
Title The object binary interface: C++ objects for evolvable shared class
libraries

Author(s) Goldstein, Theodore C.; Sloane, Alan

Publication date 1994-04

Original citation Goldstein, T. C. and Sloane, A. (1994) ‘The object binary interface: C++
objects for evolvable shared class libraries,’ CTEC'94: Proceedings of
the 6th conference on USENIX Sixth C++ Technical Conference
Volume 6, Cambridge, MA., 11 – 14 April.

Type of publication Conference item

Link to publisher's
version

https://www.usenix.org/legacy/publications/library/proceedings/c++94/i
ndex.html
Access to the full text of the published version may require a
subscription.

Rights © 1994 The authors. Copyright to this work is retained by the
authors. Permission is granted for the non-commercial reproduction
of the complete work for educational or research work. This paper
was originally published in the USENIX C++ Conference
Proceedings, April 1994.

Item downloaded
from

http://hdl.handle.net/10468/2651

Downloaded on 2017-02-12T14:09:21Z

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Cork Open Research Archive

https://core.ac.uk/display/61578537?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.usenix.org/legacy/publications/library/proceedings/c++94/index.html
https://www.usenix.org/legacy/publications/library/proceedings/c++94/index.html
https://www.usenix.org/legacy/publications/library/proceedings/c++94/index.html
http://hdl.handle.net/10468/2651

1

The Object Binary Interface—C++ Objects
for Evolvable Shared Class Libraries

Theodore C. Goldstein
Alan D. Sloane

SMLI TR-94-26 June 1994

Abstract:

Object-oriented design and object-oriented languages support the development of independent
software components such as class libraries. When using such components, versioning becomes
a key issue. While various ad-hoc techniques and coding idioms have been used to provide ver-
sioning, all of these techniques have deficiencies—ambiguity, the necessity of recompilation or re-
coding, or the loss of binary compatibility of programs. Components from different software ven-
dors are versioned at different times. Maintaining compatibility between versions must be con-
sciously engineered. New technologies—such as distributed objects—further complicate libraries
by requiring multiple implementations of a type simultaneously in a program.

This paper describes a new C++ object model called the Shared Object Model (SOM) for C++
users, and a new implementation model called the Object Binary Interface (OBI) for C++ imple-
mentors. These techniques provide a mechanism for allowing multiple implementations of an
object in a program. Early analysis of this approach has shown it to have performance broadly
comparable to conventional implementations.

email address:
ted.goldstein@eng.sun.com

A Sun Microsystems, Inc. Business

M/S 29-01
2550 Garcia Avenue
Mountain View, CA 94043

2

1 Introduction

Software either evolves or dies. Software evolution occurs in response to numerous
requirements, including bug fixes, user demands for greater functionality, and especially
to support changes in related software. Object-oriented programming promises to allow
individual class library components to evolve independently of clients. Many modern
operating systems allow software libraries to be efficiently shared among individual
program address spaces using dynamically-linked shared libraries. Shared libraries work
by deferring certain binding operations until the program is loaded and executed. This
sharing provides efficient utilization of the computer systems memory, but deferring the
binding time of class libraries introduces the risk of version incompatibility between
library and client software. However, deferring the binding time also provides the
opportunity to improve software by introducing new functionality and fixing software
defects.

This work builds upon the idea of evolvable classes introduced by [Ellis & Stroustrup]
suggesting the use of tables of offsets to members. Andrew Palay further developed the
ideas of evolvable classes in his∆C++ system [Palay]. Like Palay, we define certain
compatible changes to a class library that will not require recompilation or changes to a
client.

* Copyright to this work is retained by the author(s). Permission is granted for the noncommercial
reproduction of the complete work for educational or research work. This paper was originally published in
the USENIX C++ Conference Proceedings, April 1994.

The Object Binary Interface—

C++ Objects for Evolvable Shared Class Libraries*

Theodore C. Goldstein

Sun Microsystems Laboratories, Inc.
2550 Garcia Avenue

Mountain View, CA 94043

Alan D. Sloane

SunPro
2550 Garcia Avenue

Mountain View, CA 94043

3

1.1 Compatible evolution

The following example illustrates the relationship between the implementor of a C++
library, the developer of an application (or another library) who uses that library, and the
end-user of the application.

Suppose the library implementor changes the implementation oflib.so , or changes the
interface in an upwardly compatible way to provide additional functionality and ships the
new version to the end-user. The end-user expects—quite reasonably—that the expensive
Computer Aided Design (CAD) package bought from the Independent System Vendor
(ISV) will still run. The end-user cannot recompile the CAD package, doesn’t have
sources, and may not even have a compiler. On the other hand, the library-implementor,
even if it’s the platform library implementor, cannot require all ISV’s to synchronize. In
reality, synchronization will be even more complicated since the CAD package likely
requires libraries from several different vendors. To fulfill the promise of modular
software components, object-oriented technology must support compatible replacement of
software libraries.

It must be possible to introduce compatible changes to a library without requiring any
changes to the source code or even recompilation of the clients of the library. Run-time
mechanisms for object-oriented languages must support compatible evolution of class
libraries.

Library

lib.so

Library Implementor

Library

lib.so

Application

CAD

End User executes the application which
dynamically links application and library

Library Client

CAD application
referenceslib.so

Application

CAD

static
files

dynamic
execution
of the program

Figure 1. Library, application and end-user

4

1.2 Interface-implementation independence

Recent technologies, such as the Object Management Group’s CORBA [OMG], which
support distributed applications allow objects to span address spaces. Objects may be
defined in one program and used in another. Objects move from one address space to
another through a linearization and communication process such asremote procedure call
[Birrell & Nelson] or object invocation [OMG]. A very useful mechanism is for the
external address space to pass an instance of a derived class. Frequently, during the
unmarshalling of the object, it may be discovered that the new address space does not have
the derived class implementation of the object, but only the base class interface of the
object. Dynamic linking provides a mechanism a program may use to acquire the
corresponding implementation for a marshalled object.

Imagine, for example, that X11’sXLibTM library is written in C++. Suppose there is a
hypothetical third party library vendor writing a window system toolkit called
InterMotifViews that uses XLib. Among the applications using InterMotifViews is a
sophisticated network-oriented application calledCADMaker. Since XLib and
InterMotifViews come from separate vendors, their will always be a time delay between
release of the XLib library and the next release of InterMotifViews. It may even be
possible that end-users receive updates of the X11 library before the maker of
InterMotifViews sees it. Figure 2 depicts a Winter and following Summer reconfiguration
of the CADMaker application.

Figure 2. Library and application dependencies

Suppose the environment and libraries support multiple user distributed applications. The
hypothetical InterMotifViews is designed for running workgroup applications which allow
users to work together. Also, some servers at a CADMaker client site are running the
Winter version and some are running the Summer version of XLib. CADmaker programs
share objects. Objects which are made by compatible but different class libraries in an
external program are transferred and shared from one address space to another through
mechanisms such as CORBA. Figure 3 depicts the summertime execution context of
CADMaker. where X11 R16 implementation objects come from an external address space
marshalled through some Remote Procedure Call (RPC) mechanism.

X11 R15
XLib.so

v1
InterMotifViews.so

CADMaker
Application

X11 R16
XLib.so

v1
InterMotifViews.so

CADMaker
Application

Winter Version Summer Version

5

Figure 3. Marshalled objects

The correct behavior is that the application has access to both R15 and R16 libraries
simultaneously. If XLib objects are accessed only through virtual functions, the
CADMaker application should be unaware of the version differences between XLib R15
and XLib R16 created objects. The code mechanisms of unmarshalling (and dynamic
loading) arrange to get the correct addresses for the new library into the virtual function
tables.

A single CADMaker application will contain instances derived from both R15 and R16
XLib code. Enabling such multiple versions can be achieved easily by strictly respecting
the encapsulation boundary of objects. An object should not access the private data of any
other object, even those of its own class, except through virtual function calls. The private
data of an object is truly kept private. Thus the only restriction over the normal C++ object
model is that private data may only be accessed either explicitly or implicitly through the
“this pointer.”

These usage rules place restrictions on what the library vendor can do with C++ objects.
Despite these restrictions, the advantages of allowing multiple definitions of an object in
the same address space at the same time is significant and worthwhile for many
applications. Note also that even in ordinary, non-distributed applications, dynamic
loading makes it possible to have multiple implementations of an object coexist in the
same address space. We will refer to the property of supporting multiple implementations
of a type within the one address space asinterface-implementation independence.

X11 R15
XLib.so

v1
InterMotifViews.so

CADMaker
Application

X11 R16
XLib.so

v1
InterMotifViews.so

d
ynam

ically load
ed

CORBA mechanism

R6 derived objectsR5 derived objects
externally created objects

6

2 Related Work

Several previous authors have discussed the issue of versions and evolution, some in the
context of programming languages, but most in relation to schema evolution in object-
oriented databases. A brief summary of these approaches is described in [Goldstein].

2.1 ∆C++

∆C++’s solution does not support multiple implementations of an object in an address
simultaneously.∆C++ allows a developer to make compatible changes to a class with
minimal recompilation of clients. The set of compatible changes maintains or extends the
class interface without altering the code sequence used to access members of that class.
∆C++ accomplishes this by resolving classes at link time. Changes are handled by
extending the linker to support new relocation types such as member offset. Most code
sequences are identical tocfront generated code [Ellis & Stroustrup] except for
constructors/destructors, calls to non-virtual members, access to embedded structures, and
some optimizations. The expense of this technique is additional program start-up time
latency while the linker processes the additional relocations.

2.2 System Object Model

The System Object Model (SOM) was developed at IBM. There are several variants—
SOM, Distributed SOM (DSOM) that supports distributed objects within the general
framework of the Object Management Group’s CORBA, and Persistent SOM (PSOM)
that supports persistent objects. All of these provide run-time support for a common
interface to “objects” independent of programming language. They also have an extensive
metaclass framework, which in the DSOM case supports the dynamic invocation interface
of CORBA.

By extending Interface Definition Language’s (IDL) notion of interfaces [OMG] with an
implementation construct called “release-order: ”, SOM supports extension and
change of an interface. Other aspects of class evolution are implemented by SOM’s
metaclass protocol. SOM puts the burden on the user to maintain the correct release order
across versions. For example, the release-order entries must only be extended, never
removed or deleted. SOM uses a dispatch mechanism that supports multiple inheritance,
but favors single inheritance implementations. SOM is a hybrid of the Smalltalk metaclass
object protocol and the OMG object model layered on top of C++. Additional overhead is
required for multiple inheritance involving caching and hash lookup tables. The principal
difference between the Object Binary Interface (OBI) and SOM is that the OBI approach
still assumes the essential mechanism and efficiency found in C++, while SOM emulates
the object model using Smalltalk-like framework.

2.3 Schema evolution

The object-database community has long recognized the necessity for supporting type and
schema evolution. Object-database systems that support evolution include: Orion
[Bannerjee], GemStone [Penney & Stein] and O2 [Bancilhon]. The E compiler in the
Exodus system [Richardson and Carey] follows a technique similar to the OBI in using
offsets to point to virtual base classes. However, no support for multiple versions of an
object class in a database has been described in this work.

7

2.4 Design focus of the OBI

All the mechanisms that have been proposed to support evolution of class definitions
either involve significant extra indirection at run-time or require extra relocation work by
the runtime linker. Linker start-up latency is already noticeable in dynamically-linked C++
programs. Our concern is that additional start-up latency would be unacceptable.

Unlike ∆C++ and SOM, we believe that not all changes of a class interface are of equal
utility between version release. During software development, radical rearrangement of
function order and other class hierarchy is useful. There is little value in supporting
arbitrary reordering of member functions between tworeleased versions of a class. Our
selections of changes and usage rules provide compatible evolution of types and interface-
implementation independence with limited impact on C++ usage. The OBI design’s
highest priority is to allow the private parts of an object to change arbitrarily. The second
highest priority is to allow extension by addition [Harrison & Ossher]. Other changes such
as rearrangement of class hierarchies are not unimportant, but are not the focus of this
work. If desired, it is simple to add a#pragma annotation which specifies the order of
data members. The OBI design differs from previous work in that it focuses on a select
few high values changes, and it supports multiple simultaneous implementations of a class
within an address space.

3 Existing Support of Versioning in C++

There are several techniques that might support versioning within C++, including
renaming, derivation, and namespaces. All of these techniques provide some handle on the
problem, but all are insufficient to meet our criteria stated above. Renaming functions, for
example, have been around as long as there have been symbolic identifiers. Version 6
UNIXTM had a file seeking operating system call namedseek which took one 16 bit
integer argument. The obvious flaw of files exceeding 64 K was fixed in version 7 UNIX
by adding in the operating system call namedlseek . This works amazingly well because
both the old and new operations can coexist. In practice, there is no limit to the number of
“ l ”’s or other version-specific characters one can add onto an identifier, but exceedingly
long identifiers become unwieldy and are a blight on the code.

Objects require additional support. Users would like new objects to be accepted anywhere
an old object was accepted. One proposed solution, is to represent version conformance
explicitly by modeling it using derivation [Hamilton & Radia].

class UNIX_File_v6 {
unsigned short seek(unsigned short offset, int whence);

};
class UNIX_File_v7 : public UNIX_File_v6 {

unsigned long seek(unsigned long offset, int whence);
};

As an alternative, the recently defined namespace extension to the ANSI/ISO C++ draft
standard provides a mechanism that can alleviate the unwieldiness of the long identifiers
[Stroustrup]. Applications that contain objects derived from the UNIX_File_v6 class must
be edited and recompiled to take advantage of the newer UNIX_File_v7 class. We want a

8

solution that allows application objects to transparently use the latest version of the class.
The approach we have chosen makes versions orthogonal to the C++ type system.

4 The Shared Object Model

The Shared Object Model provides a C++ programmer with an additional annotation to
partition class library into classes that the implementor guarantees never to change, and
classes that may change. The first category often corresponds to “key” components of the
library whose interface is extremely well understood and for which optimal
implementations are well known. The overall run-time performance of the library is
dominated by the performance of these key components. For example, an implementor of
a reference counting object might decide to expose via inline functions the
implementation. The implementor is trading off the risk of the need to change the
implementation of the reference counting object in order to gain better performance.
Inlines effectively export the implementation (e.g., the layout of the private members) of a
class and so precludes any possibility of evolution.

The second category corresponds to outer layers of abstraction, usually having more
complex semantics and larger granularity. Thus, adding overhead to function calls for
these layers will have less impact on the performance of the library as a whole.
Correspondingly, these are the layers whose semantics are most subject to change from
version to version and where there is greater variability in implementation. They are the
classes where support for evolution is most important. Support for evolution is not
appropriate for all classes.

Recognizing this, we chose to add extra syntax to identify evolvable classes to the
compiler. We considered using a#pragma , but instead chose to use a linkage
specification:extern “shared” { ... } . A linkage specification fits very well with
our requirements:

(1) It is not a language extension. We abhor any further extensions to this language.
But the C++ draft standard allows an implementation to provide an arbitrary set of
linkage specifications in addition to the required specifications “C” and “C++.” We
have defined a specification “shared ,” which results in linkage conventions
suitable for long-lived interfaces and for linkage across shared object boundaries.

(2) Code using linkage specifications is portable. Compilers which do not support a
particular linkage specification will generate a warning, but supply default linkage.

(3) It is semantically accurate. The concept of “linkage” is concerned with
communication across translation unit and library boundaries, especially if it
provides cross-language models.

(4) It is syntactically appropriate. Entire header files can be easily “wrapped” to use
shared linkage, just as existing C header files could be given C linkage with
extern “C.”

9

4.1 extern “shared” { ... }

We chose the wordshared because we wanted to allude to System V shared libraries
(dynamically-linked libraries), and because most of the suggested alternatives, such as
dynamic , global and export , had other conflicting connotations. In our
implementation, a “shared ” linkage specification affects only class definitions and their
member functions, and does not affect non-member functions. The layout of class objects
and the mechanism for calling virtual functions depends on thelinkage specification of the
class as, for example, in the following code fragment:

extern “C++” {
void f(int);
class A { ... };
class B : public A { ... };

};
class C { ... };
extern “shared” {

int g(X*);
class X { ... };
class Y : public X { ... };

};

The functionvoid f(int) and the classesA, B andC have default or “C++” linkage; the
functiong(X*) and the classesX, andY have “shared ” linkage. A given class can have
only one linkage specification throughout a program (This is the same rule which applies
to the linkage specification of functions in the C++ draft standard). Moreover, the
representation of apointer-to-member-of-shared-class is different from the representation
of apointer-to-member-of-default-class, and assignment of one to the other is not allowed.
In addition, there is a semantic restriction on how classes with different linkage
specifications can be combined. A derived class and all it’s base classes must have the
same linkage specification.

4.2 Semantics of the Shared Object Model

The principal new rule of the OBI is that the private data of an object must be strictly
encapsulated. Thus, the 1990’s corollary of “only friends may touch your private parts” is
that “no one else may touch your private parts.” The official rules of the OBI are:

(1) The only access to the private data members of an object is through the object’s
(explicit or implicit) this pointer. Non-virtual functions, both member functions
and non-member friend functions, cannot access the private parts. The shared
object model does not prohibit access to public or protected data members.

(2) New public and protected members (both data-members and virtual functions)
must be added to the end of the list of existing members.

(3) The one definition rule for object types is relaxed for shared linkage types within a
program (but not within a single compilation unit).

10

5 The OBI Implementation Model

The shared object model is implemented using the OBI implementation model. Of course,
users do not need to know the mechanics of the OBI implementation model. The principal
notion is that the OBI is a binary interface similar in spirit to the System V Application
Binary Interface (ABI). It is possible that a future generation of the OBI may allow for
binary compatible linkage of other Object-oriented languages besides C++. The OBI has
three basic concepts:

(1) The OBI specifies that each instance of a class with shared linkage contains an
optr (pronounced oh-pointer) as its first element. Theoptr points to anotbl
which describes the layout of the class instance and how to invoke the virtual
functions of the class.

(2) Public and protected data members come first. After all public and protected data
members come the private data members. Consequently, the public and protected
data members of a class can be extended because only the private data is adjusted;
but the total ordering of the public and protected data members is preserved!

(3) All inheritance is implemented in a fashion similar to virtual inheritance. The
fundamental mechanism is to allow the relationship between base and derived
objects to change and evolve. The virtual inheritance mechanisms incfront
provide the inspiration for the necessary indirection.

As with many simple ideas, these two rules generate many important implementation
details. The rest of this paper describes the OBI implementation model, including several
key algorithms.

5.1 otbls

For classes with shared linkage,otbl s take the place ofvtbl s. The terms optr and otbl
originate from the vptr and vtbl described in [Ellis & Stroustrup]. The ‘o’ may stand for
‘offset’ or ‘object’. Within an object, the public and protected data members immediately
follow the optr. The object’soptr points to thesize field in the fixed part of theotbl .
The base_part structures are indexed backwards from there, andfunction_part
structures are indexed forwards. Thebase_part structures are indexed in order on a left-
to-right, pre-order depth-first traversal of the inheritance Directed Acyclic Graph (DAG),
with base_part ’s for virtual bases left to the end and allocated in the order the virtual
bases were encountered in the graph traversal. Thefunction_part structures are
allocated for each virtual function defined in the class in order of declaration.

An otbl is global data, and will have an external “mangled” name. It can be treated as a
global variable or (probably better) as a private static data member of its class. One
difference betweenvtbls andotbls , is thatvtbls along the left linear tree walk of the
derivation are concatenated. This concatenation is not possible withotbls , as it would
prohibit growth in adding new virtual functions to the end.

11

5.2 Class layout

Within the public/protected section and the private section the members are laid out in
declaration order. The order in which the base classes are laid out is unimportant, since all
accesses to inherited members are calculated through offsets found in theotbl . Theotbl
consists of three parts:

The relationship between an object and itsotbl is presented in Figure 4. Theotbl points
to the “otbl descriptor” which is located in the middle of the object. In the following
sections, we show through pseudo-code and diagrams how classes with shared linkage and
objects of such classes are used. This description coversall possible uses of the object by
client code.

5.3 Allocation of automatic and static instances

Automatic objects of a class with shared linkage are allocated on the stack frame via an
alloca -like mechanism detailed below. Objects are represented by a pointer to a location
elsewhere in the stack frame, and the “real” object is laid out by special prologue code in
the function. Static objects, whether global or file static, are represented by a pointer and
the “real” object is on the heap since the real object is not known. Allocation and
initialization of statics are done (as is conventional) with.init code.

(1) an array ofbase_part structures which grows
backwards providing base class information.
Eachbase_part consists of a pointer to an
otbl and the offset of the base class object.

(2) a fixed descriptor section describing the size of
instances, the number of direct virtual functions,
and the total number of base classes. This part
also contains access to the runtime type informa-
tion.

(3) an array offunction_part structures which
consist of a pointer to a direct virtual function of
the class and adjustments for the object pointer
and the return value.

struct __otbl{
struct base_part {

__otbl* base;
size_t widen_offset;

 } base[n_bases];

size_t size;
size_t n_functions;
size_t n_bases;
TypeInfo* tinfo;
size_t most_widen_offset;

struct function_part {
size_t this_adj;
size_t ret_adj;
void (*fct)();

} function[n_functions];};

12

this_adj
ret_adj

size

n_functions

n_bases

reserved

reserved

base
widen_offset

Descriptor

Bases

Virtuals

optr

public/protected
private

private

base
widen_offset

fct

optr

private

optr

public/protected

public/protected

Figure 4. Object and otbl

this_adj
ret_adj
fct

Object

base objects Otbl

frame_size
(pre-allocated)

A_otbl.size

i

pA

myB

pB

myA

B_otbl.size

extern “shared” {
class A {
public:

int a1;
int a2;

};

class B : public A {
public:

int b;
};

}

void func() {
int i;
A myA, *pA;
B myB, *pB;

}

Figure 5. Allocation of auto objects in shared linkage

13

5.4 Access to data members

Just as in default linkage, to access a member defined in the class itself (not a base class),
we use an offset determined at compile-time. Notice that changing the size of the private
part or extending the list of public and protected members does not change the offsets
compiled into client code for existing public and protected members, since they are laid
out in declaration order immediately after theoptr and before the private members. We
require that implementation code for the class, i.e., member function and friend function
bodies, which directly accesses the private members, must always be compiled against the
up-to-date version of the class definition, and so the compile-time determined offsets are
valid. To access a member defined in a base class, we proceed in the following steps:

(1) follow the object’soptr to it’s otbl

(2) index in thebase array to find the appropriatebase_part structure

(3) add thewiden_offset to the address of the object to find the base class object

(4) add the offset of the member within the base class.

Thus, the C++ statement“myB.a2= 999; ” is equivalent to the following C statement:

((A*)((char*)&myB + myB.optr->base[0].offset))->a2= 999;

5.5 Pointers to data members

A pointer to data member is represented by an instance of class__smdptr , which is
defined as follows:

struct __smdptr {
size_t base_index;
size_t offset;

};

The base_index is negative if it is a direct member, and not a member of a base class.
An example of accessing a pointer-to-data-member is:

extern “shared” class B {
public:

int b1:
int b2;

};

extern “shared” class D : public B {
public:

int d:
};
int D::* p = &D::b2;
D* pD = new D;
pD->*p = 999;

In client code, this must be a public or protected member of a public or protected base.

14

The pointerp is represented as:

__smdptr p = {1,4};

Referencing throughp results in a lookup of the appropriatebase_part structure in the
otbl :

__otbl* ot = pD->optr;
char* pTmp =(B*)((char*)pD + (p.base_index < 0 ? 0 :

ot->base[p.base_index].widen_offset));
* ((int*) (pTmp + (char*)p.offset)) = 999;

5.6 Derivation and casts

Casts are implemented in much the same way as in conventional implementations, except
that the adjustments applied to pointers are not compile-time constants, but rather must be
looked up in the object’sotbl . See for example,The Annotated C++ Reference Manual
[Ellis & Stroustrup], pages 221–227.

Downcasts (i.e., casts from base to derived class) are implemented by casting to the most
derived class using themost_widen field, and then back to the intermediate class. As a
consequence of this, downcasts from virtual bases are supported, but the result of
downcasting to a non-virtual intermediate base which occurs twice in the hierarchy is
undefined. This is the only difference we have identified between shared linkage and
“standard” C++, and many users find it less restrictive than the absence of casts from
virtual bases. In passing, we note that this same restriction is also present in SOM’s C++
mapping. The layout of the object pointed to bypC, and it’s network ofotbls is shown in
Figure 6.

Figure 6. Cast from a derived class to a base class
extern “shared” {

class V { public: int v; private: ... };
class A : public virtual V {

public:int a;
};
class B : public virtual V {
public:int b;

};
class C : public A, public B {
public:int c;

}; }

C* pC = new C;
B* pB = pC;// implicit cast, B* ← C*
V* pV = pB; // implicit cast, V* ← B*

15

Pseudo-code illustrating the implementation of the casts is:

__otbl* ot = pC->optr;
pB = (B*) ((char*)pC + ot->base[1].offset);
__otbl* ot2 = pB->optr;// B in C otbl
pV = (V*) ((char*)pB + ot2->base[0].offset)

Unlike normalvtbls , there is no difference in the code generated for casts to virtual and
non-virtual bases. In the example,

__otbl* ot = pC->optr;

setsot pointing toC_otbl . Then

ot->base[1].offset // has the value 16.

Adding 16 to pC sets pB pointing to the object representing theB part ofC, and theoptr
for that object points toBinC_otbl .

The cast toV* is implemented as follows:

ot = pB->optr;

setsot pointing toBinC_otbl .

ot->base[0].offset // has the value 8.

Finally, adding8 to pB setspV pointing to the object representing theV part ofB (and ofA
andC since it’s virtual), and theoptr for that object points toVinC_otbl. A complete
pictorial representation of the derived class instance and its otbl hierarchy can be seen in
Figure 7 on page fifteen.

The GNU C++ compiler,g++, uses a similar scheme to implement virtual derivation in general where the
virtual base pointers are replaced by offsets stored in the vtbl.

16

.

5.7 Composition

By composition, we mean the declaration of a member of a class which is itself of a class
type. This is the common use of embedding one class in another as in:

extern “shared” class A { public:int a1, a2;};
class B {
public: int b1;

A ba;
int b2;

} myB;
myB.b2 = 999;

The offset of the memberb2 of B is dependent on the size ofclass A , which must be
looked up in theotbl . So the code to make the assignment tomyB.b2 looks like

* (int*)((char*)&myB + OFFSETOF(B::ba) + myB.optr->size)) = 999;

5.8 Static data members

Static data members are unaffected by a “shared ” linkage specification.

5.9 Static class functions and friend functions

For static class functions and friend functions, there is no access to the private data
members. This is because these functions do not vector through the virtual function table.
There is no way to ensure that the compile-time correspondence of the private data of the
this pointer actually corresponds to the version of the implementation that is reached by
these functions.

optr(C)

optr(A)
a

optr(B)
b

optr(V)
v

c
32
3

...
Nvf_C

optr (V)
16
16
1

...
Nvf_A

optr (v)
8

16
1

...
Nvf_B

8
0

...
Nvf_V

C_otbl

AinC_otbl

BinC_otbl

optr(v)

24

optr(A)
8

optr(B)
16

VinC_otb

pC

0

8

16

24

32
instance of C

Figure 7. Layout of derived class instance and otbls

17

5.10 Constructors, operator new , and sizeof

As in default linkage,operator new is always called before the constructor. Note that
allocating an object of a class with shared linkage always requires a call tosizeof no
matter what storage class the user specifies. Moreover, in shared linkage,sizeof is not a
compile-time operator, but requires a lookup of theotbl . We can illustrate its
implementation with pseudo-code as follows:

size_t sizeof(TYPE) { return TYPE_otbl.size; }

But since there might be more than one implementation of type, it is more interesting to
usesizeof on an instance:

size_t sizeof(void* inst)
{

void* derived = ((char *)inst) + inst->_optr->most_widen_offset;
__otbl* ot_of_derived = *((__otbl**) &derived);

return ot_of_derived->size;
}

5.11 Initialization of otbls

Since values in theotbl representing instance size, base object offsets, and virtual
functions are not known until run-time (when the dynamic linker is run at program
initialization time, or after adlopen), theotbl cannot be initialized statically. However,
it must be initialized before any instance of the class can be allocated. In particular, the
otbl must be allocated before any call tosizeof . Thus, theotbl can be initialized by
.init code in the shared object, or by code run dynamically the first timesizeof is
called for the type and the result cached for further use.

The initialization of theotbl is done by calling a built-in static member function for each
class with shared linkage,otbl_creator_function . Figure 8 is pseudo-code that
describes theotbl creation algorithm.

18

__otbl* MY_TYPE::otbl_creator_function()
{
__otbl *my_otbl ← allocate(sizeof(fixed_part) +

n_bases * sizeof_(base_part) +
n_functions * sizeof(function_part));

my_otbl->n_functions ← MY_TYPE_NUMBER_OF_FUNCTIONS;
my_otbl->n_bases ← MY_TYPE_NUMBER_OF_BASES;
my_otbl->size ← sizeof(MY_DATA) + sizeof(_otbl*);
my_otbl->most_widen_offset = 0;

// Size and assign position of all base classes
foreach direct base otbl b of MY_TYPE in traversal order do

{ my_otbl->base b ← call TYPE b::otbl_creator_function();
// unify previous allocated virtual base class
foreach base otbl bb of otbl b

{
is otbl bb already allocated virtually?

{
delete base bb;

base bb ← previously allocated otbl;
}

else // Not seen yet. Allocate its region.
{

base bb->most_widen_offset = - my_otbl->size;
my_otbl->size += base bb->size ;

}
}

}
// Assign the values for the virtual function part
foreach base otbl bbb both direct and indirect

{
foreach function f in base bbb

{
if MY_TYPE overrides function f

{
base bbb->function f ->fct ← function;
base bbb->function f ->this_adj ← 0;
}

else
base bbb->function f ->this_adj ← base bbb.widen_offset;

if function f has a covariant return type == MY_TYPE
base bbb->function f ->ret_adj ← COVARIANT_TYPE_OFFSETf ;

}
}

return my_otbl;
}

Figure 8. Algorithm for the initialization of otbls

19

5.12 Virtual function calls

Calling a virtual function for a class with shared linkage involves an indirection through
one or twootbl s, depending on whether the function is defined in the derived class or
inherited from a base class. Figure 9 illustrates the implementation.

class A {
public:

virtual void vfA1();
virtual void vfA2();

};

class B : public A {
public:

void vfA1(); // override
virtual void vfB();

};

B* pB = new B;

pB->vfB(); // (1)
pB->vfA1(); // (2)
pB->vfA2(); // (3)

Figure 9. Virtual function call in shared linkage

This is implemented approximately as follows. Note that we show the implicitthis
parameter for purposes of illustration only.

__otbl* ot = pB->optr;

function_part* fp - &(ot->function[1]); // (1)
fp->*fct(this + fp->this_adj);

fp = &(ot->function[0]); // (2)
fp->*fct(this + fp->this_adj);

ot = ot->base[0].base; // (3)
fp = &(ot->function[1]);
fp->*fct(this + fp->this_adj);

Note that in the third case, the client code references thenested otbl for class A in class B
(nested tables are built even in the case of single inheritance). Thus, in later versions,
derived classes can add overrides of base class virtual functions.

20

5.13 Overriding the return type of virtual functions

To implement calls of virtuals in which the return type has been overridden, we use the
same mechanism as for ordinary virtual function calls with the additional step of adding
the return adjustment stored inret_adj . Note that, in fact,both adjustments must always
be done, since at run-time there is no knowledge of whether or not the function return type
has been overridden.

This implementation does not support cases where the overriding contraviant return type
is a class with shared linkage or is virtually derived from the original type. A full
implementation requires the execution of a complex code sequence that calculates the
return adjustment based on the actual type of the object.

5.14 Pointer-to-member-function

The pointer-to-member-function machismo is similar to the mechanism described in
Section 5.5. Pointers-to-member-functions are represented by a structure__smfptr ,
defined as follows:

struct __smfptr {
size_t base_index; // index of base

// -1 if direct
size_t index; // index of virtual

// negative if non-virtual
fptr faddr; // only for non-virtual

};

Note that the offset of theoptr need not be stored, since it is always at offset zero. The
base index is used to calculate the adjustment to be applied to thethis pointer, by a
lookup in theotbl .

6 Instruction Counts

Most operations are identical tocfront . This includes getting data and calling virtual
functions at the level of the type at which the data and function is defined. The only
differences occur when accessing data or calling a function in a base class. For the
cfront implementation model, there are different code sequences for virtual and non-
virtual inheritance. For the OBI implementation model, the code sequences are the same
for virtual and non-virtual inheritance. Table 1 on page twenty-one summarizes the
instruction count difference.

21

6.1 Calling a virtual function defined in a base class

This is the case for currentcfront non-virtual inheritance: 4 instructions

ld [%i0+8],%l1 ! load the vptr into l1
ldd [%l1+8],%l2,%l3 ! load double the thisDelta

! and function addr into l2,l3
add %l2,%o0,%o0 ! adjust the thisDelta
call %l3

This is the case for currentcfront virtual inheritance from a virtual base: 4 instructions

ld [%i0+OFFSET_PB],%o0 ! load pB->PB into o0
ld [%o0+8],%l1 ! load the vptr into l1
ld [%i1+12],%l2 ! load the function addr into l2

! the adjusted this pointer is
! already in o0)

call %l2

This is the case for OBI both virtual and non-virtual inheritance call up level: 5
instructions

ld [%i0],%l1 ! load the optr into l1
ld [%l1+A_IN_B_OFFSET],%l3 ! load B's A base into l3
ldd [%13+8],%l4,%l5 ! load double the thisDelta and

! function addr into l4,l5
add %i0,%l5,%o0 ! add the thisDelta to this
call %l4

6.2 Accessing a member in a base class

Currentcfront non virtual inheritance: 1 instruction

ld [%i0+OFFSET_OF_MEMBER],%l1

This is the currentcfront virtual inheritance: 2 instructions

ld [%i0+OFFSET_PB],%l0 ! load B's A base into %l0
ld [%l0+OFFSET_OF_MEMBER],%l1 ! indirect through PA

This is the OBI up level for both virtual and non-virtual inheritance: 4 instructions

ld [%i0], %l1 ! get optr
ld [%l1+A_IN_B_OFFSET],%l2 ! get the base class offset
add %i0,%l2,%l4 ! add the base class offset to this
ld [%l4],%l5 ! return the value

22

We believe that the overhead indicated is well within our acceptable levels. On modern
multi-stage pipelined architecture, we believe that the actual execution time will be
insignificant. Further study of the dynamic properties of the implementations are
underway.

7 Object Version Migration

As long as the interface changes which resulted in the new version of a class are upward
compatible, client code which was compiled against the old version works correctly when
passed a “new” object. Although we recommend against exposing data members in
software interfaces, it is still possible to have public and protected data members in this
scheme. Public and protected data members are still present and are located at fixed offsets
within the defining class. Our upward compatibility rules require that no public or
protected members are reordered or deleted. Virtual functions retain the same index within
theotbl which defines them (since upward compatible changes do not reorder or delete
virtual functions).

A problem arises however when code compiled against the new version of the interface
acquires an “old” object. How can this happen? This can arise if we have the following
sequence of versions of an interface:

// version V1.0
class Bar { ... };
void Bar::f(Bar *pb) { ... }

// version V1.1
class Bar { ... };
void Bar::f(Bar *pb) { ... pb->g(); ... }
void Bar::g() { ... } // new in version 1.1

If libraries implementing both versions of classBar , V1.0 and V1.1, are linked into the
program’s address space, then “new” code (in V1.1) can be passed an “old” object
(created by V1.0) and attempt to invoke an operation—such asg() —on it which the V1.0
object does not support.

call up level
 non-virtual
inheritance

call up level
virtual

inheritance

get an up level value
non-virtual
inheritance

get an up level
value virtual
inheritance

cfront 4 4 1 2
OBI 5 5 4 4

Table 1. Summary of instruction counts

23

At the present time we are exploring possible solutions to the version migration problem.
Note that in the case where shared linkage is used only to support evolution, and only one
version of a library is linked to a program at one time, there are no such “version
migration” problems. Among the approaches we have considered are:

(1) Perform a runtime bounds check on the virtual function invocation, testing the
otbl index against the value ofn_functions . A similar check is necessary for
access to public and protected data members.

Disadvantages of this approach are that it must be performed forall calls, and that
it is difficult to recover after a failed check (possible actions are to callabort or
raise an exception.)

(2) “Migrate” the oldotbls to newotbls .

In this case, the entries for unsupported virtual functions are set to point to runtime
error routines. This ultimately has the same error semantics as in option (1), but
there is no overhead of bounds checking for virtual functions. (In this way it is
analogous to the use of thunks in a conventionalvtbl to avoid unnecessary
adjustments to thethis pointer.)

(3) Separate the notions ofcompile-time type andrun-time type, and use the run-time
typeid operator to give the programmer explicit control.

We observe that we wish the compile-time type system to treat all conformant ver-
sions of a type as the same (e.g., allow any version of the typeBar to be passed to
a function declared as taking a parameter of typeBar), but that we may wish to
distinguish between them at run-time. In other words, applying thetypeid opera-
tor to objects of different versions of a type would produce different results. The
programmer could then explicitly test for version conformance and make appropri-
ate decisions.

(4) Reify the notion of namespace and allow it to dynamically correspond to a
physical entity such as a dynamically linked shared library. For example, create a
constructFion which allows a namespace to be returned from a system level
operation. For example: namespace foo = dlopen(..) ; Use the normal
C++ type system to enforce conformance.

At the present time, we do not consider any of the approaches listed above to be
satisfactory and remain interested in exploring further approaches. Although (4) is the
most intriguing, we do not believe the C++ language can tolerate any additional major
extensions.

24

The semantics we really require are those of the “newer is better” variety. A link time
mechanism, such as that in SunOS 4.x, which supports a (major, minor) version pair to
denote compatible versions, provides the correct semantics. A change in major version
denotes an incompatible change. A change in minor version denotes a compatible change,
and all compatible changes are serialized; i.e., there is no branching of compatible
changes. The binary file resulting from the compilation and link-editing of a library or
application records the version number of the dynamically-linked library on which it
depends. At run-time the dynamic linker selects, according to its search rules, a version of
the library which is the “newest.” This matches exactly in major version number, and for
which the minor version number is greater than or equal to the minor version number
specified in the client’s dependency list. Thus, there is only one version of a type present
in the client’s address space, and it supports at least the functionality required by the
client.

8 Conclusion

We have presented a new object model called theShared Object Model and a new C++
implementation model called the Object Binary Interface (OBI). These models restrict
some semantics of C++ programs to allow objects to span versions and to allow multiple
implementations of an interface to co-exist within an address space. The shared object
model supports virtual functions, public and protected data as well as derivation. The
principal restriction over the normal C++ object model is that private data may only be
accessed either explicitly or implicitly through the “this pointer.” By using the linkage
specification of C++ and allowing this key restriction of C++ usage, we are able to add an
evolutionary version object model without the need for a language extension. Initial
performance estimates indicate that this strategy is viable and adds little overhead to
programs.

9 Acknowledgments

The authors gratefully acknowledge the help provided by Michael L. Powell of SunSoft
and Michael S. Ball of SunPro, as well as all of the reviewers on the program committee.
We would especially like to thank Brian T. Lewis for the thorough reading and editing of
this paper.

25

10 References

[Bancilhon] Bancilhon, F., C. Delobel, and P. Kanellakis. Building an Object Oriented
Database System—The Story of O2. California: Morgan Kaufman, 1992.

[Bannerjee] Bannerjee, J., W. Kim, H. Kim, and H. North. “Semantics and
Implementation of Schema Evolution in Object–Oriented Databases.”Proceedings of the
ACM SIGMOD Conference (1987): 311–322.

[Birrell & Nelson] Birrell, A. D. and J. Nelson. “Implementing Remote Procedure Calls.”
ACM Transactions on Computer Systems 2, no. 1. (February 1984).

[Ellis & Stroustrup] M. Ellis & B. Stroustrup, The Annotated C++ Reference Manual, AW
1990.

[Goldstein] Goldstein, T., A. Sloane, M. Ball, and A. Palay. “Supporting the Evolution of
Class Definitions—Workshop Report.”OOPSLA '93–Addendum to the Proceedings. Also
SIGPLAN Notices (1994).

[Hamilton & Radia] Hamilton, G. and S. Radia. “Using Inteface Inheritance to Address
Problems in System Software Evolution.” Proceedings of the ACM Workshop on Interface
Definition Languages (1994). AlsoSun Microsystems Laboratories, Inc. Technical Report
SMLI TR–93–21(November 1993).

[Harrison & Ossher] Harrison, W. and H. Ossher. “Extension by Addition: Building
Extensible Software.” IBM Thomas J. Watson Research Center Research Report RC16127
(1990).

[Lenkov] Lenkov, D., M. Mehta, and S, Unni. “Type Identification in C++.” Proceedings
of the USENIX C++ Conference (April 1991).

[OMG] Object Management Group. The Common Object Request Broker: Architecture
and Specification. OMG Document Number 91.8.1 (August 1991).

[Palay] Palay, A. “C++ in a Changing Environment.” Proceedings of the USENIX C++
Technical Conference(September 1992): 195–206.

[Penney & Stein] Penney, D. and J. Stein. “Class Modification in the GemStone Object–
Oriented DBMS.” Proceedings of the ACM OOPSLA Conference (1987): 111–117.

[Richardson and Carey] Richardson, J. E. and M. J. Carey. “Persistence in the E
Language: Issues and Implementation.”Software—Practice and Experience19 (1989):
1115–1150.

[SOM] IBM. OS/2 2.0 Technical Library System Object Model Guide and Reference, IBM
Document Number 10G6309.

[Stroustrup] Stroustrup, B. “Namespaces.” ANSI X3J16/93-0105, ISO WG21/N0312.

26

About the authors

Theodore C. Goldstein is a Principal Investigator at Sun Microsystems Laboratories, Inc.
His research includes programming tools and methodologies for distributed operating
systems and object-oriented programming languages. Previously, Ted has been with
Whitesmiths, Ltd., Visicorp, Xerox PARC, and ParcPlace Systems. Ted holds a Bachelor
of Arts degree in Computer and Information Science from the University of California at
Santa Cruz.

Alan D. Sloane is a programming environment architect at SunPro, a business unit
division of SunSoft. Alan is a veteran of SAS, Inc., Glockenspiel, Ltd., and ParcPlace
Systems. Alan has a Masters degree from Trinity University of Dublin, Ireland.

27

Copyright to this work is retained by the author(s). Permission is granted for the noncommercial reproduction of the complete work for
educational or research work. This paper was originally published in the USENIX C++ Conference Proceedings, April 1994.

TRADEMARKS
Sun, Sun Microsystems, and the Sun logo are trademarks or registered trademarks of Sun Microsystems, Inc. UNIX and OPEN LOOK
are registered trademarks of UNIX System Laboratories, Inc. All SPARC trademarks, including the SCD Compliant Logo, are trade-
marks or registered trademarks of SPARC International, Inc. SPARCstation, SPARCserver, SPARCengine, SPARCworks, and SPAR-
Compiler are licensed exclusively to Sun Microsystems, Inc. Direct Xlib is a trademark of Sun Microsystems, Inc. All other product
names mentioned herein are the trademarks of their respective owners.

