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ABSTRACT: The surface modification of rutile TiO2 with extremely small SnO2 clusters gives rise to a great increase in its UV-light-

activity for the degradations of model organic water pollutants, while the effect is much smaller for anatase TiO2. This crystal form-

sensitivity is rationalized in terms of the difference in the electronic modification of TiO2 through the interfacial Sn-O-Ti bonds. The 

increase in the density of states near the conduction band minimum of rutile by the hybridization with the SnO2 cluster levels intensifies 

the light absorption, but this is not seen with modified anatase. The electronic transition from the valence band to the conduction band 

causes the bulk-to-surface interfacial electron transfer to enhance the charge separation. Further, the electrons relaxed to the conduction 

minimum are smoothly transferred to O2 due to the action of the SnO2 species as an electron transfer promoter.     

INTRODUCTION 

TiO2 is the most promising “eco-catalyst” for environmental 

purification owing to its high oxidation power, high 

physicochemical stability, relative abundance in nature, and 

nontoxicity.1,2  Usually, TiO2 takes the crystal forms of anatase 

and rutile. For the degradation of organic pollutants, anatase is 

known to exhibit higher photocatalytic activity than rutile.3 

Moreover, the photocatalytic activity of TiO2 has been revealed to 

strongly depend on not only the bulk structure but also the surface 

structure.4 Thus, rational design of the surface electronic structure 

of TiO2 brings the possibility of improvements in its 

photocatalytic activity. A new effective approach for that is the 

surface modification of TiO2 with metal oxide clusters. To date, 

the visible-light-activation of TiO2 has been achieved by the 

surface modification with oxides of transition metals including 

Cr,5 Fe,6-10 Ni,11 and Cu.12,13 Key to this surface modification is 

the dispersion state of the metal oxides on the TiO2 surface9 in the 

same manner as the doped system.14 The chemisorption-

calcination cycle (CCC) technique, where metal complexes are 

adsorbed via strong chemical bonds, and the organic part is 

oxidized by postheating, enables formation of molecule-sized 

metal oxide clusters on the TiO2 surface in a highly dispersed 

state.15 More recently, we have reported that the surface 

modification of anatase TiO2 with molecular SnO2 clusters by the 

CCC technique  increases the UV-light-activity.16 These surface 

modification effects are presumed to be sensitive to both the bulk 

and surface structures of TiO2; however, further work in this area 

is required.  

Herein we show that the tin oxide-surface modification of rutile 

(SnO2/rutile) greatly increases the UV-light-activity, while the 

enhancing effect is small for anatase (SnO2/anatase). This striking 

difference is discussed on the basis of the spectroscopic and 

electrochemical experiments and first principles density 

functional theory (DFT) simulations.  

 

EXPERIMENTAL SECTION  

Catalyst preparation. SnO2 clusters were formed on the 

surfaces of rutile (mean particle size, d = 100 nm, TAYCA) and 
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anatase (d = 150 nm, A-100, Ishihara Sangyo) by the 

chemisorption-calcination cycle (CCC) technique using 

[Sn(acac)2]Cl2 as a precursor. After TiO2 particles (1 g) had been 

added to 50 mL of a [Sn(acac)2]Cl2 ethanol solution, they were 

allowed to stand for 24 h at 298 K. The [Sn(acac)2]Cl2 

concentration was changed from 1.0 × 10-3 M to 1.0 × 10-5 M. 

The solid samples were separated by centrifugation and washed 

twice with the solvent for the physisorbed complexes to be 

removed. Then, they were dried in vacuum at room temperature, 

followed by heating in air at 873 K for 1 h. For electrochemical 

measurements, mesoporous TiO2 nanocrystalline film electrodes 

were used. An aqueous paste of the rutile paritlces (water = 3：7 

w/w) was prepared by mixing in a agate mortar with a slight 

amount of ethanol added. The resulting paste was coated on 

F:SnO2-film coated glass substrates (sheet resistance = 12 Ω/□) by 

a squeegee method. After drying in air, the sample was heated in 

air at 873 K to form nanocrystalline TiO2 films (rutile/FTO). 

Catalyst characterization. The Sn loading amount was 

determined by inductively coupled plasma spectroscopy (ICPS-

7510, Shimadzu). The sample (0.02 g) was dispersed to hot conc. 

H2SO4 (5 mL), and the deposits were thoroughly dissolved into 

the solution by stirring. The solution was diluted 3 times in 

volume with water, and then the Sn concentration was measured. 

UV-vis diffuse reflectance spectrum of SnO2/TiO2 was recorded 

on a Hitachi U-4000 spectrophotometer. The spectrum was 

converted to the absorption spectrum by using the Kubelka-Munk 

function. Transmission electron microscopic (TEM) observation 

and energy dispersive X-ray (ED) spectroscopic measurements 

were performed using a JEOL JEM-3000F and Gatan Imaging 

Filter at an applied voltage of 300kV. X-ray photoelectron 

spectroscopic (XPS) measurements were performed using a 

Kratos Axis Nova X-ray photoelectron spectrometer with a 

monochromated Al Kα X-ray source (hν = 1486.6 eV) operated at 

15 kV and 10 mA. The take-off angle was 90º, and multiplex 

spectra were obtained for Sn3d, O1s, and Ti2p photopeaks. All the 

binding energies were referenced with respect to the C1s at 284.6 

eV. The photoluminescence spectra were measured with an 

excitation wavelength of 320 nm at 77 K using a JASCO FP-6000 

spectrofluorometer. The electrochemical properties of the SnO2-

surface modified TiO2/FTO electrodes (SnO2/TiO2/FTO) were 

measured in 0.1 M NaClO4 aqueous solution in a regular three-

electrode electrochemical cell using a galvanostat/potentiostat 

(HZ-5000, Hokuto Denko). Glassy carbon and an Ag/AgCl 

electrode (TOA-DKK) were used as a counter electrode and a 

reference electrode, respectively. 

Photocatalytic activity evaluation. SnO2/TiO2 

particles (0.1 g) was added to 50 mL of 1.0 × 10-5 M 2-naphthol 

(2-NAP) solution (solvent, acetonitrile : water = 1 : 99 v/v) in a 

borosilicate glass container. The suspension was placed in the 

reaction cells, and then irradiated with a Xe lamp (Wacom HX-

500) through two pieces of FTO-coated glass and a band-pass 

filter (33U, SIGMA KOKI CO., LTD.) transmitting the light of 

330 < λ < 400 nm for the UV-light photocatalytic activity 

evaluation and through a cut off filter (L-42 (Toshiba) 

transmitting the light of λ > 400 nm for the visible-light activity 

evaluation. Three mL of the solution was sampled every 5 min 

(UV) or 15min (Vis), and the electronic absorption spectra of the 

reaction solutions were measured using a spectrometer (UV-1800, 

Shimadzu) to determine the 2-NAP concentration from the 

absorption peak at 224 nm. A 596 ppm standard CH3CHO gas 

(CH3CHO/N2) was introduced into a reaction vessel made of 

borosilicate glass (393 mL) to be diluted with air such that its 

initial concentration becomes ca. 285 ppm. After the adsorption 

equilibrium of CH3CHO on SnO2/TiO2 particles (0.1 g) had been 

achieved under dark conditions, irradiation of UV- and visible-

light (λ > 290 nm) was carried out at room temperature. The 

concentration of CH3CHO was determined as a function of time 

by GC-FID-Methanizer (GC-FID: gas chromatography (GC-2014, 

Shimadzu), Methanizer (MTN-1, Shimadzu)) with a Porapak-Q 

column (3.0 mmφ × 3.0 m): injection and column temperatures 

were 423 K and 393 K, respectively, and N2 was used as a carrier 

gas. 

DFT simulations. For the calculations of surface 

modified TiO2 we use the DFT approach with corrections for on-

site Coulomb interactions, DFT+U to describe consistently Fe and 

Ti oxidation states; no such correction is applied to SnO2, since 

DFT adequately describes this system. For modeling TiO2 rutile 

(110) and anatase (001) surfaces, we use a three dimensional 

periodic slab model within the VASP code.17 The valence 

electrons were described by a plane wave basis set and the cut-off 

for the kinetic energy is 396 eV. There are 4 valence electrons for 

Ti, 8 for Fe, 4 for Sn and 6 for O. The exchange-correlation 

functional was approximated by the Perdew-Wang 9118 

functional. The Monkhorst-Pack scheme was used for K-point 

sampling with a (2×1×1) sampling grid. To describe Ti 3d states 

the DFT+U approach was used where U=4.5 eV. The need to 
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introduce U parameter in order to describe properly electronic 

states of d shells is well known.19,20 Fe 3d states were described 

with U=6.5eV and J=1eV which are typical values from the 

literature.21 For Sn, the electronic states are consistently described 

by DFT so no U correction was applied. The DFT+U approach 

gives relatively correct d state description but still gives an 

underestimation of the band gap and this depends on the precise 

DFT+U set up. We are aware of this important issue but are 

primarily concerned with qualitative changes in the band gap 

upon surface modification. With this in mind, the simulation 

results are important for understanding the experimental results. 

The rutile (110) surface is terminated by two coordinated bridging 

oxygens and the surface contains 5-fold and 6-fold coordinated Ti 

atoms. The anatase (001) surface is terminated by two coordinated 

oxygen atoms while the oxygen atoms in the surface are three 

coordinated. The Ti atoms in the surface are 5-fold coordinated. 

All surfaces have 12Å vacuum gap. We used a (4×2) surface 

supercell for both surfaces. For the consistency in the calculation 

we applied the same supercell for bare TiO2 surface and free 

clusters. 

The clusters are positioned on the TiO2 surfaces and adsorption 

energy is computed from: 

Eads = E((MOx)-TiO2) – { E(MOx) + E(TiO2) }  (1) 

Where 

E((MOx)n-TiO2) = total energy of the MOx cluster supported on 

the TiO2 surface 

E(MOx) and E(TiO2)= total energies of the free MOx cluster and 

the bare surface. 

 

RESULTS AND DISCUSSION  

SnO2 clusters were formed on the surfaces of rutile and anatase 

by the CCC technique using [Sn(acac)2]Cl2 as a precursor.16 The 

adsorption isotherms of [Sn(acac)2]Cl2 on rutile and anatase 

apparently exhibit Langmuir behavior (Figure S1 in SI). This 

adsorption proceeds via the ion-exchange between the complex 

ions and H+ released from the surface Ti-OH groups.16 The 

saturated adsorption amount and equilibrium constant were 

determined to be 0.29 ions nm-2 and 1.7 × 104 M-1 for anatase and 

0.10 ions nm-2 and 4.6 × 104 M-1 for rutile, respectively. After the 

postheating of the complex-adsorbed TiO2, no particle was 

observed on the rutile and anatase surfaces by transmission 

electron microscopy. Also, the oxidation state of Sn in the tin 

oxide species was confirmed to be 4+ by X-ray photoelectron 

spectroscopy. Clearly, extremely small SnO2 clusters are formed 

on the TiO2 surfaces by the CCC technique. The loading amount 

of Sn is expressed by the number of Sn ions per unit TiO2 surface 

area (Γ/ions nm-2). 

Figure 1 compares UV-vis absorption spectra of (A) 

SnO2/anatase and (B) SnO2/rutile. Anatase and rutile have strong 

absorption at λ < 385 nm and λ < 410 nm due to the interband 

electronic transition. In spectra (A), no spectral change is 

observed with the surface modification. On the other hand, in 

spectra (B), the absorption intensity increases, whereas the 

absorption edge is almost invariant. This indicates an 

enhancement of light absorption but without the band gap 

narrowing that was observed in the FeOx/TiO2
9,22 and NiO/TiO2

11 

systems. 

 

The photocatalytic degradation of 2-naphthol (2-NAP) was 

examined under illumination of UV-light (330 < λ < 400 nm, I320-

400 nm = 1.5 mW cm-2) and visible-light ( λ > 400 nm, I420-485 nm = 

1.0 mW cm-2). 2-NAP, the starting material of azo-dyes, can be 

used as a model water pollutant to evaluate photocatalytic 

activity, since it has no absorption at λ > 330 nm.23 UV-light 

irradiation of SnO2/TiO2 led to degradation of 2-NAP apparently 

obeying first-order kinetics. Figure 2A shows the first-order 

pseudo-rate constants for anatase (kUV(A), blue circle) and rutile 

(kUV(R), red circle) as a function of Γ. The SnO2-surface 

modification of anatase has only a small positive effect on its 

photocataltyic activity. In contrast, kUV(R) greatly increases with 

increasing Γ. 

Figure 1. UV-Vis absorption spectra of (A) SnO2/anatase and (B) 

SnO2/rutile. 
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Similar results were obtained also for the degradation of 

acetaldehyde used as a model air pollutant (Figure S2 in SI). 

Under visible-light irradiation, anatase and rutile show a low 

activity for the 2-NAP degradation. Figure 2 B shows the rate 

constants for 2-NAP degradation under visible light irradiation for 

anatase (kvis(A), blue circle) and rutile (kvis(R), red circle) as a 

function of Γ. Rutile exhibits a higher activity than anatase 

because of stronger absorption of visible light. As a result of the 

SnO2-surface modification, the kvis(R) is almost constant, whereas 

the activity of anatase disappears. Although the iron oxide-surface 

modification of rutile was previously reported to be more 

effective in the visible-light-activation than anatase,7 the reason 

has not been entirely clarified.  

To shed light on the origin of the striking difference in the 

SnO2-surface modification effect on rutile and anatase, 

photoluminescence (PL) spectra were measured. Figure 3 shows 

the PL spectra of SnO2/anatase (A) and SnO2/rutile (B). Anatase 

has a broad emission band centered at 538 nm (E1) due to the 

emission from the surface oxygen vacancy levels of anatase.10 The 

E1 signal intensity significantly weakens by heating anatase at 773 

K for 1 h in air, and the SnO2-surface modification further 

decreases the emission intensity. Rutile has two emission bands 

centered at 414 nm (E2), and 820 nm (E3). The E2 band is 

assignable to the band-to-band emission, while the E3 band results 

from intrinsic defects.24,25 In contrast to the SnO2/anatase system, 

the emission intensities increase with the SnO2-surface 

modification. The increase in the absorption intensity of rutile 

with the SnO2-surface modification would be responsible for this 

feature. Further, current (I)-potential (E) curves were measured 

for the rutile film-coated SnO2:F electrode (rutile/FTO) in an 

aerated 0.1 M NaClO4 aqueous solution in the dark (Figure S3 in 

SI). The current due to the O2 reduction is observed at E < -0.2 V, 

whereas only small current flows at -0.4 < E < -0.2 V without O2. 

The O2 reduction current increases with the SnO2-surface 

modification in a similar manner as the anatase/FTO 

system.1

6 Evidently, the surface SnO2 species promote the electron 

transfer from rutile to O2.  

First principles density functional theory (DFT) simulations 

have been undertaken on models of SnO2 clusters adsorbed at the 

rutile (110) and anatase (001) surfaces. Figure 4 and 5 show the 

atomic structure of representative SnO2-TiO2 models and free 

SnO2 clusters. The adsorption energies are also shown and we see 

that adsorption of SnO2 clusters at either TiO2 surface leads to a 

large gain in energy.  

Figure 3. (A) PL spectra of SnO2/anatase at 77 K with an 

excitation wavelength of 320 nm. (B) PL spectra of SnO2/rutile 

measured under the same conditions. 

Figure 2. (A) Pseudo-rate constants of the 2-NAP degradation 

under UV-light irradiation for anatase (kUV(A), blue circle) and 

rutile (kUV(R), red circle) as a function of Γ. (B) Pseudo-rate 

constants of the 2-NAP degradation under visible-light irradiation 

for anatase (kvis(A), blue circle) and rutile (kvis(R), red circle) as a 

function of Γ. 
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At anatase the energy gain is in the range -3.32eV to -5.29eV 

and at rutile the energy gain is in the range of -4.44eV to -7.26eV. 

Examining the geometry (with detailed bond lengths given in the 

supporting information), SnO2 adsorption at anatase (001) creates 

three new bonds, namely Sn to O atoms from the surface with 

distances 2.17 Å and two more bonds between cluster O atom and 

Ti surface atom with distances 1.78 Å and 1.77Å. Sn2O4 and 

Sn3O6 adsorption at anatase (001) creates five new bonds: Sn 

cluster and O atom surface distances are in the range 1.99 Å - 

2.33 Å and the Ti-O distances for O cluster atom to surface Ti 

atom bonds are in the length range 1.82 Å - 1.94 Å. On anatase, 

we also find that SnO2 adsorption leads to two surface oxygen 

atoms being pulled out of the surface to bond with cluster atoms, 

which is not seen with SnO2 cluster adsorption at rutile. 

At rutile (110), the Sn2O4 and Sn5O10 clusters, which have the 

most negative adsorption energies, bind to the surface with seven 

and six new bonds respectively. Sn atoms from the cluster bond to 

O atoms from the surface with distances in the range 2.10 Å  2.31 

Å while O atoms from the cluster create bonds to Ti surface atoms 

with distances which are in the range of 1.89 Å - 1.98 Å. 

The clusters with less negative adsorption energies, namely 

Sn3O6 and Sn4O8, bond to the surface with fewer new bonds - five 

and four bonds, respectively. The Sn cluster atoms with O surface 

atoms bonds are in the range of 1.97 Å - 2.17 Å and O cluster 

atoms with Ti surface atoms bonds have distances ranging from 

1.83 Å to 2.19 Å. All SnO2-rutile heterostructures present a 

significant change in the position of the 5-fold Ti surface atoms 

that bind to O atoms from the cluster. The Ti atoms are displaced 

upwards or downwards by 0.3 Å - 0.6 Å but the bridging O atoms 

from rutile (110) heterostructures are not affected by interaction 

with the Sn cluster atoms. This is in contrast to anatase, where O 

atoms from the surface are pulled out of the surface layer and the 

Ti surface atom positions are not changed. In all heterostructures 

Sn atoms are 4-fold and 5-fold coordinated and O atoms in the 

clusters are 1, 2 and 3-fold coordinated.  

To understand differences in the photocatalytic activity of SnO2 

modified rutile and anatase, we present the electronic density of 

states for SnO2 modified anatase in Figure 6 and rutile in Figure 7.  

On comparing the DOS, we find the following: 

・ For anatase, there are no SnO2 derived states found in the 

band gap, with SnO2 states lying well below the valence 

band (VB) and above the conduction band (CB) of anatase.  

・ This will lead to some enhancement of UV activity as 

electrons can be excited to the empty cluster states under UV 

light and, furthermore, these states can act as sites for O2 

adsorption and subsequent electron transfer to form reactive 

O2
-. 

・ Figure 6 includes also Bader charge calculations results for 

investigated structures which indicate that the oxidation state 

of Sn is 4+, which is consistent with the experiment. 

・ For rutile, we find unoccupied SnO2 states lying just below 

the rutile (110) conduction band; for example for Sn2O4 and 

Sn4O8 clusters, the empty SnO2 states lie only 0.2 eV below 

the CB of TiO2; for Sn3O6 and Sn5O10 the SnO2 states show a 

slightly larger offset.  

The proximity of the SnO2 states to the TiO2 CB means that 

one can expect increased light absorption compared with anatase 

and a greater possibility for electrons to be excited to the SnO2 

states with lower energy radiation, potentially increasing the 

photocatalytic activity, when compared with unmodified rutile 

and modified anatase. However, compared with FeOx-modified 

TiO2, there is no band gap reduction.  

Figure 4. The atomic structure of (a) SnO2, (b) Sn2O4 and (c) Sn3O6 

clusters adsorbed at the TiO2 (001) anatase surface. (d) – (g) show 

that atomic structures of free Sn3O6, Sn4O8, Sn2O4 and Sn5O10 

clusters. 

Figure 5. The atomic structures of (a) Sn2O4, (b) Sn3O6, (c) Sn4O8 

and (d) Sn5O10 clusters adsorbed at the TiO2 rutile (110) surface. 
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On the basis of the results above, the great enhancement of the 

UV-light-activity for rutile TiO2 with the SnO2-surface 

modification can be rationalized as follows (Scheme 1). In the 

oxidative decomposition of organics, the key to increase the TiO2 

photocatalytic activity is the efficient charge separation followed 

by the electron transfer to O2.
26,27 The differences in interfacial 

Sn-O-Ti bonds of SnO2 at rutile TiO2 compared with anatase 

significantly modify the electronic structure of rutile, but not 

anatase. The resulting increases in the density of states near the 

conduction band minimum by the mixing with the SnO2 cluster 

levels (Sn 5s and O2p) intensify the light absorption. The 

electronic transition causes bulk-to-surface interfacial electron 

transfer enhancing the charge separation, whereas the surface-to-

bulk interfacial electron transfer occurs in the FeOx/TiO2
9,10 and 

NiO/TiO2
11 systems. The VB edge position is invariant with the 

surface modification, and thus the VB-holes having a strong 

oxidation ability efficiently oxidize adsorbed 2-NAP without 

diffusion.28 Before the immediate relaxation of the excited 

electrons to the conduction band minimum (or the bulk-to-surface 

electron transfer), O2 is reduced with the assistance of the surface 

SnO2 clusters acting as an electron transfer promoter. These 

cooperative effects reduce the charge recombination to greatly 

enhance the photocatalytic degradation of organics.  

On the other hand, the electronic structure of anatase is only 

slightly affected by the SnO2-surface modification, which explains 

the much smaller effect on its photocatalytic activity. 

Interestingly, Boppana and Lobo have recently shown that the 

SnOx-surface modification of ZnGa2O4 by an impregnation 

method remarkably increases not only the UV-light-activity but 

also the visible-light-activity.29 This finding also indicates that the 

surface modification effects strongly depend on the kind of 

semiconductors. 

 

 

CONCLUSIONS 

 

In summary, this study has shown that the SnO2-surface 

modification of rutile TiO2 leads to a great increase in its UV-

light-activity, while the effect is much smaller for anatase TiO2. 

DFT simulations for model clusters show that although SnO2 

clusters adsorb on both TiO2 surfaces, the interface structure and 

electronic density of states present significant differences between 

rutile and anatase. For rutile, the changed DOS due to SnO2 states 

at the CB increases light absorption and enhances charge 

separation. In contrast for anatase, SnO2 states lie above the TiO2 

CB. The DFT simulation-assisted rational design for the metal 

oxide-surface modified TiO2 is a promising method to develop 

new photocatalysts for environmental purification. 

 

Figure 6. Electronic density of states for Ti 3d and Sn 5s for (a) 

SnO2, (b) Sn2O4 and (c) Sn3O6 modified TiO2 anatase (001). The 

Bader charges on cluster Sn atoms are given in (d). 

Figure 7. Electronic density of states for Ti 3d and Sn 5s for (a) 

Sn2O4, (b) Sn3O6, (c) Sn4O8 and (d) Sn5O10 modified TiO2 rutile (110). 
Scheme 1. Energy band diagram for SnO2/rutile. 
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The SnO2-surface modification of rutile TiO2 causes a great increase in its UV-light-activity for the degradations of model 

organic water pollutants, while the effect is much smaller for anatase TiO2. 
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