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Prologue 

This thesis examines the hypothesis ‘Canonical Smad 1/5/8 signalling mediates the 

effects of BMP2 and GDF5 on the development of ventral midbrain dopaminergic 

(DA) neurons’. These neurons degenerate in Parkinson’s disease (PD), for which the 

two most promising therapeutic options are 1) the application of neurotrophic factors 

to support the remaining DA neurons, and 2) the transplantation of midbrain DA 

neurons to replace those that are lost. The advancement of these therapies requires a 

greater understanding of the molecules and mechanisms that regulate DA neuron 

development. Bone morphogenetic protein (BMP) 2 and growth/differentiation 

factor (GDF) 5 are factors which may contribute to the induction, differentiation and 

survival of midbrain DA neurons. However, the molecular and cellular mechanisms 

mediating their effects on these neurons are unknown. It is essential to understand 

these mechanisms if BMP2 and GDF5 are to be used in a clinical context for the 

treatment of PD. 

 Herein, the introduction (Chapter 1) will first discuss PD and the potential 

restorative therapies, before extensively describing the molecular mechanisms 

regulating the development of ventral midbrain DA neurons. The BMP family, to 

which BMP2 and GDF5 belong, will then be reviewed, along with the roles that 

canonical BMP-Smad 1/5/8 plays during nervous system development. Finally, the 

introduction will focus on the roles this family of proteins play during midbrain DA 

neuronal development. 

 Chapter 2 investigates whether canonical Smad signalling mediates the 

neurotrophic effects of BMP2 and GDF5 in a model of human DA neurons, SH-

SH5Y cells. Chapter 3 then assesses the potential role of BMP2 and GDF5 as 

regulators of the axonal growth of rat midbrain DA neurons, and determines whether 

the effects of these factors on DA neurite growth is mediated by the Smad signalling 

pathway. Chapter 4 investigates the mechanisms by which canonical BMP-Smad 

signalling may promote DA neurite growth. Finally, chapter 5 assesses the in vitro 

neurogenic potential of neural stem cells isolated from the ventral midbrain during 

DA neurogenesis, before examining the ability of BMP2 and GDF5 to induce a DA 

phenotype in these midbrain neural precursors.  
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1. Abstract 

DA neurons of the VM play vital roles in the regulation of voluntary movement 

(A9), emotion and reward (A8 and A10), and are divided into the A8, A9 and A10 

subgroups. A9 DA neurons project to the dorsal striatum via the nigrostriatal 

pathway to form part of the basal ganglia circuitry, and their progressive 

degeneration results in the motor dysfunction of PD. Therefore, the identification of 

the instructive factors that regulate the development of midbrain DA neurons, and 

the subsequent elucidation of the molecular bases of their effects, is vital. Such an 

understanding would facilitate both the generation of transplantable DA neurons 

from stem cells and the identification of developmentally-relevant neurotrophic 

factors, the two most promising therapeutic approaches for PD. Many DA 

neurotrophic factors are members of the transforming growth factor β (TGFβ) 

superfamily, the largest subfamily of which is the BMP family. BMPs signal via a 

canonical Smad 1/5/8 signalling pathway, and play diverse roles during nervous 

system development, including neural crest formation, spinal cord patterning, neural 

fate specification and neurite growth. Two related members of the BMP family, 

BMP2 and GDF5, have been shown to have neurotrophic effects on midbrain DA 

neurons both in vitro and in vivo, and may function to regulate VM DA neuronal 

development. However, the molecular (signalling pathway(s)) and cellular (direct 

neuronal or indirect via glial cells) mechanisms of their effects remain to be 

elucidated.  

 This thesis first investigated the neurotrophic effects of BMP2 and GDF5 

using the SH-SH5Y human neuronal cell line, a model of human midbrain DA 

neurons, with the aim of determining the mechanisms of their effects. GDF5 and 

BMP2 induced neuronal differentiation and activated Smad signalling in these cells, 

which was prevented by BMP type I receptor inhibition. Furthermore, a 

constitutively active BMPRIb mimicked the neurite growth-promting effects of 

BMP2 and GDF5, which was dependent on Smad transcriptional activity. These 

findings demonstrated that BMP2 and GDF5 have direct neurotrophic effects that are 

dependent on BMP type I receptor activation of the canonical Smad 1/5/8 signalling. 

 Following these findings in a cell line model, the mechanisms regulating the 

neurotrophic effects of BMP2 and GDF5 on midbrain DA neurons were then 

examined. By characterising the temporal expression profiles of endogenous BMP 
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receptors (BMPR) in the developing and adult rat VM and striatum, BMP2 and 

GDF5 were identified as potential regulators of nigrostriatal pathway development. 

These BMPs activated Smad signalling and promoted neurite outgrowth in cultured 

embryonic DA neurons, while GDF5 was also shown to activate Smad signalling in 

the VM in vivo. Furthermore, through the use of noggin and dorsomorphin, which 

inhibit BMPR-activation, and BMPR/Smad plasmids, to alter canonical Smad 

signalling, this thesis demonstrated that GDF5- and BMP2-induced neurite 

outgrowth from midbrain DA neurons is dependent on BMP type I receptor 

activation of the Smad 1/5/8 signalling pathway. To further advance the present 

characterization of the DA neurotrophic effects of GDF5 and BMP2, this thesis 

aimed to define the molecular mechanisms regulating the phenotypic effects of 

canonical BMP-Smad signalling on midbrain DA neurons. BMP2 and GDF5 do not 

require glial cell-line derived neurotrophic factor (GDNF)-signalling to promote 

neurite growth, while BMP2-, but not GDF5-induced, Smad signalling and neurite 

growth is regulated by dynamin-dependent endocytosis. Furthermore, Smad-

interacting protein-1 (Sip1) was identified as a novel regulator of neurite growth, 

which most likely acts to repress canonical BMP-Smad signalling-induced neurite 

growth of VM DA neurons. 

 Neural stem cells (NSCs) have been the focus of an intensive effort to direct 

their differentiation in vitro towards a VM DA phenotype for cell replacement 

therapy in PD. However, it is thought that NSCs derived from older embryos have 

limited neurogenic capacity and are restricted towards an astroglial fate. In the final 

part of this thesis, the neurogenic capacity of older VM NSCs was assessed. When 

the older NSCs were differentiated for three weeks, there were significant increases 

in the numbers of newly-born neurons at 14 and 21 days, as assessed by BrdU 

incorporation, which demonstrated that older NSCs retain significantly more 

neurogenic potential than was previously thought. The ability of GDF5 and BMP2 to 

induce these VM NSCs towards DA neuronal differentiation was then investigated. 

Both GDF5 and BMP2 induce the differentiation of VM NSCs in a similar fashion, 

but differentially induced a DA phenotype in VM NSC-derived neurons.  

 Taken together, these experiments identify GDF5 and BMP2 as novel 

regulators of midbrain DA neuronal induction, differentiation and survival, and 

demonstrate that their effects on DA neurons are mediated by canonical BMPR-

Smad signalling. 
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2. Abbreviations 
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3. General Introduction 

3.0 Foreword 

The development of VM DA neurons is an area of major scientific relevance as their 

degeneration results in the motor dysfunction of PD. Understanding this 

developmental process is crucial for the establishment of promising restorative 

therapies for PD. To achieve this, the characterisation of the molecules which 

regulate VM DA neurogenesis is crucial.  

 

3.1 Parkinson’s Disease 

PD is a slowly progressive neurodegenerative disorder affecting 0.5 to 1% of the 

population aged 65-69 years of age, and 1 to 3% of the population over 80 years of 

age making it the second most common neurodegenerative disorder (de Lau and 

Breteler, 2006). The four cardinal features of PD are tremor at rest, rigidity, 

bradykinesia and postural instability. Non-motor symptoms, including cognitive and 

autonomic disturbances, are also common features of the disease (Jankovic, 2008). 

Nigrostriatal DA neurons in the substantia nigra pars compacta (SNpc) of the 

midbrain are progressively degenerated in PD, resulting in loss of the 

neurotransmitter DA in the corpus striatum. This progressive degeneration causes the 

motor syndrome of PD (Gasser, 2009). 

 PD is pathologically characterised by the presence of abnormal, intracellular 

aggregates of the presynaptic protein -synuclein, called Lewy bodies (Samii et al., 

2004, Wakabayashi et al., 2007). The etiology of PD is largely unknown, however 

some genetic and environmental factors have been shown to contribute (Toulouse 

and Sullivan, 2008). Approximately 5-10% of PD cases are caused by inheritable 

genetic mutations, while the remaining 95% of cases are of idiopathic origin (Samii 

et al., 2004, Toulouse and Sullivan, 2008). When compared to idiopathic PD, most 

of the inherited forms of PD present with atypical clinical features such as earlier 

onset or lower prevalence of tremors (Vila and Przedborski, 2004). No unifying 

mechanism has emerged to date that explains the etiology of idiopathic PD, and 

aging remains the main risk factor (Toulouse and Sullivan, 2008). 

 Despite decades of extensive research, PD remains an incurable progressive 

disease with no efficient long-term treatment (Toulouse and Sullivan, 2008, Lees et 

al., 2009). Current treatments substantially improve quality of life and functional 



17 
 

capacity, however the beneficial effects of these treatments wear off over time, may 

lead to severe side effects, and do not halt the progression of the disease. Levodopa, 

in combination with a peripheral decarboxylase inhibitor and a cathecolamine-O-

methyl tranferase inhibitor, is the most effective symptomatic therapy for the 

treatment of PD (Olanow, 2008). However, chronic treatment with levodopa is 

associated with the development of motor complications in the majority of cases 

(Ahlskog and Muenter, 2001). Invasive surgical therapies, such as thalamotomy, 

pallidotomy and deep brain stimulation, are also treatment options for PD (see table 

3.1) (Olanow, 2002).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Neuroprotective therapies for PD offer a means to preserve the remaining 

neurons, and if administered with other symptomatic treatments would improve the 

long-term outcome of PD patients (Mandel et al., 2003, Chen and Le, 2006, 

Toulouse and Sullivan, 2008). Despite research on various compounds, such as 

antioxidants (Fariss and Zhang, 2003, Young et al., 2007, Toulouse and Sullivan, 

2008) and monoamine oxidase B inhibitors selegiline/rasagiline (Ebadi et al., 2002, 

Linazasoro, 2008), none have fulfilled the criteria of a true neuroprotectant, that is, a 

compound that could preserve the remaining neurons and stop the progression of the 

disease (Schapira and Olanow, 2004). 

 

Table 3.1: Surgical procedures currently being performed or investigated in Parkinson’s disease (taken from Olanow, 2002) 

Ablative procedures 

 Thalamotomy 

 Pallidotomy 

 Subthalamotomy 

Deep Brain Stimulation 

 Ventral intermediate nucleus of thalamus 

 Globus pallidus pars interna  

 Subthalamic nucleus  

Restorative procedures 

 Transplantation 

 Trophic factors 

 Stem cells 
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3.1.1 Restorative Therapies in PD 

At present, the two most promising therapies for PD treatment involve (1) the 

application of neurotrophic factors to support the remaining DA neurons and protect 

them against the ongoing disease process, and (2) the transplantation of midbrain DA 

neurons to replace those degenerated (Sullivan and O'Keeffe, 2005). Neurotrophic 

factors are proteins that are important for the survival and function of the nervous 

system (Peterson and Nutt, 2008, Toulouse and Sullivan, 2008, von Bohlen und 

Halbach and Unsicker, 2009, Sullivan and Toulouse, 2011), and have the ability to 

protect neurons from insults, rescue damaged cells from neurodegeneration, or to 

allow newly-generated neurons to form in a tissue that has been injured. A number 

of molecules are under investigation for their neurotrophic effects on VM DA 

neurons including members of the epidermal growth factor (EGF) family, brain-

derived neurotrophic factor (BDNF), members of the TGF superfamily, and some 

neurotrophins (Collier and Sortwell, 1999). GDNF and neurturin are related 

members of the TGF superfamily that have both undergone clinical trials based on 

their neurotrophic effects on midbrain DA neurons. Despite the initial success of 

GDNF in two open trials (Gill et al., 2003, Slevin et al., 2005), a randomised, 

double-blind, placebo-controlled trial did not find a significant clinical effect of 

GDNF (Lang et al., 2006), and GDNF-binding antibodies developed in half of the 

subjects (Tatarewicz et al., 2007). Similar to GDNF, an open-labeled clinical trial 

delivering AAV2-neurturin into the putamen of PD subjects reported a significant 

improvement of parkinsonism in the subjects (Marks et al., 2008), however a double-

blind, randomised, controlled trial showed no significant improvement in the 

primary endpoint, with some patients developing serious adverse effects (Marks et 

al., 2010). Despite these disappointing results in clinical trials, there remains an 

optimism that neurotrophic factors will prove to be useful in PD therapy (Aron and 

Klein, 2011). Optimisation of delivery methods and surgical protocols, as well as 

careful patient selection, will be critical to the advancement of this promising 

therapeutic approach (Sullivan and Toulouse, 2011). 

 For the replacement of the lost DA neurons in PD by transplantation to 

achieve optimal functional recovery with minimal side-effects, the transplanted DA 

neurons must establish new synapses, integrate into the local circuitry, and release 

DA in an appropriate and responsive manner (Toulouse and Sullivan, 2008). A series 
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of experiments conducted around 1980 showed the feasibility of transplanting fetal 

tissue to replace lost DA neurons in the SNpc of animal models of PD (Bjorklund 

and Stenevi, 1979, Bjorklund et al., 1980a, Bjorklund et al., 1980b, Bjorklund et al., 

1981), and led to the development of clinical trials in which human fetal 

mesencephalic tissue was transplanted into the striatum of PD patients. Initial assays 

produced unsatisfactory results (Lindvall et al., 1989), however transplantation of 

embryonic DA neurons to the striatum of PD patients has been shown to provide 

long-lasting relief of symptoms (Bjorklund et al., 2003), providing proof-of-principle 

for CRT in PD. Conversely, the results of two double-blind placebo-controlled trials 

failed to show significant improvement in transplanted patients, and raised concern 

about the appearance of disabling dyskinesias in some patients (Freed et al., 2001, 

Olanow et al., 2003), and about the use of sham-surgery (Dekkers and Boer, 2001). 

Furthermore, fetal mesencephalic neurons grafted into the stiatum of PD patients can 

develop Lewy body pathology (Kordower et al., 2008). Despite this, experts in this 

field have re-evaluated these results and are now in the process of undertaking a new 

clinical trial, which has been optimised from the successes and failures of the clinical 

trials to date (http://www.transeuro.org.uk/pages/disease.html 10/11/13).  

 The development of alternative cell sources for neural transplantation is 

crucial for this approach to be used widely as a PD treatment (Sullivan and O'Keeffe, 

2005). Presently, 6-8 embryos are required for each transplant due to poor survival 

of transplanted fetal DA neurons, and due to the low percentage of A9 DA neurons 

present in the transplants (Hagell and Brundin, 2001). Such ethical and logistical 

issues highlight the need for an alternative cell source, such as neural and non-neural 

stem cells, and embryonic stem cells, however further research is required before 

these alternatives can be used clinically. Due to the poor survival of DA neurons 

after transplantation, various agents including neurotrophic factors are being 

examined for their ability to improve neuronal survival after transplantation (Brundin 

et al., 2000, Redmond, 2002, Liu and Huang, 2007, Deierborg et al., 2008). If 

restorative therapies are to become a realistic therapeutic option for PD, the 

development of VM DA neurons must first be characterised. Such an understanding 

would facilitate the induction of a midbrain DA phenotype in stem cells, and the 

identification of developmentally-relevant neurotrophic factors. 

 

http://www.transeuro.org.uk/pages/disease.html
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3.2 Midbrain DA neurons: a review of the molecular circuitry that 

regulates their development. 

In the adult CNS, almost 75% of all DA neurons reside in the VM, with 400,000-

600,000 found in the human VM and 20,000-30,000 in the mouse VM (Blum, 1998, 

German et al., 1983, Pakkenberg et al., 1991). During embryonic development, these 

DA neurons are generated in the floor plate region of the mesencephalon (Ono et al., 

2007), and give rise to three distinct clusters of VM DA neurons which ultimately 

develop into anatomically and functionally distinct entities termed the A8, A9 and 

A10 groups. The A9 cluster gives rise to the SNpc, whose neurons project to the 

dorsal striatum via the nigrostriatal pathway. These neurons and their striatal 

projections are required for the control of voluntary movement, and the loss of these 

neurons is the pathological hallmark of PD, which is a neurodegenerative disorder 

characterised by impaired motor function (Toulouse and Sullivan, 2008, Lees et al., 

2009). The other groups of DA neurons, the A10 and A8 clusters, develop into the 

ventral tegmental area (VTA) and the retrorubal field (RRF), respectively, whose 

neurons innervate the ventral striatum and the prefrontal cortex via the 

mesocorticolimbic system, and are involved in the regulation of emotion and reward 

(Tzschentke and Schmidt, 2000). Altered/defective neurotransmission of the 

mesocorticolimbic DA system has been associated with the development of 

schizophrenia, drug addiction and depression (Meyer-Lindenberg et al., 2002, 

Robinson and Berridge, 1993).  

Interestingly, the A9 group of SNpc DA neurons, which undergo progressive 

degeneration in PD, are particularly vulnerable to cell death in comparison to the 

other VM DA neuronal populations (McNaught et al., 2004, Betarbet et al., 2000, 

Alavian et al., 2008, Farrer, 2006). The anatomical, functional and apparent 

sensitivity differences between these three populations of VM DA neurons likely 

results from subtle developmental differences during their ontogeny. However, little 

is known regarding the molecular mechanisms that regulate the phenotypic and 

functional diversities between these VM DA neuronal populations. Given the 

involvement of A9 DA neurons in PD, an intensive research effort over the last five 

decades has focused on identifying the molecules and mechanisms that regulate their 

development. This information is vital to advance efforts to generate SNpc DA 

neurons from stem cells for application in cell replacement therapy for PD. Through 
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the mutation of specific genes, and the subsequent analysis of VM DA neurogenesis 

and development, a number of molecular pathways have been shown to play key 

roles in the development of VM DA neurons. Herein we discuss the ‘normal’ 

developmental program that regulates VM DA neurogenesis, including the cellular 

and molecular determinants involved in their regional specification, induction, 

differentiation and maturation.  

 

3.2.1 Early patterning of the ventral mesencephalon  

The first key steps in VM DA generation are the early patterning events which lead 

to the formation of the VM region. During gastrulation, the dorsal ectoderm is 

restricted towards a neural fate in response to signals arising from the Speamann 

organizer (Hemmati-Brivanlou and Melton, 1997, Harland, 2000, Liu and 

Niswander, 2005). The resulting neural plate is then subdivided into restricted 

domains and subsequently closes to form the neural tube, which is specified by 

graded signals along the anterior-posterior (A/P) and dorso-ventral (D/V) axes 

(Simon et al., 1995, Puelles, 2001, Ulloa and Briscoe, 2007). The development of the 

VM region relies on appropriate A/P and D/V patterns of gene expression which are 

regulated by signals arising from two key structures in the early embryo: the floor 

plate of the midbrain and the isthmus organizer. Organisation of the VM region is 

initiated upon formation of these signalling centres.  

The floor plate is present along the length of the neural tube and secretes the 

sonic hedgehog (Shh) signalling protein from around embryonic day (E) 8.5 onwards 

in the mouse (Ho and Scott, 2002, Hynes et al., 1995a, Echelard et al., 1993). 

Interestingly, the spatiotemporal expression pattern of Shh in the VM has been 

shown to contribute to the diverse populations of VM DA neurons, with the ‘early 

medial pool’ giving rise primarily to VTA, and very few SNpc, DA neurons and the 

‘later intermediate pool’ giving rise to DA neurons of all three subgroups, but largely 

contributing to the SNpc (Joksimovic et al., 2009a). In the floor plate, the bHLH 

(basic helix-loop-helix) transcription factor Hes1 (also expressed by the isthmus 

organizer) has been shown to suppress proneural gene expression and induce cell 

cycle exit (Baek et al., 2006, Ono et al., 2010). Null mutation of Hes1 results in a 

transient increase in the number of VM DA neurons between E11.5 and E12.5, 

followed by a significant reduction in their number from E13.5, compared to the 

wild-type (Kameda et al., 2011). Interestingly, another bHLH transcription factor 
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expressed in the floor plate, Nato3, has been shown to repress Hes1 expression, and 

mutation of Nato3 has been shown to result in a reduction in the number of VM DA 

neurons generated due to unchecked Hes-1-mediated suppression of proneural genes 

and the induction of cell cycle arrest (Ono et al., 2010). 

The isthmus organizer is a unique signalling centre that separates the 

midbrain from the hindbrain and is necessary for the development of both of these 

brain regions (Rhinn and Brand, 2001, Liu and Joyner, 2001). The correct 

positioning of the isthmus organizer at the midbrain-hindbrain boundary is 

dependent on the mutual repression of two opposing homeodomain transcription 

factors: Otx2 and Gbx2 (Martinez-Barbera et al., 2001). Otx2 is expressed in the 

forebrain and midbrain of the developing anterior neural tube (Matsuo et al., 1995, 

Simeone et al., 1992, Acampora et al., 1997), while Gbx2 is expressed more 

posteriorly in the anterior hindbrain (Wassarman et al., 1997). Gbx2 expression at 

the posterior border limits Otx2 expression which creates the sharp boundary 

between the midbrain and the hindbrain (Millet et al., 1999).  

Fibroblast growth factor (FGF) 8  is a diffusible factor secreted by the 

isthmus organizer (Rhinn and Brand, 2001), from around E8 until at least E12.5 in 

the mouse midbrain-hindbrain boundary (Crossley and Martin, 1995). Surprisingly, 

although Otx2 and Gbx2 are critical for the correct positing of the isthmus organiser, 

they are not required for the expression of FGF8, or for the induction of other 

isthmus organizer-genes, however they are essential for the correct positioning of the 

expression domains of these genes (Liu and Joyner, 2001, Brodski et al., 2003). This 

is highlighted by studies showing that if the position of the isthmus organiser is 

moved caudally as a result of ectopic Otx2 expression in hindbrain, there is an 

increase in the number of VM DA neurons (Brodski et al., 2003). Similarly if its 

position is moved rostrally by depleting Otx2 in the midbrain, there is a decrease in 

the number of VM DA neurons (Brodski et al., 2003), demonstrating the critical 

importance of isthmus organiser positioning for normal VM DA generation.  

As Otx2- and Gbx2-dependent sharpening of the borders of the isthmus is 

occuring, a second group of transcription factors begin to be expressed in the isthmus 

organiser. These include the paired box gene Pax2 (Urbanek et al., 1997), the lim-

homeodomain factor Lmx1b (Adams et al., 2000, Smidt et al., 2000), the secreted 

glycoprotein Wnt1 (Davis and Joyner, 1988, Adams et al., 2000, Wilkinson et al., 

1987, Crossley and Martin, 1995), and Engrailed-1 (En1) (Davis and Joyner, 1988). 
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Of these, Pax2 is required for the induction of FGF8 expression by the isthmus, 

whereas Wnt1 and En1 function cooperatively with Otx2 and Gbx2 to further refine 

the position of the expression domain of FGF8 at the isthmus (Ye et al., 2001).  

Shortly after the induction and positioning of FGF8 expression, Engrailed-2 

(En2) and Pax5 start to be expressed in the midbrain-hindbrain boundary. These 

genes play critical roles in the regional specification of the VM, and homozygous 

mutant mice null for Otx2 (Acampora et al., 1995, Ang et al., 1996), Wnt1 (Prakash 

et al., 2006, McMahon and Bradley, 1990), Pax2 and Pax5 (double mutant) 

(Schwarz et al., 1997), En1 and En2 (double mutant) (Liu and Joyner, 2001, Simon 

et al., 2001), or Lmx1b (Smidt et al., 2000) all display major VM defects, including 

partial or total loss of VM DA neurons (see table 3.2.1).  

 

Table 3.2.1: Genetic mutations affecting the development of VM DA neurons 

Mutation(s) Effect(s) on DA development Reference(s) 

Otx2 -/-

  

loss of VM DA neurons (midbrain absent)  (Acampora et al., 1995, Ang et 

al., 1996) 

   

Wnt1 -/-

  

severe reduction in VM DA neurons generated (McMahon and Bradley, 1990, 

Prakash et al., 2006) 

   

Pax2 -/- :  

Pax5 -/- 

loss of VM DA neurons (midbrain absent) (Schwarz et al., 1997) 

   

En1 -/- : 

En2 -/-  

VM DA neurons lost by E14 via apoptosis (Liu and Joyner, 2001, Simon et 

al., 2001, Alberi et al., 2004) 

   

Lmx1b -/- substantial reduction in VM DA neurons 

generated, and disappearance of Pitx3
-
 VM DA 

neurons by birth 

(Smidt et al., 2000, Deng et al., 

2011)  

   

Hes1 -/- transient increase (~E12) in VM DA neurons, 

followed by their significant reduction (from 

E13.5). dorsal migration and hindbrain invasion  

(Kameda et al., 2011) 

   

Nato3 -/- reduction in VM DA neurons generated (Ono et al., 2010) 

   

FGFR -/- deficit of VM DA neurons (Lahti et al., 2012, Saarimaki-

Vire et al., 2007) 

   

FGF2 -/-

  

peri-/post-natal increase in VM DA neurons (Ratzka et al., 2012)  

   

Lmx1a -/- substantial reduction in VM DA neurons 

generated 

(Ono et al., 2007, Deng et al., 

2011) 

   

En1
Cre/+

; reduction in VM DA neurons due to failure of (Omodei et al., 2008, Puelles et 



24 
 

Otx2
flox/flox VM DA NP induction al., 2004) 

   

Ngn2 -/- reduction in mature VM DA neurons generated (Kele et al., 2006) 

   

Oc1 -/- :  

Oc2 -/-  

reduction in VM DA neurons generated (Chakrabarty et al., 2012) 

   

Gli1 -/- :  

Gli2 -/-  

deficient VM DA neurogenesis (more severe 

than Gli2 -/-) 

(Park et al., 2000) 

   

Gli2 -/-  deficient VM DA neurogenesis (Park et al., 2000) 

   

Lmx1a -/- ; 

Shh
Cre/+ 

; 

Lmx1b -/- 

substantial reduction in VM DA neurons 

generated (more severe than Lmx1a -/-) 

(Yan et al., 2011) 

   

Lmx1a -/- : 

Lmx1b +/- 

substantial reduction in the generation of VM 

DA neurons (more severe than Lmx1a -/-) 

(Deng et al., 2011) 

   

Lrp6 -/-

  

delayed differentiation of VM DA neurons (Pinson et al., 2000, Castelo-

Branco et al., 2010) 

   

Fzd3 -/- : 

Fzd6 -/- 

deficient VM DA neurogenesis (severe midbrain 

defects) 

(Stuebner et al., 2010) 

   

Fzd3 -/-  transient reduction in VM DA neuron generated (Stuebner et al., 2010) 

   

Wnt2 -/-

  

reduction in VM DA neurons generated (Sousa et al., 2010) 

   

β-catenin 

(Th-IRES- 

Cre;  

β-Ctn
Ex3/+

 

mutant) 

reduction in VM DA neurogenesis (Tang et al., 2009) 

   

Dkk1 -/- severe loss of VM DA neurons (Ribeiro et al., 2011) 

   

L1 -/-  positional abnormalities of VM DA neurons (Demyanenko et al., 2001) 

   

Reelin -/- failure of VM DA neuron lateral migration (Nishikawa et al., 2003) 

   

DCC -/- aberrant VM DA neuron migration, dorsal  

shifting of ventral striatal DA projections,  

aberrant crossing of MFB fibers at caudal 

diencephalic midline, and reduction of prefrontal  

cortex DA innervation 

(Xu et al., 2010) 

   

Ebf1 -/-  impaired tangential migration of VM DA 

neurons 

(Yin et al., 2009) 

   

Nurr1 -/- lack TH, AADC, VMAT2 and DAT expression  

in VM DA neurons, and their subsequently loss 

(Castillo et al., 1998, Filippi et 

al., 2007, Saucedo-Cardenas et 

al., 1998, Smits et al., 2003, 

Wallen et al., 1999) 
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Nurr1 -/-  

(at late stage 

of DA dev.) 

VM DA neuron degeneration (SNpc more 

vulnerable) 

 

(Kadkhodaei et al., 2009) 

   

FoxA2 -/- increase in numbers of Nurr1
+
 TH

-
 neurons in 

VM 

(Ferri et al., 2007) 

   

FoxA2 +/-

  

aged mice develop PD-like symptoms and 

pathologies 

(Kittappa et al., 2007) 

   

Pitx3
ak/ak

  

deficit of SNc DA neurons from E12.5 (VTA 

largely unaffected) 

(Hwang et al., 2003, Nunes et al., 

2003, Smidt et al., 2004, van den 

Munckhof et al., 2003)  

   

En1 +/- :  

En2 +/+  

progressive degeneration of VM DA neurons (8-

24 weeks) 

(Sonnier et al., 2007) 

   

En1 +/- : 

En2 -/-  

progressive degeneration of VM DA neurons 

(more pronounced in SNpc) 

(Sonnier et al., 2007, Sgado et 

al., 2006) 

   

Nkx2.1 -/-

  

aberrant crossing of MFB fibers at caudal 

diencephalic midline 

(Kawano et al., 2003) 

   

DCC +/-

  

increased branching of VM DA fibers in 

prefrontal cortex 

(Manitt et al., 2011) 

   

Pbx1a -/- partial misrouting of VM DA fibers (Sgado et al., 2012) 

   

Pax6 -/-

  

dorsal deflection of MFB fibers in the 

diencephalon 

(Vitalis et al., 2000) 

   

Slit1 -/- : 

Slit2 -/-  

aberrant crossing of MFB fibers at caudal 

diencephalic midline 

(Bagri et al., 2002, Dugan et al., 

2011) 

   

Robo1 -/- : 

Robo2 -/-

  

aberrant crossing of MFB fibers at caudal 

diencephalic midline, and abnormal dorsal 

trajectories of VM DA fibers 

(Dugan et al., 2011, Lopez-

Bendito et al., 2007) 

 

3.2.2 Identity of VM DA neural precursors 

Once the appropriate patterning of the VM region has occurred, a developmental 

program involving a sequential pattern of gene expression establishes the identity of 

VM DA neural precursors (NPs) that ultimately generate VM DA neurons (Fig. 

3.2.1). The identity of these VM DA NPs has been the focus of intensive research in 

recent years, largely due to their potential to be used as a cell source to generate DA 

neurons for cell replacement therapy in PD (Kim, 2011, Morizane et al., 2008, 

Toulouse and Sullivan, 2008).  
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 The origin of VM DA NPs has been debated for many years, with regions 

such as the diencephalon (Marin et al., 2005), isthmus (Marchand and Poirier, 1983) 

and VM basal plate (Hynes et al., 1995b, Hynes et al., 1995a) emerging as potential 

candidates. Despite this research, the precise identity of VM DA NPs remained 

elusive until recently, when a study showed that floor plate cells in the murine VM 

become neurogenic and subsequently give rise to DA neurons (Ono et al., 2007). 

This discovery was surprising as the floor plate was thought to consist of specialised 

non-neurogenic glial type cells that were largely involved in ventralizing the neural 

tube, mainly by secreting Shh (Jessell, 2000, Placzek and Briscoe, 2005, Fuccillo et 

al., 2006). This role in ventralisation seems to remain as the main function of floor 

plate cells caudal to the midbrain, as the hindbrain floor plate has been shown to be 

non-neurogenic (Joksimovic et al., 2009b, Ono et al., 2007). However, the VM floor 

plate is different to its caudal counterparts and attains neurogenic potential. Ono et 

al. (2007) demonstrated that Otx2, which is critical for the positioning of the isthmus 

organiser, is also essential for the neurogenic potential of VM floor plate cells. This 

finding expands the importance of this gene in determining the overall structure of 

the VM region.  

 However, although the region from which VM DA NPs arise had been 

determined, the specific floor plate cell type which is a DA NP cell remained to be 

identified. Fate-mapping studies using a marker for radial glia-specific marker 

GLAST, demonstrated that radial glial-like cells in the floor plate of the mouse VM 

were DA NPs (Bonilla et al., 2008). Shortly thereafter, a similar study using human 

VM tissue demonstrated that DA NPs in the VM floor plate showed radial glial 

characteristics, that is they expressed the radial glial markers, vimentin and BLBP, 

and displayed a radial morphology (Hebsgaard et al., 2009). VM DA neurons 

therefore arise from floor plate radial glial-like NPs. The radial-glial origin of DA 

neurons should not be considered peculiar due to its departure from the classical 

view of radial glia as a supportive glial cell type. Indeed, the separate identities of 

radial neuroectodermal stem cells and radial glial cells is regularly challenged in the 

literature, with some authors suggesting that they are in fact the same cell type 

(Kriegstein and Alvarez-Buylla, 2009). 
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3.2.3 Induction of a DA phenotype in VM NPs  

While the floor plate and isthmus organiser are critical determinants of VM 

patterning, they are also crucial for the induction of a VM DA phenotype. Their role 

in the induction of a DA phenotype is dependent upon the interaction of floor plate-

secreted Shh and isthmus-secreted FGF8 (Ye et al., 1998, Hynes et al., 1997).  

FGF8 

The mechanism by which FGF8 regulates VM DA development is still under 

investigation, however a recent study suggested that FGF8 is required to induce the 

correct patterning of VM DA NPs, as the loss of FGFRs (FGF receptors) resulted in 

altered patterning of the VM and failure of VM DA neuron maturation, with the DA 

domain adopting diencephalic characteristics (Lahti et al., 2012). In support of this, a 

similar study that mutated the FGFRs reported a reduction in the generation of VM 

DA NPs, and a disturbance in the maturation of VM DA neurons (Saarimaki-Vire et 

al., 2007). Another FGF, FGF2, has been shown to function in the regulation of SNc 

DA NPs proliferation, and also in the developmental cell death of mature SNc DA 

neurons (Ratzka et al., 2012).  

Sonic hedgehog (Shh) signalling and Lmx1 expression 

The first sign of a DA phenotype in VM NPs is the initiation of expression of two 

key determinants of VM DA cell fate, the lim-homeodomain factor Lmx1a and the 

homeodomain transcription factor Msx1, at ~E9 in the mouse (Alavian et al., 2008). 

Shh induces the expression of Lmx1a, which subsequently induces the expression of 

its downstream effector Msx1 (Andersson et al., 2006). The overexpression of 

Lmx1a in the anterior VM results in the ectopic generation of DA neurons, while 

reduced expression results in a loss of VM DA neurons (Andersson et al., 2006). 

Additionally, null mutation of Lmx1a or the spontaneous mutation of Lmx1a in 

dreher mice results in substantial reductions in the numbers of VM DA neurons 

generated (Ono et al., 2007, Deng et al., 2011). Lmx1a expression is maintained in 

post-mitotic VM DA neurons until postnatal day (P) 180 in mice (Zou et al., 2009b), 

however Msx1 expression is confined to VM DA NPs (Failli et al., 2002, Andersson 

et al., 2006). This is surprising considering that Lmx1a is upstream of Msx1, 

suggesting that the post-mitotic repression of Msx1 expression somehow overrides 

the inductive effect of Lmx1a. Msx1 contributes to DA neurogenesis by inducing the 

expression of the proneural gene, neurogenin (Ngn) 2, and thus neuronal 

differentiation. Ngn2 expression in VM NPs also appears to be under the control of 
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Otx2 expression, as conditional Otx2 mutant mice display a loss of Ngn2 expression 

in DA NPs (Vernay et al., 2005). This finding is not surprising, considering that 

Otx2 induces the expression of Lmx1a in VM floor plate cells, suggesting that the 

loss of Ngn2 expression in the Otx2 knockout mouse is due to a failure of Lmx1a 

induction and subsequently Msx1 expression, rather than a direct effect on Ngn2 

expression, but this remains to be determined (Ono et al., 2007). This suggestion is 

supported by recent findings showing that in the absence of Otx2, VM NPs fail to 

activate the expression of Lmx1a, Msx1 and Ngn2, and therefore largely fail to 

differentiate into VM DA neurons (Omodei et al., 2008). 

Support for the role of Ngn2 in DA induction comes from studies showing 

that loss of Ngn2 in mice results in a severe reduction in the expression of post-

mitotic VM DA markers Nurr1 and tyrosine hydroxylase (TH) (discussed later), 

demonstrating its importance in the generation of mature VM DA neurons (Kele et 

al., 2006). However, the role of Ngn2 is likely to be generally proneural, rather than 

specific for VM DA neuronal differentiation. In support of this, overexpression of 

Ngn2 induces neurogenesis but not a DA phenotype in cultured VM NPs (Kim et al., 

2007). These data suggest the existence of a developmental program consisting of an 

inductive effect of floorplate-secreted Shh on Lmx1a expression which subsequently 

induces the expression of Msx1, which in turn induces the expression of Ngn2 which 

is required for neuronal differentiation of VM DA NPs. How and where Otx2 fits 

into this cascade is unclear, but it is known that Otx2 is required for the expression of 

Lmx1a. It has yet to be determined whether this is a parallel pathway cooperating 

with Shh or whether Otx2 is a master regulator of Shh-induced Lmx1a expression. In 

support of a role of Otx2 as a master regulator, studies involving the conditional 

knockout of Otx2 in the midbrain have suggested that Otx2 controls the fate of VM 

progenitors through the repression of Nkx2.2 and maintenance of Nkx6.1 expression 

(Puelles et al., 2004). FoxA2, involved in a feedback loop with Shh (discussed later), 

induces Lmx1a expression and also inhibits Nkx2.2 (Lin et al., 2009). It is possible 

that Otx2 functions via a similar pathway to FoxA2, or indeed that FoxA2 may 

function downstream of Otx2 and Shh in the regulation of Lmx1a and Nkx2.2 

expression during VM DA neurogenesis.  

Interestingly, a recent genome-wide gene expression profiling study has 

expanded the regulatory role of Lmx1a in this process by identifying novel 

transcription factors involved in the generation of the VM DA neuronal field. The Oc 
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transcription factors, Oc1, 2 and 3, display similar expression profiles to that of 

Lmx1a in the developing VM, and their loss resulted in diminished generation of 

VM DA neurons (Chakrabarty et al., 2012). Whether these Oc transcription factors 

are regulated by Lmx1a, which is plausible given their overlapping expression 

patterns, or whether they act in parallel to regulate neuronal differentiation in the 

VM, will be an important question for future research. 

Similar to Lmx1a, the related protein Lmx1b has also been shown to promote 

VM DA neurogenesis (Lin et al., 2009, Deng et al., 2011, Yan et al., 2011). Lmx1a 

and Lmx1b are co-expressed in VM DA NPs, and have been shown to mediate the 

initial steps of NP DA specification (Andersson et al., 2006, Smidt et al., 2000). 

Furthermore, Lmx1a and Lmx1b are co-expressed in the P0 VM, suggesting that they 

may function in the maturation of VM DA neurons also (Zou et al., 2009b). Similar 

to Lmx1a, Lmx1b can induce the ectopic production of VM DA neurons when 

ectopically expressed (Nakatani et al., 2010), and its loss results in a substantial 

reduction in the number of VM DA neurons (Smidt et al., 2000, Deng et al., 2011). 

A recent study using conditional knockout of Lmx1a and Lmx1b in mice 

demonstrated that Lmx1a and Lmx1b function cooperatively to regulate the 

proliferation of VM DA NPs and Ngn2 expression (Yan et al., 2011). This 

suggestion is supported by studies on Lmx1a null mice carrying one mutant Lmx1b 

allele (as double null mutations are embryonically lethal) which found that Lmx1a 

and Lmx1b function cooperatively in the generation of VM DA neurons. This study 

also showed that Lmx1b is involved in the generation of ocular motor neurons and 

red nucleus neurons in the VM (Deng et al., 2011) and it has been suggested that 

Lmx1b partially compensates for Lmx1a function in dreher mice, as only 46% of 

VM DA neurons are lost in these mutants (Ono et al., 2007).  It will be important to 

understand whether Lmx1b exerts its effects in precisely the same way as Lmx1a, for 

example by modulating Msx1 expression or that of Oc1, 2 and 3 (Chakrabarty et al., 

2012).   

Sonic hedgehog (Shh) signalling and FoxA expression 

Floor plate-derived Shh has been shown to play a key role in induction of a DA 

phenotype by modulating the expression of the transcriptional regulator FoxA2, a 

well-known floor plate marker. The modulation of FoxA2 expression is mediated by 

the downstream effector of Shh signalling, Gli1 (Hynes et al., 1997). Gli1 expression 

is upregulated by a related molecule Gli2 (activator) in response to Shh signalling, 
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which is required for generation of VM DA neurons, while Gli3 (repressor) is 

suppressed by Shh to allow the de-repression of FGF8 expression (Blaess et al., 

2006). Gli2 homozygous null-mutants demonstrate the importance of Gli2 in 

inducing ventral phenotypes, as these mice display clear deficits in VM DA 

neurogenesis (Park et al., 2000). Loss of both Gli2 and Gli1 resulted in a more severe 

phenotype (Park et al., 2000). FoxA2, along with FoxA1, is expressed in the VM and 

in differentiated DA neurons during development. Both have been shown to regulate 

the expression of Ngn2 and to maintain the expression of Lmx1a and Lmx1b, which 

promotes VM DA neurogenesis (Lin et al., 2009, Ferri et al., 2007, Bayly et al., 

2012). As aforementioned, Gli1 has been shown to induce the expression of FoxA2 

(Hynes et al., 1997), with FoxA2 being reported as a downstream target of Shh 

signalling (Chung et al., 2009). However, FoxA2 expression precedes that of Shh in 

the ventral neural tube and is proposed to regulate Shh expression (Echelard et al., 

1993). These findings likely reflect a regulatory feedback loop between Shh and 

FoxA2 expression, with Gli1 functioning downstream of Shh in this loop. In addition 

to Gli1, Nato3, a bHLH transcription factor that contributes to VM DA neurogenesis 

through the repression of Hes1 (Ono et al., 2010), has been shown to integrate with 

the Shh-FoxA2 regulatory feedback loop in the SN4741 dopaminergic cell line 

(Nissim-Eliraz et al., 2012). It has recently been suggested that Shh is necessary and 

sufficient for lateral floor plate generation, and necessary but not sufficient for 

medial floor plate generation, while FoxA2 is necessary and sufficient to specify the 

entire floor plate, acting through both Shh-dependent and independent mechanisms 

(Bayly et al., 2012). This induction of FoxA2 expression by Shh has also been 

proposed to function cooperatively with Lmx1a and Lmx1b in the generation of DA 

neurons from VM floor plate NPs (Nakatani et al., 2010). This is not surprising, 

considering that Shh and FoxA2 positively regulate Lmx1a and Lmx1b expression. 

FoxA2 mutant mice have a defective floor plate, as well as notochord, and die at 

E9.5 (Ang and Rossant, 1994, Sasaki and Hogan, 1994), which precludes 

examination of their role in DA induction. Given the recent identification of VM 

radial-glial progenitors, it will be interesting to use targeted strategies to 

conditionally remove FoxA2 in the midbrain while preserving its expression in the 

floor plate (possibly through the use of GLAST-cre mice), and thus examine its 

inductive effect on Shh expression and its specific role in DA neurogenesis. 
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Wnt signalling 

The Wnt family of secreted glycoproteins have become increasingly recognised as 

key regulators of DA neuron induction.  Wnt1 is expressed in the isthmus organizer, 

in an area rostral to FGF8 at E9.5 in mice (Wilkinson et al., 1987), and is also 

expressed in the developing midbrain (Wilkinson et al., 1987, Davis and Joyner, 

1988), along with other members of the Wnt family (Parr et al., 1993, Andersson et 

al., 2008, Rawal et al., 2006). In vitro, Wnt1 has been shown to regulate the 

proliferation of VM DA NPs and to increase the number of DA neurons generated 

from these cells. Wnt3a has been shown to enhance VM DA NP proliferation but to 

inhibit their terminal DA differentiation, whereas Wnt5a regulates the acquisition of 

a DA phenotype to increase DA neuronal numbers (Castelo-Branco et al., 2003). 

Wnt5a in particular has recently been demonstrated to play a role in the acquisition 

of a DA phenotype in VM DA NPs in vivo (Andersson et al., 2008). The effect of 

Wnt5a on DA differentiation has been suggested to be regulated by the Rac1 

guanosine exchange factor, Tiam1 (Cajanek et al., 2012), and Wnt5a has been 

proposed to be an important mediator of the DA inductive activity of VM glia 

(Castelo-Branco et al., 2006). Another Wnt, Wnt2, has been implicated as a novel 

regulator of VM DA NP proliferation as Wnt2 null mice displayed reductions in DA 

neurogenesis (Sousa et al., 2010). 

Given that Wnt1 is expressed in the isthmus and developing midbrain, it is 

perhaps not surprising that null mice displayed a loss of most of the midbrain and the 

DA neurons therein  (McMahon and Bradley, 1990). Subsequently it was shown that 

although Wnt1 null mice develop VM DA NPs, these NPs fail to proliferate and 

differentiate appropriately, and the few DA neurons that are generated are lost 

shortly thereafter (Prakash et al., 2006). This is in agreement with data describing 

Wnt1 as a key regulator of VM DA NPs proliferation and subsequent differentiation 

(Castelo-Branco et al., 2003). There is now a large body of evidence describing the 

key role of Wnt signalling in DA generation. Loss of the Wnt receptor Lrp6 

replicates some of the Wnt1 developmental abnormalities (Pinson et al., 2000, 

Castelo-Branco et al., 2010). Similarly, loss of the Wnt receptors, frizzled (Fzd) 3 

and Fzd6, severely impairs midbrain morphogenesis (Stuebner et al., 2010). 

Interestingly, the null mutation of Fzd3 results in a transient reduction in the 

numbers of VM DA neurons generated, similar to that seen in the Lrp6 null mutant 

(Stuebner et al., 2010, Castelo-Branco et al., 2010). Furthermore, the specific 
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inactivation of β-catenin, which mediates canonical Wnt signalling, mimics the 

midbrain-hindbrain deficits observed in Wnt1 null mice (Brault et al., 2001, Chilov 

et al., 2010), suggesting that Wnt1 acts via β-catenin during midbrain-hindbrain 

development.  

As a result of these studies, the molecular basis of Wnt-induced DA 

differentiation have been the focus of intensive research. Wnt1 has been shown to be 

essential for the maintenance of En1 and En2 expression (Danielian and McMahon, 

1996, McMahon et al., 1992, McGrew et al., 1999), with En1/En2 double knockout 

mice displaying a similar defective VM phenotype as the Wnt1 null mutants (Simon 

et al., 2001), suggesting that the effects of loss of Wnt1 may be due to a loss of En 

expression. This was subsequently confirmed when it was shown that En1 was 

sufficient to rescue early midbrain deficits in Wnt1 mutant mice (Danielian and 

McMahon, 1996). En1 and En2 are expressed in the ventral mesencephalon at the 

same time as Wnt1 (~E8.0 in mice), however the overlapping expression domains of 

these three genes become restricted by E12 (Davis and Joyner, 1988). The 

expression of Wnt1 in the En1 expression domain (En1-Wnt1 knock-in) causes a 

ventro-rostral and ventro-caudal expansion of Wnt1 expression, which is usually 

restricted to the caudal VM (Danielian and McMahon, 1996), and results in an 

expansion of the most ventro-rostral DA cell group (Panhuysen et al., 2004). This 

cell group corresponds to the SNpc, thus these studies demonstrate that this cell 

group is the most robustly influenced by Wnt1 signalling. En1 expression is 

detectable in VM DA neurons from the time point at which they initiate their 

differentiation and persists into adulthood, while En2 is only expressed in a subset of 

DA neurons (Simon et al., 2001, Zhong et al., 2010).   

As mentioned earlier, Wnt1 is expressed in the isthmus organizer, in an area 

rostral to where FGF8 is expressed (Wilkinson et al., 1987). Interestingly, FGF8 

signalling has also been shown to regulate En1 expression in the developing VM 

(Lahti et al., 2012).  It is tempting to speculate that this may be achieved through the 

induction of Wnt-1. In support of this suggestion, a functional link between FGF-8 

and Wnt signalling has recently been described, where it was shown that Wnt-β-

catenin signalling positively regulated FGF8 expression in the midbrain-

rhombomere1 region (Chilov et al., 2010). It is possible that this may be an 

autoregulatory loop, similar to that of Shh and FoxA2, with FGF-8 inducing the 

expression of Wnt1 and subsequently En1/En2 expression in the midbrain. 
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Interestingly, new data have now shown that Lmx1a and Lmx1b function 

cooperatively to control the proliferation of VM DA NPs through the regulation of 

Wnt1 expression (Yan et al., 2011).  

A link between Shh and Wnt signalling has recently emerged with the 

proposal that canonical Wnt-β-catenin signalling is required to antagonize Shh, and 

that the subsequent reduced Shh levels allow the induction of VM DA NPs and the 

promotion of DA neurogenesis (Joksimovic et al., 2009b). The finding that Shh 

inhibits DA neurogenesis (Joksimovic et al., 2009b) is surprising, considering its 

well-established role in the induction of VM DA neurogenesis (Ye et al., 1998, 

Blaess et al., 2006, Hynes et al., 1995a, Andersson et al., 2006). However, 

Joksimovic et al. (2009) suggest that Shh is initially required for the early 

establishment of the VM DA NP pool, but that later it inhibits VM DA NP 

proliferation and neurogenesis. The current model suggests that once the Shh-

induced VM DA NP pool has been established, Wnt-β-catenin signalling suppresses 

Shh levels in the VM to facilitate DA neurogenesis. Additionally Wnt signalling has 

been shown to induce Otx2 and Lmx1a expression (Joksimovic et al., 2009b, Prakash 

et al., 2006). Furthermore, a Wnt1-Lmx1a autoregulatory loop has been identified 

which is proposed to regulate Otx2 expression via β-catenin during VM DA 

neurogenesis (Chung et al., 2009). Interestingly, Otx2 has recently been suggested to 

regulate the proliferation of VM DA NPs via Wnt1 regulation (Omodei et al., 2008), 

suggesting a possible Otx2-Wnt1 regulatory feedback loop. In contrast to Joksimovic 

et al. (2009), Chung et al. (2009) suggested a mechanism by which the Wnt1-Lmx1a 

autoregulatory loop and a Shh-FoxA2 autoregulatory loop control VM DA 

neurogenesis synergistically. Despite this finding, a more recent paper described an 

antagonistic relationship between Wnt-β-catenin signalling and Shh signalling that is 

important in the progression of DA NPs into VM DA neurons (Tang et al., 2010), 

thus supporting the Joksimovic et al. (2009) theory. Furthermore, the stabilization of 

β-catenin in VM NPs, by the inhibition of GSK3β, leads to an increase in DA 

differentiation (Castelo-Branco et al., 2004, Tang et al., 2009) and targeted deletion 

of β-catenin in VM NPs (Th-IRES-Cre;β-Ctn
Ex3/+

 mutant) results in reduced VM DA 

neurogenesis (Tang et al., 2009).  Surprisingly, mice with mutations in the Wnt/β-

catenin inhibitor Dkk1 actually have a reduction in VM DA neurons (Ribeiro et al., 

2011).  This is surprising, given that the stabilization of β-catenin in VM NPs, 

through the inhibition of GSK3β, leads to an increase in DA differentiation (Castelo-
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Branco et al., 2004, Tang et al., 2009). Collectively these data largely support the 

theory that Wnt signalling is required for DA induction, but it is also clear that this is 

likely to involve a complex interplay with Shh and FGF8 signalling, and potentially 

other extrinsic signalling factors which have been suggested to induce VM DA 

neurogenesis, including TGFβs (Farkas et al., 2003, Roussa et al., 2006, Roussa et 

al., 2009). 

 

3.2.4 Development of post-mitotic VM DA neurons  

Once NPs of the VM floor plate are specified towards a DA phenotype, these DA 

NPs gradually become post-mitotic from E10-E14 in mice (E12-E16 in rats) 

(Lumsden and Krumlauf, 1996, Lauder and Bloom, 1974), with the greatest 

proportion of VM DA NPs undergoing their final division at E12 in the rat (Gates et 

al., 2006). The induction of TH expression, the rate-limiting enzyme for DA 

synthesis, is the first sign of the acquisition of the DA neuronal phenotype, and 

occurs shortly after the final mitosis of VM DA NPs while they are actively 

migrating to their final positions (Specht et al., 1981a, Specht et al., 1981b, Puelles 

and Verney, 1998). This process of migration of VM DA neurons from the floor 

plate ventricular zone to the presumptive VTA and SNpc involves two steps: firstly, 

DA neurons migrate ventrally along tenascin-expressing radial glial processes which 

project to the pial surface, and secondly, once they have reached the basal part of the 

VM, they migrate laterally along tangentially orientated fibres to form the VTA and 

SNc (Shults et al., 1990, Kawano et al., 1995). These tangentially-orientated fibres 

express the neural cell adhesion molecule L1, while VM DA neurons express the 

chondroitin sulphate proteoglycan 6B4. A heterophilic interaction between L1 and 

6B4 has been proposed to facilitate this process of lateral migration of VM DA 

neurons (Ohyama et al., 1998). There have been a variety of studies that show that 

this process of migration is crucial for the normal positioning of VM DA neurons. 

Specifically, VM DA neurons are abnormally located in L1 knockout mice 

(Demyanenko et al., 2001). A role for Wnt signalling in this process has been 

implicated by a study showing that the targeted deletion of β-catenin in the VM 

disrupts the integrity of these radial glia, resulting in perturbed migration of VM DA 

neurons (Tang et al., 2009). It is unclear whether these migratory defects are 

secondary to a disrupted radial glial scaffold or whether Wnt signalling can also 

directly affect this process of migration. A number of other molecules involved in 
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neuronal migration in the developing CNS also appear to be involved in the 

migration of VM DA neurons. These include the well-known migrational regulator 

Reelin, as VM DA neurons fail to migrate laterally to the SNpc, in reeler (Reelin 

null) mice (Nishikawa et al., 2003), and the netrin receptor, DCC, which is expressed 

by migrating VM DA neurons in mice, and whose loss results in aberrant migration 

of these neurons (Xu et al., 2010). In terms of the molecular regulatory networks that 

control this migration, there have been a number of studies describing roles for Ebf1 

(early B-cell factor 1) (Yin et al., 2009) and Hes1 (Kameda et al., 2011) in this 

process. A key goal for future research will be to understand the molecular networks 

that control this process of VM DA migration and how newly-identified molecules 

such as Ebf1 and Hes1 “fit” within this network. While much work has focused on 

identifying the molecular signals that are required for neuronal migration, it will also 

be important to understand what positional cues inhibit these processes so that VM 

DA neurons “know” when to stop.  

 Several transcription factors have been identified which are essential for the 

differentiation and subsequent long-term survival of VM DA neurons. These include 

Lmx1b, Nurr1, Pitx3, En1 and En2. Each of these factors are not individually 

capable of inducing a complete DA phenotype, suggesting that they function as part 

of a network (Fig. 3.2.1).  

Lmx1b 

The lim-homeodomain factor Lmx1b is broadly expressed in the presumptive 

midbrain before neural tube closure, and its expression becomes restricted to VM 

DA NPs at E10.5 in mice, where it is co-expressed with Lmx1a and Msx1 (Smidt et 

al., 2000, Andersson et al., 2006). Surprisingly, Lmx1b expression disappears in the 

VM at around E11.5, but reappears at E16 in post-mitotic VM DA neurons. Lmx1b is 

subsequently co-expressed with Pitx3 and TH into adulthood in the VM (Dai et al., 

2008). Although loss of Lmx1b leads to a loss of VM DA neurons (Smidt et al., 

2000), Lmx1b mutant mice express Nurr1 and TH normally during early 

development, but fail to express Pitx3. These TH-positive VM neurons, which lack 

Pitx3 expression, are lost by birth, suggesting a role for Lmx1b in the regulation of 

Pitx3 expression and VM DA neuronal survival. Similarly in Wnt1 null mice, the 

few TH-positive VM neurons generated lack Pitx3 expression, and are subsequently 

lost before E12.5 (Prakash et al., 2006). A similar regulatory loop may exist between 

Wnt1 and Lmx1b, as Lmx1b induces and/or maintains the expression of Wnt1, an 
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important extrinsic factor in VM DA neurogenesis (see above), around the midbrain-

hindbrain boundary (Adams et al., 2000, Matsunaga et al., 2002). Wnt1 has also 

been proposed to act downstream of Lmx1b in the potential regulation of Pitx3 

expression (Prakash et al., 2006). This maintenance of Wnt1 expression by Lmx1b 

may be important in the generation of post-mitotic DA neurons, as Wnt1 is required 

for the terminal differentiation of VM DA neurons at later stages of embryogenesis 

(Prakash et al., 2006). 

Nurr1 

Nurr1 is a member of the nuclear receptor superfamily of steroid-thyroid hormone-

activated transcription factors (Law et al., 1992), which atypically lacks both a 

ligand cavity and a canonical coactivator-binding site (Wang et al., 2003). Nurr1 is 

expressed in the VM from E10.5 in the mouse, as VM DA NPs begin to become 

post-mitotic, one day before the appearance of TH (Zetterstrom et al., 1996), and 

Nurr1 expression is maintained into adulthood (Backman et al., 1999). Nurr1 

expression levels show a sharp peak between E13 and E15 in the rat, at a stage of 

development when most VM DA neurons are undergoing terminal differentiation 

(Volpicelli et al., 2004). VM DA neurons in Nurr1-deficient animals, do not express 

TH, l-aromatic amino acid decarboxylase (AADC), the vesicle monoamine 

transporter 2 (VMAT2) or the dopamine transporter (DAT), all markers of a DA 

neuron that has acquired its DA neurotransmitter identity (Castillo et al., 1998, Smits 

et al., 2003, Filippi et al., 2007). Nurr1 has been shown to play a direct role in 

regulating the expression of these genes, and a number of well-established signalling 

pathways in VM DA development cooperate with Nurr1 to mediate this induction.  

Specifically, Nurr1 has been shown to induce TH expression by binding to a NRBE 

(NGFI-B response element) sequence in the TH promoter (Sakurada et al., 1999, 

Kim et al., 2003), and is known to induce DAT expression via an NRBE-independent 

mechanism (Sacchetti et al., 2001). These effects of Nurr1 on the expression of these 

genes are enhanced by Wnt-activated β-catenin, which has been shown to promote 

Nurr1-induced TH promoter activation, by interacting with Nurr1 at NRBEs, causing 

the dissociation of transcriptional co-repressors and recruitment of transcriptional co-

activators (Kitagawa et al., 2007). Similarly, nuclear FGFR1 has been shown to 

cooperate with Nurr1 to promote activation of the TH promoter (Baron et al., 2012a). 

Collectively these data show that Nurr1 functions as a master regulator in the 

induction of the neurotransmitter phenotypic identity of VM DA neurons, and 



37 
 

controls the expression of the molecules that regulate the synthesis, vesicle 

packaging, axonal transport and reuptake of DA.  

 Aside from this role in DA identity, Nurr1 has also been shown to be crucial 

for long-term VM DA neuron survival.  In Nurr1-deficient animals, VM DA neurons 

adopt a correct ventral position and express the DA markers Lmx1b, Pitx3 and En1 

(Saucedo-Cardenas et al., 1998, Wallen et al., 1999), demonstrating that Nurr1 is not 

required for all aspects of VM DA specification and differentiation. However, these 

Pitx3-expressing VM DA neurons are lost in Nurr1-deficient animals during later 

development (Saucedo-Cardenas et al., 1998), suggesting a role for Nurr1 in the 

survival and maintenance of VM DA neurons. In support of these findings, Nurr1 is 

expressed throughout the life of VM DA neurons and its heterozygous mutation 

increases the vulnerability of VM DA neurons to the parkinsonian toxin, 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine-HCl (MPTP) (Le et al., 1999). Furthermore, the 

conditional ablation of Nurr1 at a late stage of VM DA neuron development or in the 

adult brain results in loss of striatal DA, loss of VM DA markers and DA 

neurodegeneration, with SNpc DA neurons more vulnerable than those of the VTA 

(Kadkhodaei et al., 2009).  

 While Nurr1 has been shown to directly regulate the expression of TH and 

DAT, Nurr1 may promote VM DA neuron survival indirectly, by inducing the 

expression of genes essential for their survival. Nurr1 has been found to regulate the 

expression of the GDNF receptor, cRet, whose expression is lost in Nurr1-deficient 

animals (Castillo et al., 1998). GDNF is a well-known survival-promoting factor for 

VM DA neurons (Toulouse and Sullivan, 2008, Yasuhara et al., 2007, Lin et al., 

1993). Nurr1 has also been shown to regulate the expression of VIP (vasoactive 

intestinal peptide), which has been proposed to function in the survival of VM DA 

neurons (Luo et al., 2007). It remains to be determined whether the VM DA neuronal 

death in Nurr1 null mutants is as a direct consequence of the absence of a Nurr1-

mediated survival-promoting effect, and/or is induced by a lack of neurotransmission 

by these cells. Aside from its role in DA survival, Nurr1 has been suggested to play a 

role in target innervation by VM DA neurons (Wallen et al., 1999), however, this 

finding has been challenged (Witta et al., 2000). It will be important to assess the 

role of Nurr1 in striatal innervation in vivo using an approach where DA neurons can 

survive long term in the absence of Nurr1. Such a strategy has been employed 

successfully in the PNS, where Bax-deficient mice were used to analyse specifically 
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the effects on a gene of interest on target innervation independent of this genes role 

in neuronal survival (Barker et al., 2001, Glebova and Ginty, 2004, Middleton and 

Davies, 2001).  

 The molecular mechanisms by which Nurr1 expression is induced and 

regulated in the VM are largely unknown, but Nurr1 has been shown to function 

independently of FGF8 and Shh signalling (Sakurada et al., 1999). However, recent 

data suggests that FoxA1 and FoxA2 may be critical to Nurr1 induction. Through 

the analysis of single and double mutants, FoxA1 and FoxA2 have been reported to 

regulate the expression of Nurr1 in a dose-dependent manner, with a dramatic 

decrease in Nurr1 expression observed in double mutants (Ferri et al., 2007). In 

addition to this, a gain-of-function study has demonstrated that FoxA2 mediates 

Nurr1 expression (Lee et al., 2010). Lee at al. (2010) further demonstrated that 

FoxA2 cooperates with Nurr1 during VM DA neurogenesis, with both factors 

binding to the TH promoter. In support of this, the loss of FoxA2 resulted in an 

increase in the numbers of Nurr1-positive, TH-negative, cells in the VM (Ferri et al., 

2007). These more recent data suggest that Nurr1 function may not be independent 

of Shh signalling, as FoxA2 is a downstream target of Shh, however FoxA2 can 

function independently of Shh. Similar to Nurr1, FoxA2 appears to be involved in 

the survival and maintenance of VM DA neurons, as aged mice with a heterozygous 

mutation in FoxA2 develop PD-like symptoms and pathologies (Kittappa et al., 

2007), but this may be due to altered FoxA2-induction of Nurr1 expression. 

Pitx3 

Pitx3 is a bicoid-related, homeodomain-containing transcription factor that is 

exclusively expressed in the mouse VM from E11.5, at a time when VM DA neurons 

are beginning to appear (Smidt et al., 1997). VM DA neurons only begin to express 

Pitx3 when they arrive at their final ventral position, suggesting that Pitx3 is not 

involved in the early development or migration of VM DA neurons (Smidt et al., 

2004). GDNF has been suggested to induce the expression of Pitx3 in the VM (Peng 

et al., 2011, Lei et al., 2011) which is interesting as Nurr1 is known to regulate the 

expression of the GDNF receptor cRet, and is expressed before Pitx3 in the VM. 

Nurr1 may therefore play an indirect, non-essential (Pitx3 expression is retained in 

Nurr1 null mutants) role in the induction of Pitx3 expression. Pitx3 and Nurr1 have 

been shown to function cooperatively in the regulation of target genes involved in 

VM DA neurogenesis (discussed later) (Chakrabarty et al., 2012, Jacobs et al., 
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2009a, Jacobs et al., 2009b, Hwang et al., 2009). Pitx3 is co-expressed in the TH-

positive neurons of the VM (Smidt et al., 1997, Zhao et al., 2004, van den Munckhof 

et al., 2003). In aphakia mice, which have approx. 5% Pitx3 mRNA expression due 

to deletions in the Pitx3 gene, there is unaltered VM DA development until E12.5, at 

which time a deficit is observable in the lateral population of VM DA neurons which 

constitute the presumptive SNpc (Smidt et al., 2004, Nunes et al., 2003, Hwang et 

al., 2003, van den Munckhof et al., 2003). VTA DA neurons are largely unaffected 

in these mice. The specific absence of SNpc DA neurons in Pitx3 null (aphakia) 

mice results in a loss of nigrostriatal projections to the dorsal striatum (Smidt et al., 

2004, Nunes et al., 2003, Hwang et al., 2003, van den Munckhof et al., 2003), and 

suggests distinct developmental programs for SNpc and VTA DA neurons. 

Interestingly, it has been reported that lateral VM DA neurons express Pitx3 prior to 

TH, while the medial VM DA neurons express Pitx3 coincidently with TH (Maxwell 

et al., 2005). In addition to this, Pitx3 has been suggested to regulate TH expression 

(Lebel et al., 2001, Cazorla et al., 2000, Maxwell et al., 2005). Pitx3 may therefore 

be critical for the induction of TH expression in SNpc DA neurons, but not those of 

the VTA. In support of this, the absence of Pitx3 results in a failure of SNpc DA 

neurons to express TH, while VTA neurons do so. Interestingly, Pitx3 expression has 

been reported to be six times higher in VTA DA neurons than in those of the SNc 

(Korotkova et al., 2005). Perhaps this lower expression level of Pitx3 functions in 

the induction of TH expression in SNpc DA neurons, while it may also contribute to 

their inherent sensitivity. In support of the proposed role for Pitx3 in TH expression, 

Pitx3 has been shown to contribute to the neurotransmitter phenotype of VM DA 

neurons by inducing the expression of DAT and VMAT2 (Hwang et al., 2009). 

However, the loss of TH-positive neurons in the ventro-lateral VM is not due to the 

loss of TH mRNA expression, but to neuronal loss (Hwang et al., 2003, Nunes et al., 

2003, Smidt et al., 2004). Perhaps the selective neurodegeneration of SNc DA 

neurons in aphakia mice is not as a result of a failure of DA neurogenesis in the 

absence of Pitx3, but may reflect the characteristic sensitivity of this VM population 

in comparison to those of the VTA. Indeed, the VTA DA neurons in aphakia mice 

display a normal DA phenotype (Smidt et al., 2004). A recent study has 

demonstrated that Pitx3 induces the expression of BDNF in SNpc DA neurons, 

which may be important in the survival of these neurons (Peng et al., 2011). Peng et 

al. (2011) showed that loss of BDNF expression correlates with the SNpc neuronal 
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loss in Pitx3 null mice, and that BDNF treatment induces the survival of Pitx3 (-/-) 

VM DA neurons and protects them against the dopaminergic neurotoxin 6-

hydroxydopamine. Pitx3 may therefore be critical in the maintenance and survival of 

SNpc DA neurons, acting via BDNF. Similarly, BDNF has been identified as a target 

gene of Nurr1 (Volpicelli et al., 2007).  

 Despite the lack of a direct role for Nurr1 in Pitx3 expression, a recent set of 

studies has shown that Nurr1 regulates target gene expression cooperatively with 

Pitx3 during VM DA neurogenesis, with Pitx3 potentiating Nurr1 activity by 

releasing it from SMRT-mediated repression (Jacobs et al., 2009a, Jacobs et al., 

2009b). Similarly, the same group demonstrated that Nurr1 and Pitx3 cooperatively 

regulate the expression of two cholinergic receptors, Chrna3 and Chrnb6, which 

may play non-essential roles in VM DA neurogenesis (Chakrabarty et al., 2012). 

Furthermore, Pitx3 has been shown to induce the expression of the Nurr1-target 

genes, VMAT2 and DAT, potentially in coordination with Nurr1 (Hwang et al., 

2009). Pitx3 also induces the expression of aldehyde dehydrogenase 2 (ADH2), an 

enzyme which is highly expressed in SNpc DA neurons (Chung et al., 2005). In 

support of this combinatorial function, Nurr1 and Pitx3 have been shown to 

cooperatively promote terminal maturation of VM DA neurons in stem cell cultures 

(Martinat et al., 2006). Collectively, these data suggest Nurr1 and Pitx3 may 

cooperate to promote VM DA survival and acquisition of a mature DA 

neurotransmitter phenotype by cooperatively regulating the expression of DA 

neurotrophic factors, BDNF and GDNF, and of genes involved in DA 

neurotransmission respectively. 

En1 and En2 

En1 and En2 are important in the formation of the isthmus organizer and in the 

generation of VM DA neurons (Simon et al., 2001, Liu and Joyner, 2001). Following 

their initial expression in the midbrain-hindbrain boundary (Davis and Joyner, 1988), 

VM DA neurons begin to express En1 and En2 between E11.5 and E14 in mice, and 

this expression is maintained into and throughout adulthood (Alberi et al., 2004). 

Interestingly, in En1 and En2 double mutants, VM DA neurons develop normally 

initially, but are lost by E14 due to caspase-dependent apoptosis, just after the 

expression of En begins in the wild type (Simon et al., 2001, Alberi et al., 2004). 

Alberi et al. (2004) demonstrated that En1 and En2 are required cell-autonomously 

in post-mitotic VM DA neurons to prevent apoptosis. However, further studies are 



41 
 

required to ascertain that VM DA neuronal loss in the En double mutants is not as a 

result of the large midbrain/hindbrain deletion in these mice. Despite this possibility, 

these data strongly suggest a role for En1 and En2 in the maintenance and survival of 

VM DA neurons. Indeed, intermediate genotypes between wild type and double En 

mutants show varying degrees of VM DA neuronal deficiencies (Simon et al., 2001, 

Sonnier et al., 2007, Sgado et al., 2006), as has been well-described in recent reviews 

(Alavian et al., 2008, Alves dos Santos and Smidt, 2011). The most notable 

phenotype was observed in En1 (+/-)/En2 (+/+) mutant mice, which display a 

progressive degeneration (between 8-24 weeks) of VM DA neurons that can be 

antagonized by recombinant En2 protein infusion (Sonnier et al., 2007). The 

progressive degeneration of VM DA neurons in En1 heterozygotes (En2 null 

background in Sgado et al. (2006) study) is more pronounced in the SNpc and results 

in reduced striatal DA and motor deficits, as is characteristic of PD pathology (Sgado 

et al., 2006, Sonnier et al., 2007). These findings further support the theory that 

En1/En2 function as important survival-promoting factors for VM DA neurons.  

Diversity in genetic regulation of DA neuron development 

As mentioned earlier, the molecular mechanisms controlling phenotypic and 

functional diversity between the various VM DA neuronal subpopulations remain 

poorly understood. However, recent work has implicated Otx2 as a factor that may 

contribute to these distinct developmental pathways. FoxA2, En1, Lmx1b, Nurr1 and 

Pitx3 are ubiquitously expressed in post-mitotic VM DA neurons throughout life, 

however Otx2 expression is restricted to VTA DA neurons in the adult brain (Di 

Salvio et al., 2010b). Otx2 was shown to regulate subtype identity in the VTA by 

antagonising the expression of Girk2 and DAT, and was also shown to antagonise the 

neurotoxic effect of the MPTP in these VTA neurons (Di Salvio et al., 2010a). 

Interestingly, ectopic Otx2 expression also provides SNpc neurons with 

neuroprotection to MPTP (Di Salvio et al., 2010a). This potential role of Otx2 in VM 

DA neuronal subtype identity has been comprehensively described in a recent review 

(Simeone et al., 2011).   

 It is also necessary to mention that a proportion of DA neurons arise anterior 

to the VM in the diencephalon (Gonzalez et al., 1999, Lahti et al., 2012, Marin et al., 

2005, Puelles and Verney, 1998, Smits et al., 2006, Verney, 1999, Verney et al., 

2001, Vitalis et al., 2000), and develop earlier than those from the VM (Lahti et al., 

2012, Marin et al., 2005). The diencephalic DA domain differs to that of the 
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midbrain. The DA NPs in the diencephalon are intermingled with non-DA 

Pou4f1+FoxP1+ cells, they lack Pitx3 and DAT expression, and lose En1/2 

expression by E9.5 (Lahti et al., 2012), unlike those in the midbrain (Alberi et al., 

2004). FGF8 regulates the diverse identities of the DA neurons from the VM and 

caudal diencephalon. This anterior-posterior patterning by FGF8 suppresses 

diencephalic identity and maintains midbrain identity (Lahti et al., 2012, Scholpp et 

al., 2003). A study using zebrafish showed that Nodal signalling was required for the 

specification of ventral diencephalic and pretectal catecholaminergic neurons 

(Holzschuh et al., 2003). Holzschuh et al. (2003) also demonstrated that FGF8 

signalling was not required for the specification of these neurons but was important 

for their proliferation or survival, and that Shh signalling is required for pretectal DA 

development. Diencephalic DA neurons therefore seem to be subject to a different 

program of neurogenesis than those of the VM. Genetic fate-mapping studies are 

needed to verify whether, or to what extent, these diencephalic DA neurons 

contribute to the DA subpopulations of the VM. 
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Figure 3.2.1: Molecular interactions in the genesis of VM DA neurons.  

The sequence of appearance (see time-course arrow) of each of the factors involved 

in VM DA neuronal development, and their effects on each other (Note: the 

molecules in black text are not shown at the time point at which they appear). The 

arrows denote the effect on expression: purple = positive regulation, green = 

autoregulatory loop, orange = cooperative regulation, and black = negative 

regulation. The factors are colour-coded as per their role (listed above molecules). 

Otx2, Gbx2, En1/2, Lmx1b, Wnt1 and Pax2/5 play vital roles in the establishment of 

the midbrain/hindbrain region, including the isthmus organizer and VM floor plate, 

and the majority also play direct roles in VM DA neurogenesis. The diffusible 

signalling factors FGF8, Shh and Wnt1 induce VM DA neurogenesis in radial glial-

like floor plate cells, through the induction of FoxA2, Lmx1a/1b, and Msx1 

expression. Two autoregulatory loops, Shh-FoxA2 and Wnt1-Lmx1a, contribute to 

this process, with Hes1 being involved in the Shh-FoxA2 autoregulatory loop, and 

Lmx1b functioning cooperatively with Lmx1a. The expression of Nurr1 and Pitx3 

promotes the differentiation of VM DA NPs into post-mitotic neurons. Nurr1 

induces the expression of proteins that are key to the neurotransmitter phenotype of 

VM DA neurons. A number of factors facilitate the induction of TH by Nurr1 (listed 

in orange), and Pitx3 has been shown to cooperatively regulate a number of 

important genes involved in VM DA neurogenesis with Nurr1. 
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3.2.5 Establishment of DA projections from the VM 

Following their generation, post-mitotic VM DA neurons undergo functional 

maturation, which involves axonal pathfinding and synaptogenesis. Axons from VM 

DA neurons, which arise at E11 in mice (E13 in rat), initially project dorsally but 

then deflect ventro-rostrally towards the forebrain, in response to extrinsic 

directional cues in the dorsal midbrain and repulsive cues in the caudal brain stem 

(Gates et al., 2004, Nakamura et al., 2000). The reorientated VM DA neuronal axons 

then extend towards the telencephalon, through the diencephalon, via the medial 

forebrain bundle (MFB) which has been reported to have a chemo-attractive effect 

on these axons (Gates et al., 2004). A recent paper has suggested that Nurr1 

regulates the axonal extension of VM DA neurons through the regulation of the 

expression of the axon genesis gene Topoisomerase IIβ (TopIIβ) (Heng et al., 2012). 

Furthermore, a study using retrograde labelling suggested that Nurr1 plays a role in 

target innervation by VM DA neurons (Wallen et al., 1999). However, as mentioned 

before, this finding has been challenged (Witta et al., 2000). Gates et al. (2004) also 

demonstrated that the thalamus prevents entry of VM DA axons through the action 

of contact-dependent inhibitors, which likely function to maintain the orientation of 

these axons in the MFB. Furthermore, Nkx2.1 mutant mice display aberrant midline 

crossing of MFB fibers at the caudal diencephalon, suggesting that chemo-repulsive 

factors involved in maintaining the ipsilateral trajectory of the MFB at the medial 

part of the caudal diencephalon are lost in this mutant (Kawano et al., 2003).  

 The VM DA neuronal axons run via the MFB into the telencephalon, where 

they terminate in the striatum and cerebral cortex (Specht et al., 1981a, Specht et al., 

1981b, Zhao et al., 2004). In the case of the nigrostriatal pathway, chemoattraction 

from the striatum and chemorepulsion from the cortex have been suggested to 

facilitate appropriate striatal innervation by nigral DA neurons (Gates et al., 2004). 

The molecular signals that guide the axons of the various populations of VM DA 

neurons remain to be characterised, however a relatively recent review has 

comprehensively described the current understanding of the development of VM DA 

circuitry (Van den Heuvel and Pasterkamp, 2008). Molecules which are known to be 

involved in the establishment of the VM DA circuit are illustrated in Fig. 3.2.2.  

 Despite the current paucity of studies determining the molecular basis of the 

formation of VM DA projections, several molecules have been implicated to play a 
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role in this process. EphrinB2 and its receptor EphB1 have been shown to be 

expressed in a complementary pattern to facilitate nigro-striatal innervation, with 

EphB1 expressed by VM DA neurons (with highest expression in the SNpc) and 

ephrinB2 expressed in the striatum (Yue et al., 1999). Cell-surface tethered ephrins, 

and their Eph receptor tyrosine kinases, are known to play important roles in axonal 

guidance (Egea and Klein, 2007). Furthermore, Yue at al. (1999) showed that co-

culture with ephrinB2-expressing NIH-3T3 cells reduced neurite outgrowth and 

induced death of SNpc, but not VTA, DA neurons. These results suggest that the 

interaction between ephrinB2 and EphB1 in the striatum ensures that SNc DA 

neurons are confined to the dorsal striatum. Conversely, EphB1 expression has been 

shown to disappear in the SNpc from E18, and its null mutation resulted in no 

observable defects in the nigrostriatal pathway (Richards et al., 2007). These results 

challenge the role for EphB1 in the formation of the nigrostriatal pathway, however 

other Eph receptors may allow SNpc DA axons to detect ephrinB2 in the striatum. In 

support of a role for ephrinB2 in the correct target innervation of nigral DA neurons, 

the application of ephrinB2 to VM cultures resulted in an upregulation of Nurr1 

(Calo et al., 2005). This action by ephrinB2 could function to support and maintain 

correctly-innervated DA neurons. However, this effect was suggested to be mediated 

by the EphB1 receptor (Calo et al., 2005). Other ephrins and Ephs have also been 

implicated in DA pathway formation. For example, studies on genetically-altered 

EphAs and ephrinAs have shown that these molecules are important in the formation 

of VM DA projections (Sieber et al., 2004, Halladay et al., 2004, Van den Heuvel 

and Pasterkamp, 2008), with ephrinA5 expression being reduced in the forebrain of 

Nkx2.1 mutants (described above) (Marin et al., 2002). EphrinA5 has been shown to 

be expressed in the developing telencephalon and striatum, in the vicinity of VM DA 

axons, and to have a repulsive effect on these axons, likely through the action of 

EphA5 (Deschamps et al., 2009). Conversely, another study has shown that 

ephrinA5-EphA5 signalling promotes DA axonal growth in vitro (Cooper et al., 

2009). Perhaps ephrinA5 initially functions in the establishment of VM DA 

projections, but later functions to restrict these axons to their targets. Semaphorin 

signalling has also been proposed to function in VM DA axonal pathfinding 

(Hernandez-Montiel et al., 2008, Torre et al., 2010, Tamariz et al., 2010, Kolk et al., 

2009), with a number of semaphorins and their receptors being expressed in VM DA 

neurons (Torre et al., 2010). Furthermore, Sema3A expression is reduced in Nkx2.1 
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mutants (Kawano et al., 2003), and the expression of its co-receptor Neuropilin1 has 

been shown to be regulated by Nurr1 in the developing midbrain (Hermanson et al., 

2006).  

 The netrin receptor DCC has been demonstrated to play an important role in 

the formation of VM DA axonal projections. DCC is expressed in the VM and in 

cultured VM DA neurons, as well as in VM DA targets, such as the striatum and 

prefrontal cortex (Livesey and Hunt, 1997, Xu et al., 2010, Lin et al., 2005), while 

netrin1 is expressed in a complimentary fashion in VM, striatal and cortical neurons 

(Hamasaki et al., 2001, Livesey and Hunt, 1997, Manitt et al., 2011). Studies of 

heterozygous and homozygous DCC mutants have provided insights into how netrin-

DCC signalling may regulate the formation of VM DA neuronal projections (Xu et 

al., 2010, Flores et al., 2005). DA innervation of the dorsal striatum is not affected in 

heterozygous and homozygous DCC mutants, while the ventral striatal DA 

projections are aberrantly shifted to a more dorsal location in null mutants. The 

innervation of the prefrontal cortex by VM DA neurons is significantly reduced in 

null mutants, suggesting that DCC is an important mediator of VM DA axonal 

guidance. Xu et al. (2010) also propose that DCC signalling is an important negative 

regulator of DA axon arborisation, demonstrating that DA innervation is 

maintained/increased despite significant VM DA neuronal loss in DCC deficient 

animals. In support of this, analysis of heterozygous DCC mutants has shown that 

DCC can selectively influence the branching of VM DA fibers in the prefrontal 

cortex at puberty, with a significant increase in the number of TH-positive 

varicosities present post-puberty in these heterozygotes (Manitt et al., 2011). This 

proposed role of DCC contradicts previous reports which had suggested that DCC 

mediates netrin1-promotion of axonal outgrowth in VM DA neuronal cultures (Lin 

et al., 2005). However, these contrasting results may reflect differences between the 

responses of VM DA neurons in vitro and in vivo. Furthermore, DCC receptors are 

known to mediate both attraction and repulsion aspects of the axon growth-

promoting effects of netrins (Round and Stein, 2007). The atypical homeoprotein 

Pbx1a has been shown to regulate the expression of DCC in VM DA neurons, and its 

deficiency results in partial misrouting of VM DA fibers (Sgado et al., 2012). 

Interestingly, DCC null mice also display aberrant midline crossing of MFB DA 

fibers at the caudal diencephalon, which is similar to that observed in Nkx2.1 mutant 

mice (Xu et al., 2010), likely reflecting a loss of chemorepellant(s) at the ventral 
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midline. In Pax6 null mice, which display a ventro-dorsal expansion of netrin1 

expression, VM DA axons within the MFB are deflected dorsally in the 

diencephalon, seemingly avoiding areas of ectopic netrin1 expression (Vitalis et al., 

2000). Netrin-DCC signalling may therefore act at the ventral midline of the 

diencephalon to repel VM DA projections, ensuring that they maintain their 

ipsilateral course in the MFB. Similarly, mice deficient in both Slit1 and Slit2 display 

abnormal ventral midline crossing of MFB fibers in the diencephalon, suggesting 

they may also act as ventral midline chemorepellants (Bagri et al., 2002, Dugan et 

al., 2011). In support of this theory, Slit2 repels VM DA neuronal axons and inhibits 

their growth in vitro (Lin et al., 2005, Dugan et al., 2011). Nkx2.1 mutant mice 

display altered Slit1 and Slit2 expression, and a more severe phenotype than that of 

Slit1/Slit2 double mutants (Marin et al., 2002). This suggests that Nkx2.1 may 

regulate the expression of a number of important chemorepellants at the diencephalic 

ventral midline, such as Slit1/Slit2, Sema3A, ephrinA5 and perhaps netrin1. 

However, netrin1 expression is maintained in the subpallium of the Nkx2.1 mutants 

(Marin et al., 2002), and has been reported to attract diencephalic (A11) DA neurons 

towards the ventral midline in the absence of repulsive Slit signals (Kastenhuber et 

al., 2009). Mice deficient in the Slit receptors, Robo1 and Robo2, also display 

guidance errors in the MFB tract similar to those in the Slit double mutant (Lopez-

Bendito et al., 2007, Dugan et al., 2011). However, Dugan et al. (2011) also 

demonstrated abnormal dorsal trajectories of VM DA fibers in Robo1/2 knockout 

mice, which does not occur in the Slit1/2 mutant, suggesting that these Robos also 

function Slit-independently. The expression patterns of Slits also propose a role for 

these molecules in VM DA axonal guidance, with Slit1 expressed in the dorsal 

midbrain (Nakamura et al., 2000) and Slit3 expressed in the caudal midbrain (Gates 

et al., 2004), suggesting that these Slits contribute to the ventro-rostral trajectory of 

VM DA fibers. 

Upon innervation of their targets, the axons of VM DA neurons compete to 

establish functional synapses and survive. There are two peak postnatal periods of 

naturally-occurring cell death for VM DA neurons. Cell death begins close to birth, 

reaching an initial peak at P2, before a second peak of apoptosis occurs at P14, with 

this process largely subsiding around P20 in rodents (Jackson-Lewis et al., 2000, Oo 

and Burke, 1997, Burke, 2003). This programmed cell death pathway relies on the 

limited availability of target-derived neurotrophic factors (Burke, 2003), with striatal 
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and prefrontal cortex tissue being shown to promote VM DA neuronal survival when 

co-cultured in vitro (Hoffmann et al., 1983). The most well-established target-

derived neurotrophic factor for VM DA neurons is GDNF (Lin et al., 1993, Beck et 

al., 1995, Gash et al., 1996, Tomac et al., 1995, Costantini and Isacson, 2000, Lei et 

al., 2011, Wang et al., 2010, Redmond et al., 2009, Akerud et al., 1999, Burke, 

2003). Another member of the GDNF protein family, neurturin, also acts as a 

neurotrophic factor for VM DA neurons (Akerud et al., 1999, Horger et al., 1998, 

Oiwa et al., 2002, Tseng et al., 1998, Zihlmann et al., 2005). Other neurotrophic 

factors identified for VM DA neurons include TGFβs (Farkas et al., 2003), BDNF 

(Alonso-Vanegas et al., 1999), BMP2 and GDF5 (O’Keeffe et al., 2004a, Wood et 

al., 2005, Reiriz et al., 1999, Jordan et al., 1997, Sullivan et al., 1997, Sullivan et al., 

1999, Hurley et al., 2004, O'Sullivan et al., 2010, Sullivan et al., 1998b, Espejo et al., 

1999, Hegarty et al., 2014a). Interestingly, FGF2 has recently been shown to act as a 

target-derived regulator of VM DA innervation (Baron et al., 2012b). 
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Figure 3.2.2: Molecules involved in the formation of the nigrostriatal DA 

circuitry.  

Representative photomicrographs showing cryosections through the developing rat 

nigrostriatal pathway at (A) E14, (B) E16 and (C) E18, immunostained for TH. 

Molecules involved in the migration (A), axon extension (B), axon orientation (B), 

target innerevation (C) and survival (C) of VM DA neurons are labelled on the 

images where appropriate. Scale bar = 100μm. (D) Graphical representation of the 

time-course of DA circuitry formation. VM DA neurons begin to migrate and extend 

axons at E13 in the rat. These DA fibers begin to reach the striatum by E14, and the 

cortex at E16. The innervation of these targets continues into the first week after 

birth. Naturally occurring cell death begins close to birth, reaching a peak at P2 and 

P14, before subsiding around P20.  
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3.3 The BMP-Smad 1/5/8 Signalling Pathway 

BMPs, such as BMP2 and GDF5, play roles in the development of midbrain DA 

neurons, but the mechanisms by which they achieve their DA neurotrophic effects 

are unclear.  

 

3.3.1 Bone Morphogenetic Proteins and Their Receptors 

Smad transcription factors are the pivotal intracellular effectors of the TGF 

superfamily members, which are dimeric, structurally-conserved proteins, that have 

pleiotropic functions in vitro and in vivo (Massague and Wotton, 2000). BMPs 

constitute the largest subgroup of the TGF superfamily, and consist of at least 20 

phylogenetically-conserved growth factors, including GDF5 (Kawabata et al., 1998). 

BMPs are synthesised as large precursors of 400-500 amino acids, consisting of an 

N-terminal peptide which directs secretion, a prodomain which is involved in 

folding, and the C-terminal mature peptide which is cleaved from the prodomain 

upon secretion and dimerisation. The mature peptide has seven highly-conserved 

cysteine residues, six of which form three intramolecular disulfide bonds known as 

the cysteine-knot motif. The seventh forms a disulfide bond with another BMP 

monomer, resulting in dimerisation (Xiao et al., 2007, Peterson and Nutt, 2008, 

Sieber et al., 2009). A number of cleaved, mature BMP peptides have been shown to 

remain non-covalently associated with their prodomain. This interaction may 

function to target BMPs to the extracellular matrix, where the prodomains can bind 

to fibrillins, thus preventing the diffusion of BMPs away from the cell of origin 

(Sengle et al., 2008, Bragdon et al., 2011).  

 For signal transduction, BMP family members bind to two distinct types of 

serine/threonine kinase cell-surface receptors (Fig. 3.3.1), type I and type II receptors 

(BMPR), both of which are required for signal transduction (Yamashita et al., 1996, 

Shi and Massague, 2003). These BMPRs are composed of a short extracellular 

domain, a single transmembrane domain, and an intracellular serine/threonine kinase 

domain. There are five known distinct BMP type I receptors (BMPRI): activin 

receptor-like kinases (ALK) 1, ALK2, ALK3 (also known as BMPRIa), ALK4, 

ALK6 (also known as BMPRIb), and there are three type II receptors: BMP type II 

receptor (BMPRII), activin type IIa receptor, and activin type IIb receptor (Nohe et 

al., 2004, Bragdon et al., 2011). BMPRII has a long C-terminal tail at the end of its 
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serine/threonine kinase domain (Rosenzweig et al., 1995), which plays an important 

role in the functional regulation of several cytoskeletal proteins (Miyazono et al., 

2005). C-terminal truncated slice variants that disrupt the function of BMPRII have 

been identified, and have been suggested to confer predisposition to primary 

pulmonary hypertension (Lane et al., 2000). Upon ligand binding, two molecules of 

the constitutively-active type II receptor kinase form a hetero-tetrameric complex 

with two molecules of the type I receptor kinase (Kirsch et al., 2000), and they then 

transphosphorylate the intracellular Gly-Ser domain of the type I receptors (Fig. 

3.3.1). This phosphorylation activates the type I receptor which subsequently 

transmits intracellular signals by recruiting and phosphorylating Smad proteins (Fig. 

3.3.1) (Miyazono et al., 2001, Miyazawa et al., 2002). The type I receptor thus 

determines the specificity of intracellular signalling. Unlike the TGFs, in most 

cases it is the type I receptor that is the high affinity receptor for BMPs (Groppe et 

al., 2008, Heinecke et al., 2009). Co-receptors for the BMP receptors are also present 

at the cell surface, an example of which is the glycosylphosphatidylinositol-linked 

molecule DRAGON that interacts with BMPs and stabilizes the active BMPR 

complex to enhance BMP signalling (Samad et al., 2005, Wordinger and Clark, 

2007). 

 

3.3.2 The Smad Transcription Factors 

The major signalling molecules acting downstream from the serine/threonine kinase 

receptors are the Smad proteins (Moustakas et al., 2001). These are classified into 

three subclasses based on function, receptor-regulated Smads (R-Smads), common-

mediator Smads (Co-Smads), and inhibitory Smads (I-Smads) (Heldin et al., 1997). 

R-Smads are specifically phosphorylated by activated type I receptor kinases, and for 

the BMP family are Smad1, Smad5 and Smad8, referred to as BR-Smads. Co-Smads 

are recruited by activated, phosphorlyated R-Smads into heteromeric complexes 

which translocate into the nucleus. To date, only one Co-Smad, known as Smad 4, 

has been isolated from mammals (Zhang et al., 1997). The I-Smads, Smad6 and 

Smad7, negatively regulate R-Smad/Co-Smad signalling (Itoh et al., 2000, 

Miyazawa et al., 2002, Miyazono et al., 2005).  
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Figure 3.3.1: The BMP-Smad 1/5/8 signalling pathway.  

Upon ligand-induced heteromeric complex formation and activation of type I and 

type II receptors, R-Smads are subsequently phosphoryled and their MH domains 

dissociate. The activated R-Smads form heteromeric complexes with the Co-Smads 

through their MH2 domains, and the R-Smad-Co-Smad hetero-trimer then 

translocates to the nucleus to regulate target gene expression through their MH1 

domains. The I-Smads physically interact with activated type I receptors to block R-

Smad activation, and with phosphorylated R-Smads to prevent R-Smad-Co-Smad 

complex formation. 
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 Smads are composed of highly-conserved N-terminal Mad homology (MH) 1 

domains and C-terminal MH2 domains, which are linked by a divergent proline-rich 

linker region of variable length that contains multiple phosphorylation sites each of 

which allow specific cross-talk with specific signalling pathways (Heldin et al., 

1997, Massague and Wotton, 2000, Shi and Massague, 2003). I-Smads lack the MH1 

domain (Souchelnytskyi et al., 1998), which is the DNA-binding domain of R-

Smads and Co-Smads. The MH2 domains of R-Smads are responsible for their direct 

interaction with type I receptor kinases, and are also responsible for Smad complex 

formation. The L3 loop of the MH2 domain determines the specificity of receptor 

interaction (Lo et al., 1998). Additionally, Smad1 has the -helix 1 in its MH2 

domain to confer receptor specificity (Chen and Massague, 1999). R-Smads have 

Ser-Ser-Val/Met-Ser (SSXS) motifs in their most C-terminal parts which are 

phosphorylated by activated type I receptors. In the absence of receptor activation, 

MH1 and MH2 domains are physically associated with one another (Miyazawa et al., 

2002, Miyazono et al., 2005). Upon receptor activation and subsequent R-Smad 

phosphorylation and MH domain dissociation, R-Smads form hetero-oligomers with 

Co-Smad through their MH2 domains (Fig. 3.3.1). These heteromers are thought to 

consist of two R-Smads and one Co-Smad (Qin et al., 2001). This heterotrimeric 

complex then translocates to the nucleus to regulate target gene expression (Fig. 

3.3.1) (Miyazawa et al., 2002). This nuclear translocation may be mediated by a 

nuclear import activity of Smads, evidence of which have previously been reported 

for Smad2 (Xu et al., 2000), Smad3 (Xiao et al., 2000a, Xiao et al., 2000b), and 

Smad4 (Xiao et al., 2003). Additionally, Smad4 has a functional leucine-rich nuclear 

export sequence, known as CRM1 (Fornerod et al., 1997), that ensures cytoplasmic 

location of unstimulated Smad4. Heteromeric complex formation of Smad4 with R-

Smads has been shown to inactivate this sequence to allow nuclear translocation 

(Watanabe et al., 2000, Pierreux et al., 2000). The nucleocytoplasmic shuttling of 

Smad proteins has been well characterised in a recent review (Hill, 2009). 

 

3.3.3 Inhibitory Smads 

The I-Smads, Smad6 and Smad7, physically interact with activated BMPRI via their 

MH2 domains, and compete with R-Smads for activation, thus inhibiting R-Smad 

signalling (Fig. 3.3.1) (Imamura et al., 1997, Hayashi et al., 1997, Heldin et al., 
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1997, Souchelnytskyi et al., 1998). This receptor binding of I-Smads is supported by 

interactions between their MH2 domain and their N-terminal (Hanyu et al., 2001). I-

Smads also bind to phosphorylated R-Smads, and prevent R-Smad-Co-Smad 

complex formation thus inhibiting Smad signalling (Fig. 3.3.1) (Hata et al., 1998, 

Murakami et al., 2003). Smad6 has been shown to preferentially inhibit the BR-

Smads (Ishisaki et al., 1999), while Smad7 inhibits both BMP and TGF signalling 

(Mochizuki et al., 2004). I-Smads are important in the regulation of BR-Smad 

signalling, and it has recently been shown that Smad6 is essential to limit BMP 

signalling and thus facilitate proper cartilage development (Estrada et al., 2011). The 

inhibitory function of I-Smads is negatively regulated by specific cytoplasmic 

molecules. For example, AMSH (associated molecule with the SH3 domain of 

STAM) directly binds Smad6 upon BMP stimulation antagonizing its inhibitory 

effects by preventing the interaction of Smad6 with BMPRIs and BR-Smads (Itoh et 

al., 2001). Furthermore, ubiquitin-dependent degradation of Smad7 is induced by 

Arkadia, a RING type E3 ligase (Koinuma et al., 2003), and by Jab1/GCN5, a 

component of the COP9 signalosome complex (Kim et al., 2004), resulting in the 

enhancement of BR-Smad signalling. Conversely, Jab1/GCN5 has also been shown 

to induce the degradation of Smad4 (Wan et al., 2002), which antagonizes BMP 

function. The conditions under which Jab1/GCN5 promotes and antagonizes BR-

Smad signalling are not known.  

 

3.3.4 Interactions of Smad1, Smad5 and Smad8 with cytoplasmic molecules: 

The interactions of BR-Smads with other cytoplasmic molecules has not been fully 

determined, and is significantly less characterised than that for the non BR-Smads. It 

is important to understand such interactions to gain an insight into how BR-Smads 

function and interact with intracellular signalling pathways. At the cell membrane, 

Smad1 has been shown to interact with the cytoplasmic domain of the CD44 

receptor (Peterson et al., 2004), which may function to link inactive BR-Smads with 

the BMP receptor complex and thus enable its activation. Smad1 antagonistic 

effector (SANE) interacts with the MH2 domain of BR-Smads and with the 

BMPR1a and BMPR1b receptors (Raju et al., 2003). Surprisingly, SANE does not 

function to present BR-Smads to the type I receptor, but instead appears to 

antagonize BR-Smad signalling by inhibiting the phosphorylation of BR-Smads, and 
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blocking their nuclear translocation (Raju et al., 2003). The inner nuclear membrane 

protein XMAN1 interacts with Smad1, Smad5 and Smad8 via its C-terminal region 

to antagonize BMP-Smad signalling in the Xenopus (Osada et al., 2003). Protein 

phosphatase 1 dephosphorylates TGF type I receptors, via an interaction with 

Smad7 (Shi et al., 2004b), and has been shown to negatively regulate the 

phosphorylation of BMPRI receptors in Drosophila (Bennett and Alphey, 2002). 

Homologous to E6-AP carboxyl terminus (HECT) type E3 ligases, Smurf1 and 

Smurf2, interact with BR-Smads to induce their degradation (Zhu et al., 1999, Lin et 

al., 2000, Zhang et al., 2001, Ying et al., 2003b), and thus inactivation. The WW 

domains of Smurfs recognise the PPXY motifs in the linker regions of target Smads, 

and this interaction is key in Smurf-induced ubiquination of Smads (Sangadala et al., 

2007, Chong et al., 2010). The Drosophila homolog DSmurf restricts BR-Smad 

function during Drosophila embryogenesis (Podos et al., 2001). Smurfs also interact 

with Smad7 to induce its translocation into the nucleus, its ubiquination, and also to 

use Smad7 as an adaptor molecule to facilitate their degradation of the TGF 

receptor (Kavsak et al., 2000, Ebisawa et al., 2001). Interestingly, Smurf1 has been 

demonstrated to enhance Smad6 function in a transgenic overexpression study in 

mice, in which Smad6 was overexpressed with or without Smurf1 and the effect on 

ossification was compared (Horiki et al., 2004). Additionally, Smurf1 

overexpression in mouse airway epithelial cells reduced the expression of Smad1 

and Smad5 proteins (Shi et al., 2004a). This negative effect of Smurf1 on Smad1 and 

Smad5, and its positive effect on Smad6, suggests a selective antagonism of Smurf1 

on BR-Smad signalling. In support of this, Smad1, Smad5 and Smad6 are targets of 

Smurf1-mediated ubiquination (Sangadala et al., 2007). Another E3 ligase, CHIP, 

recruits Smad1 and Smad5 from the R-Smad-Co-Smad complex and induces 

ubiquitin-dependent degradation of Smad1, Smad5 and Smad4, and also inhibits BR-

Smad induced transcription (Li et al., 2004, Wang et al., 2011). Tob (transducer of 

ErbB2), a member of the antiproliferative gene family, associates with I-Smads to 

inhibit BR-Smad signalling by interacting with activated BMPRIs (Yoshida et al., 

2003). Tob inhibits BR-Smad signalling in osteoblasts by directly interacting with 

Smad1, Smad5 or Smad8 to repress their activity (Yoshida et al., 2000). The c-Ski 

oncogene interacts with the L3 loop of Smad4 through its I (Interacting) loop region 

to inhibit BR-Smad signalling (Wang et al., 2000, Wu et al., 2002, Takeda et al., 
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2004). Similarly, DACH1 is a nuclear protein distantly related to Ski that interacts 

with Smad4 to antagonize its function (Wu et al., 2003), and may also inhibit BMP 

signalling. Smad1 and Smad5 interact with the scaffolding protein filamin, which 

enhances their signalling, possibly by providing a pseudo-tract for intracellular Smad 

movement (Sasaki et al., 2001). Smad1 can directly interact with proteins, such as 

Par3 and Dishevelled-1, that function in epithelial cell polarity, suggesting a role for 

BR-Smads in cell polarity (Warner et al., 2003). Bat3 (HLA-B-associated transcript 

3) negatively regulates BR-Smad signalling by interacting with the nuclear 

phosphatase SCP2, and inducing BR-Smad dephosphorylation by SCP2 (Goto et al., 

2011). 

 

3.4 BMP-Smad 1/5/8 signalling in nervous system development  

The expression profiles of Smad proteins during NS development has yet to be fully 

characterised, with most studies focusing on Smad expression in a defined region of 

the CNS or PNS. However, it is important to note that the BR-Smads, Smad 1/5/8, 

do not share identical expression patterns in the developing NS. For example, in the 

basal forebrain, Smad1 mRNA is highly expressed at E14 and P8 but to a lesser 

extent in the adult and perinatally, Smad5 expression is consistent throughout 

development, and Smad8 mRNA expression is absent early at E14 but increases 

thereafter with age (Lopez-Coviella et al., 2006). Herein we discuss the role of Smad 

1/5/8 signalling in the development of the NS. 

 In addition to well-characterised roles in bone and cartilage development 

(Nishimura et al., 2012, Yoon and Lyons, 2004), BMP-Smad 1/5/8 signalling also 

instructs key developmental events during the development of the NS. Paradoxically, 

despite a role for BMP-Smad signalling in key neurodevelopmental events, the 

repression of BMP-Smad signalling is firstly required for the primary 

neurodevelopmental event, neural induction (Fig. 3.4.1a) (Smith and Harland, 1992, 

Smith et al., 1993, Spemann and Mangold, 1924, Liu and Niswander, 2005). BMP-

Smad signalling on the ventral side of the embryo allows the formation of epidermal 

ectoderm, while dorsally-expressed BMP antagonists induce formation of neural 

tissue through the blockade of BMP-Smad signalling (Lamb et al., 1993, Wilson and 

Hemmati-Brivanlou, 1995, Sasai et al., 1995, Hemmati-Brivanlou and Melton, 

1997).  
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3.4.1 BMP-Smad 1/5/8 signalling in neural induction 

In the gastrula, neural tissue develops from the dorso-medial region of the ectoderm, 

while the remainder continues as epidermal (non-neural) ectoderm. This inductive 

role of BMP-Smad signalling became apparent following experiments involving the 

transplantation of dorsal embryonic tissue (the Spemann organizer) (Spemann and 

Mangold, 1924) to the ventral side of the early embryo, which caused the 

suppression of non-neural ectoderm and the formation of a secondary neural axis, 

and the subsequent identification of noggin as the dorsalizing factor of the Spemann 

organizer (Smith and Harland, 1992, Smith et al., 1993). Noggin is a BMP 

antagonist and, along with another BMP antagonist that is expressed by the Spemann 

organizer chordin, it binds BMPs in the extracellular space to inhibit BMPR 

activation (Sasai et al., 1994, Piccolo et al., 1996, Zimmerman et al., 1996). The 

Spemann organizer forms in the dorsal mesoderm in response to factors secreted 

from a nodal-producing signalling centre (Nieuwkoop center) located in the adjacent 

presumptive dorsal endoderm (Nieuwkoop, 1967, Agius et al., 2000). The 

establishment of this Nieuwkoop centre depends on the dorsal accumulation of the 

Wnt effector, β-catenin, in the early blastula (Larabell et al., 1997).  

 BMPs, which are expressed on the ventral side of the embryo, allow the 

formation of epidermal ectoderm in the Xenopus, while the dorsally-expressed 

noggin and chordin induce formation of neural tissue through the blockade of BMP-

Smad signalling (Lamb et al., 1993, Wilson and Hemmati-Brivanlou, 1995, Sasai et 

al., 1995, Hemmati-Brivanlou and Melton, 1997). Interestingly, prior to gastrulation, 

BMP-activated Smad5 has recently been shown to antagonize ectopic primitive 

streak production on the anterior side of the embryo through an unusual interaction 

with Smad2 (Pereira et al., 2012), an R-Smad for TGFβ family members.  In the 

Xenopus, overexpression of BMP mutants that block BMP-Smad signalling leads to 

neural induction, while knockdown of BMP antagonists causes loss of neural tissue 

(Hawley et al., 1995, Oelgeschlager et al., 2003, Kuroda et al., 2004, Khokha et al., 

2005). Similarly in zebrafish, BMP or Smad mutations cause ventral defects, such as 

loss of the ventral tail fin, with strongly dorsalised embryos, while mutation of 

chordin results in neural defects (Kishimoto et al., 1997, Hild et al., 1999, Dick et al., 

2000). In the mouse, combined mutation of both noggin and chordin results in severe 

prosencephalon defects (Bachiller et al., 2000), suggesting a vital role for BMP 

antagonism in forebrain development. The Xenopus Smad-interacting protein-1 
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(Sip1) gene induces a neural fate by repressing BMP-Smad signalling, and is thus 

important in neural induction (Nitta et al., 2004, van Grunsven et al., 2007, Lerchner 

et al., 2000). In support of this role, the knockdown of Sip-1 in zebrafish results in 

axial and neural patterning defects (Delalande et al., 2008). It is clear from these 

studies that the inhibition of BMP-Smad signalling is required for the induction of 

the neuroepithelium, the CNS primordium. As mentioned above, BMPs expressed in 

the ectoderm allow the formation of epidermal ectoderm, while BMP antagonists, 

such as noggin and chordin, which are expressed in the Spemann organizer, induce 

neural tissue formation (Fig. 3.4.2a) (Harland, 2000, Levine and Brivanlou, 2007, 

Rogers et al., 2009). Despite the inhibition of BMP-Smad signalling being sufficient 

to induce neural tissue in animal cap ectodermal explants (Hawley et al., 1995), it is 

not sufficient to induce neural tissue in the ventral, epidermal ectoderm of the 

embryo. For example, the inhibition of BMP-Smad signalling by overexpression of 

Smad6 in the ventral ectoderm represses the formation of epidermal ectoderm, but 

fails to induce the expression of neural markers (Delaune et al., 2005, Chang and 

Harland, 2007). However, inhibition of BMP-Smad signalling inhibition by dual 

suppression of Smad1 and Smad2 is sufficient to induce neural markers in the 

ventral ectoderm (Chang and Harland, 2007), suggesting a possible role for the 

inhibition of TGFβ signalling in neural induction as Smad2 is the transcriptional 

effector of the TGFβs. Interestingly, through working initially and mainly with chick 

embryos, FGF signalling has also been shown to be required for neural induction, as 

it sensitizes the epiblast (pre-gastrulation) to BMP antagonism by repressing BMP 

expression (Wilson et al., 2000, Streit et al., 2000, Delaune et al., 2005). 

Furthermore, a truncation of the FGF receptor has been shown to block neural 

induction in the Xenopus (Launay et al., 1996). FGF has been shown to positively 

regulate neural induction by inhibiting Smad1 transcriptional activity through 

phosphorylation of Smad1 in the linker region (Pera et al., 2003), an interaction that 

may occur at various stages throughout the development of the CNS. BMP-Smad 

signalling interacts with FGF and Wnt signalling in the development of a variety of 

neural populations, such as spinal cord (SC) neuronal populations and neural crest 

cells (NCCs) (LaBonne and Bronner-Fraser, 1998, Monsoro-Burq et al., 2005, Liu 

and Niswander, 2005), and a role for Wnt signalling in neural induction has also 

been suggested. Indeed, through the sequential mitogen-activated protein kinase 

(MAPK) and GSK3β mediated phosphorylation of the Smad1 linker region which 
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results in Smad1 degradation, BMP-Smad signalling integrates with FGF-MAPK 

and Wnt-GSK3β signalling pathways during neural development (Fuentealba et al., 

2007, Eivers et al., 2008). This mechanism allows the early embryo to seamlessly 

integrate dorsal-ventral (BMPs) and anterior-posterior (Wnts) patterning. The Wnt 

family of proteins were identified when Wnt1 (originally called Int-1), was identified 

as a signalling molecule involved in the development of mammary tumours (Nusse 

and Varmus, 1982). Several years later, Wnt1 and Wingless, its Drosophila 

orthologue, emerged as key morphogens that regulate the embryonic body plan 

(Baker, 1988, McMahon and Bradley, 1990). It is now well established that Wnt 

proteins are important mediators of intracellular communication, and that signalling 

by members of the Wnt family of molecules is crucial for normal embryonic 

development in various systems including the nervous system where they have been 

shown to regulate diverse cellular processes, including cell proliferation and fate, 

cell polarity and movement, and programmed cell death (Ciani and Salinas, 2005). 

 Wnt signalling has been shown to induce neural markers and inhibit BMP-

signalling in the early gastrula (Baker et al., 1999). Despite this finding, a direct role 

for Wnts in neural induction has yet to be shown, and the overexpression of a 

dominant-negative Wnt transcriptional effector (TCF3) or receptor (Fzd8) does not 

alter noggin induction of neural markers (Rogers et al., 2008). Alternatively, and like 

BMP-signalling, the inhibition of Wnt signalling may be required for neural 

induction, with Wnts being shown to be expressed in the ventral, but not dorsal, 

ectoderm in the amphibian gastrula (Christian et al., 1991). In support of this 

suggestion, the induction of neural markers through BMP-Smad signalling inhibition 

is inhibited by the overexpression of dominant active β-catenin in ectodermal 

explants (Heeg-Truesdell and LaBonne, 2006), and by the overexpression of Wnts in 

the chick embryo (Wilson et al., 2001). Interestingly, Wilson et al. (2001) suggest 

that this inhibition of neural induction is due to the continued Wnt signalling 

blocking the response of the epiblast to FGF signalling, which permits BMP-

signalling to induce an epidermal fate. This is not surprising considering FGF-

MAPK inhibition of BMP-Smad signalling requires its cooperative phosphorylation 

of the Smad1 linker region with GSK3β (Fuentealba et al., 2007), and canonical Wnt 

signalling inhibits GSK3β (Logan and Nusse, 2004).  

 Msx1 is a BMP-Smad signalling target gene (Maeda et al., 1997, Tucker et 

al., 1998, Ishimura et al., 2000, Yamamoto et al., 2000, Tribulo et al., 2003) and is 
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an important factor in the determination of epidermis versus neural tissue. The 

injection of Msx1 mRNA inhibits noggin-induced neurulation, while a dominant-

negative form of Msx1, named as such because it is capable of inducing a partial 

secondary axis in ventral blastomeres (Takeda et al., 2000), directly induces the 

expression of the neural marker N-CAM in animal cap explants (Ishimura et al., 

2000). Msx1 function is required for ventralisation by BMP-Smad signalling, as 

demonstrated by Msx1 knockdown (Yamamoto et al., 2000), and has been proposed 

to act as a mediator of BMP-Smad signalling in epidermal induction and in the 

inhibition of neural differentiation (Suzuki et al., 1997). In the Xenopus, a Smad-

interacting protein XMAN1 induces anterior neural markers through the blockade of 

Msx1 expression, by inhibiting BMP-Smad signalling (Osada et al., 2003). During 

neural induction, genes involved in the stabilisation of a neural fate are induced in 

response to inhibition of BMP-Smad signalling, such as sox3 (Rogers et al., 2008), 

sox11 (Hyodo-Miura et al., 2002), Geminin (Kroll, 2007), and Zic3 (Nakata et al., 

1998). It has been suggested that such genes achieve neural fate stabilization through 

the modification of signalling pathways involved in the induction of a neural fate. 

For example, Geminin and sox3 have both been shown to antagonize the BMP-Smad 

signalling pathway (Kroll et al., 1998, Rogers et al., 2008), sox11 antagonizes the 

Wnt signalling pathway (Hyodo-Miura et al., 2002), and FoxD5 reduces the nuclear 

accumulation of phosphorylated Smad 1/5/8 (Yan et al., 2009). During this process 

of neurulation, BMP-Smad signalling actively instructs the development of a neural 

population which arises at the border between the epidermis and neural plate, known 

as the neural crest. 
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Figure 3.4.1: BMP-Smad 1/5/8 signalling in the development of the NS.  

(a) BMP antagonists (red arrows) arising from Spemann’s organizer inhibit BMP-

Smad 1/5/8 signalling in the overlying dorsal ectoderm to induce a neural fate. An 

intermediate level of BMP-Smad signalling induces the formation of the neural crest 

at the border between the epidermis and neural plate. (b) BMP-Smad 1/5/8 signalling 

(green arrows) arising from the epidermal ectoderm induces the formation of the roof 

plate at the dorsal midline of the neural tube. Formation of the neural tube releases 

the NCCs. (c) PNS NCCs are induced to differentiate into adrenergic sympathetic 

neurons by BMP-Smad signalling (green arrow). ENS NCCs are induced to 

differentiate into enteric DA neuron and astroglia. (e) The neural fates (indicated by 

arrows; neuron unless stated), induced by Smad 1/5/8 signalling, of embryonic NSCs 

from different CNS regions. (f) Schematic representing the dorso-ventral patterning 

of the SC. The green shape represents the gradient of BMP-Smad 1/5/8 signalling 

strength which patterns the formation of the dorsal SC. (h) The neural fates 

(indicated by arrows; neuron unless stated), induced by BMP-Smad 1/5/8 signalling, 

of postnatal/adult NSCs from different CNS regions. 
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3.4.2 BMP-Smad 1/5/8 signalling in NCC development 

NCCs give rise to a variety of cell populations in the PNS, as well as skeletal 

elements of the head (Farlie et al., 2004). BMP-Smad 1/5/8 signalling, emanating 

from the epidermal ectoderm and under negative regulation from the neural plate, 

plays an important role in the generation of NCCs (Fig. 3.4.1a). This is illustrated by 

the fact that active Smad 1/5/8 signalling, in response to BMPs either exogenously 

applied or emanating from epidermal ectoderm, is necessary for the generation of 

NCCs in a variety of in vitro and in vivo models (Moury and Jacobson, 1989, Moury 

and Jacobson, 1990, Selleck and Bronner-Fraser, 1995, Dickinson et al., 1995, Liem 

et al., 1995). Additionally, in the anterior ectoderm, the development of the 

ectodermal placodes, from the pre-placodal region between the neural plate and 

neural crest, requires attenuated BMP-Smad signalling (Streit, 2004, Litsiou et al., 

2005). These placodes contribute to the formation of the cranial sensory NS and the 

special sense organs. 

In terms of NCC development, the zebrafish BMP mutants, swirl (BMP2b) 

and snailhouse (BMP7), as well as the Smad 5 mutant somitabun (sbn), display 

alterations in neural crest formation (Nguyen et al., 2000). Specifically, trunk NCCs 

failed to form in these mutants, showing that BMP-Smad signalling is crucial for 

NCC generation. However, in an earlier study by this group the swirl mutant, which 

is the most severely dorsalised mutant of the three (discussed later) (Kishimoto et al., 

1997), displayed a severe reduction in laterally-derived cranial NCCs, demonstrating 

that BMP2b-mediated Smad signalling is essential for cranial neural crest 

specification (Nguyen et al., 1998). In contrast, Nguyen et al. (1998) also showed 

that the snailhouse and sbn mutants exhibited an expansion of these cranial NCCs 

(Nguyen et al., 1998). However, the neural defects of the snailhouse and sbn 

hypomorphic allele mutants are more severe caudally (Nguyen et al., 1998, Mullins 

et al., 1996), and therefore the expression of BMP7 and Smad5 may not be 

diminished cranially to the same extent as it is caudally. In support of this 

suggestion, the addition of Smad5 morpholinos to the sbn mutant resulted in 

additional cranial defects, such as a compressed anterior/head region, which was 

attributed to the total loss of Smad5 activity, unlike with the hypomorphic sbn allele 

(Lele et al., 2001). Based on the opposing effects that these mutants had on cranial 

neural crest development, Nguyen et al. (1998) hypothesized that an intermediate 

level BMP-Smad signalling is involved in neural crest specification. These findings 
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have largely been supported by studies in mice showing that Smad4 knockdown in 

mouse NCCs causes the downregulation of genes critical to NCC development and 

results in the loss of NCC derivatives at the mid-gestational stage, coupled with 

alterations in cell fate specification, such as sensory neuronal fate acquisition in the 

trigeminal ganglia (Ko et al., 2007, Buchmann-Moller et al., 2009, Nie et al., 2008).  

As aforementioned, Sip1 has been shown to induce a neural fate by 

repressing BMP-Smad signalling during neural induction (Nitta et al., 2004, van 

Grunsven et al., 2007, Lerchner et al., 2000). In zebrafish, the knockdown of two 

orthologues of Sip1 results in a loss of vagal/post-otic NCC derivatives due to an 

interference with Sip1-mediated negative regulation of BMP-Smad 1/5/8 signalling 

(Delalande et al., 2008). Similarly, the knockdown of Zfhx1b (the gene that encodes 

Sip1) in the NCCs of mice results in craniofacial and gastrointestinal malformations 

that resemble those found in patients with Mowat-Wilson syndrome (craniofacial 

dismorphology with Hirschsprung disease), which further demonstrates a role for an 

intermediate, regulated level of BMP-Smad signalling in NCC development (Van de 

Putte et al., 2007). This is not surprising considering the location at which NCCs 

develop, that is at the border of the BMP-Smad-induced epidermis and the BMP-

antagonised neural plate. In support of Van de Putte et al. (2007), loss-of-function 

mutations in Sip1 deregulate BMP-Smad signalling to cause abnormal development 

of neural and NCC structures, resulting in some of the dysmorphic features of 

Hirschsprung disease, in particular defects of the enteric NS (ENS) such as 

aganglionosis of the distal colon (Cacheux et al., 2001, Wakamatsu et al., 2001). 

This finding reflects the fact that NCCs give rise to the ENS.  

Studies using neural crest stem cells have shown that BMP-Smad signalling 

antagonizes Wnt-induced sensory neurogenesis of NCCs, while BMP-Smad 

signalling functions cooperatively with Wnt signalling to suppress differentiation 

and maintain multipotency of these stem cells (Lee et al., 2004, Kleber et al., 2005). 

BMP-Smad signalling interacts with Wnt and FGF signalling in the development of 

a variety of neural populations (LaBonne and Bronner-Fraser, 1998, Monsoro-Burq 

et al., 2005, Liu and Niswander, 2005). Indeed, through the sequential MAP kinase 

(MAPK)- and GSK3β-mediated phosphorylation of the Smad1 linker region, which 

results in Smad1 degradation, BMP-Smad signalling integrates with FGF-MAPK 

and WNT-GSK3β signalling pathways during neural development (Fuentealba et al., 

2007, Eivers et al., 2008).  
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Collectively these data have shown that Smad-signalling is required for the 

NCC generation and cell fate choice during development. However, the involvement 

of Smad 1/5/8 in this process is often inferred given the involvement of BMPs, and 

an analysis of neural crest developmental and differentiation in NCC-specific Smad 

1/5/8 conditional knockout mouse would be beneficial. Direct assessment of Smad 

1/5/8 transcriptional activity in vivo is now possible using a mouse line expressing 

GFP under the control of a BMP-response element (BRE), thus allowing direct 

assessment of BMP-Smad transcriptional activity in vivo during NCC development 

(Monterio et al. 2008). Aside from NCC induction, BMP-Smad signalling also 

promotes neural crest migration (Sela-Donenfeld and Kalcheim, 1999), induces 

differentiation of adrenergic sympathetic neurons (Fig. 3.4.1c) (Varley and Maxwell, 

1996) and mediates neural crest apoptosis (Graham et al., 1994). In agreement with 

much of these findings, intense BMP-Smad dependent transcriptional activity has 

been found in these regions during mouse development (Monterio et al. 2008), 

directly supporting a role for Smad 1/5/8 signalling in these processes. 

 

3.4.3 BMP-Smad 1/5/8 signalling in the patterning of the dorsal SC 

3.4.3.1 Dorso-ventral gradient of BMP-Smad signalling in the SC 

BMPs act over the distance between the roof plate and intermediate region of the SC 

to pattern the dorsal SC, with the concentration of active BMP proteins (which 

decreases ventrally from the roof plate) being crucial for this patterning process (Liu 

and Niswander, 2005). Roof plate-derived BMPs achieve their inductive effects both 

locally, via direct cell-cell communication, and over a long-range, via BMP-binding 

proteins which establish diffusible BMP gradients. In Drosophila, BMPs (Dpp) 

interact with chordin (Sog) to form a hetero-complex which blocks BMP function 

(Biehs et al., 1996, Piccolo et al., 1996). BMP can be released from this complex by 

the action of Tolloid, a zinc metalloprotease (Marques et al., 1997). The dynamics of 

this complex formation and dissociation partly determines the dorso-ventral gradient 

of Dpp signalling, which results in a dose-dependent induction of dorsal and 

intermediate cell types in the neural tube (Nunes da Fonseca et al., 2010, Shimmi 

and O'Connor, 2003).  
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3.4.3.2 Patterning of the dorsal SC neuronal populations 

BMP-Smad 1/5/8 signalling has been extensively studied in the patterning of the 

dorsal SC (Fig. 3.4.1f). The roof plate and the overlying epidermal ectoderm are rich 

sources of BMPs (Fig. 3.4.1b) (Liem et al., 1995, Lee et al., 1998, Lee and Jessell, 

1999), and a high degree of Smad 1/5/8 transcriptional activity has been found in this 

region in vivo, in studies using mice that express GFP under the control of the BRE 

sequence (Monterio et al. 2008). 

In the dorsal SC there are 6 discrete parallel layers of dorsal interneuronal 

(dI) populations, termed dI1-6 interneurons, that differentiate at progressively more 

ventral positions, with dI1-dI5 interneurons functioning in somatosensation, and dI6 

interneurons contributing to the locomotor circuitry (Goulding, 2009). The first 

demonstration of the involvement of roof plate-derived BMPs in dorsal SC 

patterning arose when dI1A interneurons were lost in GDF7 null mice (Lee et al., 

1998).  Subsequently, ablation of the roof plate in mice resulted in the absence of 

dorsal SC interneuronal populations (Lee et al., 2000, Millonig et al., 2000), whereas 

addition of BMPs induced a dorsal SC cell phenotype in chick neural explants (Liem 

et al., 1997). These inductive effects have been shown to be dependent on both 

BMPRIa and BMPRIb (Timmer et al., 2002), specifically with BMPRIa promoting 

the proliferation of dorsal SC interneuron precursors, and BMPRIb promoting their 

neuronal differentiation (Panchision et al., 2001). In agreement with these findings, 

there was a significant loss of the most dorsal of the six interneuronal populations in 

BMPRIa/BMPRIb double knockout mice (Wine-Lee et al., 2004) which was also 

seen through forced expression of noggin, or through Smad4 knockdown in the chick 

embryo (Chesnutt et al., 2004). Similarly new data have shown that BMP7, Smad1 

and Smad5 are all required for the generation of dI1, dI3 and dI5 interneuronal 

populations in mice (Le Dreau et al., 2012). 

 

3.4.3.3 BMP-Smad and Wnt interactions in the patterning of the dorsal SC   

To generate these classes of dorsal interneurons, BMP-Smad 1/5/8 cooperates with 

Wnt-β-catenin signalling to control the expression of Olig3, a transcription factor 

that is essential for the generation of dI1-dI3 interneurons (Muller et al., 2005), with 

BMP-Smad 1/5/8 acting upstream of Wnt-β-catenin (Zechner et al., 2007).  It has 

been proposed that Wnts are responsible for the proliferation of BMP-specified 

dorsal interneuronal progenitors in the SC (Chesnutt et al. 2004), a suggestion 
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supported by the finding that Wnt signalling promotes progression from G1 to S and 

inhibits cell cycle exit in the neural tube (Megason and McMahon, 2002). 

Furthermore, β-catenin knockout inhibits neural stem cell (NSC) proliferation 

(Zechner et al., 2003), while overexpression of constitutively-active β-catenin 

promotes NSC proliferation (Chenn and Walsh, 2002), in the developing mouse 

CNS. In addition to this, Smad6 inhibition of both BMP-Smad 1/5/8 signalling and 

Wnt-β-catenin signalling promotes the transition of neural progenitors from a 

proliferative state to a differentiating state in the chick dorsal SC (Xie et al., 2011). 

The other inhibitory Smad, Smad7, is expressed in newly differentiating neurons in 

the intermediate SC and, when ectopically expressed dorsally in the chick SC, blocks 

the acquisition of the dorsal interneuron dI1 and dI3 fates and results in a dorsal 

expansion of dI4–dI6 fates (Hazen et al., 2011). Hazen et al. (2011) showed the 

inhibition of BR-Smad activity by Smad7, and suggest that Smad7 functions to 

attenuate BMP-Smad induction of more dorsal fates to allow the generation of 

intermediate cell types in the SC. Interestingly, possibly contradictory to the findings 

of Xie et al. (2011), a model for inhibitory cross-regulation of BMP-Smad signalling 

and Wnt signalling was recently proposed, in which proliferation-inducing Wnt-

signalling and differentiation-inducing BMP-Smad signalling inhibit one another to 

maintain slow-cycling, undifferentiated neural progenitors in the developing dorsal 

SC (Ille et al., 2007). Perhaps Smad6 functions to allow dorsal interneurons to exit 

this progenitor state and complete differentiation. Collectively these findings suggest 

that BMP-Smad signalling and Wnt-β-catenin signalling function cooperatively 

during dorsal spinal cord neurogenesis, with BMP-Smad important in the 

specification of neural fates and Wnt-β-catenin signalling functioning in appropriate 

proliferation of these BMP-specified dorsal interneuronal precursors. In light of 

contrasting suggestions of Ille et al. (2007) and Zechner et al. (2007), it remains to be 

determined whether their functional cooperation is mediated through a direct 

downstream positive regulation of one another, or indeed whether they have an 

inhibitory cross-regulatory relationship during SC development. 

 

3.4.3.4 BMP-Smad signalling in the generation of intermediately-located SC 

neuronal populations 

In zebrafish swirl, snailhouse and sbn mutants, there is an increase in the 

intermediately-located Lim1
+
 interneurons (Nguyen et al., 2000). However, further 
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reductions in BMP-Smad signalling by administration of chordin to swirl embryos 

caused a decrease in these cells (Nguyen et al., 2000). These contrasting findings 

suggest that an intermediate level of BMP-Smad signalling is required to establish 

the correct number of Lim1
+
 interneurons. Indeed, Chesnutt et al. (2004) have shown 

that BMP signalling positively regulates the expression of Wnts the dorsal SC, which 

is supported by the finding that double knockout of BMPR1a and BMPR1b causes a 

reduction in the expression of Wnts in the mouse SC (Wine-Lee et al., 2004). 

Perhaps the reduction in BMP-Smad signalling in the BMP mutants allows the 

expansion of more ventral cell types, causing an increase in Lim1
+
 interneurons. 

However, the further reduction in BMP signalling by chordin administration may 

negatively affect Wnt expression, resulting in the inhibition of the proliferative effect 

of Wnts on SC interneurons, thus leading to a decrease in Lim1
+
 interneurons. 

Similarly, in the dorsal SC of the chick embryo, strong activation of BMP-Smad 

signalling decreases the intermediately-located neurogenin 1-expressing cells (dI2), 

while weak activation causes the ventral expansion of neurogenin 1-expressing cells 

(Timmer et al., 2002). These results support the concept that distinct levels of BMP-

Smad 1/5/8 signalling are required for the development of different dorsal and 

intermediate interneuronal populations in the dorsal SC, and that mechanisms must 

be in place to ensure the tight control of the levels of BMP-Smad signalling during 

each distinct developmental programme. Furthermore, the dorsal-ventral gradient of 

BMP-Smad 1/5/8 signalling in the SC is also important in the specification of ventral 

SC motor neurons, with its active repression being required for their induction 

(McMahon et al., 1998, Liem et al., 2000). In support of this, Sip1 has recently been 

implicated as a novel regulator of SC motor neuron diversification, with Sip1 

playing an important role in visceral motor neuron differentiation (Roy et al., 2012). 

In addition to the roles described above, BMP-Smad signalling has been shown to 

play important roles in the patterning of the ventral SC, dorsal SC neuronal axonal 

guidance, forebrain development, and cerebellar granule neuron development 

(Furuta et al., 1997, Alder et al., 1999, Liu and Niswander, 2005).  
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Table 3.4.1: Neural fate induction by BMP-Smad signalling during development 

Neural Precursor  Differentiated Cell Type Reference(s) 

Embryonic:   

   

PNS NCC  Adrenergic sympathetic neuron (Varley and Maxwell, 1996, Varley 

et al., 1998, Reissmann et al., 1996, 

Wu and Howard, 2001) 

   

ENS NCC Enteric DA neuron (Chalazonitis et al., 2004, 

Chalazonitis et al., 2008) 

   

ENS NCC Astroglia (Chalazonitis et al., 2011) 

   

VM NPs VM DA neuron (O'Keeffe et al., 2004a, Krieglstein 

et al., 1995b, Wood et al., 2005) 

   

VM NPs Astroglia (O'Keeffe et al., 2004a, Krieglstein 

et al., 1995b, Wood et al., 2005) 

   

Metencephalic NSC Cerebellar granule neuron (Alder et al., 1999, Qin et al., 2006) 

   

Cortical NSC Cortical neuron (Li et al., 1998, Yung et al., 2002, 

Sun et al., 2010, Mehler et al., 2000) 

   

Cortical NSC Astroglia (Mehler et al., 2000) 

   

Dorsal telencephalic NSC Dentate gyrus granule neuron (Caronia et al., 2010) 

   

Septal NSC Basal forebrain cholinergic 

neuron 

(Lopez-Coviella et al., 2000, Lopez-

Coviella et al., 2005, Cho et al., 

2008) 

   

SVZ NSC Stellate, non-neurogenic 

astroglia  

(Bonaguidi et al., 2005) 

   

Dorsal SC NSC Dorsal spinal cord interneuron (Le Dreau et al., 2012, Xie et al., 

2011, Hazen et al., 2012) 

   

Postnatal / Adult:   

   

Perinatal cortical NSC Astroglia (Mehler et al., 2000) 

   

Postnatal subcortical O-

2A progenitor cell 

Astroglia (Mabie et al., 1997) 

   

Adult SVZ NSC Olfactory granule neuron (Colak et al., 2008)  

   

Adult SVZ NSC Astroglia (Lim et al., 2000, Ciceroni et al., 

2010, Cate et al., 2010) 

   

Adult Hippocampal NSC Astroglia  (Brederlau et al., 2004) 

   

Adult SC OPC Astroglia (Cheng et al., 2007) 
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3.5 BMP-Smad 1/5/8 signalling in neuronal and glial development 

3.5.1 BMP-Smad 1/5/8 signalling in neurogenesis 

Smad 1/5/8 signalling in response to the BMP family of proteins is vital in several 

aspects of nervous system development, such as its inductive and patterning roles 

which have been outlined above. However, in addition to its role in regional 

specification, BMP-Smad signalling also has direct effects on the development of 

neuronal and non-neuronal cell populations from neural progenitor cells (see table 

3.4.1; Fig. 3.4.1e, h).  

 

3.5.1.1 BMP-Smad 1/5/8 signalling in neuronal development in the PNS 

In the developing PNS, BMP-Smad signalling instructs neuronal differentiation from 

PNS NCCs via the induction of Mash1, a neuron-selective transcription factor 

(Groves and Anderson, 1996, Shah et al., 1996). Conversely, BMP-Smad signalling 

has also been shown to inhibit neuronal differentiation from CNS NSCs through the 

degradation of Mash1, resulting in the inhibition of neurogenesis (Shou et al., 1999). 

Such ambiguity may reflect intrinsic differences between PNS NCCs and CNS 

NSCs, with development of the former from the ectoderm requiring BMP-Smad 

signalling, and the generation CNS NSCs from the ectoderm being dependent upon 

the inhibition of BMP-Smad signalling. As mentioned in section 3.4.2, BMP-Smad 

signalling induces the differentiation of adrenergic sympathetic neurons from avian 

trunk NCCs (Fig. 3.4.1c), with the BMPRIa receptor particularly important in this 

process (Varley and Maxwell, 1996, Varley et al., 1998). Similarly, BMP-Smad 

signalling produced in vitro by dorsal aorta explant-derived BMPs has been shown 

to induce sympathetic differentiation from quail NCC cultures (Reissmann et al., 

1996). The role of Mash1 in BMP-Smad-induced sympathetic neuronal 

differentiation was not assessed in these studies, but considering its identification in 

the Shah et al. (1996) study described above, it is likely to contribute to this neuronal 

specification. The catecholaminergic differentiation of avian NCCs was also shown 

to be mediated by BMP-Smad signalling in vitro (Wu and Howard, 2001). Wu and 

Howard (2001) demonstrated that Smad1 induced the expression of dHAND, a DNA 

binding protein required for the differentiation of catecholaminergic neurons. 

Collectively, these studies show that BMP-Smad signalling plays an important role 

in neuronal differentiation in the PNS. In addition to its inductive role in sympathetic 
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neuronal development, BMP-Smad signalling also promotes NGF-dependent 

dendritic outgrowth from sympathetic neurons (Lein et al., 1995). In the enteric 

nervous system, which is part of the PNS located in the wall of the gastrointestinal 

tract and is also derived from NCCs, BMP-Smad signalling induces the 

differentiation of trkC-expressing dopaminergic neurons (Fig. 3.4.1c) (Chalazonitis 

et al., 2004, Chalazonitis et al., 2008).  

 

3.5.1.2 BMP-Smad 1/5/8 signalling in neuronal fate induction in the CNS 

Similar to its role in the PNS, BMP-Smad 1/5/8 signalling is directly involved in the 

neurogenesis of various CNS neural populations. GDF5-Smad signalling induces an 

increase in DA neurons in E14 rat VM cultures (Fig. 3.4.1e) (Krieglstein et al., 

1995b, O'Keeffe et al., 2004a, Wood et al., 2005, Clayton and Sullivan, 2007, 

O'Sullivan et al., 2010), while not increasing the total number of neurons (O'Keeffe 

et al., 2004a). Similarly, Smad 1/5/8 signalling in response to BMPs increases the 

numbers of DA neurons in E14 rat VM cultures (Jordan et al., 1997). This role of 

BMP-Smad signalling in VM DA neurogenesis is of interest to the field of 

Parkinson’s disease research, a disorder in which VM DA neurons progressively 

degenerate (Lees et al., 2009, Toulouse and Sullivan, 2008), particularly for cell 

based therapies in which factors which promote the generation of VM DA neurons 

are in demand. In neural tissue cultured from E8 mouse VM/ventral metencephalon 

region, BMP-Smad signalling induced early markers of cerebellar granule 

progenitors (Fig. 3.4.1e), including Math1 and En1/En2 (Alder et al., 1999). When 

these Smad 1/5/8-induced cells were subsequently transplanted into the early 

postnatal cerebellum, they formed mature granule neurons (Alder et al., 1999). 

Furthermore, double knockdown of BMPRIa and BMPRIb results in a dramatic 

reduction in the number of cerebellar granule neurons in mice, with a concurrent 

downregulation of molecular markers of granule cell specification (Qin et al., 2006). 

BMP-Smad signalling is thus an important regulator of cerebellar granule neuron 

generation, with both BMPRIa and BMPRIb required for their specification. In 

support of a role for BMP-Smad 1/5/8 signalling in cerebellar development, the 

knockout of the transcription factor Zfp423 in mice, which binds to Smad1/Smad4 in 

response to BMP signalling (Hata et al., 2000), results in an underdeveloped 

cerebellum (small cerebellar hemispheres and severe reduction in vermis size) 

(Warming et al., 2006). In ventricular zone (VZ) neocortical neuroepithelial cell 
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cultures, BMP-Smad signalling was reported to induce neuronal differentiation (Fig. 

3.4.1e) (Li et al., 1998). Similarly, noggin-regulated BMP-Smad signalling was 

shown to be involved in the elaboration of cortical GABAergic neurons from 

migrating ventral forebrain progenitors (Yung et al., 2002). This finding suggests 

that an intermediate, modulated level of BMP-Smad signalling plays a role in 

GABAergic neuronal differentiation in the cortex. Li et al. (1998) also showed that 

Smad 1/5/8 signalling in response to BMPRIa is required for neural precursors to 

differentiate and migrate away from the VZ in cortical explants. In support of this, 

BMP-Smad signalling, specifically via Smad1, has been shown to control neuronal 

migration and neurite outgrowth in the embryonic rodent cortex by suppressing the 

transcription of CRMP2, with Smad1 and Smad4 being demonstrated to bind to the 

CRMP2 promoter in the neocortex (Sun et al., 2010). BMPRIa-Smad1 dependent 

BMP signalling is therefore important for cortical neuronal migration and 

differentiation. In E14 murine septal cultures, BMP-Smad signalling was shown to 

induce both a cholinergic phenotype and the expression of a number of genes 

belonging to the transcriptome of basal forebrain cholinergic neurons, suggesting a 

role for BMP-Smad 1/5/8 signalling in the development of these neurons (Fig. 

3.4.1e) (Lopez-Coviella et al., 2000, Lopez-Coviella et al., 2005). A transcriptional 

co-activator of BMP-Smad signalling, known as Smad-interacting zinc finger 

protein, was shown to be required for this BMP-Smad signalling-dependent 

induction of a cholinergic phenotype in E13.5 murine septal cultures (Cho et al., 

2008). In mice that were deficient in BMPRIa and BMPRIb in the dorsal 

telencephalon, there was a decreased production of dentate gyrus (DG) granule 

neurons at peak DG neurogenesis and throughout life, showing a role for BMP-Smad 

signalling in DG granule cell neurogenesis (Fig. 3.4.1e) (Caronia et al., 2010). The 

resulting hippocampal defects led to fear-related behavioural deficits, demonstrating 

the functional importance of BMP-Smad-regulated DG neurogenesis. Using shRNA 

knockdown at the time of neurogenesis, Le Dreau et al. (2012) further demonstrated 

a role for Smad1 and Smad5 in primary neurogenesis. This study showed that 

BMP7-stimulated Smad1 and Smad5 signalling was required for the generation of 

dI1, dI3 and dI5 interneuronal populations in the chick dorsal SC (Fig. 3.4.1e, f) (Le 

Dreau et al., 2012). Surprisingly, Smad6 inhibition of BMP-Smad 1/5/8 signalling, 

and of Wnt-β-catenin signalling, was shown to promote neuronal differentiation in 

the intermediate zone of the chick dorsal SC (Xie et al., 2011). This result does not 



72 
 

preclude an involvement of BMP-Smad and Wnt-β-catenin signalling in the neuronal 

differentiation of dorsal SC neurons, but rather reflects a role for Smad6 in directing 

BMP-specified NPs to exit the cell cycle and terminally differentiate.  

In addition to a neuronal inductive role in the dorsal SC, Smad1-dependent 

BMP signalling has been shown to govern axonal growth in the dorsal root ganglion 

(DRG), with the reactivation of Smad1 signalling in adult DRG resulting in sensory 

axon regeneration in a mouse model of SC injury (Parikh et al., 2011). In support of 

this, Smad6 has been shown to potently block dI1 axon outgrowth in the chick SC 

(Hazen et al., 2011). Furthermore, BMP-Smad signalling in the dorsal SC acts as a 

chemorepellent that orients the commissural axons of dI1 interneurons so that they 

grow ventrally (Butler and Dodd, 2003, Dent et al., 2011), and also acts to regulate 

the growth rate of these axons as they extend through the SC (Phan et al., 2010). 

This chemorepellent role of BMP-Smad signalling was recently demonstrated to be 

mediated by the BMPRIb (Yamauchi et al., 2008). A more recent paper by Hazen et 

al. has suggested that Smad1 and Smad5 confer diverse functions during the 

development of the dorsal SC. Knockdown experiments demonstrated that Smad1 is 

critical for the regulation of dI1 axonal growth while Smad5 is required for the 

specification of dI1 and dI3 interneuronal populations (Hazen et al., 2012). This is an 

important finding as it suggests that the various BR-Smads have distinct functions in 

the developing SC, whereas previous studies suggested that these BR-Smads 

function redundantly during the development of the nervous system (Arnold et al., 

2006, Le Dreau et al., 2012). Parikh et al. (2011) also showed that inhibition of 

BMP-Smad 1/5/8 signalling using dorsomorphin, a small molecular inhibitor of 

BMPRI (Yu et al., 2008), negatively affects neurite outgrowth of E18.5 mouse 

hippocampal neurons. Perhaps this role of BMP-Smad signalling in the 

establishment of hippocampal neuronal projections contributes to the fear-related 

behavioural deficits caused by BMPRIa and BMPRIb conditional double mutation 

outlined above. Additionally, BMP-Smad signalling has been shown to induce 

neurite outgrowth from E14 rat VM DA neurons in vitro (O'Keeffe et al., 2004b, 

Reiriz et al., 1999), although the direct involvement of Smad 1/5/8 in this process 

remains to be demonstrated. BMP-Smad signalling therefore not only regulates 

neuronal specification, but also promotes neuronal differentiation and maturation in 

several regions of the embryonic CNS. 
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Furthermore, BMP-Smad signalling is actively involved in neuronal 

differentiation during post-natal development. BMP-Smad signalling is required for 

the initiation of neurogenesis in adult mouse subventricular zone (SVZ) NSCs (Fig. 

3.4.1h) and the concurrent suppression of an oligodendroglial fate, since Smad4 

knockdown or noggin infusion results in severe impairment of neurogenesis and 

subsequent differentiation of oligodendrocytes (Colak et al., 2008). Indeed, these 

effects could be contributed to altered TGFβ signalling, as Smad4 also mediates this 

pathway. However, Colak et al. (2008) showed that this Smad4-mediated neurogenic 

role is BMP-specific through the knockdown of the TGFβ type II receptor, in 

addition to the above mentioned demonstration that blockade of BMP signalling 

through noggin infusion phenocopied the Smad4-related defects. Conversely, it was 

recently shown that LRP2-mediated catabolism of BMP4 is required for 

neurogenesis in the adult mouse, since increases in BMP-Smad 1/5/8 signalling as a 

result of LRP2 knockdown coincides with reduced neurogenesis (Gajera et al., 

2010). Similarly, increased BMP signalling was shown to potently inhibit 

neurogenesis of adult mouse SVZ NSCs in vitro and in vivo, while noggin promoted 

neurogenesis (Lim et al., 2000). These contradicting results may reflect a potential 

need for a regulated, intermediate level of BMP-Smad signalling to allow adult SVZ 

neurogenesis. Furthermore, BMP-Smad signalling regulators, such as noggin and 

LRP2, may indeed be involved in refining Smad 1/5/8 signalling to promote/allow 

neurogenesis. Indeed, noggin-regulated BMP-Smad signalling plays a role in 

embryonic cortical GABAergic neurogenesis (Yung et al., 2002), while regulated 

levels of BMP-Smad 1/5/8 signalling is required for the appropriate generation of 

intermediately-located interneuronal populations in the development of the SC 

(Timmer et al., 2002, Nguyen et al., 2000).  

 

3.5.1.3 BMP-Smad 1/5/8 signalling in the neuronal differentiation of neural cell 

lines 

In agreement with their roles in inducing neuronal differentiation in the PNS, BMP-

Smad signalling has also been shown to induce neuronal differentiation in a 

sympathetic nervous system-derived cell line, known as the PC-12 cell line (Paralkar 

et al., 1992). Conversely, in a sympathoadrenal progenitor cell line, BMP-Smad 

signalling was shown to induce apoptosis, which could be rescued by the addition of 

growth factors such as NGF (Song et al., 1998). BMP-Smad signalling thus induces 



74 
 

dependence on exogenous growth factors for survival in these cells. This finding is 

surprising, considering the well established neurotrophic properties of BMPs, 

however it may suggest a role for BMP-Smad signalling in sympathetic target 

innervation. In the human neuroblastoma SH-SY5Y cell line, BMP signalling 

induces neuronal differentiation through a BMPRI-Smad 1/5/8 mediated pathway 

(Toulouse et al., 2012, Nakamura et al., 2003, Hegarty et al., 2013b). Likewise, in 

the mouse neuroblastoma-derived cell line, Neuro2a, BMP-stimulated phospho-

Smad 1/5/8 nuclear translocation induces neuronal differentiation through a bi-

phasic regulation of Id protein expression, and subsequent upregulation of the 

neural-specific transcriptional factors Dlx2, Brn3a, and NeuroD6 (Du and Yip, 

2010). The use of noggin or Smad1 siRNA prevented this Smad-mediated regulation 

of Id protein expression. Thus, BMP-Smad signalling is also capable of inducing 

neuronal differentiation in neural cell lines. 

 

3.5.2 BMP-Smad 1/5/8 signalling in gliogenesis 

Despite its role in promoting neuronal differentiation from various neural precursor 

populations, Smad 1/5/8 signalling has also been shown by many studies to induce 

an astrocytic lineage. For example, in serum-free mouse embryonic cell cultures, 

BMP-Smad signalling induces the generation of glial fibrillary acidic protein 

(GFAP)-immunoreactive astrocytes, while concomitantly inhibiting cellular 

proliferation (D'Alessandro and Wang, 1994a, D'Alessandro et al., 1994b). Similarly, 

in embryonic mouse SVZ multipotent progenitors, BMP-Smad 1/5/8 signalling 

induces the generation of GFAP-expressing astrocytes (Fig. 2e), with concurrent 

suppression of neuronal and oligodendroglial cell fates (Gross et al., 1996). 

Knowledge on the astroglial inductive effect of BMP-Smad signalling in the 

embryonic SVZ was recently refined to show that a particular subtype of GFAP-

expressing cells are generated in response to Smad 1/5/8 activation. Specifically, 

stellate, post-mitotic, non-neurogenic GFAP-expressing cells, representative of 

mature astrocytes, are generated from mouse embryonic SVZ progenitor cells in 

response to BMP-Smad signalling. Conversely, leukemia inhibitory factor (LIF) 

signalling gives rise to bipolar/tripolar, self-renewing, neurogenic GFAP-expressing 

progenitors, representative of radial glial SVZ stem cells (Bonaguidi et al., 2005). 

However, these studies did not assess Smad activity, and thus further 

characterisation experiments would be required to conclusively attribute these effects 
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to the canonical Smad 1/5/8 signalling pathway. In a more recent study on E14 

dorsal SC cultures, the prevention of BMP-induced Smad1 transcriptional activity by 

FGF-MAPK signalling promoted OPC generation from NSCs through the 

upregulation of olig2, with Smad1/Smad4 being shown to associate with the olig2 

promoter (Bilican et al., 2008). This interaction of the Smad1/Smad4 complex with 

the olig2 promoter may therefore result in transcriptional repression. Despite 

inducing a neuronal lineage in NCCs, BMP-promoted nuclear translocation of 

phospho-Smad 1/5/8 induced glial differentiation in the NCC population that gives 

rise to the ENS (Fig. 3.4.1c) (Chalazonitis et al., 2011). As mentioned in section 

3.5.1.1, BMP-Smad signalling is known to induce DA neurons from these NCCs 

(Chalazonitis et al., 2004, Chalazonitis et al., 2008), however it has been proposed 

that BMP-Smad signalling is accountable for the responsiveness of these enteric 

NCCs firstly to GDNF-induced neurogenesis, and later to glial growth factor (GGF)-

2-induced gliogenesis (Chalazonitis et al., 2011, Chalazonitis and Kessler, 2012). 

Similarly, GDF5-Smad signalling increases the number of astrocytes in E14 rat VM 

cultures (Fig. 3.4.1e), while concomitantly increasing the numbers of DA neurons 

(Krieglstein et al., 1995b, O'Keeffe et al., 2004a, Wood et al., 2005). Despite 

inherent differences between CNS NSCs and PNS NCCs, perhaps there is a similar 

mechanism, to that proposed by Chalazonitis and colleagues for enteric NCCs, to 

explain the dual inductive role of GDF5-Smad signalling in E14 rat VM NSCs. In 

support of such a suggestion, GDNF is an important neurotrophic factor for the DA 

neurons of the VM, and may thus work cooperatively with BMPs in this population 

also (Peterson and Nutt, 2008, Toulouse and Sullivan, 2008).  

In addition to its glial-inducing effects on embryonic pluripotent progenitors, 

BMP-Smad 1/5/8 signalling has been demonstrated to play a direct role in adult 

gliogenesis. BMP-Smad signalling induces postnatal subcortical bipotent 

oligodendroglial-astroglial (O-2A) progenitor cells to differentiate into astrocytes 

(Fig. 3.4.1h), while concomitantly suppressing oligodendroglial differentiation, in a 

dose-dependent manner (Mabie et al., 1997). Although the presence of type I and 

type II BMPRs on these cells was demonstrated, the activation of canonical Smad 

1/5/8 pathway was not confirmed in this study (Mabie et al., 1997). The response of 

neural progenitors to BMP-Smad signalling appears to be temporally dependent. For 

example, cultures of cortical VZ neural progenitors have been shown to respond 

differentially to BMP-Smad signalling, depending on their ontogenic stage. At E13, 
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BMP-Smad signalling promotes cell death and inhibits proliferation of early VZ 

progenitors, while at E16, the response to BMP signalling is concentration-

dependent with either enhancement of neuronal and astroglial elaboration (at 1-

10ng/ml) or potentiation of cell death (at 100ng/ml) (Mehler et al., 2000). It would 

be interesting to determine whether activation of different signalling pathways 

contributes to these divergent effects. Indeed, particularly high BMP levels may act 

via pathways that are independent of Smad 1/5/8 (Rajan et al., 2003, Nohe et al., 

2004). Mehler et al. (2000) showed that BMP-Smad signalling enhances the 

generation of astroglia during the perinatal period of cortical gliogenesis (Fig. 

3.4.1h). Interestingly, the inhibitory effect of BMP-Smad signalling on 

oligodendroglial generation occured at all stages (Mehler et al., 2000). Similarly in 

adult rat SC oligodendrocyte precursor cell (OPC) cultures, shown to express the 

BMPRs, BMP-Smad signalling promotes astrocytic differentiation in a dose-

dependent manner (Fig. 3.4.1h), with concurrent suppression of oligodendrocyte 

differentiation, by increasing Id4 expression and decreasing the expression of olig1 

and olig2 (Cheng et al., 2007). In support of this finding, the Smad1/Smad4 complex 

has been suggested to interact with the olig2 promoter to repress olig2 expression 

(Bilican et al., 2008).  A recent paper has identified Sip1 as an important regulator of 

oligodendrocyte differentiation and myelination. Sip1 represses BMP-Smad 

signalling, via a dual mechanism involving direct antagonism of Smad 1/5/8 and 

induction of Smad7 expression, to promote oligodendrocyte differentiation in the 

CNS (Weng et al., 2012). Cheng et al. (2007) propose that the blocking of BMP-

Smad signalling combined with olig1/2 overexpression could potentially enhance 

endogenous remyelination in CNS demyelination disorders. In support of this 

suggestion, local increases in BMPs at the site of demyelination upregulates gliosis, 

with these astrocytes displaying increased phospho-Smad 1/5/8 signalling (Fuller et 

al., 2007). Furthermore, BMP-induced increases in the expression of chondroitin 

sulphate proteoglycans, such as neurocan and aggrecan, were also observed which 

could inhibit remyelination (Fuller et al., 2007). However, astrocytes generated in 

response to BMP-Smad signalling support axonal growth and regeneration of host 

sensory neurons when transplanted into a lesioned dorsal column of the SC (Haas et 

al., 2012). Cultured adult hippocampal NSCs were shown to be induced to an 

astroglial lineage in response to BMP signalling through the BMPRIb receptor (Fig. 

3.4.1h) (Brederlau et al., 2004). In addition to this, a recent study modulated BMP-
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Smad signalling to alter the numbers of astrocytes and oligodendrocytes in the adult 

SVZ during cuprizone-induced demyelination (Cate et al., 2010). Components of the 

BMP-signalling pathway, including BMPRs and Smad 1/5/8, were shown to be up-

regulated during cuprizone-induced demyelination, along with an increase in 

astrocytes in vivo. The reduction of Smad 1/5/8 activation by intraventricular 

infusion of noggin resulted in a decrease in the numbers of astrocytes, and an 

increase in the number of oligodendrocytes in the adult SVZ during cuprizone-

induced demyelination (Cate et al., 2010). Similarly, activation of the mGlu3 

receptors in post-natal mouse SVZ NSCs attenuates the astroglial-promoting effect 

of phosphorylated Smad 1/5/8, via the mitogen-activated protein kinase pathway, 

which suggests a role for glutamate in SVZ NSC differentiation (Ciceroni et al., 

2010). This further demonstrates the negative regulation of phospho-Smad 1/5/8 

signalling by the MAPK pathway. In support of the role of BMP-Smad signalling in 

adult SVZ astrogliogenesis, Lim et al. (2000) also showed that BMP signalling 

induces an astroglial lineage in adult SVZ NSCs. Furthermore, it has been shown 

that mouse brain endothelial cells, which lie close to adult SVZ NSC, are the source 

of BMP-Smad signalling which regulates the development of these NSCs (Mathieu 

et al., 2008). The transgenic overexpression of BMP4 in mice resulted in an increase 

in astrocytes in multiple brain regions, with a concurrent decrease in 

oligodendrocytes, suggesting that BMP-Smad signalling is a likely mediator of 

astrocyte development in vivo (Gomes et al., 2003). The adult SVZ is now widely 

accepted to be a major site of neurogenesis (Tarabykin et al., 2001, Nieto et al., 

2004, Noctor et al., 2004, Zecevic et al., 2005, Pontious et al., 2008). However, the 

effect of BMP-Smad signalling on SVZ neurogenesis remains unclear. The majority 

of evidence suggests that Smad 1/5/8 signalling results in astroglial differentiation, 

however Colak et al. (2008) showed that BMP-Smad signalling was required to 

initiate the neurogenic lineage in the adult SVZ. These results may not be as 

contradictory as they appear, and it may well be the case that both findings are 

directly related and even support one another. Perhaps in adult SVZ NSCs, BMP-

Smad signalling acts to induce radial glial-like neuronal progenitors, with astrocytic 

characteristics, that subsequently generate the granule neurons which migrate to the 

olfactory bulb. The role of such ‘astroglial’ progenitors in neurogenesis has been 

well described in a recent review (Kriegstein and Alvarez-Buylla, 2009).  
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3.5.3 BMP-Smad 1/5/8 signalling in neural stem/progenitor cells 

It is clear that BMP-Smad 1/5/8 signalling can induce a neuronal or astrocytic fate, 

or possibly even both, in neural precursors, but the factors which determine each of 

these fates are unknown. In the chick SC, BMP-Smad signalling, possibly mediated 

via the BMPRIb receptor, promotes neuronal specification rather than astrocytic 

specification in the dorsal-most progenitors at E5 (Agius et al., 2010). However, this 

study reported the opposite effect at E6, when BMP-Smad signalling promoted 

astrocyte development (Fig. 3.4.1e), rather than completely preventing it as it did at 

E5. This complete reversal of the neurogenic action was suggested to be due to an 

upregulation of BMPRIa receptors (Agius et al., 2010). It is thus likely that these 

differential inductive effects of Smad 1/5/8 signalling not only depend on the 

specific ligand-receptor combination, but are also temporally dependent, an example 

of which can be seen in the Mehler at al. (2000) paper discussed above. Furthermore, 

in the hippocampus, BMP-Smad signalling induces granule neuron generation pre-

natally (Caronia et al., 2010), and astroglial differentiation during adulthood 

(Brederlau et al., 2004). This is not surprising, considering that primary neurogenesis 

precedes gliogenesis during CNS development. Logically, cell identity is a 

determining factor, with PNS NCCs being induced towards a neuronal fate and CNS 

embryonic SVZ precursors being induced to an astrocytic one during pre-natal 

nervous system development.  

 It is important to note that through the induction of differentiation, Smad 

1/5/8 signalling negatively regulates the proliferation of NSCs. In rat NSC cultures 

derived from either the cortex or SC at E13.5 BMPs induced NSC growth arrest and 

GFAP expression through Smad signalling, however FGF2 prevented BMP-Smad-

induced terminal astrocytic differentiation to preserve NSC potency in a dormant 

state (retain nestin expression but do not proliferate) (Sun et al., 2011). This effect is 

likely to reflect FGF-MAPK-induced repression of Smad 1/5/8 signalling. Similarly, 

BMP-Smad signalling negatively regulates NSC proliferation in the adult 

hippocampus (Bonaguidi et al., 2008). Smad 1/5/8 signalling in response to BMPRIa 

receptor activation by BMPs decreased proliferation of cultured adult hippocampal 

NSCs, while maintaining them in an undifferentiated state (Mira et al., 2010). Mira 

and co-workers also showed that knockout of either Smad4 or BMPRIa in 

hippocampal NSCs results in a transient increase in proliferation, followed by a 

reduction in the generation of neural precursors, demonstrating that Smad 1/5/8 
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signalling regulates NSC quiescence/proliferation and prevents the loss of NSC 

activity, which supports continuous neurogenesis, in the adult hippocampus. Taken 

together with the results of the Sun et al. study, the above findings support a role for 

Smad 1/5/8 signalling in the regulation of NSC proliferation and differentiation. 

Interestingly, this regulation of NSC proliferation in the hippocampus by BMP-Smad 

signalling has been suggested to be pertinent to the effects of exercise on adult 

hippocampal neurogenesis in mice, that is, exercise induced downregulation of 

BMP-Smad signalling results in enhanced neurogenesis (Gobeske et al., 2009). The 

Mira et al. study (2010) also supports the suggestion that BMP-Smad signalling 

induces the differentiation of adult SVZ NSCs into radial glial progenitors, which 

subsequently give rise to olfactory interneurons.  

In mouse embryonic stem cells, BMP-Smad signalling promotes the self-

renewal, and inhibits the differentiation through the induction of Id proteins (Ying et 

al., 2003a). This result is interesting considering the effects of BMP-Smad signalling 

to promote differentiation of NSCs. These contrasting results are likely to reflect the 

difference between embryonic stem cells and stem cells that are restricted (through 

inhibition of BMP-Smad signalling) to a neural fate. 

 

3.6 Smad 1/5/8 signalling knockdown during nervous system 

development 

The knockdown of the components of the Smad signalling pathway have given 

insights into their roles during the development of the NS (see table 3.6.1). It has 

proven difficult to determine the effects of global deletion of Smad 1/5/8 on nervous 

system development, as the Smad1 mutant mice die at E10.5 due to defects in 

allantois formation (Lechleider et al., 2001, Tremblay et al., 2001), and Smad5 

mutant mice die at E10.5 due to angiogenic failure and other defects (Chang et al., 

1999, Yang et al., 1999). Chang el al. (1999) did show a failure of cranial neural tube 

closure in Smad5 mutant mice at E9.5, which resulted in exencephaly, demonstrating 

the importance of Smad5-mediated signalling in cranial neural tube development. 

Heterozygous Smad1 mutant mice, and mice homozygous for a hypomorphic allele 

of Smad8, show midbrain and hindbrain reductions (gross reduction in anatomical 

size) at E11.5 (Hester et al., 2005). This is not surprising due to the role of BMP-

Smad 1/5/8 signalling in cerebellar development (discussed above). However in 
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contrast to this, Smad8 null mutant mice are viable and fertile, with no discernible 

abnormalities (Arnold et al., 2006). Thus, Smad8 seems to play a nonessential role in 

development (mice develop without defects), and so the abnormalities reported by 

Hester et al. (2005) may be due to the neomycin protein affecting expression of 

neighbouring genes. It is more likely that the role of Smad8 is redundant; further 

investigation is required to determine the specific roles of Smad8 in development. 

When Arnold et al. (2006) crossed Smad8 mutant mice with heterozygous or 

homozygous Smad1 or Smad5 null alleles, there were no noticeable developmental 

disturbances in the Smad8
-/-

:Smad1/5
+/-

 mice, and the abnormalities associated with 

Smad1/Smad5 null mice were not exacerbated by the absence of Smad8. However, 

Smad1 and Smad5 double heterozygous mutant mice displayed striking phenotypic 

similarity to Smad1 and Smad5 mutant embryos and died at E10.5, suggesting that 

Smad1 and Smad5 function cooperatively in response to BMPs during development 

(Arnold et al., 2006). Indeed, although not related to nervous system development, 

Smad1 has been suggested to compensate for Smad5 loss in the angiogenic 

endothelium (Umans et al., 2007), while a  triple conditional knockout study in mice 

reported that Smad1, Smad5 and Smad8 function redundantly in Mullerian duct 

regression (Orvis et al., 2008). Despite the limited information ascertained from 

studies involving complete knockdown of Smad1 and Smad5 in mice (due to mid-

gestation embryonic lethality), the sbn mutant zebrafish allows the identification of 

severe neurodevelopmental defects caused by null mutations of Smad5 (Hild et al., 

1999). The sbn mutant embryos are strongly dorsalised, displaying a complete loss 

of ventral and posterior structures, as well as a ventral expansion of dorsal structures 

such as the neuroectoderm and somites. This dorsalisation demonstrates the 

importance of BMP-Smad 1/5/8 signalling for appropriate development of the 

nervous system. In support of this role, these neurodevelopmental defects of the sbn 

mutant can be largely rescued by overexpression of BMPs, a constitutively active 

form of the BMPRIb, or Smad1 (Nguyen et al., 1998). The somites of sbn mutants 

do not completely circulise, as the swirl (BMP) mutant embryo does (Kishimoto et 

al., 1997). Furthermore, sbn mutants survive segmentation unlike the slightly more 

severely dorsalised swirl mutant. At a later stage, the sbn embryo is characterised by 

loss of the tail and a ‘snailshell-like’ winding up of the trunk (Lele et al., 2001). Lele 

et al. (2001) produced a more strongly dorsalised zebrafish mutant embryo following 

further knockdown of Smad5 using morpholino injection. These embryos displayed 
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additional features, such as a compressed anterior/head region, which was attributed 

to the total loss of Smad5 activity, unlike with the hypomorphic sbn allele. This 

finding is consistent with the cranial defects of Smad5 mutant mice described by 

Chang et al. (1999). The Smad 5 sbn mutant also displays NCC deficits, such as 

diminished trunk NCC formation, showing that BMP-activated Smad5 signalling is 

crucial for NCC generation (Nguyen et al., 2000). The conditional knockout of 

Smad1 and Smad5 in the mouse neural tube, demonstrated that these BR-Smads 

have distinct functions in the developing SC with Smad1 critical for the regulation of 

dI1 axonal growth and Smad5 required for the specification of dI1 and dI3 

interneuronal populations (Hazen et al., 2012). This finding is surprising considering 

the wealth of evidence that suggests functional redundancy amoung Smad 1, 5 and 8 

(Le Dreau et al., 2012, Arnold et al., 2006, Umans et al., 2007, Orvis et al., 2008). 

The conditional knockout of Smad4 in mouse NCC leads to the downregulation of 

genes critical for NCC development, such as the BMP target gene Msx1, and results 

in defective NCC derivatives which lead to mid-gestation death (Nie et al., 2008). In 

a similar study that focused on cranial NCC development, the conditional 

knockdown of Smad4 in NCC showed that BMP-Smad signalling is required for the 

fate specification of cranial NCC (Ko et al., 2007). It is important to note that the 

defects observed in these Smad4 mutants may be as a result of altered TGFβ 

signalling, and thus these studies demonstrate the importance of Smad4 in mediating 

the activities of BMPs, and/or TGFβs, in NCC development.  

Due to the difficulty in generating viable Smad1/5/8 mutants, a number of 

studies have used RNA interference (RNAi) to determine the effects of the loss of 

Smad 1/5/8 signalling on the development of the nervous system, specifically in 

relation to the development of the dorsal SC. The knockdown of Smad1 in E12.5 

DRG neurons by siRNA results in the inhibition of axonal growth capacity in these 

neurons, an effect which was rescued by an RNAi-resistant Smad1 construct (Parikh 

et al., 2011). Furthermore, cultured DRG neurons from Smad1 conditional knockout 

mice have a markedly decreased capacity to initiate or maintain axon extension 

(Parikh et al., 2011). A similar study that used RNAi to knockdown Smad1, and 

subsequently performed rescue experiments using an RNAi-resistant Smad1 

construct, showed that Smad1 is required for axonal growth of cultured adult DRG 

neurons (Zou et al., 2009a). These studies demonstrate the importance of Smad1 in 

DRG neuronal differentiation, specifically axonal outgrowth. In contrast to the 
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Hazen et al. (2012) study mentioned above, in vivo shRNA knockdown experiments 

showed that BMP7, Smad1 and Smad5 are all required for the generation of dI1, dI3 

and dI5 interneuronal populations in the chick (Le Dreau et al., 2012). Smad8 has 

also been shown to be required for the generation of dI1 interneurons, suggesting 

that Smad8 may not be completely functionally redundant during NS development 

(Le Dreau et al., 2012). Furthermore, in support of the idea of functional redundancy 

between Smad1 and Smad5, overexpression of a pseudo-phosphorylated mutant 

version of Smad1 rescued Smad5 loss of function, while pseudo-phosphorylated 

Smad5 overexpression rescued the Smad1 shRNA phenotype (Le Dreau et al., 2012). 

In light of the conflicting reports discussed in this review, whether Smad1 and 

Smad5 function redundantly or have unique but complementary roles during spinal 

cord neurogenesis  will be an interesting question for future research, as well as their 

mechanisms of action during this process. The inhibition of BMP-Smad 1/5/8 

signalling in the dorsal SC by reducing the expression of Smad4 using siRNA, 

results in the loss of most of the dI1 interneuronal population, and the dorsal 

expansion of dI2-4  interneurons in the chick embryo (Chesnutt et al., 2004). These 

studies demonstrate that Smad1, Smad4 and Smad5 are essential for the generation 

of the dorsal SC interneuronal populations. The Hazen et al. (2012) study suggests 

that Smad1 is not required, however these contradictory results may reflect subtle 

differences between mouse and chick SC patterning. Indeed, the disruption of Smad1 

and/or Smad5 expression in the chick dorsal SC by RNAi showed that Smad1 can 

partially compensate for the loss of Smad5 in the chick (Hazen et al., 2012).  

 The knockdown studies discussed above provide further evidence for the 

importance of BMP-Smad 1/5/8 signalling in neural induction, neural crest 

development and dorsal SC development. Future studies involving the conditional 

knockout of Smad1, Smad5 and/or Smad8 or the use of RNAi for these BR-Smads in 

the developing nervous system, followed by phenotypic analysis of various regions 

of the CNS and PNS will provide further information regarding the roles of Smad 

1/5/8 signalling in nervous system development. Despite the fact that the Smad 1/5/8 

signalling pathway is the canonical signalling pathway of the BMP family, it cannot 

be assumed that the effects which BMPs exert on neural cells are mediated by these 

transcription factors. Knockout studies similar to the ones described above should be 

conducted, to conclusively verify the involvement of Smads 1/5/8 in mediating these 

effects.  
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Table 3.6.1: Effects of Smad 1/5/8 knockdown on nervous system development 

Mutation(s) Effect(s) on NS development Reference(s) 

Smad1:   

   

Smad1 +/- midbrain/hindbrain reductions (anatomical size) (Hester et al., 2005) 

   

Smad1
flox/-

; 

Wnt1 Cre 

decreased axonal growth of cultured adult DRG 

from these conditional mutant mice 

(Parikh et al., 2011) 

   

Brn4::Cre; 

Smad1
flox/flox 

reduction in axonal growth of dI1 interneurons 

of the dorsal spinal cord 

(Hazen et al., 2012) 

   

Smad1 siRNA inhibition of the axonal growth of cultured adult 

DRG neurons 

(Zou et al., 2009a) 

   

Smad1 siRNA inhibition of the axonal growth of cultured 

E12.5 DRG neurons 

(Parikh et al., 2011) 

   

Smad1 shRNA reduced generation of dI1,dI3 and dI5 

interneurons of the dorsal spinal cord 

(Le Dreau et al., 2012) 

   

Smad5:   

   

Smad5 -/- exencephaly (failure cranial neural tube closure) (Chang et al., 1999) 

   

Smad5 -/-  

(sbn mutant) 

ventral expansion of neuroectoderm and somites (Lele et al., 2001) 

   

Smad5 -/- (sbn) trunk NCC deficiencies (Nguyen et al., 2000) 

   

Brn4::Cre; 

Smad5
flox/flox 

reduction in dI1 and dI3 interneurons  (Hazen et al., 2012) 

   

Smad5 shRNA reduction in dI1,dI3, dI5 dorsal SC interneurons  (Le Dreau et al., 2012) 

   

Smad8:   

   

Smad8 -/-

(hypomorphic) 

midbrain/hindbrain reductions (anatomical size) (Hester et al., 2005) 

   

Smad8 shRNA reduced generation of dI1 interneurons of the 

dorsal spinal cord 

(Le Dreau et al., 2012) 

   

Smad4:   

   

Wnt1-Cre;  

Smad4  

defective cranial NCC derivatives (Ko et al., 2007)  

   

Wnt1-Cre; 

Smad4
loxp/loxp 

defective NCC derivatives  (Nie et al., 2008) 

   

Smad4 siRNA reduced generation of dI1, and dorsal expansion 

of dI2-4, dorsal SC interneurons 

(Chesnutt et al., 2004) 
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3.7 The TGF superfamily in midbrain DA neuronal development 

BMPs constitute the largest subfamily of the TGF superfamily, which also include 

the TGFs, activin, GDNF, and GDF subfamilies (Bottner et al., 2000, Sullivan and 

O'Keeffe, 2005). As aforementioned for BMPs, TGF superfamily members are 

dimeric, structurally-conserved proteins, that have pleiotropic functions in vitro and 

in vivo (Massague and Wotton, 2000). The TGFs elicit their cellular responses in a 

similar fashion to that described for BMPs in section 3.3, with TGFs signalling via 

the type I receptors, ALK1, ALK2, ALK4 and ALK5, and the R-Smads, Smad2 and 

Smad3 (Nohe et al., 2004, Bragdon et al., 2011, Sieber et al., 2009, Miyazono et al., 

2001).  

 There is a wealth of evidence suggesting that TGF superfamily members 

regulate midbrain DA neuronal development. However, the majority of this research 

has focused on their survival-promoting abilities, rather than potential roles in 

development, with the goal of using these factors therapeutically for PD. Such 

research is best highlighted by that carried out on the GDNF family (see table 3.7.1), 

two of which have been used in clinical trials (Peterson and Nutt, 2008, Sullivan and 

Toulouse, 2011), and this TGF subfamily will therefore be discussed first in this 

review. 

 

3.7.1 The GDNF family 

The GDNF family is composed of four members – GDNF, neurturin, persephin and 

artemin. GDNF, the prototypical member of this subfamily, was isolated from a glial 

cell line following the demonstration of its neurotrophic effects on cultured DA 

neurons (Lin et al., 1993). GDNF has consistently been shown to promote the 

survival, and reduce apoptosis, of cultured embryonic VM DA neurons (Lin et al., 

1993, Krieglstein et al., 1995a, Widmer et al., 2000, Clarkson et al., 1995, Clarkson 

et al., 1997, Sawada et al., 2000). A vitamin D3 metabolite, calcitriol, has recently 

been shown to promote the survival of midbrain DA neurons in vitro through the 

upregulation of endogenous GDNF (Orme et al., 2013). Interestingly, a single dose 

of GDNF selectively enhances the survival of A9 DA neurons, while only repeated 

exposure of this factor increases the survival of A10 cells in E14 VM cultures 

(Borgal et al., 2007), suggesting that nigrostriatal DA neurons are more sensitive to 

the effects of GDNF. GDNF has consistently been shown to improve the survival of 
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embryonic DA neurons in VM transplants to the adult rodent striatum (Apostolides 

et al., 1998, Espejo et al., 2000, Granholm et al., 1997, Yurek, 1998, Sullivan et al., 

1998a). Of more physiological relevance, GDNF has also been shown to inhibit the 

apoptotic death of postnatal midbrain DA neurons in vitro (Burke, 2003). 

Furthermore, two in vivo studies demonstrated that GDNF functions to promote the 

survival of midbrain DA neurons during their period of naturally-occurring cell 

death (Kholodilov et al., 2004, Granholm et al., 2000). These findings suggest that 

GDNF functions to regulate the survival of VM DA neurons during their 

development, particularly as a target-derived neurotrophic factor. In support of such 

a suggestion, GDNF is expressed in the developing and adult rat midbrain and 

striatum (Choi-Lundberg and Bohn, 1995, Gavin et al., 2013), which indicates 

functioning by endogenous GDNF. Interestingly, the activation of the dopamine D2 

receptor has recently been shown to upregulate GDNF expression in the postnatal rat 

midbrain (Ahmadiantehrani and Ron, 2013), suggesting that activity-dependent 

GDNF neurotrophic support is important during nigrostriatal pathway development. 

GDNF has been shown to protect VM DA neurons from the DA toxins, 1-methyl-4-

phenylpyridinium ion (MPP+) and 6-hydroxydopamine (6-OHDA), in vitro (Eggert 

et al., 1999, Hou et al., 1996), and in animal models of PD (Tomac et al., 1995, Gash 

et al., 1996, Connor et al., 2001, Kozlowski et al., 2000, Date et al., 1998, Kordower 

et al., 2000). Interestingly, the survival-promoting effect of GDNF in these models is 

significantly greater in younger aged rats (early post-natal) (Fox et al., 2001), with 

the greatest effect seen in 3-month-old rats at a time when the nigrostriatal pathway 

is still developing (Van den Heuvel and Pasterkamp, 2008). These findings led to 

clinical trials which delivered GDNF into the striatum of PD patients, but these had 

varying degrees of success (Gill et al., 2003, Slevin et al., 2005, Lang et al., 2006). A 

more developmentally-relevant protective role of GDNF was recently demonstrated, 

in a study showing that GDNF protected cultured VM DA neurons from 

lipopolysaccharide-induced degeneration, a model of neuroinflammation (Xing et 

al., 2010). This suggests that GDNF maintains DA neuronal integrity in occasions of 

increased brain inflammation. Furthermore, inflammation has consistently been 

suggested to contribute to the pathogenesis of PD (Collins et al., 2012, Nolan et al., 

2013, Hirsch et al., 2012).  

 There is evidence to suggest that GDNF may play a role in inducing a DA 

phenotype during midbrain DA neurogenesis. A recent paper showed that GDNF is 
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capable of inducing the expression of both Nurr1 and Pitx3, two key genes in DA 

specification (Hegarty et al., 2013c), in neural precursors isolated from the VM 

during the time of DA neurogenesis (Lei et al., 2011). Similarly, in cultures of E12 

rat VM neural precursors, GDNF significantly increased the number of cells 

expressing both Nurr1 and Pitx3 (Roussa and Krieglstein, 2004a). In support of these 

findings, GDNF has been shown to induce Pitx3 expression in the murine VM, with 

Pitx3 mediating GDNF-induced BDNF expression in A9 nigrostriatal DA neurons 

(Peng et al., 2011). This GDNF-Pitx3-BDNF feed-forward regulation may explain 

the specific sensitivity of the A9 subgroup of midbrain DA neurons to GDNF, with 

Pitx3 also being crucial for the survival and maintenance of nigrostriatal DA neurons 

(Smidt et al., 2004, Nunes et al., 2003, Hwang et al., 2003, van den Munckhof et al., 

2003). Interestingly, Nurr1 has been shown to regulate the expression of the GDNF 

receptor, cRet, the expression of which is lost in Nurr1-deficient animals (Castillo et 

al., 1998). This suggests that GDNF and Nurr1 may function in an autoregulatory 

loop during VM DA neurogenesis, a mechanism which is not uncommon during this 

developmental process (Hegarty et al., 2013c). GDNF has been shown to induce 

expression of the dopamine synthetic enzyme, TH, in fetal human and rat cortical 

cultures (Theofilopoulos et al., 2001), which suggests it may play a similar role 

during VM DA neurogenesis. In support of such a proposal, Pitx3 has been 

suggested to induce TH expression in nigrostriatal DA neurons (Hegarty et al., 

2013c), which indicates that Pitx3 may mediate GDNF-induced TH expression in a 

similar fashion to its mediation of GDNF-induced BDNF expression. Despite these 

findings, and the proposed roles for GDNF in the induction of a DA phenotype, 

GDNF null mice display no severe defects in midbrain DA neurons during 

embryonic development (Moore et al., 1996, Pichel et al., 1996, Sanchez et al., 

1996) (see table 3.7.3), demonstrating that GDNF is not essential for VM DA 

neurogenesis. However, these mice die perinatally (Moore et al., 1996, Pichel et al., 

1996, Sanchez et al., 1996), prohibiting the investigation of GDNF deficits on 

postnatal nigrostriatal pathway development. Granholm et al. (2000) circumvented 

this issue by transplanting GDNF null VM tissue into the adult wild-type mouse 

brain to demonstrate that GDNF is required for the postnatal survival and neuritic 

growth of midbrain DA neurons (Granholm et al., 2000).  

 GDNF has been shown to induce neurite growth from cultured rat VM DA 

neurons at E14 (Widmer et al., 2000, Lin et al., 1993), the time-point at which 
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midbrain DA neurons are extending their axons from the VM in vivo (Gates et al., 

2004, Nakamura et al., 2000). These data suggest that GDNF may regulate DA 

axogenesis in the VM. This neurite growth-promoting role of GDNF on midbrain 

DA neurons was also demonstrated postnatally in vivo (Kholodilov et al., 2004, 

Granholm et al., 2000), suggesting that GDNF may function in the neurite 

arborisation of DA axons once they have reached their targets, in which GDNF is 

expressed (Choi-Lundberg and Bohn, 1995, Gavin et al., 2013). In support of such a 

role, GDNF administration to the adult rat striatum following intrastriatal 6-OHDA 

lesion causes the re-innervation of the striatum by midbrain DA afferents (Rosenblad 

et al., 1998). Similarly, GDNF is required for the spouting of nigrostriatal fibers 

following striatal injury (Batchelor et al., 2000), while GDNF has also been shown 

to increase the neurite growth from DA neurons in VM transplants to the striatum 

(Espejo et al., 2000). Furthermore, Bourque and Trudeau have shown that GDNF 

enhances the synaptogenesis of cultured postnatal midbrain DA neurons (Bourque 

and Trudeau, 2000). In normal adult rats, a single injection of GDNF into either the 

substantia nigra or striatum significantly increases the levels of DA and its 

metabolites in the striatum and midbrain (Martin et al., 1996), which may relect the 

findings of Bourque and Trudeau (Bourque and Trudeau, 2000). These findings 

suggest a role for GDNF in the maintenance of midbrain DA neurons in adulthood. 

Indeed, chronic striatal administration of GDNF in aged monkeys has a long-lasting 

protective action on nigrostriatal DA neurons (Maswood et al., 2002). Furthermore, 

GDNF
+/−

 heterozygous mice show an accelerated decline of nigrostriatal DA neurons 

during aging, which leads to functional motor deficits (Boger et al., 2006) (see table 

3.7.3). 

 A naturally-occurring analog of GDNF, neurturin, has been shown to be 

equally as a potent as GDNF at promoting the survival of midbrain DA neurons in 

vitro (Horger et al., 1998, Akerud et al., 1999). However, neurturin was found not to 

share the neuritogenic effects of GDNF (Akerud et al., 1999). These findings suggest 

that neurturin shares the roles of GDNF in the survival and maintenance of VM DA 

neurons during embryonic and postnatal development, which is supported by the 

expression of neurturin in the VM and striatum during development (Horger et al., 

1998). Like GDNF, neuturin protects VM DA neurons in animal models of PD 

(Tseng et al., 1998, Hoane et al., 1999, Oiwa et al., 2002, Kordower et al., 2006, 

Herzog et al., 2007), and is now in clinical trials (Marks et al., 2008, Marks et al., 
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2010, Bartus et al., 2013). The other two members of the GDNF family, persephin 

and artemin, have also been shown to promote the survival of midbrain DA neurons 

in vitro (Milbrandt et al., 1998, Baloh et al., 1998) and in vivo (Akerud et al., 2002, 

Cass et al., 2006), suggesting that the GDNF family may share protective roles in the 

developing nigrostriatal system. However, GDNF and neurturin have been 

demonstrated to have differential effects on VM DA neurons in vivo (Hoane et al., 

1999). In contrast to the findings of Akerud at al. (Akerud et al., 1999), neurturin, as 

well as persephin and artemin, have recently been shown to promote the neurite 

growth of cultured midbrain DA neurons (Zihlmann et al., 2005). These findings 

suggest roles for these factors in the formation of the nigrostriatal pathway during 

development. However, mice with null mutations of neurturin (Heuckeroth et al., 

1999), persephin (Tomac et al., 2002) or artemin (Honma et al., 2002) are viable and 

lack severe deficits in midbrain DA neurons (see table 3.7.3). These GDNF family 

ligands are therefore not essential for the development of the nigrostriatal system. 

However, it may be the case that in the absence of one of these GDNF family 

ligands, the other family members compensate functionally during midbrain DA 

development. The phenotypic analysis of double or treble mutants of the GDNF 

family ligands would address this possibility of functional redundancy. 

 

Table 3.7.1: Roles of GDNF family in the development of midbrain DA neurons 

Effects on midbrain DA neurons Reference(s) 

GDNF  

  

in vitro:  

  

promotes survival and reduces apoptosis of 

embryonic DA neurons 

(Lin et al., 1993, Krieglstein et al., 1995a, 

Widmer et al., 2000, Clarkson et al., 1995, 

Clarkson et al., 1997, Sawada et al., 2000, 

Orme et al., 2013) 

  

promotes survival and reduces apoptosis of 

postnatal DA neurons 

(Burke, 2003) 

  

protects DA neurons from MPP+ and 6-

OHDA 

(Eggert et al., 1999, Hou et al., 1996) 

  

protects DA neurons from 

lipopolysaccharide-induced neurotoxicity 

(Xing et al., 2010) 

  

induces Nurr1 and Pitx3 expression in VM 

neural precursors  

(Lei et al., 2011, Roussa and Krieglstein, 

2004a, Peng et al., 2011)  
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induces TH expression  (Theofilopoulos et al., 2001) 

  

induces neurite growth of embryonic DA 

neurons 

(Widmer et al., 2000, Lin et al., 1993) 

  

enhances synaptogenesis of postnatal DA 

neurons  

(Bourque and Trudeau, 2000) 

  

in vivo:  

  

promotes survival of embryonic DA 

neurons in VM transplants to adult striatum 

(Apostolides et al., 1998, Espejo et al., 2000, 

Granholm et al., 1997, Yurek, 1998, Sullivan 

et al., 1998a) 

  

promotes survival of postnatal midbrain 

DA neurons  

(Kholodilov et al., 2004, Granholm et al., 

2000) 

  

promotes survival of adult DA neurons in 

animal models of PD  

(Tomac et al., 1995, Gash et al., 1996, Connor 

et al., 2001, Kozlowski et al., 2000, Date et 

al., 1998, Kordower et al., 2000, Fox et al., 

2001)  

  

induces neurite growth of postnatal 

midbrain DA neurons  

(Kholodilov et al., 2004, Granholm et al., 

2000) 

  

induces re-innervation of the lesioned 

striatum by midbrain DA afferents 

(Rosenblad et al., 1998, Batchelor et al., 2000)  

  

increases neurite growth from DA neurons 

in VM transplants to adult striatum  

(Espejo et al., 2000) 

  

increases levels of DA and its metabolites 

in the striatum and midbrain 

(Martin et al., 1996) 

  

long-lasting protective action on 

nigrostriatal DA neurons during aging  

(Maswood et al., 2002) 

  

Neurturin, Persephin and Artemin  

  

in vitro:  

  

promote survival of embryonic DA neurons (Horger et al., 1998, Akerud et al., 1999, 

Milbrandt et al., 1998, Baloh et al., 1998)  
  

promote neurite growth of embryonic DA 

neurons  

(Zihlmann et al., 2005) 

  

in vivo:  

  

promote survival of adult DA neurons in 

animal models of PD  

(Tseng et al., 1998, Hoane et al., 1999, Oiwa 

et al., 2002, Kordower et al., 2006, Herzog et 

al., 2007, Akerud et al., 2002, Cass et al., 

2006)  
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3.7.2 TGFs 

TGFs have been shown to be essential co-factors for the neuroprotective effects of 

GDNF on midbrain DA neurons. The application of antibodies neutralizing TGF 

isoforms abolishes the survival-promoting effects of GDNF on midbrain DA neurons 

in vitro (Krieglstein et al., 1998) and in vivo (Schober et al., 2007), suggesting that 

the effects of GDNF are dependent on TGFs. Is has been reported that TGF is 

required for the recruitment of the GDNF receptor, GFRα1, to the plasma membrane 

in primary neuron cultures (Peterziel et al., 2002), which may explain the 

requirement for TGF in the DA neurotrophic effects of GDNF. The cooperative 

functioning of TGF and GDNF has been highlighted in vivo by their co-storage in 

the secretory vesicles of a model neuron, the chromaffin cell, and the co-localisation 

of their receptors on GDNF-responsive neuronal populations (Krieglstein et al., 

1998). TGFs are known to be expressed in the floor plate and notochord during 

development (Unsicker et al., 1996, Flanders et al., 1991). They have been shown to 

be expressed in the ventral midbrain during DA neurogenesis (Krieglstein and 

Unsicker, 1994, Farkas et al., 2003), and their expression significantly increases in 

the striatum following MPP+ lesion (Schober et al., 2007), suggesting physiological 

roles for these factors, both during DA development and in response to neurotoxic 

insult. Indeed, TGFs have been shown to have survival-promoting and 

neuroprotective effects (against MPP+) on cultured midbrain DA neurons; these 

effects are not mediated by astroglia or by increases in cell proliferation (Krieglstein 

and Unsicker, 1994, Krieglstein et al., 1995a). Furthermore, there is evidence to 

suggest that TGFs regulate the neurite growth of midbrain DA neurons (Knoferle et 

al., 2010). It is unclear whether TGFs achieve these effects directly, or function to 

sensitise midbrain DA neurons to the survival- and growth-promoting effects of 

endogenous GDNF. 

 TGFs have been identified as important mediators in the induction of 

midbrain DA neurons (see table 3.7.2). It has been consistently shown that treatment 

with TGFs increases the numbers of DA neurons in cultures of rodent VM 

precursors, through the induction of a DA phenotype in these cells (Farkas et al., 

2003, Roussa et al., 2006). Furthermore, Farkas et al. (2003) showed that reduction 

of endogenous TGF-β in vivo, by the use of TGF-neutralizing antibodies, 

suppresses the differentiation of midbrain DA neurons in the chick embryo (Farkas 
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et al., 2003). VM astrocytes have been shown to induce DA neurogenesis in rat VM 

precursors by releasing high levels of the TGF3 isoform in vitro (Li et al., 2009). A 

similar role for VM astrocytes has previously been shown through their secretion of 

Wnts (Castelo-Branco et al., 2006), which are critical inducers of DA neurogenesis 

(Hegarty et al., 2013c). Interestingly, the inductive effects of TGFβs were shown to 

be dependent on Shh (Farkas et al., 2003), another factor vital for DA induction 

(Hegarty et al., 2013c). Likewise, Shh was shown to be incapable of inducing a DA 

phenotype in the absence of TGFβ (Farkas et al., 2003), suggesting that these factors 

function cooperatively to induce a DA phenotype during midbrain DA neurogenesis. 

GDNF has been shown to potentiate the DA-inductive effects of TGFβ on cultured 

VM neural precursors, however was not capable of rescuing the inductive defects 

resulting from the neutralization of endogenous TGFβs (Roussa et al., 2008). 

However, GDNF did rescue the TGFβ neutralization-dependent loss of differentiated 

midbrain DA neurons (Roussa et al., 2008), supporting its role as a factor which 

maintains these neurons, and as a facilitator of TGFβ-induced survival-promoting 

effects. Another GDNF family ligand, persephin, has been shown to enhance the 

inductive abilitites of TGFβ in vitro, with these TGFβ /persephin-induced DA 

neurons having increased resistance to MPP+ compared to untreated cultures of VM 

DA neurons (Roussa et al., 2008). In contradiction to these data proposing a role for 

TGFβs in induction of midbrain DA neurons, mice with null mutations of the 

TGFβ1, TGFβ2 or TGFβ3 isoforms die perinatally/shortly after birth, with no severe 

deficits in midbrain DA neurons (Sanford et al., 1997, Kaartinen et al., 1995, Shull et 

al., 1992). Furthermore, the double knockout of both TGFβ2 and GDNF did not 

result in a loss of midbrain DA neurons at E14.5 (Roussa et al., 2008) or E18.5 

(Rahhal et al., 2009) (see table 3.7.3), indicating that the cooperative functioning of 

TGFβ2 and GDNF is not essential for DA induction in vivo. Roussa et al. (2008) also 

reported no midbrain DA deficiencies at E14.5 in TGFβ2
+/−

/GDNF
−/−

 or 

TGFβ2
−/−

/GDNF
+/− 

mice (Roussa et al., 2008) (see table 3.7.3). A likely explanation 

for such observations is that the TGFβ isoforms may compensate for the loss of each 

other. Indeed, the double knockout of TGFβ2 and TGFβ3 resulted in a significant 

reduction of midbrain DA neurons at E14.5 (Roussa et al., 2006). Roussa et al. 

(2006) then compared mice carrying one allele of TGFβ2 (TGFβ2
+/−

/TGFβ3
−/−

) or 

TGFβ3 (TGFβ2
−/−

/TGFβ3
+/−

) to demonstrate that the TGFβ2 isoform is more 
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important for the induction of midbrain DA neuronal population than TGFβ3 

(Roussa et al., 2006) (see table 3.7.3). These data suggest that TGFβs function to 

induce a DA phenotype during midbrain DA neurogenesis, and that these isoforms 

can functionally compensate for one another. 

 

Table 3.7.2: Roles of TGFβs in the development of midbrain DA neurons 

Effects on midbrain DA neurons Reference(s) 

in vitro:  

  

promote survival of embryonic DA neurons (Krieglstein and Unsicker, 1994, 

Krieglstein et al., 1995a) 

  

protect DA neurons from MPP+ (Krieglstein and Unsicker, 1994, 

Krieglstein et al., 1995a) 

  

regulate neurite growth of embryonic DA neurons  (Knoferle et al., 2010) 

  

increase numbers of DA neurons through the 

induction of a DA phenotypic  

(Farkas et al., 2003, Roussa et al., 

2006, Li et al., 2009)  
  

in vivo:  

  

induce differentiation of DA neurons (Farkas et al., 2003) 

 

 Due to the perinatal lethality of TGFβ null mice, it is difficult to determine 

the functions of TGFβs during the postnatal development of the nigrostriatal 

pathway. Despite this, recent studies have found that TGFβ2 heterozygous mice have 

a reduction in midbrain DA neurons and striatal dopamine at 6 weeks of age 

(Andrews et al., 2006), which is similar to the nigrostriatal deficits that progress with 

age demonstrated in GDNF heterozygous mice (Boger et al., 2006) . Furthermore, 

the null mutation of Smad3, a crucial mediator of TGFβ signalling, resulted in a loss 

of nigrostriatal neurons between birth and 2-3 months of age in mice (Tapia-

Gonzalez et al., 2011) (see table 3.7.3). These studies imply that TGFβs function to 

protect and maintain midbrain DA neurons in adulthood, as suggested above for 

GDNF. However, in contrast to the single haploinsufficiencies just described, a more 

recent study showed that the combined haploinsufficiency of TGFβ2 and GDNF has 

no impact of the survival of midbrain DA neurons during normal aging (Heermann 

et al., 2010) (see table 3.7.3). These contradicting findings led Heermann et al. 

(2010) to suggest that balanced TGFβ2 and GDNF levels are important for the 

maintenance of midbrain DA neurons in adulthood (Heermann et al., 2010). 
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Interestingly, a study which re-examined the TGFβ3 null mutant showed that, 

despite no deficiencies at E12.5, these mutants had a significant reduction of 

midbrain DA neurons at postnatal day (P)0 (Zhang et al., 2007) (see table 3.7.3), a 

time-point when neurotrophic support is vital for the survival of midbrain DA 

neurons due to naturally-occuring cell death (Hegarty et al., 2013c). This study again 

suggests that TGFβs may function redundantly in DA induction, but indicates that 

TGFβ3 is required for the maintenance and survival of midbrain DA neurons. Zhang 

et al. (2007) also showed that the transcriptional cofactor homeodomain interacting 

protein kinase 2 (HIPK2) is required for the TGFβ-mediated survival of mouse DA 

neurons (Zhang et al., 2007). This study demonstrates the importance of analysing 

mutants at several developmental time-points, especially at those times which are 

crucial to the developmental program. Perhaps the TGFβ2 and GDNF single and/or 

double-mutants should be re-examined in a similar fashion. 

 

Table 3.7.3: Genetic mutations of TGFβ superfamily members and their effects 

on the development of midbrain DA neurons 

Mutation(s) Effect(s) on DA development Reference(s) 

GDNF -/- no severe defects in DA neurons during 

embryonic development  

(Moore et al., 1996, Pichel et 

al., 1996, Sanchez et al., 1996) 

   

GDNF -/- null VM transplants to adult striatum have 

reduced DA neuron numbers and fiber outgrowth 

(Granholm et al., 2000) 

   

GDNF +/- accelerated decline of DA neurons during aging (Boger et al., 2006) 

   

Neurturin -/- no severe defects in DA neurons  (Heuckeroth et al., 1999) 

   

Persephin -/- no severe defects in DA neurons  (Tomac et al., 2002) 

   

Artemin -/- no severe defects in DA neurons  (Honma et al., 2002) 

   

GDNF -/- :  

TGFβ2 -/- 

no loss of midbrain DA neurons at E14.5 or E18.5  (Roussa et al., 2008, Rahhal et 

al., 2009)  

   

GDNF +/- :  

TGFβ2 -/- 

no loss of midbrain DA neurons at E14.5  (Roussa et al., 2008) 

   

GDNF -/- :  

TGFβ2 +/- 

no loss of midbrain DA neurons at E14.5  (Roussa et al., 2008) 

   

TGFβ1 -/- no severe defects in DA neurons during 

embryonic development 

(Shull et al., 1992) 

   

TGFβ2 -/- no severe defects in DA neurons during (Sanford et al., 1997) 
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embryonic development 

   

TGFβ3 -/- no severe defects in DA neurons during 

embryonic development 

(Kaartinen et al., 1995) 

   

TGFβ2 -/- :  

TGFβ3 -/- 

significant reduction of DA neurons at E14.5  (Roussa et al., 2006) 

   

TGFβ2 +/- :  

TGFβ3 -/- 

significant reduction of DA neurons at E14.5 (less 

severe than double knockout) 

(Roussa et al., 2006) 

   

TGFβ2 -/- :  

TGFβ3 +/- 

significant reduction of DA neurons at E14.5 (less 

severe than TGFβ2 +/- : TGFβ3 -/- knockout) 

(Roussa et al., 2006) 

   

TGFβ2 +/- reduction in DA neurons and striatal dopamine at 

6 weeks of age  

(Andrews et al., 2006) 

   

Smad3 -/- loss of nigrostriatal neurons between birth and 2-3 

months of age  

(Tapia-Gonzalez et al., 2011) 

   

GDNF +/- :  

TGFβ2 +/- 

no deficits in DA neurons during normal aging (Heermann et al., 2010) 

   

TGFβ3 -/- significant reduction of DA neurons at P0 (Zhang et al., 2007) 

   

BMPRII -/- reduction of DA neurons and striatal innervation 

in adulthood  

(Chou et al., 2008a) 

   

BMP7 +/- increased sensitivity of adult DA neurons to 

methamphetamine toxicity 

(Chou et al., 2008b) 

 

3.8 The BMP family in midbrain DA neuronal development 

The BMP family consists of at least 20 phylogenetically-conserved growth factors, 

including GDFs such as GDF5 (Kawabata et al., 1998). BMPs have been shown to 

function in many crucial aspects of nervous system development, including neural 

induction, neural crest development, dorsal spinal cord patterning and the fate 

specification of a number of neural populations (Hegarty et al., 2013a). In this part of 

the literature review, the current evidence supporting a role for BMPs in the 

development of midbrain DA neurons will be discussed (see tables 3.8.1 and 3.8.2). 

 

3.8.1 GDFs 

GDF5 is the family member whose roles have been best characterised in terms of 

DA development (see table 3.8.1). Like GDNF, this factor is under investigation for 

its therapeutic potential in PD (Sullivan and Toulouse, 2011). GDF5 is expressed in 

the developing and adult rat VM and striatum (Krieglstein et al., 1995b, O’Keeffe et 
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al., 2004b, Storm et al., 1994, Gavin et al., 2013). Its midbrain expression profile 

proposes roles for GDF5 in nigrostriatal development. GDF5 protein expression 

begins in the rat VM on E12 (when early progenitors of DA neurons are present), 

reaches a peak on E14 (the day that DA neurons undergo terminal differentiation), 

before decreasing with age to reach its lowest levels around the perinatal period, and 

then increasing in the postnatal period to reach maximal expression levels (O’Keeffe 

et al., 2004b). These data suggest that GDF5 is involved in the differentiation of VM 

precursors into DA neurons, and the maintenance of these neurons in adulthood. 

Krieglstein et al. were the first to examine the effects of GDF5 on DA neurons, and 

found that GDF5 increased the number of DA neurons in cultures of E14 rat VM 

(Krieglstein et al., 1995b). Other studies agreed with these findings, showing similar 

neurotrophic effects of GDF5 on VM cultures (O'Keeffe et al., 2004a, Wood et al., 

2005, Clayton and Sullivan, 2007, O'Sullivan et al., 2010), and showed that GDF5 

did not induce an increase in the total number of neurons in E14 rat VM cultures 

(O'Keeffe et al., 2004a), indicating a selective effect on DA neurons. It remains 

unclear whether GDF5 elicits its increases in midbrain DA neurons through the 

induction of a DA phenotype or by promoting their survival. The latter appears to be 

more likely as GDF5 has also been shown to protect cultured VM DA neurons from 

MPP+ (Krieglstein et al., 1995b), 6-OHDA (O'Sullivan et al., 2010), and free radical 

doners (Lingor et al., 1999). The numbers of astrocytes in E14 VM cultures 

dramatically increases following GDF5 treatment (Krieglstein et al., 1995b, 

O'Keeffe et al., 2004a, Wood et al., 2005), suggesting that GDF5 may have an 

indirect neurotrophic action, possibly by stimulating the production of glial-derived 

growth factor(s) production, such as GDNF, that may function in the neurotrophic 

response (Sullivan and O'Keeffe, 2005). Conversely, the neurotrophic effects of 

GDF5 on midbrain DA neurons have been shown to be unaltered in glial-depleted 

cultures (Wood et al., 2005). Furthermore, Wood et al. also showed an additive 

neurotrophic effect of GDF5 and GDNF on cutured embryonic DA neurons (Wood 

et al., 2005), indicating that GDF5 acts independently from GDNF, and that these 

factors may act on separate subpopulations of DA neurons. The GDF5-induced 

increase in midbrain DA neurons in vitro has been suggested to be mediated by 

BMPRIb, as application of GDF5 at the time of plating, when BMPRIb is expressed, 

increases DA neuronal number, whereas application after six days in vitro, when this 

receptor is no longer expressed, has no effect (O'Keeffe et al., 2004a). In support of 
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this data, the neurotrophic effects of GDF5 were recently demonstrated to be 

mediated by the BMPRIb in a model of human DA neurons, SH-SH5Y cells 

(Hegarty et al., 2013b). These findings are not surprising considering that BMPRIb 

is the preferential type I receptor of GDF5 (Nishitoh et al., 1996). Another study 

demonstrated that GDF5 exerts greater effects on cultures prepared from the lateral 

VM (Clayton and Sullivan, 2007), which corresponds to the A9 nigrostriatal 

subgroup of DA neurons (Abeliovich and Hammond, 2007), suggesting a selective 

effect of GDF5 on nigral DA neurons. In this study it was proposed that the increase 

in midbrain DA neurons was due to the induction of a DA phenotype in progenitor 

cells, rather than promotion of cell survival, and it was also showed that BMPRIb 

expression was higher in the lateral VM compared to the medial region (Clayton and 

Sullivan, 2007). In support of the suggested DA inductive role of GDF5, 

experiments carried out by the authors on E12 rat VM cultures treated with GDF5 

suggests that the increase in DA neurons observed was due to the induction of TH 

expression in uncommitted NPs (Hegarty et al., unpublished data). Similarly, the 

present authors have also demonstrated that GDF5 induces TH expression in neurons 

derived from E14 rat VM NPs (Hegarty et al., unpublished data). Based on these 

data, and on the midbrain expression profile of GDF5, it is likely that GDF5 

functions in the transition of VM DA NPs into TH-expressing DA neurons.  

 The effects of GDF5 to increase the numbers of midbrain DA neurons in 

vitro must also be considered in terms of survival-promoting effects, especially with 

respect to their neuroprotective effects from DA toxins in vitro. Indeed, in vivo 

studies have shown that GDF5 protects the adult rat nigrostriatal pathway against 

DA neuronal death induced by 6-OHDA (Sullivan et al., 1997, Sullivan et al., 1999, 

Hurley et al., 2004, Costello et al., 2012). A more developmentally-relevant survival-

promoting effect was demonstrated when GDF5 was shown to enhance the survival 

of embryonic rat VM transplants in vivo, to the same extent as GDNF (Sullivan et 

al., 1998b). Furthermore, GDF5-overexpressing E13 VM transplants significantly 

restored function in 6-OHDA-lesioned adult rats, with the exogenous GDF5 being 

suggested to increase the survival of the remaining host DA neurons, as well as the 

transplanted DA neurons (O'Sullivan et al., 2010). Similarly, a continuous supply of 

GDF5, through the striatal transplantation of GDF5-overexpressing CHO cells in 

vivo, protects adult nigrostriatal DA neurons and increases the survival of 

transplanted embryonic VM DA neurons in the 6-OHDA-lesioned rat model of PD 



97 
 

(Costello et al., 2012). These data propose a role for GDF5 as a factor which 

promotes the survival of embryonic DA neurons during their generation, which 

would correlate with the peak of GDF5 expression at E14 (O’Keeffe et al., 2004b). 

Furthermore, the second peak of expression in the adult suggests a role for GDF5 in 

the maintenance of VM DA neurons during adulthood, which is supported by the 

survival-promoting effects of GDF5 on adult VM DA neurons in vivo discussed 

above. A similar study for GDF5 to the one carried out by Burke et al. (2003) on 

cultured postnatal DA neurons would address this. Moreover, studies on GDF5 null 

mice, such as the GDF5
bp 

mouse (Storm et al., 1994), to examine midbrain DA 

neuronal number and striatal innervation at various stages of embryonic and 

postnatal development, will be critical to determine the in vivo role(s) of GDF5 in 

nigrostriatal system development. One study showed that adult mice with null 

mutations in the BMPRII, the type II receptor of GDF5, displayed significantly 

decreased numbers of nigrostriatal DA neurons (Chou et al., 2008a) (see table 3.7.3). 

However, caution must be employed when inferring the relevance of this study to the 

roles of GDF5 specifically, as several members of the BMP family acts via this type 

II receptor. 

 GDF5 has also been consistently shown to promote the neurite growth of 

cultured E14 rat VM DA neurons (O'Keeffe et al., 2004a, Clayton and Sullivan, 

2007, Hegarty et al., 2014a). Crucially, this time-point reflects the peak period of DA 

axogenesis (Gates et al., 2004, Nakamura et al., 2000), as well as of GDF5 VM 

expression (O’Keeffe et al., 2004b), suggesting that GDF5 functions in this process. 

Furthermore, an in vivo study has suggested that exogenous GDF5 increases the 

neurite outgrowth of host nigrostriatal DA innervation, as well as transplanted 

embryonic VM DA neurons, in 6-OHDA-lesioned adult rats (O'Sullivan et al., 2010, 

Costello et al., 2012, Hurley et al., 2004). The neurite growth-promoting effects of 

GDF5 on VM DA neurons have recently been shown to be mediated by BMPRIb 

activation of Smad 1/5/8 signalling (Hegarty et al., 2014a, Hegarty et al., 2013b), 

which most likely requires BMPRII. Indeed, in adult BMPRII null mice there is a 

deficit in nigrostriatal innervation (Chou et al., 2008a) (see table 3.7.3). It has also 

been demonstrated that the neurite growth-promoting effects of GDF5 were not 

mediated by GDNF (Hegarty et al., 2014a), through the blockade of its heparan-

dependent signalling (Barnett et al., 2002, Iwase et al., 2005, Orme et al., 2013). 

Taken together with the survival-promoting effects of GDF5 discussed above, as 
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well as its postnatal striatal expression (O’Keeffe et al., 2004b, Gavin et al., 2013), 

these data propose a role for GDF5 as a target-derived neurotrophic factor which 

regulates the survival and growth of DA neurons innervating the striatum. The 

postnatal/in vivo experiments outlined above would also address this potential role. 

Another GDF, GDF15, has been shown to promote the survival of control and iron-

intoxicated E14 VM DA neurons in vitro (Strelau et al., 2000), suggesting that 

GDF15 may contribute to DA neuronal survival during development. Strelau et al. 

also demonstrated that GDF5 promotes the survival of adult VM DA neurons in vivo 

using the 6-OHDA-lesioned adult rat model (Strelau et al., 2000). The role of other 

GDF family members in midbrain DA development has yet to be demonstrated, 

although one study has reported that GDF6 does not have neurotrophic effects on 

cultured VM DA neurons (Brederlau et al., 2002). 

 

Table 3.8.1: Roles of GDF family in the development of midbrain DA neurons 

Effects on midbrain DA neurons Reference(s) 

GDF5  

  

in vitro:  

  

increases numbers of embryonic DA neurons (O'Keeffe et al., 2004a, Wood et al., 2005, 

Clayton and Sullivan, 2007, O'Sullivan et 

al., 2010, Krieglstein et al., 1995b)  
  

promotes survival of embryonic DA neurons (O'Keeffe et al., 2004a, Wood et al., 2005, 

Clayton and Sullivan, 2007, O'Sullivan et 

al., 2010, Krieglstein et al., 1995b)  
  

protects DA neurons from MPP+, 6-OHDA, 

and free radical doners  

(Krieglstein et al., 1995b, O'Sullivan et al., 

2010, Lingor et al., 1999)  

  

induces TH expression in VM precursors  in preparation  

  

regulates neurite growth of embryonic DA 

neurons  

(O'Keeffe et al., 2004a, Clayton and 

Sullivan, 2007, Hegarty et al., 2014a) 

  

in vivo:  

  

promotes survival of adult DA neurons in 

animal models of PD 

(Sullivan et al., 1997, Sullivan et al., 1999, 

Hurley et al., 2004, O'Sullivan et al., 2010, 

Costello et al., 2012) 

  

promotes survival of embryonic DA neurons 

in VM transplants to adult striatum 

(Sullivan et al., 1998b, O'Sullivan et al., 

2010, Costello et al., 2012)  

  

induces re-innervation of the lesioned 

striatum by midbrain DA afferents 

(O'Sullivan et al., 2010, Costello et al., 2012, 

Hurley et al., 2004) 
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increases neurite growth from DA neurons in 

VM transplants to adult striatum  

(O'Sullivan et al., 2010, Costello et al., 

2012) 

  

GDF15  

  

promotes survival of control and iron-

intoxicated embryonic DA neurons in vitro 

(Strelau et al., 2000) 

  

promotes survival of adult DA neurons in 

vivo following 6-OHDA lesion 

(Strelau et al., 2000) 

 

3.8.2 BMPs 

The most compelling evidence for a role(s) for BMPs in the development of 

midbrain DA neurons (see table 3.8.2) can be seen in the phenotype of the BMPRII 

null mouse, which has a reduction of nigrostriatal neurons and striatal DA 

innervation at adulthood (Chou et al., 2008a) (see table 3.7.3). However, whether 

this loss of midbrain DA neurons and striatal innervation results from a failure in DA 

neuronal development, or from a later degenerative process, remains to be 

determined. A detailed analysis of the numbers of DA neurons present in the 

midbrain, as well as striatal innervation, of BMPRII null mice at multiple stages 

during embryonic and post-natal development is required to address this question. 

Furthermore, mice with null mutations (or mutations which permit postnatal 

investigation) in specific BMP family members should undergo a similar analysis to 

determine which factors are directly involved.  

 BMPs have been shown to be expressed in the nigrostriatal system of the 

developing and adult brain (Jordan et al., 1997, Soderstrom and Ebendal, 1999, Chen 

et al., 2003). The first report of a role for BMPs in midbrain DA neuronal 

development was provided by the Krieglstein research group, who investigated the 

neurotrophic effects of several BMPs on cultured E14 rat VM DA neurons (Jordan et 

al., 1997). Jordan et al. showed that BMP 2, 4, 6, 7 and 12 promote the survival of 

cultured DA neurons, with BMP6 and BMP12 showing similar efficacy to GDNF 

(Jordan et al., 1997). In a similar study, BMP5, 6 and 7, but not BMP3, significantly 

increased the numbers of DA neurons in embryonic VM cultures (Brederlau et al., 

2002). Conversely, Brederlau et al. (2002) showed no effect for GDF5 on midbrain 

DA neurons (Brederlau et al., 2002). This was likely due to the fact that in this study 

treatments were carried out at 6DIV, at the time when BMPRIb has been shown to 
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be downregulated in culture (O'Keeffe et al., 2004a). BMP2 has also been 

demonstrated to increase the numbers of midbrain DA neurons, and promote their 

neurite growth, in vitro (Reiriz et al., 1999). Similarly, BMP2 was recently shown to 

promote the neurite growth of cultured midbrain DA neurons via a BMPRIb-Smad 

mediated mechanism (Hegarty et al., 2014a). These data suggest a role for BMP2 in 

the generation and growth of embryonic midbrain DA neurons. In support of this 

suggestion, BMP2 has also been shown to promote the survival and neurite growth 

of embryonic DA neurons in rat VM transplants grafted into the 6-OHDA-lesioned 

striatum (Espejo et al., 1999). Interestingly, the neurotrophic effects of BMP2 on 

midbrain DA neurons were initially suggested to be mediated by astrocytes (Jordan 

et al., 1997), however Reiriz et al. (1999) demonstrated BMP2-induced increases in 

DA neurons in glial-depleted VM cultures (Reiriz et al., 1999). Furthermore, BMP2 

was shown to have neurotrophic effects in cultures of SH-SH5Y cells, a cell line 

model of human DA neurons, which do not contain glial cells (Hegarty et al., 

2013b). Again it is unclear whether BMPs increase DA neuron numbers in culture 

through induction of neural precursors and/or promoting the survival of existing 

neurons, however Reiriz et al. (1999) did report that BMP2 did not increase the 

proliferation of DA neurons (Reiriz et al., 1999). One BMP family member, BMP7, 

has been shown to induce DA neuronal differentiation from embryonic rat VM 

neural precursors (Lee et al., 2003). This BMP was also identified in the Jordan et al. 

(1997) and Brederlau et al. (2002) studies as a DA neurotrophic factor. Indeed, 

BMP7 has been shown to promote the survival of the adult nigrostriatal pathway in 

vivo against DA toxins (Harvey et al., 2004, Chou et al., 2008b) (see table 3.8.2), 

suggesting that BMP7 may maintain this pathway in adulthood and in response to 

insult. In support of this suggestion, a recent study comparing the expression levels 

of BMPs in multiple brain regions at various time-points in adulthood reported 

uniquely high levels of BMP7 expression in the ventral midbrain, when compared to 

other BMPs and other brain regions (Chen et al., 2003). Taken together, these 

preliminary BMP studies suggest roles for BMPs in the induction, neuronal 

differentiation and survival of midbrain DA neurons. Further studies, such as those 

described for BMP(R) mutants above, should be carried out to investigate the in vivo 

roles of BMPs in DA neuronal development. 
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Table 3.8.2: Roles of BMP family in the development of midbrain DA neurons 

Effects on midbrain DA neurons Reference(s) 

BMP2  

  

in vitro:  

  

increases numbers of embryonic DA neurons (Reiriz et al., 1999) 

  

promotes survival of embryonic DA neurons (Jordan et al., 1997) 

  

regulates neurite growth of embryonic DA neurons  (Reiriz et al., 1999, 

Hegarty et al., 2014a)  

  

in vivo:  

  

promotes survival of embryonic DA neurons in VM transplants to 

the adult striatum  

(Espejo et al., 1999) 

  

increases neurite growth from DA neurons in VM transplants to 

the adult striatum 

(Espejo et al., 1999) 

  

BMP7   

  

in vitro:  

  

increases numbers of embryonic DA neurons (Brederlau et al., 2002) 

  

promotes survival of embryonic DA neurons (Jordan et al., 1997) 

  

induces DA neuronal differentiation from embryonic rat VM 

neural precursors  

(Lee et al., 2003) 

  

in vivo:  

  

promotes survival of the adult nigrostriatal pathway against DA 

toxins  

(Harvey et al., 2004, 

Chou et al., 2008b) 

  

BMP 4, 5, 6 and 12  

  

increase numbers of embryonic DA neurons in vitro (Jordan et al., 1997, 

Brederlau et al., 2002) 

 

3.9 Conclusion and aims of present study 

The two most promising PD therapies involve (1) the application of neurotrophic 

factors to support the remaining DA neurons and protect them against the ongoing 

disease process, and (2) the transplantation of stem cell-derived midbrain DA 

neurons to replace those that have degenerated. In order to optimize these potential 

therapies, an understanding of the developmental program that regulates the 

development of midbrain DA neurons is vital, as it would facilitate both the 
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generation of transplantable DA neurons from stem cells, and the identification of 

developmentally-relevant neurotrophic factors.  

 This introduction thus firstly described the molecular mechanisms which are 

known to regulate VM DA neurogenesis. The ‘normal’ developmental program that 

regulates VM DA neurogenesis was outlined, including the cellular and molecular 

determinants involved in their regional specification, induction, differentiation and 

maturation. It is clear that DA neurogenesis involves a complex developmental 

program, which is complicated further by the fact that VM DA neurons are not a 

homogenous population. Midbrain DA neurons are now known to arise from floor 

plate radial glial-like NPs in response to specification by FGF8, Shh and Wnt1. This 

discovery has important implications for the specific isolation of VM DA NPs for 

use in cell replacement therapies. Additionally, following extensive research in 

recent years, Wnt1 is now accepted as an extrinsic instructive factor for VM DA 

neurons, along with Shh and FGF8, which has added another dimension to the 

developmental program of VM DA neurogenesis. Thus, other potential candidates 

should be investigated in the same way for their participation in VM DA neuronal 

specification, differentiation and neurite growth. The discovery of a number of new 

candidate transcription factors, for example Oc1/2/3, highlights that there are likely 

to be other, as yet unidentified, molecular pathways involved in regulating VM DA 

neurogenesis. Furthermore, new relationships are being uncovered between the 

transcription factors and molecular pathways that are well known to play key roles in 

DA development. These findings highlight that there is still a significant challenge 

remaining to understand the complexities of the dynamic molecular interactions 

between the known genetic networks involved in VM DA neurogenesis.  

 Some of the most promising candidate signalling proteins to be potentially 

involved in the development of nigrostriatal DA neurons belong to the TGF 

superfamily. BMPs signal via a canonical Smad signalling pathway involving two 

types of BMPRs, three R-Smads, Smad 1/5/8, and the co-Smad, Smad4. Before 

assessing the known literature on the involvement of this family in VM DA neuronal 

development, the present thesis reviewed the roles played by canonical BMP-Smad 

signalling in the development of the NS. Regulated Smad signalling is involved in 

the generation of the PNS primordium (the neural crest), while its inhibition is 

required for the formation of the CNS primordium (the neural plate). Following the 
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generation of these NS primordia, BMP-Smad signalling continues to regulate their 

further development, the most characterised example being in the patterning of the 

dorsal SC. Canonical BMP signalling is involved in the induction of both neuronal 

and glial fates from NSCs/NPs in a variety of CNS regions, such as the cortex, 

hippocampus, midbrain, hindbrain and SC. The mechanisms by which BMP-Smad 

signalling achieves the induction of both neuronal and glial phenotypes, as well as 

the induction of a variety of differentiation processes within specific neuronal 

populations, is unknown, however it is likely to be dependent on spatial and 

temporal regulation. Elucidating the various receptor combinations, cytosolic 

interactions, transcriptional effectors, and/or target genes that mediate these dual-

inductive effects of canonical BMP-Smad 1/5/8 is crucial for a comprehensive 

understanding of the roles it plays in neural development.  

 This literature review then specifically focused on the roles that TGFβ 

superfamily members play in midbrain DA development. It was clear that many of 

these members influence various key steps of this developmental process, including 

the induction, differentiation, target innervation and survival of VM DA neurons. 

GDNF, in particular, has been shown to be a multi-step regulator of nigrostriatal 

system development, but BMP family members, such as GDF5 and BMP2, possess 

similar potential to that of GDNF. Extensive research is required before these factors 

can be confidently integrated into the VM DA neurogenesis developmental program. 

The roles of these TGFβ superfamily members in each step of this embryonic and 

postnatal developmental process, as well as the mechanisms regulating their effects, 

should thus be thoroughly investigated. This body of work focused on BMP2 and 

GDF5, which may contribute to the induction, differentiation and survival of 

midbrain DA neurons. Indeed, many studies have demonstrated their potent 

neurotrophic effects on VM DA neurons in vitro and in vivo. Despite these studies, 

the molecular and cellular mechanisms mediating their effects on DA neuronal 

development and survival are unknown. It is essential to understand these 

mechanisms if BMP2 and GDF5 are to be used in a clinical context for the treatment 

of PD. In an attempt to address this, the present thesis set out to examine the 

hypothesis that canonical Smad 1/5/8 signalling mediates the effects of BMP2 and 

GDF5 on the development of VM DA neurons. This hypothesis will be tested in both 

primary cultures of embryonic rat VM, and in a cell line model of human DA 

neurons, SH-SH5Y cells, by activating, modulating or inhibiting various components 
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of the BMP-Smad 1/5/8 signalling pathway. A role for BMP-Smad signalling in the 

induction of a DA phenotype will then be investigated in E14 rat VM NSC cultures. 

Following these in vitro investigations, the ability of GDF5 to activate canonical 

Smad signalling in thr rat VM in vivo will be assessed. The knowledge gained from 

these studies will provide insights into the involvement of BMP-Smad 1/5/8 

signalling in the induction, differentiation and survival of VM DA neurons.  
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4. Materials and Methods 

4.0 Declaration 

All procedures were carried out accurately, and without bias, to the highest possible 

standards following appropriate training.  

 

4.1 Cell culture 

All procedures were carried out in a sterile laminar flow Class II Microflow 

Biological Safety Cabinet under aseptic conditions. All materials used were either 

tissue culture grade or had been sterilised by autoclaving at 121˚C for 20 min, or by 

passing through a 0.20 µm filter (Corning). 

 

4.1.1 Poly-D lysine coating of culture plates 

Poly-D lysine solution (Sigma) was added to the desired amount of wells of a 24-

well tissue culture plate (VWR) or a 6-/96-well tissue culture plate (Sarstedt) and left 

for 20 minutes in sterile conditions. Poly-D lysine was re-used (up to 3 times) or 

aspirated, and the wells were washed 3 times with autoclaved water, after which they 

were left to dry. 

 

4.1.2 Harvesting of the VM 

Time-mated Sprague-Dawley rats (Biological Services Unit, UCC) were placed in a 

bell jar within a Class 1 flow cabinet (Bassaire Model O3HB) and anaesthetised by 

inhalational isoflurane (Abbott Laboratories Ltd.). The pregnant rats were 

decapitated quickly using a guillotine. E12 or E14 embryos were removed by 

laparotomy using a blunt forceps and large scissors, and were subsequently 

immersed in Hank’s Balanced Salt Solution (HBSS) (with sodium bicarbonate and 

without phenol red, Ca
2+

 or Mg
2+

; Sigma H6645) in a 90 mm Petri dish (Fannin 

Healthcare) and kept on ice. All procedures were carried out with approval of the 

Animal Experimental Ethics Committee of University College Cork. Further 

dissections were carried out using a dissection microscope (Leica Wild M8) in a 

fume hood (Brassaire). Embryos were removed from their sacs using a scissors, 

curved forceps and a tweezers (World Precision Instruments), and placed in fresh 

HBSS in a 90 mm Petri dish placed on ice. Embryos undergoing dissection were 

transferred to the lid of a 90 mm Petri dish a quarter filled with HBSS. The 
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mesencephalon was dissected out by making an incision at the midbrain-hindbrain 

boundary, and at the forebrain-midbrain boundary using a dissecting scissors and a 

curved forceps (World Precision Instruments). The dorsal mesencephalon was then 

cut along the midline, and the mesencephalon was opened/ flattened out to show the 

VM in the centre. A cut at a point between the lateral to medial VM was then made 

on one side. The meninges were removed, and a similar incision was subsequently 

made on the other side of the midline to leave the VM. Cranial and caudal cuts were 

then made to the medial VM to ensure no forebrain/ hindbrain tissue was used. 

Dissected VMs were stored in a 20 ml sterilin tube in HBSS on ice until all the 

embryos were dissected. Once the dissections were completed, tissue culture was 

carried out immediately.  

 

4.1.3 VM NSC proliferation as neurospheres  

The E14 (or E12) VM tissue was centrifuged at 1,100 rpm for 5 min (4 min for E12). 

The supernatant was removed, and the tissue was enzymatically dissociated by 

addition of 3ml of 0.1% Trypsin (Sigma) to the sterilin tube which was incubated at 

37 C and 5% CO2 for 5 min (3 min for E12). 500µl of fetal calf serum (FCS) 

(Sigma) was then added to neutralise the Trypsin, and the tissue was triturated using 

a pipette tip and a syringe (BD Plastipak
TM

) and needle (Sterican). The VM tissue 

was subsequently centrifuged at 1,100 rpm for 5 min (4 min for E12). The 

supernatant was removed and the cell pellet was resuspended in 1 ml of Dulbecco’s 

Modified Eagle Medium Nutrient Mixture F-12 (DMEM F-12) (Sigma) containing 

100 nM L-Glutamine (Sigma), 6 mg/ml D-Glucose (Sigma), 100 U/ml Penicillin 

(Sigma), 10 µg/ml Streptomycin (Sigma), with 2% B-27 supplement (Invitrogen), 20 

ng/ml FGF (Millipore) and 20 ng/ml of epidermal growth factor (EGF) (Sigma), 

referred to as B-27 expansion media (all culture medias warmed to 37 C before use). 

A 1:10 dilution of the cell suspension was then made using the B-27 Expansion 

Media for cell counting. 10 µl of the diluted cell suspension was added to a 

haemocytometer (Marenfield Superior), and 5 grids were counted. The total number 

of cells was calculated using the following formula: 

 Cells/ml   
                                   

 
                         

The cell suspension was added to a T25 flask (VWR 734-2311) at a density of ~2 x 

10
6
  cells or to a 24-well tissue culture plate (VWR) at a density of 5 x 10

5
/well for 
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E14 VM cells (for GDF5 and BMP2 treatment), along with 10 ml of B-27 expansion 

media (1 ml for each well), and the flask/plate was incubated at 37 C and 5% CO2 

(ThermoForma Series II, Thermo Electron Corporation) for 7 (one passage), 14 (two 

passages) or 21 (three passages) days in vitro (DIV). For each passage, neurospheres 

were dissociated into a single cell suspension and reseeded in flask for expansion. At 

1 DIV (of each passage), the VM NSC were supplemented with 20 ng/ml of EGF 

and FGF. Half of the media was replaced every 2-3 days. For the treatment of E14 

VM neurospheres with recombinant human GDF5 (Biopharm GmbH, Germany) and 

recombinant human BMP2 (R&D Systems), GDF5 or BMP2 were added directly to 

the media at a concentration of 20 ng/ml every 2 days (from 0 DIV), and the 

neurospheres were imaged using phase-contrast microscopy at 2, 4 and 7 DIV. 

 

4.1.4 Differentiation of VM NSCs 

E14 (or E12) VM NSC neurospheres were transferred to a 20ml sterilin tube and 

centrifuged at 1,100 rpm for 5 min. The supernatant was removed, and the cells were 

enzymatically dissociated by addition of 2 ml of 0.1% Trypsin to the sterilin tube 

which was incubated at 3 C and 5% CO2 for 5 min. 500 µl of FCS was then added to 

neutralise the Trypsin, and the tissue was centrifuged at 1,100 rpm for 5 min. The 

supernatant was removed and the cell pellet was resuspended in 1ml of DMEM F-12 

containing 100 nM L-Glutamine, 6 mg/ml D-Glucose, 100 U/ml Penicillin, 10 µg/ml 

Streptomycin, with 2% B-27 supplement, and 1% FCS, referred to as differentiation 

media. The VM NSC suspension was then triturated using a syringe and needle. A 

1:10 dilution of the cell suspension was then made with the differentiation media for 

cell counting. 10 µl of the diluted cell suspension was added to a haemocytometer, 

and 5 grids were counted. The total number of cells was calculated using the above 

formula. To allow the cells to adhere to the wells, 50 µl of a cell suspension (diluted 

in differentiation media to give 50,000 cells/ml) was added to each well of a poly-D 

lysine coated 24-well plate (~1 x 10
6
 cells/ml for 6-well plate), and incubated for 1h 

at 37 C and 5% CO2. The wells were then ‘flooded’ with 500 µl of differentiation 

media (2 ml for 6-well plate), and incubated at 37 C and 5% CO2 for a period of 7, 

14, 21 or 28 DIV. Half of the media was replaced every 2-3 days. Differentiating 

VM NSCs were treated, as indicated, with 20 ng/ml of GDF5 or BMP2. 
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4.1.5 Primary cultures of the E14 rat VM 

For the preparation E14 rat VM cultures, dissected VM tissue was dissociated into a 

single cell suspension as per section 4.1.3, however the VM cells were resuspended 

in 1 ml of differentiation media. E14 VM cells were then plated on poly-D lysine-

coated 24-well plates at a density of 5 x 10
4
 cells per well in 500 μl of differentiation 

media, and incubated at 37˚C with 5% CO2. Cells were treated 200 ng/ml of GDF5 

or BMP2, and pre-treated (30 min prior to GDF5 or BMP2 application) with 1 μg/ml 

of Dorsomorphin (Sigma) or 200 ng/ml of Noggin (R&D Systems).  

 

4.1.6 5-bromo-2'-deoxyuridine application to E14 VM cells 

5-bromo-2'-deoxyuridine (BrdU) (Sigma), which was re-constituted in sterile water, 

was added to E14 VM cells at a concentration of 0.2 µM during the expansion of 

neurospheres at 5 DIV, and was supplemented every 3 DIV during differentiation. 

 

4.1.7 Harvesting and dissociation of the SH-SY5Y cell line 

Prior to use, SH-SY5Y cells were stored in liquid nitrogen in a vial of freezing 

medium consisting of 90% FCS and 10% Dimethyl Sulfoxide (Sigma). Cells were 

thawed, and then added to a 20 ml sterilin tube before being centrifuged at 1,100 rpm 

for 5 min. The supernatant was removed, and the cells were re-suspended in 1ml of 

DMEM F-12 containing 10% FCS, 100nM L-Glutamine, 100 U/ml Penicillin, 10 

µg/ml Streptomycin, referred to as SH-SY5Y growth media. The cells were added to 

a T25 flask, along with 10 mls of SH-SY5Y growth media, and were incubated 37 C 

and 5% CO2 until ~80% confluency was reached.  

 SH-SY5Y growth media was removed from the flask, and cells were washed 

in 1ml of HBSS to remove any residual media. The cells were enzymatically 

dissociated in 0.2% Trypsin by incubating at 37 C and 5% CO2 for 5 min. 1 ml of 

SH-SY5Y growth media was then added to neutralise the Trypsin, and the cells were 

triturated using a plugged flame polished Pasteur pipette (Sarstedt) attached to a 

pipette pump. A 1:10 dilution of the cell suspension was then made using the SH-

SY5Y growth media for cell counting. The total number of cells was calculated 

using the above formula. SH-SY5Y cells were added to a T25 flask, along with 

10mls of SH-SY5Y growth media, and were incubated 37 C and 5% CO2 until 

~80% confluency was reached. For experimentations, 500 µl of a SH-SY5Y cell 
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suspension (or 2 ml for 6-well plate), diluted in growth media to give the desired 

cells/ml value, was added to each well of an un-coated 6-well (RT-PCR) or 24-well 

(Immunocytochemistry) plate. Cells were treated with 200 ng/ml of GDF5 or BMP2, 

and pre-treated (30 min prior to GDF5 or BMP2 application) with 1 μg/ml of 

Dorsomorphin, 200 ng/ml of Noggin, 40 μm of Dynasore (Sigma) or 0.3 U/ml of 

Heparinase III (R&D Systems). For the neurite growth assay, cells were treated daily 

for 4 DIV (after 1DIV), and, where indicated, labelled with the vital fluorescent dye 

calcein-AM (1:500; Invitrogen) by incubation at 37 C for 30 min. To test Smad 

pathway activation, cells were treated for 0, 5, 15, 30, 60 or 120 min (after 1DIV). 

To assess the endocytosis inhibition efficiency of dynasore, SHSH5Y cells were 

incubated in 30 μg/ml of Alexa594-transferrin (Invitrogen), as previously described 

in a separate study (Heining et al., 2011). 

 

4.1.8 Fixation, blocking and immunocytochemical staining of cultured cells 

The 24 well plates were removed from the incubator and medium was aspirated 

slowly. 500 µl of ice-cold methanol (-20 C: Reagecon) was added to VM cells, and 

500 µl of 4% paraformaldehyde (PFA) (4 C) was added to SH-SY5Y cells, before 

the plates were incubated at -20 C (RTemp for SH-SY5Ys) for 10 min. Following 

fixation, the cells were washed three times in 10mM phosphate buffered saline 

(PBS) containing 0.02% Triton X-100 (PBS-T) for 5 min. The cells were then 

incubated in 500 µl of 5% bovine serum albumin (BSA) (Sigma) in PBS at RTemp 

for 1 h. After blocking, the 5% BSA in PBS was removed and the cells were 

incubated in 250 µl of the desired primary antibodies, which were diluted in 1% 

BSA in PBS, at 4 C overnight. The primary antibodies used were: mouse anti-βIII-

tubulin (1:300; Medical Supply), rabbit anti-βIII-tubulin (1:300; Millipore) rabbit 

anti-tyrosine hydroxylase (1:300; Millipore), mouse anti-Sox2 (1:100; R&D 

Systems), mouse anti-Nestin (1:400; Millipore), mouse anti-Vimentin (1:200; 

Sigma), mouse anti-glial fibrillary acidic protein (GFAP) (1:300; Sigma), mouse 

anti-Myelin Basic Protein (MBP) (1:300; Millipore), mouse anti-β-actin (1:200; 

Sigma), rabbit anti-Smad 1/5/8 (1:200; Santa Cruz), rabbit anti-phopsho-Smad 1/5/8 

(1:200; Cell Signalling), rabbit anti-Smad4 (1:100; Millipore), mouse anti-BMPRIa 

(1:200; R&D Systems), mouse anti-BMPRIb (1:200; R&D Systems), mouse anti-

BMPRII (1:200; R&D Systems), phospho-p38 (1:50; Cell Signalling), phospho-JNK 
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(1:50; Cell Signalling), phospho-Erk (1:50; Cell Signalling) and mouse anti-BrdU 

(1:4; Millipore). For the mouse anti-BrdU primary antibody, which was diluted in 

PBS, 130 µl was added to the 24-well plate before incubation at RTemp for 1 h on 

the shaker. This was carried out after overnight incubation with another primary 

antibody and three 5 min PBS-T washes for double immunostaining. Following 

primary antibody application, the primary antibodies were removed and the cells 

were washed three times in PBS-T for 5 min. The cells were then incubated in 250 µl 

of Alexa Fluor 488 or 594, or both for double immunostaining, conjugated 

secondary antibodies (1:500, Invitrogen) reactive to the species of the primary 

antibodies and diluted in 1% BSA in PBS, at RTemp for 2 h in the dark. The 

secondary antibodies were removed, and three 5 min PBS-T washes were carried out 

before the cells were incubated in 300 µl of 4'-6-Diamidino-2-phenylindole (DAPI) 

(1:3000, Sigma), diluted in PBS, for 5 min at RTemp in the dark. The cells received 

a final three 5 min washes in PBS, and were stored in PBS at 4 C in the dark until 

imaged on an inverted fluorescent microscope (FV1000, Olympus). Negative 

controls in which the primary antibody was omitted were also prepared. 

 

4.1.9 MTT assay 

0.5 mg/ml Thiazolyl Blue Tetrazolium Bromide (MTT) (Sigma) solution was 

prepared by dissolving in HBSS. The media was removed from the cells and 300 µl 

of MTT solution was added per well. The cells were then incubated with MTT 

solution for ~4 h at 37 C and 5% CO2. The MTT solution was carefully removed, 

and 100 µl of DMSO was added to each well to lyse the cells. 75 µl of the DMSO 

solution was pipetted into a 96 well plate, and the absorbance of each sample was 

determined using a plate reader (Tecan sunrise) at A600. 

 

4.2 Transfection of cultured cells 

4.2.1 Electroporation of SH-SH5Y cells and E14 VM cells 

Electroporation of cells was carried out using the Neon
TM

 Transfection System 

(Invitrogen). For freshly-dissected E14 VM cells and cultured SH-SY5Y cells, cell 

suspensions were prepared for counting as described in sections 4.1.3 and 4.1.6 

respectively. However, the resuspension media was antibiotic-free. Following cell 

counting, the required volume of cells to give 200,000 cells per well was centrifuged 
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at 1,100 rpm for 5 min. The cell pellet was washed twice with PBS (without CaCl2 

and MgCl2) (Sigma), and then resuspended in the required amount of resuspension 

buffer (12 µl per transfection/plasmid). 0.5 µg of pcDNA3.1-GFP plasmid and 1 µg 

of desired plasmid DNA (1 µM for siSip1) was added to the resuspended cells. 10 µl 

of the cell/plasmid DNA mixture was then aspirated into a gold Neon
TM

 Tip using 

the Neon
TM

 Pipette. This tip, containing the cell/plasmid DNA mixture, was placed 

into a cuvette, containing 3 ml of the Electrolytic Buffer, in the Neon
TM

 Pipette 

Station. E14 VM cells were transfected at a voltage of 1100 V (1200 V for SH-

SY5Y cells), a width of 30 ms (20 ms for SH-SY5Y cells), and 2 pulses (3 pulses for 

SH-SY5Y cells). The cells were then added to 50 µl (per well) of antibiotic-free 

media, and this cell suspension was added to the required number of wells of a 24-

well plate (poly-D lysine coated for E14 VM cells). E14 VM cells were allowed to 

adhere to the surface of the wells for 2 h in the incubator at 37 C and 5% CO2. The 

cells were then incubated with 500 µl of their respected media (outlined above), and 

incubated at 37 C and 5% CO2 for a defined period. 

 

4.3 Analysis of neuronal complexity  

4.3.1 E14 VM neuronal complexity analysis 

The total neurite length of individual E14 VM neurons, which were either 

electroporated or immunostained for TH, was measured using Sholl analysis as 

previously described (Gutierrez and Davies, 2007, Collins et al., 2013). For the 

analysis of electroporated E14 VM DA neurons, traces of GFP
+
/TH

+
 neurons were 

carried out using the CorelDRAW x4 software and analysed as previously described 

(O'Keeffe et al., 2004a). Briefly, neurite length (NL) was calculated using the 

following formula; NL = α x T x (π/2), where α is the number of times the neurite 

intersects the grid lines, and T is the distance between the gridlines on the magnified 

image (taking into account the magnification factor). VM neurons with intact 

processes were analysed from 50 random fields per condition, where any neuron 

with a process that was ~1.5 times the somal length was deemed an intact process. 

 

4.3.2 SH-SH5Y cell neurite length analysis 

20 microscopic fields were randomly selected for each experiment, and 

photographed using an Olympus IX70 inverted microscope. All cells in each 
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photograph were measured. The length of the neuritic arborisation was estimated 

using standard stereological procedures (Mayhew, 1992). A line grid was 

superimposed on the microscopic images and the number of times each neurite 

intersected the grid was recorded. The neurite length was calculated using the 

formula; NL = α x T x (π/2) as described. 

 

4.4 Polymerase chain reaction (PCR) 

4.4.1 RNA isolation 

An RNeasy Mini Kit (50) (Qiagen) was used to isolate RNA from tissues. For 

BMPR developmental expression profile study (see Chapter 3), the VM and striatum 

from E14 to P90 rats were dissected and, following the extraction of total RNA, 

semi-quantitative RT-PCR (both described below) for a variety of genes involved in 

DA development and maintenance (TH, Nurr1, Lmx1b, and Pitx3) (Hegarty et al., 

2013c) was performed on the midbrain samples to confirm accuracy of the dissection 

at each age (Fig. 6.4.1a and data not shown). 

 700 µl of RLT buffer and 7 µl of β-mercaptoethanol (Sigma) were added to > 

2 x 10
6
 SHSY5Y cells (350 µl RLT Buffer and 3.5 µl β-ME were added to < 2 x 10

6
 

cells, or fresh E14 rat tissue) in a 1.5 ml eppendorf (Sarstedt). A needle and syringe 

were used to homogenize the tissue, and the tube was centrifuged for 3 min at 11,000 

rpm. The supernatant was transferred to another tube where an equal volume of 70% 

ethanol (J.T Baker) was added. This mixture was placed in a spin cup and spun for 

15 s at 11,000 rpm. The flow through was discarded and the DNA was digested 

using an Rnase-Free Dnase Set (Qiagen). The membrane of the spin cub was washed 

in 700 µl RPE buffer and spun at 11,000 rpm. Flow through was discarded. RNA 

was eluted in 50 µl of nuclease-free water (Ambion) by spinning it for 1 min at 

11,000 rpm. RNA concentration was maximized by passing the elute through the 

membrane a second time. RNA concentration in ng/µl was determined by using a 

Spectrophotometer (ND1000; NanoDrop Technologies, Inc). 

 

4.4.2 cDNA synthesis 

cDNA synthesis was performed using an ImProm-II Reverse Transcription System 

(Promega). A volume of the sample that contained 1 µg of RNA (or the highest 

concentration possible between 150-1000 ng) was calculated, and a RNA mix was 
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prepared using this volume, 0.5 µl oligo dTs, 0.5 µl random primers and nuclease-

free water to make up a total volume of 11.5 µl. A negative control RNA mix was 

also prepared for each sample. The tubes underwent 65 C for 5 min in a Polymerase 

Chain Reaction (PCR) machine (Bio-Rad MJ Mini
TM

 Personal Thermal Cycler). A 

mastermix containing 4 µl 5X buffer, 2 µl MgCl2, 1 µl dNTPs and 0.5 µl Rnasin 

inhibitor was made up for each tube, and was added along with 1 µl of Reverse 

Transcriptase enzyme to each tube. The negative controls received 1 µl of nuclease-

free water instead of RT enzyme. The tubes then underwent 37 C for 90 min before 

dropping to 4 C. cDNA samples were stored at 4 C for 1-2 days (-20 C for longer 

storage) and subsequently used in Reverse Transcriptase-PCR (RT-PCR). 

 

4.4.3 RT-PCR 

RT-PCR was carried out using a GoTaq Flexi DNA Polymerase system (Promega). 

20.75µl of mastermix containing 5µl 5X PCR buffer, 1.5mM MgCl2, 1.25mM PCR 

dNTPs and 10.25µl nuclease-free water was added to each tube. 2µl of cDNA 

sample, 2µl of the desired sense (F) and anti-sense (R) primer mix (10µl of F, 10µl 

of R, and 80µl nuclease-free water) and 0.25µl of Taq polymerase were also added. 

The RT negative cDNA samples were used as the negative control. The PCR 

conditions for the primers used are outlined in table 4.3.1. PCR products were stored 

at 4 C for 1-2 days and at -20 C for longer storage. 

 

4.4.4 Running RT-PCR products in an agarose gel 

PCR products were run on a 2.5% agarose gel (2.5g agarose (Sigma) dissolved in 

100ml 1X TAE buffer). 5µl of safe view (NBS biologicals) was added to the molten 

gel, before it was poured into the gel tray to set for 30 min. The gel tray was lowered 

into the gel rig (Peqlab biotechnologie GmbH) and immersed in 1X TAE. 100 bp 

ladder (7µl; New England Biolabs) and 7µl of each sample were loaded into the 

wells (created by a comb in the gel), and the gel was run at 100 V for 1-1.5 hrs using 

a Bio-Rad Power Pac 200. The gel was imaged with a UV transluminator with UVI 

Pro software. 
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Table 4.4.1 PCR Primers 

Gene Species Primer Sequence Annealing 

Temp ( C)  

Cycle 

Number  

Product 

Size (bp)  

GAPDH Rn F: 5'-TGGCACAGTCAAGGCTGAGA-3' 

R: 5'-CTTCTGAGTGGCAGTGATGG-3' 

55 

 

25 388 

 

BMPRIa Rn F: 5’-GGAGGAATCGTGGAGGAATATC-3’ 

R: 5’-CATACGCAAAGAACAGCATGTC-3’ 

55.1 34 464 

BMPRIb Hs F: 5'-GCAGCACAGACGGATATTGT-3' 

R: 5'-TTTCATGCCTCATCAACACT-3' 

53 30 630 

BMPRII Hs F: 5’-GCTTCGCAGAATCAAGAACG-3’ 

R: 5’GTGGACTGAGTGGTGTTGTG-3’ 

57 34 349 

Smad1 Rn F: 5'-AGTGACAGCAGCATCTTCGTGC-3' 

R: 5'-CGGGTGTATCTCAATCCAGCAG-3' 

57 34 276 

Smad4 Hs F: 5'-AAGGTGAAGGTGATGTTTG-3' 

R: 5'-GAGCTATTCCACCTACTGAT-3' 

56 30 264 

Smad5 Rn F: 5'-GGAGGAGTTGGAGAAAGCCTTG-3' 

R: 5'-GGGAGTTGGGATATGTGCTGC-3' 

57 34 470 

Smad8 Rn F: 5-GTATCATCGCCAGGATGTCA-3' 

R: 5'-TGTGGGGAGCCCATCTGAGT-3' 

60 40 104 

Sip1 Rn F: 5'-CGCTTGACATCACTGAAGGA-3' 

R: 5'-CTTGCCACACTCTGTGCATT-3' 

55 28 224 

Lmx1b Rn F: 5’-CGTGAGCCCGGATGAGTCTGA-3’ 

R: 5’-AGGGGTCGCTGCTTCCGTAGG-3’ 

63.2 32 485 

Msx1 Rn F: 5'-GGAGGCCGAGTTGGAGAAGTTGAA-3’ 

R:5’-AGAAGGGGTCGGAAGAGGGAGGAG-3’ 

62.1 32 405 

Pitx3 Rn F: 5’-GCAGTAATTCACAGCCTCTCTGG-3’ 

R: 5’-GTCCCTGTTCCTGGCCTTAGT-3’ 

58.8 32 193 

Nurr1 Rn F: 5’-CTCTCTCCCGCCTTTCACTCTTCT-3’ 

R: 5’-ATTTCGGCGGCGCTTATCCA-3’ 

60.9 32 434 

TH Rn F: 5’-TGTCACGTCCCCAAGGTTCAT-3’ 

R: 5’-GGGCAGGCCGGGTCTCTAAGT-3’ 

60 32 275 

βIII-

tubulin 

Rn F: 5’-TCACAAGTATGTGCCCAGAGCCATT-3’ 

R:5’-GCCTGAATAGGTGTCCAAAGGCCCC-3’ 

56.8 32 92 

GFAP Rn F: 5’-ACATCGAGATCGCCACCTAC-3’ 

R: 5’-ACATCACATCCTTGTGCTCC-3’ 

54.3 30 219 

 

4.4.5 Quantitative real-time PCR (RT-QPCR) 

Midbrain and striatum samples were disrupted and homogenised in 1ml of QIAzol 

Lysis Reagent (Qiagen). After the addition of 200 µl chloroform, homogenates were 

separated into aqueous and organic phases by centrifugation at 13,000 rpm for 15 

min. The upper aqueous phase was mixed with an equal volume of 70% ethanol, to 

precipitate the RNA, then transferred to an RNeasy Mini spin column placed in a 2 

ml collection tube. Total RNA was purified using the Qiagen RNeasy Lipid Tissue 

Mini extraction kit and RNase-free DNase set, according to the manufacturer’s 
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instructions. Following purification, total RNA was reverse transcribed using 

Stratascript reverse transcriptase (Agilent Technologies), for 1 h at 45°C, in a 30 µl 

reaction according to the manufacturer’s instructions. 

 In order to amplify cDNAs encoding the normalising reference genes, 

GAPDH, succinate dehydrogenase complex, subunit A (SDHA), and ubiquitin C 

(UBQC), 2.5µl of cDNA was amplified in a 25 µl PCR reaction containing 1X 

FastStart Universal SYBR Green Master Mix (Rox) (Roche) and 150 nM forward 

and reverse primers. In the case of amplifying cDNAs encoding TH, BMPRIb and 

BMPRII, 2 µl of cDNA was amplified in a 20 µl PCR reaction containing 1X of 

Brilliant III Ultra-Fast QPCR Master Mix (Agilent Technologies), 150 nM each 

forward and reverse primers and 300 nM cDNA specific FAM/BHQ1 dual-labelled 

hybridization probe (Eurofins), and 3 nM ROX reference dye. 

 Quantitative real-time PCR amplification was performed using the Stratagene 

MX3000P thermal cycler. GAPDH, SDHA, and UBQC quantitative real-time PCR 

amplification products were verified as being correct by melting curve analysis 

(melting temperatures 83.5°C, 80°C and 85°C, respectively) of the completed PCR 

reaction. The initial quantities of each cDNA in each PCR reaction was determined 

by comparison to a standard curve incorporated into the PCR run and constructed 

from serial dilutions of cDNA reverse transcribed from RNA extracted from P11 

striatum and midbrain samples. Values for each gene of interest were normalised to 

the geometric mean of the three reference genes. 

 Primer and probe sequences for amplification of each cDNA are listed in 

table 4.3.2. Cycling parameters for GAPDH, SHDA, and UBQC were 10 min at 

95°C followed by 40 cycles of: 95°C for 30 s; 55°C for 1 min; 72°C for 1 min. 

Cycling parameters for TH, BMPRIb, and BMPRII were 3 min at 95°C followed by 

45 cycles of: 95°C for 13 s and 60°C for 30 s. 

 

Table 4.4.2 RT-QPCR Primers and Probes 
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4.5 Western Blotting 

4.5.1 Protein extraction from fresh tissue and cultured cells 

For cultured cells, the 24-well plates were removed from the incubator, and the 

medium was aspirated slowly. 150 µl of RIPA lysis buffer consisting of 145.5 µl 

RIPA buffer (50mM Tris-HCL, 150 mM NaCl, 2 mM EDTA, 0.5% Na-

Deoxycholate, 0.1% SDS and 1% Triton X), 1.5 µl of phenylmethylsulfonyl 

fluoride, 1.5 µl sodium orthovanadate and 1.5 µl of sodium fluoride was added to 

each well to lyse the cultured cells. The plate was incubated on ice for 1 h and the 

bottom of each well was then scraped to lift off the adhering cells. The cell 

suspension was transferred into a 0.5 ml eppendorf tube, which was then centrifuged 

at 10,000 for 10 min. ~130 µl of the supernatant (containing the protein) was 

removed and pipetted into a 0.5 ml eppendorf tube. The protein was stored at -20 C. 

 For freshly dissected rat tissue, the tissue was weighed before a volume of 

RIPA buffer, containing 1% phenylmethylsulfonyl fluoride, sodium orthovanadate 

and sodium fluoride, ten times the tissue weight was added to lyse the tissue. The 1.5 

ml eppendorf tube containing the tissue and lysis buffer was incubated on ice for 2 h, 

before the tissue was homogenised using a hand-held dounce homogeniser . The 

lysed and homogenised tissue was then centrifuged at 10,000 for 10 min. The 

supernatant was pipetted into a new eppendorf tube and stored at -20 C. 

 

4.5.2 Bradford assay 

BSA proteins standards (0 µg/ml – 30 µg/ml) were prepared, and the protein samples 

were diluted (1:100 in distilled water). 100 µl of each standard and diluted sample 

was added in triplicate to their designated wells. Bradford reagent (Bio-Rad) was 

diluted (1:5 in distilled water) and 100 µl of this was added to every well so that 

there was a total of 200 µl in each well. The plate was read in a plate reader @ A600. 

The average of the triplicates was calculated and the average blank was subtracted 

from all the other average values. Protein standard points were plotted on a log graph 

(Absorbance vs Protein Concentration) and the line of best fit was drawn using 

GraphPad Prism 5. The sample concentrations in µg/ml were interpolated from the 

graph using the average sample absobance values. This concentration was multiplied 

by 100 (dilution factor) to get the true concentration of the samples. The sample with 

the least amount of protein was chosen, and the concentration of this protein in 10 µl 
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was calculated. The volume of all other samples containing this concentration of 

protein was then calculated. 

 

4.5.3 Sodium dodecyl sulphate polyacrylamide gel electrophoresis and western 

blotting 

A 4% sodium dodecyl sulphate (SDS) –polyacrylamide stacking gel cast above a 

12% resolving gel was used to separate proteins based on molecular weight. Samples 

were prepared by adding a chosen concentration of protein to an equal volume of 

sample buffer (0.25 M Tris-HCl pH 6.8, 8% SDS, 30% Glycerol, 0.02% 

Bromophenol Blue) and boiled for 5 min. The total volume of each sample was 

loaded into the gel alongside 5 µl of molecular weight protein standards (Bio-Rad). 

Electophoresis was initiated by applying 150V for 60 min to the running apparatus 

(Bio-Rad) containing Tris-glycine running buffer with SDS (Sigma). The resolving 

gel was then placed in a transfer sandwich with two fibre pads, two filter papers and 

a piece of nitrocellulose membrane cut to size. Electrophoretic transfer to the 

membrane was carried out at 100V for 60 min in a trough of transfer buffer (5.85 g 

Tris-Base, 2.93 g glycine and 50ml methanol in 1 L distilled water). After the 

transfer, the membrane was incubated in a 5% blocking solution of dried milk 

(Marvel original dried skimmed milk) for 60 min on a rocker (~55 oscillations/min) 

at RTemp. The membrane was washed briefly in tris-buffered saline (TBS) 

containing 0.05% Tween (TBS-T) (Fisher Scientific) before primary antibody 

application. The primary antibody used was rabbit anti-phospho-Smad 1/5/8 

(1:1000) or mouse anti-β-actin (1:10,000) diluted in 1% BSA in TBS-T, and the 

membrane was incubated with this overnight at 4 C. The blot underwent three 

washes in TBS-T for 10 min, and was then incubated for 60 min on a rocker (~55 

oscillations/min) at RTemp with anti-rabbit horseradish peroxidise-conjugated 

secondary antibody. The blot was washed twice in TBS-T for 10 min and then 

washed in TBS once for 10 min. The proteins on the blot were detected using an 

ECL Plus Western Blotting Detection System (GE Healthcare) and the blot was then 

developed using an AGFA CP1000 developer. 
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4.6 Preparation of Smad siRNA expression vectors 

4.6.1 Hairpin siRNA oligonucleotide preparation 

The Smad4 21 nucleotide small interfering RNA (siRNA) target sequences were 

chosen based on homology between the mouse, rat and human mRNA sequences, 

and a GC content of 30-50%. This target sequence was then used as the basis to 

design the 55 nucleotide siRNA template oligonucleotide. Three different siRNA 

were prepared for each Smad protein (see table 4.5.1). The oligonucleotides were 

synthesised by biomers.net. The Smad4.3 siRNA was identified as the most efficient 

at Smad4 knockdown (Fig. 5.4.7b), and was subsequently used experimentally (see 

Chapter 5 and 6). 

 

Table 4.6.1 Smad4 siRNA Oligonucleotides 

siRNA oligonucleotides: Sequence: 

Smad4 .1 Forward: 5'-GATCC AGGATTTCCTCATGTGATC TTCAAGAGA 

GATCACATGAGGAAATCCTTT  A-3' 

Smad4 .1 Reverse: 5'-AGCTT  AAAGGATTTCCTCATGTGATC TCTCTTGAA 

GATCACATGAGGAAATCCT  G-3' 

Smad4 .2 Forward: 5'-GATCC ACACACCTAATTTGCCTCA TTCAAGAGA 

TGAGGCAAATTAGGTGTGTAT  A-3' 

Smad4 .2 Reverse: 5'-AGCTT  ATACACACCTAATTTGCCTCA TCTCTTGAA 

TGAGGCAAATTAGGTGTGT  G-3' 

Smad4 .3 Forward: 5'-GATCC GGGTCAACTCTCCAATGTC TTCAAGAGA 

GACATTGGAGAGTTGACCCAA  A-3' 

Smad4 .3 Reverse: 5'-AGCTT  TTGGGTCAACTCTCCAATGTC TCTCTTGAA 

GACATTGGAGAGTTGACCC  G-3' 

 

 

4.6.2 Cloning hairpin siRNA insert into pSilencer 4.1-CMV vector 

The oligonucleotides were diluted to a concentration of 1 µg/µl (based on 

concentrations given in biomers.net data sheet) in 1X Tris EDTA (Sigma). The sense 

and antisense siRNA template oligonucleotides were annealed by addition of 2 µl of 

the sense and 2 µl of the antisense oligonucleotide to 46µl of the 1X DNA Annealing 

solution (Ambion), and heating this mixture at 90 C for 3 min before being 

incubated at 37 C for 1hr. 5 µl of the annealed siRNA oligonucleotide was diluted in 

45 µl of nuclease-free water for a final concentration of 8 ng/µl. 1 µl of the diluted 

annealed siRNA insert was added to 6 µl nuclease-free water, 1 µl 10X T4 DNA 

Ligase Buffer (Ambion), 1 µl T4 DNA Ligase (5U/µl; Fermentas), and 1 µl 

pSilencer 4.1-CMV vector (Ambion) (see Fig. 4.5.1) and this mixture was incubated 
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overnight at 4 C for the ligation of the annealed siRNA insert into the pSilencer 4.1-

CMV vector. A minus-insert negative control was also prepared by adding 1 µl of 

1X DNA Annealing solution in place of the siRNA insert. 

 

Figure 4.6.1 pSilencer 4.1-CMV Neo Vector Map 

 

4.7 Bacterial transformations and plasmid purification 

4.7.1 Bacterial transformations 

XL-1 blue bacteria were transformed with 25 ng/µl of each of the Smad siRNA 

expression vectors, and the minus-insert negative control vector. The bacteria and 

plasmid mixture was incubated on ice for 1 h before being heated at 41 C for ~70 s. 

The mixture was replaced on ice, and 450 µl of LB Broth (Sigma) was added to each 

bacteria and plasmid mixture. The mixture was then incubated in a shaking incubator 

(~220 oscillations/min; Shel Lab) for 1 h at 37 C. The bacteria and plasmid mixture 

was spread on a LB Agar (Sigma) 96 mm petri dish containing 50 µg/ml ampicillin 

(Sigma), and incubated upside-down at 37 C overnight. 

 

4.7.2 Isolation and culture of transformed bacteria 

Isolate a single colony of transformed bacteria from the LB Agar dish (4 bacteria per 

vector transformation) using a pipette tip, and drop this transformed colony into a 

sterile 500 ml conical flask (VWR International) of 100 ml of LB Broth containing 

50 µl/ml ampicillin. Incubate the flasks in a shaking incubator (~100 

oscillations/min) at 37 C overnight. 

 

4.7.3 Plasmid DNA purification 

Plasmid purification was carried out using a Plasmid Midi Kit (Qiagen). Harvest 

bacterial cells by centrifugation at 6,000 x g for 15 min at 4 C. The bacterial pellet 
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was re-suspended and lysed using the buffers provided. Lysis buffer was left on no 

longer than 5 minutes before the addition of the neutralisation buffer to precipitate 

out the genomic DNA, proteins and cell debris. Mixing was carried out to 

completely neutralise the solution and effectively precipitate ot SDS. This mixture 

was incubated on ice for 15 min before centrifugation at 10,000 x g for 1 h at 4 C. 

The clear supernatant was then passed through the Qiagen anion-exchange tip where 

the plasmid DNA selectively bound to the resin and impurities in the flow-through 

were discarded. The resin was washed twice with 10 ml of QC buffer before the 

plasmid DNA was eluted in 5 ml of elution buffer. 3.5 ml of isopropanol (Sigma) 

was added to precipitate the DNA, and the precipitate was centrifuged at 15,000 x g 

for 30 min at 4 C. The supernatant was decanted and the pellet was washed with 2 

ml of 70% ethanol. The pellet was re-dissolved in 200 µl of nuclease-free water, and 

DNA concentration in ng/µl was determined by using a Spectrophotometer. The 

Smad4 siRNA plasmid DNA samples were sequenced by Eurofins to investigate for 

any mutations in the sequence. 

 

4.8 In vivo GDF5 study  

GDF5 was applied to the VM of adult male rats to assess the ability of GDF5 to 

activate canonical Smad 1/5/8 signalling in DA neurons in vivo. 

 

4.8.1 Stereotactic surgery  

Stereotactic surgery was conducted under isofluorane anaesthesia (5% in oxygen for 

induction; 2% in oxygen for maintenance) in a stereotaxic frame with the nose bar 

set at -2.3 mm. An incision was made through the skin over the skull and the skull 

was exposed. Following the location of bregma, the stereotaxic arm holding the 

injection cannula was adjusted to the coordinates of the target SNpc and a drill was 

used to expose dura over the injection site. The injection needle (diameter 0.13 mm; 

Hamilton) was connected to a 10 µl microsyringe (Hamilton). The Hamilton syringe 

was depressed manually to allow the appropriate volume of solution to be delivered. 

GDF5 was applied to the right SNpc at a final concentration of 10 µg, by injecting 3 

µl of 3.33 µg/µl GDF5 (dissolved in 0.01% ascorbate saline) at 1 µl/min, with 2 min 

for diffusion, at the stereotaxic coordinates AP -5.3, ML ±2.2 (from bregma) and DV 

-7.2 below dura. Sham surgery was performed by injecting saline in place of GDF5. 
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Following injection, the incision was sutured and the rats were allowed to recover for 

2 before undergoing western blotting.  

 

4.8.2 Postmortem Analysis 

For immunohistochemical analysis, the rats were sacrificed by a lethal dose of 

Euthatal (150 mg/kg sodium pentobarbitone, i.p.) and perfused intracardially with 

100 ml of 10 mM PBS, followed immediately by 200 ml of 4% PFA. The brains 

were removed and placed in 4% PFA. They were then cryoprotected in 30% sucrose, 

snap frozen in isopentane that was chilled by liquid nitrogen, and subsequently 

stored at -80 C. The brains were sectioned at 15 µm intervals using a Leica CM1900 

cryostat, and each section was placed on a gelatine-coated slide before being stored 

at 80 C. The desired sections were incubated in blocking solution (10% normal 

horse serum in 10 mM PBS; 50 µl per section) for 1 h at RTemp. The sections were 

subsequently incubated in phopsho-Smad 1/5/8 (1:50) and/or TH (1:400) overnight 

at 4 C. Tissue was then washed in 10 mM PBS (3 x 5 min) and incubated in the dark 

with Alexa Fluor 488- and/or 594-conjugated secondary antibodies (1:1000) for 1.5 

h at RTemp. After washing (10 mM PBS 3 x 5 min), sections were cover-slipped in 

mounting medium (PVA-DABCO) and visualised using an upright fluorescence 

microscope (IX70, Olympus). 

  For western blotting, adult VM and striatum were dissected. Following quick 

decapitation of the non-anaesthetised rats using a guillotine, the brain was removed 

and placed on the lid of a glass petri dish filled with ice. Using a curved forceps and 

blade, the left and right hemispheres were separated. The striatum was then exposed 

by peeling back the cortex and white matter, before being pinched out using the 

forceps. For the VM, the hindbrain was removed first. The tissue dorsal and lateral to 

the VM was then removed to leave the VM region. The tissue then underwent 

western blotting as described in section 4.5. 

 

4.9 Statistical analysis 

Unpaired Student’s t-test or one-way ANOVA with a post hoc Tukey’s test was 

performed, as appropriate, to determine significant differences between groups. 

Results were expressed as means with SEM and deemed significant when p < 0.05. 
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5. BMP2 and GDF5 induce neuronal differentiation 

through a Smad-dependant pathway in a model of human 

midbrain DA neurons.   

 

5.0 Aims 

 Verify SH-SH5Y cells as a suitable cell line to investigate BMP signalling 

via the canonical Smad 1/5/8 signalling pathway.  

 Demonstrate neurotrophic effects of BMP2 and GDF5 in SH-SY5Y cells. 

 Identify the receptors and intracellular signalling pathway(s) that mediate the 

neurotrophic effects of BMP2 and GDF5. 

 

5.1 Abstract 

Parkinson’s disease is the second most common neurodegenerative disease, and is 

characterized by the progressive degeneration of the nigrostriatal DA system. 

Current treatments are symptomatic, and do not protect against the DA neuronal loss. 

One of the most promising treatment approaches is the application of neurotrophic 

factors to rescue the remaining population of nigrostriatal DA neurons. Therefore, 

the identification of new neurotrophic factors for midbrain DA neurons, and the 

subsequent elucidation of the molecular basis of their effects, is important. Two 

related members of the BMP family, BMP2 and GDF5, have been shown to have 

neurotrophic effects on midbrain DA neurons both in vitro and in vivo. However, the 

molecular (signalling pathway(s)) and cellular (direct neuronal or indirect via glial 

cells) mechanisms of their effects remain to be elucidated. Using the SH-SH5Y 

human neuronal cell line, as a model of human midbrain DA neurons, we have 

shown that GDF5 and BMP2 induce neurite outgrowth via a direct mechanism. 

Furthermore, we demonstrate that these effects are dependent on BMP type I 

receptor activation of the canonical Smad 1/5/8 signalling. 
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5.2 Introduction 

PD is the second most common neurodegenerative disease and is characterized by 

motor symptoms, including bradykinesia, akinesia and resting tremor. The 

pathological hallmark of the disease is the progressive degeneration of DA neurons 

that project from the midbrain to the striatum. Despite fifty years of investigation, 

the mainstay of treatment is symptomatic, involving exogenous L-dopa or DA 

receptor agonists, but these treatments do not protect against the DA neuronal loss 

which continues unabated (Toulouse and Sullivan, 2008). A large variety of 

experimental treatment strategies have been proposed, but one promising approach is 

neurotrophic factor therapy. This involves the addition of neurotrophic factors to the 

brain to rescue the remaining DA neurons (Sullivan and Toulouse, 2011). An 

intensive research effort has identified GDNF as a potent DA neurotrophic factor 

(Lin et al., 1993). GDNF promotes the survival of midbrain DA neurons in vitro and 

in vivo but, despite initial successes in open-label clinical trials (Gill et al., 2003, 

Patel et al., 2005, Slevin et al., 2005), a double-blind placebo-controlled clinical trial 

showed no beneficial effect of GDNF administration to the striatum (Lang et al., 

2006). Thus, it is important that new neurotrophic factors are identified and that the 

molecular basis of their effects on midbrain DA neurons are elucidated. 

 GDNF is a member of the TGF superfamily which is a large family of 

structurally-related molecules that are grouped into subfamilies based on sequence 

similarities. These subfamilies include the GDNF family, the BMPs, GDFs and 

others (Miyazono et al., 2001).  Members of the BMP and GDF families have been 

shown to play diverse roles in the development and function in a variety of tissues, 

but in particular they play critical roles in skeletal development (Miyazono et al., 

2010, Xiao et al., 2007). In recent years, members of the BMP and GDF families 

have been shown to play key roles as neurotrophic factors that regulate the 

development of the nervous system, as well as its maintenance in adulthood (Hegarty 

et al., 2014c, Liu and Niswander, 2005). Two of the most extensively-studied 

members of these families are GDF5 and BMP2. Both of these factors possess the 

characteristic cysteine-knot motif, a structural hallmark of members of the TGF 

superfamily, and share 52% sequence similarity (Sullivan and O'Keeffe, 2005). 

 GDF5 expression in developing rat VM correlates with the development of 

midbrain DA neurons (O’Keeffe et al., 2004b). It promotes the survival and growth 
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of these neurons both in vitro (Krieglstein et al., 1995b, O'Keeffe et al., 2004b, 

Wood et al., 2005) and in vivo (Costello et al., 2012, Hurley et al., 2004, Sullivan et 

al., 1997, Sullivan et al., 1999, Sullivan et al., 1998b). Similarly, BMP2 promotes the 

survival and growth of midbrain DA neurons in vitro (Reiriz et al., 1999, Jordan et 

al., 1997) and in vivo (Espejo et al., 1999). Despite these findings, the molecular 

mechanisms that mediate the neurotrophic effects of GDF5 and BMP2 on midbrain 

DA neurons are unknown. Furthermore, it is unclear whether BMP2 and GDF5 have 

direct effects on VM DA neurons. Indeed, it has been suggested that the DA 

neurotrophic effects of BMP2 and GDF5 may be indirectly mediated by glial cells 

(Sullivan and O'Keeffe, 2005), due to the concomitant increase in astrocytes in 

GDF5- and BMP2-treated E14 rat VM cultures (O'Keeffe et al., 2004b, Krieglstein 

et al., 1995b, Reiriz et al., 1999). 

 During skeletal development, GDF5 and BMP2 are known to act through a 

canonical pathway involving the activation of two cell-surface serine/threonine 

kinase receptors, type I and type II BMPRs (Miyazono et al., 2010, Sieber et al., 

2009). Upon ligand binding, the constitutively-active BMPRII transphosphorylates 

the cytoplasmic domain of the BMPRI (BMPRIa or BMPRIb) which, through a 

series of protein-protein interactions, phosphorylates Smad proteins that translocate 

to the nucleus and modulate gene transcription. In recent years, both GDF5 and 

BMP2 have also been shown to signal via non-canonical, Smad-independent 

pathways, which involve the activation of a variety of intracellular pathways, 

including ERK, JNK and p38 MAPK, depending on the cellular context (Derynck 

and Zhang, 2003, Moustakas and Heldin, 2005). In the present study, SH-SY5Y 

neuroblastoma cells, which are widely-used models of human DA neurons and are a 

pure neuronal population, were used to investigate the molecular (signalling 

pathway(s)) and cellular (direct neuronal or indirect via glial cells) mechanisms 

mediating the neurotrophic effects of GDF5 and BMP2. 
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5.3 Results 

5.3.1 BMP2 and GDF5 induce the neuronal differentiation in SH-SH5Y cells 

Firstly, the expression of BMPRs and Smad proteins in the SH-SY5Y cell line was 

examined. To do this, SH-SY5Y cells were cultured for three days before being 

fixed and processed for immunocytochemistry. Alternatively, RNA was prepared 

from cultured cells for RT-PCR analysis of gene expression. RT-PCR analysis 

showed that the SH-SY5Y cell line expresses mRNAs for the BMPRs, BMPRII and 

BMPRIb (Fig. 5.4.1A) along with the receptor-regulated Smads, Smad1, Smad5 and 

Smad8 (Smad 1/5/8), and the common-mediator Smad, Smad4 (Fig. 5.4.1A). 

Immunocyochemistry showed strong expression at the protein level of BMPRII and 

BMPRIb (Fig. 5.4.1B). Similarly, immunocytochemistry for Smads 1/5/8 revealed 

that these proteins were strongly expressed, displaying a predominantly cytoplasmic 

distribution in unstimulated cells (Fig. 5.4.1C). Negative controls were performed 

for all immunocytochemical analyses to confirm the specificity of the primary 

antibodies (data not shown).  

In cultures of E14 rat VM, GDF5 and BMP2 have been shown to induce 

differentiation of DA neurons, as evident from the increased morphological 

arborisation of treated cells (O'Keeffe et al., 2004b, Reiriz et al., 1999). To directly 

compare the effects of GDF5 and BMP2 on neuronal differentiation, using similar 

morphological parameters, the phenotypic effects of GDF5 and BMP2 on SH-SY5Y 

cells were assessed using a MTT assay. A decrease in the MTT absorbance in this 

assay may be indicative of an increase in cellular differentiation. SH-SY5Y cells 

were treated with 200 ng/ml of BMP2 or GDF5 daily, before a MTT assay was 

performed on 1 day in vitro (DIV), 2 DIV and 4 DIV. Both BMP2 and GDF5 

significantly reduced, to a similar extent, the MTT absorbance at 4 DIV compared to 

the untreated control (Fig. 5.4.1D). These data suggest that BMP2 and GDF5 may 

promote the differentiation of SH-SY5Y cells. 

To more directly assess differentiation, a morphological assessment of the 

neurite complexity in GDF5 and BMP2-treated SH-SY5Y cells was performed. SH-

SY5Y cells were treated with BMP2 or GDF5 daily before being 

immunocytochemically stained for -actin at 4 DIV, to allow visualisation of the 

cytoskeleton. The total neurite length was then measured using a modified line 

intercept method (Mayhew, 1992). Treatment with either BMP2 or GDF5 for 4DIV 
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resulted in a significant increase in the total length of neurites when compared to 

untreated controls (Fig. 5.4.1E, F). There was no significant difference in the number 

of cells analysed between the groups (data not shown). These data show that, similar 

to primary cultures of the E14 rat midbrain (O'Keeffe et al., 2004b, Reiriz et al., 

1999), BMP2 and GDF5 induce neuronal differentiation in SH-SY5Y cells. 

 

5.3.2 BMP2 and GDF5 activate canonical Smad 1/5/8 signalling in SH-SY5Y 

cells 

To determine the molecular basis of this neurotrophic effect, the temporal kinetics of 

the activation of the canonical (Smad 1/5/8) and non-canonical (MAPK) signalling 

pathways by BMP2 and GDF5 were examined. SH-SY5Y cells were treated with 

BMP2 or GDF5 at 6 different time points (0, 5, 15, 30, 60, 120 min), and were then 

immunocytochemically stained for phospho-Smad 1/5/8, phospho-p38, phospho-

JNK, and phospho-Erk. Densitometric analysis of the nuclear levels of phospho-

Smad 1/5/8 showed that both BMP2 and GDF5 significantly increased the amount of 

nuclear phospho-Smad 1/5/8, although with different temporal profiles, compared to 

the untreated control (0 min).  BMP2 treatment increased nuclear phospho-Smad 

1/5/8 levels at all time points examined (Fig. 5.4.2A, B), whereas an increase in 

nuclear phospho-Smad was not detected until one hour post-GDF5 treatment (Fig. 

5.4.2C, D). Both BMP2 and GDF5 reduced the basal (0 min) signalling levels of the 

p38, JNK and ERK MAPK pathways, as determined by densitometry of their 

phosphorylated forms at the different treatment time points (Fig. 5.4.3). These data 

suggest that the effects of BMP2 and GDF5 on the differentiation of SH-SY5Y cells 

(Fig. 5.4.1) may be mediated through the activation of the canonical Smad 1/5/8 

signalling pathway. 

 

5.3.3 Dorsomorphin prevents BMP2- and GDF5-induced neuronal 

differentiation and Smad activation in SH-SY5Y cells 

To explore this premise, dorsomorphin, a small molecular inhibitor of BMPRI (Yu et 

al., 2008), was used to determine whether the effects of BMP2 and GDF5 were 

mediated by the BMPRI. To determine a working concentration of dorsomorphin, an 

array of concentrations was used, ranging from 100 ng/ml to 200 µg/ml. 

Dorsomorphin concentrations above 2 µg/ml caused non-selective SH-SY5Y cell 

death after 1 DIV (Fig. 5.4.4A). At concentrations of 1 µg/ml and lower, SH-SY5Y 
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cells were unaffected by daily dorsomorphin treatments for up to 4 DIV (the duration 

of BMP2 and GDF5 treatment in neurite growth assay), with no observable change 

in their cellular morphology compared to the control (Fig. 5.4.4B). An MTT assay 

performed at 4 DIV confirmed that daily treatments with 1 µg/ml of dorsomorphin 

did not significantly affect the viability of SH-SY5Y cells (Fig. 5.4.4C). 

 Pre-treatment of SH-SY5Y cells with 1 µg/ml of dorsomorphin completely 

prevented the BMP2- and GDF5-induced decreases in MTT absorbance at 4DIV 

(Fig. 5.4.5A). Similarly, when SH-SY5Y cells were pre-treated with dorsomorphin, 

BMP2 and GDF5 failed to induce any significant increase in the total neurite length 

compared to the untreated control group (Fig. 5.4.5B, C). There was no significant 

difference in the number of cells analysed between the groups (data not shown). To 

determine if dorsomorphin inhibited BMP2- and GDF5-induced Smad activation 

(Fig. 5.4.2), SH-SY5Y cells were pre-treated with dorsomorphin prior to the addition 

of BMP2 and GDF5, and the levels of nuclear phospho-Smad 1/5/8 were assessed 

and compared to non-dorsomorphin-treated, BMP2- and GDF5-treated controls. 

Dorsomorphin completely prevented the BMP2- (Fig. 5.4.5D) and GDF5- (Fig. 

5.4.5E) induced activation of the Smad 1/5/8 signalling pathway. These data suggest 

that the phenotypic effects of BMP2 and GDF5 on neuronal differentiation may be 

directly mediated through the BMPR-dependent canonical Smad 1/5/8 pathway. 

 

5.3.4 Canonical BMPR-Smad activation induces neuronal differentiation in SH-

SY5Y cells. 

It is well established that BMP2 can signal through both BMPRIa and BMPRIb, 

whereas GDF5 predominantly signals through BMPRIb (Nishitoh et al., 1996). This 

suggests that BMP2 and GDF5 may signal through BMPRIb to induce 

differentiation. To examine this, we transfected SH-SY5Y cells with a constitutively 

active BMPRIb (caBMPRIb) plasmid, which induced a significant increase in total 

neurite length compared to cells transfected with the relevant control plasmid (Fig. 

5.4.6A, B). In agreement with this finding, caBMPRIb-transfected cells had 

significantly increased levels of nuclear phospho-Smad 1/5/8 when compared to 

controls (Fig. 5.4.6C, D). Importantly, cells transfected with a control plasmid 

displayed the same level of nuclear phospho-Smad 1/5/8 as non-transfected neurons, 

indicating that the transfection procedure did not alter the relative activation of this 

pathway (Fig. 5.4.6C, D).   
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 To determine a functional link between BMPRIb-induced Smad activation 

and SH-SY5Y differentiation, siRNA against the co-Smad, Smad4, was developed. 

The association of phosphorylated Smad 1/5/8 proteins with Smad4 following 

BMPRIb activation is required for the effects of Smad 1/5/8 on gene transcription 

(Fig. 5.4.7A). Firstly, SH-SY5Y cells were transfected with Smad4 siRNA, with a 

transfection efficiency of 25%. When Smad4 expression was analysed by RT-PCR in 

these cultures, there was a clear reduction in Smad4 mRNA expression in Smad4 

siRNA transfected cells (Fig. 5.4.7B). To explore this at the protein level, 

immunocytochemistry was used to examine Smad4 expression in individual cells 

transfected with Smad4 siRNA. Smad4 siRNA results in a sustained and consistent 

knockdown of Smad4 protein in Smad4 siRNA-transfected cells (Fig. 5.4.7C). To 

determine if modulation of Smad4 affected the differentiation of these cells, total 

neurite length of cells transfected with Smad4 siRNA or with Smad4 overexpression 

vectors was measured. In agreement with the dorsomorphin data (Fig. 5.4.5), 

modulation of Smad4 expression did not affect total neurite length in transfected SH-

SH5Y cells (Fig. 5.4.7D). When SH-SY5Y cells were co-transfected with the 

caBMPRIb and Smad4 siRNA, Smad4 siRNA completely prevented the caBMPRIb-

mediated significant increase in average neurite length in transfected cells (Fig. 

5.4.7E, F). These data suggest that BMPR-mediated canonical Smad 1/5/8 signalling 

mediates the neurotrophic effects of BMP2 and GDF5.  To explore this directly, SH-

SY5Y cells were transfected with Smad4 siRNA and treated with BMP2 and GDF5. 

It was found that, in cells expressing Smad4 siRNA, BMP2 and GDF5 did not 

promote neurite outgrowth (Fig. 5.4.8A, B). Collectively, these data show that 

activation of canonical BMPRIb-Smad 1/5/8 signalling by BMP2 and GDF5 can 

induce neuronal differentiation. 
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5.4 Figures and Figure Legends 

 

Figure 5.4.1: BMP2 and GDF5 induce neuronal differentiation in SH-SY5Y 

cells 

 (A) RT-PCR analysis of BMPR1b and BMPRII, and of Smads 1, 4, 5, and 8 in SH-

SY5Y cells. A 100bp ladder was used to determine the size for each PCR product, 

and RT-PCR of GAPDH was used as a positive control (not shown). Representative 

photomicrographs of SH-SY5Y cells immunocytochemically stained for the BMPRs, 

(B) BMPRIb and BMPRII, or (C) Smads 1/5/8. (D) MTT assay of BMP2- and 

GDF5-treated (daily) SH-SY5Y cells at 1, 2 and 4 DIV, as indicated (*** P < 0.001 

vs BMP2/GDF5 4 DIV; ANOVA with post-hoc Tukey’s test; 4 groups for each 

treatment per experiment. Number of experimental repetitions (N) = 4). (E) Length 

of total neurites of BMP2- and GDF5-treated (daily for 4 DIV) SH-SY5Y cells, as 

indicated (*** P < 0.001 vs control; ANOVA with post-hoc Tukey’s test; 20 images 

analysed for each group per experiment. N = 3). Data are expressed as mean ± SEM. 

(F) Representative photomicrographs of control, BMP2- and GDF5-treated SH-

SY5Y cells, as indicated, immunocytochemically stained for β-actin and 

counterstained with DAPI. Scale bar = 100 μm. 

 

 



130 
 

 

 

Figure 5.4.2: BMP2 and GDF5 activate the Smad 1/5/8 signalling pathway in 

SH-SY5Y cells 

Relative immunofluorescence intensity of (A) BMP2- and (C) GDF5-treated SH-

SY5Y cells, at 0 (untreated control), 5, 15, 30, 60 and 120 min, expressing phospho-

Smad 1/5/8 as determined by densitometry (Image J) (*** P < 0.001 vs 0 min; One-

way ANOVA and post hoc Tukey’s test; 50 cells for each group per experiment. N = 

3). Data are expressed as mean ± SEM. Representative photomicrographs of (B) 

BMP2-  and (D) GDF5-treated SH-SY5Y cells immunocytochemically stained for 

phospho-Smad 1/5/8 at 0 and 120 min. Scale bar = 100 μm. 
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Figure 5.4.3: BMP2 and GDF5 inhibit MAPK signalling in SH-SY5Y cells.  

Relative immunofluorescence intensity of BMP2- and GDF5-treated SH-SY5Y cells, 

at 0 (untreated control), 5, 15, 30, 60 and 120 min, expressing (A and C) phospho-

ERK, (E and G) phospho-JNK and (I and K) phospho-p38, as indicated (*** P < 

0.001 vs 0 min; One-way ANOVA and post hoc Tukey’s test; 50 cells for each 

group per experiment. N = 3). Data are expressed as mean ± SEM. Scale bar = 100 

μm. Representative photomicrographs of BMP2- and GDF5-treated SH-SY5Y cells 

immunocytochemically stained for (B and D) phospho-ERK, (F and H) phosho-JNK 

and (J and L) phospho-p38 at 0 and 30/120 min. Scale bar = 100 μm. 
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Figure 5.4.4: Working concentrations of dorsomorphin do not affect cell 

viability of SH-SY5Y cells 

Representative phase contrast photomicrographs of dorsomorphin-treated SH-SY5Y 

cells at (A) 1 DIV and (B) 4 DIV. Scale bar = 100 μm. (C) MTT assay of 

dorsomorphin-treated (daily) SH-SY5Y cells after 4 DIV. No significant difference 

(P < 0.05; Student’s t-test; 4 measurements for each group per experiment. N=4) was 

observed. Data are expressed as mean ± SEM. 
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Figure 5.4.5: Dorsomorphin prevents BMP2- and GDF5-induced neuronal 

differentiation of SH-SY5Y cells 

(A) MTT assay to assess cellular respiration of dorsomorphin pre-treated and/or 

BMP2- and GDF5-, treated (daily for 4DIV) SH-SY5Y cells, as indicated (*** P < 

0.001, * P < 0.05 vs control; # P < 0.05, ## P < 0.01 vs BMP2/GDF5; ANOVA with 

post-hoc Tukey’s test; 4 measurements for each group per experiment. N = 4). (B) 

Total neuritic length of dorsomorphin pre-treated and/or BMP2- and GDF5-treated 

(daily for 4DIV) SH-SY5Y cells, as indicated (*** P < 0.001 vs control; ### P < 

0.001 vs BMP2/GDF5; ANOVA with post-hoc Tukey’s test; 20 images analysed for 

each group per experiment. N = 3). (C) Representative photomicrographs of 

dorsomorphin pre-treated and BMP2- and GDF5-treated SH-SY5Y cells, as 

indicated, immunocytochemically stained for β-actin. Scale bar = 100μm. Relative 

immunofluorescence intensity of dorsomorphin pre-treated, and/or (D) BMP2- and 

(E) GDF5-treated SH-SH5Y cells, at 0 (control), 15 and 60 min, expressing 

phospho-Smad 1/5/8 as determined by densitometry (Image J), as indicated (*** P < 

0.001 vs 0 min; ## P < 0.01, ### P < 0.001 vs BMP2/GDF5; One-way ANOVA and 

post hoc Tukey’s test; 50 cells for each group per experiment. N = 3). Data are 

expressed as mean ± SEM.  
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Figure 5.4.6: Activated BMPRIb induces neuronal differentiation and Smad 

1/5/8 signalling in SH-SY5Y cells.   

A) Neurite length of caBMPRIb-transfected SH-SY5Y cells, as indicated (*** P < 

0.001 vs control; ANOVA with post-hoc Tukey’s test; 40 cells for each group per 

experiment. N = 3). (B) Representative photomicrographs of control plasmid- and 

caBMPRIb plasmid-transfected SH-SY5Y cells expressing GFP. Scale bar = 25 μm. 

(C) Relative immunofluorescence intensity of caBMPRIb-transfected SH-SY5Y 

cells expressing phospho-Smad 1/5/8 as determined by densitometry (Image J), as 

indicated (*** P < 0.001 vs 0 min; One-way ANOVA and post hoc Tukey’s test; 50 

cells for each group per experiment. N = 3). Data are expressed as mean ± SEM. (D) 

Representative photomicrographs of control plasmid- and caBMPRIb plasmid-

transfected (yellow arrows), and non-transfected (white arrows) SH-SY5Y cells 

immunocytochemically stained for phospho-Smad 1/5/8 and counterstained with 

DAPI. Scale bar = 25 μm. 
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Figure 5.4.7: Inhibition of nuclear translocation of phosphorylated Smad 1/5/8 

prevents BMPRIb-mediated induction of SHSY5Y neuronal differentiation. 

(A) Graphical representation of the role of Smad4 in canonical BMP-Smad 1/5/8 

signalling. (B) RT-PCR analysis of Smad4 and GAPDH (positive control) in 

siSmad4 (Smad4 siRNA)-transfected SH-SY5Y cells. (C) Representative 

photomicrographs of siSmad4-transfected SH-SY5Y cells immunocytochemically 

stained for Smad4 and counterstained with DAPI. Scale bar = 25 μm (D) Neurite 

length of Smad4- or siSmad4-transfected SH-SY5Y cells. No significant difference 

(P < 0.05; ANOVA with post-hoc Tukey’s test; 40 cells for each group per 

experiment. N = 3) was observed between the groups. (E) Neurite length of 

caBMPRIb- and/or siSmad4-transfected SH-SY5Y cells, as indicated (*** P < 0.001 

vs control; ANOVA with post-hoc Tukey’s test; 40 cells for each group per 

experiment. N = 3). Data are expressed as mean ± SEM. (F) Representative 

photomicrographs of caBMPRIb- and/or siSmad4-transfected SH-SY5Y cells 

expressing GFP. Scale bar = 50 μm. 
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Figure 5.4.8: Inhibition of nuclear translocation of activated Smad 1/5/8 

prevents BMP2- and GDF5-mediated induction of SHSY5Y neurite outgrowth. 

(A) Neurite length of control plasmid- and siSmad4-transfected SH-SY5Y cells with 

or without BMP2 or GDF5 treatment, as indicated (*** P < 0.001 vs control; 

ANOVA with post-hoc Tukey’s test; 40 cells for each group per experiment. N = 3). 

Data are expressed as mean ± SEM. (B) Representative photomicrographs of control 

plasmid- and siSmad4-transfected, GFP-expressing, SH-SY5Y cells with or without 

BMP2 or GDF5 treatment. Scale bar = 100 μm. 
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5.5 Discussion 

The neurotrophic effects of BMP2 (Espejo et al., 1999, Reiriz et al., 1999, Jordan et 

al., 1997) and in particular GDF5 (Costello et al., 2012, Hurley et al., 2004, 

Krieglstein et al., 1995b, O'Keeffe et al., 2004b, Sullivan et al., 1999, Wood et al., 

2005), in particular, have been well documented in primary VM neural cultures and 

in animal models of Parkinson’s disease. However, the downstream molecular 

mechanisms that mediate the neurotrophic effects of GDF5 and BMP2 on VM DA 

neurons are unknown. In an attempt to define these mechanisms, the present study 

used the SH-SY5Y neuroblastoma cell line, which has been used as a model of 

human VM DA neurons (Toulouse et al., 2012, Xie et al., 2010) and have been 

shown to be capable of differentiation into DA neurons (Gomez-Santos et al., 2002, 

McMillan et al., 2007, Presgraves et al., 2004, Xie et al., 2010).   

 This study initially characterised SH-SY5Y cells with regards to the 

expression of BMPRs and Smad transcription factors. It was confirmed that both 

type I and type II BMPRs are expressed on SH-SY5Y cells. In addition, it was 

shown that the principal signal transduction machinery for BMPs, Smad proteins 1, 5 

and 8, are present in SH-SY5Y cells (including in their activated form). In addition, 

the presence of Smad4, which is required for the nuclear translocation of Smads 

1/5/8, was verified. These results demonstrate that SH-SY5Y cells have the 

machinery to carry out canonical Smad 1/5/8 signalling in response to BMPs.  

 A common neurotrophic effect of BMP2 and GDF5 on VM DA neurons in 

vitro is the induction of neurite outgrowth (O'Keeffe et al., 2004b, Reiriz et al., 

1999). This study has demonstrated that both BMP2 and GDF5 induce the neuronal 

differentiation of SH-SY5Y cells. BMP2- and GDF5-induced neurite extension and 

growth arrest in proliferating SH-SY5Y cells, which is consistent with previous 

results shown for BMP2 (Nakamura et al., 2003) and GDF5 (Toulouse et al., 2012) 

in SH-SY5Y cells. It has been proposed that BMP2 and GDF5 exert their 

neurotrophic effects on DA neurons indirectly through an action on glial cells that 

are present in mixed neural cultures of E14 rat VM (Sullivan and O'Keeffe, 2005), 

due to the concomitant increase in astrocytes in GDF5- and BMP2-treated E14 rat 

VM cultures (O'Keeffe et al., 2004b, Krieglstein et al., 1995b, Reiriz et al., 1999). 

However, the present study shows that the neurotrophic effects of GDF5 and BMP2 

are mediated directly on neuronal-like cells, since there are no other cell types 
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present in SH-SY5Y cell cultures. This is in agreement with previous evidence 

showing that GDF5 still exerts its survival-promoting neurotrophic effects in glial-

depleted VM cultures (Wood et al., 2005). A similar approach was used to 

demonstrate that the neurotrophic effects of BMP2 on striatal neurons were as a 

result of direct neuronal action (Gratacos et al., 2001).  

In order to examine the mechanism of this neuronal action of GDF5 and 

BMP2, a small molecular inhibitor of BMPRI, termed dorsomorphin (Yu et al., 

2008), was used. This experiment showed that the neurotrophic effects of BMP2 and 

GDF5 are dependent upon BMPRI activation. Dorsomorphin prevented BMP2- and 

GDF5-induced neuronal differentiation, and activation of Smad 1/5/8 signalling, in 

SH-SY5Y cells. This finding is similar to that of Parikh et al. (2011), who showed 

that dorsomorphin-induced inhibition of BMP7 signalling negatively affects BMP-

induced neurite outgrowth of E18.5 mouse hippocampal neurons. The present study 

also showed that BMP2 and GDF5 activate Smad 1/5/8 signalling to the same extent, 

but that the kinetics of this Smad activation differed between the two ligands. BMP2 

treatment resulted in nuclear translocation of activated Smad proteins from 5 min 

onwards, whereas following GDF5 application this translocation was not seen until 

after an hour. The reason for this difference in kinetics is unclear, as BMP2 and 

GDF5 share the same binding site on BMPRIb (Nishitoh et al., 1996). Similar results 

were reported by (Drevelle et al., 2013), who found that BMP2 caused Smad 1/5/8 

phosphorylation within 30 min in cultured preosteoblasts, while GDF2 required 4 h 

to induce the same effect. The precise mechanism of these differing rates of 

activation and its possible functional significance is unknown. 

A study using fluorescent biosensors for direct visualization of Smad1 and 

Smad4 proteins demonstrated that a delay of 2-5 min occurred between BMP4 (also 

known as BMP2b) activation of the BMPRs and subsequent Smad1 phosphorylation 

in mammalian cells (Gromova et al., 2007). This is consistent with our findings for 

BMP2 (also known as BMP2a), which showed Smad 1/5/8 activation from 5 min. 

Gromova et al. (2007) described Smad1 phosphorylation as the rate-limiting step of 

canonical BMP-Smad signalling. Because Smad1 phosphorylation is carried out by 

the kinase domain of BMP-activated BMPRI, it is likely that the time delay in Smad 

phosphorylation is determined by the BMPRI. Furthermore, in canonical BMP-Smad 

1/5/8 signalling, BMPs bind to a pre-formed complex of BMPRI and BMPRII 

(Gilboa et al., 2000, Nohe et al., 2002). Therefore, BMPR heteromerization does not 



139 
 

contribute to the delay in BMPRI phosphorylation of Smads 1/5/8 in response to 

BMP binding. BMP2 can signal through both BMPRIa and BMPRIb, whereas GDF5 

predominantly signals through BMPRIb (Nishitoh et al., 1996). It is possible that 

BMPRIa activation by BMP2 accounts for the distinct temporal profiles of Smad 

activation between BMP2 and GDF5. Indeed, SH-SY5Y cells have been reported to 

express BMPRIa (Toulouse et al., 2012) as well as BMPRIb, as shown here. 

Furthermore, another GDF, GDF2, preferentially signals via activin receptor-like 

kinase 1 (David et al., 2007), which may be the reason for the difference between its 

Smad 1/5/8 phosphorylation kinetics and those of BMP2. In light of these findings, it 

is possible that different BMPRI have distinct temporal profiles of Smad 1/5/8 

phosphorylation, which would explain the different kinetics of Smad 

phosphorylation observed after treatment with various BMPs. 

In addition to demonstrating canonical Smad signalling activation by BMP2 

and GDF5, this study also showed that BMP2 and GDF5 reduce the basal signalling 

of the phospho-ERK, phospho-JNK and phospho-p38 MAPK pathways in SH-SH5Y 

cells. Thus, non-canonical BMP signalling pathways appear not to contribute to the 

neurite outgrowth-promoting effects of BMP2 and GDF5. Interestingly, activation of 

p38 MAPK signalling in VM DA neurons is known to inhibit neurite outgrowth in 

vitro (Collins et al., 2013). Thus, such inhibition of p38 phosphorylation by BMP2 

and GDF5 may provide a permissive environment for optimal neurite outgrowth. 

The inverse regulation of Smad and MAPK pathways is in agreement with previous 

findings showing that MAPK signalling negatively regulates Smad 1/5/8 signalling 

by inducing Smad1 degradation (Fuentealba et al., 2007, Eivers et al., 2008). 

Therefore, negative regulation of MAPK pathway signalling by BMP2 and GDF5 

may contribute to canonical Smad signalling-mediated neurite outgrowth, by 

preventing MAPK-induced Smad1 degradation. Conversely, BMP2 has been shown 

to induce neuronal differentiation of the PC12 cell line via activation of the p38 

MAPK pathway (Iwasaki et al., 1996, Iwasaki et al., 1999). Furthermore, 

dorsomorphin has been shown to induce neurite outgrowth of PC12 cells via the 

ERK MAPK pathway (Kudo et al., 2011), whereas the current study found 

dorsomorphin to have no morphological affects on SH-SH5Y cells. The present 

study demonstrates that BMP2 and GDF5 promote neurite growth through activation 

of canonical Smad 1/5/8 signalling in SH-SY5Y cells. These contrasting results may 



140 
 

reflect inherent differences between SH-SY5Y neuroblastoma cells and PC12 cells, 

which arise from adrenal gland chromaffin cells.  

The present findings show that the BMP2- and GDF5-induced neuronal 

differentiation of SH-SY5Y cells is mediated through BMPRIb. This reflects that 

fact that BMPRIb is the preferential BMPRI activated by GDF5. BMP2 induced the 

neuronal differentiation of SH-SY5Y cells to the same extent as GDF5, and thus 

likely acted via the BMPRIb also. The fact that caBMPRIb mimics the effects of 

BMP2 and GDF5 strongly supports this possibility.  

This study has not only identified the BMPRI subtype that is most likely 

responsible for mediating BMP2- and GDF5-induced Smad signalling and neurite 

extension, but has also demonstarted that the transcriptional activity of Smad 1/5/8 is 

required for this BMP-induced neuronal differentiation. The inhibition of the nuclear 

translocation of the Smad 1/5/8 transcription factors, using a siRNA to target Smad4, 

prevented the SH-SY5Y neurite outgrowth induced by caBMPRIb, and by BMP2 

and GDF5. 

The current study adds new evidence to the growing body of work that 

suggests that BMP-Smad 1/5/8 signalling plays a key role in the neurite extension of 

a number of neural populations. For example, BMPs are widely expressed in the 

dorsal spinal cord, which houses a BMP signalling centre, known as the roof plate 

(Liem et al., 1995, Lee et al., 1998, Lee and Jessell, 1999). There is a wealth of 

evidence demonstrating that BMP signalling, particularly via Smad1, regulates 

neurite outgrowth in this region, including that of dorsal root ganglion neurons and 

dI1 interneurons (Parikh et al., 2011, Hazen et al., 2012, Hazen et al., 2011, Phan et 

al., 2010). GDF5 and BMP2 have both been shown to be expressed in the developing 

VM during DA neurogenesis (Jordan et al., 1997, O'Keeffe et al., 2004b), and thus 

may perform roles in the differentiation of VM DA neurons similar to those of 

BMPs in the dorsal spinal cord. Such a suggestion is plausible especially when one 

considers the evidence gained from previous studies of their DA neurotrophic 

effects. Monteiro et al. used Smad 1/5/8 reporter mice to demonstrate BMP-Smad-

dependent transcriptional activity in the VM region during DA neurogenesis at E10.5 

(Monteiro et al., 2008). It is thus possible that BMP2- and GDF5-induced Smad 

activation regulates VM DA neurite outgrowth at this developmental stage, as VM 

DA neurons begin to extend their axons dorsally at this time point (Nakamura et al., 
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2000), as is the case for BMPs in the dorsal spinal cord (Chizhikov and Millen, 

2005, Ulloa and Briscoe, 2007).  

Cell replacement therapy is one of the most promising therapies for the 

treatment of PD (Orlacchio et al., 2010, Bonnamain et al., 2012, De Feo et al., 2012, 

Toulouse and Sullivan, 2008, Hedlund and Perlmann, 2009). Considering the 

importance of establishing functional connections following the striatal 

transplantation of VM DA neurons, factors which promote their neurite outgrowth 

are being considered as adjuncts to this potential therapy. GDF5 and BMP2 are 

potential candidates for such a role, as both have been shown to promote the survival 

of VM DA neurons (O'Keeffe et al., 2004b, Reiriz et al., 1999, Jordan et al., 1997, 

Sullivan et al., 1997). The present study has, for the first time, demonstrated that the 

downstream molecular mechanisms mediating the direct neurotrophic effects of 

GDF5 and BMP2 are dependent upon BMPRI-mediated activation of canonical 

Smad 1/5/8 signalling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



142 
 

6. Canonical BMP-Smad signalling promotes neurite 

growth in embryonic rat midbrain DA neurons. 

 

6.0 Aims 

 Investigate the expression of the BMP receptors, BMPRIb and BMPRII, 

during nigrostriatal pathway development in the developing and adult rat 

brain.  

 Demonstrate the neurite growth-promoting effects of BMP2 and GDF5 in 

E14 rat VM DA neurons. 

 Identify the receptors and intracellular signalling pathway(s) that mediate the 

neurite growth-promoting effects of BMP2 and GDF5 in VM DA neurons. 

 

6.1 Abstract 

VM DA neurons project to the dorsal striatum via the nigrostriatal pathway to 

regulate voluntary movements, and their loss causes the motor dysfunction of PD. 

Despite recent progress in the understanding of VM DA neurogenesis, the factors 

regulating nigrostriatal pathway development remain largely unknown.  

 The BMP family of proteins regulates neurite growth in the developing NS, 

and may contribute to nigrostriatal pathway development. Two related members of 

this family, BMP2 and GDF5, have neurotrophic effects, including the promotion of 

neurite growth, on cultured VM DA neurons. However, the molecular mechanisms 

regulating their effects on DA neurons are unknown. By characterising the temporal 

expression profiles of endogenous BMPR in the developing and adult rat VM and 

striatum, this study identified a potential involvement of BMP2 and GDF5 in the 

regulation of nigrostriatal pathway development. Furthermore, through the use of 

noggin, dorsomorphin and BMPR/Smad plasmids, this study demonstrated that 

GDF5- and BMP2-induced neurite outgrowth from cultured VM DA neurons is 

dependent on BMP type I receptor activation of the Smad 1/5/8 signalling pathway. 
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6.2 Introduction 

In the CNS, more than three-quarters of all DA neurons are found in the VM (Blum, 

1998, German et al., 1983, Pakkenberg et al., 1991). These are subdivided into three 

distinct clusters, termed the A8, A9 and A10 groups of VM DA neurons. The A9 

group of VM DA neurons, located in the SNpc, project to the dorso-lateral striatum 

via the nigrostriatal pathway (Dahlstroem and Fuxe, 1964, Bjorklund and Dunnett, 

2007). These A9 DA neurons, and their striatal targets, are part of the basal ganglia 

circuitry that regulates the control of voluntary movement. Their functional 

importance is highlighted by the neurodegenerative disorder PD, the primary 

neuropathological signature of which is the loss of these neurons and their striatal 

projections, which results in the motor deficits that are characteristic of this disease 

(Toulouse and Sullivan, 2008, Lees et al., 2009). 

 During embryonic development, A9 DA neurons are generated in the VM 

under the influence of two key signalling centres, the isthmus and the floor plate 

(Hynes et al., 1995a, Crossley and Martin, 1995, Liu and Joyner, 2001). Much work 

in recent decades has focused on elucidating the molecular circuitry that is involved 

in the generation of A9 VM DA neurons (Hegarty et al., 2013c), however the 

molecular mechanisms that regulate the growth and guidance of the axonal 

projections of these DA neurons to their appropriate target regions in the striatum are 

less well understood.  

 During nervous system development, VM DA neurons extend their axons 

towards the telencephalon via the medial forebrain bundle in response to extrinsic 

directional cues (both chemo-attractive and -repulsive) from the caudal brainstem, 

midbrain, diencephalon, striatum and cortex (Gates et al., 2004, Nakamura et al., 

2000). Despite the paucity of studies identifying the regulatory molecules involved 

in the formation of DA projections, a number of molecules have been implicated. 

Cell-surface ephrins and their Eph receptor tyrosine kinases, which are important in 

axonal guidance (Egea and Klein, 2007), have been shown to play roles in target 

innervation by nigrostriatal axons (Sieber et al., 2004, Halladay et al., 2004, Van den 

Heuvel and Pasterkamp, 2008, Calo et al., 2005, Yue et al., 1999, Cooper et al., 

2009). Similarly, netrin signalling via the DCC receptor, which is known to actively 

regulate axonal growth (Round and Stein, 2007), has been strongly implicated in the 

formation of the VM DA circuitry (Xu et al., 2010, Flores et al., 2005, Manitt et al., 
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2011, Lin et al., 2005, Sgado et al., 2012, Vitalis et al., 2000). Additionally, 

signalling between Slits and their Robo receptors (Bagri et al., 2002, Dugan et al., 

2011, Lin et al., 2005, Lopez-Bendito et al., 2007), and by semaphorins (Hernandez-

Montiel et al., 2008, Torre et al., 2010, Tamariz et al., 2010, Kolk et al., 2009), has 

been shown to regulate the formation of DA projections from the VM to the 

striatum. These identified molecules are well-established regulators of axonal growth 

and guidance in other regions of the nervous system. It is thus likely that further 

candidate molecules with similar functions in other areas of the NS may contribute 

to the regulation of DA axonal growth. One candidate group of molecules are the 

BMPs (Zou and Lyuksyutova, 2007, Bovolenta, 2005).  

 BMPs are regulators of axonal growth in a number of neuronal populations, 

with this role best characterised in the dorsal SC (Parikh et al., 2011, Hazen et al., 

2012, Lein et al., 1995, Hegarty et al., 2013a, Gratacos et al., 2002). The two 

members of the BMP family of proteins that are of particular interest to this study, 

BMP2 and its related molecule GDF5, have been shown to regulate neurite growth 

in the dorsal spinal cord (Parikh et al., 2011, Hazen et al., 2012, Hazen et al., 2011, 

Phan et al., 2010, Niere et al., 2006). GDF5 and BMP2 activate a canonical 

signalling pathway involving two types of serine/threonine kinase receptors, type I 

and type II BMPRs (ten Dijke et al., 1994, Koenig et al., 1994, Yamashita et al., 

1996, Shi and Massague, 2003). Upon ligand binding, the constitutively-active 

BMPRII transphosphorylates the cytoplasmic domain of the BMPRI (BMPRIa or 

BMPRIb), causing phosphorylation of the receptor-regulated Smads, Smads 1/5/8, 

by the activated BMPRI. The activated Smads 1/5/8 then form a heterocomplex with 

the co-Smad, Smad4, which mediates their nuclear translocation to allow the Smad 

transcription factors to modulate target gene expression (Miyazono et al., 2010, 

Sieber et al., 2009).  

 BMP2 and GDF5 are expressed in the developing rat VM during the period 

of DA axogenesis, suggesting that they may play a role in this process (O’Keeffe et 

al., 2004b, Jordan et al., 1997). In support of this suggestion, both GDF5 and BMP2 

have been shown to promote the survival of (O’Keeffe et al., 2004a, Reiriz et al., 

1999, Jordan et al., 1997, Sullivan et al., 1997), and induce neurite growth of 

(O’Keeffe et al., 2004a, Reiriz et al., 1999), rat VM DA neurons in vitro. Despite 

these studies, the expression patterns of the BMPRs in the VM and the target 

striatum during nigrostriatal pathway development are unknown. Furthermore, the 
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mechanisms by which GDF5 and BMP2 mediate their neurite growth-promoting 

effects on VM DA neurons remains to be determined. However, these effects have 

recently been proposed to occur via the canonical Smad signalling pathway in a cell 

line model of DA neurons (Chapter 2) (Hegarty et al., 2013b).  

 To address the gaps in our current knowledge of BMP-mediated DA neuronal 

growth, this study examined the expression of BMPRs over the developmental 

period between E14 and P90, since the generation and maturation of nigrostriatal 

dopaminergic neurons, the invasion and arborisation of their striatal targets, and the 

refinement of these connections, occurs over this time-period (Van den Heuvel and 

Pasterkamp, 2008). Furthermore, the molecular mechanisms by which BMP2 and 

GDF5 regulate axonal growth of VM DA neurons were investigated. 
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6.3 Results 

6.3.1 BMPRs are expressed in the rat VM and striatum during embryonic and 

postnatal development 

If GDF5- and BMP2-induced Smad signalling promotes the neurite growth of VM 

DA neurons, then the BMP receptors, BMPRII and BMPRIb, should be expressed in 

the VM and possibly the striatum, during the period of DA axogenesis. To examine 

this, RT-QPCR was used to quantify the expression levels of TH, BMPRII, and 

BMPRIb transcripts in the VM and striatum during embryonic and postnatal 

development, having confirmed the accuracy of the VM dissections by examining 

DA gene expression at each age (Fig. 6.4.1a-d). In the VM, TH mRNA levels are 

highest from E14 to P1 (Fig. 6.4.1b). A significant drop in TH transcript levels 

occurs between P1 and P11, after which a lower level of expression of TH mRNA 

remains stable through to adulthood (P90) (Fig. 6.4.1b). In the striatum, TH mRNA 

levels are significantly lower than those in the midbrain throughout the 

developmental period studied (Fig. 6.4.1b).  

 BMPRII mRNA levels are relatively stable throughout development in the 

VM (Fig. 6.4.1c), while in the developing striatum BMPRII mRNA levels increase 

1.5-fold between E14 and P1. Between P1 and P31, the level of BMPRII transcripts 

expressed in the striatum falls almost 3-fold and this lower expression level is 

maintained through to adulthood (Fig. 6.4.1c). BMPRII mRNA levels in P90 

midbrain are similar to those in P90 striatum (Fig. 6.4.1c). In the midbrain, BMPRIb 

mRNA levels increase 3-fold between E14 and P1, and thereafter remain unchanged 

until adulthood (Fig. 6.4.1d). In the developing striatum, BMPRIb mRNA levels 

increase by 2-fold between E14 and P1, before increasing a further 2-fold between 

P1 and P60 (Fig. 6.4.1d). BMPRIb striatal mRNA levels remain relatively steady 

thereafter through to P90, and are comparable to that of the adult midbrain at this 

time point (Fig. 6.4.1d, e). The expression levels of BMPRII and BMPRIb 

transcripts in the adult midbrain (P31-P90) are very similar. Indeed, RT-PCR and in 

situ hybridization showed that BMPRII and BMPRIb are strongly expressed in the 

adult rodent SNpc (Fig 6.4.1e-j).  Furthermore, approximately 75% of DA neurons 

in the adult rat midbrain expressed BMPRII and BMPRIb (Fig. 6.4.1k, l). 

 Since the initial phase of DA axogenesis begins at E11 in the rat (Gates et al. 

2004; Nakamura et al. 2000), this study also showed that BMPRII and BMPRIb are 
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expressed in the developing rat VM from E11 to E14 VM (Fig. 6.4.2a). Western 

blotting and immunocytochemistry was then used to confirm that the effector part of 

the BMP receptor complex, the BMPRIb protein, is expressed in the rat VM during 

this developmental period (Fig. 6.4.2b, c). To determine if these receptors are 

expressed on DA neurons, immunocytochemical analysis was used to confirm 

protein expression of BMPRII and BMPRIb on TH-positive neurons in E14 rat VM 

cultures (Fig. 6.4.2d, e and data not shown). The co-localisation of BMPRII- and 

BMPRIb-immunostaining with TH-immunostaining indicates that these receptors are 

expressed by DA neurons, although there is also expression of these BMPRs on TH-

negative, non-DA cells (Fig. 6.4.2d, e). 

 

6.3.2 BMP2 and GDF5 promote neurite growth and activate canonical Smad 

signalling in VM DA neurons 

Following the characterisation of BMPR expression in the VM and striatum during 

development, this study next assessed the effects of BMP2 and GDF5 on neurite 

outgrowth from cultured E14 VM DA neurons. Treatment with 200 ng/ml of BMP2 

or GDF5 for 4 DIV resulted in a significant increase in the neurite length of TH-

positive neurons in E14 VM cultures, when compared to controls (Fig. 6.4.3a, b). 

 BMPs are well-known activators of a canonical signalling pathway involving 

activation of Smad 1/5/8 (Miyazono et al., 2010, Sieber et al., 2009). Densitometric 

analysis of the nuclear levels of phospho-Smad 1/5/8 showed that both BMP2 and 

GDF5 significantly increase the amount of phospho-Smad 1/5/8 in the nucleus of 

TH-positive DA neurons at 30 and 60 min, compared to the untreated controls (0 

min) (Fig. 6.4.3c-e). To determine whether this effect of GDF5 and BMP2 on Smad 

phosphorylation was specific to DA neurons, nuclear phospho-Smad levels were also 

measured in TH-negative cells. BMP2 did not induce Smad phosphorylation in TH-

negative cells at any time-point examined (Fig. 6.4.3c). Although GDF5 did not 

activate Smad phosphorylation in TH-negative cells at 30 min, it did so at 60 min 

(Fig. 6.4.3d). Using SH-SH5Y cells as a model of human DA neurons, BMP2 and 

GDF5 were both shown to significantly increase Smad-mediated transcriptional 

activity (as measured by the relative levels of GFP expression) at 2 DIV in SH-

SH5Y cells transfected with a Smad reporter plasmid (GFP under the control of a 

Smad responsive element) (Fig. 6.4.3f, g). The ability of GDF5 to activate Smad 

signalling in the VM was then assessed in vivo. Intracerebral administration of 10 µg 
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of GDF5 to the adult rat SNpc (right) significantly increased phospho-Smad levels 

after 2 h when compared to the contralateral SNpc (left), as determined by western 

blotting (Fig. 6.4.3h). Collectively, these data show that BMP2 and GDF5 promote 

neurite growth from DA neurons in E14 VM cultures and activate the canonical 

Smad signalling pathway in these neurons.  

 

6.3.3 BMPR inhibitors prevent BMP2- and GDF5-induced neurite outgrowth in 

VM DA neurons 

To explore the possibility that the effects of BMP2 and GDF5 on neurite outgrowth 

from E14 VM DA neurons are mediated through BMPR-dependent activation of the 

canonical Smad 1/5/8 pathway, two approaches were employed to inhibit BMP-

BMPR signalling. Firstly noggin, an extracellular inhibitor of BMPs which blocks 

their binding epitopes for BMPRs (Groppe et al., 2002, Smith and Harland, 1992), 

was used. Secondly dorsomorphin, a small molecular inhibitor of BMPRI (Yu et al., 

2008), was used. It has previously been shown that dorsomorphin is an effective 

inhibitor of BMP2 and GDF5 signalling in SH-SY5Y cells (Hegarty et al., 2013b). 

Pretreatment with either 200 ng/ml of noggin or 1 µg/ml of dorsomorphin prevented 

BMP2- and GDF5-induced neurite growth in SH-SY5Y cells at 4DIV (Fig. 6.4.4). 

Similarly, the pretreatment of E14 VM cultures with noggin or dorsomorphin 

completely prevented the BMP2- and GDF5-induced increases in the neurite length 

of TH-positive cells at 4 DIV (Fig. 6.4.5a, b). Taken together, these data show that 

the neurite growth-promoting effects of BMP2 and GDF5 on VM DA neurons are 

directly mediated through a BMPR-dependent pathway. 

 

6.3.4 Canonical BMPR-Smad activation promotes neurite outgrowth in VM DA 

neurons 

It is well established that BMP2 can signal through both BMPRIa and BMPRIb, 

whereas GDF5 predominantly signals through BMPRIb (Nishitoh et al., 1996), 

which suggests that BMP2 and GDF5 may signal through BMPRIb to exert their 

neurotrophic effects on VM DA neurons. To test this possibility, E14 VM neurons 

were trasfected with a caBMPRIb plasmid, and neurite growth of the neurons was 

assessed and compared to that in cultures transfected with a control plasmid. 

Transfection of E14 VM neurons with the caBMPRIb plasmid induced a significant 

increase in their neurite length at 3 DIV, but not 1 DIV, when compared to cells 
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transfected with the relevant control plasmid (Fig. 6.4.6a, c). Importantly, 

electroporation of E14 VM neurons with a wild-type BMPRIb plasmid did not result 

in significant increases in neurite length (data not shown), demonstrating the 

importance of the activation of the BMPR for this effect. 

 To determine a functional link between BMPRIb-induced neurite growth and 

Smad 1/5/8 signalling, an siRNA that targets the co-Smad Smad4, which has been 

shown to be effective in inhibiting BMP2 and GDF5 signalling (Chapter 2) (Hegarty 

et al., 2013b), was used. Formation of a complex between phosphorylated Smad 

1/5/8 and Smad4 following BMPRIb activation is required for the nuclear 

translocation of activated Smad 1/5/8, and thus their regulation of target gene 

expression (Miyazono et al., 2010, Sieber et al., 2009). To determine if modulation 

of Smad4 expression affected the growth of E14 VM neurons, the neurite length of 

cells transfected with Smad4 siRNA or with Smad4 overexpression vectors was 

measured. Modulation of Smad4 expression did not affect the neurite length of 

transfected E14 VM neurons (data not shown). When E14 VM cells were co-

transfected with the caBMPRIb and Smad4 siRNA, Smad4 siRNA significantly 

reduced the caBMPRIb promotion of E14 VM neuronal growth (Fig. 6.4.6b, c). 

These data show that activation of the Smad signalling pathway by BMPRIb mimics 

the neurite growth promoting effects of BMP2 and GDF5 in E14 VM neurons. To 

ensure this effect was specific to DA neurons, we immunostained the electroporated 

neurons at 3 DIV for TH. This allowed the identification of TH-positive/ GFP-

positive DA neurons, indicating that they were transfected (Fig. 6.4.7a, b). Traces of 

the TH-positive/ GFP-positive DA neurons were prepared for analysis of neuronal 

growth (Fig. 6.4.7c), which showed that DA neurons expressing caBMPRIb were 

significantly larger their control counterparts (Fig. 6.4.7d). Finally, to further 

demonstrate the requirement of the BMPRIb for the neurite growth-promoting 

effects of the BMP ligands, an siRNA against BMPRIb was employed, which 

induced efficient BMPRIb knockdown (Fig. 6.4.7e). The ability of GDF5 to promote 

growth in cells transfected with either a control siRNA or the BMPRIb siRNA was 

then investigated. GDF5 promoted a significant increase in neurite length in cells 

expressing the control siRNA, whereas this effect was lost in cell expressing the 

BMPRIb siRNA (Fig. 6.4.7f, g).  Taken together, these data show that activation of 

canonical BMP-BMPRIb-Smad 1/5/8 signalling promotes neurite outgrowth in VM 

DA neurons. 
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6.4 Figures and Figure Legends 

 

Figure 6.4.1: BMP receptors are expressed in the rat midbrain and striatum 

during embryonic and postnatal development.  

(a) RT-PCR of TH, Nurr1, Lmx1b, and Pitx3 in E14 and adult rat VM (SN = 

substantia nigra). (b-d) Quantitative RT-QPCR data showing the levels of (b) TH, (c) 

BMPRII and (c) BMPRIb mRNA in the developing midbrain and striatum, from E14 

to P90, relative to the levels of the reference mRNAs GAPDH, SDHA, and UBQC. 

Each data point represents pooled data from four samples from three separate 

litters/animals, and all data are presented as the mean ± SEM. (e) RT-PCR showing 

expression of BMPRII and BMPRIb in the adult rat SN.  (f, g)  In situ hybridization 

images taken from the Allen Developing Brain Atlas (©(Allen) Developing Mouse 

Brain Atlas, 2012) showing BMPRII and BMPRIb expression (purple colour) in 

sagittal sections of the P56 adult mouse brain. (h) Atlas showing the major nuclei in 

the midbrain region, including the SNpc, substantia nigra pars reticulate and 

subthalamic nucleus. In situ hybridization images of this region showing strong 

expression of (i) BMPRII and (j) BMPRIb in the SNpc (red arrows). Scale bar = 

2103 μm. (k) Quantification of the percentage of DA neurons in the adult rat SNpc 

expressing BMPR-II and BMPR-Ib. (l) Photomicrographs showing immunostaining 

for BMPRII and BMPRIb co-expressed with TH in the adult rat SNpc.  
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Figure 6.4.2: BMPRs are expressed on midbrain DA neurons during the peak 

period of DA axogenesis.  

(a) RT-PCR of BMPRII, BMPRIb and GAPDH in E11 to E14 rat VM. (b) Western 

blotting showing BMPRIb protein expression in the developing rat VM. (c) 

Photomicrographs showing immunostaining for BMPRIb co-expressed with DAPI 

and the relevant negative controls ((-) control) in cultures of the E14 rat VM after 24 

h in vitro. Photomicrographs showing immunostaining for (d) BMPRIb with (e) 

being the negative control, co-stained with DAPI and TH, in cultures of E14 rat VM 

after 24 h in vitro. Scale bar = 50 μm. 
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Figure 6.4.3: BMP2 and GDF5 promote neurite growth and activate canonical 

Smad signalling in cultured rat VM DA neurons.  

(a) Total neurite length of BMP2- and GDF5-treated DA neurons in cultures of E14 

rat VM. (b) Representative photomicrographs of BMP2- and GDF5-treated DA 

neurons in cultures of E14 rat VM at 4DIV, immunocytochemically stained for TH. 

Scale bar = 100 μm. Densitometric analysis of phospho-Smad 1/5/8 in (c) BMP2- 

and (d) GDF5-treated DA neurons and non-DA neurons in E14 rat VM cultures at 0 

(control), 30 and 60 min. (e) Representative photomicrographs showing 

immunostaining of phospho-Smad 1/5/8 (yellow arrow heads) and TH in E14 rat 

VM cultures treated BMP2 and GDF5 for 60min. Scale bar = 100 μm. (f) Smad-

dependent transcriptional activity in BMP2- and GDF5-treated SH-SY5Y cells 48 h 

after transfection with a Smad-GFP reporter. (g) Representative photomicrographs 

showing Smad-GFP reporter in BMP2- and GDF5- treated SH-SH5Y cells. Scale bar 

= 10 μm. (* P < 0.05, ** P < 0.01, *** P < 0.001 vs control; ANOVA with post-hoc 

Tukey’s test; 50 cells analysed per group per experiment; N = 3). (h) Western blots 

showing phospho-Smad 1/5/8 protein expression in the GDF5-treated adult rat VM. 
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Figure 6.4.4: Noggin and dorsomorphin prevent the promotion of SH-SH5Y 

neurite growth by BMP2 and GDF5.   

(a) Total neurite length of noggin- or dorsomorphin-pre-treated and/or BMP2- or 

GDF5-treated (daily for 4 DIV) SH-SY5Y cells, as indicated (*** P < 0.001 vs 

control; ANOVA with post-hoc Tukey’s test; 20 images analysed for each group per 

experiment; N = 3). Data are expressed as mean ± SEM. (b) Representative 

photomicrographs of noggin-pre-treated and/or BMP2- or GDF5-treated SH-SY5Y 

cells, as indicated, immunocytochemically stained for β-actin. Scale bar = 100 μm. 
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Figure 6.4.5: Noggin and dorsomorphin prevent the promotion of DA neurite 

growth by BMP2 and GDF5.   

(a) Total neurite length of noggin- or dorsomorphin-pre-treated and/or BMP2- or 

GDF5-treated (daily for 4 DIV) DA neurons in E14 rat VM cultures, as indicated 

(*** P < 0.001 vs control; ANOVA with post-hoc Tukey’s test; 50 TH-positive 

neurons analysed for each group per experiment; N = 3). (b) Representative 

photomicrographs of noggin- and dorsomorphin-pre-treated and/or BMP2- or GDF5-

treated DA neurons in E14 rat VM cultures, immunocytochemically stained for TH. 

Scale bar = 100 μm. Data are expressed as mean ± SEM. 
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Figure 6.4.6: Overexpression of constitutively-active BMPRIb promotes neurite 

outgrowth in cultured rat VM DA neurons.   

(a) Neurite length of control- or caBMPRIb-transfected neurons in E14 rat VM 

cultures at 1 and 3 DIV, as indicated (** P < 0.01 vs control at 3 DIV; ## P < 0.01 3 

DIV v 1 DIV; ANOVA with post-hoc Tukey’s; 40 cells for each group per 

experiment; N = 3 experiments). (b) Neurite length of control- or caBMPRIb-

transfected neurons and/or co-transfected with a Smad4 siRNA expression vector in 

E14 rat VM cultures at 3 DIV, as indicated (*** P < 0.001, ## P < 0.01 vs control at 

3 DIV; ANOVA with post-hoc Tukey’s; 40 cells for each group per experiment; N = 

3 experiments). (c) Representative line drawing of neurons from each of these 

groups at 3 DIV. All data are presented as mean ± SEM. 
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Figure 6.4.7: Overexpression of constitutively-active BMPRIb promotes neurite 

outgrowth in cultured rat VM DA neurons.   

(a) Photomicrograph of an E14 rat VM culture transfected with ca-BMPRIb (GFP-

positive) at the time of plating, and immunocytochemically stained for TH at 3 DIV. 

(b) Higher magnification of the dashed area in (a), showing co-localisation of TH 

and GFP used to identified transfected DA neurons. (c) Representative line drawing 

of control- or caBMPRIb-transfected DA neurons at 3DIV. Scale bar = 50 μm. (d) 

Neurite length of control- or caBMPRIb-transfected DA neurons in E14 rat VM 

cultures at 3 DIV, as indicated.  (e)  RT-PCR showing BMPRIb mRNA expression 

in SHSY5Y cells at 24h following transfection with either a control or BMPRIb 

siRNA.  (f)  Neurite length and (g) representative photomicrographs of control 

siRNA and BMPRIb siRNA transfected SH-SY5Y cells with or without GDF5 

treatment, as indicated.   (*** P < 0.001, vs control at 3 DIV; ANOVA with post-hoc 

Tukey’s; 30 cells for each group per experiment; N = 3 experiments). All data are 

presented as mean ± SEM. 
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6.5 Discussion 

Understanding the molecular signals that regulate the development of DA neurons is 

crucial for advancing cell replacement therapy for PD (Toulouse and Sullivan, 2008, 

Lees et al., 2009). While much progress has been made in understanding the signals 

that control DA neuron development, less is known about the molecules that 

promote the growth of DA neurites, which is crucial for functional integration of 

transplanted cells into the host parenchyma. Some molecules, such as Ephs and 

netrin1, have been identified as regulators of nigrostriatal pathway development in 

recent years (Hegarty et al., 2013a, Van den Heuvel and Pasterkamp, 2008). In an 

attempt to identify new candidate molecules and signalling pathways that may be 

involved in nigrostriatal development, this study focused on two BMPs, GDF5 and 

BMP2, since both of these factors have been implicated in axonal growth in other 

NS populations (Parikh et al., 2011, Hazen et al., 2012, Hazen et al., 2011, Phan et 

al., 2010, Niere et al., 2006, Lein et al., 1995, Hegarty et al., 2013a) and have been 

shown to have neurotrophic effects on VM DA neurons, specifically survival- and 

neurite growth-promoting effects (O’Keeffe et al., 2004a, Reiriz et al., 1999, Jordan 

et al., 1997, Sullivan et al., 1997, Hegarty et al., 2014c). Despite these studies, the 

downstream molecular mechanisms that mediate the effects of GDF5 and BMP2 on 

VM DA neurons are unknown. The present study aimed to define these molecular 

mechanisms, and to investigate the potential of BMP2 and GDF5 as regulators of 

nigrostriatal development. 

 To investigate this proposed role of BMP2 and GDF5 in the neurite growth 

of DA neurons, this study first characterised the temporal expression profiles of their 

receptors in the rat VM and striatum during embryonic and postnatal development. 

In the rat, the axons of the DA neurons in the VM extend towards the forebrain via 

the medial forebrain bundle from E13, and progressively innervate the striatum 

shortly thereafter, reaching the dorsal striatum around E20 (Gates et al., 2004, 

Nakamura et al., 2000, Specht et al., 1981a, Specht et al., 1981b, Verney, 1999, 

Voorn et al., 1988). In the first three post natal weeks, striatal innervation becomes 

more extensive, while naturally-occurring cell death refines these connections 

(Jackson-Lewis et al., 2000, Oo and Burke, 1997, Burke, 2003, Hegarty et al., 2013a, 

Van den Heuvel and Pasterkamp, 2008). This study found that BMPRII and 

BMPRIb were expressed at steady levels in the VM throughout embryonic 
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development (from E14) and into adulthood (until at least P90), with strong 

expression levels being detected in the P56 SNpc also. Crucially, the expression of 

these BMPRs, both of which are required for canonical BMP-Smad signalling 

(Miyazono et al., 2010, Sieber et al., 2009), in the VM from E14 onwards correlates 

with the timing of the generation of nigrostriatal projections. These data suggest that 

BMPs, such as BMP2 and GDF5 which are expressed in the developing and adult 

VM and striatum (Krieglstein et al., 1995b, O’Keeffe et al., 2004b, Storm et al., 

1994, Chen et al., 2003, Jordan et al., 1997, Soderstrom and Ebendal, 1999, Hegarty 

et al., 2014c), may regulate the establishment of nigrostriatal projections from VM 

DA neurons. In support of this suggestion, the present study has demonstrated that 

both BMP2 and GDF5 promote neurite outgrowth from E14 VM neurons in culture. 

BMP2 and GDF5 may also act to orientate the axons of VM DA neurons away from 

the VM, since other BMPs, such as BMP7 and GDF7, have been shown to direct the 

orientation of the commissural axons of dorsal SC interneurons, an action which 

requires BMPRIb (Butler and Dodd, 2003, Dent et al., 2011, Phan et al., 2010, 

Yamauchi et al., 2008, Wen et al., 2007). The sustained expression of BMPRs in the 

VM during adulthood suggests that they may function in the maintenance of DA 

neurons, with both BMP2 and GDF5 being shown to promote the survival of VM 

DA neurons in vitro (O’Keeffe et al., 2004a, Wood et al., 2005, Reiriz et al., 1999, 

Jordan et al., 1997) and in vivo (Sullivan et al., 1997, Sullivan et al., 1999, Hurley et 

al., 2004, O'Sullivan et al., 2010, Sullivan et al., 1998b, Espejo et al., 1999). This 

study also demonstrated the expression of these BMPRs from E11 to E14 in the rat 

VM, further supporting their role in DA axogenesis, but also suggesting that BMPs 

may function in promoting the adoption of a DA phenotype during DA neurogenesis, 

which also occurs during this period (Lumsden and Krumlauf, 1996, Lauder and 

Bloom, 1974, Gates et al., 2006, Hegarty et al., 2013c). In agreement with this 

proposal, BMP-BMPR-Smad-dependent transcriptional activity is found in the VM 

region during DA neurogenesis at E10.5 in mice (Monteiro et al., 2008), which 

corresponds to the time of DA axon extension. BMP-Smad signalling may therefore 

concomitantly contribute to VM DA neuronal specification and their subsequent 

neurite outgrowth, which is the case for BMPs in the dorsal SC (Chizhikov and 

Millen, 2005, Ulloa and Briscoe, 2007). 

 In the rodent striatum there is a peak of BMPRII mRNA expression at P11, 

during the time period (P0-P20) when naturally-occurring cell death because of 
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limitations in the availability of target-derived neurotrophic factors (Jackson-Lewis 

et al., 2000, Oo and Burke, 1997, Burke, 2003, Van den Heuvel and Pasterkamp, 

2008). Similarly, BMPRIb is also expressed at relatively high levels in the early 

postnatal (P1 to P11) rat striatum. These data suggest that BMP2 and GDF5 may 

function as target-derived neurotrophic factors for VM DA neurons at this stage of 

development. Indeed, both factors have been shown to promote the survival of VM 

DA neurons (O’Keeffe et al., 2004a, Wood et al., 2005, Reiriz et al., 1999, Jordan et 

al., 1997, Sullivan et al., 1997, Sullivan et al., 1999, Hurley et al., 2004, O'Sullivan 

et al., 2010, Sullivan et al., 1998b, Espejo et al., 1999). Furthermore, BMPRII null 

mice display reductions in nigrostriatal neurons, and in striatal DA innervation, in 

adulthood (Chou et al., 2008a), which is likely due to deficient neurotrophic support 

during the postnatal developmental period. There is a peak of BMPRIb expression 

during adulthood in the striatum which may point towards the aforementioned 

potential role of BMPs in the maintenance of VM DA neurons. Furthermore, it may 

suggest that BMPRIb functions in promoting the arborisation of DA axons which 

survive the period of naturally-occurring cell death. The sustained expression of 

BMPRs in the adult rat brain (up to P90) demonstrated in this study suggests a role 

for BMP2 and GDF5 in the maintenance of the nigrostriatal system during 

adulthood. In support of this role, BMPs (including BMP2) and BMPRs have been 

shown to be expressed in the midbrain and striatum from 6-24 months in the adult rat 

(Chen et al., 2003). Furthermore, in animal models of PD, exogenous GDF5 delivery 

into the nigrostriatal pathway has potent survival-promoting effects on adult nigral 

DA neurons (Sullivan et al., 1997, Sullivan et al., 1999, Hurley et al., 2004, 

O'Sullivan et al., 2010, Sullivan and Toulouse, 2011). Disruption to the normal 

expression of BMPRs may thus render nigrostriatal DA neurons more vulnerable to 

degeneration, and increase the risk of the development of PD. The phenotype of the 

BMPRII null mouse supports this suggestion, while haploinsufficiency of other 

TGFβ superfamily members, such as GDNF and TGFβ2, causes an accelerated 

decline of midbrain DA neurons during normal aging (Boger et al., 2006, Andrews et 

al., 2006). Interestingly, after a 6-hydroxydopamine (6-OHDA)-induced lesion of the 

adult rat nigrostriatal pathway, BMPRs were significantly downregulated in the 

nigra, but upregulated in the striatum (Chen et al., 2003). These findings likely 

reflect loss of BMPR expression by nigral DA neurons which are destroyed by 6-

OHDA, and a potential compensatory mechanism by the striatum to restore BMP-
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mediated survival-promoting effects on innervating VM DA neurons through 

upregulation of BMPR expression. The BMPR expression in the developing striatum 

may also reflect autocrine or paracrine trophic influences on cells within the 

striatum, since the BMPs have been shown to play roles in striatal neuronal 

development (Gratacos et al., 2002, Gratacos et al., 2001).  

 The present study found that TH mRNA levels in the VM are maximal at 

E14, which is expected since this is the time-point at which the greatest amount of 

post-mitotic DA neurons are present in the VM (Lumsden and Krumlauf, 1996, 

Lauder and Bloom, 1974, Gates et al., 2006). There was a subsequent significant 

decline in TH expression from birth onwards, reaching the lowest levels at P11, 

which correlates with the onset of programmed cell death for nigrostriatal DA 

neurons. TH mRNA expression was found to remain stable in the adult VM, 

reflecting the established population of A9 DA neurons. 

 Following the demonstration of the expression of BMPRs in the VM and 

striatal regions during embryonic and post-natal development, it was next 

demonstrated that BMPRs are expressed on both DA and non-DA cells in E14 rat 

VM cultures. This indicates that BMP2 and GDF5 may act in either autocrine or 

paracrine manners to exert neurotrophic effects on DA neurons. 

Immunocytochemical staining for phospho-Smad 1/5/8 showed that both DA and 

non-DA cells express these transcription factors, and the nuclear location of 

phospho-Smad 1/5/8 indicated that these VM cells also express Smad4, which is 

required for the nuclear translocation of Smad 1/5/8 following their activation. These 

results demonstrate that VM DA neurons have the machinery to carry out canonical 

Smad 1/5/8 signalling in response to BMPs. 

The current study has demonstrated that both BMP2 and GDF5 induce the 

neurite outgrowth of E14 VM DA neurons, which is consistent with previous studies 

on BMP2 (Reiriz et al., 1999) and GDF5 (O’Keeffe et al., 2004a) in rat VM cultures. 

The molecular mechanisms mediating this neurite growth-promoting effect were 

then assessed. BMP2 and GDF5 were both shown to activate canonical Smad 1/5/8 

in VM DA neurons, as demonstrated by nuclear accumulation of phosphorylated 

Smad 1/5/8. Furthermore, GDF5 was shown to activate Smad 1/5/8 signalling in the 

adult rat VM in vivo. Interestingly GDF5, but not BMP2, activated Smad 1/5/8 

signalling in non-DA cells. This finding is not surprising considering that the 

numbers of astrocytes are dramatically increased in GDF5-treated E14 rat VM 
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cultures (Krieglstein et al., 1995b, O'Keeffe et al., 2004a, Wood et al., 2005). It has 

been suggesting that GDF5 may have an indirect neurotrophic action on VM DA 

neurons, possibly by stimulating the production of glial-derived growth factor(s), 

such as GDNF, that might be involved in the neurotrophic response (Sullivan and 

O'Keeffe, 2005). Conversely, Wood et al. showed that inhibition of the GDF5-

induced increase in astrocytes did not prevent the neurotrophic effects of GDF5 on 

DA neurons in E14 rat VM cultures (Wood et al., 2005), suggesting that GDF5 has a 

direct neuronal action. Similarly, Reiriz et al. (1999) used the gliotoxin α-

aminoadipic acid to demonstrate that the neurotrophic effects of BMP2 on E14 rat 

VM DA neurons were not mediated by astrocytes. These data, along with the present 

finding that BMP2 specifically activates Smad signalling in VM DA neurons, 

suggest that BMP2 and GDF5 act directly on DA neurons to induce axonal growth. 

The neurotrophic and gliogenic effects of GDF5 in VM cultures may thus be 

independent of one another. Similarly, BMP-Smad signalling has previously been 

shown to have such a dual-inductive role in enteric neural crest cells (Chalazonitis et 

al., 2004, Chalazonitis et al., 2011, Chalazonitis and Kessler, 2012). Collectively, 

these data suggest that canonical Smad signalling mediates the neurotrophic effects 

of BMP2 and GDF5 on VM DA neurons.   

To explore this premise further, the effects of BMP2 and GDF5 were 

assessed following inhibition of their binding to BMPRs. BMPR activation by 

BMP2 and GDF5 was blocked by using noggin, an extracellular inhibitor of BMPs 

which blocks their binding epitopes for BMPRs (Groppe et al., 2002, Smith and 

Harland, 1992), or dorsomorphin, a small molecular inhibitor of BMPRI (Yu et al., 

2008). Pretreatment with either noggin or dorsomorphin inhibited the neurite 

growth-promoting effects of BMP2 and GDF5 on E14 VM DA neurons. Noggin and 

dorsomorphin have both previously been used to prevent BMP-induced neurite 

outgrowth in other neuronal populations (Parikh et al., 2011, Li and LoTurco, 2000), 

and the current study also demonstrated their inhibition of BMP-induced neurite 

growth in SH-SH5Y cells. BMPR-activation is therefore crucial to BMP-induced 

axonal growth from VM DA neurons. BMP2 can signal through both BMPRIa and 

BMPRIb, whereas GDF5 predominantly signals through BMPRIb (Nishitoh et al., 

1996), suggesting that BMPRIb is responsible for mediating the neurotrophic effects 

of BMP2 and GDF5. To test this hypothesis, E14 VM cultures were electroporated 

with a caBMPRIb, which has been previously shown to activate the Smad 1/5/8 
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signalling pathway (Chapter 2) (Hegarty et al., 2013b). E14 VM neurons expressing 

the caBMPRIb were significantly larger than those transfected with the control 

plasmid, suggesting that BMP2 and GDF5 act via BMPRIb to induce neurite 

extension. These findings are in agreement with a previous study in SH-SH5Y cells, 

a model of human DA neurons (Chapter 2) (Hegarty et al., 2013b). Furthermore, the 

application of GDF5 at the time of plating, when BMPR1b is expressed, results in 

neurotrophic effects on VM DA neurons, whereas application after six days in vitro, 

when the BMPRIb is no longer expressed, has no effect (O'Keeffe et al., 2004a). The 

present study demonstrated that the transcriptional activity of Smad 1/5/8 is required 

for this BMP-induced neurite growth of VM neurons. The inhibition of the nuclear 

translocation of the Smad 1/5/8 transcription factors, using a siRNA to target Smad4, 

significantly inhibited neurite outgrowth of E14 VM neurons induced by caBMPRIb. 

Finally, this study confirmed that the neurite growth-promoting effects of the 

caBMPRIb are specific to VM DA neurons. The caBMPRIb therefore mimics the 

effects of BMP2 and GDF5 on E14 VM DA neurons. Furthermore, siRNA 

knockdown of the BMPRIb also prevented GDF5-induced neurite growth in SH-

SH5Y cells.  Collectively, these data show that BMPRIb-activation of Smad 1/5/8 is 

the mechanism by which BMP2 and GDF5 promote the neurite growth of VM DA 

neurons. 

This study has identified BMP2 and GDF5 as bona fide candidates for 

regulators of nigrostriatal pathway development. The expression profiles of their 

BMPRs in the VM and striatum, and their neurotrophic effects on cultured VM DA 

neurons, suggest roles for BMP2 and GDF5 in the extension/projection of DA axons 

from the developing VM. They may act as target-derived neurotrophic factors for 

innervating nigrostriatal fibres, and/or as factors which maintain the integrity of 

nigrostriatal projections during adulthood. However, the analysis of mice with 

deficiencies in GDF5 and/or BMP2 will be essential to further establish these factors 

as regulators of nigrostriatal pathway development. It is not unlikely for these 

morphogens to play multiple roles during nigrostriatal system development, since 

locally-expressed factors are employed throughout NS development to regulate 

multiple steps of particular developmental processes, with temporally-regulated 

functions. A relevant example of this is seen during chick dorsal SC development, in 

which BMP-Smad signalling promotes neuronal specification rather than astrocytic 

specification at E5, but at E6 has the opposite effect (Agius et al., 2010). The present 
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study has thus contributed to the growing body of knowledge regarding the 

development of the A9 pathway. A detailed, well-characterised understanding of 

nigrostriatal pathway development is vital, to provide important information 

regarding developmental abnormalities or age-related defects that may lead to the 

progressive degeneration of this pathway in PD. Furthermore, cell replacement 

therapy is one of the most promising therapies for the treatment of PD (Orlacchio et 

al., 2010, Bonnamain et al., 2012, De Feo et al., 2012, Toulouse and Sullivan, 2008, 

Hedlund and Perlmann, 2009). Due to the importance of the establishment of 

functional connections by transplanted DA cells in the host striatum, factors which 

promote neurite outgrowth are being considered as adjuncts to transplantation 

therapy. GDF5 and BMP2 are thus ideal candidates to be used as growth-promoting 

factors, with their survival-promoting effects on VM DA neurons being beneficial 

also. The present study has, for the first time, demonstrated that the downstream 

molecular mechanisms mediating the neurite outgrowth-promoting effects of GDF5 

and BMP2 in VM DA neurons are dependent, at least in part, upon BMPRIb-

mediated activation of canonical Smad 1/5/8 signalling. 
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7. Molecular mechanisms regulating BMP-Smad signalling-

dependent neurite growth in a model of human midbrain 

DA neurons. 

 

7.0 Aims 

 Investigate the mechanism(s) by which canonical BMP-Smad 1/5/8 

signalling induces neuronal differentiation in SH-SH5Y cells.  

 Identify potential regulators of BMP2- and GDF5-induced Smad signalling, 

and neurite growth, in SH-SY5Y cells. 

 

7.1 Abstract 

Two members of the BMP family of proteins, BMP2 and GDF5, have emerged as 

factors which regulate the neurite growth of VM DA neurons in vitro and in vivo, 

and this neurotrophic effect has now been shown to be dependent on BMPRIb 

activation of canonical Smad signalling. However, the precise intracellular cascades 

that regulate BMP-Smad-induced neurite growth, and the downstream molecular 

changes that mediate this effect, are still unknown. To examine this further, the 

present study firstly examined the role of endocytosis in BMP2- and GDF5-induced 

Smad signalling and neurite growth in SH-SH5Y cells, a model of human midbrain 

DA neurons. BMP2-, but not GDF5-induced, Smad signalling and neurite growth 

was shown to be regulated by dynamin-dependent endocytosis. This study 

subsequently demonstrated that BMP2 and GDF5 do not require GDNF signalling to 

promote neurite growth. Finally, Sip1, which is an important negative modulator of 

BMP-Smad signalling during NS development, was identified as a novel regulator of 

neurite growth in SH-SH5Y cells. Sip1 likely acts to repress BMP-Smad-driven 

neurite growth. 
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7.2 Introduction 

BMP2 and GDF5 are two well-characterised members of the BMP family with 

regards to NS development (Sullivan and O'Keeffe, 2005, Hegarty et al., 2014c). 

Prior to this work, although many studies had shown that both have potent 

neurotrophic effects on VM DA neurons in vitro (O’Keeffe et al., 2004b, Jordan et 

al., 1997, O’Keeffe et al., 2004a, Krieglstein et al., 1995b, Wood et al., 2005) and in 

vivo (Costello et al., 2012, Hurley et al., 2004, Sullivan et al., 1997, Sullivan et al., 

1999, Sullivan et al., 1998b, Espejo et al., 1999), the molecular mechanisms 

mediating these DA neurotrophic effects were unknown. Using the SHSY5Y cell 

line (Chapter 2) and E14 rat VM primary cultures (Chapter 3) as models of midbrain 

DA neurons, BMP2 and GDF5 were shown to promote DA neuronal growth by 

acting through their canonical signalling pathway (Hegarty et al., 2014a, Hegarty et 

al., 2013b). In this pathway, BMPs bind to a complex of BMPRI and BMPRII. 

BMPRI subsequently phosphorylates Smad 1/5/8 that translocate to the nucleus, 

following Smad4 binding, to modulate target gene expression (Miyazono et al., 

2010, Sieber et al., 2009). Specifically, BMP2 and GDF5 were shown to promote 

neurite growth through BMPRIb-dependent stimulation of Smad 1/5/8 nuclear 

translocation (Hegarty et al., 2014a, Hegarty et al., 2013b). However, the precise 

intracellular cascades that regulate this BMP-Smad driven process and the 

downstream molecular changes that promote neurite growth are still unknown. To 

examine this further, the present series of experiments examined; 1) the role of 

endocytosis in canonical BMP-Smad signalling, and its promotion of neurite growth, 

2) Sip1 regulation of BMP2- and GDF5-induced neurite growth, and 3) the 

involvement of GDNF in the neurite growth-promoting effects of BMP2 and GDF5. 

 Endocytosis of transmembrane receptors, such as BMPRs, regulates their 

availability at the cell membrane, and also attenuates their signal transduction 

(Sorkin and von Zastrow, 2009). Receptor endocytosis occurs via either a clathrin-

mediated or caveolae-mediated mechanism, both of which are dependent on 

dynamin (Heymann and Hinshaw, 2009, Le Roy and Wrana, 2005). In clathrin-

mediated endocytosis, clathrin-coated pits pinch off the membrane, while caveolae-

mediated endocytosis employs membrane invaginations containing caveolin. The 

internalized receptors are recycled to the plasma membrane, degraded in lysosomes, 

or alternatively use the endosome as a signalling platform, in which downstream 
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components are presented for further activation (Le Roy and Wrana, 2005). BMPRs 

initiate distinct intracellular cascades are depending on their endocytic route, 

membrane localization and mode of oligomerization (Hartung et al., 2006). Hartung 

et al. (2006) showed that the phosphorylation of Smad 1/5/8 by BMPRI is induced at 

the plasma membrane, while continuation of Smad signalling can occur, via 

endosomes, following clathrin-mediated endocytosis of the BMPRs. Both Smad-

dependent and -independent signalling pathways require clathrin- and caveolae-

mediated endocytosis to exert transcriptional activity (Hartung et al., 2006, Bragdon 

et al., 2009, Saldanha et al., 2013, Bonor et al., 2012, Alborzinia et al., 2013). 

Furthermore, inhibition of endocytosis has been shown to affect the differentiation of 

osteoblasts, suggesting that endocytosis plays a functional role in differentiation 

(Heining et al., 2011, Rauch et al., 2002).  There have been a paucity of studies 

examining the role of endocytosis in mediating the effects BMP-Smad signalling in 

neurons. To address this, this study investigated the role of dynamin-dependent 

endocytosis in canonical BMP-Smad signalling in the SH-SH5Y neuronal cell line.   

 As aforementioned, the regulators and downstream effectors of BMP-Smad 

signalling induction of neurite growth are unknown. To address this, this study 

focused on Sip1, a negative regulator of BMP-Smad signalling (Verschueren et al., 

1999, Postigo et al., 2003). Sip1 has recently emerged as a factor that contributes to 

the induction of a VM DA phenotype in human pluripotent stem cells (Cai et al., 

2013), which suggests that Sip1 may play a role in regulating BMP2- and GDF5-

induced DA neuronal growth. Indeed, knockdown studies have shown that Sip1 is 

required for BMP-Smad signalling-regulation of the development of the CNS and 

PNS primordia (Nitta et al., 2004, van Grunsven et al., 2007, Lerchner et al., 2000, 

Delalande et al., 2008, Van de Putte et al., 2007, Cacheux et al., 2001, Wakamatsu et 

al., 2001, Hegarty et al., 2013a). Furthermore, Sip1 regulation of BMP-Smad 

signalling has been shown to be involved in the development of SC motor neurons 

(Roy et al., 2012), and to mediate CNS myelination (Weng et al., 2012). GDNF is 

the best characterized neurotrophic factor for midbrain DA neurons (Peterson and 

Nutt, 2008, Hegarty et al., 2014c, Sullivan and Toulouse, 2011), and has been 

suggested to facilitate the DA neurotrophic effects of BMP2 and GDF5 (Sullivan 

and O'Keeffe, 2005, Wood et al., 2005). Thus, the present study also investigates the 

potential involvement of GDNF signalling in the neurite growth-promoting effects of 

BMP2 and GDF5 in SH-SH5Y cells.  
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7.3 Results 

7.3.1 The kinetics and amplitude of BMP-induced Smad 1/5/8 signalling in SH-

SH5Y cells are regulated by dynamin-dependent endocytosis  

BMP signalling has been shown to be regulated by the oligomerization and 

membrane localization of BMPRs, while the propagation of intracellular signalling is 

under the control of various endocytic routes (Nohe et al., 2002, Hartung et al., 2006, 

Heining et al., 2011, Rauch et al., 2002, Bragdon et al., 2009, Saldanha et al., 2013, 

Alborzinia et al., 2013, Bonor et al., 2012). To examine whether BMP-Smad 

signalling is regulated by endocytosis in the nervous system, this study assessed the 

effect of inhibiting endocytosis on BMP2- and GDF5-induced Smad signalling in the 

SH-SH5Y neuroblastoma cell line. To do this, the small molecule inhibitor dynasore, 

which specifically interferes with dynamin-dependent endocytosis by reversibly 

blocking the GTPase activity of dynamin (Macia et al., 2006), was used. Dynamin is 

crucial for the fission of vesicles prior to their release from the plasma membrane, 

and is required for both clathrin-mediated and caveolae-mediated endocytosis 

(Heymann and Hinshaw, 2009, Le Roy and Wrana, 2005). 

 To test the ability of dynasore to inhibit endocytosis in SH-SH5Y cells, 

uptake of fluorescently-labelled transferrin by SH-SH5Y cells was examined as a 

measurement of endocytosis (Ehrlich et al., 2004). Uptake of 30 μg/ml of Alexa594-

transferrin was potently inhibited in SH-SY5Y cells following treatment of the cells 

with 40 μm of dynasore for 2 h (Fig. 7.4.1a, b). Following this demonstration of the 

ability of dynasore to efficiently inhibit endocytosis in SH-SH5Y cells, the present 

study investigated the effect that inhibition of dynamin-dependent endocytosis has 

on the temporal kinetics of Smad signalling in the SH-SH5Y neuronal cell line. It 

has previously been shown that both BMP2 and GDF5 activate Smad signalling in 

SH-SY5Y cells, albeit with different temporal profiles of activation (Chapter 2) 

(Hegarty et al., 2013b). This study examined the activation of Smad signalling at 5, 

30 and 60 min following treatment with 200 ng/ml of these BMPs, and 

concomitantly investigated whether dynasore pretreatment had an effect on BMP2- 

and GDF5-induced Smad signalling. Densitometric analysis of the nuclear levels of 

phospho-Smad 1/5/8 showed that BMP2 significantly increased the levels of nuclear 

phospho-Smad 1/5/8 at all time-points examined (Fig. 7.4.2c, d), while GDF5 

significantly increased nuclear phospho-Smad levels at 30 and 60 min (Fig. 7.4.2e, 
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f). Additionally, phospho-Smad levels increased between each treatment time-point. 

Treatment with dynasore 30 min prior to BMP2 application delayed Smad signalling 

activation, so that significant increases in nuclear phospho-Smad levels were 

detected only after 30 min, rather than from 5 min onwards (Fig. 7.4.2c, d). 

Furthermore, dynasore pre-treatment significantly reduced the magnitude of BMP2-

induced Smad signalling at 60 min (Fig. 7.4.2c). Inhibition of dynamin-dependent 

endocytosis did not significantly delay or reduce GDF5-induced Smad signalling at 

any of the time-points examined (Fig. 7.4.2e, f). Taken together, these data 

demonstrate that activation of Smad signalling by BMP2, but not GDF5, is regulated 

by dynamin-dependent endocytosis.  

 

7.3.2 BMP2-induced neurite outgrowth of SH-SH5Y cells is significantly 

reduced by short-term inhibition of dynamin-dependent endocytosis 

BMP2 and GDF5 have previously been shown to directly induce neurite outgrowth 

of SH-SH5Y cells via a BMPR-Smad dependent pathway (Chapter 2) (Hegarty et 

al., 2013b). Considering that inhibition of dynamin-dependent endocytosis affects 

the kinetics and magnitude of BMP2-induced Smad 1/5/8 signalling, this study 

examined the consequences of this on BMP-induced neurite growth. SH-SY5Y cells 

were treated with BMP2 or GDF5 daily before being stained with the vital 

fluorescent dye calcein at 4 DIV, to allow visualisation of the cytoskeleton. To 

inhibit dynamin-dependent endocytosis, dynasore was added 30 min prior to BMP 

application and for just the initial 4 h of BMP-stimulation, as long-term treatment 

over several days caused cell death (data not shown). The total neurite length was 

then measured using a modified line intercept method (Mayhew, 1992). Daily 

treatment with either BMP2 or GDF5 for 4 DIV resulted in a significant increase in 

the total length of neurites (Fig. 7.4.2). Similarly, SH-SY5Y cells treated with 

dynasore and BMP2 or GDF5, had significantly longer neurites when compared to 

the control (Fig. 7.4.2). Dynasore application significantly reduced BMP2-induced, 

but not GDF5-induced neurite outgrowth of SH-SH5Y cells (Fig. 7.4.2a-d). These 

data suggest that dynamin-dependent endocytosis is required during the initial phase 

of BMP2 stimulation for its maximal induction of SH-SH5Y neurite outgrowth. 
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7.3.3 Neurite growth-induction of BMP2 and GDF5 in SH-SH5Y cells is not 

dependent on GDNF signalling 

It has been suggested that the neurotrophic effects of GDF5 and BMP2 on VM DA 

neurons may be mediated indirectly through the action of GDNF (Wood et al., 2005, 

Sullivan and O'Keeffe, 2005). To test this possibility, the present study, using SH-

SH5Y cells as a model of human DA neurons, adopted a similar approach to the 

recent Orme et al. (2013) study, which inhibited GDNF’s heparan sulphate-

dependent signalling to prevent its DA neurotrophic effects (Barnett et al., 2002, 

Iwase et al., 2005, Orme et al., 2013). Pretreatment of SH-SH5Y cells with 0.3 U/ml 

of heparinase III (Barnett et al., 2002, Iwase et al., 2005, Orme et al., 2013) did not 

affect BMP2- or GDF5-induced neurite growth in SH-SY5Y cells (Fig. 7.4.3). These 

findings suggest that the direct neurotrophic effects of BMP2 and GDF5 on SH-

SH5Y cells are not dependent on GDNF signalling. 

 

7.3.4 Sip1 knockdown promotes neurite outgrowth in SH-SH5Y cells and in E14 

rat VM cultures. 

Sip1 is a negative regulator of Smad signalling in response to BMPs, which plays an 

essential part in BMP-Smad signalling during NS development (Hegarty et al., 

2013a), and has been implicated in VM DA neurogenesis (Cai et al., 2013). Before 

assessing its role in BMP-Smad-induced neurite growth, the current study analysed 

Sip1 mRNA expression in response to BMP2 and GDF5 treatment for 0.5, 1, 4, 8 

and 24 h in SH-SH5Y cells (Fig. 7.4.4a, b). Sip1 expression increased following 

BMP2 or GDF5 treatment, before returning to basal levels, albeit with different 

temporal profiles for BMP2 and GDF5 (Fig. 7.4.4a, b). This transient increase 

ceased after 1 h following BMP2 treatment (Fig. 7.4.4a), but decreased after 4 h 

following GDF5 treatment (Fig. 7.4.4b). Furthermore, the basal Sip1 expression 

levels remained until at least 24 hrs after BMP2 treatment (Fig. 7.4.4a), but from 4 to 

24 h after GDF5 treatment (Fig. 7.4.4b). The transient increase of Sip1 expression 

following Smad activation is typical of negative regulators in response to the 

activation of the signalling pathway which they regulate.  

 Given that Sip1 is a negative regulator of Smad signalling, and that canonical 

BMP-Smad signalling drives neurite growth in SH-SY5Y cells and E14 rat VM DA 

neurons (Chapter 2 and 3) (Hegarty et al., 2014a, Hegarty et al., 2013b, O’Keeffe et 

al., 2004a, Reiriz et al., 1999, Nakamura et al., 2003, Toulouse et al., 2012), this 
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study next investigated the effect of Sip1 knockdown on the neurite growth within 

these two models of midbrain DA neurons. To do this, SH-SY5Y cells were 

transfected with Sip1 siRNA, with a transfection efficiency of 25%. There was a 

clear reduction in Sip1 mRNA expression in Sip1 siRNA-transfected cells, compared 

to control siRNA-transfected and untransfected SH-SH5Y cells (Fig. 7.4.4c). SH-

SY5Y cells were then transfected with this Sip1 siRNA, which induced a significant 

increase in total neurite length compared to cells transfected with the relevant control 

siRNA (Fig. 7.4.4d, e). Furthermore, SH-SH5Y cells with Sip1 knockdown had 

significantly larger neurites than BMP2- and GDF5-treated SH-SH5Y cells 

transfected with the control siRNA (Fig. 7.4.4d, e). Finally, BMP2 and GDF5 

treatment did not significantly attenuate the neurite growth promoting effects of Sip1 

knockdown. This suggests that Sip1 is the principal regulator of SH-SH5Y neurite 

growth. E14 rat VM neurons were then transfected with the Sip1 siRNA, and neurite 

growth was assessed and compared to that in cultures transfected with the control 

siRNA. Electroporation of E14 VM neurons with the Sip1 siRNA induced a 

significant increase in their neurite length at 3 DIV (Fig. 7.4.4f, g).  

 The present study then assessed the in vivo expression of Sip1 during 

midbrain development. In situ hybridization showed that Sip1 is strongly expressed 

in the E11.5 mouse VM (Fig 7.4.5a, c), at a time when VM NPs are undergoing 

specification into DA neurons (Lumsden and Krumlauf, 1996, Lauder and Bloom, 

1974, Specht et al., 1981a, Specht et al., 1981b, Hegarty et al., 2013c). Sip1 

expression was significantly lower in the E13.5 mouse VM (Fig 7.4.5b, c), and 

continued to decrease in the midbrain until P4 (Fig 7.4.5c), a period which 

corresponds to the development of axonal projections from VM DA neurons to the 

striatum (Gates et al., 2004, Nakamura et al., 2000, Van den Heuvel and Pasterkamp, 

2008). Collectively these data suggest that Sip1 may be a novel regulator of the 

axonal outgrowth of VM DA neurons. 
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7.4 Figures and Figure Legends 

     

Figure 7.4.1: Inhibition of dynamin-dependent endocytosis delays and reduces 

BMP2-, but not GDF5-, induced Smad 1/5/8 signalling in SH-SY5Y cells. 

(a) Relative immunofluorescence intensity of Alexa594-transferrin in dynasore-

treated SH-SY5Y cells, as determined by densitometry (*** P < 0.001 vs control; 

Student’s t-test; 20 fields for each group per experiment. N = 3). Data are expressed 

as mean ± SEM. (b) Representative photomicrographs of Alexa594-transferrin 

immunofluorescence in control and dynasore-treated SH-SY5Y cells. Scale bar = 

100μm. Relative intensity of phospho-Smad immunofluorescence in dynasore-

pretreated and/or (c) BMP2- or (e) GDF5-treated SH-SY5Y cells, at 0 (control), 5, 

30, and 60 min, as indicated (*** P < 0.001 vs 0 min; ## P < 0.01 ### P < 0.001 vs 0 

min (dynasore); +++ P < 0.001; One-way ANOVA and post hoc Tukey’s test; 50 

cells for each group per experiment. N = 3). Data are expressed as mean ± SEM. 

Representative photomicrographs of dynasore-pretreated and/or (d) BMP2-  or (f) 

GDF5-treated, SH-SY5Y cells immunocytochemically stained for phospho-Smad 

1/5/8 at (d) 5 and (f) 60 min. Scale bar = 100μm. 
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Figure 7.4.2: Inhibition of dynamin-dependent endocytosis reduces the 

promotion of SH-SH5Y neurite outgrowth by BMP2, but not by GDF5.   

Total neurite length of dynasore-pre-treated and/or (a) BMP2- or (c) GDF5-treated 

SH-SY5Y cells, as indicated (*** P < 0.001 vs control; + P < 0.05 vs BMP2; 

ANOVA with post-hoc Tukey’s test; 20 images analysed for each group per 

experiment; N = 3 experiments). Data are expressed as mean ± SEM. (b) 

Representative photomicrographs of dynasore pre-treated and/or (b) BMP2- or (d) 

GDF5-treated SH-SY5Y cells stained with the vital fluorescent dye calcein. Scale 

bar = 100 μm.  
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Figure 7.4.3: Heparinase III does not affect the induction of SH-SH5Y neurite 

growth by BMP2 and GDF5.   

(a) Total neurite length of heparinase III-pre-treated and/or BMP2- or GDF5-treated 

(daily for 4 DIV) SH-SY5Y cells, as indicated (*** P < 0.001 vs control; ANOVA 

with post-hoc Tukey’s test; 20 images analysed for each group per experiment; N = 

3 experiments). Data are expressed as mean ± SEM. (b) Representative 

photomicrographs of heparinase III pre-treated and/or BMP2- or GDF5-treated SH-

SY5Y cells stained with the vital fluorescent dye calcein. Scale bar = 100 μm.  
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Figure 7.4.4: Sip1 knockdown significantly increases neurite growth in SH-

SH5Y cells and in E14 rat VM cultures. 

RT-PCR analysis of Sip1 and 18sRNA/GAPDH in SH-SY5Y cells treated with (a) 

BMP2 or (b) GDF5 for 0.5, 1, 4, 8 and 24 h, or (c) transfected with Sip1 or control 

siRNA. Neurite length of control plasmid- and Sip1 siRNA-transfected (d) SH-

SY5Y cells or (f) E14 rat VM neurons with or without BMP2 or GDF5 treatment, as 

indicated (* P < 0.05, ** P < 0.01  *** P < 0.001 vs control (untreated); + P < 0.05; 

(d) ANOVA with post-hoc Tukey’s test or (f) Student’s t-test ; 40 cells for each 

group per experiment. N = 3). Data are expressed as mean ± SEM. Representative 

photomicrographs of control plasmid- and Sip1 siRNA-transfected, GFP-expressing, 

(e) SH-SY5Y cells or (g) E14 rat VM neurons with or without BMP2 or GDF5 

treatment, as indicated. Scale bar = (e) 50 μm or (g) 100 μm. 
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Figure 7.4.5: In vivo Sip1 expression in the mouse VM during embryonic and 

postnatal development.  

In situ hybridization images taken from the Allen Developing Brain Atlas (©(Allen) 

Developing Mouse Brain Atlas, 2012) showing Sip1 expression (purple staining or 

heat signal) in saggital sections of the (a) E11.5 or (b) E13.5 mouse ventral midbrain. 

Scale bar = 1298 μm. (c) Grid heat map, taken from the Allen Developing Brain 

Atlas (©(Allen) Developing Mouse Brain Atlas, 2012), of the devloping mouse brain 

from E11.5 to P28 showing Sip1 expression in various brain regions (M = midbrain). 
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7.5 Discussion 

BMP2 and GDF5 have emerged as factors which regulate the neurite growth of VM 

DA neurons in vitro and in vivo (O'Keeffe et al., 2004a, Clayton and Sullivan, 2007, 

Hegarty et al., 2014a, O'Sullivan et al., 2010, Costello et al., 2012, Hurley et al., 

2004, Reiriz et al., 1999, Espejo et al., 1999, Hegarty et al., 2014c), and this effect 

has now been shown to be dependent on BMPRIb activation of canonical Smad 

signalling (Chapter 2 and 3) (Hegarty et al., 2014a, Hegarty et al., 2013b). The 

present study aimed to build on these findings through the investigation of the 

precise intracellular cascades that regulate BMP-Smad induced neurite growth, and 

the determination of the downstream molecular changes that mediate this effect, in 

the SH-SH5Y cell line model of human VM DA neurons. 

 This study first investigated the role played by endocytosis plays in 

regulating BMP2- and GDF5-induced Smad signalling and neurite growth. 

Endocytosis of transmembrane receptors, which occurs via a clathrin- or caveolin-

mediated mechanism, regulates membrane availability of receptors, and provides a 

signalling platform, via endosomes, that attenuates signal propagation (Sorkin and 

von Zastrow, 2009). Despite a paucity of studies which have investigated the role 

played by endocytosis in BMP-Smad signalling and its effects, particularly in the 

NS, it has been shown that canonical BMP-Smad signalling is regulated by the 

oligomerization and membrane localization of type I and type II BMPRs, while the 

subsequent propagation of intracellular Smad signalling is controlled by various 

endocytic routes (Nohe et al., 2002, Hartung et al., 2006, Heining et al., 2011, Rauch 

et al., 2002, Bragdon et al., 2009, Saldanha et al., 2013, Alborzinia et al., 2013, 

Bonor et al., 2012). As aforementioned, clathrin-mediated and caveolae-mediated 

endocytosis are dependent on dynamin (Heymann and Hinshaw, 2009, Le Roy and 

Wrana, 2005). The current study inhibited dynamin-dependent endocytosis using 

dynasore (Macia et al., 2006), an approach which was validated by measuring 

tranferrin uptake. This study showed that Smad 1/5/8 signalling is still activated by 

BMP2 and GDF5 when dynamin-dependent endocytosis is inhibited. However, 

dynasore treatment delayed the onset and reduced the levels of BMP2-, but not 

GDF5-, induced phospho-Smad 1/5/8 activation. These data suggest that efficient 

phosphorylation and/or nuclear translocation of Smad 1/5/8, in response to BMP2, is 

regulated by dynamin-dependent endocytosis in SH-SH5Y cells. In support of these 
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findings, Heining et al. (2011) showed that inhibition of endocytosis delays and 

reduces BMP2-induced Smad phosphorylation in the C2C12 mouse mesenchymal 

cell line (Heining et al., 2011). It is important to note that the time-points examined 

in the present study may have precluded the detection of dynasore-induced 

alterations in Smad phosphorylation by GDF5 at later time-points, as well as any 

alterations in initial Smad activation. Dynamin is crucial for fission of vesicles prior 

to their release from the plasma membrane (Heymann and Hinshaw, 2009, Le Roy 

and Wrana, 2005), which means that dynasore prevents the detachment of vesicles 

from membranes and leads to an accumulation of vesicles at the membrane. Such a 

disturbance to the localization of BMPRs may contribute to the delay and reduction 

in BMP2-induced Smad 1/5/8 phosphorylation. However, it is unclear whether 

inhibition of dynamin-dependent endocytosis delays Smad 1/5/8 nuclear 

translocation or phosphorylation, or both. Likewise, it is unclear whether the 

dynasore-induced reduction in the nuclear accumulation of phospho-Smad 1/5/8 

induced by BMP2 is due to a reduction in the levels of Smad phosphorylation at the 

membrane, or to a disruption of the translocation of phosphorylated Smads into the 

nucleus. To address this, the mechanisms which regulate BMP2-induced Smad 

1/5/8-BMPRI dissociation following phosphorylation, and the involvement of 

endocytosis in this process, must be understood. However, Hartung et al. (2006) 

have shown that the phosphorylation of Smad 1/5/8 by BMPRI is induced at the 

plasma membrane, suggesting that Smad phosphorylation may be endocytosis-

independent. 

 The current study subsequently investigated whether dynamin-dependent 

endocytosis regulates BMP2- and GDF5-induced neurite growth. Inhibition of 

dynamin-dependent endocytosis significantly reduced BMP2-, but not GDF5-, 

induced neurite outgrowth of SH-SH5Y cells. This result is not surprising, 

considering that inhibition of dynamin-dependent endocytosis affects the kinetics 

and magnitude of BMP2-, but not GDF5-, induced Smad 1/5/8 signalling, which is 

known to drive SH-SH5Y neurite growth (Chapter 2) (Hegarty et al., 2013b). 

Collectively, these data suggest a differential requirement for dynamin-dependent 

endocytosis in BMP2- and GDF5-induced neurite growth in SH-SH5Y cells.  

 Thus, BMP2-, but not GDF5-induced, effects on neurite outgrowth appear to 

be regulated by endocytosis, despite the fact that both factors signal via BMPRs. 

Indeed, only BMP2 and BMP4 (also known as BMP2b) have been shown to be 
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internalised by endocytosis in C2C12 cells (Alborzinia et al., 2013, Kelley et al., 

2009, von Einem et al., 2011, Pi et al., 2012), while GDF5 has yet to be shown to 

undergo endocytosis. Interestingly, endocytosis of BMP2-BMPR occurs 

immediately after formation of the ligand-receptor complex, with no further increase 

in BMP2-BMPR endocytosis occurring until after 30 min (Alborzinia et al., 2013). 

This is due to an initial BMPR saturation by the ligand, which is overcome following 

BMPR recycling to the plasma membrane (Alborzinia et al., 2013). Hartung et al. 

(2006) showed that the phosphorylation of Smad 1/5/8 by BMPRI is induced at the 

plasma membrane, while propogation of Smad signalling can occur following 

clathrin-mediated endocytosis of the BMPRs, via endosomes. In this study, BMP2-

induced Smad signalling levels increased from 5 to 30 min, and from 30 to 60 min. 

Taking the findings of Hartung et al. (2006) and Alborzinia et al. (2013) into 

account, perhaps plasma membrane-Smad phosphorylation accounts for the 5 min 

signalling levels, while the significant increase at 30 min is due to continuation of 

Smad signalling that occurs following endocytosis of the BMP2-BMPR complex. 

The increase in BMP2-BMPR endocytosis after 30 min of treatment may then 

contribute to the further increase in BMP2-induced nuclear phosho-Smad 1/5/8 

levels at 60 min. In this case, perhaps the dual-temporal inhibition of endocytosis by 

dynasore, first at 0 min (which delays Smad signalling) and then again at 30 min, 

causes the significant reduction in the magnitude of Smad signalling levels at 60 min 

following BMP2 treatment in SH-SH5Y cells. Moreover, Alborzinia et al. (2013) 

demonstrated that dorsomorphin, a small molecular inhibitor of BMPRI (Yu et al., 

2008), significantly reduces BMP2-BMPR endocytosis for up to 8 h. Perhaps this 

contributes to dorsomorphin-induced inhibition of BMP2-induced activation of the 

Smad 1/5/8 signalling pathway at 15 and 60 min in SH-SH5Y cells, as was observed 

in a previous study (Chapter 2) (Hegarty et al., 2013b). 

 BMP2 can signal through both BMPRIa and BMPRIb, whereas GDF5 

predominantly signals through BMPRIb (Nishitoh et al., 1996). In light of these 

findings, it may be the case that these BMPRI subtypes are differentially regulated 

by endocytosis, which has been shown to be the case for other receptor subtypes 

(Stanasila et al., 2008). It is thus possible that Smad signalling in response to the 

BMPRIa undergoes endocytic regulation, while BMPRIb-Smad signalling does not 

(or at least does not to the same extent). In support of this suggestion, the BMPRIa 

has consistently been shown to undergo endocytosis (Alborzinia et al., 2013, Bonor 
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et al., 2012, Saldanha et al., 2013), but this remains to be demonstrated for BMPRIb. 

Therefore, in this case, inhibition of dynamin-dependent endocytosis would inhibit 

BMP2-BMPRIa Smad signalling, while BMP2/GDF5-BMPRIb Smad signalling 

would remain largely unaffected.  

 Dynamin-dependent endocytosis appears to be required during the initial 

phase of BMP2 stimulation for its maximal induction of SH-SH5Y neurite 

outgrowth. In support of this finding, BMP2-induced osteoblastic differentiation of 

C2C12 cells was inhibited following inhibition of dynamin-dependent endocytosis 

(Heining et al., 2011). Another study, however, showed that epigenetic inhibition of 

BMP endocytosis resulted in a ten-fold increase in the speed of BMP2-induced 

Smad nuclear translocation, which enhanced osteoblastic differentiation of C2C12 

cells (Rauch et al., 2002). These contradicting results may reflect the different 

techniques used to inhibit endocytosis, with Rauch et al. (2002) employing chemical 

and mechanical methods. In the Heining et al. (2011) study, two classes of BMP-

induced genes, termed endocytosis-dependent and endocytosis-independent genes, 

were indentified. Given the fact that BMP2 and GDF5 both induced neurite growth 

of SH-SH5Y cells, despite the inhibition of endocytosis, it is likely that the genes 

which mediate the SH-SH5Y neurite outgrowth are endocytosis-independent. In this 

case, and together with the findings of Chapter 2 (Hegarty et al., 2013b), BMP2 and 

GDF5 induction of neurite growth may be BMPRIb- and Smad 1/5/8-dependent, but 

endocytosis-independent. This suggestion supports the aforementioned hypothesis 

that BMPRIb-Smad signalling does not undergo endocytic regulation. Furthermore, 

within this proposed mechanism of BMP-induced SH-SH5Y neurite growth, the 

significant reduction of BMP2-induced neurite outgrowth, induced by short-term 

inhibition of endocytosis, would reflect the dynasore-induced reduction in the 

magnitude of BMP2-induced Smad signalling.  

 Alternatively, perhaps BMP2 and GDF5 induce a different combination of 

genes to instruct neurite elongation of SH-SH5Y cells. In this case, perhaps a 

proportion of these genes downstream of BMP2 are endocytosis-dependent, and the 

prevention of their induction in response to BMP2 by dynasore accounts for the 

reduction in growth. Additionally, taking the above suggestion into account, it may 

also be the case that BMP2-BMPRIa-Smad signalling induces the expression of 

these endocytosis-dependent neurite growth genes. In support of this suggestion, 

Heining et al. (2011) demonstrated that a combination of endocytosis-dependent and 
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endocytosis-independent genes are required for BMP2-induced osteoblastic 

differentiation, with dynasore inhibition of BMP2-induced expression of the 

endocytosis-dependent genes preventing the completion of osteoblastic 

differentiation. The expression of endocytosis-dependent and endocytosis-

independent genes may thus be regulated by BMPRIa and BMPRIb signalling, 

respectively. Whole genome expression profiling of SH-SH5Y cells following 

BMP2 and/or dynasore treatment would be required to address this possibility.  

It has been suggested that BMP2 and GDF5 may have an indirect 

neurotrophic action on VM DA neurons, possibly by stimulating the production of 

glial-derived growth factor(s), such as GDNF, that subsequently mediate the 

neurotrophic response (Sullivan and O'Keeffe, 2005). This is supported by the 

concomitant increase of astrocytes in GDF5- and BMP2-treated E14 rat VM cultures 

(O'Keeffe et al., 2004b, Krieglstein et al., 1995b, Reiriz et al., 1999). However, the 

neurotrophic effects of BMP2 and GDF5 on DA neurons were unaltered in glial-

depleted E14 rat VM cultures (Wood et al., 2005, Reiriz et al., 1999), and GDF5 and 

BMP2 have direct neurotrophic effects on SH-SH5Y cells (Chapter 2) (Hegarty et 

al., 2013b), suggesting that glial-derived factors may not be involved. However, this 

does not preclude the involvement of GDNF signalling in the mediation of these 

BMP-induced effects. Indeed, BMP-Smad signalling has been shown to increase the 

responsiveness of enteric NCCs to the neurotrophic effects of GDNF (Chalazonitis et 

al., 2011, Chalazonitis and Kessler, 2012). To test this possibility, this study 

investigated whether GDF5 and BMP2 were capable of promoting neurite growth in 

the absence of GDNF signalling. Heparinase III-mediated inhibition of GDNF 

signalling (Barnett et al., 2002, Iwase et al., 2005, Orme et al., 2013) did not affect 

GDF5- or BMP2-induced SH-SH5Y neurite growth, suggesting that GDF5 and 

BMP2 do not require GDNF for their growth-promoting effects. GDNF and BMPs 

may thus signal independently to exert their DA neurotrophic effects. In the context 

of neurotrophic therapy for PD, perhaps GDNF could be co-applied with GDF5 

and/or BMP2 to give synergistic neurotrophic support. In support of this suggestion, 

co-treatment with GDF5 and GDNF has been shown to have additive neurotrophic 

effects on cultured E14 VM DA neurons (Wood et al., 2005). 

The regulators and downstream effectors of BMP-Smad signalling-induced 

neurite growth are unknown. To address this, the current study firstly assessed the 

role of endocytosis-regulation in this process, and then determined the involvement 
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of GDNF. The final part of this study focused on Sip1, a member of the ZEB family 

of zinc finger proteins that negatively regulates BMP-Smad signalling (Verschueren 

et al., 1999, Postigo et al., 2003), chosen due to its recent emergence as a factor that 

contributes to the induction of a VM DA phenotype in stem cells (Cai et al., 2013). 

Taken together, these findings suggest that Sip1 may play a role in VM DA neuronal 

growth. In support of this theory, Sip1 that is essential in the mediation of the roles 

that BMP-Smad signalling has during NS development (Nitta et al., 2004, van 

Grunsven et al., 2007, Lerchner et al., 2000, Delalande et al., 2008, Van de Putte et 

al., 2007, Cacheux et al., 2001, Wakamatsu et al., 2001, Hegarty et al., 2013a). 

Before the investigation of Sip1 regulation of BMP-Smad-induced neurite 

growth, the current study analysed Sip1 expression in SH-SY5Y cells in response to 

BMP2 and GDF5 signalling. Sip1 expression transiently increased following 

treatment with either BMP2 or GDF5, before returning to basal levels, which is 

typical of the feedback regulation of negative regulators in biochemical pathways 

(Kaern et al., 2005, Maithreye et al., 2008). The period of Sip1 downregulation was 

more prolonged in response to BMP2 than to GDF5, which may reflect endocytosis-

induced, endosomal-propogated BMP2-, but not GDF5-induced, Smad signalling.  

This study then demonstrated that knockdown of Sip1 promotes neurite 

growth of SH-SH5Y cells. Furthermore, Sip1 siRNA-transfected SH-SH5Y cells 

were shown to have significantly longer neurites than BMP2- and GDF5-treated SH-

SH5Y cells. These findings demonstrate that Sip1 is a novel regulator of neurite 

growth. These data suggest that Sip1, a known regulator of BMP-Smad signalling 

(Verschueren et al., 1999, Postigo et al., 2003), may negatively regulate BMP2- and 

GDF5-induced neurite growth.  

BMP2 and GDF5 treatment did not significantly attenuate the neurite 

growth-promoting effects of Sip1 knockdown, suggesting that Sip1 is a principal 

regulator of neurite growth in SH-SY5Y cells. The finding that Sip1 knockdown 

alone is sufficient to induce SH-SH5Y neurite growth, suggests that active BMP-

Smad signalling may not be required for the neurite growth induced by the Sip1 

siRNA. Indeed, Sip1 has been shown to act via BMP-independent mechanisms 

during NS development (van Grunsven et al., 2007). 

In SH-SH5Y cell cultures, there is endogenous BMP-Smad signalling, which 

is demonstrated by the basal/control (0 min) levels of phosho-Smad signalling in this 

study. Smad signalling and Smad-dependent gene transcription, in the absence of 
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exogenous BMPs, has also been demonstrated in SH-SH5Y cells in previous studies 

(Hegarty et al., 2014a, Hegarty et al., 2013b). Furthermore, endogenous BMP-Smad 

signalling is known to occur in other cell lines (Shepherd et al., 2008, Theriault and 

Nachtigal, 2011, Herrera et al., 2009). This basal level of endogenous BMP-Smad 

signalling is insufficient to induce the neurite growth of SH-SH5Y cells, which is 

possibly due to Sip1-mediated growth inhibition. In the case of exogenous BMP2- 

and GDF5-induced SH-SH5Y neurite growth, perhaps the significantly greater Smad 

signalling levels, demonstrated in this and previous studies (Chapter 2 and 3) 

(Hegarty et al., 2014a, Hegarty et al., 2013b), overcome Sip1 negative regulation to 

achieve neurite growth-promotion. However, when Sip1 is knocked down in SH-

SH5Y cells, perhaps endogenous BMP-Smad signalling is capable of inducing 

neurite growth. Thus, endogenous BMP-Smad signalling may therefore be 

responsible for the neurite growth-promotion that is seen in Sip1 siRNA-transfected 

SH-SH5Y cells. The measurement of Smad-dependent gene transcription, and 

transfection with Smad4 dominant negative plasmids, following Sip1 knockdown 

would help to address this. 

As aforementioned, neurite growth following Sip1 knockdown, with or 

without exogenous BMP2 or GDF5, is significantly greater than that induced in 

response to exogenous BMP-Smad signalling alone, suggesting that this is under 

Sip1 negative regulation. It is important to note, however, that the growth levels 

induced by Sip1 knockdown may be at a maximal level for this neuronal population, 

due to the removal of this (potential) principal regulator of SH-SH5Y neurite growth. 

This may explain why this maximal growth of SH-SH5Y cells (with Sip1 

knockdown) is unaltered by addition of exogeneous BMPs. In comparison, BMP2 

and GDF5-treatment alone may give regulated levels of neurite growth. This finding 

also suggests that BMP-Smad signalling and Sip1 appear to be on the same 

signalling axis for neurite-growth promotion. If BMP-Smad signalling acted 

separately to Sip1, an additive growth effect would have been expected. Taken 

together, these findings demonstrate that Sip1 is a novel regulator of SH-SY5Y 

neurite growth. However, the mechanism of Sip1 action, and whether it acts 

independently of BMP-Smad signalling, remains unclear. The two most likely 

modes of Sip1 action are: 1) Sip1 acts independently to inhibit SH-SH5Y neurite 

growth, and then is downregulated by the BMP-Smad (and potentially other) 

signalling pathway for neurite growth-promotion, and 2) Sip1 negatively regulates 
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BMP-Smad signalling-driven neurite growth, which is achieved when Smad 

signalling levels are sufficient to overcome Sip1 inhibition. Future experiments in 

which endogenous BMP-Smad signalling is inhibited in SH-SH5Y cells with Sip1 

knockdown should address this. 

The present study then assessed whether Sip1 plays a similar role in the 

neurite growth of VM DA neurons. Indeed, E14 VM neurons electroporated with the 

Sip1 siRNA had significantly longer neurites than those transfected with the control 

plasmid. Sip1 may therefore be a novel regulator of midbrain DA neuronal growth. 

The analysis of TH-positive, Sip1 siRNA-electroporated VM neurons would 

conclusively show that the growth-promotion is specific to VA DA neurons. To 

further explore this possible role of Sip1, the present study assessed the in vivo 

expression of Sip1, using expression profiles taken from the Allen Developing Brain 

Atlas (©(Allen) Developing Mouse Brain Atlas, 2012),  in the midbrain during the 

development of VM DA neurons and their striatal projections, a process which 

occurs over a developmental period between E10 and P20 in rodents (Van den 

Heuvel and Pasterkamp, 2008, Hegarty et al., 2013c). Sip1 is strongly expressed in 

the E11.5 mouse VM, at a time when VM NPs are undergoing specification into DA 

neurons (Lumsden and Krumlauf, 1996, Lauder and Bloom, 1974, Specht et al., 

1981a, Specht et al., 1981b, Hegarty et al., 2013c). This is not surprising considering 

the recent discovery that Sip1 actively regulates the induction of a VM DA 

phenotype in stem cells (Cai et al., 2013). Sip1 expression is significantly lower at 

E13.5, and continues to decrease until P4 in the VM, a period which corresponds to 

the development of axonal projections from VM DA neurons to the striatum (Gates 

et al., 2004, Nakamura et al., 2000, Van den Heuvel and Pasterkamp, 2008). This 

reduced expression profile supports the suggestion that Sip1 is a novel regulator of 

VM DA neurite growth, as a reduction in Sip1 expression would facilitate neurite 

growth. Furthermore, BMP2 and GDF5 have been suggested to actively contribute to 

the development of nigrostriatal projections (Hegarty et al., 2014a, Hegarty et al., 

2014c); perhaps the reduction in midbrain Sip1 expression permits this potential 

action of these BMPs. Interestingly, Sip1 expression increases after birth, suggesting 

that Sip1 may be actively involved in the later stages of nigrostriatal pathway 

development. Indeed, Sip1 regulation of BMP-Smad signalling has been shown to 

mediate CNS myelination (Weng et al., 2012), which is known to occur from birth 

(de Graaf-Peters and Hadders-Algra, 2006). Furthermore, BMP2 and GDF5 have 
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also been suggested to act as target-derived neurotrophic factors during the naturally-

occurring cell death period of nigrostriatal pathway development (Hegarty et al., 

2014c, Sullivan and O'Keeffe, 2005, Sullivan and Toulouse, 2011), which occurs in 

the first 3 postnatal weeks of rodent development (Jackson-Lewis et al., 2000, Oo 

and Burke, 1997, Burke, 2003, Van den Heuvel and Pasterkamp, 2008). Perhaps 

Sip1 plays a regulatory role in this neurotrophic effect of BMP2 and GDF5 also. 

Studies assessing the survival-promoting effects of BMP2 and GDF5 in VM DA 

neurons with Sip1 knockdown would begin to address this. Taken together, these 

data suggest that Sip1 may play diverse roles throughout the development of the DA 

nigrostriatal pathway. Firstly, it is involved in the induction of a DA phenotype, then 

in the establishment of striatal projections, and finally in the myelination/survival of 

this pathway. A detailed analysis of the numbers of DA neurons present in the 

midbrain, as well as striatal innervation, of Sip1 null mice at multiple stages during 

embryonic and post-natal development is required to examine these possibilities. 

Furthermore, targeting Sip1 expression in stem cell sources may provide a 

mechanism for inducing both DA specification and subsequent neuronal growth, 

which are both required if stem cell-derived VM DA neurons are to successfully 

engraft to the PD striatum (Orlacchio et al., 2010, Bonnamain et al., 2012, De Feo et 

al., 2012, Toulouse and Sullivan, 2008, Hedlund and Perlmann, 2009). Indeed, Sip1 

modulation has already been shown to contribute to DA specification in stem cells 

(Cai et al., 2013).  

 

 

 

 

 

 

 

 

 

 



185 
 

8. VM NSCs have delayed neurogenic potential in vitro, and 

GDF5 and BMP2 differentially regulate their 

differentiation. 

 

8.0 Aims 

 To assess the neurogenic potential of E14 rat VM NSCs, by characterising 

their in vitro development into their post-mitotic progeny. 

 To examine the effects of GDF5 and BMP2 on the differentiation of E14 VM 

NSCs in vitro, focusing particularly on DA differentiation. 

 

8.1 Abstract 

NSCs have been the focus of an intensive effort to direct their differentiation in vitro 

towards desired neuronal phenotypes for cell replacement therapies. It is thought that 

NSCs derived from older embryos have limited neurogenic capacity and are 

restricted towards an astroglial fate. This idea is largely based on studies that 

typically analysed NSC-derived progeny following one week of in vitro 

differentiation. In this report, the neurogenic capacity of older VM NSCs was 

assessed. When the older NSCs were differentiated for three weeks, there were 

significant increases in the numbers of newly-born neurons at 14 and 21 days, as 

assessed by BrdU incorporation. Therefore this study demonstrates that older NSCs 

retain significantly more neurogenic potential than was previously thought. The 

ability of GDF5 and BMP2 to induce these VM NSCs towards DA neuronal 

differentiation was subsequently investigated. Both GDF5 and BMP2 induce the 

differentiation of VM NSCs in a similar fashion, but differentially induced a DA 

phenotype in VM NSC-derived neurons. These data have implications for NSC 

preparatory protocols and for the choice of donor age for cell transplantation studies. 

They also contribute to our understanding of NSC behaviour in vitro and identify 

BMP2 and GDF5 as potential regulators of midbrain DA neuronal differentiation.  
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8.2 Introduction 

In recent years, NSCs and other stem cell types have been the focus of much 

research aimed at directing their differentiation in vitro, firstly into neurons and 

secondly into a committed VM DA phenotype, for use in transplantation approaches 

in PD (Orlacchio et al., 2010, Bonnamain et al., 2012, De Feo et al., 2012). The most 

relevant source of NSCs for the generation of VM DA neurons are those isolated 

from the VM during the period of DA neurogenesis, which occurs between E11 and 

E14 in the developing rat VM in vivo (Gates et al., 2006, Lauder and Bloom, 1974, 

Altman and Bayer, 1981). Understanding the in vitro development of these NSCs is 

crucial for the choice of donor ages from which to culture VM NSCs. This study 

thus focused on E12 and E14 rat VM NSCs.  

 NSCs can be isolated from multiple regions of the embryonic brain, and their 

numbers expanded in vitro as free-floating aggregates termed “neurospheres” when 

grown in the presence of the mitogens, EGF and FGF2 (Reynolds and Weiss, 1992, 

Deleyrolle and Reynolds, 2009, Kitchens et al., 1994, Rietze and Reynolds, 2006). 

The proliferating NSCs then spontaneously differentiate into neurons and glia upon 

mitogen withdrawl (Reynolds and Weiss, 1992, Deleyrolle and Reynolds, 2009, 

Rietze and Reynolds, 2006). It has been suggested that the age of the donor embryo 

from which NSCs are initially isolated is a critical determinant of subsequent 

neuronal differentiation in vitro, as NSCs derived from younger donors gave rise to 

more neurons than those derived from older donors (O'Keeffe and Sullivan, 2005, 

Gates et al., 2006). These studies have suggested that NSCs from older donor 

embryos are more restricted towards an astroglial fate. 

 Neurosphere studies typically determine their NSC-derived progeny by 

assessing the numbers of neurons and glia generated following differentiation for 

one week in vitro (Ostenfeld et al., 2002, O'Keeffe and Sullivan, 2005, Jensen et al., 

2011, Spitere et al., 2008, Roybon et al., 2005). In this report, by assessing the 

neuronal progeny for longer differentiation periods, we show that older NSCs retain 

significantly more neurogenic potential than previously thought, and suggest that 

care should be taken when interpreting in vitro studies that use GFAP as a marker of 

“differentiated” astrocytes.    

 If the use of NSCs for CRT in PD is to become a reality, then it is crucial that 

the signalling molecules and pathways which direct VM NSCs to become mature 
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DA neurons are elucidated. There has been significant advances in our understanding 

of VM DA neurogenesis in recent years (Hegarty et al., 2013c), however further 

research is necessary to identify novel, as well as to further characterise existing, 

signalling pathways that contribute to DA development. 

 VM DA neurons are generated under the influence of two major signalling 

centres, the isthmus and the floor plate (Ye et al., 1998, Hegarty et al., 2013c). A 

number of previous studies have used agents, such as neurotrophic factors, ascorbic 

acid, cAMP or cytokines (Jin et al., 2005, Maciaczyk et al., 2008, Sanchez-Pernaute 

et al., 2001, Storch et al., 2001), to induce a DA phenotype in VM NSCs. Although 

such methods do achieve the ultimate goal of DA neuron generation, a more recent 

set of studies used developmentally-appropriate VM-specific signalling factors, such 

as WNTs, FGFs and Shh (Ye et al., 1998, Castelo-Branco et al., 2003, Hegarty et al., 

2013c) to achieve DA neurogenesis from VM NSCs (Parish et al., 2008, Ribeiro et 

al., 2012). This approach is more likely to yield bona fide VM DA neurons from 

NSCs, but depends on identifying factors which instruct DA differentiation in vivo. 

 Interestingly, TGF superfamily members have been shown to play inductive 

roles during DA neurogenesis (Farkas et al., 2003, Roussa et al., 2006, Roussa et al., 

2009, Hegarty et al., 2014c). The BMP family is a sub-family of the TGF- 

superfamily which plays multiple roles during nervous system development (Hegarty 

et al., 2013a, Bragdon et al., 2011), and various BMP family members have been 

demonstrated to function in the development and survival of VM DA neurons 

(Brederlau et al., 2002, Jordan et al., 1997, Krieglstein et al., 1995b, O’Keeffe et al., 

2004a, Hegarty et al., 2014c). Two of the most promising BMP candidates to be 

involved in DA neurogenesis are GDF5 and BMP2, which are expressed in the 

developing rat VM during the period of DA development (Krieglstein et al., 1995b, 

O’Keeffe et al., 2004b, Storm et al., 1994, Chen et al., 2003, Jordan et al., 1997, 

Soderstrom and Ebendal, 1999, Hegarty et al., 2014c), suggesting that they may play 

a role in this process. However, it is unknown whether these factors are capable of 

inducing DA differentiation. In the present study, we assessed the ability of GDF5 

and BMP2 to induce a DA phenotype in rat VM NSCs in vitro, and showed that 

GDF5 may function to induce the transition of VM DA NPs into mature DA 

neurons.  
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8.3 Results 

8.3.1 Effects of gestational age and passage number on VM-derived NSCs in 

vitro 

Firstly, E12 and E14 rat VM NSCs which had been expanded for 7 DIV (passage 1), 

14 DIV (passage 2) or 21 DIV (passage 3) as free-floating neuropsheres were 

allowed to differentiate after mitogen withdrawal for 7 days of differentiation (DD) 

(Fig. 8.4.1a), before being immunocytochemically stained for markers of 

neurons/neuronal precursors (βIII-tubulin) or of astrocytes/glial precursors (GFAP) 

(Fig. 8.4.1c, e). Further characterisation of later passages was not possible due to a 

marked increase in cell death and lack of neurosphere formation following 28 DIV 

(passage 4) (data not shown). Following proliferation, >90% of these cells expressed 

the NSC markers, Sox2 and nestin (not shown). Following 7 DD, the percentages of 

βIII tubulin-positive neurons and GFAP-positive astrocytes relative to the total cell 

number were determined (Fig. 8.4.1b, d).  

 Passage 1 VM NSCs, isolated at E12 or E14, generated a significantly higher 

percentage of βIII tubulin-positive neurons then did either passage 2 or 3 VM NSCs 

(Fig. 8.4.1b). Passage 2 or 3 VM NSCs, isolated at E12 or E14, generated a 

significantly higher percentage of GFAP-positive astrocytes in comparison to 

passage 1 VM NSCs (Fig. 8.4.1d). Therefore, VM NSCs of early passages are more 

neurogenic, and less gliogenic, than those of older passages, irrespective of the age 

of the donor embryo. 

 In all passages examined, the 7DD progeny of VM NSCs isolated at E12 

generate a significantly higher percentage of βIII tubulin-positive neurons in 

comparison to VM NSCs isolated at E14 (Fig. 8.4.1b). E14 VM NSCs generated a 

significantly higher percentage of GFAP-positive astrocytes at 7DD in comparison 

to E12 VM NSCs, at all passages examined (Fig. 8.4.1d). Therefore, VM NSCs 

isolated from younger embryos are more neurogenic and less gliogenic, than those 

derived from older embryos, irrespective of passage number, when their progeny are 

differentiated for 7DIV. These data suggest that gestational age and prolonged in 

vitro propagation influences the proportion of NSC-derived cells which are specified 

to a neuronal or glial lineage. 
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8.3.2 Assessment of E14 VM NSC differentiation for longer periods in vitro 

Despite the fact neurogenesis increases between E12 and E14 in the developing rat 

VM in vivo (Gates et al., 2006, Lauder and Bloom, 1974, Altman and Bayer, 1981), 

E14 VM-derived NSCs appear to have a diminished neurogenic capacity when 

compared to their E12 counterparts in vitro (Fig. 8.4.1b). The data obtained suggest 

that E14 VM NSCs are significantly more restricted towards a glial lineage than are 

E12 NSCs (Fig. 8.4.1d), which could explain this apparent decreased neurogenesis 

by E14 VM NSCs. However, when nestin expression was examined at 7DD, it was 

found that ~80% of the total cell population remained nestin-positive in these 

cultures (Fig. 8.4.2a). These cells thus have the potential to differentiate further. 

Many of the nestin-positive NSCs were GFAP-positive at 7 DD (Fig. 8.4.2a, b), and 

also stained positively for other NSC markers, such as Sox2 (Fig. 8.4.2c) and 

vimentin (Fig. 8.4.2d).  

 To further examine the neurogenic capacity of E14 VM NSCs, these NSCs 

were differentiated for a further two weeks to allow them to complete their terminal 

differentiation, with the numbers of neurons and astrocytes being assessed at 14 DD 

and 21 DD. Characterisation of cell phenotypes at 7 DD, 14 DD and 21 DD in E14 

VM NSC cultures, showed that the numbers of nestin-positive cells and GFAP-

positive cells significantly decreased at 14 DD compared to 7 DD, and at 21 DD 

when compared to 14 DD and to 7 DD (Fig. 8.4.2e). The percentage of βIII-tubulin-

positive cells (Fig. 8.4.2g) and MBP-positive cells (Fig. 8.4.3) significantly 

increased at 14 DD compared to 7 DD, and at 21 DD compared to 14 and to 7 DD.  

 At 7 DD, the GFAP-positive cells have a morphology typical of protoplasmic 

astrocytes, hereafter referred to as a protoplasmic morphology (Fig. 8.4.2b, f), which 

was similar to that of the nestin-, Sox2- and vimentin positive NSCs (Fig. 8.4.2b-d). 

However, at 14 and 21 DD, GFAP-positive cells had a stellate morphology, typical 

of differentiated astrocytes (Fig. 8.4.2f). These stellate GFAP-positive cells did not 

express nestin, as demonstrated by the absence of nestin expression at 21 DD, when 

these stellate astrocytes occupied the largest proportion of the total cell population 

(Fig. 8.4.2e, f). By 14 DD the cultured cells had grouped into clusters, which were 

absent at 7 DD, and therefore must have been generated during the second week of 

differentiation (Fig. 8.4.4a). These cell clusters contained large numbers of newly-

born neurons at 14 DD (Fig. 8.4.4a, b). By 21 DD, the cell population consisted of 

post-mitotic neurons (~31%) (Fig. 8.4.2g), astrocytes (~40%) (Fig. 8.4.2e) and 
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oligodendrocytes (~28%) (Fig. 8.4.3), with few nestin-positive cells remaining 

(~2%) (Fig. 8.4.2e), indicating that the E14 VM NSCs had completed their 

differentiation. The total population of differentiated neural cells was thus accounted 

for at 21 DD. It is important to note that at all differentiation time-points examined, 

no TH-positive neurons were observed (data not shown). Additionally, the neurons 

in this study were viable and healthy, with no adverse effects on neurons being 

observed during the three week differentiation protocol, as determined through 

analysis of the numbers, apoptosis (pyknotic nuclei) and neurite length of cultured 

neurons. Neuronal numbers and neurite length continued to increase throughout the 

duration of the experiment, while less than 1% of neurons displayed signs of 

apoptosis at any time point examined (data not shown). 

  To determine whether the neurons found in the E14 rat VM NSC cultures 

were derived from NSCs or were post-mitotic neurons which had been present in the 

culture since the tissue was harvested from the animal, BrdU was applied to the 

cultures (Fig. 8.4.4c). BrdU is a thymidine analogue that is incorporated into the 

nucleus during the S phase of cell division. 0.2 μM of BrdU was used due to its 

neurotoxicity at higher concentrations (Caldwell et al., 2005), however, due to this 

low concentration, supplementation of BrdU was required every 3 DIV to ensure its 

detection (Fig. 8.4.4c). BrdU applied to NSC cultures would only be incorporated 

into nuclei of proliferating cells. Thus, subsequent detection of BrdU in post-mitotic 

neurons indicates that these cells differentiated from the proliferating VM NSCs. The 

addition of 0.2 μM BrdU to the differentiating E14 VM NSCs labeled the βIII-

tubulin-positive neurons which were grouped in clusters at 14 DD (Fig. 8.4.4e). 

However, the βIII-tubulin-positive neurons found at 7 DD were BrdU negative (Fig. 

8.4.4d). Collectively, these data demonstrate that E14 VM NSCs have the capacity to 

generate large numbers of newly-born neurons when allowed to fully differentiate in 

vitro. 

 

8.3.3 Effects of GDF5 and BMP2 on the proliferation of E14 VM NSCs 

In order to determine whether BMP2 and GDF5 are capable of inducing the 

differentiation of VM NSCs, the effects of these factors on the proliferation of E14 

VM NSCs were assessed. E14 VM NSCs, in the presence of mitogens, proliferated 

to form neurospheres which significantly increased in volume over time in vitro (Fig. 

8.4.5a, b). The volume of the neurospheres directly reflects the proliferation of VM 
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NSCs, therefore a reduction in neurosphere volume corresponds to inhibition of NSC 

proliferation. The volumes of the neurospheres at 2, 4 and 7 DIV were compared 

following treatment with either 20 ng/ml of BMP2 or GDF5 (Fig. 8.4.5c-e). There 

was no significant difference in the volume of E14 VM neurospheres at 2 DIV 

following treatment (Fig. 8.4.5c). However at 4 DIV and 7 DIV, the volumes of E14 

VM neurospheres in BMP2- and GDF5-treated cultures were significantly lower 

than those in controls (Fig. 8.4.5d, e). This inhibition of VM NSC proliferation by 

BMP2 and GDF5 may be due to the induction of differentiation or the promotion of 

cell death, with the former more likely due to the nature of BMPs (Hegarty et al., 

2013a). 

 

8.3.4 Effects of GDF5 and BMP2 on the differentiation of E14 VM NSCs 

The first indication that BMP2 and GDF5 induced the differentiation of proliferating 

E14 rat VM NSCs was the finding that BMP2- and GDF5-treated neurospheres had 

‘plated down’ after 7 DIV, indicating differentiation of the NSCs, while the 

significantly larger control neurospheres remained free-floating (Fig. 8.4.6a). These 

plated-down neurospheres were surrounded by a ‘halo’ of differentiating VM cells 

(Fig. 8.4.6a). RT-PCR analysis of the BMP2- and GDF5-treated E14 VM NSCs at 7 

DIV revealed that both BMP2 and GDF5 induced an upregulation of GFAP in these 

neurospheres, with no change in βIII-tubulin expression observed (Fig. 8.4.6b). 

Neurosphere-expanded E14 VM NSCs have been shown to express GFAP (Fig. 

8.4.6b). These data suggest that BMP2 and GDF5 induced the glial differentiation of 

the VM NSCs (Fig. 8.4.6c, d). However, GFAP-positive cells in E14 rat VM NSC 

cultures may be capable of neuronal differentiation (Section 8.3.2) (Hegarty et al., 

2014b). Therefore, this induction of GFAP expression does not preclude the 

possibility that these factors induce DA differentiation in VM NSCs, with GFAP 

induction being a potential intermediate stage of this process (Fig. 8.4.6c, d). 

 To determine the capability of BMP2 and GDF5 to induce a DA neuronal 

fate in E14 rat VM NSCs, BMP2 or GDF5 was added to differentiating cultures of 

E14 rat VM NSCs. The finding that there were no TH-positive DA neurons at 7, 14 

or 21 DD (not shown), demonstrated that these VM NSCs did not undergo DA 

neuronal differentiation. BMP2 or GDF5 was added to the cultures, every 2 DIV 

from 21 DD, before assessing DA differentiation at 28 DD, to test if these factors 

could induce a DA phenotype in the VM NSC-derived neurons present at 21 DD. 
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GDF5, but not BMP2, induced TH expression in VM NSC-derived neurons (Fig. 

8.4.6e, f). This was demonstrated by RT-PCR and immunocytochemical analysis for 

TH in BMP2- and GDF5-treated VM NSC cultures at 28 DD (Fig. 8.4.6c, d). 

Control and BMP2-treated E14 VM cultures showed no TH expression (Fig. 8.4.6e, 

f). RT-PCR for genes required for DA differentiation, such as Msx1, Lmx1b, Nurr1 

and Pitx3 (Hegarty et al., 2013c), showed that both BMP2 and GDF5 induced Nurr1 

expression, but only BMP2 induced Msx1, Lmx1b and Pitx3 expression (Fig. 8.4.6c, 

d). These data demonstrate that BMP2 and GDF5 differentially regulate the 

induction of a DA phenotype in VM NSC-derived neurons.  
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8.4 Figures and Figure Legends 

         

Figure 8.4.1: Characterisation of neurogenesis and gliogenesis in cultures of 

VM NSCs of various gestational ages and passage numbers. 

(a) Schematic representation of the passaging protocol for E12 and E14 VM NSC 

neurosphere cultures. Graphical representation of the mean numbers (expressed as a 

percentage of total cells) of (b) βIII-tubulin-positive cells and (d) GFAP-positive 

cells following 7 DD, in neurosphere cultures of E12 or E14 VM NSCs which were 

passaged once, twice or three times before differentation, as indicated (*** P < 0.001 

vs Passage 1; ### P < 0.001 vs E12, ANOVA with post-hoc Tuckey’s test). Data are 

expressed as mean + SEM, n = 60 fields. Representative photomicrographs of 

cultures of passage 1 VM NSCs isolated at E12 or E14, differentiated for 7 DIV and 

immunocytochemically stained for and (c) βIII-tubulin or (e) GFAP, and 

counterstained with DAPI. Scale bar = 100μm. 
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Figure 8.4.2: Characterisation of cell phenotypes in E14 rat VM NSC cultures 

after 7, 14, and 21 DD. 

(a) Graphical representation of the mean numbers (expressed as a percentage of total 

cells) of βIII-tubulin-, nestin-, GFAP-, Sox2- and vimentin-positive cells following 7 

DD generated from E14 VM NSCs after 7 DIV expansion. Representative 

photomicrographs of E14 rat VM NSCs cultures after 7 DIV expansion and 7 DD, 

immunocytochemically stained for (b) GFAP (c) Sox2, (d) vimentin or (b-d) nestin. 

Scale bar = 100μm. Graphical representation of the number of (e) nestin-, (e) GFAP-

, and (g) βIII-tubulin-positive cells (expressed as a percentage of total cells) in E14 

rat VM NSCs cultures after 7 DIV expansion and 7, 14 or 21 DD, as indicated (** P 

< 0.01, *** P < 0.001 vs 7 DD, ## P < 0.01, ### P < 0.001  vs 14 DD; ANOVA with 

post-hoc Tuckey’s test). Data are expressed as mean + SEM, n = 60 fields. (f) 

Representative photomicrographs of E14 rat VM NSCs cultures after 7 DIV 

expansion and 7, 14 or 21 DD, immunocytochemically stained for GFAP. Scale bar 

= 100μm. 
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Figure 8.4.3: Characterisation of cell phenotypes in E14 rat VM NSC cultures 

after 7, 14, and 21 DD. 

(a) Graphical representation of the number of MBP-positive cells (expressed as a 

percentage of total cells) in E14 rat VM NSCs cultures after 7 DIV expansion and 7, 

14 or 21 DD, as indicated (* P < 0.05, *** P < 0.001 vs 7 DD, +++ P < 0.001  vs 14 

DD; ANOVA with post-hoc Tuckey’s test). Data are expressed as mean + SEM, n = 

60 fields. (b) E14 rat VM NSCs cultures after 7 DIV expansion and 7, 14 or 21 DD, 

immunocytochemically stained for MBP. Scale bar = 100μm. 
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Figure 8.4.4: E14 VM NSC neurogenesis during second two weeks of 

differentiation. 

Representative photomicrographs of E14 rat VM NSCs cultures after 7 DIV 

expansion and 7 DD or 14 DD, immunocytochemically stained for (b, d and e) βIII-

tubulin and/or (d-e) BrdU, and counterstained with (a-b) DAPI. Scale bar = 100μm 

(a), 50μm (b) and 25μm (d-e). (c) Schematic representation of the BrdU application 

protocol for E14 VM NSC neurosphere cultures.  
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Figure 8.4.5: Effect of BMP2 and GDF5 on the proliferation of E14 VM NSCs. 

(a) Volume of E14 rat VM neurospheres after 2, 4 or 7 DIV expansion as indicated 

(*** P < 0.001 vs 2 DIV; ANOVA with post-hoc Tukey’s test). (b) Representative 

phase contrast photomicrographs at 2, 4 and 7 DIV of E14 rat VM neurospheres. 

Scale bar = 100μm. Volume after (c) 2, (d) 4 or (e) 7 DIV expansion of control, 

BMP2- or GDF5-treated E14 rat VM neurospheres, as indicated (** P < 0.01, *** P 

< 0.001 vs control; ANOVA with post-hoc Tukey’s test). 
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Figure 8.4.6: Effect of BMP2 and GDF5 on the differentiation of E14 VM NSCs. 

(a) Representative phase contrast photomicrographs at 7 DIV of control and BMP2-

treated E14 rat VM neurospheres. Scale bar = 100μm. (b) RT-PCR analysis for βIII-

tubulin and GFAP of control, BMP2- and GDF5-treated E14 rat VM neurospheres at 

7 DIV. (c) Representative photomicrographs of E14 rat VM NSCs cultures after 7 

DIV expansion and 7 DD, immunocytochemically stained for GFAP and/or nestin. 

Scale bar = 50μm. (d) Schematic diagram of the potential lineages of BMP-treated 

VM NSCs. E14 rat VM NSC cultures after 7 DIV expansion and 28 DD, treated 

from 21DD with BMP2 or GDF5, (e) RT-PCR-analysed for Msx1, Lmx1b, Nurr1, 

Pitx3 and TH or (f) immunocytochemically stained for TH, and counterstained with 

DAPI. For RT-PCR, a 100bp ladder was used to determine the size for each PCR 

product, and GAPDH was used as a control. Scale bar = 100μm. 
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8.5 Discussion 

8.5.1 Assessment of the neurogenic potential of E14 VM NSCs 

This study describes the differentiation of E14 rat VM NSCs which have been 

expanded and differentiated for various periods in vitro. Such an approach has 

allowed a re-evaluation of the developmental potential of cultured VM NSCs. The 

assessment of the differentiated progeny of VM NSCs isolated at E12 or E14, and 

expanded for 7, 14 or 21 DIV, demonstrated that VM NSCs of older ages and later 

passages are more glial-restricted than those of younger age and lower passages, 

which were more restricted towards a neuronal fate. These findings mirror the in vivo 

developmental precept that primary neurogenesis precedes gliogenesis.  

The yield of approximately 8% of neurons following the expansion and 

differentiation (both for 7 DIV) of E14 rat VM NSCs is consistent with previous 

studies (O'Keeffe and Sullivan, 2005, Ostenfeld et al., 2002). However, the fact that 

~80% of the total cell population were nestin-positive neural precursors (NPs) after 7 

DD demonstrates that, at this time point, the E14 rat VM NSCs have the potential to 

undergo further differentiation. The subsequent differentiation of E14 VM NSCs for 

a further two weeks confirmed that these cells retained the ability to differentiate into 

neurons, despite their apparent astroglial restriction, and that the E14 VM NSCs 

completed their differentiation by 21 days. With the majority of previous studies 

employing one week of differentiation protocols to evaluate the numbers of 

differentiated NSC progeny, it is possible that the neurogenic potential of these cells 

have been underestimated (Ostenfeld et al., 2002, O'Keeffe and Sullivan, 2005, 

Jensen et al., 2011, Spitere et al., 2008, Roybon et al., 2005).  

Following one week of differentiation, most cells in the E14 VM NSC cultures 

were GFAP- and nestin-positive, which would suggest that these cells are committed 

towards an astrocytic lineage. The propensity of NSCs within neurospheres to 

differentiate primarily into glial cells has been described by many groups (O'Keeffe 

and Sullivan, 2005, Ostenfeld et al., 2002, Moses et al., 2006, Mokry et al., 2005, 

Westerlund et al., 2003). Indeed, it has been proposed that the environment within 

the neurosphere prohibits NSCs from following a neuronal lineage, while promoting 

the amplification of glial precursors (Baizabal et al., 2012). The findings of this 

study following one week of differentiation supports the above suggestion, and thus 

it should not be surprising that there is limited neurogenesis of neurosphere-
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expanded E14 VM NSCs after one week of differentiation. However, the significant 

increase in neurons generated during the second and third weeks of differentiation 

may modify the previous perception of the glial commitment of neurosphere-

expanded NSCs. The three-fold increase in βIII-tubulin-positive cells between 7DD 

and 21DD is due to the presence of clusters of large numbers of newly-born neurons. 

These cell clusters, which are absent at 7 DD and which develop during the second 

week of differentiation, must be generated from the NPs present at 7 DD, which are 

largely GFAP- and nestin-positive. It is thus likely that these GFAP-positive NPs 

become neurogenic, and generate newly-born neurons, during the second and third 

weeks of in vitro differentiation in E14 VM NSC cultures. However, such 

conclusions cannot be conclusively drawn without real-time monitoring of marker-

labelled E14 VM NSCs as they differentiate in culture. Nevertheless, in support of 

this theory, GFAP has previously been shown to label neuronal precursors (Casper 

and McCarthy, 2006, Ganat et al., 2006, Silbereis et al., 2010). Furthermore, cultured 

rat GFAP-positive NPs have been shown to be capable of generating both neurons 

and glia (Itoh et al., 2006). In fact, the separate identity of NSCs and astroglial cells 

is regularly challenged in the literature, with some authors suggesting that they are in 

fact the same cell type (Kriegstein and Alvarez-Buylla, 2009). Thus, in agreement 

with previous studies, VM NSCs are largely glial-committed (express GFAP) after 

one week of differentiation, however a proportion of these GFAP-positive cells may 

be intermediate neuronal precursors. 

The GFAP-positive cells present after one week of differentiation expressed 

nestin, and had a protoplasmic morphology, which was similar to that of the 

nestin/Sox2/vimentin-positive NSCs, suggesting that these GFAP-positive cells at 7 

DD were NSCs, rather than astrocytes. The GFAP/nestin-positive cells differentiated 

during the second two weeks, as evidenced by a reduction in the numbers of GFAP- 

and nestin-double labeled cells after 14 and 21 DD. GFAP-positive cells at 7 DD 

ceased to express nestin and adopted a differentiated, stellate morphology during the 

second two weeks of differentiation. There were no GFAP- and nestin-double 

labeled cells present at 21DD. The cessation of proliferation of GFAP-positive cells, 

coinciding with significantly increases in the numbers of βIII-tubulin-positive cells 

and MBP-positive cells, accounted for GFAP-positive cells occupying a significantly 

lower percentage of the total cell population at 14 DD and 21 DD than at 7DD. 

Although GFAP-positive cells occupied the largest proportion of the total cell 
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population at all differentiation time points examined, the neurogenic capacity of 

neurosphere-derived NSCs was significantly greater than previously considered, 

given the significant increase in the numbers of newly-born neurons during the 

second and third weeks of differentiation. It is important to note, however, that no 

TH-positive DA neurons were generated from the VM NSCs in this study, in 

agreement with a previous study on E14 rat VM NSC cultures (O'Keeffe and 

Sullivan, 2005). The lack of DA neurogenesis from VM NSCs, cells which would 

normally generate DA neurons in vivo, likely reflects the absence in vitro of 

important developmental guidance cues for DA neurogenesis, described in a recent 

review (Hegarty et al., 2013c). This is an important issue to consider when using 

neurosphere cultures of any isolated NSC population to generate specific neuronal 

populations.  

The present investigation of the origin of the neurons in E14 rat VM cultures 

provides insights into the source of neurons found in NSC differentiation studies. 

The identification of the cluster-located neurons as BrdU-positive at 14DD showed 

that these cells are derived from the cultured E14 VM NSCs. In contrast, the neurons 

at 7DD were not BrdU-labelled, and thus were likely to have been present as post-

mitotic neurons in the donor tissue at the time of harvesting, and to have 

subsequently persisted in culture. In support of this, neurospheres prepared from 

E13.5 mouse VM, which is at a similar developmental stage as E14 rat VM, have 

been shown to contain differentiated neurons before mitogen withdrawal (Khaing 

and Roberts, 2009). Collectively these data suggest that the vast majority of neurons 

present after one week of differentiation are not progeny of the E14 VM NSCs, but 

mature neurons that had been present in the source tissue. The vast majority of cells 

expressed GFAP following 7DD. However, as this study has shown, these GFAP-

positive NPs may have the capacity for both gliogenesis and neurogenesis. These 

findings highlight the importance of using the presence of newly-born neurons to 

assess the true neurogenic potential of VM NSCs, and show that care must be taken 

in using GFAP as an “astrocytic” marker, especially at earlier stages of NSC 

differentiation. 

 The isolation, expansion and differentiation of NSCs is a useful technique to 

develop a detailed, well-characterised understanding of the development of NSCs 

into NPs, which in turn can generate post-mitotic neurons or glia. The current study 

has demonstrated that neurosphere-expanded E14 rat VM NSCs require three weeks 
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to complete differentiation into their progeny, with neurogenesis proceeding during 

the second two weeks. This method of NSC culture results in at least a three-fold 

increase in the yield of newly-born neurons over conventional methods. This study 

suggests that the apparent glial restriction (as evidenced by GFAP expression) of 

older NSCs may be a necessary intermediate developmental stage during their 

neurogenesis. This has important implications for the choice of age of donor tissue 

for the use of NSCs for transplantation studies. Indeed, tissue-specific NSCs should 

be isolated during the developmental time-window which corresponds to the 

neurogenesis of the neuronal subtype of interest, for example from E11-E14 for rat 

VM DA neurogenesis (Gates et al., 2006, Lauder and Bloom, 1974, Altman and 

Bayer, 1981). Based on the perceived limited neurogenic capacity of older E14 VM 

NSCs, younger VM NSCs have been suggested as a more appropriate stem cell 

source (Gates et al., 2006). However, this study has demonstrated that NSCs derived 

from E14 embryos, which give larger numbers of NSCs and are less labour intensive 

for NSC isolation, have significant neurogenic capacity. 

 

8.5.2 Examination of the effects of BMP2 and GDF5 on the differentiation of 

E14 VM NSCs 

In the second part of this study, the effects of BMP2 and GDF5 on the development 

of E14 rat VM NSCs in vitro was assessed, with the particular goal of determining 

their ability to induce DA neuronal differentiation in these cells. The volume of E14 

VM neurospheres was shown to significantly reduce over time in culture as a result 

of BMP2 and GDF5 treatment. As neurosphere volume is directly related to the 

proliferation of NSCs, this suggests that BMP2 and GDF5 negatively regulate the 

proliferation of VM NSCs. Indeed, BMP2 and GDF5 were shown to induce the 

expression of GFAP in this population of NSCs, suggesting that BMP2 and GDF5 

inhibit the proliferation of VM NSCs through the induction of glial differentiation. In 

support of this suggestion, BMPs have regularly been shown to inhibit the 

proliferation of NSCs isolated from various NSC populations, such as the embryonic 

cortex (Mehler et al., 2000, Sun et al., 2011), SVZ (Bonaguidi et al., 2005), midbrain 

(O’Keeffe et al., 2004a, Reiriz et al., 1999), neural crest (Chalazonitis et al., 2011) 

and SC (Sun et al., 2011), and adult hippocampus (Brederlau et al., 2004) and SVZ 

(Ciceroni et al., 2010, Lim et al., 2000), through the induction of the differentiation 

of GFAP-positive cells. However, the induction of GFAP expression in these NSCs 
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does not necessarily mean that they have terminally differentiated into post-mitotic 

astrocytes. Indeed, BMPs negatively regulate the proliferation of cultured adult 

hippocampal NSCs while maintaining an undifferentiated state (Mira et al., 2010). 

The induction of GFAP-expressing cells in these NSCs by BMPs may thus be an 

intermediate stage in their neurogenesis (Lim et al., 2000, Ciceroni et al., 2010, 

Colak et al., 2008), as has been suggested to occur in the adult SVZ (Hegarty et al., 

2013a). This is a distinct possibility for cultured E14 VM NSCs also, with this study 

suggesting that the GFAP-positive NSCs that are present at 7DD give rise to 

significant numbers of newly-born neurons when differentiated for a further two 

weeks in vitro. At the current time, it is difficult to conclusively state whether BMP2 

and GDF5 induce gliogenesis or neurogenesis, while it is even possible that they are 

inducing both. The induction of GFAP-expression in proliferating VM NSCs by 

BMP2 and GDF5 may represent two things: 1) induction of a commitment to an 

astroglial lieage, or 2) induction of the differentiation of proliferating NSCs to a 

GFAP-positive NP cell stage, which subsequently contributes to neurogenesis. These 

possibilities do not have to be mutually exclusively, and may be intrinsically linked.  

For example, it is possible that the final stages of DA induction may be timed to 

coincide with the initial stages of astrocytic differentiation in the VM. Indeed, 

astrocytes secrete a variety of known molecular factors that promote DA neuronal 

survival and growth (Li et al., 2009, Castelo-Branco et al., 2006), suggesting that this 

possibility is a plausible one. These suggestions are supported by data showing a 

dual neurogenic and gliogenic role for BMPs in a number of NP populations (Agius 

et al., 2010, Chalazonitis et al., 2011, Chalazonitis and Kessler, 2012, Hegarty et al., 

2013a, Krieglstein et al., 1995b, O’Keeffe et al., 2004a, Wood et al., 2005, Reiriz et 

al., 1999). In terms of DA neurogenesis, GFAP-positive glial precursors have been 

identified as the NPs of the DA neurons of the VM in vivo (Bonilla et al., 2008, 

Hebsgaard et al., 2009). Therefore, the GFAP-positive NSCs in this study may share 

similarities to these DA NPs. Indeed, the VM NSCs were isolated from the same 

region as the VM DA NPs, at the time when these NPs are undergoing DA 

neurogenesis. However, no TH-positive DA neurons were generated in this study, 

therefore caution must be taken when comparing the bona fide VM DA NPs in vivo 

with the GFAP-positive NSCs in this study. 

 To investigate the potential DA-inductive roles of BMP2 and GDF5, their 

effect on the DA differentiation of E14 rat VM NSCs were determined. It has been 
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previously proposed that NSCs derived from the VM should retain region-specific 

gene expression (Kim et al., 2006), however, the RT-PCR results in this study 

demonstrated little or no expression of Msx1 and Lmx1b, two region-specific genes 

important in DA development (Alavian et al., 2008, Andersson et al., 2006, Hegarty 

et al., 2013c), in differentiated VM NSCs, suggesting that the expression of 

important genes required for DA development have been downregulated in E14 VM 

NSCs in culture. The lack of DA neurogenesis of these NSCs in vitro supports this 

suggestion, and is likely explained by the absence of region-specific signalling 

factors.  

 In the present study, GDF5, but not BMP2, was shown to induce TH 

expression in neurons derived from E14 VM NSCs. In addition to inducing TH 

expression, GDF5 also induced Nurr1 expression in differentiating E14 rat VM 

NSCs. GDF5 has been shown to reach its highest levels of expression during the 

final period of VM DA neurogenesis (O’Keeffe et al., 2004b), and has consistently 

been shown to increase the numbers of DA neurons in E14 VM cultures (O'Keeffe et 

al., 2004a, Wood et al., 2005, Clayton and Sullivan, 2007, O'Sullivan et al., 2010, 

Krieglstein et al., 1995b). Taken together with the findings of this study, it appears 

that GDF5 may play a role in the final transition of NPs into differentiated DA 

neurons. In support of this, GDF5 was shown not to increase the expression of Msx1 

and Lmx1b, two genes expressed in VM DA NPs during the early stages of DA 

neurogenesis (Hegarty et al., 2013c). BMP2 was shown to increase the expression of 

important genes in the generation of DA NPs in the VM, such as Msx1, Lmx1b, 

Nurr1 and Pitx3 (Alavian et al., 2008, Andersson et al., 2006, Hegarty et al., 2013c), 

suggesting that BMP2 may be involved in the early stages of VM DA neurogenesis. 

Perhaps BMP2 and GDF5 act sequentially during DA neurogenesis, with BMP2 

acting first to induce Msx1, Lmx1b, Nurr1 and Pitx3 expression in VM NPs, and 

GDF5 then acting to induce the expression of Nurr1 and TH, thus promoting the 

differentiation of BMP2-induced DA NPs into mature midbrain DA neurons. 

 DA neurons derived from NSCs have been proposed as an alternative cell 

source for transplantation approaches in PD. As aforementioned, in vitro 

differentiation of DA neurons from VM NSCs has been achieved using both non-

region specific factors, such as neurotrophic factors, ascorbic acid, cAMP or 

cytokines (Jin et al., 2005, Maciaczyk et al., 2008, Sanchez-Pernaute et al., 2001, 

Storch et al., 2001) and, more appropriately, region-specific factors such as WNTs, 
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FGFs and Shh (Parish et al., 2008, Ribeiro et al., 2012). The second part of this study 

has demonstrated that GDF5 is capable of inducing a DA phenotype in VM NSCs, 

and likely plays a role in the transition of NPs into differentiated DA neurons. 

Furthermore, BMP2 was suggested to be involved in the early inductive stages of 

DA neurogenesis. Taken together with their well-characterised neurotrophic effects, 

such as neurite-outgrowth and survival promoting effects, on VM DA neurons 

(Costello et al., 2012, Hurley et al., 2004, O’Keeffe et al., 2004a, O' Sullivan et al., 

2010, Sullivan et al., 1997, Sullivan et al., 1998b, Sullivan and O'Keeffe, 2005, 

Hegarty et al., 2014a, Reiriz et al., 1999, Jordan et al., 1997, Espejo et al., 1999), 

GDF5 and BMP2 are ideal candidates to be used as adjuncts to the use of stem cells 

in CRT, as they promote the induction, neurite growth and survival of midbrain DA 

neurons. The examination of the effects of knockout of BMP2 or GDF5 on VM DA 

neurogenesis will be crucial to the establishment of BMP2 and GDF5 as novel 

regulators of these processes. 
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9. Summary and Final Discussion 

The present thesis focused on the roles played by the TGFβ superfamily members, 

BMP2 and GDF5, in the regulation of neurite growth of midbrain DA neurons. 

These BMPs have similar neurotrophic actions to GDNF (Sullivan and Toulouse, 

2011, Peterson and Nutt, 2008), on VM DA neurons, both in vitro (O’Keeffe et al., 

2004b, Jordan et al., 1997, O’Keeffe et al., 2004a, Krieglstein et al., 1995b, Wood et 

al., 2005) and in vivo (Costello et al., 2012, Hurley et al., 2004, Sullivan et al., 1997, 

Sullivan et al., 1999, Sullivan et al., 1998b, Espejo et al., 1999). Despite this, the 

molecular and cellular mechanisms mediating their effects on DA neurons were 

unknown. It is essential to understand these mechanisms if BMP2 and GDF5 are 

ever to be used in a clinical context for the treatment of PD. In an attempt to address 

this, this thesis examined the hypothesis that ‘canonical Smad 1/5/8 signalling 

mediates the effects of BMP2 and GDF5 on the development of VM DA neurons’. 

 Firstly, the roles of canonical (Smad-dependent) and non-canonical (Smad-

independent) signalling pathways in mediating the neurite growth-promoting effects 

of BMP2 and GDF5, on both the SHSY5Y cell line (Chapter 2) and E14 rat VM 

primary cultures (Chapter 3), were examined. BMP2 and GDF5 both induced neurite 

growth in SH-SH5Y cells, which were shown to express the components of the 

canonical Smad 1/5/8 signalling pathway. The responses of the canonical Smad 

1/5/8 pathway and the non-canonical MAPK pathways to BMP2 and GDF5 were 

assessed in a time-course experiment. BMP2 and GDF5 both activated Smad 1/5/8 

signalling to the same extent, but with different temporal kinetics. Conversely, 

BMP2 and GDF5 both reduced the basal signalling of the non-canonical pathways 

involving phospho-ERK, phospho-JNK and phospho-p38 MAPK, in SH-SH5Y cells. 

These data suggested that BMP2 and GDF5 activate canonical Smad signalling, and 

not the MAPK pathways, to induce neurite growth of SH-SH5Y cells. This study 

then showed that BMPRI was required for BMP2- and GDF5-induced Smad 

signalling and neurite growth, and that BMPRIb mediates the growth-promoting 

effects of BMP2 and GDF5. The neurite growth-promoting effects were dependent 

upon Smad transcriptional activity, as the knockdown of Smad4 prevented these 

effects. Thus, this study demonstrated that the downstream molecular mechanisms 

mediating the direct neurotrophic effects of GDF5 and BMP2 are dependent upon 

BMPRI-mediated activation of the canonical Smad 1/5/8 signalling pathway in 
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SHSY5Y cells. These findings were later confirmed in DA neurons within primary 

cultures of E14 rat VM.  Furthermore, the expression of BMPRIb  and BMPRII, both 

of which are required for canonical BMP-Smad signalling, were found to be 

expressed in the rat midbrain and striatum in vivo (from E11) and into adulthood 

(until at least P90) during the period of nigrostriatal pathway development, which 

occurs between E11 and P90 (Van den Heuvel and Pasterkamp, 2008). Furthermore, 

the present study showed that activation of these receptors by injection of GDF5 to 

the adult midbrain results in Smad phosphorylation in vivo. 

 As aforementioned, the elucidation of the various receptor combinations, 

cytosolic interactions, transcriptional effectors, and/or target genes that mediate the 

multiple-inductive effects of BMPs is crucial for a comprehensive understanding of 

the roles played by these family members in neural development. The present work 

has focused on the roles of BMP2 and GDF5 in VM DA development, with the goal 

of integrating these factors into the molecular framework of VM DA neurogenesis in 

order to contribute to the current understanding of this process. To this point, this 

thesis has specifically shown that BMP2 and GDF5 promote neurite growth through 

BMPRIb-dependent stimulation of Smad 1/5/8 nuclear translocation in two models 

of VM DA neurons (Hegarty et al., 2014a, Hegarty et al., 2013b). However, the 

precise intracellular cascades that regulate BMP-Smad-driven neurite growth, and 

the downstream molecular changes that mediate this process, were still unclear. To 

investigate this further, the following were examined: 1) the role of endocytosis in 

canonical BMP-Smad signalling, and its promotion of neurite growth, 2) the 

regulation of BMP2- and GDF5-induced neurite growth by Sip1, and 3) the 

requirement of GDNF for the neurite growth-promoting effects of BMP2 and GDF5. 

 Firstly, by examining Smad 1/5/8 phosphorylation over time, Smad 1/5/8 

signalling was shown to be activated by BMP2 and GDF5 when dynamin-dependent 

endocytosis was inhibited. However, inhibition of dynamin-dependent endocytosis 

using dynasore resulted with a delayed and reduced level of BMP2-, but not of 

GDF5-, induced phospho-Smad 1/5/8 activation, suggesting that efficient BMP2-

Smad signalling is dependent on endocytosis in SH-SH5Y cells. Inhibition of 

dynamin-dependent endocytosis did not prevent BMP2- or GDF5-induced neurite 

growth, demonstrating that BMP-induced neurite growth is endocytosis-independent. 

However, dynasore pre-treatment significantly reduced BMP2-, but not GDF5-, 

induced neurite outgrowth of SH-SH5Y cells, which was most likely due to the 
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effects of dynamin-dependent endocytosis on the kinetics and magnitude of BMP2-

induced Smad 1/5/8 signalling. Thus, there may be a differential requirement of 

dynamin-dependent endocytosis for BMP2- and GDF5-induced neurite growth in 

SH-SH5Y cells. As BMP2 can signal through both BMPRIa and BMPRIb, whereas 

GDF5 predominantly signals through BMPRIb (Nishitoh et al., 1996), this suggests 

the BMP2-BMPRIa complex is regulated by endocytosis, while Smad-signalling 

induced by the BMP2/GDF5-BMPRIb complex is not (or at least not to the same 

extent). In support of this, BMP2 and BMPRIa undergo endocytosis (Alborzinia et 

al., 2013, Bonor et al., 2012, Saldanha et al., 2013, Kelley et al., 2009, von Einem et 

al., 2011, Pi et al., 2012), while this not been demonstrated for GDF5 or BMPRIb. 

Hartung et al. (2006) showed that the phosphorylation of Smad 1/5/8 by BMPRI is 

induced at the plasma membrane, while continuation of Smad signalling can occur 

following clathrin-mediated endocytosis of the BMPRs. Thus, endocytosis by 

BMP2-BMPRIa may account for the faster kinetics of BMP2-induced Smad 

signalling. This work has shown that BMPRIb-induced Smad signalling mediates the 

neurite growth-promoting effects of BMP2 and GDF5. In this context, perhaps the 

endocytosis-induced inhibition of BMP2-promoted SH-SH5Y neurite growth results 

from the reduced magnitude of BMP2-Smad signalling. Alternatively, perhaps 

BMP2 induces a combination of endocytosis-dependent genes, via BMPRIa, and 

endocytosis-independent genes, via BMPRIb, to instruct neurite outgrowth, and the 

inhibition of endocytosis thus attenuates growth promotion (Fig. 9.1), as 

endocytosis-inhibited BMP2 still induces significant SH-SH5Y neurite growth. 

Taken together, these studies show that GDF5 and BMP2 induce neurite growth via 

a BMPRIb-dependent, endocytosis-independent, pathway which requires Smad 1/5/8 

transcriptional activity (Fig. 9.1a).       

The next part of this study addressed the possibility that GDF5 and BMP2 act 

indirectly on VM DA neurons, by stimulating the production of glial-derived growth 

factor(s), such as GDNF. Despite the neurotrophic effects of BMP2 and GDF5 on 

DA neurons being unaltered in glial-depleted E14 rat VM cultures (Wood et al., 

2005, Reiriz et al., 1999), these studies did not preclude the involvement of GDNF 

signalling, since GDNF could be released by DA neurons themselves via an 

autocrine mechanism. In the present study, inhibition of GDNF signalling did not 

affect GDF5- or BMP2-induced SH-SH5Y neurite growth, suggesting that GDF5 

and BMP2 do not require GDNF for their growth-promoting effects.  
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The final part of this study focused on Sip1, a negative regulator of BMP-

Smad signalling (Verschueren et al., 1999, Postigo et al., 2003), due to its recent 

emergence as a factor that contributes to the induction of a VM DA phenotype in 

stem cells (Cai et al., 2013). These two functions of Sip1 suggested that Sip1 may 

regulate the potential roles of BMP2 and GDF5 in VM DA neurogenesis. It was 

found that BMP2 and GDF5 directly regulated Sip1 expression (Fig. 9.1). Sip1 

expression transiently increased before returning to basal levels, which is typical of 

the negative feedback regulation (Kaern et al., 2005, Maithreye et al., 2008). BMP2-

induced down-regulation of Sip1 was more prolonged, which may be due to BMP2-

BMPRIa-induced, endosomal-propogated Smad signalling.  

Sip1 knock-down in SH-SH5Y cells significantly increased neurite growth 

over that induced by BMP2 and GDF5 alone. These findings demonstrated that Sip1 

is a novel regulator of neurite growth. As it can regulate BMP-Smad signalling 

(Verschueren et al., 1999, Postigo et al., 2003), Sip1 may negatively regulate BMP2- 

and GDF5-induced neurite growth (Fig. 9.1), which is achieved when Smad 

signalling levels are sufficient to overcome Sip1-mediated growth inhibition. As 

Sip1 knockdown alone is sufficient to induce neurite growth, this suggests that Sip1 

may act independently to inhibit neurite growth, and is then downregulated by the 

BMP-Smad (and potentially other) growth-promoting signals (Fig. 9.1). Conversely, 

Sip1 knockdown may “release” endogenous BMP-Smad signalling to promote 

neurite growth which is seen in Sip1 siRNA-transfected cells.  

Finally, this study showed that Sip1 expression was strong during VM DA 

neuronal specification, decreased during the development of axonal projections from 

VM DA neurons to the striatum, before increasing again after birth during 

maintenance and myelination of the nigrostriatal pathway. This expression profile 

reflects the functions demonstrated for Sip1 in VM DA specification (Cai et al., 

2013), neurite growth (herein), and CNS myelination (Weng et al., 2012). Similarly, 

BMP2 and GDF5 have been suggested to regulate the induction, differentiation, 

neurite growth, survival and maintenance of VM DA neurons (Hegarty et al., 2014c). 

Considering the likely role of Sip1 in the regulation of BMP2- and GDF5-promoted 

neurite growth, perhaps Sip1 is the primary downstream regulator of the proposed 

roles of BMP2- and GDF5-induced Smad signalling in VM DA development.  
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Figure 9.1: Molecular pathways involved in BMP2- and GDF5-induced neurite 

growth.  

(a) Schematic of the mechanisms involved in BMPRIb-Smad-dependent, 

endocytosis-independent, BMP2- and GDF5-induced neurite growth. GDF5/BMP2-

activated BMPRIb phophoryates Smad 1/5/8, which translocate to the nucleus to 

induce neurite growth, likely through endocytosis-independent genes. (b) Schematic 

of the mechanisms involved in endosomal-propogated Smad signalling following 

endocytosis of BMP2-activated BMPRIa. The BMP2-BMPRIa complex uses the 

endosome to further increase Smad signalling and to regulate the expression of 

endocytosis-dependent genes, which may be involved in BMP2-, but not GDF5-

induced, neurite growth. Sip1 negatively regulates neurite growth, either by the 

inhibition of BMP-Smad-driven neurite growth or by independently inhibiting the 

expression of genes which promote neurite growth. BMP2 and GDF5 regulate Sip1 

expression, however it is unclear whether BMP2 and GDF5 downregulate Sip1 to 

achieve their growth-promotion, or whether endocytosis-mediated BMP2 signalling 

contributes to its regulation of Sip1 expression. 
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 In the final part of this thesis, we examined the differentiation of E14 rat VM 

NSCs in vitro and determined whether BMP2 and GDF5 could modify the 

proliferation and differentiation of these cells. The assessment of the differentiated 

progeny of VM NSCs isolated at E12 or E14 demonstrated that VM NSCs of older 

ages and later passages appear to be more glial-restricted than those of younger ages 

and lower passage number. However, despite the apparent glial-restriction of E14 rat 

VM NSCs, significant increases in newly-born (BrdU-positive), NSC-derived 

neurons were found during the second and third weeks of differentiation. In fact, the 

neurons detected at 7DD were BrdU-negative, and thus were likely to have been 

present as post-mitotic neurons in the donor tissue at the time of harvesting. The 

three-fold increase in βIII-tubulin-positive cells between 7DD and 21DD was due to 

the presence of clusters of large numbers of newly-born neurons at 14DD and 21DD. 

These neurons are likely generated from the nestin-, Sox2-, vimentin- and GFAP-

positive NSCs, which had a protoplasmic morphology, at 7DD. Indeed, nestin-, 

Sox2-, vimentin- and GFAP-positive NSCs with a radial morphology were 

intermingled with the neurons in these clusters at 14DD (Fig. 9.2). Thus, it is likely 

that these neurogenic radial glial-like cells undergo asymmetrical neurogenesis to 

produce significant amounts of βIII-tubulin-positive cells during the second two 

weeks of differentiation (Fig. 9.2). Additionally, a small proportion of nestin-

positive NSCs co-express βIII-tubulin at 7DD, which explains the slight difference 

in nestin- and GFAP-positive cells at this time-point (Fig. 9.3). These nestin-/βIII-

tubulin-positive NPs appear to undergo symmetrical division(s) to generate newly-

born neurons during the second two weeks of differentiation (Fig. 9.3). These mitotic 

neuronal precursors undergo gradual morphological reorganisation from a 

protoplasmic NSC into a bipolar neuron (Fig. 9.3). Nestin expression ceases once 

this bipolar neuronal morphology has been adopted, and neuronal differentiation has 

been completed (Fig. 9.3). However, due to the limited numbers of these neuronal 

precursors, symmetrical neurogenesis does not account for the significant increases 

in neurons at 14DD and 21DD. Real-time analysis of nestin- and βIII-tubulin-

labelled E14 rat VM NSCs during their in vitro development is required to confirm 

the occurrence of the suggested symmetrical and asymmetrical neurogenesis, as 

these suggestions are based on inferences from information obtained at fixed time-

points during VM NSC differentiation. 
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Figure 9.2: Radial glial-like NPs generate neurons in E14 VM NSC cultures. 

Representative photomicrographs showing representative images of E14 rat VM 

NSCs cultures after 7DIV expansion and 7DD (A) or 14DD (B-F), 

immunocytochemically stained for DAPI, vimentin (E), GFAP (F) and/or βIII-

tubulin (C and E). Radial glial-like NPs (E and F) generate neurons (C and E) during 

the second week of differentiation. The proliferation and asymmentrical 

neurogenesis of radial glial-like NPs causes the formation of clusters of cells by 

14DD (B) which are not present at 7DD (A). Scale bar = 100μm. 

 

  

Figure 9.3: Symmetrical neurogenesis, with morphological reorganisation, of 

neuronal precursors in E14 VM NSC cultures. E14 rat VM NSCs cultures after 

7DIV expansion and 7 or 14 DD, immunocytochemically stained for nestin (A, D, E, 

H and K), βIII-tubulin (B-L) and/or BrdU (H and L). Scale bar = 25μm. (M) 

Graphical representation (M) and line drawings (N) of the morphological 

reorganisation of the βIII-tubulin-positive neuronal precursors in images B to L.  
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 The GFAP/nestin-NSCs differentiated during the second two weeks, 

resulting in a significant reduction in the numbers of GFAP- and nestin-double 

labeled cells after 14 and 21 DD. GFAP-positive cells at 7 DD ceased to express 

nestin and adopted a differentiated, stellate morphology during the second two weeks 

of differentiation. There were no TH-positive DA neurons generated from the VM 

NSCs in this study, most likely due to the absence in vitro of important 

developmental guidance cues for DA neurogenesis. This study demonstrated that 

older NSCs retain significantly more neurogenic potential than was previously 

thought, and that this neurogenesis is likely to be mediated by GFAP-positive NPs. 

 In the second part of this study, the effects of BMP2 and GDF5 on the 

development of E14 rat VM NSCs in vitro was assessed, with the particular goal of 

determining their ability to induce DA neuronal differentiation in these cells. BMP2 

and GDF5 were shown to significantly reduce the volume of E14 VM neurospheres 

over time in culture. This apparent negative regulation of VM NSC proliferation was 

due to the induction of GFAP expression, suggesting that BMP2 and GDF5 inhibit 

the proliferation of VM NSCs through the induction of glial differentiation. The 

induction of GFAP-expression in proliferating VM NSCs by BMP2 and GDF5 

may represent two things: 1) induction of a commitment to an astroglial lineage, or 

2) induction of the differentiation of proliferating NSCs to a GFAP-positive NP cell 

stage, which subsequently contributes to neurogenesis.  

In the final part of this thesis, the DA-inductive ability of BMP2 and GDF5 

in E14 rat VM NSCs was assessed. GDF5, but not BMP2, was shown to induce TH 

expression in neurons derived from E14 VM NSCs, while GDF5 also induced Nurr1 

expression. BMP2 was shown to increase the expression of important genes in the 

generation of DA NPs in the VM, such as Msx1, Lmx1b, Nurr1 and Pitx3 (Alavian 

et al., 2008, Andersson et al., 2006, Hegarty et al., 2013c) in these E14 VM NSC-

derived neurons. Taken together, these data suggest that BMP2 and GDF5 act 

sequentially during DA neurogenesis, with BMP2 acting first to induce Msx1, 

Lmx1b, Nurr1 and Pitx3 expression in VM NPs, and GDF5 then acting to induce the 

expression of Nurr1 and TH, thus promoting the differentiation of BMP2-induced 

DA NPs into post-mitotic midbrain DA neurons. 

 Taken together, the experiments of this thesis identify GDF5 and BMP2 as 

novel regulators of midbrain DA neuronal induction and differentiation, and 

demonstrate that their effects on DA neurons are mediated by canonical BMP-
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BMPR-Smad signalling. However, while this work proposes that BMP2 and GDF5 

play roles in the developing VM, they are best recognised for the role in induction of 

a dorsal identify in the developing NS (Hegarty et al., 2014c, Liu and Niswander, 

2005). As such, the following mechanism is now proposed to potentially explain the 

present findings, in relation to the established roles of BMPs in the NS (Fig. 9.4).   

 The first sign of the induction of a DA fate in the VM is the expression of 

Lmx1a and Msx1 at around E8 in the mouse; these factors act as key determinants of 

midbrain DA neurons (Andersson et al., 2006, Alavian et al., 2008, Hegarty et al., 

2013c). Both of these genes are induced by BMP signalling during NS development 

(Maeda et al., 1997, Tribulo et al., 2003, Chizhikov and Millen, 2004, Liu et al., 

2004), while this study has shown that BMP2 induces the expression of these genes 

in cultured E14 rat VM NSCs. Furthermore, FGF, Shh and WNT signalling have all 

been shown to play critical roles in the development of DA neurons in the VM 

(Roussa and Krieglstein, 2004b, Alavian et al., 2008, Joksimovic et al., 2009b). An 

interaction between BMP-Smad signalling and FGF, Shh and WNT signalling has 

been demonstrated in the induction, specification and development of a variety of 

neural populations, such as SC neuronal populations and NCCs, the relevant aspects 

of which have been detailed in the introduction (LaBonne and Bronner-Fraser, 1998, 

Monsoro-Burq et al., 2005, Liu and Niswander, 2005, Eivers et al., 2008, Fuentealba 

et al., 2007). However, a number of recent studies have provided substantial 

evidence that VM DA neurons arise from floor plate DA neural progenitors (Hegarty 

et al., 2013c, Ono et al., 2007, Bonilla et al., 2008, Hebsgaard et al., 2009). This 

suggests that BMP signalling is not involved in DA development, since the Shh-

expressing floor plate is the opposing signalling centre to the BMP-expressing roof 

plate along the dorsoventral axis of the neural tube (Altmann and Brivanlou, 2001, 

Ulloa and Briscoe, 2007). It may be the case that BMP signalling acts dorsally and 

that Shh signalling acts ventrally along the length of the neural tube to induce 

various neuronal phenotypes, with these signals intersecting intermediately. 

However, the VM floor plate is different to its caudal counterparts. The floor plate 

was thought to consist of specialised non-neurogenic glial type cells that ventralize 

the neural tube, mainly by secreting Shh (Jessell, 2000, Placzek and Briscoe, 2005, 

Fuccillo et al., 2006). This currently remains true for the neural tube caudal to the 

midbrain, with the hindbrain floor plate being shown to be non-neurogenic 

(Joksimovic et al., 2009b). As afore-mentioned, VM floor plate cells are now known 
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to be neurogenic, and to specifically give rise to DA neurons (Hegarty et al., 2013c, 

Ono et al., 2007, Bonilla et al., 2008, Hebsgaard et al., 2009). The suggestion that 

BMP signalling may be involved in this process arises from the finding that WNT 

antagonism of Shh signalling facilitates VM floor plate neurogenesis, and that Shh 

inhibits this neurogenesis (Joksimovic et al., 2009b). WNTs are expressed in the 

midbrain floor plate and are vital for VM DA neurogenesis (Echelard et al., 1994, 

Castelo-Branco et al., 2003, Zervas et al., 2004, Prakash et al., 2006, Hegarty et al., 

2013c). BMP-Smad 1/5/8 signalling positively regulates WNT expression in the 

spinal cord (Chesnutt et al., 2004, Wine-Lee et al., 2004), and may continue this role 

in the VM floor plate. In support of this, BMPs, GDF5 and GDF15 have all been 

shown to be expressed in the mesencephalic floor plate during DA neurogenesis 

(Jordan et al., 1997, Strelau et al., 2000, O’Keeffe et al., 2004b, Soderstrom and 

Ebendal, 1999). During development, Lmx1a expression caudal to the midbrain is 

restricted to the roof plate and the cerebellum (Failli et al., 2002, Chizhikov et al., 

2010, Griesel et al., 2011). BMPs induce the expression of Lmx1a and other co-

factors that regulate the induction of the roof plate in the dorsal neural tube 

(Chizhikov and Millen, 2004) and determine the fate of cerebellar granule neurons 

(Alder et al., 1999, Qin et al., 2006). These findings again demonstrate that Lmx1a is 

a key mediator of BMP signalling. Rostral to the pons in the mid-gestation mouse 

embryo, Lmx1a expression becomes ventralized, with its expression found in the 

VM and the basal plates of the diencephalon (Failli et al., 2002). This ventral 

midbrain expression of Lmx1a is accompanied, and possibly preceded, by BMP 

expression, as mentioned above. Furthermore, BMPs have been reported to act in a 

dual role with Shh to induce ventral cell types in the diencephalon (Dale et al., 

1999). Indeed, a regulated level of BMP signalling is involved in the neurogenesis of 

Shh-responsive ventral cell types in the forebrain (Yung et al., 2002). It is not 

unlikely to suggest that this ventralization of dorsal signalling/expression is due to 

the formation of the pontine flexure which causes the ventral displacement of the 

BMP-expressing/signalling alar plates in the metencephalic region. In support of this 

theory, the pontine flexure forms before DA neurogenesis in the VM (Wallace and 

Lauder, 1983).  
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Figure 9.4 Proposed role of canonical BMP-Smad Signalling in the development 

of VM DA Neurons.  

(A) Regions of the developing CNS. (B) Graphical representation of the 

morphological changes of the myelencephalon due to pontine flexure formation. The 

alar plates are displaced ventrally, resulting in ventralisation of BMP-Smad 

signalling. (C) Graphical representation of the proposed role for BMP-Smad 

signalling in VM DA neurogenesis. Ventralised BMP-Smad signalling in the 

myelencephalon induces BMP-Smad signalling in the adjacent VM. BMP-Smad 

signalling subsequently induces Lmx1a, Msx1 and WNT expression in the VM, 

which results in VM DA neurogenesis. 

 

 FGF signalling from the isthmus organizer may fit into this proposed role of 

BMP signalling in VM DA neurogenesis, by acting to repress BMP-Smad signalling 

to refine its effects. FGF plays such a role during neural induction (Wilson et al., 

2000, Streit et al., 2000, Pera et al., 2003), and intermediate levels of BMPs are 

required for the proper development of specific ‘intermediate’ (i.e. not directly in 

contact with the roof plate) neuronal phenotypes, as discussed in a recent review 

(Hegarty et al., 2013a). Furthermore, an intermediate level of BMP-Smad signalling 

has been shown to be necessary for the induction of Msx1 (Tribulo et al., 2003), one 

of the two key determinants of midbrain DA neurons, along with Lmx1a (Andersson 
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et al., 2006); FGF has also been shown to induce Msx1 expression in the neural crest 

(Monsoro-Burq et al., 2005). Furthermore, engrailed1/engrailed2 expression are vital 

for VM DA neurogenesis (Hegarty et al., 2013c), and BMP signalling has been 

shown to induce the expression of these genes in VM cultures (Alder et al., 1999). In 

support of a proposed role of Smad 1/5/8 signalling in VM DA neuronal 

development, BMP signalling increases the numbers of DA neurons in embryonic rat 

VM cultures (Krieglstein et al., 1995b, Jordan et al., 1997, O'Keeffe et al., 2004a, 

Reiriz et al., 1999, Brederlau et al., 2002, Lee et al., 2003). Furthermore, this study 

suggests that the BMPs, BMP2 and GDF5, may act sequentially during the 

generation of VM DA neurons. Additionally, based on data obtained in this thesis, 

BMP2- and GDF5-induced Smad signalling may function in the development of the 

striatal projections of VM DA neurons, coinciding with their roles in DA neuronal 

generation. 

 

10.  Conclusions and Future Perspectives  

This thesis has shown that BMP2- and GDF5-induced neurite growth of VM DA 

neurons is BMPRIb-dependent and requires Smad 1/5/8 transcriptional regulation. 

Additionally, the BMP2- and GDF5-mediated  neurite growth-promoting effects are 

direct, and independent of GDNF signalling. In terms of DA neuronal growth, Sip1 

has been identified as a novel negative regulator of this process, and likely acts 

through inhibition of BMP-Smad-driven neurite growth. These findings represent 

significant contributions to the present understanding of the molecular and cellular 

mechanisms by which these BMPs function during midbrain DA development, as 

well as in the NS in general. Through the comparison of the effects of BMP2 and 

GDF5, this study has demonstrated that their diverse effects, within the same cell 

populations, are potentially mediated by different subtypes of the BMPRI. Perhaps 

temporal and spatial regulation of the expression of the BMPRIa and BMPRIb is 

integral to the varying effects of these BMPs during NS development. In terms of 

DA neuronal induction, BMP2 and GDF5 appear to act sequentially in this process, 

with BMP2 inducing a DA phenotype in VM NPs, and GDF5 inducing the transition 

of VM DA NPs into midbrain DA neurons. The expression profiles of BMPRIb, 

BMPRII and Sip1 correlate with the proposed roles of BMP2 and GDF5 as multi-

step regulators of VM DA development. Taken together, this thesis has identified 
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GDF5 and BMP2 as potential regulators of midbrain DA neuronal induction, 

differentiation and survival, and has demonstrated that their effects on DA neurons 

are mediated by canonical BMPR-Smad signalling. 

 However, despite these findings regarding BMP2 and GDF5-mediated 

regulation of VM DA development, further experimentation is required to 

conclusively show their participation in vivo. To build on the in vitro 

characterisations performed in this study, which also need further experimentation as 

described in each chapter throughout, future work should assess mice with 

homozygous and/or heterozygous mutations in GDF5, BMP2, BMPRIb, Smad 

1/4/5/8 and/or Sip1. Crucially, a detailed analysis of the numbers of DA neurons 

present in the midbrain, as well as striatal innervation, at multiple stages during 

embryonic and post-natal development is required to address whether canonical 

BMP-signalling is involved in these developmental processes during VM DA 

development in vivo. For example, the BMPRII null mouse has a reduction of 

nigrostriatal neurons and of striatal DA innervation in adulthood (Chou et al., 

2008a), but it is unclear whether this results from a failure in DA neuronal 

development, or from a later degenerative process. Analysis of mutant mice at each 

developmental stage of this embryonic and postnatal process would address this. 

Furthermore, the Smad 1/5/8 reporter mouse (Monteiro et al., 2008) could be used to 

demonstrate BMP-Smad-dependent transcriptional activity in the VM region, and 

the crossing of the BMP/BMPR/Smad/Sip1 mutants with this reporter mouse would 

allow investigation of the impact of the loss of one of these BMP-Smad pathway 

components on transcriptional activity in vivo during VM DA development.  

From a clinical perspective, cell replacement therapy is one of the most 

promising therapies for the treatment of PD (Orlacchio et al., 2010, Bonnamain et 

al., 2012, De Feo et al., 2012, Toulouse and Sullivan, 2008, Hedlund and Perlmann, 

2009). Considering the importance of the establishment of functional connections by 

transplanted DA cells in the host striatum, factors which promote DA neurite 

outgrowth are being considered as adjuncts to this potential therapy. GDF5 and 

BMP2 are thus ideal candidates for such a role, as both have been shown to promote 

the survival of VM DA neurons (O'Keeffe et al., 2004b, Reiriz et al., 1999, Jordan et 

al., 1997, Sullivan et al., 1997). These two functions of BMP2 and GDF5 in neurite 

growth-promotion and DA neuronal survival make these BMPs ideal neurotrophic 

factors for nigrostriatal DA neurons, especially considering that the expression 
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profiles of BMPRIb and BMPRII propose that BMP2 and GDF5 play such a 

function during normal development. The induction of relevant DA genes by BMP2 

and GDF5 has implications for the specification of stem cell sources towards VM 

DA phenotypes prior to transplantation. Furthermore, targeting Sip1 expression in 

stem cell sources may provide a mechanism for the dual-induction of both DA 

specification and their subsequent neuronal growth. Indeed, Sip1 modulation has 

already been shown to contribute to DA specification in stem cells (Cai et al., 2013), 

while the present study modulated Sip1 expression to induce DA neurite growth. In 

terms of stem cell sources, the current study has demonstrated that neurosphere-

expanded E14 rat VM NSCs require three weeks to complete differentiation into 

their progeny, with neurogenesis proceeding during the second two weeks via 

GFAP-expressing NPs. This has important implications for the choice of age of 

donor tissue for the use of NSCs for transplantation studies, as well as the identity of 

neuronal precursors in vitro. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



220 
 

11. Bibliography 

ABELIOVICH, A. & HAMMOND, R. 2007. Midbrain dopamine neuron 

differentiation: factors and fates. Dev Biol, 304, 447-54. 

ACAMPORA, D., AVANTAGGIATO, V., TUORTO, F. & SIMEONE, A. 1997. 

Genetic control of brain morphogenesis through Otx gene dosage 

requirement. Development, 124, 3639-50. 

ACAMPORA, D., MAZAN, S., LALLEMAND, Y., AVANTAGGIATO, V., 

MAURY, M., SIMEONE, A. & BRULET, P. 1995. Forebrain and midbrain 

regions are deleted in Otx2-/- mutants due to a defective anterior 

neuroectoderm specification during gastrulation. Development, 121, 3279-90. 

ADAMS, K. A., MAIDA, J. M., GOLDEN, J. A. & RIDDLE, R. D. 2000. The 

transcription factor Lmx1b maintains Wnt1 expression within the isthmic 

organizer. Development, 127, 1857-67. 

AGIUS, E., DECKER, Y., SOUKKARIEH, C., SOULA, C. & COCHARD, P. 2010. 

Role of BMPs in controlling the spatial and temporal origin of GFAP 

astrocytes in the embryonic spinal cord. Dev Biol, 344, 611-20. 

AGIUS, E., OELGESCHLAGER, M., WESSELY, O., KEMP, C. & DE 

ROBERTIS, E. M. 2000. Endodermal Nodal-related signals and mesoderm 

induction in Xenopus. Development, 127, 1173-83. 

AHLSKOG, J. E. & MUENTER, M. D. 2001. Frequency of levodopa-related 

dyskinesias and motor fluctuations as estimated from the cumulative 

literature. Mov Disord, 16, 448-58. 

AHMADIANTEHRANI, S. & RON, D. 2013. Dopamine D2 receptor activation 

leads to an up-regulation of glial cell line-derived neurotrophic factor via 

Gbetagamma-Erk1/2-dependent induction of Zif268. J Neurochem. 

AKERUD, P., ALBERCH, J., EKETJALL, S., WAGNER, J. & ARENAS, E. 1999. 

Differential effects of glial cell line-derived neurotrophic factor and neurturin 

on developing and adult substantia nigra dopaminergic neurons. J 

Neurochem, 73, 70-8. 

AKERUD, P., HOLM, P. C., CASTELO-BRANCO, G., SOUSA, K., RODRIGUEZ, 

F. J. & ARENAS, E. 2002. Persephin-overexpressing neural stem cells 

regulate the function of nigral dopaminergic neurons and prevent their 



221 
 

degeneration in a model of Parkinson's disease. Mol Cell Neurosci, 21, 205-

22. 

ALAVIAN, K. N., SCHOLZ, C. & SIMON, H. H. 2008. Transcriptional regulation 

of mesencephalic dopaminergic neurons: the full circle of life and death. Mov 

Disord, 23, 319-28. 

ALBERI, L., SGADO, P. & SIMON, H. H. 2004. Engrailed genes are cell-

autonomously required to prevent apoptosis in mesencephalic dopaminergic 

neurons. Development, 131, 3229-36. 

ALBORZINIA, H., SCHMIDT-GLENEWINKEL, H., ILKAVETS, I., 

BREITKOPF-HEINLEIN, K., CHENG, X., HORTSCHANSKY, P., 

DOOLEY, S. & WOLFL, S. 2013. Quantitative kinetics analysis of BMP2 

uptake into cells and its modulation by BMP antagonists. J Cell Sci, 126, 

117-27. 

ALDER, J., LEE, K. J., JESSELL, T. M. & HATTEN, M. E. 1999. Generation of 

cerebellar granule neurons in vivo by transplantation of BMP-treated neural 

progenitor cells. Nat Neurosci, 2, 535-40. 

ALLEN © 2012 Allen Institute for Brain Science. Allen Mouse Brain Atlas 

[Internet]. Available from: http://mouse.brain-map.org/. 

ALONSO-VANEGAS, M. A., FAWCETT, J. P., CAUSING, C. G., MILLER, F. D. 

& SADIKOT, A. F. 1999. Characterization of dopaminergic midbrain 

neurons in a DBH:BDNF transgenic mouse. J Comp Neurol, 413, 449-62. 

ALTMAN, J. & BAYER, S. A. 1981. Development of the brain stem in the rat. V. 

Thymidine-radiographic study of the time of origin of neurons in the 

midbrain tegmentum. J Comp Neurol, 198, 677-716. 

ALTMANN, C. R. & BRIVANLOU, A. H. 2001. Neural patterning in the vertebrate 

embryo. Int Rev Cytol, 203, 447-82. 

ALVES DOS SANTOS, M. T. & SMIDT, M. P. 2011. En1 and Wnt signalling in 

midbrain dopaminergic neuronal development. Neural Dev, 6, 23. 

ANDERSSON, E., TRYGGVASON, U., DENG, Q., FRILING, S., ALEKSEENKO, 

Z., ROBERT, B., PERLMANN, T. & ERICSON, J. 2006. Identification of 

intrinsic determinants of midbrain dopamine neurons. Cell, 124, 393-405. 

ANDERSSON, E. R., PRAKASH, N., CAJANEK, L., MININA, E., BRYJA, V., 

BRYJOVA, L., YAMAGUCHI, T. P., HALL, A. C., WURST, W. & 



222 
 

ARENAS, E. 2008. Wnt5a regulates ventral midbrain morphogenesis and the 

development of A9-A10 dopaminergic cells in vivo. PLoS One, 3, e3517. 

ANDREWS, Z. B., ZHAO, H., FRUGIER, T., MEGURO, R., GRATTAN, D. R., 

KOISHI, K. & MCLENNAN, I. S. 2006. Transforming growth factor beta2 

haploinsufficient mice develop age-related nigrostriatal dopamine deficits. 

Neurobiol Dis, 21, 568-75. 

ANG, S. L., JIN, O., RHINN, M., DAIGLE, N., STEVENSON, L. & ROSSANT, J. 

1996. A targeted mouse Otx2 mutation leads to severe defects in gastrulation 

and formation of axial mesoderm and to deletion of rostral brain. 

Development, 122, 243-52. 

ANG, S. L. & ROSSANT, J. 1994. HNF-3 beta is essential for node and notochord 

formation in mouse development. Cell, 78, 561-74. 

APOSTOLIDES, C., SANFORD, E., HONG, M. & MENDEZ, I. 1998. Glial cell 

line-derived neurotrophic factor improves intrastriatal graft survival of stored 

dopaminergic cells. Neuroscience, 83, 363-72. 

ARNOLD, S. J., MARETTO, S., ISLAM, A., BIKOFF, E. K. & ROBERTSON, E. 

J. 2006. Dose-dependent Smad1, Smad5 and Smad8 signalling in the early 

mouse embryo. Dev Biol, 296, 104-18. 

ARON, L. & KLEIN, R. 2011. Repairing the parkinsonian brain with neurotrophic 

factors. Trends Neurosci, 34, 88-100. 

BACHILLER, D., KLINGENSMITH, J., KEMP, C., BELO, J. A., ANDERSON, R. 

M., MAY, S. R., MCMAHON, J. A., MCMAHON, A. P., HARLAND, R. 

M., ROSSANT, J. & DE ROBERTIS, E. M. 2000. The organizer factors 

Chordin and Noggin are required for mouse forebrain development. Nature, 

403, 658-61. 

BACKMAN, C., PERLMANN, T., WALLEN, A., HOFFER, B. J. & MORALES, 

M. 1999. A selective group of dopaminergic neurons express Nurr1 in the 

adult mouse brain. Brain Res, 851, 125-32. 

BAEK, J. H., HATAKEYAMA, J., SAKAMOTO, S., OHTSUKA, T. & 

KAGEYAMA, R. 2006. Persistent and high levels of Hes1 expression 

regulate boundary formation in the developing central nervous system. 

Development, 133, 2467-76. 

BAGRI, A., MARIN, O., PLUMP, A. S., MAK, J., PLEASURE, S. J., 

RUBENSTEIN, J. L. & TESSIER-LAVIGNE, M. 2002. Slit proteins prevent 



223 
 

midline crossing and determine the dorsoventral position of major axonal 

pathways in the mammalian forebrain. Neuron, 33, 233-48. 

BAIZABAL, J. M., CANO-MARTINEZ, A., VALENCIA, C., SANTA-OLALLA, 

J., YOUNG, K. M., RIETZE, R. L., BARTLETT, P. F. & COVARRUBIAS, 

L. 2012. Glial commitment of mesencephalic neural precursor cells expanded 

as neurospheres precludes their engagement in niche-dependent 

dopaminergic neurogenesis. Stem Cells Dev, 21, 1047-58. 

BAKER, J. C., BEDDINGTON, R. S. & HARLAND, R. M. 1999. Wnt signalling in 

Xenopus embryos inhibits bmp4 expression and activates neural 

development. Genes Dev, 13, 3149-59. 

BAKER, N. E. 1988. Embryonic and imaginal requirements for wingless, a segment-

polarity gene in Drosophila. Dev Biol, 125, 96-108. 

BALOH, R. H., TANSEY, M. G., LAMPE, P. A., FAHRNER, T. J., ENOMOTO, 

H., SIMBURGER, K. S., LEITNER, M. L., ARAKI, T., JOHNSON, E. M., 

JR. & MILBRANDT, J. 1998. Artemin, a novel member of the GDNF ligand 

family, supports peripheral and central neurons and signals through the 

GFRalpha3-RET receptor complex. Neuron, 21, 1291-302. 

BARKER, V., MIDDLETON, G., DAVEY, F. & DAVIES, A. M. 2001. TNFalpha 

contributes to the death of NGF-dependent neurons during development. Nat 

Neurosci, 4, 1194-8. 

BARNETT, M. W., FISHER, C. E., PERONA-WRIGHT, G. & DAVIES, J. A. 

2002. Signalling by glial cell line-derived neurotrophic factor (GDNF) 

requires heparan sulphate glycosaminoglycan. J Cell Sci, 115, 4495-503. 

BARON, O., FORTHMANN, B., LEE, Y. W., TERRANOVA, C., RATZKA, A., 

STACHOWIAK, E. K., GROTHE, C., CLAUS, P. & STACHOWIAK, M. 

K. 2012a. Cooperation of nuclear fibroblast growth factor receptor 1 and 

Nurr1 offers new interactive mechanism in postmitotic development of 

mesencephalic dopaminergic neurons. J Biol Chem, 287, 19827-40. 

BARON, O., RATZKA, A. & GROTHE, C. 2012b. Fibroblast growth factor 2 

regulates adequate nigrostriatal pathway formation in mice. J Comp Neurol, 

520, 3949-61. 

BARTUS, R. T., BAUMANN, T. L., SIFFERT, J., HERZOG, C. D., ALTERMAN, 

R., BOULIS, N., TURNER, D. A., STACY, M., LANG, A. E., LOZANO, A. 



224 
 

M. & OLANOW, C. W. 2013. Safety/feasibility of targeting the substantia 

nigra with AAV2-neurturin in Parkinson patients. Neurology, 80, 1698-701. 

BATCHELOR, P. E., LIBERATORE, G. T., PORRITT, M. J., DONNAN, G. A. & 

HOWELLS, D. W. 2000. Inhibition of brain-derived neurotrophic factor and 

glial cell line-derived neurotrophic factor expression reduces dopaminergic 

sprouting in the injured striatum. Eur J Neurosci, 12, 3462-8. 

BAYLY, R. D., BROWN, C. Y. & AGARWALA, S. 2012. A novel role for FOXA2 

and SHH in organizing midbrain signalling centers. Dev Biol, 369, 32-42. 

BECK, K. D., VALVERDE, J., ALEXI, T., POULSEN, K., MOFFAT, B., 

VANDLEN, R. A., ROSENTHAL, A. & HEFTI, F. 1995. Mesencephalic 

dopaminergic neurons protected by GDNF from axotomy-induced 

degeneration in the adult brain. Nature, 373, 339-41. 

BENNETT, D. & ALPHEY, L. 2002. PP1 binds Sara and negatively regulates Dpp 

signalling in Drosophila melanogaster. Nat Genet, 31, 419-23. 

BETARBET, R., SHERER, T. B., MACKENZIE, G., GARCIA-OSUNA, M., 

PANOV, A. V. & GREENAMYRE, J. T. 2000. Chronic systemic pesticide 

exposure reproduces features of Parkinson's disease. Nat Neurosci, 3, 1301-6. 

BIEHS, B., FRANCOIS, V. & BIER, E. 1996. The Drosophila short gastrulation 

gene prevents Dpp from autoactivating and suppressing neurogenesis in the 

neuroectoderm. Genes Dev, 10, 2922-34. 

BILICAN, B., FIORE-HERICHE, C., COMPSTON, A., ALLEN, N. D. & 

CHANDRAN, S. 2008. Induction of Olig2 precursors by FGF involves BMP 

signalling blockade at the Smad level. PLoS One, 3, e2863. 

BJORKLUND, A. & DUNNETT, S. B. 2007. Dopamine neuron systems in the 

brain: an update. Trends Neurosci, 30, 194-202. 

BJORKLUND, A., DUNNETT, S. B., BRUNDIN, P., STOESSL, A. J., FREED, C. 

R., BREEZE, R. E., LEVIVIER, M., PESCHANSKI, M., STUDER, L. & 

BARKER, R. 2003. Neural transplantation for the treatment of Parkinson's 

disease. Lancet Neurol, 2, 437-45. 

BJORKLUND, A., DUNNETT, S. B., STENEVI, U., LEWIS, M. E. & IVERSEN, 

S. D. 1980a. Reinnervation of the denervated striatum by substantia nigra 

transplants: functional consequences as revealed by pharmacological and 

sensorimotor testing. Brain Res, 199, 307-33. 



225 
 

BJORKLUND, A., SCHMIDT, R. H. & STENEVI, U. 1980b. Functional 

reinnervation of the neostriatum in the adult rat by use of intraparenchymal 

grafting of dissociated cell suspensions from the substantia nigra. Cell Tissue 

Res, 212, 39-45. 

BJORKLUND, A. & STENEVI, U. 1979. Reconstruction of the nigrostriatal 

dopamine pathway by intracerebral nigral transplants. Brain Res, 177, 555-

60. 

BJORKLUND, A., STENEVI, U., DUNNETT, S. B. & IVERSEN, S. D. 1981. 

Functional reactivation of the deafferented neostriatum by nigral transplants. 

Nature, 289, 497-9. 

BLAESS, S., CORRALES, J. D. & JOYNER, A. L. 2006. Sonic hedgehog regulates 

Gli activator and repressor functions with spatial and temporal precision in 

the mid/hindbrain region. Development, 133, 1799-809. 

BLUM, M. 1998. A null mutation in TGF-alpha leads to a reduction in midbrain 

dopaminergic neurons in the substantia nigra. Nat Neurosci, 1, 374-7. 

BOGER, H. A., MIDDAUGH, L. D., HUANG, P., ZAMAN, V., SMITH, A. C., 

HOFFER, B. J., TOMAC, A. C. & GRANHOLM, A. C. 2006. A partial 

GDNF depletion leads to earlier age-related deterioration of motor function 

and tyrosine hydroxylase expression in the substantia nigra. Exp Neurol, 202, 

336-47. 

BONAGUIDI, M. A., MCGUIRE, T., HU, M., KAN, L., SAMANTA, J. & 

KESSLER, J. A. 2005. LIF and BMP signalling generate separate and 

discrete types of GFAP-expressing cells. Development, 132, 5503-14. 

BONAGUIDI, M. A., PENG, C. Y., MCGUIRE, T., FALCIGLIA, G., GOBESKE, 

K. T., CZEISLER, C. & KESSLER, J. A. 2008. Noggin expands neural stem 

cells in the adult hippocampus. J Neurosci, 28, 9194-204. 

BONILLA, S., HALL, A. C., PINTO, L., ATTARDO, A., GOTZ, M., HUTTNER, 

W. B. & ARENAS, E. 2008. Identification of midbrain floor plate radial glia-

like cells as dopaminergic progenitors. Glia, 56, 809-20. 

BONNAMAIN, V., NEVEU, I. & NAVEILHAN, P. 2012. Neural stem/progenitor 

cells as a promising candidate for regenerative therapy of the central nervous 

system. Front Cell Neurosci, 6, 17. 



226 
 

BONOR, J., ADAMS, E. L., BRAGDON, B., MOSEYCHUK, O., CZYMMEK, K. 

J. & NOHE, A. 2012. Initiation of BMP2 signalling in domains on the 

plasma membrane. J Cell Physiol, 227, 2880-8. 

BORGAL, L., HONG, M., SADI, D. & MENDEZ, I. 2007. Differential effects of 

glial cell line-derived neurotrophic factor on A9 and A10 dopamine neuron 

survival in vitro. Neuroscience, 147, 712-9. 

BOTTNER, M., KRIEGLSTEIN, K. & UNSICKER, K. 2000. The transforming 

growth factor-betas: structure, signalling, and roles in nervous system 

development and functions. J Neurochem, 75, 2227-40. 

BOURQUE, M. J. & TRUDEAU, L. E. 2000. GDNF enhances the synaptic efficacy 

of dopaminergic neurons in culture. Eur J Neurosci, 12, 3172-80. 

BOVOLENTA, P. 2005. Morphogen signalling at the vertebrate growth cone: a few 

cases or a general strategy? J Neurobiol, 64, 405-16. 

BRAGDON, B., MOSEYCHUK, O., SALDANHA, S., KING, D., JULIAN, J. & 

NOHE, A. 2011. Bone morphogenetic proteins: a critical review. Cell Signal, 

23, 609-20. 

BRAGDON, B., THINAKARAN, S., BONOR, J., UNDERHILL, T. M., 

PETERSEN, N. O. & NOHE, A. 2009. FRET reveals novel protein-receptor 

interaction of bone morphogenetic proteins receptors and adaptor protein 2 at 

the cell surface. Biophys J, 97, 1428-35. 

BRAULT, V., MOORE, R., KUTSCH, S., ISHIBASHI, M., ROWITCH, D. H., 

MCMAHON, A. P., SOMMER, L., BOUSSADIA, O. & KEMLER, R. 2001. 

Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results 

in dramatic brain malformation and failure of craniofacial development. 

Development, 128, 1253-64. 

BREDERLAU, A., FAIGLE, R., ELMI, M., ZAREBSKI, A., SJOBERG, S., FUJII, 

M., MIYAZONO, K. & FUNA, K. 2004. The bone morphogenetic protein 

type Ib receptor is a major mediator of glial differentiation and cell survival 

in adult hippocampal progenitor cell culture. Mol Biol Cell, 15, 3863-75. 

BREDERLAU, A., FAIGLE, R., KAPLAN, P., ODIN, P. & FUNA, K. 2002. Bone 

morphogenetic proteins but not growth differentiation factors induce 

dopaminergic differentiation in mesencephalic precursors. Mol Cell 

Neurosci, 21, 367-78. 



227 
 

BRODSKI, C., WEISENHORN, D. M., SIGNORE, M., SILLABER, I., 

OESTERHELD, M., BROCCOLI, V., ACAMPORA, D., SIMEONE, A. & 

WURST, W. 2003. Location and size of dopaminergic and serotonergic cell 

populations are controlled by the position of the midbrain-hindbrain 

organizer. J Neurosci, 23, 4199-207. 

BRUNDIN, P., KARLSSON, J., EMGARD, M., SCHIERLE, G. S., HANSSON, O., 

PETERSEN, A. & CASTILHO, R. F. 2000. Improving the survival of 

grafted dopaminergic neurons: a review over current approaches. Cell 

Transplant, 9, 179-95. 

BUCHMANN-MOLLER, S., MIESCHER, I., JOHN, N., KRISHNAN, J., DENG, 

C. X. & SOMMER, L. 2009. Multiple lineage-specific roles of Smad4 during 

neural crest development. Dev Biol, 330, 329-38. 

BURKE, R. E. 2003. Postnatal developmental programmed cell death in dopamine 

neurons. Ann N Y Acad Sci, 991, 69-79. 

BUTLER, S. J. & DODD, J. 2003. A role for BMP heterodimers in roof plate-

mediated repulsion of commissural axons. Neuron, 38, 389-401. 

CACHEUX, V., DASTOT-LE MOAL, F., KAARIAINEN, H., BONDURAND, N., 

RINTALA, R., BOISSIER, B., WILSON, M., MOWAT, D. & GOOSSENS, 

M. 2001. Loss-of-function mutations in SIP1 Smad interacting protein 1 

result in a syndromic Hirschsprung disease. Hum Mol Genet, 10, 1503-10. 

CAI, J., SCHLEIDT, S., PELTA-HELLER, J., HUTCHINGS, D., CANNARSA, G. 

& IACOVITTI, L. 2013. BMP and TGF-beta pathway mediators are critical 

upstream regulators of Wnt signalling during midbrain dopamine 

differentiation in human pluripotent stemcells. Dev Biol. 

CAJANEK, L., GANJI, R. S., HENRIQUES-OLIVEIRA, C., THEOFILOPOULOS, 

S., KONIK, P., BRYJA, V. & ARENAS, E. 2012. Tiam1 regulates the 

Wnt/Dvl/Rac1 signalling pathway and the differentiation of midbrain 

dopaminergic neurons. Mol Cell Biol. 

CALDWELL, M. A., HE, X. & SVENDSEN, C. N. 2005. 5-Bromo-2'-deoxyuridine 

is selectively toxic to neuronal precursors in vitro. Eur J Neurosci, 22, 2965-

70. 

CALO, L., SPILLANTINI, M., NICOLETTI, F. & ALLEN, N. D. 2005. Nurr1 co-

localizes with EphB1 receptors in the developing ventral midbrain, and its 



228 
 

expression is enhanced by the EphB1 ligand, ephrinB2. J Neurochem, 92, 

235-45. 

CARONIA, G., WILCOXON, J., FELDMAN, P. & GROVE, E. A. 2010. Bone 

morphogenetic protein signalling in the developing telencephalon controls 

formation of the hippocampal dentate gyrus and modifies fear-related 

behavior. J Neurosci, 30, 6291-301. 

CASPER, K. B. & MCCARTHY, K. D. 2006. GFAP-positive progenitor cells 

produce neurons and oligodendrocytes throughout the CNS. Mol Cell 

Neurosci, 31, 676-84. 

CASS, W. A., PETERS, L. E., HARNED, M. E. & SEROOGY, K. B. 2006. 

Protection by GDNF and other trophic factors against the dopamine-

depleting effects of neurotoxic doses of methamphetamine. Ann N Y Acad 

Sci, 1074, 272-81. 

CASTELO-BRANCO, G., ANDERSSON, E. R., MININA, E., SOUSA, K. M., 

RIBEIRO, D., KOKUBU, C., IMAI, K., PRAKASH, N., WURST, W. & 

ARENAS, E. 2010. Delayed dopaminergic neuron differentiation in Lrp6 

mutant mice. Dev Dyn, 239, 211-21. 

CASTELO-BRANCO, G., RAWAL, N. & ARENAS, E. 2004. GSK-3beta 

inhibition/beta-catenin stabilization in ventral midbrain precursors increases 

differentiation into dopamine neurons. J Cell Sci, 117, 5731-7. 

CASTELO-BRANCO, G., SOUSA, K. M., BRYJA, V., PINTO, L., WAGNER, J. & 

ARENAS, E. 2006. Ventral midbrain glia express region-specific 

transcription factors and regulate dopaminergic neurogenesis through Wnt-5a 

secretion. Mol Cell Neurosci, 31, 251-62. 

CASTELO-BRANCO, G., WAGNER, J., RODRIGUEZ, F. J., KELE, J., SOUSA, 

K., RAWAL, N., PASOLLI, H. A., FUCHS, E., KITAJEWSKI, J. & 

ARENAS, E. 2003. Differential regulation of midbrain dopaminergic neuron 

development by Wnt-1, Wnt-3a, and Wnt-5a. Proc Natl Acad Sci U S A, 100, 

12747-52. 

CASTILLO, S. O., BAFFI, J. S., PALKOVITS, M., GOLDSTEIN, D. S., KOPIN, I. 

J., WITTA, J., MAGNUSON, M. A. & NIKODEM, V. M. 1998. Dopamine 

biosynthesis is selectively abolished in substantia nigra/ventral tegmental 

area but not in hypothalamic neurons in mice with targeted disruption of the 

Nurr1 gene. Mol Cell Neurosci, 11, 36-46. 



229 
 

CATE, H. S., SABO, J. K., MERLO, D., KEMPER, D., AUMANN, T. D., 

ROBINSON, J., MERSON, T. D., EMERY, B., PERREAU, V. M. & 

KILPATRICK, T. J. 2010. Modulation of bone morphogenic protein 

signalling alters numbers of astrocytes and oligodendroglia in the 

subventricular zone during cuprizone-induced demyelination. J Neurochem, 

115, 11-22. 

CAZORLA, P., SMIDT, M. P., O'MALLEY, K. L. & BURBACH, J. P. 2000. A 

response element for the homeodomain transcription factor Ptx3 in the 

tyrosine hydroxylase gene promoter. J Neurochem, 74, 1829-37. 

CHAKRABARTY, K., VON OERTHEL, L., HELLEMONS, A., CLOTMAN, F., 

ESPANA, A., GROOT KOERKAMP, M., HOLSTEGE, F. C., 

PASTERKAMP, R. J. & SMIDT, M. P. 2012. Genome wide expression 

profiling of the mesodiencephalic region identifies novel factors involved in 

early and late dopaminergic development. Biol Open, 1, 693-704. 

CHALAZONITIS, A., D'AUTREAUX, F., GUHA, U., PHAM, T. D., FAURE, C., 

CHEN, J. J., ROMAN, D., KAN, L., ROTHMAN, T. P., KESSLER, J. A. & 

GERSHON, M. D. 2004. Bone morphogenetic protein-2 and -4 limit the 

number of enteric neurons but promote development of a TrkC-expressing 

neurotrophin-3-dependent subset. J Neurosci, 24, 4266-82. 

CHALAZONITIS, A., D'AUTREAUX, F., PHAM, T. D., KESSLER, J. A. & 

GERSHON, M. D. 2011. Bone morphogenetic proteins regulate enteric 

gliogenesis by modulating ErbB3 signalling. Dev Biol, 350, 64-79. 

CHALAZONITIS, A. & KESSLER, J. A. 2012. Pleiotropic effects of the bone 

morphogenetic proteins on development of the enteric nervous system. Dev 

Neurobiol, 72, 843-56. 

CHALAZONITIS, A., PHAM, T. D., LI, Z., ROMAN, D., GUHA, U., GOMES, W., 

KAN, L., KESSLER, J. A. & GERSHON, M. D. 2008. Bone morphogenetic 

protein regulation of enteric neuronal phenotypic diversity: relationship to 

timing of cell cycle exit. J Comp Neurol, 509, 474-92. 

CHANG, C. & HARLAND, R. M. 2007. Neural induction requires continued 

suppression of both Smad1 and Smad2 signals during gastrulation. 

Development, 134, 3861-72. 

CHANG, H., HUYLEBROECK, D., VERSCHUEREN, K., GUO, Q., MATZUK, 

M. M. & ZWIJSEN, A. 1999. Smad5 knockout mice die at mid-gestation due 



230 
 

to multiple embryonic and extraembryonic defects. Development, 126, 1631-

42. 

CHEN, H. L., LEIN, P. J., WANG, J. Y., GASH, D., HOFFER, B. J. & CHIANG, 

Y. H. 2003. Expression of bone morphogenetic proteins in the brain during 

normal aging and in 6-hydroxydopamine-lesioned animals. Brain Res, 994, 

81-90. 

CHEN, S. & LE, W. 2006. Neuroprotective therapy in Parkinson disease. Am J Ther, 

13, 445-57. 

CHEN, Y. G. & MASSAGUE, J. 1999. Smad1 recognition and activation by the 

ALK1 group of transforming growth factor-beta family receptors. J Biol 

Chem, 274, 3672-7. 

CHENG, X., WANG, Y., HE, Q., QIU, M., WHITTEMORE, S. R. & CAO, Q. 

2007. Bone morphogenetic protein signalling and olig1/2 interact to regulate 

the differentiation and maturation of adult oligodendrocyte precursor cells. 

Stem Cells, 25, 3204-14. 

CHENN, A. & WALSH, C. A. 2002. Regulation of cerebral cortical size by control 

of cell cycle exit in neural precursors. Science, 297, 365-9. 

CHESNUTT, C., BURRUS, L. W., BROWN, A. M. & NISWANDER, L. 2004. 

Coordinate regulation of neural tube patterning and proliferation by TGFbeta 

and WNT activity. Dev Biol, 274, 334-47. 

CHILOV, D., SINJUSHINA, N., SAARIMAKI-VIRE, J., TAKETO, M. M. & 

PARTANEN, J. 2010. beta-Catenin regulates intercellular signalling 

networks and cell-type specific transcription in the developing mouse 

midbrain-rhombomere 1 region. PLoS One, 5, e10881. 

CHIZHIKOV, V. V., LINDGREN, A. G., MISHIMA, Y., ROBERTS, R. W., 

ALDINGER, K. A., MIESEGAES, G. R., CURRLE, D. S., MONUKI, E. S. 

& MILLEN, K. J. 2010. Lmx1a regulates fates and location of cells 

originating from the cerebellar rhombic lip and telencephalic cortical hem. 

Proc Natl Acad Sci U S A, 107, 10725-30. 

CHIZHIKOV, V. V. & MILLEN, K. J. 2004. Control of roof plate formation by 

Lmx1a in the developing spinal cord (Lmx1a + BMPs). Development, 131, 

2693-705. 

CHIZHIKOV, V. V. & MILLEN, K. J. 2005. Roof plate-dependent patterning of the 

vertebrate dorsal central nervous system. Dev Biol, 277, 287-95. 



231 
 

CHO, G., LIM, Y., ZAND, D. & GOLDEN, J. A. 2008. Sizn1 is a novel protein that 

functions as a transcriptional coactivator of bone morphogenic protein 

signalling. Mol Cell Biol, 28, 1565-72. 

CHOI-LUNDBERG, D. L. & BOHN, M. C. 1995. Ontogeny and distribution of glial 

cell line-derived neurotrophic factor (GDNF) mRNA in rat. Brain Res Dev 

Brain Res, 85, 80-8. 

CHONG, P. A., LIN, H., WRANA, J. L. & FORMAN-KAY, J. D. 2010. Coupling 

of tandem Smad ubiquitination regulatory factor (Smurf) WW domains 

modulates target specificity. Proc Natl Acad Sci U S A, 107, 18404-9. 

CHOU, J., HARVEY, B. K., EBENDAL, T., HOFFER, B. & WANG, Y. 2008a. 

Nigrostriatal alterations in bone morphogenetic protein receptor II dominant 

negative mice. Acta Neurochir Suppl, 101, 93-8. 

CHOU, J., LUO, Y., KUO, C. C., POWERS, K., SHEN, H., HARVEY, B. K., 

HOFFER, B. J. & WANG, Y. 2008b. Bone morphogenetic protein-7 reduces 

toxicity induced by high doses of methamphetamine in rodents. 

Neuroscience, 151, 92-103. 

CHRISTIAN, J. L., MCMAHON, J. A., MCMAHON, A. P. & MOON, R. T. 1991. 

Xwnt-8, a Xenopus Wnt-1/int-1-related gene responsive to mesoderm-

inducing growth factors, may play a role in ventral mesodermal patterning 

during embryogenesis. Development, 111, 1045-55. 

CHUNG, S., HEDLUND, E., HWANG, M., KIM, D. W., SHIN, B. S., HWANG, D. 

Y., KANG, U. J., ISACSON, O. & KIM, K. S. 2005. The homeodomain 

transcription factor Pitx3 facilitates differentiation of mouse embryonic stem 

cells into AHD2-expressing dopaminergic neurons. Mol Cell Neurosci, 28, 

241-52. 

CHUNG, S., LEUNG, A., HAN, B. S., CHANG, M. Y., MOON, J. I., KIM, C. H., 

HONG, S., PRUSZAK, J., ISACSON, O. & KIM, K. S. 2009. Wnt1-lmx1a 

forms a novel autoregulatory loop and controls midbrain dopaminergic 

differentiation synergistically with the SHH-FoxA2 pathway. Cell Stem Cell, 

5, 646-58. 

CIANI, L. & SALINAS, P. C. 2005. WNTs in the vertebrate nervous system: from 

patterning to neuronal connectivity. Nat Rev Neurosci, 6, 351-62. 

CICERONI, C., MOSILLO, P., MASTRANTONI, E., SALE, P., RICCI-VITIANI, 

L., BIAGIONI, F., STOCCHI, F., NICOLETTI, F. & MELCHIORRI, D. 



232 
 

2010. mGLU3 metabotropic glutamate receptors modulate the differentiation 

of SVZ-derived neural stem cells towards the astrocytic lineage. Glia, 58, 

813-22. 

CLARKSON, E. D., ZAWADA, W. M. & FREED, C. R. 1995. GDNF reduces 

apoptosis in dopaminergic neurons in vitro. Neuroreport, 7, 145-9. 

CLARKSON, E. D., ZAWADA, W. M. & FREED, C. R. 1997. GDNF improves 

survival and reduces apoptosis in human embryonic dopaminergic neurons in 

vitro. Cell Tissue Res, 289, 207-10. 

CLAYTON, K. B. & SULLIVAN, A. M. 2007. Differential effects of GDF5 on the 

medial and lateral rat ventral mesencephalon. Neurosci Lett, 427, 132-7. 

COLAK, D., MORI, T., BRILL, M. S., PFEIFER, A., FALK, S., DENG, C., 

MONTEIRO, R., MUMMERY, C., SOMMER, L. & GOTZ, M. 2008. Adult 

neurogenesis requires Smad4-mediated bone morphogenic protein signalling 

in stem cells. J Neurosci, 28, 434-46. 

COLLIER, T. J. & SORTWELL, C. E. 1999. Therapeutic potential of nerve growth 

factors in Parkinson's disease. Drugs Aging, 14, 261-87. 

COLLINS, L. M., O'KEEFFE, G. W., LONG-SMITH, C. M., WYATT, S. L., 

SULLIVAN, A. M., TOULOUSE, A. & NOLAN, Y. M. 2013. Mitogen-

Activated Protein Kinase Phosphatase (MKP)-1 as a Neuroprotective Agent: 

Promotion of the Morphological Development of Midbrain Dopaminergic 

Neurons. Neuromolecular Med, 15, 435-46. 

COLLINS, L. M., TOULOUSE, A., CONNOR, T. J. & NOLAN, Y. M. 2012. 

Contributions of central and systemic inflammation to the pathophysiology of 

Parkinson's disease. Neuropharmacology, 62, 2154-68. 

CONNOR, B., KOZLOWSKI, D. A., UNNERSTALL, J. R., ELSWORTH, J. D., 

TILLERSON, J. L., SCHALLERT, T. & BOHN, M. C. 2001. Glial cell line-

derived neurotrophic factor (GDNF) gene delivery protects dopaminergic 

terminals from degeneration. Exp Neurol, 169, 83-95. 

COOPER, M. A., KOBAYASHI, K. & ZHOU, R. 2009. Ephrin-A5 regulates the 

formation of the ascending midbrain dopaminergic pathways. Dev Neurobiol, 

69, 36-46. 

COSTANTINI, L. C. & ISACSON, O. 2000. Immunophilin ligands and GDNF 

enhance neurite branching or elongation from developing dopamine neurons 

in culture. Exp Neurol, 164, 60-70. 



233 
 

COSTELLO, D. J., O'KEEFFE, G. W., HURLEY, F. M. & SULLIVAN, A. M. 

2012. Transplantation of novel human GDF5-expressing CHO cells is 

neuroprotective in models of Parkinson's disease. J Cell Mol Med, 16, 2451-

60. 

CROSSLEY, P. H. & MARTIN, G. R. 1995. The mouse Fgf8 gene encodes a family 

of polypeptides and is expressed in regions that direct outgrowth and 

patterning in the developing embryo. Development, 121, 439-51. 

D'ALESSANDRO, J. S. & WANG, E. A. 1994a. Bone morphogenetic proteins 

inhibit proliferation, induce reversible differentiation and prevent cell death 

in astrocyte lineage cells. Growth Factors, 11, 45-52. 

D'ALESSANDRO, J. S., YETZ-ALDAPE, J. & WANG, E. A. 1994b. Bone 

morphogenetic proteins induce differentiation in astrocyte lineage cells. 

Growth Factors, 11, 53-69. 

DAHLSTROEM, A. & FUXE, K. 1964. EVIDENCE FOR THE EXISTENCE OF 

MONOAMINE-CONTAINING NEURONS IN THE CENTRAL 

NERVOUS SYSTEM. I. DEMONSTRATION OF MONOAMINES IN THE 

CELL BODIES OF BRAIN STEM NEURONS. Acta Physiol Scand Suppl, 

SUPPL 232:1-55. 

DAI, J. X., HU, Z. L., SHI, M., GUO, C. & DING, Y. Q. 2008. Postnatal ontogeny 

of the transcription factor Lmx1b in the mouse central nervous system. J 

Comp Neurol, 509, 341-55. 

DALE, K., SATTAR, N., HEEMSKERK, J., CLARKE, J. D., PLACZEK, M. & 

DODD, J. 1999. Differential patterning of ventral midline cells by axial 

mesoderm is regulated by BMP7 and chordin. Development, 126, 397-408. 

DANIELIAN, P. S. & MCMAHON, A. P. 1996. Engrailed-1 as a target of the Wnt-1 

signalling pathway in vertebrate midbrain development. Nature, 383, 332-4. 

DATE, I., AOI, M., TOMITA, S., COLLINS, F. & OHMOTO, T. 1998. GDNF 

administration induces recovery of the nigrostriatal dopaminergic system 

both in young and aged parkinsonian mice. Neuroreport, 9, 2365-9. 

DAVID, L., MALLET, C., MAZERBOURG, S., FEIGE, J. J. & BAILLY, S. 2007. 

Identification of BMP9 and BMP10 as functional activators of the orphan 

activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood, 109, 1953-

61. 



234 
 

DAVIS, C. A. & JOYNER, A. L. 1988. Expression patterns of the homeo box-

containing genes En-1 and En-2 and the proto-oncogene int-1 diverge during 

mouse development. Genes Dev, 2, 1736-44. 

DE FEO, D., MERLINI, A., LATERZA, C. & MARTINO, G. 2012. Neural stem 

cell transplantation in central nervous system disorders: from cell 

replacement to neuroprotection. Curr Opin Neurol, 25, 322-33. 

DE GRAAF-PETERS, V. B. & HADDERS-ALGRA, M. 2006. Ontogeny of the 

human central nervous system: what is happening when? Early Hum Dev, 82, 

257-66. 

DE LAU, L. M. & BRETELER, M. M. 2006. Epidemiology of Parkinson's disease. 

Lancet Neurol, 5, 525-35. 

DEIERBORG, T., SOULET, D., ROYBON, L., HALL, V. & BRUNDIN, P. 2008. 

Emerging restorative treatments for Parkinson's disease. Prog Neurobiol, 85, 

407-32. 

DEKKERS, W. & BOER, G. 2001. Sham neurosurgery in patients with Parkinson's 

disease: is it morally acceptable? J Med Ethics, 27, 151-6. 

DELALANDE, J. M., GUYOTE, M. E., SMITH, C. M. & SHEPHERD, I. T. 2008. 

Zebrafish sip1a and sip1b are essential for normal axial and neural patterning. 

Dev Dyn, 237, 1060-9. 

DELAUNE, E., LEMAIRE, P. & KODJABACHIAN, L. 2005. Neural induction in 

Xenopus requires early FGF signalling in addition to BMP inhibition. 

Development, 132, 299-310. 

DELEYROLLE, L. P. & REYNOLDS, B. A. 2009. Isolation, expansion, and 

differentiation of adult Mammalian neural stem and progenitor cells using the 

neurosphere assay. Methods Mol Biol, 549, 91-101. 

DEMYANENKO, G. P., SHIBATA, Y. & MANESS, P. F. 2001. Altered 

distribution of dopaminergic neurons in the brain of L1 null mice. Brain Res 

Dev Brain Res, 126, 21-30. 

DENG, Q., ANDERSSON, E., HEDLUND, E., ALEKSEENKO, Z., COPPOLA, E., 

PANMAN, L., MILLONIG, J. H., BRUNET, J. F., ERICSON, J. & 

PERLMANN, T. 2011. Specific and integrated roles of Lmx1a, Lmx1b and 

Phox2a in ventral midbrain development. Development. 



235 
 

DENT, E. W., GUPTON, S. L. & GERTLER, F. B. 2011. The growth cone 

cytoskeleton in axon outgrowth and guidance. Cold Spring Harb Perspect 

Biol, 3. 

DERYNCK, R. & ZHANG, Y. E. 2003. Smad-dependent and Smad-independent 

pathways in TGF-beta family signalling. Nature, 425, 577-84. 

DESCHAMPS, C., FAIDEAU, M., JABER, M., GAILLARD, A. & PRESTOZ, L. 

2009. Expression of ephrinA5 during development and potential involvement 

in the guidance of the mesostriatal pathway. Exp Neurol, 219, 466-80. 

DI SALVIO, M., DI GIOVANNANTONIO, L. G., ACAMPORA, D., PROSPERI, 

R., OMODEI, D., PRAKASH, N., WURST, W. & SIMEONE, A. 2010a. 

Otx2 controls neuron subtype identity in ventral tegmental area and 

antagonizes vulnerability to MPTP. Nat Neurosci, 13, 1481-8. 

DI SALVIO, M., DI GIOVANNANTONIO, L. G., OMODEI, D., ACAMPORA, D. 

& SIMEONE, A. 2010b. Otx2 expression is restricted to dopaminergic 

neurons of the ventral tegmental area in the adult brain. Int J Dev Biol, 54, 

939-45. 

DICK, A., HILD, M., BAUER, H., IMAI, Y., MAIFELD, H., SCHIER, A. F., 

TALBOT, W. S., BOUWMEESTER, T. & HAMMERSCHMIDT, M. 2000. 

Essential role of Bmp7 (snailhouse) and its prodomain in dorsoventral 

patterning of the zebrafish embryo. Development, 127, 343-54. 

DICKINSON, M. E., SELLECK, M. A., MCMAHON, A. P. & BRONNER-

FRASER, M. 1995. Dorsalization of the neural tube by the non-neural 

ectoderm. Development, 121, 2099-106. 

DREVELLE, O., DAVIAU, A., LAUZON, M. A. & FAUCHEUX, N. 2013. Effect 

of BMP-2 and/or BMP-9 on preosteoblasts attached to polycaprolactone 

functionalized by adhesive peptides derived from bone sialoprotein. 

Biomaterials, 34, 1051-62. 

DU, Y. & YIP, H. 2010. Effects of bone morphogenetic protein 2 on Id expression 

and neuroblastoma cell differentiation. Differentiation, 79, 84-92. 

DUGAN, J. P., STRATTON, A., RILEY, H. P., FARMER, W. T. & MASTICK, G. 

S. 2011. Midbrain dopaminergic axons are guided longitudinally through the 

diencephalon by Slit/Robo signals. Mol Cell Neurosci, 46, 347-56. 

EBADI, M., SHARMA, S., SHAVALI, S. & EL REFAEY, H. 2002. 

Neuroprotective actions of selegiline. J Neurosci Res, 67, 285-9. 



236 
 

EBISAWA, T., FUKUCHI, M., MURAKAMI, G., CHIBA, T., TANAKA, K., 

IMAMURA, T. & MIYAZONO, K. 2001. Smurf1 interacts with 

transforming growth factor-beta type I receptor through Smad7 and induces 

receptor degradation. J Biol Chem  276, 12477-80. 

ECHELARD, Y., EPSTEIN, D. J., ST-JACQUES, B., SHEN, L., MOHLER, J., 

MCMAHON, J. A. & MCMAHON, A. P. 1993. Sonic hedgehog, a member 

of a family of putative signalling molecules, is implicated in the regulation of 

CNS polarity. Cell, 75, 1417-30. 

ECHELARD, Y., VASSILEVA, G. & MCMAHON, A. P. 1994. Cis-acting 

regulatory sequences governing Wnt-1 expression in the developing mouse 

CNS. Development, 120, 2213-24. 

EGEA, J. & KLEIN, R. 2007. Bidirectional Eph-ephrin signalling during axon 

guidance. Trends Cell Biol, 17, 230-8. 

EGGERT, K., SCHLEGEL, J., OERTEL, W., WURZ, C., KRIEG, J. C. & 

VEDDER, H. 1999. Glial cell line-derived neurotrophic factor protects 

dopaminergic neurons from 6-hydroxydopamine toxicity in vitro. Neurosci 

Lett, 269, 178-82. 

EHRLICH, M., BOLL, W., VAN OIJEN, A., HARIHARAN, R., CHANDRAN, K., 

NIBERT, M. L. & KIRCHHAUSEN, T. 2004. Endocytosis by random 

initiation and stabilization of clathrin-coated pits. Cell, 118, 591-605. 

EIVERS, E., FUENTEALBA, L. C. & DE ROBERTIS, E. M. 2008. Integrating 

positional information at the level of Smad1/5/8. Curr Opin Genet Dev, 18, 

304-10. 

ESPEJO, M., CUTILLAS, B., ARENAS, T. E. & AMBROSIO, S. 2000. Increased 

survival of dopaminergic neurons in striatal grafts of fetal ventral 

mesencephalic cells exposed to neurotrophin-3 or glial cell line-derived 

neurotrophic factor. Cell Transplant, 9, 45-53. 

ESPEJO, M., CUTILLAS, B., VENTURA, F. & AMBROSIO, S. 1999. Exposure of 

foetal mesencephalic cells to bone morphogenetic protein-2 enhances the 

survival of dopaminergic neurones in rat striatal grafts. Neurosci Lett, 275, 

13-6. 

ESTRADA, K. D., RETTING, K. N., CHIN, A. M. & LYONS, K. M. 2011. Smad6 

is essential to limit BMP signalling during cartilage development. J Bone 

Miner Res, 26, 2498-510. 



237 
 

FAILLI, V., BACHY, I. & RETAUX, S. 2002. Expression of the LIM-

homeodomain gene Lmx1a (dreher) during development of the mouse 

nervous system. Mech Dev, 118, 225-8. 

FARISS, M. W. & ZHANG, J. G. 2003. Vitamin E therapy in Parkinson's disease. 

Toxicology, 189, 129-46. 

FARKAS, L. M., DUNKER, N., ROUSSA, E., UNSICKER, K. & KRIEGLSTEIN, 

K. 2003. Transforming growth factor-beta(s) are essential for the 

development of midbrain dopaminergic neurons in vitro and in vivo. J 

Neurosci, 23, 5178-86. 

FARLIE, P. G., MCKEOWN, S. J. & NEWGREEN, D. F. 2004. The neural crest: 

basic biology and clinical relationships in the craniofacial and enteric nervous 

systems. Birth Defects Res C Embryo Today, 72, 173-89. 

FARRER, M. J. 2006. Genetics of Parkinson disease: paradigm shifts and future 

prospects. Nat Rev Genet, 7, 306-18. 

FERRI, A. L., LIN, W., MAVROMATAKIS, Y. E., WANG, J. C., SASAKI, H., 

WHITSETT, J. A. & ANG, S. L. 2007. Foxa1 and Foxa2 regulate multiple 

phases of midbrain dopaminergic neuron development in a dosage-dependent 

manner. Development, 134, 2761-9. 

FILIPPI, A., DURR, K., RYU, S., WILLAREDT, M., HOLZSCHUH, J. & 

DRIEVER, W. 2007. Expression and function of nr4a2, lmx1b, and pitx3 in 

zebrafish dopaminergic and noradrenergic neuronal development. BMC Dev 

Biol, 7, 135. 

FLANDERS, K. C., LUDECKE, G., ENGELS, S., CISSEL, D. S., ROBERTS, A. 

B., KONDAIAH, P., LAFYATIS, R., SPORN, M. B. & UNSICKER, K. 

1991. Localization and actions of transforming growth factor-beta s in the 

embryonic nervous system. Development, 113, 183-91. 

FLORES, C., MANITT, C., RODAROS, D., THOMPSON, K. M., RAJABI, H., 

LUK, K. C., TRITSCH, N. X., SADIKOT, A. F., STEWART, J. & 

KENNEDY, T. E. 2005. Netrin receptor deficient mice exhibit functional 

reorganization of dopaminergic systems and do not sensitize to amphetamine. 

Mol Psychiatry, 10, 606-12. 

FORNEROD, M., OHNO, M., YOSHIDA, M. & MATTAJ, I. W. 1997. CRM1 is an 

export receptor for leucine-rich nuclear export signals. Cell, 90, 1051-60. 



238 
 

FOX, C. M., GASH, D. M., SMOOT, M. K. & CASS, W. A. 2001. Neuroprotective 

effects of GDNF against 6-OHDA in young and aged rats. Brain Res, 896, 

56-63. 

FREED, C. R., GREENE, P. E., BREEZE, R. E., TSAI, W. Y., DUMOUCHEL, W., 

KAO, R., DILLON, S., WINFIELD, H., CULVER, S., TROJANOWSKI, J. 

Q., EIDELBERG, D. & FAHN, S. 2001. Transplantation of embryonic 

dopamine neurons for severe Parkinson's disease. N Engl J Med, 344, 710-9. 

FUCCILLO, M., JOYNER, A. L. & FISHELL, G. 2006. Morphogen to mitogen: the 

multiple roles of hedgehog signalling in vertebrate neural development. Nat 

Rev Neurosci, 7, 772-83. 

FUENTEALBA, L. C., EIVERS, E., IKEDA, A., HURTADO, C., KURODA, H., 

PERA, E. M. & DE ROBERTIS, E. M. 2007. Integrating patterning signals: 

Wnt/GSK3 regulates the duration of the BMP/Smad1 signal. Cell, 131, 980-

93. 

FULLER, M. L., DECHANT, A. K., ROTHSTEIN, B., CAPRARIELLO, A., 

WANG, R., HALL, A. K. & MILLER, R. H. 2007. Bone morphogenetic 

proteins promote gliosis in demyelinating spinal cord lesions. Ann Neurol, 

62, 288-300. 

FURUTA, Y., PISTON, D. W. & HOGAN, B. L. 1997. Bone morphogenetic 

proteins (BMPs) as regulators of dorsal forebrain development. Development, 

124, 2203-12. 

GAJERA, C. R., EMICH, H., LIOUBINSKI, O., CHRIST, A., 

BECKERVORDERSANDFORTH-BONK, R., YOSHIKAWA, K., 

BACHMANN, S., CHRISTENSEN, E. I., GOTZ, M., KEMPERMANN, G., 

PETERSON, A. S., WILLNOW, T. E. & HAMMES, A. 2010. LRP2 in 

ependymal cells regulates BMP signalling in the adult neurogenic niche. J 

Cell Sci, 123, 1922-30. 

GANAT, Y. M., SILBEREIS, J., CAVE, C., NGU, H., ANDERSON, G. M., 

OHKUBO, Y., MENT, L. R. & VACCARINO, F. M. 2006. Early postnatal 

astroglial cells produce multilineage precursors and neural stem cells in vivo. 

J Neurosci, 26, 8609-21. 

GASH, D. M., ZHANG, Z., OVADIA, A., CASS, W. A., YI, A., SIMMERMAN, 

L., RUSSELL, D., MARTIN, D., LAPCHAK, P. A., COLLINS, F., 



239 
 

HOFFER, B. J. & GERHARDT, G. A. 1996. Functional recovery in 

parkinsonian monkeys treated with GDNF. Nature, 380, 252-5. 

GASSER, T. 2009. Molecular pathogenesis of Parkinson disease: insights from 

genetic studies. Expert Rev Mol Med, 11, e22. 

GATES, M. A., COUPE, V. M., TORRES, E. M., FRICKER-GATES, R. A. & 

DUNNETT, S. B. 2004. Spatially and temporally restricted chemoattractive 

and chemorepulsive cues direct the formation of the nigro-striatal circuit. Eur 

J Neurosci, 19, 831-44. 

GATES, M. A., TORRES, E. M., WHITE, A., FRICKER-GATES, R. A. & 

DUNNETT, S. B. 2006. Re-examining the ontogeny of substantia nigra 

dopamine neurons. Eur J Neurosci, 23, 1384-90. 

GAVIN, A. M., WALSH, S., WYATT, S. L., O’KEEFFE, G. W. & SULLIVAN, A. 

2013. 6-Hydroxydopamine induces distinct alterations in GDF5 and GDNF 

mRNA expression in the rat nigrostriatal system in vivo. Neurosci Lett 

(submitted). 

GERMAN, D. C., SCHLUSSELBERG, D. S. & WOODWARD, D. J. 1983. Three-

dimensional computer reconstruction of midbrain dopaminergic neuronal 

populations: from mouse to man. J Neural Transm, 57, 243-54. 

GILBOA, L., NOHE, A., GEISSENDORFER, T., SEBALD, W., HENIS, Y. I. & 

KNAUS, P. 2000. Bone morphogenetic protein receptor complexes on the 

surface of live cells: a new oligomerization mode for serine/threonine kinase 

receptors. Mol Biol Cell, 11, 1023-35. 

GILL, S. S., PATEL, N. K., HOTTON, G. R., O'SULLIVAN, K., MCCARTER, R., 

BUNNAGE, M., BROOKS, D. J., SVENDSEN, C. N. & HEYWOOD, P. 

2003. Direct brain infusion of glial cell line-derived neurotrophic factor in 

Parkinson disease. Nat Med, 9, 589-95. 

GLEBOVA, N. O. & GINTY, D. D. 2004. Heterogeneous requirement of NGF for 

sympathetic target innervation in vivo. J Neurosci, 24, 743-51. 

GOBESKE, K. T., DAS, S., BONAGUIDI, M. A., WEISS, C., RADULOVIC, J., 

DISTERHOFT, J. F. & KESSLER, J. A. 2009. BMP signalling mediates 

effects of exercise on hippocampal neurogenesis and cognition in mice. PLoS 

One, 4, e7506. 



240 
 

GOMES, W. A., MEHLER, M. F. & KESSLER, J. A. 2003. Transgenic 

overexpression of BMP4 increases astroglial and decreases oligodendroglial 

lineage commitment. Dev Biol, 255, 164-77. 

GOMEZ-SANTOS, C., AMBROSIO, S., VENTURA, F., FERRER, I. & REIRIZ, J. 

2002. TGF-beta1 increases tyrosine hydroxylase expression by a mechanism 

blocked by BMP-2 in human neuroblastoma SH-SY5Y cells. Brain Res, 958, 

152-60. 

GOTO, K., TONG, K. I., IKURA, J. & OKADA, H. 2011. HLA-B-associated 

transcript 3 (Bat3/Scythe) negatively regulates Smad phosphorylation in 

BMP signalling. Cell Death Dis., 2, e236. 

GOULDING, M. 2009. Circuits controlling vertebrate locomotion: moving in a new 

direction. Nat Rev Neurosci, 10, 507-18. 

GRAHAM, A., FRANCIS-WEST, P., BRICKELL, P. & LUMSDEN, A. 1994. The 

signalling molecule BMP4 mediates apoptosis in the rhombencephalic neural 

crest. Nature, 372, 684-6. 

GRANHOLM, A. C., MOTT, J. L., BOWENKAMP, K., EKEN, S., HENRY, S., 

HOFFER, B. J., LAPCHAK, P. A., PALMER, M. R., VAN HORNE, C. & 

GERHARDT, G. A. 1997. Glial cell line-derived neurotrophic factor 

improves survival of ventral mesencephalic grafts to the 6-hydroxydopamine 

lesioned striatum. Exp Brain Res, 116, 29-38. 

GRANHOLM, A. C., REYLAND, M., ALBECK, D., SANDERS, L., GERHARDT, 

G., HOERNIG, G., SHEN, L., WESTPHAL, H. & HOFFER, B. 2000. Glial 

cell line-derived neurotrophic factor is essential for postnatal survival of 

midbrain dopamine neurons. J Neurosci, 20, 3182-90. 

GRATACOS, E., CHECA, N., PEREZ-NAVARRO, E. & ALBERCH, J. 2001. 

Brain-derived neurotrophic factor (BDNF) mediates bone morphogenetic 

protein-2 (BMP-2) effects on cultured striatal neurones. J Neurochem, 79, 

747-55. 

GRATACOS, E., GAVALDA, N. & ALBERCH, J. 2002. Bone morphogenetic 

protein-6 is a neurotrophic factor for calbindin-positive striatal neurons. J 

Neurosci Res, 70, 638-44. 

GRIESEL, G., KRUG, C., YURLOVA, L., DIACONU, M. & MANSOURI, A. 

2011. Generation of knockout mice expressing a GFP-reporter under the 

control of the Lmx1a locus. Gene Expr Patterns, 11, 345-8. 



241 
 

GROMOVA, K. V., FRIEDRICH, M., NOSKOV, A. & HARMS, G. S. 2007. 

Visualizing Smad1/4 signalling response to bone morphogenetic protein-4 

activation by FRET biosensors. Biochim Biophys Acta, 1773, 1759-73. 

GROPPE, J., GREENWALD, J., WIATER, E., RODRIGUEZ-LEON, J., 

ECONOMIDES, A. N., KWIATKOWSKI, W., AFFOLTER, M., VALE, W. 

W., IZPISUA BELMONTE, J. C. & CHOE, S. 2002. Structural basis of 

BMP signalling inhibition by the cystine knot protein Noggin. Nature, 420, 

636-42. 

GROPPE, J., HINCK, C. S., SAMAVARCHI-TEHRANI, P., ZUBIETA, C., 

SCHUERMANN, J. P., TAYLOR, A. B., SCHWARZ, P. M., WRANA, J. L. 

& HINCK, A. P. 2008. Cooperative assembly of TGF-beta superfamily 

signalling complexes is mediated by two disparate mechanisms and distinct 

modes of receptor binding. Mol Cell, 29, 157-68. 

GROSS, R. E., MEHLER, M. F., MABIE, P. C., ZANG, Z., SANTSCHI, L. & 

KESSLER, J. A. 1996. Bone morphogenetic proteins promote astroglial 

lineage commitment by mammalian subventricular zone progenitor cells. 

Neuron, 17, 595-606. 

GROVES, A. K. & ANDERSON, D. J. 1996. Role of environmental signals and 

transcriptional regulators in neural crest development. Dev Genet, 18, 64-72. 

GUTIERREZ, H. & DAVIES, A. M. 2007. A fast and accurate procedure for 

deriving the Sholl profile in quantitative studies of neuronal morphology. J 

Neurosci Methods, 163, 24-30. 

HAAS, C., NEUHUBER, B., YAMAGAMI, T., RAO, M. & FISCHER, I. 2012. 

Phenotypic analysis of astrocytes derived from glial restricted precursors and 

their impact on axon regeneration. Exp Neurol, 233, 717-32. 

HAGELL, P. & BRUNDIN, P. 2001. Cell survival and clinical outcome following 

intrastriatal transplantation in Parkinson disease. J Neuropathol Exp Neurol, 

60, 741-52. 

HALLADAY, A. K., TESSAROLLO, L., ZHOU, R. & WAGNER, G. C. 2004. 

Neurochemical and behavioral deficits consequent to expression of a 

dominant negative EphA5 receptor. Brain Res Mol Brain Res, 123, 104-11. 

HAMASAKI, T., GOTO, S., NISHIKAWA, S. & USHIO, Y. 2001. A role of netrin-

1 in the formation of the subcortical structure striatum: repulsive action on 

the migration of late-born striatal neurons. J Neurosci, 21, 4272-80. 



242 
 

HANYU, A., ISHIDOU, Y., EBISAWA, T., SHIMANUKI, T., IMAMURA, T. & 

MIYAZONO, K. 2001. The N domain of Smad7 is essential for specific 

inhibition of transforming growth factor-beta signalling. J Cell Biol, 155, 

1017-27. 

HARLAND, R. 2000. Neural induction. Curr Opin Genet Dev, 10, 357-62. 

HARTUNG, A., BITTON-WORMS, K., RECHTMAN, M. M., WENZEL, V., 

BOERGERMANN, J. H., HASSEL, S., HENIS, Y. I. & KNAUS, P. 2006. 

Different routes of bone morphogenic protein (BMP) receptor endocytosis 

influence BMP signalling. Mol Cell Biol, 26, 7791-805. 

HARVEY, B. K., MARK, A., CHOU, J., CHEN, G. J., HOFFER, B. J. & WANG, 

Y. 2004. Neurotrophic effects of bone morphogenetic protein-7 in a rat 

model of Parkinson's disease. Brain Res, 1022, 88-95. 

HATA, A., LAGNA, G., MASSAGUE, J. & HEMMATI-BRIVANLOU, A. 1998. 

Smad6 inhibits BMP/Smad1 signalling by specifically competing with the 

Smad4 tumor suppressor. Genes Dev, 12, 186-97. 

HATA, A., SEOANE, J., LAGNA, G., MONTALVO, E., HEMMATI-

BRIVANLOU, A. & MASSAGUE, J. 2000. OAZ uses distinct DNA- and 

protein-binding zinc fingers in separate BMP-Smad and Olf signalling 

pathways. Cell, 100, 229-40. 

HAWLEY, S. H., WUNNENBERG-STAPLETON, K., HASHIMOTO, C., 

LAURENT, M. N., WATABE, T., BLUMBERG, B. W. & CHO, K. W. 

1995. Disruption of BMP signals in embryonic Xenopus ectoderm leads to 

direct neural induction. Genes Dev, 9, 2923-35. 

HAYASHI, H., ABDOLLAH, S., QIU, Y., CAI, J., XU, Y. Y., GRINNELL, B. W., 

RICHARDSON, M. A., TOPPER, J. N., GIMBRONE, M. A., JR., WRANA, 

J. L. & FALB, D. 1997. The MAD-related protein Smad7 associates with the 

TGFbeta receptor and functions as an antagonist of TGFbeta signalling. Cell, 

89, 1165-73. 

HAZEN, V. M., ANDREWS, M. G., UMANS, L., CRENSHAW, E. B., 3RD, 

ZWIJSEN, A. & BUTLER, S. J. 2012. BMP receptor-activated Smads confer 

diverse functions during the development of the dorsal spinal cord. Dev Biol, 

367, 216-27. 



243 
 

HAZEN, V. M., PHAN, K. D., HUDIBURGH, S. & BUTLER, S. J. 2011. Inhibitory 

Smads differentially regulate cell fate specification and axon dynamics in the 

dorsal spinal cord. Dev Biol, 356, 566-75. 

HEBSGAARD, J. B., NELANDER, J., SABELSTROM, H., JONSSON, M. E., 

STOTT, S. & PARMAR, M. 2009. Dopamine neuron precursors within the 

developing human mesencephalon show radial glial characteristics. Glia, 57, 

1648-58. 

HEDLUND, E. & PERLMANN, T. 2009. Neuronal cell replacement in Parkinson's 

disease. J Intern Med, 266, 358-71. 

HEEG-TRUESDELL, E. & LABONNE, C. 2006. Neural induction in Xenopus 

requires inhibition of Wnt-beta-catenin signalling. Dev Biol, 298, 71-86. 

HEERMANN, S., OPAZO, F., FALKENBURGER, B., KRIEGLSTEIN, K. & 

SPITTAU, B. 2010. Aged Tgfbeta2/Gdnf double-heterozygous mice show no 

morphological and functional alterations in the nigrostriatal system. J Neural 

Transm, 117, 719-27. 

HEGARTY, S. V., COLLINS, L. M., GAVIN, A. M., ROCHE, S. L., WYATT, S. 

L., SULLIVAN, A. M. & O'KEEFFE, G. W. 2014a. Canonical BMP-Smad 

signalling promotes neurite growth in rat midbrain dopaminergic neurons. 

NeuroMol Med, Epub Date: 29 Mar 2014, DOI: 10.1007/s12017-014-8299-5. 

HEGARTY, S. V., O’KEEFFE, G. W. & SULLIVAN, A. M. 2013a. BMP-Smad 

1/5/8 signalling in the development of the nervous system. Prog Neurobiol, 

109C, 28-41. 

HEGARTY, S. V., SPITERE, K., SULLIVAN, A. M. & O’KEEFFE, G. W. 2014b. 

Ventral midbrain neural stem cells have delayed neurogenic potential in vitro 

Neurosci Lett, 559, 193-98. 

HEGARTY, S. V., SULLIVAN, A. M. & O’KEEFFE, G. W. 2014c. Roles for the 

TGFβ superfamily in the development and survival of midbrain 

dopaminergic neurons. Mol Neurobiol (2014), Epub Date: 7 Feb 2014, DOI: 

10.1007/s12035-014-8639-3. 

HEGARTY, S. V., SULLIVAN, A. M. & O'KEEFFE, G. W. 2013b. BMP2 and 

GDF5 induce neuronal differentiation through a Smad dependant pathway in 

a model of human midbrain dopaminergic neurons. Mol Cell Neurosci, 56C, 

263-271. 



244 
 

HEGARTY, S. V., SULLIVAN, A. M. & O'KEEFFE, G. W. 2013c. Midbrain 

dopaminergic neurons: A review of the molecular circuitry that regulates 

their development. Dev Biol, 379, 123-38. 

HEINECKE, K., SEHER, A., SCHMITZ, W., MUELLER, T. D., SEBALD, W. & 

NICKEL, J. 2009. Receptor oligomerization and beyond: a case study in 

bone morphogenetic proteins. BMC Biol., 7, 59. 

HEINING, E., BHUSHAN, R., PAARMANN, P., HENIS, Y. I. & KNAUS, P. 2011. 

Spatial segregation of BMP/Smad signalling affects osteoblast differentiation 

in C2C12 cells. PLoS One, 6, e25163. 

HELDIN, C. H., MIYAZONO, K. & TEN DIJKE, P. 1997. TGF-beta signalling 

from cell membrane to nucleus through SMAD proteins. Nature, 390, 465-

71. 

HEMMATI-BRIVANLOU, A. & MELTON, D. 1997. Vertebrate neural induction. 

Annu Rev Neurosci, 20, 43-60. 

HENG, X., JIN, G., ZHANG, X., YANG, D., ZHU, M., FU, S., LI, X. & LE, W. 

2012. Nurr1 regulates Top IIbeta and functions in axon genesis of 

mesencephalic dopaminergic neurons. Mol Neurodegener, 7, 4. 

HERMANSON, E., BORGIUS, L., BERGSLAND, M., JOODMARDI, E. & 

PERLMANN, T. 2006. Neuropilin1 is a direct downstream target of Nurr1 in 

the developing brain stem. J Neurochem, 97, 1403-11. 

HERNANDEZ-MONTIEL, H. L., TAMARIZ, E., SANDOVAL-MINERO, M. T. & 

VARELA-ECHAVARRIA, A. 2008. Semaphorins 3A, 3C, and 3F in 

mesencephalic dopaminergic axon pathfinding. J Comp Neurol, 506, 387-97. 

HERRERA, B., VAN DINTHER, M., TEN DIJKE, P. & INMAN, G. J. 2009. 

Autocrine bone morphogenetic protein-9 signals through activin receptor-like 

kinase-2/Smad1/Smad4 to promote ovarian cancer cell proliferation. Cancer 

Res, 69, 9254-62. 

HERZOG, C. D., DASS, B., HOLDEN, J. E., STANSELL, J., 3RD, GASMI, M., 

TUSZYNSKI, M. H., BARTUS, R. T. & KORDOWER, J. H. 2007. Striatal 

delivery of CERE-120, an AAV2 vector encoding human neurturin, enhances 

activity of the dopaminergic nigrostriatal system in aged monkeys. Mov 

Disord, 22, 1124-32. 



245 
 

HESTER, M., THOMPSON, J. C., MILLS, J., LIU, Y., EL-HODIRI, H. M. & 

WEINSTEIN, M. 2005. Smad1 and Smad8 function similarly in mammalian 

central nervous system development. Mol Cell Biol, 25, 4683-92. 

HEUCKEROTH, R. O., ENOMOTO, H., GRIDER, J. R., GOLDEN, J. P., HANKE, 

J. A., JACKMAN, A., MOLLIVER, D. C., BARDGETT, M. E., SNIDER, 

W. D., JOHNSON, E. M., JR. & MILBRANDT, J. 1999. Gene targeting 

reveals a critical role for neurturin in the development and maintenance of 

enteric, sensory, and parasympathetic neurons. Neuron, 22, 253-63. 

HEYMANN, J. A. & HINSHAW, J. E. 2009. Dynamins at a glance. J Cell Sci, 122, 

3427-31. 

HILD, M., DICK, A., RAUCH, G. J., MEIER, A., BOUWMEESTER, T., 

HAFFTER, P. & HAMMERSCHMIDT, M. 1999. The smad5 mutation 

somitabun blocks Bmp2b signalling during early dorsoventral patterning of 

the zebrafish embryo. Development, 126, 2149-59. 

HILL, C. S. 2009. Nucleocytoplasmic shuttling of Smad proteins. Cell Res., 19, 36-

46. 

HIRSCH, E. C., VYAS, S. & HUNOT, S. 2012. Neuroinflammation in Parkinson's 

disease. Parkinsonism Relat Disord, 18 Suppl 1, S210-2. 

HO, K. S. & SCOTT, M. P. 2002. Sonic hedgehog in the nervous system: functions, 

modifications and mechanisms. Curr Opin Neurobiol, 12, 57-63. 

HOANE, M. R., GULWADI, A. G., MORRISON, S., HOVANESIAN, G., 

LINDNER, M. D. & TAO, W. 1999. Differential in vivo effects of neurturin 

and glial cell-line-derived neurotrophic factor. Exp Neurol, 160, 235-43. 

HOFFMANN, P. C., HEMMENDINGER, L. M., KOTAKE, C. & HELLER, A. 

1983. Enhanced dopamine cell survival in reaggregates containing 

telencephalic target cells. Brain Res, 274, 275-81. 

HONMA, Y., ARAKI, T., GIANINO, S., BRUCE, A., HEUCKEROTH, R., 

JOHNSON, E. & MILBRANDT, J. 2002. Artemin is a vascular-derived 

neurotropic factor for developing sympathetic neurons. Neuron, 35, 267-82. 

HORGER, B. A., NISHIMURA, M. C., ARMANINI, M. P., WANG, L. C., 

POULSEN, K. T., ROSENBLAD, C., KIRIK, D., MOFFAT, B., SIMMONS, 

L., JOHNSON, E., JR., MILBRANDT, J., ROSENTHAL, A., 

BJORKLUND, A., VANDLEN, R. A., HYNES, M. A. & PHILLIPS, H. S. 



246 
 

1998. Neurturin exerts potent actions on survival and function of midbrain 

dopaminergic neurons. J Neurosci, 18, 4929-37. 

HORIKI, M., IMAMURA, T., OKAMOTO, M., HAYASHI, M., MURAI, J., 

MYOUI, A., OCHI, T., MIYAZONO, K., YOSHIKAWA, H. & TSUMAKI, 

N. 2004. Smad6/Smurf1 overexpression in cartilage delays chondrocyte 

hypertrophy and causes dwarfism with osteopenia. J Cell Biol, 165, 433-45. 

HOU, J. G., LIN, L. F. & MYTILINEOU, C. 1996. Glial cell line-derived 

neurotrophic factor exerts neurotrophic effects on dopaminergic neurons in 

vitro and promotes their survival and regrowth after damage by 1-methyl-4-

phenylpyridinium. J Neurochem, 66, 74-82. 

HURLEY, F. M., COSTELLO, D. J. & SULLIVAN, A. M. 2004. Neuroprotective 

effects of delayed administration of growth/differentiation factor-5 in the 

partial lesion model of Parkinson's disease. Exp Neurol, 185, 281-9. 

HWANG, D. Y., ARDAYFIO, P., KANG, U. J., SEMINA, E. V. & KIM, K. S. 

2003. Selective loss of dopaminergic neurons in the substantia nigra of Pitx3-

deficient aphakia mice. Brain Res Mol Brain Res, 114, 123-31. 

HWANG, D. Y., HONG, S., JEONG, J. W., CHOI, S., KIM, H., KIM, J. & KIM, K. 

S. 2009. Vesicular monoamine transporter 2 and dopamine transporter are 

molecular targets of Pitx3 in the ventral midbrain dopamine neurons. J 

Neurochem, 111, 1202-12. 

HYNES, M., PORTER, J. A., CHIANG, C., CHANG, D., TESSIER-LAVIGNE, M., 

BEACHY, P. A. & ROSENTHAL, A. 1995a. Induction of midbrain 

dopaminergic neurons by Sonic hedgehog. Neuron, 15, 35-44. 

HYNES, M., POULSEN, K., TESSIER-LAVIGNE, M. & ROSENTHAL, A. 1995b. 

Control of neuronal diversity by the floor plate: contact-mediated induction 

of midbrain dopaminergic neurons. Cell, 80, 95-101. 

HYNES, M., STONE, D. M., DOWD, M., PITTS-MEEK, S., GODDARD, A., 

GURNEY, A. & ROSENTHAL, A. 1997. Control of cell pattern in the 

neural tube by the zinc finger transcription factor and oncogene Gli-1. 

Neuron, 19, 15-26. 

HYODO-MIURA, J., URUSHIYAMA, S., NAGAI, S., NISHITA, M., UENO, N. & 

SHIBUYA, H. 2002. Involvement of NLK and Sox11 in neural induction in 

Xenopus development. Genes Cells, 7, 487-96. 



247 
 

ILLE, F., ATANASOSKI, S., FALK, S., ITTNER, L. M., MARKI, D., 

BUCHMANN-MOLLER, S., WURDAK, H., SUTER, U., TAKETO, M. M. 

& SOMMER, L. 2007. Wnt/BMP signal integration regulates the balance 

between proliferation and differentiation of neuroepithelial cells in the dorsal 

spinal cord. Dev Biol, 304, 394-408. 

IMAMURA, T., TAKASE, M., NISHIHARA, A., OEDA, E., HANAI, J., 

KAWABATA, M. & MIYAZONO, K. 1997. Smad6 inhibits signalling by 

the TGF-beta superfamily. Nature, 389, 622-6. 

ISHIMURA, A., MAEDA, R., TAKEDA, M., KIKKAWA, M., DAAR, I. O. & 

MAENO, M. 2000. Involvement of BMP-4/msx-1 and FGF pathways in 

neural induction in the Xenopus embryo. Dev Growth Differ, 42, 307-16. 

ISHISAKI, A., YAMATO, K., HASHIMOTO, S., NAKAO, A., TAMAKI, K., 

NONAKA, K., TEN DIJKE, P., SUGINO, H. & NISHIHARA, T. 1999. 

Differential inhibition of Smad6 and Smad7 on bone morphogenetic protein- 

and activin-mediated growth arrest and apoptosis in B cells. J Biol Chem, 

274, 13637-42. 

ITOH, F., ASAO, H., SUGAMURA, K., HELDIN, C. H., TEN DIJKE, P. & ITOH, 

S. 2001. Promoting bone morphogenetic protein signalling through negative 

regulation of inhibitory Smads. EMBO J, 20, 4132-42. 

ITOH, S., ITOH, F., GOUMANS, M. J. & TEN DIJKE, P. 2000. Signalling of 

transforming growth factor-beta family members through Smad proteins. Eur 

J Biochem, 267, 6954-67. 

ITOH, T., SATOU, T., NISHIDA, S., HASHIMOTO, S. & ITO, H. 2006. Cultured 

rat astrocytes give rise to neural stem cells. Neurochem Res, 31, 1381-7. 

IWASAKI, S., HATTORI, A., SATO, M., TSUJIMOTO, M. & KOHNO, M. 1996. 

Characterization of the bone morphogenetic protein-2 as a neurotrophic 

factor. Induction of neuronal differentiation of PC12 cells in the absence of 

mitogen-activated protein kinase activation. J Biol Chem, 271, 17360-5. 

IWASAKI, S., IGUCHI, M., WATANABE, K., HOSHINO, R., TSUJIMOTO, M. & 

KOHNO, M. 1999. Specific activation of the p38 mitogen-activated protein 

kinase signalling pathway and induction of neurite outgrowth in PC12 cells 

by bone morphogenetic protein-2. J Biol Chem, 274, 26503-10. 



248 
 

IWASE, T., JUNG, C. G., BAE, H., ZHANG, M. & SOLIVEN, B. 2005. Glial cell 

line-derived neurotrophic factor-induced signalling in Schwann cells. J 

Neurochem, 94, 1488-99. 

JACKSON-LEWIS, V., VILA, M., DJALDETTI, R., GUEGAN, C., 

LIBERATORE, G., LIU, J., O'MALLEY, K. L., BURKE, R. E. & 

PRZEDBORSKI, S. 2000. Developmental cell death in dopaminergic 

neurons of the substantia nigra of mice. J Comp Neurol, 424, 476-88. 

JACOBS, F. M., VAN DER LINDEN, A. J., WANG, Y., VON OERTHEL, L., 

SUL, H. S., BURBACH, J. P. & SMIDT, M. P. 2009a. Identification of 

Dlk1, Ptpru and Klhl1 as novel Nurr1 target genes in meso-diencephalic 

dopamine neurons. Development, 136, 2363-73. 

JACOBS, F. M., VAN ERP, S., VAN DER LINDEN, A. J., VON OERTHEL, L., 

BURBACH, J. P. & SMIDT, M. P. 2009b. Pitx3 potentiates Nurr1 in 

dopamine neuron terminal differentiation through release of SMRT-mediated 

repression. Development, 136, 531-40. 

JANKOVIC, J. 2008. Parkinson's disease: clinical features and diagnosis. J Neurol 

Neurosurg Psychiatry, 79, 368-76. 

JENSEN, P., GRAMSBERGEN, J. B., ZIMMER, J., WIDMER, H. R. & MEYER, 

M. 2011. Enhanced proliferation and dopaminergic differentiation of ventral 

mesencephalic precursor cells by synergistic effect of FGF2 and reduced 

oxygen tension. Exp Cell Res, 317, 1649-62. 

JESSELL, T. M. 2000. Neuronal specification in the spinal cord: inductive signals 

and transcriptional codes. Nat Rev Genet, 1, 20-9. 

JIN, G., TAN, X., TIAN, M., QIN, J., ZHU, H., HUANG, Z. & XU, H. 2005. The 

controlled differentiation of human neural stem cells into TH-

immunoreactive (ir) neurons in vitro. Neurosci Lett, 386, 105-10. 

JOKSIMOVIC, M., ANDEREGG, A., ROY, A., CAMPOCHIARO, L., YUN, B., 

KITTAPPA, R., MCKAY, R. & AWATRAMANI, R. 2009a. 

Spatiotemporally separable Shh domains in the midbrain define distinct 

dopaminergic progenitor pools. Proc Natl Acad Sci U S A, 106, 19185-90. 

JOKSIMOVIC, M., YUN, B. A., KITTAPPA, R., ANDEREGG, A. M., CHANG, 

W. W., TAKETO, M. M., MCKAY, R. D. & AWATRAMANI, R. B. 2009b. 

Wnt antagonism of Shh facilitates midbrain floor plate neurogenesis. Nat 

Neurosci, 12, 125-31. 



249 
 

JORDAN, J., BOTTNER, M., SCHLUESENER, H. J., UNSICKER, K. & 

KRIEGLSTEIN, K. 1997. Bone morphogenetic proteins: neurotrophic roles 

for midbrain dopaminergic neurons and implications of astroglial cells. Eur J 

Neurosci, 9, 1699-709. 

KAARTINEN, V., VONCKEN, J. W., SHULER, C., WARBURTON, D., BU, D., 

HEISTERKAMP, N. & GROFFEN, J. 1995. Abnormal lung development 

and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-

mesenchymal interaction. Nat Genet, 11, 415-21. 

KADKHODAEI, B., ITO, T., JOODMARDI, E., MATTSSON, B., ROUILLARD, 

C., CARTA, M., MURAMATSU, S., SUMI-ICHINOSE, C., NOMURA, T., 

METZGER, D., CHAMBON, P., LINDQVIST, E., LARSSON, N. G., 

OLSON, L., BJORKLUND, A., ICHINOSE, H. & PERLMANN, T. 2009. 

Nurr1 is required for maintenance of maturing and adult midbrain dopamine 

neurons. J Neurosci, 29, 15923-32. 

KAERN, M., ELSTON, T. C., BLAKE, W. J. & COLLINS, J. J. 2005. Stochasticity 

in gene expression: from theories to phenotypes. Nat Rev Genet, 6, 451-64. 

KAMEDA, Y., SAITOH, T. & FUJIMURA, T. 2011. Hes1 regulates the number 

and anterior-posterior patterning of mesencephalic dopaminergic neurons at 

the mid/hindbrain boundary (isthmus). Dev Biol, 358, 91-101. 

KASTENHUBER, E., KERN, U., BONKOWSKY, J. L., CHIEN, C. B., DRIEVER, 

W. & SCHWEITZER, J. 2009. Netrin-DCC, Robo-Slit, and heparan sulfate 

proteoglycans coordinate lateral positioning of longitudinal dopaminergic 

diencephalospinal axons. J Neurosci, 29, 8914-26. 

KAVSAK, P., RASMUSSEN, R. K., CAUSING, C. G., BONNI, S., ZHU, H., 

THOMSEN, G. H. & WRANA, J. L. 2000. Smad7 binds to Smurf2 to form 

an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol 

Cell, 6, 1365-75. 

KAWABATA, M., IMAMURA, T. & MIYAZONO, K. 1998. Signal transduction 

by bone morphogenetic proteins. Cytokine Growth Factor Rev, 9, 49-61. 

KAWANO, H., HORIE, M., HONMA, S., KAWAMURA, K., TAKEUCHI, K. & 

KIMURA, S. 2003. Aberrant trajectory of ascending dopaminergic pathway 

in mice lacking Nkx2.1. Exp Neurol, 182, 103-12. 



250 
 

KAWANO, H., OHYAMA, K., KAWAMURA, K. & NAGATSU, I. 1995. 

Migration of dopaminergic neurons in the embryonic mesencephalon of 

mice. Brain Res Dev Brain Res, 86, 101-13. 

KELE, J., SIMPLICIO, N., FERRI, A. L., MIRA, H., GUILLEMOT, F., ARENAS, 

E. & ANG, S. L. 2006. Neurogenin 2 is required for the development of 

ventral midbrain dopaminergic neurons. Development, 133, 495-505. 

KELLEY, R., REN, R., PI, X., WU, Y., MORENO, I., WILLIS, M., MOSER, M., 

ROSS, M., PODKOWA, M., ATTISANO, L. & PATTERSON, C. 2009. A 

concentration-dependent endocytic trap and sink mechanism converts Bmper 

from an activator to an inhibitor of Bmp signalling. J Cell Biol, 184, 597-609. 

KHAING, Z. Z. & ROBERTS, J. L. 2009. Embryonic mescencephalon derived 

neurospheres contain progenitors as well as differentiated neurons and glia. 

Restor Neurol Neurosci, 27, 611-20. 

KHOKHA, M. K., YEH, J., GRAMMER, T. C. & HARLAND, R. M. 2005. 

Depletion of three BMP antagonists from Spemann's organizer leads to a 

catastrophic loss of dorsal structures. Dev Cell, 8, 401-11. 

KHOLODILOV, N., YARYGINA, O., OO, T. F., ZHANG, H., SULZER, D., 

DAUER, W. & BURKE, R. E. 2004. Regulation of the development of 

mesencephalic dopaminergic systems by the selective expression of glial cell 

line-derived neurotrophic factor in their targets. J Neurosci, 24, 3136-46. 

KIM, B. C., LEE, H. J., PARK, S. H., LEE, S. R., KARPOVA, T. S., MCNALLY, J. 

G., FELICI, A., LEE, D. K. & KIM, S. J. 2004. Jab1/CSN5, a component of 

the COP9 signalosome, regulates transforming growth factor beta signalling 

by binding to Smad7 and promoting its degradation. Mol Cell Biol, 24, 2251-

62. 

KIM, H. J. 2011. Stem cell potential in Parkinson's disease and molecular factors for 

the generation of dopamine neurons. Biochim Biophys Acta, 1812, 1-11. 

KIM, H. J., SUGIMORI, M., NAKAFUKU, M. & SVENDSEN, C. N. 2007. Control 

of neurogenesis and tyrosine hydroxylase expression in neural progenitor 

cells through bHLH proteins and Nurr1. Exp Neurol, 203, 394-405. 

KIM, H. T., KIM, I. S., LEE, I. S., LEE, J. P., SNYDER, E. Y. & PARK, K. I. 2006. 

Human neurospheres derived from the fetal central nervous system are 

regionally and temporally specified but are not committed. Exp Neurol, 199, 

222-35. 



251 
 

KIM, K. S., KIM, C. H., HWANG, D. Y., SEO, H., CHUNG, S., HONG, S. J., LIM, 

J. K., ANDERSON, T. & ISACSON, O. 2003. Orphan nuclear receptor 

Nurr1 directly transactivates the promoter activity of the tyrosine 

hydroxylase gene in a cell-specific manner. J Neurochem, 85, 622-34. 

KIRSCH, T., SEBALD, W. & DREYER, M. K. 2000. Crystal structure of the BMP-

2-BRIA ectodomain complex. Nat Struct Biol, 7, 492-6. 

KISHIMOTO, Y., LEE, K. H., ZON, L., HAMMERSCHMIDT, M. & SCHULTE-

MERKER, S. 1997. The molecular nature of zebrafish swirl: BMP2 function 

is essential during early dorsoventral patterning. Development, 124, 4457-66. 

KITAGAWA, H., RAY, W. J., GLANTSCHNIG, H., NANTERMET, P. V., YU, Y., 

LEU, C. T., HARADA, S., KATO, S. & FREEDMAN, L. P. 2007. A 

regulatory circuit mediating convergence between Nurr1 transcriptional 

regulation and Wnt signalling. Mol Cell Biol, 27, 7486-96. 

KITCHENS, D. L., SNYDER, E. Y. & GOTTLIEB, D. I. 1994. FGF and EGF are 

mitogens for immortalized neural progenitors. J Neurobiol, 25, 797-807. 

KITTAPPA, R., CHANG, W. W., AWATRAMANI, R. B. & MCKAY, R. D. 2007. 

The foxa2 gene controls the birth and spontaneous degeneration of dopamine 

neurons in old age. PLoS Biol, 5, e325. 

KLEBER, M., LEE, H. Y., WURDAK, H., BUCHSTALLER, J., RICCOMAGNO, 

M. M., ITTNER, L. M., SUTER, U., EPSTEIN, D. J. & SOMMER, L. 2005. 

Neural crest stem cell maintenance by combinatorial Wnt and BMP 

signalling. J Cell Biol, 169, 309-20. 

KNOFERLE, J., RAMLJAK, S., KOCH, J. C., TONGES, L., ASIF, A. R., 

MICHEL, U., WOUTERS, F. S., HEERMANN, S., KRIEGLSTEIN, K., 

ZERR, I., BAHR, M. & LINGOR, P. 2010. TGF-beta 1 enhances neurite 

outgrowth via regulation of proteasome function and EFABP. Neurobiol Dis, 

38, 395-404. 

KO, S. O., CHUNG, I. H., XU, X., OKA, S., ZHAO, H., CHO, E. S., DENG, C. & 

CHAI, Y. 2007. Smad4 is required to regulate the fate of cranial neural crest 

cells. Dev Biol, 312, 435-47. 

KOENIG, B. B., COOK, J. S., WOLSING, D. H., TING, J., TIESMAN, J. P., 

CORREA, P. E., OLSON, C. A., PECQUET, A. L., VENTURA, F., 

GRANT, R. A. & ET AL. 1994. Characterization and cloning of a receptor 

for BMP-2 and BMP-4 from NIH 3T3 cells. Mol Cell Biol, 14, 5961-74. 



252 
 

KOINUMA, D., SHINOZAKI, M., KOMURO, A., GOTO, K., SAITOH, M., 

HANYU, A., EBINA, M., NUKIWA, T., MIYAZAWA, K., IMAMURA, T. 

& MIYAZONO, K. 2003. Arkadia amplifies TGF-beta superfamily 

signalling through degradation of Smad7. EMBO J, 22, 6458-70. 

KOLK, S. M., GUNPUT, R. A., TRAN, T. S., VAN DEN HEUVEL, D. M., 

PRASAD, A. A., HELLEMONS, A. J., ADOLFS, Y., GINTY, D. D., 

KOLODKIN, A. L., BURBACH, J. P., SMIDT, M. P. & PASTERKAMP, R. 

J. 2009. Semaphorin 3F is a bifunctional guidance cue for dopaminergic 

axons and controls their fasciculation, channeling, rostral growth, and 

intracortical targeting. J Neurosci, 29, 12542-57. 

KORDOWER, J. H., CHU, Y., HAUSER, R. A., FREEMAN, T. B. & OLANOW, 

C. W. 2008. Lewy body-like pathology in long-term embryonic nigral 

transplants in Parkinson's disease. Nat Med, 14, 504-6. 

KORDOWER, J. H., EMBORG, M. E., BLOCH, J., MA, S. Y., CHU, Y., 

LEVENTHAL, L., MCBRIDE, J., CHEN, E. Y., PALFI, S., ROITBERG, B. 

Z., BROWN, W. D., HOLDEN, J. E., PYZALSKI, R., TAYLOR, M. D., 

CARVEY, P., LING, Z., TRONO, D., HANTRAYE, P., DEGLON, N. & 

AEBISCHER, P. 2000. Neurodegeneration prevented by lentiviral vector 

delivery of GDNF in primate models of Parkinson's disease. Science, 290, 

767-73. 

KORDOWER, J. H., HERZOG, C. D., DASS, B., BAKAY, R. A., STANSELL, J., 

3RD, GASMI, M. & BARTUS, R. T. 2006. Delivery of neurturin by AAV2 

(CERE-120)-mediated gene transfer provides structural and functional 

neuroprotection and neurorestoration in MPTP-treated monkeys. Ann Neurol, 

60, 706-15. 

KOROTKOVA, T. M., PONOMARENKO, A. A., HAAS, H. L. & SERGEEVA, O. 

A. 2005. Differential expression of the homeobox gene Pitx3 in midbrain 

dopaminergic neurons. Eur J Neurosci, 22, 1287-93. 

KOZLOWSKI, D. A., CONNOR, B., TILLERSON, J. L., SCHALLERT, T. & 

BOHN, M. C. 2000. Delivery of a GDNF gene into the substantia nigra after 

a progressive 6-OHDA lesion maintains functional nigrostriatal connections. 

Exp Neurol, 166, 1-15. 

KRIEGLSTEIN, K., HENHEIK, P., FARKAS, L., JASZAI, J., GALTER, D., 

KROHN, K. & UNSICKER, K. 1998. Glial cell line-derived neurotrophic 



253 
 

factor requires transforming growth factor-beta for exerting its full 

neurotrophic potential on peripheral and CNS neurons. J Neurosci, 18, 9822-

34. 

KRIEGLSTEIN, K., SUTER-CRAZZOLARA, C., FISCHER, W. H. & 

UNSICKER, K. 1995a. TGF-beta superfamily members promote survival of 

midbrain dopaminergic neurons and protect them against MPP+ toxicity. 

EMBO J, 14, 736-42. 

KRIEGLSTEIN, K., SUTER-CRAZZOLARA, C., HOTTEN, G., POHL, J. & 

UNSICKER, K. 1995b. Trophic and protective effects of 

growth/differentiation factor 5, a member of the transforming growth factor-

beta superfamily, on midbrain dopaminergic neurons. J Neurosci Res, 42, 

724-32. 

KRIEGLSTEIN, K. & UNSICKER, K. 1994. Transforming growth factor-beta 

promotes survival of midbrain dopaminergic neurons and protects them 

against N-methyl-4-phenylpyridinium ion toxicity. Neuroscience, 63, 1189-

96. 

KRIEGSTEIN, A. & ALVAREZ-BUYLLA, A. 2009. The glial nature of embryonic 

and adult neural stem cells. Annu Rev Neurosci, 32, 149-84. 

KROLL, K. L. 2007. Geminin in embryonic development: coordinating transcription 

and the cell cycle during differentiation. Front Biosci, 12, 1395-409. 

KROLL, K. L., SALIC, A. N., EVANS, L. M. & KIRSCHNER, M. W. 1998. 

Geminin, a neuralizing molecule that demarcates the future neural plate at the 

onset of gastrulation. Development, 125, 3247-58. 

KUDO, T. A., KANETAKA, H., MIZUNO, K., RYU, Y., MIYAMOTO, Y., 

NUNOME, S., ZHANG, Y., KANO, M., SHIMIZU, Y. & HAYASHI, H. 

2011. Dorsomorphin stimulates neurite outgrowth in PC12 cells via 

activation of a protein kinase A-dependent MEK-ERK1/2 signalling 

pathway. Genes Cells, 16, 1121-32. 

KURODA, H., WESSELY, O. & DE ROBERTIS, E. M. 2004. Neural induction in 

Xenopus: requirement for ectodermal and endomesodermal signals via 

Chordin, Noggin, beta-Catenin, and Cerberus. PLoS Biol, 2, E92. 

LABONNE, C. & BRONNER-FRASER, M. 1998. Neural crest induction in 

Xenopus: evidence for a two-signal model. Development, 125, 2403-14. 



254 
 

LAHTI, L., PELTOPURO, P., PIEPPONEN, T. P. & PARTANEN, J. 2012. Cell-

autonomous FGF signalling regulates anteroposterior patterning and neuronal 

differentiation in the mesodiencephalic dopaminergic progenitor domain. 

Development, 139, 894-905. 

LAMB, T. M., KNECHT, A. K., SMITH, W. C., STACHEL, S. E., ECONOMIDES, 

A. N., STAHL, N., YANCOPOLOUS, G. D. & HARLAND, R. M. 1993. 

Neural induction by the secreted polypeptide noggin. Science, 262, 713-8. 

LANE, K. B., MACHADO, R. D., PAUCIULO, M. W., THOMSON, J. R., 

PHILLIPS, J. A., 3RD, LOYD, J. E., NICHOLS, W. C. & TREMBATH, R. 

C. 2000. Heterozygous germline mutations in BMPR2, encoding a TGF-beta 

receptor, cause familial primary pulmonary hypertension. Nat. Genet., 26, 

81-4. 

LANG, A. E., GILL, S., PATEL, N. K., LOZANO, A., NUTT, J. G., PENN, R., 

BROOKS, D. J., HOTTON, G., MORO, E., HEYWOOD, P., BRODSKY, 

M. A., BURCHIEL, K., KELLY, P., DALVI, A., SCOTT, B., STACY, M., 

TURNER, D., WOOTEN, V. G., ELIAS, W. J., LAWS, E. R., DHAWAN, 

V., STOESSL, A. J., MATCHAM, J., COFFEY, R. J. & TRAUB, M. 2006. 

Randomized controlled trial of intraputamenal glial cell line-derived 

neurotrophic factor infusion in Parkinson disease. Ann Neurol, 59, 459-66. 

LARABELL, C. A., TORRES, M., ROWNING, B. A., YOST, C., MILLER, J. R., 

WU, M., KIMELMAN, D. & MOON, R. T. 1997. Establishment of the 

dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in 

beta-catenin that are modulated by the Wnt signalling pathway. J Cell Biol, 

136, 1123-36. 

LAUDER, J. M. & BLOOM, F. E. 1974. Ontogeny of monoamine neurons in the 

locus coeruleus, Raphe nuclei and substantia nigra of the rat. I. Cell 

differentiation. J Comp Neurol, 155, 469-81. 

LAUNAY, C., FROMENTOUX, V., SHI, D. L. & BOUCAUT, J. C. 1996. A 

truncated FGF receptor blocks neural induction by endogenous Xenopus 

inducers. Development, 122, 869-80. 

LAW, S. W., CONNEELY, O. M., DEMAYO, F. J. & O'MALLEY, B. W. 1992. 

Identification of a new brain-specific transcription factor, NURR1. Mol 

Endocrinol, 6, 2129-35. 



255 
 

LE DREAU, G., GARCIA-CAMPMANY, L., RABADAN, M. A., FERRONHA, T., 

TOZER, S., BRISCOE, J. & MARTI, E. 2012. Canonical BMP7 activity is 

required for the generation of discrete neuronal populations in the dorsal 

spinal cord. Development, 139, 259-68. 

LE ROY, C. & WRANA, J. L. 2005. Clathrin- and non-clathrin-mediated endocytic 

regulation of cell signalling. Nat Rev Mol Cell Biol, 6, 112-26. 

LE, W., CONNEELY, O. M., HE, Y., JANKOVIC, J. & APPEL, S. H. 1999. 

Reduced Nurr1 expression increases the vulnerability of mesencephalic 

dopamine neurons to MPTP-induced injury. J Neurochem, 73, 2218-21. 

LEBEL, M., GAUTHIER, Y., MOREAU, A. & DROUIN, J. 2001. Pitx3 activates 

mouse tyrosine hydroxylase promoter via a high-affinity binding site. J 

Neurochem, 77, 558-67. 

LECHLEIDER, R. J., RYAN, J. L., GARRETT, L., ENG, C., DENG, C., 

WYNSHAW-BORIS, A. & ROBERTS, A. B. 2001. Targeted mutagenesis of 

Smad1 reveals an essential role in chorioallantoic fusion. Dev Biol, 240, 157-

67. 

LEE, H. S., BAE, E. J., YI, S. H., SHIM, J. W., JO, A. Y., KANG, J. S., YOON, E. 

H., RHEE, Y. H., PARK, C. H., KOH, H. C., KIM, H. J., CHOI, H. S., HAN, 

J. W., LEE, Y. S., KIM, J., LI, J. Y., BRUNDIN, P. & LEE, S. H. 2010. 

Foxa2 and Nurr1 synergistically yield A9 nigral dopamine neurons exhibiting 

improved differentiation, function, and cell survival. Stem Cells, 28, 501-12. 

LEE, H. Y., KLEBER, M., HARI, L., BRAULT, V., SUTER, U., TAKETO, M. M., 

KEMLER, R. & SOMMER, L. 2004. Instructive role of Wnt/beta-catenin in 

sensory fate specification in neural crest stem cells. Science, 303, 1020-3. 

LEE, J. Y., KOH, H. C., CHANG, M. Y., PARK, C. H., LEE, Y. S. & LEE, S. H. 

2003. Erythropoietin and bone morphogenetic protein 7 mediate ascorbate-

induced dopaminergic differentiation from embryonic mesencephalic 

precursors. Neuroreport, 14, 1401-4. 

LEE, K. J., DIETRICH, P. & JESSELL, T. M. 2000. Genetic ablation reveals that 

the roof plate is essential for dorsal interneuron specification. Nature, 403, 

734-40. 

LEE, K. J. & JESSELL, T. M. 1999. The specification of dorsal cell fates in the 

vertebrate central nervous system. Annu Rev Neurosci, 22, 261-94. 



256 
 

LEE, K. J., MENDELSOHN, M. & JESSELL, T. M. 1998. Neuronal patterning by 

BMPs: a requirement for GDF7 in the generation of a discrete class of 

commissural interneurons in the mouse spinal cord. Genes Dev, 12, 3394-

407. 

LEES, A. J., HARDY, J. & REVESZ, T. 2009. Parkinson's disease. Lancet, 373, 

2055-66. 

LEI, Z., JIANG, Y., LI, T., ZHU, J. & ZENG, S. 2011. Signalling of glial cell line-

derived neurotrophic factor and its receptor GFRalpha1 induce Nurr1 and 

Pitx3 to promote survival of grafted midbrain-derived neural stem cells in a 

rat model of Parkinson disease. J Neuropathol Exp Neurol, 70, 736-47. 

LEIN, P., JOHNSON, M., GUO, X., RUEGER, D. & HIGGINS, D. 1995. 

Osteogenic protein-1 induces dendritic growth in rat sympathetic neurons. 

Neuron, 15, 597-605. 

LELE, Z., BAKKERS, J. & HAMMERSCHMIDT, M. 2001. Morpholino 

phenocopies of the swirl, snailhouse, somitabun, minifin, silberblick, and 

pipetail mutations. Genesis, 30, 190-4. 

LERCHNER, W., LATINKIC, B. V., REMACLE, J. E., HUYLEBROECK, D. & 

SMITH, J. C. 2000. Region-specific activation of the Xenopus brachyury 

promoter involves active repression in ectoderm and endoderm: a study using 

transgenic frog embryos. Development, 127, 2729-39. 

LEVINE, A. J. & BRIVANLOU, A. H. 2007. Proposal of a model of mammalian 

neural induction. Dev Biol, 308, 247-56. 

LI, K., XUE, B., WANG, Y., WANG, X. & WANG, H. 2009. Ventral 

mesencephalon astrocytes are more efficient than those of other regions in 

inducing dopaminergic neurons through higher expression level of TGF-

beta3. J Mol Neurosci, 37, 288-300. 

LI, L., XIN, H., XU, X., HUANG, M., ZHANG, X., CHEN, Y., ZHANG, S., FU, X. 

Y. & CHANG, Z. 2004. CHIP mediates degradation of Smad proteins and 

potentially regulates Smad-induced transcription. Mol Cell Biol, 24, 856-64. 

LI, W., COGSWELL, C. A. & LOTURCO, J. J. 1998. Neuronal differentiation of 

precursors in the neocortical ventricular zone is triggered by BMP. J 

Neurosci, 18, 8853-62. 

LI, W. & LOTURCO, J. J. 2000. Noggin is a negative regulator of neuronal 

differentiation in developing neocortex. Dev Neurosci, 22, 68-73. 



257 
 

LIEM, K. F., JR., JESSELL, T. M. & BRISCOE, J. 2000. Regulation of the neural 

patterning activity of sonic hedgehog by secreted BMP inhibitors expressed 

by notochord and somites. Development, 127, 4855-66. 

LIEM, K. F., JR., TREMML, G. & JESSELL, T. M. 1997. A role for the roof plate 

and its resident TGFbeta-related proteins in neuronal patterning in the dorsal 

spinal cord. Cell, 91, 127-38. 

LIEM, K. F., JR., TREMML, G., ROELINK, H. & JESSELL, T. M. 1995. Dorsal 

differentiation of neural plate cells induced by BMP-mediated signals from 

epidermal ectoderm. Cell, 82, 969-79. 

LIM, D. A., TRAMONTIN, A. D., TREVEJO, J. M., HERRERA, D. G., GARCIA-

VERDUGO, J. M. & ALVAREZ-BUYLLA, A. 2000. Noggin antagonizes 

BMP signalling to create a niche for adult neurogenesis. Neuron, 28, 713-26. 

LIN, L., RAO, Y. & ISACSON, O. 2005. Netrin-1 and slit-2 regulate and direct 

neurite growth of ventral midbrain dopaminergic neurons. Mol Cell Neurosci, 

28, 547-55. 

LIN, L. F., DOHERTY, D. H., LILE, J. D., BEKTESH, S. & COLLINS, F. 1993. 

GDNF: a glial cell line-derived neurotrophic factor for midbrain 

dopaminergic neurons. Science, 260, 1130-2. 

LIN, W., METZAKOPIAN, E., MAVROMATAKIS, Y. E., GAO, N., BALASKAS, 

N., SASAKI, H., BRISCOE, J., WHITSETT, J. A., GOULDING, M., 

KAESTNER, K. H. & ANG, S. L. 2009. Foxa1 and Foxa2 function both 

upstream of and cooperatively with Lmx1a and Lmx1b in a feedforward loop 

promoting mesodiencephalic dopaminergic neuron development. Dev Biol, 

333, 386-96. 

LIN, X., LIANG, M. & FENG, X. H. 2000. Smurf2 is a ubiquitin E3 ligase 

mediating proteasome-dependent degradation of Smad2 in transforming 

growth factor-beta signalling. J Biol Chem, 275, 36818-22. 

LINAZASORO, G. 2008. [Rasagiline in Parkinson's disease]. Neurologia, 23, 238-

45. 

LINDVALL, O., REHNCRONA, S., BRUNDIN, P., GUSTAVII, B., ASTEDT, B., 

WIDNER, H., LINDHOLM, T., BJORKLUND, A., LEENDERS, K. L., 

ROTHWELL, J. C., FRACKOWIAK, R., MARSDEN, D., JOHNELS, B., 

STEG, G., FREEDMAN, R., HOFFER, B. J., SEIGER, A., BYGDEMAN, 

M., STROMBERG, I. & OLSON, L. 1989. Human fetal dopamine neurons 



258 
 

grafted into the striatum in two patients with severe Parkinson's disease. A 

detailed account of methodology and a 6-month follow-up. Arch Neurol, 46, 

615-31. 

LINGOR, P., UNSICKER, K. & KRIEGLSTEIN, K. 1999. Midbrain dopaminergic 

neurons are protected from radical induced damage by GDF-5 application. 

Short communication. J Neural Transm, 106, 139-44. 

LITSIOU, A., HANSON, S. & STREIT, A. 2005. A balance of FGF, BMP and 

WNT signalling positions the future placode territory in the head. 

Development, 132, 4051-62. 

LIU, A. & JOYNER, A. L. 2001. EN and GBX2 play essential roles downstream of 

FGF8 in patterning the mouse mid/hindbrain region. Development, 128, 181-

91. 

LIU, A. & NISWANDER, L. A. 2005. Bone morphogenetic protein signalling and 

vertebrate nervous system development. Nat Rev Neurosci 

6, 945-54. 

LIU, J. & HUANG, H. Y. 2007. How to improve the survival of the fetal ventral 

mesencephalic cell transplanted in Parkinson's disease? Neurosci Bull, 23, 

377-82. 

LIU, Y., HELMS, A. W. & JOHNSON, J. E. 2004. Distinct activities of Msx1 and 

Msx3 in dorsal neural tube development. Development, 131, 1017-28. 

LIVESEY, F. J. & HUNT, S. P. 1997. Netrin and netrin receptor expression in the 

embryonic mammalian nervous system suggests roles in retinal, striatal, 

nigral, and cerebellar development. Mol Cell Neurosci, 8, 417-29. 

LO, R. S., CHEN, Y. G., SHI, Y., PAVLETICH, N. P. & MASSAGUE, J. 1998. The 

L3 loop: a structural motif determining specific interactions between SMAD 

proteins and TGF-beta receptors. EMBO J, 17, 996-1005. 

LOGAN, C. Y. & NUSSE, R. 2004. The Wnt signalling pathway in development 

and disease. Annu Rev Cell Dev Biol, 20, 781-810. 

LOPEZ-BENDITO, G., FLAMES, N., MA, L., FOUQUET, C., DI MEGLIO, T., 

CHEDOTAL, A., TESSIER-LAVIGNE, M. & MARIN, O. 2007. Robo1 and 

Robo2 cooperate to control the guidance of major axonal tracts in the 

mammalian forebrain. J Neurosci, 27, 3395-407. 



259 
 

LOPEZ-COVIELLA, I., BERSE, B., KRAUSS, R., THIES, R. S. & BLUSZTAJN, 

J. K. 2000. Induction and maintenance of the neuronal cholinergic phenotype 

in the central nervous system by BMP-9. Science, 289, 313-6. 

LOPEZ-COVIELLA, I., FOLLETTIE, M. T., MELLOTT, T. J., KOVACHEVA, V. 

P., SLACK, B. E., DIESL, V., BERSE, B., THIES, R. S. & BLUSZTAJN, J. 

K. 2005. Bone morphogenetic protein 9 induces the transcriptome of basal 

forebrain cholinergic neurons. Proc Natl Acad Sci U S A, 102, 6984-9. 

LOPEZ-COVIELLA, I., MELLOTT, T. M., KOVACHEVA, V. P., BERSE, B., 

SLACK, B. E., ZEMELKO, V., SCHNITZLER, A. & BLUSZTAJN, J. K. 

2006. Developmental pattern of expression of BMP receptors and Smads and 

activation of Smad1 and Smad5 by BMP9 in mouse basal forebrain. Brain 

Res, 1088, 49-56. 

LUMSDEN, A. & KRUMLAUF, R. 1996. Patterning the vertebrate neuraxis. 

Science, 274, 1109-15. 

LUO, Y., HENRICKSEN, L. A., GIULIANO, R. E., PRIFTI, L., CALLAHAN, L. 

M. & FEDEROFF, H. J. 2007. VIP is a transcriptional target of Nurr1 in 

dopaminergic cells. Exp Neurol, 203, 221-32. 

MABIE, P. C., MEHLER, M. F., MARMUR, R., PAPAVASILIOU, A., SONG, Q. 

& KESSLER, J. A. 1997. Bone morphogenetic proteins induce astroglial 

differentiation of oligodendroglial-astroglial progenitor cells. J Neurosci, 17, 

4112-20. 

MACIA, E., EHRLICH, M., MASSOL, R., BOUCROT, E., BRUNNER, C. & 

KIRCHHAUSEN, T. 2006. Dynasore, a cell-permeable inhibitor of dynamin. 

Dev Cell, 10, 839-50. 

MACIACZYK, J., SINGEC, I., MACIACZYK, D. & NIKKHAH, G. 2008. 

Combined use of BDNF, ascorbic acid, low oxygen, and prolonged 

differentiation time generates tyrosine hydroxylase-expressing neurons after 

long-term in vitro expansion of human fetal midbrain precursor cells. Exp 

Neurol, 213, 354-62. 

MAEDA, R., KOBAYASHI, A., SEKINE, R., LIN, J. J., KUNG, H. & MAENO, M. 

1997. Xmsx-1 modifies mesodermal tissue pattern along dorsoventral axis in 

Xenopus laevis embryo. Development, 124, 2553-60. 



260 
 

MAITHREYE, R., SARKAR, R. R., PARNAIK, V. K. & SINHA, S. 2008. Delay-

induced transient increase and heterogeneity in gene expression in negatively 

auto-regulated gene circuits. PLoS One, 3, e2972. 

MANDEL, S., GRUNBLATT, E., RIEDERER, P., GERLACH, M., LEVITES, Y. & 

YOUDIM, M. B. 2003. Neuroprotective strategies in Parkinson's disease : an 

update on progress. CNS Drugs, 17, 729-62. 

MANITT, C., MIMEE, A., ENG, C., POKINKO, M., STROH, T., COOPER, H. M., 

KOLB, B. & FLORES, C. 2011. The netrin receptor DCC is required in the 

pubertal organization of mesocortical dopamine circuitry. J Neurosci, 31, 

8381-94. 

MARCHAND, R. & POIRIER, L. J. 1983. Isthmic origin of neurons of the rat 

substantia nigra. Neuroscience, 9, 373-81. 

MARIN, F., HERRERO, M. T., VYAS, S. & PUELLES, L. 2005. Ontogeny of 

tyrosine hydroxylase mRNA expression in mid- and forebrain: neuromeric 

pattern and novel positive regions. Dev Dyn, 234, 709-17. 

MARIN, O., BAKER, J., PUELLES, L. & RUBENSTEIN, J. L. 2002. Patterning of 

the basal telencephalon and hypothalamus is essential for guidance of cortical 

projections. Development, 129, 761-73. 

MARKS, W. J., JR., BARTUS, R. T., SIFFERT, J., DAVIS, C. S., LOZANO, A., 

BOULIS, N., VITEK, J., STACY, M., TURNER, D., VERHAGEN, L., 

BAKAY, R., WATTS, R., GUTHRIE, B., JANKOVIC, J., SIMPSON, R., 

TAGLIATI, M., ALTERMAN, R., STERN, M., BALTUCH, G., STARR, P. 

A., LARSON, P. S., OSTREM, J. L., NUTT, J., KIEBURTZ, K., 

KORDOWER, J. H. & OLANOW, C. W. 2010. Gene delivery of AAV2-

neurturin for Parkinson's disease: a double-blind, randomised, controlled 

trial. Lancet Neurol, 9, 1164-72. 

MARKS, W. J., JR., OSTREM, J. L., VERHAGEN, L., STARR, P. A., LARSON, 

P. S., BAKAY, R. A., TAYLOR, R., CAHN-WEINER, D. A., STOESSL, A. 

J., OLANOW, C. W. & BARTUS, R. T. 2008. Safety and tolerability of 

intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-

neurturin) to patients with idiopathic Parkinson's disease: an open-label, 

phase I trial. Lancet Neurol, 7, 400-8. 

MARQUES, G., MUSACCHIO, M., SHIMELL, M. J., WUNNENBERG-

STAPLETON, K., CHO, K. W. & O'CONNOR, M. B. 1997. Production of a 



261 
 

DPP activity gradient in the early Drosophila embryo through the opposing 

actions of the SOG and TLD proteins. Cell, 91, 417-26. 

MARTIN, D., MILLER, G., CULLEN, T., FISCHER, N., DIX, D. & RUSSELL, D. 

1996. Intranigral or intrastriatal injections of GDNF: effects on monoamine 

levels and behavior in rats. Eur J Pharmacol, 317, 247-56. 

MARTINAT, C., BACCI, J. J., LEETE, T., KIM, J., VANTI, W. B., NEWMAN, A. 

H., CHA, J. H., GETHER, U., WANG, H. & ABELIOVICH, A. 2006. 

Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic 

stem cell maturation to the midbrain dopamine neuron phenotype. Proc Natl 

Acad Sci U S A, 103, 2874-9. 

MARTINEZ-BARBERA, J. P., SIGNORE, M., BOYL, P. P., PUELLES, E., 

ACAMPORA, D., GOGOI, R., SCHUBERT, F., LUMSDEN, A. & 

SIMEONE, A. 2001. Regionalisation of anterior neuroectoderm and its 

competence in responding to forebrain and midbrain inducing activities 

depend on mutual antagonism between OTX2 and GBX2. Development, 128, 

4789-800. 

MASSAGUE, J. & WOTTON, D. 2000. Transcriptional control by the TGF-

beta/Smad signalling system. EMBO J, 19, 1745-54. 

MASWOOD, N., GRONDIN, R., ZHANG, Z., STANFORD, J. A., SURGENER, S. 

P., GASH, D. M. & GERHARDT, G. A. 2002. Effects of chronic 

intraputamenal infusion of glial cell line-derived neurotrophic factor (GDNF) 

in aged Rhesus monkeys. Neurobiol Aging, 23, 881-9. 

MATHIEU, C., SII-FELICE, K., FOUCHET, P., ETIENNE, O., HATON, C., 

MABONDZO, A., BOUSSIN, F. D. & MOUTHON, M. A. 2008. 

Endothelial cell-derived bone morphogenetic proteins control proliferation of 

neural stem/progenitor cells. Mol Cell Neurosci, 38, 569-77. 

MATSUNAGA, E., KATAHIRA, T. & NAKAMURA, H. 2002. Role of Lmx1b and 

Wnt1 in mesencephalon and metencephalon development. Development, 129, 

5269-77. 

MATSUO, I., KURATANI, S., KIMURA, C., TAKEDA, N. & AIZAWA, S. 1995. 

Mouse Otx2 functions in the formation and patterning of rostral head. Genes 

Dev, 9, 2646-58. 

MAXWELL, S. L., HO, H. Y., KUEHNER, E., ZHAO, S. & LI, M. 2005. Pitx3 

regulates tyrosine hydroxylase expression in the substantia nigra and 



262 
 

identifies a subgroup of mesencephalic dopaminergic progenitor neurons 

during mouse development. Dev Biol, 282, 467-79. 

MAYHEW, T. M. 1992. A review of recent advances in stereology for quantifying 

neural structure. J Neurocytol, 21, 313-28. 

MCGREW, L. L., TAKEMARU, K., BATES, R. & MOON, R. T. 1999. Direct 

regulation of the Xenopus engrailed-2 promoter by the Wnt signalling 

pathway, and a molecular screen for Wnt-responsive genes, confirm a role 

for Wnt signalling during neural patterning in Xenopus. Mech Dev, 87, 21-

32. 

MCMAHON, A. P. & BRADLEY, A. 1990. The Wnt-1 (int-1) proto-oncogene is 

required for development of a large region of the mouse brain. Cell, 62, 

1073-85. 

MCMAHON, A. P., JOYNER, A. L., BRADLEY, A. & MCMAHON, J. A. 1992. 

The midbrain-hindbrain phenotype of Wnt-1-/Wnt-1- mice results from 

stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Cell, 

69, 581-95. 

MCMAHON, J. A., TAKADA, S., ZIMMERMAN, L. B., FAN, C. M., HARLAND, 

R. M. & MCMAHON, A. P. 1998. Noggin-mediated antagonism of BMP 

signalling is required for growth and patterning of the neural tube and somite. 

Genes Dev, 12, 1438-52. 

MCMILLAN, C. R., SHARMA, R., OTTENHOF, T. & NILES, L. P. 2007. 

Modulation of tyrosine hydroxylase expression by melatonin in human SH-

SY5Y neuroblastoma cells. Neurosci Lett, 419, 202-6. 

MCNAUGHT, K. S., PERL, D. P., BROWNELL, A. L. & OLANOW, C. W. 2004. 

Systemic exposure to proteasome inhibitors causes a progressive model of 

Parkinson's disease. Ann Neurol, 56, 149-62. 

MEGASON, S. G. & MCMAHON, A. P. 2002. A mitogen gradient of dorsal 

midline Wnts organizes growth in the CNS. Development, 129, 2087-98. 

MEHLER, M. F., MABIE, P. C., ZHU, G., GOKHAN, S. & KESSLER, J. A. 2000. 

Developmental changes in progenitor cell responsiveness to bone 

morphogenetic proteins differentially modulate progressive CNS lineage fate. 

Dev Neurosci, 22, 74-85. 

MEYER-LINDENBERG, A., MILETICH, R. S., KOHN, P. D., ESPOSITO, G., 

CARSON, R. E., QUARANTELLI, M., WEINBERGER, D. R. & 



263 
 

BERMAN, K. F. 2002. Reduced prefrontal activity predicts exaggerated 

striatal dopaminergic function in schizophrenia. Nat Neurosci, 5, 267-71. 

MIDDLETON, G. & DAVIES, A. M. 2001. Populations of NGF-dependent 

neurones differ in their requirement for BAX to undergo apoptosis in the 

absence of NGF/TrkA signalling in vivo. Development, 128, 4715-28. 

MILBRANDT, J., DE SAUVAGE, F. J., FAHRNER, T. J., BALOH, R. H., 

LEITNER, M. L., TANSEY, M. G., LAMPE, P. A., HEUCKEROTH, R. O., 

KOTZBAUER, P. T., SIMBURGER, K. S., GOLDEN, J. P., DAVIES, J. A., 

VEJSADA, R., KATO, A. C., HYNES, M., SHERMAN, D., NISHIMURA, 

M., WANG, L. C., VANDLEN, R., MOFFAT, B., KLEIN, R. D., 

POULSEN, K., GRAY, C., GARCES, A., JOHNSON, E. M., JR. & ET AL. 

1998. Persephin, a novel neurotrophic factor related to GDNF and neurturin. 

Neuron, 20, 245-53. 

MILLET, S., CAMPBELL, K., EPSTEIN, D. J., LOSOS, K., HARRIS, E. & 

JOYNER, A. L. 1999. A role for Gbx2 in repression of Otx2 and positioning 

the mid/hindbrain organizer. Nature, 401, 161-4. 

MILLONIG, J. H., MILLEN, K. J. & HATTEN, M. E. 2000. The mouse Dreher 

gene Lmx1a controls formation of the roof plate in the vertebrate CNS. 

Nature, 403, 764-9. 

MIRA, H., ANDREU, Z., SUH, H., LIE, D. C., JESSBERGER, S., CONSIGLIO, 

A., SAN EMETERIO, J., HORTIGUELA, R., MARQUES-TORREJON, M. 

A., NAKASHIMA, K., COLAK, D., GOTZ, M., FARINAS, I. & GAGE, F. 

H. 2010. Signalling through BMPR-IA regulates quiescence and long-term 

activity of neural stem cells in the adult hippocampus. Cell Stem Cell, 7, 78-

89. 

MIYAZAWA, K., SHINOZAKI, M., HARA, T., FURUYA, T. & MIYAZONO, K. 

2002. Two major Smad pathways in TGF-beta superfamily signalling. Genes 

Cells, 7, 1191-204. 

MIYAZONO, K., KAMIYA, Y. & MORIKAWA, M. 2010. Bone morphogenetic 

protein receptors and signal transduction. J Biochem, 147, 35-51. 

MIYAZONO, K., KUSANAGI, K. & INOUE, H. 2001. Divergence and 

convergence of TGF-beta/BMP signalling. J Cell Physiol, 187, 265-76. 



264 
 

MIYAZONO, K., MAEDA, S. & IMAMURA, T. 2005. BMP receptor signalling: 

transcriptional targets, regulation of signals, and signalling cross-talk. 

Cytokine Growth Factor Rev, 16, 251-63. 

MOCHIZUKI, T., MIYAZAKI, H., HARA, T., FURUYA, T., IMAMURA, T., 

WATABE, T. & MIYAZONO, K. 2004. Roles for the MH2 domain of 

Smad7 in the specific inhibition of transforming growth factor-beta 

superfamily signalling. J Biol Chem, 279, 31568-74. 

MOKRY, J., KARBANOVA, J. & FILIP, S. 2005. Differentiation potential of 

murine neural stem cells in vitro and after transplantation. Transplant Proc, 

37, 268-72. 

MONSORO-BURQ, A. H., WANG, E. & HARLAND, R. 2005. Msx1 and Pax3 

cooperate to mediate FGF8 and WNT signals during Xenopus neural crest 

induction. Dev Cell, 8, 167-78. 

MONTEIRO, R. M., DE SOUSA LOPES, S. M., BIALECKA, M., DE BOER, S., 

ZWIJSEN, A. & MUMMERY, C. L. 2008. Real time monitoring of BMP 

Smads transcriptional activity during mouse development. Genesis, 46, 335-

46. 

MOORE, M. W., KLEIN, R. D., FARINAS, I., SAUER, H., ARMANINI, M., 

PHILLIPS, H., REICHARDT, L. F., RYAN, A. M., CARVER-MOORE, K. 

& ROSENTHAL, A. 1996. Renal and neuronal abnormalities in mice lacking 

GDNF. Nature, 382, 76-9. 

MORIZANE, A., LI, J. Y. & BRUNDIN, P. 2008. From bench to bed: the potential 

of stem cells for the treatment of Parkinson's disease. Cell Tissue Res, 331, 

323-36. 

MOSES, D., TEPER, Y., GANTOIS, I., FINKELSTEIN, D. I., HORNE, M. K. & 

DRAGO, J. 2006. Murine embryonic EGF-responsive ventral mesencephalic 

neurospheres display distinct regional specification and promote survival of 

dopaminergic neurons. Exp Neurol, 199, 209-21. 

MOURY, J. D. & JACOBSON, A. G. 1989. Neural fold formation at newly created 

boundaries between neural plate and epidermis in the axolotl. Dev Biol, 133, 

44-57. 

MOURY, J. D. & JACOBSON, A. G. 1990. The origins of neural crest cells in the 

axolotl. Dev Biol, 141, 243-53. 



265 
 

MOUSTAKAS, A. & HELDIN, C. H. 2005. Non-Smad TGF-beta signals. J Cell 

Sci, 118, 3573-84. 

MOUSTAKAS, A., SOUCHELNYTSKYI, S. & HELDIN, C. H. 2001. Smad 

regulation in TGF-beta signal transduction. J Cell Sci, 114, 4359-69. 

MULLER, T., ANLAG, K., WILDNER, H., BRITSCH, S., TREIER, M. & 

BIRCHMEIER, C. 2005. The bHLH factor Olig3 coordinates the 

specification of dorsal neurons in the spinal cord. Genes Dev, 19, 733-43. 

MULLINS, M. C., HAMMERSCHMIDT, M., KANE, D. A., ODENTHAL, J., 

BRAND, M., VAN EEDEN, F. J., FURUTANI-SEIKI, M., GRANATO, M., 

HAFFTER, P., HEISENBERG, C. P., JIANG, Y. J., KELSH, R. N. & 

NUSSLEIN-VOLHARD, C. 1996. Genes establishing dorsoventral pattern 

formation in the zebrafish embryo: the ventral specifying genes. 

Development, 123, 81-93. 

MURAKAMI, G., WATABE, T., TAKAOKA, K., MIYAZONO, K. & IMAMURA, 

T. 2003. Cooperative inhibition of bone morphogenetic protein signalling by 

Smurf1 and inhibitory Smads. Mol Biol Cell, 14, 2809-17. 

NAKAMURA, S., ITO, Y., SHIRASAKI, R. & MURAKAMI, F. 2000. Local 

directional cues control growth polarity of dopaminergic axons along the 

rostrocaudal axis. J Neurosci, 20, 4112-9. 

NAKAMURA, Y., OZAKI, T., KOSEKI, H., NAKAGAWARA, A. & 

SAKIYAMA, S. 2003. Accumulation of p27 KIP1 is associated with BMP2-

induced growth arrest and neuronal differentiation of human neuroblastoma-

derived cell lines. Biochem Biophys Res Commun, 307, 206-13. 

NAKATA, K., NAGAI, T., ARUGA, J. & MIKOSHIBA, K. 1998. Xenopus Zic 

family and its role in neural and neural crest development. Mech Dev, 75, 43-

51. 

NAKATANI, T., KUMAI, M., MIZUHARA, E., MINAKI, Y. & ONO, Y. 2010. 

Lmx1a and Lmx1b cooperate with Foxa2 to coordinate the specification of 

dopaminergic neurons and control of floor plate cell differentiation in the 

developing mesencephalon. Dev Biol, 339, 101-13. 

NGUYEN, V. H., SCHMID, B., TROUT, J., CONNORS, S. A., EKKER, M. & 

MULLINS, M. C. 1998. Ventral and lateral regions of the zebrafish gastrula, 

including the neural crest progenitors, are established by a bmp2b/swirl 

pathway of genes. Dev Biol, 199, 93-110. 



266 
 

NGUYEN, V. H., TROUT, J., CONNORS, S. A., ANDERMANN, P., WEINBERG, 

E. & MULLINS, M. C. 2000. Dorsal and intermediate neuronal cell types of 

the spinal cord are established by a BMP signalling pathway. Development, 

127, 1209-20. 

NIE, X., DENG, C. X., WANG, Q. & JIAO, K. 2008. Disruption of Smad4 in neural 

crest cells leads to mid-gestation death with pharyngeal arch, craniofacial and 

cardiac defects. Dev Biol, 316, 417-30. 

NIERE, M., BRAUN, B., GASS, R., STURANY, S. & VOLKMER, H. 2006. 

Combination of engineered neural cell adhesion molecules and GDF-5 for 

improved neurite extension in nerve guide concepts. Biomaterials, 27, 3432-

40. 

NIETO, M., MONUKI, E. S., TANG, H., IMITOLA, J., HAUBST, N., KHOURY, 

S. J., CUNNINGHAM, J., GOTZ, M. & WALSH, C. A. 2004. Expression of 

Cux-1 and Cux-2 in the subventricular zone and upper layers II-IV of the 

cerebral cortex. J Comp Neurol, 479, 168-80. 

NIEUWKOOP, P. D. 1967. The "organization centre". 3. Segregation and pattern 

formation in morphogenetic fields. Acta Biotheor, 17, 178-94. 

NISHIKAWA, S., GOTO, S., YAMADA, K., HAMASAKI, T. & USHIO, Y. 2003. 

Lack of Reelin causes malpositioning of nigral dopaminergic neurons: 

evidence from comparison of normal and Reln(rl) mutant mice. J Comp 

Neurol, 461, 166-73. 

NISHIMURA, R., HATA, K., MATSUBARA, T., WAKABAYASHI, M. & 

YONEDA, T. 2012. Regulation of bone and cartilage development by 

network between BMP signalling and transcription factors. J Biochem, 151, 

247-54. 

NISHITOH, H., ICHIJO, H., KIMURA, M., MATSUMOTO, T., MAKISHIMA, F., 

YAMAGUCHI, A., YAMASHITA, H., ENOMOTO, S. & MIYAZONO, K. 

1996. Identification of type I and type II serine/threonine kinase receptors for 

growth/differentiation factor-5. J. Biol. Chem., 271, 21345-52. 

NISSIM-ELIRAZ, E., ZISMAN, S., SCHATZ, O. & BEN-ARIE, N. 2012. Nato3 

Integrates with the Shh-Foxa2 Transcriptional Network Regulating the 

Differentiation of Midbrain Dopaminergic Neurons. J Mol Neurosci. 



267 
 

NITTA, K. R., TANEGASHIMA, K., TAKAHASHI, S. & ASASHIMA, M. 2004. 

XSIP1 is essential for early neural gene expression and neural differentiation 

by suppression of BMP signalling. Dev Biol, 275, 258-67. 

NOCTOR, S. C., MARTINEZ-CERDENO, V., IVIC, L. & KRIEGSTEIN, A. R. 

2004. Cortical neurons arise in symmetric and asymmetric division zones and 

migrate through specific phases. Nat Neurosci, 7, 136-44. 

NOHE, A., HASSEL, S., EHRLICH, M., NEUBAUER, F., SEBALD, W., HENIS, 

Y. I. & KNAUS, P. 2002. The mode of bone morphogenetic protein (BMP) 

receptor oligomerization determines different BMP-2 signalling pathways. J 

Biol Chem, 277, 5330-8. 

NOHE, A., KEATING, E., KNAUS, P. & PETERSEN, N. O. 2004. Signal 

transduction of bone morphogenetic protein receptors. Cell Signal, 16, 291-9. 

NOLAN, Y. M., SULLIVAN, A. M. & TOULOUSE, A. 2013. Parkinson's disease 

in the nuclear age of neuroinflammation. Trends Mol Med, 19, 187-96. 

NUNES DA FONSECA, R., VAN DER ZEE, M. & ROTH, S. 2010. Evolution of 

extracellular Dpp modulators in insects: The roles of tolloid and twisted-

gastrulation in dorsoventral patterning of the Tribolium embryo. Dev Biol, 

345, 80-93. 

NUNES, I., TOVMASIAN, L. T., SILVA, R. M., BURKE, R. E. & GOFF, S. P. 

2003. Pitx3 is required for development of substantia nigra dopaminergic 

neurons. Proc Natl Acad Sci U S A, 100, 4245-50. 

NUSSE, R. & VARMUS, H. E. 1982. Many tumors induced by the mouse mammary 

tumor virus contain a provirus integrated in the same region of the host 

genome. Cell, 31, 99-109. 

O'KEEFFE, G. W., DOCKERY, P. & SULLIVAN, A. M. 2004a. Effects of 

growth/differentiation factor 5 on the survival and morphology of embryonic 

rat midbrain dopaminergic neurones in vitro. J. Neurocytol., 33, 479-88. 

O'KEEFFE, G. W., HANKE, M., POHL, J. & SULLIVAN, A. M. 2004b. 

Expression of growth differentiation factor-5 in the developing and adult rat 

brain. Brain Res. Dev. Brain Res., 151, 199-202. 

O'KEEFFE, G. W. & SULLIVAN, A. M. 2005. Donor age affects differentiation of 

rat ventral mesencephalic stem cells. Neurosci. Lett., 375, 101-6. 



268 
 

O'SULLIVAN, D. B., HARRISON, P. T. & SULLIVAN, A. M. 2010. Effects of 

GDF5 overexpression on embryonic rat dopaminergic neurones in vitro and 

in vivo. J. Neural. Transm., 117, 559-72. 

OELGESCHLAGER, M., KURODA, H., REVERSADE, B. & DE ROBERTIS, E. 

M. 2003. Chordin is required for the Spemann organizer transplantation 

phenomenon in Xenopus embryos. Dev Cell, 4, 219-30. 

OHYAMA, K., KAWANO, H., ASOU, H., FUKUDA, T., OOHIRA, A., 

UYEMURA, K. & KAWAMURA, K. 1998. Coordinate expression of L1 

and 6B4 proteoglycan/phosphacan is correlated with the migration of 

mesencephalic dopaminergic neurons in mice. Brain Res Dev Brain Res, 107, 

219-26. 

OIWA, Y., YOSHIMURA, R., NAKAI, K. & ITAKURA, T. 2002. Dopaminergic 

neuroprotection and regeneration by neurturin assessed by using behavioral, 

biochemical and histochemical measurements in a model of progressive 

Parkinson's disease. Brain Res, 947, 271-83. 

OLANOW, C. W. 2002. Surgical therapy for Parkinson's disease. Eur J Neurol, 9 

Suppl 3, 31-9. 

OLANOW, C. W. 2008. Levodopa/dopamine replacement strategies in Parkinson's 

disease--future directions. Mov Disord, 23 Suppl 3, S613-22. 

OLANOW, C. W., GOETZ, C. G., KORDOWER, J. H., STOESSL, A. J., SOSSI, 

V., BRIN, M. F., SHANNON, K. M., NAUERT, G. M., PERL, D. P., 

GODBOLD, J. & FREEMAN, T. B. 2003. A double-blind controlled trial of 

bilateral fetal nigral transplantation in Parkinson's disease. Ann Neurol, 54, 

403-14. 

OMODEI, D., ACAMPORA, D., MANCUSO, P., PRAKASH, N., DI 

GIOVANNANTONIO, L. G., WURST, W. & SIMEONE, A. 2008. 

Anterior-posterior graded response to Otx2 controls proliferation and 

differentiation of dopaminergic progenitors in the ventral mesencephalon. 

Development, 135, 3459-70. 

ONO, Y., NAKATANI, T., MINAKI, Y. & KUMAI, M. 2010. The basic helix-loop-

helix transcription factor Nato3 controls neurogenic activity in mesencephalic 

floor plate cells. Development, 137, 1897-906. 

ONO, Y., NAKATANI, T., SAKAMOTO, Y., MIZUHARA, E., MINAKI, Y., 

KUMAI, M., HAMAGUCHI, A., NISHIMURA, M., INOUE, Y., 



269 
 

HAYASHI, H., TAKAHASHI, J. & IMAI, T. 2007. Differences in 

neurogenic potential in floor plate cells along an anteroposterior location: 

midbrain dopaminergic neurons originate from mesencephalic floor plate 

cells. Development, 134, 3213-25. 

OO, T. F. & BURKE, R. E. 1997. The time course of developmental cell death in 

phenotypically defined dopaminergic neurons of the substantia nigra. Brain 

Res Dev Brain Res, 98, 191-6. 

ORLACCHIO, A., BERNARDI, G. & MARTINO, S. 2010. Stem cells and 

neurological diseases. Discov Med, 9, 546-53. 

ORME, R. P., BHANGAL, M. S. & FRICKER, R. A. 2013. Calcitriol imparts 

neuroprotection in vitro to midbrain dopaminergic neurons by upregulating 

GDNF expression. PLoS One, 8, e62040. 

ORVIS, G. D., JAMIN, S. P., KWAN, K. M., MISHINA, Y., KAARTINEN, V. M., 

HUANG, S., ROBERTS, A. B., UMANS, L., HUYLEBROECK, D., 

ZWIJSEN, A., WANG, D., MARTIN, J. F. & BEHRINGER, R. R. 2008. 

Functional redundancy of TGF-beta family type I receptors and receptor-

Smads in mediating anti-Mullerian hormone-induced Mullerian duct 

regression in the mouse. Biol Reprod, 78, 994-1001. 

OSADA, S., OHMORI, S. Y. & TAIRA, M. 2003. XMAN1, an inner nuclear 

membrane protein, antagonizes BMP signalling by interacting with Smad1 in 

Xenopus embryos. Development, 130, 1783-94. 

OSTENFELD, T., JOLY, E., TAI, Y. T., PETERS, A., CALDWELL, M., 

JAUNIAUX, E. & SVENDSEN, C. N. 2002. Regional specification of 

rodent and human neurospheres. Brain Res Dev Brain Res, 134, 43-55. 

PAKKENBERG, B., MOLLER, A., GUNDERSEN, H. J., MOURITZEN DAM, A. 

& PAKKENBERG, H. 1991. The absolute number of nerve cells in 

substantia nigra in normal subjects and in patients with Parkinson's disease 

estimated with an unbiased stereological method. J Neurol Neurosurg 

Psychiatry, 54, 30-3. 

PANCHISION, D. M., PICKEL, J. M., STUDER, L., LEE, S. H., TURNER, P. A., 

HAZEL, T. G. & MCKAY, R. D. 2001. Sequential actions of BMP receptors 

control neural precursor cell production and fate. Genes Dev, 15, 2094-110. 

PANHUYSEN, M., VOGT WEISENHORN, D. M., BLANQUET, V., BRODSKI, 

C., HEINZMANN, U., BEISKER, W. & WURST, W. 2004. Effects of Wnt1 



270 
 

signalling on proliferation in the developing mid-/hindbrain region. Mol Cell 

Neurosci, 26, 101-11. 

PARALKAR, V. M., WEEKS, B. S., YU, Y. M., KLEINMAN, H. K. & REDDI, A. 

H. 1992. Recombinant human bone morphogenetic protein 2B stimulates 

PC12 cell differentiation: potentiation and binding to type IV collagen. J Cell 

Biol, 119, 1721-8. 

PARIKH, P., HAO, Y., HOSSEINKHANI, M., PATIL, S. B., HUNTLEY, G. W., 

TESSIER-LAVIGNE, M. & ZOU, H. 2011. Regeneration of axons in injured 

spinal cord by activation of bone morphogenetic protein/Smad1 signalling 

pathway in adult neurons. Proc Natl Acad Sci U S A, 108, E99-107. 

PARISH, C. L., CASTELO-BRANCO, G., RAWAL, N., TONNESEN, J., 

SORENSEN, A. T., SALTO, C., KOKAIA, M., LINDVALL, O. & 

ARENAS, E. 2008. Wnt5a-treated midbrain neural stem cells improve 

dopamine cell replacement therapy in parkinsonian mice. J Clin Invest, 118, 

149-60. 

PARK, H. L., BAI, C., PLATT, K. A., MATISE, M. P., BEEGHLY, A., HUI, C. C., 

NAKASHIMA, M. & JOYNER, A. L. 2000. Mouse Gli1 mutants are viable 

but have defects in SHH signalling in combination with a Gli2 mutation. 

Development, 127, 1593-605. 

PARR, B. A., SHEA, M. J., VASSILEVA, G. & MCMAHON, A. P. 1993. Mouse 

Wnt genes exhibit discrete domains of expression in the early embryonic 

CNS and limb buds. Development, 119, 247-61. 

PATEL, N. K., BUNNAGE, M., PLAHA, P., SVENDSEN, C. N., HEYWOOD, P. 

& GILL, S. S. 2005. Intraputamenal infusion of glial cell line-derived 

neurotrophic factor in PD: a two-year outcome study. Ann Neurol, 57, 298-

302. 

PENG, C., ARON, L., KLEIN, R., LI, M., WURST, W., PRAKASH, N. & LE, W. 

2011. Pitx3 is a critical mediator of GDNF-induced BDNF expression in 

nigrostriatal dopaminergic neurons. J Neurosci, 31, 12802-15. 

PERA, E. M., IKEDA, A., EIVERS, E. & DE ROBERTIS, E. M. 2003. Integration 

of IGF, FGF, and anti-BMP signals via Smad1 phosphorylation in neural 

induction. Genes Dev, 17, 3023-8. 

PEREIRA, P. N., DOBREVA, M. P., MAAS, E., CORNELIS, F. M., MOYA, I. M., 

UMANS, L., VERFAILLIE, C. M., CAMUS, A., DE SOUSA LOPES, S. 



271 
 

M., HUYLEBROECK, D. & ZWIJSEN, A. 2012. Antagonism of Nodal 

signalling by BMP/Smad5 prevents ectopic primitive streak formation in the 

mouse amnion. Development, 139, 3343-54. 

PETERSON, A. L. & NUTT, J. G. 2008. Treatment of Parkinson's disease with 

trophic factors. Neurotherapeutics, 5, 270-80. 

PETERSON, R. S., ANDHARE, R. A., ROUSCHE, K. T., KNUDSON, W., 

WANG, W., GROSSFIELD, J. B., THOMAS, R. O., HOLLINGSWORTH, 

R. E. & KNUDSON, C. B. 2004. CD44 modulates Smad1 activation in the 

BMP-7 signalling pathway. J Cell Biol, 166, 1081-91. 

PETERZIEL, H., UNSICKER, K. & KRIEGLSTEIN, K. 2002. TGFbeta induces 

GDNF responsiveness in neurons by recruitment of GFRalpha1 to the plasma 

membrane. J Cell Biol, 159, 157-67. 

PHAN, K. D., HAZEN, V. M., FRENDO, M., JIA, Z. & BUTLER, S. J. 2010. The 

bone morphogenetic protein roof plate chemorepellent regulates the rate of 

commissural axonal growth. J Neurosci, 30, 15430-40. 

PI, X., SCHMITT, C. E., XIE, L., PORTBURY, A. L., WU, Y., LOCKYER, P., 

DYER, L. A., MOSER, M., BU, G., FLYNN, E. J., 3RD, JIN, S. W. & 

PATTERSON, C. 2012. LRP1-dependent endocytic mechanism governs the 

signalling output of the bmp system in endothelial cells and in angiogenesis. 

Circ Res, 111, 564-74. 

PICCOLO, S., SASAI, Y., LU, B. & DE ROBERTIS, E. M. 1996. Dorsoventral 

patterning in Xenopus: inhibition of ventral signals by direct binding of 

chordin to BMP-4. Cell, 86, 589-98. 

PICHEL, J. G., SHEN, L., SHENG, H. Z., GRANHOLM, A. C., DRAGO, J., 

GRINBERG, A., LEE, E. J., HUANG, S. P., SAARMA, M., HOFFER, B. J., 

SARIOLA, H. & WESTPHAL, H. 1996. Defects in enteric innervation and 

kidney development in mice lacking GDNF. Nature, 382, 73-6. 

PIERREUX, C. E., NICOLAS, F. J. & HILL, C. S. 2000. Transforming growth 

factor beta-independent shuttling of Smad4 between the cytoplasm and 

nucleus. Mol Cell Biol, 20, 9041-54. 

PINSON, K. I., BRENNAN, J., MONKLEY, S., AVERY, B. J. & SKARNES, W. C. 

2000. An LDL-receptor-related protein mediates Wnt signalling in mice. 

Nature, 407, 535-8. 



272 
 

PLACZEK, M. & BRISCOE, J. 2005. The floor plate: multiple cells, multiple 

signals. Nat Rev Neurosci, 6, 230-40. 

PODOS, S. D., HANSON, K. K., WANG, Y. C. & FERGUSON, E. L. 2001. The 

DSmurf ubiquitin-protein ligase restricts BMP signalling spatially and 

temporally during Drosophila embryogenesis. Dev Cell, 1, 567-78. 

PONTIOUS, A., KOWALCZYK, T., ENGLUND, C. & HEVNER, R. F. 2008. Role 

of intermediate progenitor cells in cerebral cortex development. Dev 

Neurosci, 30, 24-32. 

POSTIGO, A. A., DEPP, J. L., TAYLOR, J. J. & KROLL, K. L. 2003. Regulation of 

Smad signalling through a differential recruitment of coactivators and 

corepressors by ZEB proteins. EMBO J, 22, 2453-62. 

PRAKASH, N., BRODSKI, C., NASERKE, T., PUELLES, E., GOGOI, R., HALL, 

A., PANHUYSEN, M., ECHEVARRIA, D., SUSSEL, L., WEISENHORN, 

D. M., MARTINEZ, S., ARENAS, E., SIMEONE, A. & WURST, W. 2006. 

A Wnt1-regulated genetic network controls the identity and fate of midbrain-

dopaminergic progenitors in vivo. Development, 133, 89-98. 

PRESGRAVES, S. P., AHMED, T., BORWEGE, S. & JOYCE, J. N. 2004. 

Terminally differentiated SH-SY5Y cells provide a model system for 

studying neuroprotective effects of dopamine agonists. Neurotox Res, 5, 579-

98. 

PUELLES, E., ANNINO, A., TUORTO, F., USIELLO, A., ACAMPORA, D., 

CZERNY, T., BRODSKI, C., ANG, S. L., WURST, W. & SIMEONE, A. 

2004. Otx2 regulates the extent, identity and fate of neuronal progenitor 

domains in the ventral midbrain. Development, 131, 2037-48. 

PUELLES, L. 2001. Brain segmentation and forebrain development in amniotes. 

Brain Res Bull, 55, 695-710. 

PUELLES, L. & VERNEY, C. 1998. Early neuromeric distribution of tyrosine-

hydroxylase-immunoreactive neurons in human embryos. J Comp Neurol, 

394, 283-308. 

QIN, B. Y., CHACKO, B. M., LAM, S. S., DE CAESTECKER, M. P., CORREIA, 

J. J. & LIN, K. 2001. Structural basis of Smad1 activation by receptor kinase 

phosphorylation. Mol Cell, 8, 1303-12. 



273 
 

QIN, L., WINE-LEE, L., AHN, K. J. & CRENSHAW, E. B., 3RD 2006. Genetic 

analyses demonstrate that bone morphogenetic protein signalling is required 

for embryonic cerebellar development. J Neurosci, 26, 1896-905. 

RAHHAL, B., HEERMANN, S., FERDINAND, A., ROSENBUSCH, J., 

RICKMANN, M. & KRIEGLSTEIN, K. 2009. In vivo requirement of TGF-

beta/GDNF cooperativity in mouse development: focus on the neurotrophic 

hypothesis. Int J Dev Neurosci, 27, 97-102. 

RAJAN, P., PANCHISION, D. M., NEWELL, L. F. & MCKAY, R. D. 2003. BMPs 

signal alternately through a SMAD or FRAP-STAT pathway to regulate fate 

choice in CNS stem cells. J Cell Biol, 161, 911-21. 

RAJU, G. P., DIMOVA, N., KLEIN, P. S. & HUANG, H. C. 2003. SANE, a novel 

LEM domain protein, regulates bone morphogenetic protein signalling 

through interaction with Smad1. J Biol Chem, 278, 428-37. 

RATZKA, A., BARON, O., STACHOWIAK, M. K. & GROTHE, C. 2012. 

Fibroblast growth factor 2 regulates dopaminergic neuron development in 

vivo. J Neurochem, 122, 94-105. 

RAUCH, C., BRUNET, A. C., DELEULE, J. & FARGE, E. 2002. C2C12 

myoblast/osteoblast transdifferentiation steps enhanced by epigenetic 

inhibition of BMP2 endocytosis. Am J Physiol Cell Physiol, 283, C235-43. 

RAWAL, N., CASTELO-BRANCO, G., SOUSA, K. M., KELE, J., KOBAYASHI, 

K., OKANO, H. & ARENAS, E. 2006. Dynamic temporal and cell type-

specific expression of Wnt signalling components in the developing 

midbrain. Exp Cell Res, 312, 1626-36. 

REDMOND, D. E., JR. 2002. Cellular replacement therapy for Parkinson's disease--

where we are today? Neuroscientist, 8, 457-88. 

REDMOND, D. E., JR., ELSWORTH, J. D., ROTH, R. H., LERANTH, C., 

COLLIER, T. J., BLANCHARD, B., BJUGSTAD, K. B., SAMULSKI, R. J., 

AEBISCHER, P. & SLADEK, J. R., JR. 2009. Embryonic substantia nigra 

grafts in the mesencephalon send neurites to the host striatum in non-human 

primate after overexpression of GDNF. J Comp Neurol, 515, 31-40. 

REIRIZ, J., ESPEJO, M., VENTURA, F., AMBROSIO, S. & ALBERCH, J. 1999. 

Bone morphogenetic protein-2 promotes dissociated effects on the number 

and differentiation of cultured ventral mesencephalic dopaminergic neurons. 

J Neurobiol, 38, 161-70. 



274 
 

REISSMANN, E., ERNSBERGER, U., FRANCIS-WEST, P. H., RUEGER, D., 

BRICKELL, P. M. & ROHRER, H. 1996. Involvement of bone 

morphogenetic protein-4 and bone morphogenetic protein-7 in the 

differentiation of the adrenergic phenotype in developing sympathetic 

neurons. Development, 122, 2079-88. 

REYNOLDS, B. A. & WEISS, S. 1992. Generation of neurons and astrocytes from 

isolated cells of the adult mammalian central nervous system. Science, 255, 

1707-10. 

RHINN, M. & BRAND, M. 2001. The midbrain--hindbrain boundary organizer. 

Curr Opin Neurobiol, 11, 34-42. 

RIBEIRO, D., ELLWANGER, K., GLAGOW, D., THEOFILOPOULOS, S., 

CORSINI, N. S., MARTIN-VILLALBA, A., NIEHRS, C. & ARENAS, E. 

2011. Dkk1 regulates ventral midbrain dopaminergic differentiation and 

morphogenesis. PLoS One, 6, e15786. 

RIBEIRO, D., LAGUNA GOYA, R., RAVINDRAN, G., VUONO, R., PARISH, C. 

L., FOLDI, C., PIROTH, T., YANG, S., PARMAR, M., NIKKHAH, G., 

HJERLING-LEFFLER, J., LINDVALL, O., BARKER, R. A. & ARENAS, 

E. 2012. Efficient expansion and dopaminergic differentiation of human fetal 

ventral midbrain neural stem cells by midbrain morphogens. Neurobiol Dis, 

49C, 118-127. 

RICHARDS, A. B., SCHEEL, T. A., WANG, K., HENKEMEYER, M. & 

KROMER, L. F. 2007. EphB1 null mice exhibit neuronal loss in substantia 

nigra pars reticulata and spontaneous locomotor hyperactivity. Eur J 

Neurosci, 25, 2619-28. 

RIETZE, R. L. & REYNOLDS, B. A. 2006. Neural stem cell isolation and 

characterization. Methods Enzymol, 419, 3-23. 

ROBINSON, T. E. & BERRIDGE, K. C. 1993. The neural basis of drug craving: an 

incentive-sensitization theory of addiction. Brain Res Brain Res Rev, 18, 247-

91. 

ROGERS, C. D., ARCHER, T. C., CUNNINGHAM, D. D., GRAMMER, T. C. & 

CASEY, E. M. 2008. Sox3 expression is maintained by FGF signalling and 

restricted to the neural plate by Vent proteins in the Xenopus embryo. Dev 

Biol, 313, 307-19. 



275 
 

ROGERS, C. D., MOODY, S. A. & CASEY, E. S. 2009. Neural induction and 

factors that stabilize a neural fate. Birth Defects Res C Embryo Today, 87, 

249-62. 

ROSENBLAD, C., MARTINEZ-SERRANO, A. & BJORKLUND, A. 1998. 

Intrastriatal glial cell line-derived neurotrophic factor promotes sprouting of 

spared nigrostriatal dopaminergic afferents and induces recovery of function 

in a rat model of Parkinson's disease. Neuroscience, 82, 129-37. 

ROSENZWEIG, B. L., IMAMURA, T., OKADOME, T., COX, G. N., 

YAMASHITA, H., TEN DIJKE, P., HELDIN, C. H. & MIYAZONO, K. 

1995. Cloning and characterization of a human type II receptor for bone 

morphogenetic proteins. Proc Natl Acad Sci U S A, 92, 7632-6. 

ROUND, J. & STEIN, E. 2007. Netrin signalling leading to directed growth cone 

steering. Curr Opin Neurobiol, 17, 15-21. 

ROUSSA, E. & KRIEGLSTEIN, K. 2004a. GDNF promotes neuronal 

differentiation and dopaminergic development of mouse mesencephalic 

neurospheres. Neurosci Lett, 361, 52-5. 

ROUSSA, E. & KRIEGLSTEIN, K. 2004b. Induction and specification of midbrain 

dopaminergic cells: focus on SHH, FGF8, and TGF-beta. Cell Tissue Res, 

318, 23-33. 

ROUSSA, E., OEHLKE, O., RAHHAL, B., HEERMANN, S., HEIDRICH, S., 

WIEHLE, M. & KRIEGLSTEIN, K. 2008. Transforming growth factor beta 

cooperates with persephin for dopaminergic phenotype induction. Stem Cells, 

26, 1683-94. 

ROUSSA, E., VON BOHLEN UND HALBACH, O. & KRIEGLSTEIN, K. 2009. 

TGF-beta in dopamine neuron development, maintenance and 

neuroprotection. Adv Exp Med Biol, 651, 81-90. 

ROUSSA, E., WIEHLE, M., DUNKER, N., BECKER-KATINS, S., OEHLKE, O. 

& KRIEGLSTEIN, K. 2006. Transforming growth factor beta is required for 

differentiation of mouse mesencephalic progenitors into dopaminergic 

neurons in vitro and in vivo: ectopic induction in dorsal mesencephalon. Stem 

Cells, 24, 2120-9. 

ROY, A., FRANCIUS, C., ROUSSO, D. L., SEUNTJENS, E., DEBRUYN, J., 

LUXENHOFER, G., HUBER, A. B., HUYLEBROECK, D., NOVITCH, B. 



276 
 

G. & CLOTMAN, F. 2012. Onecut transcription factors act upstream of Isl1 

to regulate spinal motoneuron diversification. Development, 139, 3109-19. 

ROYBON, L., BRUNDIN, P. & LI, J. Y. 2005. Stromal cell-derived inducing 

activity does not promote dopaminergic differentiation, but enhances 

differentiation and proliferation of neural stem cell-derived astrocytes. Exp 

Neurol, 196, 373-80. 

SAARIMAKI-VIRE, J., PELTOPURO, P., LAHTI, L., NASERKE, T., BLAK, A. 

A., VOGT WEISENHORN, D. M., YU, K., ORNITZ, D. M., WURST, W. & 

PARTANEN, J. 2007. Fibroblast growth factor receptors cooperate to 

regulate neural progenitor properties in the developing midbrain and 

hindbrain. J Neurosci, 27, 8581-92. 

SACCHETTI, P., MITCHELL, T. R., GRANNEMAN, J. G. & BANNON, M. J. 

2001. Nurr1 enhances transcription of the human dopamine transporter gene 

through a novel mechanism. J Neurochem, 76, 1565-72. 

SAKURADA, K., OHSHIMA-SAKURADA, M., PALMER, T. D. & GAGE, F. H. 

1999. Nurr1, an orphan nuclear receptor, is a transcriptional activator of 

endogenous tyrosine hydroxylase in neural progenitor cells derived from the 

adult brain. Development, 126, 4017-26. 

SALDANHA, S., BRAGDON, B., MOSEYCHUK, O., BONOR, J., DHURJATI, P. 

& NOHE, A. 2013. Caveolae regulate Smad signalling as verified by novel 

imaging and system biology approaches. J Cell Physiol, 228, 1060-9. 

SAMAD, T. A., REBBAPRAGADA, A., BELL, E., ZHANG, Y., SIDIS, Y., 

JEONG, S. J., CAMPAGNA, J. A., PERUSINI, S., FABRIZIO, D. A., 

SCHNEYER, A. L., LIN, H. Y., BRIVANLOU, A. H., ATTISANO, L. & 

WOOLF, C. J. 2005. DRAGON, a bone morphogenetic protein co-receptor. J 

Biol Chem, 280, 14122-9. 

SAMII, A., NUTT, J. G. & RANSOM, B. R. 2004. Parkinson's disease. Lancet, 363, 

1783-93. 

SANCHEZ-PERNAUTE, R., STUDER, L., BANKIEWICZ, K. S., MAJOR, E. O. 

& MCKAY, R. D. 2001. In vitro generation and transplantation of precursor-

derived human dopamine neurons. J Neurosci Res, 65, 284-8. 

SANCHEZ, M. P., SILOS-SANTIAGO, I., FRISEN, J., HE, B., LIRA, S. A. & 

BARBACID, M. 1996. Renal agenesis and the absence of enteric neurons in 

mice lacking GDNF. Nature, 382, 70-3. 



277 
 

SANFORD, L. P., ORMSBY, I., GITTENBERGER-DE GROOT, A. C., SARIOLA, 

H., FRIEDMAN, R., BOIVIN, G. P., CARDELL, E. L. & DOETSCHMAN, 

T. 1997. TGFbeta2 knockout mice have multiple developmental defects that 

are non-overlapping with other TGFbeta knockout phenotypes. Development, 

124, 2659-70. 

SANGADALA, S., METPALLY, R. P. & REDDY, B. V. 2007. Molecular 

interaction between Smurf1 WW2 domain and PPXY motifs of Smad1, 

Smad5, and Smad6--modeling and analysis. J Biomol Struct Dyn, 25, 11-23. 

SASAI, Y., LU, B., STEINBEISSER, H. & DE ROBERTIS, E. M. 1995. Regulation 

of neural induction by the Chd and Bmp-4 antagonistic patterning signals in 

Xenopus. Nature, 376, 333-6. 

SASAI, Y., LU, B., STEINBEISSER, H., GEISSERT, D., GONT, L. K. & DE 

ROBERTIS, E. M. 1994. Xenopus chordin: a novel dorsalizing factor 

activated by organizer-specific homeobox genes. Cell, 79, 779-90. 

SASAKI, A., MASUDA, Y., OHTA, Y., IKEDA, K. & WATANABE, K. 2001. 

Filamin associates with Smads and regulates transforming growth factor-beta 

signalling. J Biol Chem, 276, 17871-7. 

SASAKI, H. & HOGAN, B. L. 1994. HNF-3 beta as a regulator of floor plate 

development. Cell, 76, 103-15. 

SAUCEDO-CARDENAS, O., QUINTANA-HAU, J. D., LE, W. D., SMIDT, M. P., 

COX, J. J., DE MAYO, F., BURBACH, J. P. & CONNEELY, O. M. 1998. 

Nurr1 is essential for the induction of the dopaminergic phenotype and the 

survival of ventral mesencephalic late dopaminergic precursor neurons. Proc 

Natl Acad Sci U S A, 95, 4013-8. 

SAWADA, H., IBI, M., KIHARA, T., URUSHITANI, M., NAKANISHI, M., 

AKAIKE, A. & SHIMOHAMA, S. 2000. Neuroprotective mechanism of 

glial cell line-derived neurotrophic factor in mesencephalic neurons. J 

Neurochem, 74, 1175-84. 

SCHAPIRA, A. H. & OLANOW, C. W. 2004. Neuroprotection in Parkinson 

disease: mysteries, myths, and misconceptions. JAMA, 291, 358-64. 

SCHOBER, A., PETERZIEL, H., VON BARTHELD, C. S., SIMON, H., 

KRIEGLSTEIN, K. & UNSICKER, K. 2007. GDNF applied to the MPTP-

lesioned nigrostriatal system requires TGF-beta for its neuroprotective action. 

Neurobiol Dis, 25, 378-91. 



278 
 

SCHWARZ, M., ALVAREZ-BOLADO, G., URBANEK, P., BUSSLINGER, M. & 

GRUSS, P. 1997. Conserved biological function between Pax-2 and Pax-5 in 

midbrain and cerebellum development: evidence from targeted mutations. 

Proc Natl Acad Sci U S A, 94, 14518-23. 

SELA-DONENFELD, D. & KALCHEIM, C. 1999. Regulation of the onset of 

neural crest migration by coordinated activity of BMP4 and Noggin in the 

dorsal neural tube. Development, 126, 4749-62. 

SELLECK, M. A. & BRONNER-FRASER, M. 1995. Origins of the avian neural 

crest: the role of neural plate-epidermal interactions. Development, 121, 525-

38. 

SENGLE, G., CHARBONNEAU, N. L., ONO, R. N., SASAKI, T., ALVAREZ, J., 

KEENE, D. R., BACHINGER, H. P. & SAKAI, L. Y. 2008. Targeting of 

bone morphogenetic protein growth factor complexes to fibrillin. J Biol 

Chem, 283, 13874-88. 

SGADO, P., ALBERI, L., GHERBASSI, D., GALASSO, S. L., RAMAKERS, G. 

M., ALAVIAN, K. N., SMIDT, M. P., DYCK, R. H. & SIMON, H. H. 2006. 

Slow progressive degeneration of nigral dopaminergic neurons in postnatal 

Engrailed mutant mice. Proc Natl Acad Sci U S A, 103, 15242-7. 

SGADO, P., FERRETTI, E., GRBEC, D., BOZZI, Y. & SIMON, H. H. 2012. The 

atypical homeoprotein Pbx1a participates in the axonal pathfinding of 

mesencephalic dopaminergic neurons. Neural Dev, 7, 24. 

SHAH, N. M., GROVES, A. K. & ANDERSON, D. J. 1996. Alternative neural crest 

cell fates are instructively promoted by TGFbeta superfamily members. Cell, 

85, 331-43. 

SHEPHERD, T. G., THERIAULT, B. L. & NACHTIGAL, M. W. 2008. Autocrine 

BMP4 signalling regulates ID3 proto-oncogene expression in human ovarian 

cancer cells. Gene, 414, 95-105. 

SHI, W., CHEN, H., SUN, J., CHEN, C., ZHAO, J., WANG, Y. L., ANDERSON, 

K. D. & WARBURTON, D. 2004a. Overexpression of Smurf1 negatively 

regulates mouse embryonic lung branching morphogenesis by specifically 

reducing Smad1 and Smad5 proteins. Am J Physiol Lung Cell Mol Physiol, 

286, L293-300. 



279 
 

SHI, W., SUN, C., HE, B., XIONG, W., SHI, X., YAO, D. & CAO, X. 2004b. 

GADD34-PP1c recruited by Smad7 dephosphorylates TGFbeta type I 

receptor. J Cell Biol, 164, 291-300. 

SHI, Y. & MASSAGUE, J. 2003. Mechanisms of TGF-beta signalling from cell 

membrane to the nucleus. Cell, 113, 685-700. 

SHIMMI, O. & O'CONNOR, M. B. 2003. Physical properties of Tld, Sog, Tsg and 

Dpp protein interactions are predicted to help create a sharp boundary in Bmp 

signals during dorsoventral patterning of the Drosophila embryo. 

Development, 130, 4673-82. 

SHOU, J., RIM, P. C. & CALOF, A. L. 1999. BMPs inhibit neurogenesis by a 

mechanism involving degradation of a transcription factor. Nat Neurosci, 2, 

339-45. 

SHULL, M. M., ORMSBY, I., KIER, A. B., PAWLOWSKI, S., DIEBOLD, R. J., 

YIN, M., ALLEN, R., SIDMAN, C., PROETZEL, G., CALVIN, D. & ET 

AL. 1992. Targeted disruption of the mouse transforming growth factor-beta 

1 gene results in multifocal inflammatory disease. Nature, 359, 693-9. 

SHULTS, C. W., HASHIMOTO, R., BRADY, R. M. & GAGE, F. H. 1990. 

Dopaminergic cells align along radial glia in the developing mesencephalon 

of the rat. Neuroscience, 38, 427-36. 

SIEBER, B. A., KUZMIN, A., CANALS, J. M., DANIELSSON, A., PARATCHA, 

G., ARENAS, E., ALBERCH, J., OGREN, S. O. & IBANEZ, C. F. 2004. 

Disruption of EphA/ephrin-a signalling in the nigrostriatal system reduces 

dopaminergic innervation and dissociates behavioral responses to 

amphetamine and cocaine. Mol Cell Neurosci, 26, 418-28. 

SIEBER, C., KOPF, J., HIEPEN, C. & KNAUS, P. 2009. Recent advances in BMP 

receptor signalling. Cytokine Growth Factor Rev, 20, 343-55. 

SILBEREIS, J., HEINTZ, T., TAYLOR, M. M., GANAT, Y., MENT, L. R., 

BORDEY, A. & VACCARINO, F. 2010. Astroglial cells in the external 

granular layer are precursors of cerebellar granule neurons in neonates. Mol 

Cell Neurosci, 44, 362-73. 

SIMEONE, A., ACAMPORA, D., GULISANO, M., STORNAIUOLO, A. & 

BONCINELLI, E. 1992. Nested expression domains of four homeobox genes 

in developing rostral brain. Nature, 358, 687-90. 



280 
 

SIMEONE, A., DI SALVIO, M., DI GIOVANNANTONIO, L. G., ACAMPORA, 

D., OMODEI, D. & TOMASETTI, C. 2011. The role of otx2 in adult 

mesencephalic-diencephalic dopaminergic neurons. Mol Neurobiol, 43, 107-

13. 

SIMON, H., HORNBRUCH, A. & LUMSDEN, A. 1995. Independent assignment of 

antero-posterior and dorso-ventral positional values in the developing chick 

hindbrain. Curr Biol, 5, 205-14. 

SIMON, H. H., SAUERESSIG, H., WURST, W., GOULDING, M. D. & O'LEARY, 

D. D. 2001. Fate of midbrain dopaminergic neurons controlled by the 

engrailed genes. J Neurosci, 21, 3126-34. 

SLEVIN, J. T., GERHARDT, G. A., SMITH, C. D., GASH, D. M., KRYSCIO, R. & 

YOUNG, B. 2005. Improvement of bilateral motor functions in patients with 

Parkinson disease through the unilateral intraputaminal infusion of glial cell 

line-derived neurotrophic factor. J Neurosurg, 102, 216-22. 

SMIDT, M. P., ASBREUK, C. H., COX, J. J., CHEN, H., JOHNSON, R. L. & 

BURBACH, J. P. 2000. A second independent pathway for development of 

mesencephalic dopaminergic neurons requires Lmx1b. Nat Neurosci, 3, 337-

41. 

SMIDT, M. P., SMITS, S. M., BOUWMEESTER, H., HAMERS, F. P., VAN DER 

LINDEN, A. J., HELLEMONS, A. J., GRAW, J. & BURBACH, J. P. 2004. 

Early developmental failure of substantia nigra dopamine neurons in mice 

lacking the homeodomain gene Pitx3. Development, 131, 1145-55. 

SMIDT, M. P., VAN SCHAICK, H. S., LANCTOT, C., TREMBLAY, J. J., COX, J. 

J., VAN DER KLEIJ, A. A., WOLTERINK, G., DROUIN, J. & BURBACH, 

J. P. 1997. A homeodomain gene Ptx3 has highly restricted brain expression 

in mesencephalic dopaminergic neurons. Proc Natl Acad Sci U S A, 94, 

13305-10. 

SMITH, W. C. & HARLAND, R. M. 1992. Expression cloning of noggin, a new 

dorsalizing factor localized to the Spemann organizer in Xenopus embryos. 

Cell, 70, 829-40. 

SMITH, W. C., KNECHT, A. K., WU, M. & HARLAND, R. M. 1993. Secreted 

noggin protein mimics the Spemann organizer in dorsalizing Xenopus 

mesoderm. Nature, 361, 547-9. 



281 
 

SMITS, S. M., PONNIO, T., CONNEELY, O. M., BURBACH, J. P. & SMIDT, M. 

P. 2003. Involvement of Nurr1 in specifying the neurotransmitter identity of 

ventral midbrain dopaminergic neurons. Eur J Neurosci, 18, 1731-8. 

SODERSTROM, S. & EBENDAL, T. 1999. Localized expression of BMP and GDF 

mRNA in the rodent brain. J Neurosci Res, 56, 482-92. 

SONG, Q., MEHLER, M. F. & KESSLER, J. A. 1998. Bone morphogenetic proteins 

induce apoptosis and growth factor dependence of cultured sympathoadrenal 

progenitor cells. Dev Biol, 196, 119-27. 

SONNIER, L., LE PEN, G., HARTMANN, A., BIZOT, J. C., TROVERO, F., 

KREBS, M. O. & PROCHIANTZ, A. 2007. Progressive loss of 

dopaminergic neurons in the ventral midbrain of adult mice heterozygote for 

Engrailed1. J Neurosci, 27, 1063-71. 

SORKIN, A. & VON ZASTROW, M. 2009. Endocytosis and signalling: 

intertwining molecular networks. Nat Rev Mol Cell Biol, 10, 609-22. 

SOUCHELNYTSKYI, S., NAKAYAMA, T., NAKAO, A., MOREN, A., HELDIN, 

C. H., CHRISTIAN, J. L. & TEN DIJKE, P. 1998. Physical and functional 

interaction of murine and Xenopus Smad7 with bone morphogenetic protein 

receptors and transforming growth factor-beta receptors. J Biol Chem, 273, 

25364-70. 

SOUSA, K. M., VILLAESCUSA, J. C., CAJANEK, L., ONDR, J. K., CASTELO-

BRANCO, G., HOFSTRA, W., BRYJA, V., PALMBERG, C., BERGMAN, 

T., WAINWRIGHT, B., LANG, R. A. & ARENAS, E. 2010. Wnt2 regulates 

progenitor proliferation in the developing ventral midbrain. J Biol Chem, 

285, 7246-53. 

SPECHT, L. A., PICKEL, V. M., JOH, T. H. & REIS, D. J. 1981a. Light-

microscopic immunocytochemical localization of tyrosine hydroxylase in 

prenatal rat brain. I. Early ontogeny. J Comp Neurol, 199, 233-53. 

SPECHT, L. A., PICKEL, V. M., JOH, T. H. & REIS, D. J. 1981b. Light-

microscopic immunocytochemical localization of tyrosine hydroxylase in 

prenatal rat brain. II. Late ontogeny. J Comp Neurol, 199, 255-76. 

SPEMANN, H. & MANGOLD, H. 1924. Uber Induktion von Embryonanlagen 

durch Implantation artfremder Organisatoren. Arch Mikrosk Anat, 100, 599–

638. 



282 
 

SPITERE, K., TOULOUSE, A., O'SULLIVAN, D. B. & SULLIVAN, A. M. 2008. 

TAT-PAX6 protein transduction in neural progenitor cells: a novel approach 

for generation of dopaminergic neurones in vitro. Brain Res, 1208, 25-34. 

STANASILA, L., ABUIN, L., DEY, J. & COTECCHIA, S. 2008. Different 

internalization properties of the alpha1a- and alpha1b-adrenergic receptor 

subtypes: the potential role of receptor interaction with beta-arrestins and 

AP50. Mol Pharmacol, 74, 562-73. 

STORCH, A., PAUL, G., CSETE, M., BOEHM, B. O., CARVEY, P. M., KUPSCH, 

A. & SCHWARZ, J. 2001. Long-term proliferation and dopaminergic 

differentiation of human mesencephalic neural precursor cells. Exp Neurol, 

170, 317-25. 

STORM, E. E., HUYNH, T. V., COPELAND, N. G., JENKINS, N. A., KINGSLEY, 

D. M. & LEE, S. J. 1994. Limb alterations in brachypodism mice due to 

mutations in a new member of the TGF beta-superfamily. Nature, 368, 639-

43. 

STREIT, A. 2004. Early development of the cranial sensory nervous system: from a 

common field to individual placodes. Dev Biol, 276, 1-15. 

STREIT, A., BERLINER, A. J., PAPANAYOTOU, C., SIRULNIK, A. & STERN, 

C. D. 2000. Initiation of neural induction by FGF signalling before 

gastrulation. Nature, 406, 74-8. 

STRELAU, J., SULLIVAN, A., BOTTNER, M., LINGOR, P., FALKENSTEIN, E., 

SUTER-CRAZZOLARA, C., GALTER, D., JASZAI, J., KRIEGLSTEIN, K. 

& UNSICKER, K. 2000. Growth/differentiation factor-15/macrophage 

inhibitory cytokine-1 is a novel trophic factor for midbrain dopaminergic 

neurons in vivo. J Neurosci, 20, 8597-603. 

STUEBNER, S., FAUS-KESSLER, T., FISCHER, T., WURST, W. & PRAKASH, 

N. 2010. Fzd3 and Fzd6 deficiency results in a severe midbrain 

morphogenesis defect. Dev Dyn, 239, 246-60. 

SULLIVAN, A. M. & O'KEEFFE, G. W. 2005. The role of growth/differentiation 

factor 5 (GDF5) in the induction and survival of midbrain dopaminergic 

neurones: relevance to Parkinson's disease treatment. J Anat, 207, 219-26. 

SULLIVAN, A. M., OPACKA-JUFFRY, J. & BLUNT, S. B. 1998a. Long-term 

protection of the rat nigrostriatal dopaminergic system by glial cell line-



283 
 

derived neurotrophic factor against 6-hydroxydopamine in vivo. Eur J 

Neurosci, 10, 57-63. 

SULLIVAN, A. M., OPACKA-JUFFRY, J., HOTTEN, G., POHL, J. & BLUNT, S. 

B. 1997. Growth/differentiation factor 5 protects nigrostriatal dopaminergic 

neurones in a rat model of Parkinson's disease. Neurosci Lett, 233, 73-6. 

SULLIVAN, A. M., OPACKA-JUFFRY, J., POHL, J. & BLUNT, S. B. 1999. 

Neuroprotective effects of growth/differentiation factor 5 depend on the site 

of administration. Brain Res, 818, 176-9. 

SULLIVAN, A. M., POHL, J. & BLUNT, S. B. 1998b. Growth/differentiation factor 

5 and glial cell line-derived neurotrophic factor enhance survival and 

function of dopaminergic grafts in a rat model of Parkinson's disease. Eur J 

Neurosci, 10, 3681-8. 

SULLIVAN, A. M. & TOULOUSE, A. 2011. Neurotrophic factors for the treatment 

of Parkinson's disease. Cytokine Growth Factor Rev. 

SUN, Y., FEI, T., YANG, T., ZHANG, F., CHEN, Y. G., LI, H. & XU, Z. 2010. The 

suppression of CRMP2 expression by bone morphogenetic protein (BMP)-

SMAD gradient signalling controls multiple stages of neuronal development. 

J Biol Chem, 285, 39039-50. 

SUN, Y., HU, J., ZHOU, L., POLLARD, S. M. & SMITH, A. 2011. Interplay 

between FGF2 and BMP controls the self-renewal, dormancy and 

differentiation of rat neural stem cells. J Cell Sci, 124, 1867-77. 

SUZUKI, A., UENO, N. & HEMMATI-BRIVANLOU, A. 1997. Xenopus msx1 

mediates epidermal induction and neural inhibition by BMP4. Development, 

124, 3037-44. 

TAKEDA, M., MIZUIDE, M., OKA, M., WATABE, T., INOUE, H., SUZUKI, H., 

FUJITA, T., IMAMURA, T., MIYAZONO, K. & MIYAZAWA, K. 2004. 

Interaction with Smad4 is indispensable for suppression of BMP signalling 

by c-Ski. Mol Biol Cell, 15, 963-72. 

TAKEDA, M., SAITO, Y., SEKINE, R., ONITSUKA, I., MAEDA, R. & MAENO, 

M. 2000. Xenopus msx-1 regulates dorso-ventral axis formation by 

suppressing the expression of organizer genes. Comp Biochem Physiol B 

Biochem Mol Biol, 126, 157-68. 

TAMARIZ, E., DIAZ-MARTINEZ, N. E., DIAZ, N. F., GARCIA-PENA, C. M., 

VELASCO, I. & VARELA-ECHAVARRIA, A. 2010. Axon responses of 



284 
 

embryonic stem cell-derived dopaminergic neurons to semaphorins 3A and 

3C. J Neurosci Res, 88, 971-80. 

TANG, M., MIYAMOTO, Y. & HUANG, E. J. 2009. Multiple roles of beta-catenin 

in controlling the neurogenic niche for midbrain dopamine neurons. 

Development, 136, 2027-38. 

TANG, M., VILLAESCUSA, J. C., LUO, S. X., GUITARTE, C., LEI, S., 

MIYAMOTO, Y., TAKETO, M. M., ARENAS, E. & HUANG, E. J. 2010. 

Interactions of Wnt/beta-catenin signalling and sonic hedgehog regulate the 

neurogenesis of ventral midbrain dopamine neurons. J Neurosci, 30, 9280-

91. 

TAPIA-GONZALEZ, S., GIRALDEZ-PEREZ, R. M., CUARTERO, M. I., 

CASAREJOS, M. J., MENA, M. A., WANG, X. F. & SANCHEZ-CAPELO, 

A. 2011. Dopamine and alpha-synuclein dysfunction in Smad3 null mice. 

Mol Neurodegener, 6, 72. 

TARABYKIN, V., STOYKOVA, A., USMAN, N. & GRUSS, P. 2001. Cortical 

upper layer neurons derive from the subventricular zone as indicated by 

Svet1 gene expression. Development, 128, 1983-93. 

TATAREWICZ, S. M., WEI, X., GUPTA, S., MASTERMAN, D., SWANSON, S. 

J. & MOXNESS, M. S. 2007. Development of a maturing T-cell-mediated 

immune response in patients with idiopathic Parkinson's disease receiving r-

metHuGDNF via continuous intraputaminal infusion. J Clin Immunol, 27, 

620-7. 

TEN DIJKE, P., YAMASHITA, H., SAMPATH, T. K., REDDI, A. H., ESTEVEZ, 

M., RIDDLE, D. L., ICHIJO, H., HELDIN, C. H. & MIYAZONO, K. 1994. 

Identification of type I receptors for osteogenic protein-1 and bone 

morphogenetic protein-4. J Biol Chem, 269, 16985-8. 

THEOFILOPOULOS, S., GOGGI, J., RIAZ, S. S., JAUNIAUX, E., STERN, G. M. 

& BRADFORD, H. F. 2001. Parallel induction of the formation of dopamine 

and its metabolites with induction of tyrosine hydroxylase expression in 

foetal rat and human cerebral cortical cells by brain-derived neurotrophic 

factor and glial-cell derived neurotrophic factor. Brain Res Dev Brain Res, 

127, 111-22. 



285 
 

THERIAULT, B. L. & NACHTIGAL, M. W. 2011. Human ovarian cancer cell 

morphology, motility, and proliferation are differentially influenced by 

autocrine TGFbeta superfamily signalling. Cancer Lett, 313, 108-21. 

TIMMER, J. R., WANG, C. & NISWANDER, L. 2002. BMP signalling patterns the 

dorsal and intermediate neural tube via regulation of homeobox and helix-

loop-helix transcription factors. Development, 129, 2459-72. 

TOMAC, A., LINDQVIST, E., LIN, L. F., OGREN, S. O., YOUNG, D., HOFFER, 

B. J. & OLSON, L. 1995. Protection and repair of the nigrostriatal 

dopaminergic system by GDNF in vivo. Nature, 373, 335-9. 

TOMAC, A. C., AGULNICK, A. D., HAUGHEY, N., CHANG, C. F., ZHANG, Y., 

BACKMAN, C., MORALES, M., MATTSON, M. P., WANG, Y., 

WESTPHAL, H. & HOFFER, B. J. 2002. Effects of cerebral ischemia in 

mice deficient in Persephin. Proc Natl Acad Sci U S A, 99, 9521-6. 

TORRE, E. R., GUTEKUNST, C. A. & GROSS, R. E. 2010. Expression by 

midbrain dopamine neurons of Sema3A and 3F receptors is associated with 

chemorepulsion in vitro but a mild in vivo phenotype. Mol Cell Neurosci, 44, 

135-53. 

TOULOUSE, A., COLLINS, G. C. & SULLIVAN, A. M. 2012. Neurotrophic 

effects of growth/differentiation factor 5 in a neuronal cell line. Neurotox 

Res, 21, 256-65. 

TOULOUSE, A. & SULLIVAN, A. M. 2008. Progress in Parkinson's disease-where 

do we stand? Prog Neurobiol, 85, 376-92. 

TREMBLAY, K. D., DUNN, N. R. & ROBERTSON, E. J. 2001. Mouse embryos 

lacking Smad1 signals display defects in extra-embryonic tissues and germ 

cell formation. Development, 128, 3609-21. 

TRIBULO, C., AYBAR, M. J., NGUYEN, V. H., MULLINS, M. C. & MAYOR, R. 

2003. Regulation of Msx genes by a Bmp gradient is essential for neural crest 

specification. Development, 130, 6441-52. 

TSENG, J. L., BRUHN, S. L., ZURN, A. D. & AEBISCHER, P. 1998. Neurturin 

protects dopaminergic neurons following medial forebrain bundle axotomy. 

Neuroreport, 9, 1817-22. 

TUCKER, A. S., AL KHAMIS, A. & SHARPE, P. T. 1998. Interactions between 

Bmp-4 and Msx-1 act to restrict gene expression to odontogenic 

mesenchyme. Dev Dyn, 212, 533-9. 



286 
 

TZSCHENTKE, T. M. & SCHMIDT, W. J. 2000. Functional relationship among 

medial prefrontal cortex, nucleus accumbens, and ventral tegmental area in 

locomotion and reward. Crit Rev Neurobiol, 14, 131-42. 

ULLOA, F. & BRISCOE, J. 2007. Morphogens and the control of cell proliferation 

and patterning in the spinal cord. Cell Cycle, 6, 2640-9. 

UMANS, L., COX, L., TJWA, M., BITO, V., VERMEIRE, L., LAPERRE, K., 

SIPIDO, K., MOONS, L., HUYLEBROECK, D. & ZWIJSEN, A. 2007. 

Inactivation of Smad5 in endothelial cells and smooth muscle cells 

demonstrates that Smad5 is required for cardiac homeostasis. Am J Pathol, 

170, 1460-72. 

UNSICKER, K., MEIER, C., KRIEGLSTEIN, K., SARTOR, B. M. & FLANDERS, 

K. C. 1996. Expression, localization, and function of transforming growth 

factor-beta s in embryonic chick spinal cord, hindbrain, and dorsal root 

ganglia. J Neurobiol, 29, 262-76. 

URBANEK, P., FETKA, I., MEISLER, M. H. & BUSSLINGER, M. 1997. 

Cooperation of Pax2 and Pax5 in midbrain and cerebellum development. 

Proc Natl Acad Sci U S A, 94, 5703-8. 

VAN DE PUTTE, T., FRANCIS, A., NELLES, L., VAN GRUNSVEN, L. A. & 

HUYLEBROECK, D. 2007. Neural crest-specific removal of Zfhx1b in 

mouse leads to a wide range of neurocristopathies reminiscent of Mowat-

Wilson syndrome. Hum Mol Genet, 16, 1423-36. 

VAN DEN HEUVEL, D. M. & PASTERKAMP, R. J. 2008. Getting connected in 

the dopamine system. Prog Neurobiol, 85, 75-93. 

VAN DEN MUNCKHOF, P., LUK, K. C., STE-MARIE, L., MONTGOMERY, J., 

BLANCHET, P. J., SADIKOT, A. F. & DROUIN, J. 2003. Pitx3 is required 

for motor activity and for survival of a subset of midbrain dopaminergic 

neurons. Development, 130, 2535-42. 

VAN GRUNSVEN, L. A., TAELMAN, V., MICHIELS, C., VERSTAPPEN, G., 

SOUOPGUI, J., NICHANE, M., MOENS, E., OPDECAMP, K., 

VANHOMWEGEN, J., KRICHA, S., HUYLEBROECK, D. & 

BELLEFROID, E. J. 2007. XSip1 neuralizing activity involves the co-

repressor CtBP and occurs through BMP dependent and independent 

mechanisms. Dev Biol, 306, 34-49. 



287 
 

VARLEY, J. E. & MAXWELL, G. D. 1996. BMP-2 and BMP-4, but not BMP-6, 

increase the number of adrenergic cells which develop in quail trunk neural 

crest cultures. Exp Neurol, 140, 84-94. 

VARLEY, J. E., MCPHERSON, C. E., ZOU, H., NISWANDER, L. & MAXWELL, 

G. D. 1998. Expression of a constitutively active type I BMP receptor using a 

retroviral vector promotes the development of adrenergic cells in neural crest 

cultures. Dev Biol, 196, 107-18. 

VERNAY, B., KOCH, M., VACCARINO, F., BRISCOE, J., SIMEONE, A., 

KAGEYAMA, R. & ANG, S. L. 2005. Otx2 regulates subtype specification 

and neurogenesis in the midbrain. J Neurosci, 25, 4856-67. 

VERNEY, C. 1999. Distribution of the catecholaminergic neurons in the central 

nervous system of human embryos and fetuses. Microsc Res Tech, 46, 24-47. 

VERSCHUEREN, K., REMACLE, J. E., COLLART, C., KRAFT, H., BAKER, B. 

S., TYLZANOWSKI, P., NELLES, L., WUYTENS, G., SU, M. T., 

BODMER, R., SMITH, J. C. & HUYLEBROECK, D. 1999. SIP1, a novel 

zinc finger/homeodomain repressor, interacts with Smad proteins and binds 

to 5'-CACCT sequences in candidate target genes. J Biol Chem, 274, 20489-

98. 

VILA, M. & PRZEDBORSKI, S. 2004. Genetic clues to the pathogenesis of 

Parkinson's disease. Nat Med, 10 Suppl, S58-62. 

VITALIS, T., CASES, O., ENGELKAMP, D., VERNEY, C. & PRICE, D. J. 2000. 

Defect of tyrosine hydroxylase-immunoreactive neurons in the brains of mice 

lacking the transcription factor Pax6. J Neurosci, 20, 6501-16. 

VOLPICELLI, F., CAIAZZO, M., GRECO, D., CONSALES, C., LEONE, L., 

PERRONE-CAPANO, C., COLUCCI D'AMATO, L. & DI PORZIO, U. 

2007. Bdnf gene is a downstream target of Nurr1 transcription factor in rat 

midbrain neurons in vitro. J Neurochem, 102, 441-53. 

VOLPICELLI, F., PERRONE-CAPANO, C., DA POZZO, P., COLUCCI-

D'AMATO, L. & DI PORZIO, U. 2004. Modulation of nurr1 gene 

expression in mesencephalic dopaminergic neurones. J Neurochem, 88, 

1283-94. 

VON BOHLEN UND HALBACH, O. & UNSICKER, K. 2009. Neurotrophic 

support of midbrain dopaminergic neurons. Adv Exp Med Biol, 651, 73-80. 



288 
 

VON EINEM, S., ERLER, S., BIGL, K., FRERICH, B. & SCHWARZ, E. 2011. The 

pro-form of BMP-2 exhibits a delayed and reduced activity when compared 

to mature BMP-2. Growth Factors, 29, 63-71. 

VOORN, P., KALSBEEK, A., JORRITSMA-BYHAM, B. & GROENEWEGEN, H. 

J. 1988. The pre- and postnatal development of the dopaminergic cell groups 

in the ventral mesencephalon and the dopaminergic innervation of the 

striatum of the rat. Neuroscience, 25, 857-87. 

WAKABAYASHI, K., TANJI, K., MORI, F. & TAKAHASHI, H. 2007. The Lewy 

body in Parkinson's disease: molecules implicated in the formation and 

degradation of alpha-synuclein aggregates. Neuropathology, 27, 494-506. 

WAKAMATSU, N., YAMADA, Y., YAMADA, K., ONO, T., NOMURA, N., 

TANIGUCHI, H., KITOH, H., MUTOH, N., YAMANAKA, T., 

MUSHIAKE, K., KATO, K., SONTA, S. & NAGAYA, M. 2001. Mutations 

in SIP1, encoding Smad interacting protein-1, cause a form of Hirschsprung 

disease. Nat Genet, 27, 369-70. 

WALLACE, J. A. & LAUDER, J. M. 1983. Development of the serotonergic system 

in the rat embryo: an immunocytochemical study. Brain Res Bull, 10, 459-79. 

WALLEN, A., ZETTERSTROM, R. H., SOLOMIN, L., ARVIDSSON, M., 

OLSON, L. & PERLMANN, T. 1999. Fate of mesencephalic AHD2-

expressing dopamine progenitor cells in NURR1 mutant mice. Exp Cell Res, 

253, 737-46. 

WAN, M., CAO, X., WU, Y., BAI, S., WU, L., SHI, X. & WANG, N. 2002. Jab1 

antagonizes TGF-beta signalling by inducing Smad4 degradation. EMBO 

Rep, 3, 171-6. 

WANG, J., CARNICELLA, S., AHMADIANTEHRANI, S., HE, D. Y., BARAK, 

S., KHARAZIA, V., BEN HAMIDA, S., ZAPATA, A., SHIPPENBERG, T. 

S. & RON, D. 2010. Nucleus accumbens-derived glial cell line-derived 

neurotrophic factor is a retrograde enhancer of dopaminergic tone in the 

mesocorticolimbic system. J Neurosci, 30, 14502-12. 

WANG, L., LIU, Y. T., HAO, R., CHEN, L., CHANG, Z., WANG, H. R., WANG, 

Z. X. & WU, J. W. 2011. Molecular mechanism of the negative regulation of 

Smad1/5 protein by carboxyl terminus of Hsc70-interacting protein (CHIP). J 

Biol Chem, 286, 15883-94. 



289 
 

WANG, W., MARIANI, F. V., HARLAND, R. M. & LUO, K. 2000. Ski represses 

bone morphogenic protein signalling in Xenopus and mammalian cells. Proc 

Natl Acad Sci U S A, 97, 14394-9. 

WANG, Z., BENOIT, G., LIU, J., PRASAD, S., AARNISALO, P., LIU, X., XU, H., 

WALKER, N. P. & PERLMANN, T. 2003. Structure and function of Nurr1 

identifies a class of ligand-independent nuclear receptors. Nature, 423, 555-

60. 

WARMING, S., RACHEL, R. A., JENKINS, N. A. & COPELAND, N. G. 2006. 

Zfp423 is required for normal cerebellar development. Mol Cell Biol, 26, 

6913-22. 

WARNER, D. R., PISANO, M. M., ROBERTS, E. A. & GREENE, R. M. 2003. 

Identification of three novel Smad binding proteins involved in cell polarity. 

FEBS Lett, 539, 167-73. 

WASSARMAN, K. M., LEWANDOSKI, M., CAMPBELL, K., JOYNER, A. L., 

RUBENSTEIN, J. L., MARTINEZ, S. & MARTIN, G. R. 1997. 

Specification of the anterior hindbrain and establishment of a normal 

mid/hindbrain organizer is dependent on Gbx2 gene function. Development, 

124, 2923-34. 

WATANABE, M., MASUYAMA, N., FUKUDA, M. & NISHIDA, E. 2000. 

Regulation of intracellular dynamics of Smad4 by its leucine-rich nuclear 

export signal. EMBO Rep, 1, 176-82. 

WEN, Z., HAN, L., BAMBURG, J. R., SHIM, S., MING, G. L. & ZHENG, J. Q. 

2007. BMP gradients steer nerve growth cones by a balancing act of LIM 

kinase and Slingshot phosphatase on ADF/cofilin. J Cell Biol, 178, 107-19. 

WENG, Q., CHEN, Y., WANG, H., XU, X., YANG, B., HE, Q., SHOU, W., 

HIGASHI, Y., VAN DEN BERGHE, V., SEUNTJENS, E., KERNIE, S. G., 

BUKSHPUN, P., SHERR, E. H., HUYLEBROECK, D. & LU, Q. R. 2012. 

Dual-mode modulation of Smad signalling by Smad-interacting protein Sip1 

is required for myelination in the central nervous system. Neuron, 73, 713-

28. 

WESTERLUND, U., MOE, M. C., VARGHESE, M., BERG-JOHNSEN, J., 

OHLSSON, M., LANGMOEN, I. A. & SVENSSON, M. 2003. Stem cells 

from the adult human brain develop into functional neurons in culture. Exp 

Cell Res, 289, 378-83. 



290 
 

WIDMER, H. R., SCHALLER, B., MEYER, M. & SEILER, R. W. 2000. Glial cell 

line-derived neurotrophic factor stimulates the morphological differentiation 

of cultured ventral mesencephalic calbindin- and calretinin-expressing 

neurons. Exp Neurol, 164, 71-81. 

WILKINSON, D. G., BAILES, J. A. & MCMAHON, A. P. 1987. Expression of the 

proto-oncogene int-1 is restricted to specific neural cells in the developing 

mouse embryo. Cell, 50, 79-88. 

WILSON, P. A. & HEMMATI-BRIVANLOU, A. 1995. Induction of epidermis and 

inhibition of neural fate by Bmp-4. Nature, 376, 331-3. 

WILSON, S. I., GRAZIANO, E., HARLAND, R., JESSELL, T. M. & EDLUND, T. 

2000. An early requirement for FGF signalling in the acquisition of neural 

cell fate in the chick embryo. Curr Biol, 10, 421-9. 

WILSON, S. I., RYDSTROM, A., TRIMBORN, T., WILLERT, K., NUSSE, R., 

JESSELL, T. M. & EDLUND, T. 2001. The status of Wnt signalling 

regulates neural and epidermal fates in the chick embryo. Nature, 411, 325-

30. 

WINE-LEE, L., AHN, K. J., RICHARDSON, R. D., MISHINA, Y., LYONS, K. M. 

& CRENSHAW, E. B., 3RD 2004. Signalling through BMP type 1 receptors 

is required for development of interneuron cell types in the dorsal spinal 

cord. Development, 131, 5393-403. 

WITTA, J., BAFFI, J. S., PALKOVITS, M., MEZEY, E., CASTILLO, S. O. & 

NIKODEM, V. M. 2000. Nigrostriatal innervation is preserved in Nurr1-null 

mice, although dopaminergic neuron precursors are arrested from terminal 

differentiation. Brain Res Mol Brain Res, 84, 67-78. 

WOOD, T. K., MCDERMOTT, K. W. & SULLIVAN, A. M. 2005. Differential 

effects of growth/differentiation factor 5 and glial cell line-derived 

neurotrophic factor on dopaminergic neurons and astroglia in cultures of 

embryonic rat midbrain. J Neurosci Res, 80, 759-66. 

WORDINGER, R. J. & CLARK, A. F. 2007. Bone morphogenetic proteins and their 

receptors in the eye. Exp Biol Med (Maywood), 232, 979-92. 

WU, J. W., KRAWITZ, A. R., CHAI, J., LI, W., ZHANG, F., LUO, K. & SHI, Y. 

2002. Structural mechanism of Smad4 recognition by the nuclear oncoprotein 

Ski: insights on Ski-mediated repression of TGF-beta signalling. Cell, 111, 

357-67. 



291 
 

WU, K., YANG, Y., WANG, C., DAVOLI, M. A., D'AMICO, M., LI, A., 

CVEKLOVA, K., KOZMIK, Z., LISANTI, M. P., RUSSELL, R. G., 

CVEKL, A. & PESTELL, R. G. 2003. DACH1 inhibits transforming growth 

factor-beta signalling through binding Smad4. J Biol Chem, 278, 51673-84. 

WU, X. & HOWARD, M. J. 2001. Two signal transduction pathways involved in the 

catecholaminergic differentiation of avian neural crest-derived cells in vitro. 

Mol Cell Neurosci, 18, 394-406. 

XIAO, Y. T., XIANG, L. X. & SHAO, J. Z. 2007. Bone morphogenetic protein. 

Biochem Biophys Res Commun, 362, 550-3. 

XIAO, Z., LATEK, R. & LODISH, H. F. 2003. An extended bipartite nuclear 

localization signal in Smad4 is required for its nuclear import and 

transcriptional activity. Oncogene, 22, 1057-69. 

XIAO, Z., LIU, X., HENIS, Y. I. & LODISH, H. F. 2000a. A distinct nuclear 

localization signal in the N terminus of Smad 3 determines its ligand-induced 

nuclear translocation. Proc Natl Acad Sci U S A, 97, 7853-8. 

XIAO, Z., LIU, X. & LODISH, H. F. 2000b. Importin beta mediates nuclear 

translocation of Smad 3. J Biol Chem, 275, 23425-8. 

XIE, H. R., HU, L. S. & LI, G. Y. 2010. SH-SY5Y human neuroblastoma cell line: 

in vitro cell model of dopaminergic neurons in Parkinson's disease. Chin Med 

J (Engl), 123, 1086-92. 

XIE, Z., CHEN, Y., LI, Z., BAI, G., ZHU, Y., YAN, R., TAN, F., CHEN, Y. G., 

GUILLEMOT, F., LI, L. & JING, N. 2011. Smad6 promotes neuronal 

differentiation in the intermediate zone of the dorsal neural tube by inhibition 

of the Wnt/beta-catenin pathway. Proc Natl Acad Sci U S A, 108, 12119-24. 

XING, B., XIN, T., ZHAO, L., HUNTER, R. L., CHEN, Y. & BING, G. 2010. Glial 

cell line-derived neurotrophic factor protects midbrain dopaminergic neurons 

against lipopolysaccharide neurotoxicity. J Neuroimmunol, 225, 43-51. 

XU, B., GOLDMAN, J. S., RYMAR, V. V., FORGET, C., LO, P. S., BULL, S. J., 

VEREKER, E., BARKER, P. A., TRUDEAU, L. E., SADIKOT, A. F. & 

KENNEDY, T. E. 2010. Critical roles for the netrin receptor deleted in 

colorectal cancer in dopaminergic neuronal precursor migration, axon 

guidance, and axon arborization. Neuroscience, 169, 932-49. 



292 
 

XU, L., CHEN, Y. G. & MASSAGUE, J. 2000. The nuclear import function of 

Smad2 is masked by SARA and unmasked by TGFbeta-dependent 

phosphorylation. Nat Cell Biol, 2, 559-62. 

YAMAMOTO, T. S., TAKAGI, C. & UENO, N. 2000. Requirement of Xmsx-1 in 

the BMP-triggered ventralization of Xenopus embryos. Mech Dev, 91, 131-

41. 

YAMASHITA, H., TEN DIJKE, P., HELDIN, C. H. & MIYAZONO, K. 1996. 

Bone morphogenetic protein receptors. Bone, 19, 569-74. 

YAMAUCHI, K., PHAN, K. D. & BUTLER, S. J. 2008. BMP type I receptor 

complexes have distinct activities mediating cell fate and axon guidance 

decisions. Development, 135, 1119-28. 

YAN, B., NEILSON, K. M. & MOODY, S. A. 2009. foxD5 plays a critical upstream 

role in regulating neural ectodermal fate and the onset of neural 

differentiation. Dev Biol, 329, 80-95. 

YAN, C. H., LEVESQUE, M., CLAXTON, S., JOHNSON, R. L. & ANG, S. L. 

2011. Lmx1a and lmx1b function cooperatively to regulate proliferation, 

specification, and differentiation of midbrain dopaminergic progenitors. J 

Neurosci, 31, 12413-25. 

YANG, X., CASTILLA, L. H., XU, X., LI, C., GOTAY, J., WEINSTEIN, M., LIU, 

P. P. & DENG, C. X. 1999. Angiogenesis defects and mesenchymal 

apoptosis in mice lacking SMAD5. Development, 126, 1571-80. 

YASUHARA, T., SHINGO, T. & DATE, I. 2007. Glial cell line-derived 

neurotrophic factor (GDNF) therapy for Parkinson's disease. Acta Med 

Okayama, 61, 51-6. 

YE, W., BOUCHARD, M., STONE, D., LIU, X., VELLA, F., LEE, J., 

NAKAMURA, H., ANG, S. L., BUSSLINGER, M. & ROSENTHAL, A. 

2001. Distinct regulators control the expression of the mid-hindbrain 

organizer signal FGF8. Nat Neurosci, 4, 1175-81. 

YE, W., SHIMAMURA, K., RUBENSTEIN, J. L., HYNES, M. A. & 

ROSENTHAL, A. 1998. FGF and Shh signals control dopaminergic and 

serotonergic cell fate in the anterior neural plate. Cell, 93, 755-66. 

YIN, M., LIU, S., YIN, Y., LI, S., LI, Z., WU, X., ZHANG, B., ANG, S. L., DING, 

Y. & ZHOU, J. 2009. Ventral mesencephalon-enriched genes that regulate 

the development of dopaminergic neurons in vivo. J Neurosci, 29, 5170-82. 



293 
 

YING, Q. L., NICHOLS, J., CHAMBERS, I. & SMITH, A. 2003a. BMP induction 

of Id proteins suppresses differentiation and sustains embryonic stem cell 

self-renewal in collaboration with STAT3. Cell, 115, 281-92. 

YING, S. X., HUSSAIN, Z. J. & ZHANG, Y. E. 2003b. Smurf1 facilitates myogenic 

differentiation and antagonizes the bone morphogenetic protein-2-induced 

osteoblast conversion by targeting Smad5 for degradation. J Biol Chem, 278, 

39029-36. 

YOON, B. S. & LYONS, K. M. 2004. Multiple functions of BMPs in 

chondrogenesis. J Cell Biochem, 93, 93-103. 

YOSHIDA, Y., TANAKA, S., UMEMORI, H., MINOWA, O., USUI, M., 

IKEMATSU, N., HOSODA, E., IMAMURA, T., KUNO, J., YAMASHITA, 

T., MIYAZONO, K., NODA, M., NODA, T. & YAMAMOTO, T. 2000. 

Negative regulation of BMP/Smad signalling by Tob in osteoblasts. Cell, 

103, 1085-97. 

YOSHIDA, Y., VON BUBNOFF, A., IKEMATSU, N., BLITZ, I. L., TSUZUKU, J. 

K., YOSHIDA, E. H., UMEMORI, H., MIYAZONO, K., YAMAMOTO, T. 

& CHO, K. W. 2003. Tob proteins enhance inhibitory Smad-receptor 

interactions to repress BMP signalling. Mech Dev, 120, 629-37. 

YOUNG, A. J., JOHNSON, S., STEFFENS, D. C. & DORAISWAMY, P. M. 2007. 

Coenzyme Q10: a review of its promise as a neuroprotectant. CNS Spectr, 12, 

62-8. 

YU, P. B., HONG, C. C., SACHIDANANDAN, C., BABITT, J. L., DENG, D. Y., 

HOYNG, S. A., LIN, H. Y., BLOCH, K. D. & PETERSON, R. T. 2008. 

Dorsomorphin inhibits BMP signals required for embryogenesis and iron 

metabolism. Nat Chem Biol, 4, 33-41. 

YUE, Y., WIDMER, D. A., HALLADAY, A. K., CERRETTI, D. P., WAGNER, G. 

C., DREYER, J. L. & ZHOU, R. 1999. Specification of distinct 

dopaminergic neural pathways: roles of the Eph family receptor EphB1 and 

ligand ephrin-B2. J Neurosci, 19, 2090-101. 

YUNG, S. Y., GOKHAN, S., JURCSAK, J., MOLERO, A. E., ABRAJANO, J. J. & 

MEHLER, M. F. 2002. Differential modulation of BMP signalling promotes 

the elaboration of cerebral cortical GABAergic neurons or oligodendrocytes 

from a common sonic hedgehog-responsive ventral forebrain progenitor 

species. Proc Natl Acad Sci U S A, 99, 16273-8. 



294 
 

YUREK, D. M. 1998. Glial cell line-derived neurotrophic factor improves survival 

of dopaminergic neurons in transplants of fetal ventral mesencephalic tissue. 

Exp Neurol, 153, 195-202. 

ZECEVIC, N., CHEN, Y. & FILIPOVIC, R. 2005. Contributions of cortical 

subventricular zone to the development of the human cerebral cortex. J Comp 

Neurol, 491, 109-22. 

ZECHNER, D., FUJITA, Y., HULSKEN, J., MULLER, T., WALTHER, I., 

TAKETO, M. M., CRENSHAW, E. B., 3RD, BIRCHMEIER, W. & 

BIRCHMEIER, C. 2003. beta-Catenin signals regulate cell growth and the 

balance between progenitor cell expansion and differentiation in the nervous 

system. Dev Biol, 258, 406-18. 

ZECHNER, D., MULLER, T., WENDE, H., WALTHER, I., TAKETO, M. M., 

CRENSHAW, E. B., 3RD, TREIER, M., BIRCHMEIER, W. & 

BIRCHMEIER, C. 2007. Bmp and Wnt/beta-catenin signals control 

expression of the transcription factor Olig3 and the specification of spinal 

cord neurons. Dev Biol, 303, 181-90. 

ZERVAS, M., MILLET, S., AHN, S. & JOYNER, A. L. 2004. Cell behaviors and 

genetic lineages of the mesencephalon and rhombomere 1. Neuron, 43, 345-

57. 

ZETTERSTROM, R. H., WILLIAMS, R., PERLMANN, T. & OLSON, L. 1996. 

Cellular expression of the immediate early transcription factors Nurr1 and 

NGFI-B suggests a gene regulatory role in several brain regions including the 

nigrostriatal dopamine system. Brain Res Mol Brain Res, 41, 111-20. 

ZHANG, J., PHO, V., BONASERA, S. J., HOLTZMAN, J., TANG, A. T., 

HELLMUTH, J., TANG, S., JANAK, P. H., TECOTT, L. H. & HUANG, E. 

J. 2007. Essential function of HIPK2 in TGFbeta-dependent survival of 

midbrain dopamine neurons. Nat Neurosci, 10, 77-86. 

ZHANG, Y., CHANG, C., GEHLING, D. J., HEMMATI-BRIVANLOU, A. & 

DERYNCK, R. 2001. Regulation of Smad degradation and activity by 

Smurf2, an E3 ubiquitin ligase. Proc Natl Acad Sci U S A, 98, 974-9. 

ZHANG, Y., MUSCI, T. & DERYNCK, R. 1997. The tumor suppressor 

Smad4/DPC 4 as a central mediator of Smad function. Curr Biol, 7, 270-6. 

ZHAO, S., MAXWELL, S., JIMENEZ-BERISTAIN, A., VIVES, J., KUEHNER, 

E., ZHAO, J., O'BRIEN, C., DE FELIPE, C., SEMINA, E. & LI, M. 2004. 



295 
 

Generation of embryonic stem cells and transgenic mice expressing green 

fluorescence protein in midbrain dopaminergic neurons. Eur J Neurosci, 19, 

1133-40. 

ZHONG, S. C., CHEN, X. S., CAI, Q. Y., LUO, X., CHEN, X. H., LIU, J. & YAO, 

Z. X. 2010. Dynamic expression and heterogeneous intracellular location of 

En-1 during late mouse embryonic development. Cells Tissues Organs, 191, 

289-300. 

ZHU, H., KAVSAK, P., ABDOLLAH, S., WRANA, J. L. & THOMSEN, G. H. 

1999. A SMAD ubiquitin ligase targets the BMP pathway and affects 

embryonic pattern formation. Nature, 400, 687-93. 

ZIHLMANN, K. B., DUCRAY, A. D., SCHALLER, B., HUBER, A. W., KREBS, 

S. H., ANDRES, R. H., SEILER, R. W., MEYER, M. & WIDMER, H. R. 

2005. The GDNF family members neurturin, artemin and persephin promote 

the morphological differentiation of cultured ventral mesencephalic 

dopaminergic neurons. Brain Res Bull, 68, 42-53. 

ZIMMERMAN, L. B., DE JESUS-ESCOBAR, J. M. & HARLAND, R. M. 1996. 

The Spemann organizer signal noggin binds and inactivates bone 

morphogenetic protein 4. Cell, 86, 599-606. 

ZOU, H., HO, C., WONG, K. & TESSIER-LAVIGNE, M. 2009a. Axotomy-induced 

Smad1 activation promotes axonal growth in adult sensory neurons. J 

Neurosci, 29, 7116-23. 

ZOU, H. L., SU, C. J., SHI, M., ZHAO, G. Y., LI, Z. Y., GUO, C. & DING, Y. Q. 

2009b. Expression of the LIM-homeodomain gene Lmx1a in the postnatal 

mouse central nervous system. Brain Res Bull, 78, 306-12. 

ZOU, Y. & LYUKSYUTOVA, A. I. 2007. Morphogens as conserved axon guidance 

cues. Curr Opin Neurobiol, 17, 22-8. 

 
 

 

 

 

 

 



296 
 

12. Acknowledgements 
Foremost, I would like to express my sincerest gratitude to both my supervisors Dr. 

Gerard O’Keeffe and Dr. Aideen Sullivan for giving me the opportunity to undertake 

this PhD in University College Cork. I have been extremely lucky to have you as my 

supervisors for the past 3 years. The constant and unconditional help, guidance and 

support, at all stages of this project, meant that I never felt overwhelmed. Your 

encouragement, patience, enthusiasm and advice throughout my PhD gave me the 

confidence to complete the work in this thesis, even if at times I may have got 

carried away with certain ideas. Most importantly, I am delighted that I have a good 

friendship with both of you, and this has made my PhD experience a lot more 

enjoyable. I will always remember and appreciate the massive part both of you have 

played in my growth as both a scientist and person over the past 3 years. 

I would like to thank all the members of the Anatomy and Neuroscience department. 

For their part in my Neuroscience education over the last 7 years, a special mention 

to Aideen, Kieran, Yvonne and Andre. Massive thanks to everybody in the lab for 

your advice, encouragement and friendship during my PhD thesis, especially Sean, 

Elaine, Louise, Laura, Aisling, Tara, Sinead, Aoife, Janelle and Megan (yes ye were 

my favourites :P). I won’t forget the short time I had in the lab with the likes of 

Eimear, Ian, Niall, Katie and Luc either. All of you I now consider good friends. 

Although we didn’t go out as much as I’d have liked (which could have resulted in 

us all failing!), the nights out we had together were always great fun (surprisingly so 

considering we’re all science nerds)! 

I also want to thank my best friends outside the lab, particularly Shane, Cian, 

Michael and Kenna, for distracting me from my work both when it was needed (and 

even when it wasn’t). I know we’ve been friends for nearly 20 years and ye couldn’t 

care less about my PhD, but you helped me through! I have to mention the UCC 

soccer team for keeping me relatively fit, and not a complete dork, over the years. 

The enjoyment I got from playing with you was the best release from the stresses of 

research and science. I also have to acknowledge two important women over this 

time (yes two ;) – ‘easy now’), Mairead and Joanna, for your support and affection. 

Last but not least, to my beloved family! Your love and support always gives me the 

strength and freedom to achieve my goals, even if I take you for granted at times. 



ORIGINAL PAPER

Canonical BMP–Smad Signalling Promotes Neurite Growth
in Rat Midbrain Dopaminergic Neurons

Shane V. Hegarty • Louise M. Collins • Aisling M. Gavin • Sarah L. Roche •

Sean L. Wyatt • Aideen M. Sullivan • Gerard W. O’Keeffe

Received: 9 October 2013 / Accepted: 7 March 2014

� Springer Science+Business Media New York 2014

Abstract Ventral midbrain (VM) dopaminergic (DA)

neurons project to the dorsal striatum via the nigrostriatal

pathway to regulate voluntary movements, and their loss

leads to the motor dysfunction seen in Parkinson’s disease

(PD). Despite recent progress in the understanding of VM

DA neurogenesis, the factors regulating nigrostriatal

pathway development remain largely unknown. The bone

morphogenetic protein (BMP) family regulates neurite

growth in the developing nervous system and may con-

tribute to nigrostriatal pathway development. Two related

members of this family, BMP2 and growth differentiation

factor (GDF)5, have neurotrophic effects, including pro-

motion of neurite growth, on cultured VM DA neurons.

However, the molecular mechanisms regulating their

effects on DA neurons are unknown. By characterising the

temporal expression profiles of endogenous BMP receptors

(BMPRs) in the developing and adult rat VM and striatum,

this study identified BMP2 and GDF5 as potential regula-

tors of nigrostriatal pathway development. Furthermore,

through the use of noggin, dorsomorphin and BMPR/Smad

plasmids, this study demonstrated that GDF5- and BMP2-

induced neurite outgrowth from cultured VM DA neurons

is dependent on BMP type I receptor activation of the

Smad 1/5/8 signalling pathway.

Keywords BMP2 � GDF5 � Ventral midbrain �
Dopaminergic neurons � Neurite growth � BMP receptor �
Smad signalling
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SNpc Substantia nigra pars compacta

TGF Transforming growth factor

TH Tyrosine hydroxlase

VM Ventral midbrain/mesencephalon

Introduction

In the central nervous system (CNS), more than three-

quarters of all DA neurons are found in the VM (Blum

1998; German et al. 1983; Pakkenberg et al. 1991). These

are subdivided into three distinct clusters, termed the A8,

A9 and A10 groups of VM DA neurons. The A9 group of

VM DA neurons, located in the substantia nigra pars

compacta (SNpc), projects to the dorsolateral striatum via

the nigrostriatal pathway (Dahlstroem and Fuxe 1964;

Bjorklund and Dunnett 2007). These A9 DA neurons, and

their striatal targets, are part of the basal ganglia circuitry

that regulates the control of voluntary movement. Their

functional importance is highlighted by the neurodegener-

ative disorder PD, the primary neuropathological signature

of which is the loss of these neurons and their striatal

projections, which results in the motor deficits that are the

characteristic of this disease (Toulouse and Sullivan 2008;

Lees et al. 2009).

During embryonic development, A9 DA neurons are

generated in the VM under the influence of two key sig-

nalling centres, the isthmus and the floor plate (Hynes et al.

1995; Crossley and Martin 1995; Liu and Joyner 2001).

Much work in recent decades has focused on elucidating

the molecular circuitry that is involved in the generation of

A9 VM DA neurons (Hegarty et al. 2013c); however, the

molecular mechanisms that regulate the growth and guid-

ance of the axonal projections of these DA neurons to their

appropriate target regions in the striatum are less well

understood.

VM DA neurons extend their axons towards the telen-

cephalon via the medial forebrain bundle in response to

extrinsic directional cues (both chemo-attractive and

chemo-repulsive) from the caudal brain stem, midbrain,

diencephalon, striatum and cortex (Gates et al. 2004; Na-

kamura et al. 2000). Despite the paucity of studies identi-

fying the regulatory molecules involved in the formation of

DA projections, a number of molecules have been impli-

cated. Cell surface ephrins and their Eph receptor tyrosine

kinases, which are important in axonal guidance (Egea and

Klein 2007), have been shown to play roles in target

innervation by nigrostriatal axons (Sieber et al. 2004;

Halladay et al. 2004; Van den Heuvel and Pasterkamp

2008; Calo et al. 2005; Yue et al. 1999; Cooper et al.

2009). Similarly, netrin signalling via the deleted colorectal

cancer (DCC) receptor, which is known to actively regulate

axonal growth (Round and Stein 2007), has been strongly

implicated in the formation of the VM DA circuitry (Xu

et al. 2010; Flores et al. 2005; Manitt et al. 2011; Lin et al.

2005; Sgado et al. 2012; Vitalis et al. 2000). Additionally,

signalling between Slits and their Robo receptors (Bagri

et al. 2002; Dugan et al. 2011; Lin et al. 2005; Lopez-

Bendito et al. 2007), and by semaphorins (Hernandez-

Montiel et al. 2008; Torre et al. 2010; Tamariz et al. 2010;

Kolk et al. 2009), has been shown to regulate the formation

of DA projections from the VM to the striatum. These

identified molecules are well-established regulators of

axonal growth and guidance in other regions of the nervous

system. It is thus likely that further candidate molecules

with similar functions in other areas of the NS may con-

tribute to the regulation of DA axonal growth. One can-

didate group of molecules is the BMP family (Zou and

Lyuksyutova 2007; Bovolenta 2005).

BMPs are regulators of axonal growth in a number of

neuronal populations, with this role best characterised in

the dorsal spinal cord (SC) (Parikh et al. 2011; Hazen et al.

2012; Lein et al. 1995; Hegarty et al. 2013a; Gratacos et al.

2002). The two members of the BMP family of proteins,

BMP2 and a related molecule GDF5, have been shown to

regulate neurite growth in the dorsal SC (Parikh et al. 2011;

Hazen et al. 2011, 2012; Phan et al. 2010; Niere et al.

2006). GDF5 and BMP2 both activate a canonical signal-

ling pathway involving two types of serine/threonine

kinase receptors, type I and type II BMPRs (ten Dijke et al.

1994; Koenig et al. 1994; Yamashita et al. 1996; Shi and

Massague 2003). Upon ligand binding, the constitutively

active BMPRII transphosphorylates the cytoplasmic

domain of the BMPRI (BMPRIa or BMPRIb), causing

phosphorylation of the receptor-regulated Smads, Smads

1/5/8, by the activated BMPRI. The phosphorylated Smads

1/5/8 then form a heterocomplex with the co-Smad,

Smad4, which mediates their nuclear translocation to allow

modulation of target gene expression (Miyazono et al.

2010; Sieber et al. 2009).

BMP2 and GDF5 are expressed in the developing rat

VM during the period of DA axogenesis, suggesting that

they may play a role in this process (Krieglstein et al. 1995;

O’Keeffe et al. 2004b; Storm et al. 1994; Chen et al. 2003;

Jordan et al. 1997; Soderstrom and Ebendal 1999; Hegarty

et al. 2014). In support of such a suggestion, both GDF5

and BMP2 have been shown to promote the survival of rat

VM DA neurons (O’Keeffe et al. 2004a; Reiriz et al. 1999;

Jordan et al. 1997; Sullivan et al. 1997) and induce neurite

growth of rat VM DA neurons in vitro (O’Keeffe et al.

2004a; Reiriz et al. 1999). Despite these studies, the

expression patterns of the BMP receptors (BMPRs) in the

VM and the target striatum during nigrostriatal pathway

development are unknown. Furthermore, the mechanisms
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by which GDF5 and BMP2 mediate their neurite growth-

promoting effects on VM DA neurons remain to be

determined. However, these effects have recently been

proposed to occur via the canonical Smad signalling

pathway in a cell line model of dopaminergic neurons

(Hegarty et al. 2013b).

To address the gaps in our current knowledge of BMP-

mediated DA neuronal growth, this study examined the

expression of BMP receptors over the developmental per-

iod between embryonic day (E) 14 and post-natal day

(P) 90 in rats, since the generation and maturation of

nigrostriatal dopaminergic neurons, the invasion and ar-

borisation of their striatal targets, and the refinement of

these connections occur over this time period (Van den

Heuvel and Pasterkamp 2008). Furthermore, the molecular

mechanisms by which BMP2 and GDF5 regulate axonal

growth of VM DA neurons were investigated.

Materials and Methods

Cell Culture

For the preparation of E14 rat VM cultures, E14 embryos

were obtained by laparotomy from date-mated female

Sprague–Dawley rats following decapitation under termi-

nal anaesthesia induced by the inhalation of isoflurane

(Isoflo�). Dissected VM tissue was centrifuged at

1,100 rpm for 5 min at 4 �C. The tissue pellet was incu-

bated in a 0.1 % trypsin–Hank’s balanced salt solution for

5 min, at 37 �C with 5 % CO2. Foetal calf serum (FCS)

was then added to the tissue followed by centrifugation at

1,100 rpm for 5 min at 4 �C. The resulting cell pellet was

resuspended in 1 ml of differentiation media (Dulbecco’s

modified Eagle’s medium/F12, 33 mM D-glucose, 1 %

L-glutamine, 1 % FCS, supplemented with 2 % B27) using

a P1000 Gilson pipette and carefully triturated using a

sterile plugged flame-polished Pasteur pipette, followed by

a 25-gauge needle and syringe, ensuring not to add air

bubbles into the cell suspension. Cell density was estimated

using a haemocytometer. Cells were plated on poly-

D-lysine (Sigma)-coated 24-well tissue culture plates at a

density of 5 9 104 cells per well in 500 ll of differentia-

tion media at 37 �C with 5 % CO2. SH-SY5Y cells were

used as a model of human DA neurons in this study, and

their cell culture was performed as previously outlined

(Hegarty et al. 2013b).

Cells were treated with 200 ng/ml of GDF5 (kindly

provided by Biopharm GmbH) or recombinant human

BMP2 (R&D Systems) and pre-treated (30 min prior to

GDF5 or BMP2 application) with 1 lg/ml of Dorsomor-

phin (Sigma), 200 ng/ml of Noggin (R&D Systems), or

0.3 U/ml of Heparinase III (R&D Systems). For the neurite

growth assay, cells were treated daily for 4 DIV. To test

Smad pathway activation, cells were treated for 0, 30 or

120 min.

Electroporation of E14 Rat VM Cells

Electroporation of E14 VM cells was carried out using the

NeonTM Transfection System (Invitrogen). E14 VM cell

suspensions were prepared for counting (as outlined

above), and the required volume of cells to give 200,000

cells per well was centrifuged at 4 �C at 1,100 rpm for

5 min. The cell pellet was washed twice with 10 mM

phosphate-buffered saline (PBS) (without CaCl2 and

MgCl2) (Sigma) and then resuspended in the required

amount of the manufacturers resuspension buffer (12 ll per

transfection/plasmid) (Invitrogen). About 0.5 lg of a GFP

plasmid, 1 lg of plasmid DNA (caBMPRIb and/or Smad4

siRNA vector (Hegarty et al. 2013b)) and/or 1 lM of

desired siRNA (Control or BMPRIb; Life Technologies)

were added to the resuspended cells. About 10 ll of the

cell/plasmid mixture was then electroporated according to

the manufacturer’s protocol under specific parameters

(1,100 V; 30 ms; 2 pulses).

Immunocytochemistry

Cultures were fixed for 10 min using 100 % ice-cold

methanol. Following 3 washes in 10 mM PBS-T (0.02 %

Triton X-100 in 10 mM PBS) for permeabilization, cul-

tures were incubated in blocking solution (5 % bovine

serum albumin) for 1 h at room temperature. Cultures

were subsequently incubated in the following antibodies:

BMPRII (1:200; R&D Systems), BMPRIb (1:200; R&D

Systems), phopsho-Smad 1/5/8 (1:200; Cell Signalling),

tyrosine hydroxylase (TH; 1:200; mouse monoclonal;

Millipore, or 1:300; rabbit polyclonal; Millipore) and b-

actin (1:200; Sigma) diluted in 1 % bovine serum albu-

min in 10 mM PBS at 4 �C overnight. Following

3 9 5 min washes in PBS-T, cells were incubated in

Alexa Fluor 488- and/or 594-conjugated secondary anti-

bodies (1:500; Invitrogen) reactive to the species of the

primary antibodies and diluted in 1 % bovine serum

albumin in 10 mM PBS, at room temperature for 2 h in

the dark. Cultures were counterstained with bisbenzimide

(1:1,000 in 10 mM PBS; Sigma). Negative controls in

which the primary antibody was omitted were also pre-

pared (not shown). Cells were imaged under an Olympus

IX70 inverted microscope fitted with an Olympus DP70

camera and AnalysisDTM software. For densitometric

analysis, the fluorescence intensity of individual cells

stained for phospho-Smad 1/5/8 was measured using

ImageJ analysis software (Rasband, WJ, http://rsb.info.

nih.gov/ij/). The relative fluorescence intensity was
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calculated for each individual cell after subtraction of the

background noise.

Immunohistochemistry

Four adult (8- to 12-week old) female Sprague–Dawley rats

were killed by terminal anaesthesia (150 mg/kg sodium

pentobarbitone, i.p.) and perfused intracardially with

100 ml of 10 mM PBS, pH 7.4, containing 500 Units of

heparin sulphate, followed immediately by 200 ml of

freshly prepared 4 % ice-cold paraformaldehyde in PBS.

The brains were removed and placed in 4 % paraformal-

dehyde overnight, cryoprotected in 30 % sucrose in PBS,

and then snap-frozen in isopentane on liquid nitrogen.

Three pairs of coronal cryosections (15 lm; Cryostat

manufacturer: Leica—model CM1900) were collected at

each of three levels through the midbrain (AP -4.8, -5.6,

-6.4 relative to bregma; (Paxinos and Watson 1988)). The

sections were mounted on gelatine-coated slides and then

stained immunocytochemically for TH and/or BMPRIb or

BMPRII. Firstly, endogenous peroxidase was inactivated

by incubation in 20 % methanol, 0.2 % Triton X-100,

1.5 % hydrogen peroxide in 10 mM PBS for 10 min.

Sections were incubated in blocking solution (3 % normal

goat serum, 0.2 % Triton X-100 in 10 mM PBS) for 1 h at

room temperature and then in a solution (1:1,000) of

antiserum to TH (rabbit) and/or BMPRIb or BMPRII

(mouse) overnight at 4 �C. After four washes in 0.02 %

Triton X-100 in 10 mM PBS for 10 min each, sections

were incubated in Alexa Fluor 488- and/or 594-conjugated

secondary antibodies (1:500) reactive to the species of the

primary antibodies diluted in 10 mM PBS, at room tem-

perature for 2 h in the dark. Sections were then cover-

slipped in PVA-DABCO before fluorescent imaging.

Reverse Transcription Polymerase Chain Reaction (RT-

PCR)

The VM and striatum from E14 to P90 rats were dissected,

and following the extraction and purification of total RNA,

semi-quantitative RT-PCR for a variety of genes involved

in DA development and maintenance (TH, Nurr1, Lmx1b

and Pitx3) (Hegarty et al. 2013c) was performed on the

midbrain samples to confirm the accuracy of the dissection

at each age. RT-PCR was also performed on E11–E14 rat

VM tissue for BMPRII and BMPRIb, as well as on SH-

SH5Y cells for BMPRIb.

Dissected embryonic and adult tissue in ice-cold Hank’s

balanced salt solution was centrifuged at 500 rpm for

2 min, the supernatant discarded and the tissue pellet stored

immediately at -80 �C until RNA extraction. Cultured

SH-SH5Y cells (*1 9 106 cells) were centrifuged at

10,000 rpm for 10 min before storage/usage. RNA was

isolated using an RNeasy mini extraction kit (Qiagen). An

ImProm-II Reverse Transcription System (Promega) was

used to synthesise cDNA using 1 lg of RNA in an 11.5 ll

reaction volume for 90 min at 37 �C. Amplification was

carried out using a GoTaq Flexi DNA Polymerase system

(Promega) as per the manufacturer’s instructions. Each

reaction mixture consisted of 2 ll cDNA, 2 ll forward and

reverse primer mix, 5X PCR buffer, 1.5 mM MgCl2,

1.25 mM PCR dNTPs, 0.25 ll Taq polymerase and made

up to a total volume of 25 ll with nuclease-free water.

Forward and reverse primer pairs for TH (275 bp), Nurr1

(434 bp), Lmx1b (485 bp), Pitx3 (193 bp), BMPRIb

(425 bp), BMPRII (349 bp) and GAPDH (388 bp) are

listed in Supplementary Fig. 1.

Quantitative Real-Time PCR (RT-QPCR)

Midbrain and striatum samples were disrupted and

homogenised in 1 ml of QIAzol Lysis Reagent (Qiagen).

After the addition of 200 ll chloroform, homogenates were

separated into aqueous and organic phases by centrifuga-

tion at 13,000 rpm for 15 min. The upper aqueous phase

was mixed with an equal volume of 70 % ethanol, to

precipitate the RNA, and then transferred to an RNeasy

Mini spin column placed in a 2-ml collection tube. Total

RNA was purified using the Qiagen RNeasy Lipid Tissue

Mini extraction kit and RNase-free DNase set, according to

the manufacturer’s instructions. Following purification,

total RNA was reverse transcribed using Stratascript

reverse transcriptase (Agilent Technologies), for 1 h at

45 �C, in a 30 ll reaction according to the manufacturer’s

instructions.

In order to amplify cDNAs encoding the normalising

reference genes, glyceraldehyde 3-phosphate dehydroge-

nase (GAPDH), succinate dehydrogenase complex, subunit

A (SDHA) and ubiquitin C (UBQC), 2.5 ll of cDNA was

amplified in a 25 ll PCR containing 1X FastStart Universal

SYBR Green Master Mix (Rox) (Roche) and 150 nM

forward and reverse primers. In the case of amplifying

cDNAs encoding TH, BMPRIb and BMPRII, 2 ll of

cDNA was amplified in a 20 ll PCR containing 1X of

Brilliant III Ultra-Fast QPCR Master Mix (Agilent Tech-

nologies), 150 nM each forward and reverse primers and

300 nM cDNA-specific FAM/BHQ1 dual-labelled hybrid-

ization probe (Eurofins), and 3 nM ROX reference dye.

Quantitative real-time PCR amplification was performed

using the Stratagene MX3000P thermal cycler. GAPDH,

SDHA and UBQC quantitative real-time PCR amplifica-

tion products were verified as being correct by melting

curve analysis (melting temperatures 83.5, 80 and 85 �C,

respectively) of the completed PCR. The initial quantities

of each cDNA in each PCR were determined by compar-

ison to a standard curve incorporated into the PCR run and
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constructed from serial dilutions of cDNA reverse tran-

scribed from RNA extracted from P11 striatum and mid-

brain samples. Values for each gene of interest were

normalised to the geometric mean of the three reference

genes.

Primer and probe sequences for the amplification of

each cDNA are listed in Supplementary Fig. 1. Cycling

parameters for GAPDH, SDHA and UBQC were 10 min at

95 �C followed by 40 cycles of 95 �C for 30 s; 55 �C for

1 min; 72 �C for 1 min. Cycling parameters for TH,

BMPRIb and BMPRII were 3 min at 95 �C followed by 45

cycles of 95 �C for 13 s and 60 �C for 30 s.

Analysis of Neuronal Complexity

The total neurite length of individual E14 VM neurons was

measured at 1 and 3 DIV using Sholl analysis as previously

described (Gutierrez and Davies 2007; Collins et al. 2013).

Traces of GFP?/TH? neurons were carried out using the

CorelDRAW 94 software and analysed as previously

described (O’Keeffe et al. 2004a). Briefly, neurite length

(NL) was calculated using the following formula: NL =

a 9 T 9 (p/2), where a is the number of times the neurite

intersects the grid lines, and T is the distance between the

gridlines on the magnified image (taking into account the

magnification factor). VM neurons with intact processes

were analysed from 20 random fields per condition, where

any neuron with a process that was at least one and half times

the length of the soma was determined as an intact process

(which precludes the analysis of apoptotic neurons). For SH-

SY5Y cells, cellular morphology was assessed as previously

described (Hegarty et al. 2013b).

Western Blotting

Western blotting was carried out as previously described

(Crampton et al. 2012). The cells were lysed in RIPA

buffer, and insoluble debris was removed by centrifugation.

Samples were run on an agarose gel and transferred to

nitrocellulose membranes using a Mini Trans-Blot Elec-

trophoretic Transfer Cell (Bio-Rad, CA, USA). The

membranes were incubated with primary antibodies against

BMPRIb (1:1,000) or b-actin (1:1,000) overnight at 4 �C,

washed, incubated with horseradish peroxidase-labelled

anti-rabbit IgG (1:2,000; Promega), washed and developed

with ECL-Plus (Amersham).

Statistical Analysis

Unpaired Student’s t test or one-way ANOVA with a post hoc

Tukey’s test was performed, as appropriate, to determine sig-

nificant differences between groups. Results were expressed as

means with SEM and deemed significant when p\0.05.

Results

BMPRs are Expressed in the Rat VM and Striatum

During Embryonic and Post-natal Development

If BMP–Smad signalling promotes the neurite growth of

VM DA neurons, then the BMP receptors, BMPRII and

BMPRIb, should be expressed in the VM and possibly the

striatum, during the period of DA axogenesis. To examine

this, RT-QPCR was used to quantify the expression levels

of TH, BMPRII and BMPRIb transcripts in the VM and

striatum during embryonic and post-natal development,

having confirmed the accuracy of the VM dissections by

examining DA gene expression at each age (Fig. 1a–d). In

the VM, TH mRNA levels are highest from E14 to P1

(Fig. 1b). A significant drop in TH transcript levels occurs

between P1 and P11, after which the expression of TH

mRNA remains stable through to adulthood (P90)

(Fig. 1b). In the striatum, TH mRNA levels are signifi-

cantly lower than those in the midbrain throughout the

developmental period studied (Fig. 1b).

BMPRII mRNA levels are relatively stable throughout

development in the VM (Fig. 1c), while in the developing

striatum BMPRII mRNA levels increase 1.5-fold between

E14 and P1. Between P1 and P31, the level of BMPRII

transcripts expressed in the striatum falls almost threefold

and this lower expression level is maintained through to

adulthood (Fig. 1c). BMPRII mRNA levels in P90 mid-

brain are similar to those in P90 striatum (Fig. 1c). In the

midbrain, BMPRIb mRNA levels increase threefold

between E14 and P1, and thereafter remain unchanged until

adulthood (Fig. 1d). In the developing striatum, BMPRIb

mRNA levels increase by twofold between E14 and P1,

before increasing a further twofold between P1 and P60

(Fig. 1d). BMPRIb striatal mRNA levels remain relatively

steady thereafter through to P90 and are comparable to that

of the adult midbrain at this time point (Fig. 1d). The

expression levels of BMPRII and BMPRIb transcripts in

the adult midbrain (P31–P90) are very similar. Indeed, RT-

PCR and in situ hybridization showed that BMPRII and

BMPRIb are strongly expressed in the adult rodent SNpc

(Fig. 1e–j). Furthermore, approximately 75 % of DA neu-

rons in the adult rat midbrain expressed BMPRII and

BMPRIb (Fig. 1k, l).

Since the initial phase of DA axogenesis begins at E11

in the rat (Gates et al. 2004; Nakamura et al. 2000), this

study also showed that BMPRII and BMPRIb are expres-

sed in the developing rat VM from E11 to E14 VM

(Fig. 2a). Western blotting and immunocytochemistry were

then used to confirm that the effector part of the BMP

receptor complex, the BMPRIb protein, is expressed in the

rat VM during this developmental period (Fig. 2b, c). To

determine whether these receptors are expressed on DA
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neurons, immunocytochemical analysis was used to con-

firm protein expression of BMPRII and BMPRIb on TH-

positive neurons in E14 rat VM cultures (Fig. 2d, e and

data not shown). The co-localisation of BMPRII and

BMPRIb immunostaining with TH immunostaining indi-

cates that these receptors are expressed by DA neurons,

although there is also expression of these BMPRs on TH-

negative, non-DA cells (Fig. 2d, e).

BMP2 and GDF5 Promote Neurite Growth

and Activate Canonical Smad Signalling in VM DA

Neurons

Following the characterisation of BMPR expression in the

VM and striatum during development, we next assessed the

effects of BMP2 and GDF5 on the promotion of neurite

growth from cultured E14 VM DA neurons. Treatment

Fig. 1 BMP receptors are expressed in the midbrain and striatum

during embryonic and post-natal development. a RT-PCR of TH,

Nurr1, Lmx1b, and Pitx3 in E14 and adult rat VM (SN = substantia

nigra). b–d Quantitative RT-QPCR data showing the levels of (b) TH,

(c) BMPRII and (c) BMPRIb mRNA in the developing midbrain and

striatum, from E14 to P90, relative to the levels of the reference

mRNAs GAPDH, SDHA and UBQC. Each data point represents

pooled data from four samples from three separate litters/animals, and

all data are presented as the mean ± SEM. e RT-PCR showing the

expression of BMPRII and BMPRIb in the adult rat SN. f, g In situ

hybridization images taken from the Allen Developing Brain Atlas

(�(Allen) Developing Mouse Brain Atlas, 2012) showing BMPRII

and BMPRIb expression (purple colour) in sagittal sections of the P56

adult mouse brain. h Atlas showing the major nuclei in the midbrain

region, including the SNpc, substantia nigra pars reticulate (SNpr)

and subthalamic nucleus (STN). Corresponding in situ hybridization

images of this region showing strong expression of i BMPRII and

j BMPRIb in the SNpc (identified by red arrows). Scale

bar = 2103 lm. k Quantification of the percentage of DA neurons

in the adult rat SN expressing BMPRII and BMPRIb. l Photomicro-

graphs showing immunostaining for BMPRII and BMPRIb co-

expressed with TH in the adult rat SNpc
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with either BMP2 or GDF5 for 4 DIV resulted in a sig-

nificant increase in the neurite length of TH-positive neu-

rons in E14 VM cultures, when compared to untreated

controls (Fig. 3a, b).

BMPs are well-known activators of a canonical signal-

ling pathway involving activation of Smad 1/5/8 (Miyaz-

ono et al. 2010; Sieber et al. 2009). Densitometric analysis

of the nuclear levels of phospho-Smad 1/5/8 showed that

both BMP2 and GDF5 significantly increased the amount

of phospho-Smad 1/5/8 in the nucleus of TH-positive DA

neurons at 30 and 120 min, compared to the untreated

controls (0 min) (Fig. 3c–e). To determine whether this

effect of GDF5 and BMP2 on Smad phosphorylation was

specific to DA neurons, nuclear phospho-Smad levels were

also measured in TH-negative cells. BMP2 did not induce

Smad phosphorylation in these cells at any time point

examined (Fig. 3c). Although GDF5 did not activate Smad

phosphorylation in TH-negative cells at 30 min, it did so at

120 min (Fig. 3d). Using SH-SH5Y cells as a model of

human DA neurons (Hegarty et al. 2013b), BMP2 and

GDF5 were both shown to significantly increase Smad-

mediated transcriptional activity (as measured by the

Fig. 2 BMPRs are expressed

on DA neurons during the peak

period of DA axogenesis. a RT-

PCR of BMPRII, BMPRIb and

GAPDH in E11 to E14 rat VM.

b Western blotting showing

BMPRIb protein expression in

the developing rat VM.

c Photomicrographs showing

immunostaining for BMPRIb

co-expressed with DAPI and the

relevant negative controls ((-)

control) in cultures of the E14

rat VM after 24 h in vitro.

Photomicrographs showing

immunostaining for d BMPRIb

with e being the negative

control, co-stained with DAPI

and TH, in cultures of E14 rat

VM after 24 h in vitro. Scale

bar = 50 lm
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relative levels of GFP expression) at 2 DIV in SH-SH5Y

cells transfected with a Smad reporter plasmid (GFP under

the control of a Smad responsive element), compared to the

control (Fig. 3f, g). Collectively, these data show that

BMP2 and GDF5 promote neurite growth from DA neu-

rons in E14 VM cultures and activate the canonical Smad

signalling pathway in these neurons.

BMPR Inhibitors Prevent BMP2- and GDF5-Induced

Neurite Outgrowth in VM DA Neurons

To explore the possibility that the effects of BMP2 and

GDF5 on the neurite outgrowth from E14 VM DA neurons

are mediated through BMPR-dependent activation of the

canonical Smad 1/5/8 pathway, two approaches were

employed to inhibit BMP–BMPR signalling. Firstly nog-

gin, an extracellular inhibitor of BMPs, which blocks their

binding epitopes for BMPRs (Groppe et al. 2002; Smith

and Harland 1992), and secondly dorsomorphin, a small

molecular inhibitor of BMPRI (Yu et al. 2008), were used.

It has previously been shown that dorsomorphin is an

effective inhibitor of BMP2 and GDF5 signalling in SH-

SY5Y cells (Hegarty et al. 2013b). The ability of noggin to

inhibit BMP2 and GDF5 in these cells was assessed first,

and pre-treatment with either noggin or dorsomorphin

prevented BMP2- and GDF5-induced neurite growth in

SH-SY5Y cells (Supplementary Fig. 2). Similarly, the pre-

treatment of E14 VM cultures with noggin or dorsomor-

phin completely prevented the BMP2- and GDF5-induced

increases in the neurite length of TH-positive cells at 4 DIV

(Fig. 4a, b). It has been suggested that the neurotrophic

effects of GDF5 on DA neurons may be mediated indi-

rectly through the action of glial cell line-derived neuro-

trophic factor (GDNF) (Sullivan and O’Keeffe 2005). To

test this possibility, we adopted a similar approach to Orme

et al. (2013) who prevented the DA neurotrophic effects of

GDNF by blocking its heparan sulphate-dependent sig-

nalling (Barnett et al. 2002; Iwase et al. 2005; Orme et al.

Fig. 3 BMP2 and GDF5 promote neurite growth and activate

canonical Smad signalling in cultured DA neurons. a Total neurite

length of BMP2- and GDF5-treated (10 ng/ml daily for 4 DIV) DA

neurons in cultures of E14 rat VM. b Representative photomicro-

graphs of control and BMP2-treated DA neurons in cultures of E14 rat

VM at 4DIV, immunocytochemically stained for TH. Scale

bar = 100 lm. c, d Densitometric analysis of phospho-Smad 1/5/8

in c BMP2- and d GDF5-treated DA neurons and non-DA neurons in

E14 rat VM cultures at 0 (control), 30 and 60 min, as indicated.

e Representative photomicrographs of phospho-Smad 1/5/8

immunostaining (yellow arrow heads), co-localised with TH immu-

nostaining, in DA neurons treated BMP2 or GDF5 for 60 min in E14

rat VM cultures. Scale bar = 100 lm. f Smad-dependent transcrip-

tional activity in BMP2- and GDF5-treated SH-SY5Y cells 48 h after

transfection with a Smad-GFP reporter. g Photomicrographs showing

increased Smad-GFP reporter fluorescence in SH-SH5Y cells treated

with BMP2 or GDF5 for 2DIV. Scale bar = 10 lm. (*P \ 0.05,

**P \ 0.01, ***P \ 0.001 vs. control; ANOVA with post hoc

Tukey’s test; 50 cells analysed per group per experiment; N = 3

experiments)
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2013). The pre-treatment of SH-SH5Y cells with Hepa-

rinase III did not affect BMP2- and GDF5-induced neurite

growth in SH-SY5Y cells (Supplementary Fig. 3). Col-

lectively, these data show that the neurite growth-promot-

ing effects of BMP2 and GDF5 on VM DA neurons are

directly mediated through a BMPR-dependent pathway.

Canonical BMPR–Smad Activation Promotes Neurite

Outgrowth in VM DA Neurons

It is well established that BMP2 can signal through both

BMPRIa and BMPRIb, whereas GDF5 predominantly

signals through BMPRIb (Nishitoh et al. 1996), which

suggests that BMP2 and GDF5 may signal through BMP-

RIb to exert their neurotrophic effects on VM DA neurons.

To test this possibility, E14 VM neurons were transfected

with a constitutively active BMPRIb (caBMPRIb) plasmid,

and the neurite growth of the neurons was assessed and

compared to that of neurons transfected with a control

plasmid. Transfection of E14 VM neurons with the caB-

MPRIb plasmid induced a significant increase in their

neurite length at 3 DIV, but not 1 DIV, when compared to

cells transfected with the relevant control plasmid (Fig. 5a,

c). Importantly, electroporation of E14 VM neurons with a

wild-type BMPRIb plasmid did not result in significant

increases in neurite length (data not shown), demonstrating

Fig. 4 Noggin and dorsomorphin prevent the promotion of DA

neurite growth by BMP2 and GDF5. a Total neurite length of noggin-

or dorsomorphin-pre-treated and/or BMP2- or GDF5-treated (daily

for 4 DIV) DA neurons in E14 rat VM cultures, as indicated

(***P \ 0.001 vs. control; ANOVA with post hoc Tukey’s test; 50

TH-positive neurons analysed for each group per experiment; N = 3

experiments). b Representative photomicrographs of noggin- and

dorsomorphin-pre-treated and/or BMP2- or GDF5-treated DA neu-

rons in E14 rat VM cultures, immunocytochemically stained for TH.

Scale bar = 100 lm. Data are expressed as mean ± SEM

Fig. 5 Overexpression of constitutively active BMPRIb promotes

neurite outgrowth in cultured VM neurons. a Neurite length of

control- or caBMPRIb-transfected neurons in E14 rat VM cultures at

1 and 3 DIV, as indicated (**P \ 0.01; ##P \ 0.01 vs. 1 DIV;

ANOVA with post hoc Tukey’s; 40 cells for each group per

experiment; N = 3 experiments). b Neurite length of control- or

caBMPRIb-transfected neurons and/or co-transfected with a Smad4

siRNA expression vector in E14 rat VM cultures at 3 DIV, as

indicated (***P \ 0.001; ##P \ 0.01, ##P \ 0.001 vs. control;

ANOVA with post hoc Tukey’s; 40 cells for each group per

experiment; N = 3 experiments). c Representative line drawing of

neurons from each of these groups at 3 DIV. All data are presented as

mean ± SEM
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the importance of the activation of the BMPR for this

effect.

To determine a functional link between BMPRIb-

induced neurite growth and Smad 1/5/8 signalling, an

siRNA that targets the co-Smad Smad4, which has been

shown to be effective in inhibiting BMP2 and GDF5 sig-

nalling (Hegarty et al. 2013b), was used. The complex of

phosphorylated Smad 1/5/8 with Smad4 following BMP-

RIb activation is required for the nuclear translocation of

activated Smad 1/5/8 and thus their regulation of target

gene expression (Miyazono et al. 2010; Sieber et al. 2009).

To determine whether modulation of Smad4 expression

affected the growth of E14 VM neurons, the neurite length

of cells transfected with Smad4 siRNA or with Smad4

overexpression vectors was measured. Modulation of

Smad4 expression did not affect the neurite length of

transfected E14 VM neurons (data not shown). When E14

VM cells were co-transfected with the caBMPRIb and

Smad4 siRNA, Smad4 siRNA significantly reduced the

caBMPRIb promotion of E14 VM neuronal growth

(Fig. 5b, c). These data show that the activation of the

Smad signalling pathway by BMPRIb mimics the neurite

growth-promoting effects of BMP2 and GDF5 in E14 VM

neurons. To ensure that this effect was specific to DA

neurons, we immunostained the electroporated neurons at 3

DIV for TH. This allowed the identification of TH-positive/

GFP-positive DA neurons, indicating that they were

transfected (Fig. 6a, b). Traces of the TH-positive/GFP-

positive DA neurons were prepared for the analysis of

neuronal growth (Fig. 6c), which showed that DA neurons

expressing caBMPRIb had significantly longer neurites

than their control counterparts (Fig. 6d). Finally, to further

demonstrate the requirement of the BMPRIb for the neurite

growth-promoting effects of the BMP ligands, an siRNA

against BMPRIb was employed, which induced efficient

BMPRIb knockdown (Fig. 6e). The ability of GDF5 to

promote growth in cells transfected with either a control

siRNA or the BMPRIb siRNA was then investigated.

GDF5 promoted a significant increase in neurite length in

cells expressing the control siRNA, whereas this effect was

lost in cells expressing the BMPRIb siRNA (Fig. 6f, g).

Taken together, these data show that the activation of

canonical BMP–BMPRIb–Smad 1/5/8 signalling promotes

neurite outgrowth in VM DA neurons.

Discussion

Understanding the molecular signals that regulate the

development of DA neurons is crucial for advancing cell

replacement therapy for PD (Toulouse and Sullivan 2008;

Lees et al. 2009). While much progress has been made in

understanding the signals that control DA neuron devel-

opment, less is known about the molecules that promote

the growth of DA neurites, which is crucial for the func-

tional integration of transplanted cells into the host

parenchyma. However, some molecules, such as Ephs and

netrin1, have been identified as regulators of nigrostriatal

pathway development in recent years (Hegarty et al. 2013a;

Van den Heuvel and Pasterkamp 2008). In an attempt to

identify new candidate molecules and signalling pathways

that may be involved in nigrostriatal development, this

study focused on two BMPs, GDF5 and BMP2, since both

of these factors have been implicated in axonal growth in

Fig. 6 Overexpression of constitutively active BMPRIb promotes

neurite outgrowth in cultured DA neurons. a Photomicrograph of an

E14 rat VM culture transfected with ca-BMPRIb (GFP-positive) at

the time of plating, and immunocytochemically stained for TH at 3

DIV. b Higher magnification of the dashed area in (a), showing co-

localisation of TH and GFP to identify transfected DA neurons.

c Representative line drawing of control- or caBMPRIb-transfected

DA neurons at 3DIV. Scale bar = 50 lm. d Neurite length of

control- or caBMPRIb-transfected DA neurons in E14 rat VM

cultures at 3 DIV, as indicated. e RT-PCR showing BMPRIb mRNA

expression in SHSY5Y cells at 24 h following transfection with either

a control or BMPRIb siRNA. f Neurite length and g representative

photomicrographs of control siRNA and BMPRIb siRNA transfected

SH-SY5Y cells with or without GDF5 treatment, as indicated.

(***P \ 0.001, vs. control; ANOVA with post hoc Tukey’s; 30 cells

for each group per experiment; N = 3 experiments). All data are

presented as mean ± SEM
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other NS populations (Parikh et al. 2011; Hazen et al. 2011,

2012; Phan et al. 2010; Niere et al. 2006; Lein et al. 1995;

Hegarty et al. 2013a) and have been shown to have neu-

rotrophic effects on VM DA neurons, specifically survival-

and neurite growth-promoting effects (O’Keeffe et al.

2004a; Reiriz et al. 1999; Jordan et al. 1997; Sullivan et al.

1997; Hegarty et al. 2014). Despite these studies, the

downstream molecular mechanisms that mediate the

effects of GDF5 and BMP2 on VM DA neurons are

unknown. The present study thus aimed to define these

molecular mechanisms and to investigate the potential of

BMP2 and GDF5 as regulators of nigrostriatal

development.

To investigate this proposed role of BMP2 and GDF5 in

the neurite growth of DA neurons, this study first charac-

terised the temporal expression profiles of their receptors in

the rat VM and striatum during embryonic and post-natal

development. In the rat, the axons of the DA neurons in the

VM extend towards the forebrain via the medial forebrain

bundle from E13, and progressively innervate the striatum

shortly thereafter, reaching the dorsal striatum around E20

(Gates et al. 2004; Nakamura et al. 2000; Specht et al.

1981a, b; Verney 1999; Voorn et al. 1988). In the first three

post-natal weeks, striatal innervation becomes more

extensive, while naturally occurring cell death refines these

connections (Jackson-Lewis et al. 2000; Oo and Burke

1997; Burke 2003; Hegarty et al. 2013a; Van den Heuvel

and Pasterkamp 2008). This study found that BMPRII and

BMPRIb were expressed at steady levels in the VM

throughout embryonic development (from E14) and into

adulthood (until at least P90), with strong expression levels

being detected on DA neurons in the P56 SNpc. Crucially,

the expression of these BMPRs, both of which are required

for canonical BMP–Smad signalling (Miyazono et al.

2010; Sieber et al. 2009), in the VM from E14 onwards

correlates with the timing of the generation of nigrostriatal

projections. These data suggest that BMPs, such as BMP2

and GDF5 that are expressed in the developing and adult

VM and striatum (Krieglstein et al. 1995; O’Keeffe et al.

2004b; Storm et al. 1994; Chen et al. 2003; Jordan et al.

1997; Soderstrom and Ebendal 1999; Hegarty et al. 2014),

may regulate the establishment of nigrostriatal projections

from VM DA neurons. In support of this suggestion, the

present study has demonstrated that both BMP2 and GDF5

promote neurite outgrowth from E14 VM neurons in cul-

ture. BMP2 and GDF5 may also act to orientate the axons

of VM DA neurons away from the VM, since other BMPs,

such as BMP7 and GDF7, have been shown to orient the

commissural axons of dorsal SC interneurons via BMPRIb

(Butler and Dodd 2003; Dent et al. 2011; Phan et al. 2010;

Yamauchi et al. 2008; Wen et al. 2007). The sustained

expression of BMPRs in the VM during adulthood suggests

that they may function in the maintenance of DA neurons,

with both BMP2 and GDF5 being shown to promote the

survival of VM DA neurons in vitro (O’Keeffe et al. 2004a;

Wood et al. 2005; Reiriz et al. 1999; Jordan et al. 1997) and

in vivo (Sullivan et al. 1997, 1998, 1999; Hurley et al.

2004; O’Sullivan et al. 2010; Espejo et al. 1999). This

study also demonstrated the expression of these BMPRs

from E11 to E14 in the rat VM, further supporting their

role in DA axogenesis, but also suggesting that BMPs may

function in adoption of a DA phenotype during DA neu-

rogenesis, which occurs during this period (Lumsden and

Krumlauf 1996; Lauder and Bloom 1974; Gates et al. 2006;

Hegarty et al. 2013c). In agreement with this proposal,

BMP–BMPR–Smad-dependent transcriptional activity is

found in the VM region during DA neurogenesis at E10.5

in mice (Monteiro et al. 2008), which also corresponds to

the time of DA axon extension. BMP–Smad signalling may

therefore concomitantly contribute to VM DA neuronal

specification and their subsequent neurite outgrowth, which

is the case for BMPs in the dorsal SC (Chizhikov and

Millen 2005; Ulloa and Briscoe 2007).

In the striatum, there is a peak of BMPRII mRNA

expression at P11, during the time period (P0–P20) when

naturally occurring cell death is occurring due to limitations

in the availability of target-derived neurotrophic factors

(Jackson-Lewis et al. 2000; Oo and Burke 1997; Burke

2003; Van den Heuvel and Pasterkamp 2008). Similarly,

BMPRIb is also expressed at relatively high levels in the

early post-natal (P1 to P11) striatum. These data suggest

that BMP2 and GDF5 may function as target-derived

neurotrophic factors for VM DA neurons at this stage of

development. Indeed, both factors have been shown to

promote the survival of VM DA neurons (O’Keeffe et al.

2004a; Wood et al. 2005; Reiriz et al. 1999; Jordan et al.

1997; Sullivan et al. 1997, 1998, 1999; Hurley et al. 2004;

O’Sullivan et al. 2010; Espejo et al. 1999). Furthermore,

BMPRII null mice have reductions in nigrostriatal neurons,

and striatal DA innervation, when examined in adulthood

(Chou et al. 2008), which is likely due to deficient neuro-

trophic support during this post-natal developmental per-

iod. There is a peak of BMPRIb expression during

adulthood in the striatum, which may point towards the

aforementioned potential role of BMPs in the maintenance

of VM DA neurons. Furthermore, it may suggest that

BMPRIb functions in promoting the arborisation of DA

axons that survive the period of naturally occurring cell

death. The sustained expression of BMPRs in the adult rat

brain (up to P90) demonstrated in this study suggests a role

for BMP2 and GDF5 in the maintenance of the nigrostriatal

system during adulthood. In support of this role, BMPs

(including BMP2) and BMPRs have been shown to be

expressed in the midbrain and striatum from 6–24 months

in the adult rat (Chen et al. 2003). Furthermore, in animal

models of PD, exogenous GDF5 delivery into the
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nigrostriatal pathway has potent survival-promoting effects

on adult nigral DA neurons (Sullivan et al. 1997, 1999;

Hurley et al. 2004; O’Sullivan et al. 2010; Sullivan and

Toulouse 2011). Disruption to the normal expression of

BMPRs may thus render nigrostriatal DA neurons more

vulnerable to degeneration and increase the risk of the

development of PD. The phenotype of the BMPRII null

mouse supports this suggestion, while haploinsufficiency

of other transforming growth factor (TGF)b superfamily

members, such as GDNF and TGFb2, causes an accelerated

decline of midbrain DA neurons during normal ageing

(Boger et al. 2006; Andrews et al. 2006). Interestingly, after

a 6-hydroxydopamine (6-OHDA)-induced lesion of the

adult rat nigrostriatal pathway, BMPRs were significantly

downregulated in the nigra, but upregulated in the striatum

(Chen et al. 2003). These findings likely reflect the loss of

BMPR expression by nigral DA neurons, which are

destroyed by 6-OHDA, and a potential compensatory

mechanism by the striatum to restore BMP-mediated sur-

vival-promoting effects on innervating VM DA neurons

through upregulation of BMPR expression. The BMPR

expression in the developing striatum may also reflect

autocrine or paracrine trophic influences on cells within the

striatum, since the BMPs have been shown to play roles in

striatal neuronal development (Gratacos et al. 2001, 2002).

The present study found that TH mRNA levels in the

VM are maximal at E14, which is expected as this is the

time point at which the greatest amount of post-mitotic DA

neurons are present in the VM (Lumsden and Krumlauf

1996; Lauder and Bloom 1974; Gates et al. 2006). There

was a subsequent significant decline in TH expression from

birth onwards, reaching the lowest levels at P11, which

correlates with the onset of programmed cell death for

nigrostriatal DA neurons. TH mRNA expression was found

to remain stable in the adult VM, reflecting the established

population of A9 DA neurons.

Following the demonstration of the expression of

BMPRs in the VM and striatal regions during embryonic

and post-natal development, we next demonstrated that

BMPRs are expressed on both DA and non-DA cells in E14

rat VM cultures, indicating that BMP2 and GDF5 may act

in either an autocrine or paracrine manner to exert neuro-

trophic effects on DA neurons. Immunocytochemical

staining for phospho-Smad 1/5/8 showed that both DA and

non-DA cells express these transcription factors, and the

nuclear location of phospho-Smad 1/5/8 indicated that

these VM cells also express Smad4, which is required for

the nuclear translocation of Smad 1/5/8 following their

activation. These results demonstrate that VM DA neurons

have the machinery to carry out canonical Smad 1/5/8

signalling in response to BMPs.

The current study has demonstrated that both BMP2 and

GDF5 induce the neurite outgrowth of E14 VM DA

neurons, which is consistent with previous studies on

BMP2 (Reiriz et al. 1999) and GDF5 (O’Keeffe et al.

2004a) in rat VM cultures. The molecular mechanisms

mediating this neurite growth-promoting effect were then

assessed. BMP2 and GDF5 were both shown to activate

canonical Smad 1/5/8 in VM DA neurons, as demonstrated

by nuclear accumulation of phosphorylated Smad 1/5/8.

Interestingly, GDF5, but not BMP2, activated Smad 1/5/8

signalling in non-DA cells. This finding is not surprising

considering that the numbers of astrocytes are dramatically

increased in GDF5-treated E14 rat VM cultures (Kriegl-

stein et al. 1995; O’Keeffe et al. 2004a; Wood et al. 2005).

It has thus been suggested that GDF5 may have an indirect

neurotrophic action on VM DA neurons, possibly by

stimulating glial-derived growth factor(s) production, such

as GDNF, that might be involved in the neurotrophic

response (Sullivan and O’Keeffe 2005). To test this pos-

sibility, this study investigated whether GDF5 and BMP2

were capable of promoting neurite growth in the absence of

heparan sulphate-dependent GDNF signalling and showed

that GDF5 and BMP2 did not require GDNF for this effect.

Similarly, Wood et al. (2005) showed that the inhibition of

the GDF5-induced increase in astrocytes does not prevent

the neurotrophic effects of GDF5 on DA neurons in E14 rat

VM cultures, suggesting that GDF5 has a direct neuronal

action. Similarly, Reiriz et al. (1999) used the gliotoxin a-

aminoadipic acid to demonstrate that the neurotrophic

effects of BMP2 on E14 rat VM DA neurons were not

mediated by astrocytes. These data, along with the present

finding that BMP2 specifically activates Smad signalling in

VM DA neurons, suggest that BMP2 and GDF5 act

directly on DA neurons to induce axonal growth. The

neurotrophic and gliogenic effects of GDF5 in VM cultures

may thus be independent of one another. Similarly, BMP–

Smad signalling has previously been shown to have such a

dual-inductive role in enteric neural crest cells (Chalazo-

nitis et al. 2004, 2011; Chalazonitis and Kessler 2012).

Collectively, these data suggest that canonical Smad sig-

nalling mediates the neurotrophic effects of BMP2 and

GDF5 on VM DA neurons.

To explore this premise further, the effects of BMP2 and

GDF5 were assessed following the inhibition of their

binding to BMPRs. BMPR activation by BMP2 and GDF5

was blocked by using noggin, an extracellular inhibitor of

BMPs, which blocks their binding epitopes for BMPRs

(Groppe et al. 2002; Smith and Harland 1992), or dorso-

morphin, a small molecular inhibitor of BMPRI (Yu et al.

2008). Pre-treatment with either noggin or dorsomorphin

inhibited the neurite growth-promoting effects of BMP2

and GDF5 on E14 VM DA neurons. Noggin and dorso-

morphin have both previously been used to prevent BMP-

induced neurite outgrowth in other neuronal populations

(Parikh et al. 2011; Li and LoTurco 2000), and the current
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study also demonstrated their inhibition of BMP-induced

neurite growth in SH-SH5Y cells. BMPR activation is

therefore crucial to BMP-induced axonal growth from VM

DA neurons. BMP2 can signal through both BMPRIa and

BMPRIb, whereas GDF5 predominantly signals through

BMPRIb (Nishitoh et al. 1996), suggesting that BMPRIb is

responsible for mediating the neurotrophic effects of BMP2

and GDF5. To test this hypothesis, E14 VM cultures were

electroporated with a constitutively active BMPRIb, which

has been previously shown to activate the Smad 1/5/8

signalling pathway (Hegarty et al. 2013b). E14 VM neu-

rons expressing the caBMPRIb were significantly larger

than those transfected with the control plasmid, suggesting

that BMP2 and GDF5 activate BMPRIb to induce neurite

extension. These findings are in agreement with a previous

study in SH-SH5Y cells, a model of human DA neurons

(Hegarty et al. 2013b). Furthermore, the application of

GDF5 at the time of plating, when BMPR1b is expressed,

results in neurotrophic effects on VM DA neurons; how-

ever, application after six days in vitro, when the BMPRIb

is no longer expressed, has no effect (O’Keeffe et al.

2004a). The present study next demonstrated that the

transcriptional activity of Smad 1/5/8 is required for this

BMP-induced neurite growth of VM neurons. The inhibi-

tion of the nuclear translocation of the Smad 1/5/8 tran-

scription factors, using siRNA to target Smad4,

significantly inhibited neurite outgrowth of E14 VM neu-

rons induced by caBMPRIb. Finally, this study confirmed

that the neurite growth-promoting effects of the caBMPRIb

are specific for VM DA neurons. The caBMPRIb therefore

mimics the effects of BMP2 and GDF5 on E14 VM DA

neurons. Furthermore, siRNA knockdown of the BMPRIb

also prevented GDF5-induced neurite growth in SH-SH5Y

cells. Collectively, these data show that BMPRIb activation

of Smad 1/5/8 is the mechanism by which these BMPs

promote the neurite growth of VM DA neurons.

This study has identified BMP2 and GDF5 as bona fide

candidates to be regulators of nigrostriatal pathway

development. The expression profiles of their BMPRs in

the VM and striatum, and their neurotrophic effects on

cultured VM DA neurons, propose roles for BMP2 and

GDF5 in the extension/projection of DA axons from the

VM. They may act as target-derived neurotrophic factors

for innervating nigrostriatal fibres, and/or as factors that

maintain the integrity of nigrostriatal projections during

adulthood. However, the analysis of mice with deficiencies

in GDF5 and/or BMP2 is essential to further establish

these factors as regulators of nigrostriatal pathway devel-

opment. It is not unlikely that these morphogens may play

multiple roles during nigrostriatal system development,

since locally expressed factors are employed throughout

NS development to regulate multiple steps of particular

developmental processes, with temporally regulated

functions. A relevant example of this is seen during chick

dorsal SC development, in which BMP–Smad signalling

promotes neuronal specification rather than astrocytic

specification at E5, but at E6 has the opposite effect

(Agius et al. 2010). The present study has thus contributed

to the growing body of knowledge regarding the devel-

opment of the A9 pathway. A detailed, well-characterised

understanding of nigrostriatal pathway development is

vital, to provide important information regarding devel-

opmental abnormalities or age-related defects that may

lead to the progressive degeneration of this pathway in PD.

Furthermore, cell replacement therapy is one of the most

promising therapies for the treatment for PD (Orlacchio

et al. 2010; Bonnamain et al. 2012; De Feo et al. 2012;

Toulouse and Sullivan 2008; Hedlund and Perlmann

2009). Due to the importance of the establishment of

functional connections by transplanted DA cells in the host

striatum, factors that promote neurite outgrowth are being

considered as adjuncts to transplantation therapy. GDF5

and BMP2 are thus ideal candidates to be used as growth-

promoting factors, with their survival-promoting effects on

VM DA neurons being beneficial also. The present study

has, for the first time, demonstrated that the downstream

molecular mechanisms mediating the neurite outgrowth-

promoting effects of GDF5 in VM DA neurons are

dependent, upon BMPRIb-mediated activation of canoni-

cal Smad 1/5/8 signalling.
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Abstract The adult midbrain contains 75 % of all dopami-
nergic neurons in the CNS. Within the midbrain, these neu-
rons are divided into three anatomically and functionally
distinct clusters termed A8, A9 and A10. The A9 group plays
a functionally non-redundant role in the control of voluntary
movement, which is highlighted by the motor syndrome that
results from their progressive degeneration in the neurodegen-
erative disorder, Parkinson’s disease. Despite 50 years of
investigation, treatment for Parkinson’s disease remains
symptomatic, but an intensive research effort has proposed
delivering neurotrophic factors to the brain to protect the
remaining dopaminergic neurons, or using these neurotrophic
factors to differentiate dopaminergic neurons from stem cell
sources for cell transplantation. Most neurotrophic factors
studied in this context have been members of the transforming
growth factor β (TGFβ) superfamily. In recent years, an
intensive research effort has focused on understanding the
function of these proteins in midbrain dopaminergic neuron
development and their role in the molecular architecture that
regulates the development of this brain region, with the goal of
applying this knowledge to develop novel therapies for
Parkinson’s disease. In this review, the current evidence show-
ing that TGFβ superfamily members play critical roles in the
regulation of midbrain dopaminergic neuron induction, differ-
entiation, target innervation and survival during embryonic
and postnatal development is analysed, and the implications of
these findings are discussed.

Keywords TGFβ superfamily . BMP family .Midbrain
dopaminergic neurons . Development . Neurogenesis

Abbreviations
6-OHDA 6-Hydroxydopamine
ALK Activin receptor-like kinases
BDNF Brain-derived neurotrophic factor
BMP Bone morphogenetic protein
BMPR BMP receptors
Co-Smads Common mediator Smads
DA Dopaminergic/dopamine
E Embryonic day
FGF Fibroblast growth factor
GDF Growth/differentiation factor
GDNF Glial cell line-derived neurotrophic factor
I-Smads Inhibitory Smads
MPP+ 1-Methyl-4-phenylpyridinium ion
P Postnatal day
PD Parkinson’s disease
R-Smads Receptor-regulated Smads
Shh Sonic hedgehog
TGFβ Transforming growth factor β
TH Tyrosine hydroxylase
VM Ventral midbrain/mesencephalon

Introduction

Discrete populations of dopaminergic neurons in the ventral
midbrain are crucial to the normal functioning of the human
brain. Three functionally and anatomically distinct clusters of
dopaminergic (DA) neurons, termed the A8, A9 and A10
groups, arise from the ventral midbrain/mesencephalon
(VM) floor plate during embryonic development [1]. The
A9 cluster of DA neurons, which gives rise to the substantia
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nigra pars compacta, projects to the dorsal striatum via the
nigrostriatal pathway to regulate voluntary motor control,
while the A8 and A10 groups, which develop into the ventral
tegmental area and the retrorubal field, respectively, innervate
the ventral striatum and prefrontal cortex via the
mesocorticolimbic system to regulate emotion and reward
[2, 3]. The importance of these VM DA populations is
highlighted in disorders in which their neurotransmission is
altered, impaired or gradually lost. The progressive de-
generation of A9 DA neurons results in the motor
syndrome of Parkinson’s disease (PD) [4, 5], while
defective functioning of the mesocorticolimbic system
has been shown to contribute to the development of
schizophrenia, drug addiction and depression [6, 7].

PD is the second most common neurodegenerative disor-
der, affecting 0.5 to 1 % of the population aged 65–69 years of
age and 1 to 3 % of the population over 80 years of age [8].
Many strategies have been proposed to halt or even reverse the
DA neuronal loss in PD, and one proposed strategy that has
received intense focus in recent years is the application of
neurotrophic factors to protect the remaining DA neurons.
Since the discovery of the best-known DA neurotrophic fac-
tor, glial cell line-derived neurotrophic factor (GDNF), in
1993, it is now known that many DA neurotrophic factors
are members of the transforming growth factor β (TGFβ)
superfamily of proteins. While some members of this family
of proteins, including GDNF, have been used in clinical trials
in PD, work in recent years has established that they also play
key roles in DA neuron development. The clinical use of these
factors in PD has been extensively discussed in recent reviews
[9, 10]. In this review, the available evidence that suggests that
members of the TGFβ superfamily are critical regulators of
midbrain DA neuron induction, differentiation, target inner-
vation and survival during embryonic and postnatal develop-
ment will be described.

The TGFβ Superfamily

The TGFβ superfamily is grouped into subfamilies based on
sequence homology, which include the TGFβ, activin, GDNF,
growth/differentiation factor (GDF) and bone morphogenetic
protein (BMP) subfamilies [11, 12]. TGFβ superfamily mem-
bers are dimeric, structurally conserved proteins, that have
pleiotropic functions in vitro and in vivo [13]. They elicit their
cellular responses by binding to two distinct types of serine/
threonine kinase cell surface receptors, both of which are
required for signal transduction [14, 15]. There are seven
known type I receptors, the activin receptor-like kinases
(ALK) 1–7, and five type II receptors. Upon ligand binding,
the constitutively active type II receptor phosphorylates the
type I receptor. The activated type I receptor subsequently
phosphorylates receptor-regulated Smads (R-Smads), which

then form a heterocomplex with the common mediator Smad
(co-Smad) that mediates Smad nuclear translocation to allow
the Smad transcription factors to regulate target gene expres-
sion. TGFβs, including TGFβ1–3, GDNF, activin and nodal,
signal via ALK1, ALK2, ALK4, ALK5 and ALK7, while
BMPs signal via ALK1, ALK3 (also known as BMPRIa) and
ALK6 (also known as BMPRIb) [16-20].

The major signalling molecules acting downstream from
the serine/threonine kinase receptors are the Smad proteins
[21]. The R-Smads for the BMP family are Smad1, Smad5
and Smad8, while Smad2 and Smad3 mainly mediate the
effects of TGFβs [20, 21]; however, TGFβ signalling via
ALK1 is known to activate Smad1 [22]. The co-Smad, Smad
4, is a shared component of the two Smad signalling path-
ways. Similarly, the inhibitory Smads (I-Smads), Smad6 and
Smad7, negatively regulate R-Smad/co-Smad signalling of
both pathways [23-25].

The TGFβ Superfamily in Midbrain DA Neuronal
Development

There is a wealth of evidence suggesting that TGFβ super-
family members regulate midbrain DA neuronal develop-
ment. However, the majority of this research has focused on
their survival-promoting abilities, rather than potential roles in
development, with the goal of using these factors therapeuti-
cally for PD. Such research is best highlighted by that carried
out on the GDNF family (Table 1), two of which have been
used in clinical trials [9, 10], and this TGFβ subfamily will
therefore be discussed first in this review.

The GDNF Family

The GDNF family is composed of four members—GDNF,
neurturin, persephin and artemin. GDNF, the prototypical
member of this subfamily, was isolated from a glial cell line
following the demonstration of its neurotrophic effects on
cultured DA neurons [26]. GDNF has consistently been
shown to promote the survival, and reduce apoptosis, of
cultured embryonic VM DA neurons [26-31]. A vitamin D3

metabolite, calcitriol, has recently been shown to promote the
survival of midbrain DA neurons in vitro through the upreg-
ulation of endogenous GDNF [32]. Interestingly, a single dose
of GDNF selectively enhances the survival of A9 DA neu-
rons, while only repeated exposure of this factor increases the
survival of A10 cells in embryonic day (E)14 VM cultures
[33], suggesting that nigrostriatal DA neurons are more sen-
sitive to the effects of GDNF. GDNF has consistently been
shown to improve the survival of embryonic DA neurons in
VM transplants to the adult rodent striatum [34-39]. Of more
physiological relevance, GDNF has also been shown to inhibit
the apoptotic death of postnatal midbrain DA neurons in vitro
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[39]. Furthermore, two in vivo studies demonstrated that
GDNF functions to promote the survival of midbrain DA
neurons during their period of naturally occurring cell death
[40, 41]. These findings suggest that GDNF functions to
regulate the survival of VM DA neurons during their devel-
opment, particularly as a target-derived neurotrophic factor. In
support of such a suggestion, GDNF is expressed in the
developing and adult rat midbrain and striatum [42, 43],
which indicates functioning by endogenous GDNF. Interest-
ingly, the activation of the dopamine D2 receptor has recently
been shown to upregulate GDNF expression in the postnatal
rat midbrain [44], suggesting that activity-dependent GDNF
neurotrophic support is important during nigrostriatal pathway
development. GDNF has been shown to protect VM DA
neurons from the DA toxins, 1-methyl-4-phenylpyridinium

ion (MPP+) and 6-hydroxydopamine (6-OHDA), in vitro
[45, 46], and in animal models of PD [47-52]. Interestingly,
the survival-promoting effect of GDNF in these models is
significantly greater in younger rats (3 and 18 months) when
compared to older rats (24 months) [53], with the greatest
effect seen in 3-month-old rats at a time when the nigrostriatal
pathway is still developing [54]. These findings led to clinical
trials which delivered GDNF into the striatum of PD patients,
but these had varying degrees of success [55-57]. A more
developmentally relevant protective role of GDNF was re-
cently demonstrated, in a study showing that GDNF protected
cultured VM DA neurons from lipopolysaccharide-induced
degeneration, a model of neuroinflammation [58]. This sug-
gests that GDNF maintains DA neuronal integrity in occa-
sions of increased brain inflammation. Furthermore, inflam-
mation has consistently been suggested to contribute to the
pathogenesis of PD [59-61].

There is evidence to suggest that GDNF may play a role in
inducing a DA phenotype during midbrain DA neurogenesis.
A recent paper showed that GDNF is capable of inducing the
expression of both Nurr1 and Pitx3, two key genes in DA
specification [62], in neural precursors isolated from the VM
during the time of DA neurogenesis [63]. Similarly, in cultures
of E12 rat VM neural precursors, GDNF significantly in-
creased the number of cells expressing both Nurr1 and Pitx3
[64]. In support of these findings, GDNF has been shown to
induce Pitx3 expression in the murine VM, with Pitx3 medi-
ating GDNF-induced brain-derived neurotrophic factor
(BDNF) expression in A9 nigrostriatal DA neurons [65]. This
GDNF-Pitx3-BDNF feed-forward regulation may explain the
specific sensitivity of the A9 subgroup of midbrain DA neu-
rons to GDNF, with Pitx3 also being crucial for the survival
and maintenance of nigrostriatal DA neurons [66-69]. Inter-
estingly, Nurr1 has been shown to regulate the expression of
the GDNF receptor, cRet, the expression of which is lost in
Nurr1-deficient animals [70]. This suggests that GDNF and
Nurr1 may function in an autoregulatory loop during VMDA
neurogenesis, a mechanism which is not uncommon during
this developmental process [62]. GDNF has been shown to
induce expression of the dopamine synthetic enzyme, tyrosine
hydroxylase (TH), in fetal human and rat cortical cultures
[71], which suggests that it may play a similar role during
VMDAneurogenesis. In support of such a proposal, Pitx3 has
been suggested to induce TH expression in nigrostriatal DA
neurons [62], which indicates that Pitx3 may mediate GDNF-
induced TH expression in a similar fashion to its mediation of
GDNF-induced BDNF expression. Despite these findings,
and the proposed roles for GDNF in the induction of a DA
phenotype, GDNF null mice display no severe defects in
midbrain DA neurons during embryonic development
[72-74] (Table 5), demonstrating that GDNF is not essential
for VMDAneurogenesis. However, thesemice die perinatally
[72-74], prohibiting the investigation of GDNF deficits on

Table 1 Effects of GDNF family on midbrain DA neurons

Effect Reference(s)

GDNF

In vitro

Promotes survival and reduces apoptosis of
embryonic DA neurons

[26-32]

Promotes survival and reduces apoptosis of postnatal
DA neurons

[39]

Protects DA neurons from MPP + and 6-OHDA [45, 46]

Protects DA neurons from lipopolysaccharide-
induced neurotoxicity

[58]

Induces Nurr1 and Pitx3 expression in VM neural
precursors

[63-65]

Induces TH expression [71]

Induces neurite growth of embryonic DA neurons [26, 28]

Enhances synaptogenesis of postnatal DA neurons [79]

In vivo

Promotes survival of embryonic DA neurons in VM
transplants to adult striatum

[34-39]

Promotes survival of postnatal midbrain DA neurons [40, 41]

Promotes survival of adult DA neurons in animal
models of PD

[47-53]

Induces neurite growth of postnatal midbrain DA
neurons

[40, 41]

Induces re-innervation of the lesioned striatum by
midbrain DA afferents

[77, 78]

Increases neurite growth from DA neurons in VM
transplants to adult striatum

[35]

Increases levels of DA and its metabolites in the
striatum and midbrain

[80]

Long-lasting protective action on nigrostriatal DA
neurons during aging

[81]

Neurturin, persephin and artemin

In vitro

Promote survival of embryonic DA neurons [83, 84, 93, 94]

Promote neurite growth of embryonic DA neurons [97]

In vivo

Promote survival of adult DA neurons in animal
models of PD

[85-89, 95, 96]
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postnatal nigrostriatal pathway development. Granholm et al.
[41] circumvented this issue by transplanting GDNF null VM
tissue into the adult wild-type mouse brain to demonstrate that
GDNF is required for the postnatal survival and neuritic
growth of midbrain DA neurons.

GDNF has been shown to induce neurite growth from
cultured rat VM DA neurons at E14 [26, 28], the time point
at which midbrain DA neurons are extending their axons from
the VM in vivo [75, 76]. These data suggest that GDNF may
regulate DA axogenesis in the VM. This neurite growth-
promoting role of GDNF on midbrain DA neurons was also
demonstrated postnatally in vivo [40, 41], suggesting that
GDNF may function in the neurite arborisation of DA axons
once they have reached their targets, in which GDNF is
expressed [42, 43]. In support of such a role, GDNF admin-
istration to the adult rat striatum following intrastriatal 6-
OHDA lesion causes the re-innervation of the striatum by
midbrain DA afferents [77]. Similarly, GDNF is required for
the sprouting of nigrostriatal fibers following striatal injury
[78], while GDNF has also been shown to increase neurite
growth from DA neurons in VM transplants to the striatum
[35]. Furthermore, Bourque and Trudeau [79] have shown that
GDNF enhances the synaptogenesis of cultured postnatal
midbrain DA neurons. In normal adult rats, a single injection
of GDNF into either the substantia nigra or striatum signifi-
cantly increases the levels of DA and its metabolites in the
striatum and midbrain [80], which may reflect the findings of
Bourque and Trudeau [79]. These findings suggest a role for
GDNF in the maintenance of midbrain DA neurons in adult-
hood. Indeed, chronic striatal administration of GDNF in aged
monkeys has a long-lasting protective action on nigrostriatal
DA neurons [81]. Furthermore, GDNF+/− heterozygous mice
show an accelerated decline of nigrostriatal DA neurons dur-
ing aging, which leads to functional motor deficits [82]
(Table 5).

A naturally occurring analog of GDNF, neurturin, has been
shown to be equally as a potent as GDNF at promoting the
survival of midbrain DA neurons in vitro [83, 84]. However,
neurturin was found not to share the neuritogenic effects of
GDNF [84]. These findings suggest that neurturin shares the
roles of GDNF in the survival and maintenance of VM DA
neurons during embryonic and postnatal development, which
is supported by the expression of neurturin in the VM and
striatum during development [83]. Like GDNF, neurturin
protects VM DA neurons in animal models of PD [85-89]
and is now in clinical trials [90-92]. The other two members of
the GDNF family, persephin and artemin, have also been
shown to promote the survival of midbrain DA neurons
in vitro [93, 94] and in vivo [95, 96], suggesting that the
GDNF family may share protective roles in the developing
nigrostriatal system. However, GDNF and neurturin have
been demonstrated to have differential effects on VM DA
neurons in vivo [86]. In contrast to the findings of Akerud at

al. [84], neurturin, as well as persephin and artemin, has
recently been shown to promote the neurite growth of cultured
midbrain DA neurons [97]. These findings suggest roles for
these factors in the formation of the nigrostriatal pathway
during development. However, mice with null mutations of
neurturin [98], persephin [99] or artemin [100] are viable and
lack severe deficits in midbrain DA neurons (Table 5). These
GDNF family ligands are therefore not essential for the de-
velopment of the nigrostriatal system. However, it may be the
case that in the absence of one of these GDNF family ligands,
the other family members compensate functionally during
midbrain DA development. The phenotypic analysis of dou-
ble or treble mutants of the GDNF family ligands would
address this possibility of functional redundancy.

TGFβs

The TGFβs, which include TGFβ1, TGFβ2 and TGFβ3
isoforms, have been shown to be essential co-factors for the
neuroprotective effects of GDNF on midbrain DA neurons.
The application of antibodies neutralizing TGFβ isoforms
abolishes the survival-promoting effects of GDNF on mid-
brain DA neurons in vitro [101] and in vivo [102], suggesting
that the effects of GDNF are dependent on TGFβs. It has been
reported that TGFβ is required for the recruitment of the
GDNF receptor, GFRα1, to the plasma membrane in primary
neuron cultures [103], which may explain the requirement for
TGFβ in the DA neurotrophic effects of GDNF. The cooper-
ative functioning of TGFβ and GDNF has been highlighted
in vivo by their co-storage in the secretory vesicles of a model
neuron, the chromaffin cell, and the co-localisation of their
receptors on GDNF-responsive neuronal populations [101].
TGFβs are known to be expressed in the floor plate and
notochord during development [104, 105]. They have been
shown to be expressed in the ventral midbrain during DA
neurogenesis [106, 107], and their expression significantly
increases in the striatum following MPP+lesion [102], sug-
gesting physiological roles for these factors, both during DA
development and in response to neurotoxic insult. Indeed,
TGFβs have been shown to have survival-promoting and
neuroprotective effects (against MPP+) on cultured midbrain
DA neurons; these effects are not mediated by astroglia or by
increases in cell proliferation [27, 106]. Furthermore, there is
evidence to suggest that TGFβs, specifically TGFβ1, regulate
the neurite growth of midbrain DA neurons [108]. It is unclear
whether TGFβs achieve these effects directly, or function to
sensitise midbrain DA neurons to the survival- and growth-
promoting effects of endogenous GDNF.

TGFβs have been identified as important mediators in the
induction of midbrain DA neurons (Table 2). It has been
consistently shown that treatment with TGFβs increases the
numbers of DA neurons in cultures of rodent VM precursors,
through the induction of a DA phenotype in these cells [107,
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109]. Furthermore, Farkas et al. [107] showed that reduction
of endogenous TGF-β in vivo, by the use of TGFβ-
neutralizing antibodies, suppresses the differentiation of mid-
brain DA neurons in the chick embryo. VM astrocytes have
been shown to induce DA neurogenesis in rat VM precursors
by releasing high levels of the TGFβ3 isoform in vitro [110].
A similar role for VM astrocytes has previously been shown
through their secretion of Wnts [111], which are critical in-
ducers of DA neurogenesis [62]. Interestingly, the inductive
effects of TGFβs were shown to be dependent on Sonic
hedgehog (Shh) [107], another factor vital for DA induction
[62]. Likewise, Shh was shown to be incapable of inducing a
DA phenotype in the absence of TGFβ [107], suggesting that
these factors function cooperatively to induce a DA phenotype
during midbrain DA neurogenesis. GDNF has been shown to
potentiate the DA-inductive effects of TGFβ on cultured VM
neural precursors; however, it was not capable of rescuing the
inductive defects resulting from the neutralization of endoge-
nous TGFβs [112]. However, GDNF did rescue the TGFβ
neutralization-dependent loss of differentiated midbrain DA
neurons [112], supporting its role as a factor which maintains
these neurons, and as a facilitator of TGFβ-induced survival-
promoting effects. Another GDNF family ligand, persephin,
has been shown to enhance the inductive abilities of TGFβ
in vitro, with these TGFβ/persephin-induced DA neurons
having increased resistance to MPP+ compared to untreated
cultures of VM DA neurons [112]. In contradiction to these
data proposing a role for TGFβs in the induction of midbrain
DA neurons, mice with TGFβ null mutations have not been
reported to display severe deficits in midbrain DA neurons.
However, mice with null mutations of TGFβ2 or TGFβ3
isoforms die perinatally, while the TGFβ1 null mutant dies
shortly after birth [113-115]. The double knockout of both
TGFβ2 and GDNF did not result in a loss of midbrain DA
neurons at E14.5 [112] or E18.5 [116] (Table 5), indicating
that the cooperative functioning of TGFβ2 and GDNF is not
essential for DA induction in vivo. Furthermore, Roussa et al.
[112] also reported no midbrain DA deficiencies at E14.5 in
TGFβ2+/−/GDNF−/− or TGFβ2−/−/GDNF+/− mice (Table 5). A
likely explanation for such observations is that the TGFβ

isoforms may compensate for the loss of each other. Indeed,
the double knockout of TGFβ2 and TGFβ3 resulted in a
significant reduction of midbrain DA neurons at E14.5
[109]. Roussa et al. [109] then compared mice carrying one
allele of TGFβ2 (TGFβ2+/−/TGFβ3−/−) or TGFβ3 (TGFβ2−/
−/TGFβ3+/−) to demonstrate that the TGFβ2 isoform is more
important for the induction of midbrain DA neuronal popula-
tion than TGFβ3 (Table 5). These data suggest that TGFβs
function to induce a DA phenotype during midbrain DA
neurogenesis and that these isoforms can functionally com-
pensate for one another.

Due to the death of TGFβ null mice at, or shortly after, birth,
it is difficult to determine the functions of TGFβs during the
postnatal development of the nigrostriatal pathway. Despite
this, recent studies have found that TGFβ2 heterozygous mice
have a reduction in midbrain DA neurons and striatal dopamine
at 6 weeks of age [117], which is similar to the nigrostriatal
deficits that progress with age demonstrated in GDNF hetero-
zygous mice [82]. Furthermore, the null mutation of Smad3, a
crucial mediator of TGFβ signalling, resulted in a loss of
nigrostriatal neurons between birth and 2–3 months of age in
mice [118] (Table 5). These studies imply that TGFβs function
to protect and maintain midbrain DA neurons in adulthood, as
suggested above for GDNF. However, in contrast to the single
haploinsufficiencies just described, a more recent study showed
that the combined haploinsufficiency of TGFβ2 and GDNF
has no impact on the survival of midbrain DA neurons during
normal aging [119] (Table 5). These contradicting findings led
Heermann et al. [119] to suggest that balanced TGFβ2 and
GDNF levels are important for the maintenance of midbrain
DA neurons in adulthood. Interestingly, a study which re-
examined the TGFβ3 null mutant showed that, despite no
deficiencies at E12.5, these mutants had a significant reduction
of midbrain DA neurons at postnatal day (P)0 [120] (Table 5), a
time point when neurotrophic support is vital for the survival of
midbrain DA neurons due to naturally occurring cell death [62].
This study again suggests that TGFβs may function redundant-
ly in DA induction, but indicates that TGFβ3 is required for the
maintenance and survival of midbrain DA neurons. Zhang et al.
[120] also showed that the transcriptional cofactor
homeodomain interacting protein kinase 2 (HIPK2) is required
for the TGFβ-mediated survival of mouse DA neurons. This
study demonstrates the importance of analysing mutants at
several developmental time points, especially at those times
which are crucial to the developmental program. Perhaps the
TGFβ2 and GDNF single and/or double mutants should be re-
examined in a similar fashion.

The BMP Family in Midbrain DA Neuronal Development

The BMPs constitute the largest subgroup of the TGFβ su-
perfamily and consist of at least 20 phylogenetically

Table 2 Effects of TGFβs on midbrain DA neurons

Effect Reference(s)

In vitro

Promote survival of embryonic DA neurons [27, 106]

Protect DA neurons from MPP+ [27, 106]

Regulate neurite growth of embryonic DA neurons [108]

Increase numbers of DA neurons through the induction
of a DA phenotypic

[107, 109,
110]

In vivo

Induce differentiation of DA neurons [107]
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conserved growth factors, including GDFs such as
GDF5 [121]. BMPs have been shown to function in
many crucial aspects of nervous system development,
including neural induction, neural crest development,
dorsal spinal cord patterning and the fate specification
of a number of neural populations [122]. In this review,
the current evidence supporting a role for BMPs in the
development of midbrain DA neurons will be discussed
(Tables 3 and 4).

GDFs

GDF5 is the family member whose roles have been best
characterised in terms of DA development (Table 3). Like
GDNF, this factor is under investigation for its therapeutic
potential in PD [9]. GDF5 is expressed in the developing and
adult rat VM and striatum [43, 123-125]. Its midbrain expres-
sion profile proposes roles for GDF5 in nigrostriatal develop-
ment. GDF5 protein expression begins in the rat VM on E12
(when early progenitors of DA neurons are present) and
reaches a peak on E14 (the day that DA neurons undergo
terminal differentiation), before decreasing with age to reach
its lowest levels around the perinatal period, and then increas-
ing in the postnatal period to reach maximal expression levels
[124]. These data suggest that GDF5 is involved in the differ-
entiation of VM precursors into DA neurons and the mainte-
nance of these neurons in adulthood. Krieglstein et al. [123] were the first to examine the effects of GDF5 on DA neurons

and found that GDF5 increased the number of DA neurons in
cultures of E14 rat VM. Other studies agreed with these
findings, showing similar neurotrophic effects of GDF5 on
VM cultures [126-129], and showed that GDF5 did not induce
an increase in the total number of neurons in E14 rat VM
cultures [126], indicating a selective effect on DA neurons. It
remains unclear whether GDF5 elicits its increases in mid-
brain DA neurons through the induction of a DA phenotype or
by promoting their survival. The latter appears to be more
likely as GDF5 has also been shown to protect cultured VM
DA neurons from MPP+[123], 6-OHDA [129] and free rad-
ical donors [130]. The numbers of astrocytes in E14 VM
cultures dramatically increase following GDF5 treatment
[123, 126, 127], suggesting that GDF5 may have an indirect
neurotrophic action, possibly by stimulating the production of
glial-derived growth factor(s) production, such as GDNF, that
may function in the neurotrophic response [12]. Conversely,
the neurotrophic effects of GDF5 on midbrain DA neurons
have been shown to be unaltered in glial-depleted cultures
[127]. Furthermore,Wood et al. [127] also showed an additive
neurotrophic effect of GDF5 and GDNF on cultured embry-
onic DA neurons, indicating that GDF5 acts independently
from GDNF, and that these factors may act on separate sub-
populations of DA neurons. The GDF5-induced increase in
midbrain DA neurons in vitro has been suggested to be
mediated by BMPRIb, as application of GDF5 at the time of

Table 4 Effects BMP family on midbrain DA neurons

Effect Reference(s)

BMP2

In vitro

Increases numbers of embryonic DA neurons [149]

Promotes survival of embryonic DA neurons [146]

Regulates neurite growth of embryonic DA neurons [141, 149]

In vivo

Promotes survival of embryonic DA neurons in VM
transplants to the adult striatum

[150]

Increases neurite growth from DA neurons in VM
transplants to the adult striatum

[150]

BMP7

In vitro

Increases numbers of embryonic DA neurons [145]

Promotes survival of embryonic DA neurons [146]

Induces DA neuronal differentiation from embryonic
rat VM neural precursors

[151]

In vivo

Promotes survival of the adult nigrostriatal pathway
against DA toxins

[152, 153]

BMP4, BMP5, BMP6 and BMP12

Increase numbers of embryonic DA neurons in vitro [145, 146]

Table 3 Effects of GDF family on midbrain DA neurons

Effect Reference(s)

GDF5

In vitro

Increases numbers of embryonic DA neurons [123, 126-129]

Promotes survival of embryonic DA neurons [123, 126-129]

Protects DA neurons from MPP+, 6-OHDA, and
free radical donors

[123, 129, 130]

Induces TH expression in VM precursors In preparation

Regulates neurite growth of embryonic DA neurons [126, 128, 141]

In vivo

Promotes survival of adult DA neurons in animal
models of PD

[129, 135-139]

Promotes survival of embryonic DA neurons in VM
transplants to adult striatum

[38, 129, 138]

Induces re-innervation of the lesioned striatum by
midbrain DA afferents

[129, 137, 138]

Increases neurite growth from DA neurons in VM
transplants to adult striatum

[38, 129, 138]

GDF15

Promotes survival of control and iron-intoxicated
embryonic DA neurons in vitro

[144]

Promotes survival of adult DA neurons in vivo
following 6-OHDA lesion

[144]
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plating, when BMPRIb is expressed, increases DA neuronal
number, whereas application after 6 days in vitro, when this
receptor is no longer expressed, has no effect [131]. In support
of this data, the neurotrophic effects of GDF5 were recently
demonstrated to be mediated by the BMPRIb in a model of
human DA neurons, SH-SH5Y cells [132]. These findings are
not surprising considering that BMPRIb is the preferential
type I receptor of GDF5 [133]. Another study demonstrated
that GDF5 exerts greater effects on cultures prepared from the
lateral VM [128], which corresponds to the A9 nigrostriatal
subgroup of DA neurons [134], suggesting a selective effect
of GDF5 on nigral DA neurons. In this study, it was proposed
that the increase in midbrain DA neurons was due to the
induction of a DA phenotype in progenitor cells, rather than
promotion of cell survival, and it was also shown that
BMPRIb expression was higher in the lateral VM compared
to the medial region [128]. In support of the suggested DA-
inductive role of GDF5, experiments carried out by the au-
thors on E12 rat VM cultures treated with GDF5 suggest that
the increase in DA neurons observed was due to the
induction of TH expression in uncommitted neural pro-
genitor cells (Hegarty et al., University College Cork,
Ireland). Similarly, the present authors have also dem-
onstrated that GDF5 induces TH expression in neurons
derived from E14 rat VM neural precursors (Hegarty
et al., University College Cork, Ireland). Based on these
data, and on the midbrain expression profile of GDF5,
it is likely that GDF5 functions in the transition of VM
DA neural precursors into TH-expressing DA neurons.

The effects of GDF5 to increase the numbers of midbrain
DA neurons in vitro must also be considered in terms of
survival-promoting effects, especially with respect to their
neuroprotective effects from DA toxins in vitro. Indeed,
in vivo studies have shown that GDF5 protects the adult rat
nigrostriatal pathway against DA neuronal death induced by
6-OHDA [135-139]. A more developmentally relevant
survival-promoting effect was demonstrated when GDF5
was shown to enhance the survival of embryonic rat VM
transplants in vivo, to the same extent as GDNF [38]. Further-
more, GDF5-overexpressing E13 VM transplants significant-
ly restored function in 6-OHDA-lesioned adult rats, with the
exogenous GDF5 being suggested to increase the survival of
the remaining host DA neurons, as well as the transplanted
DA neurons [129]. Similarly, a continuous supply of GDF5,
through the striatal transplantation of GDF5-overexpressing
CHO cells in vivo, protects adult nigrostriatal DA neurons and
increases the survival of transplanted embryonic VM DA
neurons in the 6-OHDA-lesioned rat model of PD [138].
These data propose a role for GDF5 as a factor which pro-
motes the survival of embryonic DA neurons during their
generation, which would correlate with the peak of GDF5
expression at E14 [124]. Furthermore, the second peak of
expression in the adult suggests a role for GDF5 in the

maintenance of VM DA neurons during adulthood, which is
supported by the survival-promoting effects of GDF5 on adult
VM DA neurons in vivo discussed above. A similar study for
GDF5 to the one carried out by Burke et al. [39] on cultured
postnatal DA neurons would address this. Moreover, studies
on GDF5 null mice, such as the GDF5bp mouse [125], to
examine midbrain DA neuronal number and striatal
innervation at various stages of embryonic and postnatal
development, will be critical to determine the in vivo
role(s) of GDF5 in nigrostriatal system development.
One study showed that adult mice with null mutations
in the BMPRII, the type II receptor of GDF5, displayed
significantly decreased numbers of nigrostriatal DA neu-
rons [140] (Table 5). However, caution must be
employed when inferring the relevance of this study to
the roles of GDF5 specifically, as several members of
the BMP family act via this type II receptor.

GDF5 has also been consistently shown to promote the
neurite growth of E14 rat midbrain DA neurons in vitro [126,
128, 141]. Crucially, this time point reflects the peak period of
DA axogenesis [75, 76], as well as of GDF5 VM expression
[124], suggesting that GDF5 functions in this process. Fur-
thermore, an in vivo study has suggested that exogenous
GDF5 increases the neurite outgrowth of host nigrostriatal
DA innervations, as well as transplanted embryonic VM DA
neurons, in 6-OHDA-lesioned adult rats [38, 129, 138]. The
neurite growth-promoting effects of GDF5 on midbrain DA
neurons have recently been shown to bemediated byBMPRIb
activation of Smad 1/5/8 signalling [132, 141], which most
likely requires BMPRII. Indeed, in adult BMPRII null
mice, there is a deficit in nigrostriatal innervation [140]
(Table 5). It has also been demonstrated that the neurite
growth-promoting effects of GDF5 were not mediated by
GDNF [141], through the blockade of its heparan-
dependent signalling [32, 142, 143]. Taken together with
the survival-promoting effects of GDF5 discussed above, as
well as its postnatal striatal expression [43, 124], these data
propose a role for GDF5 as a target-derived neurotrophic
factor which regulates the survival and growth of DA
neurons innervating the striatum. The postnatal/in vivo
experiments outlined above would also address this
potential role. Another GDF, GDF15, has been shown
to promote the survival of control and iron-intoxicated
E14 midbrain DA neurons in vitro [144], suggesting
that GDF15 may contribute to DA neuronal survival
during development. Strelau et al. also demonstrated
that GDF5 promotes the survival of adult VM DA
neurons in vivo using the 6-OHDA-lesioned adult rat
model [144]. The role of other GDF family members in
midbrain DA development has yet to be demonstrated,
although one study has reported that GDF6 does not
have neurotrophic effects on cultured VM DA neurons
[145].
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BMPs

The most compelling evidence for a role(s) for BMPs in the
development of midbrain DA neurons (Table 4) can be seen in
the phenotype of the BMPRII null mouse, which has a reduc-
tion of nigrostriatal neurons and striatal DA innervation at
adulthood [140] (Table 5). However, whether this loss of
midbrain DA neurons and striatal innervation results from a
failure in DA neuronal development, or from a later degener-
ative process, remains to be determined. A detailed analysis of
the numbers of DA neurons present in the midbrain, as well as
of striatal innervation, of BMPRII null mice at multiple stages
during embryonic and post-natal development is required to

address this question. Furthermore, mice with null mutations
(or mutations which permit postnatal investigation) in specific
BMP family members should undergo a similar analysis to
determine which factors are directly involved.

BMPs have been shown to be expressed in the nigrostriatal
system of the developing and adult brain [146-148]. The first
report of a role for BMPs in midbrain DA neuronal develop-
ment was provided by the Krieglstein research group, who
investigated the neurotrophic effects of several BMPs on
cultured E14 rat VM DA neurons [146]. Jordan et al. [146]
showed that BMP2, BMP4, BMP6, BMP7 and BMP12 pro-
mote the survival of cultured DA neurons, with BMP6 and
BMP12 showing similar efficacy to GDNF. In a similar study,
BMP5, BMP6 and BMP7, but not BMP3, significantly in-
creased the numbers of DA neurons in embryonic VM cul-
tures [145]. Conversely, Brederlau et al. [145] showed no
effect for GDF5 on midbrain DA neurons. This was likely
due to the fact that in this study treatments were carried out at
6DIV, at the time when BMPRIb has been shown to be
downregulated in culture [131]. BMP2 has also been demon-
strated to increase the numbers of midbrain DA neurons and
promote their neurite growth, in vitro [149]. Similarly, BMP2
was recently shown to promote the neurite growth of cultured
midbrain DA neurons via a BMPRIb-Smad-mediated mecha-
nism [141]. These data suggest a role for BMP2 in the gener-
ation and growth of embryonic midbrain DA neurons. In
support of this suggestion, BMP2 has also been shown to
promote the survival and neurite growth of embryonic DA
neurons in rat VM transplants grafted into the 6-OHDA-
lesioned striatum [150]. Interestingly, the neurotrophic effects
of BMP2 on midbrain DA neurons were initially suggested to
be mediated by astrocytes [146]; however, Reiriz et al. [149]
demonstrated BMP2-induced increases in DA neurons in
glial-depleted VM cultures. Furthermore, BMP2 was shown
to have neurotrophic effects in cultures of SH-SH5Y cells, a
cell line model of human DA neurons, which do not contain
glial cells [132]. Again, it is unclear whether BMPs increase
DA neuron numbers in culture through induction of neural
precursors and/or promoting the survival of existing neurons;
however, Reiriz et al. did report that BMP2 did not increase
the proliferation of DA neurons [149]. One BMP family
member, BMP7, has been shown to induce DA neuronal
differentiation from embryonic rat VM neural precursors
[151]. This BMP was also identified in the Jordan et al.
[146] and Brederlau et al. [145] studies as a DA neurotrophic
factor. Indeed, BMP7 has been shown to promote the survival
of the adult nigrostriatal pathway in vivo against DA toxins
[152, 153] (Table 4), suggesting that BMP7 may maintain this
pathway in adulthood and in response to insult. In support of
this suggestion, a recent study comparing the expression
levels of BMPs inmultiple brain regions at various time points
in adulthood reported uniquely high levels of BMP7 expres-
sion in the ventral midbrain, when compared to other BMPs

Table 5 Genetic mutations of TGFβ superfamily members and their
effects on the development of midbrain DA neurons

Mutation(s) Effect(s) on DA development Reference(s)

GDNF−/− No severe defects in DA neurons during
embryonic development

[72-74]

GDNF−/− Null VM transplants to adult striatum have
reduced DA neuron numbers and fiber
outgrowth

[41]

GDNF+/− Accelerated decline of DA neurons during
aging

[82]

Neurturin−/− No severe defects in DA neurons [98]

Persephin−/− No severe defects in DA neurons [99]

Artemin−/− No severe defects in DA neurons [100]

GDNF−/− :
TGFβ2−/−

No loss of midbrain DA neurons at E14.5
or E18.5

[112, 116]

GDNF+/− :
TGFβ2−/−

No loss of midbrain DA neurons at E14.5 [112]

GDNF−/− :
TGFβ2+/−

No loss of midbrain DA neurons at E14.5 [112]

TGFβ1−/− No severe defects in DA neurons during
embryonic development

[115]

TGFβ2−/− No severe defects in DA neurons during
embryonic development

[113]

TGFβ3−/− No severe defects in DA neurons during
embryonic development

[114]

TGFβ2−/− :
TGFβ3−/−

Significant reduction of DA neurons at
E14.5

[109]

TGFβ2+/− :
TGFβ3−/−

Significant reduction of DA neurons at
E14.5 (less severe than double
knockout)

[109]

TGFβ2−/− :
TGFβ3+/−

Significant reduction of DA neurons at
E14.5 (less severe than TGFβ2+/− :
TGFβ3−/− knockout)

[109]

TGFβ2+/− Reduction in DA neurons and striatal
dopamine at 6 weeks of age

[117]

Smad3−/− Loss of nigrostriatal neurons between birth
and 2–3 months of age

[118]

GDNF+/− :
TGFβ2+/−

No deficits in DA neurons during normal
aging

[119]

TGFβ3−/− Significant reduction of DA neurons at P0 [120]

BMPRII−/− Reduction of DA neurons and striatal
innervation in adulthood

[140]

BMP7+/− Increased sensitivity of adult DA neurons
to methamphetamine toxicity

[153]
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and other brain regions [148]. Taken together, these prelimi-
nary BMP studies suggest roles for BMPs in the induction,
neuronal differentiation and survival of midbrain DA neurons.
Further studies, such as those described for BMP(R) mutants
above, should be carried out to investigate the in vivo roles of
BMPs in DA neuronal development.

Potential Mechanism of BMP Signalling in Midbrain DA
Neuronal Development

Although a direct role for BMP signalling in the development
of VM DA neurons has yet to be conclusively shown, there is
some evidence for a role for BMPs in the induction of a DA
fate in this region. The first sign of the induction of a DA fate
in the VM is the expression of Lmx1a and Msx1 at around E8
in the mouse; these factors act as key determinants of midbrain
DA neurons [62, 154, 155]. Both of these genes have been
shown to be induced by BMP signalling during nervous
system development [156-159]. Furthermore, fibroblast
growth factor (FGF), Shh and WNT signalling have all been
shown to play critical roles in the development of DA neurons
in the VM [155, 160, 161]. An interaction between BMP-
Smad signalling and FGF, Shh and WNT signalling has been
demonstrated in the induction, specification and development
of a variety of neural populations, such as spinal cord neuronal
populations and neural crest cells, the relevant aspects of
which have been mentioned above [162-166]. However, a
number of recent studies have provided substantial evidence
that VM DA neurons arise from floor plate DA neural pro-
genitors [1, 62, 167, 168]. This suggests that BMP signalling
is not involved in DA development, since the Shh-expressing
floor plate is the opposing signalling centre to the BMP-
expressing roof plate along the dorsoventral axis of the neural
tube [169, 170]. It may be the case that BMP signalling acts
dorsally and that Shh signalling acts ventrally along the length
of the neural tube to induce various neuronal phenotypes, with
these signals intersecting intermediately. However, the VM
floor plate is different to its caudal counterparts. The floor
plate was thought to consist of specialised non-neurogenic
glial type cells that ventralize the neural tube, mainly by
secreting Shh [171-173]. This currently remains true for the
neural tube caudal to the midbrain, with the hindbrain floor
plate being shown to be non-neurogenic [161]. As aforemen-
tioned, VM floor plate cells are now known to be neurogenic
and to specifically give rise to DA neurons [1, 62, 167, 168].
The suggestion that BMP signalling may be involved in this
process arises from the finding that WNT antagonism of Shh
signalling facilitates VM floor plate neurogenesis and that Shh
inhibits this neurogenesis [161]. WNTs are expressed in the
midbrain floor plate and are vital for VM DA neurogenesis
[62, 174-177]. BMP-Smad 1/5/8 signalling positively regu-
lates WNT expression in the spinal cord [178, 179] and may

continue this role in the VM floor plate. In support of this,
BMPs, GDF5 and GDF15 have all been shown to be
expressed in the mesencephalic floor plate during DA
neurogenesis [124, 144, 146, 147]. During development,
Lmx1a expression caudal to the midbrain is restricted to the
roof plate and the cerebellum [180-182]. BMPs induce the
expression of Lmx1a and other co-factors that regulate the
induction of the roof plate in the dorsal neural tube [158] and
determine the fate of cerebellar granule neurons [183, 184].
These findings again demonstrate that Lmx1a is a key medi-
ator of BMP signalling. Rostral to the pons in the mid-
gestation mouse embryo, Lmx1a expression becomes
ventralized, with its expression found in the VM and the basal
plates of the diencephalon [180]. This ventral midbrain ex-
pression of Lmx1a is accompanied, and possibly preceded, by
BMP expression, as mentioned above. Furthermore, BMPs
have been reported to act in a dual role with Shh to induce
ventral cell types in the diencephalon [185]. Indeed, a regu-
lated level of BMP signalling is involved in the neurogenesis
of Shh-responsive ventral cell types in the forebrain [186].

It is not unlikely to suggest that this ventralization of dorsal
signalling/expression is due to the formation of the pontine
flexure which causes the ventral displacement of the BMP-
expressing/signalling alar plates in the metencephalic region.
In support of this theory, the pontine flexure forms before DA
neurogenesis in the VM [187]. FGF signalling from the isth-
mus organizer may fit into this proposed role of BMP signal-
ling in VMDA neurogenesis, by acting to repress BMP-Smad
signalling to refine its effects. FGF plays such a role during
neural induction [188-190], and intermediate levels of BMPs
are required for the proper development of specific ‘interme-
diate’ (i.e. not directly in contact with the roof plate) neuronal
phenotypes, as discussed in a recent review [122]. Further-
more, an intermediate level of BMP-Smad signalling has been
shown to be necessary for the induction of Msx1 [157], one of
the two key determinants of midbrain DA neurons, along with
Lmx1a [154]; FGF has also been shown to induce Msx1
expression in the neural crest [163]. Furthermore,
engrailed1/engrailed2 expressions are vital for VM DA
neurogenesis [62], and BMP signalling has been shown to
induce the expression of these genes in VM cultures [183]. In
support of a proposed role of Smad 1/5/8 signalling in VM
DA neuronal development, BMP signalling increases the
numbers of DA neurons in embryonic rat VM cultures [123,
126, 145, 146, 149, 151].

Conclusion

The development of midbrain DA neurons is a complex
process involving the interaction of various instructive signal-
ling factors, a number of which remain to be identified. The
identification and characterisation of new candidate factors
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which contribute to the development of DA neurons is thus of
paramount importance. This paper reviews the available data
from studies which assessed roles for TGFβ superfamily
members in midbrain DA development. It is clear that many
of these members influence various key steps of this develop-
mental process, including the induction, differentiation, target
innervation and survival of DA neurons. GDNF, in particular,
has been shown to be a multi-step regulator of nigrostriatal
system development. However, the elucidation of these roles
for GDNF reflects the focus upon this particular family mem-
ber, based on its clinical potential as a neurotrophic factor for
PD treatment. TGFβ/BMP family members, such as GDF5,
have been shown to have similar potential to that of GDNF in
the development of midbrain DA neurons, and the roles of
these members in each step of this embryonic and postnatal
developmental process should be investigated. Additionally,
TGFβ superfamily members yet to be assessed in terms of DA
development should also be examined. Despite the extensive
research on GDNF, in particular, much of these studies fo-
cused on its survival-promoting abilities. Following the pre-
liminary evidence of the roles of this factor in DA induction,
axon extension, target innervation and maintenance, future
studies should be employed to further establish the regulation
of such processes by GDNF. A similar approach should be
adopted for each TGFβ superfamily member demonstrated to
regulate DA development, such as the TGFβs, GDFs and
BMPs identified in this review.

Another important consideration when discussing the roles
of TGFβ superfamily members in midbrain DA development
is that the majority of these findings are based on in vitro data.
Future studies should thus focus on demonstrating these
roles in vivo, for example through the analysis of mice
with deficiencies in specific TGFβ superfamily mem-
ber(s). As outlined, knockout studies to date have not
been as informative as was anticipated from the prelim-
inary in vitro data. However, the perinatal lethality of a
number of the null mutants, the restricted developmental
time points examined and the functional redundancy
between closely related family members have hindered
these studies. Thus, future knockdown studies should
examine mutants at developmental time points which
correspond to each step of embryonic and postnatal
nigrostriatal system development, as well as addressing
potential functional redundancies.

The identification of TGFβ superfamily members as po-
tential regulators of midbrain DA development is an important
advancement in the current understanding of this developmen-
tal process. Such knowledge is vital if the induction of stem
cells toward a DA phenotype for cell replacement therapy in
PD is to become a realistic therapeutic strategy. It is also of
great importance for the identification of potential develop-
mental abnormalities that may contribute to the pathogenesis
of PD.
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Ventral  midbrain  neural  stem  cells  have  delayed  neurogenic  potential
in  vitro
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h  i  g  h  l  i  g  h  t  s

• VM NSCs  from  older  embryos  and  later  passages  are  more  gliogenic  (after  7DD).
• E14  VM NSC  cultures  have  significant  increases  in  neurons  at 14DD  and 21DD.
• E14  VM NSC  cultures  require  3 weeks  to complete  their  differentiation.
• Neurons  at  7DD  in  E14  VM NSC  cultures  are  not  NSC-derived  (BrdU-negative).
• GFAP-positive  cells  at  7DD  may  be  both  neurogenic  and  gliogenic.
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a  b  s  t  r  a  c  t

Neural  stem  cells  (NSCs)  have  been  the  focus  of an  intensive  effort  to  direct  their differentiation  in vitro
towards desired  neuronal  phenotypes  for cell  replacement  therapies.  It is  thought  that  NSCs  derived  from
older  embryos  have  limited  neurogenic  capacity  and  are  restricted  towards  an astroglial  fate.  This idea
is  largely  based  on  studies  that  typically  analysed  NSC-derived  progeny  following  one  week  of  in vitro
differentiation.  In  this  report,  the  neurogenic  capacity  of  older  ventral  midbrain  (VM)  NSCs  was  assessed.
When  the  older  NSCs  were  differentiated  for  three  weeks,  there  were  significant  increases  in the  numbers
of  newly  born  neurons  at  14  and  21  days,  as assessed  by  5-bromo-2′-deoxyuridine  (BrdU)  incorporation.
Therefore  this  study  demonstrates  that  older  NSCs  retain  significantly  more  neurogenic  potential  than
was previously  thought.  These  data  have  implications  for NSC  preparatory  protocols  and  the  choice  of
donor  age  for  cell  transplantation  studies,  and  contributes  to the  understanding  of  NSC  behaviour  in vitro.

© 2013 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

In recent years, NSCs and other stem cell types have been
the focus of much research aimed at directing their differentia-
tion in vitro, firstly into neurons and secondly into a committed
VM dopaminergic (DA) phenotype, for use in transplantation
approaches in Parkinson’s disease [3,6,20]. The most relevant
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DA, dopaminergic; DD, days of differentiation; DIV, days in vitro; E, embryonic day;
EGF, epidermal growth factor; FGF2, fibroblast growth factor 2; GFAP, glial fibrillary
acidic protein; MBP, myelin basic protein; NP(s), neural progenitor(s)/precursor(s);
NSC(s), neuroepithelial/neural stem cell(s); PBS (-T), phosphate buffered saline
(-Triton X); VM, ventral midbrain/mesencephalon; VZ, ventricular zone.
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source of NSCs for the generation of VM DA neurons are those iso-
lated from the VM during the period of DA neurogenesis, which
occurs between embryonic day (E) 11 and E14 in the developing rat
VM in vivo [1,9,16]. Understanding the in vitro development of these
NSCs is crucial for the choice of donor ages from which to culture
VM NSCs. This study thus focused on E12 and E14 rat VM NSCs.

NSCs can be isolated from multiple regions of the embry-
onic brain, and their numbers expanded in vitro as free-floating
aggregates termed “neurospheres” when grown in the presence
of the mitogens, epidermal growth factor (EGF) and fibroblast
growth factor 2 (FGF2) [7,14,22,23]. The proliferating NSCs then
spontaneously differentiate into neurons and glia upon mitogen
withdrawal [7,22,23]. It has been suggested that the age of the
donor embryo from which NSCs are initially isolated is a criti-
cal determinant of subsequent neuronal differentiation in vitro, as
NSCs derived from younger donors gave rise to more neurons than
those derived from older donors [9,19]. These studies have sug-
gested that NSCs from older donor embryos are more restricted
towards an astroglial fate.
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Neurosphere studies typically determine their NSC-derived
progeny by assessing the numbers of neurons and glia generated
following differentiation for one week in vitro [12,19,21,24,26]. In
this report, by assessing the neuronal progeny for longer differen-
tiation periods, we show that older NSCs retain significantly more
neurogenic potential than previously thought, and suggest that
care should be taken when interpreting in vitro studies that use
glial fibrillary acidic protein (GFAP) as a marker of “differentiated”
astrocytes.

2. Materials and methods

2.1. Preparation of embryonic rat VM NSCs cultures

Cultures of E12/E14 Sprague-Dawley rat VM NPCs were pre-
pared as previously described (O’Keeffe and Sullivan, 2005). 2 × 106

cells were grown in T-25 culture flasks in Dulbecco’s Modified Eagle
Medium Nutrient Mixture F-12, 100 nM l-Glutamine, 6 mg/ml  d-
Glucose, 100 U/ml Penicillin, 10 �g/ml Streptomycin (Sigma), 2%
B27 (Invitrogen), 20 ng/ml EGF (Sigma) and 20 ng/ml of FGF2 (Mil-
lipore) for 7 days in vitro (DIV). Neurospheres were enzymatically
dissociated [19] and reseeded in flask for subsequent expansion.
Also 5 × 104 cells per well in poly-d-lysine-coated 24-well tissue
culture plate were allowed to differentiate for 7, 14 or 21 DIV in the
medium above minus EGF/FGF, with the addition of 1% FCS. 0.2 �M
of 5-bromo-2′-deoxyuridine (BrdU) (Sigma B5002) was  added dur-
ing expansion from 5 DIV, and supplemented every 3 DIV from the
time of plating.

2.2. Immunocytochemistry

Cultures were fixed in ice-cold methanol for 10 min, washed in
10 mM phosphate buffered saline (PBS) containing 0.02% Triton X-
100 (PBS-T), and incubated in blocking solution (5% bovine serum
albumin (Sigma), 0.2% Triton X-100 in 10 mM PBS) for 1 h at room
temperature. Cultures were incubated in the following antibodies:
mouse anti-�III-tubulin (1:300; Medical Supply), rabbit anti-�III-
tubulin (1:300; Millipore), mouse anti-nestin (1:400; Millipore),
mouse anti-GFAP (1:300; Sigma), and mouse anti-BrdU (1:4; Mil-
lipore) diluted in 1% bovine serum albumin in 10 mM PBS at 4 ◦C
overnight. Following washes in PBS-T, cells were incubated in the
appropriate Alexa Fluor 488 and/or 594-conjugated secondary anti-
bodies (1:500; Invitrogen) diluted in 1% bovine serum albumin in
PBS, at room temperature for 2 h. Cultures were counterstained
with DAPI or Sytox (1:1000; Invitrogen) and imaged using Olym-
pus IX70 inverted microscope. The total number of cells (assessed
by DAPI staining) and the numbers of each cell type were counted
in each individual image [19].

2.3. Statistical analysis

Unpaired Student’s t-test or one-way ANOVA with a post hoc
Tukey’s test were performed as appropriate to determine statisti-
cal significance. Results were expressed as means with SEM and
considered to be significant when p < 0.05.

3. Results

3.1. Effect of gestational age and passage number on VM-derived
NSCs in vitro

Firstly, E12 and E14 rat VM NSCs which had been expanded for
7 DIV (passage 1), 14 DIV (passage 2) or 21 DIV (passage 3) as free-
floating neurospheres were allowed to differentiate after mitogen
withdrawal for 7 days of differentiation (DD) (Fig. 1a), before being

Fig. 1. Characterisation of neurogenesis and gliogenesis in cultures of VM NSCs of
various gestational ages and passage numbers. (a) Schematic representation of the
passaging protocol for E12 and E14 VM NSC neurosphere cultures. Graphical rep-
resentation of the mean numbers (expressed as a percentage of total cells) of (b)
�III-tubulin-positive cells and (d) GFAP-positive cells following 7 DD, in neuro-
sphere cultures of E12 or E14 VM NSCs which were passaged once, twice or three
times before differentation, as indicated (***p < 0.001 vs passage 1; ###p < 0.001 vs
E12, ANOVA with post hoc Tukey’s test). Data are expressed as mean ± SEM, n = 60
fields. Representative photomicrographs of cultures of passage 1 VM NSCs isolated
at  E12 or E14, differentiated for 7 DIV and immunocytochemically stained for and
(c)  �III-tubulin or (e) GFAP, and counterstained with DAPI. Scale bar = 100 �m.

immunocytochemically stained for �III-tubulin (neurons) or GFAP
(astrocytes) (Fig. 1b–e). Later passages were not characterised due
to a marked increase in cell death and lack of neurosphere for-
mation following 28 DIV (data not shown). Passage 1 VM NSCs,
isolated at E12 or E14, generated a significantly higher percentage
of �III tubulin-positive neurons than at passage 2 or 3 (Fig. 1b).
Passage 2 or 3 VM NSCs, isolated at E12 or E14, generate a signifi-
cantly higher percentage of GFAP-positive astrocytes in comparison
to passage 1 VM NSCs (Fig. 1d). Therefore, VM NSCs of early pas-
sages are more neurogenic, and less gliogenic, than those of older
passages, irrespective of the age of the donor embryo.

In all passages examined, the 7DD progeny of VM NSCs iso-
lated at E12 generated a significantly higher percentage of �III
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Fig. 2. Characterisation of cell phenotypes in E14 rat VM NSC cultures after 7, 14,
and 21 DD. (a) Graphical representation of the mean numbers (expressed as a per-
centage of total cells) of �III-tubulin-, nestin-, GFAP-, Sox2- and vimentin-positive
cells following 7 DD generated from E14 VM NSCs after 7 DIV expansion. E14 rat
VM  NSCs cultures after 7 DIV expansion and 7 DD, immunocytochemically stained

tubulin-positive neurons (Fig. 1b and c) and lower percentage of
GFAP-positive astrocytes (Fig. 1d and e) at 7DD in comparison
to E14 VM NSCs. These data suggest that VM NSCs isolated from
younger embryos are more neurogenic and less gliogenic, than
those derived from older embryos, irrespective of passage number.
These data suggest that gestational age can influence the proportion
neurons and glia derived from VM NSCs.

3.2. Assessment of E14 VM NSC differentiation for prolonged
periods in vitro

Despite the fact neurogenesis increases between E12 and E14
in the developing rat VM in vivo [1,9,16], E14 VM NSCs have a
diminished neurogenic capacity when compared to their E12 coun-
terparts in vitro (Fig. 1b). These data suggest that E14 VM NSCs may
be more glial restricted than E12 NSCs (Fig. 1d). However, when
nestin expression was examined in cultures of E14VM NSCs at 7DD,
80% of the total cells were nestin-positive (Fig. 2a), suggesting the
potential for further differentiation. Many of the nestin-positive
NSCs were GFAP-positive at 7 DD (Fig. 2a and b), and also expressed
other NSC markers, including Sox2 and vimentin (Fig. 2c and d).

To further examine this premise, these cells were differentiated
for a further two  weeks, and the numbers of neurons and astro-
cytes were assessed 14 and 21 days later. Interestingly, the numbers
of nestin-positive and GFAP-positive cells decreased significantly
from 7DD to 14DD to (Fig. 2e), where there was a significance
increase in the percentage of �III-tubulin-positive cells (Fig. 2g)
and MBP-positive cells (data not shown).

At 7DD, the GFAP-positive cells have a morphology typical of
protoplasmic astrocytes, hereafter referred to as a protoplasmic
morphology (Fig. 2b and f), which was  similar to that of the nestin-
, Sox2- and vimentin-positive NSCs (Fig. 2b–d). However, at 14
and 21DD, the GFAP-positive cells have a more stellate morphol-
ogy (Fig. 2f), typical of differentiated astrocytes. These stellate
GFAP-positive cells did not express nestin, as demonstrated by the
absence of nestin expression at 21DD when these stellate astrocytes
occupied the largest proportion of the cell population (Fig. 2e and
f). By 14DD cultured cells had grouped into clusters, which were
absent at 7DD, and therefore are likely to have been generated dur-
ing the second week of differentiation (Fig. 3a). These cell clusters
contained large numbers of newly born neurons at 14DD (Fig. 3a
and b). By 21DD, the cell population consisted of post-mitotic neu-
rons (31%) (Fig. 2f), astrocytes (40%) (Fig. 2d) and oligodendrocytes
(28%) (data not shown), with few nestin-positive cells remaining
(2%) (Fig. 2e). The total population of differentiated neural cells
was thus accounted for at 21 DD. No tyrosine hydroxylase-positive
neurons were observed (data not shown). Additionally, no adverse
effects on neuronal viability were observed during the 21DD as neu-
ronal numbers and neurite length continued to increase throughout
the duration of the experiment, while less than 1% of neurons dis-
played signs of apoptosis at any time point examined (data not
shown).

To determine whether the neurons found in the E14 rat VM NSC
cultures were derived from NSCs or were post-mitotic neurons,
which had been present in the culture since the tissue was har-
vested from the animal, BrdU was applied to the cultures (Fig. 3c).
BrdU is a thymidine analogue that is incorporated into the nucleus
during the S phase of cell division. 0.2 �M of BrdU was used due to

for (b) GFAP (c) Sox2, (d) vimentin or (b–d) nestin. Scale bar = 100 �m. Graphical
representation of the number of (e) nestin-, (e) GFAP-, and (g) �III-tubulin-positive
cells (expressed as a percentage of total cells) in E14 rat VM NSCs cultures after 7 DIV
expansion and 7, 14 or 21 DD, as indicated (**p < 0.01, ***p < 0.001 vs 7 DD, ##p < 0.01,
###p < 0.001 vs 14 DD; ANOVA with post hoc Tuckey’s test). Data are expressed as
mean ± SEM, n = 60 fields. (f) E14 rat VM NSCs cultures after 7 DIV expansion and 7,
14 or 21 DD, immunocytochemically stained for GFAP. Scale bar = 100 �m.
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Fig. 3. E14 VM NSC neurogenesis during second two weeks of differentiation. Repre-
sentative photomicrographs of E14 rat VM NSCs cultures after 7 DIV expansion and
7  DD or 14 DD, immunocytochemically stained for (b, d and e) �III-tubulin and/or
(d)–(e) BrdU, and counterstained with (a) and (b) DAPI. Scale bar = 100 �m (a), 50 �m
(b)  and 25 �m (d)–(e). (c) Schematic representation of the BrdU application protocol
for  E14 VM NSC neurosphere cultures.

its neurotoxicity at higher concentrations [4], however, due to this
low concentration, supplementation of BrdU was required every
3 DIV to ensure its detection (Fig. 3c). BrdU applied to NSC cul-
tures would only be incorporated into nuclei of proliferating cells.
Thus, subsequent detection of BrdU in post-mitotic neurons indi-
cates that these cells differentiated from the proliferating VM NSCs.
The addition of 0.2 �M BrdU to the differentiating E14 VM NSCs
labelled the �III-tubulin-positive neurons, which were grouped in
clusters at 14 DD (Fig. 3d). However, the �III-tubulin-positive neu-
rons found at 7 DD were BrdU negative (Fig. 3d). Collectively, these
data demonstrate that E14 VM NSCs have the capacity to gener-
ate large numbers of newly born neurons when allowed to fully
differentiate in vitro.

4. Discussion

This study describes the differentiation of E14 rat VM NSCs
cultured for various periods in vitro to re-evaluate their neuro-
genic potential. The assessment of the differentiated progeny of
VM NSCs isolated at E12 or E14, and expanded for 7, 14 or 21 DIV,
demonstrated that VM NSCs of older ages and later passages are
more glial-restricted than those of younger age and lower passages,
which were more restricted towards a neuronal fate. These findings
mirror the in vivo developmental precept that primary neurogene-
sis precedes gliogenesis.

The yield of approximately 8% of neurons following the expan-
sion and differentiation (both for 7 DIV) of E14 rat VM NSCs is
consistent with previous studies [19,21]. However, the fact that
∼80% of the total cell population were nestin-positive neural pre-
cursors (NPs) after 7 DD demonstrates that, at this time point, E14
rat VM NSCs have the potential to undergo further differentiation.
The subsequent differentiation of E14 VM NSCs for a further two
weeks confirmed that these cells retained the ability to differenti-
ate into neurons, despite their apparent astroglial restriction, and
that the E14 VM NSCs completed their differentiation by 21 days.
With the majority of previous studies employing one week of differ-
entiation protocols to evaluate the numbers of differentiated NSC
progeny, it is possible that the neurogenic potential of these cells
have been underestimated [12,19,21,24,26].

Following 7DD, most cells in the E14 VM NSC cultures were
GFAP- and nestin-positive, which would suggest that these cells
are committed towards an astrocytic lineage. The propensity of
NSCs within neurospheres to differentiate primarily into glial cells
has been described by many groups [17–19,21,27]. Indeed, it has
been proposed that the environment within the neurosphere pro-
hibits NSCs from following a neuronal lineage, while promoting
the amplification of glial precursors [2]. The findings of this study
following 7DD supports this, and thus it should not be surprising
that there is limited neurogenesis of neurosphere-expanded E14
VM NSCs after one week of differentiation. However, the signif-
icant increase in neurons generated during the second and third
weeks of differentiation may  modify the previous perception of
the glial commitment of neurosphere-expanded NSCs. The three-
fold increase in �III-tubulin-positive cells between 7DD and 21DD
is due to the presence of clusters of large numbers of newly born
neurons. These cell clusters, which are absent at 7 DD and which
develop during the second week of differentiation, must be gen-
erated from the NPs present at 7 DD, which are largely GFAP-
and nestin-positive. It is thus likely that these GFAP-positive NPs
become neurogenic, and generate newly born neurons, during the
second and third weeks of in vitro differentiation in E14 VM NSC
cultures. However, such conclusions cannot be conclusively drawn
without real-time monitoring of marker-labelled E14 VM NSCs as
they differentiate in culture. Nevertheless, in support of this the-
ory, GFAP has previously been shown to label neuronal precursors
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[5,8,25]. Furthermore, cultured rat GFAP-positive NPs have been
shown to be capable of generating both neurons and glia [11]. In
fact, the separate identity of NSCs and astroglial cells is regularly
challenged in the literature, with some authors suggesting that they
are in fact the same cell type [15]. Thus, in agreement with previous
studies, the majority of VM NSCs express GFAP after one week of
differentiation, however a proportion of these GFAP-positive cells
may  be intermediate neuronal precursors.

The GFAP-positive cells present after 7DD expressed nestin,
and had a protoplasmic morphology, similar to that of the
nestin/Sox2/vimentin-positive NSCs, suggesting that these GFAP-
positive cells at 7 DD were NSCs, rather than astrocytes. There was
a reduction in the numbers of these GFAP/nestin doubled labelled
cells during the second two weeks, as evidenced by a reduction
in their numbers after 14 and 21 DD. Specifically, GFAP-positive
cells at 7 DD stopped expressing nestin and adopted a stellate
morphology during the second two weeks of differentiation. There
were no GFAP- and nestin-double labelled cells present at 21DD.
The cessation apparent differentiation of these GFAP-positive cells,
coincided with increases in the numbers of �III-tubulin-positive
cells, accounted for GFAP-positive cells occupying a significantly
lower percentage of the total cell population at 14 DD and 21 DD
than at 7DD. Although GFAP-positive cells occupied the largest pro-
portion of the total cell population at all differentiation time points
examined, the neurogenic capacity of neurosphere-derived NSCs
was significantly greater than previously considered, given the sig-
nificant increase in the numbers of newly born neurons during the
second and third weeks of differentiation. No tyrosine hydroxylase-
positive DA neurons were generated from the VM NSCs in this
study, in agreement with a previous study on E14 rat VM NSC
cultures [19]. The lack of DA neurogenesis from VM NSCs, cells,
which would normally generate DA neurons in vivo, likely reflects
the absence in vitro of important developmental guidance cues for
DA neurogenesis [10]. This is an important issue to consider when
using neurosphere cultures of any isolated NSC population to gen-
erate specific neuronal populations.

The present investigation of the origin of the neurons in E14
rat VM cultures provides insights into the source of neurons found
in NSC differentiation studies. The identification of the cluster-
located neurons as BrdU-positive at 14DD showed that these cells
are derived from the cultured E14 VM NSCs. In contrast, the neurons
at 7DD were not BrdU-labelled, and thus were likely to have been
present as post-mitotic neurons in the donor tissue at the time of
harvesting, and to have subsequently persisted in culture. In sup-
port of this, neurospheres prepared from E13.5 mouse VM,  which
is at a similar developmental stage as E14 rat VM,  have been shown
to contain differentiated neurons before mitogen withdrawal [13].
Collectively these data suggest that the vast majority of neurons
present after one week of differentiation are not progeny of the
E14 VM NSCs, but mature neurons that had been present in the
source tissue. The vast majority of cells expressed GFAP following
7DD. However, as this study has shown, these GFAP-positive NPs
may  have the capacity for both gliogenesis and neurogenesis. These
findings highlight the importance of using the presence of newly
born neurons to assess the true neurogenic potential of VM NSCs,
and show that care must be taken in using GFAP as an “astrocytic”
marker, especially at earlier stages of NSC differentiation.

The study of NSCs is important to develop a detailed, well-
characterised understanding of the development of NSCs into
post-mitotic neurons or glia. We  demonstrate E14 rat VM NSCs
require three weeks to complete differentiation into their progeny,
with neurogenesis proceeding during the second two weeks. This
method of NSC culture results in at least a three-fold increase in the
yield of newly born neurons over conventional methods. This study
suggests that the apparent glial restriction (as evidenced by GFAP
expression) of older NSCs may  be an intermediate developmental

stage during neurogenesis. This has implications for the choice of
age of donor tissue for the use of NSCs for transplantation. Indeed,
tissue-specific NSCs should be isolated during the developmental
time-window which corresponds to the neurogenesis of the neu-
ronal subtype of interest, for example from E11–E14 for rat VM
DA neurogenesis [1,9,16]. Based on the perceived limited neuro-
genic capacity of older E14 VM NSCs, younger VM NSCs have been
suggested as a more appropriate stem cell source [9]. However,
this study has demonstrated that NSCs derived from E14 embryos,
which give larger numbers of NSCs and are less labour intensive for
NSC isolation, have significant neurogenic capacity.
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A B S T R A C T

The transcription factors, Smad1, Smad5 and Smad8, are the pivotal intracellular effectors of the bone

morphogenetic protein (BMP) family of proteins. BMPs and their receptors are expressed in the nervous

system (NS) throughout its development. This review focuses on the actions of Smad 1/5/8 in the

developing NS.

The mechanisms by which these Smad proteins regulate the induction of the neuroectoderm, the

central nervous system (CNS) primordium, and finally the neural crest, which gives rise to the peripheral

nervous system (PNS), are reviewed herein. We describe how, following neural tube closure, the most

dorsal aspect of the tube becomes a signalling centre for BMPs, which directs the pattern of the

development of the dorsal spinal cord (SC), through the action of Smad1, Smad5 and Smad8. The direct

effects of Smad 1/5/8 signalling on the development of neuronal and non-neuronal cells from various

neural progenitor cell populations are then described. Finally, this review discusses the neurodevelop-

mental abnormalities associated with the knockdown of Smad 1/5/8.
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1. Introduction

Smad transcription factors are the pivotal effectors of trans-
forming growth factor b (TGFb) family members, of which the vast
majority are dimeric, structurally conserved proteins, that have
pleiotropic functions in vitro and in vivo (Massague and Wotton,
2000). The bone morphogenetic proteins (BMPs) constitute the
largest subgroup of the TGFb superfamily, and consist of at least 20
growth factors (Kawabata et al., 1998). The structure, signalling,
and functions of BMPs have been extensively reviewed (for reviews
see Bragdon et al., 2011; Miyazono et al., 2010; Sieber et al., 2009:
Xiao et al., 2007). This review describes the role of the BMP-
activated Smad proteins in the development of the nervous system
(NS).

Understanding the functional roles of Smad signalling requires
a brief overview of how these proteins are activated. BMP
signalling occurs through a canonical pathway, involving Smad
activation, and non-canonical pathways which involve the
activation of a variety of intracellular pathways, including
mitogen activated protein kinases pathways. The non-canonical
pathways activated by BMPs have been reviewed thoroughly
elsewhere and will not be discussed further (for reviews see
Derynck and Zhang, 2003; Moustakas and Heldin, 2005). In the
canonical pathway, BMPs bind to two types of cell-surface serine/
threonine kinase receptors (BMPR), and both of these are required
for signal transduction (Shi and Massague, 2003; Yamashita et al.,
1996). There are two known type I BMP receptors (BMPRI): activin
receptor-like kinase (ALK) 3 (also known as BMPRIa) and ALK6
(also known as BMPRIb), with BMPs also capable of binding to the
type I receptors ALK1 and ALK2. BMPs can bind to three type II
receptors: BMP type II receptor (BMPRII), activin type IIa receptor
and activin type IIb receptor (Bragdon et al., 2011; Nohe et al.,
2004). Upon ligand binding, the constitutively active type II
receptor transphosphorylates the intracellular domain of the
BMPRI, which then recruits and phosphorylates Smad proteins
(Miyazono et al., 2010). Smads are classified into three subclasses
based on function: receptor-regulated Smads (R-Smads), com-
mon-mediator Smads (Co-Smads) and inhibitory Smads (I-
Smads) (Heldin et al., 1997). The BMP R-Smads (Smad1, Smad5
and Smad8) are specifically phosphorylated by activated BMPR-Is,
interact with co-Smad4 (Zhang et al., 1997) to form heterotrimeric
complexes, and translocate into the nucleus to regulate gene
expression. The I-Smads, Smad6 and Smad7, limit BMP-induced
Smad signalling in two ways: (i) they physically interact with
activated BMPRI and compete with R-Smads (Hayashi et al., 1997;
Heldin et al., 1997; Imamura et al., 1997; Souchelnytskyi et al.,
1998), and (ii) they bind to R-Smads and prevent R-Smad-Co-
Smad complex formation (Hata et al., 1998: Murakami et al.,
2003). Smad proteins are composed of highly conserved N-
terminal Mad homology (MH) 1 domain and C-terminal MH2
domain, which are joined by a divergent proline-rich linker region
of variable length that contains multiple phosphorylation sites,
each of which allow specific cross-talk with specific signalling
pathways (Heldin et al., 1997; Massague and Wotton, 2000; Shi
and Massague, 2003). The MH2 domains of R-Smads are
responsible for their direct interaction with type I receptor
kinases, in which their C-terminal Ser-Ser-Val/Met-Ser (SSXS)
motifs are phosphorlyated by the BMPRIs, and are also responsible
for Smad complex formation (Miyazawa et al., 2002; Miyazono
et al., 2005). The MH1 domain is the DNA-binding domain of R-
Smads and Co-Smads, with I-Smads lacking this domain
(Souchelnytskyi et al., 1998). In the absence of receptor activation,
the MH1 and MH2 domains are physically associated with one
another (Miyazawa et al., 2002; Miyazono et al., 2005). The BMP-
Smad signalling pathway has been more comprehensively
described elsewhere (Sieber et al., 2009) and we will focus on

the function of this signalling pathway during neural develop-
ment. It is important that whilst this review refers to most
findings as BMP-Smad signalling, the vast majority of these results
were obtained through studies focusing on Smad1 and/or Smad5,
and not Smad8. The expression profiles of Smad proteins during
NS development is yet to be fully characterised, with most studies
focusing on Smad expression in a defined region of the CNS or PNS.
However, it is important to note that the BR-Smads, Smad 1/5/8,
do not share identical expression patterns in the developing NS.
For example, in the basal forebrain, Smad1 mRNA is highly
expressed at E14 and P8 but to a lesser extent in the adult and
perinatally, Smad5 expression is consistent throughout develop-
ment, and Smad8 mRNA expression is absent early at E14 but
increases thereafter with age (Lopez-Coviella et al., 2006). For the
remainder of this review we will focus on the role of Smad 1/5/8
signalling in the development of the NS.

2. Smad 1/5/8 signalling in nervous system development

In addition to well-characterised roles in bone and cartilage
development (Nishimura et al., 2012; Yoon and Lyons, 2004), BMP-
Smad 1/5/8 signalling also instructs key developmental events
during the development of the NS. Paradoxically, despite a role for
BMP-Smad signalling in key neurodevelopmental events, the
repression of BMP-Smad signalling is firstly required for the
primary neurodevelopmental event, neural induction (Fig. 1A) (Liu
and Niswander, 2005; Smith and Harland, 1992; Smith et al., 1993:
Spemann and Mangold, 1924). BMP-Smad signalling on the ventral
side of the embryo allows the formation of epidermal ectoderm,
while dorsally expressed BMP antagonists induce formation of
neural tissue through the blockade of BMP-Smad signalling
(Hemmati-Brivanlou and Melton, 1997; Lamb et al., 1993: Sasai
et al., 1995; Wilson and Hemmati-Brivanlou, 1995). During this
process of neurulation, BMP-Smad signalling actively instructs the
development of a neural population which arises at the border
between the epidermis and neural plate, known as the neural crest.

2.1. Smad 1/5/8 signalling in neural crest cell development

Neural crest cells (NCCs) give rise to a variety of cell populations
in the peripheral NS (PNS), as well as skeletal elements of the head
(Farlie et al., 2004). BMP-Smad 1/5/8 signalling, emanating from
the epidermal ectoderm and under negative regulation from the
neural plate, plays an important role in the generation of NCCs
(Fig. 1A). This is illustrated by the fact that active Smad 1/5/8
signalling, in response to BMPs either exogenously applied or
emanating from epidermal ectoderm, is necessary for the
generation of NCCs in a variety of in vitro and in vivo models
(Dickinson et al., 1995; Liem et al., 1995; Moury and Jacobson,
1989; Moury and Jacobson, 1990; Selleck and Bronner-Fraser,
1995). Additionally, in the anterior ectoderm, the development of
the ectodermal placodes, from the pre-placodal region between
the neural plate and neural crest, requires attenuated BMP-Smad
signalling (Litsiou et al., 2005; Streit, 2004). These placodes
contribute to the formation of the cranial sensory NS and the
special sense organs.

In terms of NCC development, the zebrafish BMP mutants, swirl

(BMP2b) and snailhouse (BMP7), as well as the Smad 5 mutant
somitabun (sbn), display alterations in neural crest formation
(Nguyen et al., 2000). Specifically, trunk NCCs failed to form in
these mutants, showing that BMP-Smad signalling is crucial for
NCC generation. However, in an earlier study by this group the
swirl mutant, which is the most severely dorsalised mutant of the
three (discussed later) (Kishimoto et al., 1997), displayed a severe
reduction in laterally derived cranial NCCs, demonstrating that
BMP2b-mediated Smad signalling is essential for cranial neural
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crest specification (Nguyen et al., 1998). In contrast, Nguyen et al.
(1998) also showed that the snailhouse and sbn mutants exhibited
an expansion of these cranial NCCs (Nguyen et al., 1998). However,
the neural defects of the snailhouse and sbn hypomorphic allele
mutants are more severe caudally (Mullins et al., 1996; Nguyen
et al., 1998), and therefore the expression of BMP7 and Smad5 may
not be diminished cranially to the same extent as it is caudally. In
support of this suggestion, the addition of Smad5 morpholinos to
the sbn mutant resulted in additional cranial defects, such as a
compressed anterior/head region, which was attributed to the total
loss of Smad5 activity, unlike with the hypomorphic sbn allele (Lele
et al., 2001). Based on the opposing effects that these mutants had
on cranial neural crest development, Nguyen et al. (1998)
hypothesised that an intermediate level BMP-Smad signalling is
involved in neural crest specification. These findings have largely
been supported by studies in mice showing that Smad4
knockdown in mouse NCCs causes the downregulation of genes
critical to NCC development and results in the loss of NCC

derivatives at the mid-gestational stage, coupled with alterations
in cell fate specification, such as sensory neuronal fate acquisition
in the trigeminal ganglia (Buchmann-Moller et al., 2009; Ko et al.,
2007; Nie et al., 2008).

Smad-interacting protein-1 (Sip1) represses Smad signalling in
response to BMPs, and has been shown to induce a neural fate by
repressing BMP-Smad signalling during neural induction (Lerchner
et al., 2000; Nitta et al., 2004; Van Grunsven et al., 2007). In zebrafish,
the knockdown of two orthologues of Sip1 results in a loss of vagal/
post-otic NCC derivatives due to an interference with Sip1-mediated
negative regulation of BMP-Smad 1/5/8 signalling (Delalande et al.,
2008). Similarly, the knockdown of Zfhx1b (the gene that encodes
Sip1) in the NCCs of mice results in craniofacial and gastrointestinal
malformations that resemble those found in patients with Mowat-
Wilson syndrome (craniofacial dismorphology with Hirschsprung
disease), which further demonstrates a role for an intermediate,
regulated level of BMP-Smad signalling in NCC development (Van De
Putte et al., 2007). This is not surprising considering the location at

Fig. 1. Smad 1/5/8 signalling in the development of the NS. (A) BMP antagonists (red arrows) arising from Spemann’s organiser inhibit BMP-Smad 1/5/8 signalling in the

overlying dorsal ectoderm to induce a neural fate. An intermediate level of BMP-Smad signalling induces the formation of the neural crest at the border between the

epidermis and neural plate. (B) BMP-Smad 1/5/8 signalling (green arrows) arising from the epidermal ectoderm induces the formation of the roof plate at the dorsal midline of

the neural tube. Formation of the neural tube releases the NCCs. (C) PNS NCCs are induced to differentiate into adrenergic sympathetic neurons by BMP-Smad signalling

(green arrow). Enteric nervous system NCCs are induced to differentiate into enteric DA neuron and astroglia. (E) The neural fates (indicated by arrows; neuron unless stated),

induced by Smad 1/5/8 signalling, of embryonic NSCs from different CNS regions. (F) Schematic representing the dorso-ventral patterning of the SC. The green gradient

represents the gradient of BMP-Smad 1/5/8 signalling strength which patterns the formation of the dorsal SC. (H) Describes the cell fate (indicated by arrows; neuron unless

stated), induced by Smad 1/5/8 signalling in postnatal/adult NSCs from different regions of the CNS.
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which NCCs develop, that is at the border of the BMP-Smad-induced
epidermis and the BMP-antagonised neural plate. In support of Van
De Putte et al. (2007), loss-of-function mutations in Sip1 deregulate
BMP-Smad signalling to cause abnormal development of neural and
NCC structures, resulting in some of the dysmorphic features of
Hirschsprung disease, in particular defects of the enteric NS such as
aganglionosis of the distal colon (Cacheux et al., 2001; Wakamatsu
et al., 2001). This finding reflects the fact that NCCs give rise to the
enteric NS.

Studies using neural crest stem cells have shown that BMP-Smad
signalling antagonises Wnt-induced sensory neurogenesis of NCCs,
while BMP-Smad signalling functions cooperatively with Wnt
signalling to suppress differentiation and maintain multipotency
of these stem cells (Kleber et al., 2005; Lee et al., 2004). BMP-Smad
signalling interacts with WNT and FGF signalling in the development
of a variety of neural populations (Labonne and Bronner-Fraser,
1998; Liu and Niswander, 2005: Monsoro-Burq et al., 2005). Indeed,
through the sequential MAP kinase (MAPK)- and GSK3b-mediated
phosphorylation of the Smad1 linker region, which results in Smad1
degradation, BMP-Smad signalling integrates with FGF-MAPK and
WNT-GSK3b signalling pathways during neural development
(Eivers et al., 2008; Fuentealba et al., 2007).

Collectively these data have shown that Smad-signalling is
required for the NCC generation and cell fate choice during
development. However, the involvement of Smad 1/5/8 in this
process is often inferred given the involvement of BMPs, and an
analysis of neural crest developmental and differentiation in NCC-
specific Smad 1/5/8 conditional knockout mouse would be
beneficial. Direct assessment of Smad 1/5/8 transcriptional activity
in vivo is now possible using a mouse line expressing GFP under the
control of a BMP-response element (BRE), thus allowing direct
assessment of BMP-Smad transcriptional activity in vivo during
NCC development (Monteiro et al., 2008). Aside from NCC
induction, BMP-Smad signalling also promotes neural crest
migration (Sela-Donenfeld and Kalcheim, 1999), induces differen-
tiation of adrenergic sympathetic neurons (Varley and Maxwell,
1996) and mediates neural crest apoptosis (Graham et al., 1994). In
agreement with much of these findings, intense BMP-Smad
dependent transcriptional activity has been found in these regions
during mouse development (Monteiro et al., 2008), directly
supporting a role for Smad 1/5/8 signalling in these processes.

2.2. Smad 1/5/8 signalling in the patterning of the dorsal spinal cord

(SC)

2.2.1. Dorso-ventral gradient of BMP-Smad signalling in the SC

BMPs act over the area between the roof plate and intermediate
region of the SC to pattern the dorsal SC, with the concentration of
active BMP proteins (which decreases ventrally from the roof
plate) being crucial for this patterning process (Liu and Niswander,
2005). Roof plate-derived BMPs achieve their inductive effects
both locally, via direct cell-cell communication, and over a long
range, via BMP-binding proteins which establish diffusible BMP
gradients. In Drosophila, BMPs (Dpp) interact with chordin (Sog) to
form a hetero-complex which blocks BMP function (Biehs et al.,
1996; Piccolo et al., 1996). BMP can be released from this complex
by the action of Tolloid, a zinc metalloprotease (Marques et al.,
1997). The dynamics of this complex formation and dissociation
partly determines the dorso-ventral gradient of Dpp signalling,
which results in a dose-dependent induction of dorsal and
intermediate cell types in the neural tube (Nunes Da Fonseca
et al., 2010; Shimmi and O’connor, 2003).

2.2.2. Patterning of the dorsal SC neuronal populations

BMP-Smad 1/5/8 signalling has been extensively studied in
the patterning of the dorsal spinal cord (SC) (Fig. 1F). The roof

plate and the overlying epidermal ectoderm are rich sources of
BMPs (Fig. 1B) (Lee and Jessell, 1999; Lee et al., 1998; Liem et al.,
1995), and a high degree of Smad 1/5/8 transcriptional activity
has been found in this region in vivo, in studies using mice that
express GFP under the control of the BRE sequence (Monteiro
et al., 2008).

In the dorsal SC there are six discrete parallel layers of dorsal
interneuronal (dI) populations, termed dI1-6 interneurons, that
differentiate at progressively more ventral positions, with dI1–
dI5 interneurons functioning in somatosensation, and dI6
interneurons contributing to the locomotor circuitry (Goulding,
2009). The first demonstration of the involvement of roof plate-
derived BMPs in dorsal SC patterning arose when dorsal dI1A
interneurons were lost in GDF7 null mice (Lee et al., 1998).
Subsequently, ablation of the roof plate in mice resulted in the
absence of dorsal SC interneuronal populations (Lee et al., 2000,
Millonig et al., 2000), whereas addition of BMPs induced a dorsal
SC cell phenotype in chick neural explants (Liem et al., 1997).
These inductive effects have been shown to be dependent on
both BMPR1a and BMPR1b (Timmer et al., 2002), specifically
with BMPR1a promoting the proliferation of dorsal SC interneu-
ron precursors, and BMPR1b promoting their neuronal differen-
tiation (Panchision et al., 2001). In agreement with these
findings, there was a significant loss of the most dorsal of the
six interneuronal populations in BMPR1a/BMPRIb double
knockout mice (Wine-Lee et al., 2004) which was also observed
through forced expression of noggin, or through Smad4
knockdown in the chick embryo (Chesnutt et al., 2004).
Similarly, new data have shown that BMP7, Smad1 and Smad5
are all required for the generation of dI1, dI3 and dI5
interneuronal populations in mice (Le Dreau et al., 2012),
demonstrating that BMP-Smad signalling is critical for the
patterning of the dorsal SC region.

2.2.3. BMP-Smad and WNT interactions in the patterning of the dorsal

SC

To generate these classes of dorsal interneurons, BMP-Smad 1/
5/8 cooperates with WNT-b-catenin signalling to control the
expression of Olig3, a transcription factor that is essential for the
generation of dI1-dI3 interneurons (Muller et al., 2005), with BMP-
Smad 1/5/8 acting upstream of WNT-b-catenin (Zechner et al.,
2007). It has been proposed that WNTs are responsible for the
proliferation of BMP-specified dorsal interneuronal progenitors in
the SC (Chesnutt et al., 2004), a suggestion supported by the finding
that WNT signalling promotes progression from G1 to S and
inhibits cell cycle exit in the neural tube (Megason and Mcmahon,
2002). Furthermore, b-catenin knockout inhibits neural stem cell
(NSC) proliferation (Zechner et al., 2003), while overexpression of
constitutively active b-catenin promotes NSC proliferation (Chenn
and Walsh, 2002), in the developing mouse CNS. In addition to this,
Smad6 inhibition of both BMP-Smad 1/5/8 signalling and WNT-b-
catenin signalling promotes the transition of neural progenitors
from a proliferative state to a differentiating state in the chick
dorsal SC (Xie et al., 2011). The other inhibitory Smad, Smad7, is
expressed in newly differentiating neurons in the intermediate SC
and, when ectopically expressed dorsally in the chick SC, blocks the
acquisition of the dorsal interneuron dI1 and dI3 fates and results
in a dorsal expansion of dI4–dI6 fates (Hazen et al., 2011). Hazen
et al. (2011) showed the inhibition of BR-Smad activity by Smad7,
and suggest that Smad7 functions to attenuate BMP-Smad
induction of more dorsal fates to allow the generation of
intermediate cell types in the SC. Interestingly, possibly contra-
dictory to the findings of Xie et al. (2011), a model for inhibitory
cross-regulation of BMP-Smad signalling and WNT signalling was
recently proposed, in which proliferation-inducing WNT-signal-
ling and differentiation-inducing BMP-Smad signalling inhibit
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each another to maintain slow-cycling, undifferentiated neural
progenitors in the developing dorsal SC (Ille et al., 2007). Perhaps
Smad6 functions to allow dorsal interneurons to exit this
progenitor state and complete differentiation. Collectively these
findings suggest that BMP-Smad signalling and Wnt-b-catenin
signalling function cooperatively during dorsal SC neurogenesis,
with BMP-Smad important in the specification of neural fates and
Wnt-b-catenin signalling functioning in appropriate proliferation
of these BMP-specified dorsal interneuronal precursors. In light of
contrasting suggestions of Ille et al. (2007) and Zechner et al.
(2007), it remains to be determined whether their functional
cooperation is mediated through a direct downstream positive
regulation of one another, or indeed whether they have an
inhibitory cross-regulatory relationship during SC development.

2.2.4. BMP-Smad signalling in the generation of intermediately

located SC neuronal populations

In zebrafish swirl, snailhouse and sbn mutants, there is an
increase in the intermediately located Lim1+ interneurons (Nguyen
et al., 2000). However, further reductions in BMP-Smad signalling
by administration of chordin to swirl embryos caused a decrease in
the number of these cells (Nguyen et al., 2000). These contrasting
findings suggest that an intermediate level of BMP-Smad signalling
is required to establish the correct number of Lim1+ interneurons.
Indeed, Chesnutt et al. (2004) have shown that BMP signalling
positively regulates the expression of WNTs at the dorsal SC, which
is supported by the finding that double knockout of BMPR1a and
BMPR1b causes a reduction in the expression of WNTs in the
mouse SC (Wine-Lee et al., 2004). Perhaps the reduction in BMP-
Smad signalling in the BMP mutants allows the expansion of more
ventral cell types, causing an increase in Lim1+ interneurons.
However, the further reduction in BMP signalling by chordin
administration may negatively affect WNT expression, resulting in
the inhibition of the proliferative effect of WNTs on SC
interneurons, thus leading to a decrease in Lim1+ interneurons.
Similarly, in the dorsal SC of the chick embryo, strong activation of
BMP-Smad signalling decreases the intermediately located neu-
rogenin 1-expressing cells (dI2), while weak activation causes the
ventral expansion of neurogenin 1-expressing cells (Timmer et al.,
2002). These results, as well as the afore-mentioned Hazen et al.
(2011) study, support the concept that distinct levels of BMP-Smad
1/5/8 signalling are required for the development of different

dorsal and intermediate interneuronal populations in the dorsal
SC, and that mechanisms must be in place to ensure the tight
control of the levels of BMP-Smad signalling during each distinct
developmental programme. Furthermore, the dorsal-ventral gra-
dient of BMP-Smad 1/5/8 signalling in the SC is also important in
the specification of ventral SC motor neurons, with its active
repression being required for their induction (Liem et al., 2000;
Mcmahon et al., 1998). In support of this, Sip1 has recently been
implicated as a novel regulator of SC motor neuron diversification,
with Sip1 playing an important role in visceral motor neuron
differentiation (Roy et al., 2012). In addition to the roles described
above, BMP-Smad signalling has been shown to play important
roles in the patterning of the ventral SC, dorsal SC neuronal axonal
guidance, forebrain development, and cerebellar granule neuron
development (Alder et al., 1999; Furuta et al., 1997; Liu and
Niswander, 2005).

3. Smad 1/5/8 signalling in neuronal and glial development

3.1. Smad 1/5/8 signalling in neurogenesis

Smad 1/5/8 signalling in response to the BMP family of proteins
is vital in several aspects of NS development, such as its inductive
and patterning roles which have been outlined above. However, in
addition to its role in the regional specification, BMP-Smad
signalling also has direct effects on the development of neuronal
and non-neuronal cell populations from neural progenitor cells
(see Table 1).

3.1.1. BMP-Smad 1/5/8 signalling in neuronal development in the PNS

In the developing PNS, BMP-Smad signalling instructs neuronal
differentiation from PNS NCCs via the induction of Mash1, a
neuron-specific transcription factor (Groves and Anderson, 1996;
Shah et al., 1996). Conversely, BMP-Smad signalling has also been
shown to inhibit neuronal differentiation from CNS NSCs through
the degradation of Mash1, resulting in the inhibition of neurogen-
esis (Shou et al., 1999). Such ambiguity may reflect intrinsic
differences between PNS NCCs and CNS NSCs, with development of
the former from the ectoderm requiring BMP-Smad signalling, and
the generation CNS NSCs from the ectoderm being dependent upon
the inhibition of BMP-Smad signalling. As mentioned in Section
2.1, BMP-Smad signalling induces the differentiation of adrenergic

Table 1
Neural fate induction by BMP-Smad signalling during NS development.

Neural precursor Differentiated neural cell type Reference(s)

Embryonic

Peripheral NS NCC Adrenergic sympathetic neuron Reissmann et al. (1996); Varley and Maxwell (1996);

Varley et al. (1998); Wu and Howard (2001)

Enteric NS NCC Enteric dopaminergic neuron Chalazonitis et al. (2004); Chalazonitis et al. (2008)

Enteric NS NCC Astroglia Chalazonitis et al. (2011)

Ventral midbrain neural precursors VM dopaminergic neuron Jordan et al. (1997); Krieglstein et al. (1995); O’Keeffe et al. (2004)

Ventral midbrain neural precursors Astroglia Krieglstein et al. (1995); O’Keeffe et al. (2004); Wood et al. (2005)

Metencephalic NSC Cerebellar granule neuron Alder et al. (1999); Qin et al. (2006)

Cortical NSC Cortical neuron Li et al. (1998); Mehler et al. (2000); Sun et al. (2010); Yung et al. (2002)

Cortical NSC Astroglia Mehler et al. (2000)

Dorsal telencephalic NSC Dentate gyrus granule neuron Caronia et al. (2010)

Septal NSC Basal forebrain cholinergic neuron Cho et al. (2008); Lopez-Coviella et al. (2000); Lopez-Coviella et al. (2005)

SVZ NSC Stellate, non-neurogenic astroglia Bonaguidi et al. (2005)

Dorsal spinal cord NSC Dorsal spinal cord interneuron Hazen et al. (2012); Le Dreau et al. (2012); Xie et al. (2011)

Postnatal/adult

Perinatal cortical NSC Astroglia Mehler et al. (2000)

Postnatal subcortical O-2A progenitor cell Astroglia Mabie et al. (1997)

Adult SVZ NSC Olfactory granule neuron Colak et al. (2008)

Adult SVZ NSC Astroglia Cate et al. (2010); Ciceroni et al. (2010); Lim et al. (2000)

Adult Hippocampal NSC Astroglia Brederlau et al. (2004)

Adult spinal cord OPC Astroglia Cheng et al. (2007)

S.V. Hegarty et al. / Progress in Neurobiology 109 (2013) 28–4132



sympathetic neurons from avian trunk NCCs, with the BMPR1a
receptor particularly important in this process (Fig. 1C) (Varley and
Maxwell, 1996; Varley et al., 1998). Similarly, BMP-Smad
signalling produced in vitro by dorsal aorta explant-derived BMPs
has been shown to induce sympathetic differentiation from quail
NCC cultures (Reissmann et al., 1996). The role of Mash1 in BMP-
Smad-induced sympathetic neuronal differentiation was not
assessed in these studies, but considering its identification in
the Shah et al. (1996) study described above, it is likely to
contribute to this neuronal specification. The catecholaminergic
differentiation of avian NCCs was also shown to be mediated by
BMP-Smad signalling in vitro (Wu and Howard, 2001). Wu and
Howard (2001) demonstrated that Smad1 induced the expression
of dHAND, a DNA binding protein required for the differentiation of
catecholaminergic neurons. Collectively, these studies show that
BMP-Smad signalling plays an important role in neuronal
differentiation in the PNS. In addition to its inductive role in
sympathetic neuronal development, BMP-Smad signalling also
promotes NGF-dependent dendritic outgrowth from sympathetic
neurons (Lein et al., 1995). In the enteric NS, which is part of
the PNS located in the wall of the gastrointestinal tract and
is also derived from NCCs, BMP-Smad signalling induces the
differentiation of trkC-expressing dopaminergic neurons (Fig. 1C)
(Chalazonitis et al., 2004; Chalazonitis et al., 2008).

3.1.2. Smad 1/5/8 signalling in neuronal fate induction in the CNS

Similar to its role in the PNS, Smad 1/5/8 signalling is directly
involved in the neurogenesis of various CNS neural populations.
GDF5-Smad signalling induces an increase in DA neurons in E14 rat
VM cultures (Fig. 1E) (Clayton and Sullivan, 2007; Krieglstein et al.,
1995; O’Keeffe et al., 2004; O’sullivan et al., 2010; Wood et al.,
2005), while not increasing the total number of neurons (O’Keeffe
et al., 2004). Similarly, Smad 1/5/8 signalling in response to BMPs
increases the numbers of DA neurons in E14 rat VM cultures
(Jordan et al., 1997). This role of BMP-Smad signalling in VM DA
neurogenesis is of interest to the field of Parkinson’s disease
research, a disorder in which VM DA neurons progressively
degenerate (Lees et al., 2009; Toulouse and Sullivan, 2008),
particularly for cell based therapies in which factors which
promote the generation of VM DA neurons are in demand. In
neural tissue cultured from E8 mouse VM/ventral metencephalon
region, BMP-Smad signalling induced early markers of cerebellar
granule progenitors (Fig. 1E), including Math1 and En1/En2 (Alder
et al., 1999). When these Smad 1/5/8-induced cells were
subsequently transplanted into the early postnatal cerebellum,
they formed mature granule neurons (Alder et al., 1999).
Furthermore, double knockdown of BMPRIa and BMPRIb results
in a dramatic reduction in the number of cerebellar granule
neurons in mice, with a concurrent downregulation of molecular
markers of granule cell specification (Qin et al., 2006). BMP-Smad
signalling is thus an important regulator of cerebellar granule
neuron generation, with both BMPRIa and BMPRIb required for their
specification. In support of a role for BMP-Smad 1/5/8 signalling in
cerebellar development, the knockout of the transcription factor
Zfp423 in mice, which binds to Smad1/Smad4 in response to BMP
signalling (Hata et al., 2000), results in an underdeveloped
cerebellum (small cerebellar hemispheres and severe reduction in
vermis size) (Warming et al., 2006). In ventricular zone (VZ)
neocortical neuroepithelial cell cultures, BMP-Smad signalling was
reported to induce neuronal differentiation (Fig. 1E) (Li et al., 1998).
Similarly, noggin-regulated BMP-Smad signalling was shown to be
involved in the elaboration of cortical GABAergic neurons from
migrating ventral forebrain progenitors (Yung et al., 2002). This
finding suggests that an intermediate, modulated level of BMP-
Smad signalling plays a role in GABAergic neuronal differentiation in
the cortex. Li et al. (1998) also showed that Smad 1/5/8 signalling in

response to BMPRIa is required for neural precursors to differentiate
and migrate away from the VZ in cortical explants. In support of this,
BMP-Smad signalling, specifically via Smad1, has been shown to
control neuronal migration and neurite outgrowth in the embryonic
rodent cortex by suppressing the transcription of CRMP2, with
Smad1 and Smad4 being demonstrated to bind to the CRMP2
promoter in the neocortex (Sun et al., 2010). BMPRIa-Smad1
dependent BMP signalling is therefore important for cortical
neuronal migration and differentiation. In E14 murine septal
cultures, BMP-Smad signalling was shown to induce both a
cholinergic phenotype and the expression of a number of genes
belonging to the transcriptome of basal forebrain cholinergic
neurons, suggesting a role for BMP-Smad 1/5/8 signalling in the
development of these neurons (Fig. 1E) (Lopez-Coviella et al., 2000;
Lopez-Coviella et al., 2005). A transcriptional co-activator of BMP-
Smad signalling, known as Smad-interacting zinc finger protein, was
shown to be required for this BMP-Smad signalling-dependent
induction of a cholinergic phenotype in E13.5 murine septal
cultures (Cho et al., 2008). In mice that were deficient in BMPR1a
and BMPR1b in the dorsal telencephalon, there was a decreased
production of dentate gyrus (DG) granule neurons at the peak of
DG neurogenesis and throughout life, showing a role for BMP-
Smad signalling in DG granule cell neurogenesis (Fig. 1E) (Caronia
et al., 2010). The resulting hippocampal defects led to fear-related
behavioural deficits, demonstrating the functional importance of
BMP-Smad-regulated DG neurogenesis. Using shRNA knockdown
at the time of neurogenesis, Le Dreau et al. (2012) further
demonstrated a role for Smad1 and Smad5 in primary neurogen-
esis (generation of projection neurons). This study showed that
BMP7-stimulated Smad1 and Smad5 signalling was required for
the generation of dI1, dI3 and dI5 interneuronal populations in the
chick dorsal SC (Fig. 1E and F) (Le Dreau et al., 2012). Surprisingly,
Smad6 inhibition of BMP-Smad 1/5/8 signalling, and of WNT-b-
catenin signalling, was shown to promote neuronal differentia-
tion in the intermediate zone of the chick dorsal SC (Xie et al.,
2011). This result does not preclude an involvement of BMP-Smad
and WNT-b-catenin signalling in the neuronal differentiation of
dorsal SC neurons, but rather reflects a role for Smad6 in directing
BMP-specified neuronal progentiors to exit the cell cycle and
terminally differentiate.

In addition to a neuronal inductive role in the dorsal SC,
Smad1-dependent BMP signalling has been shown to regulate
axonal growth in the dorsal root ganglion (DRG), with the
reactivation of Smad1 signalling in adult DRG resulting in sensory
axon regeneration in a mouse model of SC injury (Parikh et al.,
2011). In support of this, the inhibitory Smad, Smad6, is a potent
inhibitor of dI1 axon outgrowth in the chick SC (Hazen et al.,
2011). Furthermore, BMP-Smad signalling in the dorsal SC acts as
a chemorepellent that orients the commissural axons of dI1
interneurons, directing them ventrally (Butler and Dodd, 2003;
Dent et al., 2011), and also acts to regulate the growth rate of
these axons as they extend through the SC (Phan et al., 2010). This
chemorepellent role of BMP-Smad signalling was recently
demonstrated to be mediated by the BMPRIb (Yamauchi et al.,
2008). A more recent paper by Hazen et al. has suggested that
Smad1 and Smad5 confer diverse functions during the develop-
ment of the dorsal SC. Knockdown experiments demonstrated
that Smad1 is critical for the regulation of dI1 axonal growth
while Smad5 is required for the specification of dI1 and dI3
interneuronal populations (Hazen et al., 2012). This is an
important finding as it suggests that the various BR-Smads have
distinct functions in the developing SC, whereas previous studies
suggested that these BR-Smads function redundantly during the
development of the NS (Arnold et al., 2006; Le Dreau et al., 2012).
Parikh et al. (2011) also showed that inhibition of BMP-Smad 1/5/
8 signalling using dorsomorphin, a small molecular inhibitor of
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BMPRI (Yu et al., 2008), negatively affects neurite outgrowth of
E18.5 mouse hippocampal neurons. Perhaps this role of BMP-
Smad signalling in the establishment of hippocampal neuronal
projections contributes to the fear-related behavioural deficits
caused by BMPR1a and BMPR1b conditional double mutation
outlined above. Additionally, BMP-Smad signalling has been
shown to induce neurite outgrowth from E14 rat VM DA neurons
in vitro (O’Keeffe et al., 2004; Reiriz et al., 1999), and recently the
direct involvement of Smad 1/5/8 signalling in this process has
been demonstrated in a model of human midbrain DA neurons
(Hegarty et al., 2013). BMP-Smad signalling therefore not only
regulates neuronal specification, but also promotes neuronal
differentiation and maturation in several regions of the
embryonic CNS.

Furthermore, BMP-Smad signalling is actively involved in
neuronal differentiation during post-natal and adult life. BMP-
Smad signalling is required for the initiation of neurogenesis in
adult mouse subventricular zone (SVZ) NSCs (Fig. 1H) and the
concurrent suppression of an oligodendroglial fate, since Smad4
knockdown or noggin infusion results in a significant decrease in
neurogenesis and an increase in the differentiation of oligoden-
drocytes (Colak et al., 2008). As Smad4 knockdown or noggin
infusion would also inhibit TGFb signalling, it is possible that these
effects were are a result of TGFb inhibition, however Colak et al.
(2008) showed that this Smad4-mediated neurogenic role is BMP-
dependant as conditional deletion of the TGFb type II receptor did
not replicate the reduced neurogenesis and increase in olidoden-
drocyte differentiaton caused by Smad 4 knockdown or noggin
infusion. In contrast to this, it was recently shown that LRP2-
mediated catabolism of BMP4 is required for neurogenesis in the
adult mouse, since increases in BMP-Smad 1/5/8 signalling as a
result of LRP2 knockdown coincide with reduced neurogenesis
(Gajera et al., 2010). Similarly, increased BMP signalling was
shown to potently inhibit neurogenesis of adult mouse SVZ NSCs in

vitro and in vivo, while noggin promoted neurogenesis (Lim et al.,
2000). These contradicting results may reflect a potential need for a
regulated, intermediate level of BMP-Smad signalling to allow
adult SVZ neurogenesis. Furthermore, BMP-Smad signalling
regulators, such as noggin and LRP2, may indeed be involved in
refining Smad 1/5/8 signalling to promote/permit neurogenesis.
Indeed, noggin-regulated BMP-Smad signalling plays a role in
embryonic cortical GABAergic neurogenesis (Yung et al., 2002),
while regulated levels of Smad 1/5/8 signalling is required for the
appropriate generation of intermediately located interneuronal
populations in the development of the SC (Nguyen et al., 2000,
Timmer et al., 2002).

3.1.3. Smad 1/5/8 signalling in the neuronal differentiation of neural

cell lines

In agreement with their roles in inducing neuronal differentia-
tion in the PNS, BMP-Smad signalling has also been shown to
induce neuronal differentiation in a sympathetic NS-derived cell
line, known as the PC-12 cell line (Paralkar et al., 1992). Conversely,
in a sympathoadrenal progenitor cell line, BMP-Smad signalling
was shown to induce apoptosis, which could be rescued by the
addition of growth factors such as NGF (Song et al., 1998). BMP-
Smad signalling thus induces dependence on exogenous growth
factors for survival in these cells. This finding is surprising,
considering the well-established neurotrophic properties of BMPs,
however it may suggest a role for BMP-Smad signalling in
sympathetic target innervation. In the human neuroblastoma
SH-SY5Y cell line, BMP signalling induces neuronal differentiation
through a BMPRI-Smad 1/5/8 mediated pathway (Hegarty et al.,
2013; Nakamura et al., 2003; Toulouse et al., 2012). Likewise, in the
mouse neuroblastoma-derived cell line, Neuro2a, BMP-stimulated
phospho-Smad 1/5/8 nuclear translocation induces neuronal

differentiation through a bi-phasic regulation of Id protein
expression, and subsequent upregulation of the neural-specific
transcriptional factors Dlx2, Brn3a, and NeuroD6 (Du and Yip,
2010). The use of noggin or Smad1 siRNA prevented this Smad-
mediated regulation of Id protein expression. Thus, BMP-Smad
signalling is also capable of inducing neuronal differentiation in
neural cell lines.

3.2. Smad 1/5/8 signalling in gliogenesis

Despite its role in promoting neuronal differentiation from
various neural precursor populations, Smad 1/5/8 signalling has
also been shown by many studies to promote NSC differentiation
towards an astrocytic lineage. For example, in serum-free mouse
embryonic cell cultures, BMP-Smad signalling induces the
generation of glial fibrillary acidic protein (GFAP)-immunoreactive
astrocytes, while concomitantly inhibiting cellular proliferation
(D’alessandro and Wang, 1994; D’alessandro et al., 1994).
Similarly, in embryonic mouse SVZ multipotent progenitors,
BMP-Smad 1/5/8 signalling induces the generation of GFAP-
expressing astrocytes (Fig. 1E), with concurrent suppression of
neuronal and oligodendroglial cell fates (Gross et al., 1996).
Knowledge on the astroglial inductive effect of BMP-Smad
signalling in the embryonic SVZ was recently refined to show
that a particular subtype of GFAP-expressing cells are generated in
response to Smad 1/5/8 activation. Specifically, stellate, post-
mitotic, non-neurogenic GFAP-expressing cells, representative of
mature astrocytes, are generated from mouse embryonic SVZ
progenitor cells in response to BMP-Smad signalling (Bonaguidi
et al., 2005). Conversely, leukemia inhibitory factor (LIF) signalling
gives rise to bipolar/tripolar, self-renewing, neurogenic GFAP-
expressing progenitors, representative of radial glial SVZ stem cells
(Bonaguidi et al., 2005). However, these studies did not assess
Smad activity, and thus further experiments are necessary to
determine if these effects require canonical Smad 1/5/8 signalling.
In a more recent study on E14 dorsal SC cultures, the prevention of
BMP-induced Smad1 transcriptional activity by FGF-MAPK signal-
ling promoted OPC generation from NSCs through the upregulation
of olig2, with Smad1/Smad4 being shown to associate with the
olig2 promoter (Bilican et al., 2008). This interaction of the Smad1/
Smad4 complex with the olig2 promoter may therefore result in
transcriptional repression. Despite inducing a neuronal lineage in
NCCs, BMP-promoted nuclear translocation of phospho-Smad 1/5/
8 induced glial differentiation in the NCC population that gives rise
to the enteric NS (Fig. 1C) (Chalazonitis et al., 2011). As mentioned
in Section 3.1.1, BMP-Smad signalling is known to induce DA
neurons from these NCCs (Chalazonitis et al., 2004; Chalazonitis
et al., 2008), however it has been proposed that BMP-Smad
signalling determines the responsiveness of these enteric NCCs
firstly to glial cell line derived neurotrophic factor (GDNF)-induced
neurogenesis, and later to glial growth factor (GGF)-2-induced
gliogenesis (Chalazonitis et al., 2011; Chalazonitis and Kessler,
2012). Similarly, GDF5-Smad signalling dramatically increases the
number of astrocytes in E14 rat VM cultures (Fig. 1E), while
concomitantly increasing the numbers of DA neurons (Krieglstein
et al., 1995; O’Keeffe et al., 2004; Wood et al., 2005). Despite
inherent differences between CNS NSCs and PNS NCCs, perhaps
there is a similar mechanism, to that proposed by Chalazonitis and
colleagues for enteric NCCs, to explain the dual inductive role of
GDF5-Smad signalling in E14 rat VM NSCs. In support of such a
suggestion, GDNF is an important neurotrophic factor for the DA
neurons of the VM, and may thus work cooperatively with BMPs in
this population also (Peterson and Nutt, 2008; Toulouse and
Sullivan, 2008).

In addition to its glial-inducing effects on embryonic pluripo-
tent progenitors, Smad 1/5/8 signalling has been demonstrated to
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play a direct role in adult gliogenesis. BMP-Smad signalling
induces postnatal subcortical bipotent oligodendroglial-astroglial
(O-2A) progenitor cells to differentiate into astrocytes (Fig. 1H),
while concomitantly suppressing oligodendroglial differentiation,
in a dose-dependent manner (Mabie et al., 1997). Although the
presence of type I and type II BMPRs on these cells was
demonstrated, the activation of canonical Smad 1/5/8 pathway
was not confirmed in this study (Mabie et al., 1997). The response
of neural progenitors to BMP-Smad signalling appears to be
temporally dependent. For example, cultures of cortical VZ neural
progenitors have been shown to respond differentially to BMP-
Smad signalling, depending on their ontogenic stage. At E13, BMP-
Smad signalling promotes cell death and inhibits proliferation of
early VZ progenitors, while at E16, the response to BMP signalling
is concentration-dependent with either enhancement of neuronal
and astroglial elaboration (at 1–10 ng/ml) or potentiation of cell
death (at 100 ng/ml) (Mehler et al., 2000). It would be interesting
to determine whether activation of different signalling pathways
contributes to these divergent effects. Indeed, particularly high
BMP levels may act via pathways that are independent of Smad 1/
5/8 (Nohe et al., 2004; Rajan et al., 2003). Mehler et al. (2000)
showed that BMP-Smad signalling enhances the generation of
astroglia during the perinatal period of cortical gliogenesis
(Fig. 1H). Interestingly, the inhibitory effect of BMP-Smad
signalling on oligodendroglial generation occurred at all stages
(Mehler et al., 2000). Similarly in adult rat SC oligodendrocyte
precursor cell (OPC) cultures, shown to express the BMPRs, BMP-
Smad signalling promotes astrocytic differentiation in a dose-
dependent manner (Fig. 1H), with concurrent suppression of
oligodendrocyte differentiation, by increasing Id4 expression and
decreasing the expression of olig1 and olig2 (Cheng et al., 2007). In
support of this finding, the Smad1/Smad4 complex has been
suggested to interact with the olig2 promoter to repress olig2
expression (Bilican et al., 2008). A recent paper has identified Sip1
as an important regulator of oligodendrocyte differentiation and
myelination. Sip1 represses BMP-Smad signalling, via a dual
mechanism involving direct antagonism of Smad 1/5/8 and
induction of Smad7 expression, to promote oligodendrocyte
differentiation in the CNS (Weng et al., 2012). Cheng et al.
(2007) propose that the blocking of BMP-Smad signalling
combined with olig1/2 overexpression could potentially enhance
endogenous remyelination in CNS demyelination disorders. In
support of this suggestion, local increases in BMPs at the site of
demyelination upregulates gliosis, with these astrocytes display-
ing increased phospho-Smad 1/5/8 signalling (Fuller et al., 2007).
Furthermore, BMP-induced increases in the expression of chon-
droitin sulphate proteoglycans, such as neurocan and aggrecan,
were also observed which could inhibit remyelination (Fuller et al.,
2007). However, astrocytes generated in response to BMP-Smad
signalling support axonal growth and regeneration of host sensory
neurons when transplanted into a lesioned dorsal column of the SC
(Haas et al., 2012). Cultured adult hippocampal NSCs were shown
to be induced to an astroglial lineage in response to BMP signalling
through the BMPR1b receptor (Fig. 1H) (Brederlau et al., 2004). In
addition to this, a recent study modulated BMP-Smad signalling to
alter the numbers of astrocytes and oligodendrocytes in the adult
SVZ during cuprizone-induced demyelination (Cate et al., 2010).
Components of the BMP-signalling pathway, including BMPRs and
Smad 1/5/8, were shown to be up-regulated during cuprizone-
induced demyelination, along with an increase in astrocytes in

vivo. The reduction of Smad 1/5/8 activation by intraventricular
infusion of noggin resulted in a decrease in the numbers of
astrocytes, and an increase in the number of oligodendrocytes in
the adult SVZ during cuprizone-induced demyelination (Cate et al.,
2010). Similarly, activation of the mGlu3 receptors in post-natal
mouse SVZ NSCs attenuates the astroglial-promoting effect of

phosphorylated Smad 1/5/8, via the mitogen-activated protein
kinase pathway, which suggests a role for glutamate in SVZ NSC
differentiation (Ciceroni et al., 2010). This further demonstrates
the negative regulation of phospho-Smad 1/5/8 signalling by the
MAPK pathway. In support of the role of BMP-Smad signalling in
adult SVZ astrogliogenesis, Lim et al. (2000) also showed that BMP
signalling induces an astroglial lineage in adult SVZ NSCs.
Furthermore, it has been shown that mouse brain endothelial
cells, which lie close to adult SVZ NSC, are the source of BMP-Smad
signalling which regulates the development of these NSCs
(Mathieu et al., 2008). The transgenic overexpression of BMP4 in
mice resulted in an increase in astrocytes in multiple brain regions,
with a concurrent decrease in oligodendrocytes, suggesting that
BMP-Smad signalling is a likely mediator of astrocyte development
in vivo (Gomes et al., 2003). The adult SVZ is now widely accepted
to be a major site of neurogenesis (Nieto et al., 2004; Noctor et al.,
2004; Pontious et al., 2008; Tarabykin et al., 2001; Zecevic et al.,
2005). However, the effect of BMP-Smad signalling on SVZ
neurogenesis remains unclear. The majority of evidence suggests
that Smad 1/5/8 signalling results in astroglial differentiation,
however Colak et al. (2008) showed that BMP-Smad signalling was
required to initiate the neurogenic lineage in the adult SVZ. These
results may not be as contradictory as they appear, and it may well
be the case that both findings are directly related and even support
one another. Perhaps in adult SVZ NSCs, BMP-Smad signalling acts
to induce radial glial-like neuronal progenitors, with astrocytic
characteristics, that subsequently generate the granule neurons
which migrate to the olfactory bulb. The role of such ‘astroglial’
progenitors in neurogenesis has been well described in a recent
review (Kriegstein and Alvarez-Buylla, 2009).

3.3. Smad 1/5/8 signalling in neural stem/progenitor cells

It is clear that Smad 1/5/8 signalling can induce a neuronal or
astrocytic fate, or possibly even both, in neural precursors, but the
factors which determine each of these fates are unknown. In the
chick SC, BMP-Smad signalling, possibly mediated via the BMPR1b
receptor, promotes neuronal specification rather than astrocytic
specification in the dorsal-most progenitors at E5 (Agius et al.,
2010). However, this study reported the opposite effect at E6, when
BMP-Smad signalling promoted astrocyte development (Fig. 1E),
rather than completely preventing it as it did at E5. This complete
reversal of the neurogenic action was suggested to be due to an
upregulation of BMPR1a receptors (Agius et al., 2010). It is thus
likely that these differential inductive effects of Smad 1/5/8
signalling not only depend on the specific ligand-receptor
combination, but are also temporally dependent, an example of
which be seen in the Mehler et al. (2000) paper discussed above.
Furthermore, in the hippocampus, BMP-Smad signalling induces
granule neuron generation pre-natally (Caronia et al., 2010), and
astroglial differentiation during adulthood (Brederlau et al., 2004).
This is not surprising, considering that primary neurogenesis
precedes gliogenesis during CNS development. Logically, cell
identity is a determining factor, with PNS NCCs being induced
towards a neuronal fate and CNS embryonic SVZ precursors being
induced to an astrocytic one during pre-natal NS development.

It is important to note that through the induction of
differentiation, Smad 1/5/8 signalling negatively regulates the
proliferation of NSCs. In rat NSC cultures derived from either the
cortex or SC at E13.5 BMPs induced NSC growth arrest and GFAP
expression through Smad signalling, however FGF2 prevented
BMP-Smad-induced terminal astrocytic differentiation to preserve
NSC potency in a dormant state (retain nestin expression but do
not proliferate) (Sun et al., 2011). This effect is likely to reflect FGF-
MAPK-induced repression of Smad 1/5/8 signalling. Similarly,
BMP-Smad signalling negatively regulates NSC proliferation in the
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adult hippocampus (Bonaguidi et al., 2008). Smad 1/5/8 signalling
in response to BMPR1a receptor activation by BMPs decreased
proliferation of cultured adult hippocampal NSCs, while main-
taining them in an undifferentiated state (Mira et al., 2010). Mira
and co-workers also showed that knockout of either Smad4 or
BMPR1a in hippocampal NSCs results in a transient increase in
proliferation, followed by a reduction in the generation of neural
precursors, demonstrating that Smad 1/5/8 signalling regulates
NSC quiescence/proliferation and prevents the loss of NSC
activity, which supports continuous neurogenesis, in the adult
hippocampus. Taken together with the results of the Sun et al.
study, the above findings support a role for Smad 1/5/8 signalling
in the regulation of NSC proliferation and differentiation.
Interestingly, this regulation of NSC proliferation in the hippo-
campus by BMP-Smad signalling has been suggested to be
pertinent to the effects of exercise on adult hippocampal
neurogenesis in mice, that is, exercise induced downregulation
of BMP-Smad signalling results in enhanced neurogenesis
(Gobeske et al., 2009). The Mira et al. (2010) also supports the
suggestion that BMP-Smad signalling induces the differentiation
of adult SVZ NSCs into radial glial progenitors, which subse-
quently give rise to olfactory interneurons.

In mouse embryonic stem cells, BMP-Smad signalling promotes
the self-renewal, and inhibits the differentiation through the
induction of Id proteins (Ying et al., 2003). This result is interesting
considering the effects of BMP-Smad signalling to promote
differentiation of NSCs. These contrasting results are likely to
reflect the difference between embryonic stem cells and stem cells
that are restricted (through inhibition of BMP-Smad signalling) to a
neural fate.

4. Smad 1/5/8 knockdown during nervous system development

It has proven difficult to determine the effect global deletion of
Smad 1/5/8 on NS development, as the Smad1 mutant mice die at
E10.5 due to defects in allantois formation (Lechleider et al., 2001;
Tremblay et al., 2001), and Smad5 mutant mice die at E10.5 due to
angiogenic failure and other defects (Chang et al., 1999; Yang
et al., 1999). However, Chang et al. (1999) did show a failure of
cranial neural tube closure in Smad5 mutant mice at E9.5 (see
Table 2), which resulted in exencephaly, demonstrating the
importance of Smad5-mediated signalling in cranial neural tube

development. The study of non-null Smad mutants has highlight-
ed the importance of BMP-Smad signalling in NS development
(see Table 2). Heterozygous Smad1 mutant mice, and mice
homozygous for a hypomorphic allele of Smad8, show midbrain
and hindbrain reductions (gross reduction in anatomical size) at
E11.5 (Hester et al., 2005). This is not surprising due to the role of
BMP-Smad 1/5/8 signalling in cerebellar development (discussed
above). However in contrast to this, Smad8 null mutant mice are
viable and fertile, with no discernible abnormalities (Arnold et al.,
2006). Thus, Smad8 seems to play a nonessential role in
development (mice develop without defects), and so the
abnormalities reported by Hester et al. (2005) may be due to
the neomycin protein affecting expression of neighbouring genes.
It is more likely that the role of Smad8 is redundant; further
investigation is required to determine the specific roles of Smad8
in developmental. When Arnold et al. (2006) crossed Smad8
mutant mice with heterozygous or homozygous Smad1 or Smad5
null alleles, there were no noticeable developmental disturbances
in the Smad8�/�:Smad1/5+/� mice, and the abnormalities
associated with Smad1/Smad5 null mice were not exacerbated
by the absence of Smad8. However, Smad1 and Smad5 double
heterozygous mutant mice displayed striking phenotypic simi-
larity to Smad1 and Smad5 mutant embryos and died at E10.5,
suggesting that Smad1 and Smad5 function cooperatively in
response to BMPs during development (Arnold et al., 2006).
Indeed, although not related to NS development, Smad1 has been
suggested to compensate for Smad5 loss in the angiogenic
endothelium (Umans et al., 2007), while a triple conditional
knockout study in mice reported that Smad1, Smad5 and Smad8
function redundantly in Mullerian duct regression (Orvis et al.,
2008). Despite the limited information ascertained from studies
involving complete knockdown of Smad1 and Smad5 in mice (due
to mid-gestation embryonic lethality), the sbn mutant zebrafish
allows the identification of severe neurodevelopmental defects
caused by null mutations of Smad5 (Hild et al., 1999). The sbn

mutant embryos are strongly dorsalised, displaying a complete
loss of ventral and posterior structures, as well as a ventral
expansion of dorsal structures such as the neuroectoderm and
somites. This dorsalisation demonstrates the importance of BMP-
Smad 1/5/8 signalling for appropriate development of the NS. In
support of this role, these neurodevelopmental defects of the sbn

mutant can be largely rescued by overexpression of BMPs,

Table 2
The effects of Smad 1/5/8 knockdown on nervous system development.

Mutation(s)/knockdown Effect(s) on NS development Reference(s)

Smad1

Smad1� Midbrain/hindbrain reductions (anatomical size) Hester et al. (2005)

Smad1flox/�; Wnt1 Cre Decreased axonal growth of cultured adult DRG from these conditional mutant mice Parikh et al. (2011)

Brn4::Cre; Smad1flox/flox Reduction in axonal growth of dI1 interneurons of the dorsal spinal cord Hazen et al. (2012)

Smad1 siRNA Inhibition of the axonal growth of cultured adult DRG neurons Zou et al. (2009)

Smad1 siRNA Inhibition of the axonal growth of cultured E12.5 DRG neurons Parikh et al. (2011)

Smad1 shRNA Reduced generation of dI1,dI3 and dI5 interneurons of the dorsal spinal cord Le Dreau et al. (2012)

Smad5

Smad5�/� Exencephaly (failure cranial neural tube closure) Chang et al. (1999)

Smad5�/� (sbn mutant) Ventral expansion of neuroectoderm and somites Lele et al. (2001)

Smad5�/� (sbn) trunk NCC deficiencies Nguyen et al. (2000)

Brn4::Cre; Smad5flox/flox Reduction in dI1 and dI3 interneurons of the dorsal spinal cord Hazen et al. (2012)

Smad5 shRNA Reduced generation of dI1,dI3 and dI5 interneurons of the dorsal spinal cord Le Dreau et al. (2012)

Smad8

Smad8 (hypomorphic) Midbrain/hindbrain reductions (anatomical size) Hester et al. (2005)

Smad8 shRNA reduced generation of dI1 interneurons of the dorsal spinal cord Le Dreau et al. (2012)

Smad4

Wnt1-Cre; Smad4 Defective cranial NCC derivatives Ko et al. (2007)

Wnt1-Cre; Smad4loxp/loxp Defective NCC derivatives Nie et al. (2008)

Smad4 siRNA reduced generation of dI1 interneurons of the dorsal spinal cord, and dorsal

expansion of dI2-4 interneuronal populations

Chesnutt et al. (2004)
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a constitutively active form of the BMPRIb, or Smad1 (Nguyen
et al., 1998). The somites of sbn mutants do not completely
circulise, as the swirl (BMP) mutant embryo does (Kishimoto et al.,
1997). Furthermore, sbn mutants survive segmentation unlike the
slightly more severely dorsalised swirl mutant. At a later stage, the
sbn embryo is characterised by loss of the tail and a ‘snailshell-like’
winding up of the trunk (Lele et al., 2001). Lele et al. (2001)
produced a more strongly dorsalised zebrafish mutant embryo
following further knockdown of Smad5 using morpholino
injection. These embryos displayed additional features, such as
a compressed anterior/head region, which was attributed to the
total loss of Smad5 activity, unlike with the hypomorphic sbn

allele. This finding is consistent with the cranial defects of Smad5
mutant mice described by Chang et al. (1999). The Smad 5 sbn

mutant also displays NCC deficits, such as diminished trunk NCC
formation, showing that BMP-activated Smad5 signalling is
crucial for NCC generation (Nguyen et al., 2000). The conditional
knockout of Smad1 and Smad5 in the mouse neural tube,
demonstrated that these BR-Smads have distinct functions in
the developing SC with Smad1 critical for the regulation of dI1
axonal growth and Smad5 required for the specification of dI1 and
dI3 interneuronal populations (Hazen et al., 2012). This finding is
surprising considering the wealth of evidence that suggests
functional redundancy among Smad 1, 5 and 8 (Arnold et al., 2006,
Le Dreau et al., 2012, Orvis et al., 2008, Umans et al., 2007). The
conditional knockout of Smad4 in mouse NCC leads to the
downregulation of genes critical for NCC development, such as the
BMP target gene Msx1, and results in defective NCC derivatives
which lead to mid-gestation death (Nie et al., 2008). In a similar
study that focused on cranial NCC development, the conditional
knockdown of Smad4 in NCC showed that BMP-Smad signalling is
required for the fate specification of cranial NCC (Ko et al., 2007). It
is important to note that the defects observed in these Smad4
mutants may be as a result of altered TGFb signalling, and thus
these studies demonstrate the importance of Smad4 in mediating
the activities of BMPs, and/or TGFbs, in NCC development.

Due to the difficulty in generating viable Smad1/5/8 mutants, a
number of studies have used RNA interference (RNAi) to determine
the effects of the loss of Smad 1/5/8 signalling on the development
of the NS (see Table 2), specifically in relation to the development
of the dorsal SC. The knockdown of Smad1 in E12.5 DRG neurons by
siRNA results in the inhibition of axonal growth capacity in these
neurons, an effect which was rescued by an RNAi-resistant Smad1
construct (Parikh et al., 2011). Furthermore, cultured DRG neurons
from Smad1 conditional knockout mice have a markedly decreased
capacity to initiate or maintain axon extension (Parikh et al., 2011).
A similar study that used RNAi to knockdown Smad1, and
subsequently performed rescue experiments using an RNAi-
resistant Smad1 construct, showed that Smad1 is required for
axonal growth of cultured adult DRG neurons (Zou et al., 2009).
These studies demonstrate the importance of Smad1 in DRG
neuronal differentiation, specifically axonal outgrowth. In contrast
to the Hazen et al. (2012) study mentioned above, in vivo shRNA
knockdown experiments showed that BMP7, Smad1 and Smad5
are all required for the generation of dI1, dI3 and dI5 interneuronal
populations in the chick (Le Dreau et al., 2012). Smad8 has also
been shown to be required for the generation of dI1 interneurons,
suggesting that Smad8 may not be completely functionally
redundant during NS development (Le Dreau et al., 2012).
Furthermore, in support of the idea of functional redundancy
between Smad1 and Smad5, overexpression of a pseudo-phos-
phorylated mutant version of Smad1 rescued Smad5 loss of
function, while pseudo-phosphorylated Smad5 overexpression
rescued the Smad1 shRNA phenotype (Le Dreau et al., 2012). In
light of the conflicting reports discussed in this review, whether
Smad1 and Smad5 function redundantly or have unique but

complementary roles during SC neurogenesis will be an interesting
question for future research, as well as their mechanisms of action
during this process. The inhibition of BMP-Smad 1/5/8 signalling in
the dorsal SC by reducing the expression of Smad4 using siRNA,
results in the loss of most of the dI1 interneuronal population, and
the dorsal expansion of dI2-4 interneurons in the chick embryo
(Chesnutt et al., 2004). These studies demonstrate that Smad1,
Smad4 and Smad5 are essential for the generation of the dorsal SC
interneuronal populations. The Hazen et al. (2012) study suggests
that Smad1 is not required; however, these contradictory results
may reflect subtle differences between mouse and chick SC
patterning. Indeed, the disruption of Smad1 and/or Smad5
expression in the chick dorsal SC by RNAi showed that Smad1
can partially compensate for the loss of Smad5 in the chick (Hazen
et al., 2012).

The knockdown studies discussed above provide further
evidence for the importance of BMP-Smad 1/5/8 signalling in neural
induction, neural crest development and dorsal SC development.
Future studies involving the conditional knockout of Smad1, Smad5
and/or Smad8 or the use of RNAi for these BR-Smads in the
developing NS, followed by phenotypic analysis of various regions of
the CNS and PNS will provide further information regarding the roles
of Smad 1/5/8 signalling in NS development. Despite the fact that the
Smad 1/5/8 signalling pathway is the canonical signalling pathway
of the BMP family, it cannot be assumed that the effects which BMPs
exert on neural cells are mediated by these transcription factors.
Knockout studies similar to the ones described above should be
conducted, to conclusively verify the involvement of Smads 1/5/8 in
mediating these effects.

5. Conclusion

The signalling of Smads 1/5/8 in response to the BMP family of
proteins is essential in the development of the NS. Regulated Smad
signalling is involved in the generation of the PNS primordium (the
neural crest), while its inhibition is required for the formation of
the CNS primordium (the neural plate). Following the generation of
these NS primordia, BMP-Smad signalling continues to regulate
their further development. The most characterised example is in
the patterning of the dorsal SC, where BMP-Smad signalling
regulates neurite outgrowth. Smad 1/5/8 signalling is involved in
the induction of both neuronal and glial fates from NSCs/neural
precursors in a variety of CNS regions, such as the cortex,
hippocampus, midbrain, hindbrain and SC. The mechanism by
which BMP-Smad signalling achieves the induction of both
neuronal and glial phenotypes is unknown, however it is likely
to be dependent on spatial and temporal factors. Elucidating the
various receptor combinations, cytosolic interactions, transcrip-
tional effectors, and/or target genes that mediate this dual-
inductive effect of Smad 1/5/8 is crucial for thorough understand-
ing of the roles of BMP-Smad signalling in neural development. In
the PNS, Smad 1/5/8 signalling is involved in the development of
both the sympathetic and enteric NSs, in which it also mediates
neurite outgrowth in the former and induces both neuronal and
glial cell fates in the latter. It is clear that BMP-Smad 1/5/8 is a key
regulator of neural development, however its role in the
development of a large number of neuronal populations remains
to be investigated. Such knowledge could provide important
neurodevelopmental information that could be used in the
treatment of neurological disorders.
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Parkinson's disease is the second most common neurodegenerative disease, and is characterised by the pro-
gressive degeneration of the nigrostriatal dopaminergic (DA) system. Current treatments are symptomatic,
and do not protect against the DA neuronal loss. One of the most promising treatment approaches is the appli-
cation of neurotrophic factors to rescue the remaining population of nigrostriatal DA neurons. Therefore, the
identification of new neurotrophic factors for midbrain DA neurons, and the subsequent elucidation of the
molecular bases of their effects, are important. Two related members of the bone morphogenetic protein
(BMP) family, BMP2 and growth differentiation factor 5 (GDF5), have been shown to have neurotrophic effects
on midbrain DA neurons both in vitro and in vivo. However, the molecular (signalling pathway(s)) and cellular
(direct neuronal or indirect via glial cells) mechanisms of their effects remain to be elucidated. Using the
SH-SH5Y human neuronal cell line, as a model of human midbrain DA neurons, we have shown that GDF5 and
BMP2 induce neurite outgrowth via a direct mechanism. Furthermore, we demonstrate that these effects are
dependent on BMP type I receptor activation of canonical Smad 1/5/8 signalling.

© 2013 Elsevier Inc. All rights reserved.

Introduction

Parkinson's disease is the second most common neurodegenerative
disease and is characterised bymotor symptoms, including bradykinesia,
akinesia and resting tremor. The pathological hallmark of the disease
is the progressive degeneration of dopaminergic neurons that project
from the midbrain to the striatum. Despite fifty years of investigation,
the mainstay of treatment is symptomatic, involving exogenous L-dopa
or dopamine receptor agonists, but these treatments do not protect
against the dopaminergic neuronal loss which continues unabated
(Toulouse and Sullivan, 2008). A large variety of experimental treatment
strategies have been proposed, but one promising approach is
neurotrophic factor therapy. This involves the addition of neurotrophic
factors to the brain to rescue the remaining dopaminergic neurons
(Sullivan and Toulouse, 2011). An intensive research effort has identified
glial cell line-derived neurotrophic factor (GDNF) as a potent dopami-
nergic neurotrophic factor (Lin et al., 1993). GDNF promotes the survival

of midbrain dopaminergic neurons in vitro and in vivo but, despite initial
successes in open-label clinical trials (Gill et al., 2003; Patel et al., 2005;
Slevin et al., 2005), a double-blind placebo-controlled clinical trial
showed no beneficial effect of GDNF administration to the striatum
(Lang et al., 2006). Thus, it is important that new neurotrophic factors
are identified and that the molecular bases of their effects on midbrain
dopaminergic neurons are elucidated.

GDNF is a member of the transforming growth factor (TGF)-β
superfamily which is a large family of structurally-related molecules
that are grouped into subfamilies based on sequence similarities.
These subfamilies include the GDNF family itself, the bone morphoge-
netic proteins (BMPs), growth differentiation factors (GDFs) and
others (Miyazono et al., 2001). Members of the BMP and GDF families
have been shown to play diverse roles in the development and func-
tion in a variety of tissues, but in particular they play critical roles in
skeletal development (Miyazono et al., 2010; Xiao et al., 2007). In
recent years, members of the BMP and GDF families have been
shown to play key roles as neurotrophic factors that regulate the
development of the nervous system and its maintenance in adulthood
(Liu and Niswander, 2005). Two of the most extensively studied
members of these families are GDF5 and BMP2. Both of these factors
possess the characteristic cystine-knot motif, a structural hallmark
of members of the TGF-β superfamily and share 52% sequence simi-
larity (Sullivan and O'Keeffe, 2005).

GDF5 expression in developing rat ventralmidbrain (VM) correlates
with the development of midbrain DA neurons (O'Keeffe et al., 2004b).
It promotes the survival and growth of these neurons both in vitro
(Krieglstein et al., 1995; O'Keeffe et al., 2004a; Wood et al., 2005) and
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in vivo (Costello et al., 2012; Hurley et al., 2004; Sullivan et al., 1997,
1998, 1999). Similarly, BMP2 promotes the survival and growth ofmid-
brain dopaminergic neurons in vitro (Jordan et al., 1997; Reiriz et al.,
1999) and in vivo (Espejo et al., 1999). Despite these findings, the
molecular mechanisms that mediate the neurotrophic effects of GDF5
and BMP2 on midbrain dopaminergic neurons are unknown.

During skeletal development, GDF5 and BMP2 are known to
act through a canonical pathway involving the activation of two cell-
surface serine/threonine kinase receptors, type I and type II bone mor-
phogenetic protein receptors (BMPRs) (Miyazono et al., 2010; Sieber
et al., 2009). Upon ligand binding, the constitutively-active BMPRII
transphosphorylates the cytoplasmic domain of the BMPRI (BMPRIa
or BMPRIb) which through a series of protein–protein interactions
phosphorylate Smad proteins that translocate to the nucleus and
modulate gene transcription. In recent years, both GDF5 and BMP2
have also been shown to signal via non-canonical, pathways, which in-
volve the activation of a variety of intracellular pathways, including
ERK, JNK and p38mitogen activated protein kinases (MAPK), depending
on the cellular context (Derynck and Zhang, 2003; Moustakas and
Heldin, 2005). In the present study SH-SY5Y neuroblastoma cells, widely
used as models of human DA neurons, were used to investigate the mo-
lecular mechanisms mediating the neurotrophic effects of GDF5 and
BMP2.

Results

BMP2 and GDF5 induce the neuronal differentiation in SH-SH5Y cells

Firstly the expression of BMPRs and Smad proteins in the SH-SY5Y
cell line was examined. To do this, SH-SY5Y cells were cultured for
three days before being fixed and processed for immunocytochemistry.
Alternatively, RNAwas prepared from cultured cells for RT-PCR analysis
of gene expression. RT-PCR analysis showed that the SH-SY5Y cell line
expresses mRNAs for the BMPRs, BMPR-II and BMPR-Ib (Fig. 1A)
along with the receptor-regulated Smads, Smad1, Smad5 and Smad8
(Smad 1/5/8), and the common-mediator Smad, Smad4 (Fig. 1A).
Immunocytochemistry showed strong expression at the protein level
of BMPRII and BMPRIb (Fig. 1B). Similarly, immunocytochemistry for
Smads 1/5/8 revealed that these proteins were strongly expressed,
displaying a predominantly cytoplasmic distribution in unstimulated
cells (Fig. 1C). Negative controls were performed for all immunocyto-
chemical analyses to confirm the specificity of the primary antibodies
(data not shown).

In cultures of E14 rat VM, GDF5 and BMP2 have been shown to
induce differentiation of DA neurons, as evident from the increased
morphological arborisation of treated cells (O'Keeffe et al., 2004a;
Reiriz et al., 1999). To directly compare the effects of GDF5 and
BMP2 on neuronal differentiation, using similarmorphological parame-
ters, the phenotypic effects of GDF5 and BMP2 on SH-SY5Y cells were
assessed using a MTT assay. A decrease in the MTT absorbance in this
assay may be indicative of an increase in differentiation. SH-SY5Y cells
were treated with 200 ng/ml of BMP2 or GDF5 daily, before a MTT
assay was performed on 1 day in vitro (DIV), 2 DIV and 4 DIV. Both
BMP2 and GDF5 significantly reduced, to an identical extent, the MTT
absorbance at 4 DIV compared to the untreated control (Fig. 1D).
These data suggest that BMP2 andGDF5maybepromoting the differen-
tiation of SH-SY5Y cells.

To more directly assess differentiation, a morphological assessment
of the neurite complexity in GDF5 and BMP2-treated SH-SY5Y cells was
performed. SH-SY5Y cells were treatedwith BMP2 or GDF5 daily before
being immunocytochemically stained forβ-actin at 4 DIV, to allow visu-
alisation of the cytoskeleton. The total length of the neurites was then
measured using a modified line intercept method (Mayhew, 1992).
Treatment with either BMP2 or GDF5 for 4 DIV resulted in a significant
increase in the total length of neurites when compared to untreated
controls (Fig. 1E, F). There was no significant difference in the number

of cells analysed between the groups (data not shown). These data
show that similar to primary cultures of the E14 rat midbrain
(O'Keeffe et al., 2004a; Reiriz et al., 1999), BMP2 and GDF5 induce
neuronal differentiation in SH-SY5Y cells.

BMP2 and GDF5 activate canonical Smad 1/5/8 signalling in SH-SY5Y
cells

To determine the molecular basis of this neurotrophic effect, the
temporal kinetics of the activation of the canonical (Smad 1/5/8) and
non-canonical (MAPK) signalling pathways by BMP2 and GDF5 were ex-
amined. SH-SY5Y cells were treated with BMP2 or GDF5 at 6 different
time points (0, 5, 15, 30, 60, 120min), andwere then immunocytochem-
ically stained for phospho-Smad 1/5/8, phospho-p38, phospho-JNK, and
phospho-Erk. Densitometric analysis of the nuclear levels of phospho-
Smad 1/5/8 showed that both BMP2 and GDF5 significantly increased
the amount of nuclear phospho-Smad 1/5/8, although with different
temporal profiles, compared to the untreated control (0 min). BMP2 in-
creased nuclear phospho-Smad 1/5/8 levels at all time points examined
(Fig. 2A, B), whereas an increase in nuclear phospho-Smad was not
detected until 1 hour post-GDF5 treatment (Fig. 2C, D). Interestingly,
both BMP2 and GDF5 reduced the basal level of all MAPK pathways
examined (Supplementary Fig. 1). These data suggest that the effects of
BMP2 and GDF5 on the differentiation of SH-SY5Y cells (Fig. 1) may be
mediated through a BMPR-dependent activation of the canonical Smad
1/5/8 pathway.

Dorsomorphin prevents BMP2- and GDF5-induced neuronal differentiation
and Smad activation in SHSY5Y cells

To explore this premise, dorsomorphin, a small molecular inhibitor
of BMPRI (Yu et al., 2008), was used to determine whether the effects
of BMP2 and GDF5 were mediated by the BMPRI. To determine a work-
ing concentration of dorsomorphin, an array of different concentrations
was used, ranging from 100 ng/ml to 200 μg/ml. Dorsomorphin con-
centrations above 2 μg/ml caused non-selective SH-SY5Y cell death
after 1 DIV (Supplementary Fig. 2A). At concentrations of 1 μg/ml and
below, SH-SY5Y cells were unaffected by daily dorsomorphin treat-
ments for up to 4 DIV (the duration of BMP2 and GDF5 treatment),
with no observable change in their cellular morphology compared to
the control (Supplementary Fig. 2B). An MTT assay performed at 4
DIV confirmed that daily treatments with 1 μg/ml of dorsomorphin
did not significantly affect the viability of SH-SY5Y cells (Supplementary
Fig. 2C).

Firstly, pre-treatment of SH-SY5Y cells with 1 μg/ml of dorsomorphin
completely prevented the BMP2- and GDF5-induced decrease in MTT
absorbance at 4 DIV (Fig. 3A). Similarly, when SH-SY5Y cells were
pre-treated with dorsomorphin, BMP2 and GDF5 failed to induce any
significant increase in the total neurite length compared to the untreated
control group (Fig. 3B, C). Therewas no significant difference in the num-
ber of cells analysed between the groups (data not shown). To determine
if dorsomorphin inhibited BMP2- and GDF5-induced Smad activation
(Fig. 2), SH-SY5Y cells were pre-treated with dorsomorphin prior to
the addition of BMP2 and GDF5, and the levels of nuclear phospho-
Smad 1/5/8 were assessed and compared to non-dorsomorphin treated,
BMP2- and GDF5-treated controls. Dorsomorphin completely prevented
the BMP2- (Fig. 3D) and GDF5- (Fig. 3E) induced activation of the Smad
1/5/8 signalling pathway. These data suggest that the phenotypic effects
of BMP2 and GDF5 on neuronal differentiationmay be directly mediated
through a BMPR-dependent canonical Smad 1/5/8 pathway.

Canonical BMPR-Smad activation induces neuronal differentiation in
SH-SY5Y cells

It is well established that BMP2 can signal through both BMPRIa
and BMPRIb, whereas GDF5 predominantly signals through BMPRIb
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(Nishitoh et al., 1996). This suggests that BMP2 and GDF5 may signal
through BMPRIb to induce differentiation. To examine this, we transfected
SH-SY5Y cells with a constitutively active BMPRIb (caBMPRIb) plasmid,

which induced a significant increase in total neurite length compared to
cells transfected with the relevant control plasmid (Fig. 4A, B). In agree-
ment with this finding, caBMPRIb transfected cells had significantly

Fig. 2. BMP2 and GDF5 activate the Smad 1/5/8 signalling pathway in SH-SY5Y cells. The relative immunofluorescence intensity of (A) BMP2- and (C) GDF5-treated SH-SY5Y cells, at 0
(untreated control), 5, 15, 30, 60 and 120 min, expressing phospho-Smad 1/5/8 as determined by densitometry (Image J) (*** P b 0.001 vs 0 min; One-way ANOVA and post hoc Tukey's
test; 50 cells for each group per experiment. N = 3). Data are expressed asmean ± SEM. Representative photomicrographs of (B) BMP2- and (D) GDF5-treated SH-SY5Y cells immuno-
cytochemically stained for phospho-Smad 1/5/8 at 0 and 120 min. Negative controls in which the primary antibody was omitted were also prepared (not shown). Scale bar = 100 μm.

Fig. 1. BMP2 and GDF5 induce neuronal differentiation in SH-SY5Y cells. (A) RT-PCR analysis of the BMPRs, BMPR1b and BMPRII, and of Smads 1, 4, 5, and 8 in SH-SY5Y cells. A 100 bp
ladder was used to determine the band size for each PCR product, and RT-PCR of GAPDHwas used as a positive control (not shown). Representative photomicrographs of SH-SY5Y cells
immunocytochemically stained for the BMPRs, (B) BMPRIb and BMPRII, or (C) Smad 1/5/8. (D)MTT assay of BMP2- and GDF5-treated (daily) SH-SY5Y cells at 1, 2 and 4 DIV, as indicated
(*** P b 0.001 vs BMP2/GDF5 4DIV; ANOVA with post-hoc Tukey's test; 4 measurements for each group per experiment. Number of repetitions (N) = 4). (E) Length of total neurites of
BMP2- and GDF5-treated (daily for 4 DIV) SH-SY5Y cells, as indicated (*** P b 0.001 vs control; ANOVA with post-hoc Tukey's test; 20 images analysed for each group per experiment.
N = 3). Data are expressed as mean ± SEM. (F) Representative photomicrographs of control, BMP2- and GDF5-treated SH-SY5Y cells, as indicated, immunocytochemically stained for
β-actin and counterstained with DAPI. Negative controls in which the primary antibody was omitted were also prepared (not shown). Scale bar = 100 μm.
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increased levels of nuclear phospho-Smad 1/5/8 when compared to
controls (Fig. 4C, D). Importantly, cells transfected with a control plas-
mid displayed the same level of nuclear phospho-Smad 1/5/8 as non
transfected neurons, indicating that the transfection procedure did not
alter the relative activation of this pathway (Fig. 4C, D).

To determine a functional link between BMPRIb-induced Smad
activation and SH-SY5Y differentiation, a siRNA against the co-Smad,
Smad4, was developed. The association of phosphorylated Smad 1/5/8
proteins with Smad4 following BMPRIb activation is required for the
effects of Smad 1/5/8 on gene transcription (Fig. 5A). Firstly, SH-SY5Y
cells were transfected with Smad4 siRNA with a transfection efficiency
of 25%. When we analysed Smad4 expression by RT-PCR in these
cultures, there was a clear reduction in Smad4 mRNA expression in
siRNA transfected cells (Fig. 5B). To explore this at the protein level,
immunocytochemistry was used to examine Smad4 expression in
individual cells transfected with Smad4 siRNA. Smad4 siRNA results in
a sustained and consistent knockdown of Smad4 protein in Smad4
siRNA-transfected cells (Fig. 5C). To determine if modulation of
Smad4 affected the differentiation of these cells, total neurite length of
cells transfected with Smad4 siRNA or with Smad4 overexpression vec-
tors was measured. In agreement with the dorsomorphin data (Fig. 3),
modulation of Smad4 expression did not affect total neurite length
per transfected SH-SH5Y cell (Fig. 5D). When SH-SY5Y cells were
co-transfected with the caBMPRIb and Smad4 siRNA, Smad4 siRNA
completely prevented the caBMPRIb-mediated significant increase in
average neurite length per transfected cell (Fig. 5E, F). These data sug-
gest that BMPR-mediated canonical Smad 1/5/8 signallingmaymediate
the neurotrophic effects of BMP2 and GDF5. To explore this directly, we
transfected SH-SY5Y cells with Smad4 siRNA and treated them with
BMP2 and GDF5. We found that in cells expressing Smad4 siRNA,
BMP2 and GDF5 did not promote neurite outgrowth compared to rele-
vant controls (Fig. 6A, B). Collectively these data show that activation of
canonical BMPRIb-Smad 1/5/8 signalling by BMP2 and GDF5 can induce
neuronal differentiation.

Discussion

The neurotrophic effects of BMP2 (Espejo et al., 1999; Jordan et al.,
1997; Reiriz et al., 1999) and GDF5 (Costello et al., 2012; Hurley et al.,
2004; Krieglstein et al., 1995; O'Keeffe et al., 2004a; Sullivan et al.,
1999; Wood et al., 2005), in particular, have been well documented
in primary VM neural cultures and in animal models of Parkinson's
disease. However, the downstreammolecular mechanisms that medi-
ate the neurotrophic effects of GDF5 and BMP2 on VM DA neurons are
unknown. In an attempt to define these molecular mechanisms,
the present study used the SH-SY5Y neuroblastoma cell line, which
has been used extensively as a model of human VM DA neurons
(Toulouse et al., 2012; Xie et al., 2010) and has been shown to be
capable of differentiation into DA neurons (Gomez-Santos et al.,
2002; McMillan et al., 2007; Presgraves et al., 2004; Xie et al., 2010).

The SH-SY5Y cells were first characterised with regards to the ex-
pression of BMPRs and Smad transcription factors. This study confirmed
that both type I and type II BMPRs are expressed on SH-SY5Y cells. In
addition, it was shown that the principal signal transduction machinery
for BMPs, Smad proteins 1, 5 and 8, is present in SH-SY5Y cells (including
in their activated form) aswell as Smad4which is required for the nucle-
ar translocation of Smads 1/5/8. These results demonstrate that SH-SY5Y
cells have the machinery to carry out canonical Smad 1/5/8 signalling in
response to BMPs.

A commonneurotrophic effect of BMP2 andGDF5 onVMDAneurons
in vitro is the induction of neurite outgrowth (O'Keeffe et al., 2004a;
Reiriz et al., 1999). This study has demonstrated that both BMP2 and
GDF5 induce the neuronal differentiation of SH-SY5Y cells. BMP2- and
GDF5 induced neurite extension and growth arrest in proliferating
SH-SY5Y cells, which is consistent with previous results shown for
BMP2 (Nakamura et al., 2003) and GDF5 (Toulouse et al., 2012) in
SH-SY5Y cells. It has been proposed that BMP2 and GDF5 exert their
neurotrophic effects on DA neurons indirectly through an action on
glial cells that are present in mixed neural cultures of E14 rat VM

Fig. 3. Dorsomorphin prevents BMP2- and GDF5-induced neuronal differentiation of SH-SY5Y cells. (A) MTT assay to assess cellular respiration of dorsomorphin pre-treated and/or
BMP2- and GDF5-, treated (daily for 4DIV) SH-SY5Y cells, as indicated (*** P b 0.001, * P b 0.05 vs control; ANOVA with post-hoc Tukey's test; 4 measurements for each group per
experiment. N = 4). (B) Length of total neurites of dorsomorphin pre-treated and/or BMP2- and GDF5-treated (daily for 4DIV) SH-SY5Y cells, as indicated (*** P b 0.001 vs control;
ANOVA with post-hoc Tukey's test; 20 images analysed for each group per experiment. N = 3). (C) Representative photomicrographs of dorsomorphin pre-treated and BMP2- and
GDF5-treated SH-SY5Y cells, as indicated, immunocytochemically stained for β-actin. Negative controls in which the primary antibody was omitted were also prepared
(not shown). Scale bar = 100 μm. The relative immunofluorescence intensity of dorsomorphin pre-treated, and/or (D) BMP2- and (E) GDF5-treated SH-SH5Y cells, at 0 (control),
15 and 60 min, expressing phospho-Smad 1/5/8 as determined by densitometry (Image J), as indicated (*** P b 0.001 vs 0 min; One-way ANOVA and post hoc Tukey's test; 50 cells
for each group per experiment. N = 3). Data are expressed as mean ± SEM.
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(Sullivan and O'Keeffe, 2005). However, the present study shows that the
neurotrophic effects of GDF5 and BMP2 are mediated directly on
neuronal-like cells, since there are no other cell types present in
SH-SY5Y cell cultures. This is in agreement with previous evidence show-
ing that GDF5 still exerts its survival-promoting neurotrophic effects in
glial-depleted VM cultures (Wood et al., 2005). A similar approach was
used to demonstrate that the neurotrophic effects of BMP2on striatal neu-
rons were as a result of direct neuronal action (Gratacos et al., 2001).

In order to examine the mechanism of this neuronal action of GDF5
and BMP2, dorsomorphin, a small molecular inhibitor of BMPRI (Yu
et al., 2008), was used. This showed that the neurotrophic effects of
BMP2 and GDF5 are dependent upon BMPRI activation. Dorsomorphin
prevented BMP2- and GDF5-induced neuronal differentiation, and acti-
vation of Smad 1/5/8 signalling, in SH-SY5Y cells. This finding is similar
to that of Parikh et al. (2011), who showed that inhibition of BMP7
signalling using dorsomorphin negatively affects BMP-induced neurite
outgrowth of E18.5 mouse hippocampal neurons. The present study
also shows that BMP2 and GDF5 activate Smad 1/5/8 signalling to the
same extent, however the kinetics of this Smad activation differed
between the two ligands. BMP2 resulted in nuclear translocation of
activated Smad proteins from 5 min onwards, whereas following
GDF5 this translocation was not seen until after an hour. The reason
for this difference in kinetics is unclear, as BMP2 and GDF5 share the
same binding site on BMPRIb (Nishitoh et al., 1996). Similar results
were reported by Drevelle et al. (2013), who found that BMP2 caused
Smad 1/5/8 phosphorylation within 30 min in cultured preosteoblasts,
while GDF2 required 4 h to induce the same effect; the precise mecha-
nism of these differing rates of activation and what, if any, is its func-
tional significance is unknown.

A study using fluorescent biosensors for direct visualisation of
Smad1 and Smad4 proteins demonstrated that a delay of 2–5 min oc-
curred between BMP4 (also known as BMP2b) activation of the BMPRs
and subsequent Smad1 phosphorylation in mammalian cells (Gromova
et al., 2007). This is consistent with our findings for BMP2 (also known
as BMP2a) showing Smad 1/5/8 activation from 5 min. Gromova et al.
describe Smad1 phosphorylation as the rate-limiting step of canonical
BMP-Smad signalling (Gromova et al., 2007). Because Smad1 phosphor-
ylation is carried out by the kinase domain of BMP-activated BMPRI, it is
likely that the time delay in Smad phosphorylation is determined by the
BMPRI. Furthermore, in canonical BMP-Smad1/5/8 signalling, BMPs bind
to a pre-formed complex of BMPRI and BMPRII (Gilboa et al., 2000; Nohe
et al., 2002). Therefore, BMPR heteromerization does not contribute to
the delay in BMPRI phosphorylation of Smads 1/5/8. BMP2 can signal
through both BMPRIa and BMPRIb,whereas GDF5 predominantly signals
through BMPRIb (Nishitoh et al., 1996). It is possible that BMPRIa activa-
tion by BMP2 accounts for the distinct temporal profiles of Smad activa-
tion between BMP2 andGDF5. Indeed, SH-SY5Y cells have been reported
to express BMPRIa (Toulouse et al., 2012) as well as BMPRIb, as shown
here. Furthermore, GDF2 preferentially signals via activin receptor-like
kinase 1 (David et al., 2007), which may be the reason for the difference
between its Smad 1/5/8 phosphorylation kinetics and those of BMP2. In
light of these findings, it is possible that different BMPRI have distinct
temporal profiles of Smad 1/5/8 phosphorylation, which would explain
the different kinetics of Smad phosphorylation observed after treatment
with various BMPs.

In addition to demonstrating canonical Smad signalling activation by
BMP2 andGDF5, this study also showed that BMP2 andGDF5 reduce the
basal signalling of the phospho-ERK, phospho-JNK and phospho-p38
MAPK pathways in SH-SH5Y cells. Thus, non-canonical BMP signalling
pathwayswould appear not to contribute to the neurite outgrowth pro-
moting affects of BMP2 and GDF5. Interestingly, activation of p38MAPK
signalling in VM DA neurons is known to inhibit neurite outgrowth in
vitro (Collins et al., 2013), as such inhibition of p38 phosphorylation
by BMP2 and GDF5 may provide a permissive environment for optimal
neurite outgrowth. The inverse regulation of Smad andMAPK pathways
is in agreement with previous findings showing that MAPK signalling

Fig. 4. Activated BMPRIb induces neuronal differentiation and Smad 1/5/8 signalling in
SH-SY5Y cells. (A) Neurite length of caBMPRIb transfected SH-SY5Y cells, as indicated
(*** P b 0.001 vs control; ANOVA with post-hoc Tukey's test; 40 cells for each group per
experiment. N = 3). (B) Representative photomicrographs of control plasmid and
caBMPRIb plasmid-transfected SH-SY5Y cells expressing GFP. Scale bar = 25 μm.
(C) The relative immunofluorescence intensity of caBMPRIb-transfected SH-SY5Y cells
expressing phospho-Smad 1/5/8 as determined by densitometry (Image J), as indicated
(*** P b 0.001 vs 0 min; One-way ANOVA and post hoc Tukey's test; 50 cells for each
group per experiment. N = 3). Data are expressed as mean ± SEM. (D) Representative
photomicrographs of control plasmid and caBMPRIb plasmid-transfected (yellow
arrows), and non-transfected (white arrows) SH-SY5Y cells immunocytochemically
stained for phospho-Smad 1/5/8 and counterstained with DAPI. Negative controls in
which the primary antibody was omitted were also prepared (not shown). Scale bar =
25 μm. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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negatively regulates Smad 1/5/8 signalling by inducing Smad1 degrada-
tion (Eivers et al., 2008; Fuentealba et al., 2007). Therefore, negative
regulation of MAPK pathway signalling by BMP2 and GDF5 may con-
tribute to canonical Smad signalling-mediated neurite outgrowth, by
preventing MAPK-induced Smad1 degradation. Conversely, BMP2 has
been shown to induce neuronal differentiation of the PC12 cell line via
activation of the p38 MAPK pathway (Iwasaki et al., 1996, 1999). Fur-
thermore, dorsomorphin has been shown to induce neurite outgrowth
of PC12 cells via the ERK MAPK pathway (Kudo et al., 2011), while
this study found dorsomorphin to have no morphological affects on
SH-SH5Y cells. The present study demonstrates that BMP2 and GDF5

promote neurite growth through activation of canonical Smad 1/5/8
signalling in SH-SY5Y cells. These contrasting results may reflect inher-
ent differences between SH-SY5Y neuroblastoma cells and PC12 cells,
which arise from adrenal gland chromaffin cells.

Thepresentfindings show that theBMP2- andGDF5-inducedneuro-
nal differentiation of SH-SY5Y cells is mediated through BMPRIb. Such a
suggestion reflects the fact that BMPRIb is the preferential BMPRI acti-
vated by GDF5. BMP2 induced the neuronal differentiation of SH-SY5Y
cells to the same extent as GDF5, and thus likely acted via the BMPRIb
also. The fact that caBMPRIb mimics the effects of BMP2 and GDF5
strongly supports this possibility.

Fig. 5. Inhibition of the nuclear translocation of phosphorylated Smad 1/5/8 prevents BMPRIb-mediated induction of SHSY5Y neuronal differentiation. (A) Graphical representation
of the role of Smad4 in canonical BMP-Smad 1/5/8 signalling. (B) RT-PCR analysis of Smad4 and GAPDH (positive control) in siSmad4 (Smad4 siRNA)-transfected SH-SY5Y cells.
(C) Representative photomicrographs of siSmad4 transfected SH-SY5Y cells immunocytochemically stained for Smad4 and counterstained with DAPI. Negative controls in which
the primary antibody was omitted were also prepared (not shown). Scale bar = 25 μm (D) Neurite length of Smad4- or siSmad4-transfected SH-SY5Y cells. No significant differ-
ence (P b 0.05; ANOVA with post-hoc Tukey's test; 40 cells for each group per experiment. N = 3) was observed between the groups. (E) Neurite length of caBMPRIb- and/or
siSmad4-transfected SH-SY5Y cells, as indicated (*** P b 0.001 vs control; ANOVA with post-hoc Tukey's test; 40 cells for each group per experiment. N = 3). Data are expressed
as mean ± SEM. (F) Representative photomicrographs of caBMPRIb- and/or siSmad4-transfected SH-SY5Y cells expressing GFP. Scale bar = 50 μm.

Fig. 6. Inhibition of the nuclear translocation of activated Smad 1/5/8 prevents BMP2 and GDF5 induction of SHSY5Y neurite outgrowth. (A) Neurite length of control plasmid- and
siSmad4-transfected SH-SY5Y cells with or without BMP2 or GDF5 treatment, as indicated (*** P b 0.001 vs control; ANOVA with post-hoc Tukey's test; 40 cells for each group per
experiment. N = 3). Data are expressed as mean ± SEM. (F) Representative photomicrographs of control plasmid- and siSmad4-transfected SH-SY5Y cells with or without BMP2
or GDF5 treatment expressing GFP. Scale bar = 100 μm.
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This study has not only identified the BMPRI subtype that is most
likely responsible for mediating BMP2- and GDF5-induced Smad sig-
nalling and neurite extension, but has also demonstrated that the
transcriptional activity of Smad 1/5/8 is required for this BMP-
induced neuronal differentiation. The inhibition of the nuclear transloca-
tion of the Smad 1/5/8 transcription factors, using a siRNA to target
Smad4, prevented the SH-SY5Y neurite outgrowth induced by caBMPRIb,
and by BMP2 and GDF5.

The current study adds new evidence to the growing body of work
that suggests that BMP-Smad 1/5/8 signalling plays a key role in the
neurite extension of a number of neural populations. For example,
BMPs are widely expressed in the dorsal spinal cord, which houses
a BMP signalling centre known, as the roof plate (Lee and Jessell,
1999; Lee et al., 1998; Liem et al., 1995). There is a wealth of evidence
demonstrating that BMP signalling, including BMP2 and GDF5, regu-
lates neurite outgrowth in this region, including that of dorsal root
ganglion neurons and dI1 interneurons (Hazen et al., 2011, 2012;
Parikh et al., 2011; Phan et al., 2010; Niere et al., 2006). GDF5 and
BMP2 have both been shown to be expressed in the developing VM
during DA neurogenesis (Jordan et al., 1997; O'Keeffe et al., 2004b),
and thus may perform a role in the differentiation of VM DA neurons
similar to that of BMPs in the dorsal spinal cord. Such a suggestion is
plausible especially when one considers the evidence gained from
previous studies of their DA neurotrophic effects. Furthermore, al-
though not discussed in the paper, Monteiro et al. used Smad 1/5/8 re-
porter mice to demonstrate BMP-Smad-dependent transcriptional
activity in the VM region during DA neurogenesis at E10.5 (Monteiro
et al., 2008). It is thus possible that BMP2- and GDF5-induced Smad ac-
tivation regulates VM DA neurite outgrowth at this developmental
stage, as VM DA neurons begin to extend their axons dorsally at this
time point (Nakamura et al., 2000), as is the case for BMPs in the dorsal
spinal cord (Chizhikov and Millen, 2005; Ulloa and Briscoe, 2007).

Cell replacement therapy is one of the most promising therapies
for the treatment of Parkinson's disease (Bonnamain et al., 2012;
De Feo et al., 2012; Hedlund and Perlmann, 2009; Orlacchio et al.,
2010; Toulouse and Sullivan, 2008). Considering the importance of
establishing functional connections following the striatal transplanta-
tion of VM DA neurons, factors which promote their neurite outgrowth
are being considered as adjuncts to this potential therapy. GDF5 and
BMP2 would appear to be potential candidates for such a role, as both
have been shown to promote the survival of VM DA neurons (Jordan
et al., 1997; O'Keeffe et al., 2004a; Reiriz et al., 1999; Sullivan et al.,
1997). The present study has, for the first time, demonstrated that the
downstreammolecular mechanisms mediating the direct neurotrophic
effects of GDF5 and BMP2 are dependent upon BMPRI-mediated activa-
tion of canonical Smad 1/5/8 signalling.

Experimental methods

Cell culture

SH-SY5Y cells were maintained in Dulbecco's Modified Eagle
Medium Nutrient Mixture F-12 (Sigma), supplemented with 10% foetal
calf serum (Sigma), 100 nM L-Glutamine (Sigma), 100 U/ml Penicillin
(Sigma), 10 μg/ml Streptomycin (Sigma), in a humidified atmosphere
containing 5% CO2 at 37 °C. Where indicated, the cells were treated
with 200 ng/ml of GDF5 (kindly provided by Biopharm GmbH) or
recombinant human BMP2 (R&D Systems), and pre-treated (30 min
prior to GDF5 or BMP2 application) with 1 μg/ml of Dorsomorphin
(Sigma).

Electroporation of SH-SH5Y Cells

Electroporation of SH-SY5Y cells was carried out using the Neon™
Transfection System (Invitrogen). SH-SY5Y cell suspensions were pre-
pared for counting, and the required volume of cells to give 100,000

cells per well were centrifuged at 4 °C at 1100 rpm for 5 min. The cell
pellet was washed twice with 10 mM phosphate buffered saline (PBS)
(without CaCl2 and MgCl2) (Sigma), and then resuspended in the re-
quired amount of resuspension buffer (12 μl per transfection/plasmid)
(Invitrogen). 0.5 μg of a GFP plasmid and 1 μg of desired plasmid DNA
were added to the resuspended cells. 10 μl of the cell/plasmid mixture
was then electroporated according to the manufacturer's protocol
under specific parameters (1200 V; 20 ms; 3 pulses).

Smad4 small interfering RNA (siRNA) construction

The target sequence (5′TTGGGTCAACTCTCCAATGTC′3) was chosen
against Smad4, based on homology between the mouse, rat and human
mRNA sequences, and a GC content of 30–50%. This sequence was used
to design the 55 nucleotide siRNA template oligonucleotides according
to the vector manufacturer's protocol, which were then cloned into the
pSilencer 4.1-CMV vector (Ambion) according to the manufacturer's
instructions.

Reverse transcriptase-polymerase chain reaction (RT-PCR)

RNA from SH-SY5Y cells was isolated using an RNeasymini extraction
kit (Qiagen). An ImProm-II Reverse Transcription System (Promega) was
used to synthesise cDNA using a volume containing 1 μg of RNA in an
11.5 μl reaction for 90 min at 37 °C. Amplification was carried out using
a GoTaq Flexi DNA Polymerase system (Promega) as per manufacturer's
instructions. Each reaction mixture consisted of 2 μl cDNA, 2 μl forward
and reverse primer mix, 5× PCR buffer, 1.5 mM MgCl2, 1.25 mM PCR
dNTPs, 0.25 μl Taq polymerase and made up to a total of 25 μl with
nuclease-free water. Forward and reverse primer pairs, respectively, for
RT-PCR were as follows: GCAGCACAGACGGATATTGT and TTTCATGCC
TCATCAACACT for BMPRIb, GCTTCGCAGAATCAAGAACG and GTGGACTG
AGTGGTGTTGTG for BMPRII, AGTGACAGCAGCATCTTCGTGC and CGGG
TGTATCTCAATCCAGCAG for Smad1, AAGGTGAAGGTGATGTTTG and GA
GCTATTCCACCTACTGAT for Smad4, GGAGGAGTTGGAGAAAGCCTTG and
GGGAGTTGGGATATGTGCTGC for Smad5, and GTATCATCGCCAGGATG
TCA and TGTGGGGAGCCCATCTGAGT for Smad8. The expected product
sizes were 630 bp, 349 bp, 276 bp, 264 bp, 470 bp, and 104 bp
respectively.

Immunocytochemistry

Cultures were fixed in 4% paraformaldehyde in PBS for 10 min.
Following washes in 10 mM PBS containing 0.02% Triton X-100
(PBS-T in 10 mM PBS) for permeabilization, cultures were incubated in
blocking solution (5% bovine serum albumin) for 1 h at room tempera-
ture. Cultures were subsequently incubated in the following antibodies:
BMPRII (1:200; R&D Systems), BMPRIb (1:200; R&D Systems), Smad
1/5/8 (1:200; Cell Signalling), Smad4 (1:50; Millipore), phopsho-Smad
1/5/8 (1:200; Cell Signalling), phospho-p38 (1:50; Cell Signalling),
phospho-JNK (1:50; Cell Signalling), phospho-Erk (1:50; Cell Signal-
ling), and β-actin (1:200; Sigma) diluted in 1% bovine serum
albumin in 10 mM PBS at 4 °C overnight. Following 3 × 5min
washes in PBS-T, cells were incubated in Alexa Fluor 488- or 594-
conjugated secondary antibodies (1:500; Invitrogen) reactive to
the species of the primary antibodies and diluted in 1% bovine
serum albumin in 10 mM PBS, at room temperature for 2 h in the
dark. Cultures were counterstained with bisbenzimide (1:1000; in
10 mM PBS; Sigma). Cells were imaged under an Olympus IX70
inverted microscope fitted with an Olympus DP70 camera and
AnalysisD™ software. The fluorescence intensity of individual cells
stained for phospho-Smad 1/5/8 was measured using the Image J
analysis software (Rasband, WJ, http://rsb.info.nih.gov/ij/). The rela-
tive fluorescence intensity was calculated as the intensity of each
individual cell after subtraction of the background noise.
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MTT assay

Thiazolyl Blue Tetrazolium Bromide (MTT) assays were performed
to assess cell viability as previously described (Toulouse et al., 2012).
MTT was added to cells at a concentration of 0.5 mg/ml.

Measurement of cellular morphology

20 microscopic fields were randomly selected for each experiment,
and photographed using an Olympus IX70 inverted microscope. All
cells in each photograph were measured. The length of the neuritic
arborisation was estimated using standard stereological procedures
(Mayhew, 1992). A line grid was superimposed on the microscopic
images and the number of times each neurite intersected the grid was
recorded. The neurite lengthwas calculated using the following formula;
NL = α × T × (π/2), where α is the number of times the neurite inter-
sect the grid lines, and T is the distance between the gridlines on the
magnified image (taking into account the magnification factor).

Statistical analysis

Unpaired Student's t-test or one-way ANOVA with a post hoc
Tukey's test were performed, as appropriate, to determine significant
differences between groups. Results were expressed as means with
SEM and deemed significant when P b 0.05.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.mcn.2013.06.006.
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a b s t r a c t

Dopaminergic (DA) neurons of the ventral midbrain (VM) play vital roles in the regulation of voluntary
movement, emotion and reward. They are divided into the A8, A9 and A10 subgroups. The development
of the A9 group of DA neurons is an area of intense investigation to aid the generation of these neurons
from stem cell sources for cell transplantation approaches to Parkinson's disease (PD). This review
discusses the molecular processes that are involved in the identity, specification, maturation, target
innervation and survival of VM DA neurons during development. The complex molecular interactions of a
number of genetic pathways are outlined, as well as recent advances in the mechanisms that regulate
subset identity within the VM DA neuronal pool. A thorough understanding of the cellular and molecular
mechanisms involved in the development of VM DA neurons will greatly facilitate the use of cell
replacement therapy for the treatment of PD.

& 2013 Elsevier Inc. All rights reserved.

Introduction

In the adult CNS, almost 75% of all dopaminergic neurons reside
in the ventral midbrain (VM), with 400,000–600,000 found in the
human VM and 20,000–30,000 in the mouse VM (Blum, 1998;
German et al., 1983; Pakkenberg et al., 1991). During embryonic
development, these DA neurons are generated in the floor plate
region of the mesencephalon (Ono et al., 2007), and give rise to
three distinct clusters of VM DA neurons which ultimately develop
into anatomically and functionally distinct entities termed the A8,
A9 and A10 groups. The A9 cluster gives rise to the substantia
nigra pars compacta (SNc), whose neurons project to the dorsal
striatum via the nigrostriatal pathway. These neurons and their
striatal projections are required for the control of voluntary
movement, and the loss of these neurons is the pathological
hallmark of Parkinson's disease (PD), which is a neurodegenerative

disorder characterised by impaired motor function (Lees et al.,
2009; Toulouse and Sullivan, 2008). The other groups of DA
neurons, the A10 and A8 clusters, develop into the ventral
tegmental area (VTA) and the retrorubal field (RRF), respectively,
whose neurons innervate the ventral striatum and the prefrontal
cortex via the mesocorticolimbic system, and are involved in the
regulation of emotion and reward (Tzschentke and Schmidt,
2000). Altered/defective neurotransmission of the mesocortico-
limbic DA system has been associated with the development of
schizophrenia, drug addiction and depression (Meyer-Lindenberg
et al., 2002; Robinson and Berridge, 1993).

Interestingly, the A9 group of SNc DA neurons, which undergo
progressive degeneration in PD, are particularly vulnerable to cell
death in comparison to the other VM DA neuronal populations
(Alavian et al., 2008; Betarbet et al., 2000; Farrer, 2006; McNaught
et al., 2004). The anatomical, functional and apparent sensitivity
differences between these three populations of VM DA neurons
likely results from subtle developmental differences during their
ontogeny. However, little is known regarding the molecular
mechanisms that regulate the phenotypic and functional diversi-
ties between these VM DA neuronal populations. Given the
involvement of A9 DA neurons in PD, an intensive research effort
over the last five decades has focused on identifying the molecules
and mechanisms that regulate their development. This informa-
tion is vital to advance efforts to generate SNc DA neurons from
stem cells for application in cell replacement therapy for PD.
Through the mutation of specific genes, and the subsequent
analysis of VM DA neurogenesis and development, a number of
molecular pathways have been shown to play key roles in the
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development of VM DA neurons. This review discusses the
‘normal’ developmental programme that regulates VM DA neuro-
genesis, including the cellular and molecular determinants
involved in their regional specification, induction, differentiation
and maturation.

Early patterning of the ventral mesencephalon

The first key steps in VM DA generation are the early patterning
events which lead to the formation of the VM region. During
gastrulation, the dorsal ectoderm is restricted towards a neural
fate in response to signals arising from the Speamann organiser
(Harland, 2000; Hemmati-Brivanlou and Melton, 1997; Liu and
Niswander, 2005). The resulting neural plate is then subdivided
into restricted domains and subsequently closes to form the neural
tube, which is specified by graded signals along the anterior–
posterior (A/P) and dorso-ventral (D/V) axes (Puelles, 2001; Simon
et al., 1995; Ulloa and Briscoe, 2007). The development of the VM
region relies on appropriate A/P and D/V patterns of gene expres-
sion which are regulated by signals arising from two key structures
in the early embryo: the floor plate of the midbrain and the
isthmus organiser. Organisation of the VM region is initiated upon
formation of these signalling centres.

The floor plate is present along the length of the neural tube
and secretes the sonic hedgehog (Shh) signalling protein from
around embryonic day (E) 8.5 onwards in the mouse (Echelard
et al., 1993; Ho and Scott, 2002; Hynes et al., 1995a). Interestingly,
the spatiotemporal expression pattern of Shh in the VM has been
shown to contribute to the diverse populations of VM DA neurons,
with the ‘early medial pool’ giving rise primarily to VTA, and very
few SNc, DA neurons and the ‘later intermediate pool’ giving rise
to DA neurons of all three subgroups, but largely contributing to
the SNc (Joksimovic et al., 2009a). In the floor plate, the bHLH
(basic helix–loop–helix) transcription factor Hes1 (also expressed
by the isthmus organiser) has been shown to suppress proneural
gene expression and induce cell cycle exit (Baek et al., 2006; Ono
et al., 2010). Null mutation of Hes1 results in a transient increase in
the number of VM DA neurons between E11.5 and E12.5, followed
by a significant reduction in their number from E13.5, compared to
the wild type (Kameda et al., 2011). Interestingly, another bHLH
transcription factor expressed in the floor plate, Nato3, has been
shown to repress Hes1 expression, and mutation of Nato3 has been
shown to result in a reduction in the number of VM DA neurons
generated due to unchecked Hes-1-mediated suppression of
proneural genes and the induction of cell cycle arrest (Ono et al.,
2010).

The isthmus organiser is a unique signalling centre that
separates the midbrain from the hindbrain and is necessary for
the development of both of these brain regions (Liu and Joyner,
2001; Rhinn and Brand, 2001). The correct positioning of the
isthmus organiser at the midbrain-hindbrain boundary is depen-
dent on the mutual repression of two opposing homeodomain
transcription factors: Otx2 and Gbx2 (Martinez-Barbera et al.,
2001). Otx2 is expressed in the forebrain and midbrain of the
developing anterior neural tube (Acampora et al., 1997; Matsuo
et al., 1995; Simeone et al., 1992), while Gbx2 is expressed more
posteriorly in the anterior hindbrain (Wassarman et al., 1997).
Gbx2 expression at the posterior border limits Otx2 expression
which creates the sharp boundary between the midbrain and the
hindbrain (Millet et al., 1999).

Fibroblast growth factor 8 (FGF8) is a diffusible factor secreted
by the isthmus organiser (Rhinn and Brand, 2001), from around E8
until at least E12.5 in the mouse midbrain-hindbrain boundary
(Crossley and Martin, 1995). Surprisingly, although Otx2 and Gbx2
are critical for the correct positing of the isthmus organiser, they

are not required for the expression of FGF8, or for the induction of
other isthmus organiser-genes, however they are essential for the
correct positioning of the expression domains of these genes
(Brodski et al., 2003; Liu and Joyner, 2001). This is highlighted
by studies showing that if the position of the isthmus organiser is
moved caudally as a result of ectopic Otx2 expression in hindbrain,
there is an increase in the number of VM DA neurons (Brodski
et al., 2003). Similarly if its position is moved rostrally by depleting
Otx2 in the midbrain, there is a decrease in the number of VM DA
neurons (Brodski et al., 2003), demonstrating the critical impor-
tance of isthmus organiser positioning for normal VM DA
generation.

As Otx2- and Gbx2-dependent sharpening of the borders of the
isthmus is occuring, a second group of transcription factors begin
to be expressed in the isthmus organiser. These include the paired
box gene Pax2 (Urbanek et al., 1997), the lim-homeodomain factor
Lmx1b (Adams et al., 2000; Smidt et al., 2000), the secreted
glycoprotein Wnt1 (Adams et al., 2000; Crossley and Martin,
1995, Davis and Joyner, 1988; Wilkinson et al., 1987), and
Engrailed-1 (En1) (Davis and Joyner, 1988). Of these, Pax2 is
required for the induction of FGF8 expression by the isthmus,
whereas Wnt1 and En1 function cooperatively with Otx2 and Gbx2
to further refine the position of the expression domain of FGF8 at
the isthmus (Ye et al., 2001).

Shortly after the induction and positioning of FGF8 expression,
Engrailed-2 (En2) and Pax5 start to be expressed in the midbrain-
hindbrain boundary. These genes play critical roles in the regional
specification of the VM, and homozygous mutant mice null for
Otx2 (Acampora et al., 1995; Ang et al., 1996), Wnt1 (McMahon and
Bradley, 1990; Prakash et al., 2006), Pax2 and Pax5 (double
mutant) (Schwarz et al., 1997), En1 and En2 (double mutant) (Liu
and Joyner, 2001; Simon et al., 2001), or Lmx1b (Smidt et al., 2000)
all display major VM defects, including partial or total loss of VM
DA neurons (see Table 1).

Identity of ventral midbrain dopaminergic neural precursors

Once the appropriate patterning of the VM region has occurred, a
developmental programme involving a sequential pattern of gene
expression establishes the identity of VM DA neural precursors (NPs)
that ultimately generate VM DA neurons (Fig. 1). The identity of these
VM DA NPs has been the focus of intensive research in recent years,
largely due to their potential to be used as a cell source to generate
DA neurons for cell replacement therapy in PD (Kim, 2011; Morizane
et al., 2008; Toulouse and Sullivan, 2008).

The origin of VM DA NPs has been debated for many years, with
regions such as the diencephalon (Marin et al., 2005), isthmus
(Marchand and Poirier, 1983) and VM basal plate (Hynes et al.,
1995a, 1995b) emerging as potential candidates. Despite this
research, the precise identity of VM DA NPs remained elusive
until recently, when a study showed that floor plate cells in the
murine VM become neurogenic and subsequently give rise to DA
neurons (Ono et al., 2007). This discovery was surprising as the
floor plate was thought to consist of specialised non-neurogenic
glial type cells that were largely involved in ventralizing the neural
tube, mainly by secreting Shh (Fuccillo et al., 2006; Jessell, 2000;
Placzek and Briscoe, 2005). This role in ventralisation seems to
remains the main function for floor plate cells caudal to the
midbrain, as the hindbrain floor plate has been shown to be
non-neurogenic (Joksimovic et al., 2009b; Ono et al., 2007).
However, the VM floor plate is different to its caudal counterparts
and attains neurogenic potential. Ono et al. (2007) demonstrated
that Otx2, which is critical for the positioning of the isthmus
organiser, is also essential for the neurogenic potential of VM floor
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plate cells. This finding expands the importance of this gene in
determining the overall structure of the VM region.

However, although the region from which VM DA NPs arise
has been determined, the specific floor plate cell type which is a
DA NP cell remains to be identified. Fate-mapping studies using a
marker for radial glia-specific marker GLAST demonstrated
that radial glial-like cells in the floor plate of the mouse VM were
DA NPs (Bonilla et al., 2008). Shortly thereafter, a similar study
using human VM tissue demonstrated that DA NPs in the

VM floor plate showed radial glial characteristics, that is they
expressed the radial glial markers, vimentin and BLBP, and
displayed a radial morphology (Hebsgaard et al., 2009). VM DA
neurons therefore arise from floor plate radial glial-like NPs. The
radial-glial origin of DA neurons should not be considered peculiar
due to its departure from the classical view of radial glia as a
supportive glial cell type. Indeed, the separate identities of radial
neuroectodermal stem cells and radial glial cells is regularly
challenged in the literature, with some authors suggesting that

Table 1
Genetic mutations affecting the development of VM DA neurons.

Mutation(s) Effect(s) on DA development Reference(s)

Otx2 −/− Loss of VM DA neurons (midbrain absent) Acampora et al. (1995), Ang et al. (1996)
Wnt1 −/− Severe reduction in VM DA neurons generated McMahon and Bradley (1990), Prakash et al. (2006)
Pax2 −/−: Loss of VM DA neurons (midbrain absent) Schwarz et al. (1997)
Pax5 −/−
En1 −/−: VM DA neurons lost by E14 via apoptosis Alberi et al. (2004), Liu and Joyner (2001), Simon et al.

(2001)En2 −/−
Lmx1b −/− Substantial reduction in VM DA neurons generated, and disappearance of Pitx3− VM

DA neurons by birth
Deng et al. (2011), Smidt et al. (2000)

Hes1 −/− Transient increase (∼E12) in VM DA neurons, followed by their significant reduction
(from E13.5). Dorsal migration and hindbrain invasion

Kameda et al. (2011)

Nato3 −/− Reduction in VM DA neurons generated Ono et al. (2010)
FGFR −/− Deficit of VM DA neurons Lahti et al. (2012), Saarimaki-Vire et al. (2007)
FGF2 −/− Peri-/post-natal increase in VM DA neurons Ratzka et al. (2012)
Lmx1a −/− Substantial reduction in VM DA neurons generated Deng et al. (2011), Ono et al. (2007)
En1Cre/+; Reduction in VM DA neurons due to failure of VM DA NP induction Omodei et al. (2008), Puelles et al. (2004)
Otx2flox/flox

Ngn2 −/− Reduction in mature VM DA neurons generated Kele et al. (2006)
Oc1 −/−: Reduction in VM DA neurons generated Chakrabarty et al. (2012)
Oc2 −/−
Gli1 −/−: Deficient VM DA neurogenesis (more severe than Gli2 −/−) Park et al. (2000)
Gli2 −/−
Gli2 −/− Deficient VM DA neurogenesis Park et al. (2000)
Lmx1a −/−; ShhCre/+;
Lmx1b −/−

Substantial reduction in VM DA neurons generated (more severe than Lmx1a −/−) Yan et al. (2011)

Lmx1a −/−: Lmx1b
+/−

Substantial reduction in the generation of VM DA neurons (more severe than
Lmx1a −/−)

Deng et al. (2011)

Lrp6 −/− Delayed differentiation of VM DA neurons Castelo-Branco et al. (2010), Pinson et al. (2000)
Fzd3 −/−: Deficient VM DA neurogenesis (severe midbrain defects) Stuebner et al. (2010)
Fzd6 −/−
Fzd3 −/− Transient reduction in VM DA neuron generated Stuebner et al. (2010)
Wnt2 −/− Reduction in VM DA neurons generated Sousa et al. (2010)
β-catenin (Th-IRES-
Cre; β-CtnEx3/+

mutant)

Reduction in VM DA neurogenesis Tang et al. (2009)

Dkk1 −/− Severe loss of VM DA neurons Ribeiro et al. (2011)
L1 −/− Positional abnormalities of VM DA neurons Demyanenko et al. (2001)
Reelin −/− Failure of VM DA neuron lateral migration Nishikawa et al. (2003)
DCC −/− Aberrant VM DA neuron migration, dorsal shifting of ventral striatal DA projections,

aberrant crossing of MFB fibres at caudal diencephalic midline, and reduction of
prefrontal cortex DA innervation

Xu et al. (2010)

Ebf1 −/− Impaired tangential migration of VM DA neurons Yin et al. (2009)
Nurr1 −/− Lack TH, AADC, VMAT2 and DAT expression in VM DA neurons, and their

subsequently loss
Castillo et al. (1998), Filippi et al. (2007), Saucedo-
Cardenas et al. (1998), Smits et al. (2003), Wallen et al.
(1999)

Nurr1 −/− (at late
stage of DA dev.)

VM DA neuron degeneration (snc more vulnerable) Kadkhodaei et al. (2009)

FoxA2 −/− Increase in numbers of Nurr1+ TH− neurons in VM Ferri et al. (2007)
FoxA2 +/− Aged mice develop PD-like symptoms and pathologies Kittappa et al. (2007)
Pitx3 −/− Deficit of snc DA neurons from E12.5 (VTA largely unaffected) Hwang et al. (2003), Nunes et al. (2003), Smidt et al.

(2004), Van Den Munckhof et al. (2003)
En1 +/−: Progressive degeneration of VM DA neurons (8–24 weeks) Sonnier et al. (2007)
En2 +/+
En1 +/−: Progressive degeneration of VM DA neurons (more pronounced in snc) Sgado et al. (2006), Sonnier et al. (2007)
En2 −/−
Nkx2.1 −/− Aberrant crossing of MFB fibres at caudal diencephalic midline Kawano et al. (2003)
DCC +/− Increased branching of VM DA fibres in prefrontal cortex Manitt et al. (2011)
Pbx1a −/− Partial misrouting of VM DA fibres Sgado et al. (2012)
Pax6 −/− Dorsal deflection of MFB fibres in the diencephalon Vitalis et al. (2000)
Slit1 −/−: Aberrant crossing of MFB fibres at caudal diencephalic midline Bagri et al. (2002), Dugan et al. (2011)
Slit2 −/−
Robo1 −/−: Aberrant crossing of MFB fibres at caudal diencephalic midline, and abnormal dorsal

trajectories of VM DA fibres
Dugan et al. (2011), Lopez-Bendito et al. (2007)

Robo2 −/−
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they are in fact the same cell type (Kriegstein and Alvarez-Buylla,
2009).

Induction of a dopaminergic phenotype in ventral midbrain
neural precursors

While the floor plate and isthmus organiser are critical deter-
minants of VM patterning, they are also crucial for the induction of
a VM DA phenotype. Their role in induction of a DA phenotype is
dependent upon the interaction of floor plate-secreted Shh and
isthmus-secreted FGF8 (Hynes et al., 1997; Ye et al., 1998).

FGF8

The mechanism by which FGF8 regulates VM DA development
is still under investigation, however a recent study suggested that
FGF8 is required to induce the correct patterning of VM DA NPs, as
the loss of FGFRs (FGF receptors) resulted in altered patterning of
the VM and failure of VM DA neuron maturation, with the DA
domain adopting diencephalic characteristics (Lahti et al., 2012). In
support of this, a similar study that mutated the FGFRs reported a
reduction in the generation of VM DA NPs, and a disturbance in
the maturation of VM DA neurons (Saarimaki-Vire et al., 2007).
Another FGF, FGF2, has been shown to function in the regulation of
SNc DA NPs proliferation, and also in the developmental cell death
of mature SNc DA neurons (Ratzka et al., 2012).

Sonic hedgehog (Shh) signalling and Lmx1 expression

The first sign of a DA phenotype in VM NPs is the initiation of
expression of two key determinants of VM DA cell fate, the lim-
homeodomain factor Lmx1a and the homeodomain transcription
factorMsx1, at ∼E9 in the mouse (Alavian et al., 2008). Shh induces
the expression of Lmx1a, which subsequently induces the

expression of its downstream effector Msx1 (Andersson et al.,
2006). The overexpression of Lmx1a in the anterior VM results in
the ectopic generation of DA neurons, while reduced expression
results in a loss of VM DA neurons (Andersson et al., 2006).
Additionally, null mutation of Lmx1a or the spontaneous mutation
of Lmx1a in dreher mice results in substantial reductions in the
numbers of VM DA neurons generated (Deng et al., 2011; Ono
et al., 2007). Lmx1a expression is maintained in post-mitotic VM
DA neurons until postnatal day (P) 180 in mice (Zou et al., 2009);
however Msx1 expression is confined to VM DA NPs (Andersson
et al., 2006; Failli et al., 2002). This is surprising considering that
Lmx1a is upstream of Msx1, suggesting that the post-mitotic
repression of Msx1 expression somehow overrides the inductive
effect of Lmx1a. Msx1 contributes to DA neurogenesis by inducing
the expression of the proneural gene, neurogenin (Ngn) 2, and thus
neuronal differentiation. Ngn2 expression in VM NPs also appears
to be under the control of Otx2 expression, as conditional Otx2
mutant mice display a loss of Ngn2 expression in DA NPs (Vernay
et al., 2005). This finding is not surprising, considering that Otx2
induces the expression of Lmx1a in VM floor plate cells, suggesting
that the loss of Ngn2 expression in the Otx2 knockout mouse is due
to a failure of Lmx1a induction and subsequently Msx1 expression,
rather than a direct effect on Ngn2 expression, but this remains to
be determined (Ono et al., 2007). This suggestion is supported by
recent findings showing that in the absence of Otx2, VM NPs fail to
activate the expression of Lmx1a, Msx1 and Ngn2, and therefore
largely fail to differentiate into VM DA neurons (Omodei et al.,
2008).

Support for the role of Ngn2 in DA induction comes from
studies showing that loss of Ngn2 in mice results in a severe
reduction in the expression of post-mitotic VM DA markers Nurr1
and tyrosine hydroxylase (TH) (discussed later), demonstrating its
importance in the generation of mature VM DA neurons (Kele
et al., 2006). However, the role of Ngn2 is likely to be generally
proneural, rather than specific for VM DA neuronal differentiation.

Fig. 1. Molecular factors involved in the development of VM DA neurons.Molecular interactions in the genesis of VM DA neurons: The sequence of appearance (see time-course
arrow) of each of the factors involved in VM DA neuronal development, and their effects on each other. (Note: the molecules in black text are not shown at the time point at
which they appear.) The arrows denote the effect on expression: purple¼positive regulation, green¼autoregulatory loop, orange¼cooperative regulation, and
black¼negative regulation. The factors are colour-coded as per their role (listed above molecules). Otx2, Gbx2, En1/2, Lmx1b, Wnt1 and Pax2/5 play vital roles in the
establishment of the midbrain/hindbrain region, including the isthmus organizer and VM floor plate, and the majority also play direct roles in VM DA neurogenesis. The
diffusible signalling factors FGF8, Shh and Wnt1 induce VM DA neurogenesis in radial glial-like floor plate cells, through the induction of FoxA2, Lmx1a/1b, and Msx1
expression. Two autoregulatory loops, Shh–FoxA2 and Wnt1–Lmx1a, contribute to this process, with Hes1 being involved in the Shh–FoxA2 autoregulatory loop, and Lmx1b
functioning cooperatively with Lmx1a. The expression of Nurr1 and Pitx3 promotes the differentiation of VM DA NPs into post-mitotic neurons. Nurr1 induces the expression
of proteins that are key to the neurotransmitter phenotype of VM DA neurons. A number of factors facilitate the induction of TH by Nurr1 (listed in orange), and Pitx3 has
been shown to cooperatively regulate a number of important genes involved in VM DA neurogenesis with Nurr1.
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In support of this, overexpression of Ngn2 induces neurogenesis
but not a DA phenotype in cultured VM NPs (Kim et al., 2007).
These data suggest the existence of a developmental programme
consisting of an inductive effect of floorplate-secreted Shh on
Lmx1a expression which subsequently induces the expression of
Msx1, which in turn induces the expression of Ngn2 which is
required for neuronal differentiation of VM DA NPs. How and
where Otx2 fits into this cascade is unclear, but it is known that
Otx2 is required for the expression of Lmx1a. It has yet to be
determined whether this is a parallel pathway cooperating with
Shh or whether Otx2 is a master regulator of Shh-induced Lmx1a
expression. In support of a role of Otx2 as a master regulator,
studies involving the conditional knockout of Otx2 in the midbrain
have suggested that Otx2 controls the fate of VM progenitors
through the repression of Nkx2.2 and maintenance of Nkx6.1
expression (Puelles et al., 2004). FoxA2, involved in a feedback
loop with Shh (discussed later), induces Lmx1a expression and also
inhibits Nkx2.2 (Lin et al., 2009). It is possible that Otx2 functions
via a similar pathway to FoxA2, or indeed that FoxA2 may function
downstream of Otx2 and Shh in the regulation of Lmx1a and
Nkx2.2 expression during VM DA neurogenesis.

Interestingly, a recent genome-wide gene expression profiling
study has expanded the regulatory role of Lmx1a in this process by
identifying novel transcription factors involved in the generation
of the VM DA neuronal field. The Oc transcription factors, Oc1, 2
and 3, display similar expression profiles to that of Lmx1a in the
developing VM, and their loss resulted in diminished generation of
VM DA neurons (Chakrabarty et al., 2012). Whether these Oc
transcription factors are regulated by Lmx1a, which is plausible
given their overlapping expression patterns, or whether they act in
parallel to regulate neuronal differentiation in the VM, will be an
important question for future research.

Similar to Lmx1a, the related protein Lmx1b has also been
shown to promote VM DA neurogenesis (Deng et al., 2011; Lin
et al., 2009; Yan et al., 2011). Lmx1a and Lmx1b are co-expressed in
VM DA NPs, and have been shown to mediate the initial steps of
NP DA specification (Andersson et al., 2006; Smidt et al., 2000).
Furthermore, Lmx1a and Lmx1b are co-expressed in the P0 VM,
suggesting that they may function in the maturation of VM DA
neurons also (Zou et al., 2009). Similar to Lmx1a, Lmx1b can induce
the ectopic production of VM DA neurons when ectopically
expressed (Nakatani et al., 2010), and its loss results in a sub-
stantial reduction in the number of VM DA neurons (Deng et al.,
2011; Smidt et al., 2000). A recent study using conditional knock-
out of Lmx1a and Lmx1b in mice demonstrated that Lmx1a and
Lmx1b function cooperatively to regulate the proliferation of VM
DA NPs and Ngn2 expression (Yan et al., 2011). This suggestion is
supported by studies on Lmx1a null mice carrying one mutant
Lmx1b allele (as double null mutations are embryonically lethal)
which found that Lmx1a and Lmx1b function cooperatively in the
generation of VM DA neurons. This study also showed that Lmx1b
is involved in the generation of ocular motor neurons and red
nucleus neurons in the VM (Deng et al., 2011) and it has been
suggested that Lmx1b partially compensates for Lmx1a function in
dreher mice, as only 46% of VM DA neurons are lost in these
mutants (Ono et al., 2007). It will be important to understand
whether Lmx1b exerts its effects in precisely the same way as
Lmx1a, for example by modulating Msx1 expression or that of Oc1,
2 and 3 (Chakrabarty et al., 2012).

Sonic hedgehog (Shh) signalling and FoxA expression

Floor plate-derived Shh has been shown to play a key role in
induction of a DA phenotype by modulating the expression of the
transcriptional regulator FoxA2, a well-known floor plate marker.
The modulation of FoxA2 expression is mediated by the

downstream effector of Shh signalling, Gli1 (Hynes et al., 1997).
Gli1 expression is upregulated by a related molecule Gli2 (activa-
tor) in response to Shh signalling, which is required for generation
of VM DA neurons, while Gli3 (repressor) is suppressed by Shh to
allow the de-repression of FGF8 expression (Blaess et al., 2006).
Gli2 homozygous null mutants demonstrate the importance of Gli2
in inducing ventral phenotypes, as these mice display clear deficits
in VM DA neurogenesis (Park et al., 2000). Loss of both Gli2 and
Gli1 resulted in a more severe phenotype (Park et al., 2000). FoxA2,
along with FoxA1, is expressed in the VM and in differentiated DA
neurons during development. Both have been shown to regulate
the expression of Ngn2 and to maintain the expression of Lmx1a
and Lmx1b, which promotes VM DA neurogenesis (Bayly et al.,
2012; Ferri et al., 2007; Lin et al., 2009). As aforementioned, Gli1
has been shown to induce the expression of FoxA2 (Hynes et al.,
1997), with FoxA2 being reported as a downstream target of Shh
signalling (Chung et al., 2009). However, FoxA2 expression pre-
cedes that of Shh in the ventral neural tube and is proposed to
regulate Shh expression (Echelard et al., 1993). These findings
likely reflect a regulatory feedback loop between Shh and FoxA2
expression, with Gli1 functioning downstream of Shh in this loop.
In addition to Gli1, Nato3, a bHLH transcription factor that
contributes to VM DA neurogenesis through the repression of
Hes1 (Ono et al., 2010), has been shown to integrate with the Shh–
FoxA2 regulatory feedback loop in the SN4741 dopaminergic cell
line (Nissim-Eliraz et al., in press). It has recently been suggested
that Shh is necessary and sufficient for lateral floor plate genera-
tion, and necessary but not sufficient for medial floor plate
generation, while FoxA2 is necessary and sufficient to specify the
entire floor plate, acting through both Shh-dependent and inde-
pendent mechanisms (Bayly et al., 2012). This induction of FoxA2
expression by Shh has also been proposed to function coopera-
tively with Lmx1a and Lmx1b in the generation of DA neurons
from VM floor plate NPs (Nakatani et al., 2010). This is not
surprising, considering that Shh and FoxA2 positively regulate
Lmx1a and Lmx1b expression. FoxA2 mutant mice have a defective
floor plate, as well as notochord, and die at E9.5 (Ang and Rossant,
1994; Sasaki and Hogan, 1994), which precludes examination of
their role in DA induction. Given the recent identification of VM
radial-glial progenitors, it will be interesting to use targeted
strategies to conditionally remove FoxA2 in the midbrain while
preserving its expression in the floor plate (possibly through the
use of GLAST-cre mice), and thus examine its inductive effect on
Shh expression and its specific role in DA neurogenesis.

Wnt signalling

The Wnt family of secreted glycoproteins have become increas-
ingly recognised as key regulators of DA neuron induction. Wnt1 is
expressed in the isthmus organiser, in an area rostral to FGF8 at
E9.5 in mice (Wilkinson et al., 1987), and is also expressed in the
developing midbrain (Davis and Joyner, 1988; Wilkinson et al.,
1987), along with other members of the Wnt family (Andersson
et al., 2008; Parr et al., 1993; Rawal et al., 2006). In vitro, Wnt1 has
been shown to regulate the proliferation of VM DA NPs and to
increase the number of DA neurons generated from these cells.
Wnt3a has been shown to enhance VM DA NP proliferation but to
inhibit their terminal DA differentiation, whereas Wnt5a regulates
the acquisition of a DA phenotype to increase DA neuronal
numbers (Castelo-Branco et al., 2003). Wnt5a in particular has
recently been demonstrated to play a role in the acquisition of a
DA phenotype in VM DA NPs in vivo (Andersson et al., 2008). The
effect of Wnt5a on DA differentiation has been suggested to be
regulated by the Rac1 guanosine exchange factor, Tiam1 (Cajanek
et al., 2013), and Wnt5a has been proposed to be an important
mediator of the DA inductive activity of VM glia (Castelo-Branco
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et al., 2006). Another Wnt, Wnt2, has been implicated as a novel
regulator of VM DA NP proliferation as Wnt2 null mice displayed
reductions in DA neurogenesis (Sousa et al., 2010).

Given that Wnt1 is expressed in the isthmus and developing
midbrain, it is perhaps not surprising that null mice displayed a
loss of most of the midbrain and the DA neurons therein
(McMahon and Bradley, 1990). Subsequently it was shown that
although Wnt1 null mice develop VM DA NPs, these NPs fail to
proliferate and differentiate appropriately, and the few DA neurons
that are generated are lost shortly thereafter (Prakash et al., 2006).
This is in agreement with data describing Wnt1 as a key regulator
of VM DA NPs proliferation and subsequent differentiation
(Castelo-Branco et al., 2003). There is now a large body of evidence
describing the key role of Wnt signalling in DA generation. Loss of
the Wnt receptor Lrp6 replicates some of the Wnt1 developmental
abnormalities (Castelo-Branco et al., 2010; Pinson et al., 2000).
Similarly, loss of the Wnt receptors, frizzled (Fzd) 3 and Fzd6,
severely impairs midbrain morphogenesis (Stuebner et al., 2010).
Interestingly, the null mutation of Fzd3 results in a transient
reduction in the numbers of VM DA neurons generated, similar
to that seen in the Lrp6 null mutant (Castelo-Branco et al., 2010;
Stuebner et al., 2010). Furthermore, the specific inactivation of β-
catenin, which mediates canonical Wnt signalling, mimics the
midbrain-hindbrain deficits observed in Wnt1 null mice (Brault
et al., 2001; Chilov et al., 2010), suggesting that Wnt1 acts via β-
catenin during midbrain-hindbrain development.

As a result of these studies, the molecular bases of Wnt-
induced DA differentiation have been the focus of intensive
research. Wnt1 has been shown to be essential for the mainte-
nance of En1 and En2 expression (Danielian and McMahon, 1996;
McGrew et al., 1999; McMahon et al., 1992), with En1/En2 double
knockout mice displaying a similar defective VM phenotype as the
Wnt1 null mutants (Simon et al., 2001), suggesting that the effects
of loss of Wnt1 may be due to a loss of En expression. This was
subsequently confirmed when it was shown that En1 was suffi-
cient to rescue early midbrain deficits in Wnt1 mutant mice
(Danielian and McMahon, 1996). En1 and En2 are expressed in
the ventral mesencephalon at the same time as Wnt1 (∼E8.0 in
mice), however the overlapping expression domains of these three
genes become restricted by E12 (Davis and Joyner, 1988). The
expression of Wnt1 in the En1 expression domain (En1-Wnt1
knock-in) causes a ventro-rostral and ventro-caudal expansion of
Wnt1 expression, which is usually restricted to the caudal VM
(Danielian and McMahon, 1996), and results in an expansion of the
most ventro-rostral DA cell group (Panhuysen et al., 2004). This
cell group corresponds to the SNc, thus these studies demonstrate
that this cell group is the most robustly influenced by Wnt1
signalling. En1 expression is detectable in VM DA neurons from the
time point at which they initiate their differentiation and persists
into adulthood, while En2 is only expressed in a subset of DA
neurons (Simon et al., 2001; Zhong et al., 2010).

As mentioned earlier, Wnt1 is expressed in the isthmus organiser,
in an area rostral to where FGF8 is expressed (Wilkinson et al., 1987).
Interestingly, FGF8 signalling has also been shown to regulate En1
expression in the developing VM (Lahti et al., 2012). It is tempting to
speculate that this may be achieved through the induction of Wnt1.
In support of this suggestion, a functional link between FGF8 and
Wnt signalling has recently been described, where it was shown that
Wnt-β-catenin signalling positively regulated FGF8 expression in the
midbrain-rhombomere1 region (Chilov et al., 2010). It is possible that
this may be an autoregulatory loop, similar to that of Shh and FoxA2,
with FGF 8 inducing the expression of Wnt1 and subsequently En1/
En2 expression in the midbrain. Interestingly, new data have now
shown that Lmx1a and Lmx1b function cooperatively to control the
proliferation of VM DA NPs through the regulation of Wnt1 expres-
sion (Yan et al., 2011).

A link between Shh and Wnt signalling has recently emerged
with the proposal that canonical Wnt-β-catenin signalling is
required to antagonise Shh, and that the subsequent reduced Shh
levels allow the induction of VM DA NPs and the promotion of DA
neurogenesis (Joksimovic et al., 2009b). The finding that Shh
inhibits DA neurogenesis (Joksimovic et al., 2009b) is surprising,
considering its well-established role in the induction of VM DA
neurogenesis (Andersson et al., 2006; Blaess et al., 2006; Hynes
et al., 1995a; Ye et al., 1998). However, Joksimovic et al., 2009a,
2009bsuggest that Shh is initially required for the early establish-
ment of the VM DA NP pool, but that later it inhibits VM DA NP
proliferation and neurogenesis. The current model suggests that
once the Shh-induced VM DA NP pool has been established, Wnt-
β-catenin signalling suppresses Shh levels in the VM to facilitate
DA neurogenesis. Additionally Wnt signalling has been shown to
induce Otx2 and Lmx1a expression (Joksimovic et al., 2009b;
Prakash et al., 2006). Furthermore, a Wnt1–Lmx1a autoregulatory
loop has been identified which is proposed to regulate Otx2
expression via β-catenin during VM DA neurogenesis (Chung
et al., 2009). Interestingly, Otx2 has recently been suggested to
regulate the proliferation of VM DA NPs via Wnt1 regulation
(Omodei et al., 2008), suggesting a possible Otx2-Wnt1 regulatory
feedback loop. In contrast to Joksimovic et al. (2009); Chung et al.
(2009) suggested a mechanism by which the Wnt1–Lmx1a auto-
regulatory loop and a Shh–FoxA2 autoregulatory loop control VM
DA neurogenesis synergistically. Despite this finding, a more
recent paper described an antagonistic relationship between
Wnt-β-catenin signalling and Shh signalling that is important in
the progression of DA NPs into VM DA neurons (Tang et al., 2010),
thus supporting the Joksimovic et al. (2009) theory. Furthermore,
the stabilisation of β-catenin in VM NPs, by the inhibition of
GSK3β, leads to an increase in DA differentiation (Castelo-Branco
et al., 2004; Tang et al., 2009) and targeted deletion of β-catenin in
VM NPs (Th-IRES-Cre; β-CtnEx3/+ mutant) results in reduced VM
DA neurogenesis (Tang et al., 2009). Surprisingly, mice with
mutations in the Wnt/β-catenin inhibitor Dkk1 actually have a
reduction in VM DA neurons (Ribeiro et al., 2011). This is surpris-
ing, given that the stabilisation of β-catenin in VM NPs, through
the inhibition of GSK3β, leads to an increase in DA differentiation
(Castelo-Branco et al., 2004; Tang et al., 2009). Collectively these
data largely support the theory that Wnt signalling is required for
DA induction, but it is also clear that this is likely to involve a
complex interplay with Shh and FGF8 signalling, and potentially
other extrinsic signalling factors which have been suggested to
induce VM DA neurogenesis, including TGFβs (Farkas et al., 2003;
Roussa et al., 2009, 2006).

Development of post-mitotic ventral midbrain
dopaminergic neurons

Once NPs of the VM floor plate are specified towards a DA
phenotype, these DA NPs gradually become post-mitotic from E10-
E14 in mice (E12–E16 in rats) (Lauder and Bloom, 1974; Lumsden and
Krumlauf, 1996), with the greatest proportion of VM DA NPs under-
going their final division at E12 in the rat (Gates et al., 2006). The
induction of TH expression, the rate-limiting enzyme for DA synth-
esis, is the first sign of the acquisition of the DA neuronal phenotype,
and occurs shortly after the final mitosis of VM DA NPs while they
are actively migrating to their final positions (Puelles and Verney,
1998, Specht et al., 1981a; Specht et al., 1981b). This process of
migration of VM DA neurons from the floor plate ventricular zone to
the presumptive VTA and SNc involves two steps: firstly, DA neurons
migrate ventrally along tenascin-expressing radial glial processes
which project to the pial surface, and secondly, once they have
reached the basal part of the VM, they migrate laterally along
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tangentially orientated fibres to form the VTA and SNc (Kawano et al.,
1995; Shults et al., 1990). These tangentially-orientated fibres express
the neural cell adhesion molecule L1, while VM DA neurons express
the chondroitin sulphate proteoglycan 6B4. A heterophilic interaction
between L1 and 6B4 has been proposed to facilitate this process of
lateral migration of VMDA neurons (Ohyama et al., 1998). There have
been a variety of studies that show that this process of migration is
crucial for the normal positioning of VM DA neurons. Specifically, VM
DA neurons are abnormally located in L1 knockout mice
(Demyanenko et al., 2001). A role for Wnt signalling in this process
has been implicated by a study showing that the targeted deletion of
β-catenin in the VM disrupts the integrity of these radial glia,
resulting in perturbed migration of VM DA neurons (Tang et al.,
2009). It is unclear whether these migratory defects are secondary to
a disrupted radial glial scaffold or whether Wnt signalling can also
directly affect this process of migration. A number of other molecules
involved in neuronal migration in the developing CNS also appear to
be involved in the migration of VM DA neurons. These include the
well-known migrational regulator Reelin, as VM DA neurons fail to
migrate laterally to the SNc, in reeler (reelin null) mice (Nishikawa
et al., 2003), and the netrin receptor, DCC, which is expressed by
migrating VM DA neurons in mice, and its loss results in aberrant
migration of these neurons (Xu et al., 2010). In terms of the molecular
regulatory networks that control this migration, there have been a
number of studies describing roles for Ebf1 (early B-cell factor 1) (Yin
et al., 2009) and Hes1 (Kameda et al., 2011) in this process. A key goal
for future research will be to understand the molecular networks
that control this process of VM DA migration and how newly-
identified molecules such as Ebf1 and Hes1 “fit” within this network.
While much work has focused on identifying the molecular signals
that are required for neuronal migration, it will also be important to
understand what positional cues inhibit these processes so that VM
DA neurons “know” when to stop.

Several transcription factors have been identified which are
essential for the differentiation and subsequent long-term survival
of VM DA neurons. These include Lmx1b, Nurr1, Pitx3, En1 and
En2. Each of these factors are not individually capable of inducing
a complete DA phenotype, suggesting that they function as part of
a network (Fig. 1).

Lmx1b

The lim-homeodomain factor Lmx1b is broadly expressed in the
presumptive midbrain before neural tube closure, and its expres-
sion becomes restricted to VM DA NPs at E10.5 in mice, where it is
co-expressed with Lmx1a and Msx1 (Andersson et al., 2006; Smidt
et al., 2000). Surprisingly, Lmx1b expression disappears in the VM
at around E11.5, but reappears at E16 in post-mitotic VM DA
neurons. Lmx1b is subsequently co-expressed with Pitx3 and TH
into adulthood in the VM (Dai et al., 2008). Although loss of Lmx1b
leads to a loss of VM DA neurons (Smidt et al., 2000), Lmx1b
mutant mice express Nurr1 and TH normally during early devel-
opment, but fail to express Pitx3. These TH-positive VM neurons,
which lack Pitx3 expression, are lost by birth, suggesting a role for
Lmx1b in the regulation of Pitx3 expression and VM DA neuronal
survival. Similarly in Wnt1 null mice, the few TH-positive VM
neurons generated lack Pitx3 expression, and are subsequently lost
before E12.5 (Prakash et al., 2006). A similar regulatory loop may
exist between Wnt1 and Lmx1b, as Lmx1b induces and/or main-
tains the expression of Wnt1, an important extrinsic factor in VM
DA neurogenesis (see above), around the midbrain-hindbrain
boundary (Adams et al., 2000; Matsunaga et al., 2002). Wnt1 has
also been proposed to act downstream of Lmx1b in the potential
regulation of Pitx3 expression (Prakash et al., 2006). This main-
tenance of Wnt1 expression by Lmx1b may be important in the
generation of post-mitotic DA neurons, as Wnt1 is required for the

terminal differentiation of VM DA neurons at later stages of
embryogenesis (Prakash et al., 2006).

Nurr1

Nurr1 is a member of the nuclear receptor superfamily of
steroid-thyroid hormone-activated transcription factors (Law
et al., 1992), which atypically lacks both a ligand cavity and a
canonical coactivator-binding site (Wang et al., 2003). Nurr1 is
expressed in the VM from E10.5 in the mouse, as VM DA NPs begin
to become post-mitotic, one day before the appearance of TH
(Zetterstrom et al., 1996), and Nurr1 expression is maintained into
adulthood (Backman et al., 1999). Nurr1 expression levels show a
sharp peak between E13 and E15 in the rat, at a stage of
development when most VM DA neurons are undergoing terminal
differentiation (Volpicelli et al., 2004). VM DA neurons in Nurr1-
deficient animals do not express TH, l-aromatic amino acid
decarboxylase (AADC), the vesicle monoamine transporter 2
(VMAT2) or the dopamine transporter (DAT), all markers of a DA
neuron that has acquired its DA neurotransmitter identity (Castillo
et al., 1998; Filippi et al., 2007; Smits et al., 2003). Nurr1 has been
shown to play a direct role in regulating the expression of these
genes, and a number of well-established signalling pathways in
VM DA development cooperate with Nurr1 to mediate this induc-
tion. Specifically, Nurr1 has been shown to induce TH expression
by binding to a NRBE (NGFI-B response element) sequence in the
TH promoter (Kim et al., 2003; Sakurada et al., 1999), and is known
to induce DAT expression via an NRBE-independent mechanism
(Sacchetti et al., 2001). These effects of Nurr1 on the expression of
these genes are enhanced by Wnt-activated β-catenin, which has
been shown to promote Nurr1-induced TH promoter activation, by
interacting with Nurr1 at NRBEs, causing the dissociation of
transcriptional co-repressors and recruitment of transcriptional
co-activators (Kitagawa et al., 2007). Similarly, nuclear FGFR1 has
been shown to cooperate with Nurr1 to promote activation of the
TH promoter (Baron et al., 2012a). Collectively these data show
that Nurr1 functions as a master regulator in the induction of the
neurotransmitter phenotypic identity of VM DA neurons, and
controls the expression of the molecules that regulate the synth-
esis, vesicle packaging, axonal transport and reuptake of DA.

Aside from this role in DA identity, Nurr1 has also been shown
to be crucial for long-term VM DA neuron survival. In Nurr1-
deficient animals, VM DA neurons adopt a correct ventral position
and express the DA markers Lmx1b, Pitx3 and En1 (Saucedo-
Cardenas et al., 1998; Wallen et al., 1999), demonstrating that
Nurr1 is not required for all aspects of VM DA specification and
differentiation. However, these Pitx3-expressing VM DA neurons
are lost in Nurr1-deficient animals during later development
(Saucedo-Cardenas et al., 1998), suggesting a role for Nurr1 in
the survival and maintenance of VM DA neurons. In support of
these findings, Nurr1 is expressed throughout the life of VM DA
neurons and its heterozygous mutation increases the vulnerability
of VM DA neurons to the parkinsonian toxin, 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine-HCl (MPTP) (Le et al., 1999). Further-
more, the conditional ablation of Nurr1 at a late stage of VM DA
neuron development or in the adult brain results in loss of striatal
DA, loss of VM DA markers and DA neurodegeneration, with SNc
DA neurons more vulnerable than those of the VTA (Kadkhodaei
et al., 2009).

While Nurr1 has been shown to directly regulate the expres-
sion of TH and DAT, Nurr1 may promote VM DA neuron survival
indirectly, by inducing the expression of genes essential for their
survival. Nurr1 has been found to regulate the expression of the
glial cell line-derived neurotrophic factor (GDNF) receptor, cRet,
whose expression is lost in Nurr1-deficient animals (Castillo et al.,
1998). GDNF is a well-known survival-promoting factor for VM DA
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neurons (Lin et al., 1993; Toulouse and Sullivan, 2008; Yasuhara
et al., 2007). Nurr1 has also been shown to regulate the expression
of VIP (vasoactive intestinal peptide), which has been proposed to
function in the survival of VM DA neurons (Luo et al., 2007). It
remains to be determined whether the VM DA neuronal death in
Nurr1 null mutants is as a direct consequence of the absence of a
Nurr1-mediated survival-promoting effect, and/or is induced
by a lack of neurotransmission by these cells. Aside from its role
in DA survival, Nurr1 has been suggested to play a role in target
innervation by VM DA neurons (Wallen et al., 1999); however, this
finding has been challenged (Witta et al., 2000). It will be
important to assess the role of Nurr1 in striatal innervation
in vivo using an approach where DA neurons can survive long
term in the absence of Nurr1. Such a strategy has been employed
successfully in the PNS, where Bax-deficient mice were used to
analyse specifically the effects on a gene of interest on target
innervation independent of this genes role in neuronal survival
(Barker et al., 2001; Glebova and Ginty, 2004; Middleton and
Davies, 2001).

The molecular mechanisms by which Nurr1 expression is
induced and regulated in the VM are largely unknown, but Nurr1
has been shown to function independently of FGF8 and Shh
signalling (Sakurada et al., 1999). However, recent data suggests
that FoxA1 and FoxA2 may be critical to Nurr1 induction. Through
the analysis of single and double mutants, FoxA1 and FoxA2 have
been reported to regulate the expression of Nurr1 in a dose-
dependent manner, with a dramatic decrease in Nurr1 expression
observed in double mutants (Ferri et al., 2007). In addition to this,
a gain-of-function study has demonstrated that FoxA2 mediates
Nurr1 expression (Lee et al., 2010). Lee et al. (2010) further
demonstrated that FoxA2 acts synergistically cooperates with
Nurr1 during VM DA neurogenesis, with both factors binding to
the TH promoter. In support of this, the loss of FoxA2 resulted in an
increase in the numbers of Nurr1-positive, TH-negative, cells in
the VM (Ferri et al., 2007). These more recent data suggest that
Nurr1 function may not be independent of Shh signalling, as FoxA2
is a downstream target of Shh; however FoxA2 can function
independently of Shh. Similar to Nurr1, FoxA2 appears to be
involved in the survival and maintenance of VM DA neurons, as
aged mice with a heterozygous mutation in FoxA2 develop PD-like
symptoms and pathologies (Kittappa et al., 2007), but this maybe
due to altered FoxA2-induction of Nurr1 expression.

Pitx3

Pitx3 is a bicoid-related, homeodomain-containing transcrip-
tion factor that is exclusively expressed in the mouse VM from
E11.5, at a time when VM DA neurons are beginning to appear
(Smidt et al., 1997). VM DA neurons only begin to express Pitx3
when they arrive at their final ventral position, suggesting that
Pitx3 is not involved in the early development or migration of VM
DA neurons (Smidt et al., 2004). GDNF has been suggested to
induce the expression of Pitx3 in the VM (Lei et al., 2011; Peng
et al., 2011) which is interesting as Nurr1 is known to regulate the
expression of the GDNF receptor cRet, and is expressed before Pitx3
in the VM. Nurr1 may therefore play an indirect, non-essential
(Pitx3 expression is retained in Nurr1 null mutants) role in the
induction of Pitx3 expression. Pitx3 and Nurr1 have been shown to
function cooperatively in the regulation of target genes involved in
VM DA neurogenesis (discussed later) (Chakrabarty et al., 2012;
Hwang et al., 2009; Jacobs et al., 2009a; Jacobs et al., 2009b). Pitx3
is co-expressed in the TH-positive neurons of the VM (Smidt et al.,
1997; Van Den Munckhof et al., 2003; Zhao et al., 2004). In aphakia
mice, which lack Pitx3 expression due to deletions in the Pitx3
gene, there is unaltered VM DA development until E12.5, at which
time a deficit is observable in the lateral population of VM DA

neurons which constitute the presumptive SNc (Hwang et al.,
2003; Nunes et al., 2003; Smidt et al., 2004; Van Den Munckhof
et al., 2003). VTA DA neurons are largely unaffected in these mice.
The specific absence of SNc DA neurons in Pitx3 null (aphakia)
mice results in a loss of nigrostriatal projections to the dorsal
striatum (Hwang et al., 2003; Nunes et al., 2003; Smidt et al.,
2004; Van Den Munckhof et al., 2003), and suggests distinct
developmental programmes for SNc and VTA DA neurons. Inter-
estingly, it has been reported that lateral VM DA neurons express
Pitx3 prior to TH, while the medial VM DA neurons express Pitx3
coincidently with TH (Maxwell et al., 2005). In addition to this,
Pitx3 has been suggested to regulate TH expression (Cazorla et al.,
2000; Lebel et al., 2001; Maxwell et al., 2005). Pitx3 may therefore
be critical for the induction of TH expression in SNc DA neurons,
but not those of the VTA. In support of this, the absence of Pitx3
results in a failure of SNc DA neurons to express TH, while VTA
neurons do so. Interestingly, Pitx3 expression has been reported to
be six times higher in VTA DA neurons then in those of the SNc
(Korotkova et al., 2005). Perhaps this lower expression level of
Pitx3 functions in the induction of TH expression in SNc DA
neurons, while it may also contribute to their inherent sensitivity.
In support of the proposed role for Pitx3 in TH expression, Pitx3
has been shown to contribute to the neurotransmitter phenotype
of VM DA neurons by inducing the expression of DAT and VMAT2
(Hwang et al., 2009). However, the loss of TH-positive neurons in
the ventro-lateral VM is not due to the loss of TH mRNA expres-
sion, but to neuronal loss (Hwang et al., 2003; Nunes et al.,
2003; Smidt et al., 2004). Perhaps the selective neurodegeneration
of SNc DA neurons in aphakia mice is not as a result of a failure of
DA neurogenesis in the absence of Pitx3, but may reflect the
characteristic sensitivity of this VM population in comparison to
those of the VTA. Indeed, the VTA DA neurons in aphakia mice
display a normal DA phenotype (Smidt et al., 2004). A recent study
has demonstrated that Pitx3 induces the expression of brain-
derived neurotrophic factor (BDNF) in SNc DA neurons, which may
be important in the survival of these neurons (Peng et al., 2011).
Peng et al. (2011) showed that loss of BDNF expression correlates
with the SNc neuronal loss in Pitx3 null mice, and that BDNF
treatment induces the survival of Pitx3 (−/−) VM DA neurons and
protects them against the dopaminergic neurotoxin 6-
hydroxydopamine. Pitx3 may therefore be critical in the main-
tenance and survival of SNc DA neurons, acting via BDNF. Similarly,
BDNF has been identified as a target gene of Nurr1 (Volpicelli et al.,
2007).

Despite the lack of a direct role for Nurr1 in Pitx3 expression, a
recent set of studies has shown that Nurr1 regulates target gene
expression cooperatively with Pitx3 during VM DA neurogenesis,
with Pitx3 potentiating Nurr1 activity by releasing it from SMRT-
mediated repression (Jacobs et al., 2009a, 2009b). Similarly, the
same group demonstrated that Nurr1 and Pitx3 cooperatively
regulate the expression of two cholinergic receptors, Chrna3 and
Chrnb6, which may play non-essential roles in VM DA neurogen-
esis (Chakrabarty et al., 2012). Furthermore, Pitx3 has been shown
to induce the expression of the Nurr1-target genes, VMAT2 and
DAT, potentially in coordination with Nurr1 (Hwang et al., 2009),
with Pitx3 also inducing the expression of aldehyde dehydrogen-
ase 2 (ADH2), an enzyme which is highly expressed in SNc DA
neurons (Chung et al., 2005). In support of this combinatorial
function, Nurr1 and Pitx3 have been shown to cooperatively
promote terminal maturation of VM DA neurons in stem cell
cultures (Martinat et al., 2006) Collectively, these data suggest
Nurr1 and Pitx3 may cooperate to promote VM DA survival and
acquisition of a mature DA neurotransmitter phenotype by coop-
eratively regulating the expression of DA neurotrophic factors,
BDNF and GDNF, and of genes involved in DA neurotransmission
respectively.
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En1 and En2

En1 and En2 are important in the formation of the isthmus
organiser and in the generation of VM DA neurons (Liu and Joyner,
2001; Simon et al., 2001). Following their initial expression in the
midbrain-hindbrain boundary (Davis and Joyner, 1988), VM DA
neurons begin to express En1 and En2 between E11.5 and E14 in
mice, and this expression is maintained into and throughout
adulthood (Alberi et al., 2004). Interestingly, in En1 and En2 double
mutants, VM DA neurons develop normally initially, but are lost by
E14 due to caspase-dependent apoptosis, just after the expression
of En begins in the wild type (Alberi et al., 2004; Simon et al.,
2001). Alberi et al. (2004) demonstrated that En1 and En2 are
required cell-autonomously in post-mitotic VM DA neurons to
prevent apoptosis. However, further studies are required to ascer-
tain that VM DA neuronal loss in the En double mutants is not as a
result of the large midbrain/hindbrain deletion in these mice.
Despite this possibility, these data strongly suggest a role for En1
and En2 in the maintenance and survival of VM DA neurons.
Indeed, intermediate genotypes between wild type and double En
mutants show varying degrees of VM DA neuronal deficiencies
(Sgado et al., 2006; Simon et al., 2001; Sonnier et al., 2007), as has
been well-described in recent reviews (Alavian et al., 2008; Alves
Dos Santos and Smidt, 2011). The most notable phenotype was
observed in En1 (+/−)/En2 (+/+) mutant mice, which display a
progressive degeneration (between 8 and 24 weeks) of VM DA
neurons that can be antagonised by recombinant En2 protein
infusion (Sonnier et al., 2007). The progressive degeneration of VM
DA neurons in En1 heterozygotes (En2 null background in Sgado
et al. (2006) study) is more pronounced in the SNc and results in
reduced striatal DA and motor deficits, as is characteristic of PD
pathology (Sgado et al., 2006; Sonnier et al., 2007). These findings
further support the theory that En1/En2 function as important
survival-promoting factors for VM DA neurons.

Diversity in genetic regulation of DA neuron development

As mentioned earlier, the molecular mechanisms controlling
phenotypic and functional diversity between the various VM DA
neuronal subpopulations remain poorly understood. However,
recent work has implicated Otx2 as a factor that may contribute
to these distinct developmental pathways. FoxA2, En1, Lmx1b,
Nurr1 and Pitx3 are ubiquitously expressed in post-mitotic VM
DA neurons throughout life; however Otx2 expression is restricted
to VTA DA neurons in the adult brain (Di Salvio et al., 2010b). Otx2
was shown to regulate subtype identity in the VTA by antagonising
the expression of Girk2 and DAT, and was also shown to antagonise
the neurotoxic effect of the MPTP in these VTA neurons (Di Salvio
et al., 2010a). Interestingly, ectopic Otx2 expression also provides
SNc neurons with neuroprotection to MPTP (Di Salvio et al.,
2010a). This potential role of Otx2 in VM DA neuronal subtype
identity has been comprehensively described in a recent review
(Simeone et al., 2011).

It is also necessary to mention that a proportion of DA neurons
arise anterior to the VM in the diencephalon (Gonzalez et al., 1999.
Lahti et al., 2012; Marin et al., 2005; Puelles and Verney, 1998;
Smits et al., 2006; Verney, 1999; Verney et al., 2001. Vitalis et al.,
2000), and develop earlier than those from the VM (Lahti et al.,
2012; Marin et al., 2005). The diencephalic DA domain differs to
that of the midbrain. The DA NPs in the diencephalon are
intermingled with non-DA Pou4f1+FoxP1+ cells, they lack Pitx3
and DAT expression, and lose En1/2 expression by E9.5 (Lahti et al.,
2012), unlike those in the midbrain (Alberi et al., 2004). FGF8
regulates the diverse identities of the DA neurons from the VM
and caudal diencephalon. This anterior–posterior patterning by
FGF8 suppresses diencephalic identity and maintains midbrain

identity (Lahti et al., 2012; Scholpp et al., 2003). A study using
zebrafish showed that Nodal signalling was required for the
specification of ventral diencephalic and pretectal catecholami-
nergic neurons (Holzschuh et al., 2003). (Holzschuh et al., 2003)
also demonstrated that FGF8 signalling was not required for the
specification of these neurons but was important for their pro-
liferation or survival, and that Shh signalling is required for
pretectal DA development. Diencephalic DA neurons therefore
seem to be subject to a different programme of neurogenesis than
those of the VM. Genetic fate-mapping studies are needed to verify
whether, or to what extent, these diencephalic DA neurons
contribute to the DA subpopulations of the VM.

Establishment of dopaminergic projections from the ventral
midbrain

Following their generation, post-mitotic VM DA neurons
undergo functional maturation, which involves axonal pathfinding
and synaptogenesis. Axons from VM DA neurons, which arise at
E11 in mice (E13 in rat), initially project dorsally but then deflect
ventro-rostrally towards the forebrain, in response to extrinsic
directional cues in the dorsal midbrain and repulsive cues in the
caudal brain stem (Gates et al., 2004; Nakamura et al., 2000). The
reorientated VM DA neuronal axons then extend towards the
telencephalon, through the diencephalon, via the medial forebrain
bundle (MFB) which has been reported to have a chemo-attractive
effect on these axons (Gates et al., 2004). A recent paper has
suggested that Nurr1 regulates the axonal extension of VM DA
neurons through the regulation of the expression of the axon
genesis gene Topoisomerase IIβ (TopIIβ) (Heng et al., 2012). Further-
more, a study using retrograde labelling suggested that Nurr1
plays a role in target innervation by VM DA neurons (Wallen et al.,
1999). However, as mentioned before, this finding has been
challenged (Witta et al., 2000). Gates et al. (2004) also demon-
strated that the thalamus prevents entry of VM DA axons through
the action of contact-dependent inhibitors, which likely function
to maintain the orientation of these axons in the MFB. Further-
more, Nkx2.1 mutant mice display aberrant midline crossing of
MFB fibres at the caudal diencephalon, suggesting that chemo-
repulsive factors involved in maintaining the ipsilateral trajectory
of the MFB at the medial part of the caudal diencephalon are lost
in this mutant (Kawano et al., 2003).

The VM DA neuronal axons run via the MFB into the tele-
ncephalon, where they terminate in the striatum and cerebral
cortex (Specht et al., 1981a, 1981b; Zhao et al., 2004). In the case of
the nigrostriatal pathway, chemoattraction from the striatum and
chemorepulsion from the cortex have been suggested to facilitate
appropriate striatal innervation by nigral DA neurons (Gates et al.,
2004). The molecular signals that guide the axons of the various
populations of VM DA neurons remain to be characterised;
however a relatively recent review has comprehensively described
the current understanding of the development of VM DA circuitry
(Van Den Heuvel, Pasterkamp, 2008). Molecules which are known
to be involved in the establishment of the VM DA circuit are
illustrated in Fig. 2.

Despite the current paucity of studies determining the mole-
cular basis of the formation of VM DA projections, several
molecules have been implicated to play a role in this process.
EphrinB2 and its receptor EphB1 have been shown to be expressed
in a complementary pattern to facilitate nigro-striatal innervation,
with EphB1 expressed by VM DA neurons (with highest expression
in the SNc) and ephrinB2 expressed in the striatum (Yue et al.,
1999). Cell-surface tethered ephrins, and their Eph receptor
tyrosine kinases, are known to play important roles in axonal
guidance (Egea and Klein, 2007). Furthermore, Yue et al. (1999)
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showed that co-culture with ephrinB2-expressing NIH-3T3 cells
reduced neurite outgrowth and induced death of SNc, but not VTA,
DA neurons. These results suggest that the interaction between
ephrinB2 and EphB1 in the striatum ensures that SNc DA neurons
are confined to the dorsal striatum. Conversely, EphB1 expression
has been shown to disappear in the SNc from E18, and its null
mutation resulted in no observable defects in the nigrostriatal
pathway (Richards et al., 2007). These results challenge the role for
EphB1 in the formation of the nigrostriatal pathway; however
other Eph receptors may allow SNc DA axons to detect ephrinB2 in
the striatum. In support of a role for ephrinB2 in the correct target
innervation of nigral DA neurons, the application of ephrinB2 to
VM cultures resulted in an upregulation of Nurr1 (Calo et al.,
2005). This action by ephrinB2 could function to support and
maintain correctly-innervated DA neurons. However, this effect
was suggested to be mediated by the EphB1 receptor (Calo et al.,
2005). Other ephrins and Ephs have also been implicated in DA
pathway formation. For example, studies on genetically-altered
EphAs and ephrinAs have shown that these molecules are impor-
tant in the formation of VM DA projections (Halladay et al., 2004;
Sieber et al., 2004; Van Den Heuvel, Pasterkamp, 2008), with
ephrinA5 expression being reduced in the forebrain of Nkx2.1
mutants (described above) (Marin et al., 2002). EphrinA5 has been
shown to be expressed in the developing telencephalon and
striatum, in the vicinity of VM DA axons, and to have a repulsive
effect on these axons, likely through the action of EphA5
(Deschamps et al., 2009). Conversely, another study has shown
that ephrinA5-EphA5 signalling promotes DA axonal growth
in vitro (Cooper et al., 2009). Perhaps ephrinA5 initially functions
in the establishment of VM DA projections, but later functions to
restrict these axons to their targets. Semaphorin signalling has also
been proposed to function in VM DA axonal pathfinding
(Hernandez-Montiel et al., 2008; Kolk et al., 2009, Tamariz et al.,
2010; Torre et al., 2010), with a number of semaphorins and their
receptors being expressed in VM DA neurons (Torre et al., 2010).

Furthermore, Sema3A expression is reduced in Nkx2.1 mutants
(Kawano et al., 2003), and the expression of its co-receptor
Neuropilin1 has been shown to be regulated by Nurr1 in the
developing midbrain (Hermanson et al., 2006).

The netrin receptor DCC has been demonstrated to play an
important role in the formation of VM DA axonal projections. DCC
is expressed in the VM and in cultured VM DA neurons, as well as
in VM DA targets, such as the striatum and prefrontal cortex (Lin
et al., 2005; Livesey and Hunt, 1997; Xu et al., 2010), while netrin1
is expressed in a complimentary fashion in VM, striatal and
cortical neurons (Hamasaki et al., 2001; Livesey and Hunt, 1997;
Manitt et al., 2011). Studies of heterozygous and homozygous DCC
mutants have provided insights into how netrin-DCC signalling
may regulate the formation of VM DA neuronal projections (Flores
et al., 2005; Xu et al., 2010). DA innervation of the dorsal striatum
is not affected in heterozygous and homozygous DCC mutants,
while the ventral striatal DA projections are aberrantly shifted to a
more dorsal location in null mutants. The innervation of the
prefrontal cortex by VM DA neurons is significantly reduced in
null mutants, suggesting that DCC is an important mediator of VM
DA axonal guidance. Xu et al. (2010) also propose that DCC
signalling is an important negative regulator of DA axon arborisa-
tion, demonstrating that DA innervation is maintained/increased
despite significant VM DA neuronal loss in DCC deficient animals.
In support of this, analysis of heterozygous DCC mutants has
shown that DCC can selectively influence the branching of VM
DA fibres in the prefrontal cortex at puberty, with a significant
increase in the number of TH-positive varicosities present post-
puberty in these heterozygotes (Manitt et al., 2011). This proposed
role of DCC contradicts previous reports which had suggested that
DCC mediates netrin1-promotion of axonal outgrowth in VM DA
neuronal cultures (Lin et al., 2005). However, these contrasting
results may reflect differences between the responses of VM DA
neurons in vitro and in vivo. Furthermore, DCC receptors are
known to mediate both attraction and repulsion aspects of the

Fig. 2. Molecules involved in the formation of the nigrostriatal DA circuitry. Development of the rat nigrostriatal pathway: Representative photomicrographs showing
cryosections through the developing rat nigrostriatal pathway at (A) E14, (B) E16 and (C) E18, immunostained for TH. Molecules involved in the migration (A), axon extension
(B), axon orientation (B), target innervation (C) and survival (C) of VM DA neurons are labelled on the images where appropriate. Scale bar¼100 μm. (D) Graphical
representation of the time-course of DA circuitry formation. VM DA neurons begin to migrate and extend axons at E13 in the rat. These DA fibres begin to reach the striatum
by E14, and the cortex at E16. The innervation of these targets continues into the first week after birth. Naturally occurring cell death begins close to birth, reaching a peak at
P2 and P14, before subsiding around P20.

S.V. Hegarty et al. / Developmental Biology 379 (2013) 123–138132



Author's personal copy

axon growth-promoting effects of netrins (Round and Stein, 2007).
The atypical homeoprotein Pbx1a has been shown to regulate the
expression of DCC in VM DA neurons, and its deficiency results in
partial misrouting of VM DA fibres (Sgado et al., 2012). Interest-
ingly, DCC null mice also display aberrant midline crossing of MFB
DA fibres at the caudal diencephalon, which is similar to that
observed in Nkx2.1 mutant mice (Xu et al., 2010), likely reflecting a
loss of chemorepellant(s) at the ventral midline. In Pax6 null mice,
which display a ventro-dorsal expansion of netrin1 expression, VM
DA axons within the MFB are deflected dorsally in the diencepha-
lon, seemingly avoiding areas of ectopic netrin1 expression (Vitalis
et al., 2000). Netrin-DCC signalling may therefore act at the ventral
midline of the diencephalon to repel VM DA projections, ensuring
that they maintain their ipsilateral course in the MFB. Similarly,
mice deficient in both Slit1 and Slit2 display abnormal ventral
midline crossing of MFB fibres in the diencephalon, suggesting
they may also act as ventral midline chemorepellants (Bagri et al.,
2002; Dugan et al., 2011). In support of this theory, Slit2 repels VM
DA neuronal axons and inhibits their growth in vitro (Dugan et al.,
2011; Lin et al., 2005). Nkx2.1 mutant mice display altered Slit1 and
Slit2 expression, and a more severe phenotype than that of Slit1/
Slit2 double mutants (Marin et al., 2002). This suggests that Nkx2.1
may regulate the expression of a number of important chemor-
epellants at the diencephalic ventral midline, such as Slit1/Slit2,
Sema3A, ephrinA5 and perhaps netrin1. However, netrin1 expres-
sion is maintained in the subpallium of the Nkx2.1 mutants (Marin
et al., 2002), and has been reported to attract diencephalic (A11)
DA neurons towards the ventral midline in the absence of
repulsive Slit signals (Kastenhuber et al., 2009). Mice deficient in
the Slit receptors, Robo1 and Robo2, also display guidance errors in
the MFB tract similar to those in the Slit double mutant (Dugan
et al., 2011; Lopez-Bendito et al., 2007). However, Dugan et al.
(2011) also demonstrated abnormal dorsal trajectories of VM DA
fibres in Robo1/2 knockout mice, which does not occur in the Slit1/
2 mutant, suggesting that these Robos also function Slit-
independently. The expression patterns of Slits also propose a role
for these molecules in VM DA axonal guidance, with Slit1
expressed in the dorsal midbrain (Nakamura et al., 2000) and Slit3
expressed in the caudal midbrain (Gates et al., 2004), suggesting
that these Slits contribute to the ventro-rostral trajectory of VM DA
fibres.

Upon innervation of their targets, the axons of VM DA neurons
compete to establish functional synapses and survive. There are
two peak postnatal periods of naturally-occurring cell death for
VM DA neurons. Cell death begins close to birth, reaching an initial
peak at P2, before a second peak of apoptosis occurs at P14, with
this process largely subsiding around P20 in rodents (Burke, 2003;
Jackson-Lewis et al., 2000; Oo and Burke, 1997). This programmed
cell death pathway relies on the limited availability of target-
derived neurotrophic factors (Burke, 2003), with striatal and
prefrontal cortex tissue being shown to promote VM DA neuronal
survival when co-cultured in vitro (Hoffmann et al., 1983). The
most well-established target-derived neurotrophic factor for VM
DA neurons is GDNF (Akerud et al., 1999; Beck et al., 1995; Burke,
2003; Costantini and Isacson, 2000; Gash et al., 1996; Lei et al.,
2011; Lin et al., 1993; Redmond et al., 2009; Tomac et al., 1995;
Wang et al., 2010). Another member of the GDNF protein
family, neurturin (NTN), also acts as a neurotrophic factor for VM
DA neurons (Akerud et al., 1999; Horger et al., 1998; Oiwa et al.,
2002; Tseng et al., 1998; Zihlmann et al., 2005). Other neuro-
trophic factors identified for VM DA neurons include transforming
growth factor βs (TGFβs) (Farkas et al., 2003), BDNF (Alonso-
Vanegas et al., 1999) and growth/differentiation factor 5 (GDF5)
(Costello et al., 2012; Hurley et al., 2004; O'Keeffe et al., 2004;
O'Sullivan et al., 2010; Sullivan and O'keeffe 2005; Sullivan et al.,
1997, 1998). Interestingly, FGF2 has recently been shown to act as

a target-derived regulator of VM DA innervation (Baron et al.,
2012b).

Concluding remarks and future perspectives

This paper reviews the recent data from molecular studies on
VM DA development, and highlights a number of important
genetic pathways involved during the neurogenesis of these cells.
It is clear that this is a complex developmental programme,
complicated further by the fact that VM DA neurons are not a
homogenous population of neurons. However, insights are begin-
ning to be made on the molecular mechanisms that may, in part,
confer subtype identity within the VM DA circuit, such as those
described for Shh, Pitx3 and Otx2. Despite these developments,
future studies will be crucial to elucidate the molecular basis of
these subtle developmental differences between A8, A9 and A10
DA neuronal identities.

VM DA neurons are now known to arise from floor plate radial
glial-like NPs in response to specification by FGF8, Shh and Wnt1.
This recent discovery is important if VM DA NPs are to be
specifically isolated for use in cell replacement therapies. Addi-
tionally, Wnt1 is now accepted as an extrinsic factor for VM DA
neurons, along with Shh and FGF8, which has added another
dimension to the developmental programme of VM DA neurogen-
esis. A number of TGFβ superfamily members, and other Wnts,
have also been implicated as instructive signalling molecules
during VM DA neurogenesis. Similar to the recent studies carried
out for Wnt1, these candidates should be investigated thoroughly
for their participation in these developmental processes.

The discovery of a number of new candidate transcription
factors, for example Oc1/2/3, highlights that there are likely to
be other, as yet unidentified, molecular pathways involved in
regulating VM DA neurogenesis. Furthermore, new relationships
are being uncovered between the transcription factors and mole-
cular pathways that are well-known to play key roles in DA
development. For example, Nurr1 and Pitx3 were previously
thought to function independently, however, recent data show
that these key transcription factors function cooperatively. These
findings highlight that there is still a significant challenge remain-
ing to understand the complexities of the dynamic molecular
interactions between the known genetic networks involved in VM
DA neurogenesis.
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