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Abstract 

i 

 

Helicobacter pylori is a gastric pathogen which infects ~50% of the global 

population and can lead to the development of gastritis, gastric and duodenal ulcers 

and carcinoma. Genome sequencing of H. pylori revealed high levels of genetic 

variability; this pathogen is known for its adaptability due to mechanisms including 

phase variation, recombination and horizontal gene transfer. Motility is essential for 

efficient colonisation by H. pylori. The flagellum is a complex nanomachine which 

has been studied in detail in E. coli and Salmonella. In H. pylori, key differences 

have been identified in the regulation of flagellum biogenesis, warranting further 

investigation. 

In this study, the genomes of two H. pylori strains (CCUG 17874 and P79) were 

sequenced and published as draft genome sequences. Comparative studies identified 

the potential role of restriction modification systems and the comB locus in 

transformation efficiency differences between these strains. Core genome analysis of 

43 H. pylori strains including 17874 and P79 defined a more refined core genome for 

the species than previously published. Comparative analysis of the genome 

sequences of strains isolated from individuals suffering from H. pylori-related 

diseases resulted in the identification of “disease-specific” genes. 

Structure-function analysis of the essential motility protein HP0958 was 

performed to elucidate its role during flagellum assembly in H. pylori. The 

previously reported HP0958-FliH interaction could not be substantiated in this study 

and appears to be a false positive. Site-directed mutagenesis confirmed that the 

coiled-coil domain of HP0958 is involved in the interaction with RpoN (74-284), 

while the Zn-finger domain is required for direct interaction with the full length flaA 

mRNA transcript. Complementation of a non-motile hp0958-null derivative strain of 

P79 with site-directed mutant alleles of hp0958 resulted in cells producing flagellar-

type extrusions from non-polar positions. Thus, HP0958 may have a novel function 

in spatial localisation of flagella in H. pylori. 
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1 Helicobacter pylori 

 1.1 Discovery of H. pylori 

Helicobacter pylori is a Gram negative micro-aerophilic member of the ε-

proteobacteria, order Campylobacterales, family Helicobacteriaceae (Goodwin et 

al., 1989). The spiral cells of this organism have been observed in samples from 

animals and humans since the late 19
th

 century but were not isolated until relatively 

recently due to their fastidious growth requirements (Marshall and Warren, 1984; 

Warren and Marshall, 1983). H. pylori is a human gastric pathogen, isolated by 

Marshall and Warren in 1982 (Marshall and Warren, 1984), which colonises the 

mucosal lining of the stomach. It is motile because of multiple polar sheathed 

flagella, which are vital for colonisation and persistence in the host (Eaton et al., 

1992; Yoshiyama and Nakazawa, 2000). 

H. pylori was first identified as a member of the Campylobacter genus, originally 

named Campylobacter pyloridis (Goodwin et al., 1986). However, when differences 

in 5S and 16S rRNA, cellular fatty acid composition and ultrastructure were 

identified, it was reclassified under the new genus, Helicobacter (Goodwin et al., 

1989). In 2002, Fox reported 24 named Helicobacter members (Fox, 2002) and today 

there are over 200 members of the genus listed (NCBI, 2013), with new species 

being isolated regularly, e.g. H. macacae (Fox et al., 2007) and new H. pylori strains 

(Blanchard et al., 2013). Helicobacter pylori was the first species to have the genome 

of more than one strain sequenced, with that of H. pylori 26695 completed in 1997 

(Tomb et al., 1997) followed by J99, facilitating comparative analyses (Alm and 

Trust, 1999). 

The genus can be sub-divided into gastric and enterohepatic Helicobacter species. 

The former primarily occupy the antrum of the stomach, e.g. H. heilmannii and 

H. felis, while the latter occupy the intestinal crypts of their host, e.g. H. pullorum 

and H. cinaedi (Fox, 2002; Rossi and Hänninen, 2012; Smet et al., 2011). 

Helicobacter species have been isolated from 142 vertebrate host species where they 

are associated with a wide range of disease types (Table 1) (Smet et al., 2011). 

Animal models used to study H. pylori include mouse, gnotobiotic piglet, 

Mongolian gerbil and guinea pig (Kusters et al., 2006). Recently, the teleost fish 

Danio rerio (zebrafish) has been successfully used as a model organism for 



Chapter 1 

~ 3 ~ 

investigation of the H. pylori CagA virulence factor (Neal et al., 2013). A novel ex-

vivo three-dimensional system, termed an “organoid”, has been developed from 

gastric stem cells, an exciting alternative to conventional 2-dimensional mammalian 

tissue culture systems (Wroblewski et al., 2013). 



 

 

Table 1 Features of H. pylori species 

Species Mammalian hosts Pathology or clinical presentation Reference 

H. pylori Human, primate Gastritis, peptic ulcer disease, gastric 

adenocarcinoma, MALT lymphoma 

(Blaser, 1990; Dorer et al., 2009; Nagini, 

2012) 

H. felis Cat, dog, mouse, human Gastritis in natural host; may cause peptic ulcers 

or gastric adenocarcinoma in mouse 

(Fox et al., 2002; Haesebrouck et al., 2009; 

Lee et al., 1988; Trebesius et al., 2001) 

H. mustelae Ferret Gastritis, peptic ulcer disease, gastric 

adenocarcinoma, MALT lymphoma 

(Fox, 2002, 1994; Fox et al., 1997) 

H. acinonychis Cheetah, tiger Gastritis, peptic ulcer disease (Cattoli et al., 2000; Eaton et al., 1993) 

H. heilmannii Human, dog, cat, monkey, 

cheetah, rat 

Gastritis, dyspeptic symptoms, MALT 

lymphoma 

(Andersen et al., 1999; Stolte et al., 997; 

Trebesius et al., 2001) 

H. hepaticus Mouse, other rodents Proliferative typhlocolitis, hepatitis, 

hepatocellular carcinoma 

(Fox et al., 1994; Ward et al., 1994) 

H. anseris Goose  (Fox et al., 2006) 

H. suis Pig, human Gastritis, dyspepsia (De Groote et al., 1999; Joosten et al., 2013) 

H. bilis Mouse, human Bacteremia, cellulitis (Fox et al., 1995; Turvey et al., 2012) 

H. cinaedi Human, monkey Bacteremia, cellulitis (Fox et al., 2001; Kikuchi et al., 2012) 
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 1.2 Morphology and Physiology 

Helicobacter pylori cells are generally 2 - 5 µm long and 0.5 - 1 µm wide (Figure 

1). H. pylori is motile via its 2 - 6 unipolar, sheathed flagella (Geis et al., 1993; 

Yoshiyama and Nakazawa, 2000). On solid media, cells form small translucent 

colonies of ~3 mm (Dunn et al., 1997). The flagella are ~3 µm in length and often 

possess a bulb at the distal end (Goodwin et al., 1985). It is hypothesised that the 

sheath may aid host colonization by protecting the flagellar filament from 

degradation by the acidic human stomach (Jones and Curry, 1989; Luket and Penn, 

1995). Flagella-associated autotransporter protein, FaaA, is a VacA-like protein. It 

has been shown to localise to the flagellar sheath. An isogenic faaA mutant exhibits 

decreased motility and an impaired ability to colonise the stomach of mice, 

indicating its important role in motility and host colonisation (Radin et al., 2013). 

The bacterium is spiral in vivo, but assumes a rod-shaped or coccoid form when 

cultured in vitro (Benaissa et al., 1996). Conflicting arguments suggested this 

coccoid form could indicate cell death, while others indicated it may be a dormant 

stage still capable of infection (Benaissa et al., 1996; Catrenich and Makin, 1991; 

Kusters et al., 1997). It has since been shown that the coccoid form can be sub-

divided into two types: a viable coccoid form and a non-viable, degenerative coccoid 

form (Azevedo et al., 2007; Saitoa et al., 2003; Willén et al., 2000). Induced coccoid 

forms of H. pylori are still capable of expression of cagE and babA, indicating that 

cells with this morphology are still possibly capable of infection (Poursina et al., 

2013). 

Motility is a key feature of this organism, which is necessary for efficient 

colonisation of the host (Ottemann and Lowenthal, 2002). Motility and chemotaxis 

play a dual role in infection, because motile but che-negative derivative strains of 

H. pylori exhibit reduced host colonisation (Foynes et al., 2000; Terry et al., 2005). 

H. pylori can swim with curvilinear velocities of ~25 µm/s (Karim et al., 1998). 

Motility appears more rapid than that of rod-shaped E. coli in a viscous solution 

indicating its ability to swim through the viscous mucosal lining of the stomach 

(Hazell et al., 1986). Celli et al. showed that the mechanism by which H. pylori can 

move so rapidly through this mucus relates to the viscoelastic properties of mucin, a 

major component of the gastric mucosa (Section 2.4). 
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Figure 1 Helicobacter pylori spiral cells with polar sheathed flagella. 

Electron microscopy image of H. pylori (Yoshiyama and Nakazawa, 2000). 

 

H. pylori is catalase, oxidase and urease positive (Goodwin et al., 1989; Kusters et 

al., 2006). Superoxide dismutase and catalase production have a protective role for 

the bacterium against oxidation by phagocytes (Handa et al., 2010). As H. pylori is 

acid-sensitive, the production of urease is a key virulence factor which aids infection 

and colonisation of the acidic human stomach (Hazell et al., 1986). H. pylori is 

capable of biofilm formation, a feature used by pathogenic bacteria to aid in infection 

and survival in the host (Yonezawa et al., 2010). Its biofilm extracellular polymeric 

substance (EPS) matrix includes polysaccharides and extracellular DNA, possibly 

providing an environment which promotes inter-strain recombination events (Grande 

et al., 2011, 2012).  

H. pylori is a fastidious organism which requires complex medium for growth. It 

is routinely grown on Columbia Agar Base or in Brucella broth or Brain Heart 

Infusion broth. Supplements include horse blood, activated charcoal, cornstarch, β-

cyclodextrins or foetal calf serum (Buck et al., 1987; Kusters et al., 2006; Morgan et 

al., 1987). In the presence of antibiotics used for primary culture on selective agar, 

inhibited growth of the bacteria can be circumvented through the addition of ferrous 

sulphate, sodium pyruvate, and mucin (Jiang and Doyle, 2000). Several amino acids 

are generally required for growth: leucine, valine, phenylalanine, methionine, 

arginine, and histidine (Nedenskov, 1994). Some amino acids can also serve as an 
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energy source: serine, alanine, proline and aspartate (Tomb et al., 1997). It grows 

well in the pH range 5.5 – 8 (Morgan et al., 1987). 

Optimal culture conditions include a microaerobic environment of 5 - 15% O2 and 

5% CO2 (Goodwin and Armstrong, 1990) and a temperature of 33 - 40.5°C 

(Goodwin et al., 1986). H. pylori is a capnophile, i.e. it thrives in the presence of 

CO2, which has been found to be more sensitive to aerobic environments when at 

low cell densities (Bury-Moné et al., 2006). Thin-layered liquid culture of H. pylori 

facilitates efficient gas transfer and hence growth in a microaerobic environment (Joo 

et al., 2010). Microaerobic conditions can be achieved using hypoxia chamber, CO2-

regulated incubator and CampyGen gas pack. 

 1.3 Genetics 

There are now over 200 named members of the Helicobacter genus (Smet et al., 

2011). Today, the complete genomes of 52 H. pylori strains have been sequenced 

and annotated; these are available on the NCBI Genome web resource (NCBI, 2013). 

The draft genome sequences of a further 228 strains are also available, though some 

lack annotation. Typically, the complete genome of H pylori has an average size of 

1.6 - 1.7 Mbp, a GC content of 35 - 39%; some strains possess bacteriophage DNA 

and approximately 50% carry cryptic plasmids (Alm and Trust, 1999; Baltrus et al., 

2009; Farnbacher et al., 2010; Penfold et al., 1988; Uchiyama et al., 2012). Current 

sequencing information has identified that H. pylori has an open pan-genome, with 

~1,200 core genes, and a coding density of 89 - 92% (Farnbacher et al., 2010; 

Fischer et al., 2010; Lara-Ramírez et al., 2011). The gene content can differ by >10% 

between two given strains of H. pylori (Farnbacher et al., 2010; Fischer et al., 2010). 

Identical strains of H. pylori have only been isolated from family members, 

indicating intrafamilial transmission and highlighting the genetic variability of this 

organism (Achtman et al., 1999; Linz et al., 2007; Raymond et al., 2008). 

Comparative analysis of the genomes of H. pylori 26695 and J99 in 1997 

indicated that H. pylori genomes display high levels of genetic recombination (Alm 

and Trust, 1999). The identification of transposable elements, repeat sequences and a 

large number of single nucleotide polymorphisms (SNPs) throughout the genome 

indicated a species with a high level of genomic plasticity. H pylori genomes have 

characteristic regions of high variability known as “plasticity zones” and 

pathogenicity islands (PAI) which encode key virulence genes e.g. cagA (see below) 
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and a large number of genes of unknown function. A large proportion of the genetic 

variation between strains can be localised to these regions which have a different GC 

content to the rest of the genome (Alm et al., 1999; Kersulyte et al., 2009). The cag 

PAI contains genes which encode components of a type IV secretion system, 

facilitating injection of this strain-specific virulence factor into host cells (TFSS) 

(Akopyants et al., 1998; Censini et al., 1996; Duncan et al., 2013; Furuta et al., 

2011). Sequential sequencing of the genomes of H. pylori isolates from chronically 

infected subjects revealed genome evolution during infection. The high rate of 

recombination occurred at non-random sites throughout the genome; Kennemann et 

al. suggest that H. pylori initially imports long DNA fragments and these are 

subsequently fragmented and distributed to different locations (Kennemann et al., 

2011). Genes with a high recombination rate include those encoding outer membrane 

proteins and proteins involved in lipopolysaccharide synthesis (Yahara et al., 2012). 

Helicobacter pylori is naturally competent for the uptake of exogenous DNA 

(Nedenskov-Sorensen et al., 1990). H. pylori is unique amongst naturally competent 

bacteria as it is the only known species which does not use pilus proteins during 

transformation. The proposed mechanism by which natural transformation is 

regulated involves the Type IV secretion system, ComB and is localised to cell poles 

(Hofreuter et al., 2001; Stingl et al., 2010). ComB facilitates DNA uptake through 

the outer membrane, while ComEC is required for the passage of DNA through the 

inner membrane (Stingl et al., 2010). H. pylori can also transfer plasmids and 

chromosomal DNA between cells by conjugation (Fischer et al., 2010; Heuermann 

and Haas, 1998; Kuipers et al., 1998). Recently, the ComB system has also been 

identified as playing a role in DNaseI-resistant plasmid transfer. A novel T4SS-

independent pathway termed the alternate DNaseI-Resistant pathway (ADR) has 

been identified, highlighting the important role of horizontal gene transfer in the 

genome flux of H. pylori (Rohrer et al., 2012). Bacteriophage also contribute to this 

genetic variability through DNA transduction (Luo et al., 2012). 

Restriction modification (RM) systems are a protective strategy used by bacteria 

to prevent invasion of foreign DNA through the activity of restriction endonucleases. 

H. pylori strains possess RM systems that are strain-specific (Alm & Trust, 1999; 

Ando et al., 2000; Tomb et al., 1997). RM systems can be classified as types I - IV. 

Type II systems are the best understood of these, involving restriction 

endonuclease/DNA methyltransferase pairs of enzymes that have opposing 
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intracellular activities to cleave/methylate DNA at specific recognition sites, 

respectively (Xu et al., 2000). There is a complex interplay of factors which 

ultimately determine the capacity of a given strain of H. pylori for horizontal gene 

transfer e.g. nucT, dprB and ruvC (Humbert and Salama, 2008; Humbert et al., 

2011). 

.
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2 Pathogenesis of Helicobacter pylori 

 2.1 Epidemiology 

Helicobacter pylori has had an intimate association with humans for ~100,000 

years (Moodley et al., 2012). The movement of anatomically modern humans from 

Africa ~60,000 years ago matches the divergence of H. pylori, thereby indicating that 

H. pylori migrated throughout the globe with its human host (Linz et al., 2007). 

H. pylori can be subdivided into 7 populations: hpAfrica1, hpAfrica2, hpNEAfrica, 

hpAsia2, hpEastAsia, hpSahul and hpEurope (Moodley et al., 2009, 2012). 

Although there is a high global incidence of Helicobacter pylori, infection has 

been shown to vary locally due to factors including geographical location, age, race, 

and socioeconomic status (Khalifa et al., 2010). Levels of infection are generally 

higher in developing countries, with infection occurring often in early childhood 

(Figure 2) (Perez-Perez et al., 2004; Pounder and Ng, 1995). Industrialised countries 

show lower rates of infection in children (Fiedorik et al., 1991). In Western countries 

e.g. Germany and USA, the prevalence of infection is low in children and higher 

amongst those above the age of 50 (Prinz et al., 2006). In China and Japan, the 

proportion of infected individuals is high (~60% of young members of the population 

and 80 - 90% of older members) (Dorji et al., 2013; Inoue and Tsugane, 2005; Prinz 

et al., 2006). Black and Hispanic ethnicities are associated with higher risk of 

infection, though different ethnicities can be broadly linked with differing social 

classes and hygiene standards (reviewed in (Brown, 2000)). 
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Figure 2 Prevalence of H. pylori infection in studies published during 2012. 

Bar chart representation of data overviewed by (Calvet et al., 2013). 

 

 2.2 Transmission 

Approximately half the worldwide population harbours H. pylori (Hunt et al., 

2011; The Eurogast Study Group, 1993) and hence, eradication of this pathogenic 

bacteria is of global concern. However, because H. pylori can persist in the host for 

years before symptoms develop, it is often difficult to determine the point of 

infection, likely during childhood (Brown, 2000; Malaty et al., 2002; Salama et al., 

2013). H. pylori is generally accepted to be acquired from close personal contact i.e. 

between family members (Fialho et al., 2010; Raymond et al., 2008). 

There are several proposed routes of transmission of H. pylori: oral-oral, faecal-

oral, gastro-oral and iatrogenic. The oral-oral route of transmission has been 

substantiated, with several studies isolating the pathogen from saliva, dental plaques 

and the oesophagus (Cellini et al., 2010; Silva et al., 2010; Zou and Li, 2011), while 

others suggest a link between pre-mastication of young infants’ food and infection 

(Clemens et al., 1996; Frenck and Clemens, 2003). The faecal-oral route is possibly 

another dominant mode of transmission, as DNA and viable H. pylori cells have been 

isolated from the faeces of infected hosts (Momtaz et al., 2012; Parsonnet et al., 

1999). Improvement in sanitation standards in the United States achieved in the latter 
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half of the 19
th

 century correlated with a reduction in the transmission of rates of 

H. pylori, supporting the likelihood of a predominantly oral/faecal-oral transmission 

route (Rupnow et al., 2000). 

Iatrogenic transmission has been found to occur through use of compromised 

medical equipment e.g. endoscopes (Brown, 2000). Transmission associated with 

gastroesophageal reflux and contact with vomitus has also been reported (Parsonnet 

et al., 1999). Water has been suggested as a reservoir for H. pylori in the 

environment, both in freshwater streams and off-shore marine waters (reviewed in 

(Bellack et al., 2006), (Twing et al., 2011)). H. pylori has been isolated from a 

variety of non-human hosts including primates and domestic cats (Fox, 1995; Handt 

et al., 1994). Other non-pylori Helicobacters have been isolated from humans, 

though this is not their primary host e.g. H. suis and H. pullorum (Table 1) 

(Haesebrouck et al., 2009; Joosten et al., 2013). Thus, the possibility of zoonotic 

transmission of this gastric pathogen, perhaps through close human contact, must 

also be considered. 

 2.3 Infection and Inflammation 

Unlike the alkaline lumen of the bowel, the extremely acidic (pH 1 - 2) gastric 

lumen is a much more hostile environment for bacteria. Therefore, gastric colonisers 

such as H. pylori find their niche in the thick mucosal lining of the stomach and next 

to the epithelial cell surface (Hazell et al., 1986). Urease secretion, motility through 

the use of its multiple polar flagella and a range of virulence factors facilitate 

H. pylori persistence and infection e.g. catalase and superoxide dismutase 

(Section 2.4, Figure 3). 

Control of the local pH of the bacteria’s environment is key to the survival of the 

bacteria in the stomach long enough to establish infection. Secretion of urease alters 

the pH of the gastric lumen by hydrolysing urea to produce ammonia and carbon 

dioxide. H. pylori activates cytoplasmic urease through a pH-controlled channel, 

UreI (Weeks, 2000). Unperturbed by this otherwise hostile environment, the motile 

bacteria can then swim to, and interact with, host epithelial cells, thereby eliciting 

inflammation (Ottemann and Lowenthal, 2002). H. pylori localises in the gastric 

antrum, where there are few acid-producing parietal cells (McNulty and Watson, 

1984). It is also found deep in the mucosal layer of the corpus (Kuipers et al., 1995). 
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H. pylori motility is inhibited by active pepsin, a peptidase which is active at low 

pH levels. Postprandial occurrences associated with bouts of luminal neutralisation 

could provide an opportunity for H. pylori infection (Schreiber et al., 2005). This 

may help to explain why infection tends to occur during childhood as opposed to 

adulthood. In infants, this neutralising effect lasts for ~1 hr, while in adults it is as 

short as a few minutes. Thus, in infants and young children there is an extended 

postprandial period during which H. pylori can swim from the lumen to the gastric 

mucus and epithelial cells (Agunod et al., 1969; Bücker et al., 2012; Mitchell et al., 

2001). 

 
 

Figure 3 Pathogen-host interaction during infection. 

Overview of the various points of bacterial-host interaction during H. pylori infection and 

host responses (Suerbaum & Michetti 2002). 

 

Infection induces a host response which ultimately leads to inflammation and 

tissue damage, but not destruction of the invading pathogen. Upon reaching the 
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epithelial cells, host recognition of H. pylori peptidoglycan by NOD1 receptors 

initiates a cascade which activates NFκB (Viala et al., 2004). Injection of the 

H. pylori CagA effector protein into host cells illicits an NFκB and Fas-mediated 

pro-inflammatory response (Lamb et al., 2009). Recognition of H. pylori triggers a T 

helper type 1 (Th1) mucosal cell response which may induce gastritis by up-

regulation of IL18, interferon-γ (INF-γ) and caspase 1 (Ghosh et al., 2002; Tomita et 

al., 2001). Infection is also associated with increased levels of caspase 3 which 

induces apoptosis of host cells, contributing to the development of gastric ulcers and 

cancers (Shimada et al., 2008). Chemotaxis contributes to apoptosis induction 

through regulation of Th17 cells. Che
-
 mutant strains of H. pylori trigger less 

inflammation and apoptosis, despite colonising to a similar extent when compared 

with wild type infections of a mouse model (Rolig et al., 2011). Recently, a novel 

virulence factor, JHP940, has been described which activates an NFκB response 

through its activity as a eukaryotic-type Ser/Thr kinase (Kim et al., 2010). H. pylori 

mediates life-long low-level inflammation in the host by altering these immune 

response pathways, leading to a number of clinical conditions. 

 2.4 Virulence Factors 

A variety of virulence factors contribute to the pathogenicity of Helicobacter 

pylori (Backert and Clyne, 2011). These include urease, motility, cag PAI, VacA, 

adhesins and lipopolysaccharide (LPS). Urease production and motility are key 

virulence factors which work in tandem to enable Helicobacter pylori infection and 

persistence in the host. Urease is a nickel-containing metalloenzyme composed of 

two subunits, UreA and UreB. The active form of urease hydrolyzes urea to produce 

ammonia and carbon dioxide, which raises the pH. H. pylori is not an acidophile, and 

hence, activity of this enzyme is essential for survival in the gastric lumen which has 

a pH of ~2. Cytoplasmic urease allows the bacteria to maintain a neutral internal pH 

(Stingl et al., 2001). There is also evidence of altruistic autolysis of H. pylori making 

urease available for outer membrane association (Phadnis et al., 1996). Urease-

deficient H. pylori are unable to colonise the stomachs of gnotobiotic piglets. 

Surprisingly, urease-deficient H. pylori are out-competed by urease-producing 

H. pylori in co-infection experiments of achlorhydric piglets, indicating another role 

for this enzyme beyond pH neutralisation (Eaton and Krakowka, 1994). 
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It was suggested that urease has a dual function as an adhesin, but this was later 

disproven (Clyne et al., 1996). A study using the gerbil model of infection indicated 

that H. pylori spatial orientation in the gastric mucosa is dependent on pH gradient 

(Bahari et al., 1982; Schreiber et al., 2004). Ammonia and bicarbonate produced by 

the enzyme may also cause pathological effects including cytotoxicity and 

suppression of host bactericidal activity (Kuwahara et al., 2000). Urease promotes 

survival of H. pylori engulfed by macrophages and inhibits opsonisation (Rokita et 

al., 1998; Schwartz and Allen, 2006). It also indirectly disrupts the tight junctions of 

gastric epithelial cells, contributing to virulence (Wroblewski and Peek, 2011; 

Wroblewski et al., 2009). 

Urease activity, chemotaxis and motility are closely associated in their 

contribution to the virulence of H. pylori. Motility is essential for H. pylori infection 

and persistence in the host (Eaton et al., 1992; Ottemann and Lowenthal, 2002). 

Motility enables the bacterium to travel to, and remain in, the host gastric mucosal 

layer and to interact with host epithelial cells through adhesins and other factors (see 

above). A number of flagellar proteins (FliQ, FliM and FliS) participate in adherence 

to AGS cells (Zhang et al., 2002). Chemotactic sensing enables the bacteria to swim 

away from an acidic environment, i.e. the lumen, through membrane-bound or 

cytoplasmic chemoreceptors e.g. TlpD (Croxen et al., 2006). In Salmonella enterica 

serovar Typhimurium the phosphorylated form of CheY interacts with flagellar 

switch protein FliM to initiate clockwise flagellar rotation resulting in tumbling and 

change of direction (Lowenthal et al., 2009). Bacterial urease activity raises the local 

pH of the mucus, which is associated with a reduction in mucin viscosity. This 

altered rheology allows the bacteria to move more freely through the mucosal layer 

(Celli et al., 2009). Cell shape contributes to H. pylori motility and colonisation 

ability. Cells lacking the characteristic helical twist of H. pylori display impaired 

motility in gel-like mucin at low pH and reduced colonisation capabilities (Sycuro et 

al., 2010, 2012). H. pylori is known to interact with gastric mucins, glycosylated 

extracellular proteins which function in homeostasis and host protection (Van de 

Bovenkamp et al., 2003). H. pylori reduces the rate of mucin production in a mouse 

model (Navabi et al., 2013). An in vitro study using human gastric cancer cell lines 

also found that urease and flagellin can alter the expression profile of mucins (Perrais 

et al., 2013). The flagellar-type secretion system is not exclusively used for flagellum 

biogenesis. Virulence proteins have been identified which are secreted through the 
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flagellar lumen e.g. YplA in Yersinia enterocolitica and CiaB in Campylobacter 

(Christensen et al., 2009; Young et al., 1999).Therefore, the importance of flagella 

and motility as an important virulence and colonisation factor should not be 

underestimated. 

H. pylori strains are subdivided into two subsets on the basis of their Cytotoxin-

associated gene A (cagA) status: Class I strains are cagA positive and are associated 

with increased virulence, Class II are cagA negative (Covacci et al., 1993; Xiang et 

al., 1995). CagA is a highly immunogenic protein which is injected into host 

epithelial cells via a Type IV secretion system (Covacci et al., 1993). The cagA gene 

is present on a 40 kb PAI alongside genes for approximately 30 proteins (Figure 4) 

(Censini et al., 1996). This includes the genes encoding a complete T4SS (Kutter et 

al., 2008). The content of this PAI varies considerably between strains as it quite 

unstable and is subject to frequent inversion and deletion events (Akopyants et al., 

1998; Kauser et al., 2004). Other genes in this PAI encode proteins with homology to 

several virulence-associated proteins, e.g. conjugative plasmids and heat shock 

proteins, thus highlighting its multifaceted role in H. pylori virulence (Akopyants et 

al., 1998) (Akopyants et al., 1998). 

CagA is the first identified bacterial oncoprotein that functions in mammalian 

hosts (Ohnishi et al., 2008). CagA-positive strains of H. pylori are associated with 

increased inflammation and development of more severe conditions such as gastric 

adenocarcinoma and B cell mucosa-associated lymphoid tissue (MALT) lymphoma 

(Murata-Kamiya, 2011; Wroblewski et al., 2010). Exposed CagA on the bacterial 

surface triggers externalisation of host plasma membrane phosphatidylserine to 

which CagA binds and initiates entry into host cells (Murata-Kamiya et al., 2010). 

CagA undergoes tyrosine phosphorylation by Src kinase or Abelson murine leukemia 

viral oncogene homolog 1 (ABL) kinase (Poppe et al., 2007; Selbach et al., 2002). 

Phosphorylated CagA can then bind to and activate SRC homology 2 domain-

containing phosphatase (SHP-2) (Higashi et al., 2002). This activity causes 

elongation of cells known as the hummingbird phenotype (Segal et al., 1999). CagA 

interacts with PAR1/MARK to disrupt tight junctions and induce loss of cell polarity 

(Saadat et al., 2007). It has also been found to destabilise the tight junction complex 

E-cadherin/β-catenin and promote cell migration (Bagnoli et al., 2005; Murata-

Kamiya et al., 2007). Furthermore, CagA increases IL-8 expression, enhancing the 

inflammatory response to infection (Crabtree et al., 1994). 
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Figure 4 The cag pathogenicity island. 

Overview of the components of the cag PAI in H. pylori adapted from (Suerbaum & 

Michetti, 2002). 

 

Vacuolating cytotoxin (VacA) is a multifactorial secreted cytotoxin which has 

been extensively studied in H. pylori. VacA was identified soon after H. pylori was 

first isolated as a toxin which induces vacuolation of host epithelial cells (Leunk et 

al., 1988). All strains possess the vacA gene but it is subject to extreme diversity. The 

preprotoxin is ~193 kDa and contains three variable regions which are the site of 

polymorphisms: signal sequence (s), mid (m) and intermediate (i) regions (Atherton 

et al., 1995; Rhead et al., 2007). The vacA allele harboured by a given strain is a 

determinant for pathogenicity. The s1/m1 genotype was considered the most virulent 

form but evidence suggests the i-region variant may be a better predictor of more 

severe clinical outcomes (Chung et al., 2010; Miehlke et al., 2000; Rhead et al., 

2007). 

The pre-protoxin consists of an N-terminal signal sequence for transport across 

the inner membrane, a passenger domain and a C-terminal auto-transporter domain 
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which enables Type 5 secretion. The passenger domain is composed of p33 and p55 

subunits which are cleaved to produce an 88 kDa toxin (Lupetti et al., 1996; Telford 

et al., 1994). p33 has a role in cell binding, while p55 is central to vacuolation, 

membrane depolarisation and internalisation (Torres et al., 2005). The p33 subunit 

targets VacA to the mitochondrial inner membrane, resulting in apoptosis as 

indicated by the release of cytochrome c and activation of caspase 3 (Galmiche et al., 

2000; Willhite and Blanke, 2004). VacA forms endosomal membrane anion channels 

which inhibit antigen presentation, procathepsin D maturation and destruction of 

epidermal growth factor (EGF) (Molinari et al., 1998; Satin et al., 1997; Tombola et 

al., 1999). This potent cytotoxin also inhibits T-cell proliferation and activation, 

enabling H. pylori to alter and evade the host adaptive immune response to infection 

(Gebert et al., 2003; Sundrud et al., 2004). Salama et al. showed that wild type 

H. pylori out-compete vacA-negative mutants in a murine gastric model, indicating 

an additional role in initial host colonisation for this toxin (Salama et al., 2001). 

LPS is a component of the outer membrane and the flagellar sheath (Jones and 

Curry, 1989). It is composed of lipid A, core oligosaccharide and an O-antigen 

domain. In H. pylori, LPS exerts a low level of pro-inflammatory activity compared 

with LPS of other enterobacteria, including E. coli and Salmonella (Muotiala et al., 

1992). Altered lipid A backbone phosphorylation allows LPS to evade TLR2 

recognition, contributing to persistence of this pathogen (Cullen et al., 2011). 

H. pylori exerts molecular mimicry through the O-chain of LPS which can present 

structures similar to host Lewis blood group antigens (Wirth et al., 1997). Lewis X-

induced autoantibodies are associated with colonisation ability and adhesion of 

H. pylori to AGS cells (Sheu et al., 2007). LPS possibly exhibits its endotoxic 

activity through up-regulation of inducible nitric oxide expression which leads to 

impairment of host DNA repair machinery, as studied in human colon carcinoma cell 

lines (Cavallo et al., 2011). A link between LPS production and flagellar assembly 

has been identified in C. jejuni. Cj0256 is a phosphoethanolamine transferase which 

post-translationally modifies both lipid A and flagellar rod protein, FlgG. Cj0256 is 

essential for motility in C. jejuni, as deletion of this gene results in aflagellate cells 

(Cullen and Trent, 2010). 

H. pylori peptidoglycan is transported to host epithelial cells either by the cagPAI 

T4SS or bacterial outer membrane vesicles (Kaparakis et al., 2010; Viala et al., 

2004). There, it binds to NOD1 receptors, triggering an NFκB/IL-8-mediated 
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inflammatory response (Girardin et al., 2003; Viala et al., 2004). Many H. pylori 

adhesins are surface proteins which bind host epithelial glycoproteins. Blood group 

antigen-binding protein (BabA) is an adhesin that binds Lewis-b blood group antigen 

(Borén et al., 1993). Presence of the babA2 gene has been suggested as a marker of 

increased risk to H. pylori-associated diseases including duodenal ulcer and 

adenocarcinoma (Gerhard et al., 1999; Mizushima et al., 2001). Sialic acid-binding 

adhesin (SabA) binds sialated Lewis-X (Mahdavi et al., 2002). This adhesin 

facilitates binding of H. pylori to mucosal epithelial cells where it then illicits 

activation of neutrophils and inflammation (Petersson et al., 2006; Unemo et al., 

2005). This strong response can be dampened by neutrophil activating protein (HP-

NAP) to aid H. pylori persistence (Unemo et al., 2005; Wang et al., 2006). Outer 

inflammatory protein A (OipA) is an adhesin which illicits a pro-inflammatory host 

response through the activation of Il-8 (Yamaoka et al., 2000). Additionally, OipA is 

involved in focal adhesion kinase (FAK) phosphorylation and activation, affecting 

actin stress fiber formation and cell motility (Tabassam et al., 2008). 

Catalase, superoxide dismutase and HP-NAP also function to neutralise reactive 

oxygen species, an oxidative stress response contributing to virulence (Bauerfeind et 

al., 1997; Seyler et al., 2001; Wang et al., 2006). Duodenal ulcer promoting protein 

A (DupA) was identified in 2005 as an adhesin associated with IL-8 and IL-12 

induction and inflammation in mononuclear cells (Hussein et al., 2010; Lu et al., 

2005). H. pylori produces a pore-forming cytolysin orthologue, TlyA, which confers 

haemolytic activity (Lata et al., 2014; Martino et al., 2001). The outer membrane 

phospholipase A (PldA) has also been shown to mediate haemolysis and contribute 

to host colonisation (Dorrell et al., 1999; Sitaraman et al., 2012). Sphingomyelinase 

(SMase) activity results in haemolysis of blood lymphocytes as well as activation of 

mitogen-activated protein (MAP) kinases and apoptosis in AGS cells (Chan et al., 

2000; Tseng et al., 2004). The capacity of H. pylori for horizontal gene transfer in 

vitro is indicative of its ability to adapt to and persist in its host (Blaser and Atherton, 

2004; Nedenskov-Sorensen et al., 1990). Toller et al. hypothesize that double-strand 

DNA breakages induced by H. pylori infection may be a contributing factor in the 

development of gastric carcinoma. Persistent infection may lead to mutations 

generated during DNA repair, thereby increasing the risk for cancer development 

(Toller et al., 2011). Thus, H. pylori has a diverse armoury of virulence factors at its 
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disposal to aid in host infection and persistence while evading removal by the host 

immune system. 

 2.5 Disease 

The association between Helicobacter pylori and chronic gastritis and peptic 

ulceration was noted by Marshall and Warren (Marshall and Warren, 1984; Warren 

and Marshall, 1983). In fact, Marshall ingested H. pylori to confirm Koch’s 

postulates identifying H. pylori as a causative agent of gastritis (Marshall et al., 

1985). It is now accepted that almost all subjects infected with H. pylori develop 

chronic gastritis (Kusters et al., 2006). However, only a minority develop the more 

severe pathological effects of infection, including peptic ulcer, non-ulcer dyspepsia, 

gastric carcinoma and MALT lymphoma (Figure 5). An association has also been 

made between H. pylori infection and sudden infant death syndrome (Kerr, 2000). 

In most cases, acute gastritis does not progress further, but it can develop into 

gastric/duodenal ulcer disease (Cave and Goddard, 1999). H. pylori infection is also 

associated with dyspepsia (Harvey et al., 2010). Gastric ulcers occur in the region of 

the stomach where the corpus mucosa meets the antrum mucosa, whereas duodenal 

ulcers are associated with the duodenal bulb (Kusters et al., 2006). H. pylori is a 

major causative agent of gastric ulcers. Complications can arise from ulceration 

including bleeding and stricture formation. 

The more severe disease types associated with H. pylori infection include gastric 

adenocarcinoma and MALT lymphoma. In 1994, Helicobacter pylori was classified 

as a human carcinogen (International Agency for Research on Cancer, 1994). 

Atrophic gastritis and intestinal metaplasia can result from chronic gastritis-

associated inflammation (Kuipers et al., 1995). These features can increase the risk 

of development of gastric cancer (Uemura et al., 2001). Gastric cancer is the third 

most common form of cancer in men, and fifth in women (Jemal et al., 2011; 

Society, 2011). Approximately 50% of gastric cancer occurrences can be attributed 

to H. pylori infection, illustrating the global burden of H. pylori infection (Parkin, 

2006). In a Swedish cohort, H. pylori was associated with ~70% of all noncardia 

adenocarcinomas (Ekström et al., 2001). Clinical studies show that a high percentage 

of MALT lymphoma patients test positive for H. pylori and its eradication has been 

linked with disease remission (Eidt et al., 1994; Fischbach et al., 2009). 
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Figure 5 Clinical outcomes of H. pylori infection. 

Adapted from (Kim et al., 2011). 

 

 2.6 Diagnostics 

A broad range of diagnostic tests have been established for H. pylori infection. 

These can be classified as either invasive (endoscopy, histology) or non-invasive 

(serological tests, urine, stool antigen assays, breath etc.). Results of two tests are 

sometimes required to confirm diagnosis- urea breath testing and histological 

examination of tissue are most commonly used (Calvet et al., 2009; Graham et al., 

2008). 

Culture of H. pylori is not only useful as a confirmatory test, but also allows 

determination of antibiotic susceptibilities of the strain(s) isolated to aid in treatment 

strategy selection. Urease-based biopsy tests available range from the CLOtest, 

which takes up to 24 hr, to the PyloriTek strip which takes 1 hr to give a result 

(Cutler et al., 1995; Laine et al., 1996). However, non-invasive alternative urease 

breath tests are now commonly used in which labelled urea is ingested and the 

resulting bicarbonate, exhaled as CO2, is detected (Koletzko et al., 1995; Minoli et 

al., 1998). The rapid urease test has > 98% sensitivity, while 
13

C/C
14

 urea breath test 

identifies the presence of H. pylori with sensitivity > 95% (WGO, 2010). PCR offers 
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specificity, high sensitivity and may be used to detect H. pylori non-invasively from 

bodily fluids e.g. saliva; however, PCR has yet to be optimised and standardised for 

this purpose. PCR-based detection of vacA intermediate region has been developed 

which could be used to rapidly screen patients at elevated risk for gastric cancer 

development (Ferreira et al., 2012). Quantitative real-time (qRT) PCR and 

fluorescence qPCR are recently emerging detection methods which may provide an 

alternative to the traditional detection methods (Ou et al., 2013; Saez et al., 2012). 

Recent comparative studies suggest histology may be the most robust detection 

method (Choi et al., 2012; Tian et al., 2012). A recent study involving enzyme-

linked immunosorbent assay (ELISA) of stool samples of children highlights another 

method warranting development as a non-invasive diagnostic of H. pylori infection 

(Leal et al., 2011). 

 2.7 Treatment 

Consensus guidelines recommend treatment to eradicate H. pylori in patients 

presenting symptoms of infection (Malfertheiner et al., 2012). Growing H. pylori 

antibiotic resistance presents a challenge for treatment of infection due to capacity 

for mutation and gene acquisition facilitated by the extreme genome plasticity of 

H. pylori (outlined above) and the common use of antibiotic therapies to treat 

bacterial infections (Mégraud, 2004). Failed dual therapy results in the development 

of H. pylori dual resistance, indicating that emerging resistance is associated with 

previous antibiotic treatments (Heep et al., 2000). Clarythromycin-based triple 

therapy using two antibiotics and a proton pump inhibitor is the standard first line 

treatment for infection (Bazzoli et al., 1993). However, growing resistance to 

clarithromycin, and levofloxacin, means this first line of treatment must be reviewed 

(Mégraud, 2012). 

Quadruple bismuth-based therapies is one approach to overcome the issue of 

resistance (Malfertheiner et al., 2012). Tailored treatment is an attractive solution, 

made more feasible with the development of molecular-based susceptibility 

screening such as GenoType HelicoDR (Cambau et al., 2009). An effective vaccine 

in humans has yet to be described that affords sustainable protection from H. pylori 

infection (Koch et al., 2013). Furthermore, due to the difficulties in identifying the 

point of infection, when to vaccinate could be vital to the success of vaccination 

schemes. OipA, LPS and urease A immunogens have had some success in protection 
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from H. pylori using murine models (Altman et al., 2012; Chen et al., 2012; Guo et 

al., 2012). 
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3 Bacterial Secretion Systems 

The secretion of bacterial proteins is of particular importance for understanding 

pathogenic bacteria. A complete secretion system enables the delivery of toxins, 

enzymes and other virulence factors during infection, while adhesins can be 

presented on cell surfaces to mediate interactions. Non-pathogenic bacteria also 

utilise protein secretion to enhance survival e.g. the secretion of sortase by 

Lactobacillus salivarius subspecies salivarius strain UCC118 (van Pijkeren et al., 

2006). The mechanisms for secretion differ between Gram positive and Gram 

negative organisms. Each of the currently known secretion systems (I - VII) are 

described below. 



 

 

 

 

Figure 6 Generalised diagram of the known bacterial secretion systems. 

Graphical representation of bacterial protein secretion systems spanning the inner membrane (IM), outer membrane (OM), host membrane (HM) and 

mycomembrane (MM). OMP: outer membrane protein; MFP: membrane fusion protein (Tseng et al., 2009) 
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 3.1 Type I Secretion System 

The Type I secretion system (T1SS) is found in both Gram positive and Gram 

negative bacteria. It facilitates the secretion of a wide variety of proteins including 

toxins, proteases, lipases and bacteriocins. Bacteria use ABC transporters as a 

mechanism for multidrug resistance, which can account for > 10% of the transporters 

encoded for on the genome (Paulsen, 2003). The T1SS is composed of an inner 

membrane ATPase-binding cassette (ABC) transporter protein, a membrane fusion 

protein and an outer membrane pore-forming protein (Omori and Idei, 2003). The 

mechanism of secretion by this pathway is Sec-independent (Figure 6). Proteins 

exported in this way have a characteristic carboxy-terminal signal sequence, which is 

not cleaved during secretion (Duong et al., 1996). Secretion of the E. coli 

haemolysin, Hly, is the model system for the T1SS (Mackman et al., 1986). 

Lactococcus lactis is a Gram positive organism with 40 putative multidrug resistance 

proteins secreted by the T1SS including LmrCD (Lubelski et al., 2007). H. pylori 

strains possess a number of ABC transporters e.g. NixA (Hendricks and Mobley, 

1997). 

 3.2 Type II Secretion System 

The Type II secretion system (T2SS) is a more complex two-step process used by 

Gram negative bacteria to secrete a variety of proteins, mainly enzymes. This system 

is encoded by 12 - 16 genes, generally found together in one operon, and has been 

studied in detail in E. coli, Pseudomonas aeruginosa and Legionella pneumophila 

(Douzi et al., 2012; Jyot et al., 2011; Rossier et al., 2004). The first step in this 

process is transport across the inner membrane into the periplasm either by the Sec or 

twin-arginine translocation (Tat) pathways (Pugsley, 1993; Voulhoux et al., 2001). 

The Sec secretion system is a general export system used by Gram positive 

bacteria to transport proteins across its single membrane to the extracellular milieu. 

In Gram negative bacteria, Sec secretion translocates proteins to the periplasm in 

three stages: protein sorting, translocation and release/maturation (Papanikou et al., 

2007). Sec secretion requires the recognition of an amino-terminal leader sequence 

on proteins targeted for secretion. These pre-proteins are brought to a channel-

forming translocase complex at the inner membrane composed of SecY, SecE and 

SecG which drives protein export through activity of the SecA ATPase (van den 
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Berg et al., 2004). Once in the periplasm, the signal sequence is cleaved by a signal 

peptidase and protein folding is initiated to produce the mature form of the protein 

(Mogensen and Otzen, 2005; Paetzel et al., 2002). 

The Tat pathway facilitates the transfer of folded proteins across the inner 

membrane and has a role in diverse cellular functions including cell division, quorum 

sensing and cell motility (Ding and Christie, 2003; Palmer and Berks, 2012; Stanley 

et al., 2001; Stevenson et al., 2007). Proteins are targeted to the Tat system for 

export through recognition of an amino-terminal signal sequence containing a twin-

arginine motif (Chaddock et al., 1995). The export apparatus located in the bacterial 

inner membrane consists of TatA and TatC protein families (Palmer and Berks, 

2012). The TatABC complex binds target proteins and export is driven by proton 

motive force (Bageshwar and Musser, 2007; Mould and Robinson, 1991). The 

crystal structure of TatC, the core component of the pathway, from Aquifex aeolicus 

has recently been published (Rollauer et al., 2012). TatC recognises the signal 

sequence of target proteins and recruits other Tat export proteins to initiate export. 

The TatBC complex of E. coli has been modelled from transmission electron 

microscopy (TEM) data (Tarry et al., 2009). TatA forms a homopolymeric pore in 

the inner membrane which has a variable diameter thereby allowing export of 

proteins of varying sizes (Gohlke et al., 2005). 

The T2SS subsequently translocates target exoproteins across the outer membrane 

in a process involving an outer-membrane complex and a pesudopilus structure 

(Korotkov et al., 2012). The pseudopilus is composed of a multimer of the major 

pseudopilin, secretin and four other pseudopilins. The assembled structure resembles 

the Type IV secretion system (Figure 6) (Durand et al., 2003; Sauvonnet et al., 

2000). There is also some similarity with components of the archaeal flagellum, e.g. 

the pre-flagellin peptidase, FlaK in Methanococcus shares homology with prepilin 

peptidases (Peabody, 2003). The current hypothesis for the mechanism of secretion is 

that binding of the target protein to the periplasmic domain of secretins triggers the 

ATPase-driven extension of the pesudopilus which pushes the exoprotein through the 

channel (Korotkov et al., 2012). 

 3.3 Type III Secretion System 

The Type III secretion system (T3SS) is one of the most complex secretion 

systems known, composed of > 20 proteins (Cornelis, 2006). In Gram negative 
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bacteria, the T3SS translocates target proteins in a one-step process which is 

independent of the Sec pathway. The T3SS mediates bacterial/host interactions 

through injection of effector molecules into host cells and plays a role in colonisation 

and pathogenesis (Galán and Collmer, 1999; Rosqvist et al., 1994). It produces an 

injectisome, so-called due to its needle-like structure (Figure 6). There are seven 

families of injectisomes, which have evolved independently of the bacteria in which 

they are found i.e. there is evidence of horizontal gene transfer events in their 

evolution (Troisfontaines and Cornelis, 2005). Injectisomes are produced by 

Yersinia, Pseudomonas, Shigella, and E. coli (Cornelis, 2006). The T3SS allows the 

translocation of a wide variety of effector molecules and is largely considered to be a 

virulence factor, though it has been found in some non-pathogenic bacteria. There is 

evidence that the injectisome itself can cause host cell damage and death, without the 

translocation of effector proteins (Hauser, 2009). 

The T3SS generally requires host-cell contact to activate protein export which is 

guided by chaperones (Pettersson et al., 1996). It is composed of a multi-ring basal 

structure which spans the bacterial membranes, and a protruding needle-like filament 

which delivers effector proteins. A membrane-associated ATPase in the cytoplasm is 

essential for protein export and it has homology to F1-ATPase subunits (Woestyn et 

al., 1994; Zarivach et al., 2007). At the distal end of the needle, there is a tip 

complex which acts as a platform for translocators which induce pore formation in 

the host cell (Moraes et al., 2008; Mueller et al., 2008). Effector proteins are then 

translocated in an unfolded state to the host through the hollow lumen of the 

injectisome (Akeda and Galán, 2005). 

 
 

Figure 7 The bacterial flagellum and the Gram negative injectisome. 

Schematic comparison of the components of these Type III secretion apparatus. Adapted 

from (Saier, 2004). 
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The T3SS shares close similarity at the level of individual components, and how 

they are assembled, to the bacterial flagellar export apparatus (Figure 7). 

Phylogenetic analyses had indicated that these systems evolved independently of 

each other from a common ancestor (Gophna et al., 2003). However, a recent re-

evaluation of the evolutionary relationship between these two systems incorporating 

the large body of genome sequencing information now available, seemed to indicate 

that the T3SS evolved from the bacterial flagellum (Abby and Rocha, 2012). While 

the primary function of the flagellar export apparatus is the sequential export of 

components of the flagellar apparatus (Section 4), there are documented cases where 

it is also used for the export of non-flagellar proteins e.g. YplA of Yersinia 

enterocolitica and CiaC of Campylobacter jejuni (Christensen et al., 2009; Young et 

al., 1999). Similar to flagellar biogenesis, construction of the T3SS is a hierarchical 

process which is tightly regulated. A number of components display sequence 

similarity with their flagellar counterparts. For instance, Spa32, which controls 

needle length of injectisomes produced in Shigella flexneri is homologous with FliK, 

the flagellar hook-length control protein (Magdalena et al., 2002). 

 3.4 Type IV Secretion System 

The Type IV secretion system (T4SS) is found in both Gram positive and Gram 

negative bacteria. It can be sub-divided into three categories based on function: 

bacterial conjugation, DNA transfer and effector protein translocation. The T4SS is 

unique in its ability to transfer both DNA and proteins to bacterial, plant and animal 

cells i.e. interkingdom transfer (Fronzes et al., 2009). Agrobacterium tumefaciens C8 

is the model system of T4S. The VirB/D system is composed of 12 proteins which 

assemble to produce a cytoplasmic/inner membrane complex, a channel which spans 

bacterial and host cell membranes and an external pilus structure (Figure 6). Using 

this system, A. tumefaciens delivers oncogenic DNA-protein complexes to host cells 

which can lead to the development disease in plants (Fronzes et al., 2009). 

Conjugation is a DNA transfer mechanism which requires cell-cell contact. 

Conjugative plasmids generally contain genes with functions in areas such as 

antibiotic resistance and stress-response, which promote environmental adaptation 

and genetic diversity (Wallden et al., 2010). T4SS produce pili which enable a 

“slingshot”-type crawling motility as seen in Pseudomonas aeruginosa (Jin et al., 



Chapter 1 

~ 30 ~ 

2011). Bordetella pertussis and Legionella pneumophila are examples of human 

pathogens which effectively use the T4SS to illicit disease (Wallden et al., 2010). 

In H. pylori, the CagA virulence protein is exported by the T4SS, the machinery 

for which is encoded on a pathogenicity island (Section 2.4). In addition to 

conjugative transfer of genetic material, H. pylori encodes genes for the ComB 

system which facilitates the transfer of DNA independently of conjugation (Fischer 

et al., 2010; Hofreuter et al., 2001). Each of these mechanisms contributes to the 

characteristic extreme genetic plasticity of H. pylori. 

 3.5 Type V Secretion System 

The Type V secretion system (T5SS) is a two-step process describing three 

distinct mechanisms of protein export: the autotransporter (Va) system, the two-

partner secretion (Vb) pathway and the oligomeric coiled-coil adhesin (Vc) system 

(Henderson et al., 2004). The T5SS is the simplest of the secretion systems and is the 

most commonly employed system for protein secretion by Gram negative bacteria 

(Figure 6). Effector proteins secreted by the Va system are composed of three 

structural domains, the first of which is an N-terminal signal sequence recognised by 

the Sec system for transport across the inner membrane. The exoprotein also contains 

a central passenger domain and a C-terminal translocation β-barrel domain which 

forms a pore that enables the protein to cross the outer membrane and be secreted 

into the extracellular milieu (Pohlner et al., 1987). After secretion, the protein 

undergoes auto-proteolysis to cleave the helper domain e.g. VacA in H. pylori. 

However, there are some exceptions as not all effector proteins have autocatalytic 

protease activity e.g. the Hsr surface protein ring of H. mustelae remains tethered to 

the outer membrane (O’Toole et al., 1994). Autotransporters are widely found in ε-

proteobacteria and are associated with virulence as effector proteins often include 

adhesins, enzymes and toxins (Henderson et al., 2004). 

The two-partner secretion pathway is similar to the Va system. An N-terminal 

signal sequence on the passenger protein facilitates transport to the periplasm. The 

key difference is that the translocation unit is translated as a separate protein in this 

system (Jacob-Dubuisson et al., 2001). The Vc system describes adhesins which are 

composed of 6 distinct domains, the archetype of which is YadA in Yersinia 

(Hoiczyk et al., 2000). An N-terminal signal sequence is followed by domains 

designated as: head-D, neck-D, stalk-D, linking-R and C-terminal β-barrel domains. 
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The lollipop-shaped effector proteins are exposed on the surface of the outer 

membrane where they are anchored by the C-terminal domain. 

Relatively recently, Salacha et al. described a novel T5SS in P. aeruginosa which 

they named the Vd system. This is a hybrid of the autotransporter and two-partner 

systems in which the C-terminus translocation domain of the protein for export, 

PlpD, more closely resembles a translocation unit of the Vb system (Salacha et al., 

2010). An inverse mechanism describes the most recently identified type Ve system. 

This family shares closest similarity to the Va autotransporters, however, the β-barrel 

translocation domain is at the N-terminus, while the C-terminus is exposed on the 

outer membrane surface (Oberhettinger et al., 2012). Intimin of enteropathogenic 

E. coli and invasin of Yersinia, both virulence factors, were the first described 

members of this group. 

 3.6 Type VI Secretion System 

The Type VI secretion system (T6SS) was first described in Vibrio cholera 

(Pukatzki et al., 2006). It has since been identified in the genomes of more than 80 of 

Gram negative bacteria, including both pathogenic and non-pathogenic species such 

as Yersinia pestis and Burkholderia pseudomallei (Boyer et al., 2009). Vibrio 

cholera uses the T6SS to export toxins not only to eukaryotic host cells, but also to 

other bacteria, providing a competitive advantage in its environment (MacIntyre et 

al., 2010). 

The 15 - 25 genes in the T6SS locus encode effector proteins, structural 

components, chaperones and ATPases to power secretion by this Sec-independent 

system (Pukatzki et al., 2009). While many structural proteins have been studied, 

little is known about the other components. Haemolysin A coregulated protein (Hcp) 

is secreted by all functional T6SS to form homohexamer rings. As these rings can be 

stacked to produce a nanotube structure, it is possible that Hcp is the building block 

of a core channel through which effector proteins can be transported (Ballister et al., 

2008). Interestingly, Hcp requires the secretion of VgrG proteins in Vibrio cholera 

which interact to form a complex; these have sequence similarity with bacteriophage 

T4 tailspike proteins which puncture host cells and hence may have a key role T6SS 

function (Pukatzki et al., 2007). Threonine phosphorylation at a post-translational 

level has been identified as playing a role in T6SS regulation (Mougous et al., 2007). 

More work in this area is needed to elucidate the regulation of this secretion system. 
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 3.7 Type VII Secretion System 

The Type VII secretion system (T7SS) is a specialised system used by 

Mycobacterium tuberculosis, the causative agent of tuberculosis in humans (Figure 

6). This system is adapted to the unusual cell envelope of this Gram positive 

pathogen (Brennan and Nikaido, 1995). The T7SS includes five types, ESX 1 - 5, the 

first of which is the archetype for the system (Stanley et al., 2003). Although the 

exact nature of the role the T7SS plays in M. tuberculosis virulence is unknown, 

disruption of this pathway has been shown to attenuate virulence (Abdallah et al., 

2007; Stanley et al., 2003). Effector proteins secreted by this system possess a 

recently identified C-terminal signal sequence and include T cell antigens (Daleke et 

al., 2012). Components of this system include chaperones, membrane-spanning 

proteins and ATPases, though structural information is lacking (Abdallah et al., 

2007). Proteins for secretion by the ESX 1 system form a heterodimeric complex 

which is targeted for secretion (Renshaw et al., 2005). T7SS homologues have been 

identified in other Gram positive bacteria including S. aureus and Bacillus spp.. 
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4 Composition and Organization of the Bacterial Flagellum 

The bacterial flagellum is an ancient and complex nanomachine which facilitates 

motility. It is an important feature of H. pylori because motility is an essential 

colonization factor (Eaton et al., 1992). Phylogenetic analysis suggests that the 

flagellum evolved from a single gene that was duplicated and underwent mutations, 

leading to new functions (Liu and Ochman, 2007). The best studied models for 

bacterial flagellum biogenesis are those in E. coli and Salmonella enterica. The 

H. pylori flagellum largely resembles these models, with some differences, the 

details of which will be discussed in this section. 

 4.1 Morphology of the flagellum in Enterobacteriaceae 

The flagellar superstructure is composed of four sub-sections: basal body, export 

apparatus, hook and filament. The basal body is composed of three rings: an inner 

membrane (MS) ring, a periplasmic (P) ring and an outer membrane (L) ring (Figure 

8). These are connected by the cylindrical rod and the structure serves to anchor the 

flagellum in the bacterial cell membrane (Macnab, 2004). FliF, FlgI and FlgH 

compose the MS, P and L rings, respectively. These proteins, involved in early stages 

of flagellum biogenesis, are assembled using the Sec secretion system (Jones et al., 

1989). The rod is composed of a number of proteins: an MS-ring rod junction protein 

(FliE), transmission shaft proteins (FlgB/C/F/G) and a rod capping protein (FlgJ) 

(Homma et al., 1990). The rod proteins are exported by the flagellar T3SS. 
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Figure 8 Generalised diagram of the bacterial flagellum. 

The basal body and export apparatus are contained in the bacterial membrane and cytoplasm, 

while the rod, hook and filament form a hollow tube through which flagellar components are 

exported (Pallen et al., 2006). 

 

The flagellar motor, composed of stator and rotor elements, interacts with the 

basal body to generate torque which results in propulsion (Lloyd et al., 1996). MotA 

and B proteins of the stator assemble as integral membrane studs in the 

peptidoglycan layer, while the rotor (FliG multimer) is non-covalently attached to the 

cytoplasmic side of the MS ring through interactions with FliF (Braun et al., 1999; 

Francis et al., 1992). Directional movement is achieved by flagellar rotation that is 

either clockwise (tumbling) or anticlockwise (swimming). The switch complex 

which controls rotation is composed of FliM, FliN and FliG proteins which assemble 

a C ring complex around the MS ring (Francis et al., 1994; Yamaguchi et al., 1986). 

MotA and MotB studs in the periplasm interact with the rotor and C ring (Braun et 

al., 1999; Thomas et al., 1999). Thus, the bacterial flagellum contains a motor with 

the capacity for controlled rotation towards stimuli/away from repellents, mediated 

by chemotactic response regulators e.g. CheY (Foynes et al., 2000). 

The hook is known as a universal joint as it links the rod to the filament (propeller 

component of the flagellum). It is a flexible helical assembly of ~120 FlgE 

monomers which allows multiple polar flagella rotate as a coordinated bundle 
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(Macnab, 1977; Makishima et al., 2001). Assembly of the short, curved hook 

requires a capping protein (FlgD) to guide assembly (Ohnishi et al., 1994). Hook 

associated proteins, FlgK (HAP1) and FlgL (HAP3), assemble at the junction 

between the hook and filament where they act as structural adapters (Hirano et al., 

1994). FliK tightly controls the invariant length of the hook, which is 55 nm in 

Salmonella (Hirano et al., 1994). 

The filament is a long, thin helical structure. In Salmonella, the filament is 

composed entirely of FliC which assembles as 11 protofilaments which can be 

modified through supercoiling when alternating between swimming and tumbling 

modes of motility (Samatey et al., 2001). The filament of H. pylori is composed of 

two subunits: a major flagellin, FlaA, and minor flagellin, FlaB (Leying et al., 1992; 

Suerbaum et al., 1993). Assembly of the filament is guided by the filament capping 

protein, FliD (HAP2) which is essential for motility (Ikeda et al., 1987; Kim et al., 

1999). These flagellins have only 58% sequence identity and their expression is 

alternately regulated (see below). FlaB incorporates into the filament in a hook-

proximal position (Kostrzynska et al., 1991). While flaA-null mutants are completely 

non-motile, flaB mutants retain the motility phenotype (Suerbaum et al., 1993). 

Structural proteins of the flagellum are translocated by the export apparatus 

through a narrow central channel using the flagellar Type III secretion system 

(T3SS) and assemble to extend the growing flagellum. The export apparatus is 

composed of soluble proteins (FliH, FliI, FliJ), located in the cytoplasm, and integral 

membrane proteins (FlhA, FlhB, FliO, FliP, FliQ and FliR) likely located in the MS 

ring (Figure 9) (Minamino and Macnab, 1999). Localisation of the export apparatus 

at the MS ring is mediated, in part, by the interaction of FlhA with FliF (Kihara et 

al., 2001). The localisation of FliP and FliR to the basal body supports the hypothesis 

that the export apparatus is found in the central pore of the MS ring (Fan et al., 

1997). Interactions between export apparatus chaperones and the proteins of the C 

ring indicate a role for the C ring in docking (González-Pedrajo et al., 2006). The 

membrane-bound components of the export apparatus form a proton-driven export 

gate where proteins are unfolded and translocated across the membrane (Minamino 

and Namba, 2008; Minamino et al., 2009). The soluble components of the export 

apparatus function to bind and deliver proteins to the export gate for efficient 

flagellum assembly (Minamino and Namba, 2008). 
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Figure 9 Schematic overview of the bacterial flagellar export apparatus. 

FliH, FliI and FliJ are soluble components of the export apparatus (coloured green). FlhA, 

FlhB, FliO, FliP, FliQ and FliR are integral membrane components (coloured blue). Proteins 

coloured red represent substrates for export coupled to a chaperone. Adapted from 

(Minamino et al., 2008). 

 

In H. pylori, FliI is an essential protein in flagellum construction while a fliI-null 

mutant in Salmonella exhibits only reduced motility (Jenks et al., 1997; Minamino 

and Namba, 2008). FliH regulates FliI activity to prevent hydrolysis of ATP when 

FliI is not involved in protein export (González-Pedrajo et al., 2002; Minamino and 

MacNab, 2000; Minamino et al., 2001). When in complex, FliH binds the N-

terminus of FliI and inhibits the ATPase activity but also promotes docking (Lane et 

al., 2006; Minamino and MacNab, 2000). The stable FliH-FliI heterodimer docks at 

the export apparatus through interactions with the FlhA-FlhB complex (Minamino et 

al., 2003). The FliH-FliI complex also binds the C ring through FliH N-terminal 

interactions with FliN (McMurry et al., 2006). 

FliI is homologous to the α and β subunits of F0F1-ATPase and functions in 

protein docking at the export gate (Fan and Macnab, 1996). FliI assembles as a 

hexameric pore at the export apparatus where protein unfolding and export follow 

(Claret et al., 2008; Kazetani et al., 2009). FliJ is an essential component of the 
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export apparatus which is involved in chaperone recycling (Evans et al., 2006). In 

Salmonella, it promotes the ATPase activity of FliI and interacts with FlhA to 

facilitate docking of the FliH-FliI complex (Ibuki et al., 2013; Minamino et al., 

2010). 

As flagellum biosynthesis is a hierarchical process, control of the substrate-

specificity switch is critical to prevent premature export of filament components 

before completion of the hook. FlhB is an integral membrane protein which interacts 

with FliK to control the switch from export of early (rod/hook) to late (major 

flagellin) flagellar proteins (Williams et al., 1996). FlhB is located at the cytoplasmic 

face of the export apparatus and contains a number of transmembrane helices (Zhu et 

al., 2002). The substrate-specificity of FlhB depends on the conformational state of 

the protein, which is mediated by autolytic cleavage of its carboxy terminus (Ferris et 

al., 2005). FliK is the hook length control protein, which triggers the cleavage of 

FlhB once the hook has reached its full length (Erhardt et al., 2010; Moriya et al., 

2006). The mechanism by which FliK determines the hook length is termed the 

molecular ruler theory (Erhardt et al., 2010). FliK is secreted intermittently through 

the growing flagellum during assembly of the hook-basal body complex. Interaction 

of the FliK N-terminus with hook subunits and the hook cap causes a pause in 

secretion when the FliK C-terminus can interact with FlhBc once the hook is long 

enough. 

 4.2 Flagellum Assembly in Enterobacteriaceae 

Flagellum assembly occurs as a sequential, tightly regulated process whereby the 

cell proximal components i.e. basal body, are assembled first and followed by the 

more distal components in a sequential manner (Figure 10). The first component of 

the flagellum to assemble is the MS ring subunit, FliF, mediated by the Sec secretion 

system (Ueno et al., 1994). The export apparatus and substrate switch complex 

assemble around the MS ring in an independent process which does not require other 

flagellar proteins (Kubori et al., 1997). The C-terminal peptidoglycan-binding motif 

of MotB dimers may be responsible for targeting of the flagellar rotor to the stator 

(Kojima et al., 2008). 

 



 

 

 

  

Figure 10 Ordered flagellum synthesis in Salmonella. 

Sequential assembly of the bacterial flagellum where bracketed steps denote proteins expressed before a functional export apparatus is assembled i.e. proteins 

exported by the Sec secretion system. Assembly of the periplasmic and outer membrane rings requires Sec-mediated protein export. Hook and filament 

proteins are secreted by the flagellar Type III export apparatus. Adapted from (Macnab, 2004). 
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Assembly of the proximal rod components i.e. MS ring rod/junction protein, 

FlgB/C/F is guided by the rod capping protein, FlgJ (Hirano et al., 2001). Distal rod 

formation is followed by Sec-mediated assembly of the P- and L-rings (Figure 10). It 

has been proposed that the hook capping protein (FlgD) attaches to the distal 

growing end of the hook by its N-terminus where it promotes FlgE polymerisation, 

while the C-terminus functions to block and prevent secretion of unincorporated 

monomers into the extracellular milieu (Moriya et al., 2011). As mentioned above, 

FliK acts as a molecular ruler to control flagellar hook length. 

In Salmonella, FlgM is secreted into the extracellular milieu upon completion of 

the hook, releasing FliA suppression (Gillen and Hughes, 1991; Hughes et al., 1993). 

In H. pylori, FlgM is not secreted after the substrate-specificity switch. It is 

hypothesised that FlgM may instead shuttle between FliA and FlhAc in the cytoplasm 

(Rust et al., 2009). This initiates expression of the late flagellar genes which then 

assemble to form the junction, filament and capping proteins. FliD promotes growth 

of the filament at the distal end and is retained in the final structure (Yonekura, 

2000). The filament can contain up to 20,000 subunits (Macnab, 2003). The entropy 

of polymerisation of flagellin subunits at the tip of the growing filament is sufficient 

to recruit another subunit from the export apparatus in a chain mechanism of filament 

extension (Evans et al., 2013). 

 4.3 Regulation of Flagellar Assembly 

Since over 40 proteins are involved in flagellum assembly, the process must be 

tightly regulated to avoid improper assembly and/or energy wastage (Chevance and 

Hughes, 2008). Hierarchical flagellar assembly of Enterobacteriaceae coupled with 

sequential transcriptional activation of flagellar genes maintains tight control of this 

complex process (Chilcott and Hughes, 2000). Flagellar genes can be divided into 

three classes which represent the early, middle and late genes. Three RNA 

polymerase sigma factors control the gene expression of these classes (McCarter, 

2006). 

In Salmonella, Class I genes are located in the flhDC operon. The gene products 

of this operon form a complex, FlhD4C2. Activation/inactivation of FlhD4C2 is 

dependent upon an array of environmental stimuli including osmolarity and catabolic 

repression, as well as bacterial growth phase (Prüss and Matsumura, 1997; Shin and 

Park, 1995; Soutourina et al., 1999). In E. coli, FlhD4C2 is post-transcriptionally 
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regulated by the global regulator, CsrA (Wei et al., 2001). FlhD4C2 also plays a role 

in other cell processes which are not related to bacterial motility (Stafford et al., 

2005). 

The primary function of FlhD4C2 lies in its role as the “master regulator” of 

flagellar gene expression. FlhD4C2 mediates σ
70

 RNA polymerase transcriptional 

activation of the Class II (middle) flagellar genes which include components of the 

basal body and hook (Liu et al., 1995). Included in the genes transcribed by σ
70

 is 

another RNA polymerase sigma factor, σ
28

 (Kutsukake et al., 1990). The alternative 

sigma factor (σ
28

) in turn controls the expression of late flagellar genes i.e. the 

flagellar motor and filament subunits. FlgM is a negative regulator of σ
28

 and is 

secreted upon completion of the hook (Gillen and Hughes, 1991; Ohnishi et al., 

1992). Secretion of FlgM, and hence release of σ
28

, triggers transcription of the late 

flagellar genes (Kutsukake, 1994). 

 4.4 Flagellar chaperones in Enterobacteriaceae 

There are a number of cytoplasmic chaperones which play an important role in 

flagellum biosynthesis. Chaperones protect their substrate from degradation in the 

cell before its function is required and target proteins to the export apparatus during 

flagellum synthesis. The chaperone-substrate complexes dock at the export apparatus 

ATPase where they are secreted through the central lumen of the growing flagellum 

by proton motive force (Thomas et al., 2004). Chaperone-substrate complexes bind 

FlhAc at the export gate with different affinities, potentially favouring the export of 

the hook-filament junction substrates prior to filament formation (Kinoshita et al., 

2013). 

As described in Section 4.2, the FliH-FliI heterodimer is a chaperone-substrate 

complex involved in regulating the docking and export of substrates via the flagellar 

T3SS. This complex binds FliJ, a chaperone which is instrumental in efficient 

substrate export through the T3SS. FliJ is responsible for recycling of chaperones for 

the minor filament subunits, FlgK, FlgL and FliD, but not the major subunit, FliC 

(Evans et al., 2006). FliS is a cytoplasmic chaperone which stabilises FliC before 

assembly and assists flagellin export during filament extension (Auvray et al., 2001). 

FliS prevents aggregation and premature polymerisation of FliC subunits in the 

cytoplasm before export. In H. pylori, HP1076 has been identified as a co-chaperone 

which promotes the correct folding and activity of FliS (Lam et al., 2010). 
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In Salmonella, FlgM secretion is suppressed by all members of the fliD operon 

(FliD/S/T) (Yokoseki et al., 1996). FlgN regulates the translation of FlgM as well as 

the export of the hook-filament junction proteins, FlgK and FlgL (Fraser et al., 

1999). In Salmonella, Flk prevents the premature secretion of FlgM; however, no 

such homologue has been identified in H. pylori (Aldridge et al., 2006a). FliA has an 

additional role as a chaperone which promotes FlgM secretion (Aldridge et al., 

2006b). FliT is a chaperone which guides the filament capping protein FliD to the 

export gate for export (Fraser et al., 1999). It also functions as a regulator of flagellar 

gene expression through interactions with FlhD4C2 (Yamamoto and Kutsukake, 

2006). This interaction disrupts the ability of the FlhDC complex to bind the Class II 

promoter and therefore prevents expression of the middle flagellar genes. 

 4.5 Regulation of flagellum biogenesis in H. pylori 

The composition of the flagellum of H. pylori closely resembles that of the 

extensively studied model organisms, Salmonella and E. coli (Lertsethtakarn et al., 

2011). However, there are notable deviations in both structure and regulation of 

assembly (Figure 11). At genome level, there is a clear difference in the organisation 

of flagellar genes in H. pylori and that of E. coli and S. typhimurium. The latter 

contain a number of distinct operons, while in H. pylori flagellar genes are scattered 

throughout the genome in multicistronic operons (Danielli et al., 2010; Tomb et al., 

1997). 

One major deviation from the model of flagellum biogenesis is the lack of an 

FlhD4C2 homologue in H. pylori. This is a clear indication that H. pylori flagellar 

gene expression is alternatively regulated. Hierarchical assembly is coupled to 

ordered flagellar gene expression, which is controlled by three RNA polymerase 

sigma factors (σ
80

, σ
54

, σ
28

) (Alm et al., 1999; Beier and Frank, 2000; Josenhans et 

al., 2007; Niehus et al., 2004). RpoD, or σ
80

, controls the expression of Class I genes 

which include regulators and components of the basal body. In H. pylori, there is an 

additional component of the MS ring, FliY, with sequence similarity to FliN 

(Lowenthal et al., 2009). Notably, the Class I genes include a two-component 

system: histidine kinase, HP0244, and its response regulator, FlgR (Spohn and 

Scarlato, 1999). Together, these function as enhancers of RpoN activity, the sigma 

factor controlling expression of the Class II genes. 
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Figure 11 Overview of the known flagellar components of the H. pylori flagellum. 

Major structural elements of the flagellum are colour-coded based and largely match the 

transcriptional regulatory class: components of the export apparatus (Class I) are coloured 

red; rod and hook proteins (Class II) are coloured blue; and filament proteins are coloured 

green. FlaB is an exception as it is a Class II gene. Proteins in grey either have unknown 

transcriptional regulation, or are not regulated within the flagellar transcriptional hierarchy. 

Adapted from (Lertsethtakarn et al., 2011). 

 

A transcriptional checkpoint has been identified at an early stage of flagellum 

assembly; mutational inactivation of early flagellar genes results in reduced 

transcription of Class II and Class III genes (Allan et al., 2000). RpoN is a sigma 

factor which triggers the expression of middle flagellar genes including the rod 

capping protein, hook, and minor flagellin, flaB (Niehus et al., 2004). In addition to 

RpoN activation, FlgR also represses premature production of the major filament 

protein, FlaA (Jagannathan et al., 2001). An intermediate class of flagellar genes is 

regulated by both RpoN and FliA (σ
28

) (Niehus et al., 2004). Included in this class 

are components of the export apparatus, chaperones and early filament structural 

proteins. FliA controls the expression of late (Class III) flagellar genes which include 

that for the major flagellin, FlaA. 
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As in Salmonella, FlgM binds and inhibits FliA to prevent early Class III gene 

expression (Josenhans et al., 2002). In H. pylori, however, FlgM is not secreted upon 

completion of the hook; instead it is now known to be predominantly cytoplasmic. 

This may indicate that the switch in expression in the case of H. pylori may require a 

different stimulus (Rust et al., 2009). FlhA and FlhF have been suggested as the 

H. pylori alternative to flagellar master regulators (Niehus et al., 2004). FlhA-FlgM 

interaction illicits a negative feedback control mechanism on the expression of 

Class II genes. FlhF is a GTPase which is involved in control of RpoN expression, 

the details of which remain unclear (Balaban et al., 2009; Lertsethtakarn et al., 2011; 

Niehus et al., 2004). These proteins are central to the regulation of flagellar assembly 

in H. pylori, as illustrated by a double knock-out mutant which was aflagellate and 

non-motile (Niehus et al., 2004). 

A yeast two-hybrid study investigating the protein-protein interaction map of 

H. pylori strain 26695 identified a number of potential interaction partners of RpoN 

(Rain et al., 2001). A protein from this subset, HP0958, was later identified as a 

chaperone of RpoN (Pereira and Hoover, 2005; Ryan et al., 2005a). The role of 

HP0958 in flagellum biogenesis is discussed in more detail in Section 4.6. FlhB and 

FliK are involved in the substrate-specificity switch between export of rod/hook to 

filament proteins, but the mechanism is complex and currently unknown (Ryan et al., 

2005b; Smith et al., 2009). 

FlaA levels are controlled by a number of diverse mechanisms, from DNA 

supercoiling to posttranslational regulation. In addition to the mechanisms described 

above, flaA expression is also regulated by growth phase. LuxS-based quorum 

sensing has been shown to affect flaA expression whereby low cell density is 

associated with low flaA transcription while at higher cell densities, flaA 

transcription rate increases (Loh et al., 2004). The spacer length between a promoter 

and transcriptional start site can affect the strength of expression. In H. pylori, the 

normal spacer region for σ
28

 promoters is 14 - 15 bp (Josenhans et al., 2002). The 

flaA promoter spacer has a length of 13 bp which is important for growth phase 

dependent alterations in DNA supercoiling (Ye et al., 2007). Relaxation of 

supercoiling resulted in reduced flaA transcription, whereas increased supercoiling 

increased flaA transcription levels. Interestingly, the RpoN chaperone, HP0958, also 

contributes to FlaA regulation, but at a posttranscriptional level (Douillard et al., 
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2008). Therefore, the regulation of flagellum biogenesis in H. pylori differs from the 

model systems, with many details remaining unknown at present. 

 4.6 HP0958 

HP0958 was characterised as a hypothetical protein of unknown function in the 

genome of H. pylori strain 26695 (Tomb et al., 1997). HP0958 is well conserved 

within the Helicobacter genus and orthologues can also be found in some ε-

proteobacteria, but are absent in E. coli and Salmonella (Figure 12). 

 

 

Figure 12 Conservation of HP0958 in ε-proteobacteria. 

Genome region of selected strains containing HP0958 orthologues (coloured black). Image 

generated and adapted from TIGR CMR Genome Region Comparison online tool (Peterson 

et al., 2001). 

 

In 2001, the interaction network of the H. pylori strain 26695 proteome was 

published; the data can be viewed on the Hybrigenics PIMRider
®
 platform where 

PIM Biological Scores indicate the confidence for predicted interaction sets 

(PIMRider®, Rain et al., 2001). This study revealed HP0958 as a potential novel 

flagellar-associated protein due to predicted interactions with the flagellum 

biosynthesis proteins FliH and RpoN. Subsequent studies were undertaken by our 

group and others to characterise the predicted role of HP0958 in flagellum assembly. 

Knock-out studies generated hp0958-null mutants which were completely 

aflagellate and non-motile (Pereira and Hoover, 2005; Ryan et al., 2005a). Mutant 

H. pylori strains lacking HP0958 had altered transcription levels of both Class II and 

Class III flagellar genes (Ryan et al., 2005). Further investigation has shown that 

HP0958 plays multiple roles in the flagellar regulatory process. HP0958 is not only a 

chaperone that stabilises the Class II sigma factor, RpoN, but it also interacts with 
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the major flagellin mRNA transcript (Douillard et al., 2008). In the absence of 

HP0958, H. pylori mutants had increased flaA transcription but decreased levels of 

FlaA protein (Douillard et al., 2008). Therefore, HP0958 is an essential component 

of flagellum biogenesis in H. pylori and studying it may yield insights into the 

different mechanism by which assembly is regulated in H. pylori compared to the 

model systems. 

A hypothesis for the mechanism by which HP0958 influences flagellum assembly 

was proposed by Douillard et al. (Figure 13) whereby HP0958 interacts with FliH, 

potentially to guide the flaA mRNA transcript to the export apparatus in advance of 

flaA translation and assembly of the filament. In this model, RpoN is less stable in 

the absence of HP0958, resulting in no Class II expression. When HP0958 binds 

RpoN, the sigma factor is stabilised and can initiate transcription of the middle 

flagellar genes. During the switch in substrate specificity from rod/hook to filament 

subunits, HP0958 interacts with the flaA mRNA transcript to destabilize it, in order 

to prevent premature secretion of the major flagellin. Interaction with FliH guides the 

HP0958-flaA mRNA complex to the export apparatus where translation and export of 

FlaA subunits can begin (Douillard et al., 2008). 

 

 

Figure 13 Proposed model for the role of HP0958 in flagellum biogenesis. 

Adapted from (Douillard et al., 2008). 
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The crystal structure of HP0958 was solved in 2010, providing insights into the 

mechanism by which it can interact with flagellar proteins and RNA (Caly et al., 

2010). It revealed that HP0958 consists of two domains: an N-terminal, anti-parallel 

coiled-coil and a C-terminal zinc-finger domain (Figure 14). 

 
 

Figure 14 Structural domains of HP0958. 

Image generated in Pymol highlighting the secondary structural elements of HP0958: helix 1 

(red); helix 2 (cyan); helix 3 (blue); helix 4 (pink); and two beta strands in the Zn-ribbon 

domain (mauve).The four cystine residues of the Zn-finger are yellow. 

 

The coiled-coil domain reveals a highly elongated, kinked, anti-parallel structure. 

The motif consists of two α-helices supercoiled around one another. The residues are 

arranged in a heptad repeat (a-g) where residues at a and d are generally apolar, e.g. 

leucine, valine and isoleucine, and hydrophobic. The 4-3 hydrophobic repeat along 

with charged residues at e and g contribute to the stability of the structure (Oakley 

and Hollenbeck, 2001; Parry et al., 2008). Helix 3 (residues 173-185) separates the 

coiled-coil and Zn-finger and interacts with both domains. Discontinuities in the 

heptad sequence are called stutters, stammers and skips (Brown et al., 1996; Lupas 

and Gruber, 2005). The coiled-coil kinks strongly in helix 1 at residue Arg29 and 

helix 2 kinks at Glu143 as a result of a stammer in the HP0958 structure (Caly et al., 

2010). Hydrophobic and positively charged residues have a preference to form 

coiled-coils: alanine, glutamic acid, lysine, leucine and arginine (Gromiha and Parry, 

2004). Hydrophobicity, salt bridges (between residues Ile121 and Glu52; Lys85 and 

Glu89; and Lys73 and Glu96) and hydrogen bonding contribute to the stability of 

this motif (Caly et al., 2010). 
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The Zn-ribbon domain (residues 174-238) contains a large number of solvent-

exposed aromatic (Phe178, Tyr179, Trp185 and Tyr211) and positively charged 

(Arg181, Arg184, Arg205, Lys209) amino acids (Caly et al., 2010). An abundance 

of these types of residues is associated with involvement in protein-RNA interactions 

(Ellis et al., 2007; Jones et al., 2001). In HP0958, the Zn-finger domain contains the 

consensus sequence CXGCX20CPHCGR (where X is any amino acid) involving 

four cystines co-ordinating one zinc ion (Caly et al., 2010). Aromatic residues in zinc 

ribbon domains tend to form aromatic stacking interactions with nucleic acid bases. 

Positively charged residues can interact with the phosphate group of nucleic acids, as 

well as with other proteins (Gamsjaeger et al., 2007; Laity et al., 2001). 

The elucidation of protein structures has contributed to our understanding of their 

function. Flagellum biogenesis models have been aided by emerging structural 

analyses of proteins from various organisms that compose the hook/basal body 

complex, the export apparatus and the filament. The crystal structure of the FliC 

chaperone in complex with its co-chaperone, HP1076, revealed a hydrophobic 

binding interface distinct from the FliS-FliC binding site (Lam et al., 2010). The 

structure of FliT revealed that this chaperone interacts with the FlhDC complex, FliI 

and FliJ through its C-terminal helices indicating a conformational change in FliT is 

responsible for the switch in binding preference (Imada et al., 2010). Therefore, 

structure-function analysis of HP0958 could provide key insights into interactions 

during flagellum biogenesis. 
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5 Aims of this Study 

Bacterial motility through the use of flagella has been extensively studied in the 

enteric model systems E. coli and Salmonella. Motility in H. pylori is a key feature 

of pathogenesis and is essential for colonisation of its human host. While the 

composition of the flagellum in H. pylori closely mirrors that of the model systems, 

there are a number of differences in the regulation of assembly. Therefore, there is a 

need to further investigate the mechanism by which H. pylori controls the complex, 

hierarchical process of flagellar assembly. 

A key feature of H. pylori is its extreme genetic plasticity. With the relatively 

recent upsurgence in genome sequencing, subtle differences between bacterial strains 

at the gene level can be identified. For instance, an additional level of regulation of 

H. pylori motility is phase-variation (Josenhans et al., 2000). Today, there is a large 

volume of genome sequence information from H. pylori strains. However, H. pylori 

CCUG 17874 (the highly motile type-strain for the species) is frequently used in 

motility studies, and its genome has not been sequenced. This strain is not readily 

transformable, which is a barrier to the use of this strain for motility studies 

involving genetic manipulations. On the other hand, another motile strain, P79, is 

readily transformable. 

HP0958 is an essential component of flagellar biogenesis (Ryan et al., 2005a). 

The crystal structure revealed two domains, an N-terminal coiled-coil, and a C-

terminal Zn-finger (Caly et al., 2010). Initial knock-out studies as well as structure-

function analysis of HP0958 provided clues as to how it regulates flagellum 

construction (Caly et al., 2010; Pereira and Hoover, 2005; Ryan et al., 2005a). 

HP0958 is a chaperone of RpoN and is predicted to interact with the ATPase 

inhibitor, FliH; however, how HP0958 forms these interactions at a structural level is 

unknown. Point-mutation of HP0958 indicated that the Zn-finger may be prominent 

in the HP0958-flaA mRNA interaction. A hypothesis for the function of HP0958 

during flagellum biogenesis (outlined in Section 4.6) included HP0958 targeting the 

flaA transcript to the export apparatus through an interaction with FliH. 

Therefore, the global objective of this study was to expand the current 

understanding of flagellum biogenesis and regulation in H. pylori. Additionally, 

genome comparative analyses was performed in the hope that it would provide 



Chapter 1 

~ 49 ~ 

insights into the determinants for natural competence, as well as a broader definition 

of the core genome of H. pylori. 

The aims of this study were: 

 to sequence the genomes of H. pylori strains CCUG 17874 and P79 

 to perform comparative genomics on these strains and the currently 

sequenced, publically available genomes of other H. pylori strains 

 to define the interacting regions within the HP0958, RpoN and FliH 

 to investigate the potential role of HP0958 in switching between 

expression of the σ
54

 and the σ
28

 regulons during flagellum biogenesis 

 to determine the effect of expressing site-directed mutant derivatives of 

HP0958 upon flagellum biosynthesis. 

The results of this study were collated into a short publication (a genome 

announcement) and an expanded comparative analysis (both described in Chapter 2), 

and a detailed analysis of the role of HP0958 in flagellum biogenesis (Chapter 3). 
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1 Abstract 

Helicobacter pylori is a human pathogen which colonises the human gastric 

mucosa, causing gastritis, duodenal and gastric ulcers, and gastric carcinoma. Here 

we announce the draft genomes of H. pylori strain 17874, commonly used for 

studying motility, and P79, a strain for which plasmid vectors have been developed. 

2 Genome Announcement 

H. pylori genomes sequenced to date exhibit significant variation. H. pylori 

CCUG 17874 was originally isolated from the gastric antrum of a patient in Perth, 

Australia and is the type strain for the species (4) that is often used for flagellum 

biogenesis studies. P79 is a derivative of strain P1, transformed with 17874 

chromosomal DNA to generate a streptomycin resistant mutant (3). This readily-

transformable strain facilitates in vivo studies on H. pylori. The genomes of these 

strains were sequenced to provide a clearer genomic platform for H. pylori motility 

investigation. 

The H. pylori 17874 and P79 genomes were sequenced at the Beijing Genomics 

Institute (BGI) on the Illumina HiSeq platform, generating a paired-end library 

containing 20,154,284 and 13,298,804 reads of 90 bp, respectively. In a reference-

guided assembly strategy using MIRA (version 3.2.1), reads for both genomes were 

mapped to the genomes of H. pylori 26695 (GenBank acc. NC_000915) (5) and J99 

(NC_000921.1) (1). A de novo assembly using Velvet was also performed and 

aligned to the MIRA assembly to close gaps. 17874 and P79 contigs were assembled 

into 80 and 48 scaffolds, respectively. Protein coding regions were identified using 

the NCBI Prokaryotic Genome Automated Annotation Pipeline (PGAAP) and 

manually curated, with particular interest in flagellum-related genes. Predicted 

coding regions were identified with a minimum cut-off size of 30 amino acids. 

H. pylori 17874 and P79 have genome sizes of 1,615,763 bp and of 1,641,495 bp, 

respectively and GC content of 38.97% and 38.86%, respectively. Both strains are 

cagA+ and vacA+, well described virulence factors (2). Strain-unique genes were 

identified using a pairwise bi-directional BLASTP comparison, where the query 

sequence has no detectable homologues. The 17874 genome contains 1,639 open 

reading frames, with 35, 45 and 24 unique genes that are absent in 26695, J99 and 
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P79, respectively. Sixteen genes from 26695 and 6 genes from J99 are absent in 

17874. H. pylori P79 contains 1,699 open reading frames, with 40, 52 and 36 unique 

genes that are absent in 26695, J99 and 17874, respectively. Twelve genes from 

26695 and 6 genes from J99 are absent in P79. Twenty one genes are unique to the 

17874 and P79 genomes compared across these four strains. 

The majority of strain-unique genes identified encode hypothetical protein 

products. Of note, 17874 possesses a unique type II restriction enzyme, and P79 

possesses a unique hypothetical membrane protein that is absent in 26695/J99. 17874 

and P79 lack metal-binding proteins present in both 26695 and J99, but possess Cag 

island protein B. All major flagellar and outer membrane proteins are present and 

intact in both 17874 and P79 compared to 26695 and J99. A hypothetical protein 

with predicted involvement in ATPase activity during flagellum biogenesis is absent 

in P79. 

3 Nucleotide Sequence Accession Numbers 

The draft genome sequence of H. pylori 17874 has been deposited in GenBank, 

available through the BioProject accession number PRJNA76569 and project ID 

76569. Similarly, the draft sequence of P79 is available in GenBank through the 

BioProject accession number PRJNA76567 and project ID 76567. 

4 Acknowledgements 

This project was supported by a Research Frontiers Programme award 

(09_RFP_GEN2443) from Science Foundation Ireland to PWOT, and by an Embark 

scholarship from IRCSET to CDC. 



Chapter 2: Genome Announcement 

~ 87 ~ 

5 References 

1. Alm RA, Ling L-SL, Moir DT, King BL, Brown ED, Doig PC, Smith DR, 

Noonan B, Guild BC, deJonge BL, Carmel G, Tummino PJ, Caruso A, 

Uria-Nickelsen M, Mills DM, Ives C, Gibson R, Merberg D, Mills SD, 

Jiang Q, et al. 1999. Genomic-sequence comparison of two unrelated isolates 

of the human gastric pathogen Helicobacter pylori. Nature 397:176-180. 

2. Basso D, Plebani M, Kusters JG. 2010. Pathogenesis of Helicobacter pylori 

Infection. Helicobacter 15:14-20. 

3. Heuermann D, Haas R. 1998. A stable shuttle vector system for efficient 

genetic complementation of Helicobacter pylori strains by transformation and 

conjugation. Mol. Gen. Genet. 257:519-528. 

4. Marshall BJ, Royce H, Annear D. 1984. Original isolation of 

Campylobacter pyloris from human gastric mucosa. Microbios. Lett. 25:83-

88. 

5. Tomb J-F, White O, Kerlavage AR, Clayton RA, Sutton GG, 

Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA, Nelson 

K, Quackenbush J, Zhou L, Kirkness EF, Peterson S, Loftus B, 

Richardson D, Dodson R, Khalak HG, Glodek A, et al. 1997. The 

complete genome sequence of the gastric pathogen Helicobacter pylori. 

Nature 388:539-547. 

 



 

 

 Expanded Thesis Analysis: 

  
 Comparative Genomics of Two Motile 

Helicobacter pylori Strains and Core 

Genome Analysis of 43 Strains 



Chapter 2: Comparative Genomics 

~ 89 ~ 

1 Abstract 

H. pylori was the first species for which two genomes were sequenced (Alm et al., 

1999; Tomb et al., 1997). This revealed a large degree of synteny in overall genome 

organisation between the strains 26695 and J99. However, H. pylori genomes 

possess regions of hypervariability e.g. cytotoxin-associated gene pathogenicity 

island (cagPAI) and plasticity zones (Alm and Trust, 1999). 

The draft genome sequence of Helicobacter pylori CCUG 17874, the type-strain 

for the species, comprises 80 scaffolds containing 1.61 Mbp of sequence with a 

GC content of 38.97%. In silico analysis identified 1,639 coding genes, including 

vacA, cagA, 3 IS elements and 28 pseudogenes. This motile strain is widely used in 

flagellum biogenesis studies. P79 is a readily-transformable derivative of strain P1, 

which facilitates genetic manipulation of H. pylori cells. A draft assembly of P79, 

comprising 48 scaffolds, contains 1.64 Mbp of sequence with a GC content of 

38.86%. Similarly, in silico analysis identified 1,699 coding genes including vacA, 

cagA, 5 IS elements and 33 pseudogenes. 

Comparative analysis of these two strains revealed that both possess the full 

complement of flagellar genes. H. pylori CCUG 17874 possesses 35, 45 and 24 

unique genes that are absent in 26695, J99 and P79, respectively. H. pylori P79 

possesses 40, 52 and 36 unique genes that are absent in 26695, J99 and 17874, 

respectively. The core genome of H. pylori comprises 898 genes, based on analysis 

of 43 sequenced strains, including 17874 and P79. Core genomes were also 

identified for the following disease subtypes: gastritis, duodenal ulcer, gastric cancer 

and MALT lymphoma. 

This analysis provides sequence information for these useful lab strains, and 

insights into the genetic organisation of H. pylori. As a result, a more conservative 

core genome for the species has now been determined. The genomes of these strains 

provide a clearer genomic platform for H. pylori motility investigation. 
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2 Introduction 

Helicobacter pylori is a pathogen which colonises the human gastric mucosa, 

causing gastritis, duodenal and gastric ulcers, and gastric carcinoma (Blaser, 1997; 

Goodwin et al., 1986; Uemura et al., 2001). Motility is an essential feature for 

colonisation as it enables H. pylori to move from the lumen of the stomach, through 

the mucosal lining where it can interact with host epithelial cells (Algood and Cover, 

2006; Eaton et al., 1992). H. pylori motility requires the presence of 2 - 6 polar, 

sheathed flagella (Eaton et al., 1992; Yoshiyama and Nakazawa, 2000). Flagellum 

biogenesis in H. pylori is a complex, hierarchical process which differs from other 

model organisms such as Salmonella and E. coli (Lertsethtakarn et al., 2011; 

Macnab, 2003). The genome of H. pylori strain 26695 was the first to be sequenced 

for the species. The genome features of this strain have been well described and used 

in subsequent comparative studies (Alm et al., 1999; Tomb et al., 1997). However, 

this non-motile strain is not appropriate for motility studies because of a frameshift in 

the flip gene (Josenhans et al., 2000). The type-strain, CCUG 17874, has been 

extensively used to investigate motility, but the genome had not been sequenced. 

H. pylori was the first species for which the genome of more than one strain was 

sequenced (Alm et al., 1999; Tomb et al., 1997). Comparative analysis revealed that 

H. pylori genomes exhibit significant variation in defined regions of hypervariability, 

while retaining synteny in the overall genome organisation. The striking genome 

plasticity of this gastric pathogen coupled with the variety of clinical outcomes 

which can arise from infection have served as the impetus for genome mining studies 

to identify strain-specific virulence factors and genetic markers for disease. At the 

time of writing, the genomes of 52 H. pylori strains had been fully sequenced, 

annotated and are publically available through the NCBI web resource (NCBI, 2013). 

Additionally, the draft genome sequences of a further 228 strains are available, 

though some lack annotation. 

The first live organisms to have their genomes sequenced were 

Haemophilus influenzae (Fleischmann et al., 1995) and Mycobacterium genitalium 

(Fraser et al., 1995) at the J. Craig Venter Institute (formerly the Institute of 

Genomic Research (TIGR)). These were shortly followed by the genome sequence of 

other organisms including that of E. coli (Blattner, 1997), and later 

Salmonella enterica serovar Typhimurium (McClelland et al., 2001), the model 
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organisms for bacterial motility studies. Sequencing methods have developed 

considerably from the initial chain termination sequencing to next generation, and 

now third generation sequencing technologies. Next generation sequencing (NGS) 

can be subdivided into single nucleotide addition (pyrosequencing), cyclic reversible 

termination (Illumina) and sequencing by ligation (Applied Biosystems SOLiD). 

Each of these methods involves random fragmentation of genomic DNA and 

hybridisation to adapters followed by sequencing by either non-

fluorescent/fluorescent means (Metzker, 2010). These methodologies have 

limitations including slow processing time due to the large number of sequencing 

cycles per run, amplification of errors in the PCR-based sequencing and short read 

lengths. Nevertheless, NGS allows the generation of a large volume of sequence data 

cheaply. Third generation sequencing methods including single real time (Pacific 

Bioscience) (Eid et al., 2009) and nanopore (Oxford) sequencing have recently been 

developed. These eliminate amplification bias problems, and generate longer read 

lengths, thus improving the quality of genome sequencing for the future (Koren et 

al., 2013). 

As genome sequencing has become increasingly affordable and rapid in recent 

years, this has lead to an increase in the volume of genome information available for 

mining (Horner et al., 2010; Loman et al., 2012). A whole-genome shotgun 

sequencing approach is a powerful strategy to sequence and assemble whole genome 

data both rapidly and cheaply. Illumina sequencing followed by mapping to a 

reference genome is a reliable means for genome analysis and comparative studies. 

Furthermore, comparison with a de novo assembly of the same reads improves 

resolution of genome assembly. 

H. pylori CCUG 17874 was originally isolated from the gastric antrum of a 

patient in Perth, Australia and is the type-strain for the species (Marshall et al., 

1984). P79 is a derivative of strain P1 (isolated from a patient with non-ulcer 

dyspepsia), transformed with 17874 derivative chromosomal DNA to generate a 

streptomycin-resistant mutant (Heuermann and Haas, 1998). This readily-

transformable strain facilitates genetic studies of H. pylori. The genomes of these 

strains were sequenced to enhance H. pylori motility investigation and contribute to 

our understanding of the genomic organisation of this pathogen. Comparative 

analyses with other sequenced strains of H. pylori provided an updated core genome 

for the species and disease-associated subtypes. 
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3 Methods 

 3.1 Bacterial Strains and Culture Conditions 

H. pylori strains CCUG 17874 and P79 were grown on Columbia Base Agar 

(CBA) solid medium (Oxoid, UK), supplemented with 5% v/v heat-inactivated, 

defibrinated horse blood (Cruinn, Ireland). Plates were incubated at 37°C, 5% CO2 

and sub-cultured every two days. 

 3.2 Genomic DNA Extraction 

Cells were harvested from 2 day old full plates in sterile phosphate buffered saline 

(PBS). Genomic DNA was extracted using DNeasy Blood and Tissue DNA 

Extraction Kit (Qiagen, Germany) according to manufacturer’s instructions. Briefly, 

cells were lysed and treated with proteinase K and RNase A. DNA was then bound to 

a silica column and washed before elution. DNA concentration and quality was 

estimated using Nanodrop 2000 (Thermo Scientific). Genomic DNA was run on a 

1% agarose gel in TAE buffer at 90 V for 30 min to confirm quality. 

 3.3 Genome Sequencing and Annotation 

The genomes of H. pylori CCUG 17874 and H. pylori P79 were sequenced on the 

Illumina HiSeq platform (Beijing Genomics Institute, China). A paired-end library 

was generated and sequenced containing 20,154,284 and 13,298,804 reads of 90 bp 

for the genomes of CCUG 17874 and P79, respectively. In a reference-guided 

assembly strategy using MIRA (version 3.2.1) (Chevreux et al., 1999), reads for both 

genomes were mapped to the genomes of H. pylori 26695 (GenBank acc. 

NC_000915) and J99 (NC_000921.1) (Alm et al., 1999; Tomb et al., 1997). A de 

novo assembly using Velvet was also performed for each genome and aligned to the 

MIRA assembly to close gaps. H. pylori CCUG 17874 and P79 contigs were 

assembled into 80 and 48 scaffolds, respectively. 

Automated gene calling and annotation were performed by the NCBI Prokaryotic 

Genome Automated Annotation Pipeline (PGAAP). Open reading frames (ORFs) 

were predicted by Genemark searches within the manually curated Protein Clusters 

database. Reverse PSI-BLAST (RPS-BLAST) was performed against the Clusters of 

Orthologous Groups (COGs) database to assign COG fuctional categories to the 

predicted ORFs. Additionally, InterProScan was used to identify protein domains 
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and signatures (Quevillon et al., 2005). Frameshifts and partial gene fragments 

indicating potential pseudogenes were identified by alignment of proteins from the 

target set to the genome with ProSplign (a global alignment algorithm) and then 

checked with GeneMarkS. Clustered Regularly Interspaced Short Palindromic 

Repeats (CRISPRS) were identified by searching the CRISPR database (Grissa et al., 

2007). tRNAs were identified using tRNA-scan (Lowe and Eddy, 1997) and 

ribosomal binding sites using RBSfinder (Suzek et al., 2001).  

Identified protein coding regions were manually curated in Artemis (Rutherford et 

al., 2000), with particular interest in flagellum-related genes. Predicted ORFs had a 

minimum cut-off size of 30 amino acids. Each of the draft genomes were submitted 

to the KAAS (KEGG Automatic Annotation Server) online server which 

automatically assigns K numbers to genes, enabling reconstruction of KEGG 

pathways and BRITE hierarchies using a bi-directional best hit BLAST approach 

(Moriya et al., 2007). 

Accession numbers: The draft genome of H. pylori CCUG 17874 is available 

under the BioProject accession number PRJNA76569. Similarly, the draft genome 

sequence of P79 is available under accession number PRJNA76567. 

 3.4 Genome Comparisons 

Whole genome alignments were generated using Big Blast software (available 

from the Welcome Trust Institute (http://www.sanger.ac.uk)) to compare the 

genomes. Artemis Comparison Tool (ACT) was used to visualise the alignments 

(Carver et al., 2005). Nucmer, part of the MUMmer software package, was used to 

generate further alignments (Kurtz et al., 2004). METAPHORE is a custom in-house 

software which was used to identify orthologues, unique genes and core genes by 

performing bi-directional BLASTP comparisons on two or more genomes (Van der 

Veen et al., 2014). Proteins with minimum 30% identity over 80% of their sequence 

length were classed as orthologues. Core genes were defined as those present in all 

possible pairwise genome combinations tested. Unique genes were defined as genes 

with no detectable homologues in bidirectional BLASTP comparisons. Phylogenetic 

trees were built based on concatenated MLST (multi locus sequence typing) analysis 

of 7 housekeeping genes that are distributed throughout the genome (Jolley and 

Maiden, 2010). 
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4 Results and Discussion 

 4.1 General Genome Features 

The draft genome sequences of two H. pylori strains, CCUG 17874 and P79, are 

described in the following sections. Due to the draft nature of these sequences, 

information generated regarding pseudogenes, unique genes and specific gene 

numbers are estimates limited by the coverage of the genome sequences in this 

project. In order to ascertain absolute numbers, gap closure of the draft sequences 

would be required. For the purposes of this thesis, the sections ahead will refer to 

details generated from the draft genome sequences. 

H. pylori CCUG 17874 and P79 have assembled genome sizes of 1,615,763 bp 

and of 1,641,495 bp, respectively and GC content of 38.97% and 38.86%, 

respectively (Table 2). Bioinformatic analysis of the H. pylori CCUG 17874 genome 

identified 1,639 coding regions with a coding density of 86.5% and an average gene 

length of 853 bp (Figure 15). In H. pylori P79, 1,699 coding regions were identified, 

representing a coding density of 85.1% and an average gene length of 812 bp (Figure 

16). Gene synteny was largely conserved between 17874/P79 and reference strain 

26695 (Figure 17). Biological functions could be assigned to 1,114 (67.9%) of the 

predicted proteins of H. pylori CCUG 17874. Of the remaining 525 predicted 

hypothetical proteins, 182 had COG functional categories assigned. Similarly, 

biological functions could be assigned to 1,079 (63.5%) of the predicted proteins of 

H. pylori P79. Of the remaining 620 predicted hypothetical proteins, 218 had COG 

functional categories assigned. The rest were either homologous to hypothetical 

proteins in other species or had no match to any known proteins, and hence were 

classified as unique proteins. Phylogenetic analysis based on MLST core genes 

predicted that 17874 clusters with the European strains, where it’s predicted most 

closely related, sequenced strain is G27 (Figure 18). P79 also clusters with the 

European strains, closest to 26695 and P12. 

Thirty six tRNA genes were identified in the genome of H. pylori CCUG 17874, 

while 35 were identified in the genome of P79. In both cases, the genes represent all 

20 amino acids (redundant genes were present for 8 tRNAs in 17874, and 9 tRNAs in 

P79). In both genomes, 22 of these tRNAs were located on the lagging strand, most 

of which cluster near the 23S rRNA gene. 
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The genome of H. pylori CCUG 17874 contains 25 predicted pseudogenes (1.5% 

of coding sequences) (Table 2), generally as a result of homopolynucleotide 

mutations which cause in-sequence frame shifts. The H pylori P79 genome contains 

29 predicted pseudogenes (1.7% of coding sequences). These predicted pseudogenes 

include recombinase A, genes in the plasticity regions of the strains and components 

of the restriction modification systems. Three transposases were indentified in the 

genome of H. pylori CCUG 17874, all part of the IS605 family. Four transposases 

were identified in the genome of P79, from IS605, IS606 and PS3IS, as well as an 

IS200 from H. pylori SARA17 (Table 3). The genomes of both strains were also 

found to harbour phage-associated genes (Table 4). 

 4.2 Plasticity Zones 

There are 5 and 3 regions with deviating GC content in H. pylori CCUG 17874 

and P79, respectively. The genes encoding cagA and vacA are both located in these 

low GC regions (“plasticity zones”), as well as many of the strain-specific genes of 

H. pylori (Alm and Trust, 1999; Boneca et al., 2003). The plasticity zones of the 

26695 and J99 genomes are flanked by the ftsZ gene and the rRNA 5S/23S subunit 

genes (Alm et al., 1999; Tomb et al., 1997). Other strains have been identified with 

three plasticity regions e.g. P12 which have since been identified as transposable 

elements (Kersulyte et al., 2009). Plasticity regions include large genomic islands 

containing genes acquired by horizontal gene transfer, whereas PAIs are plasticity 

regions which encode virulence factors which contribute to the pathogenicity of the 

strain. Recent analysis of previously sequenced strains including 26695 have 

identified novel PAIs such as the tfs3PAI (Wang et al., 2013). The availability of 

sequence data for a large number of H. pylori strains will enable a better 

understanding of these hypervariable regions and their potential for uncovering novel 

disease markers. 

The fifth concentric circle in the genome atlas of 17874 shows 3 regions where 

the GC content is below the whole-genome average (Figure 15). The first region, 

which occurs near the origin, contains genes encoding transposases A and B, 

hypothetical proteins, RM system components and replicase A. The second region 

contains the cagPAI which includes genes encoding a T4SS apparatus which 

assemble to facilitate secretion of the CagA effector protein. The third region of low 

% GC includes genes encoding hypothetical proteins flanking a competence-like 
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protein, RM genes and an integrase. Other genes with low GC content which occur 

outside of these regions include ABC-type multidrug resistance genes, hypothetical 

genes and an inactivated helicase. 

In the P79 genome, there are two plasticity zones: left and right. Plasticity zone 

left has a GC content of 33.3%, while plasticity zone right has a GC content of 

32.66%, both lower than the rest of the genome (Figure 16). Genes present in 

plasticity zone left include those encoding hypothetical proteins, 

phage/colicin/tellurite resistance cluster terY, transposases A and B, topoisomerase 

and helicase. The ftsZ gene flanks plasticity zone right of P79, containing genesof the 

cagPAI. Similar to 17874, low GC content genes which occur outside of these two 

plasticity zones encode hypothetical proteins, multi-drug resistance proteins and RM 

system components. 

 4.3 Motility Genes, Virulence Factors and OMPs 

All of the major regulatory and structural components required for flagellum 

biogenesis are present in the genomes of H. pylori CCGUG 17874 and P79 with 

reference to 26695 and J99 (Table 5). While the flagellar genes are not organised into 

discrete operons as is the case for Salmonella, the gene order is largely preserved 

across strains (Figure 19). The gene for a hypothetical protein with predicted 

involvement in ATPase activity during archaeal flagellum biogenesis is absent in 

P79. Both 17874 and P79 are motile strains of H. pylori with fully functional 

flagella, which is supported by the presence of the flagellar gene complement 

essential for motility (Figure 20). 

Cytotoxin-associated gene A (CagA) and vacuolating cytotoxin (VacA) are two 

key virulence factors involved in H. pylori pathogenesis (Basso et al., 2010). 

CCUG 17874 and P79 are both cagA and vacA positive and encode homologues of 

the virulence factor mviN protein (HP17_03394 and HP79_02579) (Table 6). In 

addition to these, P79 contains two virulence genes not present in 17874, both of 

which are annotated as encoding virulence associated protein D (VapD): 

HP79_08912 and HP79_08333. Both strains are urease and catalase positive, key 

virulence factors that enhance colonisation and infection of the host. HP17_07827 

encodes a labile enterotoxin product which is absent in the genome of P79. Both 

strains also express a number of multidrug-resistance proteins enabling bacterial 
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survival in the presence of compounds such as methicillin and tetracycline in the case 

of P79. 

CagA is a potent oncoprotein which induces inflammation and is associated with 

the more severe clinical outcomes of H. pylori infection including gastric cancer and 

mucosa-associated lymphoid tissue (MALT) lymphoma (Murata-Kamiya, 2011; 

Ohnishi et al., 2008; Wroblewski and Peek, 2011). The cagPAI of 17874 contains 

30 genes with an average GC content which is lower than is typical for the H. pylori 

genome (Figure 15). The gene encoding Cag15 is absent from the genome of 17874, 

while it contains two genes encoding hypothetical proteins which are absent in P79 

(Table 6). The function of Cag15 is unknown. However, Cag15 contains putative 

transmembrane domains (Joyce et al., 2001). The cag7 gene is identified as a 

pseudogene in the genome of P79 and cag3 is potentially inactive due to a frameshift 

mutation. Cag3 is hypothesised to be a novel secreted effector protein or an 

interaction partner of CagA (Olbermann et al., 2010). Both strains have prematurely 

truncated cag epsilon genes which are thus, also likely to be pseudogenes. 

VacA is a virulence factor which is associated with pathological outcomes of 

infection, depending on the allele present in a given strain of H. pylori (Atherton et 

al., 1995; Leunk et al., 1988; Rhead et al., 2007). In addition to the vacA gene, 

17874 contains 3 vacuolating cytotoxin paralogues. P79 contains 4 genes annotated 

as toxin-like outer membrane proteins (vacA paralogues) and 1 copy of vacA. One of 

these vacA paralogues may be inactive due to frameshift mutation. Both strains 

possess the i1 allele which is strongly associated with vacA and cagA positive 

H. pylori strains and has been associated with an increased risk of gastric atrophy and 

gastric carcinoma (Ferreira et al., 2012). 

Duodenal ulcer-promoting protein (DupA) has been identified as a marker of 

virulence when accompanied by an intact T4SS cluster (Jung et al., 2012; Lu et al., 

2005). 17874 does not contain the dupA gene cluster which is present as a complete 

unit in G27, and incomplete in reference strains J99 and 26695 (Jung et al., 2012). 

P79 is similar to 26695 as it contains a tfs3b partial cluster which contains a virB4 

gene with ~60% homology to dupA, and the secretion system genes virB8, virD4 and 

virD2. Outer membrane proteins and adhesins can contribute to virulence by 

mediating bacterial-host interactions. The annotated genes encoding OMPs of 17874 

(53 genes) and P79 (43 genes) are listed in Table 7 and Table 8. HopL is potentially 

non-functional in 17874 due to a frameshift mutation while an iron-regulated OMP 
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and a VacA paralogue are potentially frameshifted in the genome of P79. 17874 

contains the gene encoding sialic acid-binding adhesin, SabA, which is absent from 

the genome of P79. The blood group antigen binding protein (BabA) is also absent 

from these strains. Outer inflammatory protein (OipA/HopH) and HopQ homologues 

as well as Hom and Hof families are present in both 17874 and P79. Therefore, the 

diverse selection of OMPs available for presentation on the cell surface of H. pylori 

contributes to the inter-strain variation of this pathogen. Table 9 and Table 10 list the 

ABC transporter proteins annotated in the genomes of 17874 and P79, respectively. 

 4.4 Homopolymeric Repeats 

The genomes of H. pylori strains contain a characteristic high number of repeat 

sequences of varying lengths composed of cytosine or guanine nucleotides (Saunders 

et al., 1998; Tomb et al., 1997). Variation in the number of repeats incorporated 

during DNA replication by slipped-strand mispairing can alter the strength of 

expression of genes where the homopolymeric tract determines the promoter distance 

from its transcriptional start site (Moxon et al., 2006). Alternatively, changes in GC 

tract length located within a gene can alter the reading frame and introduce 

premature stop codons. In this way, H. pylori can switch its expression profile in a 

process termed phase variation (Lertsethtakarn et al., 2011). FliP is an example of 

this within the motility genes of H. pylori; a homopolymeric repeat of nine cytosines 

is responsible for the altered reading frame during expression of fliP in the non-

motile 26695 strain (Figure 21). A motile pseudorevertant was isolated in which the 

C9 tract had reverted to a C8 repeat, enabling expression of the functional form of 

FliP. Analysis of this tract in the genome sequence of P79 confirmed the presence of 

a C8 repeat. In 17874, the repeat is disrupted by the presence of an adenine at 

position 5, a silent mutation, as is the case in J99 (Figure 21). 

All genes containing homopolymeric GC repeats (≥ 8) either within the gene itself 

or upstream in the promoter region in the genomes of 17874 and P79 are listed in 

Table 11 and Table 12. In 17874, 39 genes have GC tracts of ≥ 8 bp, while there are 

21 such genes in P79. There are hundreds of instances of 6 - 8 bp homopolymeric 

repeats. Broadly, the genes potentially subject to antigenic variation are involved in 

LPS and outer membrane synthesis, replication and cell division, motility, virulence 

and restriction modification systems. Additionally, some ABC transporter genes and 

genes encoding tRNA synthetases for amino acid synthesis and multidrug efflux 
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pumps were identified containing poly GC tracts. A number of predicted 

pseudogenes are potentially silenced by phase variation, including an endonuclease 

and a type III restriction enzyme (Table 13 and Table 14). 

Therefore, H. pylori is complex in its regulation of gene expression. Phase 

variation enables this pathogen to conserve energy by restricting the genes of central 

cellular processes which can be expressed while retaining them for future use when 

they are required e.g. motility and virulence genes which are expressed during 

infection. 

 4.5 Natural Competence 

H. pylori strains are generally naturally competent for the uptake of exogenous 

DNA (Yeh et al., 2002). Natural competence of H. pylori involves core components 

of the T4SS, also known as the Com apparatus (Hofreuter et al., 2001; Karnholz et 

al., 2006). While competence is not essential during colonisation, it does promote 

colonisation during chronic infection as shown in a murine model (Dorer et al., 2010, 

2013). In H. pylori, most of the competence-related genes are found in two operons 

(comB2 - 4 and comB6 - 10) (Hofreuter et al., 2001). 

All of the known components involved in natural competence are present in 

17874 and P79 (Table 15). Comparing the Com apparatus components at a protein 

level highlighted some differences between strains 17874 and P79. ComB2 and 

ComB3 homologues have identical amino acid sequences while those of ComB4 

vary in 22 positions and ComB6 varies in 14 positions. ComB4 is an ATPase which 

is thought to power DNA translocation; ComB6 is an inner membrane component 

(Hofreuter et al., 2001; Karnholz et al., 2006). In P79, ComB7 is prematurely 

truncated due to the presence of an additional thymidine which changes the reading 

frame, resulting in a protein which is 7 aa shorter than its homologue in 17874. 

However, ComB7 is not an essential competence gene and as P79 is more readily 

transformable compared to 17874, this truncation does not have a negative impact on 

the natural competence of the strain (Hofreuter et al., 2001). Similarly, ComB8 is 

disrupted by a frame shift which changes the reading frame, resulting in a 

prematurely-truncated gene which encodes a 101 aa protein. This is due to the 

absence of one thymidine nucleotide in P79: 5’-TTGATG-3’ in P79 where the 

sequence is 5’-TTTGATG-3’ in 17874. This is likely a sequencing error as this 

truncated form of comB8 lacks the transmembrane domain which is critical for its 



Chapter 2: Comparative Genomics 

 

~ 100 ~ 

function, yet P79 is more efficient at DNA uptake through the Com apparatus than 

17874, which has the full length form of comB. The ComB9 homologue in 17874 

(HP17_04796) encodes 6 additional amino acids which are absent in that of P79. 

HP17_04796 also differs in protein sequence from HP79_04966 at 6 amino acid 

positions, though these are likely not to impact on the function of this protein e.g. L/I 

substitution. 

ComEC is an essential gene for H. pylori competence which is homologous to 

ComE3 in Bacillus subtilis, a channel-forming protein (Yeh et al., 2003). A proposed 

model for the mechanism of DNA uptake by natural competence is a two-step 

process, whereby double-stranded DNA is transported across the outer-membrane to 

the periplasm. ComEC then produces a pore through which the DNA can traverse the 

inner-membrane and enter the cytoplasm (Stingl et al., 2010). ComEC protein 

sequence is highly conserved among sequenced strains of H. pylori which harbour 

plasmids. While the sequences of 17874 and P79 ComEC homologues are not 

identical, these differences are confined to the variable regions, and hence are likely 

not to be responsible for the difference in competence between these strains. 

HP17_03604 is a putative periplasmic competence protein which is absent in P79. 

ComH is an essential component of natural transformation and is conserved across 

strains with varying transformation efficiencies (Smeets et al., 2000). It contains an 

N-terminal leader sequence, though the role of this protein in natural transformation 

is currently unknown. At a protein level, ComH of 17874 and P79 share 96% 

sequence similarity. DNA processing A (DprA) protein contributes to natural 

competence in H. pylori, where disruption of the gene causes reduced transformation 

efficiency of both plasmid and chromosomal DNA (Ando et al., 1999). DprB is co-

transcribed with DprA; it promotes DprA activity and may also function as a 

resolvase (Humbert et al., 2011; Sharma et al., 2010). The homologues of DprA and 

DprB in 17874 and P79 share 96% and 93% amino acid sequence similarity. The 

variation in DprB sequence is higher than is typical for H. pylori homologous 

proteins (4 - 5%), which possibly impacts on the function of this competence protein. 

Restriction modification (RM) poses a barrier to transformation and 

recombination of exogenous DNA into H. pylori (Ando et al., 2000). There are four 

types of RM sytems; the type II ststem is the most common and well-described of 

these. Type II RM requires the action of two enzyme types: methylases and 

endonucleases (Xu et al., 2000). Methylases methylate DNA at specific recognition 
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sites to label DNA as “self”. Endonucleases cleave DNA at specific recognition sites 

if these are not methylated. In this way, H. pylori can restrict the level of genetic 

exchange between strains. In 2012, a derivative strain of 26695 lacking type II 

restriction enzymes was found to have enhanced natural competence (Zhang and 

Blaser, 2012). 

H. pylori strains possess a large number of RM systems and many of these are 

strain-specific (Huimin et al., 2000). Comparative genomics of the RM systems of 

strains 26695 and J99 revealed that although H. pylori strains possess genes for 

multiple type II RM systems, many of these may not be biologically active (< 30% in 

J99/26695) (Lin et al., 2001). Table 16 and Table 17 list the type II restriction 

modification genes present in the genomes of 17874 and P79, respectively. There are 

21 such genes in the genome of 17874 while 9 were identified in that of P79. This is 

likely to be a key factor in the differing capacity of these strains for natural 

transformation due to altered restriction profiles. However, it must be considered that 

many of these systems may not be functionally active. 

Interestingly, several restriction enzymes contain homopolymeric tracts (Table 

12) and others are annotated as potential pseudogenes (Table 13) indicating that their 

expression can be modulated through phase variation. In P79, the gene encoding a 

type II methyltransferase (HP79_01260) is prematurely truncated due to a 

homopolymeric G tract containing 12 bp where the full length gene has 14 bp, as in 

reference strain 26695. RM and hypothetical genes are often strain-specific, as is the 

case for a number of gastric cancer-associated strains of H. pylori (McClain et al., 

2009). HP17_01508 and HP79_04682 encode homologues of the type II RM enzyme 

HsdR which is absent from the genome of J99. There is also a striking difference 

between the total number of methylases and endonucleases in 17874 and P79. 17874 

possesses genes encoding 32 methylases and 21 endonucleases, while P79 possesses 

37 methylases and just 13 endonucleases (Appendix 1 - Appendix 4), highlighting 

the inter-strain variation of RM components in H. pylori. 

 4.6 The Core Genome of H. pylori 

The most recently determined core genome identified 1,063 genes common to 

39 strains of H. pylori (Lu et al., 2013). The revised core genome of H. pylori was 

determined by bi-directional BLASTP analysis of 43 sequenced strains including 

17874 and P79 (Appendix 5). Here we present a more refined core genome 
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containing 898 genes (Appendix 6). Twenty six percent of the core genes are 

involved in metabolic pathways, while 10% are involved in the biosynthesis of 

secondary metabolites. Twenty two flagellum-related genes, 9 chemotaxis and 

15 LPS biosynthesis genes are conserved across all 43 strains of H. pylori. Thirteen 

ABC transport genes are conserved along with components of the ComB natural 

transformation system. There are 172 genes encoding hypothetical proteins in the 

core genome of H. pylori, emphasising its capacity for encoding novel biological 

functions. 

Of the 43 strains used to determine the core genome, 26 strains were isolated from 

individuals suffering from 1 of 4 H. pylori-related diseases: gastritis (10), duodenal 

ulcer (7), gastric cancer (7) and MALT lymphoma (2) (Appendix 5). The “disease 

core” genome was determined for these 26 strains, resulting in 977 genes which are 

common to all sequenced strains isolated from individuals suffering from H. pylori-

related disease. Approximately 40% of the proteome of H. pylori consists of 

hypothetical proteins with no known function (Alm and Trust, 1999; Boneca et al., 

2003). Hypothetical proteins account for 330 products of the “disease core” genes 

according to the annotation of strain 26695. Seventy nine genes are unique to the 

disease-type strains which may include disease markers and virulence genes 

(Appendix 7). Functional analysis of the 28 hypothetical proteins may contribute to 

our understanding of the mechanisms behind the induction of disease by H. pylori. 

Of note, vacA is a core gene of the disease-inducing strains which is not conserved 

by all 43 sequenced strains. Gene content comparisons of H. pylori isolates from 

patients suffering from gastroduodenal diseases have also been employed to probe 

for biomarkers of disease (Romo-González et al., 2009). Recently, Blanchard et al. 

reported the sequences of 65 H. pylori strains isolated from patients suffering from 4 

disease states as well as asymptomatic adults (Blanchard et al., 2013). In addition to 

the currently sequenced “disease” strains, this provides a valuable resource for 

further research into the pathogenesis of this gastric pathogen. 

Core genome analysis for strains isolated from patients suffering from gastritis, 

duodenal ulcer, gastric cancer and MALT lymphoma was performed to serve as a 

platform for the identification of potential disease-specific genetic markers in 

H. pylori. The “gastritis core” genome consists of 1,186 core genes, 288 of which are 

conserved by this group in addition to the “total core” H. pylori genome (Appendix 

8). These include the cagPAI, and genes encoding DNA translocase FtsK and 
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methicillin resistance protein. Additionally, 86 genes encoding hypothetical proteins 

form part of the “gastritis core” (26695 annotation). The “duodenal ulcer core” 

genome of H. pylori contains 1,236 conserved genes, 338 of which are duodenal 

ulcer-specific when compared to the “total core” genes (Appendix 9). In addition to 

127 genes encoding hypothetical proteins, genes encoding urease accessory proteins, 

spore coat polysaccharide biosynthesis protein C and RM system components are 

also conserved (J99 annotation). The “gastric cancer core” genome consists of 

1,114 genes, 216 of which are “gastric cancer core”-specific (Appendix 10). The 

additional genes encode products including 56 hypothetical proteins, OMPs, the 

cagPAI, virulence factor MviN, recombinase A and topoisomerase (F32 annotation). 

The “MALT core” genome contains 1,311 conserved genes and 413 “MALT core”-

specific genes with reference to the “total core” genome (Appendix 11). Among 

these 413 genes are those encoding OMPs, chemotaxis proteins, cobalt-zinc-

cadmium resistance protein, superozide dismutase and 128 hypothetical proteins 

(HELPY annotation). 

 4.7 Unique Genes 

Strain-unique genes were identified using a pairwise bi-directional BLASTP 

comparison of 17874, P79, 26695 and J99, where the query sequence has no 

detectable homologues. The 17874 genome contains 41, 45 and 25 unique genes that 

are absent in 26695, J99 and P79, respectively, including 20 which are absent in all 

three other strains (Appendix 12). All of these genes encode hypothetical proteins 

except for the type II restriction enzyme R which is present in 26695 and P79 but 

absent in the genome of J99. Twenty four genes from 26695 are absent from the 

genome of 17874, including genes encoding a metal-binding polypeptide and 

hypothetical proteins (Appendix 13). Seven genes all encoding hypothetical proteins 

from the genome of J99 are absent in 17874 (Appendix 14). P79 contains 41, 54 and 

38 unique genes that are absent in 26695, J99 and 17874, respectively (Appendix 

15). Twenty two genes from 26695 are absent from P79, many of which are also 

absent in 17874. Six genes from J99 encoding hypothetical proteins are absent in P79 

(Appendix 14). Thirty six genes are shared by 17874 and P79 but absent in 26695 

and J99. 

H. pylori has been associated with its anatomically modern human host for 

~60,000 years (Linz et al., 2007). Many of the strain-specific genes of H. pylori 
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encoding hypothetical proteins have a % GC content which is lower than the whole-

genome average, indicating that they have been acquired by horizontal gene transfer. 

This is refective of the evolutionary proccess by which H. pylori continuously adapts 

to its environment. Therefore, it is likely that many of these uncharacterised 

hypothetical proteins have biological functions which give competitive advantage to 

the strain from which they were isolated for survival in their specific host e.g. 

colonisation factors and stress response genes. H. pylori is one of the most 

genetically variable pathogens described and genetic recombination has a significant 

impact on population genetics in which allelic diversity can be associated with 

pathogenicity e.g. vacA s1/m1 allele is linked to higher risk of gastric cancer 

development (Miehlke et al., 2000; Suerbaum and Josenhans, 2007). 
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5 Conclusions 

The increased ease and reduced expense in bacterial genome sequencing has lead 

to the availability of large volumes of data for gene mining. The genome of H. pylori 

undergoes extensive genetic flux, as revealed by comparative genomics of many 

strains. The draft genome sequence of 17874, the type strain for the species, has been 

deposited in GenBank. In addition, the draft genome of P79, a motile and readily 

transformable strain has also been deposited. Availability of these sequences will 

contribute to future motility studies as well as studies requiring genetic modification. 

Comparative genomic analysis of strains 17874 and P79 revealed 1,639 and 

1,699 coding genes in genomes of 1.61 and 1.64 Mbp, respectively. H. pylori 

genome size is much smaller than that of enteric pathogens Staphylococcus aureus 

(~2.8 Mbp), Salmonella enterica (4.5 - 4.8 Mb) and Yersinia sp. (4.3 - 4.8 Mb) 

(Chen et al., 2010; Deng et al., 2003; Gill et al., 2005; Holt et al., 2009). Variations 

in the ComB complement and differences between the RM systems encoded for in 

the genomes of 17874 and P79 are likely to be responsible for the difference in 

natural transformation efficiency between these strains. Phase variation facilitated by 

the presence of homopolymeric nucleotide repeats may also contribute to this 

difference. Many of the strain-unique genes in 17874 and P79 (compared to 

reference strains 26695 and J99) are in regions of low % GC content and encode 

hypothetical proteins. Core genome analysis of 43 sequenced strains of H. pylori 

identified a more conservative 898 core genes for the species. The core genome of 

H. pylori is much smaller than those of other pathogens including S. aureus 

(2,245 genes based on the genomes of 13 strains) and Salmonella enterica 

(2,882 genes based on the genomes of 73 strains) (Boissy et al., 2011). Analysis of 

core genes conserved by strains isolated from patients suffering from H. pylori-

related diseases identified potential biomarkers of disease including the cagPAI and 

vacA.  
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6 Tables and Figures 

Table 2 General genome features of two H. pylori strains compared with reference 

strain H. pylori 26695 

Feature 
H. pylori 

CCUG 17874* 

H. pylori P79* H. pylori 26695 

Genome size (bp) 1,615,763 1,641,495 1,667,867 

G+C content (%) 38.97 38.86 39.00 

Coding genes 1,639 1,699 1,590 

Coding density (%) 86.5 85.1 90.4 

rRNA operons 2 2 7 

tRNAs 36 35 36 

Pseudogenes 25 29 3 

IS elements 3 5 14 

*Figures for CCUG 17874 and P79 are estimates based on the draft assembly automated 

annotation. 
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Table 3 IS elements identified in the genomes of H. pylori CCUG 17874 and P79 

Locus tag Contig Product 

HP17_01198 22 IS605 transposase (tnpB) 

HP17_01203 22 IS605 transposase (tnpA) 

HP17_08409 160 IS605 transposase (tnpB) 

   

HP79_04127 112 IS200 insertion sequence from SARA17 

HP79_04132 112 Transposase-like protein, PS3IS 

HP79_04137 112 IS606 transposase 

HP79_06476 159 IS605 transposase (tnpA) 

HP79_06481 159 IS605 transposase (tnpB) 



Chapter 2: Comparative Genomics 

 

~ 108 ~ 

Table 4 Phage-associated genes identified in the genomes of H. pylori CCUG 17874 and 

P79 

Locus tag Contig Product 

HP17_04069 73 Uncharacterised phage-associated protein 

HP17_06262 106 Phage integrase family site-specific recombinase 

HP17_08434 162 Phage/colicin/tellurite resistance cluster Y protein 

   

HP79_00375 14 Phage integrase family site-specific recombinase 

HP79_02479 69 Phage/colicin/tellurite resistance cluster Y protein 



 

 

Table 5 Flagellar genes identified in the genomes of H. pylori CCUG 17874 and P79 and their orthologues in H. pylori strains 26695 and J99 

Strain: 17874 P79 26695 J99 
 

Gene name Locus tag Contig Locus tag Contig Locus tag Locus tag Product function 

putative secreted 

heat shock protein 

HP17_03754 71 HP79_01330 35 HP_1462 jhp_1355 Secreted protein involved in motility 

fliR HP17_00295 6 HP79_07780 188 HP_0173 jhp_0159 Flagellar biosynthetic protein 

flgE1 HP17_03309, 

HP17_0329, 

HP17_03314 

60, 62, 

63 

HP79_02664, 

HP79_02669 

74, 75 HP_0870 jhp_0804 Fagellar hook protein 

flgK HP17_03469 68 HP79_08992 214 HP_1119 jhp_1047 Hook-associated protein 1 (HAP 1) 

flgA HP17_03844 72 HP79_01230 31 HP_1477 jhp_1370 Flagellar basal body P-ring biosynthesis protein 

flaB HP17_00935 17 HP79_04542 123 HP_0115 jhp_0107 Flagellin B 

pflA HP17_01373 24 HP79_06751 164 HP_1274 jhp_1195 Paralysed flagella protein PflA 

flgH HP17_01838 31 HP79_00560 19 HP_0325 jhp_0308 Flagellar basal body L ring protein 

flaG 1 HP17_01853 31 HP79_00575 19 HP_0327 jhp_0310 Flagellar associated protein-glycosylation 

fliF HP17_01975 33 HP79_00717 21 HP_0351 jhp_0325 Flagellar basal body M ring protein 

fliG HP17_01980 33 HP79_00722 21 HP_0352 jhp_0326 Flagellar motor switch protein 

fliH HP17_01985 33 HP79_00727 21 HP_0353 jhp_0327 Flagellar export protein 

hypothetical 

protein 

HP17_02010 33 Absent  HP_0206 jhp_0192 Predicted ATPase involved in biogenesis of 

archaeal flagella 

hypothetical 

protein 

HP17_04675  HP79_08575  HP_0256 jhp_0240 Involved in motility and cell envelope 

architecture 

flgG HP17_02025 33 HP79_06991 170 HP_1092 jhp_0333 Basal body rod protein 

flhA HP17_02297 36 HP79_07273 175 HP_1041 jhp_0383 Flagellar basal body protein involved in export 

flhF HP17_02327 36 HP79_07303 175 HP_1035 jhp_0389 Flagellar biosynthesis regulator/GTP-binding 



 

 

protein 

flhG HP17_02332 36 HP79_07308 175 HP_1034 jhp_0390 ATP-binding protein 

fliA HP17_02342 36 HP79_07318 175 HP_1032 jhp_0392 Sigma 28 subunit of DNA-dependent RNA 

polymerase 

fliM HP17_02347 36 HP79_07323 175 HP_1031 jhp_0393 Flagellar motor switch protein 

fliY HP17_02352 36 HP79_07328 175 HP_1030 jhp_0394 Flagellar motor switch protein 

flgE2 HP17_02559 41 HP79_01645 43 HP_0908 jhp_0844 Flagellar hook protein homolog 

flgD HP17_02564 41 HP79_01650 43 HP_0907 jhp_0843 Flagellar hook capping protein 

fliE HP17_04401 81 HP79_05396 135 HP_1557 jhp_1465 Flagellar hook-basal body protein 

flgC HP17_04406 81 HP79_05391 135 HP_1558 jhp_1466 Flagellar basal body rod protein 

flgB HP17_04411 81 HP79_05386 135 HP_1559 jhp_1467 Flagellar basal body rod protein 

flgG HP17_04556 82 HP79_05246 133 HP_1585 jhp_1492 Distal rod protein 

flgI HP17_04911 86 HP79_08525 202 HP_0246 jhp_0231 Flagellar basal body P-ring protein 

flgL HP17_05185 90 HP79_08807 209 HP_0295 jhp_0280 Flagellar hook-associated protein 

flaA HP17_05595 99 HP79_02059 61 HP_0601 jhp_0548 Flagellin A 

fliN HP17_05695 99 HP79_02184 66 HP_0584 jhp_0531 Flagellar motor switch protein 

fliP HP17_06317 108 HP79_00335 14 HP_0684, 

HP_0685 

jhp_0625 Flagellar biosynthesis protein 

fliW 2 HP17_06902 130 HP79_05914  149 HP_1377 jhp_1291 Flagellar assembly protein 

hpaA3 HP17_07457 145 HP79_04057 109 HP_0492 jhp_0444 Flagellar sheath adhesin 

fliI HP17_07767 148 HP79_00065 4 HP_1420 jhp_1315 Flagellum-specific ATP synthase 

fliQ HP17_07772 148 HP79_00060 4 HP_1419 jhp_1314 Flagellar biosynthesis protein 

flaG 2 HP17_07932 149 HP79_03366 95 HP_0751 jhp_0688 Uncharacterised flagellar protein 

fliD HP17_07937 149 HP79_03361 95 HP_0752 jhp_0689 Flagellar hook associated protein 2 (capping 

protein) 



 

 

fliS HP17_07942 149 HP79_03356 95 HP_0753 jhp_0690 Flagellin specific chaperone 

flhB1 HP17_08034 150 HP79_03271 93 HP_0770 jhp_0707 Flagellar basal body protein 

motB HP17_08666 165 HP79_03001 83 HP_0816 jhp_0752 Flagellar motor protein 

motA HP17_08671 165 HP79_03011, 

HP79_03006 

84, 83 HP_0815 jhp_0751 Flagellar motor protein 

fliL HP17_08701 165 HP79_03046 86 HP_0809 jhp_0745 Flagellar basal body-associated protein 

rpoN HP17_06522 116 HP79_00175 8 HP_0714 jhp_0652 RNA polymerase factor sigma-54 

flgM HP17_03484 68 HP79_09007 214 HP_1122 jhp_1051 Anti-fliA 

envA/lpxC HP17_02230 35 HP79_07213 174 HP_1052 jhp_0373 UDP-3-O-[3-hydroxymyristoyl] N-

acetylglucosamine deacetylase 

fliT HP17_07947 149 HP79_03351 95 HP_0754 jhp_0691 Flagellar chaperone, hypothetical protein 

fliK HP17_02569 41 HP79_01655 43 HP_0906 jhp_0842 Hypothetical protein 

flgJ HP17_02688 44 HP79_03583 101 HP_1233 jhp_1154 Hypothetical protein 

atoS HP17_04901 86 HP79_08515 202 HP_0244 jhp_0229 Histidine kinase specific for flgR 

neuA/flmD HP17_01843 31 HP79_00565 19 HP_0326 absent CMP-N-acetylneuraminic acid synthetase 

flaA1 HP17_06000 101 HP79_02849 79 HP_0840 jhp_0778 UDP-GlcNAc C6 dehydratase 

putative fliZ HP17_01473 24 HP79_06681 163 HP_1286 jhp_1206 Uncharacterised conserved protein 

*potential frameshift in P79 

flhB2 HP17_04491 81 HP79_05311 135 HP_1575 jhp_1483 Homologue of flhB protein cytoplasmic domain 

hpaA2 HP17_07264 143 HP79_05691 139 HP_0410 jhp_0971 Flagellar sheath associated protein paralog 

hpaA HP17_08561 165 HP79_03111 87 HP_0797 jhp_0733 Flagellar sheath associated protein paralog 

flgZ HP17_08776 166 HP79_08283 199 HP_0958 jhp_0892 Hypothetical protein 

fliB HP17_05065 88 HP79_08677 204 HP_0274 jhp_0259 Flagellin N-methylase family protein 



 

 

Table 6 List of genes in the cagPAIs of H pylori CCUG 17874 and P79 

17874 

Locus tag 

 

Contig 

P79 

Locus tag 

 

Contig 

 

Product 

HP17_07617 147 HP79_03897 108 Cag pathogenicity island protein (Cag1) 

HP17_07622* 147 HP79_03892* 108 Cag pathogenicity island protein epsilon 

HP17_07627 147 HP79_03887/82* 108 Cag pathogenicity island protein (Cag3) 

HP17_07632 147 HP97_03877 108 Cag pathogenicity island protein gamma 

HP17_07637 147 HP79_03872/67 108/7 Cag pathogenicity island protein 5 

HP17_07642 147 HP79_03862 107 Cag pathogenicity island protein alpha 

HP17_07647 147 HP79_03857 107 Cag pathogenicity island protein (Cag6) 

HP17_07652 147 HP79_03852 107 Hypothetical protein 

HP17_07657/03179/84 147/58/57 Pseudogene 107 Cag pathogenicity island protein Y VirB10-like protein (Cag7) 

HP17_03174 57 HP79_02474 68 Cag pathogenicity island protein X (Cag8) 

HP17_03169 57 HP79_02469 68 Cag pathogenicity island protein W (Cag9) 

HP17_03164 57 HP79_02464 68 Cag pathogenicity island protein V (Cag10) 

HP17_03159 57 HP79_02459 68 Cag pathogenicity island protein U (Cag11) 

HP17_03154 57 HP79_02454 68 Cag pathogenicity island protein T (Cag12) 

HP17_03149 57 HP79_02449 68 Cag pathogenicity island protein S (Cag13) 

HP17_03144 57 Absent  Hypothetical protein 

HP17_05960 100 HP79_02444 68 Cag pathogenicity island protein Q (Cag14) 

HP17_05955 100 Absent  Hypothetical protein 

Absent  HP79_02443 68 Cag island protein (Cag15) 

HP17_05950 100 HP79_02439 68 Cag pathogenicity island protein M (Cag16) 

HP17_05945 100 HP79_02434 68 Cag pathogenicity island protein N (Cag17) 



 

 

HP17_05940 100 HP79_02429 68 Cag pathogenicity island protein L (Cag18) 

HP17_05935 100 HP79_02424 68 Cag pathogenicity island protein (Cag19) 

HP17_05930 100 HP79_02419 68 Cag pathogenicity island protein H (Cag20) 

HP17_05925 100 HP79_02414 68 Cag pathogenicity island protein G (Cag21) 

HP17_05920 100 HP79_02409 68 Cag pathogenicity island protein F (Cag22) 

HP17_05915 100 HP79_02404 68 Cag pathogenicity island protein E (Cag23) 

HP17_05910 100 HP79_02399 68 Cag pathogenicity island protein D (Cag24) 

HP17_05905 100 HP79_02394 68 Cag pathogenicity island protein C (Cag25) 

HP17_05900 100 HP79_02389 68 Cag pathogenicity island protein B 

HP17_05895 100 HP79_02384 68 Cytotoxin-associated protein A (Cag26) 

*Potentially frameshifted. 
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Table 7 List of OMPs annotated in the genome of H. pylori CCUG 17874 

Locus tag Contig Product 

HP17_05565 97 Outer-membrane protein of the hefABC efflux system 

HP17_06167 104 Protective surface antigen D15 

HP17_03504 68 Peptidoglycan-associated lipoprotein precursor 

HP17_03904 72 Lipase-like protein 

HP17_00746 15 Outer membrane protein 

HP17_00045 2 Outer membrane protein 

HP17_06737 125 Outer membrane protein 

HP17_02957 48 Outer membrane protein 

HP17_04826 86 Outer membrane protein HopA; signal peptide 

HP17_04953 87 Outer membrane protein HopF; putative signal peptide 

HP17_04958 87 Outer membrane protein HopG 

HP17_00320 7 Outer membrane protein 

HP17_00355 8 Outer membrane protein; signal peptide 

HP17_00415 10 Putative outer membrane protein 

HP17_00501 12 Putative outer membrane protein 

HP17_07134 140 Outer membrane protein HofC 

HP17_07129 140 Outer membrane protein HofD; signal peptide 

HP17_05785 99 Outer membrane protein, predicted permease 

HP17_05385 93 Outer membrane protein, OipA 

HP17_06247 106 Outer membrane protein 

HP17_06387 112 Outer membrane protein 

HP17_06472 115 Outer membrane protein HopE 

HP17_06497 116 Putative outer membrane protein HomB 

HP17_06502 116 Outer membrane protein 

HP17_06567 121 Outer membrane protein SabA 

HP17_08129 153 Outer membrane protein HofF 

HP17_08556 165 Outer membrane protein HorG 

HP17_06005 101 Outer membrane protein P1 

HP17_03344 64 Iron-regulated outer membrane protein 

HP17_02524 41 Outer membrane protein HopB 

HP17_02519 41 Outer membrane protein 

HP17_02509 41 Iron-regulated outer membrane protein 

HP17_01010 19 Putative outer membrane protein 

HP17_02160 35 Outer membrane protein HorD 

HP17_02080 34 Outer membrane protein HofB; signal peptide 

HP17_01833 31 Outer membrane protein HorC; signal peptide 

HP17_01788 29 Outer membrane protein 

HP17_08264 158 Outer membrane protein HopI 

HP17_08259/54 158 Outer membrane protein HopL * 
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HP17_08199 157 Outer membrane protein HofH 

HP17_03139 56 Outer membrane protein HopQ; signal peptide 

HP17_03102 54 Outer membrane protein (omp27) (HopQ) 

HP17_08154/49 156/5 Outer membrane protein BabA 

HP17_03689 71 Outer membrane protein HomD; signal peptide 

HP17_03784 71 Outer membrane protein; signal peptide 

HP17_03799 72 Outer membrane protein HorJ; signal peptide 

HP17_03979 73 Outer membrane protein (omp32) 

HP17_04039 73 Iron-regulated outer membrane protein 

HP17_04226 78 Outer membrane protein 

HP17_04436 81 Outer membrane protein 

HP17_04631 82 Outer membrane protein 

HP17_04716 83 Outer membrane protein (omp2) 

HP17_08806 168 Outer membrane protein HopK; signal peptide 

*Potentially frameshifted. 
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Table 8 List of OMPs annotated in the genome of H. pylori P79 

Locus tag Contig Product 

HP79_02039 61 Hypothetical protein 

HP79_00490/85 16/15 Protective surface antigen D15 

HP79_09027 214 Peptidoglycan-associated lipoprotein precursor 

HP79_01170 31 Lipase-like protein 

HP79_05146/41 131/30 Outer membrane protein 

HP79_05056 129 Outer membrane protein (omp2) 

HP79_04747 126 Outer membrane protein (omp3) 

HP79_08030 191 Outer membrane protein (omp4) 

HP79_08433 201 Outer membrane protein (omp6) 

HP79_08560 202 Outer membrane protein (omp7) 

HP79_08565 202 Outer membrane protein 

HP79_08762/67/72 206/7 Toxin-like outer membrane protein* 

HP79_00515 18 Outer membrane protein (omp9) 

HP79_00555 19 Outer membrane protein (omp10) 

HP79_01819 13 Outer membrane protein (omp13) (OipA) 

HP79_00395 14 Outer membrane protein (omp14) 

HP79_00285 12 Outer membrane protein 

HP79_00220/15 9/8 Outer membrane protein HopE; signal peptide 

HP79_03156 88 Outer membrane protein 

HP79_03116 87 Outer membrane protein (omp18) 

HP79_02854 79 Outer membrane protein P1 (ompP1) 

HP79_02634/29 73/72 Iron-regulated outer membrane protein 

HP79_01725 45 Outer membrane protein (omp19) 

HP79_01625 43 Outer membrane protein (omp20) 

HP79_01620 43 Outer membrane protein (omp21) 

HP79_01605/00 43 Iron-regulated outer membrane protein* 

HP79_01570 42 Toxin-like outer membrane protein 

HP79_08137 195 Putative outer membrane protein 

HP79_01495 38 Outer membrane protein (omp23) 

HP79_01460 37 Outer membrane protein (omp24) 

HP79_06306/01 154/3 Outer membrane protein (omp25) 

HP79_06296 153 Outer membrane protein (omp26) 

HP79_06179 152 Outer membrane protein (omp27) (HopQ) 

HP79_06029 149 Outer membrane protein (omp30) 

HP79_01045 29 Iron-regulated outer membrane protein 

HP79_01105 30 Outer membrane protein (omp32) 

HP79_01275/80 32/33 Outer membrane protein (omp31) 

HP79_01555 39 Outer membrane protein (omp12) 

HP79_01560 40 Outer membrane protein 
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HP79_07460 179 Outer membrane protein (omp9) 

HP79_08077 194 Outer membrane protein (omp29) 

HP79_01754 48 Outer membrane protein 

HP79_05366 135 Outer membrane protein 

*Potentially frameshifted. 
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Table 9 List of ABC transport genes annotated in H. pylori CCUG 17874 

Locus tag Contig Product 

HP17_08389 159 ABC-type antimicrobial peptide transport system, ATPase 

component 

HP17_04938 87 Oligopeptide permease ATPase protein 

HP17_04943 87 Oligopeptide permease integral membrane protein 

HP17_05200 90 Peptide ABC transporter substrate-binding protein 

HP17_05205 90 Peptide ABC transporter permease 

HP17_05210 90 ABC-type transport system, permease; dipeptide 

transporter protein 3; membrane protein 

HP17_05215 90 ABC-type transport system, ATP-binding protein; 

dipeptide transporter protein 4 

HP17_05220 90 Dipeptide ABC transporter 

HP17_05605 99 ABC-type transport system, permease and ATP- binding 

protein; putative membrane protein 

HP17_05600 99 Multidrug resistance protein SpaB 

HP17_05530 95 Multidrug resistance protein SpaB 

HP17_05525 95 ABC transporter, permease 

HP17_05520 95 ABC transporter, ATP-binding protein 

HP17_06527 116 ABC-type transport system, ATP binding protein 

HP17_07837 149 Hypothetical protein, ABC-type multidrug transport 

system 

HP17_07917 149 Cell division protein, ABC-type antimicrobial peptide 

transport system, ATPase component 

HP17_08119 152 Hypothetical protein, ABC-type transport system, 

involved in lipoprotein release 

HP17_08651 165 Osmoprotection protein (proV) 

HP17_08656 165 ABC-type transport system, permease; 

betaine/proline/choline transporter; membrane protein 

HP17_03409 66 Iron (III) dicitrate transport system ATP-binding protein 

HP17_03414 66 Iron(III) dicitrate ABC transporter permease protein 

(fecD) 

HP17_01025 19 Amino acid ABC transporter permease 

HP17_01030 19 Putative polar amino acid transport system substrate-

binding protein 

HP17_02972 50 Molybdenum ABC transporter ATP-binding protein 

(modD) 

HP17_02982 51 Molybdenum ABC transporter (modB) 

HP17_02987 51 Molybdenum ABC transporter 

HP17_02210 35 Hypothetical protein, ABC-type multidrug transport 

system 

HP17_02085 34 ABC-type transport system, ATP binding protein; lipid A 

and glycerophospholipid transporter; membrane protein; 

signal peptide 

HP17_02020 33 Hypothetical protein, ABC-type multidrug transport 

system, ATPase component 

HP17_08189 157 Glutamine ABC transporter permease 

HP17_08184 157 Glutamine ABC transporter permease 
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HP17_08179 157 Phosphate ABC transporter ATP-binding protein 

HP17_08174 157 Glutamine ABC transporter periplasmic glutamine-

binding protein 

HP17_02818 44 ABC transporter ATP-binding protein 

HP17_02763 44 ABC-2 type transport system ATP-binding protein 

HP17_01258 24 Oligopeptide ABC transporter, permease protein 

HP17_01263 24 ABC transporter substrate-binding protein 

HP17_03764 71 ABC transport system substrate binding protein t 

HP17_03769 71 ABC transporter ATP-binding protein 

HP17_03774 71 ABC transporter permease protein 

HP17_03889 72 Antibiotic transport system permease protein 

HP17_03894 72 Hypothetical protein, ABC-type multidrug transport 

system 

HP17_04421 81 Iron(III) ABC transporter periplasmic iron-binding protein 

(ceuE) 

HP17_04426 81 Iron(III) ABC transporter periplasmic iron-binding protein 

HP17_04436 81 Outer membrane protein, ABC-type metal ion transport 

system 

HP17_04496 81 DL-methionine transporter ATP-binding subunit 

HP17_04501 81 ABC-type transport system, permease; putative D- and L-

methionine transport protein; putative membrane protein 
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Table 10 List of ABC transport genes annotated in H. pylori P79 

Locus tag Contig Product 

HP79_04682 126 Type II restriction enzyme R protein (hsdR), ABC-type 

sugar transport systems 

HP79_07745 188 ABC transporter ATP-binding protein 

HP79_08545 202 Oligopeptide ABC transporter ATP-binding protein 

(oppD) 

HP79_08550 202 Oligopeptide permease integral membrane protein 

HP79_08822 209 Dipeptide ABC transporter periplasmic dipeptide- binding 

protein (dppA) 

HP79_08827 209 Dipeptide ABC transporter periplasmic dipeptide- binding 

protein (dppB) 

HP79_08832 209 Dipeptide ABC transporter periplasmic dipeptide- binding 

protein (dppC) 

HP79_08837 209 Dipeptide ABC transporter periplasmic dipeptide- binding 

protein (dppD) 

HP79_08842 209 Dipeptide ABC transporter ATP- binding protein (dppF) 

HP79_04212 114 Molybdenum ABC transporter periplasmic molybdate-

binding protein (modA) 

HP79_04217 114 Molybdenum ABC transporter ModB 

HP79_04222 114 Molybdenum ABC transporter ATP-binding protein 

(modD) 

HP79_02069 61 Multidrug resistance protein (spaB) 

HP79_01984 57 Hypothetical protein, ABC-type multidrug transport 

system 

HP79_01979 57 ABC transporter, permease 

HP79_01974 57 ABC transporter ATP-binding protein 

HP79_00170 8 ABC-type transport system, ATP binding protein 

HP79_03381 95 Cell division protein (ftsE) 

HP79_03171 90 Hypothetical protein, ABC-type transport system involved 

in lipoprotein release 

HP79_02991 83 Osmoprotection protein (proWX) 

HP79_02986 83 Osmoprotection protein (proV) 

HP79_02559 70 Iron compounds ABC transporter ATP-binding protein 

HP79_02554 70 Iron(III) dicitrate ABC transporter permease protein 

(fecD) 

HP79_08157 195 Amino acid ABC transporter permease protein (yckJ) 

HP79_08162/67 195/6 Amino acid ABC transporter periplasmic binding protein 

(yckK) 

HP79_07051/46 172/1 Multidrug resistance protein (msbA) 

HP79_06219 152 Glutamine ABC transporter permease protein (glnP) 

HP79_06214 152 Glutamine ABC transporter, permease protein 

HP79_06209 152 Phosphate ABC transporter ATP-binding protein 

HP79_06204 152 Glutamine ABC transporter periplasmic glutamine- 

binding protein (glnH) 

HP79_03708 102 Multidrug resistance protein (hetA) 

HP79_03653 102 ABC transporter ATP-binding protein 
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HP79_06881 166 Oligopeptide ABC transporter permease protein (oppB) 

HP79_06496 161 Hypothetical protein, ABC-type multidrug transport 

system 

HP79_01180 31 Hypothetical protein, ABC-type multidrug transport 

system 

HP79_01185 31 Antibiotic transport system permease protein 

HP79_01305 35 Hypothetical protein, ABC-type transport system involved 

in resistance to organic solvents 

HP79_01320 35 ABC transport system substrate binding protein 

HP79_06491 160 Iron(III) ABC transporter periplasmic iron- binding 

protein (ceuE) 

HP79_06486 160 Iron(III) ABC transporter periplasmic iron- binding 

protein (ceuE) 

HP79_05376 135 Iron(III) ABC transporter periplasmic iron- binding 

protein 

HP79_05366 135 Outer membrane protein, ABC-type metal ion transport 

system 

HP79_05306 135 DL-methionine transporter ATP-binding subunit 

HP79_05301 134 D-methionine transport system permease protein 

 



 

 

Table 11 List of the homopolymer G/C tracts in the genomes of H. pylori CCUG 17874 

Track length Homopolymer Coordinates Within or upstream Locus tag Gene  

14 C 1066317 Within HP17_05490 Glycosyltransferase involved in LPS biosynthesis 

 C 317042c Within HP17_07012 Type I restriction-modification system methyltransferase 

subunit 

      

11 C 122576c Within HP17_00245 Histidine kinase sensor protein 

 C 571724 Within HP17_01893 Unique hypothetical protein 

 G 358564c Within HP17_01553 Methionine aminopeptidase 

 C 317904c Within HP17_07017 Hypothetical protein; possible helicase 

 G 1332106 Upstream HP17_06847 Biotin synthase 

 G 160957c Within HP17_04104 Adenine specific DNA methylase Mod 

      

10 G 286752c Within Pseudogene Putative type III restriction enzyme M protein 

      

9 C 17213 Upstream HP17_00596 Hypothetical protein 

 G 589898 Within HP17_06182 Processing zinc-metalloprotease 

 G 609849c Upstream HP17_06272 Hypothetical protein, predicted permease 

 C 935726 Within HP17_03032 Type I restriction enzyme R protein (HsdR) 

 C 1061205 Within HP17_03459 Unique hypothetical protein 

 G 495211c Upstream HP17_08159 Hypothetical protein, predicted permease 

 G 127478c Within HP17_04266 DNA polymerase III subunit epsilon 

 G 1555297 Within HP17_04656 DNA primase 

      



 

 

8 G 1570131c Within HP17_00781 Hypothetical protein, predicted cell wall-associated hydrolase 

 G 79680 Upstream HP17_00950 Fe-S oxidoreductases 

 G 261927 Within HP17_05160 Diaminopimelate decarboxylase 

 C 371781 Within HP17_07239 Hypothetical protein 

 C 1119744c Within HP17_05720 Hypothetical protein, predicted neuraminidase (sialidase) 

 G 539301 Within HP17_05535 Vacuolating cytotoxin VacA 

 C 1060411c Within HP17_05460 Hypothetical protein, predicted aspartate/tyrosine/aromatic 

aminotransferase 

 G 586755 Within HP17_06167 Outer membrane protein, protective surface antigen D15 

 G 994105c Within HP17_06332 Ferrous iron transport protein B 

 G 915690c Within HP17_08017 Hypothetical protein 

 G 769945 Within HP17_06005 Outer membrane protein P1 

 C 832222 Within HP17_02559 FlgE 

 G 745461c Within HP17_08791 GpsA, NAD(P)H-dependent glycerol-3-phosphate 

dehydrogenase 

 G 607041c Within HP17_02085 ABC-type transport system, ATP binding protein; lipid A and 

glycerophospholipid transporter; membrane protein; signal 

peptide 

 G 498344c Upstream HP17_08194 Carbon starvation protein 

 G 1132966 Within HP17_03072 Multidrug-efflux transporter 

 G 448806c Within HP17_02808 Adenine-specific DNA methylase 

 G 326181c Within HP17_07072 Pgk, phosphoglycerate kinase 

 G 218249c Within HP17_03809 Type IIS R-M system restriction enzyme 

 G 108811c Within Pseudogene Preprotein translocase subunit SecD 

 C 11186 Within HP17_07112 RepA 



 

 

Table 12 List of the homopolymer G/C tracts in the genomes of H. pylori P79 

Track length Homopolymer Coordinate Within or upstream Locus tag Gene  

23 C 736422c Within HP79_04869 Hypothetical protein, predicted chromosome segregation ATPase 

      

14 C 755064c Upstream HP79_04157 Type I restriction enzyme R protein 

 C 846702 Within HP79_04667 Hypothetical protein 

      

13 C 1389708 Within HP79_07820 Histidine kinase sensor protein 

      

12 G 236345 Within HP79_01260 Type IIS restriction enzyme R protein (BCGIB) 

      

11 C 785102c Within HP79_04617 Hypothetical protein 

 G 284324c Within HP79_07520 Hypothetical protein 

      

10 G 775826c Within HP79_04657 2-hydroxyacid dehydrogenase 

 G 1062663 Within HP79_05864 Adenine-specific DNA methylase 

      

9 G 116689 Within HP79_00622 Hypothetical protein 

 C 575481c Within HP79_05774 Hypothetical protein, predicted helicase 

      

8 C 1556675c Within HP79_00335 FliP 

 G 1524647c Within HP79_00490 Protective surface antigen D15 

 G 1427680c Within HP79_01035 Selenocysteine synthase 

 C 1305344c Within HP79_01645 FlgE 



 

 

 C 1205534 Within HP79_02214 Hypothetical protein, predicted neuraminidase (sialidase) 

 G 893230c Within HP79_04022 Outer membrane phospholipase A1 

 G 981644 Within HP79_05436 Preprotein translocase subunit SecD 

 G 531200c Within HP79_06044 Alanine dehydrogenase 

 G 509784c Within HP79_06149 Multidrug-efflux transporter 

 G 1311993 Within HP79_07363 Hypothetical protein 
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Table 13 Predicted pseudogenes in the genome of H. pylori CCUG 17874 

Locus tag Contig Product 

HP17_00100 3 Iron-sulphur cluster binding protein 

HP17_00656 13 ATP-binding protein 

HP17_00691 13 Urease accessory protein UreE 

HP17_00940 17 DNA topoisomerase I 

HP17_01378 24 Phosphomannomutase 

HP17_02000 33 Hypothetical protein 

HP17_02907 46 Aldo-keto reductase 

HP17_03969 73 Putative endonuclease 

HP17_04089 74 Type III restriction enzyme 

HP17_04134 75 Chromosomal replication initiation protein 

HP17_04526 80 Undecaprenyl phosphate N-acetylglucosaminyltransferase 

HP17_04576 82 Hypothetical protein 

HP17_04721 84 Type II citrate synthase 

HP17_05270 91 Type II restriction enzyme 

HP17_05850 99 Sialidase A 

HP17_05975 101 Thiamine biosynthesis protein 

HP17_06322 108 Iron (III) dicitrate transport protein FecA; signal peptide 

HP17_06397 112 N-methyl hydantoinase 

HP17_06452 115 Hypothetical protein 

HP17_06852 130 Type III restriction enzyme R protein (res 1) 

HP17_06862 130 Putative type III restriction enzyme M protein 

HP17_07144 140 Non-functional type II restriction endonuclease 

HP17_07487 145 Sodium- and chloride-dependent transporter; membrane 

protein 

HP17_08209 157 Tetracycline resistance protein tetA (P) 

HP17_08349 159 MobC-like protein 
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Table 14 Predicted pseudogenes in the genome of H. pylori P79 

Locus tag Contig Product 

HP79_00005 1 Outer membrane protein (omp 29) 

HP79_00320 14 Iron (II) transport protein (feoB) 

HP79_00410 14 Type II R-M system protein 

HP79_00807 21 Type II DNA modification enzyme (methyltransferase) 

HP79_01005 29 Cytoplasmic protein 

HP79_01310 35 ABC transporter ATP-binding protein 

HP79_01670 43 Phosphate acetyltransferase 

HP79_01994 57 Vacuolating cytotoxin VacA 

HP79_02024 61 Acriflavine resistance protein (acrB) 

HP79_03401 95 Rod shape determining protein RodA 

HP79_03446 96 D-alanyl-alanine synthetase A3 

HP79_03837 107 Cag pathogenicity island protein (cag7) 

HP79_03842 107 Cag pathogenicity island protein Y VirB10-like protein 

HP79_03967 109 Glycolate oxidase subunit (glcD) 

HP79_04252 115 Nicotinate-nucleotide adenyltransferase 

HP79_04789 127 Urease subunit beta 

HP79_04901 128 Restriction endonuclease 

HP79_04926 128 Transcriptional regulator (hypF) 

HP79_05256 133 DNA-binding/iron metalloprotein/AP endonuclease 

HP79_06004 149 DNA repair protein (recN) 

HP79_06246 153 Glucose-6-phosphate isomerise 

HP79_06446 158 Type II DNA modification methyltransferase 

HP79_06681 163 Hypothetical protein 

HP79_06831 166 NAD+-dependent deacetylase, Sir2 family 

HP79_06871 166 Oligopeptide ABC transporter periplasmic oligopeptide-

binding 

HP79_07870 189 Recombinase A 

HP79_07935 189 Sodium/sulphate symporter 

HP79_07950 189 L-lactate permease (lctP) 

HP79_08777 207 Diaminopimelate decarboxylase (dap decarboxylase) 

(lysA) 



Chapter 2: Comparative Genomics 

 

~ 128 ~ 

Table 15 List of competence-related genes in the genomes of H. pylori CCUG 17874 and 

P79 

Locus tag Contig Product 

HP17_03604 70 Periplasmic competence protein-like protein 

HP17_04671 83 ComB2 

HP17_04676 83 ComB3 

HP17_04681 83 ComB4 

HP17_04781 84 ComB6 

HP17_04786 84 ComB7 

HP17_04791 84 ComB8 

HP17_04796 84 ComB9 

HP17_04801 84 ComB10 

HP17_06972 131 ComEC 

HP17_01883 31 DNA processing chain A (DprA) 

HP17_01888 31 DprB 

HP17_04129 75 ComH 

   

HP79_05106 129 ComB2 

HP79_05101 129 ComB3 

HP79_05096 129 ComB4 

HP79_04981 128 ComB6 

HP79_04976 128 ComB7 

HP79_04971 128 ComB8 

HP79_04966 128 ComB9 

HP79_04961 128 ComB10 

HP79_05824 147 ComEC 

HP79_00612 20 DNA processing chain A (DprA) 

HP79_00617 20 DprB 

HP79_00963 28 ComH 
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Table 16 List of the type II restriction modification system components identified in the 

genome of H. pylori CCUG 17874 

Locus tag Contig Product 

HP17_00556 13 Type II adenine methyltransferase 

HP17_00811 15 Type II adenine methyltransferase 

HP17_04995 88 Type II DNA modification methyltransferase 

HP17_05005 88 Type II R-M system restriction endonuclease 

HP17_05010 88 Type II DNA modification enzyme (methyltransferase) 

HP17_08484 162 Type II restriction endonuclease 

HP17_07184 141 Type II adenine methyltransferase 

HP17_07164 140 Type II DNA modification enzyme (methyltransferase) 

HP17_07159 140 Type II restriction endonuclease 

HP17_07154 140 Type II DNA modification enzyme 

HP17_06342 110 Putative type II cytosine specific methyltransferase 

HP17_06347 110 Putative type II restriction enzyme 

HP17_03479 68 M. HpyAVIII, type II cytosine specific DNA 

methyltransferase 

HP17_01443 24 Type II restriction endonuclease 

HP17_07037 133 Type II R-M system restriction endonuclease 

HP17_03809 72 Type IIS R-M system restriction enzyme 

HP17_03814 72 Type IIS restriction enzyme M protein (Mod) 

HP17_03959 73 Type II methylase 

HP17_03964 73 Type II adenine methyltransferase 

HP17_04079/84 73/74 Type IIS restriction-modification protein 

HP17_04286 80 Putative type II methylase protein 
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Table 17 List of the type II restriction modification system components identified in the 

genome of H. pylori P79 

Locus tag Contig Product 

HP79_01020 29 Type IIS restriction enzyme R and M protein (ECO57IR) 

HP79_04677 126 Type II restriction enzyme M protein (hsdM) 

HP79_05511 137 Type II N-6 Adenine-specific DNA methylase 

HP79_05849 147 Type IIS restriction enzyme R protein (MBOIIR) 

HP79_05854 147 Type IIS restriction enzyme M1 protein (mod) 

HP79_05859 147 Type IIS restriction enzyme M2 protein (mod) 

HP79_01255 31 Type IIS restriction enzyme M protein (mod) 

HP79_01260/65 31 Type IIS restriction enzyme R protein (BCGIB) 

HP79_04682 126 Type II restriction enzyme R protein (hsdR) 
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Figure 15 Genome atlas of H. pylori CCUG 17874. 

Graphical representation of the genome was generated using Artemis. Numbers are 

nucleotide co-ordinates. From the outermost circle to the innermost: H. pylori genes on the 

forward strand (purple); H. pylori genes on the reverse strand (gold); pseudogenes (green); 

flagellar genes (red); cag PAI genes (blue); % GC (black= below the mean, grey= above the 

mean); and GC skew. 
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Figure 16 Genome atlas of H. pylori P79. 

Graphical representation of the genome was generated using Artemis. Numbers are 

nucleotide co-ordinates. From the outermost circle to the innermost: H. pylori genes 

on the forward strand (purple); H. pylori genes on the reverse strand (gold); 

pseudogenes (green); flagellar genes (red); cag PAI genes (blue); %GC (black= 

below the mean, grey= above the mean); and GC skew. 
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A H. pylori CCUG 17874 

 

 

    
 

B H. pylori P79 

 

 

...  

 
Figure 17 Genome synteny of H. pylori strains CCUG 17874/P79 and 26695. 

Left panel: Mummerplot alignment of H. pylori CCUG 17874 (A) and P79 (B) (Y-

axis) and reference strain H. pylori 26695. Red dots represent regions of homology 

between the genomes which are in the same orientation. Blue dots represent 

homology between the genomes which are in the opposite orientation. Right panel: 

ACT comparison (DNA vs DNA) of H. pylori CCUG 17874 (A) and P79 (B) (top) 

and reference strain H. pylori 26695 (bottom). 
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Figure 18 Phylogenetic structure based on MLST analysis of 43 H. pylori strains. 

Neighbour-joining tree illustrating clustering of strains by geographical location where: 

red = Europe; blue = North America; green = South America; brown = Asia; yellow = East 

Asia and purple = Africa. Bootstrap values (100 replicates) are listed on each branch. 



 

 

 
 
Figure 19 Flagellar gene organisation of H. pylori CCUG 17874 and P79 based on reference strain 26695. 

Distribution of flagellar genes in both strains is across the genome, represented here as a single locus for illustrative purposes where: purple = flagellar genes; 

blue = non-flagellar genes; and red = genes whose size is estimated due to lack of sequencing coverage. 
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Figure 20 Flagellar genes present in the genomes of H. pylori CCUG 17874 and P79. 

Image generated by KEGG Automatic Annotation Server bi-directional best hit BLAST 

against a database of publicly available H. pylori genomes. Map of H. pylori CCUG 17874 

and P79 are identical. Image based on flagellum of Salmonella enterica where 

green = present and white = absent. 



 

 

 

 
 
Figure 21 ClustalW multiple sequence alignment of flip nucleotide and translated amino acid sequences. 

Sequences of the fliP gene of reference strains H. pylori 26695 and J99 compared to those of 17874 and P79. “26695 fliP C” is the altered sequence of flip 

from 26695 where one C has been deleted in the homopolymeric tract to illustrate the frameshift caused by this phase variable tract. 
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1 Abstract 

Background: Motility is an essential feature of Helicobacter pylori infection. A 

yeast two-hybrid study investigating the proteome of H. pylori 26695 previously 

identified that the flagellum biogenesis protein HP0958 interacts with flagellar 

proteins FliH and RpoN (σ
54

). HP0958 also interacts with the flaA mRNA transcript 

and may have a regulatory role in flagellum construction. 

Materials and Methods: A panel of site-directed mutants of HP0958 was 

generated in order to elucidate the mechanisms of HP0958 function. A hp0958-null 

derivative strain of P79 was complemented with hp0958 mutant alleles. GST pull-

down, yeast two-hybrid and PXG assays were performed to investigate HP0958-FliH 

and HP0958-RpoN interactions. HP0958-flaA mRNA interaction was analysed by 

electrophoretic mobility shift assay. 

Results: The previously reported HP0958-FliH (89-258) interaction could not be 

substantiated. Further, RpoN (74-210) also failed to interact with HP0958 at a 

detectable level when investigated using pull-down assay. The HP0958-RpoN (74-

284) interaction was confirmed but was relatively weak by quantitative analysis yeast 

two-hybrid assay. Complementation of the hp0958-null P79 derivative with mutant 

alleles revealed that mutations in the coiled-coil have a more pronounced effect on 

motility than those in the zinc-finger. Many mutant derivative strains produced 

atypical flagellar extrusions from the cells at non-polar sites. 

Conclusions: HP0958 does not interact with FliH. Residues 74-284 of RpoN are 

required for interaction with HP0958, predominantly along the coiled-coil domain. 

The zinc-finger domain of HP0958 is critical for interaction with the flaA mRNA 

transcript. We propose a novel function of HP0958 in localisation of flagellum 

biogenesis to the cell pole. 
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2 Introduction 

Helicobacter pylori has been closely associated with humans throughout their 

evolution (Linz et al., 2007). It currently infects approximately half of the global 

population, with higher prevalence in Asian and African countries (Linz et al., 2007). 

Colonisation with this opportunistic pathogen is associated with many effects on the 

host, some positive and but mostly negative. Typically in later life, H. pylori 

infection can lead to development of duodenal and gastric ulcers, gastric cancer and 

MALT lymphoma in humans and H. pylori was identified as a Class I pathogen in 

1994 (International Agency for Research on Cancer, 1994; Jemal et al., 2011; 

Marshall and Warren, 1984; Pounder and Ng, 1995; The Eurogast Study Group, 

1993; Warren and Marshall, 1983). 

Motility is a key feature of H. pylori infection and is essential for colonisation 

(Eaton et al., 1992). Flagellum biogenesis is a hierarchical and highly regulated 

process. In H. pylori, regulation of this process differs from that of the well described 

model systems of flagellum construction e.g. Salmonella enterica and E. coli 

(Anderson et al., 2010; Chevance and Hughes, 2008; McCarter, 2006; Niehus et al., 

2004). Flagellar genes can be subdivided into three classes, the expression of which 

is under the control of specific sigma factors. Sigma 80 regulates the expression of 

Class I (early) genes which encode regulators and components of the basal body. 

RpoN (σ
54

) control expression of Class II (middle) genes which encode components 

of the rod and hook, while σ
28

 controls expression of Class III (late) genes which 

encode the major filament protein FlaA (Niehus et al., 2002). 

HP0958 was identified as a hypothetical protein of unknown function in the 

genome of H. pylori 26695 (Tomb et al., 1997). It was since identified as an essential 

component of flagellar construction, because inactivation of this gene generated 

aflagellate, non-motile cells (Pereira and Hoover, 2005; Ryan et al., 2005a). 

Insertional mutation of the hp0958 gene of H. pylori strain CCUG 17874 resulted in 

reduced levels of RpoN and lowered expression of Class II flagellar genes including 

flgE and flaB, deeming HP0958 a chaperone of RpoN. HP0958 also interacts with 

the mRNA transcript of the major flagellin-encoding gene, flaA, at a post-

transcriptional level (Douillard et al., 2008). The crystal structure of HP0958 

revealed an N-terminal anti-parallel α-helical coiled-coil and a C-terminal zinc-finger 

domain (Caly et al., 2010). Initial structure-function analysis of the HP0958-flaA 
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mRNA interaction indicated that the zinc-finger of HP0958 is involved in RNA 

binding (Caly et al., 2010). However, little is known about what region of the mRNA 

transcript is required for this interaction.  

In 2001, the protein-protein interaction map of H. pylori strain 26695 was 

predicted using yeast two-hybrid screens, identifying 1,200 potential interactions 

(Rain et al., 2001). PIMRider was developed by Hybrigenics to view and analyse the 

output of the Rain study, and is accessible online (http://pim.hybrigenics.com). This 

study covered 46% of the proteome, including the predicted interaction network of 

HP0958. Statistically significant interactions were identified between HP0958 and 

the flagellar proteins RpoN and FliH, the negative regulator of FliI ATPase, as well 

as a number of other proteins of lower probability scores (Rain et al., 2001). 

Douillard et al. proposed a model of the role of HP0958 in flagellum biogenesis. 

This model suggests that HP0958 acts as a chaperone to RpoN during the expression 

of Class II flagellar genes; upon the switch in specificity to Class III genes, HP0958 

acts to guide the flaA transcript to the export apparatus through its interaction with 

FliH (Douillard et al., 2008). However, the mechanism of binding in HP0958-FliH 

and HP0958-RpoN interactions has not been investigated at a structural level. 

Protein-protein interactions (PPIs) are essential for cellular function. Transient 

PPIs, although short-lived, are extremely important for a variety of biological 

processes e.g. signalling cascades and transcription factors (Hahn and Kim, 2012; 

Ozbabacan et al., 2011). PPIs can be detected using a number of biochemical and 

computational means including pull-down assay (Fields and Song, 1989; Geva and 

Sharan, 2011; Lane et al., 2006; Stynen et al., 2012; Tang and Bruce, 2009; Xia et 

al., 2010; Zhang et al., 2012). While the yeast two-hybrid system allows proteome 

analysis of a subject, it has a number of shortcomings. High rates of false-positives, 

incomplete coverage of the entire interactome, and the use of a eukaryotic system to 

investigate bacterial protein-protein interactions are limiting factors of this method 

(Stynen et al., 2012); nevertheless, it is a valuable high throughput tool in identifying 

PPIs. The yeast two-hybrid performed on the proteome of H. pylori 26695 (Rain et 

al., 2001) provided a valuable data set which can be used to create a more complete 

understanding of flagellum biogenesis in H. pylori. This study focused on the 

interactions of motility protein HP0958 with other flagellum biogenesis components 

including RpoN and FliH, identified from the previous yeast two-hybrid study. 
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3 Methods 

 3.1 Bacterial Strains and Culture Conditions 

The bacterial and yeast strains used in this study are listed in Table 18. H. pylori 

strains were grown on Columbia Base Agar (CBA) solid medium, supplemented 

with 5% v/v heat-inactivated, defibrinated horse blood (Cruinn, Ireland) at 37°C, 

5% CO2 and sub-cultured every two days. For broth culture, cells were grown in 

brain heart infusion (BHI) broth (Sigma) supplemented with heat-inactivated foetal 

bovine serum (Sigma) and gently agitated in a microaerobic environment for 20 hrs. 

Mutant derivatives of H. pylori strain P79 were supplemented with chloramphenicol 

(10 µg/ml) and kanamycin (25 µg/ml) where required. 

E. coli XLI-Blue Supercompetent cells (Stratagene, Agilent Technologies) were 

used as the host for molecular cloning of HP0958 site-directed mutants; E. coli 

Top 10 (Invitrogen, Carlsbad, CA) was used as the cloning system in all other cases. 

Proteins were over-expressed in E. coli Rosetta (Novagen, Darmstadt, Germany). 

E. coli XL1-Blue Supercompetent cells were grown in NZY
+
 broth at 37°C with 

agitation. All other E. coli strains were cultured in Luria-Bertani (LB) media at 37°C 

or 18°C with agitation. Media was supplemented with ampicillin (100 µg/ml), 

erythromycin (50 µg/ml) and chloramphenicol (34 µg/ml) where required. 

 3.2 Molecular Cloning 

All flagellar genes were amplified from H. pylori CCUG 17874 (Culture 

Collection University of Gothenburg, Gothenburg, Sweden). Genomic DNA was 

extracted from two-day old plates using DNeasy Blood and Tissue DNA Extraction 

Kit (Qiagen, Hilden, Germany) as previously described (Douillard et al., 2008). PCR 

was performed on genomic template DNA using the primers listed in Appendix 16 at 

standard conditions for Velocity (Bioline, UK) and Taq DNA Polymerase (New 

England Biolabs, UK). PCR amplicons were cloned into restriction digested vectors 

and transformed into chemically competent E. coli host cells. In all cases, positive 

clones were selected through propagation on relevant agar supplemented with 

appropriate antibiotics (Table 18) and screened by colony PCR. Plasmid DNA was 

extracted from E. coli cells using Qiaprep Spin Miniprep kit (Qiagen, Hilden, 

Germany). DNA concentration and quality was estimated using Nanodrop 2000 
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(Thermo Scientific). Correct constructs were confirmed by sequencing performed by 

Eurofins MWG Operon (Ebersberg, Germany). 

Yeast strains were made competent using a standard lithium acetate procedure and 

transformed with the relevant plasmids (Table 19) in the presence of salmon sperm 

carrier DNA according to the Clontech Yeast Protocols Handbook (Clontech 

Laboratories, USA). Briefly, 100 µg competent cells were incubated with 100 ng of 

the relevant plasmids and 0.1 mg salmon sperm DNA in the presence of 0.6 ml 

sterile polyethyleneglycol (PEG) 3350 and 1 X Tris-EDTA (TE) lithium acetate. 

Cells were incubated at 30ºC for 30 min, shaking. To each tube, 70 µl dimethyl 

sulfoxide (DMSO) was added, cells were heat shocked at 42ºC for 15 min and 

chilled on ice briefly before pelleting cells and resuspending in 500 ml 1 X TE. Cells 

were plated on appropriate media and incubated at 30ºC for 2 - 5 days. Positive 

clones were selected for through propagation on relevant drop out base YPD agar 

lacking different combinations of the amino acids tryptophan, leucine, adenine and 

histidine. 

 3.3 Site-Directed Mutagenesis 

Point mutations of selected amino acids were generated using Quikchange II Site-

Directed Mutagenesis kit (Stratagene, Agilent Technologies). Primers were designed 

according to the manufacturer’s recommendations (Appendix 17) and synthesized by 

MWG Biotech (Ebersberg, Germany). Rationale for selection of targets within 

HP0968 to be mutated is described in Appendix 18. Plasmid DNA was isolated from 

an E. coli Top10 strain carrying the pDC006 plasmid using the Qiaprep® Spin 

Miniprep kit (Qiagen, Hilden, Germany). The hp0958 gene present on pDC006 was 

used as the template DNA for mutagenesis. Pfu DNA polymerase amplified site-

directed mutants from 10 ng plasmid DNA by thermal cycling as previously 

described (Caly et al., 2010). Dpn I restriction digestion at 37°C for 1 hr was 

performed to remove template DNA. The resulting single-stranded plasmids were 

transformed into XL1-Blue Supercompetent cells and plasmids containing the correct 

mutation were screened by insert sequencing. 

 3.4 Allelic Exchange Mutagenesis 

All genes were amplified from Helicobacter pylori CCUG 17874 using primers 

listed in Appendix 17 (manufactured by Eurofins MWG Operon (Germany)) and 
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standard Velocity polymerase cycling parameters. The promoter region of the alkyl 

hydroperoxide reductase (ahpC) gene, php1563 was amplified to produce DNA with 

a 3’ overhang complementary to the 5’ of hp0958. Similarly, genes encoding wild-

type or site-directed mutants of HP0958 were amplified to incorporate a 5’ overhang 

complementary to the 3’ of php1563. Splicing by overlapping extension (SOE) PCR 

was used to generate a single fused product php1563_hp0958 as previously described 

(Douillard et al., 2008; Heckman and Pease, 2007). SOE PCR products were ligated 

to shuttle vector pIR203K04 (a kind gift from D. J. McGee) following BamHI and 

ClaI restriction digestion. This plasmid harbours a kanamycin resistance cassette and 

was designed to introduce DNA fragments into the intergenic region of H. pylori 

between genes hp0203 and hp0204 (Langford et al., 2006). 

 3.5 Natural Transformation of H. pylori 

Generation of the hp0958 deletion mutant, H. pylori P79-0958KO, was previously 

described (Ryan et al., 2005). E. coli Top10 was used as a cloning host before 

transformation into H. pylori. All constructs were confirmed by sequencing 

performed by Eurofins MWG Operon (Germany) and GATC (Germany). H. pylori 

P79-0958KO cells were transformed with shuttle vector pIR203K04 harbouring 

either wild type or site-directed mutants of hp0958, see Table 20 for details. Briefly, 

H. pylori P79-0958KO cells from one full 48 hr-old CBA plate were harvested in 

BHI broth supplemented with 0.5% FBS. The OD600 was corrected to 0.4 - 0.6 and 

recipient cells were incubated with 2 - 5 µg plasmid DNA at 37°C, 5% CO2 for 2 hrs. 

The mixture was then plated on non-selective CBA. After 24 hours, cells were 

harvested in BHI broth and transferred to CBA agar supplemented with 

chloramphenicol (10 µg/ml) and kanamycin (25 µg/ml) and incubated for 3 - 4 days. 

Transformants were screened by motility assay and colony purified. Colony PCR and 

sequencing of the hp0203-0204 intergenic region confirmed integration. 

 3.6 Motility Assay 

Freshly prepared BHI soft agar plates containing 0.3% (w/v) agar supplemented 

with 10% heat-inactivated FBS (Sigma) and antibiotics, where appropriate, were 

inoculated with H. pylori strains and mutants. Cells from 48 hr-old CBA plates were 

harvested in BHI broth and OD600 was corrected to 0.4 - 0.6. Cells (5 µl) were 
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stabbed into the centre of each motility plate and incubated at 37°C, 5% CO2. Plates 

were imaged after 4 days using the Gene Genius Bio-Imaging System (Syngene). 

 3.7 Electron Microscopy 

Flagellum morphology was determined using transmission electron microscopy 

(TEM) to observe negatively stained H. pylori cell preparations. Liquid cultures were 

grown for 20 hrs and fixed with 2.5% glutaraldehyde solution (Sigma). Cells were 

allowed to sediment overnight, and gently resuspended in fresh 2.5% glutaraldehyde 

solution. One drop containing ~5 x 10
6
 cells was applied to the surface of Formvar 

carbon-coated 200 mesh copper grids (Electron Microscopy Sciences, UK). Grids 

were quickly rinsed with H2O and stained with 2% uranyl acetate (Sigma). Imaging 

was performed using a FEI Tecnai 120 transmission electron microscope operating at 

120 kV (Biological Imaging Facility, Conway Institute of Biomolecular and 

Biomedical Research, University College Dublin). 

 3.8 Preparation of Whole Cell Fractions 

H. pylori cells were harvested from 20 hr liquid cultures and pelleted at 

13,000 rpm for 15 s. Pellets were washed with 1 ml sterile phosphate-buffered saline 

(PBS) and pelleted again. Supernatant was removed and pellets were resuspended 

gently in 500 µl fresh PBS. All cultures were corrected to an OD600 of 1.0 and 

centrifuged at 13,000 rpm for 15 s. Pellets were resuspended in Laemmli sample 

buffer, boiled at 100°C for 5 min and stored at -80°C. 

 3.9 Protein Electrophoresis and Western Blot 

Standard protocols were used to separate and visualise proteins by sodium 

dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) (Sambrook et al., 

1989). Proteins were separated on 12.5% SDS acrylamide gels and transferred onto 

polyvinylidine fluoride (PVDF) membrane by electroblotting for 1 hr (Towbin et al., 

1979). Anti-hook and anti-flagellin polyclonal antibodies were used as primary 

antibodies during western blotting of H. pylori whole cell fractions (Kostrzynska et 

al., 1991; O′Toole et al., 1994). Anti-rabbit antibody raised in goat was coupled to 

horseradish-peroxidase (Sigma) and was used as the secondary antibody (Douillard 

et al., 2008). Detection was performed with 4-chloro-1-nathphol and hydrogen 

peroxide. 
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 3.10 Quantitative Analysis of Transcription by Real-Time PCR 

Quantitative real-time PCR (qRT)-PCR was performed as described previously 

using primers designed with Primer 3 software (Appendix 19) (Douillard et al., 

2008; Untergasser et al., 2012). Cells were grown in BHI broth supplemented with 

10% FBS for 20 hrs and harvested in Bacteria RNA Protect (Qiagen). Cells were 

washed with PBS and lysed by bead-beating in Trizol
®
 reagent (Ambion). RNA was 

purified using RNeasy Protect Bacteria Mini Kit (Qiagen) according to 

manufacturer’s instructions and DNase-treated to remove residual DNA using 

TURBO DNA-Free (Ambion) as instructed. RNA was quantified by Nanodrop 2000 

(Thermo Scientific) and RNA quality was assessed using Bioanalyser 2100 (Agilent 

Technologies) as directed by manufacturer. 200 ng of RNA was reverse transcribed 

to cDNA using High-Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems). All cDNA was diluted 50-fold before use in qRT-PCR. Briefly, 5 µl 

cDNA, 2 µl of 5 µM primer mix, 10 µl 2x mastermix (including Syber Green I 

polymerase) and 3 µl H2O were mixed and qRT-PCR was performed in Roche 

LightCycler
®
 480 II. Reactions were performed in triplicate on at least three 

biological replicates and data was normalised to the era housekeeping gene. Relative 

fold-changes in gene expression were calculated as previously described (Pfaffl, 

2001). Heat plots of normalised flagellar gene expression were generated, ranking 

strains according to flaB and flgE expression levels. 

 3.11 Protein Over-Expression and Purification 

Proteins used in pull-down assay were expressed with an N-terminal glutathione 

sepharose (GST) tag and purified affinity purified as previously described (Caly et 

al., 2010). An 8 residue N-terminal FLAG-tag (DYKDDDDK) was fused to bait 

proteins to facilitate immunoblotting. E. coli strains possessing the relevant plasmids 

(Table 19) were grown to OD600 0.4 - 0.6 and protein expression was induced with 

0.1 mM isopropylthiogalactoside (IPTG) for 16-20 hours at 18°C. Cells were 

harvested and lysed by passage through a French Press twice at 1,000 psi. 

The soluble cytoplasmic fraction was incubated with Glutathione Sepharose 4B 

(GE Healthcare, UK) for 16 hours at 4°C. Purified proteins were released using 

PreScission protease (GE Healthcare, UK) in cleavage buffer (50 mM Tris-HCl, 

150 mM NaCl, 1 mM EDTA, 1 mM dithiothreitol (DTT), pH 7.5) at 4°C for 16 hrs 
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with gentle agitation. For elution of intact fusion proteins, resin was incubated with 

elution buffer containing 10 mM reduced glutathione according to the 

manufacturer’s instructions. Eluted proteins were concentrated (≤ 2 mg/ml) and 

buffers dialysed using Amicon Centrifugal Filter Units (Millipore, Billerica, MA). 

Proteins were further purified by anion exchange in a starting buffer of 20 mM 

ethanolamine, pH 9.0 on HiTrap FF 1 ml columns (GE Healthcare, UK) attached to 

an Äkta Purifier. Eluted purified proteins were concentrated and quantified using the 

Pierce Bicinchoninic Acid (BCA) assay (Thermo Scientific, USA) (Smith et al., 

1985). 

 3.12 GST Pull-Down Assay 

The GST pull-down assay was adapted from Lane et al., 2006 (Lane et al., 2006). 

Briefly, 30 µl glutathione sepharose 4B was washed 4 times with 100 µl PBS at 4°C. 

GST-tagged bait protein (60 µg) was bound to resin in a total volume of 200 µl at 

room temperature for 30 min with gentle agitation (Table 19). Resin-bound protein 

was washed 4 times and incubated with FLAG-tagged prey protein at various 

prey : bait molar ratios. Samples were incubated at room temperature for 30 min with 

gentle agitation. Samples were washed twice with 100 µl PBS 0.5% Tween 20, 

250 mM NaCl. Laemmli buffer was added to resin and samples were boiled for 5 

min at 100°C, run on 12.5% SDS-PAGE gels and transferred onto PVDF membrane. 

A horseradish peroxidase coupled anti-FLAG monoclonal antibody was used to 

detect prey proteins. The membrane was incubated with Enhanced 

Chemiluminescence (ECL) Western Blot Detection Reagents and developed on 

Hyperfilm in darkness according to manufacturer’s instructions (GE Healthcare, 

UK). 

 3.13 Yeast Two-Hybrid Assay 

Saccharomyces cerevisiae strains AH109 and Y187 were used as hosts for yeast 

two hybrid assay (Y2H) (Table 19). S. cerevisiae wild type strains were grown on 

yeast extract peptone dextrose (YPD) agar or broth and supplemented with 0.003% 

(v/v) adenine-2-hemisulphate. S. cerevisiae strains possessing bait vector pGBKT7 

were selected for on synthetically defined (SD) media lacking tryptophan; strains 

possessing prey vector pGADT7 were selected for on SD lacking leucine. SD media 

was supplemented with the following amino acids: 0.3 µM adenine-2-hemisulphate, 
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0.3 µM L-histidine-HCl, 1.67 µM L-leucine and 0.4 µM L-tryptophan. Cells were 

grown at 30ºC with agitation. 

The Y2H strategy was based on the Clontech Matchmaker
TM

 Gold Yeast Two 

Hybrid system (Clontech Laboratories, USA). See Table 19 and Appendix 16 for list 

of plasmids and primers used. Cells were made competent by standard lithium 

acetate procedure and transformed with relevant plasmids to investigate a given PPI. 

Transformed cells were plated on SD drop-out base with relevant amino acid 

supplements. Transformants were counted after 2 - 5 days and colony purified. 

 3.14 Plate X-Gal Assay 

Y187-derivative strains possessing both bait and prey vectors were selected on SD 

media lacking tryptophan and leucine. Plate X-gal (PXG) assay was adapted from 

Möckli et Auerbach to assess protein-protein interactions (PPI) through activation of 

histidine-encoding reporter gene expression (Möckli and Auerbach, 2004). Five 

biological replicates per strain were assayed in triplicate. SD-T-L broth was 

inoculated at a starting OD546 < 0.1. Cells were grown at 30°C with agitation to an 

OD546 of 0.8 - 1. One absorbance unit of cells was transferred to a 96-well round-

bottomed plate and pelleted. Cell lysis was achieved by 2 freeze thaw cycles: 3 

minutes submerged in liquid nitrogen, 3 minutes at 37°C. Lysed pellets were 

resuspended in 20 µl sterile H2O and transferred to a 96-well flat bottomed plate. 

Cells were incubated with 100 µl PBS, pH 7.4 containing 500 µg/ml X-gal, 0.3% 

(w/v) agarose and 0.05% (v/v) β-mercaptoethanol. Plates were incubated at room 

temperature in darkness. Time points were taken using a flatbed scanner and 

analysed by densitometry with ImageJ online software (Abramoff et al., 2004). 

 3.15 RNA Secondary Structure Prediction and in vitro Transcription 

Secondary structure prediction analysis of the full length flaA mRNA transcript 

was performed using RNAdraw which predicts structure based on McCaskill 

minimum free energy (Matzura and Wennborg, 1996) and RDM Circles which is 

based on maximum weight matching (Page, 2000). Truncated transcripts (regions 1, 

2 and 3) were designed using RNAdraw and generated using the primers listed in 

Appendix 20. SOE-PCR was performed to generate the region 1 truncation of flaA 

mRNA which required deletion of the central portion of the transcript. PCR 

templates for in vitro transcription were concentrated using the Minielute PCR 



Chapter 3 

~ 156 ~ 

Purification Kit (Qiagen). Biotin-labelled RNA was synthesised from an artificially 

fused 5’ T7 polymerase binding site using the Riboprobe System T7 kit (Promega) 

and Biotin RNA Labelling Mix (Roche) as previously described (Caly et al., 2010). 

Transcripts were DNase treated for 15 min at 37°C and concentrated by 

phenol/chloroform extraction followed by ethanol precipitation. Quality of RNA was 

assessed by agarose gel electrophoresis in a 3-(N-morpholino) propanesulfonic acid 

(MOPS) buffer followed by post-staining with ethidium bromide and imaging using 

the Gene Genius Bio-Imaging System (Syngene). 

 3.16 Electrophoretic Gel Migration Shift Assay 

Electrophoretic gel migration shift assay (EMSA) was performed to investigate 

the nature of the interaction between HP0958 and flaA mRNA transcripts as 

previously described (Caly et al., 2010). Briefly, 6 µg of purified HP0958 was 

incubated with 15 ng of full length flaA riboprobe (8 ng region 1/5 ng region 2/3.2 ng 

region 3) in a final volume of 15 µl binding buffer containing 20 mM Tris-acetate 

(pH 7.9), 50 mM potassium acetate, 10 mM magnesium acetate, 1 mM dithiothreitol 

(DTT), 200 μM S-(5-adenosyl)-L-methionine chloride (Sigma), and 40 U RNasin 

(Promega, USA). Samples were incubated at room temperature for 10 min followed 

by 5 minutes at 37°C. The RNA was then resolved by native agarose gel 

electrophoresis. 

 3.17 Northern Blotting 

Resolved RNA was transferred from agarose gel to a Biodyne B nylon membrane 

(GE Healthcare, UK) overnight by capillary transfer. The membrane was rinsed with 

5 X sodium chloride-sodium citrate (SSC) buffer and RNA was cross-linked to the 

membrane by UV-cross-linking at 120 mJ using the Stratalinker UV-linker 

(Stratagene, USA). The membrane was washed with Odyssey blocking buffer (Li-

COR Biosciences) 1% SDS for 30 minutes at room temperature with gentle agitation. 

The blot was then incubated with Odyssey blocking buffer 1% SDS supplemented 

with streptavidin IRDye 680 (diluted 1:10,000) (Li-COR Biosciences) for 30 min at 

room temperature. The membrane was washed 3 times with PBS 0.1% Tween 20 and 

once with PBS before imaging using the Odyssey Infrared Imaging System (Li-COR 

Biosciences). 
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4 Results 

 4.1 The previously reported HP0958-FliH interaction could not be 

substantiated. 

In 2001, a study was published in Nature which predicted by yeast two-hybrid 

that HP0958 interacts with the flagellar protein FliH, in addition to the sigma factor 

RpoN (Rain et al., 2001). GST pull-down assay was performed with soluble proteins 

which were expressed in E. coli and purified by affinity and anion exchange 

chromatography. Concentrated, purified proteins were assessed by SDS-PAGE (data 

not shown). GST-tagged bait proteins were bound to glutathione sepharose resin and 

FLAG-tagged prey proteins were co-incubated to investigate predicted interactions. 

GST-HP0958 pull-down assay was performed against FliH (2-258) (full length) and 

FliH (89-258), the previously identified domain involved in this predicted interaction 

(Rain et al., 2001). All assays failed to show any detectable interaction above 

background non-specific retention of the prey protein (lanes 5 and 6 vs lanes 2 and 3, 

Figure 22). 

The HP0958-RpoN interaction also predicted in the Y2H study has since been 

confirmed and HP0958 was identified as a chaperone of σ
54

 (Pereira and Hoover, 

2005; Rain et al., 2001; Ryan et al., 2005a). RpoN (74-284) was previously 

identified as the domain involved in the HP0958-RpoN interaction. However, we 

were unable to purify this protein in soluble form, and so GST pull-down analyses 

were performed with the soluble truncated protein RpoN (74-210) (Rain et al., 2001). 

No interaction was detected between HP0958 and RpoN (74-210) under the 

conditions tested. HP0958 has been shown to interact with the flaA mRNA transcript 

(Douillard et al., 2008). The soluble cytoplasmic fraction of motile culture of a 

H. pylori P79 lysate was also assayed for ability of any of its constituent proteins to 

bind GST-HP0958 (data not shown); however, no clear targets for interaction with 

HP0958 were identified. 

To further investigate the results of the Rain et al. study regarding HP0958 

protein-protein interactions, proteins were introduced by cloning respective genes 

into S. cerevisiae strains AH109 and Y187 and yeast two-hybrid assays were 

performed. Activation of expression of the reporter gene lacZ due to the interaction 

of bait and prey proteins produced β-galactosidase which was measured by the 
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adapted plate X-gal assay. β-galactosidase activity of Y187 derivative strains 

harbouring genes encoding a given PPI set was determined relative to β-

galactosidase activity of an E. coli strain in which lacZ is constitutively expressed. 

PXG assay failed to detect any interaction between HP0958 and FliH (89-258) in 

both prey-bait combinations (Figure 23). The FliH (89-258)-FliI (2-91) interaction 

served as a positive control since this interaction set was also predicted in the Rain et 

al. study and was subsequently confirmed by biochemical means (Lane et al., 2006; 

Rain et al., 2001). Additionally, the HP0958-RpoN (74-284) interaction was verified 

as a weak interaction by Y2H assay, inducing ~7 fold less lacZ expression than Y187 

derivative strains possessing FliH (89-258) and FliI (2-91) (Figure 23). 

 4.2 Complementation of hp0958-null derivative of P79 with HP0958 mutant 

alleles. 

A panel of 18 target residues for site-directed mutagenesis of HP0958 were 

selected based on their potential contribution to HP0958 function during flagellum 

biogenesis (Appendix 18). A recent study suggested that conserved histidine residues 

may have a propensity to form stacking interactions with aromatic amino acids and 

so may be involved in PPIs (Liao et al., 2013). Surface-exposed hydrophobic 

residues (leucine, isoleucine and phenylalanine) with a propensity to form 

interactions with other hydrophobic amino acids were also selected for mutation 

(Jones and Thornton, 1996). Conserved positively charged residues (arginine, lysine 

and histidine) were selected for mutation as they may be involved in protein-nucleic 

acid interactions with the negatively charged phosphate groups of nucleic acids (Ellis 

et al., 2007; Iwakiri et al., 2011). 

Genes encoding mutant alleles of HP0958 were introduced into the chromosome 

of a hp0958-null derivative of H. pylori P79 at an intergenic site by natural 

transformation with the suicide vector pIR203K04 (Langford et al., 2006) (Table 

20). Mutant allele expression was under the control of the ahpC promoter Php1563 

(Douillard et al., 2008). To establish whether these mutant forms of HP0958 were 

capable of restoring motility to the non-motile derivative P79-0958KO, 

transformants were screened by motility assay on soft agar. Additional phenotypic 

analyses included microscopy, TEM, immunoblotting and qRT-PCR of selected 

flagellar genes. Flagellum biogenesis is a highly energy-consuming process for the 

cell and hence, without the highly selective pressure of its native environment, 
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strains grown in a lab setting had a tendency to revert to a non-motile state, as seen 

previously (Eaton et al., 1992; Josenhans et al., 2000). The re-introduction of the 

wild-type hp0958 gene into a hp0958-null non-motile derivative strain of P79 was 

capable of restoring motility beyond wild-type P79 levels, as previously shown in a 

H. pylori 17874 mutant derivative (Douillard et al., 2008). Therefore, it must be 

considered that the restoration of motility as determined by ex-vivo analyses is 

limited by the tendency for this highly genetically plastic pathogen to return to an 

aflagellate state, likely through reversible phase-variation of flagellar genes e.g. fliP 

(Josenhans et al., 2000). 

Electron microscopy revealed that derivative strains transformed with some 

HP0958 mutant alleles produced normal flagella, while others were unable to do so. 

Wild-type P79 cells generally possessed 1 - 2 polar flagella encased in a 

characteristic sheath (Figure 24; for further details see Appendix 21). P79-0958KO 

cells in which the hp0958 gene has been insertionally inactivated were aflagellate 

and non-motile (Ryan et al., 2005a) (Figure 24). Introduction of the wild-type 

hp0958 gene under the control of the ahpC promoter restored flagellar production, as 

previously seen in a hp0958-null derivative of H. pylori strain CCUG 17874 

(Douillard et al., 2008) (Figure 24). The crystal structure of HP0958 revealed two 

structural domains: an N-terminal coiled-coil and a C-terminal Zn-finger. Mutation 

of residues in the Zn-finger generally produced flagellate mutant cells (Table 21). 

However, only 2 out of 11 mutations in the coiled-coil/hinge region produced 

derivative strains which were flagellate (Table 21). 

Interestingly, several types of extrusions which did not resemble a typical 

H. pylori flagellum were observed by electron microscopy (Figure 24). Six mutations 

in the coiled-coil and 4 in the Zn-finger resulted in P79-0958KO complemented cells 

which produced a multi-bulb phenotype, so-called due to the protrusion of 

appendages which resembled multiple flagellar sheath distal bulbs without the 

presence of a flagellar filament. In some mutants (I99A and I204A), the strains 

produced singular or multiple enlarged bulbs (Figure 24). Surprisingly, 11 mutants 

(L47A, L58A, I99A, F161A, K195A, F203V, I204A, R205A, K209E, T222A and 

Y231F) spanning the two structural domains of HP0958 produced cells with 

appendages at non-polar sites, including 4 in the Zn-finger (F203V, K209E, T222A 

and Y231F) with fully-formed flagella at both poles/non-polar sites (Figure 24). 
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Thus, complementation of P79-0958KO strain with HP0958 mutant alleles produces 

strains which indicate HP0958 is either inactive or fully/partially active. 

 4.3 H. pylori P79-0958KO derivative strains complemented with coiled-coil 

mutant HP0958 alleles are non-motile while complementation with Zn-finger 

mutant alleles restores motility. 

Motility of H. pylori strains was assessed by microscopy and soft agar assay. 

Strains which were flagellate according to TEM imaging also produced motility 

zones on 0.3% BHI agar (Figure 25). P79-0958KO cells were non-motile and only 

grew in the centre of the agar at the site of inoculation. Alanine substitution of 

leucine at position 47 (L47A) in the coiled-coil of the HP0958 protein was the only 

complemented mutant which appeared non-motile by motility assay (Figure 25). 

Eight mutant complemented strains (T3A, H4A, I99A, F161A, R181E, K187A, 

K195A and I204A), 6 of whose sequence changes are in the coiled-coil, did not 

produce a zone of motility within the agar. However, complemented strains 

harbouring these mutations produced a ring phenotype on the surface of the soft agar, 

possibly due to impaired motility (Figure 25). The L58A, F203V, T222A and Y231F 

complemented derivative strains produced halos similar to that of the P79-0958KO 

complemented strain with wild-type HP0958 allele (Figure 25). R205A, R205V and 

K209E complemented derivative strains produced halos of diameter similar to that of 

wild-type P79 and smaller than that of the complemented strain with wild-type 

HP0958 allele (Figure 25). 

Previous studies of hp0958 knock-out derivatives found that in the absence of 

HP0958, the Class II sigma factor, RpoN, is unstable which causes reduced 

expression of RpoN-dependent genes (Pereira and Hoover, 2005; Ryan et al., 2005a). 

Additionally, HP0958 is thought to interact directly with the flaA mRNA transcript; 

in the absence of HP0958, FlaA expression levels are also impaired (Douillard et al., 

2008; Ryan et al., 2005a). Therefore, expression levels of flagellin (FlaA and FlaB) 

and hook (FlgE) proteins were monitored as an indicator of HP0958 activity. Cell 

lysates from H. pylori strains grown in liquid to exponential phase were 

immunoblotted with anti-flagellin and anti-hook antibodies. In agreement with 

previous findings, the hp0958 knock-out derivative of P79 had reduced flagellin 

protein levels and no FlgE was detected (Figure 26). The 9 mutant derivative strains 
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which were motile by motility assay (H13A, L58A, R184E, F203V, R205A, R205V, 

K209E, T222A and Y231F) all had a similar flagellin/hook profile to that of the 

wild-type P79 strain. Six mutant derivative strains (H4A, I99A, F161A, R181E, 

K187A and K195A) had expression profiles matching that of the P79-0958KO 

derivative of P79, indicating that these mutations impair HP0958 activity (Figure 

26). Derivative strains harbouring the T3A and L47A mutations which affected the 

HP0958-RpoN interaction appear to produce more FlaB than the hp0958-null 

derivative of P79. The I204A complemented derivative has flagellin levels similar to 

P79-0958KO but does produce FlgE at a detectable level, albeit less than that of the 

wild-type complemented derivative (Figure 26). 

The mRNA expression levels of 5 flagellar genes were monitored relative to the 

housekeeping era gene. Figure 27 shows a heatplot of the qRT-PCR data, ranking the 

HP0958 mutants by expression of the RpoN regulon genes, flaB and flgE. In 

agreement with Douillard et al., fliA and rpoN experience the least fluctuation in 

expression when hp0958 is deleted or mutated compared to the P79 wild-type. 

Overall, the expression profiles for motile and non-motile strains form two separate 

clusters, with the following exceptions. In the case of non-motile derivative strains 

harbouring the H4A and F161A mutations in HP0958, these restored flaA expression 

levels close to that of the wild-type complement, with higher flgE expression and 

lower flaB expression. Motile derivative strains K209E and R205A are found within 

the non-motile cluster (Figure 27), however, these cells produced reduced zones of 

motility by soft agar assay (Figure 25). Seven of the 10 mutant derivative strains 

which produced multi-bulb extrusions cluster together between the motile and 

aflagellate cells. Therefore, these strains have an intermediate expression profile of 

flagellar genes indicating some level of function of the HP0958 mutant alleles. 

 4.4 Structure/function analysis of the HP0958-RpoN (74-284) interaction 

reveals involvement of the HP0958 coiled-coil domain. 

Though the HP0958-RpoN interaction has been confirmed by biochemical means, 

little is known about the mechanism of this interaction. The Rain et al. study 

predicted that residues 30-218 of HP0958 were required for the interaction with 

RpoN (74-284) (Rain et al., 2001). In order to investigate this, 14 site-directed 

mutants of HP0958 were screened by Y2H and PXG analysis to determine their 

effect upon the HP0958-RpoN (74-284) interaction. β-galactosidase induction due to 
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interactions involving these mutants was expressed as a proportion of the wild-type 

HP0958-RpoN (74-284) β-galactosidase activity (Figure 28). 

Interactions involving R181E and R184E mutants in the coiled-coil, and F203V, 

K209E and T222A in the Zn-finger behaved similarly to wild-type HP0958 (Figure 

28). Alanine substitution of residues T3, H13, L47, F161 and K187 in the coiled-coil 

and hinge region resulted in β-galactosidase levels which differed significantly from 

the wild-type. The I99A mutant failed to support any measurable level of reporter 

gene expression, indicating that alanine substitution of I99 in the coiled-coil 

abolished the interaction between HP0958 and RpoN (74-284). H13A, L47A, K195A 

and 1204A mutations all decreased the strength of interaction between HP0958 and 

RpoN (74-284), while T3A, F161A and K187A all increased the strength of 

interaction.  

 4.5 The full length flaA transcript is required for full-strength HP0958 

interaction. 

Secondary structural analysis of the flaA mRNA transcript revealed a predicted 

structure which forms three distinct regions (Figure 29). Region 1 contains 

nucleotides 1-317 (including the ribosomal binding site) and nucleotides 1202-1633 

(Figure 29). This truncated RNA transcript was predicted to have almost identical 

secondary structure to that of the full length sub-region, except for the presence of an 

additional loop replacing the deleted middle section (regions 2 and 3). Region 2 

contains nucleotides 326-817 of the flaA mRNA transcript and region 3 contains 

nucleotides 869-1198, both of which were truncated at these points to retain the same 

predicted secondary structure as those regions within the full length flaA mRNA. 

EMSA analysis was performed to identify the region(s) of the flaA transcript 

which interact(s) with HP0958 during flagellum biogenesis (Figure 30). Full length 

flaA mRNA in complex with HP0958 migrated more slowly than unbound transcript 

and produced a diffuse gel-shift band, as previously shown (Caly et al., 2010; 

Douillard et al., 2008). None of the truncated flaA transcripts (regions 1-3) produced 

a gel-shift similar to the full length mRNA-HP0958 complex and hence were 

impaired in their ability to interact with HP0958. A very faint band was visible at the 

same position as the full length gel-shift for the flaA region 1 (lane 6). A very weak 

gel-shift with a higher mobility was produced by the HP0958-flaA region 2 complex. 
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Region 3 was unable to produce any detectable gel-shift through interactions with 

HP0958. 

 4.6 Structure/function analysis of the HP0958-flaA mRNA interaction. 

Caly et al. previously tested 14 site-directed mutants of HP0958 to determine the 

impact on the HP0958-flaA mRNA interaction (Caly et al., 2010). While many of 

these impacted upon the interaction, none of the mutations abolished the interaction. 

In order to augment the structure-function analysis of HP0958, 14 additional site-

directed mutants of the flagellum biogenesis protein were generated in this study. 

The targets for mutagenesis spanned the two structural domains of HP0958 with 6 in 

the coiled-coil, 1 in the hinge region and 7 in the Zn-finger domain. These mutants 

were selected based on their conservation in HP0958 homologues across ε-

proteobacteria and their positively charged or aromatic characteristics (Jones et al., 

2001). The previous study found that R181A, R184A and K209A mutations had an 

observable effect on the complex gel-shift relative to wild-type HP0958 (Caly et al., 

2010). Glutamic acid substitution was performed for these 3 residues in order to 

determine if this mutation could exacerbate the effect caused by alanine mutation. 

Alanine substitution of T3A, H4A, H13A and Y231F had little or no effect on the 

migration of the HP0958-flaA transcript complex when compared to the gel-shift 

produced by wild-type HP0958 (Figure 31). L58A and K187A mutations produced a 

HP0958-flaA mRNA complex gel-shift similar to that of the wild-type HP0958. The 

T222A mutant apparently strengthened the protein-RNA interaction. K195A, F203V 

and R205V mutants formed complexes with flaA mRNA that migrated slightly faster 

than the wild-type complex, resulting in a slightly lower gel-shift position. R181E, 

R184E and K209E mutations did not alter the migration of flaA mRNA and hence 

abolished the HP0958-flaA mRNA interaction. L58A and T222A in complex with 

the flaA mRNA transcript produced gel-shifts which were slightly less diffuse than 

that of wild-type HP0958-flaA mRNA complex. 
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5 Discussion 

HP0958 is an essential component of flagellum biogenesis which is involved in 

multiple interactions during the assembly process (Caly et al., 2010; Douillard et al., 

2008; Ryan et al., 2005a). The protein-protein interaction network of H. pylori 

provided a platform for investigation into the role of HP0958, identifying 

interactions with two key flagellar components, FliH and RpoN (Rain et al., 2001). 

In this study, we present a detailed structure-function analysis of HP0958 through 

investigation of previously identified interactions with RpoN, FliH and flaA mRNA. 

Y2H and GST pull-down analyses failed to confirm the previously identified 

HP0958-FliH interaction. This interaction as indicated by Rain (Rain et al., 2001) 

appears to be a false positive within a large scale analysis of protein-protein 

interactions. Although measures have been taken to reduce the level of false positives 

wrongly identified as interaction pairs in yeast two-hybrid assays, our study affirms 

the necessity to confirm Y2H data by biochemical methods. 

Complementation of a non-motile hp0958-null derivative of P79 with site-

directed mutant alleles of hp0958 resulted in derivative strains with wild-type, partial 

or no HP0958 activity. Mutations which abolished or significantly decreased 

HP0958-RpoN interactions resulted in aflagellate cells while all mutant derivative 

strains which produced flagella resembling the wild-type were capable of motility. 

Thus, not unexpectedly, HP0958 contributes solely to flagellum assembly, not 

flagellum function. In general, mutations in the Zn-finger resulted in cells which 

produced flagella, while those in the coiled-coil lacked flagella resembling the wild-

type. This indicates that the RpoN interaction site in HP0958 is predominantly 

localised to the coiled-coil, supporting the Y2H analysis performed in this study. 

Complementation of the non-motile P79-0958KO strain with 2 mutant proteins 

which abolished HP0958-flaA mRNA interaction (R184E and K209E; assessed by 

EMSA) but did not significantly affect the RpoN interaction produced cells with 

diminished motility. Complementation of the hp0958-null derivative of P79 with 

R205A and R205V mutant proteins also resulted in cells with reduced motility when 

compared to cells complemented with wild-type HP0958; these mutations formed 

HP0958-flaA mRNA complexes which migrated differently to that of the wild-type 

in complex (Figure 31). Thus, the data indicates that HP0958 functions can be 

separated based the on activities of two distinct structural domains (coiled-coil and 
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Zn-finger) through the combined structure-function analysis of HP0958-flaA mRNA 

and HP0958-RpoN interactions, supporting the hypothesis proposed by Douillard et 

al. (Caly et al., 2010; Douillard et al., 2008) (Figure 32). 

Recently, Iwakiri et al. performed structural analysis of 91 protein-RNA 

interactions for which 3D information was available and found that aspartic acid is 

often present at protein-RNA interfaces where it is proposed to be involved in RNA 

loop recognition (Iwakiri et al., 2011). The presence of two conserved aspartic acid 

residues (D208 and D219) between the cystine knuckles of the Zn-finger in HP0958 

supports the involvement of this domain in flaA mRNA interactions (Appendix 22). 

Detailed structure-function analysis of the HP0958-flaA mRNA interaction, together 

with the previously published work of Caly et al. has identified key residues in the 

Zn-finger of HP0958 involved in RNA contact (Caly et al., 2010). Coiled-coil 

mutations at the N-terminal (T3A, H4A, H13A) did not affect the interaction. 

Positively charged amino acids (R181, R184, K209 and K195) which are associated 

with protein-RNA interactions were found to be involved in flaA mRNA binding, 

likely through electrostatic interactions with negatively charged phosphate groups of 

RNA (Ellis et al., 2007; Iwakiri et al., 2011). Residue I204 of HP0958 may have a 

dual function as mutation significantly affected both RpoN and flaA mRNA 

interactions. 

Y2H analysis confirmed that HP0958 interacts with the domain spanning residues 

74-284 of RpoN. Analysis of the HP0958-RpoN interaction revealed many contact 

points along the structure of HP0958: 5 in the coiled-coil, 1 in the hinge region and 2 

in the Zn-finger. This indicates that the RpoN protein is likely to be in an extended 

conformation while interacting with HP0958. I99A and K187A mutations abolish the 

HP0958-RpoN (74-284) interaction in a Y2H interaction model. H13A, L47A, 

K195A and I204A mutations all result in a significant decrease in the strength of the 

RpoN interaction. Interestingly, T3A, F161A and K187A all significantly increased 

the interaction strength but none of these mutant alleles were capable of restoring 

motility when transformed into P79-0958KO. We hypothesise that by enhancing the 

binding of HP0958 to RpoN beyond that of the wild-type interaction, this can inhibit 

activity of this sigma factor by reducing its interaction with the core RNA 

polymerase. 

Mutations disturbing the RpoN regulon had a more dramatic effect on flagellum 

biogenesis as seen by TEM analysis when compared to mutations which disturbed 
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the HP0958-flaA mRNA interaction. It may be that the flaA mRNA interacts at more 

residues which are in close proximity which can compensate for single site-

mutations, whereas residues involved in RpoN interactions are dispersed across a 

much larger surface area which more easily destabilise the interaction. It is also 

possible that some mutants which impede flaA incorporation into the filament can 

compensate for this by producing filaments with higher FlaB composition than the 

wild-type and hence produce flagella which are still capable of motility. 

H. pylori are lophotrichous and generally possess 2 - 6 polar sheathed flagella 

with a characteristic bulbed tip (Geis et al., 1993; Goodwin et al., 1985). FlhF and 

FlhG have been implicated in localisation of flagellum biogenesis to the bacterial cell 

pole and in control of flagellum number in H. pylori, Campylobacter jenuni and 

Vibrio cholerae (Balaban and Hendrixson, 2011; Balaban et al., 2009; Lertsethtakarn 

et al., 2011). TEM analysis revealed that many derivative strains of P79-0958KO 

complemented with HP0958 mutant proteins presented flagellar-type extrusions from 

the cell surface at non-polar positions which did not resemble typical flagella. 

Furthermore, F203V and Y231F mutations resulted in complemented cells which 

produced wild-type flagella at both poles; T222A complemented cells produced 

wild-type flagella which protruded from the side of the bacterial cells. Therefore, we 

propose a novel function of HP0958 during flagellum biogenesis: localisation of 

flagellum biogenesis to a single cell pole. The occurrence of non-polar flagellar 

extrusions from cells complemented with mutated alleles spanning all secondary 

structural elements of HP0958 suggests that this role may involves both the coiled-

coil and Zn-finger domains. These extrusions are likely to either be empty flagellar 

sheaths or sheaths encasing abnormal flagellar sub-structures, similar to the empty 

sheaths produced by fliD mutant derivative cells (Kim et al., 1999). Transcriptional 

analysis of strains producing such extrusions indicates partial restoration of HP0958 

function/flagellar gene expression, indicating some flagellum biogenesis activity 

within the cells. 

In Caulobacter crescentus, the flagellin genes fljK and fljL are transcribed but not 

translated until the hook/basal-body complex has been completed. FlbT binds and 

destabilises the transcript to prevent premature translation and secretion, much as we 

hypothesise HP0958 may act on the flaA mRNA transcript in H. pylori (Anderson 

and Gober, 2000). FlbT, the post-transcriptional regulator of flagellin synthesis in 

Caulobacter crescentus, interacts with the 5’ untranslated region of flagellin mRNA. 
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Deletion of the 5’ untranslated regon of the H. pylori flaA mRNA transcript did not 

have any effect upon HP0958 binding (Douillard et al., 2008). Therefore, a 

secondary structure-based approach was adopted in order to investigate the nature of 

this interaction from the RNA perspective. Region 1 and Region 2 truncated mRNA 

transcripts had significantly reduced capacity to bind HP0958. However, the 

observation of very faint gel-shifts does indicate the involvement of these branches 

of the full length predicted secondary structure. While Region 3 of the flaA mRNA 

transcript alone may not be capable of interacting with HP0958, these results indicate 

that the flaA transcript as a whole is required for efficient protein-RNA interaction. 

This may be mediated by sequence-specific interactions or recognition of the 

secondary structure of the complete mRNA transcript. 

In conclusion, this study presents an in depth structure-function analysis of the 

role of HP0958 during flagellum biogenesis in H. pylori. Taken together, these data 

support the previously proposed mechanism of HP0958 function with one exception. 

HP0958 was proposed to target the flaA mRNA transcript to the export apparatus 

through its interaction with FliH (Douillard et al., 2008). With the elimination of the 

FliH interaction from this model, there is a need for further refinement of our 

understanding of the role of HP0958 in flagellum assembly. One possibility is that 

the HP0958 has additional interaction partners which have not yet been identified. It 

cannot be excluded that HP0958 and the identified interaction partners discussed in 

this study may require additional flagellar components to form a fully functional 

complex. Analysis of potential interactions between HP0958 and components of the 

basal body and export apparatus such as FlhA may provide the key for what targets 

the transcript in complex with HP0958 for efficient export. Purification of a soluble 

form of the RpoN (74-284) would facilitate analyses to determine the potential role 

of HP0958 in the switch between expression of Class II and Class III flagellar genes. 

The presence of flagellar extrusions from non-polar sites in derivative strains of P79-

0958KO complemented with mutant alleles suggests a novel role of HP0958 in 

localisation of flagellum biogenesis to a single cell pole. Further investigation into 

this function is warranted to further elucidate flagellum assembly of H. pylori. 
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7 Tables and Figures 

Table 18 List of strains used in this study 

Strain Relevant characteristics Source 

H. pylori   

CCUG 17874 Wild type strain CCUG, Sweeden 

P79 P1 Str
r
 (Heuermann and Haas, 1998) 

P79-0958KO
1 

P79 Δhp0958::Cm
r
 (Douillard et al., 2008) 

P79-0958/pIR203K04 P79 Δhp0958::Cm
r
 with pIR203K04 (Kan

r
) (Douillard et al., 2008) 

E. coli   

XL1-Blue Supercompetent 

cells 
recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F⁻ proAB lacIqZΔM15 Tn10 

(TetR)] 

Stratagene, USA 

One shot Top 10 F⁻ mcrA _ (mrr-hsdRMS-mcrBC) _80lacZ_M15 _lacX74 nupG recA1 araD139 (ara-

leu)7697 galE15 galK16 rpsL (StrR) endA1 

Invitrogen, CA 

DH5α F– Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17 (rK–, 

mK+) phoA supE44 λ– thi-1 gyrA96 relA1 

Invitrogen, CA 

Rosetta 2(DE3) pLysS  F⁻ ompT hsdSB (rB–mB–) gal dcm (DE3) pLysSRARE2 (CamR) Novagen, Darmstadt, Germany 

   

   

   

   



 

 

S. cerevisiae   

AH109 MATa, trp1-901, leu2-3, 112, ura3-52, his3-200, gal4Δ, gal80Δ, LYS2::GAL1UAS-

GAL1TATA-HIS3, GAL2UAS-GAL2TATA-ADE2, URA3::MEL1UAS-MEL1TATA-lacZ 

Dr. Paul Young, UCC 

Y187 MATα, ura3-52, his3-200, ade2-101, trp1-901, leu2-3, 112, gal4Δ, met-, gal80Δ, 

URA3::GAL1UAS-GAL1TATA-lacz 

Dr. Paul Young, UCC 

1
KO, knockout. 
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Table 19 List of plasmids used for yeast two-hybrid and protein expression 

Plasmids Relevant characteristics Source 

pGEX-6p-3 N-terminally GST-tagged expression vector GE Healthcare, UK 

pDC006 pGEX-6p-3 hp0958 (Caly et al., 2010) 

pFliH01 pGEX-6p-3 fliH 2-258 This study 

pFliH02 pGEX-6p-3 fliH 89-258 This study 

pRpoN01 pGEX-6p-3 rpoN 74-284 This study 

pRpoN02 pGEX-6p-3 rpoN 74-210 This study 

pMut2 pGEX-6p-3 HP0958 mutant T3A This study 

pMut3 pGEX-6p-3 HP0958 mutant H4A This study 

pMut4 pGEX-6p-3 HP0958 mutant H13A This study 

pMut6 pGEX-6p-3 HP0958 mutant L58A This study 

pMut9 pGEX-6p-3 HP0958 mutant R181E This study 

pMut10 pGEX-6p-3 HP0958 mutant R184E This study 

pMut11 pGEX-6p-3 HP0958 mutant K187A This study 

pMut12 pGEX-6p-3 HP0958 mutant K195A This study 

pMut13 pGEX-6p-3 HP0958 mutant F203V This study 

pMut15 pGEX-6p-3 HP0958 mutant R205A This study 

pMut16 pGEX-6p-3 HP0958 mutant R205V This study 

pMut17 pGEX-6p-3 HP0958 mutant K209E This study 

pMut18 pGEX-6p-3 HP0958 mutant T222A This study 

pMut19 pGEX-6p-3 HP0958 mutant Y231F This study 

   

pMAD Em
r
 cassette; β-galactosidase gene under 

constitutive promoter 

(Arnaud et al., 

2004) 

pGBKT7 Kan
r
 for selection in E. coli; Trp1 nutritional 

marker for selection in S. cerevisiae 

Dr. Paul Young 

pGADT7 Amp
r
 for selection in E. coli; Leu2 nutritional 

marker for selection in S. cerevisiae 

Dr. Paul Young 

pCC01 pGBKT7 hp0958 This study 

pCC02 pGADT7 fliH 89-258 This study 

pCC03 pGBKT7 fliH 89-258 This study 

pCC04 pGADT7 hp0958 This study 

pCC05 pGADT7 rpoN 74-284 This study 

pCC06 pGADT7 rpoN 74-210 This study 

pCC07 pGADT7 fliI 2-91 This study 

pMut2k pGBKT7 HP0958 mutant T3A This study 

pMut3k pGBKT7 HP0958 mutant H4A This study 

pMut4k pGBKT7 HP0958 mutant H13A This study 

pMut5k pGBKT7 HP0958 mutant L47A This study 

pMut6k pGBKT7 HP0958 mutant L58A This study 

pMut7k pGBKT7 HP0958 mutant I99A This study 
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pMut8k pGBKT7 HP0958 mutant F161A This study 

pMut9k pGBKT7 HP0958 mutant R181E This study 

pMut10k pGBKT7 HP0958 mutant R184E This study 

pMut11k pGBKT7 HP0958 mutant K187A This study 

pMut12k pGBKT7 HP0958 mutant K195A This study 

pMut13k pGBKT7 HP0958 mutant F203V This study 

pMut14k pGBKT7 HP0958 mutant I204A This study 

pMut17k pGBKT7 HP0958 mutant K209E This study 

pMut18k pGBKT7 HP0958 mutant T222A This study 

pMut19k pGBKT7 HP0958 mutant Y231F This study 

 



 

 

Table 20 List of plasmids transformed into H. pylori strain P79-0958KO 

Plasmids Relevant characteristics Source 

pIR203K04 Kan
r
 suicide vector (Langford et al., 2006) 

pIR0958 pIR203K04 with the hp0958 gene under the control of the hp1563 promoter (Douillard et al., 2008) 

pIRmut2 pIR0958 mutant T3A This study 

pIRmut3 pIR0958 mutant H4A This study 

pIRmut4 pIR0958 mutant H13A This study 

pIRmut5 pIR0958 mutant L47A This study 

pIRmut6 pIR0958 mutant L58A This study 

pIRmut7 pIR0958 mutant I99A This study 

pIRmut8 pIR0958 mutant F161A This study 

pIRmut9 pIR0958 mutant R181E This study 

pIRmut10 pIR0958 mutant R184E This study 

pIRmut11 pIR0958 mutant K187A This study 

pIRmut12 pIR0958 mutant K195A This study 

pIRmut13 pIR0958 mutant F203V This study 

pIRmut14 pIR0958 mutant I204A This study 

pIRmut15 pIR0958 mutant R205A This study 

pIRmut16 pIR0958 mutant R205V This study 

pIRmut17 pIR0958 mutant K209E This study 

pIRmut18 pIR0958 mutant T222A This study 

pIRmut19 pIR0958 mutant Y231F This study 



 

 

Table 21 Overview of structure-function analysis of HP0958 by analysis of site-directed mutant proteins 

Compiled results of biochemical assays and complementation data from the current study, with previously published structure-function analysis by Caly et al. 

(Caly et al., 2010) where: (*) positive; (-) negative; empty cells denote no data available; (M) motile; (N) non-motile; (S) swarming. “Location” refers to the 

secondary structure within HP0958 at that residue selected for mutation where: (α) α-helix; (β) β-sheet; (Kn) knuckle co-ordinating zinc atom; (hinge) linker 

region between coiled-coil and Zn-finger domains. 

Mutation Location RpoN interaction flaA interaction Motility assay
*
 TEM 

  (Y2H) (EMSA)  Flagella Multi-bulb Large bulbs Non-polar 

P79 WT    M * - - - 

KO    N - - - - 

Complement    M * - - - 

T3A α1a Increased Little or no effect S - * - - 

H4A α1a Same as WT Little or no effect S - - - - 

H13A α1a Decreased Little or no effect M - * - - 

L47A
+ 

α1b Decreased Same as WT N - * - * 

L58A α1b  Same as WT M * * - * 

I99A
+ α2a Abolished Same as WT S - - * * 

F161A
+ α2b Increased Same as WT S - * - * 

F178A
+ α3  Observable effect      

Y179A
+ α3        

R181A
+ α3  Observable effect      

R181E α3 Same as WT Abolished S - * - - 

R184A
+ α3  Little or no effect      

R184E α3 Same as WT Abolished M * - - - 

W185A
+ α3  Little or no effect      

K187A hinge Increased Same as WT S - - - - 

T189A
+ hinge  Observable effect      



 

 

K195A Zn ribbon Decreased Same as WT S - * - * 

K196A
+ Zn ribbon  Little or no effect      

Q197A
+ Zn ribbon  Observable effect      

C199A
+ Zn ribbon, Kn1  Observable effect      

F203V Zn ribbon, Kn1 Same as WT Observable effect M * - - * 

I204A
+  Decreased Observable effect S - * * * 

R205A Zn ribbon  Observable effect M * * - * 

R205V° Zn ribbon  Observable effect M - - - - 

K209A
+ Zn ribbon, α4  Little or no effect      

K209E Zn ribbon, α4 Same as WT Abolished M * * - * 

Y211A
+ Zn ribbon, α4  Little or no effect      

T222A Zn ribbon, Kn2 Same as WT Increased M * - - * 

R228A
+ Zn ribbon, Kn2  Observable effect      

Y231F Zn ribbon, β2  Little or no effect M * - - * 

*
Wild-type and P79 derivative strains. 

+
HP0958 site-directed mutants generated for EMSA screen by Caly et al. (Caly et al., 2010). 

°TEM of this strain will be repeated as images from this culture include artefacts (Appendix 21). 
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Figure 22 GST pull-down assay investigating the previously proposed HP0958-FliH 

interaction. 

GST pull-down assay of HP0958 and FLAG fusion FliH proteins. (A) SDS-PAGE of 

HP0958-FliH (89-258) GST pull-down assay; (B) corresponding immunoblot with anti-

FLAG antibody; (C) SDS-PAGE of HP0958-FliH (89-258) GST pull-down assay; (D) 

corresponding immunoblot with anti-FLAG antibody. Loading was identical for (A - D) 

where: L = Prestained Broad Range protein ladder; 1 = FLAG fusion FliH; 2 = glutathione 

sepharose B incubated with FLAG-FliH; 3 = glutathione sepharose B resin bound GST 

incubated with FLAG-FliH; 4 = glutathione sepharose resin bound GST-HP0958; 5 and 6 = 

glutathione sepharose B resin bound GST-HP0958 incubated with FLAG-FliH. 
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Figure 23 Investigation of previously proposed HP0958 PPIs by yeast two-hybrid assay. 

β-galactosidase activity relative to positive control strain E. coli Top10 harbouring 

the pMAD plasmid for constitutive expression of the enzyme. B = strains possessing 

bait protein expressed as fusion protein with the GAL4 DNA-binding domain; 

P = prey protein expressed as fusion protein with the GAL4 transcription activation 

domain; T = strains possessing both vectors harbouring bait and prey genes for a 

given interaction pair. 
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Figure 24 Flagellum production by H. pylori P79 and derivatives. 

Transmission electron micrographs of H. pylori cells stained with uranyl acetate. In each 

panel, arrows mark flagella and arrowheads mark bulb structures. (A) Wild-type P79; (B) 

detail of P79 wild-type flagella; (C) hp0958-null derivative of P79; (D) complemented 

hp0958-null derivative of P79; (E) detail of complemented derivative; (F) representative 

example of a flagellate cell from HP0958 mutant complemented with mutated allele; (G) 

detail of flagellate cell from HP0958 mutant complemented with mutated allele; (H) 

representative example of a cell with multi-bulb phenotype from HP0958 mutant 

complemented with mutated allele; (I) detail of multi-bulb phenotype; (J) representative 

example of a cell with non-polar bulb phenotype from HP0958 mutant complemented with 

mutated allele; (K) representative example of a cell with large polar bulbs from HP0958 

mutant complemented with mutated allele; (L) representative example of a cell with 

amphitricious flagella from HP0958 mutant complemented with mutated allele. 
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Figure 25 Motility screens of H. pylori P79 and derivatives. 

Cells were inoculated in 0.3% soft agar and incubated for 4 days at 37°C, 5% CO2. 

Halo formation within agar indicates motility while non-motile cells remain at the 

site of inoculation. Growth outwards from the point of inoculation on the surface 

only (not in the agar) results in ring pattern due to swarming. 

 



 

 

 

 

Figure 26 Western blot analysis of flagellum protein expression in P79 and its derivatives. 

Flagellin and hook protein levels of cells corrected to OD600 1.0 after 20 hrs liquid culture. (L) ColorPlus
TM

 prestained protein ladder, broad range (7 -

 175 kDa); (1) wild-type P79; (2) P79-0958KO; (3) P79-0958KO_pIRWT; (4) P79-0958KO_pIRT3A; (5) P79-0958KO_pIRH4A; (6) P79-

0958KO_pIRH13A; (7) P79-0958KO_pIRL47A; (8) P79-0958KO_pIRL58A; (9) P79-0958KO_pIRI99A; (10) P79-0958KO_pIRF161A; (11) P79-

0958KO_pIRR181E; (12) P79-0958KO_pIRR184E; (13) P79-0958KO_pIRK187A; (14) P79-0958KO_pIRK195A; (15) P79-0958KO_pIRF203V; (16) P79-

0958KO_pIRI204A; (17) P79-0958KO_pIRR205A; (18) P79-0958KO_pIRR205V; (19) P79-0958KO_pIRK209E; (20) P79-0958KO_pIRT222A; (21) P79-

0958KO_pIRY231F. 



 

 

 

Figure 27 Flagellar gene expression of hp0958-null P79 derivative complemented with mutated alleles. 

mRNA levels of 5 flagellar genes relative to the wild-type P79 transcription profile. Gene names are listed on the y-axis and strains analysed are listed on the 

x-axis by the hp0958 mutant allele they possess. “HP0958KO” is a control for expression in the absence of HP0958 and “complement” is the P79 mutant 

derivative complemented with the wild-type HP0958. 1 = wild-type level; 0.1 = 10 fold reduction in expression; 0.01 = 100 fold reduction in expression. All 

gene expression was normalised to the housekeeping gene, era. Non-motile strains are coloured purple and motile strains are coloured yellow. 
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Figure 28 Identification of residues in HP0958 which are involved in the interaction 

with RpoN (74-284). 

(A) β-galactosidase activity of S. cerevisiae Y187 derivative strains expressing HP0958 site-

directed mutant proteins and RpoN (74-284) represented as a proportion of the signal from 

the derivative strain harbouring wild-type HP0958/RpoN (74-284) interaction. (B) 

Illustration of the structure of wild-type HP0958 protein highlighting residues tested by Y2H 

and β-galactosidase assay. Image generated with Pymol (DeLano Scientific, CA). Colours in 

both (A) and (B) refer to the secondary structure of residues selected for mutation of HP0958 

for each mutant where: red = α-helix; blue = hinge region; green = Zn-finger. Mann-Whitney 

pairwise statistical test was performed for each pair-wise comparison. *P≤0.05; ** P≤0.01; 

***P≤0.001. 
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Figure 29 Predicted secondary structure of the flaA mRNA transcript. 

Predicted secondary structure of flaA mRNA transcript of H. pylori strain 17874. (A) 

Structure generated in Circles based on maximum weight matching; (B) Structure generated 

in RNAdraw based on McCaskill minimum free energy. 
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Figure 30 Gel shift assay of HP0958 binding to full length and shortened derivatives of 

the flaA mRNA transcript. 

15 ng of biotin-labelled riboprobe was incubated with 6 µg wild type HP0958. RNA 

corresponding to truncated flaA transcripts is labelled Region 1, 2 or 3. Arrows indicate the 

position of flaA transcripts after gel electrophoresis and the different migration of the 

HP0958/flaA mRNA complex. Order as follows: full length flaA mRNA (1) RNA load; (2) 

co-incubation with GST control protein; (3) co-incubation with HP0958; region 1 flaA 

mRNA (4) RNA load; (5) co-incubation with GST control protein; (6) co-incubation with 

HP0958; region 2 flaA mRNA (7) RNA load; (8) co-incubation with GST control protein; 

(9) co-incubation with HP0958; region 3 flaA mRNA (10) RNA load; (11) co-incubation 

with GST control protein; (12) co-incubation with HP0958. 
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Figure 31 Mobility shift assay screen of HP0958 mutants. 

15 ng of biotin-labelled full-length flaA riboprobe was incubated with 6 µg HP0958 (wild-

type or site-directed mutants). Arrows indicate the position of flaA transcripts after gel 

electrophoresis and the different migration of the HP0958/flaA mRNA complex. Controls 

and site-directed mutants are labelled on x-axis. 



 

 

 

Figure 32 Residues within HP0958 protein involved in interactions with RpoN and/or flaA mRNA. 

Residues which are involved in the HP0958-RpoN (74-284) interaction are coloured red; those involved in the HP0958-flaA mRNA interaction are coloured 

blue; residue I204A which is involved in both interactions is coloured magenta. Image generated with Pymol (DeLano Scientific, CA) and includes previously 

published data on the HP0958-flaA mRNA interaction by Caly et al. (Caly et al., 2010). 
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1 General Discussion 

Over the last ~30 years, research into the gastric human pathogen Helicobacter 

pylori has generated major advancements in our understanding of its biology, 

pathogenicity and intimate host associations. The classification of H. pylori as a 

human carcinogen, emerging antibiotic resistances and globally high levels of gastric 

diseases highlight its continuing clinical relevance throughout the decades 

(International Agency for Research on Cancer, 1994; Marshall et al., 1984; Parkin, 

2006). Genome mining has lead to the identification of strain-specific genes, 

biomarkers of disease and provided insights into the regulatory network of gene 

expression in H. pylori. Due to close evolution with its human host, H. pylori has 

developed a genome which is extremely efficient for performing critical processes 

during its ecological cycle such as infection, colonisation and evasion of the host 

immune response (Backert and Clyne, 2011; Linz et al., 2007). The genome of 

H. pylori appears to be in a constant state of flux, with recombination events, phase 

variation and mutation rates enabling the extreme plasticity (Olbermann et al., 2010; 

Suerbaum and Josenhans, 2007). 

In Chapter 2 the draft genome sequences of two H. pylori strains, CCUG 17874 

and P79, were described as a published Genome Announcement (Clancy et al., 

2012). Comparative analysis of strains 17874 and P79 identified key differences in 

predicted pseudogenes, genes encoding outer membrane proteins, restriction 

modification (RM) systems and competence genes. Regarding the difference in 

transformation efficiency between the strains, it is likely that the restriction barrier is 

the main factor which makes plasmid introduction into 17874 more difficult, while 

variations in the comB locus may also contribute. The development of methylomics 

has recently led to the identification of novel recognition sequences for RM systems, 

as well as highlighting remarkable levels of interstrain variation (Krebes et al., 2013; 

Murray et al., 2012). The mere absence or presence of a particular RM gene cannot 

be accepted as sufficient evidence for interstrain variation of biological relevance 

since RM system components have previously been shown to be present but inactive 

in some strains of H. pylori (Xu et al., 2000). The relatively recently described 

derivative strain of 26695 H. pylori which was deficient in type II RM systems had 

increased transformation efficiency, highlighting an exciting new method of 

enhancing the tractability of lab strains which are difficult to transform (Zhang and 
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Blaser, 2012). Application of this strategy to the motile type-strain 17874, together 

with the publically available draft genome sequence for this strain, would greatly 

enhance motility studies requiring genetic manipulations. 

Interestingly, each person infected with H. pylori possesses unique strain(s), with 

the exception of close family members, highlighting the adaptability of this human 

pathogen (Fialho et al., 2010; Raymond et al., 2008; Schwarz et al., 2008). The 

extreme genetic diversity of H. pylori and compounding factors such as host genetics 

and environmental factors have hampered efforts to identify clear disease markers 

(Chung et al., 2010; Kodaman et al., 2014; Neal et al., 2013; Wroblewski et al., 

2010). Presence of cytotoxin associated gene A (cagA) and vacuolating cytotoxin A 

(vacA) gene are two of the best described virulence determinants associated with 

H. pylori-related disease development (Backert and Clyne, 2011). However, strains 

lacking the standard characteristed virulence factors including SabA and BabA have 

been isolated from patients suffering from gastric neoplasia (Thiberge et al., 2010). 

This indicates that H. pylori may harbour virulence determinants which are currently 

unknown. 

Refinement of the core genome and pan-genome of H. pylori will contribute to 

global understanding of the mechanisms of infection and persistence in its host. In 

this study, the core genome of H. pylori was further reduced in comparison to recent 

analyses (Lu et al., 2013). Comparative analyses of the species core genome with the 

core genome of strains isolated from individuals suffering from H. pylori-related 

diseases (“disease-core”) has resulted in a panel of genes which can be probed in 

further analyses. Many of the “disease-core” genes encoded hypothetical proteins 

whose characterisation is warranted based on the potential for these to be novel 

biomarkers of disease or virulence factors. It is likely that these hypothetical proteins 

have functions which are advantageous to these strains either in colonisation or 

induction of disease-onset, as H. pylori is an extremely efficient organism in terms of 

gene conservation. Many of these genes may encode proteins involved in LPS 

biosynthesis, outer membrane proteins or transporter proteins, all of which are 

contributors of virulence, effective colonisation and persistence. For instance, 

HP1286 was originally annotated as encoding a hypothetical protein in the genome 

of strain 26695, but has since been identified as a stress-response factor homologous 

to YceI . The high number of genes encoding hypothetical proteins annotated in the 

genomes of strains 17874 and P79 is striking, considering the relatively small 
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genome size of H. pylori and the large number of strains for which genome sequence 

data is available. Clearly, the presence of so many (often strain-specific) genes 

encoding proteins of unknown function undermines our understanding of the 

complexity of H. pylori as a persistent human pathogen. Systematic characterisation 

of these genes would undoubtedly enhance future studies regarding infection, 

colonisation and the on-set of disease triggered by H. pylori. Furthermore, the 

identification of homopolymeric repeats in the genomes of strains 17874 and P79 

highlights the role of phase variation in H. pylori regulation of gene expression of 

factors such as motility and surface-exposed antigens. The link has been made 

between phase variation and epigenetic regulation of gene expression in H. pylori 

(Srikhanta et al., 2011). This mechanism of regulation adds another layer of 

complexity to the issue of pathogenesis. Therefore, a challenge now exists to develop 

genome data mining tools which are capable of accurately annotating and filtering 

the sequence information to enhance targeted approaches to future analyses. The 

coupling of genomics, transcriptomics and the relatively recent methylomics to 

biological analyses will help to elucidate the intricacies of gene expression and 

regulation, marking an exciting new era in H. pylori research (Murray et al., 2012; 

Sharma et al., 2010). 

In Chapter 3, the focus of this study was shifted from a broad scale genome 

analysis to a detailed structure-function analysis of the essential H. pylori flagellum 

biogenesis protein, HP0958. Although structural elements of the H. pylori flagellum 

are closely conserved when compared to model organisms E. coli and Salmonella, 

regulation of flagellar assembly deviates from these (Anderson et al., 2010; 

Lertsethtakarn et al., 2011; Niehus et al., 2004). Elucidation of the regulatory 

mechanisms of flagellum biogenesis in H. pylori will help to understand this 

complex process and may contribute to knowledge of spatial regulation of flagella in 

motile bacteria as H. pylori are lophotrichously flagellated while the model 

organisms are peritrichously flagellated. 

In this study, the previously proposed interaction of HP0958 with FliH, the 

negative regulator of flagellar ATPase FliI, was found to be a false positive from a 

yeast-two hybrid (Y2H) analysis of the proteome of H. pylori (Rain et al., 2001). 

Confirmation of the HP0958-RpoN (74-284) interaction by Y2H analysis and 

subsequent site-directed mutagenesis identified the involvement of the coiled-coil 

domain of HP0958. HP0958 was previously identified as a chaperone of RpoN 
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(Douillard et al., 2008; Pereira and Hoover, 2005). The HP0958-RpoN interaction 

was identified as a relatively weak interaction compared to FliH-FliI binding. One 

possibility is that the absence of currently unidentified additional interaction partners 

prevents the formation of a stable complex in the Y2H system. Another scenario is 

that the weak, transient nature of the HP0958-RpoN interaction is biologically 

favourable, allowing the interaction of RpoN with the core RNA polymerase 

(residues ~70-200 in Aquifex aeolicus) to stimulate expression of Class II flagellar 

genes (Hong et al., 2009). The role of HP0958 in this case may be to protect RpoN 

from intracellular proteases, prevent aggregation or induce RpoN to take on an 

extended conformation which exposes the core RNA polymerase binding site. While 

it is known that HP0958 improves the stability of RpoN in the cytoplasm, the 

potential involvement of HP0958 in RpoN interactions with the core RNA 

polymerase has yet to be investigated (Pereira and Hoover, 2005). 

Complementation of a non-motile hp0958-null derivative of P79 with HP0958 

mutant alleles by natural transformation revealed that mutations in the coiled-coil 

generally resulted in non-motile cells, while those in the Zn-finger generally restored 

motility either partially or fully. Interestingly, electron microscopy of complemented 

mutant strains revealed presence of flagellar-type extrusions from the cell surface at 

both poles and/or non-polar sites. This suggests that HP0958 may have an additional 

role in localisation of flagellum biogenesis to a single cell pole; this process likely 

involves both the coiled-coil and Zn-finger domains of HP0958. Little is known 

about the mechanism of flagellum localisation in H. pylori. FlhF and FlhG have been 

implicated in localisation of flagellum biogenesis to the bacterial cell pole and 

control of flagellum number in H. pylori, Campylobacter jenuni and Vibrio (Balaban 

and Hendrixson, 2011; Balaban et al., 2009; Lertsethtakarn et al., 2011). Balaban et 

al. proposed that in C. jejuni, FlhF is involved in the activation of RpoN-dependent 

gene expression in an FlgS/R-independent mechanism (Balaban and Hendrixson, 

2011). Recently, a novel role for flagellar-associated autotoxin A (FaaA) has been 

proposed in localising flagellum production to the cell pole in H. pylori (Radin et al., 

2013). Site-directed mutagenesis of HP0958 enabled refinement of the current model 

for HP0958-flaA mRNA interaction. The previously published structure-function 

analysis of the HP0958-flaA mRNA interaction was augmented by analysis of a 

further 14 side-directed mutants combined with analysis of the RNA subdomains 

required for interaction (Caly et al., 2010). The full length transcript of the major 
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flagellin was found to be required for direct full-strength interaction with the Zn-

finger domain of HP0958. 

Given that FliH does not interact with HP0958, the currently accepted model for 

the role of HP0958 during flagellum biogenesis must be re-evaluated (Douillard et 

al., 2008). Components of the basal body and export apparatus may fill the 

previously proposed role of FliH in this model. Elucidation of the role of HP0958 in 

flagellar localisation to the cell pole may be the key. One scenario could involve 

interaction between RpoN-bound HP0958 and FlhF. FlhF has been implicated in 

localising the MS ring components to the cell pole in C. jenuni, in addition to its 

influence on the activity of RpoN (Balaban et al., 2009). Therefore, future studies to 

identify potential interactions between HP0958, RpoN, FlhF and potentially FlhG 

may identify the missing link which targets the HP0958-flaA mRNA complex to the 

export apparatus. Furthermore, together with FaaA, these proteins may be involved 

in a cascade which ensures the tight spatial regulation of flagellum biogenesis at a 

single cell pole. In Vibrio alginolyticus, FlhG has been identified to negatively 

regulate the activity of FlhF (Kusumoto et al., 2008). Elucidation of the potential 

interplay between these flagellar proteins will serve to improve the model of 

flagellum construction in H. pylori. 

Additionally, many of the P79-0958KO derivative strains complemented with 

HP0958 mutant proteins produced truncated flagellar-type structures which 

resembled flagellar distal bulbs. Mutation of the fliD gene also produced mutant cells 

which possessed atypical flagellar sheaths, which are thought to be of similar 

composition to that of the bacterial outer membrane (Geis et al., 1993; Kim et al., 

1999). FaaA localises to the flagellar sheath in H. pylori and deletion of the gene 

resulted in cells with abnormal cell localisation of the flagellum (Radin et al., 2013). 

There have been relatively few developments in our understanding of the 

biosynthesis of the flagellar sheath. Geis et al. found that the sheath contains fatty 

acids, LPS and low molecular weight proteins, and suggested that it is an extension 

of the outer membrane (Geis et al., 1993). In addition, only two proteins have since 

been identified as localising to the flagellar sheath: the autotransporter FaaA and 

HpaA (Jones et al., 1997; Luket and Penn, 1995; Radin et al., 2013). Therefore, the 

panel of derivative strains possessing HP0958 mutant proteins from this study 

provides a platform for analysis of flagellar sheath biogenesis. Future analysis of the 

essential flagellum biogenesis protein HP0958 will provide understanding of the 
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deviations of flagellum construction from the model organisms and potentially 

enhance our understanding of flagellar localisation and sheath production. 
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Appendix 1 List of methylases in the genome of H. pylori CCUG 17874 

Locus tag Contig Product 

HP17_00556 13 Type II adenine methyltransferase 

HP17_00561 13 Cytosine specific DNA methyltransferase 

HP17_00576 13 Adenine/cytosine DNA methyltransferase 

HP17_00811 15 Type II adenine methyltransferase 

HP17_04995 88 Type II DNA modification methyltransferase 

HP17_05010 88 Type II DNA modification (methyltransferase) 

HP17_05065 88 Flagellin N-methylase, FliB 

HP17_05280 91 DNA methylase 

HP17_07432 144 N5-glutamine S-adenosyl-L-methionine-dependent 

methyltransferase 

HP17_07164 140 Type II DNA modification enzyme (methyltransferase) 

HP17_07154 140 Type II DNA modification enzyme 

HP17_05865 100 rRNA methyltransferase 

HP17_05645 99 Adenine-specific DNA methyltransferase 

HP17_06342 110 Putative type II cytosine specific methyltransferase 

HP17_08696 165 N6-adenine-specific methylase 

HP17_02549 41 Adenine-specific DNA methyltransferase 

HP17_02150 35 Ribosomal protein L11 methyltransferase 

HP17_02065 34 Pore-forming cytolysin (rRNA methylase) 

HP17_003479 68 M.HpyAVIII, type II cytosine specific DNA 

methyltransferase 

HP17_04079/84 73/74 Adenine-specific DNA methyltransferase 

HP17_02808 44 Adenine-specific DNA methyltransferase 

HP17_01438 24 DNA adenine methylase 

HP17_01448 24 Adenine-specific DNA methylase 

HP17_01453 24 Adenine-specific DNA methylase 

HP17_07027 133 Adenine-specific DNA methyltransferase 

HP17_06947 131 Type III restriction enzyme M protein 

HP17_06942 131 Adenine-specific DNA methylase 

HP17_03874 72 Ubiquinone/menaquinone biosynthesis methyltransferase 

HP17_03959 73 Type II methylase 

HP17_03964 73 Type II adenine specific DNA methyltransferase 

HP17_04104 75 Type III R-M system modification enzyme 

HP17_04286 80 Putative type II methylase protein  
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Appendix 2 List of endonucleases in the genome of H. pylori CCUG 17874 

Locus tag Contig Product 

HP17_00566 13 Restriction endonuclease 

HP17_05690 99 Endonuclease III 

HP17_05650 99 Type III restriction enzyme R protein (Res) 

HP17_05590 98 3-methyladenine DNA glycosylase 

HP17_08516 164 HP0790-like protein 

HP17_08626 165 Hypothetical protein 

HP17_08144 154 Type I restriction enzyme subunit S 

HP17_03189 59 Putative type I restriction-modification enzyme specificity 

subunit S 

HP17_03354 65 Holliday junction resolvase 

HP17_02464 39 Type I restriction/modification specificity protein 

HP17_02095 34 Similar to archaeal Holliday junction resolvase and Mrr 

protein 

HP17_01888 31 Holliday junction resolvase-like protein 

HP17_06877 130 Putative endonuclease G 

HP17_04169 75 Restriction modification system DNA specificity domain 

protein 

HP17_06677 125 Mulitfunctional nucleoside diphosphate 

kinase/apyrimidinic endonuclease/ 3'-phosphodiesterase 

HP17_05005 88 Type II R-M system restriction endonuclease 

HP17_08484 162 Type II restriction endonuclease 

HP17_07159 140 Type II restriction endonuclease 

HP17_02554 41 Restriction endonuclease Hpy8I 

HP17_01443 24 Type II restriction endonuclease 

HP17_07037 133 Type II R-M system restriction endonuclease 
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Appendix 3 List of all methylases in the genome of H. pylori P79 

Locus tag Contig Product 

HP79_04107 111 tRNA mo(5)U34 methyltransferase 

HP79_04916 128 Adenine-specific DNA methyltransferase 

HP79_04911 128 Cytosine specific DNA methyltransferase 

HP79_04891 128 Adenine/cytosine DNA methyltransferase 

HP79_04677 126 Type II restriction enzyme M protein (hsdM) 

HP79_08238 199 rRNA large subunit methyltransferase 

HP79_08602 203 Adenine-specific DNA methyltransferase 

HP79_08622 204 Adenine-specific DNA methyltransferase 

HP79_08677 204 Flagellin N-methylase, FliB 

HP79_05531 139 N5-glutamine S-adenosyl-L-methionine-dependent 

methyltransferase 

HP79_02349 68 RNA methyltransferase 

HP79_02124 64 Adenine-specific DNA methyltransferase 

HP79_03041 86 N6-adenine-specific methylase 

HP79_01635 43 Adenine-specific DNA methyltransferase 

HP79_07126 173 Ribosomal protein L11 methyltransferase 

HP79_07026 171 Haemolysin (tly), rRNA methylase 

HP79_07151 173 16S rRNA methyltransferase GidB 

HP79_09002 214 Cytosine specific DNA methyltransferase (BSP6IM) 

HP79_03386 95 tRNA (guanine-N(7)-)-methyltransferase 

HP79_03698 102 Adenine-specific DNA methyltransferase 

HP79_05764 142 Adenine-specific DNA methy ltransferase 

HP79_05779 145 Adenine-specific DNA methyltransferase 

HP79_05854 147 Type IIS restriction enzyme M1 protein (mod) 

HP79_05859 147 Type IIS restriction enzyme M2 protein (mod) 

HP79_05864 147 Adenine-specific DNA methyltransferase 

HP79_05869 147 Adenine-specific DNA methyltransferase 

HP79_06346 154 tRNA (guanine-N(1)-)-methyltransferase 

HP79_06411 157 Adenine-specific DNA methyltransferase 

HP79_06976 169 Adenine-specific DNA methyltransferase 

HP79_00105 5 Ribosomal RNA large subunit methyltransferase N 

HP79_00370 14 Methylated-DNA--protein-cysteine methyltransferase 

HP79_00848 23 16S ribosomal RNA methyltransferase RsmE 

HP79_00988 28 Type III DNA modification enzyme (methyltransferase) 

HP79_00995 29 Type III R-M system modification enzyme 

HP79_01020 29 Type IIS restriction enzyme R and M protein (ECO57IR) 

HP79_01200 31 Ubiquinone/menaquinone biosynthesis methyltransferase 

HP79_05511 137 N-6 Adenine-specific DNA methylase 
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Appendix 4 List of endonucleases in the genome of H. pylori P79 

Locus tag Contig Product 

HP79_07645 187 Mulitfunctional nucleoside diphosphate 

kinase/apyrimidinic endonuclease/3'-phosphodiesterase 

HP79_02179 66 Endonuclease III 

HP79_00025 102 Ulcer-associated gene restriction endonuclease (iceA) 

HP79_00617 20 Holliday junction resolvase-like protein 

HP79_04142 113 Type I restriction enzyme S protein (hsdS) 

HP79_02129 64 Type III restriction enzyme R protein (res) 

HP79_02054 61 3-methyladenine DNA glycosylase 

HP79_03146 88 Anti-codon nuclease masking agent (prrB) 

HP79_02956 82 Hypothetical protein 

HP79_02804 78 Type I restriction enzyme S protein (hsdS) 

HP79_07061 172 Similar to archaeal Holliday junction resolvase and Mrr 

protein 

HP79_06089 150 Type I restriction enzyme S protein (hsdS) 

HP79_01000 29 Type III restriction enzyme R protein (res) 

 



 

 

Appendix 5 List of sequenced genomes used in core genome analysis of H. pylori 

Strain Size (Mbp)* Location Disease Status 

SNT49 1.61 (3.2kb p) India Asymptomatic complete 
26695 1.67 UK Gastritis complete 
HPAG1 1.6 (0.01p) Sweeden Chronic atrophic gastritis complete 
Shi470 1.61 Peru Gastritis complete 
Puno120 1.62 (0.01 p) Peru Gastritis complete 
Puno135 1.65 Peru Gastritis complete 
F16 1.58 Japan Gastritis complete 
v225d 1.59 (0.01 p) Venezuela Acute superficial gastritis complete 
SJM180 1.66 Peru Gastritis complete 
B8 1.67 (0.01p)  Gastric ulcer complete 

B128 1.65  Gastric ulcer 73 contigs 

J99 1.64 USA Duodenal ulcer complete 
51 1.59 South Korea Duodenal ulcer complete 
908 1.55 France Duodenal ulcer complete 
2017 1.55 France Duodenal ulcer complete 
2018 1.56 France Duodenal ulcer complete 
F30 1.57 (0.01 p) Japan Duodenal ulcer complete 
P12 1.67 (0.01 p) Germany Duodenal ulcer complete 
PeCan4 1.63 (0.01p) Peru Gastric cancer complete 
ELS37 1.66 (0.01 p) El Salvador Gastric cancer complete 
F32 1.58 (2.6kb p) Japan Diffuse type gastric cancer complete 
F57 1.61 Japan Diffuse type gastric cancer complete 
PeCan18 1.66 Peru Gastric cancer complete 
XZ274 1.63 (0.02 p) China Gastric cancer complete 
98-10 1.57 Japan Gastric cancer 51 contigs 
B45 1.6 (0.02 phage)

+ France MALT lymphoma 63 contigs 
B38 1.58 France MALT lymphoma complete 
G27 1.65 (0.01 p) Italy Endoscopy patient complete 



 

 

52 1.57 South Korea  complete 

HUP-B14 1.6 (0.01 p) Spain  complete 

35A 1.57   complete 

India7 1.68 India  complete 

83 1.62   complete 

Lithuania75 1.62 (0.02 p) Lithuania  complete 

Gambia94/24 1.71 (2.5kb p) Gambia  complete 

Sat464 1.56 (0.01 p) Peru  complete 

Shi417 1.67 Peru  complete 

Cuz20 1.64 Peru  complete 

SouthAfrica7 1.65 (0.03 p) South Africa  complete 

Shi112 1.66 Peru  complete 

Shi169 1.62 Peru  complete 

*Figures in brackets denote the presence and size (Mb unless otherwise stated) of plasmid DNA (p). 
+
Strain harbours 0.02 Mb phage DNA. 

Strains used in core genome analysis in addition to 17874 and P79 (not listed). Strain and genome information was collected from the National Center for 

Biotechnology Information (NCBI, 2013). 
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Appendix 6 Revised core genome of H. pylori* 

Locus tag Product 

HP17_00015 Phosphoenolpyruvate synthase 

HP17_00025 Threonyl-tRNA synthetase 

HP17_00030 InfC translation initiation factor IF-3 

HP17_00035 RpmI 50S ribosomal protein 

HP17_00040 RplT 50S ribosomal protein L20 

HP17_00045 Outer membrane protein 

HP17_00060 Hypothetical protein 

HP17_00070 L-serine deaminase 

HP17_00075 L-serine transporter 

HP17_00080 Phospho-2-dehydro-3-deoxyheptonate aldolase 

HP17_00090 Bacterioferritin comigratory protein 

HP17_00095 Hypothetical protein 

HP17_00110 Fe-S oxidoreductase 

HP17_00120 L-lactate permease 

HP17_00140 Cbb3-type cytochrome c oxidase subunit I 

HP17_00145 Cbb3-type cytochrome c oxidase subunit II 

HP17_00150 Cytochrome c oxidase, cbb3-type, CcoQ subunit 

HP17_00155 Cytochrome c oxidase, cbb3-type, subunit III 

HP17_00160 Hypothetical protein 

HP17_00170 Hypothetical protein 

HP17_00185 Hypothetical protein 

HP17_00200 Hypothetical protein 

HP17_00205 Hypothetical protein 

HP17_00210 AroK shikimate kinase 

HP17_00215 Hypothetical protein 

HP17_00225 Hypothetical protein 

HP17_00235 Hypothetical protein 

HP17_00240 Delta-aminolevulinic acid dehydratase 

HP17_00255 Response regulator OmpR 

HP17_00260 Hypothetical protein 

HP17_00270 Collagenase 

HP17_00275 Hypothetical protein 

HP17_00285 PrfB peptide chain release factor 2 

HP17_00295 Flagellar biosynthesis protein FliR 

HP17_00300 Hypothetical protein 

HP17_00315 Excinuclease ABC subunit B 

HP17_00325 Adenylosuccinate lyase 

HP17_00335 Pyruvate ferredoxin oxidoreductase, beta subunit 

HP17_00340 PorA pyruvate flavodoxin oxidoreductase subunit alpha 
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HP17_00345 PorD pyruvate flavodoxin oxidoreductase subunit delta 

HP17_00350 Pyruvate flavodoxin oxidoreductase subunit gamma 

HP17_00355 Outer membrane protein HorH; signal peptide 

HP17_00380 Glk glucokinase 

HP17_00385 6-phosphogluconolactonase 

HP17_00390 Glucose-6-phosphate 1-dehydrogenase 

HP17_00395 Phosphogluconate dehydratase 

HP17_00400 Multifunctional KHG/KDPG aldolase 

HP17_00405 Putative beta-lactamase HcpC 

HP17_00415 Putative outer membrane protein 

HP17_00425 UDP-glucose 4-epimerase 

HP17_00430 TruA tRNA pseudouridine synthase A 

HP17_00435 Hypothetical protein 

HP17_00440 Pcm protein-L-isoaspartate O-methyltransferase 

HP17_00445 NrdF ribonucleotide-diphosphate reductase subunit beta 

HP17_00475 Biotin carboxylase 

HP17_00496 Dcd deoxycytidine triphosphate deaminase 

HP17_00506 16S ribosomal RNA methyltransferase RsmE 

HP17_00511 Hypothetical protein 

HP17_00521 Thiol:disulfide interchange protein 

HP17_00541 Hydrogenase expression/formation protein 

HP17_00551 Hypothetical protein 

HP17_00581 Symporter, SSS family (Proline Permease); membrane protein 

HP17_00586 Delta-1-pyrroline-5-carboxylate dehydrogenase 

HP17_00591 Hypothetical protein 

HP17_00676 Urease accessory protein UreH 

HP17_00681 Urease accessory protein UreG 

HP17_00701 Urease accessory protein UreI 

HP17_00721 Urease subunit alpha 

HP17_00726 LspA lipoprotein signal peptidase 

HP17_00731 GlmM phosphoglucosamine mutase 

HP17_00736 RpsT 30S ribosomal protein S20 

HP17_00741 PrfA peptide chain release factor 1 

HP17_00751 Hypothetical protein 

HP17_00761 RpsI 30S ribosomal protein S9 

HP17_00766 RplM 50S ribosomal protein L13 

HP17_00771 Hypothetical protein 

HP17_00776 Hypothetical protein 

HP17_00781 Hypothetical protein 

HP17_00786 RNA polymerase sigma factor RpoD 

HP17_00791 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase 

HP17_00796 Malonyl CoA-acyl carrier protein transacylase 
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HP17_00830 Hypothetical protein 

HP17_00835 2-hydroxyacid dehydrogenase 

HP17_00840 Hypothetical protein 

HP17_00855 Hypothetical protein 

HP17_00865 Hypothetical protein 

HP17_00875 2',3'-cyclic-nucleotide 2'-phosphodiesterase 

HP17_00880 S-ribosylhomocysteinase 

HP17_00885 Cystathionine gamma-synthase/cystathionine beta- lyase 

HP17_00905 DnaK molecular chaperone DnaK 

HP17_00910 Heat shock protein GrpE 

HP17_00920 Hypothetical protein 

HP17_00925 Hypothetical protein 

HP17_00930 Hypothetical protein 

HP17_00935 Flagellin B 

HP17_00950 Hypothetical protein 

HP17_00955 4-oxalocrotonate tautomerase 

HP17_00960 RecR recombination protein RecR 

HP17_00970 Heat shock protein HtpX 

HP17_00975 FolE GTP cyclohydrolase I 

HP17_00980 Geranyltranstransferase (Farnesyl-diphosphate synthase) (FPP synthase) 

HP17_00985 SurE 5'(3')-nucleotidase/polyphosphatase 

HP17_00990 Hypothetical protein 

HP17_00995 6-carboxy-5,6,7,8-tetrahydropterin synthase 

HP17_01000 Hypothetical protein 

HP17_01005 Hypothetical protein 

HP17_01025 Amino acid ABC transporter permease 

HP17_01030 Putative polar amino acid transport system substrate-binding protein 

HP17_01035 Alanine racemase 

HP17_01045 D-alanine glycine permease 

HP17_01050 D-amino acid dehydrogenase 

HP17_01055 Hypothetical protein 

HP17_01128 Nickel cobalt outer membrane efflux protein 

HP17_01133 GlyS glycyl-tRNA synthetase subunit beta 

HP17_01143 Phosphoglyceromutase 

HP17_01148 GatC aspartyl/glutamyl-tRNA amidotransferase subunit C 

HP17_01153 Adenosylmethionine--8-amino-7-oxononanoate transaminase 

HP17_01158 Peptidyl-prolyl cis-trans isomerase D 

HP17_01163 Cell division protein FtsA 

HP17_01168 Cell division protein FtsZ 

HP17_01238 DNA polymerase III subunit delta 

HP17_01243 Ribonuclease R 

HP17_01268 Tryptophanyl-tRNA synthetase 
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HP17_01273 Biotin biosynthesis protein BioC 

HP17_01278 SecG preprotein translocase subunit SecG 

HP17_01283 Frr ribosome recycling factor 

HP17_01288 PyrE orotate phosphoribosyltransferase 

HP17_01293 Conserved hypothetical mitochondrial protein- like protein 4 

HP17_01303 NADH dehydrogenase subunit A 

HP17_01308 NADH dehydrogenase subunit B 

HP17_01313 NADH dehydrogenase subunit C 

HP17_01323 Putative NADH oxidoreductase I 

HP17_01338 NADH:ubiquinone oxidoreductase subunit H 

HP17_01343 NADH dehydrogenase subunit I 

HP17_01348 NADH:ubiquinone oxidoreductase subunit J 

HP17_01353 NADH:ubiquinone oxidoreductase subunit K 

HP17_01358 NADH:ubiquinone oxidoreductase subunit L 

HP17_01368 NADH:ubiquinone oxidoreductase subunit N 

HP17_01398 TrpA tryptophan synthase subunit alpha 

HP17_01403 Tryptophan synthase subunit beta 

HP17_01413 TrpD anthranilate phosphoribosyltransferase 

HP17_01418 Anthranilate synthase component II 

HP17_01423 Anthranilate synthase component I 

HP17_01463 Hypothetical protein 

HP17_01468 Hypothetical protein 

HP17_01478 Transcriptional regulator (tenA) 

HP17_01498 Nicotinamide mononucleotide transporter 

HP17_01513 RplQ 50S ribosomal protein L17 

HP17_01518 DNA-directed RNA polymerase subunit alpha 

HP17_01523 RpsD 30S ribosomal protein S4 

HP17_01528 30S ribosomal protein S11 

HP17_01538 RpsM 30S ribosomal protein S13 

HP17_01548 InfA translation initiation factor IF-1 

HP17_01553 Methionine aminopeptidase 

HP17_01558 SecY preprotein translocase subunit SecY 

HP17_01563 RplO 50S ribosomal protein L15 

HP17_01568 RpsE 30S ribosomal protein S5 

HP17_01573 RplR 50S ribosomal protein L18 

HP17_01578 RplF 50S ribosomal protein L6 

HP17_01583 RpsH 30S ribosomal protein S8 

HP17_01593 RplE 50S ribosomal protein L5 

HP17_01603 RplN 50S ribosomal protein L14 

HP17_01608 RpsQ 30S ribosomal protein S17 

HP17_01613 50S ribosomal protein L29 

HP17_01618 RplP 50S ribosomal protein L16 
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HP17_01623 RpsC 30S ribosomal protein S3 

HP17_01628 RplV 50S ribosomal protein L22 

HP17_01633 RpsS 30S ribosomal protein S19 

HP17_01643 RplB 50S ribosomal protein L2 

HP17_01648 RplW 50S ribosomal protein L23 

HP17_01653 RplD 50S ribosomal protein L4 

HP17_01658 RplC 50S ribosomal protein L3 

HP17_01663 RpsJ 30S ribosomal protein S10 

HP17_01673 Hypothetical protein 

HP17_01683 RnhB ribonuclease HII 

HP17_01698 FumC fumarate hydratase 

HP17_01703 Hypothetical protein 

HP17_01708 Hypothetical protein 

HP17_01713 Putative cobalt-zinc-cadmium resistance protein CzcB 

HP17_01723 Hypothetical protein 

HP17_01728 Branched-chain amino acid transport protein 

HP17_01733 Chaperone protein DnaJ 

HP17_01738 Hypothetical protein 

HP17_01748 MnmA tRNA-specific 2-thiouridylase MnmA 

HP17_01753 Hypothetical protein 

HP17_01763 Nickel responsive regulator 

HP17_01793 Putative heme iron utilization protein 

HP17_01803 ArgS arginyl-tRNA synthetase 

HP17_01813 Gmk guanylate kinase 

HP17_01828 Nuclease NucT 

HP17_01833 Outer membrane protein HorC; signal peptide 

HP17_01838 FlgH flagellar basal body L-ring protein 

HP17_01858 LpxK tetraacyldisaccharide 4'-kinase 

HP17_01863 NAD synthetase 

HP17_01868 Ketol-acid reductoisomerase 

HP17_01873 Cell division inhibitor 

HP17_01878 MinE cell division topological specificity factor MinE 

HP17_01883 Hypothetical protein 

HP17_01888 Holliday junction resolvase-like protein 

HP17_01910 Hypothetical protein 

HP17_01960 HP17_01960 single-stranded-DNA-specific exonuclease 

HP17_01965 PyrG CTP synthetase 

HP17_01970 HP17_01970 hypothetical protein 

HP17_01980 FliG flagellar motor switch protein G 

HP17_01985 FliH flagellar assembly protein H 

HP17_01990 1-deoxy-D-xylulose-5-phosphate synthase 

HP17_01995 GTP-binding protein LepA 
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HP17_02025 Flagellar basal-body rod protein 

HP17_02030 General substrate transporter, MFS superfamily 

HP17_02050 Transketolase  

HP17_02060 Bifunctional riboflavin kinase/FMN adenylyltransferase 

HP17_02070 Hypothetical protein 

HP17_02075 PyrB aspartate carbamoyltransferase catalytic subunit 

HP17_02095 Similar to archaeal Holliday junction resolvase 

HP17_02100 High-affinity nickel-transport protein 

HP17_02105 Hypothetical protein 

HP17_02130 CDP-diacylglycerol--serine O- phosphatidyltransferase 

HP17_02145 Cell division protein FtsH 

HP17_02150 PrmA ribosomal protein L11 methyltransferase 

HP17_02160 Outer membrane protein HorD 

HP17_02165 Hypothetical protein 

HP17_02175 GidB 16S rRNA methyltransferase GidB 

HP17_02180 QueA S-adenosylmethionine:tRNA ribosyltransferase- isomerase 

HP17_02185 Sec-independent protein translocase protein tat 

HP17_02190 Sec-independent translocase 

HP17_02195 RuvB Holliday junction DNA helicase RuvB 

HP17_02200 PanB 3-methyl-2-oxobutanoate hydroxymethyltransferase 

HP17_02210 Hypothetical protein 

HP17_02215 Hypothetical protein 

HP17_02225 MinC septum formation inhibitor 

HP17_02230 LpxC UDP-3-O-[3-hydroxymyristoyl] N-acetylglucosamine deacetylase 

HP17_02235 Hypothetical protein 

HP17_02240 Homoserine kinase 

HP17_02262 RbfA ribosome-binding factor A 

HP17_02267 Ribosome maturation factor rimP 

HP17_02277 Phosphodiesterase domain-containing protein 

HP17_02282 Transcriptional regulator 

HP17_02292 Hypothetical protein 

HP17_02297 FlhA flagellar biosynthesis protein FlhA 

HP17_02302 RpsO 30S ribosomal protein S1 

HP17_02312 3-dehydroquinate dehydratase 

HP17_02317 X-Pro aminopeptidase 

HP17_02322 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine 

pyrophosphokinase 
HP17_02327 FlhF flagellar biosynthesis regulator FlhF 

HP17_02332 Flagellar biosynthesis protein FlhG 

HP17_02342 FliA flagellar biosynthesis sigma factor 

HP17_02347 FliM flagellar motor switch protein FliM 

HP17_02352 Flagellar motor switch protein FliY 

HP17_02357 Hypothetical protein 
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HP17_02362 Hypothetical protein 

HP17_02367 Ferric uptake regulation protein 

HP17_02372 Recombination factor protein RarA 

HP17_02377 Putative transcriptional regulator, MerR family protein 

HP17_02397 Response regulator 

HP17_02402 IspDF bifunctional 2-C-methyl-D-erythritol 4-phosphate 

cytidylyltransferase/2-C-methyl-D-erythritol 2,4- cyclodiphosphate 

synthase protein 
HP17_02407 Protease DO 

HP17_02422 Phosphatidylglycerophosphate synthase 

HP17_02427 Hypothetical protein 

HP17_02432 7-alpha-hydroxysteroid dehydrogenase 

HP17_02437 Dihydrodipicolinate synthase 

HP17_02447 Putative zinc protease 

HP17_02452 Dihydroorotate dehydrogenase 

HP17_02457 Polyphosphate kinase 

HP17_02484 Glyceraldehyde-3-phosphate dehydrogenase 

HP17_02489 Integral membrane protein 

HP17_02499 Hypothetical protein 

HP17_02524 Outer membrane protein HopB 

HP17_02529 Outer membrane porin and adhesin HopC; signal peptide 

HP17_02564 FlgD flagellar basal body rod modification protein 

HP17_02594 Hypothetical protein 

HP17_02638 Hypothetical protein 

HP17_02648 Maf-like protein 

HP17_02668 Carbamoyl phosphate synthase small subunit 

HP17_02673 Hypothetical protein 

HP17_02678 Integral membrane protein 

HP17_02683 Membrane transport protein 

HP17_02688 Hypothetical protein 

HP17_02703 Hypothetical protein 

HP17_02708 Aspartate kinase 

HP17_02713 RNA pyrophosphohydrolase 

HP17_02723 Cytochrome c-553 

HP17_02728 Coproporphyrinogen III oxidase 

HP17_02733 Camphor resistance protein CrcB 

HP17_02738 HemD uroporphyrinogen-III synthase 

HP17_02743 Hypothetical protein 

HP17_02758 Undecaprenyl pyrophosphate synthase 

HP17_02768 Glycinamide ribonucleotide synthetase 

HP17_02773 Hypothetical protein 

HP17_02778 Organic solvent tolerance protein 

HP17_02783 Phosphoribosyltransferase 
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HP17_02788 Polynucleotide phosphorylase/polyadenylase 

HP17_02793 F0F1 ATP synthase subunit C 

HP17_02798 Serine acetyltransferase 

HP17_02808 Site-specific DNA-methyltransferase 

HP17_02813 Hypothetical protein 

HP17_02818 ABC transporter ATP-binding protein 

HP17_02823 Elongation factor Tu 

HP17_02833 SecE preprotein translocase subunit SecE  

HP17_02838 nusG transcription antitermination protein NusG 

HP17_02843 rplK 50S ribosomal protein L11 

HP17_02848 rplA 50S ribosomal protein L1 

HP17_02853 rplJ 50S ribosomal protein L10 

HP17_02858 rplL 50S ribosomal protein L7/L12 

HP17_02887 rpsL 30S ribosomal protein S12 

HP17_02892 HP17_02892 30S ribosomal protein S7 

HP17_02902 HP17_02902 elongation factor G 

HP17_02932 HP17_02932 ADP-heptose--LPS heptosyltransferase II 

HP17_02947 HP17_02947 aspartate-semialdehyde dehydrogenase 

HP17_02967 GltX glutamyl-tRNA synthetase 

HP17_02992 Hypothetical protein 

HP17_03002 Oligoendopeptidase F 

HP17_03007 Hypothetical protein 

HP17_03012 Hypothetical protein 

HP17_03022 Hypothetical protein 

HP17_03027 Hypothetical protein 

HP17_03042 Alpha-carbonic anhydrase 

HP17_03047 Putative arabinose transporter 

HP17_03052 Hypothetical protein 

HP17_03057 Na+/H+ antiporter 

HP17_03067 Putative PP-loop family ATPase 

HP17_03072 Multidrug-efflux transporter 

HP17_03077 Nucleoside transporter 

HP17_03087 Purine-nucleoside phosphorylase 

HP17_03114 Hypothetical protein 

HP17_03129 tRNA-dihydrouridine synthase B 

HP17_03134 Hypothetical protein 

HP17_03204 Integral membrane protein 

HP17_03214 ABC transporter, ATP-binding protein 

HP17_03229 Phosphoheptose isomerase 

HP17_03239 ADP-heptose synthase 

HP17_03244 ADP-L-glycero-D-manno-heptose-6-epimerase 

HP17_03249 D,D-heptose 1,7-bisphosphate phosphatase 
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HP17_03254 Hypothetical protein 

HP17_03259 Pantothenate kinase 

HP17_03269 Hypothetical protein 

HP17_03274 Dut deoxyuridine 5'-triphosphate nucleotidohydrolase 

HP17_03279 GreA transcription elongation factor GreA 

HP17_03284 Ipid-A-disaccharide synthase 

HP17_03289 Hypothetical protein 

HP17_03294 HypA hydrogenase nickel incorporation protein 

HP17_03319 CDP-diacylglycerol pyrophosphatase 

HP17_03324 Alkylphosphonate uptake protein 

HP17_03329 Hypothetical protein 

HP17_03334 Hypothetical protein 

HP17_03339 Catalase 

HP17_03344 Iron-regulated outer membrane protein 

HP17_03354 RuvC Holliday junction resolvase 

HP17_03384 RuvA Holliday junction DNA helicase RuvA 

HP17_03389 Hypothetical protein 

HP17_03399 CysS cysteinyl-tRNA synthetase 

HP17_03409 Iron(III) dicitrate transport system ATP-binding protein 

HP17_03414 Iron(III) dicitrate ABC transporter permease protein 

HP17_03419 Short-chain oxidoreductase 

HP17_03424 Hypothetical protein 

HP17_03454 Cysteine-rich protein X 

HP17_03464 Gamma-glutamyltranspeptidase 

HP17_03469 FlgK flagellar hook-associated protein FlgK 

HP17_03474 Hypothetical protein 

HP17_03479 M. HpyAVIII, a type II cytosine specific DNA methyltransferase 

HP17_03484 Hypothetical protein 

HP17_03494 FKBP-type peptidyl-prolyl cis-trans isomerase slyD 

HP17_03499 Hypothetical protein 

HP17_03504 Peptidoglycan-associated lipoprotein precursor 

HP17_03509 TolB translocation protein TolB 

HP17_03519 Biopolymer transport protein ExbD/TolR 

HP17_03524 Biopolymer transport protein 

HP17_03529 AtpC F0F1 ATP synthase subunit epsilon 

HP17_03534 F0F1 ATP synthase subunit beta 

HP17_03539 F0F1 ATP synthase subunit gamma 

HP17_03544 F0F1 ATP synthase subunit alpha 

HP17_03549 F0F1 ATP synthase subunit delta 

HP17_03554 F0F1 ATP synthase subunit B 

HP17_03559 F0F1 ATP synthase subunit B' 

HP17_03564 Plasmid replication-partition-like protein 
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HP17_03579 Biotin--protein ligase 

HP17_03624 Hypothetical protein 

HP17_03629 Peptidyl-prolyl cis-trans isomerase B, cyclosporine-type rotamase (ppi) 

HP17_03634 Carbon storage regulator 

HP17_03639 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase 

HP17_03644 SmpB SsrA-binding protein 

HP17_03669 Hypothetical protein 

HP17_03674 HP17_03674 membrane protein insertase 

HP17_03684 TrmE tRNA modification GTPase TrmE 

HP17_03709 Hypothetical protein 

HP17_03714 Hypothetical protein 

HP17_03719 Membrane-associated lipoprotein 

HP17_03724 Collagen-binding surface adhesin SpaP 

HP17_03729 Thioredoxin 

HP17_03734 Ribosomal large subunit pseudouridine synthase 

HP17_03744 Cytochrome c551 peroxidase 

HP17_03759 Hypothetical protein 

HP17_03764 ABC transport system substrate binding protein 

HP17_03784 Outer membrane protein; signal peptide 

HP17_03794 Branched-chain amino acid aminotransferase 

HP17_03799 Outer membrane protein HorJ; signal peptide 

HP17_03804 DNA polymerase I 

HP17_03819 Hypothetical protein 

HP17_03824 Tmk thymidylate kinase 

HP17_03829 CoaD phosphopantetheine adenylyltransferase 

HP17_03834 3-octaprenyl-4-hydroxybenzoate carboxy-lyase 

HP17_03844 FlgA flagellar basal body P-ring biosynthesis protein FlgA 

HP17_03849 DNA helicase II (UvrD) 

HP17_03854 hypothetical protein 

HP17_03859 seryl-tRNA synthetase 

HP17_03864 Hypothetical protein 

HP17_03869 Exodeoxyribonuclease VII small subunit 

HP17_03874 UbiE ubiquinone/menaquinone biosynthesis methyltransferase 

HP17_03879 Hypothetical protein 

HP17_03884 X-Pro dipeptidase 

HP17_03889 Antibiotic transport system permease protein 

HP17_03894 Hypothetical protein 

HP17_03899 Hypothetical protein 

HP17_03904 Lipase-like protein 

HP17_03909 Hemolysin domain-containing protein 

HP17_03924 Putative nifU-like protein 

HP17_03929 Hypothetical protein 
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HP17_03934 MurE UDP-N-acetylmuramoylalanyl-D-glutamate--2, 6- 

diaminopimelate ligase 
HP17_03939 Transaldolase 

HP17_03944 50S ribosomal protein L25/general stress protein Ctc 

HP17_03949 Peptidyl-tRNA hydrolase 

HP17_03954 Permease; membrane protein 

HP17_03999 Hypothetical protein 

HP17_04004 Riboflavin biosynthesis protein 

HP17_04009 Sodium/glutamate symport carrier protein/glutamate permease 

HP17_04014 Saccharopine dehydrogenase 

HP17_04024 Putative glycerol-3-phosphate acyltransferase PlsY 

HP17_04029 Hypothetical protein 

HP17_04034 FrpB-like protein 

HP17_04049 Selenocysteine synthase 

HP17_04054 NusA transcription elongation factor NusA 

HP17_04109 ATP-dependent DNA helicase RecG 

HP17_04114 Hypothetical protein 

HP17_04119 Hypothetical protein 

HP17_04124 Exodeoxyribonuclease III 

HP17_04129 Hypothetical protein 

HP17_04149 Hypothetical protein 

HP17_04154 Glucosamine--fructose-6-phosphate aminotransferase 

HP17_04184 Hypothetical protein 

HP17_04199 Arginase 

HP17_04204 Alanine dehydrogenase 

HP17_04226 Outer membrane protein 

HP17_04251 Hypothetical protein 

HP17_04256 Hypothetical protein 

HP17_04276 Fructose-1,6-bisphosphatase 

HP17_04281 Hypothetical protein 

HP17_04296 Ubiquinol cytochrome c oxidoreductase, cytochrome c1 subunit 

HP17_04301 Ubiquinol-cytochrome c reductase cytochrome b subunit 

HP17_04306 Ubiquinol-cytochrome c reductase, iron-sulfur subunit 

HP17_04311 Transcription-repair coupling factor 

HP17_04326 Hypothetical protein 

HP17_04331 Folylpolyglutamate synthase 

HP17_04336 Hypothetical protein 

HP17_04341 LeuS leucyl-tRNA synthetase 

HP17_04346 Integral membrane protein 

HP17_04351 SecF preprotein translocase subunit SecF 

HP17_04356 SecD preprotein translocase subunit SecD 

HP17_04371 YajC preprotein translocase subunit YajC 

HP17_04376 NhaA pH-dependent sodium/proton antiporter 
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HP17_04381 Putative recombination protein RecB  

HP17_04386 RpsB 30S ribosomal protein S2 

HP17_04391 Tsf elongation factor Ts 

HP17_04396 HP17_04396 cell division protein 

HP17_04401 FliE flagellar hook-basal body protein FliE 

HP17_04406 FlgC flagellar basal body rod protein FlgC 

HP17_04411 FlgB flagellar basal body rod protein FlgB 

HP17_04431 Alkyl hydroperoxide reductase 

HP17_04436 Outer membrane protein 

HP17_04441 Penicillin-binding protein 2 

HP17_04446 Hypothetical protein 

HP17_04451 EngB GTP-binding protein YsxC 

HP17_04456 Hypothetical protein 

HP17_04461 Hypothetical protein 

HP17_04466 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase 

HP17_04471 Rare lipoprotein A 

HP17_04476 Regulatory protein DniR 

HP17_04481 DNAse 

HP17_04486 Riboflavin synthase subunit alpha 

HP17_04511 Hypothetical protein 

HP17_04536 Pyridoxine 5'-phosphate synthase 

HP17_04541 PdxA 4-hydroxythreonine-4-phosphate dehydrogenase 

HP17_04556 FlgG flagellar basal body rod protein FlgG 

HP17_04581 Hypothetical protein 

HP17_04596 NusB transcription antitermination protein NusB 

HP17_04606 2-dehydro-3-deoxyphosphooctonate aldolase 

HP17_04616 Orotidine 5'-phosphate decarboxylase 

HP17_04621 PanC pantoate--beta-alanine ligase 

HP17_04646 GroEL chaperonin GroEL 

HP17_04651 GroES co-chaperonin GroES 

HP17_04656 DnaG DNA primase 

HP17_04666 Hypothetical protein 

HP17_04671 Hypothetical protein 

HP17_04676 Hypothetical protein 

HP17_04681 ATPase/DNA transfer protein 

HP17_04691 Chemotaxis protein 

HP17_04696 Carboxynorspermidine decarboxylase 

HP17_04701 Lipid A 1-phosphatase 

HP17_04706 Lipid A phosphoethanolamine transferase 

HP17_04731 Isocitrate dehydrogenase 

HP17_04741 Dethiobiotin synthetase 

HP17_04751 Putative universal stress global response regulator UspA 
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HP17_04756 ATP-dependent Clp protease adapter protein ClpS 

HP17_04761 ATP-dependent C1p protease (clpA) 

HP17_04776 Hypothetical protein 

HP17_04791 Hypothetical protein 

HP17_04796 ComB9 competence protein 

HP17_04801 ComB10 competence protein 

HP17_04806 Mannose-1-phosphate guanyltransferase 

HP17_04811 GDP-D-mannose dehydratase 

HP17_04816 Nodulation protein (nolK) 

HP17_04831 3-deoxy-manno-octulosonate cytidylyltransferase 

HP17_04836 Disulphide isomerase 

HP17_04841 Hypothetical protein 

HP17_04851 Hypothetical protein 

HP17_04856 Cysteine-rich protein E; beta-lactamase HcpE precursor 

HP17_04861 Hypothetical protein 

HP17_04866 HemC porphobilinogen deaminase 

HP17_04871 Prolyl-tRNA synthetase 

HP17_04876 HemA glutamyl-tRNA reductase 

HP17_04881 Octaprenyl-diphosphate synthase (Octaprenyl pyrophosphate synthetase) 

(OPP synthetase) 
HP17_04886 Hypothetical protein 

HP17_04891 Hypothetical protein 

HP17_04896 HP17_04896 Neutrophil activating protein NapA (bacterioferritin) 

HP17_04901 Histidine kinase sensor protein 

HP17_04906 Hypothetical protein 

HP17_04911 FlgI flagellar basal body P-ring protein 

HP17_04916 ATP-dependent RNA helicase 

HP17_04933 Hypothetical protein 

HP17_04938 Oligopeptide permease 

HP17_04965 Hypothetical protein 

HP17_04970 Adenylosuccinate synthetase 

HP17_04975 Hypothetical protein 

HP17_04985 Hypothetical protein 

HP17_04990 XseA exodeoxyribonuclease VII large subunit 

HP17_05015 ATP-dependent protease binding subunit/heat shock protein 

HP17_05025 Dihydroorotase 

HP17_05030 Chlorohydrolase 

HP17_05035 Hypothetical protein 

HP17_05040 (dimethylallyl)adenosine tRNA methylthiotransferase 

HP17_05045 Hypothetical protein 

HP17_05050 Hypothetical protein 

HP17_05055 Hypothetical protein 

HP17_05060 Hypothetical protein 
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HP17_05065 Hypothetical protein 

HP17_05070 ATP-dependent nuclease 

HP17_05075 Hypothetical protein 

HP17_05080 Putative 4Fe-4S ferredoxin-type protein 

HP17_05085 Guanosine pentaphosphate phosphohydrolase 

HP17_05090 Lipopolysaccharide heptosyltransferase-1 

HP17_05095 Lipid A biosynthesis lauroyl acyltransferase 

HP17_05100 Tgt queuine tRNA-ribosyltransferase 

HP17_05115 AroB 3-dehydroquinate synthase 

HP17_05120 hypothetical protein 

HP17_05125 hypothetical protein 

HP17_05130 Cell division protein FtsH; signal peptide 

HP17_05135 Hypothetical protein 

HP17_05140 Hypothetical protein 

HP17_05165 Chorismate mutase 

HP17_05180 AmiE acylamide amidohydrolase 

HP17_05185 FlgL flagellar hook-associated protein FlgL 

HP17_05190 RplU 50S ribosomal protein L21 

HP17_05195 RpmA 50S ribosomal protein L27 

HP17_05200 Peptide ABC transporter substrate-binding protein 

HP17_05205 Peptide ABC transporter permease 

HP17_05230 ObgE GTPase CgtA 

HP17_05240 Hypothetical protein 

HP17_05245 Glutamate-1-semialdehyde aminotransferase 

HP17_05250 Hypothetical protein 

HP17_05255 Hypothetical protein 

HP17_05260 Putative N-carbamoyl-D-amino acid amidohydrolase 

HP17_05285 Hypothetical protein 

HP17_05290 Conserved ATP/GTP binding protein 

HP17_05315 Hypothetical protein 

HP17_05320 AspA aspartate ammonia-lyase 

HP17_05325 UDP-N-acetylglucosamine 1- carboxyvinyltransferase 

HP17_05330 Hypothetical protein 

HP17_05335 UTP--glucose-1-phosphate uridylyltransferase subunit 

HP17_05340 Soluble lytic murein transglycosylase 

HP17_05350 Glutamylglutaminyl-tRNA synthetase 

HP17_05370 Polynucleotide adenylyltransferase; poly(A) polymerase 

HP17_05390 Hypothetical protein 

HP17_05400 Hypothetical protein 

HP17_05405 Quinone-reactive Ni/Fe hydrogenase (hydD) 

HP17_05410 Ni/Fe-hydrogenase, b-type cytochrome subunit 

HP17_05415 Nickel-dependent hydrogenase, large subunit 
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HP17_05425 Hydrogenase (NiFe) small subunit HydA 

HP17_05445 Cysteine-rich protein F 977146:978204 reverse 

HP17_05450 Tetrahydrodipicolinate N-succinyltransferase 

HP17_05455 IspG 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase 

HP17_05460 Hypothetical protein 

HP17_05465 MurC UDP-N-acetylmuramate--L-alanine ligase 

HP17_05470 Hypothetical protein 

HP17_05480 Inorganic pyrophosphatase 

HP17_05495 Adk adenylate kinase 

HP17_05500 AspS aspartyl-tRNA synthetase 

HP17_05505 Chemotaxis protein (cheV) 

HP17_05510 LigA NAD-dependent DNA ligase LigA 

HP17_05515 Hypothetical protein 

HP17_05550 Hypothetical protein 

HP17_05560 Membrane fusion protein (mtrC) 

HP17_05565 Outer-membrane protein of the hefABC efflux system 

HP17_05570 HemE uroporphyrinogen decarboxylase  

HP17_05590 3-methyladenine DNA glycosylase 

HP17_05595 Flagellin A 1013546:1015003 reverse 

HP17_05610 Methyl-accepting chemotaxis transmembrane sensory protein 

HP17_05615 8-amino-7-oxononanoate synthase 

HP17_05625 Tumor necrosis factor alpha-inducing protein 

HP17_05635 Dsbb-like protein 

HP17_05640 Hypothetical protein 

HP17_05660 OorB 2-oxoglutarate-acceptor oxidoreductase subunit OorB 

HP17_05670 OorD 2-oxoglutarate-acceptor oxidoreductase subunit OorD 

HP17_05675 Aminodeoxychorismate lyase (pabC) 

HP17_05680 Hypothetical protein 

HP17_05690 Endonuclease III 

HP17_05695 Flagellar motor switch protein 

HP17_05715 Dihydroorotase 

HP17_05720 Hypothetical protein 

HP17_05725 Hypothetical protein 

HP17_05735 Bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase 

HP17_05740 Signal peptidase I (lepB) 

HP17_05745 Hypothetical protein 

HP17_05750 Ribose-5-phosphate isomerase B 

HP17_05755 Hypothetical protein 

HP17_05760 Adenine phosphoribosyltransferase 

HP17_05765 Hypothetical protein 

HP17_05770 Multifunctional aminopeptidase A 

HP17_05775 GTP-binding protein YchF 
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HP17_05780 Hypothetical protein 

HP17_05790 DapF diaminopimelate epimerase 

HP17_05795 Hypothetical protein 

HP17_05800 Hypothetical protein 

HP17_05805 Hypothetical protein 

HP17_05810 RpsU 30S ribosomal protein S21 

HP17_05815 FabG 3-ketoacyl-(acyl-carrier-protein) reductase 

HP17_05820 AcpP acyl carrier protein 

HP17_05830 3-oxoacyl-(acyl carrier protein) synthase II 

HP17_05865 RNA methyltransferase 

HP17_05875 RpmE 50S ribosomal protein L31 

HP17_05880 Rho transcription termination factor Rho 

HP17_05885 Glutamate racemase 

HP17_05990 Hypothetical protein 

HP17_05995 Bifunctional phosphopantothenoylcysteine decarboxylase 

HP17_06010 Hypothetical protein 

HP17_06015 Hypothetical protein 

HP17_06025 DNA-binding protein HU 

HP17_06035 Hypothetical protein 

HP17_06040 SpeE spermidine synthase 

HP17_06045 CoaE dephospho-CoA kinase 

HP17_06057 GatA aspartyl/glutamyl-tRNA amidotransferase subunit A 

HP17_06062 Inosine 5'-monophosphate dehydrogenase 

HP17_06067 F0F1 ATP synthase subunit A 

HP17_06152 Phosphoserine phosphatase 

HP17_06157 Ferritin 

HP17_06162 Hypothetical protein 

HP17_06177 Hypothetical protein 

HP17_06182 Processing zinc-metalloprotease 

HP17_06187 GatB aspartyl/glutamyl-tRNA amidotransferase subunit B 

HP17_06207 RnhA ribonuclease H 

HP17_06212 Rnc ribonuclease III 

HP17_06217 Chorismate synthase 

HP17_06222 Hypothetical protein 

HP17_06227 Coproporphyrinogen III oxidase 

HP17_06232 Glycerol-3-phosphate dehydrogenase 

HP17_06247 Outer membrane protein 

HP17_06252 Aspartate aminotransferase 

HP17_06262 Phage integrase family site specific recombinase 

HP17_06267 Methylated-DNA--protein-cysteine methyltransferase 

HP17_06282 Oxidoreductase 

HP17_06287 Ribonucleotide-diphosphate reductase subunit 
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HP17_06312 GlmU bifunctional N-acetylglucosamine-1-phosphate 

uridyltransferase/glucosamine-1-phosphate acetyltransferase 
HP17_06337 Hypothetical protein 

HP17_06357 Acetyl-CoA acetyltransferase 

HP17_06362 Succinyl-CoA-transferase subunit A 

HP17_06387 Outer membrane protein 

HP17_06407 Acetone carboxylase subunit alpha 

HP17_06412 Hypothetical protein 

HP17_06417 Hypothetical protein 

HP17_06422 Diacylglycerol kinase 

HP17_06437 DNA gyrase subunit A 

HP17_06442 Hypothetical protein 

HP17_06472 Outer membrane protein HopE 

HP17_06482 16S rRNA m(4)C1402 methyltranserfase 

HP17_06487 Hypothetical protein 

HP17_06492 Hypothetical protein 

HP17_06507 Hypothetical protein 

HP17_06522 RNA polymerase factor sigma-54 1186162:1187406 

HP17_06527 ABC-type transport system, ATP binding protein 

HP17_06562 Hypothetical protein 

HP17_06597 LysS lysyl-tRNA synthetase 

HP17_06602 Serine hydroxymethyltransferase 

HP17_06607 Hypothetical protein 

HP17_06612 Hypothetical protein 

HP17_06627 Hypothetical protein 

HP17_06637 FrdB fumarate reductase iron-sulfur subunit 

HP17_06642 Fumarate reductase flavoprotein subunit 

HP17_06647 Fumarate reductase cytochrome b-556 subunit 

HP17_06652 TpiA triosephosphate isomerase 

HP17_06657 Enoyl-(acyl carrier protein) reductase 

HP17_06662 LpxD UDP-3-O-[3-hydroxymyristoyl] glucosamine N- acyltransferase 

HP17_06667 S-adenosylmethionine synthetase 

HP17_06677 Ndk mulitfunctional nucleoside diphosphate kinase/apyrimidinic 

endonuclease/3'-phosphodiesterase 
HP17_06682 Hypothetical protein 

HP17_06697 3-oxoacyl-(acyl carrier protein) synthase III 

HP17_06702 Hypothetical protein 

HP17_06707 Hypothetical protein 

HP17_06722 ATP-binding protein (mpr) 

HP17_06737 Outer membrane protein 

HP17_06742 Heat shock protein 90 

HP17_06747 Cysteine-rich protein A 

HP17_06752 Succinyl-diaminopimelate desuccinylase 
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HP17_06762 Sodium-dependent transporter (huNaDC-1) 

HP17_06772 1-deoxy-D-xylulose 5-phosphate reductoisomerase 

HP17_06782 Hypothetical protein 

HP17_06787 Hypothetical protein 

HP17_06792 Cysteine desulfurase 

HP17_06797 NifU-like protein 

HP17_06812 DNA repair protein RadA 

HP17_06817 Bifunctional methionine sulfoxide reductase A/B protein 

HP17_06832 Hypothetical protein 

HP17_06882 Prephenate dehydrogenase 

HP17_06887 ATP-dependent protease L 

HP17_06902 Flagellar assembly protein FliW 

HP17_06907 FabZ (3R)-hydroxymyristoyl-ACP dehydratase 

HP17_06912 UDP-N-acetylglucosamine acyltransferase 

HP17_06917 ClpX ATP-dependent protease ATP-binding subunit ClpX 

HP17_06922 Rod shape-determining protein MreB 

HP17_06932 Rod shape-determining protein MreC 

HP17_06967 Replicative DNA helicase 

HP17_06977 UbiA prenyltransferase 

HP17_06992 Hypothetical protein 

HP17_06997 Phosphatidylserine decarboxylase 

HP17_07002 Quinolinate synthetase 

HP17_07007 Nicotinate-nucleotide pyrophosphorylase 

HP17_07042 Carboxyl-terminal protease 

HP17_07047 Hypothetical protein 

HP17_07052 1-acyl-sn-glycerol-3-phosphate acyltransferase 

HP17_07057 Uracil-DNA glycosylase 

HP17_07067 Glyceraldehyde-3-phosphate dehydrogenase 

HP17_07072 Pgk phosphoglycerate kinase 

HP17_07077 Magnesium and cobalt transport protein 

HP17_07082 Hypothetical protein 

HP17_07129 Outer membrane protein HofD; signal peptide 

HP17_07134 Outer membrane protein HofC 

HP17_07169 GTP-binding protein TypA 

HP17_07214 Arginine decarboxylase 

HP17_07219 Polysaccharide biosynthesis protein 

HP17_07229 Hypothetical protein 

HP17_07239 Hypothetical protein 

HP17_07249 Cyclopropane fatty acid synthase 

HP17_07259 Hypothetical protein 

HP17_07264 Putative neuraminyllactose-binding hemagglutinin- like protein 

HP17_07274 GuaA GMP synthase 
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HP17_07279 Hypothetical protein 

HP17_07289 Hypothetical protein 

HP17_07294 Cysteine desulfurase  

HP17_07304 PheS phenylalanyl-tRNA synthetase subunit alpha 

HP17_07322 PheT phenylalanyl-tRNA synthetase subunit beta 

HP17_07327 3-phosphoshikimate 1-carboxyvinyltransferase 

HP17_07332 IspH 4-hydroxy-3-methylbut-2-enyl diphosphate reductase 

HP17_07337 RpsA 30S ribosomal protein S1 

HP17_07342 Hypothetical protein  

HP17_07347 D-3-phosphoglycerate dehydrogenase 

HP17_07352 3-octaprenyl-4-hydroxybenzoate carboxy-lyase 

HP17_07357 Hypothetical protein 

HP17_07367 CheA-MCP interaction modulator 

HP17_07372 Autophosphorylating histidine kinase 

HP17_07377 Purine-binding chemotaxis protein CheW 

HP17_07382 Adhesin-thiol peroxidase 

HP17_07392 Hypothetical protein 

HP17_07402 Hypothetical protein 

HP17_07407 Hypothetical protein 

HP17_07412 Hypothetical protein 

HP17_07417 Hypothetical protein 

HP17_07432 N5-glutamine S-adenosyl-L-methionine-dependent 

methyltransferase 
HP17_07447 Putative potassium channel protein 

HP17_07457 Flagellar sheath adhesin 

HP17_07462 MraY phospho-N-acetylmuramoyl-pentapeptide- transferase 

HP17_07477 Hypothetical protein 

HP17_07502 DNA polymerase III subunit beta 

HP17_07507 GyrB DNA gyrase subunit B 

HP17_07532 Hypothetical protein 

HP17_07537 UDP-sugar diphosphatase 

HP17_07557 Dihydrodipicolinate reductase 

HP17_07572 Glutamine synthetase 

HP17_07587 RplI 50S ribosomal protein L9 

HP17_07592 ATP-dependent protease subunit HslV 

HP17_07602 Era GTPase Era 

HP17_07607 Hypothetical protein 

HP17_07722 KsgA 16S ribosomal RNA methyltransferase KsgA/Dim1 family 

protein 
HP17_07727 Ribonuclease J 

HP17_07732 Polysialic acid capsule expression protein 

HP17_07737 Ribosomal RNA large subunit methyltransferase N 

HP17_07747 Hypothetical protein 
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HP17_07762 Type IV secretion system ATPase 

HP17_07772 FliQ flagellar biosynthesis protein FliQ 

HP17_07777 MurB UDP-N-acetylenolpyruvoylglucosamine reductase 

HP17_07807 7-cyano-7-deazaguanine reductase 

HP17_07842 Hypothetical protein 

HP17_07847 Putative nucleotide phosphoribosyltransferase 

HP17_07852 Putative aminotransferase 

HP17_07857 Phosphatidyl glycerophosphatase A 

HP17_07867 2-hydroxy-6-oxohepta-2,4-dienoate hydrolase 

HP17_07872 UDP-N-acetylmuramoyl-tripeptide--D-alanyl-D- alanine ligase; 

putative membrane protein 
HP17_07877 Hypothetical protein 

HP17_07882 Ribose-phosphate pyrophosphokinase 

HP17_07902 Hypothetical protein 

HP17_07907 Hypothetical protein 

HP17_07912 tRNA (guanine-N(7)-)-methyltransferase 1 2 

HP17_07917 Cell division protein 

HP17_07927 Hypothetical protein 

HP17_07932 Flagellar protein FlaG 

HP17_07937 FliD flagellar capping protein 

HP17_07942 FliS flagellar protein FliS  

HP17_07947 Hypothetical protein 

HP17_07952 Molybdopterin biosynthesis protein 

HP17_07962 Carbon-nitrogen hydrolase  

HP17_07967 Hypothetical protein 

HP17_07972 Hypothetical protein 

HP17_07987 Hypothetical protein 

HP17_07992 Signal recognition particle-docking protein FtsY 

HP17_08049 2-nitropropane dioxygenase 

HP17_08054 Tyrosyl-tRNA synthetase 

HP17_08059 Guanosine-3', 5'-bis(diphosphate)3'- pyrophosphohydrolase 

/Guanosine-3',5'-Bis(diphosphate) synthetase II (ppGpp-3'-

pyrophosphohydrolase/ppGpp synthetase II)  
HP17_08064 RpoZ DNA-directed RNA polymerase subunit omega 

HP17_08069 PyrH uridylate kinase 

HP17_08074 Hypothetical protein 

HP17_08104 Hypothetical protein 

HP17_08109 LolA lipoprotein chaperone 

HP17_08114 Preprotein translocase subunit SecA 

HP17_08119 Hypothetical protein 

HP17_08124 Hypothetical protein  

HP17_08164 Glucose/galactose transporter 

HP17_08169 Hypothetical protein  



Appendices 

~ 229 ~ 

HP17_08174 Glutamine ABC transporter periplasmic glutamine- binding 

protein  
HP17_08179 Phosphate ABC transporter ATP-binding protein 

HP17_08184 Glutamine ABC transporter, permease protein 

HP17_08189 Glutamine ABC transporter permease 

HP17_08199 Outer membrane protein HofH 

HP17_08219 Thioredoxin reductase 

HP17_08224 Cation transport subunit for cbb3-type oxidase 

HP17_08229 Hypothetical protein 

HP17_08234 Flavodoxin FldA 

HP17_08239 Metal-binding heat shock protein 

HP17_08249 Pyrroline-5-carboxylate reductase 

HP17_08264 Outer membrane protein HopI 

HP17_08269 MurG undecaprenyldiphospho-muramoylpentapeptide beta- N- 

acetylglucosaminyltransferase 
HP17_08274 Flagellar assembly protein FliW 

HP17_08279 ValS valyl-tRNA synthetase 

HP17_08284 Signal recognition particle protein 

HP17_08289 RpsP 30S ribosomal protein S16 

HP17_08294 Hypothetical protein 

HP17_08299 RimM 16S rRNA-processing protein RimM 

HP17_08304 TrmD tRNA (guanine-N(1)-)-methyltransferase 

HP17_08309 RplS 50S ribosomal protein L19 

HP17_08334 Peptidyl-prolyl cis-trans isomerase C 

HP17_08339 Fructose-bisphosphate aldolase 

HP17_08344 Elongation factor P 

HP17_08384 Sialic acid synthase 

HP17_08389 ABC transporter 

HP17_08394 Apolipoprotein N-acyltransferase 

HP17_08404 Hypothetical protein 

HP17_08419 Hypothetical protein 

HP17_08521 Cadmium, zinc and cobalt-transporting ATPase 

HP17_08536 Mg chelatase-related protein; ComM protein 

HP17_08541 Def peptide deformylase 

HP17_08546 ClpP ATP-dependent Clp protease proteolytic subunit 

HP17_08551 Tig trigger factor 

HP17_08556 Outer membrane protein HorG 

HP17_08561 Neuraminyllactose-binding hemagglutinin HpaA 

HP17_08566 MoaC molybdenum cofactor biosynthesis protein MoaC 

HP17_08576 Molybdopterin converting factor, subunit  

HP17_08586 RibA GTP cyclohydrolase II 

HP17_08606 Bifunctional 3,4-dihydroxy-2-butanone 4- phosphate 

synthase/GTP cyclohydrolase II protein 
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HP17_08611 Lipooligosaccharide 5G8 epitope biosynthesis- associated protein 

HP17_08621 Thioredoxin 

HP17_08626 Hypothetical protein 

HP17_08631 Homoserine dehydrogenase 

HP17_08636 UvrC excinuclease ABC subunit C 

HP17_08641 Hypothetical protein 

HP17_08661 Hypothetical protein 

HP17_08666 MotB flagellar motor protein MotB 

HP17_08671 Flagellar motor protein MotA 

HP17_08676 Thiamin biosynthesis protein (thiF) 

HP17_08681 Hydrolase 

HP17_08686 Hypothetical protein 

HP17_08691 Hypothetical protein 

HP17_08701 FliL flagellar basal body-associated protein FliL 

HP17_08706 AcpS 4'-phosphopantetheinyl transferase  

HP17_08716 Hydrolase 

HP17_08726 Hypothetical protein  

HP17_08731 rRNA large subunit methyltransferase  

HP17_08736 Acetyl-CoA carboxylase subunit beta 

HP17_08741 Putative recombination protein RecO  

HP17_08746 Putative competence/damage-inducible protein CinA  

HP17_08751 Hypothetical protein 

HP17_08761 Prolipoprotein diacylglyceryl transferase 

HP17_08766 Hypothetical protein 

HP17_08781 Hypothetical protein 

HP17_08786 GlyQ glycyl-tRNA synthetase subunit alpha 

*17874 annotation. 
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Appendix 7 List of “disease core”-specific genes* 

Locus tag Product 

HP0018 Hypothetical protein 

HP0026 Type II citrate synthase 

HP0048 Transcriptional regulator (hypF) 

HP0069 Urease accessory protein UreF 

HP0070 Urease accessory protein UreE 

HP0072 Urease subunit beta 

HP0092 Type II restriction enzyme M protein (hsdM) 

HP0116 DNA topoisomerase I 

HP0135 Hypothetical protein 

HP0138 Iron-sulfur protein 

HP0141 L-lactate permease (lctP) 

HP0150 Hypothetical protein 

HP0153 Recombinase A 

HP0200 50S ribosomal protein L32 

HP0213 tRNA uridine 5-carboxymethylaminomethyl modification enzyme GidA 

HP0215 CDP-diglyceride synthetase (cdsA) 

HP0228 Hypothetical protein 

HP0229 Hypothetical protein 

HP0282 Hypothetical protein 

HP0290 Diaminopimelate decarboxylase 

HP0320 Hypothetical protein 

HP0351 Flagellar MS-ring protein 

HP0380 Glutamate dehydrogenase 

HP0471 Glutathione-regulated potassium-efflux system protein (kefB) 

HP0498 Sodium- and chloride-dependent transporter 

HP0509 Glycolate oxidase subunit (glcD) 

HP0555 Hypothetical protein 

HP0567 Hypothetical protein 

HP0582 Hypothetical protein 

HP0607 Acriflavine resistance protein (acrB) 

HP0610 Toxin-like outer membrane protein 

HP0655 Protective surface antigen D15 

HP0686 Iron(III) dicitrate transport protein (fecA) 

HP0705 Excinuclease ABC subunit A 

HP0717 DNA polymerase III subunits gamma and tau 

HP0718 Hypothetical protein 

HP0738 D-alanyl-alanine synthetase A 

HP0761 Hypothetical protein 

HP0779 Bifunctional aconitate hydratase 2/2-methylisocitrate dehydratase 

HP0781 Hypothetical protein 

HP0782 Hypothetical protein 



Appendices 

~ 232 ~ 

HP0818 Osmoprotection protein (proWX) 

HP0826 Lipooligosaccharide 5G8 epitope biosynthesis-associated protein (lex2B) 

HP0834 GTP-binding protein EngA 

HP0839 Outer membrane protein P1 (ompP1) 

HP0879 Hypothetical protein 

HP0887 Vacuolating cytotoxin 

HP0908 Flagellar hook protein FlgE 

HP0911 Rep helicase, single-stranded DNA-dependent ATPase (rep) 

HP1017 Amino acid permease 

HP1022 Hypothetical protein 

HP1023 Hypothetical protein 

HP1039 Hypothetical protein 

HP1054 Hypothetical protein 

HP1057 Hypothetical protein 

HP1073 Copper ion binding protein (copP) 

HP1083 Hypothetical protein 

HP1106 Hypothetical protein 

HP1157 Hypothetical protein 

HP1159 Cell filamentation protein (fic) 

HP1166 Glucose-6-phosphate isomerase 

HP1168 Carbon starvation protein (cstA) 

HP1179 Phosphopentomutase 

HP1190 Histidyl-tRNA synthetase 

HP1222 D-lactate dehydrogenase (dld) 

HP1232 Dihydropteroate synthase (folP) 

HP1272 NADH dehydrogenase subunit M 

HP1275 Phosphomannomutase 

HP1286 Hypothetical protein 

HP1337 Hypothetical protein 

HP1359 Hypothetical protein 

HP1414 Hypothetical protein 

HP1416 Lipopolysaccharide 1,2-glucosyltransferase (rfaJ) 

HP1422 Isoleucyl-tRNA synthetase 

HP1460 DNA polymerase III subunit alpha 

HP1465 ABC transporter ATP-binding protein 

HP1502 Hypothetical protein 

HP1503 Cation-transporting ATPase, P-type (copA) 

HP1584 DNA-binding/iron metalloprotein/AP endonuclease 

*26695 annotation. 
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Appendix 8 List of “gastritis core”-specific genes* 

Locus tag Product 

HP0002 6,7-dimethyl-8-ribityllumazine synthase 

HP0004 Carbonic anhydrase (icfA) 

HP0013 Hypothetical protein 

HP0018 Hypothetical protein 

HP0025 Hypothetical protein 

HP0026 Type II citrate synthase 

HP0028 Hypothetical protein 

HP0034 Aspartate alpha-decarboxylase 

HP0035 Hypothetical protein 

HP0037 NADH-ubiquinone oxidoreductase subunit 

HP0048 Transcriptional regulator (hypF) 

HP0050 Adenine-specific DNA methyltransferase 

HP0051 Cytosine specific DNA methyltransferase (DDEM) 

HP0064 Hypothetical protein 

HP0065 Hypothetical protein 

HP0069 Urease accessory protein UreF 

HP0070 Urease accessory protein UreE 

HP0072 Urease subunit beta 

HP0079 Hypothetical protein 

HP0082 Methyl-accepting chemotaxis transducer (tlpC) 

HP0092 Type II restriction enzyme M protein (hsdM) 

HP0098 Threonine synthase 

HP0101 Hypothetical protein 

HP0103 Methyl-accepting chemotaxis protein (tlpB) 

HP0107 Cysteine synthetase (cysK) 

HP0111 Heat-inducible transcription repressor 

HP0116 DNA topoisomerase I 

HP0135 Hypothetical protein 

HP0138 Iron-sulfur protein 

HP0141 L-lactate permease (lctP) 

HP0142 DNA glycosylase MutY 

HP0150 Hypothetical protein 

HP0151 Hypothetical protein 

HP0153 Recombinase A 

HP0154 Phosphopyruvate hydratase 

HP0159 Lipopolysaccharide 1,2-glucosyltransferase (rfaJ) 

HP0168 Hypothetical protein 

HP0172 Molybdopterin biosynthesis protein (moeA) 

HP0200 50S ribosomal protein L32 

HP0201 Glycerol-3-phosphate acyltransferase PlsX 

HP0213 tRNA uridine 5-carboxymethylaminomethyl modification enzyme GidA 
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HP0215 CDP-diglyceride synthetase (cdsA) 

HP0222 Hypothetical protein 

HP0228 Hypothetical protein 

HP0229 Hypothetical protein 

HP0233 Hypothetical protein 

HP0248 Hypothetical protein 

HP0252 Hypothetical protein 

HP0263 Adenine-specific DNA methyltransferase 

HP0265 Cytochrome c biogenesis protein (ccdA) 

HP0282 Hypothetical protein 

HP0290 Diaminopimelate decarboxylase 

HP0292 Hypothetical protein 

HP0293 Para-aminobenzoate synthetase (pabB) 

HP0300 Dipeptide ABC transporter permease (dppC) 

HP0302 Dipeptide ABC transporter ATP-binding protein (dppF) 

HP0304 Hypothetical protein 

HP0320 Hypothetical protein 

HP0322 Poly E-rich protein 

HP0326 CMP-N-acetylneuraminic acid synthetase 

HP0337 Hypothetical protein 

HP0347 Hypothetical protein 

HP0351 Flagellar MS-ring protein 

HP0367 Hypothetical protein 

HP0369 Hypothetical protein 

HP0371 Biotin carboxyl carrier protein (fabE) 

HP0373 Hypothetical protein 

HP0376 Ferrochelatase 

HP0380 Glutamate dehydrogenase 

HP0389 Iron-dependent superoxide dismutase 

HP0404 Protein kinase C inhibitor (SP:P16436) 

HP0407 Biotin sulfoxide reductase (bisC) 

HP0463 Type I restriction enzyme M protein (hsdM) 

HP0471 Glutathione-regulated potassium-efflux system protein (kefB) 

HP0473 
Molybdenum ABC transporter periplasmic molybdate-binding protein 

(modA) 

HP0474 Molybdenum ABC transporter permease (modB) 

HP0475 Molybdenum ABC transporter ATP-binding protein (modD) 

HP0482 Hypothetical protein 

HP0485 Catalase-like protein 

HP0491 50S ribosomal protein L28 

HP0497 Sodium- and chloride-dependent transporter 

HP0498 Sodium- and chloride-dependent transporter 

HP0509 Glycolate oxidase subunit (glcD) 

HP0516 ATP-dependent protease ATP-binding subunit HslU 
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HP0520 Cag pathogenicity island protein (cag1) 

HP0522 Cag pathogenicity island protein (cag3) 

HP0523 Cag pathogenicity island protein (cag4) 

HP0525 VirB11-like protein 

HP0526 Cag pathogenicity island protein (cag6) 

HP0527 Cag pathogenicity island protein (cag7) 

HP0528 Cag pathogenicity island protein (cag8) 

HP0529 Cag pathogenicity island protein (cag9) 

HP0530 Cag pathogenicity island protein (cag10) 

HP0531 Cag pathogenicity island protein (cag11) 

HP0532 Cag pathogenicity island protein (cag12) 

HP0534 Cag pathogenicity island protein (cag13) 

HP0537 Cag pathogenicity island protein (cag16) 

HP0538 Cag pathogenicity island protein (cag17) 

HP0539 Cag pathogenicity island protein (cag18) 

HP0540 Cag pathogenicity island protein (cag19) 

HP0541 Cag pathogenicity island protein (cag20) 

HP0542 Cag pathogenicity island protein (cag21) 

HP0543 Cag pathogenicity island protein (cag22) 

HP0545 Cag pathogenicity island protein (cag24) 

HP0546 Cag pathogenicity island protein (cag25) 

HP0547 Cag pathogenicity island protein (cag26) 

HP0552 Hypothetical protein 

HP0554 Hypothetical protein 

HP0555 Hypothetical protein 

HP0557 Acetyl-CoA carboxylase carboxyltransferase subunit alpha 

HP0567 Hypothetical protein 

HP0578 Hypothetical protein 

HP0582 Hypothetical protein 

HP0583 Hypothetical protein 

HP0589 2-oxoglutarate-acceptor oxidoreductase subunit OorA 

HP0591 2-oxoglutarate-acceptor oxidoreductase subunit OorC 

HP0597 Penicillin-binding protein 1A (PBP-1A) 

HP0607 Acriflavine resistance protein (acrB) 

HP0610 Toxin-like outer membrane protein 

HP0611 Hypothetical protein 

HP0613 ABC transporter ATP-binding protein 

HP0621 Recombination and DNA strand exchange inhibitor protein 

HP0629 Hypothetical protein 

HP0630 Modulator of drug activity (mda66) 

HP0636 Hypothetical protein 

HP0639 Hypothetical protein 

HP0644 Hypothetical protein 

HP0655 Protective surface antigen D15 
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HP0659 Hypothetical protein 

HP0660 Hypothetical protein 

HP0685 Flagellar biosynthesis protein FliP 

HP0686 Iron(III) dicitrate transport protein (fecA) 

HP0687 Iron(II) transport protein (feoB) 

HP0692 3-oxoadipate CoA-transferase subunit B 

HP0693 Short-chain fatty acids transporter 

HP0695 Hydantoin utilization protein A (hyuA) 

HP0703 Response regulator 

HP0705 Excinuclease ABC subunit A 

HP0717 DNA polymerase III subunits gamma and tau 

HP0718 Hypothetical protein 

HP0719 Hypothetical protein 

HP0723 L-asparaginase II 

HP0724 Anaerobic C4-dicarboxylate transporter 

HP0728 Hypothetical protein 

HP0729 Hypothetical protein 

HP0738 D-alanyl-alanine synthetase A 

HP0749 Cell division membrane protein (ftsX) 

HP0760 Phosphodiesterase 

HP0761 Hypothetical protein 

HP0764 Hypothetical protein 

HP0769 Molybdopterin-guanine dinucleotide biosynthesis protein A 

HP0771 Hypothetical protein 

HP0772 N-acetylmuramoyl-L-alanine amidase 

HP0779 Bifunctional aconitate hydratase 2/2-methylisocitrate dehydratase 

HP0781 Hypothetical protein 

HP0782 Hypothetical protein 

HP0799 Molybdenum cofactor biosynthesis protein MogA 

HP0801 Molybdopterin converting factor, subunit 1 (moaD) 

HP0810 Hypothetical protein 

HP0818 Osmoprotection protein (proWX) 

HP0819 Osmoprotection protein (proV) 

HP0825 Thioredoxin reductase 

HP0826 Lipooligosaccharide 5G8 epitope biosynthesis-associated protein (lex2B) 

HP0827 ss-DNA binding protein 12RNP2 precursor 

HP0834 GTP-binding protein EngA 

HP0839 Outer membrane protein P1 (ompP1) 

HP0840 FlaA1 protein 

HP0843 Thiamine-phosphate pyrophosphorylase 

HP0844 Thiamine biosynthesis protein (thi) 

HP0845 Hydroxyethylthiazole kinase 

HP0846 Type I restriction enzyme R protein (hsdR) 

HP0852 Hypothetical protein 
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HP0870 Flagellar hook protein FlgE 

HP0879 Hypothetical protein 

HP0887 Vacuolating cytotoxin 

HP0898 Hydrogenase expression/formation protein (hypD) 

HP0899 Hydrogenase expression/formation protein (hypC) 

HP0900 Hydrogenase expression/formation protein (hypB) 

HP0906 Hypothetical protein 

HP0908 Flagellar hook protein FlgE 

HP0910 Adenine-specific DNA methyltransferase 

HP0911 Rep helicase, single-stranded DNA-dependent ATPase (rep) 

HP0915 Iron-regulated outer membrane protein (frpB) 

HP0919 Carbamoyl phosphate synthase large subunit 

HP0926 tRNA pseudouridine synthase D 

HP0957 3-deoxy-D-manno-octulosonic-acid transferase 

HP0958 Hypothetical protein 

HP0961 NAD(P)H-dependent glycerol-3-phosphate dehydrogenase 

HP0969 Cation efflux system protein (czcA) 

HP0970 Nickel-cobalt-cadmium resistance protein (nccB) 

HP1017 Amino acid permease 

HP1022 Hypothetical protein 

HP1023 Hypothetical protein 

HP1024 Co-chaperone-curved DNA binding protein A (CbpA) 

HP1039 Hypothetical protein 

HP1054 Hypothetical protein 

HP1057 Hypothetical protein 

HP1067 Chemotaxis protein (cheY) 

HP1072 Copper-transporting ATPase, P-type (copA) 

HP1073 Copper ion binding protein (copP) 

HP1082 Multidrug resistance protein (msbA) 

HP1083 Hypothetical protein 

HP1086 Hemolysin (tly) 

HP1090 DNA translocase FtsK 

HP1104 Cinnamyl-alcohol dehydrogenase ELI3-2 (cad) 

HP1106 Hypothetical protein 

HP1113 Hypothetical protein 

HP1127 Hypothetical protein 

HP1139 SpoOJ regulator (soj) 

HP1157 Hypothetical protein 

HP1159 Cell filamentation protein (fic) 

HP1166 Glucose-6-phosphate isomerase 

HP1168 Carbon starvation protein (cstA) 

HP1175 Hypothetical protein 

HP1177 Hypothetical protein 

HP1179 Phosphopentomutase 
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HP1190 Histidyl-tRNA synthetase 

HP1192 Secreted protein involved in flagellar motility 

HP1220 ABC transporter ATP-binding protein 

HP1222 D-lactate dehydrogenase (dld) 

HP1231 DNA polymerase III subunit delta' 

HP1232 Dihydropteroate synthase (folP) 

HP1238 Formamidase 

HP1244 30S ribosomal protein S18 

HP1245 Single-stranded DNA-binding protein 

HP1246 30S ribosomal protein S6 

HP1249 Shikimate 5-dehydrogenase 

HP1250 Hypothetical protein 

HP1252 
Oligopeptide ABC transporter periplasmic oligopeptide-binding protein 

(oppA) 

HP1259 Hypothetical protein 

HP1263 NADH dehydrogenase subunit D 

HP1265 Hypothetical protein 

HP1266 NADH dehydrogenase subunit G 

HP1272 NADH dehydrogenase subunit M 

HP1274 Paralysed flagella protein (pflA) 

HP1275 Phosphomannomutase 

HP1279 
bifunctional indole-3-glycerol phosphate 

synthase/phosphoribosylanthranilate Isomerase 

HP1286 Hypothetical protein 

HP1291 Hypothetical protein 

HP1308 50S ribosomal protein L24 

HP1329 Cation efflux system protein (czcA) 

HP1337 Hypothetical protein 

HP1339 Biopolymer transport protein (exbB) 

HP1340 Biopolymer transport protein (exbD) 

HP1341 Siderophore-mediated iron transport protein (tonB) 

HP1359 Hypothetical protein 

HP1363 Hypothetical protein 

HP1364 Histidine kinase sensor protein 

HP1365 Response regulator 

HP1371 Type III restriction enzyme R protein 

HP1378 Competence lipoprotein (comL) 

HP1382 Hypothetical protein 

HP1387 DNA polymerase III subunit epsilon 

HP1393 DNA repair protein (recN) 

HP1400 Iron(III) dicitrate transport protein (fecA) 

HP1406 Biotin synthase 

HP1407 Ribonuclease N 

HP1414 Hypothetical protein 

HP1416 Lipopolysaccharide 1,2-glucosyltransferase (rfaJ) 
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HP1420 Flagellum-specific ATP synthase 

HP1422 Isoleucyl-tRNA synthetase 

HP1423 Hypothetical protein 

HP1434 Formyltetrahydrofolate hydrolase (purU) 

HP1435 Endopeptidase IV 

HP1436 Hypothetical protein 

HP1439 Hypothetical protein 

HP1445 Biopolymer transport protein (exbB) 

HP1446 Biopolymer transport protein (exbD) 

HP1447 50S ribosomal protein L34 

HP1448 Ribonuclease P, protein component (rnpA) 

HP1451 Hypothetical protein 

HP1453 Hypothetical protein 

HP1460 DNA polymerase III subunit alpha 

HP1462 Secreted protein involved in flagellar motility 

HP1465 ABC transporter ATP-binding protein 

HP1491 Phosphate permease 

HP1502 Hypothetical protein 

HP1503 Cation-transporting ATPase, P-type (copA) 

HP1517 Type IIS restriction enzyme R and M protein (ECO57IR) 

HP1529 Chromosome replication initiator DnaA 

HP1533 FAD-dependent thymidylate synthase 

HP1542 Hypothetical protein 

HP1560 Cell division protein (ftsW) 

HP1575 ABC transporter 

HP1576 DL-methionine transporter ATP-binding subunit 

HP1577 ABC transporter permease (yaeE) 

HP1581 Methicillin resistance protein (llm) 

HP1584 DNA-binding/iron metalloprotein/AP endonuclease 

*26695 annotation. 
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Appendix 9 List of “duodenal ulcer core”-specific genes* 

Locus tag Product 

jhp0004 Carbonic anhydrase 

jhp0016 Hypothetical protein 

jhp0021 Hypothetical protein 

jhp0022 Type II citrate synthase 

jhp0026 Hypothetical protein 

jhp0030 Aspartate alpha-decarboxylase 

jhp0031 Hypothetical protein 

jhp0033 Hypothetical protein 

jhp0041 Transcriptional regulator 

jhp0043 Type II DNA modification enzyme 

jhp0044 Type II DNA modification enzyme 

jhp0064 Urease accessory protein 

jhp0065 Urease accessory protein UreE 

jhp0067 Urease subunit beta 

jhp0085 Type II DNA modification (methyltransferase) 

jhp0090 Threonine synthase 

jhp0091 Methyl-accepting chemotaxis protein (MCP) 

jhp0093 Hypothetical protein 

jhp0095 Methyl-accepting chemotaxis protein (MCP) 

jhp0099 Cysteine synthase 

jhp0103 Heat-inducible transcription repressor 

jhp0108 DNA topoisomerase I 

jhp0112 Hypothetical protein 

jhp0118 Hypothetical protein 

jhp0123 Hypothetical protein 

jhp0126 Iron-sulfur protein 

jhp0129 L-lactate permease 

jhp0130 DNA glycosylase MutY 

jhp0131 Hypothetical protein 

jhp0138 Hypothetical protein 

jhp0139 Hypothetical protein 

jhp0141 Recombinase A 

jhp0142 Phosphopyruvate hydratase 

jhp0147 Lipopolysaccharide biosynthesis protein 

jhp0151 Histidine kinase sensor protein 

jhp0154 Hypothetical protein 

jhp0176 Cardiolipin synthase 

jhp0186 50S ribosomal protein L32 

jhp0187 Glycerol-3-phosphate acyltransferase PlsX 

jhp0191 Hypothetical protein 

jhp0199 TRNA uridine 5-carboxymethylaminomethyl modification enzyme GidA 
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jhp0201 CDP-diacylglycerol synthase 

jhp0208 Hypothetical protein 

jhp0213 Hypothetical protein 

jhp0214 Outer membrane protein/porin 

jhp0218 Hypothetical protein 

jhp0237 Hypothetical protein 

jhp0241 Hypothetical protein 

jhp0244 Type II DNA modification (methyltransferase) 

jhp0245 Hypothetical protein 

jhp0246 Hypothetical protein 

jhp0248 Type II DNA modification (methyltransferase) 

jhp0250 Cytochrome C-type biogenesis protein 

jhp0267 Hypothetical protein 

jhp0275 Diaminopimelate decarboxylase 

jhp0277 Hypothetical protein 

jhp0278 P-aminobenzoate synthetase 

jhp0286 Peptide ABC transporter ATP-binding protein 

jhp0287 Peptide ABC transporter ATP-binding protein 

jhp0295 Hypothetical protein 

jhp0298 Hypothetical protein 

jhp0300 ABC transporter ATP-binding protein 

jhp0303 Hypothetical protein 

jhp0305 Poly E-rich protein 

jhp0310 Flagellar biosynthesis protein 

jhp0319 Hypothetical protein 

jhp0325 Flagellar MS-ring protein 

jhp0330 Hypothetical protein 

jhp0335 Septum formation protein 

jhp0336 Hypothetical protein 

jhp0339 Hemolysin 

jhp0342 Hypothetical protein 

jhp0343 Multi-drug resistance protein 

jhp0344 Hypothetical protein 

jhp0350 Hypothetical protein 

jhp0352 Copper-associated protein 

jhp0353 Copper-transporting P-type ATPase 

jhp0358 Response regulator 

jhp0361 Hypothetical protein 

jhp0368 Hypothetical protein 

jhp0371 Hypothetical protein 

jhp0376 Hypothetical protein 

jhp0377 Translation initiation factor IF-2 

jhp0385 Hypothetical protein 

jhp0400 Co-chaperone with DnaK 
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jhp0401 Hypothetical protein 

jhp0402 Hypothetical protein 

jhp0406 Amino acid permease 

jhp0415 Type I restriction enzyme modification subunit 

jhp0419 Hypothetical protein 

jhp0423 Glutathione-regulated potassium-efflux system protein 

jhp0425 Molybdate ABC transporter periplasmic-binding protein 

jhp0427 Molybdate ABC transporter ATP-binding protein 

jhp0430 Type II DNA modification (methyltransferase 

jhp0431 Hypothetical protein 

jhp0435 Type II DNA modification (methyltransferase 

jhp0437 Hypothetical protein 

jhp0443 50S ribosomal protein L28 

jhp0446 UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase 

jhp0447 Hypothetical protein 

jhp0449 Transporter 

jhp0450 Transporter 

jhp0458 Hypothetical protein 

jhp0459 Glycolate oxidase 

jhp0462 Hypothetical protein 

jhp0465 ATP-dependent protease ATP-binding subunit HslU 

jhp0468 Hypothetical protein 

jhp0469 Cag island protein 

jhp0471 Cag island protein 

jhp0472 Cag island protein 

jhp0473 Cag island protein, DNA transfer protein 

jhp0474 Cag island protein, DNA transfer protein 

jhp0475 Cag island protein 

jhp0476 Cag island protein 

jhp0477 Cag island protein 

jhp0478 Cag island protein 

jhp0479 Cag island protein 

jhp0480 Cag island protein 

jhp0481 Cag island protein 

jhp0482 Cag island protein 

jhp0483 Cag island protein 

jhp0485 Cag island protein 

jhp0486 Cag island protein 

jhp0487 Cag island protein 

jhp0488 Cag island protein 

jhp0489 Cag island protein 

jhp0490 Cag island protein 

jhp0491 Cag island protein 

jhp0492 DNA transfer protein 
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jhp0493 Cag island protein 

jhp0494 Cag island protein 

jhp0495 Cag island protein, cytotoxicity associated immunodominant antigen 

jhp0499 Hypothetical protein 

jhp0502 Hypothetical protein 

jhp0503 Hypothetical protein 

jhp0504 Acetyl-CoA carboxylase carboxyltransferase subunit alpha 

jhp0514 Hypothetical protein 

jhp0525 Hypothetical protein 

jhp0529 Siderophore-mediated IRON transport protein 

jhp0530 Hypothetical protein 

jhp0533 Hypothetical protein 

jhp0537 2-oxoglutarate-acceptor oxidoreductase subunit OorA 

jhp0539 2-oxoglutarate-acceptor oxidoreductase subunit OorC 

jhp0544 Penicillin-binding protein 

jhp0547 Secretion/efflux ABC transporter ATP-binding protein 

jhp0550 Hypothetical protein 

jhp0554 Efflux transporter 

jhp0556 Vacuolating cytotoxin (VacA) paralog 

jhp0563 Lipopolysaccharide biosynthesis protein  

jhp0565 Recombination and DNA strand exchange inhibitor protein 

jhp0572 Hypothetical protein 

jhp0573 Hypothetical protein 

jhp0579 Hypothetical protein 

jhp0581 Hypothetical protein 

jhp0582 Hypothetical protein 

jhp0589 Hypothetical protein 

jhp0596 Alpha (1,3)-fucosyltransferase 

jhp0600 Protective surface antigen D15 

jhp0604 Hypothetical protein 

jhp0605 Hypothetical protein 

jhp0619 Hypothetical protein 

jhp0626 Iron(III) dicitrate transport protein 

jhp0627 Ferrous iron transport protein B 

jhp0635 Short-chain fatty acids transporter 

jhp0636 3-oxoacid CoA-transferase subunit B 

jhp0643 Transcriptional regulator 

jhp0644 Excinuclease ABC subunit A 

jhp0654 Hypothetical protein 

jhp0655 DNA polymerase III subunits gamma/tau 

jhp0656 Hypothetical protein 

jhp0657 Hypothetical protein 

jhp0665 Hypothetical protein 

jhp0666 Hypothetical protein 
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jhp0675 D-alanyl-alanine synthetase A 

jhp0681 Hypothetical protein  

jhp0686 Hypothetical protein 

jhp0697 Phosphodiesterase 

jhp0698 Hypothetical protein 

jhp0706 Molybdopterin-guanine dinucleotide biosynthesis protein A 

jhp0707 Flagellar biosynthesis protein FlhB 

jhp0708 Hypothetical protein 

jhp0709 N-acetylmuramoyl-L-alanine amidase 

jhp0716 Bifunctional aconitate hydratase 2/2-methylisocitrate dehydratase 

jhp0717 Hypothetical protein 

jhp0718 Hypothetical protein 

jhp0719 Hypothetical protein 

jhp0739 Hypothetical protein 

jhp0743 Iron(III) dicitrate transport protein 

jhp0746 Hypothetical protein 

jhp0757 Osmoprotection binding protein 

jhp0758 Osmoprotection ATP-binding protein 

jhp0764 Thioredoxin reductase 

jhp0765 Lipopolysaccharide biosynthesis protein 

jhp0766 Hypothetical protein 

jhp0773 GTP-binding protein EngA 

jhp0777 Hypothetical protein 

jhp0778 Sugar nucleotide biosynthesis protein 

jhp0786 Type I restriction enzyme modification subunit 

jhp0788 Hypothetical protein 

jhp0790 Guanosine 5'-monophosphate oxidoreductase 

jhp0797 Hypothetical protein 

jhp0804 Flagellar hook protein FlgE 

jhp0812 Hypothetical protein 

jhp0817 Hypothetical protein 

jhp0819 Vacuolating cytotoxin 

jhp0835 Hydrogenase expression/formation protein 

jhp0836 Hydrogenase expression/formation protein 

jhp0837 Hydrogenase expression/formation protein 

jhp0842 Hypothetical protein 

jhp0844 Flagellar hook protein FlgE 

jhp0845 Hypothetical protein 

jhp0846 Type II DNA modification (methyltransferase 

jhp0847 ATP-dependent helicase 

jhp0850 Hypothetical protein 

jhp0851 IRON-regulated outer membrane protein 

jhp0853 Carbamoyl phosphate synthase large subunit 

jhp0856 Vacuolating cytotoxin (VacA) paralog 
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jhp0857 Hypothetical protein 

jhp0860 TRNA pseudouridine synthase D 

jhp0871 Proline/betaine transporter 

jhp0880 Hypothetical protein 

jhp0881 Hypothetical protein 

jhp0891 3-deoxy-D-manno-octulosonic-acid transferase 

jhp0892 Hypothetical protein 

jhp0895 NAD(P)H-dependent glycerol-3-phosphate dehydrogenase 

jhp0902 Hypothetical protein 

jhp0903 Cation efflux system protein 

jhp0904 Cation efflux system protein 

jhp0907 Hypothetical protein 

jhp0915 Hypothetical protein 

jhp0954 Hypothetical protein 

jhp0965 Hypothetical protein 

jhp0967 Methionyl-tRNA synthetase 

jhp0974 S/N-oxide reductase 

jhp0977 HIT family protein 

jhp0987 Hypothetical protein 

jhp0992 Iron-dependent superoxide dismutase 

jhp0994 Primosome assembly protein PriA 

jhp0999 Zinc-metallo protease 

jhp1001 Glutamate dehydrogenase 

jhp1003 Cytochrome C-type biogenesis protein 

jhp1005 Ferrochelatase 

jhp1008 Hypothetical protein 

jhp1010 Biotin carboxyl carrier protein 

jhp1012 Type II DNA modification enzyme 

jhp1013 Hypothetical protein 

jhp1014 Hypothetical protein 

jhp1015 Spore coat polysaccharide biosynthesis protein C 

jhp1023 Short chain alcohol dehydrogenase 

jhp1030 Zinc-dependent alcohol dehydrogenase 

jhp1032 Lipopolysaccharide biosynthesis protein 

jhp1033 Hypothetical protein 

jhp1056 Hypothetical protein 

jhp1067 Hypothetical protein 

jhp1069 Methionyl-tRNA formyltransferase 

jhp1084 Hypothetical protein 

jhp1086 CAMP-induced cell filamentation protein 

jhp1092 Hypothetical protein 

jhp1093 Glucose-6-phosphate isomerase 

jhp1095 Hypothetical protein 

jhp1102 Hypothetical protein 
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jhp1103 Outer membrane function 

jhp1105 Phosphopentomutase 

jhp1115 Histidyl-tRNA synthetase 

jhp1117 Motility protein 

jhp1121 DNA-directed RNA polymerase subunit beta/beta' 

jhp1141 ABC transporter ATP-binding protein 

jhp1143 D-lactate dehydrogenase 

jhp1152 DNA polymerase III subunit delta' 

jhp1153 Dihydropteroate synthase 

jhp1162 Alanyl-tRNA synthetase 

jhp1170 Shikimate 5-dehydrogenase 

jhp1172 Peptide ABC transporter ATP-binding protein 

jhp1173 Hypothetical protein 

jhp1180 Hypothetical protein 

jhp1186 NADH oxidoreductase I 

jhp1187 NADH dehydrogenase subunit G 

jhp1193 NADH dehydrogenase subunit M 

jhp1196 Phosphomannomutase 

jhp1200 Bifunctional indole-3-glycerol phosphate 

synthase/phosphoribosylanthranilate isomerase 
jhp1206 Hypothetical protein 

jhp1211 Hypothetical protein 

jhp1228 50S ribosomal protein L24 

jhp1241 Hypothetical protein 

jhp1244 Hypothetical protein 

jhp1249 Cation efflux system protein 

jhp1256 Hypothetical protein 

jhp1258 Biopolymer transport protein 

jhp1259 Biopolymer transport EXBD protein 

jhp1277 Hypothetical protein 

jhp1279 DNA transfer protein 

jhp1281 Hypothetical protein 

jhp1284 Type II DNA modification (methyltransferase 

jhp1285 Type III restriction enzyme R protein 

jhp1292 Hypothetical protein 

jhp1295 Endonuclease 

jhp1296 Type III DNA modification enzyme 

jhp1298 Biotin synthase 

jhp1299 Ribonuclease N 

jhp1309 Hypothetical protein 

jhp1310 TRNA delta(2)-isopentenylpyrophosphate transferase 

jhp1311 Lipopolysaccharide biosynthesis protein 

jhp1315 Flagellum-specific ATP synthase 

jhp1317 Isoleucyl-tRNA synthetase 
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jhp1318 Hypothetical protein 

jhp1338 Biopolymer transport protein 

jhp1339 Biopolymer transport protein 

jhp1341 Ribonuclease P protein component 

jhp1344 Hypothetical protein 

jhp1353 DNA polymerase III subunit alpha 

jhp1355 Motility protein 

jhp1358 ABC transporter ATP-binding protein 

jhp1359 Hypothetical protein 

jhp1365 Type II DNA modification enzyme 

jhp1384 Phosphate permease 

jhp1394 Hypothetical protein 

jhp1395 Hypothetical protein 

jhp1396 Component of cation transport for cbb3-type oxidase 

jhp1401 Ferrodoxin 

jhp1405 Iron-regulated outer membrane protein 

jhp1411 Type III DNA modification enzyme  

jhp1417 Chromosome replication initiator DnaA 

jhp1418 Hypothetical protein 

jhp1421 FAD-dependent thymidylate synthase 

jhp1422 Type I restriction enzyme (specificity subunit) 

jhp1423 Type I restriction enzyme modification subunit 

jhp1433 Hypothetical protein 

jhp1438 DNA polymerase III subunit epsilon 

jhp1439 Ribulose-phosphate 3-epimerase 

jhp1456 Hypothetical protein 

jhp1457 Hypothetical protein 

jhp1468 Rod shape-determining protein 

jhp1483 Flagellar biosynthesis protein 

jhp1485 ABC transporter permease 

jhp1487 Hypothetical protein 

jhp1488 Undecaprenyl-phosphate-alpha-N- acetylglucosaminyltransferase 

jhp1491 DNA-binding/iron metalloprotein/AP endonuclease 

*J99 annotation. 
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Appendix 10 List of “gastric cancer core”-specific genes 

Locus tag Product 

HPF32_0011 Argininosuccinate synthase 

HPF32_0016 Hypothetical protein 

HPF32_0036 Putative transcriptional regulator 

HPF32_0037 Signal-transducing protein, histidine kinase 

HPF32_0040 Competence locus E 

HPF32_0042 Hypothetical protein 

HPF32_0049 Adenine specific DNA methyltransferase 

HPF32_0050 Adenine specific DNA methyltransferase 

HPF32_0067 Hypothetical protein 

HPF32_0071 Hypothetical protein 

HPF32_0079 Urease accessory protein 

HPF32_0080 Urease accessory protein UreE 

HPF32_0082 Urease subunit alpha 

HPF32_0104 Type II restriction enzyme M protein 

HPF32_0110 Threonine synthase 

HPF32_0115 Methyl-accepting chemotaxis protein 

HPF32_0127 DNA topoisomerase I 

HPF32_0137 Hypothetical protein 

HPF32_0143 Hypothetical protein 

HPF32_0146 Hypothetical protein 

HPF32_0149 L-lactate permease 

HPF32_0151 C(4)-dicarboxylates and tricarboxylates/succinate antiporter 

HPF32_0159 Hypothetical protein 

HPF32_0162 Recombinase A 

HPF32_0172 Putative histidine kinase sensor protein 

HPF32_0198 Hypothetical protein 

HPF32_0208 50S ribosomal protein L32 

HPF32_0216 Lipopolysaccharide 1,2-glycosyltransferase 

HPF32_0222 TRNA uridine 5-carboxymethylaminomethyl modification protein 

GidA 
HPF32_0224 CDP-diglyceride synthetase 

HPF32_0232 Hypothetical protein 

HPF32_0237 Putative sulfate permease 

HPF32_0238 Outer membrane protein HopA 

HPF32_0258 Hypothetical protein 

HPF32_0261 Oligopeptide permease integral membrane protein 

HPF32_0266 Hypothetical protein 

HPF32_0291 Hypothetical protein 

HPF32_0300 Diaminopimelate decarboxylase 

HPF32_0314 Hypothetical protein 

HPF32_0320 Hypothetical protein 

HPF32_0323 Nitrite extrusion protein 
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HPF32_0328 Cytochrome c-type biogenesis protein 

HPF32_0330 Glutamate dehydrogenase 

HPF32_0332 Putative zinc-metallo protease 

HPF32_0337 Primosome assembly protein PriA 

HPF32_0367 Methionyl-tRNA synthetase 

HPF32_0380 Hypothetical protein 

HPF32_0393 Hypothetical protein 

HPF32_0412 Hypothetical protein 

HPF32_0434 Putative vacuolating cytotoxin VacA 

HPF32_0439 Iron-regulated outer membrane protein 

HPF32_0440 Putative outer membrane protein 

HPF32_0443 Rep helicase, single-stranded DNA-dependent ATPase 

HPF32_0445 Type II restriction enzyme 

HPF32_0446 Flagellar hook protein FlgE 

HPF32_0462 Vacuolating cytotoxin A 

HPF32_0464 Virulence factor MviN 

HPF32_0470 Hypothetical protein 

HPF32_0475 UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase 

HPF32_0476 Hypothetical protein 

HPF32_0479 Sodium- and chloride-dependent transporter 

HPF32_0480 Phospholipase A1 

HPF32_0488 Plasminogen binding protein 

HPF32_0489 Putative Glycolate oxidase 

HPF32_0491 Urease-enhancing factor 

HPF32_0499 Hypothetical protein 

HPF32_0500 Cag pathogenicity island protein 

HPF32_0501 Cag pathogenicity island protein 

HPF32_0502 Cag island protein 

HPF32_0504 Cag pathogenicity island protein 

HPF32_0505 Cag pathogenicity island protein 

HPF32_0507 Cag pathogenicity island protein 

HPF32_0508 Cag pathogenicity island protein 

HPF32_0509 Cag pathogenicity island protein 

HPF32_0510 Cag pathogenicity island protein 

HPF32_0511 Cag pathogenicity island protein 

HPF32_0512 Cag pathogenicity island protein 

HPF32_0513 Cag pathogenicity island protein 

HPF32_0514 Cag pathogenicity island protein 

HPF32_0515 Cag pathogenicity island protein 

HPF32_0516 Cag pathogenicity island protein 

HPF32_0517 Cag island protein 

HPF32_0518 Cag pathogenicity island protein 

HPF32_0519 Cag pathogenicity island protein 

HPF32_0520 DNA transfer protein 
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HPF32_0521 Cag pathogenicity island protein 

HPF32_0522 Cag pathogenicity island protein 

HPF32_0523 Cag pathogenicity island protein 

HPF32_0531 Hypothetical protein 

HPF32_0542 Membrane protein 

HPF32_0557 Hypothetical protein 

HPF32_0561 Hypothetical protein 

HPF32_0578 Hypothetical protein 

HPF32_0582 Cytoplasmic pump protein of the hefABC efflux system HefC 

HPF32_0584 Putative vacuolating cytotoxin (VacA)-like protein 

HPF32_0595 Putative lipopolysaccharide biosynthesis protein 

HPF32_0607 Modulator of drug activity 

HPF32_0615 Outer membrane protein OipA1/A2 

HPF32_0621 Excinuclease ABC subunit A 

HPF32_0629 Hydantoin utilization protein A 

HPF32_0636 Iron(II) transport protein 

HPF32_0637 Iron(III) dicitrate transport protein FecA1 

HPF32_0664 Putative outer membrane protein 

HPF32_0684 DNA polymerase III subunits gamma and tau 

HPF32_0685 Hypothetical protein 

HPF32_0688 L-asparaginase II 

HPF32_0689 Anaerobic C4-dicarboxylate transporter 

HPF32_0704 D-alanyl-alanine synthetase A 

HPF32_0729 Hypothetical protein 

HPF32_0740 Hypothetical protein 

HPF32_0748 Bifunctional aconitate hydratase 2/2-methylisocitrate dehydratase 

HPF32_0749 Hypothetical protein 

HPF32_0750 Hypothetical protein 

HPF32_0751 Outer membrane protein HofE 

HPF32_0766 Molybdenum cofactor biosynthesis protein 

HPF32_0785 Osmoprotection protein 

HPF32_0794 Lipooligosaccharide 5G8 epitope biosynthesis-associated protein 

HPF32_0802 GTP-binding protein EngA 

HPF32_0806 Outer membrane protein P1 

HPF32_0811 Thiamine biosynthesis protein 

HPF32_0812 Thiamine phosphate pyrophosphorylase 

HPF32_0813 Type I restriction enzyme R protein 

HPF32_0822 Guanosine 5'-monophosphate oxidoreductase 

HPF32_0829 Hypothetical protein 

HPF32_0844 Hypothetical protein 

HPF32_0854 Outer membrane protein HopK 

HPF32_0856 Molybdenum ABC transporter ModD 

HPF32_0861 Glutathione-regulated potassium-efflux system protein 

HPF32_0865 Integral membrane protein 
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HPF32_0879 Amino acid permease 

HPF32_0883 DNA-polymerase I-like 5'-3' exonuclease 

HPF32_0884 Hypothetical protein 

HPF32_0900 Hypothetical protein 

HPF32_0909 Translation initiation factor IF-2 

HPF32_0910 Hypothetical protein 

HPF32_0915 Hypothetical protein 

HPF32_0918 Hypothetical protein 

HPF32_0925 Hypothetical protein 

HPF32_0933 Copper ion binding protein 

HPF32_0935 Hypothetical protein 

HPF32_0942 Outer membrane protein HofB 

HPF32_0958 Flagellar MS-ring protein 

HPF32_0962 Hypothetical protein 

HPF32_0978 CMP-N-acetylneuraminic acid synthetase 

HPF32_0979 CMP-N-acetylneuraminic acid synthetase 

HPF32_0983 Poly E-rich protein 

HPF32_0985 Sec-independent protein translocase protein 

HPF32_1019 Outer membrane protein HomC 

HPF32_1026 Spore coat polysaccharide biosynthesis protein C 

HPF32_1033 Short chain alcohol dehydrogenase 

HPF32_1042 Putative lipopolysaccharide biosynthesis protein 

HPF32_1043 Hypothetical protein 

HPF32_1050 Outer membrane protein HorI 

HPF32_1059 Hypothetical protein 

HPF32_1077 Methionyl-tRNA formyltransferase 

HPF32_1092 Outer membrane protein HopL 

HPF32_1094 Cell filamentation protein 

HPF32_1100 Hypothetical protein 

HPF32_1101 Glucose-6-phosphate isomerase 

HPF32_1103 Carbon starvation protein 

HPF32_1111 Outer membrane protein 

HPF32_1113 Phosphopentomutase 

HPF32_1123 Histidyl-tRNA synthetase 

HPF32_1125 Hypothetical protein 

HPF32_1129 DNA-directed RNA polymerase subunit beta/beta' 

HPF32_1151 D-lactate dehydrogenase 

HPF32_1160 DNA polymerase III subunit delta' 

HPF32_1161 Dihydropteroate synthase 

HPF32_1167 Formamidase 

HPF32_1168 Hypothetical protein 

HPF32_1170 Alanyl-tRNA synthetase 

HPF32_1174 30S ribosomal protein S18 

HPF32_1176 30S ribosomal protein S6 



Appendices 

~ 252 ~ 

HPF32_1180 Hypothetical protein 

HPF32_1181 Putative peptide ABC transporter ATP-binding protein 

HPF32_1193 NADH dehydrogenase subunit D 

HPF32_1202 NADH dehydrogenase subunit M 

HPF32_1204 Paralysed flagella protein 

HPF32_1205 Phosphomannomutase 

HPF32_1208 Bifunctional indole-3-glycerol phosphate synthase/ 

phosphoribosylanthranilate isomerase 
HPF32_1214 Hypothetical protein 

HPF32_1247 ATP-binding protein 

HPF32_1263 Hypothetical protein 

HPF32_1270 Transcriptional regulator 

HPF32_1281 Aspartate alpha-decarboxylase 

HPF32_1287 Hypothetical protein 

HPF32_1289 Type II citrate synthase 

HPF32_1291 Putative type III restriction enzyme M protein 

HPF32_1292 Putative type III restriction enzyme 

HPF32_1296 Hypothetical protein 

HPF32_1300 Hypothetical protein 

HPF32_1302 Lipopolysaccharide 1,2-glucosyltransferase 

HPF32_1309 Isoleucyl-tRNA synthetase 

HPF32_1319 Formyltetrahydrofolate hydrolase 

HPF32_1320 Protease IV 

HPF32_1321 Hypothetical protein 

HPF32_1334 50S ribosomal protein L34 

HPF32_1340 Outer membrane protein HomD 

HPF32_1347 DNA polymerase III subunit alpha 

HPF32_1352 ABC transporter ATP-binding protein 

HPF32_1353 Hypothetical protein 

HPF32_1378 Phosphate permease 

HPF32_1390 Putative outer membrane protein 

HPF32_1391 Hypothetical protein 

HPF32_1392 Putative cation transporting P-type ATPase 

HPF32_1397 Ferrodoxin-like protein 

HPF32_1401 Putative IRON-regulated outer membrane protein 

HPF32_1406 Type III restriction enzyme 

HPF32_1415 Purine nucleoside phosphorylase 

HPF32_1423 Iron(III) dicitrate transport protein 

HPF32_1430 DNA repair protein 

HPF32_1437 Ribulose-phosphate 3-epimerase 

HPF32_1468 Hypothetical protein 

HPF32_1482 ABC transporter ATP-binding protein 

HPF32_1485 Hypothetical protein 

HPF32_1489 O-sialoglycoprotein endopeptidase 
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Appendix 11 List of “MALT lymphoma core”-specific genes* 

Locus tag Product 

HELPY_0002 6,7-dimethyl-8-ribityllumazine synthase 

HELPY_0004 Beta-carbonic anhydrase 

HELPY_0007 Outer membrane protein HopZ 

HELPY_0011 Hypothetical protein 

HELPY_0016 Hypothetical protein 

HELPY_0021 Hypothetical protein 

HELPY_0022 Outer membrane protein HopD 

HELPY_0024 Type II citrate synthase 

HELPY_0026 Hypothetical protein 

HELPY_0028 Hypothetical protein 

HELPY_0032 Aspartate alpha-decarboxylase 

HELPY_0033 Hypothetical protein 

HELPY_0035 Hypothetical protein 

HELPY_0043 Hydrogenase maturation protein HypF 

HELPY_0045 Type II adenine methyltransferase 

HELPY_0051 Hypothetical protein 

HELPY_0052 Hypothetical protein 

HELPY_0055 Hypothetical protein 

HELPY_0056 Hypothetical protein 

HELPY_0057 Hypothetical protein 

HELPY_0058 Hypothetical protein 

HELPY_0059 Hypothetical protein 

HELPY_0065 Urease accessory protein UreF 

HELPY_0066 Urease accessory protein UreE 

HELPY_0068 Urease subunit beta 

HELPY_0078 Methyl-accepting chemotaxis protein 

HELPY_0090 Type II adenine methyltransferase 

HELPY_0091 Alpha-1,2-fucosyltransferase 

HELPY_0095 Threonine synthase 

HELPY_0097 Methyl-accepting chemotaxis protein 

HELPY_0099 Outer membrane protein 

HELPY_0101 Methyl-accepting chemotaxis protein tlpB 

HELPY_0106 Cysteine synthase 

HELPY_0111 Heat-inducible transcription repressor 

HELPY_0116 DNA topoisomerase I 

HELPY_0121 Hypothetical protein 

HELPY_0128 Hypothetical protein 

HELPY_0136 Hypothetical protein 

HELPY_0139 Iron-sulfur cluster binding protein 

HELPY_0143 L-lactate permease, LctP family; membrane protein 

HELPY_0144 DNA glycosylase MutY 
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HELPY_0145 Sodium/sulfate symporter 

HELPY_0154 Hypothetical protein 

HELPY_0155 Hypothetical protein 

HELPY_0157 Recombinase A 

HELPY_0158 Phosphopyruvate hydratase 

HELPY_0163 LPS 1,2-glycosyltransferase 

HELPY_0168 Histidine kinase sensor protein 

HELPY_0171 Hypothetical protein 

HELPY_0175 Molybdopterin biosynthesis protein MoeA 

HELPY_0193 Phospholipase D 

HELPY_0203 50S ribosomal protein L32 

HELPY_0204 Glycerol-3-phosphate acyltransferase PlsX 

HELPY_0211 LPS 1,2-glycosyltransferase 

HELPY_0216 TRNA uridine 5-carboxymethylaminomethyl modification protein 

GidA 
HELPY_0218 Phosphatidate cytidylyltransferase 

HELPY_0232 Sulfate permease 

HELPY_0233 Outer membrane protein HopA 

HELPY_0237 Glutathionylspermidine synthase 

HELPY_0253 Hypothetical protein 

HELPY_0258 Outer membrane protein HopF 

HELPY_0262 Hypothetical protein 

HELPY_0265 TCGA site-specific m6A methyltransferase 

HELPY_0266 Hypothetical protein 

HELPY_0269 Non-functional cytosine methyltransferase 

HELPY_0271 Cytochrome C biogenesis protein; membrane protein 

HELPY_0288 Hypothetical protein 

HELPY_0295 Toxin-like outer membrane protein/vacuolating cytotoxin VacA 

HELPY_0296 Diaminopimelate decarboxylas (DAP decarboxylase) 

HELPY_0298 Hypothetical protein 

HELPY_0299 Para-aminobenzoate (PABA)-synthetase 

HELPY_0306 ABC transporter permease; dipeptide transporter protein 3; 

membrane protein 
HELPY_0308 ABC transporter ATP-binding protein; dipeptide transporter protein 4 

HELPY_0309 ABC transporter ATP-binding protein; dipeptide transporter protein 5 

HELPY_0311 Hypothetical protein 

HELPY_0317 NodB-like polysaccharide deacetylase 

HELPY_0320 Nitrite extrusion protein, major facilitator family protein; membrane 

protein 
HELPY_0323 Sec-independent protein translocase protein tatA/E-like protein 

HELPY_0325 Hypothetical protein 

HELPY_0331 Flagellar biosynthesis protein 

HELPY_0340 Hypothetical protein 

HELPY_0350 Pseudouridine synthase (RNA-uridine isomerase) (RNA 

pseudouridylate synthase) 
HELPY_0354 Flagellar MS-ring protein 
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HELPY_0360 Hypothetical protein 

HELPY_0363 DNA translocase FtsK; membrane protein 

HELPY_0364 Hypothetical protein 

HELPY_0367 Pore-forming cytolysin 

HELPY_0370 Outer membrane protein HofB 

HELPY_0371 ABC transporter ATP-binding protein; lipid A and 

glycerophospholipid transporter; membrane protein 
HELPY_0372 Hypothetical protein 

HELPY_0376 Hypothetical protein 

HELPY_0378 Copper-associated protein 

HELPY_0379 Copper-transporting ATPase/P-type transporting ATPase; membrane 

protein 
HELPY_0383 Chemotactic response regulator, two-component system 

HELPY_0386 Hypothetical protein 

HELPY_0393 Hypothetical protein 

HELPY_0396 Hypothetical protein 

HELPY_0401 Hypothetical protein 

HELPY_0402 Translation initiation factor IF-2 

HELPY_0405 Acetyl-CoA synthetase 

HELPY_0409 Hypothetical protein 

HELPY_0410 Hypothetical protein 

HELPY_0414 Hypothetical protein 

HELPY_0420 Hypothetical protein 

HELPY_0429 Chaperone protein DnaJ 

HELPY_0430 Hypothetical protein 

HELPY_0431 Hypothetical protein 

HELPY_0436 Transporter; amino-acid transporter, AAT family; membrane protein 

HELPY_0444 Type I restriction/modification specificity protein 

HELPY_0445 Type I restriction enzyme M protein 

HELPY_0450 Hypothetical protein 

HELPY_0455 Sodium/hydrogen exchanger 

HELPY_0457 ABC transporter substrate-binding protein 

HELPY_0458 ABC transporter permease; molybdate transporter; membrane protein 

HELPY_0459 ABC transporter ATP-binding protein; molybdate transporter 

HELPY_0462 Type II adenine methyltransferase 

HELPY_0463 Non-functional type II restriction endonuclease 

HELPY_0465 Type II cytosine specific DNA methyltransferase 

HELPY_0466 Non-functional type II restriction endonuclease 

HELPY_0468 Catalase 

HELPY_0472 Hypothetical protein 

HELPY_0474 Hypothetical protein 

HELPY_0482 Flagellar hook protein FlgE 

HELPY_0489 Plasminogen-binding protein PgbB 

HELPY_0500 Guanosine 5'-monophosphate oxidoreductase 

HELPY_0507 Type I R-M system specificity subunit 
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HELPY_0510 Hydroxyethylthiazole kinase 

HELPY_0511 Phosphomethylpyrimidine kinase (HMP-phosphate kinase) (HMP-P 

kinase) 
HELPY_0512 Thiamine-phosphate pyrophosphorylase 

HELPY_0515 UDP-GlcNAc C6 dehydratase/C5 epimerase 

HELPY_0516 Outer membrane protein P1 

HELPY_0520 GTP-binding protein EngA 

HELPY_0528 Nucleotide binding protein 

HELPY_0529 Glycosyltransferase, family 25 

HELPY_0531 Thioredoxin reductase (TRXR) (TR) 

HELPY_0538 ABC transporter ATP-binding protein; osmoprotection ABC 

transporter involved in glycine/betaine/L-proline transport 
HELPY_0539 ABC transporter permease; betaine/proline/choline transporter; 

membrane protein 
HELPY_0547 N-6 adenine methyltransferase 

HELPY_0557 Hypothetical protein 

HELPY_0559 Molybdopterin-converting factor subunit 1 

HELPY_0561 Molybdenum cofactor biosynthesis protein MogA 

HELPY_0582 Outermembrane protein HofE 

HELPY_0583 Hypothetical protein 

HELPY_0584 Hypothetical protein 

HELPY_0585 Bifunctional aconitate hydratase 2/2-methylisocitrate dehydratase 

HELPY_0592 N-acetylmuramoyl-L-alanine amidase 

HELPY_0593 Hypothetical protein 

HELPY_0594 Flagellar biosynthesis protein FlhB 

HELPY_0595 Molybdopterin-guanine dinucleotide biosynthesis protein A 

HELPY_0596 Molybdenum cofactor biosynthesis protein A 

HELPY_0599 Hypothetical protein 

HELPY_0604 Hypothetical protein 

HELPY_0605 Phosphodiesterase 

HELPY_0616 ABC transporter permease 

HELPY_0624 Rod shape-determining protein RodA; membrane protein 

HELPY_0629 D-alanyl-alanine synthetase A 

HELPY_0636 LeoA protein 

HELPY_0638 Hypothetical protein 

HELPY_0639 TRNA(Ile)-lysidine synthase 

HELPY_0642 Outer membrane protein HopP 

HELPY_0643 Anaerobic C4-dicarboxylate transporter 

HELPY_0644 L-asparaginase 

HELPY_0647 Hypothetical protein 

HELPY_0648 L-lysine exporter; membrane protein 

HELPY_0649 DNA polymerase III subunits gamma and tau 

HELPY_0650 ATPase 

HELPY_0656 Outer membrane protein HomA 

HELPY_0661 Excinuclease ABC subunit A 
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HELPY_0662 Hypothetical protein 

HELPY_0666 Transcriptional activator 

HELPY_0671 Hypothetical protein 

HELPY_0679 Short-chain fatty acid transport protein, scFAT family; membrane 

protein 
HELPY_0681 Succinyl-CoA-transferase subunit B 

HELPY_0685 Ferrous iron transport protein B; membrane protein 

HELPY_0686 Iron(III) dicitrate transport protein FecA 

HELPY_0687 Flagellar biosynthesis protein FliP 

HELPY_0690 Hypothetical protein 

HELPY_0693 Hypothetical protein 

HELPY_0711 Hypothetical protein 

HELPY_0712 Hypothetical protein 

HELPY_0716 Surface antigen protein 

HELPY_0727 Hypothetical protein 

HELPY_0729 NAD(P)H-flavin oxidoreductase 

HELPY_0730 3-hydroxyacid dehydrogenase 

HELPY_0732 Hypothetical protein 

HELPY_0733 Outer membrane protein HopH 

HELPY_0735 Hypothetical protein 

HELPY_0741 NAD(P)H oxidoreductase (NADPH quinone reductase) 

HELPY_0750 Recombination and DNA strand exchange inhibitor protein 

HELPY_0763 Vacuolating cytotoxin VacA-like 

HELPY_0765 Cytoplasmic pump proteins of the hefABC efflux system 

HELPY_0769 Hypothetical protein 

HELPY_0772 ABC transporter permease and ATP-binding protein; membrane 

protein 
HELPY_0775 Penicillin-binding protein 1 (peptidoglycan glycosyltransferase) 

HELPY_0783 2-oxoglutarate-acceptor oxidoreductase subunit OorC 

HELPY_0785 2-oxoglutarate-acceptor oxidoreductase subunit OorA 

HELPY_0789 Hypothetical protein 

HELPY_0792 Hypothetical protein 

HELPY_0793 Siderophore-mediated iron transport protein 

HELPY_0798 Hypothetical protein 

HELPY_0810 Hypothetical protein 

HELPY_0819 Acetyl-CoA carboxylase carboxyltransferase subunit alpha 

HELPY_0820 Hypothetical protein 

HELPY_0821 Hypothetical protein 

HELPY_0822 Hypothetical protein 

HELPY_0824 Methylase 

HELPY_0828 Hypothetical protein 

HELPY_0831 ATP-dependent protease ATP-binding subunit HslU 

HELPY_0842 Urease-enhancing factor Lpp 

HELPY_0844 Glycolate oxidase subunit 

HELPY_0845 Hypothetical protein 
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HELPY_0850 Hypothetical protein 

HELPY_0855 Sodium-and chloride-dependent transporter; membrane protein 

HELPY_0856 Sodium-and chloride-dependent transporter; membrane protein 

HELPY_0858 Hypothetical protein 

HELPY_0859 UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase 

HELPY_0862 50S ribosomal protein L28 

HELPY_0865 Hypothetical protein 

HELPY_0870 Virulence factor MviN protein; membrane protein 

HELPY_0872 Vacuolating cytotoxin 

HELPY_0878 Hypothetical protein 

HELPY_0879 Hypothetical protein 

HELPY_0882 Hydrogenase expression/formation protein HypD 

HELPY_0883 Hydrogenase expression/formation protein (HUPF/HYPC) 

HELPY_0884 Hydrogenase and urease maturation protein 

HELPY_0885 Hypothetical protein 

HELPY_0889 Phosphotransacetylase 

HELPY_0890 Flagellar control protein 

HELPY_0892 Flagellar hook protein FlgE 

HELPY_0893 Type II restriction endonuclease Hpy8I 

HELPY_0894 Type II m6A methylase 

HELPY_0895 ATP-dependent single-stranded DNA helicase 

HELPY_0900 Outer membrane protein 

HELPY_0901 Iron-regulated outer membrane protein 

HELPY_0903 Carbamoyl phosphate synthase large subunit 

HELPY_0906 Toxin-like outer membrane protein/vacuolating cytotoxin VacA 

HELPY_0907 Outer membrane protein HopK 

HELPY_0910 TRNA pseudouridine synthase D 

HELPY_0924 Hypothetical protein 

HELPY_0931 Cation antiporter; membrane protein 

HELPY_0932 Hypothetical protein 

HELPY_0933 Hypothetical protein 

HELPY_0940 NAD(P)H-dependent nitroreductase 

HELPY_0943 3-deoxy-D-manno-octulosonic-acid transferase 

HELPY_0944 Hypothetical protein 

HELPY_0947 NAD(P)H-dependent glycerol-3-phosphate dehydrogenase 

HELPY_0949 ATPase 

HELPY_0955 Hypothetical protein 

HELPY_0956 Cobalt-zinc-cadmium resistance protein, CzcA family; membrane 

protein 
HELPY_0957 Cobalt-zinc-cadmium resistance protein, CzcB family 

HELPY_0960 Hypothetical protein 

HELPY_0976 Small-conductance mechanosensitive channel; membrane protein 

HELPY_1001 Hypothetical protein 

HELPY_1002 Hypothetical protein 
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HELPY_1009 Hypothetical protein 

HELPY_1011 Methionyl-tRNA synthetase 

HELPY_1021 Hydrolase 

HELPY_1031 Hypothetical protein 

HELPY_1036 Superoxide dismutase 

HELPY_1038 Primosome assembly protein PriA 

HELPY_1043 Metalloprotease; membrane protein 

HELPY_1045 Glutamate dehydrogenase 

HELPY_1046 Alpha1,3-fucosyltransferase 

HELPY_1047 Cytochrome c biogenesis protein; membrane protein 

HELPY_1049 Ferrochelatase 

HELPY_1054 Biotin carboxyl carrier protein of acetyl-CoA carboxylase 

HELPY_1056 Adenine methyltransferase 

HELPY_1057 Type II restriction endonuclease 

HELPY_1058 Hypothetical protein 

HELPY_1059 UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase 

HELPY_1066 Short chain dehydrogenase 

HELPY_1073 Zinc-containing alcohol dehydrogenase 

HELPY_1074 Lipopolysaccharide 1,3-galactosyltransferase 

HELPY_1075 Hypothetical protein 

HELPY_1083 Outer membrane protein 

HELPY_1095 Hypothetical protein 

HELPY_1100 Hypothetical protein 

HELPY_1111 SpoOJ regulator 

HELPY_1113 Methionyl-tRNA formyltransferase 

HELPY_1114 Hypothetical protein 

HELPY_1119 Hypothetical protein 

HELPY_1131 Outer membrane protein HopL 

HELPY_1133 CAMP-induced cell filamentation protein 

HELPY_1139 Permease, MFS superfamily; membrane protein 

HELPY_1140 Glucose-6-phosphate isomerase 

HELPY_1142 Carbon starvation protein A; membrane protein 

HELPY_1149 Permease; membrane protein 

HELPY_1150 Outer membrane protein HopQ 

HELPY_1152 Phosphopentomutase 

HELPY_1160 Hypothetical protein 

HELPY_1162 Histidyl-tRNA synthetase 

HELPY_1164 Hypothetical protein 

HELPY_1166 Aldo-keto reductase 

HELPY_1170 DNA-directed RNA polymerase subunit beta/beta' 

HELPY_1178 50S ribosomal protein L33 

HELPY_1195 ABC transporter ATP-binding protein 

HELPY_1197 D-lactate dehydrogenase 

HELPY_1206 DNA polymerase III subunit delta' 
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HELPY_1207 Dihydropteroate synthase (DHPS) (Dihydropteroate 

pyrophosphorylase) 
HELPY_1213 Formamidase 

HELPY_1214 Hypothetical protein 

HELPY_1216 Alanyl-tRNA synthetase 

HELPY_1220 30S ribosomal protein S18 

HELPY_1221 Single-stranded DNA-binding protein 

HELPY_1222 30S ribosomal protein S6 

HELPY_1225 Shikimate 5-dehydrogenase 

HELPY_1226 Hypothetical protein 

HELPY_1227 ABC transporter permease 

HELPY_1228 ABC transporter substrate-binding protein 

HELPY_1235 NAD+-dependent deacetylase, Sir2 family 

HELPY_1239 NADH dehydrogenase subunit D 

HELPY_1241 NADH-ubiquinone oxidoreductase subunit F 

HELPY_1242 NADH dehydrogenase subunit G 

HELPY_1248 NADH dehydrogenase subunit M 

HELPY_1250 Paralysed flagella protein PflA 

HELPY_1252 Phosphomannomutase (PMM) 

HELPY_1253 Hypothetical protein 

HELPY_1256 Bifunctional indole-3-glycerol phosphate 

synthase/phosphoribosylanthranilate isomerase 
HELPY_1262 Hypothetical protein 

HELPY_1264 Pantothenate kinase (type III) 

HELPY_1265 Hypothetical protein 

HELPY_1267 Thiamine pyrophosphokinase 

HELPY_1283 50S ribosomal protein L24 

HELPY_1297 Hypothetical protein 

HELPY_1305 Heavy metal efflux pump CzcA 

HELPY_1312 Nicotinate-nucleotide adenyltransferase 

HELPY_1314 Biopolymer transport accessory protein; membrane protein 

HELPY_1315 Biopolymer transport protein ExbD 

HELPY_1316 Siderophore-mediated iron transport protein 

HELPY_1317 Outer membrane protein HopM 

HELPY_1340 Type II restriction endonuclease 

HELPY_1341 Type II m6A methylase 

HELPY_1349 Hypothetical protein 

HELPY_1351 DNA competence protein; membrane protein 

HELPY_1353 Hypothetical protein 

HELPY_1354 Hypothetical protein 

HELPY_1355 Transcriptional regulatory protein 

HELPY_1358 Type III restriction enzyme R protein 

HELPY_1365 Hypothetical protein 

HELPY_1369 DNA/RNA endonuclease G (nucG) 

HELPY_1370 Type III restriction enzyme M protein 
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HELPY_1371 Type III restriction enzyme R protein 

HELPY_1372 Biotin synthase 

HELPY_1373 Ribonuclease N 

HELPY_1380 Hypothetical protein 

HELPY_1382 Hypothetical protein 

HELPY_1383 TRNA delta(2)-isopentenylpyrophosphate transferase 

HELPY_1384 Lipopolysaccharide biosynthesis protein; LPS glycosyltransferase 

HELPY_1389 Flagellum-specific ATP synthase 

HELPY_1391 Isoleucyl-tRNA synthetase 

HELPY_1392 RNA binding protein 

HELPY_1401 Hypothetical protein 

HELPY_1402 Type I restriction enzyme specificity protein 

HELPY_1403 Formyltetrahydrofolate deformylase 

HELPY_1404 Signal peptide protease IV (Protease IV) (Endopeptidase IV) 

HELPY_1405 Hypothetical protein 

HELPY_1406 Hypothetical protein 

HELPY_1407 Hypothetical protein 

HELPY_1408 Hypothetical protein 

HELPY_1416 Biopolymer transport protein ExbD/TolR; membrane protein 

HELPY_1417 Biopolymer transport accessory protein ExbD/TolR 

HELPY_1418 Ribonuclease P 

HELPY_1421 Hypothetical protein 

HELPY_1423 Outer membrane protein HomD 

HELPY_1431 DNA polymerase III subunit alpha 

HELPY_1434 Hypothetical protein 

HELPY_1437 ABC transporter ATP-binding protein 

HELPY_1438 ABC transporter permease 

HELPY_1464 Transporter; phosphate transporter; membrane protein 

HELPY_1473 Hypothetical protein 

HELPY_1474 Outer membrane protein HorK 

HELPY_1475 Hypothetical protein 

HELPY_1476 ATPase, P-type copper-transporter; membrane protein 

HELPY_1481 Ferredoxin-like protein 

HELPY_1485 Iron-regulated outer membrane protein 

HELPY_1491 Type IIS restriction-modification protein 

HELPY_1492 Type III R-M system restriction enzyme 

HELPY_1500 Chromosomal replication initiation protein 

HELPY_1501 Purine nucleoside phosphorylase PunB 

HELPY_1504 FAD-dependent thymidylate synthase 

HELPY_1505 Hypothetical protein 

HELPY_1507 Type I restriction-modification enzyme subunit M 

HELPY_1508 Type I restriction-modification enzyme subunit R 

HELPY_1510 Iron(III) dicitrate transport protein FecA 

HELPY_1514 Hypothetical protein 
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HELPY_1516 Inorganic polyphosphate/ATP-NAD kinase (Poly(P)/ATP NAD 

kinase) 
HELPY_1517 DNA repair protein 

HELPY_1520 Hac prophage II protein 

HELPY_1521 Hac prophage II integrase 

HELPY_1522 Hac prophage II protein 

HELPY_1523 Hac prophage II protein 

HELPY_1525 Hac prophage II protein 

HELPY_1527 Hac prophage II protein 

HELPY_1531 Hypothetical protein 

HELPY_1532 Hypothetical protein 

HELPY_1534 Hypothetical protein 

HELPY_1535 DNA polymerase III subunit epsilon 

HELPY_1536 Ribulose-phosphate 3-epimerase 

HELPY_1539 N-6 Adenine-specific DNA methylase 

HELPY_1540 Hypothetical protein 

HELPY_1545 Hypothetical protein 

HELPY_1546 Zn-metallopeptidase, M23 family 

HELPY_1563 Cell division protein FtsW 

HELPY_1564 ABC transporter substrate-binding protein 

HELPY_1578 Hypothetical protein 

HELPY_1579 DL-methionine transporter ATP-binding subunit 

HELPY_1580 ABC transporter permease; D-and L-methionine transport protein; 

membrane protein 
HELPY_1584 Hypothetical protein 

HELPY_1585 UDP-phosphate N-acetylgalactosaminyl-1-phosphate transferase 

HELPY_1588 DNA-binding/iron metalloprotein/AP endonuclease 

HELPY_1590 Hypothetical protein 

HELPY_1591 Hypothetical protein 

HELPY_CDS127

4156R 
50S ribosomal protein L36 

*HELPY annotation. 



 

 

Appendix 12 List of unique genes present in the genome of H. pylori CCUG 17874 when compared to a number of H. pylori strains 

Unique 17874 Size (aa) 26695 J99 P79 Product 

HP17_00065 34 Absent Absent Absent Hypothetical protein 

HP17_00165 35 Absent Absent HP79_07905 Hypothetical protein 

HP17_00230 93 Absent Absent HP79_07835 Hypothetical protein 

HP17_00245 >26 Absent Absent Absent Hypothetical protein 

HP17_00536 32 Absent Absent Absent Hypothetical protein 

HP17_01178 40 Absent Absent Absent Hypothetical protein 

HP17_01508 44 HP_0091  Absent HP79_04682 Type II restriction enzyme R protein (hsdR) 

HP17_01533 41 Absent Absent Absent Hypothetical protein 

HP17_01783 31 Absent jhp0915 Absent Hypothetical protein 

HP17_01823 41 Absent Absent Absent Hypothetical protein 

HP17_01893 >37 Absent Absent Absent Hypothetical protein 

HP17_01925 31 HP_0341 Absent HP79_00662 Hypothetical protein 

HP17_01930 42 Absent Absent Absent Hypothetical protein 

HP17_01945 74 HP_0345 Absent HP79_00682 Hypothetical protein 

HP17_02539 52 Absent Absent Absent Hypothetical protein 

HP17_02624 >46 Absent Absent Absent Hypothetical protein 

HP17_03092 30 HP_0024 Absent HP79_06174 Hypothetical protein 

HP17_03459 66 Absent Absent Absent Hypothetical protein 

HP17_03594 30 HP_0502 Absent HP79_01809  Hypothetical protein 

HP17_03699 38 Absent jhp0884 HP79_06976 Hypothetical protein 

HP17_03704 33 Absent Absent Absent Hypothetical protein 

HP17_03749 35 Absent jhp0274 Absent Hypothetical protein 



 

 

HP17_03779 42 Absent Absent Absent Hypothetical protein 

HP17_04044 31 Absent Absent HP79_01040 Hypothetical protein 

HP17_04074 39 Absent Absent Absent Hypothetical protein 

HP17_04164 30 HP_0024 Absent HP79_06174 Hypothetical protein 

HP17_04194 47 Absent Absent HP79_06059 Hypothetical protein 

HP17_04626 46 HP_1366 Absent HP79_05849 Hypothetical protein 

HP17_04948 30 Absent Absent HP79_08555  Hypothetical protein 

HP17_05630 39 Absent Absent HP79_02099 Hypothetical protein 

HP17_05825 35 HP_0081 Absent Absent Hypothetical protein 

HP17_06092 102 Absent Absent Absent Hypothetical protein 

HP17_06122 42 Absent Absent Absent Hypothetical protein 

HP17_06777 37 Absent Absent Absent Hypothetical protein 

HP17_06822 36 HP_0225 Absent HP79_07001 Hypothetical protein 

HP17_06837 >38 Absent Absent Absent Hypothetical protein 

HP17_07124 >44 HP_1208 Absent HP79_08967 Hypothetical protein 

HP17_07269 36 Absent Absent HP79_05686 Hypothetical protein 

HP17_07512 71 HP_0502  jhp0454  Absent Hypothetical protein 

HP17_07662 42 Absent Absent Absent Hypothetical protein 

HP17_07712 30 HP_0024 Absent HP79_06174 Hypothetical protein 

HP17_07717 90 Absent Absent HP79_00130 Hypothetical protein 

HP17_07742 73 Absent jhp0110 HP79_00100 Hypothetical protein 

HP17_07957 48 Absent Absent Absent Hypothetical protein 

HP17_08134 40 HP_0761 Absent HP79_03311 Hypothetical protein 

HP17_08429 >63 Absent Absent HP79_09132  Hypothetical protein 



 

 

HP17_08454 64 HP_0453 Absent HP79_04457 Hypothetical protein 

HP17_08504 38 HP_0063 Absent HP79_04844 Hypothetical protein 

HP17_08596 43 Absent Absent HP79_06391 Hypothetical protein 

HP17_08601 45 Absent Absent Absent Hypothetical protein 
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Appendix 13 List of unique genes present in the genome of H. pylori 26695 when 

compared to H. pylori CCUG 17874 and P79 

Unique 

26695 

Size 

(aa) 17874 P79 Product 

HP_0081 40 HP17_05825 Absent Hypothetical protein 

HP_0151 270 Absent HP79_07890 Hypothetical protein 

HP_0161 36 Absent Absent Hypothetical protein 

HP_0314 39 Absent Absent Hypothetical protein 

HP_0412 32 Absent Absent Hypothetical protein 

HP_0450 44 Absent HP79_04472 Hypothetical protein 

HP_0504 49 Absent Absent Hypothetical protein 

HP_0756 48 Absent Absent Hypothetical protein 

HP_0881 31 Absent HP79_02604 Hypothetical protein 

HP_0945 98 Absent HP79_07570  Hypothetical protein 

HP_1033 131 Absent HP79_05066  Hypothetical protein 

HP_1176 34 Absent Absent Hypothetical protein 

HP_1194 28 Absent Absent Hypothetical protein 

HP_1239 29 Absent Absent Hypothetical protein 

HP_1381 77 Absent HP79_05939 Hypothetical protein 

HP_1405 34 HP17_08079 Absent Hypothetical protein 

HP_1427 60 Absent Absent 
Histidine-rich metal-binding 

polypeptide 

HP_1432 72 Absent Absent 
Histidine and glutamine-rich 

protein 

HP_0007 23 Absent Absent Hypothetical protein 

HP_0008 27 Absent HP79_05151 Hypothetical protein 

HP_0225 22 HP17_06822 Absent Hypothetical protein 

HP_0359 21 Absent Absent Hypothetical protein 

HP_0429 12 HP17_08444 Absent Hypothetical protein 

HP_0533 29 Absent Absent Hypothetical protein 

HP_0560 26 Absent Absent Hypothetical protein 

HP_0767 24 Absent Absent Hypothetical protein 

HP_1093 28 Absent Absent Hypothetical protein 

HP_1500 23 Absent Absent Hypothetical protein 

HP_1536 18 HP17_07512 Absent Hypothetical protein 
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Appendix 14 List of unique genes present in the genome of H. pylori J99 when 

compared to a number of H. pylori strains 

Unique 

J99 

Size 

(aa) 17874 P79 Product 

jhp0693 48 Absent Absent Hypothetical protein 

jhp0916 64 HP17_03604 Absent Hypothetical protein, periplasmic 

competence-like protein 

jhp0952 63 Absent Absent Hypothetical protein 

jhp0970 32 Absent Absent Hypothetical protein 

jhp1049 250 Absent HP79_02664 Hypothetical protein 

jhp1320 60 Absent Absent Hypothetical protein 

jhp1321 77 Absent Absent Hypothetical metal-binding 

protein 

jhp1393 26 Absent HP79_05661 Hypothetical protein 



 

 

Appendix 15 List of unique genes present in the genome of H. pylori P79 when compared to a number of H. pylori strains 

Unique P79 Size (aa) 26695 J99 17874 Product 

HP79_00100 >58 Absent Absent HP17_07742 Hypothetical protein 

HP79_00125 45 Absent Absent Absent Hypothetical protein 

HP79_00130 84 Absent Absent HP17_07717 Hypothetical protein 

HP79_00662 31 HP_0341 Absent HP17_01925 Hypothetical protein 

HP79_00667 130 HP_0342 Absent HP17_01935  Hypothetical protein 

HP79_00682 111 HP_0345 Absent HP17_01945 Hypothetical protein 

HP79_00913 30 HP_1366 jhp1442 Absent Hypothetical protein 

HP79_01025 179 HP_1516 Absent HP17_07159  Hypothetical protein 

HP79_01040 31 Absent Absent HP17_04044 Hypothetical protein 

HP79_01110 44 Absent Absent Absent Hypothetical protein 

HP79_01550 31 HP_1097 Absent HP17_02633  Hypothetical protein 

HP79_01734 40 Absent jhp0659 Absent Hypothetical protein 

HP79_02099 39 Absent Absent HP17_05630 Hypothetical protein 

HP79_02389 75 Absent Absent HP17_05900 Cag pathogenicity island protein B 

HP79_02594 42 Absent Absent Absent Hypothetical protein 

HP79_02604 31 HP_0881 Absent Absent Hypothetical protein 

HP79_02779 >31 Absent Absent Absent Hypothetical protein 

HP79_02931 31 HP_1328 Absent Absent Hypothetical protein 

HP79_03341 48 Absent Absent Absent Hypothetical protein 

HP79_03523 >40 Absent Absent HP17_01025  Hypothetical protein 

HP79_04072 31 HP_1017 Absent Absent Hypothetical protein 

HP79_04147 59 Absent jhp0415 HP17_02469 Hypothetical protein 



 

 

HP79_04162 44 Absent Absent Absent Hypothetical protein 

HP79_04472 44 HP_0450 Absent Absent Hypothetical protein 

HP79_04602 39 Absent Absent Absent Hypothetical protein 

HP79_04607 44 Absent Absent Absent Hypothetical protein 

HP79_04617 >36 Absent jhp0698 Absent Hypothetical protein 

HP79_04737 34 HP_0174 Absent Absent Hypothetical protein 

HP79_04941 45 HP_0881 Absent HP17_04471 Hypothetical protein 

HP79_05151 27 HP_0008 Absent Absent Hypothetical protein 

HP79_05221 46 Absent Absent HP17_04576 Hypothetical protein 

HP79_05251 45 Absent Absent Absent Hypothetical protein 

HP79_05516 >38 Absent Absent Absent Hypothetical protein 

HP79_05646 39 Absent Absent Absent Hypothetical protein 

HP79_05671 37 Absent Absent Absent Hypothetical protein 

HP79_05686 33 Absent Absent HP17_07269  Hypothetical protein 

HP79_05704 >31 Absent Absent Absent Hypothetical protein 

HP79_05939 77 HP_1381 Absent Absent Hypothetical protein 

HP79_06114 36 Absent Absent Absent Hypothetical protein 

HP79_06154 40 Absent Absent Absent Hypothetical protein 

HP79_06174 30 HP_0024 Absent HP17_03092 Hypothetical protein 

HP79_06236 36 HP_1424 Absent HP17_03884 Hypothetical protein 

HP79_06371 39 Absent Absent Absent Hypothetical protein 

HP79_06376 31 Absent Absent Absent Hypothetical protein 

HP79_06406 34 Absent jhp0953 Absent Hypothetical protein 

HP79_06671 37 Absent Absent Absent Hypothetical protein 



 

 

HP79_06701 44 HP_0237  Absent HP17_04866 Hypothetical protein 

HP79_07373 53 Absent Absent Absent Hypothetical protein 

HP79_07418 35 Absent Absent Absent Hypothetical protein 

HP79_07453 >27 HP_0461 Absent Absent Hypothetical protein 

HP79_07770 72 Absent Absent HP17_00305 Hypothetical protein 

HP79_07835 36 Absent Absent HP17_00230 Hypothetical protein 

HP79_07890 255 HP_0151 jhp0139 Absent Hypothetical membrane protein 

HP79_07905 35 Absent Absent HP17_00165 Hypothetical protein 

HP79_08218 31 Absent jhp0931 Absent Hypothetical protein 

HP79_08228 40 HP_0592 Absent Absent Hypothetical protein 

HP79_08383 32 Absent Absent Absent Hypothetical protein 

HP79_08555 30 Absent Absent HP17_04948 Hypothetical protein 

HP79_08967 >40 Absent Absent HP17_03449 Hypothetical protein 

HP79_08977 29 Absent Absent Absent Hypothetical protein 

HP79_09132 >73 Absent Absent Absent Hypothetical protein 

 



 

 

Appendix 16 List of oligonucleotide primers used for cloning and expression 

Primer Sequence (5' - 3') Source 

HP0958-F CGCCGCGGATCCAACACCCACCTCAAACAATTG (Caly et al., 2010) 

HP0958-R CCGCCGGAATTCTTACTAAACTAATTCTTGGCTTTCTTCTTG (Caly et al., 2010) 

FLAG_FliH-F CGCCGCGGATCCGATTATAAAGATGATGATGATAAATCATTGAATAGCCGCAAAAAT This study 

FLAG_FliH 89-F CGCCGCGGATCCGATTATAAAGATGATGATGATAAAAGCAAAGCTTTGATTGAAAAC This study 

FliH258-R CCGCCGGAATTCTTACTACACCTTAAAATTTTCCAACAC This study 

pGBKT7 MCS-F TTCATCGGAAGAGAGTAGTAAC This study 

pGBKT7 MCS-R AAGAGTCACTTTAAAATTTGTATACAC This study 

pGADT7 MCS-F CTATTCGATGATGAAGATACCCCACC This study 

pGADT7 MCS-R AGATGGTGCACGATGCACAGTTG This study 

HP0958_Eco-F CGCCGCGAATTCAACACCCACCTCAAACAATTG This study 

HP0958_Bam-R CCGCCGGGATCCTCAAACTAATTCTTGGCTTTCTTC This study 

Mut2_Eco-F CGCCGCGAATTCAACGCCCACCTCAAACAATTG This study 

Mut3_Eco-F CGCCGCGAATTCAACACCGCCCTCAAACAATTG This study 

FliH 89-258_Eco-F CGCCGCGAATTCAGCAAAGCTTTGATTGAAAACGC This study 

FliH 89-258_Bam-R CCGCCGGGATCCTCACACCTTAAAATTTTCCAACAC This study 

RpoN 74-F CGCCGCGAATTCATCGCATCTAAAAGCCTTTTTG This study 

RpoN 284-R CCGCCGGGATCCAAGCATCAGACCGATTTTATAAATC This study 

RpoN 210-R CCGCCGGGATCCCTCAATGGCTGGGGGGTTTTTAAAGG This study 



 

 

Appendix 17 List of primers used for site-directed mutagenesis of hp0958 

Primer Sequence (5' - 3') Source 

Mut2-F CCCTGGGATCCAACGCCCACCTCAAACAATTG This study 

Mut2-R CAATTGTTTGAGGTGGGCGTTGGATCCCAGGG  This study 

Mut3-F CCCCTGGGATCCAACACCGCCCTCAAACAATTG This study 

Mut3-R CAATTGTTTGAGGGCGGTGTTGGATCCCAGGGG This study 

Mut4-F GATTGAAATTTCGGCTTTGGATAAAGAAATTGACTCCTTAGAGCCG This study 

Mut4-R CGGCTCTAAGGAGTCAATTTCTTTATCCAAAGCCGAAATTTCAATC This study 

Mut6-F GGAAAAATTAGCCCTAAAAGCACAGGTTTCTAAAAACGAGCAAACCC This study 

Mut6-R GGGTTTGCTCGTTTTTAGAAACCTGTGCTTTTAGGGCTAATTTTTCC This study 

Mut9-F CGAGCCTAAAATCTATAGCTTTTATGAAGAGATCAGAAGATGGGCG This study 

Mut9-R CGCCCATCTTCTGATCTCTTCATAAAAGCTATAGATTTTAGGCTCG This study 

Mut10-F GCTTTTATGAAAGGATCAGAGAATGGGCGAAAAACACGAGC This study 

Mut10-R GCTCGTGTTTTTCGCCCATTCTCTGATCCTTTCATAAAAGC This study 

Mut11-F GGATCAGAAGATGGGCGGCAAACACGAGCATTGTAACG This study 

Mut11-R CGTTACAATGCTCGTGTTTGCCGCCCATCTTCTGATCC This study 

Mut12-F CGAGCATTGTAACGATCGCAAAACAGGCTTGTGGGGG This study 

Mut12-R CCCCCACAAGCCTGTTTTGCGATCGTTACAATGCTCG This study 

Mut13-F CAGGCTTGTGGGGGTTGTGTTATTAGACTAAATGATAAG This study 

Mut13-R CTTATCATTTAGTCTAATAACACAACCCCCACAAGCCTG This study 

Mut17-F GGTTGTTTTATTAGACTAAATGATGAGATTTATACTGAAGTGCTAACG This study 

Mut17-R CGTTAGCACTTCAGTATAAATCTCATCATTTAGTCTAATAAAACAACC This study 

Mut18-F GGGGATATGATCGCGTGCCCGTATTGCGGGCG This study 



 

 

Mut18-R CGCCCGCAATACGGGCACGCGATCATATCCCC This study 

Mut19-F GGGCGTATTTTAGCCGCTGAGGGCGCGTATGAAAGTAACGC This study 

Mut19-R GCGTTACTTTCATACGCGCCCTCAGCGGCTAAAATACGCCC This study 
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Appendix 18 Selection of targets for site-directed mutagenesis of HP0958. 

Rationale behind selection of residues for site-directed mutagenesis. Multiple alignment of 

amino acid sequences of HP0958 homologues identified 3 highly conserved regions: an N-

terminal hydrophobic region which forms part of the coiled-coil in close contact with the Zn-

ribbon (coloured yellow); hydrophobic residues in the coiled-coil flanked by charged 

residues (coloured green) and the Zn-ribbon which is associated with nucleic acid 

interactions (coloured blue). Residues which were conserved, solvent exposed and not 

critical in maintaining the structure of HP0958 were selected for mutagenesis. Image of 

HP0958 structure was generated using Pymol (DeLano Scientific, CA). 

 



 

 

 

Appendix 19 List of oligonucleotide primers used for qPCR 

Primer Sequence (5' - 3') Comments Source 

qflaA-F CCGATAGTGTCAGTAATGGGC Forward primer for real time PCR of flaA This study 

qflaA-R GATTCCCAAAACCAATCGCTGTG Reverse primer for real time PCR of flaA This study 

qflgE-F GGCTAACGAGCGTGGATAAG Forward primer for real time PCR of flgE (Douillard et al., 2008) 

qflgE-R GAGCGAGCGCTAAAGTCCTA Reverse primer for real time PCR of flgE (Douillard et al., 2008) 

qflaB-F ACCAGAACCGACGCTAGAGA Forward primer for real time PCR of flaB (Douillard et al., 2008) 

qflaB-R CCACATTCGCATCAAAAATG Reverse primer for real time PCR of flaB (Douillard et al., 2008) 

qropN-F AGCACGATTTCAAGGGCCAT Forward primer for real time PCR of rpoN This study 

qropN-R CACAGCGTTTGAAGTCTCGC Reverse primer for real time PCR of rpoN This study 

qfliA-F GAATGCCCAAAGGAATTCAA Forward primer for real time PCR of fliA (Douillard et al., 2008) 

qfliA-R AGCGAGATCGTCTTGATGGT Reverse primer for real time PCR of fliA (Douillard et al., 2008) 

qera-F AAGGCTAATGCGACCAGAAA Forward primer for real time PCR of era (Douillard et al., 2008) 

qera-R GGAGCCCTGGTGTGTCTAAA Reverse primer for real time PCR of era (Douillard et al., 2008) 

 



 

 

Appendix 20 List of flaA oligonucleotide primers 

Primer Sequence (5' - 3') Source 

FlaFL-F TGTAATACGACTCACTATAGGTCCAACCAAAAGCAAGGATG (Douillard et al., 2008) 

FlaFL-R AGCCCCATACAAACACCTTTCTTAAAA (Douillard et al., 2008) 

Reg1.1-F TGTAATACGACTCACTATAGGTTCAACCAAAAGCAAGGATGCC This study 

Reg1.1-R GACATTAGCGTTAAAATTCCCATAAGATTTTCAACTGCTCATCCATAGC This study 

Reg1.2-F TATGGATGAGCAGTTGAAATCTTATGGGAATTTTAACGCTAATGTC This study 

Reg1.2-R GCCAACGCTTAAAGCGTTAGCC This study 

Reg2-F TGTAATACGACTCACTATAGGTAAGGTTAAAGCGACTCAAGC This study 

Reg2-R CCATTTAAGGTTAAATTACTCAAACTTCC This study 

Reg3-F TGTAATACGACTCACTATAGGATTGGTTGCAGCGATCAATGCG This study 

Reg3-R ACATCGCGCAAATTCACCGTG This study 
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Appendix 21 EM analysis of flagellum production by H. pylori P79 and derivatives. 

Transmission electron micrographs of H. pylori cells stained with uranyl acetate; 3 images 

per strain. 



 

 

 

Appendix 22 ClustalW multiple sequence alignment of HP0958 and orthologues in the genus Helicobacter. 

Multiple alignment of the amino acid sequences of HP0958 homologues in the genus Helicobacter where arrows indicate conserved aspartic acid residues 

(D208 and D219 of strain 17874) in the zinc-finger. 
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Motility is an essential feature of Helicobacter pylori infection. H. pylori flagellum 

biogenesis differs from the well-characterised model organism E. coli by lacking the 

master regulator, FlhD4C2. A yeast two hybrid study investigating the proteome of H. 

pylori 26695 previously identified that HP0958 interacts with the flagellar proteins 

FliH and RpoN (σ
54

). We hypothesised that HP0958 may have a regulatory role in 

flagellum construction, possibly in the switch between expression of Class II and 

Class III flagellar genes. The nature of the interaction between HP0958 and FliH 

(full length and 89-258) was investigated to expand upon the yeast two hybrid data. 

However, pull-down assay failed to identify an interaction between HP0958 and 

FliH. Yeast two hybrid was performed with HP0958 and FliH 89-258, but this also 

indicated that there is no detectable interaction between these proteins. Additionally, 

the HP0958/RpoN interaction was confirmed as a relatively weak interaction by 

yeast two hybrid analysis. The HP0958/FliH interaction appears to be a false positive 

within a large scale analysis identifying over 1,200 interactions. 
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Helicobacter pylori was the first species to have more than one genome sequenced. 

To date, there are 46 genome sequences of H. pylori strains available. Earlier this 

year, we published the draft genome sequences of CCUG 17874 and P79. H. pylori 

17874 is the type strain for the species, often used in motility studies. P79 is a readily 

transformable derivative of the strain P1 and hence is useful for bacterial motility 

studies. Initial inspection of the sequences of 17874 and P79 revealed that the major 

flagellar and outer membrane proteins are conserved when compared to 26695 and 

J99. Core genome analysis of 43 sequenced genomes allowed a more conservative 

estimation of the core genome of the species than previously estimated. Phylogenetic 

analysis of these 43 strains revealed the evolutionary relationship of 17874 and P79 

to the other sequenced strains. 
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Helicobacter pylori is a gastric pathogen which currently infects approximately 50% 

of the global population. Infection can lead to the development of gastric and 

duodenal ulcers, gastric cancer and MALT lymphoma. Motility is an essential feature 

of Helicobacter pylori infection. H. pylori flagellum biogenesis differs from the well-

characterised model organism E. coli by lacking the master regulator, FlhD4C2. A 

yeast two-hybrid study investigating the proteome of H. pylori 26695 previously 

identified that HP0958 interacts with the flagellar proteins FliH and RpoN (σ
54

). We 

hypothesised that HP0958 may have a regulatory role in flagellum construction, 

possibly in the switch between expression of Class II and Class III flagellar genes. 

The nature of the interaction between HP0958 and FliH (full length and residues 89-

258) was investigated to expand upon the yeast two hybrid data. However, pull-down 

assay failed to identify an interaction between HP0958 and FliH. Yeast two-hybrid 

was performed with HP0958 and FliH 89-258, but this also failed to detect 

interaction between these proteins. The HP0958/RpoN interaction was confirmed as 

a relatively weak interaction by yeast two-hybrid analysis and PXG assay. The 

HP0958/FliH interaction appears to be a false positive within a large scale analysis 

identifying over 1,200 interactions. The C-terminus of RpoN is essential for the 

interaction with HP0958. A panel of site-directed HP0958 mutants were generated to 

further investigate the nature of the HP0958/RpoN interaction. 
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Background: Motility is an important feature of Helicobacter pylori infection. 

HP0958 is a flagellar biosynthesis protein which is essential for motility. HP0958 

stabilises RpoN (σ
54

), the sigma factor controlling expression of the Class II flagellar 

genes. HP0958 also interacts with the flaA mRNA transcript, encoding the major 

flagellin protein, FlaA. The crystal structure of HP0958 revealed two structural 

domains: an N-terminal anti-parallel, α-helical coiled-coil and a C-terminal Zn-finger 

domain. This structural data has provided information that has informed our design 

of mutations to test interactions with protein and mRNA. 

Materials and Methods: Site-directed mutagenesis of HP0958 was performed to 

identify potential residues involved in interactions with the flaA mRNA transcript 

and RpoN. The HP0958/flaA mRNA interaction was investigated by electrophoretic 

mobility shift assay (EMSAs). The HP0958/RpoN interaction was investigated by 

yeast two-hybrid assay followed by enzyme assay. A panel of hp0958 mutants were 

re-introduced into a hp0958-null mutant strain of P79 by homologous recombination 

and effects on expression of Class II and Class III flagellar genes were monitored by 

western blot. 

Results: A panel of HP0958 mutants were generated based on their potential role in 

protein-protein/protein-RNA interactions. A number of candidates have been 

identified as involved in the interaction of HP0958 with RpoN and the flaA mRNA 

transcript. 

Impact of research: Construction of the bacterial flagellum is a complex, 

hierarchical process involving over 40 proteins; regulation in Helicobacter differs 

from the well-studied model organisms, E. coli and S. enterica serovar 

Typhimurium. Understanding the mechanism by which HP0958 contributes to this 

complex process will improve our understanding of these differences. 
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