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Abstract  

 

Cancer represents a leading of cause of death in the developed world, inflicting 

tremendous suffering and plundering billions from health budgets. The traditional 

treatment approaches of surgery, radiotherapy and chemotherapy have achieved little 

in terms of cure for this deadly disease. Instead, life is prolonged for many, with 

dubious quality of life, only for disease to reappear with the inevitable fatal outcome. 

“Blue sky” thinking is required to tackle this disease and improve outcomes. The 

realisation and acceptance of the intrinsic role of the immune system in cancer 

pathogenesis, pathophysiology and treatment represented such a “blue sky” thought. 

Moreover, the embracement of immunotherapy, the concept of targeting immune 

cells rather than the tumour cells themselves, represents a paradigm shift in the 

approach to cancer therapy. 

The harnessing of immunotherapy demands radical and innovative 

therapeutic endeavours – endeavours such as gene and cell therapies and RNA 

interference, which two decades ago existed as mere concepts. This thesis straddles 

the frontiers of fundamental tumour immunobiology and novel therapeutic 

discovery, design and delivery. The work undertaken focused on two distinct 

immune cell populations known to undermine the immune response to cancer – 

suppressive T cells and macrophages. Novel RNAi mediators were designed, 

validated and incorporated into clinically relevant gene therapy vectors – involving a 

traditional lentiviral vector approach, and a novel bacterial vector strategy. 

Chapter 2 deals with the design of novel RNAi mediators against FOXP3 – a 

crucial regulator of the immunosuppressive regulatory T cell population. Two 

mediators were tested and validated. The superior mediator was taken forward as 

part of work in chapter 3. 

Chapter 3 deals with transposing the RNA sequence from chapter 2 into a 

DNA-based construct and subsequent incorporation into a lentiviral-based vector 

system. The lentiviral vector was shown to mediate gene delivery in vitro and 

functional RNAi was achieved against FOXP3. Proof of gene delivery was further 

confirmed in vivo in tumour-bearing animals. 

Chapter 4 focuses on a different immune cell population – tumour-associated 

macrophages. Non-invasive bacteria were explored as a specific means of delivering 
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gene therapy to this phagocytic cell type. Proof of delivery was shown in vitro and in 

vivo. Moreover, in vivo delivery of a gene by this method achieved the desired 

immune response in terms of cytokine profile. 

Overall, the data presented here advance exploration within the field of 

cancer immunotherapy, introduce novel delivery and therapeutic strategies, and 

demonstrate pre-clinically the potential for such novel anti-cancer therapies. 
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1.1 Tumour Immune Suppression 

 

1.1.1 The immune system and cancer 

The immune system and cancer are inextricably linked. Most tumours develop in the 

face of normal immune function and anti-tumour responses of varying strength 

result. A strong immune response against the primary tumour is associated with 

clearance and induced dormancy of metastatic cancer cells, with a resulting 

enhanced prognosis. Conversely, global immune deficiencies secondary to disease or 

therapy are thought to be associated with an increased frequency, earlier recurrence, 

more rapid progression of tumours and poorer prognosis 
1
. Responses to 

chemotherapy and oncolytic virotherapy may in part be immune-determined and 

there is persuasive evidence that an intact immune system, specifically determined 

by CD4
+
 T cells, is required for sustained tumour regression following oncogene 

inactivation therapies 
2
. 

Immune evasion is now considered a hallmark of cancer that results from 

both passive and active tolerising conditions which subvert anti-tumour immune 

responses 
3
. Passive tolerisation may result from down-regulation of MHC Class I 

expression on the tumour cells and/or low antigenicity secondary to immune editing 

and selective cell growth. Other tolerising mechanisms involve inhibition of immune 

cells in the tumour domain by depletion of tryptophan by the enzyme 2, 3 

indoleamine dioxygenase (IDO). Active tolerisation involves suppression of anti-

tumour cell-mediated responses by tumour infiltrating regulatory T cells (TRegs) and 

myeloid derived suppressor cells 
4
.  

Surmounting the immune suppression that exists within solid tumours would 

break the body‟s immune tolerance of the cancer, and, either alone or in combination 

with immuno-stimulatory strategies, improve patient outcomes. 

 

1.1.1.1 The rationale for Immune Therapy of Cancer 

There is renewed optimism that many cancers can be cured or forestalled by 

immune-based therapies, used either alone or as part of multimodal programmes. 
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This originates from an improved understanding of tumour immune interactions and 

the availability of gene, cell and ligand-based technologies which promote effector 

anti-tumour responses. The majority of immune therapy strategies for cancer seek to 

mobilise the adaptive arm of the immune system either directly by manipulating T or 

B lymphocytes or indirectly by undermining suppressive components within the 

immune system. The rational for such strategies derives from the adaptive anti-

tumour immune responses that result. These responses are both tumour antigen-

specific and durable. 

Adaptive anti-tumour immune responses are acquired through the integrated 

intercellular responses of the innate and adaptive immune systems 
5
 (figure 1.1, 

centre). Tumour infiltrating T cells, especially CD8
+ 

cytotoxic T lymphocytes 

(CTLs) and IFNγ-secreting CD4
+
 (Th1) cells, are central to effective immune 

containment. Adaptive immune responses are initiated when cells of the innate 

immune system (NKT, γδ T, NK and macrophages) are recruited to the tumour 

microenvironment - the continued process of tumour remodelling results in the 

shedding of cancer cells and debris with a consequent induction of inflammatory 

signals. The production of IFN-γ (initially from NK and NKT cells) appears critical 

as it creates a positive feedback loop by inducing some tumour cell death, the further 

activation of NK cells and macrophages and the production of chemokines and 

cytokines which are also tumouricidal and anti-angiogenic. Immature dendritic cells 

(DCs) are activated following uptake of tumour debris/antigens and migrate to the 

regional lymph nodes where they present the tumour antigens to naive T cells, which 

can differentiate into Th1, Th2, Th17 or regulatory T cells (TRegs) depending on the 

cytokine environment. Th1 cells can license DCs to induce tumour-specific CTLs by 

cross presentation of antigen on MHC class I. Antigen-specific CD8
+
 T cells traffic 

to the tumour where cell-mediated killing of tumour cells is augmented by Th1 and 

Th17 derived cytokines.  

However these effector responses can be inhibited by TRegs, and tumour-

associated macrophages (TAMs), induced by or recruited to the growing tumour 
6
. 

This thesis review focuses on these two cell types, TRegs and TAMs, which act as 

mediators of tumour immune suppression. 
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1.1.1.2 Immune Suppression by TRegs 

TRegs are considered to be the most powerful inhibitors of anti-tumour immunity and 

the greatest barrier to successful immunotherapy 
7
. In the early stages of cancer, 

TRegs are concentrated in the tumour mass, resulting in concomitant immunity, 

whereby the primary tumour can progress due to local inhibition of effector immune 

responses, but metastatic cells are eliminated by uninhibited systemic anti-tumour 

immune responses. In advanced stage disease or for poorly immunogenic cancers 

there are increased TRegs systemically and absence of concomitant anti-tumour 

immunity 
8
. While a correlation between increased TReg number and survival, either 

negative or positive, remains equivocal, the ratio of TReg to Teffector cells in the tumour 

mass seems to have greater prognostic significance 
9
.  

There are a number of subtypes of TReg 
9
, including natural CD4

+
 TRegs 

(nTRegs) which originate in the thymus, express CD25, FOXP3, CTLA-4, LAG3 and 

GITR and suppress innate and adaptive immune cells. Induced CD4
+
 TRegs (iTRegs) 

control immune responses to tissue antigens, including tumour antigens and include 

CD4
+
 nTReg-like, Tr1 and Th3 cells that suppress through production of IL-10 and 

TGF-β. The iTRegs develop in the periphery following engagement of the TCR of 

naïve T cells and under the influence of innate IL-10 and TGF-β. Their cell-surface 

markers are often indistinguishable from those of nTRegs and they differ principally in 

their mechanism of suppression. Although less well characterised, there are also 

populations of natural and induced CD8
+
 TRegs. 

While the field is still in its infancy, evidence is emerging that inhibition of 

TRegs may help in tumour containment, especially when combined with appropriate 

immunotherapies that activate effector T cells. Systemic TReg depletion in patients 

induced regression of melanoma metastases 
10

 and in mice when combined with 

immunogene stimulation of intra-tumoural immune effector cells resulted in cure of 

90% of animals who had large and weakly immunogenic sarcomas 
11

. The clinical 

objective will be to provide sustained reduction of TReg function, particularly in the 

tumour environment, allowing enhancement of anti-tumour effector functions and 

with minimal risk of developing systemic autoimmune diseases. 
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1.1.2 Targeting regulatory T cells for therapy 

1.1.2.1 Current approaches to TReg modulation 

Regulatory T cell depletion (figure 1.1 A) 

Depletion strategies are not T cell subset-specific but have a selective advantage 

when the TReg accumulation provides functional dominance in the tumour 

environment. TReg depletion strategies have focused on monoclonal antibodies or 

ligand-directed toxins targeted to a TReg cell surface receptor such as CD25 (IL-2 

receptor α chain). Daclizumab and basiliximab are anti-CD25 antibodies which 

invoke cell death by cytokine deprivation (IL-2) and also by triggering antibody-

dependent cell-mediated cytotoxicity (ADCC) or complement-dependent 

cytotoxicity (CDC). Results from an ongoing clinical trial have shown that 

Daclizumab reduces TRegs and thereby enhances cytotoxic T lymphocyte responses to 

tumour antigen induced by vaccination
12

. 

Denileukin diftitox (Ontak
®
) is a fusion protein of human IL-2 and the 

enzymatically active and membrane-translocating domains of diphtheria toxin. After 

binding to CD25 and internalisation, release of the toxin is cytocidal. Clinical data 

on the use of Ontak
® 

for alternative indications has led to its application for CD25 

targeting of TRegs and the emergence of similar CD25-targeted immunotoxins LMB-2 

and RFT5-SMPT-dgA. With one exception, Ontak
®
 depleted TReg numbers, albeit 

transiently, with TReg nadirs persisting for less than 3 weeks 
12

. The TReg elimination 

was mirrored by a concomitant increase in the prevalence of IFN-γ
+
CD3

+
 T cells in 

the blood and de novo appearance of melanoma antigen-specific CD8
+
 T cells 

10
. 

However the clinical benefits were modest. Regression of melanoma metastases in 

five out of sixteen patients represents the most promising outcome 
10

. Consistency of 

response is an issue as two patients who developed antigen-specific T cells failed to 

show any tumour regression and another study in melanoma patients failed to yield a 

single objective clinical response 
12

. 

Ontak
® 

is the subject of numerous clinical trials but to date fails to realise its 

clinical promise. Since CD25 is also expressed on activated Teffector cells, Ontak
® 

may also restrain protective anti-tumour immune responses. Ontak
®
 transiently 

depleted various T subsets including tumour antigen-specific CD8
+
 T cells 

10
. Its 

indiscriminate effects on CD4
+
CD25

-
cells are difficult to rationalise. 
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Low-dose oral metronomic cyclophosphamide induced a profound, selective 

reduction in TRegs and restored T and NK cell function in advanced cancer patients 
13

. 

This invoked temporary disease stabilisation in a number of patients without clinical 

improvement. The mechanism underpinning its selective toxicity towards TRegs is 

unexplained. Metronomic cyclophosphamide also has anti-angiogenic and direct 

cytotoxic effects, which contribute to tumour stabilisation or shrinkage. 

Depleting TRegs may have further consequences aside from an unintended 

treatment-mediated elimination of activated Teffector cells 
14

. Their depletion leads to 

an increase in tumour-mediated Teffector to TReg conversion with a diminution in anti-

tumour immune responses. This does not seem to occur with the other TReg 

modulation approaches. 
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Figure 1.1: Targeting regulatory T cells in cancer. The central schematic depicts the main 

events involved in mounting an immune response to a tumour. Cells of both the innate and 

adaptive systems contribute (further details are provided in the text). TRegs offer substantial 

resistance to this immune assault and thus four different approaches for reducing their 

immunosuppressive contribution are advanced (A, B, C and D); depletion, inhibition of 

function, blockade of trafficking and modulation of T cell plasticity. Within each approach 

numerous existing and novel options for therapeutic manipulation are forwarded. Ab – 

antibody; DC – dendritic cell; IDO - indoleamine 2,3-dioxygenase; MDSCs – myeloid-

derived suppressor cells; TReg – regulatory T cell. (From 
15

). 
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Suppression of TReg function (figure 1.1 B) 

Similar to CD25, CTLA-4 is not exclusively expressed on TRegs – it is also found on 

activated CD4
+
 and CD8

+
 T cells 

9
. CTLA-4 inhibits antigen priming of Teffectors by 

competing with CD28 for the costimulation of CD80/CD86 on APCs. Furthermore, 

it induces IDO in DCs 
16

. The consequent depletion of tryptophan and production of 

tryptophan metabolites, such as kynurenines and picolinic acid, inhibit Teffector 

proliferation and function. The anti-CTLA-4 antibodies ipilimumab (MDX-010) and 

tremelimumab (CP-675206) are currently undergoing clinical evaluation. 

Ipilimumab, as monotherapy or in combination with peptide vaccination improved 

survival in patients with previously treated metastatic melanoma 
17

. Tremelimumab 

promotes anti-tumour responses but recently these have been shown to result from 

Teffector activation rather than TReg modulation 
18

. This may also be true of Ipilimumab 

as its clinical mode of action has yet to be fully defined and could be ascribed to 

direct effects on either TRegs, Teffectors or a combination. 

The glucocorticoid-induced TNF receptor (GITR) is constitutively expressed 

on TRegs but also at lower levels on activated Teffectors. Intra-tumoural injection of an 

agonistic antibody to GITR (DTA-1) invoked potent anti-tumour immunity and 

eradicated established tumours in mice 
19

. The exact mechanism by which this 

approach achieves its effects is controversial. One study showed that the benefit of 

DTA-1 was TReg-mediated, facilitated by their selective modulation 
20

. However a 

more recent study suggested Teffector costimulation as the predominant outcome 
21

. 

Regardless of mechanism of action, GITR approaches have yet to recapitulate these 

promising findings in humans. Receptor activator of nuclear factor-kβ (RANK) 

ligand (RANKL) expression on TRegs engages the RANK receptor on cancer cells 

and promotes metastases 
22

. Inhibitors of RANK signalling, such as the anti-RANKL 

antibody denosumab, already used against osteoclastic-mediated bone resorption, 

may block direct TReg-induced metastases of certain cancers. 

Targeting FOXP3, the essential transcription factor of TRegs, by RNA 

interference (RNAi) could also modulate their function. Lentiviral-mediated delivery 

of miR-31 (a negative regulator of FOXP3) to TRegs abolished their suppressor 

capability 
23

. Translation to clinical application is challenging, as miR-31 would 

need to be delivered specifically to TRegs because FOXP3 is also transiently 

expressed on activated human Teffectors. FOXP3 is also expressed (both mRNA and 
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protein) in numerous cancer cell lines 
24

 but the effects of its down-regulation are 

unknown and could even be counterproductive.  

Further options for disrupting TReg function include Toll-like receptor (TLR) 

modulation, OX40 stimulation or interference with the adenosinergic pathway. 

Exposure of TRegs to the TLR8 ligand, poli-G10 abolished their suppressive influence 

on CD8
+
T cells, leading to improved anti-tumour immunity 

25
. More recently a 

synthetic TLR1/TLR2 agonist, an analogue of bacterial lipoprotein, mediated a dose-

dependent tumour regression and a long-lasting protective response against tumour 

rechallenge through a reciprocal down-regulation of TRegs and up-regulation of CTL 

function 
26

. These findings suggest that TLR signalling is a worthwhile pursuit but 

caution is advised as TLR agonists can promote regulatory as well as effector 

responses 
27

. Stimulation of OX40 (a co-stimulatory member of the TNF receptor 

family) inhibits the suppressive function of TRegs in vitro (by down-regulation of 

FOXP3) and abolishes protection against graft-versus-host disease in mice 
14

. The 

paradoxical stimulatory effects on Teffectors make it an enticing target for cancer 

immunotherapy. Another potential target on TRegs is ectonucleotidase activity which 

facilitates local generation of adenosine which has immunosuppressive capability. 

Ectoenzyme inhibitors such as ARL67156 and other modulators of the adenosinergic 

pathway, such as inhibitors of the A2A adenosine receptor, have been shown to 

block TReg-induced immunosuppression 
28

. 

 

Disrupting Tumoural Homing of Regulatory T Cells (figure 1.1 C) 

Chemokine-chemokine receptor and integrin-integrin ligand interactions attract TRegs 

to the tumour, a phenomenon first observed for the CCL22-CCR4 interaction in 

ovarian cancer 
29

. Importantly CCL22 expression was not confined to tumour cells 

but also included bystander cells such as tumour-associated macrophages. Further 

chemokines/integrins have been implicated in the selective recruitment and retention 

of TRegs at tumour sites including CXCR4, CD103 and CCR2 
9
. Because 

chemoattraction is ubiquitous in the immune system efforts to block TReg recruitment 

to the tumour mass may be limited by the concurrent effects on Teffectors. 

Nevertheless, disruption of CCR5/CCL5 signalling blocks TReg migration to tumours 

and inhibits pancreatic tumour growth in mice 
30

. Methyl gallate has also recently 
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been shown to inhibit infiltration of TRegs into tumours resulting in reduced tumour 

growth and prolonged survival rates 
31

.  

Immuno-stimulatory therapies may inadvertently promote tumoural homing 

of TRegs. Therapy with IL-2 can enhance CCR4 expression on TRegs, which stimulates 

their migration to the tumour mass and an up-regulation of CXCR4, the receptor for 

CXCL12, a chemokine linked to development of organ-specific metastases 
9
. These 

findings endorse a more prudent use of IL-2 or perhaps its use in combination with 

agents such as AMD-3100 which antagonise the CXCR4-CXCL12 interaction. 

 

Exploiting T cell plasticity (figure 1.1 D) 

The origins of iTRegs within the tumour microenvironment are diverse as varying 

degrees of plasticity exist within the helper CD4
+
 T cell population (TRegs, Th1, Th2, 

Th17, Tfh) 
32

; Pre-differentiated TRegs may migrate under the influence of 

chemokines 
29

, TRegs may arise from de novo generation via differentiation and 

expansion or may derive from conversion of CD4
+
CD25

-
 T cells. The plasticity 

inherent in each of these processes is a potentially exploitable therapeutic niche.  

IL-6 is central to T cell plasticity 
32

. It helps to convert FOXP3
+
 TRegs into IL-

17 secreting T cells (Th17). It potently abolishes conversion of conventional T cells 

into iTRegs and in its absence no other cytokine can substitute for this inhibition. 

Thus, IL-6 merits further investigation as a therapeutic for cancer. TGF-β acts at the 

axis between TReg and Th17 differentiation, enhancing the function of FOXP3 and 

inhibiting the function of RORγt, their essential transcription factors respectively. 

TGF-β-induced FOXP3 expression is inhibited by proinflammatory cytokines (IL-6 

and IL-21 for example) in a Stat-3-dependent manner. Thus Stat-3 may also 

represent a therapeutic option – indeed forced expression of Stat3 augmented IL-17 

production, most likely through increased RORγt expression 
32

. Re-directing 

differentiation towards a Th17 phenotype might also be achieved by direct 

introduction of RORγt, as this has been shown to induce IL-17 expression upon 

transduction of naive CD4
+ 

T cells 
32

. Conversely, selective methylation at the 

FOXP3 locus would likely hinder differentiation along a suppressor pathway. Aside 

from the epigenetic level, targeting FOXP3 at the mRNA and protein levels would 

also be worthwhile. Other approaches include antagonists for retinoic acid receptors 

which facilitate differentiation into Th17 cells over TRegs 
32

. TReg differentiation can 
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be redirected towards lineages other than Th17. Specific inactivation of the 

transcription factor interferon regulatory factor 4 (IRF-4) elevates Th2 cytokine 

production while IL-4-driven growth factor independent 1 (Gfi-1) facilitates optimal 

Th2 differentiation 
32

.  

Blocking TReg proliferation is an obvious goal. This can be achieved by either 

direct inhibition of TGF-β, inhibition of indoleamine 2,3-dioxygenase (IDO) directly 

with 1-methyl-D-tryptophan or indirectly by CTLA-4 blockade. Aside from directly 

stimulating TReg expansion, COX-2-derived PGE2 facilitates tolerogenic APC-led 

TReg recruitment and is itself a functional instrument of TRegs in certain tumours 
9
. 

Thus, use of COX-2 inhibitors like celecoxib may be justified. Alternatively, 

bevacizumab or blockade of PD-L1 on TRegs with MDX-1106 (Phase II) may halt 

TReg proliferation.  

Inhibiting the peripheral conversion of CD4
+
CD25

-
 T cells into CD4

+
CD25

+
 

TRegs may be a useful therapeutic approach. The TGF-β-blocking antibody, 1D11 

abolished this conversion and reduced tumour burden in mice. Subsequently other 

TGF-β-modulators including antibodies, soluble TGF-β receptors and the antisense 

oligonucleotide AP-12009 have reached Phase I/ II clinical trials. However systemic 

TGF-β-blockade may carry the risk of developing autoimmune disorders. 

Furthermore, under sub-immunogenic conditions T cell conversion can occur in the 

absence of TGF-β; IL-10 and IDO have also been shown to promote induction of 

TRegs 
9
.  

 

1.1.2.2 Novel approaches to TReg modulation 

The multitude of strategies discussed in this review deliver only marginal efficacy. 

While some strategies have lacked potency the majority flounder on specificity. This 

dearth of specificity is understandable given the intersecting differentiation pathways 

shared by all cells of the T cell lineage. Selective approaches to TReg modulation are 

warranted. Simple depletion of TRegs maybe naive and the benefit short-lived, while 

inhibiting their migration to the tumour ignores the in situ generation of these cells. 

Thus strategies focused on negating TReg function or reprogramming their functional 

phenotype would seem more meritorious.  

A unique cell surface marker which facilitates selective targeting of TRegs has 

yet to be uncovered. Thus targeting CD25 or CTLA-4 has been encumbered by a 
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concomitant effect on Teffectors. Introducing a second layer of specificity, so called 

dual specificity, to receptor targeting would likely be synergistic. This is a strategy 

under investigation in our laboratory whereby a relatively TReg-specific gene therapy 

approach is coupled to ligand selectivity. 

A global TReg modulation is undesirable as it may increase susceptibility to 

autoimmunity. Tumour-TRegs could be targeted via their antigen-specific T cell 

receptors (TCRs); antigen-specific TRegs engaged melanoma-expressed CTAG2 

(Cancer/testis antigen 2) and ARTC1 (Antigen recognised by TReg cells 1) 
33

 and in 

colorectal cancer patients CEA (carcinoembryonic antigen), telomerase, HER2/neu 

(human epidermal growth factor receptor 2) and MUC-1 (mucin 1) reactive TRegs 

were detected in the peripheral blood 
34

. On a practical level this could be achieved 

by harnessing tetramer technology; Saporin-coupled MHC class I tetramers 

specifically ablated IGRP (islet-specific glucose-6-phosphatase catalytic subunit 

related protein)-autoreactive T cells and delayed diabetes in NOD (non-obese 

diabetic) mice 
35

. Identification of CD4
+
 TRegs specific for a given tumour antigen 

would facilitate their targeting with MHC class II tetramers by similar means.  

While such agents would be specific for a given subset of TRegs they would 

also target other CD4+ helper cells expressing the same antigen specificity – CD8
+
 

cells would be unaffected. To circumvent this issue the effector component attached 

to the tetramer could be modified to confer another level of specificity. It could be 

miR-31 as 100% of target cells internalise the tetrameric complexes 
35

. Although the 

consequence of FOXP3 knockdown in non-TRegs is unknown TCR engagement in 

these cells may simply lead to activation – further augmenting the immune effector 

response. 

Alternatively one could target tumour-TRegs indirectly by modulating 

dendritic cell activation. This could be achieved by blockade of DC p38 MAPK, 

COX-2 or PI3K which inhibits innate production of TGF-β and IL-10 and thereby 

suppresses induction of TRegs. Such strategies enhance the efficacy of TLR (toll-like 

receptor) agonists or HSPs (heat shock proteins) as immunotherapeutics or adjuvants 

for DC vaccines and permit an un-restrained development of protective Th1 and 

Th17 cells 
27

. 

In conclusion, TReg inhibition in the cancer environment would permit an 

anti-tumour immune effector competency with containment or elimination of 
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disease. Such responses would be tumour specific and durable and should be 

effective against systemic disease, particularly micrometastases. There is clinical 

potential for TReg inhibitory strategies as part of multimodal programmes or 

combined with targeted therapies or local immunogene stimulation of anti-tumour 

immune effector cells. The objective should be to selectively modulate TRegs within 

the tumour microenvironment rather than their global depletion in order to minimize 

the risk of autoimmune manifestations. Strategies targeting TReg function or 

differentiation seem currently to be the best option as they are less susceptible to 

compensatory mechanisms. Emerging technologies such as tetramer or RNA 

interference approaches should improve specificity and efficacy and thus favour the 

preferential inhibition of TRegs within the tumour environment. 

 

 

1.1.3 Tumour-Associated Macrophages 

Macrophages represent innate immune cells with an inherent adaptive component as 

evidenced by a variety of polarised responses 
36,37

. Adaptive responses or 

reprogramming of macrophages occur following exposure to environmental signals 

from microbes, damaged tissues and lymphocytes. The diversity and plasticity of 

macrophages is perhaps most evident in solid tumours 
38

.  

 The different polarised states can be defined by their activation stimuli, their 

phenotype in terms of cytokines/chemokines secreted, and their function 
39,40

. M1 or 

classically activated macrophages, derive from polarisation by bacterial moieties 

such as LPS and the TH1 cytokine IFN-γ. They secrete high levels of IL-12 but low 

IL-10 and express the TH1-attracting CXCL9 and CXCL10. M1 macrophages are 

involved in killing of intracellular pathogens and tumour destruction, but can also 

lead to tissue damage 
38

. In contrast, M2 or alternatively activated macrophages are 

polarised by the TH2 cytokine IL-4 
41

 and secrete low levels of IL-12 with high IL-

10. They express chemokines CCL17, CCL22 and CCL24 
42

. They are involved in 

parasite clearance, tumour progression and have immunoregulatory functions. 

Importantly, the different polarised states do not represent distinct phenotypes, as 

overlapping characteristics exist 
43,44

. M1 and M2 macrophages are probably best 

looked upon as being at opposite ends of a spectrum of functional activation 
45

. 
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 Within the tumour microenvironment, M2-like macrophages generally 

predominate where they play a part in tumour immune evasion 
38,46

. Indeed, for the 

majority of human tumours, increasing TAM numbers negatively correlates with 

prognosis 
47

. They release angiogenic growth factors including IL-8, VEGFA, 

VEGFC and EGF, which support development of a new blood and lymph system for 

the emerging tumour 
48,49

. M2 macrophages also recruit pro-tumourigenic TRegs and 

TH2 cells through expression of chemokines CCL17, CCL22 and CCL24 which are 

chemotactic for these lymphocyte subsets 
37

. They further drive the differentiation of 

CD25
+
GITR

+
FOXP3

+
 TRegs 

50
.  

 The macrophage polarisation state that predominates within the tumour is 

influenced by their interaction with lymphocytes, especially TRegs. While TRegs 

directly undermine anti-tumour immunity (see previous), they also have an indirect 

effect through their manipulation of macrophage plasticity. The interaction between 

TRegs and macrophages is best described as bi-directional as macrophages attract 

TRegs to the tumour (see above) where they are then influenced by the TRegs 

themselves. Human monocytes have been observed to differentiate into M2-like 

macrophages when cultured in the presence of TRegs 
51

, while addition of TRegs to the 

peritoneal cavity of SCID mice polarized the resident macrophages to an M2-like 

phenotype 
52

. Furthermore, TRegs but not effector T cells, have been shown to induce 

B7-H4 expression in a variety of APCs including macrophages 
7
. Significantly, in 

that study, normal macrophages were refractory to stimulation of B7-H4 expression 

while ovarian-TAMs were not. B7-H4
+
 macrophages have been shown to inhibit T-

cell mediated anti-tumour responses 
53-55

. Moreover, TReg-derived IL-10 induces 

expression of the PD-L1 receptor on TAMs, which also inhibits T cell mediated 

immunity 
56

. 

 Based on the evidence presented, efforts to eradicate or re-programme TAMs 

would seem meritorious.  
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1.2 RNA interference 

 

1.2.1 Background - the promise of RNAi 

RNA interference (RNAi) is an evolutionary conserved regulatory mechanism, 

common to most eukaryotic cells, that uses small RNAs to orchestrate homology-

dependent control of gene activity 
57

. Currently, more than 1000 microRNAs 

(miRNAs) have been identified which are thought to regulate expression of greater 

than 30% of human genes 
58

. Given their abundance, it is unsurprising that miRNAs 

play a crucial role in the maintenance of health. As a corollary, one would predict 

that when the RNAi pathway runs awry, through over or under expression of RNAi 

mediators for example, disease would result. Given the regulatory control afforded to 

the RNAi pathway and the potential that this control mechanism is subverted in 

disease, the opportunity for a novel category of RNAi therapeutics is self evident. 

 RNAi-based therapeutics promise many advantages over conventional 

treatment modalities 
59

. Principal among these is the potential to reach all targets, 

including previously “undruggable” targets, since in theory, any transcript that 

encodes a protein linked to a disease can be targeted 
60

. For example, in diseases 

which derive from a single nucleotide polymorphism (often dominant negative 

genetic disorders) it is very challenging to design effective small molecule and 

biological therapies (proteins or antibodies) as there is insufficient structural 

difference between the normal and disease-causing variant. RNAi mediators 

surmount this issue with single nucleotide selectivity. Furthermore, RNAi mediators 

can easily be combined to reach multiple targets simultaneously making them more 

suitable for treatment of polygenic diseases. The time taken from target identification 

to therapy development is comparatively much shorter for RNAi molecules also. 

Often this can result from being able to use a single RNAi drug candidate all the way 

through the development process where the molecule displays cross-species 

reactivity 
61

.  
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1.2.2 The endogenous RNAi pathway 

Endogenous RNAi is mediated by miRNAs and siRNAs which, although distinct 

entities, follow a converging biogenesis pathway (Table 1.1 and figure 1.2). miRNAs 

are embedded in the host genome and transcribed as part of a long primary transcript 

(pri-miRNA) from pol II promoters 
62

. The pri-miRNAs are processed within the 

nucleus to ~70 nucleotide precursor stem-loop RNA (pre-miRNA) by the 

microprocessor complex consisting of Drosha and DGCR8 (DiGeorge syndrome 

critical region gene 8) 
63,64

. Pre-miRNAs are exported to the cytoplasm by exportin-5 

where the stem-loop is removed by the actions of the RNAse III Dicer. The miRNA 

duplexes that result are structurally similar to siRNAs 
65

 and are loaded into the 

RNA-induced silencing complex (RISC). Either strand of the duplex can carry out 

gene silencing, but many miRNAs show asymmetry, whereby one “guide” strand is 

preferred and the passenger strand is then discarded.  

Within RISC, the mature miRNA associates with an Argonaute protein 

family member, of which there are four (AGO 1-4) 
66,67

; the majority of miRNAs 

imperfectly match their target mRNA strand and thus engage with AGO 1. The guide 

strand generally guides the RISC to the 3‟ untranslated region (3‟-UTR) of the target 

mRNA where imperfect complementarity leads to translational repression 
68

, mRNA 

destabilisation or both 
69

.  

In the absence of total complementarity, perfect alignment in the seed region 

(nucleotides 2-8 from the 5‟ end of the miRNA) is seen as crucial to the specificity 

and function of miRNAs 
70

. The guide strand stays within the RISC where it can 

turnover and enable repeated binding and perpetuate the silencing of the target 

mRNA. This leads to long term silencing of the target gene 
71,72

. It is important to 

note that similar to siRNAs, some miRNAs are (near) perfectly complementary and 

bind to AGO 2 where they promote mRNA cleavage (see below) 
73

. 

siRNAs are produced from cleavage of longer dsRNA precursors by the 

direct actions of Dicer. One strand is referred to as the “guide” strand and directs 

silencing. Cleavage of the other, “passenger” strand is necessary to facilitate 

assembly of the guide strand into the AGO 2-containing RISC 
74,75

. Strand selection 

is determined by the thermodynamic properties of the siRNA duplex 
76

. In contrast 

to miRNAs, most siRNAs share 100% complementarity with their target mRNA. 

This permits interaction with AGO 2, the only member of this protein family with 
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cleavage capability 
77

. The end result is cutting of the mRNA strand at position 10-

12 (from the 5‟ end of the guide strand) 
78

. 

 

Table 1.1: Differences between endogenous miRNA and siRNA 

 

 

1.2.3 Exploiting RNAi 

The natural phenomenon that is RNAi can be exploited to answer fundamental 

biological questions about gene function and also for therapeutic endeavour (figure 

1.2). The three principle approaches are to use siRNA (an RNA-based approach), 

short-hairpin RNA (shRNA) or miRNA (both DNA-based strategies). Their terminal 

mode of action is largely similar but they differ widely in the stage at which they hi-

jack the endogenous pathway, their mode of delivery and duration of activity. In the 

simplest classification, recombinant inhibitory RNAs are designed to mimic primary 

miRNAs (in the case of artificial or exogenous miRNAs) or precursor miRNAs (in 

the case of shRNAs) or the products of Dicer processing (in case of chemically 

synthesised RNA duplexes) 
79

. Each strategy has advantages and disadvantages and 

often the choice of mediator depends on the target gene to be silenced and the 

planned phenotypic alteration.  

Exogenously produced siRNAs were the first approach to exploiting RNAi. 

Synthetic siRNAs of ~21 bp with 2-nt 3‟ overhangs were designed to mimic the 

natural Drosha/Dicer cleavage products 
80

. These siRNAs were mainly designed to 

share perfect complementarity with their target mRNA and thus effect cleavage 

through an interaction with AGO 2. Early approaches focused solely on sequence 

alignments with the target mRNA but subsequent design strategies sought to 

introduce functional asymmetry to the synthesised duplexes. Backbone and terminal 

nucleotide modifications, such as 2‟-O-Me or locked nucleic acids, destabilised the 

5‟-end of the siRNA duplex which favoured loading of the guide strand into the 
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RISC with concomitant destruction of the passenger strand 
81

. Such modifications 

had a number of advantages; they minimised sequence-dependent off-target effects 

by the passenger strand, improved efficacy of the guide strand and increased the 

likelihood of avoiding Toll-like receptor responses 
82

. 

siRNA as an approach to RNAi has two major drawbacks 
83

; 1) delivery: 

Unformulated siRNA molecules do not readily permeate the cell membrane due to 

their negative charge and size. Furthermore these 22 bp duplexes cannot be delivered 

by viral vector delivery systems in their native form. As a result siRNA delivery is 

largely dependent on non-viral gene therapy strategies which to date have lagged 

behind viral vectors in terms of efficiency of delivery. Many researchers have sought 

to encapsulate siRNA molecules in cationic liposomes and polymers which have 

yielded some success in mice 
84,85

 but many lipid based systems are rapidly cleared 

by the liver. Other in vivo delivery strategies have included cholesterol conjugated to 

the siRNA 
86

, antibody-protamine fusions to bind the siRNA 
87

, cyclodextrin-based 

encapsulation 
88

 and aptamers as targeting moieties for the siRNA 
89

. All these 

approaches brought an element of specificity to the delivery but the efficiency 

remained limited. Indeed the first display of siRNA silencing in humans used 

nanoparticles guided by transferrin-receptor ligands to specifically enhance uptake 

by cancer cells 
90

. 

2) short half-life: the chemical nature of siRNA duplexes renders them 

susceptible to degradation by RNase A-type nucleases in serum. Some progress has 

been made in this area whereby RNA backbone modifications such as 2‟F, 2‟O-Me 

and 2‟H substitutions have increased serum stability 
82

. However even within the cell 

siRNAs are readily degraded and their concentration decreases with every cell 

division leading to a transient silencing effect. Silencing can be as short as three to 

five days for transiently transfected cells in vitro but may be several weeks in non-

dividing cells 
91

. However for both dividing and non-dividing cells in an in vivo 

setting this transient silencing would probably mandate repeated administrations 

which could prove cost-prohibitive. In summary siRNA may be more suitable for in 

vitro proof of principle to verify silencing of a target gene at a sequence level. They 

can readily be introduced to growing cell cultures with various commercial 

transfection reagents where transient silencing is generally sufficient for validation. 

Translation into an in vivo setting seems challenging thus far.  
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shRNAs are DNA-based RNAi triggers that when introduced into cells are 

transcribed as sense and antisense sequences connected by a loop of unpaired 

nucleotides. They are designed to mimic pre-miRNAs. However shRNA transcripts 

often do not reflect the Drosha cleavage products they were designed to mimic 
92

. In 

many instances they lack the 3‟ dinucleotide overhang which impairs their transport 

by exportin 5. The subsequent nuclear accumulation of hairpins can be toxic to cells. 

However a bigger issue with shRNAs has been the RNA polymerase III-based 

promoter systems into which they are incorporated. The U6 promoter has been a 

common choice given its natural function in the generation of small cellular 

transcripts 
93

. These strong Pol III promoters drive massive over-expression and 

saturate the endogenous pathway leading to severe toxicity 
94-96

. The toxicity has 

been shown to correlate with both shRNA expression levels and an accumulation of 

unprocessed shRNAs. Many solutions have been postulated to overcome the 

saturation problem and these are discussed below (Section 1.2.4.2). Of note artificial 

miRNAs do not appear to saturate the endogenous miRNA pathway 
92,95

 and as such 

represent an advancement on shRNAs.  

Artificial microRNAs are also DNA-based triggers of RNAi and are designed 

to mimic pri-miRNAs. In this approach a perfectly complementary siRNA is 

embedded within a miRNA-scaffold derived from an endogenous miRNA. To date 

the best characterised pri-miRNA backbones are based on miR-30 and miR-155 
97

. 

The miRNA mimics that result, are thought to enhance RNAi via more efficient 

interactions with the RNAi processing machinery 
64

. One study demonstrated 

artificial miRNAs to be superior to shRNAs both in vitro and in vivo when knocking 

down the same target gene 
98

. Artificial miRNAs are usually transcribed using a Pol 

II promoter in keeping with the natural promoter for the majority of miRNA genes 

99
. Compatibility with Pol II promoters offers the researcher several well 

characterised inducible systems and tissue specific promoters allowing for greater 

temporal and spatial control of expression.  

Crucially artificial miRNAs appear devoid of the saturating toxicity 

associated with shRNAs. Incorporation of a saturating shRNA into an artificial 

miRNA-30 scaffold attenuated its toxicity and knockdown efficiency was 

maintained 
95

. This can be attributed to the lower steady-state levels of the mature 

antisense RNAs from artificial miRNAs and hence failure to overload the machinery. 
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This theory is supported by competition studies showing that two co-transfected 

shRNAs compete with each other and that shRNAs compete with both artificial and 

endogenous miRNAs 
92,100

. In the same studies no competition was seen between 

two co-transfected artificial miRNAs or between artificial miRNAs and the 

endogenous miRNA pathway. Taken en masse the evidence would suggest that the 

artificial miRNA approach is more suitable as a therapeutic strategy for inducing 

RNAi.  
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Figure 1.2: The endogenous RNAi pathway and opportunities for exploitation. The left 

hand side shows the endogenous origin of mature RNAi mediators from either miRNAs 

embedded in the host genome or siRNAs produced from cleavage of long dsRNA 

precursors. The right hand side shows options for harnessing the endogenous pathway for 

therapeutic endeavour using DNA-based (red) or RNA-based (blue) approaches (From 
71

). 
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1.2.4 Barriers to development of RNAi therapeutics 

1.2.4.1 Delivery 

At its simplest interpretation exploiting RNAi for therapeutic endeavour is another 

form of gene therapy where the goal is to deliver nucleic acids to cells specifically 

and efficiently. Thus it is unsurprising that development of RNAi as a therapy has 

been hampered by a difficulty common to the entire gene therapy field – delivery. A 

wide variety of gene/RNAi delivery strategies are available including non-microbial 

(physical and chemical strategies) and microbial systems such as viral and bacterial 

vectors (reviewed in section 1.3.2). 

RNAi mediators by their nature are difficult to deliver; they are highly 

negatively charged which repels them from the cell surface – this makes the use of 

some type of encapsulation or targeting moiety almost essential. They are also large 

molecular weight molecules – a typical siRNA is greater than 13 kDa for example. 

Given their potency within the cell targeted delivery is paramount. A myriad of 

strategies have been trialled in an effort to enhance efficiency and specificity of 

siRNA delivery (reviewed in 
101

). Proof of principle has been demonstrated for many 

in animal studies but the efficiency is often poor. Furthermore many involved focal 

delivery such as direct injection to the eye or tumour which some may consider 

clinically unworkable.  

That said two studies using siRNA are noteworthy. One group used an 

aptamer targeting the prostate specific membrane antigen receptor to carry an siRNA 

capable of inducing cell death in a xenograft tumour model. They succeeded in 

impeding tumour growth 
89

. A project that has progressed further is now in clinical 

trials for patients with refractory solid tumours, involves cyclodextrin nanoparticles 

coated with transferrin carrying an siRNA selectively to tumour cells 

(www.clinicaltrials.gov). Although proof of principle has been demonstrated for 

siRNA approaches their effect is transient with repeat administrations likely for a 

sustained alteration of disease phenotype. Such dosage schedules, given that oral 

formulations are unlikely in the near future, may be the undoing of the siRNA 

apporoach.  

shRNAs and artificial miRNAs on the other hand have more potential given 

that they are plasmid-based and hence poised to take advantage of the advances in 

http://www.clinicaltrials.gov/
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viral vector technology. They hold the promise of bettering the delivery and short 

duration of action of siRNAs. With the appropriate virus the RNAi mediator can 

potentially be stably integrated into the target cell and thus mediate sustained gene 

silencing with a single administration. Viral vectors have a tremendous propensity 

for specificity when combining transductional and transcriptional targeting; 

Transductional targeting can be conferred through capsid or envelope protein 

engineering and pseudotyping whereby foreign proteins from a different virus are 

used to alter the tropism of the core virus carrying the therapeutic gene 

(transductional targeting of lentivirus vectors is reviewed in section 1.3.3). 

Transcriptional targeting involves the use of inducible or tissue-specific promoters 

whereby expression of the therapeutic gene is controlled by exogenously introduced 

agents (e.g. tetracycline antibiotic) or agents unique to the specific target cell/tissue 

respectively. It must be noted however that some concerns remain around the use of 

viruses, particularly surrounding insertional mutagenesis.  

1.2.4.2 Saturation of endogenous pathway 

Excessive delivery and/or over-expression of an RNAi mediator can overload the 

processing machinery with potentially fatal consequences 
94

. Toxicity was shown to 

correlate with vector dose. Such saturation is possible with siRNA and shRNA based 

systems but artificial miRNAs avoid this complication as previously outlined 

(section 1.2.3). An obvious solution to the problem is to transpose the mature RNAi 

sequence from siRNA and shRNA molecules into artificial miRNA scaffolds, which 

has been shown to be effective 
95

.  

 However other potential solutions, particularly for shRNA-mediated 

saturation have been explored (reviewed in 
65

). One could simply lower the dose of 

vector administered – depending on the target disease this may 
94

 or may not 
95

 be 

tolerated as this will also reduce the percentage of cells transduced. Alternatively for 

shRNAs, one could substitute a weaker Pol III promoter. The U6 promoter has been 

frequently associated with saturation but changing to the weaker H1 (or 7SK) can be 

acceptable in certain scenarios 
102

. A further option is to drive expression of the 

shRNA with a Pol II promoter but this may not always be successful. Pol II 

promoters often have poorly defined transcriptional start sites. This can be 

problematic downstream as the RNAi machinery needs to engage with the first base 

of the shRNA for correct processing 
103

. A more elaborate method of dealing with 
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the saturation is to concomitantly overexpress the processing proteins with the 

shRNA. Extra copies of Exportin-5 and argonaute proteins have been delivered to 

animals 
104

 but this approach may not be clinically acceptable in the absence of a 

robust cell-specific delivery platform.  

 

1.2.4.3 Off-target effects 

Off-targeting can be defined as the silencing of unintended mRNA sequences. 

Despite the early promise of exquisite specificity associated with RNAi this has not 

been realised at a practical level. Off-targeting was first reported in vitro from 

microarray analysis following siRNA-transfection of HeLa cells 
105

. Indeed a more 

recent in vitro study showed that one third of randomly selected siRNA had an 

unintended negative effect on cell viability 
106

. This highlighted the potential of off-

targeting to invoke cellular toxicity. Off-targeting has also been verified in vivo in a 

mouse model of Huntington‟s disease 
107

. The consequences of off-target effects are 

potentially very serious as the silencing of any gene by RNAi will undoubtedly have 

knock-on effects on other genes and perturb a complex gene network 
108

. Given that 

many gene networks have yet to be elucidated the cellular phenotype that may 

manifest is largely unpredictable.  

 Off-target effects manifest predominantly from three scenarios; 1) Sequences 

in the mature RNAi mediator are identical to seed regions of an endogenous miRNA 

(nucleotides 2-8 from the 5‟end of the guide strand) 
109

. The siRNA then partly pairs 

with a weakly complementary sequence in the 3‟UTR region of an unintended 

mRNA. When this happens the siRNA can mimic the actions of the endogenous 

miRNA leading to silencing. Screening out sequences that match human or cross-

species specific miRNA seed sequences using BLAST will minimise this problem. 

Where the RNAi mediator is a chemically-synthesised siRNA addition of an O-

methyl group to the second nucleotide of the guide and passenger strands further 

helps reduce indiscriminate silencing effects 
105

. This option is however not available 

to plasmid-based RNAi induction approaches. 2) Incorrect processing of the RNAi 

mediator such that an altered sequence is loaded into RISC. This represents a less 

common cause of off-targeting but sequencing of the processed product is essential 

to identify the correct mature silencing RNA and spurious RNAs that result from 

cleavage sites moving one or more nucleotides. 
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 3) The incorrect strand of the mature duplex is incorporated into RISC. 

Careful design of the RNAi mediator will improve strand selectively and disfavour 

loading of the passenger strand 
71

. For example introduction of a thermodynamic 

differential between the 5‟ ends of the guide and passenger strands favours loading 

of the strand with the lower pairing energy 
76

. Also deliberate mismatches at 

appropriate sites on the passenger strand will limit its involvement and greatly 

enhance the overall efficiency of gene silencing. When developing an RNAi 

mediator it is important to ascertain which strand is loaded into RISC. A number of 

methods are suitable for this including northern blots, small RNA PCRs and 

luciferase-based reporter plasmids where targets for either the guide or passenger 

strand are placed in the 3‟UTR of the luciferase gene 
79

. 

 

1.2.4.4 Stimulation of immune responses 

An immune reaction to double-stranded RNA represents an innate mechanism of 

defence against invading viral pathogens. However in the context of siRNA delivery 

for therapeutic gain such immune responses compromise the benefits bestowed 

through harnessing the endogenous RNAi pathway. siRNA molecules stimulate an 

interferon response through interaction with toll-like receptor 3 (TLR 3) on the cell 

surface. This response can be rather easily abrogated by shielding the siRNA with a 

carrier molecule such as a lipid bilayer or cholesterol 
86,110

 

 A bigger issue which may extend to all RNAi mediators including shRNAs 

and artificial miRNAs is the activation of TLR 7 and 8. DNA-based approaches to 

RNAi may not directly engage these receptors as they subtly enter the endogenous 

pathway and mimic naturally occurring miRNAs 
111

. However it is possible that 

following expression and export from the nucleus such mediators may be recognised 

by cytoplasmic pattern recognition receptors which may also trigger an interferon 

response 
112

. Engagement of TLR 7 and 8 has been shown to be sequence-specific 

113,114
. GU rich motifs such as 5‟-UGUGU-3‟ or 5‟-GUCCUUCAA-3‟ have been the 

main culprits. An obvious means of preventing interferon responses is to screen out 

mediators bearing such “danger” sequences. Given that for many target mRNAs 

several candidate RNAi sequences are available such exclusion should not offer a 

significant impediment to the development of RNAi therapeutics. Alternatively 
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certain chemical modifications such as inclusion of at least one 2‟-OMe in either 

strand of the siRNA duplex can abrogate the interferon response 
115

. 

 

1.2.5 RNAi mediators as therapeutics 

In spite of the aforementioned barriers to RNAi therapy development RNAi 

molecules have reached clinical trial stage (reviewed in 
116

). However as of yet there 

remains no RNAi mediator on the market, perhaps reflecting the complexity of such 

medicines. As for other therapeutic categories the route from bench to bedside is 

long and arduous. A schematic representation of the RNAi drug design workflow is 

presented below (figure 1.3). 
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Figure 1.3: The steps involved in the rational design of an RNAi therapeutic (From 
59

). 
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As of August 2013 a database search of clinical trials under “RNA interference” 

returns just 5 studies (www.clinicaltrials.gov). “siRNA” as a search term yielded 31 

results, “shRNA” had just 7 results and “miRNA” had 157. Based on this analysis 

several conclusions can be drawn; the high number of “miRNA” trials is misleading 

in this context as the majority of such studies involved miRNA expression profiling 

and/or biomarker discovery. Most did not involve evaluation of a therapeutic 

(artificial) miRNA. Most therapeutic evaluations of RNAi mediators involved 

synthetic siRNA molecules. This can be attributed to their relative ease of design and 

lower cost of production – Indeed one siRNA entity, bevasiranib made it to Phase 3 

trials but was withdrawn due to insufficient efficacy. It is worth noting that most 

trials to date have involved non-viral delivery, often to readily accessible tissues 

such as the eye and solid tumours which can be reached by direct injection and hence 

circumvent the problems attached to systemic delivery. The scarcity of studies 

involving therapeutic use of artificial miRNAs perhaps reflects their more recent 

discovery. Given their enhanced safety features and equal if not superior knockdown 

efficiency over shRNAs (see above) it is likely that future interest may focus more 

on artificial miRNAs. Furthermore recent advances in viral vector technology 

involving specific cellular targeting and improved safety should also propel the field 

of DNA-based RNAi delivery.  

 Some optimism for the future of RNA-based medicines comes from 

Pegaptanib (Macugen
®
) which was licensed for use in the USA in 2004 and Europe 

in 2006. Although its mode of action does not involve RNAi it represents an RNA 

molecule that is successfully and safely delivered to patients. Pegaptanib, an 

aptamer, is a pegylated modified RNA oligonucleotide that binds with high 

specificity and affinity to extracellular Vascular Endothelial Growth Factor 

(VEGF165) inhibiting its activity (www.medicines.ie). Its physicochemical 

characteristics are such that Pegaptanib must be delivered directly to the eye by 

intra-vitreal injection, generally at six week intervals. Pegaptanib is licensed for the 

treatment of age-related macular degeneration – the greatest cause of vision loss in 

elderly patients in the Western world. By selectively inhibiting the “165” isoform of 

VEGF Pegaptanib prevents pathological ocular neovascularisation while sparing 

normal vasculature (www.ema.europa.eu/). 

 

http://www.clinicaltrials.gov/
http://www.medicines.ie/
http://www.ema.europa.eu/
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1.3 Microbial gene therapy vectors 

1.3.1 The promise of gene therapy 

Despite the advances in modern medicine, even in the developed world there 

remains many diseases for which there is an unmet therapeutic need – diseases for 

which cure is unheard of and palliation is the best on offer as the inevitable 

succumbent to disease approaches. Still for many other diseases, treatment is 

available which prolongs life and may even be curative but few treatments are 

devoid of side effects which impinge upon quality of life. Furthermore, the “one size 

fits all” approach that shrouds the majority of medicines in regular use today, offers 

little regard to the individual intricacies that constitute a person‟s genetic makeup. In 

many instances, this predisposes recipients to potentially fatal idiosyncratic drug 

reactions. The holy grail of disease management is a therapeutic entity which is both 

curative and tailored, but also tolerable to the patient. Existing small molecule 

entities and protein-based therapies (e.g. monoclonal antibodies) deliver huge 

benefits to patients, but many sufferers continue to die prematurely as a result of 

their disease. Thus, novel therapeutic approaches are mandated. Gene therapy 

represents one approach and carries tremendous potential to revolutionise modern 

therapeutics with enormous benefits for patients. 

 At its broadest, “gene therapy” could be defined as the exploitation of genetic 

material for therapeutic endeavour. The term would encompass in vivo and ex vivo 

manipulations of DNA and RNA and the introduction, modification or removal of 

genetic material. Gene therapy represents an umbrella term for a range of different 

strategies. The simplest and most commonly attempted involves gene addition 

whereby a missing or functionally inept protein is supplied. Gene knockdown is also 

routinely attempted in the form of RNA interference whereby DNA encoding 

siRNAs or miRNAs or the RNA molecules themselves are delivered to cells to 

facilitate post-transcriptional gene silencing 
79

. A more novel approach involves 

direct correction of the mutated gene using zinc finger nucleases in conjunction with 

DNA recombination technologies 
117

. Paradoxically, the same approach can be 

employed to create mutations in certain beneficial scenarios. Emerging gene therapy 

strategies include the use of non-coding RNA molecules to alter protein function by 

interfering with splicing – through exon skipping for example 
118

 or to upregulate 



   

43 

 

gene expression 
119

 or to function as aptamers where they function independently or 

guide other therapeutics to enable selective delivery 
120

. 

 Despite the promise of gene therapy and the enormous amount of research on 

this topic, few gene-based therapeutics are in routine clinical use today. Indeed last 

year (2012) yielded the first licensing of a gene-based therapy in the western world -

EU EMA licensing of Glybera
®
 - an AAV vector engineered to express lipoprotein 

lipase in the muscle 
121

. Previously two gene-based therapies have been licensed for 

use in China; Gendicine
®

 - a recombinant adenovirus carrying the tumour suppressor 

gene p53 was granted approval in 2003 for the treatment of head and neck squamous 

cell carcinoma 
122

 while in 2005 Oncorine
®

 - a type 5 adenovirus defective of the 

E1B-55 kDa molecule was licensed, also for head and neck cancer treatment 
123

.  

The field has suffered some noteworthy setbacks however; in 1999 a clinical 

trial participant died following an adenoviral vector-induced fatal immune response 

124
; the following year apprehension surrounding this novel field was compounded 

with reports that a γ-retroviral vector successfully restored X-SCID patients‟ immune 

systems but also caused leukaemia in several of these patients 
125

. Despite these 

reports gene therapy clinical trials have a good safety record – indeed the above 

mentioned fatal outcome in response to adenovirus represented the first death in 

nearly 400 gene therapy trials involving over 4000 patients 
126

. 

The above notwithstanding, many barriers to successful gene therapy have 

emerged over the years. In the first instance making sufficient quantities of the 

chosen vector (in particular viral vectors) at a realistic cost remains challenging. 

Furthermore, the nature of the diseases being targeted by gene therapy (often rare, 

“orphan” diseases) hampers recruitment of sufficient subjects for clinical trials.  

 This is before one even considers the in vivo concerns of which four 

predominate 
127

 (figure 1.4); 1) Delivery – efficient delivery of the nucleic acid 

therapeutic (although still an issue for many non-viral vectors) is not on its own 

sufficient, as specific delivery is also mandated to avoid off-target effects; 2) Vector 

persistence – depending on the vector used, the transgene will remain episomal or be 

integrated into the host chromosome. Either outcome can be useful depending on the 

turnover kinetics of the target cells and the disease being treated. However 

chromosomal integration at the wrong location carries the added risk of malignant 

transformation while episomal existence may warrant repeat administration which 
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may be precluded by immune responses (see below); 3) Duration of transgene 

expression – depending on the target disease, a continued therapeutic response may 

be required. Often this continuity can be extinguished by epigenetic interference with 

the vector genome; 4) The host immune response – this unwanted reaction can be to 

the vector (although less problematic with non-viral vectors) or to the transgene 

itself. If severe enough, such an immune response can be fatal (see above) or in 

milder cases therapeutic efficiency is lost and/or repeat administration is prohibited.  
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Figure 1.4 Issues to consider for successful gene therapy. Depicted are 4 crucial 

steps faced by a gene therapy vector (either microbial or non-microbial) as it 

attempts to mediate successful delivery and expression of its transgene within the 

target cell population. Further details are provided in the text. CTL, cytotoxic T 

lymphocyte; MHC, major histocompatibility complex; TCR, T cell receptor (From 

127
). 
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1.3.2 Vector types 

A major hurdle in the advancement of gene therapy has proven to be the 

development of a delivery vector that is efficient, non-toxic and has ease of 

application. There are a number of properties that the ideal vector for cancer gene 

therapy should possess; i) it should be amenable to commercial production and 

processing; ii) on delivery, the vector should be capable of sustained expression of 

the genetic material, ideally in a regulatable fashion; iii) the vector should also be 

immunologically inert; iv) a vector that specifically targets certain cells or tissues is 

highly desirable, particularly where the target cells are dispersed throughout the body 

or where the cells are part of a heterogeneous population; v) there should be no 

constraint on the size of the transgene; vi) the vector should be capable of 

transfecting both dividing and non dividing cells 
128,129

. While some of these 

properties exist in various classes of vectors, to date, all of these properties have not 

been found in any one vector. It is feasible that the optimal delivery modality for 

different diseases and anatomical locations and/or tissue types will vary. The 

delivery systems currently being used for gene therapy can be divided into two 

distinct groups- microbial and non- microbial gene delivery systems (Table 1.2). 

Each of these groups has its own advantages and disadvantages, while the key 

element for any vector strategy involves the balance between efficacy and safety. 
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Table 1.2 Gene delivery methods 

Modality Benefits Drawbacks Reference 

Viral High efficiency 

Nuclear entry 

Self delivery 

Systemic 

administration 

suitability 

Safety Concerns  

Anti-vector immune 

response 

130,131
 

Bacterial Self delivery 

Systemic 

administration 

suitability-Targeting 

to tumours 

Cell or gene therapy 

Potential for oral 

delivery 

Immune responses 

Low-medium 

transfection efficiency 

132,133
 

Physical Techniques 

Electroporation 

Sonoporation 

Microinjection 

Particle bombardment 

Laser Irradiation 

Magnetofection 

Site specific 

Safety of plasmid-

based approach 

Limited tissue 

accessibility  

Tissue damage 

Low transfection 

efficiency  

134,135
 

Chemical Techniques 

Cationic polymers, 

peptides, lipids 

(liposomes) aka 

Nanoparticles  

Self delivery 

May have nuclear 

entry 

Systemic  

Safety of plasmid-

based approach 

Low transfection 

efficiency 

136,137
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1.3.2.1 Non-microbial gene delivery  

Non-microbial gene delivery systems normally involve the transfer of genes carried 

on plasmid DNA. Plasmids do not generally replicate in mammalian cells. Plasmid 

DNA is a relatively safe alternative to viral vectors. The toxicity is generally very 

low, and large-scale production is relatively easy. Plasmid delivery systems involve 

the use of chemical or physical means to mediate cellular entry of the plasmid 

molecules. The use of chemical means to carry DNA into cells involves cationic 

polymers, cationic peptides and cationic lipids (liposomes) 
137

. Mechanical or 

physical techniques include the application of energy waves to cells to create 

transient pores in the cell membrane, thereby permitting entry of plasmid without 

killing the cell. Cell „poration‟ systems include electroporation 
134,138

 and 

sonoporation 
135

. Overall, while the safety profile of non-microbial vectors is 

attractive, the efficiency of current non- microbial approaches is considerably below 

that observed with viral vectors 
139

. 

 

1.3.2.2 Viral gene delivery 

By virtue of their natural life cycle, pathogenic viruses possess an innate ability to 

effectively invade human cells and express their genes within the cell. Gene 

therapists have harnessed the capacity of viruses to package DNA, transfer it to a 

cell, and produce proteins within it. Engineered viral gene delivery systems are 

typically rendered replication deficient by replacing those regions of the virus that 

are essential for viral propagation with the genetic sequence of a therapeutic gene. In 

this way, infectious progeny viruses are not produced from these viral vector 

particles, and hence are no longer pathogenic. Viral vectors have the advantage that 

their efficiency as delivery vehicles has evolved naturally 
131

. The most commonly 

used viral gene transfer systems are derived from adenovirus (Ad), adeno-associated 

virus (AAV), lentivirus, retrovirus, herpes simplex virus (HSV) and semliki forest 

virus (SFV). These can be categorized into integrating and non-integrating vectors. 

In the normal virus life cycle AAV, retrovirus and lentivirus are able to integrate 

their viral genome in to the chromosomal DNA of the host cell. Ad and HSV 

however deliver their genomes to the nucleus of the host cell and remain episomal. 

Vectors derived from adenovirus represent the most widely used class of viral vector 
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for prostate and other cancers, and have shown great promise at clinical trial level 

130,140
. 

 However, several problems exist with current viral gene therapies. In terms 

of practicality of usage, there are associated difficulties in production, size 

restrictions on transgenes in some viral vectors, anti-vector immunological responses 

limit their usage to a single application, while several human cancers are devoid of 

viral receptors and are not transducable by viral vectors 
141-145

. Many viruses are 

toxic and elicit systemic inflammatory reactions – one such immune response was 

fatal following use of an adenoviral vector 
124

.  Although confined to retroviral 

vectors random vector integration (which has resulted in cases of leukaemia
125

) has 

raised safety concerns. It should be noted however that newer, non-integrating 

lentiviral vectors (NILV) do not integrate and are hence devoid of this risk (see 

below) 
143

. While vector promiscuity is also a concern perhaps the greatest 

limitations are the immunogenicity of the vector and the potential for insertional 

mutagenesis. Strategies are under development to overcome these limitations. 

Vector immunogenicity Inactivation of the delivery vector by the same 

immune responses that eliminate wt viruses poses a significant problem. A number 

of approaches have been adopted in order to overcome this limitation. 

Ad vectors have been used extensively in cancer immunotherapy; they are 

easy to propagate enabling high titre viral stocks to be generated; they have a broad 

host range and are capable of infecting both dividing and non-dividing cells 
146,147

; 

they can be manipulated relatively easily to accommodate large DNA cassettes. 

However Ad vectors are the most immunogenic of all the viral vector groups, 

inducing strong cellular and humoural immune responses 
148-150

 and this limitation 

resulted in the first fatality in clinical trials 
124,151

. The humoural response involves 

the secretion of antibodies against the Ad vectors resulting in its elimination whilst 

the cellular immune response involves the activation of cytotoxic T cells, 

macrophages and natural killer cells that result in the destruction of the virally 

infected cells. For this reason, a gutless Ad vector was developed. This vector is 

deprived of nearly all viral genes, retaining only the viral ITRs and packaging signal. 

These vectors are helper dependent, demonstrate less immunogenicity and persist 

longer in animals 
152-154

. The vector exists episomally and does not integrate into the 

host genome, therefore the expression of the transgene has been found to be at best 
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transient 
155

, which depending on the therapeutic strategy, presents an increased 

safety profile, but possibly reduced efficacy. Induction of humoural responses has 

been demonstrated to vary depending on the antigen, the processing and presentation 

of the antigen and the route of administration.  

 Wild-type (wt) viruses can be recognised by the innate immune system 

resulting in antiviral immune responses. Receptors of the innate immune system 

recognize specific molecular patterns that are conserved in viruses but absent in the 

host. In a bid to overcome the innate immune response, „cloaking‟ of the viral vector 

by encapsulating the vector or conjugating a protective substance to the viral capsid 

is under investigation. These approaches have focused mainly on Ad vectors, being 

the most immunogenic of the viral vector systems, but have also been studied for 

AAV vectors 
156

. Strategies for adenoviral vectors include encapsulating the vector 

with cationic liposomes 
157

 or conjugating polyethylene glycol (PEG) onto the viral 

capsid 
158-161

. Croyle et al 
158-160

 have shown that pegylation of both E1-deleted Ad 

and helper dependent Ad resulted in prolonged transgene expression following a 

reduction in cellular immune responses against transduced cells. However re-

administration of these vectors results in a decrease in transgene expression, which 

may be due to an immune response against viral gene products. 

Integration The initial promise of an integrating viral vector for gene 

therapy strategies meant that repeated administration of the vector would no longer 

be required in order to sustain the therapeutic effect. However, the first clinical trial 

using an integrating retroviral vector for the treatment of severe combined immune 

deficiency (SCID) took a tragic turn for the worse when 3 of the patients developed 

leukaemia following the activation of the LMO-2 proto-oncogene following 

integration of the vector 
162-164

. Despite the potential that RV offers for gene therapy 

the problems associated with integration need to be resolved before these vectors can 

again be considered for the treatment of most diseases. Vectors derived from LV 

offer the same efficiency for gene transfer and also integrate randomly, but NILVs 

have been identified which overcome this issue. NILVs were identified as by-

products of integration during wt HIV infection and following transduction with 

other retroviruses 
165-167

. On binding of the wt virus to the cell, the LV genome enters 

the cell where the viral RNA undergoes reverse transcription in the cytoplasm prior 

to nuclear entry. Three forms of lentiviral DNA exist: double stranded linear, circular 
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with a single long terminal repeat (1-LTR) and circular with two LTRs (2-LTR) 
168

. 

The linear form integrates into the host genome, whilst the 1-LTR and 2-LTR exist 

episomally, yet transgenes can be actively transcribed from all three 
169

. Vector 

development has shown that LV vector integration can be blocked by mutating the 

viral integrase while all other functions can be maintained 
170-173

. Integration can also 

be blocked by pharmacological agents, such as diketo acids 
174,175

.  

 

1.3.2.3 Bacterial gene delivery 

Interest in bacterial gene therapy vectors increased following safety concerns over 

viral vectors. While being potentially safer than viral delivery platforms, bacterial 

vectors retain many attributes of a biological agent. They are versatile in that any 

therapeutic encoded by nucleic acid can be delivered. This paves the way for a 

variety of strategies including direct cell killing (e.g. by toxin delivery), anti-

angiogenic therapy and immunotherapy 
176

. Many successful applications of bacteria 

as tumour-specific delivery vectors have emerged, e.g. Salmonella Typhimurium 

delivered mouse GM-CSF and IL-12 to tumours which induced regression in mice 

bearing lewis lung carcinomas 
177

. Like other gene delivery modalities, bacteria can 

also be employed in vaccination strategies, e.g. an attenuated Listeria 

monocytogenes was used to deliver the HPV16 E7 antigen as part of a Phase I 

clinical trial for metastatic cervical cancer. Tumour reduction and prolonged survival 

were achieved 
178

. 

 Bacteria are not without their limitations as gene therapy vectors however. 

Many strains are pathogenic and carry toxins and thus need to be attenuated before 

use as a vector to avoid complications associated with systemic infection. Moreover, 

as vectors for cancer, full penetration of the primary tumour mass and reaching 

distant metastases is not always achievable due to their variable constitution 
179

. The 

transfection process faces additional obstacles in terms of plasmid release from the 

phagolysosome following cellular internalisation of bacteria. The efficiency of this 

release is poor for most species with the exception of Listeria monocytogenes which 

produces listeriolysin O, an enzyme that disrupts the phagolysosomal membrane 
180

. 

Fortunately the hlyA gene which codes for listeriolysin O can be incorporated into 

other bacteria for therapeutic improvement 
181

. Even after release of the plasmid into 

the cytosol, it must still enter the nucleus in order to facilitate transcription of its 
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therapeutic entity. Like other „non-viral‟ or plasmid-based modalities, this step may 

be boosted by incorporation of nuclear localisation sequences on the plasmid itself. 

 These limitations notwithstanding, bacterial mediated gene delivery offers 

many unique advantages which may be highly applicable in appropriate strategies. 

 

1.3.3 Lentivirus as a targeted gene therapy vector 

HIV-based lentiviral vectors represent a promising candidate for gene delivery as 

they are relatively non-immunogenic, capable of transducing both dividing and non-

dividing cells and they maintain long-term transgene expression 
182-184

. Current state-

of-the-art vectors are pseudotyped with the glycoprotein of the vesicular stomatitis 

virus (VSV-G) in an effort to achieve maximal production yield. However such 

pseudotyping mediates non-selective cell entry into virtually any cell type of mouse, 

rat or human origin. Further refinement of such vectors is clearly desirable to 

improve the efficacy and safety of transgene delivery. Ideally, transgene expression 

would be restricted to only the cell type relevant for a particular therapeutic 

application. Strategies to achieve this selectivity include the use of tissue-specific 

promoters and switching off gene expression in irrelevant cells by incorporation of 

target sequences for tissue-specific miRNAs 
185

. However, the preferred approach to 

selectivity would be to limit transgene expression at the step of cell entry using cell-

specific delivery vectors. In light of this several strategies have emerged for 

engineering targeted lentiviral vectors including novel pseudotyping viruses, use of 

adaptors or bridging molecules and the genetic incorporation of cell-specific ligands 

or combination approaches (reviewed in 
186

). Here we review advances in targeted 

lentiviral gene therapy.  

 An early approach by the Chen group involved pseudotyping HIV-1 

lentivirus with the envelope of the Sindbis virus 
187

. By inserting the Fc binding 

domain of protein A (ZZ) into the E2 region of the Sindbis virus, it was possible to 

couple any targeting antibody of choice. By coupling antibodies specific for HLA 

and CD4 a significant enhancement in delivery specificity was achieved in vitro. 

However two limitations exist with this approach; 1) the non-covalent coupling of 

the antibody means that in an in vivo setting the targeting antibody may become 

dislodged by endogenous antibodies in the circulation – this could lead to 

unpredictable and dangerous off-target effects; 2) the requirement for the target 
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cellular receptor to be endocytosed following vector engagement – this is necessary 

in order to activate the membrane fusion function of the Sindbis glycoprotein by low 

pH. Furthermore a residual non-specific tropism for the liver and spleen attributed to 

the ZZ Sindbis glycoprotein was subsequently detected in vivo 
188

. The same 

research team improved upon this promiscuity by identifying a modified ZZ Sindbis 

envelope (designated m168) which was used in conjunction with an anti p-

glycoprotein antibody to successfully retarget lentivirus to metastatic melanoma cells 

following systemic administration 
189

. Alternative approaches that do not involve 

antibodies have also been explored in the Chen lab including insertion of integrin-

targeting peptides into the envelope 
190

 and modification of N-linked glycans in the 

envelope proteins for lectin-mediated targeting 
191

. 

 Wang and Baltimore took a different approach to engineering targeted 

lentiviral particles and developed a system that involved separating the cell 

recognition and fusion functions of the Sindbis glycoprotein. They used the same 

binding-deficient, fusion competent Sindbis glycoprotein as the Chen group (except 

the ZZ domain was replaced with a 10-residue tag sequence) but the targeting 

antibody was incorporated as a distinct molecule on the lentiviral surface. Their first 

report provided proof of concept by displaying receptor-specific delivery via CD20 

to B cells 
192

. They further directed lentivirus specifically towards dendritic cells for 

in vivo immunisation by manipulating the natural tropism of the Sindbis virus– this 

natural tropism relies on the widely distributed heparan sulphate receptor and the 

more restricted expression of DC-SIGN (CD209) which is only found on subsets of 

dendritic cells. By mutating the heparan sulphate binding domain on the Sindbis 

virus glycoprotein transduction was exclusively confined to DC-SIGN-expressing 

cells. This immunisation strategy successfully protected against the emergence of 

nascent tumours and induced regression of established tumours in antigenically-

defined OVA tumour models 
193

.  

 While Wang and colleagues initially relied upon the natural fusogenic 

capability of the Sindbis virus, they later sought to improve this crucial fusion step - 

introduction of mutations in the loop region of the fusogen molecule enhanced 

delivery efficiency 
194

. In a further improvement of their original conceptual paper 

192
 they introduced single chain antibodies (as opposed to their full-sized 

counterparts) as the targeting entities on the lentiviral surface 
195

. The Wang lab has 
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continued to pioneer targeted lentiviral-based platforms culminating in particles 

pseudotyped with a CD4 receptor and fusogenic protein (derived from Sindbis) 

capable of specific delivery to HIV-1 envelope-expressing cells in culture 
196

.  

 The Buchholz lab sought to use a similar pseudotyping strategy to target 

lentiviral particles to cells of choice but employed Measles virus glycoproteins, 

namely haemaglutinin (H) which is responsible for receptor recognition and the 

fusion protein (F). They built upon earlier work which endeavoured to redirect 

Measles virus itself 
197

 – the natural tropism of Measles had been ablated by 

mutations in the H protein 
198

 and a single chain antibody had been fused to its 

ectodomain 
199

. Buchholz and colleagues identified cytoplasmic tail variants of H 

and F with these features which could efficiently pseudotype HIV-1 vector particles 

200
. Proof of concept was demonstrated by incorporation of an anti-CD20 single 

chain antibody – the resultant particles had high target versus non-target cell 

discrimination when added to a mixed cell population. 

 Using Measles over Sindbis glycoproteins should be advantageous in that H 

and F mediate cell entry directly at the cell membrane in a pH-independent manner 

without the requirement for the target receptor to be endocytosed 
201

. The Buchholz 

group advanced Measles-pseudotyped lentiviral delivery into animals where they 

achieved greater than 94% specificity for gene delivery to neurons in the adult 

mouse brain 
202

. This strategy was also successfully adopted for specific gene 

delivery via MHC II to antigen presenting cells with the generation of robust 

immunity 
203

.  

 

1.3.4 Bacteria as a targeted gene therapy vector for cancer 

A preferential growth of bacteria within tumour tissue as distinct from healthy tissue 

has long been recognised 
204

. However, the basis for this selectivity remains to be 

determined with many theories being furthered; the original suggestion that the 

hypoxic nature of solid tumours provides a niche for bacteria 
205

 over-simplifies 

matters. It now appears this phenomenon may be independent of the tumour type and 

the bacterial type (in terms of oxygen requirements). Other factors common to most 

tumours, such as the provision of cancer-derived purine nutrients to promote 

bacterial growth 
206

 and secretion of chemo-attractant molecules (e.g. aspartate, 
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ribose or galactose) 
207

 are now thought to play an important role. It is prudent to 

also consider the contribution of the chaotic and leaky vasculature which 

predominates in the tumour. Indeed the leaky blood vessel theory is supported by 

parallel evidence from wound-healing studies 
208

. The inertia of the immune system 

within the tumour microenvironment has been well espoused previously and this 

clearly fosters a bacteria-friendly sanctuary 
209

. Given their inherent tumour tropism 

it seems a logical extension to seek to use bacteria as selective gene delivery vectors. 

 While capable of delivering any nucleic-acid based therapeutic to tumours 

(section 1.3.2.3), the use of bacteria to deliver prodrug-converting enzymes, so-

called “BDEPT”, represents a particularly interesting strategy. The selective 

localisation of the bacteria within the tumour succeeds in converting a systemically-

applied prodrug into a toxic agent while negating harmful effects to non-tumour 

healthy tissue. Several enzyme/prodrug combinations have been successfully trialled 

using a variety of different strains including cytosine deaminase (CD) with 5-

fluorcytosine, nitroreductase with CB1954 and HSV-thymidine kinase with 

ganciclovir 
179

.  

 To date the majority of bacterial strains chosen as delivery vectors for cancer 

have been invasive with the goal of invading tumour cells and subsequent production 

of tumouricidal toxins or immuno-stimulatory cytokines. The target is the tumour 

cells themselves with cellular entry hinging on the natural properties of the 

bacterium. A novel slant on bacterial gene delivery involves using non-invasive 

strains that are captured by phagocytic cells such as dendritic cells and macrophages. 

This “passive” delivery mechanism recapitulates the normal functioning of the 

immune system as might occur in the context of a bacterial infection for example. 

The concept of directly targeting immune cells represents a paradigm shift in our 

approach to cancer therapy driven largely by advances in our understanding of the 

dynamic interplay that exists between the tumour and the immune system.  

 Overall, bacteria show great, but as yet unfulfilled promise as a gene delivery 

vector for cancer.  
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1.4 Use of optical imaging to progress novel therapeutics to the clinic 

 

1.4.1 The benefits of harnessing optical imaging 

The rationale for the development of novel therapeutics in the form of gene and cell-

based therapies has already been espoused in this review. Such treatment modalities 

are not in routine clinical use, but rather on the cusp of clinical translation. A 

significant impediment to their advancement to the clinic is a paucity of knowledge 

surrounding their in vivo characteristics and an inability to convert promising 

preclinical data into positive patient outcomes. Methodologies to track therapeutics 

and their efficacy/effect in vivo have not kept pace with the design and experimental 

testing of novel therapeutics in vitro. This underdevelopment is acknowledged by the 

call from the NIH Recombinant DNA Advisory Committee (RAC) for improved 

assays to measure transgene expression in cells and tissues 
210

. Existing clinical 

approaches to monitoring of biological therapeutics are unfit for this purpose. These 

involve biopsies and serial specimen sampling, supported by various nucleic acid 

and protein assays. Such approaches are retrospective rather than real-time, as well 

as being invasive and time-consuming, impinging on patients‟ quality of life. Putting 

the impracticality of repeated biopsies to one side, sampling at multiple sites cannot 

accurately track transgene expression kinetics and levels or recapitulate the disease 

phenotype within an entire organ or tissue. Issues arise as to the stability of samples 

and delays between sampling and testing. The nature of gene and cell-based 

therapies is such that real-time and continuous monitoring is necessary as transgene 

expression, and hence therapeutic response, can fluctuate according to design (e.g. 

with regulatable promoters) and physiological conditions. Furthermore, traditional 

approaches generally require a terminal assay to macroscopically assess an organ of 

interest – an option which is rarely clinically appropriate. Thus, novel, innovative 

monitoring strategies are mandated. 

 The benefits promised by superior monitoring technologies are far reaching. 

In many instances, gene and cell-based therapies are experimentally tested in a small 

cohort of patients, whereby appropriate monitoring can lead to i) optimisation of 

route and timing of administration, ii) determine whether repeat administration is 
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warranted or safe and iii) provoke manipulation of pharmacokinetic and 

pharmacodynamic properties of the therapeutic. The more powerful the monitoring 

technology, the more information can be gleaned from a small number of subjects. 

Appropriate monitoring is paramount to facilitate a continuum in the drug discovery 

pathway as minor tweaks in formulation and utilisation take place iteratively from 

bench to bedside and back to bench again. Data generated from improved monitoring 

shortens time-to-market for these medicines which can be life-prolonging or even 

curative 
211

. 

 Optical imaging (OI) has been at the forefront of preclinical testing of 

therapeutics in this field, but has struggled somewhat in terms of clinical utility. It 

does, however, promise many benefits over other imaging modalities. Firstly, in the 

pre-clinical setting, utilisation of OI is facile and inexpensive while being amenable 

to high-throughput work, whereby multiple subjects can be imaged simultaneously 

212
. In terms of safety and costs for clinical translation, no radiation is required and 

single cell sensitivity can be achieved at a low cost level 
213

. That said, OI is not 

without its limitations; as a result of light scattering and absorption, OI is difficult to 

directly quantify, the resolution for whole body imaging is inferior to Computed 

Tomography (CT) and Magnetic Resonance Imaging (MRI), but with a higher 

resolution at depths of 0-1.0 cm and the penetration depth of imaging is still 

somewhat limited to max 1.5 cm compared with CT, MRI and Positron Emission 

Tomography (PET), although novel developments like optoacoustics might 

outperform current reflectance based optical imaging modalities 
214

. These barriers to 

clinical translation are slowly being overcome and many impressive examples of OI-

driven advancement of novel therapies exist (see below). Novel combination 

approaches involving OI such as photoacoustic imaging partially overcome the depth 

limitations associated with more traditional approaches (bioluminescent and 

fluorescent imaging) facilitating imaging up to several centimeters of tissue in 

patients 
215

. The attributes of rival and often complementary technologies such as 

PET, CT and MRI-based imaging are reviewed elsewhere 
216,217

. Section 1.4 

highlights the use of OI strategies in the clinical arena. A detailed review of how OI 

has advanced early stage and pre-clinical drug discovery is beyond the scope of this 

thesis – the interested reader is referred to 
218

. 
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1.4.2 The physics of optical imaging 

As a functional imaging modality, OI serves a similar role to PET imaging in its 

ability to track and monitor biological activity in vivo. OI involves detecting visible 

wavelength light emitted from biomarkers; Bioluminescence imaging (BLI) hinges 

on the liberation of light energy by a reporter luciferase gene which oxidises a 

substrate in an energy-dependent (ATP or FMNH2) manner 
219

. Fluorescence 

imaging (FLI) is based on excitation of a fluorophore (generally a protein or 

chemical dye) using an external light source. However, unlike PET scans in which 

the high energy gamma-ray photons emanating from the site of the radio-labelled 

probe traverse tissue essentially unencumbered before reaching the imaging 

detectors, the visible wavelength photons of OI are at much lower energies and are 

subject to scatter and absorption in the tissue.  

While photon scatter by tissue structures such as mitochondria and cell nuclei 

can be of large angle, the scattering is primarily in the forward direction.  Eventually 

the multiple scattering events cause the photon direction to become randomized. For 

weakly anisotropic media such as tissue, the distance at which the directional 

distribution becomes approximately isotropic is 1/s for visible wavelengths, where 

s is the reduced scattering coefficient. Absorption of photons by endogenous 

chromophores in tissue, such as oxy- and deoxy-hemoglobin, water, melanin and fat 

can also be problematic. Fortunately, the discovery of the near infra-red window 

(600-900 nm) negates this problem as absorption by these physiologically abundant 

molecules is reduced to the minimum at such wavelengths 
220,221

. The photon 

absorption length, 1/a, refers to the distance at which the number of photons has 

dropped to ~1/e due to absorption, where e refers to the mathematical constant.  The 

fraction of the photons which can eventually reach the imaging subject surface is 

dependent on these tissue optical properties, s and a, and the distance to the 

surface 
222

. 

The light intensity that reaches the surface is usually below the ambient light 

necessary to visualize the imaging subject. This is particularly true for in vivo 

bioluminescence imaging.  In order to detect the light which originates from the 

luminescent biomarker, the in vivo OI instrument for small animals typically consists 

of a light-tight dark box mounted with a charge coupled device (CCD) camera, 

cooled to prevent thermal electronic noise from dominating the signal 
223

. CCDs with 
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high quantum efficiency of photon conversion to electronic signal are especially 

advantageous for optical imaging of these types of reporters in vivo. The dark box is 

also useful for fluorescence imaging of weak or deep fluorophores.  However, 

fluorophore brightness is also dependent on the excitation source power density, and 

therefore for superficially located fluorophores that have a sufficiently high quantum 

yield, and use of proper filtering methods, fluorophore detection can be achieved in 

the presence of ambient light.    

 Two-dimensional optical imaging involves collection of the light emission 

from the animal surface onto the pixel array of the CCD chip, allowing for 

immediate interpretation of the image data for gross biomarker localization and 

concentration. Although a greater issue when imaging deeper tissues multiple 

scattering and absorption of the photons can lead to a diffuse pattern of emission. 

This makes it difficult to determine the origination location of the emitted light as the 

emission pattern at the surface appears diffuse and unfocused. This explains why 

optical images, typically rendered in pseudocolour, will appear in broad patterns for 

deep sources and narrow peaks for shallow sources. When imaged longitudinally, 

efficacy of therapeutics or disease progression can be inferred from temporal 

decrease or increase in detected signal intensity.  

However, the signal intensity at the animal surface is dependent on the 

underlying thickness of tissue through which the photons must travel, and therefore 

is dependent on the luminescent biomarker source depth. Conclusions drawn from 

two-dimensional OI longitudinal studies rest on the assumption that luminescent 

biomarker depths in tissue are invariable throughout the time frame of the study. The 

attenuation of the light signal which tissue mass imposes can be excluded from the 

measurement of source strength by modelling the light propagation through the 

tissue. Photon propagation in tissue can be modelled by stochastic methods which 

consider the probability of photon scatter, scattering angle, and absorption for each 

incremental step of the photon path 
224,225

. Other methods include solving the 

radiative transport equation for a finite element mesh representation of the tissue 

volume 
226,227

. Finally, the photon fluence rate can be approximated by the diffusion 

equation for tissue in which s>>a, and given specific boundary conditions; 

expressions which relate the source strength to surface signal can be analytically 

derived 
228

. 
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With the ability to model the photon propagation in the animal body, the 

unaltered source strength and location can be established in three-dimensions with 

numerical techniques which aim to minimize the difference between the simulated 

data and the measured signal at the animal surface 
229

. In order to accomplish this, 

the animal surface should be defined for appropriate treatment of the boundary 

between tissue and air. Animal surfaces have been approximated as slabs, where the 

animal is placed into a chamber giving it a bulk slab shape. Animal surfaces have 

been more accurately measured with structured light methods 
230

, silhouette back-

projection methods 
231

, or segmentation of CT images 
232

.  

Resolution in 3D optical imaging is largely limited by the tissue optic 

properties and the wavelength band used for detection 
233

. Prudent selection of data 

is important to minimise the effect of unknown parameters on the overall imaging 

success. In bioluminescent 3D imaging, acquiring image data at discrete spectral 

bands over a wider bandpass which encompasses strong changes in optical properties 

is advantageous for resolution 
230,234

. In fluorescence 3D imaging, in addition to 

relevant wavelengths, the selection of excitation light irradiance pattern on the 

animal surface can be crucial for resolution 
235

 (see below). 

 

1.4.3 The biology of optical imaging 

Targeted OI has only very recently had its first clinical application (see below). 

Thus, most arguments endorsing OI are based on pre-clinical evaluations with novel 

therapeutics. The improvements in technology and labelling required to make OI a 

routine companion for novel therapeutic translation and utilisation are also 

predominantly pre-clinically based. The vast majority of OI encompasses 

exploitation of visible light from two different phenomena; bioluminescence and 

fluorescence. 

 

1.4.3.1 Bioluminescent Imaging (BLI) 

Bioluminescence hinges on the liberation of light energy by a reporter luciferase 

gene which oxidises a substrate in an energy-dependent (ATP or FMNH2) manner 

219
. Importantly, no external light source is required for the reaction. Various 

luciferase genes have been trialled, including firefly (Fluc), Click Beetle (CBluc), 
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Renilla (Rluc), Gaussia (Gluc) and the bacterial luciferase gene cassette/operon (lux) 

236-238
. Of these, Fluc is the most widely used. The oxidation of D-Luciferin by Fluc 

or CBluc is exemplified below; 

 

 

 

Although not yet licensed for human use, D-luciferin has not exhibited toxicity in 

pre-clinical animal studies. Its small molecular size makes it an ideal in vivo reporter 

substrate with the capability to penetrate many anatomical barriers, including the 

placenta and blood-brain-barrier 
239

. 

 BLI has been explored as an imaging modality for many types of gene and 

cell therapies in a variety of disease settings (reviewed in 
212

) – a testament to its 

broad appeal. BLI is routinely used pre-clinically as an initial screening methodology 

to assess the delivery capacity and in vivo dissemination of novel gene therapy 

vectors, including cellular therapies 
240,241

. It represents an efficient and affordable 

technology for most laboratories, as the required instrumentation and consumables 

are relatively inexpensive, the imaging methodology is easy to learn, and 

interpretation of the data requires little technical expertise BLI generally reflects the 

product of both delivery and expression of the transgene. In this context, BLI is well 

suited to optimising both the transduction/transfection 
242

 and 

transcription/translation 
243

 steps involved in therapeutic development. By improving 

the efficiency of these steps, BLI is enabling novel therapeutics to reach patients and 

improve outcomes. 

 

1.4.3.2 Fluorescence Imaging (FLI) 

Fluorescence imaging (FLI) is based on excitation of a fluorophore (generally a 

protein or chemical dye) using an external light source. As the excited electron in the 

fluorophore transitions to a lower state, light of a different wavelength (fluorescence) 

is emitted and can be detected. When deciding on a fluorophore, many 

characteristics must be considered such as the suitability of the excitation and 

emission wavelengths, photostability, brightness, and maturation speed 
244,245

.  
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Fluorescent proteins The original and perhaps the most commonly utilised 

fluorescent probe to date is the green fluorescent protein (GFP) derived from the 

jellyfish Aequorea Victoria. Technical issues quickly emerged with GFP use, 

however, as spectral wavelengths in the green range have limited penetration in vivo 

(1–5 mm in mammalian tissues for example) 
246

. This issue inspired the development 

of a range of optimised and stabilised mutants of this gene emitting blue, cyan or 

yellow light. Moreover, novel sources of fluorescent proteins emitting light at the 

other end of the spectrum (orange, red and far-red) emerged 
247

. With such a diverse 

collection of fluorescent proteins (each with unique emission wavelengths) available, 

the modern researcher is capable of simultaneously monitoring multiple targets. 

 A further issue with GFP is autofluorescence whereby molecules such as 

flavins, lipofuscin, NAPDH, collagens and elastins of connective tissues and the 

animal's food also fluoresce following application of an external light source. This 

confuses the output data. Autofluorescence undermines the signal-to-noise ratio with 

resultant poor quality imaging
248

. Moving to the far-red and near-infrared spectrum 

promises to ameliorate both the tissue penetration and autofluorescence limitations. 

Proteins that emit at longer wavelengths such as the DsRed derivative, mCherry and 

tdTomato, derived from Discosomastriata, are desirable as red light penetrates 

tissues more efficiently than green 
249

. Further refinements geared towards in vivo 

imaging include the brighter mKate2 
247

 and further red-shifted iRFP 
250

. Indeed, the 

use of iterated somatic hyper-mutation to optimise monomeric red fluorescent 

proteins may advance FLI to the clinic 
251

. 

Fluorescent dyes and Quantum dots Alternative options to fluorescent 

proteins include fluorescent dyes and quantum dots. Fluorescent dyes can be 

categorised as non-targeted or targeted probes 
213

. Non-targeted probes are generally 

more amenable to tracking cellular therapies as they bind indiscriminately to the 

cellular membrane (phospholipid bilayer) when added to cells in suspension – 

efficacy has been demonstrated both in vitro and in vivo in conjunction with OI 
252

. 

Targeted probes can be subdivided into simple targeting probes, cross-linking probes 

and enzyme-activatable, so-called “smart” probes. Targeted probes are more 

selective with fluorescence emanating only from defined cell populations that carry a 

specific functionality. Consequentially many targeted probes have derived from 

diagnostic endeavours 
253

. 
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 Various inorganic and organic fluorophores for have been developed. 

Wavelength, quantum yield, photo- bleaching resistance, aggregation, stability, cell 

penetration, biocompatibility and toxicity are important criteria to consider. 

Quantum dots (QD) are robust, exhibit a large stokes shift and can emit at tuneable 

wavelengths. They are composed of fluorescent semiconductor cores (Au, Cd, Zn) 

embedded within an outer coating that defines their surface chemistry 
254

. QDs offer 

many advantages over fluorescent proteins and dyes; autofluorescence is less of a 

concern and they permit greater sensitivity enabling single molecule detection. Due 

to their continuous broad absorption spectrum, multiplexing is possible whereby a 

single light source can be used to track multiple QDs 
255,256

. Photobleaching is less 

problematic which gives rise to enhanced stability – QDs can remain fluorescent in 

vivo for months
257

. QDs are not without concerns however, particularly in terms of: 

1) cytotoxicity as their heavy metal cores can oxidize and 2) tissue absorption of the 

excitation light which reduces the detectable fluorescence. An elegant solution to this 

latter issue has recently emerged however. It involves the use of “self-illuminating” 

QDs whereby the light source to excite the QD is in situ in the form of Renilla 

luciferase 
258

. To offset toxicity, Li et al have recently produced photostable 

fluorescent organic dots with aggregation induced emission 
259

. These dots contain a 

propeller shaped dye, non-emissive in solution, but highly fluorescent upon 

aggregation. When conjugated to the TAT cell penetration peptide, C6 tumour cells 

could be traced for 21 days in vivo. 

 While QDs may well be superior to fluorescent proteins and dyes, the poor 

signal-to-noise ratio remains the Achilles tendon of FLI, particularly in deeper tissue 

as the emergent signal fades. However plans are apace to overcome this limitation; 

the advent of “spectral unmixing” enables detection of separate wavelengths from 

different sources and thus minimisesautofluorescence 
260

. Moreover newer imaging 

approaches such as fluorescence-mediated tomography make deep tissue imaging 

more plausible 
261

. This uses fluorophores to create a volumetric model of an organ 

through reconstruction of multiple images formed from light transmitted through and 

scattered from the organ. While still in its infancy this approach shows promise in 

many contexts 
262

. 
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1.4.4 Use of Optical Imaging in the clinic 

While the use of OI to advance novel therapies to the clinic has largely focused on 

pre-clinical work, robust examples of the use of OI in the clinical setting have 

emerged (figure 1.5). A multitude of studies have reported on the use of 

fluorescence-guided surgery with 5-aminolevulinic acid (5-ALA) for resection of 

malignant gliomas (reviewed in 
263

). 5-ALA is a non-fluorescent prodrug that 

facilitates the accumulation of fluorescent porphyrins within malignant glioma cells. 

While 5-ALA had been granted orphan drug status as far back as 2002 it was not 

until 2007, when the positive results of a Phase III clinical trial emerged, that it was 

granted full authorisation under the tradename Gliolan
®
. This pivotal trial showed 

that complete resection of tumour was much more readily achievable with 5-ALA 

versus white light 
264

. Furthermore 6-month progression free survival was 

significantly enhanced in the 5-ALA cohort (41% versus 21%). 
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Figure 1.5: Fluorescence imaging from patient to surgeon to pathologist. After detection 

of a tumour with conventional imaging a biopsy of the tumour is taken. Expression of 

tumour-specific targets for molecular imaging can be determined by immunohistochemistry 

on the biopsy. Since targeted fluorescence tracers can have a long tissue stability without 

bleaching (simulated in this figure), the same tracer can be used for preoperative, 

intraoperative as well as postoperative localization of tumour cells, ranging from macro- to 

microscopic investigation of the tumour process. After formaldehyde tissue fixation the 

targeted fluorescent tracer is still visible for the pathologist for validation of pre- and intra-

operative fluorescence imaging.  
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Troyan et al. undertook a first-in-human clinical trial using the FLARE 

intraoperative near-infrared (NIR) fluorescence imaging system 
265

. This represented 

a significant advancement on previous studies which had used the same NIR 

fluorophore (indocyanine green) 
266-271

 as it permitted simultaneous visualisation of 

the surgical anatomy and used an improved fluorophore formulation. In the context 

of the underlying goal, to map sentinel lymph nodes in breast cancer patients, NIR 

fluorescence imaging was comparable to the current standard of care, 
99m

Tc- 

lymphoscintigraphy. Following intra-tumoural injection of indocyanine green 

dissolved in human serum albumin no adverse effects were observed. This OI 

approach paves the way for greater clarity surrounding sentinel lymph node 

detection while avoiding use of ionising radiation. 

 Van Dam et al. employed intra-operative tumour-specific fluorescence 

imaging whereby a folate-FITC conjugate molecule was used to target folate-

receptor-α which is over-expressed in epithelial ovarian cancer 
272

. OI produced 

superior outcomes in terms of detection of tumour deposits with surgeons identifying 

a median of 34 deposits using fluorescence in contrast to a median of just 7 deposits 

by standard visual observation. In this context OI paves the way for enhanced 

surgical debulking and more accurate staging of disease with subsequent better 

patient outcomes. The intra-operative fluorescence imaging was consistent with ex 

vivo analysis of tissue sections. This study provides an important proof of principle 

regarding the monitoring of therapeutic interventions in humans. Not alone can 

surgical interventions be monitored, this identical approach lends itself to assessing 

efficacy of other therapeutic modalities such as chemotherapy and molecular based 

therapies. Furthermore by targeting different cellular receptors with a similarly 

designed ligand-fluorophore combination OI could be used to follow interventions in 

other cancer types and indeed other disease settings. Moreover the versatile and non-

invasive nature of this approach could permit labelling of therapeutic entities such as 

monoclonal antibodies directly with FITC or similar molecules. This would provide 

invaluable data surrounding in vivo pharmacokinetics and pharmacodynamics and 

pave the way for iterative optimisation of such novel therapeutics.  

In summary, OI has made a significant contribution to the advancement of 

novel therapeutics to the clinic. While both FLI and BLI are forms of optical 

imaging, the potential to translate these techniques (and the therapies they support) 
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to the clinic differs. FLI certainly has a place in advancing novel therapies to the 

clinic, but perhaps more in the pre-clinical stage as high background levels and poor 

tissue penetration of both input and output light sources restrict efficacy in vivo. In 

contrast, autoluminescence is almost nonexistent for BLI approaches leading to 

superior sensitivity. As few as 1-100 FLuc2–expressing cells can be detected in vivo 

whereas a minimum of 10,000 fluorescent cells are required 
273

. Nevertheless, the 

need to genetically encode the bioluminescent source certainly hinders translation 

into the clinic. On the other hand FLI is substrate independent, a major advantage in 

the context of potential for clinical translation. Limitations aside, given the pace of 

advancements in the field, FLI could yet overtake BLI en route to the clinic.  

The use of OI as an aid to surgical intervention continues to grow with the 

promise of greater acceptance and embracement of this non-invasive monitoring 

modality in clinical circles. Perpetual improvements in optical contrast agents 

paralleled with innovations in imaging technologies pave the way for the widespread 

utilisation of OI in the clinical drug discovery process. Indeed the possibility of 

harnessing OI to titrate the dose of novel gene and cell therapies safely and in real 

time in patients is no longer an intangible goal. 

 

 

1.5 Conclusion 

This thesis review explores the interaction between the immune system and cancer. 

A focus is placed primarily on two suppressive immune cell types - TRegs and TAMs 

that undermine anti-tumour immunity and the rationale for targeting these cells in 

cancer is outlined. The merits of a novel, emerging therapeutic modality (RNAi) are 

discussed and the potential use of viral and bacterial gene therapy vectors in cancer 

is highlighted. Finally the potential role of optical imaging in advancing 

revolutionary novel therapies to the clinic is explored. Throughout the review future 

developments are hypothesised upon and clinical translatability is emphasised.  
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2.1 Abstract 

RNAi is a useful experimental tool on the cusp of clinical translation into a new 

therapeutic modality. RNAi-based therapeutics have the potential to improve on 

existing small molecule and antibody/protein-based therapeutics, for various 

strategies, including tumour immunotherapy. TRegs are recognised as the predominant 

cell mediating suppression of anti-tumour immunity, and mouse FOXP3 (mFOXP3) 

has been identified as a central target for their manipulation in the mouse. In this 

chapter, mFOXP3 was targeted by RNAi with the long term goal of abrogating the 

suppressive contribution of TRegs within the tumour microenvironment and enhancing 

anti-tumour immunity.  

An in vitro mFOXP3 expression assay was developed and optimised. 

Examination of an endogenous miRNA (miR-31), which was previously shown to 

knockdown expression of the human version of this gene, failed to knockdown 

mFOXP3 expression. Attention was then focused on the design and validation of a 

novel RNAi mediator against mFOXP3. Various candidate RNAi mediators were 

designed and tested, and two candidates confirmed to significantly silence mFOXP3. 
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2.2 Introduction 

TRegs are considered the most powerful inhibitors of anti-tumour immunity and the 

greatest barrier to successful immunotherapy 
1
.The primary goal of this project was 

to abrogate the suppression of anti-tumour immunity mediated by TRegs. Various 

strategies exist for TReg modulation 
2
. Simple TReg ablation strategies have been 

shown to be ineffective as TReg numbers are quickly replenished by conversion of 

effector CD4
+
 cells 

3
. Thus a therapeutic modality which does not destroy this subset 

but rather induces a functional dormancy while leaving the cells in situ is desirable. 

RNA interference fulfils these criteria. 

RNAi has been previously explored as a method to manipulate TRegs (both 

mouse and human) via a variety of targets. Silencing of tumour necrosis factor-α 

induced protein 8 like-2 (TNFAIP8L2, TIPE2) in naturally occurring TRegs isolated 

from murine spleens led to downregulation of FOXP3 and CTLA-4 as well as a 

reduction in secreted cytokines (TGF-β and IL-10)
4
. Subsequently, T-cell 

proliferation and differentiation were boosted. Elsewhere, silencing of Eos in TRegs 

abrogated their ability to suppress immune responses and endowed them with partial 

effector function 
5
. Eos, a zinc-finger transcription factor, was found to interact 

directly with FOXP3, inducing chromatin modifications that result in gene silencing 

in TRegs and leading to their suppressive phenotype. 

FOXP3 has been previously referred to as a master regulator of TRegs
6,7

. 

Indeed, high level overexpression of FOXP3 has been shown to confer suppressive 

capacity to human T cells 
8
. Furthermore, numerous reports have attested that 

inhibition of FOXP3 abolishes the suppressor phenotype of both mouse and human 

TRegs. Lentiviral vector delivery of an artificial miRNA construct against FOXP3 to 

primary human TRegs in culture reversed their anergic/suppressive phenotype as 

measured by mixed leukocyte reaction 
9
. More recently, human TReg inhibition using 

a morpholino oligomer targeting FOXP3 was shown to enhance generation of 

antigen-specific T cells in response to peptide stimulation 
10

. Similar evidence exists 

for mouse TRegs, where lentiviral-mediated FOXP3 RNAi was shown to hinder 

growth of a regulatory T cell-like leukaemia cell line 
11

. This suppression of growth 

was shown to be an indirect effect as the RNAi-treated leukaemia developed at the 

same pace in an immuno-deficient animal. It is suggested that silencing of FOXP3 

reduces secretion of suppressive cytokines which facilitates an enhanced immune 
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response. This evidence supported the selection of FOXP3 as a target gene for 

RNAi-mediated TReg inhibition. 

In the human setting, an endogenous miRNA has previously been shown to 

silence hFOXP3. miRNAs are indispensable for the correct development and 

function of TRegs 
12

. Abolition of Dicer, the RNAse III enzyme that generates 

functional miRNAs abrogates their suppressive capability and leads to autoimmune 

pathology 
13,14

. Ideally, the chosen miRNA would function specifically in TRegs 

without modulating other cell populations. A previous miRNA signature for human 

TRegs identified miR-31 to be expressed at much lower levels in TRegs relative to other 

CD4
+
 T cells 

15
. Moreover, a functional target site for miR-31 was identified in the 

3‟UTR of human FOXP3 mRNA and miR-31 was confirmed to silence human 

FOXP3 expression. 

 

2.3 Study Aim 

The aim of this study was to identify and validate an RNAi mediator capable of 

specific silencing of mFOXP3. 
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2.4 Materials & Methods 

2.4.1 Bioinformatics 

Two independent bioinformatic databases were explored to verify an interaction 

between miR-31 and mFOXP3. They included the recently developed miRanda-

mirSVR algorithm (www.microRNA.org) 
16-19

 and DIANA-microT 
20

. 

 

2.4.2 Cloning miR-31 into pAAV-MCS 

The original strategy for this thesis work involved adeno-associated virus (AAV) as 

the delivery vector. Thus, to facilitate production of AAV particles carrying miR-31 

the sequence was cloned into the pAAV-MCS plasmid (Stratagene – Agilent 

Technologies). pAAV-miR-31 was generated as follows; the miR-31 fragment was 

amplified from the parent plasmid, pCDH-CMV-MIR31-EF1-copGFP (Systems 

Biosciences) using two primers: miR-For (5‟-AGCAGCATCGATGAATTC-3‟) and 

miR-Rev (5‟- AGCAGCGGATCCAGCGA-3‟). The miR-31 fragment was gel 

extracted using the QIAquick Gel Extraction Kit (Qiagen) and purified using the 

QIAquick PCR Purification Kit (Qiagen). The 518 bp miR-31 fragment was digested 

with ClaI and BamHI and subcloned into the pAAV-MCS plasmid which had been 

digested with the same enzymes.  

 

2.4.3 Cell culture 

HeLa cells were maintained in RPMI 1640 medium (Sigma-Aldrich) supplemented 

with 10% v/v fetal bovine serum and 2mM L-glutamine in a 37
0
C incubator with 5% 

CO2. 

 

2.4.4 RNAi mediators against mFOXP3 

pCDH-CMV-MIR31-EF1-copGFP carrying pre-microRNA-31 (pmiR-31) and its 

backbone equivalent (pCDH-CMV-EF1-copGFP) (pmiR-BB) were both purchased 

from Systems Biosciences. Novel RNAi mediators targeting mFOXP3 mRNA 

transcript variant 2 (Accession # NM_054039.2) were designed using the Block-

iT
TM

 miR RNAi Select Tool (Invitrogen). The mature miR sequence for each 

candidate RNAi mediator was discerned and a 3‟ “G” (derived from native miR-155) 

http://www.microrna.org/
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was added (see section 3.4.2). The mature miR sequence and its complementary 

strand were synthesised as a 22 bp duplex siRNA (Qiagen). The two candidates were 

designated mimic #2 and mimic #4 to acknowledge their derivation from the longer 

pre-microRNA oligos. The mimics had the following sequences;  

mimic #2: 5‟ AATTCATCTACGGTCCACACTG 3‟ 

mimic #4: 5‟ AAACTCTTCTGGCTCCTCGAAG 3‟ 

 

2.4.5 Co-transfection of plasmids & detection of FOXP3 knockdown 

No suitable cell line that stably expressed mFOXP3 was available. Thus, to facilitate 

development of an expression assay, both the target FOXP3 gene and miR-31 were 

artificially introduced by transfection. HeLa cells were co-transfected with a miRNA 

3' UTR target clone for FOXP3 (either mouse or human) in a Firefly luciferase 

reporter vector (Genecopoeia) and either pmiR-31 or pmiR-BB. 2.5x10
6 

cells in 10 

ml media were seeded in a 58 cm
2
 tissue culture plate 24 h prior to transfection. 10 

µg each plasmid was diluted in serum-free media and incubated with 20 µl 

Turbofect™ (Fermentas) for 15 min. 1 ml of transfection mixture was then added to 

the cells. After 24 h of culture, cells were lysed using 2 ml reporter lysis buffer 

(Promega). 100 µl cell lysate was mixed with 100 µl luciferin substrate (Promega) 

and luminescence read using a luminometer. Knockdown of FOXP3 could be 

detected as a reduction in luminescence. 

 

2.4.6 Validation of miRNA delivery and expression - Detection of mature 

miR-31 

To verify that the pmiR-31 plasmid was functional and that the pre-microRNA was 

correctly processed intra-cellularly, mature miR-31 was detected by RT-PCR. Total 

cellular RNA was extracted using the miRNeasy Mini Kit (Qiagen) and subjected to 

on-column DNase treatment with the RNase-Free DNase Set (Qiagen). cDNA 

synthesis was performed with 1µg of total RNA using the miScript Reverse 

Transcription Kit and PCR detection carried out using the miScript SYBR Green 

PCR Kit combined with miScript Primer Assays (all Qiagen). cDNA synthesis was 

assumed to be 100% efficient such that 1µg of RNA yielded 1µg  of cDNA. 15 ng of 

cDNA template in a 20 µl volume was used per PCR reaction under the following 
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conditions; 15 min pre-incubation at 95
0
C, followed by 50 cycles of 15 s at 94

0
C, 30 

s at 55
0
C, 30 s at 70

0
C. 15 ng of RNA template was also subjected to PCR 

amplification as a control for amplification of genomic DNA. Water template served 

as a negative control while a miScript miRNA Mimic of miR-31 (Qiagen) served as 

a positive control for the PCR reaction. All samples were normalised against the 

widely used endogenous house-keeping miRNA RNU6B 
21

. 

Quantitative PCR was carried out using the “Delta-Delta” mathematical 

technique as previously described 
22

. This technique involves normalising the 

amount of transcript of interest (miR-31 in this case) against an internal control 

transcript (RNU6B in this case) for each sample. This controls for variations in the 

amount of template between different samples. Following this internal normalisation 

each treatment sample (“backbone plasmid” or “miR-31 plasmid” in this experiment) 

was normalised against a control sample (“untransfected”) to indicate the fold 

change in expression as a consequence of the different interventions. To carry out 

these calculations the crossing point (Cp) was determined for each transcript using a 

Lightcycler machine (Roche). Cp represents the point at which fluorescence 

increases above background noise – the Cp value is inversely proportional to the 

amount of a specific mRNA/miRNA species in the sample from which the cDNA 

was derived. The following formula was employed to determine the fold change in 

miR-31 expression between the “miR-31 plasmid” and “untransfected” samples and 

represents an example; 

 

Expression ratio = 2 
– [ΔCp “miR-31 plasmid” (Cp miR-31-Cp RNU6B) – ΔCp “untransfected” (Cp miR-31-Cp 

RNU6B)] 

where 2 = the efficiency of the PCR reaction. 

2.4.7 Validation of siRNA delivery (siGLO) 

To confirm transfection of various siRNAs and miRNA mimics an siGLO
®
 

transfection indicator (Thermo Scientific) was used. 1x10
5 

HeLa cells were seeded 

per well of a 24-well plate 24 h in advance of transfection. 1 µl Lipofectamine 

(Invitrogen) was diluted in 50 µl serum-free media and an appropriate volume of 

siRNA was diluted to 50 µl with serum-free media in a separate tube. The tubes were 

incubated at room temperature for 5 min, combined and incubated for a further 20 

min. The 100 µl mixture was then added to the well to be transfected. The final 
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concentration of siRNA per well was 50 nM. After 24 h transfected cells were 

viewed under an inverted fluorescent microscope as a qualitative indicator of 

siGLO
®
 delivery. Fluorescence-activated cell sorting (FACS) was performed using a 

BD LSR II instrument (BD Biosciences) to determine quantitatively the transfection 

efficiency. The siGLO
®
 transfection indicator could be detected in the green 488-2 

channel.  

 

2.4.8 Knockdown of reporter gene (EGFP) 

As a positive control for the in vitro system the gene encoding the enhanced green 

fluorescent protein (EGFP) was silenced using a commercially available siRNA. 

pIRES2-EGFP-mFOXP3 (pFOXP3) (generated by Dr Garret Casey, Cork Cancer 

Research Centre) was transfected using Turbofect™ (Fermentas) as outlined above 

and provided the target EGFP gene. GFP-22 siRNA was purchased from Qiagen 

along with a negative control siRNA (Allstars Negative Control siRNA). Both 

siRNAs were delivered using Lipofectamine (Invitrogen) as previously outlined. 

Cells were prepared for FACS where EGFP expression was detected at 509 nm (488-

2 channel). Data was presented as the total number of cells expressing the relevant 

protein. To allow for the fact that gene silencing is not an absolute phenomenon (i.e. 

cells are not just positive or negative for protein expression) knockdown data was 

also presented as a tiered level of expression; high, medium and negative.  

 

2.4.9 Testing candidate RNAi molecules against mFoxp3 

Mimic #2 and mimic #4 were introduced into HeLa cells using Lipofectamine as 

previously described. To maintain consistency and to harness the benefits of an 

optimised transfection protocol, the same plasmid (pFOXP3) used as the source of 

EGFP (section 2.4.8) was used as the source of mFOXP3. The IRES sequence within 

pFOXP3 afforded the opportunity to observe gene knockdown by detection of either 

mFOXP3 (with a conjugated antibody) or EGFP (directly). As the long term goal 

was to investigate endogenous mFOXP3 in vivo it was deemed prudent to develop a 

direct mFOXP3 protein detection assay from the outset and to use in this in vitro 

assay. pFOXP3 was transfected using Turbofect™. Knockdown efficiency was 

determined by FACS at 578 nm (PE channel) using a PE-conjugated anti-mouse/rat 
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FOXP3 antibody (clone FJK-16a) (0.5 µg/test) and a PE-conjugated Rat IgG2a 

isotype control (clone eBR2a) (both eBioscience). 

 

2.4.10 Confirmation of the specificity of mimic #2 and mimic #4 

To show that the two RNAi candidate molecules were target specific they were 

assessed on their ability to silence expression of an irrelevant target gene – the EGFP 

reporter. pIRES2-EGFP was used to supply the EGFP target, GFP-22 siRNA as a 

positive control and Allstars Negative Control siRNA. All nucleic acids were 

delivered as previously outlined and EGFP expression was determined by FACS as 

before.  

 

2.4.11 FACS analysis 

For FACS analysis all cells were trypsinised, washed once and resuspended in PBS. 

All cells were then fixed in a 2% para-formaldehyde solution for a minimum of 1 h 

on ice. For detection of EGFP, cells were recovered and resuspended in 200 µl of 

PBS. For detection of non-fluorescent intracellular proteins (e.g. FOXP3) cells were 

washed once in permeabilisation buffer (0.1% Triton, 0.1% sodium azide, 10 mM 

HEPES, 4% FCS, 150 mM NaCl). They were then incubated with the relevant 

antibody made up in permeabilisation buffer for 1 h on ice. Following recovery cells 

were resuspended in 200 µl of PBS and FACS analysis carried out.  

 

2.4.12 Statistical analysis 

In vitro experiments in this chapter were performed with a minimum of 3 replicates 

per group. Results were tested for statistical significance using an unpaired Student‟s 

t test with GraphPad Prism Version 5.0 software.  
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2.5 Results 

2.5.1 Bioinformatic validation that miR-31 targets mFoxp3 

Human miR-31 (hsa-miR-31) is known to silence human FOXP3
15

. Furthermore 

hsa-miR-31 and its mouse equivalent, mmu-miR-31, share the same sequence except 

that mmu-miR-31 has an extra “G” nucleotide at the 3‟ end. The location of this 

extra nucleotide was not expected to influence knockdown efficiency. Thus, the 

hypothesis was that mmu-miR-31 would function similarly in the mouse and silence 

mFOXP3.  

Before testing the hypothesis experimentally, the putative interaction 

between mmu-miR-31 and mFOXP3 was confirmed bioinformatically. The 

microRNA.org resource enabled searching under a given target mRNA, “FOXP3” in 

this case, filtered by species for mouse only. This returned a list of all putative 

miRNAs which may align to and silence mFOXP3. From here, individual miRNAs 

of interest were viewed in more detail, including sequence alignments and mirSVR 

score (figure 2.1). The perfect complemantarity within the seed region (nucleotides 

2-8 on the miRNA) coupled with the mirSVR score of -0.68 predicted a meaningful 

knockdown. These data were corroborated by the DIANA-microT algorithm which 

predicted alignment between mmu-miR-31 and mFOXP3 at the same site with a 

miTG score of 2. To put in context, the miTG score for hsa-miR-31 and human 

FOXP3 was 3.  

 Therefore, bioinformatically at least, miR-31 was predicted to silence 

mFOXP3.  
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Figure 2.1 Database analysis of microRNAs which target mFOXP3. Mouse miR-31 

(mmu-miR-31) was predicted as a putative RNAi mediator against mFOXP3. Shown is the 

proposed alignment of miR-31 within the 3‟UTR of the target mFOXP3 mRNA. Note the 

perfect complementarity within the seed region (nucleotide 2-8 on the microRNA). 
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2.5.2 Validation of miR-31 delivery and expression  

Efficacy of miR-31 in this assay mandated its over-expression in an in vitro system. 

Before examining the functionality of miR-31, successful delivery of the plasmid 

carrying miR-31 and appropriate intracellular processing were confirmed. This was 

achieved by detection of the mature miRNA by real time RT-PCR (figure 2.2). This 

experiment confirmed that miR-31 was over-expressed 54–fold compared with the 

empty backbone plasmid. 
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Figure 2.2 Detection of mature miR-31. Data extracted from RT-PCR using the ΔΔCT 

method showing the levels of mature miR-31 relative to an untransfected and a plasmid 

backbone sample. Levels were normalised against the RNU6B housekeeping gene, and the 

scale of over-expression represents the average of two independent experiments. 
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2.5.3 Assessment of miR-31 knockdown of mFOXP3 

From figure 2.2 it was clear that a large number of mature miR-31 duplexes were 

were produced and available within the cell. The next step was to determine if miR-

31 could silence mFOXP3. Parallel assessment of miR-31 against hFOXP3 acted as 

a positive control for the experiment as miR-31 has been previously published to 

silence hFOXP3 
15

. The same backbone plasmid without pre-microRNA-31 

sequence acted as a negative control. A commercially available miR reporter assay 

was employed. Commercially available luc-UTR constructs served as the source of 

the untranslated regions (UTRs) for the hFOXP3 and the mFOXP3 genes. These 

constructs express the 3‟UTR of the chosen target gene fused to the coding region of 

the Firefly luciferase gene. Successful silencing of the target mRNA (FOXP3) 

manifests as reduced luciferase protein expression with subsequent reduced 

luminescence. As seen in figure 2.3, miR-31 significantly silenced hFOXP3 

compared with pmiR-BB (p = 0.015). However, it had no effect on mFOXP3 (p = 

0.261). 

 This experiment demonstrated that miR-31 does not silence mFOXP3 and 

thus could not be expected to alter the TReg phenotype. 
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Figure 2.3 miR-31 does not silence mFOXP3. Luc-UTR constructs bearing the 3‟ UTR of 

human and mouse FOXP3 fused to the firefly luciferase gene were co-transfected with 

plasmids carrying pre-miR-31 or its backbone equivalent (pmiR-BB). 48 h later, HeLa cells 

were lysed and luminescence read using a luminometer. Human luc-UTR (FOXP3) is 

included as a positive control for the experiment. Data are represented as mean +/- SEM of n 

= 3 (** p = 0.015). 
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It was concluded from these results, that no endogenous miR effective 

against mFOXP3 was available or apparent. Therefore, it was necessary to design 

and test an alternative miR strategy. In order to test suitable inhibitory sequences, 

siRNAs were initially examined, with the ultimate aim of utilising the data generated 

to construct a DNA-based miR. 

 

2.5.4 Validation of siRNA delivery 

Prior to testing siRNA molecules, in vitro delivery of chemically synthesised 

siRNAs was first validated. siGLO
® 

was used to determine delivery efficiency by 

FACS analysis. Figure 2.4 shows that 74% (+/- 1%) of cells were fluorescent 

following siGLO
® 

transfection, which was significantly greater than the background 

level from untransfected samples (4% +/- 0.05%) (p < 0.001). 
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Figure 2.4 siRNA delivery to HeLa cells in vitro. A) Histograms from FACS analysis 

showing the number of cells positive (light grey) and negative (dark grey) for the 

fluorophore for an untransfected population and a population transfected with siGLO
®
. The 

histograms shown are representative of three independent replicates. B) Quantitative output 

for the number of transfected cells. Data are represented as mean +/- SEM of n = 3 (*** p < 

0.001).  
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2.5.5 Knockdown of a reporter gene (EGFP) 

Validation of the assay for in vitro assessment of RNAi was established by 

examining silencing of expression of the fluorescent reporter protein EGFP. This 

assay involved co-transfection of HeLa cells with a plasmid (pFOXP3) providing co-

expression of both EGFP and mFOXP3 (as a single mRNA transcript through an 

IRES sequence) and an siRNA targeting EGFP mRNA. For this experiment, the 

plasmid provides the EGFP target gene. 

A global picture of the silencing efficiency was obtained by looking at the 

percentage of cells that were EGFP
+ 

in the various samples (figure 2.5 A and B). 

Transfection of the target plasmid alone yielded 57% (+/- 0.7%) EGFP
+
 cells. Co-

transfection of an siRNA against EGFP resulted in a knockdown efficiency of 58% 

as evidenced by a reduction in the number of EGFP
+ 

cells to 24% (+/- 1.2%). This 

was statistically significant (p < 0.001). A scrambled, negative control siRNA did 

not reduce the number of EGFP
+ 

cells significantly (p = 0.124).  
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Figure 2.5 Knockdown of EGFP. A) Dot plots from FACS analysis where the numbers 

indicate the percentage of total cells above the line and hence positive for EGFP expression. 

Dot plots shown are representative of three independent replicates. B) Quantitative output 

for the number of EGFP
+ 

cells from three replicates presented as the mean +/- SEM (*** p < 

0.001). C) Histograms on the left showing the relative proportion of cells with negative, 

medium and high fluorescence intensity (P2, P3 and P4 respectively) which correlates with 

the level of EGFP expression. Each histogram is representative of three independent 

replicates. The graphs on the right represent the quantitative output from histograms from 

three independent replicates.  
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Data presented in Figure 2.5 A and B provide total number of cells positive 

or negative for the target protein (EGFP), and does not account for changes in level 

of intracellular expression within positive cells. Since partial knockdown may be 

sufficient to facilitate a phenotypic change in the cell, it is important to examine all 

reduction in gene expression. Stratifying the cells according to fluorescence intensity 

(negative, medium and high) overcomes this issue and accounts for partial 

knockdown. These data are shown in figure 2.5 C. Comparing a sample that received 

EGFP plasmid alone, with a sample that received both plasmid and an siRNA 

targeting EGFP, the percentage of cells with „high‟ fluorescence is reduced by 30% 

(+/- 0.5%; p < 0.001) from 32% to 2%. There was no significant change in the 

„medium‟ cell population (p = 0.592). This occurs against a backdrop of an increase 

in the number of negative cells by 30% (+/- 1.3%; p < 0.001) from 43% to 73%.  

This suggests that, following transfection of an siRNA targeting EGFP, cells that 

highly expressed EGFP now express the protein at an intermediate level, while those 

previously displaying medium expression are now negative for EGFP. 

In this experiment, the proficiency of the in vitro assay to assess RNAi was 

validated by knockdown of the reporter EGFP. 

 

2.5.6 siRNA Knockdown of mFOXP3 

Two 22-base pair chemically synthesised siRNAs (termed mimic #2 and mimic #4) 

were examined in an in vitro assay with mFOXP3-transfected HeLa cells. This assay 

involved co-transfection of HeLa cells with pFOXP3 and the siRNAs. For this 

experiment, the plasmid provided the mFOXP3 target gene. mFOXP3 expression 

was assessed via FACS with anti-mFOXP3 antibody labelling of cells. 

Transfection of the target plasmid alone yielded 47% (+/- 2.8%) 

mFOXP3
+
cells. In terms of „absolute‟ silencing efficiency, where cells are either 

FOXP3 positive or negative, mimic #4 produced a superior knockdown efficiency at 

57% compared with 39% for mimic #2. The scrambled, negative control siRNA had 

an insignificant knockdown effect on mFOXP3 (p = 0.468). The knockdown 

efficiency achieved with both mimics was statistically significant (p < 0.003 for 

mimic #2 and p < 0.001 for mimic #4) and the difference in knockdown efficiency 

between the two mimics was statistically significant (p = 0.008) (figure 2.6 A and 

B). A concordant knockdown to that seen for mFOXP3 was observed by analysing 
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cells in terms of EGFP expression (data not shown). This validated the integrity of 

the IRES construct (see section 2.4.9 for further details).
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Figure 2.6 siRNA Knockdown of mFOXP3. A) Dot plots from FACS analysis where the 

numbers indicate the percentage of total cells above the line and hence positive for mFOXP3 

expression. Dot plots shown are representative of three independent replicates. B) 

Quantitative output for the number of mFOXP3
+
 cells from three replicates presented as 

mean +/- SEM (*** p < 0.001, ** p <0.003). C) Histograms showing the relative proportion 

of cells with negative, medium and high fluorescence intensity (P2, P3 and P4 respectively) 

which correlates with the level of mFOXP3 expression. Each histogram is representative of 

three independent replicates. D) The graph represents the quantitative output from 

histograms from three independent replicates. Only FOXP3 high cells (P4 in the histograms 

in C) are shown on the graph. 
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As per the knockdown of EGFP, any partial knockdown of mFOXP3 was 

potentially relevant as even a small reduction in expression of this crucial 

transcription factor could influence the suppressive capability ofTRegs. Again cell 

populations were stratified based on fluorescence intensity. Comparing a sample that 

received mFOXP3 plasmid alone with samples that also received mimic #2 or mimic 

#4 the percentage of cells with high fluorescence was reduced from 27% to 8% (p = 

0.001) and 4% (p < 0.001) respectively. No significant change was observed in cell 

populations with medium fluorescence (p = 0.82 for mimic #2 and p = 0.126 for 

mimic #4). This occurred against a backdrop of an increase in the number of 

negative cells from 49% to 63%(p = 0.005) and 72% (p < 0.001) respectively. 

Representative histograms for these data are shown in figure 2.6 C with quantitative 

output from three independent replicates shown.  As per the EGFP knockdown the 

data from this experiment suggests that, following transfection mimic #4 and mimic 

#2, cells that highly expressed mFOXP3 now express the protein at an intermediate 

level, while those previously displaying medium expression are now negative for 

mFOXP3 

This experiment was crucial to the progression of the overall aim, with two 

novel RNAi sequences against the target mFOXP3 identified and validated. 

 

2.5.7 Target-specificity of RNAi mediators against mFOXP3  

Aside from target knockdown efficiency, an important concern when designing an 

RNAi mediator is to minimise off-target effects. Thus mimic #2 and mimic #4 were 

tested against EGFP and knockdown efficiency was assessed (figure 2.7 A and B). 

Neither mimic (p = 0.051 for mimic #2 and p = 0.067 for mimic #4) nor the negative 

control siRNA (p = 0.124) yielded a statistically significant knockdown of EGFP 

when compared with a sample that received no siRNA (plasmid alone). As a positive 

control for the experiment, an siRNA against EGFP reduced the number of EGFP
+ 

cells from 56% to 26% (p < 0.001).    

 In this experiment mimic #2 and mimic #4 failed to silence an irrelevant 

target (EGFP) suggesting that these RNAi mediators are target specific.  
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Figure 2.7 Mimic # 2 and mimic # 4 are target-specific. A) Dot plots from FACS analysis 

where the numbers indicate the percentage of total cells above the line and hence positive for 

EGFP expression. Dot plots shown are representative of three independent replicates. B) 

Quantitative output for the number of EGFP
 +

 cells from three replicates presented as the 

mean +/- SEM (*** p < 0.001). 
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2.6 Discussion  

In this chapter endogenous miR-31 was shown to be incapable of silencing 

mFOXP3. This finding conflicted with the bioinformatic screen. Attention then 

switched to the design and testing of novel RNAi mediators against mFOXP3. 

Although designed as pre-microRNA constructs, the mature RNAi duplexes of 22 

bps were synthesised independently as siRNAs and tested in vitro. Proof of delivery 

for a fluorescent siRNA was first demonstrated followed by knockdown of a reporter 

gene. Together these steps validated the in vitro model system. Two candidate RNAi 

molecules were tested against our target gene (mFOXP3) and achieved varying 

degrees of knockdown. The candidate molecules were furthered tested against a non-

target gene. In the absence of knockdown, they were deemed to be target-specific. 

 

Rationale for testing miR-31; miR-31 has been shown to silence hFOXP3 
15

. The 

initial hypothesis for this study proposed that miR-31 might also silence mFOXP3. 

The potential benefits of working with a cross-species specific miRNA were many 
23

 

and clearly justified experimentation with miR-31 against mFOXP3; the value of the 

pre-clinical data would be greatly enhanced as the safety and efficacy data would be 

reconcilable with human data. If clinical translation of the compound was possible, 

the process would be greatly expedited and at much lower cost, as a single drug 

candidate would be conserved from the research stage through to patient 

administration. The potential for such cross-species reactivity represents a distinct 

advantage of RNAi therapeutics over small molecule and biological compounds 
24

. 

The sequence of mature miR-31 is conserved between the mouse and human 

species with the exception of an additional 3‟ “G” nucleotide on the mouse homolog. 

However, a miRNA profile of murine T cells did not highlight any distinction in 

miR-31 levels between TRegs and conventional CD4
+
 T cells 

13
. Furthermore, miRNA 

target specificity has been shown to fluctuate considerably between organisms due to 

diversity in RNAi pathways and variations in the components of RISC complexes 
16

. 

However, a bioinformatic screen using the miRanda-mirSVR methodology predicted 

that miR-31 would silence mFOXP3 (figure 2.1). This bioinformatic tool was 

deemed to be especially appropriate as the scoring algorithm had been generated 

based on miRNA transfection data in HeLa cells as per the planned experiments with 

miR-31 
16

. The mirSVR score of -0.6807 was substantially lower than the cutoff 
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score of -0.1 where the lower the score the greater the probability of meaningful 

downregulation; scores of -0.1 or lower have more than a 35% probability of a log 

expression change of at least -1 and better than 50% probability of a log expression 

change of at least -0.5. Moreover the mirSVR scores correlate linearly with the 

extent of downregulation 
16

. 

 

Limitations of bioinformatic algorithms; The bioinformatic prediction could not be 

validated at a practical level (figure 2.3) despite successful over-expression and 

detection of mature miR-31 (figure 2.2). This can most likely be attributed to 

generation of a false positive result by the miRanda-mirSVR methodology. Despite 

sequential improvements as newer algorithms have been developed, some limitations 

remain; the presence of non-specific sequence determinants that influence miRNA-

mediated regulation has been muted 
25

; RNA-binding proteins and motifs are known 

to interfere with miRNA regulation 
26,27

. Present algorithms are unable to factor 

these parameters into calculations 
16

. While a false positive readout was generated in 

this experiment perhaps a bigger concern would be false-negative outputs – most 

current target prediction methods do not consider miRNA target sites within the 

coding region of genes 
16

. However recent data from Argonaute-protein 

immunoprecipitations suggest that a significant proportion of target sites can be 

found in the coding regions of mRNAs 
28,29

.  

 

Use of siRNAs;Following on from the demonstration that miR-31 was unsuitable, 

two novel, alternative candidates were examined and validated, as chemically 

synthesised siRNAs rather than DNA-based constructs. siRNAs represent an 

invaluable tool for in vitro validation of RNAi mediators at a sequence level 
30

. Their 

small size (generally 22 bp) permits high transfection efficiency using routine 

chemical transfectants. The researcher need not be concerned with optimising 

parameters such as plasmid expression and intra-cellular processing. As such, 

siRNAs represent a more user-friendly method of exploiting RNAi in the early 

stages of a project. Upon successful validation of RNAi, the siRNA sequence can 

readily be transposed into DNA-based constructs (detailed in chapter 3). 

 



   

121 

 

Target specificity; While it is suggested in this chapter that the two candidate RNAi 

mediators are target-specific, by their failure to silence an irrelevant EGFP gene 

(figure 2.7) these data are not definitive. EGFP is not an endogenous gene and a 

more detailed analysis of the off-target effects would warrant gene expression 

profiling. This technology is expensive and would not be justified in the absence of 

any gross abnormality in the cell line used for these experiments. In any case off-

target effects in HeLa cells may not be recapitulated in the final target cell 

population of TRegs. 

 

Conclusion; In conclusion, the exploitation of RNAi as a therapeutic modality is still 

in its infancy, with currently no RNAi mediator in routine clinical use. RNAi 

therapeutics promise many benefits but given their potency, rigorous in vitro testing 

accompanied by cautious clinical development would seem prudent. Many of the 

obstacles, such as saturation toxicity, off-target effects, immune stimulation and 

delivery are slowly being overcome.  

In this chapter, a novel RNAi mediator against mFOXP3 was designed and 

tested. FOXP3, in its capacity as master regulator of TRegs, has taken on new-found 

significance as a target protein/gene in recent times in the field of cancer 

immunology and beyond. The intracellular localisation of this protein/transcription 

factor lends itself to manipulation by some form of gene therapy such as RNAi. The 

mouse homolog of FOXP3 was chosen as a target because it provided the potential 

for in vivo experimentation with the putative therapeutic. Such in vivo data would 

have far greater relevance in the context of anti-tumour immunity than any in vitro 

data derived from mixed-leukocyte reactions. The novel RNAi mediators against 

mFOXP3 did not silence a non-target gene suggesting that they are target-specific. 

The 22 bp duplexes utilised in this series of experiments provided a simple 

and efficient means to test the RNAi mediators at a sequence level. However 

progressing these siRNAs in their present format to pre-clinical studies and beyond 

would be very challenging (reviewed in section 1.2.3). A non-viral vector would be 

required with a resulting drop in delivery efficiency and due to the inherent 

vulnerability of the siRNAs in vivo repeated administration would likely be required. 

Therefore, subsequent chapters focus on development of optimal methods for 

delivery of the sequences validated here. 



   

122 

 

 

 

2.7 References 

 

1. Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev 

Immunol 2006; 6: 295-307. 

 

2. Byrne WL, Mills KH, Lederer JA, O'Sullivan GC. Targeting regulatory T 

cells in cancer. Cancer Res; 71: 6915-6920. 

 

3. Colombo MP, Piconese S. Regulatory-T-cell inhibition versus depletion: the 

right choice in cancer immunotherapy. Nat Rev Cancer 2007; 7: 880-887. 

 

4. Luan YY, Yao YM, Zhang L, Dong N, Zhang QH, Yu Y et al. Expression of 

tumor necrosis factor-alpha induced protein 8 like-2 contributes to the 

immunosuppressive property of CD4(+)CD25(+) regulatory T cells in mice. 

Mol Immunol; 49: 219-226. 

 

5. Pan F, Yu H, Dang EV, Barbi J, Pan X, Grosso JF et al. Eos mediates Foxp3-

dependent gene silencing in CD4+ regulatory T cells. Science 2009; 325: 

1142-1146. 

 

6. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development 

and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003; 4: 330-

336. 

 

7. Hori S, Sakaguchi S. Foxp3: a critical regulator of the development and 

function of regulatory T cells. Microbes Infect 2004; 6: 745-751. 

 

8. Allan SE, Song-Zhao GX, Abraham T, McMurchy AN, Levings MK. 

Inducible reprogramming of human T cells into Treg cells by a conditionally 

active form of FOXP3. Eur J Immunol 2008; 38: 3282-3289. 

 

9. Amendola M, Passerini L, Pucci F, Gentner B, Bacchetta R, Naldini L. 

Regulated and multiple miRNA and siRNA delivery into primary cells by a 

lentiviral platform. Mol Ther 2009; 17: 1039-1052. 

 

10. Morse MA, Hobeika AC, Osada T, Serra D, Niedzwiecki D, Lyerly HK et al. 

Depletion of human regulatory T cells specifically enhances antigen-specific 

immune responses to cancer vaccines. Blood 2008; 112: 610-618. 

 

11. Tsai BY, Suen JL, Chiang BL. Lentiviral-mediated Foxp3 RNAi suppresses 

tumor growth of regulatory T cell-like leukemia in a murine tumor model. 

Gene Ther; 17: 972-979. 

 



   

123 

 

12. Zhou L, Park JJ, Zheng Q, Dong Z, Mi Q. MicroRNAs are key regulators 

controlling iNKT and regulatory T-cell development and function. Cell Mol 

Immunol; 8: 380-387. 

 

13. Cobb BS, Hertweck A, Smith J, O'Connor E, Graf D, Cook T et al. A role for 

Dicer in immune regulation. J Exp Med 2006; 203: 2519-2527. 

 

14. Zhou X, Jeker LT, Fife BT, Zhu S, Anderson MS, McManus MT et al. 

Selective miRNA disruption in T reg cells leads to uncontrolled 

autoimmunity. J Exp Med 2008; 205: 1983-1991. 

 

15. Rouas R, Fayyad-Kazan H, El Zein N, Lewalle P, Rothe F, Simion A et al. 

Human natural Treg microRNA signature: role of microRNA-31 and 

microRNA-21 in FOXP3 expression. Eur J Immunol 2009; 39: 1608-1618. 

 

16. Betel D, Koppal A, Agius P, Sander C, Leslie C. Comprehensive modeling of 

microRNA targets predicts functional non-conserved and non-canonical sites. 

Genome Biol; 11: R90. 

 

17. Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA.org 

resource: targets and expression. Nucleic Acids Res 2008; 36: D149-153. 

 

18. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA 

targets in Drosophila. Genome Biol 2003; 5: R1. 

 

19. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. Human 

MicroRNA targets. PLoS Biol 2004; 2: e363. 

 

20. Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL, 

Dalamagas T et al. DIANA-microT web server: elucidating microRNA 

functions through target prediction. Nucleic Acids Res 2009; 37: W273-276. 

 

21. Wotschofsky Z, Meyer HA, Jung M, Fendler A, Wagner I, Stephan C et al. 

Reference genes for the relative quantification of microRNAs in renal cell 

carcinomas and their metastases. Anal Biochem; 417: 233-241. 

 

22. Pfaffl MW. A new mathematical model for relative quantification in real-

time RT-PCR. Nucleic Acids Res 2001; 29: e45. 

 

23. de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J. Interfering 

with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug 

Discov 2007; 6: 443-453. 

 

24. Seyhan AA. RNAi: a potential new class of therapeutic for human genetic 

disease. Hum Genet; 130: 583-605. 

 

25. Didiano D, Hobert O. Molecular architecture of a miRNA-regulated 3' UTR. 

RNA 2008; 14: 1297-1317. 

 



   

124 

 

26. Jacobsen A, Wen J, Marks DS, Krogh A. Signatures of RNA binding 

proteins globally coupled to effective microRNA target sites. Genome Res; 

20: 1010-1019. 

 

27. Kedde M, Strasser MJ, Boldajipour B, Oude Vrielink JA, Slanchev K, le 

Sage C et al. RNA-binding protein Dnd1 inhibits microRNA access to target 

mRNA. Cell 2007; 131: 1273-1286. 

 

28. Hendrickson DG, Hogan DJ, Herschlag D, Ferrell JE, Brown PO. Systematic 

identification of mRNAs recruited to argonaute 2 by specific microRNAs and 

corresponding changes in transcript abundance. PLoS One 2008; 3: e2126. 

 

29. Landthaler M, Gaidatzis D, Rothballer A, Chen PY, Soll SJ, Dinic L et al. 

Molecular characterization of human Argonaute-containing 

ribonucleoprotein complexes and their bound target mRNAs. RNA 2008; 14: 

2580-2596. 

 

30. Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances 

in siRNA delivery. Nat Rev Drug Discov 2009; 8: 129-138. 

 

 

 

 

 

 

 

 



125 

 

 

 

 

 

 

Chapter 3:  

Lentivirus as a vector for artificial miRNAs 
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3.1 Abstract 

The aim of this study was to develop an in vivo delivery strategy for the RNAi 

mediator developed in Chapter 2. Artificial miRNAs offer many advantages over 

siRNAs, including the capacity for delivery by viral vectors. Lentiviral vectors offer 

many desirable features for gene therapy. They mediate high level, long-term 

expression of the transgene and are lowly immunogenic. Thus, in this chapter the 

objective was to embed the validated siRNA (mimic #4) from chapter 2 within an 

artificial miRNA cassette and incorporate this into a lentiviral system.  

Functional validation of a lentiviral-mediated artificial miRNA knockdown 

was achieved against mFOXP3 in vitro. Lentiviral-mediated gene delivery to a 

growing B16OVA melanoma tumour was verified using a Firefly luciferase (FLuc) 

reporter gene construct. The optimal time to target TRegs within this tumour model 

was identified, and B16OVA tumour-bearing mice were intra-tumourally (i.t.) 

administered lentiviral vector carrying the artificial miRNA. The cytokine and 

cellular immune responses to treatment were examined but no therapeutic benefit 

was detected. 
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3.2 Introduction 

FOXP3 is recognised as a master regulator of TRegs
1,2

 with a profound effect on their 

functionality. This prompted the hypothesis that sustained RNA interference would 

be necessary to functionally inactivate TRegs for a period of sufficient duration to 

permit development of an altered immune phenotype within the tumour. This 

mindset encouraged the employment of a DNA-based RNAi mediator delivered via a 

viral vector; ideally an integrating virus for persistence within the cell. Lentiviral 

vectors boast many desirable attributes; they are capable of high level, long-term 

expression of the transgene due to integration into the genome; they are capable of 

transducing non-dividing cells and relative to other viral vectors, are lowly 

immunogenic 
3,4

. 

In this study the preferred mediator for RNAi was either a miRNA or an 

shRNA. Within the context of the proposed therapeutic strategy an siRNA-based 

approach was deemed unsuitable; delivery via a non-viral vector would be necessary 

which would undermine delivery efficiency; the short in vivo half-life of siRNAs 

would require repeat administrations, adding a further layer of complexity in terms 

of optimising posology. In contrast a DNA-based RNAi platform would overcome 

these issues as the benefits of a lentiviral vector could be harnessed, namely high 

transduction capability and transgene integration. Furthermore a miRNA, in 

particular an artificial miRNA, promised distinct advantages over an shRNA; more 

potent knockdown of the target gene could be expected as embedding the validated 

siRNA from chapter 1 in the well characterised miR-155 backbone would lead to 

more efficient handling by the RNAi processing machinery.  Moreover the risk of 

saturating toxicity would be lower as an artificial miRNA would be less likely to 

overload the RNAi processing machinery 
5
.  

While combining a lentiviral vector with an artificial miRNA seemed like an 

ideal strategy, some technical concerns have been reported with this combination 

(reviewed in
6
). For example, although the RNAi mediator used in this study was 

bioinformatically screened for off-target effects, no mediator is solely functional 

against the target gene, and it cannot be ruled out that the miRNA sequence could 

interfere with genes in the 293T producer cells. Self targeting, whereby the miRNA 

transcript is expressed within the producer cells and then elicits RNAi by targeting 
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the homologous sequences present in the LV vector genome, is also possible. 

Although no direct evidence exists for this occurrence with miRNAs, self-targeting 

has been demonstrated for shRNAs 
7
. Given the looser structure of miRNAs (the 

presence of mismatches) relative to shRNAs, self targeting would seem a legitimate 

concern. Taken en masse, any RNAi activity mediated by the miRNA of interest in 

the producer cells is undesirable and could undermine lentiviral vector production. 

There is also the possibility of the miRNA-containing vector genome being 

recognised by Drosha following transcription in the producer cell, leading to its 

destruction. Increased lentiviral titers secondary to Drosha silencing in the producer 

cells support this theory 
8,9

. Genetic instability in the lentiviral particles as a result of 

repeat sequences in the artificial miRNA can also be an issue, and duplications and 

deletions have been found during transduction of target cells 
10,11

. Promoter 

interference is also worth considering – if the promoter driving the transgene is 

significantly stronger than the promoter driving the full-length vector RNA, 

abundant transgene but very little vector genome expression manifests 
12,13

. 

Despite these hypothetical concerns about production of lentiviral particles 

carrying a miRNA, they are unlikely to be significantly relevant if high titre 

production is achieved, as no significant impact on subsequent delivery or 

knockdown efficiency would be expected. 

The focus of this chapter was the development of a DNA-based version of 

the siRNA validated in the previous chapter. A secondary goal was to incorporate the 

DNA-based version in a suitable viral vector. 

 

3.3 Study Aim 

The aim of this study was to incorporate RNAi mediators into a lentiviral-based 

system capable of delivery in vitro and in vivo. 
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3.4 Materials & Methods 

3.4.1 Design and testing of new SCR siRNA 

A 21 nucleotide sequence was chosen at random and a 3‟ “G” derived from the 

native miR-155 sequence (see below) was added. The sequence was modified 

according to Invitrogen‟s guidelines (www.invitrogen.com/rnai): runs of greater than 

3 identical nucleotides were avoided and the “GC” content was kept in the range of 

30-50% - this ensured that any knockdown failure could be attributed to the 

nucleotide composition and not any thermodynamic stability issues. The 22 

nucleotide sequence was bioinformatically assessed against mFOXP3 using the 

TargetScan
TM

 software and also run through the Basic Local Alignment Search Tool 

(BLAST) to confirm the absence of significant homology to any other genes 
14

. The 

reverse complement was generated, yielding a 22 base pair (bp) duplex. This siRNA 

(designated miR scr) was synthesised by Qiagen and tested in vitro against mFOXP3 

as previously described (section 2.4.9). The miR scr guide strand had the following 

sequence; 5‟ ACGTTCGATTATATCGATCGTG 3‟ 

3.4.2 Incorporating siRNA sequences into pre-microRNA cassettes  

The 22 bp duplexes of mimic #4 and miR scr were incorporated into pre-microRNA 

scaffolds (Invitrogen) as shown in figure 3.1 and as described; a 5‟ overhang 

(TGCT) was added to the functional siRNA strand (mimic #4 or miR scr) which was 

then merged with the 3‟ terminal loop sequence (optimised by Invitrogen); 

nucleotides 1-8 and 11-21 of the passenger siRNA strand were added to yield a 64 

bp single strand top oligo (panel A). The bottom oligo was designed as the reverse 

complement and both single stranded oligos were synthesised by Invitrogen. The 

oligos were annealed and ligated into the pcDNA6.2-GW/EmGFP-miR plasmid 

backbone (Invitrogen) (panel B). Successful insertion of the double stranded oligos 

was confirmed by Msc I restriction digest (which only digests within the terminal 

loop) and sequencing (Eurofins MWG Operon). 

 

 

 

http://www.invitrogen.com/rnai
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Figure 3.1 Incorporating siRNA sequences into pre-microRNA cassettes. A) Shows how 

the siRNAs (mimic # 4 and miR scr) were converted into single strand oligos with a hairpin 

loop. B) Shows a simpler representation of the single strand oligo in A together with its 

complementary bottom strand. The two single strand oligos were annealed and ligated into 

the pre-microRNA expression cassette generated from native miR-155. Further details are 

provided in the text. Figure adapted from Invitrogen‟s BLOCK-iT™ Pol II miR RNAi 

Expression Vector Kit manual. 
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3.4.3 Cloning pre-microRNA cassettes and lentiviral vector production 

To facilitate lentiviral vector production the pre-microRNA expression cassettes with 

their EmGFP reporter genes were transferred to a lentiviral production plasmid. Each 

EmGFP-pre-microRNA cassette was amplified by PCR using the same 5' SpeI and 3' 

EcoRI primers. The PCR products were cleaned-up by column purification 

(Promega) and digested with SpeI and EcoRI. They were then cloned into the pRRL-

sin-cPPT-CMV-MCS lentiviral production plasmid that had been digested with the 

same enzymes. This generated pRRL-303-Lenti-miR scr and pRRL-303-Lenti-miR 

4. 

 Lentivirus vectors (designated Lenti miR 4 and Lenti miR scr) were 

generated at the UCLA Vector Core by transient co-transfection of 293T cells as 

described previously, with slight modifications 
15

. Briefly, 100 mm dishes of non 

confluent 293T cells were co-transfected with 6.5 μg of pMDLg/pRRE (encoding 

HIV gag-pol), 3.5 μg of pMDG (encoding the VSV-G envelope),  2.5 ug of pRSV–

REV (encoding HIV rev) and 10 μg of the relevant pRRL-303 plasmid, by the 

calcium phosphate co-precipitation method 
16,17

. The plasmid vectors were kindly 

provided by Dr Luigi Naldini (University of Torino, Italy). Next day, the medium 

was adjusted to make a final concentration of 10 mM sodium butyrate and the cells 

were incubated for 8 h to obtain high-titer virus production as previously described 

18
. After the 8 h incubation, cells were washed and incubated in fresh medium 

without sodium butyrate. Conditioned medium was harvested 16 h later, passed 

through 0.45 μm filters and concentrated by ultracentrifugation (figure 3.2). 

Viral titer was determined by assessing viral p24 antigen concentration by 

ELISA (Alliance® HIV-I p24 ELISA Kit, Perkin Elmer) and expressed as μg of p24 

equivalent units per milliliter. P24 values were related to a previously generated 

infectious titre standard curve. This standard curve was established by production of 

reporter particles by substituting the pRRL-303 plasmid with the reporter pLentiLox-

DsRed plasmid
19

. Infectious titer was then determined by infection of 293T cells 

with serial dilutions of the concentrated virus preparation, followed by FACS 

analysis of DsRed expression 48 h later using an EPICS-XL flow cytometer 

(Beckman Coulter). 
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Figure 3.2 Schematic of lentiviral vector production. Shown are the relevant portions of 

the four plasmids (and the quantity of each plasmid per plate) used to generate VSV-G 

pseudotyped lenti miR 4 and lenti miR scr particles (top). These plasmids were co-

transfected into 293T cells by the calcium co-precipitation method. Sodium butyrate was 

utilised to achieve high titer production. 293T cell media was passed through a 0.45 μm 

filter and the particles were concentrated by ultracentrifugation. Following titration lentiviral 

particles were tested on HeLa cells in culture or in vivo. Further details are provided in the 

text. 
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3.4.4 Lentiviral vector experiments on HeLa cells  

1x10
5
 HeLa cells were seeded per well of a 24-well plate in 1 ml media and grown to 

approximately 80% confluency. Lentiviral particles were thawed, diluted in serum 

free media and the appropriate multiplicity of infection (MOI) added per well in a 

100 µl volume. For knockdown experiments pFOXP3 was transfected 6 h later as 

previously described (section 2.4.5). FACS analysis was carried out directly for GFP 

expression or following permeabilisation and staining with an anti-mFOXP3 

antibody as previously described. 

 

3.4.5 Tumour induction & monitoring 

7 week old female C57 Bl/6 mice were anaesthetised and their right flanks shaved. 

1x10
6 

B16OVA cells in a 200 µl volume were injected subcutaneously into the right 

flank of each mouse. Tumour volume was determined from measurements of the 

tumour in two dimensions using a callipers and the formula V=ab
2π/6, where a 

is the longest diameter of the tumour and b is the longest diameter 

perpendicular to diameter a. Measurements were taken on alternate days from when 

the tumour first emerged until death of the animal. They were also taken 

immediately prior to culling the animal for TReg quantification. 

 

3.4.6 In vivo administration of lentiviral vector 

9 days post tumour induction (based on the TReg infiltration data) lentiviral particles 

were administered directly into the tumour. Three different injection sites were used 

to deliver a total dose of 5x10
7
 infectious units in a 100µl volume using a 32 gauge 

needle. For the proof of delivery experiment lenti-luc2 particles were used. Lenti 

miR 4 particles and control, lenti miR scr particles, were used for the treatment 

experiment.  

 

3.4.7 Whole animal imaging  

Mice were anaesthetised, re-shaved around the tumour site and injected with 200 µl 

luciferin solution (3mg/ml) i.t. and a further 200 µl into the peritoneal cavity. Five 
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mins waiting was observed before mice were imaged on an IVIS imager (Perkin 

Elmer).  

 

3.4.8 Processing of tumour samples for FACS analysis 

The entire tumour was recovered and divided into equal and representative portions 

for FACS and cytokine analysis. The samples for FACS were processed into a single 

cell suspension as follows; the tumour mass was incubated in 1ml collagenase 

(Sigma) and dispase (Sigma) buffer (3 mg/ml of each) at 37
0
C in a shaking incubator 

for 10 mins. The sample was then mixed further by pipetting through 10 ml and then 

5 ml pipettes, before passing through a mesh filter in a physical extrusion technique. 

The cells were pelleted by centrifugation (1500 rpm for 5mins at 4
0
C), washed twice 

in PBS and resuspended in 2mls red cell lysis buffer (Sigma) with 5 minutes 

incubation at room temperature. 30 mls media with serum was added to stop the lysis 

process. Cells were recovered by centrifugation again, washed once in PBS and 

counted – both viable and non-viable. 1x10
6
 viable cells were aliquoted per sample 

to be analysed and cells were fixed and stained as previously described (section 

2.4.11). 

 

3.4.9 Quantifying TReg infiltration and T cell subsets 

Tumours were harvested and processed into a single cell suspension as above. The 

following antibodies were used for staining; CD4-PerCP Cy5.5 (clone RM4-5), 

CD8-APC H7 (clone 53-6.7) (both 0.2 µg/test from Biolegend); CD25-APC (clone 

PC61.5) (0.1 µg/test, eBioscience) and FOXP3-PE (clone FJK-16a) (0.5 µg/test, 

eBioscience). For quantification of TReg infiltration cells were gated first on viability 

and then distinguished based on CD4 or CD8 positivity and analysed in terms of 

CD25 and FOXP3 expression. This gave the following two populations of TRegs; 

CD4
+
, CD25

+
, FOXP3

high
 and CD8

+
, CD25

+
, FOXP3

high
 and the following 

populations of activated CD4
+
 helper T cells (CD4

+
, CD25

+
, FOXP3

low
) and 

activated CD8
+
 cytotoxic T cells (CD8

+
, CD25

+
, FOXP3

low
).  For determining T cell 

subsets post lentiviral vector administration cells were gated first on viability and 

then stratified according to the level of FOXP3 expression. Using this stratification 

cells were then analysed in terms of CD25 and either CD4 or CD8 expression. 
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3.4.10 Analysis of in vivo cytokine profile 

A representative portion of tumour (approximately one third) was harvested from 

animals, flash frozen and stored at -80
0
C. Cytokine analysis was performed on a 

mouse pro-inflammatory multi-plex plate (Meso Scale Discovery) as per the 

manufacturer‟s instructions. Seven cytokines were assayed for: Interferon (IFN) γ, 

Interleukin (IL) 12 (p70 subunit), IL-1β, IL-6, mKC, IL-10 and tumour necrosis 

factor (TNF) α.  

The following preparatory work was performed on tumour samples; samples 

were thawed on ice and a 300 mg specimen was isolated. The appropriate volume of 

homogenisation buffer (PBS with protease inhibitor cocktail [Roche] and 10% FCS) 

was added to each specimen to yield a concentration of 100 mg of tissue per ml and 

a uniform solution was achieved using a tissue homogeniser. 500 µl of this solution 

was centrifuged at 1000g and the supernatant recovered.  

The cytokine assay was run as follows; 25µl of Blocker D-B (containing 

blocker and stabilisation agents) was added to each well, the plate was sealed and 

placed on a plate shaker for 30 min. Following incubation, the plate was washed (x1) 

in PBS + 0.05% Tween (Sigma) and blotted on tissue paper. Each sample 

supernatant was diluted 1 in 20 and 50 µl (equivalent to 250 µg of tissue) added per 

well. The standards were diluted to create a standard curve, as per protocol, in the 

homogenisation buffer and 50 µl was added to each well of the 96-well MSD plate. 

The plate was sealed and placed on a plate shaker for 1.5-2 h at 800rpm. The 

detection antibody solution mix (1µg/ml), from kit, was added to each well 

(25µl/well). The plate was sealed, covered with tinfoil, and placed on a plate shaker 

for 1.5 h. Following incubation, the plate was washed (x3) in PBS + 0.05% Tween 

(Sigma) and blotted on tissue paper. MSD Read buffer (2X), from kit, was added to 

each well (150µl/well) using reverse pipetting to prevent bubbles. The plate was read 

using an electro-chemiluminescent multiplex system Sector 2400 imager (Meso 

Scale Discovery). This system has a CCD camera that measures the output signal 

from the wells in units of counts of light. Using the standard curve (signal versus 

concentration [pg/ml]) the concentration of analyte in the unknown samples was 

derived from the output signals from the samples with known levels of the analyte of 

interest.  
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3.4.11 Statistical analysis 

In vitro experiments were performed with a minimum of 3 replicates per group. In 

vivo experiments were performed with a minimum of 3 mice per group. Results were 

tested for significance using an unpaired Student‟s t test with GraphPad Prism 

Version 5.0 software.  
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3.5 Results 

3.5.1 Development of a scrambled siRNA for DNA-based construct 

Although the negative control siRNA tested in chapter 2 fulfilled its function in 

validating the specificity of the test siRNA against mFOXP3, its sequence was 

proprietary and did not lend itself to incorporation into a plasmid construct. Thus, a 

new scrambled siRNA sequence (miR scr) was designed and examined in a 

mFOXP3 expression assay as before.  

Results are displayed in figure 3.3. miR scr had a statistically greater effect 

on the number of FOXP3
+
 cells than Neg siRNA (p = 0.01). However the 

knockdown efficiency induced by the test RNAi mediator (mimic #4) on FOXP3
+
 

cells of 45% was still significantly greater than that induced by miR scr (17%). This 

difference which represented genuine RNA interference equated to 28% (+/- 1.8%, p 

< 0.001) and provided the confidence to go forward and incorporate both duplexes 

into lentiviral constructs. 

In conclusion, a novel negative control RNAi molecule amenable to 

incorporation into a DNA-based construct was generated here and validated for the 

purpose of testing the experimental RNAi therapeutic. 
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Figure 3.3 mFOXP3 expression assay with new scrambled siRNA. A) Dot plots from 

FACS analysis representing the percentage of FOXP3
+
 cells following transfection of 

pFOXP3 and various siRNA duplexes into HeLa cells. The dot plots shown are 

representative of three independent experiments.  B) Quantitative output for the data shown 

in A. Data are represented as mean +/- SEM of n = 3. (*** p < 0.001). 
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3.5.2 Optimisation of lentiviral vector expression in vitro 

The data above and in chapter 2 confirmed that the mimic #4 sequence was capable 

of silencing mFOXP3. To facilitate in vivo therapy, delivery of the RNAi mediator 

DNA would be required. In this series of experiments, we sought to optimise the 

parameters required to achieve maximum lentiviral vector-based delivery and 

expression in vitro and thus induce maximal knockdown efficiency with the test 

miR. A GFP-encoding version of the lentiviral vector was employed for in vitro 

assays to examine the kinetics of transgene expression post transduction. 

The time at which maximum expression was achieved post transduction was 

first determined. An arbitrary MOI of 10 was chosen and the average GFP brightness 

per cell (mean fluorescence intensity [MFI]) quantified at different time points. 

Results are displayed in figure 3.4. Within the limitations of this assay, MFI was 

observed to be highest at 72 h post transduction, although not significantly higher 

than at 48 h (p = 0.168). Consequently 72 h was chosen as the time of maximum 

expression for all further in vitro experiments. 
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Figure 3.4 Determination of the time for maximal lentiviral expression in vitro. HeLa 

cells were transduced in culture with lentiviral particles carrying a GFP transgene at an MOI 

of 10. FACS analysis was carried out at the designated time points post-transduction. A) 

Histograms plotting the mean fluorescence intensity (MFI) against the number of cells. 

Histograms are representative of three independent experiments. B) Quantitative output from 

three replicates presented as the mean +/- SEM. 
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The optimal MOI for lentiviral vector on HeLa cells was then determined. This 

information would help achieve transduction of the maximum number of cells and 

hence the best knockdown possible. A range of MOIs from 5 to 20 was tested. 

Results are displayed in figure 3.5. An MOI of 20 was found to provide the highest 

transduction as evidenced by GFP expression by FACS. No reduction in cell 

viability (as measured by FACS analysis using propidium iodide) was observed with 

increasing MOI (data not shown). Although not statistically superior to an MOI of 

15 (p = 0.439), an MOI of 20 was used for future in vitro experiments.  

The above two experiments identified the optimal parameters for in vitro 

lentiviral vector transduction with the goal of facilitating maximum knockdown 

efficiency in subsequent assays. 
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Figure 3.5 Determination of optimal MOI for lentiviral transduction of HeLa cells in 

vitro. HeLa cells were transduced in culture with lentiviral particles carrying a GFP 

transgene at various MOI. The transduction efficiency as indicated by the number of GFP
+ 

cells was determined by FACS at 72 h. A) Dot plots from FACS analysis representing the 

percentage of GFP positive cells. The dot plots shown are representative of three 

independent replicates. B) Quantitative output from three replicates presented as the mean 

+/- SEM. 
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3.5.3 Lentiviral vector-mediated RNAi silencing of mFOXP3 

The validated lentiviral vector system was utilised for delivery of DNA cassettes 

corresponding to miR 4 (Lenti miR 4) or miR scr (Lenti miR scr) in in vitro assays. 

The effect of transduction of these constructs on mFOXP3 expression was examined 

by FACS in in vitro assays. Results are displayed in figure 3.6. A global picture of 

silencing efficiency can be obtained by looking at the percentage of cells that were 

mFOXP3 positive in the various samples (figure 3.6 A & B). Lenti-miR 4 

significantly reduced the number of FOXP3
+
 cells compared with lenti miR scr (11% 

+/- 1.5%, p < 0.002) and an untransduced control (8.4% +/- 1.4%, p = 0.004).  

However as outlined in Chapter 2, assessment of knockdown efficiency in 

terms of positive or negative cells may not reveal intracellular reductions in 

expression. Partial knockdown may be overlooked, although it may be sufficient for 

a phenotypic change in the cell. Thus, the FOXP3 status of cells was stratified 

according to fluorescence intensity (negative, medium and high) (figure 3.6 C). The 

graphs show a reduction in the number of highly positive FOXP3 cells following 

lenti miR4 transduction in comparison with lenti miR scr (5.8% +/- 1.8%,p = 0.033). 

The reduction in the number of cells highly expressing FOXP3 is accounted for by 

increases in the number of cells with medium expression (1.5% +/- 4%) and no 

expression at all (4% +/- 5.4%), although neither increase is statistically significant 

(p= 0.745 and p = 0.479 respectively). This suggests that, following lenti miR 4 

transduction, cells that highly expressed FOXP3 now express the protein at an 

intermediate level, while those previously displaying medium expression are now 

negative for FOXP3. 

This experiment validated lentiviral vector as an in vitro delivery vehicle for 

artificial miRNAs and confirmed that the mimic #4 sequence mediates RNAi against 

mFOXP3. 
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Figure 3.6 Effects on FOXP3 expression following transduction with lentiviral vector- 

microRNA particles in vitro. HeLa cells were transduced in culture with lentiviral particles 

carrying miR scr or miR 4 at an MOI of 20. 6 h later, cells were transfected with pFOXP3. 

After 72 h, cells were analysed for mFOXP3 expression by FACS. A) Dot plots representing 

the percentage of FOXP3
+
 cells. The dot plots shown are representative of three independent 

replicates. B) Quantitative output from three replicates presented as the mean +/- SEM. (** 

indicates p < 0.005). C) A more detailed analysis of the changes in mFOXP3 expression 

following lentiviral vector-mediated RNAi. Histograms (left panel) show the relative 

proportion of cells with negative, medium and high fluorescence intensity (P2, P3, P4 

respectively) which correlates with the level of mFOXP3 expression. Each histogram is 

representative of three independent replicates. The graphs represent the quantitative output 

from three replicates presented as the mean +/- SEM. 
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3.5.4 Lentiviral vector gene delivery in vivo 

Before attempting RNAi in vivo the first step was to confirm lentiviral vector-

mediated gene delivery to murine tumours. Reporter lentiviral particles carrying the 

luc2 gene were injected directly into s.c. B16OVA tumours. After four days, animals 

were imaged by IVIS whole body luminescence imaging. A 2 log-fold increase in 

luminescence could be detected specifically in tumours, compared with untreated 

control mice. Given the broad host range of the lentiviral vector employed, and the 

heterogenous nature of cell types within tumours, all cell types (T cells, other 

immune cells, tumour cells, fibroblasts etc) were expected to be transduced. While 

the specific cell types within the tumour which were transduced was not examined 

here, this experiment confirmed the ability of i.t. injection of the lentivirus particles 

to mediate in vivo transduction and expression of their transgene. 
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Figure 3.7 Lentiviral vector transduction in vivo. Murine xenograft tumours (flank) were 

i.t. injected with lentiviral particles carrying the luc2 transgene or PBS. Four days later, mice 

were subjected to whole body imaging. Bioluminescence is presented as a pseudocolour 

scale (right-hand side): red, the highest photon flux; blue, the lowest photon flux. 

Luminescence was detected specifically in the tumour region. A quantitative readout is also 

supplied below the image.  
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3.5.5 Determination of the optimal time to target intra-tumoural TRegs 

As a forerunner to in vivo experimentation with miR particles, the optimal time for 

tumour treatment was examined. Since intra-tumoural TReg numbers differ at various 

stages of xenograft growth, the aim was to establish the optimum therapeutic 

window to manipulate TRegs within the context of a growing tumour and so maximise 

therapeutic response. The ideal setting would require TReg infiltration prior to 

treatment but not too late in the course of the disease to ensure that tumour immune 

escape had not already taken place. 

In the absence of a non-terminal assay to determine TReg infiltration numbers, 

a reference curve of TReg number versus tumour volume for the s.c. B16OVA 

xenograft model was generated (figure 3.8). 
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Figure 3.8 Temporal analysis of intra-tumoural TReg numbers in B16OVA tumours. 

CD4
+
 and CD8

+ 
TRegs are graphed independently. TReg numbers as a percentage of total viable 

tumour cells were established by FACS analysis at various time points post induction of 

B16OVA tumours. These data were plotted against the average tumour volume for mice 

culled at that time point and the time post tumour induction. TReg numbers are plotted as the 

mean of 5 mice per time point +/- SEM. 
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A similar pattern was observed with CD4
+
 and CD8

+
TRegs albeit CD8

+
TRegs were 

generally present at a lower level (range 0.1 to 1.3% versus 0.7 to 6.6%). While 

tumour volume increased over time, the relative proportion of TRegs varied widely 

throughout the course of xenograft growth. Following an initial peak of TReg 

infiltration, numbers then declined followed by a trend towards increasing number 

again at the terminal stages of the disease.  

Since tumour volume could readily be established without the need to 

sacrifice the animal, this curve permitted estimation of the number of TRegs within a 

given tumour at a given time and hence at what tumour volume to treat. Based on the 

curve the optimal time to treat was determined to be at or before the tumour volume 

reached 0.1 cm
3
or day 8/9 post tumour induction. Identification of the optimal time 

at which to manipulate TRegs within the growing tumour provided the best chance of 

therapeutic success. 

 

3.5.6 The effect of Lenti miR 4 treatment on tumour cytokine profile 

Following identification of the optimal time to manipulate TRegs within the growing 

tumour mice were then treated with lentiviral particles carrying miR 4. Untreated 

tumour-bearing mice and mice treated with lenti miR scr served as controls. The 

hypothesis was that, following therapeutic intervention, the first detectable alteration 

would be a change in cytokine profile. 9 days post tumour induction (based on the 

TReg infiltration data) lentiviral particles were administered i.t. 4 days later all mice 

were culled at a single time point. Tumours were harvested and processed for 

cytokine analysis. The content of interferon-γ, IL-12p70, IL-1β, IL-6, mKC, IL-10 

and TNF-α was determined for each experimental tumour. Levels were quantified in 

supernatant derived from tumour homogenate using mouse pro-inflammatory 

multiplex plates. Results are displayed in figure 3.9. With the exception of a 

significant reduction in IL-1β levels (p = 0.029), administration of lenti miR 4 failed 

to invoke a globally significant change in cytokine profile relative to control animals. 

Indeed this reduction in IL-1β is contrary to the expected outcome – if mFOXP3 

knockdown had been successful one would expect a pro-inflammatory response 

which might be evidenced by an increase in IL-1β levels. Of note lenti miR scr failed 
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to invoke any detectable, significant change in cytokine profile compared with 

untreated animals. This is suggestive of the low immunogenicity of the vector itself. 
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Figure 3.9 The intra-tumoural cytokine profile following lenti miR 4 treatment 

C57 Bl/6 mice bearing s.c. B16OVA tumours were treated with lenti miR 4 or lenti miR scr. 

The cytokine profile of tumours 4 days post treatment was determined using a mouse pro-

inflammatory multiplex plate. Levels are shown only for cytokines above the limit of 

detection and expressed as the mean +/- SEM for three mice per group. Statistics compare 

the two lentiviral treatment groups where one group received miR 4 and the other received 

miR scr. * indicates p = 0.029. Sample in this context refers to a representative portion of 

each tumour corresponding to 250 µg of tissue. 
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3.5.7 Lenti miR 4 treatment effects on T cell populations 

Had there been a cytokine change as a result of functional inhibition of TRegs a 

decrease in the number of detectable TRegs along with a concomitant increase in 

immune effector populations (e.g. CD8
+
 cytotoxic T cells) would be expected 

20
. 

Nonetheless, both these T cell subsets were characterised by FACS analysis (figure 

3.10). However, as expected, no distinction in their relative abundance could be 

detected. The cytokine and T cell profiles presented confirm that further optimisation 

of the putative therapeutic and/or the experimental design are required to achieve a 

therapeutic response. 
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Figure 3.10 Intra-tumoural T cell subsets following lenti miR treatment. The relative 

abundance of different T cell subsets in tumour samples was determined by FACS analysis. 

Representative T cell populations from a mouse treated with lenti miR scr and a mouse 

treated with lenti miR 4 are compared from groups of 3 mice. Cells were stratified according 

to FOXP3 expression (left) and then analysed in terms of CD25 and either CD4 or CD8 

expression (right). P1 identifies CD4
+
, CD25

High
, FOXP3

High
 cells and represents CD4

+ 
TRegs. 

P3 identifies CD8
+
, CD25

High
, FOXP3

Low
 cells and represents CD8

+
 cytotoxic T cells. 
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3.6 Discussion  

In this chapter the goal was to advance our validated RNAi mediator from an 

experimental tool towards an in vivo therapy by combining it with a lentiviral vector 

system. This clinically relevant vector was demonstrated to be capable of delivery 

and induction of gene silencing in an in vitro system. Moreover, transduction was 

validated in an in vivo tumour model. The optimum stage in tumour progression at 

which to intervene with this and other similar therapeutic approaches was identified. 

However, within the limitations of the experimental model, no therapeutic benefit 

could be demonstrated following lentiviral delivery of an artificial miRNA targeting 

mFOXP3 in a pilot study. Further modifications of the therapeutic such as cell-

specific delivery capability coupled with improvements in experimental design 

should enhance the likelihood of success.  

 

Limitations of in vitro experimental setup: mFOXP3 was successfully silenced 

using a lentivirus vector to deliver an artificial miRNA in an in vitro system (figure 

3.6). However the knockdown efficiency was only 37% with lenti miR 4 in contrast 

to 57% with mimic #4 delivered with Lipofectamine
® 

(figure 2.6). This could in part 

be explained by the poor transduction efficiency achieved with the lentiviral particles 

(48% - figure 3.5) in contrast to the 70 % efficiency achieved with siRNA delivered 

using Lipofectamine
® 

(figure 2.4). 

The poor knockdown efficiency could be further explained by the 

experimental setup for the in vitro knockdown assay (figure 3.6). In the absence of a 

cell line that stably expressed mFOXP3 it was necessary to transfect cells with a 

plasmid carrying the target gene and also transduce cells with lentivirus carrying the 

relevant miR. The transduction and transfection of the same cells in vitro is not an 

ideal system, as one process likely interferes with the other and it requires a 

compromise between optimal conditions for both processes to succeed; for lentivirus 

transduction the optimal protocol involved seeding the cells 24 h in advance of 

transduction with maximum expression achieved after 72 h (figure 3.4); in contrast, 

maximum expression was achieved 48 h post transfection with Turbofect
®
, again 

allowing a 24 hour window after seeding (data not shown).  

 We attempted to combine these protocols without modification (transduction 

followed by transfection 24 hours later), but this proved unsatisfactory due to the 
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inability to transfect overly-confluent cells 48 h post seeding. Overall, cell viability 

was not significantly reduced however. We compromised by proceeding with 

transfection 6 h rather than 24 h post transduction. This improved transfection 

efficiency albeit not to the levels achieved under optimal conditions; transfection 

alone, under optimal conditions reached 47% of cells (figure 2.6) while transfection 

under the modified conditions and in the presence of lentivirus reached only 25.6% 

of cells (figure 3.6). Generation of HeLa cells stably expressing the miRNAs of 

interest using the lentiviral particles may have circumvented this problem as the 

optimal transfection protocol could have been followed.  

The above notwithstanding, the experimental strategy served to permit 

validation of the optimal miR from the various hypothetical sequences outlined in 

Chapter 2. 

 

In vivo transduction: Lentiviral transduction in vivo was confirmed using the luc2 

reporter gene and whole body imaging (figure 3.7). This assay did not provide any 

information as to which particular cell types within the tumour had been transduced 

however. Efforts were made to characterise which cell types had been transduced by 

FACS analysis through antibody detection of the delivered luciferase protein and a 

panel of cell-specific markers (data not shown). The absence of a robust, high 

affinity antibody against the luciferase protein made this work unachieveable 

however. Thus, we can only speculate as to what cells received lentimiR 4; Given 

that the lentiviral particles had been pseudotyped with VSV-G one would expect 

quite a broad, indiscriminate tropism
21

.  

 

miR activity: The effects of miR 4 expression within non-target (i.e. non-TReg) cells 

is largely unpredictable, but is likely to be heavily influenced by the level of FOXP3 

expression within a given cell type. Worthy of note, is that all human cancer cell 

lines tested in one study expressed detectable levels of FOXP3 
22

. It is hypothesised 

that cells expressing high levels of FOXP3 would be most responsive to miR4 over-

expression, but that FOXP3 knockdown may result in widely varying phenotypes for 

different cell types. Of concern would be the possibility that FOXP3 knockdown in 

cancer cells may be detrimental – recent reports suggest that FOXP3 acts as a tumour 

suppressor gene in breast 
23,24

 and prostate cancer
25

.  
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Limitations of xenograft model: From figure 3.8 the optimal time to treat was 

determined to be at or before the tumour volume reached 0.1 cm
3
. In practical terms, 

this related to tumour dimensions of approximately 0.6 cm x 0.6 cm. While it was 

possible to measure tumour volumes smaller than this, no samples were taken to 

determine TReg infiltration numbers as tumours were too small for FACS processing. 

It could be concluded that a day or two prior to the tumour volume reaching 0.1 cm
3 

(Day 8 or 9 post tumour induction) there were sufficient TRegs in situ for treatment 

and tumour immune evasion had not yet occurred. Intervention at this 

early/intermediate stage of disease progression is consistent with a previous study 

using diphtheria toxin to deplete TRegs in transgenic DEREG (depletion of regulatory 

T cells) mice
20

. This study also confirmed that intervention at a later time point in the 

disease had no effect on tumour volumes. Based on this, it was deduced that 

following the initial peak in TReg number within the s.c. B16OVA tumour model, 

immune control has been circumvented and therapies aimed at abrogating the 

suppressive component of the immune system would be insufficient to surmount 

anergy.  

 

Suggested reasons for therapeutic failure: Despite validation of in vivo 

transduction and optimisation of the time to target TRegs within the B16OVA tumour 

model, no therapeutic benefit could be detected at a cytokine or cellular level 

(figures 3.9 and 3.10). A number of explanations for the apparent failure of the 

therapy in vivo can be proposed; 

 

i) The experimental setup only included one sampling point – 4 days post 

lentiviral delivery directly to the tumour. Based on the whole body imaging data 

(figure 3.7) it is likely that the therapeutic artificial miRNA was expressed and most 

likely processed into the mature miR at this stage. However, it is unclear if an 

appropriate window of time was allowed for a response to FOXP3 silencing to 

manifest as an altered cytokine profile. Perhaps more pronounced alterations in 

individual cytokine levels may have been detectable earlier than day 4. The time lag 

for a cytokine response to translate into a cellular immune response is also difficult 

to predict and thus cellular changes may also have been missed by the single 
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sampling time point. Larger-scale trials including multiple sampling time points 

were beyond the practicalities of this thesis work. Future work might also look 

beyond lymphocytes and include a full immune cell profile of the tumour 

microenvironment. 

 

ii) The suitability of the tumour model may also need to be revisited. The 

B16OVA melanoma model was chosen as it represents an antigenically defined 

tumour. Thus any immune response raised against the tumour would be directed 

predominantly against a single antigen (the OVA peptide) and more readily 

detectable. However, the B16 tumour represents an aggressive model whose growth 

rate quickly outstrips its neovascularisation. This leads to a solid, vascularised outer 

tumour surrounding highly necrotic more central regions. Consequently distribution 

of lentiviral particles within the tumour and cytokine secretion throughout the 

tumour mass are highly variable and unpredictable. 

 

iii) As outlined above, it is unclear which particular cell types within the tumour 

mass were transduced. The potential exists for FOXP3 knockdown in non-TReg cells 

to nullify any potential therapeutic benefit. It is more likely that an insufficient 

number of TRegs were transduced to achieve a detectable alteration in cytokines. 

Targeted lentiviral transduction of T cells or more specifically TRegs would be one 

solution; such targeted particles promise improved efficiency of delivery to TRegs 

while simultaneously reducing off-target effects through their enhanced selectivity. 

A number of versatile platforms exist to redirect lentiviral particles (reviewed in 

section 1.3.3). Moreover the literature provides robust examples of lentivirus 

targeted to T cell surface receptors; Wang et al., have targeted the CD3 receptor 
26

 

while the Chen lab have demonstrated receptor-specific delivery via CD4 
27

. Perhaps 

the most appropriate surface receptor for targeting TRegs would be CD25 as it is 

constitutively expressed at a high level but only expressed on other T cell subsets 

following activation by antigen. Support for this receptor target comes from the 

myriad of TReg depletion studies using antibodies directed against CD25 (reviewed in 

28
). 
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iv) It is possible that the RNAi mediator was not potent enough i.e. that the level 

of FOXP3 knockdown within each cell was not sufficient to alter the TReg phenotype. 

While this was not determined for the in vivo experiment, the in vitro data would 

suggest that following lenti miR 4 delivery up to 15% of cells retain a medium level 

of FOXP3 expression (figure 3.6). It is unclear if such a level of FOXP3 expression 

can maintain the suppressive nature of TRegs. That said, if the knockdown achieved in 

vitro were to be recapitulated in vivo (with approximately 80% FOXP3 negative 

TRegs) one could predict that any immunosuppressive threshold had been overcome 

and an anti-tumour immune response would soon follow. 

 

Conclusion Conceptually the idea of treating cancer by manipulating immune 

cells (especially suppressive immune cells) is relatively novel 
29,30

. Immune-based 

therapies promise significant advantages over existing treatment modalities – 

through the generation of immunological memory distant secondaries and disease 

reoccurrences can be eradicated. The altered immune microenvironment that exists 

and indeed is fostered within a developing tumour, affords a therapeutic niche over 

the unflustered systemic immune system. In this chapter, we sought to exploit this 

niche - we present an exciting therapeutic strategy to harness the immune system to 

fight cancer by combining lentiviral vectors with an artificial miRNA. We developed 

a novel RNAi mediator against mFOXP3 but further improvements in delivery 

efficiency and specificity may be warranted. 
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Chapter 4: 

Tumour-associated macrophage targeting 

with a bacterial vector 
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4.1 Abstract 

The majority of human and mouse solid tumours feature an abundant macrophage 

population. However, despite the direct tumouricidal ability of macrophages and 

their ability to mobilise anti-tumoural immune responses through antigen 

presentation, a lack of these activities within tumours is apparent. The primary 

reason suggested for this phenomenon is the tumour-driven polarisation of 

macrophages to an M2-like phenotype, which is pro-tumourigenic. Thus, efforts to 

re-educate or re-programme the abundant tumour-associated macrophages (TAMs) 

to an anti-tumour M1 phenotype would seem meritorious, and has recently been 

validated in preclinical studies. 

NFκB signalling is central to maintaining the M2 phenotype. Inhibition of 

this transcription factor has been shown to re-educate TAMs. Targeting of IKK2, the 

major activator of NFκB, has been shown to induce significant antitumour responses 

preclinically. To date, only ex vivo transfection strategies related to this have been 

explored, and while validating this therapeutic target, possess only limited potential 

for clinical translation. This study sought to develop a more universally applicable 

strategy that could modify TAMs in situ, involving TAM-specific transfection in 

vivo.  

It was hypothesised that intra-tumoural non-invasive bacteria would serve as 

effective and specific delivery agents to TAMs. A non-pathogenic E. coli strain 

carrying a plasmid for mammalian cell expression of an IKK2 dominant negative 

protein (IKK2-DN) was designed and generated. The ability of this vector to mediate 

gene delivery to macrophages was validated in vitro in a human macrophage cell line 

using FACS analysis. I.t. administration of the therapeutic vector to growing s.c. 

tumours was examined in in vivo murine trials. TAM transfection was demonstrated 

by FACS. Cytokine profile analyses of tumours demonstrated induction of intra-

tumoural pro-inflammatory cytokines following treatment (compared with controls), 

suggesting re-education of M2 TAMs. 

This study demonstrates the utility of non-invasive bacteria as a novel class 

of TAM-specific gene delivery vector, as well as the potential for in vivo targeting of 

the NFκB pathway to re-programme TAMs, thereby switching their phenotype from 

pro- to anti-tumour. 
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4.2 Introduction 

TAMs generally follow an “M2” phenotype and play a detrimental role in cancer 

pathophysiology (section 1.1.3 above). They are found in distinct 

microenvironments within the tumour where they are co-opted by the presence or 

absence of various locally-derived signals for tumour gain; areas of invasion where 

they promote cancer cell motility, stromal and perivascular regions where they 

encourage metastasis, and in hypoxic regions where they stimulate angiogenesis 
1
. 

Moreover, TAMs resident within hypoxic tumour regions have been shown to 

increase production of matrix metalloproteinase-7 
2
. This protein cleaves Fas ligand 

on tumour cells rendering them less sensitive to chemotherapy and immune-

mediated cellular cytotoxicity 
3,4

. The behaviour of M2 macrophages within a 

growing tumour is totally at odds with that of M1 macrophages that are capable of 

tumour cell lysis, antigen presentation and stimulation of anti-tumour T and natural 

killer cell responses 
1
. Thus, re-programming macrophages to an M1 phenotype 

represented a justifiable therapeutic endeavour. 

Recent evidence from Hagemann et al suggested that the NFκB pathway was 

central to macrophage phenotype and that manipulation of this pathway could re-

programme macrophages 
5
. Activation of NFκB is regulated by the inhibitor of 

kappa B (IκB) kinase (IKK) complex of which the β-kinase (IKKβ or IKK2) is 

dominant. Following phosphorylation, IKK2 then phosphorylates IκB which is then 

degraded in the proteosome. The p65/p50 NFκB heterodimer is released, enabling 

translocation to the nucleus and inflammatory gene transcription 
6
. This signalling 

cascade can be blocked by introduction of a kinase-deficient, dominant negative 

IKK2 protein (IKK2-DN)
7,8

. This decoy protein competes with the unmodified, 

endogenous protein for binding to IκB. When IKK2-DN binds to its target, it is 

unable to phosphorylate it and the pathway is halted. In the absence of a robust 

protein delivery platform, the most robust means of delivering IKK2-DN is at a 

nucleic acid level via a genetic construct. 

Introduction of IKK2-DN into TAMs ex vivo followed by transfer of the 

modified macrophages has been shown to be effective in inducing anti-tumour 

responses.
5
. However such ex vivo manipulation lacks clinical translatability. Thus, 

we sought to combine IKK2-DN with a vector capable of in situ manipulation of 
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macrophages. Given the widespread expression of NFκB in different cell types a 

degree of selective delivery is required to mitigate off-target effects. 

The concept of bacteria-mediated gene therapy is not novel, and bacteria are 

known to localise to solid tumours following systemic administration
9,10

. 

Traditionally, invasive species of bacteria are used to non-specifically invade host 

tumour cells for „hand-over‟ of plasmid DNA for host cell expression of a 

therapeutic. This process (termed „Bactofection‟) is also used in vaccination 

strategies for various diseases, most commonly with oral administration of bacteria 

for the purpose of transfecting mucosal phagocytic cells to induce antigen 

presentation and antigen immune induction. 

We hypothesised that, in the context of intra-tumoural bacteria, use of non-

invasive bacteria would permit specific transfection of phagocytic cells, representing 

a novel strategy for cell type-specific targeting of tumour-related immune cells. The 

use of non-invasive bacteria promised to restrict the cell types that received IKK2-

DN to phagocytic cells such as macrophages.  

 

4.3 Study Aim 

The aim of this study was to assess the potential of MG1655, a non-invasive E. coli 

strain, to mediate bacterial gene therapy to tumour-associated macrophages. A 

second, dependent aim was to re-educate tumour-associated macrophages by 

inhibition of the NFκB pathway through non-invasive bacterial delivery of IKK2-

DN. 
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4.4 Materials & Methods 

4.4.1 THP-1 cell culture 

THP-1 cells were maintained in RPMI 1640 medium (Sigma-Aldrich) supplemented 

with 10% v/v foetal bovine serum (Sigma-Aldrich) and 2mM L-glutamine in the 

absence of antibiotics in a 37
0
C incubator with 5% CO2. 

 

4.4.2 Differentiation of THP-1 monocytes 

THP-1 cells were differentiated using a protocol modified from that previously 

published by Takashiba et al 
11

. Briefly 2x10
5
 cells were seeded per well of a 24-well 

plate in 1 ml media. PMA (eBioscience) diluted in DMSO was added to a final 

concentration of 200nM. Cell adherence and a spreading morphology were 

confirmed using a light microscope. After 24 h the media was changed and cells 

were allowed to recover for 48 h before further experimentation.  

 

4.4.3 Generation of bacterial vectors 

E.coli K12 MG1655 was used in all experiments (UCC culture collection). For in 

vitro work a GFP plasmid (pMAX-GFP, Amaxa, USA) under the control of a 

eukaryotic promoter was introduced into this strain by electro-transformation. 

For optimal transfection efficiency, hlyA-expressing bacteria are commonly 

employed; the hlyA gene derived from Listeria monocytogenes encodes the pore-

forming listeriolysin O protein, which facilitates phagosome escape, and has been 

previously shown to significantly increase bacterial vector mediated transfection 

efficiency
12

.For all in vivo work, a hlyA-expressing E. coli MG1655 strain (referred 

to as E. coli hereafter) was employed; MG1655 was transformed with a hlyA plasmid 

(pNZ44 - generated by Dr. Joanne Cummins, Cork Cancer Research Centre). 

E. coli was transformed with the therapeutic plasmid carrying a kinase-

negative mutant of IKK2 (IKK2-DN) – a kind gift from Dr. Rainer de Martin
7
. 

GFP and IKK2-DN genes were driven by eukaryotic promoters. Presence of 

the hlyA and therapeutic plasmid in the bacteria was confirmed by colony PCR to 

detect the hlyA and ampicillin resistance genes respectively.  
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4.4.4 Preparation of bacteria for in vitro and in vivo gene delivery 

The appropriate bacterial stock was inoculated into 10 ml LB-broth with antibiotic 

selection and grown overnight (~16 h) at 37
o
C, shaking at 200 rpm. The optical 

density of the culture was measured at a wavelength of 600 nm (OD600) and the 

culture then diluted to an OD600 = 0.1. The culture was grown for a further 2-3 h at 

37
o
C, shaking at 200 rpm and the bacteria harvested when the OD600 reached 0.8-1.0. 

1ml of the culture was then pelleted by centrifugation (13500 rpm for 1 min), the 

pellet was washed twice in PBS and resuspended in 1ml PBS. The concentration of 

this solution had previously been determined to be approximately 1x10
9
 CFU/ml. 

This stock solution was then diluted in PBS to the appropriate concentration.  

 

4.4.5 Bacterial gene delivery to differentiated THP-1 cells 

Bacteria carrying pMAX-GFP were prepared as above and added directly to the 

differentiated THP-1 cells at different multiplicities of infection (MOI). In all 

experiments, cells and bacteria were co-incubated overnight for 16 h. 

The efficacy of gene delivery was indicated by the number of GFP
+
 cells as 

determined by FACS analysis. FACS was performed as previously outlined (section 

2.4.11) with some modifications to the cell preparation steps; the adherence of the 

cells to the plate was broken by incubating in PBS with 5mM EDTA for 10-20 mins 

and pipetting up and down vigorously.  Cells were resuspended in PBS with 10% 

FBS to prevent clumping.  

The time window after bacterial exposure and before FACS analysis was 

deemed an important parameter for maximal detection of GFP expression. Thus, two 

different time windows were explored; in one strand of the experiment, the culture 

media was changed following overnight incubation with the bacteria and the cells 

were rested for 8 h prior to analysis. In a second strand of the experiment, cells were 

rested for 24 h before analysis. In this latter experiment, extracellular bacteria were 

killed with gentamicin (20mg/ml for 2 h) in an effort to preserve the viability of the 

macrophage cells. 



   

174 

 

 

4.4.6 Tumour induction and bacterial delivery in vivo 

6 week old female Balb/C mice (an immuno-competent strain) were anaesthetised 

and their right flanks shaved. The minimum tumourigenic dose (1x10
5
 cells) were 

injected s.c. into the right flank to induce the mouse CT26 colon tumour model. 18 

days post tumour induction mice were injected intra-tumourally at three different 

sites with a total dose of 1x10
6
 CFU of bacteria in a 100µl volume using a 32 gauge 

needle.  

 

4.4.7 Monitoring bacteria within a growing tumour 

1x10
6
 CFU of E. coli MG1655 with an integrated lux cassette (driven by a bacterial 

promoter) were injected into growing CT26 tumours in a 100µl volume using a 32 

gauge needle. At various time points mice were anaesthetised and subjected to whole 

body imaging using an IVIS imaging system (Perkin Elmer). 

 

4.4.8 Detection of gene delivery  

The therapeutic IKK2-DN protein was FLAG-tagged which permitted detection with 

an antibody and FACS analysis to determine which cells had been reached. A single 

cell suspension was derived from the tumour as outlined previously (section 3.4.8) 

and intracellular FACS staining carried out as per section 2.4.11. The following 

antibodies and test concentrations were used; F4/80-PE (clone BM8) (eBioscience, 

0.2 µg/test), anti-CD68-PerCP/Cy5.5 (clone FA-11) (Biolegend, 0.25 µg/test) and 

anti-FLAG Alexa Fluor 647 (Cell signalling, 1 in 450 dilution). 

 

4.4.9 Assessing cytokine profile  

As per section 3.4.10. 

 

4.4.10 Monitoring tumour progression 

As per section 3.4.5. 
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4.4.11 Statistical analysis 

As per section 3.4.11.
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4.5 Results 

4.5.1 E. coli MG1655 mediates gene delivery to macrophages in vitro 

To demonstrate proof of principle for non-invasive bacterial gene delivery to 

macrophages in vitro, the human THP-1 monocyte cell line was differentiated into 

macrophages and exposed to a bacterial strain carrying a plasmid encoding GFP 

under the control of a eukaryotic promoter. Transfection was assessed by FACS 

analysis for detection of GFP
+
 cells. 

Results shown in figure 4.1 demonstrate close to 100% transfection 

efficiency on viable cells following bacterial exposure at an MOI of 2.5 to 10, 

regardless of the time window between bacterial exposure and FACS analysis (see 

Materials and Methods 4.4.5 above). Cytotoxicity was clearly detectable under a 

light microscope at higher MOIs of 20 and 30 (data not shown) and, despite gating 

on viable cells, transfection efficiency was diminished by 90% (figure 4.1 A).  

A longer time window of 24 h after bacterial exposure and before FACS 

analysis resulted in greater macrophage cell death (data not shown).In an attempt to 

reduce macrophage cell death caused by bacterial replication, an antibiotic strategy 

for elimination of live bacteria was assessed. However, the use of gentamicin in this 

context was ineffective and did not influence the number of dying macrophages (data 

not shown). It is likely that cell death pathways had already been engaged in the 

macrophage cells.  

Overall, these data demonstrated the ability of this non-invasive bacterial 

vector to mediate efficient transfection of macrophages. 
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Figure 4.1 Bacterial-mediated transfection in vitro. The THP-1 monocyte cell line was 

differentiated into a macrophage-like phenotype and exposed to E.coli MG1655 carrying a 

GFP plasmid at different multiplicities of infection. Macrophages were allowed to recover 

for 8 h (A) or 24 h with gentamicin treatment (B). FACS analysis on viable cells was used to 

determine the number of GFP
+
 cells. Data presented are representative of three independent 

replicates.  
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4.5.2 Analysis of intra-tumoural viable bacterial vector in vivo 

Prior to initiating murine therapeutic trials, the fate of bacterial vector following i.t. 

injection to s.c. tumour xenografts was examined. It would be expected that a portion 

of the administered bacteria would i) be scavenged by phagocytic cells within the 

tumour, ii) leave the tumour and disseminate throughout the animal and/or iii) 

colonise the tumour microenvironment. 

To provide data towards answering these questions, 1 x10
6
 CFU MG1655 

carrying the lux cassette were injected into s.c. CT26 tumours in mice and monitored 

in vivo using whole animal imaging (figure 4.2). Since in this case expression of the 

lux reporter cassette was driven by a bacterial promoter, luminescence was indicative 

of live bacteria, rather than transfected cells. Thus detection of luminescence did not 

indicate whether the bacteria were intra- or extra-cellular. Figure 4.2 indicates that 

administered bacteria specifically colonised the tumour over time and continued to 

survive/grow within this microenvironment. This indicated that not all administered 

bacteria were phagocytosed. (Transfection was examined in subsequent 

experiments). No bacterial luminescence was detected elsewhere in the body, 

suggesting no significant spread of the vector. The reduction in luminescence 

detected at day one was interpreted as initial death of bacteria post injection. 

Thereafter bacterial replication commenced and luminescence increased accordingly. 
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Figure 4.2 Fate of i.t. administered bacteria in mice. 1x10
6
 MG1655 bacteria carrying the 

lux cassette were administered directly into growing CT26 tumours. Viable, luminescent 

bacteria were detected at various time points specifically in the tumour using whole body 

imaging. Bioluminescence is presented as a pseudocolour scale (top, right): red, the highest 

photon flux; blue, the lowest photon flux. A) Average luminescence in p/sec/cm
2
/sr is shown 

in parentheses. An untreated, tumour-bearing animal was imaged at each time point and is 

shown as a control. B) Graphical representation of tumour luminescence over time plotted as 

the mean +/- SEM for three mice. 
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4.5.3 Gene Delivery in vivo 

To provide evidence of gene delivery in vivo, bacteria bearing a plasmid encoding a 

FLAG-tagged protein under the control of a mammalian promoter were i.t. 

administered to s.c. CT26 tumours. FLAG expression was possible only following 

uptake of the bacteria by a mammalian cell and detection of FLAG by FACS was 

taken to be indicative of hand-over of the plasmid-borne gene from bacterial vector 

to, and expression by host mammalian cells. The cell type transfected was examined 

using antibody markers specific for macrophages.  

Tumours were harvested two days post treatment and a single cell suspension 

generated. Cells were labelled with appropriate antibodies. FACS analysis is 

displayed in figure 4.3. The TAM population was selected for analysis through 

gating on both CD68 and F4/80. Having gated on double positive macrophages the 

number that were FLAG
+
 (transfected) cells was determined. Compared with the 

control animal where the bacteria did not carry FLAG plasmid, approximately 20% 

of TAMs were FLAG
+ 

(66 versus 46.4) (figure 4.3A, right). Further characterisation 

of bacteria as in vivo gene therapy vectors might involve assessment of their 

capability to recruit phagocytic cells to the tumour. This extra information could be 

readily extracted from the above experimental setup by inclusion of a third group 

which did not receive any bacteria. 

As the goal was to specifically transfect TAMs it was also important to 

determine how selective the bacteria were as a delivery vector. For this, all cells 

were gated in terms of FLAG positivity (figure 4.3B, left) and then analysed through 

macrophage markers (figure 4.3B, right). Within the confines of this pilot study 17% 

of all cells in the tumour were deemed to be transfected by the bacteria. Of these, 

20% were definitely macrophages (stained double positive) while another 10% (Q1 

and Q4) could also be of macrophage origin. 68% of FLAG
+
 cells (Q3) were not 

positive for either macrophage marker however. The FLAG 
+
 cells were detected at 

day two only. No FLAG
+
 cells could be detected at day four or beyond (figure 4.3 

and data not shown). 

This experiment demonstrated the ability of non-invasive bacteria to transfect 

TAMs in vivo and provided further information as to the cell-specificity of this 

delivery strategy. 
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Figure 4.3 Bacterial-mediated gene delivery in vivo. E.coli +/- FLAG-tagged plasmid 

were i.t. administered directly to CT26 tumours. Two days later, tumours were harvested and 

individual cells analysed for TAM transfection by FACS detection of FLAG. A) % FLAG
+
 

TAM: CD68
+
F4/80

+
 TAMs (left) were gated on FLAG positivity (right). B) % FLAG

+ 

which are TAM; FLAG
+
 cells (left) were gated on macrophage markers (CD68 and F4/80) 

(right). Each panel shows data from a single representative animal. 
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4.5.4 Influence of in vivo therapeutic gene delivery on intra-tumoural 

cytokine profiles 

Confident that the bacteria were capable of transfecting 20% of TAMs in the tumour, 

it was then examined if the therapeutic strategy could alter the immune phenotype 

within the tumour. E.coli +/- the IKK2-DN encoding plasmid, or PBS was i.t. 

injected to growing CT26 tumours. The cytokine profile within the tumour was 

assessed at three time points post treatment. Results are displayed in figure 4.4.  

Greatest differences overall were observed four days post treatment, and 

statistics for this time point are displayed in figure 4.4 (right panel). At day four, a 

significant change in cytokine levels could be attributed to the IKK2-DN gene. 

Cytokine changes invoked within the tumour involved significantly increased 

(p<0.05) IL-12, IL-1β, IL-6 and mKC, which is consistent with a pro-inflammatory 

response. 

The possibility that administration of E.coli without the IKK2-DN gene could 

also induce a change in cytokine profile was also explored (figure 4.4.). The effect of 

the bacterial vector alone was assessed by comparing the E.coli treatment group with 

mice that received PBS. The cytokine levels in the bacterial vector group varied 

widely across the different time points. For clarity each cytokine was interpreted 

individually; for IFN-γ the decrease at day 4 and the increase at day 7 were 

insignificant (p = 0.091 and p = 0.145 respectively). For IL-12p70 the decrease at 

day 7 was not significant (p = 0.234). The increase seen at day 7 for IL-1β was not 

significant (p = 0.102).  

The increases in IL-6 levels between PBS and E.coli groups at day 2 and day 

7 were not statistically significant (p = 0.245 and p = 0.05 respectively). Notably 

however, the further increases seen in IL-6 at these time points due to the IKK2-DN 

plasmid were not significant either (p = 0.509 and p = 0.796 respectively) and thus 

the change in IL-6 was attributed solely to the vector. This contrasts with IL-6 levels 

on day 4 where an increase can be attributed directly to the IKK2-DN plasmid (see 

above). 

The increases in mKC (PBS compared with E.coli) at day 2 and day 7 were 

statistically significant (p = 0.033 and p = 0.036 respectively). However inclusion of 

the IKK2-DN plasmid (PBS compared with E.coli + IKK2-DN) was not significant 
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at day 2 (p = 0.135) but significant at day 7 (p = 0.027). however on closer 

inspection the change attributable to IKK2-DN compared with the vector alone at 

day 7 was not significant however (p = 0.731). Therefore the changes in mKC at day 

2 and day 7 were attributed solely to the vector. This contrasts with mKC levels on 

day 4 where an increase can be attributed directly to the IKK2-DN plasmid (see 

above). The increase in mKC due to the bacterial vector alone on day 4 was not 

significant (p = 0.114).  

Overall, these data demonstrate that, with the exception of an increase in 

mKC at day 2 and day 7, the bacterial vector had a minimal effect on the intra-

tumoural cytokine profile. In contrast the bacterial vector carrying IKK2-DN 

induced a significant change in the cytokine profile (p < 0.05) within the tumour.  
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Figure 4.4 Cytokine profile following bacterial delivery of IKK2-DN. Balb/c mice 

bearing s.c. CT26 tumours were treated with PBS, E.coli or E.coli + IKK2-DN plasmid. The 

cytokine profile within the tumour was determined using a mouse pro-inflammatory 

multiplex plate. Levels are expressed as the mean +/- SEM for 3 mice per group. The left 

panel displays individual cytokine profiles at three distinct time points post bacterial 

administration. The right panel focuses on day four where the greatest change in cytokine 

levels was detected. Statistics compare the two bacterial treated groups where one group 

received the therapeutic IKK2-DN gene and the other did not. *indicates p< 0.05. 

**indicates p< 0.005. Sample in this context refers to a representative portion of each 

tumour corresponding to 250 µg of tissue. 
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4.5.5 Influence of in vivo therapeutic gene delivery on tumour growth 

To determine if this immune response translated to a gross tumour growth response, 

tumour volume was monitored for 14 days following bacterial administration. No 

change in tumour volume could be detected between the different groups. At any 

time point a significant difference in average tumour volume could not be detected 

between PBS and E. coli groups (p > 0.257) or between E. coli and IKK2-DN groups 

(p > 0.327) (figure 4.5).  
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Figure 4.5 The effect of NFκB pathway modulation on tumour growth. Balb/c mice 

bearing s.c. CT26 tumours were treated with PBS, E.coli or E.coli carrying an IKK2 

dominant negative plasmid. Tumour volumes were determined at various time points and 

expressed as the mean +/- SEM (n=3 mice per group).  
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4.6 Discussion  

 

In this study proof of principle was demonstrated for the use of non-invasive bacteria 

as gene delivery vectors to immune cells. Delivery capability was initially validated 

in vitro using a differentiated human monocyte cell line and this could be replicated 

in vivo using a subcutaneous tumour model. Evidence was also supplied of an 

enhanced anti-tumour immune response secondary to bacterial delivery of a 

therapeutic gene – this response can most likely be attributed to an altered 

macrophage phenotype due to manipulation of the NFkB pathway. It is anticipated 

that further improvements to this therapeutic approach will pave the way for reduced 

cancer morbidity and extended survival in pre-clinical models and beyond. 

 

Bacterial vector colonises the tumour; The hypothesis that non-invasive bacteria 

could be used as gene delivery vehicles to reach phagocytic cells was tested. Proof of 

principle was demonstrated in vitro but before in vivo validation the behaviour of 

non-invasive and non-pathogenic bacteria following intra-tumoural injection was 

characterised. It was important to know if the bacteria would survive in this 

environment and if so would they colonise? Figure 4.2 confirmed that the bacteria 

colonised the tumour. This represented an important issue in designing the 

therapeutic protocol; colonisation implied that a steady supply of the bacteria and 

hence the therapeutic would be available to phagocytic cells in the tumour. This 

suggested that a single bacterial administration would be sufficient and that re-

treatment would not be required. That said whole animal imaging did not provide 

any information as to which regions of the tumour (e.g. viable or non-viable) had 

been colonised. This represents an important question for further development of a 

therapeutic protocol (see below). Such a question could be readily answered using 

immuno-histochemical techniques.  

 

TAM modulation in situ; The work in this study is predicated upon a previous study 

where the phenotype of macrophages was manipulated ex vivo by two different 

methods
5
; bone marrow-derived macrophages (BMDMs) were harvested from mice 

carrying a “floxed” IKK2 allele and transduced with adenovirus carrying a Cre 
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recombinase to generate IKK2-null macrophages. Alternatively BMDMs or TAMs 

were infected with adenovirus carrying a dominant-negative inhibitor of IKK2 

(IKK2-DN). The therapeutic potential of NFκB manipulation in macrophages was 

demonstrated in the ability to induce regression of existing tumours. However their 

approach depended on ex vivo transduction of sorted macrophages as no in vivo cell-

specific delivery mechanism was furthered. Recovery of TAMs from the majority of 

patient tumours is not feasible but interestingly the same therapeutic benefit could be 

achieved using syngeneic bone marrow-derived macrophages (BMDMs). It is 

important to note that IKK2 targeting in BMDMs most likely did not represent re-

education as these macrophages are unlikely to be polarised – rather IKK2 targeting 

prevents their polarisation when they reach the tumour. That said, autologous 

transplants of ex-vivo-modified BMDMs are laborious and technically-demanding 

and may not be financially feasible.  

Hence a strategy to reprogramme TAMs from an M2 to an M1 phenotype in 

situ was devised. This strategy was successful to a certain extent, although only 20% 

of TAMs were reached. The reason for this relatively low transfection efficiency of 

the target population may rest in the dissimilar localisation patterns of macrophages 

and bacteria within the tumour; although still a contentious topic, bacteria are 

thought to localise to hypoxic regions (reviewed in section 1.3.4); macrophages on 

the other hand are widely disseminated throughout the tumour mass although TAMs 

have been found within the hypoxic regions of a wide array of human tumours and 

experimental models 
1
. However if the bacteria localise only to hypoxic regions the 

remaining non-hypoxic macrophages will remain untransfected. 

 

Selectivity of delivery strategy; Perhaps of greater concern than the low transfection 

of macrophages is the knowledge that of the 17% of FLAG
+
 cells only 20% were 

macrophages. Enumerating a further 10% as macrophages due to non-concordance 

between the CD68 and F4/80 markers 70% of the cells transfected can still be 

defined as non-target cells (figure 4.3B). This could be anticipated however; 

choosing a non-invasive strain of bacteria was predicted to substantially restrict 

expression of the transgene. Only phagocytic cells which scavenged the bacteria 

would receive the transgene and large populations of tumour cells and lymphocytes 

for example would be exempt. However no means to limit phagocytosis or 
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expression to one particular phagocytic cell type were included. Other phagocytes 

such as dendritic cells are predicted to constitute the majority of the remaining 70% 

of FLAG
+
 cells. How these other phagocytes respond to NFκB pathway modulation 

remains to be fully elucidated. In the broader sense however it should be noted that 

reaching these other non-target phagocytic cells may be beneficial in the context of a 

non-specific activation the immune system within the tumour microenvironment.  

 

Interpretation of the cytokine response; Regardless of the cellular origin, the 

cytokine profile achieved of increased IL-12, IL-1β, IL-6 and mKC was consistent 

with a pro-inflammatory phenotype and could be expected to invoke an anti-tumour 

immune response. IL-12 provokes a T helper 1 immune response and is known to 

increase the proliferation and cytotoxicity of T and natural killer cells 
13

. Indeed 

over-expression of IL-12 from macrophages introduced with human prostate cancer 

cells into mice enhanced MHC expression in TAMs with subsequent increased T cell 

infiltrate and anti-tumour immune response 
14

. The IL-1 cytokines, of which IL-1β 

greatly predominates, upregulate adhesion molecules on vascular endothelial cells 

and stimulate production of chemotactic cytokines such as IL-8 
15

. This aids in the 

attachment of lymphocytes to the endothelium where they extravasate and migrate 

into the tumour mass. IL-1β is also a significant stimulator of IL-6 production by 

other cells. Although IL-6 is considered a T-helper 2 cytokine it can be involved in 

tumour rejection by augmenting eosinophil function and promoting B cell antibody 

production
16

. mKC, also known as CXCL1, is thought to play a role in 

tumourigenesis and tumour progression
17

. Thus the elevated levels are difficult to 

rationalise in the context of increased levels of the other anti-tumour cytokines. 

Taken together, this cytokine milieu would be expected to promote tumour 

regression. Indeed induction of a similar pro-inflammatory cytokine response (IL-

12
high 

and IL-10
low

) invoked solely by modulation of the NFκB pathway in 

macrophages inhibited tumour growth as detected by luminescence in an ID8-luc 

ovarian model 
5
. This benefit could not be rationalised by the transient elevation in 

nitric oxide production and compelling evidence was advanced to support an IL-12-

mediated increase in natural killer cell recruitment.  

Demonstration of reduced IL-10 (or indeed TNF-α) levels within the tumour 

following IKK2-DN delivery would further support a change in immune response. 
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However, even in the untreated animals IL-10 was below the level of detection (0.3 

pg/µl). Therapeutic success would be expected to further reduce IL-10 levels 

rendering it more difficult to detect IL-10 in treated animals. Inclusion and detection 

of spiked controls (purified IL-10 protein with tumour homogenate) in the assay 

protocol rules out the possibility of anything in the tumour homogenate masking and 

hence blocking the detection of IL-10. Thus the inability to detect IL-10 was not 

attributable to a technical issue with the assay. Rather it would seem the levels were 

genuinely low within the tumour. Indeed levels lower than 0.3 pg/µl could be 

deemed inconsequential in terms of the global immune response.  

 

Limitations of this experimental strategy; While inhibition of tumour growth was 

observed in the aforementioned study, no change in tumour growth was detected in 

this study. Explanations for this include the different tumour models employed, the 

different strategies for monitoring therapeutic responses and the persistence of the 

different therapeutic strategies investigated; 

i) This study used the CT26 s.c. xenograft model which displays a rapid 

growth rate, providing only a short window of opportunity for therapeutic 

intervention and monitoring of responses (< 2 weeks). This is in stark contrast to the 

slow growing ID8 model employed by Hagemann et al where this window stretches 

to nearly 8 weeks. 

ii) While an altered cytokine profile was detected tumour volume was the 

only parameter employed to assess the consequences of this in terms of a global 

tumour response. This parameter represents a poor indicator of cell viability as live 

and dying/metabolically inactive cells are measured indiscriminately. FACS analysis 

of apoptotic markers would be useful to indicate if the therapeutic strategy had 

invoked cell death. Alternatively measurements of tumour density such as those 

undertaken clinically by MRI may provide evidence of therapeutic success at a 

whole tumour level. Furthermore an expanded study, incorporating a survival curve 

may generate further evidence of therapeutic benefit. Moreover tumour volume was 

determined rather subjectively using a callipers to measure externally in two 

dimensions. This approach does not account for subtle changes in tumour depth. 

In contrast Hagemann et al used the ID8-luc ovarian cancer model where 

tumour progression/regression was indicated by changes in luminescence. Non-
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viable cells were omitted as they were incapable of expressing the luciferase gene 

necessary for light and hence the resolution was likely far superior. Indeed with the 

advent of newer, more powerful optical imaging technologies as few as 3 

luminescent cells can be detected in the live mouse 
18

. In the absence of a 

luminescent CT26 model, the intervening steps in the therapeutic response (between 

cytokine changes and a macroscopic tumour response) could be followed; as 

reported an IL-12-driven increase in natural killer cell recruitment could be detected 

by FACS 
5
.  

iii) Hagemann et al introduced genetically manipulated macrophages into the 

tumour microenvironment. One could reasonably expect that large numbers of these 

macrophages would remain viable and this is borne out by the cytokine profile which 

is still skewed towards an M1 phenotype 14 days later. This sustained alteration in 

the cytokine balance is likely to lead to the recruitment of other immune cells (such 

as natural killer cells) with a subsequent macroscopic tumour response (as observed). 

In contrast bacteria were directly administered to the tumour microenvironment to be 

scavenged by phagocytic cells in this study. Although the bacteria colonised the 

tumour (figure 4.2) expression of the therapeutic plasmid was short-lived following 

delivery in this fashion as the FLAG-tagged protein could be detected in 

macrophages at day 2 but not day 4 after bacterial administration. This is supported 

by the cytokine data, where, allowing for a time lag between IKK2-DN expression 

and a cytokine response, a pro-inflammatory response could be detected at day 4 but 

had subsided by day 7. Thus the transient interruption of NFκB signalling and 

cytokine alteration may have been insufficient to induce a global tumour response. It 

is also likely that manipulation of just 20% of TAMs was insufficient to achieve a 

global tumour response.  

The transient expression of the FLAG-tagged IKK2-DN protein and short-

term cytokine alteration appears to contradict the colonisation data. However this 

phenomenon may be rationalised by the contrasting localisation patterns of the 

bacteria and TAMs – TAMs are predominantly found within viable, well-

vascularised compartments while the bacteria are thought to prefer hypoxic regions 

in the tumour. The bacteria and TAMs may well have been co-localised in a viable 

region following initial intra-tumoural introduction of the bacteria and this would 

explain the initial FLAG expression and detection. However it is likely that the 



   

196 

 

bacteria did not survive long term and/or were scavenged by phagocytic cells in 

these viable regions and their number was significantly depleted. In contrast bacteria 

within hypoxic regions thrived and were unhindered by phagocytic cells such as 

macrophages. It is these bacteria that are likely represented by the colonisation data 

at later time points (e.g. day 5 in figure 4.2).  

 

Therapeutic improvements; Improvement upon this therapeutic approach could be 

attempted from many angles. Although not justified based on the colonisation 

evidence one way of dealing with the transient nature of the intervention would be to 

retreat perhaps two or three days later with the hope of targeting viable tumour 

regions and maintaining the altered cytokine profile. As alluded to earlier, the 

indiscriminate delivery to many phagocytic cell types could prove problematic – this 

could be overcome by use of a macrophage-specific promoter such as the proximal 

part of the CD68 promoter 
19

. Increasing the potency with which the therapy blocks 

the NFκB signalling pathway could enhance the pro-inflammatory response and 

hence the disease outcome. Potency might be improved by use of an RNAi mediator 

against IKK2 for example. 

 

Conclusion; In summary, the concept presented in this study represents a paradigm 

shift in the approach to gene therapy. Since its inception as an experimental therapy, 

gene therapy has exclusively focused on delivery vectors as active agents and 

explored methodologies to enhance both their efficacy and specificity of delivery to 

target cells 
20

. Although the vector employed in this study has the capability to 

actively seek out the target organ, once within the hypoxic tumour 

microenvironment, it can be viewed as a passive delivery agent, prey waiting to be 

scavenged by predatory phagocytic cells. The stereotypical vector-target cell 

interaction is reversed with the target cell instigating the engagement. The immune 

response to a bacterial infection is hijacked for therapeutic gain. To our 

knowledge,this is the first employment of non-invasive bacteria for gene delivery to 

cells within tumours. A credible path for clinical translation of therapeutics targeting 

NFκB signalling in macrophages is offered. Moreover the data presented here 

support this gene therapy approach for macrophage manipulation in cancer, yet the 



   

197 

 

approach could easily be extended to other settings such as infectious disease or 

autoimmune conditions. 
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Overall, the work presented here describes two novel approaches to abrogating the 

tumour-induced immune suppression that constrains the immune response to a 

tumour. The work can be subdivided based on the target cell population - regulatory 

T cells or tumour-associated macrophages; 

 

1) Targeting regulatory T cells 

 An in vitro mFOXP3 expression assay was developed and optimised 

 An endogenous miRNA (miR-31) wasinvestigated as a potential RNAi 

mediator against mFOXP3 and confirmed to be incapable of silencing this 

target, in contrast to its human homologue 

 Novel RNAi mediators were designed and tested, and two candidates were 

confirmed to significantly silence mFOXP3 

 The best candidate RNAi mediator, in addition to a novel, validated 

scrambled siRNA, were embedded within DNA-based artificial miRNA 

cassettes 

 The artificial miRNA cassettes were incorporated into lentiviral vector 

particles 

 Lentiviral vector gene delivery parameters were optimised in vitro 

 Lentiviral-mediated artificial miRNA knockdown was achieved against 

mFOXP3 in vitro 

 Lentiviral-mediated gene delivery to a growing B16OVA tumour was 

established using an FLuc reporter gene construct 

 The optimal time to target TRegs within this tumour model was identified 

 Mice were treated intra-tumourally with lentiviral vector carrying the 

artificial miRNA and therapeutic responses analysed. However, no 

significant therapeutic response was observed. 

 

2) Targeting tumour-associated macrophages 

 Non-invasive bacteria were shown to mediate „spontaneous‟ gene delivery to 

macrophages in vitro 

 Following intra-tumoural injection, non-invasive bacteria were confirmed to 

colonise the tumour 
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 In vivo transfection of tumour-associated macrophages by non-invasive 

bacteria was established and the selectivity of this delivery strategy 

investigated 

 A pro-inflammatory cytokine response was invoked within the tumour 

following bacterial delivery of a gene targeting the NFκB pathway suggesting 

„re-education‟ oftumour-associated macrophages 

 

The outputs from this project provide much justification for continuation of this 

work. With regard the Treg targeting approach, while no therapeutic response was 

observed within the limitations of the model utilised, the data generated suggest 

value in the strategy. The RNAi mediator identified was shown to be highly effective 

in vitro, and it was successfully incorporated into a robust artificial miRNA system. 

This system minimises any potential issues with intra-cellular processing by the 

endogenous RNAi machinery. ,It seems likely that the success of the putative 

therapeutic in vivo was undermined at the delivery stage, in terms of insufficient 

numbers of transduced target cells. Future work might involve utilisation of 

modified or indeed alternative vector systems. The artificial miRNA system confers 

flexibility such that the RNAi mediator can readily be incorporated into most vector 

systems. The future deployment of a targeted lentiviral vector system would improve 

both the efficiency and specificity with which the RNAi mediator is delivered to the 

target, regulatory T cell population and would seem especially justified. 

 

Similarly, the targeting of tumour-associated macrophagesfor therapeutic benefit 

appears very promising. The use of non-invasive bacteria as a delivery vector to 

reach this population represents a novel concept in gene therapy whereby the vector 

is passive rather than active. Proof of delivery was demonstrated and an 

immunological response was identified following delivery of a validated therapeutic 

gene. Thus, future work would involve refinements to this therapeutic strategy; other 

bacterial strains could be explored with a view to improving delivery efficiency, a 

more potent therapeutic could be employed, while incorporation of a macrophage-

specific promoter would improve selectivity of gene expression. Any future work 

would benefit from a more sensitive in vivo tumour model such as the ovarian ID8-

luc2 model, which features an abundance of TAM. While a cytokine response was 
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readily detectable using the CT26 tumour model, macroscopic tumour improvements 

were difficult to discern. A more sensitive model would better guide therapy 

optimisation. Moreover, the advent of transgenic “reporter mice” coupled to 

improvements in optical imaging technology promise more powerful in vivo models 

of cancer and its treatment. Of relevance to this work is the emergence of NFκB 

reporter mice. Adoptive transfer of sorted macrophages from these mice to “non-

reporter” animals with growing ID8-luc2 tumours would provide aformidable tool 

for assessment of the therapeutic response at both the gene (NFκB) and macroscopic 

tumour level (luminescence) simultaneously. 

 

Another future project might involve combining aspects of both therapeutic 

strategies explored in this thesis. The recent identification of a population of 

FOXP3
+
 macrophages within the tumour microenvironment presents this 

opportunity. Although the contribution of this population to the dynamic interplay 

between cancer and the immune system is still being characterised, it is suggested 

that silencing FOXP3 expression would also be beneficial. Thus combining the 

validated RNAi mediator with the bacterial vector system would seem rational.  
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