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Abstract 

One problem in most three-dimensional (3D) scalar data visualization techniques is 

that they often overlook to depict uncertainty that comes with the 3D scalar data 

and thus fail to faithfully present the 3D scalar data and have risks which may mislead 

users’ interpretations, conclusions or even decisions. 

Therefore this thesis focuses on the study of uncertainty visualization in 3D scalar 

data and we seek to create better uncertainty visualization techniques, as well as to 

find out the advantages/disadvantages of those state-of-the-art uncertainty 

visualization techniques. To do this, we address three specific hypotheses: (1) the 

proposed Texture uncertainty visualization technique enables users to better identify 

scalar/error data, and provides reduced visual overload and more appropriate 

brightness than four state-of-the-art uncertainty visualization techniques, as 

demonstrated using a perceptual effectiveness user study. (2) The proposed Linked 

Views and Interactive Specification (LVIS) uncertainty visualization technique enables 

users to better search max/min scalar and error data than four state-of-the-art 

uncertainty visualization techniques, as demonstrated using a perceptual 

effectiveness user study. (3) The proposed Probabilistic Query uncertainty 

visualization technique, in comparison to traditional Direct Volume Rendering (DVR) 

methods, enables radiologists/physicians to better identify possible alternative 

renderings relevant to a diagnosis and the classification probabilities associated to 

the materials appeared on these renderings; this leads to improved decision support 

for diagnosis, as demonstrated in the domain of medical imaging. 

For each hypothesis, we test it by following/implementing a unified framework that 

consists of three main steps: the first main step is uncertainty data modeling, which 

clearly defines and generates certainty types of uncertainty associated to given 3D 

scalar data. The second main step is uncertainty visualization, which transforms the 

3D scalar data and their associated uncertainty generated from the first main step 

into two-dimensional (2D) images for insight, interpretation or communication. The 

third main step is evaluation, which transforms the 2D images generated from the 
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second main step into quantitative scores according to specific user tasks, and 

statistically analyzes the scores. As a result, the quality of each uncertainty 

visualization technique is determined.
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Chapter 1 Introduction 

1.1 Uncertainty Visualization in 3D Scalar Data 

3D scalar data, also known as 3D scalar fields, or volumetric scalar data, are a 

common type of data used in many application areas, for example, medical imaging, 

biology, geophysics, industry, molecular systems, meteorology, and computational 

fluid dynamics (Celebi, 2013). They are often acquired from instrumental 

measurements, for example, computed tomography (CT), magnetic resonance 

imaging (MRI), positron emission tomography (PET), ultrasound and confocal 

microscopy or scientific simulations, for example, stormy predication and climate 

change simulation. The visualization of such data types are known as volume 

visualization (Brodlie, 2006), which is now well accepted as a powerful means to 

allow scientists to explore large data sets, and to present their results to a wider 

audience (Brodlie, Osorio and Lopes, 2012). 

However, one main problem existing in most volume visualization techniques is that 

they are developed under an assumption that the data sets to be visualized are 

perfect, without incorporating any uncertainty. This is rarely the case in the real 

world as uncertainty is an inherent part of all data (Sanyal et al., 2009) and the 

sources of uncertainty are throughout the scientific process (Potter, 2010a)( Potter, 

2011). For example, starting with the data acquisition stage, nearly all data sets are 

generated with some extent of uncertainty. For data measurements, no matter 

whether they are taken by scientists or instruments, there will always be statistical 

variation in these measurements. For scientific simulations, the model and its 

parameters are usually decided by a domain specialist, and are inherently a 

simplification of the system being modeled. In the data transformation stage, data 

may be rescaled, resampled, quantized, etc. and thus have the potential to introduce 

uncertainty. Even in the visualization stage, uncertainty may also be introduced into 

the data due to the operations such as interpolation, resampling, classification etc. 

that are built in to the visualization algorithms. 
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Overlooking the depiction of uncertainty in visualization will result in an unfaithful 

representation of data. More importantly, it leaves the visualization running in a risk 

that misleads viewers’ interpretation of data, or drawing incorrect conclusions or 

decisions from data. Because of this, uncertainty visualization has been recognized 

as one of top research problems in visualization literature (Johnson, 2004)(Chen, 

2005)(Johnson et al., 2006)(Laramee and Kosara, 2007), and great emphasis has been 

placed on its research (Johnson and Sanderson, 2003): 

“We urge the scientific visualization research community to take the next step and 

make visually representing errors and uncertainties the norm rather than exception.” 

Thus, this thesis is about uncertainty visualization in 3D scalar data and we present 

our approaches to tackle this issue. 

1.1.1 Motivation 

There are two main reasons that motivate the research of this thesis. This section will 

discuss them in details. 

1.1.1.1 Pervasive Uncertainty in 3D Scalar Data 

Uncertainty is pervasive in all data and this is also the case in 3D scalar data. We can 

understand this by looking at the sources of uncertainty in a typical visualization 

pipeline, as proposed by (Pang, Wittenbrink and Lodha, 1997)(Pang, 2008) and 

illustrated in Figure 1.1. This figure shows that there are three stages involved in the 

visualization pipeline. First, there is a data acquisition stage where data may be 

collected from measurements, field observations, or numerical models. Then these 

data undergo a data transformation stage where a series of transformations are 

involved i.e. unit conversion, refine, feature extraction, etc. Finally, the results of data 

from the data transformation stage are fed into a visualization stage where they are 

mapped to visual parameters. This figure illustrates that uncertainty can be 

introduced at any stage in the pipeline, even in the stage of visualization itself. 
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Figure 1.1: The visualization pipeline shows the introduction of data uncertainty (U) 

(Pang, Wittenbrink and Lodha, 1997)(Pang, 2008). 

Uncertainty in data acquisition: data may be collected from observations and 

measurements or scientific simulations. In either case, uncertainty may be 

introduced into data due to a variety of factors such as miscalibration in instruments, 

or over simplification of mathematical models. For data measurement, there is an 

experimental variability associated with every measurement, whether a machine or 

a scientist takes it. The more times the measurement is taken, the more confident 

the measurement is. But there will always be a statistical variation in these 

measurements. For scientific simulations, the model and its parameters are usually 

decided by a domain expert, inherently a simplification of the system being modeled. 

In addition to model simplification and sensitivity of these models to input 

parameters, numerical calculations performed on these models may also introduce 

uncertainty due to the choices of integration algorithms and the limited precision of 

computing machinery (Pang, Wittenbrink and Lodha, 1997).  Likewise, uncertainty 

can also be introduced into data by human observations as there is a difference in 

perception among individuals. 

Uncertainty in data transformation: quite often, raw data will undergo further 

transformations before a final image is generated. These data transformation 

operations can be as simple as unit conversation, or may involve some more complex 

processes such as mapping classified intensity data to optical properties, that is 

normally done the Transfer Functions (TFs). These data transformations may happen 

as early as the data acquisition stage, or later as part of the visualization stage. As the 
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data transformations change the data from their original forms, there is potential to 

introduce uncertainty. 

Uncertainty in data visualization: uncertainty can also be introduced during the 

visualization stage itself. For example, filtering and mapping are two common steps 

in many visualization techniques, and both of them have the potential to introduce 

uncertainty. For the filtering, it usually involves the operation of interpolation, which 

intends to build a continuous empirical model from the acquired discrete data. 

Uncertainty will of course be introduced into data during interpolation because we 

are only making plausible inferences of the data behaviours between sampled voxels. 

Take the volume ray-casting rendering as a more specific example. When we 

reconstruct the value of each interior sampling point in a cell along a casted ray, 

different interpolation algorithms can be employed i.e. the nearest neighbor 

interpolation, trilinear interpolation, cubic convolution and B-spline interpolation 

(Meibner et al., 2000), with each one making different assumption of data behaviour. 

Consequently uncertainty to different extents could be introduced. As for the 

mapping step, it involves the process to create a geometric model, and uncertainty 

can be introduced into the data when the geometric model is approximated i.e. the 

curved isosurface is approximated by triangles in the Marching Cubes (MC) algorithm 

(Lorensen and Cline, 1987). 

Figure 1.1 shows that in particular, two types of uncertainty can be distinguished, 

depending on the stage where they are generated. “Visualization of uncertainty” 

focuses on the data acquisition stage or data transformation that occurs as early as 

the data acquisition stage, while “uncertainty of visualization” focuses on the 

visualization stage or data transformation that occurs within the visualization stage.  

Normally, we view the visualization pipeline as a left-to-right output process, and 

uncertainty could be accumulated and propagated when data pass through the 

pipeline. In interactive work, we also traverse the pipeline from right-to-left, and 

uncertainty needs to be borne in minds as we pass back along the pipeline (Brodlie, 

Osorio and Lopes, 2012). 
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In any case, the uncertainty is pervasive in 3D scalar data and it should not be 

disregarded in the volume visualization. 

1.1.1.2 The Need for Uncertainty Visualization in 3D Scalar Data 

A simple but very common need for uncertainty visualization in 3D scalar data comes 

from the task to compare possible differences or errors between two similar 3D data 

sets. Figure 1.2 illustrates such an example and two similar 3D data sets are volume 

rendered on the left and right. While it is possible to tell the partial differences 

between the two 3D data sets by our Human Visual System (HVS) (Alexandre and 

Tavares, 2010)(Hansen and Johnson, 2004) i.e. the lower edge on the right figure is 

slightly coarser than the one on the left figure, it is impossible to make an accurate 

and comprehensive distinction of their differences. Thus, a visualization technique 

that could not only represent the characteristics of the 3D data, but also their 

differences are expected. This exactly falls into the research of uncertainty 

visualization in 3D scalar data. 

 

Figure 1.2: Two similar 3D scalar data sets are volume rendered on the left and right 

(Foulks and Bergeron, 2009). 

The second example (Potter, 2010b) comes from the field of Medical Imaging where 

radiologists, physicians and surgeons have routinely used volume visualization 

techniques to diagnose and assess patients’ data acquired from CT, MRI, Ultrasound 

or PET (Meibner et al., 2000). Figure 1.3 presents a CT scan data set of a human brain 

with a brain tumor, and two different volume renderings of the tumor’s boundary 

are shown on the left and right. While there are no huge differences between the 
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two representations of the tumor boundary, decisions made on either of them may 

have a significantly different impact on the patient. This is because this tumor grows 

within the brain’s white and grey matter, damage of its surrounding tissues can cause 

serious consequences to the patient. If we have removed the tumor with excessive 

tissues, this may result in serious injury of the patient. However, if we have removed 

the tumor incompletely, the tumor could regrow and repeated and costly surgeries 

are required. In any case, an advanced uncertainty visualization technique that can 

inform the surgeons the possible boundary positions of the tumor, as well as their 

confidence level could be very helpful. By inspecting and understanding the possible 

boundary positions of the tumor as well as their associated confidence levels, 

surgeons could improve their surgery planning, or perform more accurate surgery.  

The patient could also benefit from this by having a safer surgical operation, or a 

faster recovery time. 

 

Figure 1.3: A brain tumor data set from CT scan. Two different volume renderings of 

the possible boundaries of the tumor are shown on the left and right (Potter, 2010b). 

A third example (Potter, 2010b)(Potter, 2003) is from the interdisciplinary field of 

architecture or archaeological reconstruction, in which one of the biggest problems 

is the difficulty in communicating the ideas concerning the speculative look of a 

destroyed site. While verbal communication is always obscure and hard to depict the 

details, fully realistic renderings of the reconstructed mock-up may mislead the 

interpretation of viewers. This is because a realistic rendering-based image always 

tries to be as close as possible to be a photograph, which suggests that it could have 

been taken from a camera. It may lead viewers to make inappropriate assumptions 
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about the validity, accuracy as well as the degree of certainty of the speculative 

reconstruction. Thus, advanced visualization techniques that could reflect the status 

or certainty information of the reconstructed site are needed. Fortunately, such a 

problem can be addressed by the research of uncertainty visualization in 3D scalar 

data, and we prove this by giving a concrete uncertainty visualization solution to this 

issue. In Figure 1.4(a) we show a photograph of an incomplete Mayan temple. And in 

Figure 1.4(b) we render a reconstructed 3D model of the temple with its uncertainty 

information being indicated by line textures. 

Figure 1.4(a) shows that the actual temple consists of two levels: a lower base and 

an upper pile of stone rubble. The reconstruction restored the rubble pile as another 

level of stone work, with a wooden hut on top of it, as shown in Figure 1.4(b). The 

uncertainty visualization technique expresses the levels of confidence in the 

reconstruction by means of line textures. The base structure of the temple is 

rendered as solid, straight lines. This is due to the fact that the base structure of the 

temple is still in existence, and thus has a high level of confidence. The next level of 

work is rendered as a less connected and more random line textures. This is used to 

express the fact that we only know that this level of work are constructed by stone, 

as evidenced by the rubble pile, but its actual structure is only inferred from 

knowledge of nearby temples. Finally, the top wooden hut is rendered as a very 

sketchy style with empty line textures, which is used to reflect the fact that the actual 

existence of the hut is not known, and we only assumed its existence based on our 

findings of wooden fragments from the rubble. 

Such an uncertainty visualization technique not only depicts the appearance of the 

Mayan temple, but also indicates the certainty information of its reconstruction. This 

will help architecture or archaeological experts to accurately communicate their 

ideas concerning the speculative look of the temple without making inappropriate 

assumptions or interpretation. 

From the three examples mentioned above it is clear that there is a demand for 

research of uncertainty visualization in 3D scalar data. 
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(a)         (b) 

Figure 1.4: (a) A photograph of a Mayan temple. (b) An uncertainty visualization of 

the possible look of the Mayan temple after reconstruction (Potter, 2010b)(Potter, 

2003). 

1.1.2 Challenges 

Although the problem of uncertainty visualization has been identified in the 

visualization community (Johnson, 2004)(Chen, 2005)(Johnson et al., 2006)(Laramee 

and Kosara, 2007)(Johnson and Sanderson, 2003), it is taking a long time to solve this 

problem, especially for 3D or higher dimensional data. Why is it so hard? Brodlie, 

Osorio and Lopes (2012) summarize some possible reasons for uncertainty 

visualization in 3D scalar data. 

Uncertainty definition is complex: uncertainty, by its nature, is a complex subject. 

Indeed as David and Keller (1997) note, even the terminology itself is often unhelpful: 

“the self-referential problem of uncertainty about uncertainty terminology has been 

a notable stumbling block in this avenue of inquiry.” 

A useful step forward here is the definition for uncertainty in geospatially referenced 

information presented by Thomson et al. (2005). They distinguish nine categories in 

their definition: accuracy/error, precision, completeness, consistency, 

currency/timing, credibility, subjectiveness, interrelatedness, and finally, lineage. 

Although the definition is specific to geovisualization, it would be useful to extend it 

to the wider area of scientific data visualization. 

Uncertainty can be presented in different ways:  each voxel in 3D scalar data could 

correspond to one or multiple scalar function values that are sampled on it, as 
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explained in Section 3.1.1. In addition to these “certain” data, each voxel could also 

correspond to some types of “uncertain” data that is presented in different ways: 

•As a singular scalar data: this is the simplest case in which uncertainty at each voxel 

is depicted as a singular scalar value. We could consider the uncertainty as the same 

as the certain data except from its meaning. 

•As multivariate data: this is an extended version of previous case and instead of 

each voxel corresponding to a singular scalar uncertainty value, it now corresponds 

to multiple scalar uncertainty values. 

•As bounded data: sometimes the uncertainty is depicted as continuous values 

falling into finite bounds, rather than one or multiple discrete values as described in 

the previous two cases. Olston and Mackinlay (2002) refer this to bounded 

uncertainty. 

•As a Probability Density Function (PDF): the uncertainty at each voxel can also be 

supplied as a random variable, say F, with its PDF, 𝑔(𝑓), as shown in formula 1.1: 

𝑝𝑟𝑜𝑏(𝑎 ≤ 𝐹 ≤ 𝑏) =  ∫ 𝑔(𝑓)𝑑𝑓
𝑏

𝑎
   (1.1), 

where 𝑝𝑟𝑜𝑏 refers to probability, and 𝑎 is min. and 𝑏 is max. 

Uncertainty adds an extra dimension to the visualization: this can be illustrated by 

a simple example. In figure 1.5(a), a singular data (2, 8.8) is presented as a marker. 

Since it only depicts a singular point, it is zero-dimensional (0D). Now assuming that 

there is an uncertainty associated to the data in the y direction, say 8.8 ± 0.3, then 

both the data as well as its uncertainty can be presented as an error bar, which is a 

vertical line and thus is one-dimensional (1D), as shown in Figure 1.5(b). From the 

example it is clear that uncertainty adds an extra dimension to the visualization, as a 

marker becomes a line. The same conclusion can be applied to higher dimensional 

data i.e. isolines with uncertainty become areas, and isosurfaces with uncertainty 

become volumes. Here the word “dimension” is not only limited to the spatial 

dimensions. It actually refers to any channels that could be used to depict data i.e. 

color. 
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For low-dimensional data this may cause fewer problems as the data to be visualized 

only occupies few dimensions and there are many other dimensions available for 

depiction of uncertainty. But for 3D or higher dimensional data, this poses a big 

challenge: many dimensions have been used to represent “certain” data, and there 

may not be enough dimensions available to depict uncertainty. In addition, 

uncertainty visualization in 3D or higher dimensional data can easily cause visual 

clutter and complexity, as there are too many dimensions used simultaneously to 

represent both data and its uncertainty. Consequently it may decrease the viewers’ 

understanding of the data. 

 

(a)                 (b) 

Figure 1.5: An example of uncertainty adding an extra dimension to the visualization 

(Brodlie, Osorio and Lopes, 2012). 

Uncertainty may obscure data presentation: a simple example can illustrate this. For 

example, assuming we utilize transparency to depict the data with uncertainty. The 

small transparency is used to represent the data with low uncertainty, while the big 

transparency is used to represent the data with high uncertainty. As a result, it may 

be very difficult for the viewers to identify those data with very high uncertainty, as 

they are too transparent to be observed. 

Uncertainty adds another discipline: quite often, a multidisciplinary team that 

includes domain scientists, visualization scientists, numerical analysts and artists 

produces the best volume visualization. And now as we consider uncertainty in the 

volume visualization, a further discipline that deals with uncertainty, statistics, must 
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be added. We need to increase our knowledge in statistics and enhance collaborate 

with statisticians in order to improve the rigour of uncertainty visualization. 

1.1.3 Research Hypotheses 

Based on the state of the art of uncertainty visualization research, three new 

uncertainty visualization techniques have been proposed in this thesis. These three 

uncertainty visualization techniques formulate the following three hypotheses: 

• Hypothesis 1: the proposed Texture uncertainty visualization technique enables 

users to better identify scalar and error data and provides reduced visual overload 

and more appropriate brightness than four state-of-the-art uncertainty visualization 

techniques, as demonstrated using a perceptual effectiveness user study. 

• Hypothesis 2: the proposed LVIS uncertainty visualization technique enables users 

to better search max/min scalar and error data than four state-of-the-art uncertainty 

visualization techniques, as demonstrated using a perceptual effectiveness user 

study. 

• Hypothesis 3: the proposed Probabilistic Query uncertainty visualization technique, 

in comparison to traditional DVR methods, enables radiologists and physicians to 

better identify possible alternative renderings relevant to a diagnosis and the 

classification probabilities associated to the materials appeared on these renderings; 

this leads to improved decision support for diagnosis, as demonstrated in the domain 

of medical imaging. 

In particular, the uncertainty visualization techniques involved in the first two 

hypotheses focus on the uncertainty generated from data transformation that occurs 

in the data acquisition stage, thus they belong to the visualization of uncertainty, as 

described in Section 1.1.1.1. The Probabilistic Query uncertainty visualization 

technique developed in the third hypothesis focuses on the uncertainty generated 

from data transformation that occurs within the visualization stage, therefore it 

belongs to the uncertainty of visualization. 

1.1.4 Contributions 
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Addressing the three hypotheses mentioned above, this thesis provides the following 

contributions: 

• propose a Texture uncertainty visualization technique (applicable to two types of 

textures), which is empirically shown through an evaluation to have some utilities in 

certain perceptual aspects, but not as good as the existing hue and texture opacity 

uncertainty visualization techniques. In addition, the perceptual effectiveness of the 

4 existing uncertainty visualization techniques are revealed. These provide useful 

guidance for future uncertainty visualization design. 

• propose a LVIS uncertainty visualization technique, which is shown empirically 

through an evaluation to have better perceptual effectiveness than other evaluated 

techniques. In addition, the perceptual effectiveness of the 4 existing uncertainty 

visualization are revealed. These provide useful guidance for future uncertainty 

visualization design. Moreover, because of the superiority of the LVIS technique, it is 

extended to become the Extended Linked Views and Interactive Specification (ELVIS), 

which is intended to visualize uncertainty in multivariate 3D scalar data. 

• propose a Probabilistic Query uncertainty visualization technique, which provides 

radiologists and physicians with better decision support for diagnosis than traditional 

DVR. This is demonstrated by three concrete case studies in the domain of medical 

imaging. 

1.2 Thesis Outline 

The remainder of this thesis is organized as follows: 

Chapter 2 introduces the background and related work to our research. First, a 

taxonomy and notation of uncertainty visualization techniques are presented. This 

could give us a better understanding about the scope of this research. Second, a 

review of uncertainty visualization techniques in scalar data is given based on the 

taxonomy. Third, some works about evaluation of the perceptual effectiveness of 

uncertainty visualization techniques are discussed. 

Chapter 3 presents the technical foundations and framework of this thesis. First, the 

foundations of this thesis are introduced, which include some common concepts and 
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visualization algorithms used in the field of visualization. Second, the framework 

exploited in this thesis is presented. This includes three main steps: uncertainty data 

modeling, uncertainty visualization and evaluation, which are defined and explained 

in great detail. 

Chapter 4 presents the corresponding work for hypothesis 1 – the Texture 

uncertainty visualization technique, which is intended to visualize uncertainty in 

isosurface rendering. It consists of three main parts. First, the uncertainty data 

modeling method is introduced, and it is used to generate the data for testing and 

evaluating the Texture uncertainty visualization technique. Second, the actual 

Texture technique that includes two types of textures and is applied to the data 

generated from the first part is presented. Third, the evaluation work that is used to 

compare the perceptual effectiveness of the Texture technique with other 4 existing 

uncertainty visualization techniques is shown. 

Chapter 5 shows the related work to hypothesis 2 – the LVIS uncertainty visualization 

technique, which is intended to visualize uncertainty in DVR. This involves four main 

parts. First, the uncertainty data modeling method exploited to generate the data for 

testing and evaluating the LVIS uncertainty visualization technique is introduced. 

Second, the actual LVIS technique, which includes three components and is applied 

to the data generated from the first part is presented. Third, its evaluation work with 

respect to perceptual effectiveness in comparison to other 4 existing uncertainty 

visualization techniques is shown. Finally, its extended work towards visualizing 

uncertainty in multivariate 3D scalar data is shown. 

Chapter 6 shows the related work to hypothesis 3 – the Probabilistic Query 

uncertainty visualization technique, which is intended to visualize the material 

intensity classification issue involved in DVR, and thus improves DVR as a better 

decision making tool. Two sub works are incorporated in this chapter. First, the 

explicitly probabilistic TF model is introduced, which is used to model the material 

intensity classification probability and provides the foundation for the Probabilistic 

Query technique. Second, the actual Probabilistic Query technique is presented. It is 

applied to three concrete case studies in the domain of medical imaging to illustrate 
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its ability of providing better decision support for diagnosis, in contrast to traditional 

DVR. 

Finally, Chapter 7 summarizes the entire thesis and points out the limitations existed 

in these works. An outline of future work related to this thesis is also provided.
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Chapter 2 Background and Related 

Work 

This chapter presents the background and related work of this thesis, which includes 

three main parts. First, a simple but effective taxonomy of uncertainty visualization 

techniques and its notation are introduced. Second, a review of a variety of 

uncertainty visualization techniques in scalar data is presented according to the 

taxonomy. Third, the evaluation works of these uncertainty visualization techniques 

in scalar data are presented. Note that the review discusses a wider range of works 

than the 3D case focused in this research. In such a way, we have opportunities to 

explore the possible extensions of those low-dimensional techniques to our research. 

2.1 Taxonomy and Notation of Uncertainty Visualization 

Techniques 

This section introduces taxonomy of uncertainty visualization techniques. This will 

not only give a clearer concept of the focused scope of this thesis, but also facilitate 

a better organization of the following review work. Over the past few years, a few 

taxonomies (Pang, Wittenbrink and Lodha, 1997)(MacEachren et al., 2005)(Skeels et 

al., 2010)(Thomson et al., 2005) have been proposed, ranging from information 

visualization to scientific visualization. In this thesis, we introduce a simple but 

effective uncertainty visualization taxonomy that is proposed by (Brodlie, Osorio and 

Lopes, 2012) who proposed this taxonomy based on their early work (Brodlie et al., 

1992) for the classification of scientific visualization algorithms. 

This taxonomy is based on two aspects of data. The first aspect is the dimension of 

the independent variables, which define the observation space (Theisel, 2005) and 

often refer to space or time. The second aspect is the type of dependent variables, 

which are collected from the observation space (Theisel, 2005) i.e. temperature or 
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density and are often known as point (P), scalar (S), vector (V) or tensor (T). It can be 

expressed by the following notation: 

𝑈𝑑
𝑘𝑡     (2.1), 

where U refers to the uncertain data; the subscript d refers to the dimensions of the 

independent variable, which can be 0D, 1D, 2D, 3D or four-dimensional (4D) (space 

+ time); t indicates the type of dependent variable, which can be P, S, V or T; and k 

indicates the number of multivariate at each voxel. Thus for example, a notation 

𝑈3
𝑆can be explained as the uncertainty in the data consists of a univariate’s scalar 

function of three independent variables. 

Based on this taxonomy, the uncertainty visualization techniques can be organized 

into Table 2.1. Here the temporal dimension is not considered in this table as it 

usually has different features and resolution than the spatial dimensions (Sanyal et 

al., 2009). Also, according to (Brodlie, Osorio and Lopes, 2012)(Potter, Rosen and 

Johnson, 2012), no research has been conducted to explore the uncertainty in the 

temporal dimension. In particular, the grey part of Table 2.1 indicates the scope of 

this thesis, which concerns uncertainty visualization in 3D scalar data, for both 

singular and multiple variables at each voxel. 

Table 2.1: Classification of uncertainty visualization techniques. The grey part 

indicates the scope of this thesis. 

Dim. 𝑈𝑃 𝑈𝑆 𝑈𝑘𝑆 𝑈𝑉 𝑈𝑇 
𝑈0      

𝑈1      

𝑈2      

𝑈3      

 

2.2 Review of Uncertainty Visualization Techniques in Scalar 

Data 

This section presents various uncertainty visualization techniques in scalar data. For 

those techniques in 0D, 1D and 2D cases, their possible extensions to a 3D case are 

discussed. For the techniques in the 3D case, their advantages or disadvantages are 

discussed. 
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2.2.1 𝑈0
𝑆 

In this case, the uncertainty data quantified are not associated to any spatial or 

temporal variables and they are typically presented with many observations of a 

single scalar variable (Brodlie, Osorio and Lopes, 2012). A classic technique to 

visualize such uncertainty data is the error bar, which can effectively reveal the upper 

and lower boundaries of the data by the length of the bar. Another popular technique 

to visualize this type of uncertainty data is the box plot proposed by Tukey (1977), 

which can reveal the uncertainty of the data by five summary statistics: the maximum 

value, the minimum value, the upper quartile, the lower quartile and the median, as 

illustrated in Figure 2.1. 

 

Figure 2.1: Tukey box plot. 

There have been many works (McGill, Tukey and Larsen, 1978)(Tufte, 

1983)(Benjamini, 1988)(Hintze and Nelson, 1998)(Esty and Banfield, 

2003)(Choonpradub and McNeil, 2005) reported on the extensions of modifications 

of the box plot technique. In a recent paper, a review of these works is presented by 

Potter et al. (2010), who suggested a summary plot, which incorporates further 

descriptive statistics such as skew and kurtosis, in addition to the traditional box plot.  

Although these techniques mentioned above have been proved to be effective to 

help quickly summarize the uncertainty characteristics of a data set, and provide a 

straightforward way to compare different data sets, they cannot be directly 

integrated into DVR to visualize uncertainty in 3D data (Dinesha, Adabala and 

Natarajan, 2012). This is because these techniques require adding at least one spatial 
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dimension to indicate the uncertainty, and this is not possible in DVR where all the 

three spatial dimensions have been totally occupied for the display of certainty data. 

Imposing them into DVR will quickly overload the visualization and produce visual 

clutter (Coninx et al., 2011). However, they may be integrated into the isosurface 

rendering techniques i.e. MC to indicate the uncertainty in 3D data. Also, they could 

be used accompanied with DVR to reveal the uncertainty i.e. summarize the local 

uncertainty characteristics of the drill down information that is interesting to users. 

2.2.2 𝑈1
𝑆 

In this case, the uncertainty data are quantified over one spatial variable and there 

is a variety of ways to indicate such type of uncertainty data. A series of techniques 

for this case are summarized and a formal user study to compare their perceptual 

effectiveness are performed by Sanyal et al. (2009). Figure 2.2 illustrates some of 

these techniques. 

Figure 2.2(a) shows that uncertainty can be depicted by the scaled sizes of a glyph. 

The bigger the size of the glyph, the higher the value of uncertainty will be. 

Conversely, the smaller the size of the glyph, the lower the value of uncertainty will 

be. Figure 2.2(b) presents an image where the uncertainty is depicted by the color 

attribute of a glyph. While the lighter color of the glyph indicates a higher uncertainty, 

the darker color of the glyph indicates a lower uncertainty. The same conclusion can 

be drawn from the technique illustrated in Figure 2.2(c). However, instead of using 

an extra glyph’s color to depict uncertainty, this technique directly uses the data lines’ 

color to depict it. Figure 2.2(d) presents an image which uses the error bars to depict 

uncertainty. While the long error bars indicate high uncertainty, the short error bars 

indicate low uncertainty. Consequently the error bar technique is extended 

successfully for the 1D case. Finally Figure 2.2(e) illustrates an image which applies 

the animation technique to the 1D data lines to depict uncertainty. While the large 

amplitude of the animation indicates high uncertainty, the small amplitude of the 

animation indicates low uncertainty. 
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  (a)                  (b) 

 

      (c)                                                                   (d) 

 

                    (e) 

Figure 2.2: Uncertainty visualization techniques for 1D case (Sanyal et al., 2009).  

Although the above-mentioned two glyph techniques and the error bars technique 

are useful for uncertainty visualization for the 1D case, they cannot be directly 

integrated into DVR for the 3D case. This can be attributed to either or both of the 

following two reasons. First, as explained in the previous section, they require adding 

at least one spatial dimension to the existing DVR for the indication of uncertainty, 

and this will quickly overload the visualization and produce visual clutter (Coninx et 
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al., 2011). Second, they typically involve some modification of geometric primitives 

and their associated attributes i.e. color to indicate the uncertainty; unfortunately 

DVR does not produce any intermediate geometric primitives for them to modify 

(Djurcilov et al., 2001)(Djurcilov et al., 2002). However, these techniques may be 

integrated into the isosurface rendering techniques or used combined with DVR to 

show uncertainty in 3D data. In terms of the above-mentioned color-mapping 

technique and the animation technique, it is possible to integrate both into DVR for 

uncertainty visualization, as discussed in Section 2.2.4.  

2.2.3 𝑈2
𝑆  

 

(a)        (b)               (c) 

Figure 2.3: Uncertainty visualization techniques for 2D case. (a) color-mapping data 

with uncertainty, (b) the scaled size of a glyph, (c) traditional error bars (Sanyal et al., 

2009). 

 

Figure 2.4: Increasing irregularity in a texture pattern can intuitively represent 

increasing levels of uncertainty (Interrante, 2000). 

This is the case where uncertainty data are quantified in terms of two spatial 

variables. A variety of techniques have been proposed for this case. Probably the 

most common technique for this case is color-mapping (Sanyal et al., 2009)(Lodha et 

al., 1996)(Wittenbrink, Pang and Lodha, 1995)(Potter et al., 2009)(Sanyal et al., 2010) 
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where the degree and presence of uncertainty data are indicated by the color, as 

illustrated in Figure 2.3(a). Another common technique for this case are glyphs 

(Sanyal et al., 2009)(Pang, Wittenbrink and Lodha, 1997)(Lodha et al., 

1996)(Wittenbrink, Pang and Lodha, 1995)(Potter et al., 2009)(Zehner, Watanabe 

and Kolditz, 2010), where the uncertainty data are indicated by the size, shape, 

length, color etc. attributes of the glyphs, as illustrated in Figure 2.3(b). The error bar 

technique is also obviously applicable for this 2D case and it is extended by Sanyal et 

al. (2009) from the 1D case to the 2D case, as illustrated in Figure 2.3(c). A research 

that makes use of the carefully selected texture patterns to depict different levels of 

uncertainty is performed by Interrante (2000), as illustrated in Figure 2.4. Animation 

is a commonly used technique in visualization and two works that apply it to indicate 

the uncertainty are suggested by Brown (2004) and Ehlschlaeger, Shortridge and 

Goodchild (1997). Figure 2.5 illustrates an example of this technique where two 

frames are selected from an animation and the uncertainty is indicated by the 

oscillated height in the dotted bordered rectangle. A 2D annotation work that 

superimposed a grid on top of an image and the uncertainty is indicated by subtle 

modifications of the grid lines is suggested by Cedilnik and Rheingans (2000), as 

illustrated in Figures 2.6(a) and (b). More recently, there have been some works 

(Osorio and Brodlie, 2008)(Pothkow and Hege, 2011) that extend the concept of a 2D 

contour and show the uncertainty regions across the spatial domain by modifying the 

contours’ color, thickness and opacity. Figure 2.7 illustrates one example of this 

technique where each highlighted pixel in this image indicates that there is a 65% or 

greater probability of the pixel having a value close enough to the contour value h = 

0. Also, there are two works (Potter et al., 2009) and (Sanyal et al., 2010) that 

combine various visualization techniques into multiple linked views to reveal the 

clear characteristics of uncertainty, as illustrated in Figure 2.8. 

Because the above-mentioned techniques of color-mapping, glyphs, error bars and 

animation are extended from the 0D or 1D case and their expansibilities to the 3D 

case have been introduced in the previous two sections, here we avoid repeated 

discussions. For the 2D annotation technique, its advantage is that the data 

representation has minimal interference induced by the uncertainty data. This is very 
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useful for those cases where it is more important to display data rather than 

uncertainty information. Although it is possible (Cedilnik and Rheingans, 2000) to 

extend this technique into 3D cases, no research has been performed towards such 

extensions. As for the multiple linked views technique, it is significant. Because it 

could not only yield a clearer data presentation by displaying diverse of information 

in multiple views, but also combine multiple visualization techniques together for 

quantitative data analysis. Unfortunately, no research has been reported to extend 

this technique for the 3D case. For the texture technique, it is possible to extend it to 

the 3D case, but only a few investigations (Rhodes et al., 2003)(Djurcilov et al., 2002) 

have been conducted for this study. In terms of the remaining contour technique, 

some works have reported to extend it to the 3D case, and they will be reviewed in 

the next section. 

 

Figure 2.5: Two frames from an animation to reveal the uncertainty that is indicated 

by the oscillated height in the dotted bordered rectangle (Brown, 2004). 

 

           (a)         (b) 

Figure 2.6: A 2D annotation technique with uncertainty is indicated by (a) the width 

variation of the grid lines, (b) the exponential sharpness of the grid lines (Cedilnik and 

Rheingans, 2000). 
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Figure 2.7: The contour technique with uncertainty is indicted by contour color (Osorio 

and Brodlie, 2008). 

 

Figure 2.8: The multiple linked Views technique (Potter et al., 2009). 

2.2.4 𝑈3
𝑆  

 

 (a)                (b) 

Figure 2.9: Isosurface rendering of a cadaver head data set with uncertainty is 

indicated by (a) hue, (b) texture opacity (Rhodes et al., 2003). 
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This is the case where the scalar uncertainty data are depicted by three spatial 

variables. When moving to the 3D case, the visualization channels available for 

uncertainty data have been significantly decreased due to the fact that the 3D space 

has been in use to visualize the “certain” data, either by isosurface rendering or DVR. 

This poses huge challenges for uncertainty visualization. 

 

Figure 2.10: Uncertainty in the real tumor data set is indicated by the displacement 

distance of surface points, in the direction of the surface normal (Grigoryan and 

Rheingans, 2002)(Grigoryan and Rheingans, 2004). 

 

(a)        (b) 

Figure 2.11: Isosurface rendering of lobster data with local uncertainty is represented 

by (a) cylinder glyphs, (b) transparency (Newman and Lee, 2004). 

Isosurface: there is research (Rhodes et al., 2003) that uses hue and texture opacity 

to indicate uncertainty, as illustrated in Figures 2.9(a) and (b). A technique which uses 

displacement of the surface points to indicate uncertainty is suggested by Grigoryan 

and Rheingans (2002)(2004). As illustrated in Figure 2.10, the areas pointed to by red 
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arrows indicate high uncertainty with big displacement of the surface points, while 

those pointed to by blue arrows indicate low uncertainty with small displacement. A 

work which involves using glyphs and transparency to depict uncertainty is presented 

by Newman and Lee (2004), as illustrated in Figures 2.11(a) and (b). In contrast to the 

techniques mentioned above which visualize uncertainty existing within data, several 

methods that address positional uncertainty that is caused by isosurface rendering 

itself are proposed by (Pothkow and Hege, 2011)(Pothkow, Weber and Hege, 2011). 

 

            (a)          (b)       (c) 

Figure 2.12: Uncertainty visualization of ocean data with uncertainty. Uncertainty as 

indicated by (a) transparency, (b) density of holes and (c) texture contrast (Djurcilov 

et al., 2001)(Djurcilov et al., 2002). 

DVR: uncertainty visualization gets even harder in this case because all three spatial 

variables plus color and transparency have been in use for the “certain” data, and 

the visualization channels left for depiction of uncertainty are less. Early work by 

Djurcilov et al. (2001)(2002) explored a series of techniques including using 

transparency, holes and textures to visualize uncertainty in 3D data. According to 

whether these techniques can be directly integrated into DVR or not, they classify 

them into two general methods, namely inline and post-process. The transparency 

technique involves mapping uncertainty directly into the volume rendering equation, 

and Figure 2.12(a) illustrates its result. The holes technique involves compositing the 

DVR of data with the dithered DVR of uncertainty, and Figure 2.12(b) illustrates its 

result. As for the texture technique, it involves adjusting each pixel’s brightness of 

the DVR of data to the corresponding pixel’s brightness from the texture map, 

according to its uncertainty value, and Figure 2.12(c) illustrates the corresponding 

result. There is research (Foulks and Bergeron, 2009) that uses color-mapping, 
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overlay and hybrid renderings to reveal uncertainty in 3D data. The color-mapping 

technique is mapping uncertainty data directly to the color and the “exact” data are 

not represented in the final image, as illustrated in Figure 2.13(a). The overlay 

technique involves superimposing a semi-transparent colorized DVR of data with a 

semi-transparent gray DVR of uncertainty, as illustrated in Figure 2.13(b). The hybrid 

renderings technique involves compositing the semi-transparent colorized DVR of 

data with a gray slice rendering of uncertainty, as illustrated in Figure 2.13(c). Not 

surprisingly, the time dimension can be very useful to depict uncertainty in this case. 

(Lundstrom et al., 2007)(Lundstrom, 2007) integrated the animation technique into 

DVR and used it to indicate the data classification uncertainty caused by traditional 

TFs. Figure 2.14 illustrates a specific example of this technique. In Figure 2.14(a), a 

traditional DVR of a renal angiograph is presented, and we can see from the arrow 

that a vessel stenosis may occur. Figures 2.14(b), (c) and (d) present three frames 

from the proposed animation technique, and from them we can see that there is no 

stenosis in the vessel.  

 

(a)       (b) 

  (c) 

Figure 2.13: Uncertainty visualization of magnetohydrodynamics with uncertainty 

(Foulks and Bergeron, 2009).  
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              (a) 

 

  (b)             (c)    (d) 

Figure 2.14: Uncertainty visualization of data classification uncertainty. (a) A 

traditional DVR with a suspected vessel stenosis as denoted by the arrow. (b)-(d): 

Three frames from the animation technique indicate there is no stenosis in the vessel 

(Lundstrom et al., 2007)(Lundstrom, 2007). 

Although these techniques can intuitively depict uncertainty without requiring extra 

training of users, they all suffer from one or more drawbacks. The disadvantage of 

the above-mentioned displacement technique of surface points, as shown in Figure 

2.10, is that the appearance of data may become unrecognizable to users when the 

amount of uncertainty increases. The disadvantage of the glyphs technique, as 

shown in Figure 2.11(a), is that partial data representation is always occluded by the 

glyphs and this is not good for users to identify the data. Similarly, the disadvantage 

of the transparency technique, as shown in Figure 2.11(b) and Figure 2.12(a), is that 

the data presentation is always weakened by the transparency that is used to 

indicate uncertainty. As for the holes technique as shown in Figure 2.12(b), its 

disadvantage is that data representation is missing in the regions of holes. For the 

color-mapping techniques shown in Figure 2.13(a), its disadvantage is that the data 

presentation is completely invisible for users’ analysis. In terms of the animation 

technique as shown in Figures 2.14(b), (c) and (d), its disadvantage is that the 
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movement and flickering in the animation can easily cause visual fatigue to users. 

Moreover, a main problem in all the techniques mentioned above for the 3D case is 

that they only give qualitative indications rather than quantitative indications of 

uncertainty data. This may be sufficient for some cases where only relative 

distinctions of uncertainty are needed. However, this will be less useful for those 

cases where quantitative distinctions of uncertainty are required i.e. in the medical 

imaging filed, radiologists and physicians want to quantitatively assess the 

uncertainty caused by data classification during DVR so that they can draw more 

appropriate conclusions for the diagnosis of patients.  

2.2.5 Multivariate Uncertainty Data 

While most works in the field of uncertainty visualization have focused on univariate 

uncertainty data, as reviewed in the previous four sections, little research has been 

reported for multivariate uncertainty data (Xie et al., 2006)(He, Yang and Xu, 2011). 

This section reviews the works that are related to visualization of multivariate 

uncertainty data. 

2.2.5.1 𝑈0
𝑘𝑆 

This is the case where a set of uncertainty data have been quantified for multiple 

variables, but they are not related to space and time. Uncertainty visualization of this 

type of data usually extends existing techniques in multivariate visualization (Wong 

and Bergeron, 1994)(Chan, 2006), which is a typical research topic in the information 

visualization (Spence, 2007)(Dix, 2013).  

There is research (Xie et al., 2006) that extends three well-known multivariate 

visualization techniques of parallel coordinates (PC), scatter plot matrices and star 

glyphs, to incorporate uncertainty information. Furthermore, different visual 

encodings i.e. line width, point size, hue, saturation and lightness (HSL) for the 

indication of uncertainty are compared. Two works that augment PC to incorporate 

uncertainty by means of blurring, opacity and color are reported by (Feng et al., 

2010)(Feng, 2010) and Ge et al. (2009). Again, these techniques tend to use certain 

visual channels, i.e. color and line width, to depict uncertainty and thus can only make 

qualitative indications.  
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2.2.5.2 𝑈>0
𝑘𝑆 

This is the case where a set of uncertainty data are quantified for multiple variables, 

over 1D, 2D or 3D spatial domains. It is already an identified research problem 

(Johnson, 2004) to represent multiple separate variables into a single image over 

spatial domains, and the addition of uncertainty data makes the problem even harder. 

The only research reported for this case is from (Haroz, Ma and Heitmann, 2008) 

(Haroz and Heitmann, 2008), who combined a PC control interface together with a 

spatial view to visualize the uncertainty between different simulation codes in 

cosmological particle simulations (Heitmann et al., 2005)(Heitmann et al., 2007) 

(Fryxell et al., 2000)(Warren and Salmon, 1993), as illustrated in Figure 2.15. A very 

important advantage of this technique is that it allows quantitative exploration of 

uncertainty by using the PC as a query interface.  

 

Figure 2.15: Uncertainty visualization consists of a PC control interface plus a spatial 

view (Haroz, Ma and Heitmann, 2008)(Haroz and Heitmann, 2008). 
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2.3 Evaluation of Uncertainty Visualization Techniques in 

Scalar Data 

An often overlooked aspect in the field of visualization is evaluation, and this is also 

the case in uncertainty visualization (Potter, Rosen and Johnson, 2012). Lack of 

evaluation will not benefit future uncertainty visualization design and development, 

as no valuable knowledge and guidelines are summarized and formulated from the 

existing solutions. 

Sanyal et al. (2009) presented a user study that involved four user tasks to evaluate 

the perceptual effectiveness of four commonly used uncertainty visualization 

techniques, including traditional error bars, scaled size of glyphs, color-mapping on 

glyphs and color-mapping on the data surface in 1D and 2D data, and there are four 

valuable findings from their study. First, they found a significant difference in user 

performance between searching for locations of high and searching for locations of 

low uncertainty. Second, they found that the error bars technique consistently 

underperformed throughout the experiment. Third, they found that the scaled size 

of glyphs technique and the color-mapping on the data surface technique performed 

reasonably well. Finally, they found that the efficiency of most of these techniques 

are highly dependent on the tasks performed. Newman and Lee (2004) evaluated 

four aspects of perceptual effectiveness for four new and four existing isosurface 

rendering-based uncertainty visualization in 3D data. Their study found that while 

each technique has some utility in their scenario, the new multi-point glyph and the 

existing ball and arrow glyph techniques appear to be most advantageous.   

Although the above-mentioned two evaluations involve data range from 1D to 3D 

and their findings are very valuable for future uncertainty visualization design, no 

evaluation has been reported for DVR-based uncertainty visualization techniques. In 

addition, the isosurface rendering-based uncertainty visualization evaluation 

proposed by Newman and Lee (2004) covered most non-integrated techniques 

rather than those integrated techniques. Thus, more research is needed to evaluate 

the perceptual effectiveness for both DVR and isosurface-based uncertainty 

visualization techniques. 
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2.4 Summary 

This chapter introduces the background and related work of this thesis, which 

includes three main parts. First, a simple but effective taxonomy of uncertainty 

visualization techniques and its notation are introduced. Second, a review of a variety 

of uncertainty visualization techniques in scalar data is presented according to the 

taxonomy. Third, the evaluation works of these uncertainty visualization techniques 

in scalar data are presented. 

In the next chapter, we will introduce this thesis’ technical foundations and unified 

framework used for testing each hypothesis. 
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Chapter 3 Thesis Technical 

Foundations and Framework 

This chapter consists of two main parts. Section 3.1 introduces the technical 

foundations of this thesis to facilitate a better understanding of our research. This 

includes some commonly used concepts in the field of visualization such as 3D scalar 

data, isosurface rendering, DVR, etc. Section 3.2 presents the thesis’ framework that 

is used throughout our research and includes three main steps: uncertainty data 

modeling, uncertainty visualization and evaluation. Each main step will be clearly 

defined and explained with respect to how it is implemented in every hypothesis. 

3.1 Foundations 

This thesis builds upon some common concepts and algorithms used in the 

visualization community, including 3D scalar data, volume visualization, isosurface 

rendering/indirect volume rendering, MC, DVR, volume ray-casting. The following 3 

subsections will describe them in detail. 

3.1.1 3D Scalar Data 

A univariate 3D scalar data set, or often referred to as univariate volumetric scalar 

data set, ideally is considered to represent a continuous scalar function in a three-

dimensional space, formulated mathematically as (Lundstrom, 2007): 

f: 𝑅3 → 𝑅     (3.1). 

However, data sets acquired from measurements or scientific simulations in the real 

world do not have continuous values, and they are limited to the points where 

measured or simulated values have been sampled or collected. In general, these 

points of data sets can be sampled at purely random locations in space and thus 

construct to different grid types. Figure 3.1 illustrates some typically grid types in two 

dimensions. A common case among them is the regular Cartesian gird, where the 
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data sets sampled on the grid consist of cubes. In other words, data sets are sampled 

along three directions x, y  and z , and in each direction, the distance 𝑑𝑖  where d 

refers to distance, and i refers to any a direction of x, y and z, between any two 

adjacent points are equal, but 𝑑𝑥, 𝑑𝑦 and 𝑑𝑧 are not necessarily equal (Tang, 1999). 

This is the type of data exploited in this thesis, and data sets acquired from 

biomedical scanners such as CT, MRI, PET, ultrasound and many scientific simulations 

typically belong to this type. Figure 3.2 illustrates a specific example of them. In such 

a data set, every cube is called a cell, such as those highlighted in red. Every sample 

point distributed at the corner of the cell, as indicated by the red rectangle, is called 

a voxel, a name stemming from its 2D counterpart pixel. As each cell has 8 corners, 

it includes 8 voxels.  

The value sampled at every voxel can represent many different physical properties 

or variables. In medical imaging, the property usually refers to the material intensity 

obtained from the biomedical scanners, with different intensities corresponding to 

different materials of human body. Examples of properties from measurements and 

scientific simulations in other domain include temperature, density and electrostatic 

potential, etc. If each voxel of a data set only has one property, this type of data set 

is known as univariate 3D scalar data set. Otherwise, if each voxel of a data set has 

more than one property, it is known as multivariate 3D scalar data set. 

During the process of visualization, these discrete data sets are often enriched 

through interpolation. In this way, an approximation of the continuous scalar 

functions they represent can be achieved. 

 

                 Regular           Curvilinear                               Unstructured   

Figure 3.1: Typical grid types in two dimensions. 
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Figure 3.2: An example of 3D scalar data set with regular grids. 

3.1.2 Volume Visualization 

Volume visualization has been the most active sub-area of research during last 20 

years in scientific visualization (Celebi, 2013), and it involves the process of mapping 

3D scalar data to 2D image so that users can visualize 3D scalar data on 2D computer 

screen. Roughly speaking, volume visualization can be classified into two main 

approaches, as illustrated in Figure 3.3 (for a more detailed classification, please refer 

to (Jurgen et al., 1995)(Dachille, 1997)(Swan, 1998)(Yagel, 1996)(Law, 1996)). The 

first approach is called isosurface rendering, or indirect volume rendering (IVR), while 

the second approach is called DVR. Both rendering approaches have been used in 

this thesis. The following two sections will introduce these two approaches in greater 

detail.  

 

Figure 3.3: Classification of volume visualization. 

3.1.2.1 Isosurface Rendering – IVR 

Isosurface rendering refers to a set of algorithms or techniques that can extract and 

display surfaces whose scalar value equals to a given constant from 3D scalar data. 

By isolating the interested isosurface from other irrelevant features within 3D scalar 

data, it enables users to more quickly obtain insight or make important decisions 
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(Johnson and Huang, 2009). The reason that it is referred to as IVR can be explained 

through its visualization pipeline, as illustrated in Figure 3.4(a). We can see that in 

comparison to the one-step DVR pipeline which directly renders the input 3D scalar 

data into a 2D image, as shown in Figure 3.4(b), the isosurface rendering’s pipeline 

does not directly render them. Instead, it first extracts relevant surfaces from 3D 

scalar data according to a given constant, and then renders these surfaces into a 2D 

image. Therefore, it is deemed as IVR. 

 

(a)                             (b) 

Figure 3.4: Visualization pipeline of (a) isosurface rendering vs, (b) DVR. 

MC (Lorensen and Cline, 1987) is probably the most classic algorithm to implement 

isosurface rendering. Its basic idea is just like implied by its name, which is to march 

through every cell of a 3D scalar data set, and within every cell create triangle meshes 

according to the user given constant value isovalue to construct part of the isosurface. 

By connecting all these triangle meshes constructed within every cell together, an 

approximation of the desired isosurface from the 3D scalar data set is formed. More 

specifically, it involves the following 8 steps (Moller, 2010): 

1. Consider a cell of a 3D scalar data set, as highlighted in Figure 3.2. To facilitate 

explanation, we label this cell here in the following manner, as shown in 

Figure 3.5. The 8 red numbers correspond to indices of the 8 voxels, beginning 

with 0, and the blue 12 numbers correspond to indices of the 12 edges, also 

beginning with 0. 
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Figure 3.5: A labelled cell.  

2. Classify every voxel of the cell according to whether its scalar value is greater 

than the user given isovalue, or less than or equal to isovalue. If its scalar value 

is greater than isovalue, we say that this voxel is outside the isosurface. 

Otherwise we say that this voxel is inside the isosurface. 

3. Build the cell’s cubeIndex according to every voxel’s binary classification. This 

cubeIndex can be implemented by a single byte including 8 bits, with each bit 

representing this classification status of a voxel of this cell. If a voxel is outside 

the isosurface, its corresponding bit will be set to 0. Otherwise its 

corresponding bit will be set to 1. For example, assuming that the value at 

voxel 3 is below isovalue, and all values at other voxels are above it. Then the 

cubeIndex for this case can be illustrated in Figure 3.6. 

 
Figure 3.6: The cubeIndex for this case where the scalar value at voxel 3 is 

below isovalue, and all scalar values at other voxels are above isovalue. 

4. Get a list of edges at which the isosurface intersects with the cell from a pre-

defined table using the cubeIndex (table[cubeIndex]). This pre-defined table 

stores all 28=256 (as every voxel has two classification status, and a cell 

includes 8 voxels) possible ways in which the isosurface can intersect the cell. 

Therefore through this table it is possible to look up a specific edge list for a 

given cubeIndex. By symmetry these 256 ways can be reduced to 15 cases, 

which are illustrated in Figure 3.7. Continue with the above example, by 
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looking up this table we can obtain that the edge list for the cubeIndex as 

shown in Figure 3.6 should be 2, 3 and 11, as illustrated in Figure 3.8. 

 
Figure 3.7: By symmetry there are 15 possible ways in which the isosurface 

can intersect a cell (Moller, 2010). 

 
Figure 3.8: Edge 2, 3 and 11 intersect this cell when voxel 3 is inside the 

isosurface, and other voxels are outside the isosurface. 

5. Find the concrete intersection location through linear interpolation. Step 4 

only provides information about which edges are intersected by the 

isosurface for the specific cubeIndex, but does not give information about the 

exact intersection location. Thus linear interpolation has to be exploited to 

find the exact intersection location along the intersected edge. For example, 

to find the intersection location along edge 2, as illustrated in Figure 3.8, the 

following formula is used: 

𝑙 =  𝑙2 +
(𝑙3−𝑙2)(𝑖𝑠𝑜𝑣𝑎𝑙𝑢𝑒−𝑠2)

(𝑠3−𝑠2)
    (3.2), 
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where 𝑙  represents the intersection location along edge 2 (isovalue is its 

scalar value); 𝑙2 and 𝑠2 represent the location and scalar value for voxel 2; 𝑙3 

and 𝑠3 represent the location and scalar value for voxel 3. 

The same linear interpolation can be used to calculate the other two 

intersections along edge 3 and edge 11. Consequently the exact intersections 

that form a triangle mesh can be found. 

6. Compute the normal at each intersection for shading triangle meshes. This 

can be divided into two steps. First, compute the normal, which is also the 

gradient at each voxel of this cell using central difference. Second, use the 

same linear interpolation as described in step 5 to compute the normal at 

each intersection.  

7. Go to the next cell and repeat step 1 to step 6, until all cells of a 3D scalar data 

have been processed. As a result, an approximation of the isosurface using 

many small triangle meshes are extracted and constructed from the 3D scalar 

data. 

8. A final step is to render these constructed triangle meshes so that the desired 

isosurface can be displayed in the form of 2D image on screen. This can be 

easily done by standard graphics techniques with hardware support (Brodlie, 

2006)(Papaioannou, 2010). 

3.1.2.2 DVR 

DVR refers to a set of algorithms or techniques that aim to map an entire 3D scalar 

data set directly into a 2D image without an intermediate step of isosurface 

extraction. Thus it is called DVR and Figure 3.4(b) shows its visualization pipeline. In 

contrast to the isosurface rendering, DVR has two main advantages (Hansen and 

Johnson, 2004). First, it is capable of capturing the entire characteristics of a 3D scalar 

data set, including its interior structure that is essentially lost in the isosurface 

rendering. Second, it could represent certain 3D entities that do not have tangible 

surfaces and edges, for example, clouds, fog and fire, and thus are not appropriate 

to be represented by the isosurface rendering. 
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Volume ray-casting (Drebin, Carpenter and Hanrahan, 1988)(Levoy, 1990a)(Levoy, 

1990b) is probably the most classic algorithm to implement DVR. Its basic idea is to 

cast a ray from every pixel of the final 2D image into a 3D scalar data set, and take 

samples along every ray within the 3D scalar data set. By compositing all samples 

along every ray, it forms a final color for every pixel. Consequently the entire 3D 

scalar data set is directly mapped to a 2D image. In particular, it involves the following 

7 steps: 

1. Classification. This is the first step where the raw 3D scalar data set is mapped 

to optical properties, typically color and opacity. Its purpose is to enable users 

to visually distinguish different scalar values of the 3D scalar data in the final 

2D image. This classification task is typically achieved by defining a TF, as 

illustrated in Figure 3.9, with two objectives: defining which scalar values 

should share a visual characteristics and how the visual characteristics should 

appear in the final 2D image. For example, the 3D scalar data set acquired 

from CT scanners often incorporates a large amount of intensities, with 

different intensity range maybe corresponding to different materials i.e. air, 

fat, tissue and bone. To clearly distinguish these materials in the final 2D 

image, a TF must define which intensities belong to, say the bone, and how 

this bone should appear. Normally, a TF is designed as an interactive interface 

that users can interactively control how the 3D scalar data should appear in 

the final 2D image. More precisely, it provides a 1D mapping between a scalar 

value s and a color 𝐜: 

𝐜 = 𝒯(s), 𝒯: R → 𝑅4    (3.3), 

where a color 𝐜 refers to a four-component vector consisting of red, green 

and blue radiance as well as opacity. This is often known as RGBα (from here 

and onwards, unless otherwise stated, a color 𝐜  refers to the RGBα ). By 

changing the TF, a 3D scalar data set can be rendered as completely different 

2D images, as shown in Figure 3.10. 
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Figure 3.9: A typical TF that maps a scalar value to an opacity plus color, often 

known as 𝑅𝐺𝐵𝛼. 

 

Figure 3.10: Rendering the 3D tooth scalar data (Roettger, 2012) using 

different TFs (Moller, 2010).  

2. Ray casting. Considering a pixel in the final 2D image, cast a ray from this pixel 

along the observation direction into the 3D scalar data. This process can be 

shown in Figure 3.11. 

 
Figure 3.11: A diagram for volume ray-casting. 

3. Sampling. Take samples along this ray at regular unit intervals, as illustrated 

in Figure 3.11. As these samples typically do not coincide with the voxels, 

linear interpolation is needed to compute their scalar values within their 

corresponding cells. 
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4. Shading. Every sample along this ray needs to be shaded accordingly to obtain 

its correct color 𝐜′, which reflects perception of depth, provided that its initial 

color 𝐜 and its normal, as well as the location of the light source are known. 

The light location is easily known by definition. Every sample’s initial color 𝐜 

can be obtained by looking up a given TF designed in step 1 for classification 

according to its scalar value, computed in step 3. Its normal can be computed 

through two steps. First, compute the normal, which is also the gradient, for 

every voxel of the 3D scalar data set using central difference. Second, 

compute the normal of every sample using linear interpolation.  

5. Compositing. The correct color 𝐜′  of every sample along this ray are 

composited to form the final color value for the pixel that is currently being 

processed. The composition is typically calculated through the volume 

rendering integral (Lundstrom, 2007)(Engel et al., 2006), which is derived 

from the optical model, accounting for emission and absorption, simulating 

how a ray of light is affected when travelling through the volume. In practice, 

the composition is typically computed along the ray from front to back (or 

from back to front) using the discrete form of the volume rendering integral, 

as shown in formula 3.4: 

𝐶𝑜𝑢𝑡=𝐶𝑖𝑛+(1−𝛼𝑖𝑛)𝛼𝑛𝑜𝑤𝐶𝑛𝑜𝑤
𝛼𝑜𝑢𝑡=𝛼𝑖𝑛+(1−𝛼𝑖𝑛)𝛼𝑛𝑜𝑤

    (3.4). 

Figure 3.12 illustrates this process, where each dot represents a sample along 

a ray. 𝐶𝑛𝑜𝑤 and 𝛼𝑛𝑜𝑤 represent the RGB and opacity values for the sample 

located in the middle. 𝐶𝑖𝑛  and 𝛼𝑖𝑛  represent the composition’s RGB  and 

opacity values before passing through this sample. 𝐶𝑜𝑢𝑡 and 𝛼𝑜𝑢𝑡 represent 

the composition’s RGB and opacity values after passing through this sample. 

Using this formula, it iteratively passes through every sample along the ray, 

from the entry sample to the exit sample, to compute a color value. The final 

obtained value is the color of the corresponding pixel. 

6. Go to next pixel of the final 2D image and repeat step 2 to step 5 until all pixels 

have been processed. As a result, the final 2D image is constructed. 
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Figure 3.12: Compositing from front to back. 

7. A final step is to render and display this 2D image on the screen.  

3.2 Framework 

 

Figure 3.13: The framework of this thesis. 

 

Figure 3.14: Workflow of Texture uncertainty visualization technique. 
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Figure 3.13 illustrates our proposed framework used in this thesis. This framework 

consists of three main steps, which are uncertainty data modeling, uncertainty 

visualization and evaluation, respectively. Every main step implements a specific 

functionality and includes two or four concrete techniques that are used or 

developed for different hypotheses to achieve that functionality. In addition, this 

figure shows how each of the 3 hypotheses that are highlighted in blue, green and 

red, falls into this framework. Moreover, it shows that there is a technique, which is 

highlighted in yellow and pointed by the LVIS uncertainty visualization technique. 

This refers to the extended work for LVIS technique (called ELVIS). 

 

Figure 3.15: Workflow of LVIS uncertainty visualization technique. 

 

Figure 3.16: Workflow of ELVIS uncertainty visualization technique. 
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The remaining of this chapter will define the specific functionalities of the three main 

steps of this framework and explain how they are implemented in each of these 

concrete works (3 hypotheses + 1 extended work). To give readers a clear overview 

of each work as well as for ease of later reference, Figure 3.14 to Figure 3.17 

illustrates the entire workflow for the Texture uncertainty visualization (hypothesis 

1), LVIS uncertainty visualization (hypothesis 2), ELVIS uncertainty visualization 

(extended work for hypothesis 2) and Probabilistic Query uncertainty visualization 

(hypothesis 3), respectively. 

 

Figure 3.17: Workflow of Probabilistic Query uncertainty visualization technique. 

3.2.1 Uncertainty Data Modeling 

The uncertainty may refer to various quantities associated with data including error, 

accuracy, variability, noise, or completeness of data, etc. (Dinesha, Adabala and 

Natarajan, 2012). An initial issue before trying to explore and investigate uncertainty 

visualization techniques is to clearly define (Sanyal et al., 2009) and generate a 

certain type of uncertainty, if uncertainty is not directly available from instrumental 

measurements or scientific simulations. This is exactly what the framework’s first 

main step – uncertainty data modeling does. It typically takes 3D scalar data as input 

and computes a certain type of uncertainty data associated to them. As a result, it 

outputs both 3D scalar data (which may be different from the input one because of 

some transformations) and their associated uncertainty, which serve as input data 

for the framework’s second main step – uncertainty visualization. 
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In particular, we can see from Figure 3.13 that two types of uncertainty have been 

defined and modeled in this thesis: 

The first type of uncertainty is defined as errors, which are modeled through a two-

step approach and are introduced in Section 4.2 and Section 5.2 in great detail. First, 

a Multiresolution (MR) modeling technique including either Haar Wavelet Transform 

or Decimation is applied to an original 3D scalar data set to generate its a set of lower 

resolution 3D scalar data sets. Second, a quantification step is applied to compute 

the errors between the original 3D scalar data set and any one (determined by the 

user) of its lower resolution 3D scalar data sets. These errors are measured at every 

voxel of the determined lower resolution 3D scalar data set using standard deviation. 

As a result of this process, a lower resolution 3D data set whose each voxel includes 

both a scalar value s and the s’ associated error values e is generated.   

We can see from Figure 3.13 that the Texture, LVIS and ELVIS uncertainty 

visualization techniques exploit the two-step modeling approach to construct their 

input data, and Figure 3.14 to Figure 3.16 shows their workflows about how this 

approach transforms the original data (assuming that the user determined to use the 

lower resolution data set after one time MR modeling, and we call this data set 𝑅1). 

We can see from both Figure 3.14 and Figure 3.15 that for both the Texture and LVIS 

uncertainty visualization techniques, given an original 8 × 8 × 8 univariate 3D scalar 

data set, whose each voxel includes a scalar value s, as indicated by the red rectangle, 

the two-step modeling approach transforms it to a 4 × 4 × 4  lower resolution 

univariate 3D data set, whose each voxel includes both a scalar value s and an error 

value e associated to s. We can see from Figure 3.16 that for the original 8 × 8 × 8 

multivariate 3D scalar data set whose each voxel includes multiple scalar values 

𝑠1, 𝑠2, ⋯ , 𝑠𝑛  that are from 𝑛 variables, used by the ELVIS uncertainty visualization 

technique, the two-step modeling approach transforms it to a 4 × 4 × 4  lower 

resolution multivariate 3D data set, with its each voxel including both scalar values 

𝑠1, 𝑠2, ⋯ , 𝑠𝑛 and their associated error values 𝑒1, 𝑒2, ⋯ , 𝑒𝑛. 

It is worth mentioning that the two-step modeling approach can be deemed as a data 

transformation process that occurs in the data acquisition stage. Therefore the three 
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uncertainty visualization techniques including the Texture, LVIS and ELVIS, developed 

based on it can be classified as visualization of uncertainty, as introduced in Section 

1.1.1.1.  

The second type of uncertainty is defined as the material intensity classification 

probability that inherently exists when the 3D scalar data used in the medical imaging 

domain are classified. This is caused because different materials may share the same 

intensity. Also, there are variations of the intensity values between different patients 

(Lundstrom et al., 2007)(Lundstrom, 2007). It is modeled through the explicitly 

probabilistic TFs, as introduced in Section 6.2, which maps a sampled intensity value 

s to (1) one or multiple materials, (2) the likelihood associated to each material. As a 

result of the explicitly probabilistic TFs, the original 3D scalar data set is enriched with 

more information, with each intensity-specific voxel corresponding to (1) one or 

multiple materials, (2) the probability (normalized likelihood) associated to each 

material.   

Figure 3.13 shows that the Probabilistic Query uncertainty visualization technique 

exploits the explicitly probabilistic TFs, and Figure 3.17 shows its workflow about how 

an explicitly probabilistic TF transforms its original data set. For the original univariate 

3D scalar data set with each voxel including a scalar value s used by the Probabilistic 

Query technique, the explicitly probabilistic TF enriches it to a new 3D data set, called 

classified 3D scalar data set, with its each intensity-specific voxel corresponding to (1) 

one or multiple materials such as 𝑚𝐴, 𝑚𝐵, ⋯, 𝑚𝑛, (2) the probability P(𝑚𝐴), P(𝑚𝐵), 

⋯, P(𝑚𝑛) that are associated to these materials. 

It is worth mentioning that the intensity classification probability modeled by the 

explicitly probabilistic TFs is actually occurring in the visualization stage of the 

visualization pipeline. Therefore the Probabilistic Query uncertainty visualization 

technique developed based on it can be classified as uncertainty of visualization as 

introduced in Section 1.1.1.1.  

3.2.2 Uncertainty Visualization 

This is the framework’s second step. It takes the 3D scalar data and their associated 

error data that are output from the first main step as input and transforms them into 



Chapter 3. Thesis Technical Foundations and Framework 
__________________________________________________________ 

47 
 

2D images for users’ insight. These resulting 2D images can be then used as input for 

the framework’s last main step – evaluation.  

In particular, we can see from Figure 3.13 that in total 4 uncertainty visualization 

techniques have been developed: 

The first uncertainty visualization technique is called Texture, which aims to make 

use of carefully designed textures to depict the degree of uncertainty. More 

specifically, two types of textures have been designed. The first type of texture is 

called blurred texture, which is intended to use the blurred degree of textures to 

convey uncertainty. The second type of texture is called glyph texture with different 

number of edges, which is intended to use the different number of edges of glyphs 

being embedded on textures to convey uncertainty. Figure 3.14 shows the specific 

workflow about how the Texture uncertainty visualization technique transforms its 

input, which is the lower resolution univariate 3D scalar + error data set, with its each 

voxel including both a scalar value s and an error value e associated to s, to the final 

2D image. We can see from this figure that this process can be divided into 3 steps. 

First, an extended version of the MC algorithm, as introduced in Section 4.3.1, is 

applied to the input data set. What it does is that it not only marches each cell and 

constructs small triangles within a cell based on the cell’s 8 voxels’ scalar values, but 

also computes the error value at each vertex of these small triangles based on the 

cell’s 8 voxels’ error values. Furthermore, it computes an average error value 

𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒 for each small triangle based on the error value at its each vertex. Now that 

the average error value 𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒 for each small triangle which is part of the isosurface 

is readily available, the second step – texture mapping, which maps a corresponding 

texture that is determined by the 𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒 to each small triangle can be conducted. 

Third, these small triangles with different textures mapped are rendered by standard 

graphics techniques with hardware support (Brodlie, 2006)(Papaioannou, 2010). As 

a result, the final 2D image with extracted isosurface is obtained, and the errors of 

the isosurface are indicated by different textures. 

The second uncertainty visualization technique is called LVIS, which aims to enable 

users to more accurately explore the 3D scalar data set and its associated errors. 
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Figure 3.15 shows the specific workflow about how it transforms the input, which is 

the lower resolution univariate 3D scalar + error data set, with its each voxel including 

both a scalar value s  and an error value e  associated to s , to final 2D images 

consisting of 3 visualization components, namely scalar data object-space view, error 

data object-space view and scatter plot feature-space view, respectively. This process 

can be summarized as two steps. First, the standard volume ray-casting, as described 

in Section 3.1.2.2, is applied to both the lower resolution univariate 3D scalar data 

set and its associated errors, respectively, to obtain two object-space views: scalar 

data object-space view which represents scalar values and error data object-space 

which represents error values. The design of separately rendering the scalar and 

error values is good, as this could give users a clearer data presentation of scalar and 

error characteristics. Second, based on inspection on the scalar data object-space 

view and error data object-space view, the user could select a Region of Interest (ROI) 

on either of these two views and further observe the scalar and error characteristics 

within the ROI in the scatter plot feature-space view. In this way, a quantitative 

visualization of the scalar and error values of the input data set can be achieved. One 

thing that is required to be mentioned here is that the scalar and error values 

extracted from the ROI are not simply pixel values acquired from scalar/error data 

object-space views. They are actually corresponding scalar and error sample values 

extracted from the input 3D data set, as indicated within the cloud of Figure 3.15 

(Section 5.3.2.3 will discuss this in greater detail).  

The third uncertainty visualization technique is named ELVIS, and it extended the 

LVIS technique to visualize uncertainty in multivariate 3D scalar data. Figure 3.16 

shows the specific workflow of how it transforms the input data set, which is the 

lower resolution multivariate 3D scalar + error data set, with its each voxel including 

multiple scalar values 𝑠1, 𝑠2, ⋯, 𝑠𝑛 and their associated error values 𝑒1, 𝑒2 ,⋯, 𝑒𝑛, 

into final 2D images that can be grouped into 3 different functionalities, as illustrated 

by the red, yellow and blue dotted lines in Figure 3.16. The transformation for 

functionality 1 is derived from the one for LVIS technique, and therefore it can be 

summarized as two steps. First, the standard volume ray-casting is applied to 

separately render the lower resolution multivariate 3D scalar values and their 



Chapter 3. Thesis Technical Foundations and Framework 
__________________________________________________________ 

49 
 

associated error values. As a result, a set of scalar data views and error data views 

are generated, with each scalar data view representing scalar values of a specific 

variable, and each error data view representing the error values associated to the 

scalar values of the variable. The design of separately rendering each variable’s scalar 

values and their associated error values is good, as this could offer users a clearer 

data presentation. Second, based on inspection on the scalar/error data views, the 

user could select a ROI on any of them and further observe the statistical information 

of each variable’s scalar values or error values within the ROI through the scalar/error 

histograms views. Also, the user could observe the correlations between multivariate 

scalar values and their associated error values within the ROI through the PC view. It 

is worth mentioning that the multivariate scalar values and their associated error 

values extracted from the ROI are not simply pixel values acquired from the 

scalar/error data views. They are actually corresponding multivariate scalar and error 

sample values extracted from the input 3D data set (Section 5.6.2.4 will introduce it 

in greater detail). For functionality 2, the transformation can be summarized as two 

steps. First, the input data set is drawn into n (as there are n variables) scatter plot 

views, with each one representing a variable’s scalar values and their associated error 

values. Second, based on inspection on these scatter plot views, the user could select 

a ROI of a variable’s scalar values and their associated error values on any one of 

them, and then observe the corresponding characteristics of other variables’ scalar 

values and their associated error values in other scatter plot views. For functionality 

3, the transformation can also be described as two steps. First, the input data set is 

drawn into n  (as there are n  variables) logical scatter plot views, with each one 

representing a variable’s scalar values and their associated error values. These logical 

scatter plot views are different from the scatter plot views mentioned in functionality 

2 in that they can be combined as a logical AND or OR operation. Second, based on 

inspection on these logical scatter plot views, the user can specify one or more ROIs 

(for one or more variable’s scalar values and their associated error values) on any of 

them and then observe and localize the feature which meets these ROIs in the 

feature localization view. 
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The last uncertainty visualization technique developed is named Probabilistic Query, 

which aims to enable users to better explore the material intensity classification issue 

involved in DVR and therefore improve DVR as a better decision making tool. Figure 

3.17 shows the specific workflow of how it transforms the input classified 3D scalar 

data set into a final 2D image, and we can see from this figure that this process can 

be divided into two steps. First, the user formulates either a single or a compound 

query to specify which voxels he wants to extract and visualize from the classified 3D 

scalar data set. For example, Figure 3.17 shows a specific single query named query 0, 

which indicates that the user wants to extract and visualize those voxels which (1) 

include material 𝑚𝐴 , (2) the 𝑚𝐴 ’s probability is greater than or equal to 0.5. 

Additionally, the user specifies RGB colors to different query results (Section 6.3.3 

will introduce this in greater detail), and this results in each voxel being assigned with 

a concrete RGB  color. For example, for voxels that meet query 0 , they will be 

assigned with the color blue. For voxels that do not meet query 0, they will be 

assigned with the black/background color. As a result of this step, a new data set 

called colored 3D scalar data set is generated, with each voxel being assigned with a 

concrete color RGBα, depending on whether or not it meets the user specified query. 

Second, the volume ray-casting, as described in Section 3.1.2.2, is applied to the 

colored 3D scalar data set to generate the final 2D image, which corresponds to the 

user specified query. One thing that requires mentioning here is that during the 

volume ray-casting rendering, the nearest neighbor interpolation is exploited instead 

of the most commonly used trilinear interpolation to avoid introducing non-specified 

intermediate colors, as introduced in Section 6.3.4.  

3.2.3 Evaluation 

The last main step of this framework is evaluation, which takes the 2D images 

outputted from the uncertainty visualization as input, and converts them into 

quantitative scores according to specific user tasks. As a result, the “quality” of 

uncertainty visualization techniques can be determined. This is a relatively new 

research topic in the field of uncertainty visualization and is often overlooked by most 

research (Potter, Rosen and Johnson, 2012). 
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The effectiveness of a visualization technique to convey meaningful information to 

HVS is known as its perceptual effectiveness, and it has been exploited by some 

leading researchers (Sanyal et al., 2009)(Newman and Lee, 2004) to evaluate new or 

existing uncertainty visualization techniques. Following these works, we also 

performed two works in this thesis, which evaluated the perceptual effectiveness of 

the proposed Texture and LVIS uncertainty visualization techniques, as illustrated in 

Figure 3.13. 

The first evaluation work is conducted to determine perceptual effectiveness of the 

Texture uncertainty visualization technique, and Figure 3.14 shows the specific 

workflow about how it transforms the 2D image into the final scores. This process 

involved 4 carefully designed user tasks, which are to ask participants to subjectively 

rate 4 perceptual aspects (1. Ease of scalar identification, 2. Ease of error 

identification, 3. Visual overload, 4. Brightness) with respect to uncertainty 

visualization for the 6 techniques, with each perceptual aspect having a 10-point 

scale. The final scores about the Texture uncertainty visualization techniques can be 

directly collected from the participants. We also collected scores for other 4 existing 

techniques, and Section 4.4 will introduce this evaluation in great detail. 

The second evaluation is conducted to determine the perceptual effectiveness of the 

LVIS uncertainty visualization technique, and Figure 3.15 shows the specific workflow 

about how it transforms the 2D images to the final scores. This process can be divided 

into two steps. First, each participant is asked to complete four searching tasks, which 

are to search a spot, which may include (1) the max. error value, (2) the min. error 

value, (3) the max. scalar value, (4) the min. scalar value within a randomly generated 

ROI. Second, depending on the participants’ task completion accuracies and time, 

their task completion results are mapped to the final task completion accuracy scores 

and time scores. We also computed the task completion accuracy scores and time 

scores for other 4 existing techniques, and Section 5.4 will introduce this evaluation 

in greater detail. 

3.3 Summary 
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This chapter introduces this thesis’ technical foundations and unified framework, 

both aims to enable readers to better understanding this thesis. 

In the next three chapters, we will present our three works, with each one being used 

to address one of the three proposed hypotheses, respectively.
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Chapter 4 Uncertainty Visualization in 

Isosurface Rendering Using Textures 

4.1 Introduction 

This chapter will present our work on the Texture uncertainty visualization technique 

(hypothesis 1), as illustrated in Figure 3.13. 

There are three reasons that motivate us to explore such a technique. First, although 

making use of texture mapping to depict the degree of uncertainty for MC-based 

isosurface rendering seems a very straightforward approach, few relevant works 

have been reported. As described in the literature review, Chapter 2, Rhodes et al. 

(2003) proposed a technique that utilizes the opacity of a dotted texture to depict 

the uncertainty for MC-based isosurface rendering, and its results seem very 

effective. Motivated by this technique, we are determined to explore more texture-

related uncertainty visualization techniques for MC-based isosurface rendering. 

Second, blurring is a natural cue to the eye to depict uncertainty. However, no work 

has been reported to use it to depict uncertainty for MC-based isosurface rendering. 

Thus, it may be a good idea to integrate blurred textures into the MC algorithm to 

convey uncertainty. Third, glyph is a very popular technique to depict different 

variables in the sub-field of multivariate data visualization (Wong and Bergeron, 

1994)(Chan, 2006). Also, they have been successfully applied to the field of 

uncertainty visualization (Newman and Lee, 2004). However, no work has been 

reported to use it to depict uncertainty for MC-based isosurface rendering. Thus, it 

may be a good idea to integrate glyph textures into the MC algorithm to convey 

uncertainty. Therefore the goal of this chapter is to investigate texture-related 

uncertainty visualization techniques for MC-based isosurface rendering, which may 

be effective. 
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4.2 MR Modeling and Quantification for Univariate 3D Scalar 

Data 

A two-step modeling approach has been exploited to generate the necessary error 

data (defined in Section 3.2.1) associated to a univariate 3D scalar data that can be 

used for the Texture uncertainty visualization research. First, a MR modeling 

technique is applied to an original 3D scalar data set to generate a set of its lower 

resolution 3D scalar data sets. Second, a quantification step is applied to compute 

the errors between the original 3D scalar data set and any one (determined by the 

user) of its lower resolution 3D scalar data sets. Section 4.2.2 and 4.2.3 will describe 

the two steps in great detail, and Section 4.2.1 will present the motivation to exploit 

such a modeling approach. 

4.2.1 Motivation 

There are three reasons that motivate us to exploit the two-step modeling approach.  

First, this approach is a concrete instance of data transformation that occurs in the 

data acquisition stage. Therefore it enables us to conduct relevant research for 

visualization of uncertainty (refer to Section 1.1.1.1 for explanation).  

Second, this approach can generate two important statistical variables: mean 𝜇 and 

standard deviation 𝜎, which can present uncertainty in different ways (as described 

in Section 1.1.2) and thus enable us to explore different uncertainty visualization 

techniques. For example, for a singular scalar uncertainty at each voxel, it can be 

simply depicted by 𝜎. For multivariate uncertainty, it can be depicted by 𝜎𝑚 for each 

variable 𝑚. For bounded uncertainty, it can be depicted by 𝜇 ± 𝜎. For a PDF, it can 

be simplified as a Gaussian distribution and expressed as 𝑁(𝜇, 𝜎). 

Third, with the increasing computing and storage capacity of modern computers and 

instruments, data sets acquired from scientific simulations and real-world 

measurements are growing in an explosive manner (Ma, 2001)(Wijk, 2005)(Wijk, 

2006)(Yang, 2006). Visualization and analysis of such large-scale data sets remain a 

challenge to the visualization community (Foulks and Bergeron, 2009)(Thompson et 
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al., 2011)(Brownlee et al., 2012)(Wong et al., 2012). Scientists have tried various 

techniques (Joy, 2009) to deal with these large data sets. As one of the popular 

solutions, MR modeling technique can solve the problem by reducing the size of 

original data and approximating it with a collection of lower resolution data. However, 

these lower resolution data may raise the data authenticity issue at their resolution 

level. To address this issue, the two-step approach is applied to provide the necessary 

data to explore possible visual solutions. 

4.2.2 MR Modeling 

MR modeling refers to a set of techniques (Cignoni, Rocchini and Scopigno, 1998) 

(Garland, 1999)(Mallat, 1989)(Daubechies, 1992)(Wong and Bergeron, 1995) 

(Westermann, 1994)(Guthe et al., 2002) that can reduce an original data set into 

varying lower resolution data sets (Cignoni et al., 1994). It can help improving the 

efficiency of data rendering and provide a valuable solution to large-scale data 

visualization (Joy, 2009). These lower resolution data together with the original data 

consist of a MR hierarchy in which each member corresponds to a different 

resolution of the original data (Borgo, Cignoni and Scopigno, 2004).  

MR modeling techniques could be applied to reduce both spatial and temporal 

resolutions of spatial-temporal data (Foulks and Bergeron, 2009). However, as this 

thesis is mainly focused on exploration of uncertainty in 3D spatial domain rather 

than time domain, only the spatial component of MR modeling is exploited.  

In particular, two specific MR modeling techniques, namely Haar Wavelet Transform 

and Decimation have been used in this thesis. The reason to choose the two 

techniques is because while simple, they can be effectively applied to 3D scalar data 

with regular girds that are used in this thesis, as described in Section 3.1.1, to 

generate a MR hierarchy with different resolutions. 

4.2.2.1 Haar Wavelet Transform 

The core of the Haar Wavelet Transform (Li and Drew, 2004) is to compute an average 

scalar value s of the scalar values 𝑠1, 𝑠2, ⋯ , 𝑠𝑛  at n neighboring voxels (with each 
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voxel corresponding to a scalar value) of an original univariate 3D scalar data set, 

formulated mathematically as: 

𝑠 =
(𝑠1+𝑠2+⋯+𝑠𝑛)

𝑛
    (4.1). 

It is applied to the original univariate 3D scalar data set piece by piece (piece = n) to 

generate a set of lower resolution data sets. 

A simple example will illustrate this, as shown in Figure 4.1. Figure 4.1(a) shows an 

original univariate 3D scalar data set whose dimensions are 8 × 8 × 8. For ease of 

reference, we call the original univariate 3D scalar data set 𝑅0 (where R represents 

resolution), as its resolution has not been reduced yet. To obtain its next lower 

resolution univariate 3D scalar data set, the Haar Wavelet Transform has to be 

applied to it once. We call the next lower resolution univariate 3D scalar data set 

after one time Haar Wavelet Transform 𝑅1. The process of how the Haar Wavelet 

Transform transforms 𝑅0 to 𝑅1 can be summarized as follows: (1) for a cell of 𝑅0, say 

cell 1 as illustrated in Figure 4.1(a), the Haar Wavelet Transform is applied to it to 

compute a scalar average value s from the 8 scalar values at its 8 voxels. The resulting 

s forms the scalar value at a corresponding voxel of 𝑅1, as illustrated in Figure 4.1(b). 

(2) Traverse to another cell of 𝑅0  and repeat (1) until all cells of 𝑅0  have been 

processed. As a result, 𝑅1 is generated, whose dimensions are 4 × 4 × 4 that is 
1

8
 of 

𝑅0’s size, with the scalar value at its each voxel coming from averaging 8 scalar values 

at 8 voxels of each corresponding cell of 𝑅0. 

In a similar fashion, it is possible to generate 𝑅2 (the lower resolution univariate 3D 

scalar data set after two times Haar Wavelet Transform, and its dimension are 2 ×

2 × 2 that is 
1

64
 of 𝑅0’s size) from 𝑅0, as illustrated in Figure 4.1(c). However, for the 

average scalar value s at a voxel of 𝑅2, instead of using 8 scalar values at 8 voxels of 

a corresponding cell of 𝑅0 to compute it, now it is necessary to use 64 scalar values 

at 64 voxels of 8 corresponding cells of 𝑅0, as the 8 cells highlighted in red in Figure 

4.1(a), to compute it.  
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   (a)                    (b)          (c)  

Figure 4.1: An example of a MR hierarchy. 

4.2.2.2 Decimation 

The core of the Decimation (Foulks and Bergeron, 2009) is to subsample a scalar value 

s  from the scalar values 𝑠1, 𝑠2, ⋯ , 𝑠𝑛  at n  neighboring voxels (with each voxel 

corresponding to a scalar value) of R0, and ignore the scalar values at the remaining 

n − 1 neighboring voxels, formulated mathematically as: 

s = 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑠1, 𝑠2, ⋯ , 𝑠𝑛)   (4.2). 

It is also applied to R0  piece by piece (piece = n) to generate its a set of lower 

resolution data sets, as illustrated in Figure 4.1. The process of how the Decimation 

transforms R0 to R1 can be summarized as follows: (1) for a cell of 𝑅0, say cell 1 as 

illustrated in Figure 4.1(a), the Decimation is applied to it to subsample a scalar value 

s from the 8 scalar values at its 8 voxels, and ignore the scalar values at its other 7 

voxels. The resulting s  forms the scalar value at a corresponding voxel of 𝑅1 , as 

illustrated in Figure 4.1(b). (2) Traverse to another cell of 𝑅0 and repeat (1) until all 

cells of 𝑅0 have been processed. As a result, 𝑅1 is generated, whose dimensions are 

4 × 4 × 4 that is 
1

8
 of 𝑅0’s size, with the scalar value at its each voxel coming from 

subsampling the 8 scalar values at 8 voxels of each corresponding cell of 𝑅0. 
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The similar method can be applied to generate 𝑅2, whose dimension are 2 × 2 × 2 

that is 
1

64
 of 𝑅0’s size, as illustrated in Figure 4.1(c), from 𝑅0. However, for the scalar 

value s  at a voxel of 𝑅2 , instead of subsampling 8 scalar values at 8 voxels of a 

corresponding cell of 𝑅0 to compute it, now it is necessary to subsample 64 scalar 

values at 64 voxels of the 8 corresponding cells of 𝑅0, as the 8 cells highlighted in red 

in Figure 4.1(a), to compute it. 

4.2.3 Quantification 

Given 𝑅0 and any one of its lower resolution 3D scalar data sets, for example, 𝑅1 or 

𝑅2, their errors can be quantified piece by piece (piece = n) at each voxel of 𝑅1 or 𝑅2 

using the Standard Deviation, formulated mathematically as: 

e = √
1

𝑛
[(𝑠1 − 𝑠)2 + (𝑠2 − 𝑠)2 +⋯+ (𝑠𝑛 − 𝑠)2]  (4.3), 

where e represents a scalar error quantified at a voxel of 𝑅1 or 𝑅2.  

For example, based on the previous description we have known the 8 scalar values 

𝑠1, 𝑠2, ⋯ , 𝑠8 at the 8 voxels of cell 1 of 𝑅0, as illustrated in Figure 4.1(a), and we also 

have known the scalar value s at the voxel that is indicated by the red rectangle of 

𝑅1. Therefore the scalar error value e at this voxel of 𝑅1 can be computed by formula 

4.3.  

As a result of the two-step modeling approach, the lower resolution univariate 3D 

data sets are formally generated, such as 𝑅1 and 𝑅2 illustrated in Figures 4.1(b) and 

(c), with their each voxel incorporating both a scalar s and an error e associated to s. 

They can be now used as the input data for subsequent uncertainty visualization 

research.  

4.3 Texture Uncertainty Visualization Technique 

This section corresponds to (Ma et al., 2012a) and (Ma et al., 2012b), and will present 

the Texture uncertainty visualization technique that includes two types of textures 

to depict the degree of errors (for the Texture uncertainty visualization technique, 

we have normalized the errors incorporated within the lower resolution univariate 
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3D data sets to the range between 0 and 1, and we have divided these errors into 

five degrees evenly i.e. [0.0,0.2] and (0.2,0.4]) in isosurface rendering. It includes 

three subsections. First, the extended MC algorithm, which is used to extract the 

small triangles that consist of the expected isosurface and map each small triangle 

with an appropriate texture according to its corresponding error value will be 

introduced. Second, the two types of textures, namely blurred textures and glyph 

textures with different number of edges will be presented. Third, a specific case study 

will be shown to illustrate their application.  

4.3.1 Extended Marching Cubes Algorithm 

The standard MC algorithm (Lorensen and Cline, 1987) does not take uncertainty into 

account. It forms the isosurface of a given scalar constant value by traversing every 

cell of the 3D scalar data, and constructing small triangles within it. To integrate the 

texture mapping into it for the purpose of uncertainty visualization, it has to be 

extended. Figure 4.2 illustrates a cell of the 3D scalar data, which is used to explain 

the extended algorithm. 

 

Figure 4.2: A cell of 3D scalar data with 8 voxels distributed at the 8 corners. The three 

red points represent the vertices of a triangle that is part of the isosurface to be 

extracted. 

We can see from Figure 4.2 that this cell consists of 8 voxels with index 0,1,⋯ ,7 that 

are distributed in the 8 corners, and the three red points with index 01,02 and 03 

represent the vertices of a triangle that is part of this isosurface and intersects with 

the cell. Given the scalar value 𝑠𝑖 and its associated error value 𝑒𝑖 at each voxel i, and 

also given the isosurface’s value 𝑖𝑠𝑜𝑣𝑎𝑙𝑢𝑒, then the process of mapping a texture to 
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a triangle according to this triangle’s average error value 𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒 can be summarized 

as a three-step approach. First, the error values 𝑒01, 𝑒02, 𝑒03 associated to the three 

vertices of the triangle can be computed by three 1D linear interpolations, as shown 

in formula 4.4: 

{
 
 

 
 𝑒01 = 𝑒0 +

(𝑖𝑠𝑜𝑣𝑎𝑙𝑢𝑒−𝑠0)(𝑒1−𝑒0)

(𝑠1−𝑠0)

𝑒02 = 𝑒1 +
(𝑖𝑠𝑜𝑣𝑎𝑙𝑢𝑒−𝑠1)(𝑒2−𝑒1)

(𝑠2−𝑠1)

𝑒03 = 𝑒6 +
(𝑖𝑠𝑜𝑣𝑎𝑙𝑢𝑒−𝑠6)(𝑒1−𝑒6)

(𝑠1−𝑠6)

   (4.4). 

Second, their average error value can be calculated as formula 4.5: 

𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑒01+𝑒02+𝑒03

3
     (4.5). 

Third, according to this average error value 𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (normalized between 0 and 1) 

of this triangle, an appropriate texture could be selected from the pre-processing 

textures and mapped to this triangle. Alternatively, 𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒 can be used as an input 

parameter to process a texture in an online fashion, and the resulting texture is then 

mapped to this triangle. In this research, only the pre-processing fashion is exploited. 

The above-mentioned three-step approach should be applied to every triangle of the 

isosurface. Finally, an isosurface with its errors being indicated by different textures 

can be acquired. 

4.3.2 Two Types of Textures 

Two types of textures, namely blurry textures and glyph textures with different 

number of edges have been designed to depict the degree of errors of an extracted 

isosurface. 

4.3.2.1 Blurred Textures 

This type of texture is intended to use the degree of blurring of the textures to 

indicate the error size, as illustrated in Figure 4.3. In particular, the leftmost image 

presents the original texture, and the remaining images are those textures after pre-

processing of the original texture in Photoshop by using the Gaussian Blur (Patin, 
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2003)(PixelsTech.net, 2012) with different radius parameters. The larger errors 

correspond to more blurred textures adjusted by bigger radius parameters, while the 

fewer ones correspond to less blurred textures adjusted by smaller radius 

parameters.  

 

Figure 4.3: Blurred textures used to depict the degree of errors. 

4.3.2.2 Glyph Textures with Different Number of Edges 

This type of texture is intended to indicate the degree of errors by glyph textures 

with different number of edges, as illustrated in Figure 4.4. These textures are also 

generated from Photoshop. The larger errors correspond to the glyph textures with 

an increased number of edges, while the fewer errors correspond to the glyph 

textures with a reduced number of edges. 

 

Figure 4.4: Glyph textures with different number of edges. 

4.3.3 Case Study  

In order to demonstrate the results of the two texture-related uncertainty 

visualization techniques, a case study is presented. Section 4.3.3.1 introduces the 

original data set and its pre-processing to generate the test MR data sets. Section 

4.3.3.2 presents the corresponding test results.  

4.3.3.1 Data Set and Pre-processing 
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(a)              (b)        (c) 

Figure 4.5: The MR hierarchy of a CT scan’s lobster contained in a block of resin, 

acquired from the Haar Wavelet Transform. The isosurface value exploited here is 55. 

The data set used for this case study is a CT scan of a lobster contained in a block of 

resin, available at (Roettger, 2012). Its original dimension is 301 × 324 × 56, with 8 

bits per voxel. For the convenience of MR modeling, 23 slices are appended to the 

data set to form a 324 × 324 × 56 derived data set. This derived data set is then 

processed by two successive MR modeling to generate the final MR data hierarchy 

with 3 different resolutions. Figures 4.5(a), (b) and (c) show an example of the MR 

hierarchy generated from the Haar Wavelet Transform. The isosurface value 

exploited in this case study is 55. We can see that the lobster shown in Figure 4.5(a) 

has the greatest detail, and it corresponds to the derived data set whose dimensions 

are 324 × 324 × 56. Compared to the lobster shown in Figure 4.5(a), the one shown 

in Figure 4.5(b) is slightly coarser i.e. the lobster’s body tends to be smoother, and its 

left four legs tend to be more discontinuous, which indicate some detail has been 

lost. It corresponds to the lower resolution data set after one time Haar Wavelet 

Transform and its dimensions are 162 × 162 × 28. Figure 4.5(c) shows the coarsest 

version of the lobster and we can see from this figure that a substantial amount of 

detail has been lost i.e. the lobster tends to be much smoother and its 7 legs have 

almost disappeared. It corresponds to the lower resolution data set after two times 

Haar Wavelet Transform and its dimensions are 81 × 81 × 14. For easy reference of 

these MR data sets in the subsequent paragraphs, we refer to the 324 × 324 × 56 

data set as 𝑅0, the 162 × 162 × 28 data set as 𝑅1, and the 81 × 81 × 14 data set as 

𝑅2. 
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4.3.3.2 Results and Discussion 

Now that the MR data sets are readily available, we can apply the blurred textures 

and the glyph textures with different number of edges, respectively to these data 

sets to inspect the corresponding results. 

Figures 4.6(a) and (b) show the results with respect to the blurred textures. The data 

set used here is 𝑅1. We can see from the scale bar in Figure 4.6(a) that the error data 

have been normalized between 0 and 1, and divided into five levels. The lowest level 

of error values are between 0 and 0.2, and corresponds to the texture without any 

blurring. The highest level of error values are between 0.8 and 1, and it corresponds 

to the most blurred texture. Other levels of error values are in between, and they 

correspond to the textures, which are more blurred than the one in the lowest level, 

and less blurred than the one in the highest level.  

Figure 4.6(a) shows a global view of the lobster, and we can see by observing the 

blurred textures that different positions of the lobster have different levels of errors. 

For example, the textures indicated by the red arrow are very clear, and they thus 

represent the positions where the errors are relatively small. The textures indicated 

by the blue arrow are very blurred, and they thus represent the positions where the 

errors are relatively big. The textures indicated by the white arrow are not very clear, 

but not very blurred too, and they thus represent the positions where the errors are 

larger than the ones indicated by the red arrow, but fewer than the ones indicated 

by the blue arrow. 

To provide an even clearer perception of the errors using the blurred textures, a 

close-up of the lobster’s left arm region (indicated by the red rectangle in the bottom 

left image of Figure 4.6(b)) is presented, as illustrated in the top right image of Figure 

4.6(b). Again, the textures denoted by the red arrow appear very clearly, and they 

thus represent the positions where the errors are relatively small. The textures 

denoted by the blue arrow appear very blurred, and they thus represent the positions 

where the errors are relatively big. The textures denoted by the white arrow appear 

slightly blurred, and they thus represent the positions where the errors are larger 
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than the ones indicated by the red arrow, but fewer than the ones indicated by the 

blue arrow. 

  

     (a) 

 

         (b) 

Figure 4.6: The results by using the blurred textures technique. 
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Figures 4.7(a) and (b) show the results with respect to the glyph textures with 

different number of edges, and the data set used here is 𝑅2. It can be seen from the 

scale bars in both figures that the error data have been normalized between 0 and 1, 

and divided into five levels. The lowest level of error values are between 0 and 0.2, 

and it corresponds to the glyph texture with 3 edges. The highest level of error values 

are between 0.8 and 1, and it corresponds to glyph textures with infinite edges (a 

circle). Other levels of error values are in between, and they correspond to the 

textures whose number of edges are 4, 5 and 8, respectively.  

Figure 4.7(a) shows a global view of the lobster by using the glyph textures technique 

with different number of edges. At a glance, it is not difficult to obtain the impression 

that there are barely textures that have 3 edges. This indicates that most positions 

incorporate errors that are greater than or equal to 0.2. However, it is very difficult 

to utilize this technique to quickly detect the local error pattern, in contrast to the 

blurred textures technique, as its local textures do not combine together to form a 

continuous clustering pattern for perception. In addition, the overall impression of 

the lobster rendered by this technique displays a little bit visual overload, and this 

case would be even worse if an isosurface with more triangles is extracted from a 

larger data set. 

To obtain a better result, a close-up of the lobster’s body region (as indicated by the 

bottom left image of Figure 4.7(b)) is presented, as illustrated by the top right image 

of Figure 4.7(b). From this figure we can see that the region indicated by the green 

arrow consists of textures with 4 edges, and it thus incorporates relatively small 

errors. The region indicated by the blue arrow consists of textures with 8 edges, and 

it thus incorporates relative big errors. The region indicated by the white arrow 

consists of textures with 5 edges, and it thus has errors that are larger than the ones 

indicated by the green arrow, but fewer than the ones indicated by the blue arrow. 

Although it is possible to use this technique to distinguish the degree of errors after 

zooming in to a ROI, it still suffers from these two major drawbacks: (1) it cannot form 

clustering pattern for easy perception of the degree of errors, (2) visual overload. 
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               (a) 

 

               (b) 

Figure 4.7: The results of using the glyph textures with different number of edges. 

4.4 Evaluation of Perceptual Effectiveness 
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Many uncertainty visualization techniques have been proposed to visualize 

uncertainty in isosurface rendering, and some techniques seem to appear more 

effective than others (Sanyal et al., 2009). However, little research has been reported 

to evaluate their perceptual effectiveness. This has been identified as an often-

overlooked aspect in the field of uncertainty visualization (Potter, Rosen and Johnson, 

2012). Therefore we conducted an evaluation to compare the perceptual 

effectiveness of the Texture technique with 4 other commonly used isosurface 

rendering-based uncertainty visualization techniques. Such an evaluation 

corresponds to (Ma et al., 2013a) and has double significance. First, it could help us 

to validate the effectiveness of the proposed Texture uncertainty visualization 

technique. Second, it could discover advantages and disadvantages of those existing 

uncertainty visualization techniques. The resulting findings from the evaluation will 

provide useful guidance for future uncertainty visualization design. 

As described in the literature review of Chapter 2, Newman and Lee (2004) presented 

research that evaluated the perceptual effectiveness of 8 isosurface rendering-based 

uncertainty visualization techniques. In particular, seven of these techniques can be 

classified as the overloading approach, and one can be classified as the seamless 

integration approach (Pang, Wittenbrink and Lodha, 1997). In contrast to their 

research, all the techniques described in this evaluation belong to the seamless 

integration approach. 

4.4.1 Study Design 

A user study has been designed to compare the perceptual effectiveness (Sanyal et 

al., 2009)(Alexandre and Tavares, 2010)(Newman and Lee, 2004) of the two types of 

Textures uncertainty visualization techniques with other 4 commonly used 

uncertainty visualization techniques. This includes the method of uncertainty data 

modeling, chosen uncertainty visualization techniques, participant pool and user 

study tasks, interface design, participant training, the trial run and finally the main 

study. 

4.4.1.1 Uncertainty Data Modeling 
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The uncertainty data modeling method exploited in this user study strictly follows 

the two-step modeling approach, as described in Section 4.2. It is applied to both the 

lobster (used in the main study, introduced in Section 4.4.1.8) and the engine (used 

in the participant training, introduced in Section 4.4.1.6) univariate 3D scalar data 

sets (Roettger, 2012) to generate the input data for the 6 evaluated uncertainty 

visualization techniques, as will be described in the following section.   

4.4.1.2 Six Uncertainty Visualization Techniques Chosen for Evaluation 

The six uncertainty visualization techniques chosen for this evaluation are: hue, 

blurred textures, glyph textures with different number of edges, transparency, 

transparency with enhanced grid background, and texture opacity. They are all 

seamlessly integrated (Newman and Lee, 2004) into the extended MC algorithm, as 

described in Section 4.3.1.  

 

Figure 4.8: Errors are mapped to the hue. 

Hue: this is a known technique proposed by Rhodes et al. (2003), and it uses the hue 

component of HSL to indicate the presence and degree of errors. Figure 4.8 illustrates 

a result of this technique after applying it to a 3D scalar data set of a lobster (Roettger, 

2012), which has been used in our main study. We can see from this figure that the 

errors have been mapped to five discrete hue values. The fewer errors correspond 

to the hue values that appear more yellow, and the larger errors correspond to the 
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hue values that appear more red. Other errors correspond to the hue values with 

colors in-between. 

Blurred textures: This is the proposed technique as described in Section 4.3.2.1. It 

indicates the presence and degree of errors by the blurred textures. Although using 

blur to depict uncertainty is not a new concept (Pang, Wittenbrink and Lodha, 

1997)(Grigoryan and Rheignans, 2004), to our knowledge, integrating the blurred 

textures into the MC to depict the errors has not been explored. Figure 4.9 illustrates 

a result of this technique. The blurred effects used here are from Gaussian Blur. We 

can see from this figure that the errors have been mapped to five discrete blurred 

textures. The fewer errors correspond to less blurred textures, and the larger errors 

correspond to more blurred textures. Other errors correspond to the blurred 

textures in-between. 

 

Figure 4.9: Errors are mapped to the blurred textures. 

Glyph textures with different number of edges: This is the proposed technique as 

described in Section 4.3.2.2. It indicates the presence and degree of errors by 

different edge numbers of the glyph textures. Although using glyphs to depict 

uncertainty is not a new concept (Pang, Wittenbrink and Lodha, 1997)(Newman and 

Lee, 2004), to our knowledge, integrating the glyph textures with different edge 

numbers into the MC to depict the errors has not been explored. Figure 4.10 
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illustrates a result of this technique. We can see from this figure that the errors have 

been mapped to five discrete glyph textures, with each one being associated to a 

glyph with different number of edges. The fewer errors correspond to the glyph 

textures with fewer edges, while the larger errors correspond to the glyph textures 

with more edges. 

 

Figure 4.10: Errors are mapped to the glyph textures with different number of edges. 

 

Figure 4.11: Errors are mapped to the transparency. 

Transparency: this is a commonly used uncertainty visualization technique. It 

indicates the presence and degree of errors by transparency of the isosurface. Figure 
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4.11 illustrates a result of the technique. We can see from this figure that the errors 

have been mapped to five discrete scales of transparency. The fewer errors are 

mapped to more transparent, and the larger errors are mapped to less transparent. 

Other errors are mapped to transparency in-between. 

Transparency with enhanced grid background: this technique is similar to the 

technique as described in the above except that extra grid lines are added as the 

background. We want to test whether such a cue is helpful for users to distinguish 

the errors depicted by the transparency, as suggested in (Djurcilov et al., 

2001)(Djurcilov et al., 2002). Figure 4.12 illustrates a result of this technique. 

 

Figure 4.12: Errors are mapped to the transparency with enhanced grid background. 

Texture opacity: this is a known technique proposed by Rhodes et al. (2003). It 

indicates the presence and degree of errors by the texture opacity. Figure 4.13 

illustrates a result of this technique. We can see from this figure that the errors have 

been mapped to five discrete opacities of a texture. The fewer errors correspond to 

the less opaque textures, while the larger errors correspond to the more opaque 

textures. 
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Figure 4.13: Errors are mapped to the texture opacity. 

4.4.1.3 Participant Pool 

In total we had 30 participants, of which 2 participated in a trial run, and the 

remaining 28 participated in the main user study. More specifically, there are 8 

participants who are researchers in University College Cork (UCC) and there are 4 

participants from our industrial partner. The remaining participants are postgraduate 

students in UCC. Among these participants, 10 are female and 20 are male. None of 

them are color-blind. All of them claimed that they use graphs and charts for day-to-

day activities and they typically use a computer more than 21 hours per week. 

4.4.1.4 User Study Tasks 

Different methods have been proposed for usability and effectiveness studies. Some 

(Newman and Lee, 2004)(Rickenberg and Reeves, 2000) employed subjective user 

ratings of effectiveness for their evaluation. Some (Sanyal et al., 2009) used task 

completion time and accuracies as their evaluation. In this work, we employed the 

former and each participant is asked to rate four perceptual aspects for each 

uncertainty visualization technique (with 10-point scale): (1) how easy it is to identify 

the data? (2) How easy it is to identify the error? (3) Do you feel visual overload? (4) 

How do you feel about the brightness? No weighting of the relative importance of 

these aspects is considered here. In addition, each participant is asked to answer an 
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open question about his impression to the technique. Some basic personal 

information i.e. do you use charts/graphs for day-to-day activities is also collected 

from each participant. 

4.4.1.5 Interface Design 

 

Figure 4.14: The user interface. 

Keeping a real-world scenario in mind, scientists like to look at the entire data set 

first and then focus on a ROI (Sanyal et al., 2009), a simple interface is designed to 

facilitate the participants’ evaluation. Figure 4.14 shows this interface, which consists 

of three parts. The first part is the 3D display area located in the middle. It is intended 

to display both the isosurface rendering and the scale bar that are associated to one 

uncertainty visualization technique. Please note that only one uncertainty 

visualization technique can be displayed in this area at a time, and it appears on the 

screen in a random order. The second part is the interaction area located on the right. 

It facilitates the participants’ exploration and observation to the data by the two 

functionalities of translation and zooming in or out. Consequently the participants 

can easily navigate to their ROI. Once they completed the evaluation to an 

uncertainty visualization technique, they can go to the next technique by clicking the 

“Next Vis. Technique” button. The last part of this interface is a status bar located at 

the bottom, and it informs the name of currently displayed technique to the 
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participants. This interface is configured under the full screen mode to avoid 

unexpected user behaviour of untimely termination. 

4.4.1.6 Participant Training 

A training process is given to the participants before the main user study. This is to 

make sure that they are familiar with the evaluation and felt confident to take on the 

main user study. We typically spent about 5 to 10 minutes giving participants an 

overview of the user study. This involved getting them to understand the concept of 

uncertainty visualization, its significance, as well as the purpose of the user study. 

After this, each participant is assigned to a computer that ran a training module that 

is similar to the main study, but used a different data set, which is a CT scan of an 

engine (Roettger, 2012). The participant is asked to complete the corresponding 

tasks in the training module. Coupling with this process, we spent about 10 to 15 

minutes explaining the participants the 6 different uncertainty visualization 

techniques, the user interface as well as the four user rating tasks expected from 

them. We believed that organizing the explanation along with the training module is 

a better idea than those methods that separate them, because this could better the 

participants’ understanding with living examples. After the participants completed 

the training, we entered the “question and answer” stage where we ansared all 

questions that are unclear to them. Finally they went to the main study where they 

performed all tasks independently. 

4.4.1.7 The Trial Run 

A trial run has been conducted to identify the weakness of the user interface. Two 

participants have taken part in this procedure. One is a postgraduate student who 

has a good understanding of uncertainty visualization. Another one is a senior 

researcher in UCC who has rich experience in user study design. Based on the trial 

run we have identified a weakness of the user interface: initially, our interface 

included a rotation functionality that aimed to assist the participants in gaining a 

more comprehensive observation. While this idea is good for data and error 

identifications, it dramatically increases the time that the participants spent on the 
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evaluation. This may have resulted in the participants losing their motivation and 

giving unreliable rating results. Therefore we removed the rotation functionality 

from the final interface.   

4.4.1.8 The Main Study 

The data set we used in the main user study is a CT scan of a lobster (Roettger, 2012), 

as illustrated in Figure 4.14. We had a total of 28 participants who took part in the 

main user study and we only selected feedback from 25 of them for the analysis. We 

excluded the feedback from the other 3 participants for three reasons, either they 

seemed unmotivated, completed the tasks in a rush, or their rating answers are 

inconsistent with their answers for the open question. In order to avoid interplay 

between participants, we ran the user study one participant at a time. We kept all 

participants in a similar environment to eliminate impact from the environment.  

4.4.2 Initial Findings 

The initial findings of the average scores of the 4 aspects of perceptual effectiveness 

with respect to the 6 uncertainty visualization techniques are reported in this section. 

4.4.2.1 Data Identification 

Figure 4.15 presents the average scores of the data identification rated by the 

participants for the six uncertainty visualization techniques. We can see that both 

existing hue and texture opacity techniques have the highest average scores (above 

9 points), which indicates they are the best practice among the six techniques to 

identify the data. On the contrary, the two transparency-related techniques have the 

lowest average scores (below 7 points), which indicates they are difficult for the 

participants to identify the data. However, both their average scores are more than 

5 points, which means it is still possible to use them to identify the data. As for the 

other two techniques, they had medium average scores (between 8 and 9 points), 

which indicated ease in identifying the data. We attribute the reasons for the low 

scores of these two transparency-related techniques to the partial missing of the 

data caused by transparency or semi-transparent rendering. 
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4.4.2.2 Error Identification 

Figure 4.16 illustrates the average scores of the error identification for these 

techniques. It is obvious that the hue technique has the highest score (nearly 9 

points), which indicates it is the best method to identify errors. On the contrary, the 

glyph textures with different number of edges technique has the lowest average 

score (below 2 points), which indicates its uselessness to identify errors. As for the 

remaining four techniques, whilst it is possible to employ the texture opacity and 

both transparency-related techniques to identify errors, it is relatively difficult to use 

blurred textures to identify errors. In addition, one surprising finding from the study 

is that adding auxiliary grid lines, as background, did not guarantee any enhancement 

to the participants’ perception of the errors depicted by the transparency. 

Conversely, it appeared to lead to visual overload that increased the difficulty to 

recognize data, as described in the following section. 

 

Figure 4.15: Average scores of the 6 uncertainty visualization techniques on the data 

identification aspect. 

We can see from Figure 4.16 that the mean of the glyph textures with different 

number of edges technique is dramatically lower than any other techniques. We 

believe the reason is because our visual system is more sensitive to clustering of 

patterns (Tao et al., 2004) rather than non-clustering ones, and this technique failed 
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to provide us with the clustering patterns. In addition, distortion occurred during the 

process of texturing, which may cause perceptual difficulties to identify the number 

of edges of the textures. Also, we can see from this figure that the mean of the 

blurred textures technique is relative low (below 5.0 points). This indicates that blur 

is not a good metaphor to depict uncertainty. 

 

Figure 4.16: Average scores of the 6 uncertainty visualization techniques on the error 

identification aspect. 

4.4.2.3 Visual Overload 

Figure 4.17 illustrates the average scores of the visual overload for these techniques. 

We can see that both of the glyph textures with different number of edges and the 

transparency with enhanced grid background techniques have the highest average 

scores (slightly above 6 points), which indicates their difficulties for the participants 

to make a clear observation. The hue technique has the lowest average score (below 

2 points), which indicates its ease for the participants to make an observation. The 

remaining three techniques have average scores more than 2.5 and less than 4.5 

points, which reveals their usefulness for a clear observation. 
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Figure 4.17: Average scores of the 6 uncertainty visualization techniques on the visual 

overload aspect. 

4.4.2.4 Brightness 

Figure 4.18 illustrates the average scores of the brightness for these techniques. We 

can see that the overall average scores of these techniques are quite similar (close to 

5 points), which indicates they all have appropriate brightness for the participants’ 

observation. 

 

Figure 4.18: Average score of the 6 uncertainty visualization techniques on the 

brightness aspect. 
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4.4.3 Method of Analysis 

Our analysis followed a common, classic statistical approach. First, a one-way (since 

we have only one independent variable, which is our uncertainty visualization 

techniques) multivariate analysis of variance (MANOVA) (Laerd Statistics, 2013a) is 

conducted to test the hypothesis that all 6 uncertainty visualization techniques have 

the same mean on the 4 aspects of perceptual effectiveness. If the result is true, we 

will accept the hypothesis and halt our analysis. If not, we will continue our analysis 

with 4 (since we have 4 aspects) univariate analysis of variance (ANOVA). In particular, 

considering that each participant is exposed to the 4 effectiveness aspects and having 

to response to each of them, we employed the univariate ANOVA’s Repeated 

Measurements (RM) form (Laerd Statistics, 2013b). For each univariate RM ANOVA, 

it is associated to an individual effectiveness aspect and used to test the hypothesis 

that all 6 techniques have the same mean on that aspect. If the hypothesis is true, 

we will accept the hypothesis and draw our conclusions. If not, standard post hoc 

tests will be performed to test the significant difference between any one pair of 

these techniques in regard to that effectiveness aspect. In particular, we employed 

the Bonferroni post hoc test in this analysis, and since we have 6 different techniques, 

in total there are 15 pairwise comparisons. 

4.4.4 Results and Discussion 

The Statistical Product and Service Solutions (SPSS) is used for the statistical analysis. 

It is indicated by the Wilks’ Lambda row in Table 4.1 that there is a statistically 

significant difference between the 6 uncertainty visualization techniques on all 4 

aspects of effectiveness (F(20,468.594)=15.323,p<0.0005). Therefore 4 univariate 

RM ANOVAs are conducted to analyze the significant difference between the 6 

techniques on each of the 4 effectiveness aspects. 

4.4.4.1 Data Identification 
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Table 4.1: Multivariate testsd table.  

Effect Value F 
Hypothesis 

df 
Error df Sig. 

Partial 

Eta 

Squared 

Noncent. 

Parameter 

Observed 

Powerb 

Intercept Pillai's Trace .978 1.535E3a 4.000 141.000 .000 .978 6139.405 1.000 

Wilks' 

Lambda 
.022 1.535E3a 4.000 141.000 .000 .978 6139.405 1.000 

Hotelling's 

Trace 
43.542 1.535E3a 4.000 141.000 .000 .978 6139.405 1.000 

Roy's 

Largest 

Root 

43.542 1.535E3a 4.000 141.000 .000 .978 6139.405 1.000 

techniques Pillai's Trace 1.171 11.920 20.000 576.000 .000 .293 238.402 1.000 

Wilks' 

Lambda 
.188 15.323 20.000 468.594 .000 .341 242.613 1.000 

Hotelling's 

Trace 
2.573 17.950 20.000 558.000 .000 .391 358.997 1.000 

Roy's 

Largest 

Root 

1.722 49.596c 5.000 144.000 .000 .633 247.981 1.000 

a. Exact statistic         

b. Computed using alpha = .05        

c. The statistic is an upper bound on F that yields a lower bound on 

the significance level. 

   

d. Design: Intercept + 

techniques 

       

By analyzing both Mauchly’s Test of Sphericity and Table 4.2 from the univariate RM 

ANOVA we know that there is a strongly significant difference between the 6 

techniques on the data identification aspect ( F(2.634,63.208) = 22.973, p <

0.0005, as shown in Table 4.2). Therefore we further performed a Bonferroni post 

hoc test to find out the significant difference between any two of these techniques. 

Table 4.3 illustrates the results of the test. From this table we can see that there is a 

strong significance between the hue technique and the transparency technique. Also, 

the mean of the hue technique is higher than the mean of the transparency 
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technique. Therefore, we can draw the conclusion that it is significantly much easier 

to use the hue technique than the transparency technique to identify the data. We 

applied the same method in the remainder of this section to summarize the results 

acquired from Bonferroni test. 

Table 4.2: Tests of within-subjects effects on data identification. 

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

techniques Sphericity 

Assumed 
226.193 5 45.239 22.973 .000 .489 

Greenhouse-

Geisser 
226.193 2.634 85.885 22.973 .000 .489 

Huynh-Feldt 226.193 2.988 75.701 22.973 .000 .489 

Lower-bound 226.193 1.000 226.193 22.973 .000 .489 

Error(technique

s) 

Sphericity 

Assumed 
236.307 120 1.969 

   

Greenhouse-

Geisser 
236.307 63.208 3.739 

   

Huynh-Feldt 236.307 71.711 3.295    

Lower-bound 236.307 24.000 9.846    

From Table 4.3 we can also see that there is a strong significance between the hue 

technique and the transparency with enhanced grid background technique. This 

indicates that the hue technique is significantly much superior to the latter in the 

data identification aspect. As for the texture opacity and blurred textures techniques, 

they are all significantly much better than the two transparency-related techniques 

to identify the data. In terms of the glyph textures with different number of edges 

technique, whilst it is significantly much easier than the transparency with enhanced 

gird background technique to identify the data, it is slightly easier than the 

transparency technique. 
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Table 4.3: Statistically significant difference between the 6 techniques on the aspect 

of data identification. 

 

Table 4.4: Tests of within-subject effects on error identification. 

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

techniques Sphericity 

Assumed 
644.240 5 128.848 47.415 .000 .664 

Greenhouse-

Geisser 
644.240 3.578 180.052 47.415 .000 .664 

Huynh-Feldt 644.240 4.282 150.444 47.415 .000 .664 

Lower-bound 644.240 1.000 644.240 47.415 .000 .664 

Error(technique

s) 

Sphericity 

Assumed 
326.093 120 2.717 

   

Greenhouse-

Geisser 
326.093 85.874 3.797 

   

Huynh-Feldt 326.093 102.774 3.173    

Lower-bound 326.093 24.000 13.587    



Chapter 4. Uncertainty Visualization in Isosurface Rendering Using 
Textures 

__________________________________________________________ 

83 
 

4.4.4.2 Error Identification 

Based on both Mauchly’s Test of Sphericity and Table 4.4 from the univariate RM 

ANOVA we know that there is a strongly significant difference between the 6 

uncertainty visualization techniques on the error identification aspect 

( F(3.578,85.874) = 47.415, p < 0.0005 , as illustrated in Table 4.4). Thus we 

performed the Bonferroni test to compare the significant difference between any 

two of these techniques. Table 4.5 presents the results of the test. 

Table 4.5: Statistically significant difference between the 6 techniques on the aspect 

of error identification. 

 

From Table 4.5 we can see that there is a strong significance between the hue 

technique and the remaining techniques. This indicates that hue is significantly the 

best technique to identify errors. As for the texture opacity technique, whilst it is 

significantly a little bit easier than the blurred textures technique to identify errors, 

it is significantly much easier than the glyph textures with different number of edges 

technique to identify errors. In terms of the remaining three techniques, they are all 
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significantly much better than the glyph textures with different number of edges 

technique to identify errors. 

Table 4.6: Tests of within-subjects effects on visual overload. 

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

techniques Sphericity 

Assumed 
401.680 5 80.336 19.555 .000 .449 

Greenhouse-

Geisser 
401.680 3.546 113.276 19.555 .000 .449 

Huynh-Feldt 401.680 4.236 94.817 19.555 .000 .449 

Lower-bound 401.680 1.000 401.680 19.555 .000 .449 

Error(technique

s) 

Sphericity 

Assumed 
492.987 120 4.108 

   

Greenhouse-

Geisser 
492.987 85.105 5.793 

   

Huynh-Feldt 492.987 101.673 4.849    

Lower-bound 492.987 24.000 20.541    

4.4.4.3 Visual Overload 

By analyzing both Mauchly’s Test of Sphericity and Table 4.6 from the univariate RM 

ANOVA we know that there is a strongly significant difference between the 6 

uncertainty visualization techniques on the visual overload aspect 

(F(3.546,85.105) = 19.555, p < 0.0005, as illustrated in Table 4.6). Therefore we 

performed the Bonferroni test to test the significant difference between any two of 

these techniques. Table 4.7 illustrates the results of the test. 

From Table 4.7 we can see that there is a strong significance between the hue 

technique and the rest of these techniques but not the texture opacity technique. 

This indicates that the hue technique generates significantly less visual overload than 

the other 4 techniques (blurred textures, glyph textures with different number of 

edges and the two transparency-related techniques). As for both the texture opacity 

and the transparency techniques, they are strongly significant than the glyph textures 

with different number of edges technique and the transparency with enhanced grid 
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background technique. Thus we can summarize that they are significantly less visual 

overload than the latter two techniques. Also, we can see from Table 4.7 that there 

is a strong significance between the blurred textures technique and the glyph 

textures with different number of edges technique. This indicates that the former 

display significantly less visual overload than the latter. 

Table 4.7: Statistically significant difference between the 6 techniques on the aspect 

of visual overload. 

 

4.4.4.4 Brightness 

By analyzing both Mauchly’s Test of Sphericity and Table 4.8 from the univariate RM 

ANOVA we know that there is a slightly significant difference between these 6 

uncertainty visualization techniques on the brightness aspect (F(3.004,72.097) =

3.191, p = 0.029, as illustrated in Table 4.8). Thus we continued the analysis with 

the Bonferroni test to find out the statistically significant difference between any two 

of these techniques. It turns out from the Bonferroni analysis that there is no 

statistically significant difference between any of these 6 uncertainty visualization 
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techniques on the brightness aspect. However, this is inconsistent with the result 

from our univariate RM ANOVA. We attribute this to the conservatism of Bonferroni 

adjustment (Gordon et al., 2007). 

Table 4.8: Tests of within-subjects effects on brightness. 

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

techniques Sphericity 

Assumed 
20.693 5 4.139 3.191 .010 .117 

Greenhouse-

Geisser 
20.693 3.004 6.889 3.191 .029 .117 

Huynh-Feldt 20.693 3.482 5.944 3.191 .022 .117 

Lower-bound 20.693 1.000 20.693 3.191 .087 .117 

Error(technique

s) 

Sphericity 

Assumed 
155.640 120 1.297 

   

Greenhouse-

Geisser 
155.640 72.097 2.159 

   

Huynh-Feldt 155.640 83.560 1.863    

Lower-bound 155.640 24.000 6.485    

4.5 Evaluation of Execution Time 

Apart from the perceptual effectiveness, we also measure execution time for each of 

the 6 evaluated uncertainty visualization techniques, which are run on the lobster 

data set (Roettger, 2012), as illustrated in Table 4.9. 

Table 4.9: Execution time of the 6 evaluated uncertainty visualization techniques. 

Uncertainty visualization techniques Execution time (in seconds) 

Hue 2.875 

Blurred textures 2.907 

Glyph textures with different number of edges 2.907 

Transparency 2.875 

Transparency with enhanced grid background 2.906 

Texture opacity 2.907 
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It is clear from this table that all the 6 evaluated uncertainty visualization techniques 

have a very similar execution time, although the execution time of the three texture-

based uncertainty visualization techniques and the transparency with enhanced grid 

background uncertainty visualization technique are slightly longer than the execution 

time of the hue and transparency uncertainty visualization techniques. We attribute 

the relatively long execution time of the three texture-based uncertainty 

visualization techniques to their time spent on loading textures. We attribute the 

relative long execution time of the transparency with enhanced grid background 

uncertainty visualization technique to its time spent on drawing the grid background. 

4.6 Summary 

This chapter presented an investigation of the Texture uncertainty visualization 

technique to depict the errors associated to isosurface rendering. This includes three 

main steps. First, a two-step modeling approach used to generate the lower 

resolution univariate 3D data sets (whose each voxel incorporates both a scalar value 

s and an error value e associated to s), which serve as input data for subsequent 

Texture uncertainty visualization technique is introduced. Second, the actual Texture 

uncertainty visualization technique that includes two types of textures is presented. 

They are applied to the input data generated from the first main step to illustrate 

their results. Third, an evaluation work that compared the perceptual effectiveness 

of the Texture technique with other 4 existing uncertainty visualization techniques is 

shown. Also, the corresponding analysis method and analysis results are reported. 

The analysis results suggest that while both types of textures have some utility in 

certain perceptual aspects, they are less effective than the two existing hue and 

texture opacity techniques. Additionally, a surprising finding is that adding auxiliary 

grid lines, as background, does not guarantee to enhance the participants’ 

perception to the errors conveyed by transparency. Conversely, it may result in visual 

overload that increases difficulty to recognize the scalar data. These findings can 

provide useful guidance for future uncertainty visualization design. 
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The next chapter will describe the work relevant to the LVIS uncertainty visualization 

technique, which is designed to visualize the uncertainty in DVR, as opposed to the 

work presented in this chapter.
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Chapter 5 Uncertainty Visualization in 

DVR Using LVIS  

5.1 Introduction 

This chapter will present two elements of work in related to the LVIS uncertainty 

visualization technique (hypothesis 2) and ELVIS uncertainty visualization technique 

(extended work for hypothesis 2), as illustrated in Figure 3.13. 

 

Figure 5.1: An example of the qualitative uncertainty visualization, where uncertainty 

is depicted by the degree of opacities (Djurcilov et al., 2002). 

Many techniques of uncertainty visualization have been proposed to visualize 

uncertainty in DVR, since its significance has been emphasized by several leading 

researchers (Johnson, 2004)(Chen, 2005)(Johnson et al., 2006)(Laramee and Kosara, 

2007)(Johnson and Sanderson, 2003). However, most of these techniques tend to 

only qualitatively depict uncertainty by displaying its location and relative size 

through certain visual metaphors, rather than quantitatively depict it (Potter, Rosen 

and Johnson, 2012). While they may be useful for those cases where only a coarse 

distinction of the uncertainty is sufficient, they are less useful for those cases where 
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a more accurate distinction of the uncertainty is required. In addition, these 

techniques cannot guarantee the user could draw the same conclusions from the 

final results because the uncertainty observation may vary from people to people. 

Figure 5.1 illustrates an example of the qualitative uncertainty visualization, where 

the high opacity indicates the high uncertainty, and the low opacity indicates the low 

uncertainty. While it may be very easy from this figure to distinguish the 

uncertainties with very different values i.e. the low uncertainty in the left columns 

and the high uncertainty in the right columns, it is very difficult to distinguish the 

uncertainties with similar values i.e. the uncertainties specified within the two red 

regions.  

Therefore, the goal of this chapter is to explore new uncertainty visualization 

techniques that enable users to more accurately visualize uncertainty in DVR. To this 

end, a LVIS uncertainty visualization technique is proposed, which combines multiple 

linked views and a depth sample extraction interaction technique together to 

visualize uncertainty in univariate 3D scalar data. The evaluation results suggest that 

it indeed enables users to more accurately search both extreme (max. and min.) 

scalar and error values in univariate 3D scalar data than other 4 commonly used 

uncertainty visualization techniques. Thus, we further extended it to become ELVIS, 

which aims to visualize uncertainty in multivariate 3D scalar data.  

5.2 MR Modeling and Quantification for Multivariate 3D Scalar 

Data 

Section 4.2 presented a two-step modeling approach (MR modeling and 

quantification) that is applied to an original univariate 3D scalar data set to generate 

its lower resolution univariate 3D data sets (with their each voxel including both a 

scalar value s and an error value e associated to s), which can be used as the input 

data for the LVIS uncertainty visualization technique that will be introduced in the 

next section. 

In addition to the univariate 3D scalar data, the two-step modeling approach can also 

be applied to an original multivariate 3D scalar data set to generate its lower 
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resolution multivariate 3D data sets (with their each voxel including scalar values 

𝑠1, 𝑠2, ⋯ , 𝑠𝑘  that correspond to k variables, as well as k error values 𝑒1, 𝑒2, ⋯ , 𝑒𝑘 

associated to the k scalar values), which can be used as the input data for the ELVIS 

uncertainty visualization technique (extended LVIS technique) that will be introduced 

in Section 5.6. This section will describe the latter. 

5.2.1 MR Modeling 

Again, both the Haar Wavelet Transform (Li and Drew, 2004) and the Decimation 

(Foulks and Bergeron, 2009) techniques have been exploited in this thesis to 

generate a MR hierarchy. 

5.2.1.1 Haar Wavelet Transform 

The case of applying the Haar Wavelet Transform to a multivariate 3D scalar data set 

is relatively complicated. Thus, an example is taken to illustrate it. Here the notation 

𝑠𝑛
𝑚 is used to represent a scalar value, where the subscript represents its associated 

voxel index (beginning with 0), while the superscript represents its corresponding 

variable. For example, 𝑠3
2 represents a scalar value that is associated to variable 2 and 

distributed at voxel 3.  

Figure 5.2(a) shows a 8 × 8 × 8  original multivariate 3D scalar data set 𝑅0  (R 

represents resolution), with its each voxel includes scalar values 𝑠∗
1, 𝑠∗

2, ⋯ , 𝑠∗
𝑘 (where 

∗ refers to arbitrary voxel index) that correspond to k variables. Figure 5.2(b) shows 

its 4 × 4 × 4 lower resolution multivariate 3D scalar data set 𝑅1, whose size is 
1

8
 of 

𝑅0, with each voxel also includes scalar values 𝑠1, 𝑠2, ⋯ , 𝑠𝑘 that correspond to the k 

variables. The process of how the Haar Wavelet Transform transforms 𝑅0 to 𝑅1 can 

be summarized as follows: (1) for a cell of 𝑅0 i.e. the cell 1 as indicated by the red 

rectangle in Figure 5.2(a), apply formula 5.1: 

{
 
 

 
 𝑠

1 =
𝑠0
1+𝑠1

1+⋯+𝑠𝑛−1
1

𝑛

𝑠2 =
𝑠0
2+𝑠1

2+⋯+𝑠𝑛−1
2

𝑛

⋮

𝑠𝑘 =
𝑠0
𝑘+𝑠1

𝑘+⋯𝑠𝑛−1
𝑘

𝑛

     (5.1), 
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to it to compute a set of average scalar values 𝑠1, 𝑠2, ⋯ , 𝑠𝑘, which are considered as 

the scalar values of 𝑅1’s voxel, as indicated by the red rectangle in Figure 5.2(b). (2) 

traverse to another cell of 𝑅0 and repeat (1) until all cells of 𝑅0 have been processed. 

As a result, 𝑅1 is generated. 

Figure 5.2(c) shows 𝑅0’s a further 2 × 2 × 2 lower resolution multivariate 3D scalar 

data set 𝑅2, whose size is 
1

64
 of 𝑅0. The process of how the Haar Wavelet Transform 

transforms 𝑅0 to 𝑅2 can be summarized as follows: (1) for 8 cells of 𝑅0, say the 8 cells 

that are highlighted in red in Figure 5.2(a), apply formula 5.1, where n = 64 (as every 

64 scalar values that correspond to an identical variable and are at the 64 voxels of 8 

cells are used to compute an average scalar value corresponding to that variable) to 

them to compute a set of average scalar values 𝑠1, 𝑠2, ⋯ , 𝑠𝑘 for the 𝑅2’s voxel that 

is indicated by the red rectangle in Figure 5.2(c). (2) traverse to another 8 cells of 𝑅0 

and repeat (1) until all cells of 𝑅0 have been processed. As a result, 𝑅2 is generated, 

with its each voxel including 𝑠1, 𝑠2, ⋯ , 𝑠𝑘 that correspond to the k variables. 

 

      (a)                    (b)           (c) 

Figure 5.2: An example of a MR hierarchy. 

5.2.1.2 Decimation  
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Continuing with the example above, the process of how the Decimation transforms 

𝑅0  to 𝑅1  can be summarized as follows: (1) for a cell of 𝑅0 , say the cell 1 that is 

indicated by the red rectangle in Figure 5.2(a), apply formula 5.2:  

{
 

 
𝑠1 = 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑠0

1, 𝑠1
1, ⋯ , 𝑠𝑛−1

1 )

𝑠2 = 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑠0
2, 𝑠1

2, ⋯ , 𝑠𝑛−1
2 )

⋮
𝑠𝑘 = 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑠0

𝑘 , 𝑠1
𝑘, ⋯ , 𝑠𝑛−1

𝑘 )

   (5.2), 

where n = 8 (as every 8 scalar values that correspond to an identical variable and 

are at the 8 voxels of a cell are used to subsample a scalar value corresponding to 

that variable) to it to compute a set of scalar values 𝑠1, 𝑠2, ⋯ , 𝑠𝑘  for the 𝑅1’s voxel 

that is indicated by the red rectangle in Figure 5.2(b). (2) traverse to another cell of 

𝑅0  and repeat (1) until all cells of 𝑅0  have been processed. As a result, 𝑅1  is 

generated, with its each voxel including scalar values 𝑠1, 𝑠2, ⋯ , 𝑠𝑘 that correspond 

to the k variables. 

The same method can be used to summarize the process of how the Decimation 

transforms 𝑅0 to 𝑅2: (1) for 8 cells of 𝑅0, say the 8 cells that are highlighted in red in 

Figure 5.2(a), apply formula 5.2, where n = 64  (as every 64 scalar values that 

correspond to an identical variable and are at the 64 voxels of 8 cells are used to 

subsample a scalar value corresponding to that variable) to them to compute a set 

of scalar values 𝑠1, 𝑠2, ⋯ , 𝑠𝑘  for the 𝑅2’s voxel that is indicated by the red rectangle 

in Figure 5.2(c). (2) traverse to another 8 cells of 𝑅0 and repeat (1) until all cells of 𝑅0 

have been processed. As a result, 𝑅2  is generated, with its each voxel including 

𝑠1, 𝑠2, ⋯ , 𝑠𝑘 that correspond to the k variables. 

5.2.2 Quantification 

Following the example described above, the process of quantifying the errors 

between 𝑅0 and 𝑅1 can be summarized as follows: (1) for a 𝑅0’s cell, say the cell 1 

that is indicated by the red rectangle in Figure 5.2(a) and its derived 𝑅1’s voxel that 

is indicated by the red rectangle in Figure 5.2(b), apply formula 5.3: 
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𝑘 − 𝑠𝑘)2]

  (5.3), 

where n = 8 to them to compute error values 𝑒1, 𝑒2, ⋯ , 𝑒𝑘  that are associated to 

the derived 𝑅1’ voxel’s scalar values 𝑠1, 𝑠2, ⋯ , 𝑠𝑘. (2) traverse to another 𝑅0’s cell 

and its corresponding derived 𝑅1’s voxel, repeat (1) until all 𝑅0’s cells (or all 𝑅1’s 

voxels) have been processed. As a result, the error values associated to 𝑅1’s each 

voxel’s scalar values can be obtained. 

In the same way, the error values associated to 𝑅2’s each voxel’s scalar values can be 

computed. But instead of using 𝑅0’s each cell in formula 5.3, it is necessary to use its 

every 8 neighboring cells in formula 5.3, that is n = 64, to obtain the corresponding 

results. 

Now that the lower resolution multivariate 3D data sets, such as 𝑅1 and 𝑅2, whose 

each voxel includes both scalar values 𝑠1, 𝑠2, ⋯ , 𝑠𝑘  that correspond to k variables 

and their associated error values 𝑒1, 𝑒2, ⋯ , 𝑒𝑘 are available, they can be used as the 

input data for subsequent ELVIS uncertainty visualization technique. 

5.3 LVIS Uncertainty Visualization Technique for Univariate 3D 

Scalar Data 

This section corresponds to the content in (Ma et al., 2012c), where a LVIS technique 

is proposed, which is intended to enable users to more accurately visualize the 

uncertainty in univariate 3D scalar data.  

The concept of linked views is not new in the visualization community, and many 

researchers have used it in their visualization study to explore data in different 

application domains (Akiba and Ma, 2007)(Akiba et al., 2007)(Gasser, 2004) (Piringer, 

Kosara and Hauser, 2004)(Jones et al., 2008)(Linsen, Long and Rosenthal, 2009). 

Compared to those single view-based visualization techniques, the linked views-

based visualization has three main advantages. First, it could combine various 
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visualization techniques into a more powerful visualization tool to give deeper insight. 

Second, it separates large amount of diverse information into many individual views 

and thus yields a clearer data presentation. Third, it facilitates a greater level of visual 

data analysis. Because of these advantages, in recent years some works (Potter et al., 

2009)(Sanyal et al., 2010) have been proposed to apply the linked views to 

uncertainty visualization studies. However, these works are mainly based on 2D data, 

and cannot directly apply to the 3D data. This is because in contrast to 2D data, the 

3D data always contain an inherent “depth” dimension. Thus, the traditional 

interaction techniques that are used to extract the relevant information of a specified 

ROI from the 2D data are not suitable for the 3D case. New interaction techniques 

have to be developed to overcome this issue. To this end, a depth sample extraction 

technique has been developed, which can be used to extract the 3D scalar and its 

associated error sample data from a specified 2D ROI.  

5.3.1 Workflow 

Figure 5.3 shows the proposed visualization’s workflow, which is simplified from 

Figure 3.15. It is designed by keeping a real-world scenario in mind: scientists like to 

explore data by first looking at the entire data, and then focusing on a ROI (Sanyal et 

al., 2009). It begins with a process of loading data, where the user is asked to load 

both the scalar and its associated error data interested to explore. Once the data are 

loaded successfully, three separate views will be displayed on the screen. 

First, we use volume ray-casting algorithm to render the lower resolution univariate 

3D scalar and error data set’s scalar values to generate the scalar data object-space 

view, for users’ inspection. Second, we use volume ray-casting algorithm to render 

its error values to generate the error data object-space view, for users’ inspection. 

Third, we draw both its scalar and error values to generate the scatter plot feature-

space view to show its distribution feature. Users are able to specify a ROI in either 

the scalar or error data object-space view. Once a ROI is specified, two things will 

occur. First, a marked area will synchronously appear in the same position of both 

views to denote the specified ROI. Second, both the scalar and its associated error 

data inside the ROI will be extracted and plotted on a scatter plot for quantitative 
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analysis. Here it is worth mentioning that the data extracted from the ROI are not 

simply the 2D pixel values. They in fact contains all 3D scalar and its error data 

samples that are acquired from the volume ray-casting rendering and associated with 

all the pixels inside the ROI. As a result, although the user specified a 2D ROI, he can 

obtain the quantitative “3D insight” of both the scalar and its associated error data 

inside it based on the scatter plot. He could also repeatedly refine the ROI based on 

the feedback of the scatter plot until get satisfied results i.e. he wants to search a ROI 

inside which the maximum error is smaller than a specified threshold. 

 

Figure 5.3: Overview of the LVIS workflow. 

5.3.2 Visualization Components 

This section presents the three components that consist of the proposed 

visualization. 

5.3.2.1 Scalar/Error Data Object-space View 

These two views have exactly the same functionalities but with an exception: the 

scalar data object-space view is only used to render the scalar data, while the error 

data object-space view is only used to render the associated error data. The reason 
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they are kept separately from each other is because in this way it can yield a clearer 

data presentation. For both views, they are rendered by the classic volume ray-

casting algorithm. In addition, they allow the user to specify a ROI on them by 

dragging the mouse. Once a ROI has been specified, there will be a marked area 

appeared synchronously in the same position of both views to denote the ROI. They 

are arranged in a side by side manner for an easy comparison and observation. 

Here the object-space views refer to those views which are rendered by the volume 

visualization techniques and thus are capable to present the corresponding 3D spatial 

characteristics of the data. They are relative to the feature-space views, which are 

often rendered by the information visualization techniques and only present the data 

values’ distribution characteristics. These two terms are often appeared in a sub-field 

of visualization research where both scientific visualization techniques and 

information visualization techniques are combined. See (Linsen, Long and Rosenthal, 

2009)(Linsen et al., 2008) for examples. 

5.3.2.2 Scatter Plot Feature-space View 

This component is a straightforward scatter plot which is used to display the features 

of the scalar and its associated error data inside the ROI specified by the user. The 

horizontal axis of the scatter plot represents the error values, while its vertical axis 

represents the scalar values. It will be automatically plotted and updated once a ROI 

has been specified. Consequently the user can obtain the quantitative and immediate 

feedback from it. 

5.3.2.3 Linking between Views and Depth Sample Extraction 

The three views mentioned above are linked through the user’s interaction for a ROI 

specification. A key question here is how to extract the 3D scalar and its associated 

error sample data inside the 2D ROI. A depth sample extraction interaction technique 

has been proposed for this purpose. It can be considered as a two-step approach, as 

illustrated by the content inside the cloud of Figure 5.3. First, during the process of 

volume ray-casting rendering to generate the scalar and error data object-space view, 

we pre-stored the sampled scalar and its associated error data that correspond to 

every pixel of these two views into the memory. In this way for any one of pixels on 
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these two views, we can extract and acquire its corresponding scalar and error 

sample data. Second, when a user specified a 2D ROI in either the scalar or error data 

object-space view, we firstly find out all pixels that are inside this ROI, and then 

extract their corresponding scalar and error sample data from the memory, and 

finally plot these data onto the scatter plot. As a result, we reached this target that 

enables the user to obtain quantitative 3D scalar and its associated error sample data 

within the 2D ROI.  

5.3.3 Case Study 

A case study is shown here to illustrate the LVIS uncertainty visualization technique’s 

application. Section 5.3.3.1 introduces the original data set and its pre-processing to 

generate the lower resolution univaraite 3D data sets that are used as input by the 

LVIS technique. Section 5.3.3.2 presents the corresponding results. 

5.3.3.1 Original Data Set and Pre-processing 

The original data set exploited to generate the lower resolution univariate 3D data 

sets is a female cadaver head from CT scan, available at (Levoy, 2008). The 

dimensions of the original data set are 256 × 256 × 113, with 8 bits per voxel. For 

convenience of the 3D Haar Wavelet Transform or Decimation, we generate 143 

extra slices whose scalar values are all 0 and append them at the end of the original 

data set. As a result, a 256 × 256 × 256 derived data set is formed. This derived 

data set is then processed by the two-step modeling approach (as described in 

Section 4.2) to generate a MR hierarchy (including associated errors for the lower 

resolution data sets) with 3 different levels of resolution.  

Figures 5.4(a), (b) and (c) illustrate an example of the MR hierarchy generated from 

the Haar Wavelet Transform. We can see that the head shown in Figure 5.4(a) has 

the greatest detail, and it corresponds to the derived data set whose dimensions are 

256 × 256 × 256. Compared to the head shown in Figure 5.4(a), the one shown in 

Figure 5.4(b) is slightly coarser i.e. the image in the regions of nose and mouth 

becomes unclear, which indicates some details have been lost. It corresponds to the 

MR data set after one time Haar Wavelet Transform and its dimensions are 128 ×

128 × 128. Figure 5.4(c) shows the coarsest version of the head and we can see 
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from this figure that a substantial amount of details have been lost. It corresponds to 

the MR data set after two times Haar Wavelet Transform and its dimensions are 

64 × 64 × 64. Figure 5.4(d) shows the TF used to generate these images. For easy 

reference of these MR data sets in the subsequent paragraphs, we refer to the 

256 × 256 × 256 data set as 𝑅0 , the 128 × 128 × 128 data set as 𝑅1 , and the 

64 × 64 × 64 data set as 𝑅2. 

 

    (a)                        (b)                                             (c) 

 

       (d) 

Figure 5.4: An example of a MR hierarchy generated from the Haar Wavelet 

Transform. (a) 𝑅0 data set without the Haar Wavelet Transform. (b) 𝑅1 data set after 

one time Haar Wavelet Transform. (c)  𝑅2  data set after two times Haar Wavelet 

Transform. (d) the corresponding TF used to render these data sets. 

5.3.3.2 Results and Discussion    

With the MR data sets readily available, we can now quantitatively explore them by 

using the proposed uncertainty visualization technique. Here we present three 

specific examples that we feel interested in exploration. For the first example, we 

want to test whether the proposed visualization can reveal the delicate differences 
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of errors between two ROIs with very similar error values, which are often difficult to 

distinguish by most qualitative uncertainty visualization techniques (which only rely 

on visual metaphors such as color to distinguish uncertainty). For the second example, 

we want to quantitatively compare the differences of data features between two 

ROIs at different positions of a MR data set. For the third example, we want to 

quantitatively find out how the data features change inside a ROI when it is applied 

to two successive MR data sets. 

Figures 5.5(a) and (b) illustrate the results of the first example. The data set that is 

utilized here is 𝑅1, generated from the Haar Wavelet Transform. The left column 

images of both Figures 5.5(a) and (b) represent the scalar data object-space view of 

the proposed visualization, while the middle column images represent the error data 

object-space view. The right column images represent the scatter plot component. 

We can see from the two error data object-space views (in these views the error 

values are mapped to the rainbow colors. Blue colors indicate fewer errors, while red 

colors indicate larger errors) that the two ROIs (10 pixels width and 10 pixels height) 

indicated by the two green marked areas have very close colors, and it is thus very 

difficult to distinguish the error size between them by simply observing their colors. 

To effectively discriminate their errors, a quantitative feedback of the errors is 

necessary. This requirement can be easily achieved by the scatter plot component of 

the proposed visualization. From the scatter plots in Figures 5.5(a) and (b) we can see 

that the maximum error of the ROI specified above the mouth is close to 60, while 

the maximum error of the ROI specified on the neck is close to 150, although most 

errors in these two ROIs are between 0 and 45. Thus, the maximum error of the latter 

is more than two times than the one of the former. Through the proposed 

visualization, a more accurate error comparison between two similar ROIs is achieved. 
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           (a) 

 

            (b) 

Figure 5.5: The LVIS uncertainty visualization is applied to 𝑅1 to reveal the delicate 

error differences between the two ROIs that are indicated in (a) and (b), which have 

very similar error values. 

Figures 5.6(a) and (b) show the results with respect to the second example. The data 

set used for this example is 𝑅1, generated from the Haar Wavelet Transform. From 

these two figures we can see that two ROIs have been specified for the comparison. 

One is inside the left eye, and another one is around the mouth. Both ROIs have the 

same size, with 14 pixels width, and 16 pixels height. By observing the scatter plot in 

Figure 5.6(a) we can see that the error range of the left eye ROI is [0, 75), with most 

of its errors are concentrated between 0 and 45, and only a few are beyond 45. Its 

scalar range is (0, 195), with only a few scalar data are concentrated between 120 

and 150. By observing the scatter plot in Figure 5.6(b) we can see that the error range 

of the mouth ROI is [0, 180), with most of its errors are concentrated between 0 and 

60, and only a few errors are beyond 60. As for its scalar data, they are ranged within 

(0, 225), with most scalar data are concentrated between 0 and 150, and only a few 

are beyond 150. By comparing both scatter plots together, we can see that the error 
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range in the mouth ROI is more than twice greater than the one in the left eye ROI, 

while its scalar range is nearly 30 intensity units greater than the one in left eye ROI. 

As a result, an accurate comparison of the differences of the data features between 

two ROIs at different positions of the same MR data set is achieved. 

 

            (a) 

 

            (b) 

Figure 5.6: The LVIS uncertainty visualization is applied to 𝑅1  to quantitatively 

compare the differences of data features between two ROIs at different positions. (a) 

Results regarding the left eye ROI. (b) Results regarding the mouth ROI. 

Figures 5.7(a) and (b) show the results with respect to the third example. Figure 5.7(a) 

corresponds to the data set 𝑅1, while Figure 5.7(b) corresponds to the data set 𝑅2. 

From both figures we can see that a mouth ROI that is indicated by the green marked 

area has been specified for both MR data sets. Its size is 123 pixels width, and 33 

pixels height. From the scatter plot in Figure 5.7(a) we can see that the mouth ROI’s 

error range for the data set 𝑅1 is [0, 180), with most of its errors are concentrated 

between 0 and 105, and only a few errors are beyond 105. As for its scalar data, they 

are ranged within [0, 255) in almost a uniform manner. From the scatter plot in 

Figure 5.7(b) we can see that the mouth ROI’s error range for the data set 𝑅2  is 
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[0, 255), with most of the errors are concentrated between 0 and 195, and only some 

of them are beyond 195. As for its scalar data, they have a range of [0, 225), with 

most scalar data are concentrated between 0 and 180, and only few are beyond 180. 

Compared to the two scatter plots together, we can see that the error range shown 

in the scatter plot in Figure 5.7(b) is about 75 intensity units greater than the one 

shown in the scatter plot in Figure 5.7(a), while the scalar range shown in the scatter 

plot in Figure 5.7(b) is about 30 intensity units smaller than the one shown in the 

scatter plot in Figure 5.7(a). Based on the quantitative analysis of the data features 

change within the mouth ROI between 𝑅1 and 𝑅2, an inference about how the Haar 

Wavelet Transform works can be made even one has no knowledge of it: it actually 

reduces the scalar data values it is processing while introduces bigger errors. By 

exploring other ROIs i.e. the nose (as shown in Figures 5.8(a) and (b)) or ear (as shown 

in Figures 5.9(a) and (b)) under the same scenario using the proposed visualization, 

this inference could be validated. 

 

            (a) 

 

              (b) 

Figure 5.7: The LVIS uncertainty visualization is applied to (a) 𝑅1 and (b) 𝑅2 to reveal 

the data feature change inside the same mouth ROI. 
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            (a) 

 

              (b) 

Figure 5.8: The LVIS uncertainty visualization is applied to (a) 𝑅1 and (b) 𝑅2 to reveal 

the data feature change inside the same nose ROI. 

 

             (a) 

 

              (b) 

Figure 5.9: The LVIS uncertainty visualization is applied to (a) 𝑅1 and (b) 𝑅2 to reveal 

the data feature change inside the same ear ROI. 
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5.4 Evaluation of Perceptual Effectiveness 

Like the previously proposed LVIS uncertainty visualization technique, many 

uncertainty visualization techniques have been proposed to visualize uncertainty in 

DVR, and some seem to appear more effective than others (Sanyal et al., 2009). 

However, to our knowledge, no research has been conducted to evaluate their 

perceptual effectiveness. Therefore we conducted an evaluation work to compare 

the perceptual effectiveness of the proposed LVIS techniques with other 4 commonly 

used DVR-based uncertainty visualization techniques. Such an evaluation has double 

significance. First, it could help us to validate the effectiveness of the proposed LVIS 

uncertainty visualization technique. Second, it could find out advantages and 

disadvantages of those existing uncertainty visualization techniques. The evaluation 

results will provide useful guidance for future uncertainty visualization design. This 

evaluation corresponds to the content in (Ma et al., 2013b). 

5.4.1 Study Design 

A user study has been designed to compare the perceptual effectiveness of the LVIS 

technique with other 4 existing uncertainty visualization techniques. This includes 

the method of uncertainty data modeling, the chosen uncertainty visualization 

techniques, the participant pool and their study tasks, the interface design, the 

participant training, and finally the main user study. 

Usability and effectiveness studies have been used by researchers to evaluate new 

systems and new techniques. Some studies (Sanyal et al., 2009)(McCartney, 

1997)(Hinchley et al., 1997) utilized task completion accuracies and time as 

foundation for their evaluation. Some (Newman and Lee, 2004)( Cassell and 

Vihjalmsson, 1999)(Rickenberg and Reeves, 2000) utilized user ratings of 

effectiveness as their evaluation basis. In this work, we utilized the first approach for 

our research. 

5.4.1.1 Uncertainty Data Modeling 

The uncertainty data modeling method exploited in this user study strictly follows 

the two-step modeling approach, as described in Section 4.2. It is applied to both the 
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engine (Roettger, 2012) and the female cadaver head (Levoy, 2008) univariate 3D 

scalar data sets to generate their corresponding lower resolution univariate 3D data 

sets (with each voxel corresponding to a scalar value s  and an error value e 

associated to s), which are used as the input data for the 5 evaluated uncertainty 

visualization techniques, as will be described in the following section. 

5.4.1.2 Five Uncertainty Visualization Techniques Chosen for Evaluation 

Four existing uncertainty visualization techniques (Transparency, Discontinuities, 

Overlays and Hue) and the LVIS uncertainty visualization technique are chosen for 

this evaluation. They are all based on DVR, in particular, the volume ray-casting 

rendering (see Section 3.1.2.2 for detail). The four existing techniques will be 

introduced first, followed by the LVIS technique. 

Transparency: recall the standard volume ray-casting algorithm that is mentioned in 

Section 3.1.2.2. Traditionally, it only uses a 3D scalar data set’s scalar values to 

determine voxels’ both RGB and opacity value α (through TFs), and based on this to 

generate the final 2D image. However, since now the data we are interested consist 

of both scalar values and their associated errors, we have opportunity to use the 

scalar values to determine the voxels’ RGB, and use the error values to determine 

their opacity value α. This forms the basic idea of the transparency technique. 

Figure 5.10 illustrates an example of this transparency technique. The scalar data are 

mapped to the rainbow colors. The blue colors indicate relatively small scalar data, 

while the red colors indicate relatively big scalar data. Other colors indicate in-

between scalar data. In addition, the error data are mapped to the transparency. The 

big transparencies indicate relatively small errors, while the small transparencies 

indicate relatively big errors. Other transparencies indicate in-between errors. 

The implementation of this technique is relatively simple and its resulting image can 

be directly generated from the volume ray-casting rendering.  
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Figure 5.10: The transparency technique. 

Discontinuities: in this technique, the scalar data are again mapped to the rainbow 

colors, the same as the transparency technique. However, their associated error data 

are mapped to the sizes of holes. The small-sized holes indicate relatively small error 

data, while the big-sized holes indicate relatively big error data. Other sized holes 

indicate in-between error data. 

 

Figure 5.11: The discontinuities technique. 

The implementation of this technique is more complex, in contrast to the 

transparency technique. Four steps have to be involved to obtain the resulting image: 

(1) produce a standard volume rendering image of the scalar data. (2) produce a grey-

scale volume rendering image of the error data from the same viewpoint. (3) dither 

(Bayer, 1973) the grey-scale image into a black and white bitmap with inverted 
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values.(4) generate a composite image by laying the bitmap on top of the standard 

volume rendering image pixel by pixel if its pixel value is black. If not, then display 

the pixel value of the standard volume rendering image. Figure 5.11 illustrates an 

example of the discontinuities technique. 

Overlays: similar to the previous two techniques, in this technique, the scalar data 

are mapped to the rainbow colors. However, their associated error data are mapped 

to greyscales. The dark greys indicate relatively small error data, while the light greys 

indicate relatively big error data. Other greys indicate in-between errors. 

 

Figure 5.12: The overlays technique. 

The implementation of this technique is also complex and three steps are involved 

to obtain a resulting image: (1) produce a standard volume rendering image of the 

scalar data. (2) produce a greyscale volume rendering image of the error data from 

the same viewpoint. (3) generate a composite image by overlaying these two images 

together, with the opacity of the standard volume rendering image being 0.35, and 

the opacity of the greyscale image being 0.65. Figure 5.12 illustrates an example of 

the overlays technique. 

Hue: this technique is an inverse version of the transparency technique. This time, 

the scalar data are mapped to the transparency. Big transparencies indicate relatively 

small scalar data, while small transparencies indicate relatively big scalar data. Other 

transparencies indicate in-between scalar data. In addition, the error data are 

mapped to the rainbow colors. Blue colors indicate relatively small error data, while 
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red colors indicate relatively big error data. Other colors indicate in-between colors. 

The implementation of this technique is simple and the resulting image can be 

directly acquired from the volume ray-casting rendering. Figure 5.13 illustrates an 

example of the hue technique. 

 

Figure 5.13: The hue technique. 

LVIS: this technique corresponds to the proposed uncertainty visualization technique, 

as described in Section 5.3. Unlike the previous four techniques which only enable 

the user to qualitatively distinguish both scalar data and their associated error data 

by certain visual metaphors, this technique is intended to enable the user to 

quantitatively visualize these data by offering effective feedback in relation to the 

user’s selection. 

Figure 5.14 illustrates an example of this LVIS technique, which is composed of four 

subwindows, with every one being designed for a specific purpose. The upper left 

subwindow presents the volume rendering of the scalar data, which are mapped to 

the rainbow colors to indicate their magnitude. Similarly, the upper right subwindow 

presents the volume rendering of the error data, which are also mapped to the 

rainbow color to indicate their magnitude. Both subwindows are enabled with the 

depth sample extraction interaction, as described in Section 5.3.2.3, which has 

capability of extracting depth sample data from a 2D ROI that is automatically 

generated by the program. The separation of these two renderings is extremely 
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meaningful as it could yield a clearer data presentation. Both subwindows together 

consist of the object space of the 3D data. 

As for the bottom left subwindow, it is intended to offer the user a clear feedback 

about his selection. It plots all scalar data against their associated error data inside 

the ROI in green. In addition, it draws the user specified scalar data against their 

associated error data that are inside the ROI and selected based on either of the two 

upper subwindows in red. In this way, it allows the user to clearly judge whether his 

selection has achieved a sufficient accuracy for a specific user study task, and thus 

refine his selection if necessary. However, one drawback of this subwindow is that 

the scale of its plot is too big to accurately reflect the minimum scalar and error value 

i.e. it is very difficult to identify the minimum scalar and error value in the bottom 

left region as the data displayed there are quite clustered. Therefore, the bottom 

right subwindow is included in this technique, which is intended to present a zoom 

in version of the region specified in the bottom left subwindow to help the user to 

accurately identify the minimum scalar and error value. The bottom two subwindows 

together consist of the feature space of the 3D data. 

 

Figure 5.14: The LVIS technique. 

5.4.1.3 Participant Pool 
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In total there are 30 participants in this study, of which 19 are males, and 11 are 

females. More specifically, there are 6 participants who are researchers in UCC, and 

there are 3 participants who are staff from our industrial partner. In addition, there 

are 3 participants who are graduate, design engineer and administrator, respectively 

in UCC. For the remainder, they are all postgraduate students in UCC. Among all 

participants, none of them is reported to be color-blind. 28 out of 30 participants 

claimed that they use graphs and charts for day-to-day activities although this skill is 

not a prerequisite to participate in this study. Most participants typically use a 

computer for more than 15 hours per week. 

5.4.1.4 User Study Tasks 

By consulting Dr. Jamie Dyer, a meteorologist, Sanyal et al. (2009) determined a real-

world scenario where uncertainty could be part of his decision making process. They 

found that he is interested in looking at regions of extreme (big or small) uncertainty 

while discerning the features in the data. Moreover, they found that he liked to 

explore the data by looking at the entire data first, and then focusing on a ROI. By 

keeping this in mind, four types of searching tasks that can simulate the exploratory 

navigation of the data are designed. These four types of searching tasks are: 

• identify the spot where may include the maximum error value in the marked area 

(as illustrated in Figure 5.15). 

• identify the spot where may include the minimum error value (non-zero) in the 

marked area. 

• identify the spot where may include the maximum scalar value in the marked area. 

• identify the spot where may include the minimum scalar value (non-zero) in the 

marked area. 

These four types of searching tasks are assigned to every chosen uncertainty 

visualization technique for the user’s performance. Their orders are randomly 

appeared in the screen to avoid the bias that the user tends to complete the first task 

more accurately than other tasks. The position of the marked area (as illustrated in 

Figure 5.15) is also generated randomly for every technique. This is to avoid the case 
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where the user is able to make an identical selection based on his previous 

experience by using other uncertainty visualization techniques. Additionally, the user 

is allowed to select any spot within the marked area and refine his selection 

subsequently. 

In this user study, the accuracies of these techniques with respect to the four types 

of searching tasks are evaluated by comparing the maximum or minimum scalar or 

error value of the spot that is specified by the user with the maximum or minimum 

scalar or error value inside the ROI/marked area. Equation 5.4 to 5.7 list the score 

criteria for the tasks of identifying the maximum error value, identifying the 

minimum error value, identifying the maximum scalar value and identifying the 

minimum scalar value, respectively: 

𝑒𝑚𝑎𝑥𝑠𝑝𝑜𝑡 ≥ 𝑒𝑚𝑎𝑥𝑅𝑂𝐼 − 𝛼(𝑒𝑚𝑎𝑥𝑅𝑂𝐼 − 𝑒𝑚𝑖𝑛𝑅𝑂𝐼)   (5.4), 

𝑒𝑚𝑖𝑛𝑠𝑝𝑜𝑡 ≤ 𝑒𝑚𝑖𝑛𝑅𝑂𝐼 + 𝛽(𝑒𝑚𝑎𝑥𝑅𝑂𝐼 − 𝑒𝑚𝑖𝑛𝑅𝑂𝐼)   (5.5), 

𝑠𝑚𝑎𝑥𝑠𝑝𝑜𝑡 ≥ 𝑠𝑚𝑎𝑥𝑅𝑂𝐼 − 𝛾(𝑠𝑚𝑎𝑥𝑅𝑂𝐼 − 𝑠𝑚𝑖𝑛𝑅𝑂𝐼)   (5.6), 

𝑠𝑚𝑖𝑛𝑠𝑝𝑜𝑡 ≤ 𝑠𝑚𝑖𝑛𝑅𝑂𝐼 + 𝛿(𝑠𝑚𝑎𝑥𝑅𝑂𝐼 − 𝑠𝑚𝑖𝑛𝑅𝑂𝐼)   (5.7), 

where 𝑒𝑚𝑎𝑥𝑠𝑝𝑜𝑡  or 𝑠𝑚𝑎𝑥𝑠𝑝𝑜𝑡 represents the maximum error or scalar value of the 

spot selected by the user; 𝑒𝑚𝑖𝑛𝑠𝑝𝑜𝑡 or 𝑠𝑚𝑖𝑛𝑠𝑝𝑜𝑡 represents the minimum error or 

scalar value of the spot selected by the user; 𝑒𝑚𝑎𝑥𝑅𝑂𝐼 or 𝑠𝑚𝑎𝑥𝑅𝑂𝐼 represents the 

maximum error or scalar value inside the ROI; 𝑒𝑚𝑖𝑛𝑅𝑂𝐼 or 𝑠𝑚𝑖𝑛𝑅𝑂𝐼 represents the 

minimum error or scalar value inside the ROI; 𝛼, 𝛽, 𝛾 and 𝛿 are constant coefficients, 

determined according to data distribution used for evaluation. For the CT data of 

engine block used in the main study, we chose 20%, 0.6%, 12%  and 0.05%  for 

𝛼, 𝛽, 𝛾 and 𝛿, respectively. If the user’s selection meets the corresponding criteria, a 

score of 1 is given, otherwise a score of 0 is given. 

One thing worth mentioning is that the maximum and minimum error or scalar values 

of a spot selected by the user are not simply its pixel value. They are actually obtained 

by comparing all error or scalar sample values along the ray casted from the spot (a 

spot is equivalent to a pixel in the final 2D image). This is possible because of the 

depth sample extraction interaction technique, as described in Section 5.3.2.3. 
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Similarly, the maximum and minimum error or scalar values of a ROI (which is 

composed of many pixels) are not simply obtained by comparing its pixel values. They 

are actually obtained by comparing all error or scalar sample values along the rays 

casted from the pixels that consist of the ROI. 

Another thing worth mentioning is that the data exploited in the user study are from 

real-world medical CT scan. Typically, this type of data contain a large amount of 0 

values which are the minimum value of the data and represent no material or air 

inside or outside the scanned object. In this case, it is very likely that the minimum 

scalar or error value of a spot specified by the user is the 0 value. This will result in 

invalidity of the evaluation for tasks of identifying the minimum scalar or error value, 

as the user may always obtain a correct answer by selecting any one spot within a 

ROI. To avoid the invalidity and make sure that the answer is not always correct when 

the user performs tasks of identifying the minimum scalar or error value, the 

minimum boundary is adjusted to be non-zero. 

5.4.1.5 Interface Design 

A simple and user friendly interface is designed to enable the user to perform the 4 

searching tasks with respect to the 5 chosen uncertainty visualization techniques, as 

illustrated in Figure 5.15. It consists of 3 parts which are the main display (upper left), 

the interaction (right) and the status bar (bottom left), respectively. In the main 

display, the 5 uncertainty visualization techniques are presented one by one 

randomly. This is to avoid the bias caused by the display order.  In addition, a red 

rectangle is displayed on top of every uncertainty visualization technique. It indicates 

the ROI where the user is asked to make selections. In the interaction part, a big text 

box is arranged at the top. It is used to inform the user the current searching task. In 

addition, two buttons are arranged at the bottom, and both are set to disabled as 

default. This is to make sure that the user could not skip any one of these tasks. When 

the user selected a spot within the ROI, the “Accept” button will be enabled. It is used 

by the user to confirm the selection. Once it is pressed, two things happen. First, 

according to the specific task undertaken by the user, for example, the user is asked 

to select a spot within a ROI for the task of identifying maximum error value, then 
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the maximum error value of the spot as well as the maximum and minimum error 

values within the ROI will be recorded into a file for subsequent score measurement 

(as mentioned in Section 5.4.1.4), which will be used for final statistical analysis (will 

introduce in Section 5.4.2). As a result, every task of an uncertainty visualization 

technique corresponds to an individual file. The second thing occurred after the 

“Accept” button being pressed is that the “Next” button will be enabled. At this point, 

the user could still revise the answer by reselecting a spot within the ROI and 

confirming it. However, once the “Next” button is hit, the selection will be done and 

the next random searching task or uncertainty visualization technique will be 

presented on the screen. In this status bar, clear prompt is given to guide the user’s 

operation.  

 

Figure 5.15: The user interface. 

5.4.1.6 Participant Training 

A training process is given to the user before the main user study. This is to make 

sure that the user is familiar with the evaluation and feels confident to take on the 

main user study independently.  We typically spent about 5 to 10 minutes to give the 

user an overview of the user study. This involves getting them understanding the 

concept of uncertainty visualization, its significance, as well as the purpose of the 

user study. 
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After that, every user is assigned to a computer which runs a training module that is 

similar to the main study, but uses a different data set, which is CT scan of a female 

cadaver head, with 8 bits for each voxel (Levoy, 2008). Every user is asked to 

complete the corresponding tasks in the training module. Coupling with this process, 

we spent about 10 to 15 minutes explaining the user the 5 different uncertainty 

visualization techniques, the user interface, as well as the 4 types of searching tasks 

expected from them. We believe that organizing the explanation along with the 

training module is a better idea than those methods to separate them, because this 

could provide the user with more living examples that promote the understanding. 

After the user completed the training, a “question and answer” stage is followed 

where we will answer the questions that are unclear to the user. Finally, every user 

will take on the main study independently.   

5.4.1.7 The Main Study 

The data set used in the main user study is CT scan of an engine block, available at 

(Roettger, 2012), as illustrated in Figure 5.15. There are in total of 30 participants 

taking part in the main user study and only 28 participants’ feedback is selected for 

statistical analysis. This is because the other 2 participants seemed unmotivated and 

completed their tasks in a rush. 

To avoid the interplay between participants, the main user study is run on one 

participant at a time. Every participant is kept in a similar environment to eliminate 

the impact from the environment. Apart from some personal information, every 

participant needs to answer a total of 20 questions for the main user study. This 

formed a complete 5 × 4  design for the 5 chosen uncertainty visualization 

techniques with respect to the 4 searching tasks. The response time is recorded in 

seconds for every question.  

5.4.2 Method of Analysis 

Both task completion accuracies and task completion time with respect to the 5 

evaluated uncertainty visualization techniques are statistically analyzed to find out 

the significant difference. The classic approach (Bentley, 2009)(Laerd Statistics, 

2013c) begins with a two-way full factorial ANOVA, followed by either the individual 
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one-way ANOVA if there is no significant interaction, or the one-way ANOVA which 

can capture the Simple Main Effects if there is significant interaction. Standard post-

hoc test found by ANOVA is also performed. The statistical analysis is conducted in 

the SPSS. 

Table 5.1: Tests of between-subjects effects on accuracies. 

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Corrected Model 33.757a 19 1.777 9.334 .000 

Intercept 187.457 1 187.457 984.834 .000 

techniques 12.239 4 3.060 16.075 .000 

tasks 19.486 3 6.495 34.124 .000 

techniques * tasks 2.032 12 .169 .890 .557 

Error 102.786 540 .190   

Total 324.000 560    

Corrected Total 136.543 559    

a. R Squared = .247 (Adjusted R Squared = .221)   

For analysis of the accuracies, the two-way full factorial 5 × 4 ANOVA is used to test 

whether there is a significant interaction between the 5 uncertainty visualization 

techniques and the 4 types of searching tasks. The Table 5.1 generated from SPSS 

indicates that there is no significant interaction between the 5 uncertainty 

visualization techniques and the 4 types of searching tasks (F(12, 540) = 0.890, p =

0.557 > 0.05). This implied that the type of searching tasks did not have an impact 

on whether there is a significant difference between the 5 techniques or not. Thus, 

an individual one-way ANOVA is computed to assess whether there is a significant 

difference between the 5 uncertainty visualization techniques. According to the 

Table 5.2 from SPSS, it implied that there is a significant difference between the 5 

uncertainty visualization techniques(F(4, 135) = 14.341, p < 0.0005). Therefore, 

the analysis is continued with the Bonferroni test to compare all pairwise significant 

difference (10 pairwise comparisons) of the 5 techniques. The Table 5.6 lists the 

specific findings which will be discussed in the next section. 
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Table 5.2: Results for one-way ANOVA on accuracies.  

 Sum of Squares df Mean Square F Sig. 

Between Groups 48.957 4 12.239 14.341 .000 

Within Groups 115.214 135 .853   

Total 164.171 139    

For analysis of the time, a two-way full factorial 5 x 4 ANOVA is computed to assess 

whether there is a significant interaction between the 5 uncertainty visualization 

techniques and the 4 types of searching tasks. The Table 5.3 generated from SPSS 

indicated that there is a significant interaction between the techniques and the user 

tasks ( F(12,539) = 4.370, p < 0.0005 ). This implied that whether there is a 

significant difference between techniques or not, depended on the type of tasks 

assigned to the participants. Therefore 9 one-way ANOVAs are computed to capture 

the Simple Main Effects. The first 4 one-way ANOVAs are computed to see whether 

there is a significant difference between the 5 techniques with respect to each 

searching task. The Table 5.4 from SPSS indicated that there is a significant difference 

between the 5 techniques with respect to the completion time of the task of 

identifying the maximum error (F(4,539) = 32.531, p < 0.0005 ). In addition, it 

indicated that there is a significant difference between the 5 techniques with respect 

to the completion time of the task of identifying the minimum error (F(4,539) =

15.032, p < 0.0005 ). Thus the Bonferroni test is computed (10 pairwise 

comparisons) to see which of the specific techniques differed. Table 5.7 and Table 

5.8 list the specific findings and we discuss the statistical significant results in the next 

section. The second 5 one-way ANOVAs are computed to check whether there is a 

significant difference between the 4 types of searching tasks with respect to each 

uncertainty visualization technique. The Table 5.5 from SPSS indicated that there is a 

significant difference between the 4 types of searching tasks with respect to the LVIS 

technique (F(3,539) = 20.197, p < 0.0005). Thus the Bonferroni test is computed 

(6 pariwise comparisons) to see which of the specific tasks differed. Table 5.9 lists the 

specific findings and we discuss it in the next section. 
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Table 5.3: Tests of between-subjects effects on time. 

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Corrected Model 32573.824a 19 1714.412 11.536 .000 

Intercept 183329.974 1 183329.974 1.234E3 .000 

techniques 22876.667 4 5719.167 38.482 .000 

tasks 1713.038 3 571.013 3.842 .010 

techniques * tasks 7794.084 12 649.507 4.370 .000 

Error 80105.364 539 148.618   

Total 295853.000 559    

Corrected Total 112679.188 558    

a. R Squared = .289 (Adjusted R Squared = .264)   

Table 5.4: Univariate tests on time from the first 4 one-way ANOVAs. 

tasks Sum of Squares df Mean Square F Sig. 

identify max error Contrast 19338.757 4 4834.689 32.531 .000 

Error 80105.364 539 148.618   

identify min error Contrast 8935.929 4 2233.982 15.032 .000 

Error 80105.364 539 148.618   

identify max data Contrast 1255.757 4 313.939 2.112 .078 

Error 80105.364 539 148.618   

identify min data Contrast 1311.240 4 327.810 2.206 .067 

Error 80105.364 539 148.618   

Each F tests the simple effects of techniques within each level combination of the other effects shown. 

These tests are based on the linearly independent pairwise comparisons among the estimated marginal 

means. 

5.4.3 Results and Discussion 

Table 5.6 illustrates the statistical significance between the 5 uncertainty 

visualization techniques in terms of the accuracies. We can see from this table that 

our new LVIS technique is the most accurate one among all of these evaluated 

techniques. It is strongly better than the Transparency technique, the Discontinuities 

technique and the Hue technique. The second most accurate technique is the 

Overlays technique. It is strongly better than the Transparency technique, and is 
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better than the Hue technique. For the remainder three techniques, there is no 

statistical significance between them. But from the table we can see that the 

Discontinuities technique has the highest average score among the three techniques, 

while the Transparency technique has the lowest one. 

Table 5.5: Univariate tests on time from the second 5 one-way ANOVAs. 

techniques Sum of Squares df Mean Square F Sig. 

Transparency Contrast 27.500 3 9.167 .062 .980 

Error 80105.364 539 148.618   

Discontinuities Contrast 291.884 3 97.295 .655 .580 

Error 80105.364 539 148.618   

Overlays Contrast 93.670 3 31.223 .210 .889 

Error 80105.364 539 148.618   

Hue Contrast 69.143 3 23.048 .155 .926 

Error 80105.364 539 148.618   

LVIS Contrast 9005.085 3 3001.695 20.197 .000 

Error 80105.364 539 148.618   

Each F tests the simple effects of tasks within each level combination of the other effects shown. These 

tests are based on the linearly independent pairwise comparisons among the estimated marginal 

means. 

We believe that the LVIS technique is proved to be the most accurate due to its 

mechanism of quantitative feedback that makes the user clearly aware the features 

of inspected data. As for the Overlays technique, it is proved relatively accurate due 

to its easy visibility for both scalar data and error data in visualization. Likewise, we 

believe that the remainder three techniques are evaluated as being relatively inferior 

due to the fact that their visibility for either scalar data or error data, or a 

combination of them could be less perceived to the user. 

Table 5.7 illustrates the statistical significance between the 5 uncertainty 

visualization techniques in terms of the completion time for the task of identifying 

the maximum error. We can see from this table that our new LVIS technique took 

strongly longer than the others to complete this task. For the remainder four 

techniques, there is no statistical significance between them. 
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Table 5.6: Statistical significance of accuracies between the 5 uncertainty 

visualization techniques. 

  Transparency Discontinuities Overlays Hue LVIS 

bigger 
mean(more 
accurate) 

LVIS 
 

** **  **  

Overlays 
 

**   *  

 Discontinuities 
 

     

smaller 
mean(less 
accurate) 

Hue 
 

     

Transparency      

A * indicates significance at the 0.05 level. 
A ** indicates strong significance at the 0.025 level. 

 

We believe that the LVIS technique is proved to be more time-consuming due to its 

capability of exploratory analysis and refining. Likewise, the remainder four 

techniques are proved to be less time-consuming due to the fact that they fail to 

provide the user with such a capability, but only the visual metaphors. 

Table 5.7: Statistical significance of the completion time between the 5 uncertainty 

visualization techniques for the task of identifying the maximum error. 

  Transparency Discontinuities Overlays Hue LVIS 

bigger 
mean(more 
time) 

LVIS 
 

** ** ** **  

Discontinuities 
 

     

 Hue 
 

     

smaller 
mean(less 
time) 

Transparency 
 

     

Overlays      

A * indicates significance at the 0.05 level. 
A ** indicates strong significance at the 0.025 level. 

 

Table 5.8 illustrates the statistical significance results between the 5 uncertainty 

visualization techniques on the completion time for the task of identifying the 

minimum error. The same conclusion and explanation for Table 5.7 can be given here. 

However, the difference between Table 5.7 and Table 5.8 is the listed order of the 

Overlays technique, the Transparency technique and the Hue technique. In Table 5.7, 

we can see that the Hue technique took the longest time among the three techniques, 
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while the Overlays technique took the shortest. But in Table 5.8, we can see that the 

consumed time between the Hue technique and the Overlays technique has been 

reversed, while the Transparency technique remains the same. 

Table 5.8: Statistical significance of the completion time between the 5 uncertainty 

visualization techniques for the task of identifying the minimum error. 

  Transparency Discontinuities Overlays Hue LVIS 

bigger 
mean(more 
time) 

LVIS 
 

** ** ** **  

Discontinuities 
 

     

 Overlays 
 

     

smaller 
mean(less 
time) 

Transparency 
 

     

Hue      

A * indicates significance at the 0.05 level. 
A ** indicates strong significance at the 0.025 level. 

 

Table 5.9: Statistical significance of the completion time between the 4 types of 

searching tasks with respect to the LVIS technique. 

  Identify the 
max. error 
data 

Identify the 
min. error 
data 

Identify the 
max. scalar 
data 

Identify 
the min. 
scalar data 

bigger 
mean(more 
time) 

Identify the 
max. error 
data 
 

 * ** ** 

 Identify the 
min. error 
data 
 

  ** ** 

Identify the 
min. scalar 
data 
 

    

smaller 
mean(less 
time) 

Identify the 
max. scalar 
data 

    

A * indicates significance at the 0.05 level. 
A ** indicates strong significance at the 0.025 level. 

 

Table 5.9 illustrates the statistical significance results between the 4 types of 

searching tasks in terms of the completion time based on the LVIS technique. We can 
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see from this table that the task of identifying the maximum error data consumed 

the longest time. It consumed strongly longer than the tasks of identifying either the 

maximum scalar data or the minimum scalar data. In addition, it consumed longer 

than the task of identifying the minimum error data. The task that took the second 

longest time is the one of identifying the minimum error data. It took strongly longer 

than both the task of identifying the maximum scalar data and the task of identifying 

the minimum scalar data. As for the remainder two tasks, there is no statistical 

significance between them. 

5.5 Evaluation of Execution Time 

Apart from the perceptual effectiveness, we also measure execution time for each of 

the 5 evaluated uncertainty visualization techniques, which are run on the engine 

data set (Roettger, 2012), as illustrated in Table 5.10.  

Table 5.10: Execution time of the 5 evaluated uncertainty visualization techniques. 

Uncertainty visualization techniques Execution time (in seconds) 

Transparency 39.14 

Discontinuities 38.953 

Overlays 38.843 

Hue 38.922 

LVIS 39.89 

It is clear from this table that all the 5 evaluated uncertainty visualization techniques 

have a very similar execution time, although the LVIS uncertainty visualization 

technique takes slightly longer than others to execute. This is probably because it 

takes more time to draw its data. 

5.6 ELVIS Uncertainty Visualization Technique for Multivariate 

3D Scalar Data 

In addition to univariate 3D scalar data, the multivariate 3D scalar data that are often 

generated from instrumental measurements and many scientific simulations may 

also incorporate uncertainty. However, very little research has been reported to 

visualize uncertainty in multivariate 3D scalar data. This is because of the big 
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challenge caused by it: simply visualize multivariate 3D scalar data (also known as 

multifield visualization), in itself, a recognized challenge to the visualization 

community (Johnson, 2004). Taking their uncertainties into account will make this 

visualization problem even harder, as there may not be enough visualization 

channels available to depict so many variables (both multivariate and their 

uncertainties). Also, the resulting visualization often suffers from classic visualization 

problems such as visual clutter and occlusion. 

From the above-mentioned evaluation work it is clear that the proposed LVIS is a very 

effective uncertainty visualization technique, as it enables users to more accurately 

search both extreme (max. and min.) scalar and error data than other 4 commonly 

used techniques. Therefore, we determined to further extend it to address the need 

of visualizing uncertainty in multivariate 3D scalar data, and we call this extended 

LVIS work as ELVIS, which corresponds to the content in (Ma et al., 2012d). 

5.6.1 Overview of Functionalities 

Based on the important industrial experience as described in (Doleisch et al., 2005), 

the proposed uncertainty visualization consists of three main functionalities to 

enable the user to interactively and quantitatively explore and analyze multivariate 

scalar data and their errors. The first functionality is denoted by the red dotted lines 

in Figure 3.16, and it allows the user to inspect the statistical information and 

correlations of the multivariate scalar data and their errors with respect to certain 

ROI of the spatial domain. The second functionality is denoted by the yellow dotted 

lines in Figure 3.16, and it allows the user to investigate the features of multivariate 

scalar data and their errors by specifying a feature of a scalar data and their errors in 

one scatter plot, and concurrently analyzing the features with respect to the 

remaining scalar data and their errors in other scatter plots. The third functionality is 

knows as feature localization, denoted by the blue dotted lines in Figure 3.16. It 

allows the user to search for places in the 3D spatial domain where certain features 

that have been specified are presented. In the next three sections, the components 

of every functionality will be presented in great details. 
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5.6.2 Functionality 1: Visualization of Statistical Information and 

Correlations 

This section introduces all the components that consist of the first functionality, 

which allow the user to inspect the statistical information and correlations of 

multivariate scalar data and their errors with respect to certain ROI of the spatial 

domain. 

5.6.2.1 Scalar/Error Data Views 

This type of views is intended to give the user quick understanding and insight about 

the scalar or error data being inspecting. They are all rendered by the classic volume 

ray casting algorithm, which is capable of revealing both external and internal 

structures of data. Due to the complexity of multivariate scalar data and their errors, 

presenting them into a single view often causes typical visualization problems such 

as visual clutter or occlusion. Thus, to obtain a much clearer data presentation, they 

are displayed into multiple views, with every view corresponding to a singular scalar 

or its error data. In addition, to facilitate a visual comparison, every error data view 

is arranged side by side to its corresponding scalar data view. Moreover, the user is 

allowed to interact with any one of these view for a ROI specification. Once a ROI has 

been specified in one view, it will be indicated by a white marked area that is 

synchronously appeared in the same position of all the views. 

5.6.2.2 Scalar/Error Histogram Views 

To give the user quantitative insight about the statistical information of the 3D 

sample data inside a specified ROI, the scalar/error histogram views are developed 

in the proposed uncertainty visualization. Every histogram view only presents the 

statistical results for a singular scalar or its error data for a clear data presentation. 

Its horizontal axis depicts the interval information of a specific scalar or its error data, 

while its vertical axis counts the number of sample data inside a ROI falling into every 

particular interval. 
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    (a)                           (b)                      (c) 

Figure 5.16: Typical correlations that could be shown in a PC. (a) Shows a negative 

correlations between A and B. (b) Shows a strong correlation between A and the low-

value range of B. (c) Shows no obvious correlation between A and B (Akiba and Ma, 

2007). 

5.6.2.3 Parallel Coordinates View 

PC (Inselberg, 1985)(Inselberg and Dimsdale, 1990)(Inselberg, 2009) is a popular 

technique created to visualize multivariate data. Its basic form is a 2D display plotting 

data using parallel axes, one for each variable. It generally can provide a good 

overview of the correlation among multivariate. Thus, it is included in the proposed 

uncertainty visualization to offer the user the correlation of multivariate scalar data 

and their errors that are specified inside a ROI. In particular, to facilitate the user to 

inspect the correlation between a scalar and its associated error data, every scalar 

parallel axis is arranged adjacent to its associated error parallel axis. By observing the 

patterns between two neighboring axes of a PC, the correlation between the 

corresponding variables can be detected. Figure 5.16 illustrates some typical 

correlations of a PC. 

5.6.2.4 Linking between Views and Depth Sample Extraction 

While every component mentioned above has certain utility, linking them together 

could form a more powerful visualization system that allows quantitative exploration 

and analysis of the multivariate scalar data and their error data inside certain ROI 

specified in the spatial domain. A typical workflow of functionality 1 can be 

summarized as follows: The user starts the exploration by inspecting the scalar/error 

data views in the spatial domain and dragging a rectangle through a mouse 

interaction on any of these views to specify a ROI. He can repeatedly modify this ROI 
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until he feels satisfied. Once a ROI has been specified, two things occur. First, a white 

marked area will synchronously appear in the same position of all scalar/error data 

views to denote the ROI. Second, the “relevant” multivariate scalar data and their 

errors inside the ROI will be extracted from the memory and passed to the 

scalar/error histogram views and PC view to generate the corresponding graphs for 

subsequent analysis. A key here is what “relevant” data we should extract and use so 

that they can represent the entire characteristics of the ROI. Again, like described in 

Section 5.3.2.3, the 3D samples of multivariate scalar data and their errors are 

extracted from the memory through the depth feature extraction technique and 

used in the scalar/error histogram views and PC view, as they are the data utilized 

for the ROI rendering and thus can represent its entire characteristics. As a result, we 

enable users to analyze the 3D samples’ scalar and error values within the specified 

2D ROI in the spatial domain. 

5.6.3 Functionality 2: Visualization of Data Features 

The second functionality consists of multiple linked scatter plot views, which allow 

the user to investigate the features of multivariate scalar data and their errors by 

specifying a feature of a univariate scalar data and their errors in one scatter plot, 

and concurrently analyzing the features with respect to the remaining scalar data and 

their errors in other scatter plots. 

5.6.3.1 Scatter Plot Views 

For interactive features or ROIs specification, multiple scatter plots (Wolfram 

Research Inc., 2014) are exploited in the proposed uncertainty visualization. Every 

scatter plot view plots a univariate scalar variable against its error variable for a clear 

data presentation. It serves as both feature display and ROI specification tool, where 

the user can observe the features and specify a ROI by dragging a rectangle on it 

through a mouse interaction. In addition, every scatter plot view is assigned to a 

unique color that is used to indicate its ROI as well as those features that match its 

ROI shown in other scatter plot views. In this way, the user can identify which 

features match certain ROI by simply observing whether they have the same color. 
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5.6.3.2 Linking between Views 

These scatter plot views are tightly linked by user interaction for the ROI specification. 

A typical workflow of them can be described as follows: the user starts his exploration 

by inspecting the features of multivariate scalar data and their errors based on the 

scatter plot views and specifying a ROI on any one of these views. He could 

repeatedly modify his ROI until he feels satisfied. Two things occur once a ROI has 

been specified. One thing is that the view used for the ROI specification will be 

updated automatically to denote the ROI with the unique color assigned to this view. 

Another thing is that the remaining views that have not been used for a ROI 

specification will be automatically updated as well, to show the corresponding 

features that match the specified ROI with the same color. Here an example is taken 

to explain how to acquire the corresponding features of a ROI, as illustrated in Figures 

5.17(a), (b) and (c). We can see from these figures that the multivariate data consist 

of 3 scalar data (density, pressure and resistivity) and their associated errors. Thus 

there are in total of 3 scatter plot views, with each corresponding to a univaraite 

scalar and its errors. From Figure 5.17(a) we can see that a red ROI is specified for 

the density scalar and its errors, and Figures 5.17(b) and (c) show its corresponding 

features. The method to obtain the two features shown in Figures 5.17(b) and (c) can 

be explained as follows: first, the entire multivariate data is searched and those 

voxels whose both density values (here the density values and the following 

mentioned pressure and resistivity values are from the simulation data as described 

in Section 5.6.5.1) and their associated error values matched the specified ROI are 

identified. Second, the pressure values and their associated error values at the 

identified voxels are extracted and plotted in Figure 5.17(b). Also, the resistivity 

values and their associated error values at the identified voxels are extracted and 

plotted in Figure 5.17(c). Consequently the corresponding features that matched the 

specified ROI are acquired. 
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(a)             (b)         (c)  

Figure 5.17: An example about how to acquire the corresponding features of a ROI 

for multivariate data. 

The user can continue his exploration by repeating the above operation in those 

views which have not been used for a ROI specification to formulate more 

complicated and compound ROI specification. A specific example of this case is 

shown in Figure 5.18. As a result, the user is enabled to investigate the features of 

multivariate scalar data and their errors in an interactive and quantitative way. 

 

 Figure 5.18: An example of a compound ROI specification. 

5.6.4 Functionality 3: Feature Localization 

The third functionality is composed of two types of views, which are tightly linked 

together to allow searching for places in the 3D spatial domain where certain 

specified features are presented. 

5.6.4.1 Logical Scatter Plot Views 
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To allow the user to specify features whose 3D spatial positions are of interest in 

exploration, multiple scatter plots are again utilized.  Similar to the scatter plot views 

mentioned in the second functionality, every scatter plot in this functionality plots a 

singular scalar variable against its error variable for a clear data presentation. Also, it 

could be used by the user for a ROI specification. However, they have some 

differences from the previously mentioned ones. First, a ROI specification performed 

in any one of these scatter plot views will not update and affect any other scatter 

plot views. Only the view used for this ROI specification will be updated to denote 

the ROI. Every scatter plot always presents a complete feature with respect to a 

singular scalar and its error data for the user’s inspection. Second, all scatter plot 

views share the same color for the ROI specification. This color is also used for the 

features rendering in the feature localization view (will be introduced in Section 

5.6.4.2) so that the user can determine which ROIs correspond to the localized 

features. Third, these linked scatter plot views in fact serve as the TFs for the feature 

localization view. In other words, the features specified in them will control 

appearance of the final data displayed in feature localization view. Last, they offer 

two logical operations “AND” and “OR” for feature extraction. Thus, we refer to them 

as logical scatter plot views, to make a clear distinction with those scatter plot views 

previously mentioned in Functionality 2. 

AND Operation: the idea to enable the logical scatter plot views with logical 

operations is from the work of Gasser (2004), who introduced the logical operations 

into his visualization for complex selection. Two simple logical operations AND and 

OR have been implemented in this research, which serve as different purpose. The 

AND operation is defined as an operation that can extract those voxels which 

concurrently match multiple criteria specified by multiple ROIs in the logical scatter 

plot views. It is very useful for many cases. For example, assuming our multivariate 

data are about the prediction of temperature and pressure of a cold room, and we 

are interested in those positions which meet both conditions as specified in formulas 

5.8 and 5.9:  

{
−18°𝐶 ≤ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ≤  −10°𝐶
0°𝐶 ≤ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒. 𝑒𝑟𝑟𝑜𝑟 ≤ 1°𝐶

   (5.8), 
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{
0.05𝑀𝑃𝑎 ≤ 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ≤ 0.15𝑀𝑃𝑎

0.0001𝑀𝑃𝑎 ≤ 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒. 𝑒𝑟𝑟𝑜𝑟 ≤ 0.0005𝑀𝑃𝑎
   (5.9), 

where temperature.error refers to the error data associated to the temperature data; 

pressure.error refers to the error data associated to the pressure data; MPa refers to 

megapascal. This can be easily achieved by specifying two ROIs corresponding to the 

two conditions in two appropriate logical scatter plot views and enabling the AND 

operation. Consequently the corresponding positions in the spatial domain will be 

revealed in the feature localization view. 

OR Operation: the OR operation is defined as an operation that can extract those 

voxels which match any one of the criteria specified by ROIs in the logical scatter plot 

views. It is very useful for those cases where it is interested to inspect all positions 

where as long as a feature appears. Continuing with the cold room example 

described above, we are interested in those positions which meet any one condition 

among 4.4 and 4.5. This can be also easily achieved by specifying the same two ROIs 

as those mentioned in the AND operation. But this time, we need to enable the OR 

operation instead. Consequently the corresponding positions with respect to the OR 

operation will be appeared in the feature localization view. 

5.6.4.2 Feature Localization View 

The feature localization view is used to give the user immediate feedback about the 

spatial positions of those features specified in the logical scatter plot views. It is 

rendered by the volume ray-casting algorithm. The color used to render the features 

in this view is kept as the same as the color used for ROI specification in the logical 

scatter plot views. In this way, the user can identify which ROIs have been used to 

localize the features. 

5.6.4.3 Linking between Views 

The logical scatter plot views and the feature localization view are tightly linked by 

the user interaction for ROI specification. A typical workflow can be described as 

follows: the user starts his exploration of feature localization by inspecting the data 

features in the logical scatter plot views, and specifying a ROI on any one of those 

views. He could modify the ROI specification repeatedly until he feels satisfied. Once 
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a ROI is specified, two things happen. One thing is that the view used for the ROI 

specification will be updated to denote it. Another thing is that the feature 

localization view will be immediately updated to show the spatial positions of the 

features match the ROI. The user can repeat the above operation in other logical 

scatter plot views to formulate a more complicated and compound ROI specification, 

and based on the AND or OR operation selected, the feature localization view will 

present the corresponding feature positions for his inspection. 

5.6.5 Case Study 

To demonstrate the application of the proposed uncertainty visualization, a case 

study is conducted. Section 5.6.5.1 introduces the original data set and the pre-

processing applied to the original data sets to generate the test data sets. Section 

5.6.5.2 presents the corresponding results after applying the proposed uncertainty 

visualization to the test data sets. 

5.6.5.1 Original Data Set and Pre-processing 

Three data sets are exploited in this case study and they are generously offered by 

Mr. Andrew Foulks from University of New Hampshire. They are a sample (at time 

step 900 seconds from the start of the simulation) of the entire data source which is 

generated from the Open Geospace General Circulation Model (OpenGGCM) 

simulation performed at Space Science Research Center in University of New 

Hampshire, and used to study the phenomenon of solar wind and its interaction with 

the earth’s magnetosphere. Three scalar variables including density, pressure and 

resistivity (Community Coordinated Modeling Center, 2007) can be available from 

this simulation, with every scalar being sampled on the Cartesian grid (Raeder, 1995) 

and corresponding to an individual data set. The dimensions of every data set are 

1024 × 512 × 512, and its size is 1.05GB. In addition, its format is 32-bit IEEE floating 

point values with little endian (Lin, 2003). 

As we focus on quantitative uncertainty visualization of multivariate data rather than 

visualization of large-scalar data, the three original data sets are reduced by the MR 

modeling techniques (as introduced in Section 4.2) to three smaller derived data sets 

whose dimensions are 256 × 128 × 128 that can be handleable by the memory. 
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These derived data sets are then processed by two successive MR modeling to obtain 

its two lower resolution data sets that are used to test the proposed visualization.  

Figures 5.19(a), (b) and (c) illustrates the corresponding MR hierarchy acquired from 

the Haar Wavelet Transform.  The left column three images correspond to the density 

data. The middle column three images correspond to the pressure data, and the right 

column three images correspond to the resistivity data. We can see that the three 

scalar variables shown in Figure 5.19(a) have the greatest detail, and they correspond 

to the three derived data sets whose dimensions are 256 × 128 × 128. Compared 

to Figure 5.19(a), the three scalar variables shown in Figure 5.19(b) are slightly 

coarser i.e. the edges of the density and pressure data appear a little bit coarse, which 

indicates some details have been lost. They correspond to the MR data after one time 

Haar Wavelet Transform and their dimensions are 128 × 64 × 64. Figure 5.19(c) 

shows the coarsest version of the three scalar variables and we can see from this 

figure that a substantial amount of details have been lost. They correspond to the 

MR data after two times Haar Wavelet Transform and their dimensions are 64 ×

32 × 32. Figures 5.19(d), (e) and (f) show the three TFs utilized to render the density 

data, pressure data and resistivity data, respectively. For easy reference of these MR 

data sets in the subsequent paragraphs, we refer to the 256 × 128 × 128 data set 

as R0, the 128 × 64 × 64 data set as R1, and the 64 × 32 × 32 data set as R2.  

5.6.5.2 Results and Discussion 

Three questions are expected to be ansared by the proposed uncertainty 

visualization after applying it to the MR data sets. The first question is: “what are the 

statistical characteristics and correlations among multivariate scalar variables and 

their error variables within a subset of the spatial domain?” The second question is: 

“what is the feature of the multivariate scalars and their associated error data set 

after its certain scalars and their associated errors’ features have been specified?” 

The third question is: “where certain features specified in the feature space will 

appear in the spatial domain?”  



Chapter 5. Uncertainty Visualization in DVR Using LVIS 
__________________________________________________________ 

133 
 

 

        (a) 

 

         (b) 

 

          (c) 

 

           (d)       (e) 



Chapter 5. Uncertainty Visualization in DVR Using LVIS 
__________________________________________________________ 

134 
 

 

(f) 

Figure 5.19: A MR hierarchy for the density variable (left column), the pressure 

variable (middle column) and the resistivity variable (right column) of the OpenGGCM 

simulation, generated from the Haar Wavelet Transform. 

Figure 5.20 shows the results corresponding to the first question and the MR data 

set used here is 𝑅1. The three images in the leftmost column correspond to the scalar 

data views which rendered the density (Figure 5.20(a1)), pressure (Figure 5.20(b1)) 

and resistivity (Figure 5.20(c1)) data, respectively. The ones in the left middle column 

correspond to the error data views, which rendered the error data associated to the 

density (Figure 5.20(a2)), pressure (Figure 5.20(b2)) and resistivity data (Figure 

5.20(c2)), respectively. The ones in the right middle column correspond to the scalar 

histogram views, which present the statistical information (the number of scalar data 

samples falling into every interval) of density (Figure 5.20(a3)), pressure (Figure 

5.20(b3)) and resistivity data (Figure 5.20(c3)), respectively that is inside a ROI 

specified by the user. The ones in the rightmost column correspond to the error 

histogram views, which present the statistical information (the number of error data 

samples falling into every interval) of error data that are associated to the density 

(Figure 5.20(a4)), pressure (Figure 5.20(b4)) and resistivity data (Figure 5.20(c4)), 

respectively inside the same ROI as the one for the scalar histogram views. Finally, 

Figure 5.20(d) corresponds to the PC view of the proposed uncertainty visualization.  

We can see from the scalar/error data views that a small white ROI has been specified 

in the spatial domain. From these scalar/error histogram views it is very easy to draw 

the following statistical conclusions regarding the three scalar variables and their 

associated errors inside the ROI: the values of the density data inside the ROI are 

continuously distributed between 0 and 21.45, which occupy more than 50% of the 

entire data space, while the values of their error data are continuously distributed 
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between 0 and 12, which only occupy a very small percentage of the entire data 

space. In addition, most of the density data fall into the interval (6.6, 8.25], and least 

of them fall into the interval (19.8, 21.45] . While most of their error data are 

concentrated in the interval (0, 4], and least of their error data fall into the interval 

(8, 12] . As for the pressure data inside the ROI, their values are continuously 

distributed between 0 and 667.5, which occupy less than 50% of the entire data space, 

while the values of their error are continuously distributed between 0 and 570.5, 

which only occupy a very small percentage of the entire data space. Additionally, 

most of the pressure data fall into the interval (0, 111.25], and least of them fall into 

the interval (556.25, 667.5]. While most of their error data are concentrated in the 

interval (0, 285.25], and least of their error fall into the interval (285.25, 570.5]. In 

terms of the resistivity data inside the ROI, their values are continuously distributed 

between 0 and 0.000093, which occupy the entire data space, while the values of 

their error data are discretely distributed between 0 and 0.000133 (no values 

between (0.000095, 0.000114]), which occupy nearly 50% of the entire data space. 

Moreover, most of the resistivity data fall into the interval (0.000088, 0.000093], 

and least of them fall into three intervals concurrently that are 

(0.000009, 0.000014] , (0.000037, 0.000042]  and (0.000051, 0.000056] , 

respectively. While most of their error data are concentrated in the interval 

(0, 0.000019], and least of them fall into the interval (0.000076, 0.000095]. The 

statistical information offers valuable analysis about the characteristics of the three 

scalar variables and their error data inside the ROI. Furthermore, their correlations 

can be quickly revealed by the PC. We can see from Figure 5.20(d) that there is a 

strong correlation between the low-middle-value range of density and the low-value 

range of its errors; there is a strong correlation between the low-value range of 

density’s errors and the low-value range of pressure; there is a strong correlation 

between the low-value range of pressure and the low-value range of its errors; there 

is strong correlation between the low-value range of pressure’s errors and resistivity; 

there is a strong correlation between resistivity and the low-value range of its errors. 
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        (c1)             (c2) 

 

                   (c3)                          (c4) 
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(d) 

Figure 5.20: The results after a ROI of the spatial domain is specified. 

Figure 5.21 shows the results with respect to the second question and the data set 

used here is 𝑅2. Figures 5.21(a1), (a2) and (a3) show the initial features with respect 

to the three scalar variables and their associated errors of the multivariate data. In 

particular, Figure 5.21(a1) corresponds to the initial feature with respect to the 

density variable and its associated errors. Figure 5.21(a2) corresponds to the initial 

feature with respect to the pressure variable and its associated errors. Figure 5.21(a3) 

corresponds to the initial feature with respect to the resistivity variable and its 

associated errors. Figures 5.21(b2) and (b3) show the features with respect to the 

pressure variable and its associated errors as well as the resistivity variable and its 

associated errors, after the feature of the density variable and its associated errors 

( {
0 ≤ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ≤ 9.9

0 ≤ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦. 𝑒𝑟𝑟𝑜𝑟 ≤ 24
) has been specified, as highlighted in red in Figure 

5.21(b1). In contrast to the features shown in Figures 5.21(a2) and (a3), we can see 
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from these two figures that the feature with respect to the pressure variable and its 

associated errors has been reduced dramatically, while the feature with respect to 

the resistivity variable and its associated errors remains a very similar pattern.  

 

  (a1)         (a2)     (a3) 

 

         (b1)         (b2)     (b3) 

 

          (c1)           (c2)     (c3) 

Figure 5.21: The results after the multivariate data’s certain features are specified. 

Figure 5.21(c3) illustrates the feature with respect to the resistivity variable and its 

associated errors of the multivariate data, after the features regarding their density 
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variable and its associated errors (the same as the one shown in Figure 5.21(b1)) as 

well as their pressure variable and its associated errors 

({
0 ≤ 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ≤ 89

285.25 ≤ 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒. 𝑒𝑟𝑟𝑜𝑟 ≤ 855.75
) have been specified, as illustrated in Figures 

5.21(c1) and (c2). In contrast to the feature shown in Figure 5.21(b3), we can see that 

the one shown in this figure consists of less data and lost some clustering patterns 

i.e. the clustering pattern appeared in the right-hand side. 

Figure 5.22 shows the results regarding the third question with the OR operation 

being enabled, and the data set used here is 𝑅2. The images in the left three columns 

correspond to the logical scatter plot views, which present the multivariate features 

with respect to the density variable and its associated errors, the pressure variable 

and its associated errors, and the resistivity variable and its associated errors, 

respectively and used for feature specification. The three images in the rightmost 

column correspond to the feature localization view. We can see from the logical 

scatter plot views in Figure 5.22(a) that a feature regarding the density variable and 

its associated errors ( {
18.15 ≤ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ≤ 23.1
0 ≤ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦. 𝑒𝑟𝑟𝑜𝑟 ≤ 8

) has been specified, and its 

corresponding spatial positions are clearly presented in the feature localization view 

in Figure 5.22(a). These positions are in fact those voxels’ positions which match this 

feature. Similarly by observing the logical scatter plot views in Figure 5.22(b), we can 

see that in addition to the feature just mentioned, another feature regarding the 

pressure variable and its associated errors ({
1001.25 ≤ 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ≤ 1223.75
0 ≤ 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒. 𝑒𝑟𝑟𝑜𝑟 ≤ 570.5

) has 

been specified, and their corresponding spatial positions are illustrated in the feature 

localization view in Figure 5.22(b). These positions are in fact those voxels’ positions 

which match either the first or the second feature, or both of them. In contrast to 

the feature localization view in Figure 5.22(a), we can see that the one in Figure 

5.22(b) shows some additional substances i.e. the substances indicated by the arrows 

of this image. They imply the positions of those voxels which only match the second 

feature.  By observing the logical scatter plot views in Figure 5.22(c) we can see that 

a third feature with respect to the resistivity variable and its associated errors 

({
0 ≤ 𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑖𝑡𝑦 ≤ 0.000023

0 ≤ 𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑖𝑡𝑦. 𝑒𝑟𝑟𝑜𝑟 ≤ 0.000247
) has been specified in addition to the two 
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features just mentioned, and their corresponding spatial positions are shown in the 

feature localization view in Figure 5.22(c). These positions are in fact those voxels’ 

positions which match the logical OR operation of all the three features.  

In contrast to the feature localization view in Figure 5.22(b), we can see that the one 

in Figure 5.22(c) shows an additional sphere substance, as indicated by the arrow. It 

corresponds to the positions of those voxels which only match the third feature. 

 

         (a) 

 

               (b) 

 

              (c) 

Figure 5.22: The results after the multivariate data’s certain features are specified in 

the feature space with the OR operation being enabled. 

5.7 Summary 

This chapter presented two relevant works, which take advantage of linked views 

and interactive specification to visualize errors associated to DVR. The first work is 
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the LVIS uncertainty visualization technique, which has fully implemented the three 

main steps of our framework and is designed to enable users to more accurately 

visualize errors in univariate 3D scalar data. The analysis results from our evaluation 

have validated that it is the most accurate technique among all evaluated uncertainty 

visualization techniques, although it took the longest time. As for those existing 

techniques, the Overlays technique appears to be more accurate. These findings can 

provide useful guidance for future uncertainty visualization design. 

The second element of work explored is the ELVIS uncertainty visualization technique, 

which is extended from the LVIS technique and designed to enable users to 

effectively explore and analyze multivariate 3D scalar data and their associated 

errors. Such an extension is very meaningful to the field of uncertainty visualization, 

as little research has been addressed to visualize uncertainty in multivariate 3D scalar 

data. We show the relevant results by applying it to a specific case study. To validate 

its effectiveness, a further evaluation work is needed. This is considered as future 

work, which will be discussed in Chapter 7. 

So far, our research only focuses on visualizing uncertainty generated from the data 

transformation that occurs as early as the data acquisition stage (see Section 1.1.1.1 

for detail), in either isosurface rendering (corresponding to Chapter 4) or DVR 

(corresponding to this chapter). However, as shown in Figure 1.1, even the 

visualization itself may also include uncertainty. Uncertainty of visualization (see 

Section 1.1.1.1 for detail) will result in the visualization running in risks that mislead 

viewers’ interpretation of data, or to make incorrect decisions from the data. In the 

next chapter, we will present relevant work to address such a problem.
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Chapter 6 Uncertainty Visualization of 

Material Intensity Classification in 

DVR Using Probabilistic Query 

Method 

6.1 Introduction 

This chapter will present a work in relation to the Probabilistic Query uncertainty 

visualization technique (hypothesis 3), as illustrated in Figure 3.13, and it 

corresponds to the content in (Ma et al., 2013c). 

Modern visualization techniques have been successfully applied to the field of 

medical imaging and one of the typical examples is the DVR, which has in recent years 

matured into a routinely used tool for diagnosis (Lundstrom et al., 2007)(Lundstrom, 

2007). Nevertheless, the DVR can sometimes be insufficient for diagnosis as some 

challenges still exist in its research. A specific challenge among them is the material 

intensity classification uncertainty involved in the DVR. This is caused probably 

because of two main reasons. First, different patients may have variations in their 

material intensity (Lundstrom et al., 2007)(Lundstrom, 2007). Second, different 

materials may share the same intensity. Thus for a specific diagnosis task, there is no 

a certain classification scheme that suits all patients. As a result of this challenge, for 

a specific diagnosis of a patient, different images that are based on different 

classification schemes may be generated from the DVR, which can have dramatic 

influences to the diagnostic decision. One example of this is the stenosis diagnosis in 

Figure 6.1, where a patient has to undergo a surgery when observe the image (as 

illustrated in Figure 6.1(a)) that is generated based on one classification scheme. But 
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when observe the image (as illustrated in Figure 6.1(b)) that is generated based on 

another classification scheme, we can see that the patient does not have vessel 

stenosis and thus does not need surgery.  

 

         (a)            (b) 

Figure 6.1: (a) A rendering based on one classification scheme indicates there is a 

stenosis. (b) Another rendering using another classification scheme reveals there is 

no vessel stenosis (Lundstrom et al., 2007)(Lundstrom, 2007). 

Therefore, there is a need for radiologists and physicians to explore the material 

intensity classification uncertainty to study several possible image outputs in order 

to make a final diagnostic decision. In traditional DVR, this exploration of the material 

intensity classification uncertainty is typically achieved by repeated manual TF 

adjustments. However, such a method has two main drawbacks. First, the manual TF 

adjustments are performed by crudely perturbing the visualization parameters 

(which refer to color RGBα ) in an uncontrollable manner (Lundstrom et al., 

2007)(Lundstrom, 2007). Even for a diagnosis that has moderately complex TFs, it is 

unlikely for the radiologists and physicians to explore all its visualization parameter 

space. This may result in some alternative renderings that are very important to the 

diagnostic decision being missed. Second, there is no quantifiable information about 

the intensity classification uncertainty associated to each material that is appeared 

on the final images. As a result, when the radiologists and physicians try to make a 

diagnostic decision based on different output images from the DVR, they may not be 

able to determine which image should be used.   
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To address the above-mentioned two problems so as to improve the DVR as a better 

decision support tool, we performed the Probabilistic Query uncertainty visualization 

research, which consists of two main parts. First, the explicitly probabilistic TF model 

will be introduced, which defines the uncertainty domain as material intensity 

classification probability and enriches the original 3D scalar data to become the 

classified 3D scalar data (this process is shown in Figure 3.17) for subsequent 

visualization process. Second, the Probabilistic Query uncertainty visualization 

technique will be presented, which extracts the corresponding material features 

specified by a singular or compound query from the classified 3D scalar data and 

render them as a final image for diagnosis.  

6.2 Explicitly Probabilistic TFs 

In the context of this work, two main views on TFs can be distinguished. This first 

view refers to those TFs which directly map an intensity sample value s to a material 

color 𝐜 that includes four-component vector RGBα, as described in Section 3.1.2.2. 

These TFs have typically mixed material intensity classification and appearance 

mapping together (Kniss et al., 2005). This is the currently dominating view 

introduced in most DVR research (Hansen and Johnson, 2004)(Engel et al., 2006). As 

such TFs do not explicitly involve any material intensity classification probability, we 

call them implicitly probabilistic TFs. The second view refers to the TFs which 

explicitly involve the process of mapping an intensity sample value s  to a set of 

material probabilities. They are exploited by a small number of DVR research 

(Lundstrom et al., 2007)(Lundstrom, 2007)(Drebin, Carpenter and Hanrahan, 1988). 

To distinguish them with the implicitly probabilistic TFs, we call them explicitly 

probabilistic TFs.  

The TF model exploited in this work belongs to the explicitly probabilistic TFs, which 

is originally proposed by (Lundstrom et al., 2007)(Lundstrom, 2007) and only used for 

material intensity classification - that is, the appearance mapping is kept separately 

from the explicitly probabilistic TFs. This is different from the TFs that belong to the 

first view, as mentioned above. It can be defined as a two-step approach. First, the 

user defines the classifying function 𝑝𝑚(𝑠) which maps different intensity values to 
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different material likelihood (note that an intensity value can be mapped to more 

than one material likelihood) according to their experience to the original 3D scalar 

data to be classified, through the familiar TF GUI interface, as illustrated in Figure 6.2. 

The range of the likelihood for each material is [0.0, 1.0] and it indicates how likely 

the intensity values to be this material. A simple form of the classifying function is 

trapezoids, as illustrated in Figure 6.2.  

 

Figure 6.2: An explicitly probabilistic TF, where the material likelihood is defined using 

trapezoids in the familiar TF GUI interface. 

Second, all material likelihoods specified for the intensity values need to be 

normalized so that their sum should be 1. We call the normalized material likelihood 

as material probability and formula 6.1 presents the normalization: 

𝑝𝑚(𝑠) =  
�̃�𝑚(𝑠)

∑ �̃�𝑚′(𝑠)
𝑀
𝑚′=0

     (6.1), 

where 𝑝𝑚(𝑠) represents material m’s probability for intensity 𝑠. 𝑝𝑚(𝑠) represents 

material m’s likelihood specified by the user for intensity 𝑠. ∑ 𝑝𝑚′(𝑠)𝑀
𝑚′=0  represents 

the sum of all 𝑀  materials’ likelihoods for intensity 𝑠 . In particular, transparent 

regions refer to null material or air (m = 0) and its likelihood is implicitly defined as 

formula 6.2: 

𝑝0(𝑠) = max(0.0, 1.0 − ∑ 𝑝𝑚(𝑠)
𝑀
𝑚=1 )   (6.2). 

As a result of the explicitly probabilistic TF model, the original univariate 3D scalar 

data are enriched to the classified 3D scalar data, with its each intensity-specific voxel 

corresponding to one or multiple material probability.  
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Figure 6.3 shows a specific example about how a concrete explicitly probabilistic TF 

is used to compute the material probability and enriches an original univariate 3D 

scalar data set to a classified 3D scalar data set. Figure 6.3(a) illustrates the original 

univariate 3D scalar data set with its each voxel including a specific scalar value i.e. 

the voxel indicated by the red rectangle incorporates a scalar value 120. Figure 6.3(b) 

illustrates the concrete explicitly probabilistic TF that is specified by the user in the 

TF GUI (corresponding to the first step mentioned above) and used to compute the 

material probability (corresponding to the second step mentioned above) associated 

to each intensity-specific voxel of the original univariate 3D scalar data set. Take 

those voxels whose scalar value equals to 120 as example, the process of computing 

their corresponding material probability can be summarized as follows: (1) from the 

explicitly probabilistic TF we can see that the intensity scalar value 120 corresponds 

to two materials A and B, and both material likelihoods 𝑝𝐴(120) and 𝑝𝐵(120) are 

0.6. Their corresponding null material likelihood 𝑝0(120) can be computed using 

formula 6.2, as illustrated in formula 6.3: 

𝑝0(120) = max(0.0, 1.0 − (�̃�𝐴(120) + 𝑝𝐵(120)))   (6.3), 

and the result equals to 0.0. (2) given that 𝑝𝐴(120), 𝑝𝐵(120) and 𝑝0(120), we can 

use formula 6.1 to compute their corresponding material A’s probability 𝑝𝐴(120) 

and material B’s probability  𝑝𝐵(120), as illustrated in formula 6.4 and 6.5: 

𝑝𝐴(120) =  
�̃�𝐴(120)

�̃�𝐴(120)+�̃�𝐵(120)+�̃�0(120)
    (6.4), 

𝑝𝐵(120) =  
�̃�𝐵(120)

�̃�𝐴(120)+�̃�𝐵(120)+�̃�0(120)
    (6.5), 

and the results of 𝑝𝐴(120) and 𝑝𝐵(120) are 0.5.  

Therefore, for any voxels whose intensity scalar value equals to 120 in the original 

univariate 3D scalar data set, they correspond to two materials A and B, and both 

𝑝𝐴(120)  and 𝑝𝐵(120)  are 0.5. This forms the classified 3D scalar data set with 

enriched material probability information, as illustrated in Figure 6.3(c). 
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(a)              (b)                  (c) 

Figure 6.3: A specific example about how a concrete explicitly probabilistic TF is used 

to compute the material probability and enriches an original univariate 3D scalar data 

set to a classified 3D scalar data set. 

6.3 Probabilistic Query 

This section will present the Probabilistic Query uncertainty visualization technique, 

which enables users to extract and display the features of materials according to their 

classification probability through customizable and interactive query. Its input data 

are the classified 3D scalar data set generated from the explicitly probabilistic TFs. 

Query-based visualization is not a totally new concept in the visualization community, 

and its basic idea is derived from the database query. However, there is a subtle 

difference between the two. The query-based visualization typically searches the 

whole data space and assigns every voxel of the data with appropriate appearance 

properties according to the specified query, and finally returns an image that 

indicates the feature to be extracted. In comparison, the database query typically 

searches the whole database and returns the matched records. Over the past few 

years, some research has been conducted for query-based visualization. Doleisch, 

Gasser and Hauser (2003) described a feature querying framework that allows the 

user to obtain insight from computational simulation data. Johnson and Huang (2009) 

presented a See Distribution Query (SeeDQ) framework that can readily apply to 

arbitrary spatial data sets and support on time-variant and multivariate data to 

extract the features previously inaccessible in general feature detection tools. The 

difference between their works and our work is that we explore the query-based 

visualization in the context of uncertainty visualization. 

6.3.1 Overview of Workflow 
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Figure 6.4 shows the workflow (simplified from Figure 3.17 and only focuses on the 

uncertainty visualization main step rather than the entire framework) of the 

proposed Probabilistic Query uncertainty visualization technique, given that the 

classified 3D scalar data set. We can see from the figure that in total of two steps are 

involved in the visualization. First, the user needs to specify a either singular or 

compound query (this include information about which materials, under what 

material classification probability criteria, etc.) to tell what voxels (or features) he or 

she wants to extract and visualize from the classified 3D scalar data set. Additionally, 

the user needs to specify the concrete colors for the singular or compound query. As 

a result, each voxel of the classified 3D scalar data set is assigned with an appropriate 

color RGBα according to the user specified query and query colors. This forms the 

colored 3D scalar data set. Second, the volume ray-casting rendering (described in 

Section 3.1.2.2) is applied to the colored 3D scalar data set to generate the final 2D 

image that displays the user expected voxels (or features).  

 

Figure 6.4: Overview of the Probabilistic Query workflow. 

6.3.2 Query Statements 
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To query a classified 3D scalar data that is derived from an explicitly probabilistic TF, 

a specific query has to be formed first. This section will introduce four query 

statements which are used together to form a query. These query statements are 

designed in a way to facilitate the feature extraction and exploration, as well as give 

more insight. For any of them, it should be specified by the user according to his 

application needs. The final query can be used in a singular or compound form on the 

classified 3D scalar data to extract the expected features. 

6.3.2.1 Probability Inequality 

The first statement of a query is the probability inequality, as shown in Figures 6.5(a), 

which is used to set the probability criteria of an interested feature to be extracted. 

It involves three parameters to be specified by the user. On the left-hand side of the 

inequality, the user needs to specify the material interested to query. It could be any 

one material existing in the currently explored data set. On the right-hand side of the 

inequality, the user needs to specify a target value of probability that is interested to 

explore for the queried material. This could be as simple as a constant value, or as 

complicated as an arithmetic expression that mixes multiple material variables’ 

probabilities with constant values to formulate more complex target. Finally, the user 

needs to specify an inequality operator that indicates how the queried material’s 

probability relates to the target’s probability. All standard inequality operators are 

supported. Also, the == operator is supported to extract a material’s corresponding 

feature whose probability exactly equals to the targeted one specified on the right-

hand side of the probability inequality. 

The user can quantitatively explore the classification probabilities of a queried 

material, for a given explicitly probabilistic TF by adjusting the three parameters. As 

a result of the statement, the corresponding voxels which meet the specified 

probability inequality will be extracted from 3D data. For example, 𝑝𝑟𝑜𝑏(𝑚1) ≥ 0.9 

will extract those voxels whose material 𝑚1’s probabilities are greater than or equal 

to 0.9. 𝑝𝑟𝑜𝑏(𝑚1) ≥ 𝑝𝑟𝑜𝑏(𝑚2) × 2  will find those voxels whose material 𝑚1 ’s 

probability is greater than or equal to twice than material 𝑚2’s probability. One thing 

is worth mentioning that for queries with <  or ≤  inequality operators i.e. 
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𝑝𝑟𝑜𝑏(𝑚1) ≤ 0.3 , a default constraint condition 𝑝𝑟𝑜𝑏(𝑚1) > 0.0  will be 

automatically added to the queries. This is to make sure that our queries make sense, 

as we only want to query the voxels which have possibility to incorporate the queried 

material, rather than those voxels which do not include the queried material i.e. 

𝑝𝑟𝑜𝑏(𝑚1) == 0.0. 

 

 

 

   

 

(a)                    (b)      (c) 

 

                   (d) 

Figure 6.5: The effects of three singular queries on the MR kidney data set with 

different target probability. 

Figure 6.5 illustrates an example of quantitative exploration of classification 

probabilities for a single vessel material by adjusting target probability of the 

probability inequality statement, and Figure 6.5(d) shows its corresponding explicitly 

probabilistic TF. Three specified queries with different target probabilities 0.975, 0.5 

query 0 { 
prob(vessel) ≥ 0.975; 
dropoff = 0.5; 
weight = 0.7; 
priority = 0 
} 

query 1 { 
prob(vessel) ≥ 0. 5; 
dropoff = 0.5; 
weight = 0.7; 
priority = 0 
} 

query 2 { 
prob(vessel) ≥ 0. 033; 
dropoff = 0.5; 
weight = 0.7; 
priority = 0 
} 
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and 0.033 have been made for this example, as shown in the bottom three text 

boxes in Figures 6.5(a), (b) and (c), and the top three images illustrate their 

corresponding results. In each image, the voxels whose vessel material’s probabilities 

are greater than or equal to the target probability are displayed, and from the three 

images we can see that with the target probability becoming smaller (query criteria 

becoming looser), more voxels are rendered as vessels i.e. the two kidneys in Figure 

6.5(c) are rendered as vessels (the reason that kidneys can be rendered as vessels is 

because both materials have overlapping intensities, and it is not possible to separate 

these two materials based on the intensities).  

6.3.2.2 Approximate Matching 

Displaying more voxels rather than those that strictly match every probability 

inequality often leads to more insights into the data, and in this way, users could 

receive feedback even for queries that return few voxels. In addition, users may be 

interested in those voxels which meet a query to a certain degree. A binary cutoff 

between matching and nonmatching voxels does not allow users to specify fuzzy 

queries that achieve above-mentioned goals, and the resulting visualization may 

have annoyingly sharp edges. Thus, to enable fuzzy queries and improve users’ 

feedback, a fuzzy matching statement is supported into every query. 

The implementation of the fuzzy matching can be summarized as follows: first of all, 

the probability inequality statement of a query is evaluated, which returns a value 

that indicates how far a voxel’s probability relevant to the queried material is from 

satisfying the inequality. The value is called the distance of the inequality, notated as 

∆. If the inequality is completely satisfied, the ∆ is 0. Otherwise, the ∆ is calculated 

as the absolute value of the difference between the left-hand side and the right-hand 

side of the probability inequality. This can be mathematically formulated as formula 

6.6: 

∆= {
0,                                                 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑖𝑠 𝑚𝑒𝑡

|𝑝𝑟𝑜𝑏𝑣𝑖(𝑚) − 𝑝𝑟𝑜𝑏(𝑡𝑎𝑟𝑔𝑒𝑡)|,    𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑖𝑠 𝑛𝑜𝑡 𝑚𝑒𝑡
  (6.6), 
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where 𝑣𝑖  represents the 𝑖𝑡ℎ voxel of a 3D data. 𝑚 represents the queried material. 

𝑝𝑟𝑜𝑏𝑣𝑖(𝑚)  represents the material 𝑚 ’s probability in voxel 𝑣𝑖 . 𝑝𝑟𝑜𝑏(𝑡𝑎𝑟𝑔𝑒𝑡) 

represents the target probability specified by the user. Take the query in Figure 6.5(b) 

as an example, if a voxel does comprise greater than or equal to 0.5 of the vessel 

material, the ∆ is assigned to 0. If it only comprises 0.3 of the vessel material, then 

the ∆ is assign to |0.3 − 0.5| = 0.2. 

Second, the ∆ together with the dropoff parameter (see the text box in Figure 6.5(b) 

for an example) that is specified by the user for the query are then fed into an 

exponential decay function, as shown in the following formula 6.7,  which generates 

a fuzzy matching score for the query 𝑖:  

𝑠𝑐𝑜𝑟𝑒𝑖 = 𝑒

(−1)

𝑑𝑟𝑜𝑝𝑜𝑓𝑓𝑖
2×∆

     (6.7), 

where 𝑠𝑐𝑜𝑟𝑒𝑖 represents the fuzzy matching score for query 𝑖. 𝑑𝑟𝑜𝑝𝑜𝑓𝑓𝑖  represents 

the dropoff parameter for query 𝑖, and it indicates how loosely the query can be 

matched. 

The reason to use formula 6.7 to express the fuzzy matching score rather than to use 

a linear function is because it could offer better control over more various scoring. In 

addition, the formula is defined over [0, +∞) which can be used for any possible ∆, 

and it has a score range of [0,1] that can be mapped directly to the opacity value of 

every voxel to determine its appearance or disappearance. A final benefit of the 

formula is that its scores can be adjusted by various dropoff parameters. That is to 

say, by specifying different dropoff parameters, the loosely match degree of a query 

can be controlled. Figure 6.6 shows an experiment about how different scores can 

be acquired by various dropoff values, and we can see from this figure that large 

dropoff parameters allow more loosely matched voxels being displayed, while small 

ones only allow strictly matched voxels being displayed. The last thing is worth 

mentioning that the dropoff parameter in formula 6.7 is squared, and in this way a 

magnification effect can be achieved i.e. large dropoff parameters will become larger, 

while small ones will become smaller. 
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Figure 6.6: The fuzzy matching scores with different dropoff parameters. A large 

dropoff parameter offers a looser match, while a small one offers a more accurate 

match. 

Figure 6.7 illustrates an example about the fuzzy matching effect, and its 

corresponding explicitly probabilistic TF is shown in Figure 6.5(d). This example is 

composed of three queries with the same parameters but the dropoff, as shown in 

the three text boxes in Figures 6.7(a), (b) and (c), and their resulting visualization are 

shown in the top three images. We can see that in contrast to the query in Figure 

6.7(a), the one in Figure 6.7(b) has a bigger dropoff value 0.5, which indicates a looser 

match, is allowed. Thus, the image shown in Figure 6.7(b) has more voxels being 

rendered in gray (here we assigned blue to voxels that exactly meet the probability 

inequality, and we assigned gray to voxels that meet the fuzzy matching, but not 

meet the probability inequality. In this way, we allow the user to make a distinction 

between voxels depending on whether they meet the exactly or only fuzzy matching. 

Section 6.3.3 will introduce the details of query color specification) than the ones 

shown in Figure 6.7(a). Similarly, we can see that in contrast to the query in Figure 

6.7(b), the one in Figure 6.7(c) has a looser dropoff value 1.75 . Thus, its 

corresponding image shown in Figure 6.7(c) renders more gray voxels that meet the 

fuzzy matching than the ones rendered in Figure 6.7(b).  
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  (a)             (b)      (c) 

Figure 6.7: The effects of three singular queries on the MR kidney data set with 

different dropoff parameters. 

6.3.2.3 Weight of Query 

As illustrated in Figure 6.7(a), every singular query can generate a visualization which 

reveals the result of a query. These singular queries can be combined together to 

form a more powerful compound query, which presents a more complex visual result. 

However, as in (Keim and Kriegel, 1994), these singular queries may have different 

importance to the user. Therefore, in addition to the dropoff parameter, every query 

supports a weight parameter, which indicates its importance to the compound query. 

For every query, its weight is used to directly modulate its fuzzy matching score and 

can be set to any positive value. Consequently the final score of a compound query 

can be calculated as the weighted sum of the fuzzy matching scores of all singular 

queries, as shown in formula 6.8:  

𝑠𝑐𝑜𝑟𝑒 = 𝑐𝑙𝑎𝑚𝑝(0,1, ∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑖 × 𝑠𝑐𝑜𝑟𝑒𝑖𝑖∈𝑄 )  (6.8), 

where 𝑐𝑙𝑎𝑚𝑝 is used to limit the 𝑠𝑐𝑜𝑟𝑒 range to be [0, 1]. If the 𝑠𝑐𝑜𝑟𝑒 is greater than 

1, then the 𝑐𝑙𝑎𝑚𝑝 will cut its value to be 1. If the 𝑠𝑐𝑜𝑟𝑒 is smaller than 0, then the 

𝑐𝑙𝑎𝑚𝑝 will cut its value to be 0. 𝑄 represents the set of singular queries that form 

the compound query. 𝑤𝑒𝑖𝑔ℎ𝑡𝑖  represents the weight parameter for query 𝑖 , 

query 2 { 
prob(vessel) ≥ 0.95; 
dropoff = 1.75; 
weight = 0.5; 
priority = 0 
} 

query 1 { 
prob(vessel) ≥ 0.95; 
dropoff = 0.5; 
weight = 0.5; 
priority = 0 
} 

query 0 { 
prob(vessel) ≥ 0.95; 
dropoff = 0.001; 
weight = 0.5; 
priority = 0 
} 
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specified by the user. 𝑠𝑐𝑜𝑟𝑒𝑖represents the fuzzy matching score for query 𝑖, defined 

in formula 6.7. score represents the final score of the compound query. 

As the weight parameter can be any positive value and it does not guarantee formula 

6.8 can be summed to unity. Therefore the final score of the compound query has to 

be clamped between 0 and 1 so that it can be used directly as the opacity value of 

every voxel for subsequent DVR. 

 

 

 

 

 

  (a)             (b)     (c) 

Figure 6.8: The effects of three singular queries on the MR kidney data set with 

different weight parameters. 

Figure 6.8 illustrates an example of the effect of the weight parameter, and its 

corresponding explicitly probabilistic TF is shown in Figure 6.5(d). This example 

consists of three singular queries with the same parameters but the weight, as shown 

in the three text boxes in Figures 6.8(a), (b) and (c), and their resulting visualization 

are shown in the top three images. We can see that compared to the query in Figure 

6.8(a), the one in Figure 6.8(b) has a bigger weight value 0.125 that indicates a higher 

opacity value. Thus the voxels appeared in Figure 6.8(b) are more opaque (less 

transparent) than those appeared in Figure 6.8(a). We can also see that the query in 

Figure 6.8(c) has the biggest weight value 1.0 among all the three queries, thus the 

voxels appeared in Figure 6.8(c) are most opaque among all the three images.  

query 0 { 
prob(vessel) ≥ 0.95; 
dropoff = 0.5; 
weight = 0.025; 
priority = 0 
} 

query 1 { 
prob(vessel) ≥ 0.95; 
dropoff = 0.5; 
weight = 0.125; 
priority = 0 
} 

query 2 { 
prob(vessel) ≥ 0.95; 
dropoff = 0.5; 
weight = 1.0; 
priority = 0 
} 
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6.3.2.4 Priority of Query 

The last statement of a query is the rendering priority, as shown in the text box in 

Figure 6.8(a). It is used when a compound query occurs (for a singular query, it does 

not take any effect) and determines which query’s color should be assigned to the 

final color of a voxel when this voxel concurrently met multiple singular queries that 

are incorporated in the compound query. Typically, the voxel’s final color is 

determined by the color of a query which has the highest priority (provided that the 

voxel met this query). When the priorities of multiple singular queries are equal, this 

voxel’s color will be assigned by a new user specified color (not colors of these 

existing queries) which indicates it concurrently met multiple singular queries. As a 

result, the user has opportunities to explore alternative renderings for what-if 

scenarios. In addition, he is able to reveal the maximum possible rendering boundary 

of a singular query. 

Figure 6.9 shows a specific example to illustrate this, and its corresponding explicitly 

probabilistic TF is shown in Figure 6.9(d). This example consists of three compound 

queries, as shown in the text boxes in Figures 6.9(a), (b) and (c). We can see that 

every compound query incorporates two singular queries: query 0 and query 1. While 

query 0 corresponds to the kidney material and is used to extract voxels whose 

kidney material’s probability met its criteria, query 1 corresponds to the vessel 

material and is used to extract those voxels whose vessel material’s probabilities met 

its criteria. The three compound queries are actually three variations of the same 

compound query, with different priority parameters.  

The compound query in Figure 6.9(a) illustrates a case of the priority parameters 

where priority(query 0) == priority(query 1), and its corresponding results are shown 

in the image above it. The red parts of the image indicate those voxels which only 

met query 0 for material kidney, and the blue parts of the image indicate those voxels 

which only met query 1 for material vessel. In addition, we can see that there are 

some yellow parts on the image, and this indicates those voxels which met both 

query 0 (for kidney) and query 1 (vessel). Based on the image, the user may feel 

interested to further explore two what-if scenarios: (1) if those voxels which met 
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both query 0 (for kidney) and query 1 (vessel) are only query 1 (vessel), what will the 

results look like? (2) if those voxels are only query 0 (kidney), what will the results 

look like? The corresponding results of these two what-if scenarios can be easily 

revealed by simply adjusting the priority parameters of these two queries, as shown 

in Figures 6.9(b) and (c).  

The compound query in Figure 6.9(b) corresponds to the scenario (1), and its top 

image shows the corresponding results. By adjusting priority(query 0) < priority(query 

1), we actually specified that for those voxels which met both query 0 and query 1, 

their final colors will be determined by the query 1’s color (as it has the highest 

priority). As a result, those yellow parts shown in the top image in Figure 6.9(a) are 

rendered as blue, as we assumed only material vessel exists in those voxels. The 

resulting image in fact formulates the maximum possible rendering boundary of 

vessel, which corresponds to such a case: as long as a voxel met the query 1, it will 

be rendered as material vessel (blue). Obviously, this is the maximum possible 

rendering for material vessel and it corresponds to the most blue voxels. Any blue 

voxels revealed by other renderings for material vessel will be less than the amount 

of this case. We believe that the maximum possible rendering boundary for a query 

will be very valuable for decision making because it clearly and visually depicts the 

decision boundary for the query. 

The compound query in Figure 6.9(c) corresponds to the scenario (2) and its top 

image shows the corresponding results. By adjusting priority(query 0) > priority(query 

1), we specified that for those voxels which met both query 0 and query 1, their final 

colors will be determined by the query 0’s color. As a result, those yellow parts shown 

in the image in Figure 6.9(a) are rendered as red (as we assumed only material kidney 

exists in those voxels), which reveals the maximum possible rendering boundary for 

material kidney. 

6.3.3 Query Color Specification 

The query color specification is designed in such a way that it allows the user to 

inversely determine which queries of a compound query are matched by simply 
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examining the colors of the final image. As a result, the user can obtain more in-depth 

feedback through analysis of the final image. 

 

 

 

 

 

 

 

 

 

(a)            (b)               (c) 

    (d) 

Figure 6.9: The effects of three compound queries on the MR kidney data set with 

different combination of priority parameters. 

For a compound query, the number of priorities is determined by the number of 

singular queries incorporated in the compound query, starting by the lowest priority 

0. For example, if a compound query consists of 𝑁 singular queries, then the number 

of priorities for this case will be 𝑁 , enumerated as 0,1,2,⋯ ,𝑁 − 1 . This gives a 

sufficient resolution to distinguish the priority of every singular query. 

query 0 { 
prob(kidney) ≥ 0.05; 
dropoff = 0.001; 
weight = 0. 5; 
priority = 0 
} 
query 1 { 
prob(vessel) ≥ 0.05; 
dropoff = 0.001; 
weight = 0.5; 
priority = 0 
} 

query 0 { 
prob(kidney) ≥ 0.05; 
dropoff = 0.001; 
weight = 0. 5; 
priority = 0 
} 
query 1 { 
prob(vessel) ≥ 0.05; 
dropoff = 0.001; 
weight = 0.5; 
priority = 1 
} 

query 0 { 
prob(kidney) ≥ 0.05; 
dropoff = 0.001; 
weight = 0. 5; 
priority = 1 
} 
query 1 { 
prob(vessel) ≥ 0.05; 
dropoff = 0.001; 
weight = 0.5; 
priority = 0 
} 
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To efficiently save the memory, a compound query can be compactly represented by 

a bit field in the memory, with each individual bit corresponding to a singular query 

incorporated within it. Every query has its bit turned on (is set to 1) if its probability 

inequality is fully satisfied (∆ is 0), otherwise has its bit turned off (is set to 0). After 

performing the compound query on every voxel, different combinations of 0𝑠 and 

1𝑠 for the bit field can be acquired. When interpreted as an integer, the range of 

these combinations is between [0, 2𝑄 − 1], where 𝑄 is the set of singular queries 

within the compound query. These different combinations are finally mapped to a 

lookup table for color specification (use the integer value of a combination as the 

index to the lookup table), and this forms the color scheme for the final image.  

Figure 6.10(b) shows an example about the query color specification, and its 

corresponding compound query is shown in Figure 6.10(a). This example is composed 

of a compound query with two singular queries: query 0 and query 1. While query 0 

is used to extract those voxels whose material kidney’s probability meet the query, 

query 1 is used to extract those voxels whose material vessel’ probability meet the 

query. Thus, this compound query can be compactly represented by a bit field with 

two bits, with each bit corresponding to a singular query. The two bits generate in 

total of 4 (2𝑄, where 𝑄 is 2) different combinations, with a 0 bit indicating that the 

corresponding query is not matched, and a 1 bit indicating that the corresponding 

query is matched. Every combination corresponds to an integer value within a range 

[0, 3], which can be used as an index to look for the corresponding color in the lookup 

table that is specified by the user. Figure 6.10(c) shows the corresponding results. By 

examining the colors of this image, the user can inversely know which queries of this 

compound query are matched i.e. the red parts correspond to the areas where query 

0 is matched, and the blue parts correspond to the areas where query 1 is matched. 

Moreover, the yellow parts correspond to the areas where both query 0 and query 1 

are matched. 
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(a)       (b)          (c)  

Figure 6.10: An example about how to specify the query color. 

6.3.4 Query Volume Rendering 

Either a singular or a compound query queries the entire classified 3D scalar data in 

a voxel by voxel manner. As a result, the colored 3D scalar data is acquired, with its 

every voxel being assigned with an appropriate color and opacity value with respect 

to the query. The colored 3D scalar data is then rendered to generate the final image. 

In this research the classic volume ray-casting algorithm is chosen for the rendering. 

However, instead of utilizing the most common trilinear interpolation, the easy and 

fast nearest neighbor interpolation is exploited. This is because the trilinear 

interpolation could introduce non-specified intermediate colors to the final image 

when it interpolates the color of an interior sample from its surrounding 8 voxels, 

and this may prevent the user from inversely determining which queries of a 

compound query are matched by simply examining the colors of the final image. 

Compared to the trilinear interpolation, the nearest neighbor interpolation 

determines the color of an interior sample using the color at its nearest voxel. Thus 

it will not introduce any non-specified colors to the final image and allows the user 

to inversely determine the match of queries by examining the colors of the final 

image. However, a small drawback of the nearest neighbor interpolation is that it 

typically generates an image with discontinuous color boundaries. To acquire an 

image that does not include non-specified intermediate colors while has smooth 

color boundaries, a more advanced interpolation scheme needs to be explored. For 

query 0 { 
prob(kidney) ≥ 0.05; 
dropoff = 0.001; 
weight = 0. 5; 
priority = 0 
} 
query 1 { 
prob(vessel) ≥ 0.05; 
dropoff = 0.001; 
weight = 0.5; 
priority = 0 
} 
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now, the nearest neighbor interpolation is utilized, which remains the capability for 

the user to inversely determine the match of queries, but at a cost of the image 

quality (discontinuous). 

6.3.5 Single Material Query and Multiple Material Query 

For a given explicitly probabilistic TF, a singular query can only be used to extract a 

singular feature from one type of material at a time, as the previous examples 

illustrated in Figure 6.5, Figure 6.7 and Figure 6.8. As for a compound query, it can be 

used to extract either multiple features from multiple types of materials (as the 

previous examples shown in Figure 6.9 and Figure 6.10, with each singular query of 

a compound query extracts a feature from one material) or multiple features from 

the same type of material. The latter is illustrated by the two examples shown in 

Figures 6.11(a) and (b), and their corresponding explicitly probabilistic TF is shown in 

Figure 6.11(c).  

We can see from the compound query in Figure 6.11(a) that it consists of two singular 

queries, with each query having specific criteria and both concurrently querying the 

bone material. Consequently three different features of the bone material are 

extracted, as shown in the top image in Figure 6.11(a). The red parts of the image 

correspond to the query 0’s feature where material bone’s probability is less than 

and equal to 0.75. The blue parts of the image correspond to the query 1’s feature 

where material bone’s probability is greater than and equal to 0.55. Finally there are 

some yellow parts on the image (meet both query 0 and query 1), which correspond 

to the feature where material bone’s probability is between 0.55 and 0.75. 

The compound query in Figure 6.11(b) shows another example to extract multiple 

features from the singular bone material and its corresponding results are shown in 

the top image in Figure 6.11(b). The red parts of the image correspond to the query 

0’s feature where material bone’s probability equals to 1.0, while the blue parts of 

the image correspond to the query 1’s feature where material bone’s probability is 

less than and equal to 0.5. 
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(a)       (b) 

     (c) 

Figure 6.11: Two examples of extracting multiple features from the same material. 

In summary, the probabilistic query technique offers a versatile tool to quantitatively 

visualize the data classification probability within DVR. It can be used to extract 

various features of a singular material or multiple materials through different query 

combinations. 

6.3.6 Case Studies 

query 0 { 
prob(bone) == 1.0; 
dropoff = 0.2; 
weight = 1; 
priority = 0 
} 
query 1 { 
prob(bone) ≤ 0.5; 
dropoff = 0.2; 
weight = 0.02; 
priority = 0 
} 

query 0 { 
prob(bone) ≤ 0.75; 
dropoff = 0.2; 
weight = 0. 005; 
priority = 0 
} 
query 1 { 
prob(bone) ≥ 0.55; 
dropoff = 0.2; 
weight = 0.8; 
priority = 0 
} 
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This section will present three case studies by applying the proposed Probabilistic 

Query uncertainty visualization technique in the domain of medical imaging. In 

particular, the previous two case studies demonstrate how the proposed 

Probabilistic Query uncertainty visualization technique could possibly be used as a 

better decision support tool for the radiologists and physicians to make their 

diagnostic decision, as opposed to the traditional DVR. The last case study 

demonstrates the versatility of this technique.  

6.3.6.1 Case Study 1: Thyroid Tumor Assessment 

The first case study focuses on the thyroid tumor assessment, where the tumor 

extent in relation to right carotid arteries is crucial for the diagnosis. The data set 

exploited in this case study is a CT scan of the thyroid tumor in human being’s neck, 

provided by Claes Lundstrom from the Center for Medical Image Science and 

Visualization (CMIV), Linkoping University. Its original dimensions are 512 × 512 ×

512, with 16 bits per voxel. For simplicity, we used ImageJ (National Institutes of 

Health, 2013) to convert it to a 512 × 512 × 355 data set, with 8 bits per voxel. 

Figures 6.12(a) and (b) show two renderings from our proposed Probabilistic Query 

uncertainty visualization technique, and Figure 6.12(c) shows their corresponding 

explicitly probabilistic TF. The red divergent object on the right of these renderings 

indicates the carotid arteries, and the green object indicates the thyroid tumor. The 

remaining white object indicates the bones inside the neck. From these two 

renderings we can see that the tumor extents are quite different. The two text boxes 

below the two renderings are their corresponding queries, which reveal the 

classification probability of each material appeared on these renderings. Such 

quantitative information provides very valuable decision support for diagnosis. For 

example, when radiologists and physicians assess the thyroid tumor extent shown on 

these two renderings for their tumor removal surgery, it is very clear for them that 

the thyroid tumor appeared on the left rendering has higher probability (≥ 0.9) than 

the one appeared on the right rendering (≥ 0.65). Therefore, they may choose the 

left rendering as their actual surgery foundation.  
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        (a)         (b) 

    (c) 

Figure 6.12: The Probabilistic Query uncertainty visualization technique applied to the 

CT thyroid tumor data set, with the green object indicating the thyroid tumor, the red 

object indicating the carotid arteries, and the white object indicating the bones inside 

the neck. 

Such a decision cannot be made by assessing the renderings of tumor extent (as 

shown in Figures 6.13(a) and (b)) generated by manual adjustments of the TF of the 

query 0 { 
prob(tumor) ≥ 0.9; 
dropoff = 0.02; 
weight = 0.2; 
priority = 0; 
} 
query 1 { 
prob(arteries) ≥ 0.75; 
dropoff = 0.02; 
weight = 0.2; 
priority = 0; 
} 
query 2 { 
prob(bone) == 1.0; 
dropoff = 0.02; 
weight = 1; 
priority = 0; 
} 
 

 

query 0 { 
prob(tumor) ≥ 0.65; 
dropoff = 0.02; 
weight = 0.2; 
priority = 0; 
} 
query 1 { 
prob(arteries) ≥ 0.75; 
dropoff = 0.02; 
weight = 0.2; 
priority = 0; 
} 
query 2 { 
prob(bone) == 1.0; 
dropoff = 0.02; 
weight = 1; 
priority = 0; 
} 
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traditional DVR, as they do not provide any quantifiable information about the 

material classification uncertainty. 

  

         (a)                        (b) 

Figure 6.13: Two renderings of the CT thyroid tumor data set, obtained by manual TF 

adjustments of the traditional DVR. 

6.3.6.2 Case Study 2: Stenosis Assessment 

The second case study focuses on the stenosis assessment, where the diagnosis task 

is to determine whether there is vessel stenosis, and according to (Persson et al., 

2004), an inadequate visualization can give an incorrect impression of the vessels 

that affects the medical assessment. The data set exploited in this case study is a MR 

renal angiography (Roettger, 2012), whose dimensions are 384 × 512 × 80, with 8 

bits per voxel.  

 

Figure 6.14: A rendering of a MR renal angiography from the traditional DVR, with a 

suspected stenosis denoted by the white arrow. 
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                          (a)                          (b)       (c)                                    

 

 

 

 

 

    (d)                                     (e) 

Figure 6.15: The Probabilistic Query uncertainty visualization technique applied to the 

MR renal angiography. 

Figure 6.14 shows a rendering of the MR renal angiography from the traditional DVR, 

based on one classification scheme. We can see from this figure that there may be a 

vessel stenosis, as indicated by the white arrow. Based on this rendering, a surgery 

may be performed, which has the risk to threaten the patient’s life. Experienced 

radiologists and physicians have learned to use manual TF adjustments of the 

traditional DVR to question this classification scheme (Lundstrom et al., 

query 0 { 
prob(vessel) == 1.0; 
dropoff = 0.1; 
weight = 1; 
priority = 0; 
} 

query 1 { 
prob(vessel) ≥ 0.85; 
dropoff = 0.1; 
weight = 1; 
priority = 0; 
} 

query 2 { 
prob(vessel) ≥ 0.625; 
dropoff = 0.1; 
weight = 1; 
priority = 0; 
} 
 

query 3 { 
prob(vessel) ≥ 0.33; 
dropoff = 0.1; 
weight = 1; 
priority = 0; 
} 
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2007)(Lundstrom, 2007). However, as described in Section 6.1, such a method only 

enables them to explore the material intensity classification uncertainty under an 

uncontrollable manner, which may result in some alternative renderings that are 

very important to the final diagnostic decision being missing. Therefore, the 

radiologists and physicians may not be able to make the correct diagnostic decision,   

based on the incomplete renderings. 

Figures 6.15(a), (b), (c) and (d) show four renderings of the MR renal angiography 

that correspond to four specific queries (in text boxes) from the proposed 

Probabilistic Query uncertainty visualization technique. Figure 6.15(e) shows their 

corresponding explicitly probabilistic TF. We can see from these queries that how the 

Probabilistic Query technique enables users to explore the vessel material 

classification probability in a controllable and quantitative manner  ̶  by simply 

adjusting the probability inequality. This technique makes sure that all alternative 

renderings in relation to the vessel classification probability could be queried and 

revealed, for a given explicitly probabilistic TF. Therefore, it could expand the 

decision support for radiologists and physicians who use the traditional DVR, and 

assist them to make the correct decision. Taking the stenosis assessment as an 

example, by observing the four renderings revealed in Figure 6.15, we can see that 

there is no vessel stenosis. 

6.3.6.3 Case Study 3: Breast Tumor Assessment 

The last case study takes four examples to show the versatility of the Probabilistic 

Query uncertainty visualization technique applied to the breast tumor assessment. 

The first example makes use of the technique to reveal alternative breast tumor 

extent in relation to the breast. The second example utilizes it to reveal alternative 

correlations between the breast tumor and its surrounding vessels. The third 

example shows its capability for “what-if” scenarios exploration, as well as for the 

maximum possible tumor rendering boundary display. Finally, the fourth example 

shows its capability for complex feature localization, in which case we want to search 

in the 3D object space where certain complex features that have been specified in 
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the query are presented. The data set exploited here is about tumor in breast 

(Roettger, 2012), whose dimensions are 448 × 448 × 208, with 8 bits per voxel.  

Figure 6.16(a) to Figure 6.16(d) shows four alternative renderings in relation to the 

first example from the Probabilistic Query technique. These four renderings are 

generated from four compound queries with different classification probabilities of 

the tumor material, as shown in the four text boxes in Figure 6.16(a) to Figure 6.16(d). 

Their corresponding explicitly probabilistic TF is shown in Figure 6.16(e). We can see 

that every rendering reveals the appearance and extent of the breast tumor at a 

specific probability level.  

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

query 0 { 
prob(breast) == 1.0; 
dropoff = 0.15; 
weight = 0.02; 
priority = 0; 
} 
query 1 { 
prob(tumor) == 1.0; 
dropoff = 0.15; 
weight = 1; 
priority = 0; 
} 
query 2 { 
prob(vessel) == 1.0; 
dropoff = 0.15; 
weight = 1; 
priority = 0; 
} 
 

 

query 0 { 
prob(breast) == 1.0; 
dropoff = 0.15; 
weight = 0.02; 
priority = 0; 
} 
query 1 { 
prob(tumor) ≥ 0.9; 
dropoff = 0.15; 
weight = 1; 
priority = 0; 
} 
query 2 { 
prob(vessel) == 1.0; 
dropoff = 0.15; 
weight = 1; 
priority = 0; 
} 
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  (c)         (d) 

    (e) 

Figure 6.16: The Probabilistic Query uncertainty visualization applied to examine the 

breast tumor extent in relation to the breast. The green material indicates the breast 

tumor, and the red material indicates the vessels. The yellow material indicates the 

breast. 

Figure 6.17(a) to Figure 6.17(c) illustrate three alternative renderings in relation to 

the second example from the Probabilistic Query technique. These renderings are 

generated from three compound queries with different classification probabilities of 

query 0 { 
prob(breast) == 1.0; 
dropoff = 0.15; 
weight = 0.02; 
priority = 0; 
} 
query 1 { 
prob(tumor) ≥ 0.75; 
dropoff = 0.15; 
weight = 1; 
priority = 0; 
} 
query 2 { 
prob(vessel) == 1.0; 
dropoff = 0.15; 
weight = 1; 
priority = 0; 
} 
 

 

query 0 { 
prob(breast) == 1.0; 
dropoff = 0.15; 
weight = 0.02; 
priority = 0; 
} 
query 1 { 
prob(tumor) ≥ 0.35; 
dropoff = 0.15; 
weight = 1; 
priority = 0; 
} 
query 2 { 
prob(vessel) == 1.0; 
dropoff = 0.15; 
weight = 1; 
priority = 0; 
} 
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the vessel material, as shown in the three text boxes in Figure 6.17(a) to Figure 

6.17(c). Their corresponding explicitly probabilistic TF is shown in Figure 6.16(e). We 

can see that every rendering reveals different correlations between the tumor and 

its surrounding vessels at a specific probability level. By looking at Figure 6.17(a), we 

can see that there are very few red vessels inside the bottom green tumor. Compared 

to it, we can see that the bottom green tumor in Figure 6.17(b) incorporates a little 

bit more red vessels, while the one in Figure 6.17(c) incorporates much more red 

vessels. 

 

 

 

 

 

 

 

 

 

 

 

 

(a)          (b)      (c) 

Figure 6.17: The Probabilistic Query uncertainty visualization applied to examine the 

correlations between the tumor and its surrounding vessels. 

Figure 6.18(a) to Figure 6.18(d) shows four alternative renderings with respect to the 

third example from the Probabilistic Query technique. These renderings are 

query 0 { 
prob(breast) == 1.0; 
dropoff = 0.15; 
weight = 0.02; 
priority = 0; 
} 
query 1 { 
prob(tumor) == 1.0; 
dropoff = 0.15; 
weight = 0.7; 
priority = 0; 
} 
query 2 { 
prob(vessel) == 1.0; 
dropoff = 0.15; 
weight = 1; 
priority = 0; 
} 
 

 

query 0 { 
prob(breast) == 1.0; 
dropoff = 0.15; 
weight = 0.02; 
priority = 0; 
} 
query 1 { 
prob(tumor) == 1.0; 
dropoff = 0.15; 
weight = 0.7; 
priority = 0; 
} 
query 2 { 
prob(vessel) ≥ 0.5; 
dropoff = 0.15; 
weight = 1; 
priority = 0; 
} 
 

 

query 0 { 
prob(breast) == 1.0; 
dropoff = 0.15; 
weight = 0.02; 
priority = 0; 
} 
query 1 { 
prob(tumor) == 1.0; 
dropoff = 0.15; 
weight = 0.7; 
priority = 0; 
} 
query 2 { 
prob(vessel) ≥ 0.325; 
dropoff = 0.15; 
weight = 1; 
priority = 0; 
} 
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generated from four compound queries with different priorities for the breast 

material, tumor material and vessel material, as shown in the four text boxes in 

Figure 6.18(a) to Figure 6.18(d). Their corresponding explicitly probabilistic TF is 

shown in Figure 6.16(e). We can see that every rendering reveals different 

correlations among breast, tumor and vessels. Beginning with Figure 6.18(a), we can 

see that there are some blue parts on this image. They indicate those voxels which 

met both query 1 for the tumor material and query 2 for the vessel material. Based 

on this image, radiologists and physicians may feel interested to ask two “what-if” 

questions for further exploration: (1) if those voxels only consist of the vessel 

material, what is the possible extent of the tumor? (2) if those voxels only consist of 

the tumor material, what is the possible extent of the tumor? The answers of these 

two “what-if” questions can be easily revealed by adjusting the priorities of the 

tumor material and the vessel material in the queries (as shown in the two text boxes 

in Figures 6.18(b) and (c)), and Figures 6.18(b) and (c) illustrate the corresponding 

results to the first and second “what-if” question, respectively. In contrast to these 

two images, we can see that the tumor in Figure 6.18(c) incorporates less red vessels 

than the one in Figure 6.18(b). Thus, its tumor extent is slightly bigger than the tumor 

extent in Figure 6.18(b). 

In addition to the two “what-if” questions, radiologists and physicians may also want 

to know the maximum possible tumor rendering boundary for the given compound 

query. The answer to this question can also be easily revealed by simply assigning the 

tumor material with the highest priority, and Figure 6.18(d) shows the corresponding 

results. Compared to other alternative renderings, we can see that this image has the 

maximum tumor extent. This gives the radiologist and physicians useful information 

to make an “extreme” diagnostic decision i.e. the maximum tumor extent they could 

remove from the breast, for the given query. Figure 6.18(e) to Figure 6.18(h) illustrate 

some more alternative renderings based on other priority combinations with respect 

to the given compound query. 
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(a)            (b)     (c) 

 

 

 

 

 

 

query 0 { 
prob(breast) ≥ 0.1; 
dropoff = 0.15; 
weight = 0.02; 
priority = 2; 
} 
query 1 { 
prob(tumor) ≥ 0.4; 
dropoff = 0.15; 
weight = 0.2; 
priority = 0; 
} 
query 2 { 
prob(vessel) ≥ 0.2; 
dropoff = 0.15; 
weight = 1; 
priority = 0; 
} 
 

 

query 0 { 
prob(breast) ≥ 0.1; 
dropoff = 0.15; 
weight = 0.02; 
priority = 2; 
} 
query 1 { 
prob(tumor) ≥ 0.4; 
dropoff = 0.15; 
weight = 0.2; 
priority = 0; 
} 
query 2 { 
prob(vessel) ≥ 0.2; 
dropoff = 0.15; 
weight = 1; 
priority = 1; 
} 
 

 

query 0 { 
prob(breast) ≥ 0.1; 
dropoff = 0.15; 
weight = 0.02; 
priority = 2; 
} 
query 1 { 
prob(tumor) ≥ 0.4; 
dropoff = 0.15; 
weight = 0.2; 
priority = 1; 
} 
query 2 { 
prob(vessel) ≥ 0.2; 
dropoff = 0.15; 
weight = 1; 
priority = 0; 
} 
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  (d)            (e)     (f) 

 

 

 

 

 

 

query 0 { 
prob(breast) ≥ 0.1; 
dropoff = 0.15; 
weight = 0.02; 
priority = 0; 
} 
query 1 { 
prob(tumor) ≥ 0.4; 
dropoff = 0.15; 
weight = 0.2; 
priority = 2; 
} 
query 2 { 
prob(vessel) ≥ 0.2; 
dropoff = 0.15; 
weight = 1; 
priority = 0; 
} 
 

 

query 0 { 
prob(breast) ≥ 0.1; 
dropoff = 0.15; 
weight = 0.02; 
priority = 0; 
} 
query 1 { 
prob(tumor) ≥ 0.4; 
dropoff = 0.15; 
weight = 0.2; 
priority = 0; 
} 
query 2 { 
prob(vessel) ≥ 0.2; 
dropoff = 0.15; 
weight = 1; 
priority = 0; 
} 
 

 

query 0 { 
prob(breast) ≥ 0.1; 
dropoff = 0.15; 
weight = 0.02; 
priority = 0; 
} 
query 1 { 
prob(tumor) ≥ 0.4; 
dropoff = 0.15; 
weight = 0.2; 
priority = 0; 
} 
query 2 { 
prob(vessel) ≥ 0.2; 
dropoff = 0.15; 
weight = 1; 
priority = 2; 
} 
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              (g)   (h) 

Figure 6.18: The Probabilistic Query uncertainty visualization applied to reveal results 

of (1) the what-if scenarios and (2) the maximum possible tumor rendering boundary, 

which may be interested to the radiologists and physicians. 

Figure 6.19 shows the results with respect to the fourth example from the 

Probabilistic Query technique. Its corresponding explicitly probabilistic TF is shown 

in Figure 6.16(e). From the compound query shown in the text box in Figure 6.19 we 

can see that there are three features to be extracted. First, we want to know where 

those voxels which are fully composed of breast material are appeared? Second, we 

want to know where those voxels whose tumor material’s probability is two times 

greater than their breast material’s probability are presented? Third, we want to 

know those voxels whose vessel material’s probability is 2.5 times greater than their 

tumor material’s probability are appeared? From the image in Figure 6.19 we can see 

that where these features are located. The yellow parts denote the positions of the 

query 0 { 
prob(breast) ≥ 0.1; 
dropoff = 0.15; 
weight = 0.02; 
priority = 0; 
} 
query 1 { 
prob(tumor) ≥ 0.4; 
dropoff = 0.15; 
weight = 0.2; 
priority = 1; 
} 
query 2 { 
prob(vessel) ≥ 0.2; 
dropoff = 0.15; 
weight = 1; 
priority = 2; 
} 
 

 

query 0 { 
prob(breast) ≥ 0.1; 
dropoff = 0.15; 
weight = 0.02; 
priority = 1; 
} 
query 1 { 
prob(tumor) ≥ 0.4; 
dropoff = 0.15; 
weight = 0.2; 
priority = 0; 
} 
query 2 { 
prob(vessel) ≥ 0.2; 
dropoff = 0.15; 
weight = 1; 
priority = 2; 
} 
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first feature, and the green parts indicate the positions of the second feature. Finally, 

the red parts indicate the positions of the third feature. 

 

 

 

 

 

 

Figure 6.19: An example to show the Probabilistic Query uncertainty visualization’s 

capability for complex feature localization. 

6.4 Summary 

This chapter presented a Probabilistic Query uncertainty visualization technique, 

which addressed two issues (see Section 6.1) about the exploration of material 

intensity classification uncertainty, caused by manual TF adjustments of the 

traditional DVR. First, it enables users to explore the material intensity classification 

probability in a controllable manner through customizable and interactive query, and 

thus is able to reveal all alternative renderings for a given explicitly probabilistic TF. 

Second, its resulting renderings always correspond to the customizable queries, and 

thus are able to give indication about the classification probability information 

associated to the materials appeared on these renderings. Consequently it could 

provide radiologists and physicians with better decision support for diagnosis, as 

opposed to the traditional DVR. This have been illustrated by the three case studies 

in the domain of medical imaging.  

query 0 { 
prob(breast) == 1.0; 
dropoff = 0.15; 
weight = 0.02; 
priority = 0; 
} 
query 1 { 
prob(tumor) > 2*prob(breast); 
dropoff = 0.15; 
weight = 0.2; 
priority = 0; 
} 
query 2 { 
prob(vessel) > 2.5*prob(tumor); 
dropoff = 0.15; 
weight = 1; 
priority = 0; 
} 
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At this point, we have presented all our research relevant to this thesis, either 

visualization of uncertainty or uncertainty of visualization (see Section 1.1.1.1 for 

detail). In the next chapter, we will sum up the entire thesis and discuss about the 

future work.
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Chapter 7 Conclusions and Future 

Work 

7.1 Conclusions 

As described in Chapter 1, uncertainty is pervasive in 3D scalar data and can be 

introduced at any stage of the visualization pipeline, but it is often overlooked by 

most volume visualization research. In addition, there has been a recognized need 

for uncertainty visualization in 3D scalar data, as such visualization can faithfully 

represent data and thus enables users to draw correct conclusions or make correct 

decisions and interpretation from the data. Therefore, this thesis focuses on the 

research of uncertainty visualization in 3D scalar data.  

As mentioned in Chapter 1, according to the visualization pipeline stage in which the 

uncertainty is introduced, two types of uncertainty visualization can be distinguished. 

Visualization of uncertainty focuses on the uncertainty introduced in either the data 

acquisition stage or the data transformation that occurs during the data acquisition, 

while uncertainty of visualization focuses on the uncertainty introduced in either the 

data visualization stage or the data transformation that occurs during the 

visualization. By keeping this in mind, three specific research hypotheses have been 

formulated, which cover either visualization of uncertainty or uncertainty of 

visualization, as itemized below: 

• Hypothesis 1:  the proposed Texture uncertainty visualization technique enables 

users to better identify scalar and error data and provides reduced visual overload 

and more appropriate brightness than four state-of-the-art uncertainty visualization 

techniques, as demonstrated using a perceptual effectiveness user study. 

The work relevant to this hypothesis belongs to the visualization of uncertainty, as 

its uncertainty is generated in the data transformation stage that occurs during data 

acquisition. Three main steps of our framework (as introduced in Chapter 3) have 
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been applied to fully address this hypothesis. First, during the uncertainty data 

modeling main step, the uncertainty is clearly defined as errors between the original 

univariate 3D scalar data set and any of its lower resolution data sets, and can be 

generated from a two-step modeling approach (MR modeling and quantification). 

This generates the lower resolution univariate 3D data, which serve as the basic input 

data for the subsequent Texture uncertainty visualization technique, as well as those 

4 commonly used techniques (these techniques are isosurface rendering-based 

uncertainty visualization techniques) chosen for the final evaluation. Second, during 

the uncertainty visualization main step, the Texture uncertainty visualization 

technique is proposed, which includes two types of textures and can be used to 

visualize the errors generated from the first step in isosurface rendering. Third, 

during the evaluation main step, a formal user study is conducted, which compares 

the Texture uncertainty visualization technique with other 4 commonly used 

uncertainty visualization techniques at 4 perceptual aspects that are considered to 

be important for uncertainty visualization, based on users’ subjective rating.  

As a result, this work provides the following contribution: although the Texture 

uncertainty visualization technique (including two types of textures) is proved to 

have some utilities in certain perceptual aspects, they are not as good as the existing 

hue and texture opacity uncertainty visualization techniques. In addition, the 

perceptual effectiveness of the 4 commonly used uncertainty visualization 

techniques is revealed. These findings could provide useful guidance for future 

uncertainty visualization design. 

• Hypothesis 2: the proposed LVIS uncertainty visualization technique enables users 

to better search max/min scalar and error data than four state-of-the-art uncertainty 

visualization techniques, as demonstrated using a perceptual effectiveness user 

study. 

The work relevant to this hypothesis also belongs to the visualization of uncertainty, 

as its uncertainty is modeled in the same way as the one in hypothesis 1. The same 

three main steps of our framework have been applied to fully address this hypothesis. 

First, during the uncertainty data modeling main step, the uncertainty is clearly 

defined as errors (the same as the definition in hypothesis 1) and the same two-step 
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modeling approach can be applied to generate the lower resolution univariate 3D 

data, which are used as the input data for the subsequent LVIS uncertainty 

visualization technique, as well as those 4 commonly used techniques (these 

techniques are DVR-based uncertainty visualization techniques, which are different 

from the 4 techniques chosen in hypothesis 1) chosen for the evaluation. Second, 

during the uncertainty visualization main step, the LVIS uncertainty visualization is 

proposed, which takes advantage of linked views and interactive specification 

together to clearly visualize the errors in DVR. Third, during the evaluation main step, 

a formal user study is designed and performed, which is intended to compare the 

perceptual effectiveness of the LVIS techniques with other 4 commonly used 

uncertainty visualization techniques, based on users’ task completion accuracies and 

time. 

The analysis results from the evaluation suggest that the proposed LVIS technique 

enables users to more accurately complete the 4 perception-related searching tasks 

than other 4 commonly used uncertainty visualization techniques. Therefore, we 

further extended it to another work  ̶  ELVIS, which addresses the insufficient research 

subarea in uncertainty visualization for multivariate 3D scalar data. Currently, two 

main steps of our framework have been implemented for this work. First, the 

uncertainty data modeling main step has been implemented, which clearly defines 

the uncertainty as errors between an original multivariate 3D scalar data set and any 

of its lower resolution data sets and extends the two-step modeling approach 

(previously used to generate the lower resolution univariate 3D data) to generate the 

lower resolution multivariate 3D data for the ELVIS use. Second, the actual ELVIS 

uncertainty visualization technique has been implemented, which has been applied 

to the data generated from the first main step to show its application and the 

corresponding results have been reported. To validate its effectiveness, the third 

main step   ̶ evaluation is needed to be performed. This is considered as future work 

and will be discussed it in the next section. 

To sum up, the above-mentioned two works provide the following contribution: a 

LVIS uncertainty visualization is developed, which has better perceptual 

effectiveness than other 4 commonly used uncertainty visualization techniques. In 
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addition, it is extended to the ELVIS, which can be used to visualize uncertainty in 

multivariate 3D scalar data. Furthermore, the perceptual effectiveness of the 4 

commonly used uncertainty visualization techniques are revealed. These could 

provide useful guidance for future uncertainty visualization design. 

• Hypothesis 3: the proposed Probabilistic Query uncertainty visualization technique, 

in comparison to traditional DVR methods, enables radiologists and physicians to 

better identify possible alternative renderings relevant to a diagnosis and the 

classification probabilities associated to the materials appeared on these renderings; 

this leads to improved decision support for diagnosis, as demonstrated in the domain 

of medical imaging. 

The work in relation to this hypothesis can be classified as uncertainty of visualization, 

as it deals with the uncertainty that is introduced during the data transformation that 

occurs as part of the visualization. Two main steps of our framework have been 

implemented for this work. First, the uncertainty data modeling main step has been 

implemented, which clearly defines the uncertainty as the material intensity 

classification probability, and takes advantage of the explicitly probabilistic TFs to 

quantify it. This generates the classified 3D scalar data, which serve as the input data 

for subsequent Probabilistic Query uncertainty visualization technique. Second, the 

actual Probabilistic Query technique has been implemented, which enables users to 

extract material probability features that correspond to their customizable and 

interactive query and finally render these features as images for diagnosis. This 

technique has been applied to specific case studies in the domain of medical imaging 

to illustrate its possible advantages of providing radiologists and physicians with 

better decision support for diagnosis, as opposed to the traditional DVR. To validate 

this, a further evaluation work in cooperation with radiologists and physicians is 

needed. This is considered as future work and will be discussed in the next section. 

To summarize, this work provides the following contribution: a Probabilistic Query 

uncertainty visualization technique is proposed, which is very promising to provide 

radiologists and physicians with better decision support for diagnosis than the 

traditional DVR. 



Chapter 7. Conclusions and Future Work 
__________________________________________________________ 

182 
 

7.2 Future Work 

Some future work needs to be undertaken for the research described in this thesis. 

Currently both the LVIS and ELVIS uncertainty visualization techniques only enable 

users to interactively visualize all scalar values and their associated error values of 

the 3D data within the entire user-specified ROI. This will be insufficient for the case 

where users only want to visualize scalar values and their associated errors within 

the ROI at a specific depth. Therefore, it would be a very good idea to integrate the 

slicing visualization technique (either orthogonal slicing or oblique slicing, please 

refer to (Moller, 2010) for explanation) into them so that such an issue can be solved. 

For example, by specifying a specific depth value, users can visualize all scalar values 

and their associated errors on the slice plane at that depth within the ROI. Integrating 

such a technique could meet some more sophisticated cases, for example, users 

could visualize the scalar values and their associated errors on an arbitrarily oriented 

slice within the ROI. 

As mentioned in Chapter 5, for the ELVIS uncertainty visualization technique that 

focuses on uncertainty visualization in multivariate 3D scalar data, a formal 

evaluation work is needed to validate its effectiveness. To our knowledge, there has 

not been research reported to address the evaluation of uncertainty visualization for 

multivariate 3D scalar data. This is probably because most uncertainty visualization 

works only focus on univarate 3D scalar data, and little research has been focused on 

multivariate 3D scalar data. Therefore, we consider both uncertainty visualization in 

multivariate 3D scalar data and its relevant evaluation as two future directions that 

need further study. As described in (Brodlie, Osorio and Lopes, 2012), advances in 

multifield visualization (which itself has been identified as one top visualization 

research problem (Johnson, 2004)) may help uncertainty visualization in multivariate 

3D scalar data, because an uncertainty measure such as standard deviation can be 

treated as an extra variable. Therefore, it is necessary to expand our knowledge to 

incorporate multifield visualization, which may provide good solutions to address the 

two above-mentioned directions. Additionally, another issue that needs to be 

addressed for the ELVIS is its PC component, which is currently implemented in a very 

basic form, and thus suffers from over-plotting when a large ROI is specified, resulting 
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in a view that is too cluttered to show trends or structures. To solve this issue, a more 

advantaged PC implementation is required, as the ones proposed by (Johansson et 

al., 2005) (Bendix, Kosara and Hauser, 2005)(Novotny and Hauser, 2006). 

As mentioned in the last section, for the Probabilistic Query uncertainty visualization 

technique, a formal evaluation is needed to validate its advantages of providing 

radiologists and physicians with better decision support for diagnosis, as opposed to 

the traditional DVR. This involves a user study that randomly divides the radiologists 

and physicians who participated in the study into two groups, say group1  and 

group2. For the subjects in group1, we ask them to use the Probabilistic Query to 

complete a carefully designed diagnosis task. For the subjects in group2, we ask 

them to use the DVR to complete the same diagnosis task. By statistically analyzing 

their task completion accuracies, we can validate our conclusion. Such a user study 

is considered as future work, as currently there has been no cooperation set up with 

the hospital and thus it is difficult to recruit the expected subjects. In addition, as 

described in Section 6.3.4, the nearest neighbor interpolation is currently exploited 

in the Probabilistic Query technique, which could effectively avoid introducing any 

non-specified intermediate colors and thus enables the user to inversely determine 

the matched queries from the final image. However, its drawback is to generate 

discontinuous color boundaries. To obtain a smoother image, a more advanced 

interpolation scheme should be explored, as the one proposed in (Johnson and 

Huang, 2009). Moreover, currently we interact with the Probabilistic Query 

technique directly through the code. An interactive easy-to-use user interface is 

expected to be implemented, which should not only allow users to easily input and 

adjust the query statement parameters, but also give them useful guidance and 

feedback to set and refine these parameters, according to their specific application 

needs i.e. showing certain material’s probability histogram to users would be helpful 

for them to identify the interested probability to query. 

Currently, the four uncertainty visualization techniques including the Texture, LVIS, 

ELVIS and Probabilistic Query are all implemented based on Central Processing Unit 

(CPU). Therefore the speed for rendering the 3D scalar data could be relatively slow. 
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To increase the rendering speed and achieve a more effective interaction, a Graphics 

Processing Unit (GPU)-accelerated implementation of these techniques is necessary. 

Finally, there are two follow-on works that we believe are worth pursuing. First, it 

would be useful to extend the Probabilistic Query technique to visualize the PDF in 

3D scalar data (where each voxel of the data incorporates a random variable, say F, 

with its PDF, g(f)). A specific application of this case could be, for example, when 

assessing the temperature in short-term weather forecasting, we can make the 

following query, as illustrated in formula 7.1: 

prob(35℃ ≤ F ≤ 50℃) > 50%    (7.1), 

to visualize those areas that may have a high temperature (35℃ − 50℃), whose 

probability of occurrence is greater than 50%. Second, through our Probabilistic 

Query study it is clear how visualization could involve uncertainty and lead users to 

make incorrect interpretations, conclusions or decisions. To improve the visualization 

as a more reliable scientific computing tool, we need to not only visually depict the 

uncertainty in visualization, but also verify its process, like what we do for other 

computational sciences. This leads to a new concept of “verifiable visualization”, 

which has been recently identified as a significant research direction by some leading 

experts (Kirby and Silva, 2008)(Nathaniel and Ma, 2011).
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