:

Rule 1: IF Temperature is Low THEN Turn On Heater

Rule 2: IF Temperature is Medium THEN Turn Off Heater

Assuming the fuzzy membership function of Temperature set is designed to be:

High[30 − 50],Medium[15 − 35], Low[0 − 20], an input value of temperature:
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Possible Conflict and Probable Conflict Detection:
input : Set of clauses of the new rule Ndnf in DNF, Nnf in NF

Collection of existing rules Ce with conflict action
output: Collection of possible conflicting rules Ch

Collection of probable conflicting rules Cc

begin
foreach existing rule e in Ce do

Normalize condition expression of e into set of clauses Ednf in DNF;
if Ndnf ∩ Ednf 6= � then

Cc.add(e);
Notify user for probable conflict;

else if Nnf 6= Ednf then
Ch.add(e);
Notify user for possible conflict;

else
No conflict detected;
continue;

end

end
return Cc,Ch;

end

Implausible Rules Detection:
input : Set of clauses of the new rule Nnf in NF

Collection of existing rules Ce with same action
output: Collection of implausible rules Ci

begin
foreach existing rule e in Ce do

Normalize condition expression of e into set of clauses Ednf in DNF;
if Nnf = Ednf then

Ci.add(e);
Notify user for the anomaly;

else
No anomaly detected;
continue;

end

end
return Ci;

end

Algorithm 3: Detecting different types of conflicts and anomalies
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18 belongs to both Medium and Low sets. As a result, both rule 1 and rule 2

are fired by the fuzzy inference engine. However, only one action is definitized

as the final output according to the degree of membership values of the fuzzy

input and output sets. The rules use the input membership values as weighting

factors to determine their influence on the fuzzy output sets of the final output

conclusion. Since the mechanism we designed is used to check conflict among

rules semantically, the characteristics of fuzzy logic is not a concern for conflict

detection in our case.

6.5 Case-based Reasoning (CBR)

CBR is a paradigm for combining problem-solving and learning that has become

one of the most successful applied methods of artificial intelligence. CBR over-

comes the difficulty of knowledge acquisition, can reason over domains that have

not been fully understood or modelled and learn over time. The basic principle

of CBR is to retrieve former, already solved problems similar to the current one

and to attempt to modify those solutions to fit the current problem. The under-

lying idea is the assumption that similar problems have similar solutions. CBR

has several advantages over traditional knowledge-based systems: it reduces the

knowledge acquisition effort, requires less maintenance effort, improves over time

and adapts to changes in the environment [Riesbeck and Schank, 2013]. These

characteristics make it an ideal approach for the CARA system to detect anoma-

lies or diagnose an illness from observed attributes. Figure 6.9 shows the standard

CBR cycle described by [Aamodt, 1994].

Generally, a CBR application can be described by a cycle composed of the

following four processes:

1. RETRIEVE the most similar case or cases.

2. REUSE the information and knowledge in that case to solve the problem.

3. REVISE the retrieved solution.

4. RETAIN the parts of this experience that is useful for future problem solv-

ing.
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Figure 6.9: The standard CBR cycle

A new case represents a description of a problem and also defines the query. It

is used to retrieve the most similar cases from the collection of previous cases.

Similarity measure algorithms are applied to the case retrieval task. The simi-

larity measures involved in case retrieving depend very much on the application

domain. One commonly used method is the nearest neighbour retrieval [Ram and

Wiratunga, 2011]. The case that has the maximum similarity value is retrieved

as the most possible solution to the query case. In simple terms, a case that

matches the query case on n number of features, will be retrieved rather than a

case which matches on k number of features where k < n. Some features that

are considered more important in a problem solving situation may have their

importance denoted by weighting these features more heavily in the matching

algorithm.

In terms of case adaptation (reuse and revision), if there are no important

differences between a current and a similar case, a simple solution transfer is suf-

ficient. Sometimes only a few substitutions are required, but in other situations,

the adaptation is a very complicated process. There are no general methods for

the modification of the retrieved cases to fit the actual design problem [Koiranen
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et al., 1998]. Our approach is to integrate a fuzzy rule based reasoning mechanism

into the process of case adaptation.

6.5.1 Query Sensitive Retrieving

The first and also the most important step in the CBR cycle is the retrieval of

previous cases that can be used to solve the current problem. Improving retrieval

performance through more effective algorithms for similarity assessment has been

the focus of a considerable amount of research. As one of the most popular

algorithms for similarity measure, the k nearest neighbour (K-NN) method has

been widely explored and evaluated in case retrieving. However, the normal K-NN

algorithm for case retrieving has limitations as pointed out in [Aggarwal, 2001].

Finding the nearest neighbours in a high-dimensional space raises the following

issues:

1. Lack of contrast: Two high-dimensional objects are unlikely to be very

similar in all the dimensions.

2. Statistical sensitivity: The data points are rarely uniformly distributed,

and for a pair of cases, there may be only relatively few features that are

statistically significant for comparing those objects.

In our reasoning framework, a case query usually contains the following fea-

tures listed in Table 6.6. The high-dimensional features of each query are unlikely

to be uniformly similar and it is certain in some cases that some of the features are

more important than the rest. To address these problems, we construct, together

with context awareness, a query sensitive mechanism for the similarity measure.

The term Query Sensitive means that the similarity measure changes depending

on the current query object. In particular, the weights of features used for the

similarity measure are automatically adjusted for each query. Specifically, we ap-

ply fuzzy rules to the input query and use the crisp value of the fuzzy output to

dynamically adjust weights. We expect this method to be more accurate than the

simple K-NN method for case retrieving. The query sensitive similarity measure
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Table 6.6: Features of the case involved in a query

Features Type

Activity Enum Activity
Duration Integer
Location Enum Location
Time Date
Day Integer
Temperature Double
Light Double
Sound Double
Humidity Double
TV Boolean
Heater Boolean
Windows Boolean
Lights Boolean
Cooker Boolean
Heart Rate Integer
Respiration Rate Integer
Systolic Blood Pressure Integer
Diastolic Blood Pressure Integer

function employed by our reasoning framework is shown in Equation 6.1.

Simg(Q,P ) =

n∑
k=1

Wk ∗ Siml(Qk, Pk)

n∑
k=1

Wk

(6.1)

In this formula, Simg (global similarity) of Q (query) and P (past case) is

calculated based on Siml (local similarity) of Qk (feature k of the query) and Pk

(feature k of the past case) and the dynamic weight of the feature Wk. If k is the

feature of a query, we use the term weighted to denote any function mapping Wk

(weight of k) to the binary set {0, 1}. We can readily define this function using

fuzzy logic. Given a query Q, and a block of fuzzy rules Frules, we can define a
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weighted function WQ,Frules
→ {0, 1}as follows:

WQ,Frules
(k) =


MAXf(k, r) ∀r, r ∈ Frules,

r is triggered during inference involving k

Default otherwise

(6.2)

Where f(k, r) is the degree of fuzzy output of rule r involving feature k. The

weight of feature k is determined by the maximum value of f(k, r) if one or

multiple rules involving feature k are fired by the inference engine, otherwise, it

is set to the default value of 0.1 if no rule involving feature k is fired. For instance,

assuming a fuzzy rule, ”if (Activity is Sleeping or Activity is Resting or Activity

is Watching TV or Activity is Toileting) and (Systolic Blood Pressure is VeryHigh

or Diastolic Blood Pressure is VeryHigh) then Situation is Alert” is evaluated and

triggered during the reasoning process, and the crisp value of the output fuzzy

membership function Situation {Alert} is 0.65. The weight of Systolic Blood

Pressure used for the similar case retrieval is set to 0.65. As the result, the final

weight of each feature of the query is dynamically adjusted according to the fuzzy

output.

6.5.2 Similarity Weighted Voting

K most similar cases are retrieved after the query sensitive retrieving algorithm

is applied to similarity measurement. In our system, for anomaly detection, the

solutions of retrieved cases are supposed to be classified into Normal, Warning,

Alert, Emergency groups. Normally, the possible solution of the given query can

be predicted from the most similar case. However, under certain circumstance,

the prediction maybe vary from the solution of the most similar case, but rather

depends on the majority solutions of the retrieved cases. For instance, for a new

case query, 5 most similar cases are retrieved for case reuse. Among them, the

solution of the top one, which owns the similarity value of 0.87, is Normal. The

solutions of the rest of cases are Warning, and the similarity values are 0.83, 0.79,

0.74, 0.56 respectively. In this case, we consider the predicted solution is most

likely to be Warning. To determine the possible situation of the query, a similarity

weighted voting mechanism is used in the voting decision during prediction. The
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principle of similarity weighted voting method is to use the similarity value of

each retrieved case as the weight to vote for the most reasonable solution. In

other word, every nearest neighbour has a different influence on the prediction

according to its similarity to the query. It is achieved in the following steps (the

details of the similarity weighted voting algorithm are shown is Algorithm 4).

1. Classify K retrieval result into different groups according to the solution label.

2. Calculate total similarity of all retrieved cases.

3. Get the sum of similarity of each group.

4. Calculate the average of similarity of each group.

5. Use the group similarity to vote for prediction, the highest vote of the solution

group is assigned as the predicted solution.

6. Calculate the confidence value of the predicted result according to the average

similarity and total similarity.

To distinguish the predicted result from past cases, we apply a threshold to the

confidence value of the predicted solution, which is used as a controller to balance

the detection rate and the false alarm rate of the rule engine. The threshold ε

can be set by the user. If a user chooses ε = 0, the rule engine takes into

account all possible solutions in past casesP , and the determination of the solution

for a unique query Q in the given P relies, in this case, on the voting result.

Otherwise, the threshold ε can be considered as a level of decidability: if there

exists no case C,C ∈ P such that Conf(Q,C) > ε, then there is no already-solved

problem sufficiently similar to Q and no solution can be proposed. In this case, we

introduce the fuzzy adaptation model to deal with the uncertainty. A core idea

of our reasoning framework is that domain knowledge, which is represented by

fuzzy rules and fuzzy sets, is applied to both case retrieving and case adaptation.

6.5.3 Fuzzy Adaptation Model

As we discussed before, the CBR mechanism is capable of making analogies based

on previous experience. However, to perform its reasoning functions, it requires

sufficient solved cases in a case base as the reasoning resources. It can only

work with a supervised learning scheme where previous cases have already been

recorded and labelled with solutions. Labelling solutions can be a tedious and
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input : Collection of cases from Retrieval Result
output: Predicted Solution

begin
votes←− New HashMap;
counts←− New HashMap;
foreach case c of the retrieval result do

solution = getSolution(c);
similarity = getSimilarity(c);
totalSim += similarity;
if votes.containsKey(solution) then

votes.put(solution, votes.get(solution) + similarity);
counts.put(solution, counts.get(solution) + 1);

else
votes.put(solution, similarity);
counts.put(solution, 1);

end
highestV oteSoFar ←− 0.0;
predictedSolution←− NULL;
foreach entity e of votes do

if e.getV alue() > highestV oteSoFar then
highestVoteSoFar = e.getValue();
predictedSolution = e.getKey();

end
averageSim = highestVoteSoFar / counts;
pow = highestVoteSoFar / totalSim;
confidence = Math.pow(averageSim, pow);
predictedSolution.setConfidence(confidence);

end

end

end

Algorithm 4: Similarity weighted voting for prediction
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time consuming task. Also, the previous cases need to be comprehensive enough

for retrieving, otherwise the reasoning task could still fail in not finding any

similar case in the case base.

In this dissertation, a fully unsupervised learning mechanism is developed

by adopting an adaptation technique for CBR derived from fuzzy logic based

intelligent reasoning and modelling. As a result, the solution of a new case is

determined or revised based on the fuzzy reasoning output when there are not

enough solved cases in the case base. This can enhance CBR with the adaptation

ability of domain knowledge, in which problems and solutions are, in many cases,

described by means of the fuzzy sets and rules. The steps of constructing the

fuzzy adaptation model assisting CBR are:

1. Configure the fuzzy reasoning engine by setting up fuzzy sets and rules.

2. Traverse the case base to find K-NN similar cases.

3. Make a prediction based on weighted median of similarity.

4. Apply the fuzzy adaptation if the confidence of the prediction is low.

5. Use the fuzzy output to revise the solution of the present case.

Step 1 is performed only once to configure the fuzzy membership function and

register fuzzy rules. Steps 2-4 are performed every time a CBR cycle starts. Note

the fuzzy reasoning mechanism is applied, if and only if the CBR method can not

find a similar solution for the present query. In other words, the confidence value

of retrieving the result is lower than the confidence threshold which is set to 90%

in our case. The result of the fuzzy output is then used as an alternative solution

making use of domain knowledge to alleviate the lack of experience. However,

the rules designed by the user are unlikely to cover all circumstances. For a new

case where no rule is applicable and no similar case is existed in case base, we

label the solution as unknown and provide an option for the user to manually

label the case solution as an alternative approach of case revision.

6.5.4 Case Provenance

Provenance is an annotation to explain how a particular result has been derived;

such provenance information can be used to better identify the process that was

used to reach a particular conclusion [Szomszor and Moreau, 2003]. The benefit
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of data provenance is widespread since it provides a proof of the derived data and

a record of its history, which allows people to view the derivation data and make

observations about its quality and reliability.

In CBR, memory of prior problems and solutions plays a crucial role, where

new solutions are generated by retrieving and adapting prior solutions, and are

added to the case base for future use. However, standard CBR systems do not

remember the provenance of the cases in their case base [Leake and Whitehead,

2007]. Noteworthy, a provenance recording module is integrated into our reason-

ing framework, so that users can have a deeper understanding of how a particular

solution was derived from previous cases. This also supports the goal of trans-

parency.

In this dissertation, we investigate the use of a simple provenance-based

method for tracing the source of the reasoning output. Considering the fol-

lowing requirements for provenance collection that were proposed by [Frew and

Bose, 2002], we implemented a basic case provenance module for the reasoning

framework:

• A standard provenance representation is required so that data lineage can

be communicated reliably between systems (currently there is no standard

lineage format).

• Automated provenance recording is essential since humans are unlikely to

record all the necessary information manually.

• Unobtrusive information collecting is desirable so that current working prac-

tices are not disrupted.

Generally, the provenance component works seamlessly with the reasoning

engine. Whenever the reasoning engine derives a new case in its case base, its

provenance trace, including the cases from which it was derived and the adapta-

tion rules used to derive it, is automatically recorded and stored along with the

case itself. More specifically, the most similar k cases (e.g. for k-NN with k > 1)

retrieved from the case base are kept as the provenance for the new case, and if

the fuzzy adaptation is involved in producing the new case, any fuzzy rule that

is triggered by the case adaptation is added to the provenance. Case provenance
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data are stored in a customized XML format for data review and further for shar-

ing with other components or systems. As shown in Code 6.1, each new case is

assigned a case ID and the creation time. Its provenance consists of similar cases

with their similarity value and adaptation rules with their confidence value.

Code 6.1: Case provenance format

<Case id=” i n t ” timestamp=” time ”>

<Provenance>

<SimilarCase>

<ID> i n t</ID>

<Similarity>double</Similarity>

</SimilarCase>

. . .

<AdaptationRule>

<ID> i n t</ID>

<Confidence>double</Confidence>

</AdaptationRule>

. . .

</Provenance>

</Case>

The presentation of case provenance can be useful as an explanation of the rea-

soning conclusion to the user. Figure 6.10 gives an example of the UI demonstrat-

ing case provenance (as highlighted in the red block). Furthermore, provenance

considerations could contribute not only to understanding the derived case but

also to assessing the case quality. Similar to RBR, it is important to access confi-

dence in the solutions of a CBR system. It is commonplace in rule-based systems

to assign confidence values to rules, and to estimate the confidence of conclusions

based on their derivations. For CBR systems, the quality of solutions may be

estimated based on the quality of the original case and adaptation procedures

applied to revise the case solution. In future work, a provenance-based metric

can be put in place to estimate the case quality. For example, by examining the

length of the generation chain (the number of intermediate cases generated from

an initial case before generating the current solution) as well as the confidence of
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Figure 6.10: The demonstration of the case provenance

adaptation rules, the reasoning system could estimate the adaptation-based case

quality as part of assessing confidence in a solution.

6.6 Implementation and Evaluation

It is difficult to evaluate the CARA system in its entirety without extensive field

deployment and analysis. Issues including medical (e.g. need for support from

medical institutes and healthcare professionals), ethical (e.g. privacy problems

concerning confidential healthcare data) and practical (e.g. limited number of

medical devices and smart home sensors) make a field experiment infeasible at

present.

As a result, we have conducted realistic laboratory experiments to evaluate

the correctness of the context-aware hybrid reasoning framework in a pervasive

healthcare environment and report the results in this section. In our testing

scenario, the system deployed consists of a remote healthcare sever, a wireless

sensor network (WSN) and client applications. At the first test stage, real-time

vital signs of the patient are collected from the wearable BioHarness sensor while

environmental sensing is simulated by an android application, which is developed

to reflect the changes of the ambient environment when smart home sensors are
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Figure 6.11: Android application for the simulation of a smart home environment

still under development. In the future, a case study would be examined with

the full deployment of the wireless sensor network (WSN) in a real-world home

environment. Biomedical parameters currently considered and used are: heart

rate, blood oxygen level, systolic and diastolic blood pressure, body temperature,

and respiration rate. Ambient contexts include: time, space, activity, duration

associated with a subject’s activity, environmental readings (e.g. temperature,

light, noise and humidity), and object interactions (e.g. usage of TV, cooker,

phone, and status of the heater, window and lights). Figure 6.11 illustrates the

screenshots of the prototype Android simulator in the testing scenario.

Firstly, the fuzzy-based reasoning engine is implemented in the CARA system

to provide real-time intelligence for prediction in various healthcare situations.

The context-aware hybrid reasoning framework enhances the previous fuzzy rule-

based reasoning engine with a learning ability by incorporating a novel CBR

model. The CBR implementation is based on the jCOLIBRI:CBR Framework

supported by [Asanchezrg et al., 2012]. The wireless connection between the

sensor network and client application is built using Bluetooth, and the application
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Table 6.7: Results of various reasoning approaches
ε True Positive False Positive True Negative False Negative Accuracy

Common CBR
0.7 32 3 189 38 84.35%
0.6 32 3 189 38 84.35%

Improved CBR with Fuzzy Dynamic Weights
0.7 54 7 185 16 91.22%
0.6 47 5 187 23 89.31%

Proposed CBR with Fuzzy Dynamic Weights and Fuzzy Rules Adaptation
0.7 54 5 187 16 91.98%
0.6 47 2 190 23 90.46%

is also connected to the home gateway which transmits real-time data to the

remote healthcare server.

Comprehensive tests have been carried out in our lab to evaluate performance

of the implemented software solution. While the smart home test-bed is still

under construction, we simulate the behaviour of a person living in a realistic

home environment based on the typical daily routine of an elderly person which

is summarized from interviews. This provides us with high level activity con-

texts. In addition, simulation of ambient contexts models changes of light, room

temperature, sound and humidity. Physiology contexts and personal contexts are

derived from the BAN and the personal medical history respectively.

All the contexts are used to build the input query for CBR. They are also

mapped into fuzzy sets and enforced by applying consistent rules which refer to

domain knowledge. The system then produces the final decision which indicates

the current situation of the subject. The case base used for testing contains

262 cases, among them, 192 are normal cases and 70 are abnormal cases. We

evaluated the proposed hybrid approach against the conventional CBR approach

and evolving CBR approach using dynamic weights in case retrieval. Given the

broad range of these trials, we are able to evaluate the accuracy of the reasoning

outcomes over a wide range of situations. The results are shown in Table 6.7.

To simplify the evaluation process for anomaly detection, we only consider a

two-class prediction problem (normal or abnormal), in which the outcomes are

labelled either as positive or negative. If the outcome of a prediction is abnormal
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Figure 6.12: ROC space of three different approaches for anomaly detection

and the actual situation is also abnormal, then it is called a true positive (TP).

However, if the actual situation is normal then it is said to be a false positive

(FP). Conversely, a true negative (TN) has occurred when both the prediction

outcome and the actual situation are normal, and false negative (FN) is when

the prediction outcome is normal while the actual situation is abnormal. As we

discussed in the previous section, we adjust the threshold for the confidence value

to get a trade-off between detection rate and false alarm rate. The contingency

table above can derive several evaluation metrics e.g. true positive rate (recall),

false positive rate (fall-out), true negative rate (specificity), positive predictive

value (precision). It turns out that accuracy is not a sufficient metric for the

evaluation of anomaly detection. Since most of the cases are normal, even if

it predicts every situation as normal, the accuracy could still be very high. As

a result, we introduce the idea of receiver operating characteristic (ROC) from

signal detection theory [Swets, 1996] to evaluate our reasoning framework. By

calculating the true positive rate and false positive rate, we are able to draw a

ROC curve as shown in Figure 6.12.

Each prediction result or instance of a confusion matrix represents one point

in ROC space. The best possible prediction method would yield a point in the
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Figure 6.13: Best prediction performances of three different approaches

upper left corner at coordinate (0,1), called a perfect classification. So any point

closer to that would be considered as a better approach. It is clear that the

proposed approach is the best prediction method for anomaly detection. The

best performance of each approach is compared and presented in Figure 6.13,

where the proposed approach gives 97.4% Specificity, 91.5% Precision and 92.6%

Accuracy when the threshold ε for the confidence value of the predicted solution

is set to 0.7 while the normal CBR approach only gives 93.7% Specificity, 81.2%

Precision and 88.5% Accuracy at a confidence threshold value of 0.8.

To measure the execution performance of our approach, we added a time

checking function. A start time is noted before calling a method, and then the

finish time is noted after calling the method, providing a measure of the execution

time for each task. We measured a 10-fold cross-validation using several case

bases with different amounts of normal and abnormal cases. The summarized

test results are shown in Table 6.8.

To evaluate the reliability of the reasoning system, we added 7 conflict rules

into the rule base which contains 42 rules in total. The performance of the

proposed approach was impacted in consequence. Leave-one-out approach (i.e.

one case is taken out at a time to match against the remaining cases in the

case base) and a confidence threshold value of 0.7 were applied to evaluate the
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Table 6.8: Inference performance for various amounts of cases
Total Amount of Cases Normal Abnormal Time Per Cycle (ms)

262 192 70 1925
200 150 50 1256
100 72 28 507
50 39 11 182

Table 6.9: Evaluation metrics concerning consistency issue
Hybrid Context-aware Reasoning Specificity Precision Accuracy

With Inconsistent Rules 91.2% 78.6% 85.3%
Without Inconsistent Rules 97.4% 91.5% 92.6%

hybrid reasoning approach against the same approach with inconsistent rules.

The result shown in Table 6.9 proves that the accuracy of the reasoning system

can be affected by the inconsistency of the rule base. Thus, by using the semantic-

based rule validation mechanism to ensure the consistency of the rule base, one

can improve the accuracy of the reasoning system.

Although the reasoning tasks mostly rely on the computational power of the

client device, it is clear that the response time of our rule engine is in direct

proportion to the amount of cases being checked and the complexity of rules. We

notice that the CBR mechanism gets computationally expensive as the size of

the case base increases. If we have the system running for weeks and months,

producing many thousands of cases, then it would become unacceptable in terms

of efficiency for the user. To relieve the problem, the following approaches can

be studied in future work. Firstly, a regular maintenance scheme is critical to

remove redundancy from the case base. Secondly, the cloud-based data analysis

infrastructure can be utilized to provide a reasonable solution for big data mining

by sub-dividing the case base and then allocating subsets of cases to different task

processes to allow parallel processing.

6.7 Conclusion

In this dissertation, we have developed a comprehensive context-aware hybrid

reasoning framework that integrates fuzzy rule-based reasoning with a case-based
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model to achieve automated intelligence for pervasive healthcare in a smart home

environment. The advantage of our approach is the fact that it performs fully un-

supervised learning and with the minimum input from the domain expert. This

is achieved by adopting context models for case representation, dynamic weights

and hierarchic similarity measurement for case retrieving, and an intelligent fuzzy

adaptation method for case revision. By combining these concepts, the proposed

reasoning framework makes the CARA system capable of handling uncertain

knowledge and using context in order to analyse the situation in a changing envi-

ronment. Case study for evaluation of this hybrid reasoning framework is carried

out under simulated but realistic smart home scenarios. The results indicate the

feasibility of the framework for effective at-home monitoring.

When the reasoning system is used to provide technology-driven assistive

healthcare, there is a need for the system to be as intelligent and sophisticated as

possible, while also being as transparent and accountable as possible for both sub-

ject and caregivers. To support transparency, the rules used for anomaly detection

in a smart home environment are given in a structured natural language, allowing

both subject and caregiver to inspect and modify. Given that the rules are being

devised for each individual case, it is important for accountability to detect and

report any inconsistency or possible conflict among the rules. A semantic-based

approach is used to examine the rules for inconsistency and possible conflicts, and

indicate this to the user. This is especially crucial in a pervasive environment

where new sensors may be incorporated, and where any new rules being added

should be checked with respect to all the existing rules. When the reasoning

system is in use, an outcome of the system might be unexpected. In this case, a

provenance mechanism is developed whereby the rule executed or the case-based

derivation can be provided to explain the outcome of the reasoning system. This

also supports both transparency and accountability in the sophisticated reasoning

component of CARA.
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Chapter 7

Real-time Remote Monitoring

7.1 Introduction

The main design goal of the CARA system is to provide a pervasive real-time

intelligent at-home healthcare solution. Recognizing this, we have built a so-

lution of remote monitoring that support scenarios of using CARA to deliver

healthcare data and reasoning decisions. In this chapter we describe a scenario

where continuous monitoring of the patient and home environment is done in a

non-intrusive way via wireless sensor networks, and a telecare function provides

interaction between the patient and the remote caregiver through real-time video

communication while the patient is being monitored remotely. The remote mon-

itoring component, including its recording and playback facilities, is integrated

with the CARA system and can make use of CARA’s intelligent analysis result.

This interactive user friendly approach provides an introduction to the technology

for an elderly person, and can lead to incremental incorporation of the technol-

ogy. Implemented as a rich internet application means that it is available to a

remote caregiver just using any web browser. Thus, the CARA system can be

accessed from any internet-connected PC or appropriate smart device. The re-

sults of the experiments illustrate the effectiveness of the system in monitoring a

patient within a home environment.
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7.1.1 Incremental Use of the CARA system

The CARA system can be used in different ways, varying from fully automatic

real-time at-home monitoring of patient vital signs resulting in automated re-

sponse, to use as a non-automatic assistant for remote real-time consultation

with a specialist. While the fully automated system is the ultimate goal, it is rec-

ognized, this may be too disruptive initially for both patient and caregiver. Since

healthcare is about more than just immediate application of the most advanced

technology, we have built a solution that focuses on an incremental introduction of

CARA as a pervasive healthcare system. This solution supports scenarios where

the wireless sensors are initially introduced to the patient under supervision in

a clinic, while the real-time consultation is provided by a remote healthcare spe-

cialist (Figure 7.1), and a scenario where the wireless sensors are used at home

Figure 7.1: Remote monitoring under supervision in a clinic

under remote supervision (using a two-way video link) for a real-time interactive

monitoring session with a caregiver (Figure 7.2). This use of CARA is over a

short interval of time and is fully supervised with guidance for the patient in the

wearing of the BAN and the use of the interactive remote monitoring system.

It makes effective use of time for both the patient and remote specialist, and

furthermore a facility in CARA to record both video and associated sensor data

allows the session information to persist.
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Figure 7.2: Real-time interactive monitoring under remote supervision

This restricted use of the CARA system is also important from a number of

viewpoints. An inherent problem with all small wearable wireless sensors is the

noise of various kinds, and this results in data errors. Real-time visualized mon-

itoring along with the sensor recordings allows the consultant to disambiguate

erroneous readings from significant readings. Furthermore, it avoids the medical,

legal and social issues associated with introducing new models of healthcare, and

instead is an alternative, less-disruptive approach. This use of the system pro-

vides an immediately practicable solution that respects current healthcare prac-

tice and the experience of both patient and caregiver, and leads to incremental

incorporation of the technology.

Although this use of the CARA system is promising, there may also be a

need to continuously and automatically monitor a patient during normal daily

activities. This can be achieved by monitoring a patient through wireless sensor

networks in an unobtrusive way without supervision, recording healthcare data

for later review and analysis, and reasoning with all available knowledge for situ-

ation assessment (Figure 7.3). By integration with the CARA system, real-time

remote monitoring can take advantage of the sophisticated reasoning and data

management capabilities of the system.
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Figure 7.3: Real-time automated remote monitoring

7.2 Rich Internet Application

The Remote Monitoring component is designed as a web application using RIA

(Rich Internet Applications) technologies. In traditional web applications, there

is a limit to the interactivity that can be added to a single page. This often leads

to delays, during which time users may get tired of waiting and doctors may

waste valuable consulting time. With RIA technologies, the client and the server

can communicate without any page refreshes. In this way, web applications can

support more complex and diverse user interactivity within a single screen. This

allows real time user interaction, which is essential for our system.

There are plenty of RIA frameworks available for developing web applications

typically delivered by way of a web browser, a browser plug-in, and extensive use

of JavaScript. Adobe Flash, JavaFX, and Microsoft Silverlight are currently the

three most common platforms, with desktop browser penetration rates around

96%, 76%, and 66%, respectively (as estimated by [Seltzer, 2010]). Generally,

users need to install a software framework using the computer’s operating system

before launching the application, which typically downloads, updates, verifies

and executes the RIA. This is the major difference from HTML5/JavaScript

based alternatives like Ajax that use built-in browser functionality to implement
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comparable interfaces. Regardless of the fact that recent trends show that plug-

in-based frameworks are in the process of being replaced by HTML5/JavaScript

based alternatives, the need for plug-in-based RIAs for accessing video capture

and distribution has not diminished. For that reason, we decided to use Adobe

Flash as the platform to build the remote monitoring application. The client

application is implemented by Apache Flex, formerly Adobe Flex, which is a

software development kit (SDK) for the development and deployment of cross-

platform rich internet applications based on the Adobe Flash platform.

Figure 7.4: Flash user interface of the user login in the CARA system

The login user interface of the client application is illustrated is Figure 7.4.

Since it is a Flash application, it is compatible with most operating systems and

mobile platforms. Users can login to the system from PCs, laptops or smart

devices that have an internet connection. The only tool needed to launch the

application is a web browser with Adobe Flash plug-in installed.
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7.3 Scenarios and Their Implementation

Research has revealed that telecare, monitoring a patient’s health in their own

home, can be used safely with active patients in place of the standard clinic visit

[Whiteman, 2012]. The emergence of telecare adds a new paradigm in health-

care, where the patient is monitored between physician office visits. This has

been shown to significantly reduce hospitalizations, while improving the patient’s

quality of life [Breen, 2011]. Telecare can also benefit patients where traditional

delivery of health services is affected by distance and lack of local specialist clin-

icians to deliver services. Generally, there are two different telecare approaches:

• Real-time model: a telecommunications link allows instantaneous interac-

tion between patients and caregivers. Video-conferencing equipment is one

of the most widespread forms of real-time telecare. With the availability

of better and cheaper communication channels, direct two-way audio and

video streaming between clients is leading to lower costs.

• Store-and-review model: digital images, video, audio, observations of daily

living and healthcare data are captured and stored on the server; then at a

convenient time they are retrieved by caregivers at another location where

they are studied and reviewed.

The CARA system provides remote at-home monitoring services that sup-

port both of the telecare models. It allows the incremental use of the system and

thereby encourages the adoption of the technology. Two use case scenarios con-

cerning different telecare models for remote monitoring are presented and their

implementations are discussed in this section.

7.3.1 Real-time Interactive Remote Monitoring

The first scenario involves real-time at-home monitoring under remote supervision

by a caregiver. Real-time sensor data are collected and transferred to a remote

caregiver, who might be any suitable healthcare worker, specialist or medical

consultant. The monitoring session also involves the use of a two-way video link

whereby the patient and remote caregiver can communicate with each other. This
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is an important aspect of making this scenario low-disturbance and non-stressful,

and thereby gaining acceptance for the technology.

Specifically, the client application running on a home gateway gathers infor-

mation from smart home sensors and medical equipment through wireless con-

nections. The sensor data are then transmitted to the remote server in real-time

through the Action Message Format (AMF) protocol [Adobe, 2011]. The care-

giver can login to the system and select the patient who is eligible to be monitored.

A video-conferencing component is integrated with real-time remote monitoring,

Figure 7.5: Real-time interactive remote monitoring

which can aid in an interactive examination and allow reassurance for patients

who are new to the system. In this case, continuous monitoring of the patient is

carried out by the remote caregiver in real-time with a live video communication

channel established as shown in Figure 7.5. Real-time sensor data are published

along with the video stream through the Flash Media Server (FMS) to the re-

mote client of a caregiver. (The FMS is a proprietary data and media server from

Adobe Systems). The live video is captured and encoded by Flash Media Live

Encoder, and streamed to FMS. The video streams are then broadcast to the

remote client through the internet. Moreover, a social utility is also implemented

in the application which allows the user and caregiver to communicate with each
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other by sending messages. It can be used during or outside of the monitoring

session.

7.3.2 Automated Remote At-home Monitoring

The second scenario, following easily from the first, involves the most innovative

use of the CARA system that is a later stage of the incremental incorporation

of pervasive healthcare technology into medical practice. This scenario is where

the system is analyzing the real-time sensor data, reasoning with all the con-

texts to identify critical patient conditions and forwarding healthcare data to the

healthcare server for inspection by caregivers. This makes use of the reasoning

technology described in the previous chapter.

The fully automated intelligence of the system is achieved by incorporating

real-time remote monitoring with the activity recognition application and the

reasoning framework. In this scenario, the patient is monitored in a smart home

environment without any supervision while wearing BAN continuously. Informa-

tion around the patient is gathered and analyzed to detect any possible anomalies

(as demonstrated in Figure 7.6).

The contextualization involves the processing of raw data coming from smart

home sensors and wearable wireless sensors, producing higher level information.

While the activity recognition application keeps tracking the movement of the

patient and providing activity contexts to the system. Note that, dynamic activ-

ities (e.g. walking stairs, washing hands, sweeping) can be identified directly by

the trained classification models, while other static activities (e.g. watching TV,

sleeping, toileting) can be inferred from the posture of the body and relative am-

bient context. The contexts can be used by the reasoning system to identify the

current state of the patient using the domain knowledge (in terms of fuzzy sets

and rules) and previous experience (in terms of case bases). The reasoning engine

executes in real-time and can offer immediate notification of critical conditions.

The vital signs of the patient and all the available contexts are transmitted along

with the reasoning output to the healthcare server, where they are stored and

can be examined or reviewed by a remote caregiver at the proper time.
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Figure 7.6: Automated remote monitoring of the patient without supervision

7.4 Healthcare Data Review

An important use of the CARA system for the caregiver is the ability to record

and review the real-time patient monitoring session. It is very convenient for the

caregiver to record a monitoring session and then review both the video stream

and associated real-time vital sign data at any subsequent time. This plays a part

in encouraging the automated use of the CARA system, where long-term at-home

real-time vital sign data may be reviewed by health professionals. The healthcare

data review function supporting this approach includes the sensor data review

and video session replay.

7.4.1 Sensor Data Review

The sensor data review function allows the caregiver to analyze the broad context

of sensor readings in order to distinguish critical from non-critical situations. By

clicking the review button on the main user interface which brings up the data

review interface, the caregiver is able to define parameters for reviewing the sensor
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data, for example: selecting patient profile, defining the duration of data record,

setting data priority, choosing types of sensors, etc. Once the caregiver sets up

all these options, they can retrieve the sensor data review chart as shown in

Figure 7.7. It shows the recorded sensor readings from the sensor database for

Figure 7.7: Sensor data review chart

the selected patient over a certain time period. The chart is implemented in flash

using a third party web chart API [amChart, 2011]. It supports zooming and

scrolling functions so that users can adjust the graph easily and analyze the data

in an efficient manner. A playback function is also integrated into the chart which

enables the user to play the sensor data graph at any speed.

An added functionality of the data review application is the ability to highlight

readings with abnormal situations that demand attention. This allows a caregiver

to easily locate relevant data and this assists diagnosis. Moreover, the medical

specialist is able to annotate sensor data streams to record his/her findings while

reviewing the data.
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7.4.2 Video Session Replay

The video session replay function is designed for the caregiver to review the

recorded patient’s live video along with the associated real-time sensor data. This

function is integrated in the real-time remote monitoring system. Whenever the

patient’s live video stream is published on FMS, it is also recorded as a flash live

video file (FLV) on the server. To distinguish the video file and to synchronize

with the sensor data, several correlations of the video must be recorded into the

database as well (e.g. video start time, end time, patient profile).

Figure 7.8: User interface of video replay function

To launch the video replay application, the caregiver needs to select a patient

in the data review interface. Then all recorded video related to the patient will

be listed on the screen with start and end timestamps. The caregiver is able

to replay any of them simply by clicking on the listed item. To synchronize

the video session with the recorded sensor data, the system searches the sensor
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data in the database by timestamps and plays the video with the selected sensor

data as shown in Figure 7.8. This use of data review can assist caregivers with

vital context. In an environment with many sources of data (some of which

may be unreliable), the context including video, the log of sensor readings with

timestamps and patient’s profile can be used to disambiguate the real critical

conditions from false alarms.

7.5 System Evaluation

The evaluation of the remote monitoring system concerns several non-functional

design and implementation issues.

Software Compatibility

Software compatibility can refer to the compatibility that a particular software

runs on a particular CPU architecture. Software compatibility can also refer to

the ability of the software to run on a particular operating system. Normally, the

remote monitoring application is compiled for different CPU architectures and

operating systems with a variety of browsers to allow it to be compatible with

the different systems.

Table 7.1: Software compatibility of the remote monitoring application
Operating
Systems

Browsers
IE Firefox Chrome Opera Safari

Windows ! ! ! ! !

Mac ! ! ! ! !

Ubuntu ! ! ! ! #

Linux ! ! ! ! #

Android # ! ! # #

iOS # # # # #

We have tested the remote monitoring application in various operating sys-

tems and browsers. Table 7.1 shows the software compatibility of the application.

As expected, the application is compatible with most popular desktop/mobile op-

erating systems and web browsers, with some exceptions for Safari and Opera web
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browsers. However, it does not work on iOS devices with all the browsers since

iOS still does not support Flash.

System Performance

Two experiments were conducted to test the performance of the remote monitor-

ing system. The first experiment is carried out to test the concurrency perfor-

mance of the server for live video communication. FMS was engaged to handle

and broadcast the live video streams. However, the starter version of FMS (free)

we used is limited to supporting only 10 simultaneous connections for live adaptive

media streaming. As a consequence, we tested our interactive remote monitoring

Table 7.2: System capacity of the remote monitoring server
Num. of Users CPU Speed CPU Usage Memory Usage

2 3.08 GHz 46% 4.3 GB (27%)
4 3.11 GHz 67% 6.7 GB (42%)
8 3.13 GHz 79% 7.5 GB (47%)

application with 2, 4 and 8 users sharing the live video in pairs simultaneously.

The physical server used to host the system was an Alienware M14R laptop, with

2.30 GHz Intel Core i7 CPU and 16 GB memory installed. The CPU and memory

usage of the machine was recorded and is listed in Table 7.2. As we can see from

the result, the use of hardware resources increased with the increasing number of

users. The server (hosted on a laptop) can barely support 10 users using the sys-

tem and streaming live video to the server simultaneously. Further experiments

need to be conducted by hosting the system on an enterprise server or deploying

it in the cloud infrastructure would give a more comprehensive evaluation.

The second experiment is to evaluate the impact of the potential delay of the

networks which can affect the server response time. We tested the remote moni-

toring client application through localhost, wireless local area network (WLAN)

and wireless internet respectively. Results indicating the data transmission delay

in milliseconds are shown in Figure 7.9. The testing scenario utilizing the internet

has taken place under different bandwidth of the broadband (e.g. 150Mb/10Mb,

50Mb/5Mb, 10Mb/1Mb). Clearly, the data transmission delay is inversely pro-

portional to the bandwidth of the internet connection, which is unavoidable under
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the current approach. However, this delay does not substantially affect the overall

performance of the system.

Figure 7.9: Data transmission delay with various networks

Security & Privacy Issues

Basic security and privacy issues are taken into consideration in the design of the

remote monitoring system as well. Password control allows only an authorized

user to log in to the CARA system. Authority management is implemented in the

system to achieve privacy control, which means different users can access different

functions of the system according to their authorities. For example, the medical

consultant can view the patient’s history data and define rules for the individual

patient while only the patient can start the remote monitoring session.

7.6 Conclusion

The CARA pervasive healthcare system is designed to provide an innovative tech-

nical solution for automated at-home healthcare. It is recognized, however, such a

change from current practice may be unacceptable, and an incremental introduc-

tion of technology may be the best approach to the successful use of the CARA

system. Following this approach, the remote monitoring system is developed for

delivering healthcare services which support scenarios where the wireless sensors

are initially introduced to the patient under supervision in a clinic (where the
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real-time monitoring is provided by a remote medical consultant), and a scenario

where the wireless sensors are used at home under remote supervision of a care-

giver. These scenarios provide a non-stressful introduction of the technology, and

gain acceptance for more advanced scenarios such as non-interactive, at-home

automated patient monitoring using the WSN.

Important aspects of the remote monitoring include: real-time data shar-

ing between patient and caregiver; interactive remote consultation; and replay,

review and annotation of the comprehensive monitoring data by the medical pro-

fessional. The offline review and annotation can provide the basis for improving

the automated intelligent analysis of the CARA system.
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Chapter 8

Conclusions

This concluding chapter is divided into two sections. It summarises the main

achievements of the research, provides some insights from user trials and exper-

imental evaluations, and outlines a number of interesting research directions for

future work.

8.1 Research Achievements

Presented in this thesis is the Context-aware Real-time Assistant (CARA) ar-

chitecture for pervasive healthcare. It is designed to provide a context-aware

infrastructure which can make effective use of wireless sensor network (WSN)

technology for innovative real-time monitoring, analysis and diagnosis within a

pervasive home environment. It achieves this through the development of a set of

CARA distributed components which collect real-time sensor readings, provide

correlated context to the context-aware reasoning engine for the inference of pa-

tient conditions and deliver healthcare data to a remote caregiver in real-time. A

cloud-based data analysis framework also plays an important part in processing

machine learning tasks to ease the burden on the mobile client. This research

explored the use of various integrated software frameworks to provide intelligent

healthcare services in a home environment, which should lead to extended inde-

pendent living and better quality of life. In the case of the research contributions,

the following was achieved:
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• A WSN for a smart home environment: A network of sensors (worn,

carried, and environmental) is an ideal technology platform for detecting

and responding to health-relevant parameters such as physiology readings,

physical activity and ambient readings. The WSN presented in chapter 4

consists of a wireless body area network (BAN) that can monitor various

vital signs while providing real-time feedback to the patient and a remote

caregiver; smart home sensors deployed in a patient’s home environment

to provide real-time and extended monitoring of activity and wellbeing;

as well as a smartphone carried by the user to detect body movement.

The WSN can deliver a long-term home monitoring service to assist in

condition diagnosis and identification of changes in a person’s behaviour

pattern. Furthermore, the always-on nature of the WSN means that it

can detect and respond to anomalies in a timely manner. In particular,

the BAN can provide notice of significant shifts in critical physiological

parameters in order to prevent a health crisis. Other quality-of-life issues,

such as privacy, dignity, and convenience, are supported and enhanced by

the ability to unobtrusively provide services in the patient’s own home.

• Smartphone based activity recognition: A robust system of activity

of daily living (ADL) recognition is discussed in chapter 5, which provides

the activity context for the CARA system using hierarchical classification

by combining threshold-based methods and multi-classifier machine learn-

ing algorithms. An Android smartphone and a motion sensor are attached

to the thigh and chest, respectively, to track the movement of the body.

Human movement can be naturally represented through hierarchies, such

as motion and motionlessness. Firstly, a threshold-based mechanism was

used to separate the sensing data into two groups: static and dynamic.

Static activities are identified based on the posture of the body which is

calculated from 3D-acceleration, and dynamic activities are classified by

using adapted machine learning models. By utilizing the cloud infrastruc-

ture, the system provides high scalability and availability for data analysis

and classification model optimization. Data processing and classification

algorithms are implemented in the smartphone for real-time activity moni-
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toring while the data analysis and evaluation are done off-line in the cloud.

The experimental results compare favourably with other work using mul-

tiple body sensors [Cook, 2012]. This shows a lot of promise for using a

smartphone and just one body sensor as an alternative to multiple body

sensors. Moreover, the performance of our approach shows a significant

improvement in comparison to an approach utilizing a single smartphone

[Zhang et al., 2010].

• A context-aware hybrid reasoning framework: A novel context-aware

hybrid reasoning framework is developed that integrates fuzzy rule-based

reasoning with a case-based model to achieve automated intelligence for

pervasive healthcare in a smart home environment. By combining these

concepts, the reasoning framework presented in chapter 6 makes CARA

capable of handling uncertain knowledge and using contexts in order to

analyse the situation more precisely. The advantage of the approach is that

it performs fully unsupervised learning and with the minimum input from

the domain expert. The evaluation results show that, comparing with other

approaches(e.g. rule-based reasoning and normal case-based reasoning), it

significantly improves the performance of the reasoning engine in terms of

efficiency, accuracy and flexibility. This is achieved by adopting context

models for case representation, dynamic weights and hierarchic similarity

measurement for case retrieving, and intelligent fuzzy rule-based assistance

for case adaptation. Furthermore, a semantic-based rule validation mecha-

nism is applied to automatically check for conflicts between rules to ensure

the correctness and consistency of the reasoning engine.

• Real-time interactive remote monitoring: The design goal of CARA

is to enable improved healthcare services through the intelligent use of the

wireless remote monitoring of patient vital signs, supplemented by rich

contextual information. To support this, the remote monitoring system

presented in chapter 7 provides a technical solution for automated remote

monitoring of elderly people and soliciting expert feedback on healthcare

data being streamed from their homes. It can be used in different ways,

varying from fully automatic analysis of real-time patient vital signs and
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intelligent reasoning based upon contexts resulting in automated response,

to a non-automatic assistant for remote real-time clinical analysis by the

medical professional. Currently, the latter use of the system is more viable,

as it avoids the inherent problem of data errors in wearable sensors, and also

avoids the medical, legal and social issues associated with the automated

intelligent healthcare solution. A novel aspect of remote monitoring is the

use of web technologies and a video link as the basis for the transparent,

incremental introduction of the CARA System.

• Healthcare data analysis utilizing a cloud infrastructure: Like many

other fields, the pervasive healthcare system is looking to cloud computing

as a means to improve the quality of service and efficiency of operations

while reducing costs. With cloud computing, the limitations of traditional

data mining mechanisms for healthcare could be minimized (e.g. high cost

of servers and network, low network bandwidth, and limited system re-

sources in mobile devices). In this dissertation, a cloud-based data analysis

framework is developed taking advantage of cloud computing to support

the analysis of healthcare data of the CARA system in a more efficient and

reliable way. As presented in chapter 5, the healthcare data analysis frame-

work, implementing machine learning mechanisms for activity recognition,

is deployed in the cloud environment to optimize classification models us-

ing different machine learning algorithms in parallel. Data processing and

storage are thus moved from the local device to the powerful and central-

ized computing platform located in the cloud. Data analysis results are

then accessed over the internet connection through a local thin client. The

evolving cloud-based machine learning mechanism makes the CARA system

more customizable and self-adaptive.

Overall, the results presented and discussed in this thesis support the viability

of integrating CARA into the everyday routine of the patient to produce effective

solutions to pervasive healthcare problems.
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8.2 Future Work

The pervasive healthcare paradigm is constantly under development. Despite

the discussion of the achievements of this work, there are some areas which will

require future research work. Future work may extend CARA with incremental

incorporation of therapeutic resources and local healthcare services to enhance

the pervasive healthcare paradigm. Presented are a number of subject areas

which would enhance the healthcare system within a pervasive environment:

Medical BAN integrated in CARA involves Tyndall 25mm sensors and the

Zephyr BioHarness, which are capable of measuring ECG, heart rate, respira-

tion rate, blood oxygen, body temperature and position in space in real-time.

Although they provide essential readings for medical interpretation, there is an

improvement to augment the BAN with a larger collection of medical sensors,

such as a beat-to-beat blood pressure measurement device (e.g. Portapres [Fi-

napres, 2013], NIBP100D [BIOPAC System Inc., 2013]), in order to obtain a more

complete medical picture. As we all know, blood pressure is one of the most im-

portant vital signs. High blood pressure may increase the risk of heart disease

and are often related to other diseases and medical conditions. As a consequence,

continuous blood pressure monitoring is an essential prerequisite for any study

on blood pressure variability. Current intrusive cuff-based procedures are less ac-

ceptable for research projects in a clinical setting, and recently developed devices

able to record blood pressure on a beat-by-beat basis in a non-invasive fashion

may offer additional functionality to the BAN.

The WSN continuously monitors the home environment as well as patient vi-

tal signs in an unobtrusive manner. A large amount of data being made available

in real-time raises a number of issues including the occurrence of noise, unreliable

data; intermittent communication; limited battery power. Although, the quality

of sensor data is not a major concern of this thesis, it is necessary to develop a

data management component in association with sensing devices to enhance the

CARA architecture within a real-world pervasive environment. The data man-

agement agent needs to be designed to ensure that all the essential data can be

gathered while at the same time avoiding false alarms or getting overwhelmed

by inaccurate data. It can be either deployed on the base-station of the WSN
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or the home gateway to acquire the sensor data, calibrate readings, filter unreli-

able values, note important values, and compress data if required. Concurrently

sensing devices can be updated and improved as new sensors are constantly be-

coming available. For example, a small bluetooth enabled wearable sensor could

take place of the smartphone, and thereby avoid dependency on carrying of a

smartphone.

The smart home we designed for evaluating the CARA architecture is con-

structed in a constrained laboratory setting. Despite the fact that it is designed

as a ”living laboratory” and deployed in a real home environment, it is only

feasible for use in laboratory conditions in a specific house. A major hurdle in

implementing the system outside of trials is the adaptivity and customizability

of the smart home sensors. Since there is no such thing as two exactly similar

home, the CARA architecture should be improved to dynamically support var-

ious smart homes. To do so, the designer should be able to outline the floor

map of a smart home and deploy sensors on it through a graphical user inter-

face. Rather than using a fixed number of sensors, customized sensor settings

should be recorded for different smart homes. A robust infrastructure is required

to interpret the configuration of smart home sensors so that dynamic context

modelling and context-aware reasoning can be achieved. In this way, the system

could become more flexible and practical.

The activity recognition component employs the rule-base reasoning mecha-

nism depending on two thresholds to separate the static and dynamic activities.

Regardless of the fact that the chosen threshold values work well in this thesis,

they may not be generally suitable for other cases and for different sensors. New

algorithms need to be explored in future work, which can separate motion and

motionless activities automatically, without the need for static thresholds. Also,

the number of features extracted from raw sensor data for machine learning is

fixed in this approach. It is necessary to assess the value of different features

during the learning process so that the machine learning mechanism can be im-

proved by assigning weights to features or by dynamically adjusting the number

of features involved. Furthermore, the current approach recognizes an activity

by detecting the single movement in a fixed time window, it does not consider

the inter-relation between movements. To improve the usability of the system,
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different approaches could be investigated to recognize more complex activities

(e.g. cooking, making coffee, and doing laundry) by detecting a series of move-

ments within a period of time. Instead of using a fixed length sliding window, a

dynamic sliding window could be adopted, which automatically determines the

start and end of an activity according to the dynamic activity threshold.

The context-aware reasoning framework presented in this thesis may be en-

hanced to take into account more comprehensive and sophisticated medical rules

as well as to develop a knowledge discovery mechanism which can extract new

knowledge from previous solved cases and structure new rules. This will in-

crease its level of autonomy thus becoming an invaluable tool within the perva-

sive paradigm. The remote monitoring system is designed for the visualization

of the state of patients and surroundings, and also supports real-time interaction

between the patient and a remote caregiver. It can be further developed to inte-

grate with existing social networks (e.g. Facebook, Twitter) sharing healthcare

related information among patients, families and caregivers. Moreover, it could

be connected to the local emergency services in the case of emergency situations

which may require the immediate attention of the medical staff.

Finally, the cloud-based data analysis framework presented assigns data anal-

ysis task to multiple machine learning worker roles running in parallel. It uses a

static allocation strategy whereby each machine learning worker role is deployed

to run with a fixed number of instances sharing the same amount of hardware

resources. However, it turns out the computational requirement of each worker

role is different due to different machine learning algorithms and size of datasets.

A dynamic approach could be explored to dynamically allocate computing re-

sources to specific worker role by adjusting the number of instances so that the

processing time of different worker roles can be balanced. This dynamic mecha-

nism promotes maximum use of computing resources while minimizing the cost.

It will contribute to improving the level of synchronisation between mobile users

and cloud servers in real-time as well as increase the availability and scalability

of the system.

A confluence of technology developments has led to the possibility of realizing

a vision of pervasive healthcare. The CARA architecture presented in this thesis

highlights the potential of automated at-home monitoring and context-aware rea-
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soning for healthcare by utilizing the hardware and software resources within a

ubiquitous computing environment. All CARA components cooperate to deliver

intelligent healthcare services based on the real-world context. Future pervasive

healthcare systems may build on the ideas and techniques of CARA to deliver

high levels of patient care, and empower individuals and their families for self-care

and health management.
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Appendix B: Activity Patterns

with Accelerometer Signals

Figure 1: The trunk accelerometer signal of different activities
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Figure 2: The thigh accelerometer signal of different activities

Figure 3: The thigh gyroscope signal of different activities
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Appendix C: Details of Activity

Recognition Results

The three activity classification models were evaluated using Weka Machine Learn-

ing Toolkit. Details of the evaluation results are listed as follows:

Figure 4: The Weka Explorer Window with adapted activity dataset
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Default Model

Naive Bayes

Time taken to build model: 0.09 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances        8697               85.1145 %

Incorrectly Classified Instances      1521               14.8855 %

Kappa statistic                          0.8303

Mean absolute error                      0.0249

Root mean squared error                  0.1527

Relative absolute error                 17.0675 %

Root relative squared error             56.5294 %

Coverage of cases (0.95 level)          87.7275 %

Mean rel. region size (0.95 level)       8.8055 %

Total Number of Instances            10218     

=== Detailed Accuracy By Class ===

TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class

0.917    0.069    0.724      0.917    0.810      0.775    0.972     0.886   WALKING

0.736    0.011    0.904      0.736    0.811      0.793    0.983     0.906   RUNNING

0.669    0.057    0.761      0.669    0.712      0.643    0.944     0.801   WALKSTAIRS

0.876    0.005    0.960      0.876    0.916      0.906    0.990     0.968   SWEEPING

0.972    0.013    0.873      0.972    0.920      0.914    0.989     0.972   WASHINGHAND

0.812    0.010    0.359      0.812    0.498      0.536    0.981     0.553   FALLING

0.969    0.000    1.000      0.969    0.984      0.983    0.995     0.987   STANDING

0.948    0.001    0.980      0.948    0.964      0.961    0.994     0.978   SITTING

0.943    0.003    0.953      0.943    0.948      0.945    0.984     0.943   LYING

0.935    0.000    0.993      0.935    0.963      0.961    0.995     0.975   BENDING

0.961    0.000    0.998      0.961    0.979      0.978    0.994     0.978   LEANINGBACK

0.983    0.007    0.705      0.983    0.821      0.829    1.000     0.978   ROLLING

0.851    0.027    0.863      0.851    0.852      0.828    0.977     0.910   Weighted Avg.      

=== Confusion Matrix ===

    a    b    c    d    e    f    g    h    i    j    k    l   <-- classified as

 1541   17  118    4    0    0    0    0    0    0    0    0 |    a = WALKING

    3  910  311    0    0   13    0    0    0    0    0    0 |    b = RUNNING

  580   74 1452    3    0   35    0    0    0    0    0   25 |    c = WALKSTAIRS

    1    5   15 1153  104   22    0    0    0    0    0   16 |    d = SWEEPING

    0    0    5   15  810    2    0    0    0    0    0    1 |    e = WASHINGHANDS

    2    1    2    0    1   56    0    0    0    0    0    7 |    f = FALLING

    0    0    1    6    7    0  494    1    0    0    1    0 |    g = STANDING

    0    0    1    2    0    5    0  583   17    0    0    7 |    h = SITTING

    0    0    0    0    0   14    0    0  529    0    0   18 |    i = LYING

    0    0    0   10    6    2    0   11    9  548    0    0 |    j = BENDING

    0    0    2    8    0    4    0    0    0    4  444    0 |    k = LEANINGBACK

    0    0    0    0    0    3    0    0    0    0    0  177 |    l = ROLLING
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Default Model

Bayes Net

Time taken to build model: 0.81 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances        9792               95.8309 %

Incorrectly Classified Instances       426                4.1691 %

Kappa statistic                          0.9524

Mean absolute error                      0.007 

Root mean squared error                  0.0793

Relative absolute error                  4.822  %

Root relative squared error             29.3555 %

Coverage of cases (0.95 level)          96.9368 %

Mean rel. region size (0.95 level)       8.5527 %

Total Number of Instances            10218     

=== Detailed Accuracy By Class ===

TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class

0.963    0.017    0.918      0.963    0.940      0.928    0.997     0.987   WALKING

0.938    0.003    0.980      0.938    0.958      0.953    0.999     0.996   RUNNING

0.916    0.017    0.934      0.916    0.925      0.905    0.995     0.982   WALKSTAIRS

0.976    0.003    0.977      0.976    0.976      0.973    0.999     0.994   SWEEPING

0.964    0.002    0.982      0.964    0.973      0.970    0.999     0.993   WASHINGHAND

0.841    0.003    0.644      0.841    0.730      0.734    0.996     0.862   FALLING

0.984    0.000    1.000      0.984    0.992      0.992    1.000     0.999   STANDING

0.993    0.001    0.992      0.993    0.993      0.992    1.000     0.998   SITTING

0.984    0.000    0.998      0.984    0.991      0.991    1.000     1.000   LYING

0.997    0.001    0.986      0.997    0.992      0.991    1.000     0.998   BENDING

0.991    0.000    1.000      0.991    0.996      0.995    1.000     0.999   LEANINGBACK

0.983    0.003    0.868      0.983    0.922      0.922    1.000     0.993   ROLLING

0.958    0.008    0.960      0.958    0.959      0.951    0.998     0.991   Weighted Avg.      

=== Confusion Matrix ===

    a    b    c    d    e    f    g    h    i    j    k    l   <-- classified as

 1617    3   57    1    0    2    0    0    0    0    0    0 |    a = WALKING

    0 1160   69    0    0    8    0    0    0    0    0    0 |    b = RUNNING

  142   16 1986    3    0    7    0    0    0    0    0   15 |    c = WALKSTAIRS

    1    2    7 1284    9    5    0    0    0    0    0    8 |    d = SWEEPING

    0    0    4   24  803    1    0    0    0    0    0    1 |    e = WASHINGHANDS

    1    3    3    0    0   58    0    1    1    0    0    2 |    f = FALLING

    0    0    0    0    6    1  502    1    0    0    0    0 |    g = STANDING

    0    0    0    2    0    2    0  611    0    0    0    0 |    h = SITTING

    0    0    0    0    0    3    0    1  552    4    0    1 |    i = LYING

    0    0    0    0    0    0    0    2    0  584    0    0 |    j = BENDING

    0    0    0    0    0    0    0    0    0    4  458    0 |    k = LEANINGBACK

    0    0    0    0    0    3    0    0    0    0    0  177 |    l = ROLLING
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Default Model

C4.5 Decision Tree

Time taken to build model: 1.42 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances       10005               97.9154 %

Incorrectly Classified Instances       213                2.0846 %

Kappa statistic                          0.9762

Mean absolute error                      0.0041

Root mean squared error                  0.057 

Relative absolute error                  2.7912 %

Root relative squared error             21.0918 %

Coverage of cases (0.95 level)          98.3069 %

Mean rel. region size (0.95 level)       8.5234 %

Total Number of Instances            10218     

=== Detailed Accuracy By Class ===

TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class

0.982    0.006    0.972      0.982    0.977      0.972    0.993     0.973   WALKING

0.985    0.002    0.984      0.985    0.985      0.983    0.993     0.979   RUNNING

0.970    0.007    0.974      0.970    0.972      0.965    0.987     0.967   WALKSTAIRS

0.976    0.004    0.974      0.976    0.975      0.972    0.990     0.960   SWEEPING

0.986    0.001    0.984      0.986    0.985      0.984    0.996     0.989   WASHINGHAND

0.623    0.001    0.768      0.623    0.688      0.690    0.846     0.561   FALLING

0.996    0.000    0.994      0.996    0.995      0.995    0.998     0.992   STANDING

0.997    0.001    0.990      0.997    0.994      0.993    1.000     0.996   SITTING

0.991    0.000    1.000      0.991    0.996      0.995    0.998     0.997   LYING

0.985    0.001    0.986      0.985    0.985      0.985    1.000     0.980   BENDING

0.989    0.000    0.993      0.989    0.991      0.991    0.999     0.995   LEANINGBACK

0.950    0.001    0.950      0.950    0.950      0.949    0.985     0.925   ROLLING

0.979    0.003    0.979      0.979    0.979      0.976    0.992     0.974   Weighted Avg.      

=== Confusion Matrix ===

    a    b    c    d    e    f    g    h    i    j    k    l   <-- classified as

 1650    2   24    4    0    0    0    0    0    0    0    0 |    a = WALKING

    0 1219   12    1    1    4    0    0    0    0    0    0 |    b = RUNNING

   36    8 2105   16    2    0    0    0    0    0    0    2 |    c = WALKSTAIRS

    5    1   12 1285    8    2    0    0    0    1    0    2 |    d = SWEEPING

    0    2    0    9  821    0    0    0    0    0    0    1 |    e = WASHINGHANDS

    4    4    7    2    0   43    3    1    0    1    0    4 |    f = FALLING

    0    0    0    0    0    1  508    1    0    0    0    0 |    g = STANDING

    0    0    0    0    0    1    0  613    0    1    0    0 |    h = SITTING

    1    0    0    0    0    1    0    3  556    0    0    0 |    i = LYING

    0    0    0    2    2    1    0    1    0  577    3    0 |    j = BENDING

    0    0    0    0    0    0    0    0    0    5  457    0 |    k = LEANINGBACK

    2    3    1    0    0    3    0    0    0    0    0  171 |    l = ROLLING
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Default Model

K-Star (Instance-based)

Time taken to build model: 0 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances       10053               98.3852 %

Incorrectly Classified Instances       165                1.6148 %

Kappa statistic                          0.9815

Mean absolute error                      0.0027

Root mean squared error                  0.0504

Relative absolute error                  1.8432 %

Root relative squared error             18.6487 %

Coverage of cases (0.95 level)          98.5809 %

Mean rel. region size (0.95 level)       8.3823 %

Total Number of Instances            10218     

=== Detailed Accuracy By Class ===

TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class

0.997    0.005    0.976      0.997    0.986      0.984    1.000     0.997   WALKING

0.978    0.000    0.999      0.978    0.989      0.987    1.000     1.000   RUNNING

0.974    0.005    0.982      0.974    0.978      0.972    0.999     0.996   WALKSTAIRS

0.990    0.004    0.975      0.990    0.982      0.980    0.999     0.994   SWEEPING

0.998    0.001    0.989      0.998    0.993      0.993    1.000     0.999   WASHINGHAND

0.609    0.001    0.875      0.609    0.718      0.728    0.981     0.858   FALLING

0.998    0.001    0.979      0.998    0.988      0.988    0.999     0.995   STANDING

0.995    0.001    0.986      0.995    0.990      0.990    1.000     0.997   SITTING

0.996    0.001    0.989      0.996    0.993      0.992    1.000     0.999   LYING

0.995    0.001    0.988      0.995    0.991      0.991    1.000     1.000   BENDING

0.994    0.000    0.994      0.994    0.994      0.993    1.000     1.000   LEANINGBACK

0.872    0.000    1.000      0.872    0.932      0.933    1.000     0.998   ROLLING

0.984    0.003    0.984      0.984    0.984      0.981    0.999     0.996   Weighted Avg.      

=== Confusion Matrix ===

    a    b    c    d    e    f    g    h    i    j    k    l   <-- classified as

 1675    0    0    3    0    0    2    0    0    0    0    0 |    a = WALKING

    1 1210   24    2    0    0    0    0    0    0    0    0 |    b = RUNNING

   35    1 2113   19    0    0    0    1    0    0    0    0 |    c = WALKSTAIRS

    4    0    3 1303    3    0    2    1    0    0    0    0 |    d = SWEEPING

    0    0    0    1  831    0    0    1    0    0    0    0 |    e = WASHINGHANDS

    1    0    6    3    5   42    5    1    3    2    1    0 |    f = FALLING

    0    0    0    0    0    0  509    1    0    0    0    0 |    g = STANDING

    0    0    0    0    0    1    1  612    0    1    0    0 |    h = SITTING

    0    0    0    0    0    1    0    0  559    1    0    0 |    i = LYING

    0    0    0    0    0    1    0    1    0  583    1    0 |    j = BENDING

    0    0    0    0    0    0    0    0    0    3  459    0 |    k = LEANINGBACK

    0    0    5    6    1    3    1    3    3    0    1  157 |    l = ROLLING
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Default Model

MultilayerPerceptron (Neural Network)

Time taken to build model: 248.36 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances        9901               96.8976 %

Incorrectly Classified Instances       317                3.1024 %

Kappa statistic                          0.9646

Mean absolute error                      0.0061

Root mean squared error                  0.0665

Relative absolute error                  4.1997 %

Root relative squared error             24.6109 %

Coverage of cases (0.95 level)          97.3772 %

Mean rel. region size (0.95 level)       8.7729 %

Total Number of Instances            10218     

=== Detailed Accuracy By Class ===

TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class

0.983    0.006    0.969      0.983    0.976      0.971    0.997     0.978   WALKING

0.981    0.001    0.993      0.981    0.987      0.986    0.994     0.989   RUNNING

0.973    0.008    0.971      0.973    0.972      0.965    0.995     0.985   WALKSTAIRS

0.978    0.002    0.986      0.978    0.982      0.979    0.995     0.989   SWEEPING

0.988    0.002    0.981      0.988    0.984      0.983    0.994     0.989   WASHINGHAND

0.725    0.004    0.562      0.725    0.633      0.635    0.943     0.632   FALLING

0.996    0.000    0.994      0.996    0.995      0.995    0.998     0.996   STANDING

0.998    0.002    0.975      0.998    0.986      0.986    1.000     0.999   SITTING

0.765    0.000    0.993      0.765    0.864      0.865    0.896     0.806   LYING

0.997    0.008    0.886      0.997    0.938      0.936    0.998     0.994   BENDING

0.983    0.000    1.000      0.983    0.991      0.991    0.990     0.985   LEANINGBACK

0.978    0.002    0.880      0.978    0.926      0.926    1.000     0.976   ROLLING

0.969    0.004    0.971      0.969    0.969      0.966    0.990     0.975   Weighted Avg.      

=== Confusion Matrix ===

    a    b    c    d    e    f    g    h    i    j    k    l   <-- classified as

 1651    0   26    2    0    0    1    0    0    0    0    0 |    a = WALKING

    5 1214    9    1    0    4    1    0    1    0    0    2 |    b = RUNNING

   39    3 2111    9    1    0    0    1    0    0    0    5 |    c = WALKSTAIRS

    4    2   15 1287    1    2    0    4    0    0    0    1 |    d = SWEEPING

    0    0    5    5  823    0    0    0    0    0    0    0 |    e = WASHINGHANDS

    4    3    4    1    1   50    1    1    0    0    0    4 |    f = FALLING

    0    0    1    0    0    0  508    1    0    0    0    0 |    g = STANDING

    0    0    0    0    0    1    0  614    0    0    0    0 |    h = SITTING

    0    0    0    0   13   28    0    8  429   71    0   12 |    i = LYING

    0    0    0    0    0    0    0    1    1  584    0    0 |    j = BENDING

    0    0    0    0    0    4    0    0    0    4  454    0 |    k = LEANINGBACK

    0    0    3    0    0    0    0    0    1    0    0  176 |    l = ROLLING
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Filtered Model

Naive Bayes

Time taken to build model: 0.11 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances        9143               98.2696 %

Incorrectly Classified Instances       161                1.7304 %

Kappa statistic                          0.9803

Mean absolute error                      0.0031

Root mean squared error                  0.0495

Relative absolute error                  2.0922 %

Root relative squared error             18.2715 %

Coverage of cases (0.95 level)          99.0864 %

Mean rel. region size (0.95 level)       8.525  %

Total Number of Instances             9304     

=== Detailed Accuracy By Class ===

TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class

0.998    0.004    0.981      0.998    0.990      0.988    1.000     1.000   WALKING

0.916    0.002    0.984      0.916    0.949      0.943    0.999     0.993   RUNNING

0.973    0.012    0.950      0.973    0.961      0.952    0.998     0.994   WALKSTAIRS

0.997    0.001    0.992      0.997    0.994      0.994    0.999     0.995   SWEEPING

0.997    0.000    1.000      0.997    0.999      0.999    1.000     0.999   WASHINGHAND

0.962    0.001    0.862      0.962    0.909      0.910    1.000     0.908   FALLING

0.996    0.000    1.000      0.996    0.998      0.998    1.000     1.000   STANDING

0.998    0.000    1.000      0.998    0.999      0.999    1.000     1.000   SITTING

0.994    0.000    0.996      0.994    0.995      0.995    0.999     0.997   LYING

0.993    0.000    1.000      0.993    0.997      0.996    0.999     0.998   BENDING

0.996    0.000    1.000      0.996    0.998      0.998    1.000     1.000   LEANINGBACK

1.000    0.000    0.983      1.000    0.991      0.991    1.000     1.000   ROLLING

0.983    0.003    0.983      0.983    0.983      0.980    0.999     0.996   Weighted Avg.      

=== Confusion Matrix ===

    a    b    c    d    e    f    g    h    i    j    k    l   <-- classified as

 1513    0    3    0    0    0    0    0    0    0    0    0 |    a = WALKING

    0  968   89    0    0    0    0    0    0    0    0    0 |    b = RUNNING

   29   13 1752    2    0    3    0    0    0    0    0    2 |    c = WALKSTAIRS

    0    3    0 1239    0    1    0    0    0    0    0    0 |    d = SWEEPING

    0    0    0    2  773    0    0    0    0    0    0    0 |    e = WASHINGHANDS

    0    0    1    0    0   50    0    0    0    0    0    1 |    f = FALLING

    0    0    0    2    0    0  492    0    0    0    0    0 |    g = STANDING

    0    0    0    0    0    0    0  608    1    0    0    0 |    h = SITTING

    0    0    0    0    0    3    0    0  542    0    0    0 |    i = LYING

    0    0    0    2    0    1    0    0    1  576    0    0 |    j = BENDING

    0    0    0    2    0    0    0    0    0    0  456    0 |    k = LEANINGBACK

    0    0    0    0    0    0    0    0    0    0    0  174 |    l = ROLLING
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Filtered Model

Bayes Net

Time taken to build model: 0.56 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances        9303               99.9893 %

Incorrectly Classified Instances         1                0.0107 %

Kappa statistic                          0.9999

Mean absolute error                      0.0001

Root mean squared error                  0.0046

Relative absolute error                  0.0344 %

Root relative squared error              1.7077 %

Coverage of cases (0.95 level)         100      %

Mean rel. region size (0.95 level)       8.3423 %

Total Number of Instances             9304     

=== Detailed Accuracy By Class ===

TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class

1.000    0.000    1.000      1.000    1.000      1.000    1.000     1.000   WALKING

0.999    0.000    1.000      0.999    1.000      0.999    1.000     1.000   RUNNING

1.000    0.000    0.999      1.000    1.000      1.000    1.000     1.000   WALKSTAIRS

1.000    0.000    1.000      1.000    1.000      1.000    1.000     1.000   SWEEPING

1.000    0.000    1.000      1.000    1.000      1.000    1.000     1.000   WASHINGHAND

1.000    0.000    1.000      1.000    1.000      1.000    1.000     1.000   FALLING

1.000    0.000    1.000      1.000    1.000      1.000    1.000     1.000   STANDING

1.000    0.000    1.000      1.000    1.000      1.000    1.000     1.000   SITTING

1.000    0.000    1.000      1.000    1.000      1.000    1.000     1.000   LYING

1.000    0.000    1.000      1.000    1.000      1.000    1.000     1.000   BENDING

1.000    0.000    1.000      1.000    1.000      1.000    1.000     1.000   LEANINGBACK

1.000    0.000    1.000      1.000    1.000      1.000    1.000     1.000   ROLLING

1.000    0.000    1.000      1.000    1.000      1.000    1.000     1.000   Weighted Avg.     

=== Confusion Matrix ===

    a    b    c    d    e    f    g    h    i    j    k    l   <-- classified as

 1516    0    0    0    0    0    0    0    0    0    0    0 |    a = WALKING

    0 1056    1    0    0    0    0    0    0    0    0    0 |    b = RUNNING

    0    0 1801    0    0    0    0    0    0    0    0    0 |    c = WALKSTAIRS

    0    0    0 1243    0    0    0    0    0    0    0    0 |    d = SWEEPING

    0    0    0    0  775    0    0    0    0    0    0    0 |    e = WASHINGHANDS

    0    0    0    0    0   52    0    0    0    0    0    0 |    f = FALLING

    0    0    0    0    0    0  494    0    0    0    0    0 |    g = STANDING

    0    0    0    0    0    0    0  609    0    0    0    0 |    h = SITTING

    0    0    0    0    0    0    0    0  545    0    0    0 |    i = LYING

    0    0    0    0    0    0    0    0    0  580    0    0 |    j = BENDING

    0    0    0    0    0    0    0    0    0    0  458    0 |    k = LEANINGBACK

    0    0    0    0    0    0    0    0    0    0    0  174 |    l = ROLLING
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Filtered Model

C4.5 Decision Tree

Time taken to build model: 0.95 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances        9215               99.0434 %

Incorrectly Classified Instances        89                0.9566 %

Kappa statistic                          0.9891

Mean absolute error                      0.0019

Root mean squared error                  0.0391

Relative absolute error                  1.3008 %

Root relative squared error             14.4413 %

Coverage of cases (0.95 level)          99.1509 %

Mean rel. region size (0.95 level)       8.3898 %

Total Number of Instances             9304     

=== Detailed Accuracy By Class ===

TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class

0.997    0.001    0.993      0.997    0.995      0.994    0.999     0.993   WALKING

0.991    0.001    0.994      0.991    0.993      0.992    0.996     0.990   RUNNING

0.990    0.003    0.989      0.990    0.989      0.987    0.995     0.984   WALKSTAIRS

0.993    0.003    0.982      0.993    0.988      0.986    0.996     0.974   SWEEPING

0.994    0.001    0.994      0.994    0.994      0.993    0.998     0.986   WASHINGHAND

0.654    0.000    0.895      0.654    0.756      0.764    0.863     0.661   FALLING

0.996    0.000    0.998      0.996    0.997      0.997    0.998     0.996   STANDING

0.995    0.000    0.995      0.995    0.995      0.995    0.998     0.990   SITTING

0.991    0.000    0.993      0.991    0.992      0.991    0.995     0.985   LYING

0.995    0.000    0.998      0.995    0.997      0.996    0.998     0.994   BENDING

0.993    0.000    0.991      0.993    0.992      0.992    0.999     0.986   LEANINGBACK

0.948    0.001    0.948      0.948    0.948      0.947    0.975     0.901   ROLLING

0.990    0.001    0.990      0.990    0.990      0.989    0.996     0.983   Weighted Avg.      

=== Confusion Matrix ===

    a    b    c    d    e    f    g    h    i    j    k    l   <-- classified as

 1511    0    5    0    0    0    0    0    0    0    0    0 |    a = WALKING

    0 1048    5    3    0    1    0    0    0    0    0    0 |    b = RUNNING

    7    2 1783    5    0    0    0    0    0    0    1    3 |    c = WALKSTAIRS

    2    0    3 1234    2    1    0    0    0    1    0    0 |    d = SWEEPING

    0    0    0    5  770    0    0    0    0    0    0    0 |    e = WASHINGHANDS

    1    3    3    6    1   34    0    0    0    0    0    4 |    f = FALLING

    0    0    0    0    2    0  492    0    0    0    0    0 |    g = STANDING

    0    0    1    0    0    0    0  606    2    0    0    0 |    h = SITTING

    0    0    0    0    0    0    0    1  540    0    2    2 |    i = LYING

    0    0    0    2    0    0    0    0    0  577    1    0 |    j = BENDING

    0    0    1    1    0    0    1    0    0    0  455    0 |    k = LEANINGBACK

    0    1    2    0    0    2    0    2    2    0    0  165 |    l = ROLLING
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Filtered Model

K-Star (Instance-based)

Time taken to build model: 0 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances        9217               99.0649 %

Incorrectly Classified Instances        87                0.9351 %

Kappa statistic                          0.9894

Mean absolute error                      0.0015

Root mean squared error                  0.0383

Relative absolute error                  1.0472 %

Root relative squared error             14.1422 %

Coverage of cases (0.95 level)          99.2046 %

Mean rel. region size (0.95 level)       8.3548 %

Total Number of Instances             9304     

=== Detailed Accuracy By Class ===

TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class

0.999    0.002    0.988      0.999    0.993      0.992    1.000     1.000   WALKING

0.980    0.000    1.000      0.980    0.990      0.989    1.000     1.000   RUNNING

0.990    0.003    0.986      0.990    0.988      0.985    1.000     0.999   WALKSTAIRS

0.997    0.001    0.991      0.997    0.994      0.993    1.000     0.997   SWEEPING

1.000    0.001    0.990      1.000    0.995      0.994    1.000     1.000   WASHINGHAND

0.635    0.000    0.917      0.635    0.750      0.762    0.996     0.848   FALLING

1.000    0.000    0.992      1.000    0.996      0.996    1.000     1.000   STANDING

1.000    0.001    0.989      1.000    0.994      0.994    1.000     0.997   SITTING

0.994    0.001    0.991      0.994    0.993      0.992    1.000     0.999   LYING

1.000    0.000    0.995      1.000    0.997      0.997    1.000     1.000   BENDING

1.000    0.000    0.993      1.000    0.997      0.997    1.000     1.000   LEANINGBACK

0.885    0.000    1.000      0.885    0.939      0.940    1.000     0.997   ROLLING

0.991    0.001    0.991      0.991    0.990      0.989    1.000     0.998   Weighted Avg.      

=== Confusion Matrix ===

    a    b    c    d    e    f    g    h    i    j    k    l   <-- classified as

 1514    0    0    2    0    0    0    0    0    0    0    0 |    a = WALKING

    3 1036   18    0    0    0    0    0    0    0    0    0 |    b = RUNNING

   14    0 1783    3    0    0    0    1    0    0    0    0 |    c = WALKSTAIRS

    1    0    1 1239    2    0    0    0    0    0    0    0 |    d = SWEEPING

    0    0    0    0  775    0    0    0    0    0    0    0 |    e = WASHINGHANDS

    0    0    1    2    6   33    3    1    2    2    2    0 |    f = FALLING

    0    0    0    0    0    0  494    0    0    0    0    0 |    g = STANDING

    0    0    0    0    0    0    0  609    0    0    0    0 |    h = SITTING

    0    0    0    0    0    0    0    2  542    1    0    0 |    i = LYING

    0    0    0    0    0    0    0    0    0  580    0    0 |    j = BENDING

    0    0    0    0    0    0    0    0    0    0  458    0 |    k = LEANINGBACK

    0    0    5    4    0    3    1    3    3    0    1  154 |    l = ROLLING
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Filtered Model

MultilayerPerceptron (Neural Network)

Time taken to build model: 222.79 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances        9183               98.6995 %

Incorrectly Classified Instances       121                1.3005 %

Kappa statistic                          0.9852

Mean absolute error                      0.0029

Root mean squared error                  0.0419

Relative absolute error                  1.9903 %

Root relative squared error             15.4492 %

Coverage of cases (0.95 level)          98.9897 %

Mean rel. region size (0.95 level)       8.5805 %

Total Number of Instances             9304     

=== Detailed Accuracy By Class ===

TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class

0.999    0.001    0.994      0.999    0.997      0.996    1.000     0.998   WALKING

0.998    0.000    0.996      0.998    0.997      0.997    1.000     1.000   RUNNING

0.993    0.001    0.994      0.993    0.993      0.992    1.000     0.999   WALKSTAIRS

0.995    0.001    0.995      0.995    0.995      0.994    1.000     0.999   SWEEPING

1.000    0.000    0.997      1.000    0.999      0.999    1.000     1.000   WASHINGHAND

0.712    0.003    0.587      0.712    0.643      0.644    0.980     0.782   FALLING

1.000    0.000    0.996      1.000    0.998      0.998    1.000     1.000   STANDING

1.000    0.001    0.985      1.000    0.993      0.992    1.000     1.000   SITTING

0.859    0.000    0.998      0.859    0.923      0.922    0.932     0.879   LYING

1.000    0.004    0.948      1.000    0.973      0.972    1.000     1.000   BENDING

0.991    0.000    1.000      0.991    0.996      0.995    0.998     0.993   LEANINGBACK

0.983    0.002    0.900      0.983    0.940      0.939    1.000     0.984   ROLLING

0.987    0.001    0.988      0.987    0.987      0.986    0.996     0.990   Weighted Avg.      

=== Confusion Matrix ===

    a    b    c    d    e    f    g    h    i    j    k    l   <-- classified as

 1515    0    0    1    0    0    0    0    0    0    0    0 |    a = WALKING

    0 1055    2    0    0    0    0    0    0    0    0    0 |    b = RUNNING

    7    2 1788    3    0    0    0    0    0    0    0    1 |    c = WALKSTAIRS

    1    0    3 1237    1    1    0    0    0    0    0    0 |    d = SWEEPING

    0    0    0    0  775    0    0    0    0    0    0    0 |    e = WASHINGHANDS

    1    2    6    1    1   37    0    0    0    0    0    4 |    f = FALLING

    0    0    0    0    0    0  494    0    0    0    0    0 |    g = STANDING

    0    0    0    0    0    0    0  609    0    0    0    0 |    h = SITTING

    0    0    0    0    0   22    0    9  468   32    0   14 |    i = LYING

    0    0    0    0    0    0    0    0    0  580    0    0 |    j = BENDING

    0    0    0    0    0    2    2    0    0    0  454    0 |    k = LEANINGBACK

    0    0    0    1    0    1    0    0    1    0    0  171 |    l = ROLLING
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Adapted Model

Naive Bayes 

Time taken to build model: 0.18 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances       11024               97.7565 %

Incorrectly Classified Instances       253                2.2435 %

Kappa statistic                          0.9747

Mean absolute error                      0.004 

Root mean squared error                  0.0578

Relative absolute error                  2.692  %

Root relative squared error             21.2616 %

Coverage of cases (0.95 level)          98.6078 %

Mean rel. region size (0.95 level)       8.524  %

Total Number of Instances            11277     

=== Detailed Accuracy By Class ===

TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class

0.997    0.007    0.965      0.997    0.981      0.977    1.000     0.999   WALKING

0.913    0.001    0.986      0.913    0.948      0.943    0.999     0.993   RUNNING

0.956    0.011    0.949      0.956    0.952      0.942    0.997     0.991   WALKSTAIRS

0.991    0.001    0.991      0.991    0.991      0.990    0.998     0.996   SWEEPING

0.990    0.001    0.991      0.990    0.990      0.990    1.000     0.998   WASHINGHAND

0.885    0.002    0.719      0.885    0.793      0.796    0.999     0.789   FALLING

0.991    0.000    0.995      0.991    0.993      0.993    0.999     0.997   STANDING

0.996    0.000    1.000      0.996    0.998      0.998    1.000     1.000   SITTING

0.992    0.001    0.982      0.992    0.987      0.986    0.999     0.996   LYING

0.986    0.000    1.000      0.986    0.993      0.993    0.999     0.999   BENDING

0.996    0.000    1.000      0.996    0.998      0.998    1.000     1.000   LEANINGBACK

0.977    0.001    0.938      0.977    0.957      0.957    1.000     0.990   ROLLING

0.978    0.004    0.978      0.978    0.978      0.974    0.999     0.995   Weighted Avg.  

=== Confusion Matrix ===

    a    b    c    d    e    f    g    h    i    j    k    l   <-- classified as

 1863    0    4    1    0    0    0    0    0    0    0    0 |    a = WALKING

    0 1040   94    0    0    5    0    0    0    0    0    0 |    b = RUNNING

   65   12 1907    3    0    6    0    0    0    0    0    2 |    c = WALKSTAIRS

    0    3    3 1390    6    1    0    0    0    0    0    0 |    d = SWEEPING

    0    0    0    5  874    0    4    0    0    0    0    0 |    e = WASHINGHANDS

    0    0    1    0    0   46    0    0    0    0    0    5 |    f = FALLING

    2    0    0    2    2    0  815    0    0    0    0    1 |    g = STANDING

    0    0    0    0    0    0    0  968    3    0    0    1 |    h = SITTING

    0    0    0    0    0    1    0    0  645    0    0    4 |    i = LYING

    0    0    0    1    0    1    0    0    8  708    0    0 |    j = BENDING

    0    0    1    0    0    0    0    0    0    0  555    1 |    k = LEANINGBACK

    0    0    0    0    0    4    0    0    1    0    0  213 |    l = ROLLING
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Adapted Model

Bayes Net

Time taken to build model: 1.11 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances       11222               99.5123 %

Incorrectly Classified Instances        55                0.4877 %

Kappa statistic                          0.9945

Mean absolute error                      0.0009

Root mean squared error                  0.0264

Relative absolute error                  0.5906 %

Root relative squared error              9.7136 %

Coverage of cases (0.95 level)          99.7694 %

Mean rel. region size (0.95 level)       8.3851 %

Total Number of Instances            11277     

=== Detailed Accuracy By Class ===

TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class

0.998    0.002    0.988      0.998    0.993      0.992    1.000     1.000   WALKING

0.994    0.000    1.000      0.994    0.997      0.997    1.000     1.000   RUNNING

0.984    0.001    0.995      0.984    0.990      0.987    1.000     1.000   WALKSTAIRS

0.998    0.000    0.998      0.998    0.998      0.998    1.000     1.000   SWEEPING

0.997    0.000    0.998      0.997    0.997      0.997    1.000     1.000   WASHINGHAND

0.981    0.001    0.836      0.981    0.903      0.905    1.000     0.987   FALLING

0.998    0.000    0.998      0.998    0.998      0.997    1.000     1.000   STANDING

1.000    0.000    1.000      1.000    1.000      1.000    1.000     1.000   SITTING

0.998    0.000    1.000      0.998    0.999      0.999    1.000     1.000   LYING

1.000    0.000    1.000      1.000    1.000      1.000    1.000     1.000   BENDING

1.000    0.000    1.000      1.000    1.000      1.000    1.000     1.000   LEANINGBACK

0.986    0.001    0.973      0.986    0.979      0.979    1.000     0.998   ROLLING

0.995    0.001    0.995      0.995    0.995      0.994    1.000     1.000   Weighted Avg.  

=== Confusion Matrix ===

    a    b    c    d    e    f    g    h    i    j    k    l   <-- classified as

 1864    0    3    1    0    0    0    0    0    0    0    0 |    a = WALKING

    0 1132    6    0    0    1    0    0    0    0    0    0 |    b = RUNNING

   22    0 1964    1    0    4    0    0    0    0    0    4 |    c = WALKSTAIRS

    0    0    1 1400    0    1    0    0    0    0    0    1 |    d = SWEEPING

    0    0    0    1  880    0    2    0    0    0    0    0 |    e = WASHINGHANDS

    0    0    0    0    0   51    0    0    0    0    0    1 |    f = FALLING

    0    0    0    0    2    0  820    0    0    0    0    0 |    g = STANDING

    0    0    0    0    0    0    0  972    0    0    0    0 |    h = SITTING

    0    0    0    0    0    1    0    0  649    0    0    0 |    i = LYING

    0    0    0    0    0    0    0    0    0  718    0    0 |    j = BENDING

    0    0    0    0    0    0    0    0    0    0  557    0 |    k = LEANINGBACK

    0    0    0    0    0    3    0    0    0    0    0  215 |    l = ROLLING

182



Adapted Model

C4.5 Decision Tree

Time taken to build model: 1.7 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances       11107               98.4925 %

Incorrectly Classified Instances       170                1.5075 %

Kappa statistic                          0.983 

Mean absolute error                      0.003 

Root mean squared error                  0.0492

Relative absolute error                  2.0261 %

Root relative squared error             18.1164 %

Coverage of cases (0.95 level)          98.6876 %

Mean rel. region size (0.95 level)       8.4508 %

Total Number of Instances            11277     

=== Detailed Accuracy By Class ===

TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class

0.990    0.002    0.990      0.990    0.990      0.988    0.995     0.982   WALKING

0.985    0.001    0.993      0.985    0.989      0.988    0.996     0.986   RUNNING

0.983    0.005    0.979      0.983    0.981      0.977    0.992     0.974   WALKSTAIRS

0.981    0.003    0.981      0.981    0.981      0.978    0.994     0.978   SWEEPING

0.984    0.002    0.982      0.984    0.983      0.982    0.997     0.982   WASHINGHAND

0.635    0.001    0.733      0.635    0.680      0.681    0.868     0.562   FALLING

0.991    0.001    0.985      0.991    0.988      0.988    0.996     0.973   STANDING

0.996    0.000    0.999      0.996    0.997      0.997    0.999     0.998   SITTING

0.991    0.001    0.985      0.991    0.988      0.987    0.996     0.974   LYING

0.989    0.001    0.992      0.989    0.990      0.990    0.999     0.993   BENDING

0.989    0.001    0.987      0.989    0.988      0.988    0.994     0.977   LEANINGBACK

0.945    0.001    0.954      0.945    0.949      0.948    0.973     0.905   ROLLING

0.985    0.002    0.985      0.985    0.985      0.983    0.994     0.978   Weighted Avg.      

=== Confusion Matrix ===

    a    b    c    d    e    f    g    h    i    j    k    l   <-- classified as

 1850    0   15    1    0    0    2    0    0    0    0    0 |    a = WALKING

    0 1122   12    1    0    3    0    0    0    0    0    1 |    b = RUNNING

   16    4 1962    7    0    1    0    0    0    0    1    4 |    c = WALKSTAIRS

    0    0    5 1377   11    5    2    0    0    3    0    0 |    d = SWEEPING

    0    0    0    5  869    0    6    0    0    2    1    0 |    e = WASHINGHANDS

    0    2    6    2    0   33    2    0    2    1    1    3 |    f = FALLING

    2    0    0    0    4    0  815    0    1    0    0    0 |    g = STANDING

    0    0    1    0    0    0    0  968    2    0    1    0 |    h = SITTING

    0    0    1    0    0    1    0    0  644    0    2    2 |    i = LYING

    0    0    0    7    1    0    0    0    0  710    0    0 |    j = BENDING

    0    0    2    2    0    1    0    1    0    0  551    0 |    k = LEANINGBACK

    0    2    1    2    0    1    0    0    5    0    1  206 |    l = ROLLING
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Adapted Model

K-Star (Instance-based)

Time taken to build model: 0 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances       11082               98.2708 %

Incorrectly Classified Instances       195                1.7292 %

Kappa statistic                          0.9805

Mean absolute error                      0.0029

Root mean squared error                  0.0524

Relative absolute error                  1.9458 %

Root relative squared error             19.2931 %

Coverage of cases (0.95 level)          98.4836 %

Mean rel. region size (0.95 level)       8.3703 %

Total Number of Instances            11277     

=== Detailed Accuracy By Class ===

TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class

0.991    0.006    0.972      0.991    0.981      0.978    1.000     0.998   WALKING

0.970    0.000    1.000      0.970    0.985      0.983    1.000     1.000   RUNNING

0.971    0.005    0.975      0.971    0.973      0.967    0.999     0.997   WALKSTAIRS

0.982    0.002    0.989      0.982    0.985      0.983    1.000     0.997   SWEEPING

0.989    0.002    0.978      0.989    0.983      0.982    1.000     0.996   WASHINGHAND

0.615    0.000    0.970      0.615    0.753      0.772    0.995     0.803   FALLING

1.000    0.002    0.970      1.000    0.985      0.984    1.000     0.997   STANDING

1.000    0.001    0.989      1.000    0.994      0.994    1.000     1.000   SITTING

0.998    0.001    0.985      0.998    0.992      0.991    1.000     0.998   LYING

1.000    0.000    0.993      1.000    0.997      0.996    1.000     1.000   BENDING

1.000    0.000    0.993      1.000    0.996      0.996    1.000     0.998   LEANINGBACK

0.858    0.000    1.000      0.858    0.923      0.925    0.999     0.991   ROLLING

0.983    0.003    0.983      0.983    0.982      0.980    1.000     0.997   Weighted Avg.      

=== Confusion Matrix ===

    a    b    c    d    e    f    g    h    i    j    k    l   <-- classified as

 1852    0   10    0    0    0    6    0    0    0    0    0 |    a = WALKING

    1 1105   32    1    0    0    0    0    0    0    0    0 |    b = RUNNING

   47    0 1937    4    0    0    1    4    0    0    2    0 |    c = WALKSTAIRS

    6    0    1 1378   14    0    4    0    0    0    0    0 |    d = SWEEPING

    0    0    0    0  873    0    7    0    0    2    1    0 |    e = WASHINGHANDS

    0    0    2    1    5   32    6    1    2    3    0    0 |    f = FALLING

    0    0    0    0    0    0  822    0    0    0    0    0 |    g = STANDING

    0    0    0    0    0    0    0  972    0    0    0    0 |    h = SITTING

    0    0    0    0    0    0    0    1  649    0    0    0 |    i = LYING

    0    0    0    0    0    0    0    0    0  718    0    0 |    j = BENDING

    0    0    0    0    0    0    0    0    0    0  557    0 |    k = LEANINGBACK

    0    0    4   10    1    1    1    5    8    0    1  187 |    l = ROLLING
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Adapted Model

MultilayerPerceptron (Neural Network)

Time taken to build model: 270.44 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances       11079               98.2442 %

Incorrectly Classified Instances       198                1.7558 %

Kappa statistic                          0.9802

Mean absolute error                      0.0037

Root mean squared error                  0.0494

Relative absolute error                  2.5295 %

Root relative squared error             18.1934 %

Coverage of cases (0.95 level)          98.8029 %

Mean rel. region size (0.95 level)       8.6119 %

Total Number of Instances            11277     

=== Detailed Accuracy By Class ===

TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class

0.991    0.003    0.985      0.991    0.988      0.986    1.000     0.999   WALKING

0.993    0.001    0.994      0.993    0.993      0.993    0.999     0.997   RUNNING

0.980    0.003    0.984      0.980    0.982      0.978    0.999     0.996   WALKSTAIRS

0.989    0.002    0.989      0.989    0.989      0.988    0.999     0.997   SWEEPING

0.984    0.002    0.982      0.984    0.983      0.982    0.997     0.991   WASHINGHAND

0.692    0.002    0.632      0.692    0.661      0.660    0.949     0.746   FALLING

0.993    0.001    0.986      0.993    0.989      0.988    0.999     0.996   STANDING

1.000    0.001    0.989      1.000    0.994      0.994    1.000     1.000   SITTING

0.894    0.000    0.997      0.894    0.942      0.941    0.962     0.913   LYING

1.000    0.002    0.968      1.000    0.984      0.983    1.000     0.999   BENDING

0.993    0.000    0.996      0.993    0.995      0.994    0.997     0.989   LEANINGBACK

0.959    0.003    0.878      0.959    0.917      0.916    0.991     0.965   ROLLING

0.982    0.002    0.983      0.982    0.982      0.981    0.997     0.990   Weighted Avg.      

=== Confusion Matrix ===

    a    b    c    d    e    f    g    h    i    j    k    l   <-- classified as

 1851    0   16    0    0    0    1    0    0    0    0    0 |    a = WALKING

    0 1131    7    0    0    1    0    0    0    0    0    0 |    b = RUNNING

   25    1 1955    7    0    0    0    2    0    0    1    4 |    c = WALKSTAIRS

    0    1    4 1388    6    0    2    0    0    1    0    1 |    d = SWEEPING

    1    0    0    3  869    0    8    0    0    1    1    0 |    e = WASHINGHANDS

    1    3    3    1    1   36    0    0    0    0    0    7 |    f = FALLING

    1    0    0    0    4    0  816    1    0    0    0    0 |    g = STANDING

    0    0    0    0    0    0    0  972    0    0    0    0 |    h = SITTING

    0    0    0    0    5   18    0    8  581   21    0   17 |    i = LYING

    0    0    0    0    0    0    0    0    0  718    0    0 |    j = BENDING

    0    0    0    0    0    2    1    0    0    1  553    0 |    k = LEANINGBACK

    0    2    1    4    0    0    0    0    2    0    0  209 |    l = ROLLING
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Appendix D: Examples of Fuzzy

Rules for Inference

The following rules are used in the fuzzy reasoning engine for inference:

ActivityRule1: fuzzyEngine.parseRule(”if Activity is Sleeping and (TV is ON

or Cooker is ON or Lights is ON) then Situation is Abnormal”);

ActivityRule2: fuzzyEngine.parseRule(”if Activity is Sleeping and Location

is not Bedroom then Situation is Abnormal”);

ActivityRule3: fuzzyEngine.parseRule(”if Activity is Sleeping and Duration

is ExtremlyLong then Situation is Abnormal”);

ActivityRule4: fuzzyEngine.parseRule(”if Activity is Resting and (Location

is Bathroom or Location is Kitchen) then Situation is Abnormal”);

ActivityRule5: fuzzyEngine.parseRule(”if (Activity is Resting or Activity is

WatchingTV) and Duration is VeryLong then Situation is Abnormal”);

ActivityRule6: fuzzyEngine.parseRule(”if Activity is Eating and (Location is

Bathroom or Location is Bedroom) then Situation is Abnormal”);

ActivityRule7: fuzzyEngine.parseRule(”if (Activity is Eating or Activity is

Cooking or Activity is Bathing or Activity is Exercising and Time is Night and

Lights is OFF then Situation is Abnormal”);
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ActivityRule8: fuzzyEngine.parseRule(”if (Activity is Eating or Activity is

WatchingTV or Activity is Chatting or Activity is Cooking or Activity is Bathing

or Activity is Exercising)and Time is LateNight then Situation is Abnormal”);

ActivityRule9: fuzzyEngine.parseRule(”if (Activity is Toileting or Activity is

Bathing) and Duration is not Short then Situation is Abnormal”);

ActivityRule10: fuzzyEngine.parseRule(”if Activity is Toileting and Location

is not Bathroom then Situation is Abnormal”);

ActivityRule11: fuzzyEngine.parseRule(”if (Activity is Toileting and Time is

Night and Lights is OFF then Situation is Abnormal”);

ActivityRule12: fuzzyEngine.parseRule(”if Activity is Cooking and Cooker is

OFF then Situation is Abnormal”);

ActivityRule13: fuzzyEngine.parseRule(”if Location is Outdoor and (Cooker

is ON or Windows is Open) then Situation is Abnormal”);

ActivityRule14: fuzzyEngine.parseRule(”if Location is Outdoor and Time is

LateNight then Situation is Abnormal”);

ActivityRule15: fuzzyEngine.parseRule(”if Location is Outdoor and Duration

is VeryLong then Situation is Abnormal”);

MedicalRule1: fuzzyEngine.parseRule(”if Activity is not Exercising and (HeartRate

is VeryHigh or RespirationRate is VeryHigh) then Situation is Abnormal”);

MedicalRule2: fuzzyEngine.parseRule(”if (Activity is Sleeping or Activity is

Resting or Activity is WatchingTV or Activity is Toileting) and SystolicBlood-

Pressure is High and DynamicBloodPressure is High) then Situation is Abnor-

mal”);
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MedicalRule3: fuzzyEngine.parseRule(”if SystolicBloodPressure is VeryHigh

and DynamicBloodPressure is VeryHigh then Situation is Abnormal”);

MedicalRule4: fuzzyEngine.parseRule(”if (HeartRate is VeryLow or Respira-

tionRate is VeryLow) and (SystolicBloodPressure is VeryLow or DynamicBlood-

Pressure is VeryLow) then Situation is Abnormal”);
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