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ABSTRACT

This paper presents a novel 1-DOF (degree-of-freedom) single-loop reconfigurable 7R mechanism with multiple operation
modes (SLR7TRMMOM), composed of seven revolute (R) joints, via adding a revolute joint to the overconstrained Sarrus
linkage. The SLR7RMMOM can switch from one operation mode to another without disconnection and reassembly, and is a
non-overconstrained mechanism. The algorithm for the inverse kinematics of the serial 6R mechanism using kinematic
mapping is adopted to deal with the kinematic analysis of the SLR7TRMMOM. Firstly, a numerical method is applied and an
example is given to show that there are 13 sets of solutions for the SLR7TRMMOM corresponding to each input angle. Among
these solutions, nine sets are real solutions, which are verified using both the CAD model and the prototype of the mechanism.
Then an algebraic approach is also used to analyze the mechanism and the same results are obtained as the numerical one. It is
shown from both the numerical and algebraic approaches that the SLR7TRMMOM has three operation modes: translational
mode and two 1-DOF planar modes. The transitional configurations among the three modes are also identified.

KEYWORDS: Single-loop reconfigurable mechanism; Multiple operation modes; Kinematic analysis; Numerical method;
Algebraic approach; Transitional configuration

1. Introduction

Reconfigurable mechanisms (RMs) have received increasing attention from researchers around the world, which can generate
different operation modes to fulfil variable tasks based on a sole mechanism. Different approaches have been proposed to
design RMs generating multiple motion patterns. Several classes of RPMs have been developed such as modular
reconfigurable mechanisms™? metamorphic mechanisms®, kinematotropic mechanisms®, variable actuated mechanisms®, and
reconfigurable mechanisms with multiple operation modes®®.

This paper focuses on the reconfigurable mechanism with multiple operation modes®® since this class of RMs can be
reconfigured without disassembly and without increasing the number of actuators. One design approach has been proposed in
[6-8] for the synthesis of reconfigurable mechanisms with multiple operation modes, including single-loop reconfigurable
mechanisms with multiple operation modes®’ and multiple-loop reconfigurable mechanisms with multiple operation modes®.
An intuitive approach® was proposed to construct a single-loop reconfigurable mechanism with multiple operation modes by
combining two overconstrained mechanisms. Using this approach, Huang et al’ proposed a spatial 7-link mechanism by
combining a Bennett linkage and a RPRP linkage (R: revolute joint; P: prismatic joint) and revealed that the mechanism has
three operation modes: the 5R2P, Betnett and RPRP modes. Another design approach for constructing single-loop
reconfigurable mechanisms with multiple operation modes is to insert one or more joints into an overconstrained mechanism®’.
In this paper, we will propose a new 7R mechanism by inserting one R joint into the overconstrained Sarrus linkage. This
mechanism has at least two operation modes: the Sarrus linkage motion mode (translational mode) and one planar mode. One
apparent merit of the new 7R mechanism, compared to the original Sarrus linkage or other conventional single-mode 7R
mechanisms is that it has multiple operation modes.

Meanwhile, several analysis approaches have been developed to deal with the kinematics and singularity analysis of serial
and parallel mechanisms, such as differential algorithm®, screw theory algorithm™* and kinematic mapping algorithm*®. Husty
and Pfurner have made a significant contribution to the kinematic mapping algorithm to the kinematic analysis of
mechanisms™*™. It has been shown that kinematic mapping algorithm is very efficient for both direct (forward) and inverse
kinematic analysis of mechanisms.

The kinematic analysis of the single-loop reconfigurable 7R mechanism with multiple operation modes (SLR7RMMOM)
proposed in this paper is to be analyzed using the effective algorithm for the inverse kinematics of a general serial 6R
manipulator. The operational modes and transitional configurations will be identified. The paper is organised as follows.
Section 2 describes the 1-DOF SLR7TRMMOM. In Section 3, the kinematic analysis for the mechanism is undertaken within
three steps mainly using the kinematic mapping method, and the solutions for a given input angle are verified using both the
CAD model and the prototype. Based upon the results from Section 3, a series of input angles are given and the operation
modes and transitional configurations are obtained in Section 4. In Section 5, the algebraic approach is used to analyze the
SLR7RMMOM again. Finally, conclusions are drawn.

'Corresponding author. Email: X.Kong@hw.ac.uk.
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2. Description of a 1-DOF SLR7TRMMOM
It is well known that the Sarrus linkage (Fig. 1(a)), which is composed of two groups of three R joints with parallel joint axes
(rotational axes), is used to control the 1-DOF translation of the moving platform along a straight line with respect to the base.
Since the Sarrus linkage is an overconstrained mechanism, we can insert one additional R joint between the two joints of a link
to obtain a new 1-DOF single-loop 7R mechanism (Fig. 1(b))*’. The advantages of adding one R joint to the Sarrus linkage are
as follows. (a) It allows one to obtain a non-overconstrained mechanism from an over-constrained mechanism; (b) The Sarrus
linkage has only one operation mode to complete one kind of task, but the new single-loop 7R mechanism has at least two
operation modes with the possibility to fulfil different kinds of tasks on a sole mechanism; (c) The new single-loop 7R
mechanism can switch from one mode to another without disassembly and without adding other actuator onto the mechanism.
In the translational operation mode (Sarrus mode), it works as the Sarrus linkage in which the moving platform translates along
a straight line (Fig. 1(b)). In the 1-DOF planar operation mode, the moving platform undergoes a 1-DOF general planar motion
(Fig. 1(c)). Therefore, the above 7R mechanism is an SLR7TRMMOM, which can switch from one operation mode to another
one without causing any disconnection by using a break in a transition configuration.

In this SLR7TRMMOM, link 7 is the base, and link 4 is specified as the moving platform. Links 4 and 7 are identical and the
link lengths and the axes of the R joints satisfy the following conditions:

R1//R3//R4J.R2' (1)
Rs//R¢//R7, (2)
a;ta,=as=as=as (3)

where R; (i=1,2, ...,7) is the unit vector along the axis of joint R;, and a; is the link length as indicated in Fig. 1(c).

(a) Sarrus linkage (b) SLR7RMMOM in translation (¢) SLR7RMMOM in
mode (equivalent to Sarrus linkage) 1-DOF planar mode

Fig. 1. Construction of the SLR7TRMMOM

Whether the SLR7TRMMOM has additional operational modes except the two operation modes already known is unclear
from only the construction of the mechanism. In the next section, we will discuss the kinematic analysis of the SLR7TRMMOM
in order to identify all of its operation modes as well as transitional configurations that the mechanism can switch from one
operation mode to another.

3. Kinematic Analysis and Numerical Example
Using the approach to the inverse kinematics for the general 6R mechanism, one can perform the kinematic analysis of the
SLR7RMMOM. Then all the operation modes and transition configurations of the mechanism can be identified.
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3.1. D-H Parameters for the mechanism

In order to define the transformation relations between the links, a coordinate frame X; is attached to link i as follows: the z;-
axis coincides with the axis of joint R;, the x;-axis aligns with the common perpendicular to the z; ;-axes and z-axes, and the y;-
axis is defined by the right-hand rule. With this notation one could write the transformation matrix (T;) from %; to Xi.; as:

g |0 @) @) ofla 1 0 0
Ti=MG: =, sin(;,) cos(8;) O0f|0 O cos(a;) —sin(a;) @
0 0 0 1 di 0 Sin(al-) COS(ai)



where 6; and d; are the revolute angle and distance between the two x-axes of links i and i+1, respectively, and ¢; and a; are the
twist angle and distance between the two z-axes of links i and i+1, respectively (Fig. 2).

The SLR7TRMMOM can be regarded as a 6R serial mechanism (Fig. 3(a)) with link 6 as the end-effector (EE), the
coordinate frame on which is set as follows. Its z-axis (zgg) coincides with the axis of joint R; and its x-axis aligns with the
common perpendicular to the zg-axis and the zgg-axis. The angle between the xge-axis and the vertical line () is defined as the
input angle of the SLR7TRMMOM (Fig. 3(b)). The D-H parameters of the 6R mechanism are shown in Table 1, which should
satisfy the conditions given in Section 2.

! Link i+1

Fig. 2. D-H parameters (X is the coordinate frame system)

Table 1. D-H parameters for the SLR7RMMOM

i a; d; Qi 6
1 080 © 90° o
2 300 O -90° 6,
3 380 0 0 05
4 0 147  -120° 6,
5 380 147 0 05
6 380 0 0 Bs
s Lin 2eE
S 7
XEEW
X1 /I 'I
(a) Coordinate frame system for (b) The frame representation
the SLRZTRMMOM for £, and Zee

Fig. 3. Coordinate frame system for the SLR7TRMMOM

In addition, the angle between the axes of joints R; and R;is 60, 6 is specified as —45 and a; is 1.47 (note: throughout this
paper, all rotational angles are defined to be positive if the rotation is a clockwise direction about the z-axis). Therefore, the
pose of end-effector Xge with respect to X, (A) can be obtained (Fig. 3(b)). First, the frame X, rotates 60 about the x-axis (R1),



then it translates 1.47 units along the z-axis (P,) and rotates another 60° about its x axis (R3), finally we get the frame Zg¢ after
rotating —45 about the z-axis (Ry):
A=R, P, R3'R, )

that is:

1 0 0 0
_ 0 0.7071067810 0.7071067810 0
~|—-1.273057344 0.3535533905 —0.3535533905 —0.8660254040 |’

0.7350000000 —0.6123724358 0.6123724358 —0.50000000000

A

3.2. Solutions for the kinematic analysis
The algorithm for the inverse kinematics analysis of a general 6R serial manipulator presented in™ mainly used kinematic
mapping method. Using this method, a Euclidean displacement can be mapped into a point on a study quadric (S?) in a seven
dimensional space, the so called kinematic mapping space P’, where the point is displayed by eight study parameters. In the
kinematic mapping space, the constraint manifold of a 2R-chain is the intersection of a 3-space with the S¢°, and the constraint
manifold of a 3R chain is the intersection of a set of 3-spaces with the Ss°, where the set of 3-spaces is called Segre Manifold
(SM)™. The SM of a 3R-chain can be represented by a set of four bilinear equations in the eight homogenous study parameters,
which is denoted by zy, 7y, ..., Z7, and one additional parameter corresponding to the tangent half of one joint angle out of the
three joint angles. That means that there are three SMs (SM;, i=1, 2, 3) which are presented by three sets of four equations for a
3R-chain.

The 6R serial mechansim associated with the 1-DOF SLR7TRMMOM is further decomposed into two 3R chains, the left 3R
one (1-2-3) with end effector frame X, and the right 3R one (6-5-4) with end effector frame Xz (Fig. 4). The pose of the frame
¥ with respect to X; (T) and the pose of the frame g with respect to X, (Tr) can be obtained based on Eqgs. (4) and (5):
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TL = M161M262M3 63 (6.&)
Tg = AG;'My G M5 G ' M ;! (6.b)

In the mechanism, the frames 3, and g have to coincide, which means there is intersection among SM,, SMg and S>. The
equations for the SMs can be derived from Eq. (6). Three sets of four equations can be obtained for the left or the right 3R
chain, and each depends on one out of three joint angles*. One needs to select one of the three sets of four equations for the
left 3R-chain and one of the three sets of four equations for the right 3R-chain according to different situations'* before doing
further calculation.

Fig. 4. Decomposing the 6R serial mechanism into two 3R chains

In some cases, not all the three SMs can be selected **. If one selects one SM depending on one R joint with the joint axes of
the remaining two parallel or intersected, in which case the SM lies on the S, then the intersection of the SM with the S¢” fails.
Therefore, we select SMs, which refers to four equations in v (tangent half of 8;), for the left 3R-chain since the axes of joints
R; and Rj are parallel in the translational mode. For the right 3R-chain, we select SMs with four equations in 75 (minus
tangent half of 6s), because the axes of joints R, and R intersect and the axes of joints Rs and Rgare parallel. Thus eight
equations for the 6R serial mechanism are obtained as follows:

h1,,:30.4z, + 24.0z; + 6.4z,v; — 8.0z, + 8.0z5 — 8.0z4v; — 8.0z,v; = 0 )

h2,,:30.4z, — 24.0z; — 6.42,v; + 8.0z, + 8.0z5 — 8.0z4v; + 8.0z,v; = 0 (8)



h3173: 6.4‘211]3 - 24‘.022 - 30.4‘23 - 8.024173 + 8.025173 + 8.0Z6 + 8.0Z7 = 0 (9)
h4,, : — 6.4z,v5 + 24.0z, + 30.4z; + 8.0z,v3 + 8.0z5v; + 8.0z — 8.0z, = 0 (10)

h53,:2(2.72626795828513 — 6.5817930685696975) + z,(4.12012622455083 — 4.854635239039637;) +
7,(8.65463523574647 — 5.694137760883307s) + z3(—1.376874170233587° + 4.47457271235407 %) +
2,(—1.24264068742686 — 3.0000000012867875) + z5(0.717438935080522 + 1.73205080649897 ;) +
7,(1.73205080649897 — 0.717438935080522v5) + 2,(3.00000000128678 — 1.242640687426287;) = 0

(11)
h6s,: 2o(—2.7262679415240 + 6.5817930673693075) + 2,(0.972103152392334 + 2.7453647683104575) +
7,(8.65463523588648 + 5.694137764327437) + z3(3.073222565319617° + 1.01209529645985 %7) +
24(—0.414213562192757 — 0.999999991333797;) + z5(—0.717438935213303 — 1.732050807880687;) +
7,(1.73205080788068 — 0.71743893521330375) + 2z,(—0.99999999133379 + 0.414213562192757v5) = 0

(12)
h75,: 7(1.376875502501217° — 4.474573156443287°75) + z,(—8.65463523574647 — 5.694137760883307;) +
7,(—4.12012622455083 + 4.8546352390396375) + z5(2.72626795828513 — 6.581793068569697<) +
2,(—3.00000000128678 + 1.2426406874262875) + z5(1.73205080649897 — 0.7174389350805227;) +
26(—0.717438935080522 — 1.73205080649897v5) + z,(—1.24264068742686 — 3.00000000128678v5) = 0

(13)
h8y.: 2o(—3.073221677141197° — 1.01209551850445°¥5) + z,(8.65463523588648 + 5.6941377643274375) +
2,(—0.972103152392334 — 2.74536476831045V5) + z5(—2.7262679415240 + 6.5817930673693075) +
2,(0.99999999133379 — 0.414213562192757v5) + z5(1.73205080788068 — 0.717438935213303v5) +
76(0.717438935213303 + 1.7320508078806875) + z,(—0.414213562192757 — 0.9999999913337975) = 0

(14)

h9: 2oz, + 7125 + 2,7g + 232, = 0 (15)

Including the equation for the Sg? shown in Eq. (15), we obtain nine bilinear equations in ten unknowns (Egs. (7)-(15)).
Because zq, 73, ..., and z; are homogeneous, one of them can be normalize to 1. Solving seven of the nine equations to get the
eight study parameters for zy, zy, ..., z7 in vy and 75, and substituting the solutions into the remaining two equations, we
obtain two equations in v; and s named E1 and E2 as

E1:v3*5s* 4 3.640783761v,* 553 — 3.788653411v537:* — 7.000053530v5* 552 + 10.71593007v53 75> +
41.87086614v,27* + 3.640783761v3* T — 19.64341956v,27:° — 3.788653411v,75* — 0.5952224873v5* —
10.71593007v53 75 — 79.84271214v5%05% 4+ 10.71593007v;75° + 11.4020584675* + 3.788653411v,3 —
19.64341956v,%75 — 23.284203321753 + 53.83503480v32 — 10.71593007 w5775 — 131.78027401752 + 3.788653411v; —
23.2842033275 + 24.96144960 =0

(16)
E2:v3%55° — 3.975059020v,8 355 — 9.917459999v,775° + 4.782767392v,87:* + 10.89653630v;7 —
7.905713714v,%75° — 2.187051780v,375° + 10.76914366v,” 75* + 11.58607438v,675° — 1.7565000021,°7:° +
0.1775892990v,%75% — 6.718456391v,3% — 19.63855979v,3°0* — 3.599595703v5° 05> + 5.541460022v5*5:° +
0.1309074494v,%55 — 10.68103759v,37 7% + 29.42980884v,°5° + 88.38390043v,°05* + 14.52156887v3*5° —
11.11952017v3355° — 0.02663720154v,% + 8.366957525v;7 U5 + 1.744100557 0302 — 11.42375341v3%053 +
47.03555747v;,*05* + 27.82871185v,3055 + 23.16294757,%5:° — 1.555454321v,7 — 1497543807 1,575 —
65.86121591v,°05% + 22.54006617v5*05% + 85.76873039v5°0* — 19.01000389v5%55° — 19.28048017v,5° +
4.289038591v;° — 39.78294461v;575 — 55.12245682v3* 75 — 45.28245200v3°3 75> + 12.06466530v;275* +
42.32484385v,75° + 8.71577382975° — 4.399164900v;° — 61.91885268v,*5 — 206.5453764v;375% —
104.7180132v;3%953 + 8.153973623v;75* — 17.97043737v5° + 7.841437590v;* — 127.7979408v,%v, —
166.3482520v,2752 — 40.57715498v,75° — 59.3922193575* — 2.488637296v53 — 46.57694731v5205 —
151.3651980v, 752 — 95.6412187675° + 8.367254171v,3 — 79.64803864v, 75 — 109.6592839752 +
0.3550732836v; + 0.235559853675 + 4.481492373 =0

(17)

Using the “resultant” command in Maple to eliminate 75 from Egs. (16) and (17), one polynomial equation of degree 56 in

v5; named E can be derived as follows:

E: (vs% + 1)6(3.033362327v5* — 12.05533640v52 + 10.67784416)(1.87522003v,* — 64.00268390v,% —
387.9596900)(5.157957061 x 10%v;1° + 1.823061353 x 102°1,% — 7.297142808 x 10%1v,8 + 1.634647033 x
10%2p,7 + 5.885504960 X 10221,6 — 3.150969451 x 1022v,5 — 2.671416502 X 1023v,* — 2.874236074 x 102253 +
1.076318546 x 10231,2 + 1.893149796 X 1022v, + 1.422425962 x 1023)2(6.60154501 X 108,16 + 2.698070325 X



1018p,15 — 3.778024642 x 10%8p;1* — 8.52528086 x 10371313 + 6.145569255 X 10471312 — 4.007107158 X
10*°v31 + 2109260812 x 10°°v,10 + 3.306274920 x 10*°v;° + 5471487282 x 105°v,8 + 1.795904346 X 10°1v,7 —
1.709576046 x 10°°v,® — 2.604353812 x 10°%v,% — 8.358864852 x 105°v,* — 1.755833276 x 10°1w,3 +
2.679828670 x 10°%v32 + 2.273726304 X 10°v; — 1.982814399 x 10*°) =0
(18)

The solutions to (v32 +1)® = 0 are v; = £ | (I is the unit imaginary number). The corresponding points in P’ lie on the
exceptional generator, which have to be cut out of the Ss°. The solutions of polynomial of 10 degrees squared are points with
coordinate (0, 0, 0, 0, 0, 0, 0, 0), which do not lie on the S¢Z and the solutions of polynomials of degree 4 are points lie on the
exceptional 3-space of the Ss°. ** Then the polynomial of degree 16 gives the following 16 solutions:

v,;=[0.08366283786, 0.3610109062, 1.000000000, 6.521970015, 59.40599134, 4.132441204x 10°, 5.081725257x 10°,
0.4234204659+2.169839731 1, —0.07511185210+1.019253419 I, —6.650597562x 10°+3.156689159x 108 1, —0.3581658035,

—1.000000001, —1.507896627, —6.650597562x 10° —3.156689159x 102 1, —0.07511185210-1.019253419 |,
0.4234204659—-2.169839731 1]

(19)

Then the solutions for v; (Eqg. (19)) are substituted back to E1 and E2, the common solutions for ¥ with their

corresponding v are the solutions as desired. Please note only 12 sets of solutions could be easily obtained where the

remaining four solutions for v, tend to be infinite, such as 5.081725257x 10°, i.e. 8; approaches to be 180°. The situation that

0;=180" does exist when the joints on the platform and the base coincide. It is a special configuration for the 1-DOF
SLR7RMMOM, as shown in Fig. 5(i).

The remaining four joint angles for the normal 12 sets of solutions could be solved by the other sets of four equations for
SMl, SMz, SM4 and SM6

As to the above four particularly configurations in which v; tend to be infinite, there is one set of real solutions: 6,=0,
0:=180", 6:=180, 6, 6, and 65 can be any value. This set of solutions can be easily verified by observation. The complex
solutions associated with the remaining three particularly configurations are omitted in this paper.

Finally, 13 sets of solutions for the kinematic analysis of the single loop are obtained, as listed in Table 2.

Table 2. Solutions for the SLR7TRMMOM (Case 6=-45°)

Solutions 6,(deg) 6>(deg) 63(deg) 04(deg) 0s(deg) Os(deg)
Solution 1 —173.940 20.726 9.565 —3.504 —155.426 —45.598
Solution 2 135.000 0.000 90.000 —45.000 —135.000 —90.000
Solution 3 —135.000 0.000 —90.000 45.000 —135.000 —90.000
Solution 4 —4.576 15.737 178.071 —2.648 —70.339 —172.852
Solution 5 —78.354 118.963 —112.897 —145.457 86.692 —119.924
Solution 6 —154.651 73.117 39.700 —14.351 131.208 90.703
Solution 7 —25.162 72.737 —39.412 —165.750 —41.899 90.473
Solution 8 141.385 —94.455 162.566 158.819 156.631 —137.538

Solution 9 —54.493— 163.879+ —106.507— —127.985+ 58.785+ —100.688—
109.3701 10.798I 186.8061 77.4361 82.6261 144.3871

Solution 10 —54.493+ 163.879— —106.507+ —127.985— 58.785— —100.688+
109.3701 10.798I 186.8061 77.4361 82.6261 144.3871

Solution 11 93.401+ —142.300+ 167.711+ 105.690+ 112.781+ -156.361—
63.9641 1.6791 54.0931 9.8711 77.6551 28.6171

Solution 12 93.401— —142.300— 167.711- 105.690— 112.781- —156.361+
63.9641 1.6791 54.0931 9.8711 77.6551 28.6171
Solution 13 Any value 0.000 180.000 Any value Any value 180.000

Note: | is the unit imaginary number

The above real solutions for the kinematic analysis have been verified using the CAD models for the 1-DOF SLR7TRMMOM.
The CAD configurations associated with these solutions are shown in Fig. 5.



(c) Solution 3: 6,=—90.000°

N\

~

(e) Solution 5: 6,=—112.897" (f) Solution 6: #,=39.700°

(9) Solution 7: §:=—39.412° (h) Solution 8: #;=162.566 (i) Solution 13: 6,=180.000°

Fig. 5. CAD configurations corresponding to the real solutions for the SLR7TRMMOM (Case 6=-45°)

3.3. Building prototype

A physical prototype has been built to verify the real solutions obtained above. Figure 6 illustrates that different configurations
of the prototype corresponding to the real solutions can be achieved. It is noted that some configuration cannot be continuously
generated in practice because of the interference between the links, such as configurations (e) and (g) (Figs. 6(e) and 6(g)).



(a) Solution 1: 6;=9.565 (b) Solution 2: #;=90.000° (c) Solution 3: 6;=—90.000°
(d) Solution 4: #;=178.071"  (e) Solution 5: 6;=—112.897 (f) Solution 6: #,=39.700°
() Solution 7: #;:=—39.412 (h) Solution 8: £;=162.566" (i) Solution 13: 6,=180.000°

Fig. 6. Prototype configurations corresponding to the real solutions for the SLR7RMMOM (Case 6=-45")

4. Operation Modes and Transitional Configurations

As the input angle 8 changes, a series of solutions corresponding to different input angles can be obtained accordingly using
the numerical method proposed before. Then via plotting the joint angles against the input angle, we illustrate the operation
modes and transitional configurations of the 1-DOF SLR7TRMMOM (Fig. 7). All the operation modes and transitional
configurations of the mechanism can be obtained from the plotting of angles 6, and &3 against the input angle 6.

Figure 7 shows that there are two straight lines A and B and two closed curves C (C,-C;-C,-Cy in Fig. 7(a) or Cy-C;-C,-Cs-
C4-Cy in Fig. 7(b)) and D (Dy-D;-D,-Ds-D4-Dy) designating the operations modes. Lines A and B are associated with
translation operation mode, while the closed curves C and D are associated with two 1-DOF planar operation modes separately.
Therefore, the mechanism has three operation modes but not only two operation modes. This can be easily verified by
comparing the straight lines and closed curves to their corresponding operation mode figures in Fig. 5. Line A corresponds to
Fig. 5(b), Line B corresponds to Fig. 5(c), closed curve C corresponds to Fig. 5(a), and closed curve D corresponds to Fig. 5(g).
Points 1, 2, ..., 8 in Fig. 7 indicate the eight real solutions for &5 (or 6;) under #=—45" corresponding to Table 2 except the
special solution for #;=180° (Fig. 6(i)).

In the following, the transitional configurations between three operation modes are analyzed. By comparing the two plotting
figures, Fig. 7(a) and Fig. 7(b), two intersecting points TA and TB through which both operation modes pass in both the
plotting figures are apparently observed, which represent the two transitional configurations (Fig. 8). The input angles
corresponding to the transitional configurations are shown in Table 3.
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Fig. 7. Plotting of two rotational angles (8, and 85) against input angle 8: a) 6, (deg) in vertical axis versus & (rad) in the
horizontal axis; b) 6; (deg) in vertical axis versus & (rad) in the horizontal axis

Table 3. Transitional configurations

Input angle

Transition points 9 in degree Modes
TA 0 Translational mode & 1-DOF planar mode | (curve C)
B -180° Translational mode & 1-DOF planar mode 11 (curve D)
Iz Py
AN
l? o2 o] i
(a) TA: =0 (b) TB: H=—180°

Fig. 8. Transitional configurations of the SLR7TRMMOM

5. Algebraic Approach

In this section, the algebraic approach proposed in [15] will be applied to figure out the operation modes and transitional
configurations. Apparently, compared to the above numerical method (Section 4), the algebraic approach enables the operation
modes to be represented algebraically.



(© | (d)

Fig. 9. Plots of the input output equations using algebraic approach

Without specifying the input angle like shown in Section 3, we present the end-effector pose A and the equations for SM;
directly in 6. Therefore nine equations in v, (tangent half of 6;), U5, (minus tangent half of 85), v (tangent half of 6) and
eight study parameters (Egs. (7)-(15)) can be obtained. Two equations in v;, 7s and v instead of two equations in v; and s
will be obtained after solving seven of the nine equations and substituting the solutions into the remaining two equations.
Using the “resultant” function in Maple to eliminate s (or v3), then we get the bivariate polynomial in the input angle v and
one of the remaining joint parameter v5 (or 7). Beside some spurious factors, there are three factors corresponding to three
operation modes respectively. For example, the input-output equation in v; and v is:

S‘M1-M2-M3=0 (20)
where S is a spurious factor. M1 is the input-output relation corresponding to the translational mode, while M2 and M3
represent the two general planar modes, respectively (see the Appendix for the detailed expressions).

Then we can plot the input-output relation in v; and v (Fig. 9(a)), which shows three operation modes along with one
transitional configuration. The solid curve corresponds to the translational mode, the dotted curve corresponds to the planar
mode | and the dashed curve corresponds to planar mode I1.
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The numerical method is still kept in this paper even though it is not as simple or effective as the algebraic approach since it
indicates all the results directly and clearly. The plots for the input-output angles in Fig. 7 show that there are two transitional
configurations: (a) the input angle #=0", the revolute angles ;=0 and 6;=180"; (b) the input angle #=—180", the revolute
angles #;=0" and 6s=0". When the input angle 8=—180", v tends to be infinite. Therefore the second transitional configuration
cannot be seen directly from the plot of the input-output relation in v and v; (or vs) in Fig. 9(a) using the algebraic
approach. Then we have to use the reciprocal of variables to plot the relations in v and 1/vs, 1/v and v; as well as the
relation in  1/v and vy (Fig. 9) so that all transitional configurations can be observed. In Fig. 9, the transition between the
translation mode and planar mode | is TA, and the translation mode and planar mode Il are transited at TB. It has been shown
that the algebraic analysis results are the same as the numerical ones shown in Section 4 as expected.

6. Conclusions

This paper has presented a novel 1-DOF single-loop reconfigurable 7R mechanism with multiple operation modes
(SLR7RMMOM) base on the Sarrus mechanism. The kinematics analysis of the novel SLR7TRMMOM has been implemented
using the algorithm for the inverse kinematics of a general serial 6R manipulator, which is very effective. Using a numerical
method, a set of solutions for the 1-DOF SLR7TRMMOM have been obtained for a given example and the real solutions have
been verified through both the CAD model and the prototype of the mechanism. In addition, the numerical method and an
algebraic approach have been both applied to obtain the operation modes and transitional configurations, which produce the
same results. The mechanism has three operation modes: translational mode and two 1-DOF planar modes, and there are two
transitional configurations where the mechanism can switch from one operation mode to another.

The SLR7TRMMOM on one hand is a non-overconstrained system, and on the other hand can switch from one mode to
another without disassembly and without using additional actuator, which can help develop energy-efficient reconfigurable
mechanisms. The work proposed in this paper contributes to the design and analysis of new mechanical systems with multiple
operation modes.
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