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Abstract 

This thesis is focused on transition metal catalysed reaction of α-diazoketones leading to 

aromatic addition to form azulenones, with particular emphasis on enantiocontrol through 

use of chiral copper catalysts. 

The first chapter provides an overview of the influence of variation of the 

substituent at the diazo carbon on the outcome of subsequent reaction pathways, focusing 

in particular on C-H insertion, cyclopropanation, aromatic addition and ylide formation 

drawing together for the first time input from a range of primary reports. 

Chapter two describes the synthesis of a range of novel α-diazoketones. Rhodium 

and copper catalysed cyclisation of these to form a range of azulenones is described. 

Variation of the transition metal catalyst was undertaken using both copper and rhodium 

based systems and ligand variation, including the design and synthesis of a novel 

bisoxazoline ligand. The influence of additives, especially NaBARF, on the 

enantiocontrol was explored in detail and displayed an interesting impact which was 

sensitive to substituent effects. Further exploration demonstrated that it is the sodium 

cation which is critical in the additive effects. For the first time, enantiocontrol in the 

aromatic addition of terminal diazoketones was demonstrated indicating enantiofacial 

control in the aromatic addition is feasible in the absence of a bridgehead substituent. 

Determination of the enantiopurity in these compounds was particularly challenging due 

to the lability of the products. A substantial portion of the work was focused on 

determining the stereochemical outcome of the aromatic addition processes, both the 

absolute stereochemistry and extent of enantiopurity. Formation of PTAD adducts was 

beneficial in this regard.  

The third chapter contains the full experimental details and spectral characterisation 

of all novel compounds synthesised in this project, while details of chiral stationary phase 

HPLC and 1H NMR analysis are included in the appendix. 
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1.1 Introduction 

α-Diazocarbonyl compounds have become very versatile in the construction of key 

organic molecules since their first generation over 100 years ago.1,2 Most notably, the last 

30 years has seen an acceleration in the progress of research into the structure, synthesis 

and reaction pathways of these compounds.3-7  

The transition metal catalysed reaction of diazo compounds generates a metal-

complexed intermediate, termed a carbenoid. Such carbenoids generated in situ can 

undergo a broad spectrum of chemical transformations, including cyclopropanation, X-H 

insertion aromatic addition, ylide formation, dipolar cycloaddition and dimerisation 

(Scheme 1.1). 
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While the chemistry of α-diazocarbonyl compounds has been extensively 

reviewed,4-36 the influence of substitution at the reacting diazo carbon has not been 

discussed in a systematic fashion (Figure 1.1). Therefore, this introductory chapter will 

discuss the effects in variation of the substituent (R’) at the diazocarbon on the 

chemoselectivity and stereoselectivity (diastereoselectivity and enantioselectivity) of a 

number of diazocarbonyl transformations. Specifically, substitution effects in 

transformations including C-H insertion, cyclopropanation, aromatic addition and ylide 

formation followed by either [2,3]-sigmatropic rearrangement or dipolar cycloaddition, 

will form the basis of this chapter. 

 

 

 

Figure 1.1 

In general, the presence of a second electron withdrawing substituent on the diazo 

carbon modifies significantly the reactivity through both inductive and resonance effects. 

Where diazocarbonyl compounds are flanked by a second carbonyl group or indeed 

sulfone or phosphonate moieties, the stabilities of the compounds are noticeably 

enhanced. Significant impacts on chemo-, regio- and stereoselectivity are seen on varying 

the nature of the substituents. 

1.2 C-H insertion  

Insertion reactions of carbenes into C-H bonds have gained significant attention since the 

first discovery by Meerwein, Rathjen and Werner.37 The insertion of a carbene into an 

unactivated C-H bond is a well-known transformation of free carbenes. While the 

transformation is attractive for carbon-carbon bond formation, its main challenge for 

synthetic development is control of the insertion selectivity. This insertion process can 

proceed either by an intermolecular or intramolecular pathway.7 The intermolecular C-H 

insertion reaction of α-diazocarbonyl compounds has not generally been regarded as a 
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synthetically efficient reaction,7,35 while in contrast, intramolecular C-H insertion 

reactions provide a general approach to a wide array of compounds in a highly selective 

manner.18,27 The intermolecular version of the reaction was thought to have been 

hampered by competing intramolecular reactions and lack of selectivity of the 

conventional metal carbenoid intermediates.7,35 However, a discovery by Davies 

highlighted that highly enantioselective intermolecular C-H reactions can be achieved 

with aryldiazoacetates and vinyldiazoacetates, precursors to donor/acceptor carbenoids.38 

1.2.1 Intermolecular C-H Insertion 

Davies’ research team has had a long-standing interest in the chemistry of rhodium-

stabilised vinylcarbenoids.39 Classic carbenoids which contained acceptor groups like the 

carbenoid derived from ethyl diazoacetate have been widely applied to C-H insertion 

reactions. Interestingly, the tandem cyclopropanation/Cope rearrangement between vinyl 

carbenoids and dienes led Davies to the fact that carbenoids flanked by an acceptor group 

and a donor group displayed much more selectivity than the conventional carbenoids.40 

Recent studies have shown that rhodium-stabilized carbenoids, substituted with 

both a donor and an acceptor group, are capable of a range of new and highly selective 

transformations (Figure 1.2).24,41 The reduced reactivity of donor/acceptor carbenoids 

makes them capable of undergoing a range of stereoselective intermolecular 

transformations Furthermore, due to their enhanced stability they are less susceptible to 

dimer formation.42 
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The influence of substitution at the diazo carbon on chemoselectivity in 

intermolecular C-H insertion reactions was first reported in 1998.43 Davies and co-

workers illustrated that the outcome of the rhodium pivalate catalysed reaction of 

diazoacetates 1-4 in the presence of cyclohexane 5 was highly dependent on the 

carbenoid structure (Scheme 1.2).43 Each of the diazo compounds used resulted in the 

formation of significant amounts of C-H insertion products. However, in the case of ethyl 

diazoacetate 4, carbene dimerisation predominated to give fumarates 6 or maleates 7. No 

dimerisation products were formed for diazoacetates 1-3. 

 

            

 

      1-4      6    7 

    5 

        

 

 

Entry Substrate R R1 Yield (%) of 

6 

Yield (%) of 

7 

1 1 CH=CHCO2Et Et 67 0 

2 2 Ph Me 94 0 

3 3 COMe Me 65 0 

4 4 H Et 10 67 

 

Scheme 1.2 
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Both competing intermolecular and intramolecular C-H insertion reactions were 

reported as a result of variation of the substitution pattern (Scheme 1.3).43 Thus, reaction 

of vinyldiazoacetates 8 and 10 led to some unprecedented carbenoid transformations. The 

reaction of 8 in a cyclohexane 5 solution led to intramolecular C-H insertion to form 

indene 9, however, the reaction of the corresponding trans-isomer 10 gave a mixture of 

the intermolecular C-H insertion product 11 (33% yield) and the cyclopropylindene 

derivative 12 in a 22% yield (Scheme 1.3).  

 

     

8                   9    

5 

    

    

 

10           11 

5 

 

 

         12 

Scheme 1.3 

Müller later investigated the ratio for intermolecular C-H insertion versus 

intermolecular cyclopropanation products, upon reaction of cyclohexene 13 with a range 

of diazoacetate esters 2, 3, 14 and 15 (Scheme 1.4).44 Müller varied the parameters which 

are known to influence carbene selection, notably the metal, ligand and substituents on 

the diazo compound. Specifically, variation of the substituent at the diazo carbon had an 

interesting effect on the chemoselectivity. The reaction of 14 produced neither insertion 

product 16 nor cyclopropanation product 20. Dimethyl diazomalonate 3 gave a 32:68 
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O

Rh Rh

O

CH3

Rh2(OAc)4

ratio in favour of the cyclopropanation product 21. The highest chemoselectivity was 

observed with methyl-2-diazophenylacetate 2 which afforded a ratio of 18:22, 75:25 with 

rhodium acetate. Interestingly, the introduction of a p-nitro substituent to the diazo 

compound 15 only had a minor effect on the product ratio. 

 

 

               

      

13         2, 3, 14, 15        16-19  20-23 

 

 

 

 

 

 

Diazoketone R 
Insertion 
Product 

Cyclopropanation 
Product 

Combined 
Yield (%) 

Ratio 

14 Me 16 20 0 - 

3 COMe 17 21 96 17:21, 38:62 

2 Ph 18 22 50 18:22, 75:25 

15 4-NO2-Ph 19 23 47 19:23, 69:31 

 

Scheme 1.4 

Similarly, the impact of the substituent at the diazo carbon on chemoselectivity was 

also observed in the intermolecular C-H insertion of diazoesters 4 and 24 with 1,4-

cyclohexadiene 25 (Scheme 1.5).44 The reaction of 4 in the presence of Rh2(OAc)4 

resulted exclusively in the formation of cyclopropane 26, while, ethyl 2-diazopropionate 

24 in turn reacted by insertion at the allylic position to afford 29 in a 82% yield. 
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       4, 24                 25                 26, 27            28, 29 

 

Diazoketone R Cyclopropanation 
Product 

Insertion 
Product 

Ratio Combined 
Yield (%) 

4 H 26 28 26:28, >98:2 90 

24 Me 27 29 27:29, <2:98 82 

 

Scheme 1.5 

 The reaction of methyl phenyldiazoacetate 2 with a 1,3-cyclohexadiene 30 system 

was found to produce a 4:1 mixture of C-H activation product 32a and cyclopropanation 

product 33a (Scheme 1.6).45 Interestingly, a switch in chemoselectivity was observed for 

the reaction with methyl thiophen-3-yldiazoacetate 31 in which the formation of the 

cyclopropane 33b product was favoured by a ratio of 1.3:1 over C-H activation 32b. The 

enantioselectivity in the C-H insertion is influenced by the nature of the substituent R as 

illustrated in Scheme 1.6. 
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    2, 31   

 

       30 

      32a-b         33a-b 

 

    

 

 

       

 

 

Scheme 1.6 

An unprecedented carbenoid reaction was reported by Davies for the reaction of 

1,3-cyclohexadiene 30 with vinyldiazoacetate 7 (Scheme 1.7).45 The reaction did not 

afford the expected C-H activation product, instead generating the 1,4-cyclohexadiene 

product 34. A second product 35 arising from the tandem cyclopropanation/Cope 

rearrangement was also obtained as shown in Scheme 1.7. Thus the introduction of the 

vinyl group in 10 substantially altered the reaction pathway compared to the reaction of 

31 in Scheme 1.6. 

 

 

  Product 32a-b  Product 33a-b 

Diazoester R Yield 
(%) 

de 
(%) 

ee 
(%) 

Ratio  Yield 
(%) 

de 
(%) 

ee 
(%) 

2 Ph 48 60 92 32a:33a, 4:1 12 − − 

31 

Thio
phen-
3-yl 

23 − 70 32b:33b 1:1.3 29 − 73 
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   10 

 

30      34 5.3:1  35 

Scheme 1.7 

3,5-Cycloheptatriene 39 underwent highly selective C-H insertion to form 41-44 

with a wide variety of aryldiazoacetates 2 and 36-38 in 53-64% yield and 91-95% ee 

(Scheme 1.8).46 No competing cyclopropanation reactions to form 40 were observed, 

although this is the dominant reaction with ethyl diazoacetate 4.46 

 

 

  4                 2, 36-38 

   

40                  39     41-44  

Diazoester Ar Product Yield (%) ee (%) 

2 C6H5 41 55 95 

36 p-ClC6H4 42 64 95 

37 p-MeC6H4 43 60 94 

38 2-naphthyl 44 53 91 

 

Scheme 1.8 
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Ph

N2

CO2Et

Rh2(S-DOSP)4,
50oC, 55%

PhEtO2C

95% ee

N2

CO2Et

Rh2(S-DOSP)4,
23oC, 56%

Ph
Ph CO2Me

99% ee

N2

CO2Et

Rh2(S-DOSP)4,

23oC, 49%

6% ee

CO2Et

 Comparison of the reaction of ethyl diazoacetate 4 with the corresponding phenyl 

and vinyl substituted diazoacetates 46 and 48 with 1,3-cycloheptatriene 39 reveals 

interesting differences as reported by Davies and co-workers.46 Cyclopropanation is the 

predominant pathway with the simple ethyl diazoacetate 4, albeit with very low 

enantiocontrol. In contrast, C-H insertion is the predominant pathway with the more 

substituted diazo derivatives 46 and 48 with excellent enantiocontrol through the use of 

the rhodium prolinate catalyst [Rh2(S-DOSP)4]. Interestingly, reaction with vinyl 

diazoacetate 48 proceeds via a combined C-H activation/Cope rearrangement. 

 

      4 

       

39      45 

 

           46 

 

   39      47 

 

         48 

 

   39 

          49 

Scheme 1.9 

In 1997, Davies and co-workers reported the first asymmetric intermolecular C-H 

insertion reaction using metal carbenoid intermediates (Scheme 1.10).38 Reaction of a 

range of aryl diazoacetates 2, 36 and 50 by Rh2(S-DOSP)4 with cyclohexane 5 were 

shown to give products 51-53 with high levels of enantioselectivity and in excellent 
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yields. In Davies’ study, asymmetric induction was noted to increase upon changing from 

an electron donating (OMe, 67% ee) to an electron withdrawing (Cl, 86% ee) aromatic 

substituent for the diazoacetate precursors 2, 36 and 50. 

 

2, 36, 50          5                   51-53 

Entry Diazoacetate X Product Yield (%) ee (%) 

1 2 H 51 83 81 

2 36 Cl 52 91 86 

3 50 OMe 53 85 67 

 

Scheme 1.10 

A similar modest electronic effect on the enantioselectivities, upon varying the 

substituent at the reactive diazo position, has also been reported across a range of 

substrates.47-49 For example, successful C-H activation of primary benzylic positions was 

accomplished with a range of substituted diazoacetates 2, 50 and 54 to form 2,3-

diarylpropanoates 56a-f (Scheme 1.11).50 A notable trend involving the increase of yields 

and enantioselectivities obtained was observed for aryldiazoacetates possessing electron 

withdrawing groups over those possessing electron donating groups. It appears that those 

carbenoids which have slightly more electrophilic character tend to undergo more 

effective C-H activations, coupled with enhanced enantioselection. 
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              2, 50, 54 

 

 

    55a-b      56a-f 

Product R1 R2 R3 Yield (%) ee (%) 

56a OMe H Br 71 74 

56b OMe H H 67 71 

56c OMe H OMe 35 67 

56d OTBS OMe Br 80 77 

56e OTBS OMe H 80 75 

56f OTBS OMe OMe 30 67 

 

Scheme 1.11 

1.2.2 Intramolecular C-H Insertion 

Intramolecular C-H insertion reactions allow remote functionalisation through C-C bond 

formation. This reaction provides a general approach for the synthesis of a variety of 

carbocyclic and heterocyclic structures in a regio- and stereocontrolled manner. In most 

cases, the intramolecular C-H insertion favours the formation of a five-membered ring. 

Regio- and stereocontrolled C-H insertions have been employed for the contruction of 

cyclopentanones,51-55 dihydrofuranones,56,57 γ-lactones,58 γ-lactams,59-62 

tetrahydrofurans,63,64 and tetrahydrothiophenes.65 
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As seen in intermolecular C-H insertion reactions, the enhanced stability of 

donor/acceptor substituted carbenoids results in highly regio- and stereoselective 

intramolecular C-H activation reactions. 

The C-H insertion reaction of α-diazoamides is highly dependent on the α-

substituents of the diazo carbon as well as N-substituents.66-68 Doyle demonstrated the 

influence of carbene substituents on chemoselectivity using the dirhodium(II) catalysed 

reaction of 57 (Scheme 1.12). When R = H, only aromatic cycloaddition occurs with 

Rh2(OAc)4 catalysis but when R = COCH3, only the C-H insertion product β-lactam 37 is 

observed.68 

 

 

 

 58      57     59 

Scheme 1.12 

A similar dramatic influence of diazo carbon substituents on chemoselectivity was 

observed for the rhodium acetate catalysed reaction of diazoamide 60 and 61 (Scheme 

1.13).68,69 For diazoamide 60 (where R=COCH3), β-lactam formation competes with the 

production of γ-lactam in a ratio of 49:51, interestingly, the aromatic cycloaddition 

product is completely absent. However, when R=H as in 61, the cycloaddition product 64 

is formed along with the γ-lactam 65 in a ratio of 68:32. It is clear that the presence of the 

acetyl group completely closes the pathway to aromatic cycloaddition. 
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 60, 61 

       62   63 

 

 

 

     64    65 

 

Entry Diazoamide R Yield (%) 
Product Ratio 

62 63 64 65 

1 60 COCH3 94 49 51 − − 

2 61 H 85 − − 68 32 

 

Scheme 1.13 

As discussed in Scheme 1.13, Wee reported that the C-H insertion of α-diazo-α-

acetoacetamide 60 afforded a mixture of β- and γ-lactam 62/63 (Scheme 1.13).69 

Interestingly, Jung and co-workers have shown that the C-H insertion reaction of the 

diazo substrate 66 using Rh2(OAc)4 affords the trans-γ-lactam 68 exclusively in 95% 

yield without the formation of β-lactam 69 or aromatic cycloaddition product 70 (Scheme 

1.14).70,71 This result implies that the insertion reaction of α-diazo-α-

(phenylsulfonyl)acetamide 66 proceeds via a later transition state as a result of the extra 

stabilization by the phenylsulfonyl group. Afonso expanded the scope of this 

intramolecular C-H insertion by applying the α-diazo-α-(dialkylphosphoryl)acetamide 

67.71 As 67 is less electron withdrawing than its carbonyl counterpart, it stabilises the 

electrophilic carbenoid carbon, thereby causing the insertion reaction to proceed through 
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a relatively late transition state, with the resulting selectivity in line with the reported 

results for the phenylsulfonyl group. 

 

 

 

 

60, 61, 66, 67      68    69    70 

Entry 
Diazo 

Precursor 
R Yield (%) Ratio 68: 69: 70 

169 60 COCH3 94 51 49 − 

270 66 SO2Ph 95 100 − − 

368 61 H 85 32 − 68 

471 67 (EtO)2PO 81 100 − − 

 

Scheme 1.14 

In the chemically constrained system 71a-d, the presence of the electron 

withdrawing α-substituted 71a-c exclusively leads to C-H insertion to form 72a-c. In 

contrast, with the unsubstituted diazoamide 71d, the reaction pathway switches 

completely to aromatic addition with no evidence of C-H insertion in this instance 

(Scheme 1.15).61 
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       71a-d    72a-d        73a-d 

Entry Substrate R Yield 
(%) 

Product 72: 73 

1 71a PhSO2 91 100 − 

2 71b EtO2C 95 100 − 

3 71c MeCO 93 100 − 

4 71d H 84 − 100 

 

Scheme 1.15 

Similarly, in the more conformationally flexable N-BTMSM substituted 

diazoamides 74a-c only the C-H insertion products 75a and 75b were observed in the 

diazo compounds with a diazo ester or ketone moiety, while with the unsubstituted 74c, 

aromatic addition competed with C-H insertion (Scheme 1.16).62,72 

 

 

 

      74a-c         75a-c   76a-c 

 

Entry Diazo 
Substrate 

R Product Ratio 75: 76 

1 74a CO2Me 82 − 

2 74b Ac 86 − 
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X

Rh Rh

O

R

R=CH3, X=NH, Rh2(acam)4

R=C3F7, X=O, Rh2(pfb)4

R=CPh3, X=O, Rh2(TPA)4

3 74c H 65 34 

 

Scheme 1.16 

Ikegami investigated site control in the construction of a range 2-azetidinones via 

the C-H insertion process (Scheme 1.17).73 The cyclisation of α-diazoacetamide 77a with 

each of the rhodium catalysts produced 2-pyrrolidone 79a exclusively. However, 

introduction of the additional ketone and ester substituents in diazo compounds 77b and 

77c had a substantial impact on the regioselectivity of the C-H insertion resulting in most 

cases of in mixtures of β-lactams 78b-c and 79b-c. Significantly with Rh2(TPA)4, β-

lactam 78c was formed exclusively.  

 

  77a-c           78a-c   79a-c 

 

 

 

 

 

 

                                              Ratio 78: 79 

Substrate R Rh2(OAc)4 Rh2(acam)4 Rh2(pfb)4 Rh2(TPA)4 

77a H <1:>99 <1:>99 <1:>99 <1:>99 
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77b COCH3 50.50 25:75 50:50 45:55 

77c CO2CH3 69:31 33:67 84:16 >99:>1 

 

Scheme 1.17 

The Rh2(OAc)4 catalysed reaction of diazoamides 80a-d was carried out to assess 

the regioselectivity of the reaction (Scheme 1.18).74 As illustrated in Scheme 1.18, γ-

lactam formation is clearly influenced by the subtle electronic effects from the α-

substituent on the carbenoid carbon and also the O-substituent of the oxymethylene 

group. For diazoamide 80a, preferential C-H insertion to give the γ-lactam 81a was 

observed along with the minor β-lactam product 83a. Unexpectedly, with the 

unsubstituted diazoamide 80b, insertion at the ether C-H bond competes to form a 

mixture of lactams 81b and 82b. Reaction of 80c gave the γ-lactam 81c as the major 

product and 83c as the minor product in a 81c:83c, 80:20 ratio. Interstingly, for 

diazoamide 80d C-H insertion at the butyl group to give 81d was more favoured than the 

formation of γ-lactam 82d. Unexpectedly, the δ-lactam 84d was also obtained, albeit in 

low yield. 

 

 

 

       80a-d     81a-d    82a-d 

  

 

 

 

        83a-d   84a-d 
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Entry Diazo R R1 
Relative Yields (%) 

81 82 83 84 

1 80a Ac MOM 89 0 11 0 

2 80b H MOM 34 66 0 0 

3 80c Ac Piv 80 0 20 0 

4 80d H Piv 78 8 8 6 

 

Scheme 1.18 

The C-H activation reaction of α-diazoacetoacetamide 86 and α-methoxycarbonyl-

α-diazoacetamide 87 resulted in a highly selective β-lactam formation (Scheme 1.19).75 

In contrast, the reaction of diazoacetamide 85 gave a complex mixture of products, while 

cyclisation of 87 gave the β-lactam 90 in good yield. In the case of α-

diazoacetoacetamide 86 the product 89 was racemic, whereas the ester derivative gave 90 

in 90% ee at 23°C and 96% ee when conducted at 0 °C. These results highlight the 

dramatic effect the substituent adjacent to the carbenoid can have on not only the 

chemoselectivity of the intramolecular C-H insertion reaction but also the stereocontrol. 

 

 85-87      88-90 
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Diazo Substrate R Product Yield (%) ee (%) 

85 H 88 −a − 

86 COCH3 89 84 0 

87 CO2CH3 90 89 90 

87 CO2CH3 90 94 96b 

a. Complex mixture of products obtained. 

b. Reaction was carried out at 0oC 

Scheme 1.19 

Wee and co-workers investigated the intramolecular metallocarbenoid C-H 

insertion reaction of indoline diazoamides 91a-d, which possess a CH2X substituent (X = 

OSiMe2Bu-t, Me, NPh, OAc, N3 and SCH2CHCH2) at the C-2 position of the indoline 

nucleus (Scheme 1.20).76  

 

 

 

  91a-d       92a-d 
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Diazoamide R R1 Diastereoisomers 

Side 
Product 
93a, 93c 

 

91a H CO2Me, Exo-trans/Exo-cis 92a(48%;4.6:1), 
Endo-trans 92a (4.1%) 

39% 

91b H SO2Ph Exo-trans/ Exo-cis/ Endo-trans 92b 
(80%; 5:1.5:4) 

− 

91c OMe CO2Me Exo-trans/ Exo-cis 92c (34%; 
2.7:1), Endo-trans 92c (16.8%) 

10% 

91d OMe SO2Ph Exo-trans/ Exo-cis/ Endo-trans 92d 
(76%; 1.5:0:1) 

− 

 

Scheme 1.20 

In general, three diastereomeric products of 92, exo-trans, exo-cis and endo-trans 

were obtained from metallocarbenoid insertion into the methylene C-H of the CH2 

moiety; no aromatic substitution products were detected. The product distribution is 

sensitive to the substituent at the diazo carbon, with enhanced recovery of endo-t of 

sulfones 92b and 92d relative to the ester derivatives 92a and 92c. Interestingly, for 

diazoamides 91a and 91c where R1= CO2Me, O-interception products 93a and 93c were 

obtained in the copper catalysed reaction (Figure 1.3). The analogous product was not 

observed for diazoamides 91b and 91d where R1=SO2Ph. 

 

93a, 93c 

Figure 1.3 
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Wee and co-workers investigated the intramolecular metallocarbenoid reaction of 2-

indolyl N-BTMSM diazoamides 94a-d (Scheme 1.21).77 Focusing initially on N-methyl 

derivatives 94a-b, the outcome of the rhodium acetate catalysed reaction is strongly 

influenced by the nature of the substituent R1. With the terminal diazoketone 94b, 

cyclopropanation dominates leading to 97b, while with the ester derivative 94a, the 

aromatic addition product 95a is the only product reported. With the N-benzenesulfonyl 

derivatives, once again the cyclopropanation pathway dominates the terminal diazoketone 

94d, while with the ester derivative both the cyclopropanation product 97c and the C-H 

insertion product 96c are seen. 

 

                  

         95a-d 

 

 

         96a-d         

          94a-d 

 

         97a-d 

Entry Diazoamide R R1 
Isolated Yield (%) 

95 97 96 

1 94a Me CO2Et 89 − − 

2 94b Me H − 95 − 

3 94c PhSO2 CO2Et − 59 20 

4 94d PhSO2 H − 87   − 

Scheme 1.21 
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1.3 Cyclopropanation 

The transition metal catalysed reaction of an α-diazo carbonyl compound with an alkene 

is an efficient method for the preparation of cyclopropane derivatives.7,35,78-80 These 

substituted cyclopropane derivatives have received considerable attention due to their 

prevalence in natural products, their biological significance and synthetic utility. 

In general, there have only been a few examples of variation of the α-substituent 

at the diazo carbon in both intermolecular and intramolecular cyclopropanation reactions. 

Predominantly, this effect has had a limited impact on chemoselectivity while the greatest 

impact has been observed with stereoselectivities (both diastereoselectivity and 

enantioselectivity). This is in contrast to both inter- and intramolecular C-H insertion 

reactions where both chemoselectivity and stereoselectivity were significantly affected 

(see Section 1.2). 

1.3.1 Intermolecular Cyclopropanation 

The intermolecular cyclopropanation reactions have been limited to only simple 

diazocarbonyl precursors like diazoketones or diazoesters.7 The earliest reports of 

substitution at the α-diazo position influencing chemoselectivity in intermolecular 

cyclopropanation reactions were based on a competing C-H insertion reaction as 

discussed in section 1.2.1 (Scheme 1.3, 1.4).43 44 

 Doyle and Davies demonstrated the variation in diastereoselectivity that can be 

found with different carbene substituents in the rhodium acetate catalysed intermolecular 

cyclopropanation reaction with styrene 98 (Scheme 1.22).81,82 

 

 

                 

98        1, 4, 99           100a          100b 
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Entry Diazo R Yield (%) 
d.r 

100a: 100b 

1 4 H 93 62:32 

2 1 EtO2CCH=CH 96 89:11 

3 99 PhCH=CH 94 >95:5 

 

Scheme 1.22 

Doyle and co-workers described the selectivities in intermolecular cyclopropanation 

reactions of diazomalonates 101a-b with styrene 98 using a chiral rhodium azetidinone-

carboxylate catalyst [Rh2(4S-MEAZ)4] as illustrated in Scheme 1.23.83 Dimethyl 

diazomalonate 101a produced the cyclopropanation product 102 in high yield and an 

enantioselectivity of 44% ee. Interestingly, in an experiment designed to investigate the 

possibility of steric enhancement of enantiocontrol through the use of di-t-butyl 

diazomalonate 101b, it was observed that a competing insertion reaction into the ester 

primary C-H bond occurred. This resulted in a ratio of cyclopropanation to C-H insertion 

product of 102:103, 25:75 and an enantioselectivity of 28% ee. The change in 

chemoselectivity with t-Bu substituents reflects the enhanced steric demand and 

associated conformational impact. 

 

 

98     101a-b    102a-b 

 

 

 

      103a-b 
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O

Rh Rh

O

H
N

O

O

t-Bu

Rh2[(S)-NTTL]4

Entry Diazo R Yield (%) 
Ratio ee (%) of 

102 102: 103 

1 101a Me 97 100:0 44 

2 101b CMe3 60 25:75 28 

 

Scheme 1.23 

Muller reported the intermolecular cyclopropanation of styrene 74 with methyl 

diazoacetoacetate 3 in the presence of Rh2[(S)-NTTL]4 in a 68% yield to give a mixture 

of racemic trans-adduct 104a and enantio-enriched cis 104b of 16% ee in a 1:8 ratio 

(Scheme 1.24).84 Interestingly, replacement of 3 by the silyl ether 105 resulted in a 

dramatic increase in selectivity. The reaction afforded the cis isomer of the adduct 106 

with 95% diastereoselectivity and 95% enantioselectivity. 

 

            3 

      78 

      

       Racemic trans 104a, ,cis 104b 16% ee 

        104a:104b, 1:8  

 

 

   

105 

 

       

     106, 95% dr, 95% ee 

Scheme 1.24 
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In 2005, Ghanem and co-workers carried out the intermolecular cyclopropanations 

of styrene 98 with diazoacetates 107a and 107b affording the carboxylates 108a and 108b 

with a similar diastereomeric ratio (82% trans/cis isomers) (Scheme 1.25).85 The 

cyclopropanation was also carried out with 3,3,3-trifluoro-2-diazopropionate 107c and 

rhodium acetate to afford a mixture of cis/trans cyclopropanes in a 70% yield. 

 

 

 

 

 

         107a-c           98   cis-108a-c trans 108a-c 

Entry Diazo R Product 
d.r.a 

trans:cis 

1 107a SiEt3 108a 82% 

2 107b SiPhMe2 108b 82% 

3 107c CF3 84c Mixture 

a. As described in original paper.85 

Scheme 1.25 

Recently, the rhodium catalyst Rh2(S-PTTL)3TPA was applied to the 

cyclopropanation of styrene derivatives with a range of α-alkyl diazoesters 109a-c. 

(Scheme 1.26).86 The highest enantioselectivities and diastereomeric ratio were observed 

with the alkyl diazoesters 109b and 109c with a longer chain alkyl group substituted at 

the diazo position. 

 

 

 

       98       109a-c     110a-c 
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Diazoacetate R Product dr (ratio) ee (%) 

109a Me 110a 96:4 88 

109b Et 110b 99:1 95 

109c n-Pr 110c 99:1   96 

 

Scheme 1.26 

While diazoesters with extended alkyl chains (e.g. 24 and 109a-b) are readily 

available and attractive precursors to Rh-carbenoids, such carbenoids have only limited 

applicability in intermolecular cyclopropanation reactions due to their propensity to 

undergo β-hydride elimination.87 However, Fox has described several rhodium catalysed 

intermolecular transformations of diazoesters that suppress β-hydride elimination.88,89 In 

2008, Fox described a chemoselective and diastereoselective rhodium catalysed protocol 

for the intermolecular cyclopropanation of alkenes 98 and 111a-c with α-alkyl-α-

diazoesters 24 and 109a-b (Scheme 1.27). Fox investigated the substrate scope by varying 

the substituent at the reacting diazo carbon. No significant impact on diastereoselectivity 

was observed upon variation of the α-substituent at the diazo carbon. However, there was 

a slight variation in yield as illustrated in Scheme 1.27. The catalyst Rh2(TPA)4 was 

found to suppress β-hydride elimination along with being effective in terms of 

diastereoselectivity. When Rh2(Oct)4 was applied, only small amounts of cyclopropane 

products 112a were observed, cis-ethyl crotonate 113 and azine 114 dominated.  
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    98, 111a-c  24,109a-b                 

112a-j 

   

 

 

 

 

      112a      113      114                

Styrene R1 Diazoester R2 Product Yield (%) 

98 C6H5 109a Me 112a 92 

111a C6H4F 109a Me 112b 83 

111b C6H4OCH3 109a Me 112c 91 

111c 2-napthyl 109a Me 112d 80 

98 C6H5 24 H 112e 94 

111a C6H4F 24 H 112f 97 

111b C6H4OCH3 24  H 112g 95 

111c 2-napthyl 24 H 112h 79 

98 C6H5 109b Pr 112i 99 

111a C6H4F 109b Pr 112j 95 

 

Scheme 1.27 
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1.3.2 Intramolecular Cyclopropanation 

An extensive range of synthetic applications associated with diazo compounds has been 

described since the first report of catalytic intramolecular cyclopropanation by Stork and 

Ficini.90 The range of applicable diazo compounds extends from vinyl substitution to 

carbonyl substitution, with the majority being diazocarbonyl substitution (Scheme 1.28) 

A significant advantage of intramolecular cyclopropanation over intermolecular is that 

only one diastereoisomer is formed, while control of diastereoselectivity is a major 

consideration in intermolecular cyclopropanation reactions.7 In contrast to intermolecular 

cyclopropanation where reactions have been limited to predominantly diazoesters or 

diazoketones, the intramolecular version has been applied to a broader range of diazo 

precursors (Scheme 1.28). 

 

        Z = H, SO2R, COOR, COCH3 

        Y = O, NR, CR2 

        n = 0, 1, 2….. 

Scheme 1.28 

Since the first example of enantioselective intramolecular cyclopropanation 

reported by Nozaki et al.,91 some excellent enantioselectivities have been reported for 

asymmetric intramolecular cyclopropanation of α-diazoketones, dizaoacetates and 

diazoacetamides. 92-96  Interestingly, the nature of the α-substituent at the diazo carbon 

can have a minor influence on selectivity, as will be outlined in the following discussion. 

The intramolecular cyclopropanation of α-diazo-β-ketoester 115a with the copper 

bisoxazoline ligand 116 provided the 2-oxobicyclo[3.1.0]hexane 117a in 56% ee (Scheme 

1.29). When the more bulky ester 115b was applied to the intramolecular 

cyclopropanation a lower enantioselectivity of 52% ee was obtained, although with a 

significantly higher yield than 117a.97-99 
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  115a-b            117a-b 

 

        116    

Entry α-Diazo-β-

Keto Ester 

R Product Yield (%) ee (%) 

1 115a Me 117a 68 56 

2 115b 1-Methyl-1-

Phenylethyl 

117b 90 52 

 

Scheme 1.29 

Nakada also reported the catalytic asymmetric intramolecular cyclopropanation of a 

range of α-diazo-β-ketoesters 115a, 115c-e substituted at the diazo carbon (Scheme 

1.30). The highest enantioselectivity of 78% ee was obtained with the bulky α-diazo-β-

ketoester 115e, while a poor enantioselectivity of 38% ee was reported with 115a. 

 

  

              

  115a, 115c-e        

         117a, 117c-e 

             118 

 

 

N

O

N

O

i-Pr i-Pr



                                                                                                      Chapter 1 - Introduction 
 

33 

 

Entry R α-Diazo-β-Keto 

Ester 

Product Yield (%) ee (%) 

1 Me 115a 117a 57 38 

2 CMe2Ph 115c 117c 87 50 

3 Mes 115d 117d 82 66 

4 2,6-(t-Bu)2-

4-MeC6H2 

115e 117e 56 78 

 

Scheme 1.30 

Subsequently, Nakada and co-workers developed a highly enantioselective 

intramolecular cyclopropanantion of α-diazo-β-ketosulfones 119a-l (Scheme 1.31).100,101 

Nakada postulated that higher enantioselectivities would be obtained as the sulfonyl 

group is sterically different from the ester group described in Scheme 1.29. Nakada then 

introduced the more bulky sulfone 119b to the intramolecular cyclopropanation reaction, 

resulting in higher enantioselectivity. These interesting results by Nakada highlight the 

impact varying the substituent at the diazo carbon position can have on enantioselectivity. 

Further investigation was then carried out into the catalytic asymmetric intramolecular 

cyclopropanation (CAIMCP) of α-diazo-β-ketosulfones and their application to the total 

synthesis of natural products.101 Within this work, the synthesis of a bicyclo[3.1.0]hexane 

system 120c-l was carried out using a range of substituted sulfones 119c-l (Scheme 

1.31).100,102 The intramolecular cyclopropanation of 2,3-xylyl sulfone 119f  with ligand 

118 afforded the product 120f with the highest enantiomeric excess. Interestingly, the 1-

naphthyl sulfone 120l was obtained in a 93% yield and 83% ee, suggesting that a factor 

other than the bulkiness of the aryl group could influence the enantioselectivity in the 

asymmetric intramolecular cyclopropanation reaction. 
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   119a-l   

          120a-l 

 

        

              121         

E
Entry 

R Diazosulfone Ligand Product 
Yield 
(%) 

ee (%) 

1 Ph 119a 116 120a 91 65 

2 Mes 119b 116 120b 93 83 

3 Ph 119a 121 120a 61 74 

4 Mes 119b 121 120b 87 93 

5 2-Me-C6H4 119c 121 120c 98 86 

6 3-Me-C6H4 119d 121 120d 97 77 

7 4-Me-C6H4 119e 121 120e 95 69 

8 2,3-
Me2C6H3 

119f 118 120f 95 93 

9 2,4-
Me2C6H3 

119g 121 120g 97 81 

10 2,5-
Me2C6H3 

119h 121 120h 90 82 

11 2,6-
Me2C6H3 

119i 121 120i 82 91 

12 3,4-
Me2C6H3 

119j 121 120j 94 72 

13 3,5-
Me2C6H3 

119k 121 120k 91 62 
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14 1-naphthyl 119l 118 120l 93 83 

 

Scheme 1.31 

Zhang has extended asymmetric intramolecular cyclopropanation to allyl 

diazoacetates with acceptor substituted diazoacetates such as cyano, nitro and ketone 

groups as seen in Scheme 1.33. Zhang and co-workers showed that the metalloradical 

catalyst 122 was effective for asymmetric intramolecular cyclopropanation of allyl 

diazoacetates 123a-f with different α-substituted groups (Scheme 1.33).103 The cyano-

substituted diazoacetate 123a gave the corresponding product 124a in high yield and 

enantioselectivity, while the highest enantioselectivity was achieved with the 

unsubstituted diazoacetate 123e. Zhang’s report is the first example of asymmetric 

intramolecular cyclopropanation of allyl nitrodiazoacetates.103 

 

 

 

 

            

            122 

 

   123a-f       124a-f 
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Entry Diazoacetate X Product Yield ( %) ee (%) 

1 123a CN 124a 99 96 

2 123b NO2 124b 95 89 

3 123c COMe 124c 62 99 

4 123d CO2Et 124d 99 90 

5 123e H 124e 95 99 

6 123f Me 124f 82 73 

 

Scheme 1.32 

1.4 Ylide Formation 

Catalytically generated metal carbenes are highly electrophilic and therefore react quickly 

with any available Lewis base such as nitrogen, oxygen and sulfur heteroatoms to form an 

ylide (Scheme 1.33); both intramolecular and intermolecular reactions have been widely 

reported.7,35,79,104 Once generated, the ylide can undergo one of several transformations, 

[2,3]-sigmatropic rearrangement of allyl-substituted ylide intermediates, [1,2]-insertion, 

β-hydride elimination and dipolar cycloaddition of carbonyl ylides.7,104 

 

Scheme 1.33 
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Examples in variation of the α-substituent at the diazo carbon in intermolecular 

ylide formations generally do not display any significant effect on chemoselectivity or 

stereoselectivity. Meanwhile, variation of the α-substituent at the diazo carbon in 

intramolecular ylide reactions has a strong effect on chemoselectivity while only a modest 

impact on enantioselectivity has been reported. Equally, similar effects were observed in 

[2,3]-sigmatropic rearrangement reactions. 

1.4.1 Intermolecular Cycloaddition Reactions 

The intermolecular formation of carbonyl ylides is considered to be a synthetically 

ineffective process compared to the intramolecular reaction due to their low selectivity 

and competitive reactions such as cyclisation to give epoxides,105,106 or [3+2] 

cycloaddition with a second aldehyde equivalent to yield dioxolanes (Scheme 1.34).107-111 

For α-alkyl diazoesters, the scenario is further complicated by the possibility of 

intramolecular β-hydride elimination to form alkenes. 112 Due to these possible reactions, 

realising chemo and stereoselectivity in intermolecular reactions of carbonyl ylides is a 

significant challenge. 

 

Scheme 1.34 

The limited reports of the intermolecular formation of carbonyl ylides mainly 

involve trapping by a carbonyl compound, either in an intermolecular process to produce 

dioxolanes or in intramolecular 1,3-dipolar cycloaddition to produce 1,3-

dioxoles.107,113,114 The earliest example of variation of substitution at the α-position of a 
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diazocarbonyl in the intermolecular  formation and trapping of carbonyl ylides was 

reported by Maas (Scheme 1.35).111 No significant difference was observed between the 

two diazoesters 125a and 125b. 

    

 

     

 R = Me 125a     126  127     128 

 R = Et 125b              

Yield: 41-46% 

Scheme 1.35 

In 2004, Muthusamy and co-workers reported results from the first multicomponent 

reactions of cyclic diazoamides 129a-f through an intermolecular generation of carbonyl 

ylides in the presence of aryl aldehydes and heteroaryl aldehydes (Scheme 1.36).115 No 

significant difference was observed for the substituted diazoxindole 129a-e, however, the 

unsubstituted diazoxindole 129f exhibited a slow reaction resulting in a low yield. 

Muthusamy postulated that the reason for this may be result of poisoning of the catalyst 

by unsubstituted amide functionaility.36 Subsequent work by Muthusamy demonstrated a 

novel three-component reaction for the synthesis of spiroindolodioxolanes from 

substituted cyclic diazoamides and aromatic aldehydes.116 No significant variation was 

observed from substitution of the cyclic diazoamides at the diazo carbon. 
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             129a-f   126          127 

 

 

 

 

        130a-f 

Entry Diazoamide R Reaction 
Time 

Product Yield (%) 

1 129a CH3 30 min 130a 62 

2 129b Bn 25 min 130b 64 

3 129c p-xylenyl 20 min 130c 50 

4 129d allyl 25 min 130d 55 

5 129e propargyl 25 min 130e 58 

6 129f H 5 h 130f 25 

 

Scheme 1.36 

The first general method for generating carbonyl ylides from α-diazoesters 131a-c 

that possess β-hydrogens was reported by Fox and co-workers (Scheme 1.37).117 

Formation of dioxolanes 132a-h was reported across a variety of aldehydes and with an 

array of ethyl diazoesters substituted at the diazo carbon. No significant difference was 

observed in yield or diastereomer ratio except for diazoester 131b which had the lowest 

diastereoselective ratio of 84:16 when the subsequent ylide formed reacted with p-

NO2PhCHO. 
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       131a-c             132a-h 

Entry R Diazoester Ar Product Yield 
(%) 

dr ratio 

1 Me 131a Ph 132a 65 >95:5 

2 CH2Ph 131b Ph 132b 60 95:5 

3 Et 131c Ph 132c 53 92:8 

4 Me 131a p-NO2Ph 132d 64 94:6 

5 CH2Ph 131b p-NO2Ph 132e 56 84:16 

6 Et 131c p-NO2Ph 132f 66 90:10 

7 Me 131a p-ClPh 132g 75 95:5 

8 CH2Ph 131b p-ClPh 132h 57 95:5 

 

Scheme 1.37 

1.4.2 Intramolecular Cycloaddition Reactions 

Intramolecular carbonyl ylide formation has proved to be a versatile methodology for the 

construction of a range of organic compounds. Ibata and co-workers118,119 were the first to 

describe the methodology and subsequently Padwa has expanded the scope of the 

reaction.120 Particularly relevant to the present discussion, Padwa prepared α-

diazoketones 133, 134 and 137 with different substituents at the diazo position to study 

their effect on the intramolecular trapping of the carbonyl intermediate and resulting 

formation of a range of cycloadducts 135, 136 and 138 (Scheme 1.38).121 Interestingly, 

the same reaction pathway was seen with the α-diazoesters 133 and 134 and the α-diazo 

ketoester 137 through carbonyl ylide formation and cycloaddition. 
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R=H, 133     R=H, 135 

  R=Me, 134     R=Me, 136 

 

 

 

   

  137      138 

Scheme 1.38 

In 2004, Doyle demonstrated the extent of competiton that exists in the reaction of 

carbonyl ylides (Scheme 1.39).109 With dimethyl diazomalonate 139, competition exists 

between direct ring closure to form the epoxide ring 142 (Pathway A) and trapping with a 

second mole of the aldehyde to form the dioxolane 143 (Pathway B). When methyl 

diazoacetoacetate 140 is used, intramolecular trapping of the intermediate carbonyl ylide 

by the ketone carbonyl (Pathway C) leads to the sole production of dioxolenes 144. 

Interestingly, reactions with the vinyl ether substituted diazoacetate 141 resulted solely in 

the formation of epoxide 145. Addition of the p-methoxy substituent to the aromatic 

aldehyde led to similar reaction pathways except that with dimethyl diazomalonate 139, 

formation of the epoxide 146 was formed exclusively without 147. 
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    139-141       142, 145, 146, 149  

   

 

 

           

144, 148 

 

Entry Diazoacetate R Ar 
Yield 
(%) 

Product Ratio 

1 139 CO2Me C6H5 53 142/143 56:44 

2 140 COMe C6H5 50 144 − 

3 141 TBDMSOC=CH2 C6H5 50 145 − 

4 139 CO2Me p-
MeOC6H4 

62 146/147 100:0 

5 140 COMe p-
MeOC6H4 

43 148 − 

 141 TBDMSOC=CH2 p-
MeOC6H4 

57 149 − 

 

Scheme 1.39 
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Independent studies by Hashimoto and Hodgson illustrated that the steric and/or 

electronic nature of the substituent at the diazo has an important bearing upon the level of 

asymmetry induced in a tandem ylide formation-cycloaddition to form 151a-c (Scheme 

1.40).122-124 The highest enantioselectivity of 80%  was achieved with the terminal 

diazoketone 150a. 

 

150a-c    127         151a-c 

Entry Diazoketone R Product Yield (%) ee (%) 

1 150a H 151a 50 80 

2 150b Me 151b 65 51 

3 150c CO2Et 151c 23 33 

 

Scheme 1.40 

Further work by Hodgson and co-workers demonstrated for the first time the clear 

role that electronic effects have on determining the level of asymmetric induction in 

intramolecular cycloadditions (Scheme 1.41).125 Hodgson anticipated that the presence of 

the electron withdrawing nitro group on the diazodione 152b may lead to a higher 

enantioselectivity in the cycloaddition reaction compared to the diazodione 152a. The 

enantioselectivities observed were modest, however in some cases a difference in the 

enantioselectivity between cycloadducts 153a-b existed, arising from the two different 

carbonyl ylides formed. This is highlighted in entries 4 and 9 in Scheme 1.40. 
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   152a-b         

          153a-b  

  

     

Entry Diazoketone R Catalyst Temp Solvent Yield 
(%) 

ee (%) 

1 152a H Rh2(S-DOSP)4 25 Hexane 75 12 

2 152a H Rh2(R-BNP)4 reflux Hexane 81 19 

3 152a H Rh2(R-
DDBNP)4 

reflux Hexane 87 19 

4 152a H Rh2(R-
DDBNP) 

25 Hexane 87 35 

5 152a H Rh2(S-
BPTVP)4 

25 PhCF3 74 14 

6 152b NO2 Rh2(S-DOSP)4 25 Hexane 8 − 

7 152b NO2 Rh2(R-BNP)4 Reflux Hexane 97 20 

8 152b NO2 Rh2(R-
DDBNP)4 

Reflux Hexane Quant 28 

9 152b NO2 Rh2(R-
DDBNP) 

25 Hexane Quant 51 

10 152b NO2 Rh2(S-
BPTVP)4 

25 PhCF3 98 13 

 

Scheme 1.41 
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Terada and co-workers demonstrated one-pot relay catalysis employing carbonyl 

ylide formation using a binary catalytic system (Scheme 1.42).126 The proposed relay 

catalysis consisted of four consecutive reactions: a) decomposition of the diazocarbonyl 

compound 154a-c to give the rhodium carbene complex; b) intramolecular cyclisation to 

afford the carbonyl ylide 155a-c; c) protonation of the transient species to afford ion pairs 

of the stable isobenzopyrlium ion and the conjugate base; d) termination through 

reduction of the cationic intermediate using the Hantzsch ester. Interestingly, variation of 

the size of the ester group had no impact on yield but noticeably influenced 

enantioselectivity. Increasing the steric effect at the diazo ester decreased 

enantioselectivies as can be seen with the sterically bulky t-butyl substituted diazoester 

154b which produced the lowest enantioselectivity of 60% ee. 
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Entry Diazoketone R Product Yield (%) ee(%) 

1 154a Et 156a 81 84 

2 154b tBu 156b 85 60 

3 154c Me 156c 83 90 

 

Scheme 1.42 

1.33 [2,3]-Sigmatropic Rearrangement 

The [2,3]-sigmatropic rearrangement of allyl substituted ylides is one of the most 

versatile C-C/C-S bond formations in organic synthesis and sulfonium ylides have played 

a central role in their development.104,127 Transition metal catalysed carbenoid reactions 

have proved to be a successful alternative to the traditional methods of deprotonation and 

desilylation in the generation of sulfonium ylides.7,29 In 2005, Wang prepared a range of 

diazo compounds bearing Oppolzer’s camphor sultam auxiliary (Scheme 1.43). Their 

reaction through [2,3]-sigmatropic rearrangement of sulfur ylides formed in the presence 

of allyl sulphides and a Cu(I) complex was investigated. The results show that 

aryldiazoacetamides as well as methyl and unsaturated diazoacetamides 157a-g react with 

158 in good yields and enantioselectivities. For the aryldiazoacetamides 157a-d reaction 

was relatively slow but led to the rearrangement products with good enantioselectivity. 

The presence of the electron withdrawing NO2 group in 157d resulted in the lowest 

enantioselectivity. With the alkyl or unsaturated substituted substrates 157e-g, the 

reaction proceeded much more rapidly than with the aryl series, albeit with a slight 

decrease in enantiocontrol.128 
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157a-g   158    159a-g 

 

 

 

160a-g 

Entry Substrate R Reaction 
Time 

Yield (%) ee (%) 

1 157a C6H5 10 h 72 92 

2 157b p-BrC6H4 6 h 82 94 

3 157c m, p-
Cl2C6H3 

12 h 58 90 

4 157d p-NO2C6H4 48 h 43 70 

5 157e CH3 15 min 67 82 

6 157f CH3CH=CH 15 min 76 78 

7 157g PhCH=CH 15 min 88 85 

 

Scheme 1.43 

In 2009, Davies reported competition between O-H insertion and [2,3]-sigmatropic 

rearrangement upon variation of the substituent at the diazo carbon in the rhodium 

catalysed reaction of racemic alcohol 162.129 As illustrated in Scheme 1.44 entry 2, the 

reaction of methyl diazomalonate 161 with allyl alcohol 162 generated the O-H insertion 

product 163b and the [2,3]-sigmatropic rearrangement product 164b. Significantly, the 

outcome was quite different when the reaction was conducted with a donor/acceptor 
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HO
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carbenoid. The reaction of ethyl phenyldiazoacetate 2 (Scheme 1.44, entry 1) gave a 86% 

combined yield of products, in which the [2,3] sigmatropic rearrangement product 164a 

was the major product favoured over the O-H insertion product 163a by a ratio of 6:1. In 

addition, 164a was produced with good asymmetric induction  (86% ee) even though the 

starting alcohol 162 was racemic. 

 

 

 

         163a-b 

 

               2, 161  162 

 

 

         164a-b 

 

Entry Diazoester R 
Product 

163:164 
Yield (%) ee (%) 

1 2 Ph 1:6 86 86, 164a 

2 161 CO2Me 2:1 52 Racemic 

 

Scheme 1.44 

While probing allylic substitution on cyclic ammonium ylide [2,3]-sigmatropic 

rearrangements, Sweeney and co-workers varied the substituent at the diazo carbon and 

observed a variation in diastereoselectivity and yield.130 Tetrahydropyridine 165 reacted 

with diazomalonate 166a in the presence of Cu(acac)2 to give the cis and trans pyrolidine 

167 and 168 in a ratio of 53:47 and in excellent yield (Scheme 1.45). However, when 

diazoketoester 166b was applied to the same reaction, the cis isomer was favoured in a 

mixture of 3,4-cis and 3,4-trans-isomers (75:25). 
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 165           cis 167       trans 168 

Entry Diazoketoester R Ratio 167: 168 Yield (%) 

1 166a CO2Et 53:47 75 

2 166b COiPr 75:25 47 

Scheme 1.45 

1.5 Aromatic Addition 

The catalytic decomposition of diazocarbonyl compounds followed by addition to an 

aromatic ring with concomitant rearrangement (by 6π electrocyclisation) of the resulting 

norcaradiene product to a cycloheptatriene isomer, is commonly known as the Buchner 

reaction.9,131,132 The formation of these seven membered carbocycles can occur both inter- 

and intramolecularly.7,35,133 Buchner’s work initially focused on the thermal 

decomposition of ethyl diazoacetate 4 with unsaturated hydrocarbons. Benzene 169 was 

originally investigated, which resulted in the isolation of what was thought to be a single 

ester. However, subsequent alkaline hydrolysis yielded a mixture of several isomeric 

carboxylic acids to which Buchner tentatively assigned norcaradiene structures.132 In 

1950, Doering re-examined the reaction and characterised four isomeric cycloheptatriene 

products,134 speculating that they were formed from the norcaradiene structure 170, which 

is in dynamic tautomeric* equilibrium with the more stable cycloheptatriene structure 

171, and that the remaining compounds 172-174 were generated from a series of 

sigmatropic shifts (Scheme 1.46).  

*The phrase tautomer is commonly used for the norcaradiene/cycloheptatriene equilibrium although technically it 

differs from tautomers such as keto/enol interconversion. 
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Scheme 1.46 

Due to the isolation of these complex product mixtures, research into the 

intermolecular Buchner reaction has been limited and has largely focused on 

diazoesters.135-137 Significantly, no variation of the substituent at the reacting diazo carbon 

has been reported in the intermolecular Buchner reaction.  

 In contrast, the intramolecular Buchner reaction has attracted considerable 

attention from both a synthetic and mechanistic point of view.8,138-153 High levels of 

chemoselectivity and regiocontrol have been reported through the use of careful substrate 

and catalyst selection.66,68,139,147,154-159 In particular, stereocontrol, which encompasses 

both diastereo- and enantioselectivity, has been restrictive in advancing the synthetic 

utility of the aromatic addition reaction. Studies have shown that both the structure of the 

diazo compound and moreover the catalyst employed can provide effective 

stereocontrol.141,145,146,148,160-164 However, a highly enantioselective Buchner reaction 

remains elusive.  In general, examples of variation of the α-substituent at the diazo 

carbon have been limited. Primarily, this has had an impact on the chemoselectivity and 

efficiency of the reaction as outlined in Section 1.5.1. Crucially, the impact on both 

diastereo- and enantioselectivity has not been reported. 



                                                                                                      Chapter 1 - Introduction 
 

51 

 

N O

N2R

R=HN

O

Z

R=COMe

Rh2(OAc)4 Rh2(OAc)4

N

O

O

ZZ

O

R

N2

R=Me

Rh2(OAc)4

O

R=H

Rh2(OAc)4

O

1.5.1 Intramolecular Aromatic Addition 

The presence of substituents on the carbene carbon has been observed to have a dramatic 

effect on the chemoselectivity of the intramolecular Buchner reaction independent of the 

catalyst employed. This has been clearly demonstrated by the two reactions shown in 

Scheme 1.47. Doyle reported that in the case of diazoketones of general structure 175a-

c,66 when R=H only the product of the intramolecular Buchner cycloaddition 176a-c was 

observed in all three cases, but that on exchanging the hydrogen for an acetyl group only 

the products of C-H insertion 177a-c were recovered. It was postulated that the acetyl 

group inhibits approach of the carbene centre to the aromatic ring, thereby eliminating 

this reaction pathway. McKervey observed a similar effect in the aromatic addition of 

178a-b,158 when R=H, the ring expanded products 179a-b were obtained in quantitative 

yield; however, on exchanging the hydrogen for a methyl group only the products of C-H 

insertion 180a-b were observed. 

 

 

 

 

     176a, Z=H    175a, Z=H    177a, Z=H 

     176b, Z=Br    175b, Z=Br    177b, Z=Br 

     176c, Z=OMe   175c, Z=OMe    177c, Z=OMe 

 

 

 

      178a, R=H    177a, R=H    179a, R=H 

      178b, R=Me   177b, R=Me    179b, R=Me 

 

Scheme 1.47 
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In 1986, Saba reported the copper(II) catalysed intramolecular aromatic addition 

of diazoketones 181a-h bearing α-phenoxy substituents (Scheme 1.48).161 Interestingly, 

Saba varied the substituent at the reacting diazo carbon and reported the formation of 

conjugated cycloheptafuranones 182a-d when R3=H and cycloheptafuranones 183e-h 

when R3=Me. The efficiency of the reaction increased significantly when the diazoketone 

was substituted at the α-position. 

 

 181a-h     182a-d    183e-h 

Entry 
α-substituent 

R3 Diazoketone Product 
Yield (%) 

R1 R2 182 183 

1 H H H 181a 182a 9.5 − 

2 Me H H 181b 182b 32 − 

3 Ph H H 181c 182c 38 − 

4 Me Me H 181d 182d 43 − 

5 H H Me 181e 183e − 26 

6 Me H Me 181f 183f − 95 

7 Ph H Me 181g 183g − 88 

8 Me Me Me 181h 183h − 86 

 

Scheme 1.48 

McKervey reported that the intramolecular aromatic addition of p-substituted 

terminal diazoketones 184a-c afforded the corresponding azulenones 184a-c in excellent 

yield (≥95%) as illustrated in Scheme 1.50.138,158 However when O’Leary exposed under 

similar conditions the corresponding internal diazoketones 184d-f,165 a decrease in 
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reaction efficiency was observed. This comparison demonstrates that under the same 

reaction conditions the cyclisation of a terminal diazoketone is more efficient than that of 

the internal analogue. McKervey reported that the use of Rh2(TFA)4 with the non-

terminal diazoketones proved to be more effective.158 

 

  184a-f       185a-f 

Entry R X Diazoketone Azulenone Efficiency 

1 H H 184a 185a 95138,158 

2 H Me 184b 185b >95158 

3 H OMe 184c 185c >95158 

4 Me H 184d 185d 95158 

5 Me Me 184e 185e 82165 

6 Me MeO 184f 185f 80165 

 

Scheme 1.49 

 Moody has demonstrated aromatic addition processes are feasible with ester 

moieties as illustrated in Scheme 1.50.155 
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Scheme 1.50 

1.6 Conclusion 

This review summarises the influence of variation of substitution on the diazo carbon on 

chemo- and stereoselectivity in addition to reaction efficiency. Depending on the reaction 

pathway, both steric and electronic factors operate, leading to a variation in reaction 

outcome. Significantly, while trends can be seen with each reaction pathway there is no 

clear trend across different reactions. 

 From a synthetic perspective, judicial choice of substituent at the diazo carbon 

may be effective in achieving a desired reaction outcome. This review draws together 

outcomes from different studies highlighting for the first time the impact of variation in 

diazo substitution, frequently drawing on reports whose focus is in a different area. 
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2.1 Project Background 

As the bioactivity of enantiomers of organic compounds may differ, appropriate strategies 

for asymmetric synthesis are very important, especially for pharmaceutical applications.1-

4 While use of chiral auxillaries has proven to be effective, asymmetric catalysis provides 

a particularly attractive approach, as a small amount of an enantiopure catalyst can 

potentially provide a large amount of an enantioenriched product. 

A multitude of terpenoids with varying bioactivity have been and continue to be isolated 

from natural sources.5-9 Research in our group in recent years has focused on synthetic 

approaches to sesquiterpenoids bearing the bicyclo[5.3.0]decane sesquiterpenoid 

skeleton, based on the intramolecular aromatic addition of α-diazoketones.10 CAF-603 1 

is one such terpenoid, originally isolated from the culture broth of a strain of Trichoderma 

virens (Gliocladium virens IFO 9166), by Watanabe and co-workers in 1990 (Figure 

2.1).11 One challenge which remains in the synthesis of these natural products lies in the 

limited reports of asymmetric intramolecular aromatic addition of diazocarbonyl 

compound.10,12
 

 

CAF-603 1 

Figure 2.1 

2.2 The Buchner Reaction 

The Buchner reaction involves cyclopropanation of an aromatic ring by carbenoid 

addition to form a norcaradiene derivative which is in dynamic equilibrium with the 

cycloheptatriene tautomer (via a 6π electrocyclic ring opening/closure), as illustrated in 

Scheme 2.1. The first example of aromatic addition to diazocarbonyl compounds was the 

thermal decomposition of ethyl diazoacetate in benzene, which was reported by Buchner 

and Curtius in 1885,13,14 resulting in the addition of the α-diazoester to the aromatic 
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solvent. Buchner believed that the product of the reaction was the norcaradiene structure 

2, however, Doering later showed that the norcaradiene product is transformed under the 

reaction conditions to give four isomeric cycloheptatriene products 3-6,15 related to each 

other by a series of sigmatropic shifts. The norcaradiene compound 2 reported by 

Buchner exists in dynamic tautomeric equilibrium with the cycloheptatriene form 3. 

 

                              2           3 

 

              4   5   6  

 

Scheme 2.1 

The thermal reaction described above requires high temperatures and it was not 

until the discovery by Teyssié that transition metal catalysts were capable of catalyzing 

the aromatic addition reaction of diazocarbonyl compounds under extremely mild 

conditions that it became synthetically useful.  Teyssié and co-workers prepared a range 

of substituted cycloheptatrienyl esters in high yields using rhodium(II) trifluoroacetate for 

the decomposition of ethyl diazoacetate. The use of the rhodium catalyst in the 

intermolecular Buchner reaction dramatically increased selectivity and efficiency.16,17 

Teyssié repeated the original aromatic addition reaction of ethyl diazoacetate and benzene 

with Rh2(OAc)4 and isolated the kinetic product in quantitative yield.18 

Early work on the intramolecular Buchner reaction involved the use of copper 

catalysts. Both Julia and Scott reported copper as a catalyst for the intramolecular 

aromatic addition reaction. Julia prepared the conjugated azulenone 9 in low yield (13%) 

via the copper catalysed decomposition of 1-diazo-4-phenylbutan-2-one 7 (Scheme 2.2).19 

When Scott repeated this reaction at lower temperatures he was able to detect the kinetic 
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product 8 of the reaction by 1H NMR analysis of the crude product mixture.20 Purification 

by chromatography on alumina failed to afford 8 but instead led to the isolation of the 

more conjugated isomer 10. In 1984, McKervey finally reported the isolation of the 

kinetic product 8 in 95% yield by decomposition of diazoketone 7 in the presence of 

Rh2(OAc)4 at room temperature.21  

 

         7                       8 

 9            10 

Scheme 2.2 

McKervey and co-workers discovered that the β-tetralone 11 can be efficiently 

formed when azulenone 8 is treated with a catalytic amount of trifluoroacetic acid, while 

exposure of 8 to triethylamine gave the more conjugated isomer 10 (Scheme 2.3).22 The 

fact that two distinct bicyclic ring systems could be formed from the same starting 

material depending on the reaction conditions, confirmed that the azulenone was an 

equilibrating mixture of the norcaradiene (NCD-8) and cycloheptatriene (CHT-8) 

tautomers. This pioneering work opened up the possibility of forming a range of 

substituted azulenones under very mild conditions, each of which can be converted to the 

corresponding tetralone. 
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Scheme 2.3 

Thus the introduction of rhodium(II) catalysts for diazocarbonyl decomposition and 

aromatic additions led to great advancements in highly chemo, stereo- and regioselective 

transformations that were largely inaccessible with conventional copper catalysts.23-26  

2.3 Intramolecular aromatic addition in natural product synthesis 

The compounds derived from the intramolecular Buchner reaction, which has been 

studied in detail in our group,27-29 are structurally significant as they bear the 

bicyclo[5.3.0]decane skeleton which occurs in a number of naturally occuring 

sesquiterpenoids, which possess a wide range of biological activities. In 1991, Kennedy 

and McKervey used the intramolecular Buchner reaction as the key step in a formal 

synthesis of pseudoguaianolide (±)-confertin 15 (Scheme 2.4).30,31  

 

                12                           13 

 

 

 

(±)-Confertin 15       14 

Scheme 2.4 



                                                                                        Chapter 2 – Results and Discussion 
 

 

70 

 

MeO

H

OR

OMeO

N2

MeO

CO2Me

H

OR

OMe

MeO

CO2Me

MeO

O

H

O

O

O

HO
H

Pb(OAc)4, hυ

(i) Rh2(S-mand)4

(ii) DBU

H

O

O

O

O
H

Subsequently in 2000, Mander and co-workers also applied the intramolecular 

Buchner reaction to the synthesis of the seven and five membered rings of the natural 

product hainanolidol 18, which had been previously isolated from the Chinese species 

Cephalotaxus hainanenis (Scheme 2.5).32,33 The natural product hainanolidol 18 is closely 

related to the diterpenoid tropane harringtonolide 19, which possesses anti-neoplastic and 

anti-viral properties. 

 

               

 

    

   16      17 

 

 

 

 

  18           19 

 

Scheme 2.5 

Mander also utilised the Buchner reaction as part of a cascade reaction sequence in 

an elegant total synthesis of gibberelin GA103 24. Treatment of α-diazoketone 20 with 

Cu(acac)2 in refluxing dichloroethane provided the unstable norcaradiene 21 which was 

trapped in situ by addition of 3-methylfuran-2,5-dione 22 to deliver the polycyle 24 

(Scheme 2.6). 
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20      21 

 

               22 

 

          

23          24 

Scheme 2.6 

Danheiser and co-workers applied the intramolecular aromatic addition of meta-

substituted diazoketone 25 to the synthesis of the anticancer drug egualen sodium (KT1) 

26,34 as illustrated in Scheme 2.7.  

In 2011, Reisman and co-workers reported the enantioselective total synthesis of 

the diterpenoid natural product (+)-salvileucalin B 28. Their studies resulted in the 

development of a copper catalysed arene cyclopropanation reaction to access a 

norcaradiene bearing a fully substituted cyclopropane ring,35,36 as illustrated in Scheme 

2.8. 
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       26 

Scheme 2.7 

 

           

 

 

 

 

 

          

 27        28a   

 

 

     Ratio 28a:28b, 2:1 

 

 

 

28b 

 

Scheme 2.8 
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For the intramolecular Buchner reaction to be an efficient mode of synthesis for a 

wider range of natural products, a thorough understanding of the factors which affect 

chemoselectivity, regioselectivity, stereoselectivity and enantioselectivity is essential.  

Work within the group over the years has concentrated on developing a broad body of 

knowledge on the synthesis of azulenones and also their further reactivity. Buckley 

forged the way for development in this area by investigating the effect of substituents on 

both the diazoketone and catalyst employed on the cyclisation, achieving yields of ~70% 

with high diastereoselectivities.24,37,38 O’Leary further expanded the understanding of the 

norcaradiene cycloheptatriene equilibrium by studying the interesting effect of methoxy 

substituents.28 Both Buckley and O’Leary carried out a preliminary investigation into the 

synthesis of the natural product CAF-603 1, a potent modulator of the calcium activated 

potassium (Maxi-K) channel. Foley subsequently completed the synthesis of cis fused 

dihydro analogue of CAF-603 1, which is used in the treatment of fever dysentery, and 

potentially an advanced intermediate in the synthesis of daucene, which is employed as an 

anti-hysteric.29 Harrington’s research examined the reactivity of the azulenone system 

with PTAD and singlet oxygen dienophiles to produce a range of cycloadducts and 

explored their reactivity.39,40 Work by O’Keeffe led to significant advancement in the 

enantiocontrol of the intramolecular aromatic addition reaction of α-diazoketones, 

achieving 95% ee using copper catalysts based on bisoxazoline ligands,12,41 introducing 

the possibility of an asymmetric catalyst with general applicability. Stack focused on 

investigating the reactivity of the azulenones, and in particular, the introduction of oxygen 

functionality through photooxygenation.27 Both singlet oxygen ene and [4+2] 

cycloaddition reactions proved very effective in generating oxygenated derivatives of the 

bicyclo[5.3.0]decane structures. McNamara focused specifically on the investigation of 

the impact of halogen and acetoxy aromatic substituents on the aromatic addition and 

subsequent reactivity of the azulenones.42 The halogenated azulenones were shown to 

undergo cycloaddition with the highly reactive dienophile PTAD, in addition to the 

carbon based dienophiles, maleimide, N-phenyl maleimide and maleic anhydride, leading 

to polycyclic cycloadducts with excellent diastereocontrol. 
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    CAF-603 1      dihydro CAF-603 29          daucene 30 

 

Figure 2.2 

 

2.4 Objectives of current research 

The overall objective was to further develop the synthetic methodology developed within 

our research group based on the intramolecular aromatic addition process, specifically 

extending the work to terminal diazoketones. Furthermore a detailed investigation of 

asymmetric catalysis, building on the preliminary results within the group was initiated, 

including determination of the absolute stereochemistry, an examination of the effects of 

ligands, counterion, metal salts and substrate structure. 

The principal objectives of this project were: 

• To synthesise substantial quantities of novel and known substituted internal and 

terminal α-diazoketones (Scheme 2.9). 

 

         

 R = H, CH3 

Scheme 2.9 

• To explore the intramolecular aromatic addition with this series of diazoketones 

catalysed by a range of rhodium and copper catalysts, and specifically, to 

determine the effect of ligand, counterion and substrate structure. 
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• To evaluate the level of asymmetric induction in the copper(I) catalysed 

decomposition of substituted internal and terminal α-diazoketones. 

• To investigate the effect on enantioselectivity of variation of the counter-ion. 

• To determine the absolute stereochemistry of the major enantiomer of the product 

from the asymmetric intramolecular Buchner reaction. 

• To design a novel ligand to optimise enantioselectivity. 

 

2.5 Synthesis of αααα-diazoketones 

The initial objective of this research was to synthesise a series of internal and terminal α-

diazoketones with various substituents on the aromatic ring, as shown in Scheme 2.10. 

 

 

 

                               R=Me    R=H 
X =  4-H    31            37                  43 
            4-Me   32               38       44                    

4-Cl    33                                       39       45 
         4-F   34     40       46  

 3,5-(Me)2  35                41       47 

 3,4,5-(Me)3  36                           42       48 
    

Scheme 2.10 

The design of these substrates was based on earlier research within the 

group.28,37,40,41 The presence of the geminal dimethyl group in the linker chain stabilises 

both the precursor diazoketone and the azulenones formed by their reaction, relative to 

the analogous substituted products. In addition, the cyclisation is facilitated by the 

presence of the germinal dimethyl substituents via the Thorpe-Ingold effect. The choice 

of substituents on the aromatic ring enabled investigation of both steric and electronic 

effects on the aromatic addition process. 
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The methodology employed for the synthesis of the internal α-diazoketones from 

the precursor carboxylic acids is well established within our research group and it is based 

on the Arndt-Eistert synthesis of diazoketones.43,44 The initial step is the formation of an 

acid chloride which is followed by the acylation of diazoethane/diazomethane to form the 

α-diazoketone as illustrated in Scheme 2.11. 

 

Scheme 2.11 

The key challenge in accessing the substrate framework was the synthesis of the 

precursor carboxylic acids. Routes to these carboxylic acids have been optimised over a 

in recent years by researchers in the group.37,40-42 The carboxylic acids needed in this 

body of work were synthesised via Friedel Crafts alkylation of benzene derivatives for 

substrates 31, 33, 35 and 36 or following a multi-step route starting with the Knoevenagel 

condensation reaction for substrates 32 and 34. 

2.5.1 Synthesis of carboxylic acids 

2.5.1.1 Friedel Crafts alkylation 

Dippy et al. described the alkylation of aromatic substrates using aluminium trichloride as 

a catalyst in a high yielding and extremely efficient process.45-47 The crude products are 

relatively clean, and no purification is required. Carboxylic acids 31, 33, 35 and 36 were 

synthesised using this method in Table 2.1. 

In this work, the synthesis of the unsubstituted carboxylic acid 31, para-chloro 

substituted acid 33 and the 3,4,5-trimethyl substituted acid 36 were repeated as previously 

described by earlier work in the group (Table 2.1).37,40,41 Both were formed efficiently on 

multi-gram scale (~20 g) and spectroscopic characteristics were found to be in agreement 

with those reported earlier for these compounds.41
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X = 4-H, 4-Cl, 3,5-(Me)2, 3,4,5-(Me)3

X

AlCl3, 24 h

Benzene derivative

Table 2.1 Synthesis of carboxylic acids 31, 33, 35 and 36 via Friedel Crafts alkylation 

 

 

 

 

Entry Benzene 
Derivative 

Acid X Crude Yield 
(%) 

1 C6H6 31 H 94 

2 ClC6H5 33 4-Cl 99 

3 1,3-(Me)2C6H4 35 3,5-(Me)2 85 

4 1,2,3-
(Me)3C6H3 

36 3,4,5-(Me)3 62 

 

In the alkylation of chlorobenzene, formation of regioisomeric products can be 

envisaged. Examination of the 1H NMR spectrum of both the crude and purified products 

were consistent with the exclusive formation of the substituted acid 33, following a 

reaction time of 20 hours. This is consistent with Buckley’s description where in earlier 

work, she described the exclusive formation of the para-chloro substituted regioisomer 33 

while O’Keeffe reported the formation of regioisomeric acids 33, 49 and 50. O’Keeffe 

demonstrated that extending the reaction time to 120 hours led to the formation of the 

para 33 and ortho/meta chloro substituted regioisomers 49/50 in the ratio of 

para:ortho/meta, 80:20 (Figure 2.2). In the 1H NMR spectrum of the crude product, 

O’Keeffe reported signals for each of the three compounds which could be distinguished 

but not easily integrated accurately due to very similar chemical shifts.  
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ortho 49   meta 50    para 33 

Figure 2.2 

The 1H NMR spectra were consistent with the exclusive formation of 33, we 

subsequently discovered (see Section 2.6.2.1) that up to 9% of the ortho or meta 

substituted regioisomer 49/50 was present. 

The Friedel-Crafts alkylation reaction was also used for the synthesis of 3-methyl-

3-(3,4,5-trimethylphenyl)butanoic acid 36, previously synthesised by O’Keeffe with 

excellent regiocontrol. The trimethyl substituted acid 36 was isolated in a yield of 62%. 

The 1H NMR spectrum of the crude product contained some minor peaks (approx 7%) at 

δH 1.46 (s) and δH 2.66 (s). While the side product was not identified, these signals may 

indicate another regioisomer. In contrast, O’Keeffe reported no traces of any other 

regioisomers during the synthesis of 3-methyl-3-(3,4,5-trimethylphenyl)butanoic acid 

36.41  

During this work the methodology was extended to the synthesis of 3-methyl-3-

(3,5-dimethyl)butanoic acid 35. The 3,5-dimethyl substituted acid 35 was isolated in 

analytically pure form and in excellent yield, for the first time in our group. Notably, 

there were no traces of any other regioisomers. Furthermore, the subsequent 

transformation of the acid 35 to the crystalline PTAD adduct (see Section 2.6.6.3) 

provided unequivocal structural evidence of the 3,5-dimethyl substituted acid.  In 1943, 

Irvine and Spillane had previously prepared the acid 35 in a 97% yield (Scheme 2.12).48 

They stated that the alkylation of meta-xylene in the presence of aluminium chloride 

almost invariably leads to the 1,3,5-trialkylderivative. 
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        35 

Scheme 2.12 

The reproducible regiochemical outcome of this reaction cannot be easily 

rationalised, but fortuitously leads to the desired product. Nightingale and co-workers 

also investigated the orientation effects in the alkylation of meta-xylene  by various 

procedures and reagents.49 Interestingly, when meta-xylene was alkylated by t-butyl 

alcohol and 85% sulfuric acid, Nightingale found that the trialkylbenzene formed was a 

mixture of 1,3-dimethyl-5-t-butylbenzene 51 and 1,3-dimethyl-4-t-butylbenzene 52 in the 

ratio of 2:1 as illustrated in Scheme 2.13.  

 

           

 

 

 51         52 

Scheme 2.13  

The Friedel Crafts alkylation reaction has long been known to introduce alkyl 

groups into aromatics. However, it can also be used to remove alkyl groups from 

alkylbenzenes, thus Friedel Crafts alkylations are reversible.50-53 The isomerisation 

reaction in which a group migrates from one position in a ring to another is significant as 

in these reactions, the meta isomer is generally the most favored product. As in the 

Friedel Crafts alkylation of meta-xylene discussed above, the 1,3,5-substituted product is 

generally the most favored because it is the most thermodynamically stable.54 



                                                                                        Chapter 2 – Results and Discussion 
 

 

80 

 

2.5.1.2 Multi-step synthesis of ββββ-dimethyl substituted acids 

Upon encountering difficulties when synthesising acid 34 via the Friedel Crafts 

alkylation, O’Keeffe applied a modification of Prout’s synthesis to form the substituted 

carboxylic acids 32 and 34.41,55,56 While requiring multiple steps, it produces ready access 

to multi gram quantities of carboxylic acid. 

Table 2.2 Multi-step synthesis of β-dimethyl substituted acids 

 

 

 

   53            54 Ar =4-FC6H4 

              55 Ar=4-MeC6H4 

 

 

 

 

34 Ar=4-FC6H4  58 Ar=4-FC6H4  56 Ar=4-FC6H4 

32 Ar=4-MeC6H4  59 Ar=4-MeC6H4  57 Ar=4-MeC6H4 
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Entry X Cyanoester Yield 
(%) 

Cyanoacid Yield 
(%) 

Nitrile Yield 
(%) 

Carboxylic 
Acid 

Yield 
(%) 

1 Me 55 64a 57 81b 59 76d 32 52e 

2 F 54 65 56 65c 58 69d 34 65e 

a. Wurtz Coupling product was observed in the 1H NMR of the crude product. 
b. Synthesised in an open vessel microwave reactor. 
c. Heated under reflux overnight. 
d. Purified by vacuum distillation. 
e. Crude product was carried through to next step without purification. 

The formation of ethyl 2-cyano-3-methylbut-2-enoate 53 by a Knoevenagel 

condensation reaction is the first step. Ethyl cyanoacetate and acetone were heated under 

reflux for 60 h, in the presence of a catalytic amount of β-alanine and acetic acid.55,56 The 

product ester 53 formed is needed for the synthesis of both acids 32 and 34. The crude 

reaction mixture contained 8% ethyl cyanoacetate. Purification by vacuum distillation 

produced the ester 53 as a low melting, white solid in a 82% yield. 

The transformation of the unsaturated ester 53 to the carboxylic acids 32 and 34 was 

undertaken as summarized in Table 2.2. The addition of the Grignard reagent prepared 

from 4-fluoroiodobenzene or 4-bromotoluene led effectively to the cyanoesters 54 and 55 

in good yield. Interestingly the product of Wurtz coupling 60 was seen only in the 

reaction to form 55 with no evidence of the analogous by product 61 in the reaction of the 

4-fluoro substituted Grignard (Figure 2.3).  

 

X= Me 60, F 61 

Figure 2.3  

Subsequent hydrolysis to the cyanoacid 56 was carried out using sodium hydroxide; 

microwave heating was employed for the hydrolysis of the methyl substituted ester 55, 

following procedures described by O’Keeffe.41 The ensuing decarboxylations of 56 and 

57 were brought about under neat conditions in an open vessel microwave reactor. Both 
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the crude nitriles 58 and 59 were isolated as dark brown viscous oils and both were 

purified by vacuum distillation, to give nitiles 58 and 59 as yellow oils. 

The synthesis of carboxylic acids 32 and 34 was accomplished by hydrolysis using 

KOH in ethylene glycol. After extractive workup, the acids 32 and 34 were obtained in 

65% and 52% yields respectively.  

In conclusion, the synthesis of carboxylic acids 32 and 34 was carried out 

successfully, leading to multi-gram quantities with relative ease. In the synthesis of 

carboxylic acids 32 and 34, O’Keeffe purified the product at the end of each step of the 

process.41 Due to the fact that most crude product mixtures were clean, O’Keeffe 

recommended that most reactions could be carried out without purification.41 While 

O’Keeffe had purified each step, in this work only nitriles 58 and 59 and cyanoesters 54 

and 55 were purified. Cyanoacids 56 and 57 and carboxylic acids 32 and 34 were carried 

through without purification. 

2.5.2 Synthesis of acid chlorides 

With the carboxylic acids 31-36 synthesised, the corresponding acid chlorides were then 

prepared for the formation of α-diazoketones. During this work two different methods 

were exploited for the synthesis of acid chlorides as summarised in Table 2.3 and Table 

2.4. Use of thionyl chloride with catalytic DMF was generally employed when significant 

quantities of carboxylic acid precursors were available. In contrast when only limited 

amounts of the carboxylic acid precursors were available following the multi-step 

sequence, the use of oxalyl chloride was more effective for this transformation as it 

provided the acid chlorides in sufficiently pure form for further reaction without 

distillation. Acid chlorides were conventionally prepared in the laboratory by heating 

each of the carboxylic acids under reflux for 3h with 8 equivalents of thionyl chloride. 

However, in recent years O’Keeffe and Stack adopted the common method of adding a 

catalytic amount of N,N-dimethylformamide (DMF) to the preparations of acid 

chlorides.27,41They noted that the reaction time could be reduced to 1 h and the 

equivalents of thionyl chloride reduced to 5 equivalents. This method was applied in this 

work, however care was taken as a by-product which forms upon reaction of DMF with 

thionyl chloride, N,N-dimethylcarbamoyl chloride (DMCC) 62 is a potential carcinogen 
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in humans (Scheme 2.14).57-59 After 3 h, the excess thionyl chloride was removed in 

vacuo and the crude acid chloride was subsequently purified by vacuum distillation. 

 

                   62 

Scheme 2.14 

IR spectroscopy was used to confirm complete transformation to the acid chloride, 

by the absence of the carboxylic acid stretch at 2978-2957 cm-1 and a shift of the carbonyl 

stretch from 1718-1700 cm-1 to 1808-1813 cm-1. 

Table 2.3 Preparation of acid chlorides from crude carboxylic acids 

 

 

Entry Acid X Acid Chloride Yield (%)a 

1 31 H 63 75 

2 33 Cl 64 66 

3 34 F 65 52 

a. Yield of acid chloride recovered after purification by distillation in vacuo. 

The acids prepared from the Friedel Crafts alkylation of benzene derivatives 31 and 

33 gave higher yields of acid chlorides, compared to that from the para-fluoro substituted 

acid 34 which gave a lower yield of 52 % for the acid choride 65. The acid chlorides 63-

65 gave spectroscopic characteristics which agreed with the previously reported data. 
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Each of the distilled acid chlorides 63-65 were stable over long periods of time (up to 12 

months) when kept under nitrogen at −20°C. 

Acid chlorides 66-68 were prepared using oxalyl chloride in diethyl ether. The 

utilisation of oxalyl chloride as a chlorinating agent is favorable as the resulting acid 

chloride does not require purification. The excess oxalyl chloride is removed in vacuo and 

the product can be carried through directly to the next step. Storage of the acid chlorides 

prepared using (COCl)2 leads to deterioration of product quality. 

Table 2.4 Preparation of acid chlorides from carboxylic acids using oxalyl chloride 

 

 

Entry 
Acid X Acid Chloride 

Crude Yield 
(%)a 

1 32 Me 66 90 

2 35 3,5-(Me)2 67 96b,c 

3 36 3,4,5-(Me)3 68 96 

a. Yield of crude acid chloride. It was used immediately without purification. 

b. Novel acid chloride. 

c. 1H NMR of crude material contained 18% unreacted starting material. 

The synthesis of 66 and 68 was repeated in this work following the same method 

providing the crude acid chloride in a 96% yield. Due to the lability of this compound it 

was used directly without purification.  

Based on this, the novel acid chloride 67 was also prepared using oxalyl chloride. In 

the 1H NMR spectrum of the crude material, signals (18%) were observed which were 

consistent with the presence of the unreacted acid 35. Due to the lability of this acid 

chloride, the mixture was carried through without purification to the acylation of 

diazoalkanes where it was purified by flash chromatography. 
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2.5.3 Preparation of αααα-diazoketones 

The acylation of diazoalkanes is one of the most widely used methods developed for the 

synthesis of α-diazoketones. Arndt and Eistert first described the acylation of 

diazoalkanes by acid chlorides in 1927.43 This was to be followed by later reports by 

Bradley60 and Robinson,60,61 who illustrated that in order to generate α-diazoketones from 

acid chlorides an excess of diazoalkane is required in order to react with hydrogen 

chloride formed in the reaction. If an excess of diazoalkane is not present, then the 

reaction of hydrogen chloride with the α-diazoketone can lead to the formation the α-

chloroketone side product (Scheme 2.15). 

 

 

Scheme 2.15 

In this work, a range of internal and terminal α−diazoketones (37-48) were 

synthesised by treating substitiuted acid chlorides (63-68) with an excess of freshly 

prepared diazoethane or diazomethane as summarised in Table 2.5. 

N-Ethyl-N-nitrosourea, which was prepared by a modification of Ardnt’s 

procedure,44 was used to prepare diazoethane. Diazoethane was prepared from N-ethyl-N-

nitrosourea without distillation.44  

Diazomethane used to synthesise terminal α-diazoketones was prepared from 

Diazald®, (N-methyl-N-nitroso-p-toluenesulfonamide).62 Buckley and O’Leary used 



                                                                                        Chapter 2 – Results and Discussion 
 

 

86 

 

Diazald® obtained commercially, but as this is no longer available, it was prepared as 

described by de Boer. 28,37,63 The preparation of Diazald® was repeated on a large scale 

and stored in the freezer at −20 °C for up to 6 months. De Boer stated that Diazald® could 

be kept at room temperature for years without any significant change,63 but there was one 

reported instance of spontaneous detonation after storage for several months. He 

recommended that for storage over long periods, the product should be recrystallised and 

placed in a dark bottle. Diazald was not recrystallised in this work. 

To generate diazomethane, an ethereal solution of Diazald® was added dropwise 

over a 30 min period to a solution of potassium hydroxide, ethanol and water. An ethereal 

solution of diazomethane was then distilled and kept at −20 °C. 64 

A solution of the acid chloride in diethyl ether was added to the freshly prepared 

solution of diazoethane or diazomethane (~7 eq.) in diethyl ether while stirring at -20 °C. 

After the addition, the solution was allowed warm to room temperature, at which 

temperature it was then stirred for 3 hours. The reaction mixture was concentrated to 

dryness on a rotary evaporator with an acetic acid trap, and the crude α-diazoketones 

were isolated as dark orange oils. For both the crude internal and terminal α-

diazoketones, flash chromatography of the crude α-diazoketones was carried out 

immediately, as storage of the crude products at room temperature or at -20°C led to 

decomposition. After purification, the internal α-diazoketones (37-42) were isolated as 

orange oils, while the terminal α-diazoketones (43-48) were isolated as yellow oils. 
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Table 2.5 Preparation of internal and terminal α-diazoketones 

 

Acid 
Chloride 

X 
Internal 

Diazoketone 
Yield (%)a ν C=N2 (cm−1) ν CO (cm−1) 

Terminal 
Diazoketone 

Yield (%)a ν C=N2 (cm−1) ν CO (cm−1) 

63
b H 37

40 74 2066 1625 43
65 65 2101 1637 

64
b Cl 39

37 74 2066 1633 45 77 2101 1636 

66
c Me 38

41 56d 2071 1628 44 50 2101 1636 

65
b F 40

37 41e 2074 1628 46 51 2103 1634 

67
c 3,5-(Me)2 41 74 2064 1633 47 56 2101 1634 

68
c 3,4,5-(Me)3 42

41 69 2070 1634 48 51 2100 1636 

a. Yield following purification by flash chromatography. 

b. Acid chloride used was prepared using thionyl chloride followed by distillation. 

c. Acid chloride used was prepared using oxalyl chloride without distillation. 

d. The low yield may be associated with the use of the carboxylic acid for the multi-step synthesis carried through without purification. 

e. Low yield due to difficulty in chromatographic separation. 
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Diazoketones (37-40, 42 and 43) were identical in terms of yield, quality and 

spectroscopic characteristics to earlier reports within the group, while diazoketones (41 

and 44-48) were novel and fully characterised during this work. In most cases yields were 

acceptable, ranging from 41-74%. The low yield observed for α-diazoketone 38 may be 

associated with the acid chloride 66 being prepared from the crude carboxylic acid 32 and 

oxalyl chloride. The crude acid chloride was then brought forward to the α-diazoketone 

stage without purification, due to limited material. All α-diazoketones were purified 

directly as they deteriorated on storage in their crude form. Yields for the terminal α-

diazoketones ranged generally lower than that for the internal α-diazoketones. Purified α-

diazoketones could be stored at −20 °C in the freezer under nitrogen for periods of up to a 

year without any decomposition. Previous workers observed that halogenated internal α-

diazoketones were more labile,27,37,41,42 particularly fluorinated diazoketones, which were 

seen to decompose over time. However, in this current study the para-chloro and fluoro 

substituted diazoketones 39 and 40 were stored at −20 °C in the freezer for up to a year, 

with no visible decomposition observed. 

Each of the diazoketones showed characteristic diazo and carbonyl stretching bands 

which were easily identifiable in the IR spectra at νmax/cm−1  ~ 2060 cm−1 and ~1630 cm−1 

for internal α-diazoketones and at νmax/cm−1 ~2100 and ~1630 for terminal α-

diazoketones. The characteristic methyl signal in the 1H NMR spectrum of the internal α-

diazoketones was observed at δΗ 1.80-1.83. In general, broadening of the signals was 

evident for C(4)H2 and C(1)H3 in the 1H NMR spectrum of all the internal α-

diazoketones and for C(1)H3 and C(2) in the 13C NMR spectrum of α-diazoketone 41. 

This broadening indicates restricted rotation due to extended conjugation. O’Keeffe also 

observed this broadening in the 1H NMR spectrum of internal α-diazoketones.41 A 

characteristic broad signal observed at δΗ 4.66-4.74 in the 1H NMR spectrum of terminal 

α-diazoketones was diagnostic for the proton geminal to the diazo group. As seen with 

the internal α-diazoketones, the broadening of signals for C(3)H2 and C(1)H was evident 

in the 1H NMR spectrum and for C(3)H2 and C(1)H signals in the 13C NMR spectrum of 

terminal diazoketones (43-48) as illustrated in Figure 2.4 
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Figure 2.4 
1
H (300MHz, CDCl3) and 

13
C (75MHz, CDCl3) NMR spectra of the novel 

diazoketone 47 illustrating broadening of the C(1)H and C(3)H2 signals 

In general, for both internal and terminal α-diazoketones, the labile nature of the 

compounds results in the molecular ion being absent or of low intensity in the mass 

spectrum, when the sample was prepared in acetonitrile. However, when the sample for 

mass spectrometry analysis was prepared in diethyl ether, the molecular ion was 

observed.  

In 1980, Shioiri reported for the first time the use of the non-explosive reagent 

trimethylsilyldiazomethane, which was used for Arndt Eistert synthesis of diazo 

compounds.66 As diazomethane is highly toxic and explosive, we decided to investigate 

the use of trimethylsilyldiazomethane as a safer alternative. Since Shioiri’s first use of 

trimethylsilyldiazomethane it has become a widely used reagent in organic synthesis and 

its uses are discussed in a review by Shioiri in 1990.67-69 

For comparison, on one occasion the terminal α-diazoketones 43 and 45 were also 

synthesised using trimethylsilyldiazomethane, by Shioiri’s procedure. A solution of acid 
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chloride 63 or 64 in THF/acetonitrile (1:1) was added dropwise to 2 equivalents of 

trimethylsilyldiazomethane in THF:acetonitrile (1:1) at 0°C under nitrogen. Each reaction 

mixture was stirred for 4 hours before being concentrated under reduced pressure to give 

a yellow oil which was purified directly by flash chromatography. 

Table 2.6 Preparation of terminal α-diazoketones using trimethylsilyldiazomethane 

 

 

Entry Acid Chloride X Diazoketone Yield (%)a 

1 63
b H 43 39 

2 64
b Cl 45 36 

a. Yield following purification by flash chromatography, diazoketones 43 and 45 contained an unknown side 

product 11% and 6% respectively. 

b. Acid chloride used was prepared using thionyl chloride followed by distillation. 

 

The 1H NMR spectra of the crude reaction mixture of both terminal diazoketones 43 

and 45 revealed the presence of an unknown side product 11% and 6% respectively. This 

side product could not be easily removed by flash chromatography and the same amount 

of side product was observed after chromatography. In comparison to the samples of the 

terminal α-diazoketones 43 and 45 prepared from diazomethane, the yields were very low 

(36% and 39% respectively). Spectral characteristics were identical to those observed for 

diazoketones 43 and 45 that were prepared from diazomethane.  

In conclusion, the preferred reagent for the synthesis of terminal α-diazoketones is 

diazomethane (freshly prepared from Diazald®). However, it should be noted that the use 

of trimethylsilyldiazomethane was not optimised. 
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2.6 Asymmetric intramolecular Buchner reaction 

2.6.1 Introduction 

One of the principal aims of this project was to explore enantioselectivity in the 

intramolecular aromatic addition (Buchner reaction) of α-diazoketones. This project 

focuses on aromatic functionalisation through intramolecular carbenoid addition, thereby 

transforming the planar achiral stable aromatic ring into a chiral reactive cycloheptatriene 

structure with enantiocontrol as illustrated below in Scheme 2.16. 

 

Scheme 2.16 

The aromatic addition reaction of diazoketones is a synthetically useful process, and 

can lead to the formation of both bicyclic and polycyclic compounds. A detailed 

discussion on the Buchner reaction and the norcaradiene/cycloheptariene equilibrium can 

be seen in recent reviews by Wu,70 Maguire71 and Reisman.72 A detailed body of research 

has been carried out in our group to investigate the chemo-, regio- and diastereoselectivity 

of the reaction as discussed in Section 2.3 above.24,37,37-41,73 However, the progress in 

advancing the area of enantioselectivity has been limited; generally Buchner reactions 

under substrate control have been studied in more detail. In the limited reports of 

asymmetric aromatic addition reactions reported by our group and by others, the majority 

of enantioselectivities have been poor and there remains an absence of a general chiral 
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catalyst. Excellent diastereocontrol has been achieved but the development of a general 

highly enantioselective catalyst remains elusive.24,38,39,74 In contrast development of 

enantioselective catalysts for cyclopropanation and C-H insertion have been more 

extensively investigated. 75-79 

A selection of chiral catalysts which have been employed in the aromatic addition 

of diazcarbonyl compounds is illustrated in Figure 2.5. 

 

 

 

Rh2(5S-MEPY)4 69  Rh2(4S-MEOX)4 70  Rh2(4S-IBAZ)4 71 

 

 

Ar = 1-napthyl 72, Ph 73, 

 

 

 

 

CuPF6-74[(S,S)-t-Bu-BOX]  CuPF6-75[(R,R)-Ph-BOX]  

Figure 2.5 A selection of enantioselective catalysts used in the aromatic addition of α-

diazocarbonyls 



 
                                                                             Chapter 2 – Results and Discussion 
 

 

93 

 

O

N2

O

CH2Cl2

The first example of enantioselective catalysis in aromatic addition was recorded by 

McKervey and co-workers in 1990.80 They reported an enantioselectivity of 33% ee, 

through the use of a rhodium prolinate catalyst in the cyclisation of 2-diazo-5-

phenylpentan-3-one 76 to the azulenone 77 with subsequent hydrogenation to give the 

bicyclic ketone, trans-1-methylbicyclo[5.3.0]decan-2-one 78 (Scheme 2.17). 

 

        72 

 

                     76                                                     77                                    78 

 

Scheme 2.17 

The same group also detected a good enantioselectivity of 79% ee in the cyclisation 

of the biphenyl derived diazoketone 79. They achieved their highest enantioselectivity 

using the rhodium prolinate catalyst 73 (Scheme 2.18).81,82
 

 

      

      73 

 

 

 

     79                     80  

Scheme 2.18 

In 1999, Doyle used chiral dirhodium carboxamidate catalysts in intramolecular 

carbene transformations of diazoacetates.82 Doyle reported two reacting systems that 

offered the opportunity to explore both chemoselectivity and enantioselectivity, and the 

highest levels of enantiocontrol in aromatic addition at that time were observed using 

79% ee 

33% ee 
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diazoester 83. The use of diazoesters 81 and 83 with chiral rhodium carboxamidates 

enabled exploration of the asymmetric aromatic addition process in addition to 

chemoselectivity relative to cyclopropanation and ylide formation. Significantly using 

Rh2(4S-MEOX)4, up to 84% ee was achieved in the aromatic addition process, the highest 

enantioselectivity achieved up to this point. 

 

                                        

              70 

 

81      82  

 

 

 

              

70 

 

 

83        84 

 

 

Scheme 2.19 

In the same report, Doyle investigated the decomposition of diazoester 85 with a 

range of rhodium catalysts.82 The product from this decomposition resulted in a 

enantiomeric excess of 81% ee, when the catalyst Rh2(4S-IBAZ)4 71 was used. These 

73%  ee 

      84% ee   
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results by Doyle highlight the difficulties in trying to identify one single suitable catalyst 

to induce asymmetry across a variety of diazocarbonyl substrates. 

Table 2.7 Effect of catalyst on the asymmetric decomposition of 85 

 

   85            86  

Entry Catalyst Yield (%) ee (%) 

1 Rh2(4S-MEOX)4 70 76 56 

2 Rh2(5S-MEPY)4 69 72 42 

3 Rh2(4S-IBAZ)4 71 87 81 

4 CuPF6-74[(S,S)-t-Bu-BOX] 83 42 

 

Work within our group on a range of rhodium catalysts yielded no improvement on 

McKervey’s result of 33% ee for the decomposition of diazoketone 76.80 However, 

Harrington re-examined the use of using copper catalysts and achieved an 

enantioselectivity of 67% ee for the diazoketone 76 using the Cu-(R,R)-Ph-iso-box 75 

catalyst as shown in Table 2.8.40 This was a significant result as it illustrated that copper 

catalysts could be effective in the intramolecular Buchner reaction. Harrington also 

investigated the aromatic addition of diazoketone 37 with a range of copper bisoxazoline 

catalysts and achieved enantioselectivities up to 80% ee (Table 2.9). These results are 

comparable with the best results reported by Doyle in the decomposition of α-

diazoacetates 79, 81 and 83 and by McKervey in the decomposition of diazoketone 76. 
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Table 2.8 Aromatic addition of  76 with chiral catalysts
40 

 

76       77 

Entry Catalyst Efficiency (%) Yield (%) ee (%) 

1a Rh2(N-naphthylprol)4 72 − 70 33c 

2b Rh2(OAc)4 87 79 80 0d,e 

3b Cu(R,R)-Ph-iso-box 75 67 54 67d,e 

a. Results reported by McKervey.80 

b. Results reported by Harrington.40 

c. Determined by chiral shift 1H NMR analysis. 

d. Determined by chiral HPLC analysis. 

e. Absolute stereochemistry not determined during Harrington’s work. 

Table 2.9 Investigation of a selection of copper catalysts in the decomposition of 37
40

 

   37        88 

Entry Catalysta Efficiency % Yield %b %eec,f 

1 Cu(R,R)-Ph-iso-box 75 90 72 80 

2 Cu(S,S)-t-Bu-iso-box 74
d 41 19 9 

3 Cu(4R,5S)-tetra-Ph-iso-box 89  83 53 15 

5 Cu-indeno-bis-box 90 e 76 38 13 
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Entry Catalysta Efficiency % Yield %b %eec,f 

6 Cu(R,R)-benzyl-iso-box 91
e 65 29 0 

a. The catalyst was prepared with a 1.15:1:2 mixture of ligand:CuBr2:AgSbF6 stirred for 1 hour at ~0.1M,  

and 1 mol% was employed in the decomposition reaction, unless otherwise stated. 

b. Yield of purified (azulenone) 88. 

c. Determined by HPLC. 

d. The catalyst was prepared with a 1:1:2 mixture of ligand:CuBr2:AgSbF6 stirred for 6 hours at ~0.1M. 

e. 5 mol% of the catalyst was employed in this reaction. 

f. Absolute stereochemistry was not determined during Harrington’s work. 

 

Following on from Harrington’s preliminary work, O’Keeffe explored in detail the 

influence of variation of substrate and ligand on the enantioselectivity in the 

intramolecular Buchner reaction, and through appropriate structural modification, she 

achieved enhancement of enantioselectivity to ≥ 95% ee with the diazoketone 42 and the 

copper catalyst derived from ligand 75.12,41 During O’Keeffe’s work the absolute 

stereochemistry of 92 was not established; however during this study the stereochemistry 

was confirmed (see Section 2.6.6.3). 

 

           75 

 

  42       92 

                       ≥95%ee 

   Scheme 2.20 

The core of this research project was the investigation of enantioselective catalysis 

of the aromatic addition in the series of α-diazoketones (37-48); specifically the role of 

ligand, counterion and substrate structure was investigated to determine the effect of the 

substitution at the diazo carbon (H or Me) and on the aromatic ring (Scheme 2.21). 
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R = (R,R)-Ph-75, (R,R)-Bn-91  (4R, 5S)-tetra-Ph-89  

       

 

 

 

R1= (S,S)-t-Bu-74, (S,S)-3,5-(Me)2-C6H3-93 

 

Scheme 2.21 

2.6.2 Transition metal catalysed intramolecular aromatic addition of αααα-

diazoketones 

A extensive volume of work has been conducted in our group optimising the 

intramolecular Buchner reaction.27,28,37,40-42 Due to the highly reactive nature of the 

carbene intermediate, great caution is taken to protect the reaction mixture from oxygen 

and water as both oxygen and water react with metal carbenes to give unwanted side-

products including α-diketones and α-hydroxyketones.24,37,38,83,84 
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Scheme 2.22 

To prevent these side-products forming, a number of precautions have been 

implmented. Firstly, the assembled apparatus was flame dried immediately before use. 

The dichloromethane used in the reactions was doubly distilled, first over phosphorus 

pentoxide, then over calcium hydride and all the reactions were carried out under an 

atmosphere of nitrogen. To ensure the solvent was effectively deoxygenated, a Schlenk 

line was employed. All reactions were conducted by dropwise addition of a solution of 

the α-diazoketone in dichloromethane (~80 mL) to a refluxing solution of catalyst [<1 

mol% of Rh2(OAc)4 or 5 mol% of copper catalyst] in dichloromethane (~80 mL) under 

nitrogen (Table 2.10). Cyclisations occurred quickly and were generally complete by 

TLC once all of the diazoketone was added (30-40 min). Once the yellow diazoketone 

has been added to the catalyst solution, it turns colourless and this can serve as an 

indication of reaction completion.41 

Table 2.10 Preparation of catalyst complexes for intramolecular Buchner reaction, 

illustrated for ligand 75 

Entry Methoda Catalyst Conditions 

1 A Rh2(OAc)4 (<1.0 mol%) No pre-stirring of catalyst 

2 B CuPF6-75 No pre-stirring of catalyst 

3 C Cu(I)Cl-NaBARF-75 Catalyst was pre-stirred for 2 

hours at room temperature 

before substrate was added 

4 D Cu(I)Cl-75 Catalyst was pre-stirred for 2 

hours at room temperature 

before substrate was added 
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5 E Cu(I)Cl-NaBARF-75-(18-crown-

6) 

Catalyst was pre-stirred for 2 

hours at room temperature 

before substrate was added 

a. All methods involved flame drying of apparatus and deoxygenation of solvents as described above. 

b. Use of methods A-E were also applied for ligands 74, 89, 91 and 93. 

The efficiency of the aromatic addition reactions was determined by comparison of 

the integration of the signals due to the azulenone with that of the signals due to the 

aromatic by-products in the 1H NMR spectra of the crude reaction mixtures, which were 

obtained by concentration of the crude reaction solution (Figure 2.6) 

 

Figure 2.6 
1
H NMR (300MHz, CDCl3) spectrum of the crude azulenone 94 containing 

75% azulenone 94 and 25% aromatic by-products 
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2.6.2.1 Rh2(OAc)4 catalysed  intramolecular aromatic addition of    internal αααα-

diazoketones 

In this study, the internal α-diazoketones examined were those bearing a geminal 

dimethyl substituent at carbon-5 as these were seen by O’Keeffe to promote the most 

efficient cyclisations.41 O’Keeffe and Buckley reported an increase in reaction efficiency 

when more sterically demanding substituents were positioned at carbon-5,37,41 this is 

believed to be due to the Thorpe-Ingold effect (Figure 2.7). 

 

 

 

 

 

Figure 2.7 Thorpe-Ingold effect 

The presence of the β-substituent facilitates cyclisation by encouraging the carbene 

to adopt a more favorable conformation for reaction with the aromatic ring. As the β-

substituent increases in size, steric repulsion results in the bond angle α increasing. This 

in turn causes a decrease in the bond angle β (the angle between the metal carbene and 

the aromatic nucleus) bringing these groups closer to the conformation required for the 

reaction. O’Keeffe investigated substituents (H to t-Bu to geminal dimethyl) at carbon-5, 

and found efficiency to increase as the β-substituent increased in size.41  

As summarised in Table 2.11, the rhodium catalysed cyclisation of diazoketones 

(37-42) was undertaken with determination of efficiency of reaction from the 1H NMR 

spectra of the crude product. This was followed by chromatographic separation to yield 

the pure azulenones in good yield and purity. The results obtained for azulenones (were 

entirely consistent with O’Keeffe both in terms of efficiency and spectral characteristics 

of the products, except for azulenone 92. O’Keeffe had previously cyclised the 

diazoketone 42 to give the azulenone 92 but found that it was extremely labile and 

therefore conducted the cyclisation at room temperature instead of reflux. In this work, 
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the cyclisation of 42 with rhodium acetate was again conducted at room temperature 

followed by filtration through basic alumina and subsequently purified directly by flash 

chromatography on silica gel. 1H NMR spectroscopy was undertaken before and after the 

chromatography on silica gel and while azulenone 92 was clearly identified as the major 

component the spectra showed the presence of an unidentified impurity (11%) after 

chromatography. The purified azulenone 92 was then stored at −20°C. It should be noted 

O’Keeffe did not report any evidence of this impurity.41 

Table 2.11 Preparation of racemic azulenones  

 

Entry 
Diazoketonea X Azulenone 

Efficiency 
(%)b 

Yield 
(%)c 

1 37 H 88
37 85 72 

2 39 Cl 95
41 85 75 

3 38 Me41 96
41 90 80 

4 40 F 94
37 81 74 

5 41 3,5-(Me)2         97 85 66 

6 42 3,4,5-(Me)3   92
41,d 72 42 

a. All diazoketones were cyclised according to the procedure for Method A. 

b. The efficiency of the reaction was estimated from the 1H NMR spectrum of the crude product. As the yield 

recovered of these relatively labile compounds following chromatrography can be somewhat variable. The 

practice in the research team is to record the efficiency based on integration of the crude products which 

enables comparison of efficiencies between transformations. 

c. Yield after chromatography. 

d. The reaction was carried out at room temperature and the resulting solution was filtered through a plug of 

basic alumina; all others were conducted under reflux. 

However, when the crude azulenone 92 was filtered through neutral alumina it was 

seen to form the dihydronapthalene 98 as a yellow oil, in a yield of 73% (Scheme 2.23). 
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The aromatisation of azulenone 92 to form 98 took place very rapidly on exposure to the 

alumina as evidenced by the appearance of a bright yellow colour. McNamara found that 

the dihydronapthalene 98 formed when she attempted to react azulenone 92 with 

maleimide.42  

          

42                             92                             98 

73% yield from 42 

Scheme 2.23 

It was anticipated that the novel dimethyl substituted azulenone 97 would be less 

labile than the trimethyl substituted azulenone 92. Accordingly, cyclisation of 41 with 

rhodium acetate was undertaken under reflux in dichloromethane and it was found that 

azulenone 97 was formed efficiently and could be purified by flash chromatography on 

silica gel and then stored at −20°C, although it was seen to decompose if left at room 

temperature over a short period of time (~1 day). Azulenone 97 was noticeably less labile 

than azulenone 92 as azulenone 92 decomposed if left at room temperature over a few 

hours, while 97 survived for up to 24 h at room temperature. 

Earlier workers in the group had clearly demonstrated the use of NMR and IR 

spectroscopy to characterise the azulenones and in particular to explore the position of the 

equilibrium of the NCD/CHT tautomers.28,37,39-41 The 1H NMR and IR spectroscopic 

features indicate that the azulenone 97 existed primarily as the norcaradiene tautomer. 

The C(8)H signal appears as a singlet and is positioned upfield at 2.52 ppm as illustrated 

in Figure 2.8, consistent with azulenones existing as the norcaradiene tautomer. In the IR 

spectra, there was only one carbonyl stretch at 1712 cm−1, which confirms azulenone 97 

existing essentially entirely as the norcaradiene tautomer. O’Leary previously identified 
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the IR stretch at 1710-1716 cm−1 being due to the carbonyl of the NCD tautomer and the 

IR band at 1740-1753 cm−1 being due to the carbonyl stretch of the CHT tautomer.28 

 

Figure 2.8 

For the 6-chloro azulenone 95, signals for another compound (9%) were observed 

in the 1H NMR spectrum of the product after purification; these signals were also 

observed in the 1H NMR spectrum of the crude product. They are due to the presence of 

the substituted regioisomers 103, 104 or 105 derived from the regioisomeric diazoketones 

101 or 102, and ultimately the acids 99 or 100 which originated in the alkylation of 

chlorobenzene as discussed in Section 2.5.1.1. While the presence of regioisomeric acids 

99/100 and diazoketones 101/102 were not detected by 1H NMR, observation of the 

isomeric azulenone 103, 104 or 105 as described by O’Keeffe provides evidence for the 

presence of regioisomers. The presence of this compound was also reported by 

O’Keeffe.41  

 

 

      2-Cl 99 or 3-Cl 100 2-Cl 101 or 3-Cl 102       103               104 

                  or 

        

           

           105 

Scheme 2.24 Regioisomers of 95 
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2.6.2.2 Impact of varying the reaction conditions on the cyclisation of internal αααα-

diazoketones 

While the standard conditions were optimised to avoid side reactions, an investigation 

was carried out into the formation of a diketone side product generated in the cyclisation 

of internal α-diazoketones by introducing air or water into the reaction. In this study, the 
1H NMR spectrum of the crude reaction mixture from the cyclisation of diazoketone 37 in 

the presence of Rh2(OAc)4, dichloromethane and water showed the presence of signals 

from a side product which were consistent with the diketone 106 (17%). The 

characteristic singlet at δΗ 1.99 was present for the C(1)H3 methyl group. This crude 

mixture was not purified.  

Table 2.12 The effect of the decomposition of diazoketones when water is added to the 

reaction 

 

 

89, X=H 

95, X=Cl 

       37, X=H 

       39, X=Cl 

             106, X=H 

             107, X=Cl 

Entry Diazoketone Conditions X Azulenone Diketone 

Crude 
Ratio 

Azul:Diket 

Efficiency 
(%)a 

 

1 37 
∆, with 

DCM/Waterb 
H 89 106 83:17c 50  

2 39 
∆, with 

DCM/Waterb 
Cl 95 107 70:30d 20  

3 37 ∆, under N2 H 89 106 100:0a 85  

4 37 ∆, under air H 89 106 95:5a 81  
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a. Calculated by integration of the aromatic (by-product) signals against the azulenone in the 1H NMR spectrum 

of the crude product. 

b. 1 mL of water was added to the DCM (160 mL) before substrate addition.  

c. Not purified. 

d. Purified by flash chromatography. Ratio of azulenone:diketone after chromatography was 76:24. 

The aromatic addition of the para-chloro substituted diazoketone 39 with 

Rh2(OAc)4 in dichloromethane and water resulted in a larger ratio of diketone 107 to 

azulenone 95 (Table 2.12, entry 2). The 1H NMR spectrum of the crude reaction mixture 

revealed the presence of the azulenone and diketone in a ratio of 95: 107, 30:70. The 

mixture was purified by flash chromatography on silica gel and this delivered two 

fractions. The first fraction contained the less polar diketone 107 and an unidentifiable 

impurity (18%). The IR spectrum of the diketone 107 showed a strong CO stretch at 1716 

cm-1. The characteristic signal for the C(1)H3 methyl group was at δΗ 2.08 in the 1H NMR 

spectrum of the purified material. The second fraction contained a mixture of the 

azulenone 95 and diketone 107 in the ratio of 95:107, 76:24. Clearly the presence of the 

electron withdrawing chloro substituent in 39 slows down the rate of the aromatic 

addition relative to 37 and thereby results in an increased amount of the diketone 

byproduct. 

The decomposition of diazoketone 37 using Rh2(OAc)4 was carried out under air 

using the standard set-up for the reaction (Table 2.12, entry 4). The main product was the 

azulenone 89, along with a small amount of an unidentified byproduct (5%), with signals 

consistent with diketone 106. However, the diketone 106 was not recovered following 

chromatographic purification. 

These results illustrate that the aromatic addition process of diazoketones 37 and 39 

is significantly impacted by the presence of water leading to significant amounts of 

diketone 106 and 107 in azulenone products, while the impact of conducting the reaction 

under air is noticeably less. Buckley and McNamara have previously described the 

isolation and characterisation of diketones, in particular when Rh2(cap)4 is used as 

catalyst (Scheme 2.25).37,42 For example, McNamara isolated the diketone 110 as a by-

product in the aromatic addition process, most notably when the reaction was conducted 

with Rh2(cap)4.  
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                            trans-109a and cis-109b  

       

       108 

        110 

Scheme 2.25 

As obtaining an analytically pure sample of diketone 107 was challenging, in line 

with earlier experience within the group, it was trapped as the crystalline 

diazanaphthalene 112 through condensation with 1,2-diaminobenzene 111 (Scheme 

2.26).37,42 Diketone 107 and diazanapthalene 112 are novel compounds and were fully 

characterised during the course of this work. 

 

       111 

 

                        

                                  107       112 

`           44% Yield 

      Scheme 2.26 
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2.6.3 Catalysts used in investigations of enantiocontrol in the intramolecular 

Buchner reaction 

The past three decades have witnessed a major development in asymmetric 

catalysis. New and powerful catalysts have been designed and developed which exhibit 

levels of enantioselectivity previously considered beyond reach for non-enzymatic 

processes.85  

Rhodium and, more specifically, dirhodium(II) complexes including carboxylates 

and carboxamidates (Figure 2.5) have proved to be the most effective and versatile 

catalysts for the aromatic addition of diazo compounds.23,26,75,86,87 Their versatility arises 

from the large range of bridging ligands that can be coordinated to the dirhodium(II) 

skeleton, which have a marked influence on reactivity and selectivity. Nitrogen-based 

ligands such as bisoxazolines have emerged as an efficient class of ligands in an 

increasing number of asymmetric transformations including cyclopropanation, 

aziridination, Diels-Alder reaction, reduction, aldol reaction, ene reactions, allylic 

oxidation etc.88 While coordination of these ligands to wide range of metals has been well 

documented, copper remains the most successful for diazocarbonyl transformations. An 

attractive factor is that a number of these enantiopure bis(oxazoline) ligands are 

commercially available.  

Recent studies within our research group, by Harrington and O’Keeffe,12,40,41 have 

illustrated the effectiveness of copper bisoxazoline ligands in the enantioselective 

decomposition of internal α-diazoketones (see Table 2.8, Table 2.9, Scheme 2.20). A 

number of commercially available bis(oxazoline) ligands 74, 75, 89 and 91 were 

employed and in addition ligand 93 was designed and synthesised over the course of this 

work (Figure 2.9). The details for its synthesis are outlined below. 
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       75 [(R,R)-Ph-Box]         74 [(S,S)-t-Bu-Box]      89 [(4R,5S)-tetra-Ph-Box] 

 

 

 

 

  91 [(R,R)-Bn-Box]      93 [(S,S)-3,5-(Me)2C6H3-Box] 

 

Figure 2.9 Bisoxazoline ligands employed in this study 

 

2.6.3.1 Synthesis of bisoxazoline ligands 

Since the first report in 1989, there have been many examples of new and novel C2-

symmetric bisoxazoline ligands with different structural features synthesised.89-96 The 

pioneering work on these ligands was conducted by Masamune but subsequent 

disclosures by Pflatz and Evans have ensured their continued growth and success. 97,98,99 

A detailed account of these bisoxazoline ligands can be found in extensive reviews of the 

area by Desimoni in 2006,96 and Guiry in 2009.100 

The most successful ligand that has been applied to the intramolecular Buchner 

reaction in our group, in terms of enantioselectivities achieved has been the phenyl 

substituted bisoxazoline 75.  

O’Keeffe developed a model rationalising the enantiocontrol in the aromatic 

addition process based on the interaction between the phenyl ring of the ligand and the 

phenyl ring on the substrate undergoing aromatic addition (Figure 2.10). To explore this, 

a range of substituted diazoketones with electron withdrawing and electron donating 
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substituents on the aromatic ring were investigated, displaying increased 

enantioselectivity when the aryl ring was substituted with electron donating substituents, 

supporting O’Keeffe’s model.41  

While the preliminary results investigated by Harrington and O’Keeffe used 

predominantly commercially available ligands, O’Keeffe undertook a preliminary 

exploration of substituted bisoxazolines although limited in scope due to the challenge in 

obtaining substituted bisoxazolines. O’Keeffe explored the 6-methoxy and 6-fluoro 

substituted bisoxazolines 113 and 114, and observed limited impact on the 

enantioselectivity, indicating that the electronic properties of the aryl ring of the ligand 

was less significant in determining the enantioselectivity than that of the aryl ring of the 

diazoketone, indicative of the edge-to-face rather than face-to-face interactions.41 

 

 

 

 

 

 

Figure 2.10 

Despite the wide application of bisoxazoline ligands, particularly the bisoxazoline 

75, there are limited reports of analogues bearing substituents on the phenyl ring 

presumably due to the synthetic challenge in obtaining the required enantiopure 

phenylglycinols. To date only p-MeO 115 and 116,101,102 p-Cl 117,101 p-t-Bu 118,102 p-Br 

119,103 2,4,6 tri-Me 120,104 3,4 di-MeO 121,104 p-Me 122
105 and four 2-alkoxy-5-

alkylphenyl substituted aryl bisoxazolines 123a-d
106 have been reported in the literature. 

Also, Desimoni and Itagaki have reported naphthyl derivatives 126/127.107,108 Within our 

group, O’Keeffe synthesised the novel para-fluoro substituted aryl bis(oxazoline) ligand 

113 from the commercially available (R)-4-fluorophenylglycine methyl ester 

hydrochloride. She also prepared the known methoxy substituted ligand 114.41 
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115-(S,S) X = MeO  123a R1 = Me, R2 = H               124 n = 0, R = t-Bu 
117-(S,S) X = Cl  123b R1 = Me, R2 = t-Bu   116 n = 1, R = Me 
118-(S,S) X = t-Bu  123c R1 = Me, R2 = Cl 
119-(S,S) X = Br  123d R1 = (CH2)2Cl, R2 = t-Bu 
120-(S,S) X = 2,4,6 trimethyl 
121-(S,S) X = 3,4 diMeO 
122-(S,S) X = Me 
125-(S,S) X = F 

   75-(R,R) X=H 
113-(R,R) X=F 
114-(R,R) X=OMe 

 

 

 

 

 

 

 

126      127 

Figure 2.11 

 

While O’Keeffe had explored the electronic effects of the substituents on the phenyl 

ring of 75, in this work, the novel ligand 93 was designed to allow exploration of both 

steric and electronic effects due to the presence of the meta-methyl substituents (Figure 

2.12). 
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                128      93 

Figure 2.12 

The construction of the oxazoline rings starting from a symmetrically substituted 

malonic acid derivative and two equivalents of optically active amino alcohol was 

envisaged using the method reported by Evans and Corey (Scheme 2.26). 99;109 The 

principal challenge in synthesising this ligand was to access the starting amino alcohol 

128 in enantiopure form. 

 

     

   128           

 

         0.5 eq.    Bisamide 129          Bisoxazoline 93  

            

Scheme 2.26 

2.6.3.2 Synthesis of amino alcohols 

Enantiopure amino alcohols have been prepared by several methods such as Evans’  

route to the amino alcohols which was derived from an amalgamation of work by 

Sharpless and Katsuki and involved four synthetic steps, 101;110;111 beginning with the 4-

substituted styrene derivatives (Scheme 2.27). These were subjected to Sharpless 

asymmetric dihydroxylation followed by the treatment of the diol with dimethyl 

carbonate which was followed by the regioselective ring opening of the cyclic carbonate 

with sodium azide, and finally the reduction of the resulting azido alcohol with LiAlH4. 
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Scheme 2.27 

2.6.3.2.1 Cozzi’s synthesis of arylglycinols 

Cozzi had reported a two-step synthesis of racemic arylglycinols together with a 

simple and straightforward methodology for their resolution as shown in Scheme 2.28. 

Cozzi reported that chiral β-amino alcohols were isolated in good yields and with up to 

99% enantiomeric excesses. 112 High regioselectivities and stereoselectivities were 

achieved independent of the electronic characteristics of the aromatic rings of the starting 

styrene. Cozzi’s route appeared very attractive for our studies as it appeared very straight 

forward to conduct and should in principle be applicable to the synthesis of a wide range 

of phenylglycinols. 

Cozzi synthesised a series of racemic 1,2-diols 130a-d by osmium catalysed 

dihydroxylation.112 The preparation of the corresponding racemic arylglycinols 131a-d 

was accomplished by an adaptation of the Ritter rearrangement reaction as described by 

the Merck group.113-115 Each of the subsequent amino alcohols 131a-d  was treated with 

(S)-O-acetylmandeloyl chloride in dichloromethane in the presence of pyridine. Cozzi 

isolated the amides 132a-d as a mixture of two diastereoisomers and the separation of 

these diasteroisomers was successfully accomplished by chromatography after hydrolysis 

of the acetyl group. Finally, the optically active amino alcohols 133a-d and 134a-d were 
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isolated after acidic hydrolysis of the corresponding enantiomerically pure amides 135a-d 

(Scheme 2.28). 

 

 

 

136 a-d      130 a-d     131 a-d 

Ar=C6F6-a, Mesityl-b, 4-Br-C6H4-c, β-Napthyl-d 

 

 

          137 

 

 

 

 

 

  135 a-d            132 a-d 

 

 

 

 

 

133 a-d   134 a-d 

 

Scheme 2.28 

To assess the practicality of Cozzi’s methodology for our purposes, we first treated 

phenylglycinol 138 with (S)-O-acetylmandeloyl chloride 137 (Scheme 2.30). (S)-O-

Acetyl-mandelic acid 139 was readily accessed from commercially available S-mandelic 
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acid following the literature procedure as summarised in Scheme 2.29, in a yield of 86%. 

The spectroscopic data and specific rotation was comparable to the literature data.116 

 

139    137 

86%    77% 

137,
20][ Dα  146.1 (c 1.0, CHCl3)    

   

Scheme 2.29 

 (S)-O-Acetylmandeloyl chloride 137 was synthesised in a yield of 77%, by treating 

the acid 139 with 1.1 equivalents of thionyl chloride (SOCl2) and a catalytic amount of 

dimethylformamide (DMF) (Scheme 2.29). The brown oil formed was purified by 

vacuum distillation to give the acid chloride as yellow oil. An IR spectrum of the crude 

material showed formation of the desired acid chloride 137 due to a strong absorption at 

1804 cm−1. In the 1H NMR spectrum of the pure product the broad singlet seen for the 

carboxylic acid was absent, indicating complete formation of the acid chloride 137. 
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140    138     141 

 

 

 

 

 

      

          142 

Scheme 2.30 

Lithium aluminium hydride reduction of racemic phenylglycine 140 to 

phenylglycinol 138 in 93% yield was the next step (Scheme 2.30).117 Reaction of 

phenylglycinol 138 with (S)-O-acetylmandeloyl chloride 137 and pyridine (1.1 eq.) was 

carried through following Cozzi’s procedure.112 In the first attempt, this was carried out 

through directly to the subsequent hydrolysis as described by Cozzi without isolation of 

the intermediate acetylated amide 141. However, the 1H NMR of the crude compound did 

not correspond to the expected mixture of diastereoisomers of 142. Following purification 

by chromatography, the individual components were not recovered. Accordingly the 

experiment was repeated, but this time attempting to isolate the intermediate 141 for 

spectroscopic characterisation and to attempt to separate the diastereoisomers. While this 

first step was undertaken a number of times, the 1H NMR spectra were more complex 

than expected. It was not possible to definitely characterise the respective amides 141 and 

142 in the crude or purified products for any of the series of experiments. Interestingly, 

Cozzi never described the characterisation of the acetylated amides 141 but instead 

carried through them through directly to the diols (133a-d, 134a-d). Based on our results, 
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we envisage that their interpretation of the outcome may not be comprehensive and they 

may have overlooked side products due to alcohol acetylation in addition to amide 

formation.  

2.6.3.2.2 Koga’s synthesis of enantiopure 3,5-dimethylphenylglycine 

Koga described the synthesis of a range of chiral bidentate amines using a multi-step 

synthesis starting from optically active amino acids; his method of obtaining the optically 

active amino acid appeared attractive for our purposes. He prepared racemic 3,5-

dimethylphenylglycine, and this was resolved via its N-trifluoroacetyl derivative by 

crystallisation as cinchonine salt (Scheme 2.31).118 

 

   143            (R)-143           (R)-144 

Scheme 2.31 

The initial task in the synthetic plan was to generate racemic 3,5-

dimethylphenylglycine 144 from 3,5-dimethylbenzaldehyde 145 via the Strecker reaction. 

While 3,5-dimethylbenzaldehyde 145 is commercially available it is expensive. As 

relatively large quantities would be required for subsequent reactions, it was prepared 

from 1-bromo-3,5-dimethylbenzene via bromine-lithium exchange reaction followed by 

reaction with DMF affording the aldehyde 145 as a green oil in a yield of 58%.119 The 

relative cost of purchasing 3,5-dimethylbenzaldehyde 145 commercially (5 g - €150) was 

much more expensive than synthesising it in the lab from 1-bromo-3,5-dimethylbenzene 

(100 g - €100).120,121 
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Scheme 2.32      
  

Koga described the preparation of 3,5-dimethylphenylglcyine 144 via the Strecker 

reaction from 145 although he did not provide any experimental detail. 122-124 When this 

approach was followed in this current study, using the standard conditions for the 

Strecker reaction two products were recovered, the expected substituted phenylglycine 

144 in 23% yield and the unexpected mandelic acid 287 in a 42% yield. The identity of 

144 was confirmed spectroscopically with characteristic signals in the IR at 3013 cm−1 

and 1758 cm−1  and in the 1H NMR (d6-DMSO) via a singlet at δH 4.97 ppm and a broad 

singlet at δH 8.76 ppm for the C(2)H and NH2 signals respectively. The mandelic acid 146 

was identified by 1H NMR by a characteristic singlet at δH 5.15 ppm for the C(2)H signal 

in CDCl3. To confirm the formation of the two acids, the 1H NMR spectra of each of the 

products were recorded in D2O showing clearly two distinct components. The C(2)H 

signal for amino acid 144 was observed at δH 4.90 ppm, which was further upfield than 

the C(2)H signal seen at δH 5.07 ppm for mandelic acid 146. 
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The mechanistic pathway envisaged for the Strecker synthesis involves cyanide 

addition to the iminium ion leading to formation of the α-aminonitrile (Scheme 2.33). 

While cyanide addition to the highly electrophilic iminium ion is envisaged to occur 

much more rapidly than addition to the aldehyde, it seems that in this instance direct 

addition of the cyanide to the aldehyde competed effectively resulting in a mixture of 

amino acid 145 and mandelic acid 146. 

Ar
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NH4Cl Ar
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H

CN
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H2N CN

H

-aminonitrile

Ar

H2N CO2H

H

H2O

HCl
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Ar

HO CN

H Ar

HO CO2H

H

mandelic acid  

Scheme 2.33 

 Variation of the reaction conditions was undertaken with the objective of 

enhancing the efficiency in the synthesis of amino acid 144. While the relative amount of 

the two products varied, both were isolated in all instances. As the two products 

partitioned between aqueous and organic layers in the work up, in practice each of the 

two are readily obtained as single components.  

To establish the side reaction was due to the presence of the two methyl 

substituents, the Strecker reaction was carried out with benzaldehyde under the same 

conditions and led to the α-amino acid 140 in a reasonable yield, with no evidence of 

mandelic acid formation (Scheme 2.34).122 
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Scheme 2.34 

In 1926, Corson reported the formation of mandelic acid by treating benzaldehyde 

with sodium metabisulfate and sodium cyanide (Scheme 2.35). He reported that the 

mandelic acid 147 was formed was through hydrolysis of the mandelonitrile 148 with 

hydrochloric acid.125 This supports the proposed mechanism for the formation of 146 in 

Scheme 2.33. 

 

 

        148 

 

 

 

 

        147 

Scheme 2.35 

The next step was trifluoroacetylation of the amino acid 144 which was previously 

reported by Koga using ethyl trifluoroacetate and tetramethylguanidine in methanol. This 

subsequently afforded 143 which existed as a white solid in 50% yield (Scheme 2.32). 

The yield and spectroscopic characteristics were comparable to those described by Koga. 

While Koga had described successful resolution of 143 through recrystallisation as a 
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cinchonine salt, he had conducted the reaction on a very large scale (~140 g). In our 

hands as only ~2.00 g of racemic acid 144 was available, the repeated recrystallisation for 

effective resolution was challenging and was not pursued, as an alternative route appeared 

more feasible. 

2.6.3.2.3  Synthesis of enantiopure 3,5 dimethylphenylglycine via Jacobsen’s 

epoxidation 

Pericas has shown that a wide variety of modular, enantiopure amino alcohols can be 

easily synthesised via ring-opening of enantiomerically pure synthetic epoxides with 

nitrogen nucleophiles including azides,103 using Suzuki cross coupling as the main tool 

for structural diversity (Scheme 2.36). 
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152a: 152b, 1:1 
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Scheme 2.36 
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This method of synthesising enantiopure amino alcohols was attractive and we 

decided to attempt to synthesise enantiopure amino alcohol 128 via Pericas’ route 

(Scheme 2.37). The synthesis of the precursor was initiated by a Corey-Chaykovsky 

reaction on aldehyde 145 to give 2-(3,5-dimethylphenyl)oxirane 154 as a green oil in a 

41% yield.103  

 

 

 

  145        154, 41%             R-154             155 

   48%, 98% ee 

          20][ Dα  +23.0 [c 0.25, CHCl3]. 

                           

 

 

 

     S-128,42%         S-156a                   156b           

         51%, 90% ee, S-156a:156b, 90:10 in crude 

20][ Dα   +15.92 [c 0.65, C2H5OH]         20][ Dα  +188.6 [c 1.0, CHCl3]      

                   

Scheme 2.37 

The next step was the hydrolytic kinetic resolution of the epoxide 154 using 

Jacobsen’s procedure.126 The (R,R)-Co(salen) catalyst 157 was prepared by Jacobsen’s 

method to give a bright red solid in a 83% yield (Scheme 2.38).  
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                     157, 83%              

Scheme 2.38  

The catalyst formed was stored under nitrogen in the freezer for up to 6 months 

with no decrease in catalytic activity observed. Oxidation of the Co(II) complex by acetic 

acid followed by addition of the racemic epoxide 154 in tetrahydrofuran (THF) was 

carried out first. Water was added slowly and the reaction mixture was stirred at room 

temperature for 40 hours. Following work-up, purification by vacuum distillation gave 

the (R)-epoxide 154 as a clear, colourless oil in 48% yield (Scheme 2.37). The reaction 

was conducted on a number of occasions; on each occasion the epoxide (R)-154 was 

obtained as a pure compound; however, on one occasion the epoxide (R)-154 isolated 

following distillation contained approximately 50% of another compound. The signals in 

the 1H NMR were consistent with the diol 155. However, diol 155 was never isolated in 

pure form from this reaction.  

The enantiomers of the epoxide 154 were readily resolved using a Chiracel® OD-H 

column resulting in an enantioselectivity of 98% (see appendix 3). In the initial 

experiments there were some variability in the enantiopurities of the epoxide recovered 

from the kinetic resolution yielding samples of 154 typically with 94-98% ee, but on one 

occasion dropping as low as 30% ee. The highest enantiopurity obtained was with the 

reaction as described above where the product was isolated as a mixture with diol 155 

rather than as a pure compound. Due to the inconsistency of enantiopurities it was 

decided to investigate the kinetic resolution of 2-phenyloxirane 158 following the same 

procedures as 154 (Table 2.13).  

Kinetic resolution in the ring opening of 2-phenyloxirane 158 using Jacobsen’s 

catalyst 157 was conducted at two different concentrations as illustrated in Table 2.13. 
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O O

(R,R)-Co-salen (3 mol %)

AcOH, H2O,
toluene, THF

Interestingly it was found that the increased concentration was required to lead to 

efficient kinetic resolution. Jacobsen describes to use of 1 mL:1 g but did not discuss the 

importance of concentration on the efficiency of resolution.126 Accordingly it is believed 

that the variability in the resolution of 154 is most likely due to the use of reaction 

mixtures which were too dilute. 

Table 2.13 Investigation into concentration of epoxide 158 in THF during kinetic 

resolution 

 

 

 

158     R-158 

Entry THF: 299 ee %a 

1 6 mL: 1 g 19b 

2 1 mL:1 g 98b 

a. Determined by chiral HPLC. 

b. Major Enantiomer = (+). 

Based on this model study further experiments to explore the kinetic resolution of 

epoxide 154 with careful control of the concentration of the epoxide 154 enabled 

reproducible, efficient kinetic resolution to form R-154 in a 48% yield and up to 98% ee. 

The kinetic resolution was conducted on up to 2 gram scale with the limitation being the 

cost of Jacobsen’s ligand. 

The absolute stereochemistry of the recovered optically active R-154 was assigned 

by comparison of the specific rotation data to that of the related compounds described by 

Jacobsen, and on the basis of Jacobsen’s description of the sense of enantioselectivity in 

the epoxide ring opening.126 

Pericas found that transformation to the amino alcohol 128 was best effected by a 

two-step sequence involving ammonium chloride catalysed azidolysis of the epoxide and 
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reduction of the azido group by the Staudinger protocol.103 Following this method, 

epoxide R-154 was heated under reflux for 12 hours with ammonium chloride and sodium 

azide in ethanol (Scheme 2.37). Although a 90:10 regioisomeric mixture of azido alcohols 

156a:156b was obtained, the desired azido alcohol 156a could be easily separated by 

flash chromatography. The epoxide can undergo ring opening via two competing 

pathways - attack at the benzylic carbon or at the primary carbon. The optical purity of 

the obtained azido alcohol 156a was 90% ee using a Chiracel® OJ-H column. Pericas 

obtained; a 1:1 regioisomeric mixture of azido alcohol 152a:152b  as illustrated in 

Scheme 2.36.103 

Reduction of the azido alcohol 156 with triphenylphosphine was attempted using 

the method described by Pericas.103 However, it was difficult to remove the 

triphenylphosphine oxide from the desired crude alcohol 128 by flash chromatography or 

trituration. Therefore it was decided that an alternative reduction via hydrogenation would 

be carried out. The azido alcohol 156 in methanol was shaken under hydrogen at 30 psi 

for 16 h over Pd/C at room temperature (Scheme 2.37). 1H NMR analysis of the crude 

product indicated excellent purity; however, recrystallisation was undertaken as described 

by Pericas from hot toluene to give the novel amino alcohol 128 as white needle-like 

crystals in a yield of 42%. The enantiopurity of the amino alcohol 128 could not be 

obtained by chiral HPLC, therefore it was carried directly through to the next step. 

Interestingly, Pericas had not described the enantiopurity of the analogous bromo 

substituted amino alcohol. It is possible the enantiopurity of 128 was enhanced through 

the recrystallisation from 90% ee in 156a as the ligand obtained ultimately had ≥99% ee, 

however this was not confirmed. In conclusion, while the isolation of racemic 128 has 

been described,127 the isolation of amino alcohol S-128 in excellent enantiopurity was 

achieved for the first time during this work and the compound was fully characterised.  
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2.6.3.3 Synthesis of the novel bisoxazoline 93 

There are several possible methods for the synthesis of bisoxazolines from amino 

alcohols via bisamides. Itagaki et al. demonstrated the dehydration of bisamido alcohols 

using titanium isopropoxide as catalyst,108 while Sakakura and co-workers used 

molybdenum(VI) oxide as catalysts for highly effective dehydrative cyclisations for the 

formation of oxazoline complexes.128 However,  Evans reported that cyclisation to the 

bisoxazoline via the bis(alkyl chloride) followed by thermal cyclisation, was the best 

procedure for the oxazoline ring-forming step.129 As O’Keeffe had successfully applied 

the Evans method to the synthesis of the methoxy substituted ligand 114, it was also 

applied in this investigation to synthesise the novel bisoxazoline 93. Based on Jacobsen’s 

and Pericas’ work, recovery of (R)-154 was envisaged on exposure of 154 to the (R,R)-

Co(salen) 157 catalyst. The direction of the enantioselection was confirmed later in the 

sequence by comparison of the specific rotation and chiral HPLC characteristics of the 

novel bisoxazoline ligand 93 with known compounds such as (R,R)-113 { 20][ Dα  +183.2 [c 

0.5, CHCl3]} and (R,R)-114{ 20][ Dα  +125.7 [c 0.3, CHCl3]}.41 

The reaction was first conducted with the racemic amino alcohol 128 then applied 

to the enantioenriched amino alcohol (R)-128. The initial step was the acylation of the 

amino alcohol 128 with 0.5 equivalents of dimethylmalonyl chloride 159 to give the 

bisamide 160 (Scheme 2.39).  
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159             a.  (±)-128   a. 160 Diastereoisomers 78:22 

       b. (S)-128            b. (S,S)-160, 86%, 20][ Dα  33.75 [c 0.2, CHCl3] 

        

 

 

 

 

 

 

 

a. 93 [(R,R) and (S,S)] diastereoisomers only 

b. (S,S)-93, 40%, >99%ee, 20][ Dα  -97.0 [c 0.1, CHCl3] 

Scheme 2.39 

The 1H NMR spectrum of the crude bisamide 160 derived from the racemic amino 

alcohol 128 contained a mixture of diastereoisomers in the ratio of 78:22 with the major 

diastereoisomer the same by 1H NMR as (S,S)-160. O’Keeffe reported that for the para-F 

substituted bisamide 161, signals for the diastereoisomers appeared as one set in the 1H 

NMR spectrum (Figure 2.13).41 Recrystallisation from a mixture of dichloromethane and 

hexane did not alter the ratio of diastereoisomers, but a low yield of 47% was obtained. 

Critically for the novel bisamide (S,S)-160 derived from (S)-128 there was no evidence of 

the meso diastereoisomer in the crude product isolated in 86% yield. As the enantiopurity 

of (R)-128 was never directly measured, absence of the meso diastereoisomer in (S,S)-160 
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confirms that (R)-128 was enantiopure. To maximize yield, the chiral bisamide (S,S)-160 

was not purified and was carried through directly to the corresponding bisoxazoline. 

 

161 

Figure 2.13 

 The bisamide 160 was treated with p-toluenesulfonyl chloride (p-TsCl) and 

triethylamine (NEt3) in the presence of a catalytic amount of 4-(dimethylamino)pyridine 

(DMAP) to give the novel bisoxazoline 93 (Scheme 2.39). The reaction was conducted 

firstly with the racemic bisamide 160 to give a racemic mixture of [(R,R) and (S,S)] of the 

bisoxazoline 93 in a yield of 56%. The other diastereoisomers [(R,S) and (S,R)] were 

identifiable in the 1H NMR of the crude material and were not isolated from the reaction. 

The synthesis was then applied to the enantioenriched bisamide (S,S)-160. The low 

yield of 40% was due to difficulties encountered during purification. The bisoxazoline 

(S,S)-93 was purified by flash chromatography on silica gel using diethyl ether/hexane as 

solvent. TLC analysis proved to be the most challenging aspect as the bisoxazoline (S,S)-

93 was not UV active and could only be seen when the plate was stained with potassium 

permanganate solution. However, while the spot appeared bright white initially, it faded 

after a short period of time.  

Chiral HPLC analysis of the racemic and enantiopure samples showed that the 

batch of [S,S]-bisoxazoline 93 was generated in enantiopure form (>99% ee) (Figure 

2.14), while a 1H NMR spectrum of (S,S)- 93 is illustrated in Figure 2.15. 
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 Racemic           ≥99% ee 

 

 

 

 

 

 

      

Figure 2.14 Chiral HPLC analysis of the racemic and enantiopure samples of [S,S]-

bisoxazoline 93 

Isolation of the 3,5-disubstituted bisoxazoline ligand 93 is potentially of value in a 

wide range of catalytic transformations. While phenylglycinol derived bisoxazolines have 

been described bearing substituents on the phenyl ring, derivatives at the 3,5-positions are 

rare and thus 93 enables exploration of the steric and electronic effects of the methyl 

substituents. 
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Figure 2.15 
1
H NMR spectrum of the pure bisoxazoline 93 

2.6.4 Enantioselectivity in the cyclisation of internal αααα-diazoketones 

The first task in this study was to repeat the reactions carried out by O’Keeffe12,41 

for the geminal-dimethyl diazoketones 37-42 using the bisoxazoline ligands 74, 75 and 89 

in order to evaluate the reproducibility of the reaction and enantioselectivities obtained as 

shown in Table 2.14. O’Keeffe41 employed the copper salt Cu(CH3CN)4PF6. The 

conditions employed were those previously described by O’Keeffe with 6 mol% of 

Cu(CH3CN)4PF6 and 8 mol% of ligand and the catalyst was prepared following the 

procedure for Method B (Table 2.10). The reactions were found to be complete by TLC 

once all of the diazoketone was added over 1 h. In general, the copper(I)-bisoxazoline 

complexes catalysed the aromatic addition reaction of α-diazoketones in good yield and 

were comparable to those described by O’Keeffe.41 Following concentration, a crude 1H 

NMR spectrum was recorded allowing determination of the reaction efficiency as 

summarised in Table 2.14. The 1H NMR spectrum was well resolved even in the presence 

of the catalyst, although storage in the crude form lead to significant degradation. 
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Table 2.14 Cyclisation of diazoketones 37-42 with copper bis(oxazoline) ligands 

 

Entry Diazoketonea X Catalyst Azulenone Method Eff (%)b 
Yield 
(%)c 

ee (%)d 

This Study 

ee(%)d 

O’Keeffe 

1 37 H CuPF6-75[(R,R)-
Ph-Box] 

88 A 79 74 78e 76 

2 37 H CuPF6-89[(4R,5S)-
tetra-Ph-Box] 

88 A 87 58 68e 0 

3 39 Cl CuPF6-75[(R,R)-
Ph-Box] 

95 A 73 63 62e 62 

4 39 Cl CuPF6-74[(S,S)-t-
Bu-Box] 

95 A 89 46 11f 44 

5 38 Me CuPF6-75[(R,R)-
Ph-Box] 

96 A 80 74 80e 80 

6 40 F CuPF6-75[(R,R)- 94 A 86 81 56e 59 
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Ph-Box] 

7 42 3,4,5 
tri 
Me 

CuPF6-75[(R,R)-
Ph-Box] 

92 A 87 62 -e,g ≥95 

8i 41 3,5 
di 

Me 

CuPF6-75[(R,R)-
Ph-Box] 

97 A 88 72 -e,h - 

a. Diazoketone was added over 1 h and the reaction was complete at the end of the addition. 
b. Calculated by integration of the aromatic (by-product) signals against the azulenone in the 1H NMR spectrum of the crude product. 
c. Yield after chromatography. 
d. Determined by chiral 1H NMR spectroscopy using (+)-Eu(hfc)3 as chiral shift reagent. 
e. Major Enantiomer = (−). 
f. Major Enantiomer = (+). 

g. Unable to calculate % ee due to decomposition. When sample was trapped with PTAD 162, the enantioselectivity was determined as 93% ee (of adduct 163, see Section 2.6.6.3). 
h. Unable to calculate % ee due to poor separation of peaks in chiral 1H NMR study. When sample was trapped with PTAD 162, the enantioselectivity was determined as 92% ee (of 

the adduct 164, see Section 2.6.6.3) 
i. Novel compound 

Note:CuPF6 refers to Cu(CH3CN)4PF6 
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The majority of enantioselectivities observed (11-80% ee) were in agreement with 

those recorded by O’Keeffe both in terms of direction and extent of enantiocontrol,41 

illustrating that the cyclisations proceed with excellent reproducibility (Table 2.14). In 

this study, the highest level of enantiocontrol was provided by the catalyst complex 

comprised of the phenyl substituted ligand 75 (80% ee) in the cylisation of diazoketone 

38 (Table 2.14, entry 5). This result is in agreement with O’Keeffe’s findings. 

However, the tetraphenyl substituted ligand 89 provided the azulenone 88 in 68% 

ee, which is in contrast to O’Keeffe’s result where she reported that the tetraphenyl 

substituted ligand 89 provided the azulenone 88 in racemic form (Table 2.14, entry 2). 

Otherwise the data reported in Table 2.14 mirrors very effectively O’Keeffe’s results and 

it is difficult to rationalise the substantial difference in enantiocontrol in entry 2. Notably 

the 68% ee seen in this work is more consistent with the later results in the presence of 

additives and therefore is believed to be more accurate. Cyclisation of 37 using catalyst 

89 was repeated and led to the same outcome within experimental error. Reactions in 

entries 1 and 3 were also reproduced highlighting the reliability of the enantioselectivity 

in the aromatic addition process. While O’Keeffe had rationalised the difference in 

enantiocontrol between entries 1 and 2 as being due to conformational restriction in the 

diphenyl ligand 89, the results in this work indicate that the extra phenyl substituent has 

minimal impact on asymmetry in the cyclisation of diazoketone 37 (Table 2.14).  

The enantiopurity of azulenone 92 was not readily determined directly due to the 

extremely labile nature of the compound as discussed in Section 2.6.2.1. O’Keeffe 

reported enantiopurities of ≥95% ee by chiral HPLC,41 but in this work the azulenone 92 

was observed to decompose quickly from a pale green to a yellow oil. As a result, 

analysis by chiral HPLC or chiral 1H NMR was not possible. Resolution of one of 

C(3)(CH3)2 signals of the enantiomers of azulenone 97 was evident by 1H NMR 

spectroscopy using (+)-Eu(hfc)3 as chiral shift reagent but due to the relatively high 

enantioselectivity observed an accurate integration of these signals was not possible. Both 

these issues were solved by trapping each of the crude azulenones 92 and 97 in situ with 

PTAD 162 to form their stable Diels-Alder adducts and their enantioselectivities were 

subsequently determined by chiral HPLC (as 93% ee and 92% ee respectively, see Table 
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2.24). This will be discussed in more detail in Section 2.6.6.3. The excellent 

enantioselectivities achieved in the cyclisation of both the dimethyl and trimethyl 

substituted diazoketones 41 and 42 using catalyst CuPF6-75[(R,R)-Ph-Box] confirmed 

O’Keeffe’s earlier result with diazoketone 42.41,130 Essentially the same outcome is 

achieved with just two methyl substituents in diazoketone 41. 

The aryl ring of the diazoketone has two enantiotopic faces, and preferential 

addition of the carbenoid to one face is required to lead to enantioselective aromatic 

addition reactions (Figure 2.16). Thus the presence of the chiral copper catalyst must in 

some way lead to selective addition of the carbenoid to one face resulting in the 

preferential formation of the major enantiomer. 

     Figure 2.16 

O’Keeffe postulated that the selectivity observed in the intramolecular Buchner 

reaction is caused by the shielding of one face of the reacting phenyl ring as a result of 

interactions between the bisoxazoline and the diazoketone. This interaction is believed to 

hold the catalyst and substrate pair in a defined conformation, controlling the trajectory of 

the carbene centre to the aromatic ring, and ultimately resulting in good enantioselection 

(Figure 2.17). 

 

 

 

 

 

Figure 2.17 
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2.6.4.1 Investigation into the enantioselectivity when using the novel bisoxazoline 

ligand (S,S)-93 

An exploration of the impact of variation in the electronic properties of bisoxazoline 

ligands on enantioselectivity is relatively uncommon, unlike the effect of steric alterations 

which have been well studied. Ligands derived from substituted phenylglycinols have 

been investigated in a number of catalytic transformations. For example, Kato and co-

workers investigated various aromatic substituents at the C-4 position of the bisoxazoline 

ring for the asymmetric cyclisation-methoxycarbonylation of 2-methyl-2-

propargylcyclohexane-1,3-dione (Scheme 2.40).104 

 

 where 120 Ar = 2,4,6- trimethylphenyl 52% ee 

                         115 Ar = 4-MeOPh   51% ee 

                          121 Ar = 3,4-dimethoxyphenyl 69% ee 

Scheme 2.40 

Kato reported modest enantioselectivities of 51 and 52% ee respectively when 

ligands 115 and 120 were applied to the asymmetric cyclisation-methoxycarbonylation 

reaction. Interestingly when the ligand 121 bearing the electron donating group on the 

aromatic ring was introduced, the enantioselectivity increased to 69% ee and when the 

reaction was carried out at −20°C an enantioselectivity of 76% ee was reported. This 

result clearly demonstrates the positive effect of having a more electron donating group 

on the phenyl ring of the bisoxazoline ligand.104 There are no reports of this effect in 

diazocarbonyl chemistry. 
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Evans and co-workers also investigated the significant role of electronic effects on 

the enantioselectivity of a series of copper catalysed hetero Diels-Alder reactions.101 They 

observed no significant differences in enantioselectivity when bisoxazoline ligands with 

electron poor or rich aryl moieties were applied, the contribution of electronic effects was 

not discounted. Evans highlighted the precedent for stereoselective processes in which 

dipole-dipole and Van der Waals attractions are implicated but are unaffected by 

perturbations in the π-donor capability of the phenyl group.131,132 

 

Table 2.15 Cyclisation of diazoketones 37-40 in the presence of the novel bisoxazoline 

ligand [(S,S)-3,5-di-Me-C6H3-Box]-93 

 

 

 

           

 

 

          93 

Entry Diazoketone X Azulenone 

CuPF6- 93[(S,S)-3,5-di-
Me-C6H3-Box]a 

CuPF6-75[(R,R)-Ph-
Box]a 

Eff 
(%)b 

Yield 
(%)c 

ee 
(%)d 

Eff 
(%)b 

Yield 
(%)c 

ee 
(%)d 

1 37 H 88 85 69 68e 79 74 78f 

2 38 Me 96 80 65 73e 80 74 80f 

3 39 Cl 95 80 68 71e 73 63 62f 

4 40 F 96 90 71 51e 86 81 59f 

a. Catalysts prepared via Method A. 

b. Calculated by integration of the aromatic by-product signals against the azulenone in the 1H NMR spectrum 

of the crude product. 

c. Yield after chromatography. 
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d. Calculated from chiral shift 1H NMR experiments. 

e. Major Enantiomer = (+). 

f. Major Enantiomer = (−). 

The aromatic addition of diazoketones 37-40 in the presence of the novel 

bisoxazoline ligand [(S,S)-3,5-di-Me-C6H3-Box]-93 provided efficient reactions in 

moderate yields and generated good enantioselectivities (Table 2.15). Interestingly, the 

use of the 3,5-dimethyl substituted ligand 93 in the cyclisation of three of the four 

diazoketones 37-40 lead to a slight decrease in the enantioselectivity compared to those 

obtained with the phenyl substituted ligand 75 (Table 2.14), while a slightly increased 

asymmetric induction was observed with the novel ligand 93 in the cyclisation of 

diazoketone 39. These results are in line with earlier results reported by O’Keeffe where 

ligands 165, 166 and 167 (Figure 2.18) resulted in very similar asymmetric induction to 

those achieved with the unsubstituted ligand 75. Thus O’Keeffe had demonstrated 

electronic effects had minimal impact on enantiocontrol; this study indicates steric effects 

are equally insignificant.41 

 

 

 165     166     167 

Figure 2.18 
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2.6.4.2 Enhancement of enantioselection by variation of the counterion 

Since Evans’ report in 1991 that the variation of counterion had a significant impact on 

both efficiency and enantioselectivity of asymmetric cyclopropanation catalysed by 

copper bisoxazoline complexes,99 there have been many reports of the counterion 

influencing enantioselectivity in copper bisoxazoline catalysed asymmetric 

cyclopropanation reactions.133-136 However, there has been no discussion of variation of 

the counterion affecting enantioselectivity in intramolecular carbenoid addition to 

aromatic rings. 

Zhou developed the first highly enantioselective catalytic insertion of α-diazoesters 

into N-H bonds by using copper complexes of chiral spiro bisoxazoline ligands as 

catalysts.137 Zhou reported that the nature of the counterions of the catalysts significantly 

influenced the enantioselectivity and the reactivity of the catalyst. CuOTf gave the 

insertion product in only 5% ee, which showed that the smaller and more coordinating 

OTf− ion is evidently inferior to the PF6
− ion, which gave the product in a 43% ee. 

Interestingly, by employing the larger non-coordinating ion tetrakis[3,5-

bis(trifluromethyl)phenyl]borate (BARF−) in the reaction, enantioselectivities increased 

up to 98% ee. NaBARF has also been employed in a wide variety of transformations such 

as intermolecular cyclopropanation, asymmetric hydrogenation of olefins and 

hydrovinylation reactions.138-141 BARF− is a large non-coordinating anion, and shows 

excellent solubility in organic solvents (Figure 2.19). It is believed that the weakly 

coordinating nature of NaBARF 168 is due to steric effects.142 

 

168 

Figure 2.19 



 
                                                                             Chapter 2 – Results and Discussion 
 

 

139 

 

Zhou also reported the use of NaBARF 168 to enhance enantioselectivities in 

copper catalysed insertion of carbenoids into Si-H bonds and the O-H insertion into 

phenols and water.143,144 In 2008, Zhou described the highly efficient copper catalysed 

enantioselective ring opening of oxa-bicylic alkenes with Grignard reagents using chiral 

spiro phosphine ligands and NaBARF 168 as an additive. He stated that the high activity 

of the catalyst may be rationalized by the generation of a more active cationic species 

through the exchange of the counterion of the catalyst to the noncoordinating anion 

BARF−.145 The presence of NaBARF 168 has also been reported to result in enhanced 

efficiency and selectivity in [3+2] cycloadditions of α-aryldiazoesters with terminal 

alkenes,146 and in another instance, altered efficiency and regioselectivity in 

intramolecular C-H insertion processes with ethyl diazoacetate.147 With these reports in 

mind, it was decided to explore the impact on the aromatic addition process by using 

NaBARF 168 as an additive to a catalytic mixture consisting of CuCl and a bisoxazoline 

ligand. Subsequently Flynn and Slattery extended the use of NaBARF in copper mediated 

reactions of α-diazocarbonyl compounds in our research team.148,149
 

The synthesis of tetraarylborate (BARF−) as its sodium salt was first reported by 

Kobayashi in 1984 (Scheme 2.41).150 This counterion was of interest to them as they 

found that the strongly electron withdrawing effect caused by the trifluoromethyl 

substituents would suppress any electrophilic attack by a proton on the phenyl ring carbon 

adjacent to the boron, therefore increasing its stability against acids. Brookhart also 

prepared NaBARF 168 using a modification of Kobayashi’s procedure.151 

 

        

      168 

Scheme 2.41 
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While Zhou also prepared NaBARF 168 by using the procedure developed by 

Kobayashi,150 an earlier report by Leazer highlighted the associated risk with this 

synthetic procedure.152 During the course of Leazer’s work he stated that 

trifluoromethylphenyl Grignard reagents can detonate upon moderate heating or loss of 

solvent contact. Pfizer scientists reported a violent explosion of 3-

(trifluoromethyl)phenylmagnesium bromide resulting in extensive laboratory damage.153 

Another report mentioned the detonation of 4-(trifluoromethyl)phenylmagnesium 

bromide resulting in destruction of a factory and loss of life.154 Leazer instead 

recommended an alternative procedure reported by Bergman.155 Bergman used a safe, 

convenient preparation of NaBARF 168 utilising a magnesium bromine exchange 

reaction in the absence of metallic magnesium. The procedure designed by Bergman was 

used to prepare NaBARF 168 is this work (Scheme 2.42) 

 

       

 

 

34% 

     168 

Scheme 2.42 

When the copper catalysed transformations were undertaken, NaBARF 168 was 

calculated as its anhydrous form (6 mol %). In retrospect it was recognised that this 

material was hydroscopic and therefore it was likely that the NaBARF 168 employed was 

either partially or fully hydrated, therefore the amount added was slightly less than that 

calculated. Furthermore, the degree of hydration may have changed over time with older 

samples likely to have been more hydrated. The yield was calculated for NaBARF 168 in 

its anhydrous form. NaBARF 168 was stored under nitrogen at −20 °C.  

A detailed study was undertaken using four diazoketones 37-40 with variation of 

the copper salt, ligand and with and without the addition of NaBARF 168 (Table 2.16).  
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Table 2.16 Copper catalysed intramolecular Buchner reaction of diazoketones in the presence of NaBARF 

a. Diazoketones were added in an ethereal solution over 2 hours. Reaction was complete by TLC following an additional hour under reflux. 
b. The catalyst was prepared from 5 mol% CuCl, 6 mol% ligand and 6 mol% NaBARF. Catalyst was stirred for 2 h at 20oC before substrate was added. 
c. Efficiency refers to the percentage azulenone formed relative to aromatic by-products and is determined from the 1H NMR spectrum of the crude product. 
d. Yield of isolated product after flash chromatography. 
e. Determined by chiral 1H NMR spectroscopy using (+)-Eu(hfc)3 as chiral shift reagent. 
f. Major Enantiomer = (+). 
g. Major Enantiomer = (−). 
h. The 1H NMR spectrum of the crude reaction mixture contained the diketone 106 (6%) and starting diazoketone 39 (18%). 

i. The 1H NMR spectrum of the crude reaction mixture contained an unknown impurity (18%). Signals were observed at δH (300 MHz) 0.86 (6H, s), 1.44 (3H, s), 1.80 (1H, s), 2.30 (2H, s), 3.87-3.93 
(1H, m), 4.20-4.37 (2H, m). 

j. The 1H NMR spectrum of the crude reaction mixture contained an unknown impurity (10%). Signals were observed at δH (400 MHz): 1.32 (6H, s), 1.99 (3H, s), 4.12 (3H, t, J 8,3), 4.55 (2H, t, J 10.1), 
4.96 (3H, dd, J 10.1, J 8.0). 

k. The 1H NMR spectrum of the crude reaction mixture contained an impurity (15%). Signals were consistent with the diketone impurity. Signals were observed at δH (300 MHz): 1.45 (6H, s), 2.11 (3H, 
s), 3.10 (2H, s). 

l. The 1H NMR spectrum of the crude reaction mixture contained an impurity (3%), the signals were consistent with the diketone impurity. Signals were observed at δH (300 MHz): 1.43 (6H, s), 2.05 (3H 
,s), 3.08 (2H, s). 

Entry Diazoketonea
 X Azulenone 

CuCl-NaBARF-75[(R,R)-
Ph-Box]b

 

CuCl-NaBARF-
74[(S,S)-t-Bu-Box]b

 

CuCl-NaBARF-
89[(4R,5S)-tetra-Ph-

Box]b
 

CuCl-NaBARF-
91[(R,R)-Bn-Box]b

 

Eff (%)c 
Yield 
(%)d 

ee 
(%)e 

Eff 
(%)c 

Yield 
(%)d 

ee 
(%)e 

Eff 
(%)c 

Yield 
(%)d 

ee 
(%)e 

Eff 
(%)c 

Yield 
(%)d 

ee 
(%)e 

1 37 H 88 72 52 78f 60 48 24g 71 52 73f - - - 

2 38 Me 96 62 46 80f 75i 50 27g 55 49 70f 58 42 30f 

3 39 Cl 95 65 54 78f 47h 35 23g 62 44 68f 66 47 24f 

4 40 F 94 54j 51 72f 34k 30 18g 65 48 72f 70l 47 32f 
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Table  Continued 
 

 

 

 

 

 

 

 

 

 

 
a. Diazoketones were added in an ether solution over 2 hours. Reaction was complete by TLC following an additional hour under reflux.  For CuCl-75[(R,R)-Ph-Box] reaction was complete by TLC 

following an additional 16 hours under reflux. 
b. The catalyst was prepared from 1.3:1 molar mixture of ligand: CuCl. Catalyst was stirred for 2 h at 20oC before substrate was added. 
c. The catalyst was prepared from 5 mol% CuPF6, 6 mol% ligand and 6 mol% NaBARF. Catalyst was stirred for 2 h at 20oC before substrate was added. Note: CuPF6 refers to Cu(MeCN)4PF6.  
d. The catalyst was prepared from 5 mol% CuOTf, 6 mol% ligand and 6 mol% NaBARF. Catalyst was stirred for 2 h at 20oC before substrate was added.  
e. Efficiency refers to the percentage azulenone formed relative to aromatic by-products and is determined from the 1H NMR spectrum of the crude product. 
f. Yield of isolated product after flash chromatography. 
g. Determined by 1H NMR spectroscopy using (+)-Eu(hfc)3 as chiral shift reagent. 
h. The 1H NMR spectrum of the crude reaction mixture contained an unknown impurity (approx 18%). Signals were observed at δH (300 MHz) 0.86 (6H, s), 1.44 (3H, s), 1.80 (1H, s), 2.30 (2H, s), 3.87-3.93 

(1H, m), 4.20-4.37 (2H, m). 
i. Major Enantiomer = (−). 
j. The 1H NMR spectrum of the crude reaction mixture contained an unknown impurity (approx 22%). Signals were observed at δH (400 MHz) 1.42-1.46 (3H, m), 2.25-2.33 (2H, m). 
k. The 1H NMR spectrum of the crude reaction mixture contained the diketone 106 (5%). 
l. The 1H NMR spectrum of the crude reaction mixture contained the diketone 106 (4%). 
m. The 1H NMR spectrum of the crude reaction mixture contained the diketone 106 (3%). 
n. Complex mixture of unidentifiable products. 

Entry Diazoketonea
 X Azulenone 

CuCl-75[(R,R)-Ph-Box]b
 

CuPF6-NaBARF-
75[(R,R)-Ph-Box]c

 

CuOTf-NaBARF-
75[(R,R)-Ph-Box]d

 

Eff (%)e 
Yield 
(%)f 

ee 
(%)g 

Eff 
(%)e 

Yield 
(%)f 

ee 
(%)g 

Eff 
(%)e 

Yield 
(%)f 

ee 
(%)g 

1 37 H 88 37h 31 37i - - - - - - 

2 38 Me 96 79j 45 44i - - - - - - 

3 39 Cl 95 66k 49 0i 67l 43 72i 74 56m 77i 

4 40 F 94 -n -n -n - - - - - - 
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 37-40                       88, 94-96 

Scheme 2.43 Copper catalysed intramolecular Buchner reaction of diazoketones 37-40 in 

the presence of NaBARF 168 

For these reactions, the catalyst was prepared by stirring copper(I) chloride (5 

mol%), bisoxazoline ligand (6 mol%) and NaBARF (6 mol%) in dichloromethane at 

room temperature for 2 hours prior to heating to reflux followed by dropwise addition of 

the diazoketone substrate based on the method reported by Zhou.137,143,156 This is in 

contrast to the catalyst preparation discussed in Section 2.6.4, where a 1.3:1 molar 

mixture of bisoxazoline ligand and pre-prepared [Cu(MeCN)4]PF6 were heated in 

dichloromethane to reflux directly prior to the dropwise addition of the diazoketone 

without pre-stirring for 2 hours. In an earlier study, O’Keeffe noted very similar outcomes 

using SbF6
−or PF6

− as counterion, while in this work there were clear differences through 

use of BARF− and PF6
− as counterions. The catalyst CuCl-ligand was prepared identically 

to CuCl-NaBARF-ligand catalyst. 

As discussed in Section 2.6.4 for the Cu[(MeCN)4]PF6-ligand catalyst, aromatic 

addition reactions shown in Table 2.14 were complete by TLC once all the diazoketone 

was added. In contrast a decrease in reaction rate was observed for the CuCl-NaBARF-

ligand catalysed processes. In these instances, reactions required additional heating 

beyond the end of the diazoketone addition to achieve complete transformation and were 

typically complete within 3 hours (1 h beyond addition) relative to reactions discussed in 

section 2.6.4 where reactions were complete once all the diazoketone was added over 1 

hour. Use of the CuCl-75 system required up to 18 hours (16 h beyond 2 h addition) for 

complete reaction of the diazoketone. A comparison of the reaction completion times for 

the catalyst systems Cu(MeCN)4]PF6-ligand, CuCl-NaBARF-ligand and CuCl-ligand as 

shown in Figure 2.21 
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Figure 2.20 Comparison of the reaction completion times for different catalysts with 

diazoketones 37-40 

As shown in Table 2.16, the efficiencies and yields of the reaction were strongly 

influenced by the catalyst systems employed. For example, the efficiency in formation of 

azulenone 94 decreased from 86% for CuPF6-75[(R,R)-Ph-Box] to 54% for the CuCl-

NaBARF-75[(R,R)-Ph-Box] catalyst, and the yield decreased from 81% (Table 2.14, 

entry 6) to 51% (Table 2.16, entry 4). The differences in reaction efficiency when the 

catalysts CuPF6-75[(R,R)-Ph-Box] and CuCl-NaBARF-75[(R,R)-Ph-Box] are employed is 

illustrated in Figure 2.22. 
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Figure 2.21 Trends in reaction efficiency for ligand (R,R)-Ph-Box-75 as determined from 
1
H NMR spectra of the crude products 

A number of impurities were detected in the cyclisation products, including the 

diketone 107 (~6%). When the diazoketone 39 was cyclised with CuCl-NaBARF-

74[(S,S)-t-Bu-Box], the 1H NMR of the crude product contained small amounts of 

diketone 107 (6%), while signals for the unreacted diazoketone 39 were also seen (18%). 

For the diazoketone 39, the 1H NMR of the crude product contained the diketone 107 

(~5%) when the CuCl-75 catalyst was used. An unknown impurity (approx 18%) was 

observed in the 1H NMR of the crude product when the diazoketone 38 was cyclised with 

the CuCl-NaBARF-74[(S,S)-t-Bu-Box]. The analogous unknown impurity was more 

commonly seen in the decomposition of diazoketone 40. Separately, an impurity which 

had signals consistent with diketone formation was seen for the cyclisations using 

catalysts CuCl-NaBARF-74[(S,S)-t-Bu-Box] and CuCl-NaBARF-91[(R,R)-Bn-Box]. In 

the case of the 6-fluoro substituted diazoketone 40, the azulenone was not detected in the 

reaction catalysed by CuCl-75[(R,R)-Ph-Box] and the 1H NMR of the crude spectrum 

showed the presence of a complex mixture of unidentified products. It is important to 

note that the presence of the impurities described above had no impact on the 
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determination of enantioselectivities by chiral 1H NMR.  Possibly due to the longer 

reaction times, reaction efficiencies and yields in the CuCl-NaBARF-ligand catalysed 

reactions were generally modest. In the 1H NMR spectrum of the crude reaction mixture 

of all reactions containing NaBARF, signals were present at δH 7.46 (s) and 7.64 (s), 

indicating the presence of BARF in the crude reaction. These peaks were not included in 

reaction efficiency calculations. 

Critically, a variation in enantioselectivity was observed when the CuCl-NaBARF-

ligand catalyst was employed. As shown in Table 2.14, when the cyclisations of diazoketones 

(37-40) were conducted using [Cu(MeCN)4]PF6-75 catalyst, enantioselectivities of 56-80% 

ee were achieved with variation depending on the nature of the substituent on the aryl ring.12 

With the electron donating methyl substituent in diazoketone 38 increased enantioselectivity 

was seen, while with the electron withdrawing halogen substituent in diazoketones 39 and 40 

there is a distinct decrease in enantioselectivity, and indeed, the effect is greater with the 

more electronegative fluoro substituent.  

When the CuCl-NaBARF-75 catalyst was applied the enantioselectivities observed in 

the cyclisations of diazoketones 39 and 40 were significantly and reproducibly increased 

(78% ee vs 62% ee for 95 and 72% ee vs 56% ee for 94) while with the methyl substituted 

and unsubstituted derivatives 96 and 88, there was no noticeable impact on enantioselection 

(Table 2.16). This increase in enantioselectivity observed for the electron withdrawing 

halogen substituents with the CuCl-NaBARF-75 catalyst was also seen across a range of 

bisoxazoline ligands. For the CuCl-NaBARF-89 catalyst, enantioselectivities observed in the 

cyclisations of diazoketones 39 were increased, in comparison to results obtained by 

O’Keeffe using [Cu(MeCN)4]PF6-89 (68% ee vs 48% ee for 95). 
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Figure 2.22 Trends observed in enantioselectivity for the diazoketones 37-40 

Importantly, to rule out the influence of the chloride anion on enantioselectivity and 

therefore confirm the influence of NaBARF, diazoketones (37-40) were cyclised with the 

catalyst CuCl-75 in the absence of NaBARF. Interestingly, CuCl-75 did not result in 

enhanced enantioselectivities as they were seen to dramatically decrease across the range of 

diazoketones. For example, diazoketone 39 cyclised with the CuCl-75 catalyst resulted in a 

racemic sample being obtained, while when diazoketone 39 was cyclised with CuCl-

NaBARF-75 a 78% ee was observed. Other copper salts such as Cu(OTf)2 and CuPF6 were 

examined alongside NaBARF in the cyclisation of diazoketone 39. However, no further 

positive impact on enantioselection was observed. Therefore, the use of CuCl as the copper 

source results in reduced enantioselectivities comparable to reactions employing CuPF6.  
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Figure 2.23 Effect of different copper salts on the enantioselectivity of the cyclisation of 

diazoketone 39 using ligand 75 

The use of the additive NaBARF results in dramatically increased enantioselectivities 

when used with CuCl and to a lesser extent with CuPF6, Perhaps the most important 

observation is that, in the presence of NaBARF, enantioselectivities were restored for the 

diazoketones bearing the chloro and fluoro substituents on the ring (Figure 2.22). 

Slattery also applied NaBARF to the asymmetric copper catalysed intramolecular C-H 

insertion reactions of α-diazo-β-keto sulfones.149 Slattery pre-generated the catalyst species 

for 1.5 h prior to addition of the diazosulfone and observed an increase in enantioselectivity. 

Slattery conducted a number of experiments where the diazo compound and catalytic mixture 

were added directly to the reaction mixture prior to heating to reflux with significant 

detrimental effect on the enantioselectivity, but without a noticeable effect on reaction 

efficiency. Interestingly, this is in contrast to results obtained by Flynn where NaBARF was 
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used in the copper catalysed C-H insertion reactions of α-diazosulfones.148 Flynn observed a 

longer reaction time and an increase in yield and enantioselectivity in comparison to results 

seen with the [Cu(MeCN)4]PF6-75 catalyst. Flynn observed that preformed catalysts were not 

necessary to achieve the high enantiopurities associated with NaBARF. To further 

investigate the effect of pre-generating the catalytic species, diazoketone 39 was cyclised 

using the catalyst CuCl-NaBARF-75 which was pre-formed under three different conditions 

(Table 2.17). In contrast to Slattery’s observations, no difference in enantioselectivity was 

found for diazoketone 39 cyclised using CuCl-NaBARF-75, which was prestirred for 0, 2 

and 24 hours respectively. There were slight variations in reaction efficiency and yield but it 

is evident that the most favorable preparation for high enantioselectivity is when the catalyst 

is pre-stirred for 2 hours. Interestingly, when the catalyst is not pre-stirred the reaction was 

found to be complete once all the diazoketone 39 was added. 

 

Table 2.17 Effect of catalyst complexation times on enantioselectivity of diazoketone 39 

Entry Catalyst Method Time 

(h)a 

Eff 

(%)b 

Yield 

(%)c 

ee 

(%)d 

1 CuCl-NaBARF-75[(R,R)-Ph-

Box] 

C 0e 68 44 68f 

2 CuCl-NaBARF-75[(R,R)-Ph-

Box] 

C 2g 65 54 78f 

3 CuCl-NaBARF-75[(R,R)-Ph-

Box] 

C 24f 69 32 74f 

a. Number of hours catalyst was stirred before diazoketone was added. 
b. Efficiency refers to the percentage azulenone formed relative to aromatic byproducts and is determined from the 

crude 1H NMR spectrum of the product. 
c. Yield of isolated product after flash chromatography. 
d. Determined by 1H NMR spectroscopy using (+)-Eu(hfc)3 as chiral shift reagent. 
e. Reaction was found to be complete once all the diazoketone was added. 
f. Major Enantiomer = (−). 
g. Diazoketone was added over 2 h and the reaction was found to be complete 1 hour after addition. 

 

In conclusion, it is evident that the enantioselectivity of the intramolecular reaction of 

α-diazoketones can display sensitivity to the nature of the counterions present in the copper 

catalyst. 
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While Zhou had also described enhancement of enantioselection through the use of 

NaBARF, he had not commented on the mode of action of the additive.137,143,144 To explore 

the mechanistic role of NaBARF, it was replaced in the Buchner reaction by a number of 

additives (Table 2.18).157 As previously discussed, in the absence of the additives, little or no 

enantioselectivity is achieved using CuCl and the bisoxazoline ligand 75. When NaPF6 was 

added to the catalytic mixture in the cyclisation of diazoketones 37 and 39, good 

enantioselectivities were obtained in each case and were comparable to those obtained with 

NaBARF. The use of LiPF6 was less effective than NaPF6, with the enantioselectivity 

decreasing to 54% ee. A decrease in enantioselection to 63% ee was observed when KBARF 

was used in the decomposition of diazoketone 39, relative to when the cyclisation was 

carried out with NaBARF (78% ee). Interestingly, when the additives NaCl and NaI, were 

introduced to the reaction instead of NaBARF, enantioselectivities decreased to 0% ee. 

While the diazoketone was added over 2 hours to the catalytic mixture for both  NaCl and 

NaI in line with each of the other reactions, interestingly for these reactions heating under 

reflux for up to 18 hours was required before completion. As previously discussed, these 

long reactions times were also seen when just CuCl and the bisoxazoline ligand were applied 

to the reaction.  

 

 

Figure 2.24 Effect of different additives on the enantioselectivity of diazoketones 37 and 

39 employing ligand 75 
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From these results it is feasible that the main role of these additives is to provide a 

“naked” alkali metal cation which may play a significant role in the formation of a highly 

efficient catalytic species. To explore this theory a reaction was conducted in the presence of 

NaBARF together with an equimolar amount of 18-crown-6. Significantly, the 

enantioselectivity reduced dramatically in the cyclisation of both diazoketones 37 and 39 in 

the presence of the crown ether catalyst, supporting the hypothesis for the critical role of the 

‘naked’ alkali metal cation. In retrospect, use of 15-crown-5, which is a better complexing 

agent for sodium cations would probably have been more appropriate, but it is clear that even 

with the large 18-crown-6 the ‘naked’ sodium cation is effectively complexed to the crown. 

Further work in the research team based on these preliminary results has confirmed that the 

use of 15-crown-5 effectively reduces the enantioselectivity in comparable reactions.157 It is 

believed that the likely role of the metal cationic species is chloride abstraction.138,158,159 

 

Table 2.18 Copper catalysed intramolecular Buchner reaction of diazoketones 37 and 39 

in the presence of additives  

 

 

 

Entry Catalyst Diazoketone X Azulenone Eff 
(%)a 

Yield 
(%)b 

ee 
(%)c 

1 
CuCl-NaBARF-

75[(R,R)-Ph-Box] 
37 H 88 72 52 78 

2 
CuCl-NaBARF-75 

[(R,R)-Ph-Box] 
39 Cl 95 65 54 78 

3 
CuCl-75 [(R,R)-Ph-

Box] 
37 H 88 37 31 37 

4 
CuCl-75 [(R,R)-Ph-

Box] 
39 Cl 95 66 49 0 

5 CuCl-NaPF6-75[(R,R)-
Ph-Box]d 

37 H 88 72 65 78 

6 CuCl-NaPF6-75[(R,R)-
Ph-Box]d 

39 Cl 95 62 56 73 
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7 CuCl-NaI-75[(R,R)-Ph-
Box]e 

39 Cl 95 58 44 0 

8 CuCl-NaCl-75[(R,R)-
Ph-Box]f 

39 Cl 95 43 38 0 

9 CuCl-LiPF6-75[(R,R)-
Ph-Box]g 

39 Cl 95 73 66 54 

10 CuCl-KBARF-
75[(R,R)-Ph-Box]h 

39 Cl 95 72 65 63 

11 CuCl-NaBARF-
75[(R,R)-Ph-Box]-18- 

Crown-6i 

37 H 88 50 46 39 

12 CuCl-NaBARF-
75[(R,R)-Ph-Box]-18-

Crown-6i 

39 Cl 94 51 47 0 

a. Efficiency refers to the percentage azulenone formed relative to aromatic by-products and is determined from the 1H 
NMR spectrum of the crude product. 
b. Yield of isolated product after flash chromatography. 
c. Determined by 1H NMR spectroscopy using (+)-Eu(hfc)3 as chiral shift reagent. 
d. The catalyst was prepared from 5 mol% CuCl, 6 mol% ligand and 6 mol% NaPF6. Catalyst was stirred for 2 h at 
20°C before substrate was added. 
e. The catalyst was prepared from 5 mol% CuCl, 6 mol% ligand and 6 mol% NaI. Catalyst was stirred for 2 h at 20oC 
before substrate was added. The 1H NMR spectrum of the crude reaction mixture contained the diketone 107 (12%). 
f. The catalyst was prepared from 5 mol% CuCl, 6 mol% ligand and 6 mol% NaCl. Catalyst was stirred for 2 h at 20°C 
before substrate was added. The 1H NMR spectrum of the crude reaction mixture contained the diketone 107 (15%). 
g. The catalyst was prepared from 5 mol% CuCl, 6 mol% ligand and 6 mol% LiPF6. Catalyst was stirred for 2 h at 20°C 
before substrate was added. The 1H NMR spectrum of the crude reaction mixture contained the diketone 107 (7%). 
h. The catalyst was prepared from 5 mol% CuCl, 6 mol% ligand and 6 mol% KBARF. Catalyst was stirred for 2 h at 
20°C before substrate was added. The 1H NMR spectrum of the crude reaction mixture contained the diketone 107  
(4%). 
i. The catalyst was prepared from 5 mol% CuCl, 6 mol% ligand, 6 mol% NaBARF and 6 mol% 18-crown-6. Catalyst 
was stirred for 2 h at 20°C before substrate was added. 
 

2.6.5 Transition metal catalysed intramolecular aromatic addition of terminal αααα-

diazoketones 

The synthesis of azulenones via the intramolecular carbenoid addition of terminal α-

diazoketones was first reported by both Julia and Scott (Scheme 2.2) and since has been 

reported by a number of other groups. 19,20,22,30,31,65,80,160,161 In fact the aromatic addition 

reaction has been more widely investigated with terminal diazoketones than with the 

internal diazoketones employed in this study.  



 
                                                                              Chapter 2 – Results and Discussion 
 

 

153 

 

Within our group, Buckley applied a range of rhodium(II) complexes to investigate 

both the efficiency and diastereoselectivity of the aromatic addition reaction from β-

substituted terminal α-diazoketones 169 and 170 (Scheme 2.44).37 

 

 

 

 

R = Et-169, Allyl-170      R = Et-171, Allyl-172 

 

 

 

 

 

 

R = Et-173, Allyl-174 

Scheme 2.44 

Upon attempted purification of the crude azulenones 171 and 172 via 

chromatography on silica gel, or treatment with triethylamine, the azulenones rearranged 

to form the conjugated cycloheptatrienes. This had previously been reported by Scott for 

the unsubstituted azulenone 8 (Scheme 2.2).  

O’Leary also investigated the cyclisation of the terminal α-diazoketone 175 bearing 

a methoxy group at the ortho position of the aryl ring.28 He reported that treating the 

crude azulenone 176 with trifluoroacetic acid resulted in the formation of the tetralone 

177 (Scheme 2.45). 
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   175          176    177 

Scheme 2.45 

Having developed enantioselective aromatic addition processes with the internal 

diazoketones it was decided to explore use of these catalyst systems with a number of 

terminal diazoketones to establish if enantioselectivities could be demonstrated with a 

hydrogen at the bridgehead in place of the methyl group used to date. Due to the lability 

of azulenones such as 178, 179 and 180, determining enantiopurities in the azulenones 

was more challenging than with a bridgehead methyl group present. Furthermore 

potential for racemisation must be considered as in principle the bridgehead hydrogen can 

epimerise as illustrated in Scheme 2.46. 

 

 

 

 

 

 

 

 

Scheme 2.46 
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In this work, the crude azulenone 178 along with the novel crude azulenones 179-

181 were synthesised by the intramolecular aromatic addition of terminal α-diazoketones 

as illustrated below (Table 2.19).  As discussed in Section 2.6.2, a number of precautions 

were undertaken to prevent the formation of unwanted side products forming during the 

Buchner reaction. Similar to the cyclisation of internal diazoketones, the reactions were 

set up as per Method A (Section 2.6.2). 

Table 2.19 Rh2(OAc)4  catalysed aromatic addition of terminal α-diazoketones 43-48. 

 

 

 

       43-48       178-183 

 
 
 
 

 

 

 

Entry Diazoketone X Catalysta Azulenone 
Eff 

(%)b 

Crude 
Yield 
(%) 

Trienone 
Purified 

Yield 
(%)c 

1 43 H Rh2(OAc)4 178 84 95 184 54 

2 44 Me Rh2(OAc)4 179 93 98 185 64 

3 45 Cl Rh2(OAc)4 180 66 97 186 60 

4 46 F Rh2(OAc)4 181 − d 97 187 54e 

5 47 3,5-
(Me)2 

Rh2(OAc)4 182 − − 188 −f 
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a. < 1 mol% of Rh2(OAc)4. 
b. Efficiency refers to the percentage azulenone formed relative to aromatic by-products and is determined from 

the 1H NMR spectrum of the crude product. 
c. Purified by flash chromatography (EtOAc: Hexane, 20:80). 
d. The 1H NMR spectrum of the crude reaction mixture contained unidentifiable peaks (46%). Signals were 

observed at: δH (300 MHz) 2.36 (1H, s), 7.16-7.28 (2H, m). Efficiency, usually measured for azulenone 
signals in relation to aromatic by-products, was 81%.  

e. The 1H NMR spectrum of the purified trienone contained an unknown impurity (50%). Signals were observed 

at: δH (300 MHz) 1.43 (6H, s), 2.56 (1H, s), 6.98-7.52 (3H, m); δC (75.5 MHz) 28.4, 50.1, 130.0, 131.6, 
134.6, 137.3, 140.8, 145.9, 157.4, 160.6, 172.3, 177.6, 177.7, 187.6, 204.5. 

f. A 1H NMR spectrum of the crude reaction mixture showed a complex mixture of unidentifiable products and 
did not contain any signals which could be attributed to the starting diazoketone or azulenone. 

Accordingly the diazoketones 43-45 were explored to enable comparison with the 

corresponding internal diazoketones (section 2.5.3). Initially the Rh2(OAc)4 catalysed 

cyclisations of each of the terminal α-diazoketones was undertaken to generate reference 

samples of the racemic azulenones as summarized in Table 2.19. 

Crude azulenones 178-181 were recovered as dark green oils due to the presence of 

residual rhodium. They were unstable and were seen to decompose to a dark brown oil if 

left at room temperature over a short period of time (typically one day). In general, the 

reactions were found to be complete once all the diazoketone was added over 1 hour. The 

cyclisations of terminal α-diazoketones 43-45 were very efficient reactions and 

efficiencies were comparable to those observed in the cyclisation of internal α-

diazoketones. In particular, the efficient (93%) cyclisation of the electron donating para-

methyl substituted diazoketone 44 is noteworthy, while the aromatic addition of the 

electron withdrawing para-chloro substituted diazoketone 45 proceeded with a poorer 

efficiency of 66% as had been seen in the analogous internal diazoketone 39 (Table 2.14, 

entry 3). Notably the efficiency of the aromatic addition in the presence of the fluorine 

substituent was substantially reduced with a significant impurity present following the 

rhodium catalysed reaction. Reduction in the efficiency of the aromatic addition in the 

presence of the electron withdrawing chlorine and fluorine substituents had been 

observed by Buckley and McNamara and is readily rationalised for the electrophilic 

carbene addition to the aromatic ring.24,37,42  

6 48 3,4,5-
(Me)3 

Rh2(OAc)4 183 − − − −f 
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In the IR spectra of the crude azulenones 178-180 there was only one carbonyl 

stretch at ~1750 cm−1. In comparison, during the aromatic addition of internal α-

diazoketones two bands were seen, O’Leary stated that the IR stretch at 1710-1716 cm−1 

is due to the carbonyl of the NCD tautomer and the IR band at 1740-1753 cm−1 is due to 

the carbonyl stretch of the CHT tautomer.28 This indicates that crude azulenones 178-180 

formed exist solely or predominantly as the CHT tautomer. 

The C(2)H2 signals in the 1H NMR of the crude azulenones coupled to the C(8a)H 

signal to form an ABX system. The  C(8a)H signal was observed as a broad doublet with 

unresolved fine splitting in the X of the ABX system see for example azulenone 179 in 

Figure 2.25. In contrast, for the azulenones prepared from internal α-diazoketones, the 

C(2)H2 signals were observed as an AB system.  

 

 

 

 

 

 

 

 

 

 

Figure 2.25 ABX system in the 
1
H NMR of azulenone  179 

The C(8)H signal was observed as a doublet of doublets at δH 5.16-5.29 ppm for 

azulenones 178-180. For the more electron withdrawing substituted azulenone 181, the 

C(8)H signal existed as a multiplet due to coupling to 19F and was positioned further 

downfield at δH 5.38-5.45 ppm. The position of the C(8)H signal is consistent with each 

of the azulenones 178-180 existing predominantly as the cycloheptatriene tautomers. The 
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key 1H NMR data for the C(8)H signals in the azulenones both with and without the 

bridgehead methyl group are summarized in Table 2.20. With azulenones 178-180 it is 

very clear that in the absence of the bridgehead methyl group, the position of tautomeric 

equilibrium lies almost entirely on the side of the CHT tautomer, with little or no 

sensitivity to the nature of the substituent X. In contrast, in the presence of the bridgehead 

methyl group, there is a substantial shift towards the NCD tautomer, with a very strong 

influence evident when the electronic properties of the substituent are varied. 

Table 2.20 Comparison of the 
1
H NMR C(8)H signals for the azulenones formed from 

both internal and terminal diazoketones 

 

 

  R=Me  R=H 

X Azulenone δH-8 ppma Azulenone δH-8 ppmb 

H 88 4.16, d, J 8.1 178 5.12, dd, J 9.3, 4.0 
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Me 96 3.49, d, J 6.9 179 5.16, dd, J 9.5, 4.1 

Cl 95 4.54, d, J 9.0 180 5.29, dd, J 9.7, 4.4 

F 94 5.12, dd, J 10.0, 5.1 181 5.38-5.45, m 

a. Obtained from the 1H NMR spectrum of the pure azulenone. 

b. Obtained from the 1H NMR spectrum of the crude azulenone. 

While diazoketones 47 and 48 reacted quickly on exposure to rhodium acetate, in 

both cases the 1H NMR spectra of the crude products indicated the presence of a complex 

mixture of unidentifiable products. It is likely that the azulenones 182 and 183 are formed 

but are labile under the reaction conditions.  As discussed later in section 2.6.5.2, 

conjugated trienone 188 was recovered from the reaction of diazoketone 47 with PTAD 

trapping, thereby supporting this proposal. 

Though when the crude azulenones 178-181 were initially isolated as dark green 

oils, when purified by flash chromatography on silica gel an immediate colour change to 

yellow could be seen. The 1H NMR spectra of the purified products showed complete 

rearrangement to the conjugated trienones 184-187. The formation of the conjugated 

trienones was confirmed by IR spectroscopy where the characteristic carbonyl stretch had 

shifted from vmax 1750 cm−1 (C=O) to  vmax 1704 cm−1 (C=O). Also the conjugated 

trienone 184 was characterised by the disappearance of the C(8a)H signal and the 

presence of the C(4)H2 signal at δH 2.72 ppm [2H, d, J 6.6] and the C(5)H signal at δH 

5.40 ppm [1H, ddd (appears as a dt), J 9.7, 6.5, 6.5] ( see for example 184 in Figure 2.26). 
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Figure 2.26 
1
H NMR spectrum of the pure conjugated trienone 184 

However as chromatographic purification of the azulenones was not possible, use of 

Eu-(hfc)3  with the crude azulenones was explored to establish if the signals for the 

enantiomers could be resolved without chromatographic purification. However, the 

azulenone formed was too labile and decomposed to a complex mixture of unidentified 

products. 

To prevent the formation of the conjugated trienones 184-187 during purification on 

silica gel, alternative methods of purification were examined. A solution of the crude 

azulenones were filtered on different occasions through silica gel, basic alumina, neutral 

alumina and Celite® but in all cases complete formation of the conjugated trienone was 

observed, highlighting the lability of these azulenones. As loss of the stereogenic center 

results occurs during the trienone rearrangement, it was essential to develop a method for 

determination of enantiopurity in the crude azulenones, thereby avoiding shift of the 

double bond into conjugation. 
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In conclusion, direct determination of enantiopurity in the cyclisation of 

diazoketones 43-45 was unlikely to be achieved. Accordingly, trapping of the labile 

azulenones 178-180 to form a more stable product was explored with a view to 

determining enantiopurity. 

2.6.5.1 Preparation of PTAD cycloadducts 

The use of 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) 162 as a dienophile in Diels-Alder 

cycloaddition reactions has been extensively studied.162-169 Preparation of the high 

yielding dienophile 162 by oxidation of 4-phenyl urazole 189 with t-butyl hypochlorite 

was first reported by Cookson (Scheme 2.47).170 

 

189     162 

Scheme 2.47 

Adam was the first to report the use of PTAD to selectively trap the norcaradiene 

(NCD) tautomer of the intramolecular Buchner reaction.165 Subsequently Fischer,171 

Saba172, Moody74 and Maguire37,40,42 have all investigated such transformations. Fischer 

demonstrated that PTAD 162 reacts exclusively with the NCD tautomer of the 

equilibrating bis-norcaradiene 190 to give the cycloadduct 191 as the only product 

(Scheme 2.48). The structure of the cycloadduct 191 was confirmed unequivocally by X-

ray crystallography. 
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NCD  190  CHT      191 

Scheme 2.48 

In 2007, Balci described the [4+2] cycloaddition of maleic anhydride 192 and 

PTAD 162 with the azulenone 8 to yield the norcaradiene derived cycloadducts 193 and 

194 in excellent yields (Scheme 2.49).173 While the azulenone derived from the 

intramolecular Buchner reaction exists as two rapidly equilibrating tautomers 

(norcaradiene and cycloheptatriene), for azulenone 8 the cycloheptatriene is known to 

predominate; however in Balci’s work only the norcaradiene derived adduct was isolated. 

Work within our laboratory has further confirmed that for the equilibrating norcaradiene 

(NCD) and cycloheptatriene (CHT) systems, PTAD effectively traps the norcaradiene 

tautomer only.28,37,39,40,42 

 

 

192 

         193, 90% 

 

      8 

 

162 

194, 88% 

Scheme 2.49 
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The primary objective of using PTAD 162 is this work was to trap the crude 

azulenones formed by the intramolecular carbenoid addition of terminal α-diazoketones 

to give stable cycloadducts, thereby avoiding the rearrangement to the conjugated 

trienone.  

2.6.5.2 Preparation of PTAD cycloadducts from azulenones derived from terminal 

αααα-diazoketones  

The rearrangement of crude azulenones prepared from terminal α-diazoketones to 

conjugated trienones when purified, would prove to be a challenge when attempting to 

study the enantioselectivity in the intramolecular carbenoid addition of terminal α-

diazoketones. As discussed in Section 2.6.4, determining the degree of enantioselection 

with the analogous internal α-diazoketones by 1H NMR chiral shift studies proved to be a 

successful method. However in this work the attempted treatment of crude azulenones 

formed from terminal α-diazoketones with (+)-Eu(hfc)3 {europium(III)tris[3-

(heptafluoropropylhydroxymethylene)-(+)-camphorate}resulted in complete 

decomposition of the azulenone. 

Work within the group had previously demonstrated the trapping of a wide range of 

crude azulenones formed from internal α-diazoketones using 4-phenyl-1,2,4-triazoline-

3,5-dione (PTAD) 162 as a dienophile via a cycloaddition reaction to form the stable 

cycloadducts (Scheme 2.50).28,37,40,42  
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Scheme 2.50 

Interestingly, Buckley had prepared the stable diastereomeric cycloadducts 195 and 

196  directly in a one pot synthesis from the terminal ethyl diazoketone 169, using the 

same procedure described above for the internal diazoketones (Scheme 2.51). The 

diastereomeric mixture of the resulting adducts (trans 196: cis 195, 85 : 15), following 

chromatography on silica gel, was the same as that detected for the recrystallised mixture, 

(trans : cis 85 : 15).  

 

 

         169     171 

 

 

 

 

 

         cis 195               trans 196 

     cis:trans 15:85 

Scheme 2.51 
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As a result of Buckley’s report of the stable cycloadduct 195/196 formed from the 

terminal ethyl substituted diazoketone 169, we investigated the application of this method to 

the cycloaddition of crude azulenones formed from the terminal α-diazoketones 43-48. A 

particular advantage of this account was that the cycloaddition can be conducted in one-pot 

through addition of the PTAD directly to the reaction mixture without isolation of the 

intermediate labile azulenone. For the reactions employing chiral catalysts, the ability to trap 

the azulenone in situ to avoid any potential epimerisation of the labile stereogenic center 

would be particularly advantageous. 

 

The first step was the formation of PTAD 162. t-Butyl hypochlorite was used to 

oxidise 4-phenylurazole to PTAD 162.28,37,40,42,164,170 The t-butyl hypochlorite was 

prepared following the method described by Mintz and Walling from t-butanol, sodium 

hypochlorite solution (10-12% w/w) and glacial acetic acid (Scheme 2.52).174 Following 

preparation, the [t-BuOCl] could be stored in the fridge for a prolonged period of time 

with no apparent degradation of the solution or reduction in its reactivity.  

 

 
      162 

Scheme 2.52 

Buckley and O’Leary generally used one equivalent of sublimed PTAD 162 for 

their cycloaddition studies, either added as a solid or a solution in dichloromethane.28,37 

However, Harrington described the use of crude PTAD 162 without sublimation.40 
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Initially in this current study, crude PTAD 162 was used to prepare the cycloadduct 199. 

Subsequently, it was observed that the 1H NMR spectra of the crude cycloadducts were 

less complex when sublimed PTAD 162 was used. All cycloadducts were prepared from a 

stock of sublimed PTAD 162, this sublimed PTAD 162 was stored in the freezer at −20 

ºC over approximately one year without any noticeably change or degradation. This 

sublimed batch of dienophile was used to synthesise adducts 200 and 201. As illustrated 

in Table 2.21 each of the diazoketones were initially treated with Rh2(OAc)4 where the 

diazoketone was added dropwise to the catalyst in refluxing dichloromethane. Once 

complete disappearance of the diazoketone was confirmed by TLC, the reaction mixture 

was then cooled to 0 ºC. Without concentration of the reaction solution, one equivalent of 

PTAD 162 was added directly to the reaction mixture.  

 

Table 2.21 One pot reaction of terminal α-diazoketones 43-48 with Rh2(OAc)4 followed 

by cycloaddition with PTAD 162 to form cycloadducts 197-199 

 

  

 

 

 

             43-48 
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a. Reaction was complete once all diazoketone was added. 

b. Time the reaction mixture was allowed to stir at room temperature after the addition of the dienophile at 0 °C. 

c. Adduct prepared using crude PTAD. 

d. Purified by recrystallisation from hot ethyl acetate. 

e. Adduct prepared using sublimed PTAD. 

f. Purified by flash chromatography (20% ethyl acetate:hexane). 

g. 1H NMR spectrum of the crude product showed the presence of the crude adduct 199 and a side product 

believed to be the CHT adduct 203 in the ratio of 199:203, 60:40. This mixture could not be separated by 

flash chromatography. Treatment of the crude mixture with zinc chloride resulted in the pure adduct 199 

being isolated by chromatography in 80% yield. 

h. 1H  NMR spectrum of the crude product showed a complex mixture of unidentifiable products and no 

presence of the desired adduct 200 or starting azulenone 181. 

i. 1H NMR spectrum of the crude product showed the presence of the conjugated trienone 188 (49%) and 

purification by flash chromatography gave the pure trienone in a 40% yield (Scheme 2.53) 

j. 1H NMR spectrum of the crude product showed a complex mixture of unidentifiable products. 

 

Progress of the cycloaddition reaction can be monitored visually with a distinct colour 

change from the bright red colour of the dienophile to a colourless or pale yellow solution 

observed upon reaction completion, often within 0.5 to 1 hour of addition of the dienophile. 

With azulenones 178 and 179 the colour change was observed after 0.5 to 1 hour indicating 

rapid cycloaddition while use of the chlorine substituted azulenone 180 led to a noticeably 

slower reaction requiring 4 hours for complete transformation. Any excess of the dienophile 

present will result in retention of the red colour even after all of the azulenone has reacted 

and for this reason cycloaddition reactions were also monitored by TLC analysis. 

Entry Diazoketone X Azulenonea PTAD 

Adduct

Time (h)b Yield (%)

1 43 H 178 197
c
 1 42d 

2 44 Me 179 198
e
 1 53f 

3 45 Cl 180 199
e
 4 80f,g 

4 46 F 181 200
e
 - -h 

5 47 3,5-(Me)2 182 201
e
 - -i 

6 48 3,4,5-(Me)3 183 202
e
 - -j 
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Three novel PTAD adducts 197-199 were prepared the one-pot method starting from 

the corresponding diazoketones as illustrated in Table 2.21. As all adducts prepared in this 

study were novel they were fully characterised using COSY spectra to aid in the assignment 

of all coupling relationships in the 1H NMR spectrum. Recrystallisation of 197 from hot 

ethyl acetate gave the pure cycloadduct 197 as a white solid in 42% yield. Recrystallisation 

of 198 from hot ethyl acetate resulted in light brown oil forming and as a result, purification 

by flash chromatography on silica gel gave the pure cycloadduct 198 as a white solid in 53% 

yield. In the IR spectra of the pure products 197 and 198, there was a strong absorption at 

vmax ~1780 cm−1 (C=O) and a second weaker carbonyl stretch at vmax ~1700 cm−1 (C=O). 

The adducts displayed a characteristic ABX system in the 1H NMR spectrum. For the 

unsubstituted adduct 197 signals were seen for the C(3a)H at δH 1.60 ppm (1H, s, X of ABX, 

C(3a)H) and the C(2)H2 signals seen at δH 2.02 ppm (1H, dd, A of ABX, JAB 17.7, JAX 1.4) 

and δH 2.23 ppm (1H, d, B of ABX, JAB 17.7), while the C(3b)H signal appeared as a doublet 

of doublets at δH 2.22 ppm (1H, dd, J 4.8, 1.5). Similarly for cycloadduct 198, the 

characteristic C(3a)H and C(2)H2 signals appeared as an ABX system, while the C(3b)H 

signal appeared as a broad multiplet at δH 2.18-2.20 ppm. The 1H NMR spectrum of the pure 

product 198 showed water present which could not be removed by drying. Elemental 

analysis was consistent with the cycloadduct 198 in addition to 0.5 H2O. 

When the electron withdrawing fluorine substituted azulenone 181 was treated with 

PTAD 162 the adduct 200 was not recovered. The 1H NMR spectrum of the crude material 

showed an unidentifiable product with no evidence of the desired adduct 200 or starting 

azulenone 181. Similarly, a complex mixture of unidentifiable products was obtained when 

the trimethyl substituted azulenone 183 was treated with PTAD 162.  

Significantly, the conjugated trienone 188 was isolated from the reaction of azulenone 

182 with PTAD 162. Isolation of the trienone 188 confirmed the cyclisation to form the 

azulenone does, in fact, occur, but the product is too labile to isolate. Purification by flash 

chromatography gave the pure trienone in a 40% yield (Scheme 2.53). 
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Scheme 2.53 

 

In contrast to the cycloadducts discussed above, the reaction leading to the para-chloro 

substituted PTAD adduct 199 requires 4 hours for completion. The reaction was monitored 

by TLC as decolourisation to give a colourless solution did not occur. The brown coloured 

solution was concentrated under reduced pressure to give a brown oil. The 1H NMR 

spectrum of the crude product showed the presence of the adduct 199 and a side product 

believed to be the cycloheptatriene adduct 203 in the ratio of 199:203, 60:40. The mixture 

could not be separated by flash chromatography. 
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Scheme 2.54 

 

As it did not prove possible to isolate 199 in pure form, it was decided to conduct a 

further transformation following the precedent set by earlier research in the team, with a view 

to separation of the resulting products.37,40,42 Reaction of PTAD cycloadducts with ZnCl2 had 

been examined by Buckley, Harrington and McNamara leading to cyclopropane ring 

cleavage. 37,40,42 As a result, treatment of a mixture of  adduct 199 and CHT adduct 203 with 

ZnCl2 was undertaken as summarized in Scheme 2.54. 

However, when zinc chloride (5 equivalents) was added to a stirring solution of the 

crude mixture of adduct 199 and CHT adduct 203 in dichloromethane (DCM) for 24 hours, 

the pure adduct 199 was isolated following flash chromatography on silica gel (Scheme 

2.54). The 1H NMR of the crude product showed the presence of the CHT adduct 199 and 

additional signals at δH 7.03 ppm (1H, dd, J 12.0, 2.7), 7.21 (1H, dd, J 12.5, 2.7), 7.28 (1H, d, 

J 8.4), which were presumably due to the reaction of the CHT adduct 203 with zinc chloride. 
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The pure cycloadduct 199 was isolated following flash chromatography on silica gel to give 

a light brown coloured solid in a 80% yield. Based on the recoveries, it is likely that 203 is 

interconverted to 199 on exposure to ZnCl2, presumably through retro-Diels Alder followed 

by Diels-Alder cycloaddition. The infrared spectrum of the pure adduct 199 showed two 

characteristic carbonyl stretches, a strong absorption at vmax 1790 cm−1 (C=O) and a weak 

absorption at vmax 1724 cm−1 (C=O). The 1H NMR of the pure cycloadduct showed the 

presence of the characteristic C(3a)H and C(2)H2 signals appearing as an ABX system as 

discussed earlier for analogous cycloadducts 197 and 198. Once again, the 1H NMR of the 

pure cycloadduct 199 showed the presence of water which could not be removed by drying 

under molecular sieves. The elemental analysis obtained was in agreement with the 

cycloadduct 199 in addition to 0.4 H2O. Clearly the cycloadduct 199 does not react with 

ZnCl2 under the same conditions with which clean cyclopropane ring cleavage in the 

presence of the bridgehead methyl group occurs.40 Evidently the degree of substitution at the 

bridgehead position is important in terms of the stability of the incipient carbocationic 

character at this centre in the ZnCl2 mediated cyclopropane ring opening. However, the 

isolation of cycloadduct 199 in pure form was of significant value during the course of this 

work. 

In conclusion, trapping of labile azulenones 178-180 as the analogous PTAD adduct 

197-199 successfully provided stable adducts overcoming the lability of the azulenones and 

thereby freezing the labile stereogenic center. This approach proved important in later studies 

using chiral catalysts. 

2.6.5.3 Hydrogenation of PTAD adducts 

Hydrogenation of PTAD cycloadducts was first explored by Buckley when she took a range 

of adducts and reacted them under an atmosphere of hydrogen in the presence of palladium 

on carbon as catalyst (10%) to yield the hydrogenated adducts in good yield following 

purification by flash chromatography on silica gel (Scheme 2.55).37  
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where R = n-Bu, i-Pr, diMe,      87-94% 

               X = H, F 

Scheme 2.55 

Previously McNamara had hydrogenated a mixture of the inseparable PTAD adduct 

205 and cycloheptatriene adduct 206 resulting from the cycloaddition of PTAD 162 to the 6-

fluoro azulenone 204 (Scheme 2.56). The resulting hydrogenated adducts 207 and 208 were 

each isolated as single compounds by chromatography and/or recrystallisation and fully 

characterised by McNamara.42 
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Following the precedent in McNamara’s work, in this study the crude mixture of 

adduct 199 and CHT adduct 203 were hydrogenated in the presence of Pd/C (5%) for 18 

hours at 50 psi. This was carried out in an attempt to separate the mixture of 199 and 203 

and thereby confirm the structure of the CHT adduct 203. Concentration of the solution 

post hydrogenation gave both the hydrogenated NCD adduct 209 and CHT adduct 210. 

However the ratio of the hydrogenated NCD adduct 209 and CHT adduct 210 was unable 

to be determined due to the complex nature of the 1H NMR spectrum of the crude 

reaction mixture. Following purification by flash chromatography on silica gel two 

fractions were isolated. The first least polar fraction was obtained as a yellow oil in a 5% 

yield and was tentatively assigned as the hydrogenated CHT adduct 210, an unidentifiable 

impurity (~30%) was also present in the isolated product. The second fraction was a 

mixture of products one of which was partially assigned as the hydrogenated NCD adduct 

209 as a white solid in a 25% yield. The 1H NMR and 13C NMR of the hydrogenated 

NCD adduct 209 contained a complex mixture of products. It is believed that the 

complexity of the product mixture may be due, in part, to partial hydrogenlysis of the 

carbon chlorine bond, leading to release of HCl, which may trigger a side reaction. 
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2.6.5.4 Enantioselectivity in the copper catalysed cyclisation of terminal αααα-diazoketones 

which were trapped via Diels Alder cycloaddition 

In an effort to investigate for the first time the effect that the presence of a hydrogen at the 

bridgehead position instead of a methyl may have on the enantioselectivity in the 

intramolecular Buchner reaction of diazoketones, we synthesised azulenones 43, 44 and 

45 in the presence of copper bisoxazoline catalyst complexes. The resulting crude 

azulenones were unstable and were subsequently trapped with PTAD 162 via a Diels 

Alder cycloaddition reaction to give the novel stable adducts as discussed in section 

2.6.5.2. As discussed above for the racemic sample, PTAD adduct 199 was further 

reacted with zinc chloride and purified by column chromatography on silica gel to result 

in a pure sample of each. 

With racemic batches of the cycloadducts prepared, an investigation was 

undertaken to determine the enantiomeric purity of cycloadducts 197-199. Initially, use of 

(+)-Eu(hfc)3 enabled resolution of the signals for one of C(1)(CH3)2 in 197 and then 

applying this to the enantioenriched sample in entry 2 in Table 2.22, enabled 

determination of the enantiopurity (16% ee). In contrast, use of chiral shift 1H NMR did 

not prove successful with adducts 197 and 199 when the spectra were recorded in the 

presence of (+)-Eu(hfc)3 and when employing a range of solvents such as C6D6, 

(CD3)2SO, CD3OD or (CD3)2O.  Subsequently, it was found that chiral HPLC could be 

used for the determination of the enantiopurity of 197-199 and accordingly, in later 

studies this approach was employed. Previous attempts within the group at separating the 

adducts by HPLC had not been rewarding. 

As illustrated in Table 2.22, the cycloadducts obtained from the cyclisation in the 

presence of the copper bisoxazoline catalysts had up to 83% enantiomeric excess, 

indicating considerable enantiofacial discrimination, with the terminal diazoketones as 

had been seen with the analogous internal diazoketones. Notably, when the cycloadduct 

197 was recrystallised prior to the determination of enantiomeric purity, the enantiomeric 

excess determined (16% ee) was notably decreased relative to that seen in the sample 

analysed without recrystallisation (56% ee). This highlights the importance of avoiding 

any selective dissolution or recrystallisation prior to enantiomeric analysis. 
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Due to the presence of an enolisable hydrogen at position C(8a)H in the azulenones 

formed from terminal diazoketones, reactions were monitored by TLC to avoid stirring 

for prolonged periods and the associated risk of epimerisation and loss of stereochemical 

integrity. To explore this, a sample of azulenone 178 prepared from CuPF6-75 [(R,R)-Ph-

Box] was split into two separate portions (A and B) once the cyclisation from terminal 

diazoketone 43 was complete (Scheme 2.58). First, portion A was trapped with PTAD 

162 immediately, while the second portion B was stirred for a further 2 h at room 

temperature before being trapped with PTAD 162. The enantiopurity of the PTAD adduct 

197 obtained from portion A was 56% ee while the enantiopurity of adduct 197 obtained 

from portion B was reduced to 40% ee. This clearly illustrates epimerization at the 

C(8a)H position in azulenones formed from terminal diazoketones. Aromatic addition in 

the presence of in situ PTAD has not been explored. 
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Table 2.22 Effect of catalyst on enantioselectivity of the cyclisation of terminal diazoketones 43, 44 and 45 

 

 

 

 

 

 

 

(a) The catalyst was prepared from 1.3:1 molar mixture of ligand: Cu(CH3CN)4PF6. 

Entry Diazoketone X PTAD 

CuPF6-75[(R,R)-

Ph-Box]a 

CuPF6-74[(S,S)-t-

Bu-Box]a 

CuPF6-

89[(4R,5S)-tetra-

Ph-Box]a 

CuPF6-

91[(R,R)-Bn-

Box]a 

CuCl-NaBARF-

75[(R,R)-Ph-

Box]b 

CuCl-NaBARF-

74[(S,S)-t-Bu-

Box]b 

Yield 

(%)c 

ee 

(%)d 

Yield 

(%)c 

ee 

(%) d 

Yield 

(%)c 

ee 

(%)d 

Yield 

(%)c 

ee 

(%)d 

Yield 

(%)c 

ee 

(%)d 

Yield 

(%)c 

ee 

(%)d 

1 43 H 197
e 63g 56h,i 62j 77k,i 49l 7h,i 61m 12h,i 66 46h,i 63 61k,i 

2 43 H 197
f 49 16h,n,o − − − − − − − − − − 

2 44 Me 198
e 47 25h,i 55 30k,i 65 23h,p 54 4h,p − − − − 

3 45 Cl 199
e 63 83h,p,q 48 −r − − − − − − − − 
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(b) The catalyst was prepared from 5 mol% CuCl, 6 mol% ligand and 6 mol% NaBARF. Catalyst was stirred for 2 h at 20oC before substrate was added.  

(c) Yield of isolated product after flash chromatography (20% ethyl acetate:hexane). 

(d) Determined by HPLC. 

(e) Adduct prepared using sublimed PTAD. 

(f) Adduct prepared using crude PTAD. 

(g) The 1H NMR spectrum of the crude reaction mixture contained an unknown side-product (13%). Signals were observed at δH (300 MHz); 1.14 (4H, s), 1.21 (3H, s), 1.21 (3H, 

s), 1.40 (6H, d, J 1.0), 2.38-2.46 (7H, m), 4.93 (1H, d, J 5.1), 5.19 (1H, dd, J 9.3, 3.9), 5.59-5.68 (1H, m), 5.96 (1H, dd, J 9.1, 5.1), 6.20 (2H, d, J 4.8), 6.47-6.79 (7H, m), 7.02 

(1H, dd, J 11.1, 6.0), 7.71-7.79 (5H, m). 

(h) Major Enantiomer = (−). 

(i) Determined by HPLC using OD-H column. 

(j) The 1H NMR spectrum of the crude reaction mixture contained an unknown side-product (10%). Signals were observed at δH (300 MHz); 1.21 (2H, s), 1.39-1.40 (4H, m), 4.88 

[1H, d, J 3.0], 5.08 [1H, d, J 6.0], 5.96 [1H, dd, J 9.0, 6.0], 6.90 [1H, d, J 12.0], 7.05 [1H, dd, J 12.0, 6.0]. 

(k) Major Enantiomer = (+). 

(l) The 1H NMR spectrum of the crude reaction mixture contained starting azulenone 178(51%). 

(m) The 1H NMR spectrum of the crude reaction mixture contained an unknown side-product (27%). Signals were observed at δH (300 MHz);1.14 (2H, s), 1.21 (4H, s), 1.25-1.29 

(8H, m), 1.39-1.40 (4H, m), 1.46-1.47 (8H, m), 2.38-2.67 (12H, m), 4.80-4.84 (1H, m), 4.93 (1H, d, J  9.9), 5.04 -5.08 (1H, m), 5.19 (1H, dd, J  9.3, 4.2), 5.62-5.76 (1H, m), 

5.96 (2H, dd, J 12.9, 5.1). 

(n) Purified by recrystallisation from hot ethyl acetate. 

(o) Determined by 1H NMR spectroscopy using (+)-Eu(hfc)3 

(p) Determined by HPLC using Chiradex column. 

(q) Crude PTAD adduct was subsequently treated with ZnCl2 to give the pure adduct 199. 

(r) Enantiomers not fully resolved by chiral HPLC. 
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The highest enantioselectivity in the copper catalysed cyclisation of the 

unsubstituted diazoketone 43 was achieved using the t-butyl ligand 74 (77% ee, Table 

2.22, entry 1). Interestingly the level of asymmetric induction decreased with the phenyl-

ligand 75 (56% ee) while the tetraphenyl substituted ligand 89 and benzyl substituted 

ligand 91 provided the azulenone 178 with enantioselectivities of just 7% ee and 12% ee 

respectively. A comparison of enantioselectivities observed in the cyclisations of the 

internal and terminal unsubstituted diazoketones 37 and 43 with different ligands is 

illustrated in Figure 2.27. 
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Figure 2.27 Comparison of the enantioselectivities observed in the cyclisations of the 

internal and terminal unsubstituted diazoketones 37 and 43 (determined from PTAD 

cycloadduct 197 for 178 but directly for azulenone 89) 

Trends in Enantioselectivity: Terminal v Internal Diazoketones
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The trends in enantioselectivities with variation of the ligand were very different in 

the cyclisations of the internal and terminal α-diazoketones, highlighting the significance 

of substitution at the carbene center influencing enantiofacial approach in the copper 

catalysed aromatic addition. Critically, for the unsubstituted internal diazoketone 37 the 

highest enantioselectivities were obtained with the phenyl 75 and tetraphenyl 89 ligands 

(78% ee and 68% ee, see Section 1.6.4), while the t-butyl ligand 74 resulted in a poor 

enantioselectivity of 9% ee (reported by O’Keeffe).41 However, in the unsubstituted 

terminal diazoketone 43 the use of the t-butyl ligand 74 resulted in the higher 

enantioselectivity of 77% ee (Table 2.22, entry 1) while the enantioselectivity decreased 

significantly when the phenyl 75 and tetraphenyl 89 ligands were applied (78% ee to 56% 

ee for 75 and 68% ee to 7% ee for 89) as illustrated in Figure 2.27.  

As shown in section 1.6.4, where the aromatic addition of internal diazoketones was 

carried out using the phenyl ligand 75, the extent of asymmetric induction was decreased 

by the presence of inductively electron withdrawing substituents on the aromatic ring 

(62% ee for Cl-39, 56% ee for F-40 using ligand 75). The highest enantioselectivity was 

observed with the electron donating para-methyl substituted diazoketone 38 (80% ee). 

Significantly, this trend appears to be reversed for the aromatic addition reaction of 

terminal diazoketones (see Figure 2.27 and Table 2.22 and 2.23). Enantioselectivities 

obtained from the aromatic addition of the electron donating methyl substituted 

diazoketone 44 were generally poor across a range of ligands (≤30% ee). The aromatic 

addition of the electron withdrawing substituted diazoketone 45 resulted in an 

enantioselectivity of 83% ee (entry 3, table 2.22) being obtained with the phenyl ligand 

75. This is the highest level of asymmetric induction reported to date for the 

intramolecular aromatic addition reaction of terminal diazoketones and was shown to be 

reproducible. The aromatic addition of diazoketone 45 was repeated using the t-butyl 

ligand 74 but although the enantioselectivity appeared high, the enantiomers were not 

fully resolvable by chiral HPLC. 

 

 

 



 
                                                                              Chapter 2 – Results and Discussion 
 

 

180 

 

Table 2.23 Comparison of enantioselectivities obtained from a range of both terminal 

and internal diazoketones using ligand 75 

 

 

75 

                   
 Azulenone ee (%) 

X R=H R=Me R=Ha R=Meb 

H 178 89 56 78 

Me 179 96 25 80 

Cl 180 95 83 62 

a. Determined by 1H NMR spectroscopy using (+)-Eu(hfc)3. 
b. Determined by HPLC. 

Interestingly, a reduction in enantioselection was observed for the terminal 

diazoketone 43 when the additive NaBARF was introduced into the cyclisation. When 

catalysts CuCl-NaBARF-75[(R,R)-Ph-Box] and CuCl-NaBARF-74[(S,S)-t-Bu-Box] were 

applied to the cyclisation of diazoketone 43, enantioselectivities of 46% ee and 61% ee  

were obtained respectively (entry 1, Table 2.22). This reduction is presumably due to 

epimerisation at the C(8a)H position as a result of longer reaction times associated with 

NaBARF. 

While the absolute stereochemistry of the azulenones and cycloadducts in terminal 

diazoketone series has not been confirmed, based on the behavior in chiral 1H NMR and 

chiral HPLC, it appears that the major enantiomer is the same as that obtained with the 

internal diazoketone series. Thus using the t-butyl ligand 74, the 3aR enantiomer is 

believed to be formed in the cycloadduct as illustrated in Figure 2.28, although this is not 

confirmed. The opposite enantiomeric series was achieved for t-butyl ligand 74 compared 

to the other ligands. 
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3aR 

Figure 2.28 

2.6.6 Determination of the absolute stereochemistry of azulenones 

While this program of research spans 15 years, determination of the absolute 

stereochemistry of the major enantiomer from the intramolecular Buchner reaction was 

achieved for the first time in this work. It was envisaged that structure elucidation would 

provide insight into the orientation of the carbenoid in the transition state which would 

enhance our understanding of how the carbenoid adds to the phenyl ring, and ultimately 

assist in the optimisation of ligand structure. 

2.6.6.1 Reaction of cycloadduct with chiral hydrazine RAMP (R)-311 

O’Keeffe had previously attempted to form hydrazones 312 from reaction of an 

enantioenriched azulenone 89 with a chiral hydrazine (Scheme 2.59).41 In theory, 

separation of the diastereomeric hydrazone products 312 followed by X-ray 

crystallography would enable assignment of the absolute stereochemistry of the major 

enantiomer. Unfortunately O’Keeffe reported that while the formation of the hydrazone 

312 was feasible, the efficiency of the reaction was low, and as a result it was not possible 

to isolate the diastereomerically pure hydrazones 312. Moreover, the hydrazone mixture 

was isolated as an oil. 
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Scheme 2.59 

It was decided in this study to attempt to form the diastereomeric hydrazones from 

an enantioriched cycloadduct rather than azulenones. This approach offers two potential 

advantages; firstly the cycloadducts are more stable than the labile azulenone and 

therefore easier to work with. Secondly, the likelihood of obtaining a crystalline 

derivative from the crystalline adducts is substantially higher than from the azulenones 

which exist as an oil. Based on O’Keeffe’s work (R)-(+)-1-amino-2-

(methoxymethyl)pyrrolidine 311–(R) (RAMP) was selected as the chiral derivatising 

agent.41 RAMP 311 is a chiral auxiliary and has been successfully applied to asymmetric 

syntheses especially natural product synthesis.175-177 

An enantioenriched sample of cycloadduct 313 was prepared from the reaction of 

azulenone 95 {78% ee, catalyst CuCl-NaBARF-75[(R,R)-Ph-Box]}with unsublimed 

PTAD. Subsequently, RAMP 311 and the cycloadduct 313 were stirred as a 1:1 neat 

mixture at 60 ºC overnight (Scheme 2.60). After work-up a 1H NMR spectrum of the 

crude material indicated that the starting cycloadduct 313 was present in a complex 

mixture. Following purification by flash chromatography, two fractions were isolated. 

The first fraction contained the azulenone 95 although this had not been identified in the 

crude mixture, and a number of unidentifiable peaks. The second fraction contained a 
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complex mixture of adduct 313 and unidentifiable products. Due to the difficulty in 

synthesising the hydrazone 314, an alternative method of assigning the absolute 

stereochemistry of the major enantiomer of the Buchner reaction was sought. 

 

 

 

   95    

 

 

      

311 

 

 

   

  313        314 

Scheme 2.60 

2.6.6.2 Synthesis of azulenols and their subsequent esterification 

In a further effort to determine the absolute stereochemistry of azulenones, the reduction 

of an enantioenriched azulenone followed by esterification with a mandelic acid 

derivative was explored. Selective recrystallisation of the major enantiomer would 

potentially result in the assignment of the absolute stereochemistry by X-ray 

crystallography. 

The first step in this work was to prepare azulenols 315 and 316 through the 

dropwise addition of the enantioenriched azulenones 89 and 95 to an excess of the 

reducing agent sodium borohydride (~5 equivalents) in ethanol, while stirring at 0 ºC 

under nitrogen. Each of the starting precursors 89 and 95 had an enantiopurity of 78% ee 

and were prepared from the catalysts CuPF6-75[(R,R)-Ph-Box] and CuCl-NaBARF-
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75[(R,R)-Ph-Box] respectively (see sections 2.6.4 and 2.6.4.2). In general, the 

borohydride reduction reactions were stirred overnight without any attempt to monitor 

their completion as reported by Buckley and O’Keeffe.37,41 Following isolation, the 

diastereomeric ratio of the alcohols was estimated from the 1H NMR spectra of the crude 

product. The azulenones were reduced to give the azulenol 315 and the novel azulenol 

316  and their results are outlined below in Table 2.23. 

Table 2.23 Reduction of azulenones 89 and 95 

 

 

 

 

89: X = H, 78% ee                 
 95: X = Cl, 78% ee      

    

 

 

315a/b: X = H 

316a/b: X = Cl 

 Product Ratioa 

a:b 

Yield 
(%)b 

δΗ−8a/b (ppm) δC−8a/b 
(ppm) 

Entry X Azulenol    Crude    Pure    

1 H 315 77:23 −c 85% 
315a: 5.30, d, J 10.0 

315b: 5.56, d, J 9.9 

−d 

−
e
 

2 Cl 316 82:18 89:11 75% 
316a: 5.36, d, J 10.5 316a: 134.0 

316b: 5.69, d, J 10.3 316b: −
e 

a. Calculated from the integration of the 1H NMR spectrum. 
b. Isolated yield after chromatography. 
c. Crude material was carried through to the next step. 
d. Described by O’Keeffe. 
e. 13C NMR signal of the minor diastereoisomer is too weak to be assigned with any degree of certainty. 
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The two diastereomers of azulenol 316 co-eluted upon purification by column 

chromatography and could not be separated. The pure ratio of 89:11, 316a: 316b  is 

slightly different to the crude ratio of 82:18, 316a: 316b. While O’Keeffe had also 

reported co-elution of azulenols.41 Buckley had previously subjected azulenone 89 to 

reduction and succeeded in separating the diastereoisomers 315a/b 

chromatographically.37 The 1H NMR spectrum of the crude azulenol 315 was clean 

enough to be carried through to the next step without purification.  

Buckley performed reduction reactions on azulenones unsubstituted at carbon-3.37 

Like McKervey, Buckley postulated that the reaction between the substrate and the metal 

hydride favoured the formation of the cis-azulenol (Figure 2.30).22,30,31 The rationale put 

forward was based on the accessibility of the carbonyl function to the attacking hydride 

reagent. It is argued that approach from the upper β-face is sterically disfavoured due to 

the presence of the bridgehead methyl group and the reduction is perceived to occur 

predominantly from the lower, α-face resulting in the stereoselective formation of the cis-

azulenol (Figure 2.29).  

 

 

 

 

 

 

 

 

 

Figure 2.29 
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By analogy with the data reported by Buckley, O’Keeffe assigned the 

stereochemistry of major diastereoisomer of the azulenol 315a as the cis-isomer (Figure 

2.30).41 The stereochemical assignment was made cautiously, and vigilance must be 

exercised until a crystal structure can be obtained. 

 

     cis 315a          trans 315b 

Figure 2.30 

In the case of the novel azulenol 316, the position of the C(8)H signal in the 1H 

NMR of the spectrum for the major isomer (δΗ−8 5.36, d, J 10.5) is comparable to the 

position of the C(8)H signal for azulenol 315a (δΗ−8 5.30, d, J 10.0). In addition, the C(8) 

signal for the minor diastereoisomer of azulenols 316b (δΗ−8 5.69, d, J 10.0) and 315b 

(δΗ−8 5.56, d, J 9.9) are also comparable indicating that the stereochemistry of the major 

diastereoisomer of the novel azulenol 316a is also the cis-isomer. 

It should be noted that in the case of this thesis, azulenols 315 and 316 are generally 

shown as the CHT tautomer. However, Buckley reported that azulenols exist as an 

equilibrating mixture of the NCD and CHT tautomers.37,71 O’Keeffe confirmed the 

existence of the NCD tautomer in the case of the trimethyl substituted azulenol 317a/b 

(Scheme 2.61).71 As was the case of the azulenone compounds, the position of 

equilibrium depends strongly on the substituents attached to the azulenol structure. 
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O NaBH4, EtOH OH
+

OH

H H
3.37 ppm, s

2.52 ppm, s
 

92     317a       317b 

Scheme 2.61 

In summary, reduction of azulenones 89 and 95 proceeds efficiently in line with 

earlier results by Buckley, O’Leary and O’Keeffe.28,37,41 The resulting product azulenols 

315 and 316 exist as a mixture of diastereomeric azulenols which in this work were 

inseparable by chromatography.  

Previously, work in the group had demonstrated that the conversion of the 

perhydroazulenol 318 to the p-nitrobenzoate ester 319. However, the ester 319 did not 

produce crystals suitable for X-ray crystal determination to establish the stereochemical 

nature of the compound 319 (Scheme 2.62).28 

 

 

 

 

 

 

  318       319 

     Scheme 2.62 

In this work, O’Leary’s procedure for the synthesis of 319 was repeated using the 

novel azulenol 316. 4-Nitrobenzoyl chloride was added to a stirring solution of azulenol 

316a: 316b, 89:11 and a catalytic amount of DMAP in pyridine (Scheme 2.63). The 

crude reaction mixture was concentrated to give a brown solid, a 1H NMR spectrum of 

the crude product showed no presence of the starting azulenol 316a/b. The crude product 

was subsequently recrystallised from dichloromethane/diethyl ether to give a orange 
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coloured crystalline solid. A 1H NMR spectrum of the recrystallised product indicated 

only the presence of 4-nitrobenzoic acid 321. 

Consequently a number of other esterification reactions were carried out on 

azulenols 315 and 316 in an attempt to produce a crystalline ester derivative (Scheme 

2.63). Firstly esterification of the crude azulenol 315a: 315b, 77:23 was attempted by 

heating (S)-mandelic acid, PTSA and benzene under reflux for 12 h under a Dean-Stark 

trap. There was no evidence of the desired ester 322 in the 1H NMR spectrum of the crude 

reaction mixture. Purification by column chromatography yielded a clear oil in a 54% 

yield which was tentatively assigned as the dihydronaphthalene 323 presumably formed 

by acid catalysed dehydration (Scheme 2.63). Signals for 323 were not seen in the 1H 

NMR spectrum of the crude material, so 323 may have formed on during chromatography 

on silica gel. 

 

 

 

  315a          323 

Scheme 2.63 

Alternatively, esterification of azulenol 316a: 316b, 89:11 was attempted by 

stirring  (S)-mandelic acid, DCC and a catalytic amount of DMAP in dichloromethane at 

0 ºC for 30 min and then warmed to room temperature and stirred for a further 14 h 

(Scheme 2.64). A 1H NMR spectrum of the crude product did not indicate the presence of 

the desired product 324. Attempted purification of the mixture by column 

chromatography yielded a clear oil which by 1H NMR showed a complex mixture of 

unidentfiable products and no trace of the ester 324. 

Finally, an attempt to convert azulenol 316a: 316b, 89:11 to ester 325 was carried 

out by treating it with triethylamine in dichloromethane which was then followed by the 

dropwise addition of (S)-O-acetylmandeloyl chloride 137 (Scheme 2.64). The solution 
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was stirred for 14 h and following work-up was concentrated to give a clear oil. A 1H 

NMR spectrum showed no evidence of the desired ester or the starting azulenol 316. 

 

 

 

 

                                 322 

324   X=Cl:316 a/b,  X=H:315 a/b 

           323 

  

 

 

 

 

   325     320   321 

 

Scheme 2.64 

Due to the difficulty in synthesising the esters described above, an alternative 

method of assigning the absolute stereochemistry of the major enantiomer of the Buchner 

reaction was sought. 

 

 

N
E
t 3,

D
C
M

D
M
A
P
,

P
yridine

, 30
m
in



 
                                                                              Chapter 2 – Results and Discussion 
 

 

190 

 

2.6.6.3 PTAD cycloadducts derived from enantioenriched azulenones 92/97 

As discussed in section 2.6.4, the enantiopurity of the trimethyl substituted azulenone 92 

was not readily determined directly due to the extremely labile nature of the compound. 

O’Keeffe had previously determined the enantioselectivity to be ≥95% ee by chiral HPLC 

but this was not reproduced during this work.12 In addition, confirmation of the 

enantiopurity of the 3,5-dimethyl substituted azulenone 97 was not possible. While 

resolution of one of C(3)(CH3)2 signals of the enantiomers of azulenone 97 by 1H NMR 

spectroscopy using (+)-Eu(hfc)3 as chiral shift reagent was evident, due to the relatively 

high enantioselectivity observed an accurate integration of these signals was not possible. 

In an attempt to solve these issues both azulenones 92 and 97 were trapped with PTAD in 

situ. 

McNamara had previously attempted the cycloaddition of azulenone 92 with 

maleimide 327, but only the tetralone 326 was observed in the 1H NMR spectrum of the 

crude product.42 

 

      

     327   

 

92           326 

      Scheme 2.65 

As illustrated in Table 2.24 each of the diazoketones 41 and 42 were initially treated 

with Rh2(OAc)4 and PTAD to produce racemic stable cycloadducts 163 and 164. 

Subsequently diazoketones 41 and 42 were cyclised in the presence of CuPF6-75[(R,R)-

Ph-Box] via the same procedure that was discussed in section 2.6.4. Once diazoketone 

addition was complete, disappearance of the diazoketone was confirmed by TLC and the 

reaction mixture was then cooled to 0ºC. Without concentration of the reaction solution, 

one equivalent of PTAD was added directly to the reaction mixture. Progress of the 

reaction could be monitored by both TLC and colour change. The cycloadditions of 
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azulenones 92 and 97 were very efficient and were found to be complete by TLC within 1 

h. For the cycloadducts 163 and 164, the reaction solution went from the bright red colour 

of the dienophile to a colourless solution after stirring for 1 hour at room temperature. 

The solutions were concentrated under reduced pressure to give white solids. The racemic 

stable cycloadducts 163 and 164 were both recrystallised from hot ethyl acetate to give 

the pure products as white solids in 65% and 72% yield respectively. The enantioenriched 

stable cycloadducts 163 and 164 were purified by column chromatography (20:80, ethyl 

acetate:hexane) to avoid selective recrystallisation, to give the pure cycloadducts 163 and 

164 in 64% and 80% yield respectively As the cycloadducts 163 and 164 prepared in this 

study were novel, they were also subjected to full characterisation. As in discussed in 

section 2.6.5.2, correlated spectroscopy (COSY) was a key tool in deducing the 

cycloadduct structures, as it was used to detect all the coupling relationships. 

Table 2.24 Cycloaddition of azulenones 92 and 97 with PTAD 162 

 

 

 

41,R=H    92, R=Me 

42,R=Me    97, R=H 

 

 

 

 

163,R=Me 

164, R=H 
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Entry Diazoketone R Azulenone Adduct 
Time 

(h)a 

Yield (%)b 

ee 

(%)c Rh2(OAc)4 
Cu-Ph-

iso-box 

1 41 H 97 164 1 72 64 92d 

2 42 Me 92 163 1 65 80 93e 

 

(a) Number of hours over which diazoketone was added. 
(b) Yield of isolated product after flash chromatography (20% ethyl acetate:hexane as eluant) with Cu catalyst; 

recrystallisation with Rh2(OAc)4. 
(c) Determined by HPLC. 

(d) Specific Rotation:
20][ Dα  154.9 [c 0.5, CHCl3]. 

(e) Specific Rotation:
20][ Dα  96.5 [c 1.0, CHCl3]. 

 

Conditions for the resolution of the enantiomers of the racemic enantiomers were 

developed by chiral HPLC, which were then applied to the determination of the 

enantioenriched samples. 

The enantiopurities of adducts 163 and 164 were determined by chiral HPLC and 

were confirmed to be 93% ee and 92% ee respectively (Table 2.24, Figure 2.31). This 

verifies O’Keeffe’s reported enantiopurity of ≥95% ee by HPLC for azulenone 92.12 

Significantly, essentially the same enantioselectivity is achieved with two methyl 

substituents in the reaction of diazoketone 41. 

In order to determine the absolute stereochemistry of cycloadducts 163 and 164, an 

enantiopure sample (≥99% ee) was required for X-ray crystallography. Both adducts 163 

and 164 (93% ee and 92% ee respectively) were separately recrystallised from hot ethyl 

acetate to give a white crystalline solid. Analysis by chiral HPLC showed that for both 

adducts, the major enantiomer had selectively crystallised.  

Subsequently, X-ray crystallography of a single crystal from each of the adducts 

163 and 164 determined that the stereochemistry of the major enantiomer was 3aS. To 

confirm unambiguously that the crystal selected corresponded to the major enantiomer, 

the crystal of adduct 163 employed for X-Ray diffraction was dissolved and injected for 

chiral HPLC analysis, confirming that it corresponded to the major peak. While the 
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crystal of 164 was not reanalyzed by chiral HPLC, it is reasonable to assume that the 

crystal reflected the major enantiomer based on HPLC and specific rotation. This is the 

first time that determination of the absolute stereochemistry of the major enantiomer from 

the intramolecular Buchner reaction has been achieved. 

    

 

 

        163 

≥99% ee 

 

 

 

 

Figure 2.31 Chiral HPLC trace of the single crystal of adduct 163 (≥99% ee) 

The crystal structures of the major enantiomer of adducts 163 and 164 is illustrated 

in Figure 2.32 below. 

 

 

 

 

 

X= H, 164      X= Me, 163 

Figure 2.32 View of the major enantiomer of adducts 163  and 164 showing the structure 

and absolute stereochemistry 
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The determination of the stereochemistry (8aS) of the major enantiomer of adducts 

163 and 164 is consistent with O’Keeffe’s proposed model to explain the 

enantioselectivity of the intramolecular Buchner reaction. If the aromatic addition were to 

follow a mechanism similar to that depicted in Figure 2.33, the 8aS enantiomer would 

form preferentially (O’Keeffe incorrectly proposed via the mechanistic model shown 

below that the major enantiomer was 8aR).41 

 

 

 

 

42        93% ee, 92      

 

 

 

 

 

 

 

 

Figure 2.33 
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2.7 Conclusion 

In the course of this work, substantive developments in our understanding of 

enantiocontrol in the aromatic addition reaction of α-diazoketone were uncovered; 

• For the first time enantiocontrol in aromatic addition reactions of terminal 

diazoketones was demonstrated, despite the lability of the enolisable stereogenic 

center. 

• Role of NaBARF as an additive in enhancing enantiocontrol was demonstrated. 

• Influence of substituent effects at the carbene site and aromatic ring was 

determined. 

• Determination of the absolute stereochemistry in the aromatic addition has been 

achieved for the first time. 

• Design and synthesis of a novel bisoxazoline ligand was achieved. 

• From a synthetic perspective, access to a number of azulenones with ≥80% ee was 

achieved. 
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3.1 General Procedures 

 

All solvents were distilled prior to use as follows: acetone was distilled from potassium 

permanganate, dichloromethane was firstly distilled from phosphorus pentoxide and when 

used in diazoketone cyclisations was further distilled from calcium hydride and stored 

over activated 4 Å molecular sieves. Ethyl acetate was distilled from phosphorus 

pentoxide and hexane was distilled prior to use. Diethyl ether was obtained commercially 

from Riedel de Haen. HPLC grade acetone from Sigma-Aldrich was used for PTAD 

generation. Ethanol (abs) used in hydrogenation reactions was not distilled, as the catalyst 

used was usually wet. Molecular sieves were dried by heating at >100 °C overnight. 

Organic phases were dried using anhydrous magnesium sulphate. All reactions were 

carried out under an atmosphere of inert nitrogen unless otherwise stated. 

The rhodium acetate dimer employed was kindly donated by Johnson Matthey. 

Tetrakis(acetonitrile)copper(I) hexafluorophosphate1 was prepared by Dr. Alan Ford. 

Diazomethane was generated from Diazald® using clear glass joints. 

1
H (400 MHz) spectra were recorded on a Bruker Avance 400 NMR spectrometer 

and 1
H (300MHz) and 

13
C (75.5MHz) NMR spectra were recorded on a Bruker (300 

MHz) NMR spectrometer. All spectra were recorded at room temperature (~20 °C) in 

deuterated chloroform (CDCl3) unless otherwise stated using tetramethylsilane (TMS) as 

internal standard. 
13

C NMR spectra were assigned with the aid of DEPT experiments.  

Compounds which were assigned with the aid of DEPT experiments were assigned by 

identifying both the carbon, (CH3, CH2, CH or C), and also the atom number of the 

carbon, for example, (CH, C-5).  For compounds where DEPT spectra were not recorded, 

the carbon spectra were assigned by comparison to analogous compounds.  In order to 

distinguish the characterisation of these compounds from DEPT aided assignments, 

compounds for which DEPT spectra were not recorded, were identified using a 

combination of both atom numbering and signal identification, for example, [C(4)H3].    

Chemical shifts (δH and δC) are expressed in parts per million (ppm) relative to 

TMS and coupling constants in Hertz (Hz). Splitting patterns in 1H and 13C spectra are 
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designated as s (singlet), br (broad), br s (broad singlet), br d (broad doublet), br t (broad 

triplet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), dt (doublet of triplets), 

ddd (doublet of doublet of doublets), ddt (doublet of doublet of triplets), AB (AB system), 

dm (doublet of multiplets) and m (multiplet), apparent doublet refers to a baseline 

separation not achieved. 13C spectra were calibrated using the solvent signals, i.e. CDCl3: 

δC 77.0 ppm, DMSO-d6: δC 39.5 ppm. All spectroscopic details for compounds previously 

made were in agreement with those previously reported unless otherwise indicated.  

Diastereomeric ratios (d.r) were determined by 1H NMR spectroscopy. The main 

diastereoisomer is denoted as a, and minor diastereoisomer as b. 

Where used, a chiral shift study by 1H NMR spectroscopy employed tris-[3-

heptafluoropropyl-hydroxymethylene-(+)-camphorato]europium (III) derivative, [(+)-

Eu(hfc)3] as chiral shift reagent.  

Enantiopurity of the chiral compounds were determined by chiral HPLC performed 

on Chiralcel OD-H, Chiralcel OJ-H or reverse phase LiChroCART 250-4 ChiraDex® 

column. Details of the column conditions and mobile phases employed are included in the 

experimental section under the corresponding compound. 

Optical rotations were measured on a Perkin-Elmer 141 polarimeter at 589 nm in a 

10 cm cell; concentrations (c) are expressed in g/100 mL. [α] is the specific rotation of a 

compound and is expressed in units 10-1 deg cm2 g-1. 

Microwave assisted synthesis was done using the CEM Discover Labmate 

Synthesiser in conjunction with Chem Driver software (Version 3.5.0) and the CEM 

Discover S-Class Synthesiser in conjunction with Synergy software.  

Infrared spectra were measured as pressed potassium bromide (KBr) discs for solids 

or thin films on sodium chloride plates for liquids on a Perkin-Elmer Paragon 1000 FT-IR 

spectrometer. Melting points were carried out on a uni-melt Thomas Hoover Capillary 

melting point apparatus and are uncorrected. Bulb to bulb distillations were carried out on 

an Aldrich Kugelrohr apparatus and the oven temperature is given as the boiling point of 

the substrate.   
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Wet flash column chromatography was carried out using Kieselgel 60, 0.040-0.063 

mm (Merck) and the fractions are reported in the order with which they eluted unless 

otherwise stated. Thin layer chromatography (TLC) was carried out on pre-coated silica 

gel plates (Merck 60 PF254). Visualisation of compounds on TLC plates was achieved by 

UV (254nm) light detection, vanillin staining, ceric sulfate and potassium permanganate 

staining.  

The Microanalysis Laboratory, National University of Ireland, Cork, performed 

elemental analysis using a Perkin-Elmer 240 and Exeter Analytical CE440 elemental 

analysers. It was not possible to obtain bromine elemental analysis on any compounds 

containing bromine and also it was not possible to obtain chlorine analysis on compounds 

that had both bromine and chlorine in the molecule. Fluorine and chlorine elemental 

analysis were carried out and those compounds with both a fluorine and chlorine can be 

analysed for both.  

Low resolution mass spectra were recorded on a Waters Quattro Micro triple 

quadrupole instrument in electrospray ionization (ESI) mode using 50% acetonitrile-

water containing 0.1% formic acid as eluant; samples were made up in acetonitrile. High 

resolution precise mass spectra (HRMS) were recorded on a Waters LCT Premier Tof 

LC-MS instrument in electrospray ionization (ESI) mode using 50% acetonitrile-water 

containing 0.1% formic acid as eluant; samples were made up in acetonitrile except for 

diazo compounds which were made up in dietyl ether. 

Single crystal X-ray data was collected at University College Cork on a Bruker 

APEX II DUO diffractometer at temperature 100 – 293 K using graphite monochromatic 

Mo Kα (λ = 0.7107 Å) radiation. The structures were solved using direct methods and 

refined on F
2 using SHELXL-97. Analysis was undertaken with the SHELX suite of 

programs2 and diagrams prepared with Mercury 2.3.3 All non-hydrogen atoms were 

located and refined with anisotropic thermal parameters. Hydrogen atoms were included 

in calculated positions or they were located and refined with isotropic thermal parameters.   
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3.2 Synthesis of esters: 

 

Ethyl 2-cyano-3-methylbut-2-enoate 53
4,5 

Α solution of β-alanine (13.36 mg, 0.15 mmol), ethyl 

cyanoacetate (1.80 mL, 0.30 mmol), acetone (104 mL, 1.44 

mmol) and acetic acid (6 mL) in benzene (70 mL) was 

refluxed for 60 h using a Dean Stark trap. The 1H NMR 

spectrum of the crude material indicated that it consisted of 8% starting material, ethyl 

cyanoacetate.* Purification by vacuum distillation gave the pure ester 53 (37.82 g, 82%) 

as a white low melting solid, b.p 115°C at 14 mmHg (Lit.,5 120°C at 14 mmHg); 

νmax/cm−1 (film) 2986, 2227 (CN), 1732 (CO), 1612, 1444, 1371, 1335, 1285, 1086; δH 

(300 MHz) 1.35 [3H, t, J 7.4, CH2CH3], 2.31, 2.41 [2 ×3H, 2 × s, C(3)CH3, C(4)CH3], 

4.27 [2H, q, J 7.2, CH2CH3]. 

*Ethyl cyanoacetate; δH (300 MHz) 3.50 [2H, s, C(2)H2]. N.B Peaks for CH2CH3, 

CH2CH3 were obscured by those of the product ester. 

Ethyl 2-cyano-3-methyl-3-(4-methylphenyl)butanoate 55
4,5 

Ethyl 2-cyano-3-methylbut-2-enoate 53 (15.00 g, 97.90 

mmol) was added dropwise to 4-tolyl magnesium 

bromide [freshly prepared from magnesium (5.95 g, 

244.90 mmol), iodine (one crystal) in diethyl ether (60 

mL), and 4-bromotoluene (41.90 g, 245.00 mmol) in diethyl ether (30 mL)] at room 

temperature under nitrogen and the mixture was refluxed for 30 min. The reaction 

mixture was cooled to room temperature and carefully poured onto aqueous hydrochloric 

acid (10%, 30 mL). The layers were separated and the aqueous layer was washed with 

diethyl ether (40 mL). The combined organic layers were washed with brine (20 mL), 

dried, filtered and concentrated under reduced pressure to give the crude ester (15.50 g) as 

an orange oil. A 1H NMR spectrum of the crude material showed it to contain the Würtz 

coupling product (~36 %). Purification by flash chromatography using ethyl 

acetate/hexane (5:95) as eluent gave the ester 55 (15.21 g, 64%) as a clear oil; νmax/cm−1 

O

O

CN

CN

O

O
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(film) 2980, 2247 (CN), 1740 (CO), 1610, 1516, 1466, 1370, 1326, 1140, 1036; δH (300 

MHz) 1.08 (3H, t, J 7.4, CH2CH3), 1.60 [6H, s, C(3)CH3, C(4)H3], 2.32 [3H, s, 

C(4′)CH3], 3.71 [1H, s, C(2)H], 4.03 (2H, q, J 7.2, CH2CH3), 7.15 [2H, d, J 8.4, C(3′)H, 

C(5′)H], 7.27 [2H, d, J 8.4, C(2′)H, C(6′)H]. The Würtz coupling product 60
6 was isolated 

as a yellow solid, m.p. 116-119°C (Lit.,7 125°C); νmax/cm−1 (KBr) 2974, 1742, 1447, 

1266, 1113; δH (300 MHz) 2.39 [6H, s, C(4)CH3, C(4′)CH3], 7.13-7.27 [4H, m, C(2)H, 

C(6)H, C(2′)H, C(6′)H] and 7.44-7.49 [4H, m C(3)H, C(5)H, C(3′)H, C(5′)H]. 

Ethyl 2-cyano-3-methyl-3-(4-fluorophenyl)butanoate 54
4,5 

Ethyl 2-cyano-3-methylbut-2-enoate 53 (7.34 g, 47.91 

mmol) was added dropwise to 4-fluorophenyl 

magnesium bromide [freshly prepared from magnesium 

(3.50 g, 144.00 mmol), iodine (one crystal) in ether (60 

mL), and 1-fluoro-4-iodobenzene (32.04 g, 144.00 mmol) in diethyl ether (60 mL)] at 

room temperature under nitrogen and the mixture was heated under reflux for 30 min. 

The reaction mixture was cooled to room temperature and carefully poured onto aqueous 

hydrochloric acid (10%, 30 mL). The layers were separated and the aqueous layer was 

washed with diethyl ether (40 mL). The combined organic layers were washed with brine 

(20 mL), dried, filtered and concentrated under reduced pressure to give the crude ester as 

an orange oil. Purification by flash chromatography using ethyl acetate/hexane (20.80) as 

eluent gave the ester 54 (7.80 g, 65 %) as a clear oil; νmax/cm−1 (film) 2982, 2248 (CN), 

1741 (CO), 1604, 1513, 1236; δH (400 MHz) 1.09 (3H, t, J 7.2, CH2CH3), 1.62 [6H, s, 

C(3)CH3, C(4)H3], 3.68 [1H, s, C(2)H], 4.01-4.09 (2H, m, CH2CH3), 7.01-7.07, 7.35-

7.40{2 x 2H, m, [C(2′)H, C(6′)H and C(3′)H, C(5′)H]}. 

3.3 Synthesis of cyanoacids: 

 

2-Cyano-3-methyl-3-(4-methylphenyl)butanoic acid 57
5
 

A 100 mL round bottom flask equipped with a magnetic 

stirred bar was charged with ethyl-2-cyano-3-methyl-3-(4-

methylphenyl)butanoate 55 (8.50 g, 34.60 mmol), sodium 
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hydroxide (2.78 g, 69.30 mmol) and ethanol (95%, 60 mL). The flask was attached to a 

gas bubbler and subsequently heated in an open vessel microwave reactor for 15 min at 

200 W at 80 °C. The reaction mixture was cooled to room temperature and carefully 

poured onto aqueous hydrochloric acid (10%, 145 mL) in ice (150 g). The layers were 

separated and the aqueous layer was washed with diethyl ether (2 × 100 mL). The 

combined organic layers were washed with water (100 mL), brine (100 mL), dried, 

filtered and concentrated under reduced pressure to give crude acid (8.23 g), which 

contained some ethanol, as a yellow oil which solidified after 5 days in vacuo to afford 

the pure acid 57 (6.10 g, 81%), m.p 88-91 °C (Lit.,5 89-90°C); νmax/cm−1 (KBr) 2981 br 

(OH), 2253 (CN), 1716, 1516, 1287; δH (300 MHz) 1.62, 1.64 [2 × 3H, 2 × s, C(3)CH3, 

C(4)H3], 2.34 [3H, s, C(4′)CH3], 3.76 [1H, s, C(2)H], 7.15-7.19 [2H, m, C(3′)H, C(5′)H], 

7.25-7.31 [2H, m, C(2′)H, C(6′)H].  

2-Cyano-3-methyl-3-(4-fluorophenyl)butanoic acid 56
5
 

Ethyl-2-cyano-3-methyl-3-(4-fluorophenyl)butanoate 54 (3.65 

g, 14.66 mmol) was stirred with sodium hydroxide (2.34 g, 

58.66 mmol) in ethanol (95%, 25 mL) overnight. The solution 

was acidified to pH 2 using aqueous hydrochloric acid (10 %). The aqueous layer was 

extracted with diethyl ether (3 × 40 mL). The combined organic layers were washed with 

water (50 mL), brine (50 mL), dried, filtered and concentrated under reduced pressure to 

give crude acid (3.21 g) as a yellow oil which solidified after 5 days in vacuo to afford the 

pure acid 56 (2.10 g, 65%), m.p. 98-102 °C (Lit.,5 100-101°C); νmax/cm−1 (KBr) 2980 br 

(OH), 1728, 1604, 1513; δH (400 MHz) 1.63, 1.64 [2 × 3H, 2 × s, C(3)CH3, C(4)H3], 3.73 

[1H, s, C(2)H], 7.01-7.08 [2H, m, C(3′)H, C(5′)H], 7.34-7.40 [2H, m, C(2′)H, C(6′)H]. 
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3.4 Synthesis of nitriles: 

 

3-Methyl-3-(4-methylphenyl)butanenitrile 59
5,8

 

A 100 mL round bottomed flask equipped with a magnetic stirred 

bar was charged with 2-cyano-3-methyl-3-(4-

methylphenyl)butanoic acid 57 (2.00 g, 9.20 mmol). The flask was 

attached to a gas bubbler and subsequently heated in an open vessel microwave reactor 

for 30 min at 100 W at 200 °C. As 170 °C was reached, degassing through the bubbler 

was evident. The reaction mixture was cooled to room temperature to give the crude 

nitrile as a viscous brown oil (1.80 g). Purification by vacuum distillation gave the nitrile 

59 (1.21 g, 76%) as pale yellow oil, b.p 120 °C at 0.04 mmHg (Lit.,8 138-140 °C at 10 

mmHg);  νmax/cm−1 (film) 2970, 2961, 2248 (CN), 1740, 1682, 1516, 1370, 817; δH (300 

MHz) 1.50 [6H, s, C(3)CH3, C(4)H3], 2.35 [3H, s, C(4′)CH3],  2.60 [2H, s, C(2)H2], 7.14-

7.19 [2H, m, C(3′)H, C(5′)H],  7.24-7.28 [2H, m, C(2′)H, C(6′)H]. 

3-Methyl-3-(4-fluorophenyl)butanenitrile 58
5 

This was prepared following the procedure described for 59, from 

crude 2-cyano-3-methyl-3-(4-fluorophenyl)butanoic acid 56 (5.60 

g, 25.31 mmol) to give the crude nitrile as viscous brown oil (5.21 

g). Purification by distillation gave the nitrile 58 (3.10 g, 69%) as a pale yellow oil, b.p. 

110 °C at 0.10 mmHg (Lit.,8 138-140 °C at 10 mmHg); νmax/cm−1 (film) 2972, 2250 

(CN), 1604, 1513; δH (400 MHz) 1.43 [6H, s, C(3)CH3, C(4)H3], 2.52 [2H, s, C(2)H2], 

6.94-7.00, 7.24-7.31{2 x 2H, 2 x m, [C(3′)H, C(5′)H] and [C(2′)H, C(6′)H]}.  

3.5 Synthesis of carboxylic acids: 

 

3-Methyl-3-phenylbutanoic acid 31
5,9-11 

Aluminium trichloride (25.0 g, 187.50 mmol) was added 

slowly to 3-methylbut-2-enoic acid (10.10 g, 100.80 mmol) 

in benzene (200 mL) while stirring at 0 °C under nitrogen. 
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Once the addition was complete the reaction mixture was stirred for 24 h at room 

temperature. The reaction mixture was then carefully poured onto hydrochloric acid 

(10%, 200 mL) and diethyl ether (250 mL) while stirring. The layers were separated and 

the aqueous layer was washed with diethyl ether (3 × 100 mL). The combined organic 

layers were washed with water (100 mL), brine (100 mL), dried, filtered and concentrated 

under reduced pressure to yield the crude acid 31 (16.95 g, 94%) as a white solid, m.p 56-

57 °C (Lit.,9 57-58 °C); νmax/cm−1 (KBr) 2978 br (OH), 1700 (CO), 1498, 1440, 1409, 

1317; δH (300 MHz) 1.47 [6H, s, C(3)CH3, C(4)H3], 2.56 [2H, s, C(2)H2], 7.20-7.60 (5H, 

m, ArH). 

3-Methyl-3-(4-chlorophenyl)butanoic acid 33
5,9,11 

This was prepared following the procedure for 31, from 

aluminium trichloride (25.00 g, 190.00 mmol), 3-methylbut-

2-enoic acid (10.00 g, 100.0 mmol) in chlorobenzene (200 

mL) to yield the crude acid 33 (21.72 g, 99%) as a pale 

yellow solid, m.p. 65-68 °C (Lit.,12 66-67 °C); νmax/cm−1 (KBr) 2975 br (OH), 1705 (CO), 

1491, 1324, 1105; δH (300 MHz) 1.42 [6H, s, C(3)CH3, C(4)H3], 2.64 [2H, s, C(2)H2], 

7.18-7.36 (4H, m, ArH). 

3-Methyl-3-(3,4,5-trimethylphenyl)butanoic acid 36
5,9 

This was prepared following the procedure described for 

31, from aluminium trichloride (8.21 g, 61.56 mmol), 3-

methylbut-2-enoic acid (3.08 g, 30.78 mmol) in 1,2,3-

trimethylbenzene (7.40 g, 61.56 mmol), under an 

atmosphere of nitrogen overnight to yield the crude acid. The crude reaction mixture was 

subsequently extracted with aqueous sodium hydroxide (20%, 2 × 40 mL)* to remove 

excess starting material 1,2,3-trimethylbenzene, and then the aqueous layer was acidified 

to pH 1 with aqueous hydrochloric acid (10%) and extracted with diethyl ether (3 × 75 

mL). The organic layer was then dried, filtered and concentrated under reduced pressure 

to give the crude acid 36 (4.20 g, 62%) as a pale brown solid, m.p 101-108°C (Lit,13 111-

112°C); νmax/cm−1(KBr) 2957 br (OH), 1703 (CO), 1644 1415; δH (300 MHz) 1.44 [6H, 

s, C(3)CH3, C(4)H3], 2.14 [3H, s, C(4′)CH3], 2.28 [6H, s, C(3′)CH3, C(5′)CH3],  2.64 [2H, 
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s, C(2)H2], 7.00 [2H, s, C(2′)H, C(6′)H]. The 1H NMR spectrum of the crude product 

contained some minor (7%) peaks at δH 1.46 (s) and δH 2.66 (s) due to an unidentifiable 

side product. 

*It was difficult to remove excess trimethylbenzene in vacuo and the purpose of the basic 

workup was to try to remove the aforementioned starting material.  

3-Methyl-3-(3,5-dimethyl)butanoic acid 35
9 

This was prepared following the procedure described for 

31, from aluminium trichloride  (6.25 g, 47.00 mmol), 3-

methylbut-2-enoic acid (2.50 g, 25.0 mmol) in m-xylene 

(45 mL) to yield the crude acid 35 (4.40 g, 85%) as a white 

solid, m.p. 100-105°C (Lit,14 111-112°C);  (Found: C, 75.62; H, 8.83. C13H8O2 requires 

C, 75.69, H, 8.80%); νmax/cm−1 (KBr) 2966 br (OH), 1718, 1388, 1163; δH (300 MHz) 

1.44 [6H, s, C(3)(CH3), C(4)H3], 2.30 [6H, s, C(3')H3, C(5')CH3], 2.63 [2H, s, C(2)H2],  

6.85 [1H, s, C(4')H], 6.97 [2H, s, C(2')H, C(6')H]; δC (75.5 MHz) 21.6 [CH3, C(3)CH3, 

C(5)CH3], 28.8 [CH3, C(3')CH3, C(5')H3], 36.8 [C, C(3)], 47.9 [CH2, C(2)H2], 123.3 [CH, 

C(2′)H, C(6′)H], 127.8 [CH, C(4′)H], 137.6 [C, C(3′), C(5′)], 148.1 [C, C(1′)], 177.3 [C, 

C(1)]; m/z (EI+) 248 [(M+C2H3N)+, 100%], 230 [(M+Na)+, 25%], 207 (20%), 105 (60%).  

3-Methyl-3-(4-methylphenyl)butanoic acid 32
4,5 

A solution of potassium hydroxide (3.62 g, 64.65 mmol) in 

ethylene glycol (20 mL) was added to 3-methyl-3-(4-

methylphenyl)butanenitrile 59 (3.50g, 20.21 mmol) and the 

resulting solution was heated under reflux overnight. The 

solution was then acidified to pH 2 using aqueous hydrochloric acid (10%). The aqueous 

layer was extracted with diethyl ether (3 × 50 mL). The combined organic layers were 

washed with aqueous sodium hydroxide (10%, 50 mL), and then the aqueous layer was 

acidified to pH 1 with aqueous hydrochloric acid and extracted with diethyl ether (3 x 50 

mL). The combined organic layers were then dried, filtered and concentrated under 

reduced pressure to give the pure acid 32 (2.01 g, 52%)  as a viscous, pale yellow oil 

which solidified as a crystalline solid after standing at room temperature for 12 h, m.p. 
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78-81°C (Lit.,12 73-74°C); νmax/cm−1 (KBr) 2974 br (OH), 1701 (OH), 1516, 1462, 1313, 

810 ; δH (300 MHz) 1.48 [6H, s, C(3)CH3, C(4)H3], 2.32 [3H, s, C(4′)CH3], 2.63 [2H, s, 

C(2)H2], 7.12 (2H, d, J 8.1, ArH), 7.24-7.27 (2H, m, ArH). 

3-Methyl-3-(4-fluorophenyl)butanoic acid 34
4,5,11 

This was prepared following the procedure described for 32, 

from 3-methyl-3-(4-fluorophenyl)butanenitrile 58 (4.55 g, 

25.40 mmol) and a solution of  potassium hydroxide (4.55 g, 

81.20 mmol) in ethylene glycol (25 mL) to give the crude acid 

34 (3.25 g, 65%)  as a viscous pale yellow oil which solidified as a crystalline solid after 

standing at room temperature for 12 h, m.p. 63-69°C (Lit.,15 60-62°C); νmax/cm−1 (KBr) 

2918 br (OH), 1708, 1512, 1232, 833; δH (300 MHz) 1.43 [6H, s, C(3)CH3, C(4)H3], 2.63 

[2H, s, C(2)H2], 6.99-7.15 [2H, m, C(2′)H, C(6′)H], 7.24-7.34 [2H, m, C(3′)H, C(5′)H]. 

3.6 Synthesis of acid chlorides: 

Caution! When DMF is exposed to thionyl chloride N,N-dimethylcarbamoyl chloride 

(DMCC)  is formed. Extreme caution must be exercised when carrying out a reaction 

under such conditions as DMCC is a potent carcinogen in animals16 and is believed to 

have a similar effect in humans.17  

3-Methyl-3-phenylbutanoyl chloride 63
5,10,11,18 

3-Methyl-3-phenylbutanoic acid 31 (5.30 g, 29.80 mmol) and 

thionyl chloride (10.86 mL, 149.00 mmol) along with a 

catalytic amount of DMF (3 drops) was heated under reflux 

for 3 h while stirring under nitrogen. Excess thionyl chloride 

was evaporated under reduced pressure to give the crude acid chloride 63 as a brown oil. 

Purification by vacuum distillation gave the acid chloride 63 (4.41 g, 75%) as a red oil, 

b.p. 70 °C at 0.1 mmHg (Lit.18 84-86.5 °C at 3.0 mmHg; Lit.,11 123-125 °C at 0.9 mmHg; 

Lit.,5 72 °C at 0.1 mmHg); νmax/cm−1 (film) 2970, 1809 (CO), 1497, 1445; δH (300 MHz) 

1.48 [6H, s, C(3)(CH3)2], 3.28 [2H, s, C(2)H2], 7.30-7.36 (5H, m, ArH).* 

*Note: All distilled acid chlorides were stable over long periods of time (up to 12 

months) while kept under nitrogen at -20°C. 
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3-Methyl-3-(4-chlorophenyl)butanoyl chloride 64
5,11 

This was prepared following the procedure described for 

63, from 3-methyl-3-(4-chlorophenyl)butanoic acid 33 

(29.72 g, 119.90 mmol), and thionyl chloride (43.74 mL, 

599.50 mmol) along with a catalytic amount of DMF (3 

drops) to give the crude acid chloride as a brown oil. Purification by vacuum distillation 

gave the acid chloride 64 (18.30 g, 66%) as a clear oil. b.p. 100 °C at 0.03 mmHg (Lit.,11 

129-130 °C at 0.85 mmHg; Lit.,5 102 °C at 0.35 mmHg); νmax/cm−1 (film) 2971, 1808 

(CO), 1596, 1496, 1402; δH (300 MHz) 1.41  [6H, s, C(3)CH3, C(4)H3], 3.27 [2H, s, 

C(2)H2], 7.01-7.34 (4H, m, ArH).* 

*Note: All distilled acid chlorides were stable over long periods of time (up to 12 

months) while kept under nitrogen at -20°C. 

3-Methyl-3-(4-methylphenyl)butanoyl chloride 66
5 

Oxalyl chloride (2.80 mL, 33.18 mmol) in diethyl ether 

(10 mL) was added dropwise over 5 min to 3-methyl-3-(4-

methylphenyl)butanoic acid 32 (5.80 g, 30.17 mmol) in 

diethyl ether (10 mL) while stirring at 0 °C under 

nitrogen. The solution was then slowly allowed to return to room temperature while 

stirring over 14 h. The solvent and residual reagent were removed under reduced pressure 

to give the crude acid chloride 66 (5.76 g, 90%) as a yellow oil which was used 

immediately without purification. νmax/cm−1 (film) 2971, 1812 (CO), 1517; δH (300 MHz) 

1.44 [6H, s, C(3)CH3, C(4)H3], 2.32 [3H, s, C(4′)CH3], 3.27 [2H, s, C(2)H2], 7.11-7.18 

(2H, m, ArH),  7.22-7.39 (2H, m, ArH). 

3-Methyl-3-(4-fluorophenyl)butanoyl chloride 65
5,11

 

This was prepared following the procedure described for 

63, from 3-methyl-3-(4-fluorophenyl)butanoic acid 34 

(2.17 g, 11.06 mmol) and thionyl chloride (4.01 mL, 

55.30 mmol) along with a catalytic amount of DMF (3 

drops) to give the crude acid chloride as a brown oil. Purification by vacuum distillation 
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gave the acid chloride 65 (1.23 g, 52%) as a violet oil, b.p. 90 °C at 0.3 mmHg (Lit.,19 

132-138 °C; Lit.,5 70 °C at 0.25 mmHg); νmax/cm−1 (film) 2969, 1809 (CO), 1602, 1513, 

1234, 1166, 833; δH (300 MHz) 1.44 [6H, s, C(3)CH3, C(4)H3], 3.26 [2H, m, C(2)H2], 

6.97-7.08 [2H, m, C(2)H, C(6)H], 7.26-7.37 [2H, m, C(3)H, C(5)H].* 

*Note: All distilled acid chlorides were stable over long periods of time (up to 12 

months) while kept under nitrogen at -20°C. 

3-Methyl-3-(3,4,5-trimethyl)butanoyl chloride 68
5
 

This was prepared following the procedure described for 

66, from 3-methyl-3-(3,4,5-methyl)butanoic acid 36 (3.40 

g, 15.43 mmol), oxalyl chloride (1.50 mL, 16.97 mmol) to 

give a crude acid chloride as a brown oil 68 (3.80 g, 96%), 

which was used immediately without purification; 

νmax/cm−1 (film) 2970, 1810 (CO), 1608, 1579, 1445, 1386; δH (300 MHz) 1.45 [6H,s, 

C(5)CH3, C(6)H3], 2.14 [3H, s, C(4′)CH3], 2.28 [6H, s, C(3′)H3, C(5′)H3], 3.26[2H, s, 

C(2)H2], 6.91-7.09 (2H, s, ArH). 

3-Methyl-3-(3,5-dimethyl)butanoyl chloride 67 

This was prepared following the procedure described for 

66, from crude 3-methyl-3-(3,5-methyl)butanoic acid 35 

(1.00 g, 4.85 mmol), oxalyl chloride (0.45 mL, 5.34 mmol) 

in diethyl ether (10 mL) to give the crude acid chloride 67 

(1.05 g, 96 %) as a yellow oil which was used immediately 

without purification. νmax/cm−1 (film) 2970, 1813 (CO), 1604, 1473, 1325, 1178; δH (300 

MHz) δH (300 MHz) 1.45 [6H, s, C(5)CH3, C(6)H3], 2.32 [6H, s, C(3′)H3, C(5′)H3], 3.27 

[2H, s, C(2)H2],  6.85-6.87 [1H, m, C(4′)H], 6.94-6.98 [2H, m, C(2′)H, C(6′)H]. 

The 1H NMR spectrum of the crude material indicated that it consisted 18% starting 

material, 3-methyl-3-(3,5-methyl)butanoic acid 35; δH (300 MHz) 1.44 [6H, s, C(5)CH3, 

C(6)H3], 2.64 [2H, s, C(2)H2]. N.B Peaks for C(3′)CH3, C(5′)CH3 were obscured by those 

of the product acid chloride. 
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3.7 Synthesis of diazoketones: 

 

N-Ethyl-N-nitrosourea 328
20 

Aqueous ethylamine (70%, 192.80 g) was placed with water 

(115 mL) in a 1L round bottom flask. Concentrated 

hydrochloric acid (37%, ca. 310 mL) was added slowly until 

the solution was strongly acidic. Water (ca. 204 mL) was then 

added. This was carried out at 0 ○C. Urea (>99.5%, 600 g) was added over 10 min and the 

solution was refluxed gently for 2.5 h and then vigorously for 30 min. The solution was 

then cooled to RT and then sodium nitrite (210 g) was added. Once the sodium nitrite had 

dissolved the solution was cooled to 0○C and added slowly over 50 min to a mechanically 

stirred mixture of conc. sulfuric acid (110 mL) and ice (1.2 kg) cooled at -20 ○C using a 

ice-salt bath. N-Ethyl-N-nitrosourea formed as a foamy, crystalline precipitate, which was 

collected by suction filtration and washed with ice-cooled water (3 × 40 mL) to give a 

pale yellow powder (150 g), which was stored in freezer. 

Caution: N-Ethyl-N-nitrosurea 328 is a carcinogen and should be handled with 

appropriate care.21,22 

Diazoethane 329
20

 

 N-Ethyl-N-nitrosourea 328 (12.30 g, 105 mmol) was added portion wise 

over 30 min to a mixture of diethyl ether (78 mL) and aqueous potassium 

hydroxide (50% w/w, 33.5 mmol) while stirring at -20 °C. Once the 

addition was complete the reaction mixture was stirred for a further 30 min at -20 °C. The 

ethereal solution of diazoethane 329 was then decanted into a 250 mL conical flask 

containing potassium hydroxide pellets, cooled at -20 °C using a salt ice bath and then 

dried over two portions of potassium hydroxide pellets to give a solution of diazoethane 

329 in diethyl ether, which was used without any further purification and freshly prepared 

each time before use. 

Caution! Diazoethane 329 is both toxic and explosive. All operations should be carried 

out in a well ventilated fume-hood with adequate shielding. The glassware used for the 
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generation of diazoethane 329 should have clear-glass joints to minimise the risk of 

explosion. Any items which come in contact with diazoethane 329 should be washed with 

aqueous acetic acid before being removed from fumehood. 

3.7.1 Preparation of internal αααα-diazoketones. 

 

Note: Broadening of the signals for C(4)H2 and C(1)CH3 in the 1H NMR spectrum and 

for C(1)H3 and C(2) in 13C NMR spectrum of the α-diazoketones is evident indicating 

restricted rotation due to extended conjugation. 

2-Diazo-5-methyl-5-phenylhexan-3-one 37
5,10,11 

Distilled 3-methyl-3-phenylbutanoyl chloride 63 (4.41 g, 

22.46 mmol) in diethyl ether (100 mL) was added dropwise 

over ~1 h to an ethereal solution of diazoethane 329 

[prepared from N-ethyl-N-nitrosourea 328 (18.40 g, 157.00 

mmol) while stirring at -20 °C under nitrogen. 

The solution was then allowed to slowly return to room temperature over 3 h, with the 

inert atmosphere removed for the last 0.5 h. The ether and residual diazoethane were 

evaporated under reduced pressure using a safety rotary evaporator with an acetic acid 

trap, resulting in the crude diazoketone as an orange oil (4.10 g), which was then purified 

by flash chromatography on silica gel using (20:80) ethyl acetate-hexane as eluent to give 

pure diazoketone 37 (3.60 g, 74%) as an orange oil. νmax/cm−1 (film) 2965, 2066, 1625, 

1351, 1267, 1054; δH (300 MHz) 1.47 [6H, s, C(5)CH3, C(6)H3], 1.80 [3H, s, C(1)H3], 

2.69 [2H, s, C(4)H2], 7.18-7.37 (5H, m, ArH). 

2-Diazo-5-methyl-5-(4-chlorophenyl)hexan-3-one 39
5,11

 

This was prepared following the procedure outlined for 37, 

from distilled 3-methyl-3-(4-chlorophenyl)butanoyl chloride 

64 (7.02 g, 29.90 mmol) in diethyl ether (100 mL) and an 

ethereal solution of diazoethane 329 [prepared from N-ethyl-

N-nitrosourea 328 (22.46 g, 209.00 mmol)]. 
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Purification by flash chromatography on silica gel using ethyl acetate-hexane (5:95)  as 

eluent gave the pure diazoketone 39 (5.23g, 74%) as an orange oil; νmax/cm−1 (film) 2967, 

2066, 1633, 1360, 1280, 1012; δH (300 MHz) 1.45 [6H, s, C(5)CH3, C(6)H3], 1.82 [3H, s, 

C(1)H3], 2.69 [2H, s, C(4)H2], 7.26-7.33 (4H, m, ArH). 

2-Diazo-5-methyl-5-(4-methylphenyl)hexan-3-one 38
5 

This was prepared following the procedure outlined for 37, 

from crude 3-methyl-3-(4-methylphenyl)butanoyl chloride 66 

(5.81 g, 27.53 mmol) in diethyl ether (100 mL) and an ethereal 

solution of diazoethane 329 [prepared from N-ethyl-N-

nitrosourea 328  (22.45 g, 192.17 mmol)]. 

Purification by flash chromatography on silica gel using ethyl acetate-hexane (20:80)  as 

eluent gave the pure diazoketone 38 (3.45 g, 56%) as an orange oil; νmax/cm−1 (film) 

2966, 2071, 1628; δH (300 MHz) 1.45 [6H, s, C(5)CH3, C(6)H3], 1.82 [3H, s, C(1)H3], 

2.32 [3H, s, C(4)CH3], 2.68 [2H, s, C(4)H2], 7.12 {2H, d, J 8.1, one of [C(2′)H, C(6′)H] 

or [C(3′)H, C(5′)H]}, 7.23 {2H, d, J 8.3, one of [C(2′)H, C(6′)H] or [C(3′)H, C(5′)H]}. 

2-Diazo-5-methyl-5-(4-fluorophenyl)hexan-3-one 40
5,11 

This was prepared following the procedure outlined for 37, 

from distilled 3-methyl-3-(4-fluorophenyl)butanoyl chloride 

65 (1.30 g, 6.06 mmol) in diethyl ether (50 mL) and an 

ethereal solution of diazoethane 329 [prepared from N-ethyl-N-

nitrosourea 328 (4.96 g, 42.42 mmol)]. 

Purification by flash chromatography on silica gel using ethyl acetate-hexane (5:95)  as 

eluent gave the pure diazoketone 40 (0.62 g, 41%) as an orange oil; νmax/cm−1 (film) 

2968, 2074, 1628; δH (400 MHz) 1.46 [6H, s, C(5)CH3, C(6)H3], 1.81 [3H, s, C(1)H3], 

2.68 [2H, s, C(4)H2], 6.96-7.05 {2H, m, one of [C(2′)H, C(6′)H] or [C(3′)H, C(5′)H]}, 

7.29-7.33{2H, m, one of [C(2′)H, C(6′)H] or [C(3′)H, C(5′)H]}. 
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2-Diazo-5-methyl-5-(3,5-dimethylphenyl)hexan-3-one 41 

This was prepared following the procedure outlined for 37, 

from crude 3-methyl-3-(3,5-dimethylphenyl)butanoyl chloride 

67 (3.02 g, 15.45 mmol) in diethyl ether (100 mL) and an 

ethereal solution of diazoethane 329 [prepared from N-ethyl-N-

nitrosourea 328 (22.55 g, 192.17 mmol)]. 

Purification by flash chromatography on silica gel using ethyl acetate-hexane (20:80)  as 

eluent gave the pure diazoketone 41 (2.51 g, 74%) as an orange oil; νmax/cm−1 (film) 

2966, 2064, 1633, 1495, 1360, 1280, 1104; δH (300 MHz) 1.45 [6H, s, C(5)CH3, C(6)H3], 

1.80 [3H, s, C(1)H3], 2.30 [6H, s, C(3′)H3, C(5′)H3], 2.66 [2H, C(4)H2],  6.84 [1H, s, 

C(4′)H], 6.95 [2H, s, C(2′)H, C(6′)H]; δC (75.5 MHz) 8.2 [CH3, br, C(1)H3], 21.5 [CH3, 

C(3′)CH3, C(5′)CH3], 28.5 [CH3, C(5)CH3, C(6)H3], 38.2 [C, C(5)], 50.8 [CH2, (C(4)H2],  

63.7 [C, br, C(2)], 123.4 [CH, C(2′)H, C(6′)H], 127.7 [CH, C(4′)H], 137.5 [C, C(3′), 

C(5′)], 148.0 [C, C(1′)], 193.2 [C, C(3)]. Exact mass calculated for C15H20N2O [(M+H)+], 

245.1654. Found 245.1665 m/z (ES+) 245 [(M+H)+], 100%], 246 (20%), 217 [(M-N2)
+, 

70%], 155 (80%), 75 (50%). 

2-Diazo-5-methyl-5-(3,4,5-trimethylphenyl)hexan-3-one 42
5 

This was prepared following the procedure outlined for 37, 

from crude 3-methyl-3-(3,4,5-trimethylphenyl)-butanoyl 

chloride 68 (4.03 g, 16.71 mmol) in diethyl ether (100 mL) and 

an ethereal solution of diazoethane 329  [prepared from N-

ethyl-N-nitrosourea 328 (13.68 g, 116.90 mmol)]. 

Purification by flash chromatography on silica gel using ethyl acetate-hexane (5:95)  as 

eluent gave the pure diazoketone 42 (2.59 g, 69%) as an orange oil; νmax/cm−1 (film) 

2966, 2070, 1721, 1634, 1445, 1348; δH (300 MHz) 1.43 [6H, s, C(5)CH3, C(6)H3], 1.83 

[3H, s, C(1)H3], 2.14 [3H, s, C(4′)CH3], 2.28 [6H, s, C(3′)CH3, C(5′)CH3], 2.67 [2H, s, 

C(4)CH2], 6.97 [2H, s, C(2′)H, C(6′)H]. 
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3.7.2 Preparation of terminal αααα-diazoketones. 

 

Diazald
®

 330 
23

 

A total of (32.00 g) of p-toluenesulfonyl chloride was divided into 

three portions (19.00 g, 9.00 g, and 4.00 g) and a solution of alkali 

was prepared by dissolving NaOH (7.00 g) in water (7.0 mL). The 

first portion of p-toluenesulfonyl chloride was added with swirling 

over 5 min, to aqueous methylamine (17.40 mL) contained in a 500 mL round bottom 

flask. The mixture was allowed to heat up to 80-90 ºC in order to maintain 

sulfonylmethylamine in a molten condition. As soon as the mixture became acidic, 50% 

NaOH solution (5.0 mL) was added carefully. This was followed by the immediate 

gradual addition of p-toluenesulfonyl chloride (9.00 g). When the mixture again becomes 

acidic, 50% NaOH solution (2.50 mL) was added. This was followed by the final portion 

of p-toluenesulfonyl chloride (4.00 g). After the mixture became acidic, the remainder of 

50% sodium hydroxide solution was added. The mixture was then heated for 15 min, and 

the hot reaction mixture was poured onto glacial acetic acid (150 mL) and the smaller 

flask was rinsed with glacial acetic acid (15.0 mL). The solution was then cooled in an ice 

bath to 0 ºC, and a solution of sodium nitrite (12.40 g) in water (25.0 mL) was added 

dropwise over 45 min. The temperature was kept below 10 ºC upon addition of sodium 

nitrite solution. A yellow solid began to precipitate out of solution. Water (100 mL) was 

added to the mixture and the precipitate was separated and dried by vacuum filtration, to 

give a yellow solid (31.10 g) which was washed with cold water (2 × 10 mL) to remove 

excess acetic acid. 

Diazomethane 331
24

 

Diazald® 330 (N-methyl-N-nitroso-p-toluenesulfonamide) (14.07 g, 65.69 

mmol) in diethyl ether (80 mL) was added dropwise over 30 min to a 

solution of potassium hydroxide (5.31 g, 94.59 mmol) in ethanol (21 mL) and water (5.50 

mL) while stirring at 65-68 ºC. The rate of addition was regulated so that the addition of 

one drop of the solution of Diazald® 330 coincided with the distillation of one drop of 

diazomethane. Once the addition was complete, diethyl ether (20 mL) was added and the 

distillation was continued in until most of the ether had distilled across, to give a solution 

S
N

NO
O
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of diazomethane 331 (2.06 g, 49.00 mmol) in diethyl ether (95 mL) which was freshly 

prepared each time before use. Caution! Diazomethane 331 is highly toxic and explosive. 

The preparation should be carried out in a well ventilated fume-hood with adequate 

shielding. Explosive decomposition of diazomethane 331 can be initiated by sharp 

surfaces thus only glassware with clear glass joints should be used for distillation. Also 

the distillation apparatus should not be exposed to strong sun or artificial light. 

Note: Broadening of signals for C(3)H2 and C(1)H is evident in 1H NMR spectrum and 

for the C(3)H2 and C(1)H signals in the 13C NMR spectrum of the -diazoketones is 

evident indicating restricted rotation due to extended conjugation 

1-Diazo-4-methyl-4-phenylpentan-2-one 43
25

 

(a) Synthesis using Diazald
®

 330 (N-methyl-N-nitroso-p-toluenesulfonamide): 

3-Methyl-3-phenylbutanoyl chloride 63 (1.50 g, 7.63 mmol) in 

diethyl ether (20 mL) was added dropwise over 20 min to the 

diazomethane 331 solution [freshly prepared from Diazald® 

330 (14.07 g, 65.69 mmol) and cooled to -20 ºC using a salt ice 

bath] while stirring under nitrogen. The solution was then allowed to slowly return to 

room temperature while stirring for 4 h. The ether and residual diazomethane were 

evaporated under reduced pressure at room temperature, using a rotary evaporator fitted 

with an acetic acid trap. Purification by flash chromatography on silica gel, using ethyl 

acetate/hexane (10:90) as eluent, gave the pure diazoketone 43 (1.01 g, 65%) as a yellow 

oil. νmax/cm-1 (film) 2965 (CH), 2101 (N2), 1637 (CO), 1361; δH (300 MHz) 1.45 [6H, s, 

C(4)CH3, C(5)H3], 2.60 [2H, s, C(3)H2], 4.66 [1H, s, C(1)H], 7.19-7.26 [1H, m, C(4′)H], 

7.31-7.40 [4H, m, C(2′)H, C(3′)H, C(5′)H, C(6′)H]; δC (75.5 MHz) 28.8 [CH3, C(4)CH3, 

C(5)H3], 37.9 [C, C(4)], 55.2 [CH2, br, C(3)H2], 55.63 [CH, br, C(1)H], 125.6 [CH, 

C(2′)H, C(6′)H], 126.2 [CH, C(4′)H], 128.4 [CH, C(3′)H, C(5′)H], 148.0 [C, C(1′)], 

193.5 [C, C(2)]. Exact mass calculated for C12H14N2O [(M+H)+], 203.1184. Found 

203.1193 m/z (ES+) 551 (30%), 231 (30%),  203 [(M+H)+, 100%], 75 (40%). 
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(b) Synthesis using trimethylsilyldiazomethane:
26

 

A solution of 3-methyl-3-phenylbutanoyl chloride 63 (1.00 g, 5.08 mmol) in THF:CH3CN 

(10 mL, 1:1) was added dropwise to trimethylsilyldiazomethane (5.1 mL, 10.16 mmol, 

2M in hexanes) in THF:CH3CN (10 mL, 1:1) at 0 ºC under nitrogen. The reaction mixture 

was stirred for 4 h, and then concentrated under reduced pressure to give a yellow oil. 

Purification by flash chromatography on silica gel using ethyl acetate-hexane (10:90) as 

eluent, gave the pure diazoketone 43 (0.40 g, 39%) as a yellow oil; νmax/cm-1 (film) 2964 

(CH), 2101 (N2), 1634 (CO), 1360; δH (400 MHz) 1.45 [6H, s, C(4)CH3, C(5)H3], 2.60 

[2H, s, C(3)H2], 4.65 [1H, s, C(1)H], 7.20-7.24 [1H, m, C(4′)H], 7.30-7.40 [C(2′)H, 

C(3′)H, C(5′)H, C(6′)H]; The 1H NMR spectrum of the pure product contained 11% of an 

impurity which could not be removed by flash chromatography. Signals were observed at: 

δH (400 MHz) 1.48 (6H, s), 2.66 (2H, s), 4.68 (1H, s). These signals were also present in 

the 1H NMR spectrum of the crude product. 

1-Diazo-4-methyl-(4-chlorophenyl)-pentan-2-one 45
27

 

(a) Synthesis using Diazald
®

 369 (N-methyl-N-nitroso-p-toluenesulfonamide): 

This was prepared following the procedure described for 

43, from 3-methyl-3-(4-chlorophenyl)-butanoyl chloride 

64 (1.00 g, 4.36 mmol) in diethyl ether (15 mL) and an 

ethereal solution of diazomethane 331 [freshly prepared 

from Diazald® 330 (7.94 g, 37.06 mmol)]. Purification by flash chromatography on silica 

gel, using ethyl acetate/hexane (5:95) as eluent, gave the pure diazoketone 45 (0.78 g, 

77%) as a yellow oil; νmax/cm-1 (film) 2966 (CH), 2101 (N2), 1636 (CO), 1357; δH (300 

MHz) 1.43 [6H, s, C(4)CH3, C(5)H3], 2.57 [2H, s, C(3)H2], 4.76 [1H, s, C(1)H], 7.20-

7.29 (4H, s, ArH); δC (75.5 MHz) 28.9 [CH3, C(4)CH3, C(5)H3], 37.7 [C, C(4)], 54.7 

[CH2, br, C(3)H2], 55.8 [CH, br, C(1)H], 127.2 [CH, C(2′)H, C(6′)H], 128.4 [CH, C(3′)H, 

C(5′)H], 131.9, 146.6 [2 × C, C(1′), C(4′)], 192.9 [C, C(2)]. Exact mass calculated for 

C12H13
35ClN2O [(M+H)+], 237.0795. Found 237.0785. m/z (ES+) 489 (20%), 239 

{[(C12H13
37ClN2O+H]+, 25%}, 237 {[(C12H13

35ClN2O+H]+, 30%}., 149 (30%), 116 

(100%), 117 (8%). 
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(b) Synthesis using trimethylsilyldiazomethane:
26

 

This was prepared following the procedure described for 43, from 3-methyl-3-(4-

chlorophenyl)-butanoyl chloride 64 (2.48 g, 10.59 mmol) in THF:CH3CN (20 mL, 1:1) 

and  trimethylsilyldiazomethane (10.59 mL, 21.18 mmol, 2M in hexanes) in THF:CH3CN 

(20 mL, 1:1). Purification by flash chromatography on silica gel using ethyl acetate-

hexane (10:90) as eluent, gave the pure diazoketone 45 (0.90 g, 36%) as a yellow oil; 

νmax/cm-1 (film) 2965 (CH), 2101 (N2), 1634 (CO), 1362; δH (400 MHz) 1.43 [6H, s, 

C(4)CH3, C(5)H3], 2.57 [2H, s, C(3)H2], 4.76 [1H, s, C(1)H], 7.29 (4H, s, ArH); The 1H 

NMR spectrum of the pure product contained 6 % of an impurity which could not be 

removed by flash chromatography. Signals were observed at: δH (400 MHz) 1.45 (6H, s), 

2.64 (2H, s), 4.80 (1H, s). These signals were also present in the 1H NMR spectrum of the 

crude product. 

1-Diazo-4-methyl-(4-fluorophenyl)-pentan-2-one 46 

This was prepared following the procedure described for 43, 

3-methyl-3-(4-fluorophenyl)-butanoyl chloride 65 (1.36 g, 

6.35 mmol) in diethyl ether (15 mL) and a ethereal solution 

of diazomethane 331 [freshly prepared from Diazald® 330 

(11.71 g, 54.64 mmol)]. Purification by flash chromatography on silica gel, using ethyl 

acetate/hexane (5:95) as eluent, gave the pure diazoketone 46 (0.75 g, 51%) as a yellow 

oil; νmax/cm-1 (film) 2967 (CH), 2103 (N2), 1634 (CO), 1512, 1360; δH (300 MHz) 1.44 

[6H, s, C(4)CH3, C(5)H3], 2.57 [2H, s, C(3)H2], 4.74 [1H, s, C(1)H], 6.98-7.04 (2H, m, 

ArH), 7.31-7.35 (2H, m, ArH); δC (75.5 MHz) 29.1 [CH3, C(4)CH3, C(5)H3], 37.6 [C, 

C(4)], 55.0 [CH2, br, C(3)H2], 55.8 [CH, br, C(1)], 115.0 [CH, 3
JCF 21, C(3′)H, C(5′)H], 

127.2 [CH, 3
JCF 8, C(2′)H, C(6′)H], 143.7 [C, C(1′)], 161.1 [C, d, 1

JCF 245, C(4′)], 193.2 

[C, C(2)]. Exact mass calculated for C12H13FN2O [(M+H)+], 221.1090. Found 221.1090 

m/z (ES+) 221 [(M+H)+], 100%], 217 (40%), 203 (35%), 175 (30%), 75 (60%). 

1-Diazo-4-methyl-(4-methylphenyl)-pentan-2-one 44 

This was prepared following the procedure described for 43, 

crude 3-methyl-3-(4-methylphenyl)-butanoyl chloride 66 
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(1.15 g, 5.48 mmol) in diethyl ether (20 mL) and an ethereal solution of diazomethane 

331 [freshly prepared from Diazald® 330 (9.97 g, 46.54 mmol)]. Purification by flash 

chromatography on silica gel, using ethyl acetate/hexane (5:95) as eluent, gave the pure 

diazoketone 44 (0.57 g, 50%) as a yellow oil; νmax/cm-1 (film) 2965 (CH), 2101 (N2), 

1636 (CO), 1357; δH (300 MHz) 1.42 [6H, s, C(4)CH3, C(5)H3], 2.32 [3H, s, C(4′)CH3], 

2.58 [2H, s, C(3)H2], 4.68 [1H, s, C(1)H], 7.13 (2H, d, J 8.1, ArH), 7.23-7.27 (2H, m, 

ArH); δC (75.5 MHz) 20.9 [CH3, C(4′)CH3], 29.0 [CH3, C(4)CH3, C(5)H3], 37.6 [C, 

C(4)], 55.3 [CH2, br, C(3)H2], 55.5 [CH, br,  C(1)H], 125.5 [CH, C(2′)H, C(6′)H or 

C(3′)H, C(5′)H], 129.0 [CH, C(3′)H, C(5′)H or C(2′)H, C(6′)H ], 135.6, 145.0 [2 × C, 

C(1′), C(4′)CH3], 193.6 [C, C(2)]. Exact mass calculated for C13H16N2O [(M+H)+], 

217.1341. Found 217.1350.  m/z (ES+) 433 (60%), 218 (35%), 217 [(M+H)+, 100%], 149 

(5%), 116 (20%). 

1-Diazo-4-methyl-(3,5-dimethylphenyl)-pentan-2-one 47 

This was prepared following the procedure described for 43, 

crude 3-methyl-3-(3,5-dimethylphenyl)-butanoyl chloride 67 

(1.00 g, 4.45 mmol) in diethyl ether (15 mL) and an ethereal 

solution of diazomethane 331 [freshly prepared from 

Diazald® 330 (8.46 g, 39.43 mmol)]. Purification by flash chromatography on silica gel, 

using ethyl acetate/hexane (5:95) as eluent, gave the pure diazoketone 47 (0.58 g, 56%) as 

a light orange oil; νmax/cm-1 (film) 2966 (CH), 2101 (N2), 1634 (CO), 1358; δH (300 MHz) 

1.41 [6H, s, C(4)CH3, C(5)H3], 2.31 [6H, s, C(3′)H3, C(5′)H3], 2.57 [2H, s, C(3)H2], 4.72 

[1H, s, C(1)H], 6.85 [1H, s, C(4′)H], 6.97 [2H, s, C(3′)(CH3), C(5′)(CH3)]; δC (75.5 MHz) 

21.6 [CH3, C(3′)H3, C(5′)H3], 28.9 [CH3, C(4)CH3, C(5)H3], 37.7 [C, C(4)], 55.2 [CH2, 

br, C(3)H2], 55.6 [CH, br, C(1)H], 123.5 [CH, C(2′)H, C(6′)H], 127.8 [CH, C(4′)H], 

137.6 [C, C(3′)H3, C(5′)H3], 148.0 [C, C(1′)], 193.7 [C, C(2)]. Exact mass calculated for 

C14H18N2O [(M+H)+], 231.1497. Found 231.1492.  m/z (ES+) 433 (70%), 232 (65%), 231 

[(M+H)+], 100%], 75 (25%). 
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1-Diazo-4-methyl-(3,4,5-trimethylphenyl)-pentan-2-one 48 

This was prepared following the procedure described for 

43, crude 3-methyl-3-(3,4,5-trimethylphenyl)-butanoyl 

chloride 68 (1.36 g, 6.35 mmol) in diethyl ether (15 mL) 

and an ethereal solution of diazomethane 331 [freshly 

prepared from Diazald® 330 (7.93 g, 37.06 mmol)]. 

Purification by flash chromatography on silica gel, using ethyl acetate/hexane (5:95) as 

eluent, gave the pure diazoketone 48 (0.75 g, 51%) as a light orange oil; νmax/cm-1 (film) 

2966 (CH), 2100 (N2), 1636 (CO), 1358, 1173; δH (600 MHz) 1.40 [6H, s, C(5)CH3, 

C(6)H3], 2.14 [3H, s, C(4′)H3], 2.29 [6H, s, C(3′)H3, C(5′)H3], 2.58 [2H, s, C(3)H2], 4.74 

[1H, s, C(1)H], 7.00 (2H, s, ArH); δC (150 MHz) 15.1 [CH3, C(4′)CH3], 20.9 [CH3, 

C(3′)CH3, C(5′)CH3], 28.9 [CH3, C(5)CH3, C(6)H3], 37.4 [C, C(4)], 55.2 [CH2, C(3)H2], 

55.6 [CH, C(1)H], 124.8 [CH, C(2′)H, C(6′)H], 132.8 [C, C(1′) or C(4′)], 136.2 [C, C(3′), 

C(5′)], 144.8 [C, C(1′) or C(4′)], 193.9 [C, C(2′)]. Exact mass calculated for C15H20N2O 

[(M+H)+], 245.1654. Found 245.1653.  m/z (ES+) 461 (20%), 245 [(M+H)+, 100%], 246 

(20%), 217 [(M-N2)
+, 10%], 75 (25%). 

3.8 Preparation of azulenones 

3.8.1 General procedure for the preparation of catalysts 
 

Sodium tetrakis[3,5-bis(trifluromethyl)phenyl]borate 168 

(a) Synthesis using Brookhart’s
28

 modification of Kobayashi’s procedure
29

 

3, 5-Bis(trifluromethyl)bromobenzene (5.00 g, 17.10 

mmol) in diethyl ether (25 mL) was added dropwise 

over 2 h to magnesium turnings (0.51 g, 21.00 

mmol) in diethyl ether (15 mL) while stirring under 

nitrogen. The light yellow coloured solution was 

then heated under reflux for 30 min resulting in a dark grey solution of the aryl Grignard 

reagent. Upon addition of sodium tetrafluoroborate (0.41 g, 3.70 mmol) via a solid 

addition funnel, the heterogeneous reaction mixture was stirred for 48 h at room 

temperature under nitrogen, after which time the solution became dark brown in colour. 
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The reaction mixture was then added to sodium carbonate (7.50 g, 70.76 mmol) in water 

(100 mL) and stirred for 40 min. The layers were separated and the aqueous layer was 

extracted with diethyl ether (3 × 50 mL). The combined organic layers were then 

extracted with water (100 mL), dried and treated with decolourising charcoal. The 

solution was then filtered and concentrated under reduced pressure to give the crude 

product as a brown oil. The product was dried under vacuum for 48 h at 100 ºC at 0.1 

mmHg to give NaBARF* 168 as tan solid (2.43 g, 16%);  νmax/cm-1 (film) 3712, 1631, 

1359, 1284, 1144; δH (300 MHz) 7.54 [4H, s, C(4)H], 7.69 [8H, br s (with fine splitting), 

J 2.3, C(2)H, C(6)H]. 

Caution! There have been reported detonations associated with the preparation of 

trifluoromethylphenyl Grignard reagents.30-37 Detonations may be attributed to loss of 

contact with solvent, runaway exothermic side reactions and potentially the presence of a 

highly activated form of magnesium.  

(b) Synthesis using commercially available iso-propyl-magnesium chloride
38

 (preferred 

procedure) 

A solution of iso-propyl-magnesium chloride (18.86 mL, 38.83 mmol, 2.0 M in THF) was 

added dropwise over 45 min to a stirred solution of 1-bromo-3,5-

bis(trifluoromethyl)benzene (5.88 mL, 34.13 mmol) in THF (30 mL) chilled to -20ºC 

while stirring under nitrogen. After the reaction mixture was warmed from -20ºC to 0 ºC 

over 1 h, sodium tetrafluoroborate (0.65 g, 5.88 mmol) was quickly added as a solid while 

stirring under nitrogen. The mixture then was stirred for 48 h at room temperature under 

nitrogen. The contents were then poured onto a solution of sodium carbonate (10.62 g, 

100.19 mmol) and sodium bicarbonate (4.83 g, 126.41 mmol) in water (150 mL). This 

mixture was stirred vigorously for 1 h and then extracted with diethyl ether (4 × 75 mL). 

The combined organic layers were then washed with brine and dried. After filtration of 

the mixture and concentration under reduced pressure, the crude product was dried under 

vacuum for 48 h, 100 ºC at 0.1 mmHg to yield a tan yellow solid. The solid was washed 

with dichloromethane chilled to -30 ºC (3 × 10 mL) to yield a fine yellow powder which 

was recrystallised from hot fluorobenzene to give NaBARF* 168 (10.13 g, 34%) as a 

white powder; m.p. 297-300 ºC (Lit.,38 300-302 ºC) νmax/cm-1 (film) 3716, 3647, 1631, 
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1360, 1285, 1144; δH [300 MHz, (CD3)2CO] 2.84 [H2O],  7.67 [4H, s, C(4)H], 7.79 [8H, 

br s (with fine splitting), J 2.4, C(2)H, C(6)H]. 

*When the copper catalysed transformations were undertaken, NaBARF was calculated 

as its anhydrous form (6 mol %). In retrospect it is recognised that this material is 

hydroscopic and therefore it is likely that the NaBARF employed was either partially or 

fully hydrated, therefore the amount added was slightly less than that calculated. 

Furthermore, the degree of hydration may have changed over time with older samples 

likely to have been more hydrated. The yield was calculated for NaBARF in its 

anhydrous form. 

Bergman38 describes NaBARF as 2.6 H2O, prepared as described above. 

Note: All catalyst complexes were prepared using one of the four general procedures 

outlined below. 

Method A: Aromatic addition reaction catalysed by dirhodium tetraacetate 

[Rh2(OAc)4] 87 

A three necked round-bottom flask with a condenser 

and pressure equalising addition funnel was first flame 

dried under nitrogen. The set-up was attached to the 

vacuum/inert gas manifold via flexible tubing. Doubly 

distilled dichloromethane (80 mL) was added to the 

flask. The Schlenck line stopcock was opened. The 

vacuum/inert gas manifold was opened to vacuum for 

20 s. The vacuum/inert gas manifold was then opened to nitrogen and the round-bottom 

flask filled with nitrogen. This was repeated three times. Rh2(OAc)4 87 (0.5 mg, <1 

mol%) was then added to the solvent and once again the system was evacuated and 

refilled with nitrogen as before. The solution of diazoketone (1 mmol) in doubly distilled 

dichloromethane (80 mL) was added to the pressure equalising addition funnel and once 

more the system was evacuated and back filled with nitrogen (three times). Once these 

steps have been carried out the solvent was brought to reflux and the diazoketone was 

added dropwise over 1 h. The reaction was found to be complete by TLC once all the 

diazoketone was added. 

Rh

Rh

O

O

CH3

CH3

O

O

H3C

O

O

O

O

CH3
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Method B: Aromatic addition reaction catalysed by [Cu(II)-(R)-2,2′′′′-isopropylidene-

bis(4-phenyl-2-oxazoline)]
2+ 

(PF6
−
)2 (CuPF6-75)

5
 

A three necked round-bottom flask with a condenser 

and pressure equalising addition funnel was first 

flame dried under nitrogen. The set-up is attached to 

the vacuum/inert gas manifold via flexible tubing. 

Doubly distilled dichloromethane (80 mL) was 

added to the flask. The Schlenck line stopcock was opened. The vacuum/inert gas 

manifold was opened to vacuum for 20 s. The vacuum/inert gas manifold was then 

opened to nitrogen and the round-bottom flask filled with nitrogen. This was repeated 

three times. (R)-(+)-2,2'-Isopropylidene-bis(4-phenyl-2-oxazoline) (18.6 mg, 0.06 mmol) 

75 and [Cu(CH3CN)4]PF6
1

 (20.6 mg, 0.08 mmol) were  then added to the solvent and 

once again the system was evacuated and refilled with nitrogen (3 times) as before. The 

solution was stirred for 10 min at room temperature. The solution of diazoketone (1.00 

mmol) in doubly distilled dichloromethane (80 mL) was added to the pressure equalising 

addition funnel and once more the system was evacuated and back filled with nitrogen 

(three times). Once these steps have been carried out the solvent was brought to reflux 

and the diazoketone added dropwise over 1 h. The reaction was found to be complete by 

TLC once all the diazoketone was added. 

Method C: Aromatic addition reaction catalysed by [Cu(II)-(R)-2,2′′′′-isopropylidene-

bis(4-phenyl-2-oxazoline)]
+ 

(NaBARF) [Cu(I)Cl-NaBARF-75]  

A three necked round-bottom flask with a condenser 

and pressure equalising addition funnel was first 

flame dried under nitrogen. The set-up was attached 

to the vacuum/inert gas manifold via flexible tubing. 

Doubly distilled dichloromethane (80 mL) was 

added to the flask. The Schlenck line stopcock was 

opened. The vacuum/inert gas manifold was opened to vacuum for 20 s. The 

vacuum/inert gas manifold was then opened to nitrogen and the round-bottom flask filled 

with nitrogen. This was repeated three times. (R)-(+)-2,2'-Isopropylidene-bis(4-phenyl-2-

oxazoline) 75 (20.0 mg, 0.06 mmol), Cu(I)Cl (5.0 mg, 0.05 mmol) and NaBARF* 168 

O

N N

O

PhPh

2 x PF6
-

O

N N

O

PhPh

BARF-
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(53.2 mg, 0.06 mmol) were  then added to the solvent and once again the system was 

evacuated and refilled with nitrogen (3 times) as before. The solution was stirred for 2 h 

at room temperature under an atmosphere of nitrogen. The solution of diazoketone (1.00 

mmol) in doubly distilled dichloromethane (80 mL) was added to the pressure equalising 

addition funnel and once more the system was evacuated and back filled with nitrogen 

(three times). Once these steps have been carried out the solvent was brought to reflux 

and the diazoketone was added dropwise over 2 h. Heating was continued while stirring 

under reflux for an additional 1 h, at which point the reaction was found to be complete 

by TLC. 

Note: In the 1H NMR spectrum of the crude reaction mixture of all reactions containing 

NaBARF 168, signals were present at δH 7.46 (s) and 7.64 (s) indicating the presence of 

BARF in the crude reaction. These peaks were not included in reaction efficiency 

calculations. 

Method D: Aromatic addition reaction catalysed by [Cu(II)-(R)-2,2′′′′-isopropylidene-

bis(4-phenyl-2-oxazoline)]
+ 

(Cl
-
)2 [Cu(I)Cl-75] 

A three necked round-bottom flask with a condenser 

and pressure equalising addition funnel was first 

flame dried under nitrogen. The set-up was attached 

to the vacuum/inert gas manifold via flexible tubing. 

Doubly distilled dichloromethane (80 mL) was 

added to the flask. The Schlenck line stopcock was opened. The vacuum/inert gas 

manifold was opened to vacuum for 20 s. The vacuum/inert gas manifold was then 

opened to nitrogen and the round-bottom flask filled with nitrogen. This was repeated 

three times. (R)-(+)-2,2'-Isopropylidene-bis(4-phenyl-2-oxazoline) 75 (20.0 mg, 0.06 

mmol), Cu(I)Cl (5.0 mg, 0.05 mmol) were  then added to the solvent and once again the 

system was evacuated and refilled with nitrogen (3 times) as before. The solution was 

stirred for 2 h at room temperature under an atmosphere of nitrogen. The solution of 

diazoketone (1.00 mmol) in doubly distilled dichloromethane (80 mL) was added to the 

pressure equalising addition funnel and once more the system was evacuated and back 

filled with nitrogen (three times). Once these steps have been carried out the solvent was 

brought to reflux and the diazoketone was added dropwise over 2 h. Heating was 

O

N N

O

PhPh

2 x Cl-
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continued while stirring under reflux. The reaction was monitored by TLC and found to 

be complete after 18 h. 

Method D is identical to Method C but for the absence of NaBARF and a longer reaction 

time of 18 h. 

Method E: Aromatic addition reaction catalysed by [Cu(II)-(R)-2,2′′′′-isopropylidene-

bis(4-phenyl-2-oxazoline)]
+ 

(NaBARF) (18-crown-6) [Cu(I)Cl-NaBARF-75-(18-

crown-6)]  

A three necked round-bottom flask with a condenser 

and pressure equalising addition funnel was first 

flame dried under nitrogen. The set-up was attached 

to the vacuum/inert gas manifold via flexible tubing. 

Doubly distilled dichloromethane (80 mL) was 

added to the flask. The Schlenck line stopcock was opened. The vacuum/inert gas 

manifold was opened to vacuum for 20 s. The vacuum/inert gas manifold was then 

opened to nitrogen and the round-bottom flask filled with nitrogen. This was repeated 

three times. (R)-(+)-2,2'-Isopropylidene-bis(4-phenyl-2-oxazoline) 75 (8.0 mg, 0.06 

mmol), Cu(I)Cl (2.0 mg, 0.05 mmol), NaBARF* 168 (21.2 mg, 0.06 mmol) and 18-

crown-6 (6.32 mg, 0.06 mmol) were  then added to the solvent and once again the system 

was evacuated and refilled with nitrogen (3 times) as before. The solution was stirred for 

2 h at room temperature under an atmosphere of nitrogen. The solution of diazoketone 

(1.00 mmol) in doubly distilled dichloromethane (80 mL) was added to the pressure 

equalising addition funnel and once more the system was evacuated and back filled with 

nitrogen (three times). Once these steps have been carried out the solvent was brought to 

reflux and the diazoketone was added dropwise over 2 h. Heating was continued while 

stirring under reflux. The reaction was monitored by TLC and found to be complete after 

18 h. 

Note: In the 1H NMR spectrum of the crude reaction mixture of all reactions containing 

NaBARF 168, signals were present at δH 7.46 (s) and 7.64 (s) indicating the presence of 

BARF in the crude reaction. These peaks were not included in reaction efficiency 

calculations. 
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Figure 3.1 Copper catalysts and ligand structures 

     

 

 75 [(R,R)-Ph-Box]             74 [(S,S)-t-Bu-Box]  89 [(4R,5S)-tetra-Ph-Box] 

             

 

   

 

91 [(R,R)-Bn-Box]      93 [S,S-3,5-di-Me-Ph-Box] 
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3.8.2 Transition metal catalysed cyclisation of internal αααα-diazoketones: 

 

 

 

 

 

 

 

Numbering scheme for azulenones 

 

Efficiency refers to the % azulenone formed relative to aromatic by-products and is 

determined from the 1H NMR spectrum of the crude reaction product.  

Provided azulenones (except for azulenones 92 and 97) are purified and stored in a 

freezer at -20 ºC, they are stable over long periods without degradation. Partial 

degradation was seen for azulenone 97 at room temperature over 12 h, or storage in a 

freezer at -20 ºC over a long period of time. Azulenone 92 was observed to decompose to 

a yellow oil at room temperature over 1 h, or storage in a freezer at -20 ºC over a long 

period of time. 

 The absolute stereochemistry of azulenones 92 and 97 was established through X-

ray diffraction on the analogous PTAD adducts 163 and 164 demonstrating that the use of 

the [(R,R)-Ph-Box]-75 ligand leads to the 3aS enantiomer of azulenones 92 and 97. By 

analogy, it is assumed that the direction of asymmetric induction in the formation of the 

remaining azulenones is similar, although this has not been established. The use of the 

[(S,S)-t-Bu-Box]-74 ligand leads to the opposite enantiomeric series, as evident by 

specific rotations. 
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3,8a-Dihydro-3,3,8a-trimethylazulen-1(2H)-one 89
5,10,11 

(a) Preparation of azulenone 89 

This was prepared following the procedure 

described for Method A, from 2-diazo-5-

methyl-5-phenylhexan-3-one 37  (500 mg, 

2.17 mmol) in dichloromethane (80 mL) and 

Rh2(OAc)4 87 (0.5 mg, < 1 mol%) in dichloromethane (80 mL). A 1H NMR spectrum of 

the crude reaction mixture estimated the efficiency of the reaction as 85%. Purification by 

flash chromatography, using ethyl acetate/hexane (15:85) as eluent, gave the azulenone 

89 (310 mg, 72%) as a pale yellow oil; νmax/cm−1 (film) 3042, 2923, 1747  (CO), 1716  

(CO); δH (300 MHz) 0.75 [3H, s, C(8a)CH3], 1.14, 1.31 [2 × 3H, 2 × s, C(3)(CH3)2], 2.20 

[1H, A of AB, JAB 17.4, one of C(2)H2], 2.28 [1H, B of AB, JAB 17.4, one of C(2)H2], 

4.16 [1H, d, J 8.1, C(8)H], 6.07-6.14 [1H, m, C(7)H], 6.24-6.41 [2H, m, C(4)H, C(5)H, 

C(6)H]. 

(b) Effect of catalyst on the decomposition of diazoketone 37 

Table 3.1 Effect of  catalyst on the cyclisation of diazoketone 37 

Entry Catalyst Method 
Time 
(h)a 

Eff 
(%)b 

Yield 
(%)c 

ee 
(%)d 

1 Rh2(OAc)4 87 A 1 85 72 - 

2 CuPF6-75[(R,R)-Ph-Box]e B 1 79 74 78l 

3 CuPF6-89[(4R,5S)-tetra-Ph-
Box]e 

B 1 87 58 68l 

4 CuCl-75[(R,R)-Ph-Box]f,g D 2 37 31 37l 

5 CuCl-NaBARF-75[(R,R)-Ph-
Box]h 

C 2 72 52 78l,n 

6 CuCl-NaBARF-74[(S,S)-t-Bu-
Box]h,i 

C 2 60 48 24m 

7 CuCl-NaBARF-89[(4R,5S)-
tetra-Ph-Box]h 

C 2 71 52 73l 
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8 CuCl-NaBARF-91[(R,R)-Bn-
Box]h 

C 2 70 54 27l 

9 CuPF6-93[(S,S)-3,5-di-Me-
C6H3-Box]e 

B 1 85 69 68m 

10 CuCl-NaPF6-75[(R,R)-Ph-
Box]j 

C 2 72 65 78l 

11 CuCl-NaBARF-75[(R,R)-Ph-
Box]-18- Crown-6k 

E 2 50 46 39l 

a. Number of hours over which diazoketone was added.  
b. Efficiency refers to the percentage azulenone formed relative to aromatic by-products and is determined from the 1H 
NMR spectrum of the crude product. 
c. Yield of isolated product after flash chromatography. 
d. Determined by chiral 1H NMR spectroscopy using (+)-Eu(hfc)3 as chiral shift reagent. 
e. The catalyst was prepared from 1.3:1 molar mixture of ligand: Cu(CH3CN)4PF6. 
f. The catalyst was prepared from 1.3:1 molar mixture of ligand: CuCl.  
g. The 1H NMR spectrum of the crude reaction mixture contained a mixture of impurities (20%). Signals were observed at 
δH (300 MHz): 1.34-1.36 (3H, m), 1.45-1.47 (8H, m), 1.61-1.69 (8H, m), 2.91 (1H, A of AB, JAB 15.9), 3.10 (1H, B of AB, 
JAB 15.6), 4.70 (1H, t, J 8.9), 5.24-5.27 (1H, m). 
h. The catalyst was prepared from 5 mol% CuCl, 6 mol% ligand and 6 mol% NaBARF. Catalyst was stirred for 2 h at 20oC  
before substrate was added. 
i. The 1H NMR spectrum of the crude reaction mixture contained starting material 37 (10%). 
j. The catalyst was prepared from 5 mol% CuCl, 6 mol% ligand and 6 mol% NaPF6. Catalyst was stirred for 2 h at 20oC  
before substrate was added. 
k. The catalyst was prepared from 5 mol% CuCl, 6 mol% ligand, 6 mol% NaBARF and 6 mol% 18-crown-6. Catalyst was 
stirred for 2 h at 20oC before substrate was added. 
l. Major Enantiomer = (−). 
m. Major Enantiomer = (+). 

n. Specific Rotation:
20][ Dα  −15.22 [c 1.85, CH2Cl2] 
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(c) Conditions for resolution of the enantiomers of azulenone 89 {CuPF6-75[(R,R)-Ph-

Box]} by 
1
H NMR analysis 

Table 3.2 Position of signals with varying amounts of (+)-Eu(hfc)3 added to ~5 mg of 

azulenone 89 in 0.5 mL of CDCl3 

E
nt

ry
 

Quantity 
of 
Eu(hfc)3 
added 

C
(8

a)
C

H
3 

2 
× 

C
(3

)C
H

3 

C
(2

)H
2 

C
(8

)H
 

C
(7

)H
 

C
(4

)H
, 

C
(5

)H
, 

C
(6

)H
 

1 0 mg 0.75, 
s 

a.1.14, s 

b. 1.31, s 

2.20,d 

2.28,d 

4.14, d 6.08-6.13, 
m 

6.24-6.41, 
m 

 

2 5.5mg 1.14, 
s 

a. 1.50, s 

b. 1.66, s 

    1.68,s 

3.21,d 

3.34,d 

4.75, d 

4.78, d 

6.32-6.38, 
m 

6.47-6.61, 
m 

3 11.5mg 1.36, 
s 

a.1.46, s 

b. 1.64, s
b
 

1.67, sc
 

3.17,d 

3.30,d 

 4.72, d 

 4.74, d 

6.31-6.37, 
m 

6.47-6.64,  
m 

a. The relative integration of the highlighted signals was used to estimate the %ee. 
b. Signal due to the dextrorotatory (+) enantiomer. 
c. Signal due to the levorotatory (-) enantiomer 

 

See Appendix 2 for stack plots of azuleone 89. 

Note: Treatment of azulenone 89 with (+)-Eu(hfc)3 as a chiral shift reagent resulted in the 

resolution of not only the C(3)(CH3)2 signals of the enantiomers but also the resolution of 

the C(2)H2 AB system. In some instances, enantioselectivities were calculated by 

integration of the C(2)H2 signals. 
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3,8a-Dihydro-6-chloro-3,3,8a-trimethylazulen-1(2H)-one 95
5,39 

(a) Preparation of azulenone 95 

This was prepared following the 

procedure described for Method A, 

from 2-diazo-5-methyl-5-(4-

chlorophenyl)-hexan-3-one 39 (250 mg, 

0.99 mmol) in dichloromethane (80 

mL) and Rh2(OAc)4 87 (0.5 mg, < 1 mol%) in dichloromethane (80 mL). A 1H NMR 

spectrum of the crude reaction mixture estimated the efficiency of the reaction as 85%. 

Purification by flash chromatography, using ethyl acetate/hexane (3:97) as eluent, gave 

the azulenone 95 (180 mg, 75%) as a pale yellow oil; νmax/cm−1 (film) 2961, 2925, 1749  

(CO), 1715  (CO); δH (300 MHz)* 0.86 [3H, s, C(8a)CH3], 1.14, 1.33 [2 × 3H, 2 × s, 

C(3)(CH3)2], 2.22 [1H, A of AB, JAB 17.4, one of C(2)H2], 2.39 [1H, B of AB, JAB 17.4, 

one of C(2)H2], 4.54 [1H, d, J 9.0, C(8)H], 6.14 [1H, dd, J 8.7, 0.9, C(7)H], 6.23 [1H, d, J 

8.1, C(4)H], 6.52 [1H, dd, J 8.1, 1.5, C(5)H]. 

*The 1H NMR spectrum of the pure product contained an impurity (9%) which is 

possibly an isomer of azulenone 95. Signals were observed at: δH (300 MHz) 0.88, 1.18, 

1.35 (3 × 3H, 3 × s), 2.25 (1H, A of AB, JAB 17.3), 2.43 (1H, B of AB, JAB 17.4), 4.71 

(1H, d, J 9.0). The signals were also present in the 1H NMR spectrum of the crude 

product. This isomer was seen in all entries in Table 3.4, but did not affect estimation of 

the enantioselectivities.  
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(b) Effect of catalyst on enantioselectivity of the decomposition of diazoketone 39 

Table 3.4 Effect of catalyst on cyclisation of diazoketone 39 

Entry Catalyst Method 
Time 
(h)a 

Eff 
(%)b 

Yield 
(%)c 

ee 
(%)d 

1 Rh2(OAc)487 A 1 85 75 - 

2 CuPF6-75[(R,R)-Ph-Box]e,f B 1 73 63 62s 

3 CuPF6-74[(S,S)-t-Bu-Box]e B 1 89 46 11s,y 

4 CuCl-75[(R,R)-Ph-Box]g,h D 2 66 49 0 

5 
CuCl-NaBARF-75[(R,R)-Ph-

Box]i 
C 2 65 54 78s,u 

6 
CuCl-NaBARF-74[(S,S)-t-Bu-

Box]i,j 
C 2 47 35 23t 

7 
CuCl-NaBARF-89[(4R,5S)-

tetra-Ph-Box]i 
C 2 62 44 68s 

8 
CuCl-NaBARF-91[(R,R)-Bn-

Box]i 
C 2 66 47 24s 

9 
CuPF6-93[(S,S)-3,5-di-Me-C6H3-

Box]e 
B 1 80 68 71t 

10 CuCl-NaPF6-75[(R,R)-Ph-Box]k C 2 62 56 73s,v 

11 
CuPF6-NaBARF-75[(R,R)-Ph-

Box]l 
C 2 67 43 72s,w 

12 
CuOTf-NaBARF-75[(R,R)-Ph-

Box]m 
C 2 74 56 77s,x 

13 CuCl-NaI-75[(R,R)-Ph-Box]n D 2 58 44 0 

14 CuCl-NaCl-75[(R,R)-Ph-Box]o D 2 43 38 0 

15 CuCl-LiPF6-75[(R,R)-Ph-Box]p C 2 73 66 54s 

16 CuCl-NaBARF-75[(R,R)-Ph- E 2 51 47 0 
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Box]-18-Crown-6q 

17 
CuCl-KBARF-75[(R,R)-Ph-

Box]r 
C 2 72 65 63s 

a. Number of hours over which diazoketone was added.  
b. Efficiency refers to the percentage azulenone formed relative to aromatic by-products and is determined from the 1H 
NMR spectrum of the crude product. 
c. Yield of isolated product after flash chromatography. 
d. Determined by  chiral 1H NMR spectroscopy using (+)-Eu(hfc)3 as chiral shift reagent. 
e. The catalyst was prepared from 1.3:1 molar mixture of ligand: Cu(CH3CN)4PF6. 
f. The 1H NMR spectrum of the crude reaction mixture contained the diketone 107 (7%). 
g. The catalyst was prepared from 1.3:1 molar mixture of ligand: CuCl.  
h. The 1H NMR spectrum of the crude reaction mixture contained the diketone 107 (5%). 
i. The catalyst was prepared from 5 mol% CuCl, 6 mol% ligand and 6 mol% NaBARF. Catalyst was stirred for 2 h at 20oC  
before substrate was added. 
j. The 1H NMR spectrum of the crude reaction mixture contained the diketone 107 (6%) and starting diazoketone 39 (18%). 
k. The catalyst was prepared from 5 mol% CuCl, 6 mol% ligand and 6 mol% NaPF6. Catalyst was stirred for 2 h at 20oC  
before substrate was added. 
l. The catalyst was prepared from 5 mol% CuPF6, 6 mol% ligand and 6 mol% NaBARF. Catalyst was stirred for 2 h at 20oC  
before substrate was added. The 1H NMR spectrum of the crude reaction mixture contained the diketone 107 (4%) 
m. The catalyst was prepared from 5 mol% CuOTf, 6 mol% ligand and 6 mol% NaBARF. Catalyst was stirred for 2 h at 
20oC  before substrate was added. The 1H NMR spectrum of the crude reaction mixture contained the diketone 107 (3%). 
n. The catalyst was prepared from 5 mol% CuCl, 6 mol% ligand and 6 mol% NaI. Catalyst was stirred for 2 h at 20oC  
before substrate was added. The 1H NMR spectrum of the crude reaction mixture contained the diketone 107 (12%). 
o. The catalyst was prepared from 5 mol% CuCl, 6 mol% ligand and 6mol% NaCl. Catalyst was stirred for 2 h at 20oC  
before substrate was added. The 1H NMR spectrum of the crude reaction mixture contained the diketone 107 (15%). 
p. The catalyst was prepared from 5 mol% CuCl, 6 mol% ligand and 6 mol% LiPF6. Catalyst was stirred for 2 h at 20oC  
before substrate was added. The 1H NMR spectrum of the crude reaction mixture contained the diketone 107 (7%). 
q. The catalyst was prepared from 5 mol% CuCl, 6 mol% ligand, 6 mol% NaBARF and 6 mol% 18-crown-6. Catalyst was 
stirred for 2 h at 20oC before substrate was added. 
r. The catalyst was prepared from 5 mol% CuCl, 6 mol% ligand and 6 mol% KBARF. Catalyst was stirred for 2 h at 20oC  
before substrate was added. The 1H NMR spectrum of the crude reaction mixture contained the diketone 107 (4%). 
s. Major Enantiomer = (−). 
t. Major Enantiomer = (+). 

u. Specific Rotation:
20][ Dα  −26.19 [c 1.85, CH2Cl2]. 

v. Specific Rotation:
20][ Dα  −23.86 [c 0.66, CH2Cl2]. 

w. Specific Rotation:
20][ Dα  −22.29 [c 0.16, CH2Cl2]. 

x. Specific Rotation:
20][ Dα  −21.50 [c 0.20, CH2Cl2]. 

y. Low yield due to another fraction containing azulenone being impure. 
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(c) Conditions for resolution of the enantiomers of azulenone {CuPF6-75[(R,R)-Ph-Box]} 

95 by 
1
H NMR analysis 

Table 3.5 Position of signals with varying amounts of (+)-Eu(hfc)3 added to ~5 mg of  

azulenone 95 in 0.5 mL of CDCl3 

E
nt

ry
 

Quantity 
of 
Eu(hfc)3 
added 

C
(8

a)
C

H
3 

C
(3

)C
H

3 

C
(3

)C
H

3 

C
(2

)H
2 

C
(8

)H
 

C
(4

)H
, 

C
(5

)H
, 

C
(7

)H
 

1 0 mg 0.86, s 1.14, s 1.33, s 
2.21, d 

2.39, d 
4.54, d 

6.14, dd 

6.23, d 

6.51, dd 

2 7 mg 

 

1.26, s 

 

1.26, s 
1.51 s 

1.52, s 
2.28-2.96, m 

 

4.90, d 

 

6.26, dd 

6.38, d 

6.62, dd 

3 11 mg 1.26, s 1.26, s 
1.51s 

1.52, s 
2.73-2.99, m 

4.89, d 

4.95, d 

6.27, dd 

6.38, d 

6.62, dd 

4 13 mg 1.32, s 

 

1.44, s 

 

1.59, s
b
 

1.60, s
c
 

2.97-3.25, m 
5.04-
5.09, m 

6.31-6.35, m 

6.44-6.51, m 

6.66, dd 

a. The relative integration of the highlighted signals was used to estimate the %ee. 
b. Signal due to the dextrorotatory (+) enantiomer. 
c. Signal due to the levorotatory (−) enantiomer. 

 

Note: Treatment of azulenone 95 with (+)-Eu(hfc)3 as a chiral shift reagent resulted in the 

resolution of not only the C(3)(CH3)2 signals of the enantiomers but also the resolution of 

the C(2)H2 AB system. In some instances, enantioselectivities were calculated by 

integration of the C(2)H2 signals. 
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(d) Effect of catalyst complexation times on the enantioselectivity of the decomposition of 

diazoketone 39 

Table 3.6 Effect of catalyst complexation times on enantioselectivity of diazoketone 39 

Entry Catalyst Method Time (h)a Eff (%)b Yield (%)c ee (%)d 

1 
CuCl-NaBARF-75[(R,R)-

Ph-Box] 
C 0 68 44 68e 

2 
CuCl-NaBARF-75[(R,R)-

Ph-Box] 
C 2 65 54 78e 

3 
CuCl-NaBARF-75[(R,R)-

Ph-Box] 
C 24 69 32 74e 

a. Number of hours catalyst was stirred before diazoketone was added. 
b. Efficiency refers to the percentage azulenone formed relative to aromatic byproducts and is determined from the 

crude 1H NMR spectrum of the product. 
c. Yield of isolated product after flash chromatography. 
d. Determined by chiral 1H NMR spectroscopy using (+)-Eu(hfc)3 as chiral shift reagent. 
e. Major Enantiomer = (−). 

 

(e) Preparation of 5-(4-chlorophenyl)-5-methylhexane-2,3-dione 107 by the 

decomposition of  2-diazo-5-methyl-5-(4-chlorophenyl)-hexan-3-one 39 with Rh2(OAc)4 

in dichloromethane and water. 

This was prepared following the 

procedure described for Method A, 

from 2-diazo-5-methyl-5-(4-

chlorophenyl)-hexan-3-one 39 (120 

mg, 0.54 mmol) in dichloromethane 

(80 mL) and Rh2(OAc)4 87 (0.5 mg, < 1 

mol%) in dichloromethane (80 mL) and 

water (1 mL) to give the crude diketone 

107 and azulenone 95 (110 mg) in the ratio of 107:95 70:30 as a bright green oil. 

Purification by flash chromatography, using ethyl acetate/hexane (3:97) as eluent, gave 

the two fractions. 

The first, least, polar fraction gave the diketone 107 and an unidentifiable impurity (18%) 

(0.021 g). νmax/cm−1 (film) 1716, 913, 743; δH (300 MHz) diketone 107 1.42 [6H, s, 
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C(5)(CH3)2], 2.08 [3H, s, C(1)H3], 3.09 [2H, s, C(4)H2], 7.25-7.27 [4H, m, ArH]. 

Unidentifiable signals were seen at; δH (300 MHz) 0.83-0.91 (6H, m), 0.96 (1H, d, J 6.5), 

1.25 -1.27 (6H, m), 1.31 (2H, s), 2.17 (1H, s), 7.15 -7.34 (3H, m). 

The second, most polar, fraction contained the diketone 107 and azulenone 95 (0.069 g) 

in the ratio of 107:95, 76:24. νmax/cm−1 (film) 2967, 1750, 1715, 1497, 1401, 1348; 

δH (300 MHz) diketone 107 1.42 [6H, s, C(5)(CH3)2], 2.08 [3H, s, C(1)H3], 3.09 [2H, s, 

C(4)H2], 7.25-7.27 [4H, m, ArH]; δH (300 MHz) azulenone 95 0.86 [3H, s, C(8a)CH3], 

1.14, 1.33 [2 × 3H, 2 × s, C(3)(CH3)2], 2.21 [1H, A of AB, JAB 17.4, one of C(2)H2], 2.39 

[1H, B of AB, JAB 17.4, one of C(2)H2], 4.54 [1H, d, J 9.0, C(8)H], 6.14 [1H, dd, J 8.7, 

0.9, C(7)H], 6.23 [1H, d, J 8.1, C(4)H], 6.52 [1H, dd, J 8.1, 1.5, C(5)H]; δC (75.5 MHz) 

diketone 107 23.1 [CH3, C(1)H3], 29.1 [CH3, C(5))CH3)2)], 37.1 [C, C(5)], 47.5 [CH2, 

C(4)H2], 127.1, 128.4 [2 × CH, ArH], 197.7, 198.3 [C, C(2), C(3)]. 

3,8a-Dihydro-3,3,6,8a-tetramethylazulen-1(2H)-one 96
5 

(a) Preparation of azulenone 96 

This was prepared following the 

procedure described for Method A, 

from 2-diazo-5-methyl-5-(4-

methylphenyl)hexan-3-one 38 (100 mg, 

0.44 mmol) in dichloromethane (80 

mL) and Rh2(OAc)4 87 (0.5 mg, < 1 mol%) in dichloromethane (80 mL). A 1H NMR 

spectrum of the crude reaction mixture estimated the efficiency of the reaction as 90%. 

Purification by flash chromatography, using ethyl acetate/hexane (3:97) as eluent, gave 

the azulenone 96 (71 mg, 80%) as a clear oil; νmax/cm−1 (film) 2961, 2925, 1749  (CO), 

1716  (CO), 1451; δH (300 MHz) 0.68 [3H, s, C(8a)CH3], 1.08, 1.26 [2 × 3H, 2 × s, 

C(3)(CH3)2], 1.95 [3H, apparent d, J 1.1, C(6)CH3], 2.08 [1H, A of AB, JAB 17.3, one of 

C(2)H2], 2.15 [1H, B of AB, JAB 17.3, one of C(2)H2], 3.49 [1H, d, J 6.9, C(8)H], 5.81 

[1H, d of q, J 7.0, 1.1, C(7)H], 6.16-6.18 [2H, m that appears as a d at 6.17, J 1.1, C(4)H, 

C(5)H]. 
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(b) Effect of catalyst on enantioselectivity of the decomposition of diazoketone 38 

Table 3.7 Effect of catalyst on the cyclisation of diazoketone 38 

Entry Catalyst Method 
Time 
(h)a 

Eff 
(%)b 

Yield 
(%)c 

ee 
(%)d 

1 Rh2(OAc)487 A 1 90 80 - 

2 CuPF6-75[(R,R)-Ph-Box]e B 1 80 74 80j 

3 CuCl-75[(R,R)-Ph-Box]f,g D 2 79 45 44j 

4 
CuCl-NaBARF-75[(R,R)-Ph-

Box]h 
C 2 62 46 80j,l 

5 
CuCl-NaBARF-74[(S,S)-t-Bu-

Box]h,i 
C 2 75 50 27k 

6 
CuCl-NaBARF-89[(4R,5S)-

tetra-Ph-Box]h 
C 2 55 49 70j 

7 
CuCl-NaBARF-91[(R,R)-Bn-

Box]h 
C 2 58 42 30j 

8 
CuPF6-93[S,S-3,5-di-Me-C6H3-

Box]e 
B 1 80 65 73k 

a. Number of hours over which diazoketone was added. 
b. Efficiency refers to the percentage azulenone formed relative to aromatic by-products and is determined from the 1H 
NMR spectrum of the crude product. 
c. Yield of isolated product after flash chromatography. 
d. Determined by chiral 1H NMR spectroscopy using (+)-Eu(hfc)3 as chiral shift reagent. 
e. The catalyst was prepared from 1.3:1 molar mixture of ligand: Cu(CH3CN)4PF6. 
f. The catalyst was prepared from 1.3:1 molar mixture of ligand: CuCl.  
g. The 1H NMR spectrum of the crude reaction mixture contained an unknown impurity (22%). Signals were observed at δH 
(400 MHz) 1.42-1.46 (3H, m), 2.25-2.33 (2H, m). 
h. The catalyst was prepared from 5 mol% CuCl, 6 mol% ligand and 6 mol% NaBARF. Catalyst was stirred for 2 h at 20oC  
before substrate was added. 
i. The 1H NMR spectrum of the crude reaction mixture contained an unknown impurity (18%). Signals were observed at δH 
(300 MHz) 0.86 (6H, s), 1.44 (3H, s), 1.80 (1H, s), 2.30 (2H, s), 3.87-3.93 (1H, m), 4.20-4.37 (2H, m). 
j. Major Enantiomer = (−). 
k. Major Enantiomer = (+). 

l. Specific Rotation:
20][ Dα  -2.69 [c 0.3, CHCl3]. 
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(c) Conditions for resolution of the enantiomers of azulenone {CuPF6-75[(R,R)-Ph-Box]} 

96 by 
1
H NMR analysis 

Table 3.8 Position of signals with varying amounts of (+)-Eu(hfc)3 added to ~20 mg of  

azulenone 96 in 0.5 mL of CDCl3 

E
nt

ry
 

Quantity 
of 
Eu(hfc)3 
added 

C
(8

a)
C

H
3 

2 
× 

C
(3

)C
H

3 

C
(6

)C
H

3 

C
(2

)H
2 

C
(8

)H
 

C
(4

)H
, 

C
(5

)H
, 

C
(7

)H
 

1 
 

0 mg 

 

0.68, s 

a.1.08, s 

b. 1.26, s 

 

1.95, 
s 

2.08, d 

2.15, d 

 

3.49, d 

5.81, d of q, J 
7.0, 1.1 

6.17, d, J 1.1 

2    3.5mg 1.03, s 

a. 1.18 s 

b. 1.42, s 

1.44 

2.04, 
s 

2.55-2.59, 
m 

3.75, d 

5.91, d of q, J 
7.0, 

6.25, br d 

6.31, br d 

3    8.5 mg 1.34, s 

a.1.53, s 

b. 1.66, s 

1.69, s 

2.09, 
s 

3.23-3.35, 
m 

4.14, d 

6.08, br d, J 7.0 

6.37, d, J 8.8 

6.49-6.53,m 

4 12.5 mg 1.51, s 

a.1.92, s 

1.98, s 

b. 2.08, s 

2.18, 
s 

3.98-4.20, 
m 

4.58, d 

6.27, br d, J 7.0 

6.53, d, J 8.8 

6.73-6.76, m 

5a 14.5 mg 1.33, s 

a.1.51, s 

b.1.64, 

s
b
 

1.68, s
c 

2.08, 
s 

3.18-3.33, 
m 

4.12, d 

6.06, br d 

6.36, d 

6.47-6.52, m 

a. The relative integration of the highlighted signals was used to estimate the %ee. 
b. Signal due to the dextrorotatory (+) enantiomer. 
c. Signal due to the levorotatory (−) enantiomer. 

 

See Appendix 2 for stack plots of azulenone 96. 

Note: Treatment of azulenone 96 with (+)-Eu(hfc)3 as a chiral shift reagent resulted in the 

resolution of not only the C(3)(CH3)2 signals of the enantiomers but also the resolution of 
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the C(2)H2 AB system. In some instances, enantioselectivities were calculated by 

integration of the C(2)H2 signals. 

3,8a-Dihydro-6-fluoro-3,3,8a-trimethylazulen-1(2H)-one 94
5,11 

(a) Preparation of azulenone 94 

This was prepared following the 

procedure described for Method A, 

from 2-diazo-5-methyl-5-(4-

fluorophenyl)hexan-3-one 40 (100 mg, 

0.43 mmol) in dichloromethane (80 

mL) and Rh2(OAc)4 87 (0.5 mg, < 1 mol%) in dichloromethane (80 mL). A 1H NMR 

spectrum of the crude reaction mixture estimated the efficiency of the reaction as 75%. 

Purification by flash chromatography, using ethyl acetate/hexane (3:97) as eluant, gave 

the azulenone 94 (65 mg, 74%) as a pale yellow oil; νmax/cm−1 (film) 2964, 2872, 1753  

(CO), 1652, 1532; δH (300 MHz) 0.91 [3H, s, C(8a)CH3], 1.15, 1.37 [2 × 3H, 2 × s, 

C(3)(CH3)2], 2.24 [1H, A of AB, JAB 17.4, one of C(2)H2], 2.50 [1H, B of AB, JAB 17.4, 

one of C(2)H2], 5.12 [1H, dd, JHH 10.0, JHF 5.1, C(8)H], 6.03-6.10 [1H, m, C(7)H], 6.16-

6.30 [2H, m, C(4)H, C(5)H]. 

(b) Effect of catalyst on enantioselectivity of the decomposition of diazoketone 40 

Table 3.9 Effect of catalyst on the cyclisation of diazoketone 40 

Entry Catalyst Method Time (h)a Eff (%)b Yield (%)c ee (%)d 

1 Rh2(OAc)487 A 1 81 74 - 

2 CuPF6-75[(R,R)-Ph-Box]e B 1 86 81 56k 

3 CuCl-75[(R,R)-Ph-Box]f C -m - m - m - m 

4 
CuCl-NaBARF-75[(R,R)-Ph-

Box]g,h 
C 2 54 51 72k,n 

5 
CuCl-NaBARF-74[(S,S)-t-

Bu-Box]g,i 
C 2 34 30 18k 

6 CuCl-NaBARF-89[(4R,5S)- C 2 65 48 72l 
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tetra-Ph-Box]g 

7 
CuCl-NaBARF-91[(R,R)-Bn-

Box]g,j 
C 2 70 47 32k 

8 
CuPF6-93[S,S-3,5-di-Me-

C6H3-Box]e 
B 1 90 71 51l 

a. Number of hours over which diazoketone was added.  
b. Efficiency refers to the percentage azulenone formed relative to aromatic by-products and is determined from the 1H 
NMR spectrum of the crude product. 
c. Yield of isolated product after flash chromatography. 
d. Determined by chiral 1H NMR spectroscopy using (+)-Eu(hfc)3 as chiral shift reagent. 
e. The catalyst was prepared from 1.3:1 molar mixture of ligand: Cu(CH3CN)4PF6. 
f. The catalyst was prepared from 1.3:1 molar mixture of ligand: CuCl. 
g. The catalyst was prepared from 5 mol% CuCl, 6 mol% ligand and 6 mol% NaBARF. Catalyst was stirred for 2 h at 20oC  
before substrate was added. 
h. The 1H NMR spectrum of the crude reaction mixture contained an unknown impurity (10%). Signals were observed at δH 
(400 MHz): 1.32 (6H, s), 1.99 (3H, s), 4.12 (3H, t, J 8,3), 4.55 (2H, t, J 10.1), 4.96 (3H, dd, J 10.1, J 8.0). 
i. The 1H NMR spectrum of the crude reaction mixture contained an impurity (15%). Signals were consistent with the 
diketone impurity. Signals were observed at δH (300 MHz): 1.45 (6H, s), 2.11 (3H, s), 3.10 (2H, s). 
j. The 1H NMR spectrum of the crude reaction mixture contained an impurity (3%), the signals were consistent with the 
diketone impurity. Signals were observed at δH (300 MHz): 1.43 (6H, s), 2.05 (3H ,s), 3.08 (2H, s). 
k. Major Enantiomer = (−). 
l. Major Enantiomer = (+). 
m. No reaction. 

n. Specific Rotation:
20][ Dα  -6.72 [c 0.32, CHCl3]. 

 

c) Conditions for resolution of the enantiomers of azulenone {CuPF6-75[(R,R)-Ph-Box]} 

94  by 
1
H NMR analysis 

Table 3.10 Position of signals with varying amounts of (+)-Eu(hfc)3 added to ~5 mg of  

azulenone 94  in 0.5 mL of CDCl3 

E
nt

ry
 

Quantity 
of 
Eu(hfc)3 
added 

C
(8

a)
C

H
3 

C
(3

)C
H

3 

C
(3

)C
H

3 

C
(2

)H
2 

C
(8

)H
 

C
(4

)H
, 

C
(5

)H
, 

C
(7

)H
 

1 0 mg 0.91, s 1.15, s 1.37, s 
2.24,d (HA) 

2.50,d (HB) 
5.12, dd 

6.03-6.10, m, 
C(7)H 

6.16-6.30, m, 

C(4)H-C(5)H 

2 6 mg 1.10, s 1.21, s 
1.44, s 

1.45,s 

2.51,d (HA) 

2.74,d (HB) 

5.29-5.33, 
m 

6.08-6.16, m 

6.21-6.31, m 
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2.80,d (HB) 

3 10mg 
1.19, s 

1.21,s 
1.25, s 

1.49, s 

1.50, s 

2.65,d (HA) 

2.89,d (HB) 

2.94,d (HB) 

5.39, dd 

5.42, dd 

6.12-6.19, m 

6.24-6.35, m 

4 13.5 mg 1.29, s 
1.29, s 

1.31, s 

1.53, s 

1.64, s 

 

2.81,d (HA) 

3.07-3.18, 
m 

 

5.52-5.57, 
m 

 

6.15-6.22, m 

6.27-6.39, m 

5a 18 mg 1.38, s 
1.57, s 

1.59, s 

1.65, s
b
 

1.66, s
c 

3.15-3.17, 
m 

3.40-3.50, 
m 

5.80-5.87, 
m 

6.24-6.31, m 

6.34-6.49, m 

a. The relative integration of the highlighted signals was used to estimate the %ee. 

b. Signal due to the dextrorotatory (+) enantiomer. 

c. Signal due to the levorotatory (−) enantiomer. 

 

See Appendix 2 for stack plots of azulenone 94. 

Note: Treatment of azulenone 94 with (+)-Eu(hfc)3 as a chiral shift reagent resulted in the 

resolution of not only the C(3)(CH3)2 signals of the enantiomers but also the resolution of 

the C(2)H2 AB system. In some instances, enantioselectivities were calculated by 

integration of the C(2)H2 signals 

3,8a-Dihydro-3,3,5,7,8a-hexamethylazulen-1(2H)one 97 

(a) Preparation of 97 in refluxing dichloromethane 

This was prepared following the 

procedure described for Method A, 

from 2-diazo-5-methyl-5-(3,5-

dimethylphenyl)-hexan-3-one 41 (100 

mg, 0.41 mmol) in dichloromethane (80 

mL) and Rh2(OAc)4 87 (0.5 mg, < 1 mol%) in dichloromethane (80 mL). The reaction 

mixture was filtered through a plug of silica gel and the resulting clear solution 
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concentrated at reduced pressure to give the crude product 97 (96 mg) as a pale yellow 

oil. A 1H NMR spectrum of the crude azulenone 97 estimated the efficiency of the 

reaction as 85%. Purification by flash chromatography, using ethyl acetate/hexane (5:95) 

as eluent, gave the azulenone 97 (58 mg, 66%) as a clear oil; νmax/cm−1 (film) 2925, 2867, 

1712 (CO), 1448; δH (300 MHz) 0.61 [3H, s, C(8a)CH3], 1.03, 1.20 [2 × 3H, 2 × s, 

C(3)(CH3)2], 1.90 [1H, A of AB, JAB17.4, one of C(2)H2], 1.91 [3H, br s, C(5)CH3 or 

C(7)CH3], 1.92 [3H, d, J 1.2, C(5)CH3 or C(7)CH3], 2.11 [1H, B of AB, JAB 17.4, one of 

C(2)H2], 2.52 [1H, s, C(8)H], 5.75, 5.99 [2 × 1H, 2 × br s, C(4)H, C(6)H]; δC (75.5 MHz) 

5.4 [CH3, C(8a)CH3], 21.9, 23.4, 25.3, 27.0 [4× CH3, C(3)(CH3)2,C(5)CH3, C(7)CH3], 

28.8, 37.9 {2 × C, two of [C(3), C(3a), C(8a)]}, 44.9 [CH, br, C(8)H], 47.7 [CH2, 

C(2)H2], 115.1, 125.2  [2 × CH, C(4)H, C(6)H], 134.0, 134.1 [2 × C, C(5), C(7)], 217.7 

[C, C(1)]; HRMS (ES+): Exact mass calculated for C15H20O [(M+H)+] 217.1592. Found 

217.1598. m/z (ES+) 305 (100%), 258 (18%), 217 [(M+H)+, 30%]. 

*The azulenone 97 was observed to decompose to a yellow oil at room temperature over 

12 h. 

(b) Effect of catalyst on enantioselectivity of the decomposition of diazoketone 41 

Table 3.11 Effect of catalyst on the cyclisation of diazoketone 41 

Entry Catalyst Method 
Time 
(h)a 

Eff (%)b 
Yield 
(%)c 

ee 
(%)d 

1 Rh2(OAc)487 A 1 85 66 - 

2 
CuPF6-75[(R,R)-Ph-

Box] 
B 1 88 72 

-e,f 

 

a. Number of hours over which diazoketone was added. Reaction was found to be complete once all diazoketone was 
added.  
b. Efficiency refers to the percentage azulenone formed relative to aromatic byproducts and is determined from the 1H 
NMR spectrum of the crude product. 
c. Yield of isolated product after flash chromatography. 
d. Determined by chiral 1H NMR spectroscopy using (+)-Eu(hfc)3 as chiral shift reagent. 
e. Unable to accurately determine % ee due to poor separation of peaks by chiral 1H NMR. 
f. When sample was trapped with PTAD 305, the enantioselectivity was determined as 92% ee and X-ray diffraction 
established that the stereochemistry of the major enantiomer of azulenone 97 was 3aS (see Section 3.11.2) 
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3,8a-Dihydro-3,3,5,6,7,8a-hexamethylazulen-1(2H)one 92
5
 

(a) Preparation of 92 in dichloromethane at room temperature 

2-Diazo-5-methyl-5-(3,4,5-

trimethylphenyl)hexan-3-one 42 (100 

mg, 0.39 mmol) in dichloromethane (80 

mL) was added dropwise over 2.5 h to a 

solution of Rh2(OAc)4 87 (0.5 mg, < 1 

mol%)) in dichloromethane (80 mL). The progress of the reaction was monitored by TLC 

and was found to be complete once the addition of the diazoketone was complete. A 1H 

NMR spectrum of the crude reaction mixture estimated the efficiency of the reaction as 

72%. The 1H NMR of the crude reaction mixture contained an unknown impurity (20%). 

Signals were observed at δH (300 MHz) 1.25 [6H, m], 1.42 [4H, s], 2.27 [3H, s], 2.84 

[1H, A of AB, JAB 15.3], 3.01 [1H, A of AB, JAB 15.3], 3.85 [1H, q, J 6.7]. The reaction 

mixture was filtered through basic alumina and the resulting clear solution concentrated at 

reduced pressure to give the crude azulenone* 92 as a yellow oil. The 1H NMR spectrum 

showed that the sample prior to exposure to basic alumina was cleaner than after 

filtration. 

Purification by flash chromatography, using ethyl acetate/hexane (5:95) as eluant, gave 

the azulenone 92 (55 mg, 42%) as a green oil; νmax/cm−1(film) 2925, 2360, 1710 (CO), 

1449; δH (300 MHz) 0.55 [3H, s, C(8a)CH3], 1.02, 1.19 [2 × 3H, 2 × s, C(3)(CH3)2], 1.85 

[1H, A of AB, JAB17.3, one of C(2)H2], 1.86, 1.89 {2 × 3H, 2 × s, C(6)CH3 and one of 

[C(5)CH3, C(7)CH3]}, 1.96 {3H, apparent d, J 1.1, one of [C(5)CH3, C(7)CH3]}, 2.08 

[1H, B of AB, JAB17.3, one of C(2)H2], 2.47 [1H, s, C(8)H], 5.80 [1H, br s, C(4)H]; A 

number of peaks (11%) of an unidentifiable product were seen in the 1H NMR spectrum 

of the pure product at δH (300 MHz) 0.96 [[1H, d, J 6.5], 1.25 [6H, m], 1.42 [4H, s], 2.27 

[3H, s], 2.84 [1H, A of AB, JAB 15.3], 3.01 [1H, A of AB, JAB 15.3], 3.85 [1H, q, J 6.7]. 

*The azulenone 92 was observed to decompose to a yellow oil if left at room temperature 

over a short period of time. 
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(b) Effect of catalyst on enantioselectivity of the decomposition of diazoketone 42 

Table 3.12 Effect of catalyst on the cyclisation of diazoketone 42 

Entry Catalyst Time (h) Eff. (%) Yield (%) %eeb 

1 Rh2(OAc)487
b 2.5 72 42 - 

2 CuPF6-75[(R,R)-Ph-Box] 2.5 87 62 -c 

a. Yield of isolated product after flash chromatography. 
b. Could not be calculated due to decomposition. 
c. When sample was trapped with PTAD 162, the enantioselectivity was determined as 93% ee and X-ray 
diffraction established that the stereochemistry of the major enantiomer of azulenone 92 was 3aS (see Section 
3.11.2). 

 

(c) Filtration of crude 3,8a-dihydro-3,3,5,6,7,8a-hexamethylazulen-1(2H)one 92 

through neutral alumina to form 1,4,4,6,7,8-hexamethyl-3,4-dihydronapthalen-

2(1H)-one 98
39

 

2-Diazo-5-methyl-5-(3,4,5-trimethylphenyl)hexan-3-one 42  (100 

mg, 0.39 mmol) in dichloromethane (80 mL) was added dropwise 

over 2.5 h to a solution of Rh2(OAc)4 87 (0.5 mg, < 1 mol%)  in 

dichloromethane (80 mL). The progress of the reaction was 

monitored by TLC and was found to be complete once the addition of the diazoketone 

was complete. The reaction mixture was filtered through neutral alumina and the resulting 

clear solution concentrated at reduced pressure to give the crude dihydronapthalenone 98 

as a yellow oil. Purification by flash chromatography, using ethyl acetate/hexane (5:95) as 

eluant, gave the dihydronapthalenone 98 (65 mg, 73%) as a yellow oil. νmax/cm−1(film), 

1716,  (CO), 913, 744; δH (300 MHz) 1.30, 1.34 [2 × 3H, 2 × s, C(4)(CH3)2], 1.43 [3H, d, 

J 7.3, C(1)CH3], 2.19, 2.22, 2.31 [3 × 3H, 3 × s, C(6)CH3, C(7)CH3, C(8)CH3], 2.48 [1H, 

A of AB, JAB 13.8, one of C(3)H2], 2.65 [1H, B of AB, JAB 13.8, one of C(3)H2], 3.62 

[1H, q, J 7.3, C(1)H], 7.10 [1H, s, C(5)H]. 

 

 

 

O
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3.8.3 Transition metal catalysed decomposition of terminal αααα-diazoketones and 

formation of conjugated azulenone. 

 

 

 

 

 

 

 

 

    

Numbering scheme for azulenone and conjugated trienone 

Efficiency refers to the % azulenone formed relative to aromatic by-products and is 

determined from the 1H NMR spectrum of the crude reaction product. Crude azulenones 

formed by the decomposition of terminal α-diazoketones were unstable and were seen to 

decompose over a short period of time (typically 1 day at room temperature). 1H NMR 

analysis obtained for these azulenones were carried out on crude samples. Purification 

was not possible due to rearrangement to conjugated trienones.  All attempts to remove 

the transition metal catalyst, by filtration through silica gel, alumina or celite failed as 

rearrangement to the conjugated trienone occurred. 

3,8aH-Dihydro-3,3-dimethylazulen-1(2H)-one 178
40

 and 3,3-dimethyl-2,3-

dihydroazulen-1(4H)-one 184
40,41 

This was prepared following the procedure 

described for Method B, from 1-diazo-4-

methyl-4-phenylpentan-2-one 43 (0.47 g, 2.73 

mmol) in dichloromethane (80 mL) and 

Rh2(OAc)4 87 (0.5 mg, < 1 mol%) in 
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dichloromethane (80 mL). A 1H NMR spectrum of the crude reaction mixture estimated 

the efficiency of the reaction as 84%. Concentration under reduced pressure gave the 

crude azulenone 178 (0.45 g, 95%) as a dark green oil; νmax/cm−1 (film) 2962, 1751, 1641, 

1594; δH (300 MHz) 1.14, 1.40 [2 × 3H, 2 × s, C(3)(CH3)2], 2.36 [1H, d, A of ABX, 

JAB16.9, JAX 0.0, one of C(2)H2], 2.59 [1H, dd, B of ABX, JAB 16.9, JBX 0.8, one of 

C(2)H2], 2.87-2.91 [1H, br d (with unresolved fine splitting), X of ABX,  J 3.0, C(8a)H], 

5.20 [1H, dd, J 9.3, 4.0, C(8)H], 6.12-6.17 [1H, m, C(7)H], 6.20 [1H, dd, J 5.8, 1.6, 

C(4)H], 6.44 [1H, dd, J 11.2, 5.6, C(5)H or C(6)H], 6.53 [1H, dd, J 11.2, 5.6, C(5)H or 

C6)H] . Purification by flash chromatography on silica gel, using ethyl acetate/hexane 

(20:80) as eluent, resulted in rearrangement of the azulenone to the conjugated trienone 

184 (0.26 g, 54%) which was isolated as a yellow oil; νmax/cm−1 (film) 2962, 1704 (CO), 

1288, 1199; δH (300 MHz) 1.28 [6H, s, C(3)(CH3)2], 2.43 [2H, s, C(2)H2], 2.72 [2H, d, J 

6.6, C(4)H2], 5.40 [1H, ddd (appears as a dt), J 9.7, 6.5, 6.5, C(5)H], 6.15-6.20 [1H, dd, J 

9.6,  5.7, C(6)H], 6.57-6.63 [1H, dd, J 11.1, 5.7, C(7)H], 6.78 [1H, d, J 11.1, C(8)H]; δC 

(75.5 MHz) 26.6 [CH2, C(4)H2], 27.8 [CH3, C(3)(CH3)2], 40.0 [C, C(3)], 51.7 [CH2, 

C(2)H2], 121.0 [CH, C(5)H], 122.3 [CH, C(8)H], 128.7 [CH, C(6)H], 131.2 [CH, C(7)H], 

134.8, 173.9 [2 × C, C(8a), C(3a)], 204.7 [C, C(1)]; HRMS (ES+): Exact mass calculated 

for C12H14O [(M+H)+] 175.1123. Found 175.1122. m/z (ES+) 551 (30%), 349 

[(C24H28O2+H)+, 80%], 189 (30%), 175 [(M+H)+, 100%]. 

3,8aH-Dihydro-3,3,6-trimethylazulen-1(2H)-one 179 and 3,3,6-trimethyl-2,3-

dihydroazulen-1(4H)-one 185
 

This was prepared following the procedure 

described for Method B, from 1-diazo-4-

methyl(4-methylphenyl)pentan-2-one 44 

(0.20 g, 0.92 mmol) in dichloromethane (80 

mL) and Rh2(OAc)4 87 (0.5 mg, < 1 mol%) 

in dichloromethane 80 mL). A 1H NMR 

spectrum of the crude reaction mixture 

estimated the efficiency of the reaction as 

93%. Concentration under reduced pressure gave the crude azulenone 179 (0.17 g, 98% ) 

as a dark green oil; νmax/cm−1 (film) 2964, 1750  (CO), 1412, 913, 743; δH (300 MHz) 
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1.13, 1.37 [2 × 3H, 2 × s, C(3)(CH3)2], 2.01 [3H, s, C(6)CH3], 2.33 [1H, dd, A of ABX, 

JAB 16.9, JAX 0.6, one of C(2)H2], 2.51 [1H, dd, B of ABX, JAB 16.9, JBX 1.3 one of 

C(2)H2], 2.87 [1H, br d (with unresolved fine splitting), X of ABX, J 3.3, C(8a)H], 5.16 

[1H, dd, J 9.5, 4.1, C(8)H], 5.97 [1H, d, J 9.5, C(7)H], 6.02 [1H, d, J 6.1, one of C(4)H, 

C(5)H], 6.31 [1H, d, J 6.1, one of C(4)H, C(5)H]; Purification by flash chromatography 

on silica gel, using ethyl acetate/hexane (20:80) as eluent, resulted in rearrangement of 

the azulenone to the conjugated trienone 185 (0.13 g, 64%) which was isolated as a red 

oil; νmax/cm−1 (film) 2960, 1704, 1275, 750;  δH (500 MHz) 1.26 [6H, s, C(3)(CH3)2] 1.86 

[3H, s, C(6)CH3], 2.41 [2H, s, C(2)H2], 2.62 [2H, d, J 6.5, C(4)H2], 5.16 [1H, br t (with 

fine splitting), J 5.8, C(5)H], 6.50 [1H, d, J 11.3, C(7)H or C(8)H], 6.68 [1H, d, J 11.3, 

C(7)H or C(8)H]; δC (125.75 MHz) 22.2 [CH3, C(6)CH3], 26.1 [CH2, C(4)H2], 27.6 [CH3, 

C(3)(CH3)2], 39.9 [C, C(3)], 51.7 [CH2, C(2)H2], 117.3 [CH, C(5)H], 121.4 [CH, C(7)H 

or C(8)H], 134.5 [C, C(6)], 134.5 [CH, C(7)H or C(8)H], 136.5, 176.0 [2 × C, C(8a), 

C(3a)], 204.7 [C, C(1)]; HRMS (ES+): Exact mass calculated for C13H16O [(M+H)+] 

189.1279. Found 189.1282. m/z (ES+) 378 (40%), 377 [(C26H32O2+H)+, 100%], 219 

(10%), 187 (8%).Unidentifiable signal at δH (300 MHz) 2.01 (1.50H, s) and δC (125.75 

MHz) 1.18. 

3,8aH-Dihydro-6-chloro-3,3-dimethylazulen-1(2H)-one 180 and 6-chloro-3,3-

dimethyl-2,3-dihydroazulen-1(4H)-one 186
 

This was prepared following the procedure 

described for Method B, from 1-diazo-4-

methyl(4-chlorophenyl)pentan-2-one 45 

(0.05 g, 0.24 mmol) in dichloromethane (80 

mL) and Rh2(OAc)4 87 (0.5 mg, < 1 mol%)  

in dichloromethane (80 mL). A 1H NMR 

spectrum of the crude reaction mixture 

estimated the efficiency of the reaction as 

66%. Concentration under reduced pressure gave the crude azulenone 180 (45 mg, 97%) 

as a dark brown oil; νmax/cm−1 (film) 2963, 1751, 1412, 1194, 987; δH (300 MHz) 1.11, 

1.40 [2 × 3H, 2 × s, C(3)(CH3)2], 2.34 [1H, dd, A of ABX, JAB 16.9, JAX 0.7, one of 

C(2)H2], 2.57 [1H, dd, B of ABX, JAB 16.9, JBX 0.8, one of C(2)H2], 3.02-3.06 [1H, br d 
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(with unresolved fine splitting), X of ABX, J 3.0, C(8a)H], 5.29 [1H, dd, J 9.7,  4.4, 

C(8)H], 6.09-6.17 {2H, m,  C(7)H, and one of [C(4)H, C(5)H]}, 6.70 [1H, d, J 6.5, C(5)H 

or C(4)H]. Purification by flash chromatography on silica gel, using ethyl acetate/hexane 

(20:80) as eluent, resulted in rearrangement of the azulenone to the conjugated trienone 

186 (0.03 g, 60%) which was isolated as a brown oil; νmax/cm−1 (film) 2962-2869, 1706, 

1620, 1287 913, 744; δH (300 MHz) 1.28 [6H, s, C(3)(CH3)2], 2.44 [2H, s, C(2)H2], 2.76 

[2H, d, J 7.1, C(4)H2], 5.50-5.55 [1H, t (with fine splitting), J 8.7 C(5)H], 6.51 [1H, dd, J 

11.5, 1.3, C(7)H or C(8)H], 6.76 [1H, dd, J 11.5, 0.5, C(7)H or C(8)H]; δC (75.5 MHz) 

25.3 [CH2, C(2)H2], 27.4 [CH3, C(3)(CH3)2], 40.3 [C, C(3)], 51.5 [CH2, C(4)H2], 118.4 

[CH, C(5)H], 124.0 [CH, C(7)H or C(8)H], 131.2 [CH, C(7)H or C(8)H], 131.5, 134.6, 

176.1 [3 × C, C(8a), C(3a), C(6)], 203.7 [C, C(1)]; HRMS (ES+): Exact mass calculated 

for C12H14OCl [(M+H)+] 209.0733. Found 209.0740.  m/z (ES+) 417 (20%), 211 

[(C12H14O
37Cl +H)+, 40%], 209 [(C12H14O

35Cl +H)+, 100%], 85 (50%). 

3,8aH-Dihydro-6-fluoro-3,3-dimethylazulen-1(2H)-one 181 and 6-fluoro-3,3-

dimethyl-2,3-dihydroazulen-1(4H)-one 187
 

This was prepared following the 

procedure described for Method B, from 

1-diazo-4-methyl(4-

fluorophenyl)pentan-2-one 46 (0.10 g, 

0.48 mmol) in dichloromethane (80 mL) 

and Rh2(OAc)4 87 (0.5 mg, < 1 mol%)  

in dichloromethane (80 mL). A 1H NMR 

spectrum of the crude reaction mixture 

estimated the efficiency of the reaction as 81%. Concentration under reduced pressure 

gave the crude azulenone 181 (0.09 g, 97%) as a dark green oil; νmax/cm−1 (film) 1751, 

1411, 913; δH (300 MHz) 1.09, 1.42 [2 × 3H, 2 × s, C(3)(CH3)2], 2.34 [1H, d, A of ABX, 

JAB 16.9, JAX 0.0, one of C(2)H2], 2.60 [1H, d, B of ABX, JAB 16.5, JBX 0.0, one of 

C(2)H2], 2.98-3.03 [1H, br m (with unresolved fine splitting), X of ABX, C(8a)H], 5.38-

5.45 [1H, m, C(8)H], 6.08-6.18 [2H, m, C(7)H, C(5)H], 6.26 [1H, ddd, J 12.8, 6.9, 1.7, 

C(4)H]. The 1H NMR spectrum of the crude reaction mixture contained unidentifiable 

peaks (46%). Signals were observed at: δH (300 MHz) 2.36 (1H, s), 7.16-7.28 (2H, m).  

H

O

O
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Purification by flash chromatography, using ethyl acetate/hexane (20:80) as eluent, 

resulted in rearrangement of the azulenone to the conjugated trienone 187 (50 mg, 54%) 

which was isolated as a dark brown oil; νmax/cm−1 (film) 2963, 1709, 1244, 913, 742; δH 

(300 MHz) 1.28 [6H, s, C(3)(CH3)2], 2.44 [2H, s, C(2)H2], 2.73 [2H, dd, J 7.0, 2.1, 

C(4)H2], 5.02-5.13 [1H, br m, C(5)H], 6.35-6.46 [1H, m, C(7)H], 6.80 [1H, dd, JHH11.8, 

JHF 4.0, C(8)H]; δC (75.5 MHz) 21.0 [CH2, d, 3
JCF 9.0, C(4)H2], 27.3 [CH3, C(3)(CH3)2], 

40.5 [C, C(3)], 51.4 [CH2, C(2)H2], 99.6 [CH, d, 2
JCF 27.2, C(5)H], 123.9 [CH, d, 2

JCF 

35.5, C(7)H], 125.2 [CH, d, 3
JCF 12.8, C(8)H], 134.6* or 137.3* [C, C(8a) or C(3a)], 

159.0 [C, d, 1
JCF 239, C(6)], 172.3* or 177.6* [C, C(8a) or C(3a)],  203.8 [C, C(1)];  

HRMS (ES+): Exact mass calculated for C12H13FO [(M+H)+] 193.1028 Found 193.1029. 

m/z (ES+) 385 (20%), 193 [(M+H)+, 40%], 189 (100%). 

The 1H NMR spectrum of the pure trienone 187 contained an unknown impurity (50%). 

Signals were observed at: δH (300 MHz) 1.43 (6H, s), 2.56 (1H, s), 6.98-7.52 (3H, m); δC 

(75.5 MHz) 28.4, 50.1, 130.0, 131.6, 134.6, 137.3, 140.8, 145.9, 157.4, 160.6, 172.3, 

177.6, 177.7, 187.6, 204.5.  

*Unable to definitively distinguish quaternary carbon signals from impurity in 13C 

spectrum. 

Attempted synthesis of 3,8aH-dihydro-3,3,5,6,7-tetramethylazulen-1(2H)one 182 

from 1-diazo-4-methyl(3,5-dimethylphenyl)-pentan-2-one 47 and Rh2(OAc)4 87 

This was prepared following the 

procedure described for Method B, 

from 1-diazo-4-methyl(3,5-

dimethylphenyl)-pentan-2-one 47 (200 

mg, 0.87 mmol) in dichloromethane 

(80 mL) and Rh2(OAc)4 87 (0.5 mg, < 1 mol%)  in dichloromethane (80 mL). The 

reaction was monitored by TLC and there appeared to be no starting material remaining 

after all the diazoketone was added. The green coloured solution was concentrated under 

reduced pressure to give a brown oil. νmax/cm−1 (film) 2962, 2926, 1713, 1599, 1452; A 
1H NMR spectrum of the crude reaction mixture showed a complex mixture of 

unidentifiable products and did not contain any signals which could be attributed to the 
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starting diazoketone 47 or desired azulenone 182. Attempted purification by flash 

chromatography, using ethyl acetate/hexane (10:90) as eluent gave a yellow oil (110 mg). 

A 1H NMR of this material showed a complex mixture of unidentifiable products. 

Attempted synthesis of 3,8aH-dihydro-3,3,5,6,7-pentamethylazulen-1(2H)one 183 

from  1-diazo-4-methyl(3,4,5-trimethylphenyl)-pentan-2-one 48 and Rh2(OAc)4 87 

This was prepared following the 

procedure described for Method B, 

from 1-diazo-4-methyl(3,4,5-

trimethylphenyl)-pentan-2-one  48 (200 

mg, 0.82 mmol) in dichloromethane (80 

mL) and Rh2(OAc)4 87 (0.5 mg, < 1 mol%)  in dichloromethane (80 mL). The reaction 

was monitored by TLC and there appeared to be no starting material remaining after all 

the diazoketone was added. The green coloured solution was concentrated under reduced 

pressure to give a brown oil. νmax/cm−1 (film) 2966, 2927, 2252, 1789, 1752, 1713, 1639, 

1608; A 1H NMR spectrum of the crude reaction mixture showed a complex mixture of 

unidentifiable products and did not contain any signals which could be attributed to the 

starting diazoketone 48 or desired azulenone 183. Attempted purification by flash 

chromatography, using ethyl acetate/hexane (10:90) as eluent gave a yellow oil (130 mg). 

A 1H NMR of this material showed a complex mixture of unidentifiable products. 
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3.9 Synthesis of diazanaphthalene (quinoxaline)
11,39,42

 

 

         

 

Numbering scheme for diazanaphthalenes 

 

2-(2-(4-Chlorophenyl)-2-methylpropyl)-3-methylquinoxaline 112 

1,2-Diaminobenzene 111* (18 mg, 0.17 mmol) was 

added in one portion to a stirring solution of 5-(4-

chlorophenyl)-5-methylhexane-2,3-dione 107 (20 mg, 

0.084 mmol) in dichloromethane (5 mL) while stirring 

under nitrogen at room temperature for 1 h. Reaction 

progress was monitored by TLC. The crude reaction mixture was then concentrated under 

reduced pressure to give the crude diazanaphthalene 112 (35 mg) as a brown solid. A 1H 

NMR spectrum of the crude product indicated the presence of unreacted diaminobenzene 

111 along with the product diazanaphthalene 111 in the ratio of 111:112 6.7:1**. 

Purification by flash chromatography, using ethyl acetate/hexane (40:60) as eluent, gave 

the diazanaphthalene 112 as a clear oil (12 mg, 46%); νmax/cm−1 (film) 2966, 1729, 1485, 

1398, 1206, 1102; δH (300 MHz) 1.52 [6H, s, C(2′)(CH3)2], 2.31 [3H, s, C(3)CH3], 3.24 

[2H, s, C(1′)H2], 7.11-7.21 [4H, m, AA′ BB′, C(2′′)H, C(3′′)H, C(5′′)H, C(6′′)H], 7.64-

7.70 [2H, m, C(6)H, C(7)H or C(5)H, C(8)H], 7.92-7.97 [2H, m, C(6)H, C(7)H or C(5)H, 

C(8)H]; δC (75.5 MHz) 23.1 [CH3, C(3)CH3], 28.7 [CH3, C(2′)(CH3)2], 39.5 [C, C(2′)], 

48.4 [CH2, C(1′)H2], 127.4, 128.2, 128.3, 128.7, 129.1 [5 × CH signals seen for 6C, 

C(5)H, C(6)H. C(7)H, C(8)H, C(2′′)H, C(3′′)H, C(5′′)H, C(6′′)H], 131.8 [C, C(4′′)Cl], 

140.7, 140.8, 147.0, 154.0, 154.2 [5 × C, C(2), C(3), C(1′′), 2 × C-N]; HRMS (ES+): 

Cl

N

N
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Exact mass calculated for C19H19N2Cl35 [(M+H)+] 311.1315 Found 311.1320. m/z (ES+) 

352 (5%), 313 [(C19H19N2Cl37 +H)+, 30%], 311 [(C19H19N2Cl35 +H)+, 80%], 83 (20%), 42 

(100%). 

*1,2-Diaminobenzene 111 (0.50 g, 4.6 mmol) was freshly purified by recrystallisation 

from  hot dichloromethane including treatment with activated charcoal with hot filtration 

to remove coloured impurities.43 This gave the amine 111 (0.22 g, 44%)  as an off-white 

crystalline solid which was immediately used for the condensation reaction with the 

diketone 107.  

**The product ratio observed in 1H NMR of crude material not easily rationalised. 

3.10 Synthesis of azulenols 

Note 1: Two diastereomeric azulenols were expected after the reduction of the analogous 

azulenone. The azulenols are given one number, while each diastereomer is given the 

notation a and b, where isomer a is the major isomer. The relative stereochemistry of 

each diastereomer is unknown. 

(1R, 8aS),-6-Chloro-1,2,3,8a-tetrahydro-3,3,8a-trimethylazulen-1-ol and (1R, 8aR),-

6-Chloro-1,2,3,8a-tetrahydro-3,3,8a-trimethylazulen-1-ol 316 

3,8a-Dihydro-6-chloro-3,3,8a-

trimethylazulen-1(2H)-one 95 (500 

mg, 2.25 mmol) in ethanol (40 mL, 

HPLC grade) was added dropwise 

over 30 min to sodium borohydride (423 mg, 11.18 mmol) in ethanol (40 mL, HPLC 

grade) while stirring at 0 ºC, under nitrogen. Stirring was continued for 24 h at room 

temperature. The reaction was subsequently quenched by dropwise addition of water (50 

mL). The reaction solution was evaporated until just the water remained. Diethyl ether 

(40 mL) was added and the layers separated. The aqueous layer was washed with diethyl 

ether (3 x 40 mL). The combined organic extracts were washed with brine (60 mL), dried 

and concentrated under reduced pressure. A 1H NMR spectrum of the crude material 

estimated the diastereomeric ratio as 82:18 and showed the reaction was very clean. 

Purification by flash chromatography, using ethyl acetate/hexane (3:97), gave a mixture 

of the two diastereomeric azulenols 316a: 316b, 89:11, as a white solid (0.38 g, 75%), 
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m.p. 77-81 ºC; (Found: C, 69.66; H, 7.57; Cl, 15.98; C13H17ClO requires C, 69.48, H, 

7.62, Cl, 15.78%); νmax/cm−1 (KBr) 3390-2865, 1627, 1456, 1364, 1067, 1025, 997; 

δH (300 MHz) 316a 0.79 [3H, s, C(8a)CH3], 1.04, 1.28 [ 2 × 3H, 2 × s, C(3)(CH3)], 1.70 [ 

1H, br s, OH], 1.77 [1H, dd, A of ABX, JAB 12.3, JAX 10.0, one of C(2)H2], 1.89 [1H, dd, 

B of ABX, JAB 12.3, JBX 6.3, one of C(2)H2], 4.24 [1H, br dd, X of ABX, JAX 9.9, JBX 

6.3, C(1)H], 5.36 [1H, d, J 10.5, C(8)H], 5.93 [1H, d, J 7.4, C(4)H], 6.07 [1H, dd, J 10.5, 

1.5, C(7)H], 6.52-6.56 [1H, m, C(5)H]; δH (300 MHz) 316b 0.75 [3H, s, C(8a)CH3], 1.09, 

1.23 [ 2 × 3H, 2 × s, C(3)(CH3)], 1.96 [1H , dd, J 12.3, 6.3, one of C(2)H2], 4.32 [1H, dd, 

J 9.7, 6.0, C(1)H], 5.69 [1H, d, J 10.3, C(8)H], 6.02 [1H, d, J 6.9, C(4)H], 6.15-6.19 [1H, 

m, C(7)H], 6.67-6.69 [1H, m, C(5)H];  δC (75.5 MHz) 316a 12.4 [CH3, C(8a)CH3], 29.9, 

32.4 [2 × CH3, C(3)CH3)2], 40.6 [C, C(3)], 47.0 [CH2, C(2)H2], 49.2 [C, C(8a)], 79.8 

[CH, C(1)H], 115.3 [CH, C(4)H], 126.6 [CH, C(7)H], 127.0 [CH, C(5)H], 132.1 [C, 

C(3a)], 134.0 [CH, C(8)H], 156.9 [C, C(6)]; The 13C NMR signals for the 316b 

diastereoisomer are too weak to be assigned with any degree of certainty, so the signals 

are just listed, δC (75.5 MHz) 18.7, 29.9, 40.9, 47.9, 115.4, 119.2, 123.0, 125.9, 127.2; 

m/z (ES+) 236 (60%), 207 [(M-OH)+, 100%], 189 (20%), 57 (15%). 

(1R, 8aS)-1,2,3,8a-Tetrahydro-3,3,8a-trimethyl-azulen-1-ol and (1R, 8aR)-1,2,3,8a-

tetrahydro-3,3,8a-trimethyl-azulen-1-ol 315
5,11

 

This reaction was carried out 

following the procedure described for 

316a and 316b, from 3,8a-dihydro-

3,3,8a-trimethylazulen-1(2H)-one 89 

(520 mg, 2.76 mmol) in ethanol (50 mL, distilled) and sodium borohydride ( 520 mg, 

13.76 mmol) in ethanol (50 mL, distilled). A 1H NMR spectrum of the crude material 

estimated the diastereomeric ratio as 315a:315b, 77:23. The crude material was clean 

enough to be carried through to next step as a mixture of azulenols 315a:315b, 77:23 

(without purification), which existed as a clear oil (0.45 g, 85%); νmax/cm−1 (film) 3367-

2864, 1635, 1459, 1062; δH (300 MHz) 315a 0.74 [3H, s, C(8a)CH3], 1.06, 1.30 [2 × 3H, 

2 × s, C(3)(CH3)2], 1.79 [1H, dd, A of ABX, JAB 12.2, JAX 9.8, one of C(2)H2], 1.89 [1H, 

dd, B of ABX, JAB 12.2, JBX 6.2, one of C(2)H2], 4.22-4.27 [1H, sym m, C(1)H], 5.30 

[1H, d, J 10.1, C(8)H], 6.02-6.11 [2H, m, C(4)H, C(7)H], 6.27-6.38 [2H, m, C(5)H, 
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C(6)H]; δH (300 MHz) 315b 0.67 [3H , s, C(8a)CH3], 1.10, 1.25 [2 × 3H, 2 × s, 

C(3)(CH3)2], 1.47 [1H, dd, A of ABX, JAB 12.2, JAX 9.7, one of C(2)H2], 1.96 [1H, dd, B 

of ABX, JAB 12.2, JBX 6.0, one of C(2)H2], 4.31-4.36 [1H, sym m, C(1)H], 5.56 [1H , d, J 

9.9, C(8)H], 6.20 [1H, dd, J 9.9, 6.2 C(7)H], 6.43-6.54 [2H, m, C(5)H, C(6)H]. Signal for 

C(4)H not distinguishable in region 6.02-6.12 ppm. 

3.11 Preparation of PTAD cycloadducts 

 

 

 

 

  

Sample numbering scheme 

t-Butyl hypochlorite 332 
44

 

A commercial bleach solution (10-12% w/w, 500 mL) was stirred in a 

1L round bottom flask at 0 ºC (The lights in the fumehood were turned 

off at this point as t-butyl hypochlorite is light sensitive). A solution of t-

butyl alcohol (39.3 g, 50.0 mL, 531.1 mmol) and glacial acetic acid (42.0 g, 40.0 mL, 

700.0 mmol) was added in a single portion to the bleach solution and stirring was 

continued for 3 min. The top organic layer was a cloudy yellow layer. This was washed 

with aqueous Na2CO3 (10%, 2 × 25 mL) and water (1 × 25 mL). The organic layer was 

then dried over CaCl2 and filtered into a brown bottle to yield t-butyl hypochlorite 332 

(43.60 g, 68 %) as a yellow liquid with a strong hypochlorite smell. It was stored over 

CaCl2 in the fridge. 

 

 

 

O
Cl
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4-Phenyl-1,2,4-triazoline-3,5-dione (PTAD) 162
5,10,11,45,46

 

t-Butyl hypochlorite 332 (6.07 g, 6.82 ml, 55.9 mmol) was added 

dropwise to a solution of 4-phenyl urazole (10.00 g, 56.4 mmol) in 

dry acetone (300 mL) while stirring under nitrogen at -40 ºC. After 

30 min the reaction mixture was removed from the cold bath and 

allowed warm to room temperature. The solvent was removed under reduced pressure 

keeping the temperature of the water bath below 10 ºC to give the crude dienophile 162. 

Sublimation under reduced pressure (110 ºC at 0.10 mmHg) gave the dienophile 162 

(0.38 g, 38%) as a bright red solid, m.p.175-178 ºC (Lit.,45 170-180 ºC). 

Note: The majority of the PTAD adducts prepared in the following work were prepared 

in a one-pot method starting from the corresponding diazoketone as this was considered 

the most efficient preparation.  

Racemic PTAD cycloadducts synthesised from internal α-diazoketones were 

purified by hot recrystallisation from ethyl acetate. This method of purification has 

previously been used by other researchers in the group.10,11,39 PTAD cycloadducts 

generated via enantioenriched azulenones were purified by flash chromatography on 

silica gel to avoid selective recrystallisation. 

The 1H NMR spectra of crude PTAD cycloadducts generated from terminal α-

diazoketones were much cleaner when sublimed PTAD was used. When the crude 

dienophile was used 1H NMR spectra of the crude reaction mixture were more complex. 

As a result, 1.00 g of PTAD was sublimed and stored in the freezer at -20 ºC over 

approximately one year. This sublimed batch of dienophile was used to synthesise 

adducts 164, 198, 199. 

 

 

 

 

N
N
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3.11.1 Reaction of internal αααα-diazoketones with PTAD 
 

(3aR*,3bS*)-1,2,3b,4-Tetrahydro-1,1,3a -trimethyl-7-phenyl-4,10-etheno-12-

chlorocyclopenta[1,3]cyclopropa[1,2-d][1,2,4]triazolo[1,2-a]pyridazine-

3,6,8(3aH,7H)-trione 313
11,39 

2-Diazo-5-methyl-5-(4-chlorophenyl)hexan-3-one 39 

(2.25 g, 9.00 mmol) in doubly distilled 

dichloromethane (80 mL) was added dropwise over ~ 

1 h to a refluxing solution of Rh2(OAc)4 87 (0.5 mg) 

in deoxygenated doubly distilled dichloromethane (80 mL). The reaction was monitored 

by TLC and was found to be complete once all the diazoketone was added. The reaction 

mixture was then cooled to 0 ºC and crude 4-phenyl-1,2,4-triazoline-3,5-dione 162 

[freshly prepared from t-butyl hypochlorite 332 (0.98 g, 9.00 mmol), 4-phenyl urazole 

(1.61 g, 9.00 mmol) in dry acetone (40 mL)] was added as a solid in one portion. The 

reaction mixture was stirred at 0 ºC for 5 min after which the ice-bath was removed and 

the reaction mixture was warmed to room temperature. The reaction mixture turned from 

the brick-red colour of the dienophile to a clear solution within minutes of its addition, 

indicating completion of the reaction. It was stirred for a further 30 min before 

concentration of the reaction mixture under reduced pressure gave the crude adduct as an 

off-white solid. Recrystallisation from hot ethyl acetate gave the pure adduct 313 as a 

white solid (1.62 g, 46%),  m.p. 183-187 ºC (Lit.,11 181-184 ºC, Lit.,39 185-189 ºC); 

νmax/cm−1 (KBr)  2925, 1721, 1503, 1404, 1241; δH (400 MHz)  1.28, 1.33 [2 × 3H, 2 × s, 

C(1)(CH3)2], 1.36 [3H, s, C(3a)CH3], 1.99 [1H, d, J 4.9, C(3b)H], 2.03 [1H, A of AB, J 

18.0, one of C(2)H2], 2.17 [1H, B of AB, J 18.0, one of C(2)H2],  5.29-5.32 [1H, m, 

C(4)H], 5.51 [1H, d, J 6.0, C(10)H], 6.26-6.30 [1H, m, C(11)H], 7.33-7.56 (5H, m, ArH]. 
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(3aR*,3bS*)-1,2,3b,4-Tetrahydro-1,1,3a,4,11-pentamethyl-7-phenyl-4,10-etheno-

6H,10H-cyclopenta[1,3]cyclopropa[1,2-d][1,2,4]triazolo[1,2-a]pyridazine-

3,6,8(3aH,7H)-trione 164 

(a) Reaction of crude azulenone 97 with PTAD 162  

This was prepared from the procedure described for 

313, from 2-diazo-5-methyl-5-(3,5-

dimethylphenyl)hexan-3-one 41 (0.20 g, 0.82 mmol) 

in doubly distilled dichloromethane (80 mL), 

Rh2(OAc)4 87 (0.5 mg) in doubly distilled dichloromethane (80 mL) and sublimed 4-

phenyl-1,2,4-triazoline-3,5-dione 162 (0.18 g, 1.00 mmol)) to give the crude product as a 

yellow solid. Recrystallisation from hot ethyl acetate gave the gave the pure adduct 164 

as a white solid (0.23 g, 72%), m.p. 178-181 ºC; (Found: C, 70.43; H, 6.90; N, 10.23; 

C23H25N3O3 requires C, 70.57, H, 6.44, N, 10.73%); νmax/cm−1 (KBr) 2927, 2956, 2972, 

1763, 1705 s, 1597, 1502, 1410; δH (300 MHz) 1.25 (6H, s), 1.32 (3H, s) [C(1)(CH3)2, 

C(3a)CH3], 1.74 [1H, s, C(3b)H], 1.92 [3H, d, J 1.9, C(4)CH3], 1.96 [1H, A of AB, J 

18.0, one of C(2)H2], 2.00 [3H, s, C(11)CH3] 2.13 [1H, B of AB, J 17.8, one of C(2)H2], 

5.11 [1H, d, J 1.7, C(10)H]], 5.65-5.69 [1H, m, C(12)H], 7.32-7.39 [1H, m, ArH ], 7.42-

7.47 [4H, m, ArH]; δC (75.5 MHz) 9.0 [CH3, C(3a)CH3], 19.8, 22.5 [2 × CH3, C(4)CH3, 

C(11)CH3 ], 23.9, 27.1 [2 × CH3, C(1)(CH3)2], 34.0 [CH, C(3b)H], 36.7, 40.7, 44.5 [3 × 

C, C(1), C(3a), C(10)], 48.3 [CH2, C(2)H2], 56.2 [CH, C(10)H], 64.7 [C, C(4)], 125.5, 

126.2 [2 × CH, aromatic CH],  128.2 [CH, C(12)H],  129.0 [CH, aromatic CH], 131.3 [C, 

aromatic C],  137.3 [C, C(11)], 155.4, 155.9 [2 × C(6), C(9)], 211.7 [C, C(3)]; HRMS 

(ES+): Exact mass calculated for C23H25N3O3 [(M+H)+] 392.1974 Found 392.1974. m/z 

(ES+) 393 (30%), 392 [(M+H)+, 100%], 215 (20%). 
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(b) Effect of catalyst on enantioselectivity of the decomposition of diazoketone 41, 

where the crude azulenone 97 was trapped with PTAD 162 to give adduct 164 

 

Table 3.13 Effect of catalyst on enantioselectivity of the decomposition of diazoketone 41 

Entry Catalyst Method Time (h)a Yield (%)b ee (%)c 

1 CuPF6-75[(R,R)-Ph-Box] B 1 64 92d,e 

a. Number of hours over which diazoketone was added. Reaction was found to be complete once all of 
the diazoketone was added. 

b. Yield of isolated product after flash chromatography (20% ethyl acetate:hexane as eluant). 
c. Determined by chiral HPLC. 
d. Major Enantiomer = (+). Crystal structure confirmed major enantiomer 3aS. [see Section (d) below] 

The 92% ee sample of adduct was recrystallised to give ≥ 99% ee, , a crystal was employed for X-
ray diffraction and then redissolved and analysed by HPLC, which confirmed ≥ 99% ee. 

e. Specific Rotation:
20][ Dα  154.9 [c 0.5, CHCl3]. 

 

        (c) Conditions for resolution of the enantiomers of PTAD adduct 164 on HPLC. 

Resolution of the PTAD adduct 164 was achieved using a Chiracel® OD-H column at 

room temperature, with isopropanol:hexane (10:90) as eluant, a flow rate of 0.5 ml/min, 

and the detector set at λ 218 nm. Under these conditions dextrorotatory (+)-164 elutes at 

10.0 min and the levorotatory (−)-164 elutes at 12.7 min. 

(d) Absolute stereochemistry data by single crystal X-ray diffraction on 

recrystallised (≥99% ee) sample of  92 % ee PTAD adduct 164 

Recrystallised from hot ethyl acetate. Crystal Data: C23H25N3O3, M = 391.46, tetragonal, 

a = 7.7426(2) Å, c = 68.433(2) Å, V = 4102.4(2) Å3, T = 296(2) K, space group P43212, Z 

= 8, 22513 reflections measured, 3383  unique (Rint = 0.0334). The final R1 values were 

0.0532 (I > 2σ(I)) and 0.0547 (all data). The final wR(F
2
) values were 0.1607 (I > 2σ(I)) 

and 0.1623 (all data). Flack parameter = 0.1(4), Hooft y parameter = 0.15(7). 

Note: Crystal structure confirmed that the (+) enantiomer of 164 is derived from 3aS 

enantiomer in the azulenone 97. Subsequent to X-ray diffraction, the crystal was 

redissolved and analysed by chiral HPLC, confirming the sample was ≥99% ee of the 

major enantiomer. 
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(3aR*,3bS*)-1,2,3b,4-Tetrahydro-1,1,3a,4,11,12-hexamethyl-7-phenyl-4,10-etheno-

6H,10H-cyclopenta[1,3]cyclopropa[1,2-d][1,2,4]triazolo[1,2-a]pyridazine-

3,6,8(3aH,7H)-trione 163 

(a) Reaction of crude azulenone 92 with PTAD 162 

This was prepared from the procedure described for 

313, from 2-diazo-5-methyl-5-(3,4,5-

trimethylphenyl)hexan-3-one 42 (0.50 g, 1.94 mmol) 

and crude 4-phenyl-1,2,4-triazoline-3,5-dione 162 

~(0.35 g) [freshly prepared from t-butyl hypochlorite 332 (0.24 g, 2.18 mmol), 4-phenyl 

urazole (0.39 g, 2.20 mmol) in acetone (10 mL)] to give the crude product as a yellow 

solid. Recrystallisation from hot ethyl acetate gave the pure adduct 163 as a white solid 

(0.51 g, 65%),  m.p. 176-178 ºC; (Found: C, 70.63; H, 7.17; N, 9.85; C24H27N3O3 requires 

C, 71.09, H, 6.71, N, 10.36%); νmax/cm−1 (KBr) 2970, 2920, 1767 w, 1729 s, 1707 s, 

1495, 1408; δH (500 MHz) 1.13 [3H, s, C(3a)CH3] 1.25, 1.31 [2 x 3H, 2 x s, C(1)(CH3)2], 

1.70 [1H, s, C(3b)H], 1.74 [3H, d, J 1.0, C(4)CH3], 1.84 [3H, d, J 1.0, C(11)CH3], 1.93 

[1H, A of AB, J 17.8, one of C(2)H2], 2.02 [3H, s, C(12)CH3], 2.13 [1H, B of AB, J 17.8, 

one of C(2)H2], 5.12 [1H, s, C(10)H]], 7.23-7.40 [1H, m, ArH], 7.41-7.56 [4H, m, ArH]; 

δC (125MHz) 7.6 [CH3, C(3a)CH3], 13.3, 16.8 [2 × CH3, C(4)CH3, C(11)CH3], 21.1 [CH3, 

C(12)CH3], 23.9, 27.1 [2 × CH3, C(1)(CH3)2], 34.5 [CH, C(3b)H], 36.4, 41.0, 43.5 [3 × C, 

C(1), C(3a), C(10a)], 48.5 [CH2, C(2)H2], 57.3 [CH, C(10)H], 66.3 [C, C(4)], 125.4, 

128.1, 129.0 [3 × CH, ArH], 129.6 [C,  aromatic C], 130.7, 131.5 [2 × C, C(11), C(12)], 

155.4, 156.1 [2 × C, C(6), C(9)], 211.7 [C, C(3)]; HRMS (ES+): Exact mass calculated 

for C24H27N3O3 [(M+H)+] 406.2131 Found 406.2147. m/z (ES+) 406 [(M+H)+, 100%], 

229 (30%), 105 (30%). 
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(b) Effect of catalyst on enantioselectivity of the decomposition of diazoketone 42, 

where the crude azulenone 92 was trapped with PTAD 162 to give adduct 163 

 

Table 3.14 Effect of catalyst on enantioselectivity of the decomposition of diazoketone 42 

Entry Catalyst Method Time (h)a Yield (%)b ee (%)c 

1 CuPF6-75[(R,R)-Ph-Box] B 1 80 93d,e 

a. Number of hours over which diazoketone was added. Reaction was found to be complete once all 
of the diazoketone was added. 

b. Yield of isolated product after flash chromatography (20% ethyl acetate:hexane as eluant). 
c. Determined by chiral HPLC. 
d. Major Enantiomer = (+). Crystal structure confirmed major enantiomer 3aS. [see Section (d) 

below] The 93% ee sample of adduct was recrystallised to give ≥ 99% ee, , a crystal was employed 
for X-ray diffraction and then redissolved and analysed by HPLC, which confirmed ≥ 99% ee. 

e. Specific Rotation:
20][ Dα  96.5 [c 1.0, CHCl3]. 

 

(c)  Conditions for resolution of the enantiomers of PTAD adduct 163 on HPLC. 

Resolution of the PTAD adduct 163 was achieved using a Chiracel® OD-H column at 

room temperature, with isopropanol:hexane (10:90) as eluant, a flow rate of 0.5 ml/min, 

and the detector set at λ 229 nm. Under these conditions dextrorotatory (+)-163 elutes at 

11.4 min and the levorotatory (−)-163 elutes at 14.1 min. 

(d)  Absolute stereochemistry data by single crystal X-ray diffraction on 

recrystallised (≥ 99% ee) sample of  93 % ee PTAD adduct 163 

Recrystallised from hot ethyl acetate. Crystal Data: C24H27N3O3, M = 405.49, 

orthorhombic, a = 7.829(1) Å, b = 8.6480(11) Å, c = 31.752(4) Å, V = 2,149.8(5) Å3, T = 

100(2) K, space group P212121, Z = 4, 19559 reflections measured, 3789 unique (Rint = 

0.0248). The final R1 values were 0.0274 (I > 2σ(I)) and 0.0277 (all data). The final 

wR(F
2
) values were 0.0688 (I > 2σ(I)) and 0.0691 (all data). Flack parameter = 0.04(16), 

Hooft y parameter = 0.01(5). 
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Note: Crystal structure confirmed that the (+) enantiomer of 163 is derived from 3aS 

enantiomer of the azulenone 92. Subsequent to X-ray diffraction, the crystal was 

redissolved and analysed by chiral HPLC, confirming the sample was ≥99% ee of the 

major enantiomer. 

3.11.2 Reaction of crude azulenones synthesised from terminal αααα-diazoketones with 

PTAD 

 

(3aS*, 3bR*)-1,2,3b,4-Tetrahydro-1,1,3a-dimethyl-7-phenyl-4,10-etheno-6H,10H-

cyclopenta[1,3]cyclopropa[1,2-d][1,2,4]triazolo[1,2-a]pyridazine-3,6,8(3aH,7H)-

trione 197 

(a) Reaction of crude azulenone 178 with PTAD 162 

1-Diazo-4-methyl-4-phenylpentan-2-one 43 (0.48 g, 

2.73 mmol) in doubly distilled dichloromethane (80 

mL) was added dropwise over ~ 1 h to a refluxing 

solution of Rh2(OAc)4 87 (0.5 mg) in deoxygenated 

doubly distilled dichloromethane (80 mL). The progress of the reaction was monitored by 

TLC and was found to be complete once all of the diazoketone was added. The reaction 

mixture was then cooled to 0 ºC and crude 4-phenyl-1,2,4-triazoline-3,5-dione 162 

[freshly prepared from t-butyl hypochlorite 332 (0.30 g, 0.34 mL, 2.73 mmol), 4-phenyl 

urazole (0.48 g, 2.73 mmol) in dry acetone (10 mL)] was added as a solid in one portion. 

The reaction mixture was stirred at 0 ºC for 5 min after which the ice-bath was removed 

and the reaction mixture was warmed to room temperature. The reaction mixture turned 

from the brick-red colour of the dienophile to a clear solution within minutes of its 

addition, indicating completion of the reaction. It was stirred for a further 30 min before 

concentration of the reaction mixture under reduced pressure gave the crude adduct 197 

(0.50 g) as an off-white solid. Purification by recrystallisation from hot ethyl acetate gave 

the  pure adduct 197 (0.35 g, 42%) as a white solid, m.p. 195-198 ºC; (Found: C, 69.08; 

H, 5.44; N, 12.25; C20H19N3O3 requires C, 68.75, H, 5.48, N, 12.03%);  νmax/cm−1 (KBr)  

2963, 2924, 2867, 1780 w, 1700 s, 1413; δH (300 MHz) 1.35, 1.36 [2 x 3H, 2 x s, 

C(1)(CH3)2], 1.60 [ 1H, s, X of ABX†, C(3a)H], 2.02 [1H, dd, A of ABX, JAB 17.7, JAX 

1.4, one of C(2)H2], 2.22 [1H, dd, J 4.8, 1.5, C(3b)H], 2.23 [1H, d, B of ABX, JAB 17.7, 

N
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one of C(2)H2], 5.29-5.37 [2H, m, C(4)H, C(10)H], 6.07-6.13 [1H, m, C(11)H], 6.33-6.40 

[1H, m, C(12)H], 7.34-7.45 (5H, m, ArH); δC (75.5 MHz) 20.2 [CH, C(3a)H], 24.6, 26.8 

[2 × CH3, C(3)(CH3)2], 36.3, 37.6 [2 × C, C(1), C(3a)], 38.2 [CH, C(3b)H], 51.0 

[C(2)H2], 51.7, 53.2 [2 × CH, C(4)H, C(10)H], 124.9, 125.5, 128.4, 128.8, 129.2 [5 × CH, 

C(11)H, C(12)H, aromatic CH], 131.2 [C, aromatic C], 156.4, 156.8 [2 × C, C(6), C(8)], 

208.9 [C, C(3)]; m/z (ES+) 391 (40%), 351 (20%), 350 [(M+H)+, 100%], 105 (35%). 

† While C(3a)H appeared as a singlet, remote coupling to one of C(2)H2 is visible (J 1.4). 

(b) Effect of catalyst on enantioselectivity of the decomposition of diazoketone 43, 

where the crude azulenone 178 was trapped with PTAD 162 to give adduct 197 

 

Table 3.15 Effect of catalyst on enantioselectivity of the decomposition of diazoketone 43 

Entry Catalyst Method Time (h)a Yield (%)b ee (%)c 

 

1 

 

CuPF6-75[(R,R)-Ph-Box]d,g,k 

 

 

B 

 

1f 63 56m,q 

1f + 2h 
stirring 

55 40m 

3 CuPF6-74[(S,S)-t-Bu-Box]d,h,k B 1 62 77n 

4 
CuPF6-89[(4R,5S)-tetra-Ph-

Box]d,i,k 
B 1 49 7m,r 

5 CuPF6-91[(R,R)-Bn-Box]d,j,k B 1 61 12m 

6 
CuCl-NaBARF-75[(R,R)-Ph-

Box]e,,k 
C 2 66 46m 

7 
CuCl-NaBARF-74[(S,S)-t-Bu-

Box]e,k 
C 2 63 61n,s 

8 
CuPF6-75[(R,R)-Ph-Box]d,l 

 
B 1 49i 16m,o,p 

9 
CuCl-NaBARF-75[(R,R)-Ph-

Box]e,l 
C 2 40i 0m,o,p 

(a) Number of hours over which diazoketone was added. 
(b) Yield of isolated product after flash chromatography (20% ethyl acetate:hexane as eluant). 
(c) Determined from chiral HPLC. 
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(d) The catalyst was prepared from 1.3:1 molar mixture of ligand: Cu(CH3CN)4PF6. 
(e) The catalyst was prepared from 5 mol% CuCl, 6 mol% ligand and 6 mol% NaBARF. Catalyst was stirred 

for 2 h at 20oC  before substrate was added.  
(f) Azulenone 178 was split into two separate mixtures once reaction was complete. The diazoketone was 

added over 1 h and was found to be complete once all substrate was added. First mixture was trapped with 
PTAD immediately. Second mixture was stirred for a further 2 h before being trapped with PTAD. 

(g) The 1H NMR spectrum of the crude reaction mixture contained an unknown side-product (13%). Signals 
were observed at δH (300 MHz); 1.14 (4H, s), 1.21 (3H, s), 1.21 (3H, s), 1.40 (6H, d, J 1.0), 2.38-2.46 (7H, 
m), 4.93 (1H, d, J 5.1), 5.19 (1H, dd, J 9.3, 3.9), 5.59-5.68 (1H, m), 5.96 (1H, dd, J 9.1, 5.1), 6.20 (2H, d, J 
4.8), 6.47-6.79 (7H, m), 7.02 (1H, dd, J 11.1, 6.0), 7.71-7.79 (5H, m). 

(h) The 1H NMR spectrum of the crude reaction mixture contained an unknown side-product (10%). Signals 
were observed at δH (300 MHz); 1.21 (2H, s), 1.39-1.40 (4H, m), 4.88 [1H, d, J 3.0], 5.08 [1H, d, J 6.0], 
5.96 [1H, dd, J 9.0, 6.0], 6.90 [1H, d, J 12.0], 7.05 [1H, dd, J 12.0, 6.0], 

(i) The 1H NMR spectrum of the crude reaction mixture contained starting azulenone 178 (51%). 
(j) The 1H NMR spectrum of the crude reaction mixture contained an unknown side-product (27%). Signals 

were observed at δH (300 MHz);1.14 (2H, s), 1.21 (4H, s), 1.25-1.29 (8H, m), 1.39-1.40 (4H, m), 1.46-1.47 
(8H, m), 2.38-2.67 (12H, m), 4.80-4.84 (1H, m), 4.93 (1H, d, J  9.9), 5.04 -5.08 (1H, m), 5.19 (1H, dd, J  
9.3, 4.2), 5.62-5.76 (1H, m), 5.96 (2H, dd, J 12.9, 5.1). 

(k) Adduct prepared from sublimed PTAD. 
(l) Adduct prepared from crude PTAD. 
(m) Major Enantiomer = (+). 
(n) Major Enantiomer = (−). 
(o) Purified by recrystallisation from hot ethyl acetate. 
(p) Determined by chiral 1H NMR spectroscopy using (+)-Eu(hfc)3 as chiral shift reagent 

(q) Specific Rotation:
20][ Dα  37.3 [c 0.5, CHCl3]. 

(r) Specific Rotation:
20][ Dα  5.7 [c 0.35, CHCl3]. 

(s) Specific Rotation:
20][ Dα  -43.5 [c 0.5, CHCl3]. 

 

(c) Conditions for resolution of the enantiomers of PTAD 197 adduct on HPLC 

Resolution of the PTAD adduct 197 was achieved using a Chiracel® OD-H column at 40 

ºC , with isopropanol:hexane (10:90) as eluant, a flow rate of 0.5 ml/min, and the detector 

set at λ 227 nm. Under these conditions dextrorotatory (+)-197 elutes at 59.6 min and the 

levorotatory (−)-197 elutes at 55.1 min. 
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(3aS*, 3bR*)-1,2,3b,4-Tetrahydro-1,1,3a,12-trimethyl-7-phenyl-4,10-etheno-

cyclopenta[1,3]cyclopropa[1,2-d][1,2,4]triazolo[1,2-a]pyridazine-3,6,8(3aH,7H)-

trione 198 

(a) Reaction of crude azulenone 179 with  sublimed PTAD 162 

This was prepared from the procedure described for 

198, 1-diazo-4-methyl-(4-methylphenyl)pentan-2-one 

44 (0.097 g, 0.45 mmol) in doubly distilled 

dichloromethane (80 mL), Rh2(OAc)4 87 in 

deoxygenated doubly distilled dichloromethane (80 mL) and sublimed 4-phenyl-1,2,4-

triazoline-3,5-dione 162 (0.08 g, 0.45 mmol) to give the crude product as a yellow solid. 

Purification by flash chromatography on silica gel, using ethyl acetate/hexane (40:60) as 

eluent gave the pure adduct 198 (0.045 g, 53%) as a yellow solid, m.p. 155-161 ºC; 

[Found: C, 67.74; H, 5.82 N, 11.36; C21H21N3O3 (adduct +0.4H2O) requires C, 67.86, H, 

5.69 N, 11.31%]*;   νmax/cm−1 (KBr)  2965, 2931, 2870, 1951, 1782 w, 1731 s, 1403; δH 

(300 MHz) 1.34, 1.35 [2 × 3H, 2 × s, C(1)(CH3)2], 1.48 [ 1H, s, X of ABX, C(3a)H], 1.84 

[3H, d, J 3.0, C(12)CH3], 2.02 [1H, dd, A of ABX, JAB
† 17.7, JAX 1.5, one of C(2)H2], 

2.18-2.20 [1H, br m, C(3b)H], 2.20 [1H, d, B of ABX, JAB
† 21.6, one of C(2)H2], 5.11 

[1H, dd, J 4.8, 2.1, C(4)H], 5.26 [1H, d, J 6.0 C(10)H], 5.92-5.99 [1H, m, C(11)H], 7.34-

7.49 (5H, m, ArH); δC (75.5 MHz) 19.5 [CH3, C(12)CH3], 19.9 [CH, C(3a)H], 24.5, 26.9 

[2 × CH3, C(3)(CH3)2], 36.3, 39.3 [2 × C, C(1), C(3a)], 37.8 [CH, C(3b)H], 51.00 

[C(2)H2], 52.5, 57.5 [2 × CH, C(4)H, C(10)H], 120.8 [CH, C(11)H],  125.3, 128.4, 129.1, 

131.3 [4 × CH, aromatic CH], 135.7 [C, ArC], 156.7, 157.0 [2 × C, C(6), C(8)], 208.6 [C, 

C(3)]; HRMS (ES+): Exact mass calculated for C21H21N3O3 [(M+H)+] 364.1661 Found 

364.1677.  m/z (ES+) 364 [(M+H)+, 30%], 83 (50%), 42 (100%). 

* 1H NMR showed the presence of water. Elemental analysis is in agreement with the 

adduct 198+0.5H2O. 

† Geminal coupling constants differ somewhat (JAB 17.7, 21.6) and are not easily 

rationalised. 
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(b) Effect of catalyst on enantioselectivity of the decomposition of diazoketone 44, 

where the crude azulenone 179 was trapped with  sublimed PTAD 162 to give 

adduct 198 

 

Table 3.16 Effect of catalyst on enantioselectivity of the decomposition of diazoketone 44 

Entry Catalyst Method Time (h)a Yield (%)b ee (%)c 

1 CuPF6-75[(R,R)-Ph-Box]d B 1 47 25e,g 

2 CuPF6-74[(S,S)-t-Bu-Box]d B 1 55 30f,g 

3 CuPF6-89[(4R,5S)-tetra-Ph-

Box]d 

B 1 65 23e,h 

4 CuPF6-91[(R,R)-Bn-Box]d B 1 54 4e,h 

a. Number of hours over which diazoketone was added. 
b. Yield of isolated product after flash chromatography (20% ethyl acetate:hexane as eluant). 
c. Determined from chiral HPLC. 
d. The catalyst was prepared from 1.3:1 molar mixture of ligand: Cu(CH3CN)4PF6. 
e. Major Enantiomer = (+). 
f. Major Enantiomer = (−). 
g. Chiral HPLC using OD-H column 
h. Chiral HPLC using Chiradex column. 

i. Specific Rotation:
20][ Dα  10.00 [c 0.5a, CHCl3]. 

 

(c) Conditions for resolution of the enantiomers of PTAD 198 adduct on HPLC 

using OD-H column 

Resolution of the PTAD adduct 198 was achieved using a Chiracel® OD-H column at 40 

ºC , with isopropanol:hexane (2:98) as eluant, a flow rate of 0.5 ml/min, and the detector 

set at λ 219 nm. Under these conditions dextrorotatory (+)-198 elutes at 100.9 min and 

the levorotatory (−)-198 elutes at 85.0 min. 
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(d) Conditions for resolution of the enantiomers of PTAD 198 adduct on HPLC 

using reverse phase Chiradex column. 

Resolution of the PTAD adduct 198 was achieved using a reverse phase LiChroCART 

250-4 ChiraDex® at room temperature, with water/methanol (60:40) as eluant, a flow rate 

of 0.5 ml/min, and the detector set at λ 230 nm. Under these conditions dextrorotatory 

(+)-198 elutes at 19.9 min and the levorotatory (−)-198 elutes at 23.0 min. 

(3aS*,3bR*)-1,2,3b,4-Tetrahydro-1,1,3a-dimethyl-7-phenyl-4,10-etheno-12-chloro-

cyclopenta[1,3]cyclopropa[1,2-d][1,2,4]triazolo[1,2-a]pyridazine-3,6,8(3aH,7H)-

trione 199 and CHT adduct 203 

(a) Reaction of crude chlorinated azulenone 180 with  sublimed PTAD 162 

This was prepared from the procedure described for 197, 

1-diazo-4-methyl-(4-chlorophenyl)pentan-2-one 45 

(0.20 g, 0.85 mmol) in doubly distilled dichloromethane 

(80 mL), Rh2(OAc)4 87 in deoxygenated doubly distilled 

dichloromethane (80 mL) and sublimed 4-phenyl-1,2,4-

triazoline-3,5-dione 162 (0.20 g, 0.85 mmol).The  

progress of the reaction was monitored by TLC and 

required stirring at room temperature for 4h before going 

to completion to give a brown coloured solution. The 

solution was concentrated under reduced pressure to give 

the crude adduct 199 and a side product believed to be the CHT adduct 203, in the ratio 

199:203, 60:40 as a dark brown oil; νmax/cm−1 (film) 1721,1503, 1405, 1255, 1199;   δH 

(300 MHz) 1.35 [6H, s, C(1)(CH3)2], 1.66 [ 1H, s, X of ABX, C(3a)H], 2.04 [1H, dd, A of 

ABX, JAB 17.7, JAX 1.2, one of C(2)H2], 2.22 [1H, d, B of ABX, JAB 22.5, one of C(2)H2], 

2.24 [1H, d, J 1.8, C(3b)H],  5.34 [1H, dd, J 5.1, 2.7, C(4)H], 5.40 [1H, d, J 6.5, C(10)H], 

6.28 [1H, dd, J 6.3, 2.4, C(11)H], 7.19-7.50 (5H, m, ArH); 

Peaks for CHT adduct 203 partially assigned as δH (300 MHz) 203 1.21, 1.43 [2 × 3H, 2 

× s, C(3)(CH3)2], 2.49-2.54 [2H, m, C(2)H2], 5.05 [1H, d, J 6.5, C(4)H or C(5)H or 

C(7)H], 6.06 [1H, finely split d, J 6.3, C(4)H or C(5)H or C(7)H], 6.96 [1H, dd, A of 

ABX, JAB 11.7, JAX 0.0, C(7)H or C(8)H], 6.94 [1H, dd, B of ABX, JAB 11.7, JBX 1.2, 

C(7)H or C(8)H] 
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The mixture could not be separated by flash chromatography. 

(b) Reaction of the crude PTAD adduct 199 and CHT adduct 203 mixture with zinc 

chloride 

Zinc chloride (1M solution in ether, 5.26 mL, 5.26 mmol) was added to a stirring solution 

of crude (3aS*, 3bR*)-1,2,3b,4-tetrahydro-1,1,3a-dimethyl-7-phenyl-4,10-etheno-12-

chloro-cyclopenta[1,3]cyclopropa[1,2-d][1,2,4]triazolo[1,2-a]pyridazine-3,6,8(3aH,7H)-

trione 199 and the CHT adduct 203 (0.40 g, 1.05 mmol) (199:203, 60:40) in 

dichloromethane (30 mL) at 0 ºC under nitrogen. The ice-bath was then removed and the 

reaction mixture was allowed warm to room temperature. The reaction mixture was 

stirred for 24 h at room temperature under nitrogen. Saturated aqueous sodium carbonate 

(20 mL) was added to the reaction mixture and the layers were separated. The aqueous 

layer was extracted with dichloromethane (3 × 20 mL), the combined organic layer was 

then washed with water (50 mL), brine (50 mL), dried, filtered and concentrated under 

reduced pressure to give the crude adduct as a brown solid. 1H NMR of the crude material 

showed major product was adduct 199 (50%) and additional signals at δH 7.03 (1H, dd, J 

12.0, 2.7), 7.21 (1H, dd, J 12.5, 2.7), 7.28 (1H, d, J 8.4), presumably due to the reaction 

of CHT adduct 203. Purification by flash chromatography on silica gel, using ethyl 

acetate/hexane (40:60) as eluent gave the pure starting adduct 199 (0.32 g, 80%) as a 

yellow solid, m.p. 145-149 ºC; [Found: C, 61.33; H, 5.06; N, 10.48; Cl, 9.35; 

C20H18ClN3O3 (adduct +0.4H2O) requires C, 61.58, H, 4.65, N, 10.77; Cl, 9.09%]*;  

νmax/cm−1 (KBr)  2969, 2928, 1790 w, 1724 s, 1413; δH (300 MHz) 1.35 [6H, s, 

C(1)(CH3)2], 1.66 [ 1H, s, X of ABX, C(3a)H], 2.04 [1H, dd, A of ABX, JAB 17.7, JAX 1.2 

one of C(2)H2], 2.22 [1H, d, B of ABX, JAB 22.5, one of C(2)H2], 2.24 [1H, d, J 1.8, 

C(3b)H],  5.34 [1H, dd, J 5.1, 2.7, C(4)H], 5.40 [1H, d, J 6.5, C(10)H], 6.28 [1H, dd, J 

6.3, 2.4, C(11)H], 7.32-7.50 (5H, m, ArH);  

δC (75.5 MHz) 19.6 [CH, C(3a)H], 24.5, 26.9 [2 × CH3, C(1)(CH3)2], 36.3 [C, C(1) or 

C(3a)], 37.4 [CH, C(3b)H], 38.8 [C, C(1) or C(3a)], 50.8 [C(2)H2], 53.0, 60.0 [2 × CH, 

C(4)H, C(10)H], 123.4 [CH, C(11)H],  125.4, [CH, aromatic CH], 127.9 [C, aromatic C], 

128.7, 129.3 [2 × CH, aromatic CH], 130.9 [C, C-Cl], 156.3, 156.4 [2 × C, C(6), C(8)], 

207.5 [C, C(3)]; HRMS (ES+): Exact mass calculated for C20H18Cl35N3O3 [(M+H)+] 
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384.1115 Found 384.1101.  m/z (ES+) 384 [(C20H18Cl35N3O3+H)+, 20%], 101 (30%), 60 

(100%). In HRMS (ES+), (C20H18Cl37N3O3+H)+ detected at 386.1083. 

* 1H NMR showed the presence of water. Elemental analysis is in agreement with the 

adduct 199+0.4H2O. 

(c) Effect of catalyst on enantioselectivity of the decomposition of diazoketone 45, 

where the crude azulenone 180 was trapped with sublimed PTAD 162 to give 

the pure adduct 199 

 

A sample of diazoketone 45 was cyclised with the catalyst shown in Table 3.27, followed 

by reaction with ZnCl2 as described in section (b) to remove CHT adduct 203. 

Enantiopurity of remaining adduct 199 could be determined by HPLC. 

Table 3.17 Effect of catalyst on enantioselectivity of the decomposition of diazoketone 45 

Entry Catalyst Method Time (h)a Yield (%)b ee (%)c 

1 CuPF6-75[(R,R)-Ph-Box]d B 1 63 83e,f 

a. Number of hours over which diazoketone was added. 
b. Yield of isolated product 199 after flash chromatography (20% ethyl acetate:hexane as eluant). 
c. Determined from chiral HPLC. 
d. The catalyst was prepared from 1.3:1 molar mixture of ligand: Cu(CH3CN)4PF6. 
e. Major Enantiomer = (+). 

f. Specific Rotation:
20][ Dα  23.2 [c 0.55, CHCl3]. 

 

(d) Conditions for resolution of the enantiomers of PTAD 199 adduct on HPLC 

using reverse phase Chiradex column. 

Resolution of the PTAD adduct 199 was achieved using a reverse phase LiChroCART 

250-4 ChiraDex® at room temperature, with water/methanol (60:40) as eluant, a flow rate 

of 0.5 ml/min, and the detector set at λ 230 nm. Under these conditions dextrorotatory 

(+)-199 elutes at 18.9 min and the levorotatory (−)-199 elutes at 27.0 min. 
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Attempted synthesis of (3aS*,3bR*)-1,2,3b,4-Tetrahydro-1,1,3a-dimethyl-7-phenyl-

4,10-etheno-12-fluoro-cyclopenta[1,3]cyclopropa[1,2-d][1,2,4]triazolo[1,2-

a]pyridazine-3,6,8(3aH,7H)-trione 200 

Synthesis was attempted following the procedure 

described for 197, from 1-diazo-4-methyl-(4-

fluorophenyl)pentan-2-one 46 (0.10 g, 0.45 mmol) 

in doubly distilled dichloromethane (80 mL), 

Rh2(OAc)4 87 in deoxygenated doubly distilled dichloromethane (80 mL) and sublimed 

4-phenyl-1,2,4-triazoline-3,5-dione 162 (0.084 g, 0.48 mmol) to give the crude reaction 

mixture as a brown oil. A 1H NMR spectrum of the crude reaction mixture showed no 

presence of the desired adduct 200 or starting azulenone 181. Purification by flash 

chromatography on silica gel, using ethyl acetate/hexane (10:90) as eluent gave an 

unidentifiable product as a brown oil (30 mg).  νmax/cm−1 (film) 2934, 1714, 1503, 1412, 

1199; δH (300 MHz) 1.43 [6H, s,], 2.56 [2H, s], 7.03 [1H, dd, J 12.0, 2.4], 7.21 [1H, dd, J 

12.3, 2.7], 7.28 [1H, d, J 8.1], 7.44 [1H, d, J 12.0]. 

Attempted synthesis of (3aS*,3bR*)-1,2,3b,4-Tetrahydro-1,1,4,11,12-pentamethyl-7-

phenyl-4,10-etheno-6H,10H-cyclopenta[1,3]cyclopropa[1,2-d][1,2,4]triazolo[1,2-

a]pyridazine-3,6,8(3aH,7H)-trione 202 

Synthesis was attempted following the procedure 

described for 197, from 1-diazo-4-methyl-(3,4,5-

trimethylphenyl)-pentan-2-one 48 (0.11 g, 0.45 mmol) 

in doubly distilled dichloromethane (80 mL), 

Rh2(OAc)4 87 in deoxygenated doubly distilled dichloromethane (80 mL) and crude 4-

phenyl-1,2,4-triazoline-3,5-dione 162 [freshly prepared from t-butyl hypochlorite 332 

(0.05 g, 0.51 mmol), 4-phenyl urazole (0.09 g, 0.52 mmol) in dry acetone (10 mL)] was 

added as a solid in one portion to give the crude reaction mixture as a brown oil. A 1H 

NMR spectrum of the crude reaction showed a complex mixture of unidentifiable 

products. Purification by flash chromatography on silica gel, using ethyl acetate/hexane 

(5:95) as eluent gave an unidentifiable product (60 mg); νmax/cm−1 (film) 2965, 1775 (w), 

1713 (s), 1599, 1503, 1427; δH (300 MHz) 1.03 (2H, s), 1.28 (3H, s), 1.31 (3H, s), 1.46 

N

N ONPh

O

O F

Not Formed



 
                                                                                               Chapter 3– Experimental 
 

 

278 

 

(6H, s), 1.80 (2H, s), 2.12 (2H, s), 2.16 (1H, s), 2.21 (1H, s), 2.26 (3H, s), 2.29 (3H, s), 

2.32 (1H, s), 2.40 (3H, s), 3.52 (1H, s), 4.15 (1H, s), 6.05 (1H, s), 6.77 (1H, s), 7.00 (1H, 

s), 7.24 (1H, s). 

(3aS*,3bR*)-1,2,3b,4-Tetrahydro-1,1,4,12-tetramethyl-7-phenyl-4,10-etheno-

6H,10H-cyclopenta[1,3]cyclopropa[1,2-d][1,2,4]triazolo[1,2-a]pyridazine-

3,6,8(3aH,7H)-trione 201 and 3,3,5,7-tetramethyl-2,3-dihydroazulen-1(4H)-one 188 

This was prepared from the procedure described 

for 197, 1-diazo-4-methyl-(3,5-

dimethylphenyl)pentan-2-one 47 (0.050 g, 0.22 

mmol) in doubly distilled dichloromethane (80 

mL), Rh2(OAc)4 87 in deoxygenated doubly 

distilled dichloromethane (80 mL) and sublimed 

4-phenyl-1,2,4-triazoline-3,5-dione 162 (0.047 

g, 0.27 mmol) to give the crude reaction mixture 

as a yellow oil. 1H NMR of the crude reaction 

mixture showed the presence of trienone 188 (49%). Purification by flash 

chromatography on silica gel, using ethyl acetate/hexane (40:60) as eluent gave the pure 

conjugated trienone 188 as a yellow oil (19 mg, 40%); νmax/cm−1 (film) 2961, 2355, 1727, 

1554, 1199, 913, 743; δH (300 MHz) 1.32 [6H, s, C(3)(CH3)2], 2.20 [3H, s, C(5)CH3 or 

C(7)CH3], 2.33 [3H, s, C(5)CH3 or C(7)CH3], 2.54 [2H, s, C(2)H2], 3.47 [2H, s, C(4)H2], 

6.93 [1H, s, C(6)H or C(8)H], 7.10 [1H, s, C(6)H or C(8)H]; δC (75.5 MHz) 19.8, 21.2 [2 

× CH3, C(5)CH3, C(7)CH3], 29.7 [CH3, C(3)(CH3)2], 37.4 [C, C(3)], 41.4, 54.0  [2 × CH2, 

C(2)H2, C(4)H2], 122.8 [CH, C(6)H or C(8)H], 128.0 [C, one of C(5), C(7), C(3a), C(8)], 

129.2 [CH, C(6)H or C(8)H], 136.2, 144.3 [2 × C, two of C(5), C(7), C(3a), C(8)], 210.1 

[C, C(1)]. 3 × C signals seen at 128.0, 136.2, 144.3 for 4 quaternary C [C(5), C(7), C(3a), 

C(8a)] in vinylic region of 13C NMR spectrum; HRMS (ES+): Exact mass calculated for 

C14H18O [(M+H)+] 203.1436 Found 203.1442. m/z (ES+) 244 (30%), 203 [(M+H)+, 

100%], 201 (60%), 83 (65%). 
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3.11.3 Synthesis of hydrogenated cycloadduct 

 

 (3aS*, 3bR*)-1,2,3b,4-Tetrahydro-1,1,3a-dimethyl-7-phenyl-4,10-ethano-6H,10H-

cyclopenta[1,3]cyclopropa[1,2-d][1,2,4]triazolo[1,2-a]pyridazine-3,6,8(3aH,7H)-

trione 209 and hydrogenated CHT adduct 210 

A mixture of crude PTAD adduct 199 and 

CHT adduct 203 (0.15 g, 0.39 mmol) in the 

ratio of  199:203,  70:30,  and palladium on 

carbon (5%, 30 mg) in absolute ethanol (20 

mL) was shaken under hydrogen at 50 psi, 

for 18 h at room temperature. The crude 

reaction mixture was passed through a pad of 

Celite® to remove the hydrogenation 

catalyst. The product was rinsed through the 

Celite® with ethanol (3 × 50 mL) to fully 

elute it, while keeping the catalyst wet. Concentration of the solution under reduced 

pressure gave the hydrogenated NCD adduct 209 and hydrogenated CHT adduct 210 

(100 mg). The ratio of the hydrogenated NCD adduct 209 to hydrogenated CHT adduct 

210 was unable to be determined due to the complex nature of the 1H NMR spectrum of 

the crude reaction mixture.  Purification by flash chromatography, using ethyl 

acetate/hexane (30:70) as eluent gave a two fractions. The first less polar fraction gave a 

yellow oil, which was tentatively assigned as the hydrogenated CHT adduct 210 (6 mg, 

5%) which also contained an unidentifiable impurity (~30% of the sample); δH (300 

MHz) 1.22 [6H, s, C(3)(CH3)2], 2.34 [2H, s, C(2)H2], 2.51-2.56 [2H, m, one of C(4)H2, 

C(5)H2, C(7)H2, C(8)H2], 2.60-2.68 [4H, m, two of C(4)H2, C(5)H2, C(7)H2, C(8)H2], 

2.75-2.79 [2H, m, one of C(4)H2, C(5)H2, C(7)H2, C(8)H2], 3.43-3.57 [1H, m, C(6)H], 

7.45-7.53 [5H, ArH]; δC (75.5 MHz) 18.8 [CH2, one of C(4)H2, C(5)H2, C(7)H2, C(8)H2], 

23.1 [CH2, one of C(4)H2, C(5)H2, C(7)H2, C(8)H2], 26.8 [CH3, C(3)(CH3)2], 40.5, 41.6, 

50.4 [CH2, C(2)H2, C(4)H2, C(5)H2, C(7)H2, C(8)H2], 129.3 [CH, aromatic CH]; m/z 

(ES+) 355 (60%), 298 (30%), 278 (100%), 251 (30%), 207 (40%); The second fraction 

was a white solid which was partially assigned as the hydrogenated NCD adduct 209 (35 

mg, 25%). The 1H and 13C NMR spectra of the second fraction illustrated a complex 
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mixture of products, the signals of the partially assigned hydrogenated NCD adduct 209, 

which could be clearly identified are listed below; m.p. 176-181 ºC;  νmax/cm−1 (film) 

2960, 1704, 1503, 1412, 1199; δH (300 MHz) 1.23, 1.29 [2 × 3H, 2 × s, C(1)(CH3)2],  

2.03-2.10 [4H, m, C(2)H2, C(11)H2, C(12)H2], 2.27-2.29 [2H, m, C(2)H2, C(11)H2, 

C(12)H2], 2.55-2.66 [1H, m, C(3a)H], 4.83-4.86 [1H, m, C(4)H or C(10)H], 4.92 [1H, 

finely split s, J 1.2, C(4)H or C(10)H], 7.45-7.54 [5H, m, ArH]; δC (75.5 MHz) 23.9, 26.6 

[2 × CH3, C(1)(CH3)2], 27.9 [CH2, C(2)H2, C(11)H2, C(12)H2], 36.9 [CH2, C(2)H2, 

C(11)H2, C(12)H2], 48.2, 48.9, 49.0 [2 × CH, C(4)H, C(10)H], 125.5, 129.2 [2 × CH, 

aromatic CH], 151.8, 152.0 [2 × C, C(6), C(8)], 209.0 [C, C(3)]; HRMS (ES+): Exact 

mass calculated for C20H21N3O3 [(M+H)+] 352.1661 Found 352.1657. m/z (ES+) 352 

[(M+H)+, 20%], 346 (10%), 236 (40%), 195 (100%). 

3.11.4 Synthesis of hydrazone 

 

Attempted synthesis of hydrazone 314 with (R)-RAMP 352 from cycloadduct 313 

(R)-(+)-1-Amino-2-(methoxymethyl)pyrrolidine 

–(R) (RAMP) (83 mg, 0.65 mmol) was added 

neat to cycloadduct 313 (0.25 g, 0.65 mmol) 

and the mixture was heated at 60 ºC overnight, 

while stirring under nitrogen. Diethyl ether (20 

mL) was subsequently added to the brown oil 

and the resulting solution was washed with water (10 mL). The layers were separated, and 

the organic layer was washed with brine (10 mL), dried and concentrated under reduced 

pressure to give a brown oil. The 1H NMR spectrum of crude material showed the 

presence of adduct 313. Purification by flash chromatography, using ethyl acetate/hexane 

(30:70) as eluent, gave two fractions. The first least polar fraction contained the 

azulenone 95 (10 mg, 7%) and a number of unidentifiable peaks. The second fraction 

contained a complex mixture of starting adduct 314 (120 mg) and unidentifiable products. 
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3.12 Synthesis of Bisoxazoline Ligands: 

 

(S)-2-Acetoxy-2-phenylacetic acid 139
47

 

(S)-Mandelic acid (5.00g, 32.86 mmol) was added to a 

mixture, while stirring at 0°C, of pyridine (12.5 mL, 155.0 

mmol), acetic anhydride (3.34 mL, 35.48 mmol), 

dimethylaminopyridine (0.025 g, 0.2 mmol) and diethyl ether 

(50 mL). The mixture was allowed warm slowly to room 

temperature while stirring overnight. The mixture was acidified with aqueous 

hydrochloric acid (2M, 50 mL) and washed with diethyl ether (4 × 20 mL). The combined 

organic layers were extracted with water (50 mL), brine (50 mL), dried and concentrated 

under reduced pressure to give the acid 139 (5.50 g, 86%) as a white solid, m.p. 80-83 °C 

(Lit.,47 79-81 °C) ; νmax/cm−1 (film) (KBr) 3448 br (OH), 1726 (CO), 1700; δH (300 MHz) 

2.19 [3H, s, CH3], 3.87 [3H, s (br), OH]*, 5.95 [1H, s, CH], 7.38-7.41 [3H, m, ArH], 

7.47-7.50 [2H, m, ArH]. 
20][ Dα  146.1 (c 1.0, CHCl3), {Lit.,47 25][ Dα  107.8 (c 1.25, 

CHCl3}.* Broad signal seen at 3.87 ppm believed to be H2O/CO2H. 

(S)-2-Acetoxy-2-phenylacetyl chloride 137
48 

This was prepared following the procedure described for 63, from 

crude (S)-2-acetoxy-2-phenylacetic acid 139 (10.00 g, 51.95 

mmol), thionyl chloride (6.74 g, 4.31 mL, 56.64 mmol) and a 

catalytic amount of DMF (3 drops), to give a crude acid chloride 

as a brown oil. The brown oil formed was then purified by vacuum 

distillation (110○C, 0.60 mmHg, Lit.,49 125-130○C, 10 mmHg) to give the pure acid 

chloride 137 (8.54 g, 77%) as a yellow oil; νmax/cm−1 (film) 2917, 1804 (CO), 1751 (CO), 

1372, 1221; δH (300 MHz) 2.21 [3H, s, CH3], 6.08 [1H, s, CH], 7.43-7.51 [5H, m, ArH]; 

20][ Dα  107.3 (c 1.0, CHCl3), {Lit.,50 27][ Dα  186 (c 3.5, CHCl3)}. 

Caution! When DMF is exposed to thionyl chloride N,N-dimethylcarbamoyl chloride 

(DMCC)  is formed. Extreme caution must be exercised when carrying out a reaction 

Cl

O

O

O

OH

O
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under such conditions as DMCC is a potent carcinogen in animals16 and is believed to 

have a similar effect in humans.51,52  

2-Amino-2-phenylethanol 138 
53,54

 

Lithium aluminium hydride (2.75 g, 72.3 mmol) was suspended in 

tetrahydrofuran (100 mL) at 0 ○C. Phenylglycine (5.00 g, 33 

mmol) was added slowly in small portions. The reaction mixture 

was heated under reflux overnight and then cooled to room 

temperature. Saturated potassium carbonate (50 mL) was added slowly. The mixture was 

filtered and the filter cake washed with tetrahydrofuran (3 × 50 mL), The resulting 

solution was concentrated under reduced pressure to give the amino alcohol 138 (4.21 g, 

93%) as a yellow oil; νmax/cm−1 (film) 3349-2400 (OH), 1954, 1882, 1813, 1602, 1494, 

1453; δH (300 MHz) 2.05 [3H, br s, NH2, OH], 3.55 [1H, dd, A of ABX, JAB 10.8, JAX 

8.1, one of C(1)H2 ], 3.74 [1H, dd, B of ABX, JAB 10.8, JBX 4.4, one of C(1)H2], 4.04 

[1H, dd, X of ABX, JAX 8,1, J BX 4.4, C(2)H], 7.26-7.36 (5H, m, ArH).   

O-Acetyl-(2-hydroxy-1-phenylethyl)mandelamide 141
55

 

Pyridine (0.69 g, 0.71 mL, 8.75 mmol) was added 

dropwise to a solution of 2-amino-2-phenylethanol 

138 (1.00 g, 7.29 mmol) in dichloromethane (20 

mL) and the mixture was cooled to 0 °C. Once at 0 

°C, (S)-2-acetoxy-2-phenylacetyl chloride 137 (1.86 

g, 8.75 mmol) in dichloromethane (10 mL) was 

added dropwise over 30 min to form a light green coloured solution. The reaction solution 

was stirred for 18 h at 0 °C. The reaction was then quenched with hydrochloric acid (10 

%, 10 mL). The layers were separated and the aqueous layer was washed with 

dichloromethane (3 × 20 mL).  The combined organic layers were then washed with 

water (10 mL), brine (10 mL), dried and concentrated under reduced pressure to give a 

green oil (0.86 g), as a mixture of diastereoisomers 141a:141b, 90:10. Purification by 

flash chromatography on silica gel, using ethyl acetate/hexane (5:95) as eluent gave two 

complex fractions. The main fraction was a clear oil (0.45 g), which was tentatively 

assigned as the amino alcohol 141 existed as a mixture of diasteroisomers in the ratio of  
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141a: 141b, 65:35; νmax/cm−1 (film) 3314, 3067, 1746, 1683, 1605, 1512, 1455, 1374, 

1231; 141a δH (300 MHz) 2.17-2.18 [3H, m. CH3], 4.33-4.49 [2H, m, C(1)H2], 5.14-5.28 

[1H, m, C(2)H],  6.01-6.09 [1H, m, C(4)H], 7.27-7.50 [16H, m ArH], 7.83-7.87 [1H, m, 

NH]; 141b δH (300 MHz) 2.09-2.11 [3H, m, C(6)H3], 4.52-4.74 [2H, m, C(1)H2], 4.52-

4.74 [2H, m, C(2)H], 5.80-5.88 [2H, m, C(4)H], 6.80-7.13 [8H, m, ArH]; δC (75.5MHz) 

20.6, 20.9, 20.9 [CH3, C(6)H3], 51.9, 52.0, 52.2 [CH, C(2)H], 66.5 [C], 66.6 [CH], 67.1 

[C], 74.6, 74.7, 75.3, 75.4, 75.5 [5 × CH], 115.5, 115.5,115.8, 115.8, 116.1 [6 × CH], 

125.5, 127.2, 127.3, 127.3, 127.4, 127.5, 127.6, 128.1, 128.2, 128.4, 128.5, 128.7, 128.8, 

128.9, 129.0, 129.1, 129.5, 129.5, 130.0, 135.2, 135.3 [22 × CH, aromatic CH], 160.6-

170.7 [12 × C]; m/z (ES+) 530 (100%), 464 (80%), 332 (40%), 270 (60%), 83 (100%). 

This experiment was repeated on a number of occasions. The 1H NMR spectrum obtained 

varied somewhat between different experiments, but in all cases were more complex than 

would be expected for a single diastereoisomer of 141. 

(2R)-2-hydroxy-N-(2-hydroxy-1-phenylethyl)-2-phenylacetamide 142 

A solution of amide 141 (1.70 g, 5.42 mmol) was 

dissolved in methanol (20 mL) and was treated 

with sodium hydroxide (5 N, 5 mmol). The 

resulting mixture was stirred at room temperature 

for 24 h, and TLC was then applied to monitor the 

disappearance of the starting material. The reaction was diluted with ethyl acetate (20 

mL) and quenched with an aqueous solution of hydrochloric acid (1N, 10 mL). The two 

phases were separated and the aqueous layer was extract with ethyl acetate (3 ×10 mL). 

Finally, the combined organic phases were collected, washed with brine (50 mL), dried 

and concentrated under reduced pressure to give a green oil. Purification by flash 

chromatography on silica gel, using ethyl methanol/dichloromethane (5:95) as eluent 

gave two complex fractions. The main fraction was an unidentifiable white solid (0.80 g, 

54%); νmax/cm−1 (film) 3409, 2254, 2128, 1655, 1026; δH (300 MHz) 3.63 [2H, d, J 4.8], 

4.82 [1H, q, J 6.0], 4.98 [1H, d, J 2.4], 5.03 [1H, s], 6.27 [1H, d, J 4.0], 7.20-7.27 [1H, 

m], 7.27-7.31 [6H, m],  7.33-7.37 [4H, m], 7.42-7.49 [3H, m], 8.28 [1H, d, J 8.0, NH]. 
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2-Amino-2-phenylacetic acid 140
56-58

 

 Ammonium chloride (0.51 g, 9.42 mmol) dissolved in water (20 

mL) was added while stirring to benzaldehyde (1.00 g, 9.42 mmol) 

in methanol (10 mL). Sodium cyanide (0.46 g, 9.42 mmol) was 

added and the reaction mixture was stirred at room temperature for 2 

h. Then benzene (30 mL) was added to the light yellow coloured solution. The layers 

were separated and 6M hydrochloric acid (20 mL) was added to the organic layer, and the 

mixture was heated at 80 ºC for 4 h. Then the mixture was cooled to room temperature 

and concentrated under reduced pressure to give the amino acid 140 as a yellow solid 

(0.80 g, 56%), m.p. 215-220 ºC, (Lit.,59 252 ºC); νmax/cm−1 (KBr) 2923 (br OH), 1731, 

1481, 1379, 1064; δH (300 MHz) 5.02 [1H, s, C(2)H], 7.17-7.50 [15H, m, ArH]; {Lit.,57 

δH (D2O) 5.10 [CH, C(2)H], 7.35 [5H, s, ArH]} 

*Integration higher in aromatic region in 1H NMR spectrum. While analytically pure 

phenylglycine 140 was not recovered from this experiment the critical observation was 

that there was only one α-CH signal with no evidence of the formation of mandelic acid. 

 (R/S)-(3,5-Dimethyl)-phenylglycine 144
60

 and (R/S)-(3,5-Dimethyl)-mandelic acid 

146
61

 

This was prepared following the procedure 

described for 140, from ammonium chloride (4.88 

g, 91.40 mmol), water (6 mL), commercially 

available 3,5-dimethylbenzaldehyde 145 (6.13 g, 

45.70 mmol), methanol (10 mL) and sodium 

cyanide (4.48 g, 91.40 mmol). After stirring for at 

room temperature for 2 h, toluene (20 mL) was 

added to the light green coloured solution. The layers were separated and hydrochloric 

acid (6M, 20 mL) was added to the organic layer, and the mixture was heated at 80 ºC for 

4 h. Then the mixture was allowed to cool and the layers were separated. Both aqueous 

and organic layers were allowed to stand at room temperature for 18 h. After 18 h, a 

white solid had precipitated from the aqueous layer. This was collected by filtration and 

dried to give the amino acid 144 (1.82 g, 23%), m.p. 220-223 ºC [Lit.,60 m.p. > 220 ºC for 
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(R)-144]; νmax/cm−1 (KBr) 3013 (br OH), 2986, 1738, 1611, 1496, 1408, 1216; δH (400 

MHz, D2O) 2.20 [6H, s, C(3′)CH3, C(5′)CH3], 4.90 [1H, C(2)H], 6.98-7.03 [2H, m, 

C(2′)H, C(6′)H], 7.07 [1H, s, C(4′)H]; δH [600 MHz, (CD3)2SO] 2.30 [6H, s, C(3′)CH3, 

C(5′)CH3], 4.97 [1H, s, C(2)H], 7.09 [1H, s, C(4′)H], 7.12 [2H, s, C(2′)H, C(6′)H], 8.76 

[2H, br s, NH2]; δC (150 MHz, (CD3)2SO ) 20.8 [CH3, C(3′)CH3, C(5′)CH3], 55.5 [CH, 

C(2)H], 126.7 [CH, C(2′)H, C(6′)H], 130.6 [CH, C(4′)H], 133.0 [C, C(1′)], 138.0 [C, 

C(3′), C(5′)], 169.7 [C, C(1)]; Exact mass calculated for C10H13NO2 [(M+H)+] 180.1025 

Found 180.1019. m/z (ES+) 221 (30%), 180 [(M+H)+, 100%], 179 (60%), 144 (15%).  

After 18 h, a white solid had precipitated from the organic layer. This solid was collected 

by filtration and dried to give DL-(3,5-dimethyl)-mandelic acid 146 as a white crystalline 

solid (3.50 g, 42%), m.p. 88-90 ºC; (Found: C, 66.34; H, 6.62. C10H12O3 requires C, 

66.65, H, 6.71 %); νmax/cm−1 (KBr) 3419-3100 (OH), 1722, 1611, 1411, 1255, 1198; δH 

(400 MHz, D2O) 2.17 [6H, s, C(3′)CH3, C(5′)CH3], 5.07 [1H, s, C(2)H], 6.91-7.16 [3H, 

ArH]; δH (300 MHz) 2.31 [6H, s, C(3′)CH3, C(5′)CH3], 5.15 [1H, s, C(2)H], 5.23-6.31 

[1H, br s, OH], 6.98 [1H, s, C(4′)H], 7.03 [2H, s, C(2′)H, C(6′)H]; δC (75.5 MHz) 21.3 

[CH3, C(3′)CH3, C(5′)CH3], 72.8 [CH, C(2)H], 124.4 [CH, C(2′)H, C(6′)H], 130.6 [CH, 

C(4′)H], 137.3 [C, C(1′)], 138.5 [C, C(3′), C(5′)], 178.0 [C, C(1)]. m/z (ES-) 180 (20%), 

179 [(M−H)+, 100%], 135 (10%). 

 (R,S)-N-(Trifluoroacetyl)-2-(3,5-dimethylphenyl)glycine 143
60,62 

A solution of (3,5-dimethyl)phenylglycine 144 (0.26 g, 1.46 

mmol), tetramethylguanidine (0.50 g, 4.40 mmol) and ethyl 

trifluoroacetate (0.25 g, 1.76 mmol) in methanol (5 mL) were 

stirred at room temperature for 24 h. Evaporation of the 

solvent gave a light brown residue, which was dissolved in 

aqueous hydrochloric acid (5%, 5 mL), and the solution was then extracted with diethyl 

ether (3 × 15 mL). The organic extracts were combined, washed with aqueous HCl (5%, 

10 mL), water (10 mL) and brine (10 mL). The organic phase was dried, filtered and 

concentrated under reduced pressure to give the crude protected amino acid 143 which 

was recrystallised from benzene/diethyl ether to give amino acid 143 (0.20 g, 50%) as a 

white solid, m.p. 158-161 ºC, (Lit.,60,63 173-174 ºC); (Found: C, 52.7; H, 4.77; N, 4.77; 

C12H12F3O3 requires C, 52.37, H, 4.39, N, 5.09 %); νmax/cm−1 (film) (KBr) 3398 (OH), 

HN

OH

O

O

CF3
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2923, 1723 (CO), 1611, 1465, 1211; δH [(CD3)2SO, 300 MHz] 2.27 [6H, s, C(3′)CH3, 

C(5′)CH3], 5.34 [1H, d, J 6.0, C(2)H], 7.00 [1H, s, C(4)H], 7.04 [2H, s, C(2′)H, C(6′)H], 

10.12 [1H, d, J 6.0, NH]; δH (300 MHz) 2.30 [6H, s, C(3′)CH3, C(5′)CH3], 5.15 [1H, s, 

C(2)H], 6.97 [1H, s, C(4)H], 7.02 [2H, s, C(2′)H, C(6′)H], 7.14-7.45 [1H, m (br), NH];  

Exact mass calculated for C12H12F3NO3 [(M+H)+] 276.0848. Found 276.0850. m/z (ES-) 

550 (30%), 549 (100%), 275 (10%), 274 [(M-H)+, 50%].  

3,5-Dimethylbenzaldehyde 145
64

 

n-Butyllithium (2.14M solution in hexanes, 40.2 mL, 59.62 mmol) 

was added dropwise over 1 h to a stirring solution of 1-bromo-3,5-

dimethylbenzene (10.03 g, 54.20 mmol) in freshly distilled 

tetrahydrofuran (100 mL) at -78 ºC under an atmosphere of nitrogen, 

to give a thick white slurry. The addition of n-butyllithium was monitored to ensure the 

temperature did not rise above -70 ºC. Once the addition was complete, anhydrous 

dimethylformamide (13.19 g, 13.92 mL, 180.48 mmol) was subsequently added dropwise 

to the reaction mixture over 30 min. Once the addition was complete, the reaction mixture 

was allowed to warm slowly to room temperature and stirred overnight to form a light 

green coloured solution. The reaction mixture was then quenched by pouring onto 

concentrated hydrochloric acid (10%, 50 mL). The layers were separated and the aqueous 

layer washed with diethyl ether (2 × 50 mL). The combined organic layers were then 

washed with brine, dried, filtered and concentrated under reduced pressure to give the 

crude aldehyde 145 as a green oil. Purification by flash chromatography, using  ethyl 

acetate/hexane (10:90) as eluant, gave the aldehyde 145 (4.21 g, 58%) as a light green oil. 

νmax/cm−1 (film) 2958, 1698, 1609, 1599; δH (300 MHz) 2.38 [6H, s, C(3′)CH3, 

C(5′)CH3], 7.25 [1H, s, C(4′)H], 7.47 [2H, s, C(2′)H, C(6′)H], 9.93 [1H, s, CHO]. 

2-(3,5-Dimethylphenyl)oxirane 154
65,66

 

To a solution of 3,5-dimethylbenzaldehyde 145 (3.99 g, 29.73 

mmol), trimethylsulfonium iodide (6.06 g, 29.73 mmol), and 

tetrabutylammonium bromide (0.14 g, 0.45 mmol) in 

dichloromethane (40 mL), was added an aqueous sodium 

hydroxide solution (50%, 40 mL). The mixture was heated and after 60 h heating under 

CHO

O
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reflux while stirring, the mixture was cooled, poured onto ice (100 g), and extracted with 

dichloromethane (2 × 40 mL). The combined organic extracts were sequentially washed 

with water (30 mL), saturated aqueous sodium metabisulfite (30 mL), water (30 mL), 

brine, dried, filtered and concentrated under reduced pressure to give the crude epoxide 

154 as a yellow oil. Purification by flash chromatography, using ethyl acetate/hexane 

(10:90) as eluant, gave the epoxide 154 (1.78 g, 41%) as a yellow oil. νmax/cm−1 (film) 

2958, 2920, 1725, 1684, 1608, 1477, 839; δH (300 MHz) 2.29 [6H, s, C(3′)CH3, 

C(5′)CH3], 2.74 [1H, dd, J 5.5, 2.5, one of C(1)H2], 3.07 [1H, dd, J 5.5, 4.0, one of 

C(1)H2], 3.75 [1H, dd, J 4.0, 2.6, C(2)H], 6.88 [2H, s, C(2′)H, C(6′)H], 6.97 [1H, s, 

C(4′)H]; δC (75.5 MHz) 21.2 [CH3, C(3′)CH3, C(5′)CH3], 51.0 [CH2, C(1)CH2], 52.4 [CH, 

C(2)H], 123.3 [CH, C(2′)H, C(6′)H], 129.9 [CH, C(4′)H], 137.6 [C, C(1′)], 138.1 [C, 

C(3′)CH3, C(5′)CH3]; Exact mass calculated for C10H12O [(M+H)+] 149.0966 Found 

149.0960. m/z (ES+) 261 (40%), 191 (20%), 190 (100%), 149 [(M+H)+, 20%] 

[(R,R)-N,N-Bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminato(2-)]cobalt(II) 

157
67

 

A solution of cobalt(II) acetate tetrahydrate 

(5.98 g, 24.0 mmol) in methanol (80 mL) was 

added to a solution of ligand[(R,R)-N,N-

bis(3,5-di-tert-butylsalicylidene)-1,2-

cyclohexanediamine] (10.90 g, 20.0 mmol) in 

dichloromethane (80 mL) via cannula under 

an atmosphere of nitrogen with careful extrusion of air. A brick-red solid began to 

precipitate before addition was complete. The sides of reaction flask were rinsed with 

methanol (20 mL), and the mixture was stirred for 15 min at room temperature and 30 

min at 0 ºC. Precipitated solids were isolated by vacuum filtration and rinsed with cold (0 

ºC) methanol (2 × 75 mL). The red solid was collected and dried under vacuum to yield 

[(R,R)-N,N-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminato(2-)]cobalt(II) 157 

(10.00 g, 83%) as a red brick coloured solid. 
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(R)-2-(3,5-Dimethylphenyl)oxirane 154
66,68

 

(a)  Preparation of (R)-2-(3,5-Dimethylphenyl)oxirane 154 

Acetic acid (1.19 g, 19.97 mmol) was added to a solution of the 

(R,R)-Co(salen) catalyst 157 (0.43 g, 0.69 mmol) in toluene (4 

mL). The mixture was stirred for 30 min under a gentle stream of 

air, and then concentrated in vacuo to give a dark brown residue. 

A solution of racemic 2-(3,5-dimethylphenyl)oxirane 154 (3.42 g, 23.50 mmol) in 

tetrahydrofuran (4 mL) was then added, and the mixture was cooled to 0 ºC, and water 

(0.22 g, 11.75 mmol) was added slowly. The reaction mixture was stirred for 40 h at room 

temperature and filtered through a plug of silica gel. The silica was then washed with 

ethyl acetate/hexane (20:80) (2 × 100 mL). The dark red coloured solution was 

concentrated under reduced pressure to give a dark red residue, which was then distilled 

under reduced pressure (60ºC, 0.06 mmHg) to yield the optically pure (R)-2-(3,5-

dimethylphenyl)oxirane 154 as a clear oil (1.64 g, 48%) containing 50 mol% of an 

impurity tentatively assigned as the diol 155. Analysis of (R)-epoxide 154 by HPLC 

showed the enantioselectivity was 98% ee. 20][ Dα  +23.0 [c 0.25, CHCl3].  

Spectral characteristics were identical to those described for racemic sample except for an 

impurity (~50%) which is tentatively assigned as the diol 155;  

δH (300 MHz) 3.62 [1H, dd, J 8.7, 6.3, C(1)H2], 3.70 [1H, dd, J 

8.7, 2.7, C(1)H2 ], 4.71 [1H, dd, J 6.0, 2.7, C(1)H]. 

Note: This kinetic resolution was conducted on a number of occasions and while the 

product isolated from the experiment described above was eventually a 50:50 mixture of 

epoxide 154  and diol 155, on other occasions the epoxide 154  was isolated in pure form 

δH (300 MHz) δH (300 MHz) 2.29 [6H, s, C(3′)CH3, C(5′)CH3], 2.74 [1H, dd, J 5.5, 2.5, 

one of C(1)H2], 3.07 [1H, dd, J 5.5, 4.0, one of C(1)H2], 3.75 [1H, dd, J 4.0, 2.6, C(2)H], 

6.88 [2H, s, C(2′)H, C(6′)H], 6.97 [1H, s, C(4′)H];. The enantiopurity of samples isolated 

from a series of experiments varied between 94-98% ee. 
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(b) Conditions for resolution of the enantiomers of epoxide 154 on HPLC 

Resolution of the epoxide 154 was achieved using a Chiracel® OD-H column at 0 ºC, with 

isopropanol:hexane (5:95) as eluant, a flow rate of 1.0 mL/min, and the detector set at 

λ 254 nm. Under these conditions the dextrorotatory (+)-154 elutes at 18.0 minutes and 

the levorotatory (−)-154 elutes at 24.3 minutes. The column temperature was maintained 

using an Igloo-Cil® column heater/cooler. 

(R)-2-Phenyloxirane 158
69,70

 

(a) Preparation of ((R)-2-phenyloxirane 158 

This was prepared following the procedure described for 154, from 

commercially available 2-phenyloxirane (1.00 g, 8.32 mmol), (R,R)-

Co(salen) catalyst 157 (0.15 g, 0.25 mmol), acetic acid (0.42 g, 7.07 

mmol ), water (74 mg, 4.16 mmol), dichloromethane (1 mL) and 

tetrahydrofuran (1 mL) to give (R)-2-phenyloxirane 158 as a dark red oil which was then 

distilled under reduced pressure (27ºC, 0.15 mmHg) to yield the optically pure epoxide 

158 (0.45 g, 45%) as a clear oil; νmax/cm−1 (film) 2988, 2356, 1608, 1497, 1477, 1454, 

1201; δH (300 MHz) 2.80 [1H, dd, J 5.4 2.7, CH2], 3.15 [1H, dd, J 5.4, 3.9, CH2], 3.86 

[1H, dd, J 3.9, 2.4, CH], 7.25-7.37 [5H, ArH]. Analysis of epoxide 158 by HPLC showed 

the enantioselectivity was 99% ee. 
20][ Dα  +11.50 [c 0.4, CHCl3], {Lit.,71

 
20][ Dα  +33.0 

[neat]}. 

(b) Conditions for resolution of the enantiomers of epoxide 158 on HPLC. 

Resolution of the epoxide 158 was achieved using a Chiracel® OD-H column at 0 ºC, with 

isopropanol:hexane (5:95) as eluant, a flow rate of 1.0 mL/min, and the detector set at 

λ 223 nm. Under these conditions the dextrorotatory (+)-158 elutes at 9.8 minutes and the 

levorotatory (−)-158 elutes at 9.0 minutes. The column temperature was maintained using 

an Igloo-Cil® column heater/cooler. 
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2-Azido-2-(3,5-dimethylphenyl)ethanol 156
66

 

(a) Preparation of racemic sample of azide 156a 

A mixture of ammonium chloride (0.98 g, 18.53 mmol), 

sodium azide (5.96 g, 91.76 mmol) and racemic 2-(3,5-

dimethylphenyl)oxirane 154 (1.36 g, 9.17 mmol) in ethanol 

(15 mL) was heated while stirring under reflux for 12 h. 

After cooling, it was partitioned between diethyl ether (20 

mL) and water (20 mL). The aqueous phase was extracted 

with diethyl ether (2 × 10 mL), the combined organic 

phases were washed with water (2 × 10 mL), brine, dried and concentrated under reduced 

pressure to give an orange oil, which was a mixture of three compounds, the two 

regioisomers in the ratio 156a:156b:, 90:10, and the starting epoxide 154 (10%). 

Separation of regioisomers was achieved by flash chromatography, using ethyl 

acetate/hexane (10:90) as eluant, to give only azide 156a as a single compound (0.85 g, 

49%). νmax/cm−1 (film) 3368 (OH), 2921, 2103 (N3), 1608, 1463; δH (400 MHz) 2.13 [1H, 

t, J 5.5, OH], 2.32 [6H, s, C(3′)CH3, C(5′)CH3], 3.71 [2H, dd appears as a t, J 5.8, 5.8 

C(1)H2], 4.59 [1H, t, J 6.4, C(2)H], 6.92 [2H, s, C(2′)H, C(6′)H], 6.93 [1H, s, C(4′)H]; δC 

(75.5 MHz) 21.3 [CH3, C(3′)CH3, C(5′)CH3], 66.5 [CH2, C(1)CH2], 68.0 [CH, C(2)CH], 

124.9 [CH, C(2′)H, C(6′)H], 130.4 [CH, C(4′)H], 136.1 [C, C(1′)], 138.6 [C, C(3′)CH3, 

C(5′)CH3]; HRMS (ES+): Exact mass calculated for C10H13N3O [(M-N2+H)+] 164.1075 

Found 164.1073.  m/z (ES+) 305 (30%), 164 [(M-N2+H)+, 70%], 83 (100%). 

Signals for minor regioisomer 156b from 1H NMR spectrum of the crude material are as 

follows; δH (400 MHz) 3.43 [2H, ddd, J 12.4, 8.0, 4.0, C(1)H2], 4.80 [1H, dd, J 8.4, 4.0, 

C(2)H]. 
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(b)  Preparation of enantiopure sample of (S)-2-azido-2-(3,5-dimethylphenyl)ethanol 

156 

This was prepared following the procedure described for 156, from 

ammonium chloride (0.36 g, 6.75 mmol), sodium azide (2.19 g, 

33.73 mmol) and (R)-2-(3,5-dimethylphenyl)oxirane 154 (0.50 g, 

3.37 mmol, 98% ee) in absolute ethanol (15 mL) to give the crude 

(S)-azide 156 (0.46 g) as a orange oil. The 1H NMR of the crude product showed 20% of 

minor regioisomer 156b present.  Purification by flash chromatography, using ethyl 

acetate/hexane (10:90) as eluant gave the (S)-azide 156a (0.30 g, 51%,) as a yellow oil 

with spectral characteristics identical to those reported for racemic sample above. 

Analysis of (S)-azide 156a by HPLC showed an enantioselectivity of 96% ee. 20][ Dα  

+188.6 [c 1.0, CHCl3]. 

(c) Conditions for resolution of the enantiomers of azide 156a on HPLC 

Resolution of the azide 156a was achieved using a Chiracel® OJ-H column at 23 ºC, with 

isopropanol:hexane (5:95) as eluant, a flow rate of 0.5 mL/min, and the detector set at 

λ 226 nm. Under these conditions the dextrorotatory (+)-156a elutes at 11.5 minutes and 

the levorotatory (−)-156a elutes at 12.0 minutes. 

2-Amino-2-(3,5-dimethylphenyl)ethanol 128
66,72

 

(a) Preparation of amino alcohol 128 of using triphenylphosphine. 

A mixture of 2-azido-2-(3,5-dimethylphenyl)ethanol 156 (0.29 g, 

1.51 mmol), triphenylphosphine (0.59 g, 2.27 mmol) and water 

(0.16 g, 9.11 mmol) in tetrahydrofuran (2 mL) was stirred at room 

temperature for 15 h. Diethyl ether (5 mL) and concentrated 

hydrochloric acid (10%, 10 mL) were added and the phases were separated. The aqueous 

phase was washed with diethyl ether (2 × 5 mL), then basified by the addition 

concentrated sodium hydroxide solution (10%, 10 mL). The mixture was then extracted 

with dichloromethane (3 x 5 mL) and the combined organic phases were washed with 

brine, dried and concentrated under reduced pressure to yield the amino alcohol 128 as a 

white solid,  δH (300 MHz) 3.51 [1H, dd, J 10.6, 8.3, C(1)H], 3.69 [1H, dd, J 10.6, 4.3, 

C(1)H], 3.94 [1H, dd, J 8.1, 4.4 C(2)H].  Removal of triphenylphosphine oxide from the 
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amino alcohol 128 by trituration with cold diethyl ether or flash chromatography was not 

possible. Therefore an alternative method was sought. 

(b)  Preparation of a racemic sample of amino alcohol 128 by hydrogenation. 

A mixture of 2-azido-2-(3,5-dimethylphenyl)ethanol 156 (0.54 g, 3.24 mmol) and 

palladium on carbon (10%, 50 mg) in methanol (30 mL), was shaken under hydrogen at 

30 psi, for 16 h at room temperature. The crude reaction mixture was filtered through a 

short column of silica gel using ethyl acetate as eluant to remove the hydrogenation 

catalyst. Concentration of the solution gave the crude amino alcohol 128 (0.45 g, 85%) as 

a white solid, m.p. 84-85 ºC; νmax/cm−1 (KBr)  3600-2300 (OH and NH), 1603, 1449, 

1359, 1066; δH (400 MHz) 2.30 [6H, s, C(3′)CH3, C(5′)CH3], 2.49 [3H, s, NH2,OH], 

3.51-3.57 [1H, br m, C(1)H], 3.70-3.73 [1H, br m, C(1)H], 3.94-3.99 [1H, br m, C(2)H], 

6.91 [3H, s, ArH]; δC (75.5 MHz) 21.33 [CH3, C(3′)CH3, C(5′)CH3], 57.29 [CH, C(2)CH], 

68.03 [CH2, C(1)CH2], 124.24 [CH, C(2′)H, C(6′)H]; HRMS (ES+): Exact mass 

calculated for C10H15NO [(M+H)+] 166.1232 Found 166.1236.  m/z (ES+) 207 (10%), 

167 (15%), 166 [(M+H)+, 100%], 149 (25%). 

(c) Preparation of an enantiopure sample of (S)-2-amino-2-(3,5-

dimethylphenyl)ethanol 128 by hydrogenation. 

This was prepared following the procedure described for 128, 

from (S)-2-azido-2-(3,5-dimethylphenyl)ethanol 156a (0.90 g, 

4.70 mmol, 96% ee), palladium on carbon (5%, 100 mg) and 

methanol (80 mL) to give the crude amino alcohol 128 (0.82 g) as 

a white solid. Recrystallisation from hot toluene gave the pure (S)-amino alcohol 128 

(0.32 g, 42%) as white crystals, with spectral characteristics identical to those reported 

for the racemic sample above. δH (400 MHz) 2.30 [6H, s, C(3′)CH3, C(5′)CH3], 2.49 

[3H, s, NH2,OH], 3.51 [1H, dd, J 10.6, 8.3, C(1)H], 3.69 [1H, dd, J 10.6, 4.3, C(1)H], 

3.94 [1H, dd, J 8.1, 4.4 C(2)H], 6.91 [3H, s, ArH];  
20][ Dα  15.92 [c 0.65, C2H5OH]. 
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Dimethylmalonyl chloride 159
5,73

 

This was prepared following the procedure described for 63, from 

dimethylmalonic acid (15.16 g, 78.1 mmol) and thionyl chloride 

(92.89 g, 56.70 mL, 780.8 mmol). Purification by vacuum distillation 

gave the acid chloride 159 (10.16 g, 78%) as a clear, colourless oil; b.p. 80 ºC at 12 

mmHg (Lit.,74 60 ºC at 10 mmHg); νmax/cm−1 (film)  2999, 2947, 1792 br, 1467, 1393, 

1372; δH (400 MHz) 1.69 [6H, s, C(CH3)2]. 

N,N-Bis(1-(3,5-dimethylphenyl)-2-hydroxyethyl)-2,2-dimethylmalonamide 160 

(a) Preparation of a racemic sample of N,N-bis(1-(3,5-dimethylphenyl)-2-

hydroxyethyl)-2,2-dimethylmalonamide 160 

Dimethylmalonyl chloride 159 (0.19 g, 1.13 mmol) 

in doubly distilled dichloromethane (1 mL) was 

added dropwise to a heterogeneous solution of 2-

amino-2-(3,5-dimethylphenyl)ethanol 128 (0.37 g, 

2.26 mmol) and triethylamine (0.78 ml, 5.66 mmol) 

in doubly distilled dichloromethane (8 mL) at 0 ºC under an atmosphere of nitrogen. The 

homogeneous reaction mixture was removed from the bath and stirred for 40 min. 

Aqueous hydrochloric acid (10%, 10 mL) was added to the reaction mixture and the 

biphasic mixture was stirred for 15 min. The layers were separated and the aqueous layer 

was washed with dichloromethane (2 x 10 mL). The combined organic layer was washed 

with saturated aqueous sodium bicarbonate (10 mL). The aqueous layer was back 

extracted with dichloromethane (2 x 10 mL). The combined organic extracts were dried, 

filtered and concentrated under reduced pressure to give the crude bisamide 160 as a 

mixture of diastereoisomers 160a:160b, in the ratio of 78:22. Purification by 

recrystallisation from a mixture of dichloromethane and hexane gave the pure bisamide 

160 (230 mg, 47%) as two diastereoisomers 160a:160b, in the ratio of 78:22, which 

existed as a white solid, m.p. 243-246 ºC; [Found: C, 69.39; H, 8.00; N, 6.39; C25H34N2O4 

(Bisamide 160 +0.3H2O) requires C, 69.46, H, 7.93, N, 6.48%]*; νmax/cm−1 (KBr)  3329 

(OH), 2919, 1641, 1608, 1530, 1468; 160a δH (400 MHz) 1.50 [6H, s, C(CH3)2], 2.27 

[12H, s, C(3′)CH3, C(5′)CH3], 2.29 [2H, s, OH], 3.74 [2H, dd, A of ABX, JAB 11.5, JAX 

OH

N
H

O O

N
H

OH

Cl

O O
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7.4, one of C(2)H2], 3.86 [2H, dd, B of ABX, JAB 11.5, JBX 3.5, one of C(2)H2], 5.03 [2H, 

t of d, X of ABX, JAX 7.6, JBX 3.9, C(1)H], 6.85 [4H, s, ArH], 6.92 [2H, s, ArH], 7.03 

[2H, d, J 8.0, NH] ; 160b δH (400 MHz) 4.94-4.98 [2H, m, C(1)H], 7.17-7.20 [2H, m, 

NH];  160a δC (75.5 MHz) 21.3 [CH3, C(3′)CH3, C(5′)CH3], 23.7 [CH3, C(CH3)2], 49.9 

[C, C(CH3)2], 55.9 [CH, C(1)H], 66.6 [CH2, C(2)H2], 124.3 [CH, C(2′)H, C(6′)H], 129.6 

[CH, C(4′)H], 138.3 [C, C(1′)], 138.5 [C, C(3′), C(5′)], 174.0 [C, CO]; 160b δC (75.5 

MHz) 56.1 [CH, C(1)H];  HRMS (ES+): Exact mass calculated for C25H34N2O4 [(M+H)+] 

427.2597 Found 427.2593. m/z (ES+) 428 (30%), 427 [(M+H)+, 100%], 333 (20%), 102 

(20%).: 

* 1H NMR showed the presence of water. Elemental analysis is in agreement with the 

bisamide 160 +0.36H2O. 

(b) Preparation of an enantiopure sample of N,N-Bis[(S)-2-hydroxy-1-(3,5-

dimethylphenyl)ethyl)-2,2-dimethylmalonamide 160 

This was prepared following the procedure 

described for 160, from (S)-2-amino-2-(3,5-

dimethylphenyl)ethanol 128 (0.25 g, 1.51 mmol, 

96% ee from (S)-azide 156a), dimethylmalonyl 

chloride (0.13 g, 0.76 mmol), triethylamine (0.38 g, 

3.78 mmol) and doubly distilled dichloromethane (1 mL) to give the crude bisamide 160 

(0.28 g, 86%) as a white solid. It was carried through to the next step without 

purification. Spectral characteristics were similar to those reported for the racemic 

sample above. 20][ Dα  33.75 [c 0.2, CHCl3]. 

Note: 1H NMR indicated the presence of 160 (70-80%) although not analytically pure. 

There was no evidence for the diastereoisomer 160b. 
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2,2-Bis{2-[4-(3,5-dimethylphenyl)-1,3-oxazolinyl]}propane 93
75

 

(a) Preparation of racemic sample of 2,2-Bis{2-[4-(3,5-dimethylphenyl)-1,3-

oxazolinyl]}propane 93 

Triethylamine (0.18 g, 1.79 mmol) was added 

dropwise to a solution of N,N-bis(1-(3,5-

dimethylphenyl)-2-hydroxyethyl)-2,2-

dimethylmalonamide 160 (0.17 g, 0.41 mmol) and 

4-(dimethylamino)pyridine (5 mg, 0.04 mmol) in 

doubly distilled dichloromethane (5 mL) over 2 

min under an atmosphere of nitrogen. The flask was placed in a room temperature water 

bath, and a solution of p-toluenesulfonyl chloride (0.16 g, 0.81 mmol) in doubly distilled 

dichloromethane (2 mL) was added dropwise over 3 min. The yellow solution was stirred 

at room temperature for 24 h. Saturated aqueous ammonium chloride (3 mL) was added 

to the solution and the biphasic mixture was stirred for 15 min. The layers were then 

separated and the aqueous layer was washed with dichloromethane (3 x 10 mL). The 

combined organic extracts were then washed with saturated aqueous sodium bicarbonate 

(10 mL). Once again the aqueous layer was washed with dichloromethane (3 x 10 mL). 

The combined organic layer was washed with brine (10 mL), dried, filtered and 

concentrated under reduced pressure to give the crude bis(oxazoline) 93 as a yellow/green 

oil. Purification by flash chromatography, using diethyl ether/hexane (80:20) as eluant 

(using KMnO4 stain to give a white spot which faded over time) gave the bis(oxazoline) 

93 (90 mg, 56%) as a clear oil. There was no evidence for the second diastereisomer; 

νmax/cm−1 (film) 2919, 1656, 1607, 1519, 1467, 1255, 1199; δH (400 MHz) 1.68 [6H, s, 

C(CH3)2], 2.27 [12H, s, C(3′)CH3, C(5′)CH3], 4.16 [2H, dd, A of ABX, JAB 8.0, JAX 7.6, 

one of C(5)H2], 4.64 [2H, dd, B of ABX, JBX 10.1, JAX 8.0, one of C(5)H2], 5.15 [2H, dd, 

X of ABX, JBX 10.1, JAX 7.5, C(4)H], 6.87 [4H, s, C(2′)H, C(6′)H], 6.89 [2H, s, C(4′)H]; 

δC (75.5 MHz) 21.3 [CH3, C(3′)CH3, C(5′)CH3], 24.5 [CH3, C(CH3)2], 38.9 [C, C(CH3)2], 

69.5 [CH, C(4)H], 75.5 [CH2, C(5)H2], 124.4 [CH, C(2′)H, C(6′)H], 129.2 [CH, C(4)H], 

138.2 [C, C(3′)CH3, C(5′)CH3], 142.3 [C, C(1′)], 170.2 [C, C(1)] HRMS (ES+): Exact 

mass calculated for C25H30N2O2 [(M+H)+] 391.2386 Found 391.2392. m/z (ES+) 727 

(15%), 427 (100%), 409 (45%), 391 [(M+H)+, 100%].  
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(b) Preparation of enantiopure sample of (4S,4'S)-2,2-Bis{2-[4-(3,5-dimethylphenyl)-1,3-

oxazolinyl]}propane 93 

This was prepared following the procedure 

described for 93, from N,N-bis[(S)-2-hydroxy-1-

(3,5-dimethylphenyl)ethyl)-2,2-

dimethylmalonamide 160 (0.22 g, 0.52 mmol), 

triethylamine (0.23 g, 2.27 mmol), p-

toluenesulfonyl chloride (0.19 g, 1.03 mmol) and 

4-(dimethylamino)pyridine (6 mg, 0.05 mmol) in doubly distilled dichloromethane (10 

mL) to give the crude enantiopure bisoxazoline 93 (0.19 g) as a clear oil. Purification by 

flash chromatography, using diethyl ether/hexane (80:20) as eluant (using KMnO4 stain to 

give a white spot which faded over time) gave two fractions. The first least polar fraction 

contained a mixture of the (4S,4'S)-bis(oxazoline) 93 and bisamide 160 in the ratio 

93,160 70:30. The second fraction gave the pure (4S,4'S)-bis(oxazoline) 93 (80 mg, 40%) 

as a clear oil. Spectral characteristics were consistent to those reported for the racemic 

sample above. Analysis of (4S,4'S)-bis(oxazoline) 93 by HPLC showed an 

enantioselectivity ≥99% ee.  20][ Dα  -97.0 [c 0.1, CHCl3]. 

(c) Conditions for resolution of the enantiomers of bisoxazoline 93 on HPLC 

Resolution of the bisoxazoline 93 was achieved using a Chiracel® OD-H column at 23 ºC, 

with isopropanol:hexane (3:97) as eluant, a flow rate of 0.5 mL/min, and the detector set 

at λ 218 nm. Under these conditions the levororotatory (−)-93 elutes at 13.7 minutes and 

the dextrotatory (+)-93 elutes at 18.4 minutes. 
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3.13 Esterification Reactions 

 

Attempted preparation of ester 322 derived from the reaction of (1R, 8aS)-1,2,3,8a-

tetrahydro-3,3,8a-trimethyl-azulen-1-ol 315 with (S)-mandelic acid 

Azulenols 315a:315b, in a ratio of 

77:23 (0.41 g, 2.15 mmol), (S)-

mandelic acid (0.33 g, 2.15 mmol) 

and p-toluenesulfonic acid (41 mg, 

0.215 mmol) in benzene (20 mL) 

were heated while stirring under reflux for 12 h, using a Dean Stark trap. The resulting 

mixture was cooled to room temperature and washed with aqueous saturated sodium 

bicarbonate (20 mL). Ethyl acetate (20 mL) was added and the layers were separated. The 

aqueous layer was washed with ethyl acetate (3 × 20 mL). The combined organic extracts 

were washed with water (20 mL), brine (20 mL), dried and concentrated under reduced 

pressure to give a clear oil. Purification by flash chromatography, using ethyl 

acetate/hexane (5:95) gave a clear oil that is tentatively assigned as the dihydronapthalene 

323
76 (0.20 g, 54%); νmax/cm−1 (film) 3028, 2963, 2823, 1484, 1446, 1382, 1359; 

δH (400 MHz) 1.25 [6H, s, C(4)(CH3)2], 2.05-2.06 [3H, finely split s, C(1)CH3], 2.11-2.20 

[2H, m, C(3)H2], 5.72-5.78 [1H, m, C(2)H], 7.12-7.50 [4H, m, ArH]; δC (75.5 MHz) 19.5 

[CH3, C(1)CH3], 28.6 [CH3, C(4)(CH3)2], 33.7 [C, C(4)], 38.9 [CH2, C(3)H2], 123.3, 

123.7, 124.2, 126.0, 127.3 [5 × CH, C(2)H, C(6)H, C(7)H, C(8)H, C(9)H], 131.5 [C, 

C(1)], 134.5 [C, C(10)], 144.1 [C, C(5)]. 

Attempted preparation of ester 324 derived from the reaction of (1R, 8aS),-6-chloro-

1,2,3,8a-tetrahydro-3,3,8a-trimethylazulen-1-ol 316 with (S)-mandelic acid 

A mixture of DMAP (3.5 mg, 0.029 mmol) and 

(S)-mandelic acid (45 mg, 0.29 mmol) in doubly 

distilled dichloromethane (5 mL) was added at 0 

ºC to a stirred solution of azulenol 316 (75 mg, 

0.34 mmol) and N,N'-dicyclohexylcarbodiimide 

(65 mg, 0.32 mmol) in doubly distilled dichloromethane (5 mL). The mixture was stirred 
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at 0 ºC for 30 min and at room temperature for 14 h. The insoluble material was removed 

by filtration through a sintered glass funnel and washed with dichloromethane (3 ×20 

mL). The combined organic solutions were concentrated under reduced pressure to give a 

clear oil. A 1H NMR spectrum of the crude product did not indicate the presence of the 

desired product 324. Attempted purification of the mixture by flash chromatography, 

using ethyl acetate/hexane (5:95) as eluent, yielded a clear oil which by 1H NMR showed 

no trace of the desired ester 324.  

Attempted preparation of ester 325 derived from the reaction of (1R, 8aS),-6-chloro-

1,2,3,8a-tetrahydro-3,3,8a-trimethylazulen-1-ol 316 with (S)-2-acetoxy-2-

phenylacetyl chloride 137 

Triethylamine (21 mg, 0.21 mmol) was 

added dropwise to a solution of azulenol 

316 (43 mg, 0.19 mmol) in doubly distilled 

dichloromethane (5 mL). The mixture was 

stirred for 30 min followed by the dropwise 

addition of a solution of (S)-2-acetoxy-2-phenylacetyl chloride 137 (45 mg, 0.21 mmol) 

in doubly distilled dichloromethane (5 mL). The solution was stirred for 14 h and 

carefully poured onto hydrochloric acid (10%, 10 mL). The layers were separated and the 

aqueous layer was washed with diethyl ether (3 × 20 mL). The combined organic layers 

were washed with water (20 mL), brine (20 mL), dried and concentrated under reduced 

pressure to give the crude product (30mg) as a clear oil. A 1H NMR spectrum showed no 

presence of the desired ester 325 and indicated the presence of the starting azulenol 316. 

Attempted preparation of ester 320 derived from the reaction of (1R, 8aS),-6-chloro-

1,2,3,8a-tetrahydro-3,3,8a-trimethylazulen-1-ol 316 with 4-nitrobenzoyl chloride 

4-Nitrobenzoyl chloride (32 mg, 0.17 

mmol) was added to a solution of the 

azulenols 316a: 316b, in a ratio of 89:11 

(26 mg, 0.16 mmol) and DMAP (4 mg, 

0.016 mmol) in pyridine (1 mL). The 

reaction mixture was heated under reflux for 30 min and was then cooled to room 
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temperature. It was then poured onto hydrochloric acid (1M, 5 mL). Aqueous sodium 

carbonate (1M, 10 mL) was added and the solution stirred for 5 min. The solution was 

extracted with diethyl ether (3 × 20 mL). The combined organic layers were combined 

and washed with water (20 mL), brine (20 mL), dried and concentrated under reduced 

pressure to give a brown solid. A 1H NMR spectrum of the crude product showed the 

presence of the azulenol 316. The crude product was recrystallised from 

dichloromethane/diethyl ether to give an orange crystalline solid. A 1H NMR spectrum of 

the recrystallised product indicated the presence of 4-nitrobenzoic acid (25 mg), m.p. 

236-239 ºC, (Lit.,77 240 ºC); νmax/cm−1 (KBr) 3429, 2253, 2127, 1661, 1261, 1027; 

δH (400 MHz) 8.16-8.19 [2H, m, C(2)H, C(6)H or C(3)H, C(5)H], 8.32-8.34 [2H, m, 

C(2)H, C(6)H or C(3)H, C(5)H]. 
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Appendix 1 Abbreviations 

AB AB system 

Ar aryl 

Bu butyl 

BuLi butyllithium 

Bn benzyl 

bp boiling point 

br Broad 

BTMSM bis(trimethysilyl)methyl 

CHT cycloheptatriene 

COSY correlation spectroscopy 

DBU 1,8-diazabicyclo[5.4.0]undec-7-ene 

DCC N,N'-Dicyclohexylcarbodiimide 

DCE 1,2-dichloroethane 

DCM dichloromethane 

DEPT distortionless enhancement of polarisation transfer 

DMAP (dimethylamino)pyridine 

DMB dimethylbutane 

DMCC N,N-dimethylcarbamoyl chloride 

DMF dimethylformamide 

DMSO dimethylsulfoxide 

d Doublet 

dd doublet of doublets 

ddd doublet of doublet of doublets 

dt doublet of triplets 

ddt doublet of doublet of triplets 



 
 

xii 

 

ee enantiomeric excess 

EN endo 

Et ethyl 

EDG electron donating group 

ESI electrospray ionization 

EWG electron-withdrawing group 

equiv equivalents 

EX exo 

g gram 

h hour(s) 

HETCOR heteronuclear correlation 

HPLC high performance liquid chromatography 

HRMS high resolution mass spectrometry 

Hz Hertz 

i iso 

IR infrared 

L ligand 

lit literature 

M molar 

Me methyl 

Mes mesityl 

mg milligram 

MHz megahertz 

min minute(s) 

mp melting point 

m Multiplet 



 
 

xiii 

 

 

NaBARF sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate 

NCD norcaradiene 

NMR nuclear magnetic resonance 

OAc acetate 

OMe methoxy 

OPiv pivalate 

PCC pyridinium chlorochromate 

Ph phenyl 

Pr propyl 

PTAD 4-Phenyl-1,2,4-triazoline-3,5-dione 

PTSA p-Toluenesulfonic acid 

q Quartet 

RAMP (R)-(+)-1-Amino-2-(methoxymethyl)pyrrolidine 

rt room temperature 

s Singlet 

t tert 

t Triplet 

THF tetrahydrofuran 

TLC thin layer chromatography 

TMS tetramethylsilane 

UV ultraviolet 
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Appendix 2 Stack Plots 

 

3,8a-Dihydro-3,3,8a-trimethylazulen-1(2H)-one 89 

Catalyst: CuPF6-75-[(R,R)-Ph-BOX]. 

1H NMR spectra run at 20°C. 

20 mg of azulenone in 0.5mL CDCl3. 

See Table 3.2 for numerical values. 

 

 

 

0 mg
5.5 mg
11.5 mg

ppm

0.01.02.03.04.05.06.0
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3,8a-Dihydro-3,3,8a-trimethylazulen-1(2H)-one 89 

Expanded Region δH 1.1-2.00 ppm 

 

 

 

 

 

 

0 mg
5.5 mg
11.5 mg

ppm
1.502.00
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3,8a-Dihydro-3,3,8a-trimethylazulen-1(2H)-one 89 

Catalyst: CuCl-NaBARF-219-[(R,R)-Ph-
BOX]. 

1H NMR spectra run at 20°C. 

20 mg of azulenone in 0.5mL CDCl3. 

 

 

 

0 mg

7 mg

14 mg

Spiked with Racemic



 
 

xvii 

 

 

3,8a-Dihydro-3,3,8a-trimethylazulen-1(2H)-one 89 

Expanded Region δH 0.5-1.50 ppm 

 

 

 

 

 

 

 

 

 

 

0 mg

7 mg

14 mg

Spiked with Racemic
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3,8a-Dihydro-3,3,6,8a-tetramethylazulen-1(2H)-one 96 

Catalyst: CuPF6-75-[(R,R)-Ph-BOX]. 

1H NMR spectra run at 20 °C. 

20 mg of azulenone in 0.5 mL CDCl3. 

See Table 3.8 for numerical values. 

 

 

3.5 mg

8.5 mg

13 mg

0 mg

ppm

0.01.02.03.04.05.06.0

15 mg
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3,8a-Dihydro-3,3,6,8a-tetramethylazulen-1(2H)-one 96 

Expanded Region δH 1.20-2.52 ppm 

 

 

 

 

3.5 mg

8.5 mg

13 mg

0 mg

ppm

1.502.002.50

15 mg
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3,8a-Dihydro-6-fluoro-3,3,8a-trimethylazulen-1(2H)-one 94 

Catalyst: CuPF6-75-[(R,R)-Ph-BOX]. 

1H NMR spectra run at 20°C. 

20 mg of azulenone in 0.5mL CDCl3. 

See Table 3.10 for numerical values. 

 

   

0 mg

6 mg

10 mg

18 mg
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3,8a-Dihydro-6-fluoro-3,3,8a-trimethylazulen-1(2H)-one 94 

Expanded Region  δH 1.30- 1.80 ppm 

 

 

 

 

0 mg
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10 mg

18 mg

13.5 mg
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1.301.401.501.601.701.80
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Appendix 3 Chiral Stationary Phase HPLC 

 

All chiral stationary phase HPLC analysis was conducted at room temperature unless 
otherwise stated. 

Injection volume was 10 µl for all compounds unless otherwise stated. 

Notably, the retention times can change per injection (particularly for long run times), 
however, the elution sequence of enantiomers remains the same. 

(3aR*,3bS*)-1,2,3b,4-Tetrahydro-1,1,3a,4,11,12-hexamethyl-7-phenyl-4,10-etheno-

6H,10H-cyclopenta[1,3]cyclopropa[1,2-d][1,2,4]triazolo[1,2-a]pyridazine-

3,6,8(3aH,7H)-trione 163 

 

Resolution of the PTAD adduct 163 was achieved using a Chiracel® OD-H column at 

room temperature, with isopropanol:hexane (10:90) as eluant, a flow rate of 0.5 ml/min, 

and the detector set at λ 229 nm. Under these conditions dextrorotatory (+)-163 elutes at 

11.4 min and the levorotatory (−)-163 elutes at 14.1 min. 

(+) enantiomer of PTAD cycloadduct 163: 20][ Dα  96.5 [c 1.0, CHCl3, 93% ee]. 

Note: Please see Table 3.14 for more information. 



 
 

xxiii 

 

(3aR*,3bS*)-1,2,3b,4-Tetrahydro-1,1,3a,4,11-pentamethyl-7-phenyl-4,10-etheno-

6H,10H-cyclopenta[1,3]cyclopropa[1,2-d][1,2,4]triazolo[1,2-a]pyridazine-

3,6,8(3aH,7H)-trione 164 

 

Resolution of the PTAD adduct 164 was achieved using a Chiracel® OD-H column at 

room temperature, with isopropanol:hexane (10:90) as eluant, a flow rate of 0.5 ml/min, 

and the detector set at λ 218 nm. Under these conditions dextrorotatory (+)-164 elutes at 

10.0 min and the levorotatory (−)-164 elutes at 12.7 min. 

(+) enantiomer of PTAD cycloadduct 164: 20][ Dα  154.9 [c 0.5, CHCl3, 92% ee]. 

Note: Please see Table 3.13 for more information. 

 

N

N
NPh

O

O

O
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(3aS*, 3bR*)-1,2,3b,4-Tetrahydro-1,1,3a-dimethyl-7-phenyl-4,10-etheno-6H,10H-

cyclopenta[1,3]cyclopropa[1,2-d][1,2,4]triazolo[1,2-a]pyridazine-3,6,8(3aH,7H)-

trione 197 

 

Resolution of the PTAD adduct 197 was achieved using a Chiracel® OD-H column at 40 

ºC, with isopropanol:hexane (10:90) as eluant, a flow rate of 0.5 ml/min, and the detector 

set at λ 227 nm. Under these conditions dextrorotatory (+)-197 elutes at 59.6 min and the 

levorotatory (−)-197 elutes at 55.1 min. 

Note: For details on specific rotations and enantioselectivities of adduct 197 please see 

Table 3.15. 
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(3aS*, 3bR*)-1,2,3b,4-Tetrahydro-1,1,3a,12-trimethyl-7-phenyl-4,10-etheno-

cyclopenta[1,3]cyclopropa[1,2-d][1,2,4]triazolo[1,2-a]pyridazine-3,6,8(3aH,7H)-

trione 198 

(e) Conditions for resolution of the enantiomers of PTAD 198 adduct on HPLC using 

OD-H column 

 

Resolution of the PTAD adduct 198 was achieved using a Chiracel® OD-H column at 40 

ºC, with isopropanol:hexane (2:98) as eluant, a flow rate of 0.5 ml/min, and the detector 

set at λ 219 nm. Under these conditions dextrorotatory (+)-198 elutes at 100.9 min and 

the levorotatory (−)-198 elutes at 85.0 min. 

Note: For details on specific rotations and enantioselectivities of adduct 198 please see 

Table 3.16. 



 
 

 xxvi 

 

(f) Conditions for resolution of the enantiomers of PTAD 198 adduct on HPLC using 

reverse phase Chiradex column. 

 

Resolution of the PTAD adduct 198 was achieved using a reverse phase LiChroCART 

250-4 ChiraDex® at room temperature, with water/methanol (60:40) as eluant, a flow rate 

of 0.5 ml/min, and the detector set at λ 230 nm. Under these conditions dextrorotatory 

(+)-198 elutes at 19.9 min and the levorotatory (−)-198 elutes at 23.0 min. 

Note: For details on specific rotations and enantioselectivities of adduct 198 please see 

Table 3.16. 
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 (3aS*,3bR*)-1,2,3b,4-Tetrahydro-1,1,3a-dimethyl-7-phenyl-4,10-etheno-12-chloro-

cyclopenta[1,3]cyclopropa[1,2-d][1,2,4]triazolo[1,2-a]pyridazine-3,6,8(3aH,7H)-

trione 199 

 

Resolution of the PTAD adduct 199 was achieved using a reverse phase LiChroCART 

250-4 ChiraDex® at room temperature, with water/methanol (60:40) as eluant, a flow rate 

of 0.5 ml/min, and the detector set at λ 230 nm. Under these conditions dextrorotatory 

(+)-199 elutes at 18.9 min and the levorotatory (−)-199 elutes at 27.0 min. 

A sample of diazoketone 45 was cyclised with the catalyst shown in Table 3.17, followed 

by reaction with ZnCl2 to remove CHT adduct 203. Enantiopurity of remaining adduct 

199 could be determined by HPLC. 

(+) enantiomer of PTAD adduct 199: 20][ Dα  23.2 [c 0.55, CHCl3, 83% ee]. 
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i 

2-(3,5-Dimethylphenyl)oxirane 154 

 

Resolution of the epoxide 154 was achieved using a Chiracel® OD-H column at 0 ºC, with 

isopropanol:hexane (5:95) as eluant, a flow rate of 1.0 mL/min, and the detector set at l 

254 nm. Under these conditions the dextrorotatory (+)-154 elutes at 18.0 minutes and the 

levorotatory (−)-154 elutes at 24.3 minutes. The column temperature was maintained 

using an Igloo-Cil® column heater/cooler. 

(R)-2-(3,5-Dimethylphenyl)oxirane 154:
20][ Dα  +23.0 [c 0.25, CHCl3, 98% ee]. 

 

 

 

 

(R)
(S)



 
 

xxix 

 

2-Phenyloxirane 158 

 

Resolution of the epoxide 158 was achieved using a Chiracel® OD-H column at 0 ºC, with 

isopropanol:hexane (5:95) as eluant, a flow rate of 1.0 mL/min, and the detector set at 

λ 223 nm. Under these conditions the dextrorotatory (+)-158 elutes at 9.8 minutes and the 

levorotatory (−)-158 elutes at 9.0 minutes. The column temperature was maintained using 

an Igloo-Cil® column heater/cooler. 

(R)-2-Phenyloxirane 158: 20][ Dα  +11.50 [c 0.4, CHCl3, 99% ee], 

 

 

 

 

(R) (S)
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(S) (R)

2-Azido-2-(3,5-dimethylphenyl)ethanol 156 

 

 

 

 

 

 

 

 

 

 

Conditions for resolution of the enantiomers of azide 156 on HPLC 

Resolution of the azide 156 was achieved using a Chiracel® OJ-H column at 23 ºC, with 

isopropanol:hexane (5:95) as eluant, a flow rate of 0.5 mL/min, and the detector set at 

λ 226 nm. Under these conditions the dextrorotatory (+)-156 elutes at 11.5 minutes and 

the levorotatory (−)-156 elutes at 12.0 minutes. 

 

(S)-2-azido-2-(3,5-dimethylphenyl)ethanol 156: 20][ Dα  +188.6 [c 1.0, CHCl3, 96% ee]. 

 

 

 

N3

OH
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2,2-Bis{2-[4-(3,5-dimethylphenyl)-1,3-oxazolinyl]}propane 93 

 

Resolution of the bisoxazoline 93 was achieved using a Chiracel® OD-H column at 23 ºC, 

with isopropanol:hexane (3:97) as eluant, a flow rate of 0.5 mL/min, and the detector set 

at λ 218 nm. Under these conditions the levororotatory (−)-93 elutes at 13.7 minutes  and 

the dextrotatory (+)-93 elutes at 18.4 minutes. 

(4S,4'S)-2,2-Bis{2-[4-(3,5-dimethylphenyl)-1,3-oxazolinyl]}propane 93: 
20][ Dα  -97.0 [c 

0.1, CHCl3, ≥ 99% ee] 

Appendix 4: Publications 

Investigation of additive effects in enantioselective copper-catalysed C–H insertion 

and aromatic addition reactions of α-diazocarbonyl compounds  

 
Catherine N. Slattery, Leslie-Ann Clarke, Shane O’Neill, Aoife Ring, Alan Ford, Anita R. 
Maguire  
 
Synlett, 2012, 23, 765–767. 

Enhancement of enantioselection in the copper-catalysed intramolecular Buchner 

reaction by variation of the counterion 

Shane O’Neill, Sarah O’Keeffe, Francis Harrington, Anita, R. Maguire 

Synlett, 2009, 14, 2312–2314.
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