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The synthesis of the Li-ion conversion candidates, FeF2 and CoF2, obtained from the single source 

organometallic precursors [Fe(tta)3] (tta = C8H4F3O2S), and [Co(hfac)2.2H2O] (hfac = C5H1F6O2), 

respectively, via a novel supercritical fluid (SCF) method is presented.  The nature of the synthesis led to 

highly-crystalline FeF2 and CoF2 powders requiring no additional thermal treatment.  The as-obtained 10 

powders were investigated for use as potential positive Li-ion conversion electrodes by means of 

chronopotentiometric measurements.  The FeF2 cells displayed high initial capacities following 

electrochemical conversion (up to ~ 1100 mAh g-1 at a potential of 1.0 V vs. Li/Li+), with appreciable 

cyclic behaviour over 25 discharge-charge cycles.  The deposition of a ~ 5 nm layer of amorphous carbon 

onto the surface of the active material following SCF treatment, likely facilitated adequate electron 15 

transport through an  otherwise poorly conducting FeF2 phase.  Similarly, CoF2 cells displayed high initial 

capacities (up to ~ 650 mAh g-1 at a potential of 1.2 V vs. Li/Li+), although significant capacity fading 

ensued in the subsequent cycles.  Ex-situ XRD measurements confirmed a poor reversibility in the 

conversion sequence for CoF2, with a complete loss of CoF2 crystallinity and the sole presence of a 

crystalline LiF phase following charging.20 

1. Introduction 

 Since the advent of Li-ion battery technology, considerable 

research effort has focused on the discovery and development of 

electrode materials as candidates for future Li-ion batteries.  In 

particular, nanostructuring of conventional cathode materials, 25 

namely LiMO2 and LiMPO4 (M = Fe, Co, Mn, Ni etc.), has 

attracted much focus, owing to shorter Li+ diffusion lengths and 

hence, improved intercalation kinetics.1,2  Whilst attractive, first-

row transition metal oxides and phosphates suffer from relatively 

low Li+ ion storage capacities (e.g., ~ 170 mAh g-1 in the case of 30 

LiFePO4), and thus their specific energies are limited.  The 

requisite properties of future Li-ion batteries such as increased 

capacity, enhanced cyclability, rate performance, amongst others, 

coupled with their ever increasing popularity as drivers for 

modern and demanding electronic devices and electric/hybrid-35 

electric vehicles (EV/HEVs) etc., challenge researchers to seek 

ever more desirable materials with the properties to meet such 

rising demand. 

 In more recent times, researchers have considered the so-called 

‘conversion’ electrodes as potential alternatives to the Li+ 40 

intercalation host.  The reason for their supposition lies with the 
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inherent ability of the conversion candidate to utilise the full 

range of oxidation states available in the corresponding metal 

atom (Fe, Mn, Co etc.).  The nature of such conversion 50 

chemistries typically results in redox transitions involving more 

than one electron and hence, the potential for greater specific 

capacities.  Typical examples of conversion materials include 

transition metal oxides (MOx), phosphides (MPx), sulphides  

(MSx), and fluorides (MFx), and have been the subject of recent 55 

excellent review articles.3,4  While conventional Li+ intercalation 

hosts operate on the physical insertion and removal of Li+ ions 

into and out of the local structure, conversion electrodes undergo 

their redox transitions in the absence of Li+ intercalation, during 

which a complete reduction of the metal to form metallic 60 

nanoparticles of dimensions < 5 nm, embedded in a matrix of Li-

X (X= O, S, O, F etc.), results as depicted in equation 1.4 

 

 MaXb + (b · n)Li ↔ aM + bLinX  (1) 

 65 

 Initially, conversion materials were only considered useful as 

negative Li-ion electrodes owing to their relatively low operating 

potentials vs. Li/Li+.4  Metal fluorides, however, have been touted 

as one class of conversion materials with potential use as a 

positive electrode since the highly ionic nature of the M-F bond 70 

results in more feasible cathodic operating potentials.  However, 

to their detriment, such high ionicity also renders potential MFx 
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candidates poorly conducting and, coupled with the formation of 

an insulating Li-X phase following their conversion, may lead to 

a reduction in the efficiency of electron transfer and hence, poor 

electrochemical performance. 

 Iron (II) fluoride, FeF2,, which crystallises in a rutile, 5 

tetragonal structure (space group: P42/mnm), is one such MFx 

conversion candidate since it offers a high theoretical capacity 

(~565 mAh g-1), at a theoretical electrode potential of 2.66 V vs. 

Li/Li+.5  Such attributes could potentially lead to FeF2 cathodes 

displaying considerably higher energy densities compared to their 10 

intercalation analogues.  The potentially high energy density may, 

however, be somewhat restrained as FeF2 exhibits known Mott-

insulator properties.6  Poor conductivity is an unfortunate and 

regular feature of many prospective Li-ion cathodes and is 

typically challenged by the addition of electrically conducting 15 

agents, e.g., C, Cu, Ag etc., to the electrode mix, or by grafting 

layers of such materials to the active material surface either in-

situ or via post-synthetic techniques.  Further to such treatments, 

it is accepted that a move to nanoscale dimensions may influence 

properties such as electrical conductivity versus their bulk 20 

counterparts.  As such, a tailored synthesis of MFx conversion 

materials having improved electrode properties may permit their 

use in Li-ion technology. 

 Whilst several examples of iron (III) fluoride (FeF3) cathodes 

have been reported in the literature, including nanowires,7 thin-25 

films,8,9 carbon nanocomposites,10–14 and the hydrated form, 

FeF3∙0.33H2O,
15 much less has been reported on the synthesis and 

electrochemical performance of the analogous FeF2 phase alone. 

A recent report by Reddy et al. has shown C-FeF2 to be a 

promising candidate.16  It is important to note that, although the 30 

complete reduction of FeF3 affords higher theoretical discharge 

capacities (~ 712 mAh g-1 vs. 565 mAh g-1, respectively), at 

slightly higher electrode potentials (see table 1), previous work 

has demonstrated an increasingly ineffective reconversion 

process in FeF3 following successive charge-discharge cycling.7  35 

In addition, Yamakawa et al.17 identified that charging of FeF3 

cells following electrochemical conversion was associated with a 

transition from an original ReO3-type structure to that of a 

defective rutile phase.  FeF3 does, however, possess the inherent 

ability to insert ~ 0.5 mol Li+ before the onset of electrochemical 40 

conversion, which has led to its utilisation as a more typical 

intercalation electrode with capacities reported approaching 200 

mAh g-1, at voltages which are beyond the scope of FeF2.13,15,7,12  

To this end, FeF2 may be considered a somewhat more model 

conversion system, displaying reversible conversion character 45 

while beneficially involving fewer phase transitions compared to 

that of FeF3.  It should also be noted that the complete reduction 

products of FeF2 and FeF3 (Fe0 and LiF), are theoretically 

equivalent, indicating a predictably similar electrochemical 

pathway should occur during their electrochemical conversion 50 

(subsequent to an initial Fe3+ → Fe2+ transition in FeF3); the 

mechanism of which, is still a subject of heavy scrutiny.18–21   

 Cobalt (II) fluoride, CoF2, which also crystallises in tetragonal 

form (space group P42/mnm), is another interesting candidate not 

least given cobalt’s extensive use in early generation Li-ion cells 55 

(as LiCoO2).  In addition, CoF2 extends a theoretical capacity of ~ 

553 mAh g-1 at a slightly electrode potential of 2.74 V vs. Li/Li+, 

leading to theoretical energy densities as high as 1500 Wh kg-1.  

Previous studies,22 however, have outlined an incompatibility of 

phase-pure thin-film CoF2 electrodes in conventional organic-60 

based electrolytes, which has led to their relatively low levels of 

evaluation as potential Li-ion conversion candidates.   A partial 

stability of CoF2 in organic electrolyte was achieved by 

depositing a layer of lithium phosphorus oxynitride (Lipon) onto 

the surface of CoF2 thin-films by a pulsed laser deposition (PLD) 65 

process, where such coatings led to the limited cyclic evaluation 

of CoF2 as a potential negative Li-ion electrode.22  Phase-pure 

CoF2 cathodes have also been evaluated by Wall et al.23 which 

displayed high initial capacities (~ 600 mAh g-1 at 1.0 V vs. 

Li/Li+), however, such cells also displayed significant capacity 70 

decline over 25 discharge-charge cycles.  CoF2 has therefore, 

been somewhat disregarded as a potential conversion electrode 

to-date, however, a review of its electrical properties with Li+ is 

still a facet that should not be ignored.  

 Herein this chapter details a novel supercritical fluid (SCF) 75 

synthesis of FeF2 and CoF2 powders using [Fe(tta)3] (tta = 4,4,4-

trifluoro-1-(2-thienyl)-1,3-butanedione), as a single-source 

precursor for the synthesis of FeF2 powders and 

[Co(hfac)2∙2H2O] (hfac = 1,1,1,5,5,5-hexafluoro-2,4-

pentanedione), similarly, for the synthesis of CoF2 powders.  80 

Previously, [Co(hfac)2.2H2O] precursors have been used for the 

growth of CoO or Co3O4 thin films by MOCVD,24 while a similar 

Fe-based precursor, [Fe(acac)3] (acac = pentane-2,4-dione), has 

been employed for the growth of Fe2O3 thin-films in supercritical 

CO2.
25

   This is the first apparent synthesis of Fe- and Co- 85 

containing fluorides using [Fe(tta)3] and [Co(hfac)2.2H2O] as 

single-source precursors by direct chemical routes.  The as-

obtained FeF2 and CoF2 electrodes display high initial discharge 

capacities (up to ~ 1100 mAh g-1 at 1.0 V vs. Li/Li+ in the case of 

FeF2, and ~ 600 mAh g-1 at 1.2 V vs. Li/Li+ for CoF2). 90 

2.  Experimental Section 

2.1 Supercritical Fluid Synthesis of FeF2 Powders 

 FeF2 powders were synthesised using the β-diketonate, 

[Fe(tta)3] (iron (III)- thenoyltrifluoroacetone), as a single-source 

precursor according to procedures reported in the literature.26,27  95 

0.2 g of [Fe(tta)3] was dissolved in 15 ml of dry toluene and 

sonicated for 3-5 min to ensure complete dissolution.  The 

[Fe(tta)3] precursor solution was then injected into a sealed 

supercritical fluid (SCF) stainless steel reaction cell (24 ml total 

volume, High Pressure Equipment (HiP) company), and heated to 100 

400 °C at a ramp rate of 30 °C min-1, and held for 1 h.  An 

illustrative representation of the batch SCF setup is displayed in 

figure 2.1.  After 1 h, the SCF cell was cooled to room 

temperature naturally (high pressure cells should never be 

quenched with liquids), and slowly depressurised.  The FeF2 105 

product was isolated by decantation, washed with acetone to 

remove trace impurities and excess solvent and air-dried at room 

temperature for at least 24 h, forming the final brown-coloured 

powder product. 

2.2 Supercritical Fluid Synthesis of CoF2 Powders 110 

 CoF2 was prepared using [Co(hfac)2.2H2O] (cobalt (II)-

hexafluoroacetylacetonate), as a single-source precursor which 

was used as received from Sigma-Aldrich and treated in a similar 

SCF batch method as described in 2.1.1.  Typically, 0.2 g of 
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[Co(hfac)2.2H2O] precursor  was dissolved in toluene (15 ml) and 

sonicated for 3-5 min, before being injected into a sealed stainless 

steel reaction cell (24 ml total volume, High Pressure Equipment 

(HIP) company), and heated to 400 °C at a heating rate of 30 °C 

min-1 and held at this temperature for 1 h.  After 1 h, the reaction 5 

cell was cooled to room temperature and slowly depressurised.  

The CoF2 product was isolated by means of decantation, washed 

with acetone to remove trace impurity and excess solvent and air-

dried at room temperature for at least 24 h forming the final pink 

coloured powder.  10 

2.3  Material Characterisation 

 X-ray diffraction (XRD) measurements were performed on a 

Phillip’s XPERT diffractometer using Cu Kα radiation (1.5406 

nm) operating at 40 kV and 35 mA.  Scanning electron 

microscopy (SEM) images were collected on a FEI Quanta 650 15 

microscope operating at 10 kV and transmission electron 

microscopy (TEM) images were collected on a JEOL JEM 2100 

TEM operating at 200 kV.  EDX spectra were collected on an 

Oxford Instruments (INCA) EDX system fitted to the TEM.  

Thermogravimetric analysis (TGA) was carried out at a heating 20 

rate of 40 °C min-1 in air using a Mettler Toledo TGA/DSC1 

STAR system. 

 For the electrochemical measurements, electrode slurries were 

prepared by mixing the active powder, acetylene black (Alfa 

Aesar, corp.), and PVDF (Sigma-Aldrich) in a ratio of 75:25:5 by 25 

mass, respectively.  Absolute EtOH was used to ensure adequate 

consistency of the slurries.  The slurries were then cast on to pre-

cleaned Al-foil and dried at 120 °C for several hours before 

mechanically pressing and further drying at 120 °C for at least   

24 h.  CR2025-type coin cells were assembled in a glovebox 30 

filled with high purity Ar gas, using pure Li chips (MTI corp.), 

serving as the negative electrode and Celgard® 2320 PE/PP/PE 

membranes as separator.  The electrolyte was a solution of 1M 

LiPF6 in EC:DMC (50:50 v/v).  Galvanostatic cycling was carried 

out in the potential range between 1.0 – 5.0 V for FeF2 and 1.2 – 35 

4.8 V vs. Li/Li+ for CoF2, using a Princeton Applied Research 

(V3) potentio/galvanostat.  Typical active loadings were in the 

order of 0.5 – 1 mg.  Respective current densities and capacities 

were determined on the mass of active material loading. 

 40 

3.  Results and Discussion 

3.1 Synthesis and Structural Characterisation of FeF2 

 FeF2 powders were prepared via a novel supercritical fluid 

synthesis using [Fe(tta)3] as a single-source precursor, dissolved 

in toluene.  The reaction setup is depicted in figure 1. 45 

Supercritical conditions were attained by the batch-method by 

sealing the as-prepared precursor sol in a high pressure reaction 

cell, followed by the thermal treatment at 400 °C for 1h.  

Previously, [M(tta)2] (M = Cd, Zn), single-source precursors have 

been used in the preparation of CdO, CdS or CdF2 phases by a 50 

solution route,24 and ZnO by a MOCVD route,28 respectively, 

following coordination of the bis-complex precursor sphere with 

tmeda (N,N,N’,N’-tetramethyletilendiamine), to form the single-

source precursor adduct [M(tta)2∙tmeda].  Similarly, the 

precursors [Mg(hfac)2] and [Mg(TFacac)2], (TFacac = 1,1,1-55 

trifluoro-2,4-pentanedione), have been used to prepare MgF2 

films by the thermally-driven disproportionation and 

decomposition of the respective precursors at temperatures 

exceeding 500 °C.29  The similarity of precursor composition in 

these instances outlines the role of synthetic conditions in 60 

directing the formation of either metal- oxide, sulphide or 

fluoride as the major product phase.  Under supercritical CO2 

conditions, the non-fluorinated [Fe(acac)3] (acac = pentane-2,4-

dione), single-source precursor has been used in the preparation 

of Fe3O4,25 however, this is the first apparent synthesis and direct 65 

formation of FeF2 by means of either conventional thermal 

treatment or via a supercritical route using [Fe(tta)3] as a single-

source precursor. 

 
Fig. 1 Batch SCF reaction scheme used in the preparation of 70 

FeF2/CoF2 powders.   

 To elucidate potential FeF2 formation under SCF conditions, a 

consideration of the thermal decomposition of [Fe(tta)3] is 

necessary, where the formation of either oxide, sulphide or 

fluoride as mixed or single phases may be expected depending on 75 

the nature of decomposition; the process of which, likely varies 

considerably as changes are employed to the reaction conditions 

(temperature, time etc.).  Such phases are not easily 

distinguishable by means of TGA given that their expected 

residues are appreciably similar.24  The variance in C-X (X = S, 80 

O, F), bond dissociation energies of [Fe(tta)3] (C=O = 799 kJ 

mol-1, C-S = 272 kJ mol-1 and C-F = 490 kJ mol-1), could possibly 

indicate a preference for the formation of a dominant FeSx phase, 

however, XRD analysis (figure 2), of the brown powder product 

indicated the formation of tetragonal-phase FeF2 as the single-85 

phase reaction product (JCPDS card no.: 81-2272), with 

reflections at 2θ values of 26.99, 33.31, 38.56, 43.17, 51.66, 

55.40, 62.89, 66.10 and 69.68° corresponding to the (110), (101), 

(111), (210), (211), (220), (112), (301) and (202) set of planes in 

tetragonal FeF2, respectively.  No impurity peaks belonging to 90 

sulphide or oxide phases, or otherwise originating from the 

analogous FeF3 or other Fe3+ impurities, were discernible in the 

XRD profile.  Interestingly, Malandrino et al.24 have shown that 

an analogous [Cd(tta)2]∙tmeda precursor adduct favoured the 

formation of CdO via a conventional solution route when thermal 95 

treatment was carried out between 300 – 700 °C under flowing 

O2, while CdF2 was favoured under flowing N2 between 350 – 

450 °C  and CdS favoured above a temperature of 550 °C.24  

These results suggest that the formation of CdF2 is favoured at 

the lower temperature region (350 – 450 °C), while dissociation 100 

of the C-F bond under such conditions is likely preferential to 

that of C-S, which is located within the heavily stabilised 5-

membered ring of the respective thiophene group.  Malandrino et 
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al.24 have also alluded to the possibility of CdS or S phase 

formation existing in non-crystalline form which could further 

react with CdF2 to form CdS at the higher temperature regions.  

 In the case of FeF2, a temperature of 400 °C was used to attain 

supercritical conditions (toluene) which likely facilitated a similar 5 

decomposition process of the [Fe(tta)3] precursor.  TGA analysis 

of the [Fe(tta)3] precursor collected under flowing N2 depicts a 

two-phase transition process resulting in the complete 

decomposition of the precursor over the temperature range 

between 400 – 450 °C.  A two-phase transition commences with  10 

a ~ 1 wt. % loss occurring at a temperature of ~ 165 °C (ascribed 

to the onset of precursor melting), followed by a decomposition 

step over the range 210 – 400 °C resulting in a further loss of ~ 

93 wt. % and a residue of ~ 6 wt. %. 

 The formation of FeF2 as a single phase component underlines 15 

SCF conditions were also favourable to the formation of Fe 

existing in the +2 oxidation state, given that no FeF3 or other Fe3+ 

species were discernible in the XRD powder patterns; such an 

effect is particularly of note while the availability of F in the 

precursor was abundant and that the relative Gibbs energy of 20 

formation, ΔGf, of FeF3 is considerably lower than that of FeF2 

under standard conditions (-972 vs. -663 kJ mol-1, respectively).  

It must also be suggested, however, that there lies a possibility of 

such Fe3+ phases existing in the amorphous state or critically, 

existing in feature size below the X-ray coherence length used in 25 

the evaluation of the product composition.  

 
Fig 2.  XRD profile of FeF2 powders obtained from the SCF synthesis 

of Fe(tta)3 at 400 °C for 1 h.  The red bar makers indicate the 
respective positions (2θ) of FeF2 (JCPDS: 81-2272). 30 

 The morphology of the FeF2 powders was investigated by 

SEM and is displayed in figure 3.  The SEM images reveal the 

formation of a variety of different structures consisting of small-

scale nanorods which widely assembled into urchin-like features, 

to larger, more-elongated ribbon-like structures.  The diameter of 35 

these structures varied from approximately 100 nm (short 

nanorod structures) to the wider, up to ~ 2 µm sized elongated 

rods.  TEM analysis of the FeF2 structures (figure 3(d)), revealed 

a highly crystalline nature with an amorphous layer surrounding 

the FeF2 domains, measuring approximately 5 nm in thickness.  40 

The clearly observable lattice fringes, which correspond to an 

inter-planar (d) spacing of 3.13 Å, may be indexed to the (110) 

set of planes in tetragonal FeF2 (JCPDS: 81-2272), while the 

clearly defined lattice fringes visibly extend the length of the 

FeF2 structure and confirm the high crystallinity of the FeF2 45 

powder product.  The ~5 nm amorphous layer may be attributed 

to the deposition of carbonaceous species following 

decomposition of the organometallic precursor or the organic 

reaction medium (toluene) used during preparation.  The presence 

of amorphous carbon is also indicated in the XRD profile (shown 50 

in figure 2), displaying a broad (20 – 35° 2θ), bending region, a 

feature often characteristic of non-graphitic carbon types.  The 

presence of carbon is further confirmed by Raman analysis, 

displayed in figure 4, which shows the D and G bands 

characteristic of sp3 and sp2 carbon types.   55 

 
Fig 3.  (a,b) SEM images of FeF2 obtained from [Fe(tta)3] at 400 °C in 
supercritical toluene (c,d) TEM  images of FeF2 obtained under the 

same conditions.  The lattice spacing indicated in figure 5.2(d) may be 
indexed to the (110) set of planes in FeF2 (JCPDS: 81-2272). 60 

 
Fig 4. Raman spectra of a FeF2 powder sample collected over the 

range 1200 – 1800 cm-1, showing D (sp3) and G (sp2) bands 
characteristic of carbon types. 

2.2 Synthesis and Characterisation of CoF2 Powders 65 

 CoF2 powders were synthesised under a similar SCF method 

following the thermal decomposition of the [Co(hfac)2∙2H2O] in 

supercritical toluene at 400 °C.  The XRD profile of the as-

obtained, pale-pink coloured CoF2 powder is shown in figure 5.  
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The crystal reflections at 2θ values of 26.83, 34.14, 39.26, 42.90, 

52.19, 55.17, 58.21, 62.22, 65.26 and 66.50° correspond to (110), 

(101), (111), (210), (211), (220), (002), (310), (112) and (301) set 

of planes in tetragonal CoF2 (JCPDS: 33-0417), respectively, and 

confirms the presence of CoF2 existing as the major product 5 

phase.  A similar bending region in the XRD profile (20 – 35° 2θ) 

was also observed, and is ascribed to the existence of amorphous 

carbon.  The thermal decomposition of [Co(hfac)2∙2H2O] is 

predictably less complex than that of [Fe(tta)3] given the likely 

possibility of forming just two separate phases as the major 10 

product (CoxOy and CoFx), as opposed to a third MSx phase.  In 

this instance, the formation of CoF2 was pronounced under 

supercritical conditions at 400 °C with such conditions favouring 

the formation of Co in the +2 oxidation state while the 

availability of F in the [Co(hfac)2∙2H2O] precursor (12 F- per 15 

formula unit), was markedly abundant.  The possibility of 

forming CoxOy phases was also considered, however, the apparent 

lack of oxide formation as a result of supercritical processing (in 

what is a closed reaction system), may be explained by the lack 

of available oxygen existing in the reaction medium (toluene), 20 

coupled with the strong dissociation energy of the C=O bond of 

the organometallic precursor (C=O = 799 kJ mol-1).  Such an 

effect would also describe the lack of FexOx+1 phases resulting 

from the supercritical processing of [Fe(tta)3] under similar 

conditions.  A direct comparison of the relative Gibbs’ energy of 25 

formation for the respective phases (CoxOy, CoF2), is difficult in 

this instance, given the large deviation from standard conditions 

under SCF processing.  

 
Fig. 5 XRD profile of CoF2 powders obtained from the SCF synthesis of 30 

Fe(hfac)2 at 400 °C for 1 h.  The red bar makers indicate the 
respective positions (2θ) of CoF2 from PDF pattern no. 33-1074 

 SEM analysis of the CoF2 powder samples indicated the 

formation of near-uniform spherical morphologies, ranging in 

diameter from 0.7 – 1.8 µm as shown in figures 6(a) and (b).  35 

Closer inspection of the CoF2 spheres revealed a distinctive 

surface roughness, indicating that the spheres are comprised of a 

series of smaller, nanoscale features of an acicular-like crystal 

type.  Higher resolution TEM images displayed in figures 6(c) 

and 6(d), confirmed that the larger CoF2 spheres formed from a 40 

series of dendritic-like structures, whose feature sizes ranged 

between 20 – 30 nm in diameter.  The nanoscale featuring of the 

CoF2 powders in this instance may enhance the size of the 

electrode-electrolyte interface versus the respective bulk 

counterpart; such properties may possibly favour Li+ transport by 45 

facilitating improved electrolyte access.  It must also be 

considered, however, that such increases in the available surface 

area compared to that of the bulk phase may augment the 

formation of unwanted side interactions with the electrolyte, 

resulting in increases in respective decomposition products.  50 

 
Fig. 6 (a,b) SEM images of CoF2 spheres obtained at 400 °C from 

[Co(hfac)2.2H2O] using supercritical toluene and (c,d) TEM images of 
CoF2 spheres obtained under the same conditions. 

2.3 Li+ Induced Conversion of FeF2 Powders 55 

 Table 1 summarises the theoretical electrode potentials and 

capacities of Fe- and Co- fluorides, outlining their practical use as 

potential positive electrodes in Li-ion technology;  theoretical 

electrode potentials, E(V), are given in the literature.5  Our study 

has focused on the synthesis of FeF2 and CoF2 powders and their 60 

use as prospective Li-ion cathodes since the equilibrium 

potentials of FeF2 and CoF2 fall within feasible limits for such 

applications.  Although the corresponding tri-fluoride phases 

afford higher theoretical energy densities given their increased 

working potentials and capacities (table 1), much less has been 65 

reported on the model MF2 conversion systems alone.  

 

Table 1.  The theoretical capacity and electrode potentials, E(V), 

of Fe- and Co- fluorides. 

Compound Oxidation state Theoretical 

capacity (mAh g-1) 

E(V) 

FeF2 +2 571 2.66 

FeF3 +3 712 2.74 

CoF2 +2 553 2.85 

CoF3 +3 694 3.61 

 70 

 The equilibrium potential of FeF2 is predicated from 

thermodynamic considerations at 2.66 V vs. Li/Li+ (table 1).  

Such potentials are considerably higher than those afforded by 

the ferric oxides, sulfides and phosphides, outlining the practical 

use of FeF2 as a positive Li-ion electrode.30,4  The premise of the 75 

FeF2 conversion mechanism assumes the reversible reaction as 

depicted in equation 2.  Although the complete mechanism is 
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somewhat bypassed in this form, the formation of LiF and Fe0 

accounts for the complete reduction of Fe2+ in the original species 

via a 2 e- process, resulting in a theoretical capacity of ~ 571  

mAh g-1.  Such capacities are considerably higher than those 

afforded by conventional intercalation hosts such as LiFePO4 (~ 5 

170 mAh g-1), and LiCoO2 (~ 120 mAh g-1) and lead to vast 

specific energies exceeding 1500 Wh kg-1. 

 

 FeF2  +  2Li+  +  2e-  →  Fe0  +  2LiF   (2) 

 10 

 The first discharge curves of the FeF2 cells cycled at a lower 

cut-off potential of 1.0 vs. Li/Li+ at the current densities of 10 and 

20 mA g-1 (~ 0.017 and 0.035 C rate, respectively), are displayed 

in figure 7(a).  Both discharge profiles show a sloping voltage 

region commencing at ~ 2.6 V vs. Li/Li+ (open circuit voltage = 15 

2.95 V), which accounts for some ~ 50 mAh g-1 of the total 

capacity obtained in the first cycle.  A portion of this sloping 

region may be attributed to the formation of SEI layers on the 

active material surface: Initially, such passivation layers were 

only considered for lithium or carbon anodes, however, research 20 

has confirmed the existence of the SEI layer on cathodic surfaces, 

including that of FeFx.17  Such occurrences may arise as a result 

of spontaneous contact with electrolyte or predictably, during 

normal electrochemical operation, however, no structural 

confirmation of this layer is presented.  Additionally, a number of 25 

other possible mechanisms have been predicted which could 

account for the initial sloping region, preceding the onset of 

electrochemical conversion. Although the existence of impurity 

Fe3+ phases, including that of FeF3, were not detected in the XRD 

profile (figure 5), a reduction of trace amounts of amorphous Fe3+ 30 

phases must be considered; indeed, the reduction of Fe3+
 phases is 

known to occur in the 3.0 – 2.0 V region and is thus a distinct 

possibility.17 Conversely, a number of conversion-competing 

processes have also been proposed,17,18 although there remains 

some degree of uncertainty as to their proposition.  Yamakawa et 35 

al.17 studied the local structures formed as a result of cycling FeFx 

cathodes by Li6
 and F17 solid-state NMR coupled with ex-situ 

XRD measurements, and concluded that the early stages of 

discharge in FeF2 involved both intercalation and conversion 

processes.  It is generally accepted that reduction of Fe2+ to Fe1+ 40 

is unlikely via simple 1×1 tunnelling, thus any possible 

intercalation is likely to proceed following reduction of Fe3+ 

impurity, or via the formation of intermediate species formed as a 

result of a disproportionation reaction of FeF2 to form Fe0 and 

Fe3+ species, outlined in equations 3 - 6.17 45 

 

 FeF2  →  Fe1-xF2 +   Fe    (3) 

 Fe1-xF2 + xLi  →  LixFe1-xF2   (4) 

 Fe2+
1-3xFe3+

2xF2  →  Li2xFe1-xF2   (5) 

 Li2xFe1-xF2  →  2yLiF + Li2x-2yFe1-xF2-2y  (6) 50 

 

 The first step (equation 3) proposed by Yamakawa et al.,17 

involves the lithium-driven displacement of Fe from the FeF2 

lattice, forming Fe0 and Fe3+, whilst also maintaining a rutile   

Fe1-xF2 structure.  Such structures are thought to accommodate 55 

the insertion of Li+ ions in a more typical intercalative fashion.  

The possibility of further Li+ insertion to form Lix[LixFe1-x]F2 is 

also considered.  The reactions such as those proposed in 

equations (3) to (6), are believed to fall within the 3.0 – 2.0 V 

voltage window and could potentially compete with an onset of 60 

the conversion reaction outlined earlier in equation (2).  In 

support of this fact, molecular dynamic simulations have also 

predicted early intercalation in FeF2 cathodes by means of 

analysing Li+ exposure to the low energy (001) and (110) 

surfaces of FeF2, where it was identified that a competitive 65 

process existing between Li+ intercalation along [001] channels 

and that of electrochemical conversion results.18  Such 

mechanisms are suggested to be widely governed by the rate of 

discharge and crystal orientation of the FeF2 local structure 

during exposure to Li+.18  Such a competitive mechanism is, 70 

however, challenged somewhat by experimental observation that 

FeF2 undergoes a rapid structural conversion mechanism in the 

absence of intercalation to the corresponding Fe0 and LiF phases 

with no Fe+ intermediaries.20,19  A recent communication by 

Wang et al.21 has also depicted the conversion process of FeF2 for 75 

the first time by in-situ TEM observation.  The authors found a 

surprisingly fast conversion process occurs (several minutes for 

FeF2 nanoparticles), forming small diameter (1 – 3 nm) metallic 

Fe0 nanoparticles, surrounded by an amorphous LiF phase which 

ensued as a result of a propagation of a reaction front through the 80 

active FeF2 domains.  The absence of any identifiable Fe3+ phases 

by EELS measurements suggested that the conversion 

mechanism followed an intermediary pathway although, notably, 

the authors also suggest the possibility of Li+ intercalation 

resulting in supersaturation of the FeF2 host resulting in a 85 

transformation from a crystalline rutile structure to that of an 

amorphous phase which could be responsible for the lack of 

detection of a lithiated (intercalated), phase by means of electron 

diffraction measurements.21  Following on from the early sloping 

region in our discharge profile (figure 7), a long plateauing region 90 

develops which is attributed to the relevant phase transition(s) 

associated with the electrochemical conversion reaction of FeF2.  

At the lower current density of 10 mA g-1 (~ 0.035 C rate, 1C = 

571 mA g-1), the onset of plateauing ensues from ~ 1.65 V before 

showing very gradual decline over the remainder of the discharge 95 

process.  After reaching a potential limit of 1.0 V, the capacity 

obtained following the first discharge cycle was ~ 1100 mAh g-1, 

representing approximately twice that of the theoretical capacity 

assumed for a 2 e- conversion process in FeF2.  On increasing the 

current rate to 20 mA g-1, the discharge profile displayed a 100 

gradual decline over the first ~ 400 mAh g-1, followed by an 

inflection from ~ 1.5 V before a slight plateau region ensued 

nearer the low-voltage limit.  After reaching a potential limit of 

1.0 V, the capacity returned was some 590 mAh g-1, representing 

only a slight over-capacity with respect to theoretical maxima 105 

(571 mAh g-1); in both cases, the high capacities returned outlines 

the highly promising potential of FeF2 during early stages of 

electrochemical cycling.  The disparity in capacity and the nature 

of discharge between the comparative current densities does, 

however, indicate a large degree of sensitivity of the conversion 110 

process to the applied discharge rate.  Such a result is not 

surprising given the current understanding of the relatively 

sluggish kinetics of the conversion sequence, coupled by a 

predictably high incidence of overpotential which arises from 

poor electronic conductivity and polarisation effects. 115 
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Fig. 7  (a) 1st discharge curves of FeF2powders to 1.0 V vs. Li/Li+ 
at the current densities of 10 (black line) and 20 (blue line) mA 

g-1, (b) 1st, 3rd and 5th discharge-charge curves obtained at a 
constant current of 20 mA g-1, (c) 25-cycle discharge curves at 5 

the same current rate and (d) discharge capacity as a function of 
cycle number   

The first, third and fifth discharge-charge (voltage) curves for the 

FeF2 cells taken at a current density of 20 mA g-1 over the same 

potential range are displayed in figure 7(b), while the 25-cycle 10 

discharge curves are shown in figure 7(c), depicting the evolution 

of the discharge process.  The average discharge potential 

displayed increases slightly with respect to the initial conversion 

reaction (black line, figure 7(b)), which is likely due to the 

dramatically reduced active material size, resulting as a 15 

consequence of electrochemical conversion, thus leading to 

enhanced efficiency in the subsequent electrochemical conversion 

cycles.  Notably, the first charge curve to 5.0 V (black line), 

displays a somewhat significant overcharge region, the nature of 

which may be ascribed to increases in SEI formation at elevated 20 

potential.  Such overcharge, however, remains relatively 

insignificant following the first cycle which would also 

corroborate its attribution to instances of SEI formation during 

the first charge cycle.  While potentially detrimental, the high 

charge voltage was necessary in order to attain appreciable 25 

cycling for our FeF2 powders (see later).  Also apparent, is the 

distinct observation of disparity between the relevant shapes of 

the discharge and charge curves, a feature of hysteresis which is 

both a common and undesirable feature of the conversion 

electrodes.4  30 

 Previously, it was shown that charging of FeF3 cells at 

potentials up to 4.0 V results in the recovery of a lithiated- 

Li0.5FeF3 phase while further charging of FeF3 cells to 4.5 V 

results in an initial recovery of a defect tri-rutile FeF3 phase.7  To 

this end, capacity fading has been expressed as a consequence of 35 

a poor reversibility in conversion sequence and has been 

observed by ex-situ TEM/electron diffraction measurements, 

which depicts the co-existence of α-Fe and LiF phases existing 

with FeF3 after successive (50) charge cycles.7  Such incidences 

may suggest higher charging potentials may be required over 40 

time.  In our case, charging the FeF2 cells below 4.5 V, even at 

the relatively low current density of 20 mA g-1, resulted in poor 

Coloumbic efficiency (Qcharge/Qdischarge), leading to poor capacity 

retention over relatively few discharge-charge cycles (not 

shown). 45 

 Figure 7(d) displays the cycling performance of our FeF2 

powders at a current density of 20 mA g-1.  The specific capacity 

of the first discharge at a potential limit of 1.0 V was ~ 590    

mAh g-1, representing a conversion of approximately 2.1 Li+ per 

formula unit FeF2.  In the second cycle, a reduction in capacity is 50 

observed after formation of the SEI layer, however, the discharge 

capacity at this stage is still largely agreeable with the theoretical 

approximations based on a total reduction of Fe2+ in FeF2 (~ 571 

mAh g-1).  The midpoint voltage displayed over the discharge 

curve was ~ 1.38 V, therefore representing a second-cycle energy 55 

density of 715 Wh kg-1; energy densities of this magnitude are 

considerably higher than those which may be afforded by 

conventional Li-ion intercalation cathodes such as LiFePO4 (~ 

610 Wh kg-1).  A degree of capacity fading was evident over the 

first four cycles, however, some stabilisation of capacity was 60 

attained notably over the first 15 cycles at ~ 300 mAh g-1, while a 

discharge capacity of ~ 220 mAh g-1 was returned following 25 

charge-discharge cycles, representing a final conversion of 

approximately 1.1 Li+ per formula unit FeF2.  Such capacities are 

largely similar to C-FeF2 nanocomposites discharged to 1.3 V 65 

after the same number of cycles,16 and still superior to theoretical 

capacities exhibited by some of the more conventional 

intercalation hosts, e.g., LiCoO2 (~ 120 mAh g-1) and LiFePO4 (~ 

170 mAh g-1); the lower average working voltage and low current 

rate of FeF2 remains, however, potentially significant.  70 

 Although the discharge capacity of FeF2 remained appreciable 

over the cycling period, the large degree of overpotential leads to 

large round-trip energy inefficiencies which may currently 

preclude their use in commercial environments.  In addition, the 

high charging potentials required may lead to dramatic increases 75 

in electrolyte oxidation products, e.g., FeF6, LiF6, LiPxOyFz, 

resulting in abject increases in SEI formation which could 

potentially lead to increased levels of capacity fading.  In 

addition, the rate capability of FeFx-based electrodes, owing to 

their intrinsically poor conductivity and the relatively limited 80 

kinetics of the conversion sequence, is also an issue facing the 

utilisation of FeFx and other similar conversion candidates.  The 

data reported in this work so far was collected at the relatively 

low specific currents of 10 and 20 mA g-1, while cycling at an 

elevated current density of 200 mA g-1 (~ 0.35 C rate), resulted in 85 

a discharge capacity of just ~ 72 mAh g-1 after 25 cycles (not 

shown).  FeF2, therefore, may find limited application in future 

high-rate Li-ion batteries due to its sluggish and complex 

conversion chemistries.  Such examples depend on rapid Li+ 

diffusion kinetics which are ill-afforded in this case, and may 90 

depend on suitable open host structuring.  Although the 

conversion kinetics of FeF2 are demonstrated to be cumbersome 

at room temperature, both Reddy16 and Badway et al.10 have 

shown a vast improvement of an equivalent carbon-composite 

FeF2 cathodes operating at 40 and 70 °C, repectively.  95 

Interestingly, the operation of FeF2 cathodes at 70 °C was largely 

similar to those of C/FeF3 cells cycled at 25 °C, indicating the 

rate limiting steps during conversion of FeFx lie at potentials       

< 2.0 V. 

 100 

2.4  Li+ Induced conversion of CoF2 Powders 

 Theoretically, CoF2 extends the possibility of delivering a high 

capacity of 553 mAh g-1 at a slightly increased electrode potential 
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compared to the FeF2 (2.85 V vs. Li/Li+; see table 1), resulting in 

potentially high energy densities exceeding 1500 Wh kg-1.  The 

acicular-like CoF2 powders prepared by our SCF route (displayed 

in the SEM images, figure 4), are a potentially useful morphology 

in electrode technology, and beyond, owing to an increase in the 5 

tapped density provided by their spherical structuring, while in 

addition, the nanoscale structuring which comprises the overall 

CoF2 form, allows for an increased size of the 

electrode/electrolyte interface, and offering shorter Li+ diffusion 

paths.  While such characteristics have important implications for 10 

conventional intercalation hosts, such as favourable Li+ transport, 

much less is known about such influences on conversion-type 

electrodes which undergo significant morphological changes as a 

result of their conversion.  To this end, the influence of starting 

morphology on the first and subsequent discharge cycles remains 15 

unclear; however, it is reasonable to stipulate that an overall 

reduction in the size of the active material prior to conversion 

may facilitate an enhancement in the respective conversion 

kinetics.  While these features are implicated before the initial 

discharge state, much less consideration is given to these effects 20 

after successive electrochemical cycling in which the active 

metallic species are already cycled between significantly smaller 

nano-sized features.  Recently, Li et al.7 reported the ability of 

FeF3 nanowire architectures to largely maintain their overall 

structuring on cycling by forming a network of interconnected α-25 

Fe domains, surrounded by a matrix of LiF.  Equivalent data has 

not been presented for CoF2 architectures, although a similar 

pathway is predicted. 

 The overall electrochemical conversion reaction of CoF2 is 

outlined in equation (7), where the expected sequence affords LiF 30 

and Co0
 as the reduction species in a 2 e- process.  Previous 

reports of CoF2 architectures operating as conversion candidates 

have thus far been limited due to an instability of CoF2 in 

conventional liquid organic electrolytes.  Fu et al.22 prepared 

LiPON-coated CoF2 thin-films by a PLD method, which 35 

delivered a capacity in the first discharge of ~ 600 mAh g-1 at the 

anodic potential limit of 0.01 V vs. Li/Li+ , while the introduction 

of their pure CoF2 thin-films to the electrolyte solution resulted in 

severe instability.  In this case, the introduction of LiPON 

coatings to the CoF2 thin-film surface was thought to facilitate a 40 

reduction in the unfavourable interaction with liquid electrolyte, 

serving as a physical barrier layer in preventing its dissolution.  

The reduction species were confirmed by ex-situ XRD 

measurements, signified by LiF (220) and Co (111) reflections in 

the XRD profile.22  Recently, Wall et. al23 prepared both CoF2/C 45 

and Co/LiF/C composite cathodes without such protective 

features; although the CoF2/C composite displayed higher initial 

capacity than that of the Co/LiF/C composite (~600 and ~150 

mAh g-1 in the first discharge cycle, respectively), the Co/LiF/C 

composites displayed good capacity retention while the CoF2/C 50 

composites attained just 15 % capacity retention within the 

cycling period (50 cycles).  The application of Co/LiF in 

composite form has also been displayed with meritable results.31

 In the case of our SCF-prepared CoF2 powders, little visible 

interaction with the electrolyte solution (LiPF6 dissolved in 55 

EC:DMC 50:50 vol. %) was evident.  The apparent stability of 

the CoF2 powders in electrolyte was ascribed to the potential 

formation of carbon surfaces following the decomposition of both 

organometallic precursor and residual toluene during synthetic 

processing.  To this end, evaluation by galvanostatic cycling was 60 

possible (figure 8), although consideration must be given to the 

long term influence of stability of CoF2 with progressive 

electrochemical cycling in liquid organic electrolytes.   

 Limited data is available thus far with regards to detailed 

conversion mechanisms in CoF2, although it has been proposed 65 

that CoF2 extends an incomplete conversion mechanism with a 

further possibility of reaction between the newly formed 

nanograins of metallic Co0 with LiF (equation 7), the process of 

which is outlined in equations 8 & 9. 22 

 70 

 CoF2  +  2Li  +  2e-  ↔  Co  +  2LiF   (7) 

 xCo +  LiF  ↔  (1 – x)LiF  +  xFCo  +  xLi+    (8) 

 (1 – x)LiF  +  xFCo  +  xLi+  +  xe-  ↔  xCo  +  LiF    (9) 

 

 75 

Fig. 8 CoF2:  (a) 1st, 3rd and 5th voltage curves at a current density 
of 20 mA g-1 (b) 25 cycle discharge curves at the same rate (c) 

discharge capacity as a function of cycle number and (d) ex-situ 
XRD pattern of CoF2 cells collected at the 25th charge-cycle 

 Figure 8(a) shows the initial discharge-charge curves of the 80 

CoF2 powders prepared by SCF synthesis.  At a discharge 

potential limit of 1.2 V in the first cycle, a capacity of ~ 535 mAh 

g-1
 was obtained, representing ~ 97 % of the theoretical discharge 

capacity with respect to a full 2 e- conversion reaction of CoF2 (~ 

553 mAh g-1).   Thus far, first discharge capacities of this 85 

magnitude for CoF2 conversion systems have only recently been 

reported.23  A similar capacity ( ~ 600 mAh g-1), was also 

obtained at the anodic potential limit of 0.01 V,22 although the 

use of such voltages preclude their direct comparison.  The first 

discharge profile extends a dual plateauing system with such 90 

regions extending from ~ 2.7 and 1.5 V vs. Li/Li+.  The first 

plateauing region (~ 2.7 – 2.3 V), accounts for some ~ 400 mAh 

g-1 of the total discharge capacity obtained, while the lower 

plateauing region (~ 1.5 – 1.2 V), is significantly shorter, 

accounting for ~ 130 mAh g-1.  Oxidation (fluorination) steps are 95 

discernable in the voltage curves, appearing as a sloping region 

from 4.3 – 4.6 V followed by a long, flat charge profile occurring 

from 4.6 – 4.8 V.  The total charge capacity obtained at the upper 

cut-off potential was ~ 2000 mAh g-1, representing significant 

overcharge compared to that of the first discharge capacity (535 100 

mAh g-1).  Such an event indicates that complete charging of the 
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CoF2 cells overlaps the potential regions where the formation of 

electrolyte oxidation products is known to occur, through which 

may culminate in concomitant increases in unwanted electrolytic 

side reactions.  Interestingly, the discharge capacity increased in 

the second cycle to ~ 650 mAh g-1, which is significantly higher 5 

than predicted; the possibility of an insertion/interaction of 

metallic Co with LiF to form a CoLiF intermediary has been 

proposed,22 although there is no evidence for this in our study.  

The third and subsequent discharge cycles offered declining 

capacity performance, however, the dual-plateauing regions 10 

which extend throughout the discharge profile offer somewhat 

similarity to those of the first cycle and suggests a similar yet 

increasingly inefficient sequence of electrochemical reductions 

occurred.  Fu et al.22 have shown that the first discharge reaction 

(equation (7)) is largely irreversible, while the charge reaction of 15 

Co0 and LiF affords CoFx (here, x < 1), with only ~ 50% of the 

Co0 and LiF re-converted to CoF2 in the re-conversion process.  

The poor reversibility in the conversion sequence would account 

for the > 70% loss of capacity experienced following the first few 

cycles, which results in a return of ~ 100 mAh g-1 after 10 cycles, 20 

while further cycling afforded yet further capacity decline, 

resulting in just ~ 30 mAh g-1 following the cycling period (25 

cycles).    In support of a poorly reversible sequence, the final 

phases in the charged CoF2 cells were identified by ex-situ XRD 

measurements (figure 8 (d)).  The collected XRD patterns 25 

indicated a loss of CoF2 crystallinity following cycling, with no 

discernible peaks originating from the starting CoF2 phase.  

Broad peaks identifiable at 2θ values of 38.5, 44.8 and 65.3° may, 

however, be indexed to the crystal reflections of the (110), (200) 

and (220) set of planes in LiF (PDF 78-1217).  The apparent loss 30 

of CoF2 crystallinity as detected by XRD measurements would 

indicate that all of the original CoF2 phase participated in the 

earlier conversion (discharge) reaction, while the charging 

process was either incomplete, or that the resultant CoFx phase 

that reformed was amorphous or sufficiently small so as to 35 

exceed the X-ray coherence length.  Further, no reflections 

originating from Co phases could be identified to indicate the 

reversibility of the system.  The indication of crystalline LiF 

existing in the charged state, however, supports the notion of a 

poorly reversible conversion mechanism as proposed by Fu et 40 

al.22  An in-situ analysis of CoF2 conversion with Li+
 is therefore 

preferential in order to best understand the mechanistic and 

structural evolution in the conversion sequence.  While the 

specific capacity and operating voltage of CoF2 remains 

agreeable with magnitudes that theoretical considerations would 45 

predict, improved electrochemical performance of CoF2, 

particularly pertaining to extended cycle life, may result from a 

complete understanding of the conversion sequence.  The 

optimisation of CoF2 electrodes, such as the grafting of 

electrically conducting layers to the CoF2 surface, could result in 50 

enhanced conversion kinetics and a more favourable re-

conversion process, while the development and utilisation of 

alternative electrolyte compositions more suited to the operating 

potentials could allow further study of the respective cycling 

processes.  A thorough understanding of the conversion 55 

mechanisms and the respective kinetics involved may allow for 

complete utilisation of CoF2 with stable performance as a future 

Li-ion electrode. 

 

3.  Conclusions 60 

 In conclusion, a method of synthesising FeF2 powders using a 

novel SCF route using [Fe(tta)3] as a single-source precursor in 

toluene at 400 °C was presented.  CoF2 powders were also 

prepared under a similar approach, using [Co(hfac)2.2H2O] 

serving as single-source precursor.  This represents the first 65 

display of utilising such precursors in the formation of highly 

crystalline MF2 powders under supercritical conditions.  TEM 

analysis revealed an amorphous layer (~ 5 nm), surrounding the 

FeF2 domains, which was ascribed to the deposition of 

carbonaceous species following the synthetic treatment under 70 

SCF conditions.  Due to the intrinsically insulating nature of 

FeF2, the conducting carbon layers surrounding the FeF2 domains 

likely enabled adequate electron transfer.  The FeF2 cells display 

high initial energy capacities (up to 1100 mAh g-1
 and 595 mAh 

g-1 at 10 and 20 mA mA g-1, respectively), and are relatively 75 

stable over 25 discharge-charge cycles.  A second discharge 

energy density of 810 Wh kg-1, which is significantly higher than 

those afforded by the conventional intercalation electrodes such 

as LiFePO4 and LiCoO2, outlines the high-potential of FeF2 

cathodes.  The kinetics of the FeF2 conversion sequence were 80 

appreciably poor at room temperature, however, resulting in 

diminished electrochemical performance at increased discharge 

rates.  In addition, the relatively low average working potential of 

FeF2 (a deviation of > 1.0 V per the calculated e.m.f), coupled 

with a large overpotential remains pertinent.  Further work is 85 

required in order to assess the potential of FeF2 cathodes with 

improved rate performance, which may be achieved by further 

reducing the active particle size or through the introduction of 

dopant species.  

 CoF2 spheres, which were comprised of nanorods in the order 90 

of 20 nm diameter, also displayed appreciable capacity during 

early stages of electrochemical cycling, however, an unfavorable 

re-conversion mechanism and a possible ill-reaction with the 

organic electrolyte rendered the SCF prepared phase-pure CoF2 a 

poor Li-ion electrode after relatively few electrochemical cycles.  95 

However, through the advancement of electrolyte compositions 

which are stable at higher voltages, or via composite formation, 

CoF2 cannot be disregarded as a potential positive electrode at 

this stage. 
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