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Abstract 

A 3D vertically stacked silicon nanowire (SiNW) field effect transistor featuring a high density 

array of fully depleted channels gated by a backgate and one or two symmetrical platinum 

side-gates through a liquid has been electrically characterized for their implementation into a 

robust biosensing system. The structures have also been characterized electrically under vacuum 

when completely surrounded by a thick oxide layer. When fully suspended, the SiNWs may be 

surrounded by a conformal high-κ gate dielectric (HfO2) or silicon dioxide. The high density array 

of nanowires (up to 7 or 8 × 20 SiNWs in the vertical and horizontal direction, respectively) 

provides for high drive currents (1.3 mA/μm, normalized to an average NW diameter of 30 nm at 

VSG = 3V, and Vd = 50 mV, for a standard structure with 7 × 10 NWs stacked) and high chances 

of biomolecule interaction and detection. The use of silicon on insulator substrates with a low 

doped device layer significantly reduces leakage currents for excellent Ion/Ioff ratios > 106 of 

particular importance for low power applications. When the nanowires are submerged in a liquid, 

they feature a gate all around architecture with improved electrostatics that provides steep 

subthreshold slopes (SS < 75 mV/dec), low drain induced barrier lowering (DIBL < 20 mV/V) and 

high transconductances (gm > 10 µS) while allowing for the entire surface area of the nanowire to 

be available for biomolecule sensing. The fabricated devices have small SiNW diameters (down 
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to dNW ~ 15-30 nm) in order to be fully depleted and provide also high surface to volume ratios for 

high sensitivities. 

Silicon nanowire field effect transistors (SiNW FETs) have provided a versatile platform for the 

ultra-sensitive and selective detection (through surface modification) of simple molecules [1, 2], 

ions [1, 3], and biological entities such as viruses [2], proteins [1], and DNA [4], ever since Cui et 

al., [1] produced the first SiNW pH sensor based on the pioneering work of Bergveld [5, 6]. The 

interest in nanostructures for sensing stems from their ultra-small dimensions that give rise to large 

surface to volume ratios (S/V). For such structures, a small number of charged biomolecules on 

the surface can efficiently modulate the conduction channel making the devices greatly sensitive 

in comparison to the planar (surface only) ion sensitive field effect transistor (ISFET) sensor that 

Bergveld introduced. SiNWs have therefore been widely utilized as FET-based biosensors since 

their first implementation. Nonetheless, their transistor characteristics in a liquid environment have 

seldom been thoroughly studied. Therefore in the present work, a 3D vertically stacked SiNW-

based structure has been electrically characterized as gated through a liquid by a backgate and one 

or two symmetrical platinum side-gates (SG1, SG2, Fig. 1). Our results were briefly introduced 

previously [7] but more thoroughly explained here. 
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Figure 1. Schematic of 3D vertically stacked SiNW FET biosensor. Three rows of three NWs 

vertically stacked in between source and drain anchors, two side-gates and a reference electrode 

(not used here) on a SOI substrate. 

Principle of operation 

An ISFET is a device analogous to a metal oxide semiconductor field effect transistor 

(MOSFET) for which the metal gate has been separated from the gate oxide and replaced by a 

reference electrode (RE) or local side-gate electrode. The electrode makes contact with the gate 

dielectric through the liquid that contains the analyte to be sensed (e.g., pH concentration). 

For a conventional MOSFET, in the linear region when VG > Vth (and Vd < VG-Vth) the drain 

current Id relationship with respect to VG (with VG being the gate voltage, Vd the drain voltage and 

Vth the threshold voltage) is given in Eq. 1 [8]: 

𝐼𝐼𝑑𝑑 = 𝐶𝐶𝑜𝑜𝑜𝑜𝜇𝜇
𝑊𝑊
𝐿𝐿
�(𝑉𝑉𝐺𝐺 − 𝑉𝑉𝑡𝑡ℎ)𝑉𝑉𝑑𝑑 −

1
2
𝑉𝑉𝑑𝑑2�  Equation (1) 

 

Cox is gate oxide the capacitance per unit area, W and L are the width and length of the channel, 

μ is the electron mobility. With the threshold voltage (Eq. 2): 

𝑉𝑉𝑡𝑡ℎ = 𝜙𝜙𝑀𝑀−𝜙𝜙𝑆𝑆𝑆𝑆
𝑞𝑞

− 𝑄𝑄𝑜𝑜𝑜𝑜+𝑄𝑄𝑠𝑠𝑠𝑠+𝑄𝑄𝐵𝐵
𝐶𝐶𝑜𝑜𝑜𝑜

+ 2𝜙𝜙𝑓𝑓  Equation (2) 

φM and φSi are the work function of the gate electrode and the silicon respectively, q is the 

elementary charge and Qox, QSS and QB are the oxide charge, interface charge and depletion layer 

charge in the silicon accordingly. Finally, φf is the Fermi level difference between doped and 

intrinsic silicon. 

In analogy, for an equivalent ISFET device, adsorbed charged molecules (e.g., H+ ions) produce a 

surface potential φ0 on the gate oxide resulting in Vth change (Eq. 3): 
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𝑉𝑉𝑡𝑡ℎ = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 − 𝜑𝜑0 + 𝜒𝜒𝑠𝑠𝑠𝑠𝑠𝑠 − 𝜙𝜙𝑆𝑆𝑆𝑆
𝑞𝑞
− 𝑄𝑄𝑜𝑜𝑜𝑜+𝑄𝑄𝑠𝑠𝑠𝑠+𝑄𝑄𝐵𝐵

𝐶𝐶𝑜𝑜𝑜𝑜
+ 2𝜙𝜙𝑓𝑓 Equation (3) 

Vref is the reference electrode potential, φ0 is the surface potential and χsol the solution’s dipole 

moment. For a fixed Vref, only the surface potential changes as a function of pH. The drain current 

for an ISFET then becomes (Eq. 4): 

𝐼𝐼𝑑𝑑 = 𝐶𝐶𝑜𝑜𝑜𝑜
𝑊𝑊
𝐿𝐿
��𝑉𝑉𝐺𝐺 − 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 − 𝜑𝜑0 + 𝜒𝜒𝑠𝑠𝑠𝑠𝑠𝑠 − 𝜙𝜙𝑆𝑆𝑆𝑆

𝑞𝑞
− 𝑄𝑄𝑜𝑜𝑜𝑜+𝑄𝑄𝑆𝑆𝑆𝑆+𝑄𝑄𝐵𝐵

𝐶𝐶𝑜𝑜𝑜𝑜
+ 2𝜙𝜙𝑓𝑓�𝑉𝑉𝑑𝑑 −

1
2
𝑉𝑉𝑑𝑑2� Equation (4) 

The surface potential change Δφ0 with respect to a pH value change�𝑑𝑑𝜑𝜑0
𝑑𝑑𝑑𝑑𝑑𝑑

 � has been derived from 

the site-binding (SB) and Gouy-Chapman-Stern (GCS) model [9-13], Eq. 5: 

 𝑑𝑑𝜑𝜑0
𝑑𝑑𝑑𝑑𝑑𝑑

= 2.303𝛼𝛼 𝑘𝑘𝑘𝑘
𝑞𝑞

 Equation (5) 

With κ being the Boltzmann constant, T the absolute temperature and α is the dimensionless 

sensitivity parameter (α = 0 – 1), Eq. 6: 

𝛼𝛼 = 1
�2.3𝜅𝜅𝜅𝜅𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑞𝑞2𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖⁄ �+1

 Equation (6) 

Cdiff is the differential capacitance that depends on the sensing solution’s ion concentration and the 

βint is the intrinsic buffer capacitance of the dielectric. The sensitivity parameter therefore reaches 

unity depending on the gate dielectric utilized, the ionic concentration of the solution and 

temperature. The resulting threshold voltage shift ΔVth in the Id-Vref characteristic reaches the 

thermodynamic Nernst limit of 59.5 mV/pH (at room temperature T = 300 K) as the sensitivity 

parameter α approaches unity. 

Sensitivity 

Typically in literature, the sensitivity S is defined as the absolute 𝑆𝑆 =  �𝐼𝐼𝑑𝑑𝑑𝑑0 − 𝐼𝐼𝑑𝑑𝑑𝑑1� or the 

relative variation of current or conductance G, 𝑆𝑆 =  (𝐼𝐼𝑑𝑑𝑑𝑑0 − 𝐼𝐼𝑑𝑑𝑑𝑑1)/ 𝐼𝐼𝑑𝑑𝑑𝑑0 due to a difference in the 

external potential (sensing event) with Idφ0 being the baseline current and Idφ1 being the current 

induced by the sensing event. Fig. 2 illustrates how the inherent transistor characteristics of the 
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FET device, namely the subthreshold slope 𝑆𝑆𝑆𝑆 = 𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆 𝑑𝑑(log10 𝐼𝐼𝑑𝑑)⁄  and the ΔVth shift resulting 

from the electric field induced by a sensing event both represent an upper limit to the sensitivity 

of a given device when biased in the subthreshold region. It is well known that for a field effect 

transistor the subthreshold slope is limited to ~ 60 mV/dec (at room temperature). The current 

change per pH (and hence the sensitivity of the device) reaches a maximum of 1 dec/pH for a 

device with a SS of 60 mV/dec for which a pH change induces an ideal Nerstenian Vth shift of 

almost 60 mV/pH at room temperature (grey-solid curves, Fig. 2). Even if the sensing surface can 

provide a Nerstenian response of ~ 60 mV/pH (α  1) if the subthreshold slope of the device 

increases, the sensitivity suffers (pink-dashed curves, Fig. 2). 

 

Figure 2. Id -VG curves illustrating how the drain current and hence the sensitivity changes with a 

change of pH that induces a Vth shift of 60 mV/pH (grey-solid and pink-dashed curves) and 200 

mV/pH (blue-dotted), for a transistor with a SS slope of 60 mV/dec (grey) and 80 mV/dec (pink), 

in the subthreshold region. 

SiNW based FET sensors in a double gate configuration (e.g., local liquid side-gate VSG and 

backgate VBG) have been shown to have Id-VSG characteristics for which the threshold voltage 
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shifts surpasses the Nernst limit as the pH changes [3, 14-18]. The dual gate configuration allows 

for the amplification of the surface potential when one gate acts as the tuning gate and the other as 

the driving gate of the FET. In the backgate-liquid gate configuration one gate acts as a driving 

gate that controls the current flow within the NW while the other acts a supporting gate that 

amplifies the threshold voltage shift as a function of pH [17, 18]. Fig. 2 (blue-dotted curves) 

illustrates how a threshold voltage shift beyond the Nerst limit (in here 200 mV/pH) results in 

gigantic drain current change and hence enhanced sensitivities. 

The 3D vertically stacked SiNW FET 

In here, 3D vertically stacked SiNW FET devices (Fig. 3a top side view of device and b, c close-

up) fabricated using conventional, top-down clean room processes [19, 20] have been 

characterized electrically in a dry and liquid environment. The device consists of a high density 

array (up to 8 × 20 SiNWs) of ultra-thin (dNW < 35 nm) suspended SiNWs anchored in between 

highly doped (n+ phosphorous > 1018 cm-3) extensions that act as a source and drain and one or 

two symmetrical Pt gate electrodes to the sides (Fig. 3b, c, d). The high SiNW density (Fig. 3e) 

guarantees the high utilization of the bulk silicon substrate, high output currents [21, 22] and high 

opportunities for biomolecule interactions as the number of conduction channels increases in more 

than one direction. The entire surface area of the SiNWs is exposed to the sensing environment as 

the NWs are suspended. Electrostatic control can be achieved by the use of one or both local side-

gates or the backgate through the liquid surrounding the NWs in a gate all around (GAA) 

configuration or an integrated reference electrode (not used here). The entire wafer/chip is covered 

with an SU-8 epoxy layer except for small windows (30 × 30 μm2) where the NWs will have 

contact with the sensing or gating liquid (Fig. 3b). The contact pad areas (100 × 100 μm2) located 

on either side of the chip and 1 mm away from the sensing window are also left open (Fig 3a),. 
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Wire bonding to a printed circuit board (PCB) or direct electrical probing can then be easily 

accomplished. The chip layout allows for enough space for a microfluidic channel to be directly 

bonded to the top of the structures (Fig. 3f). A droplet can also be simply placed on top of the NW 

window to allow for liquid gating and quick electrical characterization as done here. 

 

Figure 3(a) SEM top-side view of the entire device with two side-gates, source and drain contacts 

shown, (b, c) close-up shows source, drain, side-gates and NW area. The entire structure except 

for a small area is covered with SU-8, (d) top-side tilted view of suspended SiNWs, (e) close-up 

showing the silicon nanowires vertically stacked, (f) PDMS microfluidic channels on top of 

devices with contact openings shown. 
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The 3D FET structures were fabricated by using the natural scalloping effect resulting from 

consecutive BOSCH cycles and thermal oxidation [7, 20]. In order to accomplish electrical 

isolation from the bulk Si, the outline that defines each device was designed to have a width larger 

than the trench openings used to form the NW precursor scallops by the BOSCH process (T = 300 

nm or 200 nm), Fig. 4a, b. This guarantees that as the last NW scallop is formed it will touch the 

silicon on insulator’s (SOI) BOX so that every device “floats” on top of an SiO2 layer (1 μm, 

Fig. 4b). Also, the ion implantation hard mask (low thermal oxide, LTO) that serves to protect the 

NWs during the fabrication process further isolates each FET (Fig. 4c).  

 

Figure 4(a) Top-side view of etched structure’s outline, inset shows the scallops produced by 

BOSCH (S = 200 nm and T = 200 or 300 nm), (b) tilted-side view of scalloped outline right on 

top the SOI’s BOX layer, (c) tilted-side view of structure after LTO hard mask is deposited and 

S/D openings are etched for implantation. 

The oxide (thermal oxide + LTO) surrounding the SiNWs that protects them during the long 

fabrication is removed in a buffered oxide etch (BOE) bath at the end of the process. The SiNW 

vertical and lateral density is determined by the BOSCH process parameters and initial mask 

dimensions (S and T, Fig. 4a inset) [19, 20]. The number of NWs that can be stacked in the vertical 

direction is limited by the SOI’s device layer thickness (1 µm in here) but the number of NWs that 
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can be fabricated in the horizontal direction is for all practical purposes unconstrained. Fig. 5a, b 

shows the two types of arrays of SiNWs that were fabricated here. The first one has a constant 

density of 7 SiNW/µm in the vertical direction and 1.9 SiNW/µm in the horizontal direction. The 

second structure has a density of 8 SiNW/µm in the vertical direction and 2.4 SiNW/µm in the 

horizontal direction. Devices with varying number of SiNWs in the horizontal direction (10, 15 

and 20 NWs) and source to drain lengths (2, 3, 4 μm) were fabricated. The fabrication process has 

been presented in detail in an earlier publication [19]. 

 

Figure 5. SEM top-side tilted views of SiNWs arrays with two different vertical and horizontal 

SiNW densities and diameters: (a) V = 7 SiNW/μm, H = 1.9 SiNWs/μm, dNW = 15-30 nm and (b) 

V = 8 SiNW/μm, H = 2.4 SiNWs/μm, dNW = 25-35 nm (L = 2 μm). 

Results and Discussion 

The 3D FET device output and transfer characteristics were first obtained in ambient conditions 

(dry) prior to removing the SiO2 that surrounds the NWs. The measured drain current curves as a 

function of drain potential (Id – Vd) with increasing backgate voltage values (VBG = 0 – 40 V, VSG 

= 0 V) for an array with 7 × 10 SiNWs (number of NWs in the vertical and horizontal directions, 

respectively) and dNW ~ 45 – 55 nm are shown in Fig. 6. The curves are representative of the 

behavior of all measured devices. 
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Figure 6. Id-Vd curves with increasing backgate potentials (VBG from 0 to 40 V) for a 7 × 10 SiNWs 

structure prior to thermal oxide removal by BOE, (VSG = 0 V, L = 2 µm). 

The Id-VBG curves at high (Vd = 1 V) and low (Vd = 50 mV) drain voltages for the same structure 

(7 × 10 SiNWs) are shown in Fig. 7. 

  

Figure 7. Id-VBG curves for high (Vd = 1 V) and low (Vd = 50 mV) drain potentials for 

7 × 10 SiNWs structure with L = 2 µm, dNW = 45 – 55 nm prior thermal oxide removal by BOE. 
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The Ion current, defined as the current at which VBG = 10 V and Vd = 50 mV, normalized to NW 

diameter dNW = 55 nm for this structure (7 × 10 SiNWs, L = 2 μm), was found to be 40.5 μA/μm. 

The leakage current (Ioff), defined as the Id at VBG = 0 V, Vd =50 mV was found to be 0.1 μA/μm 

(normalized to dNW = 55 nm). The threshold voltage Vth is defined as the voltage for which the 

drain current reaches a value of 𝐼𝐼𝑑𝑑 = (100 𝜇𝜇𝜇𝜇 ∗ 𝑑𝑑𝑁𝑁𝑁𝑁/𝐿𝐿) as it is typically defined in industry [23]. 

A high backgate potential is needed in order to operate the device with a Vth = 11.6 V. A 

subthreshold slope of 1.6 V/dec was extracted from Fig. 7. As can be seen in Fig. 8, approximately 

70 nm of silicon oxide surround the SiNWs prior to oxide removal. Electrostatic control through 

the thick oxide (ε = 3.9) under dry conditions was therefore found to be poor as the high SS and 

Vth values and transfer characteristics indicate. 

 

Figure 8. SEM cross section views of the SiNWs still within their SiO2 enclosure from [20]. 

Liquid gated experiments 

After the oxide was removed to produce suspended SiNWs, the devices were characterized 

electrically in a liquid environment (isopropanol IPA, ε = 18) by the use of the backgate or Pt side-

gates (SG). Native oxide forms spontaneously (~ 2 nm) around the suspended nanowires after they 
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are exposed to ambient air, acting as a gate dielectric. The measurements were repeated several 

times (Fig. 9, for 8 × 10 SiNW, L = 2 μm). The use of the Pt electrode to gate the SiNW array 

through a liquid environment proved to produce repeatable measurements. Moreover, the transistor 

characteristics were obtained for different devices with the same parameters (length and number 

of NW) within the same die and were found to be comparable (Fig. 10). 

 

Figure 9. Id-VSG measurement repeated several times for an 8 × 10 SiNWs structure, L = 2 µm, 

dNW = 25-35 nm, Vd = 50 mV and native oxide gate dielectric tested in a liquid environment with 

a Pt side-gate. 
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Figure 10. Id-VSG measurements for different devices with the same geometric characteristics 

within the same die: 8 × 10 SiNWs structures, L = 2 µm, dNW = 25-35 nm, Vd = 50 mV, native 

oxide gate dielectric tested in a liquid environment with a Pt side-gate. 

The Id vs. VSG curves for a forward (solid) and reverse (open) sweep are shown in Fig. 11 for a 

8 × 15 SiNW structure with L = 2 μm. The Vth shifts slightly towards the left indicating a positive 

charge accumulation. Injected interface charges that do not dissipate as the gate bias polarity 

changes lead to a shift in the threshold voltage [24]. Hysteresis can affect the short term, and long 

term drift of the sensor response [25]. In here little hysteresis (< 15 mV) is found indicating small 

surface and interface (Si/SiO2) defect induced charge trapping [24]. 
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Figure 11. Id-VSG curves for forward (solid) and reverse (open) sweep for a 8 × 10 SiNWs 

structure, L = 2 µm, dNW = 25-35 nm and native oxide gate dielectric tested in a liquid environment. 

The Id-VSG (VS = VBG = 0 V) for increasing drain potentials (Vd = 50 mV – Vd = 1 V) for 

structures with 7 × 10, L = 2 μm are presented in Fig. 12 and Fig. S1 (supplementary information), 

respectively. 

 

Figure 12. Id-VSG curves for increasing drain potentials (Vd =50 mV – 1 V) of 7 × 10 SiNWs 

structure, L = 2 µm, dNW = 15-30 nm and native oxide gate dielectric tested in a liquid environment. 
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 The drain-leakage current here is the current at VSG = 0 V. The Ion current is defined as the value 

of Id at VSG = 3 V (normalized to average NW diameter). In terms of device performance, at low 

drain potentials Vd < 500 mV, the devices show very low drain leakage currents 

(Ioff < 2.1 × 10-6 mA/μm), high Ion (> 2 mA/μm) and high Ion/Ioff ratios (> 106) as can be seen in 

Fig. 13. At high drain potentials nevertheless, the Ioff
 increases dramatically (e.g., 

Ioff
 > 7 × 10-4 mA/μm when Vd = 1 V) degrading the Ion/Ioff ratio down to < 1.7 × 104 (Vd = 1 V). 

Large leakage currents through the liquid from source to drain are have successfully being reduced 

by covering all but a small area around the NWs with an SU-8 layer. Fabrication process variations 

account for the small differences in performance (Ion, Ioff, SS) and seemingly contradictory results 

(higher Ion currents for the 7 × 10 structures) between the 7 × 10 and 8 × 10 SiNW structures (and 

in general) as the two types of devices were fabricated at different times in a research setting. 

Therefore we do not try to compare the two but analyze the trends seen for both types of structures. 

As will be seen, the trends are comparable and speak of the robustness of the fabrication process. 
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Figure 13. Ion and Ioff (left) normalized to nanowire diameter (dNW = 15-30 for 7 × 10 SiNWs and 

dNW = 25-35 for 8 × 10 SiNWs FET) and Ion/Ioff current ratios (right) as a function of drain voltage 

with L = 2 μm, native oxide as a gate dielectric and tested in a liquid environment. 

The drain induced barrier lowering (DIBL) is defined as the induced reduction in threshold 

voltage at high drain voltages. The DIBL occurs when the height of the energy barrier that impedes 

carrier’s flow through the channel for a gate potential below threshold is reduced by the electric 

field induced by the drain potential, an effect of particular importance for short channel devices. 

Higher drain bias decreases the potential barrier and a conduction channel will form at lower gate 

potentials therefore decreasing the threshold voltage. The DIBL is defined here as DIBL =

 
𝑉𝑉𝑡𝑡ℎ|𝑉𝑉𝑑𝑑,𝑙𝑙𝑙𝑙𝑙𝑙  – 𝑉𝑉𝑡𝑡ℎ|𝑉𝑉𝑑𝑑,ℎ𝑖𝑖𝑖𝑖ℎ  

𝑉𝑉𝑑𝑑,𝑙𝑙𝑙𝑙𝑙𝑙−𝑉𝑉𝑑𝑑,ℎ𝑖𝑖𝑖𝑖ℎ
 with Vd,high = 1 V and Vd,low = 100 mV. The DIBL for all devices was found 

to be relatively small (< 70 mV/V). Though the NWs are long (L = 2, 3, 4 μm) by any standards, 

as the drain potential increases, it can also have a bigger influence on the surface potential along 

the NW gate channel through the liquid (drain/source parasitic capacitance through the liquid to 

the NW stack) resulting in an increase of electron injection from source to drain through the NWs. 

The low DIBL nevertheless points out to the fact that the leakage current occurs mostly from 

source to drain through the liquid. This can be mitigated by using low drain voltage potentials that 

are also favorable for low power applications. 

The SS values calculated from Id-VSG curves (VBG = 0 V and Vd = 50 mV) were found to be 

steep SS < 100 mV/dec and < 130 mV/dec for both 7 × 10 and 8 × 10 SiNWs structures, 

respectively (Fig. 13 and Fig. S1, supplementary information). These values are comparable to the 

lowest subthreshold slope values reported in literature for liquid gated SiNW FET devices (~ 100 

mV/dec) [26]. 
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The configuration of the 3D vertically stacked sensor permits an enhanced electrostatic control 

of the SiNW channels by the possibility of applying symmetric or asymmetric gate potentials 

through the liquid. Fig. 14 shows the Id-VSG with increasing VBG, while keeping the Vd = 50 mV 

constant for a 7 × 10 SiNWs structure. Similarly, the Id-VBG characteristics are shown in Fig. 15 

for increasing side-gate potentials. 

 

 

Figure 14. Id-VSG curves (left axis) for different backgate potentials (VBG from 0 V to 3 V) for a 

7 × 10 SiNWs structure, L = 2 µm, dNW = 15-30 nm, Vd =50 mV, tested in a liquid environment. 



 19 

 

Figure 15. Id-VBG curves for different side-gate potentials (VSG from 0 V to 0.5 V) for a 

7 × 10 SiNWs structure, L = 2 µm, dNW = 15-25 nm, tested in a liquid environment. 

Fig. 14 shows that as the VBG potential increases from 0 to 3 V, the Vth shifts significantly 

towards the left (from ~2.24 V to ~0.13 V for 7 × 10 SiNWs). The Vth changes (Fig. S2 

supplementary information) the most when the tuning gate voltage is low (VBG < 1.5 V) and then 

remains almost unchanged for higher VBG. As the VBG increases, the Id-VSG slope becomes steeper 

with the SS decreasing (i.e., from ~100 mV/dec to the excellent value of ~ 75 mV/dec at 

VBG = 1.75 V, for a 7 × 10 SiNW structure, L = 2 μm), Fig. 16. 
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Figure 16. Subthreshold slope from Id-VSG curves as a function of backgate potential for both 

7 × 10 and 8 × 10 SiNWs structure, L = 2 µm, Vd =50 mV, tested in a liquid environment. 

When a side-gate is used as a tuning gate and the backgate as the primary gate, a threshold 

voltage shift and subthreshold slope improvement are also observed in the Id-VBG curves (Fig. 15). 

The Vth shifts to the left from 1.6 V to 1.1 V and the SS decreases from SS ~ 106 mV/dec to ~77 

mV/dec (7 × 10 SiNW structure, L = 2 μm) as the VSG increases from 0 to 0.5 V. Fig. 17 shows 

the drain current as one (single gate) or two side-gates (double gate, DG) are swept (7 × 10 SiNW 

structure, L = 2 μm, Vd = 50 mV) with the Vth being reduced by 300 mV but in comparison to the 

asymmetric front-back gating it does not change/improve the subthreshold slope significantly.  

The coupling efficiency, typically defined by parameter α’ as the ratio between the ideal SS at 

room temperature (60 mV/dec) and the measured SS (α’ = SSideal/SSmeasured), for the same tuning 

gate potential (0.5 V), can be compared when either the backgate or the side-gates are used as the 

primary gates. The backgate coupling when VSG = 0.5 V is α’ = 0.8 in comparison to the side-gate 

coupling α’ = 0.6 for the same tuning gate potential (VBG = 0.5). This, together with the lower 

threshold voltages values found when the backgate is used as the primary gate indicates a more 
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efficient backgate coupling. The SU8 sensing window is designed to be small to reduce side-gate 

coupling through the liquid to the source and drain anchors. Nevertheless, part of the source and 

drain anchors are exposed to the solution as well. Both, the backgate and side-gates can accumulate 

or deplete the source and drain too. In particular, the backgate can not only influence the S/D 

indirectly through the liquid but directly as the structure sits on top of the BOX layer. Therefore, 

two competing effects happen as we apply a positive potential through any of the gates. First, an 

inversion channel that extends to the whole NW cross section can be easily formed. Second, as 

this potential is also felt at the source and drain, electrons can also be pulled away from the NW 

channels and towards the BOX oxide or S/D anchor surfaces as the potential increases. In 

traditional SOI based SiNW systems, the backgate capacitance CBG is dominated by the BOX layer 

and the solution gate capacitance CLG depends on the double layer capacitance of the solution Cdl 

as well as the native oxide capacitance [18]. Since the backgate in our system can also influence 

the SiNW gate channels through the solution, the double layer capacitance, native oxide 

capacitance and BOX layer capacitance all contribute to backgate capacitance and hence the higher 

backgate coupling efficiency.  
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Figure 17. Id as either one or both side-gates (DG) are swept for a 7 × 10 SiNWs structure, 

L = 2 µm tested in a liquid environment. 

When ideal bias conditions are utilized, it is possible to gate the stack of NWs more efficiently 

from different sides in order to achieve excellent transistor characteristics for high sensitivities and 

a low power operation. The surface potential induced by a backgate can result in an amplified 

threshold voltage shift and a large sensing signal (current change) by the use of a dual gate 

configuration [17]. The driving voltage (side-gate) determines the FET characteristics and the 

signal produced by the sensing event (e.g., pH) is amplified through the use of the backgate or 

vise-versa [15, 17, 27]. Therefore the devices presented here show great potential for biosensing 

applications. 

The electrical characteristics of devices with increasing number of NW channels and increasing 

length L dimensions are also compared. The devices with the highest number of nanowires 7 × 20 

and 8 × 20 (Fig. 18 and S3, supplementary information respectively) and the shortest lengths (Fig. 

S4, supplementary information) have the highest on state currents. 
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Figure 18. Id-VSG curves at high and low drain potentials for 7 × 10 and 7 × 20 SiNWs structures 

with L = 2 µm, dNW = 15-30 nm, tested in a liquid environment (left). Transconductances for the 

same devices are shown on the right axis. 

The maximum transconductance gm,max values were extracted from the measured Id vs. VSG 

curves. The transconductance 𝑔𝑔𝑚𝑚 = (𝑑𝑑𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆) is a measure of the sensitivity to surface charges. 

A high transconductance value means a bigger change in drain current for a given change in surface 

charge which can translate to higher device sensitivities when measuring the sensitivity in the 

strong inversion regime. High maximum transconductance values > 10 µS were found for all 

devices, Fig. 18 (right axis). 

The SiNW-dielectric interface is important for the electrical stability of the device. An inner 

oxide (native oxide) would provide a stable contact with the electrical domain whereas the outer 

dielectric provides a stable contact with the liquid. SiO2 is not the best pH selective material, and 

does not provide stable contact between the liquid and the sensor [11] since protons can penetrate 

the Si-oxide layers leading possibly to large leakage currents [3]. For that reason, HfO2 (10 nm) 

was deposited as a gate dielectric. 

From Equation 7 one can see that the SS is affected by the insulator dielectric constant εr and 

the thickness tox [28]. For fully depleted devices the depletion width Wdm extends through the bulk 

of the semiconductor channel and the capacitance ratio 𝐶𝐶𝑑𝑑𝑑𝑑/𝐶𝐶𝑜𝑜𝑜𝑜 ~ (𝜀𝜀𝑠𝑠𝑠𝑠𝑡𝑡𝑜𝑜𝑜𝑜 𝜀𝜀𝑟𝑟𝑊𝑊𝑑𝑑𝑑𝑑⁄ ) should be 

relatively small making the SS small. ALD layers of high κ dielectrics are typically necessary to 

prevent charge penetration through the native oxide to the SiNWs and to reduce leakage currents 

through the liquid from (εr = 15.6 for HfO2 vs. εr = 3.9 for SiO2). The equivalent oxide thickness 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑡𝑡𝐻𝐻𝐻𝐻𝐻𝐻2 �
ε𝑆𝑆𝑆𝑆𝑆𝑆2

ε𝐻𝐻𝐻𝐻𝐻𝐻2−κ
� was calculated to be 2.5 nm for the HfO2 dielectric layer. Though a higher 

gate capacitance should be expected for the (lower?) EOT, it is clear from Fig. 19 (7 × 20 SiNWs, 
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L = 2µm, 10 nm HfO2 gate dielectric) that the deposition of the HfO2 in fact degraded the transistor 

characteristics of our devices. The SS increased from ~100 mV/dec to ~ 150 mV/dec for HfO2 is 

possibly due to the unstable process conditions of the ALD deposition. The Vth also increases to > 

3 V. 

𝑆𝑆𝑆𝑆 =  𝑘𝑘𝑘𝑘
𝑞𝑞

 �𝑑𝑑(𝑙𝑙𝑙𝑙𝑙𝑙10𝐼𝐼𝑑𝑑)
𝑑𝑑𝑉𝑉𝐺𝐺

�
−1

=  2.3 𝑘𝑘𝑘𝑘
𝑞𝑞
�1 + 𝐶𝐶𝑑𝑑𝑑𝑑

𝐶𝐶𝑜𝑜𝑜𝑜
�  Equation (7) 

 

Figure 19. Id-VSG curves at high and low drain potentials for 7 × 10 SiNWs (Vd = 50, 100 mV, 

1 V) with and without HfO2, L = 2 µm, d = 15-30 nm, tested in a liquid environment. 

Finally, Fig. 20 shows the Id-VSG transfer characteristics (Vd = 50 mV and 1 V) for a 7 × 10 SiNW 

structure with L = 2 µm, d = 15-30 nm and native oxide as a gate dielectric measured in a buffered 

saline solution (PBS) with pH ~ 7.4 (ε ~ 80). The SS decreases to the excellent value of 87 mV/dec 

and the Vth shifts to 1.93 V (vs. 2.24 for device gated in IPA), as expected since the PBS has a 

higher dielectric constant. 
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Figure 20. Id-VSG curves at high and low drain potentials for 7 × 10 SiNWs (Vd = 50 mV, 1 V), 

L = 2 µm, dNW = 15-30 nm, tested in PBS (pH ~ 7.4). 

Conclusion 

3D vertically stacked silicon nanowire (SiNW) field effect transistors (FET) featuring a high 

density array (7 or 8 × 20 SiNW) of fully depleted channels, varying number of NWs in the 

horizontal direction (10, 15 and 20 NWs) and different channel lengths (2, 3, 4 μm) have been 

successfully fabricated by a CMOS compatible process on silicon on insulator (SOI). The 

structures were characterized electrically in a liquid for their implementation into a robust 

biosensing system for the first time. The channels can be surrounded by conformal high-κ gate 

dielectrics (HfO2), and their conductivity can be uniquely tuned by three gates: a backgate (BG) 

and two symmetrical Pt side-gates (SG) through a liquid, offering unique sensitivity tuning with 

high gate coupling. They feature ultra-small SiNW diameters (down to dNW ~ 15-30 nm) for full 

depletion and high S/V ratios for maximum sensitivities. The configuration of the 3D sensor offers 

excellent electrostatic control of the SiNW channels by the possibility of applying symmetric or 

asymmetric gate potentials while allowing for the optimization of the sensitivity and power 
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consumption trade-off. The lightly doped SOI substrate reduces Ioff < 10- 11 A for all the devices 

for excellent Ion/Ioff ratios > 106 at low Vd < 500 mV (pertinent to sensing experiments), low DIBL 

(< 20 mV/V) and high transconductance (gm > 10 μS) of particular importance for low power 

biomolecule sensing applications have been demonstrated. The operating point of the device can 

be optimized by working in the subthreshold region (steepest subthreshold swing). As VBG 

increases, the Id-VSG slope becomes steeper with SS decreasing from ~100 mV/dec (VBG =0 V) to 

the excellent value of ~ 75 mV/dec VBG < 1.5 V. The threshold voltage is shifting as well towards 

lower values due to an improved electrostatic control by the two gates. 

Methods 

Fabrication of Vertically Stacked SiNW Devices: 

ZEP-520A (Nippon-Zeon), a positive high resolution e-beam resist is first used to pattern silicon 

spacer (S = 200 nm) and trench (T = 300 nm and 200 nm) openings in a low thermal oxide (LTO) 

hard mask (100 nm). Scallops that serve as the basis of the SiNW structures are formed by a 

BOSCH process in an Alcatel AMS 200 inductively coupled plasma (ICP) etching system. The 

NWs are then formed by thermal oxidation in a dry oxygen atmosphere. A thick layer of LTO (> 

1 μm) is deposited as hard mask for ion implantation. More details on the fabrication of the 

vertically stacked stand-alone structures can be found in a previous article [20]. S/D areas for ion 

implantation are defined by e-beam lithography and a SiO2 anisotropic dry etch process. In the 

next masking levels the side-gates (Ti/Pt) and source/drain contact areas (Ti/Al/Pt) are defined for 

lift-off metallization by e-beam and optical lithography respectively. A thermal anneal process (30 

min at 425 oC in forming gas 10% H2/90 % N2) was performed to produce ohmic contacts. Isolation 

of the sensor structure is achieved by the optical lithography patterning of SU8. A last e-beam 

lithography step is necessary to define a window to selectively remove the SiO2 around the SiNWs 
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with a buffered HF acid bath (7:1, water: BHF) and avoid over etching of neighboring areas. The 

whole structure can be covered with a dielectric (HfO2) by atomic layer deposition (ALD). 

Electrical Characterization: 

The electrical characterization is carried out at room temperature using a Microtech Cascade 

probe station and an HP 4155B semiconductor parameter analyzer. A droplet of isopropanol (IPA) 

is placed on top of the device of interest in order to allow liquid gating with the suspended NWs 

and then covered with a glass slide to prevent fast evaporation of the liquid during the 

measurements. 
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