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Abstract 

Bacteriophages, viruses infecting bacteria, are uniformly present in any location 

where there are high numbers of bacteria, both in the external environment and the 

human body. Knowledge of their diversity is limited by the difficulty to culture the 

host species and by the lack of the universal marker gene present in all viruses. 

Metagenomics is a powerful tool that can be used to analyse viral communities in 

their natural environments. The aim of this study was to investigate diverse 

populations of uncultured viruses from clinical (a sputum of patient with cystic 

fibrosis, CF) and environmental samples (a sludge from a dairy food wastewater 

treatment plant) containing rich bacterial populations using genetic and metagenomic 

analyses. Metagenomic sequencing of viruses obtained from these samples revealed 

that the majority of the metagenomic reads (97-99%) were novel when compared to 

the NCBI protein database using BLAST. A large proportion of assembled contigs 

were assignable as novel phages or uncharacterised prophages, the next largest 

assignable group being single-stranded eukaryotic virus genomes. Sputum from a 

cystic fibrosis patient contained DNA typical of phages of bacteria that are 

traditionally involved in CF lung infections and other bacteria that are part of the 

normal oral flora. The only eukaryotic virus detected in the CF sputum was Torque 

Teno virus (TTV). A substantial number of assigned sequences from dairy 

wastewater could be affiliated with phages of bacteria that are typically found in the 

soil and aquatic environments, including wastewater. Eukaryotic viral sequences 

were dominated by plant pathogens from the Geminiviridae and Nanoviridae 

families, and animal pathogens from the Circoviridae family. Antibiotic resistance 

genes were detected in both metagenomes suggesting phages could be a source for 

transmissible antimicrobial resistance. Overall, diversity of viruses in the CF sputum 

was low, with 89 distinct viral genotypes predicted, and higher (409 genotypes) in 

the wastewater. 

 

Function-based screening of a metagenomic library constructed from DNA extracted 

from dairy food wastewater viruses revealed candidate promoter sequences that have 

ability to drive expression of GFP in a promoter-trap vector in Escherichia coli. The 

majority of the cloned DNA sequences selected by the assay were related to ssDNA 



xvi 
 

circular eukaryotic viruses and phages which formed a minority of the metagenome 

assembly, and many lacked any significant homology to known database sequences.  

 

Natural diversity of bacteriophages in wastewater samples was also examined by 

PCR amplification of the major capsid protein sequences, conserved within T4-type 

bacteriophages from Myoviridae family. Phylogenetic analysis of capsid sequences 

revealed that dairy wastewater contained mainly diverse and uncharacterized phages, 

while some showed a high level of similarity with phages from geographically 

distant environments.  
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Chapter 1:   

 
 

 

Literature review 



2 
 

1.1. Introduction to bacteriophages 

1.1.1. Phage discovery and research 

Bacteriophages were independently discovered in 1915 by Frederick Twort, who first 

described “glassy transformation” of micrococci colonies, and in 1917 by Felix 

d’Herelle, who noticed that a culture filtrate had the potential to kill bacteria 

(Duckworth, 1976). They were first imaged by electron microscopy in 1940 

(Ackermann, 2011). Following their discovery, the potential of phages to kill 

bacteria was successfully exploited from 1919 onwards and was the basis of the 

earliest successful specific treatments of bacterial infections in humans (Sulakvelidze 

et al., 2001). With the invention of antibiotics after the Second World War, phage 

therapy declined in the West, but continues in countries such as Russia, Georgia and 

Poland (Pirnay et al., 2010; Sulakvelidze et al., 2001). Recently, there has been 

worldwide renewed interest in phage therapy, due to concerns about the rise of 

antibiotic resistance among many strains of bacteria (Alisky et al., 1998; Harper & 

Morales, 2012).  

 

Bacteriophage functions in bacterial hosts were intensively studied in the decades 

after their discovery, and the knowledge gained formed much of the foundations of 

the modern molecular biology. For example, experiments conducted on 

bacteriophage T4 infecting Escherichia coli proved that DNA is a genetic material 

(Hershey & Chase, 1952), whereas other phage experiments revealed the triplet 

nature of the genetic code (Crick et al., 1961). In 1977, the DNA of bacteriophage 

φX174 was the first fully sequenced genome to be reported (Sanger et al., 1977a). 

The application of electron and fluorescence microscopy for enumeration of phage 

particles in the environment showed the abundance of phages in nature, including all 

aquatic environments (from the Antarctic to thermal springs at 80 °C), soil, and 

subsurface samples (Ackermann & Prangishvili, 2012; Bergh et al., 1989; Noble & 

Fuhrman, 1998; Wen et al., 2004). Recent advances in viral particle purification 

(Casas & Rohwer, 2007; Thurber et al., 2009) and progress in sequencing technology 

have revealed that environmental bacteriophages are not only numerous in the 

environment but also extremely diversified with the vast majority of coding 

sequences identified being of unknown function (Clokie et al., 2011). 
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1.1.2. Phage structure and classification 

Bacteriophages are composed of nucleic acid protected by a protein or lipoprotein 

shell. The virion shape can be tailed, polyhedral, filamentous, or pleomorphic (Figure 

1.1). The genome can be ssDNA, dsDNA, ssRNA or dsRNA, either linear or 

circular. The known genome sizes range from the smallest Leuconostoc oenos phage 

L5 (2,435 bp) (Hatfull, 2008) to the gigantic Bacillus megaterium phage G (497,513 

bp) (Hatfull & Hendrix, 2011).  

 

 

 

Figure 1.1. Morphology of viruses infecting Bacteria and Archaea.Modified from 

(Ackermann & Prangishvili, 2012). See Table 1.1 for more details on phage 

classification. 

 

Most bacteriophages analysed to date belong to the Caudovirales order (from Latin 

cauda meaning “tail”), which comprises polyhedral phages with dsDNA genomes 

and tail. The members of this order are further divided based on tail morphology into 

three families: Myoviridae (from Greek myos meaning “muscle”, referring to the 

contractile tail), Siphoviridae (from Greek siphon meaning “tube”, referring to the 

long tail) and Podoviridae (from Greek podos meaning “foot”, referring to the short 
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tail) (Figure 1.2). The tail can be contractile or non-contractile and vary from 3 to 

825 nm in length (King et al., 2011). The tail is involved in recognition, attachment 

and injection of the nucleic acid into host bacteria (Leiman et al., 2003). The virion 

has no envelope and consists of the icosahedral or elongated head connected to the 

tail. Icosahedral heads varies in diameter between 45 and 170 nm, while elongated 

heads can be up to 230 nm long.  

 

 
 

Figure 1.2 Transmission electron micrographs (upper panel) and schematic 

representations (lower panel) showing different morphotypes of the tailed phages 

from the order Caudovirales. The phage T4 of E. coli has an icosahedral head and a 

long contractile tail (Myoviridae); the phage TP901-1 of L. lactis has an icosahedral 

head and a long non-contractile tail (Siphoviridae); and the phage KSY1 of L. lactis 

has an elongated head and a short non-contractile tail (Podoviridae). Taken from 

(Emond & Moineau, 2007). 

 

The genome of tailed bacteriophages range from 18 to 500 kb and encode from 27 to 

over 600 genes. Virions contains linear dsDNA, which may be circularly permuted 

(King et al., 2011). A single DNA molecule condensed into a capsid is subject to 
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very high osmotic pressure, which provides some of the force needed to eject it from 

the capsid into the cytoplasm of the host bacterium (Molineux & Panja, 2013). DNA 

often contains modified nucleotides e.g. 5-hydroxymethyl cytosine instead of 

cytosine (Warren, 1980). The genome encodes genes involved in host cell 

modification and viral DNA replication (“early genes”), and virion structural proteins 

and lysis proteins (“late genes”) (King et al., 2011). The genome is organized into 

modules (Figure 1.3). Each module consists of sets of genes involved in similar 

function, e.g. replication, head assembly or tail formation. Phages exchange the 

modules with other phages and their hosts via homologous recombination, which 

results in genomic mosaicism (Hendrix et al., 1999; Veesler & Cambillau, 2011). 

Tailed bacteriophages differ in host range and infect members of the 

Enterobacteriaceae family and genera such as Pseudomonas, Haemophilus, Vibrio, 

Aeromonas, Bacillus, Burkholderia and Mycobacterium. The best known example of 

tailed phage is bacteriophage T4 that infects Escherichia coli (Figure 1.2). 

 

 

 

Figure 1.3. Genomic organization of T4-type phages showing mosaicism between 

related phages. The numbers refer to phage genes annotated in reference (Petrov et 

al., 2010a). Gene organised in modules are shown in colours: in dark blue are DNA 

replication genes, in light blue are the recombination/repair genes, in green are the 

transcription and translation genes, in red are the morphogenetic genes and the genes 

for aerobic nucleotide reductase (nrdAB) are shown in orange. From (Petrov et al., 

2010a). 
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Table 1.1. Prokaryotic (bacterial and archaeal) virus families based on ICTV 

classification (King et al., 2011). 
 

Shape 

Family or 

unassigned 

genus 

Genome 

type 
Morphology  Example 

Tailed Myoviridae  
Linear 

dsDNA  

Non-enveloped, icosahedral head with 

long contractile tail  
T4 

 Siphoviridae  
Linear 

dsDNA  

Non-enveloped, icosahedral head with 

long non-contractile tail  
λ 

 Podoviridae  
Linear 

dsDNA  

Non-enveloped, icosahedral head with 

short non-contractile tail 
T7 

Polyhedral Tectiviridae  
Linear 

dsDNA  
Non-enveloped, icosahedral  PRD1 

 SH1, group* 
Linear 

dsDNA  
Icosahedral, lipid-containing SH1 

 Corticoviridae  
Circular 

dsDNA  
Non-enveloped, icosahedral  PM2 

 Microviridae  
Circular 

ssDNA  
Non-enveloped, icosahedral  φX174 

 STIV group* 
Circular 

dsDNA 
Icosahedral, turret-shaped STIV 

 Leviviridae  
Linear 

ssRNA  
Non-enveloped, icosahedral MS2 

 Cystoviridae  
Segmente

d dsRNA  
Enveloped, spherical  φ6 

Pleomorphic Ampullaviridae  
Linear 

dsDNA  
Enveloped, bottle-shaped  ABV 

 Globuloviridae  
Linear 

dsDNA  
Enveloped, spherical  PSV 

 Salterprovirus*  
Linear 

dsDNA  
Enveloped, lemon-shaped His1 

 Bicaudaviridae  
Circular 

dsDNA  
Enveloped, lemon-shaped, two-tailed  ATV 

 

 
Fuselloviridae  

Circular 

dsDNA  
Enveloped, lemon-shaped  SSV1 

 Plasmaviridae  
Circular 

dsDNA  
Enveloped, pleomorphic  L2 

 Guttaviridae 
Circular 

dsDNA  
Enveloped, droplet-shaped  SNDV 

 

 

HHPV-1 

group* 

Circular 

dsDNA 
Pleomorphic, contain lipids HHPV-1 

Filamentous Clavaviridae  
Circular 

dsDNA  
Non-enveloped, rod-shaped  APBV1 

 Inoviridae  
Circular 

ssDNA  

Non-enveloped, filamentous or rod-

shaped 
M13 

 Lipothrixviridae  
Linear 

dsDNA  
Enveloped, filamentous  TTV1 

 Rudiviridae  
Linear 

dsDNA  
Non-enveloped, rod-shaped  SIRV-1 

 

*Awaiting classification (Ackermann & Prangishvili, 2012) 

 

Phage classification is complicated because phage genomes are mosaic (Hendrix et 

al., 1999). The International Committee on Taxonomy of Viruses (ICTV) classifies 

phages based on their morphology (such as capsid size and shape, presence of tail) 

and type of nucleic acid. The current ICTV classification of prokaryotic viruses 
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(http://ictvonline.org/virusTaxonomy.asp?version=2012) divides them onto 18 

families, 16 families contain DNA, and 2 RNA as a nucleic acid (Table 1.1). Four 

groups have not been yet classified into any family (Table 1.1). Over 96% of all 

prokaryotic viruses described in the literature are tailed dsDNA phages. Polyhedral, 

filamentous or pleomorphic viruses compromise only 4% of the prokaryotic viruses 

of known morphology (Ackermann & Prangishvili, 2012). Alternative method of 

phage classification called the phage proteomic tree (PPT) was proposed by (Rohwer 

& Edwards, 2002). PPT classifies phages based on the overall sequence similarity of 

complete phage genomes. 

 

1.1.3. Phage life cycles 

Phages, like all viruses, lack independent metabolism and require the host 

biosynthetic machinery to propagate (Christie & Dokland, 2012). Once the nucleic 

acid has entered the host, there are four possible life cycles: lytic cycle, lysogenic 

cycle, pseudolysogenic cycle or chronic infection. In the lytic cycle (carried out by a 

virulent phage, for example phage T4), phage DNA is replicated and transcribed by 

the host, programming the synthesis of new phage. Following lysis of infected 

bacteria by phage-specified enzymes and cell death, the newly assembled phage 

particles are released into the environment (Calendar & Inman, 2005). A lysogenic 

cycle (carried out by a temperate phage, for example phage λ) results in integration 

of the phage DNA into host genome. Integrated phage (called a prophage) is 

replicated along with the host genome and is passed along to daughter cells (vertical 

transmission). Under some circumstances such as UV-induced DNA damage, heat 

shock or starvation, prophages are able to switch to the lytic cycle (Little, 2005) 

(Figure 1.4). Pseudolysogeny is where phage doesn’t multiply or integrate into host 

chromosome after cell entry, but exists in an inactive state, in which it cannot enter 

the lytic or lysogenic cycle due to unfavourable growth conditions for the host cell 

(such as low level of nutrient availability). Pseudolysogenic phage enter the lytic or 

lysogenic cycle when nutrients become available to the host (Los & Wegrzyn, 2012; 

Ripp & Miller, 1997). A chronic infection occurs when newly assembled phage 

particles are released from bacterium by budding or extrusion (secretion) without 

causing cell death (Weinbauer, 2004). 
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Figure 1.4. Life cycle of the temperate λ phage. The phage particle attaches to the 

bacterial cell surface and injects the DNA, which ends join to form a circle. Up to 15 

min after infection, the decision is made between two alternative pathways. During 

the lysogenic response, phage development is repressed by CI repressor and phage 

DNA integrates into the host chromosome with the aid of the viral integrase (Int). 

The resulting lysogenic cell can replicate indefinitely until the lytic cycle is induced 

and phage DNA is excised from the chromosome. From (Little, 2005). 

 

1.1.4. Phage applications and significance 

Phages and their components have many practical applications in biotechnology and 

medicine. They have been used in diagnostics for identification of pathogenic 

bacteria (phage typing); in proteomics for identification of peptides, which have 

affinity for proteins displayed on the surface of the phage (phage display); in gene 

therapy as gene delivery vehicles; or in medicine for treatment of bacterial infections 

(phage therapy) (Haq et al., 2012). Although phage therapy in humans has not been 

yet approved in most countries and only a few clinical trials of phage therapy are 

currently ongoing (Abedon et al., 2011; Harper & Enright, 2011; Parracho et al., 

2012), recent studies show their potential application in the treatment of acute lung 

infections in an in vivo murine lung model with Pseudomonas aeruginosa 

(Alemayehu et al., 2012b; Debarbieux et al., 2010) and Burkholderia cenocepacia 

(Carmody et al., 2010). Because they have the capacity to exert selection on bacteria 

phages play an important role in bacterial evolution e.g. pathogenesis (Breitbart et 
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al., 2005) and in ecological processes e.g. in cycling of nutrients and energy in 

ecosystems (Fuhrman, 1999). 

 

1.1.4.1.   Role in the environment  

Phages are responsible for significant bacterial mortality in the environment 

(Fuhrman, 1999). The rate of bacterial predation by phage  influences bacterial 

community composition diversity (Fuhrman & Schwalbach, 2003). The impact of 

phages on microbial diversity is usually explained by the “kill the winner” model 

(Thingstad & Lignell, 1997). This model assumes that predominant phages present 

are those which preferentially infect the dominant bacterial species present at any 

time point in the community (“the winner”). This phage multiplication results in a 

collapse in the abundance of the bacterial host giving rise to successive peaks of 

individual host strains and their specific phage parasite, followed by the emergence 

of a different bacterial host strain as numerically predominant before it in its turn is 

reduced by phage attack. This constant turnover of dominant species helps to 

maintain the host diversity (Rohwer et al., 2009; Thingstad & Lignell, 1997; 

Thingstad et al., 2008). 

 

Phages, by lysing bacteria, play a significant role in global biogeochemical and 

ecological cycles (Fuhrman, 1999). Viral infection releases organic material from the 

lysed bacteria as dissolved organic matter (DOM) (Thingstad & Lignell, 1997). 

Released DOM is consumed by other heterotrophic bacteria. These bacteria are then 

lysed and DOM returns back to the dissolved nutrients pool, therefore it is cycled in 

a closed loop (Thingstad et al., 2008). For example, in marine ecosystems it is 

estimated that “6–26% of photosynthetically fixed organic carbon is recycled back to 

dissolved organic material by viral lysis” (Wilhelm & Suttle, 1999). 

 

1.1.4.2.   Role in bacterial evolution 

Phages contribute significantly to bacterial evolution and pathogenesis by moving 

genes between bacteria via horizontal gene transfer (HGT). This gene movement can 

occur through transduction or as a result of prophage integration (Brussow et al., 

2004). Two types of phage transduction can take place: generalized or specialized. 

Generalized transduction is when bacterial DNA is accidentally packaged into the 
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phage head instead of phage DNA and transferred to another bacterium. Transferred 

foreign bacterial DNA can subsequently become incorporated into bacterial genome 

through homologous recombination event (Brussow et al., 2004). The best known 

example of generalized transducing phage is Escherichia coli-phage P1 and 

Salmonella enterica-phage P22. Specialized transduction is when bacterial genes are 

acquired due to imprecise excision of prophage from a specific integration site, 

packaging both phage DNA and adjacent DNA from the bacterial genome into a 

single phage particle. Such phage can subsequently infect another host and integrate 

into its genome (Brussow et al., 2004). Transduction occurs in the natural 

environment, e.g. in the marine environment transduction occurs at a rate of 1014 

transduction events per year (Jiang & Paul, 1998) and (Paul et al., 2002) estimated 

that marine phages transduce 1028 bp of DNA per year in the world’s oceans.  

 

Phages often transfer genes that change the phenotype or fitness of their host 

(Brussow et al., 2004; Canchaya et al., 2003). These genes encode virulence factors, 

which play roles in bacterial attachment, colonization, invasion, and 

immunosuppression, are responsible for resistance to antibiotics, biofilm formation, 

and production of toxins (Wu et al., 2008). Toxin genes are responsible for 

pathogenesis of cholera, diphtheria, and shigellosis (Mekalanos et al., 1997; Wagner 

& Waldor, 2002). For example, infection of nontoxigenic Vibrio spp. with cholera 

toxin-encoding phage CTXφ from V. cholerae converts them to toxigenic strains 

(Boyd et al., 2000). Phages have the ability to transduce resistance to antibiotics in 

many different bacterial species with clinical importance e.g. Actinobacillus 

actinomycetemcomitans, Staphylococcus aureus and Pseudomonas aeruginosa 

(Blahova et al., 1993; Pereira et al., 1997; Willi et al., 1997). Transfer of antibiotic 

resistance through phage infection may constitute a serious problem if pathogenic 

bacteria are rendered resistant to antimicrobials. Studies show that bacteriophages 

carrying antibiotic resistance genes (Colomer-Lluch et al., 2011; Muniesa et al., 

2004) and toxin genes (Casas et al., 2006) are widely distributed in the environment. 

 

1.1.5. Phage abundance and diversity 

Phages can be found everywhere where bacteria exist and have been isolated from 

many types of environments. They naturally occur in soil, water, food, plants and 
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animals, as well as parts of human body colonised by a normal microbiota, e.g. 

mouth, skin or the gastrointestinal tract. It has been estimated that there are 

approximately 1030 prokaryotic cells in the world (Whitman et al., 1998), and direct 

counts of viruses using epifluorescence microscopy indicate that they typically 

outnumber bacteria about 10-fold (Brussow & Hendrix, 2002; Fuhrman, 1999). 

Phage abundance depends on abundance of their hosts, therefore environments rich 

in bacteria will contain more bacteriophages. There are typically 104 – 108 virus-like 

particles (VLPs) per ml in aquatic environments (Bergh et al., 1989; Wommack & 

Colwell, 2000), 108 – 109 VLPs per gram of soil (Williamson et al., 2005; 

Williamson et al., 2007), and up to 1011 VLPs per g of marine sediment (Danovaro et 

al., 2001; Danovaro et al., 2005; Helton et al., 2006). Sites in the human body such 

as gut including the oral cavity contain approximately 108  VLPs per 1 ml of fluid 

(Haynes & Rohwer, 2011). Since 1959, over 6300 bacteriophages have been 

examined using electron microscopy, of which 96% are tailed (Ackermann & 

Prangishvili, 2012). More than 900 phage genomes have been sequenced and 

deposited in the NCBI phage genome database 

http://www.ncbi.nlm.nih.gov/genomes/GenomesHome.cgi). These phages infect a 

broad range of hosts (Figure 1.5) and presumably represent only a small fraction of 

the total population that has been estimated as above to be approximately 1031 

particles. Comparative phage genomics revealed that phage genetic diversity is 

extraordinary high. Phages isolated from different bacterial hosts typically have little 

or no recognizable sequence similarity, and even phages infecting the same host may 

exhibit great diversity (Comeau et al., 2008; Hatfull et al., 2006; Kwan et al., 2005; 

Kwan et al., 2006). 
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Figure 1.5. Distribution of 904 complete phage genomes deposited in the GenBank 

database on 5th February, 2013, grouped according to host they infect. 

 

1.1.5.1.   Methods to measure abundance and phage diversity 

Traditional approaches used to characterise phage diversity involve phage culture. 

The phage is isolated from environmental samples using a plaque assay method, in 

which dilutions of phage suspensions are mixed with a susceptible host which is then 

grown as a lawn on an agar plate, resulting in focal lysis of that host and formation of 

clear areas within the lawn of bacterial growth, called a plaque (Kropinski et al., 

2009; Millard, 2009). Once phage are cultured, phenotypic characterisation can be 

applied, including host-range determination (Abedon, 2008). However, since only a 

small fraction of bacteria from natural environments can be cultured by current 

standard laboratory methods (Stewart, 2012), culture-based techniques largely 

underestimate environmental phage diversity.  

 

Several methods have been used to estimate phage abundance and diversity in the 

environment. These include epifluorescence microscopy (Hara et al., 1991; Noble & 

Fuhrman, 1998) and flow cytometry (Brussaard et al., 2000; Marie et al., 1999) for 

phage enumeration, and transmission electron microscopy for examining 

morphological diversity (Ackermann & Prangishvili, 2012; Bergh et al., 1989). 

Pulsed field gel electrophoresis (PFGE) of extracted DNA can be used to determine 

Enterobacteria 12%

Mycobacterium 8%

Pseudomonas 7%

Staphylococcus 7%

Archaea 5%

Salmonella 4%

Streptococcus 4%
Vibrio 4%

Bacillus 3%

Burkholderia 3%

Lactococcus 3%

Escherichia 3%

Clostridium 2%

Lactobacillus 2%

Synechococcus 2%

Propionibacterium
2%

Other 29%
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genome size (Fuhrman et al., 2002; Steward et al., 2000). Recently, culture-

independent studies such as PCR assays and metagenomic sequencing have greatly 

expanded knowledge about the genetic diversity of viruses in their natural 

environment. 

 

1.1.5.2.   Diversity based on conserved gene studies 

Currently, there is no single gene universally present within all phages suitable for 

use as a phylogenetic marker, in an analogous way to the use of 16S ribosomal RNA 

gene sequences in bacteria (Rohwer & Edwards, 2002). However, several widely 

distributed genes such as those encoding capsid proteins and DNA polymerases have 

been used to study the genetic diversity of specific phage groups. The sequence 

conservation of these genes is sufficient to allow design of PCR primers that can be 

used to assess genetic diversity by cloning and sequencing PCR products amplified 

directly from environmental samples. Degenerate primers have been used to amplify 

the DNA of T4-type phages (Comeau & Krisch, 2008; Filee et al., 2005; Short & 

Suttle, 2005; Zhong et al., 2002) and the T7-type phages (Breitbart et al., 2004b; 

Chen et al., 2009) in samples from their natural environment. The diverse target 

sequences detected by these PCR assays in various marine and freshwater 

environments compared with the corresponding sequences in fully sequenced 

phages, suggest that much of the phage genetic diversity remains uncharacterised. 

Diversity estimated using PCR-based molecular markers is also necessarily an 

underestimate as PCR primer design is based on sequences from cultured phages. 

 

1.1.5.3.   Metagenomic approach to measure viral diversity 

Many viruses present in their natural environment still remain uncharacterised or 

poorly studied, because they cannot be cultured in the absence of their host, and most 

bacteria cannot be readily cultured in the laboratory. Additionally, molecular 

approaches such as PCR assays require prior knowledge about the sequence of the 

target gene to design primers for amplification, and are restricted to particular viral 

groups as no gene is universally present in all viruses. Metagenomic approaches 

potentially overcome these limitations allowing quantification of genetic diversity by 

direct extraction and sequencing of the nucleic acid of the entire viral community, 

with no prior culture or information about the sequences present being required 
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(Delwart, 2007; Edwards & Rohwer, 2005). Such analyses have been carried out on 

a number of environmental (seawater, marine sediments, soil) and clinical (faeces, 

respiratory secretions) samples (Delwart, 2007). The metagenomic analyses revealed 

the enormous scale of genetic diversity. For example, metagenomics sequencing of 

viral communities from marine water (Breitbart et al., 2002) and human faeces 

(Breitbart et al., 2003) demonstrated that the majority of sequences showed no 

significant similarity to any other sequences deposited in databases. The degree of 

community diversity (which is expressed as species richness and abundance) can be 

estimated based on mathematical modelling of sequence data variations (Angly et al., 

2005b). Biodiversity estimates indicate that viral diversity is different for samples 

from different environments (Table 1.2), ranging from only 8 viral types in infant 

faeces (Breitbart et al., 2008), to more than 1,000,000 viral types in the case of 

rainforest soil (Fierer et al., 2007). 

 

Table 1.2. Examples of richness* estimates for published viral metagenomes. 

 

Reference Sample type Number of genotypes Shannon index 

(Fierer et al., 2007) Soil 1,000,000 **NA 

(Angly et al., 2006) Marine water 129,000 10.8 

(Marhaver et al., 2008) Coral tissue 28,600 8.96 

(Desnues et al., 2008) Stromatolite 19,520 8.9 

(Breitbart et al., 2004a) Marine sediment 10,000 9.2 

(Lopez-Bueno et al., 2009) Antarctic lake 9,730 8.15 

(Park et al., 2011) Fermented shrimp 7,310 5.90 

(Breitbart et al., 2003) Human adult faeces 1,930 6.43 

(Fancello et al., 2013) Freshwater pond 977 4.19 

(Willner et al., 2011) Human oropharyngeal swabs 236 NA 

(Willner et al., 2009) CF sputum 105 4.17 

(Breitbart et al., 2008) Human infant faeces 8 1.69 

 
* Richness is defined as the total number of distinct species in a community 

** Data not available 
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1.2. Introduction to metagenomics 

1.2.1. Viral metagenomics  

Viral metagenomics refers to the culture-independent analysis of viral DNA or RNA 

directly extracted from environmental samples (Edwards & Rohwer, 2005; 

Handelsman et al., 1998) containing a population of different viruses. Meta-genomic 

DNA is directly cloned and/or sequenced, and characterised using computational 

approaches, and RNA is similarly analysed after reverse transcription. Because 

metagenomics does not require prior virus cultivation, and does not rely on prior 

knowledge about the viral types present in the samples, this method provides insight 

into community diversity and can be used to address the challenge of studying 

unknown viruses (Delwart, 2007; Edwards & Rohwer, 2005). Since the publication 

of the first viral metagenomes in 2002 (Breitbart et al., 2002), the number of viral 

metagenomic studies has increased exponentially in recent years with the availability 

of next-generation sequencing technologies (Figure 1.6). Viral metagenomics has 

been used to characterise viruses in a wide variety of marine and terrestrial and 

animal-associated environments (Table 1.3). The results obtained from metagenomic 

studies have provided a great amount of information on the diversity, abundance and 

metabolic potential of viruses in their natural environment and the constant novelty 

found suggests that the global viral metagenome is still largely uncharacterised. 

 

 

 

Figure 1.6. The number of published papers on viral metagenomics from 2002 to 

2012. From (Willner & Hugenholtz, 2013). 
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Table 1.3. Examples of published viral metagenomic studies carried out in different environments. 

 

Reference Sample type Sampling location Goal 
Sequencing 

method 

Classification 

method  

Cut off 

(E-value) 

Unknown 

hits 

(Breitbart et al., 

2002) 
Marine water  San Diego Bay 

Characterise the diversity of two near-shore 

marine DNA viral communities  
Sanger TBLASTX 1e-03 65-73% 

(Breitbart et al., 

2003) 
Human faeces NA 

Characterise the composition and population 

structure of a DNA viral community isolated 

from human faeces 

Sanger TBLASTX 1e-03 59% 

(Breitbart et al., 

2004a) 
Marine sediment San Diego Bay 

Characterise the diversity of a near-shore 

marine sediment DNA viral community and 

compare to marine communities 

Sanger TBLASTX 1e-03 75% 

(Breitbart & 

Rohwer, 2005b) 
Human blood  San Diego, USA 

Develop a method for identification of DNA 

viruses in plasma samples 
Sanger TBLASTX 1e-03 10% 

(Cann et al., 

2005) 
Horse faeces NA 

Characterise the diversity of DNA viruses in 

the equine gut 
Sanger TBLASTX 1e-03 68% 

(Angly et al., 

2006) 
Marine water 

Sargasso sea; Gulf of 

Mexico; British 

Columbia coast and Artic 

ocean 

Characterise the diversity of  DNA viruses 

isolated from four oceanic sites 
454 TBLASTX 1e-05 >91% 

(Zhang et al., 

2006) 
Human faeces San Diego, USA 

Characterise RNA viruses isolated from human 

faeces 
Sanger TBLASTX 1e-03 8.5% 

(Allander et al., 

2007) 

Nasopharyngeal 

aspirate 
Stockholm, Sweden 

Identify viruses associated with respiratory 

tract infections 
Sanger TBLASTX 1e-04 2% 

(Bench et al., 

2007) 
Virioplankton Chesapeake Bay 

Characterise DNA viruses isolated from 

estuarine ecosystem 
Sanger T/BLASTX 1e-03 61% 

(Fierer et al., 

2007) 
Soil Peru; California; Kansas 

Characterise the diversity of prairie, desert, and 

rainforest soil viral communities and compare 

to soil bacterial, archaeal, and fungal 

communities 

Sanger TBLASTX 1e-03 NA 

(Breitbart et al., 

2008) 
Infant faeces NA 

Characterise the diversity of DNA viruses in 

the infant gut 
Sanger TBLASTX 1e-03 66% 

(Desnues et al., 

2008) 
Microbialites Mexico and Bahamas 

Characterise DNA viruses associated with 

marine stromatolite and two freshwater 

thrombolites and stromatolites 

454 BLASTX 1e-02 >97% 

(Finkbeiner et 

al., 2008) 
Human diarrhoea 

Melbourne, Australia; 

Seattle, USA 

Identification of RNA viruses in stool from 

paediatric patients suffering from diarrhoea 
Sanger TBLASTX 1e-05 28% 
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Reference Sample type Sampling location Goal 
Sequencing 

method 

Classification 

method  

Cut off 

(E-value) 

Unknown 

hits 

(Kim et al., 

2008) 
Rice paddy soil Daejeon, Korea Characterise ssDNA viruses in soil Sanger T/BLASTX 1e-03 >64% 

(Marhaver et al., 

2008) 
Coral 

Mount Irvine Bay, 

Tobago 

Characterise the diversity of  DNA viruses 

isolated from healthy and bleaching corals 
Sanger TBLASTX 1e-03 >18% 

(McDaniel et al., 

2008) 
Marine water Tampa Bay 

Identify viral genes involved in lysogeny in 

marine environment 
454 TBLASTX 1e-03 93% 

(Palacios et al., 

2008) 
Human tissue Australia 

Identify cause of death of two organ transplant 

patients 
454 BLASTX NA NA 

(Schoenfeld et 

al., 2008) 
Hot springs Yellowstone, USA 

Characterise the diversity, composition, and 

adaptations of DNA viral communities in two 

hot springs 

Sanger BLASTX 1e-03 >33% 

(Williamson et 

al., 2008) 

Marine water, 

freshwater and 

hypersaline 

37 of aquatic sites from 

Halifax, Nova Scotia 

through the South 

Pacific Gyre 

Characterise DNA viruses within aquatic 

microbial samples 
Sanger NA NA NA 

(Vega Thurber et 

al., 2008) 

Porites compressa 

(finger coral) 
Hawaii 

Determine shifts in diversity of viral 

communities associated with coral in response 

to abiotic stressors 

454 BLASTN 1e-04 >98% 

(Djikeng et al., 

2009) 
Freshwater lake 

Lake Needwood, 

Maryland, USA 

Characterise RNA viruses isolated from 

freshwater lake 

Sanger and 

454 
BLASTX 1e-05 66% 

(Lopez-Bueno et 

al., 2009) 
Freshwater lake 

Limnopolar lake, 

Livingston Island, 

Antarctica 

Characterise and compare DNA viral 

communities from Antarctic lake during spring 

and summer 

454 BLASTX 1e-03 >81% 

(Nakamura et al., 

2009) 

Human faeces and 

nasopharyngeal 

aspirates 

Osaka, Japan 
Detect RNA viral pathogens in nasal and faecal 

specimens 
454 BLASTN 1e-40 NA 

(Ng et al., 2009) 
Sea turtle 

fibropapilloma 

Lake Worth Lagoon, 

Florida, USA 

Identify DNA viruses associated with 

fibropapillomatosis in a sea turtle 
Sanger T/BLASTX NA NA 

(Rosario et al., 

2009b) 
Reclaimed water Florida, USA 

Characterise viruses in reclaimed water and 

compare it with viruses in potable water 
454 BLASTX 1e-03 >57% 

(Willner et al., 

2009) 

Human respiratory 

tract 
San Diego, USA 

Characterise and compare DNA viral 

communities from individuals with and without 

cystic fibrosis  

454 TBLASTX 1e-05 >86% 

(Coetzee et al., 

2010) 

Vines from a 

diseased vineyard 
South Africa Identify RNA viruses infecting grapevines Illumina 

BLASTN/X 

(contigs) 
1e-05 59% 
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Reference Sample type Sampling location Goal 
Sequencing 

method 

Classification 

method  

Cut off 

(E-value) 

Unknown 

hits 

(Li et al., 2010a) Bat guano 
San Saba, Texas;  Point 

Reyes, California 

Characterise DNA and RNA viruses present in 

guano from bats 
454 BLASTX 1e-03 39% 

(Parsley et al., 

2010b) 
Activated sludge Auburn, Alabama, USA 

Characterise viral diversity in activated sludge 

and compare to bacterial diversity 
Sanger BLASTX 1e-03 40% 

(Reyes et al., 

2010) 
Human faeces San Diego, USA 

Characterise faecal DNA viromes of 

monozygotic twins and their mothers and 

compare to faecal microbiomes 

454 TBLASTX 1e-03 >75% 

(Allen et al., 

2011) 
Swine faeces NA 

Characterise fecal viromes over time in swine 

that were fed the common antibiotics and 

compare to viromes of nonmedicated swine 

454 BLASTX NA 21-58% 

(Cantalupo et al., 

2011) 
Sewage 

Addis Ababa (Ethiopia), 

Pittsburgh (USA), 

Barcelona (Spain) 

Characterise DNA and RNA viruses obtained 

from raw sewage 
454 T/BLASTX 1e-05 66% 

(Li et al., 2011b) Dogs faeces California 
Characterise the faecal viruses in diarrhoea 

specimens from dogs 
454 

BLASTN/X 

(contigs) 
1e-03 NA 

(Minot et al., 

2011) 
Human faeces Philadelphia, USA 

Investigated the dynamics of the gut virome 

during perturbations to diet 
454 

BLASTX 

(contigs) 
1e-03 55% 

(Ng et al., 2011) Mosquitoes San Diego, USA 
Characterise  the diversity of DNA viruses 

present in three mosquito samples 
454 TBLASTX 1e-03 48-80% 

(Park et al., 

2011) 

Fermented shrimp, 

Chinese cabbage, 

sauerkraut 

Korea 
Characterise DNA viral communities in the 

fermented foods 
454 BLASTX 1e-03 37-50% 

(Phan et al., 

2011) 
Rodents faeces California, Virginia 

Characterise the faecal DNA and RNA viruses 

from rodents 
454 BLASTN/X  1e-05 45% 

(Steward & 

Preston, 2011) 
Marine water Monterey Bay 

Characterise viruses  from  deep ocean, with 

no amplification prior to cloning 
Sanger 

BLASTX 

(contigs) 
1e-03 74% 

(Willner et al., 

2011) 

Human 

oropharyngeal 

swabs 

San Diego, USA 
Characterise DNA viral communities in the 

human oral cavity 
454 TBLASTX 1e-05 51-64% 

(Boujelben et al., 

2012) 
Solar salterns Tunisia 

Characterise changes in the viral communities 

over time and across a salinity gradient 
Sanger 

BLASTX 

(contigs) 
1e-03 >40% 

(Cassman et al., 

2012) 
Marine water 

Eastern Tropical South 

Pacific off Iquique, Chile  

Characterise viral communities isolated from 

different depths of oceanic water 
454 BLASTX 1e-03 >91% 

(Emerson et al., 

2012) 
Hypersaline lake 

Lake Tyrrell, Victoria, 

Australia 

Identify the dominant viral populations in 

hypersaline lake 

454, 

Illumina  

BLASTP 

(contigs) 
NA >85% 
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Reference Sample type Sampling location Goal 
Sequencing 

method 

Classification 

method  

Cut off 

(E-value) 

Unknown 

hits 

(Foulongne et 

al., 2012) 
Human skin swabs France 

Characterise viromes of the surface of the skin 

of five healthy individuals and one patient with 

Merkel cell carcinoma 

Illumina BLASTN/X 1e-03 90-99% 

(Lysholm et al., 

2012) 

Human 

nasopharyngeal 

aspirates 

Stockholm, Sweden 
Characterise DNA and RNA viruses in patients 

with severe lower respiratory tract infections 
454 BLASTN/X 1e-03 12% 

(Masembe et al., 

2012) 
Pig serum Uganda 

Characterise  DNA and RNA viruses in 

domestic pig serum 
454 BLASTN 1e-03 62% 

(Ng et al., 2012) Sewage 
Thailand, Nepal, Nigeria, 

USA 

Characterise DNA and RNA viruses from 

untreated sewage collected from 4 locations  
454 BLASTX 1e-04 37% 

(Roux et al., 

2012a) 
Freshwater lake 

Lake Bourget, Lake 

Pavin, France 
Characterise two freshwater lakes viromes  454 BLASTX 1e-03 73-85% 

(Tamaki et al., 

2012) 
Wastewater Singapore 

Characterise and compare viral communities in 

the different stages of wastewater treatment  
454 BLASTX 1e-05 79-95% 

(Whon et al., 

2012) 
Air and rainwater Korea 

Characterise airborne viral diversity and its 

composition in the near-surface atmosphere 
454 BLASTX 1e-03 49-80% 

(Williamson et 

al., 2012) 
Marine water 

17 sites from the Indian 

Ocean 
Examine the Indian Ocean virome 

Sanger and 

454 
BLASTP 1e-10 >88% 

(Willner et al., 

2012) 
CF lung tissue California 

Characterise viral communities in CF lung 

tissue from spatially distinct areas 
454 TBLASTX 1e-05 36-88% 

(Baker et al., 

2013) 

Bat urine, throat 

swabs, lung tissue 
Ghana 

Identify viruses of African straw-coloured fruit 

bats 
Illumina 

BLASTN, 

T/BLASTX 
1e-04 >99% 

(Bibby & Peccia, 

2013) 
Sludge USA 

Identify viral DNA and RNA viral diversity in 

mesophilic anaerobic digester from five 

wastewater treatment plants 

Illumina 
T/BLASTX 

(contigs) 
1e-03 >80% 

(Fancello et al., 

2013) 
Freshwater ponds Sahara 

Characterise viral communities 

from freshwater ponds in the Sahara desert 
454 BLASTX 1e-05 70-83% 

(Mokili et al., 

2013) 

Human 

nasopharyngeal and 

oropharyngeal 

swabs 

USA 
Characterise DNA and RNA viruses from 

patients with febrile respiratory illness 
454 BLASTN 1e-05 92% 

(Yoshida et al., 

2013) 
Marine sediment Northwest Pacific 

Characterise viral communities of deep-sea 

sediments  
454 BLASTX 1e-03 >70% 

* NA data not available 
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1.2.2. Specific applications of viral metagenomics 

Viral metagenomics enables ecological studies to address questions on what types of 

viruses are on Earth, how they are distributed and how they interact with their host 

(Rosario & Breitbart, 2011), in medicine for pathogenic virus discovery and 

characterisation (Fancello et al., 2012; Mokili et al., 2011) and in biotechnology as a 

tool for the discovery of novel enzymes.  

 

1.2.2.1.   Ecology 

Data generated through metagenomic sequencing projects indicates that viral 

communities are probably dominated by phages, with a few exceptions, such as the 

viral community from an Antarctic lake that is dominated by eukaryotic viruses 

(Lopez-Bueno et al., 2009). The viral communities in marine surface waters are 

abundant in phages, in particular cyanophages (Angly et al., 2006; Williamson et al., 

2008), while communities from the marine sediments are dominated by ssDNA 

viruses (mainly microphages) (Yoshida et al., 2013). Single-stranded DNA 

microphages have been also found to be very abundant in marine water (Angly et al., 

2006) and marine microbialites (Desnues et al., 2008). Phages dominated DNA viral 

community, of reclaimed water while the RNA viral community was dominated by 

eukaryotic viruses (Rosario et al., 2009b).  

 

Characterizations of the human gut viromes have revealed predominance of 

temperate phages in this environment (Minot et al., 2011; Reyes et al., 2010). The 

viral communities of the human oropharynx were also dominated by phages, some of 

them encoding streptococcal virulence factors (Willner et al., 2011). The distribution 

of eukaryotic and prokaryotic DNA viruses in the cystic fibrosis lung was shown to 

differ across different areas of the lungs, with some lung sections where no phage 

could be detected (Willner et al., 2012). Recently it has been suggested that lytic 

phage augment the human immune system in its action against bacteria by their 

concentration in mucus. Phage binding to mucin glycoproteins is hypothesized to 

account for this (Barr et al., 2013). 

 

Comparisons between marine viral metagenomes from different oceanic regions 

indicated that large fraction of marine viruses are globally distributed, but their 
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relative abundance differs between locations (Angly et al., 2006). Similarly, 

freshwater viral metagenomes showed significant genetic similarity despite the vast 

geographical distances between sample locations (Roux et al., 2012a). In contrast, 

little or no phylogenetic overlap was observed between viral groups from different 

soils (Fierer et al., 2007). Limited global distribution have been also showed for viral 

populations from geographically diverse hypersaline environments (Emerson et al., 

2012). 

 

Metagenomics can also provide valuable insights into understanding of virus-host 

interactions and co-evolution. In marine environments, significant portions of aquatic 

viral communities carry genes of host origin involved in host metabolic processes, 

such as photosynthesis (Angly et al., 2006; Williamson et al., 2008). Phage-encoded 

photosynthesis genes are expressed during infection and enable their hosts to 

maintain photosynthesis even in intense sunlight, which normally cause photo-

inhibition (Mann et al., 2003), with the end point of increasing phage titres.  

 

Another virus-host interaction explored through metagenomics is analysis of the 

clustered regularly interspaced short palindromic repeat (CRISPR) system, a defence 

mechanism against phage infection, widespread in archaea and bacteria (Horvath & 

Barrangou, 2010; Sorek et al., 2008; Sorek et al., 2013). In this system, short 

sequences derived from invading phages are integrated as CRISPR spacers between 

the conserved repeats in the host genome and provide resistance to this phage by 

targeting invading phage DNA for lysis by the Cas enzyme complex (Figure 1.7). A 

Cas complex usually contains between 4 and 20 different cas genes (Deveau et al., 

2010), many of them have been shown to function as helicases or nucleases and are 

required for new spacer sequence acquisition and degradation of the invading DNA 

(Sorek et al., 2013). Recently, it have been shown that phage encode its own 

CRISPR/Cas system, which is used to inhibit host immunity and thereby permit lytic 

infection (Seed et al., 2013). CRISPR spacer sequences constitute a direct link 

between phages and their hosts. Comparison of a database of CRISPR spacers 

(Grissa et al., 2007b) from different bacteria with reads from a viral metagenome can 

be used as a reverse map to suggest the possible bacterial host for uncharacterised 

viral metagenomic sequences (Anderson et al., 2011; Stern et al., 2012), or to 
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determine if a bacterial population has been previously infected with a specific phage 

(Kunin et al., 2008). 

 

 

Figure 1.7. Mechanism of action of the CRISPR/Cas immune system. (A) 

Immunization process: Following an exposure to invading DNA from phage or 

plasmid, a Cas complex recognises and cleaves a short fragment of foreign DNA 

(proto-spacer) and incorporates it as  a novel spacer-repeat unit between conserved 

short sequence repeats at the leader (L) end of a CRISPR sequence (repeats are 

represented as diamonds, spacers as rectangles). (B) Immunity process: The CRISPR 

repeat-spacer array is transcribed into a long RNA that is processed into small RNAs, 

which subsequently direct a Cas complex to target and inactivate viral genomes that 

correspond to the viral spacer sequence (Horvath & Barrangou, 2010). Phages can 

escape CRISPR/Cas-mediated resistance by mutating their proto-spacers or by 

mutating nearby proto-spacer adjacent motifs (PAMs), regions which probably act as 

recognition sites for the CRISPR/Cas system (Weinberger et al., 2012). From 

(Horvath & Barrangou, 2010). 
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1.2.2.2.   Virus discovery 

Metagenomics can also be applied as a diagnostic tool to identify potential viral 

pathogens. It has practical application to discover viruses from humans, animals and 

plants with diseases of unknown etiology, especially when conventional testing 

laboratory techniques are unsuccessful. Application of the metagenomic technology 

for routine identification of infection agents could also help develop treatment or 

preventive vaccine (Mokili et al., 2011).  For example, Palacios et al. used high-

throughput sequencing method to find the cause of death of two patients following 

organ transplant and identified a novel arenavirus (Palacios et al., 2008). A similar 

approach was used to detect viral pathogens by sequencing cDNA from the human 

nasal and faecal samples during during seasonal influenza virus infections and 

norovirus outbreaks (Nakamura et al., 2009). In another study, Ng et al. 

demonstrated the potential of viral metagenomics to establish the aetiology of a new 

disease in sea turtles (Ng et al., 2009). More recently 454 pyrosequencing has been 

used to identify viral pathogens causing diarrhoea in dogs (Li et al., 2011b). Coetzee 

et al. used a deep sequencing analysis to identify RNA viruses causing disease in 

grapevines (Coetzee et al., 2010). These studies show that metagenomics is 

promising tool to identify viral candidates to establish aetiology a wide range of 

different diseases in a wide range of hosts. 

 

1.2.2.3.   Biotechnology 

Viral metagenomes represent an unexplored source of novel proteins with 

biotechnological value. In functional metagenomics, DNA from different 

environments is used to construct a library in a bacterial host which is subsequently 

screened for clones expressing a desired enzymatic activity (Henne et al., 1999). For 

example, metagenomic sequencing and functional screening have been used to 

identify active phage lytic enzymes from animal faeces (Schmitz et al., 2010) or to 

identify a novel thermostable DNA polymerase from a hot spring (Moser et al., 

2012). 

 

1.2.3. Methods for generating viral metagenomes 

Metagenomic analysis of uncultured viruses typically involves three main steps: 

sample preparation, high-throughput sequencing and bioinformatic analysis. Methods 
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used to obtain viral nucleic acids differ slightly depending on the sample type (liquid, 

solid). The general strategy for obtaining viral nucleic acids from different samples is 

outlined in Figure 1.8. The main goal is to concentrate viral particles and remove any 

unwanted background of prokaryotic and eukaryotic DNA by filtration of bacterial 

and eukaryotic cells, density ultracentrifugation in caesium chloride to purify intact 

virions and enzymatic digestion of non-capsid protected nucleic acids before nucleic 

acid extraction and random amplification of viral genomes (Delwart, 2007). 

 

 

 

Figure 1.8. Overall protocol for isolating viruses from various samples. Adapted 

from (Mokili et al., 2011). 

 

1.2.3.1. Purification of viral particles 

Samples collected from the environment are initially filtered, typically through a 0.2-

µm pore size impact filter, in order to physically separate viruses from cellular 

organisms. However, filtering through the 0.2-μm filter may result in the loss of 

some viruses having larger capsids and longer tails (Brum & Steward, 2010), and 

some giant viruses e.g. mimivirus which is 0.4-μm in diameter (La Scola et al., 

2003). Large volume water samples (e.g. seawater, faeces) are filtered and 

concentrated by tangential flow filtration (Bench et al., 2007; Breitbart et al., 2002; 

Breitbart et al., 2003). In this method liquid is recirculated across the filter (0.2-0.45 

µm) to minimize filter clogging. A backpressure is applied to push virus particles out 
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of the filter pores and the filtrate is collected and concentrated using a TFF 

(Tangential Flow Filtration) filter with a cutoff of Mr 100 000 (Casas & Rohwer, 

2007; Thurber et al., 2009). Some samples require pre-treatment prior to filtration, 

e.g. solid samples (such as tissue, faeces) require mechanical homogenization (Ng et 

al., 2009; Zhang et al., 2006), whereas liquid viscous samples such as sputum are 

treated with a solution of dithiothreitol (DTT) (Willner et al., 2009), which is a 

reducing agent able to break the disulphide bonds present in mucus glycoproteins, 

commonly used to liquefy sputum before homogenization (Hammerschlag et al., 

1980). Viral particles can be purified using caesium chloride (CsCl) gradient 

centrifugation, in which viruses are separated based on their buoyant density (Casas 

& Rohwer, 2007; Thurber et al., 2009). However, the main disadvantage of using 

CsCl gradients is that some types of viruses do not band in the selected density range 

or they are sensitive to CsCl (Thurber et al., 2009). Chloroform treatment followed 

by DNase digestion is used to remove residual microbial contamination. The 

chloroform disrupts the membranes of bacterial and eukaryotic cells and results in 

the release of chromosomal DNA, which can be subsequently digested with nuclease 

(Mokili et al., 2011; Willner et al., 2011). The chloroform treatment however will 

also disrupt some lipid enveloped viruses (Breitbart & Rohwer, 2005b), therefore this 

step is sometimes omitted. Epifluorescence microscopy with SYBR Gold staining of 

nucleic acids enclosed within the capsid is used to verify that viral samples do not 

contain contaminating nuclei or microbial cells and to ensure that viruses are not lost 

during the sample processing (Thurber et al., 2009). A commonly used method for 

the extraction of viral DNA is formamide/SDS-CTAB (Sambrook et al., 1989; 

Thurber et al., 2009), in which formamide is used in combination with SDS to 

achieve virus lysis. CTAB cationic detergent is used to remove polysaccharides and 

DNA is extracted by phenol/chloroform extraction followed by isopropanol 

precipitation (Sambrook et al., 1989; Thurber et al., 2009). Viral nucleic acids can 

also be extracted using commercial kits e.g. Qiagen which use QIAamp MinElute 

Virus Spin Kit to extract DNA/RNA. Once virus particles have been isolated, the 

viral DNA or RNA must be often amplified before sequencing.  
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1.2.3.2. Viral DNA amplification 

Depending on the sample type, the yield of nucleic acids directly isolated from viral 

particles is usually very small (Table 1.4), often below the required minimum for 

standard Illumina or 454 next-generation sequencing (1-5 µg) (Thurber et al., 2009). 

A variety of methods have been developed to amplify viral DNA such as linker-

amplified shotgun library (LASL) or multiple displacement amplification (MDA) 

(Figure 1.9). Total viral RNA can be amplified using the Whole Transcriptome 

Amplification (WTA) method (Nakamura et al., 2009) or converted to cDNA and 

amplified using the method described below. In the LASL method, a single linker is 

ligated to the fragmented viral DNA or cDNA and a primer complementary to the 

linker is used for PCR amplification (Breitbart et al., 2002; Breitbart et al., 2003; 

Culley et al., 2006; Schoenfeld et al., 2008). This method however is time 

consuming, requires relatively high initial DNA concentration and is limited to 

dsDNA viruses (Kim & Bae, 2011; Polson et al., 2011). 

 

 

Figure 1.9. Comparison between LASLs and MDA methods. In LASLs (linker-

amplified shotgun libraries) method a double-stranded linker is ligated to the 

randomly sheared metagenomic DNA. A primer complementary to the linker is used 

for PCR amplification and resulting PCR fragments are gel purified and inserted into 

a vector, cloned and then sequenced. In MDA (multiple displacement amplification) 

method, metagenomic DNA is amplified using Phi29 polymerase and sheared, 

followed by blunt end-ligation and sequencing. Figure adapted from (Willner & 

Hugenholtz, 2013). 
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The MDA method (Figure 1.10) uses Phi29 DNA polymerase, a highly processive 

(>70,000 base insertions per binding event ) enzyme with strand displacement 

activity that enables amplification of complete viral genomes using random primers 

without the need for thermal cycling (Dean et al., 2001; Pinard et al., 2006; Thurber 

et al., 2009). Phi29 polymerase can amplify viruses with circular or linear genomes 

and produce micrograms of products from nanogram DNA quantities (Dean et al., 

2001; Spits et al., 2006). Although MDA is associated with biases and artefacts, such 

as formation of chimeras (Lasken & Stockwell, 2007), more efficient amplification 

of short circular templates (e.g. ssDNA viruses) than linear DNA (Kim et al., 2008) 

and introduction of quantitative bias (Yilmaz et al., 2010), it is currently the most 

widely used technique for viral DNA amplification. 

 

Table 1.4. Amount of viral nucleic acid typically recovered from different samples. 

 

Sample type 
Nucleic 

acid type 

Volume 

or weight 

Amount of nucleic 

acids extracted (ng) 
Reference 

Marine 

sediments 
DNA 1 g 50-100 

(Breitbart et al., 2004a; Thurber 

et al., 2009) 

Horse faeces  DNA 1 g 100 (Cann et al., 2005) 

Human faeces RNA 500 g 140-200 (Zhang et al., 2006) 

Marine water DNA 100 l 20-200 
(Angly et al., 2006; Thurber et 

al., 2009) 

Marine water DNA 1,190 l 8000 (Steward & Preston, 2011) 

Human 

diarrhoea 
RNA 0.1 ml 100-300 (Finkbeiner et al., 2008) 

Hot springs  DNA 400-600 l < 100 (Schoenfeld et al., 2008) 

Coral tissue DNA 1 g 60-100 
(Thurber et al., 2009; Vega 

Thurber et al., 2008) 

Microbialites DNA 1 g 50-100 
(Desnues et al., 2008; Thurber et 

al., 2009) 

Freshwater 

lake  
DNA 1 l 50-80 (Lopez-Bueno et al., 2009) 
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Figure 1.10. Mechanism of multiple displacement amplification. (1) Random 

hexamer primers (blue line) anneal to the denatured DNA (green line). (2) The phi29 

DNA polymerase (blue circle) carries out DNA synthesis (orange line). (3) 

Following the strand displacement new primers bind to newly formed DNA and (4) 

replication from the new strand continues, resulting in formation of hyperbranched 

DNA structures. From (Spits et al., 2006). 
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1.3.    Introduction to next-generation sequencing and bioinformatics 

1.3.1. Sequencing strategies  

Early applications of metagenomic techniques to viral communities involved 

shearing of DNA, PCR amplification and random cloning into a vector for 

subsequent Sanger sequencing (Breitbart et al., 2002; Breitbart et al., 2003). 

Mechanical DNA shearing and PCR amplification prior to library construction 

overcame known difficulties of cloning viral DNA, which often contains modified 

nucleotides and bactericidal genes (Wang et al., 2000; Warren, 1980), in bacterial 

hosts. Sanger sequencing produces long reads (up to 900 bp), but labour-intensive 

cloning and relatively high sequencing costs are disadvantages of this method (Table 

1.5). Development of ‘‘next-generation’’ sequencing (NGS) technologies enabled 

high-throughput and less expensive methods for sequencing compared to the Sanger 

method (Table 1.5). NGS platforms are capable of sequencing hundreds of viral 

genomes without cloning by producing millions of sequence reads in a single run. 

The Roche 454 and the Illumina next-generation sequencing platforms have been 

used most frequently in viral metagenomics studies (Table 1.3). These methods rely 

on sequencing by synthesis technology (Fuller et al., 2009) and, unlike the Sanger 

technique (Sanger et al., 1977b), do not use chain-termination chemistry and 

capillary electrophoresis. 

 

The 454 technology (Margulies et al., 2005) commercialized by Roche 

(http://www.roche.com) produces the longest reads (up to 1000 bp) amongst NGS 

platforms (Table 1.5). The latest 454 instrument (454 GS FLX Titanium XL+) 

produce approximately 1 million sequences comprising 700 Mb of data per run 

(Table 1.5). For sequencing, DNA is fragmented, ligated to 454-specific adapters and 

immobilized on magnetic beads. The surfaces of beads carry oligonucleotides that 

are complementary to the 454-specific adapter sequences and one library fragment is 

attached per bead. The beads and PCR reagents are emulsified in an oil-water 

mixture and DNA is amplified on the surface of each bead (emulsion PCR). Next, 

the beads are loaded into picotiter plate wells, where the single bead enters one of the 

several hundred thousand individual wells (Mardis, 2008). The enzymes catalyzing 

the pyrosequencing reaction are added and a sequencing primer is hybridized to the 

454-specific adapter. Nucelotides are sequentially added and, if complementary to 
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the template strand, are incorporated by DNA polymerase. As a result of the 

incorporation, a pyrophosphate is released and subsequently converted via two 

enzymatic reactions into light detected by a charge coupled device camera (Ronaghi, 

2001). 

 

Table 1.5. Comparison of next-generation sequencing platforms. Information 

obtained from respective websites: Roche (http://454.com/), Illumina 

(http://www.illumina.com), SOLiD and Sanger (http://www.appliedbiosystems.com). 

 

Company 
Sequencing 

platform 

Read length 

(bp) 

Number of 

reads per 

run 

Bases per 

run 
Run time 

Cost per 

Mb (Glenn, 

2011) 

Illumina 

Genome 

Analyzer IIx 

35 (SE)* 

50/75/100/15

0 (PE)* 

320 million 

(SE) 

10-95 

Gb* 
2-14 days $0.12 

HiSeq 2500 
36 (SE) 

50/100 (PE) 

3 billion 

(SE) 

95-600 

Gb 
2-11 days NA* 

MiSeq 

36 (SE) 

25/100/150/ 

250/300 (PE) 

12-15 

million (SE) 

0.54-15 

Gb 

4-48 

hours 
$0.74 

Roche 

454 GS FLX 

Titanium 

XL+ 

1000 1 million 0.7 Gb 23 hours $7 

454 GS 

Junior 
400 0.1 million 0.035 Gb 10 hours $22 

ABI Life 

Technologie

s 

SOLiD 

5500xl 
75+35 2.8 billion 180 Gb 7 days < $0.07 

ABI Life 

Technologie

s 

Sanger 

3730xl 
500-900 96 0.08 Mb* 

34 min - 

3 hours 
$2400 

 

* SE Single read, PE Paired-end read, Mb Megabases, Gb Gigabases, NA data not available 

 

http://454.com/
http://www.illumina.com/
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Figure 1.11. The principle of Illumina sequencing process. (A) DNA is converted 

into an Illumina adapter library and amplified by “bridge amplification” on the 

surface of the flow cell. (B) Amplified molecules are sequenced by the cycle 

reversible termination chemistry. Modified from (Mardis, 2008). 
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Illumina systems produce shorter reads (with single read length up to 300 bp), but 

have much higher throughput than Roche 454 and can generate up to 600 Gb per 

machine run (Table 1.5). The sequencing process begins with random fragmentation 

of starting DNA and ligation of Illumina-specific adapters to both ends of DNA 

fragments (Figure 1.11). DNA fragments are separated on the agarose gel and 

fragments between 200-300 bp are selected. Purified single-stranded DNA molecules 

are immobilized on a surface of a flow cell (a glass slide), which contains eight 

channels. Each channel can sequence eight independent libraries in parallel during 

the same instrument run (Shendure & Ji, 2008). The bridge PCR is used for 

amplification, resulting in clusters of identical DNA fragments. Reverse strands are 

removed and sequencing primers and modified nucleotides are added to each channel 

of the flow cell. The nucleotides are fluorescently labelled and carry a terminator 

group which allows only a single-base incorporation to occur in each cycle (Ju et al., 

2006). Sequencing is carried out by annealing primers to the adapter, followed by 

extension of the sequencing primers by DNA polymerase. The DNA polymerase 

reaction terminates after the first base incorporation and camera records the 

fluorescent signal emitted by the cluster. After each imaging step, the terminator 

group is removed allowing another incorporation cycle to start (Mardis, 2008).  

Depending on the library construction protocol used, sequences can be derived from 

one end (single read) or both ends of the library fragments (paired-end read). Paired 

end reads carry extra information useful for assembly. 

 

1.3.2. Computation approaches for characterizing sequenced viral 

metagenomes 

NGS platforms produce millions of reads from a single sample, which may contain 

hundreds to thousands of different species. The analysis of the viral metagenomes is 

challenging because the large amount of data generated by high-throughput 

sequencing requires significant computational resources. Some challenges in virus 

identification and functional identification from genome sequences arise from the 

fact that distantly related viruses share common genomic regions (Hendrix et al., 

1999), and that most viruses contain genes without any known homologues (Yin & 

Fischer, 2008). In addition, viruses can stably integrate into host genomes and have 

the ability to carry genes of host origin within their own genomes, for example 
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photosynthetic (Lindell et al., 2004) or 16S ribosomal DNA genes (Del Casale et al., 

2011a), which can make it difficult to distinguish viral sequences from host 

sequences. Bioinformatic analyses of viral metagenomes address questions about 

their diversity (how many different viruses are present), taxonomy (what viruses are 

present), function (what genes they encode), and how they differ from other 

metagenomes.  

 

A number of computational tools available as standalone and web-based versions 

have been developed to analyse metagenomic data (Table 1.6). Data analysis begins 

with quality control and the pre-processing of the raw reads. Sequence processing 

tools easily run from a web interface such as PrinSeq can be used to filter out 

unsatisfactory reads which are too short, or contain ambiguous bases (N), as well as 

low quality reads and read duplicates (Schmieder & Edwards, 2011a). A necessary 

step of sequence analysis is removing host-associated (e.g. human, mosquito) and 

other non-viral sequences that had not been removed by the pre-sequencing filtration, 

chloroform and DNase treatment. For example viral metagenomes generated from 

the clinical samples may contain a high background of human reads (Lysholm et al., 

2012; Nakamura et al., 2009; Willner et al., 2009). Those sequences slow down the 

downstream analysis and may result in misassembly of sequence contigs (Schmieder 

& Edwards, 2011b). Contaminating sequences can be removed with the help of 

DeconSeq software, which aligns data for removal against a contaminant database 

(for example the human genome) based on a similarity search (Schmieder & 

Edwards, 2011b). This is a very fast moving field with rapid obsolescence and rapid 

development of new analysis tools. 
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Table 1.6. Computational tools and methods used in viral metagenomics. 

 

Analysis Tool Version Reference Description 

Quality control PrinSeq 
Standalone 

Web 

(Schmieder 

& 

Edwards, 

2011a) 

Provide summary statistics for read 

length, GC content, sequence 

complexity and quality score 

distributions, number of read 

duplicates, occurrence of Ns and more 

Duplicates 

removal 

PrinSeq 
Standalone 

Web 

(Schmieder 

& 

Edwards, 

2011a) Remove sequence duplicates  

CD-HIT-

454 

Standalone 

 

(Li & 

Godzik, 

2006) 

Filtering PrinSeq 
Standalone 

Web 

(Schmieder 

& 

Edwards, 

2011a) 

Remove short or long sequences, 

sequences with N's, low-quality 

sequences 

Decontamination DeconSeq 
Standalone 

Web 

(Schmieder 

& 

Edwards, 

2011b) 

Remove sequence contamination by 

aligning reads against available 

reference database (web version) or 

custom database (standalone version) 

Assembly 

MetaVelvet 
Standalone 

 

(Namiki et 

al., 2012) 

Assemble metagenomic reads based 

on construction of de Bruijn graph  

Meta-

IDBA 

Standalone 

 

(Peng et 

al., 2011) 

IDBA-UD Standalone 
(Peng et 

al., 2012) 

Genovo 
Standalone 

 

(Laserson 

et al., 

2011) 

Assemble metagenomic reads based 

on construction of a Bayesian 

probabilistic model 

Annotation 

BLAST 
Web 

Standalone 

(Altschul et 

al., 1990) 
Sequence similarity search program 

MEGAN Standalone 

(Huson et 

al., 2007) 

(Huson et 

al., 2011) 

Import BLAST outputs and 

automatically calculate a taxonomic 

and functional classification of the 

reads  

MG-RAST Web 
(Meyer et 

al., 2008) 

Metagenomic database and automated 

analysis platform for annotating 

metagenomes 

Camera Web 

(Seshadri 

et al., 

2007) 

Metagenomic database and web server 

that provide a wide range of tools for 

metagenomic data analysis 

IMG/M Web 

(Markowitz 

et al., 

2008) 

Metagenomic database and web server 

that provide comparative metagenome 

data analysis tools  

WebMGA Web 
(Wu et al., 

2011a) 

Web server that provide a wide range 

of tools for metagenomic data analysis 

Estimation of 

abundance and 

diversity  

GAAS Standalone 
(Angly et 

al., 2009) 

Estimate relative species abundances 

based on significant BLAST 

similarities 

Circonspect Standalone 
(Angly et 

al., 2006) 
Generate contig spectra 

PHACCS Standalone 
(Angly et 

al., 2005b) 

Estimate the structure and diversity of 

viral metagenomes based on contig 

spectra information 
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1.3.2.1.   Assembly 

The Illumina Genome Analyzer platform used in this study produces reads up to 150 

bp long. This read length is generally too short to detect sequence homologs using 

similarity searches (Wommack et al., 2008). Assembly of short read fragments is 

performed to generate longer sequences called contigs. Longer reads show increased 

taxonomic and functional assignment, and enable reconstruction of complete 

genomic sequences of the dominant species within a metagenome (Fancello et al., 

2012). Two strategies are used: mapping assembly, in which short reads are mapped 

against a reference genome, or de novo assembly, in which overlapping reads are 

assembled into contigs, and no information about reference sequence is required 

(Thomas et al., 2012). A typical viral metagenome contains 60-99% sequences with 

no similarity to known sequences (Table 1.3) (Mokili et al., 2011). Therefore de 

novo assembly is usually performed prior to classification. A variety of de novo 

assemblers that assemble metagenomic short sequences are publicly available, 

including meta-IDBA (Peng et al., 2011), Genovo (Laserson et al., 2011), 

MetaVelvet (Namiki et al., 2012) and IDBA-UD (Peng et al., 2012). Most de novo 

assemblers are based on the “de Bruijn graph” approach. In the de Bruijn graph 

method, short reads are split into shorter fragments (called k-mers). The graph 

representing the assembly is built by connecting the k-mers with the overlapping 

fragments (called edges) into nodes using an algorithm (Compeau et al., 2011). The 

de Bruijn graph programs which generate single genome de novo assemblies such as 

Velvet (Zerbino & Birney, 2008) or SOAPdenovo (Li et al., 2010b) do not work well 

for metagenomic datasets which contain multiple genomes from different species. 

Metagenomic de novo assemblers such as meta-IDBA or meta-VELVET identify and 

separate within the entire de Bruijn graph subgraphs that represent very similar 

regions in subspecies. The sequences subgraphs are then aligned to produce a 

consensus sequence which represents a contig of subspecies from a single species 

and is merged into a larger component using paired-end reads. Meta-IDBA can 

generate longer and more accurate contigs compared to traditional assemblers (Peng 

et al., 2011). Recently developed new assembler IDBA-UD is capable to assemble 

short reads with highly uneven sequencing depths, which results in longer sequence 

assembly and higher accuracy compared to existing assemblers such as (Velvet, 

SOAPdenovo and Meta-IDBA) (Peng et al., 2012). 
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1.3.2.2.   Classification 

Metagenomic sequences are typically assigned to taxonomic groups based on a 

BLAST comparison (Altschul et al., 1990) against reference databases that contain 

sequences of known origin such NCBI nucleotide and protein databases (Sayers et 

al., 2009). Metabolic functions are assigned based on a BLAST comparison against 

databases containing functionally annotated sequences such as NCBI non-redundant 

(nr) protein database (Sayers et al., 2009), NCBI Clusters of Orthologous Groups 

(COGs) (Tatusov et al., 2000), Pfam (Bateman et al., 2002) or SEED (Overbeek et 

al., 2005). The most commonly used BLAST programs for classification of viral 

sequences are BLASTN, BLASTX and TBLASTX (Table 1.3). BLASTN compares 

nucleotide sequences to a nucleotide sequence database, BLASTX compares 

translated nucleotide sequences to a protein sequence database, whereas TBLASTX 

compares translated nucleotide sequences to a nucleotide sequence database 

translated in all possible reading frames (Altschul et al., 1997). The similarity 

thresholds (E-value) cutoff 10-3 (less stringent search) or 10-5 (more stringent search) 

have been frequently used to classify viral sequences (Table 1.3). The BLAST 

cutoffs have to be chosen carefully, because  less stringent searches may result in 

inaccurate reads classification, while more stringent searches may result in higher 

number of unannotated sequences (Weng et al., 2010).  

 

High-throughput BLAST output files can be viewed using MEGAN (MEtaGenome 

ANalyzer) software (Huson et al., 2007). MEGAN uses significant (i.e. with high 

bit-scores) BLAST hits for each read and assigns them to the lowest node (e.g. 

species) in the NCBI taxonomy using a lowest common ancestor (LCA) algorithm. 

Sequences that cannot be assigned with a reasonable level of confidence at e.g. a 

species level are assigned to a higher taxonomical level (Huson et al., 2007; Huson et 

al., 2011). GAAS (Genome relative Abundance and Average Size), is another tool 

used for visualizing annotation results derived from BLAST searches. GAAS runs 

BLAST against completely sequenced genomes and considers all significant 

similarities to assign taxonomy (Angly et al., 2009). Then it normalizes the number 

of reads assigned to a specific genome by the length of that genome. Normalization 

allows for more accurate estimation of species relative abundance, detecting small 
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genomes which could be missed completely using standard analysis (Angly et al., 

2009). 

 

To classify high-throughput datasets BLAST is often run from the command line, 

however this requires access to high-performance computing clusters and prolonged 

computational time. Recently, web-based metagenomic annotation platforms, such as 

CAMERA (Seshadri et al., 2007), MG-RAST (Meyer et al., 2008), IMG/M 

(Markowitz et al., 2008) and WebMGA (Wu et al., 2011a) have been developed for 

the remote automatic phylogenetic and functional analysis of metagenomes. The 

MG-RAST web interface allows data repository, annotation and comparative 

analysis. Environmental sequences are assigned to taxonomic and functional 

categories based on similarities to protein databases (e.g. NCBI nr database, SEED). 

The first step of MG-RAST analysis is open reading frame (ORF) prediction 

followed by BLAST-like comparison using the BLAT alignment tool (Kent, 2002). 

Long reads can contain multiple ORFs, and each of these will be annotated 

separately. The MG-RAST pipeline is therefore more suitable for annotation of short 

reads, rather than contigs (http://metagenomics.anl.gov/). More than 12,000 public 

metagenomes are freely available for comparison within MG-RAST 

(http://metagenomics.anl.gov/). The MG-RAST web interface incorporates PCA 

(Principal Component Analysis) for metagenome comparison. In PCA, datasets that 

exhibit similar abundance profiles (taxonomic or functional) are clustered together 

with respect to components of variation extracted from their normalized abundance 

profiles (http://metagenomics.anl.gov/). 

 

1.3.2.3.   Diversity  

Viral community structure and diversity can be estimated using the Circonspect 

(Angly et al., 2006) and PHACCS (Phage Communities from Contig Spectrum) 

(Angly et al., 2005b) tools. Circonspect (Control In Research on CONtig SPECTra) 

uses an external assembly program and a bootstrap technique to compute a contig 

spectrum. A contig spectrum is the count of the number of contigs of different size 

generated by assembly. The resulting contig spectra are then mathematically 

modelled to predict community structure and diversity using PHACCS. The diversity 

is estimated by measuring the community richness (the total number of different 
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species), evenness (the relative abundance of species) and the Shannon-Wiener 

index. The Shannon–Weaver index considers both the total number of species and 

the relative distribution of these species (Angly et al., 2005b). More diverse 

communities have a higher index (Table 1.2).  

 

1.4. Objectives of this study 

The objectives of this study were: 

 

1. To characterise the viral communities from a clinical (cystic fibrosis patient’s 

sputum) and an environmental (dairy food wastewater sludge) sample by 

sequencing metagenomic DNA using Illumina Genome Analyzer II 

technology and analysing the sequence data using a variety of bioinformatics 

tools. 

  

2. To explore functional aspects of metagenomic viral DNA in an E coli host by 

promoter trap approach applied to a metagenomic clone library derived from 

a dairy food wastewater viral metagenome. 

 

3. To characterise the diversity of T4-type bacteriophages in dairy food 

wastewater samples using a PCR-based approach of conserved gene. 
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Chapter 2: 

  

 

Metagenomic sequencing of DNA viruses in 

cystic fibrosis sputum 
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Abstract 

In this study metagenomic short read (Illumina) sequencing was used to explore the 

DNA virus community in sputum from a cystic fibrosis (CF) patient infected with 

Pseudomonas aeruginosa. Bacteriophages were isolated from a sputum sample using 

a sequential filtration technique with DNase treatment. Phage DNA was extracted 

and amplified by a rolling circle technique and then sheared before sequencing as a 

paired-end sequencing run using Illumina technology. Although 97% of reads could 

not be matched to any GenBank sequence, 53% of the reads were assembled into 

contigs greater than 100 bp using the meta-IDBA assembler. Forty four contigs were 

over 10 kb and the largest contig was 61 kb. Four specimen contig assemblies were 

verified by PCR and sequencing from the original DNA extract. BLASTX assigned 

reads and contigs were mainly of phage or prophage origin, but the majority of the 

sequence data obtained was classified as “unassigned”. Phages from bacteria of the 

genera Streptococcus, Veillonella, Pseudomonas, Actinobacillus and Prevotella 

comprised the most frequently assembled contigs. A complete human Torque Teno-

like virus was detected in the metagenome assembly and by PCR. A substantial 

number of assigned sequences could be affiliated with species typically found in the 

oral cavity, as well as CF lower respiratory tract samples, reflecting the nature of 

sputum. Viral diversity was low (89 species), which presumably contributed to the 

successful assembly. Numerous antimicrobial resistance genes were detected flanked 

by phage sequences, suggesting sputum of cystic fibrosis patients is a source for 

transmissible antimicrobial resistance. The metagenome assembly contained matches 

to CRISPR sequences in bacteria known to infect CF patients in other locations, but 

no matches to locally detected bacterial CRISPR sequences. This is compatible with 

local phage selection by bacterial CRISPR systems and a limited global diversity of 

phages in the respiratory tract of cystic fibrosis patients.  
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2.1. Introduction 

Cystic fibrosis is one of the commonest autosomal recessive diseases in Caucasian 

people, resulting from various mutations in the cystic fibrosis transmembrane 

conductance regulator (CFTR) (Cheung & Deber, 2008). A mutation in this gene is 

carried by 1 in 19 Irish individuals, the highest frequency in the world (Farrell et al., 

2007). CF patients suffer recurrent lung infections and their respiratory tract becomes 

colonized with pathogenic bacteria, the most common of which are Pseudomonas 

aeruginosa, Staphylococcus aureus and Haemophilus influenzae (Lyczak et al., 

2002). In addition, recent culture-independent studies indicate the presence of other 

bacterial species in CF sputum including Neisseria, Streptococcus and anaerobic 

bacteria such as Prevotella and Veillonella (van der Gast et al., 2011). Human 

respiratory viruses may also play a significant role in CF exacerbations (Wat & 

Doull, 2003). The co-occurrence of multiple infections with multi drug-resistant 

biofilm-forming bacteria makes infections difficult to treat. Chronic pulmonary 

infections and the consequent host inflammatory response cause irreversible lung 

damage which eventually leads to respiratory failure (Ratjen & Doring, 2003). 

Diagnosis and treatment of agents causing respiratory infection in cystic fibrosis is of 

high importance. There has been a recent revival of interest in bacteriophage therapy 

as an alternative to antibiotics in intractable infections such as cystic fibrosis (Harper 

& Enright, 2011). Bacteriophages have been shown to encode enzymes that can 

penetrate CF biofilms and access susceptible bacteria (Glonti et al., 2010). Recently, 

phage therapy has been successfully used to treat staphylococcal infection in a 

patient with cystic fibrosis (Kvachadze et al., 2011) and in an animal model of 

Pseudomonas lung infection (Alemayehu et al., 2012a). However, lytic 

bacteriophages have also been shown to select for the mucoid phenotype in 

Pseudomonas aeruginosa in vitro (an adaptive response increasing immune evasion 

and antimicrobial resistance properties which is characteristic of Pseudomonas 

aeruginosa strains infecting the respiratory tract of CF patients) (Scanlan & 

Buckling, 2012). Because of this potential application of phages or phage genes in 

the treatment of microbial infections in cystic fibrosis, the apparent adverse 

consequences of phage-mediated bacterial selection in the CF disease process, and 

because phages can encode and transfer harmful toxin and antibiotic resistance genes 
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to bacteria (Rolain et al., 2011), it is important to determine the pre-existing variety 

of genes encoded in respiratory tract phages in cystic fibrosis.  

 

Most culture-independent studies carried out on CF sputum have mainly focused on 

analysis of microbial populations. One centre in the USA has carried out comparative 

metagenomic analysis of viruses in sputum samples from healthy subjects and CF 

individuals (Willner et al., 2009) and in lung tissue from patients with late-stage CF 

(Willner et al., 2012). The metabolic functions of the viral community in the sputum 

of CF patients were different from non-diseased individuals, suggesting that, rather 

than targeting dominant taxa, changing the environment of the airways may be a way 

to treat infections in CF individuals, particularly as antimicrobial treatment lose 

efficacy. Genes encoding antimicrobial resistance were found in both viromes 

indicating that phages are responsible for spread of antibiotic resistance in CF 

(Fancello et al., 2011; Willner et al., 2009; Willner et al., 2012). Both of these 

studies used Roche 454 pyrosequencing technology. There is evidence that Illumina 

sequencing technology, which provides reads which are shorter, but contain fewer 

frameshifts potentially truncating read assemblies, may yield longer and more 

accurate contigs than 454 on assembly of sequence reads from the same 

metagenomic samples (Luo et al., 2012).   

 

This chapter describes the use of next-generation sequencing technology to 

characterize the taxonomic and metabolic profile of viral communities present in a 

sputum sample of a cystic fibrosis patient from Cork, Ireland. A DNA viral 

metagenome was obtained by filtration, CsCl purification DNase treatment, DNA 

isolation and whole genome amplification. The resulting DNA was sequenced using 

Illumina short read technology. Bioinformatic analyses achieved assembly of large 

contigs demonstrating the presence of a small human DNA virus (TT virus) and 

numerous phages similar to recognised phages of Streptococcus, Veillonella, 

Pseudomonas, Actinobacillus and Prevotella. Many hits to a CRISPR variable region 

database were obtained. Functional assignment showed high abundance of genes 

involved in phage lytic and lysogenic growth. Multiple antibiotic resistance genes 

were identified, including β-lactamases. 
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2.2. Materials and Methods 

2.2.1. Sample collection 

A sputum sample of approximately 10 ml was collected from a male Cystic Fibrosis 

adult patient during a physiotherapy session on 24 March 2010 at Cork University 

Hospital, Cork, Ireland. The study was approved by the Clinical Research Ethics 

Committee of the Cork Teaching Hospital and written informed consent was 

obtained from the patient. 

 

2.2.2. Viral particle purification 

The sputum was homogenized in 10 ml of 0.02 µm pre-filtered SM buffer (100 mM 

NaCl, 8 mM MgSO4·7H2O, 50 mM Tris-HCl pH 7.5, 0.002% (w/v) gelatin) using 10 

ml syringe. To reduce viscosity and background human DNA the homogenized 

sputum was treated with 10 ml of 6.5 mM dithiothreitol (DTT; Sigma) and 1 ml of 

DNase I (Pulmozyme), homogenized again, and incubated at 37°C for 30 minutes. 

After incubation the sample was centrifuged at low speed (2000 rpm) for 10 minutes 

and the supernatant was filtered through a 0.45 µm syringe filter (Millipore) to 

remove most of bacteria.  

 

Viruses in the filtrate were purified using a published CsCl density gradient 

centrifugation method (Thurber et al., 2009). Briefly, CsCl was added to the filtrate 

to a density of 1.15 g/ml and and loaded onto a caesium chloride step gradient 

consisting of 1 ml each of 1.7, 1.5, and 1.35 g/ml. The gradient was centrifuged in a 

SW-41 (Beckman) rotor at 22,000 rpm for 2 h at 4°C. A 21-gauge needle on a 1 ml 

syrine was used to collect1 ml containing concentrated viral particles from the 

interface between the 1.35- and1.5-g/ml layers. Collected CsCl fraction was 

additionally filtered through a 0.22 µm impact filter (Millipore) and further 

concentrated and washed twice with 1 ml of SM buffer on a Millipore Amicon Ultra-

15 Centrifugal Filter Unit (30 kDa). The final volume of concentrated CsCl fraction 

was 400 µl and was used for DNA extraction. 
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2.2.3. DNA isolation and sequencing 

Prior to DNA extraction, concentrated CsCl fraction was incubated for 1 h at 37°C 

with 125 U/ml of DNase I (New England Biolabs) and 3 µl of RNA (DNeasy Blood 

& Tissue Kit, Qiagen) to eliminate any remaining free nucleic acids. DNase was 

inactivated by the addition of EDTA to the final concentration of 20 mM, followed 

by heat-inactivation at 80°C for 10 minutes. Viral DNA was extracted using CTAB 

extraction method (Sambrook et al., 1989; Thurber et al., 2009). Briefly, the sample 

was mixed with 15 μl of 20% (w/v) SDS and 20 μl of proteinase K (DNeasy Blood 

& Tissue Kit, Qiagen) and incubated for 1 h at 56oC. After protease treatment 100 μl 

of 5 M NaCl and 80 μl of pre-heated CTAB/NaCl solution (10% (w/v) CTAB in 0.7 

M NaCl) was added and incubated for 10 minutes at 65°C. DNA was recovered by 

phenol/chloroform extraction and isopropanol precipitation and the resulting DNA 

pellet was resuspended in 30 μl of sterile water. DNA concentration was estimated 

using NanoDrop (Thermo Scientific), giving a 30 ng/µl concentration and a 260/280 

ratio of 1.8. DNA was used for 16S rRNA PCR amplification using universal primers 

27F and 907R (Lane, 1991) and no PCR products were obtained, suggesting that 

filtration, density-gradient ultracentrifugation and DNase treatment steps resulted in 

successful removal of bacteria. 

 

Extracted metagenomic DNA was used for whole genome amplification using 

GenomiPhi V2 DNA Amplification Kit (GE Healthcare). Briefly, 1µl (30 ng) of 

DNA was amplified in 20 µl reaction volumes in triplicate reactions at 30°C for 2 h. 

The amplified products from each reaction were pooled, purified using DNeasy 

Blood & Tissue Kit (Qiagen) and resuspended in 100 µl of sterile water. 

Approximately 3 µg of DNA was used to make libraries with inserts of between 150 

and 250 bp at the Wellcome Trust Sanger Institute (UK) which were sequenced in a 

paired 76 cycle run using an Illumina Genome Analyzer IIx. 6.4 million paired-end 

76 bp reads were generated.  

 

2.2.4. Sequence processing  

All large-scale computational analyses were performed on The Boole Centre for 

Research in Informatics (BCRI) compute cluster at University College Cork. The 

metagenomic library (approximately 6.4 million reads) was filtered using PRINSEQ 
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website http://edwards.sdsu.edu/prinseq_beta/# (Schmieder & Edwards, 2011a) to 

remove exact sequence duplicates and reverse complement exact duplicates 

(1,633,820), reads containing more than one ambiguous bases (N) and low-

complexity sequences (DUST score <32) (11,455). Human sequences (94,786) were 

removed using DeconSeq website http://edwards.sdsu.edu/cgi-

bin/deconseq/deconseq.cgi using 90% coverage and 90% identity filtering options. 

The metagenomic sequences in CF metagenome were compared to another 

metagenome that was prepared at the same time using DeconSeq standalone 

(Schmieder & Edwards, 2011b) and any shared sequences that could be the results of 

contamination during the sample manipulation were removed using 90% coverage 

and 90% identity options (2,917,648 sequences). These pre-processing steps resulted 

in 1,715,261 high-quality sequences (130,359,836 total bases).  

 

2.2.5. Assembly of sequence reads  

For contigs assembly, sequence reads were prepared as described above, except 

duplicate reads were not removed, as this resulted in higher N50 (median contig size) 

of 4335. Sequence reads were pair-end assembled using Meta-IDBA (Peng et al., 

2011) into 9,788 contigs (3,131,945 total bases). Sequences less than 100 bp were 

discarded, leaving a total of 2,859 contigs for analysis (2,637,642 total bases). To 

calculate number of reads that were recruited into contigs assembly, reads were 

aligned to the contigs using FR-HIT (Niu et al., 2011) using high-stringency cutoff 

of 100% identity over 100% of the entire read length. 

 

Coding DNA Sequence (CDS) prediction was performed on the assembled 

sequences (>100 bp) using MetaGeneMark Heuristic Approach version 1.0 (Zhu et 

al., 2010) at http://exon.biology.gatech.edu/metagenome/Prediction/index.cgi. 

 

2.2.6. Sequence annotation 

Individual reads were automatically annotated against the GenBank database (e-

value cutoff of 1e-03 and minimum alignment length of 20 bp) using MG-RAST 

(Meyer et al., 2008). Contigs with minimum length greater than 1 kb were annotated 

against the GenBank protein (nr) database (downloaded on 25 October 2011) using 

BLASTX (version 2.2.24) and an e-value 1e-05. Top BLASTX hit with minimum 
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identity of >80% and highest bit score was used to classify the sequences. The 

matches to each taxon were normalized by counting number of bases in contigs 

assigned to each taxon and dividing by the total number of bases (3,131,945 bp). 

DNA sequences can be accessed through MG-RAST website under Project IDs 

4476065.3 (reads) and 4476037.3 (contigs). Filtered reads were also submitted to the 

Sequence Read Archive (SRA) under accession number SRA057676. 

 

Functional annotation was performed on contigs and CDS using the MG-RAST 

Subsystems (e-value 1e-05 and minimum alignment length 50) and WebMGA (Wu 

et al., 2011b) COG (Clusters of Orthologous Groups of proteins) (Tatusov et al., 

2003) (e-value 1e-05) databases. 

 

Selected contigs were compared to the reference genome that matched most closely 

(best hit from BLASTX search). Protein-coding regions and GenBank files of 

contigs were generated using the phage genome annotation tool ArtAnnoPipe 

(http://athena.bioc.uvic.ca/node/541). Annotated reference genomes used in this 

study were downloaded from NCBI. TBLASTX was used to compare the contig 

sequences with the corresponding reference genome (with minimum alignment 

length of 50 and e-value 1e-05) and drawn in Easyfig (Sullivan et al., 2011).  

 

2.2.7. Metagenome diversity 

Diversity of the metagenome was estimated using PHACCS version 1.1.3 (Angly et 

al., 2005a) (http://sourceforge.net/projects/phaccs/). Circonspect version 0.2.5 

(http://sourceforge.net/projects/circonspect/) implemented with the Octave version 

3.6.0 was used to calculate contig spectra based on metagenome assembly using 

Minimo (98% identity over at least 35 bp overlap). The contig spectra were used as 

an input for PHACCS, using a logarithmic model and an average genome size of 50 

kb. 

 

2.2.8. Metagenome comparison  

A multiple comparison based on organism and functional gene abundance between 

CF sputum contigs (>100bp) and other viromes: CF sputum (MG-RAST ID 

4441908.3), human lower respiratory tract (NCBI GenomeProject ID 64629), healthy 
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human saliva (4445731.3) oropharyngeal viromes of healthy individuals (MG-RAST 

ID 4444195.3 and 4444196.3), and terrestrial hot springs (4441096.3) was performed 

using MG-RAST Principal Component Analysis. The data was compared to 

GenBank and SEED databases using a maximum e-value of 1e-05, a minimum 

identity of 80 %, and a minimum alignment length of 50. The data has been 

normalized to values between 0 and 1 and drawn using a Bray-Curtis distance. 

 

2.2.9. Antibiotic resistance genes 

To identify genes potentially conferring resistance to antibiotics, reads and predicted 

CDS from contigs were compared to 3,375 antibiotic resistance associated genes 

downloaded from The Comprehensive Antibiotic Resistance Database (CARD) 

http://arpcard.mcmaster.ca/ using BLAST and e-value 1e-03. Sequences associated 

with antibiotic resistance genes according to CARD database BLAST results were 

extracted for further BLAST against NCBI nr database. Only BLAST hits with 90% 

identity over 90% of the sequence read length were analysed. Hits to genes encoding 

integrases, efflux pumps, as well as gyrA, gyrB, parC, rpoB, rpsL, bacA, in which a 

point mutation in a bacterial gene confers antimicrobial resistance, were discarded. 

Easyfig was used to visualize CDS of two contigs (contig 22 and contig 71) encoding 

metallo-β-lactamase genes. CDS were annotated using BLASTP against NCBI nr 

database. Phylogenetic analysis was conducted using MEGA version 5.04. Contigs 

used for phylogenetic comparison were submitted to GenBank under accession 

numbers JX157235 (contig 22) and JX157236 (contig 71). 

 

2.2.10.   Virulence genes 

Virulence factors including bacterial toxin protein sequences were downloaded from 

the VFDB (Virulence Factors of Pathogenic Bacteria Database) (Chen et al., 2012) 

http://mvirdb.llnl.gov/ and compared to the CDS predicted from contigs using 

BLASTP and e-value 1e-03. 

 

2.2.11.   CRISPR spacer analyses 

52,511 spacers from CRISPRdb (Grissa et al., 2007b) http://crispr.u-

psud.fr/crispr/CRISPRUtilitiesPage.html were downloaded on 29/01/12 and used to 

search for sequence similarity with metagenomic reads and contigs (>100 bp) using 
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BLASTN (e-value 1e-03 and word size 7). Only matches that had 100% identity over 

20 bp were analysed, as previously described (Anderson et al., 2011).  

 

To identify CRISPR spacers of different Pseudomonas aeruginosa strains present in 

CF sputum samples of local patients, conserved repeat sequences  

(5’-GTTCACTGCCGT(A/G)TAGGCAGCTAAGAAA-3‘) of complete genomic 

sequences of Pseudomonas aeruginosa strains were retrieved from the CRISPRdb 

database. The repeat sequence-specific PCR primers CRISPR-PAF 5‘-

CTAGTTCACTGCCGT-3‘ and CRISPR-PAR 5‘-TTTCTTAGCTGCCTAY-3‘ were 

designed manually. The forward primer contained at its 5’ end a three-base pair 

sequence CTA complement to the leader sequence, directly adjacent to the repeat 

array. CRISPR spacers and repeats were amplified from total bacterial DNA 

extracted from 1ml of sputum sample (4 samples in total, including specimen 

sequenced in this study) using The Wizard® Genomic DNA Purification Kit 

(Promega). Amplified PCR products were cloned and sequenced at GATC Biotech. 

CRISPRFinder (Grissa et al., 2007a) was used to identify spacer sequences. All 

retrieved spacers were subjected to BLASTN analysis against the GenBank 

databases (nt, HTGS, wgs). Sequenced PCR products were submitted to GenBank 

under accession numbers JX157240 – JX157254. 

 

2.2.12.   PCR validation of contigs  

Contigs of interest were selected for PCR verification of the assembly. Primer 3 

(Rozen & Skaletsky, 2000) was used to design primers spanning 3 genes (Figure 

2.2). Inward-pointing and outward-pointing PCR primers were designed based on the 

DNA sequence of the longest contig (contig 195) having similarity to TTV virus. 

PCR reaction (50 µl reaction volume) contained 1 × GoTaq Buffer, MgCl2, 0.2 mM 

dNTPs, 25 pmol primer (Table 2.1), 1 U GoTaq polymerase (Promega) and 1 µl 

GenomiPhi amplified metagenomic DNA. The PCR conditions were 2 min at 95 °C; 

35 cycles of 1 min at 95 °C, 1 min at 52-55 °C and 2 min at 72 °C; followed by 

incubation for 10 min at 72 °C. Obtained PCR products were sequenced to verify the 

accuracy of the assemblies. See Table 2.1 for details on the primers used in this 

study. 
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Table 2.1. Primer sequences used for PCR amplification and sequencing.  

 

Contig 

name 

Conti

g size 

(bp) 

Primer Sequence (5’→3’) 

PCR 

product 

size (bp) 

Application 

Contig0 60782 

8103F 

11657R 

AACTCCCCGATATTGTAGGC 

AGCGTGAAAGTGCATACTCC 
3574 

PCR, 

sequencing 

9482F GAGAGAGCTAGAGCCGATG  Sequencing 

LysAF CACTGGAGGCAAAGTCAACA  Sequencing 

LysAR CTCCGTCCGTAATTCTCAGC  Sequencing 

Contig17 15213 

7401F 

11295R 

TGCAACTGGTGATAGCTTGA 

GCAATTTCTTGAGCCGAATA 
3914 

PCR, 

sequencing 

8637F CCAAACCGTAATTGATGCAG  Sequencing 

10526R CCTGAACAGGCTTCACAGAA  Sequencing 

Contig36 11019 

2927F 

6805R 

CATTCCAGGAGGACATGAA 

CAGTGATCGGTACGACGTT 
3897 

PCR, 

sequencing 

3511F GAACTGGAAAAGACCAAGC  Sequencing 

4059F AGATGCCCTGACCATCAGT  Sequencing 

4795F GATCTGGACGAACTGAACG  Sequencing 

5956R ATGTCGAAAGCCTTCTTCG  Sequencing 

Contig195 2847 

764F 

2600R 

TAACGGAACGGGCAAGATAC 

TCTGGGACTGGAAAAGTTGG 
1837 

PCR, 

sequencing 

2478outF 

885outR 

GGGACCCATTAAATCAGCA 

TTGCATTTTAGGTCGTGGA 
1255 

PCR, 

sequencing 

 

2.2.13.   TTV phylogenetic analysis 

ORF (Open Reading Frames) were identified using NCBI ORF Finder 

http://www.ncbi.nlm.nih.gov/projects/gorf/. Predicted ORF1 sequences of three 

longest contigs were compared to the nr protein database using BLASTP and aligned 

with the top 5 hits using ClustalW (Larkin et al., 2007). The multiple sequence 

alignments were trimmed to 220 aa (between position 77 and 297 of multiple 

sequence alignments) using Jalview (Waterhouse et al., 2009). The phylogenetic tree 

was constructed using MEGA version 5.04 (Tamura et al.) by applying p-distance 

model and the Neighbor-Joining method with 1000 bootstrap replications. The 

complete circular genome of contig 195 was drawn using PlasMapper Version 2.0 

(Dong et al., 2004). A stem-loop (transcription terminator) was identified manually 

within the GC rich region. The sequences of TTV contigs used for phylogenetic 

comparison were submitted to GenBank (JX157237 – JX157239).  
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2.3. Results 

2.3.1. Taxonomic classification of reads 

The DNA virus community in sputum from a cystic fibrosis patient was sequenced 

using Illumina technology and classified using the MG-RAST annotation server 

(Meyer et al., 2008). Out of 1,715,261 76-bp sequence reads obtained, the vast 

majority (97%) had no hits to any known sequence in GenBank database (minimum 

alignment length of 20 bp and e-value of 1e-03) implemented in the MG-RAST 

server. Of the reads that were assigned (54,490), 87.87% matched bacterial 

sequences, 11.98% matched viral sequences, 0.13% matched mobile genetic 

elements and 0.01% matched archaeal and eukaryotic sequences (Figure 2.1A). The 

most abundant bacterial genera (presumably prophages) were Veillonella (25%), 

followed by Pseudomonas (18%), Prevotella (16%) and Staphylococcus (11%) 

(Figure 2.1A, Table 2.2). Analysis of the viral matches at species level revealed that 

phages from Pseudomonas (44%) and Staphylococcus (41%) were the most abundant 

GenBank hits in the CF metagenome (Figure 2.1A, Table 2.2). A small number of 

hits to human viruses were obtained: 41 (0.08%) reads to Anelloviridae and 1 

(0.002%) read to Herpesviridae (Table 2.2).  

 

2.3.2. Assembly characteristics 

The sequence reads were assembled into 2,859 contigs (>100 bp), with N50 length of 

4.3 kb and the total contig length of 2.6 Mbp. 53% of the reads, as determined by 

read mapping back onto contigs, were recruited into contigs of length greater than 

100 bp. The longest contig was 61 kb, 44 contigs were longer than 10 kb, 102 contigs 

were longer than 5 kb, and 467 contigs were longer than 1 kb. CDS prediction using 

MetaGene resulted in prediction of a total of 5150 coding DNA sequences (CDS) in 

contigs larger than 100 bp. 

 

Contigs (>1 kb) were annotated using standalone BLASTX against GenBank nr 

database. Because contigs size ranged from 100 bp to 61 kb, similarities to each 

taxon (>80% identity) for the taxonomic breakdown (Figure 2.1B, Table 2.2) were 

normalized by counting the number of bases in the contigs matching each taxon and 

dividing by the total number of bases in all contigs. 21.5% of the contigs with 
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minimum identity of 1 kb (108 contigs totalling 426,201 bases) could be assigned to 

bacteria (82%) and viruses (18%) (Figure 2.1B). Streptococcus (20%), Veillonella 

(17%), Pseudomonas (10%) and Prevotella (10%) were the most abundant bacterial 

genera (presumably phage) detected in contigs (Figure 2.1B, Table 2.2). 

Actinobacillus phage Aaphi23 (46%), Streptococcus pneumoniae phage Dp-1 (21%) 

and Staphylococcus phages (17%) were dominant viral hits (Figure 1B, Table S2). 

Apart from Pseudomonas, most of the sequences found in CF sputum can be 

attributed to phages infecting bacteria associated with the upper respiratory tract 

according to the Human Oral Microbiome Database 

(http://www.homd.org/index.php). BLASTX comparisons of the 44 largest (>10 kb) 

contigs against GenBank protein database showed significant (e-value 1e-05) 

matches to phage genes (Table 2.3). Among large (>5 kb) contigs some had high 

(>90%) sequence similarity to prophages from Haemophilus influenzae (contig 1), 

Capnocytophaga sputigena (contig15, contig 45), Streptococcus infantis (contig 17), 

Atopobium parvulum (contig18), Pseudomonas aeruginosa (contig 27, contig 36, 

contig 62, contig 76), Streptococcus mitis (contig 29, contig 101), Prevotella oris 

(contig 40), Kingella oralis (contig 41), Solobacterium moorei (contig 42),  

Streptococcus sanguinis (contig 47), Bulleidia extructa (contig 68), Veillonella sp. 

(contig 74), Staphylococcus aureus (contig 79) and Veillonella parvula (contig 97). 

TBLASTX comparison of the largest contig (contig 0, 60.7 kb) to the 

Mycobacterium phage Myrna (Myoviridae family, environmental phage recovered 

using an M. smegmatis host (Hatfull et al., 2010)) showed regions of synteny with 

some genomic rearrangements (Figure 2.2). The second largest contig (contig 1, 37.3 

kb) was syntenic to the genomic region of Actinobacillus phage Aaphi23. Four 

contigs (contig 27, 36, 62 and 76) totalling 39 kb, were ordered and aligned with a 

prophage in the Pseudomonas aeruginosa 39016 genome.  

 

Assembly accuracy was sought by carrying out PCR over multiple CDS using 

primers designed from these contigs (Mycobacterium phage Myrna, P. aeruginosa 

39016 prophage) and one smaller contig (contig 17, a 15.2 kb contig resembling 

Streptococcus infantis SK1076 prophage) (Figure 2.2). PCR products of the designed 

size (Table 1.1) were cloned and sequenced yielding nearly identical (>99% identity) 

sequence to the assembly. 
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Figure 2. 1. Taxonomic breakdown of assigned reads (n = 53,357) (panel A) and normalized contigs (108 contigs totalling 426,201 

bases) (panel B) at domain level, bacteria at genus level and viruses at species level.  
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Table 2.2. Most abundant bacterial and viral species found in CF sputum sample as 

classified by MG-RAST (reads) and BLASTX (contigs). 

 

Species Reads  Species 
Contigs >1kb, >80% 

identity (normalized) 

Veillonella sp. 18,93% 
Pseudomonas aeruginosa 

39016 
9,12% 

Pseudomonas aeruginosa 15,39% Actinobacillus phage Aaphi23 8,77% 

Prevotella oris 14,20% Prevotella oris 7,40% 

Staphylococcus aureus 9,15% Streptococcus infantis 6,64% 

Pseudomonas phages 5,76% Capnocytophaga sputigena  6,26% 

Staphylococcus phages 5,37% Atopobium parvulum 5,71% 

Granulicatella adiacens 5,05% Veillonella sp. 5,66% 

Corynebacterium 

matruchotii 
5,04% Veillonella dispar 4,43% 

Kingella oralis 4,88% Bulleidia extructa 4,12% 

Veillonella parvula 2,77% Streptococcus phage Dp-1 3,91% 

Neisseria gonorrhoeae 1,90% Neisseria bacilliformis 3,86% 

Neisseria meningitidis 1,76% Streptococcus sanguinis 3,79% 

Campylobacter gracilis 1,39% Streptococcus mitis 3,78% 

Haemophilus influenzae 1,18% Kingella oralis 3,67% 

Streptococcus pneumoniae 1,15% Staphylococcus aureus 3,30% 

Propionibacterium phages 1,07% Veillonella parvula 2,95% 

Veillonella atypica 0,82% Solobacterium moorei 2,95% 

Fusobacterium sp. 7_1 0,82% 
Staphylococcus aureus phage 

77 
2,49% 

Escherichia coli 0,67% 
Streptococcus 

pseudopneumoniae 
2,27% 

Fusobacterium sp. D11 0,53% Veillonella atypica 2,18% 

Streptococcus phages 0,41% Actinomyces phage Av-1 1,43% 

Shigella sonnei 0,35% Streptococcus pneumoniae 1,13% 

Bacteroidetes oral taxon 274 0,32% Haemophilus influenzae 1,05% 

Rothia dentocariosa 0,24% Anellovirus 0,94% 

Propionibacterium acnes 0,22% Prevotella salivae 0,68% 

Enterobacteria phages 0,21% Corynebacterium matruchotii 0,52% 

Haemophilus phages 0,20% candidate division TM7 0,36% 

Anellovirus 0,08% Gemella haemolysans 0,34% 

Mycobacterium phage 

Pacc40 
0,02% Neisseria subflava 0,29% 

Shigella boydii 0,01% 
  

Pseudomonas sp. M18 0,01% 
  

Streptococcus suis 0,01% 
  

Peptoniphilus sp. oral taxon 

836 
0,01% 

  

Human herpesvirus 6 0,002% 
  

Other 0,078% 
  

Total 100% 
 

100% 
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Table 2.3. Summary of BLASTX (e-value >1e-05) results of the 44 largest (>10kb) contigs assembled from CF metagenome (sorted by 

bit score). Hits with BLASTX similarity >80% are shown in bold. 

 

Contig  

Contig 

size 

(bp) 

Phage/Organism containing 

prophage 
Best BLAST hit 

Accession 

number 

E-

value 

% 

identity 

Hit 

length 

(aa) 

contig0 60,782 Mycobacterium phage Myrna gp192 (DNA polymerase III, alpha subunit) YP_002225071 2e-178 35 1211 

contig1 37,377 Actinobacillus phage Aaphi23 Hypothetical protein NP_852765 0.0 80 502 

contig2 32,643 Clostridium botulinum  Phage terminase CBZ04420 1e-126 50 455 

contig3 27,140 Arthrobacter gangotriensis Phage terminase WP_007271553 2e-166 53 492 

contig4 25,518 Actinomyces turicensis Hypothetical protein WP_006681903 1e-129 38 738 

contig5 24,466 Treponema denticola  Phage minor structural protein WP_010699111 0.0 63 1353 

contig6 24,071 Bacillus amyloliquefaciens Prophage-derived protein YonE YP_005421079 3e-40 29 462 

contig7 22,729 Thermosinus carboxydivorans  Lytic transglycosylase ZP_01666661 0.0 50 884 

contig8 22,651 Actinomyces turicensis Terminase WP_006681889 2e-118 51 414 

contig9 22,112 Methanobrevibacter ruminantium  RNA ligase YP_003423768 1e-95 49 416 

contig10 21,200 Lachnospiraceae bacterium  Phage tail tape measure protein WP_009320577 3e-171 36 1372 

contig11 19,385 Prevotella multisaccharivorax  
Phage tail tape measure protein, TP901 

family 
ZP_08578267 2e-180 32 1493 

contig12 17,863 Coprococcus sp. HPP007 
Anaerobic ribonucleoside-triphosphate 

reductase 
WP_016438838 4e-162 64 417 

contig13 17,760 Rhodococcus phage ReqiPoco6 Phage-related terminase ADD81014 0.0 63 578 

contig14 17,370 Acidaminococcus intestini  Phage portal protein YP_004896747 4e-135 54 450 

contig15 16,709 Capnocytophaga sputigena  Hypothetical protein ZP_03392197 5e-141 92 280 

contig16 16,491 Lactococcus phage 1706 Putative terminase large subunit YP_001828656 0.0 65 581 

contig17 15,213 Streptococcus infantis Phage tail tape measure protein  ZP_08523200 0.0 92 1007 

contig18 14,978 Atopobium parvulum  Phage tail tape measure protein YP_003179609 0.0 76 959 

contig19 14,621 Ruminococcus torques  Phage primase ZP_01968459 0.0 50 1365 

contig20 13,844 Clostridium leptum Phage terminase ZP_02079960 0.0 71 580 

contig21 13,698 Rhodococcus phage E3 Terminase large subunit YP_008061043 0.0 54 642 

contig22 13,687 Veillonella parvula Chromosome segregation protein EGL77600 0.0 60 633 

contig23 13,512 Rhodococcus phage ReqiPepy6 Phage primase ADD80963 0.0 50 1298  

contig24 13,410 Solobacterium moorei Hypothetical protein ZP_08029139 2e-90 69 213 
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Contig  

Contig 

size 

(bp) 

Phage/Organism containing 

prophage 
Best BLAST hit 

Accession 

number 

E-

value 

% 

identity 

Hit 

length 

(aa) 

contig25 13,204 Ruminococcus sp. SR1/5 Phage tail tape measure protein CBL20009 6e-22 33 231 

contig26 13,166 Streptococcus sp. F0442 Phage tail tape measure protein WP_009732633 0.0 81 1442 

contig27 12,806 Pseudomonas aeruginosa 39016 Phage tail tape measure protein ZP_07793213  0.0 97 1281 

contig28 12,766 Flavonifractor plautii Phage terminase, PBSX family ZP_09386037 3e-109 47 400 

contig29 12,549 Streptococcus mitis Helicase  EGU67659 0.0 97 526 

contig30 12,371 Clostridium bolteae Hypothetical protein WP_002573180 2e-121 40 545 

contig31 12,206 Streptococcus phage YMC-2011 Collagen binding domain protein AEJ54387 2e-66 41 381 

contig32 11,815 Lactococcus phage 1706 Phage primase YP_001828703 0.0 52 1284 

contig33 11,362 Oribacterium sp. C-5 cytosine-specific DNA methylase ZP_09323670 0.0 85 411  

contig34 11,357 Clostridium symbiosum Hypothetical protein ZP_08105582 1e-17 45 106 

contig35 11,280 Streptococcus parasanguinis Phage tail tape measure protein WP_003017707 0.0 73 1565 

contig36 11,019 Pseudomonas aeruginosa 39016 Integrase ZP_07793182 0.0 98 594 

contig37 10,939 Coprococcus catus 1,4-beta-N-acetylmuramidase CBK80688 3e-74 44 363 

contig38 10,910 Streptococcus anginosus Phage tail protein WP_003038238 0.0 51 620 

contig39 10,903 Micrococcus luteus Phage tail tape measure protein WP_002856287 3e-106 35 1045 

contig40 10,857 Prevotella oris ClpP protease ZP_07035944 0.0 99 365 

contig41 10,724 Kingella oralis Baseplate J-like protein ZP_04601766 6e-146 96 299 

contig42 10,665 Solobacterium moorei Site-specific recombinase ZP_08029163 4e-119 96 214 

contig43 10,644 Dysgonomonas mossii Phage terminase ZP_08471641 7e-51 48 212 
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Figure 2. 2. TBLASTX comparison of seven selected contigs assembled from the 

cystic fibrosis sputum metagenomic short reads to the most similar sequences in 

GenBank. The level of amino acid identity is shown in the gradient scale. Red arrows 

indicate position of the PCR primers used for multigene assembly verification. The 

figure was drawn using Easyfig. 
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2.3.3. Diversity of viruses in CF sputum 

PHACCS analysis showed that the diversity was low with 89 species (Table 2.4). 

This is comparable to that previously reported from CF sputum (69-154 species) 

(Willner et al., 2009) and CF lung (14-105 species) (Willner et al., 2012) using a 

different sequencing methodology (454). The abundance of the most predominant 

viral genotype identified by PHACCS in the CF virome was 4.7%. 

 

Table 2.4. Diversity analysis of the CF sputum metagenome in this study compared 

with previously published CF sputum metagenome. 

 

Sample Richness Evenness 
Shannon 

Index 
Model 

CF sputum (this study) 89 genotypes 0.98 4.41 logarithmic 

CF sputum (Willner et al., 2009) 105 genotypes 0.85 4.17 logarithmic 

CF lung (post-mortem, different lobes) 

(Willner et al., 2012)  
14-105 genotypes NA* NA logarithmic 

 

* Data not available 

 

2.3.4. Functional classification 

The contig functional annotation based on SEED Subsystem classification was 

carried out using MG-RAST. 556 genes predicted by MG-RAST were assigned and 

the dominant subsystem was Phages, Prophages (Figure 2.3A, Table 2.5) comprising 

83% of total assigned sequences. This category contained phage-related proteins e.g. 

phage tail, capsid, lysin, terminase, integrase, portal protein and virulence associated 

platelet-binding proteins. The other CDS with a functional prediction belonged 

mostly to the DNA metabolism, including genes encoding DNA polymerase, 

ssDNA-binding protein and DNA helicase. 

 

Coding DNA sequences (CDS) predicted from contigs were annotated using the 

COG database. 11% of CDS could be assigned to COG database functional 

categories (Figure 2.3B, Table 2.6). The three most abundant COG functional 

categories were replication, recombination and repair (28%), general function (21%) 

and function unknown (20%). Most of these annotated CDS were predicted to 

encode genes involved in lysogeny (e.g. site-specific recombinase XerD), assembly 

(e.g. terminase), replication (e.g. helicase, DNA polymerase, ssDNA-binding 

protein), transcription (e.g. transcriptional regulator), virulence (e.g. glucan-binding 
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domain), stress response (e.g. SOS-response transcriptional repressor RecA), 

infection immunity (e.g. phage antirepressor protein) and host lysis (e.g. 1,4-beta-N-

acetylmuramidase). 

 

 

Figure 2. 3. Functional annotation of contigs assembled from CF sputum 

metagenome to SEED-Subsystem using MG-RAST (A) and contigs CDS to COG 

database using WebMGA (B). 
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Table 2.5. Functional classification of the contigs assembled from the CF sputum 

viral metagenome to the SEED database, based on the MG-RAST analysis (e-value 

1e-05 and minimum alignment length 50). 

 

SEED level 1 categories Function 
ORF 

count 

Phages, Prophages Phage protein 132 

Phages, Prophages Phage tail length tape-measure protein 37 

Phages, Prophages Phage major capsid protein 34 

Phages, Prophages Phage terminase 34 

Phages, Prophages Phage lysin 26 

Phages, Prophages Phage tail fibers 23 

Phages, Prophages Human platelet-binding protein 22 

Phages, Prophages Phage minor tail protein 20 

Phages, Prophages Phage integrase 19 

Phages, Prophages Phage portal protein 16 

DNA Metabolism DNA polymerase 13 

Phages, Prophages Phage capsid and scaffold 13 

DNA Metabolism Single-stranded DNA-binding protein 12 

Regulation and Cell signaling Prophage Clp protease-like protein 11 

DNA Metabolism DNA helicase  10 

Phages, Prophages Structural protein 9 

Phages, Prophages Phage holin 9 

Phages, Prophages Phage major tail protein 8 

Phages, Prophages Phage antirepressor 7 

Phages, Prophages Phage tape measure 7 

Regulation and Cell signaling Cell wall-associated murein hydrolase LytA 6 

Cell Wall and Capsule N-acetylmuramoyl-L-alanine amidase (EC 3.5.1.28) 6 

Phages, Prophages Phage collar 6 

Phages, Prophages Phage endopeptidase 5 

Phages, Prophages Phage repressor 5 

DNA Metabolism DNA-cytosine methyltransferase (EC 2.1.1.37) 4 

Phages, Prophages Site-specific recombinase 4 

DNA Metabolism DNA polymerase III alpha subunit (EC 2.7.7.7) 3 

DNA Metabolism 
DNA polymerase III subunits gamma and tau (EC 

2.7.7.7) 
3 

Cofactors, Vitamins GTP cyclohydrolase I (EC 3.5.4.16) type 1 3 

Phages, Prophages Phage baseplate 3 

Phages, Prophages Phage minor capsid protein 3 

Phages, Prophages Phage tail assembly 3 

Phages, Prophages 
Hypothetical homolog in superantigen-encoding 

pathogenicity islands SaPI 
3 

DNA Metabolism DinG family ATP-dependent helicase YoaA 2 

DNA Metabolism DNA primase (EC 2.7.7.-) 2 

Phages, Prophages Phage major tail shaft protein 2 

Phages, Prophages Phage tail fiber protein 2 

DNA Metabolism Recombinational DNA repair protein RecT 2 

Clustering-based subsystems Superfamily II DNA/RNA helicases, SNF2 family 2 

DNA Metabolism ATP-dependent DNA helicase UvrD/PcrA 1 

Cell Division and Cell Cycle Cell division protein FtsK 1 

Stress Response Choline binding protein A 1 

Phages, Prophages 
CI-like repressor, superantigen-encoding pathogenicity 

islands SaPI 
1 

Virulence, Disease and 

Defense 
Collagen-like surface protein 1 
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Nucleosides and Nucleotides Deoxycytidine triphosphate deaminase (EC 3.5.4.13) 1 

Phages, Prophages DNA adenine methyltransferase, phage-associated 1 

DNA Metabolism DNA gyrase subunit A (EC 5.99.1.3) 1 

Phages, Prophages DNA methyl transferase, phage-associated 1 

DNA Metabolism DNA topoisomerase I (EC 5.99.1.2) 1 

DNA Metabolism DNA-binding protein HBsu 1 

DNA Metabolism Exodeoxyribonuclease III (EC 3.1.11.2) 1 

Motility and Chemotaxis Flagellar hook-length control protein FliK 1 

DNA Metabolism Helicase loader DnaI 1 

Phages, Prophages 
Integrase, superantigen-encoding pathogenicity islands 

SaPI 
1 

Protein Metabolism Methionyl-tRNA formyltransferase (EC 2.1.2.9) 1 

Phages, Prophages Phage DNA and RNA binding protein 1 

Phages, Prophages Phage DNA-binding protein 1 

Phages, Prophages Phage endolysin 1 

Phages, Prophages Phage NinG rap recombination 1 

Phages, Prophages Phage tail sheath monomer 1 

Clustering-based subsystems Protein NinG 1 

RNA Metabolism PUA-PAPS reductase like fusion 1 

Cofactors, Vitamins Queuosine Biosynthesis QueC ATPase 1 

Membrane Transport Shufflon-specific DNA recombinase 1 

Total  556 

 

Table2.6. Functional annotation of CDS predicted on contigs assembled from the CF 

sputum viral metagenome, based on the BLASTP analysis to the COG database. 

 

Class description Description 
CDS 

count 

Function unknown  Phage-related protein 63 

Replication, recombination and repair  Site-specific recombinase XerD 37 

General function prediction only  Phage terminase large subunit 28 

Function unknown  Uncharacterized proteins 24 

Transcription  Predicted transcriptional regulators 19 

Replication, recombination and repair  Single-stranded DNA-binding protein 16 

Multiple classes Protease subunit of ATP-dependent Clp proteases 14 

Multiple classes Superfamily II DNA/RNA helicases, SNF2 family 13 

General function prediction only  FOG: Glucan-binding domain (YG repeat) 13 

Nucleotide transport and metabolism  dUTPase 12 

General function prediction only  Predicted ATPase 9 

Replication, recombination and repair  DNA polymerase elongation subunit (family B) 8 

Multiple classes 
SOS-response transcriptional repressors (RecA-

mediated autopeptidases) 
8 

Function unknown  Small integral membrane protein 8 

Replication, recombination and repair  Replicative DNA helicase 7 

Replication, recombination and repair  
DNA polymerase I - 3'-5' exonuclease and 

polymerase domains 
7 

Replication, recombination and repair  Holliday junction resolvase 7 

Cell wall/membrane/envelope 

biogenesis  
Lyzozyme M1 (1,4-beta-N-acetylmuramidase) 6 

General function prediction only  Bacteriophage capsid protein 6 

General function prediction only  
Predicted P-loop ATPase and inactivated 

derivatives 
6 

Replication, recombination and repair  Site-specific DNA methylase 5 

Replication, recombination and repair  DNA primase (bacterial type) 5 
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Replication, recombination and repair  DNA replication protein 5 

General function prediction only  Phage tail sheath protein FI 5 

General function prediction only  Phage-related baseplate assembly protein 5 

Replication, recombination and repair  RecA/RadA recombinase 4 

Replication, recombination and repair  DNA polymerase III, alpha subunit 4 

Posttranslational modification, protein 

turnover, chaperones  
Organic radical activating enzymes 4 

Multiple classes DNA or RNA helicases of superfamily II 4 

Amino acid transport and metabolism  Predicted Zn peptidase 4 

General function prediction only  Phage tail tube protein FII 4 

General function prediction only  Phage protein D 4 

Replication, recombination and repair  RecA-family ATPase 4 

Transcription  Prophage antirepressor 4 

General function prediction only  Bacteriophage P2-related tail formation protein 4 

General function prediction only  Phage P2 baseplate assembly protein gpV 4 

Function unknown  Phage-related minor tail protein 4 

Replication, recombination and repair  
Type IIA topoisomerase (DNA gyrase/topo II, 

topoisomerase IV), B subunit 
3 

Replication, recombination and repair  
NAD-dependent DNA ligase(contains BRCT 

domain typeII) 
3 

Cell wall/membrane/envelope 

biogenesis  

Cell wall-associated hydrolases (invasion-

associated proteins) 
3 

Function unknown  
Uncharacterized protein, homolog of phage Mu 

protein gp30 
3 

Replication, recombination and repair  
Recombinational DNA repair protein (RecE 

pathway) 
3 

General function prediction only  Putative secretion activating protein 3 

Defense mechanisms  Abortive infection bacteriophage resistance protein 3 

Cell wall/membrane/envelope 

biogenesis  
Predicted outer membrane protein 3 

Function unknown  Phage-related tail protein 3 

General function prediction only  Bacteriophage tail assembly protein 3 

Function unknown  Uncharacterized protein conserved in bacteria 3 

Cell wall/membrane/envelope 

biogenesis  
N-acetylmuramoyl-L-alanine amidase 3 

Multiple classes 

3'-phosphoadenosine 5'-phosphosulfate 

sulfotransferase (PAPS reductase)/FAD synthetase 

and related enzymes 

2 

Nucleotide transport and metabolism  Guanylate kinase 2 

Replication, recombination and repair  Superfamily I DNA and RNA helicases 2 

Coenzyme transport and metabolism  GTP cyclohydrolase I 2 

Replication, recombination and repair  ATPase involved in DNA repair 2 

Replication, recombination and repair  
ATP-dependent exoDNAse (exonuclease V), alpha 

subunit - helicase superfamily I member 
2 

Energy production and conversion  Glycerophosphoryl diester phosphodiesterase 2 

Replication, recombination and repair  Transposase and inactivated derivatives 2 

Posttranslational modification, protein 

turnover, chaperones  
Glutaredoxin and related proteins 2 

Coenzyme transport and metabolism  6-pyruvoyl-tetrahydropterin synthase 2 

Cell wall/membrane/envelope 

biogenesis  

Membrane proteins related to 

metalloendopeptidases 
2 

Replication, recombination and repair  DNA modification methylase 2 

Cell cycle control, cell division, 

chromosome partitioning  
Chromosome segregation ATPases 2 

Nucleotide transport and metabolism  
Oxygen-sensitive ribonucleoside-triphosphate 

reductase 
2 

Nucleotide transport and metabolism  Predicted alternative thymidylate synthase 2 
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Signal transduction mechanisms  
Predicted ATPase related to phosphate starvation-

inducible protein PhoH 
2 

Function unknown  Uncharacterized protein with SCP/PR1 domains 2 

Replication, recombination and repair  DNA polymerase III, gamma/tau subunits 2 

Defense mechanisms  Negative regulator of beta-lactamase expression 2 

Function unknown  
Uncharacterized homolog of phage Mu protein 

gp47 
2 

General function prediction only  Phage protein U 2 

Transcription  Phage anti-repressor protein 2 

General function prediction only  Phage baseplate assembly protein W 2 

Replication, recombination and repair  Phage terminase, small subunit 2 

General function prediction only  Phage head maturation protease 2 

Replication, recombination and repair  Putative primosome component and related proteins 2 

General function prediction only  Mu-like prophage protein 2 

General function prediction only  SLT domain proteins 2 

General function prediction only  
ABC-type uncharacterized transport system, 

ATPase component 
2 

General function prediction only  Predicted phosphoesterase or phosphohydrolase 2 

General function prediction only  Mu-like prophage FluMu protein gp28 2 

Function unknown  Mu-like prophage protein gp16 2 

General function prediction only  Phage-related holin (Lysis protein) 2 

General function prediction only  Phage-related tail fibre protein 2 

Replication, recombination and repair  Phage-related protein, predicted endonuclease 2 

Cell wall/membrane/envelope 

biogenesis  
Endopolygalacturonase 2 

Signal transduction mechanisms  NAD+--asparagine ADP-ribosyltransferase 2 

Function unknown  Predicted membrane protein 2 

Carbohydrate transport and 

metabolism  
Predicted sugar kinase 1 

Transcription  DNA-directed RNA polymerase, beta subunit 1 

Replication, recombination and repair  
Type IIA topoisomerase (DNA gyrase/topo II, 

topoisomerase IV), A subunit 
1 

Nucleotide transport and metabolism  Thymidylate synthase 1 

Translation, ribosomal structure and 

biogenesis  
Cysteinyl-tRNA synthetase 1 

Translation, ribosomal structure and 

biogenesis  
Methionyl-tRNA formyltransferase 1 

Replication, recombination and repair  
5'-3' exonuclease (including N-terminal domain of 

PolI) 
1 

Defense mechanisms  
Type I restriction-modification system 

methyltransferase subunit 
1 

Replication, recombination and repair  Ribonuclease HI 1 

Replication, recombination and repair  Site-specific DNA methylase 1 

Energy production and conversion  Uncharacterized flavoproteins 1 

Posttranslational modification, protein 

turnover, chaperones  
Chaperonin GroEL (HSP60 family) 1 

Replication, recombination and repair  ATPase involved in DNA replication 1 

Coenzyme transport and metabolism  
Dinucleotide-utilizing enzymes involved in 

molybdopterin and thiamine biosynthesis family 2 
1 

Replication, recombination and repair  
DNA polymerase sliding clamp subunit (PCNA 

homolog) 
1 

General function prediction only  Predicted PP-loop superfamily ATPase 1 

Replication, recombination and repair  Single-stranded DNA-specific exonuclease 1 

Multiple classes Periplasmic serine proteases (ClpP class) 1 

General function prediction only  Predicted permease 1 

Signal transduction mechanisms  Signal transduction histidine kinase 1 

Replication, recombination and repair  Exonuclease III 1 
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Nucleotide transport and metabolism  Deoxycytidine deaminase 1 

Multiple classes 

Response regulators consisting of a CheY-like 

receiver domain and a winged-helix DNA-binding 

domain 

1 

Replication, recombination and repair  Bacterial nucleoid DNA-binding protein 1 

Transcription  Transcription elongation factor 1 

Cell wall/membrane/envelope 

biogenesis  

Periplasmic protein TonB, links inner and outer 

membranes 
1 

Replication, recombination and repair  
Holliday junction resolvasome, endonuclease 

subunit 
1 

Replication, recombination and repair  
DNA polymerase III, epsilon subunit and related 3'-

5' exonucleases 
1 

Posttranslational modification, protein 

turnover, chaperones  
Predicted ATP-dependent serine protease 1 

Cell cycle control, cell division, 

chromosome partitioning  
ATPases involved in chromosome partitioning 1 

Replication, recombination and repair  
Recombinational DNA repair ATPase (RecF 

pathway) 
1 

Multiple classes 

Nucleoside-diphosphate-sugar pyrophosphorylase 

involved in lipopolysaccharide 

biosynthesis/translation initiation factor 2B, 

gamma/epsilon subunits (eIF-2Bgamma/eIF-

2Bepsilon) 

1 

General function prediction only  
Metal-dependent hydrolases of the beta-lactamase 

superfamily I 
1 

Replication, recombination and repair  
Predicted ATPase involved in replication control, 

Cdc46/Mcm family 
1 

Replication, recombination and repair  Intein/homing endonuclease 1 

Cell wall/membrane/envelope 

biogenesis  
FOG: LysM repeat 1 

Replication, recombination and repair  Micrococcal nuclease (thermonuclease) homologs 1 

Multiple classes ABC-type Na+ efflux pump, permease component 1 

Cell cycle control, cell division, 

chromosome partitioning  
DNA segregation ATPase FtsK/SpoIIIE  1 

Multiple classes Muramidase (flagellum-specific) 1 

Signal transduction mechanisms  DnaK suppressor protein 1 

General function prediction only  C-terminal domain of topoisomerase IA 1 

Replication, recombination and repair  
Site-specific recombinases, DNA invertase Pin 

homologs 
1 

Nucleotide transport and metabolism  Deoxycytidylate deaminase 1 

Multiple classes 
Response regulator containing a CheY-like receiver 

domain and an HTH DNA-binding domain 
1 

General function prediction only  
ABC-type ATPase fused to a predicted 

acetyltransferase domain 
1 

Defense mechanisms  Predicted type IV restriction endonuclease 1 

Cell wall/membrane/envelope 

biogenesis  
Membrane protein involved in colicin uptake 1 

General function prediction only  Predicted chitinase 1 

Intracellular trafficking, secretion, and 

vesicular transport  

Type II secretory pathway, component ExeA 

(predicted ATPase) 
1 

Cell wall/membrane/envelope 

biogenesis  

Putative peptidoglycan-binding domain-containing 

protein 
1 

Cell wall/membrane/envelope 

biogenesis  
Sortase (surface protein transpeptidase) 1 

Intracellular trafficking, secretion, and 

vesicular transport  
Type IV secretory pathway, TrbL components 1 

Inorganic ion transport and 

metabolism  

Uncharacterized protein involved in tellurite 

resistance 
1 

General function prediction only  Predicted glycosyl hydrolase 1 
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Function unknown  Mu-like prophage protein gp29 1 

Function unknown  Mu-like prophage protein gp36 1 

Cell wall/membrane/envelope 

biogenesis  

Predicted soluble lytic transglycosylase fused to an 

ABC-type amino acid-binding protein 
1 

General function prediction only  Predicted kinase 1 

Function unknown  Microcystin-dependent protein 1 

Function unknown  Phage-related protein, tail component 1 

General function prediction only  Antirestriction protein 1 

Amino acid transport and metabolism  Ornithine/acetylornithine aminotransferase 1 

General function prediction only  P2-like prophage tail protein X 1 

General function prediction only  Mu-like prophage protein gpG 1 

Function unknown  Phage-related minor tail protein 1 

Total 
 

562 

 

2.3.5. Resistance to antibiotics 

To characterize potential antibiotic resistance genes in the CF metagenome, both the 

unassembled reads and CDS predicted from assembled data were compared to the 

Comprehensive Antibiotic Resistance Database (CARD). Forty out of 495 assigned 

reads had significant similarity (>90% reads coverage, >90% identity) to known 

antibiotic resistance genes (Table 2.7). CARD-represented genes potentially 

conferring resistance to β–lactams, tetracycline, macrolide and penicillin antibiotics, 

as well as toxic compounds like cadmium and arsenic. The majority of these genes 

could be attributed to bacteria abundant in the respiratory tract of CF patients and 

individuals without CF. Two contigs contained complete metallo-β-lactamase gene 

sequences along with phage recombinases (Figure 2.4, Table 2.8). BLASTP analysis 

of CDS predicted on those contigs indicated that multiple CDS from contig 22 were 

related to Veillonella species. Contig 71 had multiple hits with identities to different 

bacteria; the highest BLASTP identity was 72% to Gemella haemolysins. 

Phylogenetic analysis of translated metallo-β-lactamase sequences is shown in Figure 

2.5. 

 

2.3.6. Toxin genes 

A staphylococcal complement inhibitor gene scn was detected on a 3 kb contig 

(Table 2.8). An exeA gene sometimes associated with type II secretion of toxins was 

detected on an 11 kb contig (Table 2.8) downstream of an integrase gene (Figure 

2.2). This arrangement is seen in a wide variety of Pseudomonas and Salmonella 

strains (Stavrinides & Guttman, 2004) and various virulence-associated mobile 

elements (Stavrinides et al., 2012) where the exeA gene is believed to be associated 
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with regulation of transposition, not secretion. Although flanking inverted repeats 

were not detected on the contig containing the exeA gene, two direct 20 bp DNA 

repeats separated by 14 bp characteristic of E622/TnE622 mobile element inverted 

repeats (Stavrinides et al., 2012) were present upstream of the integrase gene (data 

not shown). 

 

 

 

Figure 2. 4. Analysis of the gene order in two contigs containing metallo-β-lactamase 

and phage recombinase genes. Predicted protein coding genes were annotated using 

NCBI protein database. CDS of contig 22 displayed similarities to different 

Veillonella species. CDS of contig 71 had multiple hits to different bacteria, and the 

highest BLASTP identity was 72% to Gemella haemolysans, while metallo-β-

lactamase CDS showed 46% identity to Listeria phage. Metallo-β-lactamase CDS of 

contig 22 is directly adjacent to phage recombinase suggesting this is an integron. 

Metallo-β-lactamases are coloured in red. The figure was drawn using Easyfig and 

edited in Photoshop CS4. 

 

 

 

 

Figure 2. 5. Neighbour-joining phylogenetic tree showing the relationship between 

the predicted metallo-β-lactamase sequences assembled from the cystic fibrosis 

sputum metagenomic short reads and most related sequences in GenBank. Metallo-β-

lactamase sequences detected in this study are shown in bold. 
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Table 2.7. Antibiotic and toxic compound resistance gene hits found in CF sputum metagenome reads. Only hits to reads having >90% 

identity and 90% coverage are shown. 

 

Resistance gene function Resistance gene Resistance conferred Best-match organism 
No. of hits to 

reads 

Class B β-lactamase MBL penicillin, cephalosporin, carbapenem Granulicatella adiacens 6 

Class A β-lactamase blaTEM-1 ampicillin Streptomyces ghanaensis  5 

Ribosomal protection protein tetW, tetM tetracycline Bifidobacterium longum  4 

Multidrug resistance efflux pump tolC 
acriflavin, aminoglycoside, beta-lactam, glycylcycline, 

macrolide 
Acinetobacter lwoffii 2 

RND multidrug efflux pump mexF chloramphenicol, fluoroquinolone  Pseudomonas aeruginosa 2 

Cadmium resistance protein cadD  cadmium Streptococcus mitis 2 

RND multidrug efflux pump acrB 
acriflavin, aminoglycoside, beta-lactam, glycylcycline, 

macrolide 
Veillonella parvula 2 

RND multidrug efflux pump acrB 
acriflavin, aminoglycoside, beta-lactam, glycylcycline, 

macrolide 
Escherichia coli 1 

Multidrug resistance efflux pump mdtE rhodamine, erythromycin, doxorubicin Escherichia coli 1 

Multidrug resistance efflux pump macB macrolide Haemophilus haemolyticus 1 

Ribosomal protection protein tetM tetracycline multiple hits 1 

Glycosyl transferase ponA penicillin  Neisseria gonorrhoeae 1 

Arsenical resistance protein arsH arsenic Pseudomonas aeruginosa 1 

RND multidrug efflux pump mexN chloramphenicol, fluoroquinolone  Pseudomonas aeruginosa 1 

Class D beta-lactamase blaOXA-50a oxazolylpenicillins Pseudomonas aeruginosa 1 

Class B beta-lactamase MBL penicillin, cephalosporin, carbapenem Selenomonas flueggei 1 

Ribosomal protection protein tetM tetracycline Streptococcus agalactiae 1 

Multidrug resistance efflux pump macB macrolide Streptococcus infantis 1 

Glycopeptide vanZ vancomycin, teicoplanin Streptococcus parasanguinis 1 

Multidrug resistance efflux pump macB macrolide Streptococcus pneumoniae 1 

Peptidoglycan binding protein vanW vancomycin Veillonella atypica 1 

Transglycosylase mrcA penicillin Veillonella atypica 1 

Multidrug resistance efflux pump macAB macrolide Veillonella atypica 1 

Class B beta-lactamase MBL penicillin, cephalosporin, carbapenem Veillonella atypica 1 
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Table 2.8. Virulence genes, antibiotic and toxic compound resistance genes found in CDS predicted on the assembled contigs. 

 

Resistance/Virulence gene 

function 
Gene 

Resistance 

conferred 
Best-match organism 

BLAST 

identity (%) 
E-value 

Query 

coverage (%) 

ORF 

length 

(aa) 

Contig 

length 

(kb) 

Contig 

name 

metallo-β-lactamase MBL β-lactam Listeria phage P40  46 1e-43 100 192 7.3 c71 

metallo-β-lactamase MBL β-lactam Veillonella atypica  70 8e-124 100 238 13.7 c22 

N-acetyl-anhydromuramil-l-

alanine amidase 
ampD β-lactam Capnocytophaga sputigena 93 4e-85 100 144 16.7 c15 

N-acetyl-anhydromuramil-l-

alanine amidase 
ampD β-lactam Atopobium rimae 39 3e-68 90 348 21.2 c10 

Two-component response 

regulator 
ompR Copper TM7 (oral taxon)   58 7e-88 99 222 0.9 c490 

Tellurite resistance protein telA Tellurite Lactococcus garvieae 33 4e-08 86 94 2.1 c253 

Type II secretory pathway exeA 
Virulence 

gene 
Pseudomonas aeruginosa 100 0.0 100 388 11 c36 

Collagen binding domain cbsA 
Virulence 

gene 
Streptococcus salivarius 39 3e-80 93 478 12.2 c31 

Collagen binding domain cbsA 
Virulence 

gene 
Streptococcus salivarius 40 7e-65 80 471 9.4 c51 

Staphylococcal complement 

inhibitor SCIN 
scn 

Virulence 

gene 
Staphylococcus aureus 100 2e-74 100 116 3.4 c154 
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2.3.7. Comparison with other viral metagenomes  

The comparative analysis was based on Principal Component Analysis (PCA) using 

MG-RAST. The viral metagenomes used for comparison with assembled CF sputum 

metagenome were: CF sputum (Willner et al., 2009), oropharyngeal swabs from 

healthy individuals (Willner et al., 2010), human lower respiratory tract (Lysholm et 

al., 2012), human saliva (Pride et al., 2012) and terrestrial hot springs used as an 

outgroup (Pride & Schoenfeld, 2008). PCA analysis indicated that viral communities 

found in the CF sputum in this study were more similar to salivary viruses (Figure 

2.6A), while functional genes were distinct (Figure 2.6B). 

 

 
 

Figure 2. 6. Principal component analysis (PCA) based on organism abundance (A) 

and functional abundance (B) using MG-RAST. Metagenome comparisons were 

calculated for CF sputum metagenome (contigs >100bp) (red circle) and other 

published viral metagenomes (black circles): CF sputum (Willner et al., 2009), 

human oropharynx (Willner et al., 2010), human lower respiratory tract (Lysholm et 

al., 2012), human saliva (Pride et al., 2012) and hot springs (Pride & Schoenfeld, 

2008). The data was compared to GenBank (organism abundance) and Subsystems 

(functional abundance) using a maximum e-value of 1e-05, a minimum identity of 80 

%, and a minimum alignment length of 50. 
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2.3.8. CRISPR sequences in CF viral metagenome 

Analysis of bacterial CRISPR spacers matching the CF metagenome revealed that 

there were 54 different spacers matching CF reads and 15 different spacers matching 

assembled contigs (Table 2.9). Multiple metagenome sequence matches were seen 

with CRISPR sequences from the following genera:  Clostridium (5), Streptococcus 

(5), Corynebacterium (2), Leptotrichia (2), Methanothermococcus (2), Pelobacter 

(2), Pseudomonas (2), Rothia (2) and Veillonella (2). The most common identified 

contig CDS containing CRISPR hits were phage structural genes followed by phage 

enzymes. Functional assignment of these CDS is shown in Table 2.10. 

 

CRISPR repeat-based PCR amplification on bacterial DNA in sputum from local CF 

patients and CRISPRfinder analysis of sequenced clones resulted in identification of 

40 unique spacers (Table 2.11). BLASTN analysis revealed that 29 (72.5%) spacers 

had identity to known Pseudomonas aeruginosa isolates and phages, while 

remaining spacers were novel. None of the spacers matched the viral metagenome 

contigs, including the spacers identified in the bacterial DNA extracted from the 

same sputum as the metagenomic phage DNA used in this study. The most frequent 

CDS identity of the CRISPR hits were tail proteins and P-loop NTPase. 

 

2.3.9. Identification of novel Torque Teno viruses in CF sputum 

Eleven contigs analysed had similarity to human Torque Teno virus (TTV). 

Divergent PCR using primers designed from the largest (2.8 kb) assembled contig 

followed by product sequencing confirmed it formed closed circle in the phage DNA 

sample (Figure 2.7). Phylogenetic analysis based on the translated capsid protein 

(ORF1) from the three largest contigs indicated co-infection with at least three highly 

divergent anelloviruses (Figure 2.8).  
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Table 2.9. Bacterial CRISPRdb (Grissa et al., 2007b) spacers matching CF reads and 

contigs. 

Bacterial genome 

No. of  unique 

spacers matching 

CF reads  

No. of  unique 

spacers matching 

CF contigs 

Acidianus hospitalis W1 1 0 

Arcanobacterium haemolyticum DSM 20595 1 0 

Bacillus coagulans 2-6 1 0 

Bifidobacterium dentium Bd1 1 0 

Caldicellulosiruptor obsidiansis OB47 1 0 

Caldicellulosiruptor owensensis OL 0 1 

Candidatus Arthromitus sp. SFB-mouse-Japan 1 0 

Clostridium botulinum A3 str. Loch Maree 1 0 

Clostridium difficile CD196 1 0 

Clostridium novyi NT 2 1 

Clostridium thermocellum ATCC 27405 1 0 

Corynebacterium resistens DSM 45100 1 0 

Corynebacterium urealyticum DSM 7109 1 0 

Dictyoglomus turgidum DSM 6724 1 0 

Erwinia tasmaniensis Et1/99 1 0 

Fusobacterium nucleatum subsp. nucleatum 25586 1 0 

Isosphaera pallida ATCC 43644 1 0 

Leptotrichia buccalis C-1013-b 2 0 

Meiothermus ruber DSM 1279 1 0 

Metallosphaera sedula DSM 5348 1 1 

Methanocaldococcus jannaschii DSM 2661 1 0 

Methanococcus voltae A3 1 0 

Methanosarcina mazei Go1 1 0 

Methanosphaera stadtmanae DSM 3091 1 1 

Methanothermobacter thermautotrophicus Delta H 1 0 

Methanothermococcus okinawensis IH1 2 0 

Neisseria lactamica 020-06 1 0 

Pelobacter carbinolicus DSM 2380 2 1 

Pseudomonas aeruginosa LESB58  1 1 

Pseudomonas aeruginosa UCBPP-PA14  1 1 

Roseiflexus castenholzii DSM 13941 1 1 

Rothia dentocariosa ATCC 17931 2 2 

Salmonella enterica subsp. enterica Typhimurium LT2 1 0 

Streptococcus agalactiae NEM316 1 0 

Streptococcus gordonii str. Challis substr. CH1 2 1 

Streptococcus salivarius CCHSS3 1 1 

Streptococcus sanguinis SK36 1 0 

Sulfolobus islandicus L.D.8.5 1 1 

Syntrophomonas wolfei subsp. wolfei str. Goettingen 1 0 

Thermincola potens JR 1 0 

Thermoanaerobacter pseudethanolicus ATCC 33223 1 0 

Thermobispora bispora DSM 43833 1 0 

Thermodesulfobium narugense DSM 14796 1 0 

Thermomonospora curvata DSM 43183 1 0 

Thermosipho melanesiensis BI429 1 0 

Thermotoga neapolitana DSM 4359 1 0 

Veillonella parvula  DSM 2008 2 2 

Xenorhabdus nematophila ATCC 19061 1 0 

Total 54 15 
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Table 2.10. Analysis of CRISPR spacer matches to CF phage metagenome contigs. 

 

CF phage 

contig 

Bacterial genome CRISPR matches to 

CF phage contigs 
Bacterial source CF phage CDS assignment 

contig3 Rothia dentocariosa ATCC 17931 Human oral cavity N-acetylmuramoyl-L-alanine amidase 

contig7 Veillonella parvula DSM 2008 Human gastrointestinal tract (Gronow et al., 2010) ArpU family transcriptional regulator 

contig27 Pseudomonas aeruginosa LESB58 CF patient (Winstanley et al., 2009) Prophage tail length tape measure protein 

contig63 Rothia dentocariosa ATCC 17931 Human oral cavity XRE family transcriptional regulator 

contig76 Pseudomonas aeruginosa UCBPP-PA14 
Pathogenic isolate from human (unspecified site) 

(Rahme et al., 1995) 
Hypothetical protein 

contig121 Caldicellulosiruptor owensensis OL Lake sediment (Huang et al., 1998) No CDS in match region 

contig132 Clostridium novyi NT Soil  Phage structural protein 

contig144 Methanosphaera stadtmanae DSM 3091 
Archaeal commensal of human intestine (Fricke et 

al., 2006) 
DNA polymerase 

contig176 Pelobacter carbinolicus DSM 2380 Aquatic environments Phage portal protein 

contig298 Streptococcus gordonii str. Challis Human oral cavity (Vickerman et al., 2007) Phage tail protein 

contig334 Veillonella parvula DSM 2008 Human dental plaque Hypothetical protein 

contig1149 Metallosphaera sedula DSM 5348 Hot springs No match 

contig1490 Streptococcus salivarius CCHSS3  Human oral cavity No match 

contig1758 Roseiflexus castenholzii DSM 13941 Hot springs Endolysin 

contig2439 Sulfolobus islandicus L.D.8.5 Volcanic field, Hot springs No match 
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Table 2.11. BLASTN analysis of CRISPRs amplified from bacterial DNA in CF sputum samples. 

 

Spacer 

name 

Sputum 

sample 

No. 

Closest database match 
Database phage CDS 

assignment 

% 

coverage 
% identity E -value 

CFspacer1 

1 

Pseudomonas aeruginosa strain SMC4396 CRISPR repeat sequence - 100 100 3e-08 

CFspacer2 Pseudomonas aeruginosa strain SMC4396 CRISPR repeat sequence - 100 100 3e-08 

CFspacer3 Pseudomonas aeruginosa strain SMC4512 CRISPR repeat sequence - 100 100 3e-08 

CFspacer4 Pseudomonas aeruginosa strain PACS458 clone fa1376 Hypothetical protein 100 100 3e-08 

CFspacer6 Pseudomonas aeruginosa strain PACS171b clone fa1386 Hypothetical protein 100 97 7e-06 

CFspacer7 Pseudomonas phage phi297 Hypothetical protein 100 100 3e-08 

CFspacer10 Pseudomonas aeruginosa NCGM2.S1 
Tail fiber assembly 

protein 
100 97 7e-06 

CFspacer12 Pseudomonas aeruginosa strain PACS458 clone fa1376 Hypothetical protein 100 97 7e-06 

CFspacer13 Pseudomonas aeruginosa 9BR 9BRScaffold1 Hypothetical protein 100 94 0.010 

CFspacer14 Pseudomonas phage MP38 Hypothetical protein 90 97 4e-04 

CFspacer16 Pseudomonas aeruginosa strain PACS171b clone fa1386 P-loop NTPase 96 100 1e-07 

CFspacer19 Pseudomonas aeruginosa 9BR 9BRScaffold1 Hypothetical protein 100 100 2e-07 

CFspacer20 Pseudomonas aeruginosa 9BR 9BRScaffold1 Tail tape measure protein 100 100 2e-07 

CFspacer21 Pseudomonas aeruginosa PADK2_CF510 contig009 Hypothetical protein 100 100 2e-07 

CFspacer24  Pseudomonas phage PAJU2 Replication protein P 100 100 3e-08 

CFspacer25 2 Bacteriophage D3 Hypothetical protein 100 100 3e-08 

CFspacer27  Pseudomonas aeruginosa strain PACS458 clone fa1374 Hypothetical protein 100 97 7e-06 

CFspacer28 

3 

Pseudomonas aeruginosa strain PACS171b clone fa1386 No CDS in match region 100 100 3e-08 

CFspacer29 Pseudomonas aeruginosa 9BR 9BRScaffold1 No CDS in match region 100 100 2e-07 

CFspacer30 Pseudomonas aeruginosa 9BR 9BRScaffold1 Endolysin  100 97 4e-05 

CFspacer31 Pseudomonas aeruginosa strain PACS458 clone fa1376 Hypothetical protein 96 100 1e-07 

CFspacer32 Pseudomonas aeruginosa strain PACS171b clone fa1386 No CDS in match region 100 100 3e-08 

CFspacer33 Pseudomonas aeruginosa NCGM2.S1 Hypothetical protein 100 100 3e-08 

CFspacer34 Pseudomonas aeruginosa PA7 Hypothetical protein 100 100 3e-08 

CFspacer35 Pseudomonas aeruginosa strain PACS171b clone fa1386 P-loop NTPase 100 100 3e-08 

CFspacer36 Pseudomonas aeruginosa 9BR 9BRScaffold1 Tail fibre protein 100 100 2e-07 

CFspacer37 Pseudomonas aeruginosa NCGM2.S1 Hypothetical protein 100 100 3e-08 

CFspacer39 Pseudomonas aeruginosa strain PACS458 clone fa1374 P-loop NTPase 93 97 1e-04 

CFspacer40 4* Pseudomonas phage MP38 Hypothetical protein 90 100 2e-06 
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Figure 2. 7. Genomic organization of the TTMV (Torque Teno Mini Virus) 

assembled from CF sputum metagenome. ORF1 encode the capsid protein, and 

ORF2 and ORF are uncharacterized proteins. 

 

 

 

Figure 2.8. Neighbor-joining phylogenetic tree based on the partial amino acid 

sequences of the ORF1 (capsid protein) of the three anelloviruses identified in this 

study and most similar anellovirus sequences in GenBank. TTV sequences isolated 

in this study are shown in bold. GenBank accession numbers are shown in 

parentheses. TTV (Torque Teno Virus), TTMDV (Torque Teno Midi Virus) and 

TTMV (Torque Teno Mini Virus) indicate phylogenetic groups of TT viruses. 
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2.4. Discussion 

The respiratory tract of cystic fibrosis patients is heavily colonised with biofilm-

forming bacteria which play a major role in the disease process. Environments 

containing large numbers of bacteria generally support bacteriophage predation. The 

phage population in the respiratory tract of CF patients is of relevance to the disease 

process because of the potential for adaptive selection of bacteria by phage, the 

acquisition of novel traits by lysogeny and the future use of phage therapy or phage 

effectors in cystic fibrosis treatment. This study used Illumina short-read-based DNA 

sequencing of filtered sputum to examine the diversity of phages in the potentially 

transmissible form of sputum from a cystic fibrosis patient. We showed that 

expectorated sputum from a cystic fibrosis patient contains phages parasitizing both 

the oral and lower respiratory tract microbiota, and incorporating antimicrobial 

resistance genes. 

 

Although the majority of database hits both from reads and assembled contigs were 

to bacterial sequences, functional analysis showed that the metagenome (from a 

sample filtered and enriched for phage content) was in fact dominated by phage-

related genes, specifying proteins involved in phage integration, assembly, 

replication and host lysis. The abundance of bacterial sequences in viral metagenome 

is consistent with findings of other studies, including a study of viral communities in 

cystic fibrosis sputum (Willner et al., 2009). High abundance of bacterial-like 

sequences in viral metagenomes are likely a result of unannotated prophage regions 

in bacterial genome sequences deposited in public databases (Fouts, 2006) Phages 

similar to those known to infect different species of Streptococcus, Veillonella, 

Pseudomonas, Actinobacillus and Prevotella were the most abundant source for 

these sequences (Figure 2.1, Table 2.2). These results mirror findings of culture-

independent studies of bacterial diversity in CF sputum, in which these genera were 

the most common detected, including the core CF pathogens like Streptococcus 

pneumoniae, Streptococcus mitis, Veillonella dispar, Veillonella atypica, Veillonella 

parvula, Pseudomonas aeruginosa, Prevotella oris and Staphylococcus aureus 

(Bittar et al., 2008; Guss et al., 2011; van der Gast et al., 2011).  
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The vast majority of 76 bp Illumina reads could not be assigned to any known 

database sequences. This could be because sensitivity in the detection of sequence 

homology by BLAST decreases with short read lengths (Wommack et al., 2008). As 

the de novo assembly generated longer contigs, the number of assigned sequences 

improved, with many assignments found that were not detected by read 

classification. The most frequent phage CDS detected in assembled data resembled 

phages infecting different species of Streptococcus (with large contigs having 

similarity to Streptococcus pneumoniae, Streptococcus infantis, Streptococcus mitis 

and Streptococcus sanguinis), constituting about 21% of the assigned sequences 

(Figure 2.1B, Table 2.2). Most of the other contigs resembled phages from bacteria 

present in the oropharynx including a temperate phage of the periodontal pathogens 

Actinobacillus actinomycetemcomitans (Resch et al., 2004), and Capnocytophaga 

sputigena (Stevens et al., 1980), or an organism associated with halitosis, Atopobium 

parvulum (Copeland et al., 2009). Sequence analysis of some of the large contigs 

showed also similarity to the phages of known CF pathogens (Figure 2.2). The 

largest contig had weak similarity to phage isolated by environmental screening with 

a Mycobacterium smegmatis host (Hatfull et al., 2010). Non-tuberculosis 

mycobacteria are known to be prevalent in airways of CF patients (Levy et al., 

2008). Multiple contigs were found with a marked similarity to a prophage from a 

Pseudomonas aeruginosa genome sequence of an organism associated with ocular 

keratitis isolated in Manchester, UK (Stewart et al., 2011). Smaller contigs 

corresponding to sequences from oral bacteria Oribacterium sp., Neisseria 

bacilliformis, Kingella oralis, Solobacterium moorei and Bulleidia extructa were also 

detected (Carlier et al., 2004; Chen, 1996; Downes et al., 2000; Han et al., 2006; 

Haraszthy et al., 2007). 

 

The CF sputum sample described in this study is different from CF sputum described 

by (Willner et al. 2009) at taxonomic and functional level (Figure 2.6). For example, 

Willner et al. study, that used 454 technology, did not report assembly of contigs 

containing apparent Pseudomonas phage sequences, despite the presence of 

culturable Pseudomonas aeruginosa in the sputum of the CF patient used for 

metagenome assembly. The contrasting assembly of multiple Pseudomonas contigs 

in our short read study is compatible with an enhanced assembly capacity of Illumina 

short reads compared with 454 reads (Luo et al., 2012). Illumina sequencing is also 
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cheaper than 454 at present (approximately 25% for a similar metagenome coverage) 

(Luo et al., 2012), and the combination of Illumina sequencing and de novo 

assembly seems suitable for future applications of phage metagenomics such as 

monitoring the effects of phage therapy in cystic fibrosis. 

 

The only eukaryotic virus detected in the contig assembly was Torque Teno virus 

(TTV), a small circular ssDNA virus from the Anelloviridae family, highly prevalent 

in the blood of healthy individuals (Vasilyev et al., 2009). TTV has been associated 

with lower respiratory disease in nasal secretions and bronchoalveolar lavage fluid 

(Maggi et al., 2003; Wootton et al., 2011), although its etiological role in respiratory 

disease is uncertain. TTV has recently been demonstrated in a viral metagenome 

recovered from CF lung sections (Willner et al., 2012), with herpes simplex virus 

and human papilloma virus, which were not detected in our assembly, (there was a 

single read hit to a herpesvirus in our dataset). In this study, we identified at least 

three contigs that were closely related to different groups of TTV (Figure 2.8), 

suggesting coinfection with multiple genogroups as previously noted in faeces by 

PCR (Pinho-Nascimento et al., 2011). Potential transmission of this virus by cystic 

fibrosis sputum is therefore possible.  

 

De novo assembly with Meta-IDBA (Peng et al., 2011) recruited the majority of 

short reads and produced some surprisingly large contigs, with the largest being over 

60 kb long. The assembly accuracy was confirmable by PCR and sequencing on the 

original amplified DNA over multiple CDS in three contigs (Figure 2.2). The use of 

Phi 29 polymerase multiple strand displacement amplification as in this study is 

known to preferentially amplify small circular DNA molecules (Pinard et al., 2006), 

but this did not prevent contig assembly up to 60 kb from a mycobacteriophage 

likely to have a capsid diameter of over 80 nm. The fact that 59% of reads assembled 

into 2,859 contigs >100 bp suggests that the overall viral diversity was limited. This 

is in agreement with the PHACCS analysis that showed that the viral diversity in CF 

sputum was low (Table 2.4) and comparable with viral diversity previously found 

within cystic fibrosis sputum and lung tissue using a different sequencing technique 

(454) (Willner et al., 2009; Willner et al., 2012).  
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Some prophages in the CF metagenome described here may result from antibiotic 

induction, as antibiotic treatment of CF patients contributes to phage induction in 

bacteria (Fothergill et al., 2010). Phages contribute to the development of 

antimicrobial resistance in environmental bacteria by transferring genes encoding 

antibiotic resistance (Colomer-Lluch et al., 2011). β-lactamase genes are highly 

abundant in phages in bacteria-rich environments (Colomer-Lluch et al., 2011; 

Muniesa et al., 2004). In this study two metallo-β-lactamase gene sequences (class B 

β-lactamases) potentially conferring resistance to β-lactam antibiotics were detected 

in the CF sputum viral metagenome (Figure 2.5, Table 2.8). Metallo-β-lactamase 

gene sequences were previously reported in two publications involving 454 

sequencing of CF respiratory tract-associated metagenomic viral DNA from the same 

centre in the USA. One of these reports involved sequence data from lung tissue, 

(Willner et al., 2012), a site with limited potential for transmission - it is well 

established from bronchoalveolar lavage studies that lower airways and lungs in  

cystic fibrosis and other conditions may contain bacteria (and presumably their phage 

predators) that are not detectable in sputum (Hilliard et al., 2007), However the other 

report used data from sputum samples (Willner et al. 2009), in which β-lactamase 

sequences were subsequently detected (Fancello et al., 2011; Willner et al., 2009). 

The consistent presence of metallo-β-lactamase genes in phage sequences from CF 

sputum in different continents obtained using different sequencing methodology 

suggests CF sputum is a potential transmission source for transducible antimicrobial 

resistance genes. 

 

The only toxin gene detected was cin (Table 2.8). This encodes an antiopsonic 

protein which acts on complement C3 convertase and is present in the vast majority 

of Staphylococcus aureus strains isolated from humans (van Wamel et al., 2006). It 

is located in the S. aureus genome on a β-haemolysin converting prophage in an 8 kb 

region containing several other genes acting on the human innate immune system, an 

innate immune evasion cluster (IEC). These prophages are readily inducible as 

infective phages in vitro by mitomycin-C treatment, and it is not surprising to find 

evidence of them in CF sputum, because of the common presence of S. aureus in the 

upper and lower respiratory tract of CF patients.  
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Many bacteria contain clustered, regularly interspaced short palindromic repeats 

(CRISPR elements). These elements are thought to function as defences against 

bacteriophage attack by an RNA interference (RNAi)-like mechanism, inactivating 

extrachromosomal DNA using a short phage sequences placed between conserved 

direct repeats (DR) (Barrangou et al., 2007; Sorek et al., 2008). The presence of 

CRISPR spacer matches (protospacers) from database searches (Bhaya et al., 2011) 

in the CF phage contigs (Table 2.9) suggest that these spacers are derived from 

phages, and the phage matches could be used as a tool to determine possible origins 

of these sequences. Among CRISPR spacers matching our phage contigs (Table 

2.10) were those identified in Pseudomonas aeruginosa genome sequences 

(including a strain isolated from a cystic fibrosis patient), and genomes of other 

bacteria associated with CF including Rothia dentocariosa (Tunney et al., 2008), and 

others whose role in the pathogenesis of cystic fibrosis is uncertain e.g. Leptotrichia 

buccalis. However, locally identified CRISPR spacers (Table 2.11) amplified from 

bacterial DNA in CF sputum with Pseudomonas-specific primers (including bacterial 

DNA from the sputum sample used for the phage metagenome) were not matched to 

the metagenome. This is compatible with local effectiveness of bacterial CRISPR 

systems in resisting phage attack and selecting for phages not represented in CRISPR 

spacer sequences, and also suggests a limited global diversity of phages in the 

respiratory tract of cystic fibrosis patients. 



79 
 

Chapter 3:  

 

 

Metagenomic sequencing of DNA viruses in 

dairy wastewater 
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Abstract 

In this chapter short read (Illumina) sequencing was used to investigate the diversity 

of the DNA virus community in the activated sludge of a dairy food wastewater 

treatment plant. Bacteriophages were isolated from a wastewater sample using a 

tangential flow filtration (TFF) technique with DNase treatment. Phage DNA was 

extracted and amplified by a rolling circle technique and then sheared before 

sequencing as a paired-end sequencing run using Illumina technology. Although over 

99% of reads could not be matched to any GenBank sequence, 47% of the reads were 

assembled into contigs greater than 100 bp using the meta-IDBA assembler. Fifty 

eight contigs were over 10 kb and the largest contig was 114 kb. Most of the 

assigned sequences were mainly of phage or prophage origin, but the majority of the 

sequence data obtained was classified as “unassigned”. Phages from bacteria of the 

genera Vibrio, Mycobacterium, Synechococcus, Pseudomonas and Burkholderia 

comprised the most frequently assembled contigs. Fifteen complete single-stranded 

eukaryotic and prokaryotic viruses were detected in the metagenome assembly 

representing diverse members of Circoviridae, Nanoviridae, Geminiviridae and 

Microviridae families. A substantial number of assigned sequences could be 

affiliated with species typically found in the soil and aquatic environments, including 

wastewater. Viral diversity was moderate, with a total of 20,278 contigs originating 

from 409 species. Genes involved in phages, prophages, DNA metabolism and 

sulphate metabolism were prevalent. Antimicrobial resistance genes detected were 

flanked by phage sequences, suggesting dairy wastewater is a source for 

transmissible antimicrobial resistance.                                                                                                                             
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3.1. Introduction 

Wastewater generated by the dairy food industry is an extremely eutrophic 

environment due to high concentrations of milk products, which render it rich in 

organic and inorganic matter. The main components of dairy wastewater are proteins, 

carbohydrates, lipids and minerals such as ammonia, nitrogen and phosphorus (Britz 

et al., 2005). This environment is inhabited by many different prokaryotic and 

eukaryotic microorganisms specialized in the degradation of organic pollutants and 

nutrients through nitrification, denitrification, ammonification, sulphur and sulphate 

reduction (McGarvey et al., 2007; Tocchi et al., 2012; Yu & Zhang, 2012). In 

addition, dairy wastewater may contain many zoonotic pathogens, including 

Escherichia coli, Campylobacter, Listeria, Mycobacterium and Salmonella (Dungan 

et al., 2012). 

 

The process of wastewater treatment can be affected by bacteriophage addition to 

control the growth of bacteria responsible for foaming and bulking in activated 

sludge (Choi et al., 2011; Withey et al., 2005). Phages can be also used to control 

pathogenic bacteria population and currently have application in controlling of 

bacterial pathogens in food including dairy products (Greer, 2005). Bacteriophages 

in wastewater may also support microorganisms in turnover of organic matter. In 

other environments it is known that phages contribute to nutrient cycling through the 

lysis of bacteria (Fuhrman, 1999). Phages can also influence their host pathogenicity 

and adaptation by horizontal transfer of toxin and antimicrobial resistance genes 

(Boyd & Brussow, 2002). Antibiotic resistance amongst bacterial pathogens is an 

increasing problem, and several studies indicate that antibiotic resistance genes are 

highly abundant in bacteriophages detected in the environment (Colomer-Lluch et 

al., 2011; Parsley et al., 2010a; Stalder et al., 2012).  

 

Few studies to date have employed metagenomics techniques to characterize viral 

communities from wastewater samples. A metagenomic analysis of reclaimed water 

viruses from USA using pyrosequencing revealed that bacteriophages dominated the 

DNA viral community, while eukaryotic viral sequences were dominated by viruses 

containing single-stranded DNA circular genomes, including plant pathogens from 

the Geminiviridae and Nanoviridae families, and animal pathogens from the 
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Circoviridae family (Rosario et al., 2009b). A metagenomic analysis of viral 

sequences derived from the activated sludge from USA showed that 60% of 

sequenced reads were of bacterial origin, while reads of viral origin were dominated 

by bacteriophages (95%) (Parsley et al., 2010b). Cantalupo (Cantalupo et al., 2011) 

used pyrosequencing to analyse raw sewage from three locations (USA, Spain and 

Ethiopia) and detected 51 virus families. Bacteriophages from families Microviridae, 

Siphoviridae, Myoviridae, Podoviridae, and Inoviridae dominated viral fraction 

(Cantalupo et al., 2011). A metagenomic analysis of viruses in untreated sewage 

samples from four locations (USA, Thailand, Nepal and Nigeria) revealed sequences 

related to 29 eukaryotic viral families, including many known human pathogens (Ng 

et al., 2012). Another study used pyrosequencing to analyse the DNA viruses in the 

influent, activated sludge, effluent, and anaerobic digester of a wastewater treatment 

plant in Singapore and found that > 80% of viral reads had similarities to bacteria 

and the remaining sequences were mainly classified as bacteriophages (Tamaki et al., 

2012). One study used Illumina sequencing to characterize viral communities from 

the influent and effluent sludge from anaerobic digesters of five domestic wastewater 

treatment plants from USA (Bibby & Peccia, 2013). The majority of assembled 

contigs were of bacteriophage origin, followed by eukaryotic viruses, including 

human pathogens (Herpesvirus most abundant) (Bibby & Peccia, 2013). A recent 

study used pyrosequencing to characterize viruses in a dairy waste treatment lagoons 

(Alhamlan et al., 2013). Viral communities were dominated by bacteriophages, the 

majority of them belonging to the Siphoviridae family, whereas among eukaryotic 

viruses were known animal pathogens such as those from Circoviridae and 

Herpesviridae family and plant pathogens from Geminiviridae and Nanoviridae 

family (Alhamlan et al., 2013). 

 

High-throughput sequencing have been applied to investigate the diversity of viruses 

in wasters from municipal wastewater treatment plants and treatment lagoons 

receiving dairy manure, however no metagenomic work have been conducted on 

viral communities from a dairy food wastewater. The aim of this chapter was to 

investigate taxonomic and functional diversity of the viral community in a water 

sample obtained from the dairy wastewater treatment plant receiving milk product-

polluted wastewater using metagenomic Illumina-based high throughput sequencing. 
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The resulted sequences have been analysed using different bioinformatics tools and 

compared with metagenomic sequences from other wastewater environments. 

 

3.2. Material and Methods  

3.2.1. Sample collection 

An activated sludge sample (15 litre volume) was collected in January 2010 from an 

open steel aeration tank raised off the ground receiving milk product-polluted 

wastewater treated by dissolved air flotation, and anaerobic digestion. The site was 

Kerry Ingredients Wastewater Treatment Plant in Listowel, Co. Kerry, Ireland 

(52°26’20” N; 9°29’7” W). 

 

3.2.2. Viral particles purification 

Viruses were purified using a published combination of filtration and density 

gradient centrifugation (Thurber et al., 2009). Initially, the wastewater sample was 

passed through a 100 µm mesh to remove large particles and filtered using a 0.45 µm 

Tangential Flow Filter (TFF) (QuixStand, Amersham Bioscience) to remove 

prokaryotes and eukaryotes. Viruses in the filtrate were then concentrated with the 

100kD TFF filter (QuixStand, Amersham Bioscience) to a final volume of ~50 ml. 

Viral concentrate was overlaid onto a CsCl gradient (1 ml of CsCl of densities at 1.7, 

1.5 and 1.35 g/ml) and ultracentrifuged in a SW-41 (Beckman) rotor at 22,000 rpm 

for 2 h at 4°C. 1 ml of the fraction between 1.35 g/ml and 1.5 g/ml density was 

collected, filtered through a 0.22 µm syringe filter (Millipore) and further 

concentrated and washed twice with 1 ml of SM buffer on a Millipore Amicon Ultra-

15 Centrifugal Filter Unit (30 kDa). The final volume of the concentrated CsCl 

fraction was 500 µl and was used for DNA extraction. 

 

3.2.3. DNA isolation and sequencing  

Prior to DNA extraction, the concentrated CsCl fraction was incubated for 30 min at 

37°C with 20 U/ml of DNase I (New England Biolabs) to remove free nucleic acids. 

DNase was inactivated by the addition of EDTA to the final concentration of 20 mM, 

followed by heat-inactivation at 75°C for 10 minutes. Viral DNA was extracted 

using formamide/CTAB extraction protocols (Sambrook et al., 1989; Thurber et al., 
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2009). Briefly, the sample was mixed with 0.1 volumes of 2M Tris-HCl/0.2M 

EDTA, 0.01 volumes of 0.5 M EDTA, 1.0 volume of deionized formamide, 10 µl/ml 

sample of glycogen and incubated for 30 minutes at 37°C. The phage DNA was 

precipitated for 30 min at 4°C with 2 volumes of 100% ethanol and washed with 

70% ethanol. The phage DNA pellet was resuspended in 500 µl of TE buffer and 

used for CTAB extraction protocol. The sample was incubated for 1 h at 56°C with 

15 μl of 20% (w/v) SDS and 20 μl of proteinase K (DNeasy Blood & Tissue Kit, 

Qiagen). After protease treatment 100 μl of 5 M NaCl and 80 μl of pre-heated 

CTAB/NaCl solution (10% (w/v) CTAB in 0.7 M NaCl) was added and incubated 

for 10 minutes at 65°C. DNA was recovered by phenol/chloroform extraction and 

isopropanol precipitation and the resulting DNA pellet was resuspended in 30 μl of 

sterile water. DNA concentration was estimated using NanoDrop (Thermo 

Scientific), giving a 35 ng/µl concentration and a 260/280 ratio of 0.96. To check for 

bacterial contamination, the extracted DNA was screened for the presence of 16S 

rRNA genes by PCR using primers 27F and 907R (Lane, 1991). 

 

Extracted metagenomic DNA was used for whole genome amplification using 

GenomiPhi V2 DNA Amplification Kit (GE Healthcare). Briefly, 1µl (35 ng) of 

DNA was amplified in 20 µl reaction volumes in triplicate reactions at 30°C for 2 h. 

The amplified products from each reaction were pooled, purified using DNeasy 

Blood & Tissue Kit (Qiagen) and resuspended in 100 µl of sterile water. 

Approximately 5 µg of DNA was used to make libraries with inserts of between 150 

and 250 bp at the Wellcome Trust Sanger Institute (UK) which were sequenced in a 

paired 76 cycle run using an Illumina Genome Analyzer IIx.. 10.3 million paired-end 

76 bp reads were generated.  

 

3.2.4. Confocal microscopy 

Aliquots (100 µl) of the viral concentrate and CsCl gradient fractions were preserved 

with an equal volume of 4% formaldehyde (0.02 µm pre-filtered), diluted in 5 ml of 

(0.02 µm pre-filtered) water and filtered onto 0.02 µm Anodiscs filters (Whatman). 

Filters were stained with 2.5x SYBR Gold (Invitrogen), viewed at 630x under a 

Confocal Laser Scanning Microscope (Zeiss LSM 5 exciter CLSM) and images were 

acquired using Zen software. Argon laser was used at <2% power at 488nm with 

emission filtered at 530 nm. 
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3.2.5. Electron microscopy  

An aliquot (100 µl) of the CsCl gradient fraction was fixed with 1 ml of EM Buffer 

(0.5% Glutaraldehyde in 20 mM HEPES buffer, pH 7.0) and send to Dr. Heinrich 

Lünsdorf (Germany) for electron microscopy analysis. Viruses were adsorbed to the 

carbon-coated Butvar grids for 2 minutes and stained negatively with 4% uranyl 

acetate. The grids were viewed under a Transmission Electron Microscope (Zeiss 

CEM 902; Zeiss, Oberkochen, Germany). Images were obained using a charge-

coupled-device camera (Proscan Electronic Systems, Scheuring, Germany). 

 

3.2.6. Sequence processing  

All large-scale computational analyses were performed on the BRCI cluster at 

University College Cork unless otherwise indicated. The metagenomic library was 

filtered using the PRINSEQ website (Schmieder & Edwards, 2011a) to remove exact 

sequence duplicates and reverse complement exact duplicates (2,144,351), reads 

containing more than one ambiguous bases (N) and low-complexity sequences 

(DUST score <32) (18,766). Human sequences (637) were removed using DeconSeq 

website, using 90% coverage and 90% identity filtering options. The metagenomic 

sequences in the activated sludge metagenome were compared using DeconSeq 

standalone (Schmieder & Edwards, 2011b) to another metagenome based on 

different source DNA that was prepared in the laboratory at the same time and any 

shared sequences were removed using 90% coverage and 90% identity options 

(3,702,737 sequences). These pre-processing steps resulted in 4,474,959 high-quality 

sequences (340,096,884 total bases).  

 

3.2.7. Assembly of sequence reads 

For contigs assembly, sequence reads were prepared as described above, except 

duplicate reads were retained, as this resulted in a higher N50 of 1470. Sequence 

reads were pair-end assembled using Meta-IDBA (Peng et al., 2011) into 34,636 

contigs (11,432,658 total bases). Sequences less than 100 bp were discarded, leaving 

a total of 20,278 contigs for analysis (10,412,900 total bases). To calculate number of 

reads that were recruited into contigs assembly, reads were aligned to the contigs 
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using FR-HIT (Niu et al., 2011) using stringent parameters of 100% identity over 

100% of the entire read length. 

 

Putative open reading frames (ORFs) were identified on the assembled sequences 

(>100 bp) using MetaGeneMark Heuristic Approach version 1.0 (Zhu et al., 2010) at 

http://exon.biology.gatech.edu/metagenome/Prediction/index.cgi. 

 

3.2.8. Sequence annotation  

Individual reads were automatically annotated against the GenBank database (e-

value cutoff of 1e-03 and minimum alignment length of 20 bp) using the 

‘Representative Hit Classification’ of the MG-RAST version 3.2 (Meyer et al., 

2008). Contigs were compared to the NCBI non-redundant (nr) protein database with 

an e-value < 1e-05 using BLASTX implemented in CAMERA 2.0 server 

(Community Cyberinfrastructure for Advanced Microbial Ecology Research & 

Analysis) (Sun et al., 2011). The data from the blast output was analysed using 

MEGAN version 4.69.4 (MEtaGenome ANalyzer) (Huson et al., 2011) using Min 

Score of 100, a Top Percent value 10% and Min Support of 1. Classification to the 

taxon was based on counting number of bases in contigs assigned to each taxon. 

DNA sequences can be accessed through MG-RAST website under Project IDs 

4476066.3 (reads) and 4476039.3 (contigs). 

 

Functional annotation was performed on contigs (>100 bp) using the MG-RAST 

SEED Subsystems database (with an e-value cutoff of 1e-05 and minimum alignment 

length 50 bp) and ORFs using WebMGA (Wu et al., 2011b) COG database (Clusters 

of Orthologous Groups of proteins) (Tatusov et al., 2003) (using an e-value cutoff of 

1e-05). 

 

3.2.9. Analysis of complete genomes  

Putative open reading frames (ORFs) of contig 0 and small circular genomes of 

ssDNA phages (Microviridae) were predicted using GeneMark (Besemer & 

Borodovsky, 1999). Each ORF was manually annotated against the NCBI nr protein 

database (nr) using BLASTP. Complete genomes were visualized using CG View 

(Grant & Stothard, 2008) or SnapGene Viewer free software 

http://www.snapgene.com/products/snapgene_viewer/ and edited in Photoshop. 
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3.2.10.   Phylogenetic analyses 

Translated sequences of 15 complete circular genomes of ssDNA viruses assembled 

from the metagenomic reads were aligned with selected reference sequences using 

ClustalW (Larkin et al., 2007). The multiple sequence alignment of full-length Rep 

(Circo-, Nano-, Geminiviridae family) or major capsid proteins (Microviridae) was 

used for phylogenetic tree construction using MEGA version 5.04 (Tamura et al., 

2011) by applying p-distance model and the Neighbour-Joining method with 1000 

bootstrap replications.  

 

3.2.11.   Metagenome diversity  

Diversity of the metagenome was estimated using PHACCS version 1.1.3 (Angly et 

al., 2005a) (http://sourceforge.net/projects/phaccs/). Circonspect version 0.2.5 

(http://sourceforge.net/projects/circonspect/) implemented with the Octave version 

3.6.0 was used to calculate contig spectra based on metagenome assembly using 

Minimo (98% identity over at least 35 bp overlap). The contig spectra were used as 

an input for PHACCS, using a logarithmic model and an average genome size of 50 

kb. 

 

3.2.12.   Metagenome comparison  

A multiple comparison based on organism and functional gene abundance between 

dairy wastewater contigs (>100bp) and other viromes: wastewater (Bibby & Peccia, 

2013; Ng et al., 2012; Parsley et al., 2010b; Rosario et al., 2009b; Tamaki et al., 

2012), lake (Roux et al., 2012b) and CF sputum (Willner et al., 2009) was performed 

using MG-RAST Principal Component Analysis (PCA). The data was compared to 

GenBank and SEED databases using a maximum e-value of 1e-05 and a minimum 

alignment length of 50. The data has been normalized to values between 0 and 1 and 

drawn using a Bray-Curtis distance. 

 

3.2.13.   Antibiotic resistance genes 

To identify genes potentially conferring resistance to antibiotics, predicted ORFs 

from contigs were compared to 3,375 antibiotic resistance associated genes 
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downloaded from The Comprehensive Antibiotic Resistance Database (CARD) 

http://arpcard.mcmaster.ca/ using BLASTP and e-value 1e-03. Hits to genes 

encoding integrases, efflux pumps, as well as gyrA, gyrB, rpsL, bacA, in which a 

point mutation in a bacterial gene confers antimicrobial resistance, were discarded. 

Easyfig was used to visualize ORFs of contig 50, encoding two antibiotic resistance 

genes. Phylogenetic analysis was conducted using MEGA version 5.04.  

 

3.2.14.   CRISPR spacer analyses  

CRISPR spacer database containing 52,511 spacers was downloaded from 

http://crispr.u-psud.fr/crispr/CRISPRUtilitiesPage.html (Grissa et al., 2007b) on 

29/01/12 and used to search for sequence similarity with metagenomic reads and 

contigs (>100 bp) using BLASTN (e-value 1e-03 and word size 7). Only matches 

that had 100% identity over 20 bp were analysed, as previously described (Anderson 

et al., 2011).  

 

3.2.15.   Microbial diversity in activated sludge 

Total microbial DNA was extracted from 2 ml of raw wastewater. Prior to DNA 

extraction the sample was split into two aliquots that were centrifuged at 12,500 rpm 

for 5 min to pellet microbial cells. One tube was processed according to the protocol 

of the Promega Wizard Genomic DNA Purification Kit (Promega) to isolate DNA 

from Gram-positive and another to isolate DNA from Gram-negative bacteria. 

Extracted DNA was pooled from both tubes.  

 

16S ribosomal RNA sequences were PCR amplified from the purified microbial 

DNA using universal bacterial primers 27F and 907R (Lane, 1991) and 

Accumulibacter-specific 16S rRNA primers cap438f and cap846r (Kunin et al., 

2008). The PCR mixtures contained, in a total volume of 50 µl, 1x GoTaq® Green 

Flexi Reaction Buffer (Promega), 15 pmol of each of the primers, 2.5mM MgCl2 

(Promega), 0.1mM dNTPmix (New England Biolabs), 1U GoTaq® Flexi DNA 

Polymerase (Pomega) and 50 ng template DNA. For PCR amplifications an initial 

denaturation step of 5 min at 95°C was followed by 26 cycles of 30 sec at 94°C for 

denaturation, 30 sec at 55°C (for cap438f and cap846r) or 56°C (for 27F and 907R) 

for annealing, and 1 min at 72°C for extension. A final extension was carried out at 
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72°C for 5 min. The resulting PCR products were purified using QIAquick PCR 

Purification Kit (Qiagen) and cloned into pCR2.1 using TOPO TA Cloning Kit 

(Invitrogen) according to protocol instructions. Plasmid DNA was isolated from 

randomly selected bacterial colonies using QIAprep Spin Miniprep Kit (Qiagen) and 

digested with EcoRI (New England Biolabs) to identify clones containing insert. Ten 

clones showing different restriction pattern from each 16S rRNA library were 

sequenced at GATC Biotech (Germany).  

 

Sequences were checked for chimera formation using the Bellerophon server (Huber 

et al., 2004) and no chimeras were detected. BLASTN was used to identify the 

closest match in GenBank against reference genomic sequences (refseq_genomic) 

database. The ribosomal RNA gene sequences have been submitted to the GenBank 

under accession numbers JN393605–JN393623.  
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3.3. Results 

3.3.1. Visualization of viruses in activated sludge 

Viruses present in the activated sludge tank of a dairy wastewater treatment plant 

were concentrated and extracted metagenomic DNA purified and sequenced using 

Illumina technology. Viruses in the concentrate were visualized prior to DNA 

extraction by confocal and electron microscopy. SYBR-Gold staining of nucleic 

acids within the virus capsid showed presence of numerous virus particles (Figure 

3.1A). Transmission electron microscopy revealed different virion morphotypes, 

including tailed bacteriophages and enveloped viruses (Figure 3.1B to 3.1E).  

 

Although no bacterial cells were seen by microscopy in the filtered concentrate, 

bacterial ribosomal RNA genes were detected by PCR on the extracted DNA (data 

not shown). The level of bacterial ‘contamination’ in the metagenomic phage 

sequence library was further checked by BLAST search against the RDP (Ribosomal 

Database Project) database using MG-RAST (with minimum alignment length of 20 

bp and e-value cutoff of 1e-03). No 16S rRNA sequences were identified on contigs 

and only a small number of reads (30 reads) were found to be similar to ribosomal 

proteins (genera: Roseateles, Mannheimia, Bacillus, Rubrivivax, Shewanella, 

Burkholderia, Cupriavidus, Pandoraea, Ralstonia, Acidovorax, Pseudacidovorax, 

Pelomonas, Leptothrix, Thiobacillus, Azovibrio and Bdellovibrio). Several studies 

indicate that phage-mediated transduction of bacterial 16s rRNA genes naturally 

occurs within the viral communities in the environment (Del Casale et al., 2011b; 

Harrington et al., 2012; Sander & Schmieger, 2001). Therefore, the PCR result could 

represent transduction of bacterial DNA through horizontal gene transfer, and the 

assumption has been made that these sequences were of phage origin.
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Figure 3. 1. Confocal (A) and electron (B-F) micrographs showing purified virus 

particles found in activated sludge.Confocal micrograph taken at 600× magnification. 
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3.3.2. Sequence reads taxonomic classification 

Data filtering resulted in 4,474,959 high-quality 76-bp reads. A total of 6223 (0.14%) 

reads had hits to known sequences in the GenBank database (minimum alignment 

length of 20 bp and e-value cutoff of 1e-03) implemented in the MG-RAST server. 

Among these sequences, 96% were assigned to cellular organisms (mainly bacteria) 

and 4% to viruses (Figure 3.2A). Taxonomic assignment was further split according 

to the phylum (bacteria) or family (viruses) and species.  

 

Reads classified as bacteria-like sequences were mainly affiliated to Proteobacteria 

(Figure 3.2B). The most abundant genera (data not shown) were Neisseria (6% of all 

assigned reads), Pseudomonas (3%), Escherichia (2%), Salmonella (1%) and 

Acinetobacter (1%). Bacterial species assignments of genes found in the sample 

included those associated with human and animal pathogens common in dairy 

wastewater such as Neisseria spp., Escherichia coli, Salmonella enterica, 

Acinetobacter baumannii, Campylobacter jejuni or bacteria typically found in sludge 

e.g. Pelobacter propionicus and soil e.g. Pseudomonas putida (see table Table 3.2 

for the top 50 bacteria species detected).  

 

Reads assigned to viruses could be divided into 9 viral families, with the dsDNA 

bacterial viruses from order Caudovirales: Siphoviridae (35.4%), Myoviridae 

(35.4%) and Podoviridae (24.3%) most abundant (Figure 3.1C). In addition, 

members of ssDNA bacteriophages from Microviridae (1.3%) were also identified. 

The most prevalent phage host species for the assigned virus sequences were 

Enterobacteria spp., Pseudomonas spp., Burkholderia spp. and others (Figure 3.2D). 

The most 5 abundant viral species were Iodobacteriophage phiPLPE, Escherichia 

phage phiV10, Salmonella phage SETP3, uncultured myovirus, and Burkholderia 

phage phiE12-2 (see table Table 3.3 for list of top 50 virus species detected). 

Amongst eukaryotic viruses, ssDNA viruses (2.2%) from Parvoviridae and 

Circoviridae family, and dsDNA viruses (1.2%) from Herpesviridae, Iridoviridae 

and Phycodnaviridae, were found. A small portion (1%) of the reads was classified 

to the Archaea domain (Figure 3.2A). A further split into phylum (data not shown) 

showed that Euryarchaeota (97%) dominated amongst Archaea, with archeons 

within the class Methanomicrobia (72%) Halobacteria (13%) and Methanococci 

(10%) most abundant.  
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Reads classification 

 

  

 

 

Figure 3. 2. Taxonomic affiliation of the assigned (6223) viral metagenomic reads 

from the activated sludge to the GenBank protein database based on the MG-RAST 

analysis (e-value < 1e-03). (A) Distribution of the assigned reads to the main 

taxonomic groups. (B) The proportion of the most abundant bacterial phyla. (C) The 

proportion of the most abundant viral families. (D) Phage host distributon. 
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Table 3. 1. Summary of best BLASTX (e-value >1e-05) hits from the 58 largest (>10kb) contigs assembled from the activated sludge 

viral metagenome (sorted by bit score). Hits with BLASTX similarity >50% are shown in bold. 

 

Contig  
Contig 

size (bp) 

Phage/Organism containing 

prophage 
Best BLAST hit 

Accession 

number 

E-

value 

% 

identity 

Hit length 

(aa) 

contig0 114,109 Pelagibaca bermudensis  Ribonucleoside-diphosphate reductase ZP_01444584 5e-97 40 550 

contig1 56,729 Acinetobacter brisouii Chaperonin GroEL WP_004900257 7e-79 35 533 

contig2 53,095 Chthoniobacter flavus  TROVE domain protein ZP_03130643 2e-90 52 344 

contig3 46,440 Vibrio phage VP16C DEAD-like helicase AAQ96576 3e-75 35 590 

contig4 44,123 Mycobacterium phage PLot DNA polymerase III YP_655445 
3e-

144 
37 878 

contig5 40,448 Desulfotomaculum ruminis Hypothetical protein AEG59378 
3e-

103 
32 895 

contig6 38,311 Paenibacillus polymyxa Phage terminase large subunit CCC85706 3e-64 34 470 

contig7 38,095 Pedobacter agri Site-specific DNA methylase WP_010603268 0.0 51 604 

contig8 35,905 Lachnospiraceae bacterium Phage terminase ZP_08334821 1e-96 40 508 

contig9 31,782 Thermocrinis albus Chaperonin GroEL  YP_003474201 1e-94 40 532 

contig10 29,580 Roseobacter sp.  
S-adenosylmethionine-dependent 

methyltransferase 
ZP_01903545 0.0 34 1657 

contig11 27,700 Clostridium thermocellum ParB-like nuclease YP_001038054 2e-81 43 400 

contig12 26,127 Nitrosomonas eutropha Phage terminase YP_747683 0.0 71 458 

contig13 24,156 Bacillus cereus GIY-YIG endonuclease YP_085011 2e-17 41 141 

contig14 23,737 Pseudomonas sp. GM67   P22 coat protein WP_008036983 
8e-

177 
73 376 

contig15 22,887 Bradyrhizobium sp. ORS 285 Hypothetical protein ZP_09477388   1e-83 38 482 

contig16 22,766 Oxalobacter formigenes Hypothetical protein ZP_04576510 9e-69 58 227 

contig17 22,220 Roseobacter sp. 
S-adenosylmethionine-dependent 

methyltransferase 
ZP_01903545 0.0 34 1615 

contig18 21,443 
Uncultured bacterium from 

groundwater metagenome 
Cell division protein FtsK EKD92820 2e-89 48 348 

contig19 21,017 Robiginitalea biformata Hypothetical protein YP_003196495 2e-61 27 544 

contig20 18,509 Bilophila wadsworthia Phage terminase ZP_07944391 2e-92 41 426 

contig21 17,762 Wolbachia phage WOVitA1 Phage terminase ADW80145 
1e-

142 
45 624 

contig22 17,163 Bacillus cereus Chromosome segregation ATPase Smc NP_976737 5e-85 37 582 
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Contig  
Contig 

size (bp) 

Phage/Organism containing 

prophage 
Best BLAST hit 

Accession 

number 

E-

value 

% 

identity 

Hit length 

(aa) 

contig23 17,064 Photobacterium profundum Phosphoadenosine phosphosulfate reductase YP_129561 
5e-

105 
50 390 

contig24 16,911 
Thermoanaerobacterium 

saccharolyticum 
Phage tail tape measure protein YP_006393013 1e-37 59 153 

contig25 16,629 Deftia phage phiW-14 DNA helicase YP_003358924 4e-26 26 516 

contig26 16,443 Burkholderia pseudomallei Bacteriophage replication protein A ZP_02495847 7e-37 30 344 

contig27 16,294 Variovorax sp. HH01 Hypothetical protein AER23951 2e-77 69 193 

contig28 16,292 Bacillus halodurans 
S-adenosylmethionine-dependent 

methyltransferase 
NP_244402 4e-73 39 467 

contig29 15,951 
Desulfatibacillum 

alkenivorans 
Hypothetical protein YP_002433692 1e-73 27 913 

contig30 15,901 Polysphondylium pallidum 
IPT domain of Plexins and Cell Surface 

Receptors 
EFA78206 4e-10 23 549 

contig31 15,107 Aquifex aeolicus Chaperonin GroEL NP_214512 1e-94 39 529 

contig32 14,451 Denitrovibrio acetiphilus Phage terminase YP_003504938 2e-79 37 459 

contig33 14,194 Sinorhizobium meliloti Stage 0 sporulation protein J  YP_004549199 5e-92 45 398 

contig34 14,129 Capnocytophaga sp. Phage terminase ZP_08202667 1e-36 30 396 

contig35 14,005 Brachyspira intermedia Phage terminase large subunit AEM22154 6e-50 28 651 

contig36 13,789 Niastella koreensis Replicative DNA helicase YP_005011225 
5e-

121 
50 529 

contig37 13,475 Cellulophaga phage phiSM Phage tail protein AGH07768 
2e-

130 
48 487 

contig38 13,283 Oxalobacter formigenes Phage tail protein ZP_04578334 0.0 50 867 

contig39 13,076 Streptococcus mitis C-5 cytosine-specific DNA methylase CBJ21706 4e-71 45 341 

contig40 12,715 Mucilaginibacter paludis Hypothetical protein ZP_07745716  
2e-

106 
44 505 

contig41 12,295 Marinobacter sp. Superfamily II DNA/RNA helicase ZP_01738782 2e-44 28 877 

contig42 11,725 
Aurantimonas 

manganoxydans 
Hypothetical protein ZP_01226938 3e-76 35 579 

contig43 11,663 Sphingobium yanoikuyae Type III restriction protein, res subunit ZP_09908736 1e-97 44 469 

contig44 11,475 Acinetobacter baumannii Phage terminase WP_001136863 
7e-

171 
58 452 

contig45 11,384 Flavobacterium columnare AdoMet-dependent methyltransferase YP_004941706 1e-98 76 201 

contig46 11,274 Bacteroides vulgatus HNH endonuclease WP_005852289 1e-19 51 91 
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Contig  
Contig 

size (bp) 

Phage/Organism containing 

prophage 
Best BLAST hit 

Accession 

number 

E-

value 

% 

identity 

Hit length 

(aa) 

contig47 11,229 Pirellula staleyi Phage terminase YP_003369204 1e-54 34 498 

contig48 11,027 Methyloversatilis universalis Coat protein ZP_08504648  2e-60 38 383 

contig49 10,940 Filifactor alocis Chaperonin GroEL YP_005055286 2e-44 29 540 

contig50 10,820 Flavobacterium sp. CF136 Recombinational DNA repair protein (RecT) WP_007804118 9e-86 52 302 

contig51 10,740 Flavobacterium sp. CF136 Hypothetical protein WP_007804358 2e-38 43 187 

contig52 10,684 Thauera sp. 27 PBSX family phage terminase large subunit WP_002937346 0.0 72 459 

contig53 10,498 Arcticibacter svalbardensis Metallophosphoesterase WP_016197049 6e-47 43 209 

contig54 10,221 Nitrosomonas eutropha Phage terminase YP_747683 
9e-

179 
70 557 

contig55 10,056 Rhodococcus erythropolis Phage terminase YP_002765956 1e-73 38 402 

contig56 10,054 Bordetella pertussis Hypothetical protein NP_881912 5e-69 32 472 

contig57 10,027 
Delta proteobacterium 

NaphS2 
Integron integrase ZP_07198461 3e-62 41 326 



97 
 

3.3.3. Contig assembly and taxonomic classification 

Reads were assembled into 20,278 contigs (>100 bp), with N50 length of 1.5 kb and 

the total contig length of 10.4 Mbp. 47% of the reads, as determined by read 

mapping back onto contigs, were recruited into contigs of length greater than 100 bp. 

The longest contig was 114 kb, 58 contigs were longer than 10 kb, 184 contigs were 

longer than 5 kb, and 1876 contigs were longer than 1 kb. Coding DNA sequence 

(CDS) prediction using MetaGeneMark resulted in prediction of a total of 27,363 

CDS in contigs larger than 100 bp. 

 

Contigs with minimum length of 100 bp were classified based on the ‘best’ BLASTX 

homology (i.e. hits with the highest BLAST bit score) to the NCBI non-redundant 

(nr) protein database implemented in CAMERA server. Table 3.1 show the summary 

of the BLAST results for contigs longer than 10 kb. Some contig CDS showed >70% 

(but no more than 86%) similarity at amino acid level with bacterial or phage protein 

sequences e.g. Nitrosomonas eutropha (contig 12, contig 54), Pseudomonas sp. 

GM67 isolated from plant roots (contig 14), Flavobacterium columnare (contig 45), 

Thauera sp. (contig 52), Dechloromonas aromatica (contig 95), Burkholderia 

cenocepacia phage Bcep1 (contig 165), Nitrobacter winogradskyi (contig 221), 

Novosphingobium aromaticivorans (contig 525), Achromobacter piechaudii (contig 

780), Legionella pneumophila (contig 845), Stenotrophomonas sp. SKA14 (contig 

901). The majority of predicted genes exhibited less than 70% similarity at amino 

acid level, indicating that the viral metagenome was mostly novel. 

 

BLASTX results with an e-value of <1e-05 and bit score >100 were analyzed using 

MEGAN software. Because contig size distribution varied from 100 bp to 114 kb, 

similarities were calculated based on the count of the total number of bases assigned 

to each taxon, rather than counting the number of contigs. The majority (65% based 

on the total base count) of the assembled contigs showed no sequence homology to 

any known sequences in the database. Among known sequences (1557 contigs, total 

of 3,676,618 bp), 15% (281 contigs) were of viral origin, and the remaining 

sequences (85%) were classified as cellular organisms (bacteria, archaea and 

eukaryotes) (Figure 3.2A).  
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Contigs classified as bacteria were further split into phyla and, similarly to the reads 

classification, the dominant bacterial phylum was Proteobacteria, with Bacteroidetes 

and Firmicutes as the two other leading phyla. The minority phyla differed between 

the read and contig classifications (Figure 3.2B). A large portion of the assigned 

contigs, which was entirely composed of contig 0, was originally assigned to marine 

bacterium Pelagibaca bermudensis (Table 3.2), however further analysis (described 

in section 3.3.5) suggests that this contig represents novel Bacillus-like phage from 

the Myoviridae family. In general, many bacterial species identified (Table 3.2) are 

known to be involved in metabolic processes observed in sludge, such as nitrification 

(Nitrosomonas eutropha, Nitrobacter winogradskyi), nitrogen fixation 

(Bradyrhizobium sp., Paenibacillus polymyxa), hydrocarbon oxidation 

(Methyloversatilis universalis, Desulfatibacillum alkenivorans, Dechloromonas 

aromatica) and sulphate reduction (Desulfatibacillum alkenivorans, 

Desulfotomaculum ruminis). Some sequences were similar to pathogenic species 

associated with diseases in humans and/or animals e.g. Flavobacterium columnare, 

Legionella pneumophila, Achromobacter piechaudii and Acinetobacter baumannii 

(Table 3.2). 

 

Contigs classified as viral sequences split into 8 viral families (Figure 3.3C). 

Bacterial viruses from Siphoviridae (26.1%), Myoviridae (23.9%), Podoviridae 

(14.3%) and Microviridae (13.5%) comprised 78% of these viral sequences (Figure 

3.3C). Markedly more Microviridae and Circoviridae were assigned than in the read-

based classification. The dominant bacteriophage host genera were Vibrio (13%), 

Mycobacterium (12%), Synechococcus (10%), Pseudomonas (9%) and Burkholderia 

(5%) (Figure 3.3D). The top 50 viral species found in the activated sludge 

metagenome are presented in Table 3.3. In general, the most abundant virus species 

assignment was not in agreement with the reads classification, with a Vibrio 

parahaemolyticus phage phi16, uncultured microphage and Mycobacterium 

smegmatis phage PLot most abundant compared with Iodobacteriophage phiPLPE, 

Escherichia phage phiV10, Salmonella phage SETP3, and uncultured microphage in 

reads. Among eukaryotic viruses, 9.2% of the ‘viral’ contigs were related to ssDNA 

circular viruses (Geminiviridae, Nanoviridae and Circoviridae) that infect plants and 

animals. A small portion (0.6%) of the contigs was classified to Phycodnaviridae, 

dsDNA viruses infecting eukaryotic algae. The remaining viral contigs (13%) were 
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uclassified. These unclassified sequences included, among others, hits to unclassified 

‘Circo-like’ viruses; ssDNA virus that infects fungus Sclerotinia sclerotiorum; 

ssRNA virus that infects the fungus Sclerophthora macrospora; and phage TJE1 

infecting Tetrasphaera - bacteria involved in phosphorus removal in the activated 

sludge.  

 

As for the read-based classification approximately 1% of the assigned contigs (0.9%) 

were assigned to the domain Archaea, (14 contigs, totalling 33089 bp) (Figure 3.3A) 

and affiliated with the phylum Euryarchaeota, particularly with the classes 

Methanomicrobia (56%) and Halobacteria (26%) (data not shown). Members of 

Methanomicrobia include the methanogens, with produce methane and are abundant 

in sludge e.g. (Narihiro et al., 2009). 

 

3.3.4. Identification of novel ssDNA circular viruses 

Single-stranded DNA viruses with a small circular genome (1-6 kb) (81 contigs 

totalling 136,097 bases) accounted for 23.3% of the contigs assigned to viruses or 

3.7% of the total assigned contigs (Figure 3.4). Fifteen out of 81 contigs contained 

complete circular sequence and these were further investigated.  

 

3.3.4.1.   Circoviridae, Nanoviridae and Geminiviridae families 

BLASTP analysis of the CDS predicted on these genomes revealed that 11 contigs 

with circular sequence contained CDS with 30-50% amino acid identity to the 

replication-associated protein (Rep) of animal viruses from Circoviridae, and plant 

pathogens from the Nanoviridae and Geminiviridae. A phylogenetic tree of the 

eleven complete Rep protein sequences with nearest neighbours by BLAST 

demonstrated that assembled ssDNA viruses represent novel members within these 

families (Figure 3.5). Four wastewater Rep sequences clustered with different 

circovirus-like genomes derived from sewage (Blinkova et al., 2009) and mammal 

faeces (Ge et al., 2011). One Rep sequence clustered with an algal nanovirus. The 

long tree branch lengths supported by low bootstrap values indicates large genetic 

distances between these sequences.  
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Contigs classification 

 

 

  

 

Figure 3. 3. Taxonomic affiliation of the assigned contigs (1557) assembled from the 

activated sludge to the GenBank protein database based on the BLASTX analysis (e-

value < 1e-05). Classification was based on counting number of bases in contigs 

assigned to each taxon. (A) Distribution of the assigned contigs to the main 

taxonomic groups. (B) The proportion of the most abundant bacterial phyla. (C) The 

proportion of the most abundant viral families. (D) Phage host distribution.
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Table 3. 2. Top 50 uncharacterized prophage species present in the activated sludge 

viral metagenome based on MG-RAST BLAT (Reads) and MEGAN BLASTX 

(Contigs) assignment. Information about habitat was retrieved from NCBI Genome 

project organism overview http://www.ncbi.nlm.nih.gov/genome. Aquatic (A), 

animal associated (AN), human associated (H), plant associated (P), marine (M), 

sediment (SD), sludge (SL), soil (S).  

 

Bacteria species (habitat) 
Reads 

count 
 Bacteria species (habitat) 

Contigs 

(total 

bases) 

Escherichia coli (A, H, AN) 163 
Pelagibaca bermudensis (M) 

(reclassified as Myoviridae phage) 
114109 

Pseudomonas putida (S, A) 133 Acinetobacter brisouii (A) 56729 

Salmonella enterica (H, AN, SL) 104 Chthoniobacter flavus (S) 54351 

Neisseria gonorrhoeae (H) 102 Roseobacter sp. (M) 53060 

Neisseria meningitides (H) 88 Bradyrhizobium sp. (P) 46994 

Haemophilus influenzae (H, AN) 86 Nitrosomonas eutropha (SL) 43486 

Achromobacter piechaudii (H, S) 80 Desulfotomaculum ruminis (AN) 40448 

Bacteroides sp. (H, AN) 75 Paenibacillus polymyxa (S) 38311 

Pelobacter propionicus (M, A, SL) 74 Pedobacter agri (S) 38095 

Pseudomonas fluorescens (S, A, P) 72 Acinetobacter baumannii (H, A) 37205 

Pseudomonas aeruginosa (S, A, H) 64 Oxalobacter formigenes (H, AN) 36707 

Campylobacter jejuni (H, AN, SL) 54 Verrucomicrobium spinosum (A, S, H) 36099 

Rhodopseudomonas palustris (S, A) 54 Pseudomonas sp. (P) 36009 

Nitrosococcus halophilus (A) 50 Clostridium sporogenes (S) 35905 

Comamonas testosteroni (SL) 44 Desulfatibacillum alkenivorans (SD) 31897 

Pseudomonas syringae (P) 44 Thermocrinis albus (A) 31782 

Actinobacillus pleuropneumoniae 

(AN) 
43 Clostridium thermocellum (S, A, H) 31119 

Pseudomonas mendocina (S, A, H) 43 Burkholderia pseudomallei (S, H, AN) 29769 

Acidovorax delafieldii (S, A) 36 Comamonas testosteroni (SL) 26598 

Enterococcus faecalis (H, AN) 35 Pirellula staleyi (M, SL) 26010 

Vibrio cholera (M, A, H) 35 Bilophila wadsworthia (H) 25412 

Acinetobacter baumannii (A, H) 34 Dysgonomonas mossii (H) 24984 

Enterobacter sp. 638 (P) 33 Robiginitalea biformata (M) 24483 

Flavobacterium johnsoniae (S, A) 32 Myroides odoratus (AN) 24116 

Brucella pinnipedialis (AN) 31 Chitinophaga pinensis (P) 23470 

Cytophaga hutchinsonii (S, A, M) 28 Denitrovibrio acetiphilus (A) 22173 

Fusobacterium sp. (H, AN) 28 Flavobacterium sp. (A) 21560 

Novosphingobium aromaticivorans 

(A) 
28 

Uncultured bacterium  

(metagenome) (A) 
21443 

Shewanella sp. (M) 28 Escherichia coli (A) (H) 20018 

Geobacter lovleyi (SD) 27 Niastella koreensis (S) 19918 

Pseudomonas savastanoi (P) 26 Mucilaginibacter paludis (P) 19416 

Fusobacterium mortiferum (H) 25 Methyloversatilis universalis (SD) 18576 

Delftia acidovorans (S, SD, SL, A) 24 Clostridium sp. BNL1100 18328 

Edwardsiella tarda (H, AN) 24 Dechloromonas aromatica (A, S, SL) 17448 

Laribacter hongkongensis (AN) 24 Pseudomonas aeruginosa (S, A, H) 17048 

Clostridium perfringens (S, SL, AN) 23 Photobacterium profundum (M) 17064 

Xylella fastidiosa (P) 23 T. saccharolyticum (A) 16911 

Acidovorax citrulli (P) 22 Legionella pneumophila (A, S, H) 16475 

Arcobacter butzleri (A, AN, H) 22 Variovorax sp. HH01 (S) 16294 

Burkholderia pseudomallei (S,H,AN) 22 Bacillus halodurans (S) 16292 

Cyanothece sp. (M) 22 Flavobacterium columnare (A) 16174 

Helicobacter pylori (H) 22 Dysgonomonas gadei (H) 15900 

Chitinophaga pinensis (P) 21 Sinorhizobium meliloti (P) 15681 

Paenibacillus polymyxa (S) 21 Capnocytophaga sp.  (H) 15675 

Rhizobium etli (P) 21 Alishewanella jeotgali 15107 

Saccharophagus degradans (M) 21 Aquifex aeolicus (A) 15107 



102 
 

Asticcacaulis excentricus (A) 20 Brachyspira intermedia (AN) 14754 

Bacteroides vulgates (H, AN) 20 Bacteroides clarus (H, AN) 14664 

Geobacter sulfurreducens (A, SL) 20 Cyclobacterium marinum (M) 14654 

Rhodobacter sphaeroides (S, SL, A) 20 Gemmata obscuriglobus (A, SL) 14487 

 

 

Table 3.3. Top 50 virus species present in the activated sludge viral metagenome 

based on MG-RAST BLAT (Reads) and BLASTX (Contigs) assignment.  

 

Virus species 
Reads 

count 
Virus species 

Contigs 

(total 

bases) 

Iodobacteriophage phiPLPE 14 Vibrio phage phi16 48575 

Escherichia phage phiV10 13 Uncultured Microviridae 47094 

Salmonella phage SETP3 10 Mycobacterium phage PLot 44123 

uncultured Myoviridae 10 Bat circovirus ZS/Yunnan-China/2009 22112 

Burkholderia phage phiE12-2 9 Synechococcus phage S-CBS3 19524 

Bacillus phage phi29 8 
Wolbachia endosymbiont wVitA of 

Nasonia vitripennis phage WOVitA1 
17762 

Burkholderia phage BcepIL02 8 Deftia phage phiW-14 17160 

Xanthomonas phage Xp15 8 Rhizobium phage 16-3 13585 

Pseudoalteromonas phage H105/1 7 Flavobacterium phage 11b 12739 

Pseudomonas phage D3 7 
Escherichia phage 

vB_EcoM_ECO1230-10 
12070 

Xanthomonas phage phiL7 7 Pseudomonas phage PAK_P1 11294 

Enterobacteria phage N4 5 EBPR siphovirus 2 10630 

Enterobacteria phage P2 5 EBPR podovirus 3 10429 

Pseudomonas phage PAK_P1 5 Brucella phage Pr 9150 

Sodalis phage phiSG1 5 Ircinia phage phiJL001 8925 

Aeromonas phage phiAS5 4 Salmonella phage epsilon15 8886 

Clostridium phage phiCD27 4 Chlamydia phage CPAR39 8669 

Enterobacteria phage RB49 4 Synechococcus phage S-CBS1 8359 

Enterobacteria phage T7 4 Pseudomonas phage PA11 8315 

Lactococcus phage 936  4 EBPR podovirus 1 6612 

Pseudomonas phage B3 4 
uncultured phage 

MedDCMOCTS04C1161 
6558 

Pseudomonas phage F116 4 Bdellovibrio phage phiMH2K 6193 

Acinetobacter phage 133 3 Rodent stool-associated circular virus 6150 

Bacteroides phage B40-8 3 Synechococcus phage S-CBS4 5912 

Enterobacteria phage T4  3 Enterobacteria phage Phieco32 5716 

Enterobacteria phage T5 3 Burkholderia phage Bcep1 5543 

Enterococcus phage phiFL3A 3 Porcine circovirus 1 5309 

Lactococcus phage ul36 3 Pseudomonas phage PaP2 5212 

Mycobacterium phage Corndog 3 Tetrasphaera phage TJE1 5168 

Acinetobacter phage AB1 2 Mycobacterium phage Gladiator 5102 

Acinetobacter phage Ac42 2 Circovirus-like genome CB-A 4399 

Aeromonas phage 65 2 Myxococcus phage Mx8 4384 

Bacillus phage BCJA1c 2 Picobiliphyte sp. MS584-5 nanovirus 4231 

Brochothrix phage NF5 2 Synechococcus phage S-SM2 4198 

Burkholderia phage Bcep176 2 Burkholderia phage Bcep781 4164 

Clostridium phage phiC2 2 Burkholderia phage phi1026b 4093 

Cronobacter phage ESSI-2 2 Mosquito VEM virus SDRBAJ 4080 

Enterobacteria phage phiEcoM-

GJ1 
2 Yersinia phage PY100 3937 

Enterobacteria phage WA13  2 Chlamydia phage phiCPG1 3919 

Enterobacteria phage YYZ-2008 2 Escherichia phage phiKT 3715 
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Escherichia phage K1ind3 2 Pseudomonas phage 119X 3708 

Feline panleukopenia virus 2 Burkholderia phage BcepNazgul 3592 

Kluyvera phage Kvp1 2 Bordetella phage BPP-1 3578 

Leptospira phage LE1 2 Enterobacteria phage alpha3 3564 

Mycobacterium phage Omega 2 Chlamydia phage 3 3551 

Pseudomonas phage PaP2 2 Circovirus-like genome RW-B 3375 

Pseudomonas phage PaP3 2 Raven circovirus 3332 

Rhizobium phage 16-3 2 Deep-sea thermophilic phage D6E 3283 

Rhodococcus phage ReqiPepy6 2 Sclerophthora macrospora virus A 3245 

Staphylococcus phage 53  2 Meles meles circovirus-like virus 3226 

 

 

 

 

Figure 3.4. Taxonomic classification of contigs assembled from the activated sludge 

(81 contigs totalling 136,097 bases, which represent 3.7% of all assigned contigs) 

with similarity to ssDNA viruses of prokaryotes (Microviridae) and eukaryotes 

(Circoviridae, Nanoviridae and Geminiviridae). Contigs were compared to the 

GenBank protein database using BLASTX (e-value < 1e-05) and analysed using 

MEGAN. Classification was based on counting number of bases in contigs assigned 

to each family.  
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Figure 3.5. Neighbour-joining phylogenetic tree of the activated sludge ssDNA 

viruses (shown in bold) and known members of the ssDNA viruses from Gemini-, 

Nano-, and Circoviridae family based on the complete amino acid sequences of the 

Rep protein. Reference sequences were selected based on nearest BLASTP matches. 

GenBank accession numbers of the reference sequences are shown in parentheses. 

Only bootstrap values >50 are shown. 
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Figure 3.6. Unrooted neighbour-joining phylogenetic tree based on major capsid 

proteins identified from the activated sludge contigs and representative phages from 

the Microviridae family, grouped according to the host they infect. The reference 

sequences and their accession numbers used in the phylogenetic analysis are: 

Enterobacteria group –  phiX174 (AAA32578), alpha3 (CAA42881), G4 

(AAA32323); obligate intracellular bacteria group – Chlamydia psittaci Chp1 

(BAA00515), Chlamydophila abortus Chp2 (CAB85589), uncultured ocean phage 

SARssphi1 (ADR80653), uncultured ocean phage SARssphi2 (ADR80650), 

Bdellovibrio bacteriovorus phage phiMH2K (AAG45340), Spiroplasma phage Sp-4 

(AAA72621), uncultured marine phage GOS_10590 (ECU79385), uncultured marine 

phage GOS_10391 (ECU79568), uncultured marine phage GOS_11182 

(ECU78785); Bacteroidetes: Bacteroides sp. BMV1 (EEO54684), Bacteroides 

eggerthii BMV2 (EEC52970), Bacteroides plebeius BMV3 (EDY96368), Prevotella 

sp. BMV4 (EFC69154), Prevotella buccalis BMV5 (EFA93043), Prevotella 

bergensis BMV6 (EFA43821), Prevotella bergensis BMV7 (EFA44667). The tree 

was drawn using MEGA software, with p-distance model and 1,000 bootstrap 

replications. Only bootstrap values >50 are shown.
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3.3.4.2.   Microviridae family 

Four contigs containing circular sequence showed sequence similarities to members 

of the Microviridae family, bacteriophages with genomes of 4-6 kb infecting a wide 

range of hosts, including Enterobacteria, some Bacteroidetes and obligate parasitic 

bacteria such as Chlamydiae, Bdellovibrio and Spiroplasma. Phylogenetic analysis of 

the major capsid proteins revealed that these four sequences belong exclusively to a 

group of viruses infecting obligate intracellular parasitic bacteria, but are distinct 

from known members of this group (Figure 3.6). BLASTP search of the major capsid 

proteins encoded by these genomes revealed 41-57% sequence identity to the 

uncultured virus SARssphi1 isolated from the Atlantic ocean (Tucker et al., 2011). 

The second BLAST hit was to Chlamydiae phages, with the highest protein sequence 

identity 57% to Chlamydophila abortus phage Chp4.  

 

3.3.5. Sequence analysis of the largest assembled contig resembling Myoviridae 

The largest contig assembled from the activated sludge viral metagenome was contig 

0. Sequence analysis showed that it formed a closed circle, 114,060 bp long, 

suggesting the completion of this phage genome sequence. 157 Coding DNA 

Sequences (CDS) were predicted, of which 30 CDS had a putative function (Figure 

3.7). Six of the predicted genes were found to encode for phage genes, including 

terminase, prohead protease, capsid, portal, tail sheath and baseplate proteins. The 

other CDS with a functional prediction belonged mostly to the phage structural 

genes, nucleotide metabolism, DNA replication and recombination genes.  

 

The best BLASTX hit of this genome was a CDS of a prophage of the marine 

bacterium Pelagibaca bermudensis (showing 40% amino acid identity) (Table 3.1), 

however no other CDS from the contig matched with the same prophage. Sequence 

analysis of other CDS revealed that 7 predicted CDS matched with the proteins of 

Bacillus subtilis phage SP10 from the Myoviridae family (with identity ranging from 

21 to 38%). With a similarity less than 38% at the protein level, these phages are 

only weakly related, suggesting that contig0 may represent a novel species within the 

Myoviridae. 
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Figure 3.7. Genomic organization of the largest complete contig assembled from 

dairy wastewater. CDS (Coding DNA Sequence) were predicted using Genemark 

and annotated using NCBI protein database. CDS were categorized according to their 

predicted functions: DNA packing and structural proteins (yellow), replication and 

recombination (blue), nucleotide metabolism (green), other genes (red), and function 

unknown (grey). A total of 34200 reads (0.76%) were aligned to ‘contig 0’ with FR-

HIT (at 100% identity and 100% read coverage). Figure was drawn in CG View and 

edited in Photoshop.
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3.3.6. Diversity of viruses in activated sludge 

Circonspect and PHACCS analyses were used to estimate the viral diversity in 

activated sludge sample. The viral metagenome showed slightly lower (409 species) 

but comparable degree of diversity when compared with another activated sludge 

viral community (511 species) that used a different sequencing methodology (454) 

(Table 3.4). The abundance of the most predominant viral genotype identified by 

PHACCS was 2.35%, strikingly less than the previous study. 

 

Table 3.4. Diversity analysis of the activated sludge (AS) metagenomes. 

 

Sample Richness 

Most 

abundant 

genotype 

(%) 

Evenness Shannon Index 
 

Model 

AS (This study) 409 genotypes 2.35 0.98 5.9 logarithmic 

AS (Tamaki et al., 2012) 511 genotypes 19.0 0.81 5.1 logarithmic 

 

 

3.3.7. Functional analysis of the activated sludge viral genes  

The putative proteins were assigned functional annotations using MG-RAST against 

the SEED Subsystems database and WebGMA against the COG (Clusters of 

Orthologous Groups of proteins) database (e-value cutoff of 1e-05 for both methods 

of annotation). MG-RAST functionally assigned 398 genes into 13 functional 

categories (SEED Level 1). The dominant subsystem was “Phages, prophages, 

transposable elements, and plasmids”, comprising 64% of total assigned sequences 

(Figure 3.8A, Table 3.5). The fact that most of the sequences fell into this category 

indicates that the metagenome was enriched for bacteriophage content. Indeed, this 

category contained mainly phage-related proteins such as terminase, phage capsid, 

portal protein and adenine-specific DNA methyltransferase. Other sequences with a 

predicted function belonged mostly to DNA metabolism, accounting for 19% of total 

assigned genes in the SEED database, including genes encoding for replicative DNA 

helicase, cytosine-specific DNA methyltransferase and single-stranded DNA-binding 

protein.  

 

Annotation using the COG database showed that 4.5% (1248) of CDS had predicted 

functions, mainly associated with replication, recombination and repair (39%); 
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general function prediction (18%); and function unknown (12%) (Figure 3.8B, Table 

3.6). Genes encoding DNA modification methylase and site-specific DNA methylase 

were particularly abundant in the activated sludge viral metagenome accounting for 

12.5% (9% and 3.5% respectively) of total assigned CDS in the COG database. 

Other assigned genes were involved in replication and recombination (e.g. DNA 

helicases, DNA polymerase, site-specific recombinase XerD, DNA primase, ssDNA-

binding protein), phage assembly (e.g. terminase), transcription (e.g. transcriptional 

regulator), stress response (e.g. groEL, nicotinamide mononucleotide 

adenylyltransferase), host lysis (e.g chitinase, lysozyme), virulence (cysteine 

protease C1 family) and immunity to infection (e.g. phage antirepressor protein).  

 

Of particular interest were genes associated with bacterial metabolism genes. These 

included genes involved in sulphur metabolism such as 3'-phosphoadenosine 5'-

phosphosulphate sulphotransferase and adenylylsulphate kinase, enzymes used by 

sulphate-reducing bacteria to assimilate sulphate, and genes involved in iron 

metabolism such as ferritin, an iron storage protein.
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Figure 3.8. Functional annotation of contigs assembled from activated sludge viral 

metagenome to SEED-Subsystem using MG-RAST (A) and contigs CDS to COG 

database using WebMGA (B).  
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Table 3.5. Functional classification of the contigs assembled from the activated 

sludge viral metagenome to the SEED database, based on the MG-RAST analysis (e-

value 1e-05). 

 

Subsystem (Level 1) Function Abundance 

Phages, Prophages Phage terminase 109 

Phages, Prophages Phage capsid protein 83 

DNA Metabolism Replicative DNA helicase (EC 3.6.1.-) 26 

DNA Metabolism DNA-cytosine methyltransferase (EC 2.1.1.37) 20 

Phages, Prophages DNA-adenine methyltransferase, phage-associated 17 

Clustering-based subsystems Superfamily II DNA/RNA helicases, SNF2 family 16 

Phages, Prophages Portal protein 14 

DNA Metabolism Single-stranded DNA-binding protein 14 

Phages, Prophages DNA helicase, phage-associated 12 

Protein Metabolism Heat shock protein 60 family chaperone GroEL 10 

DNA Metabolism Recombinational DNA repair protein RecT  8 

Nucleosides and Nucleotides Deoxycytidine triphosphate deaminase (EC 3.5.4.13) 6 

Phages, Prophages Phage integrase 6 

Cofactors, Vitamins, 

Pigments 
Queuosine biosynthesis QueD, PTPS-I 6 

Nucleosides and Nucleotides Deoxyuridine 5'-triphosphate nucleotidohydrolase 4 

Cell Division and Cell Cycle Cell division protein FtsK 3 

Clustering-based subsystems DNA packaging 3 

Cofactors, Vitamins, 

Pigments 
GTP cyclohydrolase I (EC 3.5.4.16) type 1 2 

RNA Metabolism 
NADPH-dependent 7-cyano-7-deazaguanine 

reductase  
2 

Phages, Prophages Phage NinB DNA recombination 2 

Phages, Prophages Phage NinC 2 

Regulation and Cell signaling Prophage Clp protease-like protein 2 

DNA Metabolism RecA protein 2 

Nucleosides and Nucleotides 
Ribonucleotide reductase of class Ia (aerobic), beta 

subunit  
2 

DNA Metabolism Uracil-DNA glycosylase, family 4 2 

DNA Metabolism Chromosomal replication initiator protein DnaA 1 

Stress Response Cold shock protein CspA 1 

DNA Metabolism DNA polymerase III epsilon subunit (EC 2.7.7.7) 1 

Clustering-based subsystems DNA primase (EC 2.7.7.-), Phage P4-associated 1 

Phages, Prophages DNA replication protein, phage-associated 1 

DNA Metabolism DNA-binding protein HU 1 

Virulence, Disease and 

Defense 
Fibronectin-binding protein 1 

Cell Wall and Capsule GDP-mannose 4,6-dehydratase (EC 4.2.1.47) 1 

Phages, Prophages Gene Transfer Agent capsid protein 1 

Regulation and Cell signaling 
Guanosine-3',5'-bis(diphosphate) 3'-

pyrophosphohydrolase  
1 

Phages, Prophages Integron integrase IntI4 1 

DNA Metabolism Late competence protein ComEB 1 

Cell Wall and Capsule N-acetylmuramoyl-L-alanine amidase (EC 3.5.1.28) 1 

Cofactors, Vitamins, 

Pigments 

Nicotinamide phosphoribosyltransferase (EC 

2.4.2.12) 
1 

Miscellaneous Peptidase, M23/M37 family 1 

Phages, Prophages Phage baseplate 1 

Phages, Prophages Phage EaA protein 1 

Phages, Prophages Phage exonuclease (EC 3.1.11.3) 1 

Phages, Prophages Phage NinG rap recombination 1 
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Phages, Prophages Phage repressor 1 

Phages, Prophages Phage rIIB lysis inhibitor 1 

Phages, Prophages 
Protein gp47, recombination-related [Bacteriophage 

A118] 
1 

Nucleosides and Nucleotides Ribonucleotide reductase of class Ia, alpha subunit 1 

RNA Metabolism tRNAHis-5'-guanylyltransferase 1 

Clustering-based subsystems unknown protein encoded within prophage CP-933V 1 

Total 
 

398 

 

Table 3.6. Functional annotation of CDS predicted on contigs assembled from the 

activated sludge viral metagenome, based on the BLASTP analysis to the COG 

database. 
 

Class description Annotation 

ORF

scou

nt 

Replication, recombination and repair  DNA modification methylase 116 

Function unknown  Uncharacterized proteins 96 

Replication, recombination and repair  Replicative DNA helicase 69 

Multiple classes DNA or RNA helicases of superfamily II 63 

General function prediction only  Phage terminase 58 

Replication, recombination and repair  Site-specific DNA methylase 44 

Replication, recombination and repair  DNA polymerase I  32 

Function unknown  Phage-related protein 31 

Replication, recombination and repair  Site-specific recombinase XerD 30 

Replication, recombination and repair  DNA primase 25 

General function prediction only  Predicted chitinase 24 

General function prediction only  Phage-related lysozyme (muraminidase) 21 

General function prediction only  Predicted ATPase 21 

Replication, recombination and repair  Single-stranded DNA-binding protein 18 

Multiple classes Protease subunit of ATP-dependent Clp proteases 17 

Replication, recombination and repair  Transposase and inactivated derivatives 16 

Multiple classes 
3'-phosphoadenosine 5'-phosphosulfate 

sulfotransferase (PAPS reductase) 
13 

Cell wall/membrane/envelope 

biogenesis  
Glycosyltransferases involved in cell wall biogenesis 12 

Replication, recombination and repair  Recombinational DNA repair protein (RecE pathway) 12 

Posttranslational modification, 

chaperones  
Chaperonin GroEL (HSP60 family) 11 

Function unknown  Bacteriophage protein gp37 11 

General function prediction only  Bacteriophage capsid protein 11 

Replication, recombination and repair  ATPase involved in DNA replication initiation 10 

Cell wall/membrane/envelope 

biogenesis  
Membrane proteins related to metalloendopeptidases 10 

Multiple classes 
Transcriptional activator, adenine-specific DNA 

methyltransferase 
10 

Replication, recombination and repair  Phage-related protein, predicted endonuclease 10 

Transcription  Predicted transcriptional regulators 10 

General function prediction only  Putative secretion activating protein 9 

Carbohydrate transport and 

metabolism  
Muramidase (phage lambda lysozyme) 9 

Posttranslational modification, 

chaperones  
Co-chaperonin GroES (HSP10) 8 

Cell wall/membrane/envelope 

biogenesis  
Glycosyltransferase 8 

Function unknown  Uncharacterized homolog of phage Mu protein gp30 8 

General function prediction only  
Predicted phage phi-C31 gp36 major capsid-like 

protein 
8 
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General function prediction only  Bacteriophage tail assembly protein 8 

Replication, recombination and repair  ATPase involved in DNA repair 7 

Replication, recombination and repair  RecA/RadA recombinase 7 

Multiple classes Periplasmic serine proteases (ClpP class) 7 

Nucleotide transport and metabolism  Deoxycytidine deaminase 7 

Replication, recombination and repair  DNA polymerase III, epsilon subunit 7 

General function prediction only  Bacteriophage head-tail adaptor 7 

Nucleotide transport and metabolism  Ribonucleotide reductase, alpha subunit 6 

Coenzyme transport and metabolism  6-pyruvoyl-tetrahydropterin synthase 6 

Replication, recombination and repair  
Site-specific recombinases, DNA invertase Pin 

homologs 
6 

General function prediction only  Phage head maturation protease 6 

Replication, recombination and repair  Holliday junction resolvase 6 

Cell wall/membrane/envelope 

biogenesis  

Predicted pyridoxal phosphate-dependent enzyme 

apparently involved in regulation of cell wall 

biogenesis 

5 

Multiple classes Nucleoside-diphosphate-sugar epimerases 5 

Nucleotide transport and metabolism  dUTPase 5 

Cell wall/membrane/envelope 

biogenesis  

Acyl-[acyl carrier protein]--UDP-N-

acetylglucosamine O-acyltransferase 
5 

Cell wall/membrane/envelope 

biogenesis  
dTDP-D-glucose 4,6-dehydratase 5 

Nucleotide transport and metabolism  Predicted alternative thymidylate synthase 5 

Function unknown  Uncharacterized homolog of phage Mu protein gp47 5 

Replication, recombination and repair  RecA-family ATPase 5 

General function prediction only  Predicted phosphoesterase or phosphohydrolase 5 

General function prediction only  Mu-like prophage FluMu protein gp28 5 

General function prediction only  Predicted P-loop ATPase and inactivated derivatives 5 

Transcription  Transcriptional regulators 5 

Posttranslational modification, 

chaperones  
Membrane protease, stomatin/prohibitin homologs 4 

Replication, recombination and repair  
ATP-dependent exoDNAse (exonuclease V), alpha 

subunit - helicase superfamily I member 
4 

Cell cycle control, cell division, 

chromosome partitioning  
Chromosome segregation ATPases 4 

General function prediction only  Predicted glycosyltransferases 4 

Replication, recombination and repair  ATP-dependent DNA ligase 4 

General function prediction only  Predicted hydrolases of HD superfamily 4 

General function prediction only  Predicted O-methyltransferase 4 

Function unknown  Mu-like prophage protein gp29 4 

Function unknown  Phage-related protein, tail component 4 

Function unknown  Phage-related minor tail protein 4 

Transcription  Prophage antirepressor 4 

Coenzyme transport and metabolism  GTP cyclohydrolase I 3 

Replication, recombination and repair  Superfamily I DNA and RNA helicases 3 

Multiple classes 
Guanosine polyphosphate 

pyrophosphohydrolases/synthetases 
3 

Replication, recombination and repair  Ribonuclease HI 3 

Amino acid transport and metabolism  Asparagine synthase (glutamine-hydrolyzing) 3 

Replication, recombination and repair  DNA polymerase elongation subunit (family B) 3 

Cell wall/membrane/envelope 

biogenesis  

Glucosamine 6-phosphate synthetase, contains 

amidotransferase and phosphosugar isomerase 

domains 

3 

Transcription  DNA-directed RNA polymerase, sigma subunit 3 

Posttranslational modification, 

chaperones  
Organic radical activating enzymes 3 

Replication, recombination and repair  Bacterial nucleoid DNA-binding protein 3 

Cell wall/membrane/envelope 

biogenesis  
ADP-heptose:LPS heptosyltransferase 3 

Replication, recombination and repair  Uracil-DNA glycosylase 3 
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Cell cycle control, cell division, 

chromosome partitioning  

DNA segregation ATPase FtsK/SpoIIIE and related 

proteins 
3 

Amino acid transport and metabolism  Lysophospholipase L1 and related esterases 3 

Defense mechanisms  Negative regulator of beta-lactamase expression 3 

General function prediction only  Mu-like prophage protein 3 

General function prediction only  Mu-like prophage major head subunit gpT 3 

General function prediction only  
AAA ATPase containing von Willebrand factor type 

A 
3 

Cell wall/membrane/envelope 

biogenesis  
Endopolygalacturonase 3 

General function prediction only  Phage baseplate assembly protein  3 

Nucleotide transport and metabolism  Adenylosuccinate synthase 2 

Multiple classes 
Glutathione synthase/Ribosomal protein S6 

modification enzyme (glutaminyl transferase) 
2 

Nucleotide transport and metabolism  Ribonucleotide reductase, beta subunit 2 

Posttranslational modification, 

chaperones  
ATPases of the AAA+ class 2 

Signal transduction mechanisms  
RecA-family ATPases implicated in signal 

transduction 
2 

Coenzyme transport and metabolism  
Dinucleotide-utilizing enzymes involved in 

molybdopterin and thiamine biosynthesis family 2 
2 

Inorganic ion transport and 

metabolism  
Adenylylsulfate kinase  2 

General function prediction only  Predicted Fe-S oxidoreductases 2 

Replication, recombination and repair  DNA polymerase sliding clamp subunit 2 

Replication, recombination and repair  Uracil DNA glycosylase 2 

Cell wall/membrane/envelope 

biogenesis  
Soluble lytic murein transglycosylase 2 

Cell wall/membrane/envelope 

biogenesis  

UDP-3-O-[3-hydroxymyristoyl] glucosamine N-

acyltransferase 
2 

Nucleotide transport and metabolism  ADP-ribose pyrophosphatase 2 

Posttranslational modification, 

chaperones  
Predicted ATP-dependent serine protease 2 

General function prediction only  Metal-dependent beta-lactamase superfamily I 2 

Transcription  Cold shock proteins 2 

Defense mechanisms  Restriction endonuclease 2 

Transcription  DNA-directed RNA polymerase, sigma subunit 2 

Multiple classes 
SOS-response transcriptional repressors (RecA-

mediated autopeptidases) 
2 

Coenzyme transport and metabolism  
2-polyprenyl-3-methyl-5-hydroxy-6-metoxy-1,4-

benzoquinol methylase 
2 

Cell wall/membrane/envelope 

biogenesis  
Glycosyltransferase involved in LPS biosynthesis 2 

Cell wall/membrane/envelope 

biogenesis  
Putative peptidoglycan-binding protein 2 

General function prediction only  Phage tail sheath protein FI 2 

General function prediction only  Phage tail tube protein FII 2 

Cell wall/membrane/envelope 

biogenesis  
Mannosyltransferase OCH1 and related enzymes 2 

Replication, recombination and repair  Antirestriction protein 2 

General function prediction only  Bacteriophage P2-related tail formation protein 2 

Cell wall/membrane/envelope 

biogenesis  

Predicted soluble lytic transglycosylase fused to an 

ABC-type amino acid-binding protein 
2 

General function prediction only  Phage-related holin (Lysis protein) 2 

Posttranslational modification, 

chaperones  
Cysteine protease 2 

Cell cycle control, cell division, 

chromosome partitioning  
Membrane-bound metallopeptidase 2 

General function prediction only  Predicted methyltransferase (contains TPR repeat) 2 

General function prediction only  Mu-like prophage protein gpG 2 
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General function prediction only  Predicted kinase 2 

Nucleotide transport and metabolism  
Glutamine phosphoribosylpyrophosphate 

amidotransferase 
1 

Cell cycle control, cell division, 

chromosome partitioning  

Predicted ATPase of the PP-loop superfamily 

implicated in cell cycle control 
1 

Translation, ribosomal structure Histidyl-tRNA synthetase 1 

Nucleotide transport and metabolism  Thymidylate kinase 1 

Replication, recombination and repair  Ribonuclease HII 1 

Nucleotide transport and metabolism  Thymidylate synthase 1 

Energy production and conversion  Inorganic pyrophosphatase 1 

Carbohydrate transport and 

metabolism  
Ribulose-5-phosphate 4-epimerase 1 

Translation, ribosomal structure N-formylmethionyl-tRNA deformylase 1 

Posttranslational modification, protein 

turnover, chaperones  

Trypsin-like serine proteases, typically periplasmic, 

contain C-terminal PDZ domain 
1 

Replication, recombination and repair  NAD-dependent DNA ligase 1 

Amino acid transport and metabolism  Spermidine synthase 1 

Multiple classes Phosphoribosylpyrophosphate synthetase 1 

Posttranslational modification, 

chaperones  

DnaJ-class molecular chaperone with C-terminal Zn 

finger domain 
1 

Replication, recombination and repair  DNA polymerase III, alpha subunit 1 

General function prediction only  Predicted PP-loop superfamily ATPase 1 

Multiple classes Cytidylyltransferase 1 

General function prediction only  Predicted kinase 1 

General function prediction only  Predicted dehydrogenases and related proteins 1 

General function prediction only  MoxR-like ATPases 1 

Carbohydrate transport and 

metabolism  
Predicted xylanase/chitin deacetylase 1 

Multiple classes 

Response regulators consisting of a CheY-like 

receiver domain and a winged-helix DNA-binding 

domain 

1 

Cell wall/membrane/envelope 

biogenesis  
Cell wall-associated hydrolase 1 

Cell wall/membrane/envelope 

biogenesis  
Lipoproteins 1 

Cell wall/membrane/envelope 

biogenesis  
N-acetylmuramoyl-L-alanine amidase 1 

Multiple classes 
Dehydrogenases with different specificities (related to 

short-chain alcohol dehydrogenases) 
1 

Coenzyme transport and metabolism  Nicotinamide mononucleotide adenylyltransferase 1 

Replication, recombination and repair  
ATP-dependent exoDNAse (exonuclease V) beta 

subunit 
1 

Cell wall/membrane/envelope 

biogenesis  
UDP-glucose 4-epimerase 1 

Cell wall/membrane/envelope 

biogenesis  
GDP-D-mannose dehydratase 1 

Posttranslational modification, 

chaperones  
Pyruvate-formate lyase-activating enzyme 1 

Transcription  DNA-directed RNA polymerase, sigma subunit 1 

Multiple classes Rad3-related DNA helicases 1 

Posttranslational modification, 

chaperones  
ATP-dependent 26S proteasome regulatory subunit 1 

Replication, recombination and repair  DNA topoisomerase VI, subunit B 1 

Posttranslational modification, 

chaperones  
Subtilisin-like serine proteases 1 

Replication, recombination and repair  ATP-dependent DNA ligase 1 

Replication, recombination and repair  DNA replication protein 1 

Coenzyme transport and metabolism  Nicotinic acid phosphoribosyltransferase 1 

Inorganic ion transport and 

metabolism  
Ferritin-like protein 1 
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Signal transduction mechanisms  Carbon storage regulator 1 

Replication, recombination and repair  Holliday junction resolvase - archaeal type 1 

Translation, ribosomal structure and 

biogenesis  

Acetyltransferases, including N-acetylases of 

ribosomal proteins 
1 

Signal transduction mechanisms  DnaK suppressor protein 1 

Replication, recombination and repair  DNA polymerase IV (family X) 1 

Cell wall/membrane/envelope 

biogenesis  
Spore coat polysaccharide biosynthesis protein F 1 

Signal transduction mechanisms  
Predicted ATPase related to phosphate starvation-

inducible protein PhoH 
1 

Replication, recombination and repair  Transposase and inactivated derivatives 1 

Replication, recombination and repair  ERCC4-type nuclease 1 

Replication, recombination and repair  DNA repair proteins 1 

General function prediction only  Predicted glutamine amidotransferases 1 

Cell wall/membrane/envelope 

biogenesis  
Sialic acid synthase 1 

General function prediction only  Predicted phosphoesterases, related to the Icc protein 1 

Nucleotide transport and metabolism  Deoxycytidylate deaminase 1 

Carbohydrate transport and 

metabolism  
Predicted glycosylase 1 

Multiple classes Type II secretory pathway, pseudopilin PulG 1 

Replication, recombination and repair  
DNA polymerase III, alpha subunit (gram-positive 

type) 
1 

Replication, recombination and repair  Adenine specific DNA methylase Mod 1 

General function prediction only  
Predicted Zn-dependent hydrolases of the beta-

lactamase  
1 

Coenzyme transport and metabolism  
Methylase involved in ubiquinone/menaquinone 

biosynthesis 
1 

General function prediction only  Predicted phosphohydrolase (DHH superfamily) 1 

General function prediction only  Predicted archaeal methyltransferase 1 

General function prediction only  Predicted Zn-dependent protease 1 

Amino acid transport and metabolism  
3-deoxy-D-arabino-heptulosonate 7-phosphate 

synthase 
1 

Coenzyme transport and metabolism  Molybdenum cofactor biosynthesis enzyme 1 

Replication, recombination and repair  DNA recombination-dependent growth factor C 1 

Cell wall/membrane/envelope 

biogenesis  
Membrane protein involved in colicin uptake 1 

Function unknown  Uncharacterized iron-regulated protein 1 

General function prediction only  
Predicted double-stranded RNA/RNA-DNA hybrid 

binding protein 
1 

General function prediction only  Phage protein U 1 

General function prediction only  Phage protein D 1 

Function unknown  Predicted periplasmic protein 1 

Posttranslational modification, 

chaperones  
Predicted proline hydroxylase 1 

Intracellular trafficking, secretion  Type IV secretory pathway, TrbL components 1 

General function prediction only  Surface antigen 1 

General function prediction only  Predicted O-methyltransferase 1 

General function prediction only  
ABC-type uncharacterized transport system, permease 

and ATPase components 
1 

General function prediction only  Mu-like prophage tail protein gpP 1 

General function prediction only  Mu-like prophage tail sheath protein gpL 1 

Function unknown  Mu-like prophage protein gp36 1 

General function prediction only  Competence protein 1 

Function unknown  Microcystin-dependent protein 1 

Posttranslational modification, 

chaperones  

Mitochondrial sulfhydryl oxidase involved in the 

biogenesis of cytosolic Fe/S proteins 
1 

Replication, recombination and repair  Recombination DNA repair protein (RAD52 pathway) 1 

General function prediction only  Pyocin large subunit 1 

Total  
 

1248 
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3.3.8. Antibiotic resistance genes in activated sludge viral metagenome 

To characterize the potential antibiotic and toxic compound resistance genes 

assembled from activated sludge viruses, predicted ORFs were compared to the 

Comprehensive Antibiotic Resistance Database (CARD). Fourteen ORFs encoded on 

13 contigs resembled known antibiotic resistance genes (Table 3.7). This included 

genes conferring resistance to vancomycin and penicillin (D-alanyl-D-alanine 

carboxypeptidase), β–lactam (metallo-beta-lactamase and N-acetyl-anhydromuramil-

l-alanine amidase), trimethoprim (dihydrofolate reductase) and arsenate (ArsR family 

transcriptional regulator). The low sequence identities of genes identified in the 

wastewater sample (Table 3.7) with known proteins indicate the novelty of these 

proteins. Phylogenetic analysis of the three complete metallo-β-lactamase sequences 

showed that two genes were distantly related with Bacteroidetes sequences and one 

grouped with Betaproteobacterium (Figure 3.9A). A close inspection of contig50 

(10.8 kb in length) demonstrated that it encodes two antibiotic resistance genes 

(vancomycin and β–lactam) along with a phage recombinase (RecT) (Figure 3.9B). 

Predicted ORFs matched with proteins affiliated with different bacterial species, 

making taxonomic assignment impossible. None of these ORFs matched known 

phage proteins. Low amino-acid identities (42-67%, with identity of 67% to 

Clostridium difficile), suggests that contig50 represents a novel phage genome.  

 

3.3.9. Comparison with other viral metagenomes 

The comparative analysis was based on Principal Component Analysis (PCA) using 

MG-RAST. Three municipal wastewater viral metagenomes (Parsley et al., 2010b; 

Rosario et al., 2009b; Tamaki et al., 2012), along with a freshwater (lake) viral 

metagenome (Roux et al., 2012b), were used for comparison with the assembled 

viral metagenome from dairy wastewater. A cystic fibrosis (CF) sputum viral 

metagenome was used as an outgroup (Willner et al., 2009). PCA analysis indicated 

that taxonomic and functional profile of the dairy wastewater virus community was 

different from those of other environments, although of all compared viral 

metagenomes, it was most similar to another activated sludge viral metagenome from 

a municipal treatment plant in Singapore (Figure 3.10A and B). These two 

metagenomes both contain overrepresentation of DNA methylase genes, and have 

many phage hits in common e.g. to Pseudomonas aeruginosa bacteriophage PaP2, 
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Bordetella phage BPP-1, Burkholderia cenocepacia phage Bcep1 and 

Flavobacterium phage 11b, however at different relative proportions. Phage 

communities in the dairy wastewater metagenome were most distant from CF sputum 

and freshwater communities.  

 

 

  

 

 

Figure 3.9. (A) A neighbour-joining phylogenetic tree showing the relationship 

between the predicted metallo-β-lactamase sequences assembled from the activated 

sludge viral metagenome to the most related sequences in NCBI protein database. 

Metallo-β-lactamase sequences detected in this study are shown in bold red. (B) 

Analysis of the gene order in contig 50 containing two antibiotic resistance genes 

(coloured in red), known genes including hypothetical proteins (HP) (dark grey) and 

unknown ORFs (light grey). Predicted protein coding genes were annotated using 

NCBI protein database. ORFs displayed low amino-acid similarities (42-67%) to 

different bacteria species. The figure was drawn using Easyfig. 
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Figure 3.10. Principal component analysis (PCoA) based on organism abundance (A) 

and functional abundance (B) using MG-RAST. Metagenome comparisons were 

calculated for dairy wastewater viral metagenome (contigs >100bp) (red circle) and 

other published viral metagenomes (black circles): wastewater (Parsley et al., 2010b; 

Rosario et al., 2009b; Tamaki et al., 2012), lake (Roux et al., 2012b) and CF sputum 

(Willner et al., 2009). The data was compared to GenBank (organism abundance) 

and Subsystems (functional abundance) using a maximum e-value of 1e-05 and a 

minimum alignment length of 50. 

 

 

3.3.10.   CRISPR sequences in activated sludge viral metagenome 

To identify matches between the bacterial and archaeal CRISPR spacers and 

activated sludge phage sequences, spacers downloaded from the CRISPR database 

(Grissa et al., 2007b) were compared to the metagenomic reads and contigs using 

BLASTN. Spacers having 100% identity over 20 bp were retrieved. A total of 75 

different spacers matching activated sludge reads and 22 different spacers matching 

assembled contigs were identified (Table 3.8). These spacers belonged to 77 different 

bacteria species, including species typically found in wastewater environment such 

us Candidatus Accumulibacter phosphatis (Garcia Martin et al., 2006) and 

Nakamurella multipartita (Tice et al., 2010), or pathogenic species found dairy 

wastewater such as Campylobacter jejuni (Dungan et al., 2012). The most common 

identified contig CDS containing CRISPR hits were DNA methylase followed by 

phage enzymes. Phylogenetic and functional assignment of these CDS is shown in 

Table 3.9. 

A) Metagenome organism abundance B) Metagenome functional abundance 
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Table 3.7. Antibiotic and toxic compound resistance genes found in ORFs predicted on the assembled contigs from the activated sludge 

virome. 

 

Resistance gene function Gene 
Resistance 

conferred 
Best-match organism 

BLAST 

identity (%) 
E-value 

ORF 

coverage 

(%) 

ORF 

length 

(aa) 

Contig 

length (kb) 

Contig 

name 

Transcriptional regulator ArsR arsenate 
Thermoanaerobacter 

pseudethanolicus 
43 6e-11 83 92 2.6 c473 

D-alanyl-D-alanine 

carboxypeptidase 
VanY 

vancomycin 

penicillin 

Herbaspirillum 

seropedicae 
45 3e-32 78 180 31.8 c9 

D-alanyl-D-alanine 

carboxypeptidase 
VanY 

vancomycin 

penicillin 
Solitalea canadensis 50 1e-37 95 136 10.8 c50 

Metallo-beta-lactamase MBL β-lactam Gramella forsetii 49 3e-71 96 252 10.8 c50 

Metallo-beta-lactamase MBL β-lactam Halobacterium sp. 29 6e-51 100 416 4.0 c249 

Metallo-beta-lactamase MBL β-lactam Gramella forsetii 57 1e-92 100 246 2.1 c668 

N-acetyl-anhydromuramil-

l-alanine amidase 
AmpD β-lactam 

Anaerophaga 

thermohalophila 
34 3e-32 90 292 5.6 c163 

N-acetyl-anhydromuramil-

l-alanine amidase 
AmpD β-lactam 

Brevundimonas 

diminuta 
56 5e-59 83 180 4.0 c247 

N-acetyl-anhydromuramil-

l-alanine amidase 
AmpD β-lactam 

Gemmatimonas 

aurantiaca 
41 2e-20 97 127 3.2 c346 

R67 dihydrofolate 

reductase 
DHFR trimethoprim 

Burkholderiales 

bacterium 
70 4e-11 20 193 1.1 c1606 

R67 dihydrofolate 

reductase  
DHFR trimethoprim 

Burkholderiales 

bacterium 
66 2e-04 32 87 0.5 c4075 

R67 dihydrofolate 

reductase  
DHFR trimethoprim Salmonella enterica 75 6e-23 91 62 0.3 c6659 

R67 dihydrofolate 

reductase  
DHFR trimethoprim Salmonella enterica 74 3e-22 91 62 0.3 c7130 

R67 dihydrofolate 

reductase  
DHFR trimethoprim 

Burkholderiales 

bacterium 
76 2e-13 75 54 0.2 c12808 
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Table 3.8. Bacterial CRISPRdb spacers matching AS reads and contigs. Information 

about habitat was retrieved from NCBI Genome project organism overview 

http://www.ncbi.nlm.nih.gov/genome. Aquatic (A), animal associated (AN), human 

associated (H), plant associated (P), marine (M), sediment (SD), sludge (SL), soil 

(S). 

 

Bacterial genome (habitat) 
No. of  unique spacers 

matching AS reads 

No. of  unique spacers 

matching AS contigs 

Acinetobacter baumannii (A, H) 1 0 

Acidovorax sp. JS42 (SD) 1 0 

Actinobacillus pleuropneumoniae (AN) 1 0 

Ammonifex degensii (A) 1 0 

Anaeromyxobacter dehalogenans (S) 1 0 

Anoxybacillus flavithermus (A) 1 0 

Azospirillum sp. B510 (P) 1 1 

Azotobacter vinelandii (S) 1 0 

Caldicellulosiruptor hydrothermalis (A) 1 0 

Caldicellulosiruptor kristjanssonii (A) 1 1 

Campylobacter jejuni (H, AN, SL) 1 1 

Candidatus Accumulibacter phosphatis (SL) 1 2 

Candidatus Korarchaeum cryptofilum (A) 0 1 

Cellulomonas fimi (S) 1 0 

Chlorobium chlorochromatii (A) 1 0 

Chlorobium limicola (A) 1 0 

Chloroflexus aurantiacus (A) 1 0 

Chloroherpeton thalassium (A) 2 0 

Clostridium botulinum (H, AN) 1 0 

Clostridium thermocellum (P) 0 1 

Cyanothece sp. (M) 1 0 

Desulfarculus baarsii (SD) 1 0 

Desulfitobacterium hafniense (S, SL) 1 0 

Desulfotomaculum kuznetsovii (A) 1 0 

Desulfovibrio vulgaris (S) (A) 1 0 

Dickeya dadantii (P) 1 0 

Escherichia coli (A) (H) (AN) 1 0 

Fluviicola taffensis (A) 1 0 

Haliangium ochraceum (M) 1 0 

Halorubrum lacusprofundi (M) 1 0 

Isosphaera pallida (A) 1 0 

Kyrpidia tusciae (A) 2 0 

Leptotrichia buccalis (H) 1 1 

Magnetococcus marinus (M) 1 0 

Marinomonas mediterranea (M) 1 1 

Metallosphaera sedula (A) 1 0 

Methanobacterium sp. (A) 1 0 

Methanosphaera stadtmanae (H) 1 0 

Methanothermococcus okinawensis (M) 2 0 

Methanotorris igneus (M) 1 0 

Methylomonas methanica (A) 0 2 
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Bacterial genome (habitat) 
No. of  unique spacers 

matching AS reads 

No. of  unique spacers 

matching AS contigs 

Microcystis aeruginosa (A) 1 0 

Nakamurella multipartita (SL) 0 1 

Natrialba magadii (A) 1 0 

Nitrosomonas europaea (SL) 1 0 

Pectobacterium wasabiae (P) 1 0 

Pelotomaculum thermopropionicum (SL) 1 0 

Prevotella denticola (H) 1 0 

Propionibacterium freudenreichii* 1 0 

Pseudomonas mendocina (S, A, H) 2 0 

Pyrococcus abyssi (M) 1 0 

Rhodoferax ferrireducens (SD) 1 1 

Rhodopseudomonas palustris (S, A, SD, SL) 1 1 

Rhodothermus marinus (M) 1 1 

Riemerella anatipestifer (AN) 1 0 

Runella slithyformis (A) 0 1 

Salinispora arenicola (M) 1 0 

Shewanella baltica (M) 1 0 

Streptococcus gallolyticus (H, AN) 0 1 

Streptococcus thermophilus* 1 0 

Streptomyces avermitilis (S) 1 0 

Sulfolobus tokodaii (A) 1 0 

Sulfurihydrogenibium azorense (A) 1 0 

Sulfurihydrogenibium sp. (A) 2 0 

Syntrophothermus lipocalidus (SL) 1 0 

Tepidanaerobacter sp. Re1 (SL) 1 0 

Thermoanaerobacter sp. (A) 1 1 

Thermoanaerobacter tengcongensis (M) 1 0 

Thermobifida fusca (isolated from waste) 1 0 

Thermobispora bispora (isolated from manure) 1 0 

Thermococcus onnurineus (SD) 0 1 

Thermodesulfovibrio yellowstonii (A) 0 1 

Thermosipho africanus (M) 1 1 

Thermotoga neapolitana (M) 1 0 

Treponema brennaborense (AN) 1 0 

Verminephrobacter eiseniae (AN) 2 1 

Xanthomonas oryzae (P) 1 0 

Total 75 22 

 

* Commonly isolated from cheese and other dairy products
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Table 3.9. Analysis of CRISPR spacer matches to dairy wastewater phage contigs. CDS predicted on contigs that matched CRISPR 

spacers were further analysed using BLASTP.  

 

WW phage 

contig 

Bacterial genome CRISPR matches 

to WW phage contigs 
Bacterial source 

BLASTP organism assignment  

(CDS % coverage, % identity) 

WW phage CDS  

functional assignment 

contig4299 Azospirillum sp. B510 Rhizosphere Comamonas testosteroni (96%, 53%) Phage integrase 

contig7938 Caldicellulosiruptor kristjanssonii Hot springs Elusimicrobium minutum (83%, 53%) Phage terminase 

contig1395 Campylobacter jejuni RM1221 Animal feces Burkholderia phage Bcep43 (94%, 36%) DNA methylase 

contig38 Candidatus Accumulibacter phosphatis  Wastewater No BLASTP similarity No BLASTP similarity 

contig6615 Candidatus Accumulibacter phosphatis  Wastewater Spacer not within the CDS - 

contig5700 Candidatus Korarchaeum cryptofilum  Hot springs 
Escherichia phage vB_EcoM_ECO1230-10 

(98%, 46%) 
Helicase  

contig8363 
Clostridium thermocellum ATCC 

27407 

Multiple habitats 

(cellulose rich) 
No BLASTP similarity No BLASTP similarity 

contig8573 Leptotrichia buccalis C-1013-b Human oral cavity Bacillus sp. BT1B_CT2 (93%, 49%) Sensor protein, YopX family 

contig12688 Marinomonas mediterranea MMB-1 Marine No BLASTP similarity No BLASTP similarity 

contig36 Methylomonas methanica MC09 Freshwater Capnocytophaga sp. CM59 (82%, 41%) Hypothetical protein 

contig2198 Methylomonas methanica MC09 Freshwater Collimonas fungivorans (90%, 49%) Peptidase M15 family 

contig17029 Nakamurella multipartita DSM 44233 Wastewater Chlamydia phage 4 (87%, 44%) Replication initiation protein 

contig7327 Rhodoferax ferrireducens T118  Marine sediment Herbaspirillum sp. GW103 (98%, 42%) Hypothetical protein 

contig8879 Rhodopseudomonas palustris DX-1 Freshwater, soil No BLASTP similarity No BLASTP similarity 

contig2734 Rhodothermus marinus DSM 4252 Hot springs Elizabethkingia anopheles (88%, 37%) Antirestriction protein (ArdA) 

contig3786 Runella slithyformis DSM 19594 Freshwater Bacteroides sp. D20 (95%, 48%) DNA methylase 

contig13361 Streptococcus gallolyticus  Human blood No BLASTP similarity No BLASTP similarity 

contig7347 Thermoanaerobacter sp. X514 Freshwater Spacer not within the CDS - 

contig10721 Thermococcus onnurineus NA1 Marine Frateuria aurantia (100%, 59%) Restriction endonuclease 

contig13271 Thermodesulfovibrio yellowstonii  Hot springs No BLASTP similarity No BLASTP similarity 

contig7188 Thermosipho africanus TCF52B Marine oil reservoir Odoribacter laneus (97%, 34%) DNA methylase 

contig866 Verminephrobacter eiseniae EF01-2 Earthworm nephridia Pseudomonas fluorescens (100%, 52%) DNA methylase 
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3.3.11.   Microbial diversity in activated sludge 

To identify the putative phage host species, bacterial DNA was extracted from the 

same sample that was used for the viral diversity study and amplified using 16S 

ribosomal RNA universal primers (Lane, 1991) and Accumulibacter-specific primers 

(Kunin et al., 2008) targeting Candidatus Accumulibacter phosphatis, a bacterium 

widespread in sludge samples. Nineteen clones that were successfully sequenced 

from the clone libraries were affiliated with the Proteobacteria, Bacteroidetes and 

Gemmatimonadetes (Table 3.10). Proteobacteria dominated the 16S rRNA clone 

libraries, and the identified genera were typical for a soil and wastewater 

environment. Some species identified such as Novosphingobium sp., Dechloromonas 

aromatica, Niastella koreensis and Gemmatimonas aurantiaca were also detected in 

the viral metagenome (Table 3.2, Table 3.7). 

 

Table 3.10. Sequence similarity of the 16S rRNA clones amplified from activated 

sludge to the NCBI reference genome database. 

 

No. of 

clones 

Closest known match in BLAST 

analysis (accession number) 

Identity 

(%) 

Isolation 

source of the 

match 

Phylum 

1 
Novosphingobium sp. PP1Y 

(NC_015580) 
96 Seawater ɑ-Proteobacteria 

 
1 Beijerinckia indica (NC_010581) 95 Soil 

1 Nitrosospira multiformis (NC_007614) 89 Soil  
 

 

1 
Methylibium petroleiphilum 

(NC_008825) 
89 Sewage 

β-Proteobacteria 1 Ralstonia solanacearum (NC_014311) 90 Soil 

1 Azoarcus sp. BH72 (NC_008702) 93 Soil 

4* 
Candidatus Accumulibacter phosphatis 

(NC_013194) 
99 

EBPR 

bioreactor 
 

5* 
Dechloromonas aromatica 

(NC_007298) 
97-98 Sediment  

1 Niastella koreensis (NC_016609) 88 Soil 

Bacteroidetes 
2 

Owenweeksia hongkongensis 

(NC_016599) 
85-86 Seawater 

1 
Gemmatimonas aurantiaca 

(NC_012489) 
83 

EBPR 

bioreactor 
Gemmatimonadetes 

 

*Sequenced using Accumulibacter-specific primers
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3.4. Discussion 

This chapter describes the application of Illumina short-read-based DNA sequencing 

to characterise taxonomic and functional diversity of viruses in activated sludge 

sample collected from a dairy food wastewater treatment plant. Previous 

metagenomic analysis of viruses associated with wastewater environment (raw 

sewage, activated sludge, dairy waste lagoon) revealed that a large fraction of 

metagenomic reads had no significant similarity to any known sequences, indicating 

the high proportion of unknown viruses in this environment (Alhamlan et al., 2013; 

Bibby & Peccia, 2013; Cantalupo et al., 2011; Ng et al., 2012; Rosario et al., 2009b; 

Tamaki et al., 2012). Majority of these studies reported that bacteriophages 

dominated the known fraction of the viral community.   

 

The majority of reads (99.86%) and assembled contigs (65%) had no hits to any 

sequences in databases, suggesting that the dairy food wastewater viral community 

was mostly novel. This is comparable with findings of previous studies of viral 

diversity in various other environments, including an activated sludge from a 

municipal wastewater treatment plant (Tamaki et al., 2012), reclaimed water 

(Rosario et al., 2009b), Antarctic lake (Lopez-Bueno et al., 2009) or marine water 

(Angly et al., 2006).  

 

Despite the stringent virus purification method applied, a large proportion of 

assigned sequences showed similarity to bacterial sequences. However, analyses of 

the genes in assembled contigs confirmed that these sequences were dominated by 

phage proteins (e.g. presence of high number of terminases or phage structural 

genes) (Table 3.1, Figure 3.7, Table 3.5, and Table 3.6). A high abundance of 

prokaryotic sequences in an analysis of a viral metagenome is consistent with other 

studies (Angly et al., 2006; Lopez-Bueno et al., 2009; Tamaki et al., 2012), and it 

may be explained by the common inclusion of uncharacterised prophage sequences 

in databases containing bacterial genome sequences (Fouts, 2006; Rosario et al., 

2009b). Previous metagenomic studies of viral communities have shown that the 

majority of sequences initially classified as bacteria can be re-classified as plasmids 

or phages by further consideration of gene context and associations (Rosario et al., 

2009b; Roux et al., 2012b).  
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The majority of these uncharacterized prophage sequences resembled phage 

sequences from bacteria commonly found in soil and aquatic environments, 

including sludge (Table 3.2), and the majority of assignments were to bacteria of the 

Proteobacteria phylum. Based on the reads classification, top five (13%) bacterial 

hits could be assigned to genus Neisseria, Pseudomonas, Escherichia, Salmonella 

and Acinetobacter. Ten contigs (0.6% of all assigned contigs) contained genes 

related to Neisseria species, however when re-BLASTed these contigs had the best 

BLAST hits to other species, suggesting that the presence of Neisseria species in the 

sample was low and might be the results of contamination during the sample 

manipulation. Contigs assigned to Pseudomonas species (P. aeruginosa, P. syringae 

and P. putida most common) accounted for 3%, Escherichia species accounted for 

1% and Salmonella species accounted for 0.6% of the assigned contigs. This is 

consistent with finding of a previous study that detected high abundance of 

prophages, including those of Escherichia, Pseudomonas and Salmonella in 

reclaimed water (Rosario et al., 2009b). Acinetobacter species accounted for 3% of 

the assigned contigs, including two large contigs (Table 3.1), one related to 

Acinetobacter brisouii, a gammaproteobacterium isolated from a wetland 

(Anandham et al., 2010) and the other to Acinetobacter baumannii, a nosocomical 

pathogen. High abundance of Acinetobacter species have been previously detected in 

freshwater metagenome using pyrosequencing, suggesting that they are common in 

the environment (Ghai et al., 2011).  

 

Based on the best BLASTX hit some contigs contained genes showing high 

similarity (>70% of amino acid identity, but no more than 86%) to known sequences. 

Two large contigs (26 kb and 10 kb), possibly originating from the same phage 

genome, showed high sequence similarity to a prophage of Nitrosomonas eutropha 

(Table 3.1) (1% of the assigned contigs). N. eutropha is an ammonia-oxidizing 

bacterium converting ammonia to nitrate via nitrification, found in polluted 

environments like wastewater or eutrophic sediments (Stein et al., 2007). Several 

small contigs including one larger (~7 kb) showed high sequence similarity to a 

prophage of Dechloromonas aromatica (0.5% of the total assigned contigs), 

microorganism involved in the degradation of aromatic compounds that have been 

isolated from sludge (Salinero et al., 2009). Presence of Dechloromonas aromatica 



127 
 

in dairy wastewater has been also confirmed by 16S rRNA PCR (Table 3.10). 

Another large contig (> 10 kb) showed similarity to a prophage of Thauera sp. 27, a 

microorganism isolated from a wastewater reactor (Liu et al., 2013). Few contigs, 

including a large contig (~ 11 kb), had similarity to a prophage of Flavobacterium 

columnare (0.4% of the assigned contigs), a freshwater fish pathogen (Decostere et 

al., 1997). Among other prophages of potentially pathogenic bacteria was Legionella 

pneumophila (0.4%), an environmental pathogen causing lung infections in humans 

and animals including cattle (Catalan et al., 1997; Fabbi et al., 1998). 

 

The taxonomic affiliation of most of the contigs could not be ascertained. For 

example, the largest contig assembled in this study (~ 114 kb) was initially classified 

as marine bacterium Pelagibaca bermudensis (Table 3.1), however further sequence 

analysis showed that it contained multiple ORFs with weak similarity to phage SP10 

infecting Bacillus subtilis, a ubiquitous bacterium commonly found in water and soil. 

This contig therefore might represent a novel Bacillus phage. 

 

Viral sequences were classified into 8-9 different viral families, much less than 

previously reported in raw sewage, which contained 51 viral families (Cantalupo et 

al., 2011), and comparable to dairy lagoon wastewater (13 families) (Alhamlan et al., 

2013). The directly identified viral fraction of dairy wastewater was dominated by 

double-stranded (ds) DNA bacteriophages from Siphoviridae, Myoviridae and 

Podoviridae families, which accounted for 64% of the contigs assigned to viruses 

(Figure 3.3C). These findings are consistent with previous studies, which observed 

that viral communities in wastewater samples were dominated by bacteriophages 

(Alhamlan et al., 2013; Cantalupo et al., 2011; Tamaki et al., 2012). Phages infecting 

Vibrio spp., Mycobacterium spp., Synechococcus spp., Pseudomonas spp. and 

Burkholderia spp. were the most abundant among assembled sequences. These 

phages may be generally common in the wastewater environment as previous studies 

also demonstrated the presence of phages infecting those bacteria (Rosario et al., 

2009b; Tamaki et al., 2012).  

 

Of particular interest were sequences with similarities to uncultured phages from 

enhanced biological phosphorus removal (EBPR) sludge, which is dominated by 

Candidatus Accumulibacter phosphatis (CAP) (Skennerton et al., 2011) (Table 3.3). 
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CAP is globally distributed in a substantially identical form and subject to locally 

variable phage predation (Kunin et al., 2008), including phage from Siphoviridae and 

Podoviridae families (Skennerton et al., 2011). Despite dairy wastewater viruses 

shared less than 76% amino acid sequence identities to known EBPR viruses, 

suggesting that these viruses are only weakly related, the PCR amplification of 16S 

rRNA genes confirmed the presence of Candidatus Accumulibacter phosphatis in the 

dairy wastewater sample. Analysis of matches of known CRISPR spacers from 

Accumulibacter phosphatis to viral reads and assembled contigs also suggests that 

viruses infecting CAP are present in this environment (Table 3.8). This suggests the 

presence of novel phage infecting CAP in this dairy wastewater sample. 

 

Viruses with small circular single-stranded (ss) DNA genomes infecting eukaryotes 

(Circoviridae, Nanoviridae and Geminiviridae) and prokaryotes (Microviridae) 

accounted for 23% of the contigs assigned to viruses (Figure 3.3C and Figure 3.4). 

Phylogenetic analyses showed that fifteen complete ssDNA viruses assembled from 

dairy metagenome were diverse and novel (Figure 3.5 and Figure 3.6). Single-

stranded viruses were dominated by bacteriophages (Figure 3.4) resembling those 

associated with obligate intracellular bacteria closely related to Chlamydia and 

Chlamydophila species (Figure 3.6). The natural hosts of Chlamydia-like species in 

wastewater are most likely free-living amoebae (Corsaro & Greub, 2006). 

Chlamydiae have been isolated from water samples, including lake (Pizzetti et al., 

2012) and wastewater (Corsaro et al., 2009). It has been recently demonstrated that 

host-free Chlamydia-like organisms can survive outside of their host for extended 

periods and are resistant to heat, which may account for their ubiquitous presence in 

the environment (Coulon et al., 2012). Some Chlamydia can be pathogenic to 

humans causing respiratory infections (Corsaro & Greub, 2006; Friedman et al., 

2003; Greub, 2009). Therefore, the presence of Chlamydia-like phages demonstrates 

that dairy wastewater is a source of pathogens that might be involved in human 

pathogenicity. Other ssDNA viruses that were identified in wastewater were 

numerous circovirus-like sequences (Figure 3.5). Circoviruses are known to infect a 

wide range of animal hosts and can be associated with disease in variety of animals 

including dairy cattle (Delwart & Li, 2012; Li et al., 2011c; Nayar et al., 1999), 

therefore dairy products may be a source of these viruses. A high abundance of novel 

ssDNA viruses has been found in metagenomic surveys of many different 
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environments including sewage (Blinkova et al., 2009; Cantalupo et al., 2011), 

reclaimed water (Rosario et al., 2009b), lake (Lopez-Bueno et al., 2009; Roux et al., 

2012b), marine water (Angly et al., 2006), human feces (Kim et al., 2011) and dairy 

lagoon wastewater (Alhamlan et al., 2013). The extensive representation of ssDNA 

viruses in all these metagenomic samples may reflect methodological bias, as it may 

be a result of the amplification step with phi29 polymerase that is known to 

preferentially amplify small circular DNA (Kim et al., 2008). Although their true 

abundance cannot currently be assessed with reliability, ssDNA viruses are however 

certainly present in dairy wastewater. 

 

The diversity of the dairy wastewater viral metagenome (409 species) was lower 

compared to marine ecosystems (4110) (Bench et al., 2007), higher than that found 

in human associated samples (105) (Willner et al., 2009) and comparable to that 

found in another activated sludge from a municipal wastewater treatment plant (511) 

(Tamaki et al., 2012). Principal component analysis (Figure 3.10) showed that the 

dairy wastewater metagenome contained genes and species distinct from those 

previously described, and was most similar to the activated sludge from municipal 

wastewater treatment plant (Tamaki et al., 2012).  

 

Analysis of the genes present in dairy wastewater viral metagenome revealed a 

substantial number of phage-related genes including structural proteins and genes 

involved in nucleic acid metabolism, such as DNA replication and synthesis. High 

abundance of phage genes involved in DNA metabolism may reflect phage activity 

in wastewater. Wastewater contains high concentration of nutrients and as a 

consequence a high bacterial load that favours rapid turnover in phage–host 

interactions (Shapiro et al., 2010). In particular, genes related to DNA 

methyltransferases, including DNA adenine methyltransferase (dam) and DNA 

cytosine methyltransferase (dcm), were overrepresented in dairy wastewater (Table 

3.5 and Table 3.6) as previously noted in municipal wastewater datasets (Tamaki et 

al., 2012). In prokaryotes, methylation of DNA is primarily involved in restriction-

modification system used to protect them from phage infection. Typically, 

restriction-modification systems are composed of genes that encode a 

methyltransferase, which introduces a specific methylation that protects the DNA 

against the restriction enzyme cleavage and a restriction enzyme, which recognize 
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the same sequence (Wilson & Murray, 1991). Once inside the host, phage DNA is 

restricted because it is not methylated in the DNA sequence recognized by the host 

restriction endonuclease. Several phage genomes encode methyltransferases that 

modify their DNA and protects phage genome from cleavage (Chiou et al., 2010; 

Drozdz et al., 2011; Kruger & Bickle, 1983). Phage encoded DNA 

methyltransferases may also play a role in switching between phage lytic and 

lysogenic life cycles. In prokaryotes, expression of certain genes is regulated by 

DNA adenine methylation (DAM) of the promoter region, which leads to activation 

or repression of the gene expression (Collier, 2009). Recently, it was suggested that 

phage dam methylates the phage antirepressor gene, which allow the lytic repressor 

gene to repress the lytic life cycle. Once methylation is removed, the repressor 

protein becomes repressed and non-functional leading to switching to the lytic cycle 

(Bochow et al., 2012).  

 

Some viral sequences were apparently associated with enzymes involved in sulphur 

assimilation (Table 3.6). In bacteria, sulphur is used for tRNA modification, a 

mechanism used for improvement of reading frame maintenance (Urbonavicius et 

al., 2001). Viruses use  programmed ribosomal frameshifting to synthesize their 

proteins (Farabaugh, 1996). Recently, it was suggested that internal competition for 

sulphur stores may increase host resistance to phage infection, because it 

preferentially affects translation of phage proteins, through an indirect effect on 

ribosomal frameshifting via tRNA (Maynard et al., 2012). Therefore phage genes 

that increase host sulphur uptake could aid viral replication.  

 

The presence of antibiotic resistance genes in close proximity to phage integrase 

genes (Figure 3.9B) indicates that dairy wastewater is a potential source for 

transmissible antimicrobial resistance. In general, however, the abundance of 

antibiotic resistance genes was low. Some phage contigs contained genes conferring 

resistance to β-lactam, vancomycin and trimethoprim antibiotics (Table 3.7). The 

presence of these genes in dairy wastewater may be a result of extensive use of β-

lactams and trimethoprim to treat dairy cattle infections in Ireland (More et al., 

2012). 
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Chapter 4:  

 

 

 

Functional screening for bacterial promoter 

activity in dairy wastewater metagenomic viral 

DNA using a promoter trap vector  

 



132 
 

Abstract 

Identification of strong viral promoters can be useful in the construction of novel 

expression vectors. A metagenomic library containing DNA fragments of viruses 

extracted from dairy wastewater was screened for their ability to drive expression of 

the promoter-less gfp gene in E.coli. Metagenomic sequencing of the DNA used for 

the library was available. Twenty clones (inserts 65- 992 base pairs) that showed 

constitutive promoter activity were sequenced and further characterized. Eighteen of 

these were present in the metagenome assembly and identification of the short 

promoter sequence source was aided by flanking sequence from the assembly. 

Sequence analysis of trapped DNA fragments showed that ten inserts were related to 

the ssDNA viruses of eukaryotes (mainly Geminiviruses), with the majority of ORFs 

associated with the replication initiation protein. Three inserts were characterized by 

the presence of phage-specific early transcription regulatory cassettes, which play a 

role in phage-mediated horizontal gene transfer.Two inserts contained an ORF 

associated with phage structural proteins. The remaining inserts had unannotated 

ORFs. These results demonstrate that promoter trapping is useful for identifying 

regulatory sequences from environmental viral DNA. 
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4.1. Introduction 

Promoters are regulatory regions that initiate transcription of genes. In E. coli, the 

main (sigma70) promoter sequence incorporates two sequence motifs approximately -

10 (TAATAT consensus sequence) and -35 (TTGACA consensus sequence) 

nucleotides upstream of the start of transcription (Hawley & McClure, 1983; 

Sinoquet et al., 2008). These sequence motifs are recognized by the sigma factors of 

the RNA polymerase, which bind to the promoter region of DNA and direct 

transcription (Browning & Busby, 2004). Most bacterial sigma factors belong to the 

sigma70 family and are primarily responsible for regulation of bacterial cell growth 

(Paget & Helmann, 2003). Other sigma factors (such as sigma54or sigma37) regulate 

expression of genes associated with specific circumstances such as virulence or 

genes involved in stress response to changes in environmental conditions 

(Kazmierczak et al., 2005). Viruses, including bacteriophages, use the infected host 

cell’s transcriptional machinery to enable the expression of their own genes. After 

infection, prokaryotic or eukaryotic virus early gene promoters are recognized by 

their host’s RNA polymerase sigma factors and transcribed (Fassler & Gussin, 1996; 

Hinton, 2010). Phages such as T4 are known to have regions of extreme plasticity 

(variability) called hyperplastic regions (HPRs) in their genome, which are small 

open reading frames flanked by early transcription promoters composed of sigma70 

bacterial promoters and stem-loopsThese HPRs show wide horizontal gene transfer 

mediated by recombination between homologous  promoter regions (Arbiol et al., 

2010; Comeau et al., 2008). Foreign DNA can be transcribed in bacteria, because 

sigma70 sequences are conserved across different species, and there is evidence that 

prophage DNA is highly transcribed in E.coli (Warren et al., 2008). In addition, 

prophage promoters subject to the host regulation during the bacterial stress response 

to environmental stresses, which triggers prophage induction (Glinkowska et al., 

2010). Therefore, E.coli should express phage genes adapted for expression in a wide 

range of prokaryotic hosts. 

 

One method to identify functional promoters is to use a promoter-trap vector 

containing a promoter-less reporter gene such as green fluorescence protein (GFP) 

that is adjacent to a multiple cloning site. A genomic or metagenomic library of 

random DNA fragments cloned upstream of a promoter-less gfp gene is transformed 
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into E. coli and screened for bacteria expressing insert-GFP gene fusions. 

Identification of novel promoters may have practical applications e.g. in the 

construction of expression vectors (Han et al., 2008). Promoter-trapping has been 

used for screening of promoters derived from individual phage DNA (Zargar et al., 

2001), and bacterial genomic (Chen et al., 2007; Dunn & Handelsman, 1999) or 

metagenomic DNA (Han et al., 2008; Lee et al., 2011; Park & Kim, 2010). However, 

this approach was not previously applied for identification of promoters from a viral 

metagenome.  

 

Bacteriophage DNA may be difficult to clone because of the inherent bacterial 

toxicity of some of the gene products if expressed, the presence of modified 

nucleotides in phage genomes and methylase modification of phage DNA preventing 

standard digestion (Wang et al., 2000; Warren, 1980). Recently, a linker 

amplification method has been successfully used to obtain clone libraries from viral 

metagenomes (Schoenfeld et al., 2008). It involves blunt-ending mechanically 

fragmented viral DNA and attaching double stranded linkers which serve as a target 

for PCR primers that can be used to amplify the insert with a proofreading 

polymerase. Because the linkers of known sequence are ligated to unknown DNA 

fragments no viral sequence homology is required for functional primers. 

 

Metagenomic analyses of viruses isolated from the dairy food wastewater treatment 

plant described in Chapter 3 demonstrated that assembled sequences contain mainly 

phage or prophage-like ORFs. This chapter combines linker amplification for 

construction of a metagenomic library and promoter trapping to identify phage-

specific promoter DNA sequences in the dairy wastewater. Because bacteriophages 

from some environments have been shown to contain bacterial toxin genes (Casas et 

al., 2006), genetic modification (GM) risk assessment required that short DNA 

fragments only were cloned (100 -1000 bp) and the vector used should be non-

mobilisable. In addition, the sample DNA used for the library was free of recognised 

toxin genes on metagenomic sequencing (Chapter 3). A previously described 

promoter trap plasmid was modified to make it non-mobilisable for screening virus-

derived DNA.  
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4.2. Material and Methods 

4.2.1. Deletion of mobilization genes from pZEP08 

pZEP08 (CmR, KnR, AmpR) (Lab stock; gift from David Clarke) (Hautefort et al., 

2003), a pBR322-derived vector carrying a promoterless gfp was used for this 

experiment. In order to minimize the possibility of onward phage gene transfer 

through bacterial conjugation, a 1634 bp region containing genes required for 

plasmid mobility (mobA, mobB, mobC and oriT) was deleted by PCR. The outward 

pointing PCR primers: mobF (5’- TTATACTAGTCGATGAAGAACGACAGGAC-

3’) and mobR (5’- TTATACTAGTGCTGAATGATCGACCGAGA-3’) were 

designed to amplify the DNA region flanking the mob sequence (Figure 4.1A). The 

underlined bases indicate a SpeI restriction site incorporated into each primer. After 

amplification using Platinum® Taq DNA Polymerase High Fidelity (Invitrogen), 

PCR fragments were digested with SpeI restriction enzyme (NEB) and self-ligated 

using the T4 DNA Ligase (Invitrogen) to produce pZEP08Δmob. Successful deletion 

of mob region was confirmed by sequencing of the entire plasmid (Figure 4.1B). 

 

 

 

Figure 4. 1. Promoter trap vector used for expression assay. (A) Cloning vector 

pZEP08gfp+ for promoter trap insertions. Red arrows indicate position of the PCR 

primers used for the mob region deletion. (B) Cloning vector pZEP08Δmobgfp+ 

used for construction of metagenomic library. 
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4.2.2. Construction of metagenomic library 

The method for library construction was adapted from a published source 

(Schoenfeld et al., 2008) and is outlined in Figure 4.2. Briefly, viral DNA isolated 

from dairy wastewater was amplified in triplicate using GenomiPhi V2 DNA 

Amplification Kit (GE Healthcare) (the method of DNA isolation and amplification 

is described in Chapter 3 Section 3.2.3). Approximately 8 µg of the amplified 

metagenomic DNA was sheared for 3 min at 10 psi using a Nebulizer (Invitrogen), 

blunt end-repaired using the DNATerminator® End Repair Kit (Lucigen), and 

fragments between 100 bp and 1 kb were gel purified. A double-stranded DNA 

linker consisting of forward phosphorylated linker: 5'–p–

GATTCTAGATTGTATCTGATACTGCT–3' and reverse nonphosphorylated linker: 

5'–GGAGCAGTATCAGATACAATCTAGAATC– 3' was ligated to the sheared 

metagenomic DNA and PCR-amplified using primer 5’–

AGCAGTATCAGATACAATCTAGAATC–3’. The underlined bases indicate XbaI 

restriction site incorporated into each linker and the primer. The PCR mixture 

contained, in a total volume of 50 µl, 1× High Fidelity PCR Buffer, 2mM MgSO4, 

2U Platinum® Taq DNA Polymerase High Fidelity (Invitrogen), 0.2mM dNTPmix 

(NEB), 25 pmol of primer, and 50 pg linker ligated DNA. For PCR amplification, an 

initial denaturation step of 5 min at 94°C was followed by 25 cycles of 30 sec at 

94°C for denaturation, 30 sec at 57°C for annealing, and 1 min at 68°C for extension. 

A final extension was carried out at 68°C for 10 min. After amplification resulting 

fragments were digested with XbaI restriction enzyme (NEB) and ligated into a 

linearized pZEP08Δmob vector. One aliquot of the ligation products (10 µl) was 

transformed into One Shot® TOP10 chemically competent E. coli cells (Invitrogen) 

and plated on LB agar plates containing chloramphenicol (20 µg/ml) and kanamycin 

(50 µg/ml) (library A). The remaining ligation mix (1 µl) was electroporated into 

One Shot® TOP10 electrocompetent E. coli cells (Invitrogen) and spread across 

LBKn/Cm agar Q-Tray plate (22 x 22 cm; Genetix) (library B). A high throughput 

robotics platform QPix2xt (Genetix) randomly selected 5487 colonies that grew on 

the Q-Tray and transferred them to 96-well plates (Genetix) containing 125 µl of LB 

freezing buffer (LB broth containing 36 mM K2HPO4, 13.2 mM KH2PO4, 1.7 mM 

sodium citrate, 0.4 mM MgSO4·7H20, 6.8 mM ammonium sulfate, 4.4% (v/v) 

glycerol) and library was stored at -80ºC. Each 96-well microtiter plates in the library 
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was replicated into a plate containing 125 µl of LBKn/Cm broth, LBKn/Cm containing 

TPEN and LBKn/Cm containing Desferal, as described below. 

 

 

 

Figure 4.2. A flowchart showing the strategy of promoter trap library construction. A 

library of random metagenomic DNA fragments was cloned into promoter-less GFP 

vector and transformed into E.coli cells. Screening of the colonies in the presence of 

UV light allowed selection of clones containing promoter insert. 



138 
 

4.2.3. Screening of the metagenomic library 

After 48 h incubation at 37°C colonies from ‘library A’ (hand plated) were viewed 

on a UV Transilluminator and DNA inserts from fluorescent clones were sequenced. 

For ‘library B’, fluorescence of clones that grew on LB broth was measured after 24 

h of incubation at 37°C using a GENios XFLUOR4 microplate reader (Tecan®) at 

the 485 nm excitation and the 535 nm emission wavelengths, 3 flashes, gain 60 and 

40 μs integration time. Colonies that exhibited fluorescence readings 2× greater than 

the negative control (E. coli containing pZEP08Δmob without an insert) were 

counted as GFP-expressing. Library B was subsequently screened for transcriptional 

responses to stress with metal chelators. Metagenomic clones were cultured in 

LBKn/Cm liquid media containing 5 µM N,N,N′,N′-Tetrakis(2-

pyridylmethyl)ethylenediamine (TPEN; SIGMA), which is a zinc chelator and 15 

µM deferoxamine mesylate (Desferal; SIGMA), an iron chelator. After 24 h 

incubation at 37°C fluorescence was measured as described above and clones that 

showed an increase or decrease in fluorescence intensity compared with the initial 

reading in non-chelating medium were selected for sequencing.  

 

Plasmids were purified from 10 ml of overnight culture using QIAprep Spin 

MiniPrep Kit (Qiagen). In total, 21 GFP-positive clones were selected for 

sequencing. This included 11 clones from library A that showed visible fluorescence 

and 10 clones from library B that showed strong fluorescence ratio compared to the 

negative control and different levels of GFP expression when grown on chelating 

media (see Table 4.1 for more details).  

 

DNA inserts were sequenced by GATC-Biotech (Germany) using the pZEP08-

specific primers pZEP08F (5’–CCTTCTTGACGAGTTCTTCTGAGCG–3’) and 

pZEP08R (5’–TCACCTTCACCCTCTCCACT–3’). 

 

4.2.4. Insert sequence analysis 

Open reading frames (ORFs) were identified using GeneMark (Besemer & 

Borodovsky, 1999) in combination with ORF Finder 

(http://www.ncbi.nlm.nih.gov/projects/gorf/) and annotated using BLASTP against 

NCBI protein nr database. Putative promoter sequences were predicted using 
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BPROM (http://linux1.softberry.com/berry.phtml) and GenomeMatScan 

(http://www.pdg.cnb.uam.es/icases/promscan/). Transcription terminators (stem-

loops) were predicted using the mfold Web Server 

(http://mfold.rna.albany.edu/?q=mfold) (Zuker, 2003) and PePPER (Prediction of 

Prokaryote Promoter Elements and Regulons) (http://pepper.molgenrug.nl/) (de Jong 

et al., 2012). Ribosomal binding sites (RBS) were found manually based on the 

following criteria: close proximity to the codon start and presence of purine bases (A 

and G). A Fur (ferric uptake regulator) binding motifs for E. coli were searched using 

the Virtual footprint (http://www.prodoric.de/vfp/vfp_promoter.php). Inserts were 

compared to the metagenomic DNA sequenced from the same sample (described in 

Chapter 3) using BLASTN and overlapping sequences were manually assembled. 

Assembled inserts were annotated using BLASTX against protein database. 

Unannotated protein sequences were further searched for homology detection using 

HHpred (Homology detection and structure prediction by HMM-HMM comparison) 

(http://toolkit.tuebingen.mpg.de/hhpred) (Soding et al., 2005) with minimum query 

coverage 40% and e-value < 1.  
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4.3. Results 

4.3.1. Screening of the promoter library 

In order to identify viral promoters in metagenomic DNA derived from an activated 

sludge of a dairy wastewater treatment plant, a promoter-trap library was 

constructed. Prior to library construction, a double-stranded linker was ligated to 

randomly fragmented metagenomic DNA and amplified to facilitate cloning into 

promoter-less GFP vector. In an initial proof of principle, the ligation products were 

transformed into chemically competent E. coli and hand plated onto LB agar plates 

(Library ‘A’). The resulting colonies were viewed under UV light for fluorescence 

induction. From 413 clones that grew on LB agar, 11 clones exhibited strong visible 

fluorescence (Figure 4.3) on inspection and those were sequenced. 

 

 

 

Figure 4.3. Agar plate containing GFP-expressing E.coli TOP10 pZEP08Δmob cells 

with inserts compared to the non-expressing E.coli TOP10 (bottom left).   

 

To make a larger library (Library ‘B’), ligation products were then cloned into 

electro-competent E. coli and plated on LB Q-tray. Approximately 5500 colonies 

were randomly picked from the Q-tray and GFP expression was measured 

fluorometrically after 24 hours of incubation in 96-well plates containing LB broth. 

In total, 318 clones showed over 2-fold greater GFP expression when compared to 

control clones not expressing GFP. To screen for clones containing promoters that 
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may be activated under different host stressing conditions, Library B clones were 

cultured in iron-limiting and zinc-limiting media. No non-fluorescent clones on LB 

showed any fluorescence on chelating media. Although library screening did not 

result in detection of ON/OFF phenotypes when changing from rich media to 

chelating media, some clones appeared to have elevated or reduced levels of GFP 

expression compared to LB when grown on chelating media. In total, 73 clones on 

TPEN and 87 clones on Desferal showed up to 2.4-fold fluorescence change relative 

to LB. Ten clones with the most marked response to either of the stress conditions 

were selected for sequencing (Table 4.1).  

 

Table 4.1. Change of gfp expression in clones selected for sequencing, grown in LB 

and LB supplemented with metal chelators (Desferal and TPEN). 

 

Clone Fluorescence ratio to the negative control (fold) 

 
LB Desferal TPEN 

B1F1 7.1 7.4 11.5 

B1H1 17.6 14.5 OVER 

B6A7* 7.5 4.9 6.0 

B22C1 8.1 16.1 11.8 

B43H11 14.3 9.7 5.7 

B46A2 13.9 13.0 OVER 

B50H12 17.3 12.6 9.5 

B56H9 12.7 15.5 8.9 

B56H11 OVER** OVER 11.5 

B58A11 9.9 OVER 11.2 

A142/A229 5.8 N/A*** N/A 

A48  10.4 N/A N/A 

A83 8.0 N/A N/A 

A15 7.6 N/A N/A 

A78 8.2 N/A N/A 

A5 10.8 N/A N/A 

A7 OVER N/A N/A 

A42 9.4 N/A N/A 

A45 9.1 N/A N/A 

A52 5.6 N/A N/A 

 

* Sequencing of this clone failed. 

** Over-expressed. Level of fluorescence intensity could not be determined because it exceeded 

the maximum recordable by the plate reader. 

*** Library ‘A’ clones were not screened on chelating media. 

 

4.3.2. Sequence analysis of the gene fusions 

In total, 20 clones expressing GFP (see Material and Methods for selection criteria 

clones were chosen based on) and their inserts were sequenced and analysed for 

evidence of prokaryotic transcription and translation signals, such as σ70 and σ54 
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promoters, terminators and translation initiation sequences. The DNA sequences of 

the sequenced clones and DNA motifs identified are shown in the Appendix. No fur 

(ferric uptake regulator) binding motifs were detected. 

 

The lengths of the inserts ranged from 65 bp to 992 bp. Open reading frames (ORFs) 

were predicted to identify genes for which a fragment of the insert may function as a 

promoter. Inserts were compared to contigs (described in Chapter 3) assembled from 

the same metagenomic DNA that was used for GFP promoter-trap library 

construction and overlapping fragments were assembled to increase the chance of 

ORF identification. The nucleotide and predicted amino acid sequences of inserts 

and inserts assembled with matching contigs were compared to the GenBank and 

HHpred databases, and putative identification of the genes encoded was made based 

on sequence homology (Figure 4.5, Table 4.2). Of the 20 clones sequenced, 14 

represented unique fragments. Clones A7, B46A2, B56H9, B56H11 and A142, 

A229, A48, B1H1 contained overlapping DNA fragments of different lengths 

(Figure 4.5). BLAST results demonstrated that 9 inserts (A142, A229, A48, B1H1, 

A7, B46A2, B56H9, B56H11 and A83) showed sequence similarity (28% to 47% 

identity) to the replication-associated (Rep) protein of single-stranded DNA viruses 

infecting plants and animals from Geminiviridae and Circoviridae families. Analysis 

of the conserved motifs in the N termini of Rep protein of clone A48 (which is 

identical to clone A142, A229 and B1H1 at the DNA level) indicate that these clones 

may contain novel Rep protein related to plant virus genus Mastrevirus (Figure 4.4). 

Additionally, one insert (A5) showed weak homology to Geminivirus coat protein. 

Two clones (A78 and B58A11) contained inserts with similarity to phage structural 

proteins and one clone (A15) had a similarity to hypothetical protein of nematode 

Wuchereria bancrofti (Figure 4.5). However, when clone A15 was assembled with 

an overlapping metagenomic contig, the predicted ORF showed similarity to a 

hypothetical protein of Pseudomonas sp. Ag1 (Table 4.2). Additionally, clone A15 

and overlapping contig assembled into a circular DNA molecule of 1.1 kb in length. 

Assembly and HHpred homology search showed that the ORF predicted on clone A5 

had weak homology to the PD-(D/E)XK nuclease superfamily. The remaining nine 

ORFs could not be annotated, but four of these were part of putative geminivirus Rep 

sequences in the metagenome.  
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Figure 4.4. Amino acid sequence alignment showing the conserved motifs in the N 

termini of Rep proteins of clone A48 and different members of the Geminiviridae 

family. Begomovirus: BGMV, Bean golden mosaic virus (AAA46312), curtovirus: 

BCTV, Beet curly top virus (AAA42751), topocuvirus: TPCTV, Tomato pseudo-

curly top virus (CAA59223), and mastrevirus: MSV, Maize streak virus 

(AAK73446) and TYDV, Tobacco yellow dwarf virus (AFD63094). The amino acid 

sequences were aligned using ClustalW (Thompson et al., 1994). The conserved 

motifs are boxed in black. Motif I (FLTY) is required for specific dsDNA binding, 

motif II (HLH) is a metal-binding site that may be involved in protein conformation 

and DNA cleavage, GRS motif is required for initiation of rolling-circle replication, 

motif III (YxxKD/E) is the catalytic site for DNA cleavage (Nash et al., 2011). The 

Geminivirus sequences used for comparison were as in reference (Nash et al., 2011). 

The Rep protein of TYDV virus was the closest homolog of clone A48 (sharing 30% 

of amino acid identity) as determined by BLASTX against NCBI protein database. 

 

 

4.3.3. Identification of putative promoters 

Putative promoters were predicted using a bacterial σ70 promoter recognition 

program (BPROM) and the sequences of the identified -35 and -10 promoter 

elements are shown in Table 4.3. No σ54-like promoters were predicted using 

GenomeMatScan. Of the 23 predicted σ70 promoters, 17 were found to lie within the 

ORF and 6 were located upstream of the ORF (Figure 4.5). Five clones had no 

predicted promoter sequences. 

Motif I 

Motif II GRS Motif III 
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Clone 
Insert 

size (bp) 
ORF BLASTP analysis (% coverage; % identity) Structural organization of the insert 

A142/ 

A229 
659 Geminivirus rep protein (85%; 30%) 

 

A48  889 Geminivirus rep protein (85%; 30%) 
 

B1H1 490 Geminivirus rep protein (85%; 29%) 
 

A83 585 Circovirus rep protein (75%; 39%) 
 

A15 751 Wuchereria bancrofti, hypothetical protein (64%; 33%) 
 

A78 814 
A: Methylophilales phage HAM624-A, hypothetical protein (96%; 31%) 

B: Bradyrhizobium sp., phage major head protein (98%; 52%) 
 

B58A11 592 Rhodovulum sp., P22 coat protein (98%; 48%) 
 

A5 640 
No hit [Geminivirus coat protein, e-value 0.19, coverage 43%, identity 

21%]**  

A42 778 No hit 
 

A45 883 A: No hit B: No hit 
 

A52 65 No hit  

B1F1 805 A: No hit B: No hit 
 

B22C1 280 No hit 
 

B43H11 224 No hit 
 

B50H12 992 No hit 
 

A7 120 No hit *   
B46A2 185 No hit *  

B56H9 341 No hit *  
 

B56H11 323 No hit * 
 

*  Assembly of the insert with the overlapping contig revealed matches to Geminivirus Rep protein (see Table 4.2) 

**  ORF homology predicted using HHpred (see material and methods)
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Figure 4.5. Sequence analysis of the sequenced clones. ORF were identified with 

GeneMark and annotated using GenBank protein database. Grey arrows represent the 

direction of putative ORFs with the putative bacterial promoter(s) (black arrow), and 

putative transcriptional terminators (lollipop). Non-coding regions are shown as 

black lines. Groups of inserts that contain identical DNA fragment have been 

highlighted in blue and green. 

 

 

Sequence analysis of inserts with no predicted bacterial promoter (clone A7, B46A2, 

B56H9 and B56H11 containing overlapping fragments of different lengths, and clone 

A52) revealed the presence of terminators with G+C-rich stems (Table 4.3). Stem-

loops of clones A7, B46A2, B56H9 and B56H11 were located in an intergenic region 

immediately upstream of the Geminivirus rep translation start position (Figure 4.5) 

and contained a nonanucleotide motif TACGGGGTA. Among clones that had a 

promoter located within the ORF were five clones (A142, A229, A48 and B1H1 

containing overlapping fragments of different lengths and orientation, and clone 

A83) with a putative prokaryotic promoter located within the Rep ORF. 

 

Three clones (A42, A15 and B43H11) contained inserts with potential phage-specific 

early transcription promoters characterized by presence of the σ70-like promoter 

upstream of the ORF and stem-loop structure (Figure 4.6). High sequence similarity 

to the E. coli σ70 promoter consensus indicates that these promoters should act as 

phage early promoters, and it is no surprise that they drive expression in E.coli. In 

particular, clone A42 contained a stable terminator with G+C-rich stem, a clear σ70-

like promoter (TTGACA-nt17-TATTAT) with a -35 element sequence identical to 

the TTGACA consensus sequence in E. coli and a putative ribosomal binding site 

(Shine-Dalgarno) identical to the AGGAGG consensus sequence in E. coli. The ORF 

encoded by this clone was incomplete (124 amino acids long) and showed weak 

homology to PD-(D/E)XK nuclease superfamily protein (Table 4.2).  
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Figure 4.6. Phage-specific promoter early stem-loop like regulatory cassettes 

identified in clone A42 (A), A15 (B) and B43H11 (C). The putative -35 and -10 

promoter elements (red) and the putative Shine-Dalgarno (green) were aligned with 

E. coli consensus sequences. The predicted terminator is highlighted in yellow and 

putative start codon is underlined. 
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Table 4.2. BLASTX (e-value < 0.001) results of assembled insert with overlapping contig assembled from dairy wastewater 

metagenome. 
 
Clone (bp) Contig (bp) Overlapping 

fragment length (bp) 

Overlapping 

fragment identity 

(%) 

Insert/Contig BLASTX (bp length, % query coverage,  %identity) 

B1F1 (490) ctg1540 (1143) 290 100 Candidatus Glomeribacter gigasporarum, dCTP deaminase* (1658, 18%, 

65%) 

B1H1 (490) ctg7701 (299) 299 100 Geminivirus, replication protein (490 bp , 49%, 36%) 

A229/A142 

(659) 

ctg7701 (299) 281 100 Geminivirus, replication protein (677 bp, 85%, 28%) 

A48 (889) ctg7701 (299) 299 100 Geminivirus, replication protein (889 bp, 77%, 28%) 

B46A2 (185) ctg6947 (335) 40 100 Geminivirus, replication protein (480 bp, 34%, 47%) 

B56H9 (341) ctg6947 (335) 196 100 Geminivirus, replication protein (480 bp, 34%, 47%) 

B56H11 (323) ctg6947 (335) 178 100 Geminivirus, replication protein (480 bp, 34%, 47%) 

A83 (585) ctg318 (3332) 585 100 Circovirus, replication protein (3332 bp, 24%, 34%) 

B58A11 (592) ctg1323 (1264) 592 99 Rhodovulum sp., P22 coat protein (1264 bp, 88%, 51%) 

A78 (814) ctg8352 (275) 275 100 Bradyrhizobium sp., phage major head protein (814 bp, 47%, 52%) 

A15 (751) ctg3362 (648) 213 99 No hit (1110 bp, circular sequence) [251 aa, 61%, 33%, Pseudomonas sp. 

Ag1, hypothetical protein]** 

A5 (640) ctg5657 (410) 410 99 No hit (640 bp) [Geminivirus coat protein, e-value 0.19, coverage 43%, 

identity 21%]*** 

A42 (778) ctg4251 (528) 412 100 No hit (894 bp) [PD-(D/E)XK nuclease superfamily, e-value 0.003, 

coverage 89%, identity 20%]*** 

A45 (883) ctg5347 (431) 305 99 No hit (939 bp) 

B22C1 (280) ctg708 (1995) 280 99 No hit (1995 bp) 

B43H11 (224) ctg5505 (419) 224 99 No hit (419 bp) 

B50H12 (992) ctg8371 (274) 175 100 No hit (1091 bp) 

 

* ORF not overlapping with the insert sequence 

** Identified using BLASTP 

***  ORF homology predicted using HHpred (see material and methods)
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Table 4.3. Putative bacterial promoters and transcription terminators predicted in clones expressing GFP. Scores with weights to the 

predictions are given by BPROM. 

 

Clone -10 element Score -35 element Score Stem-loop ORF annotation 

A7 None  - None  - GGGGGTACGGGGTACCCCC Geminivirus, replication protein 

B56H9 None  - None  - GGGGGTACGGGGTACCCCC Geminivirus, replication protein 

B56H11 None  - None  - GGGGGTACGGGGTACCCCC Geminivirus, replication protein 

B46A2 None  - None  - GGGGGTACGGGGTACCCCC Geminivirus, replication protein 

A52 None  - None  - GGGGGCCGGCAAGGCCCCC None  

A142/A 229 CCTTAGAAC  20 TTGCAG     49 ACCTTTAATCAAAGGT Geminivirus, replication protein 

A48  
AGGTAACCT  

CTCTATGCT  

54 

51 

TTTACA     

TTTCAG     

47 

30 
ACCTTTGATTAAAGGT Geminivirus, replication protein 

B1H1 
AGGTAACCT 

CTGCATACG 

54 

9 

TTTACA 

TTTACT 

47 

42 
ACCTTTGATTAAAGGT Geminivirus, replication protein 

A83 TGTTAAGCT  60 GAGCCG     -15 GCGATGTCTGACATCGC Circovirus, replication protein 

A5 CTGCAACCT  22 TTGAAG     54 None  Geminivirus, coat protein 

A15 
GCTCATTAT  

TTCCAAGAT  

36 

32 

TTGAGT     

TTGAAG     

38 

54 

CCGTCCCCCATTTATGGGGGACTG 

CGAATGAATTCG 

Wuchereria bancrofti, hypothetical 

protein 

A42 
GCCTATTAT 

CGCTATCTT 

57 

46 

TTGACA 

TTGAAG 

66 

54 
CCGGCTCTCTCCAGAGCCGG PD-(D/E)XK nuclease superfamily 

A45 

GGATAAAAT 

TGTTGTTAT 

ATTTATGGT 

72 

41 

41 

TTATCG 

TCGACG 

TCGATT 

24 

23 

16 

GTTGTCGATGCGCTGGACGCAATCGGCAAG None  

A78 
GACTAAAGT 

CGGCAAAGT 

40 

33 

TTTAAG 

ATGACA 

35 

36 

CGATGCAATACGACCGCATCA 

GACATGATGTC 

Bradyrhizobium sp., phage major 

head protein 

B1F1 
GGCTATCTT  

CGCTATGCT  

47 

58 

TTGAGG     

TGAACA     

37 

6 
GGCGAAACTAGGGCGCC None  

B22C1 GAGGAAGAT 18 TTGACT 61 CCGTTGGTGATCAACGG None  

B43H11 GGACAATAT 32 ATGCTA 23 AACTCCGCGACCAGAACGACGCGGAGTT None  

B50H12 
TTGTAGAGT 

GAATACATT 

46 

29 

TTGCCA 

TTGATT 

61 

53 
ACATTGCCTACAACAATGT None  

B58A11 CGGCAAACT 47 TTGCCA 61 CACCGCGAATAAGCGGTG Rhodovulum sp., P22 coat protein 

E. coli consensus TAATAT 89 TTGACA 66 
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4.4. Discussion 

Metagenomic samples contain a mixture of different genes derived from hundreds or 

even thousands of different species, mostly unknown or novel. The functional study 

of metagenomic DNA can be useful for assessing DNA sequence function. This 

chapter describes the construction and large-scale screening of a promoter-trap 

metagenomic library to identify virus-specific regulatory sequences able to drive 

GFP expression in E.coli. The DNA used for promoter screening was obtained from 

a wastewater sample, which was processed for virus particles isolation through a 

0.22-µm filtration, CsCl gradient ultracentrifugation and DNAse treatment. Sample 

prepared in such a fashion should contain all viruses present in this environment – 

including prokaryotic as well as eukaryotic viruses. Metagenomic sequencing and 

sequence analyses described in Chapter 3 demonstrated that indeed wastewater DNA 

was overrepresented by sequences of phage, prophage and viral origin. Cloning of 

short fragments of this DNA upstream of the promoter-less gfp reporter gene resulted 

in increased expression of green fluorescent protein in approximately 6% of the 

screened clones, suggesting they contained functional promoter sequences. 

Expression of the gfp gene in E.coli from foreign non-bacterial promoters is possible 

because viruses and phages contain regulatory sequences that are recognised by 

E.coli biosynthesis machinery (Lewin et al., 2005; Warren et al., 2008). A promoter 

trapping strategy has been successfully used for detection of promoters, mainly from 

bacterial DNA (Dunn & Handelsman, 1999; Han et al., 2008; Lee et al., 2011) and 

no such work has been described on metagenomic viral DNA.  

 

Screening of the small insert metagenomic library revealed that of 20 selected clones 

that showed strong promoter activity, 10 clones (50%) were derived from single-

stranded (ss) DNA viruses (Table 4.3). Nine of these inserts (representing three 

unique inserts, see Figure 4.5) were identified as plant-infecting ssDNA viruses from 

the Geminiviridae family. Eighteen of the 20 clones were represented in the 

metagenome assembly, including all the putative Geminivirus sequences (Figure 

4.5). Four of the Geminivirus sequences were only identifiable by similarity to 

longer contigs in the metagenome assembly. Eukaryotic promoters can be recognised 

by the prokaryote transcription system (Jacob et al., 2002) because RNA polymerase 
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is evolutionarily conserved among prokaryotes and eukaryotes (Allison et al., 1985; 

Ebright, 2000; Fassler & Gussin, 1996). Previous studies have shown that viral 

promoters can direct gene transcription in E. coli (Jenkins et al., 1983; Lewin et al., 

2005; Li et al., 2011a; Mitsialis et al., 1981). Therefore, it is not surprising that viral 

promoters cloned from the wastewater metagenomic DNA can initiate transcription 

of the GFP protein in the E.coli TOP10 strain used for the expression study. The fact 

that the majority of identified sequences detected in the promoter screen belong to a 

group of ssDNA viruses (circoviruses and geminiviruses) may be the effect of 

amplification bias. Viruses with circular ssDNA genomes replicate via a rolling-

circle amplification mechanism initiated by viruses-encoded replication initiation 

protein (Rep) and are highly detected in metagenomic studies of viral diversity, 

which use rolling-circle amplification technique to obtain sufficient DNA amount 

prior to sequencing (Kim et al., 2008; Lopez-Bueno et al., 2009; Rosario et al., 

2009a; Rosario et al., 2009b).  

 

Nine inserts contained predicted promoters associated with the replication initiator 

(Rep) protein of ssDNA viruses (Figure 4.5). There were two predicted promoter 

locations identified in putative Rep proteins, one inside the gene and the other 

upstream (Figure 4.5). Four of these inserts (clones with identical sequence of 

different length: A7, B46A2, B56H9 and B56H11) contained a predicted promoter 

region derived from the intergenic region of the Rep protein of Geminivirus. Five 

inserts (clones with identical sequence of different length: A142, A229, A48, B1H1 

showing sequence similarity to Geminivirus and clone A83 showing similarity 

Circovirus) contained a predicted prokaryotic promoter located inside the Rep 

protein. These promoters may be involved in regulation of the transcription of the 

capsid protein, as previously shown in Circovirus (Mankertz & Hillenbrand, 2002). 

Because of technical limitations in virus purification, including inefficacy of DNase I 

in removing free ssDNA templates, it has been suggested that the presence of 

bacterial or eukaryotic sequences in viral metagenomic libraries cannot be excluded 

(Rosario et al., 2012). Rep-like sequences of circoviruses and geminiviruses have 

recently been shown to be very widely distributed in eukaryotic host genomes, 

suggesting widespread insertion of genes from circular single stranded DNA viruses 

into host genomes in evolution, with evidence of expression of viral genes by the 

host (Liu et al., 2011). However, genes similar to geminivirus Rep sequences have 
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been reported from eubacterial and algal plasmids (Rosario et al., 2012). Some 

features increase the confidence in the viral origin of small circular genomes detected 

in metagenome sequence data, such as predicted Rep protein of clone A48, which 

showed conserved motifs similar to those found in Rep proteins of viruses from 

Geminiviridae family (Figure 4.4). Promoters derived from ssDNA viruses have 

wide application in study of gene expression in transgenic plants (Dugdale et al., 

1998; Shirasawa-Seo et al., 2005) and mammals (Tanzer et al., 2011). Therefore 

viral promoters identified in this study could be useful in the construction of novel 

expression vectors, especially as they showed high expression activity (Table 4.1). 

 

At least three clones were characterized by the presence of phage-specific promoter 

early cassettes (Figure 4.6), similar to those previously identified in T4-type phage 

genomes (Arbiol et al., 2010). These cassettes are composed of nonessential genes 

flanked by σ70-like promoters and stem-loop structures, and are thought to be 

involved in horizontal gene transfer (Arbiol et al., 2010; Cornelissen et al., 2012).  

 

The work described in this chapter show preliminary results on the potential use of 

promoter trap vector pZEP08Δmob constructed in this thesis to isolate virus-derived 

regulatory regions. Promoter-trapping approach has not previously been applied for 

identification of promoters from a viral metagenome. The results provide a proof of 

principle that metagenomic DNA fragments obtained from the clone library can be 

functionally screened for virus and phage promoters. Most of these DNA fragments 

were present in the metagenomic sequence assembly described in previous Chapter 

3, in which DNA from the same source was directly sequenced, omitting the cloning 

step. Availability of the metagenome assembly assisted identification and 

classification of the cloned inserts. Screening of the clone library on media imitating 

host environmental stress conditions such as low iron or zinc did not result in 

detection of sequences containing metal related regulatory sequences or promoters 

that would selectively induce gene expression. Previous studies demonstrated that 

these media can be used for identification of bacterial genes that are differentially 

expressed in response to metal chelators (Himpsl et al., 2010; Sigdel et al., 2006), 

and the preliminary screening assay used was relatively insensitive.  A comparative 

assay of relative GFP production would be worth applying to this type of media. 

Future work in needed to screen a larger number of positive clones. Further 
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characterization of viral promoters derived from metagenomic DNA could be 

directed to detection of sequences whose transcription is regulated in response to 

different environmental conditions such as anaerobic conditions or the presence of 

antimicrobials. To characterise the putative promoter sequences experimentally will 

require further work. To assess a large number of putative promoters in parallel, a 

high thoughput experimental confirmation method could be devised by the 

application of ChIP-seq (Mardis, 2007) and RNA-seq (Wang et al., 2009d). This 

would allow determination of the transcription start site, RNA polymerase binding 

site and transcription factor binding sites.  
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Appendix 

DNA sequences of clones sequenced from the GFP promoter-trap metagenomic 

library. The predicted open reading frames (ORF), promoters, terminators (stem-

loop) and ribosomal binding sites (RBS) have been highlighted. 

 

Colour codes: 

Putative ORF  

Putative -35/-10 promoter 

Putative stem-loop 

Putative RBS 

 

 

GFP library: 

 

>A5 

CGAGCTATATGCGCAGCGCTCGGAGTAGCGCAAAGCTCGCGCCAGAAACGAAGTACTTCGATACTACG

TTCTCGGCGAATGTGGACTCGGCCGAAGACTGGGCCACAACGAGTGTACCTATGACCTCGTACATCAA

TAGTGACGGAGTCACTGTATCTGGTTACACCGACCGTGCCCTCATTCCCAGTGCCGTAGGGTCTGGGT

ACGGGCAGGTCGTAGGCACGAAGTACCTACTCAAGCGGCTTGCGGTCAAAGGCGAGATTTTCTCGAAT

CCCGCCCAGGACCAAGCCGATGTGCTTGGGTCCCGTACAGTCCGATGTGTCCTAGTTATGGACACTCA

GCCCAATGGTGCACAGGCCACAGGAGATCTTGTGTTCACAGATCTCGGCCTTGCGACCAATTGCAACC

ACTCCTTTATAGCCATGGGAGCTGCCGGAAACGGCCGCTTCCGTGTCTTGAAGGACAAGACGTTCCTG

CTGCAACCTGCCGTTGCAGGAACTGATGGTGCGAACACCAACTCGCAGACTCACAATGGGGCTCTTGT

GAAGATGACGTACAGCCCGAAGAAGCCGCTTGCGGTTCGTATTCGAGGCAGTTCTGCCACCCCCACTG

TGGCCAGCTTGACAGATGTGAACATCTT 

 

>A7 

GCACGGGGGTACGGGGTACCCCCTCCCGTTCATGGGTTGCCGGTGGCACCCCATGGGGGGGCACGGGG

AGGCTGCGCCCCCCCTCTGGGGAAGTCGGTGACGTTCCCCACAGTTGAGTCC 

 

>A15 

TTAAGTAAATAGAGTAGATTTGATATTAAAGAATAAATGAGTTGAAATTGAAAACCCAAATGAATAAG

CCGACGGCCAGTATGACTATCTATCTAAAACCGTCCCCCATTTATGGGGGACTGAGGCCGCCGAGCGC

AGCGAGTCGCCGCCGAAGAGGGGGGCACTTATCTACAACATAGTAAATTTTGTAATGGCTATAGCTCC

TAGGCCCGGTGAGTTGGCACAGTAGGTGCCCCCTCACTATATTACCTAGGAGCTACTGTGCTGTGCCA

AGTTGAAGTATGGAGTGACAAACTCGTTTGAGTGACATGTTGGCTAATGCTCATTATCCCTTTTTCCT

TTTAGTACGTAGGTAGAAATGGGTGTTTTTCGTCGTAATCCTCCTCGTTCTGCTAAGAGGGCTAAGAA

GTCGCCATACAAGGCGCGTATGTCCGTCTATAAGAAGCCTCCTTCGGATGATTCTATGTATCGGAGTC

CTATTCCGCGTATTAGGGGATCTGATTTCGGATTTCCTGATAAGCTTGTAACTAACTTGCGTTATGTT

GATACGTTTCGATTGACAGGTAACGCAGGTGTTCCTGGTTCAAATGTGTTTCGAATGAATTCGTTGTT

CGATCCGGACCTGTCGGGTATCGGTCATCAACCAATGTATTTCGATCAGTTGTGTGGTGCTGCGGGCA

CTGGTCCATATTTGAAGTATCGTGTTCTTGGTTCCAAGATTACGGTTAAGTATTGTGTCGAGAATGCG

CCT 
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>A42 

ACCCAAAAACGAGCACATGGCTCATACGGGAAACCGACCTAAAGATCTCCACCACTTCACTCCAGCGA

AAGGCAGGTGATCCAAGATCTACCCTCCCTGGACTCTCTTTCCGGCTCTCTCCAGAGCCGGACTTTTT

TATACACACCCTGGTCGATTGACACCATCACCGCCACCGCCTATTATTGGTGTGGGGGTGGTCGCCGG

TTCGAATCCGGCCAGATGTCTGCCGACTTCTGTAGCTTAGCGGTAAAGTGCCCCAACCGAGAGGTCGC

AGGTTCGATTCCTGCCGGGGGCTCCATGCCACCGTAGCTCAGTGGTAGAGCGCTCGCGTCGCGTTAGA

GTCTTGGTAGGCTCGTCTGCCTCATAAGCAGAAGGAGGTGGTTCGAATCCATCACGCGGCACCATGAA

CACCGAATATCCAAAATTGATTCTTCCGAAAGGGTATCTTTCGTGGTCTCAAATTGATTGCTGGATGA

AAAACCCAGGACGCTATGTGCGTGAATACTTTGAAGCAGGAGAACGACTCGACACCCGCTATCTTCGC

TTTGGATCTAAATTTTCAAAGATGGTCGAGCGGTTGTGTGAACTTATGGATCAGTTTCCGGACCGTGC

AACCGCGGTGATGGAGCTTGCTAAAGAGCACCCAATGGATGAGAACATGCAGAGCGTTCTCATGGAGC

TCGATATTGAGGGGACATCAGAGTTCCAAATTGGAAACTCTGGGCGGAAAGAGGACACCAACCCCGTC

GTTAAGGTGCGCGGAATCGTTCCGATTCTT 

 

>A45 

ATCAACATTACCTCTAACAACCGCCTCATTTCGATTGGTCCACAAAGAGGCGGTATTTATGGTTGTGA

GCGCATGGATATGGCTCACGTTTGGCAATACAAAAATAAGTCGGGTCAGCAGGTGCAATTTTTTCCTC

GAGTCGTGCCGATCCCGGAAAGTGTACCGGTGCCTCCTGCTGATGTTGATACAGGATTAGGGCCGGGG

CGGCGTCCTCGTCCGCGCCCGGAACCTTATGAAGACCCGATTATTTCTCGGTGGCCGAAAGATCATCC

CGTTCCGGAACCCTATCATAAACGGGTGTCTCCTGAACCCGGTATGAAGGAGAAAAAGCTTAAGCTTG

GAAAGGGGGGTTTAATTGGTAGTGTGTACGGTGCGGTTACGGAAGTTGTCGATGCGCTGGACGCAATC

GGCAAGGCGCTTGATCCTAAGGTTCGTGGCGGTTATCGCCAACAGAAAACTGTACAGGATAAAATTCG

GTATCTCCTGCGCAATTGGCGTTATATCGATCATAACGCGGCGTTGGGTAATATTATTTTGGATCAAG

TCGAGGATTGGTTCATTGGCAAATCAAATCAACTTGCCAATCGCACCGCTTCTCATCCATACTGGCGC

GGCATGCGAGGTCCGAACGTCTCTCGCATGCCGGGGCGAATTCCCGCCCCTCAACTGTAGAAAGGTAG

GTCAATGGCTTATTACCGCAGGCGCCGTCGCACTAGCTATCGCTCCCGGCGCGGCTACTCCGCACGGT

CCGGTTATCGGATGCGGTCTTATGGGCGACGCTCTTATGGTCGTCGTTATTCGAGGCGTCGCAGGTCG

ACGGCTCGGGCACAGCGTGTTGTTATTCAGGTCATCGGTGGTCCGGGCGGTGTAGCAACGTCGCCCG 

 

>A48 

TGTCTGCTGCTCCCCCCTCACGACGAAATGTGCAGACTGATTCATCTGGATGCCATGCAGTGTGCTGA

ACTACATTCAGAATGAATTTTGTTCAGGACTCGACAGAGTCAAAGCGACTGAGTGTGAAGGCGTACCT

TCTCACGTACAGTCGGACCCAGTTGACGAAAGATCAACTGTATGCTTTCCTGACAAGTGGACCAGATG

TGGAGCGTCTGATCATCGGGCAGGAAAAGCATCAGGACGGTAGTCCCCATCTCCATGCTTACGTTGTT

TACACGAAGCAGAGAGAGGTAACCTACCATGCGTTCGACATTGGTGGTGAACACCCCAATATTGGAAC

GCATAGGTCGGGTGGTAGCCCCGCAGTAAGCCACTGGAACTGTTGGCAATACTGCAAGAAGGAGGATT

CGGAACCTTTGATTAAAGGTGATCCTCCTACCGAACCTCCCCCATCTCGCAAGCGGCCTGCGGACGGG

GAGGTATCGAAGGCGAAGCGTAGCAAGAAGGACGACTTAGTCCGCACTTGTATGGAAATCGCAAAGGA

CCCTGAACGCAGTTCTAAGGAAGCCTTCGATTTACTGCAAGACCGTATGCCTGCATACGCGGTCGAAC

GAGCCAATGCATATCGTATGGAGTTTCAGCGCATTCGGAGCGAAGCTCTATGCTATGAAGCTCCGGCA

CGCCCCCTGTCCGAATTTGCGCGGGCTCCGAAGGTGCTCCCAAATTGGCGGACGCTCTACATCTACGG

GCCCACGAAGTTTGGCAAAACAGAGTATGCCCGTGCACTGCTCCCGGGTGCCGAAGTCATTCGCCACC

GGGATCAGCTCAAAGACGCAGACATGTCGAAAGGCCTCATCTTCGATGACTTTGAGACGTGTCACTGG

CCAAT 

 

>A52 

GGGGGCCGGCAAGGCCCCCGGCCGCAGGTGACGGTGCGCAACGCGCTGAACAACAAATGGTTCAG 

 

>A78 

TTTGTTGCTGATGTTCCTGAACTAACCGACCCCGCAAAGGCCGGTCAGGTTCTGTCGGATATTGTCAA

CTATGCAAAACAGGCGGGCGTTCCAGAAAGCGTATTTGAGGCTGAAAACCTCAACGCGATTACGTCTG

CCGAACTGCATCTCGCGTGGAAAGCGATGCAATACGACCGCATCAAGAGCGCGCAAGGCGAGGTGAAG

AAAACACCCGCGCCGAAGCCCGCCCAGCCAGCAGTAAGGCCCGGTGTAGCCATTCCAAGGTCTGCAAC

CAAAGCAACGGCAGTTCGGAAAGCAAATGAACGATTGGCCGCAGAGGGCAGCATCGAAGCCGGTGCCG

CTGTTTGGAAAAACTTTCTTTAAGGGATTTTTGAAATGACTAAAGTTACTGGCGCGATGGCGACGTAT

GACGTCACCACGAACCGCGAAGATTTGGCAGATGCGGTTTACCGTATTTCGCCCGCAGACACCCCGTT

TATGTCGGCAGTTCCCCGCGTGAAAGCGACGGCTGTTCTGCATGAATGGTCAACCCATGCGCTATCGA

GCATCAACACGACTAACGCCCGCCTTGAAGGTGACGCGCTGACCCGTGTTGCATCGACCGCGCCCGTT

CGCCGTCAAAACTACTGCCAGATTTCAAGCCGTGATGCGACTGTGACTGGCACACAGCGCGCTACCAA

TCCGGCGGGCATTGATGACATGATGTCTTTCCAGATGTCGGCAAAGTCGCTTGAACTGCGCCGCGATA

TGGAAGCCATCCTTCTGGGTAACACCGGACAGACGGCGGGCAACACCACCACTGCACGGACCCTGC 



155 
 

>A83 

TCATGCCGCCAGCGTGATAATCGTCGAATATCACACAGGATTCGTAGTTGTAGTTGTCGAAGCGGATG

CCGTTGGCCTTGGCCTGCGGAGCCCAATAGGTCGGCTGATCGCCAGCGTGCACGAGAGCAGACGAGGT

CTTGCCAGTCCCTGATGGGCCCCAGATCCAAACAACGACCATGCCATCATGGGTCTCGCGGGTGCGGT

GTTGAATCCGGAGATCGCGGTACTTGCTGAAGCCGCGCTCGTACTTGATGAACTCGGAAAAATGATCC

TTCGCGATGTCTGACATCGCTTTGTTGGCATCGAGCTCTTGTTGAACGACGAGAAGGTCTGTGCGACC

TCCGCGCTTGCCAGCGCGTGGCTTAAGTTCGCCCCACATATGGGGTCCCGCAAATGGGTGGCCGACGA

GCCGGGCCGGTGAACCGTCCTTGTTAAGCTCCTTGGTGCAATACGCTTGGTTCTCGAGGTGCGTGCCG

TTGGCAGCCTCGACATGAGCACGGGGAATCAACTTGCGGATGCGTTCACCGAAAGCACGAGTGGTGAA

CTGAACATAGCCCTGGAAGTGCGGCGTGCCGTTCTTCCCGG 

 

>A142/A229 

CAGTGACACGTCTCAAAGTCATCGAAGATGAGGCCTTTCGACATGTCTGCGTCTTTGAGCTGATCCCG

GTGGCGAATGACTTCGGCACCCGGGAGCAGTGCACGGGCATACTCTGTTTTGCCAAACTTCGTGGGCC

CGTAGATGTAGAGCGTCCGCCAATTTGGGAGCACCTTCGGAGCCCGCGCAAATTCGGACAGGGGGCGT

GCCGGAGCTTCATAGCATAGAGCTTCGCTCCGAATGCGCTGAAACTCCATACGATATGCATTGGCTCG

TTCGACCGCGTATGCAGGCATACGGTCTTGCAGTAAATCGAAGGCTTCCTTAGAACTGCGTTCAGGGT

CCTTTGCGATTTCCATACAAGTGCGGACTAAGTCGTCCTTCTTGCTACGCTTCGCCTTCGATACCTCC

CCGTCCGCAGGCCGCTTGCGAGATGGGGGAGGTTCGGTAGGAGGATCACCTTTAATCAAAGGTTCCGA

ATCCTCCTTCTTGCAGTATTGCCAACAGTTCCAGTGGCTTACTGCGGGGCTACCACCCGACCTATGCG

TTCCAATATTGGGGTGTTCACCACCAATGTCGAACGCATGGTAGGTTACCTCTCTCTGCTTCGTGTAA

ACAACGTAAGCATGGAGATGGGGACTACCGTCCTGATGCTTTTCCTG 

 

>B1F1 

GGTGCAGCGAGTCGCCGCCCTCATCGGTCGACCGCCAACCGGCAACGACTGGGCGCAACACAAAGCTT

GGGGATTCACCGAGGCGGTGTCATTAAGGCGCCAAGGCTATCCATGGCCGAAGCTGCTAGTCATGGCA

GGATTCGAAGTCACAGAGCAACAGGCGAAACTAGGGCGCCGTGCCATCTCACCTGAACAAGTCGAAGG

CGCAAGAATCGCTATGCTGGCACTGTGTGACGAAAACGGATTCCTGCCACACCGCCGGTGGAAAGAGA

ACCATGGTGGCCATCCCGGTACGTTTGCTTTGATGAGTTACCACAATACCCGAGACTGGCTGGTTGTT

CTGGAGCGTATGGGGTTCTATGCGCCACCACGGAAGTTGGGCAGCAAAGTCACCGCCAAGGTCGAGAA

GTTCAAGGATATCAACGACTACATCACCAAGAAGAAAGCCCAGCCGGTGACGATTCAGGAAGAACGCA

ACACATCTCAAACCATGGCAGGCTATGTCAACCGGGTAGAGATTATCGAGCGGAACCATGGCGGACAC

CTGGTGCGCACTGAACGCACGTACATTCAATTGAGGTAACAACATGAAGGCTATCTTTTTCCGCACTC

TGTATCGTATCGTTTTCGGTCGTGGTGCCGCCTACCGTGGCTCGCGCTGGTATGCCGTCGCCGACTGG

ATGAAGGCGCAGTGGATGGAGGTTCCATGACAACACATATTTCATTTCCTGATTGGTGGCCCGAATGC

CCGTATCCTACAGATATTTTTCCAATGAGTATGGGTGAATATGCAAAAATCGTACCG 

 

>B1H1 

ACGAAAGATCAACTGTATGCTTTCCTGACAAGTGGACCAGATGTGGAGCGTCTGATCATCGGGCAGGA

AAAGCATCAGGACGGTAGTCCCCATCTCCATGCTTACGTTGTTTACACGAAGCAGAGAGAGGTAACCT

ACCATGCGTTCGACATTGGTGGTGAACACCCCAATATTGGAACGCATAGGTCGGGTGGTAGCCCCGCA

GTAAGCCACTGGAACTGTTGGCAATACTGCAAGAAGGAGGATTCGGAACCTTTGATTAAAGGTGATCC

TCCTACCGAACCTCCCCCATCTCGCAAGCGGCCTGCGGACGGGGAGGTATCGAAGGCGAAGCGTAGCA

AGAAGGACGACTTAGTCCGCACTTGTATGGAAATCGCAAAGGACCCTGAACGCAGTTCTAAGGAAGCC

TTCGATTTACTGCAAGACCGTATGCCTGCATACGCGGTCGAACGAGCCAATGCATATCGTATGGAGTT

TCAGCGCATTCGGA 

 

>B22C1 

CTCGGAGGGCCCGGTAACTTGGGTGTGACGTACATCGAGACGATCAAGGACATGGAGCACGAGAGGGC

CACGGTAGCATTTGAGCTGCTCGTGGGAGAGTATCGTGAGAACCCGTTGGTGATCAACGGAGAAGTGA

TTGACTTAGTGACAACTGAGGAGGAAGATAGTGAGGAGGAATAAGATTACTTCGCTTTAGAGCTACGC

TCACAGCTACATTCATTAAGAAGACTACACTACTAGTTGACTAAGACTAAGATTAGCCTGATGCTTCG

CATCATTC 

 

>B43H11 

AGGTAATGCTAAAACTCCGCGACCAGAACGACGCGGAGTTAACCCTTGCGTGCCAGAACATGAGCGCG

CATTTGACCACCATGCTACAAGCAGCAGCAGGACAATATGACGATGAATAAAACGCAGAAGGAAATGG

AAGCCACAGGCGAGAAGGATCAATCAACCACGCCTGTGACGAAGACCGGCAAAGAAAAACTGCTCACG

GTCTGCAACGATATCATAGC 
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>B46A2 

AGTTGTTCTCTGCCCTGGGCACACCTATGCAACCCGGGGGGTCACATGGGTGCACGGGGCGGGGGTAG

GCACGGGGGTACGGGGTACCCCCTCCCGTTCATGGGTTGCCGGTGGCACCCCATGGGGGGGCACGGGG

AGGCTGCGCCCCCCCTCTGGGGAAGTCGGTGACGTTCCCCACAGTTGAG 

 

>B50H12 

CGCCGCCGGATCCAAACTCAACTTCGACAGGTATAGCCGGGTGCAGGGGTATGTGCTGGACGGCGTAT

GGATGCACTGGACGGAGGCGAAGGTCAACGACATGGTAATCGAGGGCAATGAGCCGAGGAAGATAAAT

CTCGAAAAGGCAGCAAACGCCGGCAAGAACCTCGAATATGAGTTGTATGCAGGCTTTGACGGGCAGGG

GCAGTTTGCCAATGGCGACCAGTTTGTGTTCAACGTCAGAAGCCTTGACGGTGCAACGCTCTACGCCA

CGCAGACAATCACGATTCCGAACGGCACATACCTGAGCGACGTGCAGGCTGGTCTTGAGTACCTGTAT

GACCAACTCACGTCGGGAACGATGGATGAGCATTTGACCATAGAACTGTGCGACTGCAAGTTAGGTAT

CACTGCTTTGGTGGCAGAGCGTAAGGTGACAATGACGGTTACTGGCAGTGTCAAGCCCATCCTTGTTC

CCAAGAATCACTATGGTCCGCAGGTGACAGACAAGGAGACGTACCATTTTGCTCTCAAAAAAGAGACA

TTTGATTGCCCGCCAGACCCCGAATACATTGGCGCTGATGACATTGCCTACAACAATGTGCGCGATGA

CTGCTTCCAGTTTCGCGCCCGCTTCGTTTACGATGATGGCGGAGCGAGCCACTGGTCCGGCGTTTCGA

TAGTGCCGCTGAACAATGCTCAGTTTGCCGACCCACAGCCGTCTCTCAATGCCATCAAGATTGATTAC

ACTGATGAGCGCCTCAATACAATCAGTTGGCTATCCATCCTTGATTACGTTGACATCGCTTCTCGATA

CAATGAGAATGATGTGTGGCGCCTCATTCGTCGCATCCCCGTTTGCGAGGTGGGCATTGATGAGCAAT

TCATCATCTTTGCCAATGACAACTCGTACACGGTTGTAGAGTCCGATGACCCTTCGGTGGCAACCGGA

GATACGCAGGTGCTCACAAACTATCATCGTGTCCCGTACA 

 

>B56H9 

CGTAAGGGATGTCTGGCTATATGTGAGCAGGTACGCTTTCGCGTTCCGTCTCACTGACGTGGTTGAAT

CAACCAAGTCCGGGATCTCCATCTTCGATGTTGGTCCCACTGCACCCCATTCTCGACTACCTGCGGCA

GCTCGTCAGTTCGTGGGGGCAGTTGTTCTCTGCCCTGGGCACACCTATGCAACCCGGGGGGTCACATG

GGTGCACGGGGCGGGGGTAGGCACGGGGGTACGGGGTACCCCCTCCCGTTCATGGGTTGCCGGTGGCA

CCCCATGGGGGGGCACGGGGAGGCTGCGCCCCCCCTCTGGGGAAGTCGGTGACGTTCCCCACAGTTGA

G 

 

>B56H11 

ATATGTGAGCAGGTACGCTTTCGCGTTCCGTCTCACTGACGTGGTTGAATCAACCAAGTCCGGGATCT

CCATCTTCGATGTTGGTCCCACTGCACCCCATTCTCGACTACCTGCGGCAGCTCGTCAGTTCGTGGGG

GCAGTTGTTCTCTGCCCTGGGCACACCTATGCAACCCGGGGGGTCACATGGGTGCACGGGGCGGGGGT

AGGCACGGGGGTACGGGGTACCCCCTCCCGTTCATGGGTTGCCGGTGGCACCCCATGGGGGGGCACGG

GGAGGCTGCGCCCCCCCTCTGGGGAAGTCGGTGACGTTCCCCACAGTTGAG 

 

>B58A11 

GACACGTTGGTCGTCACGTTGGACACGATGCGGAACTGACGCAGGAAGTTCAGTGTCGCCTTCGTGAT

CGGGTTGACCGCGTACACACCGGAGATGGTGAACACGTCGCCTTCCTTCAGGCCCGAGTTTGTCGTCC

AGCCATCCGTCACGAGGTCCATCGTGTCGGTTGTGAGGCTCGACGCATAGGTCGTGGACTGCGAGGCA

CCGCGAATAAGCGGTGTGCCGCCGTGAGCACCAACCGTGTGCGTCTGGACGTTCTGGGCCATCCACAC

ATCGGAACCGCCGATCATCGGCAGCTTGGCCTTTTCAATGGCCCCAGCCGCGATGCGTTCCACATAGG

AGCCGGTGAACGAGTTCGCCAGCCCATAGTAGTCCGTAGGCGTCACCATGCCGACGCGGTTGCCATCG

TTTGGAACGGCAAACTCGTCGAGGCGCTCCAGACCGACCGACCAATCCGAGAAGGAGTTGATCGTCTG

GCCTGCAGTTCCTACCCAGTTCGGCACCTGCTTGTAGAGAGCGAGCAAGTCGCTATCCACCTGGTTCG

CCAACTGGATCATGGCGGGCTTGATGTACCGCTCGCTGAACATATCGA  
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Chapter 5:  

 

 

 

Wide bacteriophage diversity in a single 

terrestrial wastewater site 
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Abstract 

T4-type bacteriophages are distributed worldwide in aquatic and terrestrial 

environments. The Major Capsid Protein sequence (MCP), conserved in T4-type 

bacteriophages, has been used to document phylogenetically informative variations 

among bacteriophages from various environments. In this study, we present a 

protein-based phylogenetic tree of uncultured T4-type phages circulating in a defined 

freshwater environment (an activated sludge from a dairy wastewater treatment 

plant), derived using an amino acid sequence alignment of predicted MCP proteins. 

Thirty distinct (<99% identity) DNA clones were obtained following PCR with 

degenerate primers for the g23 gene on bacteriophage DNA prepared from multiple 

samples from one dairy industry wastewater plant in Kerry, Ireland. The translated 

sequences showed amino acid identities of 46–99 % with NCBI database sequences. 

Following alignment with uncultured and cultured phage genomes, neighbor-joining 

trees were constructed. Wide phylogenetic diversity was seen in multiple samples 

from the same terrestrial wastewater environment, comparable with that seen in 

widely geographically-separated samples from the ocean and land. Three novel 

groups of environmental T4-type capsid sequences were identified. There was little 

sequence overlap between samples taken at different times from the same site. 

Among the most similar g23 sequences in the NCBI database were samples from an 

Antarctic lake. This provides evidence for worldwide distribution of phages with 

widespread genetic exchange. 
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5.1. Introduction 

T4-type bacteriophages constitute a large group of viruses that belong to the 

Myoviridae family, viruses with a head and a contractile tail (Ackermann & Krisch, 

1997). They infect Enterobacteria and other phylogenetically distant bacteria (such as 

Vibrio, Acinetobacter,  Aeromonas, Prochlorococcus and Synechococcus), and are 

widely distributed in nature (Kim et al., 2010; Mann et al., 2005; Matsuzaki et al., 

1998; Petrov et al., 2006). Cultured T4-type phages can be classified into four 

subgroups: the T-evens (closely related to T4 phage), pseudoT-evens (distantly 

related to T4), schizoT-evens (more distantly related to T4), and exo-T-even (the 

most distantly related to T4) (Desplats & Krisch, 2003; Tetart et al., 2001). The 

evaluation of the diversity of naturally occurring phage communities in the 

environment by phage culture is limited because only a small percentage of their 

hosts are culturable. However, the development of techniques to isolate viral DNA 

from the environment (Thurber et al., 2009), together with the PCR amplification of 

conserved genes from environmental DNA has provided information about the 

diversity of phages present in a particular environment (Chen et al., 1996). One such 

conserved gene, the major capsid protein (gp23), is part of the core genome of T4-

related phages (Petrov et al., 2010b) and has been used to evaluate the genetic 

diversity of the T4-type family of bacteriophages in different environments. Several 

studies carried out on aquatic (Butina et al., 2010; Filee et al., 2005; Lopez-Bueno et 

al., 2009) as well as on terrestrial environments (Cahyani et al., 2009a; Cahyani et 

al., 2009b; Fujihara et al., 2010; Fujii et al., 2008; Jia et al., 2007; Nakayama et al., 

2009a; Nakayama et al., 2009b; Wang et al., 2009a; Wang et al., 2009b; Wang et al., 

2009c; Wang et al., 2011), support the hypothesis that culturable phages constitute a 

small proportion of the entire population in an ecosystem. 

  

Wastewater bacteria include species known to be infected by T4-type viruses, 

including E. coli, Acinetobacter, Klebsiella, Aeromonas, Sphingomonas, and Vibrio 

(Dafale et al., 2010; Jorgensen & Pauli, 1995; Loperena et al., 2009). Metagenomic 

analysis of uncultured phage communities in activated sludge (Parsley et al., 2010b; 

Tamaki et al., 2012) and reclaimed water (Rosario et al., 2009b) indicate that 

Myoviridae phages are abundant in these environments. Numerous phages with T4 
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phage morphology have been cultured from this environment (Goyal et al., 1980; 

Kaliniene et al., 2010; Zuber et al., 2007).  

 

In this chapter, we evaluate the genetic diversity of uncultured T4-type 

bacteriophages found in dairy plant wastewater at a single location by analysing 

sequences of major capsid protein genes (g23) derived by PCR amplification. The 

novel wastewater-specific sequences obtained in this study are compared with a wide 

range of sequences from other locations. Our results show that the dairy plant 

wastewater contained very diverse and previously uncharacterized phages. Three 

previously uncharacterized groups of environmental T4-type capsid sequences were 

identified, while the genetic diversity of other previously described groups has been 

expanded.  
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5.2. Material and Methods 

5.2.1. Samples 

The sludge samples were collected in 10-15 litre volumes from the same location (an 

open aeration tank receiving milk product polluted wastewater treated by dissolved 

air flotation, and anaerobic digestion) on four occasions, in May 2006 (sample WL1), 

November 2006 (sample WL2), June 2007 (sample WL3) and January 2010 (sample 

WL4), in the Kerry Ingredients Wastewater Treatment Plant in Listowel, Co. Kerry, 

Ireland (52°26’20” N; 9°29’7” W). For further sample characteristics see Table 5.1. 

 

Table 5.1. Characteristics of wastewater samples. Differences in sample parameters 

reflect varying input of waste from different processes involving milk, cheese, butter, 

and milk powder.  

 

Sample Wastewater 

collection date 

  pH          COD* 

(ppm) 

Ortho-P 

(ppm) 

Ammonia 

(ppm) 

W1 30/05/06 7.08 664 60.74  39 

W2 28/11/06 7.37  1254 21.1 12.5 

W3 27/07/07 6.56 1030 59.8 44.5 

W4** 07/01/10 9.35 1175 17.9  12.5 
 

*COD Chemical oxygen demand 

**Sample used for metagenomic analysis described in Chapter 3 

 

5.2.2. Purification of phage particles and DNA extraction 

Phage particles purification and DNA extraction have been described in Chapter 3 

Section 3.2.2 and 3.2.3. 

 

5.2.3. Major capsid protein genes (g23) amplification 

The g23 sequences were amplified from the environmental samples with the 

degenerate primer pair MZIA1bis and MZIA6 and PCR program as described 

previously (Filee et al., 2005). The PCR mixture contained, in a total volume of 50 

µl, 1x GoTaq® Green Flexi Reaction Buffer (Promega), 25 pmol of each of the 

primers, 2.5 mM MgCl2 (Promega), 0.2 mM dNTPmix (New England Biolabs), 1U 

of GoTaq® Flexi DNA Polymerase (Promega) and 1µl of phage DNA. Reaction 

mixtures were heated to 94°C for 90 sec followed by 30 cycles of denaturation at 

94°C for 45 sec, annealing at 50°C for 1 min, and extension at 72°C for 45 sec. A 
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final extension was carried out at 72°C for 5 min. PCR products of samples WL1, 

WL2 and WL3 were extracted from the 1% agarose gel using QIAquick Gel 

Extraction Kit (Qiagen), while PCR products of sample WL4 were purified using 

QIAquick PCR Purification Kit (Qiagen). The purified PCR products were cloned 

into the E. coli pCR2.1-TOPO vector using TOPO TA Cloning Kit (Invitrogen). 

Plasmid DNA was isolated from randomly selected colonies using QIAprep Spin 

Miniprep Kit (Qiagen) and digested with restriction enzyme (EcoRI) to identify 

clones with insert. Positive clones were sequenced by GATC Biotech (Germany) 

using the M13F and M13R universal primers.  

 

5.2.4. g23 phylogenetic analyses 

Forward and reverse sequences were assembled and corrected manually using the 

sequence chromatograms. Consensus nucleotide sequences were translated into 

amino acids using EMBOSS Transeq (Rice et al., 2000), trimmed to the PCR 

product length and compared using BLASTP to all protein sequences present in non-

redundant database of NCBI website (http://BLAST.ncbi.nlm.nih.gov/BLAST.cgi). 

Phylogenetic trees were constructed for 30 representative gp23 sequences out of 83 

sequences obtained (inclusion criterion: <99% amino acid identity in the same 

wastewater sample). To construct an aquatic and terrestrial phage tree, the 

wastewater sequences were aligned using ClustalW (Chenna et al., 2003) with top 

hits from BLASTP search together with capsid sequences from previously 

established Marine groups I-V (Filee et al., 2005) and Paddy groups I-IX (Fujii et al., 

2008; Jia et al., 2007; Wang et al., 2009b), as well as representative cultured T4-type 

cultured phages (Tetart et al., 2001). The resulting alignment was manually edited in 

Jalview (Waterhouse et al., 2009) to remove highly variable regions between amino 

acids 133-141, 157-221 and 238-245 of the phage T4 gp23 protein (GenBank 

accession number AAD42428) as described in (Filee et al., 2005) (Figure 5.1). The 

phylogenetic tree was constructed in MEGA (version 5.04) program (Tamura et al., 

2007) using a p-distance model, complete deletion of gaps and the neighbor-joining 

method with 1000 bootstrap replications. Forty six unique g23 sequences obtained in 

this study have been submitted to the GenBank database under accession numbers 

JN393559–JN393604. 
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Figure 5.1. Amino acid sequence alignment of deduced major capsid protein sequences obtained from wastewater as well as other capsid 

sequences showing >70% identity in BLAST analysis, and sequences of representative sequences from previously reported subgroups. 

Regions in red boxes indicate hypervariable regions and were excluded from the phylogenetic analysis.
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For the large ‘global’ phylogenetic tree, the dataset consisted of the same 30 

wastewater sequences (<99% amino acid identity), 42 representative gp23 sequences 

of cultured isolates (<95% amino acid identity), 423 representative gp23 sequences 

from PCR-amplified environmental clone libraries (<95% amino acid identity) 

(Table 5.2) and 370 gp23 sequences from metagenomes (<95% amino acid identity). 

The latter were obtained by BLASTP search against NCBI Environmental samples 

(env_nr) database using gp23 from  cultured representatives of Near T4 and Far T4 

groups as queries, as previously described (Comeau & Krisch, 2008): 500 hits 

against gp23 from T4 and 100 hits against RM378 were initially retained. The 

sequences were then filtered to remove short sequences and sequences with identity 

above 95%. Three sequences (CS43, FW-Ca-1 and BLSoil-NR-9) that created very 

long branches on the tree were also excluded from further analysis. All gp23 

sequences used in the comparison, both cultured and environmental phages, were 

obtained from GenBank. The combined 862 gp23 amino acid sequences were 

aligned using MUSCLE v3.6 (Edgar, 2004) using a gap opening penalty of -4 and a 

gap extension penalty of -0.1. The alignment was edited using Jalview software. 

Only conserved regions between amino acids 118-131 and 247-296 of the phage T4 

were used for phylogenetic analysis (Figure 5.2). Phylip v3.67 program protdist was 

used with the JTT model to calculate a distance matrix from protein sequences. The 

Phylip neighbor program was used to construct a neighbor-joining tree from the 

distance matrices. The tree was drawn using iTOL v2.1 software (Letunic & Bork, 

2011) and rooted using the RM378 sequence. 
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Table 5.2. Summary of all PCR-amplified g23 sequences retrieved from GenBank 

(up to June 2011). 

 

g23 study 

No. of 

all 

clones 

(DNA) 

No. of 

unique 

clones 

(aa) 

No. of clones 

used for 

phylogenetic 

analysis <95% 

References 

Black soil, China 46 42 27 (Wang et al., 2011) 

Black soil, China 99 84 51 Liu et al., Unpublished 

Lake in China 46 35 27 Huang et al., Unpublished 

Lake Baikal, Siberia, Russia 23 22 12 (Butina et al., 2010) 

Paddy field, Japan 68 49 21 (Fujihara et al., 2010) 

Antarctic lake 63 31 21 (Lopez-Bueno et al., 2009) 

Borehole water from gold 

mine, South Africa 
8 5 4 

Mabizela and Litthauer, 

Unpublished 

Paddy soil, Japan 97 68 21 (Wang et al., 2009c) 

Paddy soil, China 53 49 34 (Wang et al., 2009b) 

Rice straw compost, Japan 50 37 8 (Cahyani et al., 2009a) 

Paddy floodwater, Japan 40 39 24 (Nakayama et al., 2009a) 

Mn nodules in paddy soil, 

Japan 
44 41 24 (Cahyani et al., 2009b) 

Paddy soil, Japan 56 54 31 (Wang et al., 2009a) 

Paddy field floodwater, 

Japan 
58 41 15 (Nakayama et al., 2009b) 

Paddy soil, Japan 44 35 22 (Fujii et al., 2008) 

Marine environment 23 17 14 
Sandaa and Kristiansen, 

Unpublished 

Paddy field, Japan 17 17 17 (Jia et al., 2007) 

Marine environment 85 83 50 (Filee et al., 2005) 

Total 920 749 423  

 

5.2.5. Inter-sample comparison 

∫-LIBSHUFF implemented in mothur (Schloss et al., 2009) was used to compare a 

total of 83 aligned g23 sequences (nucleotide and translated) from the wastewater 

samples containing a single open reading frame (Table 5.3) assigned to groups WL1-

4. A nucleotide distance matrix was calculated using the dist program in mother 

(http://www.mothur.org/) and an amino acid distance matrix was calculated using 

protdist at http://mobyle.pasteur.fr/cgi-bin/portal.py?#forms::protdist.  

 

5.2.6. Comparison with the viral metagenome 

Amplified g23 DNA sequences from the libraries were compared to metagenomic 

reads and contigs described in Chapter 3. Short reads and contigs were aligned to the 

g23 nucleotide sequences using BLASTN with e-value cutoff of 0.001. 
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Cultured phages

T4 GOS hits

RM378 GOS hits

PCR-amplified phages

 

 

Figure 5.2. Multiple sequence alignment of 862 major capsid protein sequences from 

cultured phages and environmental samples. Regions in red boxes indicate conserved 

blocks used for phylogenetic analysis. 
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5.3. Results  

5.3.1. Sequences of g23 clones 

Major capsid protein gene sequences were amplified from four wastewater samples 

collected at four different time points from the same location (activated sludge from 

dairy wastewater treatment plant). In total, 85 clones were sequenced from clone 

libraries (WL1, WL2, WL3 and WL4), and 46 unique (only seen once) clones at 

DNA level and 43 unique clones at amino acid level were obtained (Table 5.3). Two 

sequences from library WL3 contained non-translatable sequences and were 

excluded from further analysis. After exclusion of primer sequences, sequences 

ranged from 323 to 542 bp (108-181 amino acid residues). Amino acid identity 

ranged from 33.17% (W110 and W116) to 100% (e.g. W21 and 17 other clones).  

 

Table 5.3. Summary of g23 PCR sequencing results from this study. 

 

Wastewater 

Library 

No. of 

sequenced 

clones 

No. of 

unique  

clones 

(DNA) 

No. of unique 

clones (aa) 

No. of distinct (<99% identical ) 

clones used for phylogenetic analysis 

WL1 21 12 12 
12 (W11,W12,W16,W18,W19,W110, 

W112,W116,W117,W119,W120,W121) 

WL2 23 8 7 4 (W21,W23,W216,W217) 

WL3 21 13 
11  (+2 clones not 

in any frame) 
6 (W34,W37,W39,W313,W314,W320) 

WL4 20 13 13 
8 (W41,W42,W43,W46,W411,W415, 

W419,W420) 

Total 85 46 43 30 

 

BLAST analysis revealed that all amino acid sequences showed more than 46% 

similarity to known sequences within GenBank (Table 5.4). The most similar hits 

(>70% identity) were g23 sequences from sewage, an Antarctic Lake (Lopez-Bueno 

et al., 2009) and paddy field soil in China (Wang et al., 2009b) and Japan (Fujii et 

al., 2008). The highest amino acid sequence identity of 99% was observed for clones 

W110 and W112 with uncultured T4-type phage isolated from sewage in Portugal. 

These clones showed 97% identity at DNA level (96% at amino acid level) to the 

cultured Klebsiella phage KP15, therefore it is possible that they belong to novel 

Klebsiella phages. Thirteen sequences showed less than 70% identity to known 

sequences: these hits were from paddy field soil, seawater (Filee et al., 2005), upland 

black soil in China (Wang et al., 2011), a Chinese lake, and Lake Baikal in Siberia 

(Butina et al., 2010).
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Table 5.4.Sequence similarity of the g23 clones (<99% identity) isolated from wastewater to the closest match in GenBank by BLASTP. 

Clone 
Length 

(aa) 
Best  hit in NCBI 

Accession 

number 

Identity 

(%) 
Isolation source Reference 

W110 181 Uncultured T4-like phage (ABS70720) 99 Sewage, Portugal (Carvalho et al., 2010) 

W112 181 Uncultured T4-like phage (ABS70720) 99 Sewage, Portugal (Carvalho et al., 2010) 

W44* 108 Uncultured Myoviridae clone n3c (ACZ73356) 98 Antarctic lake (Lopez-Bueno et al., 2009) 

W46 108 Uncultured Myoviridae clone n3c (ACZ73356) 97 Antarctic lake (Lopez-Bueno et al., 2009) 

W411 108 Uncultured Myoviridae clone n3c (ACZ73356) 97 Antarctic lake (Lopez-Bueno et al., 2009) 

W31* 135 Uncultured Myoviridae clone j23 (ACT78906) 96 Antarctic lake (Lopez-Bueno et al., 2009) 

W34 135 Uncultured Myoviridae clone j23 (ACT78906) 95 Antarctic lake (Lopez-Bueno et al., 2009) 

W37 135 Uncultured Myoviridae clone j23 (ACT78906) 95 Antarctic lake (Lopez-Bueno et al., 2009) 

W314 135 Uncultured Myoviridae clone j23 (ACT78906) 95 Antarctic lake (Lopez-Bueno et al., 2009) 

W12 133 Uncultured Myoviridae clone BL4 (BAG12942) 92 Paddy soil, China (Wang et al., 2009b) 

W216 133 Uncultured Myoviridae clone BL4 (BAG12942) 89 Paddy soil, China (Wang et al., 2009b) 

W415 118 Uncultured Myoviridae clone n6 (ACZ73362) 82 Antarctic lake (Lopez-Bueno et al., 2009) 

W116 169 Uncultured Myoviridae clone OmCf-Ap14-27 (BAF52879) 79 Paddy soil, Japan (Fujii et al., 2008) 

W120 170 Uncultured Myoviridae clone OmCf-Ap14-27 (BAF52879) 71 Paddy soil, Japan (Fujii et al., 2008) 

W119 170 Uncultured Myoviridae clone OmCf-Ap14-27 (BAF52879) 70 Paddy soil, Japan (Fujii et al., 2008) 

W16 170 Uncultured Myoviridae clone OmCf-Ap14-27 (BAF52879) 70 Paddy soil, Japan (Fujii et al., 2008) 

W18 167 Uncultured Myoviridae clone OmCf-Ap14-27 (BAF52879) 69 Paddy soil, Japan (Fujii et al., 2008) 

W43 132 Uncultured Myoviridae clone j4 (ACT78889) 79 Antarctic lake (Lopez-Bueno et al., 2009) 

W41 132 Uncultured Myoviridae clone j4 (ACT78889) 77 Antarctic lake (Lopez-Bueno et al., 2009) 

W419 132 Uncultured Myoviridae clone j4 (ACT78889) 77 Antarctic lake (Lopez-Bueno et al., 2009) 

W42 124 Uncultured Myoviridae clone 37323 (AAZ17574) 66 Marine environment (Filee et al., 2005) 

W313 136 Uncultured Myoviridae clone BLSoil-DH-15 (BAJ61623) 66 Black soil, China (Wang et al., 2011) 

W420 136 Uncultured Myoviridae clone s10-8 (ADI87648) 61 Lake in China Huang et al., Unpublished 

W320 151 Uncultured Myoviridae clone BLSoil-NR-1 (BAJ05238) 58 Black soil, China (Wang et al., 2011) 

W21 124 Uncultured Myoviridae clone N0508/1-5 (ADA61135) 56 Lake Baikal, Siberia, Russia (Butina et al., 2010) 

W39 124 Uncultured Myoviridae clone N0508/1-5 (ADA61135) 56 Lake Baikal, Siberia, Russia (Butina et al., 2010) 

W23 124 Uncultured Myoviridae clone N0508/1-5 (ADA61135) 55 Lake Baikal, Siberia, Russia (Butina et al., 2010) 

W217 124 Uncultured Myoviridae clone N0508/1-5 (ADA61135) 55 Lake Baikal, Siberia, Russia (Butina et al., 2010) 

W121 175 Uncultured Myoviridae clone AL3 (BAG12936) 47 Paddy soil, China (Wang et al., 2009b) 

W11 175 Uncultured Myoviridae clone AL3 (BAG12936) 46 Paddy soil, China (Wang et al., 2009b) 

W19 175 Uncultured Myoviridae clone AL3 (BAG12936) 46 Paddy soil, China (Wang et al., 2009b) 

W117 175 Uncultured Myoviridae clone AL3 (BAG12936) 46 Paddy soil, China (Wang et al., 2009b) 

* Sequences having more than 99% identity to other wastewater clones in this study
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5.3.2. Inter-sample variation  

The P value calculated by libshuff for all of the 12 individual (bidirectional) 

nucleotide group comparisons was <0.0001, except for WL2-WL3 (0.0003). P value 

for amino acid group comparisons was 0.001, except for WL2-WL3 (0.2871). WL3-

WL2 was 0.001. A Bonferroni correction for intergroup differences at a significance 

level of P <0.05 given 12 comparisons is <0.004166. Therefore, the groups WL1-4 

are significantly different (P <0.05).  

 

5.3.3. Phylogeny of gp23 sequences 

A phylogenetic tree (Figure 5.3) was constructed using MEGA (Tamura et al., 2007) 

based on the alignment (Figure 5.1) of 30 representative gp23 translated sequences 

(<99% identity) out of 83 sequences obtained from wastewater with highly related 

sequences from GenBank. Sequences from previously established groups (Marine 

groups I-V and Paddy groups I-IX) as well as T-evens, PseudoT-evens, SchizoT-

evens and ExoT-evens groups were also included for comparison. In the 

phylogenetic tree, 2 out of 83 wastewater sequences grouped together with cultured 

representatives of PseudoT-evens, appearing on the same branch with Klebsiella 

phage KP15. A total of 34 out of 83 sequences were placed into previously 

established groups (Paddy Groups I, IV, V and Marine Groups I, II, IV ), while 

nearly half (41 out of 83) formed 3 independent deep-branching clusters (novel 

clusters W1a, W1b and W2). W1a and W1b were only represented in the first 

sample. Six sequences formed two clusters with other g23 sequences from GenBank 

not previously assigned to any group. Bootstrap support was better for assignment to 

the Paddy groups (83-99%) than the Marine Groups (50-93%). Although, apart from 

the novel groups, most sequences (18) in this study grouped with phages from 

freshwater or paddy soil (a freshwater influenced environment), sixteen sequences 

grouped with Marine Groups I, II and IV (Figure 5.3).  
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Figure 5.3. Neighbor-joining phylogenetic tree containing gene translations from 

wastewater phages and representative environmental T4-type phages. Wastewater 

clones are in bold (identified as W followed by sample number 1-4 and then clone 

number – see Table 2) followed by the number of clones with identical or nearly 

identical (>99% of amino acid identity) sequences. The GenBank accession numbers 

of reference sequences are shown in parentheses. AL (Antarctic lake), PF (Paddy 

field), BS (Black soil) and M (Marine) indicate the location of the three largest 

reference groups. Only bootstrap values of >50% are shown, represented by black 

(>90%) and grey (<90%) circles.  

 

5.3.4. Global scale diversity  

A broad sample of all g23 sequences available in GenBank was then added to this 

analysis, including all (>95% identity) PCR-based environmental sequences (Table 

5.2) and those from the non-PCR-based GOS metagenomic sequence study (Rusch et 

al., 2007). Sequences were aligned with MUSCLE v3.6 (Edgar, 2004) (Figure 5.2), 

edited with Jalview (Waterhouse et al., 2009) and the neighbor-joining tree was 

computed with Phylip v3.67 (Felsenstein, 2005) and drawn with iTOL v2.1 (Letunic 

& Bork, 2011) rooted using the RM378 sequence. In the resulting global tree (Figure 

5.4) the T4-type sequences formed several deep-branching clusters that could be 

grouped in three major groups, similar to previously described groupings (Comeau & 

Krisch, 2008): “Near T4” (44 sequences most closely resembling T4), “Far T4” (70 

sequences including the cultured phage RM378 most divergent from T4, and hits 

with RM378 gp23) and “Cyano T4” (748 sequences incorporating the PCR amplified 

environmental sequences and cyanophage sequences). The gp23 sequences from the 

single wastewater site in this study were distributed in all of the three major 

groupings around the global phylogenetic tree. Two sequences (W110 and W112) 

grouped in the Near T4 cluster containing cultured representatives. Two sequences 

(W46 and W411) were found in the Far T4 cluster. The remaining 26 sequences were 

distributed across the tree in the CyanoT4 group clustering with the aquatic, 

terrestrial and GOS environmental sequences.  

 

5.3.5. Comparison with the viral metagenome 

A BLAST search of reads from the viral metagenome described in Chapter 3 resulted 

in 1 read that matched with the g23 sequences amplified in this study. No significant 

(e-value 0.001) similarity was found between g23 sequences and metagenomic 

contigs. 
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Figure 5.4. Neighbor-joining phylogenetic tree showing the genetic relationships 

among 862 g23 translated sequences of cultured and environmental T4-type phages. 

Groups ‘Near T4’, ‘Far T4’ and ‘Cyano T4’ were previously established by (Comeau 

et al., 2007). Colour codes indicate the type of habitat from which the g23 sequences 

originated. The tree was rooted using Rhodothermus phage RM378 gp23 sequence. 
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5.4. Discussion 

Major capsid protein (MCP, gp23) sequences have been extensively used to study 

genetic diversity of the T4-like genus within the Myoviridae family. Use of the g23 

gene has divided T4-like phages into four cultured clades (T-evens, SchizoT-evens, 

PseudoT-evens, and Exo-T-evens) (Desplats & Krisch, 2003; Tetart et al., 2001) and 

at least 14 ‘environmental’ clades that have been associated with a particular 

environment such as marine, freshwater and soil (Table 5.2). Comeau and Krisch 

(Comeau & Krisch, 2008) expanded this classification by adding metagenomic data 

from the Global Ocean Sampling (GOS) Expedition, a study of 37 sites from 

different marine environments (Rusch et al., 2007) and divided T4-type phages into 

three main groups: Near T4, those closely related to T4; Far T4, those most divergent 

from T4; and Cyano T4, those related to marine cyanophages. The objective of this 

study was to investigate the sequence diversity among major capsid protein genes 

amplified from four wastewater samples collected from the dairy wastewater 

treatment plant on different occasions and to compare those sequences to those from 

cultured isolates, those amplified directly from other terrestrial and aquatic 

environments and to non-PCR-based marine viral metagenome sequences.  

 

Our results suggest that the dairy plant wastewater is dominated by diverse and 

previously uncharacterized phages. Phylogenetic analysis revealed the existence of at 

least three previously uncharacterized groups of environmental T4-like capsid 

sequences (novel clusters W1a, W1b and W2), while the genetic diversity of other 

groups has been expanded (Figure 5.3). The majority of the sequences recovered by 

degenerate PCR were not closely related to previously cultured members of the T4-

type Myophages. Previously established environmental phage groups associated with 

rice field floodwater and black upland soil (Paddy groups) (Fujii et al., 2008; Jia et 

al., 2007; Wang et al., 2009b) and seawater (Marine groups) (Filee et al., 2005) 

incorporated a minority of sequences in this study (12 out of the 30 representative 

sequences). The distribution of sequences between Paddy groups (6) and Marine 

groups (6) was equal, suggesting T4-type phage communities in dairy wastewater are 

distinct from those of both soil and seawater.  
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Some sequences were very similar (>90% identity at the amino acid level) to 

database sequences originating in different locations distant from Ireland (an 

Antarctic lake, sewage in Portugal, soil in China), and different wastewater, lake and 

soil environments (Table 5.4). A high level of similarity in samples from a single 

location with phages from geographically distant environments distributed around a 

phylogenetic tree, as in this study (Figure 5.4, Table 5.4), supports the hypothesis 

that phages (or phage genes) move freely between biomes, and that global phage 

diversity is limited by this horizontal exchange (Breitbart & Rohwer, 2005a; Kunin 

et al., 2008). The high diversity of T4 phages we have found from a single 

wastewater site in Ireland (Figure 5.4) mirrors that reported from a freshwater 

Antarctic lake, Lake Limnopolar (Lopez-Bueno et al., 2009), and suggests that this 

high level of local diversity is common in freshwater environments. 

 

Only two of the phage groups identified with good bootstrap (a statistical method 

used to evaluate the reliability of the phylogenetic tree) support contained sequences 

from different sample times (W12 and W216, in Paddy group V and W21, W23, 

W217, and W39, in Wastewater cluster W2). Nucleotide and translated sequence 

groups from the four sample libraries WL1-4 were significantly different (P <0.05) 

in pairwise comparisons using the ∫-LIBESHUFF community comparison test 

(Schloss et al., 2004). The detection of different g23 groups in samples taken at the 

same site at different times is compatible with rapid turnover in phage–host 

interactions characterised as ‘Kill the winner’ dynamics (Thingstad, 2000). Rapid 

turnover with little crossover between samples at different time points has also been 

found in metagenomic sequencing of wastewater phage fractions (Skennerton et al., 

2011). However, other factors capable of influencing the bacterial host population 

include changes in pH and chemical oxygen demand (COD) over time resulting from 

input of waste from distinct production processes of milk, cheese, butter, and milk 

powder to the tank (Table 5.1). 

 

Despite the high number of diverse g23 sequences were obtained by PCR, the clone 

library sequences were almost not detectable in the wastewater metagenome 

described in Chapter 3 (only 1 read in the wastewater metagenome dataset matched 

amplified g23 genes), suggesting that capsid genes (or T4-type phages) were present 

in the metagenome but at a very low level. Similar results were obtained from 
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another study that used the same degenerate primers and found high diversity of 

major capsid protein genes in an Antarctic Lake (Lopez-Bueno et al., 2009). 

However analysis of Antarctic Lake viral metagenomes using the MetaVir, a web 

server enabling automated construction of phylogenies for selected marker genes 

from publicly available metagenomic data sets (Roux et al., 2011), revealed that the 

lake metagenome contained only 2 reads with similarity to gp23 proteins (data not 

shown). Under-sampling of g23 sequences in metagenomic datasets may be a result 

of bias introduced during the MDA used prior to metagenomic sequencing. 
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Chapter 6:   

 

 

 

Conclusions and future directions
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Viruses are the most abundant entities in the aquatic, terrestrial and animal-

associated environments and the majority of them are bacteriophages. They can 

control microbial community composition, contribute to bacterial evolution and 

affect the cycling of nutrients (Fuhrman, 1999; Fuhrman & Schwalbach, 2003). It has 

been estimated that there are approximately 1031 virus particles in the world 

(Fuhrman, 1999), however, only about 6,300 types have been identified so far 

(Ackermann & Prangishvili, 2012), indicating that the current knowledge about their 

diversity is widely underestimated. Characterising new viruses is difficult because 

many viruses and their hosts cannot be cultured in the laboratory, and methods such 

as degenerate PCR are restricted to particular viral groups as no gene is universally 

present in all viruses (Amann et al., 1995; Rohwer & Edwards, 2002). These 

limitations can be overcomed by sequencing of viral nucleic acids isolated directly 

from the environment (viral metagenomics) and no virus cultivation or prior 

knowledge about the viral types present in the samples is required (Edwards & 

Rohwer, 2005). Viral metagenomics provides an exhaustive view at virus diversity 

and it has so far revealed that a large number of uncharacterised viruses exist in 

nature (Breitbart et al., 2002; Edwards & Rohwer, 2005). It this study metagenomic 

and genetic analyses were applied to evaluate the diversity of viruses present in a 

sputum sample collected from a patient with a cystic fibrosis, and an activated sludge 

sample collected from the dairy wastewater treatment plant in Ireland.  

 

Metagenomic analysis was successful in assembling surprisingly long contigs from 

short sequence reads. Confirmation of some of the assembly was possible by PCR. 

Assembled contigs revealed much more detailed information than short read analysis 

alone. The largest contig (> 60 kb) had weak similarity to phage infecting 

Mycobacterium smegmatis (Figure 2.2), and non-tuberculosis mycobacteria are 

known to be prevalent in airways of CF patients (Levy et al., 2008). Assembly of 

such a large contig indicate that the combination of Illumina sequencing and de novo 

assembly seems suitable for future applications of phage metagenomics in 

monitoring the effects of phage therapy in cystic fibrosis, or phage discovery. 

Sputum from a cystic fibrosis patient contained DNA typical of phages of bacteria 

that are traditionally involved in CF lung infections (see Chapter 2 Figure 2.1, Table 

2.2), including Staphylococcus aureus, Pseudomonas aeruginosa, Haemophilus 

influenzae and Streptococcus pneumoniae (Bittar & Rolain, 2010). Phages of other 
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bacteria that are part of the normal oral flora but have also been described in the 

context of cystic fibrosis (Bittar & Rolain, 2010) were identified, including those 

infecting Prevotella species, Streptococcus species and Veillonella species (Table 

2.2). Large numbers of anaerobic bacteria within genera Prevotella and Veillonella 

recently identified in the sputum of CF patients suggest that they potentially 

contribute to infection and lung damage (Tunney et al., 2008). Identification of 

phages infecting CF pathogens may have practical application in phage therapy. 

Phages have been successfully used to treat bacterial infection in a patient with cystic 

fibrosis (Kvachadze et al., 2011).  

 

The only eukaryotic virus detected in the CF sputum was Torque Teno virus (TTV), 

a small circular ssDNA virus from the Anelloviridae family (Figure 2.8). TTV has 

been associated with lower respiratory disease in nasal secretions and 

bronchoalveolar lavage fluid (Maggi et al., 2003; Wootton et al., 2011), but is also 

highly prevalent in healthy individuals (Vasilyev et al., 2009). The presence of TTV 

has been also demonstrated in a viral metagenome recovered from CF lung in 

another continent, (Willner et al., 2012), therefore it is a consistent presence in CF 

sputum and potential transmission of this virus by cystic fibrosis sputum is possible. 

The total virus diversity in CF sputum was predicted to be 89 different viral 

genotypes (Table 2.4). The majority of reads and contigs did not match any known 

sequence in the database. Sequence assignment as phages infecting bacteria in CF 

patients was, however, supported by analysis of the CRISPR spacer matches from 

CRISPR spacer database (containing collection of CRISPR spacers from 1206 

genomes of bacteria and Archaea) to the CF phage reads and contigs (Table 2.9). 

This provides direct evidence of interactions between the bacteriophages and their 

hosts. Bioinformatic analysis demonstrated that phages in CF sputum contain genes 

encoding metallo-β-lactamases (Figure 2.4, Table 2.8), genes potentially conferring 

resistance to β-lactam antibiotics. The potential of phages to transfer antibiotic 

resistance genes to bacteria could complicate antibiotic treatment therapy in cystic 

fibrosis patients. Phages in CF sputum were also potential sources of bacterial 

virulence genes, including platelet binding factors (Table 2.5) and Staphylococcus 

aureus cin toxin (Table 2.8).  
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The wastewater phage metagenome showed higher diversity than that of cystic 

fibrosis sputum, and was estimated to contain 409 different species. The largest 

contig assembled was 114 kb long contig, which apparently contained complete 

circular sequence (Figure 3.7). Sequence analysis showed that it had weak 

similarities to phage SP10 infecting Bacillus subtilis, therefore it might represent a 

novel Bacillus phage. Wastewater metagenome had higher proportion of unassigned 

reads compared to CF metagenome, which may reflect the fact that dairy wastewater 

is less studied environment. The most abundant sequences identified in dairy 

wastewater metagenome were prophages of bacteria typically present in wastewater 

samples (Table 3.2). The directly identified viral fraction in assembled contigs was 

dominated by double-stranded (ds) DNA bacteriophages from Siphoviridae, 

Myoviridae and Podoviridae families, represented by phages infecting Vibrio, 

Mycobacterium, Synechococcus, Pseudomonas and Burkholderia species (Figure 

3.3). The next most abundant group were single-stranded (ss) DNA bacteriophages 

from Microviridae family, closely related with phages infecting obligate intracellular 

bacteria, such as Chlamydiae (Figure 3.6). Eukaryotic viral sequences were 

dominated by viruses containing single-stranded DNA circular genomes, including 

plant pathogens from the Geminiviridae and Nanoviridae families, and animal 

pathogens from the Circoviridae family. A major component of the wastewater 

assembly comprised phages presumably infecting Chlamydia-like bacterial 

symbionts of freshwater amoebae (Corsaro et al., 2009; Pizzetti et al., 2012). The 

mechanism and effects of phage predation uncovered by this analysis on the life 

cycle of the enclosed symbiont and its eukaryotic host remain to be investigated. The 

potential pathogenicity for humans of such Chlamydia-like organisms makes such 

future investigation necessary.  

 

Phage-related genes including structural proteins and genes involved in nucleic acid 

metabolism, such as DNA replication and synthesis were prevalent in dairy 

wastewater metagenome (Table 3.5 and Table 3.6). Phage metagenome was 

particularly enriched for phage-encoded DNA methyltransferase genes. Similar 

genes overrepresented another wastewater viral metagenome (Tamaki et al., 2012). 

These genes may play role in switching between phage lytic and lysogenic life cycles 

(Bochow et al., 2012). Antibiotic resistance genes conferring resistance to β-lactam, 

vancomycin and trimethoprim antibiotics were found (Table 3.7), and could reflect 
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extensive use of β-lactams and trimethoprim to treat dairy cattle infections in Ireland 

(More et al., 2012). 

 

PCR amplification of the capsid genes using degenerate primers specific to T4-like 

phages revealed that dairy wastewater treatment plant harbour diverse and previously 

uncharacterized phages. The phylogenetic analysis indicated that some wastewater 

capsid sequences formed clades with previously established phage groups containing 

PCR-based environmental capsid sequences and cultured isolates (Figure 5.3) and 

non-PCR-based uncultured marine viral metagenome sequences (Figure 5.4). A high 

level of similarity in samples from dairy wastewater with phages from 

geographically distant environments supports the hypothesis that phages (or phage 

genes) move freely between biomes (Breitbart & Rohwer, 2005a; Kunin et al., 2008) 

and that T4-like phages are widely dispersed on a global scale. The results also 

revealed the existence of several wastewater-specific groups of distantly related and 

previously unknown T4-like viruses. 

 

Preliminary experiments with a promoter trap library confirmed that the wastewater 

metagenome was a potential source for gene regulatory elements for bacteria. 

Screening of the metagenomic library revealed that of 20 selected clones that showed 

strong promoter activity, 10 clones (50%) were derived from single-stranded (ss) 

DNA viruses from the Geminiviridae and Circoviridae family, with the majority of 

ORFs associated with the replication initiation protein (Figure 4.5, Table 4.3). Two 

inserts contained an ORF associated with phage structural proteins. Six inserts lacked 

any significant homology to known database sequences (Table 4.3) and three inserts 

showed only partial sequence homology (Table 4.2). Putative promoters were 

predicted for 15 inserts. Three of these inserts were characterized by the presence of 

phage-specific early transcription regulatory cassettes, characterized by presence of 

the stem-loop structure and the σ70-like promoter located upstream of the ORF 

(Figure 4.6). These structures may play a role in phage-mediated horizontal gene 

transfer (Arbiol et al., 2010; Cornelissen et al., 2012). Future work is needed to 

identify other elements of phage genomes with bacterial regulatory capacity. 
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