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Abstract  
Bacteriophage-encoded endolysins are produced at the end of the phage lytic cycle for the 

degradation of the host bacterial cell. Endolysins offer the potential as alternatives to 

antibiotics as biocontrol agents or therapeutics. This thesis investigates the lytic 

mechanism for three bacteriophage endolysins that target Clostridium species living under 

different conditions. For these three Clostridial endolysins a trigger and release mechanism 

is proposed for their activation. During host lysis, holin lesion formation suddenly 

permeabilises the membrane which exposes the cytosol-sequestered endolysins to a sudden 

environmental shock. This shock is suggested to trigger a conformation switch of the 

endolysins between two distinct dimer states. The switch between dimer states is proposed 

to activate a novel autocleavage mechanism that cleaves the linker connecting the N-

terminal catalytic domain and the C-terminal domain. The release of the catalytic domain 

is proposed to enable more efficient digestion of the bacterial cell wall for more effective 

release of viral progeny. Crystal structures of autocleaved fragments of CD27L and CTP1L 

were previously obtained. In these structures, cleavage occurs at the stem of the linker 

connected to the C-terminal domain. Despite a sequence identity of only 22% between 81 

residues of the C-terminal domains of CD27L and CTP1L, they represent a novel fold that 

is identified in a number of different lysins that target Clostridia. Within the crystal 

structures, the two distinct dimerisation modes are represented: the elongated head-on 

dimer and the side-by-side dimer. Introducing mutants that inhibit either of the dimer states 

causes a decrease in efficiency of both the autocleavage mechanism and the lytic activity 

of the endolysins. The two dimer states were validated for the full-length endolysins in 

solution by using right angle light scattering, small angle X-ray scattering and cross-

linking experiments with the photo-activated cross-linker p-benzoyl-phenylalanine. 

Turbidity assays with CTP1L and the dimer mutants indicated that a decrease in lytic 

activity was proportional to a decrease in cleavage efficiency. The autocleavage 

mechanism of CD27L involves a peptide hydrolysis reaction of the peptide bond between 

methionine and glutamate residues. Interestingly, mass spectrometry revealed an additional 

mass of 32 Da on the cleaved C-terminal domains of CTP1L and CS74L. Using anomalous 

sulphur scattering of the CTP1L crystal, the 32 Da mass was identified to be due to 

incorporation of a methionine residue, which is proposed to be a post-proteolytic 

modification of the cleaved C-terminal domains. Altogether the data represents a new type 

of regulation for these endolysins that is governed by the C-terminal domains. 
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A brief history of bacteriophage therapy 

Nearly a century has passed since the first published accounts of bacteriophage as agents 

of bacterial pathogenicity. In 1915 Fredrick Twort, working at the Brown Institution of 

London, published the first result of bacteriophages (also known as phages). Twort noticed 

that colonies of Micrococcus infected with filter passed viruses became transparent, an 

indicator of bacterial cell death. Twort also reported that this phenomenon was transferable 

between bacterial colonies (Twort 1915). In 1917, two years after Twort’s observations, 

Felix d’Herelle independently reported on bacteriophage as exogenous agents of immunity 

while at the Pasteur Institute in Paris (d’Herelle 1917). D’Herelle proposed the term 

bacteriophage which means “bacteria eater,” to describe their bactericidal action. In 1923 

d’Herelle helped George Eliava create the Bacteriophage Institute in Georgia (now the 

Eliava Institute), which continues to research phage therapy and its applications, as well as 

producing phage preparations for treatment against a variety of bacterial infections 

(O’Flaherty et al. 2009). Between 1920 and 1940 antibiotics were still in their 

developmental stages allowing phage therapy to take centre stage for the treatment of 

bacterial infections. The Bacteriophage Inquiry, between 1927 and 1936, was one of the 

largest investigations engaged between numerous research groups and hospitals into the 

prophylactic use of phage to control cholera outbreaks in India (Summers 1993; Kutter & 

Sulakvelidze 2004; Nelson et al. 2009). Even with numerous positive results the 

enthusiasm for phage therapy failed to progress as the treatments did not live up to the 

earlier hype surrounding phage therapy.  

 

A major reason for the decline in phage therapy research was the advent of sulfonamides in 

the 1930s and the arrival of penicillin and other antibiotic treatments in the 1940s 

(Deresinski 2009). Antibiotics became the routine treatment for bacterial infections and 

interest in phage therapy research significantly declined. Western medicine still continued 

to moderately research phage therapy. In 1982 Smith & Huggins showed intramuscular 

doses of a bacteriophage (anti-K1 phage) had improved in vitro and in vivo activity against 

Escherichia coli when compared to doses of antibiotics (ampicillin, tetracycline, 

streptomycin and trimethoprim/sulfamethoxazole) (Smith & Huggins 1982). Phage therapy 

has continued to be employed in Eastern Europe, particularly at the Eliava institute, which 

has reported success with phage therapy, treating a range of infections such as methicillin-

resistant Staphylococcus aureus (MRSA) (Parfitt 2005).  
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The reemergence of bacteriophage therapy 

Due to the heavy use of broad-spectrum antibiotics, reports of antibiotic resistance in 

bacteria, particularly in hospital environments, are widespread and increasing every year 

(Davies 2006). Antibiotic resistance has been reported in a number of pathogenic bacteria 

including MRSA, Salmonella, Mycobacterium tuberculosis, E. coli and Clostridium 

difficile (O’Flaherty et al. 2009). Accelerated distribution of resistance genes within 

pathogenic and commensal bacterial communities is associated with the lack of antibiotic 

moderation for minor infections, antibiotic exploitation for non-therapeutic applications 

such as agriculture and the fact pharmaceutical companies are investing less in discovering 

novel antibiotics due to short returns on investments (Davies 2006). 

 

Over the past 15 years there has been a resurgence of interest towards the use of phage not 

just as therapeutics but also integrated into modern biotechnology, food science and 

agriculture. Combined with the high throughput sequencing of phage genomes, our 

knowledge of phage biology, particularly concerning phage-bacteria interactions and their 

ability to target bacterial infections, has been used to inspired the reemergence of phage as 

potential therapeutics and biocontrol agents (O’Flaherty et al. 2009). PhagoBioDerm® 

(PolymerPharm) is a biodegradable dressing used as a topical treatment which consists of a 

mix of antibiotics and virulent phages that target E. coli, P. aeruginosa, S. aureus and 

Streptococcus infections (Kutter & Sulakvelidze 2004). Phages are also being used for 

agricultural applications, where phage use is not as regulated as medical applications 

(O’Flaherty et al. 2009). The contamination of food by bacteria such as Salmonella, 

Campylobacter jejuni, E. coli and Listeria remains a persistent health problem worldwide 

where phage therapy has the potential to control pathogenic bacteria, improving food 

safety and reducing food waste. Listeriosis, primarily an infection of the central nervous 

system caused by Listeria monocytogenes can be fatal. In 2006 ListShieldTM (Intalytix, 

Inc.) was approved by the food and drug administration as a phage cocktail that targets L. 

monocytogenes contaminants in meat and poultry products (Ledford 2009). 

 

As bacteriophages have co-evolved with their bacterial hosts for over 1 billion years, the 

continuous adaptations made by phage and host bacteria can limit phage lethality. Bacteria 

can modify their cell surface receptors, produce exopolysaccharides that coat the bacteria 

to block adsorption, inhibit DNA injection via the superinfection exclusion (Sie) system or 

degrade viral DNA by employing restriction enzymes (Labrie et al. 2010). Therefore, 

many bacteriophages isolated from the host environment are not efficient in the rapid 
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eradication of pathogenic bacteria. The major drawback of whole phage therapy occurs if 

bacteria develop resistance against phage attachment and phage production (Fischer et al. 

2013).  

 

The possibility remains either to genetically engineer more potent bacteriophages to tackle 

viral-resistance of bacteria or to use the individual phage components that contribute to 

bacterial lysis. Phages can influence critical metabolic processes within bacteria to direct 

the production of their own viral progeny. These individual systems of viral manipulation 

offer the potential to be developed into antimicrobial agents (Fischetti 2006). As more viral 

genomes are characterised so are their respective lytic mechanisms. The characterisation 

and isolation of proteins involved in bacterial lysis, particularly the holin-endolysin 

systems, are the most promising viral components that could be developed into 

antimicrobials. Normally endolysins are release from within infected cells during the lytic 

cycle, however, they also demonstrate a high lytic activity even when small amounts are 

applied to dense suspensions of Gram-positive cells, rapidly lysing cells within seconds 

(Loessner 2005). The development of endolysins as antimicrobials is accelerating, 

especially with the various lytic systems being investigated. Furthermore, the effectiveness 

of recombinant endolysins as antimicrobials has been demonstrated with in vivo murine 

studies against model infections of Streptococcus pneumoniae (Loeffler et al. 2001; 

Witzenrath et al. 2009).  

 

Composition and Morphology of Bacteriophage 

Phages are abundant and ubiquitous self-replicating units, with estimations of 1031 phage 

particles in the biosphere, ten-fold higher than the estimated number of prokaryotes 

(Whitman et al. 1998). Phages have a large taxonomic diversity, there are at least 17 

known families of phages that infect 154 genera of host bacteria, with each phage species 

specific to certain bacterial hosts (Ackermann 2007). Over 5560 phages have been 

examined by negative staining electron microscopy to reveal their morphological diversity 

(Ackermann 2007). The type of genetic material and morphology varies depending on the 

phage species. The majority of phage have genomes consisting of double stranded (ds) 

DNA, although there are groups of phage with single stranded (ss) DNA, ssRNA or 

dsRNA (Kutter & Sulakvelidze 2004). Phage genomes are enclosed within a protein capsid 

to help protect the genetic material before insertion into the host cell. It is estimated that 

96% of these phages have tails protruding from the capsid and belong to the order of 
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Caudovirales and the remaining 4% are either filamentous, polyhedral or pleomorphic 

(Ackermann 2007). Caudovirales have icosahedral heads (capsids) and a protruding tail, 

which acts as a tube through which the viral genome passes during infection of the host 

cell. Caudovirales can be sub-divided into three families depending on the composition of 

the tail. Myoviridae have contractile tails, Siphoviridae have long non-contractile tails and 

Podoviridae have short tail structures. The Clostridial phage examined in this thesis 

belong to the order of Caudovirales, described in more detail in Figure 1. 

  
 
 

Figure 1 The morphology of the three subfamilies of Caudovirales: Myoviridaes, Siphoviridaes 
and Podoviridaes. Clostridial phages have been found belonging to all three subfamilies. For 
instance, ΦCD27 is a Myoviridae that infects C. difficile (Mayer et al. 2008) while ΦCTP1 and 
Φ8074-B1 are Siphoviridaes that infect C. tyrobutyricum and C. sporogenes respectively (Mayer et 
al. 2010; 2012). The morphology of ΦCD27 is distinct from ΦCTP1 and ΦCS74 due to a larger tail 
diameter (17 nm compared to ~ 7 nm) as a result of a contractible sheath on the tail, which allows 
the tail to act like a syringe when piercing the cell wall of the host. All three genomes are double-
stranded DNA, similar to other Clostridial bacteriophage, and consist of approximately 50, 000 
base pairs each. Electron micrograph images were reproduced with consent from Journal of 
Bacteriology (American Society for Microbiology) from Mayer et al. (2008; 2010; 2012).  
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Clostridium: notorious toxin producers and clinical targets 

The Clostridia are anaerobic, Gram-positive and environmental bacilli commonly found in 

sewage, soil and the intestines of humans and animals (Hatheway 1990). Clostridial 

infections are notorious due to the range of diseases and toxins produced by certain 

members: Clostridium perfrigens, Clostridium botulinum, Clostridium tetani and C. 

difficile are the respective causative agents of gas gangrene, botulism, tetanus and colitis 

(Hatheway 1990). 

  

Clostridium tyrobutyricum has been identified as the main species of bacterium associated 

with the late blowing defect of cheese, a major cause of food wastage (Klijn et al. 1995). 

C. tyrobutyricum spores present in raw milk can proliferate in the anaerobic conditions 

present during cheese production where the C. tyrobutyricum bacteria produce butyric acid 

and hydrogen gas, causing expansions within the cheese and defects in texture and taste 

(Mayer et al. 2010).  

 

Clostridium. sporogenes is the name given to isolates of C. botulinum that lack the gene 

for the production of the botulinum neurotoxin, the cause of the potentially fatal 

botulinum. C. sporogenes is commonly used as a nontoxigenic surrogate for studying C. 

botulinum contaminations in food and for validating sterilisation procedures (Bradbury et 

al. 2012). C. sporogenes behaves in a similar manner to C. tyrobutyricum and is also 

associated with a range of food spoilage problems (Mayer et al. 2012). For instance, C. 

sporogenes was shown to enhance the butyric fermentation and cheese blowing associated 

with C. tyrobutyricum (Le Bourhis et al. 2007).  

 

C. difficile infections (CDIs) are the cause of 20-30% of antibiotic associated diarrhea 

cases and nearly all incidents of pseudomembranous colitis, a potential life-threatening 

inflammation of the colon (Rea et al. 2013). The use of broad-spectrum antibiotics can 

result in an imbalance in the gastrointestinal tract microbiota, predisposing already 

susceptible patients to the risk of CDIs (Rea et al. 2013). CDI treatment typically involves 

using different combinations of antibiotics which can further reduce the intestinal defenses 

of patients, for instance the antibiotic metronidazole is commonly used to combat 

anaerobic bacteria such as C. difficile, however, in murine studies it actually predisposed 

the gastrointestinal tract to other colitis inducing bacteria such as Citrobacter rodentium 

(Wlodarska et al. 2011). Endospores of C. difficile can be released in faecal matter from 

infected patients and spread between susceptible patients to become an exogenous source 
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of CDIs (Rea et al. 2013). C. difficile endospores are of high-risk in a hospital 

environment, especially as endospores are resistant to fluctuations in temperature, oxygen 

acidity, deprivation of nutrients and chemical treatment, making them difficult to eradicate 

(Gerding et al. 2008).  

 

Use of phage and endolysins against Clostridial colonisations and infections 

 ΦCD27 and other C. difficile phage are unsuitable for phage therapy, as they are generally 

temperate (Rea et al. 2013), resulting in low phage production and prone to horizontal 

genetic transfer of phage DNA due to prophage incorporation into the host genome 

(Canchaya et al. 2003). As endolysins are protein therapeutics that do not rely on self-

replication (O’Flaherty et al. 2009), an alternative approach is to use the phage endolysins, 

such as CD27L, to treat C. difficile infections. CD27L was successfully expressed in 

Lactococcus lactis cells (Mayer et al. 2008), however, for the successful application of 

endolysins they required secretion to target their specific hosts. Expression of L. 

monocytogenes endolysins containing a signal peptide were shown to be secreted from L. 

Lactis cells (Gaeng et al. 2000). Similarly, L. lactis cells have been engineered to express 

and secrete the LysH5 endolysin to kill S. aureus cells (Rodríguez-Rubio et al. 2012), 

although the technique required improved secretion, the same system could be used to 

eliminate C. tyrobutyricum cells from raw milk or added during cheese manufacturing to 

inhibit the colonisation of C. tyrobutyricum. Introducing the genes for endolysin 

expression into commensal or non-pathogenic bacteria for secretion in the GIT or in food 

preparation can be used to fight specific pathogenic bacteria.   
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Bacteriophage life cycle 

 

 
Figure 2 The lytic and lysogenic life cycles of bacteriophages. The different steps are described 
in the text below. 
 
The first step in any phage life cycle is adsorption of the phage to the bacterial cell by 

binding of the tail fibres to exposed receptors, such as teichoic acid polysaccharides, found 

on the surface of bacterial cell walls (Rakhuba et al. 2010). Phage adsorption is species-

specific, as phages recognise differences between receptor morphology, localisation and 

density of receptors on the bacterial cell wall (Braun & Hantke 1977). After binding to the 

bacteria, the hollow tail fibre penetrates the bacterial envelope and the viral DNA is 

injected into the bacterial cell. 

 
Phage can be split into two distinct groups depending on their life cycle. Phage can have 

either a lytic cycle, used by virulent and temperate phage, which leads directly to viral 

replication and cell death, or a lysogenic cycle used only by temperate phages (Figure 2). 

The lysogenic cycle involves integration of the phage genome (prophage) into the bacterial 

host’s genome (Figure 2, A). The bacterial host continues normal growth and during 

replication the prophage gets copied with the host genome, transferring the prophage to 

daughter cells, which also transfer the prophage when they replicate (Figure 2, B). The 

prophage can excise itself from the host genome in a process called Induction and the 

prophage enters the lytic cycle (Figure 2, C). Mitomycin C can be used experimentally to 
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initiate prophage induction, the phage genome can then be isolated from host bacteria for 

sequencing (Otsuji et al. 1959).  

 

During the lytic cycle the phage remains in a vegetative state. Phage DNA takes over the 

host’s cellular machinery, making copies of the phage DNA and directing ribosomes to 

produce phage proteins for the self-assembly of phage progeny (Figure 2, D) (Lee 1996). 

The phage progeny remain sequestered within the cytoplasm until cell lysis by the 

dissolution of the bacterial cell wall and release of the phage progeny from the cell. 

Cellular lysis is an elegant and precisely timed event governed by the holin-endolysin 

system (Young 2002) (Figure 2, E). 

 

The holin-endolysin system is localised on the lytic cassette  

Holin and endolysin genes are adjoined in the majority of dsDNA phage genomes, their 

location in the genome is referred to as the lytic cassette (Young et al. 2000). Holin is 

normally located upstream and in the same orientation as endolysin. Typically clustered 

within the lytic cassette of phage that infect Gram-negative bacteria are other lytic genes, 

including antiholin, that help regulate lytic function (Young 2002). The Clostridial phage 

genomes of ΦCD27 and ΦCTP1 have two component cell lysis cassettes comprising of 

genes for holin and endolysins, with the holin gene immediately upstream of the endolysin 

(Mayer et al. 2008; 2010). The genome of ΦCS74 also contains a gene for an endolysin 

(CS74L), however, no putative gene has yet been recognised for a holin protein (Mayer et 

al. 2012). Holin and endolysin are both under late gene transcriptional regulation and are 

produced near the end of the vegetative state. This was shown for Listeria endolysins by 

measuring relative mRNA levels for endolysin across the vegetative state of infected cells, 

lysis occurred after 60 to 70 minutes and endolysin mRNA was detected 15 to 20 minutes 

after phage infection (Loessner et al. 1995). 
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Figure 3 The classic holin-endolysin activation mechanism based on the λ and T4 lysis 
paradigm. The lytic process is described below.  
 

The classic holin-endolysin system 

Holin and endolysin are expressed in parallel with the final viral progeny assembly at the 

end of the vegetative state (Figure 3, step 1). Endolysins remain folded but sequestered 

within the cytosol, while the holin proteins begin to accumulate throughout the 

cytoplasmic membrane (Figure 3, step 2). Within the membrane, holin proteins exist in a 

dilute phase as isolated proteins, free to move in the membrane with no effect on the 

membrane or its morphology. Holin proteins keep harmlessly entering the membrane until 

a critical concentration of holin is reached, represented as the time of lethal triggering 

(White et al. 2010) (Figure 3, step 3) At this point the holin proteins suddenly and 

spontaneously accumulate into large oligomeric aggregates, also described as rafts 

(Gründling et al. 2001). These large rafts cause depolarisation of the membrane and the 

collapse of the proton motive force (pmf) between the cytosol and the periplasm. The 

membrane stops supporting respiration due to the lack of a pmf and becomes permeable to 

ATP, ions and small molecules (Ziedaite et al. 2005). The collapse of the pmf is the trigger 

to initiate a conformational change within the holin rafts and the holin proteins rearrange to 

form lesions of varying size up to 300 nm in diameter (Figure 3, step 4) (White et al. 

2010). These lesions are permeable to endolysins and other large molecules (Wang et al. 

2003), which pass from the cytosol to the cell wall and begin to degrade peptidoglycan 

(Figure 3, step 4). Peptidoglycan degradation causes hypotonic lysis of the bacteria, as the 

cell wall can no longer withstand the osmotic internal pressure of the cell. Recently Dewey 

et al. (2010) used cryo-electron tomography to visualise holin lesions, which were highly 
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variable in size with an average diameter of 340 nm (± 35 nm), but were uniformly 

distributed and remained stable within the membrane. Essentially, holin lesion formation 

dictates the length of the vegetative state by controlling the release of the cytoplasmically 

sequestered endolysins into the cell wall (Wang et al. 2000). 

 

Holin-independent export mechanisms 

The classic holin-endolysin system described for the paradigm systems of the 

Enterobacterial phage λ and T4 was thought to be the universal mechanism of cell lysis 

(Ramanculov & Young 2001). However, recently a number of novel lysis systems have 

been reported for Gram-positive, Gram-negative and mycobacterial targeting phages, 

whereby endolysins are transported across the membrane without passing through holin 

lesions.  

 

Phages that target Gram-positive bacteria can secrete their endolysin using the Sec 

transportation system 

Endolysin Lys44, from phage fOg44 that targets the Gram-positive Oenococcus oeni 

encodes an endolysin (Lys44) that contains a hydrophobic N-terminal region similar to a 

Sec-type secretion peptide. Lys44 gets secreted and the secretion signal processed by the 

leader peptidase after translocation to the cell wall (Sao-Jose et al. 2000) (Figure 4). The 

46 kDa pre-protein of Lys44 is only processed to the mature 43 kDa endolysin in the 

presence of the signal peptidase (LepB) and the translocase-associated ATPase (SecA), 

both essential components of the general secretion pathway (Sao-Jose et al. 2000). 

Processed Lys44 could be detected during the vegetative state of phage infection while the 

viral progeny are still self-assembling. Therefore, the secreted Lys44 has a regulatory 

system to keep it inactive once it passes across the membrane. A model was suggested 

whereby Lys44 is regulated in a similar manner to autolysins, whereby the ionised state of 

the membrane regulates autolysin activity (Calamita & Doyle 2002). The C-terminal 

domain of Lys44 is comprised of two LysM modules that mediate peptidoglycan binding 

and are suggested to keep the endolysin inactive by electrochemical gradients within the 

cell wall until holin-induced depolarisation (Parreira et al. 1999; Nascimento et al. 2008). 
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Figure 4 Export of endolysins using signal peptides. After Sec transportation (1) the endolysins 
bind to their respective cell wall ligands in an inactive state (2) such as Lys44, which has C-
terminal LysM domains that bind peptidoglycan. (3) Holins or pinholins accumulate within the 
membrane until they reach the critical concentration leading to raft formation and progressing to 
lesion formation (4). Holin lesions permeabilise the membrane, disrupting electrochemical 
gradients across the cell wall and activating endolysin release and activation. 
 

 

Activation of Lys44 was shown to require depolarisation of the pmf across the membrane 

(Nascimento et al. 2008). Nisin is a polypeptide antibiotic that forms 2 nm holes in cell 

membranes, allowing the efflux of ions across the bacterial membrane to mimic the effect 

of holin formation (Ruhr & Sahl 1985). O. oeni cells incubated with externally applied 

Lys44 could only be lysed upon addition of nisin, similarly in an L. lactis model, where 

Lys44 was secreted by the cells to the cell wall, lysis was only achieved after addition of 

nisin, the electrical gradient of the cellular membrane was therefore postulated to regulate 

activation of endolysin Lys44 (Nascimento et al. 2008) (Figure 4). 

 

The Signal-Anchor-Release endolysins 

Similar classes of endolysins to the signal peptide containing Lys44 have been discovered 

in phages that target Gram-negative bacteria, that also use the Sec transportation system. 

LyzP1 and R21, the respective lysozymes from coliphage P1 and 21, use an atypical N-

terminal transmembrane domain that behaves as a signal arrest release (SAR) signal to 

export the endolysins via the host Sec-dependent translation pathway (Xu et al. 2004; 

2005). However, after translocation the signal peptide is not removed by signal peptidases, 

instead it behaves as a transmembrane domain and anchors the endolysin to the membrane 

in an inactive state, with the catalytic residues protruding into the periplasm (Kuty et al. 

2010).  
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This unusual N-terminal SAR domain has an elevated amount of weakly hydrophobic 

residues (glycine, alanine, serine, and threonine) compared to normal transmembrane 

domains that allows a low spontaneous release of the endolysin from the lipid bilayer, that 

is proposed to gradually accomplish cell lysis (Park et al. 2006). Interestingly, the Lyz 

gene is expressed independently of the holin gene and is transported and membrane-

tethered outside of the cell ahead of complete progeny phage assembly. Therefore, similar 

to Lys44, it has a regulatory mechanism to maintain LyzP1 in an inactive state until the 

trigger for lysis (Kuty et al. 2010) (Figure 5, A).  

 

Sequence analysis showed LyzP1 was homologous to the T4 canonical lysozyme E, apart 

from a single modification within the catalytic triad where an aspartate residue was 

modified to a cysteine (Cys51), reverse mutation of this cysteine back to aspartate still 

demonstrated lytic activity (Kuty et al. 2010). Xu et al. showed that when the SAR domain 

is tethered within the membrane a disulphide bond forms between the catalytic residue 

Cys51 and another cysteine residue (Cys44), maintaining the enzyme in an inactive state. 

Contained in the SAR domain is another cysteine residue (Cys13) in its sulfhydryl form, 

upon membrane depolarisation the SAR domain gets released from the membrane and 

Cys13 reduces the disulphide bond between Cys51-Cys44. Disulphide isomerisation forms 

a new bond between Cys44-Cys13, releasing Cys51 in the sulfhydryl form, which activates 

the Lyz P1 endolysin (Xu et al. 2005) (Figure 5, B).  

 

The structural rearrangement required to activate Lyz P1 was also observed. Crystallisation 

of full-length LyzP1 represented the active state, whereas crystallisation of the periplasmic 

domain (without the SAR domain) of LyzP1 represented the inactive state when the SAR 

domain would be tethered within the membrane (Xu et al. 2005). In the inactive state the 

Cys44-Cys51 bond could be observed, whilst the full-length active LyzP1 showed 

disulphide isomerisation, which involved a large structural rearrangement of three helices 

into a three beta strand sheet that repositioned residues within the catalytic cleft, activating 

the endolysin. LyzP1 could still be translocated across the membrane when its SAR domain 

was replaced with a signal sequence, however, it only became active upon the addition of 

reducing agents (Xu et al. 2004). SAR domains are an interesting example of 

transmembrane domains as they maintain a hydrophobic nature when tethered to the 

membrane but remain soluble once released to refold and activate the endolysin (Kuty et 

al. 2010). 
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Figure 5 Holin independent export of SAR-endolysins. A: (1) Sec-transported endolysins are 
secreted with the SAR domain still attached. (2) Endolysin remains tethered to the membrane by 
the SAR domain. (3) Holin is expressed and accumulates in the membrane. (4) At a genetically 
pre-determined time holin accumulated in the membrane forms rafts leading to depolarisation and 
pinholin formation, collapsing the membrane potential. (5) Electrochemical restraints on the SAR 
domain are removed, the catalytic domain refolds and incorporates the SAR domain to become 
active and begins peptidoglycan degradation. B: The release mechanism of LyzP1. After the SAR 
domain is released disulphide isomerisation releases the constraint on an active site cysteine 
(green), allowing the endolysin to become active. C: The release mechanism of Lyz103. An active 
site glutamate (green) is blocked by disulphide caging of neighbouring cysteines. Disulphide 
switching after SAR domain cause conformational changes and unblocks the glutamate and Lyz103 
becomes active. Figures B and C were adapted from Xu et al. (2005) and Kuty et al. (2010). 
 

 

A similar mechanism to LyzP1 has been reported for the P21 phage endolysin R21, which 

represents a second class of SAR-endolysins. R21 is also regulated by conformational 

rearrangement of the endolysin after release of the SAR domain, except it does not involve 

thiol rearrangement. Instead, when R21 is tethered to the membrane an active site glutamate 

residue is subject to steric hindrance by the close proximity to the membrane bilayer. Upon 

depolarisation and release, the SAR domain refolds into the protein domain and the 

glutamate residue repositions to complete a Glu/Asp/Thr catalytic triad within the active 

site, activating the endolysin (Sun et al. 2009). Replacement of the SAR domain of LyzP1 
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with the cysteine-less SAR domain of R21 rendered the endolysin inactive, due to the lack 

of disulphide isomerisation (Xu et al. 2004). 

Recently, a third mode of SAR endolysin regulation has been described for lysozyme 

Lyz103
 from the Erwinia amylovora phage ERA103 (Kuty et al. 2010). The catalytic 

glutamate residue (Glu43) of Lyz103 is kept in an inactive state by a disulphide bond 

formed between flanking cysteine residues (Cys42-Cys45) which cages the enzyme’s 

active site. Upon membrane depolarisation and SAR domain release, a free thiol group of a 

cysteine (Cys12) within the SAR domain disrupts the disulphide caging by switching the 

disulphide bonding residues (Cys12-Cys42) (Figure 5, C). This releases constraints on the 

glutamate residue that forms the active site cleft, activating the endolysin (Kuty et al. 

2010). Examination of the protein sequences of related bacteriophage endolysins suggests 

that the presence of an N-terminal SAR sequence is not uncommon and it is estimated 

from sequence comparisons that 25% of phages possess SAR containing endolysins (Park 

et al. 2007). 

 

The SAR containing endolysin KMV45, from the Gram-negative P. aeruginosa targeting 

phage ϕKMV, exhibits similar characteristics to the P1 phage endolysins. KMV45 also 

gets transported and membrane tethered due to an N-terminal SAR signal, until membrane 

depolarisation driven by a pinholin (Briers et al. 2011). However, KMV45 does not 

demonstrate disulphide caging (Lyz103) or disulphide isomerisation (LyzP1) to keep it 

inactive while membrane bound. Instead it is suggested that the positively charged N-

terminal SAR domain and the negatively charged inner side of the cytoplasmic membrane 

is enough to keep KMV45 inactive when inserted into the membrane. The blocking of 

enzymatic activity is due to steric hindrance on a catalytic glutamate that would be 

positioned in close proximity to the membrane when tethered (Briers et al. 2011). 

  

Ultimately, the trigger that regulates the efficient release of these SAR containing 

endolysins from the membrane is depolarisation by pinholin lesion formation and the 

consequent relief of ionic interactions. First described for the Lamboid phage 21, the 

pinholins function by disrupting the pmf without the formation of large, macromolecular 

lesions (Park et al. 2007).  
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Pinholins 

Pinholins can mediate host cell lysis only when co-expressed with the SAR-endolysins, but 

not with canonical cytoplasmic endolysins lacking the SAR signal. Pinholins behave like 

canonical holins, accumulating harmlessly within the bilayer until at the point of lysis they 

rapidly form lethal membrane lesions with central pores < 2 nm in diameter (Pang et al. 

2013). The pinholin pore size is too small to deliver cytoplasmic endolysins to the 

periplasm but they do cause membrane depolarisation which activates the release of the 

membrane attached SAR-endolysins. Park et al. proposed that the pinholin & SAR-

endolysin could represent an intermediate stage in the evolution of holin-endolysin systems 

towards the better-known classic system (Park et al. 2007).  

 

Mycobacteriophage endolysins can be transported using molecular chaperones 

Mycobacteriophage are phage that infect mycobacterial cells, bacteria with a complex cell 

wall involving a lipid shell around the bacteria containing mycolic acids and lipids 

(Brennan 2003). More than 2500 mycobacteriophage have been isolated, mainly targeting 

Mycobacterium smegmatis, but until recently little was known about the mechanisms of 

lysis for these phages (Catalão et al. 2013). The lysis cassette of mycobacteriophage Ms6 

encodes 5 genes with features not seen in other common phage, including a novel 

endolysin (LysB) with lipolytic activity that specifically hydrolyses the mycolic acids of 

the mycobacterial outer membranes (Gil et al. 2008; 2010).  

 

Interestingly, phage Ms6 also encodes a peptidoglycan amidase endolysin (LysA) that 

accesses the cell wall independently of holin formation (Catalao et al. 2010). LysA differs 

from the above examples of holin independent secretions, as it does not have an N-terminal 

SAR or signal peptide domain. In the Ms6 lytic cassette, immediately upstream of the gene 

for LysA (lysA) is a gene (gp1) encoding a chaperone-like protein (Catalao et al. 2010). 

The export of LysA was shown to be dependent on the presence of Gp1, which together 

get secreted into the cell wall. Deletion of gp1 resulted in a 70% decrease of the cell burst 

size (the average number of phage released by a lysed cell) (Catalao et al. 2010). The 

chaperone Gp1 was shown to interact with the first 60 amino acids of LysA, which then is 

proposed to use the host SecA secretion system to export LysA across the membrane. In an 

E. coli model expressing Gp1 and LysA, a defective Sec secretion system or addition of 

sodium azide an inhibitor of Sec activity, inhibited lysis. Furthermore, deletion of gp1 



 17 

resulted in no detectable lysA within the cell wall and resulted in a loss of lytic activity 

(Catalao et al. 2010).  

In Gp1-LysA expressing M. smegmatis cells, adding nisin could trigger lysis. Nisin 

induced lesions are too small for LysA secretion and Catalao et al. suggested that after 

secretion LysA binds to cell wall epitopes in an inactive conformation until holin-induced 

depolarisation activates the endolysin. The mechanism of cell wall binding and regulation 

still remains to be elucidated for this class of endolysins, as well as the role of Gp1 within 

the cell wall. An analysis on mycobacteriophage genomes by Hatfull et al. (2010) revealed 

that just 18 out of 60 known mycobacterophage genomes have Gp1 homologues 

suggesting that, at least for mycobacteriophage, different mechanisms of lysin delivery and 

endolysin activation could exist.  

 

Endolysins can hijack cell wall synthesis pathways to enter the cell wall 

The pneumococcal phage SV1 encodes an endolysin (Svl) lacking any known signal 

peptide or SAR domain and demonstrates another novel secretion mechanism independent 

of holin or the SecA system. Svl export is dependent on choline containing teichoic acids 

found within the cell walls of pneumococci. Endolysin Svl is structurally similar to the 

pneumococcal autolysin LytA as both have C-terminal choline binding domains that 

recognise teichoic acids within pneumococcal cell walls that are decorated with choline 

residues (López & Garcı́a 2004).  

 

The lytic activity of autolysin LytA is inhibited when choline-bound and the endolysin Svl 

is believed to behave in a same manner, remaining inactive in the choline bound state until 

holin-induced lysis and depolarisation releases the endolysin to begin cell wall degradation 

(Frias et al. 2013). Interestingly, the lytic cassettes of SV1 and other pneumococcal phage 

contain no other functional proteins apart from endolysin and holin, and no Gp1 related 

chaperone proteins exist as seen for Ms6 mycobacteriophage. Therefore SV1 is exported 

without the use of SAR or signal peptides or chaperone proteins for Sec secretion (Frias et 

al. 2013). Instead Svl is proposed to bind choline molecules during their processing into 

teichoic acid precursors within the cytoplasm. Precursors of teichoic acids are transported 

across the membrane by TacF, a member of the polysaccharide transmembrane 

transporters, otherwise known as flippases (Damjanovic et al. 2007). Frias et al.  

hypothesised that Svl can bind choline residues during teichoic acids translocation to gain 

access to the cell wall, where they remain inactively bound to the teichoic acid waiting for 

holin-induced depolarisation for activation. Therefore Svl behaves in a similar manner to 
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the other holin-independent systems described above (Xu et al. 2004; Nascimento et al. 

2008; Catalao et al. 2010), gaining access to the cell wall without passing through holin 

lesions.  

Svl was continuously detected in the cell walls of pneumococcal cells with a holin gene 

deletion (∆hol) indicating endolysin translocation into the cell wall was holin independent. 

Pneumococcal cells grown with choline substituted for ethanolamine decorate their cell 

wall teichoic acids with ethanolamine, which inhibits choline-binding proteins from 

attaching to the cell wall. Endolysin Svl was undetectable in both cell wall fractions and 

cell media. Instead Svl was only detectable in cell fractions indicating that it was no longer 

translocated out of the cells without choline present (Frias et al. 2013). Choline is therefore 

essential for Svl endolysin translocation.  

  

LytA, the autolysin of S. pneumococciae, also has no secretion signal and transport of this 

host protein could also occur in a similar manner to the phage endolysin. Mellroth et al. 

previously reported that LytA mainly resided within the cytoplasm of pneumococcal cells 

with only 5% of expressed LytA entering the cell wall during growth. It was suggested that 

translocation of LytA was achieved by cellular lysis and not active secretion, where LytA 

released from lysed cells binds neighbouring cells (Mellroth et al. 2012). The mechanism 

of LytA and Svl secretion needs more comprehensive research, particularly to see if they 

can interact with the teichoic acid translocation system within the cytoplasm or if they can 

be detected in a bound state to precursor teichoic acid within growing cells. The lack of 

signal peptides and the existence of analogous choline-binding domains is prevalent in 

other pneumococcal phage endolysins (López & Garcı́a 2004), indicating that the above 

lytic mechanism could be another demonstration of the diversity of phages exploiting the 

host cellular machinery for endolysin targeting.  

 

Depolarisation of the membrane and loss of proton motive force activates endolysins. 

Both SAR-endolysins and the signal peptide secreted endolysins are kept inactive before 

holin lesion formation by tethering of the SAR domain into the membrane or kept in an 

inactive state due to electrochemical gradients within the cell wall. The application of 

exogenous nisin (as described for Lys44) can initiate lytic activity due to the formation of 

2 nm holes that are nonselective for the flow of ions and small metabolites, imitating the 

role of the holin or pinholin lesions and depolarising the membrane (Nascimento et al. 

2008). Before depolarisation the negative regulation of endolysins, and their related 

autolysins, by the cell wall is suggested to be due to binding to teichoic acids due to their 
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polyanionic composition and their ability to change conformation depending on their 

ionisation state (Neuhaus & Baddiley 2003) (Figure 6, A). Teichoic acids are commonly 

decorated with cationic glycosyl or d-alanyl ester attachments that help regulate the overall 

net anionic charge of teichoic acid and the cell wall during normal cell metabolism and 

have been shown to regulate autolytic activity (Neuhaus & Baddiley 2003). Inhibition of 

normal teichoic acid metabolism can infer an increase in lytic activity for autolysins and 

endolysins. For instance, wall teichoic acids were shown to be non-essential for B. subtilis 

viability, however, removing the ability of B. subtilis to attach d-alanyl esters to teichoic 

acid increased autolytic activity endogenously or after chemical induction (Wecke et al. 

1996). Activation of the major autolysin AtlA of S. aureus is dependent on the pH of the 

cell wall, whereby an acidic environment generated by proton binding of teichoic acid 

greatly reduced autolytic activity (Biswas et al. 2012). The ionic capacity of the cell wall 

could also play a role in regulation. The binding of the Listeria phage endolysin Ply500 

has been shown to depend on ionic interactions for cell wall binding, whereby Ply500 

binds the cell wall with optimal affinity at 100-150 mM NaCl and shows decreasing 

affinity as the ionic strength increases (Loessner et al. 2002). 

  

Frias et al. demonstrated that in the absence of phage endolysins the activation of the host 

autolysin, LytA, in S. pneumoniae at the end of the phage lytic cycle was sufficient to 

allow viral progeny release, although at a lower amount than when endolysin was also 

present. The utilisation of endolysins and autolysins would boost lytic activity and increase 

overall phage fitness, providing another example of how phage can exploit the host 

enzymes for their own benefit (Frias et al. 2009).  
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The enzymatic activity of the endolysins 

There are several mechanisms used by phage to control the release and activation of 

endolysins. Nevertheless, once endolysins are activated within the cell wall they lyse cells 

by sabotaging the structural integrity of the cell wall by degrading peptidoglycan. 

Endolysins are peptidoglycan hydrolases that have two tasks during peptidoglycan 

digestion: substrate recognition and peptidoglycan hydrolysis (Loessner 2005). 

 

 
Figure 6 A: The various roles of teichoic acid within the Gram-positive cell wall. Gram-
positive bacteria cell walls are between 15-80 nm in width, consisting of a repeating polymer of the 
amino sugars N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) linked 
together by a peptide chain attached to a hydroxyl group from the MurNAc subunit. The length of 
the glycan strands, amount of cross-linking and the composition of the peptide chain varies 
between bacterial species and growth conditions (Vollmer & Seligman 2010). Within the cell wall 
are lipoteichoic acids bound to the membrane by a terminal diacylglycerol and wall teichoic acids 
that are covalently linked to the peptidoglycan layers. Teichoic acids are responsible for phage 
binding and adsorption, autolytic regulation, cation homeostasis, antimicrobial peptide binding and 
recognition by other bacteria (Weidenmaier & Peschel 2008).  
 
Figure 6 B: Peptidoglycan hydrolases cleave different bonds. (1) N-acetyl-β-D-
glucosaminidases cleave the β 1-4 glycosidic bond linking GlcNAc to MurNAc subunits of the 
peptidoglycan polymer. (2) N-acetyl-β-D-muramidases and Lytic transglycosylases are collectively 
termed lysozymes, these cleave the β 1-4 glycosidic bond linking MurNAc to GlcNAc subunits. (3) 
N-acetylmuramoyl-L-alanine amidases hydrolyse the amide bond between MurNAc and the a-
position L-alanine of the peptide linker. (4) L-alanoyl-D-glutamate endopeptidases. The 
peptidoglycan bonds sensitive to 1,2 & 3 are conserved in nearly all bacteria whereas the amino 
acid sequence of the peptide linker between MurNAc subunits, targeted by endopeptidases (5), can 
vary depending on species or genera (Schleifer & Kandler 1972). (6) D-glutamyl-m-DAP 
endopeptidase. Figure 6 A adapted from Weidenmaier & Peschel (2008). Figure 6 B adapted from 
Loessner (2005).  
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The modular organization of endolysins from Gram-positive bacteria infecting phages.  

The endolysins of Gram-positive bacteria targeting phage have evolved to use a modular 

design whereby the two tasks of substrate recognition and peptidoglycan hydrolysis are 

divided into two domains: an enzymatically active domain (EAD) and a cell wall binding 

domain (CBD), separated by a short linker (Loessner 2005). The EAD is normally located 

at the N-terminus and the CBD at the C-terminus, albeit there are endolysins with different 

modular organisations (Figure 7). While the EAD catalyses cell wall degradation, the CBD 

targets endolysins to cell wall epitopes characteristic to certain bacterial strains, which 

imposes a further level of specificity to endolysins. The high affinity binding of the CBD 

to the cell wall is proposed to trap endolysins within the cell wall and inhibit their diffusion 

after lysis. Without cell wall binding the endolysins could enter the surrounding media and 

compromise phage survival by degrading possible future bacterial hosts (Schmelcher et al. 

2012).   

 

It is apparent that host autolysins and phage endolysins share common ancestry, phage 

genomes are modular in organisation and display a highly mosaic nature, therefore it is not 

unusual that phage endolysins have evolved to combine various enzymatic and binding 

domains into their configuration (Casjens 2005).  
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Figure 7 Currently known modular organisations of endolysins as described in the literature. 
[1] CD27L represents a typical Gram-positive infecting phage endolysin with a single N-terminal 
EAD and C-terminal CBD (Mayer et al. 2011). [2] Double N-terminal EADs are common among 
staphylococcal phage endolysins such as LysK and Φ11 (Nelson et al. 2012). [3] Another 
streptococcal phage endolysin λSA2 has two central CBDs flanked by two EADs (Pritchard et al. 
2007). [4] Endolysins can have tandem repeats of CBDs such as choline-binding motifs for Cpl-1 
(Hermoso et al. 2003) or multiple lysin motif (LysM) repeats such as Lyb5 (Hu et al. 2010). [5] 
PlyC is a multimeric enzyme and the largest endolysin found to date (Nelson et al. 2006). [6] 
CBDs are not common among Gram-negative infecting phage endolysins, however, Gram-negative 
P. aeruginosa targeting phage endolysins KZ144 and EL188 contain N-terminal CBDs (Briers et 
al. 2007). [7] A typical Gram-negative bacteria targeting phage endolysin consists of a single EAD 
with no CBD such as λ and T4 endolysins; [8] Endolysins secreted independently of holin either 
using a signal peptide, such as Lys44 (Sao-Jose et al. 2000) or a signal anchor release domain such 
as LysP1 (Xu et al. 2004). Figure 7 adapted from Schmelcher et al. (2012). 
 

 

For most endolysins with a modular organisation, an interdomain linker typically seperates 

the EAD and the CBD. This linker imparts flexibility to these enzymes and is suggested to 

be one of the reasons why full-length crystallisation of these proteins is challenging 

(Nelson et al. 2012). Only a few complete endolysin structures have been resolved to date 

including Cpl-1 (Hermoso et al. 2003), PlyPSA (Korndörfer et al. 2006) and recently the 

C. perfringens phage endolysin Plm (Tamai et al. 2014). PlyC (Figure 7, [5]) is the only 

multimeric endolysin to be identified that is the product of two separate genes (Nelson et 

al. 2006). PlyC was recently shown to rapidly degrade biofilms of streptococcal cells with 

a higher activity than conventional antibiotics and with no signs of developing bacterial 

resistance (Shen et al. 2013). The potent lytic activity of PlyC is likely due to its unique 

arrangement, the structure of which was also recently revealed (McGowan et al. 2012). 

PlyC consists of a single enzymatic PlyCA domain bound to a ring of eight PlyCB 
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domains. PlyCB contains a binding cleft which guides the attachment of the complex to the 

cell wall, while PlyCA has two peptidoglycan degrading domains: a cysteine, histidine-

dependent amidohydrolases/peptidase domain and a glycoside hydrolase domain 

(McGowan et al. 2012). 

  

The majority of endolysins from phages that infect Gram-negative bacteria have single 

enzymatic domains 

As a comparison, Gram-negative bacteria infecting phage mostly consist of a single EAD 

without any particular CBD module, the traditional example being the λ phage lysozyme 

(Figure 6, [7]). Substrate recognition and specific binding of the endolysin to the cell wall 

may not be necessary for these endolysins due to a relatively thin peptidoglycan layer and 

the presence of the outer membrane in Gram-negative bacteria, which limits access of the 

endolysin to the outside even after lysis (Schmelcher et al. 2012). However, there are 

exceptions. The Gram-negative P. aeruginosa infecting phage endolysins KZ144 and 

EL188 use a modular structure with N-terminal CBDs that were shown to bind with high 

affinity to the P. aeruginosa peptidoglycan (Briers et al. 2007; 2009). 

 

The Enzymatically Active Domain 

Typically the EADs found in endolysins belong to the same families as the host autolysins 

that break down and remodel the peptidoglycan during replication, growth and sporulation 

(Regulski et al. 2013). Peptidoglycan and the peptide chain arrangement between N-

acetylmuramic acid (MurNAc) subunits and secondary cell wall polymers will vary 

between bacterial species, but they still maintain the centrally conserved cross-linked 

peptidoglycan structure and therefore provide a limited amount of bonds available for 

hydrolysis. Depending on the type of peptidoglycan bond attacked there are six classes of 

peptidoglycan hydrolases that EADs employ (Nelson et al. 2012), these are reviewed in 

Figure 6, B. 

 

Endolysins that recognise peptidoglycan bonds conserved within a genus are prone to 

cleave the same bond present in a broader range of bacterial species than just the original 

host (Donovan & Foster-Frey 2008). For instance, broad activity has been reported for the 

phage B30 endolysin hosted by a small subgroup of streptococcus (type III) that 

demonstrated an extensive and improved rate of lysis against whole groups of streptococci, 
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even though these strains were not susceptible to phage B30 and production of this 

particular endolysin (Pritchard et al. 2004). 

Endolysin EADs can be engineered to increase their host range of activity. The EAD of 

endolysin CD27L, the activation mechanism of which forms a focus of this study, consists 

of a zinc-dependent N-acetylmuramoyl-l-alanine amidase domain (Mayer et al. 2011). 

Alignment of CD27L with other amidase endolysins revealed conserved residues within 

the EAD, suggesting that the EAD contained key features for specific cell wall ligands 

(Mayer et al. 2011). The backbone structure of CD27L resembled the L. monocytogenes 

endolysin PlyPSA, and certain residues were conserved within their active sites. Between 

these conserved residues a single residue was observed that appeared highly variable 

between similar sequences. Mutation of this residue, leucine in the CD27L EAD active site 

to tryptophan, as found in PlyPSA, increased the host range of the truncated CD27L EAD 

to develop lytic activity against L. monocytogenes cells (Mayer et al. 2011), demonstrating 

that the endolysin EADs are also responsible for substrate specificity.  

 

Specificity is linked to the selective targeting of cell wall substrates by the cell wall 

binding domain  

Whilst the EAD alone cleaves specific cell wall ligands, it is the CBD that is believed to 

play the essential role in endolysin specificity, by directing the binding of endolysins to the 

cell wall. The CBDs of L. monocytogenes phage endolysins have been reported to 

associate with their cell wall ligands with nanomolar affinities as determined by surface 

plasmon resonance, with values comparable to high affinity antibodies (Loessner et al. 

2002; Schmelcher et al. 2010). The CBD targets the endolysin to the cell wall in order to 

bring the EAD within close proximity of its substrate for efficient cell wall lysis.  

 

Diversity of Gram-positive cell wall binding domain epitopes 

CBDs can associate with a broad range of species-specific motifs present in the 

peptidoglycan or cell wall polymers of the cell wall. Lyb5 lysin from phage ΦPYB5 targets 

it’s host Lactobacillus fermentum using three C-terminal lysin motif domains (LysM) (Hu 

et al. 2010). LysM is a motif between 44-65 amino acids, commonly linked into multiple 

domains, LysM is suggested to bind the GlcNAc subunits in the backbone of peptidoglycan 

(Buist et al. 2008).  The CBDs of the Lc-Lys and Lc-Lys2 endolysins from the L. casei 

phage BL23 specifically target the interpeptide bridge of peptidoglycan, only when it 

contains D-Asn residues (Regulski et al. 2013). The C-terminal repeats of SH3 domains for 
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the C. perfringens phage endolysin Psm are proposed to recognise the peptide side chain of 

peptidoglycan (Tamai et al. 2014). CBDs of B. anthracis phage endolysins PlyL and PlyG 

bind specifically to cell wall polymers depending on their pattern of galactosylation with 

µM affinity, similar to other protein-carbohydrate interactions (Mo et al. 2012; Ganguly et 

al. 2013). Pneumococcal phage lysins have modular C-terminal choline binding domains. 

Cpl-1 was crystallised with choline bound within it’s C-terminal repeats of a choline 

binding motif (Hermoso et al. 2003), Cpl-1 was also separately crystallised with the EAD 

bound to the substrate peptidoglycan (Pérez-Dorado et al. 2007), which provided the first 

structural evidence of peptidoglycan recognition by the EAD. Choline binding motifs are 

common amongst pneumococcal phage endolysins, possibly as choline is a common and 

necessary decoration of teichoic acid for their pneumococcal hosts. Listeria phage 

endolysin PlyP35 only binds to teichoic acids that contain terminal GlcNAc residues. 

Listeria cells that had been mutated to inhibit GlcNAc decoration of teichoic acids were 

resistant to PlyPSA binding (Eugster et al. 2011), however, three other Listeria phage 

endolysins Ply118, Ply511, and PlyP40 were shown to be restricted from binding areas of 

the cell wall by the presence of teichoic acids and instead were proposed to bind the 

peptidoglycan backbone directly (Eugster & Loessner 2012). 

 

Endolysin domain shuffling can improve lytic activity when applied externally to cells 

In a number of studies the exogenous application of the recombinant endolysin truncated 

after the EAD gave a higher rate of lysis than the full-length endolysin, questioning the 

rationale for CBD incorporation. For instance, the phage lysin LysK consists of two EADs 

and a CBD, truncation of the endolysin to just the N-terminal EAD still showed high lytic 

activity against staphylococcal cells, which also demonstrates the modular nature of 

endolysins as the N-terminal EAD was correctly folded and stable when separated from the 

other two domains (Horgan et al. 2009).  

  

When applied externally, the Clostridial endolysins CS74L and CD27L are equally active 

as full-length endolysins or separate EADs, however, the related CTP1L is only active as 

the full-length protein (Mayer et al. 2010; 2011; 2012). The endolysin PlyB behaves like 

CTP1L and is only active against B. anthracis as the full-length endolysin, removal of the 

CBD inhibited lytic activity (Porter et al. 2007). An EAD truncated construct of the phage 

endolysin PlyL showed higher lytic activity than full-length endolysin against B. anthracis 

and two other Bacillus strains (Low et al. 2005). From this observation Low et al. 

proposed that the C-terminal domain could regulate the catalytic domain allosterically via 
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intermolecular interactions, until the CBD binds the cell wall, which releases constraints 

on the EAD to become active. However, it has now been shown that the two domains of 

PlyL have no significant interactions (Low et al. 2011).  

 

Low et al. therefore proposed that the surface charge of the domains could have a role in 

endolysin activation. A positive surface charge on the EAD of an endolysin, such as the B. 

anthracis phage endolysin PlyL, correlated with a high lytic activity when the CBD was 

removed. Compared to the EAD of XlyA from a B. subtilis prophage, the EAD of which 

has a net negative charge and is inactive when expressed as a separate domain (Low et al. 

2011). Surface mutations were introduced to modify the charge of XlyA from a net charge 

Z = -3 to +3, the EAD was stable and folded with the change in surface charge and was 

transform into an active domain with the same activity as the native full-length XlyA (Low 

et al. 2011). Considering the previous evidence that pmf dissociation after holin formation 

is related to endolysin activation, surface charge most likely plays a part in activation and 

could provide another factor to consider for enhancement of the lytic activity of engineered 

endolysins. 

 

Given the diversity of endolysin modulation, the mechanics of CBD cell wall recognition 

and endolysin regulation must vary across all families of phages. As more structures of 

endolysins are elucidated the more we can probe into their function, and begin to engineer 

endolysins for biotechnological use. Regarding the classic holin-endolysin system it is still 

not clear how the endolysins become active, in fact due to the diversity in modular 

organisation of endolysins there are probably multiple ways to trigger endolysin activity. 

Currently, the in vivo function of the CBD remains obscured by the fact these endolysins 

from Gram-positive bacteria targeting phage have mainly been studied as recombinant 

proteins applied exogenously to bacterial cells. To fully understand the native requirements 

of the CBD they need to be expressed and monitored in actively propagating phage 

systems.  

 

The CBD controls specificity but this can be altered to target EADs to different strains or 

species by using the diverse enzymatic activities and modular organisation of endolysins to 

generate endolysin chimeras with improved activity against different bacterial types. 

Molecular engineering by removal, addition or repetition of domains has been used to 

generate and investigate different modular organisations of endolysins. For instance, 

duplication of the CBD of Ply500 from Listeria phage increased the binding affinity of the 
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domain by 50 times, however, CBD duplication also reduced lytic activity against cells in 

suspension, indicating that stronger binding of endolysins did not increase activity in this 

case (Schmelcher et al. 2011). Recently, a chimeric lysin, ClyH, was generated by 

combining the EAD and the CBD from two different S. aureus phage endolysins. ClyH 

was designed to target MRSA infections and was demonstrated to be more effective than 

its parental form against multiple MRSA strains in vitro and with an in vivo murine model. 

The engineered ClyH has potential as a future antimicrobial to treat MRSA infections 

(Yang et al. 2014).  

 

Use of high-affinity cell wall binding domains as biosensors 

Owing to their substrate specificity and observed high rates of activity, endolysins have a 

potential biotechnological use, such as for food preservation or diagnostic markers for 

pathogens. The high affinity binding observed with CBDs has the potential to replace 

antibodies for the detection of specific bacterial strains, for instance in pathogen 

contaminated food (Kretzer et al. 2007) or for patient samples to detect sources of 

infection. Recombinant CBDs of phages that target Listeria were coupled to magnetic 

beads and mixed with contaminated food to selectively bind contaminating Listeria cells 

by recognising the specific epitopes present on Listeria cell walls. The separation and 

concentration of target cells could then be used for diagnostic purposes (Kretzer et al. 

2007). As binding of CBDs can be specific for certain strains or much broader and cover 

entire bacterial genera there is much scope for CBDs as detectors. Attachment of 

fluorophores to CBDs was demonstrated as a future application as biomarkers for the 

quantitative detection of bacterial strains, even in mixed cultures it would be possible to 

simultaneously detect different strains with different fluorophores (Schmelcher et al. 2010; 

Schmelcher & Loessner 2014).  

 

Uses of endolysins as antimicrobials 

Antibiotics have a broad range activity against pathogenic and commensal bacteria, which 

due to selective pressure can accelerate the spread of resistance genes in bacterial 

communities (Fenton et al. 2010). Therefore the unique strain and species specificity 

observed for endolysins provides an advantage over broad range antibiotics, as it should be 

possible to target specific pathogenic bacteria with a high potency. The use of endolysin 

antimicrobials could reduce antibiotic associated diarrhoea infections, as specific 

endolysins produced to inhibit C. difficile colonisation would not affect the GIT 
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microbiota. Endolysins can be used against antibiotic resistant bacteria as they target 

different bacterial components with different mechanisms of action to antibiotics. Bacteria 

are also less likely to gain resistance against endolysins, as the basic components that 

endolysins target, such as the MurNAc-GlcNAc peptidoglycan bond, cannot be easily 

modified by bacteria (Schuch et al. 2002). 

 

Due to the lack of an outer membrane in Gram-positive bacteria, externally applied 

endolysins are able to gain access to the peptidoglycan layer and due to the peptidoglycan 

network acting as an open mesh, externally applied endolysins would be free to diffuse and 

exert their effect throughout the cell wall (Low et al. 2011). One of the first in vivo 

demonstrations of the possibility of endolysins as antimicrobials was by Loeffler et al. who 

showed the successful treatment of mice colonised with S. pneumoniae by administering 

the endolysin Pal. 5 hours after a single dose of the Pal endolysin the colonised 

pneumococcal cells were no longer detectable in the mice. Furthermore, the Pal treatment 

was shown to have no effect on commensal bacterial strains (Loeffler et al. 2001).  

 

As endolysins target structures conserved only in bacterial cells they should have no effect 

on mammalian cells. However, as both phage and their respective endolysins are 

proteinacious molecules, a likely pharmacological barrier against their use as systemic 

antimicrobials is the potential immunogenic response. Loeffler et al. reported the lytic 

activity of Cpl-1 lysin raised against rabbit hyperimmune serum was slowed but not 

blocked by the immunogenic response and they detected Immunoglobulin G had been 

raised against Cpl-1, but this only had a modest inhibitory effect on lytic activity (Fenton 

et al. 2010; Loeffler et al. 2003). Endolysins could be used as supplementary treatment 

with antibiotics, the synergistic use of antimicrobials involves using two or more different 

antimicrobials to increase treatment efficacy by (1) reduce the time of treatment, (2) reduce 

the antimicrobial dose required and (3) decrease the risk of the pathogen from acquiring 

resistance (Schmelcher et al. 2012). Successful applications of synergy between endolysins 

includes the combination of the S. pneumoniae endolysins Cpl-1 and Pal-amidase, which 

together enhanced bacteriolytic activity compared to the endolysins alone, possibly as the 

lysins have different catalytic EADs and therefore target different cell wall bonds 

providing a two-pronged attack (Loeffler & Fischetti 2003).  

 

Paradoxically, the advantage of species specificity for both phage therapy and endolysins 

could be a disadvantage in a clinical setting, as identification of the etiological pathogen is 
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required to decide the correct type of endolysin or phage therapy to use. Diagnostics is 

moving away from classical diagnostics such as microscopy, antigen detection and 

immunoserology, to the use of real-time PCR-based detection methods (Ince & McNally 

2009). Detection of etiological agents of infection by DNA-based tests provides more than 

just an instant diagnosis; they also make differentiating between bacterial species more 

specific and sensitive, therefore endolysins could be selected depending on the type of 

infection. The combination of rapid diagnostics and the growing repertoire of exploitable 

antimicrobial endolysins combined with the synergistic use of antibiotics, could pioneer 

the future of infectious treatment. 

 

In conclusion 

The engineering of recombinant endolysins has opened up a range of new applications for 

these proteins, from biotechnological applications such as biomarkers to antimicrobials for 

food safety, decontamination and most importantly as potential therapeutics alongside 

antibiotics. As more bacteriophage are being characterised, so are the various novel lytic 

systems that they employ. However, the future use of endolysins as antimicrobials could be 

hindered by a limited understanding, for most lytic systems, of the mechanics that relate 

the catalytic activity of the N-terminal EAD to the role of the C-terminal CBD, particularly 

for the classic holin/endolysin system where the mechanisms of endolysin activation are 

still unknown. 
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Project aims 
 

The holin/endolysin system is essential for host cell lysis by bacteriophage. Several lytic 

systems have been identified and their activation mechanisms elucidated, such as the SAR 

endolysins (Xu et al. 2004; Sun et al. 2009; Kuty et al. 2010) and the secreted endolysins 

(Sao-Jose et al. 2000). However, it is still not clear if an activation mechanism exists for 

the classic holin/endolysin system. At the end of the lytic cycle, the canonical endolysins 

are sequestered within the cytosol and require holin-mediated disruption of the membrane 

to gain access to the cell wall. The entry of these endolysins follows a well-timed trigger 

mechanism, directed by the holin protein (White et al. 2010). When the endolysins pass 

into the cell wall, they do so in an activated state to begin cell wall degradation.  The 

molecular mechanisms underlying this activation are unknown. The goal of this research is 

to investigate the activation mechanism for endolysins that target three different species of 

Clostridial bacteria: C. difficile (CD27L endolysin), C. tyrobutyricum (CTP1L endolysin) 

and C. sporogenes (CS74L endolysin). 

 

As more cell wall binding domain structures are interpreted, more needs to be known 

regarding their interactions with cell wall ligands and the specific cell wall decorations 

endolysins recognise. For instance, different peptidoglycan chemotypes are prone to 

species-specific modifications that could play a crucial role in endolysin recognition. As a 

side-project, I aim to develop a methodological approach to gain insight into the ligand-

endolysin interaction during cell wall recognition. Using unnatural amino acid 

incorporation (Chin et al. 2002), a photo-cross-linking amino acid could be inserted into 

the cell wall binding domain of an endolysin for the specific covalent attachment to its 

respective ligand. Mass spectometry could be used to analyse the endolysin-ligand 

complex to provide a detailed view of the ligand, complete with specific modifications. 
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Chapter 2: Results. The structural 

basis for the activation mechanism 

of the Clostridial endolysins 
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Contributions from other authors to the following work. 

The crystal structures of the CD27L and CTP1L endolysins were solved prior to my 

involvement with the project. Whilst at the Synchrotron Soleil, Saint Aubin, Dr. R Meijers 

performed the crystallisation trials and structure determination of CTP1L. Vasiliki 

Garefalaki and Dr. R Meijers performed the crystallisation and structure determination of 

CD27L together at EMBL, Hamburg. Full details of expression, purification and 

crystallisation of CD27L and CTP1L are described in materials and methods. The 

following chapter describes the key features regarding the crystallisation, structure 

determination and structural analysis of CD27L and CTP1L, which form the basis for the 

investigation into the regulation and activation of the three Clostridial endolysins. 

Throughout the text it has been specified where other authors contributed to the work. 

Results from this chapter have in parts been modified from the submitted article “The 

CD27L and CTP1L endolysins targeting Clostridia contain a built-in trigger and release 

factor” (submitted to PLOS Pathogens, 2014). The full manuscript can be found in the 

Appendix, page 170. 

Full-length CD27L crystallisation revealed just the C-terminal domain 

Freshly purified full-length CD27L endolysin crystallised by hanging drop within 24 

hours. Any delays in purification or crystallisation setup prevented crystal formation. An 

X-ray data set was collected to 2.3 Å from a fresh crystal and molecular replacement with 

the previously determined CD27L EAD (Mayer et al. 2011) was unsuccessful. It was 

suspected that the crystal possibly contained just the C-terminal domain of the endolysin. 

To determine the structure, the C-terminal domain of CD27L (∆N-CD27L) was 

independently cloned, expressed, purified and crystallised. The presence of cysteine 

residues within the C-terminal domain was exploited and the structure was determined by 

singular anomalous diffraction using a mercury derivative. Once the structure of the 

CD27L C-terminal was elucidated it was discovered that the full-length protein had 

degraded and the crystal contained only six copies of the C-terminal domain. Data 

collection and refinement statistics can be found in Appendix Table 4. 

  

Structure determination of CTP1L showed partial proteolysis  

Immediate purification and crystallisation of full-length CTP1L also resulted in crystals 

following 24 hours incubation. Akin to crystallisation of CD27L, any delay in purification 

or crystallisation prevented crystal formation. A fresh CTP1L crystal diffracted to a 

resolution of 2.1 Å, and was solved by molecular replacement for the catalytic domain, 
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which consisted of an a/b fold, which was similar to the peptidoglycan hydrolase (endo-N-

acetylmuramidase cellosyl) from Streptomyces coelicolor (Rau et al. 2001) (PDB code 

1JFX). The structure of the full length CTP1L endolysin is comprised of the catalytic 

domain (residues 1 to 190) connected by a linker of 6 residues to a C-terminal domain 

(residues 195 to 273). The electron density for the residues within the linker was weaker 

than the rest of the molecule and these residues had to be refined with partial occupancy. 

Close to the linker, an additional C-terminal domain was found in the asymmetric unit that 

lacked the N-terminal catalytic domain. This second C-terminal domain was truncated at a 

valine residue (V195) and remained closely associated with the C-terminal domain of the 

full-length protein. Interestingly, a few crystals appeared after four days crystallisation that 

turned out to be of the C-terminal domain alone, a similar result to the crystallisation of 

full-length CD27L. A single crystal diffracted to 1.2 Å resolution and the structure was 

resolved. The orientation of the C-terminal domains was identical to the two C-terminal 

domains found in the mixed crystal form. Data collection and refinement statistics can be 

found in Appendix Table 5. 

 

The C-terminal domains of CD27L and CTP1L adopt a novel protein fold 

Despite a sequence alignment of the cell wall binding domains of CTP1L and CD27L 

indicating a sequence identity of only 22 % for 81 residues, the folds of the C-terminal 

domains of CD27L and CTP1L are very similar. The fold consists of a platform of four 

parallel beta strands with two alpha helices (α1 and α3) mounted on top (Figure 8, C). The 

DALI server was used to compare the C-terminal domains of CTP1L and CD27L with 

structures in the Protein Data Bank (PDB) to search for similar folds, but this did not result 

in any significant similarities (Holm & Rosenström 2010).  
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Figure 8 Structural overview of the partially cleaved CTP1L and the fully cleaved CD27L A: 
Cartoon representation of the CTP1L crystal structure. The asymmetric unit consists of a full-
length monomer and a cleaved C-terminal domain, with a stable interface between the two C-
terminal domains. Between the crystal interfaces both C-terminal domains form head-on contacts 
with the opposing C-terminal domains. B: The tetrameric assembly observed in the CD27L crystal 
structure. Two dimerisation states are visible, a side-by-side dimer (grey and green or magenta and 
blue) where the N-termini point in the same direction or a head-on dimer (green and magenta) 
where the N-termini point in opposite directions. C: In CTP1L the C-terminal domain consists of a 
platform of four parallel beta strands with two alpha helices (α1 and α3) on top. The N-terminus 
consists of beta strand ß1 at the center of the beta sheet is connected to helix α1, which is followed 
by beta strand ß2 (red) on the outside of the sheet that connects through an extended loop to beta 
strand ß3 at the centre of the beta sheet. A single 310 helical turn (η1)(red) connects beta strand ß3 
and ß4 and the fold ends with an alpha helix α3 at the C-terminus of the protein sitting parallel to 
the α1 helix. CD27L contains small changes when compared to CTP1L, including an elongated 
beta strand ß2 (gold), the insertion of an extra single 310 helical turn (η1) (gold) and the 310 
helical turn in CTP1L is modified to a 3 turn helix α2 (gold). D: Linear map of the domain 
organisation of CTP1L and CD27L with residue numbers. 
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 Sequence analysis of related phage endolysins with similar C-terminal domains 

Sequence similarity searches were carried out using the NCBI Basic Alignment Search 

Tool (BLAST) (Johnson et al. 2008) against the non-redundant protein sequence 

databases. Searches using the full-length sequence of CD27L, CTP1L or CS74L 

recognised related sequences based only on their similarity to the N-terminal catalytic 

domains. Searches were consequently restricted to the proteolytic C-terminal fragments of 

CTP1L (residues V195 to K274) or CD27L (residues M186 to R270). A sequence 

similarity search using the CD27L C-terminal domain found 14 unique sequences from 

different C. difficile autolysins or putative endolysins from C. difficile targeting phage with 

Expected (E) values <0.01. The E-value parameter indicates the number of hits with a 

given score that would be expected to occur at random, within a database of a particular 

size. As a result, the lower the E-value the more significant the identified sequence 

(Pevsner 2013).  

 

A sequence similarity search with the C-terminal domain of CTP1L identified the C-

terminal domain of CS74L and 19 other proteins with E values < 0.01. The 19 sequences 

were from other putative Clostridial phage endolysins or Clostridial autolysins, as well as 

four peptidoglycan hydrolases identified from the desulfitobacterium family (Figure 9, B). 

Weblogo (Crooks et al. 2004) was used to produce a graphical representation of the 

multiple sequence alignment between the C-terminal domains of CTP1L and CS74L with 

the 19 other identified sequences to show more specifically the sequence conservation. The 

main conservation appeared to reside on the α1 and α3 helices (Figure 9, C). 

 

Even with a low overall sequence similarity, the separate sequence alignments of CD27L 

and CTP1L reveal three totally conserved residues. D198, T260 and G235 in CD27L and 

the corresponding residues D206, T262 and G240 in CTP1L, which form a hydrogen-

bonding network together, involving a single water molecule in both crystal structures. 

Due to their central location and conservation within the core of the domain, these three 

residues could be crucial for maintaining the tertiary structure of the domain.  
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Figure 9 Sequence alignments of CD27L and CTP1L indicating that the fold is prevalent for 
other lysins that target Clostridia A: Sequence alignment of the C-terminal domain of CD27L 
and sequences with a significant BLAST score (E < 0.01) was generated using ESPRIPT (Gouet et 
al. 2003). The secondary structure of the C-terminal domain of CD27L is depicted with arrows for 
beta strands and curls for alpha helices. Conserved residues are red, hydrophobic residues involved 
in the head-on dimer interfaces are blue and the cleavage site M186 and the C238 involved in the 
side-by-side dimer interface are green.  indicates the cleavage positions at the N-terminus of 
each C-terminal domain B: Sequence alignment of the C-terminal domain of CTP1L and CS74L 
with the 19 top sequences with BLAST scores E <0.01 generated using ESPRIPT with secondary 
structure elements of CTP1L. C: Weblogo representation of amino acid conservation for the 
sequence alignment for CTP1L, CS74L and the 19 top sequences from Figure B. At each position, 
the height of the stack is a representation of sequence conservation at that position. For all three 
endolysins the most conserved residue are positioned on alpha helices α1 and α3. In A, B & C the 
key residues that have been mutated during the project and demonstrated in the thesis to be 
required for side-side or head-on dimerisation have been indicated. Image A is modified from the 
submitted article, Appendix page 170.  
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SDS-PAGE analysis identified a continuous proteolytic mechanism 

Expression of all three endolysins, CD27L, CTP1L and CS74L, was susceptible to 

continuous proteolysis. SDS-PAGE analysis of freshly nitrilotriacetic acid (Ni-NTA) 

affinity purified CTP1L, CS74L and CD27L always produced a protein band with a 

molecular weight corresponding to the C-terminal domain (Figure 10, A). This proteolysis 

could not be inhibited by the addition of protease inhibitors. The type of lysis protocol 

applied also had no effect, mechanical lysis by sonication, repeating freeze-thaw cycles or 

chemical digestion involving lysozyme all presented the same cleaved product by SDS-

PAGE analysis. These observations are not extraordinary and similar proteolytic processes 

can be explicated from studies on other unrelated phage endolysins. For instance, the 

catalytic domains of PlyL (Low et al. 2005) and PlyB (Porter et al. 2007) had to be cloned 

and crystallised separately due to degradation of the full-length proteins. The linkers 

between the domains of these structures are always extended and solvent exposed, 

comparable to the linker in the crystal structure of the full-length CTP1L monomer. 

 

Matrix-assisted laser desorption/ionisation (MALDI-TOF) mass spectrometry (MS) 

revealed a protein product that corresponded to the theoretical masses of the C-terminal 

domains for all three endolysins (Figure 10, B). Combined with the C-terminal domain 

structures of the degraded full-length CTP1L and CD27L a proteolytic mechanism was 

evidently occurring at the beginning of the β1- beta strand that joins the C-terminal domain 

to the linker. For CD27L the calculated MW for the cleaved product corresponded closely 

to the theoretical mass of the C-terminal domain after peptide hydrolysis of the backbone 

between a glutamine (Q185) and methionine (M186). Interestingly, for CTP1L and CS74L 

the experimental masses could not be fitted for conventional peptide hydrolysis. The 

experimental value of 9032 Da for CTP1L was 40 Da higher than the theoretical mass of 

8990 Da for hydrolysis between the glutamate (E194) and valine (V195) cleavage site 

observe in the crystal structure. Similarly for CS74L, MS analysis revealed a MW of 9075 

Da, also 42 Da greater than the calculated mass after peptide hydrolysis at the equivalent 

cleavage site between lysine 184 and valine 185 in CS74L (9035 Da). The proteolytic 

products that corresponded to the C-terminal domains were isolated after SDS-PAGE and 

analysed by tryptic digestion followed by mass spectrometry. It was confirmed that these 

fragments were the intact C-terminal domains for all three endolysins. As there are no 

known proteases from E. coli that could cleave these scissile bonds (M-Q, E-V or K-V), 

this indicated that the cleavage could be from a yet unknown group of proteases or an 

autocatalytic mechanism. 
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The additional mass observed on the C-terminal domains of CTP1L and CS74L could 

resemble a post-proteolytic modification for these endolysins. The identification of this 

mass change is addressed in detail later in Chapter 3: “Probing the autocleavage 

mechanism of endolysin activation”. 

 

 

 

 

Figure 10 Ni-NTA purification and MALDI-TOF analysis of CD27L, CTP1L and CS74L A: 
SDS-PAGE analysis established cleavage of the C-terminal domain from the full-length proteins 
for the three endolysins. M: marker. B: MALDI-TOF spectra for the cleaved C-terminal domains 
of the three endolysins. In green are the MS detected masses and in parentheses are the expected 
masses if peptide hydrolysis was to occur at the cleavage sites. For CD27L the mass over charge 
ratio (m/z) value of the cleaved C-terminal domain agreed with the expected mass for peptide 
hydrolysis between Q185-M186. For CS74L and CTP1L an extra mass of 42 and 40 Da was 
respectively revealed for the C-terminal domains, suggesting a post-proteolytic modification. The 
identification of this additional mass is investigated in chapter three.   
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The effect of ionic strength during size exclusion chromatography of the endolysins 

Size exclusion chromatography (SEC) was couple with right-angle light scattering (RALS) 

/ refractive index (RI) / UV measurements (denoted here as SEC-RALS) to determine the 

absolute molecular mass of the three endolysins in solution and establish the oligomeric 

states of the endolysins. SEC was performed using the same analytical S75 (10/300) 

(Tricorn) size exclusion column with the same buffer (20 mM HEPES 500mM NaCl, 

pH7.4) to allow comparisons between oligomeric states of the different endolysins. CD27L 

was sensitive to the ionic composition of the buffer used during SEC and could only be 

easily size excluded in buffers with high ionic strength, (buffers containing ≥ 500 mM 

NaCl). When lower salt concentrations were used during SEC the recovered amounts of 

protein were always considerably lower than the amount loaded, suggesting the protein 

was aggregating in low salt solutions. This is not a unique observation and numerous 

proteins are sensitive to buffer compositions and ionic strength in particular. However, 

CD27L was always stable and did not aggregate when dialysed after Ni-NTA purification 

into low ionic strength solutions (for instance 10 mM HEPES, pH 7.4, the buffer used for 

Circular Dichroism), suggesting the effect of ionic strength was restricted to 

chromatography.  

 

The elution profile of wildtype CD27L was complex and suggested that the protein existed 

as a number of different conformations in solution (Figure 11, A & B). Considering the 

monomer mass of CD27L is 32 kDa, the calculated molecular weight (MW) of Peak 1 (68 

± 4 kDa) is interpreted as the CD27L dimer (theoretical MW of 64 kDa). For peak 2 the 

calculated MW of 43 ± 2 kDa was interpreted as a mixture of monomer in complex with 

the cleaved C-terminal domain (theoretical MW of 42 kDa) and peak 3 gave a calculated 

MW of 33 ± 7 kDa, which was interpreted to consist of the monomer. The reason for the 

larger error for the monomer peak MW estimation and a larger range of MW values: 

minimum MW: 26 kDa, maximum MW: 53 kDa) was due to a lack of resolution on the 

column when the MW was estimated. Aggregation or the species of a preceding peak can 

bleed into the peak of interest and influence the right angle light scattering, which produces 

a broader MW distribution. RALS analysis indicated that CD27L existed in solution with 

different oligomeric states as a mix between monomer and dimer with remnants of a 

proteolytic cleavage mechanism in the form of the monomer + cleaved C-terminal domain 

also being present. To confirm the presence of the monomer + C-terminal domain peak 

(peak 3) the elutions from SEC were analysed by SDS-PAGE (Figure 11, C). Samples 

taken from the elutions of peak 3 contained the C-terminal domain and full-length CD27L, 
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consistent with the MW calculated for this peak. Unfortunately, the peaks are not totally 

resolved and the C-terminal domain is faintly visible throughout the SEC profile, an 

unavoidable circumstance due to the resolution limits of SEC. However, peak 3 contained 

the highest concentration of cleaved C-terminal domain. 

 

 
Figure 11 Oligomerisation of wildtype CD27L in solution A: UV/RI/RALS size exclusion traces 
and MW correlation estimates (coloured lines through the peaks) for wild-type CD27L. The dimer 
(peak 2) and monomer + CBD (peak 3) states of CD27L have narrow MW distributions to give 
MW calculations close to their theoretical values. Peak 4 is affected by bleeding from previous 
peaks influencing the RALS intensities, but MW calculations suggested a monomer species. B: 
Summary table showing the MW correlation estimates for wildtype CD27L. Both dimeric (peak 2) 
and monomer + C-terminal domain (peak 3) states of the protein have narrow MW distributions 
through their respective peaks. MW distribution of the monomer (peak 4) is broader, caused by 
resolution limits of the SEC column. This peak may also contain the C-terminal domain and other 
contaminations. Numbers in brackets refer to ± standard deviation from the mean molecular 
weight. The mode refers to the most common MW range encountered through the MW correlations 
C: SDS-PAGE analysis shows the preloaded sample before SEC-RALS and the elutions going 
across the elution profile as collected from a separate SEC run. The lower MW C-terminal domain 
is present throughout the spectra but most concentrated within peak 3, correlating with the MW of 
monomer + CBD calculated by RALS. Image A and table B are reproduced from the submitted 
article, Appendix page 170. 
 
 
 
The SEC profiles of CTP1L and CS74L also indicated a relationship between the ionic 

strength of the buffer and the corresponding retention volumes of the endolysins. CTP1L 

and CS74L both eluted as sharp single peaks at 17.95 ml and 18.4 ml respectively in low 

ionic strength buffers (e.g. HEPES 20 mM, pH7.4) (Figure 12 A & C). However, upon the 

addition of 500 mM NaCl to increase ionic strength (e.g. HEPES 20 mM, NaCl 500 mM, 

pH7.4, as used for SEC-RALS measurements) the endolysins eluted as broader peaks and 

at a much earlier volume: 10.16 ml for CTP1L and 11.02 ml for CS74L. For both 

endolysins the elution profiles shifted by 7 ml. This could be due to the change in ionic 
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strength affecting the configuration of the endolysins, as an increase in NaCl concentration 

decreases the propensity of the endolysins to interact with the column matrix and therefore 

producing a more immediate elution. Molecular weight estimations were attempted for 

CTP1L and CS74L in the low ionic strength buffers, however, the proteins eluted at the 

end of the column volume where the RI and RALS suffered inconsistent scattering due to 

the exchange of contaminants initially present in the injected sample. 

 

RALS was used to estimate the MW of CTP1L in the same high ionic strength buffer as 

CD27L (Figure 12 E). CTP1L eluted at the same volume as the CD27L dimer peak (~10 

ml). The calculated MW of 66 ± 5 kDa also corresponded to a MW for the CTP1L dimer 

(theoretical MW of 65.6). RALS was attempted with the third endolysin CS74L, however, 

the propensity of CS74L to aggregate (a common occurrence when purifying CS74L) 

caused erratic, large scattering during RALS measurements and the MW could not be 

estimated (Figure 12, C). Visual inspection of the SEC profile for CS74L indicated a broad 

elution with a main peak at 11 ml and a preceding shoulder beginning at 10 ml, similar to 

the CTP1L profile, except for the large aggregation.  

 

SDS-PAGE analysis on the elutions for both CTP1L and CS74L indicated the presence of 

the full-length protein and the cleaved C-terminal domain throughout all the elution peaks 

and was true with or without NaCl in the SEC buffer (Figure 12, B & D). As the full-

length protein and the cleaved C-terminal domain eluted as a single peak, the C-terminal 

domain may still be interacting with the full-length protein after cleavage. The influence of 

ionic strength on endolysin activity within the cell wall has previously been reported, for 

instance the activity of Listeria phage endolysin Ply500 was shown to decrease as ionic 

strength increased (Loessner et al. 2002). The sudden assembly of holin lesions during host 

lysis would provoke a large environmental disturbance in ionic composition, which could 

influence endolysin activation or induce a conformational shift. Nevertheless, in solution it 

is apparent that CD27L exists as different oligomerisation states including the dimer 

conformation, whereas CTP1L is dominated by the dimer conformation.  
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Figure 12 Ionic strength affected the elution profiles of CTP1L and CS74L A: SEC profiles of 
CTP1L in high (red) or zero (blue) salt concentrations (20 mM HEPES ± 500 mM NaCl, pH 7.4). 
B: SDS-PAGE analysis of the two peaks from the SEC profiles of CTP1L in panel A. Both peaks 
contain the full-length and C-terminal domain. C: SEC profiles of CS74L in high (orange) or zero 
(green) salt buffer as used for CTP1L. In high salt conditions CS74L had a higher tendency to 
aggregate. D: SDS-PAGE analysis on the CS74L peak eluting in the low salt buffer (green line) 
indicated the presence of the full-length and the C-terminal domain of CS74L. E: UV/RI/RALS 
size exclusion traces and MW correlation estimates for wild-type CTP1L and the summary table of 
the MW correlation estimated for the single peak, mean MW was 65.9 kDa indicating a dimer in 
solution. Also shown are minimum and maximum values calculated from the peak. Numbers in 
brackets refer to ± standard deviation from the mean molecular weight. 
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The head-on dimer state of CTP1L and CD27L 

The crystal structure of the degraded product of the full-length CD27L protein consisted of 

six C-terminal domain molecules all involved in head-on dimers (Figure 8, B). The head-

on dimer is also present between the unit interfaces present in the crystal lattice of the 

CTP1L crystal (Figure 8, A). For both CTP1L and CD27L the head-on dimer is 

remarkably similar, the dimer interface is formed between opposing alpha helices α1 and 

α3 which align parallel to each other and engage in hydrophobic stacking with their 

symmetry mates from the second C-terminal domain. Using the PyMOL alignment tool the 

head-on dimers of CD27L and CTP1L can be superimposed to give a root-mean-square 

deviation (RMSD) of 2.273 Å for 160 residues (Figure 13, A). Interestingly, when engaged 

in this head-on dimerisation mode the N terminal EADs for both endolysins would point in 

opposite directions. The buried surface area of the hydrophobic core for the CD27L head-

on dimer was calculated between 1200 and 1300 Å2 by the PISA server (Krissinel & 

Henrick 2007). The core consists of hydrophobic residues valine 204, leucine 261 and 

leucine 265 and three aromatic residues tryptophan 207, phenylalanine 258 and tyrosine 

262 (Figure 13, B). The strong hydrophobic core and stacking of aromatic rings indicate 

the head-on dimer would be stable in solution. 

 

The CTP1L head-on dimer interface is also dominated by hydrophobic interactions. Along 

the symmetry axis between helices α1 and α3 of CTP1L, two tyrosines (Y212 and Y260) 

stack close together with tyrosine 212 forming a hydrogen bond with the carbonyl group of 

alanine 205 on the opposite domain (Figure 14, A). The side chain of Y260 points away 

from the dimer interface but is kept in position by interacting with a water molecule. 

Methionine 263 sits in the centre of the α1 and α3 helices and stacks against its symmetry 

mate. Methionine at this position is semi-conserved but the sequence alignment indicated 

that the other hydrophobic amino acids cysteine or leucine can also be found at this 

position (Figure 9, B & C). Hydrogen bonding between symmetry mates of Glutamine 264 

and Leucine 267 further stabilise the dimer interface. Although hydrophobic residues are 

favoured at these positions for CD27l and CTP1L, sequence alignment indicates that the 

type of hydrophobic or aromatic residues at these positions is not conserved. 

  

Whilst hydrophobic interactions dominate the centre of the CTP1L head-on dimer, the 

edges of the dimer interface are involved in salt bridging between the two monomers 

(Figure 14, A). Aspartate 215 (D215) forms salt bridges with the terminal aliphatic side 

chains of two arginine residues (R208 and R259) on the opposite domain. The same salt 
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bridge network exists for the symmetry mates of these residues at the other end of the 

dimer interface. The presence of salt bridges between the two domains further establishes 

that the head-on dimer would be stable in solution.  

   

Inhibition of the head-on dimer reduces proteolysis 

To test the significance of the CTP1L head-on dimer, and the salt-bridge network in 

particular, D215 was mutated to alanine (D215A). D215A had a surprising effect as it 

totally inhibited the proteolytic mechanism that we observed for wildtype CTP1L, as no C-

terminal domain could be detected by SDS-PAGE (Figure 14, C). The MW of CTP1L 

D215A was measured using SEC-RALS (Figure 14, B). D215A eluted as a single peak and 

gave a calculated MW of 33 ± 1.2 kDa, corresponding to the MW of a CTP1L monomer 

(theoretical MW: 32.8 kDa). Circular dichroism was used to ensure the inhibition of 

cleavage was not due to incorrect folding and the spectra closely resembled that of 

wildtype CTP1L (Appendix Figure 7). As D215A remained as a monomer in solution the 

salt bridging observed in CTP1L between D215 and R208 and R259 must be critical for 

the formation of the head-on dimer. This also indirectly implied that without formation of 

the head-on dimer the proteolytic mechanism that cleaves the C-terminal domain was also 

inhibited.  

 

R208, D215 and R259 are highly conserved among CTP1L, CS74L and the 19 other 

aligned sequences, but compared to CD27L only R259 is conserved between the two sets 

of sequence alignments. In CD27L this arginine is residue R257 (Figure 13, A) and its side 

chain points away from the centre of the stacked helices of the head-on dimer and is not 

involved in bonding between the two monomers of the head-on dimer. Without a salt 

bridging network as seen in CTP1L, the head-on dimer of CD27L is maintained solely by 

hydrophobic interactions between the two domain and thus would not be as stable as the 

head-on dimer in CTP1L. For CD27L mutants of the aromatic residues tryptophan 207 

(W207A and W207R) and tyrosine 262 (Y262A) that form part of the head-on 

hydrophobic interface were explored to see if interference of the head-on dimer also 

affected CD27L (Figure 13, B & D). 

 

These mutants did not totally inhibit cleavage of the C-terminal domain as seen for CTP1L 

D215A, however, they significantly inhibited proteolysis and all showed a large decrease 

in the amount of C-terminal domain detected by SDS-PAGE (Figure 13, D). Mutants 

Y262A and W207A showed a large inhibition in cleavage whereas mutation W207R 
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showed a moderate decrease in cleavage. For W207R this was surprising, as the additional 

charge repulsion when arginine is incorporated was predicted to hinder head-on 

dimerisation to a greater degree than alanine incorporation. 

 

 
Figure 13 Mutations within the head-on dimer interface of CD27L A: Superposition of the C-
terminal domains of CTP1L (red and green) and CD27L (cyan and magenta) in the head-on dimer 
conformation. B: Cartoon representation of the C-terminal domain head-on interface of CD27L. 
Aromatic residues W207 and Y262 are part of the hydrophobic interface that maintains the dimer 
interface in solution. Also highlighted is R257, which is the only conserved residue in the head-on 
dimer that shows conservation between CD27L, CS74L and CTP1L. In CTP1L the equivalent 
R259 is involved in a salt bridging network at the dimer interface, however, R257 forms no polar 
contacts within the crystal structure of CD27L. In the head-on dimer state the N-terminal linkers 
are pointing in opposite directions. C: UV/RI/RALS SEC trace for the low concentration (1.2 
mg/ml-1) of CD27L W207A. The 3.7 mg/ml-1 sample had the same profile, except the retention 
volume of the peak shifted by 0.5 ml from 11.3 ml to 10.8 ml (indicated by dotted line). MW 
correlation estimates for the mutant W207A at the different concentrations were calculated. The 
estimated MW of 36 kDa at low concentration increases to 47 kDa with the higher concentration. 
D: SDS-PAGE analysis of CD27L wildtype and the three head-on mutants, W207A, W207R and 
Y262A. Head-on mutants showed a decrease in the amount of cleaved C-terminal domain. All 
samples were loaded fresh after Ni-NTA purification at a concentration of 2 mg.ml-1. 
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Figure 14 Mutation within the head-on dimer interface of CTP1L A: Cartoon representation of 
the C-terminal domain head-on interface of CTP1L. Highlighted residues D215, R208 and R259 
form a salt bridging network at either end of the head-on interface and the N-terminal linkers are 
pointing in opposite directions. M263 residues are also indicated (magenta) and proposed to be part 
of the cell wall binding site of the C-terminal domain. Also indicated are Y212 and Y260, aromatic 
residues involved in the head-on interface B: UV/RI/RALS SEC traces and MW correlation 
estimates for the head-on interface mutant D215A, the peak eluted at a higher retention volume 
than the wildtype CTP1L (indicated by dotted line) and the MW estimation of 33 kDa 
corresponded to a monomer in solution. C: SDS-PAGE analysis of wildtype CTP1L, M263R and 
low and high concentrations of D215A. Mutation M263R is detailed on page 47. Mutant D215A 
totally inhibited cleavage of the C-terminal domain. All samples were loaded fresh after Ni-NTA 
purification at a concentration of 2 mg.ml-1. 
 

 

W207A was chosen for SEC-RALS measurements to investigate the effect this mutation 

had on the dimer state of the endolysin (Figure 13, C). Compared to the complicated 

elution profile of wildtype CD27L, W207A eluted as a single peak and gave a calculated 

MW of 36 ± 1.0 kDa, close to the theoretical mass of the CD27L monomer (32 kDa). To 

improve the quality of the RI/RALS traces the concentration of the injected sample of 

W207A was increased from 1.2 mg.ml-1 to 3.7 mg.ml-1. Interestingly, when a higher 
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concentration of W207A was used the calculated MW increased to 47 ± 2 kDa and the 

retention volume of the peak shifted from 11.3 ml (for 1.2 mg.ml-1) to 10.8 ml (for 3.7 

mg.ml-1), which was closer to the retention volume of the dimer peak observed for 

wildtype CD27L (10.6 ml). This change in mass was not due to a dilution effect, 

calculation error or bleeding of peaks skewing the calculations. Considering RALS 

calculates the average MW across a peak, W207A could exist as a dynamic mixture of 

monomer and dimer in solution, whereby the increase in concentration shifted the 

equilibrium towards the dimer state, observed by the increase in the calculated MW.  

 

A single mutation within the proposed cell wall binding site inhibits lytic activity 

Methionine 263 resides on helix α3 of the C-terminal domain of CTP1L and points 

towards the interface of the proposed head-on dimer of the C-terminal domain (Figure 14, 

A). Mutation to arginine (M263R) replaced the hydrophobic side chain with a positive 

charge, which was expected to change the dynamics in the dimerisation mode and affect 

the ability of CTP1L to form the head-on dimer. However, the C-terminal domain was still 

cleaved to the same degree as the wildtype CTP1L and indicated no modification of the 

autocleavage mechanics (Figure 14, C). Interestingly, this mutant totally abolished CTP1L 

lytic activity against C. tyrobutyricum cells (Figure 22, A). Applying an excessive amount 

of M263R (30 µg compared to 1 µg and 10 µg normally used) also could not establish a 

lytic response.  

 

BLAST sequence analysis indicated methionine at this position is not conserved but is 

present in 6 of the 21 aligned sequences, with cysteine as the most common residue found 

at this position. Mutation of M263R provided indirect evidence that the C-terminal domain 

of CTP1L could be involved in cell wall binding. As M263R abolished cell lysis but did 

not affect the proteolytic cleavage mechanism, the introduction of a positive charge was 

suggested to modify the normal behaviour of the binding site and prevented attachment of 

the endolysin to the cell wall. Without cell wall attachment the lytic activity was inhibited.  

 

The side-by-side dimerisation mode 

A second dimerisation mode exists in the crystal structures of CD27L and CTP1L. In the 

asymmetric unit of CTP1L the C-terminal domain of the full-length monomer forms a 

close interaction with the cleaved C-terminal domain, denoted as a side-by-side dimer 

(Figure 15, A). A similar side-by-side dimer exists for two of the C-terminal domains in 
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the crystal structure of the degraded full-length CD27L (Figure 15, B). Attempts to 

superimpose the two side-by-side dimers of CTP1L and CD27L failed and visual 

inspection of the two endolysins showed that are comprised of different side-by-side 

conformations. Even though the side-by-side dimers are comprised of different 

arrangements of the domains, the positions of the linkers that extend from the C-terminal 

domains to the N-terminal EADs are parallel for both CD27L and CTP1L. Additionally, in 

both side-by-side dimers the alpha helices α1 and α3, which form the head-on dimer 

interface, are exposed and point away from the centre of the dimer interfaces. For CD27L 

the pairs of helices point 180° away from each other, whereas in CTP1L the pairs of 

helices are facing 90° away from each other (Figure 15, A). If the C-terminal domains do 

interact as cell wall binding domains it would be in the side-by-side formation where they 

would most likely be able to bind to substrates when the proposed binding sites, including 

M263, are facing outwards. 

 

Mutagenesis to prevent the side-by-side dimer formation 

In the side-by-side dimer of CD27L the extended α2 helices of opposing monomers form a 

buried surface area of 1216 Å2 together, a comparable value to the head-on dimer interface 

(1200-1300 A2). Within the interface the side chain sulfhydryl of a semi-conserved 

cysteine residue (C238) protrudes into the centre of the dimer interface, coming within 3.4 

Å of its symmetry mate. This distance is too large to qualify for a disulphide bond. Around 

C238 are residues methionine 251, lysine 253 and their respective symmetry mates. All 

their side chains point in the direction of the C238 sulfhydryl groups and are proposed to 

destabilise the formation of a possible disulphide bond between the C238 residues. The 

exterior of the bacterial cell would favour the formation of disulphide bonds, which would 

strengthen the side-by-side dimer so that the endolysin becomes accessible to bind to the 

cell wall as the C-terminal domains are facing outwards and not constrained as seen in the 

head-on dimer. 

 

To test if disulphide formation contributed to the side-by-side dimerisation, cysteine 238 

was mutated to serine (CD27L C238S) replacing the terminal sulfhydryl group with a 

hydroxyl. SDS-PAGE analysis showed that C238S was still cleaved to the same extent as 

wildtype CD27L (Figure 15 E), indicating that side-by-side formation is not governed by 

disulphide bond formation, instead the side-by-side formation is most likely maintained by 

electrostatic interactions between the two monomers. Therefore, to test if the repulsion of 

opposing charges could inhibit side-by-side dimerisation, C238 was mutated to arginine 
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(C238R). C238R had the same effect on proteolytic cleavage as the head-on mutants 

(W207A, W207R and Y292A) and significantly reduced the production of the cleaved C-

terminal domain as observed by SDS-PAGE (Figure 15 E).  

 

The side-by-side dimer of the CTP1L C-terminal domains has a buried surface area of 

1120 Å2, a similar value to the side-by-side dimer of CD27L. The interface consists of 

main chain hydrogen bonding between cysteine 219, proline 220, threonine 221 and 

isoleucine 222. There is also salt bridging between symmetry mates of arginine 226 and 

glutamate 211 at both ends of the side-by-side dimer interface. R226 also interacts by salt 

bridging to D215, which is also involved in salt bridging in the head-on dimer interface. 

This suggests that D215 could have a dual role connecting these two dimer states. The side 

chain of the cleavage site V195 for the full-length monomer also closely interacts with the 

edge of the side-by-side dimer interface. Within the centre of the side-by-side interface, the 

closest interacting residues consist of hydrogen bonding between the threonine 221 

symmetry mates. Even though the side-by-side interfaces differ between CD27L and 

CTP1L, in an early attempt to mimic the latent disulphide bond theorised to exist between 

the C238 residues in CD27L and promote side-by-side dimerisation, threonine 221 was 

mutated to cysteine (T221C). Interestingly, the mutation had the opposite effect and 

instead of stabilising the side-by-side dimer it totally inhibited proteolysis and no cleaved 

C-terminal domain could be detected by SDS-PAGE (Figure 15, E). The introduction of 

opposite charges, as performed for the C238R mutant of CD27L, was replicated into 

CTP1L (T221R), which also totally inhibited proteolysis (Figure 15, E). 

 

Sequence alignment between CTP1L and CS74L indicated that T221 was also positioned 

at the same location in the C-terminal domain of CS74L. To test the conservation of this 

side-by-side interface, I introduced the same arginine mutation into CS74L (T211R). 

T211R demonstrated the same effect as CTP1L T221R and T221C and totally inhibited 

proteolysis (Figure 15 E). Interestingly, both CTP1L T221R and CS74L T211R showed 

signs of degradation to a fragment with a molecular mass just below the mass of the full-

length proteins. The degradation of CS74L T211R was more pronounced and the entire 

full-length protein eventually formed the degradation product (Figure 15, E). MALDI-TOF 

MS analysis revealed the mass of these fragments to be 21.8 kDa for CTP1L T221R and 

24.2 kDa for CS74L T211R (Appendix Figure 4). Tryptic digestion linked with liquid 

chromatography tandem mass spectrometry (LC-MS/MS) identified peptides within the C-

terminal domain, beyond the proposed site of autocleavage at position 185, indicating the 
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C-terminal domain was internally degrading, which was not due to autocleavage. 

Furthermore, the masses of these degradation products do not correspond with the MW of 

the EAD (MW of CTP1L EAD 23.8 kDa, EAD of CS74L 22.1 kDa) or from degradation 

within the 6 residue linker regions for the two endolysins. Therefore, without the formation 

of a stable side-by-side dimer these endolysins are susceptible to degradation. Degradation 

products could not be detected for CTP1L T221C and it was subsequently submitted for 

crystallisation trials, although unfortunately no positive crystal hits could be detected.  

 

Right angle light scattering on the side-by-side mutants  

The oligomeric states of the side-by-side mutants were also assessed by SEC-RALS, using 

the same measurement conditions as the wildtype endolysins. CD27L C238R eluted as a 

single peak at the same retention volume as the dimer peak observed for wildtype CD27L 

(Figure 15 D). MW estimations indicated a mass of 60 ± 4 kDa, which closely matched the 

theoretical mass of the CD27L dimer (64 kDa). CTP1L T221C eluted as two peaks during 

SEC-RALS measurements. The first peak with a retention volume of 10.4 ml aligned with 

the same retention volume of the dimer peak for wildtype CTP1L. The second peak eluted 

at 11.7 ml with the same retention volume as the monomer peak observed for the head-on 

mutant D215A. Unfortunately, due to the lack of resolution between the two peaks and the 

aggregate peak bleeding into both peaks, MW calculations using RALS were not possible. 

The presence of monomer and dimer species in solution for CTP1L T221C suggested that 

inhibition of the side-by-side dimer increases the propensity for the endolysin to form an 

equilibrium state in solution.  

 

 

 

 

 

 

 

 



 51 

 
Figure 15 Mutations of the side-by-side dimer of CD27L and CTP1L. A: Cartoon 
representation of the side-by-side dimer of CTP1L with residue T221 highlighted which was 
modified to arginine (T221R) or cysteine (T221C). B: Cartoon representation of the side-by-side 
dimer interface of CD27L indicating the close arrangement of residues around cysteine 238, 
modified to arginine (C238R) in Figure D. C: SEC UV 280 nm profile of CTP1L T221C (Buffer: 
20 mM HEPES, 500 mM NaCl, pH 7.4) eluting in two peaks, the 10.4 ml elution corresponds to 
the dimer peak observed for wildtype CTP1L and the elution at 11.7 ml corresponds to the 
monomer peak of CTP1L D215A. The aggregation peak affected MW calculations using RI/RALS 
and are not shown. D: UV/RI/RALS SEC traces and MW correlation estimates for CD27L C238R. 
The protein eluted as a single main peak corresponding to a MW of 60 kDa, close to the theoretical 
dimer MW. The elution profile shows a long tail spread between 10.5 ml to 13 ml suggesting other 
species such as the monomer are also present during elution. Image D is reproduced from the 
submitted article Appendix page 170. 
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Small-angle X-ray scattering to determine low resolution shape in solution 

RALS measurements indicated the presence of an equilibrium for the endolysins between a 

monomer and the head-on and side-by-side dimer states. Small-angle X-ray scattering 

(SAXS) was used to determine the low-resolution global shape and determine the 

oligomeric state of the endolysins in solution. The SAXS analysis was performed with the 

assistance of Haydyn Mertens (EMBL, Hamburg), who analysed the data and produced the 

scattering curves and DAMMIF models shown in Figures 16 and 17. Full details of 

experimental conditions and analytical processes can be found in materials and methods 

and Appendix table 5. SAXS data was collected for all three wildtype endolysins CTP1L, 

CS74L, CD27L and also the C238R mutant of CD27L in concentration series ranging from 

0.5 to 4 mg/ml. Data were merged and extrapolated to infinite dilution to obtain SAXS 

profiles with minimal inter-particle interference.  

 

The shape of the dimers for the oligomer state of CD27L and CTP1L 

A full-length model of CD27L was generated by combining the previously solved catalytic 

domain of CD27L (Mayer et al. 2011) (PDB: 3QAY) combined with the CD27L C-

terminal domain and using the structure of the intact PlyPSA endolysin (PDB: 1XOV) for 

domain placement. From the forward scattering intensity the molecular mass of wildtype 

CD27L was estimated to be 42 ± 4 kDa, considerably lower than the theoretical mass of 64 

kDa for the CD27L dimer. This suggested the existence of an equilibrium between the 

head-on and side-by-side dimerisation states combined with dissociation products. SAXS 

curves were generated for the head-on and side-by-side dimers using CRYSOL, however, 

they produced poor fits with respective discrepancies of χ = 1.8 and 4.0 when compared to 

the experimental data from wildtype CD27L (Figure 16, A). Interestingly, the experimental 

data of CD27L C238R fitted a scattering curve calculated for the head-on dimer 

configuration with a discrepancy approaching χ = 1.0. A model of the side-by-side dimer 

could not be fitted to the scattering curve of C238R and gave a discrepancy of χ = 3.3. This 

indicated that the solution state of the C238R mutant exists as the head-on dimer and 

correlated well with the dimer species calculated from the RALS measurements. The real 

space probability distribution p(r) function for atomic pair distances of the C238R mutant 

(Figure 16, B, green line) displayed two distinct peaks. The distribution was characteristic 

of an elongated protein with a large peak at 70 Å that matched the distance between the 

two centres of the catalytic domains when the endolysin is engaged in the head-on dimer. 

The p(r) function of the wildtype protein (Figure 16, B, blue line) lacks this peak at 70 Å 

and instead displays a smaller maximum size, again suggesting an equilibrium between 
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dimers and dissociated products. The model volume constructed for the wild-type data 

(Vex=94000 ± 10000 Å3) is consistent with a mixture and for the C238R data (Vex = 

123000 ± 10000 Å3) a dimeric conformation (Appendix Table 5). Additionally, the 

extended envelope reconstructed from the experimental SAXS ab initio for the C238R 

mutant overlays well with the head-on dimer model (Figure 16, C & D). 

 

 

 
Figure 16 SAXS analysis on CD27L and CD27L C238R. A: Experimental scattering curves for 
CD27L (blue) and C238R (green) with calculated scattering curves of different dimer 
configurations as indicated in the legend. Missing regions of the structure (n-terminal polyhistidine 
tags and the interdomain linker) were refined against the SAXS data, using the program CORAL to 
keep the domains fixed. The fit to the curve using the equilibrium model generated by 
OLIGOMER is shown as the red line. B: Real-space distance-distribution functions p(r) 
determined by indirect Fourier transformation (CD27L: blue, C238R: green) C: Reconstructed 
domains of CD27L C238R refined by rigid body modeling (cartoon) are overlaid with the best 
(surface) and average (mesh) DAMMIF bead models. In both reconstructions C238R exists as the 
elongated head-on dimer with the C-terminal domains in the centre and the EADs facing in 
opposite directions on the exterior.  Figure 16 is reproduced from the submitted article Appendix 
page 170.  
 

To further investigate oligomerisation states and clarify the appearance of degradation 

products for the CD27L samples, the program OLIGOMER (Petoukhov et al. 2012) was 

used to fit the experimental scattering curves of wildtype CD27L and the side-by-side 

mutant C238R to model potential multi-component mixtures of proteins and find the 

fractions of each component in solution. Form factor files were generated for the head-on 
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and side-by-side dimer modes and individual domains. These served as input for a fitting 

procedure where the discrepancy between the theoretical scattering of the individual 

components and the experimental data is minimised through adjustment of component 

volume fractions (Table 1). The contribution from potential degradation products (for 

instance, the side-by-side dimer without the EADS, dimers of C-terminal domains alone 

and individual domains) were pooled together as a single component. 

 

  Volume fractions   
    
Sample Head-on dimer 

Side-by-side 
dimer 

Degradation 
products Fit, χ 

CD27L 0.41 ± 0.02 0.24 ± 0.02 0.35 ± 0.02 1.5 
C238R 0.98 ± 0.01 0.02 ± 0.01 0.0 1.1 

Table 1 Equilibrium analysis of the SAXS data for CD27L and CD27L C238R using 
OLIGOMER. Values reported for merged data sets (CD27L: 0.9 & 4.0 mg.ml-1, CD27L C238R: 1 
& 8.4 mg.ml-1) 
 

 

For wildtype CD27L the head-on dimer is the dominant species in solution, but other 

components (side-by-side dimer and degradation products) are also present, explaining the 

low apparent molecular mass determined from the wildtype SAXS data and why individual 

components could not be fitted. For the side-by-side mutant C238R, scattering is described 

exclusively by the head-on dimer state scattering, indicating that inhibition of the side-by-

side dimer contributes to maintaining CD27L in the head-on dimer state. The fit of the 

equilibrium state of CD27L wildtype is depicted as a red line in Figure 16 A. 

 

Oligomeric states of CTP1L and CS74L 

SAXS was also used to detect the oligomeric states of CTP1L and CS74L in solution. 

During SEC the salt content of the buffer affected the retention volume of CTP1L and 

CS74L, suggesting ionic strength influences oligomeric state. Both proteins were purified 

using a buffer with no salt (20 mM HEPES, pH 7.4) and just before SAXS measurements 

NaCl was added to a final concentration of 500 mM. However, the only noticeable 

difference when salt was added during SAXS experimentation was a reduction in 

scattering contrast between sample and solvent and no effect on the oligomeric state was 

observed. Unfortunately, due to experimental error with concentration measurements, the 

molecular masses calculated from the forward scattering intensities for CTP1L and CS74L 

were affected and underestimated. Nevertheless, the molecular mass calculated for CTP1L 

(62 ± 5 kDa) suggested a dimer and the molecular mass calculated for CS74L of 46.5 ± 4 
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kDa, lower than the expected dimer MW (62 kDa), suggested the existence of an 

equilibrium in solution as previously observed for wildtype CD27L SAXS measurements.  

 

When dimeric models of the head-on and side-by-side dimer were generated based on the 

CTP1L crystal structure they provided poor fits to the data (3.1 < χ < 5.1) (Figure 17, A). 

For CTP1L and CS74L it was subsequently observed that the ab initio envelope 

reconstructed from the SAXS scattering by DAMMIF displayed elongated volumes with 

additional density in the centre of the envelopes. This extra density could be occupied by a 

head-on dimer with two C-terminal domains associated in the centre (Figure 17 B). Indeed, 

such a structure provided a very good fit to both scattering curves (χ = 1.4 for CTP1L and χ 

= 1.5 for CS74L) (Figure 17, A). Thus both endolysins are best described in solution by a 

model of the head-on dimer with the cleaved C-terminal domains attached in a side-by-side 

orientation, as observed in the crystal lattice of CTP1L (Figure 8, A). OLIGOMER was 

used to investigate the potential multi-component mixtures of CS74L and CTP1L and find 

the fractions of each component in solution. This was performed in a similar approach to 

the analysis on CD27L and CD27L C238R, except the generated form factor files used the 

crystal structure of CTP1L as a model instead of CD27L. Generated models included the 

head-on dimer and the head-on dimer with the two cleaved C-terminal domains still 

attached that gave the best fit to the CTP1L and CS74L scattering curves. The 

contributions from potential degradation products were pooled together as a single 

component and included the CTP1L monomer, dimers of C-terminal domains alone and 

the CTP1L EAD alone). The volume fractions of all individual components that minimised 

the discrepancy between theoretical scattering and experimental data are described in 

Table 2. 

  

  Volume fractions   
    
Sample 

Dimer + 2x C-
terminal domains 

Head-on 
dimer 

Degradation 
products Fit, χ 

CTP1L 0.85 ± 0.01 0.14 ± 0.01 0.02 ± 0.01 1.36 
CS74L 0.70 ± 0.02 0.02 ± 0.02 0.29 ± 0.02 1.1 

Table 2 Equilibrium analysis of the SAXS data for CD27L and CD27L C238R using 
OLIGOMER. Values reported for merged data sets (CTP1L 0.24 to 4.0 mg.ml-1, CS74L C238R: 
1.3 to 6.8 mg.ml-1) 
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For CTP1L the fit did not change when a multicomponent state was fit to the data (χ = 

1.36, compared to 1.40) and suggested that the head-on dimer with the two retained 

cleaved C-terminal domains was the dominant species in solution (85%) with the head-on 

dimer alone as the other component (14%). The equilibrium mixture calculated by 

OLIGOMER for CS74L was checked against the original scattering curve and indicated an 

even better fit to the data (χ = 1.1) than the head-on dimer plus the two C-terminal domains 

alone (Figure 17, A, blue line). For CS74L, the same head-on dimer with the two retained 

C-terminal domains was also the dominant species in solution (70%) and the rest of the 

equilibrium mixture (29%) consisted of the accumulation of degradation products. For 

CS74L this was a similar result to the OLIGOMER analysis of wildtype CD27L and 

explained why the molecular mass calculated from the forward scattering of CS74L was 

lower than expected, as lower MW components were also present in solution.  
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Figure 17 Determination of the dimer configuration of CTP1L and CS74L in solution by 
SAXS A: Overlay of the experimental scattering curves for CTP1L (blue) and CS74L (red) with 
the calculated scattering curves from different dimer configurations, as indicated in the legend, 
built as composite models from the crystal structure of CTP1L. Also shown for CS74L is the fit for 
the equilibrium model determined from OLIGOMER. B: Using SUPCOMB the crystal structure of 
CTP1L was superimposed with the best and average ab initio bead models reconstructed by 
DAMMIF for CTP1L and CS74L. Both envelopes have an elongated shape that accommodates the 
head-on dimer with the two C-terminal domains in the centre and the EADs at the exterior. In the 
centre of the head-on dimer the two cleaved C-terminal domains remain bound as seen in the 
crystal structure. For CTP1L the best fit was for the dimer + 2 C-terminal domains and the best fit 
for CS74L was the equilibrium model consisting of 70% dimer + 2 C-terminal domains, plus 
degradation products.  
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A tetramer intermediate could facilitate the dimer switch of CTP1L 

For a single endolysin dimer to switch from the head-on to the side-by-side state, it would 

require a large conformational change to drastically rotate one of the N-terminal EADs by 

180 degrees to place it adjacent to the other EAD. The likelihood of this happening is small 

and the switch between the two states most likely requires an intermediate step. Within the 

crystal structures of CD27L and CTP1L a tetramer can be observed between four 

individual C-terminal domains (Figure 8, A & B). This tetramer could represent the 

intermediate conformation as both the head-on and side-by-side dimer states are interacting 

(Figure 18, A).  In CTP1L the central residue D215 appears to play a central role in 

connecting these two dimer states.  

 

 
Figure 18 The potential tetramer intermediate state of CTP1L. A: The proposed tetrameric 
state involving both head-on and side-by-side interfaces, image generated in PYMOL by modeling 
the released EADs onto the cleaved domains. B: Salt bridging networks present between the C-
terminal domains in the CTP1L crystal structure. The head-on dimer interface, stabilised by salt 
bridging between D215 and R259’ and R208’, between two C-terminal domains (green and blue), 
is attacked by the side chain of the R226’’ residue after the formation of the side-by-side dimer 
(cyan and green). R226’’ also interacts with E211. All the generated bonds are 2.8-3.0 Å in length, 
qualifying for salt bridges. The side-by-side conformation brings the two linkers into close 
proximity, where they interact and autocleavage is triggered to release the EADs. 
 

 

The tetramer state of CTP1L consists of multiple salt bridging networks between the C-

terminal domains (Figure 18, B). Within the head-on dimer, D215 interacts with R208’ and 

R259’ to form a network of electrostatic interactions (cyan and blue domains) at both ends 

of the head-on interface. In the side-by-side dimer, D215 and E211 interact with R226’’ 

from the side-by-side domain (blue and green domains). Considering the head-on dimer is 
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the predominant state in solution, as observed by SAXS analysis, the interacting charges of 

the D215/R208’/R259’ network is attacked by the incoming R226’’, which also bonds with 

the E221 residue, as the C-terminal domains are forced into the side-by-side state. All 

these residues focus their charged side chains onto the D215 carboxyl group, with a high 

number of water molecules present that would help stabilise this tetramer state network. 

Potentially, the formation of the tetrameric intermediate forces the head-on dimer 

interfaces (cyan/blue and green/magenta) to break and the side-by-side dimer interface 

becomes the dominant interaction. The components of each dimer exchange and two side-

by-side dimers are released (blue and green/cyan and magenta). The attack of the R226’’ 

residue occurs at both ends of the head-on dimer interface so overall in the tetrameric state 

all four salt bridge networks are attacked by R226’’ residues from opposing side-by-side 

domains (Figure 18, B, dotted circles). As the side-by-side dimer forms, the cleavage of 

the C-terminal domains is proposed to occur, as both cleavage sites come into close 

proximity.  

 

As previously mentioned, the head-on network of R208/D215/R259 is highly conserved 

among CTP1L, CS74L and the 19 other aligned sequences. Sequence alignment also 

showed that R226 is present in CS74L and 9 of the 19 other sequences (Figure 9, B). 

Together this suggests that these two salt bridging networks could be a conserved feature 

for these endolysins. Visual inspection of the CD27L tetramer indicated a different 

tetrameric conformation to that of CTP1L and no such salt bridging networks could be 

established for CD27L. The only conserved residue is R259 in CTP1L with R257 in 

CD27L, which is conserved at the same position in the CD27L crystal structure (Figure 14, 

A). 

 

Mutation within the cleavage site inhibits the proteolytic release of the C-terminal 

domain  

Proteolysis of the three endolysins occurs at the stem of the linker that connects the C-

terminal domain to the N-terminal EAD. Proteolysis of CD27L occurs at methionine 186, 

for CTP1L at valine 195 and for CS74L at valine 185. To investigate if proteolysis was 

dependent on flexibility within the cleavage site, these three cleavage site residues were 

mutated to Proline (CD27L M186P, CTP1L V195P and CS74L V185P). The mutation to 

proline would strengthen the main chain and alter the mechanics of the linker at the hinge 

close to the C-terminal domain. Indeed for CD27L M186P proteolysis was totally inhibited 

as observed by SDS-PAGE (Figure 20, B). For CTP1L V195P and CS74L V185P, 
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proteolytic cleavage was significantly inhibited, however, when samples of these mutants 

were concentrated above ~ 3 mg.ml-1 a protein fragment corresponding to the size of the C-

terminal domain became detectable by SDS-PAGE, indicating that mutation to proline 

reduces but does not totally inhibit proteolysis (Figure 19, C & D). The oligomeric states 

of CD27L M186P and CTP1L V195P were analysed by RALS to check if the reduction of 

proteolytic activity affected dimerisation. CD27L M186P produced the same RALS profile 

as the side-by-side mutant C238R and eluted as a single broad peak (Appendix Figure 5). 

The calculated MW of 66 ± 6.5 kDa, matched the theoretical mass for the CD27L dimer 

(64 kDa). 

 

The SEC-RALS profile of CTP1L V195P produced two peaks indicating the presence of 

two oligomeric species (Figure 19 B). Unfortunately, the two peaks at 10.2 ml and 12 ml 

merged together, as previously seen for the CTP1L T221C mutant, making MW 

estimations challenging. The MW was estimated at the start and middle of the first peak 

and gave MW estimations of 70 ± 4.3 and 51 ± 3 kDa respectively. Although these 

calculations were prone to fluctuations and the calculated values could only be used as an 

estimate they pointed towards the existence of a dimeric species for the first peak. 

Furthermore, the retention volume of this peak was equivalent to the retention volume for 

the wildtype dimer (10.16 ml) in the same conditions. The MWs correlated well through 

the second peak at 12 ml and allowed for a precise MW estimation of 34 ± 1 kDa, which 

matched the theoretical mass of the monomer (32.8 kDa). The retention volume and 

calculated MW of the second peak also matched the monomer observed for the CTP1L 

D215A head-on mutant.  

 

The substitution of proline at the respective cleavage sites of CTP1L, CS74L and CD27L 

affected the intrinsic cleavage mechanism differently. Both CTP1L V195P and CS74L 

V185P were susceptible to proteolysis of their C-terminal domains, however, at a 

significantly reduced rate compared to their respective wildtype proteins. Whilst for 

CD27L M186P, C-terminal domain cleavage was totally inhibited. This suggested that 

there was a degree of plasticity of proteolysis within the CTP1L and CS74L cleavage sites, 

to allow the cleavage mechanism to occur even with the restricted flexibility of the proline 

incorporated into the scissile bond. 
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Purification and crystallisation of CTP1L V195P 

CTP1L V195P was used for crystallisation trials to see if the reduction in proteolysis 

would yield full-length protein crystals. The merged peaks observed during SEC-RALS of 

CTP1L V195P could be resolved by changing the buffer conditions from HEPES 20 mM, 

NaCl 500 mM to just 50 mM TRIS (both solutions were at pH 7.4) during SEC (Figure 19, 

A). The first peak at 10.88 ml retention volume, matched with the single peak of wildtype 

CTP1L when used in the same buffer conditions, which was presumed to be the dimer 

peak. Therefore the second peak was suggested to be the monomeric species. Interestingly, 

crystals only appeared when protein from the first peak was crystallised separately and not 

with protein collected from the second peak. Crystals appeared after two weeks in the same 

mother liquor conditions as crystallisation of the wildtype CTP1L. An X-ray data set for a 

single crystal was collected to 2.1 Å. Using the C-terminal domain of CD27L as a search 

model, the structure of the C-terminal domain was solved by molecular replacement. There 

was no N-terminal domain present and the asymmetric unit contained a single molecule 

that had been truncated to proline 195. Data collection and refinement statistics can be 

found in Appendix table 4. 

 

Inhibition of proteolytic cleavage does not affect CD27L lytic activity  

To verify whether proteolytic cleavage of the C-terminal domain affected the activity of 

the endolysins, turbidity reduction assays were performed in collaboration with Melinda 

Mayer (Institute of Food Research, Norwich). Ni-NTA purified endolysins and their 

mutants were exogenously applied to cultures of their respective host cells and the drop in 

OD600 was measured to understand the effect mutations had on the lytic activity of the 

endolysins.  

 

No differences in lytic efficiency could be deducted between wildtype CD27L and any of 

the mutants tested. M186P that prevented proteolysis at the cleavage site, C238R that 

prohibited side-by-side dimer formation and W207A, W207R and Y22A that prevented 

head-on dimer formation, all had no effect on the lytic activity of the endolysin (Figure 

20). This established that for CD27L, these mutants were enzymatically active, whether 

they cleaved the C-terminal domain or not. For CD27L it did not resolve whether 

autocleavage played a role in endolysin function. It has previously been shown that CD27L 

demonstrates the same lytic activity when it is applied to C. difficile cells as the full-length 

intact protein or as the truncated EAD (Mayer et al. 2011). Overall the lytic activity of 

CD27L appears to be insensitive to the cleavage mechanism of the C-terminal domain of 
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CD27L when tested exogenously. The function of CD27L may necessitate the cleavage of 

the C-terminal domain to become active during the inherent lytic mechanism within C. 

difficile cells. However, current analysis, by the external application of concentrated 

CD27L to cells for the turbidity assays, may be unreliable to measure this effect. 

   

 
Figure 19 Purification of V195P for crystallisation and in solution RALS measurements. A: 
Comparison of SECs of Ni-NTA purified CTP1L V195P in 50 mM TRIS pH 7.4 (blue) or 20 mM 
HEPES pH 7.4 (green) and wildtype CTP1L in 50 mM TRIS pH 7.4 (red). For wildtype CTP1L 
and V195P, a shift in elution volume occurs from ~18 ml using HEPES buffer to lower retention 
volumes using TRIS buffer. V195P only crystallised using protein from elution peak 1 in 50 mM 
TRIS pH 7.4. B: UV/RI/RALS SEC traces and MW correlation estimates for CTP1L V195P. The 
protein eluted as two peaks merging together. The main peak gave a MW of 34 ± 1 kDa, close to 
the monomer MW. MW calculations of the smaller shoulder peak were influenced by the main 
peak, MWs calculated at two positions: 70 ± 4.2 kDa and 51 ± 3 kDa. C: SDS-PAGE analysis of 
V195P before SEC (preloaded) and samples collected across the two eluting peaks 1 and 2. Two 
degradation bands D1 and D2 were detected in different amounts between the two peaks. D: SDS-
PAGE of CS74L wildtype (2mg.ml-1) and CS74LV186P (1 mg.ml-1 and 2 mg.ml-1).   
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Figure 20 Turbidity assays of CD27L and mutants on C. difficile cells. A & C: Lysis assays 
with 10 µg of Ni-NTA purified CD27L and mutants on fresh C. difficile cells to determine if point 
mutations had an effect on the lytic activity of the CD27L endolysin. B & D: SDS-PAGE analysis 
of the mutants used for the mutant studies. 10 µl of 2mg.ml-1 Ni-NTA purified protein was loaded 
to allow comparisons of the amount of autocleavage occurring. Mutations within the head-on 
dimerisation mode of CD27L W207A, W207R and Y262A and a single mutation C238R within the 
side-by-side dimer all showed a reduction in the proteolytic cleavage of the C-terminal domain as 
analysed by SDS-PAGE. However, they all had no effect on the lytic activity of CD27L, which 
remained at the same rate as the wildtype CD27L. Mutation M186P of the cleavage site totally 
inhibited proteolytic cleavage of the C-terminal domain but also had no effect on the lytic activity. 
Figure 20 modified from the submitted article, Appendix page 170. 
 

 

Inhibition of proteolysis inhibited CTP1L lytic activity 

CTP1L was previously shown to only display activity as the full-length protein. Truncation 

of CTP1L to its individual glucosyl hydrolase EAD, resulted in a total inhibition of lytic 

activity against C. tyrobutyricum cells, indicating the requirement of the C-terminal 

domain during turbidity assay measurements (Mayer et al. 2010). Lysis by wildtype 

CTP1L showed a distinct drop in OD600, reaching its maximum lytic effect within 15 
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minutes (Figure 21, A). Interestingly, the dimerisation mutants of CTP1L showed a drop in 

lytic efficiency that was proportional to the reduction in proteolysis. The side-by-side 

dimer mutants T221C and T221R, which totally lack the ability to cleave the C-terminal 

domain, produced no lytic activity. The cleavage site mutant V195P, which exhibited 

slight cleavage of the C-terminal domain, demonstrated a gradual lytic activity at a much 

lower rate when compared to wildtype CTP1L. Circular dichroism was used to show that 

lack of activity for these mutants was not due to unfolding. All circular dichroism spectra 

shared the same profile as wildtype CTP1L indicating that the secondary structure of these 

mutants was retained (Appendix Figure 7). 

 

 
Figure 21 Turbidity assays of CTP1L and mutants on C. tyrobutyricum cells. A: Lysis assays 
with 10 µg of Ni-NTA purified CTP1L and mutants on pre-frozen C. tyrobutyricum cells to 
determine if point mutations had an effect on the lytic activity of the CTP1L endolysin. T221R and 
T221C totally inhibited the lytic activity of CTP1L and displayed the same profile as the buffer 
control. V195P dramatically reduced the lytic activity but did not inhibit lysis. Values are the 
means of results from duplicate assays ± standard deviations. B: SDS-PAGE analysis of mutants 
T221C, T2221R and V195P compared to wildtype CTP1L. All samples were loaded at 2 mg.ml-1. 
Figure 21 modified from the submitted article, Appendix page 170. 
 

For CTP1L, inhibition of the side-by-side dimer had the dual effect of inhibiting C-

terminal proteolysis and inhibiting lytic activity (Figure 21, B). The lytic activity of the 

head-on dimer mutant CTP1L D215A still needs to be assessed, however, as apparent from 

the other tested CTP1L mutants with reduced C-terminal proteolysis, lytic activity would 

most likely also be inhibited.  
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Mutagenesis to investigate linker residues of CTP1L involved in autocleavage 

Cleavage of the C-terminal domains appeared to be an intrinsic property of these three 

Clostridial endolysins. Inhibition of either of the two dimerisation modes caused a 

significant decrease in cleavage. CTP1L was reliant on autocleavage for activity, and the 

relative rate of lysis was dependent on the ability to cleave the C-terminal domain. 

Adversely, turbidity assays demonstrated that CD27L retained lytic activity whether 

dimerisation and the autocleavage mechanism was inhibited or not. Therefore, CTP1L was 

chosen as the model endolysin to investigate this cleavage mechanism. The asymmetric 

unit of CTP1L contains a full-length monomer and a cleaved C-terminal domain. When the 

missing EAD and linker are modelled onto the cleaved C-terminal domain the linkers and 

neighbouring residues of the two C-terminal domains begin to clash, opening up the 

possibility that these endolysins cleave themselves in an autoproteolytic process when the 

linkers come into close contact during side-by-side dimer formation. 

 

Site-directed mutagenesis was used to test the involvement of various residues around the 

linker interface of CTP1L for their involvement in an intramolecular proteolytic 

mechanism. Mutants were assessed for their effect on proteolysis by SDS-PAGE analysis 

and turbidity assays to evaluate the effect certain mutants had when exogenously applied to 

C. tyrobutyricum cells.  

 

The N-terminal EAD of CTP1L and CD27L is not involved in autocleavage 

The catalytic domain of CTP1L belongs to the glucosyl hydrolase family 25 (Mayer et al. 

2010). Two residues, an aspartate and a glutamate, are conserved in all proteins from this 

family and are vital for the catalytic activity of the enzyme (Fouche & Hash 1978). A 

single mutant of D92A and a double mutant of D92A_E94A of these catalytic residues in 

CTP1L were created to investigate if the autoproteolytic mechanism was dictated by the 

same active site as cell wall degradation. For D92A and D92A_E94A the C-terminal 

domain was detected in equal amounts to wildtype CTP1L by SDS-PAGE, indicating that 

the catalytic domain of CTP1L does not contribute to the autocleavage mechanism. 

However, as D92A and D92A_E94A totally inhibited the lytic activity of CTP1L against 

C. tyrobutyricum cells this provided further evidence that the active site belongs to the 

hydrolase 25 family (Figure 22, D). Introduction of mutants to two catalytic residues in the 

active site of the CD27L (H84A and E144A) also did not abolish proteolysis and also 

showed total inhibition of activity against C. difficile cells (Figure 20, C). 
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It is not surprising that the catalytic domains have no effect on autocleavage. The active 

site of the CTP1L EAD is positioned 36 Å from the cleavage site in the linker and also 

faces in the opposite direction to the linker. Intramolecular cleavage would require 

excessive conformational movement to bring the active site and the linker together. 

Intermolecular cleavage where the active site of one monomer could approach the linker of 

another monomer was ruled out as no such oligomerisation states could be observed in the 

crystal structures of full-length CTP1L or from SAXS analysis. Furthermore, the lytic 

activity of CTP1L is as a muramidase and CD27L as a peptidoglycan aminohydrolase 

(BLAST analysis also revealed that the CS74L EAD belongs to the same family as 

CD27L), so the likelihood that two different enzymatic types could perform the same 

autocleavage mechanism in this context is slim.  

 

Mutagenesis of residues in close proximity to valine 195 in CTP1L 

The side-by-side dimer is the most likely conformation for an autoproteolytic mechanism 

to occur, as the two linkers are aligned parallel and come into close proximity providing 

the potential to interact. Protein self-processing reactions can be split into interdomain or 

intradomain autoproteolysis. The Ser/Lys cleavage dyad for LexA (Luo et al. 2001) and 

the Ser/Ser/Glu triad of BapA (Merz et al. 2012) are examples of intradomain proteolysis, 

contained within single domains that do not require oligomerisation for the donation of 

catalytic residues between domains. LexA and BapA are also examples of unconventional 

serine proteases, which do not involve the classical catalytic Ser/His/Asp triad. In fact, an 

array of catalytic triads, dyads or even single residues of serine or threonine can be used in 

the catalytic sites of proteases (Ekici et al. 2008). A combination of interdomain and 

intradomain auto-proteolytic cleavage has been described for the gp12 bacteriophage tail 

spike proteins whereby three Asp/Gln dyad protease sites are formed only when gp12 

associates into a trimer. Trimerisation is essential for catalysis as separate monomers 

donate catalytic residues for interdomain proteolysis to occur (Xiang et al. 2009). For 

CD27L, CTP1L and CS74L dimerisation appears to be necessary for proteolysis, 

indicating a similar inter/intradomain mechanism reliant on the oligomeric state of the 

endolysins could exist. 

 

For CTP1L there are many potential catalytic residues whose side chains could interact 

with the cleavage site V195, the majority of which were subsequently mutated: Y188A, 

N197A, C219A, D229A, S231A, N232A and K234A. The chemistry that the different side 

chains of these residues contribute in the context of proteolysis varies, as do the distances 
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of the residues to the cleavage site on the linker. In solution the endolysins exhibit a degree 

of flexibility, particularly as they form head-on or side-by-side dimers and have a flexible 

linker between the domains, allowing certain residues to form interactions with the 

cleavage site that are not visible in the rigid crystal structure. Surprisingly, all the mutants 

created around the cleavage site showed the same degree of C-terminal domain cleavage as 

wildtype CTP1L (Figure 22, B & C) and showed no difference in lytic activity as 

measured by turbidity assays, except for one mutant C219A. C219A showed a slight 

reduction in lytic activity (Figure 22, D). As C-terminal cleavage was not affected this 

could be due to instability of the mutant and still needs to be investigated.   

 

Autocleavage does not involve residues adjacent of the cleavage site 

Cis-autoproteolysis describes an autocleavage event initiated by a nucleophile attacking 

the carbonyl carbon of a neighbouring peptide bond (Buller et al. 2012). The nucleophilic 

attack causes a NO acyl shift that converts the scissile peptide bond into an ester bond 

which is promptly hydrolysed, resulting in peptide bond autocleavage (Buller et al. 2012). 

The initial nucleophilic attack of the neighbouring residue is normally governed by a 

hydroxyl or thiol side chain (such as threonine, serine or cysteine) attacking the carbonyl 

carbon of the protein backbone. As a contrast, the cleavage site of CTP1L is flanked either 

side by glutamate residues, E194 and E196, whose side chains terminate with carboxyl 

groups. Single mutants of E194A and E196A and a double mutant E194A_E196A had no 

effect on autocleavage as the C-terminal band was present in equal quantities to the 

wildtype protein by SDS-PAGE. There was also no decrease in lytic activity for the single 

mutant E196A on C. tyrobutyricum cells and the lytic profile mirrored that of the wildtype 

CTP1L (Figure 22, C).  
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Figure 22 Turbidity assays of CTP1L and mutants of residues in close proximity to the 
cleavage site. A: Lysis assays with 10 µg of Ni-NTA purified CTP1L and mutants on pre-frozen C. 
tyrobutyricum cells to determine the lytic effect of mutants near the cleavage site. A: Mutation of 
M263R within the proposed cell wall binding site of the C-terminal domain inhibited lytic activity 
of the endolysin and displayed the same profile as the buffer control and mutanolysin (a lytic 
enzyme used as a negative control). Lysozyme was used as a positive control of lysis and gave a 
slightly reduced lytic activity when compared to wildtype CTP1L that presented full lysis within 15 
minutes. B, C & D: All point mutations apart from M263R showed similar lytic rates to wildtype 
CTP1L except C219A, which has a reduced lytic activity and also a final higher OD600, indicating 
a lower number of total lysed cells. Values are the means of results from duplicate assays ± 
standard deviations.  
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Proteolysis requires a linker but it does not have to be flexible  

By investigating the structures of other solved full-length endolysins it was noted that a 

common feature is a long flexible linker between the EAD and the C-terminal domain(s). 

PlyPSA has a 9 residue linker (PDB 1X0V) (Korndörfer et al. 2006), CPL-1 has a 12 

residue linker (PDB 2IXU) (Pérez-Dorado et al. 2007) and Psm has a 7 residue linker 

(PDB 4KRT) (Tamai et al. 2014). Whilst these endolysins do not display a similar 

autocleavage mechanism for activation, the flexibility of the linker was tested to assess if it 

played a role in cleavage for CTP1L. The three residues upstream of the cleavage site 

V195 were mutated into prolines: E191P-D192P-E193P (CTP1LPPP). As the linker 

between the EAD and C-terminal domain is relatively short at 6 residues, it was postulated 

that flexibility would be necessary to enable autocleavage activity. The addition of a 

polyproline linker adds structural rigidity. Surprisingly, CTP1LPPP had no inhibitory effect 

on autocleavage and the cleaved C-terminal domain was present after Ni-NTA purification 

and SDS-PAGE analysis (Figure 23, D preload lane). SEC of CTP1LPPP also gave a similar 

retention volume (9.93 ml) to the wildtype CTP1L (10.16 ml) with the same conditions 

and also had the same profile throughout. SDS-PAGE analysis of the elution samples 

across the peak showed the presence of full-length and a truncated C-terminal domain, the 

same as observed for the wildtype CTP1L (Figure 23, D). 

  

To test if the length of the linker was necessary for proteolysis the same three residues that 

were mutated to proline in CTP1LPPP were deleted (∆E191_∆D192_∆E193) to create 

CTP1L∆Linker, which reduced the length of the linker to just two residues, L190-G191, 

between the EAD and the V195 cleavage site. Interestingly, CTP1L∆Linker   totally inhibited 

proteolysis as detected by SDS-PAGE (Figure 23 C, Ni-NTA elutions). CTP1L∆Linker was 

expressed in equivalent amounts to the wildtype CTP1L and was not prone to 

precipitation. Furthermore, the condensed linker did not affect the stability of the mutant as 

measured by circular dichroism (Appendix Figure 7). SEC-RALS was used to monitor if 

the inhibition of cleavage observed for CTP1L∆Linker was connected to a change in 

oligomeric state. Surprisingly, CTP1L∆Linker eluted at the same volume as the monomer 

species observed for the head-on mutant D215A. The calculated MW of 30 ± 2 kDa was 

also equivalent to the expected mass of the CTP1L monomer (32.4 kDa) (Figure 23, B).  

 

Reducing the length of the linker to two residues was sufficient to inhibit the proteolytic 

cleavage of CTP1L, indicating an elongated linker is necessary for proteolysis. Combined 

with the fact proteolysis still occurred for the CTP1LPPP, if the two linkers come together 
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in the side-by-side dimer they do so independently of the flexibility and chemistry of the 

linker. 

 

 

Figure 23 CTP1L∆Linker and CTP1LPPP mutations within the CTP1L linker. A: SEC profiles of 
CTP1L∆Linker and CTP1LPPP compared to wildtype CTP1L. B: UV/RI/RALS SEC traces and MW 
correlation estimates for CTP1L∆Linker. The single main peak gave a calculated MW of 30 ± 2 kDa, 
indicating a monomer species in solution. C: SDS-PAGE analysis of the Ni-NTA purification of 
CTP1L∆Linker and samples taken from the SEC eluting peak at 12.35 ml. Compared to wildtype 
CTP1L (last lane) there is no detectable C-terminal domain. D: SDS-PAGE analysis of the 
preloaded SEC and elution profile of the CTP1LPPP peak at 10.16 ml, as for wildtype CTP1L the C-
terminal domain is present throughout the peak.   
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Summary of chapter two 
In chapter two a novel autoproteolytic mechanism for the activation of the Clostridial 

endolysins CTP1L, CD27L and CS74L has been presented. Two distinct dimerisation 

modes were observed in the (previously solved) crystal structures of CTP1L and CD27L: 

the head-on and the side-by-side dimer states. These dimer states were validated in 

solution by the use of small angle X-ray scattering and right angle light scattering. For both 

endolysins a cleavage reaction was occurring on the linker between the EAD and the C-

terminal domain during purification and crystallisation. Mutagenesis, to prevent either of 

the dimerisation states, had an inhibitory effect on the proteolytic mechanism, as a 

reduction in C-terminal domain release was detected by SDS-PAGE. For the CTP1L 

endolysin, the inhibition of proteolysis had an additional effect of inhibiting lytic activity 

against C. tyrobutyricum cells.  

 

A model can therefore be proposed whereby the dimer switch and the proteolytic 

mechanism are part of an activation mechanism for these endolysins. The elongated head-

on dimer exists as the dominant state before the moment of triggering, such as an 

environmental shock during holin lesion formation, which switches the endolysin into the 

side-by-side state. The side-by-side dimer state forces the linkers into close proximity to 

provide a potential configuration whereby an interdomain or intradomain autoproteolytic 

mechanism occurs. Unfortunately, current mutational analysis has not yet established 

common catalytic residues required for autoproteolysis.  

 

Interestingly, a mass difference of approximately 40 Da was observed during MALDI-

TOF mass spectrometric analysis on the cleaved C-terminal domains of CTP1L and 

CS74L. In the next chapter the mechanism for this mass difference is examined in detail 

and an attempt is made to derive its source. The hope is that identification of this mass 

shift could unravel details of the cleavage activation mechanism observed for these 

endolysins.  
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Chapter 3: Results. Probing the 

autocleavage mechanism of 

endolysin activation 
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Mass Spectrometry and tryptic digest analysis to probe the post-proteolytic modification 

The initial MALDI-TOF analysis of the cleaved C-terminal domains of CTP1L and CS74L 

indicated an approximate mass increase of 40 Da to the expected mass for a normal peptide 

hydrolysis of the C-terminal domains. The presence of a post-proteolytic modification to 

the C-terminal domains was therefore suggested. Below a mass to charge ratio (m/z) of 

20000, the mass measurement accuracy from MALDI-TOF MS is quoted as ± 0.1% 

(Hillenkamp et al. 1991). The MW of the C-terminal domains is around 9000 Da and 

therefore the potential error would be ± 9 Da from the MALDI-TOF analysis. For higher 

resolution and higher mass-accuracy, liquid chromatography coupled to electrospray 

ionisation mass spectrometry (ESI-LC-MS) was used on freshly Ni-NTA purified samples 

of CTP1L, CS74L and CD27L to obtain the monoisotopic masses of the cleaved C-

terminal domains .The MS analysis described in this chapter was performed by Stefan 

Leicht (EMBL, Heidelberg). 

  

For CD27L, the calculated monoisotopic mass of 9579.9 Da for the cleaved C-terminal 

domain exactly matched the mass expected for a peptide hydrolysis between Q185 and 

M186, with the cleaved C-terminal domain retaining the methionine residue (Figure 24, 

A). Proteolytic cleavage at this bond is also observed in the crystal structure of the 

degraded full-length CD27L. For CTP1L the calculated monoisotopic mass was 9016.5 Da 

(Figure 24, B). For normal peptide hydrolysis between E194 and V195 at the cleavage site 

of CTP1L the mass would be 8984.5 Da. This indicated that post-proteolytic modification 

added 32 Da to the C-terminal domain. 32 Da is not a commonly recognised adduct to 

occur from ESI mass spectrometry. The same 32 Da mass increase was present for the C-

terminal domain of CS74L and the experimental mass of 9061.5 was 32 Da higher than the 

theoretical mass of 9029.5 for proteolysis between K184 and V185 (Figure 24, C). 

 

To further probe the 32 Da increase in mass for CTP1L and CS74L, the individual C-

terminal domain bands were excised after SDS-PAGE and analysed by tryptic digestion. 

The trypsin-digested peptides were then analysed by liquid chromatography-tandem mass 

spectrometry (LC-MS/MS). Using the MASCOT server the MS/MS spectra were searched 

against a database containing over 3,500 proteins including the sequences of CTP1L and 

CS74L and directed to identify any common modifications to peptides such as acetylation, 

formylation and methionine oxidation. Numerous adducts were attempted to fit the mass 

shift of 32 Da. Ultimately, the 32 Da mass adduct was established to be from the covalent 

addition of a sulfhydryl group (R-SH) to the cleavage site at the N-terminus of the C-
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terminal domain for both CTP1l and CS74L (Appendix Figure 6, B & D). The introduction 

of a sulfhydryl group adds 32 Da to the mass of the N-terminal valine (117.2 + 32 = 149.2 

Da), generating the exact same mass as a methionine residue (149.2), hence the tryptic 

digest analysis indicated a modification of the terminal valine of the C-terminal domain to 

methionine or an isomer of methionine. As a control tryptic digestion on the SDS-PAGE 

bands corresponding to the full-length CTP1L and CS74L detected only valine at the 

cleavage sites (Appendix Figure 7, A & C), confirming that the cleavage site valines of the 

CTP1L and CS74L C-terminal domains are modified to a methionine-like residue only 

during proteolysis.   

 

 
Figure 24 Electrospray ionisation mass spectrometry on the cleaved C-terminal domains. 
Liquid chromatography coupled to electrospray ionisation mass spectrometry (LC-MS) was used to 
accurately determine the full-length monoisotopic masses of the cleaved C-terminal domains for A: 
CD27L, B: CTP1L, C: CS74L and D: CTP1L V195P. For CD27L the mass corresponded to a 
peptide hydrolysis reaction between Q185-M186. For CTP1L and CS74L an additional mass of 32 
Da was detected on their C-terminal domains, a methionine-like post-proteolytic modification for 
these proteins. CTP1L V195P was susceptible to multiple cleavage products. 
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Proline incorporation at the cleavage site changes the kinetics of proteolysis  

Previously, it was shown that mutation of the cleavage site valine in CTP1l and CS74L to 

proline significantly reduced the rate of cleavage.  CTP1L V195P was subsequently 

analysed by LC-MS to see if the same methionine-like modification could be detected with 

a proline residue at the cleavage site. Interestingly, a number of peptides were detected 

indicating cleavage was not just happening at one position (Figure 24, D). The most 

prominent species, at 8982.5 Da, corresponded to the cleavage product of peptide 

hydrolysis between E194 and P195. Monoisotopic masses of 8885.4 and 8756.4 Da were 

also detected and corresponded to the respective products of peptide hydrolysis after the 

cleavage site, between P195-E196 and E196-N195. The multiple products of peptide 

hydrolysis for CTP1L V195P were further confirmed by tryptic digest analysis (Figure 25, 

A). Additionally, the same methionine-like modification was detected at the N-terminus 

instead of proline and indicated that the same autocleavage mechanism observed for the 

wildtype CTP1L had also occurred. Tryptic digest analysis was also used to search for 

potential post-proteolytic modifications of CS74L V185P. Two proteolytic products were 

detected: the cleavage product of peptide hydrolysis between K184-P185 and the N-

terminal methionine-like incorporation observed for wildtype CS74L (Figure 25, B).  

 

For both CTP1L V195P and CS74L V185P, proline was still being modified to the 

methionine-like residue during cleavage, suggesting a similar mechanism of autocleavage 

to the wildtype endolysins was still possible. However, the observation of post-proteolytic 

products of peptide hydrolysis, without the methionine-like incorporation, suggested that 

incorporation of proline at the cleavage sites for these endolysins altered the mechanics of 

the autocleavage mechanism. Proline imposes restrictive constraints on the cleavage site, 

which could alter the kinetics of cleavage to allow normal peptide hydrolysis of the scissile 

bond between proline and its upstream residue. Furthermore, for CTP1L the peptide bonds 

one and two residues C-terminal of P195 were also susceptible to cleavage.  
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Figure 25 MASCOT search results for tryptic digestion and LC-MS/MS analysis on CTP1L 
V195P and CS74L V185P. A: CTP1L V195P, B: CS74L V185P. For both mutations 
methionine-like incorporation could be detected as the post-proteolytic modification on the N-
terminus, indicating a 32 Da mass increase. Both searches also detected peptide hydrolysis of the 
cleavage site scissile bond as proline was retained as the N-terminal residue. For CTP1L the 
additional cleavage product of hydrolysis between E196-N195 was detected. 
 

Could hydrogen sulphide be the trigger for autocleavage? 

Hydrogen sulphide (H2S) was suggested as the causative agent of proteolysis and the 

additional mass of 32 Da to produce the methionine-like modification after autocleavage. 

H2S is present in high amounts within bacterial cells, particularly in anaerobic bacteria 

such as the Clostridial hosts for these phage endolysins (Fuchs & Bonde 1957). It was also 

recently shown that C. difficile has special hydrogen sulphide channels that actively 

remove H2S from the inside of the cell and pump it into the periplasm (Czyzewski & Wang 

2012). In bacteria the majority of H2S biosynthesis is derived from the breakdown of L-

cysteine or homocysteine by two enzymes: cystathionine β-synthase and cystathionine γ-

lyase (Paul & Snyder 2012). H2S is also generated in small amounts within E. coli (Artman 

1956), the cells used for endolysin expression throughout my studies. H2S has established 

roles in enzyme regulation, mostly by sulfydration of cysteine residues (Krishnan et al. 

2011). It was hypothesised that during proteolysis the nucleophilic nature of the sulphur of 

H2S could interact with the amide of the cleavage site valine to generate a N-S bond, which 

would explain the addition mass of 32 Da. 
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Sodium hydrosulphide (NaHS) was used as a H2S donor, which, in solution dissociates to 

produce H2S. NaHS was added to solutions containing the three endolysins in an array of 

environmental conditions (pH 6-9, NaCl 0 to 500 mM and at 21 or 37 ºC) to see if H2S 

could prompt a proteolytic reaction. SDS-PAGE was used to detect an increase in 

proteolysis by a decrease in full-length protein and an increase in C-terminal domain 

concentration. Furthermore, the released EAD domain should have become visible after 

cleavage. Unfortunately, it was promptly observed that the addition of H2S (10-100 mM) 

had little effect on the endolysins besides aggregating the samples in pH values above pH 

8. The dissociation of NaHS to H2S and HS- ions increases with pH and therefore it was 

deduced that the aggregation of the three endolysins is from increased nucleophilic attack 

on the proteins by the increase HS- ionic content. Additionally, it was established that 

monitoring the initiation of autocleavage by detecting an increase in cleaved C-terminal 

domain by SDS-PAGE did not provide an accurate means for measurement, unless 

cleavage was close to 100%. Therefore, an experimental setup was developed for the 

quantification of cleavage upon the change of environmental conditions or from the 

addition of potential activators of autocleavage. 

 

Testing for free sulfhydryl groups with Ellman’s reagent 

Ellman’s reagent (5,5'-dithiobis-(2-nitrobenzoic acid)), also known as DTNB, is a water-

soluble compound for quantifying free sulfhydryl groups on proteins (Ellman 1959) . In 

solution the disulphide bond of DTNB breaks and TNB2- covalently attaches to free 

sulfhydryl groups, the other free TNB2- dianion exists as a yellow-coloured product with 

an absorbance at 412 nm that is used to quantify sulfhydryl incorporation using a 

spectrophotometer (Appendix Figure 8). Quantification of sulfhydryl groups was 

attempted for wildtype CTP1L, CS74L and the mutant CTP1L C219A as a control (the 

removal of the thiol group of C219A from the cleaved C-terminal domain would provide a 

quantifiable difference in absorbance readings). However, due to restricted access to the N-

terminal domain or proteolytic heterogeneity between samples, calculations were variable 

and unreliable.  

 

DTNB binding to sulfhydryl groups increases the mass of a protein by 198 Da, which can 

be measured by MS. DTNB was added to CTP1L and CS74L that had been denatured by 6 

M urea. Denaturing the proteins ensured all potential thiols groups would be available to 

react with DTNB in solution. Samples were subjected to in-solution tryptic digestion and 
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full-length LC-MS/MS analysis. The successful incorporation of Ellman’s reagent was 

detected for all C219 residues in wildtype CTP1L indicating the protocol worked, but no 

sulfhydryl-TNB mass shift could be detected at the N-terminus of the cleaved domain. 

Instead the 32 Da additional mass of the methionine-like residue was the only modification 

detected (Appendix Figure 9). As the N-terminal residue was not prone to DTNB 

modification this ruled out that the cleavage mechanism involved the incorporation of a 

terminal sulfhydryl group to the cleaved C-terminal domain by the attack of H2S. 

However, the 32 Da additional mass could involve a different type of modification 

involving the addition of sulphur. 

 

Measuring the effect of environmental conditions on endolysin activity 

In order to investigate whether a changing environment could affect the population of 

dimeric states and whether this could have an effect on autocleavage, an experiment was 

designed to quantify the release of the C-terminal domain for CTP1L. A construct of 

CTP1L was designed that incorporated a green fluorescent protein (GFP) tag onto the C-

terminus of the protein (CTP1L-GFP). SDS-PAGE analysis demonstrated that the C-

terminal domain-GFP product was still cleaved, indicating the autocleavage mechanism 

was still functional even with the GFP-tag attached (Figure 26, B, lane 2). CTP1L-GFP 

was then bound to Ni-NTA resin in a closed system with a constant flow of buffer over the 

resin (Figure 26, A). After cleavage, the C-terminal domain would be released into the 

constantly flowing solution. Samples were taken at certain time points of the eluting 

solution and the fluorescence signal of GFP measured using a spectrophotometer to 

quantify the amount of cleaved C-terminal domain released over time. After testing 

numerous conditions with different pH ranges, salt concentrations and additives it was 

discovered that pH 9 had an effect. Interestingly, the lytic activity of CTP1L against C. 

tyrobutyricum cells was previously shown to increase as the pH increased (Mayer et al. 

2010). 
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Figure 26 Experimental setup to measure the release of the C-terminal domain by GFP 
fluorescence A: The closed system used for measuring the effect of solution conditions on the rate 
of release of the C-terminal domain. The rate of release can be measured using the GFP tag 
attached to the C-terminal domain. B: SDS-PAGE analysis showing CTP1L-GFP can still cleave 
the C-terminal domain even with a GFP-tag attached. CTP1L-V195P-GFP inhibited the release of 
the C-terminal domain. C: SDS-PAGE detecting the release of the C-terminal domain-GFP product 
from CTP1L-GFP bound to Ni-NTA resin only occurs at pH 9.0 (red star). Ni-NTA beads were 
loaded with 2 mg of purified CTP1L-GFP and washed with the same volumes of wash buffer at 
different pHs. The bound protein was finally eluted from the resin for analysis (last lanes). D: 
Fluorescence vs. time is plotted for a range of different conditions tested to see if they released the 
C-terminal domain. The best fit to the data was by applying one phase exponential association 
kinetics (in legend). Although normally used to describe the association of a ligand and receptor 
whereby at each time interval more of the unoccupied binding sites of receptors become occupied 
until all receptors are bound. For this experimental process it was used to measure the release of the 
C-terminal domain from the attached state. 
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Within the first 20 minutes that the system was exposed to a pH 9 solution there was an 

increase in fluorescence, indicating the release of cleaved C-terminal domains (Figure 26, 

D). As the fluorescence becomes a flat line, all C-terminal domains with the potential to be 

released have done so within 40 minutes. Other conditions within a pH range 6 – 8 had no 

effect and fluorescence measurements were negligible. At the time of experimentation H2S 

was stipulated to be the source of the 32 Da mass shift, however, the addition of H2S did 

not increase fluorescence when added to a pH 9 solution. As a control, the cleavage site 

mutation V195P was introduced into CTP1L-GFP and SDS-PAGE indicated that the 

cleavage mechanism was inhibited (Figure 26, B lane 3). Furthermore, this construct also 

showed no fluorescence in the same pH 9 buffer conditions.  

 

To test that the fluorescence detected was from the release of the C-terminal domain, 

samples were taken from a similar system as described in Figure 26, A except the solution 

was not recirculated over the beads but collected separately and analysed by SDS-PAGE 

(Figure 26, C). When CTP1L-GFP was washed at pH 6, no C-terminal domain-GFP 

product could be detected. An increase to pH 7.4 presented a small amount of cleaved 

product being released. Considering the fluorescence readings at pH 7.4 and 8 were always 

slightly above zero (Figure 26, D), the small amount of cleaved C-terminal domain-GFP 

could be due to the slow release of the C-terminal domain, at a reduced rate compared to 

the pH 9 solution. At pH 9 there is a larger release of the C-terminal domain-GFP product, 

which was continuously removed with multiple wash steps. The full-length protein does 

not elute at pH 9 and it can therefore be concluded that the fluorescence came solely from 

the cleaved C-terminal domain-GFP during the continuous flow experiment.  

 

It was initially proposed that the increase to pH 9 could be causing a dimeric switch of the 

bound endolysins, initiating the autocleavage mechanism. However, the cleaved C-

terminal domain that was detected was suggested to not be from the inititation of 

autocleavage, but from the dissociation of a C-terminal domain from its side-by-side 

interaction with a full-length monomer bound to the resin. The monomer plus a cleaved C-

terminal domain we observed in the CTP1L asymmetric unit (Figure 8, A), was proposed 

as the most likely conformation that was initially attached to the column. SDS-PAGE 

indicated that even with successive pH 9 washes the full-length protein was still retained 

on the beads and could be eluted at the end of the wash steps (Figure 26, C). Interestingly, 

the final concentration of the C-terminal-GFP product was lower in the final elution step 

after the pH 9 washes, compared to the pH 6 and 7.4 washes (Figure 26, C, red star). 
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Indicating that at pH 9, the interaction between the cleaved C-terminal domain and the full-

length monomer was destabilised, causing the C-terminal domain to dissociate. 

 

Indirectly, this suggested that decreasing the pH could stabilise the side-by-side dimer, as 

at pH 6 no cleaved C-terminal domain could be detected by SDS-PAGE. Furthermore, no 

GFP fluorescence could be detected at pH 6 using the column flow experiment (Figure 26, 

D, green dots) and no cleaved C-terminal domain could be detected by SDS-PAGE from 

the successive pH 6 wash steps, suggesting that at pH 6 the interdomain interactions of the 

side-by-side dimer are the most stable.  

 

Mutation of the cleavage site valine to leucine was used to test for different sulphur 

modifications 

Both cleavage site valines of CTP1L and CS74L were mutated to leucine. Leucine is a 

branched chain amino acid, similar to valine except for an additional methyl group on the 

side chain. Therefore if leucine gained an additional mass of 32 Da on the amide group 

during proteolysis, the overall mass of the N-terminal leucine residue would increase to 

163.2 Da, an identifiable difference using MS when compared to the methionine-like 

modification. It was previously showed that mutation of valine to proline at the cleavage 

site significantly reduces proteolysis, however, possibly due to the chemical similarity 

between valine and leucine, CTP1L V195L and CS74L V185L had the same proteolytic 

activity as wildtype proteins (Figure 29). The cleaved C-terminal domains were excised 

after SDS-PAGE and analysed by tryptic digestion and LC-MS/MS. Remarkably, the N-

terminal residue was again recognised to have the mass of the methionine-like 

modification. The mass of leucine at the N-terminus and the 163.2 Da mass of the N-

terminal residue expected if H2S was affixed to leucine could not be detected (Appendix 

Figure 11). The theory of H2S or a similar external mediator of proteolysis attaching a 32 

Da mass to valine was dismissed, instead the above evidence suggested that valine is 

essentially switched with methionine during autocleavage. Instead of a sulfhydryl 

modification to produce an isomer of methionine, methionine itself was stipulated to be the 

modification, as a whole residue. 
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Anomalous X-ray scattering detected methionine as the post-proteolytic modification in 

the CTP1L crystal 

Based on an X-ray data set collected at 6.5 keV on a crystal of the partially degraded 

CTP1L endolysin, a sulphur atom was verified at the N-terminus of the cleaved C-terminal 

domain within the asymmetric unit. At 6.5 keV it was possible to use the anomalous 

sulphur adsorption to pinpoint the locations of sulphur residues within the crystal structure 

of CTP1L. Using the phases from the refined crystal structure, a significant 5σ peak was 

identified in the phased anomalous difference map 3 Å away from the main chain nitrogen 

atom of V195 (Figure 27, A). The anomalous signals from the sulfhydryl groups of the two 

C219 residues are also identified. The modification of V195 for methionine also fitted well 

with the electron density in this region.  

 

 
Figure 27 Identification of methionine in the crystal structures of the partially and fully 
cleaved CTP1L. A: The dimer interface in the partially cleaved structure of CTP1L between the 
two C-terminal domains shows the N-terminal V195 residue, the linker in blue and C219 in sticks. 
The peaks of the phased anomalous difference density map are shown as a mesh at a contour level 
of 4σ. A sulphur atom has been placed into the peak observed at the N-terminus and the distance 
between the nitrogen atom of V195 of the cleaved C-terminal domain (magenta) and the sulphur is 
shown, as well as the distance between the CG1 atom on the side chain of Val 195 of the full-
length uncleaved CTP1L molecule (in green). B: Cartoon and stick diagram from the fully 
degraded 1.2 Ångstrom CTP1L crystal and Omit generated electron density map shown around the 
five N-terminal residues (V195-V199) contoured at 1.5σ, which shows the incorporation of 
methionine at both C-terminal domain cleavage sites.  
 

 

The incorporation of methionine at the cleaved N-terminus was further confirmed by the 

1.2 Å resolution crystal structure of the fully degraded CTP1L C-terminal domains, where 

the two methionine residues also come into close proximity (Figure 27, B). The 
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combination of structural information and mass spectrometric analysis supported the post-

proteolytic incorporation of methionine at the cleavage sites of the C-terminal domains of 

CTP1L and CS74L. The incorporation of methionine as a fundamental step of a proteolytic 

mechanism has not been previously documented and could represent a novel 

autoproteolytic mechanism.  

 

Selenomethionine could be incorporated as the post-proteolytic modification 

To test if methionine could truly be incorporated as a whole amino acid into the N-

terminus of the C-terminal domain during proteolysis, CTP1L and CS74L were expressed 

in a reduced media containing the methionine analogue seleno-L-methionine. Using tryptic 

digestion combined with LC-MS/MS the mass difference of 47 Da between selenium and 

sulphur could be detected. Selenomethionine was detected at the N-terminus of the cleaved 

C-terminal domains for both CTP1L and CS74L (Figure 28). Replacement of seleno-

methionine for methionine was not 100 % as we also detected ordinary methionine 

incorporation at the cleaved N-terminus. The expression protocol involved the use of a 

non-methionine synthetase auxotropic strain of E. coli (BL21-DE3) meaning residual 

amounts of methionine could still be generated within the cells. Furthermore, the initial 

preculture grown in lysogeny broth media would also contaminate the growth media with 

residual methionine. Nevertheless, selenomethionine replaced valine at the cleavage site of 

both CTP1L and CS74L C-terminal domains as the post-proteolytic modification.   

 

 
Figure 28 Incorporation of selenomethionine as the post-proteolytic modification of the 
CTP1L and CS74L C-terminal domains. Sample MASCOT search results after tryptic digestion 
and LC-MS/MS for A: CTP1L and B: CS74L grown in methionine-reduced media supplemented 
with selenomethionine. Selenomethionine was detected as the N-terminal residue of the cleaved C-
terminal domains for CTP1L and CS74L. Methionine was also detected as the N-terminal residue.  
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Non-branch chained amino acids within the autocleavage sites of CTP1L and CS74L 

inhibit autocleavage 

 It has previously been shown that mutation of the cleavage sites in CTP1L and CS74L to 

leucine had no effect on cleavage and methionine was the only post-proteolytic 

modification detected on their C-terminal domains (page 81). Furthermore, mutation to 

proline (CTP1L V195P, CS74L V185P) significantly reduced cleavage and produced 

multiple post-proteolytic products. Taken together, both mutations still indicated that the 

incorporation of methionine was possible after autocleavage, regardless of side-chain 

chemistry (Figure 25). In order to test if other amino acids, with a broader range of side-

chain chemistries, would also be susceptible to cleavage and methionine incorporation, the 

cleavage site valines of CTP1L and CS74L were mutated to tyrosine, methionine, glycine 

or isoleucine. Methionine was incorporated to mimic the methionine at the cleavage site of 

CD27L (M186) to see if it could instigate an increase in autocleavage.  

 

For CTP1L and CS74L, isoleucine and methionine incorporation had no effect and the 

amount of cleaved C-terminal domain was equal to valine or leucine incorporation at the 

cleavage site (Figure 29). Glycine incorporation showed a reduction in proteolysis for both 

CTP1L and CS74L, with the decrease in cleavage more apparent for CTP1L. Glycine has a 

side chain of a single hydrogen atom, although the reason why it showed a decrease is 

unknown. Small nonpolar residues may just not be favourable for cleavage and the 

presence of an alkyl group attached to the Cα carbon may be required for efficient 

cleavage. Tyrosine incorporation totally inhibited cleavage in CTP1L as confirmed by 

SDS-PAGE and MS analysis, whereas in CS74L a decrease in autocleavage was detected, 

to the same degree as glycine incorporation. The inhibition of proteolysis observed when 

tyrosine was incorporated into CTP1L was most likely due to steric hindrance from the 

aromatic side chain of tyrosine as the two linkers come together during side-by-side dimer 

formation. Interestingly, for CS74L it just slightly decreased cleavage, suggesting the 

linker and the cleavage site in CS74L are more flexible, allowing larger side chains to 

interact.  

 

The incorporation of glycine, isoleucine (or tyrosine for CS74L only) still produced the 

same N-terminal post-proteolytic modification of methionine incorporation as identified 

using tryptic digestion linked with LC-MS/MS (Appendix Figure 11). Even with the 

diverse array of side chains, the autocleavage mechanism observed for the wildtype 

endolysins was maintained. Interestingly, for these three mutations their respective peptide 



 85 

hydrolysis products, from the cleavage of the scissile bond between the mutated cleavage 

site residue and the neighbouring residue, were also detected (Appendix Figure 11). As an 

example, for CTP1L V195G and CS74L V185G both terminal residues of glycine or 

methionine were detected by LC-MS/MS analysis on the cleaved C-terminal domain. The 

dynamics of cleavage must be distorted when these mutations are introduced, to allow two 

different cleavage mechanisms to give two different final products: peptide hydrolysis or 

methionine incorporation. Using the current tryptic digest and LC-MS/MS analysis it was 

not possible to quantify the ratio between methionine incorporation or peptide hydrolysis 

to infer which mutations provide a preference for the final modification. Interestingly, the 

cleavage site mutants that reduced proteolysis the most were the mutants that gave 

different cleavage products, indicating that methionine incorporation must be the favoured 

reaction, but a shift can occur that initiates peptide hydrolysis when the cleavage 

mechanism is hindered. This is best demonstrated for CTP1L V195P where multiple 

products of peptide hydrolysis around the cleave site were detected (Figure 25). Sequence 

analysis revealed that the cleavage sites for CTP1L, CS74L and the 19 analogous proteins 

are conserved for branched chain amino acids, with a preference for valine at this position. 

The other residues conserved at the cleavage site are leucine or methionine; the only 

residues introduced during this study that only detected methionine incorporation as the 

post-proteolytic modification and not peptide hydrolysis.  

 

A final observation for the cleavage site mutants was the degradation product present after 

Ni-NTA purification of CS74L V185Y, V185G, V185P and also CTP1L V195P (Figure 

19, C & D and Figure 29). The size of this degradation product was similar to the 

degradation product detected after Ni-NTA purification for mutants that interfered with 

dimerisation (CS74L T211R and CTP1L T221R, T221C) (Figure 15, E). Interestingly, the 

head-on dimer mutants (CTP1L D215A and CD27L W207A, W207R and Y262A) do not 

produce this degradation product. It is therefore assumed that these bands are due to 

degradation (similar to CS74L T211R) resulting from restrictions imposed on the side-by-

side dimer or linker restrictions during autocleavage.  
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Figure 29 SDS-PAGE of point mutations of the cleavage site valine of CTP1L and CS74L All 
samples were loaded fresh after Ni-NTA at a concentration of 1.5 mg.ml-1. The branch chain amino 
acids leucine and isoleucine, as well as methionine, showed a similar amount of cleavage as native 
valine at the cleavage sites of CTP1L and CS74L. Incorporation of glycine and tyrosine 
significantly affected proteolysis in both endolysins. For CS74L V185G and V185Y a degradation 
band just below the full-length protein was detected, a similar observation to the mutant CS74L 
T211R. 

 

Autocleavage is a continuous process throughout E. coli overexpression 

It was not clear if proteolysis was happening at a particular stage of purification, such as 

during cellular lysis, or if it was a continuous event occurring throughout expression and 

purification. To monitor the proteolytic processing, a construct of CTP1L was designed 

which incorporated a C-terminal polyhistidine tag by cloning the construct into the 

pET21d vector. The sequential steps from E. coli induction to Ni-NTA elutions were 

monitored to find the moment at which autoproteolysis was initiated, by using 

immunoblotting to detect the polyhistidine tag. Immunoblotting provided higher sensitivity 

than SDS-PAGE and could differentiate between the C-terminal domain and other proteins 

of a similar MW. Interestingly, cleavage of the C-terminal domain could be detected 

within the cells two hours after induction (Figure 30, 2nd lane). In chapter two, the dynamic 

switch between dimer states was established as the trigger for autoproteolysis. Combined 

with the fact autoproteolysis occurred throughout E. coli expression, the endolysins must 

be able to undergo dynamic reconfiguration, between the two dimer states, within the 

cytosol. Furthermore, as the autocleavage mechanism occurred within the E. coli cell, an 

activator molecule or enzyme must be present in the cytosol for the incorporation of 

methionine as part of the cleavage mechanism. Interestingly, overexpression in E. coli was 



 87 

shown to be responsible for the premature cleavage of gp5, a T4 phage tail lysozyme. Gp5 

uses an internal cleavage mechanism that upon trimerisation activates and releases an N-

terminal lysozyme domain from intermolecular restraints (Kanamaru et al. 2005). 

However, the cleaved lysozyme domain could also be detected after expression, unlike the 

potentially degraded EADs of the three clostridal endolysins presented here. 

 

Theoretically, as the cytosolic concentration of the endolysins increases during 

overexpression in E. coli, the tendency to undergo oligomerisation also increases as the 

local concentration of the endolysins constitutively increases. This could prompt the 

premature activation and cleavage of the endolysins, which is why the C-terminal domain 

was detected throughout E. coli expression. Overexpression in E. coli has previously been 

attributed to the cytosolic activation of an autoproteolytic processing mechanism for the 

cysteine autoproteases NopT1 and NopT2 (Fotiadis et al. 2012).  

 

 

 
Figure 30 Immunoblotting used for the detection of autocleavage during E. coli 
overexpression. Using immunoblotting the polyhistidine tag containing C-terminal domain was 
detected throughout expression and purification. 2 hours post induction the C-terminal domain can 
be detected indicating autocleavage (second lane). Also, pre-induction indicated leaky expression 
of the full-length protein (first lane). 
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Disappearance of the N-terminal EAD during purification  

The cleaved N-terminal EADs for all three endolysins could not be detected during 

purification by SDS-PAGE or immunoblotting. It was previously shown that the N-

terminal domains of CD27L, CTP1L and CS74L could be expressed as truncated domains 

(Mayer et al. 2008; 2010; 2011) so theoretically they should also remain stable and folded 

during full-length purification. As the C-terminal domain is visible during expression 

within the E. coli cytosol it is presumed that the catalytic domain must be released during 

overexpression but does not remain stable within the contents of the E. coli cytosol and is 

degraded within the cell. 

Proteolysis is autonomously controlled by the C-terminal domains 

CD27L, CTP1L and CS74L have a modular organisation and separate the EAD and C-

terminal domain with a linker. Previously, Mayer et al. showed that a chimera of the EAD 

of CS74L combined with the C-terminal domain of CD27L (CS-CD) was still active 

against C. sporogenes cells (Mayer et al. 2012) and that this chimera also demonstrated 

autocleavage of the C-terminal domain. An additional chimera has been produced with the 

EAD of CTP1L and the C-terminal domain of CD27L (CT-CD), which also demonstrated 

C-terminal cleavage, although this chimera was not active against cultures of C. 

tyrobutyricum or C. difficile cells (Appendix Figure 10). CS-CD and CT-CD present 

evidence that autoproteolysis occurs independently of the N-terminal domain. 

 

To demonstrate that the autocleavage mechanism was entirely self-contained within the C-

terminal domains, a chimera was produced for CTP1L that replaced the EAD with the non-

related domain of small ubiquitin-related modifier 3 (SUMO3). The linker was kept the 

same except with two additional glycine residues incorporated to increase flexibility and 

deter potential steric clashing between SUMO3 and the C-terminal domain. Cleavage of 

the C-terminal domain from the SUMO3-CT chimera was low but detectable by SDS-

PAGE and MALDI-TOF MS (Figure 31 A, B). Tryptic digest analysis detected the post-

proteolytic methionine incorporation on the C-terminal domain indicating that the cleavage 

of the C-terminal domain was due to the same autocleavage mechanism (Figure 31, C). 

The side-by-side mutant T221R was introduced to the SUMO3-CT chimera, although 

T221R was highly unstable and showed a higher amount of general degradation. T221R 

totally inhibited cleavage as no band corresponding to the C-terminal domain could be 

detected by SDS-PAGE (Figure 31 A, middle lane) or MALDI-TOF MS. As previously 

mentioned, the N-terminal EAD is cleaved whilst CTP1L is sequestered in the E. coli cells 

but is absent after lysis and purification, suggesting the domain is degraded and cannot be 
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purified. It remains to be seen if the cleaved SUMO3 domain from the SUMO3-CT 

chimera is also degraded during E. coli expression. Isolation and characterisation of the C-

terminus of the released SUMO3 would identify if the released domain is also modified 

during autocleavage and provide details to help elucidate the cleavage reaction.  

 

 

 
Figure 31 Autocleavage and methionine incorporation still occurred after substitution of 
CTP1L EAD for SUMO3 A: SDS-PAGE of SUMO3 linked to the C-terminal domain of CTP1L 
(SUMO-CT) showed a slight presence of the cleaved C-terminal domain. The mutation T221R that 
inhibits the side-by-side dimer was inserted into the chimera as a control and cleavage of the C-
terminal domain was not detected. B: MALDI-TOF MS spectra of the SUMO-CT, which detected 
a peak at 9023 Da, a similar mass shift to the 9032 Da detected for the wildtype CTP1L C-terminal 
domain after cleavage. The double charged [M+2H]2+ ion of the full-length SUMO-CT chimera 
(MW: 21.7 kDa) was also detected. C: Sample MASCOT search results after tryptic digest and 
LC-MS/MS for the SUMO-CT C-terminal domain that was excised after SDS-PAGE detected the 
same post-proteolytic modification of methionine on the C-terminal domain. 
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HEK cell expression of CTP1L and CS74L 

To study the initiation of autoproteolysis it is necessary to begin with an inactive state of 

the endolysins to which an array of potential activator molecules can be added and the 

causative agent identified. As previously mentioned the endolysins are proteolytically 

active and cleaving themselves during E. coli expression (Figure 30) making identification 

of activator molecules difficult. Even with successive purification steps as the C-terminal 

domain remained bound to the full-length monomer. As proteolysis occurs during 

expression within E. coli, the activation molecule or enzyme would be constitutively 

present within the cytosol. Human embryonic kidney (HEK) 293 cells were investigated as 

a different expression model. HEK cytosolic components could be missing the elements 

required for initiation of proteolysis that was observed in E. coli cells. HEK cells also 

provide an alternative expression system that uses protein secretion. CTP1L and CS74L 

were cloned into a modified pXLGsec vector, which introduced an N-terminal signal 

peptide onto the endolysins. This allowed secretion of the endolysins during expression 

into the growth media, instead of being sequestered within the cytosol. Unfortunately, 

expression was only possible for CS74L and even then the endolysin was retained in the 

cell and not secreted. Sequestered proteins in the cytosol could be a sign that the protein is 

incorrectly folded and unfit for secretion and therefore unusable. 

 

Purification of the full-length endolysin alone for future experimentation 

Removal of the C-terminal domain was also attempted after E. coli expression. By 

performing the initial Ni-NTA purification under denaturing conditions any interdomain 

interactions, such as dimerisation between the C-terminal domains, would be removed. 6 

M Guanidine hydrochloride (Gu.HCl) was added to the lysis buffer and 8 M urea was 

added for all subsequent washing and elution steps to ensure all proteins remained 

unfolded during purification. Proteins were eluted with a final pH 4. Using denatured 

purification it was possible to elute the single full-length endolysins without the additional 

C-terminal domain attached, as detected by SDS-PAGE (Figure 32 A, B, C). Purification 

under denaturing conditions inhibited the C-terminal domain from interacting with the full-

length endolysins and hence was not co-purified. The eluted proteins were refolded using 

limited dilution and finally dialysed into 20 mM TRIS-HCl, pH 8 and concentrated to 1 

mg.ml-1. Concentrating the refolded endolysins did not initiate cleavage of the C-terminal 

domain, suggesting the cleavage mechanism could no longer occur until activation. As a 

preliminary test, 10 - 100 mM methionine and a sample of E. coli cell lysate were 

separately added to the concentrated refolded CTP1L and CS74L to see if autocleavage 
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could be induced. However, no cleaved C-terminal domain could be detected by SDS-

PAGE, suggesting the cleavage mechanism could not be triggered (Figure 32 D). Possibly 

the refolding was not successful and the purified endolysin was not refolded correctly and 

cleavage could not be triggered, or, additional constituents are required to trigger 

activation. For instance during release from holin lesions, endolysin are exposed to an 

environmental shock, so spiking the refolded endolysins with a shift in pH or ionic 

conditions could be required for initiation of cleavage.  

 

Interestingly, during refolding of both CTP1L and CS74L, a degradation band appeared 

just below the full-length protein band at an approximate mass of 24 kDa (Figure 32, D, 

red star). This degradation product corresponded in size to the degradation products 

observed for different mutants within the cleavage site or that inhibited side-by-side 

dimerisation, as previously mentioned (page 49). The observation of a similar degradation 

band for the refolded endolysins suggested that whilst the endolysins are still able to 

change conformation, the ability of the endolysins to perform the autocleavage mechanism 

is inhibited, potentially as the causative agent of proteolysis was not present, which caused 

the degradation. The refolded endolysins require future analysis, initially to clarify that the 

secondary structure is intact by using circular dichroism. The ability to purify the full-

length endolysins alone provides a base for future work in the search for the activating 

molecule that triggers autocleavage. 
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Figure 32 Denatured Ni-NTA purification of full-length CTP1L and CS74L. 
A (CTP1L), B (CS74L): Sequential steps during denatured purification of the endolysins. CL: cell 
lysate in the presence of 6 M Gu.HCl, FT: flow through off Ni-NTA resin, W: wash steps using 8 
M urea. Proteins bound to the resin were eluted at pH 4 in 8 M urea. Bead samples were taken to 
show only full-length protein was attached to the resin. A large amount of protein was still attached 
to the beads post elution, indicating improvements are required for this protocol. The C-terminal 
domain could not be detected and must be excluded in the flowthrough. C: Comparison of 
endolysins purified under native and denatured conditions. No C-terminal domain could be 
detected for the refolded CTP1L and CS74L after denatured Ni-NTA purification. D: Preliminary 
experiment to test the addition of 1: 10 mM L-methionine, 200 mM NaCl pH 7.4, 2: 10 mM L-
methionine, 200 mM NaCl, pH9.0, 3: 6 µl E. coli cell lysate 1: 6 endolysin, 4: 100 mM L-
methionine, 200 mM NaCl, pH7.4. Added to refolded and concentrated samples (1 mg.ml-1) of 
refolded CTP1L or CS74L. WT: wildtype, DN: denatured, refolded and concentrated endolysins. 
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Summary of chapter three 
Chapter three explored the mechanism of autocleavage for the three endolysins. Numerous 

experiments were applied to test for causative agents that could attach a 32 Da mass to the 

cleaved C-terminal domain.  Eventually it was discovered that during the cleavage of the 

linker, the post-proteolytic modification of CTP1L and CS74L involved the substitution of 

methionine for valine at the cleavage site. Whilst for CD27L, the cleavage mechanism 

occurred by peptide hydrolysis between a methionine and glutamine residue. Modification 

of the CTP1L and CS74L cleavage site valine to a non-branched chain amino acid 

(glycine, tyrosine, proline) affected the amount of C-terminal domain cleavage and also a 

shift in proteolytic kinetics. As well as methionine incorporation, peptide hydrolysis was 

also observed within the cleavage site. Mutation of valine to the similar branch-chained 

amino acid leucine had no effect on proteolysis and methionine incorporation was the only 

post-proteolytic modification detected. The substitution of methionine for valine could be 

from another enzyme although no known enzymes could operate in this manner. This 

requires further investigation. It is interesting to note that the scissile bond broken in 

CD27L is between a methionine and glutamine and as methionine is incorporated in 

CTP1L and CS74L, suggests a role for methionine as a catalytic residue during 

autoproteolysis. 

 

Proteolysis was demonstrated to occur after induction and during the entire E. coli 

expression. Overexpression within E. coli has previously been shown to induce oligomeric 

shifts for other proteins, which could be the reason for premature activation of the 

autoproteolytic mechanism for these endolysins. As the EAD could not be co-purified it 

was suggested that it is degraded after cleavage within the E. coli cell, or has yet to be 

detected. Interestingly, proteolysis was shown to be autonomous for the C-terminal domain 

as chimeras of the CD27L C-terminal domain still demonstrated autocleavage. 

Furthermore, a chimera of the unrelated SUMO3 domain linked to the C-terminal domain 

of CTP1L was also cleaved with the same autocleavage mechanism as the post-proteolytic 

methionine addition was detected by tryptic digestion for this chimera. Finally, it was 

shown that purification under denaturing conditions could be used to obtain the full-length 

endolysin alone, without the contamination of the cleaved C-terminal domain. 

Experimentation with the full-length endolysin alone will make the future study of the 

trigger mechanism of autoproteolysis less ambiguous. 
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Chapter 4: Methodological 

development for the identification of 

endolysin cell wall ligands 
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Introduction 

Cell wall binding domains recognise peptidoglycan and cell wall polymers, such as 

teichoic acid, with high affinity and specificity. Examples include the LysM repeat motif 

that bind peptidoglycan (Hu et al. 2010) and the Cpl-1 choline binding motifs (Garcia et al. 

1988). Additionally, Listeria phage endolysins are documented to recognise different cell 

wall ligands. The cell wall binding domain of PlyP35 specifically recognises GlcNAc 

residues bound to teichoic acid (Eugster et al. 2011), whereas the Listeria phage 

endolysins Ply118, 511 and P40 specifically interact with the peptidoglycan backbone 

(Eugster & Loessner 2012). Specific ligands were confirmed using binding studies of 

fluorescently labelled cell wall binding domains against chemically treated cell walls (Hu 

et al. 2010) or genetically modified cell walls (Eugster et al. 2011; Eugster & Loessner 

2012), where particular cell wall components were modified. For instance, removal of 

genes for GlcNAc decoration of teichoic acids inhibited PlyP35 binding, as measured by a 

decrease in GFP binding fluorescence (Eugster et al. 2011). Another reported method for 

identification of cell wall binding ligands is to measure the effect of cell wall modification 

on lytic ability. The L. casei phage endolysin Lc-Lys specifically targets the D-Asn 

interpeptide bridge of peptidoglycan. This was deducted by measuring the lytic ability of 

Lc-Lys against L. lactis cells where the peptidoglycan interpeptide cross-bridges had been 

mutated. Only peptidoglycan cross-bridges containing D-Asn could be bound and lysed 

(Regulski et al. 2013). 

 

The parallel alpha helices α1 and α3 involved in the head-on dimerisation of the CTP1L 

and CD27L C-terminal domains are predicted to be the cell wall binding sites for these 

endolysins. Glycan binding proteins incorporate aromatic residues at their binding sites 

that are proposed to facilitate contact between the protein surface and glycans (Buist et al. 

2008). The LysM motif binding domains, the S. pneumoniae choline-binding domains and 

other carbohydrate-binding domains reveal a shared YG motif within their binding sites 

(Turner et al. 2004). Attached to the alpha helices α1 and α3 of the CTP1L and CD27L C-

terminal domains there are also a high number of aromatic residues that project into the 

cavity between the two helices that could enforce interactions with glycans. As previously 

described, the mutation of methionine to arginine (CTP1L M263R), whose side chain 

protrudes into the middle of the two alpha helices of the CTP1L C-terminal domain, 

continued to cleave the C-terminal (Figure 14, C), but inhibited the lytic activity of CTP1L 

(Figure 22, A). Mutation to arginine introduced a positive charge into this normally 
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hydrophobic region, which potentially modified the normal behaviour of the binding site 

and prevented attachment of the endolysin to the cell wall. 

 

There is a limited amount of detailed cell wall binding domain epitopes so far identified. 

As more cell wall binding domain structures are being interpreted, more needs to be known 

regarding their interactions with cell wall ligands. Different peptidoglycan chemotypes are 

prone to species-specific modifications that could play a crucial role in endolysin 

recognition. For example, wall sugar patterns differ between C. tyrobutyricum and other 

butyric acid producing Clostridia (Schleifer & Kandler 1972) and binding may be 

susceptible to these particular modifications. A potential method to identify the specific 

epitopes that endolysins and other non-covalent binding proteins recognise is to use photo-

activated cross-linkers to covalently attach ligands to proteins, which can then be analysed 

by mass spectrometry. 

 

Methodological development: Photo-cross linking to locate the ligand for cell wall 

binding  

Unnatural amino acid incorporation of p-benzoyl-l-phenylalanine (pBpa) relies on an 

orthogonal tRNA synthetase and tRNACUA pair for the in vivo incorporation of pBpa in 

response to the amber codon, TAG, at a specific site within a protein (Chin et al. 2002). 

Excitation of pBpa at 365 nm causes cross-linking of any C-H bonds within 10 Å of the 

carbonyl oxygen of pBpa (Farrell et al. 2005), thereby forming a covalent bond between 

the pBpa containing protein with possible binding partners. A proof of principal study was 

initially performed to see if it was possible to photo-cross-link peptidoglycan fragments to 

the C-terminal domain of CTP1L using pBpa incorporation. Figure 33, A describes the 

methodology in detail. The pBpa was incorporated at position Y212, situated on alpha 

helix α1 (Y212pBpa), and at position Y260, situated on alpha helix α3 (Y260pBpa), in 

different constructs of the truncated C-terminal domain of CTP1L. Incorporation was 

confirmed for both mutants by tryptic digestion followed by mass spectrometry (Figure 33, 

B). 
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Figure 33 Photo cross-linking methodology for ligand binding. A: (1) The unnatural amino 
pBpa was incorporated at positions Y212 or Y260 of the truncated C-terminal domain of CTP1L. 
(2) C. tyrobutyricum CWM was purified and fragmented by lysozyme degradation. (3) The pBpa 
containing C-terminal domains were mixed with the C. tyrobutyricum CWM and irradiated with 
UV light (365 nm). (4) After sufficient incubation time the covalently linked complexes were Ni-
NTA affinity purified to remove unbound CWM. (5) Samples were digested with trypsin. (6) 
Peptide mass fingerprinting was used to identify novel peptides that could have CWM fragments 
attached, for instance cross-linked peptidoglycan molecules.  B: Example MASCOT search results 
for trypsin digestion linked with LC-MS/MS of Y212pBpa (top) andY260pBpa (bottom), 
demonstrated the successful identification of pBpa incorporation. 
 

 

After detection of successful cross-linking, subsequent glycan analytical steps could be 

explored. As the location of pBpa is already known, position Y212 or Y260, cross-linked 

glycans could only be present on the respective tryptic digested peptides containing the 

unnatural amino acid. For the initial analysis MALDI-TOF-MS was used. All MS analysis 

was performed in collaboration with Dr. Diana Hildebrand at the University Medical 

Centre Hamburg-Eppendorf (UKE).  

 

The native cell wall of C. tyrobutyricum is absent of teichoic and teichuronic acids, making 

peptidoglycan or peptidoglycan bound modifications the most likely binding sites for 

CTP1L (Bergère et al. 1986). Cell wall material (CWM) fractions were treated with 
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lysozyme in order to generate different sized fragments of peptidoglycan. CWM was also 

extracted using SDS to remove cell wall associated proteins and lipids. Lysozyme was 

used to fragment the peptidoglycan whilst maintaining features such as the peptide linker 

between MurNAc subunits. Peptidoglycan lengths can vary and digestion with lysozyme 

into smaller fragments makes detection and analysis via mass spectrometry easier, 

however, it is not possible to generate all peptidoglycan fragments of uniform size by 

lysozyme treatment. It was expected that after lysozyme treatment numerous fragments of 

the same peptidoglycan conformation would be generated.  

 

Primarily, the intention was to detect differences in the MALDI-TOF-MS spectra between 

UV-irradiated samples with or without CWM present. In the sample without CWM only 

signals derived from tryptic peptides should be present. When cell wall material was 

incubated with the C-terminal domain the presence of any novel signal in the MS-spectra 

of the sample with CWM present could (in comparison to the signal pattern of the sample 

without CWM) indicate the presence of peptides containing an additional mass 

corresponding to an attached peptidoglycan fragment. Such putative peptide-

peptidoglycan-derived signals could then be further analysed by MS/MS analysis to solve 

the structure of the complex and identify the attached binding partner. Unfortunately, no 

differences could be detected between spectra with or without the different CWM 

preparations for both the Y212 and Y260 pBpa-incorporated sites. The only notable 

observation after UV-irradiation of Y212pBpa was a dipeptide formed by pBpa-cross-

linking between two peptides from opposing C-terminal domains. The cross-linked 

dipeptide was verified by Electrospray Ionisation Quadrupole Time-Of-Flight (ESI-Q-

TOF)-MS/MS analysis (Appendix Figure 12) and showed that cross-linking was occurring 

to CTP1L whilst establishing the head-on dimer state. An excess of CWM was used 

compared to the pBpa containing C-terminal domains to try and increase the chance of 

interactions with CWM. It is therefore possible that no CWM fragments were covalently 

linked to the C-terminal domains and apart from the self-cross-linking to form covalent 

dimers, no other products could be formed.  

 

Another explanation could be due to the highly heterogeneous nature and complexity of 

the CWM fragment-fraction regarding its molecular diversity. As a result “binding 

products” of the CWM fragments to the CTP1L are probably not detectable due to too low 

concentrations of each of the cross-linking products. In that case signal intensity of the 

cross-linking products will be too low and will be suppressed by the regular tryptic 
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peptides. For future perspective, specific glycopeptide enrichment steps, such as 

hydrophilic interaction liquid chromatography (HILIC) could also be used to increase the 

concentration of cross-linked products to increase signal intensities (Kolarich et al. 2012). 

Consideration is also necessary for the digestion/preparation to increase fragment 

homogeneity of the CWM, to increase detection of analogous cross-linked peptides and 

signal intensity. 

 

The wildtype C-terminal domain can cross-link without pBpa incorporation 

A surprising result was observed with the wildtype CTP1L C-terminal domain, which self-

cross-linked to form covalent dimers (of a similar MW to the cross-linked dimers present 

for Y212pBpa and Y260pBpa) upon UV-irradiation only in the presence of the C. 

tyrobutyricum CWM (Figure 34, A & C). The wildtype C-terminal domain does not 

contain the pBpa chemical cross-linker suggesting there must be a molecule present within 

the CWM extract that induced cross-linking after UV excitation. UV-induced cross-linking 

does not always require the introduction of a cross-linker. For instance, irradiation of 

protein-nucleic acid complexes with shortwave UV (254 nm) generates purine and 

pyrimidine free radicals that form covalent bonds between nucleic acids and proteins 

within close proximity (Chodosh 2001). Furthermore, monosaccharides can be synthesised 

to become photoactivatable by incorporating diazirine groups, which can be used to 

covalently interact with carbohydrate binding proteins (Tanaka & Kohler 2008).  

 

As a control the wildtype C-terminal domain was mixed with E. coli CWM, prepared using 

the same protocol as the C. tyrobutyricum CWM. E. coli peptidoglycan consists of the 

same A1 gamma type peptidoglycan backbone as C. tyrobutyricum (Schleifer & Kandler 

1972) and provided a suitable control to demonstrate that the non-pBpa cross-linking was 

specific for C. tyrobutyricum CWM. An additional control involved C. tyrobutyricum 

CWM that had been extensively treated with an excess of benzonase nuclease to degrade 

contaminating DNA and RNA fragments still retained in the CWM. Interestingly, after UV 

exposure the higher MW band corresponding to the dimer was only present when the C-

terminal domain was mixed with the C. tyrobutyricum CWM, but not with the E. coli 

CWM, as monitored by western blot analysis (Figure 34, C). This further suggested that 

there is a specific molecule present in C. tyrobutyricum CWM that can induce cross-

linking. After SDS-PAGE the dimer band was analysed by tryptic digestion linked with 

MS analysis, but unfortunately no additional peaks could be detected when compared to a 

control analysis of the C-terminal monomer without UV-irradiation. The signals from the 
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cross-linked peptides could be hidden and require enrichment before analysis. Full-length 

MS analysis needs to be performed on the cross-linked wildtype dimer to identify if an 

adduct gets incorporated into the dimer during UV irradiation. An additional mass besides 

the dimer mass would correspond to the mass of the cross-linked adduct. Identification of a 

potential cross-linking molecule could help identify the binding ligand for CTP1L and the 

reason why UV induced cross-linking was successful without photo-cross-linker 

incorporation. 

 

Specific cross-linking of the CTP1L head-on dimer in solution 

Whilst cross-linking of the C-terminal domain to CWM remained unresolved, the specific 

cross-linking and dimer formation confirmed the existence of the head-on dimer for 

CTP1L in solution. After UV-irradiation both the Y212pBpa and the Y260pBpa mutants 

produced additional bands after SDS-PAGE analysis corresponding to dimer and tetramer 

formation (Figure 34, A). SDS-PAGE analysis on the unexposed Y212pBpa and the wild-

type C-terminal domain do not present any cross-linked material. The higher molecular 

weight band was excised, digested with trypsin and analysed by MS to confirm that it 

contained only the C-terminal domain of CTP1L, due to the specificity of pBpa cross-

linking. This verified the head-on dimer formation for CTP1L in solution.  

 

The amber stop codon at position Y212 was also introduced into the full-length CTP1L 

endolysin. Y212 was the most efficient site for pBpa incorporation and gave the highest 

final yield of protein after purification when compared to incorporation at Y260. Full-

length CTP1L was cross-linked upon exposure to UV light and analysed by SDS-PAGE. A 

mixture of species was observed, consisting of full-length CTP1L dimers, dimers of the C-

terminal domains alone and a species with a MW that corresponded to one full length 

CTP1L cross-linked to a C-terminal domain fragment (Figure 34, B). The oligomerisation 

states of the CTP1L fragments gained by cross-linking support the interpretation of the size 

exclusion chromatography, SAXS and light scattering experiments performed for CTP1L 

and show that the head-on dimer is the significant species in solution. 
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Figure 34 Photo-cross-linking of CTP1L oligomers. A. SDS-PAGE of the C-terminal domain of 
CTP1L with or without the light sensitive cross-linker pBpa incorporated with C. tyrobutyricum 
CWM. Dimer and tetramer states are observed for Y212pBpa and Y260pBpa after UV exposure. 
For the wildtype C-terminal domain, dimers could be cross-linked only in the presence of C. 
tyrobutyricum CWM. B. SDS-PAGE of the full-length endolysin with the Y212pBpa cross-linker 
mutant, detected the presence of a full-length dimer (red box) and an oligomer consisting of one C-
terminal domain and a full-length CTP1L molecule (green box). C: Immunoblotting detected 
dimerisation of wildtype C-terminal domain only in the presence of C. tyrobutyricum CWM. 
Controls without C. tyrobutyricum CWM or with E. coli CWM did not detect any cross-linked 
dimer. Figures A and B are reproduced from the submitted article, Appendix page 170.  
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Summary of chapter four  
 
There remains limited information regarding the exact binding sites of endolysins within 

the cell walls of their hosts during lysis. In this chapter a potential method was described 

for the analysis of cell wall binding sites. As an example, photo-cross-linking was 

attempted with the C-terminal domain of CTP1L and its potential ligand within a mixture 

of C. tyrobutyricum cell wall fragments. Unfortunately, no positive hits could be detected 

for cross-linking of the C-terminal domain and the methodology requires future 

development. Major drawbacks for the method include the lack of control on heterogeneity 

of CWM fragmentation after lysozyme treatment and prior knowledge required of the cell 

wall binding domain structure in order to choose appropriate residues to modify to pBpa 

and increase the effectiveness of cross-linking. As a control, it would be interesting to 

attempt cross-linking with a different endolysin:ligand complex where the ligand identity 

is already known. A surprising discovery during experimentation was that the wildtype C-

terminal domain could self-cross-link to form dimers when mixed with C. tyrobutyricum 

CWM. Identification of potential compounds that induce cross-linking remains a future 

goal and could provide insight into the binding ligand of CTP1L. Besides this novel 

observation, pBpa dimer photo-cross-linking further confirms that the head-on 

oligomerisation state exists for CTP1L in solution.  
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Chapter 5: Discussion 
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A novel activation mechanism for Clostridial bacteriophage endolysins 

Endolysin and holin are essential for host cell lysis by bacteriophage at the end of the lytic 

cycle. For the classic holin-endolysin system, endolysins are sequestered within the cytosol 

until holin lesion formation effects there release in an active state to begin peptidoglycan 

degradation. The molecular mechanisms underlying the activation of the cytosol-

sequestered endolysins are unknown, but the sudden change in environment, such as 

changes in ionic strength, pH and reductive capacity, as they pass into the extracellular 

environment could act as the trigger. The depolarisation of the membrane and disruption of 

periplasmic electrochemical gradients from holin lesion formation, has previously been 

shown to activate other classes of endolysins, including the pre-secreted endolysin Lys44 

(Nascimento et al. 2008) and the SAR-endolysins LyzP1, R21 and Lyz103
 (Xu et al. 2004; 

Xu et al. 2005; Kuty et al. 2010).  

 

Within this thesis, the activation of the three Clostridial endolysins CTP1L, CD27L and 

CS74L is proposed to occur via a novel autocleavage mechanism. Two distinct 

dimerisation modes were observed in the crystal structures of CTP1L and CD27L, an 

elongated head-on dimer and a side-by-side dimer. These dimer states were validated in 

solution by the use of small angle X-ray scattering and right angle light scattering. The 

head-on dimer was further confirmed by cross-linking experiments using the 

photoactivatable cross-linker, pBpa. Indirectly, it is shown that the conformational 

rearrangement of these endolysins from the head-on to the side-by-side dimer acts as the 

trigger for an autocleavage mechanism that activates these endolysins. The introduction of 

point mutations to prevent either of the dimerisation states had an inhibitory effect on the 

autoproteolytic mechanism, as they reduced the amount of detected C-terminal domain 

after purification (Figures 13-15). Furthermore, inhibition of either dimer state also 

inhibited the lytic activity of CTP1L (Figure 21).  

 

The switch from the head-on to the side-by-side dimer is proposed to occur through a 

tetrameric intermediate, as observed in the crystals structures of CTP1L and CD27L, 

formed by the C-terminal domains (Figures 8 & 18). After holin lesion formation, the 

sudden change in ionic conditions and drop in pH is proposed to bring together two head-

on dimers, which interact to form a tetrameric intermediate. Tetrameric formation 

concurrently forms the side-by-side interaction as well. It was demonstrated using a GFP-

tag attached to the C-terminal domain, that the interdomain interactions of the side-by-side 

dimer could be stabilised at pH 6, whereas an increase to pH 9 interrupted with side-by-
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side interactions and increased the release of the C-terminal domain (Figure 26). For 

CTP1L, as the tetramer state forms, a salt bridging network contributing to the head-on 

dimer interface is disrupted by the positive charge of an incoming R226 side chain of the 

C-terminal domain from the newly formed side-by-side state (Figure 18). This could 

provide the trigger to necessitate the switch between the two dimer states. The tetrameric 

intermediate subsequently dissociates and two side-by-side dimers are proposed to be 

released. A model for this trigger-release mechanism, via the tetrameric intermediate, is 

presented in Figure 35, A. The residues involved in both salt-bridging networks show 

partial conservation between CTP1l, CS74L and the 19 similar lysin sequences, suggesting 

this activation mechanism could be present in other lysins.  

 

The switch between the two dimer states can be described in similar terms to a Monod-

Wyman-Changeux (MWC) mechanism of allosteric regulation (Changeux 2012). The 

head-on dimer represents the inactive 'tensed state’, as this is the most prominent state in 

solution, whereas the side-by-side dimer represents the active 'relaxed state’ as this is the 

conformation that triggers autocleavage and the release of the N-terminal EADs. 

Essentially, the quaternary structure transition from tensed to relaxed state, is achieved by 

the stabilisation of side-by-side interactions, after the environmental shift due to the 

periplasmic entry of the endolysins. Allosteric regulation by interdomain interactions of 

the C-terminal domain on the EAD was previously hypothesised (Low et al. 2005) and 

later disregarded (Low et al. 2011). However, interdomain interactions were recently 

demonstrated using surface plasmon resonance for the mycobacterium phage lysin A, 

whereby interactions between catalytic and cell wall binding domains were proposed to 

inactivate the lysin (Pohane et al. 2014). For the Clostridial endolysins studied here, 

allosteric regulation is proposed to be solely from restraining the EAD by the linker and 

not by interdomain interactions. Autocleavage of the linker releases constraints on the 

EAD and increases the potential action radius of the EAD as a single domain. As 

previously proposed (Low et al. 2011), the small globular size of the EAD would allow 

further penetration within the bacterial cell wall compared to the full-length endolysin, to 

more efficiently exert its lytic activity. Interestingly, truncation of CD27L to the EAD 

alone showed an elevated lytic activity compared to the full-length endolysin (Mayer et al. 

2011). Although truncation to the EAD alone does not increase the activity of all endolyins 

(Sanz et al. (1992); Porter et al. (2007); Sass & Bierbaum (2007)), including CTP1L 

(Mayer et al. 2010). 
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Figure 35 A proposed model for the trigger-release mechanism of activation for the 
Clostridial endolysins. Using CTP1L as the model endolysin. A: Structural model of the endolysin 
activation, generated using PYMOL. B: Cartoon schematic of endolysin activation during lysis. 1: 
Within the cytosol the endolysins form head-on dimers, the most stable ‘tensed state’ of the 
endolysins as measured by right angle light scattering, SAXS and cross-linking. 2: Upon holin 
lesion formation, the cytosol and periplasm are no longer separated and the head-on dimers are 
exposed to a sudden change in environmental conditions as they pass into the cell wall. This 
environmental shock is proposed to trigger the formation of the tetrameric intermediate directed 
through interactions between the C-terminal domains. 3: Conformational restraints prompt the 
tetrameric state to dissipate and two side-by-side dimers are released. 4: In the side-by-side 
‘relaxed state’ the proposed cell wall binding sites of the α1 and α3 helices are exposed and target 
the endolysin to specific epitopes within the cell wall. The side-by-side dimer also forces the 
autocleavage sites into close proximity and activates the autocleavage mechanism. The 
autocleavage mechanism is hypothesised to involve a constitutively present cofactor (pink sphere), 
either a methionine containing molecule or an enzyme, which contributes to the post-proteolytic 
methionine modification (red M) onto the cleaved C-terminal domain. 5: The release of the N-
terminal EAD as a single domain increases the action radius of the EAD during peptidoglycan 
degradation. 6: As observed for the fully degraded crystal forms of CD27L and CTP1L, the second 
EAD of the side-by-side dimer is also released from the constraints of the C-terminal domain to 
become active as well.  
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Oligomerisation influences the lytic activity of lysins from other bacteria and 

bacteriophage species. For instance, the pneumococcal autolysin LytA and pneumococcal 

phage endolysins PAL and Cpl-1 dimerise upon binding their cell wall ligand choline in 

solution (Romero et al. 2007; Varea et al. 2004; Buey et al. 2007). For LytA, the 

conformation of the active dimer closely resembles the side-by-side dimer presented here 

and removal of the residues involved in dimer formation forced LytA to remain as a 

monomer, which significantly reduced its lytic activity (Fernández-Tornero et al. 2002). 

For Cpl-1 the dimer state was stabilised by engineering a disulphide bond into the C-

terminal domains, which increased lytic activity (Resch et al. 2011). Although activation 

of these lysins does not involve an autocleavage mechanism, dimerisation has been shown 

to play a crucial role in their activation and efficiency as lytic enzymes. Additionally, a T4 

tail lysozyme, gp5, uses an internal cleavage mechanism that upon trimerisation activates 

and releases an N-terminal lysozyme domain from intermolecular restraints. Similar to 

CTP1L, inhibition of this cleavage mechanism inactivated the enzymatic activity of gp5 

(Kanamaru et al. 2005). Furthermore, overexpression in E. coli was responsible for the 

premature cleavage of the gp5 protein during expression, as the full-length gp5 and its 

cleaved lysozyme domain were purified separately after lysis. This is analogous to the 

autocleavage observed during expression and purification of CD27L, CTP1L and CS74L 

(Figures 10 & 30). 

 

Chimeras generated between the EADs of CS74L (Mayer et al. 2012) or CTP1L with the 

C-terminal domain of CD27L still demonstrated autocleavage of the C-terminal domain to 

the same degree as wildtype CD27L (Appendix Figure 10). Additionally, the post-

proteolytic modification of methionine onto the C-terminal domain of CTP1L was detected 

even when the EAD was replaced with the unrelated protein SUMO3 (Figure 31). This 

demonstrated that autoproteolysis, by incorporation of methionine, was autonomously 

controlled by the C-terminal domains, irrespective of the N-terminal domains providing 

the N-terminal domains do not interfere with the oligomeric rearrangements of the C-

terminal domains during activation. 

 

For CTP1L the length of the linker, but not linker flexibility or side chain chemistry, is 

essential for efficient autocleavage. Mutation of half the linker to proline residues 

(CTP1LPPP) did not affect autocleavage, whereas deletion of half the linker (CTP1LΔLinker) 

totally inhibited autocleavage (Figure 23). Inhibition of autocleavage by the CTP1LΔLinker 
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construct is potentially from the steric clashing of the N-terminal EADs in the side-by-side 

dimer state due to the shorter linker.  
 

Autoproteolysis is proposed to occur as the stems of the linkers are forced into close 

proximity during side-by-side formation. The repulsion expected from the two linkers 

interacting and the two EADS coming into close proximity would be compensated by the 

stable formation of the side-by-side interface. As the stems of the linkers approach, 

conformational strain may drive distortion of peptide bonds at the cleavage sites and help 

destabilise the scissile bond for autocleavage, similar to the activation of cis-

autoproteolytic mechanisms (Buller et al. 2012). Residues in close proximity to the 

cleavage sites were proposed to be involved in either intradomain (within the linker itself) 

or interdomain (from exchange between the two linkers) autocleavage. Bacteriophages 

have been shown to combine oligomerisation and interdomain and intradomain 

autocleavage for the initial infection of the bacterial cell (Xiang et al. 2009). 

Unfortunately, current mutational analysis of residues located around the cleavage site of 

CTP1L has not yet established common catalytic residues involved in autocleavage. 

 

For CD27L, the autoproteolytic activity could be switched off with a point mutation 

(M186P) at the cleavage site. For the CTP1L endolysin, the inhibition of proteolysis had 

the additional effect of inhibiting lytic activity against C. tyrobutyricum cells (Figure 21). 

Furthermore, for CTP1L the introduction of a point mutation (V195P) at the cleavage site 

demonstrated that the rate of lytic activity was proportional to the degree of autocleavage, 

whereas for CD27L inhibition of autocleavage had no effect on lytic activity (Figure 20). 

In the context of “lysin-mediated lysis from without” (Abedon 2011), the lytic activity of 

CD27L was insensitive to autocleavage. However, autocleavage is expected to play a vital 

role for the activation of CD27L during the normal phage lytic cycle, when the endolysins 

act from the inside of the host. The activation mechanism would therefore have more 

importance compared to its external application. 

During the cleavage of the linker, the post-proteolytic modification of CTP1L and CS74L 

involved the replacement of methionine for valine at the cleavage site, whilst for CD27L, 

the cleavage mechanism occurred by peptide hydrolysis between a methionine and 

glutamine residue (Figure 24). The presence of methionine at the scissile bond of CD27L 

and the incorporation of methionine after the CTP1L and CS74L suggests a role for the 

methionine side chain during the two different autocleavage events. Methionine is semi-

conserved at this position in lysins with a similar domain to CD27L. The presence of 
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methionine within autoproteolytic sites of other nonrelated proteins has also been 

documented but not investigated (Fotiadis et al. 2012). Extensive experimentation could 

not yet identify a cofactor, either a methionine containing molecule or an enzyme, for the 

incorporation of methionine in CTP1L and CS74L and requires further investigation. The 

observation of autocleavage during overexpression in E. coli suggests the cofactor may be 

constitutively present on both sides of the membrane or it is released along with the 

endolysins during lesion formation. Figure 35, B is a hypothesised schematic for the 

autocleavage mechanism in the context of lysis from within the Clostridial host cell, 

whereby the side-by-side dimer formation and the potential cofactor initiate the 

autocleavage mechanism.  

 

Crystallisation of CTP1L presented two products, either the partially degraded (a single 

EAD released) or fully degraded (both EADs released) conformation. Anomalous sulphur 

scattering on both crystal structures further confirmed that all cleaved C-terminal domains 

were cleaved through the post-proteolytic incorporation of methionine (Figure 27). The 

presence of methionine on all the cleaved C-terminal domains of the fully degraded crystal 

suggests that autocleavage is likely a two-step process. After the first EAD is released (to 

give the partially degraded crystal form) the incorporation of methionine at the cleavage 

site could act as a catalytic residue for the second cleavage event.  

 

Modification of the CTP1L and CS74L cleavage site valine to a non-branched chain amino 

acid (glycine, tyrosine or proline) not only decreased the amount of C-terminal domain 

cleavage but also shifted the mechanics of autocleavage, as peptide hydrolysis of the 

scissile bond was observed as well as methionine incorporation (Figure 29). Steric 

hindrance of catalytic residues or hindering the accessibility of an approaching cofactor for 

methionine addition are possible suggestions that promoted the less effective peptide 

hydrolysis reaction for CTP1L and CS74L. Mutation of valine to the similar branch-

chained amino acid leucine had no effect on proteolysis and methionine incorporation was 

the only post-proteolytic modification. Interestingly, for CS74L V185G and V185Y a 

degradation band appeared around 24 kDa, similar to the protein band that CS74L T211R 

eventually degraded to (Figure 15, E). Together this suggested that restrictions imposed on 

the side-by-side dimer or from linker restrictions during autocleavage could affect 

endolysin stability, leading to internal degradation. 
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The α1 and α3 helices of the C-terminal domain are suggested to not just play a role in 

head-on dimerisation but also cell wall binding. Introducing a positive charge into the 

proposed cell wall binding site of CTP1L (M263R) had no effect on autoproteolysis but 

totally inhibited the lytic activity of CTP1L. Interestingly, in the head-on dimer state, 

helices α1 and α3 are buried within each other, upon the switch and release to the side-by-

side state the helices point in opposite directions and become exposed to the external 

environment. In conjunction with autocleavage activation, the switch to the side-by-side 

state would enable the α1 and α3 helices of the C-terminal domains to bind specific 

epitopes within the cell wall to increase lytic efficiency. Although the methodology 

requires future development, pBpa was incorporated into the proposed cell wall binding 

site of CTP1L to try and cross-link the domain with C. tyrobutyricum cell wall fragments 

for potential ligand identification by mass spectrometry.   

 

Summary and future prospects 

A novel autocleavage mechanism has been demonstrated as an intrinsic property of 

activation for the three Clostridial endolysins CD27L, CTP1L and CS74L. Autocleavage is 

proposed to liberate the EAD from covalent restraints to increase the lytic activity of the 

EAD. After holin lesion formation and cell wall entry, the C-terminal domain is 

hypothesised to oligomerise and facilitate the release of the EAD by an autocleavage 

mechanism for more effective digestion. The C-terminal domain could also function as a 

cell wall binding domain, to facilitate the localisation of the endolysins to the cell wall, 

however, this requires further investigation to establish this additional role. The 

mechanism of catalytic domain release, presented in this thesis, could be applied for the 

production of recombinant endolysins with higher potency. The engineering of controlled 

C-terminal domain oligomerisation for endolysins may lead to novel fusion constructs with 

higher specificity and activity. 
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Chapter 6: Material and Methods 
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Contributions to the various experiments and analytical techniques from collaborating 

authors have been specified. Parts of the material and methods have been replicated from 

the submitted article “The CD27L and CTP1L endolysins targeting Clostridia contain a 

built-in trigger and release factor”, Appendix page 170. 

 

Molecular biology methods  

Site-directed mutagenesis 

Site-specific mutants of CD27L, CTP1L and CS74L were created by polymerase chain 

reaction (PCR) site-directed mutagenesis following the Quikchange method (Stratagene). 

Plasmids pET15b-cd27l/ctp1l/cs74l were used as template DNA (provided by M. Mayer 

(IFR)). All PCR reactions were performed using Phusion High-Fidelity DNA Polymerase 

(NEB). A 50 µl total volume contained 10µl 5x GC Phusion Buffer for GC-rich templates, 

10 mM of dNTPS, 1.5 µM of complementary forward and reverse primers for each 

mutation, 0.2µM template DNA and 0.7 µL of Phusion polymerase. For site-directed 

mutagenesis PCR cycle 2 was used, which has a longer elongation time to copy the entire 

plasmid  (Table 3). Amplified products were digested by DpnI at 37ºC overnight (NEB) to 

digest template DNA, before transformation into competent E. coli DH5α cells 

(Invitrogen). Creating the dual mutants D92A_E94A and E196A_K234A required two-

step whole plasmid mutagenesis using pET15b-ctp1l_D92A and pET15b-ctp1l_E196A 

respectively as template DNA. 

 

PCR steps PCR cycle 1 PCR cycle 2 
1.Initial denaturation 95 ºC 60 seconds 95 ºC 60 seconds 
2. Denaturation 95 ºC 35 seconds 95 ºC 35 seconds 
3. Annealing* 58 ºC 35 seconds 58 ºC 35 seconds 
4. Elongation 72 ºC 45 seconds 72 ºC 15 minutes 
5. Final elongation 72 ºC 5 minutes 72 ºC 18 minutes 

Table 3 Cycling steps used for PCR. Steps 2 to 4 were cycled 30 times for PCR cycle 1 and for 
18 times in PCR cycle 2. *Annealing temperature was calculated at 5-10ºC lower than the melting 
temperature (Tm) for complementary primer pairs or for the lowest Tm of all primers in the 
reaction. 
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Overlap extension Polymerase Chain Reaction  

Overlap extension PCR was used to delete linker residues (E192-E194) to generate 

CTP1L∆Linker and to mutate the same three residues to proline to generate CTP1LPPP. 

Overlap extension PCR involved combining the products of two separate PCR events 

(PCR1 and PCR2), which generated complimentary ends containing the required mutation, 

into a final PCR cycle (PCR3) where the complimentary ends are joined together to 

complete the construct (Appendix Figure). PCR1, 2 & 3 were performed using PCR cycle 

1  (Table 3).  For both CTP1L∆Linker and CTP1LPPP the reaction mixtures for PCR1 and 

PCR2 are the same as described for site-directed mutagenesis. PCR1 used primers 1 and 2 

and PCR2 used primers 3 and 4. Primer 1 contained an N-terminal NdeI site  

(5’- GGAATTCCATATGAAGAAAATAGCAGACA -3’) and primer 4 contained a C-

terminal BamHI site (5’- CGCGGATCCCTATTTTAAATTTTTAATGTA-3’). Primer 2  

and 3 overlapped and contained the required mutation for insertion into the linker. 

CTP1L∆Linker primer 2 (5’- TAAATTTTCCACCCCCTTAATA-3’), primer 3 (5’- 

TATTAAGGGGGTGGAAAATTTAGTA-3’ ). CTP1LPPP primer 2 (5’-

TTTCCACAGGAGGAGGCCCCTTAATATATTTTA-3’) primer 3 (5’- 

TAAGGGGCCTCCTCCTGTGGAAAATTTAGTAGT-3’).  

 

PCR1 & 2 were purified by agarose gel electrophoresis and extracted using the QIAquick 

gel extraction kit protocol (Qiagen). This removed contaminating primers 2 and 3 and the 

original template DNA. For PCR3 the template DNA consisted of 4 µl each of PCR1 and 

PCR2 products combined with primers 1 and 4. The final PCR3 product was purified using 

the QIAquick PCR purification protocol (Qiagen), digested with restriction enzymes NdeI 

and BamHI according to the manufacturer’s instructions (NEB), purified by agarose gel 

electrophoresis, extracted also using the QIAquick gel extraction kit and finally ligated 

back into the pET15b vector which had also been digested with NdeI and BamHI and 

purified.  

 

Cloning of the CTP1L (EAD) – CD27L (C-terminal domain) chimera (CT-CD) 

Using the same protocol of overlap extension PCR as described above. Both domains were 

amplified seperatley with overlapping ends, before being joined in the final PCR step. 

PCR1 template: pET15b-ctp1l with primer 1 containing an NdeI site (5’-

GGAATTCCATATGATGAAGAAAATAGCAGACATAA-3’) and primer 2 which 

overlapped with the beginning of the CD27L C-terminal sequence (5’- 

TAACTCCCTCATTATTCTTAATATATTTTATAAATTCAT-3’). PCR2 template: 
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pET15b-cd27l with primer 3 which overlapped with the end of the CTP1L EAD (5’- 

TAAAATATATTAAGAATAATGAGGGAGTTAAACA-3’) and primer 4 containing a 

BamHI site (5’-CGCGGATCCCTATCTATTAATAAAATCCAAT-3’).  

Cloning for the GFP-autocleavage Ni-NTA experiment 

The ctp1l gene was amplified from pET15b-ctp1l using a forward primer containing an 

NcoI site (5’-CATGCCATGGATAAGAAAATAGCAGACATA -3’) and a reverse primer 

containing a BamHI site (5’-TAGCGGATCCTTTTAAATTTTTAATGTAA-3’) with PCR 

cycle 1. The PCR product was digested and ligated into the pETM11-SUMO3GFP plasmid 

(EMBL, Heidelberg), replacing the SUMO tag with the ctp1l gene. The control construct 

CTP1L_V195P-GFP was generated by site-directed mutagenesis as described above.  

 

Cloning of the CTP1L C-terminal domain with SUMO3  

The chimera of SUMO3 linked to the CTP1L C-terminal domain (SUMO-CT) was 

generated by amplifying gene ctp1l from pET15b-ctp1l using a forward primer with 

BamHI site (5’-CGCGGATCCGGTGGTGGTGAAGTGGAAAATTTAGTAGT-3’) and a 

reverse primer with XhoI site (5’- CGGCTCGAGCTATTTTAAATTTTTAATGTAAT-

3’), with PCR cycle 1. The PCR product was digested and ligated between the BamHI and 

XhoI sites of pETM11-SUMO3GFP. The GFP gene was consequently replaced with the 

CTP1L C-terminal domain. The point mutation T221R was introduced into SUMO-CT by 

site-directed mutagenesis as described above.  

 

Cloning of CTP1L with a C-terminal polyhistidine tag 

The gene encoding CTP1L was amplified from pET15b-ctp1l using a forward primer 

containing NcoI (5’-CATGCCATGGATATGAAGAAAATAGCAGACA-3’) and XhoI 

containing reverse primer (5’-GTAGCCTCGAGTTTTAAATTTTTAATGTAATC-3’) 

using PCR cycle 1. The PCR product was digested and ligated into the pET21d vector. The 

CTP1L construct now contained a polyhisitidine tag attached to the C-terminal domain for 

detecting when C-terminal cleavage occured during expression using immunoblotting. 

 

DNA ligation 

Inserts were ligated into their respective vectors with a 5:1 molar ratio using T4 ligase 

(NEB) according to manufacturer’s instructions. The ligated reaction mixture was 

transformed into DH5α cells and plated on selective LB-agar plates. 
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Agarose gel electrophoresis 

DNA fragments were mixed with 6 x DNA loading dye (Fermentas) and loaded onto 

agaose gels containing 0.8% (w/v) agarose dissolved in Tris-acetate-EDTA  (TAE) buffer 

(40 mM TRIS pH 8.5, 1 mM EDTA, 20 mM Acetic acid). A drop of ethidium bromide 

(0.025%) was added to each gel. Electrophoresis was performed at 50 V for 70 minutes in 

TAE buffer. Gels were visualised under UV light and specific bands excised using a 

scalpel. DNA samples were recovered using the QIAquick gel extraction kit (Qiagen), 

following the manufacturer’s instructions. 

Transformation of E.coli competent cells 

10-50 ng of plasmid DNA or 5 µl of dpn1 digested DNA/ ligation mixture were added 

directly to frozen competent cells and incubated for 30 minutes on ice. DH5α were used 

for DNA plasmid preparation and BL21 (DE3) or BL21 arabinose-induced (AI) cells were 

used as expression strains. Cells were mixed by gentle inversion. The plasmid DNA was 

then transformed into the cells by heat shocking at exactly 42°C for 35 seconds in a heat 

block before quick reinsertion into ice for 2 minutes. 80 µl SOC medium was added to the 

cells prior to incubation at 37°C for 1 hour. Cells were spread on selective LB-agar and 

incubated overnight at 37°C. All steps involving exposure of the transformation mixture to 

the external environment were performed in sterile conditions using a Bunsen burner to 

limit contact with contaminating organisms. 

Plasmid preparation and sequencing 

Plasmid DNA was obtained from transformed DH5α cells using the QIAprep® Spin 

Miniprep Kit (Qiagen). Plasmid DNA was quantified and checked for quality by 

measuring absorbance at 260 and 280 nm. A 260:280 nm ratio of approximately 1.8 

guaranteed “pure” DNA. Plasmid DNA was sequenced by MWG Eurofins to check for 

successful mutation using T7 forward and T7 termination primers. 
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Protein biochemical methods 

Standard protein expression 

Transformed BL21 (DE3) or (AI) bacterial colonies were picked to inoculate a 50 ml 

preculture of selective Lysogeny broth (LB) media and shaken on a rotary shaker overnight 

at 37°C at 200 rpm. 5-10 ml of preculture was used to inoculate 1L of selective LB media 

at 37°C and shaken on a rotary shaker at 200 rpm, until an OD600 of ~ 0.6. Cultures were 

cooled to 21°C and then induced with 1 mM isopropyl-β-D-thio-galactopyranoside (IPTG) 

for overnight expression at 21°C at 200 rpm. All steps involving exposure of the 

expression cultures to the external environment were performed in sterile conditions using 

a Bunsen burner. Protein expressing cells were harvested by centrifugation (5000 g, 30 

min) and the supernatant discarded. Pelleted cells were transferred to a 50 ml falcon tube 

and stored at -20°C.  

 

Selenomethionine incorporation of CTP1L and CS74L 

Colonies of BL21 (DE3) cells transformed with pET15b-ctp1l or cs74l were picked to 

inoculate a 50 ml preculture of selective LB media and shaken overnight at 37°C at 200 

rpm. 4 ml of preculture was used to inoculate 500 ml of selective SelenoMethionine 

Medium base plus nutrient mix (Molecular Dimensions). 1 ml of a Selenomethionine stock 

solution (25mg.ml-1) was added to each culture. Cultures were incubated at 37°C at 200 

rpm, until the OD600 reached over 1.0.  Cultures were cooled to 21°C and induced with 1 

mM IPTG for overnight expression at 21°C at 200 rpm. Protein expressing cells were 

harvested by centrifugation (5000 g, 30 min) and the supernatant discarded. Pelleted cells 

were transferred to a 50 ml falcon tube and stored at -80°C.  Selenomethionine is highly 

toxic so all steps involving open cultures and addition of selenomethionine was performed 

under a fume hood.  

 

Human Embryonic Kidney (HEK) cell expression 

Cloning for HEK cell expression 

A modified mammalian expression vector, pXLGsec (created by Nina Krueger, EMBL 

Hamburg), incorporates an N-terminal pregnancy specific glycoprotein 1 (PSG1) secretion 

peptide for secretion and a C-terminal polyhistidine tag for immunoblotting. Genes 
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encoding CTP1L and CS74L were amplified, using PCR cycle 1, from pET15b-ctp1l and 

pET15b-cs74l respectively using KpnI containing forward primers  

(CTP1L: 5’- CGGGGTACCATGAAG AAAATAGCAGACATAA-3’, CS74L: 5’- 

CGGGGTACCATGAAGATAGGTATTGATAT-3’) and SacI containing reverse primers 

(CTP1L: 5’- CGAGCTCTTTTAAATTTTTAATGTAA-3’, CS74L:5’- 

CGAGCTCCTTACCTCCGTTGATGAAGTTT-3’).  

Both genes were ligated into pXLGsec, transformed into E. coli DH5α and sequenced. 

Small scale HEK cell expression required 4µg of plasmid DNA per well so 200µg stocks 

were prepared using the Plasmid Plus Midi Kit (Qiagen) according to the manufacturer’s 

instructions. 

 

HEK cell expression  

Expression steps performed by N. Krueger, biophysical analysis by M. Dunne. 

HEK293T cells were maintained at 37°C in a Wheaton incubator in a 5 % CO2 

atmosphere. The cells were grown adherently in 30 ml Dulbecco’s modified eagle medium 

(DMEM), containing 2 mM L-glutamine, 1x non-essential amino acids and 10% foetal calf 

serum (FCS) in polysterol cell culture flasks with a surface area of 175cm2 (T175). Cells 

were cultured upon reaching 80-90 % confluency before being passaged. For passaging the 

cells, the culture media was aspirated and the cells were washed with 10 ml PBS to remove 

residual FCS. To remove the cells from the flask surface 3 ml 1x Trypsin-EDTA were 

added and the cells were incubated at room temperature for 5-10 minutes before 

neutralisation with 7 ml DMEM media. For small-scale expression one fifth of the cells 

from a T175 flask were resuspended in 12 ml of DMEM containing 10% FCS. Two ml of 

cell suspension were added then to each well of a 6-well plate 24 hours prior to 

transfection. The plates were cultured under humidified conditions to prevent dehydration 

of the media. 

 

Transient gene expression was performed by chemical transfection using the branched 

cationic polymer Polyethylenimine 25 kDa (PEI). PEI (1 mg.ml-1, pH 7) was incubated at a 

ratio of 1:2 with the plasmid of choice for 10 minutes in one quarter (500 µl per well) of 

DMEM without FCS of the final expression volume for complex formation. The culture 

medium was changed to DMEM containing 2% FCS for small-scale expression. 

Expression samples were taken 48 hours after transfection by centrifugation at 100 g, 4°C. 

Samples of the supernatant and of the cells were analysed by SDS-PAGE and Western blot 

to determine expression levels and if the endolysin had been secreted. 



 118 

 

 

Native nickel affinity protein purification 

Pellets were resuspended in lysis buffer (50 mM Tris pH 8.0, 300 mM NaCl, 1% Triton X-

100, 10 mM Imidazole, 1 mg.ml-1 Lysozyme, 25 U.ml-1 Benzonase nuclease) and mixed 

for 60-90 minutes at 4°C. The lysed cell extract was centrifuged (27,000 g, 40 minutes) 

and the supernatant containing His-tagged endolysin was passed over a column containing 

1 ml Ni-NTA resin. The resin was then washed with 25 ml wash buffer (20 mM Tris pH 

8.0, 500 mM NaCl, 20 mM Imidazole).  Protein was finally eluted in 4 x 1 ml steps using 

elution buffer (50 mM Tris pH 8.0, 150 mM NaCl, 200 mM Imidazole). Protein samples 

were then further processed depending on the next analytical steps.  

 

Denatured nickel affinity purification 

Denatured Ni-NTA was used to purify the full-length endolysins without also purifying the 

cleaved C-terminal domain. The protocol was modified from the Ni-NTA Purification 

System handbook (Invitrogen (2006)). Pellets were resuspended in denaturing lysis buffer 

(20 mM Sodium Phosphate pH7.8, 500 mM NaCl, 6 M Guanidine Hydrochloride), lysed 

by sonication and centrifuged (27000 g, 40 minutes). The supernatant was passed over a 

column containing 1 ml Ni-NTA resin. The resin was washed 2 x 10 ml with denaturing 

binding buffer (20 mM Sodium Phosphate pH 7.8, 500 mM NaCl, 8 M Urea). Next, 2 x 10 

ml of denaturing binding buffer at pH 6.0 was washed over the beads followed by 2 x 10 

ml of the same buffer adjusted to pH 5.3. Denatured protein was finally eluted with 4 x 1 

ml elution buffer (20 mM Sodium Phosphate pH 4.0, 500 mM NaCl, 8 M Urea) and 

monitored for protein content by measuring the 280 nm absorbance. Eluted fractions 

containing protein were pooled for refolding. Denatured protein was slowly adding drop-

wise with a pipette into 50 ml refolding buffer (50 mM Tris pH8.0, 1mM EDTA, 1M L-

Arginine, 1 mM Glutathione (reduced), 0.8 mM Gluthathione (oxidised)) at 4ºC in a glass 

beaker stirred at a high speed.  After all protein was added the solution was left for 3 

minutes spinning at high speed, before 1 hour of stirring at slow speed also at 4ºC. Protein 

solution was concentrated and dialysed against 25mM TRIS pH 8.0, ± 250 mM NaCl. 

Refolded protein was then concentrated to 1 mg.ml-1 for further experimentation. 
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SDS-PAGE analysis 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) (Laemmli 

1970) was used to estimate relative molecular weights of proteins. 10-15% acrylamide Bis-

TRIS gels were prepared with an upper stacking gel to improve resolution. Protein samples 

were mixed 4:1 with NuPage LDS Sample 4x buffer containing 10 % β-mercaptoethanol to 

dissociate disulphide bonds. Samples were heated for 5 minutes at 75 °C and subjected to 

10-15% SDS polyacrylamide gel electrophoresis with the Mini-Protean Tetra 

Electrophoresis System (Qiagen). For Coomassie Blue staining, the SDS-PAGE gel was 

incubated respectively in Coomassie Blue staining solution (0.125% Coomassie Blue, 45% 

ethanol, 10% acetic acid), destaining solution (40% ethanol, 10% acetic acid) and drying 

solution (2% glycerol, 20% ethanol). SDS-PAGE was used to confirm protein expression, 

purity and to identify C-terminal domain cleavage. The marker used was PageRuler 

Prestained Protein Ladder (Thermo). 

 

Western Blot (immunoblot) analysis 

Western blot analysis was used to detect specific His-tagged proteins or protein fragments. 

Roti®-Mark 10-150 (Roth) his-tagged marker was used to define regular molecular 

weights. Protein samples were separated by size using SDS-PAGE and then transferred 

onto a nitrocellulose membrane in a Mini Trans-Blot® System (BioRad) for 1 hour at 100 

V in transfer buffer (192 mM glycine, 25 mM TRIS-base, 20% Ethanol). After protein 

transfer, the nitrocellulose membrane was washed in phosphate buffer saline- Tween 0.1% 

(PBS-T) (10 mM sodium phosphate, 137 mM NaCl, 2.7 mM KCl, 0.1% Tween-20) 3 x 5 

minutes and blocked with 5 % milk solution for 2 hours at room temperature (RT), to 

prevent non-specific binding of antibodies to the membrane. The milk solution was 

removed and the membrane washed 3 x 5 minutes in PBS-T before incubation at 4°C 

overnight with the monoclonal mouse Anti-His antibody (Qiagen) diluted 1:2000 in PBS-T 

with 0.05% milk solution. To remove non-bound primary antibody, the membrane was 

washed 3 x 5 minutes in PBS-T. The membrane was then incubated for 2 hours at RT with 

the secondary antibody goat anti-mouse-horse radish peroxidase (HRP) (Thermo) diluted 

1:5000 in PBS-T with 0.05% milk solution, followed by 3 x 10 minutes washing. For 

detection, excess wash buffer was removed and the membrane was incubated for 1-5 

minutes in 10 ml SuperSignal West Pico Chemiluminescent Substrate (Thermo). Imaging 

was performed using the BioRad ChemiDoc System. 
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Ellman’s reagent to test for N-terminal sulfhydryl on C-terminal domain  

A 0.1 M stock solution of Ellman’s reagent (5,5'-dithiobis-(2-nitrobenzoic acid)) (DTNB) 

(Thermo scientific) was prepared in 20 mM TRIS pH 7.4. 1 µl of DTNB stock was added 

to 50 µl aliquots of CTP1L, CS74L and CTP1L C219A. To ensure all free sulfhydryl 

groups could be accessed, Gu.HCl was also used at a final concentration of 4 M to protein 

aliquots before addition of DTNB. According to manufacturer’s instructions for sulfhydryl 

quantification, solutions were mixed and incubated at room temperature for 15 minutes. 

Absorbance was measured at 412nm and visual inspection indicated reaction was 

successful as it turned an orange colour. Samples after DTNB treatment were analysed by 

SDS-PAGE gel, the C-terminal domain bands were excised and monitored by tryptic 

digestion and LC-MS/MS analysis. After excess Ellman’s reagent had been dialysed out, 

samples were also in solution tryptic digested before LC-MS/MS analysis and analysed by 

full-length LC-MS.  

 

Experimentation by the addition of potential causative agents of autocleavage 

Ni-NTA purified CD27L, CS74L and CTP1L were dialysed into 10 mM TRIS pH 7.4, 

concentrated between 1-2 mg.ml-1 and aliquots (50-150 µl) generated to which potential 

causative agents were added. 1-10 mM of L-Methionine, Dithiothreitol, β-

mercaptoethanol, Dimethyl sulfoxide, Glutathionine (oxidised and reduced) or Hydrogen 

sulfide (H2S) were all tested by adding 5-15 µl of 100 mM stocks of each additive to 

separate aliquots of the endolysins. The 100 mM stock solution of H2S was generated by 

adding sodium hydrosulfide (NaHS) into degassed water. NaHS dissociates to form HS- 

and H2S in solution. Gaseous H2S can be toxic so all experiments with NaHS were 

performed under the fume hood. pH 6-9 were tested with different additives and salt 

concentrations by spiking the aliquots with 15 µl from 1 M buffer stocks of 1 M  MES pH 

6, 1 M TRIS pH 7, 8 and 9. NaCl concentrations 50, 100, 250 and 500 mM were tested by 

spiking aliquots of the endolysins from a 5 M stock of NaCl. 

 

Protein purification for crystallography 

Proteins were purified for crystallisation by size exclusion chromatography using an Aekta 

liquid chromatography system (Amersham Biosciences) and S75 10/300 GL (Tricorn) 

column (GE Healthcare) in 20 mM HEPES, pH 7.4. For CTP1L V195P the size exclusion 

buffer was 50 mM TRIS pH 7.4. Protein purity was verified by SDS-PAGE. Proteins were 

concentrated between 5-10 mg.ml-1 as measured by UV absorption at 280 nm. 
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Crystallisation trials of wildtype CTP1L and CD27L had respectively previously been 

performed by R. Meijers and V. Garefalaki. Protein crystals were obtained by vapour 

diffusion in a hanging drop steup using Limbro Plates (Hampton Research). Crystals for 

degraded CD27L, that ultimately only contained the C-terminal domain, were obtained 

from a mother liquor containing 10 – 20 % PEG 4000 and 20 mM Tris pH 8.0. Crystals of 

the construct containing the C-terminal domain of CD27L and an N-terminal His tag were 

obtained from a mother liquor of 10 % PEG 20K and 20 mM Tris pH 8.0. Protein crystals, 

for CTP1L full length protein with the C-terminal domain attached, were obtained from a 

mother liquor containing 20 mM TRIS pH 8.0 and 6 % PEG 8000. For the CTP1L V195P 

mutant, crystals were obtained using the same mother liquor as described for wildtype 

CTP1L; the time for crystals to appear took 2 weeks compared to 24 hours. CTP1L T221C 

and CD27L M186P, C238R were submitted for crystallisation trials by hanging drop in the 

high-throughput facility for Sample Preparation and Characterisation (SPC) (EMBL, 

Hamburg). Unfortunately, no positive crystal hits could be observed.  

  

Protein biophysical methods 

Data collection for CTP1L 

Performed and written by R. Meijers (EMBL, Hamburg) 

Crystals of full length CTP1L and the cleaved cell wall binding domain were harvested a 

few days after they occurred and flash frozen in liquid nitrogen. X-ray diffraction data 

were collected on the PROXIMA I beamline at the Soleil Synchrotron at 100 Kelvin using 

a ADSC-315 CCD detector at an X-ray wavelength of 0.98 Ångstrom. Data were 

processed with XDS (Kabsch 2010) and SCALA (Evans 2006). For the crystal structure of 

full length CTP1L, a single crystal diffracted to 1.9 Ångstrom. Molecular replacement was 

performed in PHASER (McCoy et al. 2007) with a hybrid model built from the catalytic 

domains of 1JFX (Cellosyl) and 2NW0 (PlyB). Only one monomer was found (Z score of 

9.3) in the asymmetric unit, although the Matthews’ coefficient calculation predicted the 

presence of two molecules (Mc=2.14) rather than one monomer (Mc=4.28). The structure 

of the cell wall binding domain was solved using a density modification and automatic 

building protocol. The hybrid model from molecular replacement solution was submitted 

to rigid body refinement in Refmac5 (Murshudov et al. 2011). The resulting phases were 

used to extend the molecular envelope by density modification with PARROT (Cowtan 

2012). The resulting map was used for automatic building by Buccaneer (Cowtan 2012). 
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This was not sufficient to extend the model, and it was necessary to insert a cycle of 

Arpwarp (Cohen et al. 2008) density modification using the molecular replacement mode 

where individual atoms are removed and added based on the electron density. After four 

megacycles of Parrot/Buccaneer/Arpwarp, the contours of two cell wall binding domains 

became visible. After manual inspection with Coot (Emsley et al. 2010) and the addition of 

TLS parameters for the individual domains, the structure was refined with Refmac5 to an 

R factor of 16.3 % (Rfree = 19.8 %). The stereochemistry of the model was verified with 

Molprobity (Chen et al. 2010) and contained 97.7 % of the residues within the favoured 

region of the Ramachandran plot, and no residues in disallowed regions. A single crystal of 

the digested cell wall binding domain of CTP1L diffracted to a resolution of 1.2 Ångstrom, 

and the structure was solved by molecular replacement. Refinement with Refmac5 

combined with manual model building with Coot resulted in an R factor of 15 % (Rfree = 

18.9 %). The N-terminal cleavage site was clearly visible, and an acetyl group was built to 

the N-terminus of Val 195. The stereochemistry for the model is such that all residues are 

within the favoured region of the Ramachandran plot, according to Molprobity. A phased 

anomalous difference map was calculated using an X-ray data set collected at 6.5 keV to a 

resolution of 2.5 Ångstrom. A model of the refined CTP1L full-length crystal structure, 

which has almost identical cell dimensions, was used to obtain phases. Using reflections up 

to a resolution of 3.3 Ångstrom, PHASER was used to identify the sulphur sites with a cut-

off Z value of 5.0. In this way, a site with Z value 5.3 was obtained at 2.9 Ångstrom from 

the N-terminus of residue Val 195 of the orphaned cell wall binding domain. The refined 

site had occupancy of 0.2 and a B factor of 28 Å2, which was comparable to the sites for 

sulphurs at methionine and cysteine positions, which had occupancies between 0.2 and 0.5. 

 

A phased anomalous difference map was calculated using an X-ray data set collected at 6.5 

keV to a resolution of 2.5 Ångstrom. A model of the refined CTP1L full-length crystal 

structure, which has almost identical cell dimensions, was used to obtain phases. Using 

reflections up to a resolution of 3.3 Ångstrom, PHASER was used to identify the sulphur 

sites with a cut-off Z value of 5.0. In this way, a site with Z value 5.3 was obtained at 2.9 

Ångstrom from the N-terminus of residue Val 195 of the orphaned cell wall binding 

domain. The refined site had an occupancy of 0.2 and a B factor of 28 Å2, which was 

comparable to the sites for sulphurs at methionine and cysteine positions, which had 

occupancies between 0.2 and 0.5. 
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Crystal Structure determination of CD27L 

Performed by R. Meijers (EMBL, Hamburg) and reproduced from the submitted article 

Appendix page 170.  

 The C-terminal domain of CD27L was first solved by single-wavelength anomalous 

dispersion using a mercury derivative (Table I). Crystals of the CD27L C-terminal domain 

construct alone with an N-terminal His tag were soaked in a cryo-protecting solution 

containing 15 % PEG 20K, 100 mM Tris pH8, 10 % (v/v) glycerol and the derivative 1 

mM of Ethyl-mercury phosphate for a few minutes prior to freezing. A data set was 

collected on the X12 beamline at EMBL Hamburg, which is equipped with a MAR225 

CCD detector. The crystal diffracted to a  resolution of 3.5 Å, and the space group was P21. 

All the X-ray data were indexed, merged and scaled with DENZO and Scalepack 

(Otwinowski et al. 2003). The crystal contained eight copies of the C-terminal domain in 

the asymmetric unit, and 8 mercury sites were identified with SHELXD (Schneider & 

Sheldrick 2002). Density modification was performed with PARROT, and an initial model 

was built with BUCCANEER (Cowtan 2012). This model was used in PHASER (McCoy 

et al. 2007) to further improve the experimental phases and to find 5 additional mercury 

sites after several iterations. A native X-ray data set was collected on PROXIMA I at the 

Soleil Synchrotron (Gif-sur-Yvette, France), using a Q315 CCD detector from ADSC. The 

crystal diffracted to 2.3 Å and belonged to space group P212121. The initial model was then 

used in molecular replacement using MOLREP (Vagin & Teplyakov 2010) to identify the 

contents of the crystals grown from initial full length CD27L. It was determined that these 

crystals contained six copies of the C-terminal domain in the asymmetric unit. The 

structure was refined with Refmac5 (Murshudov et al. 2011) to an R factor of  19.8 % 

(Rfree = 25.6 %). The stereochemistry of the model contained 98.2 % of the residues 

within the favored areas of the Ramachandran plot according to Molprobity (Chen et al. 

2010), and no residues in the disallowed regions. 

 

Crystal Structure determination of the C-terminal domain of CTP1L mutant V195P 

Performed with R. Meijers (EMBL, Hamburg) and reproduced from the submitted article 

Appendix page 170.  

A native X-ray data set was collected on the EMBL beamline P14 at the PETRA3 

synchrotron (Hamburg, Germany) using a MAR225 CCD detector. Although the crystal 

probably diffracted to at least 1.5 Ångstrom resolution, we were only able to collect usable 

data to a resolution of 2.1 Ångstrom due to a limited detector geometry. The crystal 
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diffraction also suffered from ice rings, limiting the completeness of the data to 92 %. 

Nevertheless, it was straightforward to solve the structure of the C-terminal domain of 

CTP1L by molecular replacement with MOLREP (Vagin & Teplyakov 2010) using the C-

terminal domain of CD27L as a search model, since there is only one copy of the molecule 

in the asymmetric unit. The structure was refined with Refmac5 to an R factor of 17.2 % 

(Rfree = 26.4 %), and the electron density is of good quality. The stereochemistry of the 

refined model contained 98.8 % of the residues within the favored areas of the 

Ramachandran plot according to Molprobity (Chen et al. 2010), and no residues in the 

disallowed regions. 

 

MALDI-TOF analysis  

Performed by the SPC facility (EMBL, Hamburg). Protein samples were dissolved in 1:1 or 

1:2 ratio with Trifluoroacetic acid (TFA)(0.1% v/v TFA: H2O) and 0.5 µl was spotted onto 

a MALDI plate. 0.5 µl of a matrix solution α-Cyano-4-hydroxycinnamic acid in 

Acetonitrile (ACN):H2O:TFA (50:50:0.1) was mixed with each sample and left to 

crystallise. After crystallisation of the matrix:sample solution the samples were analysed 

with a Voyager DE-STR MALDI- TOF (Applied Biosystems). Spectra for full-length MW 

determination were obtained between 8000 to 50,000 m/z.   

 

Intact Protein Sample Analysis by LC-MS  

Performed by S. Leicht (EMBL, Heidelberg) with parts reproduced from the submitted 

article Appendix page 170. Fresh Ni-NTA proteins samples were dialysed overnight into 

20 mM TRIS, pH 7.4 and concentrated to 2 mg.ml-1 and sent for analysis at the proteomics 

core facility (PCF) (EMBL) by Stefan Leicht. Samples were acidified using 0.1% formic 

acid solution and transferred to vials prior to LC-MS analysis.  Desalting and protein 

separation were carried out using an UltiMate 3000 RSLCnano system (Thermo Scientific) 

fitted with a trapping (Acclaim PepMap 100 C18, 3 µm, 75 µm × 20 mm) and an analytical 

column (Acclaim PepMap RSLC C18, 2 µm, 75 µm × 150 mm).  The column was 

maintained at constant temperature (35 °C) throughout. The outlet of the column was 

coupled directly to a Q Exactive mass spectrometer (Thermo Scientific). 

Solvent A was water, 0.1% formic acid and solvent B was acetonitrile, 0.1% formic acid.  

The samples (around 4 ng) were loaded onto the trapping column and desalted for 5 

minutes at a flow rate of 6 µl/min, 100% A. The proteins were then eluted from the column 
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with a constant flow of 0.3 µl/min. During the elution step, the percentage of solvent B 

increased in a linear fashion from 4% to 85% in 20 minutes. Data were acquired in positive 

continuum mode, over a mass range 400-3000 m/z and a resolution of 70,000.  Spectra 

across the protein chromatographic peak(s) were summed and intact mass was calculated 

using the Xtract algorithm (Thermo Scientific) to give the zero charge deconvoluted 

molecular weight. 

Sample preparation for tryptic digest mass spectrometry 

After SDS-PAGE, protein bands were excised and transferred into an Eppendorf tube (1.5 

ml) for analysis by Stefan Leicht (EMBL, Heidelberg). To stop keratin contamination and 

cross contamination of samples, all steps were performed under sterile conditions with 

separate scalpels used for each protein band excised.  

 

Tryptic digestion linked with LC-MS/MS  

Performed by S. Leicht (EMBL, Heidelberg) and reproduced from the submitted article 

Appendix page 170. The tryptic in-gel-digest was performed based on the protocol from 

Rosenfeld (Rosenfeld et al. 1992). Modified procine trypsin, sequencing grade, from 

Promega (Madison, WI, USA), was used. The collected peptide samples were dried and 

dissolved in 3% acetonitrile and 0.1% formic acid. Peptides were separated using an 

UltiMate 3000 RSLCnano system (Thermo Scientific) fitted with a trapping (Acclaim 

PepMap 100 C18, 3 µm, 75 µm × 20 mm) and an analytical column (Acclaim PepMap 

RSLC C18, 2 µm, 75 µm × 150 mm).  The column was maintained at constant temperature 

(35 °C) throughout. The outlet of the column was coupled directly to a Q Exactive mass 

spectrometer (Thermo Scientific) via a PicoTip emitter (FS360-20-10-D, coating 1P-4P, 

New Objective). 

 

Peptides were eluted through the analytical column at a constant flow of 0.3 µl per min and 

total runtime was 30 min. Full scan mass spectrometry spectra with mass range 300–2,000 

mass-to-charge ratio (m/z) were acquired with a resolution of 70,000. The most intense 

ions (up to 15) from the full-scan mass spectrometry were selected for fragmentation. MS2 

was carried out with a resolution of 17,500 with a fixed first mass at 100 m/z and 

normalised collision energy of 25. 

 

The raw data were processed using MaxQuant (Cox & Mann 2008) and MS/MS spectra 

were searched using the MASCOT search engine (version 2.2.07, Matrix Science) against 
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a self-created database containing around 3,300 entries. Enzyme specificity was set to 

trypsin, and a maximum of three missed cleavages were allowed. Carbamidomethylation 

was set as fixed modification while methionine oxidation and acetylation on K and N-term 

were included as variable modifications. The search was performed with an initial mass 

tolerance of 10 ppm for the precursor ion and 0.1 Da for the MS/MS spectra and a 

minimum ion score of 20 was applied. 

 

SEC-RALS/RI/UV molecular weight determination  

Performed with the assistance of Cy Jeffries (EMBL, Hamburg) with parts reproduced 

from the submitted article Appendix page 170. Molecular weight estimates were evaluated 

using size-exclusion chromatography in combination with right-angle light scattering 

(RALS), refractive index (RI) and UV (l280 nm) measurements  (Malvern Instruments 

Viscotek, RALS/RI/UV 305 TDA detector equipped with a 670 nm laser diode). All 

measurements were performed at room temperature. 50-75 µl samples were separately 

injected at concentrations between 6-8 mg/ml-1 (with the exception of CD27L W207A: 1.2 

and 3.7 mg.ml-1) onto a GE-Healthcare Tricorn S75 10/300 GL column equilibrated in 20 

mM HEPES pH7.4, 500 mM NaCl  at a flow rate of 0.4 ml.min-1. The molecular weight 

(MW) of each species eluting from the SEC column were assessed using concentration (c) 

measurements derived from base-line corrected RI or UV measurements in combination 

with base-line corrected RALS intensities calibrated against a bovine serum albumin 

narrow (monomeric) standard (RALS = c(dn/dc)2.MW.kRALS; RI = c(dn/dc)kRI and; UV = 

cekUV, where dn/dc is the refractive index increment of unmodified protein, 0.185 mL.g-1, 

kRI, kUV and kRALS are the TDA instrument calibration constants relative to a BSA and e the 

l280 nm E0.1% extinction coefficient of each protein in mg.mL-1). The MW correlations across 

the selected range of each CD27L elution peak and the final MW estimates quoted in the 

text were calculated using OmniSEC Software (Malvern Instruments).  

 

SAXS data collection and shape determination  

Performed with H. Mertens (EMBL, Hamburg) reproduced from the submitted article 

Appendix page 170. Synchrotron radiation X-ray scattering data were collected on the 

EMBL X33 and P12 beamlines of the storage rings DORIS III and PETRA III (DESY, 

Hamburg), respectively, using PILATUS 1M and 2M pixel detectors (DECTRIS, 

Switzerland). For the wild-type CD27L, CTP1L and CS74L data were acquired at X33, 

with 8 frames of 15 s exposure time collected. Samples were measured in a temperature-
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controlled cell at 10°C. CD27L was measured in a buffer of 20 mM HEPES 150 mM NaCl 

pH 7.4. For CTP1L and CS74L samples were measured in 20 mM HEPES ± 500 mM 

NaCl pH 7.4. Protein concentrations were 0.9 – 4.0 mg/mL for all three samples. The 

sample-to-detector distance was 2.7 m, covering a range of momentum transfer 0.01 ≤ s ≥ 

0.6 Å-1 (s = 4π sinθ /λ, where 2θ is the scattering angle, and λ = 1.54 Å is the X-ray 

wavelength). For the C238R mutant data were acquired at P12, with 20 frames of 0.05 s 

exposure time collected.  C238R was measured while flowing through a temperature-

controlled capillary at 10°C in 20 mM Tris buffer, 500 mM NaCl pH 7.4 at protein 

concentrations of 1.0 – 8.5 mg/mL. The sample-to-detector distance was 3.1 m, covering a 

range of momentum transfer 0.008 ≤ s ≥ 0.458 Å-1 (s = 4π sinθ /λ , where 2θ is the 

scattering angle, and λ = 1.24 Å is the X-ray wavelength). Based on comparison of 

successive frames, no detectable radiation damage was observed. Data from the detector 

were normalised to the transmitted beam intensity, averaged and the scattering of buffer 

solutions subtracted. The difference curves were scaled for solute concentration and the 1.0 

mg.ml-1 (low-s) and 8.4 mg.ml-1 (high-s) data sets merged for modeling. All data 

manipulations were performed using PRIMUS (Konarev et al. 2003). 

 

The forward scattering I(0) and radius of gyration, Rg were determined from Guinier 

analysis (Guinier n.d.), assuming that at very small angles (s ≤ 1.3/Rg ) the intensity is 

represented as I(s)=I(0)exp(-(sRg)2/3)). These parameters were also estimated from the full 

scattering curves using the indirect Fourier transform method implemented in the program 

GNOM (Semenyuk & Svergun 1991), along with the distance distribution function p(r) 

and the maximum particle dimension Dmax. Molecular masses (MMs) of solutes were 

estimated from SAXS data by comparing the extrapolated forward scattering with that of a 

reference solution of bovine serum albumin, and also from the hydrated-particle/Porod 

volume Vp, where molecular mass is estimated as 0.625 times Vp. 

 

Ab initio Shape Determination and Molecular Modelling  

Performed with H. Mertens (EMBL, Hamburg) reproduced from the submitted article 

Appendix page 170. Low-resolution shape envelopes for all constructs were determined 

using the ab initio bead-modelling program DAMMIF (Franke & Svergun 2009), using 

both P1 and P2 symmetry for all constructs. The results of 10 independent DAMMIF runs 

were analysed using the program DAMAVER (Volkov & Svergun 2003) to identify the 

most representative/typical models. Modeling using P2 symmetry was only attempted 
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following the identification of excluded solvent volumes, Vex in models generated in P1 

(slow mode) consistent with that expected for dimers (see Table 2).  

 

Molecular modelling was conducted using, as rigid bodies and where appropriate, the 

crystal structures of the catalytic (PDB: 3QAY, (Mayer et al. 2011a) and the C-terminal 

domain of CD27L determined in this study. Rigid-body models were generated using the 

program CORAL (Petoukhov et al. 2012) and 10 independent runs assessed for 

convergence with DAMAVER. For CTP1L and CS74L the CTP1L crystal structure, in a 

head-on configuration with its symmetry mate, was used for modeling. The ddditional 

fitting of PDB files to the SAXS data was conducted using CRYSOL (Svergun et al. 

1995).  

 

Oligomeric equilibrium analysis  

Performed with H. Mertens (EMBL, Hamburg) parts reproduced from the submitted 

article Appendix page 170. Using the program OLIGOMER (Petoukhov et al. 2012), the 

SAXS data of the individual constructs were used to model potential multicomponent 

mixtures of species in solution. Form factors of input PDB files were calculated using the 

program FFMAKER (Petoukhov et al. 2012).  Input PDBs for CD27L and C238R were 

generated based on the CORAL rigid body described above. Input PDBs for CTP1L and 

CS74L were based on the solved CTP1L crystal structure. Form factors were calculated for 

individual domains and substructures of the intact PDB files to represent products of 

autolysis and averaged. This averaging was performed, as the identity of the exact solution 

composition of these lysis products could not be established. Volume fractions 

corresponding to each component were determined by OLIGOMER using a non-negative 

least squares procedure.   

 

Turbidity reduction assays  

Perfomed by M. Mayer (IFR, Norwich). I performed the turbidity assays referred to in 

Figure 22 with the assistance of M. Mayer. Cells of C. difficile strain NCTC 11204 or C. 

tyrobutyricum strain NCIMB 9582 were grown, harvested and assayed as described 

previously Mayer et al 2008 and 2010. Lysis assays were performed on freshly harvested 

cells in 300 µl volumes with 10 µg or 30 µg Ni-NTA-purified protein or elution buffer 

(control). Results are the mean of duplicate assays ± standard deviation. For controls 

Lysozyme (1000U) and Mutanolysin (50U) were used.  
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Measuring the effect of environmental conditions and additives on endolysin activity 

using GFP fluorescence 

500 µl of Ni-NTA agarose beads (Qiagen) contained in poly prep chromatography 

columns (Biorad) were pre-equilibrated in 20 mM Tris buffer, pH 7.4, before addition of 2 

mg of CTP1L-GFP or CTP1L_V195P-GFP. Protein bound beads were washed with 1.5 ml 

of 20 mM Tris buffer, pH 7.4 to remove unbound protein. This was followed by addition 

of 5 ml of experimental buffer, differing in pH and NaCl concentration (50 mM Tris pH 

9.0, 50 mM Tris pH 8.0, 50 mM Tris pH 7.4, 50 mM MES pH 6.0, 50 mM Tris pH 7.4 500 

mM NaCl) with or without 100 mM NaHS. The flowthrough was collected in a 50 ml 

beaker and a continuous flow of buffer was created over the Ni-NTA beads via pipetting 

the flowthrough collected in the 50 ml beaker (bottom reservoir) back to the top reservoir 

of buffer solution (Figure 26). Beads were continuously washed with experimental buffer. 

Over 2 hours, at specified time points, 100 µl of the flow-through was obtained from the 

collection well for fluorescence measurements. GFP fluorescence was measured with a 

Tecan Infinite M1000 plate reader using 96-well flat bottom black microplates (Greiner) 

containing 100 µl sample volume. Mode of determination was Fluorescence Top Reading 

(50 flashes at 400 Hz, excitation: 395 ± 5 nm, emission: 510 ± 5 nm). The fluorescence 

produced from the autocleaved C-terminal domain-GFP product was plotted as a function 

of time for each condition. Using the software GraphPad Prism version 5.04, the kinetics 

toward equilibrium was fitted to one phase exponential association, as described in Figure 

26, where Ymax represents the fluorescence reading at equilibrium, Y the fluorescence 

reading of cleaved cell wall binding domain-GFP at time X and K is the observed cleavage 

rate constant. All Y values are the means of duplicate samples  ± standard deviations. The 

exponential equation could only be fitted for CTP1l-GFP wildtype. This equation normally 

describes the association kinetics between ligand and receptor but can also describe the 

dissociation of the C-terminal domain from the full-length monomer.  

 

CD spectropolarimetry measurements on CD27L and CTP1L endolysins and mutants 

Reproduced from the submitted article Appendix page 170. 

Proteins were purified by Ni-NTA affinity purification as described above and by size 

exclusion chromatography using an Aekta liquid chromatography system (Amersham 

Biosciences) and S75 10/300 GL (Tricorn) column (GE Healthcare). Size exclusion buffer 

for CD27L and mutants was 20 mM HEPES, pH 7.4 with 500 mM NaCl and for CTP1L 

and mutants 20 mM HEPES, pH 7.4. Purified protein was eluted and dialysed against 20 
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mM HEPES pH 7.4 and concentration was measured by UV absorption at 280 nm. Spectra 

were recorded at 20°C on a Chirascan CD Spectrometer (Applied Photophysics), between 

200 and 260 nm in a 0.1 cm cuvette with machine settings as follows: 1 nm bandwidth, 

0.5-sec response, and 0.5-nm data pitch. Spectra were background-subtracted and 

converted into mean residue ellipticity. Each curve represents the mean of three separate 

measurements.  

 

Material and methods for the identification of 

endolysin cell wall ligands 

Sub cloning and expression of p-benzoyl-L-phenylalanine incorporated into CTP1L 

constructs 

Parts reproduced from the submitted article Appendix page 170. 

CTP1L was amplified from ctp1l-pET15b using a forward primer with NcoI site (5’- 

CATGCCATGGATATGAAGAAAATAGCAGACA-3’) and reverse primer with XhoI 

site (5’- GTAGCCTCGAGTTTTAAATTTTTAATGTAATC-3’) and ligated into the 

pET21d vector. The amber codon (TAG) was previously incorporated at position Y212 or 

Y260 using site-directed mutagenesis to generate pET21d-Y260TAG and pET21d-

Y212TAG. Sub cloning into pET21d introduced a C-terminal polyhistidine-tag, which 

selective purified only full-length proteins that have pBpa incorporated. C-terminal 

constructs Y260TAG and Y212TAG were generated by amplifying the C-terminal 

domains of Y212TAG-pET21d and Y260TAG-pET21d and reinserting the constructs back 

into the pET21d vector to create pET21d-c-termY260TAG and pET21d-c-termY212TAG.  

As a control, the wild-type C-terminal domain was sub cloned into pET21d with no amber 

stop codon incorporated. Following the principal method outlined by Farrell et al. (Ian S. 

Farrell et al. 2005), the photo-activated amino acid p-benzoyl-L-phenylalanine (pBpa) 

(BACHEM) was incorporated into the full-length CTP1L endolysin and the truncated C-

terminal domain of CTP1L.  

 

E.coli BL21 (AI) cells were transformed with pEVOL-pBPA (aminoacyl-tRNA 

synthetase/suppressor tRNA) and either of the plasmids encoding an amber codon 

containing construct, Y212TAG-pET21d, C-termY212TAG-pET21d or C-termY260TAG-

pET21d. Cells were grown in 500 ml Lysogeny broth (LB) media supplemented with 1 

mM pBpa in the presence of ampicillin and chloramphenicol.  When an OD600 of 0.6 had 
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been reached the cultures were induced with Arabinose (final concentration 0.02%) and 

expressed at 21°C overnight. Cells were harvested by centrifugation (5000 g, 30 min) and 

the supernatant discarded.  

 

Photo-cross-linking full length CTP1L and the C-terminal domain of CTP1L without 

cell wall material present 

Reproduced from the submitted article Appendix page 170. 

Full-length Y212pBpa was Ni-NTA purified as described above and dialysed into 25 mM 

TRIS, pH 7.4 and concentrated to 0.5 mg.ml-1, as measured by UV absorption at 280 nm. 

A 1 ml aliquot of Y212pBpa was pipetted into a single well of a 24-well clear polystyrene 

plate, typically used for protein crystallography. Clear polystyrene allowed efficient 

passage of UV light at 365 nm. The lid was kept on to prevent sample evaporation, and 

placed inside an RPR-100 UV reactor equipped with 350-370 nm bulbs (Rayonet). The 

reactor was kept at 4°C with the combined cooling fan on. The samples were exposed to 

UV light for 30 minute intervals. During each interval the solutions were stirred by gentle 

pipetting and SDS-PAGE samples taken for each time point. As a control, samples were 

also taken every 30 minutes from a parallel sample of full-length Y212pBPA kept at 4°C 

separate from the reactor in the dark with no UV exposure. Cross-linking was analysed by 

SDS-PAGE by comparing the pre-UV and post-UV exposed samples.  

 

Photo-cross-linking was also performed for the C-terminal domain constructs. Ni-NTA 

purified C-termY212pBpa, C-termY260pBpa and the wild-type C-terminal domain were 

dialysed into 25mM TRIS, pH 7.4 and concentrated to 2 mg.ml-1 as measured by UV 

absorption at 280 nm. Following the same protocol as described above for the full-length 

Y212pBpa, 500 µl aliquots of each protein were pipetted into separate wells of a 24 well 

clear polystyrene plate and exposed to UV light for a total of 120 minutes with stirring of 

the samples at 30 minute intervals. As a control SDS-PAGE samples were taken from 

parallel aliquots of each protein kept at 4°C in the dark with no UV exposure.  

 

Photo-cross-linking of C-terminal domains in the presence of cell wall material 

C-termY212pBpa, C-termY260pBpa and wildtype C-term (25mM TRIS, pH 7.4) were 

concentrated to 1.5 mg.ml-1. To 300 µl aliquots varying amounts of the different cell wall 

preparations (1 and 2) were added (3 – 30 µl) and mixed by gentle vortexing and pipetting 
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fro 30 minutes. Aliquots were then split into separate wells of a 24 well clear polystyrene 

plate and exposed to UV light for 90 minutes with stirring of the samples at 10 minute 

intervals. SDS-PAGE samples were taken before and after UV exposure. As a control 

SDS-PAGE samples were taken from parallel aliquots with or without CWM of each 

protein kept at 4°C in the dark with no UV exposure. Cross-linked protein-CWM 

complexes were affinity purified using Ni-NTA. A total of 100 ul Ni-NTA resin was used 

for each sample and followed the same standard protocol as described above. Affinity 

purification removed non-cross-linked CWM. Samples were then desalting into Tris buffer 

20 mM, pH 7.4 to remove the imidazole and stored at -20°C for MS analysis.  

 

Cell wall growth and extraction  

Performed by M. Mayer (IFR). Crude C.tyrobutyricum cell wall material (CWM) 

preparation was modified from Pritchard et al. (2004). A 500 ml culture of BHI broth was 

inoculated with an overnight culture of C. tyrobutyricum strain NCIMB 9582 at 2% and 

grown to OD600 0.5. The culture was centrifuged for 20 minutes, 4000 g at 4°C, and the 

pellets resuspended in 3 ml ice-cold growth media. Resuspensions were then boiled at 

100°C for ten minutes to inactivate autolysins and finally centrifuged for 7 minutes at 8000 

g at 4°C for storage at -20°C.  

 

Cell wall material fragmentation 

This formed the basic CWM that was then split between different preparative steps. (1) 

CWM was resuspended in TRIS pH 7 and extensively bead beaten for 5 x 10 second 

intervals with 5-10 minutes on ice in between. Beads were removed and suspension 

centrifuged for 5 minutes 5000 g at 4°C to remove unbroken cells. Supernatant transferred 

to fresh tube and centrifuged for 45 minutes at 27000 g at 4°C to recover cell walls (2) 

CWM was resuspended in PBS containing 1mg.ml-1 lysozyme and incubated with gentle 

shaking for 30 minutes at 37°C then centrifuged for 5 minutes 5000 g at 4°C to remove 

unbroken cells to separate the digested CWM, which was then stored at -20°C. Excess 

lysozyme would be removed during Ni-NTA purification of the potentially cross-linked C-

terminal domain : CWM complexes after UV exposure. The final CWM solutions for all 

steps were composed of a semi translucent suspension. 
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MALDI-TOF-MS analysis 

Performed with the core facility for mass spectrometric protein analysis, Prof. Dr. H. 

Schlüter/Dr. D. Hildebrand (UKE). Trypsin digested peptide samples were evaporated to 

complete dryness using a cooling trap (4-16K; Christ) equipped vacuum centrifuge 

(RCF10, Thermo Scientific and dissolved in 10µl 3% acetonitrile (ACN; Merck) and 0.1% 

formic acid (v/v) (Fluka, Sigma)/HPLC-grade Water (Merck). For MALDI-TOF-MS 

measurement 0.8µl of the peptide samples were pipetted onto the MALDI-target plate 

(Bruker, AnchorChip Standardtarget) and mixed with 0.8µl of the matrix 2,5-

dihydroxybenzoic acid (DHB; 30mg/ml dissolved in ACN/0.1% (v/v), Trifluoroacetic acid 

(TFA) in HPLC-grade Water (ratio 1:1). After crystallisation of the matrix:sample solution 

the samples were analysed by MALDI-TOF-MS (Reflex IV, Bruker). Applied instrument 

settings were the following: Lasershots per single spectrum=100, number of summed up 

single spectra=100, Laser intensity 50-50%, Laser Frequency 9Hz, Ion deflection from 0-

500 Da, Pulsed ion extraction time=400ns, Ion source 1 voltage=20kV, Ion source 2 

voltage=16,35kV. Peptide fingerprinting was performed in a mass range between 500 to 

5000 m/z. Spectra were evaluated with the Software Bruker Flex Control and Flex 

Analysis. Manually the signal m/z values between C-termY212pBPA and C-

termY260pBPA ± CWM were compared. For identification of the cross-linked peptides by 

C-termY212pBPA, in silico cross-linked tryptic peptides were calculated and also searched 

for manually. 

 

ESI-Q-TOF-MS/MS-Analysis 

Performed with the core facility for mass spectrometric protein analysis, Prof. Dr. H. 

Schlüter/Dr. D. Hildebrand (UKE). ESI-Q-TOF analysis was performed on a Q-TOF-2 

electrospray mass spectrometer (Waters). The experiments were carried out in the positive 

ion mode (ES (+)). Nanoflow capillaries were drawn and coated with gold (done in-house). 

The capillaries were loaded with a 2-µL sample of the desalted tryptic peptides, and low 

pressure nitrogen gas was used to initiate the flow through the capillary. The capillary tip 

was set to a potential of 0.63 kV, and the cone voltage was set to 34 V. The source 

temperature was 25 °C. For MS/MS experiments using collision-induced dissociation 

(CID) experiments, ions were selected within a precursor mass window of ± 1 Da in the 

quadrupole analyser and fragmented in the collision cell using a collision gas (Ar) and 

collision energies of 27 to 30 eV. The cycle time was about 1.1 s with a scan duration of 1 

s. Raw data were acquired and analysed using the software, MassLynx 3.5 (Micromass, 

Manchester, UK). MS/MS spectra were automatically processed with the micromass 
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charge state de-encryption algorithm (MaxEnt-3) and signal anlaysis including 

aminosequence assignment was performed manually. 

 

Software used for thesis documentation  
The crystal structure analysis of CD27L and CTP1L was performed using PyMOL (The 

PyMOL Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC.) 

The thesis was written in Microsoft Word and all referencing performed with Zotero 

(www.zotero.org). Chemical drawings were produced using ACD/ChemSketch (version 

12.01). All Figures were created using the open source vector graphics editor Inkscape 

(www.inkscape.org).  
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CTP1L amino acid sequence 
 
        10         20         30         40         50         60  
MKKIADISNL NGNVDVKLLF NLGYIGIIAK ASEGGTFVDK YYKQNYTNTK AQGKITGAYH  
 
        70         80         90        100        110        120  
FANFSTIAKA QQEANFFLNC IAGTTPDFVV LDLEQQCTGD ITDACLAFLN IVAKKFKCVV  
 
       130        140        150        160        170        180  
YCNSSFIKEH LNSKICAYPL WIANYGVATP AFTLWTKYAM WQFTEKGQVS GISGYIDFSY  
 
       190        200        210        220        230        240  
ITDEFIKYIK GEDEVENLVV YNDGADQRAA EYLADRLACP TINNARKFDY SNVKNVYAVG  
 
       250        260        270  
GNKEQYTSYL TTLIAGSTRY TTMQAVLDYI KNLK  
 

 

Table of different mutations and their effect in CTP1L 

Ctp1L Mutation Position 
C-terminal 
Cleavage 

Methionine 
incorporation? 

Lytic 
activity 

Wild-type   +++ + +++ 
D92A -  - 
D92A_E94A 

Catalytic domain active 
site -  - 

M263R Cell wall binding region +++  - 
T221C -  - 
T221R 

Side-by-side dimer 
interface -  - 

D215A Head-on dimer interface -  N/A 
V195P + + + 
E194A_E196A +++  N/A 
CTP1LΔLinker  +++  N/A 
CTP1LPPP 

Linker between 
Enzymatically active 
domain and C-terminal 
domain +++  N/A 

C219A +++  +++ 
N197A +++  +++ 
N232A +++  +++ 
Y188A +++  +++ 
S231A +++ N/A +++ 
E194A +++  N/A 
E196A +++  +++ 
K234A ++  +++ 
E196A_K234A 

Residues proximal to 
cleavage site, 
hypothesised to engage 
in autocleavage 
mechanism 

+++  +++ 
V195G ++ +  
V195L + +  
V195Y --- + N/A 
V195I +++ +  
V195M 

Mutations are all made 
to the V195 cleavage 
residue.  

+ +  
 
Appendix Figure 1: CTP1L amino acid sequence. Enzymatically active domain (red), linker (green) 
with cleavage site residue underlined and C-terminal domain (blue). Summary table of all tested CTP1L 
mutants. +++ maximum effect similar to wildtype, + minimal effect, - total inhibition. 
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CS74L amino acid sequence 
 
        10         20         30         40         50         60  
MKIGIDMGHT LSGADYGVVG LRPESVLTRE VGTKVIYKLQ KLGHVVVNCT VDKASSVSES  
 
        70         80         90        100        110        120  
LYTRYYRANQ ANVDLFISIH FNATPGGTGT EVYTYAGRQL GEATRIRQEF KSLGLRDRGT  
 
       130        140        150        160        170        180  
KDGSGLAVIR NTKAKAMLVE CCFCDNPNDM KLYNSESFSN AIVKGITGKL PNGESGNNNQ  
 
       190        200        210        220        230        240  
GGNKVKAVVI YNEGADRRGA EYLADYLNCP TISNSRTFDY SCVEHVYAVG GKKEQYTKYL  
 
       250        260  
KTLLSGANRY DTMQQILNFI NGGK  
 
 

Table of different mutations and their effect in CS74L 

CS74L Mutation Position 
C-terminal 
Cleavage 

Methionine 
incorporation? 

Wild-type   +++ + 
V185P + + 
V185Y + + 
V185G ++ + 
V185I +++ + 
V185L ++ + 
V185M 

Mutations are all made to the 
V185 cleavage residue.  

++ + 
T211R Side-by-side dimer interface - N/A 

 
Appendix Figure 2: CS74L amino acid sequence. Enzymatically active domain (red), estimated 
linker (green) with cleavage site residue underlined and C-terminal domain (blue).  and summary 
table of all tested CS74L mutants. +++ maximum effect similar to wildtype, + minimal effect, - 
total inhibition.  
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CD27L amino acid sequence 
        10         20         30         40         50         60  
MKICITVGHS ILKSGACTSA DGVVNEYQYN KSLAPVLADT FRKEGHKVDV IICPEKQFKT  
 
        70         80         90        100        110        120  
KNEEKSYKIP RVNSGGYDLL IELHLNASNG QGKGSEVLYY SNKGLEYATR ICDKLGTVFK  
 
       130        140        150        160        170        180  
NRGAKLDKRL YILNSSKPTA VLIESFFCDN KEDYDKAKKL GHEGIAKLIV EGVLNKNINN  
 
       190        200        210        220        230        240  
EGVKQMYKHT IVYDGEVDKI SATVVGWGYN DGKILICDIK DYVPGQTQNL YVVGGGACEK  
 
       250        260        270  
ISSITKEKFI MIKGNDRFDT LYKALDFINR  
 
 
 
Table of different mutations and their effect in CD27L 

CD27L Mutation Position 
C-terminal 
Cleavage 

Lytic activity 

Wild-type   +++ +++ 
H84A +++ - 
E144A 

Catalytic domain active site 
+++ - 

W207A + +++ 
W207R + +++ 
Y262A 

Head-on dimer interface 
+ +++ 

C238R + +++ 
C238S 

Side-by-side dimer interface 
+++ +++ 

M186P - +++ 
Q185P 

Linker between EAD and C-
terminal domain +++ +++ 

 
Appendix Figure 3: CD27L amino acid sequence. Enzymatically active domain (red), linker 
(green) with cleavage site residue underlined and C-terminal domain (blue). Summary table of all 
tested CD27L mutants. +++ maximum effect similar to wildtype, + minimal effect, - total 
inhibition. 
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Appendix Figure 4 MALDI-TOF analyses of CTP1L T221R, T221C and CS74L T211R A: 
CS74L T211R fully degraded to a product of m/z value 24 kDa, which was most likely cleavge 
within the C-terminal domain at position L203. B: CTP1L T221R degradation product was 
approximately 21.8 kDa and could occur from degradation at position D177, within the EAD or at 
position L253 within the C-terminal domain. Tryptic digest analysis was always contaminated with 
a small amount of full-length protein, meaning deciding the correct location was complicated. C: 
TP1L T221C did not degrade and only the full-length protein could be detected by MS. D: 
MASCOT search result sample for CS74L T211R, peptides including the degradation site of L203 
or C-terminal there on, could not be detected indicating cleavage was most likely at the position 
L203 within the C-terminal domain. 
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Appendix Figure 5 UV/RI/RALS size exclusion chromatography traces and MW correlation 
for CD27L M186P. The main peak was calculated to be the dimer of CD27L M186P with a MW 
of 65.8 ± 6.5 kDa. (theoretical MW of dimer: 64.6 kDa).  
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Appendix Figure 6 Sample MASCOT search results after tryptic digestion linked with LC-
MS/MS analysis for CTP1L, CS74L and their respective cleaved C-terminal domains. A: 
CTP1L full-length endolysin. B: CTP1L C-terminal domain. C: CS74L CS74L full-length 
endolysin D: CS74L C-terminal domain. For both full-length endolysins only valine was detected 
at the cleavage site, whilst methionine incorporation is only detected after cleavage as the post-
protoelytic modification of the C-terminal domain. 
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Appendix Figure 7 Circular dichroism measurements (mean residue molar ellipticity) to 
show that the integrity of secondary structure has been retained. A: CD27L wild-type and the 
mutants that prevent autocleavage (M186P, W207A and C238R). B: CTP1L wild-type and the 
mutants that prevent autocleavage (V195P, T221C and T221R). C: CTP1L D215A and 
CTP1L∆Linker. All the profiles follow a similar shape to the circular dichroism measurements of their 
respective wildtype proteins. 
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Appendix Figure 8 The use of Ellman’s reagent to test for sulfhydryl addition. The addition of 
Ellman’s reagent, (5,5'-dithiobis-(2-nitrobenzoic acid)) (DTNB), was used to test if during 
proteolysis the N-terminal modification of valine involved the addition of a sulfhydryl group. The 
disulphide bond in DTNB is broken by free sulfuhydryl groups, such as cysteine, in solution. The 
proposed addition of a sulfhydryl group was proposed to occur on the free amide of valine to 
produce an N-S bond, which would still cleave DTNB and attach a TNB to the N-terminus of the 
cleaved domain, providing a mass addition that could be measured by LC-MS.   
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Appendix Figure 9 Electrospray ionisation mass spectrometry on the cleaved C-terminal 
domains after addition of Ellman’s reagent. A: (CTP1L), B: (CS74L) Liquid chromatography 
coupled to electrospray ionisation mass spectrometry (LC-MS) was used to accurately determine 
the full-length mass of the cleaved C-terminal domains after the addition of Ellman’s reagent to 
detect any sulfhydryl groups attached to the protein. For both wildtypes, the C-terminal domain 
contains a single cysteine (CTP1L C219, CS74L C222) which was the only modification detected, 
indicating no sulfhydryl group was introduced during autocleavage. C: Tryptic digest linked with 
LC-MS/MS on CTP1L confirmed methionine was still the post-proteolytic product and that TNB 
was covalently attached to C219. 
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Appendix Figure 10 Turbidity assays and SDS-PAGE analysis on the chimeras CD-CD and 
CT-CD. A: Lysis assays with 10 µg of Ni-NTA purified CTP1L and mutants on C. tyrobutyricum 
cells to determine the lytic effect of the chimeras. CS-CD showed a moderate lytic activity against 
the cells, CT-CD was inactive. B: Lysis assays with 10 µg of Ni-NTA purified CTP1L and mutants 
on C. difficile cells. CD27L wildtype was used as a positiv control, CS-CD showed moderate 
activity whilst CT-CD was totally inactive. C: SDS-PAGE of the chimeras, comparing the amount 
of cleaved CD27L C-terminal domain compared to wildtype CD27L. All samples were loaded 
fresh after Ni-NTA purification at 2 mg.ml-1. 
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Appendix Figure 11 Sample MASCOT search results of the cleaved C-terminal domain, for 
different point mutations made to the cleavage sites of CTP1L and CS74L A: CTP1L V195G, 
V195I, V195L, V195M. B: CS74L V185G, V185I, V185L, V185M, V185Y. Post-protrolytic 
methionine incorporation was observed for all mutants as well as peptide hydrolysis for CTP1L 
V195G, CS74L V185G, V185I and V185Y 
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Appendix Figure 12 Y212-cross-linking between opposing C-terminal domains within the 
head-on dimer state. A: MALDI-TOF-MS peptide analysis of in solution cross-linked Y212pBPA 
after tryptic digestion. Beside the signal for the pBPA-containing peptide “AAE-pBPA-LARD” 
(m/z=996.2) a peak with m/z = 2439.7, probably corresponding to a dipeptide of the highlighted 
peptides was observed. B: ESI-nanospray Q-TOF-MS/MS-sprectrum the Y212pBPA-dipeptide 
indicated cross-linking between the two peptides via the pBpa molecule. For identification the 
triply charged precursor ion (m/z=814) of the putative dipeptide was isolated and fragmented using 
CID resulting in the shown MS/MS-spectrum. The partial amino acid sequence of the dipeptide 
was deduced by assigning the corresponding y-fragmention-series. 
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ΔN-CD27L  CD27L 

Proteolytic 
fragment 

 CTP1L V195P 
mutant 

(proteolytic 
fragment)#  Hg derivative 

Data collection    
Space group P212121 I222 P21 
Cell 
dimensions   

   

    a, b, c (Å) 75.3, 82.1, 83.8 44.9, 48.8,    
77.2 

63.1, 84.7, 65.3 

    a, b, g  (°)  90.0, 90.0, 90.0 90.0, 90.0, 90.0 90.0, 92.0, 90.0 
Wavelength 
(Å) 

0.97 1.223 0.998 

20 – 2.24  20 – 3.5 Resolution (Å) 
(2.37-2.24) 

20 – 2.10 (2.17 
– 2.10)  (3.66 – 3.50) 

Rsym or Rmerge 12.8 (59.8) 2.5 (4.4) 23.8 (55.8) 
I / sI 7.0 (2.0) 48.9 (29.0) 4.7 (2.6) 
Completeness 
(%) 

97.9 (93.8) 92 (55.5) 99.9 (99.9) 

Redundancy 2.7 (2.6) 5.7 (4.4) 4.8 (4.8) 
    
Refinement    
Resolution (Å) 30 – 2.24 20 – 2.10  
No. reflections 24189 4489  
Rwork / Rfree 20.2/24.6 17.2 (26.4)  
No. atoms    
    Protein 3978 645  
    Ligand/ion n/a n/a  
    Water 495 90  
B-factors    
    Protein 45 22  
    Ligand/ion n/a n/a  
    Water 57 32  
R.m.s. 
deviations 

   

    Bond lengths 
(Å) 

0.01 0.01  

    Bond angles 
(°) 

1.3     

Appendix Table 4 Data collection and refinement statistics set one 
*Values in parentheses are for highest-resolution shell. 
# The data collection was affected by ice rings and a limited detector geometry 
Table reproduced from the submitted article Appendix page 170. 
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  CTP1L full 

length 
CTP1L CBD 

degraded 
Data collection   
Space group P41212 I222 
Cell 
dimensions   

  

    a, b, c (Å) 136.20, 136.20, 
56.46 

45.07, 48.74, 
77.36 

    α, β, γ  (°)  90.0, 90.0, 90.0 90.0, 90.0, 90.0 
Resolution (Å) 30 – 1.90 (2.00 

– 1.90) * 
20 – 1.18 (1.24 

– 1.18) 
Rsym or Rmerge 14.8 (75.4) 7.3 (83.4) 
I / σI 9.6 (2.6) 12.5 (2.2) 
Completeness 
(%) 

100.0 (100.0) 99.1 (98.0) 

Redundancy 8.2 (8.0) 6.2 (5.0) 
   
Refinement   
Resolution (Å) 30 – 1.90 20 - 1.18 
No. reflections 40260 26983 
Rwork / Rfree 16.3 (19.8) 15.0/18.9 
No. atoms   
    Protein 2567 554 
    Ligand/ion 38 n/a 
    Water 749 322 
B-factors   
    Protein 36 16 
    Ligand/ion 52 n/a 
    Water 47 38 
R.m.s. 
deviations 

  

    Bond lengths 
(Å) 

0.03 0.03 

    Bond angles 
(°) 

1.9 2.5 

Appendix Table 5 Data collection and refinement statistics set two 
*Values in parentheses are for highest-resolution shell. 
Table provided by R. Meijers 
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Data collection parameters CD27L (wild-type) CD27L (C238R) 
  Instrument EMBL X33 beam 

line (DORIS-III, 
DESY, Hamburg) 

EMBL P12 beam 
line (PETRA-III, 
DESY, Hamburg) 

  Beam geometry 2.0 x 0.6 mm2 0.2 x 0.12 mm2 
  Wavelength (Å) 1.54 1.24 
  s range (Å-1)a 0.01-0.6 0.01-0.46 
  Exposure time (s) 8 x 15 1 (20 x 0.05 s) 
  Concentration range (mg/mL) 0.9-4.0 1.0-8.5 
  Temperature (K) 283 283 
Structural parametersb   
  I(0) (relative) [from p(r)] 44 ± 2 3653 ± 14 
  Rg (Å) [from p(r)] 33 ± 1 43 ± 2 
  I(0) (cm-1) (from Guinier) 45.6 ± 0.5 3664 ± 14 
  Rg (Å) (from Guinier) 33 ± 1 42 ± 1 
  Dmax (Å) 106 147 
  Porod volume estimate (Å3) 72151 ± 10000 91690 ± 10000 
  Excluded volume estimate (Å3) 94000 ± 10000 123000 ± 10000 
  Dry volume calculated from 
sequence (Å3)  

39121/78219 (mon/dim) 

Molecular-mass determination   
  I(0) (cm-1) BSA (66,000 Da) 71.4 ± 0.4 3791 ± 10 
  Molecular mass Mr  (Da) [from 
I(0)] 

42150 ± 5000 63780 ± 5000 

  Molecular mass Mr  (Da) [from 
Porod volume (Vp/1.6)] 

45094 ± 5000 57306 ± 5000 

  Molecular mass Mr  (Da) [from 
excluded volume (Vex/2)] 

47000 ± 5000 61500 ± 5000 

  Calculated monomeric Mr  from 
sequence 

~32335 

Software employed   
  Primary data reduction RADAVER 
  Data processing PRIMUS/Qt 
  Ab initio analysis DAMMIF 
  Validation and averaging DAMAVER 
  Rigid-body modeling CORAL 
  Equilibrium analysis OLIGOMER 
  Computation of model intensities CRYSOL 
  3D graphics representations PyMOL, UCSF Chimera 

Appendix Table 5 SAXS Data collection and derived parameters for CD27L. 
Abbreviations: Mr: molecular mass; Rg: radius of gyration; Dmax: maximal particle dimension; Vp: 
Porod volume; Vex: Particle excluded volume. Table reproduced from the submitted article 
Appendix page 170. 
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Abstract 

The bacteriophage ΦCD27 is capable of lysing Clostridium difficile, a pathogenic 

bacterium that is a major cause for nosocomial infection. A recombinant CD27L endolysin 

lyses C. difficile in vitro, and represents a promising alternative as a bactericide. To better 

understand the lysis mechanism, we have determined the crystal structure of an 

autoproteolytic fragment of the CD27L endolysin. The structure covers the C-terminal 

domain of the endolysin, and represents a novel fold that is identified in a number of lysins 

that target Clostridia bacteria. The structure indicates endolysin cleavage occurs at the 

stem of the linker connecting the catalytic domain with the C-terminal domain. We also 

solved the crystal structure of a slow cleaving mutant of the CTP1L endolysin C-terminal 

domain. Two distinct dimerisation modes are observed in the crystal structures for both 

endolysins, despite a sequence identity of only 22 % between the domains. The dimers are 

validated to be present for the full-length protein in solution by right angle light scattering, 

small angle X-ray scattering and cross-linking experiments using the cross-linking amino 

acid p-benzoyl-L-phenylalanine (pBpa). Mutagenesis on residues contributing to the dimer 

interfaces indicates that there is a link between the dimerisation modes and the 

autocleavage mechanism. We show that for the CTP1L endolysin, there is a reduction in 

lysis efficiency that is proportional to the cleavage efficiency. We propose a model for 

endolysin triggering, where the extended dimer prevails in the cytosol, and a switch to the 

side-by-side dimer occurs when the endolysin passes through holin lesions into the exterior 

environment. This leads to the release of the catalytic portion of the endolysin, enabling 

the efficient digestion of the bacterial cell wall. 
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Author Summary 

Clostridium difficile infection is a common cause of hospital-acquired diarrhea, following 

broad-spectrum antibiotic treatment particularly in elderly patients. Bacteriophage therapy 

could provide an alternative treatment, but a better understanding of the viral components 

that lyse the bacterial cell is necessary. Here, we report on the activation of the endolysin 

from the bacteriophage ΦCD27 that is capable of lysing C. difficile. X-ray crystallography 

was used to determine the structure of an autoproteolytic fragment of the endolysin, and 

the molecular interactions in the crystal indicate the existence of several oligomeric states. 

Based on the structure, we introduced mutations that affect the autolytic cleavage of the 

enzymatic portion of the endolysin, and we show that the oligomeric state has an effect on 

the cleavage mechanism. To see whether this is a general mechanism for endolysins 

targeting Clostridia bacteria, we solved the crystal structure for another endolysin that 

targets C. tyrobutyricum, and show that a similar mechanism is at work. We propose that 

the cleavage and oligomerisation are linked, and they provide the endolysin with a trigger 

and release mechanism that leads to activation. The identification of a trigger and release 

factor may not only be relevant to Clostridia endolysins, but could be an important factor 

in the triggering of many bacteriophage endolysins. A fuller understanding of this 

activation mechanism will help in the design of recombinant endolysins or bacteriophages 

with a more efficient therapeutic potential. 
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Introduction 

The increasing emergence of antibiotic resistance has led to a renaissance in the use of 

bacteriophage therapy as an alternative to eradicate pathogenic bacteria [1]. These bacterial 

viruses are potentially effective bactericides, with the additional advantage that they only 

affect a small portion of the human microbiome, in contrast to the broad spectrum 

antibiotics in use [2,3]. Many antibiotics have an effect on a large portion of the 

microbiome, leading to a shift in bacterial populations after treatment. A striking example 

is the emergence of Clostridium difficile as a causative agent of antibiotic-associated 

diarrhea. C. difficile is resistant to many of the antibiotics used in hospitals, and it 

colonizes the gut after antibiotic treatment [4]. In search of an alternative treatment, a 

bacteriophage named ΦCD27 was isolated from a strain of C. difficile [5]. The genome of 

the ΦCD27 phage revealed the presence of a canonical holin/endolysin system. Endolysins 

are produced by many double stranded DNA bacteriophages to effect the release of new 

virions from an infected cell by degrading the bacterial cell wall [6]. The recombinant 

endolysin CD27L was shown to lyse C. difficile in vitro [5]. We have also shown that the 

N-terminal domain of CD27L consisting of a zinc dependent N-acetylmuramoyl-L-alanine 

amidase alone is effective in lysis, and that the host range of the endolysin can be affected 

by a mutation in the substrate binding pocket [7]. 

 

Bacteriophages co-evolve with their bacterial hosts, and the continuous adaptation of the 

phage may limit its lethality. Many bacteriophages isolated from the host environment are 

therefore not efficient in the rapid eradication of pathogenic hosts, as is the case with 

ΦCD27. The potential to engineer more potent bacteriophages requires knowledge of the 

most important components of the lysis machinery [8]. Cell lysis is tightly regulated by the 

phage which only triggers cell lysis once it has finished the production of new viral 

particles inside the cell [9]. The endolysin is sequestered in the cytoplasm until it can 

penetrate the peptidoglycan layer following the formation of lesions in the cell membrane 

that are created by holin, another phage encoded protein [10]. Endolysins typically consist 

of a peptidoglycan hydrolase domain and a C-terminal domain that is often termed as a cell 

wall binding domain. The efficient use of endolysins as bactericides is limited by a poor 

understanding in most systems of the mechanisms that relate catalytic activity to the role of 

the C-terminal domain [8]. Many recombinantly produced endolysins can lyse a population 

of bacteria efficiently only after the protein has been incubated or converted with cell wall 

material from the host [11,12]. For some endolysins, the catalytic domain expressed in 

isolation is more effective than the full-length protein [7,13] and for other endolysins, the 
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catalytic domain alone shows little or no lytic activity at all [12,14]. For a pinholin-

dependent phage, endolysin activation was shown to depend on disulphide isomerisation 

that triggers cleavage of the enzyme from the bacterial membrane [15]. For the highly 

efficient endolysin PlyC active against streptococcal species, it was found that two 

catalytic components are tethered in a non-covalent way to eight components of the cell 

wall binding domain [16]. However, for the classical endolysin/holin system, it is not clear 

how the endolysins are activated. Here, we present the crystal structures of autoproteolytic 

fragments of the CD27L and CTP1L endolysins, covering the C-terminal domain. 

Structure-based mutagenesis allowed us to manipulate autolytic cleavage, and we show 

that the rate of cleavage is proportional to lysis efficiency for the CTP1L endolysin.  

 

Results  

The C-terminal domain of CD27L adopts a novel protein fold 

When crystallization trials for full length CD27L endolysin were set up, crystals appeared 

overnight from freshly purified protein. Any delay in the purification or crystal tray setup 

would prevent crystallization, and the crystals dissolved after three weeks. An X-ray data 

set to 2.3 Ångstrom was collected from a fresh crystal, and it was realized that the crystal 

most likely contained the C-terminal portion of the endolysin, because molecular 

replacement with the previously determined crystal structure of the catalytic domain [7] 

was not successful. To determine the structure, the C-terminal portion of CD27L was also 

independently cloned, expressed and purified. This N-terminal deletion construct (ΔN-

CD27L) was crystallized, and the crystal structure was determined by single wavelength 

anomalous diffraction (SAD) using a mercury derivative (See Table I for details). The 

structure was used as a model to solve the structure of the full-length CD27L crystals by 

molecular replacement. It was found that the “full length” construct had been proteolyzed 

and the crystal contained six copies of the C-terminal portion of CD27L alone. The refined 

structure shows clear electron density for all six monomers of the C-terminal domain with 

a Matthews coefficient of 2.3, and there is no space in the crystal lattice for an additional 

N-terminal domain. 

The C-terminal portion of CD27L consists of a platform of four parallel beta strands, 

flanked by an alpha helix with two additional alpha helices mounted on top (Figure 1A,B). 

The N-terminus contains beta strand b1 at the center of the beta sheet, connected to alpha 

helix a1. This is followed by beta strand b2 at the outer side of the sheet that is connected 

through an extended loop including a single 310 helical turn (h1) to beta strand b3 at the 

center of the beta sheet. The a2 alpha helix connects beta strands b3 and b4 and the fold 
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ends with an alpha helix a3 at the C-terminus of the protein. A DALI search of the PDB for 

domains with a similar fold did not identify a structure with significant similarity [17]. A 

BLAST search was done with the sequence covering the proteolytic fragment to identify 

other proteins that may have a similar domain, and 14 unique sequences were found with 

an E value <0.01. All these proteins are lysins that target Clostridia species, and the 

sequence variation is too large to identify residues that define the fold (Figure 2A).  

 

Proteolytic processing of full length recombinant endolysin CD27L 

Expression of the full-length CD27L endolysin was hampered by severe and continuous 

proteolysis that could not be diminished by protease inhibitors. An SDS-PAGE gel of 

freshly purified material typically showed a protein band for the full length protein and a 

second band with a molecular weight that corresponds to the C-terminal domain (Figure 

3A, B). Proteolytic products isolated from an SDS-PAGE gel of CD27L were analyzed by 

mass spectrometry following tryptic digestion, and this confirmed that the fragments were 

the intact N-terminal catalytic domain and the C-terminal domain respectively. The 

proteolytic fragment covering the C-terminal domain was also observed in liquid 

chromatography coupled to an electrospray mass spectrometry system, and the N-terminal 

residue was identified as methionine M186. (Figure 3C). 

 

These observations are not unprecedented, and similar proteolytic processes can be 

uncovered from studies on other unrelated endolysins. For instance, crystallization of 

several endolysins was achieved only after a substantial incubation period [11,18], or the 

individual domains had to be cloned and crystallized separately due to the degradation of 

the full-length protein [13]. By investigating the structures of full-length endolysins that 

underwent these treatments (PDB codes 1XOV [18] and 2IXU [19]) we observed that the 

linker between the domains is always extended and exposed to the solvent. In addition, the 

catalytic domain and the C-terminal domain are expressed as separate components in PlyC, 

the most efficient endolysin isolated to date [16]. This raised the possibility that the 

autoproteolytic cleavage of the catalytic domain in CD27L has a functional role. 

 

Mutagenesis at the cleavage site prevents endolysin cleavage 

In an attempt to find the residues involved in the cleavage of the endolysin, we 

investigated the N-terminus of the proteolytic fragment of CD27L. The catalytic domain 

precedes the C-terminal domain, and when the two crystal structures are concatenated, 

there is a seven residue linker between the domains (Figure 1C). The autolytic fragment of 
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the C-terminal domain starts at the end of the linker at methionine M186, which is still 

integrated in the C-terminal domain. Among the six copies of the C-terminal domain, there 

are no consistent contacts between M186 and other residues within the C-terminal domain. 

The methionine side chain only forms a hydrogen bond with the main chain nitrogen of 

threonine T227 in two out of six molecules. 

 

Since there is no clear candidate among the adjacent residues to be involved in protein 

cleavage, we decided to mutate methionine M186 to a proline. The M186P mutant will 

strengthen the main chain at the cleavage point, and would alter the mechanics of the 

linker at the hinge close to the C-terminal domain. Indeed, the M186P mutant abolishes the 

cleavage of the endolysin as observed by SDS-PAGE (Figure 3A). In addition, we mutated 

the amino acid that precedes the methionine (glutamine Q185) to a proline. This residue 

forms part of the linker and is fully exposed to the solvent. In this case, endolysin cleavage 

was not affected. This indicates methionine M186 is critical in the cleavage process, and it 

forms an integral part of the C-terminal domain that is not accessible for external 

proteolytic cleavage. 

 

Structure of the C-terminal domain of the CTP1L endolysin mutant V195P 

Another previously characterized phage endolysin that targets Clostridia is CTP1L, which 

lyses C. tyrobutyricum [14]. This endolysin also contains a C-terminal domain that is 

approximately 80 residues long, but the sequence identity with the C-terminal domain of 

CD27L is low (22%). SDS-PAGE analysis confirmed that purified CTP1L wild type 

endolysin undergoes cleavage of the C-terminal domain (Figure 3D). We then transferred 

the critical mutation that affect CD27L cleavage, involving the stem of the linker of the C-

terminal domain of CTP1L (V195P). The SDS-PAGE analysis of purified recombinant 

CTP1L shows a reduction in cleavage for the V195P mutant (Figure 3D).  

 

We attempted to crystallize the CTP1L V195P mutant to see if this slowly cleaving mutant 

would yield crystals of the full length protein. After 2 weeks, crystals appeared, an X-ray 

data set was collected to 2.1 Ångstrom and the structure of the C-terminal domain was 

solved by molecular replacement using the C-terminal domain of CD27L as a search 

model. As with CD27L, there was no N-terminal domain present in the crystal lattice. The 

C-terminal domain is truncated at Pro195, and there is only one molecule present in the 

asymmetric unit. The fold of the C-terminal domain of CTP1L is very similar to that of 

CD27L, except that the second alpha helix a2 is deleted, and the alpha helix a3 is extended 
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in CTP1L (Figure 2B). A superimposition of the two domains based on secondary 

structure elements using Coot [20] gives an RMSD of 1.5 Å for 75 aligned residues, even 

though the domains have a low sequence identity (Figure 1D). A BLAST search for other 

proteins that align to the C-terminal domain of CTP1L reveal a separate set of amino acid 

sequences of lysins targeting Clostridia (Figure 2C). It is not possible to come up with 

conserved amino acids that define the fold. The only conserved residues are an aspartate on 

helix a1 (Asp 206 in CTP1L and Asp198 in CD27L), a threonine on helix a3 (Thr 262 in 

CTP1L and Thr 261 in CD27L), and an arginine (Arg 259 in CTP1L and Arg 258 in 

CD27L). The conserved aspartate/threonine form a hydrogen bond through a water 

molecule in both structures, connecting the outer alpha helices, but this is not sufficient to 

keep the fold together.  

 

Two dimerization modes suggestive of endolysin activation 

The proteolytic fragments of CD27L form a mixture of dimers within the crystal lattice. 

All six molecules are engaged in one common dimerization mode, where the alpha helices 

a1 and a3 from one molecule stack on their symmetry mate from a second molecule. The 

a1 and a3 helices run parallel and in the same direction, forming a platform with a concave 

surface (Figure 4A). The dimerization is such that the N-termini of both monomers are 

pointing away from the dimer interface, and we term this dimerization mode a ‘head-on’ 

dimer. The buried surface area is between 1200 and 1300 Å2 for the three head-on dimers 

found in the asymmetric unit, as determined by the PISA server [21]. The docking for the 

three head-on dimers observed in the crystal lattice is very similar, and superimposition of 

the Ca atoms with LSQKAB [22] using both protomers gave RMSDs of 0.71 Å and 0.84 Å 

respectively. There is a 2-fold symmetry axis running perpendicular to the parallel alpha 

helices, with a hydrophobic core at the center consisting of residues valine V204, leucine 

L261 and leucine L265. Further along the rim, there are additional aromatic residues 

(tryptophan W207, phenylalanine F258 and tyrosine Y262) whose symmetry mates are 

involved in dimerization. The strong hydrophobic component, combined with the stacking 

of aromatic rings indicates this is a stable dimerization mode. The head-on dimer is also 

present in the crystal lattice of the C-terminal domain of CTP1L. In fact, it is possible to 

superimpose the whole dimer unit based on secondary structure elements in Coot, with an 

RMSD for the Ca backbone of 2.1 A for 146 residues out of a total of 160 (Figure 4B). 

None of the residues in the head-on dimer face is conserved between CTP1L and CD27L. 

To test the significance of the head-on dimer, we performed mutagenesis on two of the 

aromatic residues involved in the dimer interface (W207A/W207R and Y262A). These 
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mutants had a surprising effect on the autolytic cleavage, since a decrease was observed in 

the cleavage product present on an SDS-PAGE gel (Figure 3B). This mutant is situated at 

the opposite site of the linker that connects the C-terminal domain to the catalytic domain. 

 

An alternative dimerization mode is found among the six C-terminal domains present in 

the crystal structure of the proteolytic fragment of CD27L endolysin, between two 

molecules that are each involved in separate head-on dimers as well (Figure 4C). The a2 

helices of the opposing monomers stack against each other and the buried surface area is 

1216 Å2, similar to the values found for the head-on dimer. The side chains of cysteine 

C238 of the symmetry mates face each other at the center of this dimer, with a sulphur-

sulphur distance of 3.4 Å (Figure 4D). This distance is too large to qualify for a covalent 

bond. The cysteine is in close proximity to methionine M251 (Figure 4D), with a sulphur-

sulphur distance of 3.7 Å (4.1 Å for the symmetry mate). Moreover, lysine K253 forms a 

hydrogen bond between the NZ atom and the sulphur with a distance of 2.8 Å (3.1 Å for 

the symmetry mate). Together, M251 and L253 seem to destabilize the formation of the 

disulphide bond. Although the closely related phage endolysins contain cysteine C238 

(Figure 2A), the surrounding residues seem to vary. 

 

To test the significance of this side-by-side dimer, we mutated cysteine C238 to an 

arginine (C238R), eliminating a potential disulphide bond and introducing opposing 

positive charges. This mutant had a similar effect on the autolytic cleavage as the head-on 

dimer mutant (W207A), showing a significant reduction in the production of the 

proteolytic product (Figure 3A). The cleavage site M186 is approximately 20 Ångstrom 

away from cysteine C238, indicating that disruption of both dimer interfaces have an effect 

on the autocleavage of the endolysin. 

 

There is a similar side-by-side dimer present in the crystal lattice of the CTP1L C-terminal 

fragment, but the domains point in opposite directions compared to the same dimer 

observed in CD27L. There is no cysteine present in the CTP1L side-by-side dimer 

interface, and the residue that is closest positioned is threonine T221 (Figure 2B). We 

mutated threonine T221 to a cysteine as well as an arginine, to see if we could emulate the 

effects observed for the C238R mutant in CD27L. We observed that both the T221C and 

the T221R mutant reduce autocleavage to almost undetectable levels, and that these 

mutants have a stronger effect than the V195P mutant (Figure 3D). This provides further 

support for the role of an oligomeric switch in the autocleavage of these endolysins. 
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Endolysin oligomerization in solution 

To determine the low resolution shape and the oligomeric state of CD27L endolysin in 

solution, small-angle X-ray scattering (SAXS) experiments were conducted using freshly 

purified material (Table 2). We used the crystal structures of the catalytic domain of 

CD27L (PDB code 3QAY) and the crystal structure of the C-terminal domain presented 

here to make a composite model of the full length CD27L endolysin using the structure of 

the intact PlyPSA amidase (PDB code 1XOV) to place the two domains. This model was 

employed to test the presence in solution of the two dimeric states of the C-terminal 

domain observed in the crystal structure. The molecular mass of the solute of wild type full 

length CD27L, estimated from the forward scattering intensity was 42±4 kDa, significantly 

lower than expected for a 64 kDa dimer and indicative of a possible equilibrium of the 

dimers with dissociation products. SAXS curves calculated from both the head-on and 

side-by-side dimers using CRYSOL [23] produced poor fits (discrepancy χ=1.8 and 4.0) to 

the experimental data from the wide type protein (Figure 5A). For the C238R mutant, 

however, the experimental data fit a scattering curve calculated from the head-on dimer 

configuration of the composite model (discrepancy χ=1.0) (Figure 5A). The side-by-side 

dimer is not compatible with the scattering curve for this mutant (χ=3.3). This is an 

indication that this mutation has driven the equilibrium of the oligomeric states towards the 

head-on dimer. The distance distribution function p(r) of the C238R mutant (Figure 5A, 

insert) displays two distinct peaks, the one at larger distance (about 70 Å) matching the 

distance between the centers of the catalytic domains in the head-on dimer. The p(r) 

function of the wild type lacks this feature and displays a smaller maximum size, again 

suggesting an equilibrium of dimers and dissociation products. 

 

Low resolution shape reconstruction from the SAXS data for the wild-type and C238R 

mutant yields compact and extended structures, respectively. These models represent an 

average of the conformations of all particles present in solution. The volumes of the 

models constructed from the wild-type (Vex = 94000 ± 10000 Å3) and C238R (Vex = 123000 

± 10000 Å3) data are consistent with that of a mixture and of a dimeric CD27 structure, 

respectively (Table 2). The extended shape reconstructed for the C238R mutant overlays 

well with the head-on dimer model, providing a good low resolution representation of the 

solution structure (Figure 5C).   
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We then performed gel exclusion chromatography coupled with right-angle light scattering 

and refractive index/UV measurements to assess the molecular weights of each endolysin 

species, comparing the separation profiles of the wild type with the C238R and M186P 

mutants. The elution profile of the wild type endolysin is rather complicated (Figure 6A). 

We interpret the peak with a molecular weight mass of 68±4 kDa as predominantly 

containing endolysin dimers (expected MW is 64 kDa), and the peak with a molecular 

weight mass of 33±7 as a CD27L monomer. In between, there is a peak at 43±2 kDa 

molecular weight that we interpret as a mixture of CBD-cleaved monomer in complex with 

full length protein (expected MW, 42 kDa). We conclude that the wild-type protein exists 

in different oligomeric states in solution that are affected by autoproteolytic cleavage. The 

C238R mutation produces an elution profile with a single peak corresponding to the MW 

of a dimer (61±3 kDa) (Figure 6B). The M186P mutant also appears to exist 

predominantly as a dimer (MW, 63±3 kDa Figure 6C), but it has a tendency to form 

aggregates. 

 

It is interesting to note that both mutations force the endolysin to adopt a dimeric state, 

even though only one mutation, M186P, is incorporated directly at the autoproteolytic 

cleavage site. The results of the size exclusion analysis suggest that both the integrity of 

the internal cleavage site combined with how endolysin self-associates are key factors that 

dictate the final auto-cleavage event. M186P abolishes cleavage, as indicated by the 

disappearance of the intermediate 43 kDa species as well as the monomer peak from the 

elution profile. Abolishing side-by-side dimer formation via the introduction of a C238R 

mutation produces a dimeric state that is less-prone to aggregation. In addition, 

autoproteolytic cleavage has ceased, and the sole presence of the head-on dimer leads to an 

elution profile with a single dimer peak. Consequently, auto-proteolytic cleavage appears 

to be a spatially controlled trans event that occurs between endolysin monomers but only 

when these monomers associate to adopt the appropriate dimeric – or oligomeric – state. 

  

To further investigate oligomerisation states and potential degradation of the CD27L 

samples in solution, the experimental data was analyzed in terms of possible mixtures 

using OLIGOMER [24]. The extended head-on and compact side-by-side dimer models 

and their individual domains were used to generate form-factor files for a fitting procedure, 

where volume fractions of each component present were determined that minimize the 

discrepancy between the theoretical scattering of the components and the experimental 

data (Table 3). The contribution from the potential degraded products including the lysed 
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side-by-side dimer with a missing catalytic domain, dimers of C-terminal domains and the 

individual domains were pooled together as an additional component. The C238R data is 

described exclusively by the extended head-on dimer component scattering. The head-on 

dimer is also the dominant component in solution for wild-type, but the other components 

show noticeable contributions providing the best description of the wild-type data. This 

result further explains the low apparent molecular mass determined from the wild-type 

SAXS data, and also why the individual structures show such poor fits to the wild-type 

data (Figure 5A).  

 

Specific cross-linking confirms existence of head-on dimer in the CTP1L endolysin 

To independently verify oligomerization of the CTP1L endolysin, we cloned the C-

terminal domain alone and expressed it in E. coli. We introduced an amber stop codon at 

position Y212 which sits an alpha helix a1 (Y212pBpa). We also introduced an amber stop 

codon at position Y260, which is situated on alpha helix a3 (Y260pBpa). Both alpha helix 

a1 and a3 are involved in head-on dimerization (Figure 2B and 4A, B). We then expressed 

both amber mutants in the presence of the cross-linkable amino acid p-benzoyl-L-

phenylalanine (pBpa) together with a pBpa specific tRNA and a tRNA synthetase that are 

capable of placing the pBpa at the position of the amber stop codon. In this way, a light 

sensitive cross-linker is introduced with a specific radius of interaction of approximately 

10 Ångstrom [25]. The incorporation of the unnatural amino acid was confirmed for both 

mutants by tryptic digest, followed by mass spectrometry. We show that upon exposure to 

UV light, both the Y212pBpa and the Y260pBpa mutants show an additional band on an 

SDS-PAGE gel at double the molecular weight of the C-terminal domain alone (Figure 

7A), whereas the unexposed and the wild-type protein do not show any cross-linked 

material. The band with elevated molecular weight was treated with trypsin and analyzed 

by mass spectrometry and it was confirmed that it contained the C-terminal domain of 

CTP1L. Since the pBpa cross-linking is quite specific, we conclude that the head-on dimer 

is also formed by the C-terminal domain of CTP1L in solution. Finally, we introduced an 

amber stop codon in the full length CTP1L endolysin replacing Y212, which was most 

efficient in cross-linking the C-terminal domain alone (Figure 7B). The full length CTP1L 

protein is cross-linked only upon exposure to UV light and forms a mixture of full length 

CTP1L dimers, dimers of the C-terminal domain alone as well as a species that based on 

the molecular weight consists of one full length CTP1L and a C-terminal domain fragment. 

All bands were analyzed by tryptic digest followed by peptide fingerprinting with mass 

spectrometry and this confirmed the bands contained the C-terminal domain of CTP1L. 
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The oligomerization states of the CTP1L fragments observed by cross-linking reinforce the 

interpretation of the size exclusion chromatography and light scattering experiments  done 

on the CD27L endolysin, showing that both the cleavage and the oligomerization occur in 

both endolysins. 

 

Inhibition of autoproteolytic cleavage inactivates the related endolysin CTP1L  

To verify whether the autoproteolytic cleavage affects the activity of the endolysins 

containing the C-terminal domain, we performed cell lysis on C. difficile cultures with 

recombinant CD27L wild type and mutants using turbidity reduction assays (Figure 7C, 

D). We observed no difference in lysis efficiency between the wild type protein and 

mutants which prevent/reduce cleavage either at the cleavage site (M186P) or by affecting 

the side-by side (C238R and C238S) or head-on dimers (W207A, W207R and Y262A). 

This establishes at the least that these mutants are enzymatically active, but it does not 

resolve whether autocleavage plays a role in endolysin function. Introduction of mutations 

at the catalytic site (H84A and E144A) did abolish lytic activity (Figure 7D) but did not 

affect cleavage (Figure 3A). It was previously established that CD27L applied externally to 

C difficile cells shows the same efficiency for full length protein as well as for a construct 

that contains the enzymatic domain alone [7]. Therefore, the lysis assay is insensitive to 

the trigger and release function of the C-terminal domain for CD27L. 

 

However, CTP1L is only active as an intact, full length protein, and the enzymatic domain 

alone does not lyse C. tyrobutyricum cultures [14]. Lysis of C. tyrobutyricum cultures by 

wild-type CTP1L is robust (Figure 7D), leading to a drop in optical density (OD) at 600 

nm. The mutants show a drop in lysis efficiency that is proportional to the reduction in 

autocleavage. The V195P mutant is still somewhat active, whereas the T221R and T221C 

mutants show no lysis at all. We verified that these mutants are similar in secondary 

structure to the wild-typeWe conclude that in the context of an externally applied 

recombinant endolysin, CTP1L depends on the autoproteolytic cleavage of its C-terminal 

domain to lyse C. tyrobutyricum. 

 

Discussion 

Bacteriophages release endolysins at the end of the phage life cycle to lyse the host 

bacterial cell following a well-timed trigger mechanism [9]. The molecular mechanisms 

underlying such a trigger are unknown, but it is thought that endolysins are activated after 

the formation of holin lesions in the bacterial cell membrane [10]. When the endolysins 
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pass from the cytosol to the extra-cellular environment, they will undergo a substantial 

change in environment and this may activate the endolysin. 

The crystal structure suggests that CD27L exists in two distinct dimeric states. We show 

indirectly that one of the dimeric states is associated with an autocleavage mechanism, 

because a mutation (C238R) in the side-by-side dimer interface reduces autocleavage. 

Endolysin dimerization has been shown for other bacteriophage species, and the 

dimerization seems to influence endolysin activity. The pneumococcal autolysin LytA does 

dimerize into a conformation resembling the side-by-side dimer presented here, and it was 

suggested that the dimer conformation may contribute to its activity [26]. The CPL-1 

phage endolysin that targets Streptococcus pneumoniae was engineered to stabilize the 

(what we call) side-by-side dimerization mode, and this led to a ten fold increase in its 

activity [27]. 

 

We propose that the head-on dimer is more prevalent in the cytosol, whereas the side-by-

side dimer is more prevalent in the reductive environment of the extra-cellular space 

(Figure 8). There is an equilibrium between the dimer states, and the transition between the 

states is facilitated by a tetrameric intermediate (as observed in the crystal structures of the 

C-terminal portion of CD27L, Figure 4E). The oligomeric switch can be described in terms 

of an Monod-Wyman-Changeux mechanism [28], with a ‘tensed’ state that represents the 

inactive endolysin and a ‘relaxed’ state that represents the active endolysin. We propose 

that the ‘tensed’ state is related to the head-on dimer, because autocleavage is reduced 

when this dimer is most prominent. The ‘relaxed’ state is the side-by-side dimer, which 

promotes autocleavage and the release of the catalytic domain from the C-terminal domain. 

 

Autocleavage increases the action radius of the catalytic module, and as previously 

suggested [29], the small globular size of this enzyme may allow it to further penetrate the 

bacterial cell wall which may act as a sieve. Bacteriophages have been shown to use a 

mechanism of autocleavage and oligomerization when entering the bacterial cell wall upon 

infection [30]. Some bacterial toxins are activated upon autocleavage [31,32]. We have not 

been able to identify residues that catalyze the cleavage of the catalytic domain, but we 

managed to switch the cleavage off with a point mutation (M186P) at the hinge of the 

linker. The presence of a methionine at this position for CD27L seems to be of 

significance, as can be seen from the sequence alignment between lysins with a similar 

domain (Figure 2A). According to the sequence alignment presented in Figure 2, all lysins 

that have a cysteine present at position 238, also have a methionine at the start of the 
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domain. It is interesting to note in this respect that a chimera between the catalytic domain 

of CS74L and the C-terminal domain of CD27L (CS74L1-177-CD27L180-270) also cleaves off 

its C-terminal domain [33]. The C-terminal domain could therefore be involved in 

autonomous self-cleavage, but this needs to be further investigated. 

 

At this stage, we can only speculate about the role of the side-by-side dimer in the 

autocleavage mechanism. We believe that this dimerization mode will affect the 

conformation of the linker that connects the two domains, possibly bringing two linkers 

within close proximity. The methionine may be involved in cis- (within the linker itself) or 

trans (in an exchange between the two linkers) autoproteolysis, such as is observed for 

other bacterial enzymes that undergo maturation [34]. This would represent a new form of 

protein splicing, involving two copies of the endolysin, rather than a single autonomous 

splicing unit such as is observed in inteins [35]. We are in the process of further 

investigating this splicing mechanism. 

 

We have shown that autocleavage is an intrinsic property of two endolysins targeting 

Clostridia, and we believe that this mechanism occurs in other endolysin systems as well. 

The most potent lysin identified to date (PlyC) consists of two components that are 

expressed independently [16]. Structural characterization revealed that one component 

provides dual catalytic activity, whereas the other component is an octomeric cell wall 

binding unit. The lack of a covalent link between the enzymatic portion and the cell wall 

binding domain is probably key for its increased potency. We therefore believe that the 

engineered clustering of endolysins through a controlled oligomerization of the C-terminal 

domains may lead to more efficient enzymes with high specificity. This opens new 

opportunities to produce recombinant phage or endolysins that can lyse specifically 

pathogenic bacteria without affecting the microbiome overall. 

 

Materials and Methods 

Protein expression, purification and crystallization  

The nucleotide sequence of the full-length endolysins CD27L and CTP1L mutant V195P, 

as well as the C-terminal domain CD27L180-270 were inserted in pET15b, containing an N-

terminal His tag and a thrombin cleavage site as described previously. Constructs were 

expressed in E. coli BL21(DE3) grown in Lysogeny broth (LB) media until an OD600 ~ 0.6 

was induced with 1 mM isopropyl-β-D-thio-galactopyranoside for overnight expression at 
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21°C. Protein expressing cells were harvested by centrifugation (5000 g, 30 min) and the 

supernatant discarded. Pelleted cells were lysed chemically in lysis buffer (50 mM Tris pH 

8.0, 300 mM NaCl, 1% Triton X-100, 10 mM Imidazole, 1 mg/ml Lysozyme, 25 U/ml 

Benzonase nuclease) for 30 min at 4°C. Lysed cell extract was centrifuged (27000 g, 40 

min) and supernatant containing His-tagged endolysin purified by nickel-nitrilotriacetic 

acid (Ni-NTA) purification (Qiagen). Protein was eluted in a final elution buffer of 50 mM 

Tris pH 8.0, 150 mM NaCl, 200 mM Imidazole. Proteins were purified for crystallization 

by size exclusion chromatography using an Aekta liquid chromatography system 

(Amersham Biosciences) and S75 10/300 GL (Tricorn) column (GE Healthcare) in 20 mM 

HEPES, pH 7.4. The protein was concentrated to 10 mg/mL as measured by UV 

absorption at 280 nm. Protein crystals for degraded CD27L, that ultimately only contained 

the C-terminal domain, were obtained from a mother liquor containing 10 – 20 % PEG 

4000 and 20 mM Tris pH 8.0. Crystals of the construct containing the C-terminal domain 

of CD27L and an N-terminal His tag were obtained from a mother liquor of 10 % PEG 

20K and 20 mM Tris pH 8.0. For the CTP1L V195P mutant, crystals were obtained from a 

mother liquor containing 20mM TRIS pH8.0 and 6 % PEG 8000. 

 

 

 

Crystal Structure determination of CD27L 

The C-terminal domain of CD27L was first solved by single-wavelength anomalous 

dispersion using a mercury derivative (Table I). Crystals of the CD27L C-terminal domain 

construct alone with an N-terminal His tag were soaked in a cryo-protecting solution 

containing 15 % PEG 20K, 100 mM Tris pH8, 10 % (v/v) glycerol and the derivative 1 

mM of Ethyl-mercury phosphate for a few minutes prior to freezing. A data set was 

collected on the X12 beamline at EMBL Hamburg, which is equipped with a MAR225 

CCD detector. The crystal diffracted to a  resolution of 3.5 Å, and the space group was P21. 

All the X-ray data were indexed, merged and scaled with DENZO and Scalepack [36]. The 

crystal contained eight copies of the C-terminal domain in the asymmetric unit, and 8 

mercury sites were identified with SHELXD [37]. Density modification was performed 

with PARROT, and an initial model was built with BUCCANEER [38]. This model was 

used in PHASER [39] to further improve the experimental phases and to find 5 additional 

mercury sites after several iterations.  

 



 186 

A native X-ray data set was collected on PROXIMA I at the Soleil Synchrotron (Gif-sur-

Yvette, France), using a Q315 CCD detector from ADSC. The crystal diffracted to 2.3 Å 

and belonged to space group P212121. The initial model was then used in molecular 

replacement using MOLREP [40] to identify the contents of the crystals grown from initial 

full length CD27L. It was determined that these crystals contained six copies of the C-

terminal domain in the asymmetric unit. The structure was refined with Refmac5 [41] to an 

R factor of  19.8 % (Rfree = 25.6 %). The stereochemistry of the model contained 98.2 % 

of the residues within the favored areas of the Ramachandran plot according to Molprobity 

[42], and no residues in the disallowed regions. 

 

Crystal Structure determination of the C-terminal domain of CTP1L mutant V195P 

A native X-ray data set was collected on the EMBL beamline P14 at the PETRA3 

synchrotron (Hamburg, Germany) using a MAR225 CCD detector. Although the crystal 

probably diffracted to at least 1.5 Ångstrom resolution, we were only able to collect usable 

data to a resolution of 2.1 Ångstrom due to a limited detector geometry. The crystal 

diffraction also suffered from ice rings, limiting the completeness of the data to 92 %. 

Nevertheless, it was straightforward to solve the structure of the C-terminal domain of 

CTP1L by molecular replacement with MOLREP [40] using the C-terminal domain of 

CD27L as a search model, since there is only one copy of the molecule in the asymmetric 

unit. The structure was refined with Refmac5 to an R factor of 17.2 % (Rfree = 26.4 %), 

and the electron density is of good quality. The stereochemistry of the refined model 

contained 98.8 % of the residues within the favored areas of the Ramachandran plot 

according to Molprobity [42], and no residues in the disallowed regions. 

 

Mutagenesis of CD27L and CTP1L mutants 

The mutants of CD27L and CTP1L were created by PCR site-directed mutagenesis 

following the Quikchange method (Stratagene). Plasmid pET15b-cd27l (Mayer 2008, 

2010) was used as template DNA. Complementary primer pairs for each mutation were 

used for whole plasmid mutagenesis PCR performed using Phusion polymerase (NEB). 

Complementary primers can be found in Supplementary Table S1. Template DNA was 

digested by DpnI (NEB) before transformation into competent E. coli DH5α (Invitrogen). 

Plasmid DNA was obtained by Miniprep (Qiagen) for sequence confirmation. Mutants 

were expressed and purified using the same method as wild-type CD27L.  

SDS-PAGE analysis  
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Samples of purified CD27L wild-type and mutants were mixed with reducing Laemmli 

buffer, heated for 5 minutes at 75 °C and subjected to 15% SDS polyacrylamide gel 

electrophoresis. For Coomassie Blue staining, the SDS-PAGE gel was incubated 

respectively in Coomassie Blue staining solution (0.125% Coomassie Blue, 45% ethanol, 

10% acetic acid), destaining solution (40% ethanol, 10% acetic acid) and drying solution 

(2% glycerol, 20% ethanol).  

 

Intact Protein Sample Analysis by LC-MS 

Protein samples (around 2 mg/mL) were acidified using 1% formic acid solution and 

transferred to vials prior to LC-MS analysis.  Desalting and protein separation were carried 

out using an Acquity UPLC system (Waters) fitted with a C4 column (2.1 mm x 15 cm, 5 

µm particle size).  The column was maintained at constant temperature (40 °C) throughout. 

The outlet of the column was coupled directly to a Q-Tof II mass spectrometer (Waters) 

using the standard ESI source in positive ion mode. 

Solvent A was water, 0.1 % formic acid and solvent B was acetonitrile, 0.1 % formic acid. 

The samples (between 1 and 20 µL) were loaded onto the column and desalted for 5 

minutes at a flow rate of 0.2 mL/min, 4% B.  The proteins were then eluted from the 

column with a constant flow of 0.2 mL/min.  During the elution step, the percentage of 

solvent B increased in a linear fashion from 5 % to 25 % in 1 minute, then increased to 80 

% in a further 11 minutes.  On the Q-Tof, a spray voltage of 3.5 kV was applied, with a 

cone voltage of 35 V and extraction cone at 10 V. A collision energy of 8 eV was used, 

with Argon in the collision cell.  The desolvation temperature was set at 320°C, with a 

source temperature of 120°C. Data were acquired in continuum mode, over a mass range 

500-3500 m/z with a scan time of 0.5 s and interscan delay of 0.1 s.  Data were externally 

calibrated against a reference standard of intact myoglobin, acquired immediately after 

sample data acquisition.  Spectra across the protein chromatographic peak(s) were summed 

and intact mass was calculated using the MaxEnt1 maximum entropy algorithm 

(Waters/Micromass) to give the zero charge deconvoluted molecular weight. 

SEC-RALS/RI/UV molecular weight determination. 

Molecular weight estimates of each CD27L variant (CD27L wild-type, CD27L C239R and 

CD27L M186P) were evaluated using size-exclusion chromatography in combination with 

right-angle light scattering (RALS), refractive index (RI) and UV (l280 nm) measurements  
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(Malvern Instruments Viscotek, RALS/RI/UV 305 TDA detector equipped with a 670 nm 

laser diode). All measurements were performed at room temperature. Samples were 

separately injected at their respective concentrations (75 mL at 6.37, 7.15 and 6.17 mg.mL-

1) onto a GE-Healthcare Tricorn S75 10/300 GL column equilibrated in 20 mM HEPES 

pH7.4, 500 mM NaCl  at a flow rate of 0.4 mL.min-1. The molecular weight (MW) of each 

species eluting from the SEC column were assessed using concentration (c) measurements 

derived from base-line corrected RI or UV measurements in combination with base-line 

corrected RALS intensities calibrated against a bovine serum albumin narrow (monomeric) 

standard (RALS = c(dn/dc)2.MW.kRALS; RI = c(dn/dc)kRI and; UV = cekUV, where dn/dc is 

the refractive index increment of unmodified protein, 0.185 mL.g-1, kRI, kUV and kRALS are 

the TDA instrument calibration constants relative to a BSA and e the l280 nm E0.1% 

extinction coefficient of each protein in mg.mL-1). The MW correlations across the selected 

range of each CD27L elution peak and the final MW estimates quoted in the text were 

calculated using OmniSEC Software (Malvern Instruments). The molecular weight ranges, 

frequencies, modes and averages for each CD27L variant are summarised in Table S2 and 

Figure S1.  

 

SAXS data collection and shape determination 

Synchrotron radiation X-ray scattering data were collected on the EMBL X33 and P12 

beamlines of the storage rings DORIS III and PETRA III (DESY, Hamburg), respectively, 

using PILATUS 1M and 2M pixel detectors (DECTRIS, Switzerland). For the wild-type 

CD27L data were acquired at X33, with 8 frames of 15 s exposure time collected. Samples 

were measured in a temperature controlled cell at 10°C in 20 mM HEPES buffer, 150 mM 

NaCl pH 7.4 at protein concentrations of 0.9 – 4.0 mg/mL. The sample-to-detector distance 

was 2.7 m, covering a range of momentum transfer 0.01 ≤ s ≥ 0.6 Å-1 (s = 4π sinθ /λ, 

where 2θ is the scattering angle, and λ = 1.54 Å is the X-ray wavelength). For the C238R 

mutant data were acquired at P12, with 20 frames of 0.05 s exposure time collected.  

Solutions were measured while flowing through a temperature-controlled capillary at 10°C 

in 20 mM Tris buffer, 500 mM NaCl pH 7.4 at protein concentrations of 1.0 – 8.5 mg/mL. 

The sample-to-detector distance was 3.1 m, covering a range of momentum transfer 0.008 

≤ s ≥ 0.458 Å-1 (s = 4π sinθ /λ , where 2θ is the scattering angle, and λ = 1.24 Å is the X-

ray wavelength). Based on comparison of successive frames, no detectable radiation 

damage was observed. Data from the detector were normalised to the transmitted beam 

intensity, averaged and the scattering of buffer solutions subtracted. The difference curves 

were scaled for solute concentration and the 1.0 mg/mL (low-s) and 8.4 mg/mL (high-s) 



 189 

data sets merged for modeling. All data manipulations were performed using PRIMUS 

[43]. 

 

The forward scattering I(0) and radius of gyration, Rg were determined from Guinier 

analysis [44], assuming that at very small angles (s ≤ 1.3/Rg ) the intensity is represented 

as I(s)=I(0)exp(-(sRg)2/3)). These parameters were also estimated from the full scattering 

curves using the indirect Fourier transform method implemented in the program GNOM 

[45], along with the distance distribution function p(r) and the maximum particle 

dimension Dmax. Molecular masses (MMs) of solutes were estimated from SAXS data by 

comparing the extrapolated forward scattering with that of a reference solution of bovine 

serum albumin, and also from the hydrated-particle/Porod volume Vp, where molecular 

mass is estimated as 0.625 times Vp. 

 

Ab initio Shape Determination and Molecular Modelling 

Low-resolution shape envelopes for all constructs were determined using the ab initio 

bead-modelling program DAMMIF [46], using both P1 and P2 symmetry. The results of 

10 independent DAMMIF runs were analyzed using the program DAMAVER [47] to 

identify the most representative/typical models. Modeling using P2 symmetry was only 

attempted following the identification of excluded solvent volumes, Vex in models 

generated in P1 (slow mode) consistent with that expected for dimers (see Table 2).  

 

Molecular modelling was conducted using, as rigid bodies and where appropriate, the 

crystal structures of the catalytic and the C-terminal domains of CD27L determined in this 

study. Rigid-body models were generated using the program CORAL [24] and 10 

independent runs assessed for convergence with DAMAVER. Additional fitting of PDB 

files to the SAXS data was conducted using CRYSOL [23].  

 

Oligomeric equilibrium analysis 

Using the program OLIGOMER [24], the SAXS data for both wild-type CD27L and the 

C238R mutant was used to model potential multicomponent mixtures of species in 

solution. Form factors of input PDB files were calculated using the program FFMAKER  

[24]. Form factors were also calculated for individual domains and substructures of the 

intact PDB files to represent products of autolysis and averaged. This averaging was 

performed as the identity of the exact solution composition of these lysis products could 

not be established. Volume fractions corresponding to each component (eg. extended 
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dimer, compact dimer and “degraded components”) were determined by OLIGOMER 

utilising a non-negative least squares procedure.   

 

Subcloning and expression of p-benzoyl-L-phenylalanine incorporated into CTP1L 

Following the principal method outlined by Farrell et al. [48], the photo-activated amino 

acid p-benzoyl-L-phenylalanine (pBPA) (BACHEM) was incorporated into the full-length 

CTP1L endolysin and the truncated C-terminal domain of CTP1L. CTP1L was amplified 

from ctp1l-pET15b and inserted into the pET21d vector to create pET21d. The amber 

codon (TAG) was incorporated at position Y212 or Y260 following the Quikchange 

method of PCR site-directed mutagenesis to generate Y260TAG-pET21d and Y212TAG-

pET21d. Sub-cloning into pET21d introduced a C-terminal hexa histidine-tag to the 

construct, which permits selective Ni-NTA purification of full-length proteins that have 

only incorporated pBPA. C-terminal constructs Y260TAG and Y212TAG were generated 

by amplifying the C-terminal domains of Y212TAG-pET21d and Y260TAG-pET21d 

between positions V195 and K274, and the PCR products were inserted back into the 

pET21d vector to create C-termY260TAG-pET21d and C-termY212TAG-pET21d.  As a 

control, the wild-type C-terminal domain was sub cloned into pET21d with no amber stop 

codon incorporated. E.coli BL21(AI) cells were transformed with pEVOL-pBPA 

(aminoacyl-tRNA synthetase/suppressor tRNA) and one of the plasmids encoding an 

amber codon containing construct: Y212TAG-pET21d, C-termY212TAG-pET21d or C-

termY260TAG-pET21d. Cells were grown in 500 ml Lysogeny broth (LB) media 

supplemented with 1 mM pBPA in the presence of ampicillin and chloramphenicol.  When 

an OD600 of 0.6 had been reached the cultures were induced with Arabinose (final 

concentration 0.02%) and expressed at 21°C overnight. Cells were harvested by 

centrifugation (5000 g, 30 min) and the supernatant discarded.  

 

Photo-cross-linking full length CTP1L and the C-terminal domain of CTP1L 

Y212pBPA was Ni-NTA purified as described above and dialyzed into 25mM TRIS, pH 

7.4.  The protein was concentrated to 0.5 mg.ml-1, as measured by UV absorption at 280 

nm. A 1 ml aliquot of Y212pBPA was pipetted into a single well of a 24-well clear 

polystyrene plate, typically used for protein crystallography. The lid was kept on to prevent 

sample evaporation, and placed inside an RPR-100 UV reactor equipped with 350-nm 

bulbs (Rayonet). The reactor was kept at 4 °C with the cooling fan on. Proteins were 

exposed to UV light for 30-minute intervals during which the solutions were stirred by 

gentle pipetting and samples taken for each time point for SDS-PAGE analysis. As a 
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control, samples were also taken every 30 minutes from a parallel sample of Y212pBPA 

that was kept at 4°C in the dark with no UV exposure. Cross-linking was analyzed by 

SDS-PAGE by comparison of the pre-UV and post-UV exposed samples. The same photo-

cross-linking experiment was performed for the C-terminal domain constructs. Ni-NTA 

purified C-termY212pBPA, C-termY260pBPA and wild-type were dialyzed into 25mM 

TRIS, pH 7.4 and concentrated to 2 mg.ml-1 as measured by UV absorption at 280 nm. 

Following the same protocol as described above for the full-length Y212pBPA, 500 µl 

aliquots of each protein were pipetted into separate wells of a 24 well clear polystyrene 

plate and exposed to UV light for 120 minutes with stirring of the samples at 30 minute 

intervals. As a control SDS-PAGE samples were taken from parallel aliquots of each 

protein kept at 4°C in the dark with no UV exposure.  

 

Turbidity reduction assays 

Lysis assays were performed on fresh cells of C. difficile NCTC 11204 and C. 

tyrobutyricum NCIMB 9582. Cells were cultured, harvested and resuspended in PBS pH 

7.3 as described previously [5, 14]. Lysis assays were performed on freshly harvested cells 

in 300 µl volumes with 10 µg Ni-NTA-purified protein or elution buffer. Results are the 

mean of duplicate assays +/- standard deviation.  
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Figure 1: Overall structures of the proteolytic fragments of the CD27L and  CTP1L 
endolysins reveal a novel fold for the C-terminal domain. A. Ribbon diagram of the C-terminal 
domain of endolysin CD27L. The beta sheet at the core of the domain is colored in gold and the 
secondary structure elements have been labeled. B. View of the C-terminal domain at a 90 degree 
angle from the view presented in A. C. Linear map of the domain organization of CD27L, with the 
enzymatic portion (Amidase) in red, the linker in yellow and the C-terminal domain in green. D. 
Superposition of the ribbon diagrams of the C-terminal domains of  (gray) and CD27L (green). 
Molecular graphics were produced with Pymol (The PyMOL Molecular Graphics System, Version 
1.5.0.4 Schrödinger, LLC.). 
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Figure 2: Sequence alignment of the C-terminal domains of CD27L and CTP1L showing this 
fold is prevalent among lysins that target Clostridia. A. Sequence alignment of the C-terminal 
domain of CD27L and other sequences with a significant BLAST score (E < 0.01) produced with 
ESPRIPT [49]. Conserved residues are colored red. The secondary structure of the C-terminal 
domain of CD27L is depicted with arrows for beta strands and curls for alpha helices. Hydrophobic 
residues that contribute to the head-on dimer interface are colored blue, and the cysteine residue 
involved in the side-by-side dimer formation is colored green. B. Structure-based sequence 
alignment of the C-terminal domain of CD27L with the C-terminal domain of CTP1L. Residues 
where the cross-linking amino acid pBpa is inserted are marked by a blitz, and the area involved in 
the side-by-side dimer is marked SD. C. Sequence alignment of the C-terminal domain of CTP1L 
with other sequences that give a significant BLAST score. 
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Figure 3: The cleavage of the CD27L and CTP1L endolysins occur at a specific site and is 
affected by mutagenesis. A, B. SDS-PAGE gel of equal amounts of purified samples of CD27L 
wild-type and mutants, showing the full length (FL) protein and the 10 kDa band that corresponds 
to the C-terminal domain (CTR). C. LC-MS spectrum of the eluted fraction corresponding to C-
terminal domain of CD27L, showing that the proteolysis occurs at M186. D. SDS-PAGE gel of 
equal amounts of purified wild-type and mutants. The mutants D92A and D92A_E94A that 
neutralize the catalytic residues of the catalytic domain do not affect autocleavage, whereas V195P, 
T221C and T221R inhibit autocleavage. 
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Figure 4: Overview of the oligomerization modes observed in the crystal structure of the 
proteolytic fragment of endolysin CD27L. A. Ribbon diagram of the head-on dimer 
configuration with one monomer coloured green and the other blue. B. The head-on dimer 
configuration rotated 90 degrees along the horizontal axis, with the head-on dimer of CTP1L 
superimposed in gray. C. Ribbon diagram of the side-by-side dimer, with one monomer in green 
and the other in pink. The side chain of cysteine C238 is shown as ball and stick for both 
monomers. D. Close-up of the side-by-side dimer interface, showing the interactions between 
cysteine C238 and symmetry mates of lysine K251 and methionine M253 shown in sticks. E. 
Tetrameric assembly observed in the crystal structure, with the side-by-side dimer in the center, 
where the N-terminus points in the same direction for both monomers, and two head-on dimers at 
the periphery. 
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Figure 5: Determination of the dimer configuration of wild-type CD27L and mutant C238R 
in solution by SAXS. A. Overlay of the experimental scattering curves for wild-type CD27L (blue 
circles) and the C238R mutant (green circles) with the calculated scattering curves from a head-on-
dimer/extended configuration (solid black line) and a side-by-side/compact dimer configuration 
(broken black line), built as a composite model from the crystal structures of the catalytic domain 
of CD27L (PDB code 3QAY) and the structure of the C-terminal domain presented in the paper, 
using the full length endolysin with a very similar catalytic domain PlyPSA amidase  (PDB code 
1XOV) to compose the full length structure. Missing regions of the structure (n-terminal histidine 
tag and interdomain linker residues) were refined against the SAXS data, keeping the domains 
fixed using the program CORAL. Also shown is the fit of the equilibrium model determined from 
OLIGOMER (solid red line) to the wild-type data. The inset shows the corresponding real-space 
distance-distribution functions p(r) determined by indirect Fourier transformation. B. Cartoon 
representations of the head-on dimer (left) and side-by-side dimer (right) configurations of CD27L 
C. Overlay of the reconstituted domains of CD27L C238R refined by rigid body modeling 
(cartoon) with the best and average SAXS bead models in surface and mesh presentation, 
respectively. At the center of the dimer sit two C-terminal domains in a head-on configuration. The 
catalytic domains are at the exterior, and the N-terminal His tag and inter-domain linker are shown 
as grey spheres. Models rotated by 90° are shown below each corresponding reference structure. 
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Figure 6: Oligomerization of CD27L in solution for wild-type and the M186P and C238R 
mutants. A. Size exclusion chromatography elution profile of the UV trace at 280 nm combined 
with static light scattering of the wild-type CD27L.  There are three peaks that correspond to the 
dimer (68±4 kDa), a mixture of monomer and cleaved C-terminal domain (43±2 kDa), and the 
monomer (33±7 kDa). B. Elution profile of the CD27L C238R mutant, showing a single peak with 
a dimeric species (62 kDa). C. Superposition of the elution profiles of the wild-type and the C238R 
and M186P mutants, showing the relative peak heights at equivalent amounts of sample loaded, 
with increased aggregation for the M186P mutant. 
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Figure 7: Cross-linking of  oligomers and lysis activity of endolysins CD27L and CTP1L. A. 
SDS-PAGE of the C-terminal domain of CTP1L with or without the light sensitive cross-linker 
pBpa incorporated. B. SDS-PAGE of the full-length  endolysin with the Y212pBpa cross-linker 
mutant, showing the presence of 1) a full-length dimer, 2) a C-terminal domain dimer and 3) an 
oligomer consisting of one C-terminal domain and a full-length CTP1L endolysin molecule. C. 
Lysis assays of 10 mg of recombinant CD27L applied to a culture of C. difficile showing that the 
autocleavage mutants do not affect lysis in vitro D. Lysis assays on CD27L showing that amidase 
active site mutants are not active. E. Lysis assays of CTP1L on C. tyrobutyricum cells showing the 
effect of mutants that reduce autocleavage (V195P, T221C and T221R).  
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Figure 8: Schematic representation of the proposed trigger and release mechanism of 
endolysin CD27L. The endolysin is sequestered in the cytoplasm in a ‘tensed’ inactive state that 
corresponds to the head-on dimer, until holin lesions are formed. The endolysin can pass through 
the lesions to the extra-cellular space, where it will convert to a side-by-side dimer mode through a 
tetrameric intermediate. This triggers the release of the enzymatic domains, which may be further 
accelerated when the c-terminal domain binds to a ligand on the peptidoglycan layer. The release 
of the enzymatic domain expedites the digestion of the bacterial cell wall. 
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Table I  Data collection and refinement statistics  
 CD27L 

Proteolytic 
fragment 

 CTP1L V195P 
mutant 

(proteolytic 
fragment)# 

ΔN-CD27L 
 Hg derivative 

Data collection    
Space group P212121 I222 P21 
Cell dimensions      
    a, b, c (Å) 75.3, 82.1, 83.8 44.9, 48.8,    

77.2 
63.1, 84.7, 65.3 

    a, b, g  (°)  90.0, 90.0, 90.0 90.0, 90.0, 90.0 90.0, 92.0, 90.0 
Wavelength (Å) 0.970 1.223 0.998 

Resolution (Å) 20 – 2.24  
(2.37-2.24) 

20 – 2.10 (2.17 
– 2.10) 

20 – 3.5 
 (3.66 – 3.50) 

Rsym or Rmerge 12.8 (59.8) 2.5 (4.4) 23.8 (55.8) 
I / sI 7.0 (2.0) 48.9 (29.0) 4.7 (2.6) 
Completeness (%) 97.9 (93.8) 92 (55.5) 99.9 (99.9) 
Redundancy 2.7 (2.6) 5.7 (4.4) 4.8 (4.8) 
    
Refinement    
Resolution (Å) 30 – 2.24 20 – 2.10  
No. reflections 24189 4489  
Rwork / Rfree 20.2/24.6 17.2 (26.4)  
No. atoms    
    Protein 3978 645  
    Ligand/ion n/a n/a  
    Water 495 90  
B-factors    
    Protein 45 22  
    Ligand/ion n/a n/a  
    Water 57 32  
R.m.s. deviations    
    Bond lengths (Å) 0.01 0.01  
    Bond angles (°) 1.3   
. *Values in parentheses are for highest-resolution shell. 
# The data collection was affected by ice rings and a limited detector geometry 
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Table 2 SAXS Data collection and derived parameters for CD27L. Abbreviations: Mr: molecular 
mass; Rg: radius of gyration; Dmax: maximal particle dimension; Vp: Porod volume; Vex: Particle excluded 
volume. 
 CD27L (wild-type) CD27L (C238R) 
Data collection parameters   
  Instrument EMBL X33 beam line (DORIS-III, 

DESY, Hamburg) 
EMBL P12 beam line (PETRA-III, 

DESY, Hamburg) 
  Beam geometry 2.0 x 0.6 mm2 0.2 x 0.12 mm2 
  Wavelength (Å) 1.54 1.24 
  s range (Å-1)a 0.01-0.6 0.01-0.46 
  Exposure time (s) 8 x 15 1 (20 x 0.05 s) 
  Concentration range (mg/mL) 0.9-4.0 1.0-8.5 
  Temperature (K) 283 283 
Structural parametersb   
  I(0) (relative) [from p(r)] 44 ± 2 3653 ± 14 
  Rg (Å) [from p(r)] 33 ± 1 43 ± 2 
  I(0) (cm-1) (from Guinier) 45.6 ± 0.5 3664 ± 14 
  Rg (Å) (from Guinier) 33 ± 1 42 ± 1 
  Dmax (Å) 106 147 
  Porod volume estimate (Å3) 72151 ± 10000 91690 ± 10000 
  Excluded volume estimate (Å3) 94000 ± 10000 123000 ± 10000 
  Dry volume calculated from 
sequence (Å3)  

39121/78219 (mon/dim) 

Molecular-mass determination   
  I(0) (cm-1) BSA (66,000 Da) 71.4 ± 0.4 3791 ± 10 
  Molecular mass Mr  (Da) [from 
I(0)] 

42150 ± 5000 63780 ± 5000 

  Molecular mass Mr  (Da) [from 
Porod volume (Vp/1.6)] 

45094 ± 5000 57306 ± 5000 

  Molecular mass Mr  (Da) [from 
excluded volume (Vex/2)] 

47000 ± 5000 61500 ± 5000 

  Calculated monomeric Mr  
from sequence 

~32335 

Software employed   
  Primary data reduction RADAVER 
  Data processing PRIMUS/Qt 
  Ab initio analysis DAMMIF 
  Validation and averaging DAMAVER 
  Rigid-body modeling CORAL 
  Equilibrium analysis OLIGOMER 
  Computation of model 
intensities 

CRYSOL 

  3D graphics representations PyMOL, UCSF Chimera 
. aMomentum transfer |s| = 4πsin(θ)/λ. bValues reported for merged data sets (wild-type: 0.9 & 4.0 mg.mL-1, 
C238R: 1 & 8.4 mg.mL-1) 
 
Table 3 Equilibrium analysis of the SAXS data using the program OLIGOMER. 
Samplea Volume Fractions Fit, χ 

 Extended Dimer Compact Dimer Degradation Products  

CD27L 0.41 ± 0.02 0.24 ± 0.02 0.35 ± 0.02 1.5 
C238R 0.98 ± 0.01 0.02 ± 0.01 0.0 1.1 

aValues reported for merged data sets (wild-type: 0.9 & 4.0 mg.mL-1, C238R: 1 & 8.4 mg.mL-1) 
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Supplementary Figure S1: UV/RI/RALS size exclusion chromatography traces and MW 
correlation estimates for wild-type endolysin. Both the dimeric and monomer + CBD states of 
the protein have reasonably narrow molecular weight distributions through their respective elution 
profiles. The experimentally determined MW of these two species are close to that expected based 
on primary amino acid sequence. However, it must be noted that aggregates (that elute between 8-
10 ml) or a species of a preceding peak that ‘bleed into’ a peak of interest will impact the 
intensities of the RALS data (green trace) and thus the minimum and maximum molecular weight 
estimates throughout the molecular weight correlations. The molecular weight distribution of the 
peak corresponding to the monomer is broader, likely caused by the resolution limitations of the 
SEC column. Although on average the last peak corresponds to the MW of a monomeric form, it is 
not possible to discount the possibility that this peak also contains CBD, and delta-CBD fragments. 
The numbers in brackets in the table refer to +/- 1 sd from the mean molecular weight. The mode 
(Frequency) refers to the most commonly occurring molecular weight range encountered 
throughout the molecular weight correlation.  
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Supplementary Figure S2: Circular dichroism measurements on CD27L/CTP1L wild-type 
and mutant proteins to show integrity of secondary structure: The mean residue molar 
ellipticity measure by CD is shown for (A) CD27L wild-type and the mutants that prevent 
autoproteolytic cleavage (M186P, W207A and C238R), and (B) CTP1L wild-type and the mutants 
that prevent autoproteolytic cleavage (V195P, T221C and T221R). 
 
 
Supplementary Methods: CD spectropolarimetry measurements on CD27L and CTP1L 
endolysins and mutants: Proteins were purified by Ni-NTA affinity purification as described 
above and further purified by size exclusion chromatography using an Aekta liquid 
chromatography system (Amersham Biosciences) and S75 10/300 GL (Tricorn) column (GE 
Healthcare). Size exclusion buffer for CD27L and CTP1L mutants was 20 mM HEPES, pH 7.4 
with 500 mM NaCl and for CTP1L and mutants 20 mM HEPES, pH 7.4. Size excluded protein was 
collected and dialyzed against 20 mM HEPES pH 7.4. Protein concentration was measured by UV 
absorption at 280 nm. Spectra were recorded at 20°C on a Chirascan CD Spectrometer (Applied 
Photophysics), between 200 and 260 nm in a 0.1 cm cuvette. Machine settings were as follows: 1 
nm bandwidth, 0.5-sec response, and 0.5-nm data pitch. Spectra were background-subtracted and 
converted into mean residue ellipticity. Each curve represents the mean of three separate 
measurements.   
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