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Abstract

The class of all Exponential-Polynomial-Trigonometric (EPT) functions is clas-

sical and equal to the Euler-d’Alembert class of solutions of linear differential

equations with constant coefficients. The class of non-negative EPT functions

defined on [0,∞) was discussed in Hanzon and Holland (2010) of which EPT

probability density functions are an important subclass. EPT functions can be

represented as ceAxb, where A is a square matrix, b a column vector and c

a row vector where the triple (A,b, c) is the minimal realization of the EPT

function. The minimal triple is only unique up to a basis transformation. Here

the class of 2-EPT probability density functions on R is defined and shown to

be closed under a variety of operations. The class is also generalised to include

mixtures with the pointmass at zero. This class coincides with the class of prob-

ability density functions with rational characteristic functions. It is illustrated

that the Variance Gamma density is a 2-EPT density under a parameter restric-

tion.

A discrete 2-EPT process is a process which has stochastically independent 2-

EPT random variables as increments. It is shown that the distribution of the

minimum and maximum of such a process is an EPT density mixed with a

pointmass at zero. This density can be derived exactly using two different ap-

proaches provided. The Fourier Transform of these distributions correspond to

the discrete time Wiener-Hopf factors of the discrete time 2-EPT process.

A distribution of daily log-returns, observed over the period 1931-2011 from a

prominent US index, is approximated with a 2-EPT density function. Without



xii Abstract

the non-negativity condition, it is illustrated how this problem is transformed

into a discrete time rational approximation problem. The rational approx-

imation software RARL2 is used to carry out this approximation. The non-

negativity constraint is then imposed via a convex optimisation procedure after

the unconstrained approximation.

Sufficient and necessary conditions are derived to characterise infinitely divisible

EPT and 2-EPT functions. Infinitely divisible 2-EPT density functions generate

2-EPT Lévy processes.

An assets log returns can be modelled as a 2-EPT Lévy process. Closed form

pricing formulae are then derived for European Options with specific times to

maturity. Formulae for discretely monitored Lookback Options and 2-Period

Bermudan Options are also provided. Certain Greeks, including Delta and

Gamma, of these options are also computed analytically.

MATLAB scripts are provided for calculations involving 2-EPT functions. Nu-

merical option pricing examples illustrate the effectiveness of the 2-EPT ap-

proach to financial modelling.
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Glossary

σ(A) = Spectrum of Square Matrix A

H+ = {ω | Re(ω) > 0}

H− = {ω | Re(ω) < 0}

C+ = {ω | Im(ω) > 0}

C− = {ω | Im(ω) < 0}

IA = Identity matrix with dimension equal to those of A

In = n× n Identity Matrix

A⊕B = A⊗ IB + IA ⊗B , (Kronecker Sum)

ϕ(s) =

∫
e−sxf(x)dx , Laplace Transform of f

Φ(is) =

∫
eisxf(x)dx , Characteristic Function of f

A rational function p/q has support on the set S if q(s) ̸= 0 for all s ∈ S.
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Chapter 1

Introduction

1.1. Introduction

1.1.1. 2-EPT Probability Density Functions

The recent surge in computing power has meant that many previously com-

putationally expensive modelling techniques have now become feasible. These

developments have enabled moves away from traditional Gaussian assumptions

which were often implemented due to their analytic tractability rather than their

goodness of fit. We define the flexible class of two-sided Exponential Polynomial

Trigonometric (2-EPT) densities on the whole real line. On [0, ∞) as well as

(−∞, 0) these probability density functions are non-negative EPT functions.

EPT functions were discussed in Hanzon and Holland (2010b) and can be rep-

resented with the minimal realization (A,b, c) as ceAxb. An EPT function can

be interpreted as the impulse response of a continuous time stable system whose

Laplace Transform is a rational transfer function. This interpretation and the

use of minimal realizations allows us to apply methods from systems theory in a

financial modelling context. The class of 2-EPT densities corresponds to those

densities with a strictly proper rational characteristic function / transform. The

more general class of probability measures on R with (proper) rational charac-
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teristic functions is also considered whose densities correspond to mixtures of

the pointmass at zero (“delta distribution”) and 2-EPT functions. It will be

seen that the class of 2-EPT densities is closed under many operations which

makes 2-EPT densities an ideal financial modelling tool.

1.2. Motivation

1.2.1. Black-Scholes Shortcomings

Much of the success of the Black-Scholes model can be attributed to the closed

form risk neutral option prices it generates. However, such enviable results and

analytic tractability stem from its simplistic modelling assumptions of a pure

diffusion process in which log-returns have a Gaussian distribution. Geometric

Brownian Motion driven models have laid the foundations for the phenomenal

growth seen in financial engineering, both in the literature and in industry,

despite the fact that its poor fit has been acknowledged since Mandelbrot (1963).

It has been well documented that the assumption of Gaussian returns cannot

be justified by empirical studies and this is portrayed in Figures (1a) and (1b)

where the peaked mean and heavy tails of the empirical distribution are obvious.

These features are more accentuated when the holding periods become shorter

as shown in Geman (2002).
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Figure 1.1: Poor Fit of Gaussian Distribution compared to Empirical Returns
(Daily Dow Jones Industrial Average log-returns 1931-2011) (a) illustrates the peaked
mean of observed returns while (b) shows a semi-log plot (y-axis uses a log scale) of

the heavy tails of empirical returns with respect to the Gaussian tails

The Black-Scholes model assumes continuous asset paths creating a com-

plete market where delta hedging strategies are used to derive risk neutral

option prices. Within this complete markets framework vanilla options are

clearly redundant as they can be replicated with a portfolio of risky assets and

bonds. However, once jumps are introduced to the price process, and they

are clearly identifiable in equity data, the continuous hedging arguments break

down but lead to a more realistic, incomplete market. Therefore, without con-

tinuous hedging these options are no longer futile and become completing assets,

hedging against jump risk.

The most obvious implication of using the mis-specified Black-Scholes model is

the underestimation of the probability of extreme events due to the light tails

of the Gaussian distribution. Immediately, this means that deep out of-the-

money options are underpriced and short term options also mis-priced. Some
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firms have countered this problem by using adjusting the volatility parameter

depending on the moneyness of the option, but this approach clearly contradicts

the Black-Scholes model. The assumption of Gaussian returns meant financial

institutions often held insufficient capital reserves to cope with extreme events.

Portfolio insurance follows from the assumption of pure diffusion models allow-

ing derivatives exposure to be delta hedged while neglecting gap risk. Large

intra-day prices moves, as seen on October 19th 1987 for instance, can result in

heavy losses for firms engaging in such practices. A classic example of the con-

sequences of the Black-Scholes shortcomings was demonstrated by the collapse

of the hedge fund Long Term Capital Management in 1998, whose principals

included the Nobel laureates Myron Scholes and Robert Merton. The fund was

dedicated to exploiting mis-pricings identified by their famous model.

1.2.2. Modelling Alternatives

Significant research has been carried out seeking more realistic models which bet-

ter capture the stylized characteristics of asset returns including excess kurtosis,

skewness and jumps. Mandelbrot (1963) advocated modelling returns using α-

stable distributions and while a realistic fit was achieved on many timescales

relatively little attention has been paid to such models. The primary reason

behind their decline is that the probability density function of an α-stable law

is not known in closed form excluding the Gaussian and the Cauchy densities,

both deemed unsuitable for financial modelling purposes. The Cauchy dens-

ity is considered inappropriate as it does not possess finite moments. Another

disadvantage of the using α-stable distributions to model log-returns is that (ex-

cluding the Gaussian) such distributions do not tend to Gaussian over time, a

property financial returns exhibit.

The Variance Gamma density is described in Section 2.3. A Variance Gamma

process has independent increments which have a Variance Gamma distribu-

tion. The Variance Gamma price process is a shifted exponential Variance
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Gamma process and has emerged as a popular modelling alternative to Geo-

metric Brownian Motion since been introduced in Carr, Madan, Chang (1998).

The Variance Gamma process is a pure jump process while the density is flexible

with tails decaying exponentially and asymmetrically if desired. The distribu-

tion even allows one to control the excess kurtosis directly. However, a major

drawback of the Variance Gamma distribution is the complicated structure of

its density, which includes a modified spherical Bessel function, making even

simple calculations difficult. For this reason very few Variance Gamma related

results are derived via the density function. This is in stark contrast with the

Black-Scholes model where closed form option pricing formulae exist and op-

tion price sensitivities can be computed analytically. Numerical integration is

required to make such calculations within the Variance Gamma framework. Fig-

ure 2 illustrates the difference between the Variance Gamma Price Process, a

pure jump process, and Geometric Brownian Motion, a pure diffusion process.
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Figure 1.2: (a) Geometric Brownian Motion (Pure Diffusion Process) compared
against (b) an Exponential Variance Gamma Process (Pure Jump Process)

The Variance Gamma density takes three positive parameters, namely (C,G,M),

as inputs. The characteristic function of the Variance Gamma density can be
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raised to any positive power by adjusting the value of the parameter C. It can

be seen that the characteristic function is infinitely divisible. Hence, the density

is infinitely divisible and it follows that the Variance Gamma process is a Lévy

process. Therefore, the Variance Gamma price process is an exponential Lévy

process. The fact that the underlying process is a Lévy process has undoubtedly

contributed to the growth of the model as much research has been conducted

into the properties of such processes as we will see in Chapter 5.

The relationship between Lévy processes and infinitely divisible distributions

is very close as there exists an infinitely divisible distribution for every Lévy

process. A classical result, also given in Kyprianou and Loeffen (2005), proves

the converse, that for every infinitely divisible distribution there exists a unique

Lévy process. Lévy processes are characterized by their Lévy triple, comprising

of a drift component, a diffusion component and a Lévy measure. The Lévy

measure specifies the intensity of the jumps and their sizes in process. These

processes are ideally suited to financial modelling due to their flexibility and

ability to generate realistic asset returns. Modelling with Lévy processes pre-

serves the stationarity and independence of increments while allowing for jumps,

distributional asymmetry and heavier tails than the Gaussian distribution.

A downside associated with Lévy processes is that the formulae for the densit-

ies generating such processes often contain special functions or may not even

have a closed form. A classic example is the generalized hyperbolic distribution

whose special cases include the Variance Gamma and Inverse-Gaussian distri-

butions, both containing special functions. The Meixner distribution generates

Lévy processes popular in financial modelling but again its density is not suit-

able for analytic computations. For this reason, calculations involving these

density functions often require numerical techniques. Option pricing formulae,

based on models using the aforementioned Lévy processes, are not available in

closed form to date. Typically these prices are obtained using the Fast Fourier

Transform of Carr and Madan (1998).

As already mentioned, the Variance Gamma distribution takes three paramet-
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ers (C,G,M) as inputs and if C is restricted to be an integer, a strictly proper

rational characteristic function is observed implying the existence of a 2-EPT

density. The 2-EPT realization of the density can be recovered and once in this

form can be manipulated easily. Assuming an asset has a Variance Gamma price

process (exponential Lévy process) with C integer, we show how closed form

option pricing formulae can be obtained. It is also possible to derive certain

Greeks of the option, including delta and gamma, analytically.

1.2.3. 2-EPT Lévy Processes

A necessary and sufficient condition is derived in Section 4.3 to characterise

an infinitely divisible EPT functions. This result is extended in Section 4.6 to

provide a similar necessary and condition to identify infinitely divisible 2-EPT

probability density functions. Infinitely divisible 2-EPT distributions generate

2-EPT Lévy processes. The increments of 2-EPT Lévy processes have 2-EPT

distributions over certain timeframes. The Lévy triple of such processes can be

derived and it is seen that 2-EPT Lévy processes are pure jump processes of

finite variation. Both Madan (1999) and Geman (2002) propose modelling the

log-returns of assets using processes of finite variation. The path of an assets

log-returns observed in practice are of finite variation, compared with Brownian

Motion models which assume paths of infinite variation. It is obvious that we

can benefit from the vast probabilistic theory on Lévy processes. It will be seen

later in Section 6.4.4 that 2-EPT densities can approximate the Gaussian quite

well. If this approximating density is infinitely divisible then its associated Lévy

process will approximate Brownian Motion.

The 2-EPT price process is defined in Section 6.2 as an exponential 2-EPT Lévy

process. Assuming that an assets log-return over a period τ have an infinitely

divisible 2-EPT distribution, then it is illustrated that the risk neutral closed

form pricing formulae exist for European options with integer multiples of τ

to maturity. Similarly, closed form pricing formulae can also be derived for
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discretely monitored Lookback and 2-Period Bermudan Options for assets with

such a 2-EPT price process. The greeks of these options can also be computed

analytically.

1.2.4. 2-EPT Operational Advantages

The arguments above make a logical and compelling case for adopting a 2-EPT

approach to financial modelling. The claim is strengthened when the machinery

available for 2-EPT calculations is unveiled. The range of operations under

which the class of 2-EPT functions is closed allows for a broad spectrum of

problems to be tackled under a single framework. We will consider some of

the operations here to illustrate the advantages of 2-EPT densities. Many of

the operations rely on the ability to additively decompose the rational Laplace

Transform of the 2-EPT density into the sum of two proper rational functions

with poles located in the open right and open left half planes.

The first operation of note to be considered is the sum of 2-EPT densities. It

is seen that the class of 2-EPT densities are closed under summation and the

computation is straightforward. Summation in this context is equivalent to mix-

tures of densities, themselves quite important in financial modelling. It is also

seen that the class of 2-EPT functions is closed under multiplication.

It is shown that all moments of 2-EPT densities exist and analytic expressions

are available for such moments about the origin. These moments may be com-

puted from the derivatives of rational characteristic function which results in

standard formulae for the moments. Alternatively the kth moment may be cal-

culated by integrating xkf(x) over the relevant domain where f(x) represents

the 2-EPT probability density function.

The convolution of two 2-EPT functions is another 2-EPT function. Given

the 2-EPT modelling assumption, that log-returns over a fixed period τ have

a 2-EPT distribution, it is clear that the sum of independent log-returns, over

periods of length τ or integer multiplies of τ , again have a 2-EPT distribution.
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The distribution of the maxima and minima of a set of independent 2-EPT

random variables is shown to be 2-EPT. In conjunction with the convolution

formula it is possible to derive the probability density function of the maximum

or minimum of a 2-EPT discrete time process. The density of these extrema of

such processes is shown to be an EPT density mixed with a pointmass at zero.

This property is central to obtaining analytic pricing formula for discretely mon-

itored Lookback options.

The class of 2-EPT functions is closed under scaling while translation appears to

be the only notable operation under which the class is not closed. A translated

2-EPT random variable does not have a 2-EPT probability density function.

1.2.5. 2-EPT Computations in Practice

From a theoretical perspective it seems that modelling with 2-EPT densities

can be justified. We examine whether such techniques are feasible to implement

in practice. We consider the problem of approximating an empirically observed

distribution of daily log-returns, from the Dow Jones Industrial Average (DJIA)

index 1931-2011, with a 2-EPT probability density function. The non-negative

log-returns on [0,∞) are approximated first with a EPT function using the ap-

proximation software RARL2. This procedure is then repeated to fit a EPT

function to the data on (−∞, 0] to give a 2-EPT function. Paramount to these

approximations is the assurance of non-negativity and this is imposed via a con-

vex optimisation algorithm. Using this non-negative 2-EPT approximation of

the distribution of daily log returns, the density of the annual log-return is com-

puted using the convolution formula. By modelling an assets log-returns using

this 2-EPT distribution, prices for European Call Options with one year to ma-

turity and daily monitored Lookback Options are then calculated and plotted

over a range of initial asset prices. The Delta and Gamma of these options are

are also calculated and plotted. These computations involve large matrices but

computation times remain small.
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MATLAB is an ideal computing environment for 2-EPT modelling as it is de-

signed for easy matrix manipulation. All numerical examples and results presen-

ted in this text have been generated using MATLAB. The Control Systems Tool-

box contains many inbuilt functions to implement systems theory results such

as deriving minimal realizations. The website “www.2-ept.com” was designed

in conjunction with this research as a source for 2-EPT related literature and

software. There are various algorithms available to download from the site to

assist with 2-EPT calculations most notably the Budan-Fourier algorithm of

Hanzon and Holland (2010) and the convex optimisation procedure to approx-

imate negative EPT functions with non-negative EPT functions. Both these

algorithms are described in Chapters 3 and 7. Conveniently the approxima-

tion software RARL2 used to approximate empirical distributions with 2-EPT

functions is also implemented in MATLAB.

1.3. Thesis Structure and Publications

1.3.1. Structure

This introductory chapter concludes with a literature review of the techniques

employed throughout the thesis. The review provides a description of previous

work carried out in each area and motivation for its inclusion here.

Chapter 2 builds the foundation for the thesis by formulating EPT and 2-EPT

probability density functions mathematically. The generalization of mixtures

of 2-EPT functions with the Dirac distribution is also given and correspond to

generalised 2-EPT distributions. The chapter continues by demonstrating how

numerous operations can be carried out within the 2-EPT framework. It is

then shown how, under a parameter restriction, the Variance Gamma density

is a 2-EPT density.

Chapter 3 shows how an empirical distribution of log-returns can be approxim-

ated with a 2-EPT probability density function. The unconstrained approxim-
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ation is shown to be a discrete time rational approximation problem which is

solved using the rational approximation software RARL2. However, the soft-

ware does not implement the non-negativity constraint by default. We prove

that when the spectrum of A contains a unique dominant real eigenvalue, the

Budan-Fourier technique of Hanzon and Holland (2010) can be used to test for

non-negativity on the EPT function on [0,∞). If the 2-EPT approximation re-

turned does assume negative values, then non-negativity is imposed by adjusting

the realization using a convex optimisation algorithm. The chapter culminates

with a comparison of the error of the 2-EPT approximation of the empirical dis-

tribution versus the errors of Gaussian and Variance Gamma approximations.

2-EPT Lévy Processes are then examined in Chapter 4. It is proven how to

characterise an infinitely divisible 2-EPT probability density function. If the

distribution is infinitely divisible, the Lévy triple associated with the 2-EPT

probability density function can be derived. An example involving the Variance

Gamma density is also provided.

Chapter 5 begins by deriving an easy to implement recursive algorithm to com-

pute the EPT probability density function (mixed with a pointmass at zero) of

the maximum or minimum of a discrete time 2-EPT process of known length.

A discrete time 2-EPT process with a geometrically distributed stopping time

is then defined. It is proven (using Wiener-Hopf factorization) that the Laplace

Transforms of the distributions of the extrema of the process can be obtained.

It is then possible to isolate the Laplace Transform of the distribution of the

extrema of 2-EPT process of known length.

Chapter 6 illustrates the benefits of adopting a 2-EPT approach to financial

modelling from an option pricing perspective. Firstly, the risk neutral 2-EPT

asset price process is derived such that the discounted price process is a martin-

gale. Closed form expressions are then derived for European Call Options and

their Greeks. An optimisation algorithm is described to show how the risk neut-

ral 2-EPT price process can be obtained by calibrating the model option prices

to a set of empirically observed option prices. It is then shown how to derive
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closed form pricing formulae for other European Options such as Put Options,

Binary Options and their Greeks. Closed form formulae are then derived for

some more exotic options, including a two-period Bermudan option, equivalent

to a compound option (i.e. an option on an option). Discretely Monitored Look-

back options, with fixed and floating strikes, are also shown to have closed form

pricing formulae. Straightforward computations are demonstrated to calculate

Value-at-Risk levels and the Expected-Shortfall, for assets with a 2-EPT price

process.

Chapter 7 describes some relevant MATLAB functionality available to users

for assistance with EPT/2-EPT calculations. The chapter begins by introdu-

cing some inbuilt MATLAB commands. A short description is also provided to

several beta-version scripts made available by the author free for download on

“www.2-ept.com”. Chapter 8 concludes with a brief synopsis of what has been

achieved to date and some ideas for further research.

1.3.2. Papers and Presentations

The mathematical formulation of EPT and 2-EPT densities with techniques

for performing many of the operations was presented at the ERNSI conference

in Nice in September, 2011. A significant proportion of Chpater 3, regarding

the approximation of empirical data with a non-negative EPT function was

presented at the tri-annual SYSID conference in Brussels, 2012. The associ-

ated paper, co-authored with Prof. Bernard Hanzon and Dr. Martine Olivi1,

entitled Rational Approximation of Transfer Functions for Non-Negative EPT

Densities was published in the SYSID 2012 conference proceedings. The results

of Chapter 5 on infinitely divisible 2-EPT distributions were presented at the

Bachelier Finance Conference in Sydney, in June 2012. This work culminated

in a paper written with Prof. Bernard Hanzon and Prof. Finbarr Holland2

which has been submitted to the Bernoulli Journal for Mathematical Statist-

1INRIA, Sophia-Antipolis, France (Martine.Olivi@sophia.inria.fr)
2University College Cork, Ireland (f.holland@ucc.ie)
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ics and Probability under the title 2-EPT Lévy Processes. A follow on paper,

State Space Calculations for two-sided EPT Densities with Financial Modelling

Applications co-authored with Prof. Bernard Hanzon has been submitted to

the same journal. The contents of the latter paper included the mathematical

formulation of 2-EPT probability density functions with illustrations of some

2-EPT operations and the paper concluded with first half of Chapter 6 deriv-

ing option prices and their greeks for assets with a 2-EPT price process. Draft

versions of all papers and presentations are available on “www.2-ept.com”.

1.4. Literature Review

1.4.1. Phase Type and Matrix Exponential Distributions

Phase type distributions were introduced in Neuts (1975) and have been used in

a wide range of stochastic modelling applications including telecommunications,

queuing theory, survival analysis, etc.. Phase Type distributions have provided

the basis for many models as they are algorithmically tractable and constitute

a versatile class of distributions defined on the non negative half line. A phase-

type distribution can be described as the distribution of the time to absorption

in a finite Markov chain of dimension n + 1, where one state is absorbing and

the remaining states are transient. Such a phase-type distribution of dimension

n is represented by row vector s of length n and a square n× n matrix P. The

distribution is given by

f(x) = sePxPe

where e = (1, 1, ..., 1, 1)R.

The vector s can be interpreted as the initial probability vector among the n

transient states while the matrix P can be thought of as the one-step transition

probabilities. This results in restrictions on the entries of P, where pi,j denotes

the entry in the ith and jth column (i.e. the probability of moving from the
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ith to the jth state). Therefore P can only contain non-negative entries such

that 0 ≤ pi,j ≤ 1 for all i, j ∈ {1, 2, ..., n}. The transition probabilities from

each state i must sum to 1 i.e.
∑n

j=1 pi,j = 1. Hence from this definition it is

clear that phase-type distributions have a probabilistic interpretation. This is

another facet which contributed to their growth. The algorithmically tractable

models stem from properties that, like EPT densities, Phase-Type distributions

have rational characteristic functions and are closed under a variety of opera-

tions. Phase type distributions are dense in the class of all distributions, see

Asmussen (2000). This means, that any distribution on (0,∞) can be approx-

imated arbitrarily close by a Phase-Type distribution. However, for a given

rational characteristic function a phase-type distribution may not exist.

This restrictive nature of phase-type distributions lead to the emergence of the

matrix exponential distributions as an alternative whose density could be found

immediately from their Laplace Transform. Much of the literature on matrix ex-

ponentials is based on methods described in Asmussen and O’Cinneide (1998).

A matrix-exponential distribution h is described by the triple (a,T, t) where

h(x) = aeTxt.

The Laplace Transform of the distribution is the rational function H(u) given

by

H(s) =
aps

p−1 + ap−1s
p−2 + ...+ a1

sp + bpsp−1 + bp−1sp−2 + ...+ b1
+ α0 =

a(s)

b(s)
, (1.1)

where p ≥ 1, a1, a2, ..., ap, b1, b2, ..., bp are all real and 0 ≤ α0 ≤ 1. According to

Asmussen and Bladt (1997), the entries of the triple (a,T, t) can be chosen to

be the coefficients of the Laplace Transform as follows

a = (a1, a2, ..., ap) , t = (0, 0, 0, ..., 0, 1)T



1.4 Literature Review 15

T =



0 1 0 ... 0 0

0 0 1 ... 0 0

0 0 0 ... 0 0

...
...

...
. . .

...
...

0 0 0 ... 0 1

−b1 −b2 −b3 ... −bp−1 −bp


If a(s) and b(s) are co-prime polynomials then (a,T, t) is a minimal realization.

It is seen above that the realization is easily derived from the coefficients of

the polynomials in the numerator and denominator of rational transfer func-

tion. The realization of a matrix-exponential distribution is not required to be

minimal. For this reason much of the literature can not be directly applied to

minimal realizations where simpler calculations often exist. The class of matrix

exponential functions defined on the halfline [0,∞) is equal to the class of EPT

functions (mixed with a pointmass) on the same halfine. Asmussen (2000) does

give an account of how some operations are carried out in the matrix exponen-

tial case but again limited to the non-negative half-line (i.e. matrix-exponential

distributions are only defined on the half-line). Hence we see that the 2-EPT

case as proposed here utilising minimal realizations is a more general class than

either phase-type or matrix exponential while providing greater computational

efficiency in the process.

1.4.2. Minimal Realization

A state space model is minimal if it has the minimal number of states among

all state space models with the same transfer function. Then the state space

model is minimal if and only if it is both controllable and observable. Consider

a minimal state space model of order n. If the rational transfer function of this

model is represented as the quotient of two co-prime polynomials, the denomin-

ator will be a polynomial of degree n.
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The most obvious advantage of using minimal realizations is the size of the

matrices will be minimalised, saving computation time. Algorithms for deriving

minimal realizations can be found in Kailath (1980). Minimal realizations also

allow us to immediately determine the stability of the A matrix by checking the

locations of its eigenvalues. It is the use of minimal realizations which primarily

differentiates this EPT approach from the matrix exponential techniques.

1.4.3. Positive Realization

Positive realizations were introduced by Luenberger (1979) to ensure positive

responses from a state space model. From Farina (1996), a continuous time

positive system is described by its triple (A+,b+, c+) where all off-diagonal

entries of A+ are non-negative while b+ and c+ also contain only non-negative

elements. The realization of a discrete-time positive linear system (Ã+, b̃+, c̃+)

contains all non-negative real elements. There are some strict conditions to

ensure the existence of such a realization which are described in Farina (1996).

If a positive realization exists for a transfer function of McMillan degree n, which

is not always the case, then the positive realization of lowest order may be of

order greater than n. Another drawback of positive realizations is that the

corresponding density will be strictly positive or identically zero for all x ≥ 0.

This contrasts with minimal realizations where zero responses are allowed so the

EPT function can have zeros on [0,∞). Farina (2000) provides a comprehensive

treatment of positive systems.

1.4.4. EPT Literature

The class of functions which are solutions of homogenous linear differential equa-

tions with constant real coefficients were first denoted as EPT functions in

Hanzon and Holland (2010). It was noted that EPT functions could be used to

model forward interest rates such as Nelson-Siegel curves while in systems theory
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they appear as impulse response functions from a linear system. In many ap-

plications, non-negative EPT functions play a crucial role. Hanzon and Holland

(2010) developed the Budan-Fourier algorithm to examine the non-negativity of

an EPT function on a finite interval. Hanzon and Holland (2010b) elucidated

to the necessity of a dominant real pole in the system of a non-negative function.

Similarly Hanzon and Holland (2012) present some necessary conditions and a

sufficient condition to ensure non-negativity of an EPT function on the half line

[0,∞).

Hanzon and Ober (2001) considered the class of proper rational probability

density functions which could be represented in state space form. The dens-

ity function can be interpreted as the transfer function of a linear system. The

operations examined required the additive decomposition of the rational density

function. Using state space techniques the operations considered are similar to

those we treat in Chapter 2 including the scaling and translation of the associ-

ated random variables and the product and convolution of the rational densities.

Hanzon and Ober (2001) and Hanzon and Scherrer (2008) investigate applica-

tions of filtering involving proper rational probability density functions by mak-

ing use of the state space methods mentioned above.

Discrete densities defined on the set of non-negative integers with proper ra-

tional generating functions are considered in Hanzon and Ober (2002). The

operations of scaling, translation, convolution, mixing and product are carried

out using state space systems. Examples of such densities include the geometric

distribution and also the truncated Poisson.

1.4.5. Wiener-Hopf Factors for Discrete Processes

We define a discrete time process as a finite sum of independent and identically

distributed random variables. This process can be thought of as a random walk.

The characteristic functions of the distributions of the minimum and the max-

imum of discrete time processes are referred to as the Wiener-Hopf factors of the
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process. Relationships proven in Spitzer (1956) show that the two Wiener-Hopf

factors with support in the upper and lower half planes can be obtained for a

discrete time process whose length is geometrically distributed. These factors

are crucial for pricing options which depend on the extrema of these discrete

time processes such as Lookback Options. However the results of Spitzer (1956)

require a non-trivial Laplace inversion to obtain these factors. Petrella and Kou

(2004) provides an algorithm to numerically compute the factors and in doing

so provides option prices for the aforementioned path-dependent options. The

same algorithm can be used to compute the greeks of such options. This con-

trasts with the 2-EPT approach where the distribution of the discretely mon-

itored extrema can be computed exactly.

In the Black-Scholes model, there are closed form pricing formulae available

for Lookback options with both fixed and floating strike prices and a collection

of such formulae can be found in Haug (2007). Excluding the already men-

tioned shortcomings of the Black-Scholes model, a further drawback of these

formulae is that it is assumed that the asset prices are monitored continuously

which is not observed in practice. Based on practical and regulatory arguments,

Broadie, Glasserman, and Kou (1997) advocate the pricing of Lookback options

using discretely monitored asset price processes as opposed to continuously mon-

itored processes. These arguments favour a 2-EPT approach as the values of

Lookback Options can be calculated analytically in terms of the EPT density

of the maximum or minimum of the discretely monitored process.

1.4.6. Infinite Divisibility and Lévy Processes

The history of infinitely divisible distributions is awash with famous mathem-

atical names from the twentieth century. The pioneer of research into such dis-

tributions was the Italian de Finetti who studied the distributions with respect

to stochastic processes with independent increments. Although he did not use

the term “infinitely divisible” which was later coined in 1936 by G.M Bawly, he
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posed de Finetti’s problem around 1929 which was to find a general formula for

the characteristic function of an infinitely divisible distribution. Kolmogorov ad-

dressed de Finetti’s Problem, published in English in Kolmogorov (1990), yield-

ing his canonical representation of an infinitely divisible characteristic function.

However, independently from Kolmogorov, Lévy also described a general solu-

tion to de Finetti’s problem which is given in Lévy (1937). It was Khintchine

who gave the first formal definition of an infinitely divisible distribution which

read “a distribution of a random variable which for any positive integer n can be

represented as a sum of n identically distributed independent random variables is

called an infinitely divisible distribution”. Khintchine (1937) then showed that

Lévy’s representation could be derived from the work of Kolmogorov which gave

rise to the well known Lévy-Khintchine formula for infinitely divisible charac-

teristic functions. This formula forms the basis for describing infinitely divisible

distributions and we make use of it in Chapter 5 to determine the Lévy triple

of an infinitely divisible 2-EPT probability density function.

Two other classical texts often cited in relation to infinitely divisible distribu-

tions include those of Feller (1971) and Widder (1941). The former states that a

function is the Laplace Transform of an infinitely divisible probability distribu-

tion on [0,∞) if and only if it is the exponential of an analytic function on the

same domain whose derivative is completely monotonic. There is also a require-

ment relating to the scaling of the Laplace transform at the origin. Bernsteins

Theorem from Widder (1941) gives a necessary and sufficient condition that a

function is completely monotonic.

Lukacs (1970) gives many of the elementary properties of infinitely divisible

distributions. He also investigates analytic characteristic functions providing

results on the location of the zeros for such functions to be infinitely divisible.

We arrive at the same result in Section 4.3 where the zeros of an infinitely divis-

ible Laplace transform are dominated by its poles. The necessity of a dominant

real pole in the transfer function is also elucidated to which is crucial in the

pursuit of non-negative EPT functions.
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As already stated, Kyprianou and Loeffen (2005) proves a well known result

that there exists a unique Lévy process for every infinitely divisible distribution.

The works of Bertoin (1998) and Sato (1999) both provide comprehensive ac-

counts of Lévy processes. A basic introduction to modelling and pricing with

Lévy processes is given by Schoutens (2003). Cont and Tankov (2003) provides

a more technical examination of the applications of Lévy processes in finance

and this text is cited extensively in Chapter 5 as it provides a thorough ana-

lysis of the properties of pure jump processes. A useful collection of articles

concerned with pricing exotic derivatives in the presence of Lévy processes is

Kyprianou et al (2005).



Chapter 2

2-EPT Probability Density Func-

tions

2.1. Mathematical Formulation

2.1.1. 2-EPT Probability Density Functions

We begin by defining the class of real EPT functions f : [0,∞) 7→ R given by

f(x) = Re
( K∑

k=1

pk(x) e
µkx

)
(2.1)

where Re(z) denotes the real part of a complex number z, pk(x) ∈ C[x]

a polynomial with complex coefficients for each k = 1, 2, ...K and µk ∈

C for each k = 1, 2, ...,K. The class can be characterized as the class of

real continuous functions on [0,∞) whose Laplace Transform exists and is a

strictly proper rational function. A more detailed description of the class and

its derivation can be found in Hanzon and Holland (2010).

This class contains the real polynomials, real exponential functions and scaled

real trigonometric polynomials (such as sin(νx), cos(νx), ν ∈ R but not
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tan(νx)) and all products and sums of such functions as the set of functions is

a ring over R.

An EPT function defined on the positive real half line can be represented in the

form

f(x) = c eA x b , x ≥ 0 (2.2)

where A is a real n × n matrix, c a real 1 × n row vector and b a real n × 1

column vector. The triple (A,b, c) is the minimal realization of the function.

We now give some examples of EPT functions and their minimal realizations.

Firstly, consider the polynomial f(x) = 3x2 + 2x − 5 which can be written as

an EPT function using the realization (A,b, c) where

A =


0 0 0

1 0 0

0 1 0

 , b = (1, 0, 0)T , c = (−5, 2, 6)

Therefore

f(x) = ceAxb = 3x2 + 2x− 5

Secondly, the EPT function g(x) = cos(x) = cce
Acxbc has a minimal realization

given by

Ac =

 0 1

−1 0

 , bc = (1, 0)T , cc = (1, 0)

It should be noted that minimal realizations are only unique up to a basis

transformation.

We consider EPT probability density functions where the triple (A,b, c) is such

that f(x) ≥ 0 ∀ x ≥ 0. We elucidate later to necessary conditions and sufficient

conditions on the triple to ensure non-negative responses. However if f(x) is

non-negative then a Perron-Frobenius type result given in Hanzon and Holland

(2010b) states that A must contain a dominant real eigenvalue denoted λM such
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that λM = maxλ∈σ(A)Re(λ) where σ(A) is the spectrum of A. The Perron-

Frobenius type result from Hanzon and Holland (2010b) also requires minimal

realizations.

Apart from non-negativity, integrability of the function is a further requirement.

The function must be normalized to ensure it integrates to unity. Integrability

is most easily characterised in the context of minimal realizations (see Section

1.3). If the triple (A, b, c) is a minimal realization then ceAxb is integrable

if and only if the eigenvalues of A are all located in the open left half plane,

i.e. σ(A) ⊂ H−. From this it follows immediately that A is invertible. If all

eigenvalues of A are in the open left half plane then we have the normalisation

constant ∫ ∞

0

ceAxbdx = −cA−1b (2.3)

The triple (A,b, c̃) now represents a probability density function defined on the

positive half real line where c̃ = − c
cA−1b

.

We will investigate probability density functions which can be written as two

separate EPT functions depending on the sign of x

f(x) =


cN eAN x bN if x ≤ 0

cP eAP x bP if x > 0

(2.4)

where the triples (AP , bP , cP ) and (AN , bN , cN ) have dimensions nP × nP ,

nP × 1, 1 × nP and nN × nN , nN × 1, 1 × nN respectively. Given f(x) ≥ 0

on R we can examine the integrability of the function. A finite normaliza-

tion constant requires that, when using minimal realizations, AP is stable with

σ(AP ) ⊂ H− and AN is anti-stable. AN is anti-stable implying σ(AN ) ⊂ H+,

i.e. stable on the negative half line if all its eigenvalues are located in the open

right half plane. Once these conditions are met, f as defined in Eq. (2.69) can

be classed as a 2-EPT density. The normalisation constant is then given by

cNA−1
N bN − cPA

−1
P bN . Again the Perron-Frobenius type result implies that if
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f(x) is non-negative, both AN and AP must contain dominant real eigenvalues

denoted λM+ and λM− respectively. It is clear that λM+ = minλ∈σ(AN )Re(λ)

while λM− = maxλ∈σ(AP )Re(λ).

We can also see that a 2-EPT probability density function has a strictly proper

Laplace Transform, well defined when Re(s) ∈ (λM− , λM+). The Laplace Trans-

form of the 2-EPT random variable X is given by

ϕ(s) = ϕN (s) + ϕP (s)

= E(e−sX)

=

∫ 0

−∞
cN eAN x bN e−s x dx +

∫ ∞

0

cP eAP x bP e−s x dx

= −cN (Is − AN )−1 bN + cP (Is − AP )
−1 bP

=
p(s)

q(s)
(2.5)

where I is a suitably sized identity matrix with p(s) and q(s) co-prime polynomi-

als. Here p(s) is a polynomial of degree m while q(s) is a polynomial of degree

n with n > m implying ϕ(s) is a strictly proper rational function. For ϕ(s) to

correspond to the Laplace Transform of a probability density function it must

hold that ϕ is scaled such that ϕ(0) = 1. Proposition 1.1 proves that the class

of 2-EPT probability density functions corresponds to the class of probability

density functions which are continuous on (−∞,∞)\{0} with a strictly proper

rational Laplace Transform.

Note that it is possible to split the rational Laplace Transform into two distinct

rational functions, ϕN and ϕP , whose poles are located in the open right half

plane and open left half plane respectively.

Such a rational function can be represented in state space form as

ϕ = π


AP 0 bP

0 AN bN

cP −cN d

 (2.6)
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where π maps any  A b

c d

 (2.7)

to ϕ and ϕ(s) = c(sI − A)−1b + d. For our purposes 0 ≤ d < 1 but so far

we have assumed d = 0.

Numerous operations can then be carried out on the characteristic function using

some of the state space techniques of Hanzon and Ober (2001) and Hanzon and Scherrer

(2008).

Proposition 1.1 The class of 2-EPT probability density functions corresponds

to the class of probability density functions which are continuous on (−∞,∞)\{0}

with a strictly proper rational Laplace Transform.

Consider the probability density function f defined on (−∞,∞), continuous on

(−∞,∞)\{0} with a strictly proper Laplace Transform ϕ.

ϕ(s) =

∫ ∞

−∞
e−sxf(x)dx =

p(s)

q(s)
, (2.8)

where p and q are co-prime polynomials of orderm and n respectively wherem <

n. It allows holds that ϕ(0) = 1 since f is a probability density function. Hence,

ϕ has no poles at s = 0. The Perron-Frobenius type result for rational Laplace

Transforms implies that the singularities of ϕ, in H+ and H−, nearest the origin

are located on the real axis where H− and H+ are the half-planes defined below.

This result can also be found in Lukacs and Szazs (1970). Therefore it follows

that there is no pole of ϕ located on the imaginary axis.

Let Λ(r(s)) = {s ∈ C|r(s) = 0}, be the set of zeros of the polynomial r(s). Also,

let H− = {s ∈ C|Re(s) < 0} and H+ = {s ∈ C|Re(s) > 0}.

The rational function ϕ can be additively decomposed as follows

p(s)

q(s)
=

p1(s)

q1(s)
+
p2(s)

q2(s)
, (2.9)
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such that Λ(q1(s)) ⊂ H− and Λ(q2(s)) ⊂ H+. Again, p1 and q1 are co-prime

polynomials of orders m1 and n1 respectively. p2 and q2 are co-prime polynomi-

als of orders m2 and n2 respectively. n1 + n2 = n. Since ϕ is a strictly proper

rational function, it follows that m1 < n1 and m2 < n2 implying both p1/q1

and p2/q2 are both strictly proper rational functions.

The density function f can be written as follows

f(x) =


f2(x) if x ≤ 0

f1(x) if x > 0

(2.10)

where f2 and f1 are real non-negative functions on (−∞, 0] and (0,∞) respect-

ively. We also have that
∫∞
0
f1(x)dx ≤ 1 and

∫ 0

−∞ f2(x)dx ≤ 1.

k(s) =

∫ ∞

0

e−sxf1(x)dx (2.11)

h(s) =

∫ 0

−∞
e−sxf2(x)dx (2.12)

It follows that k(s) has support in H+ while h(s) has support in H−. Similarly

we have that

p(s)

q(s)
= k(s) + h(s) (2.13)

=
p1(s)

q1(s)
+

p2(s)

q2(s)
(2.14)

By uniqueness of the additive decomposition it follows that

p1(s)

q1(s)
= k(s) (2.15)

p2(s)

q2(s)
= h(s) (2.16)

It follows that f1 and f2 are EPT functions defined on (0,∞) and (−∞, 0]

respectively and therefore f is a 2-EPT probability density function�.
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2.1.1.1. Characteristic Function of 2-EPT Function

The characteristic function of a 2-EPT density function is also rational. If we

consider a 2-EPT random variable X whose minimal realization is given by

(AN ,bN , cN ,AP ,bP , cP ), then the characteristic function of X is given by

Φ(is) = E(eisX)

=

∫ 0

−∞
cN eAN x bN eis x dx +

∫ ∞

0

cP eAP x bP eis x dx

= cN (Iiu + AN )−1 bN − cP (Iis + AP )
−1 bP

= ΦN (is) + ΦP (is)

=
p(is)

q(is)
. (2.17)

Like the Laplace Transform, the rational characteristic function can be decom-

posed into the sum of two rational functions ΦN and ΦP which have support

on C− and C+ respectively. As can be seen from comparing Eq. (2.17) with

Eq. (2.20), the characteristic function is the Laplace Transform evaluated at

−is instead of s.

2.1.2. Mixture with Delta Distribution

In Proposition 1.1 we saw that the class of 2-EPT density functions is the

class of density functions on R with strictly proper rational Laplace Transforms.

However, if one considers the broader question of all probability distributions on

R with rational Laplace Transforms then the class turns out to be larger than

the 2-EPT class considered so far. For example the point mass at zero (“delta

distribution”) is in this class although it does not have an EPT probability

density function. Corollary 1.1 shows that the class of all probability density

functions, continuous on (−∞,∞)\{0}, containing a pointmass at zero with a

proper rational Laplace Transform is equal to the class of 2-EPT probability

density functions mixed with a pointmass at zero. Consider the mixture of the
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delta distribution, δ(x), and 2-EPT probability densities:

dδ(x) + (1 − d)f(x) (2.18)

where f(x) is a 2-EPT probability density function and d a scalar such that

0 ≤ d ≤ 1. For some operations examined, it is more natural to consider this

larger class of probability distributions while for other operations it is not.

The state space representation of the rational characteristic function is given by

ϕ = π


AP 0 bP

0 AN bN

cP −cN d

 = π

 A b

c d

 , 0 ≤ d ≤ 1

(2.19)

The Laplace Transform of the this probability density function is the proper

rational function ϕ(s)

ϕ(s) = −cN (Is − AN )−1 bN + cP (Is − AP )
−1 bP + d =

p(s)

q(s)
(2.20)

where p and q are co-prime polynomials of order n and 0 ≤ d ≤ 1.

For the remainder of the thesis we will work with the 2-EPT probability densities

unless otherwise stated where we work with the larger class which includes this

mixture with the delta distribution. A 2-EPT/EPT function mixed with a Dirac

function (pointmass at zero) will be referred to as a generalised 2-EPT/EPT

function.

Corollary 1.1 The class of all probability density functions, continuous on

(−∞,∞)\{0}, containing a pointmass at zero with a proper rational Laplace

Transform is equal to the class of generalised 2-EPT probability density func-

tions.

Let f be a probability density function defined on (−∞,∞), continuous on

(−∞,∞)\{0} with a pointmass at zero and a proper rational Laplace Trans-
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form ϕ given by

ϕ(s) =

∫ ∞

−∞
e−sxf(x)dx =

p(s)

q(s)
, (2.21)

where p and q are co-prime polynomials, both of order n. Using similar argu-

ments to Proposition 1.1 the rational function ϕ(s) can be decomposed into the

sum of two strictly proper rational functions p1/q1 and p2/q2 and the constant

d as follows

p(s)

q(s)
=

p1(s)

q1(s)
+
p2(s)

q2(s)
+ d, (2.22)

such that Λ(q1(s)) ⊂ H− and Λ(q2(s)) ⊂ H+. The density function f can be

written as

f(x) =



f2(x) if x < 0

0 with probability d

f1(x) if x > 0

(2.23)

where 0 < d < 1. We can define the probability density function f̂ as

f̂(x) =


f2(x)
1−d if x < 0

f1(x)
1−d if x > 0

(2.24)

which has a strictly proper rational Laplace Transform

ϕ̂(s) =
ϕ(s)− d

1− d
=

p1(s)

q1(s)(1− d)
+

p2(s)

q2(s)(1− d)
(2.25)

By proposition 1.1 f̂ must be a 2-EPT probability density function implying f

is a generalised 2-EPT probability density function.�

2.2. Operations

We now demonstrate how a series of operations can be carried out in the 2-EPT

framework. The realizations resulting from these formulae may not always be
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minimal. Algorithms from Kailath (1980) may be used to derive the associ-

ated minimal realization. In Chapter 7 we elucidate to the MATLAB function

minreal which can be used to find the minimal realization from a non-minimal

realization. In Section 2.2.0.1 we give an example of how a minimal realization

can be computed from a non-minimal realization.

2.2.0.1. Minimal Realization

Consider a realization (A,b, c,d) of order n of a linear time invariant system.

The observability (On) and controlability (Cn) matrices of the system can be

defined as follows

On(c,A) =



c

cA

...

cAn−1


(2.26)

Cn(b,A) = (b Ab . . .An−1b) (2.27)

The realization (A,b, c,d) is called observable is On(c,A) has full rank. Sim-

ilarly the realization is controllable if Cn(b,A) is of full rank. A theorem from

Kalman proves that “A realization (A, b, c,d) is minimal if and only if it is

controllable and observable”.

Furthermore minimal state space realizations are only unique up to a transform-

ation. If (A,b, c,d) and (Ã, b̃, c̃, d̃) are two minimal realizations of a given

system, then there exists a unique invertible matrix T such that

Ã = T−1AT , b̃ = T−1b , c̃ = cT , d̃ = d (2.28)
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Let (A,b, c,d) be an N-dimensional realization. Suppose (c,A) is observable

but (b,A) is not controllable then there exists a matrix P such that

PAPT =

 Anc 0

A21 Ac

 , Pb = (0 bc)
T , cPT = (cnc cc) (2.29)

where (bc, Ac) is controllable. Then the realization (Ac,bc, cc,d) is minimal.

Similarly if (b,A) was controllable but (c, A) was not observable then there

exists a matrix Q such that

QAQT =

 Ano A12

0 Ao

 , Qb = (bno bo)
T , cQT = (0 co) (2.30)

where (co, Ao) is observable implying the realization (Ao,bo, co,d) is minimal.

If a realization (A,b, c,d) is neither controllable or observable then a control-

lable realization (Ac,bc, cc,d) can be derived using the techniques described

above. If (Ac,bc, cc,d) is not observable, the minimal realization can be com-

puted using the method described above. If (Ac,bc, cc,d) is observable then it

is also minimal.

2.2.0.2. Computing Minimal Realizations

Consider the transfer function H given by

H(s) =
s2 − 3s+ 2

s3 − 8s2 + 21s− 18
= c(sI−A)−1b (2.31)

which can be represented by the state space realization (A,b, c) where

A =


0 1 0

0 0 1

18 −21 8

 , b = (0, 0, 1)T , c = (2,−3, 1) (2.32)
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The controllability matrix can be computed and is seen to be

C3 =


0 0 1

0 1 8

1 8 43

 (2.33)

where rank(C3)=3 implying (b,A) is controllable. The observability matrix is

O3 =


2 −3 1

18 −19 5

90 −87 21

 (2.34)

but rank(O3) = 2 < 3 which means (c,A) is not observable. From Eq. (2.30) we

know that there exists a matrix Q which can be used to derive the observable

realization from the un-observable realization via a similarity transformation.

The staircase algorithm of Rosenbrock (1970) can be implemented to find the

appropriate transformation matrix Q. It follows that

Q =


0.2182 0.4364 0.8728

0.8164 0.4082 −0.4082

−0.5345 0.8017 −0.2672

 (2.35)

where

QAQT =


2.0000 2.4054 −24.9031

0.0000 −1.0000 12.2202

−0.0000 −1.30930 7.0000

 (2.36)

and

Qb = (0.8728 − 0.4082 − 0.2673)T , cQT = (0.0000 0.0000 − 3.7416)
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Hence the observable realization is (Ao,bo, co) where

Ao =

 −1.0000 12.2202

−1.30930 7.0000

 , bo = (−0.4082 −0.2673)T , co = (0.0000 −3.7416)

We must now investigate if the realization (Ao,bo, co) is controllable. The

corresponding controllability matrix is

C2(bo,Ao) =

 −0.4082 −2.8577

−0.2672 −1.3363

 (2.37)

and we note that rank(C2(bo,Ao)) = 2 meaning C2(bo,Ao) is controllable and

therefore (Ao,bo, co) must be a minimal realization. It can be seen that

H2(s) = co(sI−Ao)
−1bo =

s− 1

s2 − 6s+ 9
= H (2.38)

where H2 = H from Eq. (2.31) confirming that (Ao,bo, co) is indeed a minimal

realization of (A,b, c).

2.2.1. Translation

Let X be a random variable with a 2-EPT density function, f , given by the

triple (AP ,bP , cP ) on [0,∞) and (AN ,bN , cN ) on (−∞, 0] as given in (2.69)

above and let x0 ∈ R1. Then the random variable X+x0 has a density function

g(x) such that g(x) = f(x−x0). We will derive the probability density function

of g in terms of the minimal realization of f is given by

g(x) = f(x− x0) =


cN eAN x e−Ax0bN if x ≤ x0

cP eAP x e−Ax0bP if x > x0

(2.39)
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The function g(x) is 2-EPT if and only if its Laplace Transform is a proper

rational function. The Laplace transform of g(x) is given by

ϕ(s) =

∫ ∞

−∞
f(x) e−s x dx (2.40)

=

∫ x0

−∞
cN eAN x e−ANx0 e−s x bN dx+

∫ ∞

x0

cP eAP x e−AP x0 e−s x bP dx

= −cN (sI−AN )−1e−sIx0bN + cP (sI−AP )
−1e−sIx0bP

which is not rational. Hence a translated 2-EPT function is not an 2-EPT

function.

2.2.2. Scaling

Let X be a random variable with a 2-EPT density function given in (2.69) and

cumulative distribution function given by F . Now let α ∈ R1 such that α > 0

and Y = αX. Y has a density function given by g with cumulative distribution

G. We obtain that

G(y0) = P(Y ≤ y0) (2.41)

= P(α X ≤ y0)

= P(X ≤ y0
α
)

= F (
y0
α
)

Differentiating we then get that

g(y0) = f(
y0
α
)
1

α
(2.42)

and leaving x0 = y0

α we obtain that

α g(α x0) = f(x0) (2.43)
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Hence if our original triples for X were (AP ,bP , cP ) and (AN ,bN , cN ) the

associated triples for Y are given by (α AP ,bP , α cP ) and (α AN ,bN , α cN ).

This feature of treating the triples separately depending on the sign of x will be

seen throughout our work.

Some care has to be taken when α < 0. If we consider the triples as outlined

in Eq. (2.69), for α < 0 we get

g(y) =


|α| cN eα AN y bN if y > 0

|α| cP eα AP y bP if y ≤ 0

(2.44)

where the density is flipped and scaled around the origin.

2.2.3. Sums of 2-EPT Densities

We consider weighted sums of 2-EPT functions fi(x), each with minimal realiz-

ation (AP,i,bP,i, cP,i) for x > 0 and (AN,i,bN,i, cN,i) for x ≤ 0. The addition

of 2-EPT densities gives rise directly to mixture densities. A mixture density is

a convex combination of probability density functions such that the properties

of non-negativity and integration to unity are preserved. Hence we obtain an

expression of the form

g(x) =
N∑
i=1

wifi(x) ,
N∑
i=1

wi = 1 (2.45)

where we restrict wi > 0 ∀ i. The mixture density g(x) on the whole real line

in the simple case of N = 2 and weight w1 = w and w2 = 1− w is given by

g(x) =


w cN,1 eAN,1 x bN,1 + (1− w) cN,2 eAN,2 x bN,2 = cN eAN x bN if x ≤ 0

w cP,1 eAP,1 x bP,1 + (1− w) cP,2 eAP,2 x bP,2 = cP eAP x bP if x > 0

(2.46)

for 0 < w < 1, where for x > 0 we have cP = (wcP,1, (1 − w)cP,2),

bP = (bP,1, bP,2)
T and similarly for cN and bN when x ≤ 0. We split the
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A matrices into a block diagonal structure as follows

AN =

 AN,1 0

0 AN,2

 , AP =

 AP,1 0

0 AP,2

 (2.47)

This approach provides an ideal framework for working with mixture densities

and determining their properties in straightforward manner. The approach can

easily be extended for a general N > 2 provided wi > 0. If wi < 0 for any i

we remain in the 2-EPT class but non-negativity of the density may be violated.

To test for non-negativity, the reader is referred to Hanzon and Holland (2010)

and Hanzon and Holland (2012).

2.2.4. Product of 2-EPT Densities

Suppose we wish to calculate the product of two 2-EPT probability density

functions f1(x) and f2(x) defined over the whole real line in both instances. We

define fi(x) as

fi(x) =


cN,i e

AN,i x bN,i if x ≤ 0

cP,i e
AP,i x bP,i if x > 0

(2.48)

where AN,i and AP,i are square matrices of size nN,i and nP,i respectively. As

seen earlier we have to treat the EPT functions on the positive and negative

domains separately, as follows

g(x) = f1(x) f2(x) =


cN,1 eAN,1 x bN,1 cN,2 eAN,2 x bN,2 = cN eAN x bN if x ≤ 0

cP,1 eAP,1 x bP,1 cP,2 eAP,2 x bP,2 = cP eAP x bP if x > 0

(2.49)

For x > 0 we obtain the triple (AP ,bP , cP )

AP = AP,1 ⊗ InP,2 + InP,1 ⊗AP,2 (2.50)

bP = bP,1 ⊗ bP,2

cP = cP,1 ⊗ cP,2
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where In is the n × n identity matrix. Similarly the triple can be obtained for

(AN ,bN , cN ). However the product of two probability densities is not guaran-

teed to be a probability density function in the sense that it does not necessarily

integrate to unity and may have to be normalized. Hence for g(x) to be a prob-

ability density function we require

c̃P =
cP

cNA−1
N bN − cPA

−1
P bP

(2.51)

c̃N =
cN

cNA−1
N bN − cPA

−1
P bP

(2.52)

and the realization (AN ,AP ,bN ,bP , c̃N , c̃P ) then represents the 2-EPT prob-

ability density function.

2.2.5. Moments

It will be seen that all moments of 2-EPT densities exist. This can be seen by

noticing that all higher order derivatives of the rational characteristic function

Φ are again rational functions with the same pole locations as Φ. We first

examine a closed form expression for moments of a 2-EPT random variable using

derivatives of the characteristic function Φ and then examine how to calculate

the kth moments by integrating xk multiplied by the density over the domain.

2.2.5.1. Calculating Moments using Characteristic Function

We have already seen that the characteristic function of an 2-EPT density can

be written in terms of the sum of two rational functions. We also know that

the kth moment is given by the kth derivative of the characteristic function

evaluated at zero. The characteristic function is described in Eq. 2.17. The kth

moment of a random variable X is then given by

E(Xk) = (−i)kΦk(0),
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where Φk represents the kth derivative of Φ. If X is a 2-EPT random variable

with minimal realization (AN ,bN , cN ,AP ,bP , cP ) then it follows that

E(Xk) = −k! cN (−AN )−(k+1) bN + k! cP (−AP )
−(k+1) bP . (2.53)

Note that AN and AP are invertible as we are using minimal realizations.

Also if the realization for the 2-EPT density function is given by the minimal

(A,b, c) as in Eq. (2.7) then the kth moment is

E(Xk) = k! c(−A)−(k+1)b (2.54)

2.2.5.2. Calculating Moments Using Direct Integration

Now we consider how to find the kth moment of a 2-EPT density f(x) by

exploiting its 2-EPT form and integrating xkf(x) over the relevant domain. xk

can be represented as a polynomial of order k which has the form p(x) = xk =

ck e
ak x bk where ak is a square (k + 1)× (k + 1) nilpotent matrix.

Hence if we are looking for the truncated kth moment over the interval [−d, d]

where d ∈ R, d > 0 and f(x) is as given in (2.69) we obtain

∫ d

−d
xk f(x) dx =

∫ d

−d
ck eak x bk f(x) dx (2.55)

=

∫ 0

−d
ck eak x bk cN eAN xbN dx+

∫ d

0
ck eak x bk cP eAP xbP dx

=

∫ 0

−d
c̃N eÃN xb̃N dx+

∫ d

0
c̃P eÃP xb̃P dx

= c̃N Ã
−1
N b̃N − c̃N Ã

−1
N e−ÃN d b̃N + c̃P Ã

−1
P eÃP d b̃P − ÃP Ã

−1
P b̃P

where the triples (ÃP , b̃P , c̃P ) and (ÃN , b̃N , c̃N ) can be determined using

the product formulae in Section 2.2.4. In the limit d → ∞ we obtain

∫ ∞

−∞
xk c eA xb dx = c̃N Ã

−1

N b̃N − c̃P Ã
−1

P b̃P (2.56)
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2.2.6. Minimum of 2-EPT Random Variables

In financial as well as probabilistic applications it is often quite important to

find certain properties of the minimum of a number of independent random

variables. Here we propose a straightforward approach to finding the density of

the minimum of two 2-EPT random variables. We consider the case where we

have two independent random variables X,Y with 2-EPT density functions f1

and f2 respectively such that

fi(x) =


cN,i e

AN,i x bN,i if x ≤ 0

cP,i e
AP,i x bP,i if x > 0

(2.57)

for i = 1, 2. Hence it can be seen that the associated cumulative distribution

functions are again 2-EPT and given by

Fi(x) =


cN,i A

−1
N,i e

AN,i x bN,i if x ≤ 0

cP,i A
−1
P,i e

AP,i x bP,i −cP,i A
−1
P,i bP,i + cN,i A

−1
N,i bN,i︸ ︷︷ ︸

= 1

if x > 0

(2.58)

It is straightforward to see that in the limit x → ∞ we must have limx→∞ Fi(x) =

1. This implies that the cumulative distribution functions can be written as

Fi(x) =


cN,i A

−1
N,i e

AN,i x bN,i if x ≤ 0

cP,i A
−1
P,i e

AP,i x bP,i + 1 if x > 0

(2.59)

We now let W = min(X,Y ) and note that

P[W ≤ w] = 1− P[X > w]P[Y > w] ... by independence

= 1− (1− P[X ≤ w])(1− P[Y ≤ w])

= 1− (1− F1(w))(1− F2(w))

= F1(w) + F2(w)− F1(w)F2(w) (2.60)
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As before we have to treat the cases where w > 0 and w ≤ 0 separately. It

can be seen that for w ≤ 0 we obtain

P[W ≤ w] = cN,1 A−1
N,1 e

AN,1 w bN,1 + cN,2 A−1
N,2 e

AN,2 w bN,2 (2.61)

− cN,1 A−1
N,1 e

AN,1 w bN,1 cN,2 A−1
N,2 e

AN,2 w bN,2

= cN,1 A−1
N,1 e

AN,1 w bN,1 + cN,2 A−1
N,2 e

AN,2 w bN,2 (2.62)

−cN Ã
−1

N,1,N,2 e
AN,1,N,2 w bN ∀ w ≤ 0

where cN = cN,1⊗ cN,2, bN = bN,1⊗bN,2, ÃN,1,N,2 = (AN,1⊗AN,2) and

AN,1,N,2 = AN,1 ⊗ IN,2 + IN,1 ⊗AN,2.

We consider the case where w > 0 and see that

P[W ≤ w] = 1− (1− F1(w))(1− F2(w)) (2.63)

= 1− cP,1 A−1
P,1 e

AP,1 w bP,1 cP,2 A−1
P,2 e

AP,2 w bP,2

= 1− cP Ã
−1

P,1,P,2 e
AP,1,P,2 w bP

where cP = cP,1 ⊗ cP,2, bP = bP,1 ⊗ bP,2, ÃP,1,P,2 = (AP,1 ⊗AP,2) and

AP,1,P,2 = AP,1 ⊗ IP,2 + IP,1 ⊗AP,2.

By differentiating we can find the corresponding density function h(w)

h(w) =


cN,1 eAN,1 w bN,1 + cN,2 eAN,2 w bN,2 − cN Ã

−1
N,1,N,2 AN,1,N,2 eÃN,1,N,2 w bN if w ≤ 0

−cP Ã
−1
P,1,P,2 AP,1,P,2 eÃP,1,P,2 w bP if w > 0

(2.64)

It should be noted that h is again 2-EPT as it is composed of sums of EPT

functions.

2.2.6.1. Minimum of 2-EPT Random Variable and Zero

The operation min(X, 0), where X is a 2-EPT random variable, is of special

importance in Chapter 4 so the operation will be examined in detail here. Let

W = min(X, 0) where X has a minimal realization as described above and we
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note that

P[X > 0] =

∫ ∞

0

cP,1e
AP,1xbP,1dx = −cP,1A

−1
P,1bP,1.

It follows that the generalized EPT distribution h of W must contain a point-

mass at zero of −cP,1A
−1
P,1bP,1 and is given by

h(w) =


cN,1 e

AN,1 w bN,1 ∀ w < 0

0 with probability −cP,1A
−1
P,1bP,1

0 ∀ w > 0

(2.65)

2.2.7. Maximum of 2-EPT Random Variables

As above we define two random variables X,Y each with 2-EPT densities f1 and

f2 respectively given by Eq. (2.57) whose cumulative distributions are given by

Eq. (2.59).

We let W = Max(X,Y ) where X,Y are independent random variables. For

w ≤ 0 we obtain

P[W ≤ w] = P[X ≤ w, Y ≤ w] (2.66)

= P[X ≤ w]P[Y ≤ w]

= cN,1 A−1
N,1 e

AN,1 x bN,1 cN,2 A−1
N,2 e

AN,2 y bN,2

= cN Ã
−1

N,1,N,2 e
AN,1,N,2 w bN

We now consider the case for w > 0 and see that

P[W ≤ w] = P[X ≤ w, Y ≤ w] (2.67)

= (1 + cP,1 A−1
P,1 eAP,1 w bP,1)(1 + cP,2 A−1

P,2 eAP,2 w bP,2)

= 1 + cP,1 A−1
P,1 eAP,1 w bP,1 + cP,2 A−1

P,2 eAP,2 w bP,2

+ cP,1 A−1
P,1 eAP,1 w bP,1 cP,2 A−1

P,2 eAP,2 w bP,2

= 1 + cP,1 A−1
P,1 eAP,1 w bP,1 + cP,2 A−1

P,2 eAP,2 w bP,2 + cP Ã
−1
P,1,P,2 eAP,1,P,2 w bP
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By differentiating we can find the corresponding density function for the max-

imum h(w)

h(w) =


cN Ã

−1
N,1,N,2 AN,1,N,2 eAN,1,N,2 w bN if w ≤ 0

cP,1 eAP,1 w bP,1 + cP,2 eAP,2 w bP,2 + cP Ã
−1
P,1,P,2 AP,1,P,2 eAP,1,P,2 w bP if w > 0

(2.68)

Again h is 2-EPT.

Using a similar argument to in Section 2.2.6.1, the generalized EPT distribution

of W = max(X, 0) is given by

h(w) =


0 ∀ w < 0

0 with probability −cN,1A
−1
N,1bN,1

cP,1e
AP,1wbP,1 ∀ w > 0

(2.69)

2.2.8. Convolution of 2-EPT Probability Densities

Given two stochastically independent random variables X,Y , the characteristic

function for the sum of the random variables is given by the product of their

characteristic functions. It has been shown that the 2-EPT density functions

have rational characteristic functions which here we denote ΦX and ΦY respect-

ively. We denote the triple for ΦX by (A1, b1, c1) and for ΦY by (A2, b2, c2)

as we have done in Eq. (2.6) and (2.7). We implement a state space calculus

approach to calculate the product of ΦX and ΦY . The state space realizations

can be written as  Ai bi

ci 0

 (2.70)

Ai an (ni × ni) matrix, bi a (ni × 1) column vector and ci a (1 × ni) row

vector. The Ai matrix comprises of AP,i and AN,i block diagonalised. The

characteristic function for the sum ofX + Y is the product of their characteristic
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functions and given by

ΦX+Y = π


A1 b1c2 0

0 A2 b2

c1 0 0

 =

 A b

c 0

 (2.71)

according to the well known formula which is also given in Hanzon and Ober

(2001). It is clear that some basis transformations will have to be performed

to ensure the A matrix is block diagonal with eigenvalues split depending on

the sign of their real parts. We know that this splitting is possible as the

rational characteristic function can be decomposed into the sum of two rational

functions with poles in either half plane. Once A is block diagonal with a

minimal realization we will be in a position to carry out all other operations

cited. Similar transformations will have to be completed on the vectors b and

c as illustrated below.

2.2.8.1. Generalised Convolution Formula

We will now consider the above convolution problem when the densities in-

volved are mixtures of the pointmass at zero and 2-EPT functions, as described

in Section 2.1.2. Let X, Y be random variables with proper rational char-

acteristic functions, ΦX and ΦY , which have minimal realizations given by

(A1, b1, c1, d1) and (A2, b2, c2, d2) respectively. Assume d1 > 0 and

d2 > 0. The state space realization for the characteristic function of the ran-

dom variable Z = X + Y is given by

ΦZ = ΦXΦY = π


A1 b1c2 d2b1

0 A2 b2

c1 d1c2 d1d2

 (2.72)
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2.2.8.2. Additive Decomposition of Rational Function in State Space

Form

A simple Matlab function is available to perform the calculation in one step and

is described in 7.5.1. However for completeness we illustrate how to transform

‘by hand’ the A matrix to block diagonal form while separating the eigenvalues

according to the sign of their real part. We first perform a state space basis

transformation to split the eigenvalues so those with positive real part are all in

the upper block and those with negative real part in the lower block or vice-versa.

This can be done in a step by step method as is shown later in Section 2.3.3. It

is crucial to achieving a unique solution that the A matrix is brought back to

upper diagonal form after each operation. Assuming the sequence of operations

can be expressed by the square matrix Q, the state space representation will

now be given by

ϕZ = π

 QAQ−1 Qb

cQ−1 0

 (2.73)

We note that such a transformation does not alter the density as we examine

the Taylor series expansion of the original density

c eAx b =
∞∑
k=0

c (Ax)k b

k!
= cb + c Ax b +

c (Ax)2 b

2!
+ ... (2.74)

while after the transformation we obtain

cQ−1 eQAxQ−1
Qb = cQ−1Qb + cQ−1 QAxQ−1 Qb +

cQ−1 (QAxQ−1)2 Qb

2!
+ ...(2.75)

= cb + c Ax b +
c (Ax)2 b

2!
+ ...

The Ã Matrix is now of the form

QAQ−1 = Ã =

 AP V

0 AN

 (2.76)
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where the eigenvalues of AP have all negative real parts and the eigenvalues of

AN have positive real parts. However we must now eliminate the upper right

block matrix V. This again is done via a state space basis transformation by

letting

T =

 I T

0 I

 (2.77)

where T has the same dimensions as Ã above, I is the identity matrix and T is

a square sub-matrix the same size as V.

TQAQ−1T−1 = TÃT−1 =

 AP T AN −APT + V

0 AN

 (2.78)

We choose T to be the unique solution to the sylvester equation

T AN − APT + V = 0 (2.79)

The transformed (A,b, c) triple is then given by (TQAQ−1T−1, TQb, cQ−1T−1).

2.2.9. Composition Formulae

2.2.9.1. Composition of Rational Functions

We restate Proposition 3.2 from Hanzon and Scherrer (2008) for completeness

as the result holds when the rational functions being composed have poles in

both half planes. Letting g1 and g2 each be mixtures of 2-EPT probability

density functions with pointmasses at zero, as shown in Section 2.1.2, and state

space realizations (A1,b1, c1,d1) and (A2,b2, c2,d2) respectively. Then the

Laplace Transforms of g1 and g2 are the proper rational functions G1 and G2

respectively. Proposition 3.2 from Hanzon and Scherrer (2008) states that the

the composition, G = G1 ◦ G2, is again a proper rational function with the
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realization of G given by (A,b, c,d) where

A = I⊗A2 + (A1 − d2I)
−1 ⊗ b2c2 (2.80)

b = −(A1 − d2I)
−1b1 ⊗ b2

c = c1(A1 − d2I)
−1 ⊗ c2

d = d1 − c1(A1 − d2I)
−1b1 (2.81)

A condition which must be satisfied is that d2 is not an eigenvalue of A1, d2 /∈

σ(A1).

2.2.9.2. Application of Composition Formula with Matrix Geomet-

ric Generating Function

In probability theory one can define a new random variable Y as the sum of N

independent copies of a random variable X where N itself is a random variable

with a probability distribution on the non-negative integers. If X is a 2-EPT

random variable and N a random variable with a matrix geometric distribution

then Y is also a 2-EPT random variable. Let the density function of X be f .

Here we derive the 2-EPT realization for Y based on the realizations for X and

N . An in-depth description of realizations for matrix geometric distributions

can be found in Hanzon and Ober (2002).

Using the formulae above we consider the composition of two rational functions,

G and ϕ, where G is the rational generating function of a matrix geometric dis-

tribution and ϕ, the Laplace Transform of a 2-EPT probability density function

mixed with a pointmass at zero. The discrete matrix geometric distribution has

a minimal realization (A1,b1, c1,d1) where the probabilities are given by

p(0) = d1

p(k) = c1 Ak−1
1 b1 ∀ k ∈ (1, 2, 3, ...)
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The realization of ϕ is (A2,b2, c2,d2) where we assume d2 > 0 although we

relax this assumption later.

We have that

G(z) =

∞∑
k=0

zkp(k) (2.82)

= d1 +
∞∑
k=1

zk c1 Ak−1
1 b1

= d1 + c1(
I

z
− A1)

−1b1

is the rational generating function of p.

The random variable Y is defined as

Y =
N∑
i=0

Xi. (2.83)

It follows that the distribution of Y is given by

g(y) = p(0) + p(1)f1(y) + p(2)f2(y) + ...+ p(k)fk(y) + ... (2.84)

where fk(y) is the distribution of
∑k

i=1Xi i.e. f
k(y) is the k-fold convolution

of f with itself. The Laplace Transform of fk is (ϕ)k. Hence, the Laplace

transform of Y is
∞∑
k=0

ϕk(s)p(k). (2.85)

Therefore, we examine

G(ϕ(s)) =
∞∑
k=0

ϕk(s)p(k) (2.86)

= d1 + c1

( I

ϕ(s)
− A1

)−1

b1

It should be clear that

ϕ(s) = c2(sI − A2)
−1b2 + d2 (2.87)
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To find the realization of the composition in Eq. (2.86) we must first exploit a

well known identity for the inverse of a transfer function. We wish to represent

(ϕ−1(s)) by the 4-tuple (Ã2, b̃2, c̃2, d̃2). The identity gives us that

ϕ−1(s) = d−1
2 − d−1

2 c2(sI − A2 + b2 d−1
2 c2)

−1b2d
−1
2 (2.88)

Hence we obtain that

Ã2 = A2 − b2 d−1
2 c2 (2.89)

b̃2 = b2d
−1
2

c̃2 = −d−1
2 c2

d̃2 = d−1
2

Implementing Proposition (3.2) from Hanzon and Scherrer (2008) we have that

G(ϕ(u)) is a rational function with realization (A,b, c,d) given by

A = I⊗ Ã2 + (A1 − d̃2I)
−1 ⊗ b̃2c̃2 (2.90)

b = −(A1 − d̃2I)
−1b1 ⊗ b̃2

c = c1(A1 − d̃2I)
−1 ⊗ c̃2

d = d1 − c1(A1 − d̃2I)
−1b1

Again the condition which must be satisfied from Hanzon and Scherrer (2008)

states that d̃2 is not an eigenvalue of A1.

We can examine the limit of equations (2.90) where d2 → 0, equivalent to

d̃2 → ∞, and it can be shown that when we take the limit d2 → 0 the function
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G(ϕ(u)) has a realization given by

A = I⊗A2 +A1 ⊗ b2c2 (2.91)

b = b1 ⊗ b2

c = c1 ⊗ c2

d = d1

and thus has no restrictions with respect to the eigenvalues of A1.

2.2.9.3. Example of Composition Formula with Matrix Geometric

Generating Function

We now consider an actuarial example to demonstrate the usefulness of the ap-

proach in Section 2.2.9.2. A practical example is where the number of insurance

claims is distributed according to a matrix geometric distribution and claim

sizes have an EPT distribution. We compute the EPT distribution for the total

claims liability.

Let the realization of the matrix geometric distribution be (A1,b1, c1,d1) and

consider the scalar case where

p(0) = d1 0 ≤ d1 ≤ 1

p(k) = (1− d1)(1− λ) λk−1 = c1A
k−1
1 b1 ∀ k > 0

Hence we have that A1 = λ where 0 < λ < 1, b1 = 1 and

c1 = (1− d1)(1− λ) (2.92)

We then assume that claim sizes have an EPT density with minimal realization

of order n, (A2,b2, c2, 0), i.e. d2 = 0 so the EPT density does not have a

pointmass at zero. We assume that claim sizes are non-negative and therefore
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σ(A2) ⊂ H−. Allowing for negative claim sizes could easily be included although

it does not make sense in this example. The total claims liability then has an

EPT density mixed with a pointmass at zero and realization given by (A,b, c,d)

obtained from Eq. (2.91) where

A = A2 + λb2c2 (2.93)

b = b2

c = (1− d1)(1− λ) c2

d = d1

It is clear that the transfer function given by the minimal realization (A,b, c,d)

has a maximum McMillan degree of n.

2.3. Variance Gamma and Implementation Example

2.3.1. Introduction to Variance Gamma Densities in 2-EPT Form

The Variance Gamma (VG) process is a popular flexible asset price process

in Financial Modelling and has been the subject of much research since its

introduction in Carr, Madan, Chang (1998). The density itself is extremely

flexible as one can easily control its mean, skewness and kurtosis through its

three parameters (C,G,M). The parameters C,G,M are positive real values.

The density in closed form is

fV G(x;C,G,M) =
(GM)C
√
π Γ(C)

exp
( (G − M)x

2

)( |x|
G + M

)C−1/2
KC−1/2

( (G + M)|x|
2

)
(2.94)

where Kν denotes a Modified Spherical Bessel function of the third kind. The

corresponding characteristic function has a much simpler expression given by

Φ(is;C,G,M) =
( G M

G M + (M − G)is+ s2

)C

(2.95)
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It is clear that the characteristic function is rational for integer C. Using

Abramowitz and Stegun (1965) pg. 443 we see that for integer C Eq. (2.94)

can be written as

fV G(x;C,G,M) = exp
( (G − M)x − (G + M)|x|

2

) (MG)C

(C − 1)!

C−1∑
k=0

(C − 1 + k)!(G + M)−C−k|x|C−1−k

(C − 1 − k)! k!︸ ︷︷ ︸
p(x)

(2.96)

We now see that for integer C Eq. (2.96) is in 2-EPT form with exponential

and polynomial components. If we split the density around the origin we get

fV G(x;C,G,M) =


exp(G x)

(MG)C

(C−1)!

∑C−1
s=0

(2(C−1)−s)!(G+M)−2C+1+s|x|s
s! (C−1−s)!

if x ≤ 0

exp(−M x)
(MG)C

(C−1)!

∑C−1
s=0

(2(C−1)−s)!(G+M)−2C+1+s|x|s
s! (C−1−s)!

if x > 0

(2.97)

We note the polynomial parts of (2.97) are identical for all x implying cP = cN

and bP = bN . As we have seen already a polynomial can represented in EPT

format, p(x) = c ea x b. We must now find the coefficients of the polynomial

such that they are entries of the c row vector and they can be seen to be

cs =
(MG)C

(C − 1)!

(2(C − 1)− s)!(G+M)−2C+1+s

(C − 1− s)!
... s ∈ {0, 1, ..., C − 1}

(2.98)

The s! factor from Eq. (2.97) is omitted in Eq. (2.98) as it will be included in

the taylor expansion of ex. Similarly b = (1, 0, . . . , 0)T , a (C × 1) column

vector. We then have a, a square C × C nilpotent matrix given by

a =



0 0 0 ... 0

1 0 0 ... 0

0 1 0 ... 0

...
. . .

. . .
. . . 0

0 ... 0 1 0


(2.99)
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This methodology works well for x > 0 since the polynomial is given in

terms of the absolute value of x so care must be taken when x ≤ 0 giving

us p(x) = c e−a x b. Hence we obtain the following representations for the

density

fV G(x;C,G,M) =


c eG x e−a x b if x ≤ 0

c e−M x ea x b if x > 0

(2.100)

fV G(x;C,G,M) =


c e(GI−a) x b if x ≤ 0

c e(−MI+a) x b if x > 0

(2.101)

where I is the C × C identity matrix. Finally we let AN = GI − a and AP =

−MI+ a implying

fV G(x;C,G,M) =


c eAN x b if x ≤ 0

c eAP x b if x > 0

(2.102)

It is clear that all eigenvalues of AP are negative, all identically −M while all

eigenvalues of AN are positive G. Thus AP is stable and AN anti-stable and

both are non-singular.

2.3.2. State Space Representation of Variance Gamma Characteristic

Function

Suppose X ∼ V G(C,G,M), we have already seen in Eq. (2.95) that the

characteristic function is rational when C is integer. Consider the most basic

case when C = 1 we get

ϕ(si; 1, G,M) =
( G M

G M + (M − G)is+ u2

)
=

M G

(M + G)(si + G)
+

−M G

(M + G)(si − M)

= ϕP (si) + ϕN (si) (2.103)
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It is obvious that the rational characteristic function can be decomposed into

the sum of two rational functions, ϕN (si) and ϕP (si), with poles located in the

open upper half plane, C+, and open lower half plane, C−, respectively. The

state space representation is then given by


−M 0 1

0 G 1

− MG
(M+G)

MG
(M+G)

0

 (2.104)

Consider the case where C = 2 which is equivalent to the product of the two

identical characteristic functions with C = 1 which can be found using the

convolution formula from Section 2.2.8 or alternatively we could find the state

space representation using the formulations given in Eq. (2.97) to Eq. (2.102)



G 0 0 0 1

−1 G 0 0 0

0 0 −M 0 1

0 0 1 −M 0

2(MG)2

(M+G)3

(
MG

M+G

)2 − 2(MG)2

(M+G)3
−
(

MG
M+G

)2 0


(2.105)

Both methods give equivalent realizations as it was already noted that minimal

realizations are unique only up to a state space transformations.

2.3.3. Variance Gamma Additive Decomposition Example

If we are required to carry out certain calculations using the characteristic func-

tion or attempting to recover the density from the characteristic function it is

necessary to have the eigenvalues of A split according to their positive and neg-

ative real part as stated in Section (2.2.8.2) already. The A matrix must also

be block diagonalised. We will consider such a case say where the characteristic

function of Z is the product of the characteristic functions of X and Y which

both have Variance Gamma distributions V G(1, GX ,MX) and V G(1, GY ,MY )



54 2-EPT Probability Density Functions

respectively. Hence we find the state space representation for Z using the con-

volution formula given in Section 2.2.8

ϕ(Z) =



GX 0 αX −αX 0

0 −MX αX −αX 0

0 0 GY 0 1

0 0 0 −MY 1

αY −αY 0 0 0


(2.106)

where

αX =
MXGX

MX +GX
αY =

MYGY

MY +GY
(2.107)

To split the eigenvalues we must perform some row operations while ensuring A

maintains its upper diagonal structure. To achieve this we pre multiply by Q1

and post multiply by Q−1
1

Q1 A Q
−1
1 =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




GX 0 αX −αX

0 −MX αX −αX

0 0 GY 0

0 0 0 −MY




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



=


GX αX 0 −αX

0 GY 0 0

0 αX −MX −αX

0 0 0 −MY



We can see the eigenvalues are split depending on the sign of their real part.

However we must ensure Q1 A Q−1
1 remains upper diagonal. Hence, we pre

multiply by Q2 and post multiply by Q−1
2

Q2 =


1 0 0 0

0 1 0 0

0 q 1 0

0 0 0 1

 (2.108)
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and q is a scalar giving us

Ã = Q2(Q1 A Q
−1
1 )Q

−1
2 =


1 0 0 0

0 1 0 0

0 q 1 0

0 0 0 1




GX αX 0 −αX

0 GY 0 0

0 αX −MX −αX

0 0 0 −MY




1 0 0 0

0 1 0 0

0 −q 1 0

0 0 0 1



=


GX αX 0 −αX

0 GY 0 0

0 f(q) −MX −αX

0 0 0 −MY

 (2.109)

where f(q) is a linear function of q and can be easily solved such that Ã =

Q2(Q1 A Q−1
1 )Q−1

2 remains upper diagonal. In this instance we find that

q =
−αX

MX +GY
(2.110)

We now transform Ã such that it is block diagonal. As was outlined earlier in

Section (2.2.8.2) we introduce a matrix T where here T is a 2 × 2 submatrix

and let

AN =

 GX αX

0 GY

 , AP =

 −MX −αX

0 −MY

 , V =

 0 −αX

0 0

 (2.111)

giving

TÃT
−1

=

 I2x2 T

0 I2x2

 AN V

0 AP

 I2x2 −T

0 I2x2


=

 AN T AP − ANT + V

0 AP



We then solve the sylvester equation for T above which in this case we find

that

T =

 0
−αX

MY +GX

0 0

 (2.112)
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The final “A” matrix is

TQ2Q1AQ
−1
1 Q

−1
2 T

−1
=


GX αX 0 0

0 GY 0 0

0 0 −MX −αX

0 0 0 −MY

 (2.113)

The triple for the state space representation is then given by

(TQ2Q1AQ−1
1 Q−1

2 T−1, TQ2Q1b, cQ
−1
1 Q−1

2 T−1)



Chapter 3

Fitting EPT Densities

3.1. Introduction

The problem of approximating an empirical probability distribution with a non-

negative EPT function is considered here. Despite the fact that the observed

data may be non-negative it is still possible that the approximating EPT func-

tion is negative on certain intervals. This problem has been observed in practice

and is also encountered in model reduction when approximating a high order

non-negative system with a lower order system.

It has been elucidated to in Section 1.4.3 that positive realizations do ensure

non-negativity but it was stated that such realizations may not exist. Also pos-

itive realizations may not be minimal.

We demonstrate how to fit a minimal non-negative EPT density on a particu-

lar set of data. The dataset to be approximated initially is the positive daily

Dow Jones Industrial Average (DJIA) daily log returns over 80 years which are

shown in Figure 3.1. (Fitting another EPT function on (−∞, 0] to the negative

log returns can be carried out by the same procedure). The adjusted closing

prices are used which are freely available on finance.yahoo.com using the ticker

symbol DJI.
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Figure 3.1: Histogram of Daily Log returns for DJIA for (1931 - 2011)

Hence the goal of the chapter is to describe a procedure to find a triple

(A,b, c) ∈ Rn×n×Rn×1×R1×n of McMillan degree n minimizing the criterion

||h(x)− ceAxb||22 (3.1)

where h(x) is a density function that represents the data (h(x) is directly related

to a histogram of the data; a precise description of h is given in Section 3.2).

Here the norm is the L2 norm over the half-line [0,∞). Section 3.2 shows how

the tail of the function can be estimated. The necessity of a dominant real pole

in the spectrum of A is also discussed. In section 3.3 a brief comparison of using

Maximum Likelihood Estimation versus an RARL2 approximation for the EPT

density is provided.

Section 3.4 illustrates that our L2 fitting problem is equivalent to a discrete time

rational approximation problem in H2. The unconstrained problem, in which

the non-negativity constraint is not imposed, is tackled using the rational ap-

proximation software RARL2 to find an observable pair (A, c) and an optimal

b. In a separate section, 3.5, and in Section 3.5.1, the Fourier coefficients of

the transform of h(x), which form the inputs to RARL2, are derived directly

as inner products of h(x) with a set of orthogonal basis functions on [0,∞).

Results from unconstrained RARL2 approximations are also provided.

The non-negativity problem is described in Section 3.6. By assuming the pres-
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ence of a dominant real pole and solving the unconstrained problem with RARL2

we show that non-negativity can be imposed by choosing an optimal b∗
C for a

given pair (A, c) such that the EPT function with realization (A,b∗
C , c) is non-

negative on [0,∞). Choosing b∗
C is shown to be a convex optimisation problem

which is solved in Section 3.8. Central to the convex optimisation algorithm

is the Budan-Fourier method of Hanzon and Holland (2010) which examines

non-negativity of an EPT function on a finite interval [0, T ]. Section 3.7 proves

that a finite interval can be constructed on which to apply the Budan-Fourier

technique to obtain a necessary and sufficient test for non-negativity of the EPT

function on [0,∞). This is possible due to the assumed presence of a strictly

dominant real pole in the spectrum of A. Section 3.9 gives an example of the

convex optimisation procedure.

Section 3.11 considers the problem of ensuring a continuous (at the origin) 2-

EPT probability density function. In Section 3.12 two Variance Gamma dens-

ities are fitted to the data and a Gaussian density. The quality of fit of these

densities are compared to the 2-EPT approximation. Lastly Section 3.12.1 com-

pares the first four moments of the data to the corresponding moments of the

2-EPT density approximation.

Much of the work in this chapter was completed during a research visit to INRIA,

Sophia-Antipolis in May 2011 under the additional guidance of Martine Olivi.

A paper Hanzon, Olivi and Sexton (2012) containing many of these results was

presented at the SYSID 2012 conference and published in the proceedings.

3.2. Extrapolating the Tail

We take a histogram of daily log returns for DJIA for the period 1931-2011 as

our starting point (see Figure 3.1). Firstly we scale the data such that all data

points are located in the interval [0, 1]. We denote the resulting function by

r(x). This is a step function. As its support is only on the finite interval [0, 1]
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we extrapolate the tail of the empirical density to the whole positive real line

with an exponential function.

There is a vast literature on extreme value theory discussing techniques to es-

timate the tail behaviour of a distribution of empirical asset returns. Much of

the research available focuses on using more sophisticated functions to approx-

imate this behaviour. Such functions include the Pareto, Gumbel, Weibull and

Frechet distributions. Unfortunately, none of these functions can be be used

to approximate the tail behaviour in the our case as we are restricted to using

EPT functions with a unique dominant real pole.

Assume we have Nobs observations in the sample which are ordered such that

X1 ≤ X2 ≤ ... ≤ XNobs
. One (regression) technique of identifying the strictly

dominant real pole and its coefficient is to select all observations greater than

or equal to XKobs
. The parameters µM > 0 and λM < 0 are then chosen to

minimise

min
µM ,λM

N∑
i=N−Kbin

(log(r(xi))− log(µMe
λMxi))2 (3.2)

where xi+1 − xi = δx for all i = 0, 1, ..., N − 1 and δx = 1/N . Kbin is then

chosen as the interval [xi, xi+1] containing the observation XKobs
. XKobs

must

be chosen to capture tail behaviour only, so should not be chosen too big, but

also not too small, in order to get a good estimate of µM and λM . The literature

is also unclear on how to determine where the tail of the distribution begins. In

our case we chose the upper 1% of returns for this estimation procedure which

included over 100 observations. The 99th percentile of empirical returns begin at

XKobs
= 0.2769 (after scaling). In this situation we let N = 500 so Kbin = 138.

We then define the function h(x) on [0,∞) as

h(x) =


r(x) if x ≤ 1

µMe
λMx if x > 1

(3.3)
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In Figure 3.2 we can see h(x) on [0, 0.3].
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Figure 3.2: Normalised Density, h(x), for observed daily log returns over [0, 0.3]

As we proceed to examining non-negative EPT approximations we elucid-

ate to the importance of the Perron-Frobenius type result which states that if

f(x) = ceAxb is non-negative ∀ x ≥ 0 then λM = maxλ∈σ(A)Re(λ) is an ele-

ment of the spectrum of A. This result puts a constraint on the eigenvalues

of the approximating A matrix in that it must contain a dominant real ei-

genvalue (equivalently the rational characteristic function must contain a dom-

inant real pole). This condition is far from sufficient and as the analysis in

Hanzon and Holland (2012) shows the non-negativity constraint is a complic-

ated one in general.

We do not impose this condition on σ(A) in Sections 3.4 or 3.5, instead allowing

RARL2 to recover the dominant real pole during the approximation procedure.

3.3. RARL2 vs. Maximum Likelihood Estimation

Maximum Likelihood Estimation is a well documented standard procedure for

estimating the parameters of a probability density function. In the EPT case,

an EPT function of order 3 has 15 parameters which would need to be estim-

ated. There are also restrictions on these parameters such that the resulting

EPT function is stable, integrates to unity and is non-negative, although we
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will see later that the condition of non-negativity can be relaxed. The literature

on MLE for Matrix-Exponential (or Matrix-Analytic) distribution is relatively

sparse. Fackrell (2003) provides an in-depth description on MLE procedures for

fitting a Matrix-Exponential distribution to a set of data. We will introduce

Fackrells technique but it will be seen to be quite cumbersome in comparison

to the RARL2 method implemented later.

It was seen in Eq. (1.1) that the Laplace Transform of a Matrix-Exponential dis-

tribution (aeTxt) is a rational polynomialH = a/b. The roots of the polynomial

b correspond to the eigenvalues ofT. By re-writing the Matrix-Exponential func-

tion, Fackrell (2003) first estimates the eigenvalues of T using the multidimen-

sional non-linear optimisation Nelder-Mead algorithm. However this algorithm

does not have the ability to change a real eigenvalue into a complex eigenvalue.

Therefore, before the algorithm is run the number of real zeros must be specified.

Hence, an order 5 approximation would require three iterations of the algorithm,

firstly with five real zeros, secondly with three real zeros and a complex pair and

finally an approximation with one real zero and two complex pairs. The coef-

ficients of the polynomial b can then found from eigenvalues. The coefficients

of the polynomial a can then be derived to maximise the likelihood function

for each case depending on the number of real poles in H. The final choice of

coefficients for the polynomials a/b will those which maximise the likelihood

function. It is also possible that a zero of the polynomial a could cancel out a

zero of the polynomial in the denominator b meaning a minimal realization is

not guaranteed.

Due to the aforementioned issues surrounding the maximum likelihood estim-

ation procedure, we examined alternative techniques. The rational approxim-

ation method known as RARL2 was an obvious candidate. The procedure

computes a pre-specified order n stable rational L2-approximation to a given

transfer function of a discrete-time system. The discrete-time transfer function

to be approximated can be passed as either a finite number of Fourier coeffi-

cients, a high order realization or pointwise values on the unit circle. RARL2
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uses a parametrization of stable all-pass systems represented by balanced output

realizations. There are a number of advantages to using such parametrizations

as stability is guaranteed while differentiability and well-conditioning are also

assured. RARL2 was developed at INRIA and a more comprehensive descrip-

tion with further references can be found in Olivi (2010). This approximation

method has been implemented in MATLAB and is available from INRIA. Al-

though the algorithm can not enforce the non-negativity constraint, it is possible

to ensure integration to unity. We now illustrate how this discrete time rational

approximation software can be used to solve our approximation problem given

in Eq. (3.1).

3.4. Discrete Time Rational Approximation

As is well-known, minimizing Eq. (3.1) is equivalent to minimizing the L2(iR)

distance between the characteristic functions (Fourier transforms) of h(x) and

f(x), where f(x) = ceAxb. The characteristic function of ceAxb is a rational

function with poles in the open left half plane and fixed McMillan degree. In

this way the problem of minimizing Eq. (3.1) can be translated into a rational

approximation problem under a “least squares” norm. In systems theory this

problem is known as the H2 model approximation problem for continuous time

systems. The software RARL2 is devised to handle similiar problems for dis-

crete time models. We use an isometric transformation to map the continuous

time system into a discrete time system and then apply the software.

RARL2 is ideally suited to this rational approximation problem as it uses a para-

meterization of the observable pairs (A, c) which is convenient for enforcing the

stability constraint and for optimisation due to their differentiability properties.

Without the non-negativity constraint the criterion function to be minimised is

Eq. (3.1) over the set of minimal triples (A,b, c) where A is stable and of fixed

degree n.



64 Fitting EPT Densities

The continuous time transfer function is found via the transform

E[e−sx] = F (s) =

∫ ∞

0

ceAxbe−sxdx = c(sI − A)−1b (3.4)

which is a strictly proper rational function. The transform of h(x) is given by

H(s) =
µMeλM−s

s− λM
+

N−1∑
n=0

r(xn)
(
− 1

s
e−sxn+1 +

1

s
e−sxn

)
(3.5)

To transform the continuous time rational function into discrete time we use

a well known isometry. In discrete time the stable A matrix will have all its

eigenvalues located inside the unit disk.

Marmorat et al (2012) give a map from continuous to discrete time which we

implement here. The map is

F (s) 7→ F̃ (z) =

√
2

z − 1
F
(z + 1

z − 1

)
(3.6)

achieved using the Möbius transform

z 7→ s =
z + 1

z − 1
(3.7)

These formulae allow us to derive a discrete time realization, (Ã, b̃, c̃), from

the continuous time realization (A, b, c). The state space formulae of the

transformation are given by

Ã = −(I−A)−1(I+A) (3.8)

b̃ =
√
2(I−A)−1b

c̃ = c

Hence the discrete time rational function is given by

F̃ (z) = c̃(zI − Ã)−1b̃ (3.9)
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Equations (3.6) and (3.7) can be used to transform H(s) into its discrete time

counterpart H̃(z). We let

iω =
eiθ + 1

eiθ − 1
, θ ∈ [−π, 0) ∪ (0, π] (3.10)

giving us

H̃(eiθ) =

√
2

eiθ − 1
H(iω) =

( √
2

eiθ − 1

)µMeλM−iω

iω − λM

+

√
2

eiθ − 1

(N−1∑
n=0

r̂(xn)
( 1

iω
e−iωxn −

1

iω
e−iωxn+1

))
(3.11)

where r̂(x) = r(x)− µMe
λMx.

RARL2 seeks to minimise the L2 norm

min
Ã, b̃, c̃

||H̃ − F̃ ||22 (3.12)

which is equivalent to Eq. (3.1).

3.5. RARL2 Approximation from Fourier Coefficients

Let {gn(x)}n=−1,−2,−3,... denote the sequence of functions for n < 0 given by

gn(x) =
√
2e−x

|n|−1∑
j=0

(−n− 1

j

) (−2x)j

j!
, x ∈ [0,∞) (3.13)

which form an orthonormal basis for the Hilbert space L2[0,∞) of real square

integrable functions on [0,∞). The function h(x) can then be represented by a

weighted series of orthonormal functions

h(x) =
∑
n<0

cngn(x) (3.14)

The coefficients are given by

cn = < gn, h > =

∫ ∞

0

gn(x)h(x)dx (3.15)
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which can be obtained by computing the integral in Eq. (3.15), numerically on

[0, 1] and analytically on [1,∞). It is proven in Section 3.5.1 that the coefficients

cn are the Fourier coefficients of the discrete time function H̃. It is clear that

gn is an Exponential-Polynomial (EP) function and subsequently the approxim-

ation of h(x) derived from a truncated sum
∑

n=−1,−2,...,−M cngn(x) is also EP.

The RARL2 software then uses these Fourier coefficients to determine a high

order rational approximant and to calculate a first approximation of this in the

form of the discrete time minimal system of degree n. This is then used as

a starting point for the RARL2 approximation which uses a gradient search

algorithm to locate a local minimum, in the form of a minimal realization of

degree n, of the criterion in Eq. (3.12). The algorithm will report the smallest

local minimum found.

By calculating the Fourier coefficients of h(x) as described in Eqs. (3.13) to

(3.15) we evaluate the performance of two RARL2 approximations, one of order

3 and another of order 6. Figure 3.3 shows the discrete time the approximation

where the order 3 and order 6 approximation are almost indistinguishable.
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Figure 3.3: Discrete Time Approximations of order (3) (green) and of Order (6)
(red)

Figure 3.4 illustrates the normalised empirical data, h(x), (integrates to

unity) and the RARL2 approximations in continuous time.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

2

4

6

8

10

12

14

16

18
Normalised Data with RARL2 Approximations

 

 
Normalised Data
Order 3 Approximation 
Order 6 Approximation

Figure 3.4: The Density Function h(x) is in blue. RARL2 Approximations of Order
3 (green) and of Order 6 (red)

The approximation of order 3 has a square error of 0.0501 compared with the

order 6 approximation which has a square error of 0.0441, demonstrating the

improvement of fit using higher order approximations. The poles of the rational

transfer function of the order 3 approximation are (−119.5601, −283.2162 ±
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78.1844i) while the zeros are (−1.5595,−610.2373). The order 3 approximation

contains a dominant real pole of −119.5601. Using techniques described in Sec-

tion 7 we conclude that this approximation is non-negative for all x > 0. The

poles of the order 6 rational transfer function are (−269.626±107.333i,−18.275±

195.347i,−37.492,−119.560) and the zeros are

(−18.194±195.435i,−38.207,−160.835,−569.021). However the dominant pole

of the order 6 approximation is complex and the resulting EPT is negative on

certain intervals.

From Section 3.2 the dominant real pole was estimated as λM = −119.5601

with its coefficient µM = 31.587.

For the above EPT approximations, the empirical density was sampled at 500

equally spaced points on [0, 1]. The first 170 Fourier Coefficients were then calcu-

lated using this data. The output was unchanged when these input parameters

(170,500) were perturbed slightly e.g. ±10%. It should also be noted that very

similar results were achieved when the inputs were not the Fourier Coefficients

but pointwise values on the unit circle i.e. Eq. 3.11 evaluated for θ ∈ [−π, π].

3.5.1. Derivation of Fourier Coefficients

We begin by defining the Hardy space of the disk L2(T) which can be split into

two orthogonal subspaces

L2(T) = H2 ⊕H2
⊥ (3.16)

whereH2
⊥ is the subspace of the Hardy space of the exterior of the disk consisting

of strictly proper functions whose Fourier coefficients of non-negative index are

zero.

We can represent the discrete time rational transfer function H̃(z) defined on
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H2
⊥ in terms of its Fourier coefficients as

H̃(z) =
0∑

n=−∞
cnz

n (3.17)

H̃(eit) =
0∑

n=−∞
cne

int

where cn are the Fourier coefficients given by

cn =
1

2π

∫ 2π

0

H̃(eit)e−intdt = < H̃, eint >L2(T)

The problem can be transformed into continuous time using the isometry from

Eq. (3.6) and the Möbius transforms from Eq. (3.7)

H(s) =

√
2

s− 1
H̃
(s+ 1

s− 1

)
=

√
2

s− 1

∞∑
n=−∞

cn

(s+ 1

s− 1

)n

(3.18)

This is an isometry from L2(T) to L2(iR) as it sends the Hardy space H2
⊥ onto

H2(C+) where C+ denotes the open right half plane.

The Fourier coefficients are transformed as

cn =
1

2π
< H, Gn >H2(C+) (3.19)

where

Gn(s) =
√
2

(s+ 1)n

(s− 1)n+1
(3.20)

Using Plancherel’s Theorem we can transform the Fourier coefficients from

H2(C+) to L2(0,∞) such that

cn = < h, gn >L2(0,∞) (3.21)
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As we only consider the Fourier coefficients with n < 0 we see that gn is the

Fourier inverse of Gn given by

gn(t) =
√
2e−t

(−n−1∑
j=0

(
−n− 1

j

)
(−2t)j

j!

)
(3.22)

The reader is referred to Partington (1997), especially Corollary 1.4.2, for more

information on such orthonormal sequences of functions, and Marmorat et al

(2012) for a more in depth discussion on the transformation from discrete to

continuous time in a similar setting.

3.6. Toward a Non-Negative EPT Approximation

If applying the unconstrained method as described in Sections 3.4 and 3.5 using

RARL2 produces an EPT function with negative values for any x ≥ 0 then we

must alter our approach to ensure non-negativity. An important tool is the gen-

eralized Budan-Fourier algorithm of Hanzon and Holland (2010) can be used to

test for non-negativity of an EPT function on a finite interval [0, T ]. For each

real EPT function on a finite interval [0, T ] ⊂ R a generalized Budan-Fourier

sequence with associated sets of boundary points can be constructed. The con-

struction is given directly in terms of the parameters of the EPT function. The

generalized Budan-Fourier sequence with associated sets of boundary points,

allows one to find the minimum of the EPT function on [0, T] by repeatedly

using bisection techniques. This allows one to characterize non-negative EPT

functions on a finite interval.

Again h(x) is the true function to be approximated with the EPT function

f(x) = ceAxb of McMillan degree n, the minimization problem with the non-

negativity constraint we wish to solve is given by Eq. (3.1).

Recalling the Perron-Frobenius result from Section 3.2 we will now assume the

presence of a unique strictly dominant real eigenvalue, λM < 0, of multiplicity

one in the spectrum of A (so all other eigenvalues in the spectrum have real



3.6 Toward a Non-Negative EPT Approximation 71

part strictly less than λM ). This assumption may be slightly restrictive as the

Perron-Frobenius result allows for multiple dominant eigenvalues. The strictly

dominant eigenvalue and its coefficient, µM , are estimated as shown in Section

3.2.

The dominant eigenvalue and coefficient can then be handled separately from

the other parameters in the approximation by transforming h(x) and f(x) as

follows

ĥ(x) = h(x)− µMe
λMx

f̂(x) = f(x)− µMe
λMx = ĉeÂxb̂ (3.23)

where f̂(x) = ĉeÂxb̂ is an EPT function of McMillan degree (n− 1).

To ensure λM remains the dominant pole of f(x) the eigenvalues of Â are con-

strained in the approximation such that σ(Â) ⊂ {s|Re(s) < λM}. This

restriction on σ(Â) is similar to the stability condition and can be enforced in

RARL2.

As noted already, the RARL2 algorithm so far does not take the non-negativity

constraint into consideration. Implementing RARL2 after the above transform-

ations yields the criterion

||ĥ(x)− ĉeÂxb̂||22 (3.24)

for which a local minimum is found using the gradient algorithms described in

Marmorat and Olivi (2007) where the pair (Â, ĉ) range over the set of output

normal observable pairs as described in Hanzon et al (2006). For a given pair

(Â, ĉ) it is a linear problem to solve for the optimal b̂
∗
. The Fourier coefficients

of ĥ(x) may be computed by evaluating the integral in Eq. (3.15) on [0, 1] as

ĥ(x) = 0 for all x > 1.

The non-empty convex set B(Â, ĉ) can then be defined for any pair (Â, ĉ)

such that if b̂
∗

∈ B(Â, ĉ) then non-negativity is guaranteed by f(x) ≥ 0 or
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equivalently

f̂(x) = ĉeÂxb̂
∗
≥ −µMe

λMx ∀ x ≥ 0 (3.25)

However if b̂
∗

/∈ B(Â, ĉ) then using the convex optimisation algorithm, de-

scribed in Section 3.8, it is possible to find the constrained optimal b̂
∗
C ∈

B(Â, ĉ) s.t. b̂
∗
C is the solution for b̂ to the minimization problem

min
{b̂∈ B(Â, ĉ)}

||ĥ(x)− ĉeÂxb̂||22 (3.26)

The final triple for the non-negative EPT function f can represented in state

space form by 
λM 0 1

0 Â b̂
∗
C

µM ĉ 0



3.7. Finite Interval to Test for Non-Negativity

Given an EPT function with the following minimal realization with strictly

dominant real pole λM < 0 and coefficient µM > 0,


λM 0 1

0 Â b̂

µM ĉ 0

 (3.27)

If b̂ = b̂
∗
then the triple (Â, b̂

∗
, ĉ) minimizes the criterion in Eq. (3.24) for a

given pair (Â, ĉ).
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Define the non-empty set B1(Â, ĉ) for a pair (Â, ĉ) as follows:

B1(Â, ĉ) =
{
b̂
∣∣∣ ||ĉeÂxb̂||2 ≤ 2||ĉeÂxb̂

∗
||2

}
(3.28)

Note that the minimising point b̂
∗
C will necessarily lie in the bounded set

B1(Â, ĉ).

Proof

The zero vector lies in the convex set B(Â, ĉ) and we also have b̂
∗
C ∈ B(Â, ĉ).

We let q(x) = ĉeÂxb̂
∗
and p(x) = ĉeÂxb̂

∗
C and using the triangular inequality

we can show that

||p(x)− q(x)||2 ≤ ||q(x)||2 =⇒ ||p(x)||2 ≤ 2||q(x)||2 (3.29)

Proposition 3.1

Consider the EPT function with minimal realization given by


λM 0 1

0 Â b̂
∗

µM ĉ 0

 (3.30)

where σ(Â) ⊂ {s|Re(s) < λM}. There exists a T0 > 0 such that for any

b̂ ∈ B1(Â, ĉ) it holds that ĉe
Âxb̂ ≥ −µMe

λMx for all x ∈ [0, T0] if and only

if ĉeÂxb̂ ≥ −µMe
λMx for all x ≥ 0.

Proof

Since σ(Â) ⊂ {s|Re(s) < λM}, the EPT function above can be scaled by a

factor e−λMx which transforms the non-negativity condition to be considered to

ĉeÃxb̂ ≥ −µM , ∀ x ≥ 0 (3.31)

where Ã = (Â− IλM ) such that σ(Ã) ⊂ H−.
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For any b̂ ∈ B1(Â, ĉ) we have

||ĉeÂxb̂||2 ≤ 2||ĉeÂxb̂
∗
||2 (3.32)

Q is defined as the positive definite observability grammian

Q =

∫ ∞

0

eÂ
T
y ĉT ĉ eÂydy (3.33)

The L2 norm is then given by

b̂
T
Q b̂ = ||ĉ eÂx b̂||22 (3.34)

By letting λmin = min{λ ∈ σ(Q)} such that

b̂
T
Q b̂ ≥ b̂

T
b̂ λmin = ||b̂||2λmin (3.35)

it can be seen that

||b̂||2λmin ≤ b̂
T
Q b̂ ≤ 4D2 (3.36)

where D2 = b̂
∗T

Q b̂
∗
. Hence there is an obvious bound on b̂

||b̂||2 ≤ 4D2

λmin
(3.37)

As the pair (Ã, ĉ) is observable and Ã an asymptotically stable matrix it must

hold

lim
x→∞

ĉ eÃx → 0 (3.38)

implying that ∀ ϵ > 0 ∃ T0 > 0 s.t. ∀ x > T0 , ||ĉeÃx||2 < ϵ.

To find such a T0 we define the Lyapunov function

V (x) = ĉ eÃx M eÃ
T
x ĉT (3.39)
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where M is the positive definite solution to the Lypanunov equation

Ã M + M Ã
T

= −I (3.40)

We see that V (x) is monotonically decreasing

V ′(x) = ĉ eÃx (Ã M + M Ã
T
) eÃ

T
x ĉT < 0 (3.41)

∀ x > 0. Letting λ̃min = min{λ ∈ σ(M)} it is clear

λ̃min||ĉeÃx||2 ≤ ĉ eÃx M eÃ
T
x ĉT (3.42)

||ĉeÃx||2 ≤ V (x)

λ̃min

We let

K =
4D2

λ̃minλmin

(3.43)

For all b̂ ∈ B1(Â, ĉ) we must have that

KV (x) ≥ ĉ eÃxb̂b̂
T
eÃ

T
x ĉT (3.44)

We can then solve for T0 such that

V (T0) =
µ2
M

K
=

µ2
M λ̃minλmin

4D2
(3.45)

proving Proposition 3.1. �.

It should be noted that T0 can be computed independently of b̂ as Eq. (3.45)

does not depend on b̂.
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3.8. Convex Optimisation with Budan Fourier Algorithm

Consider the EPT function

f(x) = µMe
λMx + ĉeÂxb̂ (3.46)

as described in Section 3.6. If b̂ = b̂
∗
/∈ B(Â, ĉ) then the function f(x) will

have negative values for some x ≥ 0.

We intend to apply a convex optimisation algorithm to solve the minimization

problem

min
{b̂∈ B(Â, ĉ)}

||ĉeÂx(b̂
∗
− b̂)||22 (3.47)

We see that Eq. (3.26) can be re-written as

||ĥ(x)− ĉeÂxb̂
∗
+ ĉeÂxb̂

∗
− ĉeÂxb̂||22

= ||ĥ(x)− ĉeÂxb̂
∗
||22 + ||ĉeÂx(b̂

∗
− b̂)||22 (3.48)

which is possible due to the orthogonality of (ĥ(x)− ĉeÂxb̂
∗
) and ĉeÂx(b̂

∗
− b̂)

as the function q(x) = ĉeÂxb̂
∗
is the projection of ĥ onto the linear space of

functions {p(x) = ĉeÂxβ|β ∈ Rn−1}. Hence it is clear that minimising the

criterion in Eq. (3.26) is equivalent to minimising the criterion in Eq. (3.47).

Section 3.7 derives a T0 such that if the EPT function is non-negative on [0, T0]

then non-negativity is assured on [0,∞). This is possible due to the presence

of the real strictly dominant pole and a restriction on the norm of b̂. Then the

generalized Budan-Fourier algorithm can determine whether non-negativity on

the positive half line holds by using just the interval [0, T0].

As a starting guess for the Convex Optimisation algorithm an initial b̂0 ∈

{B̂(Â, ĉ)
∩
B̂1(Â, ĉ)} is always available since the zero vector itself lies in this

set. Using the Budan-Fourier algorithm it is possible to choose α, 0 ≤ α ≤ 1,

such that b̂1 = αb̂
∗
lies on the boundary of B(Â, ĉ) and it follows that

b̂1 ∈ B̂1(Â, ĉ). This may be a good initial guess if no other obvious can-
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didates are available.

The implementation of the algorithm in MATLAB is described in Section 7.4.

The inbuilt convex optimisation function fmincon is the focal point of this al-

gorithm and is responsible for steps 1 and 4 below. Assuming b̂i ∈ {B̂(A, c)
∩
B̂1(Â, ĉ)},

the criterion function to be minimised is

Ci = ||ĉeÂx(b̂i − b̂
∗
)||22 (3.49)

Firstly T0 is computed using the method described in Section 3.7 and we set

the penalty value P ∈ R as an extremely large constant. The algorithm then

proceeds as follows:

1. Compute b̂i+1 by perturbing b̂i in a direction to decrease the criterion

function Ci.

2. Check if b̂i+1 ∈ B̂1(Â, ĉ). If true proceed to next step, otherwise penalise

Ci by setting Ci+1 = P > Ci and goto step 4.

3. Examine if b̂i+1 ∈ B̂(Â, ĉ) by testing if ĉeÂx ˆbi+1 ≥ −µMe
λMx for all

x ∈ [0, T0]. If true, compute Ci+1 using Eq (3.49), otherwise set Ci+1 =

P > Ci.

4. If Ci+1 ≤ Ci, compute b̂i+2 by perturbing b̂i+1, otherwise revert back to

b̂i and compute a new b̂i+1 by perturbing b̂i in a different direction to

Step (1).

This procedure is repeated until no further improvement is possible (i.e. |Cn −

Cn−1| < ϵ for a large number of consecutive iterations) implying the global

minimum has been located at b̂
∗
C . The essential result is that at each point,

obtained in the algorithm, that is not equal to the global minimizing point, a

direction exists in which the criterion function is improved. To see this consider

the piece of straight line connecting a point obtained in the algorithm with the

globally minimizing point. Due to convexity, the piece of straight line will lie

wholly in the set B̂(Â, ĉ), while the criterion will be strictly decreasing along
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this straight line (until the global minimum is be reached). The convex optim-

ization algorithm used tries to find a direction in which the criterion function is

improved. The result states that such a direction can always be found except

if we would have arrived at the global optimum. The algorithm is illustrated

in Figure 3.5. Note, the steps in the Fig 3.5 do not correspond to steps in the

algorithm outlined above.

Figure 3.5: Convex Optimisation Algorithm for Non-Negative EPT Density Func-
tion using Budan Fourier Technique

3.9. Non-Negative Convex Optimisation Algorithm Example

We now provide an example to illustrate the performance of the non-negative

convex optimisation algorithm described in Sections 3.8. The function we will

approximate is

h(x) = 16e−
x
2 − 30e−x + 15e−2x = µMe

λMx + ĉeÂxb̂
∗

(3.50)

The dominant pole λM = −1
2 and its coefficient µM = 16 are easily identifiable.

The minimal realization of h(x) in state space form is given by
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

−0.5 0 0 1

0 −1 0 1

0 0 −2 1

16 −30 15 0


=


λM 0 1

0 Â b̂
∗

µM ĉ 0

 (3.51)

It is clear from Figure 3.6 that h(x) is negative on the interval [0.1897, 0.6575].

We will approximate h(x) with the non-negative EPT function f(x)

f(x) = µMe
λMx + ĉeÂxb̂

∗
C (3.52)

For the pair (Â, ĉ) we will use the algorithm described in Section 3.8 to derive

b̂
∗
C minimising the L2 norm

min
{b̂∈B(Â,ĉ)}

||ĉeÂx(b̂
∗
− b̂)||22 (3.53)

where the convex set B(Â, ĉ) is as defined in Section 3.6.
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h(x) = 16e−0.5x − 30e−x + 15e−2x

Final Non−Negative Approximation
Initial Guess 

Figure 3.6: Non-Negative Approximation

Using the technique from Section 3.7 we can construct the finite interval on

which it is necessary to check for non-negativity. In this instance the interval
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is [0, 9.2156]. Hence if f(x) is non-negative on [0, 9.2156] then we know that

f(x) is non-negative on [0,∞).

We begin the convex optimisation with the initial guess, b̂1 = (0.9797, 0.9797)T

which is a convex combination of the zero vector and b̂
∗
. Running the algorithm

we find the b̂
∗
C minimising Eq. (3.53) is b̂

∗
C = (0.9984, 1.0366)T which yields

an L2 norm of 0.1296. The non-negative approximating EPT function f has a

state space realization



−0.5 0 0 1

0 −1 0 0.9982

0 0 −2 1.0359

16 −30 15 0


=


λM 0 1

0 Â b̂
∗
C

µM ĉ 0

 (3.54)

We can calculate the minimum of f(x) which is a small positive number of

the order 10−15 indicating that b̂
∗
C does indeed lie on the boundary of the set

B(Â, ĉ). The optimisation procedure took 65 seconds to compute.

3.10. Additional Remarks

If we have b̂
∗
/∈ B(Â, ĉ) then we can find b̂

∗
C ∈ B(Â, ĉ) for a given pair (Â, ĉ)

but it is still possible to adapt the (Â, ĉ) and derive a new b̂
∗
C ∈ B(Â, ĉ) to

try and improve the non-negative approximation. Also further iterations can be

used to determine the strictly dominant pole and the triple (Â, b̂
∗
C , ĉ) jointly.

(We can use h − ĉeÂxb̂
∗
C to perform a log-linear regression or an L2 optimal

order one EPT approximation!).

3.11. 2-EPT Approximation

To fit an EPT function with realization (AN ,bN , cN ) to the data on (−∞, 0]

such that σ(AN ) ⊂ H+ is identical to the method described above. The 2-EPT

function with realization (AP ,bP , cP ,AN ,bN , cN ) approximates the data on

the whole real line. This 2-EPT function is then scaled to ensure integration to
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unity.

Using RARL2 it is possible to impose continuity at the origin restricting

cPbP = C0 = cNbN (3.55)

An iterative procedure is required to derive the optimal C0 which minimizes

the square error between the 2-EPT function and the empirical data. Although

such a condition will reduce the quality of fit of the 2-EPT approximation, it

seems like a sensible restriction when we continue on to option pricing within

the 2-EPT framework. If the underlying 2-EPT density has a discontinuity at

the origin, then a similar discontinuity will be observed in the associated vanilla

option prices. In chapter 6 we will see that the vanilla option pricing formulae

are indirectly split about the origin so the discontinuity persists. Such a discon-

tinuity in option prices does not violate any no-arbitrage requirements but from

a practitioners perspective it should be avoided.

A further restriction which could be considered would be to ensure the deriv-

ative of the density function is continuous at zero although this would require

significant changes in the approximation procedure to implement. Such a con-

dition would ensure the continuity of the Greeks of the option prices.

The point mass at zero of the 2-EPT density could be estimated as the propor-

tion of zeros in the dataset. A scaling factor would then be used in the RARL2

approximation procedure to ensure integration to unity.

3.12. 2-EPT Vs. Variance Gamma Vs. Gaussian Approximation

We now evaluate the quality of the 2-EPT approximation against the Variance

Gamma and benchmark Gaussian distributions. We will impose the condition

of continuity at the origin, as given in Section 3.11 for the 2-EPT approximation.

We consider two Variance Gamma approximations, the first with no constraint

on the input parameters while the second approximation, restricts the input
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parameter “C” to be an integer such that it can be represented as a 2-EPT

distribution. The empirical density being approximated is the set of DJIA log

returns (1931 - 2011) and will be approximated on the interval [−0.2563, 0.1427]

which includes all returns over the period in question. Letting h(x) be the

normalised density of log returns observable at N + 1 equally spaced points on

[−0.2563, 0.1427] and assuming f(x) represents the approximating density we

estimate the squared distance between f and h as the sum

N∑
i=0

(h(xi) − f(xi))
2 δx (3.56)

where xi − xi−1 = δx ∀ i = {1, 2, ..., N} given that

δx =
0.2563 + 0.1427

N
(3.57)

We will use the squared distance between the empirical and approximating dens-

ities as the measurement to evaluate the fit.

The parameters estimated for the Variance Gamma and Gaussian distributions

were chosen to minimise Eq. (3.56). The goodness of fit is illustrated in Figure

3.7.
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Figure 3.7: 2-EPT, Variance Gamma and Gaussian Approximations of Empirical
Log Returns. N = 400

From Figure 3.7 it is difficult to distinguish between the quality of fit for the

Variance Gamma and 2-EPT distributions. However it is clear that the Gaussian

density provides a poor fit with tails decaying too quickly and not sufficiently

peaked at the mean.

Table 3.1 shows the error (Squared Distance calculated via Eq. (3.56)) for each

of the approximations versus the empirical density.

Error Parameters

2-EPT (Order 3) 0.2498 (AN , bN , cN , AP , bP , cP )

Variance Gamma 0.2341 C = 1.5635, G = 202.5676, M = 189.1945

Variance Gamma(C=2) 0.2686 C = 2, G = 239.7714, M = 225.9878

Gaussian 0.7747 µ = 0.000191 , σ = 0.00751

Table 3.1: Errors Associated with Density Approximations and respective paramet-
ers.

We now perform a Chi-Square test to evaluate the goodness of fit further.

The null hypothesis of the test is H0 : f0 = g where f0 represents the distri-
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bution of the empirical data while g is distribution being tested (namely the

2-EPT, Variance Gamma, Variance Gamma (C=2) and Gaussian distributions)

as described in Table 3.1. The alternative hypothesis is HA : f0 ̸= g. We also

calculate the average log likelihood (l) for each distribution. We have that

l =
1

Nobs

Nobs∑
i=1

log(g(xi)) (3.58)

Higher values of l imply a better fit. The average log-likelihood is just a scaled

version of the log-likelihood as Nobs = 20, 734 for all comparisons.

Chi-Square

Stat

P-Value Average Log-

Likelihood

2-EPT (Order 3) 0.0224 1 3.2148

Variance Gamma 0.0751 0.9993 3.1818

Variance Gamma(C=2) 0.1419 0.9982 3.1626

Gaussian 401.6704 1.32e-25 2.7759

Table 3.2: Chi-Square Test Statistics and associated p-values. Average Log-
Likelihood also provided.

From the in Table 3.2 it is clear that the Gaussian distribution is not a suitable

approximation for the data (p-value 1.32e-25) so we reject the null hypothesis.

However in the other 3 cases (the 2-EPT and both Variance Gamma distribu-

tions) we cannot reject the null hypothesis and therefore we assume that these

distributions are good approximations for the data. It is also obvious that the 2-

EPT distribution produces the lowest Chi-Square Statistic and highest p-value.

The 2-EPT distribution also produces the highest average log-likelihood. There-

fore, both sets of analysis indicate that the 2-EPT approximation provides the

best fit for the data.

It was necessary to check certain assumptions before we performed the Chi-

Square test. Firstly the data observations must be independent which was

confirmed by examining the autocorrelation plot of the data. The data was
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binned into 400 equally sized intervals on (−0.0450, 0.0411). These parameters

were chosen to meet the requirement for a chi-square test that 80% of the inter-

vals have an expected count of greater than 5. The full set of data was used to

perform the likelihood analysis.

The state space realization of the 2-EPT probability density function is given

by

 AN bN

cN 0

 =



99.5597 0.0000 0.0000 1.0000

0.0000 61.4545 −97.6067 3.5058

0.0000 370.1559 302.1875 7.7742

29.6202 5.52403 1.1851 0


(3.59)

and

 AP bP

cP 0

 =



−119.5601 0.0000 0.0000 1.0000

0.0000 −33.0987 160.9465 2.5729

0.0000 −426.6732 −533.3337 10.3280

31.5888 7.9015 0.6081 0


(3.60)

where

cN2bN2 = cP2bP2 (3.61)

It should also be pointed out that σ(AN ) = (99.5597, 181.8210 ± 147.1108i)

and σ(AP ) = (−119.5601, −283.2162± 78.1844i). It is clear from the domin-

ant poles of both spectrums σ(AN ) and σ(AP ) that the tail of the EPT function

defined on (−∞, 0] decays slower than the tail of the EPT function defined on

[0,∞). This is expected as large negative returns occur more frequently than

corresponding positive returns.

The tail behaviour of the 2-EPT density differs substantially from the tail beha-

viour of both Variance Gamma Densities. Here we will analyse the tails of the

distributions on [0,∞) but a similar argument can be made for the same ana-

lysis on (−∞, 0]. This difference can be seen by the fact that the positive tails

of the Variance Gamma densities have dominant eigenvalues of −189.1945 and

−225.9878 compared with the 2-EPT density which has a dominant eigenvalue

of −119.5601. The reason there is such a discrepancy in the decay is that the
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tail behaviour of the Variance Gamma densities was not estimated explicitly like

in the 2-EPT case. The positive tail behaviour of the Variance Gamma density

is governed by the input parameter M . However, in the analysis above, the

parameters C,G,M were chosen to minimise the overall square distance error,

as given by Eq. (3.56), rather than capture the tail behaviour. The fact that

the tail of the 2-EPT density can be estimated independently from the centre

of the distribution illustrates another advantage of using 2-EPT densities to

approximate empirical densities.

It should be noted that the 2-EPT density function is non-negative and integ-

rates to unity. It is clear from Table 3.1 that the Variance Gamma distribution

with C = 1.5635 provides the best approximation with a square error of 0.2341.

However this distribution can not be represented with a finite state space realiz-

ation. The 2-EPT approximation of order (3) has a square error of 0.2498 which

is better than the constrained Variance Gamma approximation with “C” integer

which has an error of 0.2686. Both these approximations are significantly better

than the Gaussian approximation which has a square error of 0.7747 where µ

and σ were chosen to minimise the square error.

3.12.1. 2-EPT Moments

Using the formulae to calculate the moments of a 2-EPT random variable given

in Section 2.2.5, the moments of the fitted 2-EPT density given in Section 3.12

are computed around the mean.

2-EPT Empirical

Mean 1.2079× 10−4 1.9101× 10−4

Volatility 0.01057 0.01106

Skewness −0.6231 −0.5946

Kurtosis 8.4205 27.7125

Table 3.3: 2-EPT Density and Empirical Moments about the mean
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From Table 3.3 we see that the moment approximations are quite reason-

able. The annual drift of the 2-EPT model is 3.04% compared with a realized

annual drift of 4.81%. Assuming there are 252 trading days in the year the daily

volatility estimate equates to an annualized volatility of 16.813%. The annual

volatility was calculated using the “N-Fold Convolution” function which is de-

scribed in Section 7.5.3 and simply derives the convolution of a 2-EPT density

with itself N times. The realized annual volatility calculated directly from the

data was 15.27%. The negative skewness of the 2-EPT is a good approximation

for the empirical density. The kurtosis of the 2-EPT density underestimates the

true kurtosis exhibited implying that the tails of the 2-EPT density may still

be too light for this purpose.
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Chapter 4

2-EPT Lévy Processes

4.1. Introduction

The importance of infinitely divisible distributions has been elucidated to in

Chapter 1 where their connection with Lévy processes was noted. It was stated

that each infinitely divisible distribution gives rise to a unique Lévy process and

the converse is also true. In this Chapter we give a method for characterising

infinitely divisible EPT random variables. It is also proven how to characterise

infinitely divisible mixtures of an EPT densities with Dirac distributions.

It is then shown how the Laplace Transform of an infinitely divisible 2-EPT

probability density function can be factored into the Laplace Transforms of two

infinitely divisible EPT functions. A necessary and sufficient condition is then

derived to characterise infinitely divisible 2-EPT probability density functions.

The Lévy triple of an infinitely divisible 2-EPT probability density function

is also derived. The chapter concludes with an example illustrating that the

Variance Gamma probability density function is indeed infinitely divisible.

The contents of this chapter were presented at the Bachelier Finance Conference

in Sydney in June 2012. The associated paper, Hanzon, Holland and Sexton

(2012), contains many of the results of this chapter and has been submitted to
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the Bernoulli Journal of Mathematical Statistics and Probability for publication.

4.2. Mathematical Formulation

We begin with the definition of a Levy process from Cont and Tankov (2003)

Lévy Process A càdlàg stochastic process (Paths are right-continuous with left

limits everywhere, with probability one) (Xt)t≥0 on (Ω,F ,P) with values in R

such that X0 = 0 is called a Lévy process if it possesses the following properties

• Independent increments: for every increasing sequence of times t0, t1, ..., tn,

the random variables Xt0 , Xt1 −Xt0 , ..., Xtn −Xtn−1 are independent.

• Stationary increments: the law of Xt+h −Xt does not depend on t.

• Stochastic continuity: ∀ ϵ > 0, limh→0 P(|Xt+h −Xt| ≥ ϵ) = 0.

The Lévy-Khintchine formula is used to characterise infinitely divisible dis-

tributions in terms of its Lévy triple. There are a number of representations of

the formula but we present the most common form within the Financial Math-

ematics literature which is taken from Kyprianou and Loeffen (2005)

Lévy-Khintchine Formula A probability law f of a real valued random vari-

able is infinitely divisible with characteristic exponent Ψ,

∫
R
e−isxf(x)dx = e−Ψ(s), s ∈ R, (4.1)

if and only if there exists a triple (a, σ, ν) where a ∈ R, σ ≥ 0 and ν a measure

concentrated on R\{0} satisfying
∫
R min{1, x2}dν(x) < ∞, such that

Ψ(s) = ias+
1

2
σ2s2 +

∫
R
(1− eisx + isxI{|x|<1})dν(x), (4.2)

for all s in R.

The measure ν is the unique Lévy measure. The characteristic exponent from
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Eq. (4.2) can be decomposed as

Ψ(s) = ias+
1

2
σ2s2 +

∫ ∞

0

(1− eisx + isxI{x<1})dνP (x)

+

∫ 0

−∞
(1− eisx + isxI{x>−1})dνN (x), (4.3)

where νP (x) = 0 for all x < 0 and νN (x) = 0 for all x > 0.

Proposition 3.9 from Cont and Tankov (2003) provides a formulation for Lévy

processes of finite variation.

Finite Variation Lévy Processes A Lévy process is of finite variation if and

only if its characteristic triplet (a, σ, ν) satisfies

σ = 0 and

∫
|x|≤1

|x|dν(x) < ∞ (4.4)

4.3. Infinitely Divisible EPT Distributions

We begin by examining an EPT probability density function f defined on [0,∞)

by the minimal realization (A,b, c)

f(x) = ceAxb, x ≥ 0, (4.5)

such that σ(A) ⊂ H−. As f is non-negative on the half line [0,∞) it stated

in Section 2.1.1 that a Perron-Frobenius type result implies that the spec-

trum of A contains a negative dominant real eigenvalue λM such that λM =

maxλ∈σ(A)Re(λ).

The Laplace transform of f for s > 0 is given by

F (s) =

∫ ∞

0

e−sxf(x)dx =

∫ ∞

0

e−sxceAxbdx = c(sI−A)−1b =
p(s)

q(s)
.

(4.6)
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F is a strictly proper rational function as p and q are co-prime polynomials of

order m and n respectively where n > m.

We let Λ(A,b, c) = {s|c(sI − A)−1b = 0} be the set of zeros of the func-

tion c(sI − A)−1b. A result from Lukacs (1970) states that an infinitely di-

visible analytic function cannot have any zero inside its strip of convergence.

If a rational function c(sI − A)−1b is infinitely divisible it must hold that

maxλ∈Λ(A,b,c)Re(λ) ≤ λM . Only triples (A,b, c) satisfying this necessary

condition will be considered, otherwise the resulting EPT probability density

function is not infinitely divisible. As λM < 0 it holds that Λ(A,b, c) ⊂ H−. In

systems theory a transfer function with all poles and zeros located in the half

plane is referred to as “minimum phase”.

It is known, Feller (1971), that a function g is the Laplace transform of an in-

finitely divisible probability distribution on [0,∞), if and only if g = e−w where

the derivative of w is completely monotonic on [0,∞) and w(0+) = 0.

Completely Monotonic Function A function J defined on (0,∞) is said to

be completely monotonic if it possesses derivatives Jn(x) for all n = 0, 1, 2, ...

such that

(−1)nJ (n)(x) ≥ 0, (4.7)

for all x > 0

It is known from Bernsteins Theorem, given in Widder (1941) (p. 160), that a

necessary and sufficient condition that a function J is completely monotonic on

[0,∞) is

J(s) =

∫ ∞

0

e−sxdν(x), (4.8)

for 0 ≤ s < ∞ where ν is a finite, non-negative measure on [0,∞) and the

integral converges for 0 ≤ s < ∞. We conclude that a non-identically zero

completely monotonic function J(s) cannot vanish for any positive s.

From the results of Feller (1971) above, if F is the Laplace transform of the

infinitely divisible distribution f on [0,∞) then F = e−h and the derivative of
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h given by

h′ = −F
′

F
, (4.9)

must be completely monotonic on [0,∞). By construction it holds that h(0) =

− log(F (0)) = 0 as F (0) = 1 since f is a probability density function. It is clear

that if h′ is completely monotonic on [0,∞) then there exists some positive

measure ν such that

h′(s) =

∫ ∞

0

e−sxdν(x), s > 0. (4.10)

Since F = e−h and h(0) = 0, by Fubini

h(s) =

∫ s

0

h′(t)dt =

∫ ∞

0

1− e−sx

x
dν(x), s > 0. (4.11)

In particular we have that

∫ ∞

0

1− e−x

x
dν(x) = h(1) < ∞.

However,

1− e−x

x
>

1

1 + x
, x > 0,

implying that ∫ ∞

0

1

x+ 1
dν(x) < ∞.

It follows from this that

∫ ∞

1

∣∣∣1− e−sx

x

∣∣∣dν(x) ≤ 2

∫ ∞

1

1

x
dν(x) < ∞, s ∈ H+,

whence

∫ ∞

0

1− e−sx

x
dν(x) =

∫ 1

0

1− e−sx

x
dν(x) +

∫ ∞

1

1− e−sx

x
dν(x),
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exists everywhere on H+ and defines a function that is analytic there. In other

words,

h(s) =

∫ ∞

0

1− e−sx

x
dν(x) , ∀ s ∈ H+. (4.12)

A limiting argument assures us that

h(iω) =

∫ ∞

0

1− e−iωx

x
dν(x), −∞ < ω <∞ .

ν(x) defined on (0,∞) must be determined such that h′(s) is the Laplace trans-

form of ν(x). It is clear that

h′(s) = −F
′(s)

F (s)
=

c(sI−A)−2b

c(sI−A)−1b
.

The strictly proper rational function F can be written as

F (s) =
c(sI−A)∗b

det(sI−A)
, (4.13)

where the zeros of the polynomial c(sI − A)∗b are the zeros of F (s).
[
M∗

denotes the adjoint matrix of the square matrix M, such that M∗M = MM∗ =

det (M) I
]
.

Lemma 4.1 Suppose q is the characteristic polynomial of a square matrix Q

where σ(Q) ⊂ H−. Then, for s > 0, q′(s)/q(s) is the Laplace transform of the

trace of exp(Qx)

Proof

Tr(eQx) =
∞∑

n=0

xnTr(Qn)

n!
,

but

Tr(Qn) =
∑

λ∈σ(Q)

λn.
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Hence for s > 0

∫ ∞

0

e−sxTr(eQx)dx =
∑

λ∈σ(Q)

∫ ∞

0

( ∞∑
n=0

xnλn

n!

)
e−sxdx

=
∑

λ∈σ(Q)

∫ ∞

0

eλxe−sxdx

=
∑

λ∈σ(Q)

1

s− λ

=
q′(s)

q(s)
. �

Lemma 4.2 Let F be a minimum phase strictly proper rational function and

F = e−h. Then h′ = −F ′/F , is the Laplace transform of Tr(eAx) − Tr(eBx)

where B is the companion matrix of c(sI − A)∗b if deg(c(sI − A)∗b) > 0. If

c(sI−A)∗b is constant then h′ is the Laplace Transform of Tr(eAx).

Proof

If deg(c(sI − A)∗b) > 0 let F = p/q where p(s) = c(sI − A)∗b and q(s) =

det(sI−A). Using the quotient rule

−F
′(s)

F (s)
=

q′(s)

q(s)
− p′(s)

p(s)
.

As F is of minimum phase, Tr(eAx) and Tr(eBx) are integrable on (0,∞) and

by Lemma 4.1

−F
′(s)

F (s)
=

∫ ∞

0

e−sxTr(eAx)dx −
∫ ∞

0

e−sxTr(eBx)dx

=

∫ ∞

0

e−sx
(
Tr(eAx)− Tr(eBx)

)
dx.

If c(sI−A)∗b = K where K ∈ R then F (s) = K/q(s) and q(s) = det(sI−A).

It can be seen that

− F ′(s)

F (s)
=

q′(s)

q(s)
, (4.14)
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and similarly

− F ′(s)

F (s)
=

∫ ∞

0

e−sxTr(eAx)dx. � (4.15)

Theorem 4.1 Given a minimal triple (A, b, c) that defines a not identically

zero EPT probability density function whose Laplace Transform is of minimum

phase. If deg(c(sI−A)∗b) > 0, B is the companion matrix of c(sI−A)∗b and

F (s) is the Laplace transform of f(x) = ceAxb, then

F (s) = exp
(
−
∫ ∞

0

(1− e−sx)
Tr(eAx)− Tr(eBx)

x
dx

)
, (4.16)

Thus F is infinitely divisible iff Tr(eAx) ≥ Tr(eBx) for all x ≥ 0

If c(sI−A)∗b is constant then the Laplace transform of f(x) = ceAxb is given

by F (s)

F (s) = exp
(
−
∫ ∞

0

(1− e−sx)
Tr(eAx)

x
dx

)
, (4.17)

where F (s) is infinitely divisible iff Tr(eAx) ≥ 0 for all x ≥ 0.

By comparing the exponent of F (s) in Eq. (4.16) to the characteristic exponent

of the Lévy-Khintchine formula in Eq. (4.2) the Lévy triple (a, σ, ν) of the EPT

probability density function with realization (A,b, c) can be determined. The

drift component a must be chosen such that

a = −
∫ 1

0

x dν(x) (4.18)

while the diffusion term σ = 0. If deg(c(sI − A)∗b) > 0 the Radon-Nikodym

derivative of the Lévy measure of the EPT density

ν′(x) =
Tr(eAx)− Tr(eBx)

x
, x > 0, (4.19)
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and ν′(x) = 0 for all x < 0. If deg(c(sI−A)∗b = 0, then

ν′(x) =
Tr(eAx)

x
, x > 0. (4.20)

Again we must have ν′(x) = 0 for all x < 0.

According to the definition in Eq. (4.4) the Lévy process is of finite variation if

a from Eq. (4.18) is finite. Consider the case where deg(c(sI −A)∗b > 0 and

note that

a = −
∫ 1

0

(
Tr(eAx)− Tr(eBx)

)
dx

= −
[
Tr(A−1eAx)− Tr(B−1eBx)

]1
0

= −Tr(A−1eA) + Tr(B−1eB) + Tr(A−1)− Tr(B−1) <∞ (4.21)

which holds as {σ(A) ∪ σ(B)} ⊂ H−. When c(sI−A)∗b is constant it can be

seen that

a = −Tr(A−1eA) + Tr(A−1) < ∞ (4.22)

Therefore Lévy processes generated from infinitely divisible EPT distributions

are of finite variation.

Consider the case where deg(c(sI −A)∗b) > 0, then xν′(x) is an Exponential-

Trigonometric (ET) function given by

xν′(x) = Tr(eAx)− Tr(eBx) (4.23)

It is clear that F defined in Eq. (4.16) is infinitely divisible if and only if xν′(x)

is non-negative on [0,∞).

It has been stated that σ(A) contains a dominant real eigenvalue λM < 0.

Denote λ̃M = maxλ∈σ(B)Re(λ) as the dominant eigenvalue in B. It is clear
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that if xν′(x) ≥ 0, as in Eq. (4.23) for all x ≥ 0 then it must hold that

λM ≥ λ̃M . If λM < λ̃M then there would exist a K > 0 such that

Tr(eAK) < Tr(eBK). (4.24)

This coincides with the result from Lukacs (1970) such that an analytic charac-

teristic function of an infinitely divisible distribution can have no zeros located

in its strip of convergence. This property can be used as a quick check to con-

firm that the Laplace Transform F (s) is not infinitely divisible.

If F as given in Theorem 4.1 is infinitely divisible then it is clear that

ν′(x) =
Tr(eAx)− Tr(eBx)

x
≥ 0, ∀x > 0

⇐⇒ Tr(eAx)− Tr(eBx) ≥ 0, ∀x > 0

=⇒ lim
x↓0

Tr(eAx)− Tr(eBx) ≥ 0

= Tr(IA)− Tr(IB) ≥ 0 (4.25)

where IA is an identity matrix with the same dimensions as the square matrix

A. It follows that dim(A) ≥ dim(B) must hold if F is the Laplace Transform of

an infinitely divisible EPT distribution implying that F must not contain more

zeros than poles. This result is given in Corollary 4.1.

The Budan-Fourier Algorithm of Hanzon and Holland (2010) can be used to test

for non-negativity of an EPT function on a finite interval. If the ET function,

xν′(x), contains a unique dominant real pole, which must be λM , then the

aforementioned Budan-Fourier technique can be used to test for non-negativity

of the ET function on the whole half line [0,∞) by examining a finite interval

[0, T ]. This result follows from Proposition 3.1 in Section 3.7 where it is proven

how to construct T > 0 when an EPT function contains a unique dominant real

eigenvalue.

A necessary condition that the function f is infinitely divisible is that f is strictly

positive on [0,∞) and this can be seen in Lemma 4.3.
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Lemma 4.3 Suppose the minimal triple (A, b, c) defines a non-negative EPT

function denoted by f , that is not identically zero, which in turn defines a finite

measure f(x)dx. If f is infinitely divisible it is necessary that f is strictly

positive on [0,∞).

Proof

Consider the Laplace Transform of f given by

F (s) =

∫ ∞

0

e−sxf(x)dx = c(sI−A)−1b, (4.26)

for s ∈ H+. Then

− F ′(s)

F (s)
=

c(sI−A)−2b

c(sI−A)−1b
, (4.27)

is a rational function. Hence, −F ′/F is the Laplace Transform of some continu-

ous function k such that for all s ∈ H+

− F ′(s)

F (s)
=

∫ ∞

0

e−sxk(x)dx. (4.28)

Similarly

∫ ∞

0

e−sxxf(x)dx =

∫ ∞

0

e−sxf(x)dx

∫ ∞

0

e−sxk(x)dx, (4.29)

which is the convolution of f and k. By uniqueness of the transform,

xf(x) =

∫ ∞

0

f(x− t)k(t)dt, 0 < x <∞. (4.30)

By assumption f ≥ 0. If F is infinitely divisible then as noted earlier −F ′/F

is completely monotonic. Hence −F ′/F is the Laplace Transform of some non-

negative measure. Therefore k ≥ 0.

Finally, if f(a) = 0 for some a > 0, then

0 = af(a) =

∫ a

0

f(a− t)k(t)dt, (4.31)
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whence, by continuity, f(a − t)k(t) ≡ 0, ∀ t ∈ [0, a], which is impossible and

the result of Lemma 4.3 follows.�

4.4. Infinitely Divisible EPT Distributions Mixed with Dirac Function

We consider a generalised EPT density function (EPT density mixed with a

pointmass at zero) such that the probability density function f defined on [0,∞)

has a minimal realization (A,b, c,d) of McMillan degree n and 0 < d < 1.

f(x) =


0 with probability d

ceAxb if x > 0

(4.32)

A Perron-Frobenius type from Hanzon and Holland (2010b) result implies that

σ(A) contains a dominant real eigenvalue λM < 0 such that λM = maxλ∈σ(A)Re(λ).

The Laplace transform of f is the proper rational function F

F (s) = c(sI−A)−1b+ d =
p(s)

q(s)
, (4.33)

where p and q are co-prime polynomials of degree n. As already mentioned,

a result from Lukacs (1970) states that an analytic Laplace Transform of an

infinitely divisible probability density function cannot contain any zeros inside

its strip of convergence. Letting Λ(A,b, c,d) = {s|c(sI − A)−1b + d}, then

for an infinitely divisible probability density function with minimal realization

(A,b, c,d) it must hold that maxλ∈Λ(A,b,c,d)Re(λ) ≤ λM . It follows since

λM < 0 that Λ(A,b, c,d) ⊂ H− and therefore the F again is of minimum

phase.

As in Section 4.3, define F = e−h and it follows that h′ = −F ′/F . Hence, by

Feller (1971), F is the Laplace transform of an infinitely divisible distribution

if and only if h′ is completely monotonic on [0,∞) and h(0) = 0. It holds by

construction that h(0) = log(F (0)) = 0. Since F is a proper rational function
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and d > 0, a well known identity gives

F−1(s) = d−1 − cd−1(sI− (A− bd−1c))−1bd−1. (4.34)

The zeros of F−1 correspond to the eigenvalues of A and the poles of F−1(s)

are the eigenvalues of A − bd−1c. Following a similar technique from Section

4.3, Lemma 4.4 can be proven.

Lemma 4.4 Let F be the minimum phase rational function F (s) = c(sI −

A)−1b + d and F = e−h. Then h′ = −F ′/F is the Laplace transform of

Tr(eAx)− Tr(eBdx) where Bd = A− bd−1c

Proof

Let F = p/q where p(s) = ddet(sI−Bd) and q(s) = det(sI−A). The remainder

of the proof follows as in Lemma 4.2 �.

Hence we provide a necessary and sufficient condition to characterise an infin-

itely divisible generalised EPT probability density function.

Theorem 4.2 Given a minimal realization (A, b, c,d) that defines a not identic-

ally zero probability density function f defined as the mixture of an EPT function

with a pointmass at zero. Assume the Laplace Transform F of f is of minimum

phase. F is given by

F (s) = exp
(
−
∫ ∞

0

(1− e−sx)
Tr(eAx)− Tr(eBdx)

x
dx

)
. (4.35)

Then F is infinitely divisible iff Tr(eAx) − Tr(eBdx) ≥ 0 for all x ≥ 0 where

Bd = A− bd−1c

Comparing Eq. (4.35) to the Lévy-Khintchine formula in Eq. (4.2) we see that

the corresponding Lévy triple for the density function with minimal realization

(A,b, c,d) has σ = 0 indicating a pure jump process with Lévy measure defined

by

ν′(x) =
Tr(eAx)− Tr(eBdx)

x
, x ≥ 0 (4.36)
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Finally the drift component is

a = −
∫ 1

0

x dν(x)

= −
∫ 1

0

(
Tr(eAx)− Tr(eBdx)

)
dx

= −Tr(A−1eA) + Tr(B−1
d eBd) + Tr(A−1)− Tr(B−1

d ) <∞ (4.37)

which is finite as {σ(A) ∪ σ(Bd)} ⊂ H−. We see from Eq. (4.37) that the

associated Lévy process is of finite variation which follows from Eq. (4.4).

The Budan-Fourier method of Hanzon and Holland (2010) can be used to test

for non-negativity of the ET function xν′(x) = Tr(eAx)− Tr(eBdx) on a finite

interval. As stated at the end of Section 4.3, results from Proposition 3.1 proves

that if {σ(A) ∪ σ(bd)} contains a unique dominant real element λM , then the

Budan-Fourier technique can be used to locate all sign-changing zeros on the

half line [0,∞).

Similar to Section 4.3 it is clear that if F is the Laplace Transform of an in-

finitely divisible EPT function and λ̃M = maxλ∈σ(Bd)Re(λ) then it must hold

that λ̃M ≤ λM . This condition is equivalent to the result from Lukacs (1970)

regarding the location of the poles and zeros of a rational Laplace Transform of

an infinitely divisible distribution.

An identical argument to that given at the end of Section 4.3 in Eq. (4.25)

implies the Laplace Transform of an infinitely divisible generalised EPT distri-

bution can not contain more zeros than poles.

4.5. Infinitely Divisible Result for Rational Laplace Transforms

In Sections 4.3 and 4.4 we made use of the fact that EPT and generalised

EPT probability density functions, f , could be represented with the minimal

realization (A,b, c,d) where 0 ≤ d < 1. The case is now considered where the
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Laplace Transform of f is the rational function F given by

F (s) =

∫ ∞

0

e−sxf(x)dx =
p(s)

q(s)
, s > 0,

and p, q are co-prime polynomials of orders m and n respectively where m ≤ n.

We denote Λ(r(s)) = {s|r(s) = 0} as the zeros of the polynomial r(s). As noted

already, due to the Perron-Frobenius type result, F must contain a dominant

real pole implying λM ∈ Λ(q(s)) where λM = maxλ∈Λ(q(s))Re(λ). Similarly, by

the results of Lukacs (1970) a necessary condition for F to be infinitely divisible

requires maxλ∈Λ(p(s))Re(λ) ≤ λM . Hence, only probability density functions

whose rational Laplace Transforms satisfy these conditions are considered.

Following the same method as in Section 4.3, by letting F = e−h it is known

that F is infinitely divisible iff there exists a positive measure with Laplace

transform h′ = −F ′/F . If Λ(r(s)) ⊂ H− then from Lemma 4.1 for s > 0

∑
λ∈Λ(r(s))

∫ ∞

0

eλxe−sxdx =
r′(s)

r(s)
, (4.38)

and using Lemma 4.2 we obtain the following Theorem.

Theorem 4.3 Given a probability density function f with rational Laplace

Transform F = p/q where p and q are co-prime polynomials of orders m and n

respectively such that m ≤ n. If deg(p(s)) > 0 and {Λ(p(s)) ∪ Λ(q(s))} ⊂ H−.

Then F is the Laplace transform of f given by

F (s) = exp
(
−
∫ ∞

0

(1− e−sx)

∑
λ∈Λ(q(s)) e

λx −
∑

µ∈Λ(p(s)) e
µx

x
dx

)
. (4.39)

F is infinitely divisible iff
∑

λ∈Λ(q(s)) e
λx ≥

∑
µ∈Λ(p(s)) e

µx for all x ≥ 0

If deg(p(s)) = 0 and Λ(q(s)) ⊂ H−, then F is the Laplace transform of f given

by

F (s) = exp
(
−
∫ ∞

0

(1− e−sx)

∑
λ∈Λ(q(s)) e

λx

x
dx

)
. (4.40)
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F is infinitely divisible iff
∑

λ∈Λ(q(s)) e
λx ≥ 0 for all x ≥ 0

The result in Theorem 4.3 coincide with the results obtained in Steutel (1967)

for mixtures of exponential functions.

Corollary 4.1 Given an infinitely divisible probability density function f defined

on the half-line [0,∞) with rational Laplace Transform F = p/q where p and q

are co-prime polynomials such that {Λ(p(s))∪Λ(q(s))} ⊂ H−. Then, #(Λ(p(s))) ≤

#(Λ(q(s))) where #(A) denotes the number of elements, including multiplicit-

ies, in the set A.

Proof

If deg(p(s)) > 0 and f is infinitely divisible, then from Theorem 4.3

∑
λ∈Λ(q(s))

eλx −
∑

µ∈Λ(p(s))

eµx ≥ 0 (4.41)

It follows that

lim
x→0

( ∑
λ∈Λ(q(s))

eλx −
∑

µ∈Λ(p(s))

eµx
)
= #(Λ(q(s)))−#(Λ(p(s))) ≥ 0 (4.42)

A similar result follows when F is the rational Laplace Transform of an infinitely

divisible distribution defined on the half line (−∞, 0].�

4.6. Infinitely Divisible 2-EPT Distributions

A necessary and sufficient condition to characterise an infinitely divisible 2-EPT

probability density function is derived here. Consider the generalised 2-EPT

probability density function f , with realization (AN ,bN , cN ,AP ,bP , cP ,d). As

f represents a probability density function, the Perron-Frobenius type result

from Hanzon and Holland (2010) implies λM− ∈ σ(AP ) and λM+ ∈ σ(AN )
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such that

λM− = max
λ∈σ(AP )

Re(λ)

λM+ = min
λ∈σ(AN )

Re(λ).

The Laplace Transform of f , which is analytic for Re(s) ∈ (λM− , λM+), is given

by

F (s) = −cN (sI−AN )−1bN + cP (sI−AP )
−1bP + d =

p(s)

q(s)
. (4.43)

where p and q are co-prime polynomials of degree m and n respectively such

that m ≤ n. If d > 0, then m = n.

The region I is defined such that I = {s|Re(s) ∈ (λM− , λM+)}. Hence, if F

is the Laplace Transform of an infinitely divisible distribution, a result from

Lukacs (1970) implies

Λ(p(s)) ∩ I = ∅. (4.44)

Using terminology from Lukacs (1970), I is referred to as the strip of analyticity

(or convergence) for the rational Laplace Transform F .

Therefore if F is infinitely divisible then F (is) ̸= 0 for all s ∈ R. The property

of no zeros within the strip of analyticity is a necessary condition for infinitely

divisible distributions and can be used to confirm that the Laplace Transform

F is not infinitely divisible.

If F is infinitely divisible it can be factored as follows

F (s) = F1(s) F2(s) (4.45)

=
p1(s)

q1(s)

p2(s)

q2(s)
, (4.46)

such that F1 has all its zeros and poles located in the open left half plane while

F2 has all its zeros and poles located in the open right half plane. Hence it

is clear that {Λ(p1(s)) ∪ Λ(q1(s))} ⊂ H− and {Λ(p2(s)) ∪ Λ(q2(s))} ⊂ H+. It
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follows that F (0) = 1 as it is the Laplace Transform of a probability density

function. Similarly F1 and F2 must be scaled such that F1(0) = F2(0) = 1.

The polynomials p1 and p2 are of degree m1 and m2 respectively such that m1+

m2 = m. Similarly q1 and q2 are polynomials of degree n1 and n2 respectively

where n1 + n2 = n. If F1 and F2 are infinitely divisible then the inequalities

m1 ≤ n1 and m2 ≤ n2 must hold based on results from Corollary 4.1 which

states that a rational Laplace Transform of an infinitely divisible distribution

cannot contain more zeros than poles.

If F is infinitely divisible the necessary condition from Lukacs (1970) implies

that maxλ∈Λ(p1(s))Re(λ) ≤ λM− and minλ∈Λ(p2(s))Re(λ) ≥ λM+ .

Define

g1(x) =


0 if x < 0

∑
λ∈Λ(q1(s))

eλx −
∑

µ∈Λ(p1(s))
eµx if x > 0

(4.47)

Using results of Sections 4.3 and 4.5 it is known that the Laplace Transform of

g1 is analytic on the half plane {s|Re(s) > λM−} and therefore so is

h1(s) =

∫ ∞

0

1− e−sx

x
g1(x)dx, Re(s) > λM− (4.48)

It can be seen that

exp(−h1(s)) =
p1(s)

q1(s)
= F1(s), Re(s) > λM− (4.49)

Similarly, define g2 by

g2(x) =


∑

λ∈Λ(q2(s))
eλx −

∑
µ∈Λ(p2(s))

eµx if x < 0

0 if x > 0

(4.50)
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Let

h2(s) =

∫ 0

−∞

1− e−sx

x
g2(x)dx, Re(s) < λM+ (4.51)

A computation shows that

h′2(s) =
∑

λ∈Λ(q2(s))

1

λ− s
−

∑
µ∈Λ(p2(s))

1

µ− s

= −q
′
2(s)

q2(s)
+
p′2(s)

p2(s)
, Re(s) < λM+ (4.52)

and therefore

exp(h2(s)) =
p2(s)

q2(s)
= F2(s) (4.53)

It follows that

F (s) = F1(s)F2(s) = exp(−h1(s) + h2(s)) = exp(−h(s)) (4.54)

for all λM− < Re(s) < λM+ where

h(s) =

∫ ∞

−∞

1− e−sx

x
g(x)dx , λM− < Re(s) < λM+ (4.55)

and g(x) = g1(x)− g2(x).

Lemma 4.5 Using the same notation as above. Suppose the 2-EPT probability

density function f is infinitely divisible. Then xg(x) is non-negative for all

x ∈ (−∞,∞)

Proof

We use the classical Lévy-Khintchine formula from Feller (1971) which differs

slightly from the representation in Eq. (4.2). According to this definition, if F

is the characteristic function of an infinitely divisible distribution, then there

exists a real constant γ and a bounded non-decreasing function M such that

F (it) = eΨ(t) where

Ψ(t) = iγt +

∫ ∞

−∞

(
eitu − 1− itu

1 + u2

) (1 + u2)

u2
dM(u), (4.56)
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with the understanding that the integrand is −t2/2 when u = 0. Thus, for all

real t, h(it) = −Ψ(t), and comparing real parts of the identity we have that

∫ ∞

−∞

1− cos(tx)

x2
xg(x)dx =

∫ ∞

−∞

1− cos(tu)

u2
(1 + u2)dM(u) (4.57)

Since all moments of g exist and are finite we may differentiate the LHS as often

as we please. Also, by dominated convergence

lim
t→0

1

t2

∫ ∞

−∞

1− cos(tx)

x2
xg(x)dx =

1

2

∫ ∞

−∞
xg(x)dx. (4.58)

This implies that the limit

lim
t→0

1

t2

∫ ∞

−∞

1− cos(tu)

u2
(1 + u2)dM(u) (4.59)

exists. But the integrand of the displayed integral is non-negative. Hence, by

Fatous lemma ∫ ∞

−∞
(1 + u2)dM(u) < ∞ (4.60)

This means that we can differentiate the identity h(it) = −Ψ(t) at least twice.

To demonstrate this, note that, for all real δ, t,

h(i(t+ δ)) + h(i(t+ δ))− 2h(it) = Ψ(i(t+ δ))−Ψ(i(t+ δ)) + 2Ψ(it) (4.61)

For δ ̸= 0

∫ ∞

−∞
eitx

1− cos(δx)

δ2x2
xg(x)dx =

∫ ∞

−∞
eitu

1− cos(δu)

δ2u2
(1 + u2)dM(u) (4.62)

Hence, letting δ → 0, and invoking the dominated convergence theorem, (0 ≤

1− cos(t) ≤ t2/2) we see that

∫ ∞

−∞
eitxxg(x)dx =

∫ ∞

−∞
eitu(1 + u2)dM(u), −∞ < t <∞ (4.63)
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By uniqueness of the Fourier Stieltjes transforms, it follows that

− xg(−x)dx = (1 + x2)dM(x) (4.64)

Hence, for all real x, −xg(−x) ≥ 0. Therefore xg(x) ≥ 0 for all real x which

concludes the proof.�

Corollary 4.2 If xg(x) is non-negative for all x ∈ R, then both g1(x) and g2(x)

are also non-negative where g, g1 and g2 are as defined above.

Proof

By definition,

xg(x) =


−xg2(x) if x < 0

xg1(x) if x > 0

(4.65)

If xg(x) is non-negative for all x ∈ R then the result follows.

Theorem 4.4 Suppose f is an infinitely divisible 2-EPT probability density

function. Then f is the convolution of two infinitely divisible generalised EPT

functions, denoted f1 and f2, defined on [0,∞) and (−∞, 0] respectively.

Proof

The rational Laplace Transform F of f can be factored into two rational func-

tions F1 and F2 as shown in Eq. (4.45). F1 is a rational function with

{Λ(p1(s)) ∪ Λ(q1(s))} ⊂ {s|Re(s) ≤ λM−}. As F1 has all its poles and zeros

located in the open half plane {s|Re(s) ≤ λM−}, F1 can be written as F1 = e−h1

where h1 is defined in Eq. (4.48). Since f is infinitely divisible, it follows from

Lemma 4.5 and Corollary 4.2 that g1 as defined in Eqs. (4.47) is non-negative.

Therefore, h′1 is completely monotonic and F1 is infinitely divisible. Hence F1

is the Laplace Transform of an infinitely divisible generalised EPT probability

density function denoted f1 such that

F1(s) =

∫ ∞

0

e−sxf1(x)dx (4.66)
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Similarly, F2 is the Laplace Transform of a generalised EPT probability density

function f2 defined on (−∞, 0] and for the same reasons as above it follows that

F2 is infinitely divisible. Finally,

∫ ∞

−∞
e−sxf(x)dx = F (s) = F1(s) F2(s)

=

∫ ∞

0

e−sxf1(x)dx

∫ 0

−∞
e−sxf2(x)dx

and so for −∞ < x <∞,

f(x) =

∫ ∞

−∞
f1(x− t)f2(t)dt

= (f1 ∗ f2)(x) � (4.67)

Corollary 4.3 Suppose Z is an infinitely divisible 2-EPT random variable.

Then there exists two generalised EPT random variables X and Y such that

Z = X + Y . The generalised EPT densities of the random variables X and Y

defined on [0,∞) and (−∞, 0] respectively are uniquely determined.

Proof

Theorem 4.4 states that an infinitely divisible 2-EPT probability density func-

tion f is the convolution of two generalised EPT density functions f1 and f2

defined on [0,∞) and (−∞, 0] respectively. Hence, it follows that f1 and f2 are

the probability density functions for the infinitely divisible random variables X

and Y respectively such that Z = X + Y , where f is the 2-EPT probability

density function of the infinitely divisible random variable Z.�

An infinitely divisible 2-EPT probability density function generates a 2-EPT

Lévy process. The Lévy Triple (a, σ, ν) of such a process can be found using

the representation of the Laplace Transform, F , of the density function f given

in Eq. (4.55) and comparing it to the Lévy-Khintchine formula in Eq. (4.2).

It is clear that a 2-EPT Lévy process is a pure jump process as σ = 0. The
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associated Lévy measure ν is defined by

ν′(x) =


∑

λ∈Λ(q2(s)) e
λx−

∑
µ∈Λ(p2(s)) e

µx

−x if x < 0

∑
λ∈Λ(q1(s)) e

λx−
∑

µ∈Λ(p1(s)) e
µx

x if x > 0

(4.68)

The drift component a is chosen as

a = −
∫ 1

0

( ∑
λ∈Λ(q1(s))

eλx −
∑

µ∈Λ(p1(s))

eµx
)
dx

−
∫ 0

−1

( ∑
λ∈Λ(q2(s))

eλx −
∑

µ∈Λ(p2(s))

eµx
)
dx

< ∞

as 0 /∈ {Λ(p(s)) ∪ Λ(q(s))}. Hence we conclude that 2-EPT Lévy processes are

of finite variation.

4.7. Variance Gamma Example

Consider a Variance Gamma probability density function f which has input

parameters (C,G,M) where “C” is integer and G,M > 0. The Laplace trans-

form F of the density function is a strictly proper rational and analytic for

Re(s) ∈ (−G,M)

F (s) =
( MG

MG+ (M −G)s− s2

)C

=
( −M
s−M

)C ( G

s+G

)C

= F1(s) F2(s)

= cN (sI−AN )−1bN cP (sI−AP )
−1bP (4.69)
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F (is) is the strictly proper rational characteristic function of f . We define cP

and cN as 1× C row vectors

cN = (0, 0, ..., 0,−MC) , cP = (0, 0, ..., 0, GC) (4.70)

Likewise bP = bN = (1, 0, 0, ..., 0)T whileAN andAP are square C×C matrices

given by

AN =



M 0 0 ... 0

−1 M 0 ... 0

0 −1 M ... 0

..

.
. . .

. . .
. . . 0

0 ... 0 −1 M


, AP =



−G 0 0 ... 0

1 −G 0 ... 0

0 1 −G ... 0

..

.
. . .

. . .
. . . 0

0 ... 0 1 −G


It is clear from Eq. (4.69) that both F1 and F2 are strictly proper rational

functions. Hence, the results of Section 4.3 can be used to determine if both F1

and F2 are the infinitely divisible implying the F is also infinitely divisible. It

should be noted that

deg
(
cN (sI−AN )∗bN

)
= deg

(
cP (sI−AP )

∗bP

)
= 0, (4.71)

From Theorem 4.1 we can conclude that F2 is infinitely divisible if and only if

Tr(eAP x) ≥ 0, (4.72)

for all x > 0. It is clear that

Tr(eAP x) = Ce−Gx ≥ 0 (4.73)

for all x > 0 so we conclude that F2 is indeed the Laplace Transform of an

infinitely divisible distribution. We also conclude that F1 is infinitely divisible

as

Tr(eANx) = CeMx ≥ 0 (4.74)
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for all x < 0. Hence we conclude that the 2-EPT random variable X is infinitely

divisible. The Lévy triple associated with the infinitely divisible distribution f

is given by (a, σ, ν) where σ = 0,

a = −
∫ 1

0

Ce−Gxdx−
∫ 0

−1

CeMxdx (4.75)

=
C

G

(
e−G − 1

)
+

C

M

(
1− e−M

)
(4.76)

and

ν′(x) =


CeMx

−x if x < 0

Ce−Gx

x if x > 0

(4.77)

A more involved example characterising the 2-EPT probability density function

derived in Section 3.12 as infinitely divisible is presented in Section 6.4.3.1.
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Chapter 5

Distribution of Discrete Time

Extrema of 2-EPT Processes

5.1. Introduction

This chapter focuses on deriving the probability density functions for the ex-

tremum (minimum or maximum) of a discrete time 2-EPT process of known

length. Such distributions are of great importance from a financial modelling

perspective as they are essential for pricing Lookback options with fixed and

floating strikes.

We begin by defining a discrete time 2-EPT process and its extrema. Using a

recursive algorithm it will be seen that the probability density function of the

extrema for this discrete time process is an EPT function mixed with a point-

mass at zero, referred to as a generalised EPT density. This density can be

computed exactly using the algorithm, which is implemented in MATLAB in

Section 7.5.4.

A discrete 2-EPT process with a geometrically distributed stopping time is then

defined. The Laplace Transform of the distribution of the stopped process can
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be derived and is a proper rational function. It is then proven, using a unique

Wiener-Hopf factorization, that the Laplace Transforms of the distributions of

the maxima and minima of this process are obtained. These Laplace Transforms

are also seen to be rational functions. Using these results, it is then illustrated

how the Laplace Transforms of the distributions of the extrema of a 2-EPT

process of set length can be derived.

5.2. Minimum of Discrete Time 2-EPT Process

A discrete time 2-EPT process is defined as the sum of independent and identic-

ally distributed 2-EPT random variables. The discrete 2-EPT process L(T ) is

defined for each t = 0, 1, 2, ..., T as

L(t) =
t∑

k=0

Xk (5.1)

where Xk for all k > 0 are independent and identically distributed with a gener-

alised 2-EPT probability density function and X0 = 0. The probability density

function for L(t) for all t = {1, 2, ..., T} is a generalised 2-EPT distribution

and can be found using the convolution formula given in Section 2.2.8. The

minimum of the discrete time 2-EPT process is given by

M−(T ) = min
t∈{0,1,2,...,T}

L(t) (5.2)

The probability density function of M(T ) can be derived using the recursive

formula for M(T )

M−(T ) = min{0 , X1 + min{0, X2 + min{0, X3 + ... }}} (5.3)

As X0 = 0, it follows that M−(0) is a pointmass at zero. The class of 2-

EPT random variables is closed under convolution and also under the minimum

operator as seen in Chapter 2. The recursive formula takes the minimum of a
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2-EPT random variable with zero, ensuring thatM−(T ) is defined on closed left

half line. Hence the probability density function of M−(T ) is an EPT function

mixed with a pointmass at zero as shown in Section 2.2.6.1.

We can also define an equality in distribution (
d
=) for M−(T + 1) in terms of

M−(T )

M−(T + 1)
d
= min{0, XT+1 + M−(T )} (5.4)

Similarly for the maximum of such a process we define

M+(T ) = max
t∈{0,1,2,...,T}

L(t) (5.5)

5.2.1. The Π− and Π+ Operator

Let ϕ−t be the Laplace Transform of M−(t) and ϕX the Laplace transform of

the generalised 2-EPT probability density function of the random variable X.

We have that

ϕ−t = Π−(ϕXϕ
−
t−1) (5.6)

where the operator Π− maps the Laplace Transform of a random variable to

the Laplace Transform of the truncated random variable. For example, let Y

be a random variable with Laplace Transform ϕY . Then Π−(ϕY ) is the Laplace

Transform of min(Y, 0). Let ϕY be a proper rational function ϕY = b/a with no

poles on the imaginary axis and the unique decomposition given by

ϕY (s) =
b(s)

a(s)
=

b1(s)

a1(s)
+
b2(s)

a2(s)
+ d (5.7)

where bi/ai are strictly proper for i = 1, 2. The rational function b1(s)/a1(s) is

stable (i.e. all zeros of a1 located in H−) and b2(s)/a2(s) is anti-stable (i.e. all

zeros of a2 located in H+). The operator Π− acts as follows

Π−(ϕY )(s) =
b1(0)

a1(0)
+
b2(s)

a2(s)
+ d (5.8)
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while

Π+(ϕY )(s) =
b1(s)

a1(s)
+
b2(0)

a2(0)
+ d (5.9)

where Π+(ϕY ) is the Laplace Transform of max(Y, 0). The operators Π+ and

Π− are also linear such that

Π+(c1ϕY + c2ϕZ) = c1Π+(ϕY ) + c2Π+(ϕZ) (5.10)

where c1, c2 ∈ R.

5.3. Discrete Time 2-EPT Processes with Geometrically Distributed

Length

Consider a discrete time 2-EPT process whose length is geometrically distrib-

uted. The stopping time of this process, Np, is geometrically distributed with

parameter p where 0 < p < 1. The distribution of Np is

P[Np = k] = pqk , ∀ k = 0, 1, 2, ... (5.11)

where q = 1−p. The value of the discrete time process L(t) for all t = 0, 1, 2, ...

is given by

L(t) =

t∑
k=0

Xi, ∀ k = 1, 2, 3, ..., Np (5.12)

whereXk are independent and identically distributed generalised 2-EPT random

variables with rational Laplace Transform ϕX . The Laplace Transform of L(t)

is Φt
X . Also X0 = 0. The Laplace Transform of the distribution of L(Np) is

given by

ϕp(s) =
∑
k≥0

pqk(ϕX)k =
p

1− qϕX
(5.13)

so

ϕp = p+ qϕXϕp (5.14)
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Since ϕX is a proper rational function then it follows that ϕp is also a proper

rational function which has no poles or zeros on the imaginary axis as |ϕ(is)| ≤ 1

∀ s ∈ R. The geometric distribution is a special of the negative binomial dis-

tribution which is infinitely divisible. It follows that the distribution of L(Np)

is also infinitely divisible.

Next consider M−(Np) where M
− is defined in Eq. (5.2) and Np is a geomet-

rically distributed non-negative random variable as shown in Eq. (5.11). The

Laplace Transform Ψ− of M−(Np) is given by

Ψ−(s) =
∑
k≥0

E
(
e−sM−(T )|T = k

)
P(T = k) =

∑
k≥0

pqkϕ−k (s) (5.15)

Since Π− is linear and due to the recursive relationship in Eq. (5.6), it follows

that

Ψ− = p + qΠ−(ϕXΨ−) (5.16)

Analogously, for the Laplace Transform (Ψ+) of M
+(Np)

Ψ+(s) =
∑
k≥0

pqkϕ+k (s) (5.17)

with the recursive equation

Ψ+ = p + qΠ+(ϕXΨ+) (5.18)

5.3.1. Recursive Solution

Consider an arbitrary solution Ψ of the following equation

Ψ = p+ qΠ−(ϕXΨ) (5.19)
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If this equation is recursively solved, we obtain

Ψ = p+ qΠ−(ϕXΨ)

= p+ pqΠ−(ϕX) + q2Π−(ϕXΠ−(ϕXΨ))

= p+ pqΠ−(ϕX) + pq2Π−(ϕXΠ−(ϕX)) + q3Π−(ϕXΠ−(ϕXΠ−(ϕXΨ)))

...

=

K∑
k=0

pqkψk + qK+1θK+1 (5.20)

where ψ0 = 1, ψk = Π−(ϕXψk−1), θ1 = Π−(ϕXΨ) and θk+1 = Π−(ϕXθk) for

all k ≥ 1. The recursive equation (5.6) shows that ψk = ϕ−k , i.e. ψk is the

Laplace Transform of M−(k). If Ψ is the Laplace Transform of the probability

distribution of a random variable then θk is such a Laplace Transform for all k

and thus |θk(is)| ≤ 1 holds for all s ∈ R. This implies that qK+1θK converges

uniformly to zero on (iR) and thus on (iR) we have

Ψ =
K∑

k=0

pqkψk + qK+1θK+1 =
∑
k≥0

pqkϕ−k = Ψ− (5.21)

Hence we see that these results imply that Eq. (5.19) has a unique solution if

we require that the solution is the Laplace Transform of a probability density

function.

To solve Eq. (5.19) we examine the Laplace Transform of L(Np) (see Eqs. (5.11)

- (5.13)) and factorize as

ϕp = ϕ−ϕ+ (5.22)

where ϕ− and ϕ+ are two proper rational functions with no poles or zeros on

the imaginary axis. These factors can be scaled such that ϕ−(0) = ϕ+(0) =

ϕp(0) = 1. It follows that

qϕX = 1− p

ϕ+ϕ−
(5.23)

which is equivalent Spitzers relationship for discrete time process from Spitzer

(1956). The above expression can be substituted into Eq. (5.19) and it follows
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that

Ψ = p+Π−(qϕXΨ) = p+Π−(Ψ)− pΠ−

( Ψ

ϕ+ϕ−

)
(5.24)

Therefore Ψ = ϕ− is a solution to Eq. (5.16) if

Π−(ϕ−) = ϕ− and Π−(ϕ
−1
+ ) = 1 (5.25)

The first condition implies that ϕ− is anti-stable with all poles located in H+.

The second condition means that ϕ−1
+ is stable implying all zeros of ϕ+ must be

located in H−. However these conditions do not uniquely determine ϕ− and ϕ+

but we can solve to analogous equation to Eq. (5.19) given by

Ψ = p+Π+(qϕXΨ) = p+Π+(Ψ)− pΠ+

( Ψ

ϕ+ϕ−

)
(5.26)

We see that Ψ = ϕ+ is a solution to the above equation if

Π+(ϕ+) = ϕ+ and Π+(ϕ
−1
− ) = 1 (5.27)

implying that ϕ+ is stable and ϕ− has all its zeros located in H+.

If we consider the unique Wiener-Hopf factorization of ϕp where ϕ+, ϕ
−1
+ are

stable and ϕ−, ϕ
−1
− are anti-stable then ϕ− solves Eq. (5.16) and ϕ+ solves Eq.

(5.18). Furthermore if ϕ− and ϕ+ are Laplace Transforms of probability density

functions then ϕ− = Ψ− and ϕ+ = Ψ+ implying that ϕ− and ϕ+ would be the

Laplace Transforms of M−(Np) and M
+(Np) respectively.

In Section 4.6 it was proven that an infinitely divisible random whose probability

distribution had a rational Laplace Transform could be factorized as shown in

Eq. (4.45) (which will be seen to be equivalent to Eq (5.22)). It was also shown

in Theorem 4.4 that an infinitely divisible generalised 2-EPT distribution is the

convolution of two infinitely divisible generalised EPT distributions defined on

either half plane. These results and those of Corollary 4.3 imply that ϕ− and

ϕ+ can be chosen to satisfy Eq. (5.25) and Eq. (5.27) respectively such that
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ϕp = ϕ−ϕ+. These results from Chapter 4 also imply that this factorization

means that ϕ− and ϕ+ are Laplace Transforms of the infinitely divisible prob-

ability density functions. Therefore, it follows that ϕ+ is the rational Laplace

Transform of M+(Np) and ϕ− is the rational Laplace Transform of M−(Np)

where M+(Np) and M
−(Np) are defined in Eqs. (5.2) and (5.5) while Np is a

geometrically distributed random variable.

5.4. Distributions of Extrema for 2-EPT Processes

It is clear from the previous section that the Laplace Transform (ϕ−) of the

distribution of the minimum of a generalised 2-EPT process which has a geo-

metrically distributed stopping time (e.g. Eq. (5.12)) can be derived. It then

follows that ϕ− can be represented as the infinite sum

ϕ−
p

= 1 + qϕ−1 + q2ϕ−2 + ...+ qkϕ−k + ... (5.28)

where ϕ−k is the Laplace Transform of M−(k) for k ≥ 0. The coefficient of qk

is the Laplace Transform of M−(k) which can be found as the kth derivative of

Eq. (5.28) evaluated at q = 0. Hence

ϕ−k =
dk

dqk

(ϕ−
p

)∣∣∣
q=0

(5.29)

An analogous result can be used to derive the Laplace Transform ϕ+k of M+(k)

and is given by

ϕ+k =
dk

dqk

(ϕ+
p

)∣∣∣
q=0

(5.30)



Chapter 6

Option Pricing, Greeks and

Risk Management for 2-EPT

Price Processes

6.1. Introduction

This chapter focuses on risk neutral option pricing when the underlying asset

has log-returns which follow a 2-EPT density function. We begin by introducing

the 2-EPT risk neutral price process, in Section 6.2, which is a shifted exponen-

tial Levy process. The value of a European Call Option on such an asset is then

derived in closed form in Section 6.3.1. The greeks Delta and Gamma are also

calculated.

In Section 6.4 the risk neutral density for the log-returns is derived by calibrat-

ing the 2-EPT realization such that model prices (calculated using the 2-EPT

option pricing formula from Section 6.3.1) match observed market option prices.

Section 6.4.3 compares the greeks of European Call Options to the corresponding

Black-Scholes values. This section also illustrates that the risk neutral density
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is indeed infinitely divisible.

The discretely monitored 2-EPT asset price process is then defined in Section

6.5.2 under the real world measure P. Using the recursion formula from Section

5.2, it is shown how discretely monitored Lookback options with both fixed and

floating strikes can be priced analytically in terms of the distribution of the

extrema. The Delta and Gamma of such options can also be computed analyt-

ically. Option prices and their Greeks are then calculated for daily monitored

Lookback Options using the 2-EPT distribution for daily log returns derived in

Chapter 3.

In Section 6.6, a 2-Period Bermudan Option is then considered which has a

single early exercise opportunity. It is shown that the pricing formulae for such

an option can be computed analytically. It is also shown how pricing such an

option is equivalent to pricing a compound option.

The Chapter concludes by examining the risk management techniques of Value-

at-Risk and Expected Shortfall when the underlying asset has a 2-EPT price

process.

6.2. Risk Neutral 2-EPT Process

In Chapter 3 the empirical log-returns of the Dow Jones Industrial Average

(DJIA) Index were approximated with a 2-EPT probability density function.

This density will be referred to as the 2-EPT density function under the real

world measure with a realization (ANS ,bNS , cNS ,APS ,bPS , cPS ). Hence the

the 2-EPT price process for this asset under the real world measure P is given

by

S(T ) = S(t)eYτ (6.1)

where τ = (T − t) and for a fixed period τ the log returns Yτ have a 2-EPT

density such that Yτ ∼ 2− EPT (ANS ,bNS , cNS ,APS ,bPS , cPS ).

For the purposes of derivatives pricing it is clear that the price process model
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must be free of arbitrage and therefore we must work under the risk neutral

measure Q. The absence of arbitrage is equivalent to the existence of an equi-

valent martingale measure. In Delbaen and Schachermayer (1994) it is shown

that if there exists a change of measure from P to the risk neutral measure

Q, such that, under Q the discounted price process is a martingale, then un-

der P the price process must have been a semi-martingale. It is well known

that all Lévy processes are semi-martingales. It is also known that any twice

differentiable function of a semi-martingale is again a semi-martingale. There-

fore all exponential Lévy processes are semi-martingales. Proposition 9.9 from

Cont and Tankov (2003) proves that there exists an equivalent martingale meas-

ure if the price process is driven by an underlying Lévy process which has both

positive and negative jumps. In this case the underlying Lévy process must be

a 2-EPT Lévy process which we denote Xτ for all τ ≥ 0. Using techniques from

Chapter 5 we can determine if Xτ and Yτ are Lévy processes implying the risk

neutral price process below is arbitrage free.

S(T ) = S(t)e(r+ω)τ+Xτ (6.2)

where r is the constant risk free rate and ω is a constant which is computed

in Eq. (6.4). Let Xτ ∼ 2 − EPT (AN ,bN , cN ,AP ,bP , cP ) represent the risk

neutral density. This density cannot be estimated from historical data but must

be implied directly from the prices of traded market instruments to ensure no-

arbitrage. Under the risk neutral measure Q, asset prices discounted using a

money market account are martingales. Hence, the mean rate of return on an

asset under Q is the continuously compounded risk free rate r. It follows that

the discounted asset price must satisfy

e−rτEQ[S(T )] = EQ[S(t)e
ωτ+Xτ ] = S(t) (6.3)
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Therefore ωτ can be calculated explicitly as

ωτ = log
(
E[e−Xτ ]

)
= − log(cN (I+AN )−1bN − cP (I+AP )

−1bP ) (6.4)

6.3. European Options and Greeks

6.3.1. Vanilla Option Pricing

Let C(S, τ, r,K) denote the price of European Call option at time t which

expires at T > t on the underlying S with a strike of K and τ = T − t.

As described above, we assume Xs>0 is a 2-EPT Lévy process such that for

fixed τ , Xτ ∼ 2 − EPT (AN ,bN , cN ,AP ,bP , cP ). The risk neutral 2-EPT

price process for the asset is given by Eq. (6.2). Hence the risk neutral price of

such a European Call Option is given by

C(S, τ, r,K) = e−rτ EQ[S(T )−K]+ (6.5)

= e−rτEQ[S(T )|S(T ) > K]Q[S(T ) > K]−K e−rτQ[S(T ) > K]

Firstly, consider the second term (i.e. the probability of the option expiring in

the money). Using the asset price dynamics defined above we have that

Q[S(T ) > K] = Q[S(t)e(ω+r)τ+Xτ > K] (6.6)

= Q[Xτ > log(K/S(t))− (r + ω)(τ)]

= 1−Q[Xτ < −(log(S(t)/K) + (r + ω)τ)]

= 1− ϕ(−d) (6.7)
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where d = log(S(t)/K) + (r + ω)τ . For d ≤ 0

1− ϕ(−d) = Q[X > −d] (6.8)

=

∫ ∞

−d

cP e
AP xbP dx (6.9)

= −cPA
−1
P e−AP dbP

For d > 0

1− ϕ(−d) = Q[X > −d] (6.10)

=

∫ 0

−d

cN eAN x bN dx+

∫ ∞

0

cP eAP x bP dx

= 1− cNA−1
N e−ANdbN

The term EQ[S(T )|S(T ) > K]Q[S(T ) > K] must be be evaluated

EQ[S(T )|S(T ) > K]Q[S(T ) > K] =

∫ ∞

K

S(T ) f(S(T )) dS(T ) (6.11)

=

∫ ∞

−d

S(t)e(r+ω)τ+x f(x) dx

where f represents the 2-EPT probability density function with minimal real-

ization (AN ,bN , cN ,AP ,bP , cP ). Again the cases when d ≤ 0 and d > 0

must be treated individually. Consider the case where d > 0 and note that

EQ[S(T )|S(T ) > K]Q[S(T ) > K] =

∫ 0

−d
S(t)e(r+ω)τ+x cN eAN x bN dx

+

∫ ∞

0
S(t)e(r+ω)τ+x cP eAP x bP dx

= S(t)e(r+ω)τ
(
cN (AN + I)−1bN (6.12)

− cN (AN + I)−1e−(AN+I)dbN − cP (AP + I)−1bP

)
For d ≤ 0

EQ[S(T )|S(T ) > K]Q[S(T ) > K] =

∫ ∞

−d
S(t)e(r+ω)τ+x cP eAP x bP dx

= −S(t)e(r+ω)τcP (AP + I)−1e−(AP+I)dbP(6.13)
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The price for the European call option as outlined above for d > 0 is given by

C(S, τ, r,K) = S(t)eωτ
(
cN (AN + I)−1bP − cN (AN + I)−1e−(AN+I)dbN − cP (AP + I)−1bP

)
− K e−rτ (1− cNA−1

N e−ANdbN ) (6.14)

(6.15)

A similar expression for the price can be obtained when d ≤ 0.

C(S, τ, r,K) = −S(t)eωτcP (AP + I)−1e−(AP+I)dbP +K e−rτ cPA−1
P e−AP dbP (6.16)

6.3.1.1. Option Prices in EPT Form

An interesting point to note is that if we write S(t) in terms of d we get

S(t) = ed+log(K)−(r+ω)τ (6.17)

= Kede−(r+ω)τ

We denote nN as the McMillan degree of the EPT function with realization

(AN ,bN , cN ). Similarly nP denotes the McMillan degree of the EPT function

given by the realization (AP ,bP , cP ). Keeping K, r, ω and τ fixed we can write

the price of a call option, for d > 0 from Eq. (6.14), as an EPT function in

terms of d

C(d, τ, r,K) = Ke−rτ
(
cN (AN + I)−1edbN − cN (AN + I)−1e−ANdbN − cP (AP + I)−1edbP

)
− K e−rτ (1− cNA−1

N e−ANdbN ) (6.18)

which is EPT, as it is the sum of EPT functions, and has a maximum McMillan

degree of : nN + 2

For d ≤ 0 we get

C(d, τ, r,K) = −Ke−rτcP (AP + I)−1e−AP dbP +K e−rτ cPA−1
P e−AP dbP

= Ke−rτcP

(
− (AP + I)−1 + A−1

P

)
e−AP dbP (6.19)

which is clearly an EPT function in terms of d with a McMillan degree nP
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6.3.2. Greeks for European Options

It should be clear to the reader that differentiation of the option value functions

of the form in Eq. (6.14) and Eq. (6.16) with respect to parameters not involved

in the realization is straightforward. Hence calculating certain Greeks does not

pose problems. Here we give an example of delta, ∂C
∂S , for a European Call

Option with d ≤ 0

∂C(S, τ, r,K)

∂S
= −eωτcP (AP + I)−1e−(AP+I)dbP + eωτcP e−(AP+I)dbP

−
K

S
e−rτ cP e−AP dbP (6.20)

We can also derive delta for d > 0 using Eq. (6.14). Delta could also have been

calculated using the EPT expressions in Eq. (6.18) and (6.19).

The second derivative of the option price with respect to the initial asset price,

known as gamma, can also be derived. For d ≤ 0 we use the option price derived

in Eq. (6.16) and observe that

∂2C(S, τ, r,K)

∂S2
=

eωτ

S
cP e−(AP+I)dbP −

eωτ

S
cP (AP + I)e−(AP+I)dbP

+
K

S2
e−rτ cP e−AP dbP +

K

S2
e−rτ cPA−1

P e−AP dbP (6.21)

The Greeks rho, ∂C
∂r , and theta,∂C∂τ could also be easily calculated.

6.4. 2-EPT Risk Neutral Calibration

In Section 6.2 the risk neutral 2-EPT price process was defined. It was stated

earlier that the risk neutral price process could be derived by calibrating the

2-EPT density of log-returns such that the 2-EPT model option prices equal the

observed market option prices. The prices of options on the DJIA were obtained

from Bloomberg and are given in Appendix A.1. We consider a set of European

Call Options with M days to maturity where τ = M/252 as there are 252
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trading days in a year. P (S,K,M) represents the market price of a European

Call Option on an asset with value S, strike K and M days to maturity.

The underlying asset is assumed to have a 2-EPT price process as described

in Eq. (6.2). The risk neutral daily log-returns of the underlying have a 2-

EPT density function f with realization (AN ,bN , cN ,AP ,bP , cP ). The 2-EPT

density for the risk-neutral log-returns of the asset over M days can found as

the M fold convolution of f with itself and has a realization

(ANM ,bNM , cNM ,APM ,bPM , cPM ). The criterion function to be minimised is

∑
j

(
C(S,Kj , τ, (ANM

,bNM
, cNM

,APM
,bPM

, cPM
))− P (S,Ki, τ)

)2
(6.22)

where j runs over the set of options with M days to maturity. This criterion

function is minimised by determining the risk neutral (daily) 2-EPT density f

whose M-fold convolution has the realization (ANM
,bNM

, cNM
,APM

,bPM
, cPM

)

which minimises Eq. (6.22).

Unfortunately the RARL2 technique implemented in Chapter 3 cannot be util-

ised here to minimise the criterion function in Eq. (6.22) as it cannot be

transformed into a rational approximation problem. However, the 2-EPT dis-

tribution of empirical daily returns has already been estimated with the 2-

EPT density function under the real world measure which has the realiza-

tion (ANS
,bNS

, cNS
,APS

,bPS
, cPS

). Using a multi-dimensional optimisation al-

gorithm over the vectors (bN ,bP , cN , cP ) we can obtain the realization (ANS
,bN , cN ,APS

,bP , cP )

for the 2-EPT risk neutral density function for daily log-returns. Hence we as-

sume that AN = ANS
and AP = APS

. By keeping AN and AP fixed, stability

is assured and the unique dominant poles in ANS
and APS

are also preserved

which is crucial for testing for non-negativity of the risk neutral density.

6.4.1. Calibration Algorithm

The 2-EPT density for the daily log-returns of the DJIA under the real world

measure was approximated in Chapter 3 and given explicitly in Eqs. (3.60)
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and (3.60). This density is used as the initial guess of the 2-EPT risk neutral

density. The algorithm to find the risk neutral then takes the following steps.

Assume the current estimate of the risk neutral 2-EPT density has a realization

(AN ,bN,i, cN,i,AP ,bP,i, cP,i). The criterion function at step i is then given by

Ci =
∑
j

(
C(S,Kj , τ, (ANM,i

,bNM,i
, cNM,i

,APM,i
,bPM,i

, cPM,i
))− P (S,Ki, τ)

)2
(6.23)

where the 2-EPT density with realization (ANM,i ,bNM,i , cNM,i ,APM,i ,bPM,i , cPM,i)

is the M-fold convolution of the density with realization (AN ,bN,i, cN,i,AP ,bP,i, cP,i)

with itself.

1. Compute (bN,i+1, cN,i+1,bP,i+1, cP,i+1) by perturbing the vectors bN,i, cN,i,bP,i, cP,i

in a direction in an effort to decrease the criterion function in Eq. (6.23)

2. Ensure continuity at the origin by scaling such that cN,i+1bN,i+1 = cP,i+1bP,i+1

3. Scale 2-EPT function (AN ,bN,i+1, cN,i+1,AP ,bP,i+1, cP,i+1) such that

integration to unity holds

4. Define B1(ÃN , ˆcP,i+1) and B1(ÃP , ˆcN,i+1) as shown in Section 3.7. If

bN,i+1 /∈ B1(ÃN , ĉN,i+1) or bP,i+1 /∈ B1(ÃP , ĉP,i+1) revert to step 1.

5. Calculate TN < 0 and TP > 0 as defined in Section 3.7 such that checking

for non-negativity of the 2-EPT function (AN ,bN,i+1, cN,i+1,AP ,bP,i+1, cP,i+1)

on [TN , TP ] is sufficient for testing non-negativity on (−∞,∞). If density

is negative for some point on the interval [TN , TP ] then revert to step 1.

6. Compute the M-fold convolution of the 2-EPT probability density func-

tion with realization (AN ,bN,i+1, cN,i+1,AP ,bP,i+1, cP,i+1) with itself

and evaluate the criterion function in Eq. (6.23). If the criterion func-

tion has decreased then accept (bN,i+1, cN,i+1,bP,i+1, cP,i+1) and begin

at step 1 by computing (bN,i+2, cN,i+2,bP,i+2, cP,i+2). Otherwise, if the

criterion function has increased then revert to step 1 and re-calculate

(bN,i+1, cN,i+1,bP,i+1, cP,i+1)
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6.4.2. Calibration Performance

The above algorithm was implemented in MATLAB using the fmincon multi-

dimensional search routine. This routine applies the Nelder-Mead search al-

gorithm. Letting M = 30 (i.e. 30 days to maturity) and using the option price

data from Appendix A.1 we can assess the performance of the calibration. As

mentioned in Appendix A.1, the initial value of the DJIA was 13860.65 while

the annualized interest rate was r=0.2%. Using the density under the real world

measure, the criterion function gives an error of 75587.74. However once the

above the calibration algorithm is implemented the error is reduced by over 92%

to 5617.57. Fig 6.1 illustrates positive the effect of the calibration.
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Figure 6.1: 2-EPT Call Option Prices with Densities under Real World and Risk
Neutral Measures compared to observed market prices.

The improvement in the quality of the fit is obvious especially among the options

with higher strikes.

6.4.3. Risk Neutral 2-EPT Density

The risk neutral daily 2-EPT density calibrated using the algorithm in Section

6.4.1 for a set of European Call Options with 30 days to maturity is given by
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 AN bN

cN 0

 =



99.5597 0.0000 0.0000 0.5038

0.0000 61.4545 −97.6067 3.6093

0.0000 370.1559 302.1875 8.9295

11.1558 4.1030 1.8061 0


(6.24)

and

 AP bP

cP 0

 =



−119.5601 0.0000 0.0000 0.0029

0.0000 −33.0987 160.9465 1.5717

0.0000 −426.6732 −533.3337 14.3277

40.1293 13.2936 0.99900


(6.25)

Section 6.4.3.2 utilises the methodology of Chapter 5 to show that the 2-EPT

probability density with realization (AN ,bN , cN ,AP ,bP , cP ) is infinitely divis-

ible and therefore the risk neutral measure Q can be defined. According to

Section 6.2, it is necessary to first prove that price process under real world

measure P is a semi-martingale. This is proven in Section 6.4.3.1 where we

show the price process under P is driven by a Lévy process.

Let X1 be the random variable representing the daily log-return of the asset

under the risk neutral measure Q. Then X30 represents the 30-day log return

of the underlying asset (the DJIA) and is of McMillan degree 90. Using the

convolution formula from Section 2.2.8, the realization of X30 can be derived

and by construction is infinitely divisible since the sum of infinitely divisible

random variables is infinitely divisible. Model reduction could be employed to

reduce the dimensions of the 2-EPT function but MATLAB is able to perform

calculations with matrices of this size in negligible times.

6.4.3.1. Infinite Divisibility of 2-EPT Density under P

The Laplace transform of the 2-EPT probability density function with realiza-

tion from Eqs. (3.59) and (3.60) is given by

ϕ(s) = −cNS
(sI−ANS

)−1bNS
+ cPS

(sI−APS
)−1bPS

(6.26)
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ϕ is a strictly proper rational function of McMillan degree 3 which can be

expressed as the product of two rational functions ϕ− and ϕ+

ϕ(s) = ϕ−(s)ϕ+(s) (6.27)

=
(
c̃NS

(sI− ÃNS
)−1b̃NS

+ d̃NS

)(
c̃PS

(sI− ÃPS
)−1b̃PS

+ D̃PS

)
such that the poles and zeros of ϕ− are located in the open right half plane.

Likewise the poles and zeros of ϕ+ are located in the open left half plane.

By factorizing Eq. (6.27) and normalising such that ϕ−(0) = ϕ+(0) = 1 we find

the state space realizations

 ÃN b̃N

c̃N d̃N

 =



0.0000 1.0000 0.0000 0.0000

0.0000 0.0000 1.0000 0.0000

5445978.796 −90904.665 463.202 1.0000

−5414489.319 46062.589 −81.752 0.00578


(6.28)

and

 ÃP b̃P

c̃P 0

 =



0.0000 1.0000 0.0000 0.0000

0.0000 0.0000 1.0000 0.0000

−10320924.501 −154046.885 −685.994 1.0000

10320924.501 68814.011 0 0.0000


(6.29)

From the realizations given in Eqs. (6.28) and (6.29), the Lévy measures ν′P (x)

and ν′N (x), defined on (0,∞) and (−∞, 0), can be calculated explicitly using

the formulae in Chapter 5 and we see that
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Figure 6.2: Plot of xν′N (x) and xν′P (x)

where

ν′(x) =


ν′N (x) if x < 0

ν′P (x) if x > 0

(6.30)

Using the Budan-Fourier algorithm it is possible to conclude that the both

xν′N (x) and xν′P (x) are non-negative on (−∞, 0) and (0,∞) respectively imply-

ing that the 2-EPT probability density function with realization

(ANS
,bNS

, cNS
,APS

,bPS
, cPS

) is infinitely divisible.

6.4.3.2. Infinite Divisibility of 2-EPT Density under Q

The Laplace transform of the 2-EPT probability density function with realiza-

tion from Eqs. (6.24) and (6.25) is given by

ϕ(s) = −cN (sI−AN )−1bN + cP (sI−AP )
−1bP (6.31)

= ϕ−(s)ϕ+(s)

=
(
c̃N (sI− ÃN )−1b̃N + d̃N

)(
c̃P (sI− ÃP )

−1b̃P + d̃P

)
(6.32)
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such that the poles and zeros of ϕ− are located in the open right half plane.

Likewise the poles and zeros of ϕ+ are located in the open left half plane.

The location of the poles and zeros of ϕ are given in Section 3.12. It should also

be clear that {σ(AN ) ∪ σ(AP )} = {σ(ÃN ) ∪ σ(ÃP )}.

By factorizing Eq. (6.31) and normalising such that ϕ−(0) = ϕ+(0) = 1 we find

the state space realizations

 ÃN b̃N

c̃N d̃N

 =



0.0000 1.0000 0.0000 0.0000

0.0000 0.0000 1.0000 0.0000

5445978.796 −90904.665 463.202 1.0000

−5284181.29 47996.19 −72.37 0.0297


(6.33)

and

 ÃP b̃P

c̃P 0

 =



0.0000 1.0000 0.0000 0.0000

0.0000 0.0000 1.0000 0.0000

−10320924.501 −154046.885 −685.994 1.0000

10320924.500 69153.74 0 0.0000


(6.34)

The poles and zeros of ϕ− and ϕ+ can be computed exactly and we note that

ϕ−(u) ϕ+(u)

Poles 99.5597, -119.5601,

181.8210±147.1108i -283.2162±78.1844i

Zeros 138.42, -149.24

214.29, 617.98 −1.12.1018

Table 6.1: Locations of Poles and Zeros for ϕ−(u) and ϕ+(u)

Examining the locations of the poles and zeros of the rational functions ϕ−

and ϕ+ in Table 6.1 we conclude that both rational functions are indeed of min-

imum phase. The strip of convergence I = {u+iv|u ∈ (−119.5601, 99.5597), v ∈

R} contains no zeros which is a necessary condition for infinitely divisible ra-

tional functions.

From the realizations given in Eqs. (6.33) and (6.34), the Lévy measures ν′P (x)

and ν′N (x), defined on (0,∞) and (−∞, 0), can be calculated explicitly using
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the formulae in Chapter 5 and we see that
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Figure 6.3: Plot of xν′N (x) and xν′P (x)

where

ν′(x) =


ν′N (x) if x < 0

ν′P (x) if x > 0

(6.35)

Using the Budan-Fourier algorithm it is possible to conclude that the both

xν′N (x) and xν′P (x) are non-negative on (−∞, 0) and (0,∞) respectively imply-

ing that the 2-EPT probability density function with realization (AN ,bN , cN ,AP ,bP , cP )

is infinitely divisible.

6.4.4. Option Greeks Computations

Using the minimal realization for the 30-day log return (X30) of an asset S

derived in Section 6.4.3 we will examine the values of the European Call Option

Greeks. Letting the annual risk free rate be constant at 0.2% and the strike price

of the option K = 13860.65. A range of initial asset prices S(0) ∈ [11750, 16000]

is considered and Figure 6.4 illustrates the values of a European Call Option

Delta and Gamma obtained using the option pricing formulae of Eqs. (6.20)

and (6.21). Similar formulae to Eqs. (6.20) and (6.21) can be derived for d > 0.



138 Option Pricing for 2-EPT Price Processes

1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Initial Share Price

D
el

ta

 

 

2−EPT Option Delta
Black Scholes Option Delta

1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

Initial Asset Price

G
am

m
a

 

 

2−EPT Option Gamma
Black Scholes Gamma

Figure 6.4: 2-EPT and Black Scholes Call Option Delta and Gamma

The Black-Scholes values in Fig 6.4 are computed using an annual volatility of

σ = 9.13%. This value of σ can be derived as risk neutral volatility parameter

which minimises the squared distance between the observed market option prices

in Appendix A.1 and the corresponding Black-Scholes option prices with a con-

stant volatility. From Fig 6.4 it is clear the 2-EPT Pricing Model has a higher

value of Delta for out-of-the-money options and a lower value of Delta for in-the-

money-options compared to the Black-Scholes model. This feature stems from

the heavier tails of the 2-EPT distribution where there is a higher probability

of extreme asset returns.

6.5. Lookback Options

Lookback options are a type of exotic option which are weakly path dependent,

that is, the payoff depends on the maximum or minimum underlying asset’s

price occurring over the life of the option. There are two types of Lookback

Options, those with floating strikes and those with fixed strikes. A Lookback

Option with floating strike means the strike is determined at maturity by the

terminal asset price. A Lookback Option with fixed strike sets the exercise price

when the option is initiated. A brief description of the motivation for adopting

a 2-EPT approach to pricing Lookback Options was provided in Section 1.4.5.
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6.5.1. Minimum of Discrete Time 2-EPT Process

A discrete time 2-EPT process is defined as the sum of independent and identic-

ally distributed 2-EPT random variables. The 2-EPT process of fixed length T

is given by

L(T ) =

T∑
i=0

Yi (6.36)

where Yi for all i > 0 are independent and identically distributed 2-EPT random

variables and Y0 = 0. The probability density function for L(t) for all t =

{1, 2, ..., T} is 2-EPT and can be found using the convolution formula given in

Section 2.2.8. In Section 5.2 it is shown how the generalised EPT density can

be computed for a discrete time 2-EPT process as in Eq. (6.36).

6.5.2. Discrete Time 2-EPT Price Process

We begin by defining the 2-EPT price under the real world measure P as in

Section 6.2 and using the same arguments the 2-EPT price process under the

risk neutral measure Q can similarly be defined as in Eq. (6.2). The discretely

monitored 2-EPT price process under the measure P can be represented by

S(T ) = S(t)e
∑N

i=0 Yi (6.37)

where Yi are the independent and identically distributed 2-EPT random vari-

ables with minimal realization (ANS
,bNS

, cNS
,APS

,bPS
, cPS

) for all i = {1, 2, ..., N},

τ = T − t, Y0 = 0 and S(t) is the current asset price. Yi for i = {1, 2, ..., N}

represents the log-return for the asset S over the period δt, where δt = τ/N . It

is clear that the extrema of the price process under P can be computed directly

from the extrema of the 2-EPT process
∑

i Yi. Using identical arguments to

those in 6.2, the discretely monitored risk neutral 2-EPT price process is given

by

S(T ) = S(t)e
∑N

i=0 (Xi+(r+ω)δt) = S(0)e
∑t

i=0 Zi (6.38)
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The extrema of the price process under Q can be computed using the extrema

of the process
∑

i Zi. However the probability density function of X+(r+ω)δt

is not 2-EPT, as was seen in Section (2.2.1) where it is proven that a translated

2-EPT random variable is not 2-EPT.

Therefore we will only value Lookback options under real world measure P.

The discrete time process of interest is given by Eq. (6.36). The generalised

EPT probability density function of the minimum of (0, L(1), L(2), ..., L(T )) is

denoted M(T ) which has minimal realization (AM ,bM , cM ,dM ) and can be

determined using the recursive algorithm in Section 6.5.1. Under the real world

measure P the minimum of the discretely monitored price process is given by

Smin(T ) = min
j ∈ {0,1,2,...,N}

S(t)e
∑j

i=0 Yi = S(t)eM(T ) (6.39)

Closed form formula for discretely monitored Lookback options and their Greeks

with fixed and floating strikes can then be derived in terms of the generalised

EPT probability density function with realization (AM ,bM , cM ,dM ).

6.5.2.1. Discrete Time Risk Neutral Price Process

One possible solution to the problem of working in the real world measure P as

opposed to the risk neutral measure Q would be to approximate the distribution

Z = X + (r + ω)δt with a 2-EPT probability density function g with minimal

realization (ANL ,bNL , cNL ,APL ,bPL , cPL). This approximation could be car-

ried out using the rational approximation software RARL2 under the constraint

that g is non-negative as described in Chapter 3. The criterion to minimised is

||g(x) − f(x+ (r + ω)δt)||22 (6.40)

such that g is non-negative and f is the 2-EPT probability density function with

minimal realization (AN ,bN , cN ,AP ,bP , cP ). The error on the approximation
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should be small enough to ensure that

EQ[e
−rδtS(t)eZ ] = S(t) (6.41)

which implies that the discounted asset price under the measure Q is a martin-

gale. It is also necessary that the 2-EPT distribution of Z is infinitely divisible

which can be determined using the methods of Chapter 5.

6.5.3. State Space Realization of Risk Neutral Process

For the Lookback option pricing example it is assumed the options will be

monitored daily using the official closing price. The underlying asset will be

the DJIA as given in Section 6.4.3 where the daily log-returns (based on closing

prices) Y1 have a 2-EPT probability density function with minimal realization

given by Eqs. (3.59) and (3.60). The 2-EPT realization for the annual risk

neutral log return, denoted Y252, can be computed using the convolution formula.

The distribution of minimum M(252) denoted (AM ,bM , cM ,dM ) is plotted in

Figure 6.5.
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Figure 6.5: Plot of M(252), the minimum of the process L(252) as given in Eq.
(6.36). There is a point mass at zero which is not visible
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6.5.4. Lookback Option with Fixed Strike

We will now consider pricing a Lookback Option at time t = 0 on an asset S

whose discrete risk neutral price process is described in Section 6.4.3.2. The

option has a fixed strike K and a payoff at maturity T according to

L(S(T ), T ;T,K) = max{K − Smin(T ), 0} (6.42)

The asset price is monitored daily, 252 times over a one year period.

If K < S(0) we can see that the price of the Lookback Option at time t0 = 0

is given by

L(S(0), 0;T,K) = e−rT

∫ K

0
(K − Smin(T )) f(Smin(T ))dSmin(T )

= e−rT

∫ d

−∞
(K − S(0)eM(T ))cMeAMM(T )bMdM(T )

= Ke−rT cMA−1
M eAMdbM − S(0)e−rT cM (AM + I)−1e(AM+I)dbM

where d = log(K/S(0)). Similarly if d > 0 we would have that

L(S(0), 0;T,K) = Ke−rTd + e−rT

∫ 0

−∞
(K − S(0)eM(T ))cMeAMMT bMdM(T )

= Ke−rT (cMA−1
M bM + dM ) − S(0)e−rT cM (AM + IM )−1bM

= Ke−rT − S(0)e−rT (cM (AM + I)−1bM + dM )

Using the density ofM(252) calculated in Section 6.5.3 the values of L(S(0), 0; 1, 100)

over a range of initial asset prices S(0) ∈ [70, 130] are illustrated in Figure 6.6.
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Figure 6.6: Lookback Option prices with payoff as in Eq. (6.42) over a range of
initial asset prices. The parameters K = 100, T = 1 and r = 0.05 are fixed.

The Greeks, delta (∆L) and gamma (ΓL), for such an option can also be com-

puted analytically. For d = log(K/S) < 0

∆L =
∂L

∂S
= e−rT

(
− −K

S
cMe

AMdbM

− cM (AM + I)−1e(AM+I)dbM + cMe
(AM+I)dbM

)
(6.43)

while for d > 0 we have ∆L = e−rT . It is obvious that the gamma of such an

option when d > 0 is zero. However for d < 0

ΓL =
∂2L

∂S2
=
e−rT

S

(K
S
cMe

AMdbM (6.44)

+
K

S
cMAMe

AMdbM + cMe
(AM+I)dbM − cM (AM + I)e(AM+I)dbM

)

In Figure 6.7 the Delta and Gamma of the Lookback Option with Fixed Strike

are depicted.



144 Option Pricing for 2-EPT Price Processes

85 90 95 100 105 110 115 120 125
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Initial Asset Price (S)

( a )

 

 
Delta − Lookback with Fixed Strike

85 90 95 100 105 110 115 120 125
0

0.01

0.02

0.03

0.04

0.05

0.06

Initial Asset Price (S)

( b )

 

 
Gamma − Lookback with Fixed Strike

Figure 6.7: (a) Delta and (b) Gamma for a Lookback with Fixed Strike. The
parameters K = 100, T = 1 and r = 0.05 are fixed.

For Figure 6.7, the distribution ofM(252) was computed using the methodology

of Section 6.5.3.

6.5.5. Lookback Option with Floating Strike

A Lookback option with floating strike is now considered. It is assumed the

option has the following payoff at maturity T > 0

L(S(T ), T ;T ) = S(T ) − Smin(T ) (6.45)

which is always non-negative. Again the asset price is monitored at the daily

close price over a one year period (252 trading days). Assuming the risk neutral

dynamics of the asset price process are given by Eq. (6.38) the price of such a

contract at time 0 is

L(S(0); 0, T ) = e−rTEQ[S(T ) − Smin(T )]

= S(0) − e−rTEQ[Smin(T )]
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by the Fundamental Theory of Asset Pricing. We have that

EQ[Smin(T )] =

∫ S(0)

0

Smin(T )f(Smin(T ))dSmin(T )

= S(0)

∫ 0

−∞
eM(T )(cMe

AMMTbM + dM )d(T )

= S(0)( cM (AM + I)−1bM + dM )

The price of the option at time 0 is given by

L(S(0); 0, T ) = S(0)
(
1 − e−rT (cM (AM + I)−1bM + dM )

)
(6.46)

6.6. 2-Period Bermudan Option

We will examine pricing a 2-Period Bermudan Put Option although in Section

6.6.3 we show that the methodology can be applied to price compound options

i.e. an option on an option. A Bermudan Option is an option in which the

holder has the right to exercise the option early at some pre-specified times (the

case of one early exercise opportunity is treated here). The option is so-called

as it is a combination of a European and an American option. We consider

valuing the option at time t0 = 0 which expires at t2 = 2τ and the holder has

one early exercise opportunity at time t1 = τ . We assume that the risk neutral

asset price process is given

S(tj) = S(tj−1)e
(r+ω)τ+Xτ , j = 1, 2 (6.47)

where Xτ is an infinitely divisible 2-EPT random variable whose distribution

has a minimal realization given by (AN ,bN , cN ,AP ,bP , cP ). The times t1 and

t2 could be generalised provided the underlying asset had log returns over the

periods [0, t1] and [t1, t2] with infinitely divisible 2-EPT distributions.

P (S(t1); t1, t2,K) will denote the price of a European Put Option at time t1
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expiring at time t2 with strike K on an asset with price S(t1). At time t1 the

holder of the Bermudan Option may choose to exercise the option early or hold

the option until expiry. Hence the value of the Bermudan Option at time t0 = 0

is

B(S(t0), t0; t2, t1,K) = e−rτ

∫ ∞

0
max{K − St1 , P (S(t1); t1, t2,K)} f(S(t1)) dS(t1)

(6.48)

where f(S(t1)) is distribution of S(t1). We cannot evaluate Eq. (6.48) directly

due to the max operator. However due to the payoff structure of early exercise

component and put option value we can derive a critical share price S∗
K such

that

K − S(t1) ≤ P (S(t1); t1, t2,K) ∀ S(t1) ≥ S∗
K (6.49)

K − S(t1) > P (S(t1); t1, t2,K) ∀ S(t1) < S∗
K (6.50)

If S(t1) < S∗
K then it is optimal to exercise the option early at t1.

The integral in Eq. (6.48) can be broken up and written as

B(S(t0); t2, t1,K) = e−rτ

∫ S∗
K

0
(K − S(t1)) f(S(t1)) dS(t1)︸ ︷︷ ︸

EE(0)

+ e−rτ

∫ ∞

S∗
K

P (S(t1); t1, t2,K) f(S(t1)) dS(t1)︸ ︷︷ ︸
H(0)

(6.51)

The value B(S(t0); t2, t1,K) in Eq. (6.51) is decomposed into its early exer-

cise component (EE(0)) and the value derived from holding the contract until

maturity denoted H(0). These components, EE(0) and H(0), are evaluated

separately in Sections 6.6.1 and 6.6.2 respectively.
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6.6.1. Early Exercise Component

Firstly we evaluate the early exercise component and note that

EEA =

∫ S∗
K

0
(K − S(t1)) f(S(t1))dS(t1) = e−rτ

∫ x∗
K

−∞
(K − S(t0)e

(r+ω)τ+x) cNeANxbN dx

= KcNA−1
N eANx∗

KbN

− S(t0)e
(r+ω)τcN (AN + I)e(AN+I)x∗

KbN (6.52)

where x∗K = log(S∗
K/S(t0))− (r + ω)τ < 0. For x∗K ≥ 0 we have that

EEB =

∫ S∗
K

0
(K − S(t1)) f(S(t1))dS(t1) =

∫ 0

−∞
(K − S(t1)e

(r+ω)τ+x) cNeANxbN dx

+

∫ x∗
K

0
(K − S(t0)e

(r+ω)τ+x) cP eAP xbP dx

= KcNA−1
N bN − S(t0)e

(r+ω)τcN (AN + I)bN

+ KcPA−1
P eAP x∗

KbP

− S(t0)e
(r+ω)τcP (AP + I)e(AP+I)x∗

KbP

− KcPA−1
P bP − S(t0)e

(r+ω)τcP (AP + I)bP

The value at time t0 of exercising the option at t1 is

EE(t0) = e−rτ
(
EEAI[x∗

K<0] + EEBI[x∗
K≥0]

)
(6.53)

where I[x∗
K<0] is an indicator function equal to 1 if x∗K < 0 and zero otherwise.

6.6.2. Holding Value

We now consider valuing the contribution of not exercising the option at t1 but

inheriting a European Put Option at t1 with maturity t2 and S(t1) > S∗
K . This

implies evaluating the second integral of Eq. (6.51).

A similar calculation to that provided in Section 6.3.1 implies that the value of
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a European Put Option P (S(t1); t1, t2,K) is given by

P (S(t1); t1, t2,K) = Ke−rτ (1 + cPA
−1
P e−AP dbP )

− S(t1)e
ωτ

(
λ+ cP (AP + I)−1e−(AP+I)dbP

)
(6.54)

for d = log(S(t1)/K) + (r+ ω)τ ≤ 0 and λ = cN (AN + I)−1bN − cP (AP +

I)−1bP . Similarly the price of a European Put Option with d > 0 is

P̄ (S(t1); t1, t2,K) = Ke−rτcNA−1
N e−ANdbN

− S(t1)e
ωτcN (AN + I)−1e−(AN+I)dbN (6.55)

P (d) and P̄ (d) denote the value of the Put Option for d ≤ 0 and d > 0 respect-

ively.

The asset price at t1, S(t1) is unknown so the option value is expressed in terms

of S(t0) and the log return x over [0, t1]

P (x; t1, t2,K) = Ke−rτ (1 + cPA−1
P e−AP d0e−AP xbP ) (6.56)

− S(t0)e
(r+2ω)τ+x

(
λ+ cP (AP + I)−1e−(AP+I)d0e−(AP+I)xbP

)
where d0 = log(S(t0)/K) + 2(r + ω)τ and x ≤ −d0. For x > −d0 we have

P̄ (x; t1, t2,K) = Ke−rτcNA−1
N e−ANd0e−ANxbN

− S(t0)e
(r+2ω)τ+xcN (AN + I)−1e−(AN+I)d0e−(AN+I)xbN (6.57)

The final term of Eq. (6.51) can be written as

∫ ∞

S∗
K

P (S(t1); t1, t2,K) f(S(t1)) dS(t1) =

∫ ∞

x∗
K

P (x; t1, t2,K)f(x)dx (6.58)

The above integral must also be split up according to the sign of x and d0 so

there are three possible cases to be considered.
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Case Parameter Ordering

1 x∗K < −d0 < 0

2 x∗K < 0 < −d0

3 0 < x∗K < −d0

Table 6.2: Parameter Ordering for Integrating Domains

We can make the assumption that x∗K < −d0 as

log(S∗
K/S(t0))− (r + ω)τ < −(log(S(t0)/K) + 2(r + ω)τ)

log(S∗
K) < log(K) + (r + ω)τ (6.59)

If x∗K ≥ −d0 we set −d0 = x∗K implying that cases 1 and 2 are equal. Based on

Table 6.2 we can write

∫ ∞

x∗
K

P (x; t1, t2,K)f(x)dx = I1I[x∗
K<−d0<0] + I2I[x∗

K<0<−d0] + I3I[0<x∗
K<−d0]

(6.60)

where we treat the integrals I1, I2 and I3 individually.

6.6.2.1. Holding Value: Case I

For case 1 above we have that the integral in Eq. (6.58) can be computed as

I1 =

∫ ∞

x∗
K

P (x; t1, t2,K)f(x)dx =

∫ −d0

x∗
K

P (x; t1, t2,K)cNe
ANxbNdx︸ ︷︷ ︸

I1A

+

∫ 0

−d0

P̄ (x; t1, t2,K)cNe
ANxbNdx︸ ︷︷ ︸

I1B

+

∫ ∞

0

P̄ (x; t1, t2,K)cP e
AP xbP dx︸ ︷︷ ︸

I1C

(6.61)



150 Option Pricing for 2-EPT Price Processes

The integrals must be evaluated separately and for the term I1A

I1A = Ke−rτ

∫ −d0

x∗
K

(1 + cPA−1
P e−AP d0e−AP xbP )cNeANxbNdx

− S(t0)e
(r+2ω)τ

∫ −d0

x∗
K

(λex + cP (AP + I)−1e−(AP+I)d0e−(AP+I)(x+I)bP )cNeANxbNdx

= Ke−rτ
[
cNA−1

N eANxbN + c1A
−1
1 eA1xb1

]−d0

x∗
K

− S(t0)e
(r+2ω)τ

[
λcN (AN + I)−1e(AN+I)xbN + c2A

−1
1 eA1xb1

]−d0

x∗
K

(6.62)

where

A1 = −AP ⊕AN (6.63)

b1 = bP ⊗ bN

c1 = cPA
−1
P e−AP1

d0 ⊗ cN

c2 = cP (AP + I)−1e−(AP1+I)d0 ⊗ cN

Next we evaluate integral I1B

I1B = Ke−rτ

∫ 0

−d0

cNA−1
N e−ANd0e−ANxbNcNeANxbNdx

− S(t0)e
(r+2ω)τ

∫ 0

−d0

cN (AN + I)−1e−(AN+I)d0e−ANxbNcNeANxbNdx

=
[
Ke−rτc3A

−1
3 eA3xb3 − S(t0)e

(r+2ω)τc4A
−1
3 eA3xb3

]0
−d0

(6.64)

where

A3 = −AN ⊕AN (6.65)

b3 = bN ⊗ bN

c3 = cNA−1
N e−AN1d0 ⊗ cN

c4 = cN (AN + I)−1e−(AN1+I)d0 ⊗ cN

However the matrix A3 is singular so care must be taken integrating the
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c3e
A3xb3 and c4e

A3xb3 terms. The reader is referred to Section 6.6.4 for a

more detailed look at this problem.

Finally we consider the integral I1C

I1C = = Ke−rτ

∫ ∞

0
cNA−1

N e−ANd0e−ANxbNcP eAP xbP dx

− S(t0)e
(r+2ω)τ

∫ ∞

0
cN (AN + I)−1e−(AN+I)d0e−ANxbNcP eAP xbP dx

= −Ke−rτc5A
−1
5 b5 + S(t0)e

(r+2ω)τc6A
−1
5 b5 (6.66)

where

A5 = −AN ⊕AP (6.67)

b5 = bN ⊗ bP

c5 = cNA−1
N e−AN1

d0 ⊗ cP

c6 = cN (AN + I)−1e−(AN1
+I)d0 ⊗ cP

6.6.2.2. Holding Value: Case II

Now we consider Case 2 as shown in Table 6.2 and the integral in Eq. (6.58) is

given by

I2 =

∫ ∞

x∗
K

P (x; t1, t2,K)f(x)dx =

∫ 0

x∗
K

P (x; t1, t2,K)cNeANxbNdx︸ ︷︷ ︸
I2A

(6.68)

+

∫ −d0

0
P (x; t1, t2,K)cNeANxbNdx︸ ︷︷ ︸

I2B

+

∫ ∞

−d0

P̄ (x; t1, t2,K)cP eAP xbP dx︸ ︷︷ ︸
I2C

(6.69)
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Using the notation given in Eq. (6.63) we have that I2A is given by

I2A = = Ke−rτ
[
cNA−1

N eANxbN + c1A
−1
1 eA1xb1

]0
x∗
K

(6.70)

− S(t0)e
(r+2ω)τ

[
λcN (AN + I)−1e(AN+I)xbN + c2A

−1
1 eA1xb1

]0
x∗
K

Some new notation is required for the integral I2B as

I2B = Ke−rτ

∫ −d0

0
(1 + cPA−1

P e−AP d0e−AP xbP )cP eAP xbP dx

− S(t0)e
(r+2ω)τ

∫ −d0

0
(λex + cP (AP + I)−1e−(AP+I)d0e−(AP+I)(x+I)bP )cP eAP xbP dx

= Ke−rτ
[
cPA−1

P eAP xbN + c7A
−1
7 eA7xb7

]−d0

0

− S(t0)e
(r+2ω)τ

[
λcP (AP + I)−1e(AP+I)xbP + c8A

−1
7 eA7xb7

]−d0

0
(6.71)

where

A7 = −AP ⊕AP (6.72)

b7 = bP ⊗ bP

c7 = cPA
−1
P e−AP1d0 ⊗ cP

c8 = cP (AP + I)−1e−(AP1
+I)d0 ⊗ cP

Similar to A3 above the matrix A7 is singular therefore the integral I2B must

be treated with caution so the reader is again referred to Section 6.6.4 while

lastly for I2C we have

I2C = −Ke−rτc5A
−1
5 e−A5d0b5 + S(t0)e

(r+2ω)τc6A
−1
5 e−A5d0b5 (6.73)
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6.6.2.3. Holding Value: Case III

Finally we examine Case 3 where we have

I3 =

∫ ∞

x∗
K

P (x; t1, t2,K)f(x)dx =

∫ −d0

x∗
K

P (x; t1, t2,K)cP eAP xbP dx︸ ︷︷ ︸
I3a

+

∫ ∞

−d0

P̄ (x; t1, t2,K)cP eAP xbP dx︸ ︷︷ ︸
I3b

(6.74)

where the integral I3B is clearly equivalent to the integral I2C above. Hence we

must only consider evaluating I3A

I3A = Ke−rτ
[
cPA−1

P eAP xbN + c7A
−1
7 eA7xb7

]−d0

x∗
K

(6.75)

− S(t0)e
(r+2ω)τ

[
λcP (AP + I)−1e(AP+I)xbP + c8A

−1
7 eA7xb7

]−d0

x∗
K

The value at time t0 of holding the Bermudan Option until maturity t2 as

St1 > S∗
K is

H(t0) = e−rτ
(
I1I[x∗

K<−d0<0] + I2I[x∗
K<0<−d0] + I3I[0<x∗

K<−d0]

)
(6.76)

6.6.3. Compound Options

This methodology may also be used to value a compound option (i.e. an option

on an option). An example of a call-on-put compound option would have two

strike prices K1 and K2 associated with two expiry dates t1 and t2 respectively

such that t1 < t2. It is assumed that the underlying asset has a 2-EPT price

process as defined in Section 6.2. Also the log-returns of the asset over the

periods [0, t1] and [t1, t2] have a known (although possibly different) infinitely

divisible 2-EPT probability density function. The holder of the contract would

then have the right at time t1 to buy a put option for K1 which matures at t2

and strike K2. The value of such an option is given by
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CoP (S(t0); t2,K2, t1,K1) = e−rτ

∫ ∞

0
max{P ((t1); t1, t2,K2)−K1, 0}f(S(t1))dS(t1)

(6.77)

Similar to the Bermudan option we can derive the share price S∗
K such that

P (S(t1); t1, t2,K2) − K1 ≤ 0 ∀ S(t1) ≥ S∗
K (6.78)

P (S(t1); t1, t2,K2) − K1 > 0 ∀ S(t1) < S∗
K (6.79)

Hence the value of the call-on-put option can be written as

CoP (S(t1); t2,K2, t1,K1) = e−rτ

∫ S∗
K

0

(
P (S(t1); t1, t2,K2)−K1

)
f(S(t1))dS(t1) (6.80)

which is very similar to Eq. (6.58) and can be solved using the same approach.

6.6.4. Integrating EPT functions with Singular Matrices

Consider the problem of integrating an EPT function with minimal realization

(A,b, c) where A is singular. It is clear that

∫ x1

x0

ceAxb dx = cA−1eAxb
]x1

x0

(6.81)

cannot be computed as A is not invertible. Using a basis transformation and

solving the appropriate Sylvester equation A can be split into a singular block

AS and a non-singular block ANS such that

 A b

c 0

 =


ANS 0 bNS

0 AS bS

cNS cS 0

 (6.82)
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The integral above can then be decomposed as follows

∫ x1

x0

ceAxb dx =

∫ x1

x0

cNSe
ANSxbNS dx︸ ︷︷ ︸

Non−Singular

+

∫ x1

x0

cSe
ASxbS dx︸ ︷︷ ︸

Singular

= cNSA
−1
NSe

ANSxbNS

]x1

x0

+

∫ x1

x0

cSe
ASxbS dx

It remains to integrate the singular part of the EPT function but since σ(AS) ≡

0 we know that AS is nilpotent and there exists a N such that (AS)
N = 0.

Hence the integral of the “Singular” term above can be computed exactly using

the expansion

∫ x1

x0

cSe
ASxbS dx = cS

( N∑
n=1

An−1
S xn

n!

)
bS

]x1

x0

(6.83)

= cSxbS +
cSASx

2bS

2
+

cSA
2
Sx

3bS

3!
+ ... +

cSA
N−1
S xNbS

N !

]x1

x0

6.7. Value-at-Risk and Expected Shortfall

Traditionally Value-at-Risk (VaR) has been used in risk management practice.

Consider an asset with risk neutral dynamics given by Eq. (6.2) such that for

some fixed τ > 0, Xτ ∼ 2 − EPT (AN ,bN , cN ,AP ,bP , cP ). The loss L which

corresponds to a certain pre-defined probability p of being exceeded during the

timeframe τ can be determined. Hence one must solve for L such that

p = P[S(T ) < L] (6.84)

= P[S(t)e((r+ω)τ+Xτ ) < L]

= P[Xτ < ln
( L

S(t)

)
− (r + ω)τ ]

=

∫ dL

−∞
cNe

ANxbN dx

= cN (AN )−1eAN dLbN
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where dL = log
(

L
S(t)

)
− (r + ω)τ < 0 and τ = T − t.

For the same asset the expected shortfall for a given loss L < 0 could also be

cimputed. The expected shortfall is defined as

E[L− S(T )|S(T ) < L] = L− E[S(T )|S(T ) < L] (6.85)

Assuming that L < 0

E[S(T )|S(T ) < L] =

∫ L

−∞
S(t)e(r+ω)τ+xcNe

ANxbNdx (6.86)

= S(t)e(r+w)τcN (AN + I)−1e(AN+I)LbN

The expected shortfall is then

E[L− S(T )|S(T ) < L] = L− S(t)e(r+w)τcN (AN + I)−1e(AN+I)LbN (6.87)



Chapter 7

2-EPT Matlab Functionality

7.1. Introduction

This penultimate chapter discusses MATLAB functionality available to assist

implementing some of the techniques described in the previous chapters. MAT-

LAB (MATrix LABoratory) was designed to allow easy matrix manipulation

and is an ideal computing environment to perform 2-EPT calculations. Firstly

an introduction to some inbuilt MATLAB commands is given which takes ad-

vantage of the Control Systems Toolbox to implement some well known results

from the system theory.

The website “www.2-ept.com” was designed in conjunction with this research

to be a source for 2-EPT related software and literature. The site contains

beta versions of all scripts described in this chapter. The most significant

and perhaps important algorithm available is the Budan-Fourier method of

Hanzon and Holland (2010) to locate the sign-changing zeros of an EPT func-

tion on a finite interval. Another significant algorithm provided, is the convex

optimisation algorithm described in Section 3.8. A number of additional scripts

have been made available on the website including a piece of code to additively

decompose a proper rational function, with minimal realization (A,b, c,d), into



158 2-EPT Matlab Functionality

the sum of two proper rational functions with poles located in the open left and

open right half planes. A programme is also available to compute the con-

volution of two 2-EPT functions. An N-Fold convolution script utilises the

convolution function to perform an N-Fold convolution of a 2-EPT function

with itself. These functions are necessary for the Process Minimum / Maximum

script which computes the minimal realization of the generalised EPT probabil-

ity density function of the maximum or minimum of a fixed length discrete time

2-EPT process as described in Section 5.2.

The rational approximation software RARL2 is available only from INRIA dir-

ectly.

7.2. Inbuilt Matlab Functions

It should be noted that all of the functions mentioned in this section require

the Control System Toolbox and are applicable to EPT functions only. The

first and most important function is the ss routine. This function allows the

user to create a state space system by inputting the (A,b, c,d) realization of an

EPT function. The (A,b, c,d) realization can also be found from the transfer

function using the tf command by supplying the coefficients of the numerator

and the denominator of the rational transfer function. Alternatively the transfer

function can be given by the zpk routine where the inputs are the zeros, poles

and gain of the transfer function.

Once the state space model is defined its minimal realization can be obtained

using the minreal command. The balreal function computes the balanced

realization of a state space system. The order of the system can then be reduced

using the balred or modred scripts where the desired number of states in the

output model is specified. balred eliminates states with the smallest Hankel

singular values while modred eliminates particular states.

The H2 norm of system can be calculated using the norm command. The lyap
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solves continuous time Lyapunov equations which includes Sylvester equations.

Finally the gram routine returns the observability or controllability grammian

of the input pair (A, c) or (A,b) respectively.

7.3. Budan-Fourier Technique

This code implements the Budan-Fourier technique of Hanzon and Holland (2010)

to identify all sign-changing zeros of the EPT function ceAxb of McMillan de-

gree n on an interval [0, T ]. The method computes a generalised Budan-Fourier

sequence, denoted p(k)(t), for a real EPT function and a set of associated bound-

ary points. A partition of the interval [0, T ] allows the sign-changing zeros

of p(k)(t) to be identified by bisection. Each p(k)(t) has a pre-defined set of

boundary points (known as the extended set of boundary points) which are de-

pendent on the kth eigenvalue in A. Using all sign-changing zeros of p(k)(t) on

[0, T ] with the extended set of boundary points for p(k−1)(t), the sign-changing

zeros of p(k−1)(t) on [0, T ] can be determined. This method is implemented

by beginning with k = n − 1 and decreasing until k = 1. It will be seen that

p(0)(t) = ceAtb. The output from the script is a plot of the EPT function

identifying any sign-changing zeros on the interval [0, T ] and also returning the

location of these points. If there are no sign-changing zeros on the interval then

a statement indicating so is printed. There are six m-files required to run this

algorithm.

A simple interval [a, b] is so-called if there exists at most one sign-changing zero

on the interval. A sign-changing zero exists on the simple interval [a, b] if

lim
ϵ→0

Sign[f(a+ ϵ)] × lim
ϵ→0

Sign[f(b− ϵ)] < 0 (7.1)

For programming purposes ϵ = K(b− a) where K is some small positive num-

ber set to default as 10−8. For notation purposes the set of sign-changing zeros

of p(k)(t) on [0, T ] will be denoted Sk while the extended set of boundary points
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for p(k)(t) will be denoted by Ek. A simple grid, Pk, for p
(k)(t) is a partition of

the interval [0, T ] into simple intervals [t0, t1, ..., tN ] where t0 = 0 and tN = T

such that there is at most a single sign-changing zero of p(k)(t) in each simple

interval (ti, ti+1) for all i = {0, 1, ..., N − 1}. It is seen in Hanzon and Holland

(2010) that the partition for the simple grid of p(k)(t) is given by the ordered

set of boundary points Pk = {Sk+1 ∪ Ek}.

Zeros EPT.m

This is the front end m-file of the Budan-Fourier algorithm. The inputs ne-

cessary are the (A,b, c) minimal realization of the EPT function of McMillan

degree n and T > 0 is also required to define the interval [0, T ] on which to

check for sign-changing zeros. The structure of the spectrum of A is then ex-

amined. Depending on the eigenvalues of A, a different sub-routine is called to

determine the sign-changing zeros of the EPT function on [0, T ]. If all eigenval-

ues of A are zero implying the function is a polynomial then Budan_Fourier_P

is called while if the eigenvalues of A are real, and not all identically zero,

Budan_Fourier_EP is utilised indicating an exponential-polynomial (EP) func-

tion is being examined. If complex eigenvalues are present in the spectrum of

A then Budan_Fourier_EPT is called. Each of the Budan Fourier algorithms

above return a vector containing the sign-changing zeros of EPT function on

[0, T ]. The EPT function is plotted on [0, T ] illustrating any sign-changing zeros

on the interval.

Budan Fourier P.m

If all eigenvalues of A are zero such that the EPT function is a polynomial then

the function Budan_Fourier_P returns the sign-changing zeros of the polyno-

mial function. For the “P”, polynomial, case the Budan-Fourier sequence is

given by

p(k)(t) = cAkeAtb (7.2)

The algorithm is a loop for i decreasing from n − 1 to 0. As A is nilpotent it

is clear that p(n)(t) ≡ 0 and Sn is the empty set. For i = k the simple grid for
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p(k)(t) has the partition given by the ordered boundary points Pk = {Sk+1∪Ek}

where Ek = {0, T} for all k = {1, 2, ..., n− 1}. A nested loop over the elements

of Pk identifies the sign-changing zeros of p(k)(t) denoted Sk. If the simple

interval (ti, ti+1) contains a sign-changing zero then the bisection algorithm

Bisection_EP is implemented to locate it. The algorithm continues in this

manner until the sign-changing zeros of p(0)(t) = ceAtb are identified.

Budan Fourier EP.m

If all eigenvalues of A are real and not all identically zero, Budan_Fourier_EP

locates the sign-changing zeros of the EP function. The Budan-Fourier sequence

for the EP function is found using the Cayley-Hamilton result which is given

for all k = {0, 1, 2, ..., n} by

p(k)(t) = c(A− λkI)(A− λk−1I)...(A− λ1I)e
Atb (7.3)

The algorithm here is identical to that shown for Budan_Fourier_P only that the

Ak term of p(k)(t) in Eq. (7.2) is replaced by (A−λkI)(A−λk−1I)...(A−λ1I).

Similarly p(n)(t) ≡ 0.

Budan Fourier EPT.m

When the spectrum of A contains complex elements a more involved method is

required to located the sign-changing zeros of the EPT function. The eigenvalues

are first ordered such that the complex conjucates come in pairs λk = θk +

ivk, λk+1 = θk − ivk with vk > 0 for all k = 1, 2, ..., n. The Budan-Fourier

sequence is dependent on the sign of the complex part of λk or if λk is real.

If λk ∈ R (equivalent to vk = 0) or if λk = θk − ivk then the Budan-Fourier

sequence is given by

p(k)(t) = c(A− λkI)(A− λk−1I)...(A− λ1I)e
Atb (7.4)
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However, if λk = θk + ivk, then

p(k)(t) = Im
(
e−λ̄ktc(A− λkI)(A− λk−1I)...(A− λ1I)e

Atb
)

(7.5)

The set of extended boundary points Ek for each iteration, k, depends on whether

the eigenvalue λk is real or complex.

Ek =


{0, T} if λk ∈ R

{0, π
vk
, π
vk
, ..., ⌊ T

π/vk
⌋ π
vk
, T}; if λk ∈ C

(7.6)

where the entier of the real number x is ⌊x⌋ = max{m ∈ N|m ≤ x}.

The algorithm is then based on a loop starting from k = n−1 and decreasing to

i = 0 as p(n)(t) ≡ 0. At each step k = {n− 1, n− 2, ..., 2, 1} the set of extended

boundary points Ek is computed depending whether λk is real or complex as

given in Eq. (7.6). The partition of the interval [0, T ] which forms a simple

grid is then computed as Pk = {Sk+1 ∪ Ek} where Sk+1 are the sign changing

zeros from the previous iteration. Sn = ∅ as p(n)(k) ≡ 0. A nested loop then

runs through the partition points of [0, T ] given by the set Pk and determines

all sign-changing zeros of p(k)(t) on [0, T ]. The bisection algorithm required to

locate a sign-changing zero on a simple interval when λk = θk + ivk for vk > 0

is EPT_Bisection compared with the bisection algorithm EP_Bisection which

can be applied when λk ∈ R or λk = θk − ivk.

EP Bisection.m

The inputs are the triple of the EPT function and also the lower and upper

boundaries, “l” and “r” resp., of the simple interval [l, r]. The algorithm assumes

the function has a single sign-changing zero on the interval [l, r] and locates that

zero up a tolerance of 10−6. The zero on the interval is returned. The tolerance,

“tol”, can be changed easily.

EPT Bisection.m

The inputs are the triple of the EPT function where the spectrum of A is
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complex and also the lower and upper boundaries, “l” and “r” resp., of the

simple interval [l, r]. The eigenvalue λk = θk + ivk, with vk > 0, associated

with the current iteration of the Budan-Fourier algorithm is also passed as an

input. The algorithm assumes there is at most one zero on the interval [l, r] and

locates that zero up a tolerance of 10−6. The zero on the interval is returned.

The bisection is performed on the EPT function p(k)(t) which is of the form of

Eq. (7.5).

7.3.1. Budan-Fourier Algorithm Example

An example locating the sign-changing zeros completes this analysis of the al-

gorithm. The EPT function to be considered is given by

f(x) = ceAxb = 2 +
1

2
eix +

1

2
e−ix +

1

2
eiπx +

1

2
e−iπx − 20e−x (7.7)

The MATLAB code required to input the minimal realization of f(x) can be

given by

v=[0;i;-i;i*pi;-i*pi;-1];

A=diag(v);

b = [2;1/2;1/2;1/2;1/2;-20];

c = [1 1 1 1 1 1 ];

It is clear that the spectrum ofA is complex and given by σ(A) = (0, i,−i, πi,−πi,−1).

We will locate the sign-changing zeros of the EPT function on [0, 10]. The Budan-

Fourier algorithm is then called using the command

Zeros_EPT(A,b,c,10)

A screenshot of the written output is given in Figure 7.1 below.
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Figure 7.1: A screenshot of the written output from the Budan-Fourier Algorithm
giving the exact locations of the sign-changing zeros on [0, 10]

The plot in Figure 7.2 accompanies the above output illustrating the EPT

function given in Eq. (7.7). A snapshot of the function f(x) over the interval

[2.0, 2.3] has also been included showing the accuracy of the algorithm.
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Figure 7.2: Plot of EPT Function f(x) from Eq. (7.7) identifying sign-changing
zeros. Also a snapshot of f(x) on the interval [2.0, 2.3]
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7.4. Convex Optimisation Algorithm

The Convex Optimisation Algorithm is based on the method described in Sec-

tion 3.8. Consider an EPT function f(x) defined on [0,∞) given by

f(x) = ĉeÂxb̂
∗
+ µMe

λMx = ceAxb∗ (7.8)

for which f(x) < 0 for some x ≥ 0 and σ(A) ⊂ {s|Re(s) < λM}. The objective

is to approximate f(x) with a non-negative function g(x) which minimises the

L2 criterion

||f(x)− g(x)||22 (7.9)

where g(x) is of the form

g(x) = ĉeÂxb̂+ µMe
λMx = ceAxb (7.10)

Hence it is clear from Section 3.8 that Eq. (7.9), with the non-negativity con-

straint, can be re-written as

min
b̂∈B(Â,ĉ)

||ĉeÂx(b̂
∗
− b̂)||22 (7.11)

where the convex set B(Â, ĉ) is defined in Section 3.6 such that if b̂ ∈ B(Â, ĉ)

then

ĉeÂxb̂ ≥ −µMe
λMx , x ≥ 0 (7.12)

and therefore g(x) is non-negative on [0,∞). We denote b̂
∗
C ∈ B(Â, ĉ) as the

vector satisfying the criterion in Eq. (7.11). The algorithm consists of ten m-

files in total although six of these refer to the Budan-Fourier technique described

previously.

EPT ConvexOP MinSearch.m

The inputs include the optimal triple (Â, b̂
∗
, ĉ) of McMillan degree (n − 1),

the dominant pole and coefficient, λM and µM respectively. An initial guess of
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b̂0 ∈ B(Â, ĉ) must also be provided. The code first transforms the Â matrix

such that Ã = Â− λI transforming the non-negativity constraint into

ĉeÃxb̂ ≥ −µM , x ≥ 0

The gram command is then used to calculate the observability grammian Q

for the pair (Â, ĉ). Finite_T as described below calculates T > 0, such that

examining non-negativity of the EPT function with the unique dominant pole

on [0, T ] is sufficient for checking for sign-changing zeros of the EPT function

on the real half line [0,∞).

The convex optimisation procedure is then conducted using the MATLAB direct

search algorithm fminsearch while Convex_Optimisation calculates the value

function at each step to be minimised and returns the final b̂
∗
C . A plot of the

resulting EPT functions is then given.

Convex Optimisation.m

Convex_Optimisation is used in conjunction with fminsearch to calculate the

value function

||ĉeÂx(b̂
∗
− b̂i)||22 = (b̂

∗
− b̂i)

TQ(b̂
∗
− b̂i) (7.13)

at each step i. Letting b̂i−1 ∈ B(Â, ĉ) is a fair assumption as the zero vec-

tor b̂0 ∈ B(Â, ĉ). fminsearch updates the step from b̂i−1 to b̂i attempting

to minimise the criterion in Eq. (7.13). Using the Budan-Fourier algorithm,

Zeros_EPT_DP, it is necessary to check if b̂i ∈ B(Â, ĉ) which is equivalent to

testing if

ĉeÂxb̂+ µMe
λMx ≥ 0 , ∀ x ∈ [0, T ] (7.14)

If b̂i /∈ B(Â, ĉ) the value function is penalised significantly such that fminsearch

reverts to b̂i−1 and recalculates a different b̂i. This procedure continues until
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the criterion cannot be minimised any further and b̂
∗
C , the global minimum of

Eq. (7.11), is returned.

Finite T.m

The inputs required are the triple (Â, b̂
∗
, ĉ) of the EPT function with its domin-

ant pole and coefficient, λM and µM . Following the notation and logic in Section

3.7 the values λmin, λ̃min and D2 are calculated yielding ϵ = µλminλ̃min/D
2.

A large T1 is constructed such that V (T1) < ϵ and a bisection technique is used

to solve for T ∈ [0, T1] such that V (T ) = ϵ.

Zeros EPT DP.m

The m-file accepts as inputs an EPT function defined using the triple (Â, b̂, ĉ)

and dominant pole, λM , with coefficient µM . T > 0 is also required an in-

put. The Budan-Fourier algorithm as described in and Hanzon and Holland

(2010) is used to test whether the EPT function with dominant real pole has

any sign-changing zeros on the finite interval [0, T ]. This file is very similar to

Zeros_EPT from the Budan-Fourier algorithm of Section 7.3 except it simply

returns 0 if the EPT function is non-negative on [0, T ] or 1 if the EPT function

has sign-changing zeros on [0, T ].

7.5. Additional 2-EPT MATLAB Scripts

A number of additional scripts are now considered which can be used to perform

some 2-EPT computations.

7.5.1. Additive Decomposition

The purpose of the Additivie_Decomposition code is to decompose a proper

rational function ϕ given by the minimal realization (A,b, c,d) of order n, with

poles in either half plane, into the sum of two rational functions, ϕP and ϕN ,
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while d remains unchanged.

ϕ(s) = c(sI−A)−1b+ d

= ϕP (s) + ϕN (s) + d

= cP (sI−AP )
−1bP + cN (sI−AN )−1bN + d

ϕN (s) is a proper rational function with realization (AN ,bN , cN ) whose poles

are located in the open right plane and ϕP (s) is a proper rational function with

poles located in the open left half plane with realization (AP ,bP , cP ). The

cschur function within the script computes a unitary similarity transformation

of A which is used as a basis change. The resultant T = VTAV matrix is upper

triangular with eigenvalues (i.e. diagonal elements) sorted in ascending order ac-

cording to their real part. The matrix is then transformed to block diagonal form

by solving the appropriate sylvester equation using lyap function. The basis

change is performed on the complete triple, yielding (VTAV,VTb, cV). The

output is two minimal triples (AN ,bN , cN ) with σ(AN ) ⊂ H+ and (AP ,bP , cP )

with σ(AP ) ⊂ H−. Although d can be given as an input it plays no part in the

additive decomposition and is returned unchanged.

The code was originally written by Prof. Wolfgang Scherrer but altered to re-

turn both minimal triples (AN ,bN , cN ) and (AP ,bP , cP ) which may each have

a different McMillan degree.

7.5.2. Convolution

The Convolution command requires the realizations, (A1,b1, c1,d1) and

(A2,b2, c2,d2), of two generalised 2-EPT functions f and g respectively as

inputs. The minimal realizations of these realizations are then found using the

minreal command. The minimal realization (A3,b3, c3,d3) of the convolution

of the functions f and g is computed using the formulae given in Section 2.2.8

and outputted.
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7.5.3. N-Fold Convolution

This function performs an N-Fold convolution of a 2-EPT function with itself.

The inputs required are the realization (A,b, c,d) of the 2-EPT function and

an integer N indicating the number of times the convolution will be performed.

The minimal realization of (A,b, c,d) is first calculated. Then a loop from 1

to N uses the Convolution function above to perform the N-Fold Convolution.

The minimal realization of the resulting function is then returned.

7.5.4. Generalised EPT Realizations of 2-EPT Process Extrema

The function Process_2EPT_Min calculates the minimal realization of the gen-

eralised EPT probability density function for the minimum of a 2-EPT dis-

crete time process of length T . The inputs required are the 2-EPT realization

(AN ,bN , cN ,AP ,bP , cP ) for the distribution of the increments of the process.

An integer T > 0 is also required to specify the length of the 2-EPT process. The

recursive algorithm described in Section 5.2 is used to compute the minimum

of the process and is given by

M(T ) = min{0 , X1 + min{0, X2 + min{0, X3 + ... }}} (7.15)

where M(0) = 0 and Xi ∼ 2 − EPT (AN ,bN , cN ,AP ,bP , cP ) for all i =

{1, 2, ..., T}. The first step of the algorithm is to represent the 2-EPT realiz-

ation (AN ,bN , cN ,AP ,bP , cP ) in a minimal triple (A,b, c) as shown in Eqs.

(2.6) and (2.7). The probability density function of the minimum of process

of length T = 1, denoted M(1), is first computed as (A1,b1, c1,d1) where

d1 = 1 − c1A
−1
1 b1 and A1 = AN , b1 = bN , c1 = cN . A loop for i from 2 to

T is then entered calculating the generalised EPT probability density function

(Ai,bi, ci,di) for the minimum of the 2-EPT process of length i = {2, 3, ..., T}.
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The recursive formula for the minimum M(i+ 1) in terms of M(i) is exploited

M(i+ 1)
d
= min{0, Xi+1 + M(i)︸ ︷︷ ︸

Z

} (7.16)

The generalised EPT probability density function for M(i) is given by the real-

ization (Ai,bi, ci,di). The 2-EPT probability density function for Z has a real-

ization (ANZ
,bNZ

, cNZ
,APZ

,bPZ
, cPZ

) and is found by convolving the density

functions with minimal realizations (Ai,bi, ci,di) and (A,b, c) together. The

2-EPT density function for Z is non-zero for certain intervals on both halflines

(−∞, 0) and (0,∞). Applying the min{0, Z} operator is equivalent to replacing

density of Z with support on the open right half plane (0,∞) with a pointmass

at zero. Hence

di+1 = P[Z > 0] = 1− ci+1A
−1
i+1bi+1 (7.17)

where Ai+1 = ANZ
, bi+1 = bNZ

and ci+1 = cNZ
. The algorithm contin-

ues in this manner until the realization of the EPT density of M(T ) given by

(AT ,bT , cT ,dT ) is returned.

A similar function Process_2EPT_Max is also available to calculate the realiza-

tion of the generalised EPT probability density function for the maximum of a

2-EPT process of length T .

7.5.5. Generating 2-EPT Random Variables

Generate_2EPT_rv generates a single 2-EPT random variable whose probabil-

ity density function is given by the realization (AN ,bN , cN ,AP ,bP , cP ). The

script requires the 2-EPT realization as an input and also a uniform (0, 1) ran-

dom variable, denoted p. The cumulative 2-EPT distribution function is given

by

F (x) =


cNA−1

N eANxbN if x ≤ 0

1 + cPA
−1
P eAP x bP if x > 0

(7.18)
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Bisection is used to solve for xp such that F (xp) = p. There is a separate

bisection technique for both of the cases, p ≤ cNA−1
N bN and p > cNA−1

N bN .

It should be clear that the distribution of xp is 2-EPT with minimal realization

(AN ,bN , cN ,AP ,bP , cP ).

A function Generate_EPT_rv is also available to generate EPT random variables

on [0,∞).
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Chapter 8

Conclusion

8.1. Concluding Remarks

This research seeks to take advantage of the recent advances in computing power

which allow for calculations involving matrices of high dimensions to be executed

rapidly. It is also illustrated that many results from Systems Theory have ex-

tremely worthwhile applications within Financial Modelling. It is hoped that

this link can be enhanced with further research.

The thesis introduces the flexible class of 2-EPT Probability Density Functions.

On [0,∞) as well as (−∞, 0] these probability density functions are non-negative

EPT functions, which were discussed in Hanzon and Holland (2010). It is seen

that phase-type and matrix exponential distributions are both subsets of the

2-EPT class of distributions. Once the 2-EPT probability density functions

are formulated mathematically it is illustrated that the class is closed under a

variety of operations thereby demonstrating the benefits of adopting a 2-EPT

approach to stochastic modelling. Based on this property, the applications of

2-EPT probability density functions within a financial modelling context are

considered.

A natural question to pose, is how a 2-EPT probability density function can



174 Conclusion

be fitted to an empirically observed distribution. This problem is tackled using

the approximation software RARL2. Ensuring the 2-EPT density function is

non-negative was the most difficult problem encountered in the approximation

procedure. Non-negativity was imposed using a convex optimisation algorithm

after an unconstrained approximation. The order of the approximation can be

increased until the associated error is sufficiently small up to a certain tolerance.

A discrete time 2-EPT process is the sum of independent and identically distrib-

uted 2-EPT random variables. It was proven that the distribution of the min-

imum and maximum of such a discrete time 2-EPT process have a generalised

EPT density which can be computed exactly. Typically, numerical techniques

would be required to derive such distributions for these processes.

The Variance Gamma distribution is popular for modelling the log-returns of an

asset. It can be seen that the Variance Gamma distribution is infinitely divisible

and hence the risk neutral Variance Gamma asset price process can be derived.

However, the density is typically specified in terms of a special function which

means numerical techniques are required to compute results, including deriving

option prices, which involve the density function. It is shown that the Variance

Gamma density is a 2-EPT density function under a parameter restriction and

under this restriction it can be seen that closed form formulae for European,

discretely monitored Lookback and 2-Period Bermudan Options can be derived

over certain time frames. Analytic formulae also exist for the associated option

Greeks.

Using results from Feller (1971), Widder (1941) and Khintchine (1937) a neces-

sary and sufficient condition was derived to characterise infinitely divisible EPT

and 2-EPT functions. It follows that every infinitely divisible 2-EPT distribu-

tion generates a unique 2-EPT Lévy process. Assuming an assets log-returns

over a fixed period τ can be modelled with an infinitely divisible 2-EPT prob-

ability density function, the 2-EPT asset price process can be defined as an

exponential 2-EPT Lévy process. As in the unconstrained Variance Gamma
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case, closed form formulae do not usually exist for option prices when the log

returns of an asset are modelled as a Lévy process. Under these 2-EPT assump-

tions the risk neutral 2-EPT price process can be defined for the asset and it

is possible to derive closed form formulae for European Options (with time to

maturity equal to integer multiplies of τ) and their Greeks. Analytic expres-

sions for option prices and their Greeks can also be determined for discretely

monitored Lookback Options and the 2-Period Bermudan Option.

A chapter of the thesis is dedicated to describing the software, made available

by the author, to assist with 2-EPT calculations. We illustrate that financial

modelling using 2-EPT density functions is straightforward to implement in

practice. This is demonstrated by fitting a 2-EPT density function to a set

of asset returns and using this approximation, various option prices and their

Greeks are computed using the closed form 2-EPT formulae derived.

8.2. Further Research Opportunities

Modelling with 2-EPT probability density functions is still in its infancy and

there is significant potential for further research based on work completed to

date. Here, we only consider some opportunities within the field of mathem-

atical finance but 2-EPT functions may have applications in other disciplines.

For example, it was already noted that matrix-exponential and phase-type dis-

tributions are subclasses of EPT density functions which immediately leads to

applications in other areas. Alternatively, Zhang et al (2005) unknowingly use

a subclass of EPT densities to model molecular population distributions in a

system of first-order chemical reactions.

It is possible to define bi-variate 2-EPT probability density functions for inde-

pendent 2-EPT random variables. Using such densities and the results of Sato

(1999) relating to discretely monitored processes, it may be possible to price

discretely monitored Barrier Options for an asset with a 2-EPT price process.
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LettingM(T ) be the minimum or maximum of a discretely monitored Lévy pro-

cess and S(T ) be the terminal value of the same process, Sato (1999) proves the

independence of the quantities (M(T ) − S(T )) and S(T ). The bivariate distri-

bution of these random variables can then be used to price discretely monitored

Barrier Options.

An alternative method to pricing options, when the log returns are modelled as

a Lévy process, is to solve the associated Partial Integro-Differential Equation

(PIDE). There are numerous methods available in the literature describing how

to solve these PIDEs which include multinomial trees, finite difference methods,

finite elements and Galerkin schemes. It would be of significant interest to ex-

amine these PIDEs and their solutions in the 2-EPT Lévy framework. These

techniques also allow for American Option prices to be derived.

A potential pitfall of using 2-EPT densities to model an assets log returns under

the physical measure (as done in Section 6.2) is that the 2-EPT density function

may not be infinitely divisible. If the 2-EPT density function is not infinitely

divisible then it is not be possible to construct the risk neutral measure and

therefore, the risk neutral prices of options on the asset can not be derived.

Hence, it would be convenient to be able to project onto the set of infinitely

divisible 2-EPT probability density functions.

The class of geometrically infinitely divisible random variables was introduced by

Klebanov,Maniya and Melamed (1984) and is a subset of the class of infinitely

divisible random variables. Using some of the results provided here, including

the composition formula, it may be possible to characterise geometrically infin-

itely divisible 2-EPT/EPT random variables.

Finally translated 2-EPT random variables do not have a 2-EPT probability

density function. This property meant that in Chapter 6, Lookback options

were priced under the real world measure P rather than under the risk neut-

ral measure Q. The concept of approximating the translated density with a

2-EPT density (as described in Section 6.5.2) via the RARL2 procedure could
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be examined in detail.
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Appendix A

Empirical Option Prices
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A.1. Option Prices

Table A.1 gives the prices for European Call Options on the Dow Jones In-

dustrial Average as of January 25th, 2013 while the Index value was 13860.65.

The options matured on March 8th, 30 business later. The annualized risk free

interest rate for the period was 0.2%.

Strike Price

12250 1633.44

12500 1385.99

12750 1141.18

13000 899.38

13250 665.89

13500 446.69

13750 253.60

14000 96.99

14250 36.33

14500 12.13

14750 3.02

15000 0.58

Table A.1: European Call Option Prices on the DJIA on Jan 25 2013. Options
Maturing on March 8 2013. Source Bloomberg.
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